
Amy P. Felty
Aart Middeldorp (Eds.)

 123

LN
AI

 9
19

5

25th International Conference on Automated Deduction
Berlin, Germany, August 1–7, 2015
Proceedings

Automated Deduction –
CADE-25

Lecture Notes in Artificial Intelligence 9195

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Amy P. Felty • Aart Middeldorp (Eds.)

Automated Deduction –

CADE-25
25th International Conference on Automated Deduction
Berlin, Germany, August 1–7, 2015
Proceedings

123

Editors
Amy P. Felty
University of Ottawa
Ottawa
Canada

Aart Middeldorp
University of Innsbruck
Innsbruck
Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-21400-9 ISBN 978-3-319-21401-6 (eBook)
DOI 10.1007/978-3-319-21401-6

Library of Congress Control Number: 2015943367

LNCS Sublibrary: SL7 – Artificial Intelligence

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the papers presented at the 25th Jubilee Edition of the Interna-
tional Conference on Automated Deduction (CADE-25), held August 1–7, 2015, in
Berlin, Germany. CADE is the major forum for the presentation of research in all
aspects of automated deduction, including foundations, applications, implementations,
and practical experience.

The Program Committee (PC) accepted 36 papers (24 full papers and 12 system
descriptions) out of a total of 85 submissions. Each submission was reviewed by at
least three PC members or external reviewers appointed by the PC members in charge.
The program also included invited lectures given by Ulrich Furbach (University of
Koblenz, Germany) and Edward Zalta (Stanford University, USA). In addition,
Michael Genesereth (Stanford University, USA) gave an invited lecture in conjunction
with the co-located event RuleML (9th International Web Rule Symposium).

To celebrate the 25th jubilee edition of the conference, additional invited speakers
were featured at several events. A Special Session on the Past, Present, and Future of
Automated Deduction included talks by Ursula Martin (University of Oxford, UK),
Frank Pfenning (Carnegie Mellon University, USA), David Plaisted (University of
North Carolina at Chapel Hill, USA), and Andrei Voronkov (University of Manchester,
UK). Also, the conference reception and the banquet dinner featured speakers Wolf-
gang Bibel and Jörg Siekmann. In addition, the program was enriched by several
affiliated events that took place before the main conference. These events included
eight workshops, seven tutorials, three competitions, and one poster event.

During the conference, the Herbrand Award for Distinguished Contributions to
Automated Reasoning was presented to Andrei Voronkov in recognition of his
numerous theoretical and practical contributions to automated deduction and the
development of the award-winning Vampire theorem prover. The Selection Committee
for the Herbrand Award consisted of the CADE-25 Program Committee members, the
trustees of CADE Inc., and the Herbrand Award winners of the last ten years.

The Best Paper Award was conferred to Vijay D’Silva (Google, Inc., USA) and
Caterina Urban (École Normale Supérieure, France) for their paper entitled “Abstract
Interpretation as Automated Deduction.” In addition, the first Thoralf Skolem Awards
were conferred this year to reward CADE papers that have passed the test of time by
being most influential papers in the field:

CADE-20 (2005) Nominal techniques in Isabelle/HOL by Christian Urban and
Christine Tasson: The first paper showing how to use nominal techniques to deal
with bound variables in higher-order theorem provers.
CADE-14 (1997) SATO: An Efficient Propositional Prover by Hantao Zhang: For
its seminal contribution to the design and implementation of novel techniques,
including lazy data structures and clever Boolean constraint propagation that caused
a step change in the area and deeply influenced later systems.

CADE-8 (1986) Commutation, Transformation, and Termination by Leo Bachmair
and Nachum Dershowitz: For laying the foundations of today’s termination
theorem-proving techniques.
CADE-0-1 (1968 and 1975) The mathematical language AUTOMATH, its usage,
and some of its extensions by N.G. de Bruijn: For his landmark and remarkable
contribution to the design and implementation of higher-order theorem provers.

Also, several students received Woody Bledsoe Travel Awards, thus named to
remember the late Woody Bledsoe, funded by CADE Inc. to sponsor student
participation.

Many people contributed to making CADE-25 a success. We are very grateful to the
members of the Program Committee and the external reviewers for carefully reviewing
and evaluating papers. CADE-25 would not have been possible without the dedicated
work of the Organizing Committee, headed by Conference Chair Christoph
Benzmüller. Many thanks also go to Workshop, Tutorial, and Competition Co-chairs
Jasmin Blanchette and Andrew Reynolds, and to Publicity and Web Chair Julian
Röder. On behalf of the Program Committee, we also thank all the invited speakers for
their contribution to the success of this jubilee edition. We also acknowledge the
important contributions of the workshop organizers, tutorial speakers, competition
organizers, and poster event organizer. Thanks also go to Andrei Voronkov and the
development team of the EasyChair system. Last, but not least, we thank all authors
who submitted papers to CADE-25 and all participants of the conference.

CADE-25 received support from many organizations. On behalf of all organizers,
we thank the German Research Foundation, DFG, for supporting the special session,
and the European Coordinating Committee for Artificial Intelligence (ECCAI) for
supporting the invited talk given by Ulrich Furbach. We also gratefully acknowledge
support from Freie Universität Berlin, the Artificial Intelligence Journal, and Microsoft
Research.

May 2015 Amy P. Felty
Aart Middeldorp

VI Preface

Affiliated Events

Workshops

– Bridging: Bridging the Gap Between Human and Automated Reasoning, organized
by Ulrich Furbach, Natarajan Shankar, Marco Ragni, and Steffen Hölldobler

– DT: 29. Jahrestreffen der GI-Fachgruppe Deduktionssysteme, organized by
Christoph Benzmüller, Matthias Horbach, Alexander Steen, and Max Wisniewski

– HOL4: HOL4 Workshop, organized by Ramana Kumar
– IWC: Fourth International Workshop on Confluence, organized by Takahito Aoto

and Ashish Tiwari
– LFMTP: International Workshop on Logical Frameworks and Meta-Languages:

Theory and Practice, organized by Kaustuv Chaudhuri and Iliano Cervesato
– PxTP: Workshop on Proof eXchange for Theorem Proving, organized by Cezary

Kaliszyk and Andrei Paskevich
– QUANTIFY: Second International Workshop on Quantification, organized by

Hubie Chen, Florian Lonsing, and Martina Seidl
– Vampire: The Vampire Workshop, organized by Laura Kovacs and Andrei

Voronkov

Tutorials

– Abella: Reasoning About Computational Systems Using Abella, given by Kaustuv
Chaudhuri and Gopalan Nadathur

– Beluga: Programming Proofs About Formal Systems, given by Brigitte Pientka
– CPROVER: From Programs to Logic: The CPROVER Verification Tools, given by

Daniel Kroening, Martin Brain, and Peter Schrammel
– Isabelle: Isabelle Tutorial, given by Makarius Wenzel
– KeY: The Sequent Calculus of the KeY Tool, given by Reiner Hähnle and Peter

Schmitt
– Lean: Lean Theorem Prover: A Tutorial, given by Leonardo de Moura, Soonho

Kong, Jeremy Avigad, and Floris van Doorn
– Superposition: 25th Anniversary of Superposition: Status and Future, given by

Stephan Schulz and Christoph Weidenbach

Competitions

– CoCo: The Fourth Confluence Competition, organized by Takahito Aoto, Nao
Hirokawa, Julian Nagele, Naoki Nishida, and Harald Zankl

– CASC: The CADE ATP System Competition, organized by Geoff Sutcliffe
– termCOMP: Termination Competition, organized by Johannes Waldmann and

Stefan von der Krone

Poster Events

– EPS: The CADE-25 Taskforce Towards an Encyclopedia of Proof Systems, orga-
nized by Bruno Woltzenlogel Paleo

VIII Affiliated Events

Organization

Program Chairs

Amy Felty University of Ottawa, Canada
Aart Middeldorp University of Innsbruck, Austria

Program Committee

Carlos Areces Universidad Nacional de Córdoba, Argentina
Alessandro Armando University of Genova, Italy
Christoph Benzmüller Freie Universität Berlin, Germany
Josh Berdine Microsoft Research, UK
Jasmin Blanchette Inria Nancy and LORIA, France
Marta Cialdea Mayer Università di Roma Tre, Italy
Stephanie Delaune CNRS, France
Gilles Dowek Inria, France
Amy Felty University of Ottawa, Canada
Reiner Hähnle Technical University of Darmstadt, Germany
Stefan Hetzl Vienna University of Technology, Austria
Marijn Heule The University of Texas at Austin, USA
Nao Hirokawa JAIST, Japan
Ullrich Hustadt University of Liverpool, UK
Deepak Kapur University of New Mexico, USA
Gerwin Klein NICTA and UNSW, Australia
Laura Kovacs Chalmers University of Technology, Sweden
Carsten Lutz Universität Bremen, Germany
Assia Mahboubi Inria, France
Aart Middeldorp University of Innsbruck, Austria
Albert Oliveras Technical University of Catalonia, Spain
Nicolas Peltier CNRS, France
Brigitte Pientka McGill University, Canada
Ruzica Piskac Yale University, USA
André Platzer Carnegie Mellon University, USA
Andrew Reynolds EPFL Lausanne, Switzerland
Christophe Ringeissen LORIA-Inria, France
Renate A. Schmidt University of Manchester, UK
Stephan Schulz DHBW Stuttgart, Germany
Georg Struth University of Sheffield, UK
Geoff Sutcliffe University of Miami, USA

Alwen Tiu Nanyang Technological University, Singapore
Freek Wiedijk Radboud University Nijmegen, The Netherlands

Conference Chair

Christoph Benzmüller Freie Universität Berlin, Germany

Workshop, Tutorial, and Competition Co-chairs

Jasmin Blanchette Inria Nancy and LORIA, France
Andrew Reynolds EPFL Lausanne, Switzerland

Publicity and Web Chair

Julian Röder Freie Universität Berlin, Germany

Additional Reviewers

Albarghouthi, Aws
Alberti, Francesco
Andronick, June
Avanzini, Martin
Balbiani, Philippe
Bard, Gregory
Basold, Henning
Baumgartner, Peter
Bjørner, Nikolaj
Bonacina, Maria Paola
Boy de La Tour, Thierry
Bubel, Richard
Cerrito, Serenella
Chaudhuri, Kaustuv
Cohen, Cyril
David, Amélie
Demri, Stéphane
Dima, Catalin
Dimitrova, Rayna
van Ditmarsch, Hans
Dragan, Ioan
Echahed, Rachid
Echenim, Mnacho
Emmi, Michael
Felgenhauer, Bertram
Fontaine, Pascal
Fuhs, Carsten

Galmiche, Didier
Gao, Sicun
Ghilardi, Silvio
Ghorbal, Khalil
Gieseke, Fabian
Giesl, Jürgen
Gimenez, Stéphane
Goré, Rajeev
Griggio, Alberto
Gupta, Ashutosh
Habermehl, Peter
Hansen, Peter
Henriques, David
Hermant, Olivier
Hladik, Jan
Horbach, Matthias
Huisman, Marieke
Ibanez-Garcia,

Yazmin Angelica
Iosif, Radu
Jeannin, Jean-Baptiste
Johansson, Moa
Jovanović, Dejan
Junttila, Tommi
Kaliszyk, Cezary
Kaminski, Mark
King, Tim

Klebanov, Vladimir
Klein, Dominik
Kneuss, Etienne
Koenighofer, Robert
Kontchakov, Roman
Krishna, Siddharth
Kyas, Marcel
Lange, Martin
Le Berre, Daniel
Lee, Matias David
Lewis, Corey
Limongelli, Carla
Lombardi, Henric
Martins, João G.
Matichuk, Daniel
McMillan, Ken
Murray, Toby
Müller, Andreas
Nadathur, Gopalan
Nalon, Cláudia
Niksic, Filip
de Nivelle, Hans
Orbe, Ezequiel
Papacchini, Fabio
Park, Sungwoo
Paskevich, Andrei
Peñaloza, Rafael

X Organization

2015 Thoralf Skolem Award Committee

Alessandro Armando University of Genova, Italy
Gilles Barthe IMDEA Software Institute, Spain
Claude Kirchner (Chair) Inria, France
Christopher Lynch Clarkson University, USA
Leonardo de Moura Microsoft Research, USA
Uli Sattler University of Manchester, UK
Geoff Sutcliffe University of Miami, USA
Toby Walsh NICTA, Australia
Christoph Weidenbach Max Planck Institute for Informatics, Germany

Board of Trustees of CADE Inc.

Peter Baumgartner NICTA and ANU, Australia
Maria Paola Bonacina

(President)
University of Verona, Italy

Amy Felty (PC Co-chair) University of Ottawa, Canada
Pascal Fontaine University of Lorraine and LORIA, France
Martin Giese (Secretary) University of Oslo, Norway
Jürgen Giesl RWTH Aachen, Germany
Neil Murray (Treasurer) University at Albany, SUNY, USA
Larry Paulson University of Cambridge, UK
Brigitte Pientka McGill University, Canada
Renate A. Schmidt

(Vice-President)
University of Manchester, UK

Geoff Sutcliffe University of Miami, USA
Christoph Weidenbach Max Planck Institute for Informatics, Germany

Popescu, Andrei
Pous, Damien
Qiu, Xiaokang
Ranise, Silvio
Reger, Giles
Riener, Martin
Rushby, John
Saurin, Alexis
Sebastiani, Roberto
Seidl, Martina
Sibut-Pinote, Thomas
Silva, Alexandra

Steen, Alexander
Stratulat, Sorin
Suda, Martin
Thiemann, René
Théry, Laurent
Tiwari, Ashish
Tourret, Sophie
Traytel, Dmitriy
Urban, Josef
Valiron, Benoît
Völp, Marcus
Waldmann, Uwe

Wasser, Nathan
Weber, Tjark
Weller, Daniel
Windsteiger, Wolfgang
Wisniewski, Max
Woltzenlogel Paleo,

Bruno
Zantema, Hans
Zawadzki, Erik
Zeilberger, Noam
Zilani, Beta
Zufferey, Damien

Organization XI

Board of the Association for Automated Reasoning

Jasmin Blanchette
(Newsletter Editor)

Inria Nancy and LORIA, France

Pascal Fontaine (CADE) University of Lorraine and LORIA, France
Martin Giese (Secretary) University of Oslo, Norway
Hans Jürgen Ohlbach

(Vice-President)
LMU Munich, Germany

Renate Schmidt (CADE) University of Manchester, UK
Larry Wos (President) Argonne National Laboratory, USA

Sponsors

The CADE conference series is sponsored by CADE Inc., a sub-corporation of the
Association for Automated Reasoning. In addition, CADE-25 gratefully acknowledges
support from Freie Universität Berlin, the Artificial Intelligence Journal, Microsoft
Research, the German Research Foundation, DFG, and the European Coordinating
Committee for Artificial Intelligence.

XII Organization

Abstracts of Invited Talks
The first three abstracts are for invited talks given in the Special Session on the Past,
Present, and Future of Automated Deduction. The next three are for those given during
the main conference. These are followed by three abstracts describing the competitions
held at CADE-25.

History and Prospects for First-Order
Automated Deduction

David A. Plaisted

352 Sitterson Hall
Department of Computer Science, UNC Chapel Hill

Chapel Hill, NC, 27599-3175, USA
http://www.cs.unc.edu/*plaisted

On the fiftieth anniversary of the appearance of Robinson’s resolution paper [1],
it is appropriate to consider the history and status of theorem proving, as well as
its possible future directions. Here we discuss the history of first-order theorem
proving both before and after 1965, with some personal reflections. We then
generalize model-based reasoning to first-order provers, and discuss what it
means for a prover to be goal sensitive. We also present a way to analyze
asymptotically the size of the search space of a first-order prover in terms of the
size of a minimal unsatisfiable set of ground instances of a set of first-order
clauses.

Reference

1. Robinson, J.: A machine-oriented logic based on the resolution principle. J. ACM 12(1),
23–41 (1965)

On the Role of Proof Theory
in Automated Deduction

Frank Pfenning

Carnegie Mellon University, USA

Since the seminal work by Gentzen, who developed both natural deduction and
the sequent calculus, there has been a line of research concerned with discovering
deep structural properties of proofs in order to control the search space in the-
orem proving. This is particularly important in non-classical logics where tra-
ditional model-theoretic techniques may be more difficult to apply. We will walk
through some of the key developments, starting with cut elimination and identity
expansion, followed by focusing, polarization, and the separation of judgments
and propositions. These concepts have been surprisingly robust, applicable to
many non-classical logics, to the extent that one may consider them a litmus test
on whether a set of rules or axioms form a coherent logic. We illustrate how each
of these ideas affect proof search. In some cases, proofs are sufficiently restricted
so that proof search can be seen as a fundamental computational mechanism,
giving rise to logic programming.

Stumbling Around in the Dark:
Lessons from Everyday Mathematics

Ursula Martin

University of Oxford, UK
Ursula.Martin@cs.ox.ac.uk

The growing use of the internet for collaboration, and of numeric and symbolic
software to perform calculations it is impossible to do by hand, not only augment
the capabilities of mathematicians, but also afford new ways of observing what
they do. In this essay we look at four case studies to see what we can learn about
the everyday practice of mathematics: the polymath experiments for the collab-
orative production of mathematics, which tell us about mathematicians attitudes
to working together in public; the minipolymath experiments in the same vein,
from which we can examine in finer grained detail the kinds of activities that go
on in developing a proof; the mathematical questions and answers in math
overflow, which tell us about mathematical-research-in-the-small; and finally the
role of computer algebra, in particular the GAP system, in the production of
mathematics. We conclude with perspectives on the role of computational logic.

Automated Reasoning in the Wild

Ulrich Furbach, Björn Pelzer, and Claudia Schon

Universität Koblenz-Landau, Germany
{uli,bpelzer,schon}@uni-koblenz.de

This paper discusses the use of first order automated reasoning in question
answering and cognitive computing. For this the natural language question
answering project LogAnswer is briefly depicted and the challenges faced therein
are addressed. This includes a treatment of query relaxation, web-services, large
knowledge bases and co-operative answering. In a second part a bridge to human
reasoning as it is investigated in cognitive psychology is constructed by using
standard deontic logic.

Work supported by DFG FU 263/15-1 ‘Ratiolog’.

The Herbrand Manifesto

Thinking Inside the Box

Michael Genesereth and Eric J.Y. Kao

Computer Science Department
Stanford University, USA

genesereth@stanford.edu

erickao@cs.stanford.edu

The traditional semantics for (first-order) relational logic (sometimes called
Tarskian semantics) is based on the notion of interpretations of constants in terms
of objects external to the logic. Herbrand semantics is an alternative that is based
on truth assignments for ground sentences without reference to external objects.
Herbrand semantics is simpler and more intuitive than Tarskian semantics; and,
consequently, it is easier to teach and learn.

Moreover, it is more expressive than Tarskian semantics. For example, while
it is not possible to finitely axiomatize natural number arithmetic completely with
Tarskian semantics, this can be done easily with Herbrand semantics. Herbrand
semantics even enables us to define the least fixed-point model of a stratified
logic program without any special constructs.

The downside is a loss of some familiar logical properties, such as com-
pactness and proof-theoretic completeness. However, there is no loss of infer-
ential power—anything that can be deduced according to Tarskian semantics can
also be deduced according to Herbrand semantics.

Based on these results, we argue that there is value in using Herbrand
semantics for relational logic in place of Tarskian semantics. It alleviates many
of the current problems with relational logic and ultimately may foster a wider
use of relational logic in human reasoning and computer applications. To this
end, we have already taught several sessions of the computational logic course at
Stanford and a popular MOOC using Herbrand semantics, with encouraging
results in both cases.

Automating Leibniz’s Theory of Concepts

Jesse Alama1, Paul E. Oppenheimer2, and Edward N. Zalta2

1 Vienna University of Technology, Vienna, Austria
alama@logic.at

2 Stanford University, Stanford, USA
{paul.oppenheimer,zalta}@stanford.edu

Our computational metaphysics group describes its use of automated reasoning
tools to study Leibniz’s theory of concepts. We start with a reconstruction of
Leibniz’s theory within the theory of abstract objects (henceforth ‘object theory’).
Leibniz’s theory of concepts, under this reconstruction, has a nonmodal algebra of
concepts, a concept-containment theory of truth, and a modal metaphysics of
complete individual concepts. We show how the object-theoretic reconstruction
of these components of Leibniz’s theory can be represented for investigation by
means of automated theorem provers and finite model builders. The fundamental
theorem of Leibniz’s theory is derived using these tools.

Confluence Competition 2015

Takahito Aoto1, Nao Hirokawa2, Julian Nagele3,
Naoki Nishida4, and Harald Zankl3

1 Tohoku University, Japan
2 JAIST, Japan

3 University of Innsbruck, Austria
4 Nagoya University, Japan

Confluence is one of the central properties of rewriting. Our competition aims to
foster the development of techniques for proving/disproving confluence of var-
ious formalisms of rewriting automatically. We explain the background and setup
of the 4th Confluence Competition.

The CADE-25 ATP System Competition
CASC-25

Geoff Sutcliffe

University of Miami, USA

The CADE ATP System Competition (CASC) is an annual evaluation of fully auto-
matic Automated Theorem Proving (ATP) systems for classical logic the world
championship for such systems. One purpose of CASC is to provide a public evalu-
ation of the relative capabilities of ATP systems. Additionally, CASC aims to stimulate
ATP research, motivate development and implementation of robust ATP systems that
are useful and easily deployed in applications, provide an inspiring environment
for personal interaction between ATP researchers, and expose ATP systems within
and beyond the ATP community. Fulfillment of these objectives provides insight and
stimulus for the development of more powerful ATP systems, leading to increased and
more effective use.

CASC-25 was held on 4th August 2015 as part of the 25th International Conference
on Automated Deduction (CADE-25), run on computers supplied by the StarExec
project. The CASC-25 web site provides access to all systems and competition
resources: http://www.tptp.org/CASC/25.

CASC is run in divisions according to problem and system characteristics. For
CASC-25 the divisions were:

– THF: Typed Higher-order Form theorems (axioms with a provable conjecture).
– THN: Typed Higher-order form Non-theorems (axioms with a countersatisfiable

conjecture, and satisfiable axiom sets). This division was new for CASC-25.
– TFA: Typed First-order with Arithmetic theorems (axioms with a provable

conjecture).
– TFN: Typed First-order with arithmetic Non-theorems (axioms with a countersat-

isfiable conjecture, and satisfiable axiom sets). This division was new for CASC-25.
– FOF: First-Order Form theorems (axioms with a provable conjecture).
– FNT: First-order form syntactically non-propositional Non-Theorems (axioms with

a countersatisfiable conjecture, and satisfiable axiom sets).
– EPR: Effectively PRopositional clause normal form (non-)theorems.
– LTB: First-order form theorems (axioms with a provable conjecture) from Large

Theories, presented in Batches with a shared time limit.

Problems for CASC are taken from the TPTP Problem Library. The TPTP version
used for CASC is released after the competition, so that new problems have not been
seen by the entrants. The THF, TFA, FOF, FNT, and LTB divisions were ranked
according to the number of problems solved with an acceptable proof/model output.
The THN, TFN, and EPR divisions were ranked according to the number of problems
solved, but not necessarily accompanied by a proof or model. Ties are broken

http://www.tptp.org/CASC/25.

according to the average time over problems solved. Division winners are announced
and prizes are awarded.

The design and organization of CASC has evolved over the years to a sophisticated
state. Decisions made for CASC (alongside the TPTP, and the ES* series of work-
shops) have influenced the direction of development in ATP for classical logic.
CASC-25 was the 20th edition of CASC, and it is interesting to look back on some
of the key decisions that have helped bring ATP to its current state.

– CASC-13, 1996: The first CASC stimulated research towards robust, fully auto-
matic systems that take only logical formulae as input. It increased the visibility of
systems and developers, and rewarded implementation efforts.

– CASC-14, 1997: Introduced the SAT division, stimulating the development of
model finding systems for CNF.

– CASC-15, 1998: Introduced the FOF division, starting the slow demise of CNF to
becoming just the “assembly language” of ATP.

– CASC-16, 1999: Changes to the problem selection motivated the development of
techniques for automatic tuning of ATP systems’ search parameters.

– CASC-JC, 2001: Introduced ranking based on proof output, starting the the trend
towards ATP systems that efficiently output proofs and models. Introduced the EPR
division, stimulating the development of specialized techniques for this important
subclass of problems.

– CASC-20, 2005: Required systems to develop builtin equality reasoning, by
removing the equality axioms from the TPTP problems.

– CASC-J3, 2006: The FOF division was promoted as the most important, stimu-
lating development of ATP systems for full first-order logic.

– CASC-21, 2007: Introduced the FNT division, further stimulating the development
of model finding systems.

– CASC-J4, 2008: Introduced the LTB division, leading to the development of
techniques for automatically dealing with very large axiom sets.

– CASC-J5, 2010: Introduced the THF division, stimulating development of ATP
systems for higher-order logic.

– CASC-23, 2011: Introduced the TFA division, stimulating development of ATP
systems for full first-order logic with arithmetic.

– CASC-J6, 2012: Otter replaced by Prover9 as the “fixed-point” in the FOF division,
demonstrating the progress in ATP.

– CASC-24, 2013: Removed the CNF division, confirming the demise of CNF.
– CASC-J7, 2014: Required use of the SZS ontology, so the ATP systems unam-

biguously report what they have established about the input.
– CASC-25, 2015: Introduced the THN and TFN divisions, stimulating development

of model finding for the TFA and THF logics.

The ongoing success and utility of CASC depends on ongoing contributions of
problems to the TPTP. The automated reasoning community is encouraged to continue
making contributions of all types of problems.

The CADE-25 ATP System Competition CASC-25 XXIII

Termination Competition (termCOMP 2015)

Jürgen Giesl1, Frédéric Mesnard2, Albert Rubio3,
René Thiemann4, and Johannes Waldmann5

1 RWTH Aachen University, Germany
2 Université de la Réunion, France

3 Universitat Politècnica de Catalunya - BarcelonaTech, Spain
4 Universität Innsbruck, Austria

5 HTWK Leipzig, Germany

The termination competition focuses on automated termination analysis for all
kinds of programming paradigms, including categories for term rewriting,
imperative programming, logic programming, and functional programming.
Moreover, the competition also features categories for automated complexity
analysis. In all categories, the competition also welcomes the participation of
tools providing certified proofs. The goal of the termination competition is to
demonstrate the power of the leading tools in each of these areas.

F. Giesl—This author is supported by the Deutsche Forschungsgemeinschaft (DFG) grant GI 274/6-1.
A. Rubio—This author is supported by the Spanish MINECO under the grant TIN2013-45732- C4-3-P
(project DAMAS).
R. Thiemann—This author is supported by the Austrian Science Fund (FWF) project Y757.

Contents

Past, Present and Future of Automated Deduction

History and Prospects for First-Order Automated Deduction 3
David A. Plaisted

Stumbling Around in the Dark: Lessons from Everyday Mathematics 29
Ursula Martin

Invited Talks

Automated Reasoning in the Wild. 55
Ulrich Furbach, Björn Pelzer, and Claudia Schon

Automating Leibniz’s Theory of Concepts . 73
Jesse Alama, Paul E. Oppenheimer, and Edward N. Zalta

Competition Descriptions

Confluence Competition 2015. 101
Takahito Aoto, Nao Hirokawa, Julian Nagele, Naoki Nishida,
and Harald Zankl

Termination Competition (termCOMP 2015) . 105
Jürgen Giesl, Frédéric Mesnard, Albert Rubio, René Thiemann,
and Johannes Waldmann

Rewriting

Non-E-Overlapping, Weakly Shallow, and Non-Collapsing TRSs
Are Confluent. 111

Masahiko Sakai, Michio Oyamaguchi, and Mizuhito Ogawa

CoLL: A Confluence Tool for Left-Linear Term Rewrite Systems. 127
Kiraku Shintani and Nao Hirokawa

Term Rewriting with Prefix Context Constraints and Bottom-Up Strategies. . . 137
Florent Jacquemard, Yoshiharu Kojima, and Masahiko Sakai

Encoding Dependency Pair Techniques and Control Strategies
for Maximal Completion . 152

Haruhiko Sato and Sarah Winkler

http://dx.doi.org/10.1007/978-3-319-21401-6_1
http://dx.doi.org/10.1007/978-3-319-21401-6_2
http://dx.doi.org/10.1007/978-3-319-21401-6_3
http://dx.doi.org/10.1007/978-3-319-21401-6_4
http://dx.doi.org/10.1007/978-3-319-21401-6_5
http://dx.doi.org/10.1007/978-3-319-21401-6_6
http://dx.doi.org/10.1007/978-3-319-21401-6_7
http://dx.doi.org/10.1007/978-3-319-21401-6_7
http://dx.doi.org/10.1007/978-3-319-21401-6_8
http://dx.doi.org/10.1007/978-3-319-21401-6_9
http://dx.doi.org/10.1007/978-3-319-21401-6_10
http://dx.doi.org/10.1007/978-3-319-21401-6_10

Reducing Relative Termination to Dependency Pair Problems. 163
José Iborra, Naoki Nishida, Germán Vidal, and Akihisa Yamada

Decision Procedures

Decidability of Univariate Real Algebra with Predicates for Rational
and Integer Powers . 181

Grant Olney Passmore

A Decision Procedure for (Co)datatypes in SMT Solvers 197
Andrew Reynolds and Jasmin Christian Blanchette

Deciding ATL� Satisfiability by Tableaux . 214
Amélie David

Interactive/Automated Theorem Proving and Applications

A Formalisation of Finite Automata Using Hereditarily Finite Sets 231
Lawrence C. Paulson

SEPIA: Search for Proofs Using Inferred Automata. 246
Thomas Gransden, Neil Walkinshaw, and Rajeev Raman

Proving Correctness of a KRK Chess Endgame Strategy
by Using Isabelle/HOL and Z3 . 256

Filip Marić, Predrag Janičić, and Marko Maliković

Inductive Beluga: Programming Proofs . 272
Brigitte Pientka and Andrew Cave

New Techniques for Automating and Sharing Proofs

SMTtoTPTP – A Converter for Theorem Proving Formats 285
Peter Baumgartner

CTL Model Checking in Deduction Modulo. 295
Kailiang Ji

Quantifier-Free Equational Logic and Prime Implicate Generation 311
Mnacho Echenim, Nicolas Peltier, and Sophie Tourret

Quantomatic: A Proof Assistant for Diagrammatic Reasoning 326
Aleks Kissinger and Vladimir Zamdzhiev

Automating First-Order Logic

Cooperating Proof Attempts . 339
Giles Reger, Dmitry Tishkovsky, and Andrei Voronkov

XXVI Contents

http://dx.doi.org/10.1007/978-3-319-21401-6_11
http://dx.doi.org/10.1007/978-3-319-21401-6_12
http://dx.doi.org/10.1007/978-3-319-21401-6_12
http://dx.doi.org/10.1007/978-3-319-21401-6_13
http://dx.doi.org/10.1007/978-3-319-21401-6_14
http://dx.doi.org/10.1007/978-3-319-21401-6_14
http://dx.doi.org/10.1007/978-3-319-21401-6_15
http://dx.doi.org/10.1007/978-3-319-21401-6_16
http://dx.doi.org/10.1007/978-3-319-21401-6_17
http://dx.doi.org/10.1007/978-3-319-21401-6_17
http://dx.doi.org/10.1007/978-3-319-21401-6_18
http://dx.doi.org/10.1007/978-3-319-21401-6_19
http://dx.doi.org/10.1007/978-3-319-21401-6_20
http://dx.doi.org/10.1007/978-3-319-21401-6_21
http://dx.doi.org/10.1007/978-3-319-21401-6_22
http://dx.doi.org/10.1007/978-3-319-21401-6_23

Towards the Compression of First-Order Resolution Proofs by Lowering
Unit Clauses. 356

Jan Gorzny and Bruno Woltzenlogel Paleo

Beagle – A Hierarchic Superposition Theorem Prover 367
Peter Baumgartner, Joshua Bax, and Uwe Waldmann

The Lean Theorem Prover (System Description) . 378
Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn,
and Jakob von Raumer

System Description: E.T. 0.1 . 389
Cezary Kaliszyk, Stephan Schulz, Josef Urban, and Jiří Vyskočil

Playing with AVATAR . 399
Giles Reger, Martin Suda, and Andrei Voronkov

Combinations

A Polite Non-Disjoint Combination Method: Theories with Bridging
Functions Revisited . 419

Paula Chocron, Pascal Fontaine, and Christophe Ringeissen

Exploring Theories with a Model-Finding Assistant. 434
Salman Saghafi, Ryan Danas, and Daniel J. Dougherty

Abstract Interpretation as Automated Deduction . 450
Vijay D’Silva and Caterina Urban

Hybrid Sytems and Program Synthesis

A Uniform Substitution Calculus for Differential Dynamic Logic 467
André Platzer

Program Synthesis Using Dual Interpretation . 482
Ashish Tiwari, Adrià Gascón, and Bruno Dutertre

Logics and Systems for Program Verification

Automated Theorem Proving for Assertions in Separation Logic
with All Connectives . 501

Zhé Hóu, Rajeev Goré, and Alwen Tiu

KeY-ABS: A Deductive Verification Tool for the Concurrent Modelling
Language ABS . 517

Crystal Chang Din, Richard Bubel, and Reiner Hähnle

Contents XXVII

http://dx.doi.org/10.1007/978-3-319-21401-6_24
http://dx.doi.org/10.1007/978-3-319-21401-6_24
http://dx.doi.org/10.1007/978-3-319-21401-6_25
http://dx.doi.org/10.1007/978-3-319-21401-6_26
http://dx.doi.org/10.1007/978-3-319-21401-6_27
http://dx.doi.org/10.1007/978-3-319-21401-6_28
http://dx.doi.org/10.1007/978-3-319-21401-6_29
http://dx.doi.org/10.1007/978-3-319-21401-6_29
http://dx.doi.org/10.1007/978-3-319-21401-6_30
http://dx.doi.org/10.1007/978-3-319-21401-6_31
http://dx.doi.org/10.1007/978-3-319-21401-6_32
http://dx.doi.org/10.1007/978-3-319-21401-6_33
http://dx.doi.org/10.1007/978-3-319-21401-6_34
http://dx.doi.org/10.1007/978-3-319-21401-6_34
http://dx.doi.org/10.1007/978-3-319-21401-6_35
http://dx.doi.org/10.1007/978-3-319-21401-6_35

KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Systems. . . 527
Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp,
and André Platzer

Tableaux Methods for Propositional Dynamic Logics with Separating
Parallel Composition . 539

Philippe Balbiani and Joseph Boudou

Unification

Regular Patterns in Second-Order Unification . 557
Tomer Libal

Theorem Proving with Bounded Rigid E-Unification 572
Peter Backeman and Philipp Rümmer

SAT/SMT

Expressing Symmetry Breaking in DRAT Proofs . 591
Marijn J.H. Heule, Warren A. Hunt Jr., and Nathan Wetzler

MathCheck: A Math Assistant via a Combination of Computer Algebra
Systems and SAT Solvers . 607

Edward Zulkoski, Vijay Ganesh, and Krzysztof Czarnecki

Linear Integer Arithmetic Revisited . 623
Martin Bromberger, Thomas Sturm, and Christoph Weidenbach

Author Index . 639

XXVIII Contents

http://dx.doi.org/10.1007/978-3-319-21401-6_36
http://dx.doi.org/10.1007/978-3-319-21401-6_37
http://dx.doi.org/10.1007/978-3-319-21401-6_37
http://dx.doi.org/10.1007/978-3-319-21401-6_38
http://dx.doi.org/10.1007/978-3-319-21401-6_39
http://dx.doi.org/10.1007/978-3-319-21401-6_40
http://dx.doi.org/10.1007/978-3-319-21401-6_41
http://dx.doi.org/10.1007/978-3-319-21401-6_41
http://dx.doi.org/10.1007/978-3-319-21401-6_42

Past, Present and Future of Automated
Deduction

History and Prospects for First-Order
Automated Deduction

David A. Plaisted(B)

Department of Computer Science, UNC Chapel Hill,
352 Sitterson Hall, Chapel Hill, NC 27599-3175, USA

plaisted@cs.unc.edu

http://www.cs.unc.edu/∼plaisted

Abstract. On the fiftieth anniversary of the appearance of Robinson’s
resolution paper [57], it is appropriate to consider the history and status
of theorem proving, as well as its possible future directions. Here we
discuss the history of first-order theorem proving both before and after
1965, with some personal reflections. We then generalize model-based
reasoning to first-order provers, and discuss what it means for a prover
to be goal sensitive. We also present a way to analyze asymptotically
the size of the search space of a first-order prover in terms of the size
of a minimal unsatisfiable set of ground instances of a set of first-order
clauses.

Keywords: First-order logic · Resolution · Theorem proving · Instance-
based methods · Model-based reasoning · Goal-sensitivity · Search space
sizes · Term rewriting · Complexity

1 Introduction and General Comments

This presentation concentrates on first-order logic. Sometimes it seems as if the
development of first-order logic provers will be swallowed up by so many other
logics and areas of inquiry in automated deduction, but first-order logic is really
central to the field and there are probably significant advances yet to be made.
In addition, one can expect that methods that are good for first-order logic will
also help to design higher order logic provers.

This presentation will emphasize my personal experiences. I will talk about
the past history of the field, and also present evaluations of where we are
now and possible directions for the future. It is a pity that Bill McCune,
Harald Ganzinger, Greg Nelson, and Mark Stickel are not here to give their
insights into the history of the field.

1.1 Search Space Issues

Before talking about the history of the field, let us step back and ask what we are
attempting to accomplish, in a general sense, and what is theoretically possible.
c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 3–28, 2015.
DOI: 10.1007/978-3-319-21401-6 1

4 D.A. Plaisted

Jürg Nievergelt once gave me a depressing view of theorem proving work. He
felt that different methods just explored different portions of the search space, so
the point was to find the right method to prove a particular theorem. However,
this does not tell the whole story. The search space can be reduced, such as by
first-order resolution over propositional deduction, and DPLL over propositional
resolution. Also, hardware verification tools typically use DPLL (with CDCL)
and not propositional resolution, as another indication that a reduction in search
space has been achieved. Normal forms in term rewriting also reduce the search
space. All the different forms of a term (x ∗ 1, x ∗ 1 ∗ 1 et cetera) reduce to the
same thing. The Knuth-Bendix method gets even more reductions and therefore
is even more efficient at reducing the search space in many cases. The Gröbner
Basis method also reduces the search space, but needs more axioms to be able to
apply. Some results in mathematics may have been derived precisely to reduce
the search space in proving various kinds of theorems. Also, the efficiency of the
basic operations of a prover matters, as Stickel showed with his prolog-technology
theorem prover [63], and others have continued to demonstrate.

Concerning search space, there are some basic questions to be answered, such
as: What fraction of first-order formulas can be decided by decision procedures?
Does this question have meaning? The subset is constantly increasing.

2 Pre-resolution

The predicate calculus was originally developed by Frege [70]. He considered
predicates like “is happy” as signifying a function H() of one variable that maps
its argument x to a truth value H(x), either true or false.

Hilbert wanted to provide a secure foundation for mathematics including a
formalization of mathematics and an algorithm for deciding the truth or falsity
of any mathematical statement. This is known as Hilbert’s program [67].

Gödel showed that Hilbert’s program was impossible, in its obvious interpre-
tation [69]. He showed that any sufficiently powerful consistent formal system
is incomplete. In terms of Turing machines, this result can be understood as
follows: For any sound and effective system F that can formalize Turing com-
putations, there will be some Turing machine M that fails to halt on blank
tape, but this fact cannot be shown in F . In fact, such a machine M can be
constructed from F . These results apply to any consistent effective extension of
Peano arithmetic, for example. Thus it is not possible to formalize all of math-
ematics in a computable way, and any attempt at such a formalism will omit
some true mathematical statements.

The ATP community has inherited Hilbert’s program to some extent, in
attempting to prove and decide what can be proved and decided, but of course
there can be no recursive time bound on proving theorems, because of the unde-
cidability of first-order logic.

However, it is still possible to write theorem provers and attempt to
improve their efficiency, even if not all true statements are provable. Herbrand’s

History and Prospects for First-Order Automated Deduction 5

theorem [40] gives a method to test a formula in first-order logic by succes-
sively testing propositional formulas for validity. Herbrand’s theorem is of major
importance in software developed for theorem proving by computer.

Gilmore’s method [25] was an early attempt to implement Herbrand’s the-
orem. Another early approach was presented by Davis and Putnam [18]. The
linked conjunct method [16] was still another early method that attempted
to guide the instantiation of clauses to prove unsatisfiability. An early Wos
paper [68] mentions Gilmore’s method but states that Davis and Putnam’s
method applied to sets of propositional clauses is much more efficient. The Wos
paper also states that resolution can reduce the combinatorial explosion in Davis
and Putnam’s method by a factor in excess of 1050. However, with faster proposi-
tional calculus implementations and by enumerating ground terms in a different
way, this figure can possibly be reduced, as it will be shown later.

3 Early Post-resolution

Unification and resolution as presented by Robinson in 1965 [57] were the begin-
ning of the modern era of theorem proving. Theorems could be proved that were
significantly harder than those obtainable previously.

3.1 The Argonne Group

The Argonne group was the first group to devote serious effort to implementing
Robinson’s resolution rule. Here are some of the earliest theorems that they
proved [68]:

In an associative system with left and right solutions, there is right identity
element.

In an associative system with an identity element, if the square of every
element is the identity, the system is commutative.

In a group, if the square of every element is the identity, the group is com-
mutative.

For these proofs, the associativity of multiplication was represented by the
following axioms.

¬P (x, y, u) ∨ ¬P (y, z, v) ∨ ¬P (u, z, w) ∨ P (x, v, w)
¬P (x, y, u) ∨ ¬P (y, z, v) ∨ ¬P (x, v, w) ∨ P (u, z, w)
Also, P (x, x, e) was used to mean that the square of every element is the iden-

tity. Thus multiplication was represented in a relational manner. This reduces
the need for explicit equational reasoning.

The terms paramodulation and demodulation and the associated concepts
were developed by the Argonne group. They also developed the set of support
strategy. Hyper-resolution and P1 deduction, on the other hand, were devel-
oped [56] by Robinson.

The Argonne prover was initially very slow. Finally McCune took the matter
into his own hands and rewrote the entire prover in C, producing Otter [38],
which was much faster and very easy to use.

6 D.A. Plaisted

3.2 Other Early Work

Maslov’s method [71] appeared at about the same time as resolution. There
were also many early refinements to resolution such as ancestry filter form,
model elimination [36], semantic resolution, locking resolution, and merging.
These refinements were an attempt to improve the performance of resolution,
and they did help to some extent. There were also non-resolution methods such
as the connection method of Bibel [6] and Andrews’ matings method [1], which
are now viewed as similar or identical to each other. At this time, the classic text
of Chang and Lee [13] appeared, which is still helpful. The Pelletier problems
[43] were often used to test theorem provers. There are some excellent collections
[10,59,60] of early papers in automated deduction.

3.3 AI and Theorem Proving

There was initial enthusiasm for resolution in the artificial intelligence commu-
nity; for example, it was the basis of Cordell Green’s QA3 system [26]. Soon
afterwards there was disenchantment with resolution and with uniform methods
in general, and an emphasis on expert systems instead, which could perform
at a human level in a narrow area. In fact, general systems were termed weak
methods, and narrowly defined but more capable systems were termed strong
methods by the AI community. Today ATP seems to be one tool in AI’s toolkit,
though not a solution to every problem. Formal logic still has a place in AI, such
as in the situation calculus and in non-monotonic logic.

3.4 Personal Experiences

The book Computers and Thought [21] had an early influence on me. I saw
the potential of computers for augmenting and simulating human intelligence.
As an undergraduate I spent a summer working for MIT’s Project MAC and
got an early exposure to artificial intelligence research in this way. Near the
end of my graduate school education, Vaughan Pratt explained the concept of
NP-completeness to me. This led to some early papers on this topic; I also did
some work on algorithms, partially motivated by Ed Reingold. However, the
P vs. NP problem seemed too hard, and algorithms research did not seem to
have any general, unifying features; also, there were already many bright and
capable people in the field.

During my graduate studies Dave Luckham suggested that I study methods
for equational theorem proving. The seminal paper of Knuth and Bendix [32]
had only recently appeared. I developed something like unfailing completion and
was about to write a thesis about it. Here is a paragraph from a thesis draft of
June 10, 1974:

We show that if there is an equational derivation over all-positive set
S of equations, between r1α and r2α for some terms r1 and r2 and
some substitution α, then an instance of x �= x is derivable from

History and Prospects for First-Order Automated Deduction 7

S ∪ {r1 �= r2} using the simplification strategy. The proof is approx-
imately by induction on the complexity of the equational derivation
between r1α and r2α, where the complexity of an equational derivation
remains to be defined. The proof is somewhat complicated and it could
be that a simpler proof exists. The complexity of an equational deriva-
tion must be defined carefully so that it has the required properties.
The following definitions help to state the definition of the complexity
ordering on equational derivations:

My original Ph.D. thesis draft dealt, among other things, with strategies
for equality in theorem proving, but then a departmental report by Dallas
Lankford [34] appeared in which it seemed that he had already obtained a similar
result about equality. So I switched to another topic. It turned out that Lank-
ford did not have the result he had claimed, but hoped to find a proof for it in
a subsequent departmental report, which never appeared. The full development
of unfailing completion did not appear until several years later [2]. My original
thesis draft also included some material on abstraction, which I later developed
into a few papers.

I almost met Gerald Peterson at a conference but was diverted by talking to
someone else. Had the two of us met, it might have led to some good work in
equational theorem proving methods.

My early work on the path of subterms ordering [44,45] was done in 1978 at
about the same time as Dershowitz’ recursive path ordering [19]. These orderings
are similar, but the recursive path ordering is simpler. Since then there have
been many developments related to the recursive path ordering. Dershowitz in
addition gave a general method for showing that orderings on terms are well-
founded. Unfortunately, my work was sent to the wrong community for refereeing
and was rejected, coming out instead as a technical report. This report led Claude
Kirchner to enter the field of term rewriting systems; he did not read the proofs,
but looked at the examples in the report.

As for first-order theorem proving, when I started graduate school, it seemed
that resolution and its refinements, such as ancestry filter form and locking
resolution, plus model elimination, were the only games in town. I didn’t like
resolution initially, but the concept is actually very natural. The idea is that if
two clauses share a literal, then in some cases the shared literal can be eliminated
and the remaining portions of the clauses can be joined together into another
clause. Thus the eliminated literal is a “bridge concept” to relate two other
connected sets of concepts. Thus two concepts related to the same concept are
also related to each other, which is a natural idea.

I was greatly influenced by Bledsoe’s work [8] in which he showed that some
reasonably simple set theory problems could not be solved easily by resolution.
He also did some early work on semantics [3,9], which also impressed me.

An early argument against resolution concerning the exponential number
of clauses that can be generated by the clause form translation, was overcome
by the structure-preserving translations [48]. My earliest paper about this for
first-order logic may be the one by Greenbaum et al. [27] in CADE.

8 D.A. Plaisted

In the early days, we tested our provers on common problems such as
Schubert’s Steamroller, the Zebra problem, and similar problems, which seemed
like personal friends. There was a sense of achievement when a proof was found.
Today with the massive TPTP problem set [64], the art of testing has greatly
advanced, but perhaps something has also been lost.

My work in theorem proving progressed through a number of strategies,
finding deficiencies in each one. In 1974 I had implemented a back chaining
resolution prover based on semantic trees with variables. Vaughan Pratt gave
me a problem to show that if in a group the square of every element is the
identity, then the group is commutative. My prover had a lot of trouble with
this problem, and this example showed me that such a back chaining approach
was not the way to go.

During my sabbatical at SRI I implemented a forward chaining resolution
prover, but it had trouble with Pelletier’s non-obviousness problem, which con-
vinced me that this also was not the right approach. At the University of Illi-
nois, Steve Greenbaum implemented the Violet prover. We put a lot of work into
including abstraction, which did not turn out to be helpful. However, the basic
prover was fairly efficient compared with resolution provers of that time. One of
the main ideas was to resolve the pair of clauses whose sum of sizes was as small
as possible. We also had some advanced data structures for term searching and
for unification. This prover still merits some additional work.

Instance-Based Methods. After my attempt at a resolution prover at SRI,
the next idea was to extend Prolog’s back chaining strategy for Horn clauses
to full first-order logic. This led to the simplified problem reduction format [47]
and the modified problem reduction format [51], but still I was not satisfied with
them. Eventually I decided that what was needed was DPLL-style search [17]
in first-order logic. This led to work on instance based methods [4], leading to a
sequence of provers including clause linking [35], semantic hyper-linking [14], the
replacement rule theorem prover [42], and ordered semantic hyper-linking [52].
None of these were implemented with highly efficient data structures except for
OSHL, which Hao Xu later implemented for his Ph.D. thesis with an inference
rate often approaching 10,000 inferences per second.

Other instance-based methods also appeared, including Billon’s disconnec-
tion calculus [7] implemented in the DCTP theorem prover [61], Equinox [15],
and Inst-Gen [33]. The linked conjunct method [16] was an early instance-based
method, and SATCHMO [37] can also be seen in this light, though it had to
enumerate ground terms in some cases. One might consider some versions of
hyper-tableaux as instance-based as well. The disconnection calculus, Inst-Gen,
and DCTP are all somewhat in the style of clause linking, while OSHL and
Equinox are more in the style of SATCHMO, though OSHL permits seman-
tic guidance to select ground intances. Perhaps it would be worthwhile to re-
implement SATCHMO with a very high inference rate. It appears that instance-
based methods have even been incorporated in Vampire to some extent, showing
their increasing importance in the field. Instance-based methods appear to per-
form particularly well on function-free clause sets, and these have some important
applications.

History and Prospects for First-Order Automated Deduction 9

4 Late Post-resolution

For other and later developments in first-order theorem proving, the two vol-
ume collection by Robinson and Voronkov [55] is a good source. After the initial
developments surrounding resolution, there continued to be advances in refining
resolution strategies, in refining paramodulation and rewriting, including basic
paramodulation, in instance-based methods, in incorporating special axioms into
first-order provers, in decision procedures for specialized theories, and in efficient
data structures. The CADE system competition has become an important event
and a significant test of various provers. The lean theorem provers [41] are note-
worthy for their performance in a very compact prover due to the similarity of
Prolog and first-order logic. Major provers including Vampire [54], E [58], and
Spass [66] have become increasingly effective. The use of strategy selection has
greatly helped major provers today, including Vampire and E.

5 Comments on Resolution

Resolution initiated the modern era of theorem proving in 1965. The computa-
tion of most general unifiers avoids the necessity to enumerate all propositional
instances of first-order formulas.

Resolution not only uses most general unifiers, but with paramodulation and
demodulation is also easily extendible to equality and rewriting. This is a good
combination and may explain the persistence of resolution in theorem proving
despite its inefficiency on non-Horn propositional problems. But is resolution a
global maximum or a local maximum as a strategy? Is it possible to go beyond
it? Perhaps we need to try to go beyond resolution and supplement it with other
approaches in order to obtain truly powerful provers.

A resolution prover is like a prolific but not very well organized mathemati-
cian filling notebooks with trivial deductions, with no overall sense of where he
is going. Once in a while he stumbles on something interesting.

What does a large set of clauses generated by resolution, mean? How is
it making progress towards a proof? It is difficult to make any sense of tens of
thousands of clauses in memory. Maybe culling small ground instances of derived
clauses and finding their models by DPLL would give some insight into what is
happening and how the models are being restricted.

Resolution is entirely syntactic; there is no semantics involved, though seman-
tics can be introduced in semantic variants of resolution. Human mathematicians
use semantics such as groups for group theory theorems. Perhaps our provers
also should use more semantic information.

Even the most efficient propositional provers are benefited by conflict-driven
clause learning (CDCL), which is essentially resolution. This shows that resolu-
tion is not going to disappear.

10 D.A. Plaisted

6 Propositional Calculus and SMT

One of the unexpected developments in theorem proving is the increasing effi-
ciency of propositional provers, which are even used to solve problems in other
domains by translating them into propositional logic and then using a proposi-
tional satisfiability procedure. Also, propositional provers are now often used for
model checking applications, in the bounded model checking approach. We now
at least have some understanding of the complexity of propositional satisfiability
from the theory of NP completeness. It appears, assuming that P is not equal
to NP, that satisfiability is exponential in the worst case. How is it then that
propositional provers can be so efficient in practice? Part of the reason is the
so-called satisfiability threshold [20]; for problems with a large ratio of clauses
to literals, DPLL is likely to finish quickly because the search tree will be small.
For clauses with a small ratio of clauses to literals, DPLL is likely to find a
model quickly. The hard problems tend to be those in the middle. The fastest
propositional provers use not only DPLL but also CDCL, which helps them
avoid repetitive parts of the search by learning the reason for various conflicts.
It would be helpful to have something like this in first-order provers, too.

Another recent development is the increasing effectiveness of provers based on
satisfiability modulo theories (SMT) and their applications. What’s the next step
beyond SMT to include more of first-order logic and decision procedures while
maintaining the propositional efficiency of DPLL? Equinox achieved respectable
performance in a possibly complete theorem proving method by combining an
OSHL style prover and DPLL, and dealt with equality by congruence closure. Is
it possible to extend this approach to more specialized decision procedures, and
thereby obtain a way to extend SMT to a complete first-order strategy?

7 Equality and Term Rewriting Systems

Much more could be said about term rewriting systems, completion, and
Musser’s inductionless induction [39]. I was amazed at the way one could prove
inductive theorems by term rewriting system completion. Lankford had many
pioneering papers in term-rewriting systems that unfortunately did not get pub-
lished. Early termination techniques by Iturriaga [29] were pioneering but largely
superceded by the recursive path orderings, which were a tremendous advance in
termination, though earlier orderings are still significant. The survey of rewrit-
ing by Huet and Oppen [28] impressed me with the potential of term-rewriting
techniques. Equational unification methods including AC unification [62] have
had a tremendous impact as well. Termination techniques using the dependency
pair ordering [24] are another significant development. Of course, one could also
mention conditional term rewriting, higher order rewriting, rigid E-unification,
and the Waldmeister prover [22].

History and Prospects for First-Order Automated Deduction 11

8 Discussion of Prover Features

Now we turn our attention from the history of theorem proving to its possible
future. Here are some features that are desirable in a theorem prover, but perhaps
no current prover has all of them at the same time. Perhaps if this combination
of features could be achieved it would lead to the next major advance in theorem
proving. Perhaps the field has been struggling to get all these features in one
prover. If one has a strategy with all of these features, then it would seem to be
similar to human approaches to theorem proving. The inference rate might be
slow, so such an approach might not be helpful for small, easy problems, but for
harder problems, and with very long running times, the strategy might be more
effective.

8.1 First-Order

The first feature that is desired is that the logic should be first (or higher) order;
We are interested in first-order methods.

8.2 Model-Based Reasoning with Backtracking

The second feature is that it is desirable to have DPLL style model-based search
and backtracking over models in a first-order prover. Model-based search with
backtracking is what gives DPLL its efficiency. We discuss how one might gener-
alize DPLL to obtain a first-order model-based method, that is, a method that
involves the search for a model with backtracking as in DPLL, but generalized
to first-order logic.

A survey paper [11] considers various model-based theorem proving strate-
gies, and shows how the term model-based reasoning can mean many different
things. Here, we consider model-based reasoning in the following sense. This
presentation is partly inspired by point set topology.

We assume that initially a formula S (possibly a set of clauses) is given
and it is desired to show that S is unsatisfiable. We define abstract first-order
model-based methods AMB(Ext, Inf) for demonstrating unsatisfiability of S,
consisting of an extension method Ext and an inference method Inf that satisfy
certain properties.

In general, an AMB method generates a sequence of interpretations I and
formulas W contradicting the interpretations I. It is also convenient to spec-
ify a partial interpretation J with each I such that W also contradicts J . A
method AMB(Ext, Inf) is complete if for any unsatisfiable S, a formula which
is a contradiction is eventually derived.

More specifically, let LC(S) be a set of logical consequences of S such that
LC(S) is recursively enumerable. Also, for every interpretation I let P(I) be a
set of partial interpretations, such that all elements J of P(I) are subsets of I.
(An interpretation I is viewed as a set of literals that are satisfied by I, and
similarly for partial interpretations J . Thus if a formula W contradicts J and
J ⊆ I then W contradicts I also).

12 D.A. Plaisted

Define a conflict triple for S to be a triple (I, J,W) such that J ∈ P(I), W ∈
LC(S), and W contradicts J . If S is unsatisfiable, then for any interpretation
I there must exist J ∈ P(I) and W ∈ LC(S) such that (I, J,W) is a conflict
triple.

A conflict triple sequence for S is a sequence (Ii, Ji,Wi) of conflict triples for
S; the sequence is productive if no Ii has a previous Jk as a subset, for k < i.

A set {(Ii, Ji,Wi)} of conflict triples is refutational if for every interpretation
I there is a Ji such that Ji is a subset of I. This means that every I is contradicted
by some Wi, which implies that S is unsatisfiable.

The initial conflict triple sequence is the empty sequence; after that a
sequence is constructed using the extension operation Ext to add triples to
the end of the sequence one by one. Given a sequence T1, T2, . . . , Tn of con-
flict triples, Ext((T1, T2, . . . , Tn)) is another conflict triple. A (finite) exten-
sion sequence is either empty or of the form T1, T2, . . . , Tn, Ext((T1, T2, . . . , Tn))
where T1, T2, . . . , Tn is an extension sequence. Also, an infinite sequence is an
extension sequence if all its finite prefixes are extension sequences. The extension
method Ext can fail, in which case it is not possible to extend the sequence.

The extension method Ext must satisfy the following properties: (1) If
(I, J,W) = Ext((T1, T2, . . . , Tn)) where Ti = (Ii, Ji,Wi) then I cannot have
any Ji in the sequence as a subset. (2) Some pair (J,W) for I with J in P(I) is
chosen fairly in the sense that in any infinite extension sequence (Ii, Ji,Wi), if
for infinitely many Ii, (Ii, J,W) is a conflict triple, then eventually some conflict
triple (I ′, J ′,W ′) with J ′ ⊆ J will be chosen by extension and inserted in the
sequence. (3) For any conflict triple (Ii, Ji,Wi) in an extension sequence, and
any W in LC(S), it is decidable whether W contradicts Ji. (4) If S is unsatisfi-
able, then the extension method fails if and only if the set of conflict triples in
the sequence is refutational.

Now, any extension sequence will be productive by property (1).
For DPLL, Wi is a clause that contradicts some prefix of Ii, and Ji would

be some such prefix. This means that Ji is always a finite interpretation for
DPLL. However, for first-order logic Ji could be infinite, and might be defined
for example on all ground instances of a finite set of possibly non-ground literals.
The productive property is guaranteed in DPLL by the backtracking mechanism
for DPLL.

Convergence: Say a sequence Ii of interpretations converges to I ′ if for all
J ∈ P(I ′), all but finitely many elements Ii have J ∈ P(Ii).

An extension method Ext is convergent if for any infinite extension sequence
(Ii, Ji,Wi), there is an interpretation I ′ and an infinite subsequence Ini

of Ii
such that Ini

converges to I ′.
Termination: If the extension method Ext is convergent and S is unsatisfi-

able, then there can be no infinite extension sequence.

Proof. Suppose (Ii, Ji,Wi) is an infinite extension sequence constructed by Ext.
Because Ext is convergent, there will be an infinite subsequence Ini

that con-
verges to some interpretation I ′. If sequence Ini

of interpretations converges to
I ′ and S is unsatisfiable, then because S is unsatisfiable there is a J ∈ P(I ′) and

History and Prospects for First-Order Automated Deduction 13

a W ∈ LC(S) such that W contradicts J , and thus by definition of convergence
all but finitely many Ini

have J ∈ P(Ini
) so that (J,W) can also be chosen for

infinitely many Ini
. Hence (J ′,W ′) will eventually be chosen by fairness for some

J ′ ⊆ J , and some W ′, so that some conflict triple (Ini
, J ′,W ′) will be chosen

for some ni. This permits only finitely many elements Ink
for k > i to be chosen

by productivity and because by definition of convergence, J ∈ P(Ink
) also for

all but finitely many nk. Thus there can be no infinite productive conflict triple
sequence constructed by fair repeated extension, so the sequence has to stop.

The inference method Inf of AMB is complete if it is computable and the
following holds:

For any refutational set {(I1, J1,W1), . . . , (In, Jn,Wn)} of conflict triples hav-
ing more than one element, it is possible to apply the inference method Inf to
two elements Ii and Ij in the set producing another conflict triple (I ′, J ′,W ′)
such that J ′ ⊆ Ji and J ′ ⊆ Jj , hence W ′ contradicts both Ji and Jj .

If the extension process stops, then AMB repeatedly applies the inference
method Inf to the set of conflict triples in the extension sequence to replace
conflict triples for Ii and Ij by a conflict triple for I ′, producing a smaller refu-
tational set, and this operation is repeated until the set of conflict triples has
only one element (I, J,W). Then all interpretations are contradicted by W . This
W is then itself a contradiction (false), and its proof is a demonstration that S is
unsatisfiable. In DPLL, this can correspond to CDCL deriving the empty clause.

Corollary: If the extension method Ext is convergent and the inference method
Inf is complete then AMB(Ext, Inf) is complete.

Proof: If S is unsatisfiable then eventually the extension method Ext stops
with a finite extension sequence. The set of conflict triples in this sequence is
refutational. Then the inference method Inf can be applied to this set repeatedly
until a contradiction is derived.

In practice, inferences may be performed as the conflict triple sequence is
generated even before a refutational set is obtained.

For a strong model-based system we assume that Wi is the universal closure
of a formula W ′

i and require that Ji should satisfy the universal closure of the
negation of W ′

i , and similarly for results of inferences.
By a model-based method we mean either something that fits into the AMB

formalism or something that is in the same style even if it doesn’t exactly fit the
formalism. Model Evolution [5] is one of the few strategies that is first-order and
appears to be model-based in this sense. Perhaps it is a strong method. OSHL is
model-based, but the clauses Cj are always ground clauses. Other instance-based
methods may also be model-based in this sense.

8.3 Goal Sensitivity

The third feature that is desired in a prover is that inferences should be restricted
to those that are related to the particular theorem and not just to general axioms.
For clause form provers, if one wants to prove a theorem R from a set A of
axioms, then one typically converts A ∧ ¬R to clause form, obtaining a set S of

14 D.A. Plaisted

clauses that is the union of clauses T from A and U from ¬R. In a goal sensitive
method, clauses U from the negation of the theorem are typically considered to
be relevant initially. Then the proof search is restricted so that clauses from T ,
and resolvents of input clauses, are only used if they are in some sense related
to clauses from U . This means that when trying to prove a theorem, only the
clauses that are related to the particular theorem R are used. Generally A will
be satisfiable, so that T will also be satisfiable. Let I be a model of T . Then if
S is unsatisfiable, only clauses from U will contradict I. Thus one may consider
that only clauses that contradict such an I are be relevant initially. Such an I
will typically be a nontrivial model, that is, not obtained simply by choosing
truth values of predicate symbols in a certain way.

There are various ways to decide which derived formulas are relevant for a
proof. One approach is to assign each formula a relevance attribute. The attribute
can be true, indicating that the formula is relevant, or false, indicating that the
formula is not relevant. These attributes are assigned initially so that only for-
mulas related to the particular theorem are relevant. An inference is considered
to be relevant if at least one of the hypotheses used in the inference is relevant.
After each inference, the relevance attributes of formulas involved in the infer-
ence are updated. The conclusion of a relevant inference is always relevant, and
the relevance attributes of the non-relevant hypotheses are changed from false to
true. Some relevance strategies may also assign a numerical relevance distance
attribute to formulas, indicating how relevant they are. A method is goal sen-
sitive if it is a relevance strategy, that is, it only performs relevant inferences.
Such a strategy only generates relevant formulas.

Thus the result of an inference rule such as resolution, applied to a relevant
clause and another clause, is also relevant. Operations other than resolution,
such as instantiation, can also create a relevant instance CΘ of a clause C if
they unify a literal of C with the complement of a literal of a relevant clause D.

Say a literal is relevant if it is a literal of a relevant clause.
Relevance can be guaranteed for AMB -style model-based search methods

with nontrivial semantics assuming that S is a set of first-order clauses, the initial
interpretation I1 is chosen to be a model of T , the clauses that contradict I1 are
the relevant clauses initially, the method generates a sequence Ci (Wi) of clauses
that are logical consequences of S, and each Ci is either (a) a resolvent with a
relevant parent, (b) a clause CΘ obtained by unifying some literal of a clause
C with the complement of a relevant literal, or (c) a clause that contradicts the
starting interpretation I1. In such a case it is easy to show that all Ci are relevant.
Choosing a semantics I1 that models the general axioms T will guarantee that
the first contradiction clause C1 found is an instance of the negation of the
theorem, and is therefore relevant.

A nontrivial semantics may be necessary for this, because there may not be a
trivial model (choosing only truth values of predicate symbols) of T . The Gelern-
ter prover [23] is an example of a prover using nontrivial semantics essentially for
Horn clauses. A nontrivial interpretation I1 can be represented by a procedure
to test if a first-order formula or clause is satisfied by I1. It is also necessary to
represent other interpretations that arise from I1 later in the search procedure.

History and Prospects for First-Order Automated Deduction 15

For equational proofs of an equation s = t from a set E of equations, if
one can complete E then applying rewriting and narrowing (paramodulation)
to s and t using the completed E suffices for completeness; s = t is a logical
consequence of E iff s and t rewrite to the same term. Thus such rewriting
proofs are automatically goal sensitive, assuming that the theorem s = t is
selected to be relevant initially. Such goal-sensitivity is a tremendous advantage.
If unfailing completion is used, the completion steps may not be relevant, but
steps involving rewriting and narrowing of s and t will be relevant.

There are also methods [30,46,50,65] that compute at the start which clauses
and even which instances of clauses are closely related to the particular theorem,
so that proof strategies can concentrate on such clauses. These methods typically
compute a relevance distance d of each clause from the particular theorem, with
smaller distances indicating clauses that are more closely related to the particular
theorem. Then these methods compute a set Rd(S) of clauses and instances of
clauses of S such that all clauses in Rd(S) are at relevance distance d or less. This
set Rd(S) is computed so that it is unsatisfiable if there is an unsatisfiable set of
ground instances of S of cardinality d or less. Typically Rd(S) is computable from
S in polynomial time, or at worst in exponential time, and Rd(S) ⊆ Rd+1(S)
for all d ≥ 0.

8.4 Importance of Goal-Sensitivity

Why should goal sensitivity help a theorem prover? This question will now be
considered. There seems to be some disagreement in the deduction community
about the importance of goal sensitivity, and also about which methods are goal
sensitive. One report [53] states that goal sensitive strategies tend to do better,
especially on large axiom sets. If a method has no goal sensitivity, and there
are many general axioms, this means that when proving a theorem T from a
set A of axioms, most inferences do not depend on T at all. Thus for various
theorems T1, T2, . . . proved from A, most inferences will be repeated. This does
not seem reasonable. If one saves results between T1, T2, . . . , then one has even
more formulas to retain, with a possible storage issue. Also, the theorems Ti will
be even more overwhelmed by these additional formulas than before.

Axiom sets commonly used in mathematics are studied because they describe
interesting objects such as the integers. Theorems concerning these objects often
assert that these objects have certain properties. Because these objects are seen
as interesting, from these axioms one can typically derive a huge number of
logical consequences. For example, consider the axioms of number theory and
the axioms of arithmetic, and the theorems that can be derived from them.
Therefore it is not feasible to just combine axioms when proving a theorem,
because so many theorems can be shown from the axioms, so goal sensitivity
is important in such cases. In addition, such axiom sets will generally not have
trivial models that simply assign truth values to predicate symbols. Also, because
such structures are often well understood (such as integers and sets), it may be
possible to specify semantics for them operationally (in an effective manner) to
achieve goal sensitivity.

16 D.A. Plaisted

For very large axiom sets, or axiom sets with many consequences, relevance
methods are especially important. If there is no particular theorem, and one
simply wants to test an axiom set A for satisfiability, then one can still apply
relevance methods by choosing a known satisfiable subset B of A as the general
axioms, and one can then consider A − B as the particular theorem. This app-
roach will at least avoid combining axioms of A in the search for a contradiction.

Perhaps the concepts of goal relevance and semantics could even help propo-
sitional provers.

8.5 Proof Confluence

Proof confluence is another desirable property of a theorem prover. It means
that there is no backtracking, so that no step has to be fully undone. One never
completely erases the results of a step. Proof convergence means that if S is
unsatisfiable, then one will eventually find a refutation without backtracking. It
is possible for a method to be proof confluent even if it backtracks over par-
tial interpretations; one can consider DPLL with CDCL to be proof confluent,
because it saves information from previous attempts to find a model, even though
it backtracks over partial interpretations.

8.6 Evalution of Methods

There is some controversy over which methods have which properties, but here
is an attempted list of some methods and their properties. We consider that a
method that does not permit the deletion of instances of more general clauses is
not fully first-order; perhaps one could call it half order.

General resolution is first-order, not goal sensitive, and not model-based in
the AMB sense. Resolution with set of support is first-order, goal sensitive, and
not model-based. Model elimination is first-order, goal sensitive with the proper
choice of starting clause, and not model-based in the sense we are discussing.
OSHL is model-based and goal sensitive, but not first-order. DPLL is model-
based and can be goal sensitive with the proper starting model, but is not first-
order. Clause linking can be goal sensitive but requires that instances of clauses
be kept, and thus is not fully first-order. It is also not really model-based. DCTP
and the disconnection calculus are related to clause linking and do not seem to be
goal sensitive, though there is some controversy about this. They may be viewed
as model-based. They are not fully first-order because they keep instances of
more general clauses. Inst-Gen and clause linking are related. Inst-Gen uses an
arbitrary model given by the satisfiability procedure. It does not appear to be
goal sensitive. It is not fully first-order because it sometimes keeps instances of
more general clauses. It has a partial model-based character. Model Evolution
is not goal sensitive but is model-based and first-order. SATCHMO is not goal
sensitive or first-order but it is model-based. We are not sure how to classify
hyper-tableaux and their many variations.

History and Prospects for First-Order Automated Deduction 17

Knuth-Bendix completion is purely syntactic but sometimes very effective.
The same is true of DPLL.

It is desired to have a method that is first-order, goal sensitive, and model-
based. Proof confluence is also important and desirable when achievable. Could
it be that we haven’t yet reached the starting point in ATP?

Maria Paola Bonacina and the author are working on an SGGS method [12]
that has all these desirable properties.

Another way to evaluate provers is to run them on examples. Concerning this
method of evaluation, should it be necessary to so highly engineer a strategy to
evaluate its effectiveness or get it published? Shouldn’t there be a way to test
strategies independently of the degree of engineering? Perhaps by counting the
number of inferences needed to get proofs? Possibly by analyzing the asymptotic
efficiency of a strategy in general or on specific classes of problems?

9 More Search Space Discussion

How can we give a rigorous complexity theoretic answer to the question whether
one theorem proving strategy is better than another? For example, is resolution
for first-order logic better than enumerating propositional instances, and if so,
by how much? We can give specific examples, but it would be better to have a
more general method of evaluation.

Theoreticians are highly interested in the complexity of resolution on propo-
sitional calculus problems. Is there some way to interest them in its complexity
for first-order logic?

Even though first-order validity is only partially decidable, one can still dis-
cuss the asymptotic complexity of various theorem proving methods in terms
of the size of a minimal Herbrand set. The book [49] presented this idea, but
perhaps in too complex a way. The approach and notation here are different.

9.1 Terminology

Define a Herbrand set for a set S of clauses to be a set T of ground instances
of clauses in S such that T is unsatisfiable. Define the linear size slin of terms,
literals, clauses, and clause sets by

slin(¬L) = slin(L)
slin(P (t1 . . . tn)) = slin(f(t1 . . . tn)) = 1 + slin(t1) + · · · + slin(tn)
slin(L1 ∨ · · · ∨ Ln) = slin(L1) + · · · + slin(Ln)
slin(C1 ∧ · · · ∧ Cn) = slin(C1) + · · · + slin(Cn)
slin(x) = slin(c) = 1 for variables x and constants c

Define the directed acyclic graph size sdag(L) in the same way as slin but
on a different term representation, with pointers to previous occurrences of a
subterm so that the second and succeeding occurrences of a subterm only count
as size 1. For this size measure, we represent a literal L with integers giving
pointers to previous occurrences of a subterm so that for example P (f(x), 2)

18 D.A. Plaisted

represents P (f(x), f(x)) and the 2 indicates that the subterm begins in posi-
tion 2 of the term. The representation of a literal L in this way may not be
unique, so that we define sdag(L) to be the length of the shortest such represen-
tation of L. We assume that pointers are assigned so that no subterm appears
more than once in a literal except possibly for variables and constants. Then
sdag(P (f(x), f(x))) = 4 because this literal can be represented as P (f(x), 2),
but slin(P (f(x), f(x))) = 5. Of course, sdag(L) ≤ slin(L) for all L. This defini-
tion extends to clauses and sets of clauses in the usual way. For clauses we assume
that pointers can refer to subterms in other literals of the clause so that no sub-
term of size more than one appears more than once in a clause. This assumes
some ordering of the literals in the clause. For sets of clauses, some ordering on
the clauses in the set is assumed, so that pointers can refer to subterms in other
clauses.

We define a binary resolution between two clauses C1 and C2 as a resolution in
which a literal of C1 is unified with the complement of a literal of C2 using a most
general unifier, and a binary factoring on a clause C as a factoring in which two
literals of C are unified by a most general unifier. Then it turns out that if clause
D is a binary resolvent of clauses C1 and C2, sdag(D) < sdag(C1) + sdag(C2)
and if D is a binary factor of C, then sdag(D) < sdag(C) because no new term
structure is created during unification, but only new pointers to existing term
structure are created, and at least one literal is deleted.

DPLL Work Bounds. Given a set S of propositional clauses and an atom
(Boolean variable) P appearing in S let S(P ← T) and S(P ← F) be S with P
replaced by T (true), F (false) respectively everywhere and the following sim-
plifications applied repeatedly:

C ∨ T → T , C ∨ F → C, S ∧ T → S, S ∧ F → F , ¬T → F , ¬F → T

Assume that such simplifications have already been applied to S. Define
WDPLL(S) for propositional clause set S by

if S is T or S is F then WDPLL(S) = 1 else
let P be an atom appearing in S.

WDPLL(S) =
if S(P ← T) and S(P ← F) are satisfiable
then 1 + max(WDPLL(S(P ← T)),WDPLL(S(P ← F)))
else 1 + WDPLL(S(P ← T)) + WDPLL(S(P ← F))

To within a polynomial WDPLL(S) is an upper bound on the work for DPLL
on S, not even considering CDCL, because DPLL might first choose a truth
value for the Boolean variable P causing S to become unsatisfiable. In general,
if there are n distinct atoms in S then WDPLL(S) ≤ 2n+1 − 1.

History and Prospects for First-Order Automated Deduction 19

Define W ′
DPLL(S) for propositional clause set S by

if S is T or S is F then W ′
DPLL(S) = 1 else

let P be an atom appearing in S.
W ′

DPLL(S) =
if S(P ← T) and S(P ← F) are satisfiable
then 1 + (W ′

DPLL(S(P ← T)) + W ′
DPLL(S(P ← F)))/2

else
if S(P ← T) and S(P ← F) are unsatisfiable
then 1 + W ′

DPLL(S(P ← T)) + W ′
DPLL(S(P ← F))

else
if S(P ← T) is satisfiable and S(P ← F) is unsatisfiable
then 1 + W ′

DPLL(S(P ← T)) + W ′
DPLL(S(P ← F))/2

else
if S(P ← T) is unsatisfiable and S(P ← F) is satisfiable
then 1 + W ′

DPLL(S(P ← F)) + W ′
DPLL(S(P ← T))/2

This is to within a polynomial an upper bound on the average time taken
by DPLL on S with a random choice of whether to do P ← T or P ← F first,
because if S(P ← F) or S(P ← F) is satisfiable then the other case is omitted.
We shall typically be interested in the worst case time for W and the average
case time for W ′. If there are n distinct atoms in S, then in many cases it appears
that W ′

DPLL(S) is polynomial or even linear in n based on practical experience.
Finally, define W ′′

DPLL(S) for clause set S to be n, where there are n distinct
atoms in S. In many cases the time taken by DPLL seems to be within a small
polynomial of W ′′

DPLL(S).

Resolution Work Bound. For resolution, denote a binary resolution between
clauses C1 and C2 with resolvent C as the triple (C1, C2, C). Define the complex-
ity WRES(C1, C2, C) of a binary resolution (C1, C2, C) as sdag(C1) + sdag(C2).
Denote a binary factoring operation on C1 with result C as the pair (C1, C). The
complexity WFACT (C1, C) of a binary factoring operation on C1 is sdag(C1). If
R is a set of binary resolutions and binary factorings then define WRES(R) as
the sum of WRES(C1, C2, C) for all resolutions (C1, C2, C) in R plus the sum
of WFACT (C1, C) for all binary factorings in R. Also, for a set S of clauses,
let R(S) be the set of all binary resolutions (C1, C2, C) for clauses C1, C2 in S
together with all binary factoring operations (C1, C) for clauses C1 in S.

9.2 Literal Size Bounds

Bound for DPLL. Now, we can apply DPLL to first-order logic crudely, by
enumerating all ground instances of a set of clauses in some order and looking
for propositional (i.e., ground) refutations using DPLL periodically. Assume that
this version of DPLL is applied to first-order clause sets; we want to analyze its
complexity and compare it to breadth-first resolution. Let litlin,d(S) be the set of
ground instances C of clauses in S such that for all literals L in C, slin(L) ≤ d.
We want to evaluate the worst case for WDPLL(litlin,d(S)) and also evaluate
W ′′

DPLL(litlin,d(S)).

20 D.A. Plaisted

Suppose in a Herbrand set T for S, there are c symbols (function, constant,
and predicate symbols) in all. Then there are at most n = cd ground atoms of
linear size d. Adding in smaller d gives cd + cd−1 + . . . which, assuming c ≥ 2,
is at most 2cd, or O(cd). Then WDPLL(litlin,d(S)) is upper bounded by 2O(cd),
but W ′′

DPLL is only O(cd).
Let litdag,d(S) be the set of ground instances C of clauses in S such that

for all literals L in C, sdag(L) ≤ d. We want to evaluate the worst case for
WDPLL(litdag,d(S)) and also evaluate W ′′

DPLL(litdag,d(S)).
Suppose in a Herbrand set T for S, there are c symbols (function, con-

stant, and predicate symbols) in all. In ground atoms of size d, the integers
pointing to subterms could be between 1 and d so that the number of symbols
that can appear in each position is bounded by c + d. Then there are at most
n = (c + d)d ground atoms of dag size d. Adding in smaller sizes gives not more
than (c + d)d + (c + d)d−1 + . . . which, assuming c ≥ 2, is at most 2(c + d)d

or O((c + d)d). Then WDPLL(litdag,d(S)) is upper bounded by 2O((c+d)d), but
W ′′

DPLL is only O((c + d)d).

Bound for Resolution. Now, how can resolution obtain all proofs that could
be obtained by DPLL if all ground literals have linear size bounded by d? To
do this, the most favorable restriction of resolution would be to save all clauses
containing literals of linear size bounded by d. Such a size bounded resolution
strategy would also obtain some proofs that DPLL could not obtain. What is
the complexity of this approach, and how does it compare to the complexity of
DPLL on such clause sets?

Say a resolution (C1, C2, C) or a factoring (C1, C) is d-size bounded if all
literals in C have maximum literal size slin bounded by d. Define Πr on res-
olutions and factorings by Πr((C1, C2, C3)) = C3 and Πr((C1, C2)) = C2.
Extend Πr to sets elementwise. Let Rlin,d(S) be the set of d-size bounded res-
olutions and factorings in R(S). Let Rk

lin,d(S) be defined by R0
lin,d(S) = φ and

Rk+1
lin,d(S) = Rlin,d(S∪Πr(Rk

lin,d(S))) for k ≥ 0. Let R∗
lin,d(S) be

⋃
k≥0 Rk

lin,d(S).
Essentially all resolvents, resolvents of resolvents, binary factorings, et cetera
are computed in which every step is d-size bounded. We want to upper bound
WRES(R∗

lin,d(S)). If litlin,d(S) is unsatisfiable then a refutation can be obtained
by lifting a ground resolution refutation, which means that all clauses with more
than 2cd literals or with literals of size greater than d may be deleted. It may be
necessary to factor clauses before resolution, and to temporarily save resolvents
with more than 2cd literals, which will be reduced to not more than 2cd literals
by a sequence of factorings, but these factorings will be ignored in the analysis.

For a very weak bound on WRES(R∗
lin,d(S)), consider the clauses generated

by resolution that have atoms of size at most d, where these literals may contain
variables. Let h be cd, an upper bound on the number of ground atoms of size d.
Smaller sizes may increase the number of ground atoms by a constant factor (at
most 2), as before. Assume that all resolvents with an atom of linear size greater
than d are deleted. Then for a retained clause C having at most 2h literals of
size at most d, slin(C) ≤ 2dh. How many such clauses are there, accounting for

History and Prospects for First-Order Automated Deduction 21

the occurrences of variables? Assuming variables are named by first appearance
from left to right, for 2h atoms of size d there can be c symbols in the leftmost
place (which is a predicate symbol) in clause C, c + 1 in the next place, and so
on up to c + d ∗ h − 1 symbols in the last place, so the total number of possible
combinations is bounded by (c + 2dh − 1)!/(c − 1)!. This in turn is bounded
by (c + 2dh)2dh. How many clauses can there then be, ignoring subsumption
deletion? There are up to h atoms and each can be positive, negative, or absent
for 32h(c + 2dh − 1)!/(c − 1)! clauses. All pairs of clauses might resolve so that
we might have the square of this many resolutions, as an upper bound on the
number of resolutions. Each pair of clauses could resolve by binary resolution in
possibly 4h2 ways for another factor of 4h2, and the work per resolution might
be on the order of 4dh, giving a bound of (32h(c+2dh−1)!/(c−1)!)2 ∗4h2 ∗4dh
on WRES(Rlin,d(S)). Each clause could also have 2h(2h − 1)/2 binary factors,
but this is a lower order contribution. Accounting for smaller size atoms would
increase the bound by a small factor. The bound on number of resolutions is
considerably larger than 92h and even 92h is much worse than the 22h bound
for WDPLL(litlin,d(S)), and W ′′

DPLL(litlin,d(S)) is even smaller. Of course, this
bound on resolution is a very weak bound, and in practice resolution may perform
much better than this.

Unit Resolution. A UR resolution is a sequence of resolutions of a non-unit
clause C against enough unit clauses to remove all but one of the literals of C,
producing another unit clause. This strategy is complete for Horn sets. Define
UR∗

lin,d(S) similarly to R∗
lin,d(S) except that only UR resolutions are done. Fac-

torings are not needed in this case. We want to upper bound WRES(UR∗
lin,d(S)).

If one does UR resolution, then the number of UR resolvents that are kept is
bounded by the total number of units which considering occurrences of variables
in the units is bounded by c(c + 1) . . . (c + d − 1) or (c + d − 1)!/(c − 1)! for
literals of size d. Considering smaller sizes the bound becomes twice as large. So
if there are n 3-literal clauses then the total number of UR resolutions done is at
most proportional to 3n(2(c+d− 1)!/(c− 1)!)2 because each 3-literal clause can
resolve two of its three literals in three ways and there are n 3-literal clauses. No
new 3-literal clauses are produced, so n is the number of 3 literal clauses in the
input set S. This quantity 3n(2(c+ d− 1)!/(c− 1)!)2 is bounded by 12n(c+ d)2d

and this bound holds for arbitrarily deep refutations. Then WRES(UR∗
lin,d(S))

is at most a factor of 4d larger than this to account for the work per resolu-
tion depending on the clause sizes. (One clause can have at most 3 literals and
the other at most one literal, explaining the factor of 4). This bound is single
exponential in d and is not much worse than W ′′

DPLL(litlin,d(S)), and in fact
this bound is much better than the worst case bound WDPLL(litlin,d(S)) for
DPLL, even for deep UR refutations. Of course, UR resolution is not a complete
strategy, but perhaps resolution gets much of its power from clause sets having
UR refutations. Perhaps resolution not restricted to UR resolution also performs
well if the proof can be obtained using only resolvents having 2 or 3 literals.

If instead one considers sdag instead of slin for these results, the bounds
would be a little different.

22 D.A. Plaisted

9.3 Bounded Depth Resolution Refutations

Bound for Resolution. Now for a more favorable resolution bound, consider
clause sets S of n clauses having resolution refutations of depth bounded by D.
Let Rk(S) be defined by R0(S) = φ and Rk+1(S) = R(S ∪ Πr(Rk(S))) for
k ≥ 0.

We want to bound WRES(RD(S)). Suppose S is a set of n 3 literal clauses.
Suppose each clause has dag size at most s. Then two clauses having at most 3
literals can have at most 9 binary resolvents and a clause with at most 3 literals
can have at most 3 binary factors. So the number of clauses generated at depth
1 is at most p1(n) = n(n − 1)/2 ∗ 9 + 3n and these clauses are of dag size at
most 2s. This is a polynomial p1(n) of degree 2 for the number of clauses. Then
at depth 2 there will be at most (p1(n) + n)(p1(n) + n − 1)/2 ∗ 25 + 10p1(n)
clauses and factors because the clauses at depth 1 may have 5 literals each. This
is a polynomial p2(n) of degree 4 for the number of clauses. The dag sizes of the
clauses may be at most 4s. In general at depth D there will be at most pD(n)
clauses for a polynomial pD(n) which is of degree 2D, and the dag sizes of the
clauses are at most 2Ds. So the total work WRES(RD(S)) is bounded by the
sum of pi(n)2is for i less than or equal to D. This is still polynomial in n and s
for a fixed D, which (as shown below) is much better than WDPLL(litdag,d(S))
for d = 2Ds. However, pi(n) is on the order of n2D , which is double exponential
in D, and the work bound for resolution is larger than this.

If one restricts the depth D refutations to unit resolution refutations, then all
the resolvents have only one or two literals so that the number of unit resolvents
between two clauses is at most 3. This reduces the polynomials pi and leads
to a more favorable bound for unit resolution, perhaps explaining even more
the advantage of resolution over DPLL if shallow unit resolution refutations are
common.

Bound for DPLL. Now consider how one could use DPLL to obtain all refu-
tations obtainable by depth D resolution. If there is a depth D bounded res-
olution refutation, then the dag literal size sdag of a clause in a minimal Her-
brand set can be bounded by 2Ds. This is because at most 2D copies of input
clauses can be used in a refutation of depth D, and each copy has dag size at
most s. When all unifications between these copies are done, corresponding to
the structure of the refutation, a Herbrand set is obtained whose instances can
have dag size at most 2Ds. Consider now how one might test satisfiability for
such clause sets with DPLL. Suppose ground clauses are enumerated in order
of sdag instead of slin. We want to bound WDPLL(litdag,d(S)) for d = 2Ds.
With c symbols, there can be no more than (c + d)d ground atoms of this dag
size; including smaller sizes increases the bound by at most a factor of 2, to
O((c + d)d). Therefore the worst case bound for WDPLL is 2O((c+d)d) which
for a fixed D is double exponential in s, while resolution is polynomial in n
and s for fixed D. Also, even W ′′

DPLL(litdag,d(S)) is O((c + d)d) which is one
exponential less than WDPLL(litdag,d(S)), but still much worse than resolution
for constant D. Thus resolution is asymptotically much better than DPLL for

History and Prospects for First-Order Automated Deduction 23

depth D bounded refutations if D is small. It may be that such small depth
refutations are common, explaining the advantage of resolution over DPLL on
many clause sets.

9.4 Herbrand Set Size Bound

Another approach is to consider bounds based on the total size of a minimal
Herbrand set for S. If one restricts consideration to Herbrand sets T having
size sdag(T) bounded by H, then one can bound the dag size of the resolvents
and factors by H as well without losing the refutation. If sdag(T) is bounded by
H, then the number n of clauses in T is also bounded by H, as is the number
of distinct atoms in H. By resolving each atom away in turn, the depth of a
ground resolution refutation can also be bounded by H. Lifting this refutation
to first-order may require binary factorings to merge literals that correspond to
the same ground literal. For simplicity assume that the set of input clauses is
closed under binary factorings. H − 1 factoring operations or less on each clause
after each resolution except the last one suffice to merge non-ground literals
that correspond to the same ground literal. With not more than H − 1 binary
factoring operations after each resolution, the total refutation depth will be not
more than H2. Recalling the polynomials pi, pH2(n) is bounded by pH2(H) which

is on the order of H2H
2

, double exponential in H. Perhaps this is a more natural
bound than one phrased in terms of resolution itself. However, the resolution
work bound WRES(RH2

(S)) is double exponential in H. Another approach is
to count the total number of clauses that can be generated. Even assuming that
the dag literal sizes of the clauses are bounded by H, one still has more than
3c

H

possible clauses, which is still double exponential in H. For DPLL, the dag
literal size is bounded by H so that there can be O((c + H)H) atoms altogether
and WDPLL(litdag,H(S)) is 2O((c+H)H) which is also double exponential in H,
but W ′′

DPLL(litdag,H(S)) is O((c + H)H) which is only single exponential in H.
In this case DPLL looks better, assuming the refutation depths are not small.

If one considers instead Herbrand sets T with a fixed number H of distinct
atoms as the size of T increases, then the bounds in terms of sdag(T) are similar
to those for bounded depth resolution refutations, and resolution looks better
than DPLL. This measure, not depending on the properties of resolution itself,
also seems to be a more natural measure than the depth of a resolution refutation.

9.5 Summary

So, to sum up, if one bounds the maximum literal size in a Herbrand set, DPLL
seems to have an advantage. If one bounds the size of the Herbrand set as a
whole, DPLL still seems to have an advantage but not as much. For resolution
refutations having a small depth (which corresponds to a small number of literals
in a Herbrand set T), resolution looks better. For sets S having unit refutations,
resolution looks much better. It depends then on the nature of the problems

24 D.A. Plaisted

which method is best, according to this analysis; of course, the upper bounds
are very weak.

This analysis suggests that resolution performs best on clause sets having
shallow refutations or unit refutations, and for other clause sets, perhaps instance
based strategies or even DPLL on ground instances is better. Because many typi-
cal theorems are Horn sets or nearly Horn sets and unit resolution is complete for
Horn sets, resolution may perform well on such theorems. As evidence that DPLL
can be faster than resolution, SATCHMO has much the flavor of DPLL applied
to an enumeration of ground instances, and in its day it frequently beat the best
resolution provers. Another evidence is the good performance of instance-based
methods on the function-free fragment in the annual TPTP competitions, and
of DPLL for hardware verification applications. One might say that resolution
is good on easy problems, but for hard problems, other methods are needed. Of
course, many of these easy problems were not easy before resolution came along.

This analysis also suggests to look for methods that are asymptotically effi-
cient both for small Herbrand sets, for sets having shallow resolution refutations,
for sets having unit refutations, and for sets of clauses in which the maximum lit-
eral size in a Herbrand set is bounded. Perhaps instance based strategies already
have this property, or could be modified to have it, especially if supplemented
with special rules for unit clauses. This analysis does not include equality, how-
ever, which is easy to include in a resolution prover but possibly more difficult
for an instance-based strategy.

10 Additional Comments

Generating conjectures is also a fruitful area of research. This area is related
to interpolation and automatic program verification, as well as being important
for mathematical discovery in general. Model finding is another important area,
which can be used to show that a formula is satisfiable. However, model finding
is especially difficult, and for first-order logic is not even partially decidable.
Another area of interest is using resolution provers as decision procedures for
subsets of first-order logic [31]; Maslov’s method [71] can also be used in this
way.

As another issue, what can we do to improve the status of theorem proving
in the general computer science community, as well as the funding situation? It
appears from personal experience that more and more people outside of computer
science are becoming interested in automated deduction.

Should we be thinking about the social consequences of theorem proving
work and of artificial intelligence work in general? If compouters learn to prove
hard theorems, will they replace humans? What needs to happen for com-
puter theorem provers to be able to prove hard theorems often, without human
interaction?

History and Prospects for First-Order Automated Deduction 25

References

1. Andrews, P.: Theorem proving via general matings. J. ACM 28, 193–214 (1981)
2. Bachmair, L., Dershowitz, N., Plaisted, D.: Completion without failure. In: Kaci,

H.A., Nivat, M. (eds.) Resolution of Equations in Algebraic Structures Progress in
Theoretical Computer Science. Rewriting Techniques, vol. 2, pp. 1–30. Academic
Press, New York (1989)

3. Ballantyne, A., Bledsoe, W.: On generating and using examples in proof discovery.
In: Hayes, J., Michie, D., Pao, Y.H. (eds.) Machine Intelligence, vol. 10, pp. 3–39.
Ellis Horwood, Chichester (1982)

4. Baumgartner, P., Thorstensen, E.: Instance based methods - a brief overview. Ger.
J. Artif. Intell. (KI) 24(1), 35–42 (2010)

5. Baumgartner, P., Tinelli, C.: The model evolution calculus as a first-order DPLL
method. Artif. Intell. 172(4–5), 591–632 (2008)

6. Bibel, W.: Automated Theorem Proving. Vieweg, Braunschweig (1982)
7. Billon, J.P.: The disconnection method. In: Miglioli, P., Moscato, U., Ornaghi, M.,

Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 110–126. Springer,
Heidelberg (1996)

8. Bledsoe, W.W.: Non-resolution theorem proving. Artif. Intell. 9(1), 1–35 (1977)
9. Bledsoe, W.W.: Using examples to generate instantiations of set variables. In:

Proceedings of the 8th International Joint Conference on Artificial Intelligence,
pp. 892–901. William Kaufmann (1983)

10. Bledsoe, W.W., Loveland, D.W. (eds.): Automated Theorem Proving: After 25
Years. Contemporary mathematics. American Mathematical Society, Providence
(1984)

11. Bonacina, M.P., Furbach, U., Sofronie-Stokkermans, V.: On first-order model-
based reasoning. In: Mart́ı-Oliet, N., Olveczky, P., Talcott, C. (eds.) Logic, Rewrit-
ing, and Concurrency: Essays in Honor of José Meseguer. LNCS, vol. 9200,
Springer, Heidelberg (2015, to appear)

12. Bonacina, M.P., Plaisted, D.A.: SGGS theorem proving: an exposition. In: Konev,
B., Moura, L.D., Schulz, S. (eds.) Proceedings of the 4th Workshop on Practical
Aspects in Automated Reasoning, EasyChair Proceedings in Computing (2014, to
appear)

13. Chang, C., Lee, R.: Symbolic Logic and Mechanical Theorem Proving. Academic
Press, New York (1973)

14. Chu, H., Plaisted, D.: Semantically guided first-order theorem proving using hyper-
linking. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 192–206. Springer,
Heidelberg (1994)

15. Claessen, K.: Equinox, a new theorem prover for full first-order logic with equality
(2005). Presented at Dagstuhl Seminar on Deduction and Applications

16. Davis, M.: Eliminating the irrelevant from machanical proofs. In: Proceedings of
Symposia in Applied Mathematics, vol. 15, pp. 15–30 (1963)

17. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5, 394–397 (1962)

18. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7, 201–215 (1960)

19. Dershowitz, N.: Orderings for term-rewriting systems. Theor. Comput. Sci. 17,
279–301 (1982)

20. Dubois, O.: Upper bounds on the satisfiability threshold. Theor. Comput. Sci.
265(1–2), 187–197 (2001)

26 D.A. Plaisted

21. Feigenbaum, E.A., Feldman, J.: Computers and Thought. McGraw-Hill, New York
(1963)

22. Gaillourdet, J.-M., Hillenbrand, T., Löchner, B., Spies, H.: The new WALDMEIS-
TER loop at work. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp.
317–321. Springer, Heidelberg (2003)

23. Gelernter, H., Hansen, J., Loveland, D.: Empirical explorations of the geometry
theorem proving machine. In: Feigenbaum, E., Feldman, J. (eds.) Computers and
Thought, pp. 153–167. McGraw-Hill, New York (1963)

24. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2 : automatic termination
proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

25. Gilmore, P.C.: A proof method for quantification theory. IBM J. Res. Dev. 4(1),
28–35 (1960)

26. Green, C.: Application of theorem proving to problem solving. In: Proceedings
of the 1st International Joint Conference on Artificial Intelligence, pp. 219–239.
Morgan Kaufmann (1969)

27. Greenbaum, S., Nagasaka, A., O’Rorke, P., Plaisted, D.A.: Comparison of nat-
ural deduction and locking resolution implementations. In: Loveland, D. (ed.) 6th
Conference on Automated Deduction. LNCS, vol. 138, pp. 159–171. Springer, Hei-
delberg (1982)

28. Huet, G., Oppen, D.C.: Equations and rewrite rules: a survey. In: Book, R. (ed.)
Formal Language Theory: Perspectives and Open Problems, pp. 349–405. Acad-
emic Press, New York (1980)

29. Iturriaga, R.: Contributions to mechanical mathematics. Ph.D. thesis, Carnegie-
Mellon University, Pittsburgh, Pennsylvania (1967)

30. Jefferson, S., Plaisted, D.: Implementation of an improved relevance criterion. In:
Proceedings of the 1st Conference on Artificial Intelligence Applications, pp. 476–
482. IEEE Computer Society Press (1984)

31. Joyner, W.: Resolution strategies as decision procedures. J. ACM 23(1), 398–417
(1976)

32. Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech, J.
(ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press,
Oxford (1970)

33. Korovin, K., Sticksel, C.: iProver-eq: an instantiation-based theorem prover with
equality. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 196–202.
Springer, Heidelberg (2010)

34. Lankford, D.: Canonical algebraic simplification in computational logic. Technical
report, Memo ATP-25, University of Texas, Austin, Texas (1975)

35. Lee, S.J., Plaisted, D.: Eliminating duplication with the hyper-linking strategy. J.
Autom. Reasoning 9(1), 25–42 (1992)

36. Loveland, D.: A simplified format for the model elimination procedure. J. ACM
16, 349–363 (1969)

37. Manthey, R., Bry, F.: SATCHMO: a theorem prover implemented in prolog. In:
Lusk, E., Overbeek, R. (eds.) 9th International Conference on Automated Deduc-
tion. LNCS, vol. 310, pp. 415–434. Springer, Heidelberg (1988)

38. McCune, W.W.: Otter 3.0 reference manual and guide. Technical report, ANL-
94/6, Argonne National Laboratory, Argonne, IL (1994)

39. Musser, D.: On proving inductive properties of abstract data types. In: Proceedings
of the 7th ACM Symposium on Principles of Programming Languages, pp. 154–
162. ACM Press (1980)

History and Prospects for First-Order Automated Deduction 27

40. O’Connor, J.J., Robertson, E.F.: Jacques Herbrand. http://www-history.mcs.
st-andrews.ac.uk/Biographies/Herbrand.html. Accessed March 2015

41. Otten, J.: PleanCoP 2.0 and ileanCoP 1.2 : high performance lean theorem proving
in classical and intuitionistic logic (system descriptions). In: Armando, A., Baum-
gartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 283–291.
Springer, Heidelberg (2008)

42. Paramasivam, M., Plaisted, D.: A replacement rule theorem prover. J. Autom.
Reasoning 18(2), 221–226 (1997)

43. Pelletier, F.J.: Seventy-five problems for testing automatic theorem provers. J.
Autom. Reasoning 2, 191–216 (1986)

44. Plaisted, D.: A recursively defined ordering for proving termination of term
rewriting systems. Technical report, R-78-943, University of Illinois at Urbana-
Champaign, Urbana, IL (1978)

45. Plaisted, D.: Well-founded orderings for proving termination of systems of rewrite
rules. Technical report, R-78-932, University of Illinois at Urbana-Champaign,
Urbana, IL (1978)

46. Plaisted, D.: An efficient relevance criterion for mechanical theorem proving. In:
Proceedings of the 1st Annual National Conference on Artificial Intelligence, pp.
79–83. AAAI Press (1980)

47. Plaisted, D.: A simplified problem reduction format. Artif. Intell. 18(2), 227–261
(1982)

48. Plaisted, D., Greenbaum, S.: A structure-preserving clause form translation. J.
Symb. Comput. 2, 293–304 (1986)

49. Plaisted, D., Zhu, Y.: The Efficiency of Theorem Proving Strategies: A Compara-
tive and Asymptotic Analysis. Vieweg, Wiesbaden (1997)

50. Plaisted, D., Yahya, A.: A relevance restriction strategy for automated deduction.
Artif. Intell. 144(1–2), 59–93 (2003)

51. Plaisted, D.A.: Non-Horn clause logic programming without contrapositives. J.
Autom. Reasoning 4(3), 287–325 (1988)

52. Plaisted, D.A., Zhu, Y.: Ordered semantic hyper linking. J. Autom. Reasoning
25(3), 167–217 (2000)

53. Reif, W., Schellhorn, G.: Theorem proving in large theories. In: Bibel, W., Schmitt,
P.H. (eds.) Automated Deduction - A Basis for Applications. Applied Logic Series,
vol. 10, pp. 225–241. Springer, Heidelberg (1998)

54. Riazanov, A., Voronkov, A.: Vampire. In: Ganzinger, H. (ed.) CADE 1999. LNCS
(LNAI), vol. 1632, pp. 292–296. Springer, Heidelberg (1999)

55. Robinson, A., Voronkov, A. (eds.): Handbook of Automated Reasoning. Elsevier,
Amsterdam (2001)

56. Robinson, J.: Automatic deduction with hyper-resolution. Int. J. Comput. Math.
1(3), 227–234 (1965)

57. Robinson, J.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965)

58. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013)

59. Siekmann, J., Wrightson, G. (eds.): Automation of Reasoning 1: Classical Papers
on Computational Logic 1957–1966. Symbolic Computation. Springer, Heidelberg
(1983)

60. Siekmann, J., Wrightson, G. (eds.): Automation of Reasoning 2: Classical Papers
on Computational Logic 1967–1970. Symbolic Computation. Springer, Heidelberg
(1983)

http://www-history.mcs.st-andrews.ac.uk/Biographies/Herbrand.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Herbrand.html

28 D.A. Plaisted

61. Letz, R., Stenz, G.: DCTP - a disconnection calculus theorem prover - system
abstract. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI),
vol. 2083, pp. 381–385. Springer, Heidelberg (2001)

62. Stickel, M.: A unification algorithm for associative-commutative functions. J. ACM
28(3), 423–434 (1981)

63. Stickel, M.: A prolog technology theorem prover: implementation by an extended
prolog compiler. J. Autom. Reasoning 4(4), 353–380 (1988)

64. Sutcliffe, G.: The TPTP problem library and associated infrastructure - the FOF
and CNF parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)

65. Sutcliffe, G., Puzis, Y.: SRASS - a semantic relevance axiom selection system. In:
Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 295–310. Springer,
Heidelberg (2007)

66. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:
SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 140–
145. Springer, Heidelberg (2009)

67. Wikipedia: Hilbert’s program – Wikipedia, the free encyclopedia (2014). http://
en.wikipedia.org/wiki/Hilbert’sprogram. Accessed March 2015

68. Wos, L., Carson, D., Robinson, G.: The unit preference strategy in theorem prov-
ing. In: Proceedings of the Fall Joint Computer Conference, Part I. AFIPS Con-
ference Proceedings, vol. 26, pp. 615–621 (1964)

69. Zak, R.: Hilbert’s program. In: Zalta, E. (ed.) The Stanford Encyclopedia of Phi-
losophy, Spring 2015 edn. (2015). Accessed March 2015

70. Zalta, E.N.: Gottlob Frege. In: Zalta, E. (ed.) The Stanford Encyclopedia of Phi-
losophy. Fall 2014 edn. (2014). Accessed March 2015

71. Zamov, N.: Maslov’s inverse method and decidable classes. Ann. Pure Appl. Logic
42, 165–194 (1989)

http://en.wikipedia.org/wiki/Hilbert'sprogram
http://en.wikipedia.org/wiki/Hilbert'sprogram

Stumbling Around in the Dark: Lessons from
Everyday Mathematics

Ursula Martin(B)

University of Oxford, Oxford, UK
Ursula.Martin@cs.ox.ac.uk

Abstract. The growing use of the internet for collaboration, and of
numeric and symbolic software to perform calculations it is impossible
to do by hand, not only augment the capabilities of mathematicians, but
also afford new ways of observing what they do. In this essay we look at
four case studies to see what we can learn about the everyday practice of
mathematics: the polymath experiments for the collaborative production
of mathematics, which tell us about mathematicians attitudes to working
together in public; the minipolymath experiments in the same vein, from
which we can examine in finer grained detail the kinds of activities that
go on in developing a proof; the mathematical questions and answers in
math overflow, which tell us about mathematical-research-in-the-small;
and finally the role of computer algebra, in particular the GAP system,
in the production of mathematics. We conclude with perspectives on the
role of computational logic.

1 Introduction

The popular image of a mathematician is of a lone genius (probably young,
male and addicted to coffee) having a brilliant idea that solves a very hard
problem. This notion has been fuelled by books such as Hadamard’s ‘Psychol-
ogy of invention in the mathematical field’, based on interviews with forty or
so mathematicians, and dwelling on an almost mystical process of creativity.
Journalistic presentations of famous mathematicians continue the theme - for
example picking out Andrew Wiles’s remark on his proof of Fermat’s conjecture
“And sometimes I realized that nothing that had ever been done before was any
use at all. Then I just had to find something completely new; it’s a mystery
where that comes from.”

However Wiles also points out that inspiration is by no means the whole
story, stressing the sheer slog of research mathematics:

“I used to come up to my study, and start trying to find patterns. I
tried doing calculations which explain some little piece of mathematics.
I tried to fit it in with some previous broad conceptual understanding
of some part of mathematics that would clarify the particular problem I
was thinking about. Sometimes that would involve going and looking it
up in a book to see how it’s done there. Sometimes it was a question of
modifying things a bit, doing a little extra calculation”

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 29–51, 2015.
DOI: 10.1007/978-3-319-21401-6 2

30 U. Martin

and draws attention to the lengthy periods of hard work between the moments
of clarity:

“Perhaps I can best describe my experience of doing mathematics in
terms of a journey through a dark unexplored mansion. You enter the
first room of the mansion and it’s completely dark. You stumble around
bumping into the furniture, but gradually you learn where each piece of
furniture is. Finally, after six months or so, you find the light switch,
you turn it on, and suddenly it’s all illuminated. You can see exactly
where you were. Then you move into the next room and spend another
six months in the dark. So each of these breakthroughs, while sometimes
they’re momentary, sometimes over a period of a day or two, they are
the culmination of – and couldn’t exist without – the many months of
stumbling around in the dark that precede them.”

Cedric Villani also unpacks the myth in his recent book, which gives an
account (incorporating emails, Manga comics, and his love of French cheese),
of the work that won him the Field’s medal, and gives a gripping picture the
mathematician’s days trying out ideas that don’t quite work, or turn out to be
wrong, or right but not useful, and of the exhilaration of “the miracle” when
“everything seemed to fit together as if by magic”. For Wiles, the process was
essentially a solitary one, but for Villani “One of the greatest misconceptions
about mathematics is that it’s a solitary activity in which you work with your
pen, alone, in a room. But in fact, it’s a very social activity. You constantly
seek inspiration in discussions and encounters and randomness and chance and
so on.”

Wiles and Villani both talk about the importance of a broad view of math-
ematics, not so much for precise and formalisable correspondences, but in the
hope that ideas that have worked in one area will stimulate new ways of looking
at another. Edward Frenkel in “Love and Math”, his recent popular account his
work on the Langlands Program, draws attention to the role of the past liter-
ature: “It often happens like this. One proves a theorem, others verify it, new
advances in the field are made based on the new result, but the true understand-
ing of its meaning might take years or decades”.

In a lecture in 2012 mathematician Michael Atiyah (who also remarked in
the 1990’s that too much emphasis was placed on correctness, and mathematics
needed a more “buccaneering” approach) pointed to the importance of errors in
developing understanding: “I make mistakes all the time... I published a theorem
in topology. I didn’t know why the proof worked, I didn’t understand why the
theorem was true. This worried me. Years later we generalised it — we looked
at not just finite groups, but Lie groups. By the time we’d built up a framework,
the theorem was obvious. The original theorem was a special case of this. We
got a beautiful theorem and proof.”

The personal accounts of outstanding mathematicians are complemented by
the insights of ethnographers into the workaday worlds of less exalted individuals.
Barany and Mackenzie, using the methods and language of sociology to look
more keenly at this process of “stumbling around in the dark”, observe that

Stumbling Around in the Dark: Lessons from Everyday Mathematics 31

“the formal rigor at the heart of mathematical order becomes indissociable from
the ‘chalk in hand’ character of routine mathematical work. We call attention
to the vast labor of decoding, translating, and transmaterializing official texts
without which advanced mathematics could not proceed. More than that, we
suggest that these putatively passive substrates of mathematical knowledge and
practice instead embody potent resources and constraints that combine to shape
mathematical research in innumerable ways.”

Barany and Mackenzie observed mathematicians in their offices and in front
of blackboards, but the growing use of the internet for collaboration, and numeric
and symbolic software to perform calculations it is impossible to do by hand,
not only augment the capabilities of mathematicians, in particular by enabling
collaboration, but also provide new ways of observing what they do.

In this paper we look at four case studies to see what we can learn about
the everyday practice of mathematics, so as to shed new light the process of
“stumbling around in the dark”.

Two of the case studies are rooted in the mathematical area of group the-
ory. A group is, roughly speaking, the set of symmetries of an object, and the
field emerged in the nineteenth century, through the systematic study of roots
of equations triggered by the work of Galois. It continues to provide a surprising
and challenging abstract domain which underlies other parts of mathematics,
such as number theory and topology, with practical applications in areas such
as cryptography and physics. Its greatest intellectual achievement is the classi-
fication of finite simple groups, the basic “building blocks” of all finite groups.
Daniel Gorenstein, one of the prime movers in coordinating the effort, estimates
the proof variously as occupying between 5,000 and 15,000 journal pages over
30 years. Sociologist Alma Steingart describes the endeavour as “the largest
and most unwieldy mathematical collaboration in recent history”, and points to
the flexible notion of the idea of proof over the life of the collaboration (which
explains the varied estimates of the length of the proof). She points out that the
sheer volume of material meant that only one or two individuals were believed
to have the knowledge to understand and check the proof, or to understand it
well enough to fix the ‘local errors’ that were still believed to be present. The
field has a well-developed tradition of computer support and online resources, in
particular early heroic endeavours which constructed so called “sporadic” sim-
ple groups by constructing certain matrices over finite fields. Today widely used
software such as GAP incorporates many specialist algorithms, and exhaustive
online data resources, such as the ATLAS of data about simple groups, capture
information about these complex objects.

Our four studies involve the polymath experiments for the collaborative pro-
duction of mathematics, which tell us about mathematicians attitudes to working
together in public; the minipolymath experiments in the same vein, from which
we can examine in finer grained detail the kinds of activities that go on in pro-
ducing a proof; the mathematical questions and answers in mathoverflow , which
tell us about mathematical-research -in-the-small; and finally the role of com-
puter algebra, in particular the GAP system, in the production of mathematics.
We conclude with remarks on the role of computational logic.

32 U. Martin

2 The Power of Collaboration: polymath

Timothy Gowers was awarded a Fields Medal in 1998 for work combining func-
tional analysis and combinatorics, in particular his proof of Szemerdi’s theorem.
Gowers has characterised himself as a problem-solver rather than a theory-
builder, drawing attention to the importance of problem solvers and prob-
lem solving in understanding and developing broad connections and analogies
between topics not yet amenable to precise unifying theories. He writes articu-
lately on his blog about many topics connected with mathematics, education and
open science, and used this forum to launch his experiments in online collabora-
tive proof which he called “polymath”. In a blog post on 27th January 2009 he
asked “Is massively collaborative mathematics possible”, suggesting that “If a
large group of mathematicians could connect their brains efficiently, they could
perhaps solve problems very efficiently as well.”. Ground rules were formulated,
designed to encourage massively collaborative mathematics both in the sense
of involving as many people as possible: “we welcome all visitors, regardless of
mathematical level, to contribute to active polymath projects by commenting
on the threads”; and having a high degree of interaction and rapid exchange of
informal ideas: “It’s OK for a mathematical thought to be tentative, incomplete,
or even incorrect”. and “An ideal polymath research comment should represent
a ‘quantum of progress’.”

The post attracted 203 comments from around the globe, exploring philo-
sophical and practical aspects of working together on a blog to solve problems,
and a few days later Gowers launched the first experiment. The problem chosen
was to find a new proof of the density version of the “Hales Jewett Theorem”,
replacing the previously known very technical proof with a more accessible com-
binatorial argument which, it was hoped, would also open the door to generali-
sations of the result. Over the next seven weeks, 27 people contributed around
800 comments - around 170,000 words in all - with the contributors ranging from
high-school teacher Jason Dyer to Gowers’s fellow Fields Medallist Terry Tao.
On March 10, 2009 Gowers was able to announce a new combinatorial proof of
the result, writing “If this were a conventional way of producing mathematics,
then it would be premature to make such an announcement - one would wait
until the proof was completely written up with every single i dotted and every t
crossed - but this is blog maths and we’re free to make up conventions as we go
along.”

The result was written up as a conventional journal paper, with the author
given as “D H J Polymath” - identifying the actual contributors requires some
detective work on the blog - and published on the arxiv in 2009, and in the Annals
of Mathematics in 2012. The journal version explains the process “Before we start
working towards the proof of the theorem, we would like briefly to mention that
it was proved in a rather unusual “open source” way, which is why it is being
published under a pseudonym. The work was carried out by several researchers,
who wrote their thoughts, as they had them, in the form of blog comments.
Anybody who wanted to could participate, and at all stages of the process the
comments were fully open to anybody who was interested”.

Stumbling Around in the Dark: Lessons from Everyday Mathematics 33

Fig. 1. An extract from the polymath blog for the proof of the Density Hales Jewett
theorem

A typical extract from the blog (Fig. 1) shows the style of interaction. Partic-
ipants, in line with the ground rules, were encouraged to present their ideas in
an accessible way, to put forward partial ideas that might be wrong – “better to
have had five stupid ideas than no ideas at all” – to test out ideas on other par-
ticipants before doing substantial work on them, and to treat other participants
with respect. As the volume of comments and ideas grew, it became apparent
that the blog structure made it hard for readers to extract the thread of the
argument and keep up with what was going on, without having to digest every-
thing that had been previously posted, and in future experiments a leader took
on the task of drawing together the threads from time to time, identifying the
most appropriate next direction, and restarting the discussion with a substantial
new blog post.

By 2015 there had been nine endeavours in the polymath sequence, and a
number of others in similar style. Not all had achieved publishable results, with
some petering out through lack of participation, but all have left the record
of their partial achievements online for others to see and learn from - a marked
contrast to partial proof attempts that would normally end up in a waste-basket.

The most recent experiment, polymath 8, was motivated by Yitang Zhang’s
proof of a result about bounded gaps between primes. The twin primes conjecture
states that there are infinitely many pairs of primes that differ by 2: 3, 5, . . . 11, 13

34 U. Martin

and so on. Zhang proved that there is a number K such that infinitely many
pairs of primes differ by at most K, and showed that K is less than 70,000,000.
After various discussions on other blogs, Tao formally launched the project, to
improve the bound on K, on 13th June 2013. The first part of the project,
polymath 8a, concluded with a bound of 4,680, and a research paper, also put
together collaboratively, appeared on the arxiv in February 2014. The second
part, polymath 8b, combined this with techniques independently developed in
parallel by James Maynard, to reach a bound of 246, with a research paper
appearing on the arxiv in July 2014. The participants also used Tao’s blog to
seek input for a retrospective paper reflecting on the experience, which appeared
in the arxiv in September 2014.

One immediate concern was the scoping of the enquiry so as to not to intim-
idate or hamper individuals working on their own on this hot topic: it was felt
that this was more than countered by providing a resource for the mathematical
community that would capture progress, and provide a way to pull together what
would otherwise be many independent tweaks. The work was well suited to the
polymath approach: the combination of Tao’s leadership and the timeliness of
the problem made it easy to recruit participants; the bound provided an obvious
metric of progress and maintained momentum; and it naturally fell into five com-
ponents forming what Tao called a “factory production line”. The collaborative
approach allowed people to learn new material, and brought rapid sharing of
expertise, in particular knowledge of the literature, and access to computational
and software skills.

Tao himself explained how he was drawn into the project by the ease of mak-
ing simple improvements to Zhang’s bound, even though it interrupted another
big project (a piece of work that he expects to take some years), and summed
up by saying “All in all, it was an exhausting and unpredictable experience, but
also a highly thrilling and rewarding one.” The time commitment was indeed
intense - for example, a typical thread “polymath 8b, II: Optimising the varia-
tional problem and the sieve” started on 22 November 2013, and ran for just
over two weeks until 8th December. The initial post by Tao runs to about 4000
words - it is followed by 129 posts, of which 36, or just under a third, are also
by Tao.

Tao and other participants were motivated above all by the kudos of solving
a high-profile problem, in a way that was unlikely had they worked individually,
but also by the excitement of the project, and the enthusiasm of the partici-
pants and the wider community. They reported enjoying working in this new
way, especially the opportunity to work alongside research stars, the friendliness
of the other participants, and their tolerance of errors, and the way in which
the problem itself and the polymath format provided the incentive of frequent
incremental progress, in a way not typical of solo working.

Participants needed to balance the incentives for participation against other
concerns. Chief among these was the time commitment: participants reported
the need for intense concentration and focus, with some working on it at a
“furious pace” for several months; some feeling that the time required to grasp
everything that was happening on the blog make polymath collaborations more,

Stumbling Around in the Dark: Lessons from Everyday Mathematics 35

rather than less, time consuming than traditional individual work or small-group
collaboration; and some feeling that the fast pace was deterring participants
whose working style was slower and more reflective.

Pure mathematicians typically produce one or two journal papers a year, so
that, particularly for those who do not yet have established positions, there will
be concerns that a substantial investment of time in polymath might damage
their publication record. While such a time commitment would normally be
worth the risk for a high-profile problem that has the likely reward of a good
publication, the benefits are less clear-cut when the paper is authored under
a group pseudonym (D H J Polymath), with the list of participants given in a
linked wiki. As a participant remarked “polymath was a risk for those who did not
have tenure”. On the other hand, in a fast moving area, participants may feel that
incorporating their ideas into the collective allows them to make a contribution
that they would not have achieved with solo work, or that engaging in this
way is better than being beaten to a result and getting no credit, especially if
participation in a widely-read blog is already adding to their external reputation.

An additional risk for those worried about their reputation can be that mis-
takes are exposed for ever in a public forum: pre-tenure mathematician Pace
Nielsen was surprised that people were “impressed with my bravery” and would
advise considering this issue before taking part. Rising star James Maynard
observed: “It was very unusual for me to work in such a large group and so
publicly - one really needed to lose inhibitions and be willing to post ideas that
were not fully formed (and potentially wrong!) online for everyone to see.”

Those reading the polymath 8 sites went well beyond the experts - with an audi-
ence appreciating the chance to see how mathematics was done behind the scenes,
or as Tao put it “How the sausage is made”. At its height it was getting three thou-
sand hits a day, and even readers who knew little mathematics reported the excite-
ment of checking regularly and watching the bounds go down. All the members of
a class of number theory students at a summer school on Bounded Gaps admitted
to following polymath. Perhaps typical was Andrew Roberts, an undergraduate
who thanked the organisers for such an educational resource and reported “read-
ing the posts and following the ‘leader-board’ felt a lot like an academic specta-
tor sport. It was surreal, a bit like watching a piece of history as it occurred. It
made the mathematics feel much more alive and social, rather than just coming
from a textbook. I don’t think us undergrads often get the chance to peek behind
closed doors and watch professional mathematicians ‘in the wild’ like this, so from
a career standpoint, it was illuminating.” David Roberts, an Australian educator
who used polymath in his classes to show students how the things they were learn-
ing were being used in cutting-edge research, reported “For me personally it felt
like being able to sneak into the garage and watch a high-performance engine being
built up from scratch; something I could never do, but could appreciate the end
result, and admire the process.” The good manners remarked upon by the expert
participants extended to less-well informed users, with questions and comments
from non-experts generally getting a polite response, often from Tao himself, and
a few more outlandish comments, such as claims of a simple proof, being ignored
except for a plethora of down-votes.

36 U. Martin

The experiments have attracted widespread attention, in academia and
beyond. Gowers had worked closely with physicist Michael Nielson in design-
ing the wiki and blog structure to support polymath, and in an article in Nature
in 2009 the pair reflected on its wider implications, a theme developed further
in Nielsen’s 2012 book, Reinventing Discovery, and picked up by researchers in
social and computer science analysing the broader phenomenon of open science
enabled by the internet.

Like the participants, the analysts remarked on the value of the polymath
blogs for capturing the records of how mathematics is done, the kinds of thinking
that goes into the production of a proof, such as experimenting with examples,
computations and concepts, and showing the dead ends and blind alleys. As
Gowers and Nielson put it, “Who would have guessed that the working record
of a mathematical project would read like a thriller?”

Although polymath is often described as “crowdsourced science”, the crowd is
a remarkably small and expert one. The analogy has often been drawn with open
source software projects - however these are typically organised in a much more
modular and top down fashion than in possible in developing a mathematical
proof, where many ideas and strands will be interwoven in a manner, as Nielsen
comments, much more akin to a novel.

Research on collaboration and crowdsourcing carried out by psychologists,
cognitive scientists and computer scientists helps explain the success of polymath
and other attempts at open collaboration in mathematics. Mathematicians have
well-established shared standards for exposition and argument, making it easy to
resolve disputes. As the proof develops, the blog provides a shared cognitive space
and short term working memory. The ground rules allow for a dynamic division
of labour, and encourage a breakdown into smaller subtasks thus reducing bar-
riers to entry and increasing diversity. At the same time, presenting the whole
activity to readers, rather than in a more rigidly structured and compartmen-
talised way, allows more scope for serendipity and conversation across threads.
Gowers gives an example of one contributor developing ideas in a domain which
he was not familiar with (ergodic theory), and another who translated these
ideas into one that he was familiar with (combinatorics), thus affecting his own
line of reasoning.

A striking aspect of polymath is that senior figures in the field are prepared
to try such a bold experiment, to think though clearly for themselves what the
requirements are, and to take a “user centred” view of the design, based on
their understanding of their own user community. For example it was suggested
that participants might use a platform such as github, designed for collaborative
working and version control, to make the final stage, collaborating on a paper,
more straightforward. Tao responded “One thing I worry about is that if we use
any form of technology more complicated than a blog comment box, we might
lose some of the participants who might be turned off by the learning curve
required.”

These working records allow the analysis of what is involved in the creation
of a proof, which we explore in the following section.

Stumbling Around in the Dark: Lessons from Everyday Mathematics 37

3 Examples, Conjectures, Concepts and Proofs:
minipolymath

The minipolymath series applied the polymath model to problems drawn from
the International Mathematical Olympiad (IMO), a competition for national
teams of high school students. Tao and Gowers are among successful Olympiad
contestants who have gone on to win Fields medals. Using short but challenging
high-school level problems allowed for a much greater range of participants, and
for greater experimentation with the format, as problems typically took hours
rather than months to be solved. This windmill-inspired problem was composed
by Geoff Smith for the 2011 IMO, held in the Netherlands.

The windmill Problem. Let S be a finite set of at least two points in the
plane. Assume that no three points of S are collinear. A windmill is a process
that starts with a line l going through a single point P ∈ S. The line rotates
clockwise about the pivot P until the first time that the line meets some other
point Q belonging to S. This point Q takes over as the new pivot, and the line
now rotates clockwise about Q, until it next meets a point of S. This process
continues indefinitely.
Show that we can choose a point P in S and a line l going through P such that
the resulting windmill uses each point of S as a pivot infinitely many times.
(Tao, 8:00 pm)

Tao posted the problem as a minipolymath challenge at 8 pm on July 19th,
2011 a few days after the competition. Interest was immediate, and seventy
four minutes later the participants had found a solution and by 9.50 pm, when
Tao called a halt there were 147 comments on the blog, over 27 threads. To
investigate this we developed a typology of comments as below (nine comments
fell into two categories, and one fell into three). Figure 2 shows the proportion
of each category.

Fig. 2. The proportions of comments which concerned conjectures,concepts, proofs,
examples, and other.

38 U. Martin

Exemplars of the Typology of Comments

Concept. Since the points are in general position, you could define “the wheel
of p”, w(p) to be radial sequence of all the other points p!=p around p. Then,
every transition from a point p to q will “set the windmill in a particular spot” in
q. This device tries to clarify that the new point in a windmill sequence depends
(only) on the two previous points of the sequence. (Anonymous, 8:41 pm)

Example. If the points form a convex polygon, it is easy. (Anonymous, 8:08 pm)

Conjecture. One can start with any point (since every point of S should be
pivot infinitely often), the direction of line that one starts with however matters!
(Anonymous, 8:19 pm)

Conjecture. Perhaps even the line does not matter! Is it possible to prove that
any point and any line will do? (Anonymous, 8:31 pm)

Proof. The first point and line P0, l0 cannot be chosen so that P0 is on the
boundary of the convex hull of S and l0 picks out an adjacent point on the
convex hull. Maybe the strategy should be to take out the convex hull of S from
consideration; follow it up by induction on removing successive convex hulls.
(Haggai Nuchi, 8:08 pm)

Example and Conjecture. Can someone give me *any* other example where
the windmill cycles without visiting all the points? The only one I can come up
with is: loop over the convex hull of S. (Srivatsan Narayanan, 9:08 pm)

Other. Got it! Kind of like a turn number in topology. Thanks! :) (Gal, 9:50 pm)

Analysing the typology in more depth we see that:

– Examples played a key role in the discussion, forming around a third of the
comments. We saw some supporting examples to explain or justify conjectures,
concepts and requests for clarification; but most of the examples concerned
counter examples to the conjectures of others, or explanations to why these
counter examples were not in fact, counter examples. As an IMO problem, the
question was assumed to be correctly stated, but a number of ‘counterexample’
comments concerned participants attempts to understand it, with a number
of people initially misled by the windmill analogy into thinking of the rotating
line as a half-line, in which case the result does not hold, and a counterexample
can indeed be found.

– Conjectures. Conjectures concerned possible translations to other domains
which would provide results that could be applied; extensions of the initial
problem; sub-conjectures towards a proof; and conjectures of properties of the
windmill process aimed at understanding it better and clarifying thinking.

– Concepts. One class of concepts concerned analogies to everyday objects: as
well as the somewhat misleading windmills, these included

“We could perhaps consider “layers” of convex hulls (polygons) .. like
peeling off an onion. If our line doesn’t start at the “core” (innermost)

Stumbling Around in the Dark: Lessons from Everyday Mathematics 39

polygon then I feel it’ll get stuck in the upper layers and never reach the
core.” (Varun, 8:27 pm)

Notice the author’s use of apostrophes to stress that this is an analogy.
Other analogies were to related mathematical objects, so as to provide ideas
or inspiration, rather than affording an exact translation so that results from
the new domain could be immediately applied. An important development
was the emergence of the idea of talking about the “direction” of a line,
leading to the observation, important for the final proof, that the number
of points on each side of the line stays constant throughout the windmill
process. It was noticeable how new concepts rapidly spread among the par-
ticipants, even before they were precisely pinned down, enabling communi-
cation.

– Proof. Twenty one comments concerned a proof. Fourteen were about possible
proof strategies, one was clarification of the strategy, one was carrying out a
plan and five were about identifying which properties were relevant to the
proof. Three strategies were discussed: one by induction and two involving
translation to analogous domains. Within this the proof itself occupies a mere
16 comments, by 7 participants (three comments are “Anonymous” but from
the context appear to be the same person).

– Other. The 34 comments classified as “other” include clarification of duplicate
comments, explanations of a claim, and friendly interjections. Some of these
are mathematically interesting, guiding the direction of the discussion, while
others are simply courtesy comments. All play an important role, along with
smiley faces, exclamation marks, and so on, in creating and maintaining an
environment which is friendly, collaborative, informal and polite.

4 Questions and Answers: mathoverflow

Discussion fora for research mathematics have evolved from the early newsnet
newsgroups to modern systems based on the stackexchange architecture, which
allow rapid informal interaction and problem solving. In three years mathover-
flow.net has hosted 61,000 conversations and accumulated over 10,000 users, of
whom about 500 are active in any month. The highly technical nature of research
mathematics means that this is not currently an endeavour accessible to the pub-
lic at large: a separate site math.stackexchange.com is a broader question and
answer site “for people studying math at any level and professionals in related
fields”.

Within mathoverflow house rules give detailed guidance, and stress clar-
ity, precision, and asking questions with a clear answer. Moderation is fairly
tight, and some complain it constrains discussion. The design of such sys-
tems has been subject to considerable analysis by the designers and users, and
meta.mathoverflow contains many reflective discussions. A key element of the
success of the system is user ratings of questions and responses, which combine
to form reputation ratings for users. These have been studied by psychologists

40 U. Martin

Tausczik and Pennebaker who concluded that mathoverflow reputations offline
(assessed by numbers of papers published) and in mathoverflow were consistently
and independently related to the mathoverflow ratings of authors’ submissions,
and that while more experienced contributors were more likely to be motivated
by a desire to help others, all users were motivated by building their mathover-
flow reputation.

We studied the mathematical content of mathoverflow questions and
responses, choosing the subdomain of group theory so as to align with related
work on GAP: at the time of writing (April 2015) around 3,500 of the mathover-
flow questions are tagged “group theory”, putting it in the top 5 topic-specific
tags.

We analysed a sample of 100 questions drawn from April 2011 and July 2010
to obtain a spread and developed a typology:

Conjecture 36 % — asks if a mathematical statement is true. May ask directly
“Is it true that” or ask under what circumstances a statement is true.

What is this 28 % — describes a mathematical object or phenomenon and
asks what is known about it.

Example 14 % — asks for examples of a phenomenon or an object with par-
ticular properties.

Formula 5 % — ask for an explicit formula or computation technique.
Different Proof 5 % — asks if there is an alternative to a known proof. In

particular, since our sample concerns the field of group theory, a number of
questions concern whether a certain result can be proved without recourse
to the classification of finite simple groups.

Reference 4% — asks for a reference for something the questioner believes to
be already in the literature.

Perplexed 3% — ask for help in understanding a phenomenon or difficulty. A
typical question in this area might concern why accounts from two different
sources (for example Wikipedia and a published paper) seem to contradict
each other.

Motivation 3 % — asks for motivation or background. A typical question
might ask why something is true or interesting, or has been approached
historically in a particular way.

Other 2 % — closed by moderators as out of scope, duplicates etc.

We also looked for broad phenomena in the structure of the successful
responses. mathoverflow is very effective, with 90 % of our sample successful,
in that they received responses that the questioner flagged as an “answer”, of
which 78 % were reasonable answers to the original question, and a further 12 %
were partial or helpful responses that moved knowledge forward in some way.
The high success rate suggests that, of the infinity of possible mathematical
questions, questioners are becoming adept at choosing those for mathoverflow
that are amenable to its approach. The questions and the answers build upon
an assumption of a high level of shared background knowledge, perhaps at the
level of a PhD in group theory.

Stumbling Around in the Dark: Lessons from Everyday Mathematics 41

The usual presentation of mathematics in research papers is in a standardised
precise and rigorous style: for example, the response to a conjecture is either a
counterexample, or a proof of a corresponding theorem, structured by means of
intermediate definitions, theorems and proofs. By contrast, the typical response
to a mathoverflow question, whatever the category, is a discussion presenting
facts or short chains of inference that are relevant to the question, but may not
answer it directly. The facts and inference steps are justified by reference to the
literature, or to mathematical knowledge that the responder expects the other
participants to have. Thus in modelling a mathoverflow discussion, we might
think of each user as associated to a collection of facts and short inferences from
them, with the outcome of the discussion being that combining the facts known
to different users has allowed new inferences. Thus the power of mathoverflow
comes from developing collective intelligence through sharing information and
understanding.

In 56 % of the responses we found citations to the literature. This includes
both finding papers that questioners were unaware of, and extracting results
that are not explicit in the paper, but are straightforward (at least to experts),
consequences of the material it contains. For example, the observation needed
from the paper may be a consequence of an intermediate result, or a property
of an example which was presented in the paper for other purposes. In 34 %
of the responses, explicit examples of particular groups were given, as evidence
for, or counter examples to, conjectures. The role of examples in mathematical
practice, for example as evidence to refine conjectures, was explored by Lakatos:
we return to this below.

In addition mathoverflow captures information known to individuals but not
normally recorded in the research literature: for example unpublished material,
motivation, explanations as to why particular approaches do not work or have
been abandoned, and intuition about conjectures. The presentation is often spec-
ulative and informal, a style which would have no place in a research paper, rein-
forced by conversational devices that are accepting of error and invite challenge,
such as “I may be wrong but...”, “This isn’t quite right, but roughly speaking...”.
Where errors are spotted, either by the person who made them or by others, the
style is to politely accept and correct them: corrected errors of this kind were
found in 37 % of our sample (we looked at discussions of error: we have no idea
how many actual errors there are).

It is perhaps worth commenting on things that we did not see in our sample of
technical questions tagged “group theory” in mathoverflow. In developing “new”
mathematics considerable effort is put into the formation of new concepts and
definitions: we saw little of this in mathoverflow, where questions are by and large
focussed on extending or refining existing knowledge and theories. A preliminary
scan suggests these are not present in other technical areas of mathoverflow
either.

We see little serious disagreement in our mathoverflow sample: perhaps partly
because of the effect of the “house rules”, but also because of the style of dis-
cussion, which is based on evidence from the shared research background and

42 U. Martin

knowledge of the participants: there is more debate in meta.mathoverflow, which
has a broader range of non-technical questions about the development of the dis-
cipline and so on.

5 Everyday Calculation: GAP

GAP (Groups, Algorithms and Programming) is a substantial open-source com-
puter algebra system, supporting research and teaching in computational group
and semigroup theory, discrete mathematics, combinatorics and finite fields, and
the applications of these techniques in areas such as cryptography and physics.
It has been developed over the past 20 years or so by teams led initially from the
University of Aachen, and currently from the University of St Andrews. Accord-
ing to google scholar it has been cited in around 3,500 research papers: the GAP
making list has over a thousand members.

GAP provides well documented implementations of algorithms covering tech-
niques for identifying, and computing in, finite and infinite groups defined by
permutations, generators and relations, and matrices over finite fields. It also
supports a variety of standard data-sets: for example the 52 × 1012 semigroups
with up to 10 elements. It currently comprises over 0.6 million lines of code,
with a further 1.1 million in over 100 contributed packages. Considerable effort
is taken to ensure that GAP packages and datasets can be treated as objects
in the scholarly ecosystem through establishing refereeing standards, citation
criteria and so on.

Alongside the efforts one would expect of running a large open source project
- a source code repository, mailing lists and archives, centralized testing services,
issue tracker, release management, and a comprehensive website - the activity
of the core GAP developers is driven by extending the power and reach of the
system. Thus extensive efforts are being put into techniques for increasing the
efficiency of algorithms handling matrices, permutations, finite fields and the
like, for example by developing new data representations, and parallelising GAP
over multicores in ways that do not increase complexity for the user. Extending
the reach of GAP includes developing new theories and algorithms, and sup-
porting these with high quality well-documented implementations: for example
recent work has included devising computational methods for semigroups and
new techniques for computing minimal polynomials for matrices over finite fields.

Research users of GAP typically use it to experiment with conjectures and
theories. Whereas pencil and paper calculation restricts investigations to small
and atypical groups, the ready availability in GAP of a plethora of examples,
and the ease of computing with groups of large size, makes it possible to develop,
explore and refine hypotheses, examples and possible counter examples, before
proceeding to decide exactly what theorems to prove, and developing the proofs
in a conventional journal paper. For example, we reviewed the 49 papers in
google scholar which cited GAP Version 4.7. 5, 2014. A number of items were
eliminated: duplicates; out of scope, such as lecture slides; and papers that did
not appear to cite GAP, or cited it without mention in the text. The remaining
37 papers fell into six main groupings:

Stumbling Around in the Dark: Lessons from Everyday Mathematics 43

Explicit Computation as Part of a Proof, 25 % — These papers contained
proofs that needed explicit and intricate calculation, carried out in GAP but
difficult or impossible to do by hand. This arises particularly in theorems
that depend on aspects of the classification of finite simple groups, or other
results of a similar character, and hence require checking a statement for an
explicitly given list of groups, each of which can be handled in GAP.

Examples and Counter examples, 25 % — These papers had used GAP to
find or verify explicit examples of groups or other combinatorial objects: in
some cases to illustrate a theorem, or as evidence for a conjecture; in others
as counter-examples to a conjectured extension or variant of a result. Notice
that GAP’s built-in libraries of groups are often used to search for counter
examples.

New Algorithms, 20 % — These were papers mainly devoted to the exposi-
tion of a new algorithm. In some cases these were supported by an explicit
GAP implementation. In the rest the algorithm was more general than could
be supported by GAP, but the paper contained a worked example, executed
in GAP, for illustrative purposes.

Computations with Explicit Primes, 14 % — Groups whose number of
elements is a power of a prime are the basic “building blocks” of finite
group theory. As we have indicated, GAP can compute with fixed values
of a prime number p, but is unable to handle statements of the form “For
all primes p....”. Many results of this form have generic proofs for “large
enough” primes, while requiring a different proof for fixed small values of p,
which can be computed by GAP, sometimes by making use of GAP’s built in
tables of particular families of groups. Thus for example Vaughan-Lee finds
a formula for the number of groups of order p8, with exponent p, where p is
prime, p > 7. To complement this he computes a list of all 1, 396, 077 groups
of order 38, and these are made available in GAP.

Applications in Other Fields, 10 % — This included three papers in theo-
retical physics and gauge theory, all doing explicit computation using GAPs
built in representations of Lie Algebras, and an example of how GAP has
made group theory accessible to non-specialists. A further paper in education
research presented symmetry and the Rubik’s cube.

Other, 6% — Two papers cited GAP as background material, one in describing
how their own algorithmic approach went beyond it; and one mentioning that
calculations in GAP had shown a claimed result in an earlier paper to be
incorrect, and presenting a corrected statement and proof.

One factor encouraging the take-up of GAP in research is its widespread use
in teaching mathematics, both at undergraduate level and as part of research
training. For example a professor at Colorado State University in the USA writes
“I have been using GAP for many years in my undergraduate and graduate
classes in algebra and combinatorics [...]. I have found the system an indispen-
sible tool for illustrating phenomena that are beyond simple pencil-and-paper
methods [...]. It also has been most useful as a laboratory environment for stu-
dents to investigate algebraic structures [...]. [T]his first-hand investigation gives

44 U. Martin

students a much better understanding of what these algebraic structures are,
and how their elements behave, than they would get by the traditional examples
presented in a board-lecture situation.” GAP enables an experimental approach,
where students can explore examples and formulate and solve research questions
of their own, developing their skills as mathematicians and building familiarity
and confidence in using tools such as GAP later in their careers.

The examples above highlight the use of GAP in published mathematics
research: supporting the traditional style of pure mathematics research paper
through the use of computation as part of the proof of theorems; in the construc-
tion of examples and counter examples; and in algorithms research. As they are
drawn from published papers they reflect what is documented in archival publi-
cations - much is omitted. Notice first that it would be unusual to have a proof
that consisted entirely of a GAP computation; such a proof would probably not
be considered deep enough to warrant journal publication, unless it was given
context as part of a larger body of work which was felt to be significant. Thus in
our sample one paper is devoted essentially entirely to computations of 9 pages
of tables together with a narrative explanation of them: Harvey and Rayhaun
build evidence for a connection between a particular modular form occurring
in the work of Field’s medal winner Borcherds, and the representation theory
of the Thomson sporadic simple group. This is related to remarkable results
linking sporadic simple groups, modular forms and conformal field theory, pop-
ularly labelled “Moonshine”, which came about when Mackay observed in 1979
a connection between the “Monster” simple group and a certain modular form,
through observing the role of the number 196883 in both.

However, sampling published papers to spot usage of GAP is also misleading,
as it does not reflect significant and deep use of systems such as GAP in the
process of doing mathematics, of exploring patterns, ideas and concepts, playing
with examples and formulating and testing conjectures. We have heard, anecdo-
tally, of mathematicians spending several months on calculations where the use
of GAP was not even mentioned in the final paper: in one case a lengthy calcula-
tion involving the number 7 in GAP then informed published hand calculations
which mimicked the computer calculation but with the 7 replaced by the variable
p throughout; in another a lengthy computer search found a counterexample to
a conjecture that could be readily described and shown to have the required
properties without mentioning the computer search; in a third lengthy calcula-
tions in GAP were carried out to build evidence for a series of conjectures before
time and effort was invested in a hand proof. Evidence for the use of computer
algebra (though not GAP) in developing a proof can be drawn from the poly-
math 8 project where several participants were using Maple, Mathematica and
SAGE for experiment, calculation and search as a matter of course, alongside the
main argument, from time to time reporting the evidence they had found, and
comparing their results. The crowdsourcing approach clarified computational
techniques and apparent variations in results, and provided added confidence in
the approach.

Stumbling Around in the Dark: Lessons from Everyday Mathematics 45

The use of computer support in this way is in line with the manifesto of
“Experimental Mathematics”, ably presented in a series of books and papers by
Bailey, Borwein and others. They articulate the possible uses of symbolic and
numeric computation as:

(a) Gaining insight and intuition;
(b) Visualizing math principles;
(c) Discovering new relationships;
(d) Testing and especially falsifying conjectures;
(e) Exploring a possible result to see if it merits formal proof;
(f) Suggesting approaches for formal proof;
(g) Computing replacing lengthy hand derivations;
(h) Confirming analytically derived results.

The analysis of GAP papers above is consistent with the remark that while (a),
(d) and (g) might all appear in current published papers, the rest are more
likely to happen in the more speculative stage of the development of a proof.
Bailey and Borwein argue that we need to think carefully about whether to allow
a computation to be considered directly as a proof, and how to establish new
standards for it to take its place in the literature. They go beyond the use of
computation in support of traditional proof methodologies to assert:

Robust, concrete and abstract, mathematical computation and inference
on the scale now becoming possible should change the discourse about
many matters mathematical. These include: what mathematics is, how
we know something, how we persuade each other, what suffices as a
proof, the infinite, mathematical discovery or invention, and other such
issues.

While these are all worthy of debate, and indeed along with polymath, HOTT,
and the work of Gonthier and Hales are stimulating increasing discussion in blogs
and other scientific commentary, it is not clear that the practice of mathemat-
ics, as evidenced by mathematics publications, is yet changing. For example, a
glance at the Volume 24, Issue 1, of the Journal of Experimental Mathematics,
published in January 2015 finds 12 papers. All follow the standard mathemat-
ical style of presentation with theorems, proofs, examples and so on. Of these,
4 use computation as in (d) above - for testing and especially falsifying con-
jectures, by exhibiting a witness found through calculation or search. A further
5 are of type (a) and use computation to numerically evaluate or estimate a
function, and hence conjecture an exact algebraic formula for it. Two start with
computational experiments which stimulate a conjecture that all elements of a
certain finite class of finite objects have a certain property, and then prove it by
(computational) exhaustion: so these may be described as (a) followed by (d)
One presents an algorithm plus a running example, so perhaps also (a). It would
appear that all exhibit (g).

46 U. Martin

6 Learning from the Everyday

Gowers, Tao, Villani and Wiles are extraordinary mathematicians, which makes
their reflections of the process of doing mathematics both fascinating and atypi-
cal. The case studies described above allow us to look at the everyday activities
of more ordinary mathematicians. It also allows us to draw a number of conclu-
sions related to the practice of mathematics, attitudes to innovations, and the
possible deployment of computational logic systems.

Stumbling Around in the Dark. By looking at how mathematics is done -
or as Tao puts it ‘how the sausage is made’ - we get a more detailed view of
Wiles’s ‘stumbling around in the dark’. Our examples highlight the role of con-
jectures, concepts and examples in creating a proof. Interestingly, they provide
an evidence base to challenge Lakatos’s account of the development of proofs. To
simplify somewhat, Lakatos presents a view of mathematical practice in which
conjectures are subject to challenge through exhibiting examples, leading to
modification of the hypothesis, or the concepts underlying it, with all the while
progress towards a proof (of something, if not the original hypothesis) being
maintained. While we certainly see this process at work in polymath, minipoly-
math and mathoverflow , this description suggests an all too tidy a view of the
world, as we also see lines of enquiry abandoned because people get stuck, or
make mistakes, or spot what might be a fruitful approach but lack the immediate
resources of time or talent to address it, or judge that other activities are more
worthwhile. Villani’s playful account of the development of a proof is particularly
insightful about this aspect of research, and we also observe numerous paths not
taken or dismissed in the polymath and minipolymath problems. Likewise many
of the mathoverflow questions demonstrate a general wish to understand a par-
ticular phenomenon or example, or find out what others know about it. rather
than asking a precise question about its properties.

Examples and Computation. Our case studies exhibit a variety of ways in
which examples are used: straightforwardly as part of an existence proof; in the
Laktosian sense of a way to test and moderate hypotheses; to explain or clarify;
or as a way of exploring what might be true or provable. Examples play an inter-
esting role in collaborative endeavours: since the same example or phenomenon
may occur in different areas of mathematics with different descriptions, sharing
or asking for an example in mathoverflow may open up connections, or shed new
light on a problem, or allow rapid interaction through a new researcher trying
to understand how an unfamiliar concept apples to their own favourite family of
examples. Computational methods allow construction, exploration, and retrieval
of a much greater range of examples, and such techniques appear to be absorbed
into the standard literature without comment, despite the well known limitations
and non-reproducibility of computer algebra calculations.

Crowdsourcing, Leadership and the Strategic View. After a few iterations
the polymath projects evolved to having a leader (most have been led by Tao)
who took responsibility for overall guidance of the approach, drawing together

Stumbling Around in the Dark: Lessons from Everyday Mathematics 47

the threads every so often to write a long blog post (with a view to it being part
of the published paper), and setting the discussion on a new path. Perhaps most
striking, and worthy of further study, is the strategic decisions that are made
about which route to pursue in a complex landscape of possible proofs. While
these are the result of the intuition and insight of extraordinary mathematicians,
when the participants comment on this, we find judgements informed by what
has worked in the past in similar situations, assessments of the relative difficulties
or of the various approaches, or the likelihood that the approach will lead to
something fruitful, even if it is not likely to solve the whole problem. Frenkel
and Villani give similar insights in their books, with a frequent metaphor being
that of searching for the proof as a journey, and the final proof as a road-map for
the next explorer. Marcus du Sautoy, writes on proof as narrative: “The proof
is the story of the trek and the map charting the coordinates of that journey”.
To continue the metaphor, collaboration enables new ways of exploration, to
draw on different skills, and, crucially to share risks in a way that can make
participants more adventurous in what they try out. In a section of polymath 8a
for example, several participants are experimenting in an adventurous way with
different computer algebra systems, and are joined by an expert in Maple who
is able to transform and integrate the informal ideas and make rapid progress.

Institutional Factors in Innovation. All of our case studies show, in different
ways, innovations in the practice of mathematics, through the use of machines to
support collaboration, knowledge sharing, or calculations in support of a proof.
What is noteworthy is that, however innovative the process, the outcomes of the
activity remain unchanged: traditional papers in a traditional format in tradi-
tional journals, albeit with some of the elements executed by a machine. The
reasons for this appear not to be any innate superiority of the format, indeed
plenty have argued perceptively and plausibly for change, but the external drivers
on research mathematicians. Research mathematicians are almost exclusively
employed in the university system, either in the developed world, or in organisa-
tions in the developing world who are adopting similar norms and mechanisms,
and are driven by the need to gather traditional indicators of esteem and recog-
nition. The leaders of the field, such as Gowers, Tao, and Wiles, are perhaps
best placed to resist these drivers, but are likewise aware of the pressures on
younger colleagues - as evidence the discussions about authorship in polymath,
and the advice not to spend too much time on it before tenure. Such pressures
are active in other ways - for example publishing a so-called ‘informalisation’ of
a formal proof in Homotopy Type theory in the high profile LICS conference,
or in shaping decisions about how to spend ones time, so that, for example, the
tactical goal of getting a paper written over a summer before teaching starts in
the fall trumps loftier concerns.

Finally, what does this tell us about computational logic? We have described
the “stumbling around in the dark” that currently seems a inevitable part of
developing a proof, using as evidence the traces left by participants in collabo-
rative activities on the web, and users of computer group theory systems. We
have stressed the importance of a strategic view of proof, and the diversity and

48 U. Martin

sharing of risk provided by collaboration. While we have not yet studied this
in detail, we no of no evidence that the same is not true of developing large
machine proofs. Understanding the collaborative development of human proofs
should help us understand the collaborative development of machine proofs as
well, and the best way to combine the two: Obua and Fleuriot’s ProofPeer is
making a start. Vladimir Voevodsky argues that computer proof will lead to a
flowering of collaboration, as it enables trust between participants, who can rely
on the machine to check each others work, and hence enables participants to
take more risks, leading to much greater impact for activities like polymath.

At the same time, we see increasing recognition of the power of machine
proof for mathematics: the work of Gonthier, Hales and Voevodsky to the fore.
A recent triumph for SAT solving in mathematics was the discovery by Konev
and Lisitsa in 2014 of a sequence of length 1160 giving the best possible bound on
a solution to the Erdos discrepancy problem, resolving a question that had been
partially solved in an earlier polymath discussion, which found a bound of 1124,
which Gowers and others believed was best possible. Konev and Lisitsa write
“The negative witness, that is, the DRUP unsatisfiability certificate, is probably
one of longest proofs of a non-trivial mathematical result ever produced. Its
gigantic size is comparable, for example, with the size of the whole Wikipedia,
so one may have doubts about to which degree this can be accepted as a proof
of a mathematical statement.” It is an indication of how attitudes to computer
proof have evolved since the more negative comments and concerns reported by
Mackenzie 20 years before, that Gowers responded on his blog that “I personally
am relaxed about huge computer proofs like this. It is conceivable that the
authors made a mistake somewhere, but that is true of conventional proofs as
well.”

Our review of papers in group theory showed that they often contain signif-
icant amounts of detailed symbolic hand calculation of the kind that it would
be straightforward to carry out in a proof-assistant, even though this is not
current practice. Likewise machine assistance would surely confer some advan-
tages in organising proofs that rely on complicated “minimum counterexample”
arguments, a common pattern when considering finite simple groups. Similarly
machine “book-keeping” would help in handling elaborate case-splits, as often
occur in proofs of results about groups of order pr, for all, or for all sufficiently
large, primes, where the behaviour of different residue classes of r mod p need
to be considered. As Vaughan-Lee writes of the work mentioned above “all the
proofs are traditional “hand” proofs, albeit with machine assistance with linear
algebra and with adding, multiplying, and factoring polynomials. However the
proofs involve a case by case analysis of hundreds of different cases, and although
most of the cases are straightforward enough it is virtually impossible to avoid
the occasional slip or transcription error.” Since use of GAP is now accepted
and routine in such papers, it is hard to see why use of a proof assistant could
not be also.

In a panel discussion at the 2014 ceremonies for the Breakthrough Prize,
the winners Simon Donaldson, Maxim Kontsevich, Jacob Lurie, Terence Tao

Stumbling Around in the Dark: Lessons from Everyday Mathematics 49

and Richard Taylor addressed computer proof in various ways: asking for better
search facilities (Tao), wondering if “ Perhaps at some point we will write our
papers not in LaTeX but instead directly in some formal mathematics system”
(Tao), and remarking “I would like to see a computer proof verification system
with an improved user interface, something that doesn’t require 100 times as
much time as to write down the proof. Can we expect, say in 25 years, wide-
spread adoption of computer verified proofs?” (Lurie). Several speakers pointed
to the length of time it can take for humans to be certain that a complex proof is
true, and Kontsevich pointed out that “The refinement and cleaning up of earlier,
more complicated stories is an important and undervalued contribution in math-
ematics.”. This last point chimes with an observation made by Steingart on the
classification of finite simple groups: the concern that the protagonists had that,
with the leading figures in the field growing older, and few new recruits as other
areas now seemed more exciting, the skills needed to understand these complex
proofs and fix, if necessary, any local errors were being lost, and the proof risked
being ‘uninvented’. Perhaps ensuring that mathematics, once invented with such
difficulty, does not become uninvented again, and that we don’t forget how to
read the map. is the greatest contribution computational logic can make to the
field.

Acknowledgements. Ursula Martin acknowledges EPSRC support from
EP/K040251. This essay acknowledges with thanks a continuing collaboration with
Alison Pease, and incorporates material from two workshop papers which we wrote
together.

Further Reading

Barany, M., Mackenzie, D.: Chalk: Materials and Concepts in Mathematics
Research. Representation in Scientific Practice Revisited. MIT Press (2014)

Frenkel, E.: Love and Math: The Heart of Hidden Reality. Basic Books (2014)

Gorenstein, D.: Finite Simple Groups: An Introduction to their Classification.
Plenum Press, New York (1982)

Hadamard, J.: The Psychology of Invention in the Mathematical Field. Princeton
(1954)

Mackenzie, D.: Mechanizing Proof: Computing, Risk, and Trust. MIT Press
(2001)

Steingart, A.: A group theory of group theory: collaborative mathematics and
the ‘uninvention’ of a 1000-page proof. Soc. Stud. Sci. 42, 185–213 (2014)

Villani, C.: Birth of a Theorem. Random House (2015)

Wiles, A.: Transcript of interview on PBS. www.pbs.org/wgbh/nova/physics/
andrew-wiles-fermat.html

www.pbs.org/wgbh/nova/physics/andrew-wiles-fermat.html
www.pbs.org/wgbh/nova/physics/andrew-wiles-fermat.html

50 U. Martin

The Power of Collaboration: polymath

Gowers, T., Nielsen, M.: Massively collaborative mathematics. Nature 461, 879–
881 (2009)

The polymath Blog. polymathprojects.org

The polymath wiki. michaelnielsen.org/polymath1

“Is massively collaborative mathematics possible?”, Gowers’s Weblog, gowers.
wordpress.com/2009/01/27/is-massively-collaborative-mathematics-possible

Nielsen, M.: Reinventing Discovery. Princeton (2012)

D H J Polymath: The ‘bounded gaps between primes’ polymath project: a ret-
rospective analysis’. Newslett. Eur. Math. Soc. 94, 13–23

Examples, Conjectures, Concepts and Proofs: minipolymath

Mini-polymath3 discussion. terrytao.wordpress.com/2011/07/19/mini-polymath
3-discussion-thread/

Minipolymath3 project. polymathprojects.org/2011/07/19/minipolymath3-
project-2011-imo

Martin, U., Pease, A.: Seventy four minutes of mathematics: an analysis of the
third Mini-Polymath project. In: Proceedings of AISB/IACAP 2012, Symposium
on Mathematical Practice and Cognition II (2012)

Questions and Answers: mathoverflow

Martin, U., Pease, A.: What does mathoverflow tell us about the production of
mathematics? arxiv.org/abs/1305.0904

Tausczik, Y.R., Pennebaker, J.W.: Participation in an online mathematics
community: differentiating motivations to add. In: Proceedings CSCW 2012,
pp. 207–216. ACM (2012)

Mendes Rodrigues, E., Milic-Frayling, N.: Socializing or knowledge sharing?:
Characterizing social intent in community question answering. In: Proceedings
CIKM 2009, pp. 1127–1136. ACM (2009)

Everyday Calculation: GAP

Vaughan-Lee, M.: Groups of order p8 and exponent p. Int. J. Group Theor.
Available Online from 28 June 2014

Bailey, D.H., Borwein, J.M.: Exploratory experimentation and computation.
Not. Am. Math. Soc. 58, 1410–1419 (2011)

GAP – Groups, Algorithms, and Programming, Version 4.7.7. The GAP Group
(2015). www.gap-system.org

www.polymathprojects.org
www.michaelnielsen.org/polymath1
www.gowers.wordpress.com/2009/01/27/is-massively-collaborative-mathematics-possible
www.gowers.wordpress.com/2009/01/27/is-massively-collaborative-mathematics-possible
www.terrytao.wordpress.com/2011/07/19/mini-polymath3-discussion-thread/
www.terrytao.wordpress.com/2011/07/19/mini-polymath3-discussion-thread/
www.polymathprojects.org/2011/07/19/minipolymath3-project-2011-imo
www.polymathprojects.org/2011/07/19/minipolymath3-project-2011-imo
www.arxiv.org/abs/1305.0904
www.gap-system.org

Stumbling Around in the Dark: Lessons from Everyday Mathematics 51

Harvey, J.A., Rayhaun, B.C.: Traces of Singular Moduli and Moonshine for the
Thompson Group. arxiv.org/abs/1504.08179

Conclusions

Donaldson, S., Kontsevich, M., Lurie, J., Tao, T., Taylor, R.: Panel discus-
sion at the 2014 award of the Breakthrough Prize. experimentalmath.info/
blog/2014/11/breakthrough-prize-recipients-give-math-seminar-talks/

du Sautoy, M.: How mathematicians are storytellers and numbers are the char-
acters. www.theguardian.com/books/2015/jan/23/mathematicians-storytellers-
numbers-characters-marcus-du-sautoy

Lakatos, I.: Proofs and Refutations. CUP, Cambridge (1976)

Obua, S., Fleuriot, J., Scott, P., Aspinall, D.: ProofPeer: Collaborative Theorem
Proving. arxiv.org/abs/1404.6186

www.arxiv.org/abs/1504.08179
www.experimentalmath.info/blog/2014/11/breakthrough-prize-recipients-give-math-seminar-talks/
www.experimentalmath.info/blog/2014/11/breakthrough-prize-recipients-give-math-seminar-talks/
www.theguardian.com/books/2015/jan/23/mathematicians-storytellers-numbers-characters-marcus-du-sautoy
www.theguardian.com/books/2015/jan/23/mathematicians-storytellers-numbers-characters-marcus-du-sautoy
www.arxiv.org/abs/1404.6186

Invited Talks

Automated Reasoning in the Wild

Ulrich Furbach(B), Björn Pelzer, and Claudia Schon

Universität Koblenz-Landau, Koblenz, Germany
{uli,bpelzer,schon}@uni-koblenz.de

Abstract. This paper discusses the use of first order automated reason-
ing in question answering and cognitive computing. For this the natural
language question answering project LogAnswer is briefly depicted and
the challenges faced therein are addressed. This includes a treatment of
query relaxation, web-services, large knowledge bases and co-operative
answering. In a second part a bridge to human reasoning as it is inves-
tigated in cognitive psychology is constructed by using standard deontic
logic.

1 Introduction

Automated reasoning as it is researched within the CADE and IJCAR com-
munity has always been aiming at applications; from the very beginning of AI,
deduction and reasoning papers were published at the major AI conferences. In
the last decades, however, the area split into various sub-disciplines, and unfor-
tunately the connections between the parts began to loosen in some cases. For
example, papers about common-sense reasoning or argumentation theory are
published very rarely in CADE. And vice versa, there are fewer papers on auto-
mated reasoning in general AI conferences. This paper tries to demonstrate that
it is worth investigating applications which do not allow the use of off–the–shelf
theorem provers and it discusses the challenges which have to be faced.

It is the case that first and higher order automatic reasoning nowadays have
proven to be very helpful in many application areas. Besides the classical domain
of mathematics, the most important application certainly is program and soft-
ware verification — an overview of the state of the art is contained in [3]. In
most application areas the reasoning machinery is applied in such a way that
correctness and completeness are guaranteed. In description logic applications,
the quest for decidability is even more urgent, and thus there is a goal to push
the expressiveness and to keep decidability at the same time.

In various different applications we developed and used our automated rea-
soning system Hyper, which is based on the hyper tableaux calculus with equal-
ity [2]. In most applications, it was not just the proof of the problem which
was of interest, rather it was the model (or the representation of the model)
which was returned by the prover. This model was used by the overarching soft-
ware system to perform its computation. A typical example was the Living Book

Work supported by DFG FU 263/15-1 ‘Ratiolog’.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 55–72, 2015.
DOI: 10.1007/978-3-319-21401-6 3

56 U. Furbach et al.

project, where a model of the prover run was used to construct a LATEX-file
which could be compiled as an individual book according to the user specifica-
tion [1]. One interesting challenge in this project was that on the one hand, we
had huge amounts of formulae and in particular facts, which represented small
LATEX-snippets which could be used to compose a book. On the other hand, there
was a user, waiting for the response of the Living Book system according to her
query. This aspect became much more crucial when we started using Hyper in
the question answering system LogAnswer [6]. LogAnswer is an open domain
natural language question answering system, which uses Hyper as one software
component in the process of answering a user question – and of course there is
an urgent need to answer quickly. In the following we will depict the architecture
of the question answering system and in particular we will discuss why and how
we sacrificed completeness of the reasoning mechanism.

Question answering became a prominent topic after the tremendous suc-
cess of IBM’s Watson-System in the Jeopardy quiz show. Watson succeeded in
beating two human champions in this open domain quiz under very strong time
constraints. Since then, IBM has been developing the Watson system further and
also tailoring it to various application domains [5]. The keyword which turns the
Jeopardy winning system into the basis of a business plan is cognitive computing
system. Such a system is designed to learn and to interact with people in a way
that the result could not be achieved either by humans or machine on their own.
Of course, mastering Big Data also plays an important role—IBM’s marketing
slogan is “Artificial Intelligence meets Business Intelligence”. Such a cognitive
computing system has the following properties:

– Multiple knowledge formats have to be processed: formal knowledge like
ontologies but also a broad variety of natural language sources, like textbooks,
encyclopedias, newspapers and literary works.

– The different formats of knowledge also entail the necessity to work with
different reasoning mechanisms, including information retrieval, automated
deduction in formal logic, and probabilistic reasoning.

– The different parts and modules have to interact and cooperate very closely.
– The entire processing is time critical because of the interaction with humans.
– The system must be aware of its own state and accuracy in order to rank its

outcomes.

Natural language question answering is obviously one example of cognitive
computing as depicted above. To answer natural language questions, huge text
corpora together with background knowledge given in various formats are used.
The user interaction is rather simple: The user asks a natural language question
and the system answers in natural language. In Sect. 2 natural language ques-
tion answering as it is used in the LogAnswer system is briefly introduced. In
Sect. 3 we discuss lessons learned from this and how this translates into require-
ments. The need for combining automated reasoning with findings from cognitive
psychology is depicted and discussed in Sect. 4.

Automated Reasoning in the Wild 57

2 Deep Question Answering

One characteristic of open domain question answering is that the automated rea-
soning system, in our case the first-order logic theorem prover Hyper, is only one
component of the overall system, whose parts all have to cooperate closely. The
LogAnswer-System, as described in Fig. 1, basically consists of Hyper, an infor-
mation retrieval module, of machine learning and of natural language answer
generation. These modules cooperate, and in particular the machine learning
generated decision trees are used for ranking of results. For this task, attributes
from the information retrieval are used, e.g. number of keywords found or dis-
tance of keywords, together with attributes from the Hyper proofs. In other
words, with the information retrieval procuring 200 answer candidates to be
evaluated by Hyper, we end up with up to 200 different proofs, which then have
to be compared and ranked in order to find the best one. From a proof theoretic
viewpoint we could take the length of the proof or the number of formulae used
therein into account. The problem, however, is that we rarely have a real proof.
Let us explain this with the following example where we have a question Q and
one of the 200 answer candidates C:

Q : Rudy Giuliani war Bürgermeister welcher US-Stadt?1

C : Hinter der Anklage stand der spätere Bürgermeister von New York,
Rudolph Giuliani.2

The logical representation of both, generated by the linguistic module to capture
the semantics of natural language text is:

Q =
¬attr(X1,X2) ∨ ¬attr(X1,X3) ∨ ¬sub(X2, nachname.1.1)

∨ ¬val(X2, giuliani.0) ∨ ¬sub(X3, vorname.1.1)
∨ ¬val(X3, rudy.0) ∨ ¬sub(X1, buergermeister.1.1)
∨ ¬attch(FOCUS ,X1) ∨ ¬sub(FOCUS , us-stadt.1.1)

C =
hinter(c221, c210) ∧ sub(c220, nachname.1.1) ∧ val(c220, giuliani.0)

∧ sub(c219, vorname.1.1) ∧ val(c219, rudolph.0) ∧ prop(c218, spaet.1.1)
∧ attr(c218, c220) ∧ attr(c218, c219) ∧ sub(c218, buergermeister.1.1)
∧ val(c216,new -york .0) ∧ sub(c216, name.1.1) ∧ sub(c215, stadt.1.1)
∧ attch(c215, c218) ∧ attr(c215, c216) ∧ subs(c211, stehen.1.1)
∧ loc(c211, c221) ∧ scar(c211, c218) ∧ sub(c210, anklage.1.1)

A proof attempt of this task fails because several subgoals of Q cannot be proved:
¬sub(X3, vorname.1.1) ∨ ¬val(X3, rudy.0) cannot be proved, because C only
1 Rudy Giuliani was the mayor of which city in the USA?
2 Responsible for the charges was the future mayor of New York, Rudolph Giuliani.

58 U. Furbach et al.

contains ¬sub(c219, vorname.1.1)∨¬val(c219, rudolph.0) stating that the given
name is Rudolph instead of Rudy. Instead of returning a failure the system sim-
ply skips these subgoals and tries to run the proof again with this modified goal.
A similar effect happens when Hyper tries to “identify” val(c216,new -york .0)
with sub(FOCUS , us-stadt.1.1). Without additional knowledge identifying Rudy
with Rudolph and New -York with US -Stadt this proof is not possible. Hence
the system skips part of the goal again. This second skip is different from the
first because here a literal is deleted and remaining unproven which contains the
variable FOCUS . This is a special variable whose instantiation is important to
construct an answer from the proof – it basically represents the core of the ans-
wer. When Hyper finally manages to succeed, this is only possible after two skips
of a literal, one containing the critical focus variable. The resulting proof must
therefore be judged to have a low quality for the purpose of answer generation.

This example demonstrates two aspects:

– It is not always possible to find a proof for all of the subgoals; in many cases
it is only possible to get partial proofs. This is even more dramatic if we take
into account that time constraints are very tight. For one query we have 200
answer candidates, hence 200 proof tasks, each using clauses from the query,
the answer candidate under consideration and the huge amount of background
knowledge (which will be discussed later). This is why we have a time limit
for every attempt to prove a subgoal. In most cases the failure for a subgoal
is because of such a time-out.

– The partial proofs returned by Hyper are useful, its properties, like number of
skipped literals, type of skipped literals and many more have to be used for a
ranking of proofs. This ranking can be used among other attributes to evaluate
the plausibility of the final answer. Another aspect of ranking is discussed in
the Sect. 4.

To sum up, in this application we definitely sacrifice completeness for effi-
ciency and plausibility.

3 Lessons for Automated Reasoning

In the previous section we very briefly depicted the LogAnswer system as an
example for cognitive computing; for a more detailed description we refer to [6,8].
This section summarizes some lessons and requirements for automated reasoning
which came up during this project.

It was already pointed out that completeness of the calculus was not exploited
in this application. One reason was depicted, namely the need to skip literals,
a process called relaxation, which became necessary because of time limitations.
Another reason is that the original text from Wikipedia already contains incor-
rect or contradictory knowledge. And even if the text did not contain such wrong-
ness, it could be very well introduced by the parser which reads and transforms
the textual sources. The parser can fail at correctly resolving ambiguous or com-
plex statements or peculiarities in the layout, for example at embedded figures

Automated Reasoning in the Wild 59

LogAnswer
System

Proofs

......

200 best text passages
“answer candidates”

Backgr.
KBKB

FOL

Information
Retrieval

NL Answer
Generation

ATP:
Hyper

Rudy Giuliani was the mayor
 of which city in the USA? New York!

The knowledge source is the text corpus of the German Wikipedia which contains
12+ million natural language sentences. This text corpus is processed according to
the query with usual shallow information retrieval techniques. The resulting text
pieces are ranked with machine learning techniques and the 200 best are selected.

For these answer candidates the semantic representation in first-order logic from FOL
KB—which is computed beforehand for the entire text corpus — together with

background knowledge Backgr. KB is fed into the automated reasoning system Hyper.
For these 200 proofs a ranking taking into account various properties from the proofs

is done and the 5 best are passed to the natural language answer generator.

Fig. 1. Overview of the LogAnswer-System

and tables. Besides this “incomplete embedding” of the Hyper prover there are
more challenges for using automated reasoning in the wild, which are discussed
in this section.

Background Knowledge

Answering a query on the basis of a given text is certainly only possible if
background knowledge is available. These can be very simple things like basic
knowledge about properties of temporal or spatial relations, but also much more
sophisticated knowledge given that huge ontologies could be a source for back-
ground knowledge. In LogAnswer we have tried several different approaches. To
get a feeling for the size of problems for automated theorem provers, one may
visit the TPTP [24], which is meant as a representative and challenging collec-
tion of problems. In [18] we discussed size statistics of the TPTP, showing that
most of the problems are not very large. Almost half of the problems have at
most 50 clauses or formulae; indeed, the median amount is 52. Over 85 % of the
problems have no more than 1,000 clauses or formulas, and only a few outliers
exceed 100,000 or even a million. The latter large problems are not typical for
automated theorem proving; they are included within the TPTP as a challenge—
not because of their complicated structure, but because of their abnormal size.

60 U. Furbach et al.

And indeed, ontologies which might serve as background knowledge, like Cyc,
SUMO or Yago, have amounts of formulae which are far beyond the size that can
be handled by general purpose theorem provers. For example Yago contains more
than 10 million entities (like persons, organizations, cities, etc.) and more than
120 million facts about these entities. ResearchCyc contains more than 500,000
concepts, forming an ontology in the domain of human consensus reality. Nearly
5,000,000 assertions (facts and rules) using more than 26,000 relations inter-
relate, constrain, and, in effect, (partially) define the concepts. And even the
smallest version of Cyc, OpenCyc, still contains more than 3 million formulae.

There are basically two different approaches to include background knowledge
for the reasoning task: Firstly, one can include the knowledge directly into the set
of formulae handled by the proof procedure and applying clever clause selection
criteria during the proof attempt. The second possibility is to keep the knowledge
external and query a special mechanism to reason with the knowledge base from
within the proof procedure.

Clause Selection

Technically, some forms of clause selection have been used in automated rea-
soning for decades, as a theorem prover that naively evaluates all the available
clauses quickly gets bogged down in an exploding number of inference results.
The set of support strategy [29] changed this by dividing the clauses into sets,
only some of which were allowed to act as premisses. Implementations of this
strategy, for example the given-clause algorithm of the prover Otter [17], also
implemented selection heuristics to pick the most suitable clauses from the sup-
port set first. While such methods are complete, provided they are fair, their
methods are still intended for sets that are small compared to the typical back-
ground knowledge, and they rely on all clauses being already stored in the prover
in a complex, thoroughly analyzed form. Just storing the typical background
knowledge in this manner will easily exceed hardware capacities — and this
before the actual reasoning has even started.

Thus the growth of clause sets has lead to an increased interest in incom-
plete selection methods, which forego completeness in favour of selecting a set of
manageable size at high speed, while still hoping to pick all the clauses actually
needed for a proof. A plethora of methods exist: Graph-based clustering methods
arrange symbols in a graph depending on how they occur in clauses, and then
use this graph to form clause clusters. Heuristic clustering methods use a mea-
sure of closeness between clauses for clustering. More recently machine learning
methods have been employed to learn selection criteria from known successful
proofs, such as in the systems MaLARea [25] and Flyspeck [13].

Among the most successful methods in practice is the SInE algorithm
from [11], a quick heuristic axiom selection algorithm that can operate on very
shallow axiom representations which in principle do not even have to be in clause
normal form. Hyper implements both the SInE algorithm and a slight modifica-
tion, which addresses some weaknesses of SInE. SInE’s main idea is that when
rare symbols (with respect to the entire knowledge base) occur in a clause or

Automated Reasoning in the Wild 61

axiom, then they are more relevant for this clause than its other symbols. The
algorithm is goal-oriented: It selects those clauses from a clause set containing
a rare symbol which also occurs in a given goal. This process is recursively con-
tinued with these selected symbols until a fixed point is reached. Of course, the
necessary computation for selecting rare symbols can be done beforehand in a
preprocessing step, which has the big advantage that it can be done on the pure
clause or axiom set, before any other necessary preprocessing of the prover adds
more structure, like pointers to index trees or other clause features. Thus, the
axiom representations can remain very shallow at this point, as the selection
method does not require any deeper structural axiom analysis beyond simply
counting symbols.

When testing the SInE algorithm within the LogAnswer system we found
it to be less suitable for our background knowledge than we initially expected
from its general performance. When investigating this, we made an observation
described in more detail in [18]: A knowledge base like ours, which uses a sparse
inventory of predicate symbols for a large number of axioms, tends to throw off
the rarity-based heuristics of SInE. As every predicate symbol is very common
in the knowledge base, in particular in comparison to function symbols, essential
clauses will often not get selected, as the heuristics considers them to be only
relevant for some rare function symbols which are not requested by the goal. We
will illustrate this phenomenon with an example:

Q : ← predator(x) ∧ mammal(x)
C1 : predator(wolf) ←
C2 : predator(eagle) ←
C3 : mammal(wolf) ←
C4 : mammal(cow) ←
C5 : mammal(sheep) ←
C6 : bird(eagle) ←
C7 : bird(hummingbird) ←

The SInE algorithm will select axioms via the query predicate symbols
predator/1 and mammal/1. For predator/1, it selects C1 and C2, as predator/1
is among the rarest symbols there—it occurs twice in the entire knowledge base.
However, for mammal/1 no axioms are selected, as the mammal/1 symbol
occurs three times in the knowledge base and is thus more common than the
animal names in the unit clauses. Instead, the selection of C2 triggers the selec-
tion of C6 via eagle, as both eagle and bird/1 are equally rare. Without any of
C3, C4 and C5, it is obviously impossible to prove the goal Q. A tolerance factor
would help in this case but in real-world knowledge bases, the same predicate
may be used to store thousands of facts, making their predicate so common as
to render these facts inaccessible to SInE, unless the tolerance is increased so far
that nearly the entire knowledge base is selected.

To deal with this issue, LogAnswer therefore also uses a modified version
of SInE: Firstly it distinguishes between positive and negative occurrences and,

62 U. Furbach et al.

secondly, it differentiates function and predicate symbols, such that a clause can
be selected by a predicate symbol that is more common than its function symbols
or vice versa. In the example above the Hyper axiom selection method would thus
first select C1 and C2 for predator/1 and C3, C4 and C5 for mammal/1. Unlike
with SInE there is no selection of C6 triggered by C2 via eagle, because this
symbol occurs only in positive literals in both clauses, while our selection method
requires complementary occurrences. With the selection of C1 and C3, the query
Q can now be proven. In general, our method selects more clauses than SInE
does, even though the distinction between positive and negative occurrences
helps to avoid some unnecessary selections made by SInE.

In [18] all this is described more carefully and more formal together with
an extensive evaluation. To summarize this evaluation, we just mention that
1,805 LogAnwer problems have been tested with Hyper in modes which apply
“no selection”, “SInE selection” and the modified “Hyper selection”. The main
observations are: With “no selection”, Hyper solves 95.7 % of the problems with
an average of 0.99 s; with “SInE selection”, it solves only 41.3 % but much faster,
namely in 0.01 s; and finally, with “Hyper selection”, it solves slightly more,
namely 46,6 %, but it takes 0.06 s.

Altogether clause selection improves efficiency of the proof procedure for large
knowledge bases significantly but at the same time completeness gets lost—again!

Web Services

The alternative to the method depicted above is to keep the knowledge external
and query it from within the proof procedure. Recent years have seen the emer-
gence of vast digital data sources on the web, some of which provide their con-
tent in a structured form, for example DBpedia.3 Such easily machine-readable
sources, which we will refer to as web services in this paper, have the advantage
of offering large quantites of data that in principle could be used for reasoning
without much preprocessing. At the same time, there is the problem that web
connections may be slow, and also that web services usually only work well for
very concrete queries — one has to know what one is looking for, the full data
behind the web service is never available in its entirety at once.

A first attempt to employ web services in automatic reasoning is the SPASS-
XDB system [23], where the theorem prover SPASS [28] is connected to a
number of external data sources. The authors note that the technical issues
of web services infringe upon completeness, but do not explore the matter much
beyond this.

As web services contain information that could be valuable for question
answering, naturally, in LogAnswer, we were also interested in an integration.
For Hyper we decided to include the querying mechanism not just on the techni-
cal level, but also on the calculus level, by extending the Hyper tableau inference
rule. This gave us a more thorough understanding of the theoretical possibilities
3 http://dbpedia.org/.

http://dbpedia.org/

Automated Reasoning in the Wild 63

and limitations of web services in the context of automated reasoning. The fol-
lowing description is taken from [19]. There are two viewpoints to this extension,
one is dealing with the formal representation of external sources, which allows
an analysis of the extended calculus, and the other is concerned with an efficient
implementation. For the formal representation we assume a binary predicate
ext/2 which is used to represent the relation ext(q, a) between the request term
q and the response term a. An external source is represented as a possibly infinite
set of ground ext units; e.g.

ext(weather service(weather(‘Stockholm’, 27-06-2012)), ‘cloudy’) ←
ext(weather service(temperature(‘Stockholm’, 27-06-2012)), ‘15◦C’) ←
ext(currency exchange service(eur, usd, 2.99, 27-06-2012), ‘$3.74’)←
In the formal treatment within the hyper extension rule, it is assumed that all
the positive ground units from the external source are given in a set Cext and
unsatisfiability of a clause set C is now defined as unsatisfiability with respect
to Cext. The new hyper extension step with external access works mostly like
the original, except that ext atoms from negative literals in the extending clause
can also unify with units from the external source, provided the request terms in
these atoms are ground before their respective unification. This latter condition
is necessary as web services only respond to fully instantiated queries. In [19] this
extended calculus is proven to be correct, but—of course—there is no guarantee
of completeness. The following example illustrates the usage of train schedule
webservice.

C1: at(‘CeBIT ’, ‘Hanover’) ←
C2: next train to(Event, T ime) ←

at(Event, ToCity),
ext(user location service, FromCity),
ext(next train finder service(FromCity, ToCity), T ime)

Q3: ← next train to(‘CeBIT ’, T ime)

Clause C2 uses two external sources, one for giving the user’s current location
and another for train schedules. The two occurrences of the ext predicate are
handled by the Hyper extension inference rule. Since the real data is provided by
a web service, the proof procedure has no guarantee concerning response time or
even availability of the service. Therefore, we implemented a proxy service which
handles the request called by an ext predicate. This proxy answers synchronously
to the prover, although the web service answers asynchronously. The proxy has a
cache in which previously answered requests are stored and it can answer either
with wait, failed or with the response. In case of a wait the proof procedure can
continue its derivation and can check later whether a response has been received.
The failed case is handled like a non-matching in Cext and a response is handled
as a set of unifying unit clauses.

Cooperative Answers

In natural language question answering it is often the case that no correct answer
can be given but the answer to a slightly modified question could be helpful—or,

64 U. Furbach et al.

even worse, the correct answer may not be the desired one (e.g. “Do you know
what time it is?”). This problem is approached by cooperative answering.

The following example is taken from [18] again. Consider the following ques-
tion Q together with the sentence S that was retrieved from the KB as possibly
relevant:

Q : What is the weight of the “Maus” (“Mouse”) tank?
S : At 188 tons the “Maus” is the heaviest armoured fighting vehicle ever
built.

While S does not mention any tank, tanks are a subclass of vehicles, and given
S we could use abduction to form the hypothesis that the vehicle ‘Maus’ is a
tank and then answer the question. For this, the ext predicate together with the
web service from the previous subsection can be used:

Let Cext be an external source containing positive ground ext units of the form
ext(subclass of(c), d) ←, which is the external source conforming representation
of the subclass relationship subclass of(c, d) between two concept identifiers c
and d. Consider the query Q: ← is a(‘Maus’, tank), has weight(‘Maus’, x) and
the rest of the clause set based on S, such that the first part of the query cannot
be proven. We now obtain the abductive relaxation supporting clause set Car

from C by adding two clauses as follows.

Qar: relaxed answer(rlx(‘Maus’, x1), rlx(tank, x2), rlx(‘Maus’, x3)) ←

is a(x1, x2), has weight(x3, x), ext(subclass of(‘Maus’), x1),
ext(subclass of(tank), x2), ext(subclass of(‘Maus’), x3)

Crs: ext(subclass of(x), x) ←
Instead of relaxing Q by simply skipping it as described in Sect. 2,
we can use the generalized literals in the modified query Qar, namely
is a(x1, x2) and has weight(x3, x), together with the request predicates
ext(subclass of(tank), x2) and ext(subclass of(‘Maus’), x3), which finally
results in a unit clause:

C3 : relaxed answer(rlx(‘Maus’, ‘Maus’), rlx(tank, vehicle), rlx(‘Maus’, ‘Maus’)) ←

In a system like LogAnswer this relaxed answer clause can be used to coop-
eratively answer the question “What is the weight of the ‘Maus’ tank?” with
“188t, if by ‘tank’ you mean ‘vehicle’”. The user must then judge whether this
particular relaxation was acceptable.

In addition to the result from Sect. 2, the need to give up the completeness of
the calculus, we discussed in this section that it is important to include external
sources of data and knowledge and that cooperation with the person who asked
the question is mandatory.

Automated Reasoning in the Wild 65

4 Common Sense and Cognitive Science

In the previous sections, we argued that in open domain question answering
the reasoning process has to master a lot of non-logical challenges. This is also
typical for the more general class of problems which can be subsumed under the
keyword of cognitive computing. This paradigm was depicted in the introduction
and question answering was introduced as an instance of cognitive computing.
An important feature is that humans and the system have to cooperate aiming
at solutions of tasks which could not be solved by humans or machines alone.

For such a cooperation it is important to model within the automated rea-
soning system the way humans do their reasoning. Indeed, there is the field of
common sense reasoning which aims at bringing aspects from everyday reasoning
into the field; circumscription, Bayesian reasoning and answer set programming
certainly are examples for this. More recently there is increasing interest in mod-
elling results from cognitive psychology about reasoning in logical systems.

One interesting observation is that humans are able to solve certain problems
very fast and correctly, while other problems appear to be very difficult and
error-prone, even though they have a very similar logical structure. A famous
example is the so-called Wason selection task [27], which has been investigated
in psychology since the 1960s. An extensive treatment from a logical perspective
can be found in [7,22]. Automated reasoning might be able to learn a lot from
such interdisciplinary studies. In a keynote talk at the previous CADE, Natarjan
Shankar even coined a new name for this research – Cueology [21].

Another observation from psychology is that humans use weird but useful
inference rules. Examples for this are investigated in the context of the so-called
suppression task [4]: Assume the following statements:

If she has an essay to write, she will study late in the library.
She has an essay to write.

In an experiment, persons are asked to draw a valid conclusion out of these
premisses. It turned out that 98 % of the test persons conclude correctly that
the following statement is a consequence of the above presented statements.

She will study late in the library.

This shows that in such a setting modus ponens a is very natural rule of deduc-
tion. If an additional statement is given, namely

If she has some textbooks to read, she will study late in the library.

this does not change the percentage of correct answers. Obviously this additional
conditional is understood as an alternative. And indeed, we can transform the
two conditionals

essay to write → study late

textbooks to read → study late

66 U. Furbach et al.

equivalently into a single one, where the premiss is a disjunction:

essay to write ∨ textbooks to read → study late

If, however, as an additional premiss

If the library stays open, she will study late in the library.

or as a formula library open → study late is added, only 38 % draw the correct
conclusion, although modus ponens is applicable in this case as well. People
are understanding this additional conditional not as an alternative but as an
additional premiss.

When trying to simulate human reasoning with the help of automated rea-
soning, there are different approaches: In [14] it is logic programming, in [12]
abductive logic programming is used and in [22] 3-valued logic is a favourite.
In [7] we used deontic logic for modelling different kinds of human reasoning,
e.g. the Wason selection task, but also the suppression task is modelled therein.
There also is a transformation of deontic logic into a decidable fragment of first-
order logic, which can be decided by the Hyper prover.

Standard deontic logic (SDL) is obtained from the well-known modal logic
K by adding the seriality axiom D:

D : �P → ♦P

In this logic, the �-operator is interpreted as “it is obligatory that” and the
♦ as “it is permitted that”. The ♦-operator can be defined by the following
equivalence:

♦P ≡ ¬�¬P
The additional axiom D: �P → ♦P in SDL states that if a formula has to hold
in all reachable worlds, then there exists such a world. With the deontic reading
of � and ♦ this means: Whenever the formula P ought to be true, then there
exists a world where it holds. In consequence, there is always a world which is
ideal in the sense that all the norms formulated by the ‘ought to be’-operator
hold.

SDL can be used in a natural way to describe knowledge about norms or
licenses. The use of conditionals for expressing rules which should be considered
as norms seems straightforward, but holds some subtle difficulties. If we want to
express that if P then Q is a norm, an obvious solution would be to use

�(P → Q)

which reads it is obligatory that Q holds if P holds. An alternative would be

P → �Q

meaning if P holds, it is obligatory that Q holds. In [26] there is a careful dis-
cussion which of these two possibilities should be used for conditional norms.

Automated Reasoning in the Wild 67

The first one has severe disadvantages. The most obvious disadvantage is, that
P together with �(P → Q) does not imply �Q. This is why we prefer the latter
method, where the � operator is in the conclusion of the conditional. For a more
detailed discussion of such aspects we refer to [9].

Besides understanding and interacting with human-like reasoning mecha-
nisms it is also important that the reasoning system knows about the relevance
of its results. In the previous sections it was already demonstrated that different
kinds of relaxation during the derivation gives us an attribute for computing rel-
evance (more relaxations = less relevant). As an important candidate mechanism
for further refinements we also considered defeasible reasoning. Certain knowl-
edge is assumed to be defeasible, while other parts are strict knowledge which is
specified by contingent facts (e.g. “Tom is an emu”) and general rules holding in
all possible worlds without exception (e.g. “emus do not fly”). Strict knowledge
is always preferred to knowledge depending also on defeasible rules (e.g. “birds
normally fly”). Hence, it is possible to compare two or more different derivations
with respect to the clauses and rules, which are used. In [8] this approach is dis-
cussed in the context of comparing proofs during question answering. Deontic
Logic turns out to be helpful also for this because rules expressing norms can
be seen as defeasible rules and such the entire approach of defeasible reasoning
could be applicable for normative reasoning as well.

A Benchmark Suite

Most sub-disciplines of automated reasoning use more or less well-established
benchmark suits for evaluating concepts and systems. In some areas there are
even competitions which directly allow comparison of systems. In common-sense
reasoning there also is a certain effort for establishing benchmarks; there is the
Choice of Plausible Alternatives (COPA) in [20] or the Winograd Schema Chal-
lenge from [15]. Both benchmark sets are based on natural language, such that
they are not easily accessible by most common-sense reasoning systems. This is
different in the Triangle Choice of Plausible Alternatives (Triangle-COPA) [16],
which is a set of currently 100 problems for common-sense reasoning, which are
presented not only in natural language but also as a logical description.

The setting of the problems in Triangle-COPA resembles the setting in the
famous Heider-Simmel film. Figure 2 depicts a screenshot4 from the film which
was shown to students. After the presentation of the film, the students were
asked to narrate what they observed in the film. Nearly all students offered a
story where they interpreted the geometrical shapes as persons interacting with
each other. The fact that humans interpret even such a restricted setting based
on common-sense theories is reflected in the Triangle-COPA benchmarks as well.

Each problem consists of a logical description of a situation and a question.
Furthermore, two possible answers are given in logic. The task is to determine
which of the two answers is the correct one. Both the situation description as
4 Screenshot available at: http://orphanfilmsymposium.blogspot.com/2008/05/

national-science-foundation-grants.html (retrieved: 21st of april 2015).

http://orphanfilmsymposium.blogspot.com/2008/05/national-science-foundation-grants.html
http://orphanfilmsymposium.blogspot.com/2008/05/national-science-foundation-grants.html

68 U. Furbach et al.

Fig. 2. In 1944, Heider and Simmel conducted a famous study [10], where they pre-
sented a 90 sec film to undergrad students. This film showed simple geometric shapes,
a little triange (lt), a big triangle (bt) and a circle (c), moving in and around a rectangle
with a little part which opened and closed.

well as the possible answers are formalized in first-order logic using a controlled
vocabulary. Therefore, natural language processing is not necessary to solve the
problems. In order to facilitate the focus on automated common-sense reasoning,
the domain of the problems is very restricted.

Like in the setting used in the Heider-Simmel film, the Triangle-COPA prob-
lems describe a sequence of interactions between a circle, a big triangle, a little
triangle, a box, and a door. This sequence is described with the help of a fixed,
rather restricted vocabulary. This vocabulary consists of 1-character actions like
shake or run, 2-character actions like approach, spacial relations like enter , rela-
tions for assertions about time and negations, abstract actions like attack , mental
actions like agree, emotions like afraid and social relationships like friend . Fur-
thermore, the two possible answers to the question corresponding to the inter-
pretations of the sequence is given in the same vocabulary. The question is not
part of the formalization. The following set of facts gives an example for such a
sequence given in the Triangle-COPA vocabulary:

friend(e1, bt, lt).
enter(e2, bt).
approach(e3, c, lt).
shake(e4, lt).
attack(e5, c, lt).
leave(e6, bt).
seq(e1, e2, e3, e4, e5, e6, e7).

It describes the situation, in which the little triangle and the big triangle are
friends. The big triangle enters the room and sees the circle approaching the
little triangle. The little triangle starts shaking and it is attacked by the circle.
In the next event, the big triangle leaves the room.

Automated Reasoning in the Wild 69

A possible question would be: How does the little triangle feel? Possible
answers, given as facts in the Triangle-COPA vocabulary, could be:

1. dissapointed(e7 , lt).
2. excited(e7 , lt).

Many emotions in everyday life can be explained with unmet expectations.
The husband not bringing flowers on the wedding anniversary and the friend
arriving delayed to a date are only two examples where unmet expectations
cause negative feelings. The example given above can explained with the help of
unmet expectations as well. The big triangle and the little triangle are friends.
The circle attacks the little triangle. Normally one should defend a friend who
is attacked by someone. This is why the little triangle expects the big triangle
to hurry to its defence. In the described situation, however, the big triangle
does not defend its friend but leaves the room. Therefore, the little triangle is
disappointed.

It is possible to model unmet expectations with the help of deontic logic.
Normative statements are used to model expected behavior. In our example, the
fact that one should defend friends if they are attacked can be modelled by a
set of deontic logic formulae. This set of deontic formula is the set of ground
instances of the following formula:

friend(E,X, Y) ∧ attack(E′, Z,X) ∧ after(E,E′) → �defend(E′, Y,X). (1)

where after is a transitive predicate, stating that one event occurs after another.
after(e1 , e2) means that event e2 occurs after e1. Since formula (1) contains
variables, it is not a SDL formula. However, we use it as an abbreviation for its
set of ground instances. The ground instance interesting for our example is:

friend(e1, bt, lt) ∧ attack(e5, c, lt) ∧ after(e1, e5) → �defend(e5, bt, lt). (2)

With the help of formula (2), it is possible to derive that the big triangle ought
to defend the little triangle in event e5.

Ground instances of the following formula can be used to deduce that some-
one is disappointed if he ought to be defended by someone but in fact is not
defended:5

(�defend(E ,X ,Y) ∧
∧

∀E′
after(E,E′)

¬defend(E ′,X ,Y)) → (
∧

∀E′′
after(E,E′′)

disappointed(E′′, Y)).

(3)

5 We are aware that this formalization is too strong since it causes someone only
to be disappointed if he is never defended in the future. However, in the Triangle-
COPA, the future only consists of a very small number of events and therefore this
formalization is sufficient for our purposes.

70 U. Furbach et al.

The negation sign occurring in the formula is negation as failure. A ground
instance interesting for our example is:

(�defend(e5 , bt , lt) ∧ ¬defend(e6 , bt , lt) ∧ ¬defend(e7 , bt , lt)) →
(disappointed(e6, lt) ∧ disappointed(e7, lt)). (4)

With the help of this formula, it is possible to deduce that the little triangle
is disappointed in e6 and e7. Referring to the question “How does the little
triangle feel?” formulated before, we can use the derived disappointed(e7, lt) to
show that the first alternative given is the correct one. First experiments using
this approach with the Hyper theorem prover yield promising results. Of course,
it is not desirable to formalize all rules manually. Rules like (3) can be generated
automatically by formalizing a metarule stating that: whenever x and y are
friends and y is obliged to do something for x but does not act according to
his obligation, x is disappointed. This metarule can then be instantiated by the
respective obligation. Furthermore, like in the case of deep question answering, it
is desirable to integrate background knowledge. Ontologies like OpenCyc could
be used to include information about the different emotions and how they are
connected.

5 Conclusion

This paper discusses the use of first order automated reasoning in question
answering and cognitive computing. We demonstrated that a first challenge faced
therein is to give up completeness property of the proof procedure. This is neces-
sary because of query relaxation which needs to be done in order to get results.
We furthermore demonstrated how to connect a reasoning system to web services
and to large knowledge bases, which also enables cooperative question answering.
In a second part a bridge to human reasoning as it is investigated in cognitive
psychology is constructed by using standard deontic logic. We briefly gave exam-
ples for experiments from cognitive science and we demonstrated how deontic
logic can be used to tackle benchmarks from common-sense reasoning. All this
was done in a rather informal manner, trying to open areas of research instead
of already offering complete solutions.

References

1. Baumgartner, P., Furbach, U., Groß-Hardt, M., Sinner, A.: Living book -
deduction, slicing, and interaction. J. Autom. Reasoning 32(3), 259–286 (2004)

2. Baumgartner, P., Furbach, U., Pelzer, B.: Hyper tableaux with equality. In:
Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 492–507. Springer,
Heidelberg (2007)

3. Beckert, B., Hähnle, R.: Reasoning and verification: state of the art and current
trends. IEEE Intell. Syst. 29(1), 20–29 (2014)

4. Byrne, R.M.J.: Suppressing valid inferences with conditionals. Cognition 31(1),
61–83 (1989)

Automated Reasoning in the Wild 71

5. Ferrucci, D., Levas, A., Bagchi, S., Gondek, D., Mueller, E.T.: Watson: beyond
jeopardy!. Artif. Intell. 199–200, 93–105 (2013)

6. Furbach, U., Glöckner, I., Pelzer, B.: An application of automated reasoning in
natural language question answering. AI Commun. 23(2–3), 241–265 (2010)

7. Furbach, U., Schon, C.: Deontic logic for human reasoning. In: Eiter, T.,
Strass, H., Truszczyński, M., Woltran, S. (eds.) Advances in Knowledge Repre-
sentation. LNCS, vol. 9060, pp. 63–80. Springer, Heidelberg (2015)

8. Furbach, U., Schon, C., Stolzenburg, F., Weis, K.-H., Wirth, C.-P.: The RatioLog
Project - Rational Extensions of Logical Reasoning. ArXiv e-prints, March 2015

9. Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van der Torre, L. (eds.):
Handbook of Deontic Logic and Normative Systems. College Publications, London
(2013)

10. Heider, F., Simmel, M.: An experimental study of apparent behavior. Am. J. Psy-
chol. 57(2), 243–259 (1944)

11. Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In:
Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803,
pp. 299–314. Springer, Heidelberg (2011)

12. Hölldobler, S., Philipp, T., Wernhard, C.: An abductive model for human reason-
ing. In: AAAI Spring Symposium: Logical Formalizations of Commonsense Rea-
soning (2011)

13. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J.
Autom. Reasoning 53(2), 173–213 (2014)

14. Kowalski, R.: Computational Logic and Human Thinking: How to be Artificially
Intelligent. Cambridge University Press, Cambridge (2011)

15. Levesque, H.J.: The winograd schema challenge. In: LogicalFormalizations of Com-
monsense Reasoning, Papers from the 2011 AAAI Spring Symposium, Technical
Report SS-11-06, Stanford, California, USA, 21–23 March 2011. AAAI (2011)

16. Maslan, N., Roemmele, M., Gordon, A.S.: One hundred challenge problems for log-
ical formalizations of commonsense psychology. In: Twelfth International Sympo-
sium on Logical Formalizations of Commonsense Reasoning, Stanford, CA (2015)

17. McCune, W.: OTTER 3.3 Reference Manual. Argonne National Laboratory,
Argonne, Illinois (2003)

18. Pelzer, B.: Automated Reasoning Embedded in Question Answering. Ph.D. thesis,
University of Koblenz (2013)

19. Pelzer, B.: Automated theorem proving with web services. In: Timm, I.J.,
Thimm, M. (eds.) KI 2013. LNCS, vol. 8077, pp. 152–163. Springer, Heidelberg
(2013)

20. Roemmele, M., Bejan, C.A., Gordon, A.S.: Choice of plausible alternatives: an
evaluation of commonsense causal reasoning. In: Logical Formalizations of Com-
monsense Reasoning,Papers from the 2011 AAAI Spring Symposium, Technical
Report SS-11-06, Stanford, California, USA, 21–23 March 2011. AAAI (2011)

21. Shankar, N.: Automated reasoning, fast and slow. In: Bonacina, M.P. (ed.) CADE
2013. LNCS, vol. 7898, pp. 145–161. Springer, Heidelberg (2013)

22. Stenning, K., Van Lambalgen, M.: Human Reasoning and Cognitive Science. MIT
Press, Cambridge (2008)

23. Suda, M., Sutcliffe, G., Wischnewski, P., Lamotte-Schubert, M., de Melo, G.:
External sources of axioms in automated theorem proving. In: Mertsching, B.,
Hund, M., Aziz, Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 281–288. Springer,
Heidelberg (2009)

24. Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF
and CNF parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)

72 U. Furbach et al.

25. Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: Malarea SG1 - machine learner
for automated reasoning with semantic guidance. In: Armando, A., Baumgartner,
P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 441–456. Springer,
Heidelberg (2008)

26. von Kutschera, F.: Einführung in die Logik der Normen. Werte und
Entscheidungen, Alber (1973)

27. Wason, P.C.: Reasoning about a rule. Q. J. Exp. Psychol. 20(3), 273–281 (1968)
28. Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System

sescription: spass version 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 514–520. Springer, Heidelberg (2007)

29. Wos, L., Overbeek, R., Lusk, E., Boyle, J.: Automated Reasoning: Introduction
and Applications. Prentice-Hall, Englewood Cliffs (1984)

Automating Leibniz’s Theory of Concepts

Jesse Alama1, Paul E. Oppenheimer2, and Edward N. Zalta2(B)

1 Vienna University of Technology, Vienna, Austria
alama@logic.at

2 Stanford University, Stanford, USA
{paul.oppenheimer,zalta}@stanford.edu

Abstract. Our computational metaphysics group describes its use of
automated reasoning tools to study Leibniz’s theory of concepts. We
start with a reconstruction of Leibniz’s theory within the theory of
abstract objects (henceforth ‘object theory’). Leibniz’s theory of con-
cepts, under this reconstruction, has a non-modal algebra of concepts,
a concept-containment theory of truth, and a modal metaphysics of
complete individual concepts. We show how the object-theoretic recon-
struction of these components of Leibniz’s theory can be represented for
investigation by means of automated theorem provers and finite model
builders. The fundamental theorem of Leibniz’s theory is derived using
these tools.

Keywords: Computational philosophy · Theory exploration · Leibniz ·
Theory of concepts · Automated reasoning · Theorem prover · Abstract
objects · Containment theory of truth · Modal metaphysics · Com-
plete individual concepts · Finite model · Modal logic · Model theory ·
Representation · Higher-order logic

1 Introduction

The computational metaphysics group at Stanford University’s Metaphysics
Research Lab has been engaged in a project of implementing object theory,
i.e., the axiomatic theory of abstract objects [19,20], in a first-order (with iden-
tity) automated reasoning environment. The first efforts [4] established that
Prover9 could be used to represent and derive the theorems that govern pos-
sible worlds [22] and Platonic Forms [17]. Our focus over the past several years
has been to represent and derive the theorems in [24], a paper that shows how
to apply object theory to derive Leibniz’s non-modal ‘calculus’ of concepts, his
containment theory of truth, and his modal metaphysics of ‘complete individual
concepts’ (defined below). Leibniz’s theory of concepts is still interesting today,
for several reasons. The calculus of concepts was one of the first axiomatizations
of semi-lattices; his containment theory of truth anticipated work on general-
ized quantifiers [12]; and the modal metaphysics of complete individual concepts
shows how to reconcile Lewis’s ‘counterpart’ interpretation of quantified modal
logic [11] with the standard (Kripke) interpretation [8]. Though these features
c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 73–97, 2015.
DOI: 10.1007/978-3-319-21401-6 4

74 J. Alama et al.

were explored in detail in [24], we rehearse the basics below, when we sketch the
background of our work with automated reasoning tools.

In this paper, we describe not only our results of using E, Vampire, and
Paradox to automate the theory of concepts, but also the obstacles, insights,
and other interesting issues that arose during the course of our investigations.
The use of automated deduction tools allowed us to find out interesting things
about representing richer logics in FOL= (first-order logic with identity), and
about the reasoning needed to derive Leibniz’s results. In what follows, we focus
on the core principles of Leibniz’s theory of concepts, and we make no attempt
to derive or explain the many other ambitious theories Leibniz attempted to
develop (such as his theodicy for explaining the presence of evil, or his plan for
world peace by dissolving the ideological case for religious wars).

2 Overview of Object Theory and Two Applications

2.1 The Basics of Object Theory

Object theory [19,20,22,24] is an axiom system formalized in a syntactically
second-order modal predicate calculus in which there is a primitive 1-place pred-
icate E! (‘concreteness’). (Identity is not primitive; see below). The system uses
complex terms of two kinds, namely, definite descriptions and λ-expressions,
where the latter denote relations rather than functions. The distinguishing fea-
ture of object theory is that the language uses two kinds of atomic formulas:

– Fnx1 . . . xn (for n ≥ 0)
These are the atomic (‘exemplification’) formulas of standard FOL. When
n ≥ 1, these are read as “x1, . . . , xn exemplify Fn” and when n = 0, as
“F 0 is true”.

– xF 1

These are new, monadic atomic (‘encoding’) formulas. These are read as
“x encodes F 1” and we henceforth drop the superscript on the F 1.

In what follows, we’ll often substitute the variables x, y, z, . . . for x1, x2, . . . and
say that they range over objects or individuals, while the variables Fn, Gn, . . .
range over n-place relations (recall that the language of object theory is second-
order).

Encoding formulas are best explained by first introducing two defined pred-
icates used in object theory: being ordinary (‘O!’) and being abstract (‘A!’). An
ordinary object is one that is possibly concrete (i.e., O!x =df ♦E!x), whereas
an abstract object is one that couldn’t be concrete (i.e., A!x =df ¬♦E!x). Note
that these definitions partition the domain of objects.

Intuitively, ordinary objects are the kinds of things we might encounter in
experience. They only exemplify their properties, and the standard formulas of
the classical predicate calculus are sufficient to represent claims about which
properties and relations ordinary objects exemplify or stand in.

But abstract objects aren’t given in experience; nor is there a Platonic heaven
out there containing abstract objects waiting to be discovered. Instead, abstract

Automating Leibniz’s Theory of Concepts 75

objects are identified by the properties by which we conceive of them. For example,
mathematical objects are abstract objects; the only way we can get information
about them is by way of our theories of them. We use encoding formulas to indi-
cate the properties F by which we theoretically conceive of an abstract object x.
For example, where κ is a uniquely defined object term in some mathematical
theory T , object theory identifies κ as the abstract object that encodes all and
only the (mathematical) properties attributed to κ in T (either by assumption or
by proof). Though mathematical objects are identified by their encoded proper-
ties, they also exemplify non-mathematical properties. So whereas the number 0
of Peano Number Theory encodes such mathematical properties as [λx x < 1],
[λx ∀y(y + x = y)], etc., it exemplifies non-mathematical properties, such as being
thought about bymathematician z, being abstract, not being a building, etc. The first
of the latter group is contingently exemplified by 0 (depending on the mathemati-
cian), while the second and third are necessarily exemplified by 0. However, the
properties encoded by 0 constitute 0, since they are even more important to the
identity of 0 than its necessarily exemplified properties.

We mentioned that there are two kinds of complex terms, definite descrip-
tions and λ-expressions. Descriptions denote individuals, while the n-place λ-
expressions denote n-place relations. Definite descriptions have the form ıxφ,
and are to be read: the x in fact such that φ. In the modal contexts of object
theory, these terms are interpreted rigidly (i.e., semantically, ıxφ denotes the
unique object that satisfies φ, if there is one, at the actual world of the model). λ-
expressions have the form [λx1 . . . xnφ]. The principles of α-, β-, and η-conversion
for λ-expressions are assumed as axioms, though β-conversion is taken to be an
equivalence and not an equation. It is important to note that λ-expressions obey
the restriction that φ have no encoding subformulas. This is to avoid a Russell-
style paradox.1 As previously mentioned, λ-expressions are to be understood
relationally in object theory, not functionally. That is, [λx1 . . . xn φ] doesn’t
denote an n-ary function, but rather an n-place relation, i.e., an element of a
primitive domain of n-place relations.2

1 If we were to allow a predicate of the form [λx ∃F (xF & ¬Fx)], then an abstract
object that encodes such a property would exemplify the property if and only if it
doesn’t. The paradox is avoided by banishing encoding from λ-expressions.

2 Note that since λ-expressions may not contain encoding subformulas, the comprehen-
sion principle for relations derivable from β-Conversion becomes similarly restricted.
β-Conversion asserts that [λx1 . . . xn φ]y1 . . . yn ≡ φy1,...,yn

x1,...,xn
. We can universally gen-

eralize on each of the yis to obtain:

∀y1 . . . ∀yn([λx1 . . . xn φ]y1 . . . yn ≡ φy1,...,yn
x1,...,xn

)

Then we apply the Rule of Necessitation and existential generalization to obtain:

∃Fn�∀y1 . . . ∀yn(Fny1 . . . yn ≡ φ), provided Fn doesn’t occur free in φ and φ has
no encoding subformulas.

This comprehension principle doesn’t guarantee that there are any relations definable
in terms of encoding predications.

76 J. Alama et al.

The two main principles governing encoding predications and abstract
objects are a comprehension principle and an identity principle for objects. The
comprehension principle asserts: for any formula φ that places a condition on
properties, there is an abstract object that encodes all and only the properties
F satisfying (in Tarski’s sense) φ. The comprehension principle is formalized as
a schema:

∃x(A!x & ∀F (xF ≡ φ)), for any formula φ in which x doesn’t occur free

Here are some instances:

∃x(A!x & ∀F (xF ≡ Fa))
∃x(A!x & ∀F (xF ≡ F = R ∨ F = S))
∃x(A!x & ∀F (xF ≡ In Peano Number Theory, F0))

These respectively assert the existence of an abstract object that: (a) encodes
just the properties exemplified by object a; (b) encodes just the properties R
and S, and (c) encodes just the properties attributed to 0 in Peano Number
Theory.3

Identity is not primitive in object theory. Rather, it is defined for both objects
and relations. Since the definition of relation identity doesn’t play a role in what
follows, we discuss only the definition of identity for objects. We define: x = y iff
either x and y are ordinary objects that necessarily exemplify the same properties
or x and y are abstract objects that necessarily encode the same properties, i.e.,

x = y =df (O!x & O!y & �∀F (Fx ≡ Fy)) ∨ (A!x & A!y & �∀F (xF ≡ yF))

Thus, if we know that objects x and y are abstract, we have to show that they
necessarily encode the same properties to show that they are identical. With
identity for objects and relations defined, object theory adds an axiom schema
for substitution of identicals.

In addition to the above principles, one other principle is added to the stan-
dard principles of second-order quantified modal logic, namely, the claim that if
x possibly encodes a property F it necessarily encodes F :

♦xF → �xF

Thus, encoding predications are not relative to any circumstance; under the
standard interpretation of the modal operators, this principle guarantees that
if an encoding statement is true at any possible world, it is true at every pos-
sible world. By contrast, the truth of exemplification statements (and complex
statements containing them) can vary from world to world.
3 The informal construction “In Peano Number Theory, F0” can be analyzed in object

theory as well. A theory is analyzed as an abstract object that encodes propositions
p by encoding the propositional properties of the form [λy p] (read this predicate as:
being such that p). Then we can define “In theory T , F0” as T [λy F0], i.e., as T
encodes the property being such that 0 exemplifies F. This analysis applies to any
other mathematical individual κ, mathematical theory T , and constructions of the
form “In theory T , Fκ”. For a full discussion of the analysis of mathematics within
object theory, see [13].

Automating Leibniz’s Theory of Concepts 77

2.2 Application to Possible Worlds

Object theory has been applied in a variety of ways. Our present focus is on
Leibniz’s theory of concepts, which includes a non-modal calculus of concepts,
the concept containment theory of truth, and a modal metaphysics of concepts.
However, to represent the latter, we must explain how possible worlds are ana-
lyzed in object theory. Though possible worlds (since [7]) are usually taken as
semantically-primitive entities and used to formulate truth conditions for modal
statements (as we did above, in explaining the axiom ♦xF → �xF), object the-
ory takes a different approach. Though the language of object theory includes
modal operators, it uses these operators to define possible worlds as abstract
objects of a certain kind and derive the main principles governing worlds from
object-theoretic axioms. This, it is claimed, justifies the use of possible worlds
when doing modal semantics (including in the modal semantics of object theory).
So we will often contrast the possible worlds definable in object theory with the
‘semantically primitive possible worlds’ used in standard modal semantics that
we sometimes reference. In what follows, we first rehearse the object-theoretic
analysis of possible worlds and then rehearse the theory of Leibnizian concepts.

Possible worlds are defined as situations, where a situation is any abstract
object that encodes only propositional properties of the form [λy p]:

Situation(x) =df A!x & ∀F (xF → ∃p(F = [λy p]))

When x is a situation, we say that x makes proposition p true (or p is true in x),
written x |= p, just in case x encodes being such that p:

x |= p =df Situation(x) & x[λy p]

Then, we define a possible world to be any situation that might be such that it
encodes all and only the true propositions [22]:

World(x) =df Situation(x) & ♦∀p((x |= p) ≡ p)

If we then say that an object x is maximal just in case x is a situation and, for
every proposition p, either p is true in x or ¬p is true in x, i.e.,

Maximal(x) =df Situation(x) & ∀p((x |= p) ∨ (x |= ¬p))

then it follows that every possible world is maximal:

∀x(World(x) → Maximal(x))

Moreover, let us say that an object x is actual just in case x is a situation such
that every proposition true in x is true, i.e.,

Actual(x) =df Situation(x) & ∀p((x |= p) → p)

It then follows that there is a unique actual world. That is, where ∃!xφ asserts
that there is a unique x such that φ:

∃!x(World(x) & Actual(x))

78 J. Alama et al.

The fundamental theorems of world theory are also provable, namely, that p is
necessarily true if and only if p is true in all possible worlds, and p is possibly
true if and only if p is true in some possible world [22]:

�p ≡ ∀x(World(x) → x |= p)
♦p ≡ ∃x(World(x) & x |= p)

These theorems play an important role in the analysis of Leibniz’s modal meta-
physics of concepts, in which he asserts that if an object x exemplifies a property
F but might not have, then not only does the individual concept of x contain
the general concept of F , but there is a counterpart of the concept of x that
doesn’t contain the concept of F and that appears at some other possible world.
One of our main goals is to represent and prove this claim within an automated
reasoning environment.

2.3 Application to Leibniz’s Theory of Concepts

As mentioned previously on several occasions, Leibniz’s theory of concepts has
three components: a non-modal calculus of concepts, the containment theory of
truth and a modal metaphysics of concepts. We can integrate and unify all three
facets of Leibniz’s work by deriving the main theorems of each within object
theory. In the remainder of this section, we shall use the variables x, y, z as
restricted variables that range just over abstract objects.

Leibniz’s Non-modal Calculus of Concepts. The first step of this integra-
tion is to recognize that abstract objects serve as a good analysis of Leibnizian
concepts generally, so that we may define:

x is a Leibnizian concept (‘C!x’) =df A!x

Since Leibnizian concepts are abstract objects, we immediately obtain the first
three theorems of Leibniz’s [9], namely, that identity for concepts is reflexive,
symmetric, and transitive. This is derivable from the definition of identity for
abstract objects (see Sect. 2.1).4

The two final key definitions that yield, as theorems, the axioms of Leibniz’s
calculus of concepts [9] are: concept summation (⊕) and concept inclusion ():

x⊕y =df ız(C!z & ∀F (zF ≡ xF ∨ yF))
x 	 y =df ∀F (xF → yF)

From these two definitions, it follows that ⊕ is an idempotent, commutative and
associative operation on the concepts, and that 	 is a reflexive, anti-symmetric

4 It is an easy logical theorem that �∀F (xF ≡ xF). But then, when x is a concept,
it is abstract, and so it follows from the definition of identity that x = x. Using
the principle of substitution of identicals, we can then derive the symmetry and
transitivity of identity for abstract objects.

Automating Leibniz’s Theory of Concepts 79

and transitive condition [24].5 Thus, if we think of concept summation as a join
operation, Leibniz’s ‘calculus’ of concepts is in effect a semi-lattice. Though we
have not pursued the matter, the semi-lattice can be extended to a lattice by
introducing a meet operation x⊗y, i.e., concept multiplication, by replacing the
disjunction sign in the definition of x⊕y with an ampersand.

Here are some other key theorems derivable from the above theory of concepts
(see [24], Theorems 25–27):

x 	 y ≡ ∃z(x⊕z = y)
x 	 y ≡ x⊕y = y
x⊕y = y ≡ ∃z(x⊕z = y)

Finally, Leibniz’s notion of concept containment is just the converse of concept
inclusion:

x � y =df y 	 x

Thus, one can prove theorems analogous to the above that are stated in terms
of concept containment instead of concept inclusion.

We have not yet brought automated reasoning tools to bear on the above
object-theoretic reconstruction of Leibniz’s algebra of concepts. Instead, the
focus of our investigations was on the work described in the remainder of this
section. However, in a separate project using Prover9, we verified versions of
the above theorems in which ⊕ and 	 were taken as primitive and axiomatized
instead of defined as in object theory.6

Leibniz’s Containment Theory of Truth. Though Leibnizian concepts are
identified generally as abstract objects, special kinds of Leibnizian concepts can
be defined. For example, there are general concepts of properties (e.g., the con-
cept of being a king, etc.) and concepts of individuals (e.g., the concept of
Alexander the Great). Both play a role in Leibniz’s containment theory of truth.

First, we define “the concept of F” (‘cF ’) as follows:

cF =df ıx(C!x & ∀G(xG ≡ F ⇒G))

In this definition, F ⇒ G is itself defined as necessary implication:
�∀x(Fx → Gx). Thus, cF is the concept that encodes exactly the properties
that are necessarily implied by the property F .

Next, we define ‘the concept of individual u’ (‘cu’), where u is a restricted
variable ranging over ordinary individuals, as follows:

cu =df ıx(C!x & ∀F (xF ≡ Fu))

5 Note we say condition here rather than relation because the definition of � has
encoding subformulas and, as such, � is not guaranteed to be a relation.

6 See http://mally.stanford.edu/cm/leibniz/ for a description of this work and links
to all the input and output files.

http://mally.stanford.edu/cm/leibniz/

80 J. Alama et al.

For example, the concept of Alexander (ca) is the concept that encodes exactly
the properties Alexander (a) exemplifies. Note that in this example, Alexander
gets correlated with a concept that contains his properties. If we restate this
using the concepts of simple set theory: the proper name ‘a’ is correlated with
a set of properties. This recalls the treatment of proper names as generalized
quantifiers [12].7

The definitions of cF and cu put us into a position to represent Leibniz’s
containment theory of truth. Leibniz asserts that a simple predication ‘Alexander
is king’ (‘Ka’) is to be analyzed as: the concept Alexander contains the concept
of being a king.8 Where cK is the concept of being a king and ca is the concept
of Alexander, we can represent Leibniz’s analysis as:

ca � cK

The equivalence of Ka and Leibniz’s analysis ca � cK is derivable in object the-
ory, since it is a general theorem that for any ordinary object u and property F :

Theorem 38, [24]:

Fu ≡ cu � cF

It is important to note that Theorem 38 is an example of a theorem that isn’t a
necessary truth. The reason is easy to see if we take possible worlds as seman-
tically primitive and speak in terms of the classical semantics of modal logic:
the formula Fu can change in truth value from world to world, but the formula
cu � cF uses a term, cu, that is rigidly defined in terms of what is true at the
actual world. cu encodes all and only the properties that u in fact exemplifies.
Hence, if u is in fact F (i.e., Fu is true at the actual world w0) and there is a
world w1 where u fails to be F , then the left side of Theorem 38 is false at w1

7 Indeed, if we define ‘the concept of every person’ as the concept that encodes exactly
the properties F such that every person exemplifies F , then the containment theory
of truth described below will offer a unified ‘subject-predicate’ analysis of the sen-
tences ‘Alexander is happy’ and ‘Every person is happy’. On the containment theory
of truth, the former is true because the concept of Alexander contains the concept
of being happy, while the latter is true because the concept of every person contains
the concept of being happy.

8 Leibniz asserts his containment theory of truth in the following passage taken from
the translation in [15], 18–19 (the source is [3], 51):

...every true universal affirmative categorical proposition simply shows some
connection between predicate and subject (a direct connexion, which is what
is always meant here). This connexion is, that the predicate is said to be in the
subject, or to be contained in the subject; either absolutely and regarded in
itself, or at any rate, in some instance; i.e., that the subject is said to contain
the predicate in a stated fashion. This is to say that the concept of the subject,
either in itself or with some addition, involves the concept of the predicate.

The translator titled the fragment from which this passage is taken as ‘Elements of
a Calculus’.

Automating Leibniz’s Theory of Concepts 81

while the right side of Theorem 38 is true at w1 (cu is the object that encodes all
the properties that u exemplifies at w0, and since u does in fact exemplify F at
w0, one can show that cu contains cF).9 The fact that the proof of Theorem 38
rests on a contingency actually works in Leibniz’s favor: he introduced the notion
of a hypothetical necessity in response to (his contemporary) Antoine Arnauld,
who charged that he mistakenly analyzed the contingent claim Ka in terms of
the necessary claim ca � cK . Theorem 38 is indeed a kind of hypothetical neces-
sity, if we understood that to mean that its proof depends on a contingency and
that we can detach and then prove ca � cK only given the contingent Ka as a
premise.

The above facts about Theorem 38 can be traced back to an interesting
feature of object theory, namely, that rigid definite descriptions are governed by
a logical axiom that fails to be a necessary truth.10 When one includes such a
rigidifying operator that is semantically interpreted with respect to the facts at
the actual world of the model, then one must stipulate: the Rule of Necessitation
may not be applied to any axiom governing the operator having the form of a
conditional in which a (potentially contingent) formula φ appears on one side
of the conditional in a non-rigid context and appears on the other side of the
conditional in a rigid context. Nor can the Rule of Necessitation be allowed
to apply to any theorem derived from such axioms. Note that the actuality
operator is similar to the rigid definite description operator in this regard; for a
full discussion of logical truths that aren’t necessary, see [21]. As we shall see,
this issue won’t surface when we represent definite descriptions, since primitive
descriptions will be eliminated under the standard Russellian analysis.

Leibniz’s Modal Metaphysics of Concepts. Finally, we reach the most
compelling ideas in Leibniz’s metaphysics, in which he uses the containment
theory of truth to analyze modal predications and, in the course of doing so,
relates concepts of individuals and possible worlds. In various passages, Leibniz
talks about possible individuals.11 However, it is generally thought that Leibniz’s
9 It is interesting to note that for some properties G, the proof that cu encodes G

will rest on a contingency (namely, when G is a property contingently exemplified
by u), but the proof that cF encodes G doesn’t. That’s because it is provable that
if F ⇒ G then �(F ⇒ G).

10 Instead of stating this logical axiom in its full generality, here is an example of an
instance:

FıxGx ≡ ∃x(Gx & ∀y(Gy → y=x) & Fx)

This is a version of Russell’s analysis of definite description, first described in [18].
If the description ıxGx rigidly denotes the object that is uniquely G at the actual
world (assuming there is one), then the above principle will fail to be necessarily
true if there is a unique G at the actual world that is F at a world w1, but where
nothing is G at w1 or where two distinct things are G.

11 See, for example, the Theodicy ([10], 371 = [5], vi, 363), where he talks about the
‘several Sextuses’, and in a letter to Hessen-Rheinfels, where he talks about the
‘many possible Adams’ ([16], 51 = [5], ii, 20).

82 J. Alama et al.

containment theory of truth was designed to replace talk of individuals having
properties with talk of containment holding between concepts. Consequently,
most commentators believe that we should interpret Leibniz’s references to pos-
sible individuals as references to concepts of individuals. Leibniz does after all
say that a concept of an individual may appear at a (unique) possible world.

To represent these ideas, we continue to use u as a restricted variable over
ordinary individuals and use w as a restricted variable ranging over possible
worlds (i.e., the worlds defined in an Sect. 2.2). We then define:

RealizesAt(u, x, w) =df ∀F ((w |=Fu) ≡ xF)
AppearsAt(x,w) =df ∃uRealizesAt(u, x, w)
IndividualConcept(x) =df ∃wAppearsAt(x,w)

From these definitions, it follows that every individual concept appears at a
unique world ([24], Theorem 31):

IndividualConcept(x) → ∃!wAppearsAt(x,w)

Moreover, not only is there a concept of the individual Alexander (which we’ve
defined as ca), but for each possible world w, there is a concept of the individual
of Alexander at w, cw

a , which encodes exactly the properties F that Alexander
exemplifies at w. Thus, we may define:

cw
u =df ıx(C!x & ∀F (xF ≡ w |= Fu))

Where wα is the actual world, it is easy to show that ca is identical to cwα
a

(i.e., the concept of Alexander is identical to the concept of Alexander at the
actual world). Moreover, one can show that for any ordinary individual u, cu is
an individual concept, and that for any ordinary individual u and world w, cw

u

is an individual concept:

∀uIndividualConcept(cu)
∀u,wIndividualConcept(cw

u)

These facts put us in a position to see that both the Kripkean [8] and
Lewisian [11] interpretation of possible objects can exist side-by-side (though
Lewis’s possible individuals are represented at the level of concepts). Kripke
believes that a modal claim such as “Obama might have had a son” is true
because

there is a possible world where Obama himself has a son.

By contrast, Lewis takes this modal claim to be true because

there is a possible world where a counterpart of Obama has a son.

The precise Leibnizian picture we’ve developed enables us to show how Kripke’s
view holds with respect to ordinary individuals, while Lewis’s view holds with
respect to Leibnizian complete individual concepts.

To see that Kripke’s view holds with respect to ordinary individuals, we need
only observe that it is Obama himself who fails to have a son in our world but

Automating Leibniz’s Theory of Concepts 83

who has a son at some other world. However, to see why Lewis’s view holds with
respect to concepts of ordinary individuals, we must first partition the concepts
of ordinary individuals into groups of counterparts. Let (italic, non-bold) c, c′

range over individual concepts. Then we may define:

Counterparts(c, c′) =df ∃u∃w1∃w2(c =cw1
u & c′ =cw2

u)

In other words, individual concepts c and c′ are counterparts whenever there is
an ordinary object u and worlds w1 and w2 such that c is the concept of u-at-w1

and c′ is the concept of u-at-w2. So, if w′ is a world where Obama does have a
son, cw′

o is a counterpart of the concept of Obama (co), given that co = cwα
o .

Obama, wα and w′ are thus witnesses to the definition of Counterparts(co, c
w′
o).

Now, as we saw above, individual concepts appear at a unique world. So they
are, in some sense, world-bound individuals. Thus, we obtain Lewis-style truth
conditions for modal claims in the domain of Leibnizian individual concepts,
given the following fundamental theorem (applied to Alexander):

If Alexander is king but might not have been, then:

(a) the concept of Alexander contains the concept of being a king, and
(b) some individual concept that is a counterpart to the concept of Alexander

fails to contain the concept of being a king and appears at some non-
actual possible world.

Formally and generally, where u is any ordinary object, c is any individual con-
cept, and F is any property, we have:

Theorem 40a [24]:
(Fu & ♦¬Fu) → [cu � cF &

∃c(Counterparts(c, cu) & c � cF & ∃w(w =wα & Appears(c, w)))]

Similarly, we have:

If Obama doesn’t have a son but might have, then:

(a) the concept of Obama fails to contains the concept of having a son, and
(b) some individual concept that is a counterpart to the concept of Obama

contains the concept of having a son and appears at some non-actual
possible world.

Formally and more generally, this becomes:

Theorem 40b [24]:
(¬Fu & ♦Fu) → [cu � cF &

∃c(Counterparts(c, cu) & c � cF & ∃w(w =wα & Appears(c, w)))]

The main goal of our efforts to implement Leibniz’s modal metaphysics compu-
tationally was to obtain a proof of the above two theorems using an automated
reasoning engine. In what follows, we’ll work our way to an understanding of
our computational implementation of Theorem 40a.

84 J. Alama et al.

3 Summary of Our Representational Techniques

The fundamental idea behind our work in implementing object theory in an
automated reasoning environment is this: instead of building a customized the-
orem prover that understands the syntax of object theory, we use the language
of standard theorem provers to represent the first-order truth conditions of the
statements of object theory. The first order truth conditions can be understood in
terms of the object theory’s natural semantics and model theory. This is entirely
appropriate because the minimal models of object theory reveal that despite
its second-order syntax, it has general Henkin models [6]. We did not employ a
mechanical procedure for translating the formulas of object theory into TPTP
syntax, but rather carried it out by hand. In constructing the translations, we
adopted various conventions, some of which are discussed below.

Our basic convention was to translate the second-order quantified modal
syntax of object theory into FOL=, supplemented with predicates that sort indi-
viduals into four domains: objects, properties, propositions, and points. Our rep-
resentation can be written directly in TPTP syntax without further processing.
In what follows, we summarize the techniques we developed in order to produce
TPTP problem files for the theorems in [24].

3.1 Representing Second-Order Syntax Using First-Order Syntax

The most important first step of the process is to recognize that in the seman-
tics of object theory, 1-place properties have an exemplification extension among
objects and that this extension varies from possible world to possible world. How-
ever, since possible worlds are going to be one of the targets of object-theoretic
analysis, we call the semantically-primitive possible worlds points. Moreover,
we refer to 0-place relations as propositions. Thus to translate modal claims
involving the individual variables x, y, z, . . . , property variables F 1, G1, . . . and
propositional variables F 0, G0, . . . (which we write using P,Q, . . .), we introduce
the following basic sorts:

object(X)
property(F)
proposition(P)
point(D)

Moreover, since the simple and complex predications in object theory take place
in a modal language, we adopted the convention of introducing an extra argu-
ment place in primitive or defined conditions, which relativizes them with respect
to a point D. When translating explicitly modal claims, that extra argument place
can be bound by a quantifier over points.

Whereas uppercase D is a variable ranging over points, we represent a basic
(non-modal) predication of the form Fx using a named point:

ex1 wrt(F,X,d)

Automating Leibniz’s Theory of Concepts 85

Here, d is the semantically primitive ‘actual world’ that serves as the distinguished
element of the domain of possible worlds found in classical modal semantics. In
general, then, since a formula like Fx can appear within a modal context, we rep-
resent it with the primitive condition ex1 wrt(F,X,D), which has an argument
place for point D. Note that we also add as an axiom the right-handed sorting rule
that asserts that if ex1 wrt(F,X,D), then F is a property, X is an object, and D is
a point:

fof(sort ex1 wrt,type,
(! [F,X,D] : (ex1 wrt(F,X,D) =>
(property(F) & object(X) & point(D))))).

This, in effect, tells the theorem prover that we’re primarily interested in models
in which the arguments of the relation ex1 wrt are entities of the appropriate
sorts. Such right-handed sorting rules allow us to represent facts that come for
free in a second-order language.

Next, we represent a basic modal predication of the form �Fx as:

(! [D] : (point(D) => ex1 wrt(F,X,D)))

Possibility claims are represented in a similar way, using existential quantifica-
tions over points.

To represent the primitive predicate ‘E!x’ and the defined predicates ‘O!x’
and ‘A!x’, we introduced the property constants e, o and a. Just as in object
theory, e is primitive. But o and a are defined as (cf. the definitions described
in Sect. 2.1):

fof(o,definition,
(! [X,D] : ((object(X) & point(D)) => (ex1 wrt(o,X,D) <=>
(? [D2] : (point(D2) & ex1 wrt(e,X,D2))))))).

fof(a,definition,
(! [X,D] : ((object(X) & point(D)) => (ex1 wrt(a,X,D) <=>

~(? [D2] : (point(D2) & ex1 wrt(e,X,D2))))))).

Now to introduce the constant c to denote the property of being a concept, we
asserted that the property of being a concept is identical to the property of being
abstract, i.e.,

fof(being a concept is being abstract,axiom,c=a).

The above techniques are an important first step towards solving the problem
of representing the object-theoretic definitions of the various metaphysical kinds
used by Leibniz, such as concepts of individuals, concepts of properties, possible
worlds, etc.

3.2 Representing the Two Modes of Predication

Now the distinguishing feature of the language of object theory is that it has two
fundamental modes of predication. In addition to predications of the form Fx

86 J. Alama et al.

(familiar from standard FOL), there are also predications of the form xF . We
represent the latter as enc wrt(X,F,D), and require the following right-handed
sorting rule:

fof(sort enc wrt,type,
(! [X,F,D] : (enc wrt(X,F,D) =>
(object(X) & property(F) & point(D))))).

The formula enc wrt(X,F,D) will appear in several of the definitions that are
given below.

3.3 Representing Identity Claims

Recall the disjunctive definition of object-theoretic identity x = y in Sect. 2.1.
To represent that definition, we developed two preliminary definitions, one
for the identity of ordinary objects (o equal wrt) and one for the iden-
tity of abstract objects (a equal wrt).12 We then represented x = y in
terms of the general notion object equal wrt(X,Y,D) by stipulating that
object equal wrt(X,Y,D) holds if and only if either o equal wrt(X,Y,D) or
a equal wrt(X,Y,D), as follows:

fof(object equal wrt,definition,
(! [X,Y,D] : ((object(X) & object(Y) & point(D)) =>
(object equal wrt(X,Y,D) <=>
(o equal wrt(X,Y,D) | a equal wrt(X,Y,D)))))).

Finally, we then connected general identity object equal wrt(X,Y,D) with the
built-in equality of the reasoning system. This bridge principle asserts:

fof(object equal wrt implies identity,theorem,
(! [X,Y] : ((object(X) & object(Y)) =>
(? [D] : (point(D) & object equal wrt(X,Y,D)) =>
X = Y)))).

That is, if objects X and Y are object equal at some point D, then they are
identical. This definition suffices because it is a theorem that any objects o equal

12 The definition of o equal wrt is:

fof(o equal wrt,definition,

(! [X,Y,D] : ((object(X) & object(Y) & point(D)) =>

(o equal wrt(X,Y,D) <=> (ex1 wrt(o,X,D) & ex1 wrt(o,Y,D) &

(! [D2] : (point(D2) => (! [F] : (property(F) =>

(ex1 wrt(F,X,D2) <=> ex1 wrt(F,Y,D2))))))))))).

This says that X and Y are o equal with respect to point D just in case X and Y are
both ordinary objects and at every point D2, they exemplify the same properties.
A similar definition defines: X and Y are a equal with respect to point D just in
case X and Y are both abstract objects and at every point D2, they encode the same
properties.

Automating Leibniz’s Theory of Concepts 87

at some point are o equal at every point, and also a theorem that any objects
a equal at some point are a equal at every point.

With the above bridge principle in place, inferences about object-theoretic
identity can be drawn by the automated reasoning engine using system equality
(e.g., via demodulation).

3.4 Representing Definite Descriptions

Here are two examples of how we represent definite descriptions. Recall that
we introduced the term cu to denote the concept c that encodes all and only
the properties that u in fact exemplifies, and we introduced the term cF to denote
the concept c that encodes all and only the properties necessarily implied by F .
Consider first how we represent cu. We begin by introducing the relational condi-
tion concept of individual wrt(X,U,D), which holds just in case U is an ordi-
nary object and X is a concept (i.e., abstract object) that encodes exactly the
properties F such that U exemplifies F:

fof(concept of individual wrt,definition,
(! [X,U,D] : ((object(X) & object(U) & point(D)) =>
(concept of individual wrt(X,U,D) <=> (ex1 wrt(c,X,D) &
ex1 wrt(o,U,D) & (! [F] : (property(F) =>
(enc wrt(X,F,D) <=> ex1 wrt(F,U,D))))))))).

We then introduce is the concept of individual wrt(X,U,D) as holding
whenever X is a concept of individual U with respect to point D and anything Z
that is a concept of individual U with respect to point D is object equal to X:

fof(is the concept of individual wrt,definition,
(! [X,U,D] : ((object(X) & object(U) & point(D)) =>
(is the concept of individual wrt(X,U,D) <=>
(concept of individual wrt(X,U,D) &
(! [Z] : (concept of individual wrt(Z,U,D) =>
object equal wrt(Z,X,D)))))))).

Here X corresponds to cu when is the concept of individual wrt(X,U,d).
Consider second how we represent cF . We begin by introducing the relational

condition concept of wrt(Y,F,D), which holds just in case Y is a concept that
encodes just the properties necessarily implied by F . Formally:

fof(concept of wrt,definition,
(! [Y,F,D] : ((object(Y) & property(F) & point(D)) =>
(concept of wrt(Y,F,D) <=>
(ex1 wrt(c,Y,D) & (! [G] : (property(G) =>
(enc wrt(Y,G,D) <=> implies wrt(F,G,D))))))))).

Then we introduce is the concept of wrt(Y,F,D) as holding whenever Y is a
concept of property F at point D and anything Z that is a concept of F at D is
object equal to Y:

88 J. Alama et al.

fof(is the concept of wrt,definition,
(! [Y,F,D] : ((object(Y) & property(F) & point(D)) =>
(is the concept of wrt(Y,F,D) <=>
(concept of wrt(Y,F,D) & (! [Z] : (object(Z) =>
(concept of wrt(Z,F,D) => object equal wrt(Z,Y,D))))))))).

Thus, Y corresponds to cF when is the concept of wrt(Y,F,d).13 All of the
above definitions play an important role in the statement and proof of the fun-
damental theorem of Leibniz’s modal theory of concepts.

3.5 Representing λ-Expressions

As an example of how we represented λ-expressions, consider [λz Py], which
denotes the property: being a z such that y exemplifies P . We discussed such
λ-expressions in footnote 3 and at the beginning of Sect. 2.2 (on world theory).
To properly understand these expressions, note that, in object theory, it is a
theorem that for every property P and object y, there exists a proposition Py.
Moreover, for each such proposition, object theory’s comprehension principle for
properties asserts (cf. footnote 2):

∃F�∀x(Fx ≡ Py)

i.e., there is a property F such that, necessarily, an object x exemplifies F if and
only if Py. We use the λ-expression [λz Py] to denote such a property. It obeys
the principle:

�([λz Py]x ≡ (Py)x
z)

However, the variable z bound by the λ in [λz Py] is vacuously bound since it
doesn’t appear in Py. So (Py)x

z (i.e., the result of substituting x for z in Py)
is just the formula Py. Hence we have: �([λz Py]x ≡ Py), i.e., necessarily, x
exemplifies being such that Py if and only if Py.

We represented these facts as follows:

fof(existence proposition plug1,axiom,
(! [X,F] : ((object(X) & property(F)) =>
(? [P] : (proposition(P) & plug1(P,F,X)))))).

fof(proposition plug1 truth,definition,
(! [X,F,P] : ((object(X) & property(F) & proposition(P)) =>
(plug1(P,F,X) => (! [D] : (point(D) =>
(true wrt(P,D) <=> ex1 wrt(F,X,D)))))))).

13 It is important to note here that, in contrast to the concept of an individual, we
need not have linked Y to the concept of F at the distinguished point d, given what
we said in footnote 9.

Automating Leibniz’s Theory of Concepts 89

fof(existence vac,axiom,
(! [P] : (proposition(P) =>
(? [Q] : (property(Q) & is being such that(Q,P)))))).

fof(truth wrt vac,axiom,
(! [P,Q] : ((proposition(P) & property(Q)) =>
(is being such that(Q,P) =>
(! [D,X] : ((point(D) & object(X)) =>
(ex1 wrt(Q,X,D) <=> true wrt(P,D)))))))).

The first asserts that for any property F and object X, there is a proposition
P obtained by plugging X into F, where the truth conditions for plugging are
defined by the second principle as: if P is the proposition obtained by plugging X
into F, then for every point D, P is true with respect to D whenever X exemplifies
F with respect to D. The third asserts that for every proposition P, there is a
property Q such that Q is being such that P. The fourth asserts that if Q is being
such that P, then for any point D and object X, X exemplifies Q at D if and only
if P is true at D.

4 Representing the Fundamental Theorem

We now apply the techniques just summarized to the representation of one of the
two fundamental theorems described at the end of Sect. 2, namely, Theorem 40a.
The antecedent of Theorem 40a is:

Fu & ♦¬Fu (A)

Since the variable ‘u’ is a restricted variable ranging over ordinary objects, we
represent the first conjunct as:

ex1 wrt(o,U,d) & ex1 wrt(F,U,d),

where o is the property of being ordinary, F is a variable ranging over properties, U
is a variable ranging over objects, and d is the distinguished point. By using sortal
predicates to make everything explicit, the conjunction (A) can be represented
as follows:

object(U) & property(F) & ex1 wrt(o,U,d) & ex1 wrt(F,U,d) &
(? [D] : (point(D) & ~ex1 wrt(F,U,D))) (A)

In other words, the antecedent of Theorem 40a becomes:

(If) U is an object, F is a property, U exemplifies being ordinary at d, U exem-
plifies F at d, and there is a point D such that U fails to exemplify F at D,
(then) ...

Now the first conjunct of the consequent of Theorem 40a is:

cu � cF (B)

90 J. Alama et al.

This is not a theorem of object theory, though it follows from the facts that
Fu ≡ cu � cF (referenced earlier as Theorem 38a) and the premise Fu. Hence it
follows from the antecedent of Theorem 40a. If we recall the earlier definitions of
cu, cF and �, we can represent this clause as follows, in which cu is represented
by X, cF is represented by Y and � is represented by contains wrt(X,Y,d):

(? [X,Y] : object(X) & object(Y) & ex1 wrt(c,X,d) &
ex1 wrt(c,Y,d) & is the concept of individual wrt(X,U,d) &
is the concept of wrt(Y,F,d) & contains wrt(X,Y,d)) (B)

The first four conjuncts of (B) tell us that X and Y are both objects and, in
particular, both concepts. The fifth and sixth conjuncts of (B), i.e.,

is the concept of individual wrt(X,U,d)
is the concept of wrt(Y,F,d)

were defined in Sect. 3.4. We therefore know that the X and Y asserted to exist
in (B) corresponds to cu and cF , respectively, in the language of object theory.

The final conjunct of (B) is contains wrt(X,Y,d). This asserts that object
X contains object Y at point d, where this is defined this as:

fof(contains wrt,definition,
(! [X,Y,D] : ((object(X) & object(Y) & point(D)) =>
(contains wrt(Y,X,D) <=> included in wrt(X,Y,D))))).

Here, included in wrt(X,Y,D) is defined as you might expect given our discus-
sion of � in Sect. 2.3.14

Finally, we turn to the second conjunct of the consequent of Theorem 40a.
It asserts:

∃c(Counterparts(c, cu) & c � cF & ∃w(w =wα & Appears(c, w)))

Given that we already know X represents cu and Y represents cF , this becomes
represented as follows:

(? [Z] : (object(Z) & ex1 wrt(c,Z,d) & counterparts wrt(Z,X,d) &

~contains wrt(Z,Y,d) & (? [A,W] : (object(A) & object(W) &

is the actual world wrt(A,d) & world wrt(W,d) &

~equal wrt(W,A,d) & appears in wrt(Z,W,d))))).

We can now represent Theorem40a:

14 The definition is:

fof(included in wrt,definition,

(! [X,Y,D] : ((object(X) & object(Y) & point(D)) =>

(included in wrt(X,Y,D) <=>

(ex1 wrt(c,X,D) & ex1 wrt(c,Y,D) &

(! [F] : (property(F) => (enc wrt(X,F,D) => enc wrt(Y,F,D))))))))).

.

Automating Leibniz’s Theory of Concepts 91

fof(theorem 40a,conjecture,
(! [U,F] : ((object(U) & property(F)) =>
((ex1 wrt(o,U,d) & ex1 wrt(F,U,d) &
(? [D] : (point(D) & ~ex1 wrt(F,U,D)))) =>
(? [X,Y] : (object(X) & object(Y) & ex1 wrt(c,X,d) &
ex1 wrt(c,Y,d) & is the concept of individual wrt(X,U,d) &
is the concept of wrt(Y,F,d) & contains wrt(X,Y,d) &
(? [Z] : (object(Z) & ex1 wrt(c,Z,d) &
counterparts wrt(Z,X,d) & ~contains wrt(Z,Y,d) &
(? [A,W] : (object(A) & object(W) &
is the actual world wrt(A,d) & world wrt(W,d) &

~equal wrt(W,A,d) & appears in wrt(Z,W,d))))))))))).

Theorem 40b has a similar representation. The problem files for both
Theorem40a and Theorem40b are available online.15 A web page containing
the links to all the relevant files is also available.16

5 Techniques for Speeding up the Workflow

Our work consisted of developing a theory (i.e., a structured collection of theo-
rems and definitions) in TPTP notation. Faced with the task of adding premises
to a TPTP file for some conjecture, we generally used [24] as a guide. To for-
malize (proofs of) theorems, we proceeded in the usual naive way. If the original
proof referred to a previous theorem, we included it in the TPTP file. Similarly,
whenever defined notions appeared in a conjecture or premise, we included their
definitions in the TPTP file. Our workflow can intuitively be understood as tak-
ing a kind of poor man’s closure operation: first we looked at the primitive and
defined notions that appeared in the conjecture to be proved and then we kept
adding to the file those axioms, definitions, and previous theorems governing the
primitive and defined notions that we thought would be needed to yield a proof
of the conjecture.

To facilitate constructing this “closure”, we wrote a script that inspects a
TPTP file and reports on the predicate symbols and function symbols appear-
ing in it. (The script is essentially just a front end to the standard GetSymbols
tool distributed with TPTP). The procedure is embarrassingly simple, but it
prevented us from wasting time trying to diagnose a countersatisfiable conjec-
ture that failed because of lack of information about one of the notions in the
conjecture. The script thus highlighted in red those symbols that occur exactly
once in the problem (i.e., hapax legomena). This is a quick check for whether
there is a gap in the problem because, intuitively, a predicate or function that
occurs exactly once is a red flag. Of course, such a heuristic is far from complete.
In certain situations, a problem may well be solvable while having symbols that
appear exactly once. Equality counts as an undefined binary predicate symbol

15 See http://mally.stanford.edu/cm/concepts/theorem40a.p and theorem40b.p.
16 See http://mally.stanford.edu/cm/concepts/.

http://mally.stanford.edu/cm/concepts/theorem40a.p
http://mally.stanford.edu/cm/concepts/

92 J. Alama et al.

from our program’s point of view, and at times we worked with problems where
a single equation was present in the problem. At other times, it is acceptable for
there to be primitive (undefined) notions that by chance do occur exactly once.

Another useful program we found ourselves in need of and developed was a
tool for running multiple theorem provers and extracting the sets of premises
used in the proofs (TSTP/TPTP derivations). It is quite interesting to see that
different theorem provers “react” differently to one and the same theorem prov-
ing problem. After relying on the theorem provers to tell us which premises they
used in a proof, we systematically tried removing premises and testing for the
existence of a proof or a countermodel using the reduced set of premises. What
we found is that our premise sets were almost always bigger than necessary.
At times, a surprisingly large number of premises could be cut. We were often
delightfully puzzled into rethinking our initial proof because we had expected
that certain lemmas or definitions could not be removed. In order to be very
clear about the power of the axioms, we wanted the extra insight that came
from minimizing the premise sets.

The above tools, developed to prune unneeded concepts and premises from
the proof of a given conjecture, were bundled together to make the Tipi program,
which is written in Perl and available online.17 Tipi was constructed as a catch-all
tool for our formalization project. Tipi has proved of value in other formalization
projects as well [1,2].

When we first started our project, we produced a separate input file for each
theorem in [24]. This works fine as long as one doesn’t end up having to go back
and redo theorems when representational improvements are discovered. In the
course of working on theorem-proving problems, we often had to make on-the-fly
adjustments to our representations. If one regards our theory as a kind of tree of
dependencies, in which formulas depend (either by definition or by derivation)
on other formulas, such on-the-fly changes can quickly lead to confusion. One
may confidently think that a small change to a formula φ makes no difference
to the provability of a theorem ψ that depends it, only to be shown wrong
by a countermodel. In general, any change to a formula reopens the question
of whether some other dependent formula is provable; indeed, any change to
a prior axiom, definition, or theorem, requires checking all the theorems that
depended on that changed formula. Once dozens of theorems are involved, one
has to ensure that axioms, definitions, and theorems are kept synchronized across
multiple files. We sometimes were satisfied that a problem was solved only to
have to revisit the problem when we discovered we could correct or improve the
formulation some principle.

This problem of dependence is of course not unique to theorem proving; it is
clearly an old, well-recognized issue in software engineering generally. In our case,
we designed a suite of makefiles to help keep ourselves honest about the status of
our theory as we made changes to it. The solution we arrived at is to regenerate
problems from a master file. Each formula capable of generating a problem, that is,
each theorem or lemma, is annotated with the axioms, definitions, sorts, theorems,

17 https://github.com/jessealama/tipi and http://arxiv.org/abs/1204.0901.

https://github.com/jessealama/tipi
http://arxiv.org/abs/1204.0901

Automating Leibniz’s Theory of Concepts 93

and lemmas that are used in its derivation. The TPTP problem files are generated
automatically from a master file containing the latest version of the dependencies.

6 Observations

6.1 What We’ve Learned

Although our computational study of [24] didn’t reveal any errors of reason-
ing, we did come away from the research with some new insights about the
implementation of object theory using automated reasoning tools. One of the
interesting things we learned concerned the demands that our representational
methods placed on the definition of notions from object theory. Originally, we
thought that it might help cut down the search space for proofs if we prefaced
each definiendum with an antecedent that both sorted the variables and also
introduced any restrictions on the variables. After all, reasoning with restricted
variables eliminates inference steps and thus potential errors of reasoning. So,
for example, situations are definable in object theory as abstract objects of a cer-
tain kind. We wondered whether proof search would be more efficient with this
restriction, i.e., if we defined the world-relative condition situation wrt(X,D)
only for those objects X known to be abstract, as follows:

fof(situation wrt,definition,

(! [X,D] : ((object(X) & point(D)) => (ex1 wrt(a,X,D) =>

(situation wrt(X,D) <=> (! [F] : (property(F) => (enc wrt(X,F,D) =>

(? [P] : (proposition(P) & is being such that(F,P))))))))))).

However, in the end, we discovered that our provers do better if we don’t use
restricted variables when introducing the definiendum. The more general way
of formulating such definitions is to introduce the definiendum as soon as the
variables in the argument places are sorted. On that method, the above definition
becomes:

fof(situation wrt,definition,
(! [X,D] : ((object(X) & point(D)) => (situation wrt(X,D) <=>
(ex1 wrt(a,X,D) & (! [F] : (property(F) => (enc wrt(X,F,D) =>
(? [P] : (proposition(P) & is being such that(F,P))))))))))).

Thus, we adhered to the following format for introducing an n-place condition
Definiendum(X1,...,Xn):

(! [X1,...,Xn]: ((sort1(X1) & ... & sortn(Xn)) =>
(Definiendum(X1,...,Xn) <=> ...X1...Xn...))).

Another interesting question that arose was when to formulate our theorems
in their most general modal form, i.e., as necessary truths (prefaced by a univer-
sal quantifier over all points), as opposed to formulating them as non-modal facts
that hold just of the distinguished point d. In many modal systems, this question
doesn’t arise since every theorem is a necessary truth. But object theory allows

94 J. Alama et al.

for reasoning with contingent premises and with a contingent axiom governing
rigid definite descriptions. We noted earlier that the presence of rigid definite
descriptions in certain contexts is a tip-off that it may be inappropriate to use
the Rule of Necessitation (see especially the discussion following Theorem 38).
One has to keep track of theorems that are proved with a contingent premise or
that depend on the contingent axiom governing rigid definite descriptions.

In Sect. 2.3, we introduced Theorem 38, which asserts that an ordinary object
u exemplifies F if and only if the concept of individual u contains the concept
of property F . This theorem is a key part of the proof of Theorem 40a. It is
important to recognize that Theorem 38 should be proved only in the following
form (as a fact about the distinguished point d):

fof(theorem38,theorem,
(! [U,F] : ((object(U) & property(F)) => (ex1 wrt(o,U,d) =>
(? [Y,Z] : (object(Y) & object(Z) & ex1 wrt(c,Y,d) &
ex1 wrt(c,Z,d) & is the concept of individual wrt(Y,U,d) &
is the concept of wrt(Z,F,d) &
(ex1 wrt(F,U,d) <=> contains wrt(Y,Z,d)))))))).

and not in the following form (as a fact about every point D):

fof(theorem38,theorem,
(! [U,F] : ((object(U) & property(F)) => (! [D] : (point(D) =>
(ex1 wrt(o,U,D) => (? [Y,Z] : (object(Y) & object(Z) &
ex1 wrt(c,Y,D) & ex1 wrt(c,Z,D) &
is the concept of individual wrt(Y,U,D) &
is the concept of wrt(Z,F,D) &
(ex1 wrt(F,U,D) <=> contains wrt(Y,Z,D)))))))))).

When representing object theoretic claims, one always has to ask: is this prov-
ably true only with respect to the distinguished point d or is it provable for
every point D? Of course, one must take care not to get confused by the fact
that possible worlds are defined in object theory, and so we can express claims
that have both variables ranging over defined possible worlds as well as variables
ranging over the primitive sort point. The question of when to represent a the-
orem as a necessary truth affects only those claims involving the modal operator
‘necessarily’, not claims about possible worlds per se.18

18 In general, we adopted the policy of proving necessitations of theorems only when
they were required for the proof of another theorem. For example, the following
necessary truth was needed for the proof of Theorem 40a:

fof(uniqueness of concept of individual in wrt,lemma,

(! [D] : (point(D) => (![X,Y,U,W] : ((object(X) & object(Y) &

object(U) & object(W)) => (world wrt(W,D) =>

((concept of individual in wrt(X,U,W,D) &

concept of individual in wrt(Y,U,W,D)) =>

a equal wrt(X,Y,D)))))))).

This asserts that for every point D, if X and Y are both concepts of the individual U
with respect to D, then X and Y are identical abstract objects with respect to D.

Automating Leibniz’s Theory of Concepts 95

An interesting point emerged about representing object theory’s two main
axiom schemata. Basically, we adopted the expedient of representing only the
instances of the schemata that we needed as a premise to prove a conjecture. For
example, as noted earlier, the main comprehension schema for abstract objects
asserts:

∃x(A!x & ∀F (xF ≡ φ)), provided x doesn’t occur free in φ

Since there is no way to represent schemata in first-order syntax, our policy was
this: if any theorem that required the existence of an abstract object given by
some instance of the above schema, then we formulated the particular instance
as a premise. So, for example, if a theorem required the existence of the concept
of individual u, we would represent the following instance:

∃x(A!x & ∀F (xF ≡ Fu))

Then, given the definition of the concept of individual u, we would be assured
that the domain contained such a concept.

We also followed this procedure to address the problem of representing the
β-conversion schema. Since we don’t have a general way of representing all the
various different λ-abstracts in FOL=, we simply had to manually represent var-
ious λ-abstracts and axiomatize them as needed. Thankfully, few instances were
needed to complete the formalization.

We see two possible ways to represent these two axiom schemata in full gen-
erality. One is to reason syntactically about the formulas allowed in instances of
the schema. The other is to formulate them in third-order logic, analogously to
the way in which the induction axiom for arithmetic can be formulated as a single
second-order axiom rather than as a schema for generating first-order axioms.

6.2 Future Work

At the time of writing, we haven’t yet proved every lemma upon which Theorems
40a and 40b depend; only a few remain. Once the work is complete, we hope to
put the theorems into a form that can be submitted to the TPTP Library. This
will require an additional step of determining which of the axioms, definitions,
lemmas, sorting principles, etc., constitute the core part of the theory. Once
we identify the core part of the theory, we can look for a model of all of the
key principles upon which Theorems 40a and 40b depend. We’ve found models
of the premise sets in each of the separate input files for the theorems we’ve
proved thus far, but until the work is complete, we won’t be in a position to
identify the core group of principles that require a consistency check. As of
release 6.1.0 of the TPTP Library, there is a new section devoted to philosophy.
We plan to submit this theory for inclusion in that section.

One long-term goal of our project is to identify desiderata for the design
and implementation of a customized, native prover for object theory. A cus-
tomized prover would allow us to input formulas that more closely resemble
those of object theory. Furthermore, customized theorem provers and model

96 J. Alama et al.

builders might be able to recognize subformulas, recognize which formulas have
no encoding subformulas, generate instances of the comprehension schema for
relations, and generally be more attuned to the special features of object the-
ory. Reasoning in object theory is more structured than simply throwing a set
of formulas at a theorem prover and looking for a refutation. There are depen-
dencies such as the dependence of definitions on their justifying theorems, and
the restriction on the Rule of Necessitation to formulas that do not depend on
contingent assumptions. This makes the definition of provability in object the-
ory more subtle, which understandably complicates the implementation of any
system that tries to be faithful to it.

However, there may be obstacles to developing a native theorem prover for
object theory. If the work in [14] is correct, there is a feature of object theory that
suggests it may be difficult to adapt those existing reasoning engines which are
based on some form of functional type theory. For the discussion in [14] estab-
lished that object theory (a) contains formulas that neither are terms themselves
nor can be converted to terms by λ-abstraction, and therefore (b) involves rea-
soning that seems to be capturable only in the logic of relational rather than
functional type theory. Consequently, if existing automated reasoning engines
depend essentially on some form of functional type theory to define and nav-
igate the search space for finding proofs, then it may be that new methods
(e.g., ones that work in a relational type-theoretic environment and not just in
a functional type-theoretic environment) will have to be incorporated into the
design and implementation of a customized prover for object theory.

Finally, if new methods and tools are developed to make the process go more
quickly and smoothly, it should be easier to investigate object theory’s Frege-
style derivation of the Dedekind-Peano axioms for arithmetic [23].

Acknowledgments. The second and third authors would like to thank Branden
Fitelson for collaborating on an earlier automated reasoning project and making us
aware of the advances in theorem-proving technology.

References

1. Alama, J.: Complete independence of an axiom system for central translations.
Note di Matematica 33, 133–142 (2013)

2. Alama, J.: The simplest axiom system for hyperbolic geometry revisited, again.
Stud. Logica 102(3), 609–615 (2014)

3. Couturat, L. (ed.): Opuscules et fragments inédits de Leibniz. F. Alcan, Paris
(1903)

4. Fitelson, B., Zalta, E.: Steps toward a computational metaphysics. J. Philos. Logic
36(2), 227–247 (2007)

5. Gerhardt, C.I. (ed.): Die Philosophischen Schriften von Gottfried Wilhelm Leibniz,
vol. i–vii. Weidmann, Berlin (1875–1990)

6. Henkin, L.: Completeness in the theory of types. J. Symb. 15(2), 81–91 (1950)
7. Kripke, S.: A completeness theorem in modal logic. J. Symb. Logic 24(1), 1–14

(1959)

Automating Leibniz’s Theory of Concepts 97

8. Kripke, S.: Semantical considerations on modal logic. Acta Philos. Fennica 16,
83–94 (1963)

9. Leibniz, G.W.: A study in the calculus of real addition. In: Parkinson, G. (ed.)
Leibniz Logical Papers, pp. 131–144. Clarendon, Oxford (1996)

10. Leibniz, G.W.: Theodicy. Yale University Press, New Haven (1952)
11. Lewis, D.: Counterpart theory and quantified modal logic. J. Philos. 54(5), 113–126

(1968)
12. Montague, R.: The proper treatment of quantification in ordinary English. In:

Hintikka, K.J.J., Moravcsik, J.M.E., Suppes, P. (eds.) Approaches to Natural Lan-
guage, pp. 221–242. D. Reidel, Dordrecht (1973)

13. Nodelman, U., Zalta, E.: Foundations for mathematical structuralism. Mind
123(489), 39–78 (2014)

14. Oppenheimer, P., Zalta, E.: Relations versus functions at the foundations of logic:
type-theoretic considerations. J. Logic Comput. 21, 351–374 (2011)

15. Parkinson, G. (ed.): Leibniz: Logical Papers. Clarendon, Oxford (1966)
16. Parkinson, G. (ed.): Leibniz: Philosophical Writings. Dent & Sons, London (1973)
17. Pelletier, F., Zalta, E.: How to say goodbye to the third man. Noûs 34(2), 165–202

(2000)
18. Russell, B.: On denoting. Mind 14, 479–493 (1905)
19. Zalta, E.: Abstract Objects: An Introduction to Axiomatic Metaphysics. D. Reidel,

Dordrecht (1983)
20. Zalta, E.: Intensional Logic and the Metaphysics of Intentionality. MIT Press,

Cambridge (1988)
21. Zalta, E.: Logical and analytic truths that are not necessary. J. Philos. 85(2), 57–74

(1988)
22. Zalta, E.: Twenty-five basic theorems in situation and world theory. J. Philos. Logic

22(4), 385–428 (1993)
23. Zalta, E.: Natural numbers and natural cardinals as abstract objects: a partial

reconstruction of Frege’s Grundgesetze in object theory. J. Philos. Logic 28(6),
619–660 (1999)

24. Zalta, E.: A (Leibnizian) theory of concepts. Philosophiegeschichte logische
Analyse/Logical Anal. Hist. Philos. 3, 137–183 (2000)

Competition Descriptions

Confluence Competition 2015

Takahito Aoto1(B), Nao Hirokawa2, Julian Nagele3, Naoki Nishida4,
and Harald Zankl3

1 Tohoku University, Sendai, Japan
aoto@nue.riec.tohoku.ac.jp

2 JAIST, Nomi, Japan
hirokawa@jaist.ac.jp

3 University of Innsbruck, Innsbruck, Austria
{Julian.Nagele,Harald.Zankl}@uibk.ac.at

4 Nagoya University, Nagoyo, Japan
nishida@is.nagoya-u.ac.jp

Abstract. Confluence is one of the central properties of rewriting. Our
competition aims to foster the development of techniques for prov-
ing/disproving confluence of various formalisms of rewriting automat-
ically. We explain the background and setup of the 4th Confluence
Competition.

1 Introduction

•

• •

•

∗ ∗

∗ ∗

Fig. 1. Confluence

Confluence (Fig. 1) provides a general notion of determin-
ism and has been conceived as one of the central proper-
ties of rewriting [1]. Confluence has been investigated in
many formalisms of rewriting such as first-order rewrit-
ing, lambda-calculi, higher-order rewriting, constrained
rewriting, conditional rewriting, etc. More precisely, a
rewrite system is a set of rewrite rules, and for each rewrite
system R, rewrite steps s →R t are associated. A rewrite
system R is said to be confluent if for any t1 R

∗←− t0
∗−→R t2

there exists t3 such that t1
∗−→R t3 R

∗←− t2, where ∗→R
is the reflexive transitive closure of →R. The notions of
rewrite rules, associated rewrite steps, and terms to be
rewritten vary from one formalism to another. Confluence is also related to
many important properties of rewriting such as the unique normal form prop-
erty, ground confluence, etc.

The task of our competition is to foster the development of techniques for
proving/disproving confluence automatically by setting up a dedicated and fair
competition among confluence proving/disproving tools. The 4th Confluence
Competition (CoCo 2015)1 runs live during the 4th International Workshop on
Confluence (IWC 2015) collocated with the 25th International Conference on
Automated Deduction (CADE-25) in Berlin, Germany.
1 http://coco.nue.riec.tohoku.ac.jp.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 101–104, 2015.
DOI: 10.1007/978-3-319-21401-6 5

http://coco.nue.riec.tohoku.ac.jp

102 T. Aoto et al.

2 Categories

Since different formalisms capture different confluence problems and techniques
for confluence proving, the competition is separated into several categories. Cat-
egories are divided into competition categories and demonstration categories.

Demonstration categories are a novelty of CoCo 2015. These categories are
one-time events for demonstrating new attempts and/or merits of particular
tools. Demonstration categories can be requested until 2 months prior to the
competition.

In contrast to demonstration categories, competition categories are not only
run in a single competition but also in future editions of the confluence com-
petition. Competition categories can be requested until 6 months prior to the
competition, in order to allow organizers to make a decision on the framework
and semantics of the rewriting formalism and the input format of the problems.
The following 4 competition categories are run in CoCo 2015. See Fig. 2 for
examples of the different rewriting formalisms.

TRS:

{
+(0, y) → y, sum(nil) → 0
+(s(x), y) → s(+(x, y)), sum(cons(x, ys)) → +(x, sum(ys))

}

CTRS:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+(0, y) → y

+(s(x), y) → s(+(x, y))

fib(0) → pair(s(0), 0)
fib(s(x)) → pair(w, y) ⇐ fib(x) = pair(y, z), +(y, z) = w

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

HRS:

{
map (λn. f n) nil → nil
map (λn. f n) (cons x xs) → cons (f x) (map (λn. f n) xs)

}

Fig. 2. Three different formalisms of rewrite systems in CoCo 2015.

TRS category. This is a category for first-order term rewrite systems. The
framework of first-order term rewrite systems is most fundamental in the
theory of term rewriting (e.g. [1]).

CTRS category. This is a category for conditional term rewriting. Conditional
term rewriting allows to deal with conditions whose evaluation is defined
recursively using the rewrite relation. Incorporation of conditional expres-
sions is fundamental from the point of views of universal algebra (quasi-
variety) and of functional programming. Depending on the interpretation of
the conditions, 3 condition types are considered—namely, semi-equational,
join and oriented types. We refer to the textbook [3] for details.

HRS category. Many expressive formal systems such as systems of predi-
cate logics, λ-calculi, process calculi, etc. need variable binding. Higher-order
rewriting is a framework that extends first-order term rewriting by a binding
mechanism. Various formalisms of higher-order rewriting have been proposed
in the literature. This category deals with one of the most classical frame-
works of higher-order rewriting, namely higher-order rewriting systems [2].

Confluence Competition 2015 103

CPF category. This category is for the certification of confluence proofs based
on interactive theorem provers. Here confluence tools must produce machine-
checkable proofs which are checked by trustable certifiers in a second step.

number of number of
categoriestools tool authors

CoCo 2012 4 8 TRS/CPF
CoCo 2013 4 10 TRS/CPF
CoCo 2014 7 15 TRS/CTRS/CPF

Fig. 3. Statistics in the previous competitions.

In Fig. 3, we list statistics and categories of the previous competitions. The
HRS category has been incorporated for the first time in CoCo 2015.

3 Problems and Evaluation Process

We maintain a database of confluence problems (Cops), dealing with the three
rewriting formalisms reflected in the competition categories. The community can
submit problems prior to the competition. For the competition, only problems
from the literature are considered, where this family collects examples from the
literature (articles, papers, technical notes, and so on) dealing with confluence,
avoiding test examples generated automatically or tend to have a similar struc-
ture. The actual problem sets for the competition are selected randomly from
these problems considering the time balance. For the demonstration categories,
the participants are requested to prepare the problems for the competition.

rewrite system
(.trs)

confluence tool
YES if confluence is proved

NO if non-confluence is proved

MAYBE otherwise

Fig. 4. Input and output scheme of a confluence tool.

Figure 4 shows the input and output scheme required for tool participants. In
the competition a set of confluence problems is submitted to each participating
tool. Each tool is supposed to answer whether the given rewrite system is conflu-
ent or not. Tools must be able to run on the designated execution platform and
read problems as input. The output of the tools must contain an answer in the
first line followed by some proof argument understandable for human experts.
Valid answers are YES (the input is confluent) and NO (the input is not confluent).
Any other answer (such as MAYBE is interpreted as the tool could not determine
the status of the input. The timeout for each problem is set to 60 seconds for

104 T. Aoto et al.

all categories. Every problem in the CTRS category is classified by the pair of a
condition type (oriented, join, semi-equational), and a type of CTRS (type 1, 2,
3, or 4). A tool for the CTRS category should output UNSUPPORTED in place of
YES/NO for input CTRSs in classes that the tool does not support. The unsup-
ported classes of each tool must be declared at the time of registration. For the
CPF category, each participant should output certifiable proofs as well as the
result of certification: YES if confluence proof is certified and NO if non-confluence
proof is certified.

The score is computed in percent of solved vs. supported problems (i.e. num-
ber of YES/NO answers vs. total number of UNSUPPORTED answers). In case of a
draw there might be more winners. The tool with the maximal score wins. An
answer is plausible if it was not falsified (automatically or manually). A tool
with at least one non-plausible answer cannot be a winner.

4 Competition Platform and LiveView

The competition runs on a dedicated high-end cross-community competition
platform StarExec [4]. The progress of the live competition is shared with the
audience visually through the LiveView tool which interacts with StarExec.
A screenshot of the LiveView is shown in Fig. 5.

Fig. 5. LiveView of CoCo 2014.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

2. Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. Theor.
Comput. Sci. 192(1), 3–29 (1998)

3. Ohlebusch, E.: Advanced Topics in Term Rewriting Systems. Springer, New York
(2002)

4. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure for
logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS,
vol. 8562, pp. 367–373. Springer, Heidelberg (2014)

Termination Competition (termCOMP 2015)

Jürgen Giesl1, Frédéric Mesnard2, Albert Rubio3(B),
René Thiemann4, and Johannes Waldmann5

1 RWTH Aachen University, Aachen, Germany
2 Université de la Réunion, Saint Denis, France

3 Universitat Politècnica de Catalunya - BarcelonaTech, Barcelona, Spain
albert@cs.upc.edu

4 Universität Innsbruck, Innsbruck, Austria
5 HTWK Leipzig, Leipzig, Germany

Abstract. The termination competition focuses on automated termi-
nation analysis for all kinds of programming paradigms, including cate-
gories for term rewriting, imperative programming, logic programming,
and functional programming. Moreover, the competition also features
categories for automated complexity analysis. In all categories, the com-
petition also welcomes the participation of tools providing certified
proofs. The goal of the termination competition is to demonstrate the
power of the leading tools in each of these areas.

1 Introduction

The termination competition has been organized annually since 2004. There are
usually between 10 and 20 participating termination/complexity/certification
tools. Recent competitions were executed live during the main conferences of
the field (at VSL 2014, RDP 2013, IJCAR 2012, RTA 2011, and FLoC 2010).

2 Competition Categories

2.1 Termination Analysis

The termination competition features numerous categories for different forms of
languages. These languages can be classified into real programming languages
(Sect. 2.1.2) and languages based on rewriting and/or transition systems (Sect.
2.1.1). Termination of such languages is also of great practical interest, because
they are often used as back-end languages. More precisely, one can prove ter-
mination of programs by first translating them into such a back-end language
automatically and by analyzing termination of the resulting rewrite or transition
system afterwards.

J. Giesl—This author is supported by the Deutsche Forschungsgemeinschaft (DFG)
grant GI 274/6-1.
A. Rubio—This author is supported by the Spanish MINECO under the grant
TIN2013-45732-C4-3-P (project DAMAS).
R. Thiemann—This author is supported by the Austrian Science Fund (FWF)
project Y757.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 105–108, 2015.
DOI: 10.1007/978-3-319-21401-6 6

106 J. Giesl et al.

2.1.1 Rewriting and Transition Systems

There are several categories for termination analysis of different variants of term
rewriting. This includes classical term rewriting, conditional term rewriting, term
rewriting under specific strategies (innermost rewriting, outermost rewriting,
and context-sensitive rewriting), string rewriting (where all function symbols are
unary), relative term or string rewriting (where one has to prove that certain
rules cannot be used infinitely often), term rewriting modulo equations, and
higher-order rewriting.

In 2014, the competition also had categories for systems with built-in inte-
gers for the first time. More precisely, there was a category for term rewriting
extended by integers and a category for integer transition systems (which do not
feature terms, and where one has to prove absence of infinite runs originating in
designated start states).

2.1.2 Programming Languages

The termination competition has categories for termination of programs in
several languages from different paradigms. This includes functional languages
(Haskell), logic languages (Prolog), and imperative languages. While a category
for termination of Java programs has already been part of the competition since
2009, since 2014 there is also a category for the analysis of C programs.

2.2 Complexity Analysis

Since 2008, the termination competition has categories for asymptotic worst-case
complexity analysis of term rewriting. Here, one tries to find an upper bound on
the function that maps any natural number n to the length of the longest possible
derivation starting with a term of size n or less. In the competition, different
forms of complexity are investigated, depending on whether one regards full or
innermost rewriting. Moreover, these forms of complexity differ in the shape of
the possible start terms. For derivational complexity, one allows arbitrary start
terms. In contrast, for runtime complexity, one only allows start terms of the
form f(t1, . . . , tn), where a defined symbol f (i.e., an “algorithm”) is applied to
“data objects” t1, . . . , tn (i.e., the terms ti may not contain any defined symbols).
So runtime complexity corresponds to the notion of complexity typically used
for programs.

2.3 Certified Categories

It regularly occurred during previous competitions that bugs of tools have been
detected by conflicting answers. However, even if there are no conflicting answers
there is the potential of wrong answers. To this end, the termination competition
provides a certification option. If enabled, tools must generate their proofs in a
machine-readable and fully specified certification problem format. These proofs
will then be validated by certifiers whose soundness has to be justified, e.g.,

Termination Competition (termCOMP 2015) 107

by a machine-checked soundness proof of the certifier itself, or via on-the-fly
generation of proof scripts for proof-assistants like Coq, Isabelle, or PVS.

The certification option is currently supported for most categories on first-
order term rewriting, for both termination and complexity analysis.

3 Termination Problem Data Base

The Termination Problem Data Base (TPDB) is the collection of all the exam-
ples used in the competition. Its structure is closely related to the categories
in the competition. Each example in the TPDB is sufficiently specified to pre-
cisely determine a Boolean answer for termination (or an optimal answer for
complexity). For instance, although we aim to detect duplicates and eliminate
them from the TPDB (modulo renaming and order of rewrite rules), the data
base may contain two examples with the same program which differ in their
evaluation strategy or in the set of start terms. These details are important in
the competition, where the tools are asked to investigate the termination and
complexity behavior for exactly the given evaluation strategy and initial terms.
Although there is a unique correct answer for each example, these answers are
not stored in the TPDB and might even be unknown. For instance, the TPDB
also contains Collatz’ open termination problem of the “3n + 1” function.

New problems for the TPDB can be submitted at any time and will be
added after a short reviewing process of the steering committee. This steering
committee consists of representatives of the participating research groups. It is
in charge of strategic decisions for the competition and its future. Currently, the
examples in the TPDB are distributed as follows w.r.t. their source languages:
term rewriting (10755), Haskell (1671), integer transition systems (953), Java
(859), Prolog (492), and C (480).

4 Running the Competition

Here is a brief description of the rules of the competition:

– For termination tools: given an input program from the TPDB, try to determine
whether it terminates or not within a given time limit. Positive and negative
answers are equally scored when determining the winner of a category.

– For complexity tools: try to figure out the worst-case complexity of an input
program from the TPDB within a given time limit in big-O notation. Here, the
scoring depends on the precision of the answer in comparison to the answers
of the other competing tools.

– For certifiers: try to check as many machine-readable termination/complexity
proofs as possible.

Both termination and complexity tools must provide a human- or machine-
readable proof in addition to their answer. The input problems and tools are

108 J. Giesl et al.

partitioned w.r.t. the categories presented in Sect. 2. A category is only sched-
uled in the competition if there are at least two participating tools for that
category. Other categories may be scheduled for demonstration purposes.

From 2004 to 2007, the competition was hosted by the University of Paris-
Sud, France. From 2008 to 2013, the competition was hosted by the University
of Innsbruck, Austria. In 2014, the competition was run for the first time on the
StarExec platform (https://www.starexec.org/) at the University of Iowa, USA,
while results were presented on the web front-end star-exec-presenter (see Fig. 1)
running at HTWK Leipzig, Germany. The same infrastructure will be used for
the 2015 competition.

Fig. 1. The web front-end star-exec-presenter summarizing the 2014 competition

In order to run the competition within the duration of a conference, in the
last years only a subset of termination problems from the TPDB was selected for
each competition. Separate “full runs” of all tools on all TPDB problems were
also executed, which took around a week. In 2014, StarExec provided enough
computing power to execute a full run in 12 hours. Time-out per problem was
5 min. A total of 377880 problem/tool pairs were executed using 8 · 106 seconds
(2200 hours) CPU time and running on almost 200 nodes in parallel.

For further details, we refer to the main web site of the termination compe-
tition (http://termination-portal.org/wiki/Termination Competition).

https://www.starexec.org/
http://termination-portal.org/wiki/Termination_Competition

Rewriting

Non-E-Overlapping, Weakly Shallow,
and Non-Collapsing TRSs are Confluent

Masahiko Sakai1(B), Michio Oyamaguchi1, and Mizuhito Ogawa2

1 Graduate School of Information Science, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

sakai@is.nagoya-u.ac.jp, oyamaguchi@za.ztv.ne.jp
2 Japan Advanced Institute of Science and Technology,

1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
mizuhito@jaist.ac.jp

Abstract. A term is weakly shallow if each defined function symbol
occurs either at the root or in the ground subterms, and a term rewrit-
ing system is weakly shallow if both sides of a rewrite rule are weakly
shallow. This paper proves that non-E-overlapping, weakly-shallow, and
non-collapsing term rewriting systems are confluent by extending reduc-
tion graph techniques in our previous work [19] with towers of expansions.

1 Introduction

Confluence of term rewriting systems (TRSs) is undecidable, even for flat
TRSs [11] or length-two string rewrite systems [18]. Two decidable subclasses
are known: right-linear and shallow TRSs by tree automata techniques [2] and
terminating TRSs by resolving to finite search [8]. Many sufficient conditions
have been proposed, and they are classified into two categories.

– Local confluence for terminating TRSs [8]. It was extended to TRSs with
relative termination [5,7]. Another criterion comes with the decomposition
to linear and terminating non-linear TRSs [10]. It requires conditions for the
existence of well-founded ranking.

– Peak elimination with an explicit well-founded measure. Lots of works explore
left-linear TRSs under the non-overlapping condition and its extensions
[6,14–17,21]. For non-linear TRSs, there are quite few works [3,22] under the
non-E-overlapping condition (which coincides with non-overlapping if left-
linear) and additional restrictions that allow to define such measures.

We have proposed a different methodology, called a reduction graph [19],
and shown that “weakly non-overlapping, shallow, and non-collapsing TRSs
are confluent”. An original idea comes from observing that, when non-E-
overlapping, peak-elimination uses only “copies” of reductions in an original
rewrite sequences. Thus, if we focus on terms appearing in peak elimination, they

The results without proofs are orally presented at IWC 2014 [20].
M. Ogawa—This work is supported by JSPS KAKENHI Grant Number 25540003.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 111–126, 2015.
DOI: 10.1007/978-3-319-21401-6 7

112 M. Sakai et al.

are finitely many. We regard a rewrite relation over these terms as a directed
graph, and construct a confluent directed acyclic graph (DAG) in a bottom-up
manner, in which the shallowness assumption works. The keys are, such a DAG
always has a unique normal form (if it is finite), and convergence is preserved if
we add an arbitrary reduction starting from a normal form. Our reduction graph
technique is carefully designed to preserve both acyclicity and finiteness.

This paper introduces the notion of towers of expansions, which extends a
reduction graph by adding terms and edges expanded with function symbols
in an on-demand way, and shows that “weakly shallow, non-E-overlapping, and
non-collapsing TRSs are confluent”. A term is weakly shallow if each defined
function symbol appears either at the root or in the ground subterms, and a
TRS is weakly shallow if the both sides of rules are weakly shallow. It is worth
mentioning:

– A Turing machine is simulated by a weakly shallow TRS [9] (see Remark 1),
and many decision problems, such as the word problem, termination and con-
fluence, are undecidable [12]. Note that the word problem is decidable for
shallow TRSs [1]. The fact distinguishes these classes.

– The non-E-overlapping property is undecidable for weakly shallow TRSs [12].
A decidable sufficient condition is strongly non-overlapping, where a TRS is
strongly non-overlapping if its linearization is non-overlapping [13]. Here, these
conditions are the same when left-linear.

– Our result gives a new criterion for confluence provers of TRSs. For instance,

{d(x, x) → h(x), f(x) → d(x, f(c)), c → f(c), h(x) → h(g(x))}

is shown to be confluent only by ours.

Remark 1. Let Q, Σ and Γ (⊇ Σ) be finite sets of states, input symbols and tape
symbols of a Turing machine M , respectively. Let δ : Q×Γ → Q×Γ×{left, right}
be the transition function of M . Each configuration a1 · · · aiqai+1 · · · an ∈
Γ+QΓ+ (where q ∈ Q) is represented by a term q(ai · · · a1($), ai+1 · · · an($))
where arities of function symbols q, aj (1 ≤ j ≤ n) and $ are 2, 1 and 0,
respectively. The corresponding TRS RM consists of rewriting rules below:

q(x, a(y)) → p(b(x), y) if δ(q, a) = (p, b, right),
q(a′(x), a(y)) → p(x, a′(b(y))) if δ(q, a) = (p, b, left)

2 Preliminaries

2.1 Abstract Reduction System

For a binary relation →, we use ←, ↔, →+ and →∗ for the inverse relation, the
symmetric closure, the transitive closure, and the reflexive and transitive closure
of →, respectively. We use · for the composition operation of two relations.

An abstract reduction system (ARS) is a directed graph G = 〈V,→〉 with
reduction → ⊆ V × V . If (u, v) ∈ →, we write it as u → v. An element u of V

Non-E-Overlapping, Weakly Shallow, and Non-Collapsing TRSs 113

is (→-)normal if there exists no v ∈ V with u → v. We sometimes call a normal
element a normal form. For subsets V ′ and V ′′ of V , →|V ′×V ′′ = →∩ (V ′ ×V ′′).

Let G = 〈V,→〉 be an ARS. We say G is finite if V is finite, confluent if
←∗ · →∗ ⊆ →∗ · ←∗, Church-Rosser (CR) if ↔∗ ⊆ →∗ · ←∗, and terminating
if it does not admit an infinite reduction sequence from a term. G is convergent
if it is confluent and terminating. Note that confluence and CR are equivalent.

We refer standard terminology in graphs. Let G = 〈V,→〉 and G′ = 〈V ′,→′〉
be ARSs. We use VG′ and →G′ to denote V ′ and →′, respectively. An edge v → u
is an outgoing-edge of v and an incoming-edge of u, and v is the initial vertex of
→. A vertex v is →-normal if it has no outgoing-edges. The union of graphs is
defined as G ∪ G′ = 〈V ∪ V ′,→ ∪ →′〉. We say

– G is connected if (u, v) ∈ ↔∗ for each u, v ∈ V .
– G′ includes G, denoted by G′ ⊇ G, if V ′ ⊇ V and →′ ⊇ →.
– G′ weakly subsumes G, denoted by G′ G, if V ′ ⊇ V and ↔′∗ ⊇ →.
– G′ conservatively extends G, if V ′ ⊇ V and ↔′∗|V ×V = ↔∗.

The weak subsumption relation is transitive.

2.2 Term Rewriting System

Let F be a finite set of function symbols, and X be an enumerable set of variables
with F ∩ X = ∅. T(F,X) denotes the set of terms constructed from F and X
and Var(t) denotes the set of variables occurring in a term t. A ground term is
a term in T(F, ∅). The set of positions in t is Pos(t), and the root position is ε.
For p ∈ Pos(t), the subterm of t at position p is denoted by t|p. The root symbol
of t is root(t), and the set of positions in t whose symbols are in S is denoted by
PosS(t) = {p | root(t|p) ∈ S}. The term obtained from t by replacing its subterm
at position p with s is denoted by t[s]p. The size |t| of a term t is |Pos(t)|. As
notational convention, we use s, t, u, v, w for terms, x, y for variables, a, b, c, f, g
for function symbols, p, q for positions, and σ, θ for substitutions.

We define sub(t) as sub(x) = ∅ and sub(t) = {t1, . . . , tn} if t = f(t1, . . . , tn).
A rewrite rule is a pair (�, r) of terms such that � �∈ X and Var(�) ⊇ Var(r).
We write it � → r. A term rewriting system (TRS) is a finite set R of rewrite
rules. The rewrite relation of R on T(F,X) is denoted by →

R
. We sometimes

write s
p→
R

t to indicate the rewrite step at the position p. Let s
p→
R

t. It is a top

reduction if p = ε. Otherwise, it is an inner reduction, written as s
ε<→
R

t.
Given a TRS R, the set D of defined symbols is {root(�) | � → r ∈ R}. The

set C of constructor symbols is F \ D. For T ⊆ T(F,X) and f ∈ F , we use T |f
to denote {s ∈ T | root(s) = f}. For a subset F ′ of F , we use T |F ′ to denote the
union ∪f∈F ′T |f .

A constructor term is a term in T(C,X), and a semi-constructor term is a
term in which defined function symbols appear only in the ground subterms.
A term is shallow if the length |p| is 0 or 1 for every position p of variables in the
term. A weakly shallow term is a term in which defined function symbols appear
only either at the root or in the ground subterms (i.e., p �= ε and root(s|p) ∈ D
imply that s|p is ground). Note that every shallow term is weakly shallow.

114 M. Sakai et al.

A rewrite rule � → r is weakly shallow if � and r are weakly shallow, and
collapsing if r is a variable. A TRS is weakly shallow if each rewrite rule is
weakly shallow. A TRS is non-collapsing if it contains no collapsing rules.

Example 2. A TRS R1 is weakly shallow and non-collapsing.

R1 = {f(x, x) → a, f(x, g(x)) → b, c → g(c)} [6]

Let �1 → r1 and �2 → r2 be rewrite rules in a TRS R. Let p be a position
in �1 such that �1|p is not a variable. If there exist substitutions θ1, θ2 such that
�1|pθ1 = �2θ2 (resp. �1|pθ1 ε<↔

R

∗ �2θ2), we say that the two rules are overlapping
(resp. E-overlapping), except that p = ε and the two rules are identical (up to
renaming variables). A TRS R is overlapping (resp. E-overlapping) if it contains
a pair of overlapping (resp. E-overlapping) rules. Note that TRS R1 in Example 2
is E-overlapping since f(c, c) ε<↔

R

∗ f(c, g(c)).

3 Extensions of Convergent Abstract Reduction Systems

This section describes a transformation system from a finite ARS to obtain a
convergent (i.e., terminating and confluent) ARS that preserves the connectivity.

Let G = 〈V,→〉 be an ARS. If G is finite and convergent, then we use a
function ↓G (called the choice mapping) that takes an element of V and returns
the normal form [19]. We also use v↓G instead of ↓G(v).

Definition 3. For ARSs G1 = 〈V1,→1〉 and G2 = 〈V2,→2〉, we say that G1∪G2

is the hierarchical combination of G2 with G1, denoted by G1 � G2, if →1 ⊆
(V1 \ V2) × V1.

Proposition 4. G1 � G2 is terminating if both G1 and G1 are so.

Lemma 5. Let G1 � G2 be a confluent and hierarchical combination of ARSs.
If a confluent ARS G3 weakly subsumes G2 and G1 � G3 is a hierarchical com-
bination, then G1 � G3 is confluent.

Proof. We use 〈Vi,→i〉 to denote Gi. Let α : u′ ←∗
G1�G3

u →∗
G1�G3

u′′. If
u ∈ V3, only →3 appears in α, and hence u′ →∗

3 · ←∗
3 u′′ follows from the

confluence of G3. Otherwise, α is represented as u′ ←∗
3 v′ ←∗

1 u →∗
1 v′′ →∗

3 u′′.
Since v′ →∗

1 w′ →∗
2 · ←∗

2 w′′ ←∗
1 v′′ for some w′ and w′′ (from the confluence

of G1 � G2) and G2 � G3, we obtain u′ ←∗
3 v′ →∗

1 w′ ↔∗
3 w′′ ←∗

1 v′′ →∗
3 u′′.

Since G1 � G3 is a hierarchical combination, v′ = w′ if v′ ∈ V3, and v′ = u′

otherwise. Hence, u′ →∗
1 · ↔∗

3 w′. Similarly either v′′ = w′′ or v′′ = u′′. Thus,
u′ →∗

1 · ↔∗
3 · ←∗

1 u′′. The confluence of G3 gives u′ →∗
1 · →∗

3 · ←∗
3 · ←∗

1 u′′, and
u′ →∗

G1�G3
· ←∗

G1�G3
u′′. ��

In the sequel, we generalize properties of ARSs obtained in [19].

Non-E-Overlapping, Weakly Shallow, and Non-Collapsing TRSs 115

Definition 6. Let G = 〈V,→〉 be a convergent ARS. Let v, v′ be vertices such
that v �= v′ and if v ∈ V then v is →-normal. Then G′, denoted by G � (v → v′),
is defined as follows (see Fig. 1):

⎧
⎪⎪⎨

⎪⎪⎩

〈V ∪ {v′},→ ∪ {(v, v′)}〉 if v ∈ V and v′ �∈ V (1)
〈V,→ ∪ {(v, v′)}〉 if v, v′ ∈ V and v′ �↔∗ v (2)
〈V,→ \ {(v′, v′′) | v′ → v′′} ∪ {(v, v′)}〉 if v, v′ ∈ V and v′ ↔∗ v (3)
〈V ∪ {v, v′},→ ∪ {(v, v′)}〉 if v �∈ V (4)

Note that v′ becomes a normal form of G′ when the first or the third transfor-
mation is applied.

Fig. 1. Adding an edge to a convergent ARS

Proposition 7. For a convergent ARS G, the ARS G′ = G � (v → v′) is
convergent, and satisfies G′ G.

We represent G � (v0 → v1) � (v1 → v2) � · · · � (vn−1 → vn) as
G � (v0 → v1 → · · · → vn) (if Definition 6 can be repeatedly applied).

Proposition 8. Let G = 〈V,→〉 be a convergent ARS. Let v0, v1, . . . , vn satisfy
vi �= vj (for i �= j), and one of the following conditions:

(1) v0 ∈ V , v0 is →-normal, and vi ∈ V implies vi ↔∗ v0 for each i(< n),
(2) v0, · · · , vn−1 �∈ V .

Then, G′ = G � (v0 → v1 → · · · → vn) is well-defined and convergent, and
G′ G holds.

4 Reduction Graphs

From now on, we fix C and D as the sets of constructors and defined function
symbols for a TRS R, respectively. We assume that there exists a constructor
with a positive arity in C, otherwise all weakly shallow terms are shallow.

4.1 Reduction Graphs and Monotonic Extension

Definition 9 ([19]). An ARS G = 〈V,→〉 is an R-reduction graph if V is a
finite subset of T(F,X) and → ⊆ →

R
.

116 M. Sakai et al.

For an R-reduction graph G = 〈V,→〉, inner-edges, strict inner-edges, and top-
edges are given by ε<→ = → ∩ ε<→

R
,

�=ε→ = → \ ε→
R

, and ε→ = → ∩ ε→
R

, respectively. We

use Gε<, G�=ε, and Gε to denote 〈V,
ε<→〉, 〈V,

�=ε→〉, and〈V,
ε→〉, respectively. Remark

that for R = {a → b, f(x) → f(b)} V = {f(a), f(b)}, and G = 〈V, {(f(a), f(b))}〉,
we have Gε< = Gε = G and G�=ε = 〈V, ∅〉.

For an R-reduction graph G = 〈V,→〉 and F ′ ⊆ F , we represent
G|F ′ = 〈V,→|F ′〉 where →|F ′ = →|V |F ′×V . Note that →|C = →|V |C×V |C and
→ = →|D ∪ →|V |C×V |C .

Definition 10. Let G = 〈V,→〉 be an R-reduction graph. The direct-subterm
reduction-graph sub(G) of G is 〈sub(V), sub(→)〉 where

{
sub(V) =

⋃
t∈V sub(t)

sub(→) = {(si, ti) | f(s1, . . . , sn) ε<→ f(t1, . . . , tn), si �= ti, 1 ≤ i ≤ n}.

An R-reduction graph G = 〈V,→〉 is subterm-closed if sub(G�=ε) � G.

Lemma 11. Let G = 〈V,→〉 be a subterm-closed R-reduction graph. Assume
that (1) s[t]p ↔∗ s[t′]p, and (2) for any p′ < p, if (s[t]p)|p′ ↔∗ (s[t′]p)|p′ then

(s[t]p)|p′
�=ε↔∗ (s[t′]p)|p′ . Then t ↔∗ t′.

Proof. By induction on |p|. If p = ε, trivial. Let p = iq and s = f(s1, . . . , sn).
Since s[t]p

�=ε↔∗ s[t′]p from the assumptions, the subterm-closed property of G
implies si[t]q ↔∗ si[t′]q. Hence, t ↔∗ t′ holds by induction hypothesis. ��
Definition 12. For a set F ′ (⊆ F) and an R-reduction graph G = 〈V,→〉, the
F ′-monotonic extension MF ′(G) = 〈V1,→1〉 is

{
V1 = {f(s1, . . . , sn) | f ∈ F ′, s1, . . . , sn ∈ V },
→1 = {(f(· · · s · · ·), f(· · · t · · ·)) ∈ V1 × V1 | s → t}.

Example 13. As a running example, we use the following TRS, which is non-E-
overlapping, non-collapsing, and weakly shallow with C = {g} and D = {c, f}:

R2 = {f(x, g(x)) → g3(x), c → g(c)}.

Consider a subterm-closed R2-reduction graph G = 〈{c, g(c), g2(c)}, {(c, g(c))}〉.
In the sequel, we use a simple representation of graphs as G = {c → g(c), g2(c)}.
The C-monotonic extension MC(G) of G is MC(G) = {g(c) → g2(c), g3(c)}.

Proposition 14. Let MF ′(G) = 〈V ′,→′〉 be the F ′-monotonic extension of an
R-reduction graph G = 〈V,→〉. Then,
(1) if G is terminating (resp. confluent), then MF ′(G) is.
(2) If G is subterm-closed, then for u, v ∈ V |F ′ , we have (a) u, v ∈ V ′, and (b)

u
�=ε→ v implies u ↔′∗ v.

(3) sub(MF ′(G)) ⊆ G if F ′ contains a function symbol with a positive arity.

Non-E-Overlapping, Weakly Shallow, and Non-Collapsing TRSs 117

4.2 Constructor Expansion

Definition 15. For a subterm-closed R-reduction graph G, a constructor expan-
sion MC(G) is the hierarchical combination G|D � MC(G) (= G|D ∪ MC(G)).
The k-times application of MC to G is denoted by MC

k
(G).

Example 16. For G in Example 13, the constructor expansions MC
i
(G) of G

(i = 1, 3) are

MC(G) = {c → g(c) → g2(c), g3(c)},

MC
3
(G) = {c → g(c) → g2(c) → g3(c) → g4(c), g5(c)}.

Lemma 17. Let G be a subterm-closed R-reduction graph. Then,

(1) sub(MC(G)�=ε) � G, and
(2) →G �=ε ⊆ ↔∗

MF (G), that is, G � Gε ∪ MF (G),

Proof. Let G = 〈V,→〉. We refer MC(G) by G′ = 〈V ′,→′〉. Thus, for v ∈ V ′,
root(v) ∈ C. Note that MC(G) = G|D � MC(G) = 〈V ′ ∪ V,→′ ∪ →|V |D×V 〉.
(1) Due to sub(MC(G)�=ε) = sub(G�=ε|D) ∪ sub(MC(G)), it is enough to show

sub(G�=ε|D) � G and sub(MC(G)) � G. The former follows from the fact
that sub(G�=ε|D) ⊆ sub(G�=ε) and G is subterm-closed. The latter follows
from sub(MC(G)) ⊆ G.

(2) Obvious from Proposition 14 (2). ��
Lemma 18. For a subterm-closed R-reduction graph G,

(1) G � MC(G),
(2) MC(G) is subterm-closed, and
(3) MC(G) is convergent if G is convergent.

Proof. Let G = 〈V,→〉. Note that MC(G) = (G|D � MC(G)) = 〈V ∪
VMC(G),→|D ∪ →MC(G)〉.
(1) Since →|V |C×V |C ⊆ �=ε→G, we have →|V |C×V |C ⊆ ↔∗

MC(G) (by Proposi-
tion 14 (2)), so that G � MC(G).

(2) By Lemma 17 (1), sub(MC(G)�=ε) � G. Combining this with G � MC(G),
we obtain sub(MC(G)�=ε) � MC(G). Thus, MC(G) is subterm-closed.

(3) If we show G′ = 〈V |C ,→|V |C×V |C 〉 � MC(G), the confluence of MC(G) =
G|D � MC(G) follows from Lemma 5, since G = G|D � G′ and MC(G)
is confluent by Proposition 14 (1). Since G is subterm-closed, we have
V |C ⊆ VMC(G) and →|V |C×V |C ⊆ ↔∗

MC(G) by Proposition 14 (2). Hence,
G′ � MC(G). The termination of MC(G) follows from Proposition 4, since
G|D and MC(G) are terminating. ��

Corollary 19. For a subterm-closed R-reduction graph G and k ≥ 0, we have:

118 M. Sakai et al.

(1) G � MC
k
(G).

(2) MC
k
(G) is subterm-closed.

(3) MC
k
(G) is convergent, if G is convergent.

Remark 20. When an R-reduction graph G is subterm-closed, we observe that
↔∗

MC
k
(G)

= ↔∗
G∪MC(G)∪···∪Mk

C(G)
from →G|C ⊆↔∗

MC(G) by Proposition 14 (2).

Proposition 21. Let G be a subterm-closed R-reduction graph. Then,
MC

k
(G) � MC

m
(G) for m > k ≥ 0.

Proof. By MC
m

(G) = MC
m−k

(MC
k
(G)) and Corollary 19 (1) and (2). ��

5 Tower of Constructor Expansions

From now on, let G be a convergent and subterm-closed R-reduction graph. We
call MF (MC

i
(G)) a tower of constructor expansions of G for i ≥ 0. We use

G2i
= 〈V2i

,→2i
〉 to denote MF (MC

i
(G)).

5.1 Enriching Reduction Graph

We show that there exists a convergent R-reduction graph G1 with MF (G) � G1

such that G2i
is a conservative extension of G1 for large enough i.

Lemma 22. For a convergent and subterm-closed R-reduction graph G, there
exist k (≥ 0) and an R-reduction graph G1 satisfying the following conditions.

(i) G1 is convergent, and consists of inner-edges.
(ii) G1 � G2k

.
(iii) u ↔∗

2i
v implies u ↔∗

1 v for each u, v ∈ V1 and i (≥ 0).
(iv) MF (G) � G1.

Proof. Let G1 := MF (G) and k := 0. We define a condition (iii)’ as “(iii) holds
for all i (< k)”. Initially, (i) holds by Proposition 14 (1) since G is convergent.
(ii) and (iv) hold from G1 = MF (G) = G20 , and (iii)’ holds from k = 0.

We transform G1 so that (i), (ii), (iii)’ and (iv) are preserved and the number
|V1/↔∗

1| of connected components of G1 decreases. This transformation (G1, k) �
(G′

1, k
′) continues until (iii) eventually holds, since |V1/↔∗

1| is finite.
For current G1 and k, we assume that (i), (ii), (iii)’ and (iv) hold. If G1 fails

(iii), there exist i with i ≥ k and u, v ∈ V1 such that u �= v and (u, v) ∈ ↔∗
2i

\↔∗
1.

We choose such k′ as the least i. Remark that G1 is convergent from (i), and G2k′
is convergent from Corollary 19 (3) and Proposition 14 (1). Let ↓1 and ↓2k′ be
the choice mappings of G1 and G2k′ , respectively. Since G1 � G2k′ from (ii) and
Proposition 21, we have (u↓1, v↓1) ∈ ↔∗

2k′ and u↓1 �= v↓1. From the convergence
of G2k′ , we have

⎧
⎨

⎩

u↓1 = u0 →2k′ u1 →2k′ · · · →2k′ un′ →2k′ · · · →2k′ un = (u↓1)↓2k′
� �

v↓1 = v0 →2k′ v1 →2k′ · · · →2k′ vm′ →2k′ · · · →2k′ vm = (v↓1)↓2k′

Non-E-Overlapping, Weakly Shallow, and Non-Collapsing TRSs 119

where (n′,m′) is the smallest pair under the lexicographic ordering such that
un′ = vm′ . Note that uj ’s and vj ’s do not necessarily belong to V1. We define a
transformation (G1, k) � (G′

1, k
′) with G′

1 to be
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G1 � (u0 → · · · → uj) if there exists (the smallest) j such that
0 < j ≤ n′, uj ∈ V1, and uj �↔∗

1 u
G1 � (v0 → · · · → vj′) if there exists (the smallest) j′ such that

0 < j′ ≤ m′, vj′ ∈ V1, and vj′ �↔∗
1 v

G1 � (u0 → · · · → un′) � (v0 → · · · → vm′) otherwise.

Since the condition (1) of Proposition 8 holds, (i) is preserved. From G1 � G′
1

(iv) holds, and (ii) G′
1 � G2k′ by Proposition 21. If k′ = k, (iii)’ does not change.

If k′ > k, then u ↔∗
2i

v implies u ↔∗
1 v for i with k ≤ i < k′, since we chose k′

as the least. Hence (iii)’ holds. In either case, |V1/↔∗
1| decreases. ��

Example 23. For G in Example 13, Lemma 22 starts from MF (G), which is dis-
played by the solid edges in Fig. 2. G1 is constructed by augmenting the dashed
edges with k = 1.

c f(c, c) → f(g(c), c) f(g2(c), c)

g(c) f(c, g(c)) → f(g(c), g(c)) ��� f(g2(c), g(c))
↓ ���

g2(c) f(c, g2(c)) → f(g(c), g2(c)) ��� f(g2(c), g2(c))���

g3(c)

Fig. 2. G1 constructed by Lemma 22 from G in Example 13

Corollary 24. Assume that G1 = 〈V1,→1〉 and h (≥ 0) satisfy the condi-
tions i) to iv) in Lemma 22. Let v0, v1, . . . , vn satisfy vj �= vj′ for j �= j′ and
vj−1 (↔∗

2k
∩ ε<→

R
) vj for 1 ≤ j ≤ n. If either (1) v0 ∈ V1 and v0 is →1-normal,

or (2) v0, · · · , vn−1 �∈ V1 and vn ∈ V1, then the conditions (i) to (iv) hold for
G1′ = G1 � (v0 → v1 → · · · → vn) and k′ = max(k, h).

Proof. For (1), from (iii) of G1, vj ∈ V1 implies vj ↔∗
1 v0. For either case, from

(i) and (iv) of G1 and Proposition 8, G1′ satisfies (i) and (iv). Since vj−1 ↔∗
2k

vj ,
G1′ immediately satisfies (ii). Since v0 ∈ V1 or vn ∈ V1, G1′ satisfies (iii). ��

5.2 Properties of Tower of Expansions on Weakly Shallow Systems

Lemma 25. Let R be a non-E-overlapping and weakly shallow TRS. Let
G = 〈V,→〉 be a convergent and subterm-closed R-reduction graph, and let
� → r ∈ R.

120 M. Sakai et al.

(1) If �σ ↔∗
2i

�θ, then xσ ↔∗
MC

i
(G)

xθ for each variable x ∈ Var(�).

(2) For a weakly shallow term s with s �∈ X, assume that xσ ↔∗
MC

i
(G)

xθ for

each variable x ∈ Var(s). If sσ ∈ V2i
, then sσ ↔∗

2k
sθ for some k (≥ i).

(3) If �σ ↔∗
2i

u, then there exist a substitution θ and k (≥ i) such that
u (ε<→

R
∩ ↔∗

2k
)∗ �θ and xσ →∗

MC
i
(G)

xθ for each variable x ∈ Var(�).

Proof. Note that G2i
is convergent by Corollary 19 (3) and Proposition 14 (1).

(1) Let � = f(�1, . . . , �n). For each j (1 ≤ j ≤ n), �jσ↔∗
MC

i
(G)

�jθ. Since MC
i
(G)

is convergent by Corollary 19 (3), there exists vj such that �jσ →∗
MC

i
(G)

vj ←∗
MC

i
(G)

�jθ. Since MC
i
(G) is subterm-closed by Corollary 19 (2) and

�j is semi-constructor, we have xσ ↔∗
MC

i
(G)

xθ for every x ∈ Var(�) by
Lemma 11.

(2) First, we show that for a semi-constructor term t if tσ ∈ V
MC

i
(G)

, there
exists k (≥ i) such that tσ ↔∗

MC
k
(G)

tθ by induction on the structure
of t. If t is either a variable or a ground term, immediate. Otherwise, let
t = f(t1, . . . , tn) for f ∈ C. Since MC

i
(G) is subterm-closed, tjσ ∈ V

MC
i
(G)

for each j. Hence, induction hypothesis ensures tjσ ↔∗
MC

kj (G)
tjθ for some

kj ≥ i. Since MC(MC
i
(G)) ⊆ MC

i+1
(G) and Proposition 21, we have

tσ ↔∗
MC

k
(G)

tθ for k = 1 + max{k1, . . . , kn}.

We show the statement (2). Since s �∈ X, s is represented as f(s1, . . . , sn)
where each si is a semi-constructor term in V

MC
i
(G)

. Since there exists
k (≥ i) such that sjσ ↔∗

MC
k
(G)

sjθ, we have sσ ↔∗
MF (MC

k
(G))

sθ.

(3) Since G2i
is convergent, there exists v with �σ →∗

2i
v ←∗

2i
u. Here, u →∗

2i
v

and �σ →∗
2i

v imply u (→2i
∩ ε<→

R
)∗ vand�σ (→2i

∩ ε<→
R

)∗ v, respectively. Since
R is non-E-overlapping, �σ →∗

2i
v has no reductions at PosF (�). By a similar

argument to that of (1), we have �|pσ ↔∗
MC

i
(G)

v|p for each p ∈ PosX(�).

Let x ∈ Var(�). Since MC
i
(G) is convergent from Corollary 19 (3), we have

xσ = �σ|p →∗
MC

i
(G)

xθ ←∗
MC

i
(G)

v|p for each p ∈ Pos{x}(�) by taking θ as

xθ = xσ↓
MC

i
(G)

. Since � is weakly shallow, by repeating (2) to each step
in v|p →∗

MC
i
(G)

xθ, there exists k with v↔∗
2k

�θ. We have u (ε<→
R

∩ ↔∗
2k

)∗

v (ε<→
R

∩ ↔∗
2k

)∗ �θ by Proposition 21. ��

6 Bottom-Up Construction of Convergent
Reduction Graph

From now on, we assume that a TRS R is non-E-overlapping, non-collapsing,
and weakly shallow. We show that R is confluent by giving a transformation of
any R-reduction graph G0 (possibly) containing a divergence into a convergent

Non-E-Overlapping, Weakly Shallow, and Non-Collapsing TRSs 121

and subterm-closed R-reduction graph G4 with G0 � G4. The non-collapsing
condition is used only in Lemma27. Note that non-overlapping is not enough to
ensure confluence as R1 in Example 2. Now, we see an overview by an example.

Example 26. Consider R2 in Example 13. Given G0 = {f(g(c), c) ← f(c, c) →
f(c, g(c)) ε→ g3(c)}, we firstly take the subterm graph sub(G0) and apply the
transformation on it recursively to obtain a convergent and subterm-closed
reduction graph G. In the example case, sub(G0) happens to be equal to G in
Example 13, and already satisfies the conditions. Secondly, we apply Lemma22
on MF (G) and obtain G1 in Example 2. As the next steps, we will merge the
top edges T1 in G0 ∪G into G1, where T1 = {f(c, g(c)) ε→ g3(c), c ε→ g(c)}. Note
that top edges in G is necessary for subterm-closedness. The union G1 ∪ T1

is not, however, confluent in general. Thirdly, we remove unnecessary edges
from T1 by Lemma 27, and obtain T (in the example T = T1). Finally, by
Lemma 28, we transform edges in T into S with modifying G1 into G1′ so that
G4 = G1′ |D ∪ S ∪ MC(MC

k′
(G)) is confluent (k′ ≥ k). The resultant reduction

graph G4 is shown in Fig. 3, where the dashed edges are in S and some garbage
vertices are not presented. (See Example 30 for details of the final step).

c f(c, c) → f(g(c), c) f(g2(c), c)��� ↓ ↓ ↓
g(c) f(c, g(c)) → f(g(c), g(c)) → f(g2(c), g(c))

g2(c) f(c, g2(c)) → f(g(c), g2(c)) → f(g2(c), g2(c))

g3(c) → g4(c) → g5(c) ��� f(g2(c), g3(c))

Fig. 3. G4 constructed by Lemma29 from G0 in Example 26

6.1 Removing Redundant Edges and Merging Components

For R-reduction graphs G1 = 〈V1,→1〉 and T1 = 〈V1,→T1〉, the component
graph (denoted by T1/G1) of T1 with G1 is the graph 〈V,→V〉 having connected
components of G1 as vertices and →T1 as edges such that

V = {[v]↔∗
1

| v ∈ V1}, →V = {([u]↔∗
1
, [v]↔∗

1
) | (u, v) ∈ →T1}.

Lemma 27. Let G1 = 〈V1,→1〉 be an R-reduction graph obtained from
Lemma 22, and let T1 = 〈V1,→T1〉 be an R-reduction graph with →T1 = ε→T1

.
Then, there exists a subgraph T = 〈V1,→T 〉 of T1 with →T ⊆ →T1 that satisfies
the following conditions.

(1) (↔1 ∪ ↔T1
)∗ = (↔1 ∪ ↔T)∗.

(2) The component graph T/G1 is acyclic in which each vertex has at most one
outgoing-edge.

122 M. Sakai et al.

Proof. We transform the component graph T1/G1 by removing edges in cycles
and duplicated edges so that preserving its connectivity. This results in an acyclic
directed subgraph T = 〈V1,→T 〉 without multiple edges.

Suppose some vertex in T/G1 has more than one outgoing-edges, say
�σ →T rσ and �′θ →T r′θ, where �σ ↔∗

1 �′θ, rσ, rθ ∈ V1 and � → r, �′ → r′ ∈ R.
Since R is non-E-overlapping, we have � = �′ and r = r′. By the condition
(ii) of Lemma 22, �σ ↔∗

2k
�θ holds. Since R is non-collapsing, Lemma 25 (1) and

(2) ensure rσ ↔∗
2j

rθ for some j (≥ k). By the condition (iii) of Lemma22,
rσ ↔∗

1 rθ. These edges duplicate, contradicting to the assumption. ��
In Lemma 27, if →T is not empty, there exists a vertex of T/G1 that has

outgoing-edges, but no incoming-edges. We call such an outgoing-edge a source
edge. Lemma 28 converts T to S in a source to sink order (by repeatedly choosing
source edges) such that, for each edge in S, the initial vertex is →1-normal.

Lemma 28. Let G1, S, and T be R-reduction graphs, where G1 and k satisfy
the conditions (i) to (iv) of Lemma 22. Assume that the following conditions
hold.

(v) VS = VT = VG1 , →S = ε→S ,→T = ε→T , and →S ∩ →T = ∅.
(vi) The component graph (S ∪ T)/G1 is acyclic, where outgoing-edges are at

most one for each vertex. Moreover, if [u]↔∗
1
has an incoming-edge in T/G1

then it has no outgoing-edges in S/G1.
(vii) u is →1-normal and u �↔∗

1v for each (u, v) ∈ →S.

When →T �= ∅, there exists a conversion (S, T,G1, k) � (S′, T ′, G1′ , k′) that
preserves the conditions (i) to (iv) of Lemma 22, and conditions (v) to (vii), and
satisfies the following conditions (1) to (3).

(1) G1′ is a conservative extension of G1.
(2) (↔T ∪ ↔S)∗ ⊆ (↔T ′ ∪ ↔S′ ∪ ↔1′)∗.
(3) |→T | > |→T ′ |
Proof. We design � as sequential applications of ��, �r, and �e in this order. We
choose a source edge (�σ, rσ) (of T/G1) from T . We will construct a substitution
θ such that (�σ)↓1 (ε<→

R
∩ ↔∗

2k′)
∗ �θ and (rσ)↓1 (ε<→

R
∩ ↔∗

2k′)
∗ · (ε<←

R
∩ ↔∗

2k′)
∗ rθ for

enough large k′. The former sequence is added to G1 by ��, the latter is added
to G1 by �r, and �e removes (�σ, rσ) from T and adds (lθ, rθ) to S.

We have �σ →∗
1 (�σ)↓1 by i), and �σ ↔∗

2k
(�σ)↓1 by ii). From Lemma 25 (3),

there are k� ≥ k and a substitution θ such that xσ →∗
MC

k
(G)

xθ for each x ∈
Var(�), (�σ)↓1 = u0

ε<→
R

u1
ε<→
R

· · · ε<→
R

un = �θ, and uj−1 ↔∗
2

k�
uj for each j(≤ n).

(��) We define (S, T,G1, k) �� (S, T,G1� , k�) by G1� = G1 � (u0 → · · · → un)
to satisfy (�σ)↓1 ↔∗

1� �θ such that �θ is G1� -normal. Since u0 is →1-normal,
the case (1) of Corollary 24 holds, so that �� preserves (i) to (iv) for G1�

and k�. (1) and (2) are immediate. From (1), (vi) is preserved. Since [�σ]↔∗
1

does not have outgoing edges in S by (vi), (vii) is preserved.

Non-E-Overlapping, Weakly Shallow, and Non-Collapsing TRSs 123

(�r) We define (S, T,G1� , k�) �r (S, T,G1′ , k′). Let G1� = 〈V1� ,→1�〉. Since
xσ ↔∗

MC
k�

(G)
xθ by Proposition 21 and rσ ∈ V2

k�
, we obtain rσ ↔∗

2k′ rθ for

some k′ ≥ k� by Lemma 25 (2). We construct G1′ to satisfy (rσ)↓1� ↔∗
1′ rθ.

Since the confluence of G2k′ follows from Corollary 19 (3) and
Proposition 14 (1), we have the following sequences.

{
(rσ)↓1� = u0 →2k′ u1 →2k′ · · · →2k′ un = v,

rθ = v0 →2k′ v1 →2k′ · · · →2k′ vm = v,

where we choose the least n satisfying un = vm. There are two cases accord-
ing to the second sequence.

(a) If vi ∈ V1� for some i, we choose i as the least. If i = 0, then G1′ = G1� .
Otherwise, let G1′ := G1� � (v0 → v1 → · · · → vi). Since G1� satisfies
the case (2) of Corollary 24, �r preserves (i) to (iv). Since u0 ↔∗

2k′ vi and
u0, vi ∈ V1� , u0 ↔∗

1� vi by (iii). Thus, (rσ)↓1� ↔∗
1′ rθ.

(b) Otherwise (i.e., vi �∈ V1� for each i), let
{

G1′′ := G1� � (u0 → u1 → · · · → un)
G1′ := G1′′ � (v0 → v1 → · · · → vm).

Since u0 is G1� -normal and uj ∈ V1� implies u0 ↔∗
1� uj (by iii) of G1� ,

G1′′ and k′ satisfy (i) to (iv) by Corollary 24. Let G1′′ = 〈V1′′ ,→1′′〉. Since
vi �∈ V1′′ for each i (< m) and vm = un = v ∈ V1′′ , G1′ and k′ also satisfy
(i) to (iv) by Corollary 24. By construction, (rσ)↓1� ↔∗

1′ rθ holds.
Since S and T do not change, �r keeps (v), (1), and (2). Lastly, (vi) and
(vii) follows from (1).

(�e) We define (S, T,G1′ , k′) �e (S′, T ′, G1′ , k′), where VS′ = VG1′ , VT ′ = VG1′ ,
→S′ = →S ∪ {(�θ, rθ)}, and →T ′ = →T \ {(�σ, rσ)}. Since (�σ, rσ) is a
source edge of T/G1, �e preserves (vi). Conditions (i) to (v), (1) and (3)
are trivial. Since �σ ↔∗

G1′ (�σ)↓1 ↔∗
G1′ �θ →S′ rθ ↔∗

G1′ (rσ)↓1� ↔∗
G1′ rσ

implies (�σ, rσ) ∈ ↔∗
S′∪G1′ , we have (2). (vii) holds from (vi). ��

6.2 Construction of a Convergent and Subterm-Closed Graph

Lemma 29. Let G0 = 〈V0,→0〉 be an R-reduction graph. Then, there exists a
convergent and subterm-closed R-reduction graph G4 with G0 � G4.

Proof. By induction on the sum of the size of terms in V0, i.e., Σv∈V0 |v|. If G0

has no vertex, we set G4 = G0, which is the base case. Otherwise, by induction
hypothesis, we obtain a convergent and subterm-closed R-reduction graph G
with sub(G0) � G. We refer to the conditions (i) to (vii) in Lemma28.

Let G1 = 〈V1,→1〉 and k be as in Lemma 22. Let T be obtained from G1 and
T1 = 〈V1,→Gε ∪ →Gε

0
〉 by applying Lemma27.

Let S = 〈V1, ∅〉. For G1 and k, (i) to (iv) hold by Lemma22. (vi) holds by
Lemma 27 (2) and →S = ∅, and (vii) trivially holds. Starting from (S, T,G1, k),
we repeatedly apply � (in Lemma 28), which moves edges in T to S until →T = ∅.

124 M. Sakai et al.

Finally, we obtain (S′, 〈V1′ , ∅〉, G1′ , k′) that satisfies (i) to (vii) and (1) to (3) in
Lemma 28, where G1′ = 〈V1′ ,→1′〉 and VS′ = V1′ . From Lemmas 27 and 28 (1)
and (2), (↔1 ∪ ↔Gε ∪ ↔Gε

0
)∗ = (↔1 ∪ ↔T)∗ ⊆ (↔1′ ∪ ↔S′)∗. Note that G1′ is

convergent by (i).
Let G3 = 〈V3,→3〉 be S′ ∪G1′ . This is obtained by repeatedly extending G1′

by G1′ � (u → v) for each (u, v) ∈ →S′ , since in each step (vii) is preserved; u is
→1′ -normal and u �↔∗

1′v. Thus, the convergence of G3 follows from Proposition 7.
We show G0 � G3. Since Gε

0 ⊆ T1 � G1 ∪ T � G1′ ∪ S′ (by Lemmas 27
and 28) and MF (sub(G0)) � MF (G) � G1 � G1′ (by sub(G0) � G and iv)),
G0 ⊆ Gε

0 ∪ MF (sub(G0)) � S′ ∪ G1′ = G3.

Let G4 = 〈V4,→4〉 be given by G4 := G3|D � MC(MC
k′

(G)). We show
G0 � G4 by showing G3 � G4. Since G1′ � G2k′ by (ii) where G2k′ contains no
top edges, we have V1′ |C ⊆ V2k′ |C and →1′ |C ⊆ (↔2k′ |C)∗. Since →2k′ |C =

→
MC(MC

k′
(G))

, we have G1′ |C � 〈V1′ , ∅〉 ∪ MC(MC
k′

(G)). Thus, G1′ = G1′ |D ∪
G1′ |C � G1′ |D ∪ MC(MC

k′
(G)). By S′ = S′|D, we have G3 = S′ ∪ G1′ �

S′|D ∪ G1′ |D ∪ MC(MC
k′

(G)) = G4.
Now, our goal is to show that G4 is convergent and subterm-closed.

The convergence of G4 = G3|D � MC(MC
k′

(G)) is reduced to that of
G3 = G3|D � 〈V3|C ,→3|C〉 by Proposition 4 and Lemma 5. Their requirements

are satisfied from 〈V3|C ,→3|C〉 = 〈V1′ |C ,→1′ |C〉 � MC(MC
k′

(G)) by (ii) and

the convergence of MC(MC
k′

(G)) by Corollary 19 (3) and Proposition 14 (1).
We will prove that G4 is subterm-closed by showing sub(G�=ε

4) � MC
k′

(G)

and MC
k′

(G) � G4. Note that sub(G�=ε
4) = sub((S′|D)�=ε ∪ (G1′ |D)�=ε ∪

(MC(MC
k′

(G)))�=ε) ⊆ sub(S′�=ε)∪ sub(G1′ |D)∪MC
k′

(G). We have sub(S′�=ε) =
〈sub(V1′), ∅〉. Since G2k′ has no top edges and G1′ � G2k′ by (ii), sub(G1′) �
sub(G2k′) = sub(MF (MC

k′
(G))) ⊆ MC

k′
(G). Thus, sub(G�=ε

4) � MC
k′

(G).

It remains to show MC
k′

(G) � G4, which is reduced to G|D � G4 from

MC
k′

(G) = G|D ∪ MC(MC
k′−1

(G)), MC(MC
k′

(G)) ⊆ G4, and Proposition 21.
Since G|D ⊆ G � Gε ∪ MF (G) by Lemma 17 (2), it is sufficient to show that
Gε � G4 and MF (G) � G4.

Obviously, MF (G) � G1′ ⊆ G3 � G4 holds, since MF (G) � G1′ by (iv). We
show Gε � G4. Since VG ⊆ VMF (G) by Proposition 14 (2), we have VGε = VG ⊆
VMF (G) ⊆ V1′ ⊆ V3 ⊆ V4. By Lemmas 27 (1) and 28 (2), →Gε ⊆ (↔G1′ ∪ ↔S′)∗

holds, and by (ii) we have →G1′ |C ⊆ ↔∗
MC(MC

k′
(G))

. Hence, →Gε ⊆ (↔G1′ |D ∪
↔S′ ∪ ↔

MC(MC
k′

(G))
)∗ = ↔∗

G4
. Therefore G4 is subterm-closed. ��

Example 30. Let us consider applying Lemma29 on G1 and T in Example 26,
where k = 1. The edge c → g(c) in T is simply moved to S. For the edge
f(c, g(c)) → g3(c) in T , �� adds f(g2(c), g2(c)) → f(g2(c), g3(c)) to G1. �r adds
g3(c) → g4(c) → g5(c) to G1 and increases k to 3. �e adds f(g2(c), g3(c)) →

Non-E-Overlapping, Weakly Shallow, and Non-Collapsing TRSs 125

g5(c) to S. Since MC(MC
3
(G)) is {g(c) → g2(c) → · · · → g4(c) → g5(c), g6(c)},

G4 = (S ∪ G1|D) � MC(MC
3
(G)) is as in Fig. 3.

Theorem 31. Non-E-overlapping, weakly shallow, and non-collapsing TRSs
are confluent.

Proof. Let u ←∗
R s →∗

R t. We obtain G4 by applying Lemma 29 to an R-reduction
graph G0 consisting of the sequence. By G0 � G4 and the convergence of G4,
u↓G4

= t↓G4
. Thus we have u →∗

R s′ ←∗
R t for some s′. ��

Corollary 32. Strongly non-overlapping, weakly shallow, and non-collapsing
TRSs are confluent.

7 Conclusion

This paper extends the reduction graph technique [19] and has shown that non-
E-overlapping, weakly shallow, and non-collapsing TRSs are confluent.

We think that the non-collapsing condition can be dropped by refining the
reduction graph techniques. A further step will be to relax the weakly shallow
to the almost weakly shallow condition, which allows at most one occurrence of
a defined function symbol in each path from the root to a variable.

References

1. Comon, H., Haberstrau, M., Jouannaud, J.-P.: Syntacticness, cycle-syntacticness,
and shallow theories. Inf. Comput. 111, 154–191 (1994)

2. Godoy, G., Tiwari, A.: Confluence of shallow right-linear rewrite systems. In: Ong,
L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 541–556. Springer, Heidelberg (2005)

3. Gomi, H., Oyamaguchi, M., Ohta, Y.: On the church-rosser property of root-
E-overlapping and strongly depth-preserving term rewriting systems. IPS J 39(4),
992–1005 (1998)

4. Gramlich, B.: Confluence without termination via parallel critical pairs. In:
Kirchner, H. (ed.) CAAP 1996. LNCS, vol. 1059, pp. 211–225. Springer, Heidelberg
(1996)

5. Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. J.
Autom. Reason. 47(4), 481–501 (2011)

6. Huet, G.: Confluent reductions: abstract properties and applications to term rewrit-
ing systems. J. ACM 27, 797–821 (1980)

7. Klein, D., Hirokawa, N.: Confluence of non-left-linear TRSs via relative termina-
tion. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp.
258–273. Springer, Heidelberg (2012)

8. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech,
J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297 (1970)

9. Klop, J.W.: Term Rewriting Systems, in Handbook of Logic in Computer Science,
vol. 2. Oxford University Press, New York (1993)

10. Liu, J., Dershowitz, N., Jouannaud, J.-P.: Confluence by critical pair analysis.
In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 287–302. Springer,
Heidelberg (2014)

126 M. Sakai et al.

11. Mitsuhashi, I., Oyamaguch, M., Jacquemard, F.: The confluence problem for flat
TRSs. In: Calmet, J., Ida, T., Wang, D. (eds.) AISC 2006. LNCS (LNAI), vol.
4120, pp. 68–81. Springer, Heidelberg (2006)

12. Mitsuhashi, I., Oyamaguchi, M., Matsuura, K.: On the E-overlapping property of
Wweak monadic TRSs. IPS J. 53(10), 2313–2327 (2012). (in Japanese)

13. Ogawa, M., Ono, S.: On the uniquely converging property of nonlinear term rewrit-
ing systems. Technical report of IEICE, COMP89–7, pp. 61–70 (1989)

14. Okui, S.: Simultaneous critical pairs and church-rosser property. In: Nipkow, T.
(ed.) RTA 1998. LNCS, vol. 1379, pp. 2–16. Springer, Heidelberg (1998)

15. van Oostrom, V.: Development closed critical pairs. In: Dowek, G., Heering, J.,
Meinke, K., Möller, B. (eds.) HOA 1995. LNCS, vol. 1074, pp. 185–200. Springer,
Heidelberg (1996)

16. Oyamaguchi, M., Ohta, Y.: A new parallel closed condition for Church-Rosser of
left-linear term rewriting systems. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232,
pp. 187–201. Springer, Heidelberg (1997)

17. Rosen, B.K.: Tree-manipulating systems and Church-Rosser theorems. J. ACM 20,
160–187 (1973)

18. Sakai, M., Wang, Y.: Undecidable properties on length-two string rewriting sys-
tems. ENTCS 204, 53–69 (2008)

19. Sakai, M., Ogawa, M.: Weakly-non-overlapping non-collapsing shallow term rewrit-
ing systems are confluent. Inf. Process. Lett. 110, 810–814 (2010)

20. Sakai, M., Oyamaguchi, M., Ogawa, M.: Non-E-overlapping and weakly shallow
TRSs are confluent (extended abstract). IWC 34–38, 2014 (2014)

21. Toyama, Y.: Commutativity of term rewriting systems. In: Programming of Future
Generation Computer II, pp. 393–407 (1988)

22. Toyama, Y., Oyamaguchi, M.: Church-Rosser property and unique normal
form property of non-duplicating term rewriting systems. In: Lindenstrauss, N.,
Dershowitz, N. (eds.) CTRS 1994. LNCS, vol. 968, pp. 316–331. Springer,
Heidelberg (1995)

CoLL: A Confluence Tool for Left-Linear Term
Rewrite Systems

Kiraku Shintani and Nao Hirokawa(B)

School of Information Science, JAIST, Nomi, Japan
{s1310032,hirokawa}@jaist.ac.jp

Abstract. We present a confluence tool for left-linear term rewrite sys-
tems. The tool proves confluence by using Hindley’s commutation theo-
rem together with three commutation criteria, including Church-Rosser
modulo associative and/or commutative theories. Despite a small num-
ber of its techniques, experiments show that the tool is comparable to
recent powerful confluence tools.

1 Introduction

In this paper we present the new confluence tool CoLL for left-linear term rewrite
systems (TRSs). The tool has two distinctive features. One is use of Jouan-
naud and Kirchner’s theorem for the Church-Rosser modulo property. Our tool
supports rewriting modulo associativity and/or commutativity rules. Another
notable feature is that confluence is proved by commutation criteria only. By
using Hindley’s Commutation Theorem [1] confluence is proved via commuta-
tion of subsystems of an input TRS. In addition to them, CoLL implements a
simple transformation technique that eliminates redundant rewrite rules.

The remaining part of the paper is organized as follows: In Sect. 3 we dis-
cuss how to use the Church-Rosser modulo theorem for associativity and/or
commutativity rules. Commutation criteria and decomposition techniques sup-
ported in the tool are described in Sect. 4. In Sect. 5 we report experimental
results to assess effectiveness of the presented techniques and the tool. The final
section describes related work and concluding remarks. The tool is available at:

http://www.jaist.ac.jp/project/saigawa/coll/

2 Preliminaries

We assume familiarity of term rewriting and unification theory [2]. We recall
here only some notions for rewriting and rewriting modulo. We consider terms
built from a signature F and a set V of variables. We write s � t if t is a proper
subterm of s.

Supported by JSPS KAKENHI Grant Number 25730004 and Core to Core Program.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 127–136, 2015.
DOI: 10.1007/978-3-319-21401-6 8

http://www.jaist.ac.jp/project/saigawa/coll/

128 K. Shintani and N. Hirokawa

Commutation. Let R and S be TRSs. We say that R and S commute if
∗

R← · →∗
S ⊆ →∗

S · ∗
R←. Confluence of R is equivalent to self-commutation of

R, i.e., commutation of R and R. The relation →∗
S · →R · →∗

S is called the rel-
ative step of R over S, and denoted by →R/S . We say that R/S is terminating
if →R/S is terminating.

Multi-steps. The multi-step ◦−→R of a TRS R is inductively defined on terms as
follows:

1. x ◦−→R x for all x ∈ V,
2. f(s1, . . . , sn) ◦−→R f(t1, . . . , tn) if si ◦−→R ti for all 1 � i � n, and
3. �σ ◦−→R rτ if � → r ∈ R and σ and τ are substitutions that xσ ◦−→R xτ for

all variables x.

Rewriting Modulo. Let R and E be TRSs. The rewrite step →R,E of R modulo
theory E is defined as follows: s →R,E t if If s|p ↔∗

E �σ and t = s[rσ]p for some
position p ∈ PosF (s), rule � → r ∈ R, and substitution σ. The relation →R,E is
Church-Rosser modulo E , denoted by CR(R, E), if ↔∗

R∪E ⊆ →∗
R,E · ↔∗

E · ∗
R,E←.

Let FA, FC, and FAC be pairwise disjoint sets of binary function symbols. We
define the three theories A (associativity), C (commutativity), and AC as:

A = {f(f(x, y), z) → f(x, f(y, z)), f(x, f(y, z)) → f(f(x, y), z) | f ∈ FA}
C = {f(x, y) → f(y, x) | f ∈ FC}

AC = {f(f(x, y), z) → f(x, f(y, z)), f(x, y) → f(y, x) | f ∈ FAC}
Critical Pairs. Conditions for confluence are often based on the notion of critical
pairs. We denote by UE(s ≈ t) a fixed complete set of E-unifiers for terms s and t.
Let �1 → r1 be a rule in a TRS R and �2 → r2 a variant of a rule in a TRS S
with Var(�1) ∩ Var(�2) = ∅. When p ∈ PosF (�2) and σ ∈ UE(�1 ≈ �2|p), the pair
(�2σ[r1σ]p, r2σ) is called an E-extended critical pair (or simply E-critical pair)
of R on S, and written �2σ[r1σ]p R,E←�→S r2σ.

3 Confluence via Church-Rosser Modulo

In this section we explain how the next theorem by Jouannaud and Kirchner [3] is
used for confluence analysis. Especially, we discuss how to deal with associativity
and/or commutativity rules.

Theorem 1. Let R and E be TRSs that R/E is terminating and � · ↔∗
E is

well-founded. Then, CR(R, E) iff R,E←�→R∪E∪E−1 ⊆ →∗
R,E · ↔∗

E · ∗
R,E←. �

We use the next left-linear TRS R1 to illustrate problems that arise when
employing Theorem 1:

1: 0 + x → x 2: x + (y + z) → (x + y) + z 3: (x + y) + z → x + (y + z)

Let FA = {+}. We may assume A = {2, 3}. An idea here is proving CR({1},A)
to conclude confluence of R1. The next trivial lemma validates this idea. We call
a TRS E reversible if →E ⊆ ∗

E← holds.

CoLL: A Confluence Tool for Left-Linear Term Rewrite Systems 129

Lemma 2. Suppose E is reversible. If CR(R, E) then R ∪ E is confluent. �

Reversibility of A and well-foundedness of � · ↔∗
{2,3} are trivial. Termination of

{1}/A can be shown by AC-RPO [4]. Therefore, it remains to test joinability of
extended critical pairs to apply Theorem1.

3.1 Associative Unification

How to compute A-critical pairs? Plotkin [5] introduced a procedure that enu-
merates a minimal complete set of A-unifiers. It is well-known that a minimal
complete set need not to be finite, and thus the procedure may not terminate. In
fact there is a one-rule TRS that admits infinitely many A-critical pairs. Prob-
ably this is one of main reasons that existing confluence tools do not support
Theorem 1 for associativity theory. However, as observed in [6], a minimal com-
plete set resulting from the procedure is finite whenever an input equality is a
pair of linear terms that share no variables. Therefore, for every left-linear TRS
one can safely use Plotkin’s procedure to compute their A-critical pairs.

We present a simple variant of Plotkin’s procedure [5,7] specialized for our
setting. Let S and T be sets of substitutions. We abbreviate the set {στ | σ ∈
S and τ ∈ T} to ST . Given a term t, we write t↓A′ for the normal form of
t with respect to A′. Here A′ stands for the confluent and terminating TRS
{f(f(x, y), z) → f(x, f(y, z)) | f ∈ FA}.

Definition 3. Let s and t be terms. The function 〈s ≈ t〉 is inductively defined
as follows:

〈s ≈ t〉 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{{s �→ t}} if s ∈ V
{{t �→ s}} if s /∈ V and t ∈ V
A1 · · · An ∪ As,t ∪ At,s if s = f(s1, . . . , sn) and t = f(t1, . . . , tn)
∅ otherwise

where,

Ai = 〈si ≈ ti〉, As,t =

{
{{s1 �→ f(t1, s1)}}〈s ≈ t2〉 if (∗)
∅ otherwise

and (∗) stands for s = f(s1, s2), t = f(t1, t2), f ∈ FA, and s1 ∈ V.

Theorem 4. Let s and t be linear terms with Var(s) ∩ Var(t) = ∅. The set
〈s↓A′ ≈ t↓A′〉 is a finite complete set of their A-unifiers. �

We illustrate the use of the theorem. Let s = 0 + x, t = (x′ + y′) + z′, and
FA = {+}. A complete set of A-unifiers for the terms is computed as follows:

〈s↓A′ ≈ t↓A′〉 = 〈0 + x ≈ x′ + (y′ + z′)〉
=

(〈0 ≈ x′〉〈x ≈ y′ + z′〉) ∪ ({{x′ �→ 0 + x′}}〈x′ + (y′ + z′) ≈ x〉)

=
{{x′ �→ 0, x �→ y′ + z′}, {x′ �→ 0 + x′, x �→ x′ + (y′ + z′)}}

130 K. Shintani and N. Hirokawa

This set induces the A-critical pairs:

y′ + z′ {1},A← � →{3} 0 + (y′ + z′)
x′ + (y′ + z′) {1},A← � →{3} (0 + x′) + (y′ + z′)

Both of the right-hand sides reduce to the corresponding left-hand sides by the
rewriting modulo step →{1},A. What about the other critical pairs?

3.2 Coherence

Consider the A-critical pair:

x + z {1},A←�→{2} (x + 0) + z

Contrary to our intention, (x + 0) + z →{1},A x + z does not hold, and thus
CR({1},A) is refuted by Theorem 1. This undesired incapability of rewriting
modulo is known as the coherence problem [3,8].

Definition 5. A pair (R, E) is strongly coherent if ↔∗
E · →R,E ⊆ →R,E · ↔∗

E .

Lemma 6. Suppose E is reversible and (R, E) is strongly coherent. If CR(R, E)
then R ∪ E is confluent, and vice versa. �
While the strong coherence property always holds for rewriting modulo C, rewrit-
ing modulo A and AC rarely satisfy the property. This can be overcome by
extending a rewrite system. Since an extension for AC is known [3,8], here we
consider an A-extension of a TRS.

Definition 7. Let R be a TRS. The A-extended TRS ExtA(R) consists of

� → r f(�, x) → f(r, x) f(x, f(�, y)) → f(x, f(r, y))
f(x, �) → f(x, r)

for all rules � → r ∈ R with f = root(�) ∈ FA. Here x and y are fresh variables
not in �.

Lemma 8. The pair (ExtA(R),A) is strongly coherent and →ExtA(R) = →R.

Proof. From the inclusion →A · →ExtA(R),A ⊆ →ExtA(R),A · →∗
A the first claim

follows. Since →R is closed under contexts, the second claim is trivial. �
The TRS ExtA({1}) consists of the four rules:

0 + x → x w + (0 + x) → w + x

(0 + x) + y → x + y w + ((0 + x) + y) → w + (x + y)

As the extended TRS contains all original rules, we have again the previous
A-critical pair:

x + z {1},A←�→{2} (x + 0) + z

Since (x + 0) + z →ExtA({1}),A x + z holds, the pair is joinable. Similarly, one can
verify that all other A-critical pairs are joinable. Therefore, CR(ExtA({1}),A) is
concluded by Theorem 1. Finally, confluence of R1 is established.

CoLL: A Confluence Tool for Left-Linear Term Rewrite Systems 131

3.3 Commutative Unification

Commutative unification also benefits from left-linearity. We define UC
E (s ≈ t)

as {μ | s ◦−→C s′ and μ ∈ UE(s′ ≈ t) for some s′}.

Lemma 9. Suppose C and E ∪ E−1 commute. If Var(s) ∩ Var(t) = ∅ and s is
linear then UC

E (s ≈ t) is a complete set of C ∪ E-unifiers for s and t.

Proof. Since it is trivial that UC
E (s ≈ t) consists of E ∪ C-unifiers, we only show

completeness of the set. Let sσ ↔∗
C∪E tσ. One can show (↔E ∪→C)∗ ⊆ ∗

C← · ↔∗
E

by using induction, commutation, and the reversibility of C. Thus, sσ ∗
C← u ↔∗

E
tσ for some u. Since ◦−→C = ↔∗

C holds, sσ ◦−→C u. Due to the linearity of s there
are s′ and σ′ such that u = s′σ′, s ◦−→C s′, and xσ ◦−→C xσ′ for all variables x.
We define the substitution μ as follows:

μ = {x �→ xσ | x ∈ Var(s)} ∪ {x �→ xσ′ | x ∈ Var(t)}

Since s and t share no variables, μ is well-defined. By the definition we obtain
s′μ ↔∗

E tμ. �

Since A and C are left-linear TRSs that share no function symbols, their commu-
tation can be proved (by using e.g. Theorem11 in the next section). So Lemma 9
gives a way to compute A ∪ C-critical pairs.

Example 10. Consider the left-linear TRS R2 with FA = {∗} and FC = {eq}:

1 : eq(a, a) → T 3: eq(a ∗ x, y ∗ a) → eq(x, y) 5 : (x ∗ y) ∗ z → x ∗ (y ∗ z)
2 : eq(a, x ∗ y) → F 4: eq(x, y) → eq(y, x) 6 : x ∗ (y ∗ z) → (x ∗ y) ∗ z

Let R = {1, 2, 3} and E = {4, 5, 6}. Note that E = C ∪ A. It is sufficient to
show CR(ExtA(R), E). We can use AC-RPO to prove termination of R/E , which
is equivalent to that of ExtA(R)/E due to the identity in Lemma6. Let s =
eq(a ∗ x, y ∗ a) and t = eq(a ∗ x′, y′ ∗ a). A complete set of their A ∪ C-unifiers is:

UC
A (s ≈ t) = 〈s ≈ t〉 ∪ 〈eq(y ∗ a, a ∗ x) ≈ eq(a ∗ x′, y′ ∗ a)〉

=

⎧
⎨

⎩

{x �→ x′, y �→ y′},
{x �→ a, y �→ a, x′ �→ a, y′ �→ a}
{x �→ y′ ∗ a, y �→ a ∗ y, x′ �→ y ∗ a, y′ �→ a ∗ y′}

⎫
⎬

⎭

In this way we can compute complete sets to induce the set of all E-critical pairs.
Since all pairs are joinable, CR(R, E) is concluded.

4 Commutation

4.1 Commutation Criteria

Our tool employs three commutation criteria. The first commutation criterion
is the development closedness theorem [9–12].

132 K. Shintani and N. Hirokawa

Theorem 11 (Development Closedness). Left-linear TRSs R and S com-
mute if the inclusions R←�→S ⊆ ◦−→S and R←�→S ⊆ →∗

S · ◦←−R hold. �

The second criterion is the commutation version of the confluence criterion based
on rule labeling with weight function [13,14].

Definition 12. A weight function w is a function from F to N. The weight
w(C) of a context C is defined as follows:

w(C) =

{
0 if C = �
w(f) + w(C ′) if C = f(t1, . . . , C ′, . . . , tn) with a context C ′

The weight is admissible for a TRS R if

{w(C) | C[x] = �} �mul {w(C) | C[x] = r}
holds for all � → r ∈ R and x ∈ Var(r). Here �mul stands for the multiset
extension of the standard order > on N (see e.g. [2]). A rule labeling φ for a
TRS R is a function from R to N. The labeled step α−→R is defined as follows:
s →R,(k,m) t if there are a rule � → r, a context C, and a substitution σ such
that s = C[�σ], t = C[rσ], and α = (w(C), φ(� → r)).

In the next theorem we use the following abbreviations for labeled steps:

I−→ =
⋃

α∈I

α−→ �α = {β ∈ I | α � β} �αβ = (�α) ∪ (�β)

where, � stands for the lexicographic order on N × N.

Theorem 13 (Rule Labeling). Left-linear TRSs R and S commute if there
are an admissible weight function w and a rule labeling φ for R ∪ S such that

(R
α←−�

β−→S) ∪ (R
α←−�

β−→S) ⊆ �α−−→∗
S · β−→=

S · �αβ−−−→∗
S · ∗

R
�αβ←−−− · =

R
α←− · ∗

R
�β←−−

for all pairs α, β ∈ N × N. �

The final criterion is a trivial adaptation of Theorem1 to the commutation
property, integrating Lemmata 6, 8, and 9.

Theorem 14 (Church-Rosser Modulo). Let R,S be left-linear TRSs and
E ∈ {A,AC} such that R/E ′ is terminating for E ′ = E ∪ C. The TRSs R ∪ E ′

and S ∪ E ′ commute if and only if the inclusion holds:

(R′,E′←�→S′∪E′) ∪ (R′∪E′←�→S′,E′) ⊆ →∗
S′,E′ · ↔∗

E′ · ∗
R′,E′←

Here R′ = ExtE(R) and S ′ = ExtE(S). �

Note that our tool uses the algorithm in [15] for AC unification and flattened
term representation for overcoming the coherence problem of AC-rewriting. Since
we use the dedicated algorithms for A and AC unification, currently we cannot
employ Theorem 1 with E = A ∪ AC.

CoLL: A Confluence Tool for Left-Linear Term Rewrite Systems 133

4.2 Commutation Theorem

The next theorem is known as Hindley’s Commutation Theorem [1].

Theorem 15 (Commutation Theorem). If α−→ and
β−→ commute for all α ∈ I

and β ∈ J then I−→ and J−→ commute. �

Example 16. Consider the left-linear TRS R3:

1 : 0 × y → nil 5: nil++ x → x

2: s(x) × y → y ++(x × y) 6 : x ++ nil → x

3: hd(c(x)) → x 7: x ++(y ++ z) → (x ++ y)++ z

4: hd(c(x)++ y) → x 8: (x ++ y)++ z → x ++(y ++ z)
9 : from(x) → x : from(s(x))

By using the Commutation Theorem we show self-commutation of R3:

(i) Self-commutation of {1, . . . , 8} follows from Theorem 14.
(ii) Commutation of {1, . . . , 8} and {9} follows from Theorem 11.
(iii) Self-commutation of {9} is proved by Theorem 11.

Hence, R3 is confluent.

It is a non-trivial task to find suitable commuting subsystems from an expo-
nential number of candidates. In order to address the problem we introduce a
decomposition method based on composability, which was introduced by Ohle-
busch [16]. Let R be a TRS. We write FR, DR, and CR for the following sets:

FR =
⋃

�→r∈R
Fun(�) ∪ Fun(r) DR = {root(�) | � → r ∈ R} CR = FR \ DR

Definition 17. We say that TRSs R and S are composable if CR ∩ DS =
CS ∩ DR = ∅ and {� → r ∈ R ∪ S | root(�) ∈ DR ∪ DS} ⊆ R ∩ S.

Ohlebusch [16] posed the following question.

Question 18. Are left-linear composable TRSs R and S confluent if and only if
R ∪ S is confluent?

Although the question still remains open, the following variation is valid.

Theorem 19. Commuting composable TRSs R and S are confluent if and only
if R ∪ S is confluent. �

Example 20. Recall the TRS R3 from Example 16. The TRS is the union of the
three commuting composable subsystems: {1, 2, 5, 6, 7, 8}, {3, 4, 5, 6, 7, 8}, and
{9}. Confluence of each subsystem can be proved in the same method used in
the previous example. Hence, R3 is confluent.

134 K. Shintani and N. Hirokawa

5 Implementation

The confluence tool CoLL consists of about 5,000 lines of OCaml code. Given an
input TRS, the tool first performs the next trivial redundant rule elimination.

Theorem 21. Let R and S be TRSs with S ⊆ →∗
R. The TRS R∪S is confluent

if and only if R is confluent. �

Example 22. We illustrate the elimination technique with a small example taken
from the Confluence Problem Database (Cops)1. Consider the TRS:

1: f(x) → g(x, f(x)) 2 : f(f(f(f(x)))) → f(f(f(g(x, f(x)))))

Since {2} ⊆ →∗
{1} holds, we eliminate the redundant rule 2. Confluence of the

simplified system {1} is easily shown by Theorem 11. Note that CoLL cannot
prove confluence without using the elimination technique.

Next, the tool employs Theorem 19 to split the simplified TRS into commuting
composable subsystems R1, . . . ,Rn. For each subsystem Ri the tool performs
the non-confluence test of [17, Lemma 1]. If non-confluence is detected, the tool
outputs NO (non-confluence is proved). Otherwise, the tool uses the Commu-
tation Theorem together with the three commutation criteria (Theorems 11, 13,
and 14) to determine self-commutation of Ri. Suitable commuting subsystems
are searched by enumeration. It outputs YES (confluence is proved) if all of
R1, . . . ,Rn are confluent. Concerning automation, we employed AC-RPO for
checking termination of R/E automatically. Automation of Theorem13 is based
on the SAT encoding technique of [18].

We tested the presented techniques on 188 left-linear TRSs in Cops Nos. 1–425,
where we ruled out duplicated problems.2 The tests were run on a PC equipped
with an Intel Core i7-4500U CPU with 1.8 GHz and 3.8 GB of RAM using a time-
out of 120 sec. For the sake of comparison we also ran the tools that participated in
the 3rd Confluence Competition: ACP v0.5 [9], CSI v0.4.1 [17], and Saigawa v1.73.
The first table in Fig. 1 summarizes the results. The first three indicate the results
of each commutation criterion without using the Commutation Theorem. The sec-
ond table indicates the results of individual theories for Theorem14. The row ‘all
three’ in the first table is the summation of their results, and ‘all with elimination’
is the same but the elimination technique is enabled. The row CoLL corresponds
to the strategy stated above. On our problem set, all confluence proofs by Saigawa
are covered by CoLL. The results of CoLL, ACP, and CSI are incomparable.
1 http://cops.uibk.ac.at/.
2 All problems and results are available at the tool website (see the URL in Section 1).
3 http://www.jaist.ac.jp/project/saigawa/.

http://cops.uibk.ac.at/
http://www.jaist.ac.jp/project/saigawa/

CoLL: A Confluence Tool for Left-Linear Term Rewrite Systems 135

YES NO timeout

Church-Rosser modulo 93 8 1
development closed 17 0 0
rule labeling 58 0 26
all three 125 8 –
all with elimination 136 9 –

CoLL 137 16 21
ACP 134 41 0
CSI 118 38 11
Saigawa 105 16 17

E YES NO timeout

∅ 18 8 0
A 24 0 0
C 42 8 0
AC 64 8 1
C � AC 88 8 1
A � C � AC 93 8 1

Fig. 1. Experimental results.

6 Conclusion

We presented the new confluence tool CoLL for left-linear TRSs, which proves
confluence via commutation. Our primary contribution is automation of Jouan-
naud and Kirchner’s Church-Rosser modulo criterion for associativity and/or
commutativity theory, where left-linearity is exploited in several ways.

We briefly compare CoLL with existing confluence tools. CRC 3 [19] is a
powerful Church-Rosser checker for Maude and supports the Church-Rosser
modulo theorem for any combination of associativity, commutativity, and/or
identity theories, except associativity theory. When handling TRSs that con-
tain reversible rules, ACP [9] employs reduction-preserving completion [20]. This
method effectively works for C and AC rules, but not for associativity rules.
ACP and CSI [17] employ layer-preserving decomposition [16] to split a TRS
into subsystems. The technique is incomparable to Theorem 19. If Question 18 is
affirmatively solved, it generalizes the two techniques for the class of left-linear
TRSs. Finally, CoLL was designed for a complement of Saigawa. The two tools
will be merged in the next version.

As future work we plan to investigate whether Theorem19 can be generalized
to cover a subclass of hierarchical combination [16]. Another interesting direction
is the modularity of the commutation property. Since confluence is a modular
property [21], it is closed under signature extension. Contrary to our expectation,
(even local) commutation is not signature extensible. Consider the TRSs R and
S over the signature F = {f(2), a(0), b(0)}:

R = { a → b } S =
{
f(x, x) → b, f(a, x) → b, f(x, a) → b

f(b, x) → b, f(x, b) → b

}

Since C[t] →∗
S b holds for all contexts C and t ∈ {a, b}, we obtain the strong com-

mutation R← · →S ⊆ →∗
S · =

R←, which entails commutation of R and S. How-
ever, if one extends the signature to F ∪ {g(1)}, the local peak f(g(b), g(a)) R←
f(g(a), g(a)) →S b no longer commutes. We conjecture that (local) commutation
is closed under signature extension for left-linear TRSs.

136 K. Shintani and N. Hirokawa

Acknowledgements. We are grateful for the detailed comments of the anonymous
reviewers, which helped us to improve the presentation.

References

1. Hindley, J.R.: The Church-Rosser Property and a Result in Combinatory Logic.
Ph.D. thesis, University of Newcastle-upon-Tyne (1964)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

3. Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equa-
tions. SIAM J. Comput. 15(4), 1155–1194 (1986)

4. Rubio, A.: A fully syntactic AC-RPO. Inf. Comput. 178(2), 515–533 (2002)
5. Plotkin, G.: Building in equational theories. Mach. Intell. 7, 73–90 (1972)
6. Schulz, K.: Word unification and transformation of generalized equations. In:

Abdulrab, H., Pecuchet, J.-P. (eds.) IWWERT 1991. LNCS, vol. 677, pp. 150–
176. Springer, Heidelberg (1993)

7. Schmidt, R.A.: E-Unification for subsystems of S4. In: Nipkow, T. (ed.) RTA 1998.
LNCS, vol. 1379, pp. 106–120. Springer, Heidelberg (1998)

8. Peterson, G., Stickel, M.: Complete sets of reductions for some equational theories.
J. ACM 28(2), 233–264 (1981)

9. Aoto, T., Yoshida, J., Toyama, Y.: Proving confluence of term rewriting sys-
tems automatically. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 93–102.
Springer, Heidelberg (2009)

10. Huet, G.: Confluent reductions: abstract properties and applications to term rewrit-
ing systems. J. ACM 27(4), 797–821 (1980)

11. Toyama, Y.: Commutativity of term rewriting systems. In: Fuchi, K., Kott, L. (eds.)
Programming of Future Generation Computers II, pp. 393–407. North-Holland,
Amsterdam (1988)

12. van Oostrom, V.: Developing developments. Theoret. Comput. Sci. 175(1), 159–
181 (1997)

13. van Oostrom, V.: Confluence by decreasing diagrams. In: Voronkov, A. (ed.) RTA
2008. LNCS, vol. 5117, pp. 306–320. Springer, Heidelberg (2008)

14. Aoto, T.: Automated confluence proof by decreasing diagrams based on rule-
labelling. In: Lynch, C. (ed.) RTA 2010, LIPIcs, vol. 6, pp. 7–16 (2010)

15. Pottier, L.: Minimal solutions of linear diophantine systems: bounds and algo-
rithms. In: Book, R.V. (ed.) Rewriting Techniques and Applications. LNCS, vol.
488, pp. 162–173. Springer, Heidelberg (1991)

16. Ohlebusch, E.: Modular Properties of Composable Term Rewriting Systems. Ph.D.
thesis, Universität Bielefeld (1994)

17. Zankl, H., Felgenhauer, B., Middeldorp, A.: CSI – a confluence tool. In: Bjørner, N.,
Sofronie-Stokkermans, V. (eds.) CADE-23. LNCS, vol. 6803, pp. 499–505. Springer,
Heidelberg (2011)

18. Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. J.
Autom. Reason. 47(4), 481–501 (2011)

19. Durán, F., Meseguer, J.: A Church-Rosser checker tool for conditional order-sorted
equational maude specifications. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol.
6381, pp. 69–85. Springer, Heidelberg (2010)

20. Aoto, T., Toyama, Y.: A reduction-preserving completion for proving confluence
of non-terminating term rewriting systems. LMCS 8(1), 1–29 (2012)

21. Toyama, Y.: On the Church-Rosser property for the direct sum of term rewriting
systems. J. ACM 34(1), 128–143 (1987)

Term Rewriting with Prefix Context
Constraints and Bottom-Up Strategies

Florent Jacquemard1(B), Yoshiharu Kojima2, and Masahiko Sakai2

1 INRIA and Ircam, 1 Place Igor Stravinsky, 75004 Paris, France
florent.jacquemard@inria.fr

2 Graduate School of Information Science, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

kojima@trs.cm.is.nagoya-u.ac.jp, sakai@is.nagoya-u.ac.jp

Abstract. We consider an extension of term rewriting rules with context
constraints restricting the application of rewriting to positions whose pre-
fix (i.e. the sequence of symbols from the rewrite position up to the root)
belongs to a given regular language. This approach, well studied in string
rewriting, is similar to node selection mechanisms in XML transformation
languages, and also generalizes the context-sensitive rewriting. The sys-
tems defined this way are called prefix constrained TRS (pCTRS), and we
study the decidability of reachability of regular tree model checking and
the preservation of regularity for some subclasses. The two latter prop-
erties hold for linear and right-shallow standard TRS but not anymore
when adding context constraints. We show that these properties can be
restored by restricting derivations to bottom-up ones, and moreover that
it implies that left-linear and right-ground pCTRS preserve regularity
and have a decidable regular model checking problem.

1 Introduction

Term rewriting systems (TRS) are a rule-based computation model for the defi-
nition of ranked trees (terms) transformations. In the context of formal verifica-
tion, they can be used to model the dynamics of a system whose configurations
are represented by terms. The rewrite relation represents the transitions between
configurations. For instance, functional programs manipulating structured data
values with pattern matching can be described by rewrite rules [13] such that
the rewriting relation represents the program evaluation. This approach can also
be applied to distributed algorithms or imperative programs [2] modifying some
parts of tree shaped data structures in place, while leaving the rest unchanged.

Regular model checking (RMC) [1] is a useful approach for the automatic
reachability and flow analysis of programs or systems modeled by TRS. This
technique works by constructing an automaton-based finite representation of
the set of reachable configurations of the system analyzed, and uses this repre-
sentation to detect possible erroneous reachable configurations. Tree automata

Y. Kojima—Currently working at TOSHIBA CORPORATION.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 137–151, 2015.
DOI: 10.1007/978-3-319-21401-6 9

138 F. Jacquemard et al.

(TA [3]) appear to be appropriate for this purpose. A sufficient condition for the
decision of RMC is the effective preservation of regularity : given a TRS R satis-
fying some restrictions, and a TA recognizing a set of terms Lin which represents
initial configurations, can we compute a TA recognizing the rewrite closure of
Lin by R, i.e. the set of reachable configurations? Static type checking of XML
transformations can sometimes be solved with similar techniques (see e.g. [16]).

Standard TRSs are a Turing-complete low-level formalism with a simple def-
inition by pattern matching and subterm replacement: one rewrite rule can be
applied at any position in a term, provided that the left-hand-side of the rule
matches the subterm at this position in the term. For instance, a rule with
left-hand-side a(x) can be applied at positions labelled by a.

For some applications, one may need to add context conditions for the appli-
cation of rewriting, for instance: rename the label a into b at some position π in a
term with the rewrite rule a(x) → b(x), provided that there exist more than one
occurrence of b above π. This is analogous to XML node selection in e.g. XQuery
update1 expressed by languages such as XPath. Of course, context conditions
can be encoded with additional rewrite rules but this way, small programs or
systems will have complex TRS representations, making the modeling process
tedious and error prone, and the verification with RMC complicated.

The goal of this paper is to study an expressive extension of TRS with context
conditions, which eases modeling, while preserving decidability of RMC under
restrictions. More precisely, we study a class called pCTRS (prefix controlled
TRS) where term rewriting rules are extended with conditions restricting the
application of rewriting to positions π whose path (i.e. sequence of symbols
and directions from the root down to rewrite position π) belongs to a given
regular language. Such context constraints have been studied intensively for
string rewriting [4,20] but very few results are known in the case of terms.

First, we show that regularity preservation does not hold and RMC or reach-
ability become undecidable with prefix constraints, already for rewrite systems
with strong restrictions such as linearity and flatness of left or right hand sides of
rules (Sect. 3.1) which are known to ensure the preservation of regularity in the
case of unconstrained TRS [17]. We consider next a natural restriction ensuring
effective regularity preservation by bottom-up derivations [6] for linear and right-
shallow pCTRS (Sect. 4). Considering bottom-up strategy is quite natural in the
context of the applications mentioned above. Left-linear and right-ground pCTRS
enforce bottom-up derivations (Sect. 5), and hence effectively preserve regularity.

2 Preliminaries

Terms. We use the standard notations for terms and positions, see [15].
A signature Σ is a finite set of function symbols with fixed arity. We denote
the arity of f ∈ Σ as ar(f) and the maximal arity of a symbol of Σ as max (Σ).
Given an infinite set X of variables, the set of terms built over Σ and X is

1 http://www.w3.org/TR/xquery-update-10/.

http://www.w3.org/TR/xquery-update-10/

Term Rewriting with Prefix Context Constraints and Bottom-Up Strategies 139

denoted T (Σ,X), and the subset T (Σ, ∅) of ground terms is denoted T (Σ). The
set of variables occurring in a term t ∈ T (Σ,X) is denoted var(t). A signature
is called unary (resp. strictly unary) if all its symbols have arity at most 1 (resp.
arity exactly 1). In the following, given a strictly unary signature Σ, a string
a1 a2 . . . an ∈ Σ∗ is represented by the term a1(a2(. . . an(x))), where x ∈ X .

A term t ∈ T (Σ,X) can be seen as a function from its set of positions Pos(t)
into Σ ∪ X . Positions in terms are denoted by sequences of natural numbers,
ε is the empty sequence (root position), and π · π′ denotes the concatenation
of positions π and π′. The concatenation is naturally extended to sets of posi-
tions. The subterm of t at position π is denoted t|π defined by t|ε = t and
f(t1, . . . , tm)|i·π = ti|π. The size ‖t‖ of a term t is the cardinality of Pos(t). We
write |s| for the length of a finite sequence s. The depth of a symbol that occurs
in a term at a position π is |π|. Note that for a string s and its associated term
representation t (over a strictly unary signature), |s| = ‖t‖−1. A term t is linear
if no variable occurs more than once in t, flat if its depth is at most one and
shallow if every variable of var(t) occurs at depth at most one in t.

A substitution is a mapping from variables of X into terms of T (Σ,X). It
is called grounding for V ⊆ X if the codomain of the restriction σ|V is a set of
ground terms. The application of a substitution σ to a term t is denoted as tσ.

A context is a term C ∈ T (Σ,X) with one distinguished variable xC occurs
exactly once in C. Given a context C and one terms t ∈ T (Σ,X), we write
C[t]π to denote Cσ, where σ is the substitution associating t to xC and π is
the (unique) position of xC in C. The notation s = C[t]π may also be used to
emphasize that s|π is t.

Controlled Term Rewriting Systems. We propose a formalism that strictly
extends standard term rewriting systems by forcing, for every rewrite position
π in a term t, the path in t from the root into π to belong to a given regular
language. For this purpose we use a notion of path carrying both the labels
(in Σ) and directions (in 1..max(Σ)). More precisely, let Dir(Σ) = {〈g, i〉 | g ∈
Σ, 0 < i ≤ ar(g)}; we associate with a ground term t = g(t1, . . . , tar(g)) ∈ T (Σ)
and a position π ∈ Pos(t), a path in Dir(Σ) defined recursively by

path(g(t1, . . . , tar(g)), ε) = ε,
path(g(t1, . . . , tar(g)), i · π) = 〈g, i〉 · path(ti, π) (with 1 ≤ i ≤ ar(g)).

In the case of unary signatures, we may omit the direction (which is always 1)
from the path notation, i.e. we write g instead of 〈g, 1〉.

A prefix controlled term rewriting system (pCTRS) over a signature Σ is
a finite set R of prefix controlled rewrite rules of the form L : � → r, where
L ⊆ Dir(Σ)∗ is a regular language over Dir(Σ), � ∈ T (Σ,X) \ X (the left-hand
side, or lhs), and r ∈ T (Σ, var(�)) (the right-hand side, or rhs). We use a finite
automaton AL or a regular expression to present the regular language L.

A term t is rewritten to t′ in one step by a pCTRS R, denoted by t −−→R t′,
if there exist a controlled rewrite rule L : � → r ∈ R, a position π ∈ Pos(t) such
that path(t, π) ∈ L, and a substitution σ such that t|π = �σ and t′ = t[rσ]π. The
reflexive and transitive closure of −−→R is denoted by t1 −−→∗R tn, which we call

140 F. Jacquemard et al.

a derivation by R. The size of a pCTRS rule L : � → r is the sum of the sizes
of the given automaton AL defining the control language L, the lhs � and the
rhs r. The size ‖R‖ of a pCTRS R is the sum of the sizes of its rules.

A controlled rewrite rule L : � → r is ground, flat, linear, shallow if � and r
are so. It is right-flat, etc (resp. left-flat) if r (resp. �) is. It is collapsing if r ∈ X ,
and otherwise non-collapsing. A pCTRS is flat, etc if all its rules are so.

Example 1. Let us consider the pCTRS

R =
{〈h, 1〉+ : a → c, 〈g, 2〉+ : b → d,

(〈h, 1〉 | 〈h, 2〉)∗ : h(x, y) → g(x, y, b)
}
.

The rewriting h(a, b) → h(c, b) is possible with the first rule of R, and h(a, b) →
g(a, b, b) → g(a, d, b) with the third and then the second rule of R, but neither
g(a, b, b) → g(c, b, b) nor g(a, b, b) → g(a, b, d) are possible because of their control
languages. �

Related Work: TRS with Context Constraints. Standard (uncontrolled)
TRSs [15] are particular cases of pCTRSs with rules of the form Dir(Σ)∗ : � → r.
Rewrite systems with context constraints expressed with regular languages have
been studied in the case of string rewriting, see [20], and also [4] for the case of
conditional context-free (string) grammars.

In [11], we studied a class called CntTRS more general than pCTRS. The
context constraints in pCTRS are specified, for each rewrite rule, by a selection
automaton which defines a set of positions in a term based on tree automata
computations. Reachability is undecidable for ground CntTRS, whereas we show
here that it is decidable for left-linear and right-ground pCTRS (Sect. 5).

Under the context-sensitive rewriting [10] the rewrite positions are selected
according to priorities on the evaluation of arguments of function symbols. More
precisely, let us call CS TRS over Σ a pair 〈R, μ〉 made of an uncontrolled TRS
R over Σ and a mapping μ associating to every symbol of Σ the subset of
the indexes of its argument that can be rewritten. It means that the positions
selected for rewriting in a term f(t1, . . . , tn) are defined recursively as the root
position and all the positions selected in every ti such that i ∈ μ(f). In the
above definition, a path in Dir(Σ) contains information both of the symbols and
directions. It follows that CS TRSs are particular case of pCTRSs.

Proposition 1. For all CS TRS 〈R, μ〉 over Σ, there exists a pCTRS R′ over
Σ such that the rewrite relations defined by 〈R, μ〉 and R′ coincide.

Consequently, the results below for pCTRSs (Corollary 10) extend to CS TRS.

Automata. A finite (string) automaton (FSA) B over an alphabet Γ with state
set P is presented as a tuple 〈P, p0, G,Θ〉 where p0 ∈ P is the initial state
(denoted init(B)) and G ⊆ P (denoted final(B)) and the set of transitions Θ ⊆
P × Γ × P . A transition 〈p, a, p′〉 ∈ Θ is denoted p −→a p′. The size of B is
‖B‖ = 3 ∗ |Θ|.

A tree automaton (TA) A over a signature Σ is a tuple 〈Q,F,Δ〉 where Q
is a finite set of nullary state symbols, disjoint from Σ, F ⊆ Q is the subset of

Term Rewriting with Prefix Context Constraints and Bottom-Up Strategies 141

final states and Δ is a set of transition rules of the form: g(q1, . . . , qar(g)) → q, or
q1 → q (ε-transition) where q1, . . . , qar(g), q ∈ Q. Sometimes, the components of
a TA A are written with A as subscript, like in QA to indicate that Q is the state
set of A. The size of the transition g(q1, . . . , qar(g)) → q (resp. ε-transition) is
ar(g)+2 (resp. 2), and the size ‖A‖ of A is the sum of the sizes of its transitions.

The transition set of a TA A over Σ is an (uncontrolled) ground TRS, hence
we can define a TA transition from s ∈ T (Σ ∪ QA) into t ∈ T (Σ ∪ QA) as a
rewrite step, denoted s −→A t. The language L(A, q) of A in the state q ∈ QA
is the set of terms t ∈ T (Σ) such that t −−→∗A q. A TA A is called clean if for
all q ∈ QA, L(A, q) = ∅. The language of A is L(A) =

⋃
q∈FA L(A, q). A set of

terms L ⊆ T (Σ) is called regular if it is the language of a TA.
Regular (tree) languages are effectively closed by intersection, union and com-

plement. The problems of emptiness (given a TA A, does it hold that L(A) = ∅?)
and membership (given a TA A and a ground term t, does it hold that t ∈ L(A)?)
are decidable in deterministic time respectively linear and quadratic.

Rewrite Closure and Decision Problems. The rewrite closure of a set of
ground terms L by a pCTRS R is R∗(L) = {t | ∃s ∈ L, s −−→∗R t}. Reachability is
the problem to decide, given two terms s, t ∈ T (Σ,X) and a pCTRS R whether
s −−→∗R t. Regular model checking (RMC) is the problem to decide, given two
regular tree languages Lin and Lerr and a pCTRS R whether R∗(Lin) ∩ Lerr = ∅.
Note that non-reachability corresponds to the particular case where Lin = {s}
and Lerr = {t}. The name RMC is coined after state exploration techniques
for checking safety properties. In this setting, Lin and Lerr represent (possibly
infinite) sets of initial, respectively error, states. This problem is also related to
the problem of typechecking tree transformations, see e.g. [16].

3 Regularity Preservation for pCTRSs

A pCTRS R is said to preserve regularity if for every regular language L ⊆ T (Σ),
the closure R∗(L) is regular. The preservation is effective if moreover a TA
recognizing R∗(L) can be constructed. Thanks to the closure and decidability
properties of TAs, the effective preservation is a sufficient condition for RMC.

3.1 Linear and Flat pCTRSs

Every linear and right-flat (uncontrolled) TRS effectively preserves regular-
ity [17]. This property does not hold when adding prefix control.

Proposition 2. Linear and flat pCTRSs do not preserve regularity.

Proof. Let us consider the unary signature Σ = {a, a′, b, b′, c, d,⊥} where ⊥ has
arity 0 and all other symbols have arity 1, and the linear and flat pCTRS R over
Σ containing the 4 following rules

c∗ : c(x) → a′(x), c∗a′a∗b∗ : d(x) → b′(x),
c∗ : a′(x) → a(x), c∗a∗b∗ : b′(x) → b(x).

142 F. Jacquemard et al.

For the sake of readability, given a string w ∈ (Σ\{⊥})∗, we simply write below
w for the term wσ0 where σ0 is the substitution associating ⊥ to the (single)
variable of the term representing w. The intersection of the regular term set a∗b∗

and the rewrite closure of c∗d∗ by R is {anbm | n ≥ m}, which is context free
(CF) and not regular. Indeed, the control language c∗a′a∗b∗ imposes a pairing
between rewritings of d into b and rewritings of c into a: for each rewriting of d
into b′, there must have been one (and only one) earlier rewriting of c into a′,
as illustrated by the following rewrite sequence ccdd −−→R ca′dd −−→R ca′b′d −−→R
cab′d −−→R cabd −−→R a′abd −−→R a′abb′ −−→R aabb′ −−→R aabb. ��

We can generalize the principle of the construction of Proposition 2, in order
to build a linear and flat pCTRS producing a rewrite closure of the form
{anbmcp | n ≥ m ≥ p} (after intersection with the regular language a∗b∗c∗),
starting from a regular set of the form d∗e∗f∗ and using a flat pCTRS. Since the
produced language is context-sensitive (CS), it follows that there is no hope for
a polynomial time decision procedure (congruence closure like) for the decision
of reachability for linear and flat pCTRS.

3.2 Left-(linear and Flat) pCTRSs

Let us consider the situation where the linearity and flatness restrictions apply
only to left-hand-side of rewrite rules. In the literature, (uncontrolled) TRSs
with such syntactical restrictions are called inverse-monadic. They also have the
same expressiveness as production rules of CF Tree Grammars.

When restricting to strictly unary signatures, these TRSs correspond to
string rewriting rules with lhs of length exactly one. It is folklore knowledge
that this kind of string rewriting systems transform CF languages into CF lan-
guages. This result generalizes to trees (see e.g. [11]). It follows that reachability
and RMC are decidable for left-(linear and flat) TRSs. This does not hold when
extending the expressiveness with prefix control, even in the case of strings. This
is a direct consequence of the following lemma, based on a transformation of CS
grammars into Pentonnen normal form [18].

Lemma 3. For every CS (resp. recursively enumerable (RE)) language L over
a strictly unary signature Σ, there exists a linear, left-flat and non-collapsing
(resp. linear and left-flat) pCTRS R over an extended strictly unary signature
Σ′ ⊃ Σ such that L = R∗({s}) ∩ T (Σ) for some term s ∈ T (Σ′,X).

Proof. Assume that L ⊆ Σ∗ is a CS language, and let G = 〈N , Σ, S, P 〉 be a CS
grammar generating L, with non-terminal set N , set of terminals Σ, S ∈ N , and
let Σ′ = Σ ∪ N (where the symbols of N are unary). We can assume that the
production rules of G are in Pentonnen normal form [18]: AB → AC, A → BC,
A → a where A,B,C ∈ N and a ∈ Σ. Transforming any CS grammar into a
grammar of this form can be done in PTIME. It follows that L is the intersection
between T (Σ) and the rewrite closure of {S(x)} by the linear, left-flat and non-
collapsing pCTRS R simulating the production rules of G, as described in Fig. 1.
Note that the size of R is linear in the size of G.

Term Rewriting with Prefix Context Constraints and Bottom-Up Strategies 143

G R
A → BC (N ∪ Σ)∗ : A(x) → B(C(x))
AB → AC (N ∪ Σ)∗A : B(x) → C(x)
A → a (N ∪ Σ)∗ : A(x) → a(x)
A → ε (N ∪ Σ)∗ : A(x) → x

Fig. 1. Construction of a linear CF pCTRS for the proof of Proposition 4.

Every RE language can be generated by a CS grammar as above, completed
with some deleting rules of the form A → ε. It corresponds to the collapsing
rewrite rule A(x) → x (last line of Fig. 1). ��

Proposition 4. Over strictly unary signatures, (i) reachability is undecidable
for linear and left-flat pCTRSs, and (ii) reachability is PSPACE-complete
and regular model checking is undecidable for linear, left-flat, non-collapsing
pCTRSs.

Proof. The undecidability of the reachability problem for linear and left-flat
pCTRSs (Claim (i)) follows from Lemma 3, and undecidability of the member-
ship problem of RE languages.

For Claim (ii), the PSPACE-hardness of the reachability problem and
undecidability of RMC for linear, left-flat, non-collapsing pCTRSs follow from
Lemma 3 and, respectively, the PSPACE-completeness of the membership prob-
lem and undecidability of emptiness problem for CS languages.

The PSPACE upper bound for reachability follows immediately from the fact
that for a left-flat and non-collapsing pCTRS R over a strictly unary signature,
the size of every rhs of rule of R is larger or equal to the size of the corresponding
lhs. Hence, s −−→∗R t can be checked by a backward exploration of the ancestors
of t wrt R, and they are all smaller than or equal to t. ��

To sum up, (unconstrained) TRSs with syntactic restrictions of flatness
and linearity benefit good results of regularity preservation and decision, but
these results are lost when adding prefix constraints. The reason is that these
constraints permit to test the context of rewrite positions and therefore sim-
ulate computations of Turing Machines (Proposition 4(i)) or Linear Bounded
Automata (Proposition 4(ii) and remark after Proposition 2). We can observe
that in the simulations, it is important to rewrite alternatively in two directions,
top-down and bottom-up (see for instance the rewrite sequence presented in the
proof of Proposition 2). A key property of regularity preservation results such
as [14] is that in every step C[t] −−→R D[t], either all redexes in t are preserved
or all are inactivated. For an ordinary step of a left-linear right-shallow pCTRS,
such a property does not hold in general, because a reduction in context C may
activate a redex in t. However, if we restrict to bottom-up rewriting, the above
properties are recovered for linear and right-shallow pCTRSs. We show this in
the next sections, and show consequently regularity preservation and decision
results for right-ground pCTRSs (Sect. 5) pCTRSs.

144 F. Jacquemard et al.

4 Bottom-Up Rewrite Strategy

We show in this section that when we restrict to bottom-up derivations [6], the
preservation of regularity holds for linear and right-shallow pCTRSs.

4.1 Definition

We define a bottom-up derivation on terms by introducing a bottom-up marked
rewriting on marked terms, where the latter is called weakly bottom-up in [6].
Following the definition of [6], we use a marked copy of the signature Σ = {ḡ |
g ∈ Σ}. A marked term is a term in T (Σ ∪Σ,X). Given a term of t ∈ T (Σ,X),
we use the notation t to represent a marked term in T (Σ∪Σ,X) associated with
t in a way that t is obtained from t by replacing each symbol ḡ by g. Moreover,
t̃ denotes the unique marked term associated with t which belongs to T (Σ ∪X).
This notation is extended to contexts and substitutions as expected.

The bottom-up marked rewriting relation for a pCTRS R is defined as

C[�σ]π −−−→R
bu

C[r σ̃]π

for a context C if L : � → r ∈ R, path(C, π) ∈ L and the root symbol of � is in Σ
(the other symbols may be marked or not). We say that the derivation s −−→∗R t on
terms is bottom-up if there exist a marking t and a bottom-up marked rewriting
sequence s −−−→R

bu,∗
t̄. In this case, we write s ⇒bu

R t. Note that the derivation ⇒bu
R

on terms is not transitive.

Example 2. Let R contain the two following prefix controlled rules ε : h(x) →
g(x) and 〈h, 1〉 : a → b. For the controlled rewrite derivation h(a) −−→∗R g(b), there
exists a bottom-up marked rewriting sequence h(a) −−−→R

bu
h(b) −−−→R

bu
g(b̄). Thus

the former sequence is bottom-up, i.e. h(a) ⇒bu
R g(b). �

Example 3. Let R = {ε : h(x) → g(x), 〈g, 1〉 : a → b}. The controlled rewrite
derivation h(a) −−→∗R g(b) is not bottom-up. Indeed, following the above definition
of the bottom-up marked rewriting, we have h(a) −−−→R

bu
g(ā) but we do not have

g(ā) −−−→R
bu

g(b̄) because ā is not in Σ. �

Related Rewrite Strategies. The notion of bottom-up derivations was firstly
introduced as the basic narrowing [15]. The bottom-up marked rewriting BU
of [6] (that we shall call BU [6] to avoid confusions) is defined with integer
marking. It is more general than the above bottom-up marked rewriting, the
latter being roughly the restriction of BU [6] using 1 marker.

In [6], a result of regularity preservation is proved for the subclass of linear
TRSs such that every rewrite derivation can be simulated by a BU [6] rewrite
derivation (such TRSs are called BU). It is shown in [6] that linear and right-flat
TRSs are BU. We have seen (Proposition 2) that with prefix control, regularity
is not preserved by linear and right-flat pCTRSs. However, we will prove in the

Term Rewriting with Prefix Context Constraints and Bottom-Up Strategies 145

next section that regularity is preserved by linear and right-flat pCTRSs when
restricting to bottom-up derivations.

There have been studies on regularity preservation, or the decidability of
RMC, for (unconstrained) term rewriting under other strategies. It is show
in [14] that regularity is preserved by rewriting with linear and right-shallow
TRS under the context-sensitive strategy. The innermost rewriting −−−→R

in [15]
corresponds to the call by value computation for programming languages, where
arguments are fully evaluated before the function application. More precisely, a
rewrite rule can be applied to a subterm at position π if all the proper subterms
at children positions of π are normal forms. It is easily shown that −−−−→R

in,∗ ⊆
⇒bu

R , where the relation is proper for most of TRSs. Regularity preservation have
been shown for innermost rewriting with linear right-shallow term rewriting sys-
tems [14], and with constructor based systems with additional restrictions [19].

The one-pass leaf-started derivation ⇒1pls
R [9] is defined using an auxiliary

symbol which acts as a token passed from leaves to root. It is shown in [9]
that RMC is decidable for left-linear TRS with one-pass leaf-started rewriting
(but regularity is not necessarily preserved). It is shown in [5] that regularity is
preserved for one IO rewrite pass [7] (denoted ⇒IO

R for its reflexive extension) by
linear TRS R. It can be observed that ⇒1pls

R ⊆ ⇒IO
R ⊆ ⇒bu

R , where the relations
are proper for most of TRSs.

To our knowledge, our approach of studying closure under bottom-up deriva-
tions for rewrite rules with context constraints is original.

4.2 Tree Automata Completion

We show now that linear and right-shallow pCTRSs effectively preserve regular-
ity when used with bottom-up rewriting. For this purpose we use a procedure
completing a given TA A with respect to a given pCTRS R. Assuming wlog
that the initial TA A is clean and is given without ε-transitions, we complete it
first into a TA A′, with one new state v for every ground subterm v of a rhs of
R and with appropriate transitions such that L(A′, v) = {v}. Note that A′ can
also be assumed to be clean and without ε-transitions.

For each rule L : � → r in R, we assume given an FSA CL over Dir(Σ)
recognizing L. The respective state sets of all these FSAs are assumed dis-
joint. We define an automaton C0 = 〈2P ,Dir(Σ), S, 2G, Θ〉 that simulates all
the control automata CL as follows: P (resp. G) is the union of all the state
sets (resp. final state sets) of the CL’s, S is the set of all the initial states
of CL’s, and Θ contains all the transitions of the form s −−−→〈g,i〉

s′ where
s′ = {p′ ∈ P | ∃p ∈ s ∃L : � → r ∈ R s.t. p −−−→〈g,i〉

p′ is a transition of CL}. Note
that C0 is deterministic.

Let A0 = 〈Q,F,Δ0〉 where Q = QA′ × 2P , F = {〈q, S〉 | q ∈ FA′}, and Δ0 is
the set of transitions of the form:

g(〈q1, s1〉, . . . , 〈qm, sm〉) → 〈q0, s0〉

146 F. Jacquemard et al.

with g ∈ Σ and such that g(q1, . . . , qm) → q0 is a transition of A′, and s0 −−−→〈g,i〉

si ∈ Θ for all i with 1 ≤ i ≤ m. Intuitively, a term C[�σ] ∈ A and the displayed
redex �σ is reducible by a rule L : � → r, if and only if there exists a transition
C[�σ] −−→∗A0

C[〈q0, s0〉] −−→∗A0
〈q, s〉 ∈ F such that s0 ∩ final(CL) = ∅.

We show now how to complete an automaton Ak = 〈Q,F,Δk〉, for k ≥ 0, into
Ak+1 = 〈Q,F,Δk+1〉, in order to simulate one bottom-up rewrite step with R.
At each construction step k ≥ 0, we construct Δk+1 by adding rules.

(Rules 1). For all L : � → g(r1, . . . , rm) in R, with m ≥ 0, for all substitutions θ
from X into Q grounding for var(�), such that �θ −−→∗Ak

〈q0, s0〉, the last step of
this derivation is not an ε-transition, and s0 ∩ final(CL) = ∅, we add to Δk all
the following rules:

g (〈q1, s1〉, . . . , 〈qm, sm〉) → 〈q0, s0〉
such that for all 1 ≤ j ≤ m, if rj is a variable then 〈qj , sj〉 = rjθ, otherwise,
qj = rj , and s0 −−−−→〈g,j〉

sj ∈ Θ.

(Rules 2). For all L : � → x in R with x ∈ var(�), for all substitutions θ from X
into Q grounding for var(�) such that �θ −−→∗Ak

〈q0, s0〉, and s0 ∩ final(CL) = ∅,
we add to Δk the following rule:

xθ → 〈q0, s0〉
The completion terminates with a fixpoint Δk, and the TA A∗ = 〈Q,F,Δk〉
recognizes the bottom-up rewrite closure of L(A) by R.

Example 4. Let us consider the pCTRS of Example 2, and two FSA describing
the control languages of its two rules: the first FSA has one state v0, both initial
and final, and no transitions, and the second FSA has two states v1 (initial)
and v2 (final) and one transition v1 −−−−→〈h,1〉

v2. Let the initial A recognize the
singleton language {h(a)}, with the two transitions a → qa and h(qa) → q (q is
the only final state). The automaton A0 contains the following transitions:

a → 〈qa, s〉 for all s ⊆ {v0, v1, v2},
h
(〈qa, {v2}〉) → 〈q, s〉 for all s with {v1} ⊆ s ⊆ {v0, v1, v2},

h
(〈qa, ∅〉) → 〈q, s〉 for all s ⊆ {v0, v2}.

The completion process adds the following transitions to A∗, by the case
(Rules 1):

b → 〈qa, s〉 for all s with {v2} ⊆ s ⊆ {v0, v1, v2},
g
(〈qa, {v2}〉) → 〈q, s〉 for all s with {v0, v1} ⊆ s ⊆ {v0, v1, v2},

g
(〈qa, ∅〉) → 〈q, s〉 for all s with {v0} ⊆ s ⊆ {v0, v2}.

The only final state of A∗ is 〈q, {v0, v1}〉. Then g(a) and g(b) which are both in
the bottom-up closure of h(a) are recognized by A∗ with the derivation g(a) −−→A0

g
(〈qa, {v2}〉) −−→A∗ 〈q, {v0, v1}〉 and g(b) −−→A∗ g

(〈qa, {v2}〉) −−→A∗ 〈q, {v0, v1}〉. �

Term Rewriting with Prefix Context Constraints and Bottom-Up Strategies 147

Example 5. With the pCTRS of Example 3, we have a first FSA for control
identical to the one-state FSA of Example 4 and a second one with two states
v1 (initial) and v2 (final) and one transition v1 −−−−→〈g,1〉

v2. Let us consider the
same initial automaton A as in Example 4. The automaton A0 contains now the
transitions: a → 〈qa, s〉 and h

(〈qa, ∅〉) → 〈q, s〉 for all s ⊆ {v0, v1, v2} (q is final).
We obtain the following additional transitions in A∗ by the case (Rules 1):

b → 〈qa, s〉 for all s with {v2} ⊆ s ⊆ {v0, v1, v2},
g
(〈qa, ∅〉) → 〈q, s〉 for all s with {v0} ⊆ s ⊆ {v0, v1, v2}.

The term g(a) is in the bottom-up rewrite closure of h(a) by R. It is recognized
by A∗ with the following derivation g(a) −−→A0

g
(〈qa, ∅〉) −−→A∗ 〈q, {v0, v1}〉.

The term h(b) is not in the bottom-up rewrite closure of h(a) by R; it holds that
h(b) −−→A∗ h(〈qa, s〉) if v2 ∈ s, but A∗ cannot compute from such configurations.
The situation is similar for g(b), which is neither in the bottom-up rewrite closure
of h(a) by R (see Example 3). �

Note that the number of states of the automaton A∗ is exponential in the
number of states of the control automata used in the definition of R, and poly-
nomial in |QA|. When we do not account the size of control automata in the
evaluation of the size of R, then the size of A∗ is polynomial and the above
construction is PTIME (as well as the decidability results in the next corollary).

Theorem 5. Given a TA A and a linear and right-shallow pCTRS R over Σ,
one can construct in EXPTIME a TA over Σ recognizing the bottom-up rewrite
closure of L(A) by R, and whose size is exponential in the size of A and R.

In the rest of the section we prove the theorem, by establishing the correctness
and completeness of the construction of A∗. For this purpose, we use a relation
defined as t −−−→π

R,s
t′, with π ∈ Pos(t) and s ⊆ P , iff there exist L : � → r ∈ R

and a substitution σ such that t|π = �σ, t′ = t[rσ]π, s −−−−−−→
Θ

path(t,π)
s′ and s′

contains a final state of CL. The suffix π in −−−→π
R,s

might be dropped. We associate

to this relation its bottom-up marked counterpart −−−→bu
R,s

as above. Note that

−−→R = −−−→R,S
and −−−→R

bu = −−−→bu
R,S

. The next lemma follows immediately from the
definition of the relation −−−→R,s

.

Lemma 6. For all u, t ∈ T (Σ), i · π ∈ Pos(u), and s ⊆ P , u −−−→i·π
R,s

t iff there
exist si ⊆ P and g ∈ Σ ∪ Σ such that u = g(u1, . . . , um), t = g(t1, . . . , tm),
ui −−−→π

R,si
ti, and s −−−→

Θ
〈g,i〉

si.

The next lemma follows from the construction of A0, as A0 embeds both A′

and the control automata CL in the first, resp. second, components of its states.

Lemma 7. For all t ∈ T (Σ),

i. if t −−→∗A′ q, then for all s ⊆ P there exists t such that t −−→∗A0
〈q, s〉.

ii. if t −−→∗A0
〈q, s〉, then t −−→∗A′ q.

148 F. Jacquemard et al.

The correctness of the construction, i.e. the inclusion of L(A∗) in the bottom-up
closure of L(A) by R, results from the following lemma.

Lemma 8. For all t ∈ T (Σ) and all state 〈q, s〉 ∈ Q such that t −−→∗A∗ 〈q, s〉,
there exist u and t such that (i) u −−→∗A0

〈q, s〉 and (ii) u −−−−→R,s
bu,∗

t̄.
Moreover, if the last step in t −−→∗A∗ 〈q, s〉 is not an ε-transition, then the top
symbol of t is in Σ.

Proof. Let the index of a transition rule γ of A∗ be 0 if γ is a transition of A0

and otherwise, the minimal k > 0 such that γ is a transition of Ak and not a
transition of Ak−1. We do a proof by induction on the multiset of the indexes of
transition rules of A∗ used in the derivation t −−→∗A∗ 〈q, s〉, which we call ρ.

We illustrate only an interesting case where the rule γ used in its last step
is not an ε-transition and is nor in Δ0, i.e. we assume that the derivation ρ has
the following form for k > 0:

ρ : t = g(t1, . . . , tm) −−→∗A∗ g
(〈q1, s1〉, . . . , 〈qm, sm〉) −−→Ak

〈q, s〉 (ρ1)

This means that tj −−→∗A∗ 〈qj , sj〉 for all j with 1 ≤ j ≤ m, and then by
induction hypothesis, there exist uj and tj such that (i0) uj −−→∗A0

〈qj , sj〉, and

(ii0) uj −−−−→bu,∗
R,sj

tj .
In this case γ has been added by the case (Rules 1) of the construction,

because there exist a rewrite rule L : � → r ∈ R, a substitution θ from X into Q,
grounding for var(�), such that �θ −−−−→∗

Ak−1
〈q, s〉, the last step of this derivation is

not an ε-transition, and s∩final(CL) = ∅. Moreover, letting r = g(r1, . . . , rm), it
holds that for all 1 ≤ j ≤ m, if rj is a variable then 〈qj , sj〉 = rjθ, and otherwise,
qj = rj and s−−−−→〈g,j〉

sj ∈ Θ.
Without loss of generality, let us assume that for some i, r1, . . . , ri are ground

terms and ri+1, . . . , rm are distinct variables (remember that R is linear and
right-shallow). Let us now construct a substitution σ from X into T (Σ,X),
grounding for var(�). For each x ∈ var(�) ∩ var(r), there exists i + 1 ≤ j ≤ m
such that x = rj , and we let xσ = tj . For each x ∈ var(�) \ var(r), we let xσ
be an arbitrary ground term in L(A0, xθ) (such a term exists by assumption
that A0 is clean). One can check, using (ρ1), the construction of γ, and the
linearity of the rewrite rules of R, that �σ −−→∗A∗ �θ −−−−→∗

Ak−1
〈q, s〉, where the

last step is not an ε-transition. This derivation is strictly smaller that ρ wrt the
induction ordering. Thus, by induction hypothesis, there exist u and �σ such that
(i1) u −−→∗A0

〈q, s〉 and (ii1) u −−−→R,s
bu,∗

�σ, and moreover, the top symbol of �σ is in
Σ.

By construction of γ, s∩final(CL) = ∅, hence, using the rule L : � → r ∈ R, it
holds that: �σ −−−→bu

R,s
g(r1, . . . , ri, t̃i+1, . . . , t̃m). Moreover, for all j with 1 ≤ j ≤ i,

it holds by construction of γ that qj = rj , hence (i0) and Lemma 7(ii) imply

that uj = rj , hence rj −−−−→bu,∗
R,sj

tj by (ii0). Using Lemma 6, it follows that

u −−−→R,s

bu,∗
�σ −−−→bu

R,s
g(r1, . . . , ri, t̃i+1, . . . , t̃m) −−−→R,s

bu,∗
g(t1, . . . , ti, t̃i+1, . . . , t̃m).

Term Rewriting with Prefix Context Constraints and Bottom-Up Strategies 149

Letting t = g(t1, . . . , ti, t̃i+1, . . . , t̃m), we can conclude for (ii) in this case. Note
that the top symbol of t is in Σ. ��
The following lemma implies the completeness of the construction of A∗.

Lemma 9. For all u ∈ T (Σ), t ∈ T (Σ ∪ Σ), state 〈q, s〉 ∈ Q, if u −−−→R,s
bu,∗

t, and
u −−→∗A0

〈q, s〉, then t −−→∗A∗ 〈q, s〉. Moreover, if the top symbol of t is in Σ, then
the last step in t −−→∗A∗ 〈q, s〉 is not an ε-transition.

Proof. We do a proof by induction on the lexical combination of the length of
the derivation u −−−→R,s

bu,∗
t and the structure of u.

We illustrate only an interesting case that some rewrite steps are performed
at the root position, and the last rewrite step performed at the root position
involves a non-collapsing rule.

Since u −−−→R,s
bu,∗

t is a bottom-up marked rewriting, no earlier derivation is
performed at the root position with a collapsing rule (because the root symbol
of every redex in a bottom-up marked derivation must be in Σ), and the top
symbol of t is in Σ. We can write the rewrite sequence as follows:

u −−−→R,s
bu,∗

�σ −−−→bu
R,s

g(r1, . . . , rm) σ̃ −−−→R,s
bu,∗

t

where L : � → g(r1, . . . , rm) ∈ R and ε ∈ L. Without loss of generality, we
assume that r1, . . . , ri are ground terms and ri+1, . . . , rm are variables for some
i ≤ m. By induction hypothesis, it holds that �σ −−→∗A∗ 〈q, s〉 and the last step of
this derivation is not an ε-transition. This rewrite sequence can be decomposed
into �σ −−→∗A∗ �θ −−→∗A∗ 〈q, s〉 where θ is a substitution from X into Q, grounding
for var(�). Note that we use the assumption that R is linear in order to construct
this θ. Moreover, s ∩ final(CL) = ∅. Then from the construction case (Rules 1),
A∗ contains the transition rule g(〈q1, s1〉, . . . , 〈qm, sm〉) → 〈q, s〉 where
– for all j with 1 ≤ j ≤ i, qj = rj ,
– for all j with i < j ≤ m, 〈qj , sj〉 = rjθ,
– for all j with 1 ≤ j ≤ m, s −−−−→

Θ
〈g,j〉

sj .

For all j with 1 ≤ j ≤ i, rj −−→∗
A0

〈qj , sj〉 by the construction of qj = rj and
Lemma 7(i), and for all j with i ≤ j ≤ m, rjσ −−→∗A∗ rjθ. Therefore

t = g(r1, . . . , ri, ri+1σ . . . , rmσ) −−→∗A0
g(〈q1, s1〉, . . . , 〈qi, si〉, ri+1σ . . . , rmσ)

−−→∗A∗ g(〈q1, s1〉, . . . , 〈qi, si〉, 〈qi+1, si+1〉, . . . , 〈qm, sm〉) −−→∗A0
〈q, s〉.

Hence t = xσ −−→∗A∗ xθ −−→A∗ 〈q, s〉. ��
Corollary 10. Reachability and RMC wrt. bottom-up rewriting are decidable in
EXPTIME for linear and right-shallow pCTRSs.

Proof. Given a linear and right-shallow pCTRS R, the reachability problem
s −−−→R

bu,∗
t wrt bottom-up rewriting is equivalent to t ∈ L(A∗) where A∗ is the

TA constructed from a TA recognizing {s} as in Theorem 5. The RMC problem
R∗(Lin) ∩ Lerr = ∅, wrt bottom-up rewriting, is equivalent to L(A∗

in) ∩ Lerr = ∅,
where A∗

in is the TA constructed from a TA recognizing Lin as in Theorem 5.
Both problems can be decided in PTIME in the size of A∗ and t on one hand

and A∗
in and a TA recognizing Lerr on the other hand. ��

150 F. Jacquemard et al.

5 Left-Linear and Right-Ground pCTRSs

It can be observed that every rewrite sequence with a right-ground pCTRS is
bottom-up. Hence the following corollary immediately follows.

Corollary 11. Given a TA A and a left-linear and right-ground pCTRS R over
Σ, one can construct in EXPTIME a TA over Σ recognizing the rewrite closure
of L(A) by R, and whose size is exponential in the size of A and R. Reachability
and RMC are decidable for left-linear and right-ground pCTRSs.

The following proposition establishes a lower bound for the construction.

Proposition 12. Reachability is PSPACE-hard for ground pCTRSs.

Proof. We make a reduction of the intersection emptiness problem for regular
string languages. Let L1, . . . , Ln(n ≥ 2) be regular languages, and let

R = {Σ∗ : 1 → a(1) | a ∈ Σ} ∪ {Li : i → i+1 | 1 ≤ i ≤ n − 1}
∪ {Ln : n → �} ∪ {Σ∗ : a(�) → � | a ∈ Σ}

It can be easily checked that 1
∗−→R � iff L1 ∩ · · · ∩ Ln = ∅. ��

Given a linear and right-shallow (uncontrolled) TRS R, for every rewrite
sequence s −−→∗R t there exists a bottom-up rewrite sequence s −−→∗R t [6]. This is
however not the case in presence of prefix control, since linear and right-shallow
pCTRSs do not preserve regularity (Proposition 2).

6 Conclusion

This work could be extended in several directions. A question is whether the
results of Sect. 4 still hold when weakening the linearity restriction into right-
linearity. Note that regularity preservation has been established for right-linear
and right-shallow (unconstrained) TRSs in [17]. An alternative approach might
be to construct automata recognizing regular over-approximating of the closures,
for larger classes of pCTRS, like in [8]. The completion algorithms of this paper
terminate because the shallowness of the rhs ensure that no new state needs
to be added to the automata; other automata completion methods [8] accept
non-shallow rhs and thus need to normalize the new transitions by adding new
states, they ensure their termination by merging states, at the cost of precision.

Finally, a difficult problem is the generalization of the problems presented in
this paper to unranked tree rewriting [12], where variables are instantiated by
forests (i.e. finite sequences of trees) instead of terms.

References

1. Abdulla, P.A., Jonsson, B., Mahata, P., d’Orso, J.: Regular tree model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 555–568.
Springer, Heidelberg (2002)

Term Rewriting with Prefix Context Constraints and Bottom-Up Strategies 151

2. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular tree
model checking of complex dynamic data structures. In: Yi, K. (ed.) SAS 2006.
LNCS, vol. 4134, pp. 52–70. Springer, Heidelberg (2006)

3. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Löding, C., Lugiez, D.,
Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2007).
http://tata.gforge.inria.fr

4. Dassow, J., Paun, G., Salomaa, A.: Grammars with controlled derivations. In:
Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2,
pp. 101–154. Springer, Heidelberg (1997)

5. Dauchet, M., De Comite, F.: A Gap Between linear and non-linear term-rewriting
systems. In: Lescanne, P. (ed.) Rewriting Techniques and Applications. LNCS, vol.
256, pp. 95–104. Springer, Heidelberg (1987)

6. Durand, I., Sénizergues, G.: Bottom-up rewriting is inverse recognizability pre-
serving. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 107–121. Springer,
Heidelberg (2007)

7. Engelfriet, J., Schmidt, E.M.: IO and OI. II. J. Comput. Syst. Sci. 16(1), 67–99
(1978)

8. Feuillade, G., Genet, T., Tong, V.V.T.: Reachability analysis over term rewriting
systems. J. Autom. Reasoning 33(3–4), 341–383 (2004)

9. Fülöp, Z., Jurvanen, E., Steinby, M., Vágvölgyi, S.: On one-pass term rewriting.
Acta Cybernetica 14(1), 83–98 (1999)

10. Futatsugi, K., Goguen, J.A., Jouannaud, J.-P., Meseguer, J.: Principles of OBJ2.
In: Proceedings 12th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages (POPL), pp. 52–66 (1985)

11. Jacquemard, F., Kojima, Y., Sakai, M.: Controlled term rewriting. In: Tinelli,
C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp. 179–194.
springer, Heidelberg (2011)

12. Jacquemard, F., Rusinowitch, M.: Rewrite closure and CF hedge automata. In:
Dediu, A.-H., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810,
pp. 371–382. Springer, Heidelberg (2013)

13. Jones, N.D., Andersen, N.: Flow analysis of lazy higher-order functional programs.
Theor. Comput. Sci. 375(1–3), 120–136 (2007)

14. Kojima, Y., Sakai, M.: Innermost reachability and context sensitive reachabil-
ity properties are decidable for linear right-shallow term rewriting systems. In:
Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 187–201. Springer, Heidelberg
(2008)

15. de Vrijer, R., Bezem, M., Klop, J.W. (eds.): Term Rewriting Systems by Terese.
Cambridge Tracts in TCS, vol. 55. Cambridge University Press, Cambridge (2003)

16. Milo, T., Suciu, D., Vianu, V.: Typechecking for XML transformers. J. Comput.
Syst. Sci. 66(1), 66–97 (2003)

17. Nagaya, T., Toyama, Y.: Decidability for left-linear growing term rewriting sys-
tems. Inf. Comput. 178(2), 499–514 (2002)

18. Penttonen, M.: One-sided and two-sided context in formal grammars. Inf. Control
25, 371–392 (1974)

19. Réty, P., Vuotto, J.: Tree Automata for Rewrite Strategies. J. Symbolic Comput.
40, 749–794 (2005)

20. Sénizergues, G.: Some decision problems about controlled rewriting systems. Theor.
Comput. Sci. 71(3), 281–346 (1990)

http://tata.gforge.inria.fr

Encoding Dependency Pair Techniques
and Control Strategies for Maximal Completion

Haruhiko Sato1(B) and Sarah Winkler2

1 Graduate School of Information Science and Technology, Hokkaido University,
Sapporo, Japan

2 Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
haru@complex.ist.hokudai.ac.jp, sarah.winkler@uibk.ac.at

Abstract. This paper describes two advancements of SAT-based
Knuth-Bendix completion as implemented in Maxcomp. (1) Termina-
tion techniques using the dependency pair framework are encoded as
satisfiability problems, including dependency graph and reduction pair
processors. (2) Instead of relying on pure maximal completion, different
SAT-encoded control strategies are exploited.

Experiments show that these developments let Maxcomp improve over
other automatic completion tools, and produce novel complete systems.

Keywords: Term rewriting · Completion · SAT encoding · Dependency
pairs

1 Introduction

Recently, some impressive progress was been achieved by exploiting SAT/SMT
solvers in theorem proving [6]. Maximal completion is a simple yet highly effi-
cient Knuth-Bendix completion approach which relies on MaxSAT solving [5].
It is hence inherently limited to compute complete term rewrite systems (TRSs)
whose termination can be expressed as a SAT problem. The maximal completion
tool Maxcomp restricts to LPO and KBO, which naturally narrows the range of
possible completions. For instance, in the following presentation of CGE2 the last
equation cannot be oriented:

e · x ≈ x f(x · y) ≈ f(x) · f(y) x · (y · z) ≈ (x · y) · z

i(x) · x ≈ e g(x · y) ≈ g(x) · g(y) f(x) · g(y) ≈ g(y) · f(x)

In general, Maxcomp cannot complete CGE problems, which describe commuting
group endomorphisms as occurring in the theory of uninterpreted functions [10].
Another potential limitation of Maxcomp is given by the fact that its exclusive
search strategy is to orient as many equations as possible.

This paper presents two advancements of Maxcomp. (1) Our abstract frame-
work for SMT encodings allows to first switch from a termination problem to a

This research was supported by the Austrian Science Fund project I963.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 152–162, 2015.
DOI: 10.1007/978-3-319-21401-6 10

Encoding DP Techniques and Control Strategies for Maximal Completion 153

dependency pair (DP) problem and subsequently apply an arbitrary sequential
combination of dependency pair processors. We give encodings for different esti-
mations of the dependency graph (DG), and show how to apply reduction pair
processors in this context. Though encoding termination of a TRS as a satisfi-
ability problem has become common practice, to the best of our knowledge all
previous encodings restrict to a specific reduction order or interpretations into
a particular domain. (2) The original version of Maxcomp always tried to gener-
ate a complete TRS by orienting as many equations as possible. However, this
control strategy is not always optimal to guide the proof search. We devised sat-
isfiability encodings for a number of alternative control strategies, and compared
them experimentally.

Our results show that these enhancements allow Maxcomp to not only com-
plete CGE problems but in general improve over previous automatic completion
tools. Though we described preliminary results on DP encodings in [7], our recent
work on control strategies greatly enhanced the tool’s power and scalability.

The remainder of this paper is structured as follows. Section 2 collects some
preliminaries before our encodings for dependency pair techniques are outlined in
Sect. 3. Section 4 presents the developed control strategies. Some further imple-
mentation issues are described in Sect. 5, and experimental results are presented
in Sect. 6.

2 Preliminaries

We assume familiarity with term rewriting [1]. Knuth-Bendix completion aims
to transform an equational system (ES) E0 into a TRS R which is complete
for E0, i.e., terminating, confluent and equivalent to E0. The set of critical pairs
CP(�1 → r1, �2 → r2) denotes all equations �2σ[r1σ]p ≈ r2σ such that p is a
function symbol position in �2, �2|p and �1 are unifiable with mgu σ, and if p = ε
then the two rules are not variants. We write CP(R) for the set of critical pairs
among rules from a TRS R. The relation ↓R denotes →∗

R · ∗
R←. We also write

(s ≈ t) ↓R for an equation s′ ≈ t′ such that s′ and t′ are some R-normal forms
of s and t, respectively, and mean the natural extension to sets of equations E
when writing E ↓R. For an ES E we write Ẽ to denote the set of all equations
� ≈ r such that � ≈ r ∈ E ∪ E−1 and � → r is a valid rewrite rule.

Maximal completion is a simple completion approach based on MaxSAT
solving. For an input ES E0, it tries to compute ΦE0(E0) as follows:

Definition 1. Let E be a fixed ES. For any ES C, ΦE is defined by

ΦE(C) =

{
R if E ∪ CP(R) ⊆ ↓R for some R ∈ R(C)
ΦE(C ∪ S(C)) otherwise

(1)

where R(C) consists of terminating TRSs R such that R ⊆ C̃, and S(C) ⊆↔∗
C.

154 H. Sato and S. Winkler

Theorem 1 ([5]). The TRS ΦE0(E0) is complete for E0 if it is defined.

In the maximal completion tool Maxcomp, R(C) is computed by maximizing
the number of satisfied clauses in

∨
s≈t∈C [s > t] ∨ [t > s], subject to the side

constraints implied by the SAT/SMT encoding [· > ·] of some reduction order
>, and S(C) is a subset of

⋃
R∈R(C) (CP(R) ∪ E0)↓R.

In this paper we use the dependency pair (DP) framework to show termi-
nation of TRSs [4]. A DP problem is a pair of two TRSs (P,R), it is finite if
it does not admit an infinite chain. A DP processor Proc is a function which
maps a DP problem to either a set of DP problems or “no”. It is sound if a DP
problem d is finite whenever Proc(d) = {d1, . . . , dn} and all of di are finite.

For an ES C, let the set of dependency pair candidates DPC(C) be all rules
F (t1, . . . , tn) → G(u1, . . . , un) such that f(t1, . . . , tn) ≈ r ∈ C̃, r � g(u1, . . . , un)
but � �� g(u1, . . . , un), and F,G are fresh function symbols.

3 Encodings

We first illustrate the idea of our encodings by means of a simple example.

Example 1. Suppose that the current set of equations contains a potential rule
α : aa → ba. (To enhance readability we here use string notation and write aa to
denote the term a(a(x)), etc.). Note that this rule gives rise to the dependency
pair β : Aa → Ba if b is a defined symbol. Rule α gives rise to the following
constraints:

S0
α → W 1

α ∧ Xdef
a ∧ (Xdef

b → S1
β) (a)

S1
β → [Aa �poly Ba] ∧ (¬[Aa >poly Ba] → S2

β) (b)

S2
β → [Aa �lpo Ba] ∧ (¬[Aa >lpo Ba] → S3

β)

W 1
α → [aa �poly ba] ∧ (¬[aa >poly ab] → W 2

α) (c)

W 2
α → [aa �lpo ba]

¬S3
β (d)

Here the boolean variables S0
α,W 1

α, . . . , W 3
α, S1

β , . . . , S3
β express strict/weak ori-

entation of α and β in different proof stages, and Xdef
a , Xdef

b express whether a
and b are defined. The constraint (a) triggers the DP β and “moves” rule α to
the weak component. Constraint (b) expresses that if the DP β is not oriented
it remains to be considered, both for stage 2 and 3. Constraint (c) ensures that
rule α is weakly oriented. Since monotonic polynomial interpretations allow for
rule removal, α can be removed after stage 2 if it was strictly oriented. Finally,
(d) demands that the DP β needs no consideration after stage 3.

The following paragraphs transfer standard notions of the DP framework to
our satisfiability setting.

Encoding DP Techniques and Control Strategies for Maximal Completion 155

Definition 2. A DP problem encoding is a tuple D = (S,W, ϕ) consisting of
two sets of boolean variables S = {S�→r | � → r ∈ P} and W = {W�→r | � →
r ∈ R} for TRSs P and R, and a formula ϕ. We call an assignment α finite for
a DP problem encoding (S,W, ϕ) if α(ϕ) = and the DP problem (PS

α ,RW
α)

is finite, given by the TRSs PS
α = {� → r | S�→r ∈ S, α(S�→r) = } and

RW
α = {� → r | W�→r ∈ W, α(W�→r) = }.

Definition 3. A DP processor encoding Proc maps a DP problem encoding
D = (S,W, ϕ) to a finite set of DP problem encodings Proc(D) = {D1, . . . ,Dn}.
The encoding Proc is sound if for any D such that Proc(D) = {D1, . . . ,Dn} and
any assignment α that is finite for all Di, it also holds that α is finite for D.

Definition 4. The set of initial variables for an ES C is IC = {I�→r | � ≈ r

∈ C̃}. For an ES C the initial DP problem encoding is given by DC = (S,W, ϕ)
where S = {S�→r | � → r ∈ DPC(C)}, W = {W�→r | � ≈ r ∈ C̃} and

ϕ =
∧

�≈r∈˜C
I�→r →

⎛

⎝W�→r ∧ Xdef
root(�) ∧

∧

s→t∈DPC(�→r)

Xdef
root(t) → Ss→t

⎞

⎠

Lemma 1. Let C be an ES. Suppose there is a tree whose nodes are DP problem
encodings satisfying the following conditions:

– The root is the initial DP problem encoding DC.
– For every non-leaf node D with children D1, . . . ,Dn there is a sound processor

encoding Proc such that Proc(D) = {D1, . . . ,Dn}.
Let the leaves be {(Si,Wi, ϕi) | 1 ≤ i ≤ k}. If an assignment α satisfies

k∧

i=1

ϕi ∧
∧

s→t∈Si

¬Ss→t

then the TRS R = {� → r | � ≈ r ∈ C̃, α(I�→r) = } is terminating.

Proof. By induction on the tree structure, α is finite for all nodes. Termination
of R follows from finiteness of α for the root DC . ��
Definition 5 (Reduction Pair Processor). Let (>,�) be a reduction pair
and π an argument filtering, with satisfiability encodings [· �π ·] and [· >π ·]

A DP problem encoding (S,W, ϕ) is mapped to {(S ′,W ′, ϕ∧TS ∧TW)} where
S ′ = {S′

�→r | S�→r ∈ S}, W ′ = {W ′
�→r | W�→r ∈ W}, and

TS =
∧

S�→r∈S
S�→r → [� �π r] ∧ (¬[� >π r] → S′

�→r)

TW =
∧

W�→r∈W
W�→r → W ′

�→r ∧ [� �π r]

156 H. Sato and S. Winkler

Here all boolean variables in S ′ and W ′ are assumed to be fresh. Concrete
encodings [· �π ·] and [· >π ·] for LPO/RPO, KBO as well as reduction orders
given by polynomial and matrix interpretations—also with argument filterings
and usable rules—are well-studied, see for instance [3,8,13–15].

Note that Definition 5 can easily be modified to admit rule removal by adding
clauses (¬[� >π r] → W ′

�→r) to the conjunction definiting TW , similar as for TS .

Definition 6 (Dependency Graph Processor). A DP problem encoding of
the form (S,W, ϕ) is mapped to {(S ′,W ′, ψ)} such that S ′ = {S′

�→r | S�→r ∈ S},
W ′ = {W ′

�→r | S�→r ∈ S} ∪ {W ′
�→r | W�→r ∈ W}, and ψ = ϕ ∧ TS ∧ TW where

TS =
∧

Sp,Sp′ ∈S
Sp ∧ Sp′ ∧ [p ⇒ p′] ∧ ¬S′

p ∧ ¬S′
p′ → Xw

p > Xw
p′

TW =
∧

S�→r∈S
S�→r → W ′

�→r ∧
∧

W�→r∈W
W�→r → W ′

�→r

Here TS encodes cycle analysis of the graph in the sense that a cycle p1 ⇒
p2 ⇒ · · · ⇒ pn ⇒ p1 issues the unsatisfiable constraint Xw

p1
> Xw

p2
> · · · >

Xw
pn

> Xw
p1

. For the formula [s → t ⇒ u → v] encoding the presence of an edge
from s → t to u → v one can simply use if root(t) = root(u) and ⊥ otherwise.
(We also experimented with an encoding in terms of the unifiability between
REN(CAP(t)) and u, but due to reasons of space do not present it here).

The above encoding does not allow to use different orderings in SCCs, in
contrast to what is commonly done in termination provers. However, it can be
modified to consider SCCs by mapping a problem encoding to k independent
problem encodings.

Definition 7 (Dependency Graph Processor with k SCCs). A DP prob-
lem encoding D = (S,W, ϕ) is mapped to {Di}1≤i≤k = {(Si,Wi, ψi)}1≤i≤k where
Si = {Si,�→r | S�→r ∈ S}, Wi = {Wi,�→r | S�→r ∈ S} ∪ {Wi,�→r | W�→r ∈ W},
ψi = ϕ ∧ Tscc(k) ∧ TS(i) ∧ TW (i), and

Tscc(k) =
∧

Sp∈S
1≤Xscc

p ≤k ∧
∧

Sp,Sp′ ∈S
Sp ∧ Sp′ ∧ [p ⇒ p′] → X⇒

p,p′ ∧ Xscc
p ≥Xscc

p′

TS(i) =
∧

Sp,Sp′ ∈S
X⇒

p,p′ ∧ Xscc
p = i ∧ Xscc

p′ = i ∧ ¬Si,p ∧ ¬Si,p′ → Xw
p > Xw

p′

TW (i) =
∧

Sp∈S
Sp ∧ Xscc

p = i → Wi,p ∧
∧

Wp∈W
Wp → Wi,p

Here X⇒
p1,p2

is a boolean variable encoding the presence of both DPs p1 and
p2 as well as an edge from p1 to p2, and Xscc

p is an integer variable assigning an
SCC number to a DP p. Hence Tscc(k) encodes the separation of the graph into
at most k SCCs, and TS(i), TW (i) encode conditions to orient the ith SCC.

Soundness of all the above encodings can be shown by relating them to their
processor counterparts [4], but we omit the proofs here due to lack of space.

Encoding DP Techniques and Control Strategies for Maximal Completion 157

4 Control Strategies

In its original version, Maxcomp generated terminating TRSs R(C) by orient-
ing as many equations in C as possible. This was motivated by the following
observation: whenever a TRS R is complete for E0, then any terminating TRS
R′ satisfying R ⊆ R′ ⊆ ↔∗

E0
is complete for E0 as well. However, this choice

of R(C) has drawbacks in the case where the selected TRS is not yet complete:
In case of multiple possibilities, the search is not guided towards “more useful”
TRSs. Moreover, the chosen TRSs are large such that critical pair generation
and normalization tend to be inefficient.

We therefore experimented with different components of control strategies
which can be combined in a variety of ways. The following desirable properties
of TRSs R ∈ R(C) constitute the basis of the below definitions, reflecting the
aim to eventually derive a complete TRS for the axioms E0.

(1) All nontrivial equations in C should be reducible by R.
(2) The axioms E0 should be derivable from R.
(3) Preferably, the critical pairs of R should be joinable.

We use sets of constraints cs and mc, where constraints in cs have to be always
satisfied, whereas the number of satisfied constraints from mc is to be maximized.
To determine cs and mc, the following options c and mc are considered:

c ::= Red | Comp mc ::= None | MaxRed | CPRed | Oriented | NotOriented

Here Red ensures property (1) by demanding that ϕred(C) is satisfied.

ϕred(C) =
∧

s≈t∈C
ϕred(s ≈ t) ϕred(s ≈ t) =

∨
{I�→r | � → r ∈ C̃ reduces s or t}

Option Comp ensures property (2) by demanding that ϕcomp(C) is satisfied.
To that end, every equation � ≈ r ∈ C is associated with a fresh boolean variable
E�≈r and a fresh integer variable w�≈r.

ϕcomp(C) =
∧

�≈r∈E0

E�≈r ∧
∧

�≈r∈C
E�≈r → � = r ∨ I�→r ∨ Ir→� ∨ ϕ↔(� ≈ r)

ϕ↔(� ≈ r) =
∨

E∈D�≈r

∧

e′∈E
Ee′ ∧ w�≈r > we′

Here D�≈r consists of ESs E ⊆ C satisfying � ↔∗
E r, and w�≈r avoids cyclic

dependencies among equations by requiring that equations are only derived from
equations associated with smaller values. Suitable sets De can be collected when
rewriting equations: Whenever an equation e is simplified to e′ using rules R,
{e′} ∪ R is added to De, and {e} ∪ R is added to De′ .

Concerning options for mc, None requires nothing, MaxRed maximizes the
number of clauses ϕred (s ≈ t) for s ≈ t ∈ C, Oriented maximizes the number

158 H. Sato and S. Winkler

of oriented equations in C, and NotOriented maximizes the number of unori-
ented equations in C. The option CPRed tries to reduce as many critical pairs of
R ∈ R(C) as possible by maximizing the number of satisfied clauses in ϕCPred(C).
Here R(C) consists of all rewrite rules � → r such that � ≈ r ∈ C̃.

ϕCPred(C) = {Ir1 ∧ Ir2 → ϕred(s ≈ t) | r1, r2 ∈ R(C) and s ≈ t ∈ CP(r1, r2)}

5 Implementation

We next describe some further implementation details of our extension of
Maxcomp, which will in the sequel be referred to as MaxcompDP. The general
layout of Maxcomp based on the control loop shown in Fig. 1 was kept. As input
parameters, the function maxcomp obtains a set of equations C and an overall
strategy S (described below). The ES C is initialized with E0. In each recursive
call, the max k function tries to find k terminating TRSs R(C) according to the
strategy S, and it returns a possibly modified strategy S ′. For each R ∈ R(C),
if R is confluent and joins E0 then maxcomp succeeds; otherwise n new equations
are selected and added to C. In order to find R(C), max k uses (MAX)SAT calls
to Yices [2]. In some important aspects MaxcompDP deviates from Maxcomp, the
next paragraphs describe these changes.

function maxcomp(C,S)
R(C),S ′ := max k(C,S, k)
for all R ∈ R(C)

if CP(R) ∪ E0 ⊆↓R then R
else C := C ∪ select(n, (CP(R) ∪ C)↓R)

maxcomp(C,S ′)

Fig. 1. Main control function.

Termination Strategies. Termination of TRSs R(C) is encoded according to
a certain termination strategy. Besides LPO and KBO as used in Maxcomp,
MaxcompDP now also provides as base orders simple linear polynomial interpre-
tations of the shape x1 + . . . + xn + c and the instance MPOL of the weighted
path order [13]. We implemented the DP techniques presented in Sect. 3, and also
support argument filterings for LPO and KBO. Overall, termination strategies
can thus be constructed according to the following grammar:

o ::= LPO | KBO | MPol | LPol t ::= os | DP(os) | DG(os) | DGk(int, os)

where os abbreviates o list, which is interpreted as lexicographic combination of
the associated reduction orders/reduction pairs. DP switches to a DP problem
using Definition 4, while DG and DGk use DG encodings according to Defini-
tions 6 and 7, respectively. In the sequel we consider the strategies tlpo := [LPO],
tdp := DP([LPol, LPO]), tdg := DG([LPol, LPO]) and tdg2 := DGk(2, [LPol, LPO]).

Encoding DP Techniques and Control Strategies for Maximal Completion 159

Overall Strategies. An overall strategy S for the max k function combines
termination and control strategies and has the type (t, c set,mc) list. Such a
strategy is used as follows: If S is the empty list, max k fails. If S is a non-
empty list (t, cs,mc)::S ′, max k tries to find a TRS Ri by satisfying the con-
straints t and cs, and maximizing the satisfied constraints of mc, such that Ri

is different from R1, . . . ,Ri−1. If max k can find k TRSs in this way, it returns
R1, . . . ,Rk and S. If it fails to do so for Ri, it tries to find the remaining TRSs
using strategy S ′, and returns S ′. This allows to change to a more appropri-
ate termination and/or control strategy if the current one can, e.g., not orient
sufficiently many equations. We experimented with different strategies such as
Sred := [(t, {Red})], Scomp := [(t, {Red,Comp})], SCPred := [(t, {Red},CPRed)],
Smaxcomp := [(t, ∅,Oriented)], SnotOriented := [(t, {Red,Comp},NotOriented)] for
different termination strategies t. Here we write (t, cs) for (t, cs,None). The strat-
egy Smaxcomp corresponds to the original Maxcomp approach. For a termina-
tion strategy t, sfull(t) denotes (t, {Red,Comp},CPRed), and Sfull(t) denotes
[sfull(t)]. The Sauto strategy turned out particularly useful, it is defined by
[sfull(tlpo), sfull(tdp), (tlpo , {Comp},MaxRed)].

The number k has considerable impact; MaxcompDP lets the user control it
by an input parameter. By default, k = 6 in the first two recursive calls and
k = 2 afterwards. The rationale behind this choice is that considering a wide
variety of orientations in the beginning of a run reduces the risk of getting stuck
with an initial, possibly unfortunate orientation.

Selection of New Equations. The select function in Fig. 1 plays the role of
S(C) from Definition 1. Maxcomp by default selected up to 7 equations of size
at most 20 from the set CP(R) ↓R (since it is practically infeasible to add all
critical pairs). In contrast, MaxcompDP does not only add critical pairs of a TRS
R to C but also reduced equations. Therefore the n smallest equations from the
set (CP(R) ∪ C)↓R are selected, without inducing a size bound. The number n
can be controlled by the user, by default n = 12.

Incremental Termination Checks. The formulas obtained with our termina-
tion encodings easily grow large. However, though in the course of a completion
run many satisfiability checks are required, the termination constraint issued for
a specific rule does not change. We hence use Yices in an incremental way: when-
ever a new equation � ≈ r gives rise to a potential rule � → r, its termination
constraint [� > r] is computed and added to the context of Yices. To find a ter-
minating TRS, we temporarily add the constraints cs and mc according to the
current control strategy but backtrack after the SAT check. This allows to use
the same Yices context throughout the completion run, and issue termination
constraints only once per rule (though new constraints need to be computed if
the termination strategy changes).

MaxcompDP as well as all experimental results are available from

http://cl-informatik.uibk.ac.at/software/maxcompdp

http://cl-informatik.uibk.ac.at/software/maxcompdp

160 H. Sato and S. Winkler

6 Experiments

Table 1 summarizes our experimental results for the test bed comprising 115
equational systems from the distribution of mkbTT [12], run on a system
equipped with an Intel Core i7 with four cores of 2.1GHz each and 7.5 GB
of memory. Each ES was given a time limit of 600 seconds, timeouts are marked
∞. The rows labeled (1)–(4) correspond to MaxcompDP using Sfull with different
termination strategies, and (5) applies the automatic mode Sauto as described
in Sect. 5. Rows (DP1)–(DP5) use tdp within different control strategies, and
(LPO1) combines tlpo with Smaxcomp . All runs used the default values for k and n.
Finally, we compare with other completion tools that are automatic in that no
reduction order is required as input, namely Maxcomp, mkbTT, KBCV [9], and
Slothrop [11].

Column # lists the number of successful completions, the next column gives
the average time for a completion in seconds. Columns (a)–(d) show the results
for some selected systems, namely CGE2, CGE5, proofreduction, and equiv proofs.

The DP strategy (2) allows to successfully complete problems (a)–(d), which
cannot be completed using LPO or KBO. However, some other systems are lost,
compared to the setting using LPO. Typically, these problems require many iter-
ations and/or give rise to many equations. Also, the average time compared to
(1) is multiplied. Settings (3) and (4) require more encoding effort such that com-
pletion takes even more time than for setting (2). However, the tradeoff between
the more complex encoding and the gain in power turns out more beneficial for
setting (4), which can complete the same number of problems as (2) but more

Table 1. Experimental Results.

avg. time (a) (b) (c) (d)

(1) Sfull(tlpo) 81 2.2 ∞ ∞ ∞ ∞
(2) Sfull(tdp) 89 33.5 17.1 79.5 5.2 3.1

(3) Sfull(tdg) 86 37.3 18.5 155.5 5.7 3.1

(4) Sfull(tdg2) 89 41.0 12.3 254.0 13.2 6.5

(5) Sauto 97 11.6 4.1 104.4 3.6 1.5

(DP1) Smaxcomp 56 4.8 157.7 ∞ 7.5 3.9

(DP2) Sred 81 31.8 568.4 ∞ 9.8 2.1

(DP3) Scomp 87 45.9 15.5 302.7 3.4 2.2

(DP4) SCPred 90 29.7 17.1 273.5 9.2 3.4

(DP5) SnotOriented 85 15.9 3.6 15.9 20.6 3.8

(LPO1) Smaxcomp 77 13.5 ∞ ∞ ∞ ∞
Maxcomp 87 3.8 ∞ ∞ ∞ ∞
mkbTT 85 40.1 33.5 ∞ 7.3 237.9

KBCV 88 12.4 ∞ ∞ ∞ ∞
Slothrop 76 65.8 ∞ ∞ 209.4 12.1

Encoding DP Techniques and Control Strategies for Maximal Completion 161

than (3). Overall Sauto proved to be most powerful since it can often be efficient
by applying LPO, but also switch to a more sophisticated strategy in case of
unorientable equations.

Concerning control strategies, a comparison of (1) with (LPO1) and (2) with
(DP1) suggests that Smaxcomp is by far more suited for plain reduction orders
than for complex DP strategies. One reason for that might be that powerful
DP strategies can orient more equations such that Smaxcomp gives rise to even
larger TRSs. But we also observed that Smaxcomp with DPs prefers unfortunate
orientations in presence of group theory, which occurs in many problems.

All of Sred , Scomp and SCPred positively influence the number of completed
systems (though at the price of lower efficiency). In the Sauto setting, their
combination was most successful.

As Table 1 shows, MaxcompDP with strategy Sauto can complete more sys-
tems than any other automatic completion tool , although the tools are incom-
parable in the sense that for each tool there is an ES that it can complete, but
no other tools can. It manages to complete CGE5 in 104.4 seconds, whereas for
mkbTT it was a major effort requiring more than 35000 seconds. Moreover, Max-
compDP can also complete CGE6 and CGE7 in 307 and 362 seconds, respectively
(the latter using n = 18, though). No other tool could complete these ESs so far.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

2. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

3. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-
mination of term rewriting. JAR 40(2–3), 195–220 (2008)

4. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework:
combining techniques for automated termination proofs. In: Baader, F., Voronkov,
A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg
(2005)

5. Klein, D., Hirokawa, N.: Maximal completion. In: RTA, vol. 10 of LIPIcs, pp. 71–80
(2011)

6. Korovin, K.: Inst-Gen – a modular approach to instantiation-based automated
reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS,
vol. 7797, pp. 239–270. Springer, Heidelberg (2013)

7. Sato, H., Winkler, S.: A satisfiability encoding of dependency pair techniques for
maximal completion. In: WST (2014)

8. Schneider-Kamp, P., Thiemann, R., Annov, E., Codish, M., Giesl, J.: Proving
termination using recursive path orders and SAT solving. In: Konev, B., Wolter,
F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 267–282. Springer, Heidelberg
(2007)

9. Sternagel, T., Zankl, H.: KBCV – Knuth-Bendix Completion Visualizer. In:
Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp.
530–536. Springer, Heidelberg (2012)

162 H. Sato and S. Winkler

10. Stump, A., Löchner, B.: Knuth-Bendix completion of theories of commuting group
endomorphisms. IPL 98(5), 195–198 (2006)

11. Wehrman, I., Stump, A., Westbrook, E.: Slothrop: knuth-bendix completion with
a modern termination checker. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098,
pp. 287–296. Springer, Heidelberg (2006)

12. Winkler, S., Sato, H., Middeldorp, A., Kurihara, M.: Multi-completion with ter-
mination tools. JAR 50(3), 317–354 (2013)

13. Yamada, A., Kusakari, K., Sakabe, T.: A unified ordering for termination proving.
Science of Computer Programming (2014). doi:10.1016/j.scico.2014.07.009

14. Zankl, H., Hirokawa, N., Middeldorp, A.: Constraints for argument filterings. In:
van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F.
(eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 579–590. Springer, Heidelberg (2007)

15. Zankl, H., Hirokawa, N., Middeldorp, A.: KBO orientability. JAR 43(2), 173–201
(2009)

http://dx.doi.org/10.1016/j.scico.2014.07.009

Reducing Relative Termination
to Dependency Pair Problems

José Iborra1, Naoki Nishida1, Germán Vidal2, and Akihisa Yamada3(B)

1 Graduate School of Information Science, Nagoya University, Nagoya, Japan
2 MiST, DSIC, Universitat Politècnica de València, Valencia, Spain

3 Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
akihisa.yamada@uibk.ac.at

Abstract. Relative termination, a generalized notion of termination,
has been used in a number of different contexts like proving the conflu-
ence of rewrite systems or analyzing the termination of narrowing. In
this paper, we introduce a new technique to prove relative termination
by reducing it to dependency pair problems. To the best of our knowl-
edge, this is the first significant contribution to Problem #106 of the
RTA List of Open Problems. The practical significance of our method is
illustrated by means of an experimental evaluation.

1 Introduction

Proving that a program terminates is a fundamental problem that has been
extensively studied in almost all programming paradigms. For term rewrite
systems (TRSs), termination analysis has attracted considerable attention
(see, e.g., the survey of Zantema [31] and the termination portal1), and various
automated termination provers for TRSs have been developed, e.g. AProVE [9],
TTT2 [20], and NaTT [28]. Among them the dependency pair (DP) method [2,12]
and its successor the DP framework [10] became a modern standard.

Termination of a TRS is usually checked for all possible reduction sequences.
In some cases, however, one is interested in proving a generalized notion, relative
termination [7,17]. Roughly speaking, a TRS R is relatively terminating w.r.t.
another TRS B (that here we call the base), when any infinite reduction using
both systems contains only a finite number of steps given with rules from R. For
instance, consider the following base:

Bcomlist = {cons(x, cons(y, ys)) → cons(y, cons(x, ys))}
specifying a property for commutative lists (i.e., that the order of elements is
irrelevant). Termination of operations on commutative lists, described by a TRS

Germán Vidal is partially supported by the EU (FEDER) and the Spanish Min-
isterio de Economı́a y Competitividad under grant TIN2013-44742-C4-1-R and by
the Generalitat Valenciana under grant PROMETEOII2015/013. Akihisa Yamada
is supported by the Austrian Science Fund (FWF): Y757.

1 Available from URL http://www.termination-portal.org/.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 163–178, 2015.
DOI: 10.1007/978-3-319-21401-6 11

http://www.termination-portal.org/

164 J. Iborra et al.

R, can be analyzed as the relative termination of R w.r.t. Bcomlist. Note also that
the base Bcomlist is clearly non-terminating.

Relative termination has been used in various contexts: proving confluence
of a rewrite system [7,13]; liveness properties in the presence of fairness [18];
and termination of narrowing [15,24,27], an extension of rewriting to deal with
non-ground terms (see, e.g., [14]). Moreover, analyzing relative termination can
also be useful for other purposes, like dealing with random values or consider-
ing rewrite systems with so called extra-variables (i.e., variables that occur in
the right-hand side of a rule but not in the corresponding left-hand side). For
instance, the following base Brand specifies a random number generator:

Brand = {rand(x) → x, rand(x) → rand(s(x))}

We have rand(0) →∗
Brand

sn(0) for arbitrary n ∈ N. Now consider

Rquot = { x − 0 → x, s(x) − s(y) → x − y,
quot(0, s(y)) → 0, quot(s(x), s(y)) → s(quot(x − y, s(y)))}

from [2]. Termination of Rquot can be shown using the DP method [2]. However, it
is unknown if Rquot is relatively terminating w.r.t. Brand using previously known
techniques. Note also that it seems not so obvious, since Rquot is not relatively
terminating w.r.t. the following similar variant Bgen:

Bgen = {gen → 0, gen → s(gen)}

which is considered in the context of termination of narrowing [15,24,27]. Indeed,
we can construct the following infinite reduction sequence using Bgen:

s(gen) − s(gen) →Rquot gen − gen →∗
Bgen

s(gen) − s(gen) →Rquot · · ·

We expect that a similar technique can also be used to deal with TRSs with
extra-variables. In principle, these systems are always non-terminating, since
extra-variables can be replaced by any term. However, one can still consider an
interesting termination property: is the system terminating if the extra-variables
can only be instantiated with terms built from a restricted signature? Consider,
e.g., the following TRS from [23]:

R = {f(x, 0) → s(x), g(x) → h(x, y), h(0, x) → f(x, x), a → b}

This system is clearly non-terminating due to the extra variable in the second
rewrite rule. However, by assuming that y can only take values built from con-
structor symbols (e.g., natural numbers), one can reformulate these rewrite rules
as follows: R′ = {f(x, 0) → s(x), g(x) → h(x, gen), h(0, x) → f(x, x), a → b},
using Bgen above. Obviously, R′ ∪ Bgen is still non-terminating since Bgen is non-
terminating. Nevertheless, one can still prove relative termination of R′ w.r.t.
Bgen, which is an interesting property since one can ensure terminating deriva-
tions by using an appropriate heuristics to instantiate extra-variables.

Reducing Relative Termination to Dependency Pair Problems 165

Another interesting application of relative termination w.r.t. Brand is to gener-
ate test cases. For example, in the QuickCheck technique, lists over, e.g., natural
numbers are generated at random. Assume f and g are defined externally by a
TRS Rfg, and consider the TRS Rtest consisting of the following rules:

rands(0, y) → done(y) rands(s(x), y) → rands(x, cons(rand(0), y))
tests(0) → true tests(s(x)) → test(rands(rand(0), nil)) ∧ tests(x)
eq(x, x) → true test(done(y)) → eq(f(y), g(y))

where lists are built from nil and cons. Execution of tests(sn(0)) tests the equiv-
alence between f and g by feeding them random inputs n times. Even when f
and g are defined by f(x) → x and g(x) → x, AProVE fails to prove relative
termination of Rtest ∪ Rfg w.r.t. Brand.

In this paper, we present a new technique for proving relative termination
by reducing it to the finiteness of dependency pair problems. To the best of
our knowledge, we provide the first significant contribution to Problem #106
of the RTA List of Open Problems:2 “Can we use the dependency pair method
to prove relative termination?” We implemented the proposed method in the
termination tool NaTT 3 and showed its significance through experiments. Using
results of this paper and [29], NaTT can prove relative termination of Rquot w.r.t.
Brand, and relative termination of Rtest ∪ Rfg w.r.t. Brand for e.g., naive and tail
recursive definitions of summation as f and g.

This paper is organized as follows. In Sect. 2, we briefly review some notions
and notations of term rewriting. In Sects. 3–5, we present our main contributions
for reducing relative termination to a dependency pair problem. Moreover, some
subtle features about minimality are discussed in Sect. 6. Then, Sect. 7 describes
implementation issues and presents selected results from an experimental evalua-
tion. Finally, Sect. 8 compares our technique with some related work, and Sect. 9
concludes and points out some directions for future research. Missing proofs of
technical results can be found in the appendix.

2 Preliminaries

We assume some familiarity with basic concepts and notations of term rewriting.
We refer the reader to, e.g., [4] for further details.

A signature F is a set of function symbols. Given a set of variables V with
F ∩V = ∅, we denote the domain of terms by T (F ,V). We use f, g, . . . to denote
function symbols and x, y, . . . to denote variables. The root symbol of a term
t = f(t1, . . . , tn) is f and denoted by root(t). We assume an extra fresh constant
� called a hole. Then, C ∈ T (F ∪ {�},V) is called a context on F . We use the
notation C[] for the context containing one hole, and if t ∈ T (F ,V), then C[t]
denotes the result of placing t in the hole of C[].

2 http://www.win.tue.nl/rtaloop/.
3 Available at http://www.trs.cm.is.nagoya-u.ac.jp/NaTT/.

http://www.win.tue.nl/rtaloop/
http://www.trs.cm.is.nagoya-u.ac.jp/NaTT/

166 J. Iborra et al.

A position p in a term t is represented by a finite sequence of natural numbers,
where ε denotes the root position. We let t|p denote the subterm of t at position
p, and t[s]p the result of replacing the subterm t|p by the term s. We denote by
s � t that t is a subterm of s, and by s � t that it is a proper subterm.

Var(t) denotes the set of variables appearing in t. A substitution is a mapping
σ : V → T (F ,V), which is extended to a morphism from T (F ,V) to T (F ,V) in
a natural way. We denote the application of a substitution σ to a term t by tσ.

A rewrite rule l → r is a pair of terms such that l /∈ V and Var(l) ⊇ Var(r).
The terms l and r are called the left-hand side and the right-hand side of the
rule, respectively. A term rewriting system (TRS) is a set of rewrite rules. Given
a TRS R, we write FR for the set of function symbols appearing in R, DR for
the set of the defined symbols, i.e., the root symbols of the left-hand sides of the
rules, and CR for the set of constructors; CR = FR \ DR.

For a TRS R, we define the associated rewrite relation −→R as follows: given
terms s, t ∈ T (F ,V), s −→R t holds iff there exist a position p in s, a rewrite
rule l → r ∈ R and a substitution σ with s|p = lσ and t = s[rσ]p; the rewrite
step is often denoted by s

p−→R t to make the rewritten position explicit, and
s

>ε−→R t if the position is strictly below the root. Given a binary relation →, we
denote by →+ the transitive closure of → and by →∗ its reflexive and transitive
closure.

Now we recall the formal definition of relative termination:

Definition 1 (Relative Termination [17]). Given two TRSs R and B, we
define the relation −→R/B as →∗

B · →R · →∗
B. We say that R relatively terminates

w.r.t. B, or simply that R/B is terminating, if the relation −→R/B is terminat-
ing. We say that a term t is R/B-nonterminating if it starts an infinite −→R/B
derivation, and R/B-terminating otherwise.

In other words, R/B is terminating if every (possibly infinite) →R∪B deriva-
tion contains only finitely many →R steps. Note that sequences of →B steps are
“collapsed” and seen as a single −→R/B step. Hence, an infinite −→R/B deriva-
tion must contain an infinite number of →R steps and thus only finite →B
subderivations.

The Dependency Pair Framework. The dependency pair (DP) framework
[2,10] enables analyzing cyclic dependencies between rewrite rules, and has
become one of the most popular approaches to proving termination in term
rewriting. Indeed, it underlies virtually all modern termination tools for TRSs.

Let us briefly recall the fundamentals of the DP framework. Here, we consider
that the signature F is implicitly extended with fresh function symbols f � for each
defined function f ∈ DR. Also, given a term t = f(t) with f ∈ DR, we let t� denote
f �(t). Here, t is an abbreviation for t1, . . . , tn for an appropriate n. If l → r ∈ R
and t is a subterm of r with a defined root symbol, then the rule l� → t� is a
dependency pair of R. The set of all dependency pairs of R is denoted by DP(R).
Note that DP(R) is also a TRS.

Reducing Relative Termination to Dependency Pair Problems 167

A key ingredient in this framework is the notion of a chain, which informally
represents a sequence of calls that can occur during a reduction. In the following,
P will often denote a set of dependency pairs. A (P,R)-chain (à la [12]) is a
possibly infinite rewrite sequence s1

ε−→P t1 −→∗
R s2

ε−→P t2 −→∗
R · ε−→P · · · . The

basic result from [2] is then that a TRS R is terminating iff there is no infinite
(DP(R),R)-chain. In order to check absence of infinite chains, the DP framework
introduces the notions of a DP problem. A DP problem is just a pair (P,R),
and is called finite if there is no infinite (P,R)-chain. To prove DP problems
finite, we can use several techniques implemented in current termination tools,
e.g., AProVE, TTT2, and NaTT.

3 Relative Termination as a Dependency Pair Problem

Let us start with some basic conditions in terms of dependency pair problems.
First, it is folklore that, given two TRSs R and B, termination of R ∪ B implies
the relative termination of R w.r.t. B. Therefore, an obvious sufficient condition
for relative termination can be stated as follows:

Proposition 1. Let R and B be TRSs. R/B is terminating if the DP problem
(DP(R ∪ B),R ∪ B) is finite.

Observe that DP(R)∪DP(B) ⊆ DP(R∪B) but DP(R∪B) = DP(R)∪DP(B)
is not true when there are shared symbols.

On the other hand, using a proof technique from the standard DP framework,
we can easily prove the following necessary condition for relative termination.

Proposition 2. Let R and B be TRSs. If R/B is terminating, then the DP
problem (DP(R),R ∪ B) is finite.

Now, we aim at finding more precise characterizations of relative termination
in terms of DP problems. First we need some auxiliary definitions and results.

Definition 2 (Order Pair). We say that (�,
) is a (well-founded) order pair
on carrier A if � is a quasi-ordering on A,
 is a (well-founded) strict order
on A, and � and
 are compatible (i.e., � ◦
 ◦ � ⊆
).

The multiset extension of an order pair (�,
) on A is the order pair (�mul,

mul) on multisets over A which is defined as follows: X �mul Y if X and Y are
written X = X ′ � {x1, . . . , xn} and Y = Y ′ � {y1, . . . , yn}—where “�” denotes
union on multisets—such that

– ∀y ∈ Y ′. ∃x ∈ X ′. x
 y, and
– ∀i ∈ {1, . . . , n}. xi � yi.

We have X
mul Y if it also holds that X ′ �= ∅. It is shown that the multiset
extension of a well-founded order pair is also a well-founded order pair [26].

In the following, we will consider a particular order pair:

168 J. Iborra et al.

Definition 3. For two TRSs R and B, the pair (�R/B,
R/B) of relations on
terms is defined as follows: �R/B = (→R∪B ∪ �)∗ and
R/B = (→R/B ∪ �)+.

The relations �R/B and
R/B enjoy the following key property:

Lemma 1. For two TRSs R and B, (�R/B,
R/B) is a well-founded order pair
on R/B-terminating terms.

Proof. For an R/B-terminating term t, t →R∪B t′ implies that t′ is also R/B-
terminating. Furthermore, t � t′ implies that t′ is also R/B-terminating. Using
these facts, the required properties are straightforward from the definition.

We now introduce the multisets that we will use to prove our main results.

Definition 4. Let R be a TRS and t a term. The multiset �R(t) of maximal
R-defined subterms of t is defined as follows:

– �R(x) = ∅ if x ∈ V,
– �R(f(t1, . . . , tn)) = �R(t1) ∪ · · · ∪ �R(tn) if f /∈ DR, and
– �R(f(t1, . . . , tn)) = {f(t1, . . . , tn)} if f ∈ DR.

An essential property is that an →R reduction step corresponds to a decrease
in
mul

R/B, which is stated as follows:

Lemma 2. Let R and B be TRSs. If s →R t then �R(s)
mul
R/B �R(t).

Proof. Let s
p−→R t and q be the shortest prefix of p such that root(s|q) ∈ DR,

that is, �R(s) = �R(s[]q)∪{s|q}. Note that q always exists since root(s|p) ∈ DR.
We distinguish the following cases:

– Suppose that q < p. Since root(s|q) = root(t|q) ∈ DR, we have �R(t) =
�R(s[]q) ∪ {t|q}. Trivially s|q
R/B t|q, and thus �R(s)
mul

R/B �R(t).
– Suppose that p = q. We have �R(t) = �R(s[]p) ∪ �R(t|p). For every

t′ ∈ �R(t|p), we have s|p →R t|p � t′ and thus s|p
R/B t′. We conclude
�R(s)
R/B �R(t).

Unfortunately, a →B reduction does not generally imply a weak decrease in �mul
R/B

without further conditions. Hence, we introduce the following notion:

Definition 5 (R/B Weak-Decreasing). Let R and B be TRSs. We say that
R/B is weak-decreasing if t →B t′ implies �R(t) �mul

R/B �R(t′).

Keen readers may notice that R/B weak-decreasingness is somewhat related
to the notion of a rank non-increasing TRS from [22]. Intuitively speaking, given
two disjoint signatures, the rank of a term is given by the number of nested
functions from different sets. E.g., given signatures F1 = {f, a} and F2 = {g},
the term f(f(a)) has rank 1, while f(f(g(a))) has rank 3. A TRS R is then called
rank non-increasing if t →R t′ implies that the rank of t is equal or greater
than the rank of t′. The following example illustrates the difference between our
notion of R/B weak-decreasingness and that of rank non-increasingness:

Reducing Relative Termination to Dependency Pair Problems 169

Example 1. Consider the two TRSs R = {a → b} and B = {b → a}. Clearly,
R ∪ B is rank non-increasing (there are no nested functions, so the rank is
always 1). On the other hand, R/B is not weak-decreasing since b →B a but
�R(b) = { } ��mul

R/B {a} = �R(a). Not also that R/B is not terminating.

Now we can show the following result using Lemmas 1 and 2, and the fact
that the multiset extension preserves well-foundedness.

Lemma 3. Let R and B be TRSs such that R/B is weak-decreasing. A term s
is R/B-terminating if all elements in �R(s) are R/B-terminating.

Now we recall the notion of minimal (nonterminating) terms. We say that
an R/B-nonterminating term is minimal if all its proper subterms are R/B-
terminating. It is clear that any R/B-nonterminating term has some minimal
R/B-nonterminating subterm.

Lemma 4. Let R and B be TRSs such that R/B is weak-decreasing. If t is a
minimal R/B-nonterminating term, then root(t) ∈ DR.

Proof. We prove the claim by contradiction. Consider a minimal R/B-
nonterminating term s such that root(s) /∈ DR. Since root(s) /∈ DR, all elements
in �R(s) are proper subterms of s, which are R/B-terminating due to minimality.
Lemma 3 implies that s is R/B-terminating, hence we have a contradiction.

Using the previous results, we can state the following sufficient condition
which states that relative termination of R w.r.t. B coincides with the finiteness
of the DP problem (DP(R),R∪B), even if B is non-terminating. To facilitate the
following discussion, besides R/B weak-decreasingness we further impose that R
and B share no defined symbol, i.e., DR ∩DB = ∅. This condition will be relaxed
in the later development. The proof of the following theorem is analogous to the
standard dependency pair proof scheme.

Theorem 1. Let R and B be TRSs such that R/B is weak-decreasing and DR ∩
DB = ∅. Then, R/B is terminating iff the DP problem (DP(R),R ∪ B) is finite.

Theorem 1 is not yet applicable in practice; whether R/B is weak-decreasing
or not is obviously undecidable in general. Thus in the next section, we provide
decidable syntactic conditions to ensure R/B weak-decreasingness.

4 Syntactic Conditions for Weak-Decreasingness

In this section, we focus on finding syntactic and decidable conditions that ensure
R/B weak-decreasingness. For this purpose, this time we require B to be non-
duplicating, i.e., no variable has more occurrences in the right-hand side of a rule
than in its left-hand side, together with the following condition:

Definition 6 (Dominance). We say that a TRS R dominates a TRS B iff the
right-hand sides of all rules in B contain no symbol from DR.

170 J. Iborra et al.

Before proving that the above two conditions ensure R/B weak-
decreasingness, we state an auxiliary result. Let MVar(s) denote the multiset of
variables occurring in a term s. The following lemma can easily be proved.

Lemma 5. Let R and B be TRSs such that R dominates B. For every term t
and substitution σ, �R(tσ) �mul

R/B
⊎

x∈MVar(t) �R(xσ).

The following lemma is the key result of this section:

Lemma 6. Let R and B be TRSs such that R dominates B and B is non-
duplicating. Then R/B is weak-decreasing.

Proof. We prove that t
p−→B t′ implies �R(t) �mul

R/B �R(t′) for arbitrary terms t

and t′ and a position p. We distinguish the following two cases:

– First, assume that p has a prefix q such that t|q ∈ �R(t). Then, we have

�R(t) = �R(t[]q) ∪ {t|q} and �R(t′) = �R(t[]q) ∪ {t′|q}
Since t|q →B t′|q, we have t|q �mul

R/B t′|q and thus �R(t) �mul
R/B �R(t′).

– Assume now that tq /∈ �R(t) for any prefix q of p. Let l → r ∈ B, t|p = lσ,
and t′ = t[rσ]p. In this case, we have

�R(t) = �R(t[]p) ∪ �R(lσ) and �R(t′) = �R(t[]p) ∪ �R(rσ)

From Lemma 5, we have �R(lσ) �mul
R/B

⋃
x∈MVar(l) �R(xσ). Since R dominates

B, r cannot contain symbols from DR. Therefore,

�R(lσ) �mul
R/B

⋃
x∈MVar(l) �R(xσ) and �R(rσ) =

⋃
x∈MVar(r) �R(xσ)

Since B is non-duplicating, we have MVar(l) ⊇ MVar(r) and thus �R(lσ) ⊇
�R(rσ). Therefore, we conclude that �R(t) �mul

R/B �R(t′).

Finally, the following result is a direct consequence of Theorem1 and Lemma 6.

Corollary 1. Let R and B be TRSs such that R dominates B, B is non-
duplicating, and DR ∩ DB = ∅. Then, R/B is terminating iff the DP problem
(DP(R),R ∪ B) is finite.

The following simple example illustrates that Corollary 1 indeed advances the
state-of-the-art in proving relative termination.

Example 2. Consider the following two TRSs:

R = {g(s(x), y) → g(f(x, y), y)} B = {f(x, y) → x, f(x, y) → f(x, s(y))}
Since they satisfy the conditions of Corollary 1, we obtain the DP problem
(DP(R),R ∪ B), where DP(R) = {g�(s(x), y) → g�(f(x, y), y)}. The DP problem
can be proved finite using classic techniques, e.g. polynomial interpretation Pol
such that fPol(x, y) = x. On the other hand, all the tools we know that support
relative termination, namely AProVE (ver. 2014), TTT2 (ver. 1.15), Jambox (ver.
2006) [6], and TPA (ver. 1.1) [19], fail on this problem.

Reducing Relative Termination to Dependency Pair Problems 171

The dominance condition and the non-duplication condition are indeed nec-
essary for Corollary 1 to hold. It is clear that the former condition is necessary
from Example 1, which violates the dominance condition. For the latter condi-
tion, the following example illustrates that it is also necessary.

Example 3. Consider the following two TRSs:

R = {a → b} B = {f(x) → c(x, f(x))}
We have the following infinite −→R/B-derivation:

f(a) →B c(a, f(a)) →R c(b, f(a)) →B c(b, c(a, f(a))) →R c(b, c(b, f(a))) →B · · ·
However, there is no infinite (DP(R),R ∪ B)-chain since DP(R) = ∅. Note that
this is a counterexample against [15, Theorem 5].

5 Improving Applicability

In contrast to dominance and non-duplication, the condition DR ∩DB = ∅ is not
necessary. In order to show that this is indeed the case, let us recall the following
result from [7]:

Proposition 3. Let R, B′ and B′′ be TRSs. Then, (R ∪ B′)/B′′ is terminating
iff both R/(B′ ∪ B′′) and B′/B′′ are terminating.

Therefore, we have the following corollary in our context:

Corollary 2. Let R and B be TRSs with B = B′ ∪ B′′. If (R ∪ B′)/B′′ is termi-
nating, then R/B is terminating.

Now we state the first theorem of this section.

Theorem 2. Let R and B be TRSs such that R dominates B and B is non-
duplicating. If the DP problem (DP(R),R∪B) is finite then R/B is terminating.

Proof. Let B′ be the set of rules in B that define DR symbols, i.e., B′ = {l →
r ∈ B | root(l) ∈ DR}, and let B′′ = B \B′. Since the right-hand sides of B′ rules
cannot contain symbols from DR (= DR∪B′), we have DP(R ∪ B′) = DP(R).

Now, observe that R ∪ B′ dominates B′′, DR∪B′ ∩ DB′′ = ∅, and B′′ is non-
duplicating. Thus, Corollary 1 implies the relative termination of R ∪ B′ w.r.t.
B′′ and Corollary 2 implies the relative termination of R w.r.t. B.

Unfortunately, the remaining two, namely the dominance and non-duplication
conditions, might be too restrictive in practice. For instance, only six out of 44
examples in the relative TRS category of the TPDB satisfy both conditions.

Luckily, we can employ again Corollary 2 to relax the conditions. Consider
TRSs R and B such that we want to prove that R/B is terminating but the
conditions of Theorem 2 do not hold. Then, we might still find a partition
B = B′ � B′′ such that R ∪ B′ and B′′ satisfy the conditions.

If we succeed, then by Theorem 2 and Corollary 2, we have that R/B is
terminating (i.e., by Theorem2, (R∪B′)/B′′ is terminating and, by Corollary 2,
R/(B′ ∪ B′′) is also terminating with B′ ∪ B′′ = B).

172 J. Iborra et al.

Corollary 3. Let R and B be TRSs. If B is split into B = B′ � B′′ such that
(1) B′′ is non-duplicating, (2) R ∪ B′ dominates B′′, and (3) the DP problem
(DP(R ∪ B′),R ∪ B) is finite, then R/B is terminating.

Example 4. Consider the following TRSs R and B:

R = {a → b} B = {f(s(x)) → c(x, f(x)), c(x, c(y, z)) → c(y, c(x, z))}
The first rule of B is duplicating, and hence Theorem 2 does not apply. However,
we can split B into the following TRSs B′ and B′′:

B′ = {f(s(x)) → c(x, f(x))} B′′ = {c(x, c(y, z)) → c(y, c(x, z))}
so that Corollary 3 applies. Now, we have DP(R ∪ B′) = { f�(s(x)) → f�(x) },
whose finiteness can be proved using standard techniques.

Corollary 3 requires the rules in B that are duplicating or violate the domi-
nance condition to be relatively terminating w.r.t. other rules in B. This is not
overly restrictive, as shown by the following two examples.

Example 5. Consider again the TRS B of Example 3, which is duplicating
and nonterminating. We can construct an infinite →R/B-reduction as in
Example 3 for any nonempty TRS R; thus, any nonempty TRS is not relatively
terminating w.r.t. B.

Example 6. Consider the two TRSs R = { a → b } and B = { d → c(a, d) }. Note
that R does not dominate B. The DP problem (DP(R),R ∪ B) = (∅,R ∪ B) is
trivially finite. However, R is not relatively terminating w.r.t. B, as the following
infinite derivation exists:

d →B c(a, d) →R c(b, d) →B c(b, c(a, d)) →R c(b, c(b, d)) →B · · ·

6 Relative Termination and Minimality

A DP chain s�
1

ε−→P t�1 −→∗
R s�

2
ε−→P t�2 −→∗

R · · · is said to be minimal if
every t�i is terminating w.r.t. R. It is well-known that absence of infinite min-
imal (DP(R),R)-chains implies absence of infinite (DP(R),R)-chains and thus
termination of R. A couple of techniques, namely usable rules and the subterm
criterion have been proposed to prove absence of infinite minimal chains [12].

Unfortunately, for the DP problems produced by our relative termination
criteria, the minimality property cannot be assumed. Therefore, usable rules
and subterm criterion do not apply in general.

Example 7. Consider the TRSs R = { f(s(x)) → f(x) } and B = { inf → s(inf) }.
Theorem 2 yields the DP problem ({f�(s(x)) → f�(x)},R∪B), which satisfies the
subterm criterion in the argument of f�. Moreover, since no rule is usable from
the dependency pair f�(s(x)) → f�(x), the usable rule technique would yield the
DP problem ({f�(s(x)) → f�(x)}, ∅), which any standard technique proves finite.
However, R/B is not terminating as the following infinite reduction exists:

f(s(inf)) →R f(inf) →B f(s(inf)) →R f(inf) →B · · ·

Reducing Relative Termination to Dependency Pair Problems 173

Nonetheless, we show that both the subterm criterion and usable rules are
still applicable when B satisfies the following condition:

Definition 7 (Quasi-Termination [5]). We say that a TRS R is quasi-
terminating iff the set {t | s −→∗

R t} is finite for every term s.

Now we naturally extend the notion of minimality to relative termination.

Definition 8 (Relative DP Problem). A relative DP problem is a triple of
TRSs, written (P,R/B). A (P,R/B)-chain is a possibly infinite sequence

s1
ε−→P t1

>ε−→∗
R∪B s2

ε−→P t2
>ε−→∗

R∪B · · ·

and is called minimal if every ti is R/B-terminating. The relative DP problem
is minimally finite if it admits no infinite minimal chain.

Clearly, finiteness of (DP(R),R/B) is equivalent to that of (DP(R),R ∪ B).
Hence our previous results hold as well for the corresponding relative DP problems.

When the base B is quasi-terminating, we can apply the subterm criterion.
A simple projection π assigns each n-ary symbol f � an argument position i ∈
{1, . . . , n}. For a term t� = f �(t1, . . . , tn) and i = π(f �), we denote ti by π(t�).
For a relation � on terms, �π is defined as follows: s �π t iff π(s) � π(t).

Theorem 3 (Relative Subterm Criterion). Let B be a quasi-terminating
TRS, (P,R/B) a relative DP problem and π a simple projection such that P ⊆
�π. Then, (P,R/B) is finite if (P \ �π,R/B) is finite.

The proof of the above theorem mimics that of [12, Theorem11], but here we
need the relative termination of �/B.

The quasi-termination condition also enables the usable rules technique.

Theorem 4 (Relative Usable Rules). If B is quasi-terminating, then the
usable rule argument can be applied to the relative DP problem (P,R/B).

Proof (Sketch). The proof basically follows the standard case of [12, Theorem 29].
Note however that we require B to be quasi-terminating, in order for the inter-
pretation IG to be well-defined for all R/B-terminating terms.

It is well-known that, unfortunately, the quasi-termination condition is unde-
cidable [5]. In our implementation, we only use a trivial sufficient condition,
size-non-increasingness. We admit that this is quite restrictive, and thus leave
it for future work to find more useful syntactic condition for this purpose.

From Example 7, it is clear that the usable rule argument does not apply to
the rules in B if they are not quasi-terminating. Nonetheless, we conjecture that
the usable rule argument may be still applicable to the rules in R.

174 J. Iborra et al.

7 Experimental Evaluation

A key technique for proving finiteness of DP problems are reduction pairs [2]:
A reduction pair is a well-founded order pair (�, >) on terms such that � is
closed on contexts and substitutions, and > is closed on substitutions.

Proposition 4 ([2,10]). Let (P,R) be a DP problem and (�, >) a reduction
pair such that P ∪ R ⊆ �. The DP problem (P,R) is finite iff (P \ >,R) is.

In the experiments, we use the following reduction pairs:

– polynomial interpretations with negative constants [2,11,21],
– the lexicographic path order [16],
– the weighted path order with partial status [29], and
– (2- or 3-dimensional) matrix interpretations [6].

Geser [7] proposed a technique to reduce relative termination of TRSs to
relative termination of simpler TRSs. This technique is incorporated into the
DP framework for proving standard termination, as rule removal processors [10].
We say a reduction pair (�, >) is monotone if > is closed under contexts.

Proposition 5 (Relative Rule Removal Processor). Let R and B be
TRSs, and (�, >) a monotone reduction pair such that R ∪ B ⊆ �. Then R
is relatively terminating w.r.t. B if and only if R \ > is relatively terminating
w.r.t. B \ >.

For monotone reduction pairs, we use polynomial and matrix interpretations
with top-left elements of coefficients being at least 1 [6].

We implemented our technique into the termination prover NaTT (ver.1.2). In
the following, we show the significance of our technique through an experimental
evaluation. The experiments4 were run on a server equipped with a quad-core
Intel Xeon E5-3407v2 processor running at a clock rate of 2.40GHz and 32GB
of main memory. NaTT uses z3 4.3.2 5 as a back-end SMT solver.

The first test set consists of the 44 examples in the “TRS Relative” category
of the termination problem database (TPDB) 9.0.6 The results are presented
in the left half of Table 1. In the first two rows, we directly apply Theorem2
and Corollary 3, and then apply the aforementioned reduction pairs. We observe
that they are of limited applicability on the TPDB set of problems due to
the non-duplication and dominance conditions. Nonetheless, Corollary 3 could
prove relative termination of two problems7 which no tools participating in the
termination competition 2014 were able to prove. For comparison, we include
results for rule removal processors by matrix interpretations in the third row.

We also prepared 44 examples by extending examples of [3] with the random
number generator Brand or the commutative list specification Bcomlist. The results
4 Details are available at http://www.trs.cm.is.nagoya-u.ac.jp/papers/CADE2015.
5 Available at http://z3.codeplex.com/.
6 Available at http://termination-portal.org/wiki/TPDB.
7 For one of the two problems, the union is terminating.

http://www.trs.cm.is.nagoya-u.ac.jp/papers/CADE2015
http://z3.codeplex.com/
http://termination-portal.org/wiki/TPDB

Reducing Relative Termination to Dependency Pair Problems 175

Table 1. Experiments

TPDB relative (44) AG01+relative (44)

Method Yes Maybe T.O Time Yes Maybe T.O Time

Theorem 2 4 40 0 1.21 29 15 0 5.07

Corollary 3 6 28 0 37.03 29 15 0 5.08

Proposition 5 23 17 4 406.01 9 35 0 8.19

Proposition 5 + Corollary 3 25 11 8 505.94 35 9 0 12.70

AProVE 27 (no: 8) 9 756.66 14 0 30 1959.91

are presented in the right half of Table 1. In these examples, the power of our
method should be clear. Theorem 2 is already able to prove relative termination
of 29 examples, while AProVE succeeds only in 14 examples.

The DP framework allows combining termination proving techniques. In the
fourth row, we combine the rule removal processors and the technique presented in
this paper. This combination indeed boosts the power of NaTT; e.g., by combining
Proposition 5 and Corollary 3, NaTT can prove relative termination for a total of
60 examples (out of 88), while AProVE can only prove it for 41 examples.8 There-
fore, we can conclude that our technique improves the state-or-the-art methods
for proving relative termination.

8 Related Work

One of the most comprehensive works on relative termination is Geser’s PhD
thesis [7]. One of the main results in this work is formulated in Proposition 5 in
the previous section. A similar technique has been used, e.g., to prove confluence
in [13]. Of course dependency pairs are not considered in [7] since it was intro-
duced almost a decade later. Dependency pairs are considered in [6], but they
are mainly used to prove termination of a TRS R by proving the termination of
DP(R)/R, which is quite a different purpose from ours.

Giesl and Kapur [8] adapted the dependency pair method for proving termi-
nation of equational rewriting, a special case of relative termination where the
base is symmetric (B = B−1). For more specific associative-commutative (AC)
rewriting, a number of papers exist (e.g., [1]). The key technique behind them
is to compute an extension of R w.r.t. the considered equations. This operation
allows symbols in B (e.g., AC symbols) to be defined also in R, and hence no
counterpart of the dominance condition is required. However, such extensions
are computable only for certain equations (e.g., AC), and thus they are not
appropriate in our setting, where an arbitrary base B is considered.

The closer approach is [15], where the main aim was proving termination of
narrowing [14] by proving relative termination of a corresponding rewrite rela-
tion, similarly to [24,27]. In [15], a first attempt to reduce relative termination
8 For four examples, AProVE proved relative termination but NaTT failed. There
AProVE used semantic labeling [30], which is currently not implemented in NaTT.

176 J. Iborra et al.

to a DP problem is made by requiring R and B to form a so called hierar-
chical combination (HC) [25], i.e., DR ∩ FB = ∅. Unfortunately, we found that
[15, Theorem 5] was incorrect since requiring B to be non-duplicating is also nec-
essary. In fact, Example 3 is a counterexample to [15, Theorem 5]. The present
paper corrects and significantly extends [15]; namely, all results in Sects. 3, 5 and
6 are new, and those in Sect. 4 correct and extend the previous result of [15]. Note
also that the HC condition of [15] is a special case of our dominance condition.
Moreover, we developed an implementation that allowed us to experimentally
verify that our technique indeed pays off in practice.

9 Conclusion

In this paper, we have introduced a new approach to proving relative termination
by reducing it to DP problems. The relevance of such a result should be clear,
since it allows one to prove relative termination by reusing many existing tech-
niques and tools for proving termination within the DP framework. Indeed, such
an approach was included in the RTA List of Open Problems (Problem #106).
To the best of our knowledge, this work makes the first significant contribution
to positively answering this problem. Moreover, as shown in Sect. 7, our method
is competitive w.r.t. state-of-the-art provers for the problems in TPDB, and is
clearly superior for examples including the generation of random values or the
simulation of extra-variables, as discussed in Sect. 1.

As future work, we plan to improve the precision of our technique by extend-
ing the DP framework to be more suitable for proving relative termination. We
will also continue the research on finding less restrictive conditions on R and B
so that the technique becomes more widely applicable.

Acknowledgement. We would like to thank Nao Hirokawa and the anonymous
reviewers for their helpful comments and suggestions in early stages of this work.

References

1. Alarcón, B., Lucas, S., Meseguer, J.: A dependency pair framework for A ∨ C -
termination. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 35–51.
Springer, Heidelberg (2010)

2. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor.
Comput. Sci. 236(1–2), 133–178 (2000)

3. Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using
dependency pairs. Technical report AIB-2001-09, RWTH Aachen (2001)

4. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

5. Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3(1&2), 69–115 (1987)
6. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-

mination of term rewriting. J. Autom. Reasoning 40(2–3), 195–220 (2008)
7. Geser, A.: Relative termination. Dissertation, Fakultät für Mathematik und Infor-

matik, Universität Passau, Germany (1990)

Reducing Relative Termination to Dependency Pair Problems 177

8. Giesl, J., Kapur, D.: Dependency pairs for equational rewriting. In: Middeldorp,
A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 93–107. Springer, Heidelberg (2001)

9. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2 : automatic termination
proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

10. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006)

11. Hirokawa, N., Middeldorp, A.: Polynomial interpretations with negative coeffi-
cients. In: Buchberger, B., Campbell, J. (eds.) AISC 2004. LNCS (LNAI), vol.
3249, pp. 185–198. Springer, Heidelberg (2004)

12. Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: van Oostrom, V.
(ed.) RTA 2004. LNCS, vol. 3091, pp. 249–268. Springer, Heidelberg (2004)

13. Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. J.
Autom. Reasoning 47(4), 481–501 (2011)

14. Hullot, J.M.: Canonical forms and unification. CADE-5. LNCS, vol. 87, pp. 318–
334. Springer, Heidelberg (1980)

15. Iborra, J., Nishida, N., Vidal, G.: Goal-directed and relative dependency pairs for
proving the termination of narrowing. In: De Schreye, D. (ed.) LOPSTR 2009.
LNCS, vol. 6037, pp. 52–66. Springer, Heidelberg (2010)

16. Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering (1980,
unpublished note)

17. Klop, J.W.: Term rewriting systems: a tutorial. Bull. Eur. Assoc. Theor. Comput.
Sci. 32, 143–183 (1987)

18. Koprowski, A., Zantema, H.: Proving liveness with fairness using rewriting. In:
Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 232–247. Springer,
Heidelberg (2005)

19. Koprowski, A.: TPA: termination proved automatically. In: Pfenning, F. (ed.) RTA
2006. LNCS, vol. 4098, pp. 257–266. Springer, Heidelberg (2006)

20. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2.
In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg
(2009)

21. Lankford, D.: Canonical algebraic simplification in computational logic. Technical
report ATP-25, University of Texas (1975)

22. Liu, J., Dershowitz, N., Jouannaud, J.-P.: Confluence by critical pair analysis.
In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 287–302. Springer,
Heidelberg (2014)

23. Nishida, N., Sakai, M., Sakabe, T.: Narrowing-based simulation of term rewriting
systems with extra variables. ENTCS 86(3), 52–69 (2003)

24. Nishida, N., Vidal, G.: Termination of narrowing via termination of rewriting.
Appl. Algebra Eng. Commun. Comput. 21(3), 177–225 (2010)

25. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer-Verlag, London
(2002)

26. Thiemann, R., Allais, G., Nagele, J.: On the formalization of termination tech-
niques based on multiset orderings. In: RTA 2012. LIPIcs, vol. 15, pp. 339–354.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)

27. Vidal, G.: Termination of narrowing in left-linear constructor systems. In: Gar-
rigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 113–129.
Springer, Heidelberg (2008)

28. Yamada, A., Kusakari, K., Sakabe, T.: Nagoya termination tool. In: Dowek, G.
(ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 466–475. Springer, Heidelberg (2014)

178 J. Iborra et al.

29. Yamada, A., Kusakari, K., Sakabe, T.: A unified ordering for termination proving.
Sci. Comput. Program. (2014). doi:10.1016/j.scico.2014.07.009

30. Zantema, H.: Termination of term rewriting by semantic labelling. Fundamenta
Informaticae 24(1/2), 89–105 (1995)

31. Zantema, H.: Termination. In: Bezem, M., Klop, J.W., de Vrijer, R. (eds.) Term
Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55,
pp. 181–259. Cambridge University Press, Cambridge (2003)

http://dx.doi.org/10.1016/j.scico.2014.07.009

Decision Procedures

Decidability of Univariate Real Algebra
with Predicates for Rational and Integer Powers

Grant Olney Passmore(B)

Aesthetic Integration, London and Clare Hall,
University of Cambridge, Cambridge, England

grant.passmore@cl.cam.ac.uk

Abstract. We prove decidability of univariate real algebra extended
with predicates for rational and integer powers, i.e., “xn ∈ Q” and
“xn ∈ Z.” Our decision procedure combines computation over real alge-
braic cells with the rational root theorem and witness construction via
algebraic number density arguments.

1 Introduction

From the perspective of decidability, the reals stand in stark contrast to the
rationals and integers. While the elementary arithmetical theories of the integers
and rationals are undecidable, the corresponding theory of the reals is decidable
and admits quantifier elimination. The immense utility real algebraic reasoning
finds within the mathematical sciences continues to motivate significant progress
towards practical automatic proof procedures for the reals.

However, in mathematical practice, we are often faced with problems involv-
ing a combination of nonlinear statements over the reals, rationals and integers.
Consider the existence and irrationality of

√
2, expressed in a language with

variables implicitly ranging over R:

∃x(x ≥ 0 ∧ x2 = 2) ∧ ¬∃x(x ∈ Q ∧ x ≥ 0 ∧ x2 = 2)

Though easy to prove by hand this sentence has never to our knowledge been
placed within a broader decidable theory so that, e.g., the existence and irra-
tionality of solutions to any univariate real algebra problem can be decided auto-
matically. This

√
2 example is relevant to the theorem proving community as its

formalisation has been used as a benchmark for comparing proof assistants [21].
It would be useful if such proofs were fully automatic.

In this paper, we prove decidability of univariate real algebra extended with
predicates for rational and integer powers. This guarantees we can always decide
sentences like the above, and many more besides. For example, the following
conjectures are decided by our method in a fraction of a second:

∀x(x3 ∈ Z ∧ x5 �∈ Z ⇒ x �∈ Q)

∃x(x2 ∈ Q ∧ x �∈ Q ∧ x5 + 1 > 20)

∀x(x2 �∈ Q ⇒ x �∈ Q)

∃x(x �∈ Q ∧ x2 ∈ Z ∧ 3x4 + 2x + 1 > 5 ∧ 4x3 + 1 < 2)
c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 181–196, 2015.
DOI: 10.1007/978-3-319-21401-6 12

182 G.O. Passmore

2 Preliminaries

We assume a basic grounding in commutative algebra. We do not however assume
exposure to real algebraic geometry and give a high-level treatment of the rele-
vant foundations.

The theory of real closed fields (RCF) is Th(〈R,+,−,×, <, 0, 1〉), the collec-
tion of all true sentences of the reals in the elementary language of ordered rings.
RCF is complete, decidable and admits effective elimination of quantifiers [3].

A real algebraic number is a real number that is a root of a (non-zero)
univariate polynomial with integer coefficients.

The real algebraic numbers,

Ralg = {x ∈ R | ∃p �= 0 ∈ Z[x] s.t. p(x) = 0},

form a computable subfield (a computable sub-RCF) of R. Indeed, Ralg embeds
isomorphically into every RCF. The field operations of Ralg are performed on
computable representations of field elements. The minimal polynomial of α ∈
Ralg is the unique monic p ∈ Q[x] of least degree s.t. p(α) = 0. The degree of an
algebraic number is the degree of its minimal polynomial.

An element α ∈ Ralg can be represented by two pieces of data: (i) a polyno-
mial p(x) ∈ Z[x] s.t. p(α) = 0, and (ii) an identifier specifying which root of p(x)
is denoted by α. A root-triple representation is often used where α is “pinned
down” among the roots of p(x) by an interval with rational endpoints:

〈p(x) ∈ Z[x], q1, q2 ∈ Q〉 s.t. p(α) = 0 ∧ #{r ∈ [q1, q2] | p(r) = 0} = 1.

The process of root isolation is a key component of computing over Ralg.
Given a polynomial p ∈ Z[x] with k unique real roots, root isolation computes
a sequence of disjoint real intervals with rational endpoints I1, . . . , Ik s.t. each
Ij contains precisely one real root of p. Much work has been done on efficient
root isolation. Common approaches include those based on Sturm’s Theorem
and Descartes’ Rule of Signs [4,12,19]. Sturm’s Theorem also plays a key role in
computing the sign of a polynomial evaluated at a real algebraic number.

Given representations of α, β ∈ Ralg, there are two main approaches to per-
forming the field operations, i.e., for computing representations of α−1, α + β,
αβ, etc. Both approaches rely on root isolation. The first approach uses bivari-
ate resultants to compute representation polynomials [12]. The second approach
uses a recursive representation of real algebraic numbers through an explicit
treatment of field towers and does not require computing resultants [13,17].
Computing αn (which plays a key role in our decision procedure) can in gen-
eral be done by repeated squaring, requiring on the order of log n real algebraic
number multiplications. More sophisticated methods for αn are also available [6].

The Intermediate Value Theorem (IVT) holds over every RCF. Armed with
machinery for computing the sign of a polynomial p(x) ∈ Z[x] at a real algebraic
point α ∈ Ralg, the combination of IVT and root isolation can be used as the
basis of a decision method for univariate real algebra.

Decidability of Univariate Real Algebra with Predicates 183

Consider

ϕ(x) =

⎡

⎣
k1∧

i=1

k2∨

j=1

(pij(x) �ij 0)

⎤

⎦ s.t. pij ∈ Z[x], �ij ∈ {<,≤,=,≥, >}.

We can decide the satisfiability of ϕ over R, i.e., whether or not

〈R,+,−,×, <, 0, 1〉 |= ∃x(ϕ(x))

in the following manner:

– Let P =
∏

ij pij ∈ Z[x], the product of all polynomials appearing in ϕ.
– Let α1 < . . . < αk ∈ Ralg be all distinct real roots of P .
– Then, the roots αi partition R into finitely many connected components:

R =]−∞, α1[∪[α1]∪]α1, α2[∪ · · · ∪]αk−1, αk[∪[αk]∪]αk, +∞[.

– By IVT, the sign of each polynomial pij appearing in ϕ is invariant over any
component of the partitioning.

– Thus, we can simply select one sample point from each component of the
partitioning and obtain a sequence of 2k + 1 real algebraic points S =
{r1, . . . , rk+1} ⊂ Ralg s.t.

〈R,+,−,×, <, 0, 1〉 |= ∃x(ϕ(x)) ⇐⇒
2k+1∨

i=1

ϕ(ri).

Now ∃x(ϕ(x)) can be decided simply by evaluating ϕ(x) at finitely many real
algebraic points. The partitioning of R constructed above is called an algebraic
decomposition induced by P (equivalently, by the polynomials pij).

3 Decision Procedure

Our decision procedure extends the IVT-based method for univariate real algebra
with means to handle predicates expressing the rationality and integrality of
powers of the variable of the formula, i.e., (xn ∈ Q) and (xn ∈ Z). As will be made
clear (cf. Sect. 5), the restriction of these predicates to powers of the variable
is important: The method would fail if we allowed more general polynomials
p(x) ∈ Z[x] to appear in constraints of the form (p(x) ∈ Q).

Formally, we work over the univariate language of ordered rings L extended
with infinitely many predicate symbols of one real variable:

(x ∈ Q), (x2 ∈ Q), (x3 ∈ Q), . . . and (x ∈ Z), (x2 ∈ Z), (x3 ∈ Z),

We use LQZ to mean the resulting extended language and LQ (resp. LZ) to mean
L extended only with the rationality (resp. integrality) predicates.

184 G.O. Passmore

We present a method to decide the satisfiability of quantifier-free LQZ for-
mulas over R. It suffices to consider LQZ formulas of the form

ϕ(x) ∧ Γ (x)

where ϕ ∈ L is a formula of univariate real algebra and

Γ = ΓQ ∧ ΓZ

s.t.

ΓQ =

[
k1∧

i=1

(xw1(i) ∈ Q) ∧
k2∧

i=1

(xw2(i) �∈ Q)

]

and

ΓZ =

[
k3∧

i=1

(xw3(i) ∈ Z) ∧
k4∧

i=1

(xw4(i) �∈ Z)

]

.

Informed by the IVT-based method for univariate real algebra, we can reduce
this LQZ decision problem to an even more restricted one. Crucial to this reduc-
tion is treating the connected components of an algebraic decomposition as “first
class” objects, rather than only computing with single sample points selected
from them. We call such components r-cells.

Definition 1 (r-cell). An r-cell is a connected component of R of one of the
following four forms (with α, β ∈ Ralg): (i) [α], (ii)]−∞, α[s.t. α ≤ 0, (iii)
]α, β[s.t. 0 ≤ α < β or α < β ≤ 0, (iv)]α,+∞[s.t. α ≥ 0.

Observe that the only r-cell containing zero is the singleton (type (i)) r-cell
[0]. Note that r-cells of type (i) are 0-dimensional subsets of R while r-cells
of types (ii)-(iv) are 1-dimensional. We call these 0-cells and 1-cells, resp. An
algebraic decomposition can always be transformed into an r-cell decomposition
by splitting any 1-cell containing zero into three parts.

Given Φ(x) = ϕ(x) ∧ Γ (x), we must decide whether or not R contains any
point x s.t. Φ(x) holds. To do so, we will first compute an r-cell decomposition
of R induced by the polynomials of ϕ. Let c1, . . . , ck be these r-cells. Then by
IVT, the truth of ϕ is invariant within each ci. Note, however, that the truth of
Γ may vary over each ci. Let C be the result of filtering out all r-cells ci that
falsify ϕ:

C = {ci | ∃r ∈ ci(ϕ(r)), 1 ≤ i ≤ k}.

This can be done by evaluating ϕ at a single sample point drawn from each ci.
If C = ∅, then Φ is clearly unsatisfiable over R. Otherwise, C is a non-empty
collection of r-cells over which ϕ is satisfied. To decide Φ, we need only to decide
whether or not Γ is satisfied over any c ∈ C.

We present a method to do so. We first develop a method to decide rationality
constraints over an r-cell. We then lift the method to handle general combinations
of rationality and integrality constraints.

Decidability of Univariate Real Algebra with Predicates 185

3.1 Deciding Rationality Constraints

Given a system of rationality constraints ΓQ and an r-cell c, we need a method to
decide whether or not ΓQ is satisfied over c. To accomplish this, we will extract
a system of degree constraints from ΓQ and give a method to decide if c contains
a real algebraic number satisfying them.

We must however take care of the following issue: If we prove there exists no
algebraic real in c satisfying ΓQ, how do we know there exists no transcendental
real in c satisfying ΓQ as well? That is, in the presence of rationality constraints,
can we still transfer results from Ralg to R as a whole? We answer this question
in the affirmative by proving a suitable transfer principle (cf. Theorem 2).

It turns out we need essentially two methods for deciding ΓQ over c: One
method for 0-cells and another for 1-cells. We begin with the 1-cell case.

1-Cells. To construct our system of degree constraints, we shall utilise a funda-
mental property relating the degree of a “binomial root” real algebraic number
to the rationality of its powers. We employ a result on the density of real alge-
braic numbers to show that any consistent system of degree constraints gives
rise to a real algebraic solution in a 1-cell. We then prove completeness of the
method and a transfer principle enabling us to lift results from Ralg to R.

Lemma 1 (Minimal binomials). Let α ∈ Ralg s.t. αn ∈ Q for some n ∈ N.
Then, the minimal polynomial for α over Q[x] is a binomial of the form xd − q.

Proof. Let k ∈ N be the least power s.t. αk ∈ Q. We shall prove that p(x) =
xk − αk ∈ Q[x] is the minimal polynomial for α. Assume p(x) is reducible over
Q[x]. Observe that p(x) =

∏k
i=1(x−αζi) where ζ is a kth root of unity. As p(x)

is reducible, it must have a nontrivial factor f(x) =
∏m

i=1(x − αζsi) ∈ Q[x] with
m < k and si ∈ N. But then (αm

∏m
i=1 ζsi) ∈ Q, and since α is real, we must

have αm ∈ Q. But m < k. Contradiction. Thus, as p(x) = xk − αk is irreducible
and monic, it is the minimal polynomial for α over Q[x]. ��
Lemma 2 (Binomial algebraic degree and divisibility). Let α ∈ Ralg s.t.
α is a root of some xk − q ∈ Q[x]. Let n ∈ N. Then,

(αn ∈ Q) ⇐⇒ deg(α) | n.

Proof. Let d = deg(α). (⇐) By Lemma 1, αd ∈ Q. But, as d | n, we have αn =
(αd)k for some k ∈ N. Thus, αn ∈ Q. (⇒) We use the method of infinite descent.
Consider αn = q ∈ Q. Then, xn − q has α as a root, and thus d ≤ n. Assume
d � n. It follows that d < n, gcd(d, n) = 1, q = αdαn−d and gcd(d, n − d) = 1.
As αd ∈ Q, we have αn−d = q

αd ∈ Q. Note n − d < n. But then αn−d ∈ Q s.t.
d � n − d, and we can continue this process ad infinitum. Contradiction. ��

Let c ⊂ R be a 1-cell and ΓQ a system of rationality constraints s.t.

ΓQ =

[
k1∧

i=1

(xw1(i) ∈ Q) ∧
k2∧

i=1

(xw2(i) �∈ Q)

]

.

186 G.O. Passmore

To ΓQ, we associate a system of degree constraints D(ΓQ) as follows:

D(ΓQ) =

[
k1∧

i=1

(d | w1(i)) ∧
k2∧

i=1

(d � w2(i))

]

.

Note that each wj(i) is a concrete natural number. Thus, D(ΓQ) is a system of
arithmetical constraints with a single free variable d. We shall prove that ΓQ is
satisfied over c iff D(ΓQ) is consistent over N, i.e., iff

∃d ∈ N s.t. D(ΓQ)(d).

We proceed in two steps. First, we prove that ΓQ is satisfied by a real algebraic
number in c iff D(ΓQ) is satisfied over N. Next, we show that this result can be
lifted to R as a whole, i.e., that ΓQ is satisfied over c (by any real, be it algebraic
or transcendental) iff D(ΓQ) is satisfied over N.

These results elucidate a deep homogeneity of R. Intuitively, R is so saturated
with real algebraic numbers that, given any open interval I ⊂ R, the only way I
can fail to contain an algebraic number satisfying ΓQ is if the purely arithmetical
facts induced by ΓQ (via Lemma 2) are mutually inconsistent over N. Moreover,
from the perspective of rationality constraints, transcendental elements cannot
be distinguished from algebraic ones. To prove these results, we shall need to
understand a bit about the density of real algebraic numbers of arbitrary degree.

Lemma 3 (Density of ratios of primes). Given a < b ∈ R, there exists
p
q ∈]a, b[s.t. |p| �= |q| are both prime.

Proof. A straightforward application of the Prime Number Theorem.

Lemma 4 (Density of real algebraic numbers of degree n). Let a < b ∈ R

and n ∈ N. Then, ∃α ∈ Ralg s.t. a < α < b and deg(α) = n and αn ∈ Q.

Proof. We construct an irreducible p(x) = xn − q ∈ Q[x] s.t. a < n
√

q < b.
Then, α = n

√
q will suffice. WLOG, assume a > 0. Let Q be a rational in

]a, b[. Let f : R
+ → R be the nth-root function, i.e., f(r) = n

√
r. Consider

Qn ∈ Q. By continuity of f , ∃ε > 0 s.t. f(]Qn − ε,Qn + ε[) ⊂]a, b[. For each
rational q ∈]Qn − ε,Qn + ε[, we thus have a < f(q) < b with f(q) algebraic, as
(f(q))n − q = 0. To prove the theorem, we must choose q s.t. deg(f(q)) = n. It
suffices to find q ∈]Qn − ε,Qn + ε[s.t. p(x) = xn −q is irreducible over Q[x]. By
Lemma 3, we can choose q = q1

q2
∈]Qn − ε,Qn + ε[s.t. q1 �= q2 are both prime.

By Eisenstein’s criterion, q2x
n − q1 is irreducible over Q[x]. Thus, xn − q1

q2
is

irreducible and α = n

√
q1
q2

completes the proof. ��
With Lemma 4 in hand, it is not hard to see that ΓQ is satisfied by a real algebraic
number in a 1-cell c iff D(ΓQ) is satisfied over N.

Theorem 1 (1-cell arithmetical reduction: algebraic case). Let ΓQ be a
system of rationality constraints and c ⊆ R a 1-cell. Then, ΓQ is satisfiable over
c by a real algebraic number iff D(ΓQ) is satisfiable over N.

Decidability of Univariate Real Algebra with Predicates 187

Proof. (⇒) Let α ∈ (c∩Ralg) satisfy ΓQ. Then, by Lemma 2, d = deg(α) satisfies
D(ΓQ). (⇐) Let d ∈ N satisfy D(ΓQ). Then, by Lemma 2, any algebraic α ∈ c
s.t. deg(α) = d will satisfy ΓQ. But, by Lemma 4, such an α must exist in c. ��

Thus, we have reduced the satisfiability of ΓQ by real algebraic numbers
present in a 1-cell c to the satisfiability of D(ΓQ) over N. However, we must still
attend to the possibility that ΓQ could be satisfied by a transcendental element
in c without being satisfied by an algebraic element in c. Let us now prove
that this scenario is impossible. In fact, we will prove this for both the 0 and
1-dimensional cases.

Theorem 2 (Rationality constraints transfer principle). Let ΓQ be a sys-
tem of rationality constraints and c an r-cell. Then, it is impossible for ΓQ to be
satisfied by a transcendental real in c without also being satisfied by an algebraic
real in c.

Proof. Let ΓQ =
[∧k1

i=1(x
w1(i) ∈ Q) ∧ ∧k2

i=1(x
w2(i) �∈ Q)

]
. If c is a 0-cell,

then c contains no transcendental elements, so the theorem holds. Consider
c a 1-cell. We examine the structure of ΓQ. If k1 > 0, i.e., ΓQ contains at
least one positive rationality constraint, then ΓQ cannot be satisfied by any
transcendental element, and the theorem holds. Thus, we are left to consider
ΓQ =

∧k2
i=1(x

w2(i) �∈ Q) s.t. ΓQ is satisfied by a transcendental element in c.
Let m = max(w2(1), . . . , w2(k2)). Then, ΓQ will be satisfied by any α ∈ Ralg s.t.
deg(α) > m. But by Lemma 4, c must contain an algebraic α s.t. deg(α) = m+1.
��

In addition to giving us a complete method for deciding the satisfiability of
systems of rationality constraints over 1-cells, the combination of Theorem 2
and the completeness of the theory of real closed fields tells us something of a
fundamental model-theoretic nature:

Corollary 1 (Transfer principle for LQ). Given φ ∈ LQ,

〈R,+,×, <, (xn ∈ Q)n∈N, 0, 1〉 |= φ ⇐⇒ 〈Ralg, +,×, <, (xn ∈ Q)n∈N, 0, 1〉 |= φ.

That is, extending the language L to include rationality constraints (LQ) still
guarantees a sound transfer of results from Ralg to R.

Finally, let us put the pieces together and prove our main theorem for 1-cells.

Theorem 3 (1-cell arithmetical reduction: general case) Let ΓQ be a sys-
tem of rationality constraints and c ⊆ R a 1-cell. Then, ΓQ is satisfiable over c
iff D(ΓQ) is satisfiable over N.

Proof. Immediate by Theorems 1 and 2. ��
Thus, to decide if ΓQ is satisfied over a 1-cell c, we need only check the

consistency of D(ΓQ) over N. It is easy to derive an algorithm for doing so.
Consider D(ΓQ) s.t.

D(ΓQ) =

[
k1∧

i=1

(d | w1(i)) ∧
k2∧

i=1

(d � w2(i))

]

.

188 G.O. Passmore

If k1 = 0, then d = max(w2(1), . . . , w2(k2)) + 1 satisfies D(ΓQ). If k2 = 0,
then d = 1 satisfies D(ΓQ). Finally, if k1 > 0 and k2 > 0, then m =
min(w1(1), . . . , w1(k1)) gives us an upper bound on all d satisfying D(ΓQ). Thus,
we need only search for such a d from 1 to m. For efficiency, we can augment
this bounded search by various cheap sufficient conditions for recognising incon-
sistencies in D(ΓQ).

0-Cells. When deciding rationality constraints over r-cells of the form [α], we
will need to decide, when given some j ∈ N, whether or not αj ∈ Q. Recall that
a root-triple for αj can be computed from a root-triple for α (cf. Sect. 2). A key
component for deciding a system of rationality constraints over a 0-cell is then
an algorithm for deciding whether or not a given real algebraic number β = αj

is rational. Naively, one might try to solve this problem in the following way:

Given β presented as a root-triple 〈p ∈ Z[x], l, u〉, fully factor p over Q[x].
Then, β ∈ Q iff the factorisation of p contains a linear factor of the form
(x − q) with q ∈ [l, u].

From the perspective of theorem proving, the problem with this approach is
that it is difficult in general to establish the “completeness” of a factorisation.
While it is easy to verify that the product of a collection of factors equals the
original polynomial, it can be very challenging (without direct appeal to the
functional correctness of an implemented factorisation algorithm) to prove that
a given polynomial is irreducible, i.e., that it cannot be factored any further.
Indeed, deep results in algebraic number theory are used even to classify the
irreducible factors of binomials [8]. Moreover, univariate factorisation can be
computationally expensive, especially when one is only after rational roots.

We would like the steps in our proofs to be as clear and obvious as possible,
and to minimise the burden of formalising our procedure as a tactic in a proof
assistant. Thus, we shall go a different route. To decide whether or not a given α
is rational, we apply a simple but powerful result from high school mathematics:

Theorem 4 (Rational roots). Let p(x) =
∑n

i=0 anxn ∈ Z[x] \ {0}. If a
b ∈ Q

s.t. p(q) = 0 and gcd(a, b) = 1, then a | a0 and b | an.

Proof. A straightforward application of Gauss’s lemma.

Given Theorem 4, we can decide the rationality of α simply by enumerat-
ing potential rational roots q1, . . . , qk and checking by evaluation whether any
qi satisfies (l ≤ qi ≤ r ∧ p(qi) = 0). Then, to decide whether α satisfies a given
system of rationality constraints, e.g., ΓQ =

[
(x2 ∈ Q) ∧ (x �∈ Q)

]
, we first com-

pute a root-triple representation for α2 and then test α and α2 for rationality
as described. This process clearly always terminates. To make this more efficient
when faced with many potential rational roots, we can combine (i) dividing our
polynomial p by (x − q) whenever q is realised to be a rational root, and (ii)
various cheap irreducibility criteria over Q[x] for recognising when a polynomial
has no linear factors over Q[x] and thus has no rational roots.

Decidability of Univariate Real Algebra with Predicates 189

3.2 Deciding Integrality Constraints

Integrality Constraints Over an Unbounded 1-Cell. WLOG let c =
]α,+∞[with α ≥ 0. Consider Γ = ΓQ ∧ ΓZ with

ΓZ =

[
k3∧

i=1

(xw3(i) ∈ Z) ∧
k4∧

i=1

(xw4(i) �∈ Z)

]

.

We use the notation φ : Γ to mean that the constraint φ is present as a conjunct
in Γ . It is convenient to also view Γ as a set. Let Γ denote the closure of Γ
under the following saturation rules:

1. (xn �∈ Q) : Γ → (xn �∈ Z) : Γ
2. (xn ∈ Z) : Γ → (xn ∈ Q) : Γ
3. (xn ∈ Z) : Γ ∧ (xm �∈ Z) : Γ → (x �∈ Q) : Γ
4. (xn ∈ Z) : Γ ∧ (xm ∈ Q) : Γ → (xm ∈ Z) : Γ
5. (xn ∈ Z) : Γ ∧ (xm �∈ Z) : Γ → (xm �∈ Q) : Γ

This saturation process is clearly finite. The soundness of rules 1 and 2 is obvious.
The soundness of rules 3-5 is easily verified by the following lemmata.

Lemma 5 (Soundness: rule 3). (xn ∈ Z) ∧ (xm �∈ Z) → (x �∈ Q)

Proof. Since xm �∈ Z, we know x �∈ Z. Suppose x ∈ Q. Then x = a
b s.t.

gcd(a, b) = 1. Thus, an = xnbn. Thus, b | a. Recall gcd(a, b) = 1. So, b = 1. But
then x = a ∈ Z. Contradiction. ��
Lemma 6 (Soundness: rule 4). (xn ∈ Z) ∧ (xm ∈ Q) → (xm ∈ Z)

Proof. Let d = deg(x). By Lemma 2, d | n and d | m. If d = n, then xm = (xn)k

for some k ∈ N and thus xm ∈ Z. Otherwise, d < n. Let xd = a
b ∈ Q s.t.

gcd(a, b) = 1. Thus, xn = (xd)k = ak

bk
∈ Z for some k ∈ N. But then b = 1, and

thus xd ∈ Z. So, as d | m, xm ∈ Z as well. ��
Lemma 7 (Soundness: rule 5). (xn ∈ Z) ∧ (xm �∈ Z) → (xm �∈ Q)

Proof. Assume (xn ∈ Z) and (xm �∈ Z) but (xm ∈ Q). But then (xm ∈ Z) by
rule 4. Contradiction. ��

Let us now prove that these rules1 are complete for deciding the satisfiabil-
ity of systems of rationality and integrality constraints over unbounded 1-cells.
Let ΓQ (resp. ΓZ) denote the collection of rationality (resp. integrality) con-
straints present in Γ . Intuitively, we shall exploit the following observation: The
construction of Γ projects all information pertaining to the consistency of the
combined rationality and integrality constraints of Γ onto ΓQ. Then, if ΓQ is
consistent, i.e., ∃d ∈ N satisfying D(ΓQ), this will impose a strict correspondence
between ΓQ and ΓZ. From this correspondence and a least d witnessing D(ΓQ),
we can construct an algebraic real satisfying Γ .
1 In fact, the completeness proof shows that rule 3 is logically unnecessary. Neverthe-

less, we find its inclusion in the saturation process useful in practice.

190 G.O. Passmore

Lemma 8 (ΓQ-ΓZ correspondence). If ΓZ contains at least one positive inte-
grality constraint, then

∀m ∈ N

[
(xm ∈ Q) : Γ ⇐⇒ (xm ∈ Z) : Γ

]

and

∀m ∈ N

[
(xm �∈ Q) : Γ ⇐⇒ (xm �∈ Z) : Γ

]
.

Proof. Let us call the first conjunct A and the second B. (A ⇒) As ΓZ contains
at least one positive integrality constraint, rule 4 guarantees (xm ∈ Z) : Γ . (A ⇐)
Immediate by rule 2. (B ⇒) Immediate by rule 1. (B ⇐) As ΓZ contains at least
one positive integrality constraint, rule 5 guarantees (xm �∈ Q) : Γ . ��
Theorem 5 (Completeness of Γ -saturation method). Let Γ = ΓQ ∧ ΓZ

be a system of rationality and integrality constraints, and c ⊆ R an unbounded
1-cell. Then, D(ΓQ) is consistent over N iff Γ is consistent over c.

Proof. (⇐) Immediate by Theorem 3 and the soundness of our saturation rules.
(⇒) We proceed by cases.

[Case 1: Γ contains no positive rationality constraint]: Then, by Lemma 8 and
the consistency of D(ΓQ), ΓZ must contain no positive integrality constraints.
But then it is consistent with Γ that every power of x listed in Γ be irrational.
Let k ∈ N be the largest power s.t. xk appears in a constraint in Γ . Then, by
Lemma 2, any α ∈ c s.t. deg(α) > k will satisfy Γ . By Lemma 4, we can always
find such an α in c, e.g., we can select α ∈ c s.t. deg(α) = k + 1.

[Case 2: Γ contains a positive rationality constraint but no positive integrality
constraints]: By the consistency of D(ΓQ), it is consistent with Γ for every power
of x listed in Γ to be non-integral. Let d ∈ N be the least natural number satisfying
D(ΓQ). Then, we can satisfy Γ with an α s.t. deg(α) = d with αdk ∈ (Q \ Z) for
each xdk appearing in a constraint in Γ . By Lemma 4, we know such an α is
present in c of the form α = d

√
p
q for primes p �= q.

[Case 3: Γ contains both positive rationality and integrality constraints] By
Lemma 8, the rows of ΓQ and ΓZ are in perfect correspondence. Let d ∈ N be the
least natural number satisfying D(ΓQ). Since ΓQ is consistent, we can satisfy Γ
by finding an α ∈ c s.t. αdk ∈ Z for every xdk appearing in a constraint in Γ .
Recall c is unbounded towards +∞. Thus, c contains infinitely many primes p
s.t. d

√
p ∈ c. Let p ∈ c be such a prime. Then, xd − p ∈ Q[x] is irreducible by

Eisenstein’s criterion. Thus, d
√

p ∈ c and satisfies Γ . ��

Integrality Constraints Over a Bounded 1-Cell. Let us now consider the
satisfiability of Γ = ΓQ ∧ ΓZ over a bounded 1-cell c ⊂ R. Given the results of
the last section, it is easy to see that if D(ΓQ) is unsatisfiable over N, then Γ is
unsatisfiable over c. However, as Γ is bounded on both sides, it is possible for
D(ΓQ) to be satisfiable over N while Γ is unsatisfiable over c. That is, provided
D(ΓQ) is consistent over N, we must find a way to determine if c actually contains

Decidability of Univariate Real Algebra with Predicates 191

some α s.t. Γ (α) holds. Afterall, even with ΓQ satisfied over c, it is possible that
c itself is not “wide enough” to satisfy the integrality constraints ΓZ.

WLOG, let c =]α, β[s.t. 0 ≤ α < β ∈ Ralg. Let D(ΓQ) be satisfied by d ∈ N.
If Γ contains no positive integrality constraints, then we can reason as we did in
the proof of Theorem 5 to show Γ is satisfied over c. The difficulty arises when
a positive constraint (xk ∈ Z) appears in ΓZ. We can solve this case as follows.

Theorem 6 (Satisfiability over a bounded 1-cell). Let ΓZ contain at least
one positive integrality constraint. Let D(ΓQ) be satisfiable over N with d ∈ N

the least witness. Let c =]α, β[s.t. 0 ≤ α < β ∈ Ralg. Then, Γ is satisfiable over
c iff ∃z ∈ (

]αd, βd[∩Z

)
s.t. xd − z ∈ Z[x] is irreducible over Q[x].

Proof. (⇒) Assume Γ is satisfied by α ∈ c. Then, by soundness of Γ saturation,
Γ is satisfied by α as well. By Lemma 8, (xd ∈ Z) : Γ . Moreover, d is the least
natural number with this property. As 0 ≤ α < β, {rd | r ∈ c} =]αd, βd[. Thus, as
Γ is satisfied by α ∈ c, there must exist an integer z ∈]αd, βd[s.t. deg(d

√
z) = d.

But then by uniqueness of minimal polynomials, xd − z is irreducible over Q[x].
(⇐) Assume z ∈ (

]αd, βd[∩Z

)
s.t. xd − z is irreducible over Q[x]. Let γ = d

√
z

and note that γ ∈]α, β[. By Lemma 2, deg(γ) = d. Thus, ΓQ is satisfied by γ.
As γd ∈ Z, it follows by Lemma 8 that Γ is satisfied by γ as well. ��
By Eisenstein’s criterion, we obtain a useful corollary.

Corollary 2. Let D(ΓQ) be satisfiable with d ∈ N the least natural number
witness. Let c =]α, β[s.t. 0 ≤ α < β ∈ Ralg. Then, Γ is satisfiable over c if
∃p ∈]αd, βd[s.t. p is prime.

These results give us a simple algorithm to decide satisfiability of Γ over c:
If D(ΓQ) is unsatisfiable over N, then Γ is unsatisfiable. Otherwise, let d ∈ N be
the minimal solution to D(ΓQ). Gather all integers {z1, . . . , zk} in I =]αd, βd[.
If any zi is prime, Γ is satisfied over c. Otherwise, for each zi, form the real
algebraic number d

√
zi and check by evaluation if it satisfies Γ . By Theorem 6,

Γ is satisfiable over c iff one of the d
√

zi ∈ c satisfies this process.

Integrality Constraints Over a 0-Cell. Finally, we consider the case of
Γ = ΓQ ∧ ΓZ over a 0-cell [α]. Clearly, Γ is satisfied over c iff Γ is satisfied at
α. By the soundness of Γ -saturation, if D(ΓQ) is unsatisfiable over N, then Γ is
unsatisfiable over c. Thus, we first form Γ and check satisfiability of D(ΓQ) over
N. Provided it is satisfiable, we then check Γ (x �→ α) by evaluation.

4 Examples

We have implemented2 our decision method in a special version of the Meti-
Tarski theorem prover [15]. We do not use any of the proof search mechanisms
of MetiTarski, but rather its parsing and first-order formula data structures.
2 The implementation of our procedure, including computations over r-cells, Γ -

saturation and the proof output routines can be found in the RCF/ modules in the
MetiTarski source code at http://metitarski.googlecode.com/.

http://metitarski.googlecode.com/

192 G.O. Passmore

In the examples that follow, all output (including the prose and LATEX format-
ting) has been generated automatically by our implementation of the method.

4.1 Example 1

Let us decide ∃x(ϕ(x) ∧ Γ (x)), where

ϕ = (x2 − 2 = 0) and Γ = (x ∈ Q).

We first compute Γ , the closure of Γ under the saturation rules:

Γ = (x ∈ Q).

Observe D(ΓQ) is satisfied (minimally) by d = 1.
We next compute an r-cell decomposition of R induced by ϕ, yielding:

1.]−∞, Root(x2 − 2, [−2,−1/3])[,
2. [Root(x2 − 2, [−2,−1/3])],
3.]Root(x2 − 2, [−2,−1/3]), 0[,
4. [0],
5.]0, Root(x2 − 2, [1/3, 2])[,
6. [Root(x2 − 2, [1/3, 2])],
7.]Root(x2 − 2, [1/3, 2]),+∞[.

By IVT, ϕ has constant truth value over each such r-cell. Only two r-cells in the
decomposition satisfy ϕ:

[Root(x2 − 2, [−2,−1/3])], [Root(x2 − 2, [1/3, 2])].

Let us now see if any of these r-cells satisfy Γ .

1. We check if [Root(x2 − 2, [−2,−1/3])] satisfies Γ .
(a) Evaluating (α ∈ Q) for α = Root(x2 − 2, [−2,−1/3]). We shall determine

the numerical type of α. Let p(x) = x2−2. By RRT and the root interval,
we reduce the set of possible rational values for α to {−1,−2}. But none
of these are roots of p(x). Thus, α ∈ (R \ Q).

So, the r-cell does not satisfy Γ .
2. We check if [Root(x2 − 2, [1/3, 2])] satisfies Γ .

(b) Evaluating (α ∈ Q) for α = Root(x2 − 2, [1/3, 2]). We shall determine the
numerical type of α. Let p(x) = x2 − 2. By RRT and the root interval,
we reduce the set of possible rational values for α to {1, 2}. But none of
these are roots of p(x). Thus, α ∈ (R \ Q).

So, the r-cell does not satisfy Γ .

Thus, as all r-cells have been ruled out, the conjecture is false. ��

Decidability of Univariate Real Algebra with Predicates 193

4.2 Example 2

Let us decide ∃x(ϕ(x) ∧ Γ (x)), where

ϕ = True and Γ = (x3 ∈ Z) ∧ (x5 �∈ Z) ∧ (x ∈ Q).

We first compute Γ , the closure of Γ under the saturation rules:

Γ = (x �∈ Z) ∧ (x ∈ Z) ∧ (x �∈ Q) ∧ (x ∈ Q) ∧ (x3 ∈ Q) ∧ (x3 ∈ Z) ∧ (x5 �∈ Q) ∧ (x5 �∈ Z).

But, Γ is obviously inconsistent. Thus, the conjecture is false. ��

4.3 Example 3

Let us decide ∃x(ϕ(x) ∧ Γ (x)), where

ϕ = ((x3 − 7 > 3) ∧ (x2 + x + 1 < 50)) and Γ = (x2 �∈ Q) ∧ (x3 ∈ Z).

We first compute Γ , the closure of Γ under the saturation rules:

Γ = (x2 �∈ Q) ∧ (x2 �∈ Z) ∧ (x3 ∈ Z) ∧ (x3 ∈ Q).

Observe D(ΓQ) is satisfied (minimally) by d = 3.
We next compute an r-cell decomposition of R induced by ϕ, yielding:

1.]−∞, Root(x2 + x − 49, [−8,−1/50])[,
2. [Root(x2 + x − 49, [−8,−1/50])],
3.]Root(x2 + x − 49, [−8,−1/50]), 0[,
4. [0],
5.]0, Root(x3 − 10, [57/44, 5/2])[,
6. [Root(x3 − 10, [57/44, 5/2])],
7.]Root(x3 − 10, [57/44, 5/2]), Root(x2 + x − 49, [401/100, 8])[,
8. [Root(x2 + x − 49, [401/100, 8])],
9.]Root(x2 + x − 49, [401/100, 8]),+∞[.

By IVT, ϕ has constant truth value over each such r-cell. Only one r-cell in the
decomposition satisfies ϕ:

]Root(x3 − 10, [57/44, 5/2]), Root(x2 + x − 49, [401/100, 8])[.
Let us now see if any of these r-cells satisfy Γ .

1. We check if]Root(x3 − 10, [57/44, 5/2]), Root(x2 + x − 49, [401/100, 8])[sat-
isfies Γ . Call the boundaries of this r-cell L and U . As Γ contains a positive
integrality constraint and d = 3, any satisfying witness in this r-cell must be
of the form 3

√
z for z an integer in]L3, U3[. The set of integers in question is

Z = {z ∈ Z | 11 ≤ z ≤ 276}, containing 266 members. We shall examine 3
√

z
for each z ∈ Z in turn.
(a) Evaluating (α2 �∈ Q) for α = Root(x3 − 11, [1/12, 11]). Observe α2 =

Root(x3 − 121, [1/144, 121]). We shall determine the numerical type of
α2. Let p(x) = x3 − 121. By RRT and the root interval, we reduce the
set of possible rational values for α2 to {1, 11, 121}. But none of these are
roots of p(x). Thus, α2 ∈ (R \ Q).

194 G.O. Passmore

(b) Evaluating (α3 ∈ Z) for α = Root(x3 − 11, [1/12, 11]). Observe α3 =
Root(x3−1331, [1/1728, 1331]). We shall determine the numerical type of
α3. Let p(x) = x3 − 1331. By RRT and the root interval, we reduce the
set of possible rational values for α3 to {1, 11, 121, 1331}. Thus, we see
α3 = 11 ∈ Z.

Witness found: Root(x3 − 11, [1/12, 11]). So, the r-cell does satisfy Γ .

Thus, the conjecture is true. ��

5 Discussion and Related Work

Let us describe some related results that help put our work into context.

– The existence of rational or integer solutions to univariate polynomial equa-
tions over Q[x] has long been known to be decidable. The best known algo-
rithms are based on univariate factorisation via lattice reduction [7].

– Due to Weispfenning, the theory of linear, multivariate mixed real-integer
arithmetic is known to be decidable and admit quantifier elimination [20].

– Due to van den Dries, the theory of real closed fields extended with a predicate
for powers of two is known to be decidable [5]. Avigad and Yin have given
a syntactic decidability proof for this theory, establishing a non-elementary
upper bound for eliminating a block of quantifiers [2].

– Due to Davis, Putnam, Robinson and Matiyasevich, the ∃3 nonlinear, equa-
tional theories of arithmetic over N and Z are known to be undecidable
(“Hilbert’s Tenth Problem” and reductions of its negative solution) [11].

– The decidability of the ∃2 nonlinear, equational theories of arithmetic over N

and Z is open.
– Due to Poonen, the ∀2∃7 theory of nonlinear arithmetic over Q is known

to be undecidable [16]. This is an improvement of Julia Robinson’s original
undecidability proof of Th(Q) via a ∀2∃7∀6 definition of Z over Q [18].

– Due to Koenigsmann, the ∀418 and ∀1∃1109 theories of nonlinear arithmetic
over Q are known to be undecidable, via explicit definitions of Z over Q [9,10].

– The decidability of the ∃k equational nonlinear theory of arithmetic over Q is
open for k > 1 (“Hilbert’s Tenth Problem over Q”).

Our present result — the decidability of the nonlinear, univariate theory of the
reals extended with predicates for rational and integer powers — fills a gap
somewhere between the positive result on linear, multivariate mixed real-integer
arithmetic, and the negative result for Hilbert’s Tenth Problem in three variables.

Next, we would like to turn our decision method into a verified proof pro-
cedure within a proof assistant. The deepest result needed is the Prime Num-
ber Theorem (PNT). As Avigad et al. have formalised a proof of PNT within
Isabelle/HOL [1], we are hopeful that a verified version of our procedure can be
built in Isabelle/HOL [14] in the near future. To this end, it is useful to observe
that PNT is not needed by the restriction of our method to deciding the ratio-
nality of real algebraic numbers like

√
2 and

√
3 +

√
5. Thus, a simpler tactic

could be constructed for this fragment.

Decidability of Univariate Real Algebra with Predicates 195

Finally, we hope to extend the method to allow constraints of the form
(p(x) ∈ Q) for more general polynomials p(x) ∈ Z[x]. The key difficulty lies
with Lemma 2. This crucial property relating the degree of an algebraic number
to the rationality of its powers applies to “binomial root” algebraic numbers,
but not to algebraic numbers in general. For example, consider α =

√
2 + 4

√
2.

Then, the minimal polynomial of α over Q[x] is x4 − 4x2 − 8x + 2, but α4 �∈ Q.
Thus, in the presence of richer forms of rationality and integrality constraints,
our degree constraint reasoning is no longer sufficient. We expect to need more
powerful tools from algebraic number theory to extend the method in this way.

6 Conclusion

We have established decidability of univariate real algebra extended with pred-
icates for rational and integer powers. Our decision procedure combines com-
putations over real algebraic cells with the rational root theorem and results
on the density of real algebraic numbers. We have implemented the method,
instrumenting it to produce readable proofs. In the future, we hope to extend
our result to richer systems of rationality and integrality constraints, and to
construct a verified version of the procedure within a proof assistant.

Acknowledgements. We thank Jeremy Avigad, Wenda Li, Larry Paulson, András
Salamon and the anonymous referees for their helpful comments.

References

1. Avigad, J., Donnelly, K., Gray, D., Raff, P.: A formally verified proof of the prime
number theorem. ACM Trans. Comp. Logic vol. 9(1), Article No. 2 (2007)

2. Avigad, J., Yin, Y.: Quantifier elimination for the reals with a predicate for the
powers of two. Theor. Comput. Sci. 370, 1–3 (2007)

3. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer,
Secaucus (2006)

4. Collins, G.E., Akritas, A.G.: Polynomial real root isolation using Descarte’s rule of
signs. In: ACM Symposium on Symbolic and Algebraic computation. ACM (1976)

5. van den Dries, L.: The field of reals with a predicate for the powers of two. Manuscr.
Math. 54(1–2), 187–195 (1985)

6. Hirvensalo, M., Karhumäki, J., Rabinovich, A.: Computing partial information
out of intractable: powers of algebraic numbers as an example. J. Number Theor.
130(2), 232–253 (2010)

7. van Hoeij, M.: Factoring polynomials and the knapsack problem. J. Number Theor.
95(2), 167–189 (2002)

8. Hollmann, H.: Factorisation of xn − q over Q. Acta Arith. 45(4), 329–335 (1986)
9. Koenigsmann, J.: Defining Z in Q. Annals of Mathematics, To appear (2015)

10. Koenigsmann, J.: Personal communication (2015)
11. Matiyasevich, Y.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)
12. Mishra, B.: Algorithmic Algebra. Springer, New York (1993)

196 G.O. Passmore

13. de Moura, L., Passmore, G.O.: Computation in real closed infinitesimal and tran-
scendental extensions of the rationals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS,
vol. 7898, pp. 178–192. Springer, Heidelberg (2013)

14. Paulson, L.C.: Isabelle: A Generic Theorem Prover, vol. 828. Springer, New York
(1994)

15. Paulson, L.C.: MetiTarski: past and future. In: Beringer, L., Felty, A. (eds.) ITP
2012. LNCS, vol. 7406, pp. 1–10. Springer, Heidelberg (2012)

16. Poonen, B.: Characterizing integers among rational numbers with a universal-
existential formula. Am. J. Math. 131(3), 675–682 (2009)

17. Rioboo, R.: Towards faster real algebraic numbers. J. Sym. Comp. 36(3–4),
513–533 (2003)

18. Robinson, J.: Definability and Decision Problems in Arithmetic. Ph.D. thesis,
University of California, Berkeley (1948)

19. Uspensky, J.V.: Theory of Equations. McGraw-Hill, New York (1948)
20. Weispfenning, V.: Mixed real-integer linear quantifier elimination. In: ISSAC 1999,

New York, NY, USA (1999)
21. Wiedijk, F.: The Seventeen Provers of the World. Springer, New York (2006)

A Decision Procedure for (Co)datatypes
in SMT Solvers

Andrew Reynolds1(B) and Jasmin Christian Blanchette2,3

1 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
andrew.j.reynolds@gmail.com

2 Inria Nancy and LORIA, Villers-lès-Nancy, France
jasmin.blanchette@inria.fr

3 Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. We present a decision procedure that combines reasoning
about datatypes and codatatypes. The dual of the acyclicity rule for
datatypes is a uniqueness rule that identifies observationally equal
codatatype values, including cyclic values. The procedure decides uni-
versal problems and is composable via the Nelson–Oppen method. It has
been implemented in CVC4, a state-of-the-art SMT solver. An evalua-
tion based on problems generated from theories developed with Isabelle
demonstrates the potential of the procedure.

1 Introduction

Freely generated algebraic datatypes are ubiquitous in functional programs and
formal specifications. They are especially useful to represent finite data struc-
tures in computer science applications but also arise in formalized mathematics.
They can be implemented efficiently and enjoy properties that can be exploited
in automated reasoners.

To represent infinite objects, a natural choice is to turn to coalgebraic
datatypes, or codatatypes, the non-well-founded dual of algebraic datatypes.
Despite their reputation for being esoteric, codatatypes have a role to play in
computer science. The verified C compiler CompCert [13], the verified Java com-
piler JinjaThreads [14], and the formalized Java memory model [15] all depend
on codatatypes to capture infinite processes.

Codatatypes are freely generated by their constructors, but in contrast with
datatypes, infinite constructor terms are also legitimate values for codatatypes
(Sect. 2). Intuitively, the values of a codatatype consist of all well-typed finite
and infinite ground constructor terms, and only those. As a simple example, the
coalgebraic specification

codatatype enat = Z | S(enat)

introduces a type that models the natural numbers Z, S(Z), S(S(Z)), . . . , in
Peano notation but extended with an infinite value ∞ = S(S(S(. . .))). The equa-
tion S(∞) ≈ ∞ holds as expected, because both sides expand to the infinite

In memoriam Morgan Deters 1979–2015.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 197–213, 2015.
DOI: 10.1007/978-3-319-21401-6 13

198 A. Reynolds and J.C. Blanchette

term S(S(S(. . .))), which uniquely identifies ∞. Compared with the conventional
definition datatype enat = Z | S(enat) | Infty, the codatatype avoids one case
by unifying the infinite and finite nonzero cases.

Datatypes and codatatypes are an integral part of many proof assistants,
including Agda, Coq, Isabelle, Matita, and PVS. In recent years, datatypes
have emerged in a few automatic theorem provers as well. The SMT-LIB for-
mat, implemented by most SMT solvers, has been extended with a syntax for
datatypes. In this paper, we introduce a unified decision procedure for univer-
sal problems involving datatypes and codatatypes in combination (Sect. 3). The
procedure is described abstractly as a calculus and is composable via the Nelson–
Oppen method [18]. It generalizes the procedure by Barrett et al. [2], which
covers only datatypes. Detailed proofs are included in a report [20].

Datatypes and codatatypes share many properties, so it makes sense to
consider them together. There are, however, at least three important dif-
ferences. First, codatatypes need not be well-founded. For example, the type
codatatype stream τ = SCons(τ, stream τ) of infinite sequences or streams
over an element type τ is allowed, even though it has no base case. Second, a
uniqueness rule takes the place of the acyclicity rule of datatypes. Cyclic con-
straints such as x ≈ S(x) are unsatisfiable for datatypes, thanks to an acyclicity
rule, but satisfiable for codatatypes. For the latter, a uniqueness rule ensures that
two values having the same infinite expansion must be equal; from x ≈ S(x) and
y ≈ S(y), it deduces x ≈ y. These two rules are needed to ensure complete-
ness (solution soundness) on universal problems. They cannot be expressed as
finite axiomatizations, so they naturally belong in a decision procedure. Third,
it must be possible to express cyclic (regular) values as closed terms and to enu-
merate them. This is necessary both for finite model finding [22] and for theory
combinations. The μ-binder notation associates a name with a subterm; it is
used to represent cyclic values in the generated models. For example, the μ-
term SCons(1, μs. SCons(0, SCons(9, s))) stands for the lasso-shaped sequence
1, 0, 9, 0, 9, 0, 9,

Our procedure is implemented in the SMT solver CVC4 [1] as a combination
of rewriting and a theory solver (Sect. 4). It consists of about 2000 lines of C++
code, most of which are shared between datatypes and codatatypes. The code
is integrated in the development version of the solver and is expected to be part
of the CVC4 1.5 release. An evaluation on problems generated from Isabelle
theories using the Sledgehammer tool [3] demonstrates the usefulness of the
approach (Sect. 5).

Barrett et al. [2] provide a good account of related work on datatypes as
of 2007, in addition to describing their implementation in CVC3. Since then,
datatypes have been added not only to CVC4 (a complete rewrite of CVC3)
but also to the SMT solver Z3 [17] and a SPASS-like superposition prover
[27]. Closely related are the automatic structural induction in both kinds of
provers [9,21], the (co)datatype and (co)induction support in Dafny [12], and the
(semi-)decision procedures for datatypes implemented in Leon [26] and RADA
[19]. Datatypes are supported by the higher-order model finder Refute [28].

A Decision Procedure for (Co)datatypes in SMT Solvers 199

Its successor, Nitpick [4], can also generate models involving cyclic codatatype
values. Cyclic values have been studied extensively under the heading of regular
or rational trees—see Carayol and Morvan [5] and Djellou et al. [6] for recent
work. The μ-notation is inspired by the μ-calculus [11].

Conventions. Our setting is a monomorphic (or many-sorted) first-order logic.
A signature Σ = (Y , F) consists of a set of types Y and a set of function
symbols F . Types are atomic sorts and interpreted as nonempty domains. The
set Y must contain a distinguished type bool interpreted as the set of truth
values. Names starting with an uppercase letter are reserved for constructors.
With each function symbol f is associated a list of argument types τ1, . . . , τn (for
n ≥ 0) and a return type τ , written f : τ1 × · · · × τn → τ . The set F must at
least contain true, false : bool, interpreted as truth values. The only predicate is
equality (≈). The notation tτ stands for a term t of type τ . When applied to
terms, the symbol = denotes syntactic equality.

2 (Co)datatypes

We fix a signature Σ = (Y , F). The types are partitioned into Y = Ydt �
Ycodt � Yord, where Ydt are the datatypes, Ycodt are the codatatypes, and
Yord are the ordinary types (which can be interpreted or not). The function
symbols are partitioned into F = Fctr � Fsel, where Fctr are the constructors
and Fsel are the selectors. There is no need to consider further function sym-
bols because they can be abstracted away as variables when combining theories.
Σ-terms are standard first-order terms over Σ, without μ-binders.

In an SMT problem, the signature is typically given by specifying first the
uninterpreted types in any order, then the (co)datatypes with their constructors
and selectors in groups of mutually (co)recursive groups of (co)datatypes, and
finally any other function symbols. Each (co)datatype specification consists of
� mutually recursive types that are either all datatypes or all codatatypes. Nested
(co)recursion and datatype–codatatype mixtures fall outside this fragment.

Each (co)datatype δ is equipped with m ≥ 1 constructors, and each construc-
tor for δ takes zero or more arguments and returns a δ value. The argument types
must be either ordinary, among the already known (co)datatypes, or among the
(co)datatypes being introduced. To every argument corresponds a selector. The
names for the (co)datatypes, the constructors, and the selectors must be fresh.
Schematically:

(co)datatype δ1 = C11(
[
s111:

]
τ1
11, . . . ,

[
sn11
11 :

]
τn11
11) | · · · | C1m1(. . .)...

and δ� = C�1(. . .) | · · · | C�m�
(. . .)

with Cij : τ1
ij × · · · × τ nij

ij → δi and s k
ij : δi → τ k

ij . Defaults are assumed for the
selector names if they are omitted. The δ constructors and selectors are denoted
by F δ

ctr and F δ
sel. For types with several constructors, it is useful to provide

200 A. Reynolds and J.C. Blanchette

discriminators dij : δi → bool. Instead of extending F , we let dij(t) be an abbre-
viation for t ≈ Cij

(
s1ij(t), . . . , s

nij
ij (t)

)
.

A type δ depends on another type ε if ε is the type of an argument to one of
δ’s constructors. Semantically, a set of types is mutually (co)recursive if and only
if the associated dependency graph is strongly connected. A type is (co)recursive
if it belongs to such a set of types. Non(co)recursive type specifications such as
datatype option τ = None | Some(τ) are permitted.

One way to characterize datatypes is as the initial model of the selector–
constructor equations [2]. A related semantic view of datatypes is as initial alge-
bras. Codatatypes are then defined dually as final coalgebras [24]. The datatypes
are generated by their constructors, whereas the codatatypes are viewed through
their selectors.

Datatypes and codatatypes share many basic properties:

Distinctness: Cij(x̄) �≈ Cij ′(ȳ) if j �= j ′

Injectivity: Cij(x1, . . . , xnij
) ≈ Cij(y1, . . . , ynij

) −→ xk ≈ yk

Exhaustiveness: di1(x) ∨ · · · ∨ dimi
(x)

Selection: s k
ij(Cij(x1, . . . , xnij

)) ≈ xk

Datatypes are additionally characterized by an induction principle. The principle
ensures that the interpretation of datatypes is standard. For the natural num-
bers constructed from Z and S, induction prohibits models that contain cyclic
values—e.g., an n such that n ≈ S(n)—or even infinite acyclic values S(S(. . .)).

For codatatypes, the dual notion is called coinduction. This axiom encodes
a form of extensionality: Two values that yield the same observations must be
equal, where the observations are made through selectors and discriminators.
In addition, codatatypes are guaranteed to contain all values corresponding to
infinite ground constructor terms.

Given a signature Σ, DC refers to the theory of datatypes and codatatypes,
which defines a class of Σ-interpretations J, namely the ones that satisfy the
properties mentioned in this section, including (co)induction. The interpretations
inJ share the same interpretation for constructor terms and correctly applied
selector terms (up to isomorphism) but may differ on variables and wrongly
applied selector terms. A formula is DC -satisfiable if there exists an interpre-
tation in J that satisfies it. For deciding universal formulas, induction can be
replaced by the acyclicity axiom schema, which states that constructor terms
cannot be equal to any of their proper subterms [2]. Dually, coinduction can
be replaced by the uniqueness schema, which asserts that codatatype values are
fully characterized by their expansion [24, Theorem 8.1, 2⇔ 5].

Some codatatypes are so degenerate as to be finite even though they have
infinite values. A simple example is codatatype a = A(a), whose unique
value is μa. A(a). Other specimens are stream unit and codatatype b =
B(b, c, b, unit) and c = C(a, b, c), where unit is a datatype with the single
constructor Unity : unit. We call such types corecursive singletons. For the deci-
sion procedure, it will be crucial to detect these. A type may also be a corecursive
singleton only in some models. If the example above is altered to make unit an

A Decision Procedure for (Co)datatypes in SMT Solvers 201

uninterpreted type, b and c will be singletons precisely when unit is interpreted
as a singleton. Fortunately, it is easy to characterize this degenerate case.

Lemma 1. Let δ be a corecursive codatatype. For any interpretation inJ, the
domain interpreting δ is either infinite or a singleton. In the latter case, δ neces-
sarily has a single constructor, whose arguments have types that are interpreted
as singleton domains.

3 The Decision Procedure

Given a fixed signature Σ, the decision procedure for the universal theory of
(co)datatypes determines the DC -satisfiability of finite sets E of literals: equali-
ties and disequalities between Σ-terms, whose variables are interpreted existen-
tially. The procedure is formulated as a tableau-like calculus. Proving a universal
quantifier-free conjecture is reduced to showing that its negation is unsatisfiable.
The presentation is inspired by Barrett et al. [2] but higher-level, using unori-
ented equations instead of oriented ones.

To simplify the presentation, we make a few assumptions about Σ. First,
all codatatypes are corecursive. This is reasonable because noncorecursive
codatatypes can be seen as nonrecursive datatypes. Second, all ordinary types
have infinite cardinality. Without quantifiers, the constraints E cannot entail
an upper bound on the cardinality of any uninterpreted type, so it is safe to
consider these types infinite. As for ordinary types interpreted finitely by other
theories (e.g., bit vectors), each interpreted type having finite cardinality n can
be viewed as a datatype with n nullary constructors [2].

A derivation rule can be applied to E if the preconditions are met. The
conclusion either specifies equalities to be added to E or is ⊥ (contradiction).
One rule has multiple conclusions, denoting branching. An application of a rule
is redundant if one of its non-⊥ conclusions leaves E unchanged. A derivation
tree is a tree whose nodes are finite sets of equalities, such that child nodes
are obtained by a nonredundant application of a derivation rule to the parent.
A derivation tree is closed if all of its leaf nodes are ⊥. A node is saturated if no
nonredundant instance of a rule can be applied to it.

The calculus consists of three sets of rules, given in Figs. 1 to 3, corresponding
to three phases. The first phase computes the bidirectional closure of E. The
second phase makes inferences based on acyclicity (for datatypes) and uniqueness
(for codatatypes). The third phase performs case distinctions on constructors for
various terms occurring in E. The rules belonging to a phase have priority over
those of subsequent phases. The rules are applied until the derivation tree is
closed or all leaf nodes are saturated.

Phase 1: Computing the Bidirectional Closure (Fig. 1). In conjunction with
Refl, Sym, and Trans, the Cong rule computes the congruence (upward) closure,
whereas the Inject and Clash rules compute the unification (downward) closure.
For unification, equalities are inferred based on the injectivity of constructors by

202 A. Reynolds and J.C. Blanchette

Inject, and failures to unify equated terms are recognized by Clash. The Conflict
rule recognizes when an equality and its negation both occur in E, in which case
E has no model.

Let T (E) denote the set of Σ-terms occurring in E. At the end of the first
phase, E induces an equivalence relation over T (E) such that two terms t and
u are equivalent if and only if t ≈ u ∈ E. Thus, we can regard E as a set of
equivalence classes of terms. For a term t ∈ T (E), we write [t] to denote the
equivalence class of t in E.

Phase 2: Applying Acyclicity and Uniqueness (Fig. 2). We describe the rules in
this phase in terms of a mapping A that associates with each equivalence class
a μ-term as its representative.

Formally, μ-terms are defined recursively as being either a variable x or an
applied constructor μx. C(t̄) for some C ∈ Fctr and μ-terms t̄ of the expected
types. The variable x need not occur free in the μ-binder’s body, in which case
the binder can be omitted. FV(t) denotes the set of free variables occurring in
the μ-term t. A μ-term is closed if it contains no free variables. It is cyclic if it
contains a bound variable. The α-equivalence relation t =α u indicates that the
μ-terms t and u are syntactically equivalent for some capture-avoiding renaming
of μ-bound variables. Two μ-terms can denote the same value despite being
α-disequivalent—e.g., μx. S(x) �=α μy. S(S(y)).

The μ-term A [tτ] describes a class of τ values that t and other members of
t’s equivalence class can take in models of E. When τ is a datatype, a cyclic
μ-term describes an infeasible class of values.

The mapping A is defined as follows. With each equivalence class [uτ], we
associate a fresh variable ũ τ and set A [u] := ũ, that is to say there are initially
no constraints on the values for any equivalence class [u]. The mapping A is
refined by applying the following unfolding rule exhaustively:

ũ ∈ FV(A) C(t1, . . . , tn) ∈ [u] C ∈ Fctr

A := A [ũ �→ μũ. C(t̃1 , . . . , t̃n)]

FV(A) denotes the set of free variables occurring in A ’s range, and A [x �→ t]
denotes the variable-capturing substitution of t for x in A ’s range. It is easy to
see that the height of terms produced as a result of the unfolding is bounded
by the number of equivalence classes of E, and thus the construction of A will
terminate.

Example 1. Suppose that E contains four distinct equivalence classes [w], [x],
[y], and [z] such that C(w, y) ∈ [x] and C(z, x) ∈ [y] for some C ∈ Fctr. A
possible sequence of unfolding steps is given below, omitting trivial entries such
as [w] �→ w̃.

1. Unfold x̃: A = {[x] �→ μx̃. C(w̃, ỹ)}
2. Unfold ỹ: A = {[x] �→ μx̃. C(w̃, μỹ. C(z̃ , x̃)), [y] �→ μỹ. C(z̃ , x̃)}
3. Unfold x̃: A = {[x] �→ μx̃. C(w̃, μỹ. C(z̃ , x̃)), [y] �→ μỹ. C(z̃ , μx̃.

C(w̃, ỹ))}

A Decision Procedure for (Co)datatypes in SMT Solvers 203

Fig. 1. Derivation rules for bidirectional closure

Fig. 2. Derivation rules for acyclicity and uniqueness

Fig. 3. Derivation rules for branching

The resulting A indicates that the values for x and y in models of E must be
of the forms C(w̃,C(z̃ ,C(w̃,C(z̃ , . . .)))) and C(z̃ ,C(w̃,C(z̃ ,C(w̃, . . .)))), respec-
tively. �

Given the mapping A , the Acyclic and Unique rules work as follows. For
acyclicity, if [t] is a datatype equivalence class whose values A [t] = μx. u are
cyclic (as expressed by x ∈ FV(u)), then E is DC -unsatisfiable. For unique-
ness, if [t], [u] are two codatatype equivalence classes whose values A [t], A [u] are
α-equivalent, then t ≈ u. Comparison for α-equivalence may seem too restric-
tive, since μx. S(x) and μy. S(S(y)) specify the same value despite being α-
disequivalent, but the rule will make progress by discovering that the subterm
S(y) of μy. S(S(y)) must be equal to the entire term.

Example 2. Let E = {x ≈ S(x), y ≈ S(S(y))}. After phase 1, the equivalence
classes are {x, S(x)}, {y, S(S(y))}, and {S(y)}. Constructing A yields

A [x] = µx̃. S(x̃) A [y] = µỹ. S(µS̃(y). S(ỹ)) A [S(y)] = µS̃(y). S(µỹ. S(S̃(y)))

Since A [y] =α A [S(y)], the Unique rule applies to derive y ≈ S(y). At this
point, phase 1 is activated again, yielding {x, S(x)} and {y, S(y), S(S(y))}. The
mapping A is updated accordingly: A [y] = μỹ. S(ỹ). Since A [x] =α A [y],
Unique can finally derive x ≈ y. �

204 A. Reynolds and J.C. Blanchette

Phase 3: Branching (Fig. 3). If a selector is applied to a term t, or if t’s type is
a finite datatype, t’s equivalence class must contain a δ constructor term. This
is enforced in the third phase by the Split rule. Another rule, Single, focuses on
the degenerate case where two terms have the same corecursive singleton type
and are therefore equal. Both Split’s finiteness assumption and Single’s singleton
constraint can be evaluated statically based on a recursive computation of the
cardinalities of the constructors’ argument types.

Correctness. Correctness means that if there exists a closed derivation tree with
root node E, then E is DC -unsatisfiable; and if there exists a derivation tree
with root node E that contains a saturated node, then E is DC -satisfiable.

Theorem 2 (Termination). All derivation trees are finite.

Proof. Consider a derivation tree with root node E. Let D ⊆ T (E) be the
set of terms whose types are finite datatypes, and let S ⊆ T (E) be the
set of terms occurring as arguments to selectors. For each term t ∈ D, let
S 0

t = {t} and S i+1
t = S i

t ∪ {s(u) | uδ ∈ S i
t , δ ∈ Ydt, |δ| is finite, s ∈ F δ

sel},
and let S ∞

t be the limit of this sequence. This is a finite set for each t,
because all chains of selectors applied to t are finite. Let S ∞ be the union
of all sets S ∞

t where t ∈ D, and let T ∞(E) be the set of subterms of
E ∪ {Cj

(
s1j (t), . . . , snj

j (t)
) | tδ ∈ S ∪ S ∞, Cj ∈ F δ

ctr}. In a derivation tree with
root node E, it can be shown by induction on the rules of the calculus that each
non-root node F is such that T (F) ⊆ T ∞(E), and hence contains an equality
between two terms from T ∞(E) not occurring in its parent node. Thus, the
depth of a branch in a derivation tree with root node E is at most |T ∞(E)|2,
which is finite since T ∞(E) is finite. �
Theorem 3 (Refutation Soundness). If there exists a closed derivation tree
with root node E, then E is DC -unsatisfiable.

Proof. The proof is by structural induction on the derivation tree with root
node E. If the tree is an application of Conflict, Clash, or Acyclic, then E is DC -
unsatisfiable. For Conflict, this is a consequence of equality reasoning. For Clash,
this is a consequence of distinctness. For Acyclic, the construction of A indicates
that the class of values that term t can take in models of E is infeasible. If the
child nodes of E are closed derivation trees whose root nodes are the result of
applying Split on tδ, by the induction hypothesis E ∪ t ≈ Cj

(
s1j (t), . . . , snj

j (t)
)

is
DC -unsatisfiable for each Cj ∈ F δ

ctr. Since by exhaustiveness, all models of DC
entail exactly one t ≈ Cj

(
s1j (t), . . . , snj

j (t)
)
, E is DC -unsatisfiable. Otherwise, the

child node of E is a closed derivation tree whose root node E ∪ t ≈ u is obtained
by applying one of the rules Refl, Sym, Trans, Cong, Inject, Unique, or Single. In
all these cases, E �DC t ≈ u. For Refl, Sym, Trans, Cong, this is a consequence
of equality reasoning. For Inject, this is a consequence of injectivity. For Unique,
the construction of A indicates that the values of t and u are equivalent in all
models of E. For Single, t and u must have the same value since the cardinality
of their type is one. By the induction hypothesis, E ∪ t ≈ u is DC -unsatisfiable
and thus E is DC -unsatisfiable. �

A Decision Procedure for (Co)datatypes in SMT Solvers 205

It remains to show the converse of the previous theorem: If a derivation tree
with root node E contains a saturated node, then E is DC -satisfiable. The proof
relies on a specific interpretation J that satisfies E.

First, we define the set of interpretations of the theory DC , which requires
custom terminology concerning μ-terms. Given a μ-term t with subterm u, the
expansion of u with respect to t is the μ-term 〈u〉∅

t , abbreviated to 〈u〉t, as
returned by the function

〈x〉Bt =

{
x if x ∈ B

µx. C
(〈ū〉B � {x}

t

)
if µx. C(ū) binds this occurrence of x /∈ B in t

〈µx. C(ū)〉Bt =

{
x if x ∈ B

µx. C
(〈ū〉B � {x}

t

)
otherwise

The recursion will eventually terminate because each recursion adds one
bound variable to B and there are finitely many distinct bound variables in
a μ-term. Intuitively, the expansion of a subterm is a stand-alone μ-term that
denotes the same value as the original subterm—e.g., 〈μy. D(x)〉μx. C(μy. D(x)) =
μy. D(μx. C(y)).

The μ-term u is a self-similar subterm of t if u is a proper subterm of t, t and
u are of the forms μx. C(t1, . . . , tn) and μy. C(u1, . . . , un), and 〈tk〉t =α 〈uk〉t

for all k. The μ-term t is normal if it does not contain self-similar subterms and
all of its proper subterms are also normal. Thus, t = μx. C(μy. C(y)) is not
normal because μy. C(y) is a self-similar subterm of t. Their arguments have
the same expansion with respect to t: 〈μy. C(y)〉t = μy. C

(〈y〉{y}
t

)
= μy. C(y) is

α-equivalent to 〈y〉t = μy. C
(〈y〉{y}

t

)
= μy. C(y). The term u = μx. C(μy. C(x))

is also not normal, since μy. C(x) is a self-similar subterm of u, noting that
〈μy. C(x)〉u = μy. C

(〈x〉{y}
u

)
= μy. C

(〈μx. C(μy. C(x))〉{y}
u

)
= μy. C

(
μx.

C(〈μy. C(x)〉{x,y}
u)

)
= μy. C(μx. C(y)) is α-equivalent to 〈x〉u = u.

For any μ-term t of the form μx. C(ū), its normal form �t� is obtained by
replacing all of the self-similar subterms of t with x and by recursively normal-
izing the other subterms. For variables, �x� = x. Thus, �μx. C(μy. C(x))� =
μx. C(x).

We now define the class of interpretations for DC . J (τ) denotes the interpre-
tation type τ in J —that is, a nonempty set of domain elements for that type.
J (f) denotes the interpretation of a function f in J . If f : τ1 × · · · × τn → τ , then
J (f) is a total function from J (τ1)×· · ·× J (τn) to J (τ). All types are interpreted
as sets of μ-terms, but only values of types in Ycodt may contain cycles.

Definition 4 (Normal Interpretation). An interpretation J is normal if
these conditions are met:

1. For each type τ , J (τ) includes a maximal set of closed normal μ-terms of that
type that are unique up to α-equivalence and acyclic if τ /∈ Ycodt.

2. For each constructor term C(t̄) of type τ , J (C)(J (t̄)) is the value in J (τ) that
is α-equivalent to �μx. C(J (t̄))�, where x is fresh.

206 A. Reynolds and J.C. Blanchette

3. For each selector term skj (t) of type τ , if J (t) is μx. Cj(ū), then J(skj)
(
J (t)

)

is the value in J (τ) that is α-equivalent to 〈uk〉J (t).

Not all normal interpretations are models of codatatypes, because models
must contain all possible infinite terms, not only cyclic ones. However, acyclic
infinite values are uninteresting to us, and for quantifier-free formulas it is trivial
to extend any normal interpretation with extra domain elements to obtain a
genuine model if desired.

When constructing a model J of E, it remains only to specify how J interprets
wrongly applied selector terms and variables. For the latter, this will be based
on the mapping A computed in phase 2 of the calculus.

First, we need the following definitions. We write t =x
α u if μ-terms t

and u are syntactically equivalent for some renaming that avoids capturing
any variable other than x. For example, μx. D(x) =y

α μx. D(y) (by renam-
ing y to x), μx. C(x, x) =x

α μy. C(x, y), and μx. C(z, x) =z
α μy. C(z, y), but

μx. D(x) �=x
α μx. D(y) and μx. C(x, x) �=y

α μy. C(x, y). For a variable xτ and
a normal interpretation J , we let V x

J (A) denote the set consisting of all values
v ∈ J (τ) such that v =x

α 〈u〉t for some subterm u of a term t occurring in the
range of A . This set describes shapes of terms to avoid when assigning a μ-term
to x.

The completion A� of A for a normal interpretation J assigns values from J
to unassigned variables in the domain of A . We construct A� by initially setting
A� := �A� and by exhaustively applying the following rule:

x̃ τ ∈ FV(A�) μx̃. t =α v v ∈ J (τ) v /∈ V x̃
J (A�)

A� := �A�[x̃ �→ μx̃. t]�
Given an unassigned variable in A�, this rule assigns it a fresh value—one that
does not occur in V x̃

J (A�) modulo α-equivalence—excluding not only existing
terms in the range of A� but also terms that could emerge as a result of the
update. Since this update removes one variable from FV(A�) and does not add
any variables to FV(A�), the process eventually terminates. We normalize all
terms in the range of A� at each step.

To ensure disequality literals are satisfied by an interpretation based on A�, it
suffices that A� is injective modulo α-equivalence. This invariant holds initially,
and the last precondition in the above rule ensures that it is maintained. The
set V x̃

J (A�) is an overapproximation of the values that, when assigned to x̃, will
cause values in the range of A� to become α-equivalent. For infinite codatatypes,
it is always possible to find fresh values v because V x̃

J (A�) is a finite set.

Example 3. Let δ be a codatatype with the constructors C, D, E : δ → δ. Let E
be the set {u ≈ C(z), v ≈ D(z), w ≈ E(y), x ≈ C(v), z �≈ v}. After applying
the calculus to saturation on E, the mapping A is as follows:

A [u] = μũ.C(z̃) A [w] = μw̃.E(ỹ) A [y] = ỹ
A [v] = μṽ.D(z̃) A [x] = μx̃.C(μṽ. D(z̃)) A [z] = z̃

A Decision Procedure for (Co)datatypes in SMT Solvers 207

To construct a completion A�, we must choose values for ỹ and z̃ , which are
free in A . Modulo α-equivalence, V z̃

J (A) = {μa. C(a), μa. D(a), μa. C(D(a)),
C(μa. D(a))}. Now consider a normal interpretation J that evaluates variables
in E based on A : J (u) = A [u], J (v) = A [v], and so on. Assigning a value
for A [z] that is α-equivalent to a value in V z̃

J (A) may cause values in the range
of A to become α-equivalent, which in turn may cause E to be falsified by J . For
example, assign μz̃. D(z̃) for z̃ . After the substitution, A [v] = μṽ. D(μz̃. D(z̃)),
which has normal form μṽ. D(ṽ), which is α-equivalent to μz̃. D(z̃). However,
this contradicts the disequality z �≈ v in E. On the other hand, if the value
assigned to z̃ is fresh, the values in the range of A remain α-disequivalent. We
can assign a value such as μz̃. E(z̃), μz̃. D(C(z̃)), or μz̃. C(C(D(z̃))) to z̃ . �

In the following lemma about A�, Var(t) =

{
t if t is a variable
x if t is of the form μx. u.

Lemma 5. If A is constructed for a saturated set E and A� is a completion
of A for a normal interpretation J , the following properties hold:

(1) A�[xτ] is α-equivalent to a value in J (τ).
(2) A�[x] = 〈t〉A�[y] for all subterms t of A�[y] with Var(t) = x̃.
(3) A�[x] =α A�[y] if and only if [x] = [y].

Intuitively, this lemma states three properties of A� that ensure a normal
interpretation J can be constructed that satisfies E. Property (1) states that the
values in the range of A� are α-equivalent to a value in normal interpretation.
This means they are closed, normal, and acyclic when required. Property (2)
states that the interpretation of all subterms in the range of A� depends on its
associated variable only. In other words, the interpretation of a subterm t where
Var(t) = x̃ is equal to A�[x], independently of the context. Property (3) states
that A� is injective (modulo α-equivalence), which ensures that distinct values
are assigned to distinct equivalence classes.

Theorem 6 (Solution Soundness). If there exists a derivation tree with root
node E containing a saturated node, then E is DC -satisfiable.

Proof. Let F be a saturated node in a derivation tree with root node E. We con-
sider a normal interpretation J that interprets wrongly applied selectors based
on equality information in F and that interprets the variables of F based on
the completion A�. For the variables, let J (xτ) be the value in J (τ) that is
α-equivalent with A�[x] for each variable x ∈ T (F), which by Lemma 5(1) is
guaranteed to exist.

We first show that J satisfies all equalities t1 ≈ t2 ∈ F. To achieve this, we
show by structural induction on tτ that J (t) =α A�[t] for all terms t ∈ T (F),
which implies J � t1 ≈ t2 since J is normal.

If t is a variable, then J (t) =α A�[t] by construction.
If t is a constructor term of the form C(u1, . . . , un), then J (t) is α-equivalent

with �μx. C(J (u1), . . . , J (un))� for some fresh x, which by the induction hypoth-
esis is α-equivalent with �μx. C(A�[u1], . . . , A�[un])�. Call this term t′. Since

208 A. Reynolds and J.C. Blanchette

Inject and Clash do not apply to F, by the construction of A� we have that A�[t]
is a term of the form μt̃. C(w1, . . . , wn) where Var(wi) = ũi for each i. Thus
by Lemma 5(2), 〈wi〉A�[t] = A�[ui]. For each i, let ui

′ be the ith argument of t′.
Clearly, 〈ui

′〉t′ =α A�[ui]. Thus 〈ui
′〉t′ =α 〈wi〉A�[t]. Thus, J (t) =α t′ =α A�[t],

and we have J (t) =α A�[t].
If t is a selector term skj (u), since Split does not apply to F, [u] must contain a

term of the form Cj ′
(
s1j ′(u), . . . , snj ′(u)

)
for some j ′. Since Inject and Clash are not

applicable, by construction A�[u] must be of the form μũ. Cj ′(w1, . . . , wn), where
Var(wi) = s̃ij ′(u) for each i, and thus by Lemma 5(2), 〈wi〉A�[u] = A�[sij ′(u)]. If
j = j ′, then J (t) is α-equivalent with 〈wk〉A�[u], which is equal to A�[skj (u)] =
A�[t]. If j �= j ′, since Cong does not apply, any term of the form skj (u′) not occur-
ring in [t] is such that [u] �= [u′]. By the induction hypothesis and Lemma 5(3),
J (u) �= J (u′) for all such u, u′. Thus, we may interpret J (skj)(J (u)) as the value
in J (τ) that is α-equivalent with A�[t].

We now show that all disequalities in F are satisfied by J . Assume t �≈ u ∈ F.
Since Conflict does not apply, t ≈ u /∈ F and thus [t] and [u] are distinct.
Since J (t) =α A�[t] and J (u) =α A�[u], by Lemma 5(3), J (t) �= J (u), and thus
J � t �≈ u.

Since by assumption F contains only equalities and disequalities, we have
J � F, and since E ⊆ F, we conclude that J � E. �

By Theorems 2, 3, and 6, the calculus is sound and complete for the universal
theory of (co)datatypes. We can rightly call it a decision procedure for that
theory. The proof of solution soundness is constructive in that it provides a
method for constructing a model for a saturated configuration, by means of the
mapping A�.

4 Implementation as a Theory Solver in CVC4

The decision procedure was presented at a high level of abstraction, omitting
quite a few details. This section describes the main aspects of the implementation
within the SMT solver CVC4: the integration into CDCL(T) [7], the extension
to quantified formulas, and some of the optimizations.

The decision procedure is implemented as a theory solver of CVC4, that is,
a specialized solver for determining the satisfiability of conjunctions of literals
for its theory. Given a theory T = T1 ∪ · · · ∪ Tn and a set of input clauses
F in conjunctive normal form, the CDCL(T) procedure incrementally builds
partial assignments of truth values to the atoms of F such that no clause in F
is falsified. We can regard such a partial assignment as a set M of true literals.
By a variant of the Nelson–Oppen method [8,18], each Ti-solver takes as input
the union Mi of (1) the purified form of Ti-literals occurring in M , where fresh
variables replace terms containing symbols not belonging to Ti; (2) additional
(dis)equalities between variables of types not belonging to Ti. Each Ti-solver
either reports that a subset C of Mi is Ti-unsatisfiable, in which case ¬C is added
to F, adds a clause to F, or does nothing. When M is a complete assignment for
F, a theory solver can choose to do nothing only if Mi is indeed Ti-satisfiable.

A Decision Procedure for (Co)datatypes in SMT Solvers 209

Assume E is initially the set Mi described above. With each equality t ≈ u
added to E, we associate a set of equalities from Mi that together entail t ≈ u,
which we call its explanation. Similarly, each A [x] is assigned an explanation—
that is, a set of equalities from Mi that entail that the values of [x] in models
of E are of the form A [x]. For example, if x ≈ C(x) ∈ Mi, then x ≈ C(x) is an
explanation for A [x] = μx̃. C(x̃). The rules of the calculus are implemented as
follows. For all rules with conclusion ⊥, we report the union of the explanations
for all premises is DC -unsatisfiable. For Split, we add the exhaustiveness clause
t ≈ C1

(
s11(t), . . . , s

n1
1 (t)

) ∨ · · · ∨ t ≈ Cm

(
s1m(t), . . . , snm

m (t)
)

to F . Decisions on
which branch to take are thus performed externally by the SAT solver. All other
rules add equalities to the internal state of the theory solver. The rules in phase 1
are performed eagerly—that is, for partial satisfying assignments M—while the
rules in phases 2 and 3 are performed only for complete satisfying assignments M .

Before constructing a model for F, the theory solver constructs neither μ-
terms nor the mapping A . Instead, A is computed implicitly by traversing the
equivalence classes of E during phase 2. To detect whether Acyclic applies, the
procedure considers each equivalence class [t] containing a datatype constructor
C(t1, . . . , tn). It visits [t1], . . . , [tn] and all constructor arguments in these equiva-
lence classes recursively. If while doing so it returns to [t], it deduces that Acyclic
applies. To recognize when the precondition of Unique holds, the procedure con-
siders the set S of all codatatype equivalence classes. It simultaneously visits
the equivalence classes of arguments of constructor terms in each equivalence
class in S , while partitioning S into S1, . . . ,Sn based on the top-most symbol of
constructor terms in these equivalence classes and the equivalence of their argu-
ments of ordinary types. It then partitions each set recursively. If the resulting
partition contains a set Si containing distinct terms u and v, it deduces that
Unique applies to u and v.

While the decision procedure is restricted to universal conjectures, in practice
we often want to solve problems that feature universal axioms and existential
conjectures. Many SMT solvers, including CVC4, can reason about quantified
formulas using incomplete instantiation-based methods [16,23]. These methods
extend naturally to formulas involving datatypes and codatatypes.

However, the presence of quantified formulas poses an additional challenge
in the context of (co)datatypes. Quantified formulas may entail an upper bound
on the cardinality of an uninterpreted type u. When assuming that u has infinite
cardinality, the calculus presented in Sect. 3 is incomplete since it may fail to
recognize cases where Split and Single should be applied. This does not impact the
correctness of the procedure in this setting, since the solver is already incomplete
in the presence of quantified formulas. Nonetheless, two techniques help increase
the precision of the solver. First, we can apply Split to datatype terms whose
cardinality depends on the finiteness of uninterpreted types. Second, we can
conditionally apply Single to codatatype terms that may have cardinality one.
For example, the stream u codatatype has cardinality one precisely when u has
cardinality one. If there exist two equivalence classes [s] and [t] for this type, the
implementation adds the clause (∃x yu. x �≈ y) ∨ s ≈ t to F.

210 A. Reynolds and J.C. Blanchette

The implementation of the decision procedure uses several optimizations fol-
lowing the lines of Barrett et al. [2]. Discriminators are part of the signature and
not abbreviations. This requires extending the decision procedure with several
rules, which apply uniformly to datatypes and codatatypes. This approach often
leads to better performance because it introduces terms less eagerly to T (E).
Selectors are collapsed eagerly: If skj (t) ∈ T (E) and t = Cj(u1, . . . , un), the
solver directly adds skj (t) ≈ uk to E, whereas the presented calculus would apply
Split and Inject before adding this equality. To reduce the number of unique
literals considered by the calculus, we compute a normal form for literals as
a preprocessing step. In particular, we replace u ≈ t by t ≈ u if t is smaller
than u with respect to some term ordering, replace Cj(t̄) ≈ Cj ′(ū) with ⊥ when
j �= j ′, replace all selector terms of the form s k

j (Cj(t1, . . . , tn)) by tk, and replace
occurrences of discriminators dj(Cj ′(t̄)) by � or ⊥ based on whether j = j ′.

As Barrett et al. [2] observed for their procedure, it is both theoretically and
empirically beneficial to delay applications of Split as long as possible. Simi-
larly, Acyclic and Unique are fairly expensive because they require traversing the
equivalence classes, which is why they are part of phase 2.

5 Evaluation on Isabelle Problems

To evaluate the decision procedure, we generated benchmark problems from
existing Isabelle formalizations using Sledgehammer [3]. We included all the
theory files from the Isabelle distribution (Distro, 879 goals) and the Archive
of Formal Proofs (AFP, 2974 goals) [10] that define codatatypes falling within
the supported fragment. We added two unpublished theories about Bird and
Stern–Brocot trees by Peter Gammie and Andreas Lochbihler (G&L, 317 goals).
To exercise the datatype support, theories about lists and trees were added to
the first two benchmark sets. The theories were selected before conducting any
experiments. The experimental data are available online.1

For each goal in each theory, Sledgehammer selected about 16 lemmas, which
were monomorphized and translated to SMT-LIB 2 along with the goal. The
resulting problem was given to the development version of CVC4 and to Z3 4.3.2
for comparison, each running for up to 60 s on the StarExec cluster [25]. Problems
not involving any (co)datatypes were left out. Due to the lack of machinery for
reconstructing inferences about (co)datatypes in Isabelle, the solvers are trusted
as oracles. The development version of CVC4 was run on each problem several
times, with the support for datatypes and codatatypes either enabled or disabled.
The contributions of the acyclicity and uniqueness rules were also measured.
Even when the decision procedure is disabled, the problems may contain basic
lemmas about constructors and selectors, allowing some (co)datatype reasoning.

The results are summarized in Table 1. The decision procedure makes a dif-
ference across all three benchmark suites. It accounts for an overall success rate
increase of over 5 %, which is quite significant. The raw evaluation data also
suggest that the theoretically stronger decision procedures almost completely
1 http://lara.epfl.ch/∼reynolds/CADE2015-cdt/.

http://lara.epfl.ch/~reynolds/CADE2015-cdt/

A Decision Procedure for (Co)datatypes in SMT Solvers 211

Table 1. Number of solved goals for the three benchmark suites

Distro AFP G&L Overall

CVC4 Z3 CVC4 Z3 CVC4 Z3 CVC4 Z3

No (co)datatypes 221 209 775 777 52 51 1048 1037

Datatypes without Acyclic 227 – 780 – 52 – 1059 –

Full datatypes 227 213 786 791 52 51 1065 1055

Codatatypes without Unique 222 – 804 – 56 – 1082 –

Full codatatypes 223 – 804 – 59 – 1086 –

Full (co)datatypes 229 – 815 – 59 – 1103 –

subsume the weaker ones in practice: We encountered only one goal (out of 4170)
that was solved by a configuration of CVC4 and unsolved by a configuration of
CVC4 with more features enabled.

Moreover, every aspect of the procedure, including the more expensive rules,
make a contribution. Three proofs were found thanks to the acyclicity rule and
four required uniqueness. Among the latter, three are simple proofs of the form
by coinduction auto in Isabelle. The fourth proof, by Gammie and Lochbihler,
is more elaborate:

lemma num mod den uniq: x = Node 0 num x =⇒ x = num mod den
proof (coinduction arbitrary: x rule: tree.coinduct strong)

case (Eq tree x) show ?case

by (subst (1 2 3 4) Eq tree) (simp add : eqTrueI [OF Eq tree])
qed

where num mod den is defined as num mod den = Node 0 num num mod den.

6 Conclusion

We introduced a decision procedure for the universal theory of datatypes and
codatatypes. Our main contribution has been the support for codatatypes. Both
the metatheory and the implementation in CVC4 rely on μ-terms to represent
cyclic values. Although this aspect is primarily motivated by codatatypes, it
enables a uniform account of datatypes and codatatypes—in particular, the
acyclicity rule for datatypes exploits μ-terms to detect cycles. The empirical
results on Isabelle benchmarks confirm that CVC4’s new capabilities improve
the state of the art.

This work is part of a wider program that aims at enriching automatic provers
with high-level features and at reducing the gap between automatic and inter-
active theorem proving. As future work, it would be useful to implement proof
reconstruction for (co)datatype inferences in Isabelle. CVC4’s finite model find-
ing capabilities [22] could also be interfaced for generating counterexamples in
proof assistants; in this context, the acyclicity and uniqueness rules are crucial

212 A. Reynolds and J.C. Blanchette

to exclude spurious countermodels. Finally, it might be worthwhile to extend
SMT solvers with dedicated support for (co)recursion.

Acknowledgment. We owe a great debt to the development team of CVC4, including
Clark Barrett and Cesare Tinelli, and in particular Morgan Deters, who jointly with
the first author developed the initial version of the theory solver for datatypes in CVC4.
Our present and former bosses, Viktor Kuncak, Stephan Merz, Tobias Nipkow, Cesare
Tinelli, and Christoph Weidenbach, have either encouraged the research on codatatypes
or at least benevolently tolerated it, both of which we are thankful for. Peter Gammie
and Andreas Lochbihler provided useful benchmarks. Andrei Popescu helped clarify
our thoughts regarding codatatypes and indicated related work. Dmitriy Traytel took
part in discussions about degenerate codatatypes. Pascal Fontaine, Andreas Lochbihler,
Andrei Popescu, Christophe Ringeissen, Mark Summerfield, Dmitriy Traytel, and the
anonymous reviewers suggested many textual improvements. The second author’s
research was partially supported by the Deutsche Forschungsgemeinschaft project “Den
Hammer härten” (grant NI 491/14-1) and the Inria technological development action
“Contre-exemples Utilisables par Isabelle et Coq” (CUIC).

References

1. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

2. Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for satisfia-
bility in the theory of inductive data types. J. Satisf. Boolean Model. Comput. 3,
21–46 (2007)

3. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT
solvers. J. Autom. Reasoning 51(1), 109–128 (2013)

4. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010)

5. Carayol, A., Morvan, C.: On rational trees. In: Ésik, Z. (ed.) CSL 2006. LNCS,
vol. 4207, pp. 225–239. Springer, Heidelberg (2006)

6. Djelloul, K., Dao, T., Frühwirth, T.W.: Theory of finite or infinite trees revisited.
Theor. Pract. Log. Prog. 8(4), 431–489 (2008)

7. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T):
fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol.
3114, pp. 175–188. Springer, Heidelberg (2004)

8. Jovanović, D., Barrett, C.: Sharing is caring: combination of theories. In: Tinelli,
C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp. 195–210.
Springer, Heidelberg (2011)

9. Kersani, A., Peltier, N.: Combining superposition and induction: a practical real-
ization. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS,
vol. 8152, pp. 7–22. Springer, Heidelberg (2013)

10. Klein, G., Nipkow, T., Paulson, L. (eds.): Archive of Formal Proofs. http://afp.sf.
net/

11. Kozen, D.: Results on the propositional µ-calculus. Theor. Comput. Sci. 27, 333–
354 (1983)

http://afp.sf.net/
http://afp.sf.net/

A Decision Procedure for (Co)datatypes in SMT Solvers 213

12. Leino, K.R.M., Moskal, M.: Co-induction simply. In: Jones, C., Pihlajasaari, P.,
Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 382–398. Springer, Heidelberg (2014)

13. Leroy, X.: A formally verified compiler back-end. J. Autom. Reasoning 43(4), 363–
446 (2009)

14. Lochbihler, A.: Verifying a compiler for java threads. In: Gordon, A.D. (ed.) ESOP
2010. LNCS, vol. 6012, pp. 427–447. Springer, Heidelberg (2010)

15. Lochbihler, A.: Making the java memory model safe. ACM Trans. Program. Lang.
Syst. 35(4), 12:1–12:65 (2014)

16. de Moura, L., Bjørner, N.S.: Efficient E-matching for smt solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007)

17. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

18. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

19. Pham, T., Whalen, M.W.: RADA: a tool for reasoning about algebraic data types
with abstractions. In: Meyer, B., Baresi, L., Mezini, M. (eds.) ESEC/FSE 2013,
pp. 611–614. ACM (2013)

20. Reynolds, A., Blanchette, J.C.: A decision procedure for (co)datatypes in SMT
solvers. Technical report (2015). http://lara.epfl.ch/reynolds/CADE2015-cdt/

21. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 80–98. Springer, Heidelberg
(2015)

22. Reynolds, A., Tinelli, C., Goel, A., Krstić, S., Deters, M., Barrett, C.: Quantifier
instantiation techniques for finite model finding in SMT. In: Bonacina, M.P. (ed.)
CADE 2013. LNCS, vol. 7898, pp. 377–391. Springer, Heidelberg (2013)

23. Reynolds, A., Tinelli, C., de Moura, L.: Finding conflicting instances of quantified
formulas in SMT. In: FMCAD 2014. pp. 195–202. IEEE (2014)

24. Rutten, J.J.M.M.: Universal coalgebra—a theory of systems. Theor. Comput. Sci.
249, 3–80 (2000)

25. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure
for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014.
LNCS, vol. 8562, pp. 367–373. Springer, Heidelberg (2014)

26. Suter, P., Köksal, A.S., Kuncak, V.: Satisfiability modulo recursive programs. In:
Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 298–315. Springer, Heidelberg
(2011)

27. Wand, D.: Polymorphic+typeclass superposition. In: de Moura, L., Konev, B.,
Schulz, S. (eds.) PAAR 2014 (2014)

28. Weber, T.: SAT-Based Finite Model Generation for Higher-Order Logic. Ph.D.
Thesis, Technische Universität München (2008)

http://lara.epfl.ch/reynolds/CADE2015-cdt/

Deciding ATL∗ Satisfiability by Tableaux

Amélie David(B)

Laboratoire IBISC, Université D’Évry Val-d’Essonne,
EA 4526 23 Bd de France, 91037 Évry Cedex, France

adavid@ibisc.univ-evry.fr

Abstract. We propose a tableau-based decision procedure for the full
Alternating-time Temporal Logic ATL∗. We extend our procedure for
ATL+ in order to deal with nesting of temporal operators. As a side
effect, we obtain a new and conceptually simple tableau method for
CTL∗. The worst case complexity of our procedure is 3EXPTIME, which
is suboptimal compared to the 2EXPTIME complexity of the prob-
lem. However our method is human-readable and easily implementable.
A web application and binaries for our procedure are available at http://
atila.ibisc.univ-evry.fr/tableau ATL star/.

Keywords: Alternating-time temporal logic · ATL∗ · Automated theo-
rem prover · Satisfiability · Tableaux

1 Introduction

The logic ATL∗ is the full version of the Alternating-time Temporal Logic intro-
duced in [1] in order to describe open systems, that is systems that can interact
with their environment. Thus ATL and ATL∗ are the multi-agent versions of the
branching-time temporal logics CTL and CTL∗. Indeed, in ATL and ATL∗ the
environment is modelled by an extra agent e interfering with the system com-
ponents (the remaining agents) who need to succeed their task no matter how
e responds to their actions. ATL∗ is an important extension of ATL and ATL+

(an intermediate logic between ATL and ATL∗) since it allows one to express
useful properties such as fairness constraints. Such properties can be expressed
only if nesting of temporal operators is possible, which is not the case in ATL
and ATL+. It is worth noting that ATL+ only permits Boolean combination of
unnested temporal operators.

The problem studied in this paper is about deciding the satisfiability of ATL∗

formulae. Models for ATL∗ formulae are directed graphs called concurrent game
structures where transitions between two states depend on the chosen action
of each agent. In general, there exists two ways for deciding the satisfiability:
using automata, as done in [8] or using tableaux; as we do here. In this paper,

All proofs of lemmas, propositions and theorems, as well as complete examples can
be found in the version with appendices at https://www.ibisc.univ-evry.fr/∼adavid/
fichiers/cade15 tableaux atl star long.pdf.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 214–228, 2015.
DOI: 10.1007/978-3-319-21401-6 14

http://atila.ibisc.univ-evry.fr/tableau_ATL_star/
http://atila.ibisc.univ-evry.fr/tableau_ATL_star/
https://www.ibisc.univ-evry.fr/~adavid/fichiers/cade15_tableaux_atl_star_long.pdf
https://www.ibisc.univ-evry.fr/~adavid/fichiers/cade15_tableaux_atl_star_long.pdf

Deciding ATL Satisfiability by Tableaux 215

we propose the first tableau-based decision procedure for ATL∗, as well as the
first implementation of a decision procedure for ATL∗, which is also the first
implementation of a tableau-based decision procedure for ATL+. We extend our
procedure for ATL+ [2] following the natural basic idea: separate present and
future. However, this extension is not trivial since the separation into present
and future is more subtle than for ATL+ and needs to keep track of path formulae
so as to be able to check eventualities. We think that our tableau-based decision
procedure for ATL∗ is easy to understand and therefore also provides a new
tableau-based decision procedure for CTL∗ which is conceptually simple. We
prove that our procedure runs in at most 3EXPTIME, which is suboptimal
(the optimal worst case complexity has been proved to be 2EXPTIME in [8]).
However, we do not know of any specific cases where our procedure runs in
3EXPTIME, which leaves the possibility that it is optimal, after all.

This paper is organized as follows: Sect. 2 gives the syntax and semantics for
ATL∗. The general structure of the tableau-based decision procedure for ATL∗

that we propose can be found in Sect. 3 and details of the procedure in Sects. 4,
5 and 6. Theorems about soundness, completeness and complexity are given in
Sect. 7 with their sketch of proof. The Sect. 8 is about the implementation of our
procedure. The paper ends with some concluding remarks indicating also some
possible directions of future research.

2 Syntax and Semantics of ATL∗

ATL∗ can be seen as an extension of the computational tree logic (CTL∗) [5]
where the path quantifiers E – there exists a path – and A – for all paths –
are replaced by 〈〈A〉〉 and [[A]] where A is a coalition of agents. Intuitively 〈〈A〉〉Φ
means “There exists a strategy for the coalition A such that, no matter which
strategy the remaining agents follow, Φ holds”. On the other hand, [[A]]Φ means
“For all strategies of the coalition A, there exists a strategy of the remaining
agents such that Φ holds”. Also, whereas transition systems or Kripke structures
are used in order to evaluate CTL∗ formulae, concurrent game models (CGM),
whose definition is given in the Sect. 2.2 are used to evaluate ATL* formulae.

2.1 Syntax of ATL∗

Before giving the syntax of ATL∗, we recall that, as for CTL∗ or LTL, ©, � and
U mean “Next”, “Always” and “Until” respectively. In this paper, we give the
syntax in negation normal form over a fixed set P of atomic propositions and
primitive temporal operators © “Next”, � “Always” and U “Until”. The syntax
of ATL∗ in negation normal form is defined as follows:

State formulae:ϕ := l | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | 〈〈A〉〉Φ | [[A]]Φ (1)
Path formulae:Φ := ϕ | ©Φ | �Φ | (ΦUΦ) | (Φ ∨ Φ) | (Φ ∧ Φ) (2)

where l ∈ P ∪ {¬p | p ∈ P} is a literal, A is a fixed finite set of agents and
A ⊆ A is a coalition. Note that
 := p ∨ ¬p, ⊥ := ¬
, ¬〈〈A〉〉Φ := [[A]]¬Φ.

216 A. David

The temporal operator “Sometimes” ♦ can be defined as ♦ϕ :=
Uϕ and the
temporal operator “Release” as ψ Rϕ := �ϕ ∨ ϕ U(ϕ ∧ ψ). When unnecessary,
parentheses can be omitted.

In this paper, we use ϕ, ψ, η to denote arbitrary state formulae and Φ, Ψ
to denote path formulae. By an ATL∗ formula we will mean by default a state
formula of ATL∗.

2.2 Concurrent Game Models

As for ATL or ATL+, ATL∗ formulae are evaluated over concurrent game mod-
els. Concurrent games models are transition systems where each transition to a
unique successor state results from the combination of actions chosen by all the
agents (components and/or environment) of the system.

Notation: Given a set X, P(X) denotes the power set of X.

Definition 1 (Concurrent game model and structure). A concurrent
game model (in short CGM) is a tuple M = (A,S, {Acta}a∈A, {acta}a∈A, out,P, L)
where

– A = {1, . . . , k} is a finite, non-empty set of players (agents),
– S is a non-empty set of states,
– for each agent a ∈ A, Acta is a non-empty set of actions.

For any coalition A ⊆ A we denote ActA :=
∏

a∈A Acta and use σA to denote
a tuple from ActA. In particular, ActA is the set of all possible action vectors
in M.

– for each agent a ∈ A, acta : S → P(Acta) \ {∅} defines for each state s the
actions available to a at s,

– out is a transition function assigning to every state s ∈ S and every action
vector σA = {σ1, . . . , σk} ∈ ActA a state out(s, σA) ∈ S that results from s if
every agent a ∈ A plays action σa, where σa ∈ acta(s) for every a ∈ A.

– P is a non-empty set of atomic propositions.
– L : S → P(P) is a labelling function.

The sub-tuple S = (A,S, {Acta}a∈A, {acta}a∈A, out) is called a concurrent
game structure (CGS).

2.3 Semantics of ATL∗

In order to give the semantics of ATL∗, we use the following notions. Although
they are the same as those in [2], we recall them here to make the paper self-
contained.

Computations. A play, or computation, is an infinite sequence s0s1s2 · · · ∈ S
ω

of states such that for each i ≥ 0 there exists an action vector σA = 〈σ1, . . . , σk〉
such that out(si, σA) = si+1. A history is a finite prefix of a play. We denote
by PlaysM and HistM respectively the set of plays and set of histories in M.

Deciding ATL Satisfiability by Tableaux 217

For a state s ∈ S, we use PlaysM(s) and HistM(s) as the set of plays and set of
histories with initial state s. Given a sequence of states λ, we denote by λ0 its
initial state, by λi its (i + 1)th state, by λ≤i the prefix λ0 . . . λi of λ and by λ≥i

the suffix λiλi+1 . . . of λ. When λ = λ0 . . . λ� is finite, we say that it has length
	 and write |λ| = 	. Also, we set last(λ) = λ�.

Strategies. A strategy for an agent a in M is a mapping Fa : HistM → Acta
such that for all histories h ∈ HistM, we have Fa(h) ∈ acta(last(h)). This kind of
strategies is also known as “perfect recall” strategies. We denote by StratM(a)
the set of strategies of agent a. A collective strategy of a coalition A ⊆ A is a
tuple (Fa)a∈A of strategies, one for each agent in A. We denote by StratM(A) the
set of collective strategies of coalition A. A play λ ∈ PlaysM is consistent with
a collective strategy FA ∈ StratM(A) if for every i ≥ 0 there exists an action
vector σA = 〈σ1, . . . , σk〉 such that out(λi, σA) = λi+1 and σa = Fa(λ≤i) for all
a ∈ A. The set of plays with initial state s that are consistent with FA is denoted
PlaysM(s, FA). For any coalition A ⊆ A and a given state s ∈ S in a given CGM
M, an A -co-action at s in M is a mapping ActcA : ActA → ActA\A that assigns
to every collective action of A at the state s a collective action at s for the
complementary coalition A \ A. Likewise, an A -co-strategy in M is a mapping
F c
A : StratM(A) × HistM → ActA\A that assigns to every collective strategy of A

and every history h a collective action at last(h) for A \A, and PlaysM(s, F c
A) is

the set of plays with initial state s that are consistent with F c
A .

Semantics. The semantics of ATL∗ is the same as the one of CTL∗ [5] (modulo
CGM as intended interpretations) with the exception of the two following items:

– M, s |= 〈〈A〉〉Φ iff there exists an A-strategy FA such that, for all computations
λ ∈ PlaysM(s, FA), M, λ |= Φ

– M, s |= [[A]]Φ iff there exists an A-co-strategy F c
A such that, for all computa-

tions λ ∈ PlaysM(s, F c
A), M, λ |= Φ

Valid, satisfiable and equivalent formulae in ATL∗ are defined as usual.

3 Tableau-Based Decision Procedure for ATL∗

In this section, we give the general description of our tableau-based decision pro-
cedure for ATL∗ formulae. The different steps of the procedure are summarized
in this section and Fig. 1 and then detailed in the next three sections.

From an initial formula η, the tableau-based decision procedure for ATL∗

that we propose attempts to build step-by-step a directed graph from which it
is possible to extract a CGM for η. This attempt will lead to a failure if η is not
satisfiable.

Nodes of that graph are labelled by sets of state formulae and are partitioned
into two categories: prestates and states.

218 A. David

Fig. 1. Overview of the tableau-based decision procedure for ATL∗

A prestate can be seen as a node where the information contained in its
formulae is “implicit”. When we decompose all the formulae of a prestate and
saturate the prestate, we obtain one or several states as successor nodes. States
have the particularity of containing formulae of the form 〈〈A〉〉©ϕ or [[A]]©ϕ
from which it is possible to compute the next steps of the tableau creation. All
prestates have states as successors and directed edges between them are of the
form =⇒; on the other hand, all states have prestates as successors and directed
edges between them are of the form σA−→ where σA is an action vector.

The procedure is in two phases: the construction phase and the elimination
phase. First, we create an initial node, that is a prestate containing the initial
formula η, and we construct the graph by expanding prestates into states via
a rule called (SR) and by computing prestates from states with a rule called
(Next). The rule (SR) decomposes each ATL∗ formula of a prestate, and then
saturates the prestate into new states. Explanation of rules (SR) and (Next)
can be found in Sects. 4 and 5, respectively.

The procedure avoids creation of duplicated nodes (a form of loop check),
which ensures termination of the procedure. The construction phase ends when
no new states can be added to the graph. The graph obtained at the end of the
construction phase is called the initial tableau for η, also noted T η

0 .

Deciding ATL Satisfiability by Tableaux 219

The second phase of the procedure eliminates via the rule (ER1) all nodes
with missing successors, that is prestates with no more successors at all or states
with at least one missing action vector on its outcome edges. Also, by means of
a rule called (ER2) it eliminates all states with “unrealized eventualities”, that
is states that cannot ensure that all the objectives it contains will be eventually
fulfilled. The graph obtained at the end of the elimination phase of the procedure
is called the final tableau for η, also noted T η. Explanation of rules (ER1) and
(ER2) can be found in Sect. 6.

Our tableau-based decision procedure for ATL∗ deals with what [6] calls
“tight satisfiability”: the set A of agents involved in the tableau (and the CGMs
it tries to build) is the set of agents present in the input formula.

4 Construction Phase: Decomposition and Saturation

Decomposition of ATL∗ Formulae All ATL∗ formulae can be partitioned
into four categories: primitive formulae, α-formulae, β-formulae and γ-formulae.
Primitive formulae correspond to the “simplest formulae” in the sense that they
cannot be decomposed. These formulae are
,⊥, the literals and all ATL∗ suc-
cessor formulae, of the form 〈〈A〉〉©ψ or [[A]]©ψ where ψ is called the successor
component of 〈〈A〉〉©ψ or [[A]]©ψ respectively. Every non-primitive formula must
be decomposed into primitive formulae. α-formulae are of the form ϕ ∧ ψ where
ϕ and ψ are α-components while β-formulae are of the form ϕ ∨ ψ where ϕ and
ψ are β-components. Their decomposition is classical. Other formulae, that is
of the form 〈〈A〉〉Φ or [[A]]Φ, where Φ �= ©ψ, are γ-formulae. This notion firstly
introduced in [2] reveals quite useful also in the more expressive context of ATL∗.
Decomposition of these formulae is trickier than for α- and β-formulae. Indeed,
we will need to extract all possibilities of truth encapsulated in γ-formula ξ,
which concretely aims at defining one or several conjunctions of primitive for-
mulae such that their disjunction is equivalent to the γ-formulae ξ (see lemma 1).

Decomposition of γ-Formulae. This subsection contains the heart of the
decision procedure for ATL∗, indeed the main difference with our decision pro-
cedure for ATL+ lies in the treatment of γ-formulae. The first difficulty is that
quantifiers 〈〈A〉〉 or [[A]] cannot distribute over Boolean connectors as seen in [2].
An additional difficulty specific to ATL∗ is the fact that it is now necessary to also
deal with nesting of temporal operators, resulting in a second level of recurrence
when the temporal operators � and U are encountered in the decomposition
function described below.

In temporal logics, e.g. LTL, the operator U is considered as an eventuality
operator, that is an operator that promises to verify a given formula at some
instant/state. When we write λ |= ϕ1 Uϕ2, where ϕ1 and ϕ2 are state formulae,
we mean that there is a state λi of the computation λ where ϕ2 holds and ϕ1

holds for all the states of λ preceding λi. So, once the property ϕ2 is verified,
we do not need to take care of ϕ1, ϕ2 and ϕ1 Uϕ2 any more. We say that
ϕ1 Uϕ2 is realized. However, if ϕ1 and ϕ2 are path formulae, e.g. �Φ1 and �Φ2

respectively, state λi is such that from it Φ2 must hold forever – we say that �Φ2

220 A. David

is “initiated” at λi, in the sense that we start to make �Φ2 true at λi –, and
for every computation λ≥j , where j < i, �Φ1 must hold. So Φ1 has to be true
forever, that is even after �Φ2 had been initiated. This explains the fact that at
a possible state s the path formula ϕ1 Uϕ2 may become ϕ1 Uϕ2 ∧ ϕ1 when ϕ1 is
a path formula and we postpone ϕ2. Note that ϕ1 is then also initiated at s. We
now face the problem of memorizing the fact that a path formula Φ is initiated
since path formulae cannot be stored directly in a state. That is why, during
the decomposition of γ-formulae, we add a new set of path formulae linked to a
γ-component and the current state.

The definition and general treatment of eventualities in our procedure are
given in Sect. 6.

In order to decompose γ-formulae ϕ = 〈〈A〉〉Φ or ϕ = [[A]]Φ, we analyse the
path formula Φ in terms of present (current state) and future (next states). This
analysis is done by a γ-decomposition function dec : ATL∗

p → P(ATL∗
s × ATL∗

p ×
P(ATL∗

p)) where ATL∗
p is the set of ATL∗ path formulae and ATL∗

s is the set of
ATL∗ state formulae. Intuitively, the function dec assigns to the path formula Φ,
a set of triples 〈ψ, Ψ, S〉 where ψ is a state formula true at the current state, Ψ
is a path formula expressing what must be true at next states and S is the set
of path formulae initiated at the current state during the γ-decomposition This
set S will be used during the elimination phase to determine if eventualities are
realized or not, see Sect. 6.

We first define two operators ⊗ and ⊕ between two sets S1 and S2 of triples.

� S1 ⊗S2 := {〈ψi

.∧ ψj , Ψi

.∧ Ψj , Si ∪Sj〉 | 〈ψi, Ψi, Si〉 ∈ S1, 〈ψj , Ψj , Sj〉 ∈ S2}
� S1 ⊕S2 := {〈ψi

.∧ ψj , Ψi

.∨ Ψj , Si ∪Sj〉 | 〈ψi, Ψi, Si〉 ∈ S1, 〈ψj , Ψj , Sj〉 ∈ S2,
Ψi �=
, Ψj �=
}

The function dec is defined by induction on the structure of path formula Φ
as follows:

� dec(ϕ) = {〈ϕ,
, ∅〉} for any ATL∗ state formula ϕ
� dec(©Φ1) = {〈
, Φ1, ∅〉} for any path formula Φ1

� dec(�Φ1) = {〈
,�Φ1, {Φ1}〉} ⊗ dec(Φ1)
� dec(Φ1 UΦ2) = ({〈
, Φ1 UΦ2, {Φ1}〉} ⊗ dec(Φ1)) ∪ ({〈
,
, {Φ2}〉} ⊗ dec(Φ2))
� dec(Φ1 ∧ Φ2) = dec(Φ1) ⊗ dec(Φ2)
� dec(Φ1 ∨ Φ2) = dec(Φ1) ∪ dec(Φ2) ∪ (dec(Φ1) ⊕ dec(Φ2))

Note that the definition of the function dec is based on the fixed-point equiv-
alences of LTL [4]: �Ψ ≡ Ψ ∧ ©�Ψ and ΦUΨ ≡ Ψ ∨ (Φ ∧ ©(ΦUΨ)).

The operators
.∧ and

.∨ correspond respectively to the operators ∧ and ∨
where the associativity, commutativity, idempotence and identity element prop-
erties are embedded in the syntax. The aim of both

.∧ and
.∨ is to automatically

transform resultant formulae in conjunctive normal form without redundancy,
and therefore ensures the termination of our tableau-based decision procedure.
For instance, when applying the function dec on �♦Φ∧♦Φ we may obtain a path
formula �♦Φ ∧ ♦Φ ∧ ♦Φ and applying again the function dec on the so-obtained
path formula will return �♦Φ∧♦Φ∧♦Φ∧♦Φ, and so on forever. Also when the

Deciding ATL Satisfiability by Tableaux 221

formula is complicated with ∧ and ∨ embedded in temporal operators, we may
not be able to define which part of a path formula is identical to another one. We
avoid these unwanted behaviours with our use of

.∧ and
.∨ and the transformation

of any new path formula in conjunctive normal form without redundancies.
Now, let ζ = 〈〈A〉〉Φ or ζ = [[A]]Φ be a γ-formula to be decomposed. Each triple

〈ψ, Ψ, S〉 ∈ dec(Φ) is then converted to a γ-component γc(ψ, Ψ, S) as follows:

γc(ψ, Ψ, S) = ψ if Ψ =
 (3)
γc(ψ, Ψ, S) = ψ ∧ 〈〈A〉〉©〈〈A〉〉Ψ if ζ is of the form 〈〈A〉〉Φ, (4)

γc(ψ, Ψ, S) = ψ ∧ [[A]]©[[A]]Ψ if ζ is of the form [[A]]Φ (5)

and a γ-set γs(ψ, Ψ, S) = S.
The following key lemma claims that every γ-formula is equivalent to the

disjunction of its γ-components.

Lemma 1. For any ATL∗ γ-formula ζ = 〈〈A〉〉Φ or ζ = [[A]]Φ

1. Φ ≡ ∨{ψ ∧ ©Ψ | 〈ψ, Ψ, S〉 ∈ dec(Φ)}
2. 〈〈A〉〉Φ ≡ ∨{〈〈A〉〉(ψ ∧ ©Ψ) | 〈ψ, Ψ, S〉 ∈ dec(Φ)}, and

[[A]]Φ ≡ ∨{[[A]](ψ ∧ ©Ψ) | 〈ψ, Ψ, S〉 ∈ dec(Φ)}
3. 〈〈A〉〉Φ ≡ ∨{γc(ψ, Ψ, S) | 〈ψ, Ψ, S〉 ∈ dec(Φ)}
Example 1. (Decomposition of θ = 〈〈1〉〉((�♦q∨♦r)∧(♦q∨♦r))). First, we apply
the decomposition function to the path formula Φ = (�♦q ∨♦r)∧ (♦q ∨♦r), see
Fig. 2. We recall that ♦ϕ ≡
Uϕ. It is worth noting that p and r can be replaced
by any state formulae without affecting the basic structure of the computation
of the function dec.

Then, for instance, from the triple 〈r,�♦q ∧♦q, {r,♦q}〉 of dec(Φ), we obtain
the γ-component γc(r,�♦q∧♦q, {r,♦q}) = r∧〈〈1〉〉©〈〈1〉〉(�♦q∧♦q) and the γ-set
γs(r,�♦q ∧♦q, {r,♦q}) = {r,♦q}; from the triple 〈
,�♦q ∧♦q, {♦q}〉 we obtain
γc(
,�♦q∧♦q, {♦q}) = 〈〈1〉〉©〈〈1〉〉(�♦q∧♦q) and γs(
,�♦q∧♦q, {♦q}) = {♦q}.

Closure. The closure cl(ϕ) of an ATL∗ state formula ϕ is the least set of ATL∗

formulae such that ϕ,
, ⊥ ∈ cl(ϕ), and cl(ϕ) is closed under taking successor,
α-, β- and γ-components of ϕ. For any set of state formulae Γ we define

cl(Γ) =
⋃

{cl(ψ) | ψ ∈ Γ} (6)

We denote by |ψ| the length of ψ and by ||Γ || the cardinality of Γ .

Lemma 2. For any ATL∗ state formula ϕ, ||cl(ϕ)|| < 22
2|ϕ|

.

Sketch of proof. The double exponent, in the size of the ϕ, of the closure comes
from the fact that, during decomposition of γ-formulae, path formulae are put
in disjunctive normal form. We recall that this form is necessary to ensure the
termination of our procedure.

222 A. David

Fig. 2. Function dec applied on the path formula 〈〈1〉〉((�♦q ∨ ♦r) ∧ (♦q ∨ ♦r))

Full expansions of sets of ATL∗ formulae. Once we are able to decom-
pose into components every non-primitive ATL∗ state formulae, it is possible to
obtain full expansions of a given set of ATL∗ state formulae using the following
definition:

Definition 2. Let Γ , Δ be sets of ATL∗ state formulae and Γ ⊆ Δ ⊆ cl(Γ).

1. Δ is patently inconsistent if it contains ⊥ or a pair of formulae ϕ and ¬ϕ.
2. Δ is a full expansion of Γ if it is not patently inconsistent and satisfies the

following closure conditions:
– if ϕ ∧ ψ ∈ Δ then ϕ ∈ Δ and ψ ∈ Δ;
– if ϕ ∨ ψ ∈ Δ then ϕ ∈ Δ or ψ ∈ Δ;
– if ϕ ∈ Δ is a γ-formula, then at least one γ-component of ϕ is in Δ

and exactly one of these γ-components, say γc(ψ, Ψ, S), in Δ, denoted
γl(ϕ,Δ), is designated as the γ-component in Δ linked to the γ-formula
ϕ, as explained below. We also denote by γsl(ϕ,Δ) the set of path formulae
γs(ψ, Ψ, S), which is linked to the γ-component γl(ϕ,Δ)

The set of all full expansions of Γ is denoted by FE(Γ).

Proposition 1. For any finite set of ATL∗ state formulae Γ :
∧

Γ ≡
∨{∧

Δ | Δ ∈ FE(Γ)
}

.

The proof easily follows from Lemma 1.
The rule (SR) adds to the tableau the set of full expansions of a prestate Γ

as successor states of Γ .

Deciding ATL Satisfiability by Tableaux 223

Rule (SR). Given a prestate Γ , do the following:

1. For each full expansion Δ of Γ add to the pretableau a state with label Δ.
2. For each of the added states Δ, if Δ does not contain any formula of the form

〈〈A〉〉©ϕ or [[A]]©ϕ, add the formula 〈〈A〉〉©
 to it;
3. For each state Δ obtained at steps 1 and 2, link Γ to Δ via a =⇒ edge;
4. If, however, the pretableau already contains a state Δ′ with label Δ, do not

create another copy of it but only link Γ to Δ′ via a =⇒ edge.

5 Construction Phase: Dynamic Analysis of Successor
Formulae

We recall that the considered agents are those explicitly mentioned in the initial
formula η. The rule (Next) creates successor prestates to a given state, say
Δ, so that the satisfiability of Δ is equivalent to the satisfiability of all the
prestates. In our tableau construction procedure, choosing one of the successor
formulae contained in Δ is considered as a possible action for every agent. Then
each possible action vector is given a set of formulae corresponding to the choice
collectively made by every agent. More details about the rationale behind the
rule (Next) can be found in [3,6]. Moreover, it is worthwhile noticing that the
rule (Next) is done in such a way so that any created prestate contains at most
one formula of the form [[A′]]©ψ, where A′ �= A.

Rule (Next). Given a state Δ, do the following, where σ is a shorthand for σA:

1. List all primitive successor formulae of Δ in such a way that all successor
formulae of the form 〈〈A〉〉Φ precede all formulae of the form [[A′]]Φ where
A′ �= A, which themselves precede all formulae of the form [[A]]Φ; let the
result be the list

L = 〈〈A0〉〉©ϕ0, . . . , 〈〈Am−1〉〉©ϕm−1,

[[A′
0]]©ψ0, . . . , [[A′

l−1]]©ψl−1, [[A]]©μ0, . . . , [[A]]©μn−1

Let rΔ = max{m + l, 1}; we denote by D(Δ) the set {0, . . . , rΔ − 1}|A|.
Then, for every σ ∈ D(Δ), denote N(σ) := {i | σi � m}, where σi is the ith
component of the tuple σ, and let co(σ) := [

∑
i∈N(σ)(σi − m)] mod l.

2. For each σ ∈ D(Δ) create a prestate:

Γσ = {ϕp | 〈〈Ap〉〉©ϕp ∈ Δ and σa = p for all a ∈ Ap}
∪ {ψq | [[A′

q]]©ψq ∈ Δ, co(σ) = q and A − A′
q ⊆ N(σ)}

∪ {μr | [[A]]©μr ∈ Δ}

If Γσ is empty, add
 to it. Then connect Δ to Γσ with σ−→.
If, however, Γσ = Γ for some prestate Γ that has already been added to the
initial tableau, only connect Δ to Γ with σ−→.

224 A. David

Example 2. We suppose a state containing the following successor formulae, that
we arrange in the following way, where the first line of numbers corresponds to
positions among negative successor formulae, and the second line corresponds to
positions among successor formulae, with A �= A.

L =
0

〈〈1〉〉©〈〈1〉〉(�♦q ∧ ♦q),

0
1

[[1]]©[[1]]�¬q,

1
2

[[2]]©[[2]]�♦s, [[1, 2]]©¬q

The application of the rule (Next) on L gives the following results:

σ N(σ) co(σ) Γ (σ) σ N(σ) co(σ) Γ (σ)
0, 0 ∅ 0 〈〈1〉〉(�♦q ∧ ♦q),¬q 1, 2 {1, 2} 1 [[1]]�¬q,¬q
0, 1 {2} 0 〈〈1〉〉(�♦q ∧ ♦q), [[2]]�♦s,¬q 2, 0 {1} 1 [[1]]�¬q,¬q
0, 2 {2} 1 〈〈1〉〉(�♦q ∧ ♦q),¬q 2, 1 {1, 2} 1 [[1]]�¬q,¬q
1, 0 {1} 0 ¬q 2, 2 {1, 2} 0 [[2]]�♦s,¬q
1, 1 {1, 2} 0 [[2]]�♦s,¬q

6 Elimination Phase

The elimination phase also works step-by-step. In order to go through one step
to another we apply by turns two elimination rules, called (ER1) and (ER2),
until no more nodes can be eliminated. The rule (ER1) detects and deletes nodes
with missing successor, while the rule (ER2) detects and delete states that do
not realize all their eventualities. At each step, we obtain a new intermediate
tableau, denoted by T η

n . We denote by Sη
n the set of nodes (states and prestates)

of the intermediate tableau T η
n .

At the end of the elimination phase, we obtain the final tableau for η, denoted
by T η. It is declared open if the initial node belongs to Sη, otherwise closed.
The procedure for deciding satisfiability of η returns “No” if T η is closed, “Yes”
otherwise.

Remark 1. Contrary to the tableau-based decision procedure for ATL+, we do
not eliminate all the prestates at the beginning of the elimination phase. We
eliminate them with the rule (ER1) only if necessary. This does not have any
effect on the result of the procedure, nor any relevant modification in the sound-
ness and completeness proofs, but it makes implementation quicker and easier.

Rule (ER1). Let Ξ ∈ Sη
n be a node (prestate or state).

– In the case where Ξ is a prestate: if all nodes Δ with Ξ =⇒ Δ have been
eliminated at earlier stages, then obtain T η

n+1 by eliminating Ξ from T η
n .

– In the case where Ξ is a state: if, for some σ ∈ D(Ξ), the node Γ with
Ξ σ−→ Γ has been eliminated at earlier stage, then obtain T η

n+1 by eliminating
Ξ from T η

n .

In order to define the rule (ER2), we first need to define what is an eventu-
ality in the context of ATL∗ and then define how to check whether eventualities
are realized or not.

Deciding ATL Satisfiability by Tableaux 225

Eventualities. In our context, we consider all γ-formulae as potential eventu-
alities. We recall that a γ-formula is of the form 〈〈A〉〉Φ or [[A]]Φ where Φ �= ©ϕ.
When constructing a tableau step-by-step as we do in our procedure, it is pos-
sible to postpone forever promises encapsulated in operators such as U as far
as we keep promising to satisfy them. We consider that a promise, which is a
path formula, is satisfied (or realized) once it is initiated at the current state,
which corresponds to an engagement to keep it true if necessary, for any com-
putation starting at that state. So we want to know at a given state and for a
given formula whether all promises (or eventualities) are realized. This is the
role of the function Realized: ATL∗

p × P(ATL∗
s) × P(ATL∗

p) → B, where B is the
set {true, false}. The first argument of the function Realized is the path formula
to study, the second argument is a set of state formulae Θ, and the third argu-
ment is a set of path formulae on which one is “engaged”. This third argument
is exactly what is added with respect to ATL+ treatment. For our purpose, to
know whether a potential eventuality is realized, we use the set Θ to represent
the state containing the γ-formula and the set S = γsl(Φ,Θ) obtained during
the decomposition of Φ and the full expansion of Θ. This last set S is computed
in Sect. 4 and corresponds to the set of path formulae initiated in the current
state Θ. The definition of Realized is given by recursion on the structure of Φ as
follows:

– Realized(ϕ,Θ, S) = true iff ϕ ∈ Θ
– Realized(Φ1 ∧ Φ2, Θ, S) = Realized(Φ1, Θ, S) ∧ Realized(Φ2, Θ, S)
– Realized(Φ1 ∨ Φ2, Θ, S) = Realized(Φ1, Θ, S) ∨ Realized(Φ2, Θ, S)
– Realized(©Φ1, Θ, S) = true
– Realized(�Φ1, Θ, S) = true iff Φ1 ∈ Θ ∪ S
– Realized(Φ2 UΦ1, Θ, S) = true iff Φ1 ∈ Θ ∪ S

Remark 2. In the two last items, we use the set Θ ∪ S to handle the particular
case where Φ1 is a state formula that is already in the set Θ because of the
behaviour of another coalition of agents.

We will see with Definition 4 that if the function Realized declares that an
eventuality is not immediately realized at a given state, then we check in the
corresponding successor states whether it is realized or not. But, because of
the way γ-formulae are decomposed, an eventuality may change its form from
one state to another. Therefore, we define the notion of Descendant potential
eventuality in order to define a parent/child link between potential eventualities
and keep track of not yet realized eventualities, and finally check whether the
potential eventualities are realized at a given moment.

Definition 3. (Descendant potential eventualities). Let Δ be a state and
let ξ ∈ Δ be a potential eventuality of the form 〈〈A〉〉Φ or [[A]]Φ. Suppose the γ-
component γl(ξ,Δ) in Δ linked to ξ is, respectively, of the form ψ∧〈〈A〉〉©〈〈A〉〉Ψ
or ψ ∧ [[A]]©[[A]]Ψ . Then the successor potential eventuality of ξ w.r.t. γl(ξ,Δ)
is the γ-formula 〈〈A〉〉Ψ (resp. [[A]]Ψ) and it will be denoted by ξ1Δ. The notion of
descendant potential eventuality of ξ of degree d, for d > 1, is defined inductively
as follows:

226 A. David

– any successor eventuality of ξ (w.r.t. some γ-component of ξ) is a descendant
eventuality of ξ of degree 1;

– any successor eventuality of a descendant eventuality ξn of ξ of degree n is a
descendant eventuality of ξ of degree n + 1.

We will also consider ξ to be a descendant eventuality of itself of degree 0.

Realization of Potential Eventualities First, we give some notation:
Notation: Let L = 〈〈A0〉〉©ϕ0, . . . , 〈〈Am−1〉〉©ϕm−1, [[A′

0]]©ψ0, . . . , [[A′
l−1]]©

ψl−1, [[A]]©μ0, . . . , [[A]]©μn−1 be the list of all primitive successor formulae of
Δ ∈ Sη

0 , induced as part of application of (Next).
Succ(Δ, 〈〈Ap〉〉©ϕp) := {Γ | Δ

σ−→ Γ, σa = p for every a ∈ Ap}
Succ(Δ, [[A′

q]]©ψq) := {Γ | Δ
σ−→ Γ, co(σ) = q and A − A′

q ⊆ N(σ)}
Succ(Δ, [[A]]©μr) := {Γ | Δ

σ−→ Γ}
Definition 4. (Realization of potential eventualities) Let Δ ∈ Sη

n be
a state and ξ ∈ Δ be a potential eventuality of the form 〈〈A〉〉Φ or [[A]]Φ. Let
S = γsl(ξ,Δ). Then:

1. If Realized(Φ,Δ, S) = true then ξ is realized at Δ in T η
n .

2. Else, let ξ1Δ be the successor potential eventuality of ξ w.r.t. γl(ξ,Δ). If for
every Γ ∈ Succ(Δ, 〈〈A〉〉©ξ1Δ) (resp. Γ ∈ Succ(Δ, [[A]]©ξ1Δ)), there exists
Δ′ ∈ T η

n with Γ =⇒ Δ′ and ξ1Δ is realized at Δ′ in T η
n , then ξ is realized at

Δ in T η
n .

Example 3. Let Δ = {〈〈1〉〉((�♦q ∨ ♦r) ∧ (♦q ∨ ♦r)), [[1]]�¬q, [[2]]�♦s, [[1, 2]]©
¬q,¬q, 〈〈1〉〉©〈〈1〉〉(�♦q ∧ ♦q), [[1]]©[[1]]�¬q, s, [[2]]©[[2]]�♦s} be a state.
If we consider the potential eventuality ξ = 〈〈1〉〉((�♦q ∨ ♦r) ∧ (♦q ∨ ♦r)) ∈ Δ,
Φ = (�♦q ∨ ♦r) ∧ (♦q ∨ ♦r) and S = γsl(ξ,Δ) = {♦q}, then we obtain the
following result:

Realized(Φ,Δ, S) = Realized(�♦q ∨ ♦r,Δ, S) ∧ Realized(♦q ∨ ♦r,Δ, S)
= Realized(�♦q,Δ, S) ∨ Realized(♦r,Δ, S) ∧

Realized(♦q,Δ, S) ∨ Realized(♦r,Δ, S)
= (true ∨ false) ∧ (false ∨ false) = false

The call of the function Realized on (Φ,Δ, S) returns false, which means that
the potential eventuality ξ is not immediately realized. Therefore, we must check
in the future if ξ can be realized or not. Concretely, we must check that the
descendant potential eventuality ξ1 = 〈〈1〉〉(�♦q ∧ ♦q) is realized at the next
states corresponding to the collective choices of all agents to satisfy the successor
formula 〈〈1〉〉©ξ1, that is states resulting from the transitions (0, 0), (0, 1) and
(0, 2), as seen in Example 2.

Rule (ER2). If Δ ∈ Sη
n is a state and contains a potential eventuality that is

not realized at Δ ∈ T η
n , then obtain T η

n+1 by removing Δ from Sη
n.

Deciding ATL Satisfiability by Tableaux 227

7 Results and Sketches of Proofs

Theorem 1. The tableau-based procedure for ATL∗ is sound with respect to
unsatisfiability, that is if a formula is satisfiable then its final tableau is open.

To prove soundness, we first prove that from any satisfiable prestate we
obtain at least one satisfiable state, and we prove that from any satisfiable state
we obtain only satisfiable prestates. Second, we prove that no satisfiable prestate
or state can be eliminated via rule (ER1) or (ER2), and in particular, if the
initial prestate is satisfiable, it cannot be removed, which means that the tableau
is open.

Theorem 2. The tableau-based procedure for ATL∗ is complete with respect to
unsatisfiability, that is if a tableau for an input formula is open then this formula
is satisfiable.

To prove completeness, we construct step-by-step a special structure called
Hintikka structure from the open tableau and then we prove that a CGM satis-
fying the initial formula can be obtained from that Hintikka structure.

Theorem 3. The tableau-based procedure for ATL∗ runs in at most
3EXPTIME.

We first argue that the number of formulae in the closure of the initial formula
η is at most double exponential in the size of η (see Lemma 2). Then we have
that the number of states is at most exponential in the size of the closure of η.
Therefore the procedure runs in at most 3EXPTIME.

8 Implementation of the Procedure

We propose a prototype implementing our tableau-based decision procedure for
ATL∗, available on the following web site: http://atila.ibisc.univ-evry.fr/tableau
ATL star/.
This prototype aims at giving a user-friendly tool to the reader interested in
checking satisfiability of ATL* formulae. This is why we provide our prototype
as a web application directly ready to be used. The application allows one to
enter a formula, or to select one from a predefined list of formulae, and then
launch the computation of the corresponding tableau. It returns some statistics
about the number of prestates and states generated as well as the initial and
final tableaux for the input formula, therefore also an answer on its satisfiability.
Explanation on how to use the application is given on the web site.

Our prototype is developed in Ocaml for the computation, and in PHP and
JavaScript for the web interface. Binaries of the application can be found on the
same web page.

As the main difference between ATL and ATL∗ comes from path formulae, we
mainly focus our test on that point and use the list of tests proposed by Reynolds
for CTL∗ in [7]. This allows us to check that our application gives the same results

http://atila.ibisc.univ-evry.fr/tableau_ATL_star/
http://atila.ibisc.univ-evry.fr/tableau_ATL_star/

228 A. David

in term of satisfiability and that our running times for these examples are satis-
factory. Moreover, other tests using formulae with non trivial coalitions have been
done. Nevertheless a serious benchmark has still to be done, which is a non trivial
work, left for the future. Also, we plan to compare theoretically and experimen-
tally our approach with the automata-decision based procedure of [8].

9 Conclusion

In this paper, we propose the first sound, complete and terminating tableau-
based decision procedure for ATL∗: it is easy to understand and conceptually
simple. We also provide the first implementation to decide the satisfiability of
ATL∗ formulae, among which ATL+ formulae. In future works, it would be worth-
while to implement the automata-based decision procedure proposed in [8] and
be able to make some practical comparisons. Another perspective is to implement
model synthesis with a minimal number of states for satisfiable ATL∗ formulae.

Acknowledgement. I would like to thank Serenella Cerrito and Valentin Goranko
for their advices and proofreading. I also thank the anonymous referees for their helpful
criticisms.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM
49(5), 672–713 (2002)

2. Cerrito, S., David, A., Goranko, V.: Optimal tableaux-based decision procedure
for testing satisfiability in the alternating-time temporal logic ATL+. In: Demri,
S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 277–291.
Springer, Heidelberg (2014). http://arxiv.org/abs/1407.4645

3. Carral, D., Feier, C., Cuenca Grau, B., Hitzler, P., Horrocks, I.: EL-ifying ontologies.
In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp.
464–479. Springer, Heidelberg (2014)

4. Emerson, E.A.: Temporal and modal logics. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 995–1072. MIT Press (1990)

5. Emerson, E.A., Sistla, A.P.: Deciding full branching time logic. Inf. Control 61(3),
175–201 (1984)

6. Goranko, V., Shkatov, D.: Tableau-based decision procedures for logics of strategic
ability in multiagent systems. ACM Trans. Comput. Log. 11(1), 1–48 (2009)

7. Reynolds, M.: A faster tableau for CTL. In: Puppis, G., Villa, T. (eds.) Proceedings
Fourth International Symposium on Games, Automata, Logics and Formal Verifi-
cation, GandALF 2013, Borca di Cadore, Dolomites, Italy, 29–31th August 2013.
EPTCS, vol. 119, pp. 50–63 (2013). http://dx.doi.org/10.4204/EPTCS.119.7

8. Schewe, S.: ATL* satisfiability Is 2EXPTIME-complete. In: Aceto, L., Damg̊ard, I.,
Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008, Part II. LNCS, vol. 5126, pp. 373–385. Springer, Heidelberg (2008)

http://arxiv.org/abs/1407.4645
http://dx.doi.org/10.4204/EPTCS.119.7

Interactive/Automated Theorem Proving
and Applications

A Formalisation of Finite Automata Using
Hereditarily Finite Sets

Lawrence C. Paulson(B)

Computer Laboratory, University of Cambridge, Cambridge, UK
lp15@cam.ac.uk

Abstract. Hereditarily finite (HF) set theory provides a standard uni-
verse of sets, but with no infinite sets. Its utility is demonstrated through
a formalisation of the theory of regular languages and finite automata,
including the Myhill-Nerode theorem and Brzozowski’s minimisation
algorithm. The states of an automaton are HF sets, possibly constructed
by product, sum, powerset and similar operations.

1 Introduction

The theory of finite state machines is fundamental to computer science. It has
applications to lexical analysis, hardware design and regular expression pat-
tern matching. A regular language is one accepted by a finite state machine,
or equivalently, one generated by a regular expression or a type-3 grammar [6].
Researchers have been formalising this theory for nearly three decades.

A critical question is how to represent the states of a machine. Automata
theory is developed using set-theoretic constructions, e.g. the product, disjoint
sum or powerset of sets of states. But in a strongly-typed formalism such as
higher-order logic (HOL), machines cannot be polymorphic in the type of states:
statements such as “every regular language is accepted by a finite state machine”
would require existential quantification over types. One might conclude that
there is no good way to formalise automata in HOL [5,15].

It turns out that finite automata theory can be formalised within the theory
of hereditarily finite sets: set theory with the negation of the axiom of infinity.
It admits the usual constructions, including lists, functions and integers, but no
infinite sets. The type of HF sets can be constructed from the natural numbers
within higher-order logic. Using HF sets, we can retain the textbook definitions,
without ugly numeric coding. We can expect HF sets to find many other appli-
cations when formalising theoretical computer science.

The paper introduces HF set theory and automata (Sect. 2). It presents a
formalisation of deterministic finite automata and results such as the Myhill-
Nerode theorem (Sect. 3). It also treats nondeterministic finite automata and
results such as the powerset construction and closure under regular expression
operations (Sect. 4). Next come minimal automata, their uniqueness up to iso-
morphism, and Brzozowski’s algorithm for minimising an automaton [3] (Sect. 5).
The paper concludes after discussing related work (Sects. 6–7). The proofs, which
are available online [12], also demonstrate the use of Isabelle’s locales [1].
c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 231–245, 2015.
DOI: 10.1007/978-3-319-21401-6 15

232 L.C. Paulson

2 Background

An hereditarily finite set can be understood inductively as a finite set of hered-
itarily finite sets [14]. This definition justifies the recursive definition f(x) =∑ {2f(y) | y ∈ x}, yielding a bijection f : HF → N between the HF sets and the
natural numbers. The linear ordering on HF given by x < y ⇐⇒ f(x) < f(y)
can be shown to extend both the membership and the subset relations.

The HF sets support many standard constructions, even quotients. Equiva-
lence classes are not available in general — they may be infinite — but the linear
ordering over HF identifies a unique representative. The integers and rationals
can be constructed, with their operations (but not the set of integers, obviously).
Świerczkowski [14] has used HF as the basis for proving Gödel’s incompleteness
theorems, and I have formalised his work using Isabelle [13].

Let Σ be a nonempty, finite alphabet of symbols. Then Σ∗ is the set of words:
finite sequences of symbols. The empty word is written ε, and the concatenation
of words u and v is written uv. A deterministic finite automaton (DFA) [6,7] is
a structure (K,Σ, δ, q0, F) where K is a finite set of states, δ : K × Σ → K is
the next-state function, q0 ∈ K is the initial state and F ⊆ K is the set of final
or accepting states. The next-state function on symbols is extended to one on
words, δ∗ : K × Σ∗ → K such that δ∗(q, ε) = q, δ∗(q, a) = δ(q, a) for a ∈ Σ and
δ∗(q, uv) = δ∗(δ∗(q, u), v). The DFA accepts the string w if δ∗(q0, w) ∈ F . A set
L ⊆ Σ∗ is a regular language if L is the set of strings accepted by some DFA.

A nondeterministic finite automaton (NFA) is similar, but admits multiple
execution paths and accepts a string if one of them reaches a final state. Formally,
an NFA is a structure (K,Σ, δ,Q0, F) where δ : K × Σ → P(K) is the next-
state function, Q0 ⊆ K a set of initial states, the other components as above.
The next-state function is extended to δ∗ : P(K) × Σ∗ → P(K) such that
δ∗(Q, ε) = Q, δ∗(Q, a) =

⋃
q∈Q δ(q, a) for a ∈ Σ and δ∗(Q, uv) = δ∗(δ∗(Q,u), v).

An NFA accepts the string w provided δ∗(q, w) ∈ F for some q ∈ Q0.
The notion of NFA can be extended with ε-transitions, allowing “silent”

transitions between states. Define the transition relation q
a→ q′ for q′ ∈ δ(q, a).

Let the ε-transition relation q
ε→ q′ be given. Then define the transition relation

q
a⇒ q′ to allow ε-transitions before and after: (ε→)∗ ◦ (a→) ◦ (ε→)∗.
Every NFA can be transformed into a DFA, where the set of states is the

powerset of the NFA’s states, and the next-state function captures the effect of
q

a⇒ q′ on these sets of states. Regular languages are closed under intersection
and complement, therefore also under union. They are closed under repetition
(Kleene star). Two key results are discussed below:

– The Myhill-Nerode theorem gives necessary and sufficient conditions for a
language to be regular. It defines a canonical and minimal DFA for any given
regular language. Minimal DFAs are unique up to isomorphism.

– Reorienting the arrows of the transition relation transforms a DFA into an
NFA accepting the reverse of the given language. We can regain a DFA using
the powerset construction. Repeating this operation yields a minimal DFA for
the original language. This is Brzozowski’s minimisation algorithm [3].

A Formalisation of Finite Automata Using Hereditarily Finite Sets 233

This work has been done using the proof assistant Isabelle/HOL. Documen-
tation is available online at http://isabelle.in.tum.de/. The work refers to equiv-
alence relations and equivalence classes, following the conventions established in
my earlier paper [11]. If R is an equivalence relation on the set A , then A//R is the
set of equivalence classes. If x∈A , then its equivalence class is R‘‘{x}. Formally,
it is the image of x under R : the set of all y such that (x,y) ∈ R . More generally,
if X⊆A then R‘‘X is the union of the equivalence classes R‘‘{x} for x∈X .

3 Deterministic Automata; the Myhill-Nerode Theorem

When adopting HF set theory, there is the question of whether to use it for
everything, or only where necessary. The set of states is finite, so it could be
an HF set, and similarly for the set of final states. The alphabet could also be
given by an HF set; then words—lists of symbols—would also be HF sets. Our
definitions could be essentially typeless.

The approach adopted here is less radical. It makes a minimal use of HF,
allowing stronger type-checking, although this does cause complications else-
where. Standard HOL sets (which are effectively predicates) are intermixed with
HF sets. An HF set has type hf , while a (possibly infinite) set of HF sets has
type hf set . Definitions are polymorphic in the type ’a of alphabet symbols,
while words have type ’a list .

3.1 Basic Definition of DFAs

The record definition below declares the components of a DFA. The types make
it clear that there is indeed a set of states but only a single initial state, etc.

record ’a dfa = states :: "hf set"

init :: "hf"

final :: "hf set"

nxt :: "hf ⇒ ’a ⇒ hf"

Now we package up the axioms of the DFA as a locale [1]:

locale dfa =

fixes M :: "’a dfa"

assumes init: "init M ∈ states M"

and final: "final M ⊆ states M"

and nxt: "
∧
q x. q ∈ states M =⇒ nxt M q x ∈ states M"

and finite: "finite (states M)"

The last assumption is needed because the states field has type hf set and
not hf . The locale bundles the assumptions above into a local context, where
they are directly available. It is then easy to define the accepted language.

primrec nextl :: "hf ⇒ ’a list ⇒ hf" where
"nextl q [] = q"

| "nextl q (x#xs) = nextl (nxt M q x) xs"

definition language :: "(’a list) set" where
"language ≡ {xs. nextl (init M) xs ∈ final M}"

http://isabelle.in.tum.de/

234 L.C. Paulson

Equivalence relations play a significant role below. The following relation regards
two strings as equivalent if they take the machine to the same state [7, p. 90].

definition eq nextl :: "(’a list × ’a list) set" where
"eq nextl ≡ {(u,v). nextl (init M) u = nextl (init M) v}"

Note that language and eq nextl take no arguments, but refer to the locale.

3.2 Myhill-Nerode Relations

The Myhill-Nerode theorem asserts the equivalence of three characterisations
of regular languages. The first of these is to be the language accepted by some
DFA. The other two are connected with certain equivalence relations, called
Myhill-Nerode relations, on words of the language.

The definitions below are outside of the locale and are therefore indepen-
dent of any particular DFA. The predicate dfa refers to the locale axioms and
expresses that its argument, M , is a DFA. The predicate dfa.language refers to
the constant language : outside of the locale, it takes a DFA as an argument.

definition regular :: "(’a list) set ⇒ bool" where
"regular L ≡ ∃ M. dfa M ∧ dfa.language M = L"

The other characterisations of a regular language involve abstract finite state
machines derived from the language itself, with certain equivalence classes as the
states. A relation is right invariant if it satisfies the following closure property.

definition right invariant ::"(’a list × ’a list) set ⇒ bool" where
r̈ight invariant r ≡ (∀ u v w. (u,v) ∈ r −→ (u@w, v@w) ∈ r)"

The intuition is that if two words u and v are related, then each word brings the
“machine” to the same state, and once this has happened, this agreement must
continue no matter how the words are extended as u@w and v@w .

A Myhill-Nerode relation for a language L is a right invariant equivalence
relation of finite index where L is the union of some of the equivalence classes
[7, p. 90]. Finite index means the set of equivalence classes is finite: finite

(UNIV//R) .1 The equivalence classes will be the states of a finite state machine.
The equality L = R‘‘A , where A ⊆ L is a set of words of the language, expresses
L as the union of a set of equivalence classes, which will be the final states.

definition MyhillNerode ::"’a list set ⇒ (’a list * ’a list)set ⇒ bool"

where M̈yhillNerode L R ≡ equiv UNIV R ∧ right invariant R ∧
finite (UNIV//R) ∧ (∃ A. L = R‘‘A)"

While eq nextl (defined in Sect. 3.1) refers to a machine, the relation
eq app right is defined in terms of a language, L . It relates the words u and
v if all extensions of them, u@w and v@w , behave equally with respect to L :

definition eq app right :: "’a list set ⇒ (’a list * ’a list) set" where
"eq app right L ≡ {(u,v). ∀ w. u@w ∈ L ←→ v@w ∈ L}"

1 UNIV denotes a typed universal set, here the set of all words.

A Formalisation of Finite Automata Using Hereditarily Finite Sets 235

It is a Myhill-Nerode relation for L provided it is of finite index:

lemma MN eq app right:

"finite (UNIV // eq app right L) =⇒ MyhillNerode L (eq app right L)"

Moreover, every Myhill-Nerode relation R for L refines eq app right L .

lemma MN refines eq app right: "MyhillNerode L R =⇒ R ⊆ eq app right L"

This essentially states that eq app right L is the most abstract Myhill-Nerode
relation for L . This will eventually yield a way of defining a minimal machine.

3.3 The Myhill-Nerode Theorem

The Myhill-Nerode theorem says that these three statements are equivalent [6]:

1. The set L is a regular language (is accepted by some DFA).
2. There exists some Myhill-Nerode relation R for L .
3. The relation eq app right L has finite index.

We have (1) ⇒ (2) because eq nextl is a Myhill-Nerode relation. We have
(2) ⇒ (3), by lemma MN refines eq app right , because every equivalence class for
eq app right L is the union of equivalence classes of R , and so eq app right L has
minimal index for all Myhill-Nerode relations. We get (3) ⇒ (1) by constructing
a DFA whose states are the (finitely many) equivalence classes of eq app right

L . This construction can be done for every Myhill-Nerode relation.
Until now, all proofs have been routine. But now we face a difficulty: the

states of our machine should be equivalence classes of words, but these could
be infinite sets. What can be done? The solution adopted here is to map the
equivalence classes to the natural numbers, which are easily embedded in HF.
Proving that the set of equivalence classes is finite gives us such a map.

Mapping infinite sets to integers seems to call into question the very idea
of representing states by HF sets. However, mapping sets to integers turns out
to be convenient only occasionally, and it is not necessary: we could formalise
DFAs differently, coding symbols (and therefore words) as HF sets. Then we
could represent states by representatives (having type hf) of equivalence classes.
Using Isabelle’s type-class system to identify the types (integers, booleans, lists,
etc.) that can be embedded into HF, type ’a dfa could still be polymorphic in
the type of symbols. But the approach followed here is simpler.

3.4 Constructing a DFA from a Myhill-Nerode Relation

If R is a Myhill-Nerode relation for a language L , then the set of equivalence
classes is finite and yields a DFA for L . The construction is packaged as a locale,
which is used once in the proof of the Myhill-Nerode theorem, and again to prove
that minimal DFAs are unique. The locale includes not only L and R , but also
the set A of accepting states, the cardinality n and the bijection h between the
set UNIV//R of equivalence classes and the number n as represented in HF. The
locale assumes the Myhill-Nerode conditions.

236 L.C. Paulson

locale MyhillNerode dfa =

fixes L :: "(’a list) set" and R :: "(’a list * ’a list) set"

and A :: "(’a list) set" and n :: nat and h :: "(’a list) set ⇒ hf"

assumes eqR: "equiv UNIV R"

and riR: "right invariant R"

and L: "L = R‘‘A"

and h: "bij betw h (UNIV//R) (hfset (ord of n))"

The DFA is defined within the locale. The states are given by the equivalence
classes. The initial state is the equivalence class for the empty word; the set
of final states is derived from the set A of words that generate L ; the next-
state function maps the equivalence class for the word u to that for u@[x] .
Equivalence classes are not the actual states here, but are mapped to integers
via the bijection h . As mentioned above, this use of integers is not essential.

definition DFA :: "’a dfa" where
"DFA = (|states = h ‘ (UNIV//R),

init = h (R ‘‘ {[]}),

final = {h (R ‘‘ {u}) | u. u ∈ A},

nxt = λq x. h (
⋃

u ∈ h−1 q. R ‘‘ {u@[x]}) |)"
This can be proved to be a DFA easily. One proof line, using the right-invariance
property and lemmas about quotients [11], proves that the next-state function
respects the equivalence relation. Four more lines are needed to verify the proper-
ties of a DFA, somewhat more to show that the language of this DFA is indeed L .

The facts proved within the locale are summarised (outside its scope) by the
following theorem, stating that every Myhill-Nerode relation yields an equivalent
DFA. (The obtains form expresses existential and multiple conclusions).

theorem MN imp dfa:

assumes "MyhillNerode L R"

obtains M where "dfa M" "dfa.language M = L"

"card (states M) = card (UNIV//R)"

This completes the (3) ⇒ (1) stage, by far the hardest, of the Myhill-Nerode
theorem. The three stages are shown below. Lemma L2 3 includes a result about
cardinality: the construction yields a minimal DFA, which will be useful later.

lemma L1 2:r̈egular L =⇒ ∃ R. MyhillNerode L R"

lemma L2 3:

assumes "MyhillNerode L R"

obtains "finite (UNIV // eq app right L)"

"card (UNIV // eq app right L) ≤ card (UNIV // R)"

lemma L3 1: "finite (UNIV // eq app right L) =⇒ regular L"

4 Nondeterministic Automata and Closure Proofs

As most of the proofs are simple, our focus will be the use of HF sets when defin-
ing automata. Our main example is the powerset construction for transforming
a nondeterministic automaton into a deterministic one.

A Formalisation of Finite Automata Using Hereditarily Finite Sets 237

4.1 Basic Definition of NFAs

As in the deterministic case, a record holds the necessary components, while a
locale encapsulates the axioms. Component eps deals with ε-transitions.

recordá nfa = states :: "hf set"

init :: "hf set"

final :: "hf set"

nxt :: "hf ⇒ ’a ⇒ hf set"

eps :: "(hf * hf) set"

The axioms are obvious: the initial, final and next states belong to the set of
states, which is finite. An axiom restricting ε-transitions to machine states was
removed, as it did not simplify proofs. Working with ε-transitions is messy. It
helps to provide special treatment for NFAs having no ε-transitions. Allowing
multiple initial states reduces the need for ε-transitions.

locale nfa =

fixes M :: "’a nfa"

assumes init: "init M ⊆ states M"

and final: "final M ⊆ states M"

and nxt: "
∧
q x. q ∈ states M =⇒ nxt M q x ⊆ states M"

and finite: "finite (states M)"

The following function “closes up” a set Q of states under ε-transitions. Inter-
section with states M confines these transitions to legal states.

definition epsclo :: "hf set ⇒ hf set" where
"epsclo Q ≡ states M ∩ (

⋃
q∈Q. {q’. (q,q’) ∈ (eps M)∗})"

The remaining definitions are straightforward. Note that nextl generalises nxt

to take a set of states as well is a list of symbols.

primrec nextl :: "hf set ⇒ ’a list ⇒ hf set" where
"nextl Q [] = epsclo Q"

| "nextl Q (x#xs) = nextl (
⋃

q ∈ epsclo Q. nxt M q x) xs"

definition language :: "(’a list) set" where
"language ≡ {xs. nextl (init M) xs ∩ final M = {}}"

4.2 The Powerset Construction

The construction of a DFA to simulate a given NFA is elementary, and is a good
demonstration of the HF sets. The strongly-typed approach used here requires a
pair of coercion functions hfset :: "hf ⇒ hf set" and HF :: "hf set ⇒ hf"

to convert between HF sets and ordinary sets.

lemma HF hfset: "HF (hfset a) = a"

lemma hfset HF: "finite A =⇒ hfset (HF A) = A"

238 L.C. Paulson

With this approach, type-checking indicates whether we are dealing with a set
of states or a single state. The drawback is that we occasionally have to show
that a set of states is finite in the course of reasoning about the coercions, which
would never be necessary if we confined our reasoning to the HF world.

Here is the definition of the DFA. The states are ε-closed subsets of NFA
states, coerced to type hf . The initial and final states are defined similarly, while
the next-state function requires both coercions and performs ε-closure before and
after. We work in locale nfa , with access to the components of the NFA.

definition Power dfa :: "’a dfa" where
"Power dfa = (|dfa.states = HF ‘ epsclo ‘ Pow (states M),

init = HF(epsclo(init M)),

final = {HF(epsclo Q) | Q. Q ⊆ states M ∧ Q ∩ final M =
{}},

nxt = λQ x. HF(
⋃

q ∈ epsclo (hfset Q). epsclo (nxt M q

x)) |)"
Proving that this is a DFA is trivial. The hardest case is to show that the
next-state function maps states to states. Proving that the two automata accept
the same language is also simple, by reverse induction on lists (the induction
step concerns u@[x] , putting x at the end). Here, Power.language refers to the
language of the powerset DFA, while language refers to that of the NFA.

theorem Power language: "Power.language = language"

4.3 Other Closure Properties

The set of languages accepted by some DFA is closed under complement, inter-
section, concatenation, repetition (Kleene star), etc. [6]. Consider intersection:

theorem regular Int:

assumes S: "regular S" and T: "regular T" shows "regular (S ∩ T)"

The recognising DFA is created by forming the Cartesian product of the sets of
states of MS and MT , the DFAs of the two languages. The machines are effectively
run in parallel. The decision to represent a set of states by type hf set rather
than by type hf means we cannot write dfa.states MS × dfa.states MT , but
we can express this concept using set comprehension:

"(|states = {〈q1,q2〉 | q1 q2. q1 ∈ dfa.states MS ∧ q2 ∈ dfa.states

MT},

init = 〈dfa.init MS, dfa.init MT〉,
final = {〈q1,q2〉 | q1 q2. q1 ∈ dfa.final MS ∧ q2 ∈ dfa.final MT},

nxt = λ〈qs,qt〉 x. 〈dfa.nxt MS qs x, dfa.nxt MT qt x〉|)"
This is trivially shown to be a DFA. Showing that it accepts the intersection of
the given languages is again easy by reverse induction.

Closure under concatenation is expressed as follows:

theorem regular conc:

assumes S: "regular S" and T: "regular T" shows "regular (S @@ T)"

A Formalisation of Finite Automata Using Hereditarily Finite Sets 239

The concatenation is recognised by an NFA involving the disjoint sum of
the sets of states of MS and MT , the DFAs of the two languages. The effect is
to simulate the first machine until it accepts a string, then to transition to a
simulation of the second machine. There are ε-transitions linking every final
state of MS to the initial state of MT . We again cannot write dfa.states MS +

dfa.states MT , but we can express the disjoint sum naturally enough:

"(|states = Inl ‘ (dfa.states MS) ∪ Inr ‘ (dfa.states MT),

init = {Inl (dfa.init MS)},

final = Inr ‘ (dfa.final MT),

nxt = λq x. sum case (λqs. {Inl (dfa.nxt MS qs x)})

(λqt. {Inr (dfa.nxt MT qt x)}) q,

eps = (λq. (Inl q, Inr (dfa.init MT))) ‘ dfa.final MS |)"
Again, it is trivial to show that this is an NFA. But unusually, proving that it
recognises the concatenation of the languages is a challenge. We need to show,
by induction, that the “left part” of the NFA correctly simulates MS .

have "
∧
q. Inl q ∈ ST.nextl {Inl (dfa.init MS)} u ←→

q = (dfa.nextl MS (dfa.init MS) u)"

The key property is that any string accepted by the NFA can be split into strings
accepted by the two DFAs. The proof involves a fairly messy induction.

have "
∧
q. Inr q ∈ ST.nextl {Inl (dfa.init MS)} u ←→

(∃ uS uT. uS ∈ dfa.language MS ∧ u = uS@uT ∧
q = dfa.nextl MT (dfa.init MT) uT)"

Closure under Kleene star is not presented here, as it involves no interesting
set operations. The language L∗ is recognised by an NFA with an extra state,
which serves as the initial state and runs the DFA for L including iteration. The
proofs are messy, with many cases. To their credit, Hopcroft and Ullman [6] give
some details, while other authors content themselves with diagrams alone.

5 State Minimisation for DFAs

Given a regular language L, the Myhill-Nerode theorem yields a DFA having the
minimum number of states. But it does not yield a minimisation algorithm for
a given automaton. It turns out that a DFA is minimal if it has no unreachable
states and if no two states are indistinguishable (in a sense made precise below).
This again does not yield an algorithm. Brzozowski’s minimisation algorithm
involves reversing the DFA to create an NFA, converting back to a DFA via
powersets, removing unreachable states, then repeating those steps to undo the
reversal. Surprisingly, it performs well in practice [3].

5.1 The Left and Right Languages of a State

The following developments are done within the locale dfa , and therefore refer
to one particular deterministic finite automaton.

240 L.C. Paulson

The left language of a state q is the set of all words w such that q0
w

→∗ q, or
informally, such that the machine when started in the initial state and given the
word w ends up in q. In a DFA, the left languages of distinct states are disjoint,
if they are nonempty.

definition left lang :: "hf ⇒ (’a list) set" where
"left lang q ≡ {u. nextl (init M) u = q}"

The right language of a state q is the set of all words w such that q
w

→∗ qf ,
where qf is a final state, or informally, such that the machine when started in q
will accept the word w. The language of a DFA is the right language of q0. Two
states having the same right language are indistinguishable: they both lead to
the same words being accepted.

definition right lang :: "hf ⇒ (’a list) set" where
"right lang q ≡ {u. nextl q u ∈ final M}"

The accessible states are those that can be reached by at least one word.

definition accessible :: "hf set" where
"accessible ≡ {q. left lang q = {}}"

The function path to returns one specific such word. This function will even-
tually be used to express an isomorphism between any minimal DFA (one having
no inaccessible or indistinguishable states) and the canonical DFA determined
by the Myhill-Nerode theorem.

definition path to :: "hf ⇒ ’a list" where
"path to q ≡ SOME u. u ∈ left lang q"

lemma nextl path to:

"q ∈ accessible =⇒ nextl (dfa.init M) (path to q) = q"

First, we deal with the problem of inaccessible states. It is easy to restrict
any DFA to one having only accessible states.

definition Accessible dfa :: "’a dfa" where
"Accessible dfa = (|dfa.states = accessible,

init = init M,

final = final M ∩ accessible,

nxt = nxt M |)"
This construction is readily shown to be a DFA that agrees with the orig-

inal in most respects. In particular, the two automata agree on left lang and
right lang , and therefore on the language they accept:

lemma Accessible language: "Accessible.language = language"

We can now define a DFA to be minimal if all states are accessible and
no two states have the same right language. (The formula inj on right lang

(dfa.states M) expresses that the function right lang is injective on the set
dfa.states M .)

A Formalisation of Finite Automata Using Hereditarily Finite Sets 241

definition minimal where
"minimal ≡ accessible = states M ∧ inj on right lang (dfa.states M)"

Because we are working within the DFA locale, minimal is a constant referring
to one particular automaton.

5.2 A Collapsing Construction

We can deal with indistinguishable states similarly, defining a DFA in which the
indistinguishable states are identified via equivalence classes. This is not part
of Brzozowski’s minimisation algorithm, but it is interesting in its own right:
the equivalence classes themselves are HF sets. We begin by declaring a relation
stating that two states are equivalent if they have the same right language.

definition eq right lang :: "(hf × hf) set" where
"eq right lang ≡ {(u,v). u ∈ states M ∧ v ∈ states M ∧

right lang u = right lang v}"

Trivially, this is an equivalence relation, and equivalence classes of states are
finite (there are only finitely many states). In the corresponding DFA, these
equivalence classes form the states, with the initial and final states given by the
equivalence classes for the corresponding states of the original DFA. As usual,
the function HF is used to coerce a set of states to type hf .

definition Collapse dfa :: "’a dfa" where
"Collapse dfa = (|dfa.states = HF ‘ (states M // eq right lang),

init = HF (eq right lang ‘‘ {init M}),

final = {HF (eq right lang ‘‘ {q}) | q. q ∈ final M},

nxt = λQ x. HF (
⋃

q ∈ hfset Q. eq right lang ‘‘ {nxt M q

x}) |)"

This is easily shown to be a DFA, and the next-state function respects the equiv-
alence relation. Showing that it accepts the same language is straightforward.

lemma ext language Collapse dfa:

"u ∈ Collapse.language ←→ u ∈ language"

5.3 The Uniqueness of Minimal DFAs

The property minimal is true for machines having no inaccessible or indistin-
guishable states. To prove that such a machine actually has a minimal number
of states is tricky. It can be shown to be isomorphic to the canonical machine
from the Myhill-Nerode theorem, which indeed has a minimal number of states.

Automata M and N are isomorphic if there exists a bijection h between their
state sets that preserves their initial, final and next states. This conception is
nicely captured by a locale, taking the DFAs as parameters:

locale dfa isomorphism = M: dfa M + N: dfa N

for M :: "’a dfa" and N :: "’a dfa" +

242 L.C. Paulson

fixes h ::ḧf ⇒ hf"

assumes h: "bij betw h (states M) (states N)"

and init : "h (init M) = init N"

and final: "h ‘ final M = final N"

and nxt : "
∧
q x. q ∈ states M =⇒ h(nxt M q x) = nxt N (h q) x"

With this concept at our disposal, we resume working within the locale dfa ,
which is concerned with the automaton M . If no two states have the same right
language, then there is a bijection between the accessible states (of M) and the
equivalence classes yielded by the relation eq app right language .

lemma inj right lang imp eq app right index:

assumes "inj on right lang (dfa.states M)"

shows "bij betw (λq. eq app right language ‘‘ {path to q})

accessible (UNIV // eq app right language)"

This bijection maps the state q to eq app right language ‘‘ {path to q} . Every
element of the quotient UNIV // eq app right language can be expressed in this
form. And therefore, the number of states in a minimal machine equals the index
of eq app right language .

definition min states where
"min states ≡ card (UNIV // eq app right language)"

lemma minimal imp index eq app right:

"minimal =⇒ card(dfa.states M) = min states"

In the proof of the Myhill-Nerode theorem, it emerged that this index was
the minimum cardinality for any DFA accepting the given language. Any other
automaton, M’ , accepting the same language cannot have fewer states. This
theorem justifies the claim that minimal indeed characterises a minimal DFA.

theorem minimal imp card states le:

" [[minimal; dfa M’; dfa.language M’ = language]]
=⇒ card (dfa.states M) ≤ card (dfa.states M’)"

Note that while the locale dfa gives us implicit access to one DFA, namely M , it
is still possible to refer to other automata, as we see above.

The minimal machine is unique up to isomorphism because every minimal
machine is isomorphic to the canonical Myhill-Nerode DFA. The construction of
a DFA from a Myhill-Nerode relation was packaged as a locale, and by applying
this locale to the given language and the relation eq app right language , we can
generate the instance we need.

interpretation Canon:

MyhillNerode dfa language "eq app right language"

language min states index f

Here, index f denotes some bijection between the equivalence classes and their
cardinality (as an HF ordinal). It exists (definition omitted) by the definition
of cardinality itself. It is the required isomorphism function between M and the
canonical DFA of Sect. 3.4, which is written Canon.DFA .

A Formalisation of Finite Automata Using Hereditarily Finite Sets 243

definition iso :: "hf ⇒ hf" where
"iso ≡ index f o (λq. eq app right language ‘‘ {path to q})"

The isomorphism property is stated using locale dfa isomorphism .

theorem minimal imp isomorphic to canonical:

assumes minimal shows "dfa isomorphism M Canon.DFA iso"

Verifying the isomorphism conditions requires delicate reasoning. Hopcroft and
Ullman’s proof [6, p.29–30] provides just a few clues.

5.4 Brzozowski’s Minimisation Algorithm

At the core of this minimisation algorithm is an NFA obtained by reversing all
the transitions of a given DFA, and exchanging the initial and final states.

definition Reverse nfa :: "’a dfa ⇒ ’a nfa" where
"Reverse nfa MS = (|nfa.states = dfa.states MS,

init = dfa.final MS,

final = {dfa.init MS},

nxt = λq x. {p ∈ dfa.states MS. q = dfa.nxt MS p x},

eps = {} |)"

This is easily shown to be an NFA that accepts the reverse of every word accepted
by the original DFA. Applying the powerset construction yields a new DFA that
has no indistinguishable states. The point is that the right language of a powerset
state is derived from the right languages of the constituent states of the reversal
NFA [3]. Those, in turn, are the left languages of the original DFA, and these
are disjoint (since the original DFA has no inaccessible states, by assumption).

lemma inj on right lang PR:

assumes "dfa.states M = accessible"

shows "inj on (dfa.right lang (nfa.Power dfa (Reverse nfa M)))

(dfa.states (nfa.Power dfa (Reverse nfa M)))"

The following definitions abbreviate the steps of Brzozowski’s algorithm.

abbreviation APR :: "’x dfa ⇒ ’x dfa" where
"APR X ≡ dfa.Accessible dfa (nfa.Power dfa (Reverse nfa X))"

definition Brzozowski :: "’a dfa" where
"Brzozowski ≡ APR (APR M)"

By the lemma proved just above, the APR operation yields minimal DFAs.

theorem minimal APR:

assumes "dfa.states M = accessible"

shows "dfa.minimal (APR M)"

Brzozowski’s minimisation algorithm is correct. The first APR call reverses the
language and eliminates inaccessible states; the second call yields a minimal
machine for the original language. The proof uses the theorems just proved.

244 L.C. Paulson

theorem minimal Brzozowski: "dfa.minimal Brzozowski"

unfolding Brzozowski def

proof (rule dfa.minimal APR)

show "dfa (APR M)"

by (simp add: dfa.dfa Accessible nfa.dfa Power nfa Reverse nfa)

next
show "dfa.states (APR M) = dfa.accessible (APR M)"

by (simp add: dfa.Accessible accessible dfa.states Accessible dfa

nfa.dfa Power nfa Reverse nfa)

qed

6 Related Work

There is a great body of prior work. One approach involves working construc-
tively, in some sort of type theory. Constable’s group has formalised automata [4]
in Nuprl, including the Myhill-Nerode theorem. Using type theory in the form of
Coq and its Ssreflect library, Doczkal et al. [5] formalise much of the same mate-
rial as the present paper. They omit ε-transitions and Brzozowski’s algorithm
and add the pumping lemma and Kleene’s algorithm for translating a DFA to
a regular expression. Their development is of a similar length, under 1400 lines,
and they allow the states of a finite automaton to be given by any finite type. In
a substantial development, Braibant and Pous [2] have implemented a tactic for
solving equations in Kleene algebras by implementing efficient finite automata
algorithms in Coq. They represent states by integers.

An early example of regular expression theory formalised using higher-order
logic (Isabelle/HOL) is Nipkow’s verified lexical analyser [9]. His automata are
polymorphic in the types of state and symbols. NFAs are included, with ε-
transitions simulated by an alphabet extended with a dummy symbol.

Recent Isabelle developments explicitly bypass automata theory. Wu et al.
[15] prove the Myhill-Nerode theorem using regular expressions. This is a signif-
icant feat, especially considering that the theorem’s underlying intuitions come
from automata. Current work on regular expression equivalence [8,10] continues
to focus on regular expressions rather than finite automata.

This paper describes not a project undertaken by a team, but a six-week
case study by one person. Its successful outcome obviously reflects Isabelle’s
powerful automation, but the key factor is the simplicity of the specifications.
Finite automata cause complications in the prior work. The HF sets streamline
the specifications and allow elementary set-theoretic reasoning.

7 Conclusions

The theory of finite automata can be developed straightforwardly using higher-
order logic and HF set theory. We can formalise the textbook proofs: there is
no need to shun automata or use constructive type theories. HF set theory can
be seen as an abstract universe of computable objects, with many potential

A Formalisation of Finite Automata Using Hereditarily Finite Sets 245

applications. One possibility is programming language semantics: using hf as
the type of values offers open-ended possibilities, including integer, rational and
floating point numbers, ASCII characters, and data structures.

Acknowledgements. Christian Urban and Tobias Nipkow offered advice, and sug-
gested Brzozowski’s minimisation algorithm as an example. The referees made a variety
of useful comments.

References

1. Ballarin, C.: Locales: A module system for mathematical theories. J. Autom. Rea-
soning 52(2), 123–153 (2014)

2. Braibant, T., Pous, D.: Deciding Kleene algebras in Coq. Log. Methods Comput.
Sci. 8(1), 1–42 (2012)

3. Champarnaud, J., Khorsi, A., Paranthoën, T.: Split and join for minimizing: Brzo-
zowski’s algorithm. In: Baĺık, M., Simánek, M. (eds.) The Prague Stringology Con-
ference, pp. 96–104. Czech Technical University, Department of Computer Science
and Engineering (2002)

4. Constable, R.L., Jackson, P.B., Naumov, P., Uribe, J.C.: Constructively formaliz-
ing automata theory. In: Plotkin, G.D., Stirling, C., Tofte, M. (eds.) Proof, Lan-
guage, and Interaction, pp. 213–238. MIT Press (2000)

5. Doczkal, C., Kaiser, J.-O., Smolka, G.: A constructive theory of regular languages
in Coq. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 82–97.
Springer, Heidelberg (2013)

6. Hopcroft, J.E., Ullman, J.D.: Formal Languages and Their Relation to Automata.
Addison-Wesley, Boston (1969)

7. Kozen, D.: Automata and computability. Springer, New York (1997)
8. Krauss, A., Nipkow, T.: Proof pearl: regular expression equivalence and relation

algebra. J. Autom. Reasoning 49(1), 95–106 (2012)
9. Nipkow, T.: Verified lexical analysis. In: Grundy, J., Newey, M. (eds.) TPHOLs

1998. LNCS, vol. 1479, pp. 1–15. Springer, Heidelberg (1998)
10. Nipkow, T., Traytel, D.: Unified decision procedures for regular expression equiv-

alence. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 450–466.
Springer, Heidelberg (2014)

11. Paulson, L.C.: Defining functions on equivalence classes. ACM Trans. Comput.
Logic 7(4), 658–675 (2006)

12. Paulson, L.C.: Finite automata in hereditarily finite set theory. Archive of For-
mal Proofs, February 2015. http://afp.sf.net/entries/Finite Automata HF.shtml,
Formal proof development

13. Paulson, L.C.: A mechanised proof of Gödel’s incompleteness theorems using Nom-
inal Isabelle. J. Autom. Reasoning 55(1), 1–37 (2015). Available online at http://
link.springer.com/article/10.1007%2Fs10817-015-9322-8

14. Świerczkowski, S.: Finite sets and Gödel’s incompleteness theorems. Dissertationes
Mathematicae 422, 1–58 (2003). http://journals.impan.gov.pl/dm/Inf/422-0-1.
html

15. Wu, C., Zhang, X., Urban, C.: A formalisation of the Myhill-Nerode theorem based
on regular expressions. J. Autom. Reasoning 52(4), 451–480 (2014)

http://afp.sf.net/entries/Finite_Automata_HF.shtml
http://springerlink.bibliotecabuap.elogim.com/article/10.1007%2Fs10817-015-9322-8
http://springerlink.bibliotecabuap.elogim.com/article/10.1007%2Fs10817-015-9322-8
http://journals.impan.gov.pl/dm/Inf/422-0-1.html
http://journals.impan.gov.pl/dm/Inf/422-0-1.html

SEPIA: Search for Proofs Using Inferred
Automata

Thomas Gransden(B), Neil Walkinshaw, and Rajeev Raman

Department of Computer Science, University of Leicester, Leicester, UK
tg75@student.le.ac.uk, {nw91,rr29}@leicester.ac.uk

Abstract. This paper describes SEPIA, a tool for automated proof
generation in Coq. SEPIA combines model inference with interactive
theorem proving. Existing proof corpora are modelled using state-based
models inferred from tactic sequences. These can then be traversed auto-
matically to identify proofs. The SEPIA system is described and its per-
formance evaluated on three Coq datasets. Our results show that SEPIA
provides a useful complement to existing automated tactics in Coq.

Keywords: Interactive theorem proving · Model inference · Proof
automation

1 Introduction

Interactive theorem provers (ITPs) such as Coq [10] and Isabelle [11] are sys-
tems that enable the manual development of proofs for a variety of domains.
These range from mathematics through to complex software and hardware ver-
ification. Thanks to the expressive logics that are used, they provide a very rich
programming environment.

Nevertheless, constructing proofs can be a challenging and time-consuming
process. A proof development will typically contain many routine lemmas, as well
as more complex ones. The ITP system will take care of the bookkeeping and
perform simple reasoning steps; however much time is spent manually entering
the requisite tactics (even for the most trivial lemmas). In 2008, Wiedijk stated
that it takes up to one week to formalize a page of an undergraduate mathematics
textbook [14].

To help combat this problem, we present SEPIA (Search for Proofs Using
Inferred Automata) – an automated approach designed to assist users of Coq.
SEPIA automatically generates proofs by inferring state-based models from pre-
viously compiled libraries of successful proofs, and using the inferred models as
a basis for automated proof search.

2 Background

This section presents the necessary background required for this paper. We
briefly introduce the underlying model inference technique (called MINT), fol-
lowed by a motivating example.
c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 246–255, 2015.
DOI: 10.1007/978-3-319-21401-6 16

SEPIA: Search for Proofs Using Inferred Automata 247

2.1 Inferring EFSMs with MINT

MINT [13] is an technique designed to infer state machine models from sequences,
where the sequencing of events may depend on some underlying data state. Such
systems are modelled as extended finite state machines (see Definition 1). EFSMs
can be conceptually thought of as conventional finite state machines with an
added memory. The transitions in an EFSM not only contain a label, but may
also contain guards that must hold with respect to variables contained in the
memory.

Definition 1 Extended Finite State Machine. An Extended Finite State
Machine (EFSM) M is a tuple (S, s0, F, L, V,Δ, T). S is a set of states, s0 ∈ S
is the initial state, and F ⊆ S is the set of final states. L is defined as the set of
labels. V represents the set of data states, where a single instance v represents a
set of concrete variable assignments. Δ : V → {True, False} is the set of data
guards. Transitions t ∈ T take the form (a, l, δ, b), where a, b ∈ S, l ∈ L, and
δ ∈ Δ.

MINT infers EFSMs from sets of traces. These can be defined formally as
follows:

Definition 2. A trace T = 〈e0, . . . , en〉 is a sequence of n trace elements. Each
element e is a tuple (l, v), where l is a label representing the names of function
calls or input / output events, and v is a string containing the parameters (this
may be empty).

The inference approach adopted by MINT [13] is an extension of a traditional
state-merging approach [9] that has been proven to be successful for conventional
(non-extended) finite state machines [12]. Briefly, the model inference starts by
arranging the traces into a prefix-tree, a tree-shaped state machine that exactly
represents the set of given traces. The inference then proceeds by a process of
state-merging ; pairs of states in the tree that are roughly deemed to be equivalent
(based on their outgoing sequences) are merged. This merging process yields an
EFSM that can accept a broader range of sequences than the initial given set.

The transitions in an EFSM not only imply the sequence in which events can
occur, but also place constraints on which parameters are valid. This is done
by inferring data-classifiers from the training data – each data guard takes the
following form (l, v, possible) where l ∈ L, v ∈ V and possible ∈ {true, false}.
When states are merged, the resulting machine is checked to make sure it remains
consistent with the data guards.

2.2 Motivating Example

To motivate this work, we consider a typical scenario that arises during interac-
tive proof. Suppose that we are trying to prove the following conjecture: forall
n m p:nat, p + n <= p + m − > n <= m. The automated Coq tactics [2] have
only been able to perform routine reasoning (namely calling the intros tactic)
to advance the proof to the following:

248 T. Gransden et al.

n : nat
m : nat
p : nat
H : p + n <= p + m
============================
n <= m

There are 2 theories from the Coq Standard Library called Le.v and Lt.v,
that contain proofs about similar properties. The built-in tactics fail to prove
the goal. The question we are faced with is this: Given the examples of successful
proofs, can we use these to automatically find a proof for the above conjecture?

In previous work [4] we showed how to use MINT to infer EFSM models
of Coq proofs. The resulting EFSMs were simply presented and used manually
to derive proofs. This work extends our previous approach by automating the
search process, allowing proofs to be completed automatically.

3 SEPIA System Description

In this section we describe the SEPIA approach. We present the key stages of
the technique. It is available1 as a ProofGeneral extension that works with Coq.
An overview of SEPIA is shown in Figure 1. It contains three main stages:

1. Generate proof traces from a selection of existing Coq theories.
2. Use MINT to infer a model from these proof traces.
3. Systematically search the model, formulating and attempting possible proofs

from paths through the model.

Before describing these three steps in more detail, we look at three properties
of the approach that are particularly appealing:

Adaptivity. For every iteration, as more valid proofs are discovered they can be
incorporated into future cycles to infer more accurate models, forming a ‘virtuous
loop’. This is a major benefit over the existing built-in automated tactics, which
are typically limited to attempting a fixed set of tactics.

Automation. Aside from providing the initial set of theories from which to infer
a model, the user is not prompted for any other input. In addition, as will be
elaborated later, the overall process typically completes in less than a minute
(at least in the context of our experiments).

Ability to identify new proofs. The state-merging process [13] can result in mod-
els that accept sequences of tactics which aren’t present in the initial set of proofs.
These wouldn’t necessarily be intuitive, or be spotted from manual scrutiny of
the proof library. These can however contain valuable steps that lead to a suc-
cessful proof.
1 https://bitbucket.org/tomgransden/efsminferencetool.

https://bitbucket.org/tomgransden/efsminferencetool

SEPIA: Search for Proofs Using Inferred Automata 249

Fig. 1. SEPIA overview

3.1 Generating Traces from Existing Proofs

To begin a proof attempt we must provide one or more Coq theories from which
we wish to generate a model. The proofs within the theories must be converted
into their corresponding proof traces (see Definition 2). This step is identical to
the process used in our previous work [4].

Figure 2 shows the proof script from the lemma le antisym from Le.v and
the corresponding proof trace. An important concept in Coq proofs is the semi-
colon operator. If two (or more) tactics are separated by a semicolon, for example
t1;t2, this means apply t1 to the current goal and then apply t2 to all gener-
ated subgoals. We record the usage of the semicolon in our traces, so that this
information can be reused during proof search.

Fig. 2. Original proof and proof trace for an example lemma

250 T. Gransden et al.

Fig. 3. Portion of inferred EFSM from Le.v and Lt.v

3.2 Inferring the Model

Once the proof traces have been generated, MINT is invoked to infer a model.
There are two main parameters associated with MINT. The inference strategy
dictates how states are merged during the inference process. A value called k rep-
resents the minimum score before a pair of states can be deemed to be equivalent.
An in-depth discussion of these variables is outside the scope of this paper.

A preliminary study (with results online) found that using the state merging
strategy redblue and k = 1 performed reasonably well for the task of interactive
proving. These settings are based on the number of proofs discovered, the time
taken and the presence of shorter/novel proofs. For the rest of this paper we
refer to these as the default settings for MINT. A portion of the EFSM inferred
from Le.v and Lt.v is shown in Fig. 3.

3.3 Searching for a Proof

Once a model has been inferred it can be used to search for candidate proofs.
We adopt a breadth-first search as this ensures that if a proof is contained in
the model, the shortest one will be returned. An instance of Coq is loaded, and
the lemma is stated. The proof search moves through the model and applies the
tactics and arguments suggested on each transition.

A timeout or a limit on the number of tactics applied can be provided to
control the search. If we reach a point where a proof is found, SEPIA outputs the
proof (and some proof search statistics). When running SEPIA on our motivating
example we obtain the following result:

Proof was : i n t r o s m n d i f f . e l im d i f f ; auto with a r i t h .
5611 t a c t i c s eva luated .
I n f e r en c e and search took 0 min , 1 sec

The above proof is particularly interesting for two reasons. Firstly, we have
managed to prove something completely automatically that Coq’s automated
tools could not. Secondly, the sequence of tactics (and parameters) was not
found anywhere else within Le.v or Lt.v.

SEPIA: Search for Proofs Using Inferred Automata 251

4 Evaluation

In this section we provide an experimental evaluation of our approach. We con-
sider the following research questions:

– RQ1: Can proofs be derived automatically using our approach?
• (a): How many proofs can be found?
• (b): How long does it take to find a proof?

– RQ2: Are there “interesting”characteristics of the proofs?
• (a): Do the proofs contain new sequences of tactics?
• (b): Are the proofs shorter?

– RQ3: How does our results compare to Coq’s built-in automated tactics?

4.1 Methodology

The aim of this evaluation is to assess the practicalities of using our approach in
real proof developments. We evaluate SEPIA on three distinct Coq contributions
as our datasets. We use a method inspired by k-folds cross-validation [7] in order
to study proof attempts made by our approach.

Datasets. The datasets used in this evaluation consist of theories selected
from three Coq proof developments. The datasets were chosen mainly for their
domain, complexity and size. All theories were selected before the experiments
took place. SSreflect2 contains seven core theories. We select all of these theories
as our first dataset. Secondly, MSets3 is an implementation of finite sets using
lists/trees. All eleven theories are selected to form our second dataset. Finally,
we use some theories from CompCert4 Owing to the size of the development, we
select a four theories containing both general purpose proofs along with some
more specialized ones. Due to the exploratory nature of this evaluation, there
are some threats to validity associated with the selection of data. We have only
used three Coq datasets, so any results cannot be interpreted to represent per-
formance on all Coq proofs.

Evaluating Proof Attempts. To provide some answers to RQ1, we want to
model the following situation: given some existing proofs, can we use these to
prove new properties that are not part of the initial collection. To do this, we
use an approach inspired by k -folds cross-validation [7].

Each Coq theory file is taken individually and the proofs are randomly parti-
tioned into k non-overlapping sets. We then infer a model from k − 1 of the sets,
and try and prove the lemmas in the remaining set. This process repeats until
each set has been used exactly once as the collection of lemmas to be proved.

For each proof attempt, we allow 10,000 tactics to be applied before reporting
a failure. The results presented in this paper are from using k = 10, a standard
2 http://ssr.msr-inria.inria.fr/doc/ssreflect-1.4/.
3 https://coq.inria.fr/library/.
4 http://compcert.inria.fr/doc/index.html.

http://ssr.msr-inria.inria.fr/doc/ssreflect-1.4/
https://coq.inria.fr/library/
http://compcert.inria.fr/doc/index.html

252 T. Gransden et al.

value for k-folds cross-validation [7]. Other values of k have been investigated
and the full set of results are online.

As well as capturing whether a proof attempt was successful or not, when a
proof is found we analyse how “interesting” the proof is. First, we check and see
whether a proof is shorter than the corresponding hand-curated proof. We also
check whether the sequence of tactics was new (i.e. not present in the examples
the model was inferred from). These provide us with answers to RQ2.

To investigate RQ3 we also run the Coq automated tools to try and prove
each lemma. The following command is issued to Coq: auto with * || eauto
with * || tauto || firstorder || trivial. This simply attempts to prove
a goal by trying all of the automated tactics. The default search depth is used
in all cases. Where we can specify lemma databases, we allow any available
database to be used during proof search.

4.2 Results

The full results from our experiments are shown in Table 1. The results are
presented for each theory, grouped by library. The remainder of this section
provides some answers to the research questions defined earlier.

RQ1(a): A significant proportion of the lemmas were proved automat-
ically using our approach. In Table 1, the column headed SEPIA shows the
total number of lemmas proved in each theory using our approach. The results
suggest that EFSM-based methods are useful at finding proofs automatically.
Looking at each dataset as a whole, 32 % (438 out of 1360) of the SSreflect
dataset were proved. In MSets, 30 % (211 out of 687) were successfully proved
using our approach. In our selection of CompCert theories, there were 25 % (83
out of 335) proved.

RQ1(b): Many proofs were discovered in under 30 seconds. We mea-
sured the time required to derive a proof using our approach. These times take
into account both the time required to infer the model and the search time. Over
90 % of the proofs were found within 30 s. These results show that when a user
invokes the process, a proof will usually be delivered quickly. Overall, a proof can
be discovered in a relatively small period of time. Of course, this is encouraging
for the user involved in the proof development.

RQ2(a): A quarter of the proofs found were new sequences of tactics.
The number of new proofs discovered using our approach are listed under the
‘New’ column in Table 1. We compare the discovered proof with the ones used
to infer the model If the sequence is not contained in an existing proof, then it
is considered new and only found as a result of inferring an EFSM. Our results
show a significant number of new proofs were discovered, backing up further that

SEPIA: Search for Proofs Using Inferred Automata 253

Table 1. Results Summary

SEPIA

Library Theory Size Total New Shorter Coq-Tacs

SSreflect ssrnat 341 135 (39%) 14 9 59 (17%)

ssrbool 240 120 (50%) 17 10 60 (25%)

seq 394 94 (24%) 14 6 18 (4%)

fintype 243 42 (17%) 15 1 0 (0%)

eqtype 82 36 (44%) 18 2 10 (12%)

choice 30 6 (20%) 0 0 1 (3%)

ssrfun 30 5 (16%) 1 0 7 (23%)

MSets avl 26 0 (0%) 0 0 0 (0%)

decide 22 18 (81%) 0 3 4 (18%)

eqproperties 106 43 (40%) 1 5 47 (44%)

facts 65 17 (26%) 4 8 10 (15%)

gentree 61 9 (15%) 3 3 3 (5%)

list 42 8 (19%) 3 3 3 (7%)

positive 67 13 (19%) 5 4 1 (1%)

properties 137 78 (57%) 9 3 15 (11%)

rbt 89 12 (13%) 10 6 2 (2%)

tofiniteset 14 5 (35%) 2 2 4 (28%)

weaklist 27 8 (30%) 4 5 6 (22%)

CompCert cshmgenproof 65 15 (23%) 14 14 0 (0%)

amsgenproof0 57 12 (21%) 9 9 6 (10%)

coqlib 114 36 (31%) 24 23 16 (14%)

values 99 20 (20%) 17 13 5 (5%)

EFSMs can be useful for automated proof generation. In SSreflect, a total of 79
proofs were new. In the MSets theories, 41 new proofs were found, and 64 were
discovered in CompCert.

RQ2(b): Many proofs discovered were shorter than their original ones.
We have listed the number of shorter proofs found in Table 1 under the Shorter
column. When a proof is found, we compare the discovered proof with the original
hand-curated one. The length (in terms of tactics used) of both proofs are then
compared, to see if we managed to derive a shorter one. In SSreflect, 28 of
the proofs found were shorter than their original counterparts. For MSets, 42
of the proofs were shorter, whilst in CompCert 59 of proofs were shorter. The
combination of the state merging algorithms and a breadth-first search means
we were able to identify these shorter proofs.

254 T. Gransden et al.

RQ3: SEPIA provides an alternative to existing Coq tactics. The col-
umn headed Coq-Tacs in Table 1 provides the number of lemmas that were
proved using Coq’s automated tactics. Despite being relatively limited in the
steps that they try, they manage to prove 155 SSreflect lemmas, 95 MSets lem-
mas and 27 of the CompCert lemmas. On the whole, we see that our approach
significantly outperforms the automated tactics in terms of number of lemmas
proved. This is to be expected, as they only provide modest automation. Never-
theless, there are occasions where the automated tactics prove more lemmas (in
msetproperties and ssrfun for instance).

5 Related Work

There have been many projects aimed at improving the automation of proofs
in ITPs. As we have shown in this work, machine learning can be applied in
the context of interactive theorem proving. Specifically, we have shown that the
tactics used in proofs can serve as useful features for machine learning algorithms.
This is an area that has received moderate attention previously.

Jamnik et al. have previously applied an Inductive Logic Programming tech-
nique to examples of proofs in the Ωmega system [6]. Given a collection of well
chosen proof method sequences, Jamnik et al. perform a method of least gener-
alisation to infer what are ultimately regular grammars. The value of even basic
models is intuitive. Proofs could be derived automatically using the technique.
However, the proof steps learned do not contain any parameters. The parameters
required are reconstructed after running the learning technique.

Another approach that concentrated on Isabelle proofs was implemented by
Duncan [3]. Duncan’s approach was to identify commonly occurring sequences of
tactics from a given corpora. After eliciting these tactic sequences, evolutionary
algorithms were used to automatically formulate new tactics. The evaluation
showed that simple properties could be derived automatically using the tech-
nique; however the parameter information was left out of the learning approach.

6 Conclusion and Future Work

This paper has presented SEPIA, an approach to automatically generate proofs
in Coq. This has been achieved by applying model inference techniques to inter-
active proof scripts. We have shown that even learning from tactic sequences,
which is admittedly a simplistic view of interactive proofs, can provide effective
proof automation. It would be interesting to see what can be achieved by using
more sophisticated views such as the proof goal view [5].

The overall process is fully automated our evaluation shows SEPIA performs
well on a range of proofs from three varied Coq datasets. It succeeds in prov-
ing a number of lemmas that were out of reach for Coq’s automated tactics.
Additionally, when SEPIA finds a proof it usually does so in seconds.

As well as reusing existing proofs, SEPIA can construct proofs using new
tactic sequences. These new sequences might not have been identified if manually

SEPIA: Search for Proofs Using Inferred Automata 255

analysing proof libraries. In our evaluation, we also identified a number of shorter
proofs (by comparing the proofs found using SEPIA to original proofs). This
follows the trend of other comparisons of automated and human proofs [1].

We plan to investigate automatic identification of appropriate theories or
lemmas that could be used to infer models. Currently, we use whole theories;
however it may be the case that only a handful of these proofs are actually
useful. By using methods such as ML4PG [8] it may be possible to discover the
most useful lemmas from a large collection of theories.

References

1. Alama, J., Kühlwein, D., Urban, J.: Automated and human proofs in general math-
ematics: an initial comparison. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012.
LNCS, vol. 7180, pp. 37–45. Springer, Heidelberg (2012)

2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development
- Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004)

3. Duncan, H.: The Use of Data Mining for the Automatic Formation of Tactics.
Ph.d. thesis, University of Edinburgh (2007)

4. Gransden, T., Walkinshaw, N., Raman, R.: Mining state-based models from proof
corpora. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.)
CICM 2014. LNCS, vol. 8543, pp. 282–297. Springer, Heidelberg (2014)

5. Grov, G., Komendantskata, E., Bundy, A.: A Statistical Relational Learning Chal-
lenge Extracting Proof Strategies from Exemplar Proofs. In: ICML-12 Workshop
on Statistical Relational Learning (2012)

6. Jamnik, M., Kerber, M., Pollet, M., Benzmüller, C.: Automatic learning of proof
methods in proof planning. Logic J. IGPL 11(6), 647–673 (2003)

7. Kohavi, R.: A Study of Cross-validation and Bootstrap for Accuracy Estimation
and Model Selection. In: Proceedings of the 14th International Joint Conference
on Artificial Intelligence, pp. 1137–1143. Morgan Kaufmann (1995)

8. Komendantskaya, E., Heras, J., Grov, G.: Machine learning in proof general: inter-
facing interfaces. In: User Interfaces for Theorem Provers, EPTCS, vol. 118, pp.
15–41 (2013)

9. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the abbadingo one DFA
learning competition and a new evidence-driven state merging algorithm. In:
Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, pp. 1–12.
Springer, Heidelberg (1998)

10. The Coq Development Team: The Coq Proof Assistant Reference Manual, Version
8.4. LogiCal Project. http://coq.inria.fr/refman

11. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL – A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer, Heidelberg (2002)

12. Walkinshaw, N., Lambeau, B., Damas, C., Bogdanov, K., Dupont, P.: STAMINA:
a competition to encourage the development and assessment of software model
inference techniques. Empir. Softw. Eng. 18(4), 791–824 (2013)

13. Walkinshaw, N., Taylor, R., Derrick, J.: Inferring Extended Finite State Machine
Models from Software Executions. Empir. Softw. Eng. 1–43 (2015)

14. Wiedijk, F.: Formal proof - getting started. Not. AMS 55(11), 1408–1414 (2008)

http://coq.inria.fr/refman

Proving Correctness of a KRK Chess Endgame
Strategy by Using Isabelle/HOL and Z3

Filip Marić1(B), Predrag Janičić1, and Marko Maliković2

1 Faculty of Mathematics, University of Belgrade, Belgrade, Serbia
{filip,janicic}@matf.bg.ac.rs

2 Faculty of Humanities and Social Sciences, University of Rijeka, Rijeka, Croatia
marko@ffri.hr

Abstract. We describe an executable specification and a total correct-
ness proof of a King and Rook vs King (KRK) chess endgame strat-
egy within the proof assistant Isabelle/HOL. This work builds upon a
previous computer-assisted correctness analysis performed using the con-
straint solver URSA. The distinctive feature of the present machine veri-
fiable formalization is that all central properties have been automatically
proved by the SMT solver Z3 integrated into Isabelle/HOL, after being
suitably expressed in linear integer arithmetic. This demonstrates that
the synergy between the state-of-the-art automated and interactive the-
orem proving is mature enough so that very complex conjectures from
various AI domains can be proved almost in a “push-button” manner,
yet in a rich logical framework offered by the modern ITP systems.

1 Introduction

Chess has always been a target for developing new techniques and approaches of
artificial intelligence. One field of chess-related research is concerned with chess
endgames where challenges are different from those in openings and midgames. In
computer chess playing, endgames are often played based on or analyzed with
respect to pre-calculated lookup tables (i.e., endgame databases), containing
optimal moves for each legal position. In contrast, chess endgame strategies do
not necessarily ensure optimal play, but should provide concise, understandable,
and intuitive instructions usable both to human and computer players. One of the
simplest chess endgames is the King and Rook vs King (KRK). There are several
strategies for white for this endgame, generated by humans, semi-automatically,
or automatically [10], but only a few of them are really human-understandable.
Correctness of a strategy should be ensured – if a player follows the strategy,
he should always reach the best possible outcome. Proofs of strategy correct-
ness are typically not given or even not mentioned, although informal proofs
are sometimes provided [4]. Proving correctness of chess endgame strategies can
be addressed using different approaches [10]. The first approach is a traditional,
“pen-and-paper” with the drawback of often having missing parts or errors in
the arguments. Computer assisted proofs can be classified according to two inde-
pendent dimensions: proofs can be either indirect or direct, and can be either
c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 256–271, 2015.
DOI: 10.1007/978-3-319-21401-6 17

Proving Correctness of a KRK Chess Endgame Strategy 257

informal or formal. Indirect proofs are based on enumerations and case-analyses.
For example, the strategy can be applied to all legal positions and a correspond-
ing endgame-database can be generated, which is then verified using a retrograde
procedure (in the style of Thompson’s work [13]). Direct proofs are high-level,
mathematical proofs that explicitly formulate properties of the strategy (precon-
ditions, postconditions, invariants, termination measures), prove them and show
that they imply the strategy correctness. Informal proofs use unverified pro-
grams (either developed in a general-purpose programming language or in some
specialized constraint programming system) to check many different positions
or to discharge informally stated proof-obligations that somehow contribute to
the overall informal correctness arguments. Formal proofs are machine-verifiable
proofs, checked within a strict logical system of a proof-assistant.

A SAT-based constraint solver URSA [9] has been used for checking key cor-
rectness properties for a KRK endgame strategy [10] in a direct, but informal
manner. The strategy considered was a slight modification of the one originally
formulated by Bratko [4]. Bratko’s original paper also contains a very informal
correctness proof sketch. The strategy was described within the constraint solv-
ing system and several high-level lemmas were formulated and automatically
checked by using the power of the constraint solver. The main feature of those
proofs is that they required very little human effort and human reasoning. On
the other hand, as the authors noted, although the main body of the proof
is covered by the checked lemmas, some building blocks were missing to make
the proof complete and glued together, mainly due to the lack of expressibility
of constraint solving systems (e.g., one cannot express inductive definitions or
inductive arguments in a system such as URSA). Also, the proof relies on the
definitions specific for the KRK endgame, so there is no link with the rules for
the original game of chess. The final conclusion was that, in order to have a full
and completely reliable proof, a constraint solver must be replaced by some more
expressible reasoning system such as proof-assistants. We believe that modern
proof-assistants (e.g., Isabelle/HOL, Coq, HOL-Light), connected to powerful
external automated theorem provers and solvers (e.g., Z3, Vampire, Spass, E-
prover) are now capable of proving extremely complex combinatorial conjectures,
such as those coming from chess. For instance, Isabelle/HOL has been connected
to SMT solvers [3], enabling users to employ SMT solvers to discharge complex
goals that arise in interactive theorem proving. SMT solvers provide object-level
proofs for unsatisfiable formulas and these proofs are then reconstructed within
Isabelle/HOL, yielding formal proofs in the above sense.

In this paper, we describe our successful experience with formalizing the KRK
endgame correctness proof within Isabelle/HOL. The present formalization is
complete and self-contained, and it provides an executable version of the strategy
that is proved to be correct (winning for white) with respect to the rules of chess.
One of our key goals was that all central lemmas must be proved automatically, if
possible — in a “push-button” manner, as it was done within the URSA system.
This turned out to be possible, due to the powerful integration of SMT solvers
(in particular — Microsoft Research z3 solver) into Isabelle/HOL. In the paper

258 F. Marić et al.

we briefly describe some interesting parts of the formalization. Full formalization
is available at http://argo.matf.bg.ac.rs/formalizations/.

2 Chess Rules and Endgame Strategies

In this section we describe the formalization of chess rules and the general theory
of chess endgame strategies in Isabelle/HOL.

Chess Rules. The first cornerstone of our formalization are the rules of chess,
as given in the FIDE handbook [6]. Hurd has already formalized these rules
in HOL [7], and we closely follow his work. Like Hurd, we consider pawnless
endgames, and do not consider castling (although our strategy is only for the
KRK endgame, we want our basic definitions to be close to general chess rules
and to allow later extensions to other endgames, so initial definitions cover other
pieces as well). Basic types are defined as follows.

side = White | Black

piece = King | Queen | Rook | Bishop | Knight

square = "int × int"

We can define many relevant notions using only arithmetic operations and
relations over squares coordinates. We show only some examples. The func-
tion on board (f,r) ←→ 0 ≤ f ∧ f < F ∧ 0 ≤ r ∧ r < R checks if the
square is on the board (global constants F = 8 and R = 8, for files and ranks,
determine the size of the board). We can check if a square sq is between two given
squares sq1 and sq2 either horizontally, vertically, or diagonally (this is denoted
by sq btw sq1 sq sq2). We can define the scope of each piece (i.e., whether a
piece can reach one square from another).

king scope (f1,r1) (f2,r2) ←→ |f1 − f2| ≤ 1 ∧ |r1 − r2| ≤ 1 ∧ (f1 �= f2∨r1 �= r2)

rook scope (f1,r1) (f2,r2) ←→ (f1 = f2 ∨ r1 = r2) ∧ (f1 �= f2 ∨ r1 �= r2)

For two squares of the chessboard, the Manhattan distance (mdist (f1, r1)
(f2, r2) = |f1 − f2| + |r1 − r2|) is the sum of distances along both coordinates,
and the Chebyshev distance (cdist (f1, r1) (f2, r2) = max |f1 − f2||r1 − r2|) is
the minimal number of moves a king requires to move between them.

Chess positions can be represented in various ways (e.g., by an 8× 8 matrix
implicitly mapping positions to pieces, or by a list of piece positions, implicitly
mapping pieces to positions). So, instead of fixing a concrete representation,
we create an abstraction in a form of an Isabelle/HOL locale [2] and assume
that chessboard positions will be represented by some type ’p (usually a record
type). Only some values of the type ’p will correspond to valid positions, so we
introduce a data-structure invariant pos inv p that is used to exclude values
that are invalid. For example, a type ’p might be a mapping that maps pieces to
squares that they are on. In that case, the invariant should require that all pieces
map to different squares, since if two pieces are mapped to the same square, the
position would clearly be invalid. For each position, we must be able to check
whether white or black is on turn (this is done using the function turn p), and
for each square to determine if there is a piece on that square and – if yes, what

http://argo.matf.bg.ac.rs/formalizations/

Proving Correctness of a KRK Chess Endgame Strategy 259

piece it is (this is done using the function on sq p sq that maps each square sq
to either None, or to Some piece and its side).

locale Position =

fixes pos inv :: "’p ⇒ bool"

fixes turn :: "’p ⇒ side"

fixes on sq :: "’p ⇒ square ⇒ (side × piece) option"

All chess rules can be defined within this locale, they are parametric, and
depend on the type ’p and the above three functions. For example, in a position
p, for a square sq we can check if it is empty (empty p sq ←→ on sq p sq =
None), or occupied by a piece of a side sd (occupies p sd sq ←→ (∃ pc. on sq p
sq = Some (sd, pc))). In a position p, a square sq1 attacks sq2 if the line between
them is clear (clr line p sq1 sq2 ←→ (∀ sq. sq btw sq1 sq sq2 −→ empty p
sq))1, and if there is a piece on sq1 such that sq2 is in its scope.

attacks p sq1 sq2 ←→ clr line p sq1 sq2 ∧
(case on sq p sq1 of

None ⇒ False

| Some (, King) ⇒ king scope sq1 sq2
| Some (, Rook) ⇒ rook scope sq1 sq2
...)

A side sd is in check in a position p if its king is on a square sq1, and there is
an opponent’s piece on some square sq2 such that it attacks the king on sq1.

in chk sd p ←→ (∃ sq1 sq2. on sq p sq1 = Some (sd, King) ∧
occupies p (opp sd) sq2 ∧ attacks p sq2 sq1)

A position is legal if its satisfies the invariant, if all pieces are within the board
bounds, and if the opponent of the player on turn is not in check2.

all on board p ←→ (∀ sq. ¬ empty p sq −→ on board sq)

lgl pos p ←→ pos inv p ∧ all on board p ∧ ¬ in chk p (opp (turn p))

Legal moves are defined by the chess rules and from legal positions they lead to
legal positions. The function lgl move p p′ checks if the position p′ is a result of
a legal move from the position p. Finally, we define game outcomes (checkmate,
stalemate, and draw).

game over p ←→ lgl pos p ∧ ¬ (∃ p′. lgl move p p′)
checkmate p ←→ game over p ∧ in chk p (turn p)

stalemate p ←→ game over p ∧ ¬ in chk p (turn p)

A game is drawn if the position is such that neither player can possibly mate. To
formalize this, we inductively define the set of positions reachable from a given
position p0 by applying only legal moves.
1 Since squares that a knight attacks are not on the same line with the square that it

is on, the clear line condition is always satisfied.
2 This definition is weaker then the one given by FIDE, as it does not take into account

reachability from the initial position. Still, this does not threaten the correctness of
our results, as we do cover all legal positions in the strong FIDE sense.

260 F. Marić et al.

p0 ∈ reachable p0

[[p ∈ reachable p0; lgl move p p′]] =⇒ p′ ∈ reachable p0

draw p ←→ ¬ (∃ p′. p′ ∈ reachable p ∧ checkmate p′)

Endgame Strategies. The strategy for white is given by st wht move p p′ —
a relation describing all positions p′ that can be reached from p by a strategy
move. A strategy is deterministic if there is always at most one such position. For
each legal position with white on turn, a strategy returns only legal moves. Addi-
tionally, a strategy can be characterized by an invariant maintained throughout
a play (e.g., in KRK endgame, white rook must not be captured, otherwise
the game would be drawn). We define a slot for such invariant (st inv p) and
require that each move of white, and each move of black following a move of
white maintains it.

locale Strategy = Position +

fixes st wht move :: "’p ⇒’p ⇒ bool"

fixes st inv :: "’p ⇒ bool"

assumes
[[lgl pos p; turn p = White; st inv p; st wht move p p′]] =⇒ lgl move p p′

[[lgl pos p; turn p = White; st inv p; st wht move p p′]] =⇒ st inv p′

[[lgl pos p; turn p = White; st inv p; st wht move p p′; lgl move p′ p′′]]
=⇒ st inv p′′

A strategy play is a sequence of alternating moves: strategy moves by white,
and arbitrary legal moves by black. The set of reachable positions in a play is
defined as an inductive set.

st move p p′ ←→ (turn p = White ∧ st wht move p p′) ∨
(turn p = Black ∧ lgl move p p′)

p0 ∈ st reachable p0

[[p ∈ st reachable p0; st move p p′]] =⇒ p′ ∈ st reachable p0

A strategy for white is winning if it is terminating and partially correct, i.e.,
if every strategy play starting from a legal position p0 with white on turn that
satisfies the strategy invariant, terminates in a position where black is mated. If
there is no infinite strategy play, there is no set P containing p0 such that for
each position in P a strategy move can be made.

st start p0 ←→ turn p0 = White ∧ lgl pos p0 ∧ st inv p0

locale WinningStrategy = Strategy + assumes
st start p0 =⇒ ¬ (∃ P. p0 ∈ P ∧ (∀ p ∈ P. ∃p′ ∈ P. st move p p′))

[[st start p0; p ∈ st reachable p0; ¬ (∃ p′. st move p p′)]] =⇒
turn p = Black ∧ checkmate p

It can be proved that a strategy is winning for white if there is a well-
founded ordering of subsequent white-on-turn positions in each strategy play,
if white can always make a strategy move, and it never leads to a stale-
mate. Therefore, a strategy is winning for white if it meets assumptions of
WiningStrategyOrdering (since it a sublocale of the WiningStrategy, i.e., if
the assumptions of the former are satisfied, the assumptions of the latter are
satisfied too).

Proving Correctness of a KRK Chess Endgame Strategy 261

locale WinningStrategyOrdering = Strategy +

fixes ordering :: "’p ⇒ (’p ×’p) set"

assumes
[[st start p0]] =⇒ wf (ordering p0)

[[st start p0; p ∈ st reachable p0; turn p = White;

st wht move p p′; lgl move p′ p′′]] =⇒ (p′′, p) ∈ ordering p0

[[st start p0; p ∈ st reachable p0; turn p = White]] =⇒ ∃ p′. st wht move p p′

[[st start p0; p ∈ st reachable p0; turn p = White; st wht move p p′]] =⇒
¬ stalemate p′

3 KRK Chess Endgame and Bratko-style Strategy

In this section we describe our formalization of KRK chess endgame. We give
a very brief description of the specialization of chess rules for this case and of
Bratko-style strategy for the KRK endgame (we denote it by BTK) [10].

KRK Chess Endgame. Although the KRK endgame follows the general chess
rules introduced in the previous section, due to the specific nature of the game
with just three pieces on the board, most notions can be characterized by much
simpler conditions. Therefore, all general chess definitions are adapted to the
KRK case and are reformulated through alternative definitions. Each such defi-
nition is proved to be just a specific instance of its corresponding general chess
definition, and later used to simplify the correctness proofs. Since all following
definitions are based on KRK-specific definitions used in the URSA specifica-
tion [10], our work shows that the URSA specification follows from general chess
rules.

Since there are only three pieces on the board, each position can be repre-
sented by the following simple data-structure.

record KRKPosition =

WK ::"square" (* position of white king *)

BK ::"square" (* position of black king *)

WRopt ::"square option" (* position of white rook (None if captured) *)

WhiteTurn ::"bool" (* Is white on turn? *)

Note that the option type is used only for the rook position, as kings must always
be present on the board3. The following abbreviations are introduced.

BlackTurn p ←→ ¬ WhiteTurn p,
WR p = the(WRopt p), WRcapt p ←→ WRopt p = None

The KRKPosition record interprets the Position locale, as all required com-
ponents can be easily implemented.

3 This is only implicitly stated in the FIDE chess rules, as positions are defined to be
legal only if they are reachable from the starting state where both kings are present,
and kings cannot be captured. In our KRK formalization, the condition that both
kings are present is implicitly imposed by the position representation.

262 F. Marić et al.

KRK.pos inv p ←→ WK p �= BK p ∧ WRopt p �= Some(WK p) ∧ WRopt p �= Some(BK p)

KRK.to move p = (if WhiteTurn p then White else Black)

KRK.on sq p sq = (if WK p = sq then Some (White, King)

else if BK p = sq then Some (Black, King)

else if WRopt p = Some sq then Some (White, Rook)

else None)"

Once the basic functions are interpreted, instances of all general definitions
(e.g., legal positions, legal moves, stalemate, checkmate) for the KRK case are
available. However, as we said, most of them are significantly simplified and
reformulated, this time without quantifiers, so simpler reasoning methods can
be used to reason about their properties. For example, requirement that all pieces
are within the board bounds is defined in the following way (compare this with
the original definition that uses the universal quantifier).
KRK.all on board p ←→

on board (WK p) ∧ on board (BK p) ∧ (¬ WRcapt p −→ on board (WR p))

It is proved that this simplified KRK.all on board p definition is equivalent to
the original all on board p definition instantiated by the KRKPosition type
and its corresponding basic function definitions (lemma "all on board p ←→
KRK.all on board p"). Such proofs were not too hard, but Isabelle/HOL could
not do them automatically (due to the rich language and the need of reasoning
about arbitrarily quantified statements, the record type, tuples, etc.).

The legality of positions can be reduced to requiring that all pieces are on
different squares, that kings are not next to each other, and that if white is
on turn, then the rook does not attack the black king (in KRK endgames, no
diagonal lines but only horizontal and vertical lines need to be considered).
sq btw hv (f1,r1) (f, r) (f2, r2) ←→

(f1 = f ∧ f = f2 ∧ btw r1 r r2) ∨ (r1 = r ∧ r = r2 ∧ btw f1 f f2)

KRK.WR attacks BK p ←→
¬ WRcapt p ∧ rook scope (WR p) (BK p) ∧ ¬ sq btw hv (WR p) (WK p) (BK p)

KRK.kings separated p ←→ ¬ king scope (WK p) (BK p)

KRK.lgl pos p ←→ KRK.pos inv p ∧ KRK.all on board p ∧
KRK.kings separated p ∧ (WhiteTurn p −→ ¬ KRK.WR attacks BK p)"

Again, it is formally shown that this simplified definition of KRK.lgl pos p is
equivalent to the original lgl pos p definition instantiated to the KRK case
(lemma "lgl pos p ←→ KRK.lgl pos p").

Moves are defined as functions that modify the record representing the posi-
tion. Move of the black king is the most complicated (as it can capture a rook).
KRK.moveBK p sq = (let p′ = p (| BK := sq, WhiteTurn := True |)

in if WR p = sq then p′ (| WRopt := None |) else p′)

With these available, legal moves can be easily characterized. For example, a
legal move of the black king can be characterized as follows.
KRK.BK attacks sq p sq ←→ king scope (BK p) sq

KRK.lgl move BK p1 p2 ←→ KRK.lgl pos p1 ∧ BlackTurn p1 ∧ KRK.lgl pos p2 ∧
KRK.BK attacks sq p1 (BK p2) ∧ p2 = KRK.moveBK p1 (WK p2)

Proving Correctness of a KRK Chess Endgame Strategy 263

Legal moves of two other pieces are characterized similarly. It is easily proved
that all legal moves of black pieces are legal moves of the black king and all legal
moves of white pieces are legal moves of either the white king or the white rook.

Bratko-style KRK Strategy Definition. Bratko’s strategy can be outlined as
follows. Try to mate in two moves. If that is not possible, then try to squeeze
the room — the area to which the black king is confined by the white rook.
Otherwise, try to approach the black king, to help the rook in squeezing (the
approach is towards the critical square — a square adjacent to the rook in the
direction of the black king). Otherwise, try to maintain the present achievements
in the sense of squeeze and approach (i.e. make a waiting move). Otherwise, try
to obtain a position such that the rook divides the two kings either vertically or
horizontally. The strategy has a number of hidden details (its detailed description
consumes more than a full page [10]) and that shows that it is very difficult to
have a concise winning strategy (not to mention optimal strategy) even for a
simple endgame such as KRK.

Fig. 1. Room and
critical square

One of the central notions in the strategy is room
(Fig. 1). Following the strategy, white iteratively squeezes
the black king and reduces the room, until black can be
mated. The room space is always rectangular (e.g., of
dimension f × r). Originally, room was measured by its
area. However, we noticed that instead of the area, half-
perimeter (f + r) can be used, which has equivalent key
properties but it does not use multiplication and the arith-
metic constraints remain linear. Critical square and room
are formalized as follows.
towards a b = (if a = b then a else if a > b then a - 1 else a + 1)

BTK.critical sq p = (let (Rf, Rr) = WR p; (kf, kr) = BK p

in (towards Rf kf, towards Rr kr)

BTK.room p = (let (Rf,Rr) = WR p; (kf,kr) = BK p

in (if Rf = kf ∨ Rr = kr then F + R - 1

else let f = if Rf > kf then Rf else F - 1 - Rf;

r = if Rr > kr then Rr else R - 1 - Rr

in f + r))

Note that when the black king and the white rook are
in line, the black king is not confined, so the room takes the maximal value
(F + R - 1).

After some initial moves, an invariant is established that the white rook is
not exposed (its king can always approach and protect it, without having to
move it) and that it divides two kings (either horizontally or vertically) or in
some special cases that they form an L-shaped pattern (kings are in the same
row (column), at distance 2, and the rook and the white king are in the same
column (row) at distance 1). These notions are formalized as follows.
BTK.WR exposed p ←→

(WhiteTurn p ∧ cdist (WK p) (WR p) > cdist (BK p) (WR p) + 1) ∨
(BlackTurn p ∧ cdist (WK p) (WR p) > cdist (BK p) (WR p))

BTK.WR divides p ←→ (let (Rf,Rr) = WR p;(kf,kr) = BK p;(Kf,Kr) = WK p

264 F. Marić et al.

in (btw kf Rf Kf ∨ btw kr Rr Kr))

BTK.Lpattern p ←→ (let (Rf,Rr) = WR p; (kf,kr) = BK p; (Kf,Kr) = WK p

in (Kr = kr ∧ |Kf − kf | = 2 ∧ Rf = Kf ∧ |Rr − Kr| = 1) ∨
(Kf = kf ∧ |Kr − kr| = 2 ∧ Rr = Kr ∧ |Rf − Kf | = 1)

The strategy uses several kinds of moves that are applied in a fixed order (if
one kind of move is not applicable, then the next one is tried, and so on). For
example, one kind of move is the ImmediateMate and it is applicable if white
can mate in a single move. The Squeeze is applicable if white can reduce the
room, while keeping the rook not exposed, dividing the two kings, and avoiding
a stalemate position for black. These relations are formalized as follows.

BTK.immediate mate cond p ←→ KRK.BK cannot move p ∧ KRK.WR attacks BK p

BTK.squeeze cond p p′ ←→
BTK.room p′ < BTK.room p ∧ BTK.WR divides p′ ∧
¬ BTK.WR exposed p′ ∧ (KRK.BK cannot move p′ −→ KRK.WR attacks BK p′)

In order to apply some rule, its condition must hold but, in addition, no
previous moves can be applicable, so their conditions must not hold for any legal
move of white. This requires to universally quantify over all possible moves of
white pieces. We introduce the function kings square (f, r) k that for values k
between 1 and 8, gives coordinates of 8 squares that surround the given central
square (f, r). Similarly, the function rooks square (f, r) k for values k
between 1 and F + R gives all squares that are in line with the rook (first
horizontally, and then vertically). Then we introduce bounded quantification
(that is unfolded in the proofs to stay within the quantifier-free fragment) and
predicates that encode that a certain kind of move cannot be applied. We show
this only for the ImmediateMate, as other moves follow a similar pattern.

all n P n ←→ ∀ i. 1 ≤ i ∧ i ≤ n −→ P i

no mate WK p ←→ all n 8 (λ k. let sq = kings square (WK p) k in

KRK.WK can move to p sq −→ ¬ BTK.immediate mate cond (KRK.moveWK p sq))

no mate WR p ←→ all n (F + R) (λ k. let sq = rooks square (WR p) k in

KRK.WR can move to p sq −→ ¬ BTK.immediate mate cond (KRK.moveWR p sq))

no immediate mate p ←→ no mate WK p ∧ no mate WR p

Note that a mate cannot occur as a consequence of a white king’s move.
Finally, we introduce the relation BTK.st wht move p p′ m, encoding that a

position p′ is reached from a position p after a strategy move of a kind m.

MoveKind = ImmediateMate | ReadyToMate | Squeeze | ApproachDiag |

ApproachNonDiag | KeepRoomDiag | KeepRoomNonDiag | RookHome | RookSafe

BTK.st wht move p p′ m ←→
(if m = ImmediateMate then

KRK.lgl move WR p p′ ∧ BTK.immediate mate cond p′

else

no immediate mate p ∧
if m = ReadyToMate then

KRK.legal move white p p′ ∧ BTK.ready to mate cond p′

else

Proving Correctness of a KRK Chess Endgame Strategy 265

no ready to mate p ∧
...

if m = RookSafe then

KRK.lgl move WR p p′ ∧ BTK.rook safe cond p p′

else False)

Executable Specification. The relational specification BTK.st wht move p p′ m
is not executable. In many cases, for a given position p there are several possible
values of p′ and m that satisfy the previous relation. We defined a determinis-
tic, executable function (p′, m) = BTK.st wht move fun p that returns a new
position and a move type corresponding to the selected strategy move. In most
cases this function iterates through all legal moves of white pieces (in some fixed
order) until it finds a first move that satisfies the relational specification. Since
the iteration order is fixed, the function will be deterministic, but in positions
that allow several applicable moves, the choice is made rather arbitrarily (as
the iteration order is chosen rather arbitrarily). An interesting exception is the
squeeze move. To make the strategy more efficient, the optimal squeeze (the one
that confines the black king the most) is always played (if there are several such
moves, the first one found in the iterating process is used).

4 Correctness Proofs for Bratko-style Strategy

In this section we describe central correctness arguments for the strategy. All
major proof steps were done automatically, by formulating the goals in LIA and
applying the SMT solver.

Linear Arithmetic Formulation. The quantifier-free fragment of the theory
of linear integer arithmetic (LIA) is very convenient for expressing our goals, so
we formulated all our definitions in the language of LIA. This can be seen as
an illustration how to prepare a problem (not only chess-related) for solving by
automated solvers. Our definitions on this layer usually closely follow previously
given definitions for the KRK case and Bratko’s (BTK) strategy. However, in
our LIA definitions, we never use quantifiers and don’t use the record, product,
nor the option type that were present on the KRK layer, but only the pure
language of LIA. All KRK positions are represented in an unpacked form and
functions receive six integers (usually denoted as Kf , Kr for white king file and
rank coordinates, kf , kr for black king, and Rf , Rr for white rook) instead of
a record that collects them. Note that all the following definitions assume that
the rook is present on the board, since they are applied only in such situations.
Here are some examples.

LIA.on board sqf sqr ←→ 0 ≤ sqf ∧ sqf < F ∧ 0 ≤ sqr ∧ sqr < R

LIA.all on board Kf Kr kf kr Rf Rr ←→
LIA.on board Kf Kr ∧ LIA.on board kf kr ∧ LIA.on board Rf Rr

LIA.king scope sf1 sr1 sf2 sr2 ←→ |sf1 − sf2 | ≤1 ∧ |sr1 − sr2| ≤1 ∧ (sf1 �= sf2 ∨ sr1 �= sr2)

LIA.pos inv Kf Kr kf kr Rf Rr ←→
(Kf �=kf ∨ Kr �=kr) ∧ (Rf �=Kf ∨ Rr �=Kr) ∧ (Rf �=kf ∨ Rr �=kr)

266 F. Marić et al.

It is shown that these definitions are equivalent to the KRK ones (under the
assumption that the rook is not captured, and that coordinates of pieces are
unpacked from the record). For example:

lemma

assumes "WK p = (Kf,Kr)" "BK p = (kf,kr)" "WR p = (Rf,Rr)" "¬ WRcapt p"

shows "KRK.pos inv p ←→ LIA.pos inv Kf Kr kf kr Rf Rr"

All KRK definitions and all BTK strategy definitions have their LIA counter-
parts. The connection between them is quite obvious, so the proofs of equivalence
are rather trivial and are proved by Isabelle’s native automated tactics. In the
following proofs, translation from HOL terms to LIA terms is done manually,
but could be automated by implementing a suitable tactic.

Central Theorems. In this section we present our proof that BTK strategy is
winning for white i.e., that it interprets the WinningStrategyOrdering locale.
First, the strategy relation and the invariant are defined.

BTK.st wht move p p′ ←→ (∃ m. BTK.st wht move p p′ m)

BTK.st inv p ←→ ¬ WRcapt p

Before giving proofs, we introduce some auxiliary notions. We are often going
to consider full moves (a move of white that follows the strategy, followed by
any legal move of the black king)4.

BTK.st full move p1 p2 ←→ ∃ p′
1. BTK.st wht move p1 p′

1 ∧ KRK.lgl move BK p′
1 p2

For positions p1 and p2 and a set of strategy move types M , we define the
following relations (white is allowed to make a move only if its kind is in M).
BTK.st wht move M p p′ ←→ (∃ m ∈ M. BTK.st wht move p p′ m)

BTK.st full move M p1 p2 ←→ ∃ p′
1. BTK.st wht move M p1 p′

1 ∧
KRK.lgl move BK p′

1 p2

Next, we show that the BTK.st wht move p p′ defines a correct strategy, i.e.,
that it interprets the Strategy locale (that all moves are legal, and that the
invariant is maintained throughout each strategy play). The following theorem
guarantees that every move made by the strategy is legal.

theorem assumes "BTK.st wht move p1 p2"

shows "KRK.lgl move WK p1 p2 ∨ KRK.lgl move WR p1 p2"

This is trivial to prove, since we explicitly require that a legal move is made in
all cases of the definition of BTK.st wht move p1 p2 m.

It is obvious that a move of white preserves the invariant (white rook remains
not captured). The following theorem guarantees that the invariant also remains
preserved after any subsequent legal move of black.

theorem assumes "¬ WRcapt p1" "BTK.st full move p1 p2"

shows "¬ WRcapt p2"

4 In the chess literature, half-move is sometimes called ply, and full-move move.

Proving Correctness of a KRK Chess Endgame Strategy 267

The proof goes as follows. White could not have played the ImmediateMate
move, since black has made the move. In all other case, except the ReadyToMate
move, the condition ¬ BTK.WR exposed p is imposed, and it guarantees that the
rook cannot be captured. The ReadyToMate case is the only non-trivial case and
we encode the problem in LIA and employ SMT solvers to discharge the goal.

Next, we prove that the strategy is winning i.e., that it interprets the
Winning-StrategyOrdering locale (that the strategy is always applicable, that
it never leads into stalemate, and that there is a well founded ordering consis-
tent with full strategy moves). The next theorem shows that play can always be
continued i.e., that white can always make a strategy move.
theorem assumes "WhiteTurn p1" "¬ WRcapt p1" "KRK.lgl pos p1"

shows "∃ p2. BTK.st wht move p1 p2"

The proof is based on the following lemma, that guarantees that either Squeeze,
RookHome, or RookSafe move are always applicable. The lemma is again proved
automatically, by rewriting it into LIA and employing SMT solver.
lemma assumes "WhiteTurn p" "¬ WRcapt p" "KRK.lgl pos p"
shows "¬ BTK.no squeeze p ∨ ¬ BTK.no rook safe p ∨ ¬ BTK.no rook home p"

The following theorem shows that black is never in a stalemate.
theorem assumes "¬ WRcapt p1" "BTK.st wht move p1 p2"

shows "¬ KRK.stalemate p2"

This is also proved by analyzing different moves. After the ImmediateMate, black
is mated and that is not a stalemate. All other moves, except ReadyToMate, by
their definition require that stalemate did not occur, so they are trivial. The only
complicated case is ReadyToMate, so we again use SMT solver to discharge it.

Finally, we prove termination. We show that the relation
R = {(p2, p1). p1 ∈ BTK.st reachable p0 ∧ BTK.st full move p1 p2} is
well-founded, for a legal initial position p0. If it would not be well-founded,
then there would be a non-empty set with no minimal element i.e., there would
be a non-empty set Q such that a strategy play can always be extended by a
strategy move of white, followed by a move of black:
∀ p ∈ Q. p ∈ BTK.st reachable p0 ∧ (∃ p′ ∈ Q. BTK.st full move p p′)

Since in such infinite play, white must not make ImmediateMate and
ReadyToMate move, as otherwise, the play would finish in a checkmate position,
the following is implied (M denotes a set of two mate moves, and M denotes
its complement).
∀ p ∈ Q. p ∈ BTK.st reachable p0 ∧ (∃ p′ ∈ Q. BTK.st full move M p p′)

We show that this is a contradiction. The first observation is that the RookHome
and RookSafe moves can be played only within the first three moves of a strategy
play. This is proved by induction, using the following theorem that we proved
automatically using LIA and SMT solvers.
theorem assumes "¬ WRcapt p1"

"BTK.st full move p1 p2" "BTK.st full move p2 p3"

"BTK.st full move p3 p4" "BTK.st wht move p4 p′
4 m"

shows "m �= RookHome" "m �= RookSafe"

268 F. Marić et al.

Therefore, starting from some position p′
0 ∈ Q (a position reached after three

moves), all moves of white in our infinite strategy play are basic moves (B denotes
the set of basic moves: Squeeze, Approach, or KeepRoom).

∀ p ∈ BTK.st reachable p′
0 ∩ Q. (∃ p′ ∈ Q. BTK.st full move B p p′)

Next we proved that there is a position pm that satisfies the following condition.

pm ∈ BTK.st reachable p′
0 ∩ Q ∧ BTK.room pm ≤ 3 ∧ ¬ BTK.WR exposed pm

To prove this, we use the following lemma, stating that when started from a
situation where the rook is exposed or the room is grater than 3, after three
strategy basic moves, the rook is not exposed anymore and either the room
decreased, or it stayed the same, but the Manhattan distance to the critical
square decreased. Again, this lemma is proved automatically, by expressing it in
language of LIA and employing SMT solver.

theorem assumes "¬ WRcapt p1" "BTK.WR exposed p1 ∨ BTK.room p1 > 3"

"BTK.st full move B p1 p2" "BTK.st full move B p2 p3"

"BTK.st full move B p3 p4"

shows "(BTK.WR exposed p4, BTK.room p4, BTK.mdist cs p4) <

(BTK.WR exposed p1, BTK.room p1, BTK.mdist cs p1)"

Note that the last conclusion is expressed as lexicographic comparison between
the ordered triples that contain a bool (BTK.WR exposed p) and two integers
((BTK.room p and BTK.mdist cs p). The Boolean value False is considered less
than True, and integers are ordered in the standard way. Since these integers are
non-negative for all legal positions, this lexicographic ordering is well-founded.
Then we consider the following relation.

R’ = {(p2, p1). ¬ WRcapt p1 ∧ (BTK.WR exposed p1 ∨ BTK.room p1 > 3) ∧
BTK.st full move B p1 p2}

By the previous theorem, the third power of this relation is a subset of the
lexicographic ordering of triples that was well-founded, so the relation R′ itself is
well-founded. Then, every non-empty set has a minimal element in this relation,
so there is an element pm such that the following holds.

pm ∈ BTK.st reachable p′
0 ∩ Q

∀ p. (p, pm) ∈ R′ −→ p /∈ BTK.st reachable p′
0 ∩ Q

As we already noted, the play from BTK.st reachable p′
0 ∩ Q can always

be extended by a strategy basic move, followed by a move of the black king,
i.e., there is a position p′

m ∈ Q such that BTK.st full move B pm p′
m. Then,

p′
m would also be in BTK.st reachable p′

0 ∩ Q, so (p′
m, pm) /∈ R′. Since it

holds that ¬ WRcapt pm and BTK.st full move B pm p′
m, it must not hold that

BTK.WR exposed p1 ∨ BTK.room p1 > 3, so pm is the required position, satisfy-
ing ¬ BTK.WR exposed pm ∧ BTK.room pm ≤ 3. From such position, the fifth
move by white will be either a ImmediateMate or a ReadyToMate. This holds by
the following theorem (again, proved automatically, using LIA and SMT solver).

Proving Correctness of a KRK Chess Endgame Strategy 269

theorem assumes "¬ WRcapt p0" "BTK.room p0 ≤ 3" "¬ BTK.WR exposed p0"

"BTK.st full move B p0 p1" "BTK.st full move B p1 p2"

"BTK.st full move B p2 p3" "BTK.st full move B p3 p4"

"BTK.st wht move p4 p′
4 m"

shows "m ∈ M"

Since pm ∈ BTK.st reachable p′
0 ∩ Q, white is on turn and the play can be

infinitely extended by basic moves. However, by the previous theorem, the fifth
move of white must be a mating move, giving the final contradiction.

5 Related Work

The presented formalization is, as said, closely related to the one based on con-
straint solving [10]. Still, the present work is a step forward, since it includes
a formal development of relevant chess rules within the proof assistant and all
proofs are trustworthy in a stronger sense. Not only that this work glues together
conjectures checked earlier by the constraint solver, it also revealed some minor
deficiencies (e.g., imprecise definition of legal moves) in the earlier formalization.

Although properties of two-player board games are typically explored using
brute-force analyses, other approaches exist, similar to the constraint solv-
ing based one. For instance, binary decision diagrams were applied for game-
theoretical analysis of a number of games [5]. Again, this approach cannot pro-
vide results that can be considered trustworthy in the sense of proof assistants.
There is only a limited literature on using interactive theorem proving for ana-
lyzing two-player board games. A retrograde chess analysis has been done within
Coq, but it does not consider chess strategies [11]. Hurd and Haworth constructed
large, formally verified endgame databases, within the HOL system [8]. Their
work is focused on endgame tables and it is extremely difficult (if not impossible)
to extract some concise strategy descriptions and high-level insights from these
tables, so we addressed a different problem and in a different way.

Before using Isabelle/SMT, we formalized the strategy within Coq [12].
However, neither Omega, a built-in solver for quantifier-free formulae in LIA,
nor a far more efficient Micromega and corresponding tactics for solving goals
over ordered rings (including LIA), were efficient enough. SMTCoq [1] is an
external Coq tool that checks proof witnesses coming from external SAT and
SMT solvers (zChaff and veriT). Coq implements constructive logic, while veriT
reasons classically. SMTCoq was designed to work with type bool (which is
decidable in Coq) but not with type Prop which is natural type for propositions
in Coq. Construction of complex theories over type bool in Coq can be quite
inconvenient and has many pitfalls. There are plans for further improvement of
SMTCoq.

6 Conclusions and Further Work

In the presented work, chess — a typical AI domain — has been used as an
illustration for showing that the state-of-the-art theorem proving technology has

270 F. Marić et al.

reached the stage when very complex combinatorial conjectures can be proved in
a trusted way, with only a small human effort. Our key point is that this is pos-
sible thanks to synergy of very expressible interactive provers and very powerful
automated provers (SMT solvers in our case). The considered conjectures push
the provers up to the limits5 and while Isabelle/SMT interface can be further
improved (e.g., proof checking time could be reduced), our experience with it
can be seen as a success story. Our second point is that the presented work can
be seen as an exercise not only in automation, but also in suitable formalization
of non-trivial combinatorial problems. Namely, computer theorem provers are
powerful tools in constructing and checking proofs, but they only work modulo
the given definitions. The only way to check definitions is by human inspection,
and one must be extremely careful when doing this step. Reducing everything
to a small set of basic definitions (as we reduced specific KRK definitions to the
basic chess rules) is an important step in ensuring soundness.

For future work, we are planning to analyse different generalizations of the
presented central theorem. For example, unlike approaches based on SAT or
endgame tables, our approach is not enumerative in its nature and can be used
for arbitrary board sizes. We will also use a similar approach for proving other
related conjectures in chess and other two-player intellectual games.

Acknowledgments. The authors are grateful to Sascha Böhme and Jasmin Christian
Blanchette for their assistance in using SMT solvers from Isabelle/HOL and to Chantal
Keller for her assistance in using SMT solvers from Coq. The first and the second author
were supported in part by the grant ON174021 of the Ministry of Science of Serbia.

References

1. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular
integration of SAT/SMT solvers to coq through proof witnesses. In: Jouannaud, J.-
P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer, Heidelberg
(2011)

2. Ballarin, C.: Interpretation of locales in isabelle: theories and proof contexts. In:
Borwein, J.M., Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI), vol. 4108, pp.
31–43. Springer, Heidelberg (2006)

3. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer, Hei-
delberg (2010)

4. Bratko, I.: Proving correctness of strategies in the AL1 assertional language.
Inform. Process. Lett. 7(5), 223–230 (1978)

5 The largest SMT formula in the proof has more than 67,000 atoms. Proofs were
checked in around 8 CPU minutes on a multiprocessor 1.9GHz machine with 2GB
RAM per CPU when SMT solvers are used in the oracle mode and when SMT proof
reconstruction was not performed. SMT proof reconstruction is the slowest part of
proof-checking, but it can be done in a quite reasonable time of 29 CPU minutes.
The whole formalization has around 12,000 lines of Isabelle/Isar code.

Proving Correctness of a KRK Chess Endgame Strategy 271

5. Edelkamp, S.: Symbolic exploration in two-player games: preliminary results. In:
AIPS 2002 Workshop on Planning via Model-Checking (2002)

6. FIDE. The FIDE Handbook, chapter E.I. The Laws of Chess (2004). Available for
download from the FIDE website

7. Hurd, J.: Formal verification of chess endgame databases. In: Theorem Proving in
Higher Order Logics: Emerging Trends, Oxford University CLR Report (2005)

8. Hurd, J., Haworth, G.: Data assurance in opaque computations. In: van den Herik,
H.J., Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048, pp. 221–231. Springer, Hei-
delberg (2010)

9. Janičić, P.: URSA: a system for uniform reduction to SAT. Logical Methods Com-
put. Sci. 8(3:30) (2012)

10. Maliković, M., Janičić, P.: Proving correctness of a KRK chess endgame strategy
by SAT-based constraint solving. ICGA J. 36(2), 81–99 (2013)

11. Maliković, M., Čubrilo, M.: What were the last moves? Int. Rev. Comput. Softw.
5(1), 59–70 (2010)

12. Maliković, M., Čubrilo, M., Janičić, P.: Formalization of a strategy for the KRK
chess endgame. In: Conference on Information and Intelligent Systems (2012)

13. Thompson, K.: Retrograde analysis of certain endgames. ICCA J. 9(3), 131–139
(1986)

Inductive Beluga: Programming Proofs

Brigitte Pientka(B) and Andrew Cave

McGill University, Montreal, QC, Canada
{bpientka,acave1}@cs.mcgill.ca

Abstract. beluga is a proof environment which provides a sophisti-
cated infrastructure for implementing formal systems based on the log-
ical framework LF together with a first-order reasoning language for
implementing inductive proofs about them following the Curry-Howard
isomorphism.

In this paper we describe four significant extensions to beluga: (1)
we enrich our infrastructure for modelling formal systems with first-class
simultaneous substitutions, a key and common concept when reasoning
about formal systems (2) we support inductive definitions in our reason-
ing language which significantly increases beluga’s expressive power (3)
we provide a totality checker which guarantees that recursive programs
are well-founded and correspond to inductive proofs (4) we describe
an interactive program development environment. Taken together these
extensions enable direct and compact mechanizations. To demonstrate
beluga’s strength and illustrate these new features we develop a weak
normalization proof using logical relations.

Keywords: Logical frameworks · Dependent types · Proof assistant

1 Introduction

Mechanizing formal systems, given via axioms and inference rules, together with
proofs about them plays an important role in establishing trust in formal devel-
opments. A key question in this endeavor is how to represent variables, (simul-
tanous) substitution, assumptions, and derivations that depend on assumptions.

belugais a proof environment which provides a sophisticated infrastructure
for implementing formal systems based on the logical framework LF [11]. This
allows programmers to uniformly specify syntax, inference rules, and deriva-
tion trees using higher-order abstract syntax (HOAS) and relieves users from
having to build up common infrastructure to mange variable binding, renam-
ing, and (single) substitution. belugaprovides in addition support for first-class
contexts [16] and simultaneous substitutions [4], two common key concepts that
frequently arise in practice. Compared to existing approaches, we consider its
infrastructure one of the most advanced for prototyping formal systems [6].

To reason about formal systems, belugaprovides a standard first-order proof
language with inductive definitions [3] and domain-specific induction princi-
ples [18]. It is a natural extension of how we reason inductively about simple
c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 272–281, 2015.
DOI: 10.1007/978-3-319-21401-6 18

Inductive Beluga: Programming Proofs 273

domains such as natural numbers or lists, except that our domain is richer, since
it allows us to represent and manipulate derivations trees that may depend on
assumptions. Inductive belugasubstantially extends our previous system [19]:

First-class Substitution Variables [4]. We directly support simultaneous sub-
stitutions and substitution variables within our LF-infrastructure. Dealing with
substitutions manually can lead to a substantial overhead. Being able to abstract
over substitutions allows us to tackle challenging examples such as proofs using
logical relations concisely without this overhead.

Datatype Definitions [3]. We extend our reasoning language with recursive
type definitions. These allow us to express relationships between contexts and
derivations (contextual objects). They are crucial in describing semantic prop-
erties such as logical relations. They are also important for applications such as
type preserving code transformations (e.g. closure conversion and hoisting [1])
and normalization-by-evaluation. To maintain consistency while remaining suffi-
ciently expressive, belugasupports two kinds of recursive type definitions: stan-
dard inductive definitions, and a form which we call stratified types.

Totality Checking [18]. We implement a totality checker which guarantees that a
given program is total, i.e. all cases are covering and all recursive calls are well-
founded according to a structural subterm ordering. This is an essential step to
check that the given recursive program constitutes an inductive proof.

Interactive Proof Development. Similar to other interactive development modes
(e.g. Agda [14] or Alf [12]), we support writing holes in programs (i.e. proofs)
showing the user the available assumptions and the current goal, and we sup-
port automatic case-splitting based on beluga’s coverage algorithm [5,18] which
users find useful in writing proofs as programs.

The Beluga system, including source code, examples, and an Emacs mode,
is available from http://complogic.cs.mcgill.ca/beluga/.

2 Inductive Proofs as Recursive Programs

We describe a weak normalization proof for the simply typed lambda-calculus
using logical relations – a proof technique going back to Tait [20] and later
refined by Girard [10]. The central idea of logical relations is to define a relation
on terms recursively on the syntax of types instead of directly on the syntax of
terms themselves; this enables us to reason about logically related terms rather
than terms directly. Such proofs are especially challenging to mechanize: first,
specifying logical relations themselves typically requires a logic which allows
a complex nesting of implications; second, to establish soundness of a logical
relation, one must prove a property of well-typed open terms under arbitrary
instantiations of their free variables. This latter part is typically stated using
some notion of simultaneous substitution, and requires various equational prop-
erties of these substitutions.

http://complogic.cs.mcgill.ca/beluga/

274 B. Pientka and A. Cave

As we will see our mechanization directly mirrors the theoretical development
that one would do on paper which we find a remarkably elegant solution.

2.1 Representing Well-Typed Terms and Evaluation in LF

For our example, we consider simply-typed lambda-terms. While we often define
the grammar and typing separately, here we work directly with intrinsically
typed terms, since it is more succinct. Their definition in the logical frame-
work LF is straightforward. Below, tm defines our family of simply-typed lambda
terms indexed by their type. In typical higher-order abstract syntax (HOAS)
fashion, lambda abstraction takes a function representing the abstraction of a
term over a variable. There is no case for variables, as they are treated implic-
itly. We remind the reader that this is a weak function space – there is no case
analysis or recursion, and hence only genuine lambda terms can be represented.

LF tp : type =
| b : tp
| arr : tp → tp → tp;

LF tm : tp → type =
| app : tm (arr T S) → tm T → tm S
| lam : (tm T → tm S) → tm (arr T S)
| c : tm b;

Our goal is to prove that evaluation of well-typed terms halts. For simplicity,
we consider here weak-head reduction that does not evaluate inside abstractions,
although our development smoothly extends. We encode the relation step stating
that a term steps to another term either by reducing a redex (beta rule) or by
finding a redex in the head (stepapp rule). In defining the beta rule, we fall back
to LF-application to model substitution. In addition, we define a multi-step
relation, called mstep, on top of the single step relation.
LF step : tm A → tm A → type =
| beta : step (app (lam M) N) (M N)
| stepapp: step M M’ → step (app M N) (app M’ N);

LF mstep : tm A → tm A → type =
| refl : mstep M M
| onestep: step M N → mstep N M’’ → mstep M M’;

Evaluation of a term halts if there is a value, i.e. either a constant or a
lambda-abstraction which it steps to.

LF val : tm A → type =
| val/c : val c
| val/lam : val (lam M);

LF halts : tm A → type =
| halts/m : mstep M M’ → val M’

→ halts M;

2.2 Representing Reducibility Using Indexed Types

Proving that evaluation of well-typed terms halts cannot be done directly, as the
size of our terms may grow when we are using the beta rule. Instead, we define
a predicate Reduce on well-typed terms inductively on the syntax of types, often
called a reducibility predicate. This enables us to reason about logically related
terms rather than terms directly.

Inductive Beluga: Programming Proofs 275

– A term M of base type b is reducible if halts M.
– A term M of function type (arr a B) is reducible, if halts M and moreover, for

every reducible N of type A, the application app M N is reducible.

Reducibility cannot be directly encoded at the LF layer, since it involves
strong implications. We will use an indexed recursive type [3], which allows
us to state properties about well-typed terms and define the reducibility relation
recursively. In our case, it indeed suffices to state reducibility about closed terms;
however, in general we may want to state properties about open terms, i.e.
terms that may refer to assumptions. In beluga, we pair a term M together
with the context Ψ in which it is meaningful, written as [Ψ �M]. These are called
contextual LF objects [13]. We can then embed contextual objects and types
into the reasoning level; in particular, we can state inductive properties about
contexts, contextual objects and contextual types.
stratified Reduce : {A:[�tp]}{M:[�tm A]} ctype =
| I : [�halts M] → Reduce [�b] [�M]
| Arr: [�halts M] →

({N:[�tm A]} Reduce [�A] [�N] → Reduce [�B] [�app M N])
→ Reduce [�arr A B] [�M];

Here we state the relation Reduce about the closed term M:[�tm A] using the
keyword stratified. The constructor I defines that M is reducible at base type, if
[�halts M]. The constructor Arr defines that a closed term M of type arr A B is
reducible if it halts, and moreover for every reducible N of type A, the application
app M N is reducible. We write {N:[�tm A]} for explicit universal quantification
over N, a closed term of type A. To the left of � in [�tm A] is where one writes
the context the term is defined in – in this case, it is empty.

In the definition of Reduce, the arrows correspond to usual implications in
first-order logic and denote a standard function space, not the weak function
space of LF. Contextual LF types and objects are always enclosed with []

when they are embedded into recursive data-type definitions in the reasoning
language. We note that the definition of Reduce is not (strictly) positive, and
hence not inductive, since Reduce appears to the left of an arrow in the Arr case.
However, there is a different criterion by which this definition is justified, namely
stratification. We discuss this point further in Sect. 2.5.

To prove that evaluation of well-typed terms halts, we now prove two lemmas:

1. All closed terms M:[�tm A] are reducible, i.e. Reduce [� A] [� M].
2. If Reduce [� A] [� M] then evaluation of M halts, i.e. [� halts M].

The second lemma follows trivially from our definition. The first part is
more difficult. It requires a generalization, which says that any well-typed term
M under a closing substitution σ is in the relation, i.e. Reduce [� A] [� M[σ]]. To
be able to prove this, we need that σ provides reducible instantiations for the
free variables in M.

276 B. Pientka and A. Cave

2.3 First-Class Contexts and Simultaneous Substitutions

In beluga, we support first-class contexts and simultaneous substitutions. We
first define the structure of the context in which a term M is meaningful by
defining a context schema: schema ctx = tm T;

A context γ of schema ctx stands for any context that contains only declara-
tions x:tm T for some T. Hence, x1:tm b, x2:tm (arr b b) is a valid context, while
a:tp,x:tm a is not. We can then describe not only closed well-typed terms, but
also a term M that is well-typed in a context γ as [γ � tm A] where γ has schema
ctx [16].

To express that the substitution σ provides reducible instantiations for vari-
ables in γ, we again use an indexed recursive type.
inductive RedSub : {γ:ctx}{σ:[�γ]} ctype =
| Nil : RedSub [] [� ^]
| Dot : RedSub [γ] [� σ] → Reduce [�A] [�M]

→ RedSub [γ, x:tm A[^]] [� σ , M];

In beluga, substitution variables are written as σ. Its type is written [�γ],
meaning that it has domain γ and empty range, i.e. it takes variables in γ to closed
terms of the same type. In the base case, the empty substitution, written as ^, is
reducible. In the Dot case, we read this as saying: if σ is a reducible substitution
(implicitly at type [�γ]) and M is a reducible term at type A, then σ with M

appended is a reducible substitution at type [�γ,x:tm A[^]] – the domain has
been extended with a variable of type A; as the type A is closed, we need to weaken
it by applying the empty substitution to ensure it is meaningful in the context
γ. For better readability, we subsequently omit the weakening substitution.

2.4 Developing Proofs Interactively

We now have all the definitions in place to prove that any well-typed term M

under a closing simultaneous substitution σ is reducible.
Lemma For all M:[γ � tm A] if RedSub [γ] [σ] then Reduce [�A] [� M[σ]].
This statement can be directly translated into a type in beluga.
rec main:{γ:ctx}{M:[γ � tm A]} RedSub [γ] [� σ] → Reduce [� A] [� M[σ]] = ?;

Logically, the type corresponds to a first-order logic formula which quantifies
over the context γ, the type A, terms M, and substitutions σ. We only quantified
over γ and M explicitly and left σ and A free. beluga’s reconstruction engine [7,17]
will infer their types and abstract over them. The type says: for all γ and terms M

that have type A in γ, if σ is reducible (i.e. RedSub [γ] [�σ]) then M[σ] is reducible
at type A (i.e. Reduce [�A] [�M[σ]]).

We now develop the proof of our main theorem interactively following ideas
first developed in the Alf proof editor [12] and later incorporated into Agda [14].
Traditionally, proof assistants such as Coq [2] build a proof by giving commands
to a proof engine refining the current proof state. The (partial) proof object
corresponding to the proof state is hidden. It is often only checked after the proof
has been fully constructed. In beluga, as in Alf and Agda, the proof object is the

Inductive Beluga: Programming Proofs 277

primary focus. We are building (partial) proof objects (i.e. programs) directly.
By doing so, we indirectly refine the proof state. Let us illustrate.

Working backwards, we use the introduction rules for universal quantification
and implications; mlam-abstraction corresponds to the proof term for universal
quantifier introduction and fn-abstraction corresponds to implication introduc-
tion. We write ? for the incomplete parts of the proof object.
rec main:{γ:ctx}{M:[γ �tm A]}RedSub [γ] [�σ] → Reduce [�A] [�M[σ]] =
mlam γ, M ⇒ fn rs ⇒ ?;

Type checking the above program succeeds, but returns the type of the hole:
- Meta-Context:

{γ : ctx}
{M : [γ � tm A]}

__
- Context:
main: {γ:ctx}{M:[γ �tm A]} RedSub [γ] [�σ] → Reduce [�A] [�M[σ]]
rs: RedSub [γ] [� σ]

===
- Goal Type: Reduce [� A] [� M[σ]]

The meta-context contains assumptions coming from universal quantifica-
tion, while the context contains assumptions coming from implications. The
programmer can refine the current hole by splitting on variables that occur
either in the meta-context or in the context using the splitting tactic that reuses
our coverage implementation [5,18] to generate all possible cases.

To split on M, our splitting tactic inspects the type of M, namely [γ � tm A]

and automatically generates possible cases using all the constructors that can be
used to build a term, i.e. [γ �lam λy.M] and [γ �app M N], and possible variables
that match a declaration in the context γ, written here as [γ �#p]. Intuitively
writing [γ � M] stands for a pattern where M stands for a term that may contain
variables from the context γ.
rec main:{γ:ctx}{M:[γ �tm A]} RedSub [γ] [�σ] → Reduce [�A] [�M[σ]] =
mlam γ, M ⇒ fn rs ⇒ (case [γ � M] of
|[γ � #p] ⇒ ?
|[γ � app M N] ⇒ ?
|[γ � lam λy. M] ⇒ ?
|[γ � c] ⇒ ?);

Variable Case. We need to construct the goal Reduce [� T] [� #p[σ]] given a
parameter variable #p of type [γ � tm T]. We use the auxiliary function lookup

to retrieve the corresponding reducible term from σ. Note that applying the
substitution σ to [γ � #p] gives us [� #p[σ]].
rec lookup:{γ:ctx}{#p:[γ �tm A]}RedSub [γ] [�σ]→ Reduce [� A] [� #p[σ]] = ?;

This function is defined inductively on the context γ. The case where γ is
empty is impossible, since no variable #p exists. If γ = γ’, x:tm T, then there are
two cases to consider: either #p stands for x, then we retrieve the last element
in the substitution σ together with the proof that it is reducible; if #p stands
for another variable in γ’, then we recurse. All splits can be done through the
splitting tactic.

278 B. Pientka and A. Cave

Application Case. Inspecting the hole tells us that we must construct a proof
for Reduce [� S] [�app M[σ] N[σ]]. beluga turned [�(app M N)[σ]] silently into
[�app M[σ] N[σ]] pushing the substitution σ inside. This is one typical example
where our equational theory about simultaneous substitution that we support
intrinsically in our system comes into play.

Appealing to IH on N, written as the recursive call main [γ] [γ � N] rs, returns
rN: Reduce [� A] [� N[σ]]. Appealing to IH on M, written as the recursive call main
[γ] [γ � M] rs, gives us Reduce [� arr A B] [� M[σ]]. By inversion on the definition
of Reduce, we get to the state Reduce [� B] [�app M[σ] N[σ]] given the assumptions

rN: Reduce [� A] [� N[σ]]
ha: [� halts (arr A B) (M[σ])]
f: {N:[�tm A]} Reduce [� A] [� N] → Reduce [� B] [� app (M[σ]) N]

Using f and passing to it N together with rN, we can finish this case. Our partial
proof object has evolved to:
rec main:{γ:ctx}{M:[γ �tm A]} RedSub [γ] [�σ] → Reduce [�A] [�M[σ]] =
mlam γ, M ⇒ fn rs ⇒ (case [γ � M] of
|[γ � #p] ⇒ lookup [γ] [γ � #p] rs
|[γ � app M N] ⇒

let rN = main [γ] [γ � N] rs in
let Arr ha f = main [γ] [γ � M] rs in f [� _] rN

|[γ � lam λy. M] ⇒ ?
|[γ � c] ⇒ ?);

Abstraction Case. We must find a proof for Reduce [� arr T S] [�lamλy.M[σ,y]]. We
note again that the substitution σ has been pushed silently inside the abstraction.
By definition of Reduce (see the constructor Arr), we need to prove two things: 1)
[�halts (lamλy.M[σ,y])] and 2) assuming N:[�tm T] and rN:Reduce [� T] [� N] we
need to show that Reduce [� S] [�app (lam λy.M[σ,y]) N]. For part 1), we simply
construct the witness [�halts/m refl val/lam]. For part 2), we rely on a lemma
stating that Reduce is backwards closed under reduction.
rec bwd_closed:{S:[�step M M’]} Reduce [� A] [� M’]→ Reduce [� A] [� M] = ?;

Using the fact that N provides a reducible term for x, we appeal to IH on M

by recursively calling main [γ,x:tm _] [γ,x� M] (Dot rs rN). As a result we obtain
rM:Reduce [� S] [� M[σ,N]]. Now, we argue by the lemma bwd_closed and using
the beta rule, that Reduce [� S] [�app (lam λy.M[σ,y]) N]. While this looks simple,
there is in fact some hidden equational reasoning about substitutions. From
the beta rule we get [� (λy.M[σ,y]) N] which is not in normal form. To replace
y with N, we need to compose the single substitution that replaces y with N

with the simultaneous substitution [σ,y]. Again, our equational theory about
simultaneous substitutions comes into play.

The complete proof object including the case for constants is given in Fig. 1.
Underscores that occur are inferred by beluga’s type reconstruction.

2.5 Totality Checking

For our programs to be considered proofs, we need to know: 1) Our programs
cover all cases 2) They terminate and 3) all datatype definitions are acceptable.

Inductive Beluga: Programming Proofs 279

Fig. 1. Weak Normalization Proof for the Simply-Typed Lambda-Calculus

We verify coverage following [5,18]. If the program was developed interac-
tively it is covering by construction. To verify the program terminates, we verify
that the recursive calls are well-founded. We use a totality declaration to specify
the argument that is decreasing for a given function. In the given example, the
totality declaration tells belugathat main is terminating in the fourth position;
the type of main specifies first explicitly the context γ, followed by two implicit
arguments for the type A and the substitution σ, that are reconstructed, and
then the term M:[γ �tm A]. Following [18], we generate valid recursive calls when
splitting on M and then subsequently verify that only valid calls are made.

Recursive datatype definitions can be justified in one of two possible ways: by
declaring a definition with inductive, belugaverifies that the definition adheres
to a standard strict positivity condition, i.e. there are no recursive occurrences
to the left of an arrow. Positive definitions are interpreted inductively, which
enables them to be used as a termination argument in recursive functions.

Alternatively, by declaring a definition with stratified, belugaverifies that
there is an index argument which decreases in each recursive occurrence of the
definition. This is how our definition of Reduce is justified: it is stratified by
its tp index. Such types are not inductive, but rather can be thought of as
being constructed in stages, or defined by a special form of large elimination.
Consequently, belugadoes not allow stratified types to be used as a termination
argument in recursive functions; instead one may use its index.

3 Related Work and Conclusion

There are several approaches to specifying and reasoning about formal systems
using higher-order abstract syntax. The Twelf system [15] also provides an imple-
mentation of the logical framework LF. However, unlike proofs in belugawhere
we implement proofs as recursive functions, proofs in Twelf are implemented as
relations. Twelf does not support the ability to reason about contexts, contextual
LF objects and first-class simultaneous substitutions. More importantly, it can
only encode forall-exists statements and does not support recursive data type
definitions about LF objects.

280 B. Pientka and A. Cave

The Abella system [8] provides an interactive theorem prover for reasoning
about specifications using higher-order abstract syntax. Its theoretical basis is
different and its reasoning logic extends first-order logic with ∇-quantifier [9]
which can be used to express properties about variables. Contexts and simulta-
neous substitutions can be expressed as inductive definitions, but since they are
not first-class we must establish properties such as composition of simultaneous
substitution, well-formedness of contexts, etc. separately. This is in contrast to
our framework where our reasoning logic remains first-order logic, but all rea-
soning about variables, contexts, simultaneous substitution is encapsulated in
our domain, the contextual logical framework. Abella’s interactive proof devel-
opment approach follows the traditional model: we manipulate the proof state
by a few tactics such as our splitting tactic and there is no proof object produced
that witnesses the proof.

Inductive belugaallows programmers to develop proofs interactively by rely-
ing on holes. Its expressive power comes on the one hand from indexed recursive
datatype definitions on the reasoning logic side and on the other hand from
the rich infrastructure contextual LF provides. This allows compact and elegant
mechanizations of challenging problems such as proofs by logical relations. In
addition to the proof shown here other examples include the mechanization of a
binary logical relation for proving completeness of an algorithm for βη-equality
and a normalization proof allowing reductions under abstractions, both for the
simply-typed lambda calculus.

Acknowledgements. Over the past 6 years several undergraduate and graduate stu-
dents have contributed to the implementation: A. Marchildon, O. Savary Belanger,
M. Boespflug, S. Cooper, F. Ferreira, D. Thibodeau, T. Xue.

References

1. Savary-Belanger, O., Monnier, S., Pientka, B.: Programming type-safe transforma-
tions using higher-order abstract syntax. In: Gonthier, G., Norrish, M. (eds.) CPP
2013. LNCS, vol. 8307, pp. 243–258. Springer, Heidelberg (2013)

2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004)

3. Cave, A., Pientka, B.: Programming with binders and indexed data-types. In: 39th
Annual ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL 2012), pp. 413–424. ACM Press (2012)

4. Cave, A., Pientka, B.: First-class substitutions in contextual type theory. In: 8th
International Workshop on Logical Frameworks and Meta-Languages: Theory and
Practice (LFMTP 2013), pp. 15–24. ACM Press (2013)

5. Dunfield, J., Pientka, B.: Case analysis of higher-order data. In: International
Workshop on Logical Frameworks and Meta-Languages: Theory and Practice
(LFMTP 2008), Electronic Notes in Theoretical Computer Science (ENTCS 228),
pp. 69–84. Elsevier (2009)

6. Felty, A.P., Momigliano, A., Pientka, B.: The next 700 Challenge Problems for
Reasoning with Higher-order Abstract Syntax Representations: Part 2 - a Survey.
Journal of Automated Reasoning (2015)

Inductive Beluga: Programming Proofs 281

7. Ferreira, F., Pientka, B.: Bidirectional elaboration of dependently typed languages.
In: 16th International Symposium on Principles and Practice of Declarative Pro-
gramming (PPDP 2014). ACM (2014)

8. Gacek, A.: The abella interactive theorem prover (System Description). In:
Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 154–161. Springer, Heidelberg (2008)

9. Gacek, A., Miller, D., Nadathur, G.: Combining generic judgments with recursive
definitions. In: 23rd Symposium on Logic in Computer Science. IEEE Computer
Society Press (2008)

10. Girard, J.-Y., Lafont, Y., Tayor, P.: Proofs and Types. Cambridge University Press,
Cambridge (1990)

11. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. ACM
40(1), 143–184 (1993)

12. Magnusson, L., Nordström, B.: The Alf proof editor and its proof engine. In:
Barendregt, Henk, Nipkow, Tobias (eds.) TYPES: Types for Proofs and Programs.
(LNCS 806), vol. 806, pp. 213–237. Springer, Heidelberg (1994)

13. Nanevski, A., Pfenning, F., Pientka, B.: Contextual modal type theory. ACM
Trans. Comput. Logic 9(3), 1–49 (2008)

14. Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, September 2007. Technical Report 33D

15. Pfenning, F., Schürmann, C.: System description: Twelf - a meta-logical framework
for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol.
1632, pp. 202–206. Springer, Heidelberg (1999)

16. Pientka, B.: A type-theoretic foundation for programming with higher-order
abstract syntax and first-class substitutions. In: 35th Annual ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL 2008), pp. 371–382.
ACM Press (2008)

17. Pientka, B.: An insider’s look at LF type reconstruction: Everything you (n)ever
wanted to know. J. Funct. Program. 23(1), 1–37 (2013)

18. Pientka, B., Abel, A.: Structural recursion over contextual objects, In: 13th Typed
Lambda Calculi and Applications (TLCA 2015), LIPIcs-Leibniz International Pro-
ceedings in Informatics (2015)

19. Pientka, B., Dunfield, J.: Beluga: a framework for programming and reasoning with
deductive systems (System Description). In: Giesl, J., Hähnle, R. (eds.) IJCAR
2010. LNCS, vol. 6173, pp. 15–21. Springer, Heidelberg (2010)

20. Tait, W.: Intensional Interpretations of Functionals of Finite Type I. J. Symb. Log.
32(2), 198–212 (1967)

New Techniques for Automating
and Sharing Proofs

SMTtoTPTP – A Converter for Theorem
Proving Formats

Peter Baumgartner(B)

NICTA and Australian National University, Canberra, Australia
peter.baumgartner@nicta.com.au

Abstract. SMTtoTPTP is a converter from proof problems written in
the SMT-LIB format into the TPTP TFF format. The SMT-LIB for-
mat supports polymorphic sorts and frequently used theories like those
of uninterpreted function symbols, arrays, and certain forms of arith-
metics. The TPTP TFF format is an extension of the TPTP format
widely used by automated theorem provers, adding a sort system and
arithmetic theories. SMTtoTPTP is useful for, e.g., making SMT-LIB
problems available to TPTP system developers, and for making TPTP
systems available to users of SMT solvers. This paper describes how the
conversion works, its functionality and limitations.

1 Introduction

In the automating reasoning community two major syntax formats have emerged
for specifying logical proof problems. They are part of the larger infrastructure
initiatives SMT-LIB [1] and TPTP [5], respectively. Both formats are under
active development and are widely used for problem libraries and in competi-
tions; both serve as defacto standards in the sub-communities of SMT solving
and first-order logic theorem proving, respectively.

Over the last years, the theorem provers developed in the mentioned com-
munities have become closer in functionality. SMT solvers increasingly provide
support for quantified first-order logic formulas, and first-order logic theorem
provers increasingly support reasoning modulo built-in theories, such as inte-
ger or rational arithmetic. Likewise, the major respective problem libraries have
grown (also) by overlapping problems, i. e., problems that could be fed into both
an SMT solver and a first-order theorem prover. This convergence is also reflected
in recent CASC competitions. Since 2011, CASC features a competition cate-
gory comprised of typed first-order logic problems modulo arithmetics (TFA),
in which both SMT solvers and first-order logic theorem provers participate.

With these considerations it makes sense to provide a converter between
problem formats. In this paper I focus on the more difficult direction, from the
SMT-LIB format to the appropriate TPTP format, the typed first-order TPTP

NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence
Program.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 285–294, 2015.
DOI: 10.1007/978-3-319-21401-6 19

286 P. Baumgartner

format with arithmetics, TFF [6]. This converter, SMTtoTPTP , is meant to be
useful for, e. g., making the existing large SMT-LIB problem libraries available to
(developers of) TPTP systems, and, perhaps more importantly, making TPTP
systems available to users used to SMT-LIB. SMTtoTPTP may also help embed
TPTP systems as sub-systems in other systems that use SMT-LIB as an interface
language, e.g., interactive proof assistants. However, the SMTtoTPTP support
for that needs to remain partial as some SMT-LIB commands, e.g. those related
to proof management, are not translatable into TPTP.

On notation: the SMT-LIB documents speak about sorts whereas in the
TPTP world one has types. I use both terms below in their corresponding con-
texts, which is the only difference for the purpose of this paper.

An operator is either a function or a predicate symbol. Unlike the TFF
format, SMT-LIB does not formally distinguish between the boolean and other
sorts. Hence, all SMT-LIB operators are function symbols.

2 SMT-LIB and TFF

This section provides brief overviews of the SMT-LIB and the TFF formats as far
as is needed to make this paper self-contained. See [1,4] and [6,7], respectively,
for comprehensive documentation.

SMT-LIB. SMT-LIB provides a language for writing terms and formulas in a
sorted (i.e., typed) version of first-order logic, a language for specifying back-
ground theories, and a language for specifying logics, i.e., suitably restricted
classes of formulas to be checked for satisfiability with respect to a specific back-
ground theory. SMT-LIB also provides a command language for interacting with
SMT solvers.

All SMT-LIB languages come in a Lisp-like syntax. Assuming a fixed library
of logics, an SMT-LIB user writes a script, i.e., a sequence of commands to
specify one or more proof problems for a given logic. A script typically contains
commands for sort declarations and definitions, as well as function symbol decla-
rations and definitions. Furthermore it will contain commands for asserting the
formulas that make up the proof problem, assertions for short.

Sort declarations introduce new sorts by stating their name and arity,
e.g., (Pair 2). Sort definitions introduce new sorts in terms of already
defined/declared ones. They can be parametric in sort parameters (see
Example 2.1 below). Recursive definitions are disallowed.

Function symbol declarations introduce new function symbols together with
their argument and result sorts given as expressions over the declared and defined
sorts. Again, recursive definitions are disallowed. The semantics of function def-
initions is given by expansion, i.e., by in lining the definitions everywhere in the
script until only declared function symbols remain.

The semantics of (sort parametric) sort definitions is given by expansion, too.
Indeed, the SMT-LIB type system is not polymorphic. Polymorphism is not a
part of the type system, it is a meta-level concept. After expansion of definitions,

SMTtoTPTP – A Converter for Theorem Proving Formats 287

annotations cannot contain sort parameters, and any (well-sorted) subterm has
a sort constructed of declared sorts only.

Example 2.1. The following script demonstrates the SMT-LIB type system:

1 (set-logic UFLIA)

2 (declare-sort Pair 2)

3 (define-sort Int-Pair (S) (Pair Int S))

4 (declare-sort Color 0)

5 (declare-fun red () Color)

6 (declare-fun get-int ((Int-Pair Color)) Int)

7 (declare-fun int-color-pair (Int Color) (Pair Int Color))

8 (assert (forall ((i Int) (c Color))

9 (= (get-int (int-color-pair i c)) i)))

10 (check-sat)

Here, Pair is declared as a 2-ary sort and Int-Pair is a defined sort with sort
parameter S. In line 4, Color is declared as a 0-ary sort. Lines 5–7 declare
some function symbols. Notice the use of Int-Pair in line 6 in the expression
(Int-Pair Color), which expands into the sort (Pair Int Color). Lines 8–9
contain an assertion, its formula is obvious. The (check-sat) command in line
9 instructs the SMT-LIB prover to check the assertions for satisfiability. ��

Introducing overloaded function symbols in scripts is not supported. How-
ever, theories can declare ad-hoc polymorphic function symbols. Indeed, com-
mon SMT-LIB theories make heavy use of this. For example, equality (=), in
the core theory, is of rank S × S �→ Bool for any sort S. The theory of arrays
declares a binary sort constructor Array and select and store operators with
ranks Array(S, T) × S �→ T and Array(S,T) × S × T �→ Array(S, T), respec-
tively, for any sorts S and T .

TFF. The TFF format provides a useful extension of the untyped TPTP first-
order logic format by a simple many-sorted type scheme. Types are interpreted
by non-empty, pairwise disjoint, domains.

The TFF format described in [6] is just the core TFF0 of a polymorphic
typed first-order format TFF1 [2]. The paper [6] also extends TFF by predefined
types and operators for integer, rational and real arithmetics, which is the target
language of SMTtoTPTP .1

The TFF format supports declaring (0-ary) types and function and predicate
symbols over predefined and these declared types. A TFF file typically contains
such declarations along with axioms and conjecture formulas over the input
signature given by the declarations. In a refutational setting, conjectures need
to be negated before conjoining them with the axioms.

The predefined types are the mentioned arithmetic ones and a type of indi-
viduals. Equality and the arithmetic operators are ad-hoc polymorphic over the
1 The correct short name of this language is “TFA”, TFF with arithmetics. However,

most of the features of the translation are arithmetics agnostic, and so I use “TFF”.

288 P. Baumgartner

types. All user-defined, i.e., uninterpreted, operators are monomorphic. In the
input formulas only the variables need explicit typing, which happens in quan-
tifications. Together with the signature information this is enough for checking
well-typedness.

Example 2.2. The following is a TFF specification corresponding to
Example 2.1. It was obtained by the SMTtoTPTP program.

1 %% Types:

2 tff(’Pair’, type,’Pair[Int,Color]’: $tType).

3 tff(’Color’, type,’Color’: $tType).

4

5 %% Declarations:

6 tff(get_int, type, get_int:’Pair[Int,Color]’ > $int).

7 tff(int_color_pair, type, int_color_pair:

8 ($int *’Color’) >’Pair[Int,Color]’).

9

10 %% Assertions:

11 %% (forall ((i Int) (c Color)) (= (get-int (int-color-pair i c)) i))

12 tff(formula, axiom,

13 (! [I:$int, C:’Color’] : (get_int(int_color_pair(I, C)) = I))).

A tff-triple consists of a name, a role, and a “formula”, in this order. The roles
used by SMTtoTPTP are either type, for declaring types and operators with
their ranks, or axiom, for input formulas.

The TFF syntax reserves identifiers starting with capital letters for vari-
ables. Non-variable identifiers can always be written between pairs of ’-quotes.
The example above makes heavy use of that. Lines 2 and 3 declare the
types ’Pair[Int,Color]’ and ’Color’, corresponding to the sorts (Pair Int
Color) and Color in Example 2.1. Notice there is no “sort” Int-Pair, as all
occurrences of Int-Pair-expressions have been removed by expansion. Lines 6
and 7 declare the same function symbols as in Example 2.1, however with the
sorts expanded. Finally, the asserted formula in Example 2.1 has its counterpart
in TFF-syntax in lines 11–13 above. ��

3 SMTtoTPTP Algorithm

A regular run of SMTtoTPTP has four stages.

Parsing. In the first stage the commands in the input file are parsed into
abstract syntax trees (ASTs), one per command. The parser has been conve-
niently implemented with the Scala Standard Parser Combinator Library. The
ASTs for declarations, definitions and assertions are built over Scala classes
(rather: instances thereof) corresponding to syntactical SMT-LIB entities such
as arithmetic domain elements, constants and functional terms, let-terms, ite-
terms, quantifications, sort expressions, etc.

If the set logic includes the theory of arrays, or the user explicitly asks for
it, the following declarations are added to the ASTs:

SMTtoTPTP – A Converter for Theorem Proving Formats 289

1 (declare-sort Array 2)

2 (declare-parametric-fun (I E) select ((Array I E) I) E)

3 (declare-parametric-fun (I E) store ((Array I E) I E) (Array I E))

The declare-parametric-fun command declares parametric function symbols
in the obvious way. It is meant to be useful in context with other theories as
well. See Sect. 5 below for an example. In particular it provides type-checking
for parametric operators for free. The declare-parametric-fun command is
not in the SMT-LIB. This is not a problem, however, because it is hidden from
the user.

Semantic Analysis. In the second stage the ASTs are analyzed semantically.
This requires decomposing the commands into their constituents, which can be
programmed in a convenient way thanks to Scala’s pattern matching facilities.
The main result of the analysis are various tables holding signature and other
information about declared and defined function symbols and sorts. With these
tables, the sort of any subterm in an assertion can be computed by expansion, as
explained in Sect. 2. This is important for type checking and in the subsequent
stages.

Transformations. In the third stage several transformations on the assertions
are carried out, all on the AST level.

Removal of defined functions. All function definitions are transformed into addi-
tional assertions. This is done with a universally quantified equation between the
function symbol applied to the specified variables and its body. SMTtoTPTP
thus does not expand function definitions. The rationale is to gain flexibility by
letting a theorem prover later decide whether to expand or not.2

Let-terms. Both the SMT-LIB and TFF formats feature “let” expressions.
Unfortunately they are incompatible. An SMT-LIB let expression works much
like a binder for local variables as in functional programming languages. The TFF
let construct is used to locally define function or predicate symbols as syntac-
tic macros. SMTtoTPTP deals with this problem by transforming SMT-LIB let
expressions into existentially quantified formulas over the bound variables. This
requires lifting these bindings from the term level to the formula level, thereby
avoiding unintended name capturing. More precisely, the transformation works
as follows.

Let φ[(let ((x t)) s)] be an SMT-LIB Bool-sorted term, where t is the
term bound to the variable x in s (x must not be free in t). For the purpose of the
transformation such a term φ must always exist, as let-terms occur in assertions
only, which are always Bool-sorted. Assume that φ is the smallest Bool-sorted
subformula in an assertion containing a let term, written as above, and that the
let-term is an outermost one. Let σ(t) denote the sort of term t.
2 Defined functions could also be removed by translation into TFF let-terms, but

this is clumsy as it may lead to individual let-terms in every axiom and conjecture.
Moreover, let-terms are not supported by many TFF systems.

290 P. Baumgartner

If σ(t) is not Bool then the let-term is removed by existential quantification.
More precisely, using SMT-LIB syntax, φ is replaced by the formula (exists
((xρ σ(t)) (and (= xρ t) (φ[sρ])))), where ρ is a renaming substitution that
maps x to a fresh variable. The renaming is needed to avoid unintended variable
capturing when lifting x outwards, as usual.

If σ(t) is Bool then the above transformation is not possible, as TFF does not
support quantification over boolean variables. In this case SMTtoTPTP removes
the let-term by substituting x by t in s.

The above step is repeated until all let-terms are removed. The actual imple-
mentation is more efficient and requires one subterm traversal per assertion only.

Alternatively to existential quantification, all let-terms could be handled by
substitution. SMTtoTPTP does not do that, however, because it may lead to
exponentially larger terms.

Ite-terms. Both the SMT-LIB and TFF formats feature “if-then-else” constructs
(ite). Fortunately, they are compatible. SMTtoTPTP offers the option to either
keep ite-expressions in place or to transform them away. The latter is use-
ful because not all TFF systems support ite. For example, the expression (<
(+ (ite (< 1 2) 3 4) 5) 6) is transformed into (and (=> (< 1 2) (< (+
3 5) 6)) (=> (not (< 1 2)) (< (+ 4 5) 6))).

Array axioms. The TFF format has no predefined semantics for arrays. Hence,
array axioms need to be generated as needed. This is done by sort-instantiating
array axiom templates, for each array-sorted term occurring in the assertions.

Example 3.1. Assume an SMT-LIB specification

1 (set-logic AUFLIA)

2 (declare-sort Color 0)

3 (declare-fun red () Color)

4 (declare-fun a () (Array Int Color))

5 (declare-fun b () (Array Int Int))

6 (assert (= (select a 0) red))

The sole array-sorted term in assertions here is a, which has the sort (Array
Int Color). The following axioms are added:

1 (forall ((a (Array Int Color)) (i Int) (e Color))

2 (= (select (store a i.e.) i) e))

3 (forall ((a (Array Int Color)) (i Int) (j Int) (e Color))

4 (=> (distinct i j) (= (select (store a i.e.) j) (select a j))))

5 (forall ((a (Array Int Color)) (b (Array Int Color)))

6 (=> (forall ((i Int)) (= (select a i) (select b i))) (= a b)))

These are standard axioms for arrays with extensional equality, sorted as
required. ��

SMTtoTPTP – A Converter for Theorem Proving Formats 291

TFF Generation. In the fourth stage the TFF output is generated. It starts
with TFF type declarations tff(nameTFF, type,σTFF: $tType) for every sort
σ of every subterm in every assertion. The identifier σTFF is a TFF identifier
for the SMT-LIB sort σ. The TFF type identifier σTFF is merely a print repre-
sentation of the sort σ, and nameTFF is a prefix of that. As special cases, the
predefined arithmetic SMT-LIB sorts Int and Real are taken as the TFF types
$int and $real, respectively.

Next, a TFF type declaration consisting of the name and rank is emitted
for every operator occurring in the assertions. As explained in Sect. 2, SMT-LIB
theories may declare polymorphic function symbols. The equality and arithmetic
function symbols pose no problems as these have direct counterparts in TFF.
Array expressions, however, involving the polymorphic select and store operators
need monomorphization and axioms for each monomorphized operator.

Monomorphization is done by including the operators rank in the name of
the TFF operator. More precisely, if (f t1 · · · tn) is an application of the
polymorphic operator f to terms t1, . . . , tn, then SMTtoTPTP synthesizes an
identifier, conveniently a valid TFF one, fTFF = ‘f:(σ(t1) ∗ · · · ∗ σ(tn)>σn+1)’
. The sort σn+1 is the result sort of the term (f t1 · · · tn) which is obtained
by applying the declaration of f to σ(t1), . . . , σ(tn). The rank of the operator
fTFF to be declared in the generated TFF hence is σTFF

1 × · · · ×TFF �→ σTFF
n+1 .

Notice the identifier fTFF contains enough information to distinguish it from
other applications of f with different sorts.

A special case occurs when the result sort in the declaration of f contains a
free sort parameter. To avoid an error, explicit coercion is needed. For example,
the “empty list of integers” could correctly be expressed as the term (as empty
(List Int)), cf. Sect. 5. Monomorphization respects such coercions.

Finally, each assertion is written out as a TFF axiom. The axioms are
obtained by recursively traversing the assertions’ subterms and converting them
into TFF terms and formulas. By and large this is straightforward translation
from one syntax into another. Some comments:

– The SMT-LIB and TFF syntax of, e.g., operators and variables are rather
different. SMTtoTPTP tries to re-use the given SMT-LIB identifiers without
or only little modifications in the generated TFF. For example, an SMT-LIB
variable can often be turned into a TFF variable by capitalizing the first letter.

– Certain SMT-LIB operators are varyadic and carry attributes like chainable,
associative or pairwise. These attributes say how to translate n-ary terms
over these operators into binary ones. For example, the equality operator is
chainable: an expression (= t1 · · · tn) is first expanded into the conjunction
(and (= t1 t2) · · · (= tn−1 tn) before converted to TFF.
An exception is the distinct operator, which has a pairwise attribute. An
expression (distinct t1 · · · tn) is optionally directly translated into the
TFF counterpart using the $distinct predicate symbol. However, $distinct
can be used only as a fact, not under any connective. If not at the top-
level of an assertion, the expression is translated into the conjunction of the
expressions (not (= ti tj)), for all i, j = 1, . . . , n with i �= j.

292 P. Baumgartner

– The array operators select and store are monomorphized.
– SMT-LIB equations between Bool-sorted terms are turned into bi-

implications.
– set-option commands carry over their argument into a TFF comment. For

example, (set-option :answer 42) translates into %$:answer 42. Some
options control the behaviour of SMTtoTPTP , e.g., whether to expand ite-
terms or not.

Example 3.2. Example 3.1 above is converted into the following TFF. The last
two array axioms are omitted for space reasons.

1 %% Types:

2 tff(’Color’, type, ’Color’: $tType).

3 tff(’Array’, type, ’Array[Int,Color]’: $tType).

4

5 %% Declarations:

6 tff(red, type, red: ’Color’).

7 tff(a, type, a: ’Array[Int,Color]’).

8 tff(select, type, ’select:(Array[Int,Color]*Int)>Color’:

9 (’Array[Int,Color]’ * $int) > ’Color’).

10 tff(store, type, ’store:(Array[Int,Color]*Int*Color)>Array[Int,Color]’:

11 (’Array[Int,Color]’ * $int * ’Color’) > ’Array[Int,Color]’).

12

13 %% Assertions:

14 %% (= (select a 0) red)

15 tff(formula, axiom,

16 (’select:(Array[Int,Color]*Int)>Color’(a, 0) = red)).

17 %% (forall ((a (Array Int Color)) (i Int) (e Color))

18 %% (= (select (store a i.e.) i) e))

19 tff(formula, axiom,

20 (! [A:’Array[Int,Color]’, I:$int, E:’Color’] :

21 (’select:(Array[Int,Color]*Int)>Color’(

22 ’store:(Array[Int,Color]*Int*Color)>Array[Int,Color]’(

23 A, I, E), I) = E))).

��

4 Limitations

SMTtoTPTP is meant to support a comprehensive subset of the SMT-LIB lan-
guage and the logics and theories in [4]. Table 1 lists the SMT-LIB language
elements for scripts and their status wrt. SMTtoTPTP .

Some of the unsupported language elements in Table 1 will be added later,
e.g., indexed identifiers such as (a 5). Other elements are intrinsicly problem-
atic, in particular the push and pop commands. These commands are used for
managing a stack of asserted formulas (typically) for incremental satisfiability

SMTtoTPTP – A Converter for Theorem Proving Formats 293

checks. This is not supported by the TPTP language, and hence SMTtoTPTP
throws an error on encountering a push or pop command. All other commands
(e.g., get-proof) are untranslatable and can be ignored.

Table 1. Supported SMT-LIB script language elements.

Logics

Supported: [QF][A][UF][(L|N)(IA|RA|IRA)] Unsupported: bitvectors, difference logic

Commands

Supported: set-logic, declare-sort,
define-sort,

Unsupported: push, pop

declare-fun, define-fun, assert, exit All other commands ignored

Tokens

Supported: numeral, decimal, symbol Unsupported: hexadecimal, binary, string

Other Elements

Unsupported: indexed identifiers, logic declarations, theory declarations

SMTtoTPTP supports a fixed set of logics. The regular expression in Table 1
denotes their SMT-LIB names. For example, QF AUFLIRA means “quantifier-free
logic over the combined theories of arrays, uninterpreted function symbols, and
mixed linear and real arithmetics”. Notice that every logic includes the core
theory, which offers a comprehensive set of boolean-sorted operators, including
equality and if-then-else.

SMTtoTPTP does not deal with SMT-LIB theory and logic declarations. As
their semantics is described informally, SMTtoTPTP can not make much use of
them. However, as said, the core theory and the theories of arrays, integer and
real arithmetic are built-in.

5 Extensions

Inspired by the Z3 SMT solver [3], SMTtoTPTP extends the SMT-LIB standard
by datatype definitions. Datatypes can be used to define enumeration types,
tuples, records, and recursive data structures like lists, to name a few. The
syntax of datatype definitions involves sort parameters and the constructors
and destructors for elements of the datatype. Here are some examples:

1 (declare-datatypes () ((Color red green blue)))

2 (declare-datatypes (S T) ((Pair (mk-pair (first S) (second T)))))

3 (declare-datatypes (T) ((List nil (insert (head T) (tail (List T))))))

Line 1 defines an enumeration datatype with three constructors, as stated. Line
2 defines pairs over the product type S×T, where S and T are type parameters.
Line 3 defines the usual polymorphic list datatype, where nil and insert are
constructors, and head and tail are the destructors for the insert-case.

294 P. Baumgartner

The conversion to TFF of the list datatype with a (List Int) sort instance,
for example, is equivalent to the conversion of the following SMT-LIB commands:

1 (declare-sort List 1)

2 (declare-parametric-fun (T) nil () (List T))

3 (declare-parametric-fun (T) insert (T (List T)) (List T))

4 (declare-parametric-fun (T) head ((List T)) T)

5 (declare-parametric-fun (T) tail ((List T)) (List T))

6 (assert (forall ((L (List Int)))

7 (or (= L (as nil (List Int))) (= L (insert (head L) (tail L))))))

8 (assert (forall ((N Int) (L (List Int))) (= (head (insert N L)) N)))

9 (assert (forall ((N Int) (L (List Int))) (= (tail (insert N L)) L)))

10 (assert (forall ((N Int) (L (List Int)))

11 (not (= (as nil (List Int)) (insert N L)))))

SMTtoTPTP does not do type inference. All occurrences of type-ambiguous
constructor terms must be explicitly cast to the proper sort. In the list example,
(only) nil terms must be explicitly cast, as in (as nil (List Int)).

The theory of arrays has been extended with constant arrays, i.e., arrays that
have the same element everywhere.

6 Other Features

SMTtoTPTP is available at https://bitbucket.org/peba123/smttotptp under a
GNU General Public License. The distribution includes the Scala3 source code
and a ready-to-run Java jar-file. SMTtoTPTP can also be used as a library for
parsing SMT-LIB files into an abstract syntax tree.

References

1. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta,
A., Kroening, D. (eds.) SMT Workshop (2010)

2. Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-1
polymorphism. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 414–420.
Springer, Heidelberg (2013)

3. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

4. SMT-LIB.: The Satisfiability Modulo Theories Library. http://smt-lib.org/
5. Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF

and CNF parts, v3.5.0. J. Autom. Reason. 43(4), 337–362 (2009)
6. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-order

form with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS,
vol. 7180, pp. 406–419. Springer, Heidelberg (2012)

7. The TPTP Problem Library for Automated Theorem Proving. http://www.cs.
miami.edu/tptp/

3 http://www.scala-lang.org.

https://bitbucket.org/peba123/smttotptp
http://smt-lib.org/
http://www.cs.miami.edu/tptp/
http://www.cs.miami.edu/tptp/
http://www.scala-lang.org

CTL Model Checking in Deduction Modulo

Kailiang Ji(B)

INRIA and Paris Diderot, 23 Avenue d’Italie, CS 81321,
75214 Paris Cedex 13, France

kailiang.ji@inria.fr

Abstract. In this paper we give an overview of proof-search method for
CTL model checking based on Deduction Modulo. Deduction Modulo is
a reformulation of Predicate Logic where some axioms—possibly all—are
replaced by rewrite rules. The focus of this paper is to give an encod-
ing of temporal properties expressed in CTL, by translating the logical
equivalence between temporal operators into rewrite rules. This way, the
proof-search algorithms designed for Deduction Modulo, such as Reso-
lution Modulo or Tableaux Modulo, can be used in verifying temporal
properties of finite transition systems. An experimental evaluation using
Resolution Modulo is presented.

Keywords: Model checking · Deduction modulo · Resolution modulo

1 Introduction

In this paper, we express Computation Tree Logic (CTL) [4] for a given
finite transition system in Deduction Modulo [6,7]. This way, the proof-search
algorithms designed for Deduction Modulo, such as Resolution Modulo [2] or
Tableaux Modulo [5], can be used to build proofs in CTL. Deduction Mod-
ulo is a reformulation of Predicate Logic where some axioms—possibly all—are
replaced by rewrite rules. For example, the axiom P ⇔ (Q ∨ R) can be replaced
by the rewrite rule P ↪→ (Q ∨ R), meaning that during the proof, P can be
replaced by Q ∨ R at any time.

The idea of translating CTL to another framework, for instance (quantified)
boolean formulae [1,14,16], higher-order logic [12], etc., is not new. But using
rewrite rules permits to avoid the explosion of the size of formulae during trans-
lation, because rewrite rules can be used on demand to unfold defined symbols.
So, one of the advantages of this method is that it can express complicated ver-
ification problems succinctly. Gilles Dowek and Ying Jiang had given a way to
build an axiomatic theory for a given finite model [9]. In this theory, the formulae
are provable if and only if they are valid in the model. In [8], they gave a slight
extension of CTL, named SCTL, where the predicates may have arbitrary ari-
ties. And they defined a special sequent calculus to write proofs in SCTL. This

K. Ji — This work is supported by the ANR-NSFC project LOCALI (NSFC
61161130530 and ANR 11 IS02 002 01).

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 295–310, 2015.
DOI: 10.1007/978-3-319-21401-6 20

296 K. Ji

sequent calculus is special because it is tailored to each specific finite model M .
In this way, a formula is provable in this sequent calculus if and only if it is valid
in the model M . In our method, we characterize a finite model in the same way
as [9], but instead of building a deduction system, the CTL formulae are taken as
terms, and the logical equivalence between different CTL formulae are expressed
by rewrite rules. This way, the existing automated theorem modulo provers,
for instance iProver Modulo [3], can be used to do model checking directly. The
experimental evaluation shows that the resolution based proof-search algorithms
is feasible, and sometimes performs better than the existing solving techniques.

The rest of this paper is organized as follows. In Sect. 2 a new variant of
Deduction Modulo for one-sided sequents is presented. In Sect. 3, the usual
semantics of CTL is presented. Sections 4 and 5 present the new results of this
paper: in Sect. 4, an alternative semantics for CTL on finite structures is given;
in Sect. 5, the rewrite rules for each CTL operator are given and the soundness
and completeness of this presentation of CTL is proved, using the semantics
presented in the previous section. Finally in Sect. 6, experimental evaluation for
the feasibility of rewrite rules using resolution modulo is presented.

2 Deduction Modulo

One-Sided Sequents. In this work, instead of using usual sequents of the
form A1, . . . , An � B1, . . . , Bp, we use one-sided sequents [13], where all the
propositions are put on the right hand side of the sequent sign � and the sequent
above is transformed into � ¬A1, . . . ,¬An, B1, . . . , Bp. Moreover, implication
is defined from disjunction and negation (A ⇒ B is just an abbreviation for
¬A ∨ B), and negation is pushed inside the propositions using De Morgan’s
laws. For each atomic proposition P we also have a dual atomic proposition P⊥

corresponding to its negation, and the operator ⊥ extends to all the propositions.
So that the axiom rule can be formulated as

axiom, if P and Q are dual atomic propositions� P,Q

Deduction Modulo. A rewrite system is a set R of term and proposition
rewrite rules. In this paper, only proposition rewrite rules are considered. A
proposition rewrite rule is a pair of propositions l ↪→ r, in which l is an atomic
proposition and r an arbitrary proposition. For instance, P ↪→ Q ∨ R. Such
a system defines a congruence ↪→ and the relation

∗
↪→ is defined, as usual, as

the reflexive-transitive closure of ↪→. Deduction Modulo [7] is an extension of
first-order logic where axioms are replaced by rewrite rules and in a proof, a
proposition can be reduced at any time. This possibility is taken into account
in the formulation of Sequent Calculus Modulo in Fig. 1. For example, with the
axiom (Q ⇒ R) ⇒ P we can prove the sequent R � P . This axiom is replaced
by the rules P ↪→ Q⊥ and P ↪→ R and the sequent R � P is expressed as the
one-sided sequent � R⊥, P . This sequent has the proof

axiom� R⊥, P

as P
∗

↪→ R.

CTL Model Checking in Deduction Modulo 297

Fig. 1. One-sided Sequent Calculus Modulo

Note that as our system is negation free, all occurrences of atomic proposi-
tions are positive. Thus, the rule P ↪→ A does not correspond to an equivalence
P ⇔ A but to an implication A ⇒ P . In other words, our one-sided presentation
of Deduction Modulo is closer to Polarized Deduction Modulo [6] with positive
rules only, than to the usual Deduction Modulo. The sequent �R Δ has a cut-free
proof is represented as �cf

R Δ has a proof.

3 Computation Tree Logic

Properties of a transition system can be specified by temporal logic propositions.
Computation tree logic is a propositional branching-time temporal logic intro-
duced by Emerson and Clarke [4] for finite state systems. Let AP be a set of
atomic propositions and p ranges over AP . The set of CTL propositions Φ over
AP is defined as follows:

Φ ::= p | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | AXΦ | EXΦ | AFΦ | EFΦ | AGΦ | EGΦ
| A[ΦUΦ] | E[ΦUΦ] | A[ΦRΦ] | E[ΦRΦ]

The semantics of CTL can be given using Kripke structure, which is used in
model checking to represent the behavior of a system.

Definition 1 (Kripke Structure). Let AP be a set of atomic propositions.
A Kripke structure M over AP is a three tuple M = (S, next, L) where

– S is a finite (non-empty) set of states.
– next : S → P+(S) is a function that gives each state a (non-empty) set of

successors.
– L : S → P(AP) is a function that labels each state with a subset of AP .

An infinite path is an infinite sequence of states π = π0π1 · · · s.t. ∀i ≥ 0,
πi+1 ∈ next(πi). Note that the sequence πiπi+1 · · · πj is denoted as πj

i and the
path π with π0 = s is denoted as π(s).

298 K. Ji

Definition 2 (Semantics of CTL). Let p be an atomic proposition. Let ϕ,
ϕ1, ϕ2 be CTL propositions. The relation M, s |= ϕ is defined as follows.

M, s |= p ⇔ p ∈ L(s)
M, s |= ¬ϕ1 ⇔ M, s |�= ϕ1

M, s |= ϕ1 ∧ ϕ2 ⇔ M, s |= ϕ1 and M, s |= ϕ2

M, s |= ϕ1 ∨ ϕ2 ⇔ M, s |= ϕ1 or M, s |= ϕ2

M, s |= AXϕ1 ⇔ ∀s′ ∈ next(s), M, s′ |= ϕ1

M, s |= EXϕ1 ⇔ ∃s′ ∈ next(s), M, s′ |= ϕ1

M, s |= AGϕ1 ⇔ ∀π(s), ∀i ≥ 0, M, πi |= ϕ1

M, s |= EGϕ1 ⇔ ∃π(s) s.t. ∀i ≥ 0, M, πi |= ϕ1

M, s |= AFϕ1 ⇔ ∀π(s), ∃i ≥ 0 s.t. M, πi |= ϕ1

M, s |= EFϕ1 ⇔ ∃π(s), ∃i ≥ 0 s.t. M, πi |= ϕ1

M, s |= A[ϕ1Uϕ2] ⇔ ∀π(s), ∃j ≥ 0 s.t. M, πj |= ϕ2 and ∀0 ≤ i < j, M, πi |= ϕ1

M, s |= E[ϕ1Uϕ2] ⇔ ∃π(s), ∃j ≥ 0 s.t. M, πj |= ϕ2 and ∀0 ≤ i < j, M, πi |= ϕ1

M, s |= A[ϕ1Rϕ2] ⇔ ∀π(s), ∀j ≥ 0, either M, πj |= ϕ2 or ∃0 ≤ i < j s.t. M, πi |= ϕ1

M, s |= E[ϕ1Rϕ2] ⇔ ∃π(s), ∀j ≥ 0, either M, πj |= ϕ2 or ∃0 ≤ i < j s.t. M, πi |= ϕ1

4 Alternative Semantics of CTL

In this part we present an alternative semantics of CTL using finite paths only.

Paths with the Last State Repeated (lr-Paths). A finite path is a lr-path
if and only if the last state on the path occurs twice. For instance s0, s1, s0 is a
lr-path. Note that we use ρ = ρ0ρ1 . . . ρj to denote a lr-path. A lr-path ρ with
ρ0 = s is denoted as ρ(s), with ρi = ρj is denoted as ρ(i, j). The length of a
path l is expressed by len(l) and the concatenation of two paths l1, l2 is l1ˆl2.

Lemma 1. Let M be a Kripke structure.

1. If π is an infinite path of M , then ∃i ≥ 0 such that πi
0 is a lr-path.

2. If ρ(i, j) is a lr-path of M , then ρi
0 (̂ρj

i+1)
ω is an infinite path.

Proof. For Case 1, as M is finite, there exists at least one repeating state in
π. If πi is the first state which occurs twice, then πi

0 is a lr-path. Case 2 is
trivial. �
Lemma 2. Let M be a Kripke structure.

1. For the path l = s0, s1, . . . , sk, there exists a finite path l′ = s′
0, s

′
1, . . . , s

′
i

without repeating states s.t. s′
0 = s0, s′

i = sk, and ∀0 < j < i, s′
j is on l.

2. If there is a path from s to s′, then there exists a lr-path ρ(s) s.t. s′ is on ρ.

Proof. For the first case, l′ can be built by deleting the cycles from l. The second
case is straightforward by the first case and Lemma 1. �
Definition 3 (Alternative Semantics of CTL). Let p be an atomic propo-
sition and ϕ,ϕ1, ϕ2 be CTL propositions. The relation M, s |=a ϕ is defined as
follows.

CTL Model Checking in Deduction Modulo 299

M, s |=a p ⇔ p ∈ L(s)

M, s |=a ¬ϕ1 ⇔ M, s |�=a ϕ1

M, s |=a ϕ1 ∧ ϕ2 ⇔ M, s |=a ϕ1 and M, s |=a ϕ2

M, s |=a ϕ1 ∨ ϕ2 ⇔ M, s |=a ϕ1 or M, s |=a ϕ2

M, s |=a AXϕ1 ⇔ ∀s′ ∈ next(s), M, s′ |=a ϕ1

M, s |=a EXϕ1 ⇔ ∃s′ ∈ next(s), M, s′ |=a ϕ1

M, s |=a AFϕ1 ⇔ ∀ρ(s), ∃i < len(ρ) − 1 s.t. M, ρi |=a ϕ1

M, s |=a EFϕ1 ⇔ ∃ρ(s), ∃i < len(ρ) − 1 s.t. M, ρi |=a ϕ1

M, s |=a AGϕ1 ⇔ ∀ρ(s), ∀i < len(ρ) − 1, M, ρi |=a ϕ1

M, s |=a EGϕ1 ⇔ ∃ρ(s), ∀i < len(ρ) − 1, M, ρi |=a ϕ1

M, s |=a A[ϕ1Uϕ2] ⇔ ∀ρ(s), ∃i < len(ρ) − 1 s.t. M, ρi |=a ϕ2 and ∀j < i, M, ρj |=a ϕ1

M, s |=a E[ϕ1Uϕ2] ⇔ ∃ρ(s), ∃i < len(ρ) − 1 s.t. M, ρi |=a ϕ2 and ∀j < i, M, ρj |=a ϕ1

M, s |=a A[ϕ1Rϕ2] ⇔ ∀ρ(s), ∀i < len(ρ) − 1, M, ρi |=a ϕ2 or ∃j < i s.t. M, ρj |=a ϕ1

M, s |=a E[ϕ1Rϕ2] ⇔ ∃ρ(s), ∀i < len(ρ) − 1, M, ρi |=a ϕ2 or ∃j < i s.t. M, ρj |=a ϕ1

We now prove the equivalence of the two semantics, that is, M, s |= ϕ iff
M, s |=a ϕ. To simplify the proofs, we use a normal form of the CTL propositions,
in which all the negations appear only in front of the atomic propositions.

Negation Normal Form. A CTL proposition is in negation normal form
(NNF), if the negation ¬ is applied only to atomic propositions. Every CTL
proposition can be transformed into an equivalent proposition of NNF using the
following equivalences.

¬¬ϕ ≡ ϕ
¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ ¬AFϕ ≡ EG¬ϕ ¬A[ϕUψ] ≡ E[¬ϕR¬ψ]
¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ ¬EFϕ ≡ AG¬ϕ ¬E[ϕUψ] ≡ A[¬ϕR¬ψ]
¬AXϕ ≡ EX¬ϕ ¬AGϕ ≡ EF¬ϕ ¬A[ϕRψ] ≡ E[¬ϕU¬ψ]
¬EXϕ ≡ AX¬ϕ ¬EGϕ ≡ AF¬ϕ ¬E[ϕRψ] ≡ A[¬ϕU¬ψ]

Lemma 3. Let ϕ be a CTL proposition of NNF. If M, s |= ϕ, then M, s |=a ϕ.

Proof. By induction on the structure of ϕ. For brevity, we just prove the two
cases where ϕ is AFϕ1 and AGϕ1. The full proof is in [10].

– Let ϕ = AFϕ1. We prove the contraposition. If there is a lr-path ρ(s)(j, k)
s.t. ∀0 ≤ i < k, M,ρi |�= ϕ1, then by Lemma 1, there exists an infinite path
ρj
0 (̂ρk

j+1)
ω, which is a counterexample of M, s |= AFϕ1. Thus for each lr-path

ρ(s), ∃0 ≤ i < len(ρ) − 1 s.t. M,ρi |= ϕ1 holds. Then by induction hypothesis
(IH), for each lr-path ρ(s), ∃0 ≤ i < len(ρ) − 1 s.t. M,ρi |=a ϕ1 holds, and
thus M, s |=a AFϕ1 holds.

– Let ϕ = AGϕ1. We prove the contraposition. If there is a lr-path ρ(s)(j, k)
and ∃0 ≤ i < k s.t. M,ρi |�= ϕ1, then by Lemma 1, there exists an infinite
path ρj

0 (̂ρk
j+1)

ω, which is a counterexample of M, s |= AGϕ1. Thus for each
lr-path ρ(s)(j, k) and ∀0 ≤ i < k, M,ρi |= ϕ1 holds. Then by IH, for each
lr-path ρ(s)(j, k) and ∀0 ≤ i < k, M,ρi |=a ϕ1 holds, and thus M, s |=a AGϕ1

holds. �

300 K. Ji

Lemma 4. Let ϕ be a CTL proposition of NNF. If M, s |=a ϕ, then M, s |= ϕ.

Proof. By induction on the structure of ϕ. For brevity, we just prove the two
cases where ϕ is AFϕ1 and AGϕ1. The full proof is in [10].

– Let ϕ = AFϕ1. If there is an infinite path π(s) s.t. ∀j ≥ 0, M,πj |�=a ϕ1, then
by Lemma 1, there exists k ≥ 0 s.t. πk

0 is a lr-path, which is a counterexample
of M, s |=a AFϕ1. Thus for each infinite path π(s), ∃j ≥ 0 s.t. M,πj |=a ϕ1

holds. Then by IH, for each infinite path π(s), ∃j ≥ 0 s.t. M,πj |= ϕ1 holds
and thus M, s |= AFϕ1 holds.

– Let ϕ = AGϕ1. Assume that there exists an infinite path π(s) and ∃i ≥ 0,
M,πi |�=a ϕ1. By Lemma 2, there exists a lr-path ρ(s) s.t. πi is on ρ, which
is a counterexample of M, s |=a AGϕ1. Thus for each infinite path π(s) and
∀i ≥ 0, M,πi |=a ϕ1 holds. Then by IH, for each infinite path π(s) and ∀i ≥ 0,
M,πi |= ϕ1 holds and thus M, s |= AGϕ1 holds. �

Theorem 1. Let ϕ be a CTL proposition. M, s |= ϕ iff M, s |=a ϕ.

5 Rewrite Rules for CTL

The work in this section is to express CTL propositions in Deduction Modulo
and prove that for a CTL proposition ϕ, the translation of M, s |=a ϕ is provable
if and only if M, s |=a ϕ holds. So we fix such a model M = (S, next, L). As in
[9], we consider a two sorted language L, which contains

– constants s1, . . . , sn for each state of M .
– predicate symbols ε0, ε�0 , ε�0 , ε1, ε�1 , ε�1 , in which the binary predicates ε0,

ε�0 and ε�0 apply to all the CTL propositions, while the ternary predicates
ε1, ε�1 and ε�1 only apply to the CTL propositions starting with the temporal
connectives AG, EG, AR and ER.

– binary predicate symbols mem for the membership, r for the next-notation.
– a constant nil and a binary function symbol con.

We use x, y, z to denote the variables of the state terms, X,Y,Z to denote the
class variables. A class is in fact a set of states, here we use the class theory,
rather than the (monadic) second order logic, is to emphasis that this formalism
is a theory and not a logic.

CTL Term. To express CTL in Deduction Modulo, firstly, we translate the
CTL proposition ϕ into a term |ϕ| (CTL term). The translation rules are as
follows:

|p| = p, p ∈ AP |EXϕ| = ex(|ϕ|) |A[ϕUψ]| = au(|ϕ|, |ψ|)
|¬ϕ| = not(|ϕ|) |AFϕ| = af(|ϕ|) |E[ϕUψ]| = eu(|ϕ|, |ψ|)
|ϕ ∧ ψ| = and(|ϕ|, |ψ|) |EFϕ| = ef(|ϕ|) |A[ϕRψ]| = ar(|ϕ|, |ψ|)
|ϕ ∨ ψ| = or(|ϕ|, |ψ|) |AGϕ| = ag(|ϕ|) |E[ϕRψ]| = er(|ϕ|, |ψ|)
|AXϕ| = ax(|ϕ|) |EGϕ| = eg(|ϕ|)

CTL Model Checking in Deduction Modulo 301

Note that we use Φ, Ψ to denote the variables of the CTL terms. Both finite sets
and finite paths are represented with the symbols con and nil. For the set S′ =
{si, . . . , sj}, we use [S′] to denote its term form con(si, con(. . . , con(sj , nil) . . .)).
For the path sj

i = si, . . . , sj , its term form con(sj , con(. . . , con(si, nil) . . .)) is
denoted by [sj

i].

Definition 4 (Semantics). Semantics of the propositions in L is as follows.

M |= ε0(|ϕ|, s) ⇔ M, s |=a ϕ
M |= r(s, [S′]) ⇔ S′ = next(s)
M |= mem(s, [si

0]) ⇔ s is on the path si
0

M |= ε�0(|ϕ|, [S′]) ⇔ ∀s ∈ S′, M |= ε0(|ϕ|, s)
M |= ε�0(|ϕ|, [S′]) ⇔ ∃s ∈ S′ s.t. M |= ε0(|ϕ|, s)
M |= ε1(ag(|ϕ1|), s, [si

0]) ⇔ ∀lr-path si
0 ˆsk

i+1(si+1 = s), ∀i < j < k,
M |= ε0(|ϕ1|, sj)

M |= ε1(eg(|ϕ1|), s, [si
0]) ⇔ ∃lr-path si

0 ˆsk
i+1(si+1 = s), ∀i < j < k,

M |= ε0(|ϕ1|, sj)
M |= ε1(ar(|ϕ1|, |ϕ2|), s, [si

0]) ⇔ ∀lr-path si
0 ˆsk

i+1(si+1 = s), ∀i < j < k,
Either M |= ε0(|ϕ2|, sj) or ∃i < m < j
s.t. M |= ε0(|ϕ1|, sm)

M |= ε1(er(|ϕ1|, |ϕ2|), s, [si
0]) ⇔ ∃lr-path si

0 ˆsk
i+1(si+1 = s), ∀i < j < k,

either M |= ε0(|ϕ2|, sj) or ∃i < m < j
s.t. M |= ε0(|ϕ1|, sm)

M |= ε�1(ag(|ϕ1|), [S′], [si
0]) ⇔ ∀s ∈ S′, M |= ε1(ag(|ϕ1|), s, [si

0])
M |= ε�1(eg(|ϕ1|), [S′], [si

0]) ⇔ ∃s ∈ S′ s.t. M |= ε1(eg(|ϕ1|), s, [si
0])

M |= ε�1(ar(|ϕ1|, |ϕ2|), [S′], [si
0]) ⇔ ∀s ∈ S′, M |= ε1(ar(|ϕ1|, |ϕ2|), s, [si

0])
M |= ε�1(er(|ϕ1|, |ϕ2|), [S′], [si

0]) ⇔ ∃s ∈ S′ s.t. M |= ε1(er(|ϕ1|, |ϕ2|), s, [si
0])

Note that when a proposition ε1(|ϕ|, s, [sj
i]) is valid in M , for instance M |=

ε1(eg(|ϕ|), s, [sj
i]), EGϕ may not hold on the state s.

Fig. 2. Example of L

Example 1. For the structure M in Fig. 2, M |= ε1(eg(p), s3, con(s2, con(s1, nil)))
holds because there exists a lr-path, for instance s1, s2, s3, s4, s2 such that p holds
on s3 and s4.

The Rewrite System R. The rewrite system has three components

1. rules for the Kripke structure M (denoted as RM),
2. rules for the class variables (denoted as Rc),
3. rules for the semantics encoding of the CTL operators (denoted as RCTL).

302 K. Ji

The Rules of RM The rules of RM are as follows:

– for each atomic proposition p ∈ AP and each state s ∈ S, if p ∈ L(s), then
ε0(p, s) ↪→ � is in RM , otherwise ε0(not(p), s) ↪→ � is in of RM .

– for each state s ∈ S, take r(s, [next(s)]) ↪→ � as a rewrite rule of RM .

The Rules of Rc For the class variables, as the domain of the model is finite,
there exists two axioms [9] ∀x(x = x), and ∀x∀y∀Z((x = y ∨ mem(x,Z)) ⇒
mem(x, con(y, Z))). The rewrite rules for these axioms are x = x ↪→ � and
mem(x, con(y, Z)) ↪→ x = y ∨ mem(x,Z). To avoid introducing the predicate
“=”, the rewrite rules are replaced by the rules (Rc)

mem(x, con(x,Z)) ↪→ � and mem(x, con(y, Z)) ↪→ mem(x,Z).

The Rules of RCTL The rewrite rules for the predicates carrying the semantic
definition of the CTL propositions, are in Fig. 3.

Fig. 3. Rewrite Rules for CTL Connectives (RCTL)

Now we are ready to prove the main theorem. Our goal is to prove that
M |= ε0(|ϕ|, s) holds if and only if ε0(|ϕ|, s) is provable in Deduction Modulo.

CTL Model Checking in Deduction Modulo 303

Lemma 5 (Soundness). For a CTL formula ϕ of NNF, if the sequent �cf
R

ε0(|ϕ|, s) has a proof, then M |= ε0(|ϕ|, s).
Proof. More generally, we prove that for any CTL proposition ϕ of NNF,

– if �cf
R ε0(|ϕ|, s) has a proof, then M |= ε0(|ϕ|, s).

– if �cf
R ε�0(|ϕ|, [S′]) has a proof, then M |= ε�0(|ϕ|, [S′]).

– if �cf
R ε�0(|ϕ|, [S′]) has a proof, then M |= ε�0(|ϕ|, [S′]).

– if �cf
R ε1(|ϕ|, s, [sj

i]) has a proof, in which ϕ is either of the form AGϕ1, EGϕ1,
A[ϕ1Rϕ2], E[ϕ1Rϕ2], then M |= ε1(|ϕ|, s, [sj

i]).
– if �cf

R ε�1(|ϕ|, [S′], [sj
i]) has a proof, in which ϕ is either of the form AGϕ1,

A[ϕ1Rϕ2], then M |= ε�1(|ϕ|, [S′], [sj
i]).

– if �cf
R ε�1(|ϕ|, [S′], [sj

i]) has a proof, in which ϕ is either of the form EGϕ1,
E[ϕ1Rϕ2], then M |= ε�1(|ϕ|, [S′], [sj

i]).

By induction on the size of the proof. Consider the different case for ϕ, we have
18 cases (2 cases for the atomic proposition and its negation, 2 cases for and and
or, 10 cases for the temporal connectives ax, ex, af, ef, ag, eg, au, eu, ar, er, 4
cases for the predicate symbols ε�0 , ε�0 , ε�1 , ε�0), but each case is easy. For
brevity, we just prove two cases. The full proof is in [10].

– Suppose the sequent �cf
R ε0(af(|ϕ|), s) has a proof. As ε0(af(|ϕ|), s) ↪→

ε0(|ϕ|, s) ∨ ∃X(r(s,X) ∧ ε�0(af(|ϕ|),X)), the last rule in the proof is ∨1 or
∨2. For ∨1, M |= ε0(|ϕ|, s) holds by IH, then M |= ε0(af(|ϕ|), s) holds by
its semantic definition. For ∨2, M |= ∃X(r(s,X) ∧ ε�0(af(|ϕ|),X)) holds by
IH, thus there exists S′ s.t. M |= r(s, [S′]) and M |= ε�0(af(|ϕ|), [S′]) holds.
Then we get S′ = next(s) and for each state s′ in S′, M |= ε0(af(|ϕ|), s′)
holds. Now assume M |�= ε0(af(|ϕ|), s), then there exists a lr-path ρ(s)(j, k)
s.t. ∀0 ≤ i < k, M |�= ε0(|ϕ|, ρi). For the path ρ(s)(j, k),

• if j �= 0, then ρk
1 is a lr-path, which is a counterexample of M |=

ε0(af(|ϕ|), ρ1).
• if j = 0, then ρk

1 ˆρ1 is a lr-path, which is a counterexample of M |=
ε0(af(|ϕ|), ρ1).

Thus M |= ε0(af(|ϕ|), s) holds by its semantic definition.
– Suppose that �cf

R ε1(ag(|ϕ|), s, [sj
i]) has a proof. As ε1(ag(|ϕ|), s, [sj

i]) ↪→
mem(s, [sj

i])∨ (ε0(|ϕ|, s)∧∃X(r(s,X)∧ ε�1(ag(|ϕ|),X, con(s, [sj
i])))), the last

rule in the proof is ∨1 or ∨2. For ∨1, M |= mem(s, [sj
i]) holds by IH, thus sj

i ˆs

is a lr-path and M |= ε1(ag(|ϕ|), s, [sj
i]) holds by its semantic definition. For

∨2, M |= ε0(|ϕ|, s) and M |= ∃X(r(s,X) ∧ ε�1(ag(|ϕ|),X, con(s, [s]ji))) holds
by IH. Thus there exists S′ s.t. M |= r(s, [S′]) ∧ ε�1(ag(|ϕ|), [S′], con(s, [sj

i]))
holds. Then by the semantic definition, S′ = next(s) and for each state s′ ∈ S′,
M |= ε1(ag(|ϕ|), s′, con(s, [sj

i])) holds. Thus M |= ε1(ag(|ϕ|), s, [sj
i]) holds by

its semantic definition.

Lemma 6 (Completeness). For a CTL formula ϕ of NNF, if M |= ε0(|ϕ|, s),
then the sequent �cf

R ε0(|ϕ|, s) has a proof.

304 K. Ji

Proof. By induction on the structure of ϕ. For brevity, here we just prove some
of the cases. The full proof is in [10].

– Suppose M |= ε0(af(|ϕ1|), s) holds. By the semantics of L, there exists a state
s′ on each lr-path starting from s s.t. M |= ε0(|ϕ1|, s′) holds. Thus there exists
a finite tree T s.t.

• T has root s;
• for each internal node s′ in T , the children of s′ are labelled by the

elements of next(s′);
• for each leaf s′, s′ is the first node in the branch starting from s s.t.

M |= ε0(|ϕ1|, s′) holds.
By IH, for each leaf s′, there exists a proof Π(ϕ1,s′) for the sequent �cf

R
ε0(|ϕ1|, s′). Then, to each subtree T ′ of T , we associate a proof |T ′| of the
sequent �cf

R ε0(af(|ϕ1|), s′) where s′ is the root of T ′, by induction, as follows,
• if T ′ contains a single node s′, then the proof |T ′| is as follows:

Π(ϕ1,s′) ∨1�cf
R ε0(af(|ϕ1|), s′)

• if T ′ = s′(T1, . . . , Tn), then the proof |T ′| is as follows:

�cf
R r(s′, [next(s′)])

|T1| . . . |Tn| ∧n

�cf
R ε�0(af(|ϕ1|), [next(s′)]) ∧

�cf
R r(s′, [next(s′)]) ∧ ε�0(af(|ϕ1|), [next(s′)])

∃�cf
R ∃X(r(s′, X) ∧ ε�0(af(|ϕ1|), X)) ∨2�cf

R ε0(af(|ϕ1|), s′)

This way, |T | is a proof of the sequent �cf
R ε0(af(|ϕ1|), s).

– Suppose M |= ε0(ag(|ϕ1|), s) holds. By the semantics of L, for each state s′

on each lr-path starting from s, M |= ε0(|ϕ1|, s′) holds. Thus there exists a
finite tree T s.t.

• T has root s;
• for each internal node s′ in T , the children of s′ are labelled by the

elements of next(s′);
• the branch starting from s to each leaf is a lr-path;
• for each internal node s′ in T , M |= ε0(|ϕ1|, s′) holds and by IH, there

exists a proof Π(ϕ1,s′) for the sequent �cf
R ε0(|ϕ1|, s′).

Then, to each subtree T ′ of T , we associate a proof |T ′| of the sequent �cf
R

ε1(ag(|ϕ1|), s′, [s′k−1
0]) where s′ is the root of T ′ and s′k

0 (s′
k = s′) is the branch

from s to s′, by induction, as follows,
• if T ′ contains a single node s′, then s′k

0 is a lr-path and the proof is as
follows: �cf

R mem(s′, [s′k−1
0]) ∨2�cf

R ε1(ag(|ϕ1|), s′, [s′k−1
0])

CTL Model Checking in Deduction Modulo 305

• if T ′ = s′(T1, . . . , Tn), the proof is as follows:

Πs′

	cf
R ε0(|ϕ1|, s′)

	cf

R r(s′, [next(s′)])

|T1| . . . |Tn| ∧n

	cf
R ε�1 (ag(|ϕ1|), [next(s′)], [s′k

0])
∧

	cf
R r(s′, [next(s′)]) ∧ ε�1 (ag(|ϕ1|), [next(s′)], [s′k

0])
∃

	cf
R ∃X(r(s′, X) ∧ ε�1 (ag(|ϕ1|), X, [s′k

0]))
∧

	cf
R ε0(|ϕ1|, s′) ∧ ∃X(r(s′, X) ∧ ε�1 (ag(|ϕ1|), X, [s′k

0])) ∨1

	cf
R ε1(ag(|ϕ1|), s′, [s′k−1

0])

This way, as ε0(ag(|ϕ1|), s) can be rewritten into ε1(ag(|ϕ1|), s, nil), |T | is a
proof for the sequent �cf

R ε0(ag(|ϕ1|), s). �
Theorem 2 (Soundness and Completeness). For a CTL proposition ϕ of
NNF, the sequent �cf

R ε0(|ϕ|, s) has a proof iff M |= ε0(|ϕ|, s) holds.

6 Applications

6.1 Polarized Resolution Modulo

In Polarized Resolution Modulo, the polarized rewrite rules are taken as one-way
clauses [6]. For example, the rewrite rule

ε1(eg(Φ), x, Y) ↪→+ mem(x, Y) ∨ (ε0(Φ, x) ∧ ∃X(r(x, X) ∧ ε�1(eg(Φ), X, con(x, Y))))

is translated into one-way clauses ε1(eg(Φ), x, Y) ∨ mem(x, Y)⊥ and ε1(eg(Φ), x, Y)

∨ε0(Φ, x)⊥∨r(x, X)⊥∨ε�1(eg(Φ), X, con(x, Y))⊥, in which the underlined literals have
the priority to do resolution.

Fig. 4. Resolution Example

Example 2. For the structure M in Fig. 4, we prove that M, s1 |=a EXEGp.
The one-way clauses of M are: ε0(not(p), s1), ε0(p, s2), ε0(p, s3), r(s1, con(s2, nil)),
r(s2, con(s3, nil)), r(s3, con(s2, nil)). The translation of M, s1 |=a EXEGp is
ε0(ex(eg(p)), s1) and the resolution steps start from

ε0(ex(eg(p)), s1)⊥.

First apply resolution with ε0(ex(Φ), x) ∨ r(x, X)⊥ ∨ ε�0(Φ, X)⊥, with x = s1 and
Φ = eg(p), this yields

r(s1, X)⊥ ∨ ε�0(eg(p), X)⊥.

306 K. Ji

Then apply resolution with r(s1, con(s2, nil)), with X = con(s2, nil), this yields

ε�0(eg(p), con(s2, nil))
⊥.

Then apply resolution with ε�0(Φ, con(x, X)) ∨ ε0(Φ, x)⊥, with x = s2, X = nil and
Φ = eg(p), this yields

ε0(eg(p), s2)⊥.

Then apply resolution with one-way clause ε0(eg(Φ), x)∨ ε1(eg(Φ), x, nil)⊥, with Φ = p
and x = s2, this yields

ε1(eg(p), s2, nil)⊥.

Then apply resolution with (‡ 1), with Φ = p, x = s2 and Y = nil, this yields

ε0(p, s2)
⊥ ∨ r(s2, X)⊥ ∨ ε�1(eg(p), X, con(s2, nil))⊥.

Then apply resolution with ε0(p, s2), this yields

r(s2, X)⊥ ∨ ε�1(eg(p), X, con(s2, nil))⊥.

Then apply resolution with r(s2, con(s3, nil)), with X = con(s3, nil), this yields

ε�1(eg(p), con(s3, nil), con(s2, nil))
⊥.

Then apply resolution with ε�1(Φ, con(x, X), Y)∨ε1(Φ, x, Y)⊥, with Φ = eg(p), x = s3,
X = nil and Y = con(s2, nil), this yields

ε1(eg(p), s3, con(s2, nil))⊥.

Then apply resolution with (‡), with Φ = p, x = s3, Y = con(s2, nil), this yields

ε0(p, s3)
⊥ ∨ r(s3, X)⊥ ∨ ε�1(eg(p), X, con(s3, con(s2, nil)))⊥.

Then apply resolution with ε0(p, s3), this yields

r(s3, X)⊥ ∨ ε�1(eg(p), X, con(s3, con(s2, nil)))⊥.

Then apply resolution with r(s3, con(s2, nil)), with X = con(s2, nil), this yields

ε�1(eg(p), con(s2, nil), con(s3, con(s2, nil)))
⊥.

Then apply resolution with ε�1(Φ, con(x, X), Y)∨ε1(Φ, x, Y)⊥, with Φ = eg(p), x = s3,
X = nil and Y = con(s2, nil), this yields

ε1(eg(p), s2, con(s3, con(s2, nil)))⊥.

Then apply resolution with ε1(eg(Φ), x, Y) ∨ mem(x, Y)⊥, with x = s2 and Y =
con(s3, con(s2, nil)), this yields

mem(s2, con(s3, con(s2, nil)))⊥.

Then apply resolution with mem(x, con(y, Z))∨ mem(x, Z)⊥, with x = s2, y = s3 and
Z = con(s2, nil), this yields

mem(s2, con(s2, nil))⊥.

Then apply resolution with mem(x, con(x, Z)), with x = s2 and Z = nil, this yields
the empty clause. Thus M, s1 |=a EXEGp holds.

1 ‡ is ε1(eg(Φ), x, Y) ∨ ε0(Φ, x)⊥ ∨ r(x, X)⊥ ∨ ε�1(eg(Φ), X, con(x, Y))⊥.

CTL Model Checking in Deduction Modulo 307

6.2 Experimental Evaluation

In this Section, we give a comparison between Resolution-based and QBF-based veri-
fication, that are implemented in iProver Modulo and VERDS [15] respectively. iProver
Modulo is a prover by embedding Polarized Resolution Modulo into iProver [11]. The
comparison is by proving 24 CTL properties on two kinds of programs: Programs with
Concurrent Processes and Programs with Concurrent Sequential Processes. The pro-
grams and CTL properties refer to [16].

Table 1. Experimental Results

iProver/Verds Con. Processes Con. Seq. Processes

Prop Num True False >20m True False >20m

p01 40 - 40/40 - 23/- 5/4 12/36

p02 40 40/40 - - 40/40 - -

p03 40 2/- 37/37 1/3 - 25/15 15/25

p04 40 17/- - 23/40 - - 40/40

p05 40 25/34 6/5 9/1 24/24 8/2 8/14

p06 40 31/40 - 9/- 36/31 - 4/9

p07 40 40/40 - - 40/40 - -

p08 40 40/40 - - 40/40 - -

p09 40 32/32 8/8 - 35/29 5/1 -/10

p10 40 40/40 - - 40/40 - -

p11 40 10/10 30/30 - 27/23 8/4 5/13

p12 40 40/40 - - 40/35 - -/5

p13 40 - 40/40 - - 40/40 -

p14 40 3/3 37/37 - 3/3 37/33 -/4

p15 40 5/- 33/33 2/7 - 23/15 17/25

p16 40 19/- - 21/40 - - 40/40

p17 40 28/37 3/2 9/1 25/26 5/1 10/13

p18 40 32/40 - 8/- 37/31 - 3/9

p19 40 5/5 35/35 - 6/6 34/34 -

p20 40 15/17 21/21 4/2 12/11 18/22 10/7

p21 40 3/3 37/37 - 3/3 37/37 -

p22 40 3/3 37/37 - 3/3 37/37 -

p23 40 - 40/40 - - 40/40 -

p24 40 20/25 12/10 8/5 8/8 23/22 9/10

Sum 960 450/449 416/412 94/99 442/393 345/307 173/260

For the Con. Processes, each testing case contains 12/24 variables and 3 processes.
For the Con. Seq. Processes, each testing case contains 12/16 variables and 2 processes.

308 K. Ji

Table 2. Speed Comparisons

Con. Processes Con. Seq. Processes

Prop Num adv/T adv/F O(iP/Ver) adv/T adv/F O(iP/Ver)

p01 40 - 0/40 - - 0/3 25/1

p02 40 40/40 - - 40/40 - -

p03 40 - 1/37 2/- - 11/15 10/-

p04 40 - - 17/- - - -

p05 40 0/25 3/5 1/9 6/20 2/2 10/4

p06 40 0/31 - -/9 10/28 - 8/3

p07 40 33/40 - - 37/40 - -

p08 40 35/40 - - 38/40 - -

p09 40 19/32 0/8 - 22/29 0/1 10/-

p10 40 19/40 - - 18/40 - -

p11 40 0/10 0/30 - 9/23 3/4 8/-

p12 40 3/40 - - 7/35 - 5/-

p13 40 - 38/40 - - 40/40 -

p14 40 2/3 0/37 - 3/3 23/33 4/-

p15 40 - 0/33 5/- - 10/14 9/1

p16 40 - - 19/- - - -

p17 40 0/28 1/2 1/9 8/22 1/1 7/4

p18 40 0/32 - -/8 11/29 - 8/2

p19 40 2/5 9/35 - 6/6 12/34 -

p20 40 1/15 7/20 1/3 6/11 9/17 2/5

p21 40 2/3 18/37 - 3/3 23/37 -

p22 40 2/3 19/37 - 2/3 22/37 -

p23 40 - 17/40 - - 25/40 -

p24 40 0/20 1/10 2/5 1/7 4/21 3/2

Sum 960 158/407 114/411 48/43 227/379 185/299 109/22

All the cases are tested on Intel� Core TM i5-2400 CPU @ 3.10GHz × 4 with Linux and
the testing time of each case is limited to 20min. The experimental data is presented
in Tables 1 and 22. The comparison is based on two aspects: the number of testing
cases that can be proved, and the time used if a problem can be proved in both. As
can be seen in Table 1, among the 960 testing cases of the Con. Processes, 94 of them
are timeout in iProver Modulo, while the number in VERDS is 99. For the Con. Seq.
Processes, among the 960 testing cases, 173 of them are timeout in iProver Modulo,
while in VERDS, the number is 260. Table 2 shows that, among the 818 testing cases
of the Con. Processes, that are both proved in iProver Modulo and VERDS, iProver

2 adv/T(F): has advantage in speed when both return T(F). O(iP/Ver): only solved by
iProver/Verds.

CTL Model Checking in Deduction Modulo 309

Modulo performs better in 272 of them and among the 678 testing cases of the Con.
Seq. Processes, 412 of them run faster in iProver Modulo.

In summary, for the 1920 testing cases, 1653 (86%) of them are solved by iProver
Modulo, while 1561 (81%) are solved by VERDS. For all the 1496 testing cases that
are both proved, 684 (45.8%) testing cases run faster in iProver Modulo.

7 Conclusion and Future Work

In this paper, we defined an alternative semantics for CTL, which is bounded to lr-
paths. Based on the alternative semantics, a way to embed model checking problems
into Deduction Modulo has been presented. Thus this work has given a method to solve
model checking problems in automated theorem provers. An experimental evaluation
of this approach using resolution modulo has been presented. The comparison with
the QBF-based verification showed that automated theorem proving modulo, which
performed as well as QBF-based method, can be considered as a new way to quickly
determine whether a property is violated in transition system models.

The proof-search method does not work well on proving some temporal proposi-
tions, such as the propositions start with AG. One of the reasons is during the search
steps, it may visit the same state repeatedly. To design new rewrite rules for the encod-
ing of temporal connectives or new elimination rules to avoid this problem remains as
future work.

Acknowledgements. I am grateful to Gilles Dowek, for his careful reading and com-
ments.

References

1. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

2. Burel, G.: Embedding deduction modulo into a prover. In: Dawar, A., Veith, H.
(eds.) CSL 2010. LNCS, vol. 6247, pp. 155–169. Springer, Heidelberg (2010)

3. Burel, G.: Experimenting with deduction modulo. In: Bjørner, N., Sofronie-
Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 162–176. Springer,
Heidelberg (2011)

4. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press,
Cambridge, MA, USA (1999)

5. Delahaye, D., Doligez, D., Gilbert, F., Halmagrand, P., Hermant, O.: Zenon mod-
ulo: when Achilles outruns the tortoise using deduction modulo. In: McMillan, K.,
Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 274–290.
Springer, Heidelberg (2013)

6. Dowek, G.: Polarized resolution modulo. In: Calude, C.S., Sassone, V. (eds.) TCS
2010. IFIP AICT, vol. 323, pp. 182–196. Springer, Heidelberg (2010)

7. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. reason-
ing 31, 33–72 (2003)

8. Dowek, G., Jiang, Y.: A Logical Approach to CTL (2013). http://hal.inria.fr/docs/
00/91/94/67/PDF/ctl.pdf (manuscript)

http://hal.inria.fr/docs/00/91/94/67/PDF/ctl.pdf
http://hal.inria.fr/docs/00/91/94/67/PDF/ctl.pdf

310 K. Ji

9. Dowek, G., Jiang, Y.: Axiomatizing Truth in a Finite Model (2013). https://who.
rocq.inria.fr/Gilles.Dowek/Publi/classes.pdf (manuscript)

10. Ji, K.: CTL Model Checking in Deduction Modulo. In: Felty, A.P., Middeldorp, A.
(eds.) CADE-25, 2015. LNCS, vol. 9195, pp. xx–yy (2015). https://drive.google.
com/file/d/0B0CYADxmoWB5UGJsV2UzNnVqVHM/view?usp=sharing (fullpa-
per)

11. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)

12. Rajan, S., Shankar, N., Srivas, M.: An Integration of Model Checking with Auto-
mated Proof Checking. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 84–97.
Springer, Berlin Heidelberg (1995)

13. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge University
Press, New York (1996)

14. Zhang, W.: Bounded semantics of CTL and SAT-based verification. In: Breitman,
K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 286–305. Springer,
Heidelberg (2009)

15. Zhang, W.: VERDS Modeling Language (2012). http://lcs.ios.ac.cn/∼zwh/verds/
index.html

16. Zhang, W.: QBF encoding of temporal properties and QBF-based verification. In:
Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp.
224–239. Springer, Heidelberg (2014)

https://who.rocq.inria.fr/Gilles.Dowek/Publi/classes.pdf
https://who.rocq.inria.fr/Gilles.Dowek/Publi/classes.pdf
https://drive.google.com/file/d/0B0CYADxmoWB5UGJsV2UzNnVqVHM/view?usp=sharing
https://drive.google.com/file/d/0B0CYADxmoWB5UGJsV2UzNnVqVHM/view?usp=sharing
http://lcs.ios.ac.cn/~zwh/verds/index.html
http://lcs.ios.ac.cn/~zwh/verds/index.html

Quantifier-Free Equational Logic and Prime
Implicate Generation

Mnacho Echenim1,2, Nicolas Peltier1,4(B), and Sophie Tourret1,3

1 Grenoble Informatics Laboratory, Grenoble, France
nicolas.peltier@imag.fr

2 Grenoble INP - Ensimag, Saint-martin-d’hères, France
3 Université Grenoble 1, Grenoble, France

4 CNRS, Toulouse, France

Abstract. An algorithm for generating prime implicates of sets of equa-
tional ground clauses is presented. It consists in extending the standard
Superposition Calculus with rules that allow attaching hypotheses to
clauses to perform additional inferences. The hypotheses that lead to a
refutation represent implicates of the original set of clauses. The set of
prime implicates of a clausal set can thus be obtained by saturation of
this set. Data structures and algorithms are also devised to represent
sets of constrained clauses in an efficient and concise way.

Our method is proven to be correct and complete. Practical experi-
mentations show the relevance of our method in comparison to existing
approaches for propositional or first-order logic.

1 Introduction

We tackle the problem of generating the prime implicates of a quantifier-free
equational formula. From a formal point of view, an implicate of a formula S
is a clause C such that S |= C, and this implicate is prime if for all impli-
cates D such that D |= C, we have C |= D. In other words, prime implicates
are the most general clausal consequences of a formula, and their generation
is a more difficult problem than checking satisfiability. Prime implicate gener-
ation has many natural applications in artificial intelligence and system verifi-
cation. It has been extensively investigated in the context of propositional logic
[6,12,13,16,17,24,26], but there have been only very few approaches dealing
with more expressive logics [14,15,18,19]. The approaches that are capable of
handling first-order formulæ are based mainly on unrestricted versions of the
resolution calculus (with an explicit encoding of equality axioms) or extensions
of the tableau method and do not handle equality efficiently. More recently,
algorithms were devised to generate sets of implicants of formulæ interpreted in
decidable theories [8], by combining quantifier-elimination (for discarding useless
variables) with model building (to construct sufficient conditions for satisfiabil-
ity). The approach does not apply to equational formulæ with function symbols
since this would involve second-order quantifier elimination.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 311–325, 2015.
DOI: 10.1007/978-3-319-21401-6 21

312 M. Echenim et al.

In previous work [9,10] we devised procedures for generating implicates of
equational formulæ containing only constant symbols. In this paper, we pro-
pose an approach to handle arbitrary uninterpreted function symbols. There are
two parts to our contribution. First, in Sect. 3, a calculus is devised to generate
implicates. It is based on the standard rules of the Superposition Calculus [20],
together with Assertion rules allowing the addition of new hypotheses during
the proof search. These hypotheses are attached to the clauses as constraints,
and once an empty clause is derived, the associated constraint corresponds to
the negation of an implicate. This algorithm is completely different from that of
[9]: its main advantage is that it remains complete even when applying all the
usual restrictions of the Superposition Calculus, and that it allows for a better
control of the generated implicates, in case the user is interested only to search
for implicates of some particular form. Second, in Sect. 4 we extend the repre-
sentation mechanism of [9] that uses a trie-based representation of equational
clause sets in order to handle function symbols. This extension is not straight-
forward since, in contrast to [9], we have to encode substitutivity as well as
transitivity. We devise data-structures and algorithms to efficiently store equa-
tional sets up to redundancy, taking into account the properties of the equality
predicate. In Sect. 5 we experimentally compare our approach with existing tools
[19,24] for propositional logic and first-order logic respectively. We also compare
our method with the approach consisting in encoding equational formulæ as flat
clauses by explicitly adding substitutivity axioms and applying the algorithms
from [10]. Due to space limitations, the formal proofs are omitted. Proofs are all
available at http://membres-lig.imag.fr/tourret/documents/EPT15-long.pdf.

2 Clauses with Uninterpreted Functions
in Equational Logic

The theory of equational logic with uninterpreted functions will be denoted by
EUF (see [2] for details). Let Σ be a signature, and Σn the function symbols in
Σ of arity n, usually denoted by f , g (and a, b for Σ0). The notation T(Σ) stands
for the set of well-formed ground terms over Sigma, most often denoted by s,
t, u, v, w. A well-founded reduction order ≺ on T(Σ) such as Knuth-Bendix
Ordering or Recursive Path Ordering [7] is assumed to be given. The subterm
of t at position p is denoted by t|p.

A literal, usually denoted by l or m, is either an equation (or atom, or positive
literal) s � t, or an inequation s �� t (or negative literal). The literal written s �� t
can denote either the equation or the inequation between s and t. The literal
lc stands for s �� t (resp. s � t) when l is s � t (resp. s �� t). A literal of the
form s �� s is called a contradictory literal (or a contradiction) and a literal of
the form s � s is a tautological literal (or a tautology). We consider clauses as
disjunctions (or multisets) of literals and formulæ as sets of clauses. If C is a
clause and l a literal, C\l denotes the clause C where all occurrences of l have
been removed (up to commutativity of equality). In Sect. 3, we also consider
conjunctions of literals, called constraints. For every constraint X =

∧n
i=1 li, ¬X

http://membres-lig.imag.fr/tourret/documents/EPT15-long.pdf

Quantifier-Free Equational Logic and Prime Implicate Generation 313

denotes the clause
∨n

i=1 lci . Similarly, if C =
∨n

i=1 li then ¬C
def=

∧n
i=1 lci . Empty

clauses and constraints are denoted by � and � respectively. We often identify
sets of clauses with conjunctions.

We define an equational interpretation I as a congruence relation on T(Σ).
A positive literal l = s � t is evaluated to � (true) in I, written I |= l, if s =I t;
otherwise l is evaluated to ⊥ (false). A negative literal l = s �� t is evaluated to
� in I if s �=I t, and to ⊥ otherwise. This evaluation is extended to clauses and
sets of clauses in the usual way. An interpretation that evaluates C to � is a
model of C (often written M in this paper). A tautological clause (or tautology)
is a clause of which all equational interpretations are models and a contradiction
is a clause that has no model.

We now associate every clause C with an equivalence relation ≡C among
terms, defined as the equality relation modulo the constraint ¬C, i.e., the small-
est congruence containing all pairs (t, s) such that t �� s ∈ C.

Definition 1. Let C be a clause, we define for any term s the C-equivalence
class of s as [s]C = {t ∈ T(Σ) | ¬C |= s � t}. The corresponding equivalence
relation is written ≡C . The C-representative of a term s, a literal l and a clause
D are respectively defined by s�C

def= min≺([s]C), l�C
def= s�C �� t�C , for l = s �� t,

and D�C
def= {l�C | l ∈ D}

Example 2. Let a ≺ b ≺ c ≺ d ≺ e ≺ g(b) ≺ g(c) and C = a �� g(c) ∨ b ��
c ∨ d � e. The clause D = g(b) � e is such that D�C = a � e because
[c]C = {b, c}, [g(b)]C = {a, g(b), g(c)} and [e]C = {e}.

The two following orders on literals are used throughout the paper. Both
orders are extended to clauses using the multiset extension and are relaxed (into

 and ≤π resp.) by also accepting equal literals or clauses.

1. The total order ≺ on terms is extended to literals by considering that a
negative literal t �� s is a set {{t, s}} and that a positive literal s � t is
{{t} , {s}} (see [22]).

2. The total order <π on literals is defined as follows:
– the equations are all greater than the inequations;
– for l1 and l2 literals with the same polarity, l1 <π l2 iff l1 ≺ l2.

The order ≺ is used, as is usual, to determine which implicates are prime and
which are redundant (see Definition 14). The order <π is useful for handling
clauses as presented in Sect. 4, but is not used outside of this scope.

Example 3. Let C = g(a) �� b ∨ c � d and D = a �� b ∨ f(c) � d, with
a ≺ b ≺ c ≺ d ≺ f(c) ≺ g(a). We have D ≺ C and C <π D, because on
the one hand a �� b ≺ c � d ≺ f(c) � d ≺ g(a) �� b, and on the other hand
a �� b <π g(a) �� b <π c � d <π f(c) � d.

In propositional logic, testing entailment amounts to a simple inclusion test
[6] but things are more complex in EUF because the axioms of transitivity and

314 M. Echenim et al.

substitutivity must be taken into account. For example, the clause e �� b ∨ b ��
c ∨ f(a) � f(b) is a logical consequence of the clause e �� c ∨ a � c because of
these axioms. The following theorem describes the so-called projection method
for testing entailment in a syntactic way.

Theorem 4. Let C and D be two non-tautological clauses. The relation D |= C
holds iff for every negative literal l in D, the literal l�C is a contradiction and
for every positive literal l in D, there exists a positive literal m in C such that
m�C∨lc is tautological.

Example 5. Given the order a ≺ b ≺ c ≺ e ≺ f(a) ≺ f(b) on terms, let D = e ��
c∨a � c and C = e �� b∨b �� c∨f(a) � f(b), and let l = e �� c and m = a � c be
the literals of D. We have l�C = b �� b because [b]C = {b, c, e} and min≺ ([b]C) = b.

Moreover the literal f(a) � f(b) ∈ C is such that (f(a) � f(b))�C∨mc = f(a) �
f(a), hence C is redundant w.r.t. D.

In order to avoid having to handle large numbers of equivalent clauses, we
define a clausal normal form that is unique up to equivalence.

Definition 6. A non-tautological clause C is in normal form if:

1. every negative literal l in C is such that l�C\l = l;
2. every literal t � s ∈ C is such that t = t�C and s = s�C ;
3. there are no two distinct positive literals l, m in C such that m�lc∨C is a

tautology;
4. C contains no literal of the form t �� t;
5. the literals in C occur exactly once in C.

The normal form equivalent to C is denoted by C↓.

In our previous work on prime implicate generation [9], the focus was on strictly
flat clauses (i.e., that contain only constant symbols). For the sake of han-
dling non-flat clauses, the clausal normal form (see [10], Definition 4) had to
be extended. The differences lie with points 1 and 3 of Definition 6. They respec-
tively strengthen the requirements on negative and positive literals to cover the
non-flat ones.

Example 7. Using the same term ordering as in Example 5, the clause c �� b∨e ��
b ∨ f(b) � f(a) is the normal form of the clauses c �� b ∨ e �� b ∨ f(c) � f(a),
c �� b ∨ e �� b ∨ f(e) � f(a), c �� e ∨ e �� b ∨ f(b) � f(a), etc.

Theorem 8. The normal form of a non-tautological clause C is the ≺-smallest
clause equivalent to C.

3 Implicate Generation

Definition 9. A constrained clause (or c-clause) is a pair [C |X] where C is a
clause and X is a constraint.

Quantifier-Free Equational Logic and Prime Implicate Generation 315

Table 1. Standard Inference Rules

Superposition
[r � l ∨ C |X] [u �� v ∨ D |Y]

[u[l] �� v ∨ C ∨ D |X ∧ Y]
If u|p = r, r � l, u � v, and

(r � l) and (u �� v) are
selected in (r � l ∨ C) and
(u �� v ∨ D) respectively

Factoring
[t � u ∨ t � v ∨ C |X]

[t � v ∨ u �� v ∨ C |X]
If t � u, t � v and (t � u) is

selected in
t � u ∨ t � v ∨ C

[C | �] is often written simply as C and referred to as a standard clause. A
constraint is normalized, or in normal form, if the clause ¬X is in normal form.
Note that only non-contradictory constraints can be normalized. Semantically,
a constrained clause [C | X] is equivalent to the standard clause ¬X ∨ C. For
example the c-clause [c � b | f(a) � c ∧ c �� d] is equivalent to c � b ∨ f(a) ��
c ∨ c � d. Intuitively, the intended meaning of a c-clause [C | X] is that the
clause C can be inferred provided the literals in X are added as axioms to the
considered clause set. The usual notion of redundancy is extended to c-clauses.

Definition 10. A c-clause [C | X] is redundant w.r.t. a set of c-clauses S if
either X is unsatisfiable or there exist c-clauses [Di | Yi] ∈ S (1 ≤ i ≤ n) such
that ∀i ∈ {1 . . . n}Di
 C and Yi ⊆ X , and X ′,D1, . . . , Dn |= C, where X ′

denotes the set of literals in X that are ≺-smaller than C.

We now present an extension of the standard superposition calculus [20] to
a constrained superposition calculus referred to as cSP, that is able to generate
all prime implicates of a formula up to redundancy. This calculus is composed of
the standard superposition rules extended to constrained clauses (Table 1) along
with two assertion rules (Table 2). As usual the calculus is parameterized by the
ordering � on terms and by a selection function sel, where sel(C) contains all
maximal literals in C or at least one negative literal. A literal is selected in C if it
occurs in sel(C). We assume that the clausal part of c-clauses is systematically
normalized, which explains the absence of the reflexion rule from Table 1. Note,
however, that the constraint part is not normalized. Instead, the rules apply
only if the constraint of the conclusion is already in normal form, up to the
deletion of repeated literals. This strategy greatly prunes the search space, since
many inferences can be dismissed. It also preserves deductive-completeness, since
intuitively, one can always assume that implicates are in normal form.

Example 11. Consider the following c-clauses (with f(a) � d � c � b � a):
C : [f(a) � b | d �� c], D : [f(a) � c | d �� c], E : [f(a) � c | d �� a]. The
Superposition rule applies on C and D, yielding: [b � c |d �� c] (the conjunction
d �� c ∧ d �� c is replaced by d �� c). However, the rule does not apply on C and
E because the constraint d �� c ∧ d �� a is not in normal form.

The principle of cSP is to generate the implicates of a formula as constraints
of the empty clause. The standard inference rules are used to refute the clausal

316 M. Echenim et al.

Table 2. Assertion Rules

Positive Assertion
[u �� v ∨ C |X]

[u[s] �� v ∨ C |X ∧ t � s]
If u|p = t, t � s, u � v and

(u �� v) is selected in
(u �� v ∨ C)

Negative Assertion
[t � s ∨ C |X]

[u[s] �� v ∨ C |X ∧ u �� v]
If u|p = t, t � s, u � v, and

(t � s) is selected in
(t � s ∨ C)

part of c-clauses, while the assertion rules explore the possible implicates by
making hypotheses about their literals, and these are stored in the constraint
part of the c-clauses. Since only the c-clauses with a refutable clausal part are of
interest, the addition of new hypotheses is done only if these hypotheses render
a new superposition inference possible (into the clause to which the rule applies
for the Pos. Assert. rule and into the asserted literal for the Neg. Assert. rule).
In other words, these rules use the fact that S |= C iff S ∧ ¬C |= � to build
implicates literal by literal.

Example 12. The following example shows how to derive the implicate a �� d ∨
f(c) � f(b) from {a � b, f(c) � f(d)}, given the term ordering a ≺ b ≺ c ≺ d ≺
f(a) ≺ f(b) ≺ f(c) ≺ f(d).

1 [f(c) � f(d) |�] (hyp)
2 [f(c) � f(a) |a � d] (Pos. AR, 1)
3 [f(a) �� f(b) |a � d ∧ f(c) �� f(b)] (Neg. AR, 2)
4 [a � b |�] (hyp)
5 [f(a) �� f(a) |a � d ∧ f(c) �� f(b)] (Sup. 3,4)
6 [� |a � d ∧ f(c) �� f(b)] (Ref. 5)

The negation of a � d ∧ f(c) �� f(b) is the desired implicate. Note for instance
that the addition of the hypothesis a � d in Clause 1 was possible because it
allowed one to replace constant d by a. The Assertion rules merge in a single
rule the addition of a new hypothesis followed by a superposition inference from
or into this hypothesis.

Theorem 13. cSP is sound and deductive-complete, i.e., for any set of clauses
S, C is a non-tautological implicate of S iff cSP generates from S a c-clause
[� |X] such that ¬X |= C.

Note that S possibly admits infinitely many prime implicates (e.g.,
a � b, c � d |= f(a, c, t) � f(b, d, t) for every term t). Furthermore, S is not nec-
essarily equivalent to its set of prime implicates, for instance {f(a) � a, f(b) �
b, a �� b} |= fn(a) �� fn(b), for every n ∈ N and none of the fn(a) �� fn(b) is
prime, because fn+1(a) �� fn+1(b) |= fn(a) �� fn(b) holds for any n ∈ N.

Quantifier-Free Equational Logic and Prime Implicate Generation 317

4 Clause Storage and Redundancy Detection

To store the clauses generated by cSP and efficiently detect redundancies, a
trie-like data structure, the clausal tree, is used. It allows one to store efficiently
and concisely sets of clauses while taking into account equality axioms. Note
that, since our goal is to generate all prime implicates of a formula, we only
test one-to-one entailment between clauses (in contrast to the usual practice in
automated deduction we cannot discard clauses that are redundant w.r.t. more
than one clause since this clause may well be prime). For this reason, we define
e-subsumption, and we assimilate it to redundancy in the rest of this article.

Definition 14. Let C and D be two clauses. The clause C e-subsumes the clause
D, written C ≤e D, iff C |= D and C
 D. A c-clause [C | X] e-subsumes a
clause [D |Y], written [C |X] ≤e [D |Y]) iff C ≤e D and X ⊆ Y.

Note that both parts of the c-clauses are handled in different ways: the inclusion
relation ⊆ used to compare constraints is clearly stronger than the e-subsumption
relation ≤e used for clauses. For instance we have (if a � b � c):

[a �� b ∨ f(b) � f(d) |�] ≤e [a �� c ∨ b �� c ∨ f(c) � f(d) |�], but
[� |a � b ∧ f(b) �� f(d)] �≤e [� |a � c ∧ b � c ∧ f(c) �� f(d)].

Clausal trees are similar to the tries of propositional logic that are trees where
the edges are labeled with literals and where some additional ordering constraints
ensure the efficiency of the search algorithms. In such a tree, the represented
clauses are the branches, that is the disjunction of the literals labeling the edges
from root to leaf.

Definition 15. A clausal tree is inductively defined as either �, or a set of
pairs of the form (l, T ′) where l is a literal and T ′ a clausal tree. In addition, a
clausal tree T with (l, T ′) ∈ T must respect the following conditions:

– for all l′ appearing in T ′, l′ <π l,
– there is no clausal tree T ′′ �= T ′ such that (l, T ′′) ∈ T .

The set of clauses represented by a clausal tree T is defined inductively as follows:

C(T) =

⎧
⎪⎨

⎪⎩

{�} if T = �
⋃

(l,T ′)∈T

(
⋃

D∈C(T ′)
{l ∨ D}

)

otherwise.

As the definition implies, leaves can be either � or ∅, but in practice if a leaf
is labeled with ∅ (a failure node) then the corresponding branch is irrelevant
because a tree of the form T ∪ {(l, ∅)} can be replaced by T without affecting
the represented set. The only exception is the empty tree, in which the root
is labeled with ∅. A clausal tree is normalized if all the clauses in C(T) are in
normal form. In the following, we assume that all clausal trees are normalized.

318 M. Echenim et al.

Example 16. The structure T below is a clausal tree with the term order a ≺
b ≺ c ≺ g(c) ≺ g(e) ≺ f(c) ≺ f(d).

Notation 17. Let C be a clause in normal form and T be a clausal tree such
that ∀D ∈ C(T), C ∨D is in normal form and ∀l ∈ D, C <π l. In this case, C.T
denotes the clausal tree T ′ such that C(T ′) = {C ∨ D | D ∈ C(T)}.

The storage of constrained clauses is similar to that of standard clauses. A
main clausal tree is used to store the clausal part of constrained clauses and
at each leaf of this tree, a trie is appended to store the different constraints
associated to the same clause. Note that, according to Definition 10, constraints
are compared using set inclusion instead of logical entailment1, thus the second
tree must be a trie and not a clausal tree. In addition, all generated implicates
(c-clauses with an empty clausal part) should be stored in a clausal tree in order
to remove non-prime implicates.

There are three main operations on clausal trees. The first one consists in
checking whether a new clause is redundant w.r.t. an existing one already stored
in a clausal tree. The second one removes from a clausal tree all clauses that are
redundant w.r.t. a given clause. The last one is the insertion of a new clause into a
clausal tree. This last operation is straightforward and thus is not described here.
On the contrary, the first two operations are not trivial and are thus carefully
detailed in the remaining parts of this section. The algorithms for c-clauses
are neither theoretically nor technically challenging compared to the ones for
standard clauses. Thus the choice was made to present them only for standard
clauses.

The algorithm isEntailed (Algorithm 1) tests whether a clause C is redun-
dant w.r.t. a clause in C(T), where T is a clausal tree. To do so, a call is made to
isEntailed(T,�, C,�) and in the recursive calls to isEntailed(T ′,M,C ′, N),
M ∨C ′ is equal to C and N represents the path from the root of T to the subtree
T ′. The principle underlying these calls is to go through the input clause C and
tree T while performing the operations necessary to test entailment with the
projection method (Theorem 4). Note that it is here that the use of the order
<π is crucial. Intuitively, the need for this order stems from the fact that the
1 Using logical entailment makes the calculus incomplete due to the deletion of clauses

whose constraint is not in normal form.

Quantifier-Free Equational Logic and Prime Implicate Generation 319

negative literals of a clause C are the ones used to project other clauses onto C.
In particular for the projection of positive literals, it is necessary to know of all
the negative literals that belong to C, while the reverse does not hold.

Algorithm 1. isEntailed(T, M, C, N)
Require: T is a clausal tree in normal form, M ∨C and N are clauses in normal form,

M is negative and N |= M ∨ C
Ensure: isEntailed(T, M, C, N) = � iff ∃D ∈ C(T), D ∨ N ≤e M ∨ C
1: if T = � then return N � M ∨ C
2: T1 ← {(l, T ′) ∈ T | l�M is a contradiction}
3: if

∨
(l,T ′)∈T1

isEntailed(T ′, M, C, N ∨ l) then return �
4: if C = � then return ⊥
5: m1 ← min

<π

{m ∈ C}
6: if m1 is of the form u �� v, with u � v then
7: T2 ← {(l, T ′) ∈ T | l�M �<π m1 and �w, (l�M = u �� w, with u � w)}
8: return

∨
(l,T ′)∈T2

isEntailed(l.T ′, M ∨ m1, C \ m1, N)

9: else
10: T3 ← {(l, T ′) ∈ T | C�M∨lc contains a tautological literal}
11: return

∨
(l,T ′)∈T3

isEntailed(T ′, M, C, N ∨ l)

Theorem 18. If T is a clausal tree in normal form, M ∨ C and N are
clauses in normal form, M is negative and N |= M ∨ C then the call
isEntailed(T, M, C, N) terminates and isEntailed(T, M, C, N) = � iff ∃D ∈
C(T),D ∨ N ≤e M ∨ C.

The algorithm pruneEntailed (Algorithm 2) removes from the input tree
T all the clauses redundant w.r.t. the input clause C. It proceeds by going
through both objects, performing projections and storing the already considered
literals in parameters N and M . Once an entailment is established in this way,
all that remains is to compare the selected clauses using the order ≺ to detect
redundancies. This last part is done by the algorithm pruneInf (Algorithm 3).

Proposition 19. Let C and N be clauses in normal form and T be a clausal
tree in normal form verifying the preconditions of pruneInf. The output tree
Tout = pruneInf(T, C, N) is such that C(Tout) = {DT ∈ C(T) | C �≤e DT ∨ N}.
Theorem 20. Let C ∨ M and N be clauses in normal form and T be a
clausal tree in normal form verifying the preconditions of pruneEntailed.
Then the calls pruneEntailed(T, M, C, N) and pruneInf(T, C, N) always
terminate and Tout = pruneEntailed(T, M, C, N) is such that C(Tout) =
{D ∈ C(T) | C ∨ M �≤e D ∨ N}.

320 M. Echenim et al.

Algorithm 2. pruneEntailed(T, M, C, N)
Require: T is a clausal-tree in normal form, M ∨C and N are clauses in normal form,

M |= N and isEntailed(N.T , �, C ∨ M, �) = ⊥.
Ensure: C(Tout) = {D ∈ C(T) | C ∨ M �≤e D ∨ N} , with Tout = pruneEntailed

(T, M, C, N).
1: if C = � then return pruneInf(T, M, N)
2: select m1 ∈ C such that m1�N = min

<π

{m�N | m ∈ C}
3: if m1�N is a contradiction then
4: return pruneEntailed(T, M ∨ m1, C \ m1, N)
5: if T = � then return T
6: T1 ← {(l, T ′) ∈ T | l = u �� v ∧ m1�N � l}
7: Tout1 ← {(l, pruneEntailed(T ′, M, C, N ∨ l)|

[3] (l, T ′) ∈ T1 ∧ pruneEntailed(T ′, M, C, N ∨ l) �= ∅}
8: if m1 is positive then
9: T2 ← T \ T1

10: Tout2 ← {(l, pruneEntailed(T ′, M ∨ Ll, C \ Ll, N ∨ l))|
[4] (l, T ′) ∈ T2 ∧ Ll = {m ∈ C | l�N∨m is tautological} ∧
[4] pruneEntailed(T ′, M ∨ Ll, C \ Ll, N ∨ l) �= ∅}

11: return Tout1 ∪ Tout2

12: else
13: return Tout1 ∪ T \ T1

Algorithm 3. pruneInf(T, C, N)
Require: T is a clausal-tree in normal form, C in a clause in normal form, N is a

clause in normal form, C |= N .
Ensure: C(Tout) = {D ∈ C(T)|C �≤e D ∨ N}, with Tout = pruneInf(T, C, N).
1: if T = � and C �� N then return T
2: if C �� N then
3: return {(l, pruneInf(T ′, C, N ∨ l))|(l, T ′) ∈ T∧

[4] pruneInf(T ′, C, N ∨ l) �= ∅}
4: return ∅

Remark 21. The main difference with the flat version of the algorithms [9] is
the handling of clausal tree branches labeled with positive literals, which had
to be adapted to the redefined projection method. Also the case in which no
redundancy is detected (resp. lines 4&5 of Algorithm 1 & 2) has to be postponed.
To ensure the correctness of the algorithms some recursive cases must now be
checked first.

5 Experimental Results

We have developed a prototype for generating EUF prime implicates. It uses the
Logtk library [5] at its core for term manipulation, and for parsing TPTP inputs
[25]. The cSP rules and the clausal tree operations are built into a Given-Clause
loop [23] (in the Otter variant). To ensure termination, it is necessary to impose
additional conditions on the generated implicates. Indeed, the set of implicates is

Quantifier-Free Equational Logic and Prime Implicate Generation 321

infinite in general, e.g., a �� b, f(a) � a, f(b) � b |= fn(a) �� fn(b). In the exper-
iments we only computed implicates built on the set of ground terms occurring
in the initial formula. We tested the tool on two sets of problems: a collection
of randomly generated formulæ of small size and a set of benchmarks from the
SMT-LIB library [3]. All the tests were conducted on a machine equipped with
an Intel core i5-3470 CPU and 4 × 2 GB of RAM.

The first experiment presented is a comparison of different prime implicate
generation systems on a set of randomly generated formulæ with a timeout of
5 min. The selected systems are: Zres2, a prime implicate generation tool for
propositional logic [24], SOLAR3, a prime implicate generation tool for first-order
logic [19] which can handle equational formulæ through the use of modification
methods [11], cSP, the prime implicate generator prototype for ground equa-
tional logic described in this paper, and flat-cSP, the former version of the cSP
prototype, that only handles flat clauses. To the best of our knowledge only two
other prime implicate generation tools are currently available. One is ritrie
[17], a tool that generates propositional prime implicates. This tool was out-
performed by Zres in past experiments and we chose not to include it in this
set of experiments. The second is the Mistral SMT solver [8] that cannot be
compared with the other tools because its prime implicate generation is not
complete. More generally the approach in [8] applies to any theory admitting
quantifier-elimination but this property does not hold for the logic we consider
in the present paper since the elimination of function symbols would require to
handle second-order quantification. The input problems were flattened (see e.g.
[4] for a definition) for flat-cSP and Zres, and the substitutivity axiom instanti-
ated when necessary. Furthermore, for Zres, these flat equational problems were
also converted to propositional ones, by instantiating the transitivity of equality
when necessary. In order to perform meaningful comparisons, SOLAR has been
parameterized to generate only implicates built on the considered ground terms.
Note that Zres generates propositional implicates which can always be trans-
lated back into equational clauses built on these terms. The test set consists of
randomly generated formulæ of 2 to 4 clauses containing 1 to 3 literals each, with
terms of depth between 0 and 2, based on signatures of either 3 or 6 symbols of
arity 0 or 1 and 2 constants. Six formulæ are generated in each case, for a total
of 144 benchmarks. Although the resulting formulæ are rather small, some of
them are complex enough that they timeout on all systems and some produce
tens of thousands of implicates, generated after millions of inferences.

The results are summarized in Table 3. Each line corresponds to a system.
The column labeled ‘successes’ indicates the percentage of tests that were com-
pleted before the 5 min timeout. The three columns under the label ‘SOLAR suc-
cesses’ summarize average results on those tests on which SOLAR terminated
before the timeout. The other columns contain results on tests on which Zres
terminated but not SOLAR, and on which flat-cSP terminated but not Zres and
SOLAR. Finally, the ‘timeout’ columns expose the mean results on all interrupted
2 Many thanks to Prof. L. Simon for providing the executable file.
3 Many thanks to Prof. H. Nabeshima for providing the executable file.

322 M. Echenim et al.

Table 3. Randomly generated formulæ - test results summary

successes SOLAR successes Zres successes (flat-)cSP timeouts

time(s) inf PIs time(s) inf PIs time(s) inf PIs inf PIs?

SOLAR 15% 11.842 663190 506 - - - - - - 2452908 28152

Zres 52% 0.695 X 2986 12.474 X 13804 - - - X X

flat-cSP 63% 6.622 5157 74 2.334 3300 158 14.290 11005 348 68959 X

cSP 76% 0.042 110 21 3.436 1322 47 10.193 1834 79 14714 538

tests. Columns labeled ‘time’, ‘inf.’ and ‘PIs’ respectively give the mean exe-
cution time, mean number of inferences and mean number of prime implicates
found for each set of tests. The last column is labeled ‘PIs?’ because due to the
timeout, the implicates found are not guaranteed to be prime. Cells labeled with
an ‘X’ indicate that the corresponding data is not accessible.

As shown in the ‘successes’ column, cSP is the obvious winner in terms of
the number of tests handled before timeout. It should also be mentioned that
cSP solves all the problems that other systems solve, except for two that are
solved only by Zres. The 15% of problems solved by SOLAR are the simplest
of the random formulæ. The results show that SOLAR’s approach is very costly
both in terms of time and space, although methods to reduce these costs are
being investigated4. The high number of prime implicates this tool generates
compared to those produced by cSP may seem surprising. In fact, SOLAR returns
an over-approximation of the result because it does not take into account the
equality axioms in its redundancy detection. Thus for example, any literal t � s
also appears as s � t and f(s) � f(t) is not detected as redundant w.r.t. s � t.
Comparatively, the huge number of prime implicates generated by Zres is not
surprising at all. It stems directly from the propositional translation of the ini-
tial problems and the introduction of new propositional variables. Although Zres
is faster than cSP on the problems they both solve, it solves only 52% of the
problems, while cSP solves 76% of them. The results in the ‘(flat-)cSP’ col-
umn are globally higher than those in the ‘Zres successes’ columns, because
the most difficult benchmarks are solved only by cSP and to a lesser extend by
flat-cSP. Since cSP solves more problems than flat-cSP and does so faster and
with fewer clauses processed, cSP is clearly better adapted to dealing with orig-
inally non-flat formulæ. The number of inferences and generated non-redundant
implicates when the tool times out illustrate the heavy cost of the cSP inferences
and redundancy detection mechanism compared to that of SOLAR. It is a price
that seems partly unavoidable to eliminate all redundancies, since this requires
complex algorithms.

The second experiment presented uses benchmarks from the QF AX logic of
SMT-LIB [3]. They are synthetic benchmarks that model some properties in the
SMT theory of arrays with extensionality, namely: some swappings of elements
between cells of an array are commutative (swap benchmarks); and swapping
elements between identical cells of equal arrays generate equal arrays (storeinv

4 Personal communication of Prof. Nabeshima.

Quantifier-Free Equational Logic and Prime Implicate Generation 323

benchmarks). The benchmarks labeled with invalid have been tweaked to falsify
the property.

Given that cSP cannot handle smt-lib inputs or the theory of arrays, we
preprocessed the benchmarks by first converting them to TPTP using the
SMTtoTPTP tool5 and then applying the method described in [4] to generate
equisatisfiable problems free of the axioms of the theory of arrays with exten-
sionality. As shown in [1], these problems can be nontrivial to solve even for
state-of-the-art theorem provers like E [23] and one cannot expect that the entire
set of prime implicates can be generated in reasonable time. We use them mainly
to evaluate the impact of our redundancy-pruning technique on the number of
superposition inferences carried out by blocking the Assertion rules inferences,
allowing the comparison of cSP with the E theorem prover. The main differences
between the methods are the normalization of clauses and the redundancy prun-
ing mechanism. On the one hand, the redundancy pruning algorithm used by
cSP is weaker because it does not allow for equational simplification or other
n-to-one redundancy pruning rules. On the other hand one-to-one redundancy
testing is stronger since its uses logical entailment instead of subsumption. The
comparison of cSP with the E theorem prover on these benchmarks shows that
the normalization approach can, in some nontrivial cases, reduce the number of
processed clauses by an order of magnitude.

Fig. 1. swap benchmarks - comparison of
the number of processed clauses for E and
cSP.

Figure 1 presents the most notable
results of this experiment, that is
the results of the swap benchmarks.
Among these, only the benchmarks on
which both E and cSP (without Asser-
tion rules) terminate before timeout
and without memory overflow were
kept, i.e. 76 out of 146. Squares rep-
resent the invalid benchmarks, i.e.
the satisfiable formulæ, while crosses
mark the unsatisfiable ones. An inter-
esting observation is that for the
largest invalid benchmarks, cSP needs
to process a smaller number of clauses
than E before terminating, even 10
times less in the case of the invalid swap benchmarks. The unsatisfiable swap
benchmarks were run with a timeout of 10 min (the triangles in Fig. 1) and the
corresponding results hint that this phenomenon could also be true for larger
unsatisfiable problems. This suggests that the redundancy pruning technique
based on normalization and clausal trees could be profitably integrated into
state-of-the-art superposition-based theorem-provers, at least for ground equa-
tional clause sets. However, it might not always be useful, for example the 10
out of 19 storeinv benchmarks that do not fail show the opposite tendency.
5 http://users.cecs.anu.edu.au/∼baumgart/systems/smttotptp/.

http://users.cecs.anu.edu.au/~baumgart/systems/smttotptp/

324 M. Echenim et al.

6 Conclusion

In this article, a novel approach for the generation of prime implicates in ground
equational logic is presented. It is proved sound and complete and experiments
are conducted to compare the approach to state-of-the-art tools. These show
that cSP outperforms all other prime implicate generation systems on simple for-
mulæ and can even tackle more involved problems than others, although none
of the methods scale well. We also evaluate the impact of the normalization
and pruning techniques of cSP compared to the redundancy detection of the E
theorem prover. A potential improvement of redundancy detection using these
techniques is highlighted. From a practical point of view, the implementation of
the cSP prototype leaves rooms for many improvements, for instance a better
selection strategy could be used. Note also that tries or clausal trees can be rep-
resented as directed acyclic graphs (where identical subtrees are shared) in order
to merge suffixes as well as prefixes of clauses. A more drastic evolution would be
to integrate cSP to an existing theorem prover to take advantage of its built-in
optimizations. On the theoretical side, the cSP calculus can easily be extended,
at least to handle variables, but the extensibility of the redundancy detection
method has not been investigated yet. Well-known theoretical limitations may
threaten such an extension since the entailment relation in full first-order logic
is not decidable [21]. The frontier of what can and cannot be done on the gen-
eration of prime implicates in first-order logic is not yet clear and needs further
investigations.

References

1. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based
satisfiability procedures. ACM Trans. Comput. Log. 10(1), 1–51 (2009)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

3. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: Version 2.0. Technical
report, Department of Computer Science, The University of Iowa (2010). www.
SMT-LIB.org

4. Bonacina, M.P., Echenim, M.: Theory decision by decomposition. J. Symb. Com-
put. 45(2), 229–260 (2010)

5. Cruanes, S.:. Logtk: A logic ToolKit for automated reasoning and its implementa-
tion. In: 4th Workshop on Practical Aspects of Automated Reasoning (2014)

6. De Kleer, J.: An improved incremental algorithm for generating prime implicates.
In: Proceedings of the National Conference on Artificial Intelligence, p. 780. Wiley
(1992)

7. Dershowitz, N.: Orderings for term-rewriting systems. In: Proceedings of the 20th
Annual Symposium on Foundations of Computer Science, pp. 123–131. IEEE Com-
puter Society, Washington (1979)

8. Dillig, I., Dillig, T., McMillan, K.L., Aiken, A.: Minimum satisfying assignments
for SMT. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358,
pp. 394–409. Springer, Heidelberg (2012)

www.SMT-LIB.org
www.SMT-LIB.org

Quantifier-Free Equational Logic and Prime Implicate Generation 325

9. Echenim, M., Peltier, N., Tourret, S.: An approach to abductive reasoning in equa-
tional logic. In: Rossi, F. (ed.) IJCAI 2013 - International Joint Conference on
Artificial Intelligence, pp. 531–537. AAAI Press, Beijing, August 2013

10. Echenim, M., Peltier, N., Tourret, S.: A rewriting strategy to generate prime impli-
cates in equational logic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR
2014. LNCS, vol. 8562, pp. 137–151. Springer, Heidelberg (2014)

11. Iwanuma, K., Nabeshima, H., Inoue.: Toward an efficient equality computation in
connection tableaux: A modification method without symmetry transformation—a
preliminary report . First-Order Theorem Proving, p. 19 (2009)

12. Jackson, P.: Computing prime implicates incrementally. In: Kapur, D. (ed.) CADE
1992. LNCS, vol. 607. Springer, Heidelberg (1992)

13. Kean, A., Tsiknis, G.: An incremental method for generating prime impli-
cants/implicates. J. Symb. Comput. 9(2), 185–206 (1990)

14. Knill, E., Cox, P.T., Pietrzykowski, T.: Equality and abductive residua for horn
clauses. Theoret. Comput. Sci. 120(1), 1–44 (1993)

15. Marquis, P.: Extending abduction from propositional to first-order logic. In:
Jorrand, P., Kelemen, J. (eds.) FAIR 1991. LNCS, vol. 535. Springer, Heidelberg
(1991)

16. Matusiewicz, A., Murray, N.V., Rosenthal, E.: Prime implicate tries. In: Giese, M.,
Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 250–264. Springer,
Heidelberg (2009)

17. Matusiewicz, A., Murray, N.V., Rosenthal, E.: Tri-based set operations and
selective computation of prime implicates. In: Kryszkiewicz, M., Rybinski, H.,
Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS, vol. 6804, pp. 203–213. Springer,
Heidelberg (2011)

18. Mayer, M.C., Pirri, F.: First order abduction via tableau and sequent calculi. Log.
J. IGPL 1(1), 99–117 (1993)

19. Nabeshima, H., Iwanuma, K., Inoue, K., Ray, O.: SOLAR: an automated deduction
system for consequence finding. AI Commun. 23(2), 183–203 (2010)

20. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In:
Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning,
pp. 371–443. North Holland, Amsterdam (2001)

21. Schmidt-Schauss, M.: Implication of clauses is undecidable. Theor. Comput. Sci.
59, 287–296 (1988)

22. Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2–3), 111–126 (2002)
23. Schulz, S.: System Description: E 1.8. In: McMillan, K., Middeldorp, A.,

Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 735–743. Springer,
Heidelberg (2013)

24. Simon, L., Del Val A.: Efficient consequence finding. In: International Joint Confer-
ence on Artificial Intelligence, vol. 17, pp. 359–370. Lawrence Erlbaum Associates
ltd (2001)

25. Sutcliffe, G.: The TPTP problem library and associated infrastructure: The FOF
and CNF parts, v3.5.0. J. Autom. Reason. 43(4), 337–362 (2009)

26. Tison, P.: Generalization of consensus theory and application to the minimization
of boolean functions. IEEE Trans. Electron. Comput. EC–16(4), 446–456 (1967)

Quantomatic: A Proof Assistant
for Diagrammatic Reasoning

Aleks Kissinger and Vladimir Zamdzhiev(B)

University of Oxford, Oxford, UK
{aleks.kissinger,vladimir.zamdzhiev}@cs.ox.ac.uk

Abstract. Monoidal algebraic structures consist of operations that can
have multiple outputs as well as multiple inputs, which have applica-
tions in many areas including categorical algebra, programming language
semantics, representation theory, algebraic quantum information, and
quantum groups. String diagrams provide a convenient graphical syn-
tax for reasoning formally about such structures, while avoiding many
of the technical challenges of a term-based approach. Quantomatic is a
tool that supports the (semi-)automatic construction of equational proofs
using string diagrams. We briefly outline the theoretical basis of Quan-
tomatic’s rewriting engine, then give an overview of the core features
and architecture and give a simple example project that computes nor-
mal forms for commutative bialgebras.

1 Introduction

Quantomatic is a graphical proof assistant. Rather than using terms as the
primitive objects in proofs, it uses string diagrams. String diagrams provide a
simple way of expressing collections of maps or processes that have been plugged
together. They consist of boxes representing the processes, and (typed) wires
connecting them. Wires are allowed to be open (i.e. not connected to a box)
at one or both ends, giving a notion of input and output for a string diagram
(Fig. 1).

Fig. 1. A string
diagram

String diagram notation was first used by Penrose [24]
as an alternative to tensor notation for applications in theo-
retical physics. In 1991, Joyal and Street showed that string
diagrams were actually much more general [15], serving to
not just represent tensors, but morphisms in any monoidal
category. In other words, it is possible to reason about any
collection of processes or maps that has well-behaved parallel
and sequential composition operations (usually written ⊗ and
◦, respectively) using string diagrams. This includes familiar
examples such as functions (where ⊗ := × is just the Carte-

sian product), and other non-Cartesian examples such as multi-linear maps or
matrices over a semi-ring (where ⊗ is a genuine tensor product).

Recently, there has been much interest in diagrammatic theories in a wide
variety of areas such as Petri nets [27], programming language semantics [21],
c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 326–336, 2015.
DOI: 10.1007/978-3-319-21401-6 22

Quantomatic: A Proof Assistant for Diagrammatic Reasoning 327

natural language processing [5], systems biology [7], control theory [2,4], program
parallelisation [23], and in interactive theorem proving [12]. It has also played
a major role in categorical quantum mechanics [1]. In particular, the string
diagram-based ZX-calculus [6] has found numerous applications within quantum
computing (see e.g. [9,13]). String diagrammatic reasoning has also produced
results which had been previously unknown [10,11].

The current version of Quantomatic supports the construction of derivations,
which are transitive chains of diagram rewrites, as well as simple mechanisms
for automated simplification of diagrams and lemma/theorem export and re-use.
The theoretical foundations of Quantomatic have been described in previous
papers [8,18,22] and this paper is the first system description of the Quan-
tomatic software itself. After introducing the main concepts of diagrammatic
reasoning in Sect. 2, we describe how Quantomatic builds derivations and how
those derivations can be included in papers or shared in the web in Sect. 3. We
show how to implement simplification strategies using a simple combinator lan-
guage in Sect. 4 and describe an example project involving bialgebras in Sect. 5.
Then, we give an overview of the architecture of the system in Sect. 6, and show
how it can be extended with new graphical theories. We give details on obtaining
Quantomatic and discuss related and future work in Sect. 7.

2 Diagrammatic Reasoning

String diagram rewriting can be seen as a generalisation of (linear) term rewrit-
ing.1 We can see how this works via a simple example. A commutative monoid
is a set A, along with a binary operation (−·−) and a constant e ∈ A such that:

(a · b) · c = a · (b · c) a · e = a = e · a a · b = b · a (1)

Naturally, we can treat these equations as term rewrite rules, with free variables
a, b, c. To apply a rule, we instantiate the free variables, then use it to replace
a sub-term. For example, the assignment {a := x, b := y · e, c := z} in the first
rule yields (x · (y · e)) · z = x · ((y · e) · z), which could be applied in, e.g.:

w · ((x · (y · e)) · z) = w · (x · ((y · e) · z)) (2)

We could express the same thing by rewriting string diagrams, which in this case
are just trees. Representing · as a node with two inputs and one output and e
as a node with just one output, the Equations (1) become:

=

a b c b ca

= =

a aa

=

baba (3)

In fact, the variable names on the inputs are no longer necessary. The role of
the variables is played by the fact that the LHS and the RHS share a common
1 Non-linear term rewriting can be encoded by introducing special ‘copy’ and ‘delete’

nodes which obey certain naturality conditions. However, when ⊗ �= ×, these don’t
exist in general.

328 A. Kissinger and V. Zamdzhiev

boundary. That is, there is a 1-to-1 correspondence between inputs/outputs on
the LHS and those on the RHS. The substitution (2) can then be depicted
simply as cutting out the LHS of this rule and gluing in the RHS, using the
shared boundary:

⇒ ⇒

(4)

The benefit of this approach is that it treats inputs and outputs symmetrically.
For instance, we can define a cocommutative comonoid by simply flipping the
generators and equations upside-down:

=
= = =

Many interesting and useful structures arise by letting algebraic structures like
monoids interact with their ‘coalgebraic’ counterparts. For example, a commu-
tative bialgebra consists of a commutative monoid, a cocommutative comonoid,
and three rules governing their interaction:

= = =
(5)

Rewriting with general diagrams proceeds just like the tree rewriting above:

⇒ ⇒

This process of cutting out the LHS and gluing in the RHS along a shared bound-
ary is called double-pushout (DPO) graph rewriting. The precise formulation of
DPO rewriting for string diagrams is provided in [8].

From hence forth, we will assume all nodes are commutative and cocommu-
tative, or in other words, nodes are invariant to permutations of their inputs
and outputs. A current limitation of Quantomatic is that it does not maintain
an ordering on inputs/outputs for individual nodes, so this is true by default. A
semantics for diagrams with non-commutative nodes is detailed in [19], but is
not yet implemented (see Sect. 7).

One of the unique aspects of Quantomatic is that it supports a graphical
pattern syntax called !-box notation for expressing infinite families of rules, typ-
ically involving variable-arity generators. For example, we could alternatively
define commutative monoids using n-ary multiplication operations, subject to
the rules that adjacent multiplications merge and the ‘1-ary multiplication’ does
nothing:

=
...

=
(6)

Quantomatic: A Proof Assistant for Diagrammatic Reasoning 329

One could recursively define thesen-ary multiplications as (e.g. left-associated)
trees of binary multiplications, where a ‘0-ary multiplication’ is just the unit. Then,
by associativity, commutativity, and unit laws, any two trees with the same num-
ber of inputs will be equal, from which the two equations above follow.

To represent repetition, we can enclose certain parts of the diagram in !-
boxes, which indicate that the marked sub-diagram (along with any wires in or
out) can be duplicated any number of times. Replacing the ellipses with !-boxes
in (6) yields:

=

b c cb

=

(7)

An instance of this rule effectively amounts to fixing the number times the con-
tents of b and c are repeated. In order to ensure that all instances are valid string
diagram rules (i.e. they share a common boundary), !-box rules must satisfy two
well-formedness conditions: (i) the !-boxes on both sides are in bijective corre-
spondance indicated by their labels, and (ii) an input (resp. output) is in a !-box
b on the LHS if and only if it is also in b on the RHS, where pairs of inputs or
outputs are again indicated by their labels. !-boxes can also be nested in each
other, which adds one additional condition, but for simplicity we will ignore this
case. More details on !-boxes and their formal semantics can be found in [18].

3 Constructing Proofs in Quantomatic

Quantomatic allows a user to define a set of diagram equations and use them
to prove theorems by means of derivations. A derivation is simply a transitive
chain of rewrite steps, using axioms or other theorems within the project. To
begin working in Quantomatic, the user creates a project based on a graphical
theory, which defines the kinds of admissible nodes in a diagram and how they
should be presented to the user (see Sect. 6). At this point, they can define
some axioms, i.e. diagram equations (possibly containing !-boxes) subject to the
well-formedness conditions listed at the end of Sect. 2.

Fig. 2. Derivation editor in Quantomatic

330 A. Kissinger and V. Zamdzhiev

Theorem 1. =

Proof.

= = =

= = =

= =

Fig. 3. LATEX and interactive HTML5 output from Quantomatic

After a set of axioms is defined, they can be used in a derivation. First, the
user creates a new graph using the graph editor and chooses to start a new
derivation from the menu. The user is then presented with the derivation editor,
which is used to explore the derivation history or extend it by applying rewrite
rules. The history view on the left shows a chain of proof steps. The history can
also be branched off at any step, allowing the user to explore multiple (possibly
failed) rewriting paths on the way to producing a proof.

The nodes in this tree are organised into two categories: proof steps and
proof heads. The former represent the application of a rewrite rule. With a proof
step selected, the user sees the before and after graphs side-by-side, with the
changed portion highlighted. The user can grow the derivation from a proof
head. Here, they see the current graph next to a series of controls (as in Fig. 2).
If the ‘Rewrite’ panel is active, Quantomatic will eagerly look for matches of any
active rewrite rules on the selected part of the graph on the left. This search is
done in parallel, which is especially effective on multi-core machines at providing
the desired rule application as soon as possible. Applying a rule will generate
a new proof step and advance the proof head. The ‘Simplify’ panel gives the
user access to simplification procedures (see Sect. 4), which will automatically
produce proof steps until either the procedure terminates or is interrupted by
the user. Once a derivation is complete, it can be exported as a new theorem,
which is linked to the derivation and can be used in other derivations.

One of the major advantages of diagrammatic reasoning is that it can produce
nice, human-readable proofs. Proofs produced by Quantomatic can be shared in
two ways. Graphs, rules, and derivations can be exported as LATEX and \input
directly in to papers (Fig. 3, left). The graphs are rendered using the PGF/TikZ
package, and are compatible with graphical editor TikZiT, in case further manual
tweaking is required. It is also possible to embed graphs, rules, and derivations
from a Quantomatic project in HTML5 using Quanto.js. After linking to a
Quantomatic project with a <meta> tag, this script will substitute specially
marked-up <div> tags for interactive graphical views of proofs, rendered using
d3.js (Fig. 3, right).

Quantomatic: A Proof Assistant for Diagrammatic Reasoning 331

4 Simplification Procedures

Quantomatic allows for custom simplification procedures (simprocs). These are
functions implemented in Poly/ML which send a graph to a lazy sequence of
proof steps, which contain the name of the axiom/theorem used, the instanti-
ated rewrite rule, and the rewritten graph. Simprocs are then registered with the
Quantomatic GUI by calling register simproc. When a simproc is invoked in
the derivation editor, it is passed the current graph, and proof steps are pulled
one at a time until either the sequence is exhausted or the user cancels simplifi-
cation. To construct simprocs, Quantomatic provides a combinator language:

++ :: simproc * simproc -> simproc
LOOP :: simproc -> simproc

REDUCE :: rule -> simproc
REDUCE_ALL :: ruleset -> simproc

REDUCE_WHILE :: (graph -> bool) -> rule -> simproc
type metric := graph -> int

REDUCE_METRIC_TO :: int -> metric -> simproc

Fig. 4. A simproc in Quantomatic

The combinator ++ will chain the last
graph produced by the first simproc into
the second simproc. LOOP will repeatedly
chain a simproc into itself, until the sim-
proc produces no new proof steps. REDUCE
will repeatedly apply the first match-
ing of the given rule, and REDUCE ALL
does the same, but takes a set of rules.
REDUCE WHILE will keep reducing as long
as the graph satisfies the given pre-
condition. REDUCE METRIC TO is useful for
using non-terminating rules in strategies. It takes an integer k and a function
m. It will then repeatedly apply the given rule to a graph g as long as m(g) > k
and m(g) is reduced by the rule application.

For terminating, confluent rewrite systems, a single call to REDUCE ALL will
usually suffice. However, strategies are very useful for more ill-behaved systems.
For example, Fig. 4 shows a simproc that computes pseudo-normal forms for the
theory of interacting bialgebras described in [3], which currently has no known
convergent completion.

5 Example Project: Bialgebras

As mentioned in Sect. 2, a bialgebra consists of a monoid and a comonoid, sub-
ject to three extra equations (5). There is also a more efficient way to define
commutative bialgebras, following the n-ary presentation of monoids described
in Sect. 2. A commutative bialgebra can be presented in terms of an n-ary mul-
tiplication and n-ary comultiplication, subject to the monoid ‘tree-merge’ rules
in (7), as well as the comonoid versions:

332 A. Kissinger and V. Zamdzhiev

=

b c cb

=

(8)

and one additional rule. Whenever an n-ary multiplication meets an m-ary
comultiplication, the two nodes can be replaced by a complete bipartite graph:

...

...

=

...

...

...... � =

b

c
c

b

(9)

The 5 equations depicted in (7), (8), and (9) can be added to a Quantomatic
project. Since they are strongly normalising, the following näıve strategy will
compute normal forms:

val simps = load_ruleset ["axioms/red-merge","axioms/red-id",
"axioms/green-merge","axioms/green-id","axioms/distribute"];

register_simproc ("basic_simp", REDUCE_ALL simps);

This bialgebra example is a small fragment of the ZX-calculus, which has
about 20 basic rules and necessitates non-näıve simplification strategies. The
bialgebra example and the ZX-calculus are available on quantomatic.github.io.

6 Architecture

Quantomatic consists of two components (Fig. 5): a reasoning engine written
in Poly/ML called QuantoCore, and a GUI front-end written in Scala called
QuantoDerive. QuantoCore handles matching and rewriting of diagrams, and
can be extended via graphical theories. The GUI communicates to the core via a
JSON protocol, which spawns independent workers to handle individual match-
ing and rewriting requests. This allows the eager, parallel matching described
in Sect. 3. The GUI also communicates directly to Poly/ML using its built-in
IDE protocol to register new simprocs written in ML. The core itself can be
run in stand-alone mode or within Isabelle/ML. It forms the basis of two other

QuantoDerive (Scala)

QuantoCore (ML)

Poly/ML

Simprocs

IDE Dispatcher Worker Worker Worker

JSON Protocol

TheoriesMatching Rewriting

Protocol

Graphs

Fig. 5. Architecture of Quantomatic

http://quantomatic.github.io

Quantomatic: A Proof Assistant for Diagrammatic Reasoning 333

graph-rewriting projects: QuantoCoSy [17], which generates new graphical the-
ories using conjecture synthesis (cf. [14]), and Tinker [12], which implements a
graphical proof strategy language for Isabelle and ProofPower.

Quantomatic is very flexible in terms of the data it can hold on nodes and
edges. This can be something as simple as an enumerated type (e.g. a colour),
standard types like strings and integers, or more complicated data like linear
polynomials, lambda terms, or even full-blown programs. The specification of
this data, along with how it should be unified during matching and displayed to
the user, is called a graphical theory. A graphical theory consists of two parts:
a .qtheory file loaded into the GUI and an ML structure loaded into the core.
The .qtheory is a JSON file used to register a new theory with the GUI, and
provides basic information such as how node/edge data should be displayed to
the user.

The ML structure provides four types, which Quantomatic treats as black
boxes: nvdata, edata, psubst, and subst. The first two contain node data and
edge data, respectively. The third type is for partial substitutions, which are used
to accumulate state during the course of matching one diagram against another.
The fourth type is for substitutions, which are partial substitutions that have
been completed, or ‘solved’, after matching is done. Quantomatic accesses these
types using several hooks implemented in by theory:

match_nvdata :: nvdata * nvdata -> psubst -> psubst option
match_edata :: edata * edata -> psubst -> psubst option

solve_psubst :: psubst -> [subst]
subst_in_nvdata :: subst -> nvdata -> nvdata
subst_in_edata :: subst -> edata -> edata

The first two hooks are called every time a new node or edge is matched by the
graph rewriting engine. The first argument is a pair consisting of the data on the
pattern node (resp. edge) and the data on the target node (resp. edge). If the
data matches successfully, any updates such as variable instantiations or new
constraints are added to the psubst. If it fails (e.g. by introducing unsatisfiable
constraints), the function returns NONE. Once matching is done, solve psubst
is invoked to turn the accumulated constraints into an actual instantiation of
node/edge data. Since we don’t require node/edge data to have most-general
unifiers, this is allowed to (lazily) return multiple solutions in general. The final
two hooks are used to perform the instantiation of node/edge data on a rewrite
rule. Once the theory provides these and a couple of other routine functions
(e.g. for (de)serialising data), QuantoCore handles the rest.

7 Availability, Related, and Future Work

Quantomatic is Free and Open Source Software, licensed under GPLv3. The
project is hosted by Github, and source code and binaries for GNU/Linux,
Mac OSX, and Windows are available from: quantomatic.github.io. Example

http://quantomatic.github.io

334 A. Kissinger and V. Zamdzhiev

projects from Sect. 5 are also available from the website. A page showing some of
the features of Quanto.js is available at: quantomatic.github.io/quantojs.

There are many tools for graph transformation, Quantomatic is unique in
that it is designed specifically for diagrammatic reasoning. In other words, it
is a general-purpose proof assistant for string-diagram based theories. Perhaps
its closest relatives are general-purpose graph rewriting tools. GROOVE [25] is
a tool for graph transformation whose main focus is model checking of object-
oriented systems. Like Quantomatic, GROOVE has a mechanism for specifying
rules that can match many different concrete graphs, namely quantified graph
transformation rules. Other graph rewriting tools such as PROGRESS [26] and
AGG [28] also have mechanisms that can be used to control application of a
single rule to many concrete graphs. All of these mechanisms have quite different
semantics from !-box rewriting, owing to the fact that the latter is specifically
designed for transforming string diagrams. Its an open question whether any of
these mechanisms could encode !-boxes.

There are three major directions in which we hope to extend Quantomatic.
The first is in the support of non-commutative vertices and theories. The theo-
retical foundation for non-commutative graphical theories with !-boxes was given
in [19]. A big advantage of this is the ability to define new nodes which could be
substituted for entire diagrams. This would allow extension of a theory by arbi-
trary, possibly recursive definitions. Secondly, we aim to go beyond ‘derivation-
style’ proofs into proper, goal-based backward reasoning. In [16], we introduced
the concept of !-box induction, which was subsequently formalised [22]. In con-
junction with recursive definitions, this gives a powerful mechanism for introduc-
ing new !-box equations. This would also be beneficial even for purely equational
proofs, as it is sometimes difficult to coax Quantomatic into performing the cor-
rect rewrite step in the presence of too much symmetry. It is also an important
stepping stone toward providing QuantoCore with a genuine LCF-style proof
kernel. Another, possibly complementary, approach is to integrate Quantomatic
with an existing theorem prover, essentially as a ‘heavyweight tactic’ for the
underlying formal semantics of the diagram. In [19], this semantics is presented
as a term language with wires as bound pairs of names, and we have had some
preliminary success in formalising this language in Nominal Isabelle. Third, it
was recently shown in [20] that placing a natural restriction on !-boxes yields
a proper subset of context-free graph languages. Another line of future work is
to provide support for more general context-free graph languages using vertex
replacement grammars. This would allow us to reason about more interesting
families of diagrams and borrow proof techniques from the rich literature on
context-free graph grammars.

Acknowledgements. In addition to the two authors, Quantomatic has received major
contributions from Alex Merry, Lucas Dixon, and Ross Duncan. We would also like to
thank David Quick, Benjamin Frot, Fabio Zennaro, Krzysztof Bar, Gudmund Grov,
Yuhui Lin, Matvey Soloviev, Song Zhang, and Michael Bradley for their contributions
and gratefully acknowledge financial support from EPSRC, the Scatcherd European
Scholarship, and the John Templeton Foundation.

http://quantomatic.github.io

Quantomatic: A Proof Assistant for Diagrammatic Reasoning 335

References

1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: LICS
2004, pp. 415–425. IEEE Computer Society (2004)

2. Baez, J.C., Erbele, J.: Categories in control (2014). arXiv:1405.6881
3. Bonchi, F., Sobociński, P., Zanasi, F.: Interacting bialgebras are frobenius. In:

Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 351–365.
Springer, Heidelberg (2014)

4. Bonchi, F., Sobociński, P., Zanasi, F.: Full abstraction for signal flow graphs. In:
Principles of Programming Languages, POPL 2015 (2015)

5. Clark, S., Coecke, B., Sadrzadeh, M.: Mathematical foundations for a composi-
tional distributed model of meaning. Linguist. Anal. 36, 1–4 (2011)

6. Coecke, B., Duncan, R.: Interacting quantum observables: categorical algebra and
diagrammatics. New J. Phys. 13(4), 043016 (2011)

7. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differ-
ential semantics of rule-based models: exact and automated model reduction. In:
LICS (2010)

8. Dixon, L., Kissinger, A.: Open-graphs and monoidal theories. Math. Struct. Com-
put. Sci. 23, 308–359 (2013)

9. Duncan, R., Lucas, M.: Verifying the steane code with quantomatic. In: Quantum
Physics and Logic, vol. 2013 (2013)

10. Duncan, R., Perdrix, S.: Rewriting measurement-based quantum computations
with generalised flow. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 285–296.
Springer, Heidelberg (2010)

11. Grefenstette, E., Sadrzadeh, M.: Experimental support for a categorical compo-
sitional distributional model of meaning. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing (2011)

12. Grov, G., Kissinger, A., Lin, Y.: Tinker, tailor, solver, proof. In: UITP (2014)
13. Hillebrand, A.: Quantum protocols involving multiparticle entanglement and their

representations in the ZX-calculus. Master’s thesis, Oxford University (2011)
14. Johansson, M., Dixon, L., Bundy, A.: Conjecture synthesis for inductive theories.

J. Autom. Reason. 47(3), 251–289 (2011)
15. Joyal, A., Street, R.: The geometry of tensor calculus I. Adv. Math. 88(1), 55–112

(1991)
16. Kissinger, A.: Pictures of Processes: Automated Graph Rewriting for Monoidal

Categories and Applications to Quantum Computing. Ph.d. thesis, Oxford (2012)
17. Kissinger, A.: Synthesising graphical theories (2012). arXiv:1202.6079
18. Kissinger, A., Merry, A., Soloviev, M.: Pattern graph rewrite systems. In: Proceed-

ings of DCM (2012)
19. Kissinger, A., Quick, D.: Tensors, !-graphs, and non-commutative quantum struc-

tures. In: QPL 2014, vol. 172 of EPTCS, pp. 56–67 (2014)
20. Kissinger, A., Zamdzhiev, V.: !-graphs with trivial overlap are context-free. In:

Proceedings Graphs as Models, GaM 2015, London, UK, pp. 11–12 , April 2015
21. Melliès, P.-A.: Local states in string diagrams. In: Dowek, G. (ed.) RTA-TLCA

2014. LNCS, vol. 8560, pp. 334–348. Springer, Heidelberg (2014)
22. Merry, A.: Reasoning with !-graphs. Ph.d. thesis, Oxford University (2013)
23. Michaelson, G., Grov, G.: Reasoning about multi-process systems with the box

calculus. In: Zsók, V., Horváth, Z., Plasmeijer, R. (eds.) CEFP. LNCS, vol. 7241,
pp. 279–338. Springer, Heidelberg (2012)

http://arxiv.org/abs/1405.6881
http://arxiv.org/abs/1202.6079

336 A. Kissinger and V. Zamdzhiev

24. Penrose, R.: Applications of negative dimensional tensors. In: Dowling, T.A.,
Penrose, R. (eds.) Combinatorial Mathematics and its Applications, pp. 221–244.
Academic Press, San Diego (1971)

25. Rensink, A.: The GROOVE simulator: a tool for state space generation. In: Pfaltz,
J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485.
Springer, Heidelberg (2004)

26. Schürr, A.: PROGRESS: a VHL-language based on graph grammars. In: Ehrig,
H., Kreoswki, H.-J., Rozenberg, G. (eds.) Graph Grammars and Their Application
to Computer Science. LNCS, vol. 532. Springer, Heidelberg (1991)

27. Sobociński, P.: Representations of petri net interactions. In: Gastin, P., Laroussinie,
F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 554–568. Springer, Heidelberg
(2010)

28. Taentzer, G.: AGG: A graph transformation environment for modeling and valida-
tion of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS,
vol. 3062, pp. 446–453. Springer, Heidelberg (2004)

Automating First-Order Logic

Cooperating Proof Attempts

Giles Reger(B), Dmitry Tishkovsky, and Andrei Voronkov

University of Manchester, Manchester, UK
giles.reger@manchester.ac.uk

Abstract. This paper introduces a pseudo-concurrent architecture for
first-order saturation-based theorem provers with the eventual aim of
developing it into a truly concurrent architecture. The motivation behind
this architecture is two-fold. Firstly, first-order theorem provers have
many configuration parameters and commonly utilise multiple strategies
to solve problems. It is also common that one of these strategies will
solve the problem quickly but it may have to wait for many other strate-
gies to be tried first. The architecture we propose interleaves the execu-
tion of these strategies, increasing the likeliness that these ‘quick’ proofs
will be found. Secondly, previous work has established the existence of
a synergistic effect when allowing proof attempts to communicate by
sharing information about their inferences or clauses. The recently intro-
duced AVATAR approach to splitting uses a SAT solver to explore the
clause search space. The new architecture considers sharing this SAT
solver between proof attempts, allowing them to share information about
pruned areas of the search space, thus preventing them from making
unnecessary inferences. Experimental results, using hard problems from
the TPTP library, show that interleaving can lead to problems being
solved more quickly, and that sharing the SAT solver can lead to new
problems being solved by the combined strategies that were never solved
individually by any existing theorem prover.

1 Introduction

This paper presents a pseudo-concurrent architecture for first-order saturation-
based theorem provers. This work is a first step in a larger attempt to pro-
duce a truly concurrent architecture. This architecture allows proof attempts to
cooperate and execute in a pseudo-concurrent fashion. This paper considers an
instantiation of the architecture for the Vampire prover [8] but the approach is
applicable to any saturation-based prover.

Modern first-order provers often use saturation algorithms that attempt to
saturate the clausified problem with respect to a given inference system. If a con-
tradiction is found in this clause search space then the problem is unsatisfiable.
If a contradiction is not found and the search space is saturated, by a complete
inference system, it is satisfiable. Even for small problems this search space can
grow quickly and provers often employ heuristics to control its exploration.

Andrei Voronkov — Partially supported by the EPSRC grant “Reasoning for Veri-
fication and Security”.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 339–355, 2015.
DOI: 10.1007/978-3-319-21401-6 23

340 G. Reger et al.

A major research area is therefore the reduction of this search space using
appropriate strategies. One approach is to control how the search space grows by
the selection and configuration of different inferences and preprocessing steps.
The aim being to find a contradiction more quickly. The notion of redundancy
allows provers to detect parts of the search space that will not be needed any-
more and eliminate redundant inferences; this greatly improves the performance
of provers. An additional (incomplete) heuristic for reducing the search space
is Vampire’s limited resource strategy [12] which discards heavy clauses that
are unlikely to be processed given the remaining time and memory resources.
Another useful tool in reducing search space explosion is splitting [7] where
clauses are split so that the search space can be explored in smaller parts.
A new, highly successful, approach to splitting is found in the AVATAR archi-
tecture [22], which uses a Splitting module with a SAT solver at its core to make
splitting decisions.

Although most of theorem provers allow users to choose between various
strategies, two issues remain. Firstly, given a problem it is generally not possible
to choose a good strategy a priori even if such a strategy is implemented in the
theorem prover. Secondly, whilst there are strategies that appear to be good at
solving problems on average, there will be problems that can only be solved by
strategies which are not good on average.

To deal with these issues, almost all modern automated theorem provers have
modes that attempt multiple strategies within a given time, searching for a “fast
proof”. The work in this paper was motivated by the observation that whilst we
are running multiple proof attempts we should allow them to cooperate. This is
further supported by work in parallel theorem proving [5,17] that discovered a
synergistic effect when clauses were communicated between concurrently running
proof attempts.

The pseudo-concurrent architecture presented in this paper introduces two
concepts that allow proof attempts to cooperate:

1. Proof attempts are interleaved in a pseudo-concurrent fashion (Sect. 3). This
allows “fast proofs” to be found more quickly.

2. The Splitting module from the AVATAR architecture is shared between proof
attempts (Sect. 4). This shares information on pruned splitting branches,
preventing proof attempts from exploring unnecessary branches.

The performance of automatic theorem provers can be improved in two ways.
The first is to solve problems we can already solve more quickly, the second is
to solve new problems that we could not solve before. The work presented here
targets both ways. Results (Sect. 5) comparing this architecture to a sequential
execution of Vampire are very encouraging and demonstrate that this new pseudo-
concurrent architecture has great potential to make significant improvements with
respect to both of our goals. It is shown that, in general, problems can be solved
much faster by this new architecture. This is invaluable for applications such as
program analysis or interactive theorem proving, where a large amount of proof
attempts can be generated in a short time and the goal is to solve quickly as many
of them as possible. Furthermore, by allowing proof attempts to communicate

Cooperating Proof Attempts 341

inconsistent splitting decisions we are able to prove new problems that were not
solved before by any existing first-order theorem prover.

Further investigation is required to understand how this new architecture can
be optimally utilised but it is clear that this approach can improve the general
performance of saturation-based provers and solve problems beyond the reach
of existing techniques.

2 Vampire and AVATAR

Vampire is a first-order superposition theorem prover. This section reviews its
basic structure and components relevant to the rest of this paper. We will use
the word strategy to refer to a set of configuration parameter values that control
proof search and proof attempt to refer to a run of the prover using such a
strategy.

2.1 Saturation Algorithms

Superposition provers such as Vampire use saturation algorithms with redun-
dancy elimination. They work with a search space consisting of a set of clauses
and use a collection of generating, simplifying and deleting inferences to explore
this space. Generating inferences, such as superposition, extend this search space
by adding new clauses obtained by applying inferences to existing clauses. Sim-
plifying inferences, such as demodulation, replace a clause by a simpler one.
Deleting inferences, such as subsumption, delete a clause, typically when it
becomes redundant (see [1]). Simplifying and deleting inferences must satisfy
this condition to preserve completeness.

The goal is to saturate the set with respect to the inference system. If the
empty clause is derived then the input clauses are unsatisfiable. If no empty
clause is derived and the search space is saturated then the input clauses are
guaranteed to be satisfiable only if a complete strategy is used. A strategy is
complete if it is guaranteed that all inferences between non-deleted clauses in
the search space will be applied. Vampire includes many incomplete strategies
as they can be very efficient at finding unsatisfiability.

All saturation algorithms implemented in Vampire belong to the family of
given clause algorithms, which achieve completeness via a fair clause selection
process that prevents the indefinite skipping of old clauses. These algorithms
typically divide clauses into three sets, unprocessed, passive and active, and follow
a simple saturation loop:

1. Add non-redundant unprocessed clauses to passive. Redundancy is checked
by attempting to forward simplify the new clause using processed clauses.

2. Remove processed (passive and active) clauses made redundant by newly
processed clauses, i.e. backward simplify existing clauses using these clauses.

3. Select a given clause from passive, move it to active and perform all gener-
ating inferences between the given clause and all other active clauses, adding
generated clauses to unprocessed.

342 G. Reger et al.

Later we will show how iterations of this saturation loop from different proof
attempts can be interleaved. Vampire implements three saturation algorithms:

1. Otter uses both passive and active clauses for simplifications.
2. Limited Resource Strategy (LRS) [12] extends Otter with a heuristic that

discards clauses that are unlikely to be used with the current resources, i.e.
time and memory. This strategy is incomplete but also generally the most
effective at proving unsatisfiability.

3. DISCOUNT uses only active clauses for simplifications.

There are also other proof strategies that fit into this loop format and can be
interleaved with superposition based proof attempts. For example, instance gen-
eration [6] saturates the set of clauses with respect to the instance generation
rule. As a large focus of this paper is the sharing of AVATAR, which is not com-
patible with instance generation, we do not consider this saturation algorithm in
the following, although it is compatible with the interleaving approach (Sect. 3).

2.2 Strategies in Vampire

Vampire includes more than 50 parameters, including experimental ones. By only
varying parameters and values used by Vampire at the last CASC competition,
we obtain over 500 million strategies. These parameters control

– Preprocessing steps (24 different parameters)
– The saturation algorithm and related behaviour e.g. clause selection
– Inferences used (16 different kinds with variations)

Even restricting these parameters to a single saturation algorithm and straight-
forward preprocessing steps, the number of possible strategies is vast. For this
reason, Vampire implements a portfolio CASC mode [8] that categorises prob-
lems based on syntactic features and attempts a sequence of approximately 30
strategies over a five minute period. These strategies are the result of extensive
benchmarking and have been shown, experimentally, to work well on unseen
problems i.e. those not used for training.

2.3 AVATAR

The search space explored by a saturation-based prover can quickly become full
of long and heavy clauses, i.e. those that have many literals that are themselves
large. This can dramatically slow down many inferences, which depend on the
size of clauses. This is exacerbated by generating inferences, which typically
generate long and heavy clauses from long and heavy clauses.

To deal with this issue we can introduce splitting, which is based on the
observation that the search space S ∪ (C1 ∨ C2) is unsatisfiable if and only if
both S∪C1 and S∪C2 are unsatisfiable, for variable disjoint C1 and C2. Different
approaches to splitting have been proposed [7] and Vampire implements a new

Cooperating Proof Attempts 343

approach called AVATAR [22]. The general idea of the AVATAR approach is
to allow a SAT solver to make splitting decisions. In the above case the clause
C1 ∨ C2 would be represented (propositionally) in the SAT solver, along with
other clauses from S, and the SAT solver would decide with component to assert
in the first-order proof search. Refutations depending on asserted components
are given to the SAT solver, restricting future models and therefore the splitting
search space. More details can be found elsewhere [11,22]. Later (Sect. 4) we
discuss how the AVATAR architecture can be used to communicate between
concurrent proof attempts.

3 Interleaved Scheduling

This section introduces the concept of proof attempt interleaving and explains
how it is implemented in the pseudo-concurrent architecture, as illustrated in
Fig. 1.

S1 S2 S3 S4 S5

10s
22s

2s Proof found

S1
S2
S3
S4
S5

Proof found16s

2s

Fig. 1. An illustration of how proof attempt interleaving can prove problems faster.

3.1 Motivation

The intuition behind Vampire’s CASC mode is that for many problems there
exists a strategy that will solve that problem relatively quickly. Therefore, rather
than spending five minutes using a strategy that is ‘good on average’ it is better
to spend a few seconds on each of multiple strategies. However, strategies are
attempted sequentially and a problem that can be solved quickly inside an indi-
vidual strategy, may take a long time to solve within the sequence of strategies.

By interleaving proof attempts (strategies) one can quickly reach these quick
solutions. This is illustrated in Fig. 3. There are five strategies and the third
strategy solves the problem after 2 s. By interleaving the strategies in blocks
of 2 s, the problem is solved in 16 s rather than 22 s. In reality we often have
problems solved in a few deciseconds and a sequence of around 30 strategies. So
the time savings have the potential to be dramatic.

344 G. Reger et al.

input : A queue of strategies with local time limits
input : A global time limit and a concurrency limit
output: Refutation, Satisfiable, Unknown or GlobalTimeLimit

live list ← []; elapsed ← 0;
for i ← 1 to limit if size(queue) > 0 do

proof attempt ← create(pop(queue));
proof attempt.budget = 0; proof attempt.elapsed = 0;
add(live list,proof attempt);

while size(live list) > 0 do
time slice ← calculate time slice ();
foreach proof attempt in live list do

proof attempt.budget += time slice ;
switchIn(proof attempt);
while proof attempt.budget > 0 do

(status, time) ← step(proof attempt);
elapsed += time; proof attempt.elapsed += time ;
proof attempt.budget = proof attempt.budget − time ;
if elapsed > global then return GlobalTimeLimit if status =
Refutation or Satisfiable then return status if
proof attempt.elapsed > proof attempt.time limit or

status = Unknown then
remove(live list,proof attempt);
if size(queue) > 0 then

proof attempt ← create(pop(queue));
proof attempt.budget = 0; proof attempt.elapsed = 0;
add(live list,proof attempt);

switchOut(proof attempt);
return Unknown

Algorithm 1: Pseudo-concurrent scheduling algorithm

3.2 Interleaving Architecture

Previously we explained how Vampire carries out proof attempts via saturation
algorithms that iterate a saturation loop. The pseudo-concurrent architecture
interleaves iterations of this saturation loop from different proof attempts. It is
necessary that the granularity of interleaving be at this level as a proof attempt’s
internal data structures are only guaranteed to be consistent at the end of each
iteration.

Each proof attempt is associated with a context that contains the structures
relevant to that proof attempt. This primarily consists of the saturation algo-
rithm with associated clause sets and indexing structures, as well as configuration
parameters local to the proof attempt. In addition to proof attempt’s context,
there is also a shared context, accessible by all proof attempts, that contains a
copy of the problem, the problem’s signature and sort information, and a global
timer. When a proof attempt is switched in its local context is loaded and when
it is switched out this is unloaded.

Cooperating Proof Attempts 345

Algorithm 1 describes the interleaving algorithm. Each strategy is loaded in
from a strategy file or the command line and has an individual local time limit.
These strategies are placed in a queue. There is a concurrency limit that controls
the number of proof attempts that can run at any one time and a global time
limit that restricts the run time for the whole algorithm. Global and local time
limits are enforced internally by each proof attempt. Initially, the live list of
proof attempts is populated with this number of proof attempts.

Proof attempt creation is handled by the create function. All the contexts
and proof attempts are lazily initialised, so that proof attempts that will never
run do not take up unnecessary memory.

The proof attempt scheduling algorithm is similar to the standard round-
robin scheduling algorithm which is one of the simplest and starvation free
scheduling algorithms. Scheduling is performed in circular order and without
priority. Its implementation is based on a standard budgeting scheme where
each proof attempt is given its own time budget. Ideally each proof attempt
would run for a fixed time on each round. However, since it is not possible to
know in advance how long a particular proof step will take, time slices for the
proof attempts are dynamically calculated.

On each round a proof attempt’s budget is increased by a time slice computed
at the end of the previous round. Each proof attempt will perform multiple proof
steps, decreasing its budget by the time it takes to perform each step, until its
budget is exhausted. This can make a proof attempt’s budget negative.

Initially, the time slice for every proof attempt is one millisecond. At the
end of each round the next time slice is computed by calculate time slice.
This calculates the average time it took each proof attempt to make a proof step
and selects the smallest of the average times. Such a choice reduces number of
scheduling rounds, yet providing a scheduling granularity which is fairly close
to the finest. Every 1024 rounds, the time slice is doubled (thus, enlarging the
granularity). Increasing the time slice reduces the scheduling overhead and lets
proof attempts make reasonable progress on problems requiring a long time to
solve. The constant 1024 and the time slice factor are chosen as multiples of
two for better efficiency of the scheduling algorithm. Also, 1024 rounds provide
approximately one second of running time for each proof attempt with the min-
imal time slice of one millisecond, that seems a reasonable minimum of time for
a proof attempt to make progress.

In contrast to the round-robin scheduling which gives equal time slices for
execution of processes, the proof attempt scheduler only tries to give asymptot-
ically equal times for running each algorithm in the execution pool. That is, all
the proof attempts spend equal execution times whenever every proof attempt
runs long enough.

A step of a proof attempt results in a (TPTP SZS) status. The most common
returned status, which does not trigger any extra action, is StillRunning. If the
step function reports that a proof attempt solved the problem or that all time
has been used, the algorithm terminates with that status. If a proof attempt has
finished running, either with a local time limit or an Unknown result, the proof
attempt is replaced by one from the priority queue. An Unknown result occurs
when a proof attempt is incomplete and saturates its clause set.

346 G. Reger et al.

4 Proof Attempt Cooperation via the Splitting Module

We are interested in improving performance of a theorem prover by making
proof attempts share information. A novel way of doing this, made possible by
the AVATAR architecture, is to make them cooperate using the Splitting module.
This is done in the following way: clauses generated by different proof attempts
are passed to the same Splitting module, and thus processed using the same SAT
solver, storing propositional clauses created by all proof attempts.

This idea is based on two observations:

1. SAT solving is cheap compared with first-order theorem proving. Therefore,
there should be no noticeable degradation of performance as the SAT solver
is dealing with a much larger set of clauses.

2. A SAT solver collecting clauses coming from different proof attempts can
make a proof attempt exploit fewer branches.

4.1 Motivation

The clause search space of a problem can be viewed as a (conceptual) splitting
tree where each clause is a node and each branch represents splitting that clause
into components. The leaves of the splitting tree are the splitting branches intro-
duced earlier. Recall that a problem is unsatisfiable if a contradiction is found
in each of these splitting branches.

In our pseudo-concurrent architecture the different proof attempts are explor-
ing the same (conceptual) splitting tree. A proof attempt’s clause space (the
processed clauses, see Sect. 2) covers part of this tree and is determined by the
inferences and heuristics it employs. Some proof attempts will have overlapping
clause spaces.

By sharing the SAT solver, proof attempts are able to share splitting branches
that contain contradictions. Figure 2 illustrates this effect. Proof attempts 1 and
2 have overlapping clause spaces. If one of the proof attempts show that the
circled node (representing a clause component) cannot be true then the other
proof attempt does not need to consider this branch. Even better, inconsistency
of a branch can be established by clauses contributed by more than one proof
attempt.

cut

Proof Attempt 1 Proof Attempt 2

Fig. 2. Illustrating one proof attempt pruning the set of clauses explored by another.

Cooperating Proof Attempts 347

Cooperating in this way reduces the number of splitting branches each proof
attempt needs to explore. However, it can also change the behaviour of a strategy
as splitting branches may be explored in a different order. Although all splitting
branches must be explored to establish unsatisfiability, the order of exploration
can impact how quickly a contradiction is found in each splitting branch.

4.2 Organising Cooperation

In reality, splitting requires more structures than simply the SAT solver, as
described below. We refer to all structures required to perform splitting as the
Splitting module. In this section we describe how the proof attempts interact
with the Splitting module. The details of how this is done for a single proof
attempt are described elsewhere [22]; we focus on details relevant to multiple
proof attempts.

Each proof attempt interacts with the Splitting module independently via a
Splitting interface. It passes to the interface clauses to split and splitting branch
contradictions it finds. It receives back splitting decisions in the form of clause
components to assert (and those to retract). Cooperation is organised so that the
assertions it is given by the Splitting module relate only to that proof attempt’s
clause space.

As illustrated in Fig. 3, the Splitting interface sits between the proof attempts
and the SAT solver that makes the splitting decisions. Its role is twofold. Firstly, it
must consistently transform clause components into propositional variables to pass
to the SAT solver. Secondly, it must transform the interpretation returned by the
SAT solver into splitting decisions to pass to the proof attempts. To achieve these
two roles, the Splitting interface keeps a variant index and component records.

The variant index ensures that components that are equivalent up to variable
renaming and symmetry of equality are translated into the same propositional
variable. Importantly, this variant index is common across all proof attempts,
meaning that a clause C1 generated in one proof attempt that is a variant of
clause C2 generated in a different proof attempt will be represented by the same
propositional variable in the SAT solver. A (non-trivial) index is used because
checking clause equivalence up to variable renaming is a problem equivalent to
graph isomorphism [12].

Splitting Interface
variant index and component records

SAT solver

Proof attempt 1 Proof attempt n

new clauses,
contradictions

splitting
decisions

new clauses,
contradictions

splitting
decisions

split and contradiction clausesInterpretation or Unsatisfiable

Fig. 3. Multiple proof attempts utilising the same Splitting module

348 G. Reger et al.

Splitting Module

decides [C1]

decides ¬[C1], [C2]

decides [C3]

Proof attempt 1

generates C1 ∨C2
asserts C1
. . .
generates C1 → ⊥
asserts C2
. . .

Proof attempt 2

. . .

generates C1 ∨C3
asserts C3
. . .

[C1]∨ [C2]

[C1]
¬[C1]

[C2] [C1]∨ [C3]

[C3]

Fig. 4. Illustrating cooperation via the Splitting Module

Component records store important information about the status of the com-
ponent. Ordinarily they track information necessary to implement backtracking,
i.e. which clauses have been derived from this component and which clauses have
been reduced assuming this component. This is important, but not interesting
for this work. In our pseudo-concurrent architecture we also track which proof
attempt has passed a clause containing this component to the Splitting interface.
This allows the Splitting interface to restrict splitting decisions sent to a proof
attempt to components generated by that proof attempt.

It is possible to allow more information to flow from the Splitting module to
the proof attempts. It would be sound to assert the whole splitting branch in each
proof attempt. However, this might pollute the clause space, preventing them from
making suitable progress. An approach we have not yet explored is to employ
heuristics to select components that should be ‘leaked’ back to proof attempts.

4.3 Example of Cooperation

Figure 4 illustrates how cooperation can avoid repetition of work. In this scenario
the first proof attempt generates a clause consisting of two components C1 and
C2 and the Splitting module first decides to assert C1. After some work the first
proof attempt shows that C1 leads to a contradiction and passes this information
to the Splitting module. The Splitting module decides that C2 must hold since
C1 cannot hold. Later, a second proof attempt generates a clause consisting of
the components C1 and C3. These are passed to the Splitting module and, as
C1 has been contradicted, C3 is asserted immediately. Here the second proof
attempt does not need to spend any effort exploring any branch containing C1.
The component C1 could have been a large clause and the repetition of the
potentially expensive work required to refute it is avoided.

5 Evaluation

We evaluate our pseudo-concurrent architecture by comparing it to the sequen-
tial version of Vampire. We are interested in how it currently performs, but also
in behaviours that would suggests future avenues for exploration for this new
and highly experimental architecture.

Cooperating Proof Attempts 349

5.1 Experimental Setup

We select 1747 problems1 from the TPTP library [18]. These consist of Unsatis-
fiable or Theorem problems of 0.8 rating or higher containing non-unit clauses.
The rating [19] indicates the hardness of a problem and is the percentage of (eli-
gible) provers that cannot solve a problem. For example, a rating of 0.8 means
that only 20 % of (eligible) provers can solve the problem. Therefore, we have
selected very hard problems. Note that the rating evaluation does not consider
every mode of each prover, so it is possible that a prover can solve a problem of
rating 1 using a mode not used in this evaluation. Therefore, we include prob-
lems of rating 1 that we know are solvable by some prover, i.e. Vampire. Out of
all problems used, 358 are of rating 1.

In this paper we focus on a single set of 30 strategies drawn from the cur-
rent CASC portfolio mode, however we have explored different sets of strategies
and the results presented here are representative. All strategies employ default
preprocessing and use a combination of different saturation algorithms, splitting
configurations and inferences. We consider a 10 second run of each strategy.

We compare two approaches that use these 30 strategies:

1. The concurrent approach utilises the pseudo-concurrent architecture giving
a 10 s local time limit to each proof attempt.

2. The sequential approach executes the strategies in a predetermined random
order without any sharing of clauses or resources, i.e. they are run in different
provers.

Experiments were run on the StarExec cluster [16], using 160 nodes. The
nodes used contain a Intel Xeon 2.4 GHz processor. The default memory limit
of 3 GB was used for sequential runs and this was appropriately scaled for con-
current runs, i.e. for 30 strategies this was set to 90 GB.

5.2 Results

Figure 5 plots the number of problems solved by the concurrent and sequential
approaches against the time taken to solve them.

This demonstrates that the concurrent approach solved more problems than
the sequential approach for running times not exceeding 290 s, reaching the max-
imal difference of 125 problems at 20 s. The lead of the concurrent approach is
more substantial from the start to about the 85th second. From 207 to 290 s
both approaches were roughly on par, but, after 290 s, the sequential approach
started to gain their lead. So the whole running time can be divided into four
intervals: from 0 to 85 s, between 85 and 207 s, from 207 to 290 s, and after 290 s.

The order of strategies used in the sequential approach does not effect these
results in general. Experiments (not reported here) showed that other random
orderings led to a similar curve for the sequential approach. However, the reverse
ordering does allow the sequential approach to take the lead at first as one
1 A list of the selected problems, the executable of our prover, and the results of the

experiments are available from http://vprover.org.

http://vprover.org

350 G. Reger et al.

0 50 100 150 200 250 300

0

100

200

300

400
20 85 207 290

0

125

250

311

365
386

9

259

Fig. 5. Number of problems solved by a sequence of proof attempts and the pseudo-
concurrent architecture with respect to time.

strategy placed (randomly) at the end of the sequence can solve many problems.
This reflects the obvious observation that a single strong strategy can outperform
many concurrent strategies at first but the results show that after a short time
the combined effect of many strategies leads to more problems being solved.

The sequential approach solved 11 problems of rating 1 and the concurrent
approach solved 14, where 6 were not solved by the sequential approach. Of these
problems, the concurrent approach solved 5 that had not previously been solved
by Vampire using any mode. During other experiments, not reported here, the
concurrent approach also solved 5 problems not previously solved by any prover,
including Vampire. This is significant as Vampire has been run extensively for
several years on the TPTP library with many different strategies, while we made
very few experiments with the concurrent version.

Overall, the concurrent approach solved 63 problems unsolved by the sequen-
tial approach, which solved 84 unsolved by the concurrent approach. Of the
problems solved by both approaches, the concurrent approach solved problems
1.53 times faster than the sequential approach on average. This represents clear
advantages for applications where solving problems fast is of key importance. As
scheduling is not effected by the global time limit, Fig. 5 can be used to give the
number of problems solved for any time limit less than 300s.

Below we discuss how these results can be interpreted in terms of interleaving
and sharing the Splitting module.

Cooperating Proof Attempts 351

5.3 The Impact of Interleaving

We contribute much of the success of the concurrent approach on the first inter-
val shown in Fig. 5 to the advantage of interleaved proof attempts discussed in
Sect. 3.

One can compute the ideal interleaving performance by inspecting the short-
est time taken to solve a problem by the sequential proof attempts. The concur-
rent approach roughly follows this ideal in the first interval. For example, after
85 s the concurrent approach has solved 259 problems and after 2.83 s (approxi-
mately how long each strategy should have run for) the sequential proof attempts
had solved 273 problems. However, this deviation suggests that interleaving is
not perfect.

0 50 100

0

100

200

seconds

N
um

be
r
of

so
lv
ed

pr
ob

le
m
s

sequential

pseudo-concurrent

Fig. 6. Comparing pseudo-concurrent
and sequential architectures with no
splitting.

After 85 s, the positive effects of inter-
leaving seem to diminish. These effects
could be attributed to sharing the Split-
ting module. However, a separate exper-
iment, shown in Fig. 6, illustrates that
there is inherent overhead in the interleav-
ing approach. In this experiment 10 of the
strategies were forced not to use splitting
and we compare sequential and pseudo-
concurrent execution. The interleaving
effects are positive to begin with. But we
would expect the two approaches to solve
the same number of problems overall, and
any difference can only be explained by
overhead introduced by interleaving, as
splitting is not used.

The cost of switching proof attempts is very small. However, changing proof
attempts can have a large impact on memory locality. The average memory
consumption for the concurrent approach is just under 4 GB, compared with
the 80 MB (0.08 GB) used by each sequential strategy on average. Large data
structures frequently used by a proof attempt (such as indices) will not be in
cache when it is switched in, leading to many cache faults. This is aggravated
by the frequent context switching.

This slowdown due to memory overhead can explain the loss of 84 problems.
Of these problems, 76 % are solved by the sequential approach after 2.85 s (the
end of the first interval) and 23 % after 6.9 s (the end of the second interval).
The implementation of the new architecture did not focus on minimising memory
consumption and future work targeting this issue could alleviate these negative
effects.

352 G. Reger et al.

5.4 The Impact of Sharing AVATAR

0 100 200 300
0

100

200

300

400

seconds

N
um

be
r
of

so
lv
ed

pr
ob

le
m
s

sequential

concurrency limit 1

Fig. 7. Running with concurrency limit
1 shows AVATAR sharing effects.

We have seen the positive impact strat-
egy interleaving can have, but also the
negative impact that running multiple
proof attempts in the same memory space
can have. Strategy interleaving cannot
account for all of the positive results.
There were 63 problems solved by the con-
current approach and not by the sequen-
tial approach. This makes up 17 % of
problems solved and can be attributed
to sharing the Splitting module as non-
cooperating interleaved proof-attempts
are expected to solve the same problems
as the proof attempts running sequen-
tially.

Figure 7 shows the results of running the concurrent approach with a con-
currency limit of 1 (i.e. running one strategy at a time). This is very similar to
the sequential approach. However, the concurrent approach solves new problems
early on. After 20 s it has solved 49 problems that the sequential approach has
not solved. This is only possible though the additional information shared via
the Splitting module.

Furthermore, individual strategies solve many new problems. In one case,
a strategy that solves no problems in the sequential approach solves 45 prob-
lems within the concurrent approach with concurrency limit one. This can be
explained by the Splitting module letting this proof attempt skip many unnec-
essary splitting branches to quickly reach a contradiction.

This behaviour is also seen when there is no concurrency limit. One strat-
egy solves 16 problems when sharing the Splitting module, compared with the
sequential case; on average local strategies solve 4.8 problems that their sequen-
tial counterparts do not solve. This demonstrates that sharing the Splitting
module improves the progress of individual strategies generally.

Note that sharing the Splitting module can introduce additional overhead as
each call to the SAT solver will be dealing with more propositional variables.
This is confirmed by timing results. On average, sequential proof attempts spent
roughly 23 % of total running time in the SAT solver whilst proof attempts
within the pseudo-concurrent architecture spent roughly 28 %. The represents
an increase of approximately 20 %.

5.5 Summary

The experiments in this section show the following:

– Interleaving strategies can find the quick proofs, but multiple proof attempts
sharing the memory space limits this effect. Further work allowing proof
attempts to share certain data structures should alleviate this to some extent.

Cooperating Proof Attempts 353

– Sharing the Splitting module can lead to many new problems being solved
that were not solved without this sharing, including very hard problems.

6 Related Work

There are two areas of work related to this new architecture. We first consider
the usage of multiple strategies sequentially and then discuss links with parallel
theorem proving.

Sequential Usage of Strategies. All modern theorem provers that are com-
petitive in the CASC competition utilise some form of strategy scheduling. The
idea was first implemented in the Gandalf prover [21] which dynamically selects
a strategy depending on results of performed inferences. Other solvers have sim-
ilar approaches to Vampire’s CASC mode, for example, in the E prover [13]
the selection of strategies and generation of schedules for a class of problems
is also based on the previous performance of the prover on similar problems.
The idea of strategy scheduling has been developed further in the E-MaLeS 1.1
scheduler [9] where schedules for the E prover are produced using kernel-based
learning algorithms.

Parallel Theorem Proving. The approach taken in this work has many
aspects in common with the area of parallel theorem proving (see [3,20,23] for
extensive overviews on problems, architectures, and approaches) including our
motivation and methods.

Firstly, previous work with distributed provers (e.g. PARTHEO [14]) and
parallel provers (e.g. DISCOUNT [5]) has shown that overall better performance
and stability can be achieved by running multiple proof attempts in parallel.
Running several theorem provers in parallel without any communication between
them also shown to exhibit such a behaviour [2]. As many strategies are explored
in parallel, concurrent proof attempts can solve and guarantee answers to more
problems. Additionally, it was shown that parallel provers also behave more
predictably when run repeatedly on same set of problems. These effects are
similar to the consequences of interleaving proof attempts that is described in
the paper.

As mentioned in the beginning of this paper, previous work in parallel the-
orem proving has also observed a synergistic effect [17] for proof attempts that
communicate by passing information about their inferences. In this previous work
a parallel execution of proof attempts was able to solve a number of hard prob-
lems which could not be solved by any individual proof attempt. This effect was
also observed in the DISCOUNT parallel theorem prover [5], based on a generic
framework for concurrent theorem proving called the teamwork approach [4].
Here clause communication is handled by a complex management scheme that
passes ‘outstanding’ clauses between proof attempts. We have observed a similar
effect with our sharing of the Splitting module.

Our approach, and the previous parallel theorem provers, run multiple proof
attempts concurrently. An alternative approach is to parallelise the internal

354 G. Reger et al.

workings of the prover. In 1990, Slaney and Lusk [15] proposed a parallel architec-
ture for closure algorithms and investigated its application to first-order theorem
proving. The work considered how a generalisation of the internal saturation loop
in theorem provers can be turned into a multi-threaded algorithm. The result-
ing ROO theorem prover [10] provides a fine-grained splitting of the closure
algorithms into concurrent tasks.

7 Conclusion

The presented results show a promising direction in developing concurrent prov-
ers. As a future goal we consider developing a truly concurrent thread-safe archi-
tecture for saturation-based first-order theorem provers. The main challenge
in this respect is to make such a concurrent prover efficient. The advantages
of scheduled interleaving of proof attempts demonstrated by the experimental
results prove that this is possible. Cooperation of proof attempts via common
interfaces like AVATAR is also shown to be fruitful: it was shown that the pseudo-
concurrent architecture could utilise this sharing to prove previously unsolvable
problems. Also, we have demonstrated that problems can be solved much faster,
making the architecture attractive for applications, such as program analysis and
interactive theorem proving. Although developing a truly concurrent and efficient
prover is an ultimate goal, there are a few other steps can be done to improve the
current pseudo-concurrent architecture. One is to develop prover configuration
methods which take into account interleaved execution of the strategies. This
could utilise machine learning techniques. Another is to allow scheduling mod-
ulo priorities assigned to the proof attempts and maximise efficiency of the prover
by pre-configuring such parameters. A third step, which is more important and
difficult, is to expand cooperation scheme of the proof attempts allowing more
useful information to be shared between them with minimal overhead. These
directions are interesting, require many experiments, and, hopefully, will lead to
new architectures of theorem provers ensuring better stability and efficiency.

References

1. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, Chap. 2, pp. 19–99.
Elsevier Science, Amsterdam (2001)

2. Böhme, S., Nipkow, T.: Sledgehammer: judgement day. In: Giesl, J., Hähnle, R.
(eds.) IJCAR 2010. LNCS, vol. 6173, pp. 107–121. Springer, Heidelberg (2010)

3. Bonacina, M.: A taxonomy of parallel strategies for deduction. Ann. Math. Artif.
Intell. 29(1–4), 223–257 (2000)

4. Denzinger, J., Kronenburg., M.: Planning for distributed theorem proving: the
teamwork approach. In: Görz, G., Hölldobler, S. (eds.) KI 1996. LNCS, vol. 1137.
Springer, Heidelberg (1996)

5. Denzinger, J., Kronenburg, M., Schulz, S.: DISCOUNT – a distributed and learning
equational prover. J. Autom. Reasoning 18(2), 189–198 (1997)

Cooperating Proof Attempts 355

6. Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving.
In: Proceedings of LICS 2003, pp. 55–64 (2003)

7. Hoder, K., Voronkov, A.: The 481 ways to split a clause and deal with propositional
variables. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 450–464.
Springer, Heidelberg (2013)

8. Kovács, L., Voronkov, A.: First-order theorem proving and vampire. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg
(2013)

9. Kühlwein, D., Schulz, S., Urban, J.: E-MaLeS 1.1. In: Bonacina, M.P. (ed.) CADE
2013. LNCS, vol. 7898, pp. 407–413. Springer, Heidelberg (2013)

10. Lusk, E., McCune, W.: Experiments with ROO: a parallel automated deduction
system. In: Fronhöfer, B., Wrightson, G. (eds.) Dagstuhl Seminar 1990. LNCS, vol.
590. Springer, Heidelberg (1992)

11. Reger, G., Suda, M., Voronkov, A.: Playing with AVATAR. In: Proceedings of
CADE2015 (2015)

12. Riazanov, A., Voronkov, A.: Limited resource strategy in resolution theorem prov-
ing. J. Symb. Comp. 36(1–2), 101–115 (2003)

13. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013)

14. Schumann, J., Letz, R.: PARTHEO: a high-performance parallel theorem prover.
In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 40–56. Springer, Heidelberg
(1990)

15. Slaney, J.K., Lusk, E.L.: Parallelizing the closure computation in automated deduc-
tion. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 28–39. Springer,
Heidelberg (1990)

16. StarExec, https://www.starexec.org
17. Sutcliffe, G.: The design and implementation of a compositional competition-

cooperation parallel ATP system. In: Proceedings IWIL-2, number MPI-I-2001-
2-006 in MPI für Informatik, Research Report, pp. 92–102 (2001)

18. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reasoning 43(4), 337–362 (2009)

19. Sutcliffe, G., Suttner, C.: Evaluating general purpose automated theorem proving
systems. Artif. Intell. 131(1–2), 39–54 (2001)

20. Suttner, C.B., Schumann, J.: Chapter 9 – Parallel automated theorem proving. In:
Parallel Processing for Artificial Intelligence, vol. 14 of Machine Intelligence and
Pattern Recognition, pp. 209–257. North-Holland (1994)

21. Tammet, T.: Gandalf. J. Autom. Reasoning 18(2), 199–204 (1997)
22. Voronkov, A.: AVATAR: The architecture for first-order theorem provers. In: Biere,

A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696–710. Springer, Heidelberg
(2014)

23. Wolf, A., Fuchs, M.: Cooperative parallel automated theorem proving. Technical
report SFB Bereicht 342/21/97, Technische Universität München (1997)

https://www.starexec.org

Towards the Compression of First-Order
Resolution Proofs by Lowering Unit Clauses

Jan Gorzny1(B) and Bruno Woltzenlogel Paleo2

1 University of Victoria, Victoria, Canada
jgorzny@uvic.ca

2 Vienna University of Technology, Vienna, Austria
bruno@logic.at

Abstract. The recently developed LowerUnits algorithm compresses
propositional resolution proofs generated by SAT- and SMT-solvers by
postponing and lowering resolution inferences involving unit clauses,
which have exactly one literal. This paper describes a generalization
of this algorithm to the case of first-order resolution proofs generated
by automated theorem provers. An empirical evaluation of a simplified
version of this algorithm on hundreds of proofs shows promising results.

1 Introduction

Most of the effort in automated reasoning so far has been dedicated to the
design and implementation of proof systems and efficient theorem proving pro-
cedures. As a result, saturation-based first-order automated theorem provers
have achieved a high degree of maturity, with resolution and superposition being
among the most common underlying proof calculi. Proof production is an essen-
tial feature of modern state-of-the-art provers and proofs are crucial for applica-
tions where the user requires certification of the answer provided by the prover.
Nevertheless, efficient proof production is non-trivial, and it is to be expected
that the best, most efficient, provers do not necessarily generate the best, least
redundant, proofs. Therefore, it is a timely moment to develop methods that
post-process and simplify proofs. While the foundational problem of simplicity
of proofs can be traced back at least to Hilbert’s 24th Problem, the maturity of
automated deduction has made it particularly relevant today.

For proofs generated by SAT- and SMT-solvers, which use propositional res-
olution as the basis for the DPLL and CDCL decision procedures, there is now
a wide variety of proof compression techniques. Algebraic properties of the res-
olution operation that might be useful for compression were investigated in [5].

The Reduce&Reconstruct algorithm [10] searches for locally redundant sub-
proofs that can be rewritten into subproofs of stronger clauses and with fewer

J. Gorzny—Supported by the Google Summer of Code 2014 program.
B. Woltzenlogel Paleo—Stipendiat der Österreichischen Akademie der Wis-
senschaften (APART).

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 356–366, 2015.
DOI: 10.1007/978-3-319-21401-6 24

Towards the Compression of First-Order Resolution Proofs 357

resolution steps. A linear time proof compression algorithm based on partial reg-
ularization was proposed in [2] and improved in [6]. Furthermore, [6] described a
linear time algorithm called LowerUnits that delays resolution with unit clauses.

In contrast, for first-order theorem provers, there has been up to now (to
the best of our knowledge) no attempt to design and implement an algorithm
capable of taking a first-order resolution DAG-proof and efficiently simplifying
it, outputting a possibly shorter pure first-order resolution DAG-proof. There
are algorithms aimed at simplifying first-order sequent calculus tree-like proofs,
based on cut-introduction and Herbrand sequents [7–9]. There is also an algo-
rithm [12] that looks for terms that occur often in any TSTP [11] proof (including
first-order resolution DAG-proofs) and introduces abbreviations for these terms.
However, as the definitions of the abbreviations are not part of the output proof,
it cannot be checked by a pure first-order resolution proof checker.

In this paper, we initiate the process of lifting propositional proof compres-
sion techniques to the first-order case, starting with the simplest known algo-
rithm: LowerUnits (described in [6]). As shown in Sect. 3, even for this simple
algorithm, the fact that first-order resolution makes use of unification leads to
many challenges that simply do not exist in the propositional case. In Sect. 4
we describe an easy to implement algorithm with linear time complexity (with
respect to the proof length) which partially overcomes these challenges. In Sect. 5
we present experimental results obtained by applying this algorithm on hundreds
of proofs generated with the SPASS theorem prover. The next section introduces
the first-order resolution calculus using notations that are more convenient for
describing proof transformation operations.

2 The Resolution Calculus

We assume that there are infinitely many variable symbols (e.g. X, Y , Z, X1,
X2, . . .), constant symbols (e.g. a, b, c, a1, a2, . . .), function symbols of every
arity (e.g. f , g, f1, f2, . . .) and predicate symbols of every arity (e.g. p, q,
p1, p2,. . .). A term is any variable, constant or the application of an n-ary
function symbol to n terms. An atomic formula (atom) is the application of
an n-ary predicate symbol to n terms. A literal is an atom or the negation
of an atom. The complement of a literal � is denoted � (i.e. for any atom p,
p = ¬p and ¬p = p). The set of all literals is denoted L. A clause is a multiset
of literals. ⊥ denotes the empty clause. A unit clause is a clause with a single
literal. Sequent notation is used for clauses (i.e. p1, . . . , pn � q1, . . . , qm denotes
the clause {¬p1, . . . ,¬pn, q1, . . . , qm}). FV (t) (resp. FV (�), FV (Γ)) denotes the
set of variables in the term t (resp. in the literal � and in the clause Γ). A
substitution {X1\t1,X2\t2, . . .} is a mapping from variables {X1,X2, . . .} to,
respectively, terms {t1, t2, . . .}. The application of a substitution σ to a term t,
a literal � or a clause Γ results in, respectively, the term tσ, the literal �σ or the
clause Γσ, obtained from t, � and Γ by replacing all occurrences of the variables
in σ by the corresponding terms in σ. The set of all substitutions is denoted S.
A unifier of a set of literals is a substitution that makes all literals in the set

358 J. Gorzny and B. Woltzenlogel Paleo

equal. A resolution proof is a directed acyclic graph of clauses where the edges
correspond to the inference rules of resolution and contraction (as explained in
detail in Definition 1). A resolution refutation is a resolution proof with root ⊥.

Definition 1 (First-Order Resolution Proof). A directed acyclic graph
〈V,E, Γ 〉, where V is a set of nodes and E is a set of edges labeled by liter-
als and substitutions (i.e. E ⊂ V × 2L × S × V and v1

�−→
σ

v2 denotes an edge

from node v1 to node v2 labeled by the literal � and the substitution σ), is a proof
of a clause Γ iff it is inductively constructible according to the following cases:

– Axiom: If Γ is a clause, Γ̂ denotes some proof 〈{v}, ∅, Γ 〉, where v is a new
(axiom) node.

– Resolution: If ψL is a proof 〈VL, EL, ΓL〉 with �L ∈ ΓL and ψR is a proof
〈VR, ER, ΓR〉 with �R ∈ ΓR, and σL and σR are substitutions such that �LσL =
�RσR and FV ((ΓL \ {�L}) σL) ∩ FV ((ΓR \ {�R}) σR) = ∅, then ψL �σLσR

�L�R
ψR

denotes a proof 〈V,E, Γ 〉 s.t.

V = VL ∪ VR ∪ {v} Γ = (ΓL \ {�L})σL ∪ (ΓR \ {�R}) σR

E = EL ∪ ER ∪
{

ρ(ψL)
{�L}−−−→
σL

v, ρ(ψR)
{�R}−−−→
σR

v

}

where v is a new (resolution) node and ρ(ϕ) denotes the root node of ϕ. The
resolved atom � is such that � = �LσL = �RσR or � = �LσL = �RσR.

– Contraction: If ψ′ is a proof 〈V ′, E′, Γ ′〉 and σ is a unifier of {�1, . . . �n}
with {�1, . . . �n} ⊆ Γ ′, then �ψ�σ

{�1,...�n} denotes a proof 〈V,E, Γ 〉 s.t.

V = V ′ ∪ {v} E = E′ ∪ {ρ(ψ′)
{�1,...�n}−−−−−−→

σ
v} Γ = (Γ ′ \ {�1, . . . �n})σ ∪ {�}

where v is a new (contraction) node, � = �kσ (for any k ∈ {1, . . . , n}) and
ρ(ϕ) denotes the root node of ϕ. ��

The resolution and contraction (factoring) rules described above are the stan-
dard rules of the resolution calculus, except for the fact that we do not require
resolution to use most general unifiers. The presentation of the resolution rule
here uses two substitutions, in order to explicitly handle the necessary renaming
of variables, which is often left implicit in other presentations of resolution.

When we write ψL ��L�R
ψR, we assume that the omitted substitutions are

such that the resolved atom is most general. We write �ψ� for an arbitrary maxi-
mal contraction, and �ψ�σ for a (pseudo-)contraction that does merge no literals
but merely applies the substitution σ. When the literals and substitutions are
irrelevant or clear from the context, we may write simply ψL � ψR instead of
ψL �σLσR

�L�R
ψR. The � operator is assumed to be left-associative. In the proposi-

tional case, we omit contractions (treating clauses as sets instead of multisets)
and ψL �∅∅

��
ψR is abbreviated by ψL �� ψR.

If ψ = ϕL �ϕR or ψ = �ϕ�, then ϕ, ϕL and ϕR are direct subproofs of ψ and
ψ is a child of both ϕL and ϕR. The transitive closure of the direct subproof

Towards the Compression of First-Order Resolution Proofs 359

relation is the subproof relation. A subproof which has no direct subproof is an
axiom of the proof.

Vψ, Eψ and Γψ denote, respectively, the nodes, edges and proved clause
(conclusion) of ψ. If ψ is a proof ending with a resolution node, then ψL and ψR

denote, respectively, the left and right premises of ψ.

3 First-Order Challenges

In this section, we describe challenges that have to be overcome in order to
successfully adapt LowerUnits to the first-order case. The first example illus-
trates the need to take unification into account. The other two examples discuss
complex issues that can arise when unification is taken into account in a naively.

Example 1. Consider the following proof ψ, noting that the unit subproof η2 is
used twice. It is resolved once with η1 (against the literal p(W) and producing
the child η3) and once with η5 (against the literal p(X) and producing ψ).

η1: p(W) � q(Z) η2: � p(Y)

η3: � q(Z) η4: p(X), q(Z) �
η5: p(X) � η2

ψ: ⊥
The result of deleting η2 from ψ is the proof ψ \ {η2} shown below:

η′
1: p(W) � q(Z) η′

4: p(X), q(Z) �
η′
5 (ψ′): p(W), p(X) �

Unlike in the propositional case, where the literals that had been resolved against
the unit are all syntactically equal, in the first-order case, this is not necessarily
the case. As illustrated above, p(W) and p(X) are not syntactically equal. Nev-
ertheless, they are unifiable. Therefore, in order to reintroduce η′

2, we may first
perform a contraction, as shown below:

η′
1: p(W) � q(Z) η′

4: p(X), q(Z) �
η′
5: p(X), p(Y) �
�η′

5�: p(U) � η′
2: � p(Y)

ψ�: ⊥
Example 2. There are cases, as shown below, when the literals that had been
resolved away are not unifiable, and then a contraction is not possible.

η2

η4: r(X), p(b) � s(Y)

η1: p(a) � q(Y), r(Z) η2: � p(X)

η3: � q(Y), r(Z)

η5: p(b) � s(Y), q(Y) η6: s(Y) �
η7: p(b) � q(Y) η8: q(Y) �

η9: p(b) �
ψ: ⊥

360 J. Gorzny and B. Woltzenlogel Paleo

If we attempted to postpone the resolution inferences involving the unit η2 (i.e.
by deleting η2 and reintroducing it with a single resolution inference in the
bottom of the proof), a contraction of the literals p(a) and p(b) would be needed.
Since these literals are not unifiable, the contraction is not possible. Note that,
in principle, we could still lower η2 if we resolved it not only once but twice
when reintroducing it in the bottom of the proof. However, this would lead to
no compression of the proof’s length.

The observations above lead to the idea of requiring units to satisfy the following
property before collecting them to be lowered.

Definition 2. Let η be a unit with literal � and let η1, . . . , ηn be subproofs that
are resolved with η in a proof ψ, respectively, with resolved literals �1, . . . , �n.
η is said to satisfy the pre-deletion unifiability property in ψ if �1,. . . ,�n, and �
are unifiable.

Example 3. Satisfaction of the pre-deletion unifiability property is not enough.
Deletion of the units from a proof ψ may actually change the literals that had
been resolved away by the units, because fewer substitutions are applied to them.
This is exemplified below:

η1: r(Y), p(X, q(Y, b)), p(X, Y) � η2: � p(U, V)

η3: r(V), p(U, q(V, b)) � η4: � r(W)

η5: p(U, q(W, b)) � η2

ψ: ⊥
If η2 is collected for lowering and deleted from ψ, we obtain the proof ψ \ {η2}:

η′
1: r(Y), p(X, q(Y, b)), p(X, Y) � η′

4: � r(W)

η′
5(ψ

′): p(X, q(W, b)), p(X, W) �

Note that, even though η2 satisfies the pre-deletion unifiability property (since
p(X, q(Y, b)) and p(U, q(W, b)) are unifiable), η2 still cannot be lowered and rein-
troduced by a single resolution inference, because the corresponding modified
post-deletion literals p(X, q(W, b)) and p(X,W) are actually not unifiable.

The observation above leads to the following stronger property:

Definition 3. Let η be a unit with literal �η and let η1, . . . , ηn be subproofs that
are resolved with η in a proof ψ, respectively, with resolved literals �1, . . . , �m. η
is said to satisfy the post-deletion unifiability property in ψ if �†↓

1 ,. . . ,�†↓
m , and

�†
η are unifiable, where �† is the literal in ψ \ {η} corresponding to � in ψ and �†↓

k

is the descendant of �†
k in the root of ψ \ {η}.

Towards the Compression of First-Order Resolution Proofs 361

4 A Linear Greedy Variant of First-Order LowerUnits

The examples shown in the previous section indicate that there are two main
challenges that need to be overcome in order to generalize LowerUnits to the
first-order case:

1. The deletion of a node changes literals. Since substitutions associated with
the deleted node are not applied anymore, some literals become more general.
Therefore, the reconstruction of the proof during deletion needs to take such
changes into account.

2. Whether a unit should be collected for lowering must depend on whether
the literals that were resolved with the unit’s single literal are unifiable after
they are propagated down to the bottom of the proof by the process of unit
deletion. Only if this is the case, they can be contracted and the unit can be
reintroduced in the bottom of the proof.

The first challenge can be overcome by keeping an additional map from old
literals in the input proof to the corresponding more general changed literals in
the output proof under construction. The second challenge is harder to overcome.
In the propositional case, collecting units and deleting units can be done in two
distinct and independent phases (as in LowerUnits). In the first-order case, on
the other hand, these two phases seem to be so interlaced, that they appear to be
in a deadlock: the decision to collect a unit to be lowered depends on what will
happen with the proof after deletion, while deletion depends on knowing which
units will be lowered. In a naive approach, the deletion algorithm may have to be
executed once for every collected unit, and since the number of collected units is
in the worst case linear in the length of the proof, the overall runtime complexity
is quadratic with respect to the length of the proof.

This section presents GreedyLinearFirstOrderLowerUnits (Algorithm 1), a
single traversal first-order adaptation of LowerUnits, which avoids the quadratic
complexity and the implementation difficulties by: (1) ignoring the stricter post-
deletion unifiability property and focusing instead on the pre-deletion unifiability
property, which is easier to check (lines 13); and (2) employing a greedy contrac-
tion approach (lines 19–22) together with substitutions (lines 7–10), in order not
to care about bookkeeping. By doing so, compression may not always succeed
on all proofs (e.g. Example 3). When compression succeeds, the root clause of
the generated proof will be the empty clause (line 24) and the generated proof
may be returned. Otherwise, the original proof must be returned (line 25).

5 Experiments

A prototype of a (two-traversal) version of GreedyLinearFirstOrderLowerUnits
has been implemented in the functional programming language Scala as part of the
Skeptik library (https://github.com/Paradoxika/Skeptik) [3]. Before evaluating
this algorithm, we first generated several benchmark proofs. This was done by
executing the SPASS (http://www.spass-prover.org/) theorem prover on 2280

https://github.com/Paradoxika/Skeptik
http://www.spass-prover.org/

362 J. Gorzny and B. Woltzenlogel Paleo

Input: a proof ψ
Output: a compressed proof ψ�

Data: a map .′, eventually mapping any ϕ to delete(ϕ, Units)

1 D ← ∅ ; // set for storing subproofs that need to be deleted

2 Units ← ∅ ; // stack for storing collected units

3 for every subproof ϕ, in a top-down traversal of ψ do
4 if ϕ is an axiom then ϕ′ ← ϕ;
5 else if ϕ = ϕL 	σLσR

�L�R
ϕR then

6 if ϕL ∈ D and ϕR ∈ D then add ϕ to D ;
7 else if ϕL ∈ D then ϕ′ ← �ϕ′

R�σR ;
8 else if ϕR ∈ D then ϕ′ ← �ϕ′

L�σL ;

9 else if � /∈ Γϕ′
L
then ϕ′ ← �ϕ′

L�σL ;

10 else if � /∈ Γϕ′
R

then ϕ′ ← �ϕ′
R�σR ;

11 else ϕ′ ← ϕ′
L 	σLσR

�L�R
ϕ′

R ;

12 else if ϕ = �ϕc�σ
{�1,...,�n} then ϕ′ ← �ϕ′

c�σ
{�1,...,�n} ;

13 if ϕ is a unit with more than one child satisfying the pre-deletion unifiability
property then

14 push ϕ′ onto Units ;
15 add ϕ to D ;

// Reintroduce units

16 ψ� ← ψ′ ;
17 while Units �= ∅ do
18 ϕ′ ← pop from Units ;
19 ψ�

next ← �ψ�� ;
20 while Γψ�

next
�= ψ� do

21 ψ� ← ψ�
next ;

22 ψ�
next ← �ψ�� ;

23 if ψ� 	 ϕ′ is well-defined then ψ� ← ψ� 	 ϕ′ ;

24 if Γψ� = ⊥ then return ψ�;
25 else return ψ;

Algorithm 1. GreedyLinearFirstOrderLowerUnits (single traversal)

real first-order problems without equality of the TPTP Problem Library (among
them, 1032 problems are known to be unsatisfiable). In order to generate pure
resolution proofs, the advanced inference rules of SPASS were disabled. The Euler
Cluster at the University of Victoria was used and the time limit was 300 sec per
problem. Under these conditions, SPASS generated 308 proofs.

The evaluation of GreedyLinearFirstOrderLowerUnits was performed on
a laptop (2.8GHz Intel Core i7 processor with 4 GB of RAM (1333MHz DDR3)
available to the Java Virtual Machine). For each benchmark proof ψ, we mea-
sured the time needed to compress the proof (t(ψ)) and the compression ratio
((|ψ| − |α(ψ)|)/|ψ|), where |ψ| is the length of ψ (i.e. the number of axioms,

Towards the Compression of First-Order Resolution Proofs 363

resolution and contractions (ignoring substitutions)) and α(ψ) is the result of
applying GreedyLinearFirstOrderLowerUnits to ψ. The raw data is available
at: http://www.math.uvic.ca/∼jgorzny/data/.

The proofs generated by SPASS were small (with lengths from 3 to 49). These
proofs are specially small in comparison with the typical proofs generated by
SAT- and SMT-solvers, which usually have from a few hundred to a few million
nodes. The number of proofs (compressed and uncompressed) per length is shown
in Fig. 1 (b). Uncompressed proofs are those which had either no lowerable units
to lower or for which GreedyLinearFirstOrderLowerUnits failed and returned
the original proof. Such failures occurred on only 14 benchmark proofs. Among
the smallest of the 308 proofs, very few proofs were compressed. This is to be
expected, since the likelihood that a very short proof contain a lowerable unit
(or even merely a unit with more than one child) is low. The proportion of
compressed proofs among longer proofs is, as expected, larger, since they have
more nodes and it is more likely that some of these nodes are lowerable units.
13 out of 18 proofs with length greater than or equal to 30 were compressed.

Figure 1 (a) shows a box-whisker plot of compression ratio with proofs
grouped by length and whiskers indicating minimum and maximum compres-
sion ratio achieved within the group. Besides the median compression ratio (the
horizontal thick black line), the chart also shows the mean compression ratios for
all proofs of that length and for all compressed proofs (the red cross and the blue
circle). In the longer proofs (length greater than 34), the median and the means
are in the range from 5 % to 15 %, which is satisfactory in comparison with the
total compression ratio of 7.5 % that has been measured for the propositional
LowerUnits algorithm on much longer propositional proofs [4].

Figure 1 (c) shows a scatter plot comparing the length of the input proof
against the length of the compressed proof. For the longer proofs (circles in the
right half of the plot), it is often the case that the length of the compressed proof
is significantly lesser than the length of the input proof.

Figure 1 (d) plots the cumulative original and compressed lengths of all
benchmark proofs (for an x-axis value of k, the cumulative curves show the
sum of the lengths of the shortest k input proofs). The total cumulative length
of all original proofs is 4429 while the cumulative length of all proofs after com-
pression is 3929. This results in a total compression ratio of 11.3 %, which is
impressive, considering that the inclusion of all the short proofs (in which the
presence of lowerable units is a priori unlikely) tends to decrease the total com-
pression ratio. For comparison, the total compression ratio considering only the
100 longest input proofs is 18.4 %.

Figure 1 also indicates an interesting potential trend. The gap between the
two cumulative curves seems to grow superlinearly. If this trend is extrapolated,
progressively larger compression ratios can be expected for longer proofs. This
is compatible with Theorem 10 in [6], which shows that, for proofs generated by
eagerly resolving units against all clauses, the propositional LowerUnits algo-
rithm can achieve quadratic assymptotic compression. SAT- and SMT-solvers
based on CDCL (Conflict-Driven Clause Learning) avoid eagerly resolving unit

http://www.math.uvic.ca/~jgorzny/data/

364 J. Gorzny and B. Woltzenlogel Paleo

Fig. 1. Experimental results

clauses by dealing with unit clauses via boolean propagation on a conflict graph
and extracting subproofs from the conflict graph with every unit being used at
most once per subproof (even when it was used multiple times in the conflict
graph). Saturation-based automated theorem provers, on the other hand, might
be susceptible to the eager unit resolution redundancy described in Theorem 10
[6]. This potential trend would need to be confirmed by further experiments with
more data (more proofs and longer proofs).

The total time needed by SPASS to solve the 308 problems for which proofs
were generated was 2403 s, or approximately 40 min (running on the Euler Clus-
ter and including parsing time and proof generation time for each problem). The

Towards the Compression of First-Order Resolution Proofs 365

total time for GreedyLinearFirstOrderLowerUnits to be executed on all 308
proofs was just under 5 sec on a simple laptop (including parsing each proof).
Therefore, GreedyLinearFirstOrderLowerUnits is a fast algorithm. For a very
small overhead in time (in comparison to proving time), it may simplify the
proof considerably.

6 Conclusions and Future Work

GreedyLinearFirstOrderLowerUnits is our first attempt to lift a propositional
proof compression algorithm to the first-order case. We consider it a prototype,
useful to evaluate this approach. The results discussed in the previous section
are encouraging, especially in comparison with existing results for the propo-
sitional case. In the near future, we shall seek improvements of this algorithm
as well as other ways to overcome the difficulties related to the post-deletion
unifiability property. The difficulties related to unit reintroduction suggest that
other propositional proof compression algorithms that do not require reintroduc-
tion (e.g. RecyclePivotsWithIntersection [6]) might need less sophisticated
bookkeeping when lifted to first-order.

The efficiency and versatility of contemporary automated theorem provers
depend on inference rules and techniques that go beyond the pure resolution
calculus. The generalization of compression algorithms to support such extended
calculi will be essential for their usability on a wider range of problems.

References

1. Clarke, E.M., Voronkov, A. (eds.): LPAR-16 2010. LNCS, vol. 6355. Springer,
Heidelberg (2010)

2. Bar-Ilan, O., Fuhrmann, O., Hoory, S., Shacham, O., Strichman, O.: Linear-time
reductions of resolution proofs. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS,
vol. 5394, pp. 114–128. Springer, Heidelberg (2009)

3. Boudou, J., Fellner, A., Woltzenlogel Paleo, B.: Skeptik: a proof compression sys-
tem. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol.
8562, pp. 374–380. Springer, Heidelberg (2014)

4. Boudou, J., Woltzenlogel Paleo, B.: Compression of propositional resolution proofs
by lowering subproofs. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX
2013. LNCS, vol. 8123, pp. 59–73. Springer, Heidelberg (2013)

5. Fontaine, P., Merz, S., Woltzenlogel Paleo, B.: Exploring and exploiting algebraic
and graphical properties of resolution. In: 8th International Workshop on SMT,
Edinburgh (2010)

6. Fontaine, P., Merz, S., Woltzenlogel Paleo, B.: Compression of propositional reso-
lution proofs via partial regularization. In: Bjørner, N., Sofronie-Stokkermans, V.
(eds.) CADE 2011. LNCS, vol. 6803, pp. 237–251. Springer, Heidelberg (2011)

7. Hetzl, S., Leitsch, A., Reis, G., Weller, D.: Algorithmic introduction of quantified
cuts. Theor. Comput. Sci. 549, 1–16 (2014)

8. Hetzl, S., Leitsch, A., Weller, D., Woltzenlogel Paleo, B.: Herbrand sequent extrac-
tion. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F.
(eds.) AISC 2008, Calculemus 2008, and MKM 2008. LNCS (LNAI), vol. 5144, pp.
462–477. Springer, Heidelberg (2008)

366 J. Gorzny and B. Woltzenlogel Paleo

9. Woltzenlogel Paleo, B.: Atomic cut introduction by resolution: proof structuring
and compression. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol.
6355, pp. 463–480. Springer, Heidelberg (2010)

10. Rollini, S.F., Bruttomesso, R., Sharygina, N.: An efficient and flexible approach
to resolution proof reduction. In: Raz, O. (ed.) HVC 2010. LNCS, vol. 6504, pp.
182–196. Springer, Heidelberg (2010)

11. Sutcliffe, G.: The TPTP problem library and associated infrastructure: The FOF
and CNF parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)

12. Vyskočil, J., Stanovský, D., Urban, J.: Automated proof compression by invention
of new definitions. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS,
vol. 6355, pp. 447–462. Springer, Heidelberg (2010)

Beagle – A Hierarchic Superposition
Theorem Prover

Peter Baumgartner1(B), Joshua Bax1, and Uwe Waldmann2

1 NICTA and Australian National University, Canberra, Australia
peter.baumgartner@nicta.com.au

2 MPI für Informatik, Saarbrücken, Germany

Abstract. Beagle is an automated theorem prover for first-order logic
modulo built-in theories. It implements a refined version of the hierar-
chic superposition calculus. This system description focuses on Beagle’s
proof procedure, background reasoning facilities, implementation, and
experimental results.

1 Introduction

This paper describes the automated theorem prover Beagle. Beagle implements
hierarchic superposition [2,7], a calculus for automated reasoning in a hierarchic
combination of first-order logic and some background theory. Currently imple-
mented background theories are linear integer and linear rational arithmetics.
Beagle features new simplification rules for theory reasoning, and well-known
ones used for non-theory reasoning. Beagle also implements calculus improve-
ments like weak abstraction [7] and determining (un)satisfiability w. r. t. quan-
tification over finite integer domains [6].

Beagle is written in Scala, including its implementation of the background
reasoners from scratch. Existing SMT solvers can be coupled as background
reasoners as well via a textual SMT-LIB interface. Beagle accepts problem spec-
ifications written in the TFF format (the typed version of the TPTP problem
specification language) and in the SMT-LIB format [4,16].

In this paper we describe the above features in more detail and report on
Beagle’s performance on the TPTP problem library [17] and SMT-LIB bench-
marks [16].

2 Hierarchic Theorem Proving

Hierarchic superposition [2,7] is a calculus for automated reasoning in a hierar-
chic combination of first-order logic and some background theory.1 We assume

NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence
Program.

1 Due to a lack of space, we can only give a brief overview of the calculus and of the
semantics of hierarchic specifications. We refer to [7] for the details.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 367–377, 2015.
DOI: 10.1007/978-3-319-21401-6 25

368 P. Baumgartner et al.

that we have a background (“BG”) prover that accepts as input a set of clauses
over a BG signature ΣB = (ΞB, ΩB), where ΞB is a set of BG sorts and ΩB is a
set of BG operators. Terms/clauses over ΣB and BG-sorted variables are called
BG terms/clauses. The BG prover decides the satisfiability of ΣB-clause sets
w. r. t. a BG specification, that is, a class of term-generated ΣB-interpretations
(called BG models) that is closed under isomorphisms. The BG specification is
usually some kind of arithmetic, so ΞB could for instance be {int} and ΩB could
contain the BG operators 0, 1,−1, 2,−2, . . . ,+,−, <,≤. We assume that ΩB also
contains infinitely many parameters α, β, . . . , that is, additional constants that
may be interpreted freely by arbitrary elements of the appropriate domain in
different models.

The foreground (“FG”) theorem prover accepts as input a set of clauses over
an extended signature Σ = (Ξ,Ω), where ΞB ⊆ Ξ and ΩB ⊆ Ω. The sorts in
ΞF = Ξ \ΞB and the operator symbols in ΩF = Ω \ΩB are called FG sorts and
FG operators. For instance, ΞF might be {list} and ΩF could then contain the
operators empty :→ list , cons : int list → list , and length : list → int . We use
sans-serif letters to denote FG operators. A Σ-term is an FG term if it is not a
BG term, that is, if it contains at least one FG operator or FG-sorted variable.
We emphasize that for an FG operator f : ξ1 . . . ξn → ξ0 in ΩF any of the ξi
may be a BG sort. Consequently, a FG term like length(cons(5, empty)) may have
a BG sort. Every FG operator f with a BG range sort ξ0 ∈ ΞB is called a free
BG-sorted (FG) operator.

The intended semantics is that of conservative extensions of the BG speci-
fication, i. e., Σ-interpretations whose restriction to ΣB is a model of the BG
specification. In the concrete example above, that means that we are only inter-
ested in models of the FG clause set whose interpretation of the BG sort int is
the same as in the given BG models; the models may neither identify different
elements of the interpretation of int , say 5 and 7, nor interpret BG-sorted FG
term like length(cons(5, empty)) by some new element that was not present before.
We refer to satisfiability in this sense as B-satisfiability.

Hierarchic theorem proving requires “abstracting out” terms in preparation
for inference rule applications.2 Weak abstraction introduced in [7] abstracts out
BG terms other than number constants and variables that occur as subterms
of FG terms, so for instance the clause cons(α, cons(x, empty)) ≈ cons(3, cons(5 +
2, y)) is converted into

z1 �≈ α ∨ z2 �≈ 5 + 2 ∨ cons(z1, cons(x, empty)) ≈ cons(3, cons(z2, y))

whereas length(cons(x, y)) ≈ length(y)+1 is left unchanged. See [7] for a discussion
of the benefits of weak abstraction.

The FG prover saturates the set of Σ-clauses using the inference rules of
hierarchic superposition, such as, e. g.,

Negative superposition
l ≈ r ∨ C s[u] �≈ t ∨ D

abstr((s[r] �≈ t ∨ C ∨ D)σ)

2 Abstracting out a term t that occurs in a clause C[t] means replacing C[t] by x �≈
t ∨ C[x] for a new variable x.

Beagle – A Hierarchic Superposition Theorem Prover 369

where σ is an mgu of l and u, These inference rules inherit the ordering and
selection restrictions of the standard superposition inference rules [1]; in addition
they have the new restriction that only the FG parts of clauses are overlapped.
Since the standard inferences can destroy weak abstraction, it is furthermore
necessary to apply an explicit weak abstraction to the conclusion. The term
ordering 	 needs to satisfy certain properties specific to the hierarchic case, e. g.,
any concrete number must be smaller than any other ground term. The calculus
includes the generic, semantically defined notion of redundancy well-known from
standard superposition.

Since the standard superposition inference rules are modified in such a way
that only the FG parts of clauses are overlapped, that means in particular that
they are never applied to BG clauses derived during the saturation. Such clauses
are instead passed to the BG prover. The BG prover implements an inference rule

Close
C1 · · · Cn

�
if C1, . . . , Cn are BG clauses and
{C1, . . . , Cn} is B-unsatisfiable.

As soon as one of the two provers derives the empty clause, the input clause set
has been shown to be B-unsatisfiable.

The Define rule. One of the requirements for the refutational completeness of
hierarchic superposition is sufficient completeness, i. e., the property that every
ground BG-sorted FG term is equal to some BG term. Sufficient completeness
of a set of Σ-clauses is a property that is not even recursively enumerable. For
certain classes of Σ-clause sets, however, it is possible to establish a variant of
sufficient completeness automatically [7,11]: If all BG-sorted FG terms in the
input are ground, it suffices to show that each BG-sorted FG term in the input
is equal to some BG term. This can be achieved by adding a definition αt ≈ t
for every BG-sorted FG term t occurring in a clause C[t], where αt is a new
parameter (BG constant); afterwards C[t] can be replaced by C[αt]. See [7] for
the corresponding Define inference rule.

3 Background Reasoning

BG reasoning is represented in Beagle as theory specific modules, “solvers”,
that implement a specific interface. Every solver needs to provide a decision
procedure for B-satisfiability of sets of BG clauses. The syntactic fragment of
these BG clauses depends on whether free BG-sorted constants are declared as
FG constants or as parameters. The former case leads to the A-fragment, the
latter case to the EA-fragment. Moreover, if the solver also supports quantifier
elimination (QE), the decision procedure receives sets of ground clauses only.

In all examples we use linear integer arithmetic as the background theory.

Quantifier elimination. The solver interface supports specifying a quantifier
elimination procedure on BG formulas. It is used for eliminating variables that
only occur in BG literals. This way, e. g., the clause P(x) ∨ ¬(x < y) ∨ ¬(y < 3)

370 P. Baumgartner et al.

becomes P(x) ∨ ¬(x < 2) by QE of y from ¬(x < y) ∨ ¬(y < 3). Applying QE
this way for clause simplification may destroy refutational completeness, since
in general the simplification result is possibly larger (under the clause order-
ing) than the clause being simplified. To avoid this problem, Beagle uses QE
for clause simplification only during preprocessing. It also stores with each BG
clause its ground version, which is sent to the decision procedure.

Splitting. Beagle optionally splits (in particular) BG clauses into variable disjoint
subclauses. If QE is available and Beagle is instructed to, a ground version of
each BG clause is added to the current clause set, which is split exhaustively into
unit clauses by Beagle’s splitting rule. As a consequence, the decision procedure
receives sets of unit clauses only, akin to SMT solvers.

Simplification. Beagle removes disequations of certain forms from clauses by
unabstraction. For example, if cautious simplification is chosen, literals of the
form x �≈ d are removed by unabstraction only if d is a concrete number.

Aggressive simplification enables the unabstraction of any term, including
FG terms. It can possibly break completeness, since there is no guarantee that
the unabstracted clause C[t] is smaller than all possible instances of C[x]∨x �≈ t.
The simplification level of FG clauses is controlled by Beagle. Typically only the
results of cautious unabstraction are kept; aggressive unabstraction is used to
derive unit clauses which may demodulate other clauses, but the unit clauses
resulting from unabstraction are not kept.

Beyond that, simplification of arithmetic terms is realized through an inter-
nal data structure for simplification rules. The current simplification rules are
hard-coded in Beagle’s implementation language Scala. Hence they are not user-
modifiable, but we might change this in a future version. For each solver there are
two sets of simplification rules: cautious simplification rules, which are known to
preserve both sufficient completeness and refutational completeness, and aggres-
sive simplification rules, which in general do not preserve these properties. See
below for examples.

Solvers. Beagle implements solvers for linear integer arithmetic (LIA) and linear
rational arithmetic (LRA). It also accepts linear real arithmetic but the differ-
ences are merely syntactic. Alternatively to the built-in LIA solver, existing SMT
solvers can be coupled via a textual SMT-LIB interface.

3.1 Linear Integer Arithmetic

Quantifier elimination. The built-in LIA solver is based on Cooper’s quanti-
fier elimination algorithm and its improvements as introduced in [8]. It accepts
arbitrary BG formulas, in particular conjunctions of clauses. The code structure
follows roughly the algorithm described in [10]. The LIA solver is used for both
deciding satisfiability of sets of BG clauses and for the elimination of variables
as described above.

Beagle – A Hierarchic Superposition Theorem Prover 371

We have integrated several improvements into Cooper’s algorithm to make it
more practical. For example, in conjunctions that contain the atomic formulas
α < 5 and α < 3 the former can be removed; a limited form of subsumption.
Other simple and cheap techniques include elimination of variables that admit
unbounded solutions and elimination of equations α ≈ t where α does not occur
in t. Furthermore, if a conjunction contains the atomic formulas s1 < α, . . . , sm <
α and α < t1, . . . , α < tn, given that α does not occur elsewhere, then α can
be removed by exhaustive resolution. (Resolution of s < α and α < t yields
s + 1 < t.) If α does occur somewhere else, then this form of resolution can still
be used to prove unsatisfiability when s + 1 < t is false. This is similar to the
first step of the Omega test for deciding Presburger arithmetic [14].

The improvements mentioned above often help to solve problems much faster.3

However, some of them are effective only on conjunctions of literals. In support of
this, our algorithm deviates from the standard Cooper algorithm by multiplying
out disjunctions that arise from quantifier instantiation. This often avoids deeply
structured “or-and” formulas. As a special case, disjunctive normal form is pre-
served by solving and multiplying out the conjunctions separately.

The final step of Cooper’s algorithm involves instantiation over representatives
of congruence classes of solutions for the target variable which quite often lead
to prohibitively large formulas. Using an improvement suggested in [10] Beagle
occasionally defers this instantiation (based on the expected number of instances)
until a later round of quantifier elimination. This is done by substituting a fresh
variable and terms that describe the solution classes as occasionally a shorter proof
of satisfiability/unsatisfiability can be found using a different variable.

When the Close rule applies Beagle determines a minimal unsatisfiable subset
of the BG clauses passed to the decision procedure. This is advantageous for the
main loop’s dependency-directed backtracking since cases which only produce
BG clauses that are irrelevant for unsatisfiability do not need to be backtracked
to. Currently, minimal unsatisfiable subsets are determined by binary search on
the whole clause set passed to the (built-in) LIA solver, or by unsatisfiable cores
returned by Z3 [12] as a solver.

Simplification and arithmetic terms normalization. The cautious simplification
rules for LIA comprise evaluation of arithmetic terms, e. g. 3 · 5, 3 < 5, α + 1 <
α + 1 (equal lhs and rhs terms in inequations), and rules for TPTP-operators,
e. g., $to rat(5), $is int(3.5). For aggressive simplification, integer sorted subterms
are brought into a polynomial-like form and are evaluated as much as possible.
For example, the term 5 · α + f(3 + 6, α · 4) − α · 3 becomes 2 · α + f(9, 4 · α).
These conversions exploit associativity and commutativity of + and ·. Pure BG
formulas always produce proper polynomials, which can be used directly by the
QE procedure without further conversions.

Aggressive simplification does not always preserve sufficient completeness.
For example, in the clause set N = {P(1+(2+ f(x))), ¬P(1+(x+ f(x)))} the first
clause is aggressively simplified, giving N ′ = {P(3 + f(x)), ¬P(1 + (x + f(x)))}.

3 E.g., the GEG-problems in the TPTP problem library.

372 P. Baumgartner et al.

Notice that both N and N ′ are LIA-unsatisfiable, sgi(N) ∪ GndTh(LIA) is
unsatisfiable, but sgi(N ′) ∪ GndTh(LIA) is satisfiable. Thus, N is (trivially)
sufficiently complete while N ′ is not.

We have also implemented heuristics for normalizing equations and inequa-
tions for aggressive simplification. Inequations are normalized by first eliminat-
ing the operators >, ≥ and ≤ in terms of <. The QE procedure treats < as a
primitive, so this is a natural choice. Then, the monomials of the lhs and rhs
polynomials are moved around so that only positive signs and only addition
of monomials (not subtraction) results. The rationale is to normalize terms by
removing unnecessary operators. Similar heuristics apply for equations, which
also attempt to arrive at orientable equations. Normalizing (in)equations may
remove or install sufficient completeness and destroy refutational completeness.
Yet, in our experiments we found that aggressive simplification is far superior
to cautious simplification in practice, hence it is enabled by default.

3.2 Other Arithmetic Features

Linear Rational Arithmetics. The solver for LRA comprises a Fourier-Motzkin
style quantifier elimination procedure for eliminating BG variables as described
in Sect. 3. The decision procedure implements the Simplex algorithm extended
to strict inequalities [9]. The cautious simplification rules evaluate arithmetic
subterms, and the aggressive simplification rules rewrite sub-terms towards a
flat structure by exploiting AC-properties of the operators. Syntactic differences
between concrete numbers aside, linear real arithmetics is treated by additional
lemmas that are valid in real arithmetics. The LRA solver is not as far developed
as the LIA solver.

Nonlinear Arithmetic. Beagle features a simplistic treatment of non-linear arith-
metics. During preprocessing, every occurrence of a non-linear multiplication
subterm s · t is replaced by nlpp(s, t), where nlpp is a dedicated foreground func-
tion symbol of the proper arity. As soon as s or t in nlpp(s, t) is replaced by a
concrete number, the resulting nlpp is turned into a multiplication term again.
In the LIA case, axioms for nlpp are added that express multiplication in terms
of repeated addition.

4 Proof Procedure

This section provides a summary of Beagle’s proof procedure. The proof pro-
cedure follows by and large standard techniques, but treats BG formulas in a
specific way on some occasions.

Preprocessing. Beagle accepts its input formulas in two alternative syntaxes,
TPTP-TFF [19] and SMT-LIB (version 2) [4]. The SMT-LIB language is richer
than the TPTP-TFF language due to its support for polymorphic sorts and
functions. The SMT-LIB also features predefined theories such as arrays. Beagle

Beagle – A Hierarchic Superposition Theorem Prover 373

automatically monomorphizes sorts and function symbols, and it generates array
axioms as needed.

Both TPTP-TFF and SMT-LIB provide syntax for full first-order logic (not
just clausal logic). Beagle has two translators into clause normal form (CNF),
a standard one and a Tseitin-style translator which introduces definitions for
“complex” subformulas. The default is the standard CNF translator, because it
gave better results overall over the problems in the TPTP.

CNF transformation includes Skolemization of existentially quantified vari-
ables. Beagle’s CNF transformation treats existentially quantified integer vari-
ables in a special way, by removing them with QE instead of Skolemization, if
possible. For example, the input formula ∀x : Z P(x) ∨ ∃y : Z y �≈ x + 1 becomes
∀x : Z P(x), whereas Skolemization would have given ∀x : Z P(x) ∨ f(x) �≈ x + 1.
In particular, if the input formulas are all BG formulas over the integers, no
Skolem functions are introduced, and so Beagle is a decision procedure for that
class.

Main loop and simplification. Beagle’s main loop is the well-known “Discount
loop”. It maintains two clause sets, Old and New, where Old is initially empty
and new is initialized with the input clauses. On each round, a selected clause
is removed from New and simplified by the clauses from Old and New. The
simplified selected clause then is put into Old and all inferences between it and
the clauses in Old are carried out. The resulting clauses are simplified by the
Old clauses and go into New again, this way closing the loop. If a BG clause
results, the solver is called with the thus extended current set of all BG clauses.

Implemented simplification techniques include standard ones, like demodu-
lation by unit clauses, proper subsumption deletion, and removing a positive
literal L from a clause in presence of a unit clause that instantiates to the com-
plement of L. All clauses in Old are mutually simplified. Backward simplification
is optional.

By default, a split rule is enabled that breaks clauses into variable-disjoint
subclauses and branches out correspondingly. Dependency-directed backtracking
is used to avoid exploring irrelevant cases.

The default term ordering is LPO if BG theories are present, otherwise it is
KBO. See [7] for properties of the LPO specific to hierarchic superposition.

Fairness. Fairness is achieved by a combination of clause weights and their
derivation age. This is controlled by a parameter “weight-age-ratio”, a non-
negative number saying how many lightest clauses are selected before an oldest
clause is selected. Clause weights are computed in such a way that selection
based on weights only would be a fair strategy. In our experiments we used a
weight-age-ratio of five.

Auto mode. Beagle includes a simple auto mode. When on, Beagle first tries the
default flag setting. If there is no conclusive result within half of the given time
limit, Beagle starts again using a setting where BG variables in the input may
be instantiated by BG-sorted FG terms, rather than only by BG terms.

374 P. Baumgartner et al.

5 Implementation

Beagle implements support for both the TPTP-TFF and SMT-LIB input lan-
guages using Scala’s parser combinator library. Beagle’s internal formula repre-
sentation follows TFF, so to support the SMT-LIB standard it must perform
sort monomorphization and adding axioms for predefined theories like arrays.
This is done with the help of the separately developed SMTtoTPTP library [5].

Beagle uses a simple term-indexing scheme which is essentially top symbol
hashing. This is used to retrieve term positions eligible for superposition or
demodulation within clauses.

Scala specific features. Beagle makes heavy use of many built in Scala data-
structures, primarily List, Vector and Map. Not only are the implementations
well optimised but they also provide powerful abstractions allowing for simple
and maintainable code.

Scala’s declarative style encourages the use of immutable values, which min-
imizes data duplication. Scala also provides a lazy evaluation feature, which we
have found extremely useful for caching data: e. g. the computation of maxi-
mal literals in a clause can be deferred until the clause becomes eligible for
an inference and it may never be computed if the clause is simplified first. We
found that the Scala REPL interpreter is an invaluable tool for debugging: for
example, one could take the (usually large) result of an invalid derivation and
programmatically investigate it using functional operators like map or filter.

The simple structure of logic formulas is a good fit for property based testing
libraries such as scalacheck4 which use grammars to generate random test
data. These data are used as input for properties given as universally quantified
predicates.

6 Performance

TPTP. We tried Beagle on the first-order problems from the TPTP–v6.1.0 prob-
lem library [17] that involve some form of arithmetic, including non-linear, ratio-
nal and real arithmetics. The experiments were carried out on a MacBook Pro
with a 2.3 GHz Intel Core i7 processor and 16 GB of main memory. The CPU
time limit was 180 s.

Although Beagle detected countersatisfiabilty of some of the (73) non-
theorem problems, we discuss in the following the performance on the prob-
lems with a “theorem” or “unsatisfiable” status only. Of these 972 problems
in total Beagle was able to prove 781 using automatic strategy selection. The
backup strategy was attempted a total of 21 times and was successful in 15 cases,
thereof 13 times in the TPTP DAT category.

Table 1 summarizes the results. Broken down by the TPTP problem category
we see that Beagle’s best performance was on ARI, DAT and NUM. These are
characterized by smaller problem sizes with an arithmetic reasoning component.
4 http://scalacheck.org/.

http://scalacheck.org/

Beagle – A Hierarchic Superposition Theorem Prover 375

Table 1. Beagle performance on the TPTP “theorem” or “unsatisfiable” problems.
The first table breaks down the number of solved problems by category. The second
table filters by problem rating. The column ≥ 0.6, for instance, means “all problems
with a rating 0.6 or higher”.

Category ARI DAT GEG HWV MSC NUM PUZ SEV SWV SWW SYN SYO

Total 539 103 5 88 2 43 1 6 2 177 1 3

Solved 531 98 5 0 2 41 1 2 2 97 0 2

Rating ≥ 0.0 ≥ 0.1 ≥ 0.2 ≥ 0.3 ≥ 0.4 ≥ 0.5 ≥ 0.6 ≥ 0.7 ≥ 0.8 ≥ 0.9 1.0

Total 972 853 771 527 391 343 253 180 129 97 97

Solved 781 666 584 340 210 162 85 29 12 2 2

On the other hand performance was much worse on those problems which involve
large problem sizes such as SWW and SWV (translations of model-checking
problems). Beagle failed to solve any HWV problems (large EPR encodings
of bounded model-checking) due to the size of the formulas and emphasis on
boolean reasoning. The remaining easy (rated < 0.1) problems that Beagle failed
to solve were all non-theorems, most involving multiplication operators. The two
solvable problems with a rating of 1.0 are ARI536=2.p and DAT086=1.p.

We have also coupled the SMT solver Z3 [12] as an alternative to the built-in
LIA solver. In our experiments we also tried a modified split rule that leaves BG
subclauses unsplit. In particular, BG clauses are never split then. The rationale
is that letting the SMT solver deal with (non-unit) BG clauses might be better
than the default FG splitting into sets of unit clauses. As an alternative to the
built-in LIA solver and using the modified split rule or not hence gives four base
configurations.

We ran Beagle in all four base configurations and several additional flag
settings. But, surprisingly, Z3 does not give better results than the built-in solver.
We found that the default split rule is superior to the modified one, both in
conjunction with Z3 and the built-in solver. Over all settings, however, almost
exactly the same problems are solvable with any of the two solvers and in roughly
the same time. This finding might not carry over to problems that require more
complex BG reasoning than those in the TPTP.

SMT-LIB. We tested Beagle on the 2014 release of SMT-LIB [16] focusing on
the logics with an arithmetic component. Specifically these were ALIA, AUFLIA,
UFLIA, UF IDL (integer difference logic) and the corresponding quantifier free
problem sets, including QF LIA. (The LIA category was ignored as it contains
only problems from the TPTP). We selected only those problems indicated as
unsatisfiable in the problem description and Beagle was run with automatic
strategy selection (as described above). We found a mix of results: Beagle was
able to solve a few problems unsolved by SMT solvers5 yet there were also quite
a few problems that were marked as ‘trivial’ (all SMT solvers in the SMT-Eval
2013 can solve them in under five seconds), which Beagle could not solve. Overall

5 For this we used the difficulty ratings given for SMT-Comp 2014.

376 P. Baumgartner et al.

Beagle solved the following problems by category (QF refers to the quantifier
free fragment of the logic to the left):

Logic ALIA QF AUFLIA QF UFLIA QF UFIDL QF QF IDL QF LIA

Total 41 72 4 516 6602 195 62 335 694 2610

Solved 31 40 4 205 1736 155 42 29 24 28

In total Beagle solved 89 problems not solved by SMT solvers and these were
divided among the following subcategories of ‘UFLIA/sledgehammer’:

Category Arrow Order FFT FTA Hoare StrongNorm TwoSquares

Solved 17 2 34 20 2 14

There were many problems which Beagle could not parse, as it is not opti-
mized for large problem sets. In total there were 1,391 trivial problems not solved
by Beagle.

It was not possible to draw broad conclusions about which categories Beagle is
best suited to. For example, all of the hardest problems Beagle solved were among
the UFLIA benchmarks, but there were also at least 200 trivial problems from
that category that were unsolved (in the ‘simplify’ and ‘simplify2’ subcategories).
Also it was hypothesised that Beagle would perform much worse in the quantifier
free fragment, and that was the case for QF IDL and QF LIA, but not so for
QF UFLIA and QF AUFLIA.

CASC-J7. Most recently Beagle participated in the CASC-J7 competition [18].
in the TFA division (Typed First-order Arithmetic theorems). For this division
the problem set consists of typed first-order problems with an arithmetic com-
ponent over integers, rationals, or reals, of which roughly half were previously
unseen by competitors.

Other solvers entered in the TFA category were CVC4 [3], SPASS+T [13],
Zipperposition (see [18]), and Princess [15]. In terms of overall problems solved
Beagle placed third equal with 173/200 solutions, only three fewer than the
winning solver CVC4. Beagle performed quite well in terms of mean efficiency
(solutions per second multiplied by number of solutions); it was outperformed
only by CVC4 6.

7 Availability

Beagle is available at https://bitbucket.org/peba123/beagle under a GNU Gen-
eral Public license. The distribution includes the Scala source code and a ready-
to-run Java jar-file. A more experimental version of Beagle is maintained at
https://bitbucket.org/joshbax189/beagle.
6 For an explanation of how mean efficiency is computed see the CASC-J7 proceed-

ings [18].

https://bitbucket.org/peba123/beagle
https://bitbucket.org/joshbax189/beagle

Beagle – A Hierarchic Superposition Theorem Prover 377

References

1. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selec-
tion and simplification. J. Logic Comput. 4(3), 217–247 (1994)

2. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for
hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput 5, 193–212
(1994)

3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

4. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta,
A., Kroening, D.(eds.) SMT Workshop (2010)

5. Baumgartner, P.: SMTtoTPTP - A converter for theorem proving formats. In:
Felty, A., Middeldorp, A. (eds.) CADE-25. LNCS(LNAI), pp. 152–169. Springer,
Heidelberg (2015)

6. Baumgartner, P., Bax, J., Waldmann, U.: Finite quantification in hierarchic theo-
rem proving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS,
vol. 8562, pp. 152–167. Springer, Heidelberg (2014)

7. Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction.
In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 39–57. Springer, Hei-
delberg (2013)

8. Cooper, D.C.: Theorem proving in arithmetic without multiplication. In: Machine
Intelligence, vol. 7, pp. 91–99. American Elsevier, New York (1972)

9. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

10. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, Cambridge (2009)

11. Kruglov, E., Weidenbach, C.: Superposition decides the first-order logic fragment
over ground theories. Mathematics in Computer Science, pp. 1–30 (2012)

12. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

13. Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S.
(eds.) ESCoR: Empirically Successful Computerized Reasoning. CEUR Workshop
Proceedings, pp. 18–33. Seattle, WA, USA (2006)

14. Pugh, W.: The Omega test: a fast and practical integer programming algorithm
for dependence analysis. In: ACM/IEEE Conference on Supercomputing, pp. 4–13.
ACM (1991)

15. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008)

16. SMT-LIB, The Satisfiability Modulo Theories Library. http://smt-lib.org/
17. Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF

and CNF Parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)
18. Sutcliffe, G.: The 7th IJCAR automated theorem proving system competition -

CASC-J7. AI Communications, 28 (2015). To appear
19. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-

order form with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012.
LNCS, vol. 7180, pp. 406–419. Springer, Heidelberg (2012)

http://smt-lib.org/

The Lean Theorem Prover (System Description)

Leonardo de Moura1(B), Soonho Kong2, Jeremy Avigad2, Floris van Doorn2,
and Jakob von Raumer2

1 Microsoft Research, Redmond, USA
leonardo@microsoft.com

2 Carnegie Mellon University, Pittsburgh, USA
soonhok@cs.cmu.edu, {avigad,fpv,javra}@andrew.cmu.edu

Abstract. Lean is a new open source theorem prover being developed
at Microsoft Research and Carnegie Mellon University, with a small
trusted kernel based on dependent type theory. It aims to bridge the
gap between interactive and automated theorem proving, by situating
automated tools and methods in a framework that supports user inter-
action and the construction of fully specified axiomatic proofs. Lean is an
ongoing and long-term effort, but it already provides many useful com-
ponents, integrated development environments, and a rich API which
can be used to embed it into other systems. It is currently being used to
formalize category theory, homotopy type theory, and abstract algebra.
We describe the project goals, system architecture, and main features,
and we discuss applications and continuing work.

1 Introduction

Formal verification involves the use of logical and computational methods to
establish claims that are expressed in precise mathematical terms. These can
include ordinary mathematical theorems, as well as claims that pieces of hard-
ware or software, network protocols, and mechanical and hybrid systems meet
their specifications. In practice, there is not a sharp distinction between veri-
fying a piece of mathematics and verifying the correctness of a system: formal
verification requires describing hardware and software systems in mathemati-
cal terms, at which point establishing claims as to their correctness becomes a
form of theorem proving. Conversely, the proof of a mathematical theorem may
require a lengthy computation, in which case verifying the truth of the theorem
requires verifying that the computation does what it is supposed to do.

Automated theorem proving focuses on the “finding” aspect, and strives for
power and efficiency, often at the expense of guaranteed soundness. Such sys-
tems can have bugs, and typically the correctness relies on extensive testing. In

J. Avigad—Work supported by the AFOSR under MURI Grant Number FA9550-
15-1-0053.
J. von Raumer—Visiting student from Karlsruhe Institute of Technology, sponsored
by the Baden-Württemberg-Stipendium.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 378–388, 2015.
DOI: 10.1007/978-3-319-21401-6 26

The Lean Theorem Prover (System Description) 379

contrast, interactive theorem proving focuses on the verification aspect of the-
orem proving, requiring that every claim is supported by a proof in a suitable
axiomatic foundation. This sets a very high standard: every rule of inference and
every step of a calculation has to be justified by appealing to prior definitions
and theorems, all the way down to basic axioms and rules. In fact, most such sys-
tems provide fully elaborated proof objects that can be communicated to other
systems and checked independently. Constructing such proofs typically requires
much more input and interaction from users, but it allows us to obtain deeper
and more complex proofs. Finally, we remark that some automated theorem
provers do generate proof certificates that can be verified by other systems [8].

The Lean Theorem Prover1 aims to bridge the gap between interactive and
automated theorem proving, by situating automated tools and methods in a
framework that supports user interaction and the construction of fully speci-
fied axiomatic proofs. The goal is to support both mathematical reasoning and
reasoning about complex systems, and to verify claims in both domains. Lean
is released under the Apache 2.0 license, a permissive open source license that
permits others to use and extend the code and mathematical libraries freely.
At Carnegie Mellon University, Lean is already being used to formalize cate-
gory theory, homotopy type theory, and abstract algebra. Lean is an ongoing,
long-term effort, and much of the potential for automation will be realized only
gradually over time.

Lean’s small, trusted kernel is based on dependent type theory, with sev-
eral configuration options. It can be instantiated with an impredicative sort
or propositions, Prop, to provide a version of the Calculus of Inductive Con-
structions (CIC) [5,6]. Moreover, Prop can be marked proof-irrelevant if desired.
Without an impredicative Prop, the kernel implements a version of Martin-Löf
type theory [12,23]. In both cases, Lean provides a sequence of non-cumulative
type universes, with universe polymorphism.

Lean is meant to be used both as a standalone system and as a software
library. SMT solvers can use the Lean API to create proof terms that can be
independently checked. The API can be used to export Lean proofs to other
systems based on similar foundations (e.g., Coq [3] and Matita [1]). Lean can
also be used as an efficient proof checker, and definitions and theorems can be
checked in parallel using all available cores on the host machine. When used as a
proof assistant, Lean provides a powerful elaborator that can handle higher-order
unification, definitional reductions, coercions, overloading, and type classes, in
an integrated way. Lean allows users to provide definitions and theorems using a
declarative style resembling Mizar [20] and Isabelle/Isar [24]. Lean also provides
tactics as an alternative (more imperative) approach to constructing (proof)
terms as in Coq, HOL-Light [11], Isabelle [17] and PVS [19]. Moreover, the
declarative and tactic styles can be freely mixed together.

Lean includes two libraries of formally verified mathematics and basic data-
structures. The standard library uses a kernel instantiated with an impredicative
and proof-irrelevant Prop. This library supports constructive and classical users,

1 http://leanprover.github.io.

http://leanprover.github.io

380 L. de Moura et al.

and the following axioms can be optionally used: propositional completeness,
function extensionality, and strong indefinite description. Lean also contains a
library tailored for Homotopy Type Theory (HoTT) [23], using a predicative
and proof relevant instantiation of the kernel and higher inductive types (HITs).
Future plans to support HoTT include sorts for fibrant type universes.

2 The Kernel

Lean’s trusted kernel is implemented in two layers. The first layer contains the
type checker and APIs for creating and manipulating terms, declarations, and
the environment. This layer consists of 6k lines of C++ code. The second layer
provides additional components such as inductive families and quotient types.
The inductive family component consists of 700 lines of code. When the kernel is
instantiated, one selects which of these components should be used. We have tried
to maintain the number of objects manipulated by the kernel to a minimum: the
list consists of terms, universe terms, declarations, and environments. Identifiers
are encoded as hierarchical names [14], i.e. lists of strings/numbers, such as
x.y.1.

Terms. The term language is a dependent λ-calculus. A term can be a free vari-
able (also called a local constant), a bound variable, a constant (parameterized
by universe terms), a function application f t, a lambda abstraction λx : A, t, a
function space Πx : A,B, a sort Type u (where u is a universe term), a metavari-
able, or a macro m[t1, . . . , tn].

Sorts. The sorts Type u are used to encode the infinite sequence of universes
Type0, Type1, Type2, . . . An explicit universe term is of the form sk z (for k ≥ 0),
where z denotes the base universe zero, and s denotes the successor universe
operator. We use Type z to represent Prop in kernel instantiations that support
it. To support universe polymorphism, we also have universe parameters (an
identifier), and the operators max u1 u2 and imax u1 u2. The universe term
max u1 u2 denotes the universe that is greater than or equal to u1 and u2, and is
equal to one of them. The universe term imax u1 u2 denotes the universe zero if
u2 denotes zero, and max u1 u2 otherwise. The operator imax is only needed for
kernel instantiations that have an impredicative Prop. In these kernels, given A :
Type u1 and B : Type u2, the type of Πx : A,B is Type (imax u1 u2). The imax
operator makes sure that Πx : A,B is a proposition when B is a proposition.

Free and bound variables. Free variables have a unique identifier and a type,
and bound variables are just a number (a de Bruijn index). By storing the type
with each free variable, we do not need to carry around contexts in the type
checker and normalizer. As described in [14], this representation simplifies the
implementation considerably, and it also minimizes the number of places where
calculations with de Bruijn indices must be performed.

The Lean Theorem Prover (System Description) 381

Metavariables. In Lean, users may provide partial constructions, i.e., construc-
tions containing “holes” that must be filled by the system. These holes (also
known as placeholders) are internally represented as metavariables that must be
replaced by closed terms that are synthesized by the system. Since only closed
terms can be assigned to metavariables, a metavariable that occurs in a context
records the parameters it depends on. For example, we encode a hole in the con-
text (x : nat) (y : bool) as ?m x y, where ?m is a fresh metavariable. As with free
variables, every metavariable has a type. We also have universe metavariables to
represent “holes” in universe terms.

Macros. Macros, which can be viewed as procedural attachments, provide more
efficient ways of storing and working with terms. Each macro must provide two
procedures, namely, type inference and macro expansion. The type inference
procedure minfer is responsible for computing the type of a macro application
m[t1, . . . , tn], and the macro expansion procedure mexpand must expand/elim-
inate the macro application. The point is that, given a term t of the form
m[t1, . . . , tn], minfer(t) may be able to infer the type of mexpand(t) more
efficiently than the kernel type checker, and t may be more compact than
mexpand(t).

We also use macros to store annotations and hints used by automation such
as rewriters and decision procedures. Each macro has a trust level represented
by a natural number. When the Lean kernel is initialized, the user must provide
a trust level �, and the kernel then refuses any term that contains a macro with
trust level greater than or equal to �. A kernel initialized with trust level zero
does not accept any macro, forcing any macro occurring in declarations to be
expanded. The idea is that macros are not part of the trusted code base, but
users may choose to trust them “most of the time” when formalizing a system
and/or theorem. Note that an independent type checker for Lean does not need
to implement support for metavariables or macros.

Environments. An environment stores a sequence of declarations. The kernel
currently supports three different kinds of declarations: axioms, definitions and
inductive families. Each has a unique identifier, and can be parameterized by a
sequence of universe parameters. Every axiom has a type, and every definition
has a type and a value. A constant in Lean is just a reference to a declaration.
The main task of the kernel is to type check these declarations and refuse type
incorrect ones. The kernel does not allow declarations containing metavariables
and/or free variables to be added to an environment. Environments are never
destructively updated, and are implemented using pure red-black trees, where
the keys are hierarchical names.

Inductive families. Inductive families [9] are a form of simultaneously defined
collection of algebraic data-structures which can be parameterized over values
as well as types. Each inductive family definitions produces introduction rules,
elimination rules, and computational rules as described in [9]. As in the CIC,
the instances of an inductive family can be in Prop, and special rules are used

382 L. de Moura et al.

to make sure the eliminator is compatible with proof irrelevance. Finally, when
proof irrelevance is enabled in the kernel, axiom K [22] “computes” in Lean (a
similar feature is available in Agda [18]). In contrast to Coq, Lean does not have
fix-point expressions, match expressions, or a termination checker in the kernel.
Instead, recursive definitions and pattern matching are compiled into eliminators
outside of the kernel.

The type checker. To minimize the amount of code duplication, the type checker
plays two roles. First, it is used to validate any declaration sent to the kernel
before adding it to an environment. Second, it is used by elaboration procedures
that try to synthesize holes in terms provided by the user. Consequently, the type
checker is capable of processing terms containing metavariables. When a term
contains metavariables, the type checker may produce unification constraints, in
which case the resultant type is correct only if the unification constraints can be
resolved.

3 Elaboration

The task of the elaborator is to convert a partially specified expression into a fully
specified, type-correct term. When typing in a term, users can leave arguments
implicit by entering them with an underscore (i.e., a “hole”), leaving it to the
elaborator to infer a suitable value. One can also mark arguments implicit by
putting them in curly brackets when defining a function, to indicate that they
should generally be inferred rather than entered explicitly. For example, the
standard library defines the identity function as:

definition id {A : Type} (a : A) : A := a

As a result, the user can write id a rather than id A a. It is fairly routine to
infer the type A given a : A. Often the elaborator needs to infer an element of
a Π-type, which constitutes a higher-order problem. For example, if e : a = b
is a proof of the equality of two terms of some type A, and H : P is a proof of
some expression involving a, the term subst e H denotes a proof of the result
of replacing some or all the occurrences of a in P with b. Here not just the type
A is inferred, but also an expression C : A → Prop denoting the context for the
substitution, that is, the expression with the property that C a “reduces” to P.
Such expressions can be ambiguous. For example, if H has type R (f a a) a,
then with subst e H the user may have in mind R (f b b) b or R (f a b) a
among other interpretations, and the elaborator has to rely on context and a
backtracking search to find an interpretation that fits. Similar issues arise with
proofs by induction, which require the system to infer an induction predicate.

The elaborator should also respect the computational interpretation of terms.
It should recognize the equivalence of terms (λx, t)s and t[s/x] under beta
reduction, as well as (s, t).1 and s under the reduction rule for pairs. (Terms
that are equivalent modulo such reductions are said to be definitionally equal.)
Unfolding definitions and reducing projections is especially crucial when working

The Lean Theorem Prover (System Description) 383

with algebraic structures, where many basic expressions cannot even be seen to
be type correct without carrying out such reductions.

Lean’s elaborator also supports ad-hoc overloading; for example, we can
use notation a + b for addition on the natural numbers, integers, and addi-
tive groups simultaneously. Each possible interpretation becomes a choice-point
in the elaboration process. The elaborator can also detect the need to insert a
coercion, say, from nat to int, or from the class of rings to the class of additive
groups.

Lean also supports the use of Haskell-style type classes. For example, we can
define a class has mul A of types A with an associated multiplication operator,
and a class semigroup A of types A with semigroup structure, as follows:

structure has_mul [class] (A : Type) :=
(mul : A → A → A)
structure semigroup [class] (A : Type) extends has_mul A :=
(mul_assoc : ∀a b c, mul (mul a b) c = mul a (mul b c))

We can then declare appropriate instances of these classes, and instruct the
elaborator to synthesize such instances when processing the notation a * b or
the generic theorem mul.assoc.

Finally, definitions and proofs can invoke tactics, that is, user-defined or
built-in procedures that construct various subterms. The elaborator needs to
call these procedures at appropriate times during the elaboration process to fill
in the corresponding components of a term.

The interactions between these components are subtle, and the main difficulty
is that the elaborator has to deal with them all at the same time. A definition
or proof may give rise to thousands of constraints requiring a mixture of higher-
order unification, disambiguation of overloaded symbols, insertion of coercions,
type class inference, and computational reduction. To solve these, the elaborator
uses nonchronological backtracking and a carefully tuned algorithm [7].

Recursive equations. Lean provides natural ways of defining recursive functions,
performing pattern matching, and writing inductive proofs. Behind the scenes,
these are “compiled” down into eliminators and auxiliary definitions automati-
cally generated by Lean whenever we declare an inductive family. This compiler
is based on ideas from [4,10,13,21]. The default compilation method supports
structural recursion, i.e. recursive applications where one of the arguments is a
subterm of the corresponding term on the left-hand-side. Lean can also compile
recursive equations using well-founded recursion. The main advantage of the
default compilation method is that the recursive equations hold definitionally.

The compiler also supports dependent pattern matching for indexed inductive
families. For example, we can define the type vector A n of vectors of type A
and length n as follows:

inductive vector (A : Type) : nat → Type :=
| nil {} : vector A zero
| cons : Π {n : nat}, A → vector A n → vector A (succ n)

384 L. de Moura et al.

We can then define a function map that applies a binary function f to elements
of vectors of type A and B, to produce a vector of elements of type C:

definition map {A B C : Type} (f : A → B → C) :
Π {n : nat}, vector A n → vector B n → vector C n

| map nil nil := nil
| map (a: :va) (b: :vb) := f a b : : map va vb

Note that we can omit “unreachable” cases such as map nil (a :: va) because
the input vectors have the same length. Behind the scenes, a lot of boilerplate
code is needed to reduce these definitions to eliminators for the inductive family.

Type classes. Any family of inductive types can be marked as a type class. Then
we can declare particular elements of a type class to be instances. These provide
hints to the elaborator: any time the elaborator is looking for an element of a
type class, it can consult a table of declared instances to find a suitable element.
What makes type class inference powerful is that one can chain instances, that is,
an instance declaration can in turn depend on other instances. This causes class
inference to chain through instances recursively, backtracking when necessary.
The Lean type class resolution procedure can be viewed as a simple λ-Prolog
interpreter [15], where the Horn clauses are the user declared instances.

For example, the standard library defines a type class inhabited to enable
type class inference to infer a “default” or “arbitrary” element of types that
contain at least one element.

inductive inhabited [class] (A : Type) : Type :=
mk : A → inhabited A

Elements of the class inhabited A are of the form inhabited.mk a, for some
element a : A. The following function extracts the corresponding element:

definition default (A : Type) [H : inhabited A] : A :=
inhabited.rec (λa, a) H

The annotation [H : inhabited A] indicates that H should be synthesized from
instance declarations using type class resolution. We can then declare suitable
instances for types like nat and Prop. The following declaration shows that if
two types A and B are inhabited, then so is their product:

definition prod.is_inhabited [instance] {A B : Type}
(H1 : inhabited A) (H2 : inhabited B) : inhabited (A × B) :=

inhabited.mk (default A, default B)

Declarative Proofs. Lean provides a rich notation declaration system [2], and it
is used to support human readable proofs similar to the ones found in Mizar and
Isabelle/Isar. For example, the have construct introduces an auxiliary subgoal
in a longer proof. Internally, the notation have H : p, from s, t produces
the term (λ(H : p), t) s. Similarly, show p, from t does nothing more than

The Lean Theorem Prover (System Description) 385

annotate t with its expected type p. Lean also provides alternative Mizar/Isar-
inspired syntax for lambda abstractions: assume H : p, t and take x : A,
t. Calculational proofs, which begin with the keyword calc, are a convenient
notation for chaining intermediate results that are meant to be composed by
basic principles such as the transitivity of equality. The set of binary relation
predicates supported in calculational proofs can be freely extended by users. In
the following example, we demonstrate some of these features:

theorem le.antisymm : ∀ {a b : Z}, a ≤ b → b ≤ a → a = b :=
take a b : Z, assume (H1 : a ≤ b) (H2 : b ≤ a),
obtain (n : N) (Hn : a + n = b), from le.elim H1,
obtain (m : N) (Hm : b + m = a), from le.elim H2,
have H3 : a + of_nat (n + m) = a + 0, from
... -- suppressed rest of the proof due to space limitations

have H6 : n = 0, from nat.eq_zero_of_add_eq_zero_right H5,
show a = b, from

calc
a = a + 0 : add_zero

... = a + n : H6

... = b : Hn

Namespaces. Lean provides the ability to group definitions, as well as meta-
objects such as notation declarations, coercions, rewrite rules and type classes,
into nested, hierarchical namespaces. The open command brings the shorter
names and all meta-objects into the current context.

The tactic framework. Tactics provide an alternative approach to constructing
terms. We can view a term as a representation of a construction or mathematical
proof; tactics are commands, or instructions, that describe how to build such a
term. Most automation available in Lean is integrated into the system as tactics.
For example, Lean contains a rewrite tactic that provides a basic mechanism
for performing rewriting. The tactic framework provides a general mechanism for
synthesizing metavariables. In this framework, we say a metavariable is a goal.
A proof state contains a sequence of goals; postponed unification constraints;
and a substitution which stores already assigned metavariables. A tactic is a
function that maps a proof state into a stream of proof states, implemented as a
lazy list [16]. This is important because some tactics may produce an unbounded
stream of proof states. Lean provides all usual combinators (also known as tac-
ticals) available in other interactive theorem provers, such as andthen, orelse,
and try. Lean also provides the tacticals par (for executing tactics concurrently
in multiple cores), and tryfor T n that fails if tactic T does not terminate in n
milliseconds. Lean also comes equipped with basic tactics such as apply, intro,
generalize, rewrite, etc. The complete list of tactics is described in [2]. Wher-
ever a term is expected, Lean allows us to insert instead a begin . . . end block,
composed of a sequence of tactics separated by commas. Here is a small example
using tactics:

386 L. de Moura et al.

theorem test (p q : Prop) : p → q → p ∧ q ∧ p :=
begin

intro Hp, intro Hq,
apply and.intro, exact Hp, apply and.intro,
exact Hq, exact Hp

end

4 The User Interface

Lean’s standard integrated development environment (IDE) is based on the
Emacs editor, and provides continuous elaboration and checking. In the back-
ground, the source text is continuously analyzed and annotated with semantic
information as it is being edited by the user. The interaction between editor
and prover is performed by an asynchronous protocol which exploits paral-
lelism, multi-core hardware, and incremental compilation. The native interface
provides all standard features found in advanced IDEs, such as hyperlinks, auto-
completion, syntax highlighting, error highlighting, etc. Users can view automat-
ically synthesized terms, implicit coercions, and overloading resolution. If a user
makes changes to a file higher in the dependency chain, everything is recom-
piled in the background, and with caching the changes are propagated almost
immediately.

The Javascript bindings for Lean do not contain any native code, and can be
used in any modern web browser. They are intended for web applications such as
web IDEs2, “live” tutorial/documentation3 and online exercises. We have used
this infrastructure to develop course material for an interactive theorem proving
course4 being offered in the spring of 2015 at CMU.

5 Conclusion

Lean has been designed with the goal of obtaining a theorem proving system
which has all of the following features: an expressive logical foundation for writ-
ing mathematical specifications and proofs; an interactive and supportive user
interface and environment; a flexible framework for supporting automation; and
a rich API that can be used to embed this functionality into other systems. Lean
already provides a novel elaboration procedure that can handle higher-order
unification, definitional reductions, coercions, overloading, and type classes, in
an integrated way. It has a relatively small trusted kernel, making the task of
implementing a reference/independent type checker for Lean much simpler. It is
also quite fast, with support for multi-core machines and coarse and fine grain
parallelism. Lean is an ongoing and long-term effort, and future plans include
extensive search procedures, decision procedures, better support for homotopy
type theory, and an independent type checker.
2 http://leanprover.github.io/live.
3 http://leanprover.github.io/tutorial.
4 http://www.cs.cmu.edu/∼emc/15815-s15.

http://leanprover.github.io/live
http://leanprover.github.io/tutorial
http://www.cs.cmu.edu/~emc/15815-s15

The Lean Theorem Prover (System Description) 387

References

1. Asperti, A., Ricciotti, W., Sacerdoti Coen, C., Tassi, E.: The Matita interactive the-
orem prover. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS,
vol. 6803, pp. 64–69. Springer, Heidelberg (2011)

2. Avigad, J., de Moura, L., Kong,S.: Theorem Proving in Lean (2015). http://
leanprover.github.io/tutorial/tutorial.pdf

3. Barras, B., Boutin, S., Cornes, C., Courant, J., Filliatre, J.-C., Gimenez, E.,
Herbelin, H., Huet, G., Munoz, C., Murthy, C. et al.: The Coq proof assistant
reference manual: Version 6.1 (1997)

4. Cockx, J., Devriese, D., Piessens, F.: Pattern matching without K. In: Proceedings
of the 19th ACM SIGPLAN International Conference on Functional Programming,
pp. 257–268. ACM (2014)

5. Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput. 76(2–3),
95–120 (1988)

6. Coquand, T., Paulin, C.: Inductively defined types. In: COLOG-88 (Tallinn, 1988),
pp. 50–66. Springer, Berlin (1990)

7. de Moura, L., Avigad, J., Kong, S., Roux, C.: Elaboration in dependent type
theory. Preprint (arXiv)

8. Delahaye, D., Woltzenlogel Paleo, B. (eds.): All about proofs, proofs for all. Math-
ematical Logic and Foundations, vol. 55 (2015)

9. Dybjer, P.: Inductive families. Formal Aspects Comput. 6(4), 440–465 (1994)
10. Goguen, H.H., McBride, C., McKinna, J.: Eliminating dependent pattern match-

ing. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and
Computation. LNCS, vol. 4060, pp. 521–540. Springer, Heidelberg (2006)

11. Harrison, J.: HOL light: an overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg
(2009)

12. Martin-Löf, P.: Intuitionistic type theory. Bibliopolis (1984)
13. McBride, C., Goguen, H.H., McKinna, J.: A few constructions on constructors.

In: Filliâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004. LNCS,
vol. 3839, pp. 186–200. Springer, Heidelberg (2006)

14. McBride, C., McKinna, J.: Functional pearl: I am not a number-I am a free variable.
In: Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell, Haskell 2004,
pp. 1–9. ACM, New York (2004)

15. Miller, D., Nadathur, G.: Programming with Higher-Order Logic. Cambridge Uni-
versity Press, Cambridge (2012)

16. Nipkow, T., Paulson, L.C.: Isabelle-91. In: Kapur, Deepak (ed.) CADE 1992.
LNCS, vol. 607. Springer, Heidelberg (1992)

17. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: a proof assistant for higher-
order logic, vol. 2283. Springer Science and Business Media (2002)

18. Norell, U.: Dependently typed programming in Agda. In: Koopman, P.,
Plasmeijer, R., Swierstra, D. (eds.) AFP 2008. LNCS, vol. 5832, pp. 230–266.
Springer, Heidelberg (2009)

19. Owre, S., Rushby, J., Shankar, N.: PVS: a prototype verification system. In:
Kapur, Deepak (ed.) CADE 1992. LNCS, vol. 607. Springer, Heidelberg (1992)

20. Rudnicki, P.: An overview of the Mizar project. In: Proceedings of the 1992 Work-
shop on Types for Proofs and Programs, pp. 311–330 (1992)

21. Slind, K.: Function definition in higher-order logic. In: von Wright, Joakim,
Harrison, J., Grundy, John (eds.) TPHOLs 1996. LNCS, vol. 1125. Springer,
Heidelberg (1996)

http://leanprover.github.io/tutorial/tutorial.pdf
http://leanprover.github.io/tutorial/tutorial.pdf

388 L. de Moura et al.

22. Streicher, T.: Investigations into intensional type theory. Ph.D. thesis, LMU (1993)
23. The Univalent Foundations Program. Homotopy Type Theory: Univalent Founda-

tions of Mathematics. Institute for Advanced Study (2013)
24. Wenzel, M.M.: Isabelle/Isar - a versatile environment for human-readable formal

proof documents. Technical report (2002)

System Description: E.T. 0.1

Cezary Kaliszyk1, Stephan Schulz2, Josef Urban3(B), and Jǐŕı Vyskočil4

1 University of Innsbruck, Innsbruck, Austria
cezary.kaliszyk@uibk.ac

2 DHBW Stuttgart, Stuttgart, Germany
schulz@eprover.org

3 Radboud University Nijmegen, Nijmegen, The Netherlands
josef.urban@gmail.com

4 Czech Technical University in Prague, Prague, Czech Republic
vyskoj1@fel.cvut.cz

Abstract. E.T. 0.1 is a meta-system specialized for theorem proving
over large first-order theories containing thousands of axioms. Its design
is motivated by the recent theorem proving experiments over the Mizar,
Flyspeck and Isabelle data-sets. Unlike other approaches, E.T. does not
learn from related proofs, but assumes a situation where previous proofs
are not available or hard to get. Instead, E.T. uses several layers of
complementary methods and tools with different speed and precision
that ultimately select small sets of the most promising axioms for a given
conjecture. Such filtered problems are then passed to E, running a large
number of suitable automatically invented theorem-proving strategies.
On the large-theory Mizar problems, E.T. considerably outperforms E,
Vampire, and any other prover that does not learn from related proofs.
As a general ATP, E.T. improved over the performance of unmodified E
in the combined FOF division of CASC 2014 by 6 %.

1 Introduction

The latest release of the TPTP benchmark library [22], TPTP 6.1.0, contains
20646 problems for theorem provers. More than a third of these problems have
more than 100 axioms, more than 10 % (2664) have more than 1000 axioms, and
more than 5 % (1231) have more than 10000 axioms.

Traditional (pre-1990) automated theorem proving (ATP) did not focus on
such large problems. First experience with larger problems came from Quaife’s
work in the early 1990s [19]. Quaife identified the selection of relevant axioms as
a possible way to handle large specifications, but did not offer detailed solutions.

Currently, large ATP problems are coming from ATP-to-ITP (interactive
theorem provers) linkups (hammers [3]) such as Sledgehammer [16], HolyHam-
mer [11,12] and MizAR [9], and common-sense reasoning [18] (or reasoning with
the world’s knowledge [25]) problems. Another interesting recent source of larger

C. Kaliszyk—Supported by the Austrian Science Fund FWF grant P26201.
J. Urban—Supported by NWO grant nr. 612.001.208.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 389–398, 2015.
DOI: 10.1007/978-3-319-21401-6 27

390 C. Kaliszyk et al.

ATP problems is the work in Tarskian geometry by Beeson and Wos [2], con-
taining in some cases over 300 clauses. We strongly believe that today’s age of
Big Data will lead to more and more large-theory problems, including problems
generated from Wikipedia [6], biology textbook encoding [5], and other science
domains. Strong and practically usable methods and systems for proving large
problems will be crucial for meaningful use of ATP in these new domains.

In the context of ATP/ITP cooperation, a number of methods have been
developed recently to attack large problems. In pure ATP systems there has so
far been basically just one (highly successful) method for dealing with large prob-
lems: the SInE heuristic invented by Hoder, implemented first as a standalone
filter [29] and then inside Vampire [7,15] and E [20].

This paper describes E.T., a general large-theory ATP system based on E.
It uses a combination of several methods transferred from the recent AITP1

research. In Sect. 6 we show that the first version of E.T. already performs very
well on large problems from the MPTP2078 benchmark, improving over plain
E and Vampire by 98 % resp. 22 %. When used as a general ATP, E.T. has
improved the performance of plain E in the combined FOF division of CASC
2014 by 6 %. E.T. is available at http://mws.cs.ru.nl/∼urban/et10.

2 Overview of E.T

E.T. is intended for solving ATP problems that have one defining feature: they
contain a large fraction of axioms that are not necessary for proving the con-
jecture. A secondary aspect of such large problems is that they often contain
lemmas that can be used to construct alternative proofs. Thus it is useful to
have a portfolio of complementary strategies that can select different promising
axiom subsets and optimize the proof search over them.

We assume a setting in which a sequence of independent problems is presented
to the system. In partcular, we do not assume that many related problems are
being solved so that one could use consistent symbol and formula names and
previous proofs in learning how to prove the next problems. Neither do we assume
that common axioms are pre-loaded and expensively pre-processed once. Instead,
the reading and preprocessing is done independently for each query.

This setting corresponds to the FOF division of CASC, which uses problems
of various origins. It excludes some of the strongest and most obvious learn-
ing methods [13] possible in the “Large Theory Batch” scenario, where many
problems share a background theory. However, ideas can still be transferred.
For example, strategy invention as done by BliStr [28] can be used on sets of
problems that do not share symbols and formula names.2

Similarly, one can use a number of symbolic and statistical methods success-
fully used in AITP for extracting useful feature characterizations of the large
1 We will use AITP as an abbreviation for the ATP/ITP cooperation, hinting also at

the AI aspects of that topic.
2 Although never publicly described, similar methods used are one of the main dark

sources of Vampire’s success.

http://mws.cs.ru.nl/~urban/et10

System Description: E.T. 0.1 391

number of formulas. This has to be done much faster when solving a single large
problem, making use of a layered architecture where the layers have different
speed/precision trade-offs. Such layered (also called early-exit) approaches have
been explored in information retrieval and particularly in web-search ranking sys-
tems [4], from which large-theory systems like E.T. can draw useful analogies. The
extracted features are then used in E.T. as an input to several premise selection
algorithms, such as our custom version of the Meng-Paulson filter (MePo) [17] and
a non-learning version of the distance-weighted k-nearest neighbor (k-NN) algo-
rithm [10]. The high-level description of E.T.’s processing chain is as follows:

1. The large input problem (potentially containing millions of axioms) is first
reduced to several thousands of axioms using three differently parameterized
(and reasonably complementary) non-strict versions of E’s fast generalized
SInE filter (see Sect. 4.1). Further processing is done with the union of these
three filtered versions. This first reduction takes about 10 s for a problem with
500000 axioms. This speed is achieved by sharing several SInE preprocessing
steps between the differently parameterized SInE selection passes.

2. Very long formulas are removed to prevent blow-ups in the following stages.3

3. If the original problem is in FOF, the reduced problem is clausified, removing
very long clauses to prevent blow-ups in the feature generation phase.

4. Several tools are used to compute features of the formulas (or clauses) in the
reduced problems. The current version can use as features symbols, (variable-
normalized) shared terms, and all matching terms. See Sect. 3.

5. Several external premise selectors such as MePo and k-NN (Sect. 4) use these
(probabilistically normalized) features to rank the axioms according to their
estimated relevance to the conjecture, and problems with varied numbers of
the top-ranking axioms are written.

6. Such problems are then (sequentially)4 passed to E, which then typically
applies much more restrictive SInE filtering to them, followed by a pool of
the large-theory ATP strategies (Sect. 5).

3 Feature Generators

The feature generators are run on the problems reduced by the first fast SInE
layer to several thousand formulas or clauses. Apart from using symbols as fea-
tures, E.T. also enumerates all terms and subterms in the reduced problems’
formulas, using E’s fast shared term banks. Different variable normalization
schemes can be used to increase or decrease the sharing of such features across
formulas, providing different term-based similarity metrics.

A recent addition to the pool of such feature generators is a fast implementation
of discrimination trees, enumerating for each formula φ all terms in all formulas,

3 The current limit for formula/clause size is 5kb. This filters out only a few of formulas
from the large corpora of interest, and in practice does not influence completeness.

4 E.T. runs its strategies sequentially by default. It is also possible to run the strategies,
premise selectors, and feature extractors in parallel when more cores are available.

392 C. Kaliszyk et al.

that are more general than the terms in φ. Such features (when suitably probabilis-
tically weighted) provide a better concept of similarity of formulas than any other
syntactic features used so far [14]. This feature generator is the reason why the for-
mula and clause sizes need to be kept below certain size (to prevent high quadratic
factors), keeping the enumeration ofmatching termswithin seconds for the reduced
problem. For the weighting of features, we use the fast IDF scheme that adds prac-
tically no overhead while significantly improving the similarity metrics [10].

4 Premise Selectors

Since no previous proofs are available when running E.T., it relies on premise
selectors that do not learn from related proofs. In particular, we use a number
(currently 28) of differently parameterized E’s generalized SInE filters limited to
symbolic features in phase #1 and phase #6, and our modified version of the
MePo filter using the more expensive features in phase #5. These two methods
are briefly described below. Some additional performance is gained (see Table 2)
by adding in phase #5 a non-learning version of the distance-weighted k-nearest
neighbor (k-NN) algorithm [10], where each formula φ only carries the informa-
tion that it is useful for proving facts with high feature overlap with φ.

4.1 Generalized SInE in E

E has native support for axiom selection in large theories. It implements a para-
metrized and efficient version of Hoder’s SInE algorithm [7]. SInE is a fixed point
algorithm. It starts with an initial set of formulas deemed necessary for the proof
(usually including at least the conjecture), and successively adds formulas related
to formulas already included, until a fixpoint is reached. Relatedness is based on
sharing of at least one function- or predicate symbol between already selected
clauses/formulas and new candidates. If all symbols are used, this corresponds
to a classical relevance relation. However, this typically selects sets of clauses
that are much larger than necessary, and only has limited utility.

Hoder correctly conjectured that rare symbols forge a stronger bond than
common symbols, as formulas that share rare symbols are more likely to be part
of the same microtheory. Using only the rarest symbols in a formula to find
related clauses or formulas turned out to be too strict a relation. Thus, to allow
the relaxation of this criterion, Hoder used a benevolence parameter that allows
not just the symbol with the lowest frequency to be used for the relatedness
relation, but also symbols wich occur up to a certain factor more often. E adds
the generosity concept, which always uses the n least frequent symbols.

E allows the following parametrization of its SInE implementation.

– Frequency can be based on counting formulas/clauses containing a symbol, or
on counting individual (sub-)terms.

– The initial set of the fixpoint process can consist of just the conjecture, or
it can also include formulas defined as additional hypotheses for a particular
proof problem by the user via the TPTP formula role.

System Description: E.T. 0.1 393

– Benevolence and generosity can be set.
– While SInE usually runs to a fixpoint, E can terminate the process after a

pre-determined number of iterations
– E also allows hard limits on the axiom set size, either in absolute terms, or as

a fraction of the original specification.

This generalized SInE algorithm is implemented in E proper, where it is
supported by a meta-level automatic parameterization. It also is available as a
stand-alone tool that will efficiently apply several different parameterizations,
sharing as much of the work as is possible. This includes parsing, frequency
counting, and indexing of clauses and formulas by function symbol.

In E.T., SInE is used in two phases:

1. In phase #1 when the following non-strict (manually adjusted) SInE filters
are used to make the later more expensive filters reasonably fast5:

GSinE(CountFormulas, hypos, 3, , , 1500, 1.0)
GSinE(CountFormulas, hypos, 1.2, , , 1500, 1.0)
GSinE(CountFormulas, hypos, 30, , , 1500, 1.0)

This phase takes about 10 s for problems with 500000 axioms, leaving enough
time for the next phases when using 60 s time limit.

2. In phase #6, SInE is used in most of the E strategies that are ultimately
run on the problems prepared by the previous filters. The parameters for
SInE in these strategies are listed in Table 2. They are designed (jointly with
other ATP parameters) automatically by the BliStr loop on suitable samples
of large-theory problems (in this case Flyspeck and the 1000 Mizar@Turing
training problems). The parameters that can be varied are the benevolence,
number of iterations, and the absolute maximum axiom size. The rest of the
parameters are fixed to the same values as in the non-strict filters above.

4.2 MePo3

MePo3 is an algorithm for assigning predicted relevance based on the Meng-
Paulson relevance filter (MePo) [17] modified in several ways.

The algorithm is implemented as a recursive function which is given as input
the set of all axioms A a set of weighted features F together with an increment
number p. The initial value of F (F0) are the features of the conjecture C, i.e.,
F0 = F (C), where F (φ) denotes features of a formula φ. The weights of the
initial features are set to 1. Each recursive call i (i > 0) first computes the
cosine distance between the remaining (not yet chosen) axioms in A and the
given feature vector Fi−1. The axioms are then sorted by this distance, and the
p axioms with the smallest distance are included in MePo3’s answer. For each
axiom φ included in the answer, its features F (φ) weighted by a factor of φ’s
distance to Fi−1 are added to Fi−1, resulting in Fi which is then passed to the
next recursive call. The algorithm is inspired by the Meng-Paulson filter, however
we have introduced several changes:
5 Parameters are used in the order given above. Missing parameters use E’s built-in

default values.

394 C. Kaliszyk et al.

– MePo3 computes the distance as the cosine distance of the weighted feature
vectors, rather than the proportion of relevant features to irrelevant ones.

– MePo includes in the answer the facts that are nearer to the conjecture than
a given factor. This factor is modified in the recursive calls. This did not
perform well for FOF problems, so we use an included-number in MePo3,

– MePo has a number of special cases that have been built into the algorithm
to optimize for Isabelle/HOL, such as bonuses for elimination rules or facts
present in the simplifier. MePo3 only has no such optimizations, instead relies
on more advanced feature characterizations.

E.T. 0.1 always uses MePo3 with p = 100. The two parameters that are var-
ied are the features used, and the number of best premises selected. The same is
true for the distance-weighted k-NN, where in the simple scenario without pre-
vious proofs the number of best premises selected is always equal to the number
of nearest neighbors k. Both MePo3 and k-NN are implemented efficiently in
C++. Since the problems passed to them are already reduced to several thou-
sands axioms, running these premise selectors is usually done within seconds,
depending on the number of features used. As in E’s SInE, a lot of work is
shared between the different instances of k-NN and MePo3.

5 E Strategies and Global Optimization

When phase #5 premise selectors have finished, E is run on the filtered problems,
using 36 different strategies (see Table 2). Four of these strategies are taken from
E’s exisiting portfolio, three are various versions of E’s auto mode, which itself
selects strategies based on problem characteristics.

The remaining 29 strategies have been designed automatically by BliStr,
using the Mizar@Turing training problems and a small random sample of the
Flyspeck problems. BliStr finds a small set of strategies that solve as many
training problems as possible. This is done in an infinite loop which interleaves (i)
fast iterative improvement of the strongest strategies on easy problems, (ii) slow
evaluation of the newly invented strategies on all problems, and (iii) subsequent
update of the candidate set of strong strategies and of the set of easy problems
used for the next iterative improvement. The inclusion of the strategies into the
final portfolio was done heuristically, based on their joint (greedy) coverage of
the Mizar@Turing and Flyspeck problems.

Table 1. ATPs on the large and small MPTP2078 problems, using 60 s time limit.

ATP E 1.8 (%) Vampire 2.6 (%) E.T. 0.1 (%) Union (%)

Small problems 1213 (58) 1319 (63) 1357 (65) 1416 (68)

Large problems 580 (28) 940 (45) 1148 (55) 1208 (58)

Large/small ratio 0.48 0.71 0.85 0.85

System Description: E.T. 0.1 395

6 Experimental Analysis

For the main evaluation we use the MPTP2078 benchmark [1], used for the large-
theory division (Mizar@Turing) of the 2012 CASC@Turing automated reasoning
competition [23]. These are 2078 related large-theory problems (conjectures)
from the development of the general topological proof of the Bolzano-Weierstrass
theorem extracted from the Mizar library. For each conjecture C we assume that
all formulas stated earlier in the development can be used to prove C. This results
in large ATP problems that have 1877 axioms on average. For each conjecture
C we also know its ITP (Mizar) proof, from which we can (approximately [1])
determine a much smaller set of axioms that are sufficient for an ATP proof
after the translation from Mizar to TPTP [26,27]. This gives rise to small ATP
problems, where the ATP is significantly advised by the human author of the
ITP proof. These small problems contain only 31 axioms on average.

Table 1 compares the performance of E 1.8, Vampire 2.6, and E.T. 0.1 on the
MPTP2078 problems. All systems are run with 60 s time limit on a 32-core server
with Intel Xeon E5-2670 2.6GHz CPUs, 128 GB RAM, and 20 MB cache per
CPU. Each problem is assigned one CPU. On small problems, the three systems
do not differ much. Vampire solves 9 % more problems than E, E.T solves 12 %
more problems than E and 3 % more than Vampire. All systems together can
solve 68 % of the small problems. Differences are larger on large problems, where
Vampire solves 62 % more problems than E, E.T. solves 98 % more problems than
E, and E.T. solves 22 % more problems than Vampire. An interesting metric is
the ratio of the number of large problems solved to the number of small problems
solved. For E this ratio is below 0.5, for Vampire it is 0.71, and for E.T. it is
0.85. This suggests that Vampire’s large-theory techniques (primarily SInE) are
much stronger than those used in the default mode of E, and shows that such
techniques in E.T. (i.e., the premise-selection layers) are much more successful
than the other systems.

Table 2 sheds more light on how E.T. achieves its performance on large prob-
lems. It lists the first 30 strategies (of 49 total) as tried sequentially by E.T.,
together with their success on the small and large problems. On the small prob-
lems, 79 % is solved already by the first two strategies that use only non-strict
(or none) SInE filtering. On the large problems, these two strategies solve how-
ever only 34 % of the problems, while the next two restrictive strategies solve
40 % of the problems (they are given only the problems unsolved by the first two
strategies). The third strategy does only two SInE iterations and takes only 60
best axioms, and the fourth strategy combines MePo (taking 128 best premises)
with similarly restrictive SInE.

The second independent evaluation is the FOF division of CASC-J7 [21].
The results of the E-based ATPs and Vampire are shown in Table 3. The overall
improvement of E.T. (using E version 1.8) over E (newer version 1.9) is 6 %
(18 problems more), and on problems with equality this is 9 %. There is no
improvement on the problems without equality. This is likely an artifact of E.T.’s
strategy invention being done on Flyspeck and Mizar problems, which almost
always use equality. While Vampire solves 11 % more problems than E.T., its

396 C. Kaliszyk et al.

Table 2. The first 30 E.T. strategies run sequentially on the large and small MPTP2078
problems (60 s total time). E.T. exits immediatelly when a strategy finds a proof,
therefore the success rates of the strategies are not directly comparable.

Table 3. Vampire and E-based ATPs on the CASC-J7 FOF division.

ATP Vampire 2.6 E.T. 0.1 E 1.9 VanHElsing 1.0

FOF with Equality 234/250 224/250 205/250 199/250

FOF without Equality 141/150 115/150 116/150 111/150

FOF total 375/400 339/400 321/400 310/400

margin over E.T. on the equational problems is reduced to only 4 %. Quite likely,
Vampire’s advantage on the problems without equality comes from splitting
improvements and integration of SAT-solving [8,30].

System Description: E.T. 0.1 397

7 Conclusion and Future Work

E.T. 0.1 shows very good performance on large problems, while being competitive
on the problems from the standard FOF category of CASC. The performance is
achieved without relying on slow preprocessing phases and learning from related
proofs, however this requires a layered architecture with several filtering phases
with different speed/precision trade-offs, and very efficient implementation of
the core algorithms, using a lot of sharing and indexing data-structures. The
other important aspects of E.T.’s performance are (i) relatively sophisticated
features that provide good characterization of formulas, allowing more precise
high-level approximation of the search problem, (ii) three non-learning state-
of-the-art premise selection methods that complement each other, and (iii) a
number of complementary automatically designed large-theory search strategies.

Future work may include addition of further non-learning selection methods
such as the model-based selection used in SRASS [24], re-use of the strongest
lemmas between the strategies, and, e.g., integration of the more expressive
features into E’s SInE and into E’s clause-evaluation heuristics. Some of the
techniques developed for E.T. could be also transferred back to learning systems
like MaLARea and the AITP hammers.

References

1. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection
for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning
52(2), 191–213 (2014)

2. Beeson, M., Wos, L.: OTTER proofs in Tarskian geometry. In: Demri, S., Kapur,
D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 495–510. Springer,
Heidelberg (2014)

3. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED
(2015). http://www4.in.tum.de/∼blanchet/h4qed.pdf

4. Cambazoglu, B.B., Zaragoza, H., Chapelle, O., Chen, J., Liao, C., Zheng, Z.,
Degenhardt, J.: Early exit optimizations for additive machine learned ranking sys-
tems. In: Davison, B.D., Suel, T., Craswell, N., Liu, B. (eds.) WSDM, pp. 411–420.
ACM, New York (2010)

5. Chaudhri, V.K., Elenius, D., Goldenkranz, A., Gong, A., Martone, M.E., Webb,
W., Yorke-Smith, N.: Comparative analysis of knowledge representation and rea-
soning requirements across a range of life sciences textbooks. J. Biomed. Semant.
5, 51 (2014)

6. Furbach, U., Glöckner, I., Pelzer, B.: An application of automated reasoning in
natural language question answering. AI Commun. 23(2–3), 241–265 (2010)

7. Hoder, K., Voronkov, A.: Sine Qua Non for large theory reasoning. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 299–314.
Springer, Heidelberg (2011)

8. Hoder, K., Voronkov, A.: The 481 ways to split a clause and deal with propositional
variables. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 450–464.
Springer, Heidelberg (2013)

9. Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. CoRR, abs/1310.2805 (2013)

http://www4.in.tum.de/~blanchet/h4qed.pdf

398 C. Kaliszyk et al.

10. Kaliszyk, C., Urban, J.: Stronger automation for Flyspeck by feature weighting
and strategy evolution. In: Blanchette, J.C., Urban, J. (eds.) PxTP 2013, EPiC
Series, vol. 14, pp. 87–95. EasyChair (2013)

11. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J.
Autom. Reasoning 53(2), 173–213 (2014)

12. Kaliszyk, C., Urban, J.: HOL(y)Hammer: online ATP service for HOL Light. Math.
Comput. Sci. 9(1), 5–22 (2015)

13. Kaliszyk, C., Urban, J., Vyskočil, J.: Machine learner for automated reasoning 0.4
and 0.5. CoRR, abs/1402.2359, PAAR 2014 (2014, to appear)

14. Kaliszyk, C., Urban, J., Vyskočil,J.: Efficient semantic features for automated rea-
soning over large theories. In: IJCAI (2015, to appear)

15. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013)

16. Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: machine learning
for Sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 35–50. Springer, Heidelberg (2013)

17. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated res-
olution problems. J. Appl. Logic 7(1), 41–57 (2009)

18. Pease, A., Schulz, S.: Knowledge engineering for large ontologies with sigma KEE
3.0. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562,
pp. 519–525. Springer, Heidelberg (2014)

19. Quaife, A.: Automated Development of Fundamental Mathematical Theories.
Kluwer Academic Publishers, Dordrecht (1992)

20. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013)

21. Sutcliffe, G.: Proceedings of the 7th IJCAR ATP system competition.
http://www.cs.miami.edu/∼tptp/CASC/J7/Proceedings.pdf

22. Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF
and CNF parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)

23. Sutcliffe, G.: The 6th IJCAR automated theorem proving system competition -
CASC-J6. AI Commun. 26(2), 211–223 (2013)

24. Sutcliffe, G., Puzis, Y.: SRASS - a semantic relevance axiom selection system. In:
Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 295–310. Springer,
Heidelberg (2007)

25. Sutcliffe, G., Suda, M., Teyssandier, A., Dellis, N., de Melo, G.: Progress towards
effective automated reasoning with world knowledge. In: Guesgen, H.W., Murray,
R.C. (eds.) FLAIRS. AAAI Press, Menlo Park (2010)

26. Urban, J.: MPTP - motivation, implementation, first experiments. J. Autom. Rea-
soning 33(3–4), 319–339 (2004)

27. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom.
Reasoning 37(1–2), 21–43 (2006)

28. Urban, J.: BliStr: The Blind Strategymaker. CoRR, abs/1301.2683 (2013)
29. Urban, J., Hoder, K., Voronkov, A.: Evaluation of automated theorem proving on

the Mizar mathematical library. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama,
N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 155–166. Springer, Heidelberg (2010)

30. Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696–710. Springer, Heidelberg
(2014)

http://www.cs.miami.edu/~tptp/CASC/J7/Proceedings.pdf

Playing with AVATAR

Giles Reger(B), Martin Suda, and Andrei Voronkov

University of Manchester, Manchester, UK
giles.reger@manchester.ac.uk

Abstract. Modern first-order resolution and superposition theorem
provers use saturation algorithms to search for a refutation in clauses
derivable from the input clauses. On hard problems, this search space
often grows rapidly and performance degrades especially fast when long
and heavy clauses are generated. One approach that has proved success-
ful in taming the search space is splitting where clauses are split into
components with disjoint variables and the components are asserted in
turn. This reduces the length and weight of clauses in the search space
at the cost of keeping track of splitting decisions.

This paper considers the new AVATAR (Advanced Vampire Architec-
ture for Theories And Resolution) approach to splitting which places a
SAT (or SMT) solver at the centre of the theorem prover and uses it to
direct the exploration of the search space. Using such an approach also
allows the propositional part of the search space to be dealt with outside
of the first-order prover.

AVATAR has proved very successful, especially for problems coming
from applications such as program verification and program analysis as
these commonly contain clauses suitable for splitting. However, AVATAR
is still a new idea and there is much left to understand. This paper
presents an in-depth exploration of this new architecture, introducing
new, highly experimental, options that allow us to vary the operation
and interaction of the various components. It then extensively evaluates
these new options, using the TPTP library, to gain an insight into which
of these options are essential and how AVATAR can be optimally applied.

1 Introduction

AVATAR [9] is a new architecture for first-order resolution and superposition
theorem provers that places a SAT (or SMT) solver at the centre of the the-
orem prover to direct exploration of the search space. Certain options control
this exploration and this paper describes these options in detail and extensively
evaluates how they impact proof-search with the aim of highlighting those para-
meters that lead to (a) more problems being solved, and (b) problems being
solved more efficiently.

Modern first-order resolution and superposition provers use saturation algo-
rithms, i.e., they attempt to construct a saturated set of all clauses derivable

A. Voronkov—Partially supported by the EPSRC grant ”Reasoning for Verification
and Security”.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 399–415, 2015.
DOI: 10.1007/978-3-319-21401-6 28

400 G. Reger et al.

from an initial set. A common issue is a rapidly growing search space containing
multi-literal and heavy clauses. A multi-literal clause is one with many literals
and a heavy clause is one with many symbol occurrences. Processing such clauses
is expensive and typically leads to less of the search space being explored in a
given time.

One solution is to throw away such clauses that will probably not be used
within the time-limit [6]; however, this destroys completeness as we can no longer
saturate the set. Another approach is splitting. The idea behind splitting is to
take a search space S ∪ {C1 ∨ C2} and split it into S ∪ {C1} and S ∪ {C2},
for variable-disjoint C1 and C2. The benefit is that in each search space the
potentially long and heavy clause C1 ∨ C2 is replaced by one of the shorter and
lighter clauses C1 or C2. Each search space can be saturated separately. If a
refutation is found in both then the original search space is unsatisfiable, but if
one is saturated without a refutation then the original search space is satisfiable.

To perform splitting it is necessary to make splitting decisions, i.e. assert one
component of a clause, and potentially backtrack these decisions. Different split-
ting approaches have been considered in the past. In splitting with backtracking
(as seen in SPASS [10]) this is done via a (conceptual) splitting tree where a
splitting decision is made and we explore one half of the search space and then
backtrack (undo the decision) before exploring the second half. In splitting with-
out backtracking [4], when splitting a clause C1 ∨ . . . ∨ Cn each component Ci

is named by a fresh propositional variable pi and the whole clause is split into
clauses (C1 ∨¬p1), . . . , (Cn−1 ∨¬pn−1) and (Cn ∨p1 ∨ . . .∨pn−1). This approach
is admittedly easier to implement than splitting with backtracking, but the pres-
ence of propositional variables sometimes prevents the prover from performing
reductions, which may lead to weaker performance [3].

The AVATAR architecture uses a SAT solver to make splitting decisions. As
explained later, the SAT solver is passed information about new clauses and pro-
duces a model representing valid branches of the (conceptual) splitting tree. The
first-order prover can then assert these components and attempts to find a con-
tradiction, which is then passed back to the SAT solver to prune the search space.

AVATAR proved highly successful in previous work evaluating it against
alternative splitting mechanisms [3]. Introducing the architecture helped to solve
421 problems previously unsolvable by Vampire [5] or any other prover. How-
ever, its full power, and the best way to use it, is not yet fully understood.
Certain architectural choices were based on (informed) intuition and not eval-
uated experimentally; the aim of this paper is to understand these choices and
use this understanding to improve AVATAR.

The paper begins with a description of AVATAR’s implementation in Vam-
pire (Sects. 2 to 4). It then introduces and explains new variations to the
AVATAR architecture (Sect. 5) that will allow us to better understand the inter-
action between different parts of the architecture. These variations themselves
represent a contribution to the understanding of how AVATAR can be organised.

We finish by presenting an extensive evaluation of these architectural varia-
tions (Sect. 6). It is clear that some variations are more useful than others and
we discuss the likely cause of these results. This evaluation also considers how

Playing with AVATAR 401

our improved understanding of the AVATAR architecture can be used to con-
struct complementary strategies to solve as many problems as possible with as
few strategies. We finish having learned much about this new, highly experimen-
tal architecture, but also with a number of further questions that will shape the
continued improvement of this approach.

2 AVATAR by Example

Whilst the theory of AVATAR was established in [9], and is reviewed later in
this paper, the authors feel that the key ideas behind the approach are best
demonstrated via an example.

The general architecture of AVATAR consists of a first-order (FO) prover and
a SAT solver. The FO prover stores a set of first-order clauses, performs first-
order reasoning using a saturation algorithm and passes some clauses to the SAT
solver. The SAT solver keeps a set of propositional clauses and produces a model
(or an unsat answer) on request from the FO prover.

For our example we consider the following input clauses:

q(b) p(x) ∨ r(x, z) ¬q(x) ∨ ¬s(x) ¬p(x) ∨ ¬q(y) s(z) ∨ ¬r(x, z) ∨ ¬q(w)

We check which of these clauses can be split into components, i.e. sub-clauses
with pairwise disjoint sets of variables. The first three clauses cannot be split
and are added directly to the FO prover. The last two clauses can be split
into components. Each component is given a unique propositional name. To
do this naming in a consistent way we use a component index, as seen below.
This, for example, ensures that ¬q(y) and ¬q(w) are associated with the same
propositional symbol. This results in two propositional split clauses representing
the first-order clauses.

The theory of splitting tells us we can assert one component and then the
other after we find a refutation with the first. We are going to use the SAT
solver to make splitting decisions so we pass the representations of the splittable
clauses to the SAT solver, but do not yet add any of their respective components
to the FO prover.

The state of the FO prover and the SAT solver are shown below, where we
write C ← A to indicate that clause C depends on a (possibly empty) set of
assertions (splitting decisions) A:

The FO prover now requests a model. The SAT solver can assign all variables
to true, but let us assume the model is minimized into a partial model in which
only 2 is true and the values of the remaining variables are undefined. Notice
that both split clauses in the SAT solver are satisfied by any total extension of
this partial model.

402 G. Reger et al.

Based on the model we assert ¬q(y), the component corresponding to 2.
When adding ¬q(y) the FO prover performs a reduction and ¬q(x) ∨ ¬s(x) is
subsumed. However, this subsumption is conditional on the assertion 2.

The FO prover then performs resolution between q(b) and ¬q(y) ← {2} to
get the clause ⊥ ← {2}. A corresponding contradiction clause 2 → ⊥ = ¬2 is
then added to the SAT solver and a new model is computed. This time the ¬2
condition forces the SAT solver to construct a model containing 0, 4 and ¬2.
As the assertion under which ¬q(x) ∨ ¬s(x) was reduced no longer holds, the
deletion of this clause is now undone.

The FO prover then performs resolution between s(z) ∨ ¬r(x, z) ← {4} and
p(x) ∨ r(x, z) to produce s(z) ∨ p(x) ← {4}, which is then immediately (con-
ditionally) replaced by s(z) ← {0, 4} after performing subsumption resolution
with ¬p(x) ← {0}. This new clause replaces s(z) ∨ ¬r(x, z) ← {4} conditioned
on the assertion 0. Finally, the FO prover performs a resolution step between
s(z) ← {0, 4} and ¬q(x) ∨ ¬s(x) to get ¬q(x) ← {0, 4}.

As ¬q(x) is a known component (up to variable renaming), we can add
0 ∧ 4 → 2 to the SAT solver as the clause ¬0 ∨ ¬4 ∨ 2. Now the SAT solver
can no longer produce a model and so the input problem is shown unsatisfiable
and the prover terminates.

Playing with AVATAR 403

3 Proof Attempts in Vampire

In this section we give the relevant background on how proof attempts are carried
out in the automated theorem prover Vampire [5]. The next section will show
how AVATAR-style splitting fits into this process.

Saturation Algorithms. Superposition provers use saturation algorithms with
redundancy elimination. These work with a search space consisting of a set of
clauses and use a collection of generating, simplifying and deleting inferences to
explore this space. The theoretical basis of saturation algorithms is the notion
of redundancy given, e.g., in [1]. Both simplifying and deletion inferences in sat-
uration algorithms are designed in such a way that they only remove redundant
clauses.

All saturation algorithms implemented in Vampire belong to the family of
given clause algorithms, which achieve completeness via a fair clause selection
process that prevents the indefinite skipping of old clauses. These algorithms
typically divide clauses into three sets, unprocessed, passive and active, and follow
a simple saturation loop:

1. Add non-redundant unprocessed clauses to passive. Redundancy is checked
by attempting to forward simplify the new clause using processed clauses.

2. Remove processed clauses made redundant by new clauses i.e. backward sim-
plify existing clauses using the new clauses.

3. Select a given clause from passive, move it to active and perform all gener-
ating inferences between the given clause and all other active clauses, adding
generated clauses to unprocessed.

Vampire implements three saturation algorithms:

1. Otter uses both passive and active clauses for simplifications.
2. Limited Resource Strategy (LRS) [6] extends Otter with a heuristic that

discards clauses that are unlikely to be used with the current resources i.e.
time and memory. This strategy is incomplete but also generally the most
effective at proving unsatisfiability.

3. Discount uses only active clauses for simplifications.

Inferences. The inferences applied by the saturation algorithm are of three
different kinds:

– Generating inferences derive new clauses that can be immediately simplified
and/or deleted by other kinds of inferences. For example, binary resolution
and superposition.

– Simplifying inferences replace one clause by another simpler clause. For exam-
ple, demodulation (rewriting by ordered unit equalities) and subsumption res-
olution (a variant of binary resolution whose conclusion subsumes one of the
premises).

– Deleting inferences delete clauses, typically when they become redundant. For
example, subsumption and tautology deletion.

404 G. Reger et al.

CASC Mode. Finally, there is a special competition mode that Vampire can
be run in (using --mode casc) that attempts a sequence of strategies, chosen
based on structural characteristics of the given problem. This is motivated by
two observations, firstly that whilst some strategies perform very well on average
there is no silver bullet that can solve all problems, and secondly that most
solvable problems have a strategy that can solve that problem quickly.

4 Introducing Splitting

As we have previously explained, the search space explored by saturation algo-
rithms can quickly become very large and populated with heavy and long clauses.
The technique of splitting, where each component of a clause is asserted in turn,
can be used to reduce the search space and improve the prover’s performance.
This section shows how AVATAR implements this splitting process – a full tech-
nical description is given in [9].

Fig. 1. The conceptual splitting tree

Splitting the Search Space. The general splitting idea can be illustrated by
a conceptual splitting tree that is explored during the proof attempt. Every
generated clause which can be split is represented by a node and each branch
represents a sequence of splitting decisions. When a branch has been found
inconsistent backtracking occurs and the search moves on to explore a different
branch. It can be informative to consider the splitting performed by AVATAR
in terms of this splitting tree.

Figure 1 illustrates this splitting tree using clauses C1 ∨ . . . ∨ Cn and D1 ∨
. . .∨Dn. This tree grows dynamically as further clauses are added to the search
space. If every branch contains a contradiction then the problem is unsatisfiable.

Attempting to explore this tree explicitly can be expensive for a number of
reasons. Firstly, if clauses share components (i.e. Ci is a variant of Dj) this shar-
ing is not captured by the splitting tree. Secondly, the exploration of the splitting
tree is rigid and is difficult to alter based on newly learned information about the
components involved. And lastly, information discovered on one branch cannot
be easily transferred to a different branch. As we see below, AVATAR implicitly

Playing with AVATAR 405

explores this splitting tree by translating the information about splitting com-
ponents into constraints for a SAT solver and uses the produced model to make
component assertions.

The Architecture. Figure 2 illustrates the AVATAR architecture. There are
three main parts: the first-order (FO) prover, the SAT solver and the Splitting
Interface. The FO prover deals with clauses with assertions of the form D ← A
where D is a first-order clause and A is a finite set of propositional variables
representing asserted components.

The Splitting Interface manages a mapping between first-order components
C and the propositional variable [C] naming that component. The variant index
ensures that two components C1 and C2 are mapped to the same propositional
variable if they are equal up to variable renaming, order of literals, and symmetry
of equality. This mapping also ensures that the negation of a ground component
is translated to the negation of the corresponding propositional variable, i.e.
[¬C] = ¬[C] for every ground component C.1

For each component, the Splitting Interface also maintains a record which
stores:

1. children of the component, i.e., clauses that are derived from the component,
2. clauses that were reduced by a clause depending on this component.

See below for an explanation of these sets of clauses.
Lastly, to avoid asserting previously asserted components, the Splitting Inter-

face keeps track of the current model previously obtained from the SAT solver.
The following sections will explain the communication between the three parts.

Dealing with Assertions in the FO Prover. As we said above, the FO
prover is updated to deal with clauses with assertions. This affects the way that
inferences are carried out in the prover. Firstly, to ensure that assertions are
properly propagated, any generating inference of the form

D1 · · · Dk

D

is replaced by the inference

(D1 ← A1) · · · (Dk ← Ak)
(D ← A1 ∪ . . . ∪ Ak)

and (D ← A1∪. . .∪Ak) is added to the children of each component in A1∪. . .∪Ak

in the component records kept by the Splitting Interface.
Simplifying inferences of the form

1 This useful optimization is not derictly available for non-ground components. Negat-
ing a non-ground component would require skolemization and is not considered in
this paper.

406 G. Reger et al.

Fig. 2. The AVATAR architecture

previously meant that D is a logical consequence of D1, . . . , Dm and D makes
Dm redundant. This is replaced by

where A = A1 ∪ . . . ∪ Am, distinguishing the following two cases.

1. If A = Am then (Dm ← Am) can be deleted as all the other clauses are based
on the same or a weaker set of assertions. It should also be deleted from the
children of components in Am.

2. Otherwise, (Dm ← Am) can only be conditionally deleted as there exists a
branch of the splitting tree where the deleted clause is valid but at least one
of the side conditions (Di ← Ai) is not. To conditionally delete a clause we
remove it from the FO prover and add it to the reduced set for each component
in A \ Am.

Exploring the Splitting Tree in AVATAR. When a new splittable clause is
selected for processing, the FO prover passes this clause to the Splitting Interface
instead of attempting to add it to passive. The Splitting Interface then uses
the variant index to translate it into a propositional split clause and pass this
to the SAT solver.

Once unprocessed is empty, the FO prover sends the allProcessed message
to the Splitting Interface, which sends the Solve message to the SAT solver. The
SAT solver then either replies with Unsatisfiable, indicating that all splitting
branches have been explored, or it returns a new model M .

We allow for partial models which we represent by consistent sets of propo-
sitional literals of the form [C] or ¬[C]. We require that at least one literal of
each propositional clause registered by the SAT solver must be satisfied by the
model, but some literals may stay undefined.

Playing with AVATAR 407

Given a new model M and old model M , the Splitting Interface does the
following:

1. For each [C] ∈ (M \M), remove component C and all of its children from the
FO prover using remove(D ← A). Add any clause D ← A in the component’s
reduce set such that A ⊆ M , using reinsert(D ← A).

2. For each [C] ∈ (M \M), add component C to the FO prover using assert(C ←
[C]) and add each of the component’s children D ← A such that A ⊆ M ,
using reinsert(D ← A).

Removing the children of removed components is necessary as they rely on
assertions that are no longer true. Reinserting a clause that has been reduced
with the help of a removed component retracts the now no longer supported
deletion of the clause. Reinserting the children of a component means that
clauses generated from this component on previous branches are brought into
this branch. In both cases, we only reinsert those clauses that have all their
assertions true in the new model M .

Split clauses introduce new branches into the conceptual splitting tree,
although note that due to the use of the variant index some of these branches
may be shared. To prune the splitting tree we need contradiction clauses. When
the FO prover produces a contradiction with assertions, this contradiction is
passed to the Splitting Interface, which performs the translation into a proposi-
tional contradiction clause and sends this to the SAT solver. This contradiction
forces the model to change. Notice that a contradiction clause can cut off many
branches of the splitting tree.

5 Varying the Architecture

We now consider some of the choices made in the architecture of AVATAR, how
we may change these, and what effects these changes may have.

Adding Components. When providing information about new clauses to the
SAT solver (in the form of component clauses) we need to decide what to do with
nonsplittable clauses, i.e., those that cannot be split into multiple components.
We consider two values for this option (named nonsplittable components):

1. none: do not add any non-splittable component,
2. known: add such a clause if it has previously been introduced as a component.

The example in Sect. 2 uses this second option value when it adds the com-
ponent clause ¬0 ∨ ¬4 ∨ 2 as the clause ¬q(x) is nonsplittable. With the option
set to none, the FO prover would have performed an additional resolution step
to produce the contradiction clause ¬0 ∨ ¬4. By using the known component,
we constrained the split tree explored by the SAT solver and thus avoided per-
forming the additional inference.

Constructing a Model. Previously, we referred to the SAT solver as just a
SAT solver, but different SAT solvers take a different amount of time to con-
struct a model and potentially also construct different models. With the option

408 G. Reger et al.

sat solver, we can vary which SAT solver we use. In this paper we consider our
own SAT solver and Minisat (version 2.2) [2] using the default options. As a SAT
solver, Minisat is better than Vampire’s native solver. Our aim was to understand
whether a better SAT solver results in a better overall performance of AVATAR.

Partial Models and Minimization. While models produced by a standard
SAT solver are total, AVATAR may work with partial models in which some
literals are undefined, provided each such model makes true at least one literal
in every clause. Total models may result in adding unnecessary assertions to the
FO prover, for instance, when they set to true multiple literals from a single
split clause. This corresponds to the exploration of multiple splitting branches
at once, an effort which is often wasted as each of the branches usually needs to
be considered separately later on as well.

We can attempt to minimize the total model produced by the SAT solver
by dropping literals that are not needed for satisfying any clause and thus to
restrict the exploration to a single branch. We use a simple greedy procedure for
the minimization, whose result is a partial model, a sub-model of the original
one. Minimization is controlled by the option minimize model. Again, we can
vary how we choose to do this.

1. off: We use the total model.
2. all: We minimize with respect to all clauses.
3. sco: We minimize with respect to split clauses only.

Note that the sco option value is sound, because we always start minimizing
from a total model which satisfies all the clauses.

Asserting Complements. Another factor to consider is the possibility of treat-
ing ground components specially as we are able to assert these negatively to the
FO prover. That is, when the SAT solver sets the value of a ground component
C to false in the model we can assert ¬C ← [¬C] to the FO prover, even if
this is not needed to satisfy any split clause. This is controlled by the option
add complementary. We are prevented from asserting both C and ¬C at the
same time as the mapping from components to propositional variables ensures
that [¬C] = ¬[C] for ground components.

When to do Splitting. Previously we described the splitting process occurring
at clause introduction, i.e., when we attempt to move it into passive. Alterna-
tively we can consider splitting a clause at activation. This is controlled by the
option split at activation. This delays the expense of splitting but also delays
the benefits of additional information being passed to the SAT solver. For exam-
ple, a subset of passive clauses may already be propositionally unsatisfiable, but
we will not discover this until all clauses in this subset become activated.

To Delete or to Deactivate. In the previous presentation, clauses that are
deactivated due to switching the splitting branch are reasserted when they
become valid again. Remembering these clauses may cost us a lot of mem-
ory. Moreover, some of these clauses may never need to be reasserted, if they
depend on a partial branch which will not be visited anymore. With the option

Playing with AVATAR 409

delete deactivated, we delete these clauses instead and later only reassert the
respective component clause C ← [C], which is sufficient for completeness. The
downside is that we may need to recompute some of these delete clauses if a
particular partial branch is revisited.

Currently even deactivated clauses are removed from the term indexing struc-
tures used for efficient inferences. Providing an option to preserve deactivated
clauses in these structures remains further work, and may prove beneficial as
deleting and inserting clauses into indexing structures can become very costly.

Clearing the Assertions. SAT solvers typically perform DPLL splitting and
may, at some point, derive that a propositional literal must be true in any pos-
sible model. These are called zero-implied literals as their truth value is decided
at the zeroth level. This information can be used to remove the correspond-
ing assertions from clauses in the FO prover as these are redundant. This can
reduce the number of conditional clause deletions as any deletions conditional
only on zero-implied components can be considered unconditional. This option
is controlled by handle zero implied.

Summary. Table 1 describes the Vampire options we consider in this work, i.e.,
those we will vary in experiments later. All other options will be fixed at their
default value. Note that some options are experimental and may not be included
in future releases of Vampire.

Table 1. The Vampire options of interest.

Option Short name Considered values (default)

saturation algorithm sa lrs, discount

sat solver sas vampire, minisat

nonsplittable components ssnc known, none

minimize model smm sco, off, all

add complementary ssac ground, none

split at activation sac off, on

delete deactivated sdd on, off

handle zero implied shzi off, on

6 Experiments

In this section we experimentally evaluate the impact of the different variations
of the AVATAR architecture on the performance of theorem prover Vampire.

Designing Experiments. The aim of these experiments is to evaluate how
effective the different architectural variations are. To do that we need to under-
stand what we mean by effective. The existence of the CASC portfolio mode
is a testament to the fact that there is no best strategy. In fact, the value of a

410 G. Reger et al.

strategy is difficult to understand. Some strategies perform very well on average
but cannot solve problems solvable by other strategies. The motivation behind
CASC mode is that a collection of strategies, each of which may be bad on
average, can easily outperform a collection of strategies, each of which is good
on average. However, within a collection of strategies we need those that can
solve many problems as time limits do not usually allow for running too many
strategies. Therefore, the aim of these experiments is to identify those options
that allow us to solve previously unsolved problems as well as those options that
help us solve the most problems.

Experimental Setup. For our benchmarks we use TPTP [7] problems contain-
ing non-unit clauses with a rating of 0.5 or higher. The TPTP rating [8] is the
percentage of (eligible) provers that cannot solve a problem, thus, for example,
a rating of 0.5 means that half of (eligible) provers can solve the problem and
a rating of 1 means that the problem cannot be solved by any of these provers.
However, the rating evaluation does not use every mode of each prover, so it
is possible that a prover used to generate ratings can solve a problem of rating
1 using a different mode. We only include problems in our experiment that we
know are solvable by some prover, e.g., Vampire. This led to the selection of
3823 problems.2

For the experiments, we took all combinations of options discussed in Sect. 5.
This cartesian product (cube) gives us 384 strategies and represents almost 1.5
million experiments in total. We ran experiments with a time limit of 10 seconds3,
meaning that our results reasonably reflect the utility of the strategy when placed
within a cocktail of other strategies. We used the default values for all options
not explicitly stated.

Experiments were run on the StarExec4 cluster, using 160 nodes. The nodes
used contain a Intel Xeon 2.4 GHz processor. Experiments used Vampire’s
default memory limit of 3 GB; this memory limit was only reached in rare cases
(<0.05 %).

Time Spent in the SAT Solver. The experiments show that time spent in
the SAT solver does not generally dominate. On average, 9.6 % of the time was
spent in the SAT solver. In 8.8 % of the experiments, calls to the SAT solver
took more than 50 % of the time and in 0.5 % of the experiments calls to the
SAT solver took more than 90 % of the time5.

Best and Worst Strategies. In total, 1444 problems (38 % of all problems)
were solved by at least one of the considered strategies, of these 328 were of rating
0.8 or higher. Table 2 shows the performance of the worst and best strategy with
respect to the number of solved problems and the values of options that define
them. We can see that the best strategy only solves 1103 problems which amounts

2 A list of the selected problems, the executable of our prover as well as the results of
the experiment are available from http://vprover.org.

3 Note that previous experiments [3] used longer time limits.
4 https://www.starexec.org.
5 Only runs which took at least one second to complete are considered here.

http://vprover.org
https://www.starexec.org

Playing with AVATAR 411

Table 2. Best and worst strategies with respect to the number of problems solved,
option values that define them, the number of problems solved by the 10 % worst and
best strategies in union, respectively, and the respective proportional representation of
the option values in these strategies.

worst worst 10 % best best 10 %

problems solved 796 1149 1103 1223

saturation algorithm lrs 61 % discount 100 %

sat solver vampire 100 % minisat 63 %

nonsplittable components none 79 % known 47 %

minimize model off 63 % all 42 %

add complementary ground 53 % ground 100 %

split at activation off 100 % on 100 %

delete deactivated off 55 % on 53 %

handle zero implied on 50 % off 50 %

to about 76 % of all the problems solved. The table also shows the performance
of two meta-strategies, one consisting of the union of the 10 % worst and the
other of the 10 % best strategies, and, in the lower part, the percentage of the
10 % worst and best strategies which use the same value for a particular option
as the ultimate worst and best strategy, respectively.6

Perhaps the most surprising observation is that lrs does not appear at all
amongst the 10 % of the best strategies. We suspect that LRS, which was not
adapted to AVATAR, misinterprets the remaining amount of resources available
for proving, because it does not take into account the part of the split tree that
still needs to explored. Attempting to confirm this hypothesis is one possible
direction for future work.

Another interesting fact is that both the worst and the best strategy employ
the value ground for the add complementary option. This option value is def-
initely useful (all the best strategies use it), but may have some shortcomings,
because it is also used by the majority of the worst strategies.

When interpreting the results for minimize model, one should keep in mind
that this option has three possible values and so the result of 42 % for all with
the best strategies is significant. On the other hand, Table 2 indicates that the
effect of delete deactivated and, especially, of handle zero implied is close
to random.

Importance of Particular Options. To better determine the importance of
individual options, we put the number of problems solved with a particular
value of an option into Table 3. On a per option basis, the table also shows (in
parenthesis) the number of problems solved only by a strategy using a particular
6 A different statistic, not shown in the table, is the performance of strategies at the

10% mark from each end of the sorted order (quantiles), which were 865 and 1072,
respectively.

412 G. Reger et al.

Table 3. Number of problems (uniquely) solved with a particular option value.

value of the option and not by any strategy using any of the other values. This
means the value is necessary for solving these problems.

An option is important if it has at least two values each necessary for solving
many problems. This perspective implies that saturation algorithm is the
most important option in our experiment and split at activation the most
important one for AVATAR per se. When focusing on individual values, we
can see that minisat helps to solve more problems than vampire, that the
value ground should be preferred over none for add complementary, and that it
perhaps does not pay off to keep the value sco for minimize model.

Conditional Projections. Having collected the data for all the possible com-
binations of option values one can also ask questions such as what would Table 3
look like if we focused only on strategies where a particular option is fixed to a
certain value. This allows us to distinguish generally good values of options from
those that are only good under certain conditions.

For example, we observed that while with discount we could solve 39 more
problems when split at activation was turned on, this did not happen for
lrs, where we could solve 1208 problems with split at activation off, but
only 1202 problems with the option on. This is most like related to the fact that
LRS uses clauses in passive for simplifications and therefore benefits from these
clauses being already split.

Also, both the lrs and the vampire perspective significantly favour the value
known over none for nonsplittable components, while in Table 3 these two
values seem to behave similarly. In the former conditional projection, none solves
only 1242 while known 1266, in the latter, none solves 1333 and known 1347. This
phenomenon seems to be quite difficult to explain and should be further explored.

Playing with AVATAR 413

Table 4. Sequence of strategies to greedily cover all solved problems. For space reasons,
short names are used for options (see Table 1).

1 2 3 4 5

Contribution 1103 114 45 31 21

Solves 1103 943 905 948 1081

Nominal order 1 155 283 141 23

sa discount lrs discount lrs discount

sas minisat minisat vampire minisat vampire

ssnc known known known known none

smm all sco sco off sco

ssac ground none ground ground ground

sac on off off on on

sdd on off on off on

shzi off on off on on

Greedy Problem Coverage. Next we consider how the strategies could be
greedily ordered to cover all problems solved, i.e., we attempt to produce a
(greedy) CASC portfolio mode. We require 61 strategies in total to cover all prob-
lems, with the last 32 strategies only contributing one additional problem each.

Table 4 gives the first five strategies in this greedily produced portfolio
sequence along with the number of problems each strategy contributes to the
portfolio, how many problems that strategy normally solves, and the nominal
order in all strategies (with respect to number of problems solved).

We first note that we require both strategies that are good on average and
also those that solve problems uniquely. In the sequence of strategies, 72 % come
from the bottom half of strategies in terms of number of problems solved. It is
also interesting to note that some option values, such as sco for minimize model,
that were previously seen to contribute little, are needed here.

Further Lessons Learned. One of the interesting lessons learned with these
experiments is that the choice of a SAT solver significantly influences the per-
formance of a strategy. This suggests that the queries passed to the SAT solver
are by no means easy (as we originally assumed) and that on many problems
the solver takes over a considerable part of the required reasoning.

Moreover, efficiently dealing with the incremental nature of the presented
queries becomes a relevant factor in AVATAR. When restricting solution times
to a maximum of 1 second, vampire became the solver of choice for the best strat-
egy with respect number of solved problems. The vampire solver was designed
with the AVATAR application in mind, and therefore deals well with the incre-
mental usage required. However, as it is not as highly tuned as minisat, its
performance tails off quickly as the size of the problem increases. This may
explain the observed behaviour.

414 G. Reger et al.

Another aspect influenced by the choice of a SAT solver is the inherent
“quality” (from the perspective of AVATAR) of the models it produces. It is
clear that the produced model affect how the splitting tree is explored, but
not yet clear why one solver may produce ‘better’ models in general. Further
investigations will consider the SAT solver options themselves and how varying
these affects the models produced.

7 Conclusion

AVATAR is a new and highly successful architecture. While previously used sat-
uration algorithms, their variations and options have been studied for decades,
almost nothing is known about options that can improve AVATAR even fur-
ther. Likewise, almost nothing is known about the behaviour of various existing
options in presence of AVATAR. This is the first paper that both introduces
AVATAR specific options and investigates their behaviour. We believe this is
the first in many studies by us, and others, exploring this novel architecture.

The usage of a SAT solver to perform splitting operations is a novel idea,
which has the potential to change how modern first-order theorem provers
explore the clause search space. The architectural variations explored in this
paper help us better understand the optimal configuration for this new form of
splitting.

We found that the importance of the individual options for solving addi-
tional problems varies, and while the important ones should be kept and fur-
ther explored, removing the ones that seem to have negligible influence on the
performance of AVATAR could simplify the implementation and improve its
maintainability.

We also discovered that the efficiency of the SAT solver is very important
for the overall performance of AVATAR. This is not only in terms of proving
time, but also their ability to handle incrementality. We observed cases where
performance suffered as a result of insufficient support for incremental usage; this
suggests that improving SAT solvers in this respect can improve AVATAR. We
have also identified new questions to be answered, for example how the model
produced by the SAT solver interacts with the exploration of the splitting tree.

An additional discovery is that the limited resource strategy, thought to be
the best strategy within Vampire for showing unsatisfiability, does not interact
well with the way in which AVATAR explores the clause space. This suggests
that further investigation is required to establish how best to adapt the LRS
approach to AVATAR.

Whilst the results from the current architecture are impressive, there is more
that can be squeezed from this idea. One major area of interest is replacing the
SAT solver with an SMT solver, allowing it reason on the theory level.

Playing with AVATAR 415

References

1. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning Chap. 2, pp. 19–99. Else-
vier Science, North-Holland (2001)

2. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

3. Hoder, K., Voronkov, A.: The 481 ways to split a clause and deal with propositional
variables. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 450–464.
Springer, Heidelberg (2013)

4. Riazanov, A., Voronkov, A.: Splitting without backtracking. In: Nebel, B. (ed.)
17th International Joint Conference on Artificial Intelligence, IJCAI 2001, vol. 1,
pp. 611–617 (2001)

5. Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Com-
mun. 15(2–3), 91–110 (2002)

6. Riazanov, A., Voronkov, A.: Limited resource strategy in resolution theorem prov-
ing. J. Symbolic Comput. 36(1–2), 101–115 (2003)

7. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reasoning 43(4), 337–362 (2009)

8. Sutcliffe, G., Suttner, C.: Evaluating general purpose automated theorem proving
systems. Artif. Intell. 131(1–2), 39–54 (2001)

9. Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696–710. Springer, Heidelberg
(2014)

10. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning Chap. 27, pp. 1965–2013.
Elsevier Science, North-Holland (2001)

Combinations

A Polite Non-Disjoint Combination Method:
Theories with Bridging Functions Revisited

Paula Chocron1, Pascal Fontaine2, and Christophe Ringeissen2(B)

1 IIIA-CSIC, Bellaterra, Catalonia, Spain
2 INRIA, Université de Lorraine and LORIA, Nancy, France

Christophe.Ringeissen@loria.fr

Abstract. The Nelson-Oppen combination method is ubiquitous in Sat-
isfiability Modulo Theories solvers. However, one of its major drawbacks
is to be restricted to disjoint unions of theories. We investigate the prob-
lem of extending this combination method to particular non-disjoint
unions of theories connected via bridging functions. The motivation is,
e.g., to solve verification problems expressed in a combination of data
structures connected to arithmetic with bridging functions such as the
length of lists and the size of trees. We present a sound and complete com-
bination procedure à la Nelson-Oppen for the theory of absolutely free
data structures, including lists and trees. This combination procedure
is then refined for standard interpretations. The resulting theory has a
nice politeness property, enabling combinations with arbitrary decidable
theories of elements.

1 Introduction

Solving the satisfiability problem modulo a theory given as a union of decidable
sub-theories naturally calls for combination methods. The Nelson-Oppen com-
bination method [9] is now ubiquitous in SMT (Satisfiability Modulo Theories)
solvers. However, this technique imposes strong assumptions on the theories in
the combination; in the classical scheme [9,17], the theories notably have to be
signature-disjoint and stably infinite. Many recent advances aim to go beyond
these two limitations.

The design of a combination method for non-disjoint unions of theories is
clearly a hard task [7,18]. To stay within the frontiers of decidability, it is neces-
sary to impose restrictions on the theories in the combination; and at the same
time, those restrictions should not be such that there is no hope of concrete
applications for the combination scheme. For this reason, it is worth exploring
specific classes of non-disjoint combinations of theories that appear frequently in
software specification, and for which it would be useful to have a simple combina-
tion procedure. An example is the case of shared sets, where sets are represented

This work has been partially supported by the project ANR-13-IS02-0001 of the
Agence Nationale de la Recherche, by the European Union Seventh Framework Pro-
gramme under grant agreement no. 295261 (MEALS), and by the STIC AmSud
MISMT.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 419–433, 2015.
DOI: 10.1007/978-3-319-21401-6 29

420 P. Chocron et al.

by unary predicates [4,19]. In this context, the cardinality operator can also be
considered; notice that this operator is a bridging function from sets to natural
numbers [22]. In this paper, we investigate the case of bridging functions between
data structures and a target theory, for instance, the length of lists, in which case
the target theory is a fragment of arithmetic. Here, non-disjointness arises from
connecting two disjoint theories via a third theory defining the bridging function.
This problem is of prime interest for software verification [6,14,15,23], in partic-
ular for the verification of recursive (functional) programs with functions defined
by pattern-matching. For instance, a satisfiability procedure for data structures
combined with bridging functions is the core reasoning engine of the verification
tool Leon targeting Scala programs [16]. To solve instances of this problem, ded-
icated techniques have been developed [15,20], and general frameworks, based
on locality [14] or superposition [1,3,10], are also applicable. In particular, the
contributions by Zarba [20], Sofronie-Stokkermans [14], and Suter et al. [15] have
given rise to the straight combination approach highlighted in this paper. In [20],
Zarba presents a procedure for checking satisfiability of lists with length by using
a reduction to arithmetic, and a similar reduction applies to multisets with mul-
tiplicity [21]. The motivation was to relax the stably-infiniteness assumption in
Nelson-Oppen’s procedure, e.g., to be able to consider multisets over a finite
domain of elements. In that line of work, Zarba focuses on standard interpreta-
tions. For instance, the standard interpretation for lists corresponds to the case
where lists are interpreted as finite lists of elements. Sofronie-Stokkermans [14]
relies on locality properties to show that the definition of the function connect-
ing the theories can be eliminated (using instantiations by ground terms). The
subtle problem of restricting interpretations to standard ones is also discussed
but, in contrast to our approach, only the case of an infinite domain of elements
is considered. In [15], Suter et al. present a dedicated procedure for standard
interpretations that is sound and complete for sufficiently surjective abstraction
functions.

We investigate here an approach by reduction from non-disjoint to disjoint
combination. It is an alternative to a non-disjoint combination approach à la
Ghilardi [2,7], for which some assumptions on the shared (target) theory are
required. Ghilardi’s approach has been applied to combine data structures with
fragments of arithmetic, like Integer Offsets [11] and Abelian groups [10]; it is
however difficult to go beyond Abelian groups and consider for instance any
decidable fragment of arithmetic as a shared theory. The approach by reduction
does not impose such limitations, and any (decidable) fragment of arithmetic
is suitable for the target (shared) theory. The resulting combination procedure
is correct for (arbitrary interpretations of) absolutely free data structures. Our
correctness proof is not based on locality principles [14], but relies on the con-
struction of a combined model in the line of the Nelson-Oppen procedure. Even-
tually, the outcome of our approach bears similarities with the locality-based
procedure.

Then we focus on the problem of adapting this combination procedure to
get a satisfiability procedure for the restricted class of standard interpretations

A Polite Non-Disjoint Combination Method 421

of absolutely free data structures. The correctness of the combined satisfiability
procedure for standard interpretations is based on a politeness property, previ-
ously introduced to consider disjoint combinations of some data structure the-
ories with any theory of elements [8,13]. This paper is a first application of
politeness to non-disjoint combinations. The interest of applying politeness is
twofold. First, it provides a way to relate satisfiability in standard interpreta-
tions to satisfiability in the class of all interpretations. Second, it permits to solve
in a modular way the satisfiability problem in the combination of (1) standard
interpretations of a data structure theory extended with a bridging function
and (2) any arbitrary theory of elements. The resulting combined satisfiability
procedure has some similarities with the one studied in [12,15,16].

Our combination procedures for arbitrary/standard interpretations are first
illustrated on the prominent case of lists with length [6]: this is a simple but
meaningful case to grasp the concepts and techniques developed in the paper.
But our study is not limited to that particular case, and we show that our com-
bination procedures apply to the general case of trees with bridging functions.

The rest of the paper is organized as follows. Section 2 recalls basic concepts
and notations. The combination problem is presented in Sect. 3 and the related
combination procedure in Sect. 4. In Sect. 5, we focus on the restriction to stan-
dard interpretations for the cases of lists (Sects. 5.1–5.2) and trees (Sect. 5.3), by
considering appropriate bridging functions and the combination problem with
an arbitrary theory of elements. Omitted proofs can be found in [5].

2 Preliminaries

We assume an enumerable set of variables V and a first-order many-sorted sig-
nature Σ given by a set of sorts and sets of function and predicate symbols
(equipped with an arity). Nullary function symbols are called constant symbols.
We assume that, for each sort σ, the equality “=σ” is a logical symbol that
does not occur in Σ and that is always interpreted as the identity relation over
(the interpretation of) σ; moreover, as a notational convention, we omit the
subscript for sorts and we simply use the symbol =. The notions of Σ-terms,
atomic Σ-formulas and first-order Σ-formulas are defined in the usual way. In
particular an atomic formula is either an equality, or a predicate symbol applied
to the right number of well-sorted terms. Formulas are built from atomic for-
mulas, Boolean connectives (¬, ∧, ∨, ⇒, ≡), and quantifiers (∀, ∃). A literal
is an atomic formula or the negation of an atomic formula. A flat equality is
either of the form t0 = t1 or t0 = f(t1, . . . , tn) where each term t0, . . . , tn is a
variable or a constant. A disequality t0 �= t1 is flat when each term t0, t1 is a
variable or a constant. A flat literal is either a flat equality or a flat disequality.
An arrangement over a finite set of variables V is a maximal satisfiable set of
well-sorted equalities and disequalities x = y or x �= y, with x, y ∈ V . Given a
quantifier-free formula ϕ, an arranged form of ϕ is any conjunction of ϕ with
an arrangement over the variables in ϕ. For n distinct variables x1, . . . , xn, the
set of literals {xi �= xj | i �= j, i, j = 1, . . . , n} is denoted by {x1 �= · · · �= xn}.

422 P. Chocron et al.

Free variables are defined in the usual way, and the set of free variables of a
formula ϕ is denoted by Var(ϕ). Given a sort σ, Varσ(ϕ) denotes the set of
variables of sort σ in Var(ϕ). A formula with no free variables is closed, and
a formula without variables is ground. A universal formula is a closed formula
∀x1 . . . ∀xn. ϕ where ϕ is quantifier-free. A (finite) Σ-theory is a (finite) set of
closed Σ-formulas. Two theories are disjoint if no predicate symbol or function
symbol appears in both respective signatures.

From the semantic side, a Σ-interpretation I comprises a non-empty pairwise
disjoint domains Dσ for every sort σ, a sort- and arity-matching total function
I[f] for every function symbol f , a sort- and arity-matching predicate I[p] for
every predicate symbol p, and an element I[x] ∈ Dσ for every variable x of sort
σ. By extension, an interpretation defines a value in Dσ for every term of sort σ,
and a truth value for every formula. We may write I |= ϕ whenever I[ϕ] =
.
A Σ-structure is a Σ-interpretation over an empty set of variables.

A model of a formula (theory) is an interpretation that evaluates the formula
(resp. all formulas in the theory) to true. A formula or theory is satisfiable (or
consistent) if it has a model; it is unsatisfiable otherwise. A formula G is T -
satisfiable if it is satisfiable in the theory T , that is, if T ∪ {G} is satisfiable.
A T -model of G is a model of T ∪ {G}. A formula G is T -unsatisfiable if it
has no T -models. A theory T is stably infinite if any T -satisfiable set of literals
is satisfiable in a model of T whose domain is infinite. A Σ-theory T can be
equivalently defined as a pair T = (Σ,A), where A is a class of Σ-structures.
We may write A ∈ T when T = (Σ,A) and A ∈ A. Given theories Ti = (Σi,Ai)
for i = 1, 2, the combination of T1 and T2 is the theory T1 ⊕ T2 = (Σ1 ∪ Σ2,A)
where A is the set of Σ1 ∪ Σ2-structures A such that the Σi-structure AΣi

(defined by restricting A to interpret only symbols in Σi) is in Ai for i = 1, 2.

3 The Combination Problem

Consider a many-sorted Σs-theory Ts and a many-sorted Σt-theory Tt (s and
t stand for source and target respectively) such that Ts and Tt have disjoint
function symbols (but sorts can be shared by Σs and Σt). We consider a function
f mapping elements from Ts to elements in Tt. This function is defined by some
axioms expressed in the signature Σs ∪ Σt ∪ {f}. The set of axioms defining f
is called Tf .

In the following, the theory Ts is the theory of Absolutely Free Data Struc-
tures [14] (AFDS, for short) and Tf is a bridging theory connecting AFDS to
an arbitrary (target) theory Tt. For simplicity, we only consider Absolutely Free
Data Structures without selectors. In Sect. 5, we will argue that selectors are not
mandatory when standard interpretations are considered.

Definition 1. Consider a set of sorts Elem, and a sort struct /∈ Elem. Let Σ
be a signature whose set of sorts is {struct}∪Elem and whose function symbols
c ∈ Σ (called constructors) have arities of the form:

c : e1 × · · · × em × struct × · · · × struct → struct

A Polite Non-Disjoint Combination Method 423

where e1, . . . , em ∈ Elem. Consider the following axioms (where upper case letters
denote implicitly universally quantified variables)

(Inj c) c(X1, . . . , Xn) = c(Y1, . . . , Yn) ⇒ ∧n
i=1 Xi = Yi

(Disc,d) c(X1, . . . , Xn) �= d(Y1, . . . , Ym)
(AcycΣ) X �= t[X] if t is a non-variable Σ-term

The theory of Absolutely Free Data Structures over Σ is

AFDSΣ =
(⋃

c∈Σ

Inj c

) ∪ (⋃

c,d∈Σ,c �=d

Disc,d

) ∪ AcycΣ

From now on, Ts is AFDSΣs
(see [5] for a Ts-satisfiability procedure).

Example 1. The theory of lists is an example of AFDS where the constructors
are cons : elem × list → list and nil : list. Similarly (binary) trees are
also a classical AFDS example, where the constructor operator is, e.g., cons :
elem×tree×tree → tree. The theory of pairs (of numbers) is another example
of AFDS where the constructor is cons : num × num → struct.

Given a tuple e of terms of sorts in Elem and a tuple t of terms of sort
struct, the tuple e, t may be written e; t to distinguish terms of sort struct
from the other ones. A bridging theory is a set of equational axioms defining a
bridging function by structural induction over a set of constructors.

Definition 2. Let Σ be a signature as given in Definition 1 and let Σt be a
signature such that Σ and Σt have distinct function symbols, and may share
sorts, except struct. A bridging function f /∈ Σ ∪ Σt has arity struct → t
where t is a sort in Σt. A bridging theory Tf associated with a bridging function
f has the form:

Tf =
⋃

c∈Σ

{
∀e∀t1, . . . , tn. f(c(e; t1, . . . , tn)) = fc(e; f(t1), . . . , f(tn))

}

where fc(x;y) denotes a Σt-term. When x does not occur in fc(x;y) for any
c ∈ Σ, we say that Tf is Elem-independent.

Remark that the notation fc(x;y) does not enforce all elements of x;y to occur
in the term fc(x;y): only elements in x of sort in Σt can occur in fc(x;y),
and there is no occurrence of x in fc(x;y) in the case of an Elem-independent
bridging theory. Throughout the paper, we assume that for any constant c in
Σ, fc denotes a constant in Σt, and the equality f(c) = fc occurs in Tf . For
instance, in the case of length of lists, �(nil) = �nil = 0.

Example 2 (Example 1 continued). Many useful bridging theories fall into the
above definition such as:

– Length of lists: �(cons(e, y)) = 1 + �(y), �(nil) = 0
– Sum of lists of numbers: lsum(cons(e, y)) = e + lsum(y), lsum(nil) = 0
– Sum of pairs of numbers: psum(cons(e, e′)) = e + e′

Among the above bridging theories, only the length of lists is Elem-independent.

424 P. Chocron et al.

4 A Combination Procedure for Bridging Functions

We introduce a combination method for a non-disjoint union of theories T =
Ts ∪Tf ∪Tt as stated in Sect. 3, where the source theory Ts is AFDSΣs

, Tt is an
arbitrary target Σt-theory, and the bridging theory Tf follows Definition 2. It is
worth noticing that Tt is not required to be stably infinite. We describe below a
decision procedure for checking the T -satisfiability of sets of literals. As usual,
the input set of literals is first purified to get a separate form.

Definition 3. A set of literals ϕ is in separate form if ϕ = ϕstruct ∪ ϕelem ∪
ϕt ∪ ϕf where:

– ϕstruct contains only flat literals of forms x = y, x �= y or x= c(e;x1, . . . , xn)
where x, x1, . . . , xn and y are variables of sort struct and c is a constructor

– ϕelem contains only literals of sorts in Σs\(Σt ∪ {struct})
– ϕt contains only Σt-literals
– ϕf contains only flat equalities of the form fx = f(x), where fx denotes a

variable associated with f(x), such that fx and f(x) occur once in ϕf and
each variable of sort struct in ϕstruct occurs in ϕf .

It is easy to convert any set of literals into an equisatisfiable separate form by
introducing fresh variables to denote impure terms.

Unlike classical disjoint combination methods, guessing only one arrangement
on the shared variables is not sufficient to get a modular decision procedure.

Definition 4. Given a set of literals ϕ = ϕstruct ∪ ϕelem ∪ ϕt ∪ ϕf in separate
form and two arrangements

– Γ over the variables of sorts in Σs ∩Σt occurring in both ϕstruct and ϕt ∪ϕf ;
– Γ ′ over the variables of sort struct in ϕstruct ∪ ϕf ;

the combinable separate form of ϕ corresponding to Γ , Γ ′ is (ϕstruct ∪Γstruct)∪
ϕelem ∪ (ϕt ∪ Γt) ∪ ϕf where

Γstruct = Γ ∪ Γ ′

Γt = Γ ∪ {fx = fy | x = y ∈ Γ ′}
∪ {fx = fc(e; fx1 , . . . , fxn

) | x = c(e; x1, . . . , xn) ∈ ϕstruct}

Any separate form extends to finitely many combinable separate forms. Also the
separate form is T -equivalent to the disjunction of those combinable separate
forms. From now on, we will only consider combinable separate forms and assume
that a combinable separate form ϕstruct ∪ϕelem ∪ϕt ∪ϕf includes Γstruct and Γt

respectively in ϕstruct and ϕt. The T -satisfiability of combinable separate forms
can be checked in a modular way (see [5] for the correctness proof):

Theorem 1. A combinable separate form ϕstruct ∪ ϕelem ∪ ϕt ∪ ϕf is T -
satisfiable if and only if ϕstruct ∪ ϕelem is Ts-satisfiable and ϕt is Tt-satisfiable.

A Polite Non-Disjoint Combination Method 425

Notice that ϕf is not used when checking satisfiability: these constraints are
indeed encoded within ϕt, according to Definition 4.

Example 3. Consider the theory of (acyclic) lists with a length function � and
the set of literals ϕ =

{
x = cons(a, cons(b, z)), �(x) + 1 = �(z)

}
, where the sort

for elements is not the sort of integers.

1. Variable Abstraction and Partition. Formula ϕ is separated into
– ϕlist : {y = cons(b, z), x = cons(a, y)}
– ϕelem : ∅
– ϕint : {�x + 1 = �z}
– ϕ� : {�x = �(x), �y = �(y), �z = �(z)}

2. Decomposition. To build the combinable separate form, let Γlist be the
only arrangement over the list variables satisfiable together with ϕlist, i.e.
{x �= y �= z}. By Definition 4, Γint is {�y = �z + 1, �x = �y + 1}.

3. Check. The set ϕlist∪ϕelem∪Γlist is satisfiable in the theory of lists. However
ϕint∪Γint is unsatisfiable in the theory of linear arithmetic (over the integers).
The original set of literals ϕ is thus unsatisfiable.

The next satisfiable formula is used as a running example in Sect. 5.

Example 4. Consider the following set of literals

ϕ = {x1 = cons(d, y1), x2 = cons(d, y2), x1 �= x2 �= y1 �= y2 �= y3, �(y2) = �(y3)}

1. Variable Abstraction and Partition. Formula ϕ is separated into
– ϕlist : {x1 = cons(d, y1), x2 = cons(d, y2), x1 �= x2 �= y1 �= y2 �= y3}
– ϕelem : ∅
– ϕint : {�y2 = �y3}
– ϕ� : {�x1 = �(x1), �x2 = �(x2), �y1 = �(y1), �y2 = �(y2), �y3 = �(y3)}

2. Decomposition. Formula ϕlist already includes the arrangement Γlist =
{x1 �= x2 �= y1 �= y2 �= y3}, and Γint = {�x1 = �y1 + 1, �x2 = �y2 + 1}.

3. Check. The set ϕlist ∪ ϕelem ∪ Γlist is satisfiable in the theory of lists. The
set ϕint ∪ Γint is also satisfiable in the theory of linear arithmetic (over the
integers), e.g. �x1 = 4, �x2 = 3, �y1 = 3, �y2 = 2, �y3 = 2. Thus ϕ is satisfiable.

5 Standard Interpretations

Now consider the satisfiability problem modulo data structure theories defined
as classes of standard structures, where each interpretation domain of struct
contains only the finite terms generated by the constructors and the elements
in the interpretation domains of Elem. Standard structures are specific models
of the (axiomatized) theories considered in previous sections. We investigate the
possibility to get a satisfiability procedure for standard interpretations by apply-
ing the combination method of Sect. 4. We first study the particular case of lists,
and then the general case of trees corresponding to the standard interpretations
of absolutely free data structures.

426 P. Chocron et al.

5.1 Lists with Length

Definition 5. Consider the signature Σlist = Σ ∪ {� : list → int} ∪ Σint

where Σ = {cons : elem×list → list, nil : list}, Σint = {0 : int, 1 : int,+ :
int×int → int,≤: int×int}, and elem �= int. A standard list-interpretation
A is a Σlist-interpretation satisfying the following conditions:

– |Aelem| > 1;
– Alist = (Aelem)∗ where (Aelem)∗ is the set of finite sequences 〈e1, . . . , en〉 for

n ≥ 0 and e1, . . . , en ∈ Aelem;
– Aint = Z and 0, 1,+,≤ are interpreted according to their standard interpreta-

tion in Z;
– A[nil] = 〈〉;
– A[cons](e, 〈e1, . . . , en〉) = 〈e, e1, . . . , en〉, for n ≥ 0 and e, e1, . . . , en ∈ Aelem;
– A[�](〈〉) = 0;
– A[�](〈e1, . . . , en〉) = n.

The theory of (standard interpretations) of lists with length is the pair T si
list =

(Σlist,A), where A is the class of all standard list-structures.

Remark 1. Definition 5 excludes the case of lists built over only one element.
In that singular case, the length function � is bijective, which means that any
disequality x �= y between list-variables can be equivalently translated into an
int-disequality �x �= �y. It thus suffices to extend the combination procedure
in Sect. 4 with this additional translation expressing the bijectivity of �. The
satisfiability of the int-part of the resulting separate form gives a model for the
theory of lists on only one element. In the case of lists, and for simplicity, we
thus impose the restriction of at least two elements to standard interpretations.

In this paper, we have chosen to define standard interpretations without
selectors. Indeed, selectors would be partial functions defined only on non-
empty lists, and could be seen as syntactic sugar: any equality e = car(x)
(resp. y = cdr(x)) can be equivalently expressed as an equality x = cons(e, x′)
(resp. x = cons(d, y)) where x′ (resp. d) is a fresh variable. Thus we define
T si

list without selectors. As shown below, we can relate T si
list-satisfiability to sat-

isfiability modulo the combined theory of lists with length Tlist defined as
(the class of all the models of) the union of theories AFDSΣ ∪ T� ∪ TZ where
Σ = {cons : elem × list → list, nil : list}, T� = {∀e∀y. �(cons(e, y)) =
1 + �(y), �(nil) = 0}, and TZ denotes the theory of linear arithmetic over the
integers. Since T si

list |= Tlist, a T si
list-satisfiable formula is also Tlist-satisfiable.

For the converse implication, we need to preprocess the formulas. To build a
standard interpretation from the model construction of Theorem 1, we need
additional arithmetic constraints to state that each value of a length variable
corresponds to the length of some finite list. These constraints are used to get
witness formulas as defined in [8] for the combination of polite theories [13].

Definition 6 (Finite witnessability). Let Σ be a signature, S be a set of
sorts in Σ, T a Σ-theory, and ϕ a quantifier-free Σ-formula. A quantifier-free
Σ-formula ψ is a finite witness of ϕ in T with respect to S if:

A Polite Non-Disjoint Combination Method 427

1. ϕ and (∃v̄)ψ are T -equivalent, where v̄ = Var(ψ) \ Var(ϕ);
2. for any arranged form ψ′ of ψ, if ψ′ is T -satisfiable then there exists a T -

interpretation A satisfying ψ′ such that Aσ =
⋃

v∈Varσ(ψ′) A[v], for each σ ∈
S.

T is finitely witnessable with respect to S if there exists a computable function
witness such that, for every quantifier-free Σ-formula ϕ, witness(ϕ) is a finite
witness of ϕ in T with respect to S.

For the theory T si
list, witnesses w.r.t. {elem} are derived from range con-

straints: given a set of literals ϕ in separate form and a natural number n, a range
constraint for ϕ bounded by n is a set of literals c = {c(fx) | fx ∈ Varint(ϕf)}
where c(fx) is either fx = i (0 ≤ i < n) or fx ≥ n. A range constraint c for ϕ
is satisfiable if ϕint ∪ c is satisfiable in Z. In the case of T si

list, the role of range
constraints is to perform a guessing of values for length variables. Beyond a limit
value n, depending on the input formula, there are enough different lists to satisfy
the disequalities between lists, and then to build a standard interpretation.

Proposition 1. For any set of literals ϕ in combinable separate form, there
exists a finite set of satisfiable range constraints C such that

– ϕ is T si
list-equivalent to

∨
c∈C(ϕ ∧ c)

– For any c ∈ C, ϕ ∧ c admits a witness denoted witness(ϕ ∧ c) such that any
arranged form of witness(ϕ ∧ c) is T si

list-satisfiable iff it is Tlist-satisfiable.

Proof. Since ϕ is a combinable separate form, it implies a unique arrangement
over list-variables. Let m be the number of the corresponding equivalence
classes over list-variables. We define the bound n used in range constraints
as n = �log2(m)� to have, for any i ≥ n, m different lists of length i built over
two elements. The set C is defined as the set of all satisfiable range constraints
bounded by n. Let us now define the witness of a range constraint c:

– witnessrc({�x = 0} ∪ c) = {x = nil} ∪ witnessrc(c)
– witnessrc({�x = i} ∪ c) = {x = cons(e1, . . . cons(ei, nil) . . .)} ∪ witnessrc(c)

if 0 < i < n, where e1, . . . , ei are fresh elem-variables
– witnessrc({�x ≥ n} ∪ c) = witnessrc(c)

Then, witness(ϕ∧c) = (e �= e′)∧ϕ∧c∧witnessrc(c), where e, e′ are two distinct
fresh elem-variables.

Consider an arbitrary arrangement arr over variables in witness(ϕ ∧ c). If
witness(ϕ ∧ c) ∧ arr is Tlist-satisfiable, then it is possible to construct (by using
syntactic unification, see [5]) a Tlist-equivalent set of literals ϕ′ whose list-part
contains only flat disequalities and equalities of the following forms:

(1) flat equalities v = x such that v occurs once in ϕ′,
(2) equalities x = t, where t is a nil-terminated list and x occurs once in the

equalities of ϕ′,
(3) equalities x = cons(d, y), where x and y cannot be equal to nil-terminated

lists (by applying the variable replacement of syntactic unification).

428 P. Chocron et al.

Let us now define a T si
list-interpretation. First, the equalities in (1) can be dis-

carded since v occurs once in ϕ′. The interpretation of variables occurring in (2)
directly follows from ϕ′. It remains to show how to interpret variables occurring
in (3). Note that each of these variables has a length greater or equal than n,
otherwise it would occur in (2). The solved form ϕ′ defines a (partial) ordering
> on these variables: x > y if x = cons(d, y) occurs in ϕ′. Each minimal variable
y with respect to > is interpreted by a fresh nil-terminated list not occurring
in ϕ′ whose elements are (the representatives of) e, e′, and whose length is the
interpretation of �y (this is possible by definition of n and the fact that �y ≥ n).
Then, the interpretation of non-minimal variables follows from the equalities (3)
in ϕ′. By construction, distinct variables are interpreted by distinct lists. In other
words, the list-disequalities introduced by arr are satisfied by this interpreta-
tion. Furthermore, any equality �x = �(x) in ϕ� is satisfied by this interpretation
since ϕ is a combinable separate form. Therefore, all literals of ϕ′ are true in
this interpretation, and so we have built a T si

list-model of witness(ϕ ∧ c) ∧ arr.
Moreover the above construction is a way to build a T si

list-model such that the
elem sort is interpreted as the set of interpreted elem-variables in the witness.
So the witness function satisfies the requirements of Definition 6. ��
Example 5. Consider the T si

list-satisfiability of the combinable separate form built
in Example 4: ϕ = ϕ� ∪{x1 = cons(d, y1), x2 = cons(d, y2), x1 �= x2 �= y1 �= y2 �=
y3, �x1 = �y1 + 1, �x2 = �y2 + 1, �y2 = �y3}. The five list-variables imply that
range constraints are bounded by n = 3. There are 45 possible range constraints
(each variable can be equal to 0, 1, 2 or greater than or equal to 3). We now focus
on few satisfiable range constraints and their related witnesses (the remaining
ones are handled similarly).

1. c = {�x1 = �x2 = 1, �y1 = �y2 = �y3 = 0}. To obtain a witness of ϕ and c,
we add y1 = y2 = y3 = nil, x1 = cons(ex1 , nil), and x2 = cons(ex2 , nil). It
follows that ex1 = ex2 = d and x1 = x2 which contradicts ϕ.

2. c = {�x1 ≥ 3, �y1 = �x2 = 2, �y2 = �y3 = 1}. The witness leads to
– y1 = cons(e′

y1
, cons(ey1 , nil)), y2 = cons(ey2 , nil), y3 = cons(ey3 , nil)

– x1 = cons(d, y1) = cons(d, cons(e′
y1

, cons(ey1 , nil)))
– x2 = cons(d, y2) = cons(d, cons(ey2 , nil))

All the list-variables are instantiated by distinct lists, provided the arrange-
ment over elem-variables is such that ey2 �= ey3 and (ey1 �= ey2 or e′

y1
�= d).

3. c = {�x1 = 1, �y1 = 0, �x2 ≥ 3, �y2 ≥ 3, �y3 ≥ 3}. The related witness is
equisatisfiable to ϕ∪ c∪{y1 = nil, e �= e′}, which is satisfiable by considering:
– y2 = cons(e, cons(e, cons(e, nil))), y3 = cons(e, cons(e, cons(e′, nil)))
– y1 = nil, x1 = cons(d, nil), x2 = cons(d, cons(e, cons(e, cons(e, nil))))

The following sections will demonstrate that witnesses are not only interest-
ing for T si

list-satisfiability but also for the combination of T si
list with an arbitrary

theory for elements. However, when T si
list is considered alone, there is a much

simpler T si
list-satisfiability procedure (see [5] for the proof).

A Polite Non-Disjoint Combination Method 429

Theorem 2. Let ϕ be a set of literals in combinable separate form, and let C be
the finite set of satisfiable range constraints of ϕ bounded by 1. The formula
ϕ is T si

list-satisfiable iff there exists a satisfiable range constraint c ∈ C such that
witness(ϕ ∧ c) is Tlist-satisfiable.

5.2 Combining Lists with an Arbitrary Theory of Elements

As shown below, T si
list is actually a polite theory, and so it can be combined with

an arbitrary disjoint theory of elements, using the combination method designed
for polite theories [8,13]. By definition, a polite theory is both finite witnessable
and smooth.

Definition 7 (Smoothness and Politeness). Consider a set S =
{σ1, . . . , σn} of sorts in a signature Σ. A Σ-theory T is smooth with respect
to S if:

– for every T -satisfiable quantifier-free Σ-formula ϕ,
– for every T -interpretation A satisfying ϕ,
– for every cardinal number κ1, . . . , κn such that κi ≥ |Aσi

|, for i = 1, . . . , n,

there exists a T -model B of ϕ such that |Bσi
| = κi for i = 1, . . . , n. A Σ-theory

T is polite with respect to S if it is both smooth and finitely witnessable with
respect to S.

The smoothness of the theory of standard interpretations of lists has been shown
in [13], and this is preserved while considering the length function. By defi-
nition of T si

list, any set of elements can be used to build the lists (since � is
{elem}-independent). Hence a T si

list-satisfiable formula remains T si
list-satisfiable

when adding elements (of sort elem), and so T si
list is smooth. The finite witness-

ability of T si
list is a consequence of Proposition 1.

Proposition 2. T si
list is polite with respect to {elem}.

Consider the satisfiability problem in the disjoint combination T si
list ⊕ Telem

where Telem is a mono-sorted Σelem-theory over the shared sort elem. Due to the
politeness of T si

list, we can directly use the combination method initiated in [13]
for polite theories, and this leads to the following result.

Theorem 3. Let ϕ be a set of literals in combinable separate form, and let C
be the finite set of satisfiable range constraints introduced in Proposition 1. The
formula ϕ is T si

list ⊕Telem-satisfiable iff there exists a satisfiable range constraint
c ∈ C and an arrangement arr such that (1) witness(ϕ∧c)∧arr is Tlist-satisfiable
and (2) ϕelem ∧ arr is Telem-satisfiable, where arr is an arrangement over the
variables of sort elem in witness(ϕ ∧ c).

Example 6. Recall the formula from Example 4 in its combinable separate form
and suppose we add a new literal stating that the sum of the lengths of y1, y2
and y3 is three: ϕ = ϕ� ∪ {x1 = cons(d, y1), x2 = cons(d, y2), x1 �= x2 �= y1 �=
y2 �= y3, �x1 = �y1 + 1, �x2 = �y2 + 1, �y2 = �y3 , �y1 + �y2 + �y3 = 3} and consider
the theory of elements Telem = {a �= b, (∀x : elem. x = a ∨ x = b)}. There are
now only two satisfiable range constraints:

430 P. Chocron et al.

1. �x1 ≥ 3, �y1 ≥ 3, �x2 = 1, �y2 = 0, �y3 = 0, which leads to �x1 = 4 and �y1 = 3.
But this is T si

list-unsatisfiable, as it requires y2 = nil and y3 = nil, which
makes y2 �= y3 false.

2. �x1 = 2, �y1 = 1, �x2 = 2, �y2 = 1, �y3 = 1, which implies
– y1 = cons(ey1 , nil), y2 = cons(ey2 , nil), y3 = cons(ey3 , nil)
– x1 = cons(d, cons(ey1 , nil)), x2 = cons(d, cons(ey2 , nil))

But this requires ey1 �= ey2 �= ey3 , which is Telem-unsatisfiable.

Hence ϕ is T si
list ⊕ Telem-unsatisfiable.

Let us now assume Telem is stably infinite. Since T si
list is stably infinite too, the

classical Nelson-Oppen combination method applies to T si
list ⊕Telem by using the

T si
list-satisfiability procedure stated in Theorem 2. This leads to a result similar to

Theorem 3, where it is sufficient to guess only few particular range constraints.

Proposition 3. Assume Telem is stably infinite. Let ϕ be a set of literals in
combinable separate form, and let C be the finite set of satisfiable range con-
straints of ϕ bounded by 1. The formula ϕ is T si

list ⊕ Telem-satisfiable iff there
exists a satisfiable range constraint c ∈ C and an arrangement arr such that (1)
witness(ϕ ∧ c) ∧ arr is Tlist-satisfiable and (2) ϕelem ∧ arr is Telem-satisfiable,
where arr is an arrangement over the variables of sort elem in witness(ϕ ∧ c).

In the above proposition, arr is an arrangement over the variables of sort
elem in ϕ since Var(ϕ) = Var(witness(ϕ ∧ c)). Indeed witness(ϕ ∧ c) only
extends ϕ ∪ c with an equality x = nil for each lx = 0 in c.

5.3 Trees with Bridging Functions over the Integers

The combination method presented for standard interpretations of lists can be
extended to standard interpretations of any AFDS theory, as discussed below.

Definition 8. Consider the signature Σtree = Σ ∪ {f : struct → int} ∪ Σint

where Σ and Σint are signatures respectively as in Definitions 1 and 5 such that
int /∈ Elem, and let Tf be an Elem-independent bridging theory as in Defini-
tion 2. A standard tree-interpretation A is a Σtree-interpretation satisfying the
following conditions:

– Astruct is the set of Σ-terms of sort struct built with elements in (Ae)e∈Elem;
– Aint = Z and 0, 1,+,≤ are interpreted according to their standard interpreta-

tion in Z;
– A[c] = c for each constant constructor c ∈ Σ;
– A[c](e, t1, . . . , tn) = c(e, t1, . . . , tn) for each non-constant constructor c ∈ Σ,

tuple e of elements in (Ae)e∈Elem, and t1, . . . , tn ∈ Astruct;
– A[f](c) = fc for each constant constructor c ∈ Σ;
– A[f](c(e, t1, . . . , tn)) = fc(e,A[f](t1), . . . ,A[f](tn)) for each non-constant

constructor c ∈ Σ, tuple e of elements in (Ae)e∈Elem, and t1, . . . , tn ∈ Astruct.

The theory of (standard interpretations) of trees with bridging function f is the
pair T si

tree = (Σtree,A), where A is the class of all standard tree-structures.

A Polite Non-Disjoint Combination Method 431

Let Ttree be the combined theory of trees with the bridging function f
defined as (the class of all the models of) the union of theories AFDSΣ ∪Tf ∪TZ.
If a formula is T si

tree-satisfiable, then it is also Ttree-satisfiable. For the converse
implication, we proceed like for lists by introducing witnesses. Witnesses can
easily be computed when f is the height or the size of trees. Hence, in a way
analogous to what has been done for lists (cf. Proposition 1), there is a method to
reduce T si

tree-satisfiability to Ttree-satisfiability. As shown below, T si
tree is polite,

and so we can obtain a T si
tree ⊕ Telem-satisfiability procedure by combining the

satisfiability procedures for Ttree and Telem (analogous to Theorem 3). The fol-
lowing assumptions enable us to extend the proofs developed for lists to the case
of trees.

Definition 9. Let T be a theory defined as a class of standard tree-structures.
For any A ∈ T , let F−1

A (n) = {t | A[f](t) = n}. The bridging function f is
gently growing in T if

1. for any n ∈ Z and any A ∈ T , F−1
A (n) �= ∅ ⇐⇒ n ≥ 0;

2. for any n ≥ 0 and any A ∈ T , |F−1
A (n)| < |F−1

A (n + 1)|;
3. there exists a computable function b : N → N such that for any n > 1 and

any A ∈ T , |F−1
A (b(n))| ≥ n;

4. for any n ≥ 0, one can compute a finite non-empty set F−1(n) of terms with
variables of sorts in Elem such that

T |= f(x) = n ⇐⇒ (∃v̄ .
∨

t∈F −1(n)

x = t) where v̄ = Var(F−1(n))

Proposition 4. Let Σ = {cons : elem×struct×· · ·×struct → struct, nil :
struct}. Assume that cons is of arity strictly greater than 2 and consider the
following bridging theories:

– Size of trees: sz(cons(e, y1, . . . , yn)) = 1 +
∑n

i=1 sz(yi), sz(nil) = 0
– Height of trees: ht(cons(e, y1, . . . , yn)) = 1 + maxi∈[1,n] ht(yi), ht(nil) = 0

If f = sz or f = ht, then f is gently growing in T si
tree.

To prove the above proposition, the function b of Definition 9 can be defined
as the identity over N, but it is possible to get a better bound, e.g., thanks
to Catalan numbers [23] for the size of trees. When cons is of arity 2, sz and
ht coincide with the length �. In that case, � is gently growing in T si

list that
corresponds to T si

tree ∪ {∃v, v′ : elem . v �= v′}.

Proposition 5. If f is gently growing in T si
tree, then T si

tree is polite w.r.t. Elem.

Theorem 3 (for lists) can be rephrased for trees and gives:

Corollary 1. Assume f is gently growing in T si
tree. Let T si

tree⊕Telem be a disjoint
combination where Telem is a many-sorted Σelem-theory over the sorts in Elem.
T si

tree ⊕ Telem-satisfiability is decidable if Telem-satisfiability is decidable.

Consider a theory T si
tree as in Proposition 4 where f = sz or f = ht. Simi-

larly to Theorem 2, T si
tree-satisfiability reduces to Ttree-satisfiability by guessing

only range constraints bounded by 1. If Telem is stably infinite, then we get a
combination method for T si

tree ⊕ Telem-satisfiability as in Proposition 3.

432 P. Chocron et al.

6 Conclusion

This paper describes (Sect. 4) a non-deterministic combination method à la
Nelson-Oppen for unions of theories including absolutely free data structures
connected to target theories via bridging functions. Similarly to the classical
Nelson-Oppen method, implementations of this non-deterministic combination
method should be based not on guessings but on more practical refinements.
But this lightweight approach is in the line with disjoint combination proce-
dures embedded in SMT solvers, and is thus amenable to integration in those
tools.

We reuse the notions of witness and politeness (Sect. 5), already introduced
for non-stably infinite disjoint combinations, to adapt satisfiability procedures to
standard interpretations. Hence, the combination method for polite theories is
applicable to combine the theory of standard interpretations of lists (trees) with
an arbitrary disjoint theory for elements. The case of standard interpretations of
lists (trees) over integer elements has not been tackled but can be solved using
the approach discussed for a stably infinite theory of elements.

To complete this work, we are currently investigating more (data struc-
ture) theories with bridging functions for which the combination method of
Sect. 4 is sound and complete. Another natural continuation consists in con-
sidering standard interpretations modulo non-absolutely free constructors [14],
e.g., associative-commutative operators to specify multisets.

Acknowledgments. We are grateful to Jasmin Blanchette and to the anonymous
reviewers for many constructive remarks.

References

1. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based
satisfiability procedures. ACM Trans. Comput. Log. 10(1), 4 (2009)

2. Baader, F., Ghilardi, S.: Connecting many-sorted theories. J. Symb. Log. 72(2),
535–583 (2007)

3. Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstrac-
tion. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 39–57. Springer,
Heidelberg (2013)

4. Chocron, P., Fontaine, P., Ringeissen, C.: A gentle non-disjoint combination
of satisfiability procedures. In: Demri, S., Kapur, D., Weidenbach, C. (eds.)
IJCAR 2014. LNCS, vol. 8562, pp. 122–136. Springer, Heidelberg (2014).
http://hal.inria.fr/hal-00985135

5. Chocron, P., Fontaine, P., Ringeissen, C.: A Polite Non-Disjoint Combination
Method: Theories with Bridging Functions Revisited (Extended Version) (2015).
http://hal.inria.fr

6. Fontaine, P., Ranise, S., Zarba, C.G.: Combining lists with non-stably infinite
theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452,
pp. 51–66. Springer, Heidelberg (2005)

7. Ghilardi, S.: Model-theoretic methods in combined constraint satisfiability. J.
Autom. Reasoning 33(3–4), 221–249 (2004)

http://hal.inria.fr/hal-00985135
http://hal.inria.fr

A Polite Non-Disjoint Combination Method 433

8. Jovanović, D., Barrett, C.: Polite theories revisited. In: Fermüller, C.G., Voronkov,
A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 402–416. Springer, Heidelberg (2010)

9. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

10. Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combinable extensions of abelian
groups. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 51–66. Springer,
Heidelberg (2009)

11. Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combining satisfiability procedures
for unions of theories with a shared counting operator. Fundam. Inf. 105(1–2),
163–187 (2010)

12. Pham, T.-H., Whalen, M.W.: An improved unrolling-based decision procedure for
algebraic data types. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS,
vol. 8164, pp. 129–148. Springer, Heidelberg (2014)

13. Ranise, S., Ringeissen, C., Zarba, C.G.: Combining data structures with nonstably
infinite theories using many-sorted logic. In: Gramlich, B. (ed.) FroCoS 2005. LNCS
(LNAI), vol. 3717, pp. 48–64. Springer, Heidelberg (2005)

14. Sofronie-Stokkermans, V.: Locality results for certain extensions of theories with
bridging functions. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 67–83.
Springer, Heidelberg (2009)

15. Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types with
abstractions. In: Hermenegildo, M.V., Palsberg, J. (eds.) Principles of Program-
ming Languages (POPL), pp. 199–210. ACM, New York (2010)

16. Suter, P., Köksal, A.S., Kuncak, V.: Satisfiability modulo recursive programs. In:
Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 298–315. Springer, Heidelberg
(2011)

17. Tinelli, C., Harandi, M.T.: A new correctness proof of the Nelson-Oppen combina-
tion procedure. In: Baader, F., Schulz, K.U. (eds.) Frontiers of Combining Systems
(FroCoS), Applied Logic, pp. 103–120. Kluwer Academic Publishers (1996)

18. Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of
satisfiability procedures. Theoret. Comput. Sci. 290(1), 291–353 (2003)

19. Wies, T., Piskac, R., Kuncak, V.: Combining theories with shared set operations.
In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 366–382.
Springer, Heidelberg (2009)

20. Zarba, C.G.: Combining lists with integers. In: International Joint Conference on
Automated Reasoning (Short Papers), Technical report DII 11/01, pp. 170–179.
University of Siena (2001)

21. Zarba, C.G.: Combining multisets with integers. In: Voronkov, A. (ed.) CADE
2002. LNCS (LNAI), vol. 2392, pp. 363–376. Springer, Heidelberg (2002)

22. Zarba, C.G.: Combining sets with cardinals. J. Autom. Reasoning 34(1), 1–29
(2005)

23. Zhang, T., Sipma, H.B., Manna, Z.: Decision procedures for term algebras with
integer constraints. Inf. Comput. 204(10), 1526–1574 (2006)

Exploring Theories with a Model-Finding
Assistant

Salman Saghafi(B), Ryan Danas, and Daniel J. Dougherty

Worcester Polytechnic Institute, Worcester, MA, USA
salmans@wpi.edu

Abstract. We present an approach to understanding first-order theories
by exploring their models. A typical use case is the analysis of artifacts
such as policies, protocols, configurations, and software designs. For the
analyses we offer, users are not required to frame formal properties or
construct derivations. Rather, they can explore examples of their designs,
confirming the expected instances and perhaps recognizing bugs inherent
in surprising instances.

Key foundational ideas include: the information preorder on mod-
els given by homomorphism, an inductively-defined refinement of the
Herbrand base of a theory, and a notion of provenance for elements and
facts in models. The implementation makes use of SMT-solving and an
algorithm for minimization with respect to the information preorder on
models.

Our approach is embodied in a tool, Razor, that is complete for
finite satisfiability and provides a read-eval-print loop used to navigate
the set of finite models of a theory and to display provenance.

1 Introduction

Suppose T is a first-order theory. If T specifies a software artifact written by a
user, such as an access-control policy, a description of a protocol, or a software
design, our user will want to understand whether or not the logical consequences
of T match her expectations. A standard approach using automated deduction
tools offers the following workflow: (i) the user specifies, as a sentence σ, some
typical property she hopes will hold about the system, then (ii) checks whether
σ is provable from T, using a theorem-prover or a proof-assistant.

An alternative approach is to explore the models of T. This is of course
logically at least as rich as the deductive approach, since σ will hold iff T∪¬σ has
no models. But the model-exploring approach offers a wider range of affordances
to the user than does deduction. For one thing, if property σ fails of T, it can be
instructive to see example situations, that is, to see concrete models of T ∪ ¬σ.
This will be especially useful if we can offer tools to help our user understand
these examples (“what is that element doing there? why is that fact true?”).

More radically, our user might use a model-building tool to explore models of
T without having to articulate logical consequences. For example, if T describes

This material is based upon work supported by the National Science Foundation
under Grant No. CNS-1116557.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 434–449, 2015.
DOI: 10.1007/978-3-319-21401-6 30

Exploring Theories with a Model-Finding Assistant 435

a policy for accessing a building, our user can explore the question, “who can
enter after 5 pm?” by expressing “someone enters after 5 pm” as a sentence σ and
asking for models of (T∪{σ}). The resulting models may capture situations that
confirm the user’s expectation, but there also may be models with unanticipated
settings, allowing surprising accesses, which uncover gaps in the policy.

Model-finding is an active area of investigation [1–8]. But—with some excep-
tions noted below in Related Work—existing model-finders compute an essen-
tially random set of models, present them to the user in arbitrary order, provide
no facility for exploring the space of models in a systematic way, and offer little
help to users in understanding a given model. We will clarify below what we
mean by “understanding” a model, but the notion has clear intuitive force. For
example when a sysadmin is debugging a firewall policy, a typical question at
hand is: what rule blocked (or allowed) this packet?

As our main contribution, we initiate a theory of exploration of finite models,
with two main components: (i) a notion of provenance as a way to explain why
elements are in the model and why properties are true of them, and (ii) strategies
for traversing the models of an input theory by augmentation. Our approach is
realized in a model-finding assistant, Razor.1 We call Razor a model-finding
assistant because users interact with it to build and examine models.

Minimality and the Chase. At the core of our approach is the notion of
a homomorphism between models (Sect. 2) and the preorder � determined by
homomorphism. A homomorphism preserves information, so that if A and B are
each models of some phenomenon and A � B, with B �� A, then we prefer to
show A to the user, at least initially, since it has less “extraneous” information
than B. The theoretical foundations of our tool derive from the classical Chase
algorithm from database theory (Sect. 3), and our core algorithm (Sect. 4) builds
models that are minimal in the homomorphism ordering.

Provenance. As a direct consequence of the fact that Razor ultimately com-
putes Chase-models, Razor can display provenance information for elements and
facts. Any element in a Chase-model is there in response to a sentence in the
user’s input (Sect. 3.2), indeed as a witness for a particular existential quantifier
in the input theory. Similarly, any atomic fact of a Chase-model is there because
of the requirement that a particular input sentence hold. Razor keeps track of
these justifications—we call them “naming” and “blaming,” respectively—and
can answer provenance queries from the user.

Augmentation. Focusing on Chase models promotes conceptual clarity by
allowing the user to focus only on models with no inessential aspects. But the
user can access other models of the theory by augmenting models by new facts.
When a user asks to augment a given model M of a theory T by some fact F ,
other consequences may be entailed by T, perhaps “disjunctive” consequences.
Razor thus computes a stream consisting of all the minimal extensions of M by
the augmenting fact F (Sect. 3.1). There may be none: F may be inconsistent
with the state of affairs M, which may be of real significance. The (relative)
1 http://salmans.github.io/Razor/.

http://salmans.github.io/Razor/

436 S. Saghafi et al.

minimality of the resulting models ensures that provenance information can be
computed over them as well. Most important of all, this augmentation will be
under the control of the user.

Implementation. We have found it more efficient to implement a variation on
the Chase, which leverages an SMT-solver to handle the difficulties arising form
disjunctions and equations (Sect. 4). A key ingredient of this approach is the use
of a refinement of the notion of the Herbrand base of a theory, the possible facts
set defined in Algorithm 3.

The REPL. Since the original input theory need not be a Horn theory, we
will not expect unique minimal models. Razor provides a read-eval-print loop
in which users can (i) ask for the next model in the current stream, (ii) play
“what-if?” by augmenting the currently-displayed model with a new fact or (iii)
ask for the provenance of elements or facts in the current model.

1.1 Related Work

Model-Finding. The development of algorithms for the generation of finite mod-
els is an active area of research. The prominent method is “MACE-style” [2],
embodied in tools such as Paradox [3], Kodkod [6], which reduce the problem
to be solved into propositional logic and employ a SAT-solver. “Instance based”
methods for proof search can be adapted to compute finite models [5,7,9]. Our
approach is related to the bottom-up model generation [4] method and the refu-
tationally complete solution presented in [10]. Our techniques for bounding the
search are related to those presented in [11]. Closer in spirit to our goals are
lightweight formal methods tools such as Alloy [12] and Margrave [13,14]. The
goals of these works differ from ours in that their main concern is usually not
the exploration of the space of all models of a theory.
Minimality. Logic programming languages produce single, least models as a con-
sequence of their semantics. In more specialized settings, generation of minimal
models usually relies on dedicated techniques, often based on tableaux [15] or
hyperresolution [16]. Aluminum [17] supports exploration by returning minimal
models: it instruments the model-finding engine of Alloy. It thus inherits the lim-
itation that it requires user-supplied bounds, and it cannot generate provenance
information. The Cryptographic Protocol Shapes Analyzer [18] also generates
minimal models. However, its application domain and especially algorithms are
quite different from ours. The Network Optimized Datalog tool [19], which has
been released as a part of Z3 [20], presents limited minimization and provenance
construction for reasoning about beliefs in the context of network reachability
policies.
Geometric Logic. The case for geometric logic as a logic of observable proper-
ties was made clearly by Abramsky [21] and has been explored as a notion of
specification by several authors [22,23] Geometric logic for theorem-proving was
introduced in [24] and generalized in [5]. The crucial difference with the current
work is of course the fact that we focus on model-finding and exploration.

Exploring Theories with a Model-Finding Assistant 437

Chase. Our model-finding is founded on the Chase, an algorithm well-known
in the database community [25–27]. Challenges arise for us in managing the
complexity that arises due to disjunction, and in treating equality. Our strategy
for addressing these challenges comprises Sect. 4.

2 Preliminaries

We work over a first-order signature with relation symbols (including equality).
As syntactic sugar for users, we allow function symbols in the concrete syntax.
It turns out to be convenient and flexible to interpret such function symbols as
partial functions. What this means formally is that when relation symbols are
translated to function symbols in the usual way, theories are augmented with
axioms ensuring singled-valuedness but not necessarily with totality axioms.
Skolemization will play an important role in the following, especially as regards
provenance of elements; we assume familiarity with the basic notions.

Models, and the notion of satisfaction of a formula in a model, are defined
in the usual way. If T is a theory we write Mod(T) for the class of models of
T. If Σ ⊆ Σ+ are signatures and M is a Σ+-model then the reduct of M to
Σ is obtained in the obvious way by ignoring the relations of Σ+ not in Σ. A
homomorphism from M to N is a map from the domain of M to the domain of
N, h : |M| → |N|, such that for every relational symbol R and tuple 〈e1, . . . en〉
of elements of |M|, if M |= R[e1, . . . , en] then N |= R[h(e1), . . . , h(en)]. We write
M � N for the preorder defined by the existence of a homomorphism from M to
N. We say that M is a minimal model in a class C of models if N ∈ C and N � M

implies M � N. A set M of models is a set-of-support for a class C if for each
N ∈ C there is some M ∈ M with M � N.

2.1 Logic in Geometric Form

A positive-existential formula (PEF) is one built from atomic formulas (including
	 and ⊥) using ∧, ∨, and ∃. If α(�x) is a PEF true of a tuple �e in a model M
then the truth of this fact is supported by a finite fragment of M. Thus if M

satisfies α with �e and M is expanded, by adding new elements and/or new facts,
α(�x) still holds of �e in the resulting model. For this reason, properties defined
by PEF are sometimes called observable properties [21].

It is a classical result that PEFs are precisely the formulas preserved under
homomorphisms; Rossman [28] has shown that this holds even if we restrict
attention to finite models only. Thus the homomorphism preorder captures the
observable properties of models: this is the sense in which we view this preorder
as an “information-preserving” one.

A sentence is geometric if it is of the form ∀�x (ϕ ⇒ ψ), where ϕ and ψ
are PEFs. It is often convenient to suppress writing the universal quantification
explicitly. We sometimes refer to ϕ and ψ respectively as the body and head of
ϕ ⇒ ψ. Note that an empty conjunction may be regarded as truth () and
an empty disjunction as falsehood (⊥). So we may view a universally quantified

438 S. Saghafi et al.

PEF, or a universally quantified negated PEF, as a geometric sentence. A theory
is in geometric form if it consists of a set of geometric sentences.2 Thus logic in
geometric form is the logic of implications between observable properties.

By routine logical manipulations we may assume that every geometric sen-
tence ϕ ⇒ ψ is in standard form

α(�x) ⇒
∨

i

(∃yi1 . . . ∃yip.βi(�x, yi1, . . . , yip)),

where α and each βi is a conjunction of atoms.

Transformation to Geometric Form. The sense in which geometric form is—and
is not—a restriction is delicate, but interesting. As is well-known, any theory is
equisatisfiable with one in conjunctive normal form, by introducing Skolem func-
tions. And modulo trivial equivalences, such a sentence is a geometric one. But
Skolemization has consequences for user-centered model-finding. For example,
traditionally, Skolem functions are total, and of course it is easy to achieve this
abstractly by making arbitrary choices if necessary. But for reasons connected
with computing provenance and keeping models finite, it is much more conve-
nient to work with partial functions, or in other words, at-most-single valued
relations.

It is easy to check that T can be put in geometric form—without Skolemiza-
tion —whenever each axiom is an ∀∃ sentence, with the caveat that no existential
quantifier has within its scope both an atom with negative polarity and one of
positive polarity. This circumstance arises infrequently in practice. We prefer
to avoid Skolemization if possible. Any Skolemization necessary for putting a
theory in this form is considered to happen “off stage”.

3 Model-Finding via the Chase

In this section we outline the essential features of the Chase, since it is the most
natural setting for understanding the way that minimality and provenance drive
a general model-finding framework based on geometric form. It turns out that
a straightforward implementation of the Chase algorithm is too inefficient. In
Sect. 4 we describe the strategy we use in Razor to build the same models the
Chase would construct but using SMT-solving technology for efficiency.

It is easiest to present the standard Chase as a non-deterministic procedure.
We assume given an infinite set K of symbols used to construct elements of the
model: at any stage of the process we will have identified a finite subset K ′ of
K and (if the theory T involves equality) a congruence relation over K ′. The
congruence classes are the elements of the model.

Assume that the input theory T is presented in standard geometric form. At
a given stage, if the current model M is not yet a model of T then there is some

2 The term “geometric” arises from the original study of this class of formulas in the
nexus between algebraic geometry and logic [29].

Exploring Theories with a Model-Finding Assistant 439

sentence σ of T false in M:

σ ≡ α(x1, . . . , xk) ⇒
∨

i

(∃yi1 . . . ∃yip.βi(x1, . . . , xk, yi1, . . . , yip)). (1)

That is, there is an environment (a mapping from variables to elements of M)
η ≡ {x1 �→ e1, . . . , xk �→ ek} such that α[�e] holds in M yet for no i does βi[�e]
hold. The data (σ, η) determines a chase-step. We may execute such a chase-step
and return a new model N; this process proceeds as follows:

1. Choose some disjunct βi(x1, . . . , xk, yi1, . . . , yip)
2. Choose new elements k1, . . . , kip from K

and add them to the domain,
3. Add facts, that is, enrich the relations of M, to ensure the truth of

βi(e1, . . . , ek, k1, . . . , kip).
Here we have slightly abused notation, since some atom in βi may be an
equality, in which case we must enrich the congruence relation to identify
the appropriate elements of |M| ∪ {k1, . . . kip}.

A chase-step can be viewed as a database repair of the failure of the current
model to satisfy the dependency expressed by σ.

There are three possible outcomes of a run of the Chase. (i) It may halt with
success if we reach model M where we cannot apply a step, i.e. when M |= T.
(ii) It may halt with failure, if there is a sentence α ⇒ ⊥ of T and we reach a
model M in which some instance of α holds, (iii) It may fail to terminate.

Properties of the Chase. Theorem 1 records the basic properties of the Chase.
These results are adaptations of well-known [27,30] results in database theory.
A run of the Chase is said to be fair if—in the notation above—every pair of
possible choices for σ and η will be eventually evaluated.

Theorem 1. Let T be a geometric theory. Then T is satisfiable if and only if
there is a fair run of the Chase, starting with the empty model, that does not
fail. Let U be the set (possibly infinite) of models obtained by fair runs of the
Chase. Then U is a set-of-support for Mod(T): for any model M of T, there is a
U ∈ U and a homomorphism from U to M.

Note that the Theorem implies that the fair Chase is refutationally complete. If
T has no models, then in any fair run of the Chase, each set of non-deterministic
choices will eventually yield failure. By König’s Lemma, then, the Chase process
will halt.

Termination and Decidability. In general, termination of the Chase for an
arbitrary theory is undecidable [31]. However, Fagin et al. [30] define a syn-
tactic condition on theories, known as weak acyclicity, by which the Chase is
guaranteed to terminate. Briefly, one constructs a directed graph whose nodes
are positions in relations and whose edges capture possible “information flow”

440 S. Saghafi et al.

between positions; a theory is weakly acyclic if there are no cycles of a certain
form in this graph. (The notion of weakly acyclicity in [30] is defined for theories
without disjunction, but the obvious extension of the definition to the general
case supports the argument for termination in the general case.)

Observe that if T is such that all runs of the Chase terminate, then—by
König’s Lemma—there is a finite set of models returned by the Chase. Thus we
can compute a finite set that jointly provides a set-of-support for all models of
T relative to the homomorphism order �.

Since weak acyclicity implies termination of the Chase we may conclude that
weakly acyclic theories have the finite model property. Furthermore, entailment
of positive-existential sentences from a weakly acyclic theory is decidable, as
follows. Suppose T is weakly acyclic and α is a positive-existential sentence. Let
A1, . . . ,An be the models of T. To check that α holds in all models of T it suffices
to test α in each of the (finite) models Ai, since if B were a counter-model for α,
and Ai the chase-model such that Ai � B, then Ai would be a counter-model for
α, recalling that positive-existential sentences are preserved by homomorphisms.
This proof technique was used recently [32] to show decidability for the theory
of a class of Diffie-Hellman key-establishment protocols.

The Bounded Chase. For theories that do not enjoy termination of the Chase,
we must resort to bounding our search. A traditional way to do so, used by tools
such as Alloy, Margrave, and Aluminum, is to use user-supplied upper bounds
on the domain of the model. Razor uses a somewhat more subtle device, which
is outlined in [33], but which we cannot detail here for lack of space.

3.1 Augmentation: Exploring the Set of Models

Let T be a geometric theory and M be a model of T. Razor allows the user
to augment M with an additional positive-existential formula α resulting in an
extension model N of T such that α is true in N.

N can be computed by a run of the Chase starting with a model
M

′ ≡ M ∪ {α}. A key point is that if α entails other observations given T

and the facts already in M, those observations will be added to the resulting
model. And the augmentation may fail if adding α to M is inconsistent with T.

Theorem 2. Let N be a finite model of the theory T. Suppose that M is a finite
model returned by the Chase with M � N. Then there is a finite sequence of
augmentations on M resulting in a model isomorphic to N.

In particular, if T is weakly acyclic, then for every N there is a Chase model
M and a finite sequence of augments of M yielding N.

3.2 Provenance and the Witnessing Signature

A crucial aspect of our approach to constructing and reasoning about models is
a notation for witnessing an existential quantifier.

Exploring Theories with a Model-Finding Assistant 441

Notation. Given a sentence α ⇒ ∨
i(∃yi1 . . . ∃yip.βi(�x, yi1, . . . , yip)), we assign

a unique, fresh, witnessing (partial) function symbol fσik to each quantifier ∃yik.
This determines an associated sentence α ⇒ ∨

i βi(�x, fσi1(�x), . . . , fσip(�x)) in an
expanded signature, the witnessing signature.

This is closely related to Skolemization of course, but with the important
difference that our witnessing functions are partial functions, and this witnessing
is not a source-transformation of the input theory. This alternate representation
of geometric sentences allows us to define a refined version of the Chase, that
maintains bookkeeping information about elements and facts. Specifically: each
element of a model built using the Chase will have a closed term of the witnessing
signature associated with it: this is that element’s “provenance”.

To illustrate, consider a chase-step as presented earlier, using a formula such
as Formula 1, whose associated sentence over the witnessing signature is

σw ≡ α(x1, . . . , xk) ⇒
∨

i

βi(x1, . . . , xk, fσi1(�x), . . . , fσip(�x)) (2)

In the chase-step, when �x is instantiated by �e, the elements k1, . . . , kip added
in line 2 are naturally “named” by fσi1(�e), . . . , f

σ
ip(�e). Proceeding inductively, each

of the ej will be named by a closed term tj , so that the elements k1, . . . , kip added
in line 2 have, respectively, the provenance fσi1(�t), . . . , f

σ
ip(�t).

It is possible that an element enjoys more than one provenance, in the case
when a chase-step equates two elements.

Also observe that every fact added (in line 3) to the model being constructed
can be “blamed” on the pair (σ, η), that is, the sentence and binding that fired
the rule. This is that fact’s provenance.

4 Implementation

A naive implementation of the Chase in our setting can be computationally pro-
hibitive, due to the need to fork different branches of the model-construction in
the presence of disjunctions. Instead, we take advantage of SAT-solving technol-
ogy to navigate the disjunctions. The use of SAT-solving is of course the essence
of MACE-style model-finding, but the difference here is that we do not simply
work with the ground instances of the input theory, T, over a fixed set of con-
stants. Rather we compute a ground theory T∗ consisting of a sufficiently large
set of instantiations of T by closed terms of the witness signature for T.

Since we want to handle theories with equality, we want to construct models
of T∗ modulo equality reasoning and the theory of uninterpreted functions, so
we use an SMT-solver. We utilize Z3 (QF UFBV) as the backend SMT-solver.

A straightforward use of SMT-solving would result in losing control over
the model-building: even though the elements of a model of T∗ returned would
have appropriate provenance, the solver may make unnecessary relations hold
between elements, and may collapse elements unnecessarily. So we follow the
SMT-solving with a minimization phase, in which we eliminate relational facts
that are not necessary, and even “un-collapse” elements when possible.

442 S. Saghafi et al.

BuildModel (Algorithm 1) presents the overall process by which models
of an input theory T are generated. The Ground procedure (line 2, given as
Algorithm 3) consists of construction of ground instances of T by a run of a
variation of the Chase, where every disjunction in the head of geometric sentences
is replaced by a conjunction. In this way we represent all repair-branches that
could be taken in a Chase step over the original T. Such a computation creates
a refined Skolem-Herbrand base, containing a set of possible facts P

T that could
be true in any Chase model of T. (Some care is required to handle contingent
equalities; space does not permit a detailed explanation here.)

The anonymization procedure (line 3, not detailed here) constructs a flat
theory TK by replacing every term in T∗ over the witness signature with con-
stants from a signature ΣK. The theory TK is in a form that can be fed to
the underlying model-finding and minimization algorithms by a call to Next
(Algorithm 2). Finally, Razor returns the set models U produced by model-
finding and minimization, reduced to the signature of the original input T.

Algorithm 1. Razor

1: function BuildModel(T)
 T over signature Σ
2: (T∗, PT) ← Ground(T)
 T∗ over the witness signature Σw

3: TK ← Anonymize(T∗)
 TK over the anonymized signature ΣK

4: U ← ∅
5: M ← Next(TK, U)
6: while M �= unsat do
7: U ← U ∪ {M}
8: M ← Next(TK, U)
9: return Reduct(U)
 Reduct of models in U to Σ

Algorithm 2. Next Model
Require:

T is ground and flat
for all U ∈ U, U |= T and U is homomorphically minimal

1: function Next(T, U)
2: Φ ← ⋃

i{Flip(Ui)} for all Ui ∈ U
 Flip axioms about existing models.
3: if exists M such that M |= (T ∪ Φ) then
 Ask the SMT-solver for M.
4: N ← Minimize(T,M)
5: return N

6: else
7: return unsat
 No more models.

Exploring Theories with a Model-Finding Assistant 443

Algorithm 3. Grounding

1: function Ground(G)
2: P

G ← ∅
 P
G is initially the empty model

3: G∗ ← ∅
 G∗ is initially an empty theory
4: repeat
5: choose σ ≡ ϕ ⇒ ψ ∈ G

6: for each λ where λϕ ∈ P
G do

7: P
G ← Extend(PG, σ, λ)

8: G∗ ← G∗ ∪ {Instantiate(PG, σ, λ)}
9: until G∗ and P

G are changing
10: return (G∗, PG)

11: function Extend(M, ϕ ⇒�x ψ, η)
12: if ψ = ⊥ then fail
13: N ← M

14: for each disjunct ∃f1y1, . . . ,∃fmym.
∧n

j=1 Pj in ψ do
15: |N| ← |N| ∪ {�fi(�x)�Mη | 1 ≤ i ≤ m}
16: μ ← η[y1 �→ �f1(�x)�Mη , . . . , ym �→ �fm(�x)�Mη]
17: N ← N ∪ {P1[μ(�x, �y)], . . . , Pn[μ(�x, �y)]}
18: return N

19: function Instantiate(PG, ϕ ⇒�x

∨
i ∃fi1yi1 . . . ∃fimyim.ψi, η)

20: μ ← η[yij �→ �fij(�x)�P
G

η] (1 ≤ j ≤ m)
21: return μσ

Algorithm 4. Minimize
Require: M |= T

1: function Minimize(T, M)
2: repeat
3: N ← M

4: M ← Reduce(M)
5: until M = unsat
 Cannot reduce
6: return N
 N is a minimal model for T

The Next algorithm (Algorithm 2) accepts a set U of minimal models under
the homomorphism ordering and returns a minimal model M for T that is not
reachable from any of the models in U via homomorphism. The flip procedure
(line 2, not detailed here) on an existing model U ∈ U records the disjunction of
the negation of all facts (including equational facts) true in U: this guarantees
that the next model returned by the solver will not be reachable from any of the
models in U via homomorphism. The call to Minimize (Algorithm 4) on line 4

444 S. Saghafi et al.

Algorithm 5. Reduce
Require: M |= T

1: function Reduce(T, M)
2: ν ← NegPreserve(T ,M)
3: ϕ ← Flip(T ,M)
4: if exists N such that N |= T ∪ {ν ∧ ϕ} then
 Ask the SMT solver for N

5: return N

6: else
7: return unsat
 M is minimal.

reduces the next model returned by the solver to a homomorphically minimal
one by repeated invocations of the solver. In every reduction step i, the solver is
asked for a model Mi that satisfies

– the input theory T.
– the negation preserving axiom of Mi−1, which is the conjunction of all facts

(including equational facts) that are false in Mi−1.
– the flip axioms about the model Mi−1 from the previous step.

It can be shown that for every model M, Reduce(T,M) ≺ M. The reduction
process continues until the solver returns “unsatisfiable”.

Theorem 3. Fix a relational theory in geometric form T. Let PT and T∗ be a
set of possible facts and its corresponding ground theory for T, constructed by
the Chase-based grounding algorithm. Let M be a model in the witness signature
for T∗ and M

− the reduct of M to the signature of T.

1. (Soundness.) If M |= T∗ and M is homomorphically minimal, then M
− is a

model of T.
2. (Completeness.) If M is constructed by the Chase and M

− |= T then M is a
model of T∗.

Proof (Sketch). For (1): Let σ ≡ ϕ ⇒ (
∨

i ∃fi1yi1 . . . ∃fipyip . ψi) be a sentence in
T. Let �x be the free variables of σ. We show that if M− |=η ϕ for environment
η, then M

− |=η (
∨

i ∃fi1yi1 . . . ∃fipyip . ψi): because M is minimal, the facts in
M are contained in P

T, and since ϕ is positive, ηϕ ∈ P
T. Therefore, by the

construction of T∗, a sentence ϕ[�t] ⇒ ∨
i ψi[�t, �ui] exists in T∗ where �t = η�x, and

for each uij in �ui, uij = fij(�t) (1 ≤ j ≤ p). Observe that because M
− |=η ϕ then

M |= ϕ[�t] as �t are witnesses for the elements that are images of �x in η. Finally,
since M is a model of T∗, then M |= ψi[�t, �ui] for some i. Therefore, it follows
that M

− |=η (
∨

i ∃yi1, . . . ,∃yip . ψi).
For (2): Let σ∗ ≡ ϕ[�t] ⇒ ∨

i ψi[�t, �ui] be a sentence in T∗. By definition, σ∗

is an instance of a sentence σ ≡ ∨
i ϕ ⇒ (∃fi1yi1 . . . ∃fipyip . ψi) by a substitution

that sends the free variables �x of σ to �t and �yi to �ui. Moreover, for each uij in
�ui (1 ≤ i ≤ p), uij = fij(�t).

Exploring Theories with a Model-Finding Assistant 445

Assume M |= ϕ[�t]. Then, M
− |=η ϕ where the environment η sends the

variables in �x to the elements �e in M
− that are denoted by �t in M. Because

M
− is a chase-model for T, then for some i, M

− |=λ ∃yi1 . . . ∃yip . ψi where
λ = η[yij �→ dj] (1 ≤ j ≤ p). Let uij denote dj in M under λ. Therefore,
M |= ψi[�t, �ui] follows.

It remains to show that a set-of-support computed by the minimization algo-
rithm for T∗ (modulo anonymization) is in fact a set-of-support for T.

Theorem 4. Fix a theory T in geometric form over a signature Σ. Let T∗ be
computed by a run of the grounding algorithm on T.

1. The set U of models computed during Algorithm 1 is a set-of-support for T∗.
2. The reducts U− of U to Σ, returned by Algorithm 1, is a set-of-support for T.

Proof (Sketch) For (1): In every call of Next for a set of models Ui, the flip
axioms about the models in Ui

ensure that every model M returned satisfies M �� U for each U ∈ U. If an
M is returned by the solver, a model U with U � M will be added to Ui.

For (2): Let A be a model of T. By Theorem 1 a chase-model M over the
witness signature exists such M

− � A. By Theorem 3, part (2) M |= T∗. By
part (1) of this theorem there exists a model U ∈ U such that U � M. Therefore,
for the reduct U

− of U to Σ, U− � A.

5 Examples

From the Alloy Repository. Our main focus is on theories developed by
hand. A natural source of such theories is the Alloy repository. We ran Razor on
11 theories from the Alloy book, suitably translated to Razor’s input language.
The following summarizes the experience; space precludes a detailed report.

For 6 theories Razor returned a complete set-of-support in unbounded mode;
the time to return the first model was less than a second. For the remaining 5,
we had to run in bounded mode in order to return models within 5 min. For 2
of these, iterative deepening succeed in finding a bound that was sufficient for
finding a complete set of support for all finite models: the times-to-first-model
were 375 ms and 17.2 s, respectively. For the other 3, with respective bounds 1, 2,
and 3, we computed models quickly at the respective bounds but incrementing
the bound led to a 5-min timeout. In all cases, once the first model was found,
subsequent models were completed in negligible time.

From TPTP. We performed several experiments running Razor on the satisfi-
able problems in the TPTP problem repository [34] Razor’s current performance
on these problems is not satisfactory: it frequently fails to terminate within a
five-minute bound. Razor tends to perform better on problems that are devel-
oped by hand, have a limited number of predicates, and don’t include relations
with high arity. Future developments in Razor’s implementation will improve
performance; a long-term research question is exploring the tradeoffs between
efficiency and the kind of enhanced expressivity we offer.

446 S. Saghafi et al.

Extended Example: Lab Door Security. Here is an introductory example,
demonstrating a specification in Razor of a simple policy for access to a our
local lab, and typical queries about the policy. The sentences below capture the
following policy specification.

Logic and Systems are research groups in lab (1–2). Research group members
must be able to enter the lab (3). Key or card access allows a person to enter
(4–5). To enter a lab, a member must have a key or card (6). Only members
have cards (7). Employees grant keys to people (8–9). Systems members are not
allowed to have keys (10).

1. LabOf(’Logic,’TheLab);
2. LabOf(’Systems, ’TheLab);
3. MemberOf(p,r) & LabOf(r,l) => Enter(p,l);
4. HasKey(p,k) & KOpens(k,l) => Enter(p,l);
5. COpens(cardOf(p),l) => Enter(p,l);
6. Enter(p,l) => COpens(cardOf(p),l)

| exists k. HasKey(p,k) & KOpens(k,l);
7. COpens(cardOf(p), l) => exists r. MemberOf(p,r) & LabOf(r,l);
8. HasKey(p,k) => exists e. Grant(e,p,k) & Employee(e);
9. Grant(e,p,k) => HasKey(p,k)

10. MemberOf(p,’Systems) & HasKey(p,k)
& KOpens(k,’TheLab) => Falsehood;

The user can ask if a thief can access the lab without being Logic or Systems
member:

Enter(’Thief,’TheLab);

First Model: Granted a Key The first model exhibits that there is no policy
restriction on employee key-granting capabilities:

Enter = {(p1, l1)} ’TheLab = l1
Employee = {(e1)} ’Systems = r2
Grant = {(e1,p1,k1)} ’Logic = r1
HasKey = {(p1,k1)} ’Thief = p1
KOpens = {(k1,l1)}
LabOf = {(r1,l1), (r2,l1)}

The user can investigate if the thief p1 and the employee e1 can be the same
person in this example? This may be done by augmenting the model with aug
p1 = e1. The augmentation results in one model (not shown).

Second Model: Third research group The second example is more curious:

Enter = {(p1, l1)} ’TheLab = l1
COpens = {(c1, l1)} ’Systems = r2
MemberOf = {(e1, r3)} ’Logic = r1
cardOf = {(p1, c1)} ’Thief = p1
LabOf = {(r1, l1), (r2, l1), (r3, l1)}

Exploring Theories with a Model-Finding Assistant 447

The user may ask “where did this third research group come from?”, then
user look at the provenance information about r3 by running origin r3. Razor
pinpoints an instance of the causal sentence (sentence 7):

7: COpens(c1, l1) => MemberOf(e1, r3) & LabOf(r3, l1)

This policy rule does not restrict which research groups live in the lab. Such a
restriction would force the mystery group r3 to be the Systems or Logic group.
The user confirms this policy fix by applying aug r3 = r2. The augmentation
produces no counter examples; the fix is valid. The research group r3 exists
because the thief has a card. By asking blame COpens(c1, l1), the user sees why:

6: Enter(p1, l1) => COpens(c1, l1)
| HasKey(p1, k1) & KOpens(k1, l1)

The thief has a card because the user’s query said he could enter the lab. He
could also have a key, which is evident in the first model. Why does the thief
belong to a research group in this scenario, but not in the previous? Being a
research group member is a consequence of having a card; not for having a key.
Belonging to a research group when having a key is extraneous information.
Razor does not include this scenario in the minimal model returned.

Software-Defined Networks. At Razor’s web page http://salmans.github.io/
Razor/ one can find a more advanced extended example, showing how Razor can
reason about controller programs for Software-Defined Networks. For a program
P in the declarative networking program Flowlog [35], we show how to define a
theory TP such that a model M of TP is a snapshot of the state of the system
at a moment in time. The user can augment M by a fact capturing a network
event, and the resulting models correspondingly capture the next state of the
system. In this way, augmentation acts as a stepper in a debugger.

6 Future Work

Highlights of the ongoing work on this project include (i) work on efficiency of
the model-building, (ii) taking real advantage of the fact that we incorporate
an SMT-solver, to work more effectively when part of a user’s input theory
has a known decision procedure, and (iii) an improved user interface for the
tool, including a more sophisticated GUI for presenting models, and parsers to
allow input in native formats such as Description Logic, firewall specifications,
XAMCL, and cryptographic protocols.

Acknowledgements. We benefitted from discussions with Henning Günther, Joshua
Guttman, Daniel Jackson, Shriram Krishnaturthi, Tim Nelson, and John Ramsdell.
The name of our tool is homage to Ockham’s Razor (William of Occam 1285–1349):
“Pluralitas non est ponenda sine neccesitate”.

http://salmans.github.io/Razor/
http://salmans.github.io/Razor/

448 S. Saghafi et al.

References

1. Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: International
Joint Conference On Artificial Intelligence (1995)

2. McCune, W.: MACE 2.0 Reference Manual and Guide. CoRR (2001)
3. Claessen, K., Sörensson, N.: New techniques that improve MACE-Style finite

model finding. In: CADE Workshop on Model Computation-Principles, Algo-
rithms, Applications (2003)

4. Baumgartner, P., Schmidt, R.A.: Blocking and other enhancements for bottom-up
model generation methods. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 125–139. Springer, Heidelberg (2006)

5. de Nivelle, H., Meng, J.: Geometric resolution: a proof procedure based on finite
model search. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI),
vol. 4130, pp. 303–317. Springer, Heidelberg (2006)

6. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007)

7. Baumgartner, P., Fuchs, A., De Nivelle, H., Tinelli, C.: Computing finite models
by reduction to function-free clause logic. J. Appl. Logic 7(1), 58–74 (2009)

8. Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite model finding in SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 640–655. Springer,
Heidelberg (2013)

9. Korovin, K., Sticksel, C.: iProver-Eq: an instantiation-based theorem prover with
equality. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 196–202.
Springer, Heidelberg (2010)

10. Bry, F., Torge, S.: A deduction method complete for refutation and finite satisfi-
ability. In: Dix, J., Fariñas del Cerro, L., Furbach, U. (eds.) JELIA 1998. LNCS
(LNAI), vol. 1489, pp. 122–138. Springer, Heidelberg (1998)

11. Baumgartner, P., Suchanek, F.M.: Automated reasoning support for first-order
ontologies. In: Alferes, J.J., Bailey, J., May, W., Schwertel, U. (eds.) PPSWR 2006.
LNCS, vol. 4187, pp. 18–32. Springer, Heidelberg (2006)

12. Jackson, D.: Software Abstractions, 2nd edn. MIT Press, London (2012)
13. Fisler, K., Krishnamurthi, S., Meyerovich, L.A., Tschantz, M.C.: Verification and

change-impact analysis of access-control policies. In: International Conference on
Software Engineering (2005)

14. Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: The mar-
grave tool for firewall analysis. In: USENIX Large Installation System Adminis-
tration Conference (2010)

15. Niemelä, I.: A tableau calculus for minimal model reasoning. In: Workshop on
Theorem Proving with Analytic Tableaux and Related Methods (1996)

16. Bry, F., Yahya, A.: Positive unit hyperresolution tableaux and their application to
minimal model generation. J. Autom. Reasoning 25(1), 35–82 (2000)

17. Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:
principled scenario exploration through minimality. In: International Conference
on Software Engineering (2013)

18. Doghmi, S.F., Guttman, J.D., Thayer, F.J.: Searching for shapes in cryptographic
protocols. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 523–537. Springer, Heidelberg (2007)

19. Lopes, N., Bjorner, N., Godefroid, P., Jayaraman, K., Varghese, G.: Checking
beliefs in dynamic networks. Technical report, Microsoft Research (2014)

Exploring Theories with a Model-Finding Assistant 449

20. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

21. Abramsky, S.: Domain theory in logical form. Ann. Pure Appl. Logic 51, 1–77
(1991)

22. Vickers, S.: Geometric logic as a specification language. In: Imperial College
Department of Computing Workshop on Theory and Formal Methods (1995)

23. Sofronie-Stokkermans, V.: Sheaves and Geometric Logic and Applications to Mod-
ular Verification of Complex Systems. Electronic Notes on Theoretical Computer
Science 230, 161–187 (2009)

24. Bezem, M., Coquand, T.: Automating coherent logic. In: Sutcliffe, G.,
Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 246–260. Springer,
Heidelberg (2005)

25. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies.
ACM Trans. Database Syst. 4, 445–469 (1979)

26. Beeri, C., Vardi, M.Y.: A proof procedure for data dependencies. J. ACM 31(4),
718–741 (1984)

27. Deutsch, A., Tannen, V.: XML queries and constraints, containment and reformu-
lation. ACM Symposium on Theory Computer Science (2005)

28. Rossman, B.: Existential positive types and preservation under homomorphisms.
In: IEEE Logic in Computer Science. IEEE (2005)

29. Makkai, M., Reyes, G.E.: First Order Categorical Logic. Springer, Heidelberg
(1977)

30. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003.
LNCS, vol. 2572, pp. 207–224. Springer, Heidelberg (2002)

31. Deutsch, A., Nash, A., Remmel, J.: The chase revisited. In: ACM Symposium on
Principles of Database Systems (2008)

32. Dougherty, D.J., Guttman, J.D.: Decidability for lightweight Diffie-Hellman proto-
cols. In: IEEE Symposium on Computer Security Foundations, pp. 217–231 (2014)

33. Saghafi, S., Dougherty, D.J.: Razor: provenance and exploration in model-finding.
In: 4th Workshop on Practical Aspects of Automated Reasoning (PAAR) (2014)

34. Sutcliffe, G.: The TPTP problem library and associated infrastructure: The FOF
and CNF parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)

35. Nelson, T., Ferguson, A.D., Scheer, M., Krishnamurthi, S.: Tierless programming
and reasoning for software-defined networks. NSDI, April (2014)

Abstract Interpretation as Automated
Deduction

Vijay D’Silva1 and Caterina Urban2(B)

1 Google Inc., San Francisco, USA
2 École Normale Supérieure, Paris, France

urban@di.ens.fr

Abstract. Algorithmic deduction and abstract interpretation are two
widely used and successful approaches to implementing program verifiers.
A major impediment to combining these approaches is that their math-
ematical foundations and implementation approaches are fundamentally
different. This paper presents a new, logical perspective on abstract inter-
preters that perform reachability analysis using non-relational domains.
We encode reachability of a location in a control-flow graph as satisfiabil-
ity in a monadic, second-order logic parameterized by a first-order theory.
We show that three components of an abstract interpreter, the lattice,
transformers and iteration algorithm, represent a first-order, substruc-
tural theory, parametric deduction and abduction in that theory, and
second-order constraint propagation.

1 Introduction

Two major approaches to automated reasoning about programs are those based
on sat and smt solvers and those based on abstract interpretation. In the solver-
based approaches, a property of a program is encoded by formulae in a logic or
theory and a solver is used to check if the property holds. In abstract interpre-
tation, a property of a program is expressed in terms of fixed points and fixed
point approximation techniques are used to calculate and reason about fixed
points [6]. The complementary strengths of these approaches has led to a decade
of theoretical and practical effort to combine them.

The strengths of smt solvers include efficient Boolean reasoning, complete
reasoning in certain theories, theory combination, proof generation and inter-
polation. Recent research has demonstrated that deduction algorithms have
applications in program analysis besides solving formulae. dpll(t) and cdcl
have been lifted to implement property-guided, path-sensitive analyses [9,15].
st̊almarck’s method has been used to refine abstract transformers [26], inter-
polants have been used to refine widening operators [12] and unification has been
used to obtain complete reasoning about restricted families of programs [28]. The
Nelson-Oppen procedure, though less general than reduced product [7,8], works
as an algorithmic domain combinator [13].

Conversely, the strengths of abstract interpreters are the use of approxima-
tion to overcome the theoretical undecidability and practical scalability issues in
c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 450–464, 2015.
DOI: 10.1007/978-3-319-21401-6 31

Abstract Interpretation as Automated Deduction 451

program verification and the use of widening operators to derive invariants. The
large number of abstract domains enables application-specific reasoning and the
flexibility to choose the trade-off between precision and efficiency. Ideas from
abstract interpretation have been incorporated in smt and constraint solvers by
using abstract domains for theory propagation [19,29], joins for space-efficient
representation [3], and widening for generalization [18]. Algorithms based on
fixed points have been used to implement alternatives to dpll(t) [4,27].

Nonetheless, there remain obstacles to combining these two approaches. Con-
ceptually, smt algorithms are expressed in terms of models and proofs while
abstract interpretation is presented in terms of lattices, transformers and fixed
points. These mathematical differences translate into practical differences in the
interfaces implemented by solvers and abstract interpreters and type of results
they produce, leading to further impediments to combining the two approaches.

This paper presents a logical account of a family of reachability analyses
based on abstract interpretation. We encode reachability as satisfiability in a
weak, monadic, second-order logic. A classic result of Büchi shows that a formula
in the weak monadic second-order theory of one successor (ws1s) is satisfiable
exactly if the models of that formula form a regular language [5,30,31]. If an
automaton is viewed as a finite-state program, Büchi’s theorem encodes reacha-
bility as satisfiability in ws1s. We extend a part of this result to a logic ws1s(t)
interpreted over finite sequences of first-order structures.

Much of this paper is concerned with logical characterizations of the com-
ponents of an abstract interpreter. The lattice in an analyzer represents a sub-
structural, first-order theory, with the proof system for the theory generating the
partial order of the lattice. Transformers for conditionals implement deduction
and abduction modulo the theory. The invariant map constructed by abstract
interpreters is a strict generalization of partial assignments in sat and smt
solvers and fixed point iteration is second-order constraint propagation. Due to
space restrictions, we defer proofs of statements to the full version of the paper.

2 Reachability as Second-Order Satisfiability

The contribution of this section is the logic ws1s(t), which is an extension of
Büchi’s ws1s with a theory. To simplify reasoning about programs in this logic,
we restrict the class of models that are usually considered for ws1s.

Notation. We use =̂ for definition. Let P(S) denote the set of all subsets of
S, called the powerset of S, and F (S) denote the finite subsets of S. Given a
function f : A → B, f [a �→ b] denotes the function that maps a to b and maps c
distinct from a to f(c).

2.1 Weak Monadic Second Order Theories of One Successor

Our syntax contains first-order variables Vars, functions Fun and predicates
Pred . The symbols x, y, z range over Vars, f, g, h range over Fun and P,Q,R
range over Pred . We also use a set Pos of first-order position variables whose

452 V. D’Silva and C. Urban

elements are i, j, k and a set SVar of monadic second-order variables denoted
X,Y,Z. Second-order variables are uninterpreted, unary predicates. We also use
a unary successor function suc and a binary, successor predicate Suc.

Our logic consists of three families of formulae called state, transition and
trace formulae, which are interpreted over first-order structures, pairs of first-
order structures and finite sequences of first-order structures respectively. The
formulae are named after how they are interpreted over programs.

t : := x | f(t0, . . . , tn) Term
ϕ : := P (t0, . . . , tn) | ϕ ∧ ϕ | ¬ϕ State Formula
ψ : := suc(x) = t | ψ ∧ ψ | ¬ψ Transition Formula
Φ : := X(i) | Suc(i, j) | ϕ(i) | ψ(i)

| Φ ∧ Φ | ¬Φ | ∃i : Pos.Φ Trace formula

State formulae are interpreted with respect to a theory T given by a first-order
interpretation (Val , I), which defines functions I(f), relations I(P), and equality
=T over values in Val . A state maps variables to values and State =̂ Vars → Val
is the set of states. The value �t�s of a term t in a state s is defined as usual.

�x�s =̂ s(x) �f(t1, . . . , tk)�s =̂ I(f)(�t0�s, . . . , �tn�s)

As is standard, s |=T ϕ denotes that s is a model of ϕ in the theory T .

s |=T P (t0, . . . , tn) if (�t0�s, . . . , �tn�s) ∈ I(P)
s |=T ϕ ∧ ψ if s |=T ϕ and s |=T ψ s |=T ¬ϕ if s �|=T ϕ

The semantics of Boolean operators is defined analogously for transition and
trace formulae, so we omit them in what follows. A transition is a pair of states
(r, s) and a transition formula is interpreted at a transition.

(r, s) |= P (t0, . . . , tn) if (�t0�r, . . . , �tn�r) ∈ I(P)
(r, s) |= suc(x) = t if �x�s =T �t�r

A trace of length k is a sequence τ : [0, k − 1] → State. We call τ(m) the state at
position m, with the implicit qualifier m < k. A k-assignment σ : (Pos → N) ·∪
(SVar → F (N)) maps position variables to [0, k − 1] and second-order variables
to finite subsets of [0, k − 1]. A k-assignment satisfies that {σ(X) | X ∈ SVar}
partitions the interval [0, k − 1]. We explain the partition condition shortly. A
ws1s(t) structure (τ, σ) consists of a trace τ of length k and a k-assignment σ.
A trace formula is interpreted with respect to a ws1s(t) structure.

(τ, σ) |= X(i) if σ(i) is in σ(X)
(τ, σ) |= ϕ(i) if τ(σ(i)) |=T ϕ

(τ, σ) |= ψ(i) if σ(i) < k − 1 and (τ(σ(i)), τ(σ(i) + 1)) |= ψ

(τ, σ) |= Suc(i, j) if σ(i) + 1 = σ(j)
(τ, σ) |= ∃i : Pos.Φ if (τ, σ[i �→ n]) |= Φ for some n in N

Abstract Interpretation as Automated Deduction 453

Note that ϕ(i) is interpreted at the state at position σ(i) and ψ(i) at the transi-
tion from σ(i). The semantics of ψ(i) is only defined if σ(i) is not the last position
on τ . A trace formula Φ is satisfiable if there exists a trace τ and assignment σ
such that (τ, σ) |= Φ. We assume standard shorthands for ∨ and ⇒ and write
Φ |= Ψ for |= Φ ⇒ Ψ .

Example 1. The ws1s formula First(i) =̂ ∀j.¬Suc(j, i) is true at the first position
on a trace and Last(i) =̂ ∀j.¬Suc(i, j) is true at the last position. See [30,31] for
more examples. ws1s(t) has no second-order quantification so the encoding of
transitive closure in ws1s does not carry over. Transitive closure may be encoded
if the underlying theory is powerful enough. �

2.2 Encoding Reachability in WS1S(T)

Büchi showed that the models of a ws1s formula form a regular language and
vice-versa. The modern proof of this statement [30,31] encodes the structure of a
finite automaton using second-order variables. We now extend this construction
to encode a control-flow graph (cfg) by a ws1s(t) formula.

A command is an assignment x := t of a term t to a first-order variable x, or
is a condition [ϕ], where ϕ is a state formula. A cfg G = (Loc, E, in,Ex , stmt)
consists of a finite set of locations Loc including an initial location in, a set of exit
locations Ex , edges E ⊆ Loc × Loc, and a labelling stmt : E → Cmd of edges
with commands. To assist the presentation, we require that every location is
reachable from in, and that exit locations have no successors. This requirement
is not fundamental to our results.

We define an execution semantics for cfgs. We assume that terms in com-
mands are interpreted over the same first-order structure as state formulae. The
formula SameV =̂

∧
x∈V succ(x) = x expresses that variables in the set V are

not modified in a transition and Transc is the transition formula for a command.

Transc =̂

{
b =⇒ SameVars if c = [b]
suc(x) = t ∧ SameVars\{x} if c = x := t

A transition relation for a command c is the set of models Relc of Transc. We
write Transe and Rele for the transition formula and relation of the command
stmt(e). An execution of length k is a sequence ρ = (m0, s0), . . . , (mk−1, sk−1)
of location and state pairs in which each e = (mi,mi+1) is an edge in E and
the pair of states (si, si+1) is in the transition relation Rele. A location m is
reachable if there is an execution ρ of some length k such that ρ(k − 1) = (m, s)
for some state s.

The safety properties checked by abstract interpreters are usually encoded as
reachability of locations in a cfg. The formula ReachG,L below encodes reach-
ability of a set of locations L in a cfg G as satisfiability in ws1s(t). The first
line below is an initial constraint, the second is a set of transition constraints

454 V. D’Silva and C. Urban

indexed by locations, and the third line encodes final constraints.

ReachG,L =̂ ∀i.First(i) =⇒ Xin(i)

∧
∧

v∈Loc

∀i.∀j.Xv(j) ∧ Suc(i, j) =⇒
∨

(u,v)∈E

Trans(u,v)(i) ∧ Xu(i)

∧ ∀j.Last(j) =⇒
∨

u∈L

Xu(j)

We explain this formula in terms of a structure (τ, σ). The trace τ contains
valuations of variables but has no information about locations. A second-order
variable Xv represents the location v and σ(Xv) represents the points in τ when
control is at v. The initial constraint ensures that execution begins in in. The
final constraint ensures that execution ends in one of the locations in L. In a
transition constraint, Xv(j) ∧ Suc(i, j) expresses that the state τ(j) is visited
at location v and its consequent expresses that the state τ(i) must have been
visited at a location u that precedes v in the cfg and that (τ(i), τ(j)) must be
in the transition relation (u, v).

Theorem 1. Some location in a set L in a cfg G is reachable if and only if
the formula ReachG,L is satisfiable.

Proof. [⇐] If a location w ∈ L is reachable, there is an execution ρ =̂ (u0, s0), . . .,
(uk−1, sk−1) with u0 = in and uk−1 = w. Define the structure (τ, σ) with τ =̂
s0, . . . , sk−1 and σ =̂ {Xu �→ {i | ρ(i) = (u, s), s ∈ State} | u ∈ Loc}. We show
that (τ, σ) is a model of ReachG,L. Since u0 = in and uk−1 = w, the initial and
final constraints are satisfied. In the transition constraint, if Xv(j) holds, there
is some (ui, si), (ui+1, si+1) in ρ with ui+1 = v. Thus, the transition (si, si+1)
satisfies the transition formula Trans(ui,v).

[⇒] Assume (τ, σ) is a model of ReachG,L. Define a sequence ρ with ρ(i) =̂
(u, τ(i)) where i ∈ σ(Xu). As σ induces a partition, there is a unique u with
i in σ(Xu). We show that ρ is an execution reaching L. The initial constraint
guarantees that ρ(0) is at in and the final constraints guarantee that ρ ends in
L. The transition constraints ensure that every step in the execution traverses
an edge in G and respects the transition relation of the edge. ��

We believe this is a simple yet novel encoding of reachability, a property
widely checked by abstract interpreters, in a minor extension of a well-known
logic. The translation from second-order logics is at the heart of the automata-
based verification, so we believe this work connects abstract interpretation to the
automata-theoretic approach to program verification in a fundamental, yet novel
way. In other second-order characterizations of correctness [2,11], it is invariants
and not executions that are encoded by satisfying assignments. Moreover, those
encodings do not connect to the automata-theoretic approach.

Example 2. A cfg G and the formula ReachG,Ex for a program with a variable x
of type Z are shown in Fig. 1. Executions that start with a strictly negative value
of x neither terminate nor reach ex. For brevity, we write a state as the value

Abstract Interpretation as Automated Deduction 455

of x. The execution (in, 1), (a, 1), (in, 0), (ex, 0) reaches ex. It is encoded by the
model (τ, σ), with σ =̂ {Xin �→ {0, 2} ,Xa �→ {1} ,Xex =̂ {3}} and τ = 1, 1, 0, 0.
Note that σ partitions SVar because each position on the trace corresponds to
a unique location. No structure (τ, σ) in which x is strictly negative in τ(0)
satisfies ReachG,Ex . �

Fig. 1. A cfg for a program with non-terminating executions and a ws1s(t) formula
over the theory of integer arithmetic encoding the reachability of ex.

Note that a program invariant would include all reachable states, but a model
of ReachG,L only involves states that occur on a single execution. We empha-
sise that we are not considering arbitrary formulae in ws1s(t). The formula
ReachG,L is a conjunction of constraints in which the initial, final and transition
constraints have a fixed structure. The second-order variables and first-order
program variables are free, but the first-order position variables are bound.

3 Lattices and Substructural First-Order Theories

The contribution of this section is to relate first-order substructural theories with
the lattices in abstract domains. We show that certain lattices used in practice
are Lindenbaum-Tarski algebras of theories that we introduce here.

3.1 First-Order Substructural Theories

For this section, assume a set of variables Vars and a first-order theory of inte-
ger arithmetic with the standard functions and relations and let |=Z define the
semantics of quantifier-free first-order formulae. A logical language (L,�L) con-
sists of a set of formulae and a proof system. The grammar below defines a set
of formulae in terms of atomic formulae, logical constants and connectives.

We introduce formulae and calculi for a sign logic, a constant logic and an
interval logic, with the names deriving from the abstract domains being mod-
elled. The formulae in our logics are closed under conjunction but not under dis-
junction or negation. There are only three atomic formulae in S. The infinitely
many atomic formulae in C are equalities between a variable and an integer, and
atomic formulae in I-formulae involve upper bounds and lower bounds on vari-
ables. The three logics contain the logical constant tt, denoting true, but instead

456 V. D’Silva and C. Urban

Table 1. Proof rules for the core calculus and its extensions. The core calculus �core

contains rules for introduction (i), cut (cut), weakening (wl), contraction (cl) and
permutation (pl) on the left, conjunction (∧l1, ∧l2, ∧r), false (ffl), in which ϕ(x) has
only one free variable x, and true (ttr).

The core calculus �core

i
ϕ � ϕ

ffl
ffx � ϕ(x)

Γ � ϕ ϕ, Σ � ψ
cut

Γ, Σ � ψ
ttr

Γ � tt

Γ � ψ
wl

Γ, ϕ � ψ

Γ, ϕ, ϕ � ψ
cl

Γ, ϕ � ψ

Γ, ϕ, ψ � θ
pl

Γ, ψ, ϕ � θ

Γ, ϕ � θ ∧l1
Γ, ϕ ∧ ψ � θ

Γ, ψ � θ ∧l2
Γ, ϕ ∧ ψ � θ

Γ � ϕ Σ � ψ ∧r
Γ, Σ � ϕ ∧ ψ

of a constant for false, we have a family ffx parameterized by variables.

ϕ : := x < 0 | x = 0 | x > 0 | ffx | tt | ϕ ∧ ϕ S
ϕ : := x = k | ffx | tt | ϕ ∧ ϕ C
ϕ : := x ≤ k | x ≥ k | ffx | tt | ϕ ∧ ϕ I

A calculus �core for the logical core of these logics is shown in Table 1. We use
sequents of the form Γ,Σ �L ϕ, where the antecedents Γ and Σ are sequences of
formulae, and the consequent ϕ is a single, first-order formula. We write

∧
Γ for

the conjunction of the sequence elements in Γ . A calculus �L is sound if every
derivable sequent Γ �L ψ satisfies that |=Z

∧
Γ ⇒ ψ. The semantics of ffx in

|=Z is ff. Two formulae are inter-derivable if the sequents ϕ �L ψ and ψ �L ϕ
are both derivable.

Sequent calculi usually contain structural, logical and cut rules, and in the
case of theories also theory rules. Our logics are substructural because the
sequents have a restricted structure, lack right structural rules, and lack rules
for disjunction, negation and implication. Our non-standard treatment of false
is influenced by the way abstract domains reason about contradictions.

We review the theory rules for our logics. The reader should be warned
that these logics have a restricted syntax and weak proof systems so the set of
derivations is limited. We claim no responsibility for any disappointment arising
from how uninteresting the derivable theorems are. The calculus �S , in Fig. 2,
extends �core with rules for deriving ffx from conjunctions of atomic formulae.
The calculus for C is similar to that for S with the theory rule below instead.
The calculus I in Fig. 4 contains rules for modifying upper and lower bounds.

[m �=Z n]
Γ, x = m ∧ x = n � ffx

ffR4

Example 3. Figure 3 contains a derivation of x < 0 �S x < 0 ∧ tt. The converse
x < 0∧tt �S x < 0 is derivable with i and ∧l1, showing that x < 0 and x < 0∧tt
are inter-derivable.

Abstract Interpretation as Automated Deduction 457

Fig. 2. A lattice of signs and a calculus that generates it.

Fig. 3. A derivation in the sign calculus �S .

Fig. 4. The domain of intervals over two variables and a calculus for interval logic.

An abstract interpreter reasoning about variable values can derive a sequent
y ≤ 0, x ≤ 5 ∧ x ≥ 7 �I ffx ∧ y ≤ 3 showing that the inconsistency arises from x
or x ≤ 2, y ≤ 0 ∧ y ≥ 3 �I ffy ∧ x ≤ 3 showing an inconsistency from y. �

Theorem 2. The calculi �S , �C, and �I are sound.

The proof is by induction on the structure of a derivation. This soundness the-
orem is used to show an isomorphism between the lattices generated by these
calculi and the lattices they model.

3.2 Lattices from Substructural Theories

We recall elementary lattice theory. A lattice (A,�,�,�) is a partially ordered
set (poset) with a binary greatest lower bound �, called the meet, and a binary

458 V. D’Silva and C. Urban

least upper bound �, called the join. A poset with only a meet is called a meet-
semi-lattice. A lattice is bounded if it has a greatest element �, called top, and a
least element ⊥ called bottom. The notion of isomorphism for lattices is standard.

Pointwise lifting is an operation that lifts the order and operations of a lattice
to functions on the lattice. Consider the functions f, g : S → A, where S is a set
and A a lattice as above. The pointwise order f � g holds if f(x) � g(x) for all
x, while the pointwise meet f � g maps x in S to f(x) � g(x). The pointwise lift
of other relations and operations on A is similarly defined.

Tarski related logic and lattices by extending a construction of Lindenbaum
to generate Boolean algebras from propositional calculi and first-order sentences.
We use a generalization of this construction to formulae with free variables [20].
We write [ϕ]L for the equivalence class of ϕ with respect to an equivalence
relation ≡L. A logic (L,�L) that is closed under conjunction generates the
Lindenbaum-Tarski algebra (L/≡L,�,�) below.

ϕ ≡L ψ if ϕ �L ψ and ψ �L ϕ.

[ϕ]L � [ψ]L if θ1 �L θ2 for some θ1 ∈ [ϕ]L, and θ2 ∈ [ψ]L.

[ϕ]L � [ψ]L =̂ [θ1 ∧ θ2]L where θ1 ∈ [ϕ]L, and θ2 ∈ [ψ]L.

The relation ≡L, defined by inter-derivability, is an equivalence whose classes
form the carrier set of the algebra. Logical connectives generate operators.
Though Lindenbaum-Tarski algebras of standard logics have been studied in
depth, the algebras for the substructural theories we consider have not. To prove
the lemma below, we show that derivability induces a partial order on the equiv-
alence classes of ≡L and that conjunction induces a greatest lower bound.

Lemma 1. Let (L,�) be a quantifer-free first-order language closed under con-
junction and � be a sound calculus that extends �core. The Lindenbaum-Tarski
algebra of L is a meet-semi-lattice.

We now recall certain lattices used in abstract interpretation and show that they
are isomorphic to the Lindenbaum-Tarski algebras of the logics we introduced.
The lattice of signs (Sign,�) is shown in Fig. 2. The lattice of integer constants
(Const ,�) consists of the elements Z ∪ {⊥,�}, with ⊥ and � as bottom and
top, and all other elements being incomparable. The lattice of integer intervals
(Itv ,�), consists of the set {[a, b] | a ≤ b, a ∈ Z ∪ {−∞} , b ∈ Z ∪ {∞}} and a
special element ⊥ denoting the empty interval. The partial order is standard
and [−∞,∞] is the top element.

An abstract environment is a function ε : Vars → D, from program variables
to a lattice D that represents approximations of variable values. A lattice of
abstract environments is derived from a lattice D by pointwise lifting.

Theorem 3. The Lindenbaum-Tarski algebra of each of the logics S, C, I over
a set of variables Vars, is isomorphic to the pointwise lift of each of the lattices
Sign, Const, and Itv to abstract environments over Vars.

To provide intuition for the proof, we detail here the case for the logic S and
the lattice Sign over one variable. To prove that the Lindenbaum-Tarski algebra

Abstract Interpretation as Automated Deduction 459

of S over a variable x is isomorphic to Sign we have to show that there are five
equivalence classes, and that � and � are as in Fig. 2. The five candidate equiv-
alence classes are {[ffx]S , [tt]S , [x < 0]S , [x = 0]S , [x > 0]S}. The proof that there
are at most five equivalence classes is by induction on the structure of formulae.
The proof argument is that every conjunct in S is inter-derivable from a formula
in one of these classes. The proof that there are at least five equivalence classes
relies on the soundness of �S . If there are fewer than five equivalence classes,
there are consequences derivable in �S that do not hold semantically. Observe
that this proof argument holds only because every lattice element represents
a different set of structures. In abstract interpretation parlance, this argument
only applies to abstractions in which the concretization function is injective.

Next, we define a function h : S/≡S → Sign that maps equivalence classes to
corresponding lattice elements. To show that h is an isomorphism we argue by
induction on formula structure for comparable equivalence classes and by appeal
to soundness for incomparable equivalence classes. This argument generalizes
to a finite number of variables because all the logics we have considered only
involve one-place predicates. The shaded elements in Fig. 4 are the images of the
formulae shown under the isomorphism.

4 Abstract Transformers, Deduction and Abduction

The constant and interval domains are used in practice even though, as shown
in the previous section, they have weak proof systems. In this section, we adapt
Tarski’s notion of consequence operators to logically model abstract transformers
for conditionals. Consequence operators provided an approach to algebraically
modelling deduction. These transformers can be viewed as enriching a weak proof
system �L with the ability to reason about formulae that are not definable in L.

We consider again a quantifier-free first-order theory T with semantics |=T
and a logical language (L,�L), where L ⊆ T . Deduction in L with respect to
a formula ϕ ∈ T is formalized by a deduction function dedϕ : F (L) → F (L)
between finite sets of formulae in L. A deduction function is sound if for finite
Θ ⊆ L, and θ ∈ dedϕ(Θ), ϕ ∧ ∧

Θ |=T θ. That is, the deduced formulae are
consequences of the arguments and, crucially, the parameter ϕ. The formula ϕ
acts as an external hint to boost the capabilities of a weak deductive system.
The parameter ϕ may not exist in L, so there may not be a rule of the form
ϕ, Γ �L θ corresponding to an application of the deduction function.

Similarly, we model abduction by a function that generates antecedents given
consequents. An abduction function abdϕ : F (L) → F (L) derives antecedents
in L with respect to a parameter ϕ. An abduction function is sound if for all Θ,
and θ ∈ abdϕ(Θ), ϕ ∧ θ |=T

∧
Θ.

Example 4. This examples illustrates how deduction with respect to a formula
enables reasoning that is not possible in the lattice itself. Let ϕ =̂ 3y − 1 >
0 ∧ x = −y be a formula in a theory. We define one possible sound deduction

460 V. D’Silva and C. Urban

function dedϕ for consequences in S.

dedϕ({tt}) = dedϕ({y > 0}) = dedϕ({x < 0}) = {y > 0, x < 0}
dedϕ({ffx}) = dedϕ({x = 0}) = dedϕ({x > 0}) = dedϕ({y = 0}) = {ffx,ffy}

The results of applying dedϕ shown above are the only two possibilities, even
for sets of formulae not shown above.

The difference between dedϕ and classical consequence operators is that we make
fewer assumptions on properties of dedϕ in the same way our lattices make fewer
structural assumptions than classical logics. Recall that a set of formulae C is
consequence-closed with respect to �L if for all ϕ in C, if ϕ �L θ, then θ is in C.
The consequence closure of C is the smallest consequence-closed set containing
C. If Γ �L θ, the consequence closure of Γ contains the consequence closure
of θ. A deduction function inverts this relationship, because it strengthens its
argument using ϕ. That is, the consequence closure of dedϕ(Θ) is a superset of
the consequence closure of Θ because it contains formulae derived using ϕ.

Deduction functions, when factored through the Lindenbaum-Tarski equiv-
alence relation, give rise to sound transformers for conditionals. To make this
precise, we require the notion of a concretization function from abstract interpre-
tation. Let (A,�,�) be a bounded lattice and (P(State),⊆,∩) be the powerset
of states with the subset order. We say that A is an abstraction of P(State) if
there is a monotone function γ : A → P(State) satisfying that γ(�) = State
and γ(⊥) = ∅. Requiring that ⊥ has an empty concretization is non-standard
but is required for a logical treatment of false.

Recall that Rel [ϕ] is the transition relation for a conditional. A function
post [ϕ] : A → A is a sound successor transformer for the conditional [ϕ] if
the set of structures obtained by applying post [ϕ] overapproximates the struc-
tures obtained by applying the transition relation: Rel [ϕ](γ(a)) ⊆ γ(post [ϕ](a)).
Dually, a function ˜pre [ϕ] : A → A is a sound predecessor transformer for the
conditional [ϕ] if the set of structures obtained by applying ˜pre [ϕ] underapprox-
imates the structures obtained by applying the transition relation backwards:
γ(˜pre [ϕ](a)) ⊆ {

s | Rel [ϕ]({s}) ⊆ γ(a)
}
.

To relate these transformers to deduction and abduction functions, we lift
the functions above to operate on the Lindenbaum-Tarski algebra. We write ≡
instead of ≡L for brevity.

ded≡
ϕ : L/≡ → L/≡ ded≡

ϕ ([θ]≡) =̂
�

{[ψ]≡ | ψ ∈ dedϕ([θ]≡)}
abd≡

ϕ : L/≡ → L/≡ abd≡
ϕ ([θ]≡) =̂ [ψ]≡ for some ψ ∈ abdϕ([θ]≡)

The result of deduction on the Lindenbaum-Tarski algebra is a meet of equiva-
lence classes of formulae in order to obtain the strongest consequence possible.
Assuming that an equivalence class consists of only finitely many formulae, this
result is well-defined. If an equivalence class is not finite, a finite number of
representatives can be used instead. The lift of abduction is not the dual of
deduction. Instead, the result of lifting abduction is the equivalence class of one

Abstract Interpretation as Automated Deduction 461

of the formulae that result from abduction. This is because we want the weakest
possible abduction but our logics lack disjunction. Using the lattice-theoretic
join in algebras where the join exists may lead to unsound abduction.

Theorem 4. Let dedϕ and abdϕ be sound deduction and abduction transformers
and (L,�L) be a logical language closed under conjunction with a calculus that
extends �core. Then, the lifted functions ded≡

ϕ and abd≡
ϕ are sound successor and

predecessor transformers for the conditional [ϕ].

We have not modelled transformers for assignment because we have not identified
a satisfying treatment of substitution and quantification that factors through the
Lindenbaum-Tarski construction.

5 Abstract Interpreters as Second-Order Solvers

An abstract interpreter for reachability analysis combines a lattice with trans-
formers to derive program invariants. We have shown that lattices approximate
state formulae, and that deduction and abduction functions approximate tran-
sition formulae. We now show that the steps in fixed point iteration can be
understood as second-order propagation. Logically, a fixed point iterator can be
viewed as an smt solver for trace formulae.

We introduce abstract assignments to model approximations of trace formu-
lae. We have chosen this term to emphasise the similarity to partial assignments
in sat solvers. Let (A,�,�) be a lattice that is an abstraction of the lattice of
states (P(State),⊆,∩). Recall that SVar is the set of second-order variables.
The lattice of abstract assignments is (AsgA,�,�), where AsgA =̂ SVar → A is
the set of abstract assignments and the order and meet are defined pointwise.

Let Struct be the set of pairs (τ, σ) of ws1s(t) structures. We show that
the lattice of abstract assignments is an abstraction of (P(Struct),⊆,∪). An
abstract assignment represents sets of ws1s(t) structures analogous to the way
a partial assignment in a dpll-based sat solver represents all assignments that
extend to undefined variables. The set of ws1s(t) structures represented by an
abstract assignment is given by the concretization conc : AsgA → P(Struct)
below.

conc(asg) =̂ {(τ, σ) | for all X ∈ SVar . {τ(i) | i ∈ σ(X)} ⊆ γ(asg(X))}

Explained in terms of states, an abstract assignment represents structures by
the set of states at each program location but forgets the order between states.

We present the run of an abstract interpreter as a solver for ReachG,L. An
abstract interpreter begins with the variable map λY.� indicating that nothing
is known about the satisfiability of ReachG,L, so every structure is potentially
a model of ReachG,L. An abstract assignment is updated using a propagation
rule. If a location is not reachable, the formula is unsatisfiable, as deduced by
the conflict rule.

462 V. D’Silva and C. Urban

asg � asg [Xv �→ d], where d =
⊔

(u,v)∈E

{
post (u,v)(asg(Xv))

}
Propagate

asg � unsat if asg(Xv) = ⊥, for some v ∈ L Conflict

Propagation modifies an abstract assignment similar to the way Boolean con-
straint propagation (bcp) updates a partial assignment with two key differences.
One is that rather than values, the assignment is updated with elements of a
lattice. The second is that in bcp, before decisions are made, every value that is
undefined becomes tt or ff, becoming strictly more precise. With abstract assign-
ments, the assignments to Xv within an scc with more than one node, will,
in general, get weaker. We have not modelled termination concerns, which are
addressed with widening and narrowing operators. The theorem below expresses
the soundness of fixed point iteration without widening and narrowing in terms
of satisfiability.

Theorem 5. If the repeated application of the propagation and conflict rules
leads to unsat, the formula ReachG,L is unsatisfiable.

6 Related Work, Discussion and Conclusion

The development of novel combinations of automated deduction and abstract
interpretation is a driving force behind much current research, which we sur-
veyed in the introduction. Consult the dissertations [14,22] and Dagstuhl seminar
notes [17] for a detailed treatment of this research. Such work has been applied to
design new smt solvers [4], program analyzers [10,23], and has helped automate
the construction of program analyzers [24,25,27].

However, our experience has been that crucial aspects of solvers such as
branching and conflict analysis heuristics are difficult to characterize lattice-
theoretically due to their combinatorial nature. In this work, we have initi-
ated a complementary research programme by giving logical characterizations of
instances of abstract interpretation. To relate logics to lattices, we have combined
ideas from substructural logic with the Lindenbaum-Tarski construction [20] and
Tarski’s algebraic treatment of deduction.

A more abstract approach would be to use the framework of Stone dual-
ity, which uses category theory to relate lattices, topological spaces and logics.
Stone duality was extended to programs by Abramsky [1] who related domains in
semantics to intuitionistic, modal, fixed point logic. Jensen [16] applied Abram-
sky’s work to extract a logic from a specific abstract interpretation: strictness
analysis.

In this paper, we have modelled logics that lack disjunction and have weaker
proof systems than those considered in approaches based on Stone duality.
The closest study to ours is by Schmidt [21], who articulated the idea that
the partial order of an abstract domain defines its proof theory. In terms of
algebraic logic, Schmidt’s work can be understood as identifying logical char-
acterization of families of lattices in abstract interpretation as free algebras of
the Lindenbaum-Tarski construction. In comparison, our work has focused on
characterizing specific lattices as theories.

Abstract Interpretation as Automated Deduction 463

Conclusion. This work is a first step towards a logical description of the internals
of an abstract interpreter in the mathematical and algorithmic vocabulary of sat
and smt solvers. The results in this paper make precise widespread folk intuition
about the logical basis of certain abstract interpreters. Though our results are
unsurprising, we believe the techniques we have used are novel and connect
ideas from substructural logic, algebraic logic and satisfiability research. In using
Büchi’s construction, we have also connected abstract interpretation with the
automata-theoretic approach to logic and verification. Folk knowledge asserts
that transformers for assignments provide a form of quantifier elimination. We
have not modelled these transformers here because we are missing a rigorous
treatment that integrates with the Lindenbaum-Tarski construction.

In terms of solver architecture, the simple abstract interpreter we have con-
sidered can be viewed as a second-order theory solver that only updates assign-
ments. This view provides a direct route to integrating branching heuristics,
conflict analysis, and variable selection. We have begun these investigations and
hope that this exposition enables the automated deduction community to par-
ticipate in the same.

References

1. Abramsky, S.: Domain theory and the logic of observable properties. Ph.D. thesis,
University of London (1987)

2. Aiken, A.: Introduction to set constraint-based program analysis. Sci. Comput.
Program. 35, 79–111 (1999)

3. Bjørner, N., Duterte, B., de Moura, L.: Accelerating lemma learning using joins -
DPLL(�). In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR (2008)

4. Brain, M., D’silva, V., Griggio, A., Haller, L., Kroening, D.: Deciding floating-
point logic with abstract conflict driven clause learning. Formal Methods Syst.
Des. 45(2), 213–245 (2014)

5. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Logic,
Methodology and Philosophy of Science, pp. 1–11. Stanford University Press (1960)

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM Press (1977)

7. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL, pp. 269–282. ACM Press (1979)

8. Cousot, P., Cousot, R., Mauborgne, L.: Theories, solvers and static analysis by
abstract interpretation. J. ACM 59(6), 31:1–31:56 (2013)

9. D’Silva, V., Haller, L., Kroening, D.: Abstract conflict driven learning. In:
Giacobazzi, R., Cousot, R. (eds.) POPL, pp. 143–154. ACM Press (2013)

10. D’Silva, V., Haller, L., Kroening, D., Tautschnig, M.: Numeric bounds analysis with
conflict-driven learning. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 48–63. Springer, Heidelberg (2012)

11. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: Vitek, J., Lin, H., Tip, F. (eds.) PLDI, pp.
405–416. ACM Press (2012)

12. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically refin-
ing abstract interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)

464 V. D’Silva and C. Urban

13. Gulwani, S., Tiwari, A.: Combining abstract interpreters. In: Schwartzbach, M.I.,
Ball, T. (eds.) PLDI, pp. 376–386. ACM Press (2006)

14. Haller, L.C.R.: Abstract satisfaction. Ph.D. thesis, University of Oxford (2014)
15. Harris, W.R., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Program analysis

via satisfiability modulo path programs. In: Hermenegildo, M., Palsberg, J. (eds.)
POPL, pp. 71–82 (2010)

16. Jensen, T.P.: Strictness analysis in logical form. In: Hughes, J. (ed.) Functional
Programming Languages and Computer Architecture. LNCS, vol. 523, pp. 352–
366. Springer, Heidelberg (1991)

17. Kroening, D., Reps, T.W., Seshia, S.A., Thakur, A.V.: Decision procedures and
abstract interpretation (Dagstuhl seminar 14351). Dagstuhl Rep. 4(8), 89–106
(2014)

18. Leino, K.R.M., Logozzo, F.: Using widenings to infer loop invariants inside an
SMT solver, or: a theorem prover as abstract domain. In: Workshop on Invariant
Generation, pp. 70–84. RISC Report 07–07 (2007)

19. Pelleau, M., Truchet, C., Benhamou, F.: Octagonal domains for continuous con-
straints. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 706–720. Springer,
Heidelberg (2011)

20. Rasiowa, H., Sikorski, R.: The Mathematics of Metamathematics. Polish Academy
of Science, Warsaw (1963)

21. Schmidt, D.A.: Internal and external logics of abstract interpretations. In: Logozzo,
F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 263–278.
Springer, Heidelberg (2008)

22. Thakur, A.V.: Symbolic abstraction: algorithms and applications. Ph.D. thesis,
The University of Wisconsin - Madison (2014)

23. Thakur, A.V., Breck, J., Reps, T.W.: Satisfiability modulo abstraction for sepa-
ration logic with linked lists. In: Rungta, N., Tkachuk, O. (eds.) SPIN, pp. 58–67
(2014)

24. Thakur, A., Elder, M., Reps, T.: Bilateral algorithms for symbolic abstraction. In:
Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 111–128. Springer,
Heidelberg (2012)

25. Thakur, A.V., Lal, A., Lim, J., Reps, T.W.: Posthat and all that: automating
abstract interpretation. Electr. Notes Theor. Comput. Sci. 311, 15–32 (2015)

26. Thakur, A., Reps, T.: A Generalization of St̊almarck’s method. In: Miné, A.,
Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 334–351. Springer, Heidelberg
(2012)

27. Thakur, A., Reps, T.: A method for symbolic computation of abstract operations.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 174–192.
Springer, Heidelberg (2012)

28. Tiwari, A., Gulwani, S.: Logical interpretation: static program analysis using the-
orem proving. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp.
147–166. Springer, Heidelberg (2007)

29. Truchet, C., Pelleau, M., Benhamou, F.: Abstract domains for constraint pro-
gramming, with the example of octagons. In: Symbolic and Numeric Algorithms
for Scientific, Computing, pp. 72–79 (2010)

30. van den Elsen, S.: Weak monadic second-order theory of one successor. Seminar:
Decision Procedures (2012)

31. Vardi, M.Y., Wilke, T.: Automata: from logics to algorithms. In: Logic and
Automata: History and Perspectives [in Honor of Wolfgang Thomas], pp. 629–736
(2008)

Hybrid Sytems and Program Synthesis

A Uniform Substitution Calculus
for Differential Dynamic Logic

André Platzer(B)

Computer Science Department, Carnegie Mellon University, Pittsburgh, USA
aplatzer@cs.cmu.edu

Abstract. This paper introduces a new proof calculus for differential
dynamic logic (dL) that is entirely based on uniform substitution, a proof
rule that substitutes a formula for a predicate symbol everywhere. Uni-
form substitutions make it possible to rely on axioms rather than axiom
schemata, substantially simplifying implementations. Instead of subtle
schema variables and soundness-critical side conditions on the occurrence
patterns of variables, the resulting calculus adopts only a finite number
of ordinary dL formulas as axioms. The static semantics of differential
dynamic logic is captured exclusively in uniform substitutions and bound
variable renamings as opposed to being spread in delicate ways across
the prover implementation. In addition to sound uniform substitutions,
this paper introduces differential forms for differential dynamic logic that
make it possible to internalize differential invariants, differential substi-
tutions, and derivations as first-class axioms in dL.

1 Introduction

Differential dynamic logic (dL) [4,6] is a logic for proving correctness properties
of hybrid systems. It has a sound and complete proof calculus relative to differen-
tial equations [4,6] and a sound and complete proof calculus relative to discrete
systems [6]. Both sequent calculi [4] and Hilbert-type axiomatizations [6] have
been presented for dL but only the former has been implemented. The imple-
mentation of dL’s sequent calculus in KeYmaera makes it straightforward for
users to prove properties of hybrid systems, because it provides rules performing
natural decompositions for each operator. The downside is that the implemen-
tation of the rule schemata and their side conditions on occurrence constraints
and relations of reading and writing of variables as well as rule applications in
context is nontrivial and inflexible in KeYmaera.

The goal of this paper is to identify how to make it straightforward to imple-
ment the axioms and proof rules of differential dynamic logic by writing down
a finite list of axioms (concrete formulas, not axiom schemata that represent an
infinite list of axioms subject to sophisticated soundness-critical schema variable
matching implementations). They require multiple axioms to be combined with

All proofs are in a companion report [9]. This material is based upon work supported
by the National Science Foundation by NSF CAREER Award CNS-1054246.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 467–481, 2015.
DOI: 10.1007/978-3-319-21401-6 32

468 A. Platzer

one another to obtain the effect that a user would want for proving a hybrid sys-
tem conjecture. This paper argues that this is still a net win for hybrid systems,
because a substantially simpler prover core is easier to implement correctly, and
the need to combine multiple axioms to obtain user-level proof steps can be
achieved equally well by appropriate tactics, which are not soundness-critical.

To achieve this goal, this paper follows observations for differential game logic
[8] that highlight the significance and elegance of uniform substitutions, a clas-
sical proof rule for first-order logic [2, §35,40]. Uniform substitutions uniformly
instantiate predicate and function symbols with formulas and terms, respectively,
as functions of their arguments. In the presence of the nontrivial binding struc-
ture that nondeterminism and differential equations of hybrid programs induce
for the dynamic modalities of differential dynamic logic, flexible but sound uni-
form substitutions become more complex for dL, but can still be read off ele-
gantly from its static semantics. In fact, dL’s static semantics is solely captured1

in the implementation of uniform substitution (and bound variable renaming),
thereby leading to a completely modular proof calculus.

This paper introduces a static and dynamic semantics for differential-form dL,
proves coincidence lemmas and uniform substitution lemmas, culminating in a
soundness proof for uniform substitutions (Sect. 3). It exploits the new differen-
tial forms that this paper adds to dL for internalizing differential invariants [5],
differential cuts [5,7], differential ghosts [7], differential substitutions, total differ-
entials and Lie-derivations [5,7] as first-class citizens in dL, culminating in entirely
modular axioms for differential equations and a superbly modular soundness proof
(Sect. 4). This approach is to be contrasted with earlier approaches for differen-
tial invariants that were based on complex built-in rules [5,7]. The relationship to
related work from previous presentations of differential dynamic logic [4,6] con-
tinues to apply except that dL now internalizes differential equation reasoning
axiomatically via differential forms.

2 Differential-Form Differential Dynamic Logic

2.1 Syntax

Formulas and hybrid programs (HPs) of dL are defined by simultaneous induction
based on the following definition of terms. Similar simultaneous inductions are
used throughout the proofs for dL. The set of all variables is V. For any V ⊆ V is
V ′ def= {x′ : x ∈ V } the set of differential symbols x′ for the variables in V . Function
symbols are written f, g, h, predicate symbols p, q, r, and variables x, y, z ∈ V with
differential symbols x′, y′, z′ ∈ V ′. Program constants are a, b, c.

Definition 1 (Terms). Terms are defined by this grammar (with θ, η, θ1, . . . , θk

as terms, x ∈ V as variable, x′ ∈ V ′ differential symbol, and f function symbol):

θ, η ::= x | x′ | f(θ1, . . . , θk) | θ + η | θ · η | (θ)′

1 This approach is dual to other successful ways of solving the intricacies and subtleties
of substitutions [1,3] by imposing occurrence side conditions on axiom schemata and
proof rules, which is what uniform substitutions can get rid of.

A Uniform Substitution Calculus for Differential Dynamic Logic 469

Number literals such as 0,1 are allowed as function symbols without arguments
that are always interpreted as the numbers they denote. Beyond differential
symbols x′, differential-form dL allows differentials (θ)′ of terms θ as terms for
the purpose of axiomatically internalizing reasoning about differential equations.

Definition 2 (Hybrid program). Hybrid programs (HPs) are defined by the
following grammar (with α, β as HPs, program constant a, variable x, term θ
possibly containing x, and formula ψ of first-order logic of real arithmetic):

α, β ::= a | x := θ | x′ := θ | ?ψ | x′ = θ &ψ | α ∪ β | α;β | α∗

Assignments x := θ of θ to variable x, tests ?ψ of the formula ψ in the cur-
rent state, differential equations x′ = θ &ψ restricted to the evolution domain
constraint ψ, nondeterministic choices α ∪ β, sequential compositions α;β, and
nondeterministic repetition α∗ are as usual in dL [4,6]. The effect of the differ-
ential assignment x′ := θ to differential symbol x′ is similar to the effect of the
assignment x := θ to variable x, except that it changes the value of the differ-
ential symbol x′ around instead of the value of x. It is not to be confused with
the differential equation x′ = θ, which will follow said differential equation con-
tinuously for an arbitrary amount of time. The differential assignment x′ := θ,
instead, only assigns the value of θ to the differential symbol x′ discretely once
at an instant of time. Program constants a are uninterpreted, i.e. their behav-
ior depends on the interpretation in the same way that the values of function
symbols f and predicate symbols p depends on their interpretation.

Definition 3 (dL formula). The formulas of (differential-form) differential
dynamic logic (dL) are defined by the grammar (with dL formulas φ, ψ, terms
θ, η, θ1, . . . , θk, predicate symbol p, quantifier symbol C, variable x, HP α):

φ, ψ ::= θ ≥ η | p(θ1, . . . , θk) | C(φ) | ¬φ | φ ∧ ψ | ∀x φ | ∃x φ | [α]φ | 〈α〉φ
Operators >,≤, <,∨,→,↔ are definable, e.g., φ → ψ as ¬(φ ∧ ¬ψ). Likewise
[α]φ is equivalent to ¬〈α〉¬φ and ∀x φ equivalent to ¬∃x¬φ. The modal formula
[α]φ expresses that φ holds after all runs of α, while the dual 〈α〉φ expresses that
there is a run of α after which φ holds. Quantifier symbols C (with formula φ as
argument), i.e. higher-order predicate symbols that bind all variables of φ, are
unnecessary but internalize contextual congruence reasoning efficiently.

2.2 Dynamic Semantics

A state is a mapping from variables V and differential symbols V ′ to R. The set
of states is denoted S. Let νr

x denote the state that agrees with state ν except
for the value of variable x, which is changed to r ∈ R, and accordingly for νr

x′ .
The interpretation of a function symbol f with arity n (i.e. with n arguments)
is a smooth function I(f) : Rn → R of n arguments.

Definition 4 (Semantics of terms). For each interpretation I, the semantics
of a term θ in a state ν ∈ S is its value in R. It is defined inductively as follows

470 A. Platzer

1. [[x]]Iν = ν(x) for variable x ∈ V
2. [[x′]]Iν = ν(x′) for differential symbol x′ ∈ V ′

3. [[f(θ1, . . . , θk)]]Iν = I(f)
(
[[θ1]]Iν, . . . , [[θk]]Iν

)
for function symbol f

4. [[θ + η]]Iν = [[θ]]Iν + [[η]]Iν
5. [[θ · η]]Iν = [[θ]]Iν · [[η]]Iν

6. [[(θ)′]]Iν =
∑

x

ν(x′)
∂[[θ]]I

∂x
(ν) =

∑

x

ν(x′)
∂[[θ]]IνX

x

∂X

Time-derivatives are undefined in an isolated state ν. The clou is that differ-
entials can still be given a local semantics: [[(θ)′]]Iν is the sum of all (analytic)
spatial partial derivatives of the value of θ by all variables x (or rather their
values X) multiplied by the corresponding tangent described by the value ν(x′)
of differential symbol x′. That sum over all variables x ∈ V has finite support,
because θ only mentions finitely many variables x and the partial derivative by
variables x that do not occur in θ is 0. The spatial derivatives exist since [[θ]]Iν
is a composition of smooth functions, so smooth. Thus, the semantics of [[(θ)′]]Iν
is the differential2 of (the value of) θ, hence a differential one-form giving a real
value for each tangent vector (i.e. vector field) described by the values ν(x′).
The values ν(x′) of the differential symbols x′ describe an arbitrary tangent
vector or vector field. Along the flow of (the vector field of a) differential equa-
tion, though, the value of the differential (θ)′ coincides with the analytic time-
derivative of θ (Lemma 8). The interpretation of predicate symbol p with arity
n is an n-ary relation I(p) ⊆ R

n. The interpretation of quantifier symbol C is a
functional I(C) mapping subsets M ⊆ S to subsets I(C)(M) ⊆ S.

Definition 5 (dL semantics). The semantics of a dL formula φ, for each
interpretation I with a corresponding set of states S, is the subset [[φ]]I ⊆ S
of states in which φ is true. It is defined inductively as follows

1. [[θ ≥ η]]I = {ν ∈ S : [[θ]]Iν ≥ [[η]]Iν}
2. [[p(θ1, . . . , θk)]]I = {ν ∈ S : ([[θ1]]Iν, . . . , [[θk]]Iν) ∈ I(p)}
3. [[C(φ)]]I = I(C)

(
[[φ]]I

)
for quantifier symbol C

4. [[¬φ]]I = ([[φ]]I)� = S \ [[φ]]I

5. [[φ ∧ ψ]]I = [[φ]]I ∩ [[ψ]]I

6. [[∃x φ]]I = {ν ∈ S : νr
x ∈ [[φ]]I for some r ∈ R}

7. [[〈α〉φ]]I = [[α]]I ◦ [[φ]]I = {ν : ω ∈ [[φ]]I for some ω such that (ν, ω) ∈ [[α]]I}
8. [[[α]φ]]I = [[¬〈α〉¬φ]]I = {ν : ω ∈ [[φ]]I for all ω such that (ν, ω) ∈ [[α]]I}

A dL formula φ is valid in I, written I |= φ, iff [[φ]]I = S, i.e. ν ∈ [[φ]]I for
all ν. Formula φ is valid, written |= φ, iff I |= φ for all interpretations I.

The interpretation of a program constant a is a state-transition relation I(a) ⊆
S × S, where (ν, ω) ∈ I(a) iff a can run from initial state ν to final state ω.

2 A slight abuse of notation rewrites the differential as [[(θ)′]]I = d[[θ]]I =
∑n

i=1
∂[[θ]]I

∂xi dxi

when x1, . . . , xn are the variables in θ and their differentials dxi form the basis of the
cotangent space, which, when evaluated at a point ν whose values ν(x′) determine
the tangent vector alias vector field, coincides with Definition 4.

A Uniform Substitution Calculus for Differential Dynamic Logic 471

Definition 6 (Transition semantics of HPs). For each interpretation I,
each HP α is interpreted semantically as a binary transition relation [[α]]I ⊆ S×S
on states, defined inductively by

1. [[a]]I = I(a) for program constants a
2. [[x := θ]]I = {(ν, νr

x) : r = [[θ]]Iν} = {(ν, ω) : ω = ν except [[x]]Iω = [[θ]]Iν}
3. [[x′ := θ]]I = {(ν, νr

x′) : r = [[θ]]Iν} = {(ν, ω) : ω = ν except [[x′]]Iω =
[[θ]]Iν}

4. [[?ψ]]I = {(ν, ν) : ν ∈ [[ψ]]I}
5. [[x′ = θ &ψ]]I = {(ν, ω) : I, ϕ, |= x′ = θ ∧ ψ, i.e. ϕ(ζ) ∈ [[x′ = θ ∧ ψ]]I for

all 0 ≤ ζ ≤ r, for some function ϕ : [0, r] → S of some duration r for which
all ϕ(ζ)(x′) = dϕ(t)(x)

dt (ζ) exist and ν = ϕ(0) on {x′}� and ω = ϕ(r)}; i.e.,
ϕ solves the differential equation and satisfies ψ at all times. In case r = 0,
the only condition is that ν = ω on {x′}� and ω(x′) = [[θ]]Iω and ω ∈ [[ψ]]I .

6. [[α ∪ β]]I = [[α]]I ∪ [[β]]I
7. [[α;β]]I = [[α]]I ◦ [[β]]I = {(ν, ω) : (ν, μ) ∈ [[α]]I , (μ, ω) ∈ [[β]]I}
8. [[α∗]]I = ([[α]]I)∗ =

⋃

n∈N

[[αn]]I with αn+1 ≡ αn;α and α0 ≡ ?true

where ρ∗ denotes the reflexive transitive closure of relation ρ.

The initial values ν(x′) of differential symbols x′ do not influence the behavior
of (ν, ω) ∈ [[x′ = θ &ψ]]I , because they may not be compatible with the time-
derivatives for the differential equation, e.g. in x′ := 1;x′ = 2, with a x′ mismatch.

Functions and predicates are interpreted by I and are only influenced indi-
rectly by ν through the values of their arguments. So p(e) → [x :=x + 1]p(e) is
valid if x is not in e since the change in x does not change whether p(e) is true
(Lemma 2). By contrast p(x) → [x :=x + 1]p(x) is invalid, since it is false when
I(p) = {d : d ≤ 5} and ν(x) = 4.5. If the semantics of p were to depend on the
state ν, then there would be no discernible relationship between the truth-values
of p in different states, so not even p → [x :=x + 1]p would be valid.

2.3 Static Semantics

The static semantics of dL and HPs defines some aspects of their behavior that
can be read off directly from their syntactic structure without running their
programs or evaluating their dynamical effects. The most important aspects
of the static semantics concern free or bound occurrences of variables. Bound
variables x are those that are bound by ∀x or ∃x , but also those that are bound
by modalities such as [x := 5y] or 〈x′ = 1〉 or [x := 1 ∪ x′ = 1] or [x := 1 ∪ ?true].

The notions of free and bound variables are defined by simultaneous induction
in the subsequent definitions: free variables for terms (FV(θ)), formulas (FV(φ)),
and HPs (FV(α)), as well as bound variables for formulas (BV(φ)) and for HPs
(BV(α)). For HPs, there will be a need to distinguish must-bound variables
(MBV(α)) that are bound/written to on all executions of α from (may-)bound
variables (BV(α)) which are bound on some (not necessarily all) execution paths
of α, such as in [x := 1 ∪ (x := 0; y := x + 1)], which has bound variables {x, y}
but must-bound variables only {x}, because y is not written to in the first choice.

472 A. Platzer

Definition 7 (Bound variable). The set BV(φ) ⊆ V ∪ V ′ of bound variables
of dL formula φ is defined inductively as

BV(θ ≥ η) = BV(p(θ1, . . . , θk)) = ∅
BV(C(φ)) = V ∪ V ′

BV(¬φ) = BV(φ)
BV(φ ∧ ψ) = BV(φ) ∪ BV(ψ)

BV(∀x φ) = BV(∃x φ) = {x} ∪ BV(φ)
BV([α]φ) = BV(〈α〉φ) = BV(α) ∪ BV(φ)

Definition 8 (Free variable). The set FV(θ) ⊆ V ∪ V ′ of free variables of
term θ, i.e. those that occur in θ, is defined inductively as

FV(x) = {x}
FV(x′) = {x′}

FV(f(θ1, . . . , θk)) = FV(θ1) ∪ · · · ∪ FV(θk)
FV(θ + η) = FV(θ · η) = FV(θ) ∪ FV(η)

FV((θ)′) = FV(θ) ∪ FV(θ)′

The set FV(φ) of free variables of dL formula φ, i.e. all those that occur in φ
outside the scope of quantifiers or modalities binding it, is defined inductively as

FV(θ ≥ η) = FV(θ) ∪ FV(η)
FV(p(θ1, . . . , θk)) = FV(θ1) ∪ · · · ∪ FV(θk)

FV(C(φ)) = V ∪ V ′

FV(¬φ) = FV(φ)
FV(φ ∧ ψ) = FV(φ) ∪ FV(ψ)

FV(∀x φ) = FV(∃x φ) = FV(φ) \ {x}
FV([α]φ) = FV(〈α〉φ) = FV(α) ∪ (FV(φ) \ MBV(α))

Soundness requires that FV([α]φ) is not defined as FV(α) ∪ (FV(φ) \ BV(α)),
otherwise [x := 1 ∪ y := 2]x ≥ 1 would have no free variables, but its truth-value
depends on the initial value of x, demanding FV([x := 1 ∪ y := 2]x ≥ 1) = {x}.

The static semantics defines which variables are free so may be read (FV(α)),
which are bound (BV(α)) so may be written to somewhere in α, and which are
must-bound (MBV(α)) so must be written to on all execution paths of α.

Definition 9 (Bound variable). The set BV(α) ⊆ V ∪ V ′ of bound variables
of HP α, i.e. all those that may potentially be written to, is defined inductively:

BV(a) = V ∪ V ′ for program constant a

BV(x := θ) = {x}
BV(x′ := θ) = {x′}

A Uniform Substitution Calculus for Differential Dynamic Logic 473

BV(?ψ) = ∅
BV(x′ = θ &ψ) = {x, x′}

BV(α ∪ β) = BV(α;β) = BV(α) ∪ BV(β)
BV(α∗) = BV(α)

Definition 10 (Must-bound variable). The set MBV(α) ⊆ BV(α) ⊆ V ∪ V ′

of must-bound variables of HP α, i.e. all those that must be written to on all
paths of α, is defined inductively as

MBV(a) = ∅ for program constant a

MBV(α) = BV(α) for other atomic HPs α

MBV(α ∪ β) = MBV(α) ∩ MBV(β)
MBV(α;β) = MBV(α) ∪ MBV(β)
MBV(α∗) = ∅

Definition 11 (Free variable). The set FV(α) ⊆ V ∪ V ′ of free variables of
HP α, i.e. all those that may potentially be read, is defined inductively as

FV(a) = V ∪ V ′ for program constant a

FV(x := θ) = FV(x′ := θ) = FV(θ)
FV(?ψ) = FV(ψ)

FV(x′ = θ &ψ) = {x} ∪ FV(θ) ∪ FV(ψ)
FV(α ∪ β) = FV(α) ∪ FV(β)
FV(α;β) = FV(α) ∪ (FV(β) \ MBV(α))
FV(α∗) = FV(α)

Unlike x, the left-hand side x′ of differential equations is not added to the
free variables of FV(x′ = θ &ψ), because its behavior does not depend on the
initial value of differential symbols x′, only the initial value of x. Free and bound
variables are the set of all variables V and differential symbols V ′ for program
constants a, because their effect depends on the interpretation I, so may read and
write all FV(a) = BV(a) = V ∪V ′ but not on all paths MBV(a) = ∅. Subsequent
results about free and bound variables are, thus, vacuously true when program
constants occur. Corresponding observations hold for quantifier symbols.

The static semantics defines which variables are readable or writable. There
may not be any run of α in which a variable is read or written to. If x �∈ FV(α),
though, then α cannot read the value of x. If x �∈ BV(α), it cannot write to x.

The signature, i.e. set of function, predicate, quantifier symbols, and program
constants in φ is denoted by Σ(φ) (accordingly for terms and programs). It is
defined like FV(φ) except that all occurrences are free. Variables in V ∪ V ′ are
interpreted by state ν. The symbols in Σ(φ) are interpreted by interpretation I.

2.4 Correctness of Static Semantics

The following result reflects that HPs have bounded effect: for a variable x to
be modified during a run of α, x needs the be a bound variable in HP α, i.e.

474 A. Platzer

x ∈ BV(α), so that α can write to x. The converse is not true, because α may
bind a variable x, e.g. by having an assignment to x, that never actually changes
the value of x, such as x := x or because the assignment can never be executed.

Lemma 1 (Bound effect lemma). If (ν, ω) ∈ [[α]]I , then ν = ω on BV (α)�.

Similarly, only BV(φ) change their value during the evaluation of formulas.
The value of a term only depends on the values of its free variables. When

evaluating a term θ in two states ν, ν̃ that differ widely but agree on the free
variables FV(θ) of θ, the values of θ in both states coincide. Accordingly for
different interpretations I, J that agree on the symbols Σ(θ) that occur in θ.
Recall that all proofs and additional examples are in a companion report [9].

Lemma 2 (Coincidence lemma). If ν = ν̃ on FV(θ) and I = J on Σ(θ),
then [[θ]]Iν = [[θ]]J ν̃.

By a more subtle argument, the values of dL formulas also only depend on
the values of their free variables. When evaluating dL formula φ in two states ν,
ν̃ that differ but agree on the free variables FV(φ) of φ, the (truth) values of φ
in both states coincide. Lemmas 3 and 4 are proved by simultaneous induction.

Lemma 3 (Coincidence lemma). If ν = ν̃ on FV(φ) and I = J on Σ(φ),
then ν ∈ [[φ]]I iff ν̃ ∈ [[φ]]J .

In a sense, the runs of an HP α also only depend on the values of its free
variables, because its behavior cannot depend on the values of variables that it
never reads. That is, if ν = ν̃ on FV(α) and (ν, ω) ∈ [[α]]I , then there is an ω̃
such that (ν̃, ω̃) ∈ [[α]]J and ω and ω̃ agree in some sense. There is a subtlety,
though. The resulting states ω and ω̃ will only continue to agree on FV(α) and
the variables that are bound on the particular path that α took for the transition
(ν, ω) ∈ [[α]]I . On variables z that are neither free (so the initial states ν and
ν̃ have not been assumed to coincide) nor bound on the particular path that α
took, ω and ω̃ may continue to disagree, because z has not been written to. Yet,
ω and ω̃ agree on the variables that are bound on all paths of α, rather than
somewhere in α. That is on the must-bound variables of α. If initial states agree
on (at least) all free variables FV(α) that HP α may read, then the final states
agree on those as well as on all variables that α must write, i.e. on MBV(α).

Lemma 4 (Coincidence lemma). If ν = ν̃ on V ⊇ FV(α) and I = J on
Σ(α) and (ν, ω) ∈ [[α]]I , then there is an ω̃ such that (ν̃, ω̃) ∈ [[α]]J and ω = ω̃
on V ∪ MBV(α).

3 Uniform Substitutions

The uniform substitution rule US1 from first-order logic [2, §35,40] substitutes
all occurrences of predicate p(·) by a formula ψ(·), i.e. it replaces all occurrences
of p(θ), for any (vectorial) term θ, by the corresponding ψ(θ) simultaneously:

(US1)
φ

φ
ψ(·)
p(·)

(US)
φ

σ(φ)

A Uniform Substitution Calculus for Differential Dynamic Logic 475

Rule US1 [8] requires all relevant substitutions of ψ(θ) for p(θ) to be admissible
and requires that no p(θ) occurs in the scope of a quantifier or modality binding
a variable of ψ(θ) other than the occurrences in θ; see [2, §35,40].

This section considers a constructive definition of this proof rule that is more
general: US. The dL calculus uses uniform substitutions that affect terms, for-
mulas, and programs. A uniform substitution σ is a mapping from expressions
of the form f(·) to terms σf(·), from p(·) to formulas σp(·), from C() to for-
mulas σC(), and from program constants a to HPs σa. Vectorial extensions are
accordingly for uniform substitutions of other arities k ≥ 0. Here · is a reserved
function symbol of arity zero and a reserved quantifier symbol of arity zero.
Figure 1 defines the result σ(φ) of applying to a dL formula φ the uniform substi-
tution σ that uniformly replaces all occurrences of function f by a (instantiated)
term and all occurrences of predicate p or quantifier C by a (instantiated) for-
mula as well as of program constant a by a program. The notation σf(·) denotes
the replacement for f(·) according to σ, i.e. the value σf(·) of function σ at
f(·). By contrast, σ(φ) denotes the result of applying σ to φ according to Fig. 1
(likewise for σ(θ) and σ(α)). The notation f ∈ σ signifies that σ replaces f , i.e.
σf(·) �= f(·). Finally, σ is a total function when augmented with σg(·) = g(·) for
all g �∈ σ. Accordingly for predicate symbols, quantifiers, and program constants.

Definition 12 (Admissible uniform substitution). The uniform substitu-
tion σ is U -admissible for φ (or θ or α, respectively) with respect to the set
U ⊆ V ∪V ′ iff FV(σ|Σ(φ))∩U = ∅, where σ|Σ(φ) is the restriction of σ that only
replaces symbols that occur in φ and FV(σ) =

⋃
f∈σ FV(σf(·))∪⋃

p∈σ FV(σp(·))
are the free variables that σ introduces. The uniform substitution σ is admissible
for φ (or θ or α, respectively) iff all admissibility conditions during its applica-
tion according to Fig. 1 hold, which check that the bound variables U of each
operator are not free in the substitution on its arguments, i.e. σ is U -admissible.
Otherwise the substitution clashes so its result σ(φ) (σ(θ) or σ(α)) is not defined.

US is only applicable if σ is admissible for φ. In all subsequent results, all
applications of uniform substitutions are required to be defined (no clash).

3.1 Correctness of Uniform Substitutions

Let IR
p denote the interpretation that agrees with interpretation I except for the

interpretation of predicate symbol p, which is changed to R ⊆ R. Accordingly
for predicate symbols of other arities, for function symbols f , and quantifiers C.

Corollary 1 (Substitution adjoints). The adjoint interpretation σ∗
νI to sub-

stitution σ for I, ν is the interpretation that agrees with I except that for each
function symbol f ∈ σ, predicate symbol p ∈ σ, quantifier C ∈ σ, and program
constant a ∈ σ:

476 A. Platzer

Fig. 1. Recursive application of uniform substitution σ

σ∗
νI(f) : R → R; d �→ [[σf(·)]]I

d·ν
σ∗

νI(p) = {d ∈ R : ν ∈ [[σp(·)]]I
d·}

σ∗
νI(C) : ℘(R) → ℘(R); R �→ [[σC()]]I

R

σ∗
νI(a) = [[σa]]I

If ν = ω on FV(σ), then σ∗
νI = σ∗

ωI. If σ is U -admissible for φ (or θ or α,
respectively) and ν = ω on U�, then

[[θ]]σ
∗
νI = [[θ]]σ

∗
ωI i.e. [[θ]]σ

∗
νIμ = [[θ]]σ

∗
ωIμ for all μ

[[φ]]σ
∗
νI = [[φ]]σ

∗
ωI

[[α]]σ
∗
νI = [[α]]σ

∗
ωI

Substituting equals for equals is sound by the compositional semantics of dL.
The more general uniform substitutions are still sound, because interpretations

A Uniform Substitution Calculus for Differential Dynamic Logic 477

of uniform substitutes correspond to interpretations of their adjoints. The seman-
tic modification of adjoint interpretations has the same effect as the syntactic
uniform substitution, proved by simultaneous induction.

Lemma 5 (Uniform substitution lemma). The uniform substitution σ and
its adjoint interpretation σ∗

νI, ν to σ for I, ν have the same term semantics:

[[σ(θ)]]Iν = [[θ]]σ
∗
νIν

Lemma 6 (Uniform substitution lemma). The uniform substitution σ and
its adjoint interpretation σ∗

νI, ν to σ for I, ν have the same formula semantics:

ν ∈ [[σ(φ)]]I iff ν ∈ [[φ]]σ
∗
νI

Lemma 7 (Uniform substitution lemma). The uniform substitution σ and
its adjoint interpretation σ∗

νI, ν to σ for I, ν have the same program semantics:

(ν, ω) ∈ [[σ(α)]]I iff (ν, ω) ∈ [[α]]σ
∗
νI

3.2 Soundness

The uniform substitution lemmas are the key insights for the soundness of US.
US is only applicable if the uniform substitution is defined (does not clash).

Theorem 1 (Soundness of uniform substitution). US is sound and so is
its special case US1. That is, if their premise is valid, then so is their conclusion.

4 Differential Dynamic Logic Axioms

Proof rules and axioms for a Hilbert-type axiomatization of dL from prior work
[6] are shown in Fig. 2, except that, thanks to rule US, axioms and rules now
comprise the finite list of dL formulas in Fig. 2 as opposed to an infinite collection
of axioms from a finite list of axiom schemata along with schema variables, side
conditions, and implicit instantiation rules. Soundness of the axioms in Fig. 2
follows from the soundness of corresponding axiom schemata [6], but would be
easier to prove standalone, because it is a finite list of formulas without the need
to prove soundness for all their instantiations. The rules in Fig. 2 are axiomatic
rules, i.e. pairs of concrete formulas instantiated by US. Further, x̄ is the vector
of all relevant variables, which is finite-dimensional, or, in practice, considered as
a built-in vectorial term. Proofs in the uniform substitution dL calculus use US
(and bound renaming such as ∀x p(x) ↔ ∀y p(y)) to instantiate the axioms from
Fig. 2 to the required form. CT,CQ,CE are congruence rules, which are included
for efficiency to use axioms in any context even if not needed for completeness.

Real Quantifiers. Besides (decidable) real arithmetic (whose use is denoted R),
complete axioms for first-order logic can be adopted to express universal instan-
tiation ∀i, distributivity ∀ →, and vacuous quantification V∀.

(∀i) (∀x p(x)) → p(f)
(∀→) ∀x (p(x) → q(x)) → (∀x p(x) → ∀x q(x))
(V∀) p → ∀x p

478 A. Platzer

Fig. 2. Differential dynamic logic axioms and proof rules

The Significance of Clashes. US clashes for substitutions that introduce a free
variable into a bound context. Even an occurrence of p(x) in a context where x
is bound does not allow mentioning x in the replacement except in the · places:

US can directly handle even nontrivial binding structures, though, e.g. from [:=]
with the substitution σ = {f �→ x2, p(·) �→ [(z := · + z)∗; z := · + yz]y ≥ ·}:

us
[x := f]p(x) ↔ p(f)

[x := x2][(z := x+z)∗; z := x+yz]y≥x ↔ [(z := x2+z)∗; z := x2+yz]y≥x2

5 Differential Equations and Differential Axioms

Section 4 leverages the first-order features of dL and US to obtain a finite list
of axioms without side-conditions. They lack axioms for differential equations,
though. Classical calculi for dL have axioms for replacing differential equations
with a quantifier for time t ≥ 0 and an assignment for their solutions x̄(t) [4,6].
Besides being limited to simple differential equations, such axioms have the
inherent side-condition “if x̄(t) is a solution of the differential equation x′ = θ
with symbolic initial value x”. Such a side-condition is more difficult than occur-
rence and read/write conditions, but equally soundness-critical. This section
leverages US and the new differential forms in dL to obtain a logically inter-
nalized version of differential invariants and related proof rules for differential
equations [5,7] as axioms (without schema variables and free of side-conditions).
These axioms can prove properties of more general “unsolvable” differential equa-
tions. They can also prove all properties of differential equations that can be
proved with solutions [7] while guaranteeing correctness of the solution as part
of the proof.

A Uniform Substitution Calculus for Differential Dynamic Logic 479

5.1 Differentials: Invariants, Cuts, Effects, and Ghosts

Figure 3 shows axioms for proving properties of differential equations (DW–DS)
as well as axioms for differential substitutions ([′:=]), and differential axioms
for differentials (+′, ·′, ◦′). Axioms identifying (x)′ = x′ for variables x ∈ V and
(f)′ = 0 for functions f and number literals of arity 0 are used implicitly. Some
axioms use reverse implications (φ ← ψ) ≡ (ψ → φ) for emphasis.

Fig. 3. Differential equation axioms and differential axioms

Differential weakening axiom DW internalizes that differential equations can
never leave their evolution domain q(x). DW implies3 [x′ = f(x) & q(x)]p(x) ↔
[x′ = f(x) & q(x)](q(x) → p(x)) also called DW, whose (right) assumption is best
proved by G. The differential cut axiom DC is a cut for differential equations. It
internalizes that differential equations staying in r(x) stay in p(x) iff p(x) always
holds after the differential equation that is restricted to the smaller evolution
domain & q(x) ∧ r(x). DC is a differential variant of modal modus ponens K.

Differential effect axiom DE internalizes that the effect on differential symbols
along a differential equation is a differential assignment assigning the right-hand
side f(x) to the left-hand side x′. Axiom DI internalizes differential invariants, i.e.
that a differential equation stays in p(x) if it starts in p(x) and if its differential
(p(x))′ always holds after the differential equation x′ = f(x) & q(x). The differen-
tial equation also vacuously stays in p(x) if it starts outside q(x), since it is stuck
then. The (right) assumption of DI is best proved by DE to select the appropriate
vector field x′ = f(x) for the differential (p(x))′ and a subsequent DW,G to make
the evolution domain constraint q(x) available as an assumption. For simplicity,
this paper focuses on atomic postconditions for which (θ ≥ η)′ ≡ (θ > η)′ ≡
(θ)′ ≥ (η)′ and (θ = η)′ ≡ (θ �= η)′ ≡ (θ)′ = (η)′, etc. Axiom DG internal-
izes differential ghosts, i.e. that additional differential equations can be added if
3 [x′ = f(x) & q(x)](q(x) → p(x)) → [x′ = f(x) & q(x)]p(x) derives by K from DW.

The converse [x′ = f(x) & q(x)]p(x) → [x′ = f(x) & q(x)](q(x) → p(x)) derives by K
since G derives [x′ = f(x) & q(x)]

(
p(x) → (q(x) → p(x))

)
.

480 A. Platzer

their solution exists long enough. Axiom DS solves differential equations with the
help of DG,DC. Vectorial generalizations to systems of differential equations are
possible for the axioms in Fig. 3.

The following proof proves a property of a differential equation using differ-
ential invariants without having to solve that differential equation. One use of
US is shown explicitly, other uses of US are similar for DI,DE,[′ :=] instances.

Previous calculi [5,7] collapse this proof into a single proof step with complicated
built-in operator implementations that silently perform the same reasoning in an
opaque way. The approach presented here combines separate axioms to achieve
the same effect in a modular way, because they have individual responsibilities
internalizing separate logical reasoning principles in differential-form dL.

5.2 Differential Substitution Lemmas

The key insight for the soundness of DI is that the analytic time-derivative of
the value of a term η along a differential equation x′ = θ &ψ agrees with the
values of its differential (η)′ along the vector field of that differential equation.

Lemma 8 (Differential lemma). If I, ϕ |= x′ = θ ∧ ψ holds for some flow
ϕ : [0, r] → S of any duration r > 0, then for all 0 ≤ ζ ≤ r:

[[(η)′]]Iϕ(ζ) =
d[[η]]Iϕ(t)

dt
(ζ)

The key insight for the soundness of differential effects DE is that differential
assignments mimicking the differential equation are vacuous along that differ-
ential equation. The differential substitution resulting from a subsequent use of
[′:=] is crucial to relay the values of the time-derivatives of the state variables
x along a differential equation by way of their corresponding differential symbol
x′. In combination, this makes it possible to soundly substitute the right-hand
side of a differential equation for its left-hand side in a proof.

Lemma 9 (Differential assignment). If I, ϕ |= x′ = θ ∧ ψ holds for some
flow ϕ : [0, r] → S of any duration r ≥ 0, then

I, ϕ |= φ ↔ [x′ := θ]φ

The final insights for differential invariant reasoning for differential equations
are syntactic ways of computing differentials, which can be internalized as axioms
(+′, ·′, ◦′), since differentials are syntactically represented in differential-form dL.

A Uniform Substitution Calculus for Differential Dynamic Logic 481

Lemma 10 (Derivations). The following equations of differentials are valid:

(f)′ = 0 for arity 0 functions/numbers f (1)
(x)′ = x′ for variables x ∈ V (2)

(θ + η)′ = (θ)′ + (η)′ (3)
(θ · η)′ = (θ)′ · η + θ · (η)′ (4)

[y := θ] [y′ := 1]
(
(f(θ))′ = (f(y))′ · (θ)′) for y, y′ �∈ θ (5)

5.3 Soundness

Theorem 2 (Soundness). The dL axioms and proof rules in Figs. 2 and 3 are
sound, i.e. the axioms are valid formulas and the conclusion of a rule is valid if
its premises are. All US instances of the proof rules (with FV(σ) = ∅) are sound.

6 Conclusions

With differential forms for local reasoning about differential equations, uniform
substitutions lead to a simple and modular proof calculus for differential dynamic
logic that is entirely based on axioms and axiomatic rules, instead of soundness-
critical schema variables with side-conditions in axiom schemata. The US calcu-
lus is straightforward to implement and enables flexible reasoning with axioms by
contextual equivalence. Efficiency can be regained by tactics that combine mul-
tiple axioms and rebalance the proof to obtain short proof search branches. Con-
textual equivalence rewriting for implications is possible when adding monotone
quantifiers C whose substitution instances limit to positive polarity.

Acknowledgment. I thank the anonymous reviewers for their helpful feedback.

References

1. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5(2), 56–68
(1940)

2. Church, A.: Introduction to Mathematical Logic, vol. I. Princeton University Press,
Princeton (1956)

3. Henkin, L.: Banishing the rule of substitution for functional variables. J. Symb. Log.
18(3), 201–208 (1953)

4. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2),
143–189 (2008)

5. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. Comput. 20(1), 309–352 (2010)

6. Platzer, A.: The complete proof theory of hybrid systems. In: LICS, pp. 541–550.
IEEE (2012)

7. Platzer, A.: The structure of differential invariants and differential cut elimination.
Log. Meth. Comput. Sci. 8(4), 1–38 (2012)

8. Platzer, A.: Differential game logic. CoRR abs/1408.1980 (2014)
9. Platzer, A.: A uniform substitution calculus for differential dynamic logic. CoRR

abs/1503.01981 (2015)

Program Synthesis Using Dual Interpretation

Ashish Tiwari(B), Adrià Gascón, and Bruno Dutertre

SRI International, Menlo Park, CA, USA
tiwari@csl.sri.com

Abstract. We present an approach for component-based program syn-
thesis that uses two distinct interpretations for the symbols in the pro-
gram. The first interpretation defines the semantics of the program. It
is used to specify functional requirements. The second interpretation is
used to capture nonfunctional requirements that may vary by applica-
tion. We present a language for program synthesis from components that
uses dual interpretation. We reduce the synthesis problem to an exists-
forall problem, which is solved using the exists-forall extension of the
SMT-solver Yices. We use our approach to synthesize bitvector manip-
ulation programs, padding-based encryption schemes, and block cipher
modes of operations.

Keywords: Program synthesis · Syntax-guided synthesis · Abstract
interpretation · Encryption · SMT solving · Exists-forall solving

1 Introduction

A program is often given a concrete semantics that forms the basis of all reason-
ing and analysis. This semantics is typically defined over a concrete domain or
an abstraction of this concrete domain, as in type checking and abstract interpre-
tation [4]. In first-order logic, semantics is specified by a collection of structures,
but there is often a single canonical structure, such as a Herbrand model minimal
in some ordering, which forms the basis of reasoning. Are there any benefits in
using two or more different and incomparable structures as bases for reasoning?

Type systems in programming languages can be viewed as providing second
interpretations. However, they are mostly abstractions of the concrete semantics.
Examples of second interpretations unrelated to the concrete semantics can be
found in language-based security where ideas such as security-type systems and,
more generally, semantic-based security are explored [15]. Many security prop-
erties, for example noninterference, are not concerned with the functionality of a
program, but how it implements such functionality in the presence of a malicious

This work was sponsored, in part, by ONR under subaward 60106452-107484-C
under prime grant N00014-12-1-0914, and the National Science Foundation under
grant CCF-1423296. The views, opinions, and/or findings contained in this report
are those of the authors and should not be interpreted as representing the official
views or policies, either expressed or implied, of the funding agencies.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 482–497, 2015.
DOI: 10.1007/978-3-319-21401-6 33

Program Synthesis Using Dual Interpretation 483

adversary. The analysis of such nonfunctional properties usually benefits from
having a second semantics modeling the attacker’s view of the program.

We use dual interpretations for performing program synthesis. We illustrate
our approach by synthesizing cryptographic schemes. A correct cryptographic
scheme must satisfy two different properties. First, every encryption scheme
should have a corresponding decryption scheme. This functional correctness
property can be decided using the concrete semantics of the program. Second, we
must guarantee that the encryption scheme is secure (in some attacker model).
This property is not functional and it is difficult to specify using the concrete
semantics. Instead, it is sometimes possible to reason (conservatively) about
security properties using a second, completely different, meaning of the program.
This observation motivates the dual interpretation approach of this paper.

Ostensibly, the prospect of having two different semantics for programs seems
to be a potentially troublesome idea. However, in theory, it is not much different
from having just one concrete semantics since one could merge the two semantics
by considering the product of the two domains. For reasoning though, it is still
beneficial to consider the two semantics separately.

Our goal is to automatically generate correct programs using components or
functions from a library. The synthesized program must satisfy both functional
and nonfunctional requirements. We use a primary concrete semantics to specify
the functional requirements and a second alternate semantics to specify the
nonfunctional requirements. The second interpretation is also used to restrict the
set of candidate programs. We present a language for writing program sketches
and specifying both types of requirements. We solve the synthesis problem by
compiling it to an exists-forall formula, which our tool currently solves using the
exists-forall solver of Yices [5]. We provide experimental evidence of the value of
the language and our synthesis approach by presenting a collection of examples
that were automatically synthesized using our tool.

Related Work. Our work is inspired by recent progress in the area of program
synthesis. Synthesizing a program from an abstract specification is not achievable
in practice but template-based synthesis has shown a lot of promise [1,17,18]. In
this approach, the designer provides a template that captures the shape of the
intended solution(s) together with the specification. A synthesis algorithm fills
in the details. This general idea has been successfully applied to several domains.
For example, imperative programs can be obtained from a given sketch, as long
as their intended behavior is also provided [16]; efficient bitvector manipulations
can be synthesized from näıve implementations [10]; agent behavior in distrib-
uted algorithms can be synthesized from a description of a global goal [8]; and
deobfuscated code can be obtained using similar ideas [11]. Although all these
applications rely on template-based synthesis, different synthesis algorithms are
used in different domains. Logically, most of the synthesis algorithms are solving
an exists-forall problem.

Recently, we have implemented an exists-forall solver as part of the SMT-
solver Yices [5,7]. In this paper, we present a language for specifying sketches,

484 A. Tiwari et al.

which are partially specified programs, but unlike any previous work on synthe-
sis, we use two different interpretations for the program symbols. We perform
synthesis by explicitly generating an exists-forall formula in Yices syntax and
then use Yices to solve it. Unrelated to synthesis, ideas similar to dual inter-
pretation have appeared in the form of “derived programs” [19] and “shadow
variables” [14].

The component-based program synthesis problem was formulated in [10],
but the interest in [10] was only on functional requirements. Here, we also con-
sider nonfunctional requirements, which forces us to reason with two different
semantics of the same program. We use benchmarks from [10] in this paper.

2 Component-Based Program Synthesis

We assume that programs are constructed from a library of components. We are
interested in constructing straight-line programs using the library. A straight-line
program can be viewed as a term over the signature of the library.

Let Σ be a signature consisting of constant and function symbols. Let Vars
denote a set of (input) variables. Let Terms(Σ, Vars) denote the set of all terms
defined over the signature Σ and variables Vars. A term t in Terms(Σ, Vars)
naturally corresponds to a straight-line program whose inputs are the variables
occurring in t. For example, the term f(g(x), x) corresponds to the following
program:

input x; y1 := g(x); y2 := f(y1, x); output y2

We give meaning to programs by using a structure (Dom, Int) where the
domain Dom is a nonempty set, and the interpretation Int maps every constant
c ∈ Σ to an element cInt ∈ Dom and every function symbol f ∈ Σ with arity n
to a concrete function fInt : Domn �→ Dom. The mapping Int is extended to all
ground terms Terms(Σ ∪ Dom, ∅) is the usual way: if f ∈ Σ then f(t1, . . . , tn)Int

is defined as fInt(tInt1 , . . . , tIntn) recursively; and if e ∈ Dom then eInt = e.
In the program-synthesis terminology, the symbols Σ and their interpretation

Int form the library of components.
A substitution σ : Vars �→ Dom maps the (input) variables Vars to elements in

Dom. The meaning of a (program) term t ∈ Terms(Σ, Vars) is defined as follows:
given an assignment σ to input variables, the program t computes the output
(tσ)Int, where tσ ∈ Terms(Σ ∪ Dom, ∅) denotes the result of replacing every x by
σ(x) in t.

Example 1. Let Σ = {(f : 2), (g : 2), (h : 1), (c : 3), (d : 2), (e : 0)} be a
signature. Let Dom be the set of bitvectors of an arbitrary but constant length
k, and let Int be the function

Int(f) = bv-xor Int(g) = bv-and Int(h) = bv-neg
Int(c) = ite Int(d) = bv-sgt Int(e) = 0 . . . 01

Program Synthesis Using Dual Interpretation 485

where bv-xor is bitwise xor, bv-and is bitwise and, bv-neg is the negative in
2s complement, ite is if-then-else, bv-sgt is signed greater-than, and
0 . . . 01 is the bitvector representing 1. Consider the term s = c(d(x, y), x, y).
Under the meaning defined by the structure (Dom, Int), s corresponds to a pro-
gram computing the maximum of two binary integers of length k. Note that
the term s is equivalent to the term t = f(g(f(x, y), h(d(x, y))), y) under the
semantics defined by (Dom, Int), but t does not use c.

We want to synthesize programs that satisfy functional, as well as, non-
functional, requirements.

2.1 Functional Requirements

A functional requirement states that the output value computed by the program
satisfies some property. A functional requirement is specified by a subset φfspec ⊆
Domn+1. A term t ∈ Terms(Σ, {i1, . . . , in}) satisfies the functional requirement
φfspec if, for all e1, . . . , en ∈ Dom, it is the case that

(e1, . . . , en, (tσ)Int) ∈ φfspec where σ := {i1 �→ e1, . . . , in �→ en} (1)

2.2 Nonfunctional Requirements

Nonfunctional requirements concern properties of programs that are unrelated
to the function being computed by the program (in the primary interpretation).
Our key idea is that nonfunctional requirements can be captured as functional
requirements of a second alternate interpretation of the program. This alternate
interpretation is given by a structure (DomB, IntB), where DomB is a domain and
IntB is an interpretation such that

– IntB maps a constant c ∈ Σ to a subset cIntB ∈ 2DomB, and
– IntB maps a function f ∈ Σ of arity n to a (non-deterministic) function

fIntB : DomBn �→ 2DomB

The interpretation IntB is extended to Terms(Σ ∪ DomB, ∅) using the recursive
rule:

(1) if tIntBi ⊆ DomB, i = 1, . . . , n are the interpretations of terms t1, . . . , tn and
f ∈ Σ, then f(t1, . . . , tn)IntB is the set

{y ∈ DomB | y ∈ fIntB(y1, . . . , yn), yi ∈ tIntBi for i = 1, . . . , n}
(2) if e ∈ DomB, then eIntB = {e}.

For a program that takes n inputs, a nonfunctional requirement is given by
φnfspec ⊆ DomBn+1. Formally, a program t ∈ Terms(Σ, {i1, . . . , in}) satisfies the
nonfunctional requirement φnfspec if there exists a tuple (e1, . . . , en, e) ∈ φnfspec

such that

e ∈ (tθ)IntB where θ := {i1 �→ e1, . . . , in �→ en} (2)

486 A. Tiwari et al.

The requirement φnfspec constrains the values (from DomB) that can be assigned
to the inputs and outputs of the program, whereas IntB implicitly constrains
the values (from DomB) that can be assigned to intermediate program variables.

Remark 1. The second interpretation structure (DomB, IntB) can be used to force
type correctness. The values in DomB could be possible types, and for each f ∈ Σ,
fIntB would specify possible types for the output of f . The requirement φnfspec

would capture well-typedness of programs, and it says that the inputs, outputs
and all intermediate program variables can be assigned types such that the pro-
gram is well-typed. More generally, (DomB, IntB) can be used to carry a predicate
abstraction of the first semantics, or perform abstract interpretation [4].

In general, the second interpretation structure need not be an abstraction
of the primary interpretation. The second interpretation serves two purposes.
First, it can be used to state nonfunctional requirements. Second, it can be used
to prune the synthesis search space, since a program (term) that can not be
“typed” can be pruned early.

Example 2. Consider the signature Σ from Example 1. We can define a second
interpretation (DomB, IntB), where DomB := {true, false} and for all symbols F
in Σ of arity n, let IntB(F)(b1, . . . , bn) = {∨i bi}. If the input variables x, y are
interpreted as {true}, then a term t will be interpreted as {true} iff it contains
an input variable. A ground term, such as f(e, e), will get an interpretation
{false}. Thus, if we pick the requirement φnfspec := {(true, . . . , true)}, then a
program will satisfy this requirement only if it uses (at least one of) its inputs
to compute its output.

Remark 2. Even when the formula φnfspec = DomBn+1 places no constraint on the
values (from DomB) assigned to the inputs and output, the second interpretation
may still constrain the set of valid programs. As an extreme case, if fIntB maps
everything to ∅, for some f ∈ Σ, then a program t can not use f , because if it
did, we would be unable to assign a value from DomB to all of its intermediate
variables (subterms of t).

2.3 Problem Definition

We now define the component-based program synthesis problem with functional
and nonfunctional requirements as follows. We also add a size requirement on
the synthesized program to enable solvability of the problem.

Definition 1 (Program Synthesis with Dual Requirements). Given two
structures (Dom, Int) and (DomB, IntB) that provide two different interpretations
for the symbols in Σ, a size requirement N , a functional requirement φfspec ⊆
Domn+1 and a nonfunctional requirement φnfspec ⊆ DomBn+1, the component-
based program synthesis problem seeks to find a term t ∈ Terms(Σ, {i1, . . . , in})
of size N such that for all e1, . . . , en ∈ Dom the condition in Eq. 1 holds, and for
some (e1, . . . , en, e) ∈ φnfspec, the condition in Eq. 2 holds.

Program Synthesis Using Dual Interpretation 487

3 Synthesis Approach

The program-synthesis problem formulated in Definition 1 can be reduced to an
exists-forall formula, which is then solved using an off-the-shelf solver.

Let subterms(t) denote the set of all subterms of the term t. Henceforth, fix
Vars = {i1, . . . , in}.

Consider the program synthesis with dual requirements problem in Defini-
tion 1. The problem can be rewritten in logical notation as follows:

∃t ∈ Terms(Σ, Vars) : size(t) = N ∧
(∀σ : Vars �→ Dom : (σ(i1), . . . , σ(in), (tσ)Int) ∈ φfspec) ∧
(∃τ : subterms(t) �→ DomB : (τ(i1), . . . , τ(in), τ(t)) ∈ φnfspec ∧
(∀f(s1, . . . , sm)

︸ ︷︷ ︸
s

∈ subterms(t) : τ(s) ∈ fIntB(τ(s1), . . . , τ(sm)))) (3)

Clearly, a witness for t in this formula is a solution to the synthesis problem.
We define the size size(t) of a term t to be the cardinality of subterms(t);

that is, the size of a minimal DAG representing t. Since we assume that Σ is
finite, there are only finitely many terms of size N , and hence the first existential
corresponds to a finite search. Since the cardinality of subterms(t) is N , the
second existential (∃τ) reduces to existence of N elements of DomB. The next ∀
quantifier (over subterms of t) is over a finite set and hence it is just a short-
hand for a large conjunction. Finally, the remaining ∀ quantifier (∀σ) is over
n elements of Dom, and thus, we map our synthesis problem to an exists-forall
problem in the theory of Dom and DomB.

To increase expressiveness and improve scalability, we need an approach that
allows a user to prune the search space for t as much as possible. We have
designed a language that not only allows users to specify the program synthesis
problem with dual requirements (Definition 1), but also allows users to constrain
the search space. We briefly describe this language next.

3.1 Synudic: A Language for Synthesis Using Dual Interpretations
on Components

Synudic (Synthesis using dual interpretation on components) is a language for
specifying program synthesis problems with dual requirements (Definition 1). It
also allows users to provide additional restriction on the structure of the program
to be synthesized.

We call a well-formed Synudic program a sketch since it need not be a com-
plete executable program, but only an incomplete program with a specification.
A synudic sketch consists of a description of the signature Σ, the first interpre-
tation (Dom, Int), the second interpretation (DomB, IntB) and the specifications
φfspec and φnfspec. Along with a size bound N , this completely specifies the syn-
thesis problem from Definition 1. However, a Synudic sketch contains one more

488 A. Tiwari et al.

important piece of information: it specifies a regular tree grammar that syntac-
tically restricts the number of possible terms (from Terms(Σ, Vars)) that need
to be considered (as possibe values for t in Formula 3).

For concrete syntax and examples of Synudic language, we refer to the
Synudic webpage [9]. Logically, a Synudic sketch specifies an instance of the
“program synthesis with dual requirements” problem, along with an additional
regular tree grammar that restricts the class of straight-line programs of interest.

We present an instance of the program synthesis problem in a form that is
logically equivalent to its Synudic description. Given a bitvector x, consider the
function rightmost1 that returns a bitvector that has 1 only at the position of
the rightmost 1 in x. For example, rightmost1(10110) = 00010. We want to syn-
thesize a two-line program for computing rightmost1. An example of a concrete
Synudic sketch for solving this problem could contain following information:

Σ: The library Σ = {bvand, bvneg, bvone}.
Dom: The domain Dom consists of bitvectors of length 5.
Int: The interpretation Int maps bvand to bitwise “and”, bvneg to unary minus

(in 2s complement notation), and bvone to the constant 00001 in Dom.
DomB: The second domain is DomB = {true, false}.
IntB: The second interpretation IntB maps bvand to {(x, y, z) | z = x ∨ y},

bvneg to {(x, y) | y = x} and bvone to {false}.
Requirements: The predicate φfspec ⊆ Dom2 is {(x, y) | y = rightmost1(x)}.

The predicate φnfspec ⊆ DomB2 is {(true, true)}.
Regular Tree Grammar: The following grammar constrains the space of

programs.

In
1
:= i1

Prgm
na
:= bvand(Prgm|In, Prgm|In)
| bvneg(Prgm|In)
| bvone

Each production in the tree grammar can be seen as a program block. The
first production (for In) corresponds to a program block that has one line that
outputs the value of the input variable i1. The second production (for Prgm)
corresponds to a program block that has na lines, where na is a parameter (that
we will set to 2 since we are interested in synthesizing a two line program) and
each line can use any function from Σ. The arguments of the functions can come
from block In or from previous lines of this block.

One possible program generated by the above grammar would be y1 :=
i1; y2 := bvand(y1, y1); y3 := bvone. This program does not satisfy the two
requirements. In particular, it does not satisfy the nonfunctional requirement
because the output (y3) does not depend on the input (i1). Note that the Boolean
“type” attached to each value just denotes whether the input was syntactically
used to compute that value.

The description of the function rightmost1 can use nested “if-then-else”
statements. However, by fixing Σ and the grammar as above, we are forced to find

Program Synthesis Using Dual Interpretation 489

an implementation for rightmost1 that does not use “if-then-else”. A program
that is a solution for the Synudic sketch above is y1 := i1; y2 := bvneg(y1); y3 :=
bvand(y2, y1).

Remark 3. The regular tree grammar in Synudic can be used to specify one
fixed concrete program, as well as, a completely unknown program. A concrete
straight-line program can be written using blocks of length 1 in which there is
just one option for the right-hand side expression. On the other extreme, an
arbitrary straight-line program of length n over a library containing functions
f1, . . . , fm can be written as

Prgm
n
:= f1(Prgm|In, . . . , Prgm|In) | · · · | fn(Prgm|In, . . . , Prgm|In)

where In is the block generating the inputs. When performing synthesis, finding
one program from the set of all n line programs can be difficult. Our language
allows users to specify program search space that falls anywhere in between these
two extremes. The use of grammars to restrict the space of programs is also used
in syntax-guided synthesis [1].

3.2 From Synudic Sketches to Yices ∃∀ Formulas

Given a Synudic sketch, we developed a tool that generates the corresponding
exists-forall formula in Yices syntax: logically, this formula is equivalent to the
Formula 3 except that it also includes the restriction coming from the regular
tree grammar. In our current version of the Synudic syntax, Dom and DomB are
defined as Yices types, and the interpretations Int and IntB are defined using
Yices functions to ease translation into ∃∀ Yices.

The ∃∀ Yices formula is obtained as follows. Let lineType be an enumer-
ation type {line1, . . . , lineN} representing the N lines in the program. Let
N = {1, . . . , N}. Let Σ be the enumeration type representing the functions
in the library. Assume maximum arity of any function in Σ is 2. The set of exis-
tential variables X consists of (a) variables fSymbol i, i ∈ N of type Σ, where the
value fSymbol i denotes the function used in i-th line, (b) variables arg i1, arg i2,
i ∈ N , of type lineType, where the value arg ij denotes the line number that
generates the j-th argument of fSymbol i on line i, and (c) variables typi, i ∈ N
of type DomB, where typi is the value from DomB that is “computed” on line i.
These 4N existential variables are constrained by the following formulas: (a) a
formula φgr that forces variables fSymbol i and arg i1, arg i2 to take values consis-
tent with the given tree grammar, and (b) a formula φIntB that forces variables
typi to take values consistent with the second interpretation IntB and the given
nonfunctional requirement φnfspec. We generate φgr ∧ φIntB as just one formula
and not as (a conjunction of) two separate formulas.

The set of universal variables Y consists of the variables varg i1, varg i2, vout i,
i ∈ N , of type Dom, where varg ij is the value of the j-th argument of fSymbol i on
line i, and vout i is the value in Dom computed on line i. We generate a formula
φInt that is true only if the Y variables take values consistent with the first

490 A. Tiwari et al.

interpretation Int and the program structure captured in the X variables. The
final ∃∀ Yices formula is:

∃X : (φgr∧φIntB∧∀Y, y : ((φInt∧φfspec(i1, . . . , in, y)) ⇒ φfspec(i1, . . . , in, voutN)))

The translation borrows ideas from the translation proposed in [10], but
extends those ideas to handle dual interpretations and tree grammar restrictions,
which were both absent in [10].

Our tool calls the exists-forall solver of Yices on the generated ∃∀ formula.
If there is a solution, the tool outputs the model for the existential variables,
which can be used to obtain the concrete program. By giving an appropriate
command-line argument, the tool can also search for alternate (more than one)
solutions for the same sketch.

We next describe case studies from two domains - synthesis of bitvector
manipulation tricks and synthesis of cryptographic schemes.

4 Bitvector Manipulation Programs

As a baseline, we evaluate our approach on bitvector manipulation benchmarks
from [10,20]. The goal of these experiments is to show that (a) synthesis bench-
marks that have been used before can be specified in the Synudic language, and
(b) features supported by Synudic can be used to speed-up the synthesis process.

A simplified version of one our benchmark examples was described in
Sect. 3.1. (The version used in our experiments had a larger library.) We note a
few salient features of all the bitvector synthesis benchmarks.
(1) First, we use bitvectors of length 5 as Dom. It turns out that the algorithms
that are synthesized to work on bitvectors of length 5 also work on bitvectors of
arbitrary length. This observation was already made in [10]. We just note here
that our language allows the user to set Dom to any type (supported by Yices).
(2) We use the usual bitvector operations, such as bitwise or, and, xor, as well
as arithmetic functions on bitvectors, such as add and subtract, in the library.
Certain examples also need functions that perform bitvector comparison, shift
right, and division. We included them in the library whenever they were needed.
(3) Subtracting 1 is a common operation. We have two options: either we can
include a subtract 1 operation as a library primitive, or we can include the sub-
traction operation and a function that generates the constant 1 in the library.
Our language can support both choices. Using the former option usually speeds
up the synthesis process.
(4) We used the Booleans as DomB. The Boolean value associated to a program
variable keeps track of whether “the input was used to compute the value of
that program variable”, as shown in Example 2. For the bitvector examples, the
second interpretation was not strictly required (since there was no nonfunctional
requirement).

We present the results from bitvector benchmarks in Table 1. Synthesizing
longer programs takes longer, and increasing the library size usually increases
the time taken for synthesis (Columns 5 and 7), but in some cases, the rise is

Program Synthesis Using Dual Interpretation 491

Table 1. Bitvector benchmarks: Column #lines is the number of lines in the synthe-
sized program, #lib is the number of functions in the library used for synthesis, time
denotes the time (in seconds) taken for the tool to synthesize the program, and timet

denotes the time taken when using a second interpretation to prune search space.

Name Function x(, y) �→ z #lines #lib time #lib time timet

Rightmost 1 off u10∗ �→ u00∗ 3 6 0.24 8 0.5 0.5

Isolate rightmost 1 u10∗ �→ 0∗10∗ 2 7 0.18 9 0.2 0.2

Average z = x+y
2

4 4 2.9 7 27 5.4

Mask for 10∗$ u10∗ �→ 011∗ 3 7 0.2 9 0.2 0.5

Maximum z = max(x, y) 4 4 77 7 238 86

Turnoff 1+0∗$ u1+0∗ �→ u0+0∗ 5 6 21 8 102 2

next# same#1s min z s.t. z > x, z|1 = x|1 8 5 154 6 500
TO

54

steep (third example computing “average”). To evaluate the benefit of pruning
using the second interpretation, we added a second interpretation to enforce
that certain library components are used (at most) once, and the running times
with the second interpretation added are shown in the last column in Table 1.
As expected, our running times in Column 7 are comparable to those reported
in [10]. In some cases, our tool synthesized “new” procedures that were seman-
tically equivalent variants of the known procedures, see [9] for such examples.

5 Cryptographic Constructions

We now provide examples of how dual interpretations are useful for the synthesis
of cryptographic constructions. We first provide an example from public key
cryptography inspired by the work in [2] that consist on synthesizing padding
schemes. Our second example is related to symmetric key encryption, and builds
upon the work presented in [13].

5.1 Synthesis of Padding-Based Encryption Schemes

In public key cryptography, padding is the process of preparing a message for
encryption. A modern form of padding is OAEP, which is often paired with
RSA public key encryption. Padding schemes, and in particular OAEP, satisfy
the goals of (1) converting a deterministic encryption scheme, e.g. RSA, into
a probabilistic one, and (2) ensuring that a portion of the encrypted message
cannot be decrypted without being able to invert the full encryption.

Inspired by the success of the tool Zoocrypt in synthesizing padding-based
encryption schemes [2] (and their corresponding security proofs), we used our
synthesis tool for exploring the same space.

The library Σ of components consists of two unary hash functions, G and H,
a binary ⊕ function, and the identity function. Padding with 0 is not modeled

492 A. Tiwari et al.

explicitly since it can be added as a post-processing step to make the hash
functions applicable on its arguments.

There are two inputs: the message m and a random number r. The goal is to
construct a pair of values – intuitively, an encrypted message m′ and a key k –
that can be concatenated and encrypted (by RSA, say f) and the result f(m′||k)
can be sent on the network. The functional requirement stems from the fact that
the receiver should be able to get back m from f(m′||k) assuming it has access to
f−. Thus, we synthesize two blocks of code – an encryption block for generating
m′ and k from m and r, and a decryption block for generating m from m′ and
k. The functional requirement states that the output of the decryption block
should be equal to the input m. The nonfunctional requirement states that the
two values m′ and k that are transmitted should essentially be random.

To capture the nonfunctional requirement, we give a second interpretation
to the program (sketch). As DomB we used bitvectors of length 5, since that was
enough to carry the information that a certain value was “essentially random”:
(a) The first bit keeps information about the size of the computed value. This
information is necessary to produce type correct programs, since we have hash
functions mapping bitvectors of one size to another.
(b) The second bit is set if the data value is essentially the same as a random
value in its domain. It is difficult to carry forward this information precisely,
so we use conservative typing rules to update the value of the second type-bit
during each operation.
(c) The third and fourth bits are set if the top function application is the hash
function G and H, respectively. This information is used to update the second
bit of the type.
(d) The fifth bit is set if the top function application is the xor function. This
information is used for the same purpose as the previous two type-bits.

The complete Synudic sketch for the example can be found at [9]. We note
two things. First, we used fixed length bitvectors as Dom. The length choice is
arbitrary: larger bitlengths would mean more computational resources would be
required to solve the synthesis problem, but smaller bitlengths could lead to
synthesis of schemes that do not work for arbitrary sizes. Second, the interpreta-
tions of H and G had to be concretized to bitvector (Yices) functions, but they
had to be picked carefully so that they satisfy (exactly) the algebraic relations
the actual functions satisfy. This may not be possible always, in which case one
should choose interpretations that are likely to lead to correct solutions. In such
cases, we rely on a post-processing security verification tool to formally verify the
correctness and security properties of the synthesized schemes.

We used our tool to synthesize different padding schemes using different
program lenths for the encryption block and the decryption block. Some example
synthesized schemes are shown in Fig. 1. Again, we do not show the padding with
0 that is required to make arguments reach the required bitvector length. Note
that the OAEP scheme [3] was also generated: it is the last schemes in Fig. 1.
But smaller padding-based schemes were also found by the tool. Similar schemes
have also been reported in [2].

Program Synthesis Using Dual Interpretation 493

Fig. 1. Some automatically synthesized padding-based encryption schemes.

5.2 Synthesis of Block Ciphers Modes of Operation

A block cipher consists of (deterministic) algorithms for encrypting and decrypt-
ing fixed-length blocks of data. It has one algorithm for computing the encryption
function F : {0, 1}l × {0, 1}lk → {0, 1}l and one for computing the decryption
function F− : {0, 1}l × {0, 1}lk → {0, 1}l such that for any block B ∈ {0, 1}l
of exactly l bits and for any key k ∈ {0, 1}lk of lk bits, F−(F (B, k), k) = B.
We denote F (., k) by Fk and F−(., k) by F−

k . An example of block cipher is the
standardized AES for which l = 128.

Roughly speaking (see [12] for a formal definition), a block cipher (F, F−) is
secure against the so-called chosen plaintext attacks (in the standard model) if,
for a fixed random key k, an attacker allowed to query Fk has negligible proba-
bility of distinguishing Fk from a random permutation, given certain limitations
on the computational power of the attacker and the number of times Fk can be
queried.

A mode of operation is a pair of algorithms that use a symmetric block cipher
algorithm, e.g. AES, to encrypt/decrypt amounts of data larger than a block. A
secure mode of operation must provide the same level of security as its associated
block cipher. For example, the encryption algorithm of the popular Cipher Block
Chaining (CBC) mode is depicted in Fig. 2. CBC, when equipped with a secure
block cipher, provides IND$-CPA security, i.e. an attacker cannot distinguish
its output from an uniformly random string with significant probability (under
certain constraints on the computational power of the attacker). Note that CBC
encryption consists of an initialization algorithm, where a random initialization
vector IV is produced, followed by n copies of a block processing algorithm,
where exactly one value is fed from one copy to the next one. This structure is
common to many popular modes of operation.

Most of the previous approaches to the formal verification and synthesis of
block cipher modes of operation (and certainly the ones considered in this paper)
build upon the observation that these kind of programs can be constructed using
a limited set of operations such as xor, concatenation, generation of random
values, and evaluation of the block cipher.

Recent effort in the automation of the analysis of block cipher modes
include [6,13]. In contrast to [6], which suffers from the limitation that the ana-
lyzed mode must operate on a fixed number of blocks, the work in [13] models
the operation that is carried out when encrypting a single block, exploiting the
common structure of block cipher modes of operation mentioned above. In [13],

494 A. Tiwari et al.

Fig. 2. The CBC mode of operation for the encryption of an n-block message. The
dotted boxes correspond to the multiple copies of the block processing procedure.

the encryption algorithm of a mode of operation is described as a pair of straight-
line programs (Init, Block). Init models the initialization phase of the mode
of operation. In the case of the CBC mode of Fig. 2, Init would correspond to
the generation of the random value IV. On the other hand, Block corresponds
to the algorithm that, given a value coming from the previous iteration (or the
initialization phase) and a certain message block m, produces the ciphertext for
m and the value to be fed to the next iteration of the mode of operation. For the
CBC mode, the different instances of Block correspond to the subalgorithms in
dotted boxes in Fig. 2. While Init is very simple in that, roughly speaking, it
may contain only a random number generation operation, Block might contain
an arbitrary number of xor operations and evaluations of Fk for a fixed value
of k. A further relevant structural restriction in the straight-line programs Init
and Block is that the output of every operation in the program must be used
exactly once in the rest of the program, with the exception of an additional
operation called dup implementing the identity function and whose output must
be used twice.

As main contribution in [13], the authors present a type system T that guar-
antees that type correct modes (Init, Block) encode secure modes of operation.
Then, synthesis of secure modes is performed by enumerating straight-line pro-
grams satisfying the constraints above and filtering out the ones that are not
type correct w.r.t. T . This check is implemented by means of an SMT solver.
An ad hoc procedure is used to further guarantee that the resulting mode of
operation admits a decryption algorithm.

In the example presented in this section, we encoded the synthesis approach
from [13] as a program synthesis with dual requirements problem (Definition 1)
Instead of separately filtering modes of operation that are not decryptable as
done in [13], we encoded the existence of a decoding algorithm as a functional
requirement. That has the advantage that encryption algorithms are synthe-
sized together with their corresponding decryption procedure. Moreover, the

Program Synthesis Using Dual Interpretation 495

constraint that Init and Block must be type correct w.r.t. T can be naturally
encoded as a nonfunctional requirement in our language.

While reducing the synthesis of block ciphers modes of operation to the
program synthesis with dual requirements problem has many advantages, our
approach also suffers from some limitations when compared to [13]. The main
limitation is that, whereas the approach of [13] is completely symbolic, we need to
provide a domain Dom and interpretation Int for every operation (including the
permutation Fk) that can be handled by ∃∀-Yices. For Dom we chose bitvectors
of length 5. While the operations xor, dup1, and dup2 have natural operations
in the domain of bitvectors, the interpretation of F should be picked carefully so
that it satisfies (exactly) the algebraic relations the actual functions satisfy. We
picked left-rotation by two for the interpretation of F . Although in principle a
poor choice might cause invalid schemes to be accepted as decryptable, this can
be easily avoided in many cases, or one could use a verification step a-posteriori.
The full sketch used for this example can be found in [9].

Using our tool we could synthesize the well-known modes ECB, OFB, CFB,
CBC, and PCBC, also automatically found in [13], as well as some variants of
those. The parameters na, nb, nc in Fig. 3 denote the number of lines of code
in the Init, Block, and decryption blocks. The reported times corresponds to
a complete exploration of the search space for those parameters. For example,
the second row of the first table means that, with parameters na = 2, nb = 6,
nc = 3, it took our tool 6.07 seconds to conclude that exactly two instances of the
sketch are secure and decryptable modes of operation. The modes marked with
an asterisk (*) correspond to redundant variants of the corresponding mode.

Fig. 3. Results of the synthesis of block cipher modes of operation using Synudic.

6 Conclusion

We presented an approach for program synthesis that relies on using two dif-
ferent interpretations for the program variables. The dual interpretation app-
roach enables specification of both functional and nonfunctional requirements,

496 A. Tiwari et al.

and pruning the synthesis search space. We solve the synthesis problem by con-
verting it to an ∃∀ Yices formula, and using Yices to solve it. We applied our
approach to synthesize bitvector manipulation tricks, padding-based encryption
schemes and block cipher modes of operation.

Our current implementation is limited in several ways. First, the Yices exists-
forall solver handles only bitvectors, Booleans, and linear arithmetic expressions.
Hence, only these types can be used to define the two interpretations. Our syn-
thesis language allows synthesis of only straight-line programs, and does not
allow, for example, synthesis of functions that are used within other functions.
Such extensions are left for future work.

Acknowledgments. We thank the anonymous reviewers and N. Shankar for helpful
comments.

References

1. Alur, R., Bod́ık, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
Formal Methods in Computer-Aided Design, FMCAD, pp. 1–17 (2013)

2. Barthe, G., Crespo, J.M., Kunz, C., Schmidt, B., Gregoire, B., Lakhnech, Y.,
Zanella-Beguelin, S.: Fully automated analysis of padding-based encryption in the
computational model (2013). http://www.easycrypt.info/zoocrypt/

3. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: 4th ACM
Symposium on Principles of Programming Languages, POPL 1977, pages 238–252
(1977)

5. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Heidelberg (2014)

6. Gagné, M., Lafourcade, P., Lakhnech, Y., Safavi-Naini, R.: Automated verification
of block cipher modes of operation, an improved method. In: Garcia-Alfaro, J.,
Lafourcade, P. (eds.) FPS 2011. LNCS, vol. 6888, pp. 23–31. Springer, Heidelberg
(2012)

7. Gascón, A., Subramanyan, P., Dutertre, B., Tiwari, A., Jovanovic, D., Malik, S.:
Template-based circuit understanding. In: Formal Methods in Computer-Aided
Design, FMCAD, pp. 83–90. IEEE (2014)

8. Gascón, A., Tiwari, A.: A synthesized algorithm for interactive consistency. In:
Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 270–284.
Springer, Heidelberg (2014)

9. Gascón, A., Tiwari, A.: Synudic: synthesis using dual interpretation on components
(2015). http://www.csl.sri.com/users/tiwari/softwares/auto-crypto/

10. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: Proceedings of ACM Conference on Programming Language Design and Imple-
mentation, PLDI, pp. 62–73 (2011)

11. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based
program synthesis. In: Proceedings of ICSE, vol. 1, pp. 215–224. ACM (2010)

http://www.easycrypt.info/zoocrypt/
http://www.csl.sri.com/users/tiwari/softwares/auto-crypto/

Program Synthesis Using Dual Interpretation 497

12. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC Press, Boca Raton (2007)

13. Malozemoff, A.J., Katz, J., Green, M.D.: Automated analysis and synthesis of
block-cipher modes of operation. In: IEEE 27th Computer Security Foundations
Symposium, CSF, pp. 140–152. IEEE (2014)

14. Morgan, C.: The shadow knows: refinement and security in sequential programs.
Sci. Comput. Program. 74(8), 629–653 (2009)

15. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

16. Solar-Lezama, A.: Program sketching. STTT 15(5–6), 475–495 (2013)
17. Solar-Lezama, A., Rabbah, R.M., Bod́ık, R., Ebcioglu, K.: Programming by sketch-

ing for bit-streaming programs. In: PLDI (2005)
18. Solar-Lezama, A., Tancau, L., Bod́ık, R., Saraswat, V., Seshia, S.: Combinatorial

sketching for finite programs. In: ASPLOS (2006)
19. Talcott, C.: A theory for program and data type specification. TCS 104(1),

129–159 (1992)
20. Warren, H.S.: Hacker’s Delight. Addison-Wesley Longman Publishing Co. Inc.,

Boston (2002)

Logics and Systems for Program
Verification

Automated Theorem Proving for Assertions
in Separation Logic with All Connectives

Zhé Hóu1(B), Rajeev Goré1, and Alwen Tiu2

1 Research School of Computer Science,
The Australian National University, Canberra, Australia

zhe.hou@anu.edu.au
2 School of Computer Engineering, Nanyang Technological University,

Singapore, Singapore

Abstract. This paper considers Reynolds’s separation logic with all log-
ical connectives but without arbitrary predicates. This logic is not recur-
sively enumerable but is very useful in practice. We give a sound labelled
sequent calculus for this logic. Using numerous examples, we illustrate
the subtle deficiencies of several existing proof calculi for separation logic,
and show that our rules repair these deficiencies. We extend the calculus
with rules for linked lists and binary trees, giving a sound, complete and
terminating proof system for a popular fragment called symbolic heaps.
Our prover has comparable performance to Smallfoot, a prover dedicated
to symbolic heaps, on valid formulae extracted from program verification
examples; but our prover is not competitive on invalid formulae. We also
show the ability of our prover beyond symbolic heaps, our prover handles
the largest fragment of logical connectives in separation logic.

1 Introduction

Separation logic (SL) was invented to verify the correctness of programs that
mutate possibly shared data structures [30]. SL is an extension of Hoare logic
with logical connectives �∗, ∗,−∗ from the logic of bunched implications (BI) [29]
to capture the empty heap, heap composition, and heap extension respectively,
and a predicate �→ to describe singleton heaps. Reynolds [34] coupled the seman-
tics for the above extensions with classical connectives, making Boolean BI (BBI)
the basis of separation logic, although there are earlier versions that consider
intuitionistic additive connectives [33]. Using BI logics to enable local reason-
ing has proven very successful, and many variants of separation logic have been
developed. For instance, separation logic for higher-order store [32], bunched
typing [3], concurrency [6], owned variables [4,31], rely/guarantee reasoning [37],
abstract data types [22], amongst many.

These separation logics require proof methods to reason about their assertion
languages, and since most separation logic variants are based on the original
SL, automated tools usually respect Reynolds’s semantics [34]. However, most
existing tools for Reynolds-like semantics SL, such as Smallfoot [1], jStar [13],
VeriStar [35], SLP [27], and Asterix [28], are all restricted to small fragments,
c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 501–516, 2015.
DOI: 10.1007/978-3-319-21401-6 34

502 Z. Hóu et al.

most notably, the symbolic heaps fragment of Berdine et al. [2]. On the other
hand, there are also existing tools that handle larger fragments than symbolic
heaps, but for non-Reynolds semantics, e.g., Lee and Park’s theorem prover [24],
and Thakur et al.’s unsatisfiability checker [36], cf. Sects. 4 and 6.

There is a growing demand from the program verification community to move
beyond symbolic heaps and to deal with −∗ , which is ignored in most SL frag-
ments. Having −∗ is a desirable feature, since many algorithms/programs are
verified using this connective, especially when expressing tail-recursive opera-
tions [26], iterators [23], septraction in rely/guarantee [37] etc. Moreover, −∗
is useful in the weakest precondition calculus for SL, which introduces −∗ “in
each statement in the program being analysed” [25]. See the introduction of [24]
and [36] for other examples requiring −∗ . In addition to −∗ , allowing arbitrary
combinations of logical connectives is also useful when describing overlaid data
structures [16], properties such as cross-split can be useful in proof search in
this setting [14]. Nevertheless, existing tools for SL with Reynolds’s semantics
do not support the reasoning for all logical connectives. Thus, an important area
of research is to obtain a practical proof system for SL with all connectives.

SL is not recursively enumerable in general [5,10], neither is the fragment
we consider here, so there is no finite, sound and complete proof system for
this logic, and computability results are not our focus. Interested readers are
referred to [11,12] for other fragments of SL and their decidability and complex-
ity results. Building upon the labelled sequent calculi for propositional abstract
separation logics (PASL, cf. [19]), we give a sound, w.r.t. Reynolds’s semantics,
proof method that is useful in program verification. Since we focus on SL with
heap model semantics here, although [19] is complete for PASL, it is not com-
parable to this work in terms of provability. We extend PASL with inference
rules for quantifiers, equality and the �→ predicate. The latter involves heaps
and stores in the semantics in a very subtle way, making this study error-prone.
Some subtle mistakes in the literature are discussed in Sect. 4.

Capturing data structures is important since they are frequently used in
program verification. We extend our proof system with treatments for singly
linked lists based on similar rules in Smallfoot [2]. Binary trees can be handled
similarly; see [18]. We also move beyond symbolic heaps to consider arbitrary
combinations of logical connectives. We show that our proof method is complete
w.r.t. symbolic heaps. We give a sound, complete, and terminating proof search
procedure for symbolic heaps. Our implementation is competitive with Smallfoot
on valid formulae, but not on invalid formulae, taken from benchmarks extracted
from program verification problems. In addition, we demonstrate that our prover
can handle a wider range of formulae than existing tools, thus it handles the
largest fragment of SL in terms of logical connectives, and paves the way to
more sophisticated program verification using Reynolds’s SL.

2 Separation Logic

Separation logic generally refers to a combination of a programming language,
an assertion logic and a specification logic for Hoare triples [21]. Here, we focus
on the assertion logic that is compliant with Reynolds’s semantics [34].

Automated Theorem Proving for Assertions in Separation Logic 503

Following Reynolds [34], we consider all values as integers, an infinite num-
ber of which are addresses. Atoms, containing nil , form a subset of values that
is disjoint from addresses. Heaps are finite partial functions from addresses to
values, and stores are total functions from finite sets of program variables to
values. These are formalised as below:

Val = Int Atoms ∪ Addr ⊆ Int nil ∈ Atoms
Atoms ∩ Addr = ∅ H = Addr ⇀fin Val S = Var → Val

We assume a set of program variables, ranged over by x, y, z, and a constant nil .
An expression is either a constant or a program variable. Expressions are denoted
by e. We ignore arithmetic expressions such as those allowed by Reynolds [34].

The syntax for formulae is given by:

F ::= e = e′ | e �→ e′ | e �→ e′, e′′ | ⊥ | F → F | �∗ | F ∗ F | F−∗ F | ∃x.F

The only atomic formulae are ⊥, �∗, (e = e′), (e �→ e′), and (e �→ e′, e′′). The
latter two are called the “points-to” predicates. The domain of the quantifier
is the set of values. We assume the usual notion of free and bound variables in
formulae. We prefer to write �∗ for the empty heap constant emp to be consistent
with the prior work for BBI and PASL [19,20]. The points-to predicate e �→ e′

denotes a singleton heap sending the value of e to the value of e′. The connectives
∗ and −∗ denote heap composition and heap extension respectively. These two
connectives are interpreted with the binary operator ◦ defined as h1◦h2 = h1∪h2

when h1, h2 have disjoint domains, and undefined otherwise. A state is a pair
(s, h) of a store and a heap.

A separation logic model is a pair (S,H) of stores and heaps, both are non-
empty as defined previously. The forcing relation between a state and the for-
mulae is formally defined in Table 1. We write [[e]]s to denote the valuation of an
expression e by looking up the value of variables in e in the store s. We fix that
[[nil]]s = nil . We write s[x �→ v] to denote a stack that is identical to s, except
possibly on the valuation of x, i.e., s[x �→ v](x) = v and s[x �→ v](y) = s(y) for
y �= x. A formula F is true at the state (s, h) if (s, h) � F , and it is valid if
(s, h) � F for every s ∈ S, h ∈ H.

The literature contains the following useful abbreviations:

e �→ ≡ ∃x.e �→ x e �→ e1, · · · , en ≡ (e �→ e1) ∗ · · · ∗ (e + n − 1 �→ en)

The multi-field points-to predicate e �→ e1, · · · , en has different interpretations
in the literature. In Reynolds’s notation, the formula e �→ e1, e2 is equivalent to
(e �→ e1) ∗ (e + 1 �→ e2), thus it is a heap of size two. However, in other versions
of SL, the set of heaps may be defined as finite partial functions from addresses
to pairs of values [7,10], as shown below left:

H = Addr ⇀fin V al × V al H = Addr ⇀fin (Fields → V al)

In this setting the formula e �→ e1, e2 is a singleton heap. A more general case
can be found in the definition of symbolic heaps [2] with heaps defined as shown

504 Z. Hóu et al.

Table 1. The semantics of the assertion logic of separation logic.

s, h � ⊥ iff never s, h � �∗ iff h = ∅
s, h � e = e′ iff [[e]]s = [[e′]]s s, h � A → B iff s, h � A implies s, h � B

s, h � e �→ e′ iff dom(h) = {[[e]]s} and h([[e]]s) = [[e′]]s
s, h � ∃x.A iff ∃v ∈ V al such that s[x �→ v], h � A

s, h � A ∗ B iff ∃h1, h2.(h1 ◦ h2 = h and s, h1 � A and s, h2 � B)

s, h � A−∗ B iff ∀h1, h2.(h1 ◦ h = h2 and s, h1 � A) implies s, h2 � B)

above right with a slight modification to make addresses a subset of values.
Fields are simply the names for the data being pointed to.

The syntax of SL in this paper is more expressive than the popular symbolic
heaps fragment of SL [2], which is restricted to the following syntax:

P ::=e = e′ | ¬P Π::=� | P | Π ∧ Π
S::=e �→ [f : e] Σ::=�∗ | S | Σ ∗ Σ

The �→ predicate in symbolic heaps allows a list [f : e] of fields, where f is
the name of a field, and e is the content. Symbolic heaps are pairs Π ∧ Σ. The
entailment of symbolic heaps is written as Π ∧Σ � Π ′ ∧Σ′. Symbolic heaps also
allow formulae of the form e �→ which does not specify the content of the heap.

3 LSSL: A Labelled Sequent Calculus for SL

Let LVar be an infinite set of label variables, the set L of labels is LVar∪{ε}, where
ε �∈ LVar is a label constant. Labels are ranged over by h. We may sometimes
use “heap” to mean a label h or a �→ atomic formula. A labelled formula has
the form h : F , where h is a label and F is a formula. We use ternary relational
atoms (h1, h2 � h3) to indicate that the composition of the heaps represented
by h1, h2 gives the heap represented by h3. A sequent takes the form G;Γ � Δ
where G is a set of ternary relational atoms, Γ,Δ are sets of labelled formulae,
and ; denotes set union. Thus Γ ;h : A is the union of Γ and {h : A}. The left
hand side of a sequent is the antecedent and the right hand side is the succedent.

The labelled sequent calculus LSSL consists of inference rules taken from
LSPASL + D + CS [19] with the addition of some special id rules, a cut rule for
=, and the general rules for ∃ and =, as shown in Figs. 1 and 2, and the rules for
the �→ predicate, as shown in Fig. 3, which are new to this paper. In these figures
we write A,B for formulae. Although our proof system is incomplete for SL with
heap model semantics and it may not be complete even for the quantifier-free
fragment, the underlying system LSPASL + D + CS is complete for PASL with
disjointness and cross-split [19]. The inference rules for the �→ predicate with
two fields are analogous to the rules in Fig. 3.

A label substitution is a mapping from label variables to labels, which is an
identity map except for a finite subset of LV ar. We write [h′

1/h1, . . . , h
′
n/hn] for

a label substitution which maps hi to h′
i. Label substitutions are extended to

Automated Theorem Proving for Assertions in Separation Logic 505

Fig. 1. Logical rules in LSSL.

mappings between labelled formulae and labelled sequents in the obvious way.
An expression substitution is defined similarly, where the domain is the set of
program variables and the codomain is the set of expressions. We use θ (possibly
with subscripts) to range over expression substitutions, and write eθ for the result
of applying θ to e. Given a set of pairs of expressions E = {(e1, e′

1), . . . , (en, e′
n)},

a unifier for E is an expression substitution θ such that ∀i, eiθ = e′
iθ. We assume

the usual notion of the most general unifier (mgu) from logic programming. We
denote with mgu(E) the most general unifier of E when it exists. The formulae
(resp. relational atoms) shown explicitly in the conclusion of a rule are called
principal formulae (resp. principal relational atoms). A formula F is provable or
derivable if there is a derivation of the sequent � h : F for an arbitrary h ∈ LVar.

A label mapping ρ is a function L → H such that ρ(ε) = ∅. We define an
extended separation logic model (S,H, s, ρ) as a separation logic model plus a
stack and a label mapping.

Theorem 1 (Soundness). For any formula F , and for any h ∈ LVar, if the
sequent � h : F is derivable in LSSL, then F is valid in Reynolds’s semantics.

506 Z. Hóu et al.

Fig. 2. Structural rules in LSSL.

Fig. 3. Pointer rules in LSSL.

The rules �→ L1, L2 specify that e1 �→ e2 is a singleton heap, so it cannot be
empty, nor a composite heap. These were all anticipated in [19]. However, the �→
L3 rule proposed in [19], which says that any two singleton heaps with the same
address are identical, is unsound for Reynolds’s semantics. The corresponding
�→ L3 rule in Fig. 3 is correct, which states that it is fine to have two singleton
heaps with the same address, but they cannot be combined to form another heap.
The rules �→ L5 and �→ L4 state that singleton heaps are uniquely determined
by the �→ relation. The rule NIL states that nil is not a valid address.

Since the set of addresses is infinite, we can extend any heap with fresh
addresses, giving rise to the rule HE. The rule HC captures heap composition:

Automated Theorem Proving for Assertions in Separation Logic 507

given any two heaps h1, h2, either they can be combined, giving the right premise;
or they cannot be combined, hence their domains intersect, i.e., there is some e1
whose value is in this intersection, yielding the left premise. To our knowledge,
proof systems for SL in the literature do not have rules similar to HE and HC,
which enable us to prove many formulae that no other systems can prove.

4 Comparison with Existing Proof Calculi

This section compares and contrasts our calculus with existing proof calculi for
“separation logics” and points out some subtleties in the literature.

Formula 1 says that any heap can be combined with a composite heap:

¬(((¬�∗) ∗ (¬�∗))−∗ ⊥) (1)

The key to proving this formula is to show that any heap can be extended with
a heap that contains at least two singleton mappings. This can be done using
the rule HE. We show here the key part of the derivation for the above formula.

(h2, h3 � h4); (h0, h1 � h2); h0 : ((¬�∗) ∗ (¬�∗))−∗ ⊥; h1 : e1 �→ e2; h3 : e3 �→ e4 �
HE

(h0, h1 � h2); h0 : ((¬�∗) ∗ (¬�∗))−∗ ⊥; h1 : e1 �→ e2 �
HE

; h0 : ((¬�∗) ∗ (¬�∗))−∗ ⊥ �
¬R

; � h0 : ¬(((¬�∗) ∗ (¬�∗))−∗ ⊥)

To our knowledge, current proof systems for separation logic lack this kind
of mechanism. It is possible to prove this formula by changing or adding some
rules in resource graph tableaux [15], but their proof relies on the restriction
that every l in (l �→ e) is an address. Thus their method cannot be used in a
more general situation like ours.

Formula 2 is another interesting example, it is not valid in Reynolds’s separa-
tion logic and not provable in LSSL, but is provable in Lee and Park’s system [24].

(((e1 �→ e2) ∗ �)−∗ ⊥) ∨ (((e1 �→ e3) ∗ �)−∗ ¬((e1 �→ e2)−∗ ⊥)) ∨ (e2 = e3) (2)

The meaning of Formula 2 is not straightforward, but we can construct a counter-
model for it in Reynolds’s semantics by trying to derive it in LSSL. The following
sequent will occur in the backward proof search for Formula 2:

(h5, h6 � h1); (h7, h8 � h3); (h1, h0 � h2); (h3, h0 � h4);
h5 : (e1 �→ e2);h7 : (e1 �→ e3);h4 : (e1 �→ e2)−∗ ⊥ � h0 : (e2 = e3)

It is easy to see that the above is a counter-model, and h5 cannot be combined
with h4. By using Park et al.’s rule Disj−∗ , we obtain

(v1, v2 � h1); (v2, v3 � h3); (v1, h4 � w); (v3, h2 � w)

where v1, v2, v3, w are fresh. The common subheap v2 of h1 and h3 cannot contain
h5, so h5 must be in v1. However, if v1 can be combined with h4, so can h5,
contradiction. Thus their rule Disj−∗ is unsound in Reynolds’s semantics.

508 Z. Hóu et al.

As mentioned before, our proof system is not complete. For a valid example
that cannot be proved by LSSL, consider Formula 3:

�∗ ∨ (∃e1, e2.(e1 �→ e2)) ∨ ((¬�∗) ∗ (¬�∗)) (3)

This formula is valid because any heap can only be either (1) an empty heap, or
(2) a singleton heap, or (3) a composite heap. To prove Formula 3, we can add
a �→ R rule with four premises:

(1) (h1, h2 � h); (h1 = ε); (h2 = ε); G; Γ � h : e1 �→ e2; Δ

(2) G; Γ ; h : e1 �→ e3 � h : e2 = e3; h : e1 �→ e2; Δ

(3) G; Γ ; h : e3 �→ e4 � h : e1 = e3; h : e1 �→ e2; Δ

(4) G[ε/h]; Γ [ε/h] � ε : e1 �→ e2; Δ[ε/h]
�→ RG; Γ � h : e1 �→ e2; Δ

The rule �→ R essentially negates the semantics for �→, giving four possibilities
when e1 �→ e2 is false at a heap h: (1) h is a composite heap, so it is possible
to split it into two non-empty heaps; (2) h is a singleton heap, its address is
the value of e1, but it does not map this address to the value of e2; (3) h is a
singleton heap, but its address is not the value of e1; (4) h is the empty heap. We
will also need a new type of expression, namely inequality of labels as shown in
the first premise. The rule �→ R is not included in our proof system for efficiency.
For more interesting formula and their derivations, see [18].

5 Inference Rules for Data Structures

Many data structures can be defined inductively by using separation logic’s
assertion language [7]. We focus here on the widely used singly linked lists. The
treatment for binary trees is similar [18]. We adopt several rules from Berdine
et al.’s method for symbolic heaps entailment [2] and extend these rules with
new ones for formulae outside the symbolic heaps fragment.

We use the definition of linked lists for provers for symbolic heaps [2,7], i.e.,

ls(e1, e2) ⇐⇒ (e1 = e2 ∧ �∗) ∨ (e1 �= e2 ∧ ∃x.(e1 �→ x ∗ ls(x, e2)))

to facilitate comparison between our prover and the other provers. The inference
rules for singly linked lists are given in Fig. 4. The rules LS6 and LS7 are for
non-symbolic heaps, they handle cases where two lists overlap. There ds(e, e′)
stands for a data structure that starts from the address e, and ends with e′. We
use ad(e) for a data structure that may contain the address of value of e, and
use G(ad(e)) in the succedent to ensure that ad(e) is non-empty.

For LS8, suppose the heap h1 is a data structure from e1 to e2, and h3 is a
data structure that mentions e3. By G(ad(e3)) in the succedent, we know that
h3 is non-empty and indeed contains the address of e3. Since (h1, h3 � h4) holds,
the address e3 is not in the domain of h1. The labelled formula h0 : ls(e1, e3)
in the succedent indicates that h0 should also make ds(e1, e2) ∗ ls(e2, e3) false,

Automated Theorem Proving for Assertions in Separation Logic 509

Fig. 4. Inference rules for data structures.

thus by an ∗R application on this formula using (h1, h2 � h0), the branch with
h1 : ds(e1, e2) in the succedent can be closed, and we only have the other branch
with h2 : ls(e2, e3) in the succedent. There are two special cases as indicated by
the side conditions. First, if e3 is nil , then e3 can never be an address. Thus we
do not need (h1, h3�h4), h3 : ad(e3) and h : G(ad(e3)) in the conclusion. Second,
if ds(e1, e2) is a singleton heap (e1 �→ e2), then we only require that e3 does not
have the same value as e1, thus (h1, h3 � h4), h3 : ad(e3) and h : G(ad(e3)) can
be neglected as long as (e1 = e3) occurs in the succedent.

The rules IC and ida respectively generalise �→ L3 and id. Thus IC captures
that two data structures that contain the same address cannot be composed by
∗, and ida simply forbids a heap to make a formula both true and false.

We refer to the labelled system LSSL plus the rules introduced in Fig. 4
and the rules for binary trees (not shown here, but can be found in [18]) as
LSSL + DS. The soundness of LSSL + DS for Reynolds’s semantics can be
proved in the same way as previously showed for Theorem 1.

Recall that symbolic heaps employ slightly different semantics for the multi-
field �→ predicate, and treat it as a singleton heap. This reading would not make

510 Z. Hóu et al.

Fig. 5. Generalised rules for �→ with arbitrary fields in non-Reynolds’s semantics.

sense in our setting because our logic is based on Reynolds’s semantics. Here we
develop a branch of our system by compromising both kinds of semantics and
viewing (e1 �→ e2, e3) as a singleton heap that maps the value of e1 to the value
of e2, and the next address contains the value of e3. We give the generalised �→
rules for non-Reynolds’s semantics in Fig. 5 where α, α′ denote any number of
fields. For the non-Reynolds’s semantics, the rules in Fig. 4 need to be adjusted
so that ds(e1, e2) now considers (e1 �→ e2, α) and ad(e) considers (e �→ α). We
refer to the variant of LSSL + DS with these changes and the addition of rules
in Fig. 5 as LS′

SL + DS, which is complete for the symbolic heaps fragment; see
[18] for the proof.

Theorem 2. Any symbolic heap formula provable in LS′
SL + DS is valid, and

any valid symbolic heap formula is provable in LS′
SL + DS.

6 Proof Search and Experiment

This section describes proof search and automated reasoning based on the system
LS′

SL + DS, these tactics can also be used on the variant LSSL + DS.
We have implemented our labelled calculus LS′

SL + DS as a prover called
Separata+, in which several restrictions for the logical and structural rules are
incorporated without sacrificing provability. See Figs. 1 and 2 for the related
inference rules in LS′

SL. Some of these restrictions are also used in the prover
for PASL [19]. The rule U only creates identity relations for existing labels. The
rule A is only applicable when the following holds: if the principal relational
atoms are (h1, h2 � h0) and (h3, h4 � h1), then the conclusion does not contain
(h3, h � h0) and (h2, h4 � h), or any commutative variants of them, for any h.

In applying the cross-split rule CS, we choose the principal relational atoms
such that the parent label has the least number of children. Other strategies
to apply cross-split are possible; see e.g., [24]. Calcagno et al. [10] showed how
to deal with −∗ formulae in the quantifier-free fragment, but we do not know
whether their results hold for our SL. Nevertheless, inspired by their result, the
rules HE,HC in our prover are driven by −∗ formulae in the antecedent. We
first define a notion of the size of a formula as below:

Automated Theorem Proving for Assertions in Separation Logic 511

|e �→ e′| = |e �→ e′, e′′| = 1 |e = e′| = 0 |⊥| = 0 |A ∗ B| = |A| + |B|
|A → B| = max(|A|, |B|) |∃x.A| = |A| |�∗| = 1 |A−∗ B| = |B|

Given a labelled formula h : A−∗ B in the antecedent of a sequent, we allow to
use the HE rule to extend h for at most max(|A|, |B|)/2 + 1 times instead of
max(|A|, |B|) as indicated in [10], because we do not worry about completeness
w.r.t. SL here. The HC rule is restricted to only combine three types of heaps:
any singleton heaps that occur as subformulae of A−∗ B; any heaps created by
HE for A−∗ B; and any compositions of the previous two. The restrictions on
HE and HC are parameters which can be fine-tuned for specific applications.

The atomic formula e �→ , translated to ∃x.(e �→ x), is the only type of
formula in symbolic heaps that involves quantifiers. Since nested quantifiers are
forbidden in symbolic heaps, the ∃R rule can be restricted so that it only instan-
tiates the quantified variable with an existing expression or nil . We call this
restricted version ∃R′. Although not explicitly allowed in the symbolic heaps
fragment nor in our assertion logic, some symbolic heaps provers can recognise
numbers. To match them, we check when a rule wants to globally replace a num-
ber (expression) by another number, and close the branch immediately because
two distinct numbers should not be made equal. The rule cut= is restricted to
apply only on existing expressions and the constant nil .

Our proof search procedure for LS′
SL + DS builds in the above tactics, and

applies the first applicable rule in the following order:

1. Any zero-premise rule.
2. Any unary rule that involves global substitutions.
3. Any other unary non-structural rule except ∃R.
4. Any binary rule that involves global substitutions except cut=.
5. → L. 6. ∗R, −∗ L and ∃R′. 7. U,E,A,CS. 8. cut=.

Theorem 3 (Termination for symbolic heaps). The proof search procedure
for LS′

SL + DS is complete and terminating for the symbolic heaps fragment.

The experiments were run on a machine with a Core i7 2600 3.4 GHz processor
and 8 GB memory, in Ubuntu 14.04. The code is written in OCaml. Our prover
and test suites can be found at [17]. The proof of theorems is in [18].

Our first experiment compares our prover with state-of-the-art provers for
symbolic heaps using the Clones benchmark from Navarro and Rybalchenko [27],
which is generated from “real life” list manipulating programs and specifications
involved in verification. We filter out problems that contain a data structure that
we do not consider in this paper, the remaining set consists of 164 valid formulae
and 39 invalid formulae. Each Clones test set has the same type of formulae, but
the length (number of copies of subformulae) of formulae increases from Clones 1
to Clones 10. We compare our prover with Asterix, Smallfoot, and CyclistSL [8],
the last of which is designed for a ∀∃ DNF-like fragment of separation logic.
CyclistSL cannot recognise numbers, and there are 17 formulae in each Clones
test set that cannot be parsed by it (counted as not proved).

512 Z. Hóu et al.

Table 2. Experiment 1: the Clones benchmark. Times are in seconds.

Test suite with 164 valid formulae Test suite with 39 invalid formulae

Test suite Separata+ CyclistSL Smallfoot Separata+ CyclistSL Smallfoot

proved avg. proved avg. proved avg. dis- avg. dis- avg. dis- avg.

time time time proved time proved time proved time

Clones 1 164 0.01 147 0.04 164 0.00 39 0.09 0 - 39 0.00

Clones 2 160 0.02 137 0.17 164 0.00 23 3.37 0 - 39 0.00

Clones 3 159 0.07 126 0.48 164 0.01 9 1.78 0 - 39 0.01

Clones 4 159 0.30 117 0.11 164 0.03 6 7.89 0 - 39 0.02

Clones 5 158 0.03 115 0.13 164 0.15 2 0.52 0 - 39 0.10

Clones 6 158 0.08 114 0.29 164 0.65 2 20.10 0 - 39 0.40

Clones 7 158 0.18 106 0.01 162 0.75 0 - 0 - 39 0.00

Clones 8 158 0.42 106 0.01 160 0.83 0 - 0 - 38 2.10

Clones 9 158 0.89 106 0.01 157 0.36 0 - 0 - 38 5.37

Clones 10 157 1.19 106 0.01 157 0.83 0 - 0 - 32 3.54

Asterix proved every test set with an average of 0.01 s and 100% successful rate.

Table 2 shows the results of the first experiment. Time out is 50 s. The proved
column for each prover shows the number of formulae the prover proves or dis-
proves within the time out, the avg. time column shows the average time used
when successfully proving a formula. Unsuccessful attempts counted in average
time. Asterix outperformed all the compared provers. CyclistSL is not complete,
so it might terminate without giving a proof. It also cannot determine if a for-
mula is invalid. However, the advantage of CyclistSL is not in its performance,
but in its generality. For example, CyclistSL can be easily extended to handle
other inductive definitions, this is not the case for the other provers in compar-
ison. Separata+ and Smallfoot have similar performance on valid formulae, but
Separata+ is not efficient on invalid formulae.

The second experiment features some formulae outside the symbolic heaps
fragment, thus we cannot find other provers to compare with, except for a recent
work by Thakur, Breck, and Reps [36]. However, their semantics assume acyclic
heaps. For example, (e1 �→ e2) ∗ (e2 �→ e1) is a satisfiable formula in Reynolds’s
semantics, but is unsatisfiable in Thakur et al.’s semantics. The fragment of sep-
aration logic they consider has “septraction” A−�B, defined as ¬(A−∗ ¬B), and
only allows classical negation on atomic formulae. Table 3 shows some formulae
derived from [36, Table3], using the definition of septraction as given above. The
other formulae from [36, Table 3] are not included, as they are unsatisifiable in
Reynolds’s semantics. Formula T3.3 to T3.13 in Table 3 are identified as “beyond
the scope of existing tools” [36]. More specifically, Formula T3.1, T3.3 and T3.4
describe overlapping data structures; the other formulae in Table 3 demonstrate
the use of list and septraction. For example, Formula T3.6 is an instance of an
elimination rule for −� and linked list segment in [9].

Maeda, Sato, and Yonezawa [26] provide more examples that use −∗ in pro-
gram verification. Many of their inferences, e.g. [26, Section 3.1], are easily proved
by Separata+ if their syntax is carefully translated into ours, such as Formula 4,
which captures a property described in their original type system.

Automated Theorem Proving for Assertions in Separation Logic 513

Table 3. Selected formulae from [36, Table3] translated via A−�B ≡ ¬(A−∗ ¬B).

Formula

T3.1 ls(e1, e2) ∧ �∗ ∧ ¬(e1 = e2)

T3.2 ¬((e1 �→ e2)−∗ ¬�) ∧ ((e1 �→ e2) ∗ �)

T3.3 (ls(e1, e2) ∗ ¬ls(e2, e3)) ∧ ls(e1, e3)

T3.4 ls(e1, e2) ∧ ls(e1, e3) ∧ ¬�∗ ∧ ¬(e2 = e3)

T3.5 ¬(ls(e1, e2)−∗ ¬ls(e1, e2)) ∧ ¬�∗

T3.6 ¬((e3 �→ e4)−∗ ¬ls(e1, e4)) ∧ ((e3 = e4) ∨ ¬ls(e1, e3))

T3.7 ¬(¬((e2 �→ e3)−∗ ¬ls(e2, e4))−∗ ¬ls(e1, e4)) ∧ ¬ls(e1, e3)

T3.8 ¬(¬((e2 �→ e3)−∗ ¬ls(e2, e4))−∗ ¬ls(e3, e1)) ∧ (e2 = e4)

T3.9 ¬((e1 �→ e2)−∗ ¬ls(e1, e3)) ∧ (¬ls(e2, e3) ∨ ((� ∧ ((e1 �→ e4) ∗ �)) ∨ (e1 = e3)))

T3.10 ¬((ls(e1, e2) ∧ ¬(e1 = e2))−∗ ¬ls(e3, e4)) ∧ ¬(e3 = e1) ∧ (e4 = e2) ∧ ¬ls(e3, e1)

T3.11 ¬(e3 = e4) ∧ ¬(ls(e3, e4)−∗ ¬ls(e1, e2)) ∧ (e4 = e2) ∧ ¬ls(e1, e3)

T3.12 ¬((ls(e1, e2) ∧ ¬(e1 = e2))−∗ ¬ls(e3, e4)) ∧ ¬(e3 = e2) ∧ (e3 = e1) ∧ ¬ls(e2, e4)

T3.13 ¬(¬((e2 �→ e3)−∗ ¬ls(e2, e4))−∗ ¬ls(e3, e1)) ∧ (¬ls(e4, e1) ∨ (e2 = e4))

Separata+ proved the negation of each listed formula within 0.01 s.

Table 4. Mutated clones benchmark for formulae in Table 3.

Test suite Separata+ Test suite Separata+

Proved avg. time Proved avg. time

MClones 1 26/26 2.96s MClones 6 18/26 16.44s

MClones 2 23/26 8.76s MClones 7 17/26 3.97s

MClones 3 20/26 7.00s MClones 8 15/26 2.93s

MClones 4 20/26 0.62s MClones 9 16/26 8.43s

MClones 5 20/26 22.35s MClones 10 14/26 10.71s

(ls(e0,nil)−∗ (ls(e0,nil) ∗ (ls(e0,nil)−∗ ((ls(e1,nil)−∗ ls(e2,nil)) ∗ (e1 �→ e3) ∗
ls(e0,nil))) ∗ (ls(e0,nil)−∗ ls(e3,nil)))) → (ls(e0,nil)−∗ (((ls(e1,nil)

−∗ ls(e2,nil)) ∗ (e1 �→ e3) ∗ ls(e0,nil)) ∗ (ls(e0,nil)−∗ ls(e3,nil))))
(4)

To challenge our prover further, we build larger formulae generated from
Table 3, Formulae 1, 4 (and some formulae similar to 4) and some formulae in
[18], totalling 26 formulae inexpressible in symbolic heaps. We use the “clone”
method [1] to generate larger formulae, but we make the formulae “harder” by
randomly switching the order of starred subformulae. We call these test suites
“MClones”. The test results are shown in Table 4. The MClones 1 set contains
26 original formulae. The experiment method is the same as before, except that
the timeout is set to 500 s. The successful rate drops as the number of cloned
subformulae increases. The average time used to prove a formulae, however,
fluctuates, because we do not count the timed out attempts. In both experiments,

514 Z. Hóu et al.

the first test suite (Clones 1 and MClones 1) contains the original formulae in
program verification. These formulae can be easily proved by Separata+.

7 Conclusion

We have presented a labelled sequent calculus LSSL for Reynolds’s SL. The
syntax allows all the logical connectives in SL including ∗,−∗ and quantifiers,
the predicate �→ and equality. It is impossible to obtain a finite, sound and
complete sequent system for this logic, so we focused on soundness, usefulness,
and efficiency. With the extension to handle data structures, our proof method
is sound, complete, and terminating for the widely used symbolic heaps frag-
ment. Our prover Separata+ showed comparable results as that for Smallfoot
on proving valid formulae, although Separata+ does not perform well when the
formula is invalid, which may be due to our inference rules having to cover a
larger fragment. However, Separata+ can deal with many formulae that, to our
knowledge, no other provers for Reynolds’s SL can prove. Some of these formulae
are taken from existing (manual) proofs to verify algorithms/programs. These
indicate that our method would be useful, at least as a part of the tool chain,
for program verification with more sophisticated use of separation logic.

Acknowledgment. The third author is partly supported by NTU start-up grant
M4081190.020.

References

1. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular automatic asser-
tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006)

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer,
Heidelberg (2005)

3. Berdine, J., O’Hearn, P.W.: Strong update, disposal, and encapsulation in bunched
typing. Electron. Notes Theor. Comput. Sci. 158, 81–98 (2006)

4. Bornat, R., Calcagno, C., Yang, H.: Variables as resource in separation logic. In:
MFPS, vol. 155 of ENTCS, pp. 247–276 (2006)

5. Brochenin, R., Demri, S., Lozes, E.: On the almighty wand. Inform. Comput. 211,
106–137 (2012)

6. Brookes, S.: A semantics for concurrent separation logic. Theor. Comput. Sci.
375(1–3), 227–270 (2007)

7. Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic entailment proofs
in separation logic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS, vol. 6803, pp. 131–146. Springer, Heidelberg (2011)

8. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover.
In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367.
Springer, Heidelberg (2012)

Automated Theorem Proving for Assertions in Separation Logic 515

9. Calcagno, C., Parkinson, M., Vafeiadis, V.: Modular safety checking for fine-grained
concurrency. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp.
233–248. Springer, Heidelberg (2007)

10. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results for
a spatial assertion language for data structures. In: Hariharan, R., Mukund, M.,
Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 108–119. Springer, Heidelberg
(2001)

11. Demri, S., Galmiche, D., Larchey-Wendling, D., Méry, D.: Separation logic with
one quantified variable. In: Hirsch, E.A., Kuznetsov, S.O., Pin, J.É., Vereshchagin,
N.K. (eds.) CSR 2014. LNCS, vol. 8476, pp. 125–138. Springer, Heidelberg (2014)

12. Demri, S., Deters, M.: Expressive completeness of separation logic with two vari-
ables and no separating conjunction. In: CSL/LICS, Vienna (2014)

13. Distefano, D., Matthew, P.: jStar: towards practical verification for java. ACM
Sigplan Not. 43, 213–226 (2008)

14. Dockins, R., Hobor, A., Appel, A.W.: A fresh look at separation algebras and share
accounting. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 161–177. Springer,
Heidelberg (2009)

15. Galmiche, D., Méry, D.: Tableaux and resource graphs for separation logic. J. Logic
Comput. 20(1), 189–231 (2007)

16. Hobor, A., Villard, J.: The ramifications of sharing in data structures. In: POPL
2013, pp. 523–536. ACM, New York, NY, USA (2013)

17. Hóu, Z.: Separata+. http://users.cecs.anu.edu.au/zhehou/
18. Hóu, Z.: Labelled Sequent Calculi and Automated Reasoning for Assertions in Sep-

aration Logic. Ph.D. thesis, The Australian National University (2015). Submitted
19. Hóu, Z., Clouston, R., Goré, R., Tiu, A.: Proof search for propositional abstract

separation logics via labelled sequents. In: POPL, pp. 465–476. ACM (2014)
20. Hóu, Z., Tiu, A., Goré, R.: A labelled sequent calculus for BBI: proof theory and

proof search. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013.
LNCS, vol. 8123, pp. 172–187. Springer, Heidelberg (2013)

21. Jensen, J.: Techniques for model construction in separation logic. Report (2013)
22. Jensen, J.B., Birkedal, L.: Fictional separation logic. In: Seidl, H. (ed.) Program-

ming Languages and Systems. LNCS, vol. 7211, pp. 377–396. Springer, Heidelberg
(2012)

23. Krishnaswami, N.R.: Reasoning about iterators with separation logic. In: SAVCBS,
pp. 83–86. ACM (2006)

24. Lee, W., Park, S.: A proof system for separation logic with magic wand. In: POPL
2014, pp. 477–490. ACM, New York, NY, USA (2014)

25. Maclean, E., Ireland, A., Grov, G.: Proof automation for functional correctness in
separation log. J. Logic Comput. (2014)

26. Maeda, T., Sato, H., Yonezawa, A.: Extended alias type system using separating
implication. In: TLDI 2011, pp. 29–42. ACM, New York, NY, USA (2011)

27. Navarro Pérez, J.A., Rybalchenko, A.: Separation logic + superposition calculus
= heap theorem prover. In: PLDI 2011, pp. 556–566. ACM, USA (2011)

28. Navarro Pérez, J.A., Rybalchenko, A.: Separation logic modulo theories. In: Shan,
C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 90–106. Springer, Heidelberg (2013)

29. O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bull. Symbolic Logic
5(2), 215–244 (1999)

30. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that
alter data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS,
vol. 2142, pp. 1–19. Springer, Heidelberg (2001)

http://users.cecs.anu.edu.au/zhehou/

516 Z. Hóu et al.

31. Parkinson, M., Bornat, R., Calcagno, C.: Variables as resource in hoare logics. In:
21st LICS (2006)

32. Reus, B., Schwinghammer, J.: Separation logic for higher-order store. In: Ésik, Z.
(ed.) CSL 2006. LNCS, vol. 4207, pp. 575–590. Springer, Heidelberg (2006)

33. Reynolds, J.C.: Intuitionistic reasoning about shared mutable data structure. In:
Millennial Perspectives in Computer Science, pp. 303–321. Palgrave (2000)

34. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, pp. 55–74. IEEE (2002)

35. Stewart, G., Beringer, L., Appel, A.W.: Verified heap theorem prover by paramod-
ulation. In: ICFP, pp. 3–14. ACM (2012)

36. Thakur, A., Breck, J., Reps, T.: Satisfiability modulo abstraction for separation
logic with linked lists. Technical report. University of Wisconsin (2014)

37. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007)

KeY-ABS: A Deductive Verification Tool
for the Concurrent Modelling Language ABS

Crystal Chang Din(B), Richard Bubel, and Reiner Hähnle

Department of Computer Science, Technische Universität Darmstadt,
Darmstadt, Germany

{crystald,bubel,haehnle}@cs.tu-darmstadt.de

Abstract. We present KeY-ABS, a tool for deductive verification of
concurrent and distributed programs written in ABS. KeY-ABS allows
to verify data dependent and history-based functional properties of ABS
models. In this paper we give a glimpse of system workflow, tool archi-
tecture, and the usage of KeY-ABS. In addition, we briefly present the
syntax, semantics and calculus of KeY-ABS Dynamic Logic (ABSDL).
The system is available for download.

1 Introduction

KeY-ABS is a deductive verification system for the concurrent modelling lan-
guage ABS [1,8,11]. It is based on the KeY theorem prover [2]. KeY-ABS pro-
vides an interactive theorem proving environment and allows one to prove prop-
erties of object-oriented and concurrent ABS models. The concurrency model
of ABS has been carefully engineered to admit a proof system that is modular
and permits to reduce correctness of concurrent programs to reasoning about
sequential ones [3,5]. The deductive component of KeY-ABS is an axiomatiza-
tion of the operational semantics of ABS in the form of a sequent calculus for
first-order dynamic logic for ABS (ABSDL). The rules of the calculus that axiom-
atize program formulae define a symbolic execution engine for ABS. The system
provides heuristics and proof strategies that automate ≥90 % of proof construc-
tion. For example, first-order reasoning, arithmetic simplification, symbolic state
simplification, and symbolic execution of loop- and recursion-free programs are
performed mostly automatically. The remaining user input typically consists of
universal and existential quantifier instantiations.

ABS is a rich language with Haskell-like (first-order) datatypes, Java-like
objects and thread-based as well as actor-based concurrency. In contrast to model
checking, KeY-ABS allows to verify complex functional properties of systems
with unbounded size [6]. In this paper we concentrate on the design of the
KeY-ABS prover and its usage. KeY-ABS consists of around 11,000 lines of
Java code (KeY-ABS + reused parts of KeY: ca. 100,000 lines). The rule base
consists of ca. 10,000 lines written in KeY’s taclets rule description language [2].

This work was done in the context of the EU project FP7-610582 Envisage: Engi-
neering Virtualized Services (http://www.envisage-project.eu).

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 517–526, 2015.
DOI: 10.1007/978-3-319-21401-6 35

http://www.envisage-project.eu

518 C.C. Din et al.

At http://www.envisage-project.eu/?page id=1558 the KeY-ABS tool and a
screencast showing how to use it can be downloaded.

2 The Design of KeY-ABS

2.1 System Workflow

The input files to KeY-ABS comprise (i) an .abs file containing ABS programs
and (ii) a .key file containing the class invariants, functions, predicates and
specific proof rules required for this particular verification case. Given these input
files, KeY-ABS opens a proof obligation selection dialogue that lets one choose a
target method implementation. From the selection the proof obligation generator
creates an ABSDL formula. By clicking on the Start button the verifier will try
to automatically prove the generated formula. A positive outcome shows that
the target method preserves the specified class invariants. In the case that a
subgoal cannot be proved automatically, the user is able to interact with the
verifier to choose proof strategies and proof rules manually. The reason for a
formula to be unprovable might be that the target method implementation does
not preserve one of the class invariants, that the specified invariants are too
weak/too strong or that additional proof rules are required. The workflow of
KeY-ABS is illustrated in Fig. 1.

Fig. 1. Verification workflow of KeY-ABS

2.2 The Concurrency Model of ABS

In ABS [1,8,11] two different kinds of concurrency are supported depending on
whether two objects belong to the same or to different concurrent object groups

http://www.envisage-project.eu/?page_id=1558

KeY-ABS: A Deductive Verification Tool for the Concurrent Modelling 519

(COGs). The affinity of an object to a COG is determined at creation time. The
creator decides whether the object should be assigned to a new COG or to the
COG of its creator. Within a COG several threads might exist, but only one of
these threads (and hence one object) can be active at any time. Another thread
can only take over when the current active thread explicitly releases control. In
other words, ABS realizes cooperative scheduling within a COG. All interleaving
points occur syntactically in an ABS program in the form of an await or suspend
statement by which the current thread releases control.

While one COG represents a single processor with task switching and shared
memory, two different COGs run actually in parallel and are separated by a net-
work. As a consequence, objects within the same COG may communicate either
by asynchronous or by synchronous method invocation, while objects living on
different COGs must communicate with asynchronous method invocation and
message passing. Any asynchronous method invocation creates a so called future
as its immediate result. Futures are a handle for the result value once it becomes
available. Attempting to access an unavailable result blocks the current thread
and its COG until the result value is available. To avoid this, retrieval of futures
is usually guarded with an await statement that, instead of blocking, releases
control in case of an unavailable result. Futures are first-class citizens and can
be assigned to local variables, object fields, and passed as method arguments.

In contrast to current industrial programming languages such as C++ or
Java which support multithreaded concurrency, ABS has a fully formalized con-
currency model and natively supports distributed computation.

2.3 Verification Approach for ABS Programs

An asynchronous method call in ABS does not transfer the execution control
from the caller to the callee, but leads to a new process on the called object.
Remote field access is not supported by the language, so there is no shared
variable communication between different objects. This is a stronger notion of
privacy than in Java where other instances of the same class can access private
fields. Consequently, different concurrent objects in ABS do not have aliases to
the same object. Hence, state changes made by one object do not affect other
objects. The concurrency model of ABS is compositional by design.

To make verification of ABS programs modular, KeY-ABS follows the mon-
itor [9] approach. We define invariants for each ABS class and reason locally
about each class by KeY-ABS. Each class invariant is required to hold after
initialization in all class instances, before any process release point, and upon
termination of each method call. Consequently, whenever a process is released,
either by termination of a method execution or by a release point, the thread
that gains execution control can rely on the class invariant to hold. The proof
rule for compositional reasoning about ABS programs is given and proved sound
in [5], by which we obtain system invariants from the proof results by KeY-ABS.

To write meaningful invariants of concurrent systems, it must be possible to
refer to previous communication events. The observable behavior of a system
can be described by communication histories over observable events [10]. Since

520 C.C. Din et al.

Fig. 2. History events and when they occur on objects o, o′ and o′′

message passing in ABS does not transfer the execution control from the caller
to the callee, in KeY-ABS we consider separate events for method invocation,
for reacting upon a method call, for resolving a future, and for fetching the value
of a future. Each event can only be observed by one object, namely the object
that generates it. Assume an object o calls a method on object o′ and generates
a future identity fr associated to the method call. An invocation message is
sent from o to o′ when the method is invoked. This is reflected by the invocation
event generated by o and illustrated by the sequence diagram in Fig. 2. An
invocation reaction event is generated by o′ once the method starts execution.
When the method terminates, the object o′ generates the completion event. This
event reflects that the associated future is resolved, i.e., it contains the called
method’s result. The completion reaction event is generated by the caller o when
fetching the value of the resolved future. Since future identities may be passed to
a third object o′′, that object may also fetch the future value, reflected by another
completion reaction event, generated by o′′ in Fig. 2. All events generated by one
object forms the local history of the object. When composing objects, the local
histories of the composed objects are merged to a common history, containing
all the events of the composed objects [14].

2.4 Syntax and Semantics of the KeY-ABS Logic

Specification and verification of ABS models is done in KeY-ABS dynamic
logic (ABSDL). ABSDL is a typed first-order logic plus a box modality: For a
sequence of executable ABS statements S and ABSDL formulae P and Q, the
formula P → [S]Q expresses: If the execution of S starts in a state where the
assertion P holds and the program terminates normally, then the assertion Q
holds in the final state. Verification of an ABSDL formula proceeds by symbolic
execution of S , where state modifications are handled by the update mechanism
[2]. An elementary update has the form U = {loc := val}, where loc is a location
expression and val is its new value term. Updates can only be applied to formulae

KeY-ABS: A Deductive Verification Tool for the Concurrent Modelling 521

or terms, i.e. Uφ. Semantically, the validity of Uφ in state s is defined as the
validity of φ in state s′, which is state s with the modification of loc according to
the update U . There are operations for sequential as well as parallel composition
of updates. Typically, loop- and recursion-free sequences of program statements
can be turned into updates fully automatically. Given an ABS method m with
body mb and a class invariant I , the ABSDL formula I → [mb]I expresses that
the method m preserves the class invariant.

KeY-ABS natively supports concurrency in its program logic. In ABSDL we
express properties of a system in terms of histories. This is realized by a dedi-
cated, global program variable history, which contains the object local histories
as a sequence of events. The history events themselves are elements of datatype
HistoryLabel, which defines for each event type a constructor function. For
instance, a completion event is represented as compEv(o, fr,m, e) where o is
the callee, fr the corresponding future, m the method name, and e the return
result of the method execution. In addition to the history formalisation as a
sequence of events, there are a number of built-in functions and predicates that
allow to express common properties concerning histories. For example, function
getFuture(e) returns the future identity contained in the event e, and predicate
isInvocationEv(e) returns true if event e is an invocation event.

The type system of KeY-ABS reflects the ABS type system. Besides the type
HistoryLabel, the type system of ABSDL contains, for example, the sequence
type Seq, the root reference type any, the super type ABSAnyInterface of all
ABS objects, the future type Future, and the type null, which is a subtype of
all reference types. Users can define their own functions, predicates and types,
which are used to represent the interfaces and abstract data types of a given
ABS program.

2.5 Rule Formalisation

The user can interleave the automated proof search implemented in KeY-ABS
with interactive rule application. For the latter, the KeY-ABS prover has a
graphical user interface that is built upon the idea of direct manipulation.
To apply a rule, the user first selects a focus of application by highlighting a
(sub-)formula or a (sub-)term in the goal sequent. The prover then offers a
choice of rules applicable at this focus. Rule schema variable instantiations are
mostly inferred by matching. Figure 3 shows an example of proof rule selection
in KeY-ABS. The user is about to apply the awaitExp rule that executes an
await statement.

Another way to apply rules and provide instantiations is by drag and drop.
The user simply drags an equation onto a term, and the system will try to rewrite
the term with the equation. If the user drags a term onto a quantifier the system
will try to instantiate the quantifier with this term.

The interaction style is closely related to the way rules are formalised in KeY-
ABS. All rules are defined as taclets [2]. Here is a (slightly simplified) example:

522 C.C. Din et al.

Fig. 3. Proof rule selection

\find ([{method(source ← m, return ← (var : r, fut : u)) : {return exp; }}]φ)
\replacewith ({history := seqConcat(history, compEv(this, u,m, exp)))}φ)
\heuristics (simplify prog)

The rule symbolically executes a return statement inside a method invocation.
It applies the update mechanism to the variable history, which is extended with
a completion event capturing the termination and return value of the method
execution. The find clause specifies the potential application focus. The taclet
will be offered to the user on selecting a matching focus. The action clause
replacewith modifies the formula in focus. The heuristics clause provides
priority information to the parameterized automated proof search strategy. The
taclet language is quickly mastered and makes the rule base easy to maintain
and extend. A full account of the taclet language is given in [2].

2.6 KeY-ABS Architecture

Fig. 4. The architecture of KeY-ABS

Figure 4 depicts the principal archi-
tecture of the KeY-ABS system.
KeY-ABS is based on the KeY 2.0
platform—a verification system for
Java. To be able to reuse most parts of
the system, we had to generalize var-
ious subsystems and to abstract away
from their Java specifics. For instance,
the rule application logic of KeY made
several assumptions which are valid for
Java but not for other programming
languages. Likewise, the specification

KeY-ABS: A Deductive Verification Tool for the Concurrent Modelling 523

framework of KeY, even though it provided general interfaces for contracts and
invariants, made implicit assumptions that were insufficient for our communica-
tion histories and needed to be factored out. After refactoring the KeY system
provides core subsystems (rule engine, proof construction, search strategies, spec-
ification language, proof management etc.) that are independent of the specific
program logic or target language. These are then extended and adapted by the
ABS and Java backends.

The proof obligation generator needs to parse the source code of the ABS
model and the specification. For the source code we use the parser as provided
by the ABS toolkit [1,15] with no changes. The resulting abstract syntax tree is
then converted into KeY’s internal representation. The specification parser for
ABSDL formulas is an adapted version of the parser for JavaDL [2]. The rule
base for ABSDL reuses the language-independent theories of the KeY tool, such
as arithmetic, sequences and first-order logic. The rules for symbolic execution
have been written from scratch for ABS as well as the formalisation of the history
datatype.

3 The Usage of KeY-ABS

The ABS language was designed around a concurrency model whose analysis
stays manageable. The restriction of the ABS concurrency model, specifically
the fact that scheduling points are syntactically in the code, makes it possible
to define a compositional specification and verification method. This is essential
for being able to scale verification to non-trivial programs, because it is possible
to specify and verify each ABS method separately, without the need for a global
invariant. KeY-ABS follows the Design-by-Contract paradigm with an emphasis
on specification of class invariants for concurrent and distributed programs in
ABS. In the following we will show some examples of how and what we can
specify in a class invariant.

A history-based class invariant in ABSDL can relate the state of an object
to the local history of the system. A simple banking system is verified in [3] by
KeY-ABS , where an invariant ensures that the value of the account balance (a
class attribute) always coincides with the value returned by the most recent call
to a deposit or withdraw method (captured in the history). Here we use a more
ambitious case study to illustrate this style of class invariant. In Fig. 5 an ABS
implementation of the classic reader-writer problem [4] is shown. The RWCon-
troller class provides read and write operations to clients and four methods to
synchronize reading and writing activities: openR, closeR, openW and closeW.

The class attribute readers contains a set of clients currently with read access
and writer contains the client with write access. The set of readers is extended
by execution of openR or openW, and is reduced by closeR or closeW. The writer
is added by execution of openW and removed by closeW. Two class invariants
of the reader-writer example are (slightly simplified) shown in Fig. 6, in which
the invariants isReader and isWriter express that the value of class attributes
readers and writer are always equal to the set of relevant callers extracted from

524 C.C. Din et al.

Fig. 5. The controller class of the RW example in ABS

Fig. 6. Class invariants of the RW example

the current history. The keyword invariants opens a section where invariants
can be specified. Its parameters declare program variables that can be used to
refer to the history (historySV), the heap (heapSV, implicit by attribute access),
and the current object (self, similar as Java’s this).

The functions currentReaders(h) and currentWriter(h) are defined induc-
tively over the history h to capture a set of existing callers to the corresponding
methods. The statistics of verifying these two invariants are in Fig. 7. For each
of the six methods of the RWController class we show it satisfies isReader and
isWriter. For instance, the proof tree for verifying the invariant isReader for
method openR contains 3884 nodes and 12 branches. Verification of this case
study was automatic except for a few instantiations of quantifiers and the rule
application on inductive functions.1

1 The complete model of the reader-writer example with all formal specifications and
proofs is available at
https://www.se.tu-darmstadt.de/se/group-members/crystal-chang-din/rw.

https://www.se.tu-darmstadt.de/se/group-members/crystal-chang-din/rw

KeY-ABS: A Deductive Verification Tool for the Concurrent Modelling 525

Fig. 7. Verification Result of RW example: # nodes – # branches

A history-based class invariant in ABSDL can also express structural prop-
erties of the history, for example, that an event ev1 occurs in the history before
an event ev2 is generated. To formalize this kind of class invariant, quantifiers
and indices of sequences are used to locate the events at certain positions of
the history. Recently, we applied the KeY-ABS system to a case study of an
ABS model of a Network-on-Chip (NoC) packet switching platform [12], called
ASPIN (Asynchronous Scalable Packet Switching Integrated Network) [13]. It
is currently the largest ABS program we have proved by KeY-ABS . We proved
that ASPIN drops no packets and a packet is never sent in a circle by compo-
sitional reasoning. The ABS model, the specifications and the proof rules can
be found in [6]. Both styles of class invariants mentioned above were used. The
KeY-ABS verification approach to the NoC case study deals with an unbounded
number of objects and is valid for generic NoC models for any m × n mesh in
the ASPIN chip as well as any number of sent packets.

The global history of the whole system is formed by the composition of
the local history of each instance of the class in the system. A global invariant
can be obtained as a conjunction of instances of the class invariants verified by
KeY-ABS for all objects in the system, adding wellformedness of the global
history [7]. This allows to prove global safety properties of the system using local
rules and symbolic execution, such as absence of packet loss and no circular
packet sending. In contrast to model checking this allows us to deal effectively
with unbounded target systems without suffering from state explosion.

4 Conclusion

We presented the KeY-ABS formal verification tool for the concurrent modelling
language ABS. ABS is a rich, fully executable language with unbounded data
structures and Java-like control structures as well as objects. It offers thread-
based as well as actor-based concurrency with the main restriction being that
scheduling points are made syntactically in the code (“cooperative scheduling”).
KeY-ABS implements a compositional proof system [4,5] for ABS. Its architec-
ture is based on the state-of-art Java verification tool KeY and KeY-ABS reuses
some of KeY’s infrastructure.

KeY-ABS is able to verify global, functional properties of considerable
complexity for unbounded systems. At the same time, the degree of automa-
tion is high. Therefore, KeY-ABS is a good alternative for the verification of
unbounded, concurrent systems where model checking is not expressive or scal-
able enough.

526 C.C. Din et al.

References

1. The ABS tool suite. https://github.com/abstools/abstools. Accessed 17 May 2015
2. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of object-oriented soft-

ware: the KeY approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)
3. Bubel, R., Montoya, A.F., Hähnle, R.: Analysis of executable software models. In:

Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.) SFM
2014. LNCS, vol. 8483, pp. 1–25. Springer, Heidelberg (2014)

4. Din, C.C., Dovland, J., Johnsen, E.B., Owe, O.: Observable behavior of distributed
systems: component reasoning for concurrent objects. J. Logic Algebraic Program.
81(3), 227–256 (2012)

5. Din, C.C., Owe, O.: Compositional reasoning about active objects with shared
futures. Formal Aspects Comput. 27(3), 551–572 (2015)

6. Din, C.C., Tarifa, S.L.T., Hähnle, R., Johnsen, E.B.: The NoC verification case
study with KeY-ABS. Technical report, Department of Computer Science, Tech-
nische Universität Darmstadt, Germany, February 2015

7. Dovland, J., Johnsen, E.B., Owe, O.: Verification of concurrent objects with asyn-
chronous method calls. In: Proceedings of the IEEE International Conference on
Software Science, Technology & Engineering (SwSTE 2005), pp. 141–150. IEEE
Computer Society Press, February 2005

8. Hähnle, R.: The abstract behavioral specification language: a tutorial introduction.
In: Giachino, E., Hähnle, R., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2012.
LNCS, vol. 7866, pp. 1–37. Springer, Heidelberg (2013)

9. Hoare, C.A.R.: Monitors: an operating system structuring concept. Commun. ACM
17(10), 549–557 (1974)

10. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International
Series in Computer Science, Upper Saddle River (1985)

11. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

12. Kumar, S., Jantsch, A., Millberg, M., Öberg, J., Soininen, J., Forsell, M., Tiensyrjä,
K., Hemani, A.: A network on chip architecture and design methodology. In: 2002
IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2002), Pittsburgh,
PA, USA, 25–26 April 2002, pp. 117–124 (2002)

13. Sheibanyrad, A., Greiner, A., Panades, I.M.: Multisynchronous and fully asyn-
chronous NoCs for GALS architectures. IEEE Des. Test Comput. 25(6), 572–580
(2008)

14. Soundararajan, N.: A proof technique for parallel programs. Theoret. Comput. Sci.
31(1–2), 13–29 (1984)

15. Wong, P.Y.H., Albert, E., Muschevici, R., Proença, J., Schäfer, J., Schlatte, R.: The
ABS tool suite: modelling, executing and analysing distributed adaptable object-
oriented systems. STTT 14(5), 567–588 (2012)

https://github.com/abstools/abstools

KeYmaera X: An Axiomatic Tactical Theorem
Prover for Hybrid Systems

Nathan Fulton1(B), Stefan Mitsch1, Jan-David Quesel1, Marcus Völp1,2,
and André Platzer1

1 Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA 15213, USA

{nathanfu,smitsch,jquesel,aplatzer}@cs.cmu.edu
2 Technische Universität Dresden, 01157 Dresden, Germany

marcus.voelp@tu-dresden.de

Abstract. KeYmaera X is a theorem prover for differential dynamic
logic (dL), a logic for specifying and verifying properties of hybrid sys-
tems. Reasoning about complicated hybrid systems models requires sup-
port for sophisticated proof techniques, efficient computation, and a user
interface that crystallizes salient properties of the system. KeYmaera X
allows users to specify custom proof search techniques as tactics, execute
these tactics in parallel, and interface with partial proofs via an extensi-
ble user interface.

Advanced proof search features—and user-defined tactics in
particular—are difficult to check for soundness. To admit extension and
experimentation in proof search without reducing trust in the prover,
KeYmaera X is built up from a small trusted kernel. The prover kernel
contains a list of sound dL axioms that are instantiated using a uni-
form substitution proof rule. Isolating all soundness-critical reasoning
to this prover kernel obviates the intractable task of ensuring that each
new proof search algorithm is implemented correctly. Preliminary exper-
iments suggest that a single layer of tactics on top of the prover kernel
provides a rich language for implementing novel and sophisticated proof
search techniques.

1 Introduction

Computational control of physical processes such as cyber-physical systems
introduces complex interactions between discrete and continuous dynamics.
Developing techniques for reasoning about this interaction is important to pre-
vent software bugs from causing harm in the real world. For this reason, formal
verification of safety-critical software is upheld as best practice [4].

This material is based upon work supported by the National Science Foundation
under NSF CAREER Award CNS-1054246, NSF CNS-1035800, and CNS-0931985,
and by ERC under PIOF-GA-2012-328378 (Mitsch on leave from Johannes Kepler
University Linz).
KeYmaera X is available for download from http://keymaerax.org/.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 527–538, 2015.
DOI: 10.1007/978-3-319-21401-6 36

http://keymaerax.org/

528 N. Fulton et al.

Verifying correctness properties about cyber-physical systems requires ana-
lyzing the system’s discrete and continuous dynamics together in a hybrid sys-
tem [2]. For example, establishing the correctness of an adaptive cruise control
system in a car requires reasoning about the computations of the controller
together with the resulting physical motion of the car. Theorem proving is a
useful technique for proving correctness properties of hybrid systems [11]. The-
orem proving complements model checking and reachability analysis, which are
successful at finding bugs in discrete systems.

A theorem prover for hybrid systems must be sound to ensure trustwor-
thy proofs, and should be flexible to enable efficient proof search. This paper
presents KeYmaera X, a hybrid system theorem prover that meets these con-
flicting goals. Its design emphasizes a clear separation between a small soundness-
critical prover kernel and the rest of the theorem prover. This separation ensures
trust in the prover kernel and allows extension of the prover with user-defined
proof strategies and custom user interfaces.

We build on experience with KeYmaera [15], an extension of the KeY the-
orem prover [1]. The success of KeYmaera in cyber-physical systems is due, in
part, to its support for reasoning about programs with differential equations
and its integration of real arithmetic decision procedures. Case studies include
adaptive cruise control and autonomous automobile control, the European Train
Control System, aircraft collision avoidance maneuvers, autonomous robots, and
surgical robots. Despite the prior successes of KeYmaera, however, its monolithic
architecture makes it increasingly difficult to scale to large systems. Aside from
soundness concerns, a monolithic architecture precludes extensions necessary
for proofs of larger systems, parallel proof search, or proof strategies for specific
analyses such as model refinement or monitor synthesis.

KeYmaera X is a clean-slate reimplementation to replace KeYmaera.
KeYmaera X focuses on a small trusted prover kernel, extensive tactic support
for steering proof search, and a user interface intended to support a mixture of
interactive and automatic theorem proving. KeYmaera X improves on automa-
tion when compared to KeYmaera for our ModelPlex case study: it automates
the otherwise ≈60 % manual steps in [8].

2 KeYmaera X Feature Overview

Hybrid Systems. Hybrid dynamical systems [2,12] are mathematical models for
analyzing the interaction between discrete and continuous dynamics.

Hybrid automata [2] are a machine model of hybrid systems. A hybrid
automaton is a finite automaton over an alphabet of real variables. Variables
may instantaneously take on new values upon state transitions. Unlike classi-
cal finite automata, each state is associated with a continuous dynamical sys-
tem (modeled using ordinary differential equations) defined over an evolution
domain. Whenever the system enters a new state, the variables of the system
evolve according to the continuous dynamics and within the evolution domain
associated with that state. Hybrid automata are not conducive to compositional

KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Systems 529

Table 1. Hybrid Programs

Program statement Meaning

α; β Sequential composition of α and β.

α ∪ β Nondeterministic choice (∪) executes either α or β.

α∗ Repeats α zero or more times.

x := θ Evaluate the expression θ and assign its result to x.

x := ∗ Assigns some arbitrary real value to x.

{x′
1 = θ1, ..., x

′
n = θn&F} Continuous evolution along the differential equation

system x′
i = θi for an arbitrary duration within

the region described by formula F .

?F Tests if formula F is true at current state, aborts
otherwise.

reasoning; to establish a property about a hybrid automaton, it does not suffice
to establish that property about each component of a decomposed system.

Hybrid programs [10–12], in contrast, are a compositional programming lan-
guage model of hybrid dynamics. They extend regular programs with differential
equations. A syntax and informal semantics of hybrid programs is given in Table 1.

Differential Dynamic Logic. Differential dynamic logic (dL) [10–12] is a first-
order multimodal logic for specifying and proving properties of hybrid programs.
Each hybrid program α is associated with modal operators [α] and 〈α〉, which
express state reachability properties of the parametrizing program. For example,
[α]φ states that the formula φ is true in any state reachable by the hybrid
program α. Similarly, 〈α〉φ expresses that the property φ is true after some
execution of α. The dL formulas are generated by the EBNF grammar

φ ::= θ1 � θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | φ ↔ ψ | ∀x φ | ∃x φ | [α]φ | 〈α〉φ
where θi are arithmetic expressions over the reals, φ and ψ are formulas, α ranges
over hybrid programs, and � is a comparison operator =, �=,≥, >,≤, <.

Example 1. The following dL formula describes a safety property for a car model.

v ≥ 0 ∧ A > 0
︸ ︷︷ ︸
initial condition

→ [
(
(a := A ∪ a := 0)
︸ ︷︷ ︸

ctrl

; {p′ = v, v′ = a}
︸ ︷︷ ︸

plant

)∗] v ≥ 0
︸ ︷︷ ︸

postcondition

(1)

Formula (1) expresses that a car, when started with non-negative velocity v ≥ 0
and positive acceleration A > 0 (left-hand side of the implication), will always
drive forward (v ≥ 0) after executing (ctrl; plant)∗, i.e. running ctrl followed
by the differential equation plant arbitrarily often. Since there are no evolution
domain constraints in plant that limit the duration, each continuous evolution
has an arbitrary duration r ∈ R≥0. As its decisions, ctrl lists that the car can
either accelerate a := A or coast a := 0, while plant describes the motion of
the car (position p changes according to velocity v, velocity v according to the

530 N. Fulton et al.

Table 2. Dynamics of tactic combinators

Tactic combinator Meaning

t ::= b b Basic tactics.

| t & u Executes t and, if successful, then executes u.

| t|u Executes t only if t is applicable. If t is not applicable, then u
is executed.

| t∗ Repeats t until t is no longer applicable.

| <(u1, . . . , uk) Applied to a goal with k subgoals, each ui is executed on the
ith subgoal.

| label(�) Labels the current goal with label �.

| onLabel(�, t) Executes tactic t only if the goal is labeled �.

| ifT(c)(u, v) Executes u if c is true, and executes v otherwise.

chosen acceleration a). Details on dL are in the literature [10–12], including a
tutorial on modeling and proving in KeYmaera [16].

Proofs in KeYmaera X. Proofs in KeYmaera X are built up from three compo-
nents (kernel primitives): a small set of dL axioms (not axiom schemata) [14]
from its axiomatization [12], bound variable renaming and uniform substitution
[13,14], and the propositional fragment of the dL sequent calculus [10]. Even
if unnecessary in theory [12,14], the propositional fragment of the dL sequent
calculus is included in the prover kernel because the implementation is easy to
check for soundness and significantly improves the efficiency of the prover during
proof search.

The KeYmaera X prover kernel implements a Hilbert system for dL [12] as
a uniform substitution calculus with bound variable renaming and uniform sub-
stitution [14]. A typical proof in KeYmaera X involves a succession of cuts of
axioms, followed by uniform substitution and variable renaming to align the
current goal with the cut-in axiom, and use the instantiated axiom by fast con-
textual equivalence rewriting [14].

Kernel Primitives and the dLSequent Calculus. Although the Hilbert-style prover
kernel is helpful for ensuring soundness, manually constructing proofs from kernel
primitives is prohibitively tedious. To automate proof construction, KeYmaera X
provides a library of basic tactics and a set of tactic combinators.

Basic tactics implement the dL sequent calculus [10,11] in terms of kernel
primitives. Some dL proof rules are trivial to implement in terms of kernel prim-
itives; for example, ImplyRight is a tactic that just applies the corresponding
proof rule in the kernel’s propositional sequent calculus implementation. Other
dL sequent rules compose multiple prover kernel primitives (e.g., the Differential
Invariant proof rule [14] for proving properties of differential equations without
solving them).

KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Systems 531

Tactical Proving. The tactic combinator language (see Table 2) provides a mech-
anism for combining basic and other pre-existing tactics to build proof search
strategies. All tactics—whether built-in or constructed using combinators—are
applied to a sequent or a set of sequents called a goal. Tactics have an applica-
bility condition and a dynamic semantics, both of which may depend upon the
goal to which the tactic is applied.

The applicability condition associated with each tactic defines a set of
sequents at which the tactic may possibly succeed. Applicability for built-in
tactics is defined by their author, and these applicability conditions extend auto-
matically to terms of the combinator language. The dynamic semantics of a tactic
is ultimately a sequence of kernel primitives that are applied to the current goal.
All tactics may either succeed or fail on error, and errors are propagated through
combinator terms.

The sequential composition combinator (t & u) is similar to the semi-colon
in a C-like programming language, and is used in a similar way. The tactic t & u
is applicable when the first tactic (t) is applicable. The tactic results in an error
under three conditions: if t results in an error, if u is not applicable at the result
of t, or if u results in an error.

The either combinator (t|u) is useful when writing tactics that apply at many
possible syntactic forms (e.g., a tactic that symbolically executes any hybrid
program). It is applicable when either t or u is applicable. The applicable tactic
is executed and the other is ignored; if both are applicable, then t is executed
and u is ignored. The tactic t|u results in an error if the executed tactic results
in an error.

The Kleene star (t∗) saturates the tactic t by applying t as often as possible,
which is useful when writing general-purpose tactics. The tactic t∗ is always
applicable and results in an error if any iteration of t results in an error.

Branching composition (< (u1, ..., uk)) is useful for handling branching proofs
(e.g., any proof that uses invariants or involves disjunctive assumptions). The
tactic is always applicable, and errors when applied to a goal with a non-k
number of subgoals or if any ui is inapplicable or results in an error. Branching
(< (u1, ..., uk)) has a sequential semantics given by applying each ui sequentially.
The parallel semantics of branching depends upon scheduling and synchroniza-
tion, which are defined in terms of a proof tree with And/Or-branching as in
Fig. 1. KeYmaera X’s proof search engine is discussed in Sect. 3.

Fig. 1. Proof tree data structure

Finally, labels are useful for structuring
branching proofs. Many built-in tactics that
generate multiple subgoals provide labels for
each subgoal, which can be matched against
using the onLabel combinator. The tactic
onLabel((�1, t1), ..., (�k, tk)) is applicable if any
of the labels �i exists in the current goal and
executes the corresponding constituent tactic
ti, resulting in an error if ti results in an error.

532 N. Fulton et al.

Proof search strategies are expressed using combinators. While generic proof
search strategies exist (e.g., Master), KeYmaera X allows user-defined custom
proof search strategies expressed as tactics. The full Scala language is available
when implementing proof search strategies, but KeYmaera X also exposes an
interface for running pure combinator tactics. Where automated tactics fail, users
can interact with the prover by manually applying proof rules or by selecting the
appropriate tactic and any necessary input (e.g., loop invariants). The following
tactic example illustrates the tactic language by providing a detailed strategy
for proving the safety property of Example 1 (note, that the tactic Master with
invariant v ≥ 0 would prove the example fully automatically as well but it is
instructive to see the shape of the proof in a detailed proof tactic).

ImplyRight & Loop("v>=0") & onLabel(

("base�case", Master),

("induction�step", ImplyRight & Seq & Choice & AndRight & <

(Assign & ODESolve & Master ,

Assign & ODESolve & Master)),

("use�case", Master))

At every execution step the strategy applies to the topmost operator, starting
with the implication in (1) followed by induction with invariant v ≥ 0 to handle
the loop in the box modality. The loop induction tactic generates three labeled
subgoals.

The subgoals labeled “base case” and “use case” are handled by the Master
tactic, a general-purpose tactic for proving dL formulas. Master tries non-
branching propositional tactics and hybrid program tactics, then applies any
branching in propositional tactics, then searches for invariants, and finally resorts
to quantifier elimination.

The tactic for the induction step follows the structure of the program.
Seq handles the sequential composition between ctrl and plant, then Choice
& AndRight split the non-deterministic choice a := A ∪ a := 0. On the result-
ing two sub-branches, the assignments a := A and a := 0 are handled, followed
by ODESolve, which solves the differential equations of plant. The remaining
nonmodal goals are proved by Master.

3 KeYmaera X Tool Architecture

KeYmaera X was designed to achieve powerful automation of hybrid systems
theorem proving while ensuring soundness. The architecture of KeYmaera X
(Fig. 2) is separated into a small, soundness-critical kernel and an extensive tac-
tic framework to regain and exceed the convenience of powerful proof rules. A
scheduler multiplexes tactics to worker threads to utilize available CPU cores.
It also manages calls to external tools, such as real quantifier elimination and
differential equation solving. On top of proof tactics and scheduling, the HyDRA
server provides components for proof tree simplification, tactic search and cus-
tom tactic scheduling policies, as well as for storing and accessing proofs. These
components can be accessed remotely through a REST-API. The KeYmaera X

KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Systems 533

Fig. 2. KeYmaera X architecture: soundness-critical kernel is shown in dark with a
dashed border

web user interface, implemented in JavaScript, uses this REST-API to commu-
nicate with the server. The remaining subsections are organized around Fig. 2.

HyDRA: Hybrid Distributed Reasoning Architecture. KeYmaera X has an iso-
lated prover kernel, which offers a restricted interface to the remaining system
components. The prover kernel operates in terms of proof certificates, which
capture certified provability in the kernel. A proof certificate means that from
certain premises the prover can soundly show a particular conclusion (e.g., a rule
AndRight would have two premises, one for each conjunct, whereas an axiom has
no premises). KeYmaera X ensures soundness by construction; it disallows con-
struction of proof certificates that do not correspond to a correct derivation. That
way, the prover kernel does not need to care about how proof certificates relate
to each other, as long as it ensures that proof certificates only originate from
within the kernel. To achieve this, components outside the soundness-critical
kernel, such as tactics, the user interface and the framework for parallel execu-
tion, receive at most read-only access to proof certificates. All mechanisms for
creating new proof certificates—rewrites corresponding to the axioms of dL , uni-
form substitution, bound variable renaming, Skolemization and the rules of the
propositional sequent calculus—are contained in the kernel. Proof certificates
are managed in an And/Or proof tree outside the prover kernel, so that tactics
and users have access to the proof history (Fig. 1 denotes And-branches with
solid lines between nodes in the proof tree, whereas Or-branches are depicted
using dashed lines).

Correctness of the prover depends on the soundness of Scala’s pattern match-
ing capabilities in a similar way that Isabelle [9] depends upon the correctness of
Standard ML. Our selection of Scala is motivated by our need to interact with
Mathematica and a web server. The Scala ecosystem is also attractive from the
perspective of supporting parallel proof search and other advanced proof search
features.

534 N. Fulton et al.

Collaboration and Distributed Search. KeYmaera X supports collaborative prov-
ing and parallel, distributed proof search through a client-server architecture
and proof tree data structures with Or-branching. Multiple user interfaces may
interact with the prover via a REST-API on different goals, or attempt different
strategies on the same goal.

Similarly, multiple goals may be processed in parallel and multiple tactics tried
on the same goal. KeYmaera X supports parallel exploration of proof strategies
by means of Or-branching alternatives in the proof-tree data structure and by its
continuation-passing tactics library, which we explain in greater detail below.

KeYmaera X Kernel. The soundness-critical KeYmaera X kernel consists of:
(i) algebraic data types representing dL expressions and proof certificates; (ii) the
axioms of differential dynamic logic [14]; (iii) bound variable renaming and uni-
form substitution rules [14]; (iv) a propositional sequent calculus with Skolem-
ization [10]. To a lesser extent, the kernel also features expression parsing and
printing. KeYmaera X bans them from the soundness-critical kernel by dynam-
ically checking whether pretty-printing reparses to the original expressions and
by declaring the pretty-printed property to be proved rather than the textual
representation in input files.

The entire prover kernel has a size of about 1700 lines of Scala code (LOC).
Parsing and printing weighs in at another 1700 LOC. Proofs are certified by an
LCF-style design in which only the small list of certified proof rules can create
proof certificates. All this puts verifying the kernel in feasible range: The axiomatic
portion of the kernel uses primarily algebraic data types and recursive functions
defined over these types, so mechanizing the theory of KeYmaera X in a higher-
order proof assistant and possibly performing code extraction appears feasible.

KeYmaera X implements rules from the propositional sequent calculus,
bound variable renaming, and, most importantly, uniform substitution. These
rules are the basis for constructing all proofs. Tactics are constructed from
axioms by aligning them with the current goal using bound variable renaming
and uniform substitution. The axiom base from which proofs are constructed
is kept small (49 axioms and 17 additional derived axioms) and syntactically
close to the way it is presented in papers and books. Since the axioms cannot be
proven within the system itself, this design is crucial to allow manual inspection
to ensure that the system’s foundation is sound and well chosen.

KeYmaera X relies on external tools as real arithmetic decision procedures.
Arithmetic facts are stored as lemmas that are verified by the decision proce-
dures. These lemmas are collected together with the resulting proof and, thus,
can be fed into different decision procedures to increase trust in their correctness
or retained as arithmetic assumptions. The dependence on external tools is mini-
mized compared to KeYmaera [15]. Differential equation solvers are removed from
the trusted kernel and arithmetic is used exclusively at the leaves of the proof tree.

Runtime and Scheduler for Executing Tactics. Tactics and kernel primitives
(through their wrappers) as well as external tools are not invoked directly from
the user interface but passed to a scheduler. The scheduler multiplexes tactics

KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Systems 535

Fig. 3. Tactic scheduling using continuations

to worker threads for parallel execution and manages limited parallelism and
blocking on external tools.

To achieve this, the scheduler instantiates one worker thread per CPU core
and in addition one worker thread for each blocking link to external tools. By
blocking we mean a link that requires the worker thread to wait for a result
after it has passed the request to a tool. In addition, KeYmaera X tactics are
schedulable objects comprised of a main body and a continuation, which can be
passed to other tactics to regain control after completion, in particular if they
have been executed on a different CPU core.

Figure 3 illustrates the dispatching of tactics and the role of continuations. A
tactic a (not shown) has dispatched the tactics b, c and h for parallel execution
by inserting them into the global priority-sorted ready list from which the worker
threads on CPU1 selected c, which it currently executes. Worker threads always
pick the highest-prioritized ready tactic from the ready list and execute them
non-preemptively (i.e., they first complete a started tactic before they look for
the next one). Tactic c represents any tactic that would add multiple independent
tactics to the queue, such as the <(d, e) tactic. The tactics d and e are associated
with subgoals of the goal at which c is applied. Once a tactic has been associated
to a proof node and a continuation, the tactic is ready for dispatch into the
scheduler’s ready list. The result of dispatching of d and e is shown on the right
of Fig. 3 when following the arrow. Tactic e is a combinator (e.g., e = f & g)
with embedded tactics f , g. Because e did not yet execute and because g will
execute on the subgoal yet-to-be produced by f , these tactics are not ready yet.

To regain control after d and e complete, c has passed a continuation to
both tactics (c is the parent of the continuation). Continuations are invoked
once the body of a tactic completes. A continuation can inspect the result and
the completion status (success or failure) of the completed tactic, as well as its
parent to make decisions about the next proof step based on whether or not the
proof changed.

User Interface. The KeYmaera X system features multiple interfaces: (i) a Scala-
API for accessing the axiomatic core and tactical prover programmatically from
(standalone) Scala and Java applications; (ii) a REST-API intended for remote
access to the HyDRA server; and (iii) a graphical web-based user interface for
point-and-click interaction. The Scala-API is designed for tight integration of
KeYmaera X into other programs. It is the basis for the HyDRA server and used

536 N. Fulton et al.

Fig. 4. A tactic for closing the induction step of a simple hybrid car model. The dotted
selection illustrates what the Apply Rule dialog would look like just before executing
the second Choice in the custom tactic.

in the development process for unit testing. The REST-API wraps the Scala-
API in a web application and gives access to server functionality: it identifies the
“resources” at the HyDRA server (such as goals in a proof tree, formulas in a
sequent, and tactics) using hierarchical URLs and uses standard HTTP requests
to manipulate these resources. On top of that, KeYmaera X provides a native web
interface for managing proofs and lemma databases, as well as for interactive and
tactical proving sessions. Figure 4 shows the web interface during an interactive
proving session. In the web interface, proof trees are collapsed for presentation into
simplified views, which highlight proof steps at the granularity of dL sequent rules
but shortcut through the axiom-application steps that we introduced to improve
confidence in soundness. Custom tactics can be specified using the combinator
language of Sect. 2. Alternatively, proof rules such as ODESolve can be selected
directly by clicking on the formula, as illustrated in Fig. 4.

4 Related Work

KeYmaera X is the first theorem prover to unify Hilbert systems and Gentzen-
style sequent calculi by combining uniform substitution with a flexible tactics
mechanism. Hilbert systems simplify reasoning about soundness, which reduces
the complexity and risk associated with extending the theorem prover with
new proof search techniques or new logic fragments. This distinction separates
KeYmaera X from other deductive verification systems such as KeY [3] and
KeYmaera [15].

KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Systems 537

LCF-style theorem provers, including Isabelle [9], feature both a minimal
trusted kernel as well as support for tactics. These tools influenced the design of
KeYmaera X. Most major theorem provers, including Coq [7] and Isabelle [9],
also provide user interfaces. In [5], similar to KIV [6], a tactical theorem prover
for verifying software is presented. Unlike these, KeYmaera X is particularly
well-suited to the analysis of hybrid dynamical systems with their differential
equations.

Other successful tools exist for hybrid systems; however, apart from
KeYmaera, none based on the rigor of a sound logic let alone a small kernel.
A comparison of dL with other approaches to analysis of hybrid systems is pro-
vided in the literature [11].

Acknowledgments. The authors thank the anonymous reviewers for their helpful
feedback, and Ran Ji for help with testing and extending KeYmaera X.

References

1. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W.,
Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool. Softw. Syst.
Model. 4(1), 32–54 (2005)

2. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992.
LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)

3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334, pp. 453–479. Springer, Heidelberg (2007)

4. Bowen, J., Stavridou, V.: Safety-critical systems, formal methods and standards.
Softw. Eng. J. 8(4), 189–209 (1993)

5. Felty, A., Howe, D.: Tactic theorem proving with refinement-tree proofs and
metavariables. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 605–619.
Springer, Heidelberg (1994)

6. Heisel, M., Reif, W., Stephan, W.: Tactical theorem proving in program verifica-
tion. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 117–131. Springer,
Heidelberg (1990)

7. The Coq development team: The Coq proof assistant reference manual. LogiCal
project, version 8.0 (2004). http://coq.inria.fr

8. Mitsch, S., Platzer, A.: ModelPlex: verified runtime validation of verified cyber-
physical system models. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS,
vol. 8734, pp. 199–214. Springer, Heidelberg (2014)

9. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

10. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2),
143–189 (2008)

11. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, Heidelberg (2010)

12. Platzer, A.: Logics of Dynamical Systems. In: LICS, pp. 13–24. IEEE (2012)
13. Platzer, A.: Differential Game Logic. CoRR abs/1408.1980 (2014)

http://coq.inria.fr

538 N. Fulton et al.

14. Platzer, A.: A uniform substitution calculus for differential dynamic logic. In:
Felty, A.P., Middeldorp, A. (eds.) CADE-25. LNCS, vol. 9195, pp. xx–yy. Springer,
Heidelberg (2015)

15. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)

16. Quesel, J.D., Mitsch, S., Loos, S., Aréchiga, N., Platzer, A.: How to model and
prove hybrid systems with KeYmaera: a tutorial on safety. STTT (2015)

Tableaux Methods for Propositional Dynamic
Logics with Separating Parallel Composition

Philippe Balbiani and Joseph Boudou(B)

Institut de Recherche en Informatique de Toulouse,
CNRS — Toulouse University, Toulouse, France

joseph.boudou@irit.fr

Abstract. PRSPDL is a propositional dynamic logic with an operator
for parallel compositions of programs. We first give a complexity upper
bound for this logic. Then we focus on the class of �-deterministic frames
and give tableaux methods for two fragments of PRSPDL over this class
of frames.

1 Introduction

Propositional dynamic logic (PDL) is a multi-modal logic designed to reason
about the behaviors of programs [11]. With each program α is associated a
modal operator [α], formulas [α]ϕ being read “all executions of α from the cur-
rent state lead to a state where ϕ holds”. The set of programs is structured
by some operators: the sequential composition α ; β of programs α and β cor-
responds to the composition of the accessibility relations R(α) and R(β); test
ϕ? on formula ϕ corresponds to the identity relation restricted to the states at
which ϕ holds; the iteration α∗ corresponds to the reflexive and transitive clo-
sure of R(α). PDL has been extensively studied and a great deal is known about
its complexity and proof theory [9,11,12,15,16,18]. Moreover, since PDL’s pro-
grams are abstract, variants of PDL has been devised for different fields, like
knowledge representation and linguistic.

A limitation of PDL is the lack of constructs to reason about concurrency.
Different extensions of PDL have been devised to overcome this limitation, for
instance interleaving PDL [1], PDL with intersection (IPDL) [8] and the con-
current dynamic logic [17]. PDL with storing, recovering and parallel compo-
sition (PRSPDL) [4] is another extension of PDL with a construct for parallel
composition of programs. The key difference of PRSPDL is that, for the exe-
cution of the program α ‖ β, α and β are executed in parallel on two different
substates of the initial state. Hence, α ‖ β being executable at some state does
not imply that α or β is executable at that state. Since states can be separated in
substates and merged back, PRSPDL is related to the Boolean logic of bunched
implication (BBI) [19]. Indeed, a multiplicative conjunction semantically similar

J. Boudou—Our research is supported by the “French National Research Agency”
(DynRes contract ANR-11-BS02-011).

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 539–554, 2015.
DOI: 10.1007/978-3-319-21401-6 37

540 P. Balbiani and J. Boudou

to the one found in BBI can be defined in PRSPDL. Hence PRSPDL is a modal
logics of separation like logics in [5–7], and is closely related to the process logic
MBIc [6]. The differences between PRSPDL and MBIc are the lack of sequential
compositions in MBIc making it strictly less expressive [2] and the associativity of
the separation relation making the satisfiability problem harder [14]. The combi-
nation of separation and concurrency provided by PRSPDL suggests interesting
applications. For instance, in the field of program verification, a dynamic and
concurrent logic on heaps akin to separation logics [10,20] may be envisioned.

PRSPDL has many similarities with IPDL. Like IPDL, PRSPDL lacks the
tree model property. Moreover, due to formulas of the form [α ‖ β] ϕ, there is
no sets of formulas of the language comparable to the Fischer-Ladner closure
for PDL [11] on which the filtration method could be applied. Hence, studying
PRSPDL’s computability is hard and the only result currently known about the
computability of PRSPDL is its undecidability when interpreted over the class
of separated frames [3]. This difficulties, added to the usual complications due to
the iteration construct, make the conception of a tableaux method for PRSPDL a
real challenge. We overcome all this difficulties by adapting techniques from [16]:
compound programs are allowed as edge’s labels of the constructed model and
new atomic formulas are used to identify states reachable by some programs.
The added value of our paper consists in the presence of the iteration construct
and in a new extended definition of the Fischer-Ladner closure.

In this paper, three variants of PRSPDL are studied. First, PRSPDL, for-
mally defined in Sect. 2, is proved in Sect. 3 to be faithfully translatable into
IPDL with converse. This result conveys a 2EXPTIME complexity upper bound.
Then the fragment of PRSPDL without the special programs of storing and
recovering, interpreted over the class of �-deterministic frames, is considered.
A Fischer-Ladner closure for an extension of this fragment is defined in Sect. 4
and a sound and complete tableaux method is exhibited in Sect. 5. Finally, an
optimal decision procedure for the fragment of PRSPDL without storing, recov-
ering and iteration, interpreted over �-deterministic frames, is given in Sect. 6,
proving this fragment to be PSPACE-complete.

2 PRSPDL

Let Π0 a countable set of atomic programs (denoted a, b) and Φ0 be a count-
able set of propositional variables (denoted p, q). The sets Π and Φ of pro-
grams and formulas are defined as follows:

α, β := a | (α ; β) | ϕ? | α∗ | (α ‖ β) | s1 | s2 | r1 | r2

ϕ := p | ⊥ | ¬ϕ | [α] ϕ

We define the abbreviations � .= ¬⊥ and 〈α〉ϕ .= ¬ [α] ¬ϕ. The Boolean opera-
tors can be defined too, for instance ϕ → ψ

.= [ϕ?] ψ. Moreover, a multiplicative
conjunction related to BBI may be defined as ϕ ✴ ψ

.= ¬ [ϕ? ‖ ψ?] ⊥. Parenthe-
ses may be omitted for clarity, but they are taken into account when counting

Tableaux Methods for Propositional Dynamic Logics 541

occurrences of symbols. Double negations are implicitly eliminated. We write
|α| and |ϕ| for the number of occurrences of symbols in any program α and any
formula ϕ respectively. We define two fragments of PRSPDL’s language:

– L;?∗‖ is the set of PRSPDL’s formulas and programs with no occurrences of
the symbols s1, s2, r1 and r2;

– L;?‖ is the set of PRSPDL’s formulas and programs with no occurrences of
the symbols s1, s2, r1, r2 and ∗.

A frame is a tuple (W,R,�) where W is a non-empty set of states, R is a
function associating a binary relation over W to each atomic program and �
is a ternary relation over W . Intuitively, x R (a) y means that the program a
can be executed in state x, reaching state y. Similarly, x � (y, z) means that
x can be split into the substates y and z or equivalently that y and z can be
merged to obtain x. When the merging of states is functional, the frame is said
to be �-deterministic. This is a common restriction, for instance in separation
logics [10,20]. Formally, a frame is �-deterministic iff for all x, y, w1, w2 ∈ W ,
if x � (w1, w2) and y � (w1, w2) then x = y. The class of all frames is denoted
by Call and the class of �-deterministic frames by C�-det. A model is a tuple
(W,R,�, V) where (W,R,�) is a frame and V is a function associating a subset
of W to each propositional variable. A model is �-deterministic iff its frame
is �-deterministic. The forcing relation � is defined by parallel induction along
with the extension of R to all programs:

M, x � p iff x ∈ V (p)
M, x � ⊥ never
M, x � ¬ϕ iff M, x � ϕ

M, x � [α] ϕ iff ∀z ∈ W, xR (α)z implies M, z � ϕ

xR (α ; β)y iff ∃z ∈ W, xR (α)z and zR (β)y
xR (ϕ?)y iff x = y and M, x � ϕ

xR (α∗)y iff xR (α)∗
y

whereR (α)∗is the reflexive transitive closure ofR (α)
xR (α ‖ β)y iff ∃w1, w2, w3, w4 ∈ W,

x � (w1, w2) , w1R (α)w3, w2R (β)w4 and y � (w3, w4)
xR (si)y iff ∃z1, z2 ∈ W, y � (z1, z2) and x = zi

xR (ri)y iff ∃z1, z2 ∈ W, x � (z1, z2) and y = zi

A formula ϕ is satisfiable in a class C of frames iff there exists a model
M = (W,R,�, V) and a state w ∈ W such that (W,R,�) ∈ C and M, w � ϕ.
The satisfiability problem for a fragment L of PRSPDL over a class C of frames
is the decision problem answering whether a formula in L is satisfiable in C.

3 Complexity Upper Bound for PRSPDL

In order to illustrate the close relationship between PRSPDL and IPDL, we
provide a faithful translation from PRSPDL to PDL with intersection and

542 P. Balbiani and J. Boudou

converse (ICPDL) [15]. This translation conveys an upper bound for the com-
plexity of the satisfiability problem of PRSPDL with respect to Call. Given the
same sets Π0 and Φ0 as for PRSPDL and three new atomic programs b0, b1, b2,
the language of ICPDL is defined by:

α, β := a | (α ; β) | (α ∪ β) | ϕ? | α∗ | α− | (α ∩ β) | b0 | b1 | b2

ϕ := p | ⊥ | ¬ϕ | [α] ϕ

A model for ICPDL is a tuple M = (W,R, V) where W is a non-empty set
of states, R : Π0 ∪ {b0, b1, b2} −→ P (

W 2
)

and V : Φ0 −→ P (W). See [15]
for the definition of the forcing relation �IC. The translation function τ from
PRSPDL to ICPDL is defined by inductively replacing all subprograms of the
form α ‖ β by b0 ;

((
b1 ; τ(α) ; b−

1

) ∩ (
b2 ; τ(β) ; b−

2

))
; b−

0 , all subprograms of
the form si for i ∈ {1, 2} by b−

0 ; b−
i and all subprograms of the form ri for

i ∈ {1, 2} by b0 ; bi. Given a PRSPDL’s formula ϕ, let {a1, , an} be the
set of atomic programs occurring in ϕ. The ICPDL program π(ϕ) is defined by
π(ϕ) =

(
a1 ∪ ∪ an ∪ b0 ∪ b−

0 ∪ b1 ∪ b−
1 ∪ b2 ∪ b−

2

)∗
.

Proposition 1. A PRSPDL formulas ϕ ∈ Φ is satisfiable if and only if the
ICPDL formula τ(ϕ) ∧ [π(ϕ)] (〈b1〉� ↔ 〈b2〉�) is satisfiable.

As a corollary, by [15]:

Corollary 1. The satisfiability problem of PRSPDL with respect to the class of
all frames is in 2EXPTIME.

4 Fischer-Ladner Closure over L;?∗‖

In this section, we consider the fragment L;?∗‖ of PRSPDL. We define the sets
Π;?∗‖ = Π ∩ L;?∗‖ and Φ;?∗‖ = Φ ∩ L;?∗‖ of programs and formulas of L;?∗‖.
In traditional tableaux methods for PDL-like logics, the formulas appearing in
a tableau all belong to a Fischer-Ladner closure [11]. In the case of PRSPDL,
due to the parallel composition construct, the Fischer-Ladner closure must be
defined in an extension of the language.

4.1 Placeholders and Marking Functions

In order to decompose formulas of the form [α ‖ β] ϕ into subformulas, paral-
lel compositions are distinguished using indices and new atomic formulas called
placeholders are added. The sets ΠPH , Φpure and ΦPH of annotated programs,
pure formulas and annotated formulas respectively, are defined by parallel induc-
tion as follows:

α, β := a | (α ; β) | ϕ? | α∗ | (α ‖i β)
ϕ := p | ⊥ | ¬ϕ | [α]ϕ
ψ := ϕ | (i, j) | ¬ψ | [α]ψ

Tableaux Methods for Propositional Dynamic Logics 543

where i ranges over N and j over {1, 2}. Moreover, for any i ∈ N, there must
be at most one occurrence of ‖i in any pure formula. The integers below the
parallel composition symbols are called indices. Formulas of the form (i, j) are
called placeholders.

To interpret annotated formulas, if placeholders were simply considered as
new propositional variables, it would be impossible to ensure that whenever
w � (x, y) and M, x � [α ‖i β] ϕ then M, x � [α] (i, 1) and M, y � [β] (i, 2).
Therefore we interpret placeholders using marking functions which assign subsets
of W to placeholders. The set of all such functions is denoted by BW . The empty
marking function m∅

W ∈ BW binds the empty set to all placeholders. The 4-ary
forcing relation �F is defined on all models M = (W,R,�, V), all w ∈ W , all
m ∈ BW and all ϕ ∈ ΦPH by parallel induction along with the extension of R
to all annotated programs, in a similar way than for PRSPDL except:

M, x,m �F (i, j) iff x ∈ m(i, j)

xR (ϕ?)y iff x = y and M, x,m∅

W �F ϕ

xR (α ‖i β)y iff ∃w1, w2, w3, w4 ∈ W,

x � (w1, w2) , w1R (α)w3, w2R (β)w4 and y � (w3, w4)

There exists a forgetful epimorphism · : Φpure −→ Φ;?∗‖ associating to each
pure formula ϕ the formula ϕ obtained by removing all indices in ϕ. Thanks to
the following lemma, which can be easily proved by induction on |ϕ|, we will
consider satisfiability of pure formulas instead of satisfiability of L;?∗‖ formulas.

Lemma 1. For all ϕ0 ∈ Φpure, M, w,m∅

W �F ϕ0 iff M, w � ϕ0. Moreover, for
all m ∈ BW , M, w,m∅

W �F ϕ0 iff M, w,m �F ϕ0

4.2 Fischer-Ladner Closure

Following [11], given an annotated formulas ϕ over Π0 and Φ0, we will define
the closure FL(ϕ0) of ϕ by applying the rules in Fig. 1.

Lemma 2. The cardinality of FL(ϕ0) is linear in |ϕ|.
We will be mainly interested in closures of pure formulas. We define the set

SP(ϕ0) = {α | ∃ϕ, [α] ϕ ∈ FL(ϕ0)} of subprograms of any pure formula ϕ0.

Fig. 1. Fischer-Ladner closure calculus

544 P. Balbiani and J. Boudou

Lemma 3. For any pure formula ϕ0 and any i ∈ N, there is at most one formula
of the form [α ‖i β] ϕ in FL(ϕ0).

The function Gϕ0 is defined such that for all i ∈ N, if there exists α, β ∈ ΠPH

verifying [α ‖i β] ϕ ∈ FL(ϕ0) then Gϕ0(i) = ϕ, otherwise Gϕ0(i) = �. When the
index ϕ0 is obvious from the context, we write G instead of Gϕ0 .

5 Tableaux Method for L;?∗‖ over C�-det

In this section we introduce a tableaux method for pure formulas interpreted over
C�-det. To deal with the merging of states at the end of parallel compositions, we
borrow some ideas from [16]. Firstly, non-atomic programs are allowed as label
of edges in the built structure. Secondly, placeholders are used in order to ensure
that formulas of the form [α ‖i β] ϕ are propagated.

5.1 Rules of the Tableaux Method

Given a set W of states, a judgment about W is either:

– a judgment x : ϕ stating that x must satisfy ϕ;
– a judgment (x, y) : α stating that y can be reached from x by α;
– a judgment (x, y, z) : Δ with Δ ∈ {F,B}, stating that x can be decomposed

forwardly (if Δ = F) or backwardly (if Δ = B) into y and z.

A judgment j involves a state x iff x appears on the left of j. A structure is a
tuple S = (W,J,K) where W is a set of states, J a set of judgments about W
and K ⊆ J a subset of inactive judgments. A tableau T for a pure formula ϕ0

is an ordered, possibly infinite tree whose nodes are labeled with structures, the
root being labeled with the initial structure ({w0}, {w0 : ϕ0}, ∅) for some w0.
Successor nodes are constructed in accordance with the rules from Figs. 2, 3, 4,
5 and 6. The rules have the general form

X0

X1 | |X�
C

where X0 is the set of premises, (Xk)k∈1....� are the sets of conclusions, C is
the set of side conditions and � > 0. The rules (�), (�‖1F), (�‖1B), (�‖0�)
and (�‖0⊥) are called universal. States denoted by n, n1, n2, n3 and n4 in the
conclusions must be fresh. A rule instantiation is applicable to a node η0 labeled
with S0 = (W0, J0,K0) if all the following conditions are met:

– the instantiation X0 of the set of premises is a subset of J0 \ K0,
– all side conditions’ instantiations are satisfied,
– if the rule is universal then for all k ∈ 1 �, there is a judgment jk in X ′

ks
instantiation such that jk /∈ J0.

Tableaux Methods for Propositional Dynamic Logics 545

Fig. 2. Basic rules of L;?∗‖’s tableaux calculus

Fig. 3. Test rules of L;?∗‖’s tableaux calculus

Fig. 4. Sequence rules of L;?∗‖’s tableaux calculus

Fig. 5. Iteration rules of L;?∗‖’s tableaux calculus

546 P. Balbiani and J. Boudou

Fig. 6. Parallel composition rules of L;?∗‖’s tableaux calculus

When applying a rule instantiation, the � child nodes η1, , η� of η0, labeled
with S1, ,S�, are created such that Sk = (W0 ∪ Fk, J0 ∪ Xk,K0 ∪ Q) where
Fk is the set of fresh states corresponding to n, n1, n2, n3 or n4 in Xk, Xk is the
instantiation of Xk and Q = X0 except for the universal rules for which Q = ∅.

The size function in the side conditions is defined by:

size(ϕ?) = 0
size(a) = 1

size(α ; β) = size(α ‖ β) =

⎧
⎪⎨

⎪⎩

0 ifsize(α) = size(β) = 0
1 ifsize(α) = 1 or size(β) = 1
∗ otherwise

size(α∗) =

{
0 ifsize(α) = 0
∗ otherwise

Tableaux Methods for Propositional Dynamic Logics 547

The rules ensure that for any judgment (x, y) : α ∈ J , if size(α) = 0 then x = y
and if size(α) = 1 then x �= y. When size(α) = ∗, both cases must be considered.
For instance rule (♦∗) may be seen as the disjunction of the rules (♦1) and (♦0).
When a program α of size ∗ is considered as having size 0, it is implicitly replaced
by desiter(α). The function desiter : ΠPH −→ ΠPH substitutes each occurrence
of subprograms of the form α∗ with �? The replacement is made explicit in the
right-hand side conclusion of rule (�‖0�) in order to enable the application of
rule (�‖0⊥) afterward. Obviously, if size(α) �= 1 then size (desiter (α)) = 0.

For judgments of the form (x, y, z) : Δ, we distinguish forward (Δ = F)
and backward (Δ = B) decompositions. The rules ensure that if (x, y, z) : Δ ∈
J , (x′, y′, z′) : Δ′ ∈ J and y′ and z′ are reachable from y and z respectively,
then either (y, z) = (y′, z′) or Δ = F and Δ′ = B. This property is used in
rules (�‖1F) and (�‖1B) to ensure that no new judgments about a state is added
after all successors of that state have been added (see Lemma 7 on page 12).
Rules (�‖1F) and (�‖1B) ensure that if x : [α ‖i β] ϕ ∈ J then for any state
y �= x reachable from x by α ‖i β, y : ϕ ∈ J . They make use of placeholders
and function G from Sect. 4. Similarly, rules (�‖0�) and (�‖0⊥) ensure that if
x : [α ‖i β] ϕ ∈ J then either x : ϕ ∈ J or x is not reachable from x by α ‖i β.
When size(α ‖i β) = ∗, since the rules (�‖1F) and (�‖0�) are both universal,
they could be both applied on the same judgment x : [α ‖i β] ϕ.

In a tableau, a maximal path from the root is called a branch. For any branch
B, we write WB (resp. JB) for the union of the W (resp. J) such that there exists
a node in B labeled with (W,J,K) for some J (resp. W) and K. A structure
S = (W,J,K) is inconsistent if there exists x ∈ W such that x : ⊥ ∈ J or both
x : ϕ ∈ J and x : ¬ϕ ∈ J for some ϕ ∈ ΦPH . A branch is open if its nodes
are all labeled with a consistent structure. A branch B is saturated iff for any
node η ∈ B labeled with S = (W,J,K) and any rule’s instantiation π applicable
on S, there exists a node η′ in B labeled with S ′ = (W ′, J ′,K ′) and such that
one of π′s conclusions sets is a subset of J ′. A branch B is demand-satisfied iff
for any node η ∈ B labeled with S = (W,J,K) and any judgment in J of the
form (x, y) : α∗ there is a node η′ ∈ B labeled with S ′ = (W ′, J ′,K ′) and a list
x0, , xm ∈ W ′ such that x0 = x, xm = y and for all i < m, (xi, xi+1) : α ∈ J ′.
A tableau is satisfying if it has an open saturated demand-satisfied branch. We
will prove that for any pure formula ϕ0, there exists a satisfying tableau for ϕ0

if and only if ϕ0 is satisfiable.

5.2 Soundness

We prove the soundness of the tableaux method by interpreting branches into a
satisfying model. The use of placeholders necessitates the selection of marking
functions to interpret judgments. We introduce the notion of twines to select
those marking functions. Intuitively, a twine corresponds to an equivalence class
of states by the transitive and symmetric closure of the relation obtained as the
union of the accessibility relation (by any program) and the relation linking two
states iff they are mergeable (by �).

548 P. Balbiani and J. Boudou

Formally, Let B be a branch from a tableau for ϕ0. The set Θ of twines of
B is defined as Θ = W 2

B ∪ {θ0} with θ0 not being a member of W 2
B. A twine

function t assigns a twine to each state in WB. The function t is constructed
from the root of B as follows:

1. If x is the unique state in the label of the root, then t(x) = θ0.
2. If x has been added by an application of a rule which did not add a judgment

of the form (z, w1, w2) : F (rules (♦1), (♦∗), (♦; 11), (♦; 1∗), (♦; ∗1), (♦; ∗∗)
and (♦∗ �=)) then t(x) = t(y), y being any state involved in the premises of
the rule instantiation. A careful analysis of the rules shows that the choice of
y does not matter, because whenever (y1, y2) : α ∈ JB then t(y1) = t(y2).

3. If x has been added by an application of a rule which did add a judgment of
the form (z, w1, w2) : F (rules (♦‖00), (♦‖0�), (♦‖ �0), (♦‖11), (♦‖1∗), (♦‖∗1)
and (♦‖ ∗ ∗)), then t(x) = (w1, w2).

The set Θ+ of active twines of B is the image of the twine function. For any
twine θ ∈ Θ+ \ {θ0} there exists a unique tuple (x,w1, w2) ∈ W 3

B such that
θ = (w1, w2) and (x,w1, w2) : F ∈ JB. In that case, we write �θ for t(x).

Given a branch B with twine function t, a structure S = (W,J,K) labeling a
node in B and a model M′ = (W ′, R′,�′, V ′), a pair (f, g) is an interpretation of
S into M′ with respect to B if f is a function from W to W ′ and g a function from
Θ+ to BW ′ such that for all x, y, z ∈ W , x′, y′, z′ ∈ W ′, ϕ ∈ ΦPH , α ∈ ΠPH ,
Δ ∈ {F,B}, θ ∈ Θ+ \ {θ0} and i ∈ N:

x : ϕ ∈ J ⇒ M′, f(x), g (t(x)) �F ϕ (1)
(x, y) : α ∈ J ⇒ f(x)R′ (α)f(y) (2)
(x, x) : α ∈ J ⇒ f(x)R′ (desiter(α))f(x) (3)

(x, y) : α ∈ J, x �= y and size(α) = ∗ ⇒ (f(x), f(y)) /∈ R′(desiter(α)) (4)
(x, y, z) : Δ ∈ J ⇒ f(x) �′ (f(y), f(z)) (5)

x′ �′ (y′, z′) ∧ y′ ∈ g(θ)(i, 1) ∧ z′ ∈ g(θ)(i, 2) ⇒ M′, x′, g(�θ) �F G(i) (6)

If there is such an interpretation, S is said to be interpretable in M′ with respect
to B. If the label of each node in B is interpretable in M′ with respect to B,
then B is interpretable in M′.

Obviously, interpretable branches are open and the rules preserve the inter-
pretability. By ordering the applicable rule instantiations in a queue, a strat-
egy for rule applications can be easily defined such that a saturated tableau is
obtained for all pure formulas. Then, to prove Proposition 2 below, it suffices to
prove the following lemma, which is done by selecting the interpretable branch
where the leftmost child of nodes on which rule (♦∗ �=) is applied is chosen
whenever possible.

Lemma 4. If ϕ0 is satisfiable and T is a tableau for ϕ0 in which all open
branches are saturated, then T has an open saturated demand-satisfied branch.

Proposition 2. If ϕ0 ∈ Φpure is satisfiable, there exists a tableaux for ϕ0 with
an open saturated demand-satisfied branch.

Tableaux Methods for Propositional Dynamic Logics 549

5.3 Completeness

We now consider a satisfying tableau T for ϕ0. We will construct a model satisfy-
ing ϕ0. Since T is satisfying, it has an open saturated demand-satisfied branch B.
The model M = (W,R,�, V) and the marking function m are defined as follows:

W = WB
R(a) =

{
(x, y) ∈ W 2 | (x, y) : a ∈ JB

}
, ∀a ∈ Π0

� =
{
(x, y, z) ∈ W 3 | ∃Δ ∈ {F,B}, (x, y, z) : Δ ∈ JB

}

V (p) = {x ∈ W | x : p ∈ JB} , ∀p ∈ Φ0

m(i, j) = {x ∈ W | x : (i, j) ∈ JB} , ∀(i, j) ∈ N × {1, 2}

By construction of T , M is �-deterministic. By induction on |ϕ| and |α|, the
following truth lemma can be proved.

Lemma 5. For all x, y ∈ W , ϕ ∈ ΦPH and α ∈ ΠPH ,

x : ϕ ∈ JB ⇒ M, x,m �F ϕ (7)
(x, y) : α ∈ JB ⇒ xR (α)y (8)

The proof of Lemma 5 necessitates various properties of function R:

– If xR (α ‖i β)y and x �= y, then there exists w1, w2, w3, w4 ∈ W such that
(x,w1, w2) : F ∈ JB, (y, w3, w4) : B ∈ JB, w1R (α)w3 and w2R (β)w4.

– For all x ∈ W , α, β ∈ ΠPH and i ∈ N, if xR (α ‖i β)x then there exists
w1, w2 ∈ W such that x � (w1, w2), w1R (α)w1 and w2R (β)w2.

– For all x ∈ W and α ∈ ΠPH , if xR (α)x then size(α) �= 1.
– For all x ∈ W and α ∈ ΠPH , if xR (α)x then xR (desiter(α))x.

Our completeness result immediately follows from Lemma 5.

Proposition 3. For any pure formula ϕ0, if there exists a satisfying tableau for
ϕ0, then ϕ0 is satisfiable.

6 Optimal Decision Procedure for L;?‖ Over C�-det

In this section we establish the complexity of the satisfiability problem of L;?‖
over C�-det. The fragment L;?‖ is the iteration-free fragment of L;?∗‖. Therefore,
we reuse the constructions from the previous sections. We write Π0,PH for the set
of iteration-free annotated programs, Φ0,PH for the set of iteration-free annotated
formulas and Φ0,pure for the set of iteration-free pure formulas. It can be easily
checked that for all ϕ0 ∈ Φ0,pure, FL(ϕ0) ⊆ Φ0,PH.

550 P. Balbiani and J. Boudou

6.1 Semantic Tableaux Method

The rules of L;?‖’s tableaux calculus are the rules (�), (♦1), (♦0), (�?), (♦?),
(�;), (♦; 00), (♦; 11), (♦; 0�), (♦; �0), (�‖1F), (�‖1B), (�‖0�), (�‖0⊥), (♦‖00),
(♦‖0�), (♦‖ � 0) and (♦‖11) from Figs. 2, 3, 4 and 6 along with the rule (♦;D)
from Fig. 7. The rule (♦;D) is needed to ensure local saturation in the strategy
of Sect. 6.2. Using the same techniques as in Sect. 5, we can prove that for any
pure formula ϕ0 ∈ Φ0,pure, there exists a tableau for ϕ0 with an open saturated
branch if and only if ϕ0 is satisfiable.

Fig. 7. Additional rule for L;?‖’s tableaux calculus

Let FL+(ϕ0) = FL(ϕ0) ∪ {[α]⊥ |α ∈ SP(ϕ0)}. The following lemma can be
proved by induction on the length of the path from the root of the tableau to
the node η.

Lemma 6. Given any structure S = (W,J,K) labeling a node in a tableau
for ϕ0, for any judgment x : ϕ ∈ J , ϕ ∈ FL(ϕ0)[ϕ0][+] and for any judgment
(x, y) : α ∈ J , α ∈ SP(ϕ0).

6.2 Optimal Decision Procedure

We will prove that the nondeterministic procedure Decision defined on the
next page solves the satisfiability problem of L;?‖ over C�-det in polynomial
space. Called with a pure formula ϕ0, this procedure constructs a branch of a
tableau for ϕ0 and returns SAT if this branch is open and saturated. In order
to reduce memory usage, the procedure ensures that after any application of an
instantiation π of the rules (♦1) and (♦‖00), no new judgments can be added
which involve only the states in π′s premises, see Lemma 7 below. A local rule is a
rule which is neither (♦1) nor (♦‖00). A structure is locally saturated iff no local
rule instantiations can be applied to it. A rule’s instantiation π is appropriate to
S and x iff π is applicable to S and either π is an instantiation of a local rule
or the instantiations of the premises involve only x.

Lemma 7. Let S = (W,J,K) be a locally saturated structure labeling a node η in
a branch of a tableau. For any descendent node η′ of η with label S ′ = (W ′, J ′,K ′)
and any judgment j ∈ J ′ involving only one state x ∈ W ′, if x ∈ W then j ∈ J .

Decision first creates the structure for the root node (line 1). Then it locally
saturates this structure without adding any new state (line 2–3). Finally it calls
the recursive Extend procedure and check whether it returns the empty struc-
ture. The empty structure is used by Extend as a marker for a closed branch.

Tableaux Methods for Propositional Dynamic Logics 551

Procedure 1. Decision
Input: A pure iteration-free formula ϕ0 ∈ Φ0,pure.
Output: SAT or UNKNOWN.
Data: A structure S = (W, J, K).

1 S ← ({w0}, {w0 : ϕ0}, ∅)
2 while there is a local rule’s instantiation π applicable to S do
3 S ← a nondeterministically chosen successor of S by π
4 S ← Extend(S, w0)
5 if W �= ∅ then return SAT
6 else return UNKNOWN

Procedure 2. Extend
Input: A locally saturated structure S = (W, J, K) and a state x ∈ W .
Output: A (possibly empty) structure Sf = (Wf , Jf , Kf).
Data: A set J0 of judgments and a structure S ′ = (W ′, J ′, K′).

7 J0 ← {j ∈ J | j involves only x}
8 S ′ ← (W, J0, K ∩ J0)

9 while there is a rule’s instantiation π appropriate to S ′ and x do
10 S ′ ← a nondeterministically chosen successor of S ′ by π

11 if S ′ is inconsistent then
12 Sf ← (∅, ∅, ∅)
13 else
14 Sf ← (W ′, J ∪ J ′, K ∪ K′)
15 foreach y ∈ W ′ \ W do
16 Sf ← Extend (Sf , y)

17 return Sf

Extend operates in two steps. Firstly, in the existential loop (lines 9–10), suc-
cessors of x are added and the structure is locally saturated. Secondly, in the
universal loop (lines 15–16), Extend is recursively called for each state created
by the existential loop. The following properties can be proved:

Lemma 8. 1. At each run of Extend, the existential loop adds a number of
new states bounded by a polynomial in |ϕ0|.

2. During a call to Decision(ϕ0), the recursion depth of the calls to Extend
is bounded by a polynomial in |ϕ0|.

3. Decision(ϕ0) returns SAT only if a saturated branch for ϕ0 has been con-
structed.

By Lemmas 2 and 6, the number of judgments added by the loop at lines 2–
3 is polynomial in |ϕ0|. Hence this loop terminates. By Lemma 8, the number
of new states added by the existential loop (lines 9–10) is polynomial in |ϕ0|.
Therefore, by Lemmas 2 and 6, the cardinality of J ′ is always bounded by a
polynomial in |ϕ0|. Hence the existential loop terminates. By Lemmas 8 and

552 P. Balbiani and J. Boudou

Köning’s lemma, the execution tree of Extend is finite, hence the whole pro-
cedure terminates. Moreover, each call to Extend(S, x) needs to keep track of
the judgments involving only states in {x} ∪ (W ′ \ W) and the number of this
judgments is polynomial in |ϕ0|. Finally, by Lemma8, only a polynomial number
of such configurations have to be stored. Consequently,

Proposition 4. All executions of Decision(ϕ0) terminate and Decision can
be implemented using polynomial space.

Given a pure formula ϕ0 ∈ Φ0,pure, the set of executions of Decision(ϕ0)
corresponds to a collection Γ of tableaux for ϕ0 where each execution corre-
sponds to a branch of a tree. If ϕ0 is satisfiable, by soundness of the tableaux
method, there is an open branch in each tree of Γ . Since Decision returns
UNKOWN only when the corresponding branch is close, there is an execution
of Decision(ϕ0) returning SAT. Conversely, by Lemma8, if an execution of
Decision(ϕ0) returns SAT, the corresponding branch B is saturated. Since B is
open too, by completeness of the tableaux method, ϕ0 is satisfiable. As a result:

Proposition 5. The nondeterministic procedure Decision is a decision proce-
dure for the satisfiability problem of L;?‖ with respect to C�-det.

By Propositions 4 and 5 and Savitch’s Theorem, the satisfiability problem of
the fragment L;?‖ with respect to C�-det is in PSPACE. PSPACE-hardness is
given by the obvious embedding of the modal logic K. Hence:

Proposition 6. The satisfiability problem of the fragment L;?‖ over the class
C�-det is PSPACE-complete.

7 Conclusion and Future Works

We have given a complexity upper bound for the satisfiability of PRSPDL over
the class of all frames, a sound and complete tableaux method for the fragment
of PRSPDL without special programs interpreted over �-deterministic frames
and an optimal decision procedure for an iteration-free fragment of PRSPDL
over �-deterministic frames. Both our complexity results answer questions left
open in [2–4]. Moreover, we proved the addition of �-deterministic parallel com-
position to PDL without choice and iteration does not increase its complexity.
We leave for future works to prove this interesting property for the full language.

Because of the characteristics PRSPDL shares with IPDL (for which there
is no tableaux method to date), our tableaux method has some peculiarities
borrowed from [16] (mainly compound programs as edge’s labels) which are
difficult to combine with the iteration construct. Hence, because of the rules (�∗)
and (♦∗ �=), our tableaux method for L;?∗‖ over C�-det does not terminate. But we
believe this tableaux method can be modified to become a decision procedure.
For instance, by adding dynamic blocking as in [13], it might be possible to
represent infinite saturated tableaux by finite unsaturated ones. A finite model

Tableaux Methods for Propositional Dynamic Logics 553

property would be helpful. The notion of twines and the Fischer-Ladner closure
introduced in this paper could be useful to prove this property.

In PDL, nondeterministic choice adds technical difficulties without changing
neither the expressive power nor the complexity of the logic. It has been omitted
in this paper for the sake of simplicity, leaving the study of PRSPDL with
nondeterministic choice for future works.

References

1. Abrahamson, K.: Modal logic of concurrent nondeterministic programs. In: Kahn,
G. (ed.) Semantics of Concurrent Computation. LNCS, vol. 70, pp. 21–33. Springer,
Heidelberg (1979)

2. Balbiani, P., Boudou, J.: Iteration-free PDL with storing, recovering and parallel
composition: a complete axiomatization, J. Logic Comput. (2015)

3. Balbiani, P., Tinchev, T.: Definability and computability for PRSPDL. In:
Advances in Modal Logic, pp. 16–33. College Publications (2014)

4. Benevides, M.R.F., de Freitas, R.P., Viana, J.P.: Propositional dynamic logic with
storing, recovering and parallel composition. ENTCS 269, 95–107 (2011)

5. Brochenin, R., Demri, S., Lozes, É.: Reasoning about sequences of memory states.
Ann. Pure Appl. Logic 161(3), 305–323 (2009)

6. Collinson, M., Pym, D.J.: Algebra and logic for resource-based systems modelling.
Math. Struct. Comput. Sci. 19(5), 959–1027 (2009)

7. Courtault, J.R., Galmiche, D.: A Modal BI logic for dynamic resource properties.
In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 134–148.
Springer, Heidelberg (2013)

8. Danecki, R.: Nondeterministic propositional dynamic logic with intersection is
decidable. In: Skowron, A. (ed.) Computation Theory. LNCS, vol. 208, pp. 34–
53. Springer, Heidelberg (1984)

9. De Giacomo, G., Massacci, F.: Combining deduction and model checking into
tableaux and algorithms for converse-PDL. Inf. Comput. 162(1–2), 117–137 (2000)

10. Demri, S., Deters, M.: Separation logics and modalities: a survey. J. Appl. Non-
Class. Logics 25(1), 50–99 (2015)

11. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18(2), 194–211 (1979)

12. Goré, R., Widmann, F.: An optimal on-the-fly tableau-based decision procedure
for PDL-satisfiability. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp.
437–452. Springer, Heidelberg (2009)

13. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and
role hierarchies. J. Log. Comput. 9(3), 385–410 (1999)

14. Kurucz, Á., Németi, I., Sain, I., Simon, A.: Decidable and undecidable logics with
a binary modality. J. Logic Lang. Inf. 4(3), 191–206 (1995)

15. Lutz, C.: PDL with intersection and converse is decidable. In: Ong, L. (ed.) CSL
2005. LNCS, vol. 3634, pp. 413–427. Springer, Heidelberg (2005)

16. Massacci, F.: Decision procedures for expressive description logics with intersec-
tion, composition, converse of roles and role identity. In: IJCAI, pp. 193–198. Mor-
gan Kaufmann (2001)

17. Peleg, D.: Concurrent dynamic logic. J. ACM 34(2), 450–479 (1987)

554 P. Balbiani and J. Boudou

18. Pratt, V.R.: A near-optimal method for reasoning about action. J. Comput. Syst.
Sci. 20(2), 231–254 (1980)

19. Pym, D.J.: The semantics and Proof Theory of the Logic of Bunched Implications.
Applied Logic Series, vol. 26. Kluwer Academic Publishers, Dordrecht (2002)

20. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, pp. 55–74. IEEE Computer Society (2002)

Unification

Regular Patterns in Second-Order Unification

Tomer Libal(B)

INRIA, Paris, France
tomer.libal@inria.fr

Abstract. The second-order unification problem is undecidable. While
unification procedures, like Huet’s pre-unification, terminate with success
on unifiable problems, they might not terminate on non-unifiable ones.
There are several decidability results for infinitary unification, such as for
monadic second-order problems. These results are based on the regular
structure of the solutions of these problems and by computing minimal
unifiers. In this paper we describe a refinement to Huet’s pre-unification
procedure for arbitrary second-order signatures which, in some cases, ter-
minates on problems on which the original pre-unification procedure fails
to terminate. We show that the refinement has, asymptotically, the same
complexity as the original procedure. Another contribution of the paper
is the identification of a new decidable class of second-order unification
problems.

1 Introduction

The unification principle has many uses in Computer Science. Due to the unde-
cidability of the higher-order unification problem, many applications find it nec-
essary to restrict the use of unification to decidable classes only. This can either
be achieved by applying unification on fragments of higher-order logic problems,
whose unifiability is known to be decidable or by restricting unification proce-
dures to search for an incomplete set of unifiers. Among the fragments of the
first kind we can find Miller’s higher-order pattern unification [15,17] and decid-
able sub-classes of context unification [6,12,18,20]. When we need to consider
arbitrary higher-order unification problems, we must search for an incomplete
set of unifiers.

Most higher-order theorem provers, such as Isabelle [16], TPS [2] and LEO
II [4] and III [24], rely on Huet’s pre-unification procedure [9] for the unification
of higher-order terms. Since the procedure does not terminate, these theorem
provers must search for incomplete finite sets of unifiers only. The most common
way to obtain such a set is by bounding the depth of the terms in the co-domain
of the unifiers. When one is interested in complete sets of unifiers, one must
accept non-termination.

Tomer Libal—Funded by the ERC Advanced Grant ProofCert.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 557–571, 2015.
DOI: 10.1007/978-3-319-21401-6 38

558 T. Libal

The common practice of establishing the decidability of a new class of infini-
tary unification problems is by proving that their complete sets of unifiers can
be described by a finite regular expression. One can then use the exponent of
periodicity theorem [10,19], in order to prove the existence of minimal unifiers.
Among the classes of unification problems decided by this technique are not only
those over monadic signatures [7,14,25] but also their extensions to problems
over arbitrary signatures for which the unifiers are restricted to have a limited
number of occurrences of the bound variables [12,13,18,20,21]. The common
property of all these classes is that complete sets of unifiers can be described by
regular terms. By regularity we mean the ability to describe infinite sets using
finite descriptions.

Unfortunately, unrestricted unification over arbitrary signatures does not
enjoy this property, even when restricted to very simple second-order languages,
as was shown by Farmer [8].

Many interesting problems, among them unification problems generated in
the search of theorems of second-order arithmetic, do not fall within these classes.
For these problems, non-termination of unification seems inevitable.

In this paper we present a procedure for second-order pre-unification which
terminates on more classes of unification problems than Huet’s pre-unification
procedure while keeping to the same complexity class. This is achieved by a
new technique of extending the non-regular complete sets of unifiers of these
problems into regular complete supersets of unifiers. We then prove the existence
of minimal members in these supersets. Empty complete supersets of unifiers will
imply the emptiness of the respective complete sets of unifiers and those, will
prove the non-unifiability of the respective problems. We prove the soundness
and completeness of this procedure.

As a second contribution, we use the structures developed in this paper in
order to recognize a new class of second-order unification problems, whose com-
plete sets of unifiers are regular and which can be decided by the new pre-
unification procedure. We believe that this approach can lead to more decidable
classes of second-order unification problems.

Other similar works includes the work of Abdulrab et al. for the finite rep-
resentation of all unifiers for sub-classes of the string unification problem by
using graphs and regular expressions [1], that of Zaionc for the regular expres-
sion description of complete sets of unifiers for monadic second-order unification
[25] and the work of Le Chenadec for the description of first-order cycles using
finite automata [11]. These works differ from the current one in that they cover
problems whose complete sets of unifiers are regular.

The paper is organized as follows. In the next section we give some definitions
and notations which will be used throughout the paper. The main section is
dedicated to the construction of complete supersets of unifiers, the establishment
of some of their properties and the presentation of the pre-unification procedure.
We then prove the correctness of the procedure and its improved termination
over classes of problems when compared to Huet’s procedure. We conclude by
proving the asymptotic equivalence of the complexity of the two procedures.

Regular Patterns in Second-Order Unification 559

Due to space considerations, we omit the proofs of all the theorems and
lemmas appearing in the paper. The interested reader can find these proofs on
the author’s website1.

2 Preliminaries

2.1 Typed Lambda Calculus

In this section we will present the logical language that will be used throughout
the paper. The language is a version of Church’s simple theory of types [5] with
an η-conversion rule as presented in [3,22] and with implicit α-conversions. Most
of the definitions in this section are adapted from [22].

Let T0 be a set of basic types, then the set of types T is generated by
T := T0|T → T. Let Σ be a signature of function symbols and let V be a count-
ably infinite set of variable symbols. The function ar denotes the arity of each
function symbol and variable according to its type in the usual way. Variables
are normally denoted by the letters x, y, z and function symbols by the letters
f, g, h. We sometimes use subscripts and superscript as well. We sometimes add
a superscript to symbols in order to specify their type. The set Termα of terms
of type α is generated by Termα := fα|xα|λxβ .Termγ |Termβ→α(Termβ) where
f ∈ Σ, x ∈ V and α ∈ T (in the abstraction, α = β → γ). Applications through-
out the paper will be associated to the right. We will sometimes omit brackets
in applications when the meaning is clear. The set Term denotes the set of all
terms. Subterms, positions and position prefixes are defined as usual. Sizes of
positions denote the length of the path to the position. We denote the subterm
of t at position p by t|p. Bound and free variables are defined as usual. Given a
term t, we denote by hd(t) its head symbol and distinguish between flex terms,
whose head is a free variable and rigid terms, whose head is a function symbol
or a bound variable. Rigid positions are positions such that no flex subterm is
in a prefix position. The depth of a term t, denoted by d(t), is the size of the
maximal rigid position in t. The order of types are denoted by order and are
defined as usual. The order of a term, denoted using the same symbol, is the
order of its type.

Substitutions and their composition (◦) are defined as usual. We denote by
σ|W the substitution obtained from substitution σ by restricting its domain to
variables in W . We extend the application of substitutions to terms in the usual
way and denote it by postfix notation. Variable capture is avoided by implicitly
renaming variables to fresh names upon binding. A substitution σ is more general
than a substitution θ, denoted σ ≤s θ, if there is a substitution δ such that
σ ◦ δ = θ.

We assume that all the terms considered in this paper are in β-normal and
η-expanded forms [22]. We further assume that all substitutions are idempotent
[23] and contain only terms in β-normal and η-expanded forms in their co-
domain. This allows us to deal with normal forms implicitly (see [22] for more

1 http://logic.at/staff/shaolin/papers/holunif proofs.pdf.

http://logic.at/staff/shaolin/papers/holunif_proofs.pdf

560 T. Libal

information). Equality between terms is always assumed to be α-equality. Each
application of a λ-term to another is always converted implicitly into β−normal
form.

We introduce also a vector notation tn for the sequence of terms t1, . . . , tn.
Currying and uncurrying is applied implicitly as well.

We will sometimes refer to the position 0 < i ≤ n of a term s in the sequence
by t1, . . . , s@i, . . . , tn.

2.2 Contexts and Pre-unification

The majority of the definitions in this section are taken from [21,22].
Terms of the form λzα.sα where z occurs in s exactly once are called contexts

and are denoted by s([.]) where [.] is considered as the “hole” of the term. We
denote by mpath(C) the main path of the context C which is the position of the
hole in the context C.

Unification problems (or systems) are sets of terms t
.= s, called equations,

where t and s are of the same type. Based on whether t and s are flex or rigid, we
make a distinction between flex-flex, flex-rigid and rigid-rigid equations. Systems
are considered closed under symmetry of .=.

A substitution σ unifies an equation t
.= s if tσ = sσ. It unifies a sys-

tem if it unifies all its equations. We denote the set of all unifiers of a sys-
tem S by Unifiers(S). Let =̃ be the least congruence relation on Term which
contains {(t, s) | hd(t), hd(s) ∈ V}. A substitution σ pre-unifies an equation
t

.= s if tσ=̃sσ. It pre-unifies a system if it pre-unifies all its equations. The
completing substitution ξS for a system S maps every two variables in S of
the same type to the same fresh variable. It is simple to prove that if σ pre-
unifies a system S, then σ ◦ ξ unifies S [22]. A complete set of pre-unifiers for
a system S, denoted by PreUnifiers(S), is a set of substitutions such that
{σ ◦ ξS | σ ∈ PreUnifiers(S)} ⊆ Unifiers(S) and for every θ ∈ Unifiers(S)
there exists σ ∈ PreUnifiers(S) such that σ|dom(θ) ≤ θ.

An equation x
.= t in η-normal form is called solved in system S if x does

not occur elsewhere in S. We call x a solved variable in S. An equation is pre-
solved in a system S if it is either solved in S or flex-flex. A system is solved
(pre-solved) if all its equations are solved (pre-solved). We denote by σS the
substitution obtained from mapping x to t in all solved equations x

.= t in S.
Imitation partial bindings and projection partial bindings are defined in [22]

and are denoted, respectively, by PB(f, α) and PB(i, α) where α ∈ T, f ∈ Σ
and 0 < i. Briefly, partial bindings are substitutions which are used in order
to approximate the (possibly infinite) number of final mappings for variables
occurring in flex-rigid equations. By either imitating the head symbol of the
rigid equation or by projecting one of the bound variables of the mapping for
the variable, the set of partial bindings is always finite.

Huet’s pre-unification procedure PUA, as presented by Snyder and Gallier
[22], is given in Fig. 1.

Regular Patterns in Second-Order Unification 561

Fig. 1. PUA- Huet’s pre-unification procedure

Theorem 1 (Soundness of PUA [9]). If S′ is obtained from a unification
system S using PUA and is in pre-solved form, then σS′ |FV(S) ∈ PreUnifiers(S).

Theorem 2 (Completeness of PUA [9]). If θ ∈ PreUnifiers(S) for a uni-
fication system S, then there exists a pre-solved system S′, which is obtainable
from S using PUA such that σS′ |FV(S) ≤s θ.

Remark 3. The procedure PUA contains two kinds of non-determinism. On the
one hand, we need to choose an equation at each step and on the other, we need
to choose which rule to apply to it. In [22] it is argued that completeness is
only affected by the second kind of non-determinism and more precisely, by the
choice between the (Imitate) and (Project) rules. The first case is a “don’t-
care” non-determinism while the second is a “don’t-know” non-determinism. We
will use this fact in the rest of the paper and allow ourselves to choose specific
equations to process without harming completeness.

3 The Refinement Procedure

In order to simplify definitions and proofs, we consider only first-order functions
symbols of arbitrary arity and second-order unary variables. Note that even very
simple second-order unification classes are undecidable [8]. An extension to the
general second-order case is straightforward. We discuss the possibility to extend
the method to the general higher-order case in the conclusion.

In this section we will be interested in trying to obtain failure information
from cyclic equations.

562 T. Libal

3.1 Cyclic Equations and Their Properties

Let the relations x < y and x = y be defined for equations C(xtn) .=
D(ysm) where C and D are contexts and where mpath(C) < mpath(D) and
mpath(C) = mpath(D) respectively. Define a partial order over variables by
the transitive closure of the union of the two relations (under further restric-
tions on the symmetry of =, see [13,21] for a full definition). A set of equa-
tions is cyclic if the partial order generated over the set contains the relation
x < x for some variable x occurring in the set. An example of a cycle is the set
{xa

.= f(yc, b), g(yd) .= g(ze), zb
.= xb}. Cycles capture the idea that using PUA,

one can, in some cases, obtain again (a variation of) the original set of equations.
The next result exemplifies the role of cycles in the non-termination of second-

order unification.

Theorem 4 (Levy [13]). It is decidable whether a second-order unification
problem not containing cycles has a unifier.

In this paper we will focus on a certain kind of second-order cycles of the
following form.

Definition 5 (Cyclic equations). Let e be an equation of the form λzn.x0t
.=

λzn.C(x0s). e is called a cyclic equation where C is a context. t, s and C may
contain the variables zn but not the variable x0. We denote the fact that e is
cyclic by the predicate cyclic(e).

We next prove that the restriction on C not to contain x0 can be avoided.

Lemma 6. Let e be an equation λzn.x0t
.= λzn.C(x0s) and assume further,

without loss of generality, that for all occurrences of x0 in C, the sizes of their
positions are not smaller than the size of the position of the hole in C (otherwise,
define the hole to be the position of the minimal such occurrence). Then we can
obtain, using the rules of PUA, an equation λzn.w0t

.= λzn.C ′(w0s) where w0

does not occur in C ′ for some context C ′.

Definition 7 (Progressive context). Given a cyclic equation e, where C =
C1 . . . Cm such that for all 0 < i ≤ m, Ci = fi(r1i , . . . , [.], . . . , rni

i) where ni =
ar(fi) − 1. Define also, for all m < i, Ci = fk(y1

i−ms, . . . , [.], . . . , ynk
i−ms) where

k = ((i − 1) mod m) + 1 and yj
i−m for 0 < j ≤ nk are new variables. We define

the progressive context De
i for all 0 ≤ i as follows:

– for all 0 ≤ i, De
i = Ci+1 . . . Ci+m.

We will use the cycle x0t
.= f(r1, g(x0s, r2)) as a running example. This

cycle is interesting as it has instances which are unifiable and instances which
are not unifiable. For the unifiable ones, both Huet’s procedure and the one
presented here will compute a complete set of pre-unifiers. For the non-unifiable
ones, Huet’s will fail to terminate while our procedure, as proved in Theorem37
and under some additional restrictions as defined in Definition 35, will terminate
with failure. An example for a unifiable instance is for t = f(a, g(f(a, a), a)), r1 =
a, r2 = a and s = f(a, a). For obtaining a non-unifiable instance which corre-
sponds to Definition 35, just replace s from the previous instance with f(a, b).

Regular Patterns in Second-Order Unification 563

Example 8. Given the cycle x0t
.= f(r1, g(x0s, r2)) (having m = 2), its progres-

sive contexts for 0 ≤ i ≤ 2 are

– D0 = C1C2, D1 = C2C3 and D2 = C3C4

where

– C1 = f(r1, [.]).
– C2 = g([.], r2).
– C3 = f(y1, [.]).
– C4 = g([.], y2).

In the rest of this paper, e will refer to equations of this form and t, s, C,m, k,
ni, rj

i and yj
i will refer to the corresponding values in e.

As mentioned in Remark 3, the “don’t-know” non-determinism affects the
completeness of PUA and it is not hard to see that it is also the cause of its non-
termination. The way to improve termination and to define additional decid-
able classes will depend, therefore, on refining the possible “don’t-know” choices
allowed in the search.

We will first define the result of applying (Imitate) and (Project) (plus
some additional deterministic rules) on cyclic equations.

Definition 9 (I and P). Given a cyclic equation e, for all 0 ≤ i, we define
I(i), I∗(i) and P(i) inductively as follows:

– P(0) = I(0) = I∗(0) = ∅.
– if 0 < i ≤ m then I∗(i) = I∗(i − 1) ∪ {λzn.yj

i t
.= λzn.rj

i | 1 ≤ j ≤ ni}.
– if m < i then I∗(i) = I∗(i − 1) ∪ {λzn.yj

i t
.= λzn.yj

i−ms | 1 ≤ j ≤ ni}.
– for all 0 < i, I(i) = I∗(i) ∪ {λzn.xit

.= λzn.De
i (xis)}.

– for all 0 < i, P(i) = I∗(i − 1) ∪ {λzn.t
.= λzn.De

i−1(s)}.
Using these definitions, one can now describe the search conducted by PUA

graphically as can be seen in Fig. 2.

Fig. 2. The “don’t-know” non-determinism in PUA

Example 10. Extending Example 8, we get the following values for 0 < i ≤ 3:

– P(1) is t
.= f(r1, g(s, r2)) which is equivalent to t

.= D0(s).
– I(1) is {x1t

.= g(f(y1s, x1s), r2), y1t
.= r1} which is equivalent to {x1t

.=
D1(x1s), y1t

.= r1}.

564 T. Libal

– P(2) is {t
.= g(f(y1s, s), r2), y1t

.= r1} which is equivalent to {t
.= D1(s), y1t

.=
r1}.

– I(2) is {x2t
.= f(y1s, g(x2s, y2s)), y2t

.= r2, y1t
.= r1} which is equivalent to

{x2t
.= D2(x2s), y2t

.= r2, y1t
.= r1}.

– P(3) is {t
.= D2(s), y2t

.= r2, y1t
.= r1}

– I(3) is {x3t
.= D3(x3s), y3t

.= y1s, y2t
.= r2, y1t

.= r1}
The correctness of this description is proved next.

Lemma 11. Let e be a cyclic equation, then, up to the renaming of the free
variables and for all 0 ≤ i, the application of (Imitate), (Bind) and (Decomp)

on λzn.xit
.= λzn.De

i (xis) results in a set of equations containing λzn.xi+1t
.=

λzn.De
i+1(xi+1s).

We call this cycle the principle cycle of the application of (Imitate).

Lemma 12. Let S ∪ {e} be a unification problem where e is a cyclic equation.
Then, there is a substitution τ such that FV(S ∪ {e}) ∩ dom(τ) = {x0} and such
that the following holds, up to the renaming of the free variables:

– assume we repeatedly apply i times (Imitate), (Bind) and (Decomp) on e
and the generated principal cycles, then the obtained unification problem is
(S ∪ I(i))τ .

– assume we apply a (Project) and (Bind) after i − 1 applications of
(Imitate), (Bind) and (Decomp) on e and the generated principal cycles,
then the obtained problem is (S ∪ P(i))τ .

A simple but crucial fact that will enable us to enlarge the non-regular sets
of solutions of PUA into regular supersets is the following.

Proposition 13. Let S be a unification problem and let S′ ⊂ S, then:

– S is unified by a substitution σ only if S′ is unified by σ.
– PreUnifiers(S) ⊆ PreUnifiers(S′).

We can now prove that each derivation of e must, at some point, use the
above sequence of rules.

Lemma 14. For any S, σ ∈ PreUnifiers(S ∪{e}) iff there is 0 < i and substi-
tutions θ and τ such that θ ∈ PreUnifiers((S ∪ {e} ∪P(i))τ), θ|FV(S∪{e}) ≤s σ
and τ |FV(S∪{e}) ≤s σ.

By taking θ ◦ τ , the next corollary follows immediately.

Corollary 15. For any S, σ ∈ PreUnifiers(S ∪{e}) only if there is 0 < i and
a substitution θ such that θ ∈ PreUnifiers(S∪{e}∪P(i)), and θ|FV(S∪{e}) ≤s σ.

The definitions of the generated sets P(i) for all 0 < i, are given inductively.
We notice that the sets, for i > m, are made of two components:

– the inductive part which includes all equations {λzn.yj
l t

.= λzn.yj
l−ms | 1 ≤

j ≤ nk}, for all m < l ≤ i.
– the base part which includes the equations {λzn.t

.= λzn.De
i−1(s)} and

{λzn.yj
l t

.= λzn.rj
l | 1 ≤ j ≤ nk} for just 0 < l ≤ m.

We will use this distinction in the next section.

Regular Patterns in Second-Order Unification 565

3.2 The Refinement Procedure

In this section we will show how to obtain a superset of all unifiers of a cycle
such that this superset will not be defined inductively. This will allow us to
give a finite representation of this set which will be used in order to improve
termination.

The next sets are constructed without the inductive part mentioned earlier.

Definition 16 (P−). Given a cyclic equation e, we define P− for all 0 < i as
follows:

– if 0 < i ≤ m + 1 then P−(i) = P(i).
– if m + 1 < i then P−(i) = I∗(m) ∪ {λzn.t

.= λzn.De
i−1(s)}.

The equation λzn.t
.= λzn.De

i−1(s) is called the projected equation of P−(i).

As can be seen from the definition, for i > m, P− is defined in a non-inductive
way as it depends on a fixed set I∗(m).

Example 17. The values for the equation from Example 8 for i = 3, 4, 5, 6, 7 are:

– P−(3) = {t
.= D2(s), y2s

.= r2, y1s
.= r1} = P(3).

– P−(4) = {t
.= D3(s), y2s

.= r2, y1s
.= r1} ⊆ P(4).

– P−(5) = {t
.= D4(s), y2s

.= r2, y1s
.= r1} ⊆ P(5).

– P−(6) = {t
.= D5(s), y2s

.= r2, y1s
.= r1} ⊆ P(6).

– P−(7) = {t
.= D6(s), y2s

.= r2, y1s
.= r1} ⊆ P(7).

Together with Proposition 13 and Corollary 15, we can now prove two lemmas
asserting that these new sets are indeed complete supersets of unifiers.

Lemma 18. prjm For all 0 < i, P−(i) ⊆ P(i).

Lemma 19. For all S and for all 0 < i, PreUnifiers(S ∪ P(i)) ⊆
PreUnifiers(S ∪ P−(i)).

The fact that the sets P−(i), for i > m, are not defined in an inductive way,
will enable us to simplify the description of their pre-unifiers. In the next lemma
we will prove that iterating the (Imitate) rule beyond the first 3m iterations
gives no further information about the unifiability of the set.

Lemma 20. For all S and for all 3m < i, S∪P−(i) is unifiable iff S∪P−(i−m)
is unifiable. Moreover, if σ is a pre-unifier of S ∪ P−(i − m), then σ′ is a pre-
unifier of S ∪ P−(i) where dom(σ′) = dom(σ) \ {yj

l | 0 < j ≤ nk, i − 2m ≤
l < i − m} ∪ {yj

l | 0 < j ≤ nk, i − m ≤ l < i} and σ′(yj
l) = σ(yj

l−m) for all
i − m ≤ l < i and 0 < j ≤ nk where k = ((i − 1) mod m) + 1.

The intuition behind this lemma is demonstrated in the following example.

Example 21. Take P−(5) and P−(7) (remember that m = 2) from Example 17:

– P−(5) = {t
.= f(y3s, g(s, y4s)), y2s

.= r2, y1s
.= r1}.

566 T. Libal

– P−(7) = {t
.= f(y5s, g(s, y6s)), y2s

.= r2, y1s
.= r1}.

The two pairs of variables y3, y4 and y5, y6 occur only once in both sets.

Next, we prove that the supersets of pre-unifiers for e can be restricted by
computing pre-unifiers for the problems P−(i) for 0 < i ≤ 3m. This will establish
the minimality property which is required for proving termination.

Lemma 22. For any S and for any σ ∈ PreUnifiers(S ∪ {e}), there is 0 <
i ≤ 3m and θ ∈ PreUnifiers(S ∪ {e} ∪ P−(i)) such that θ|FV(S∪{e}) ≤s σ.

The following is a corollary of the previous lemma. This result states that
termination can be achieved on some problems, even if their sets of solutions is
irregular.

Corollary 23. Given a set S and a cycle e. If, for all 0 < i ≤ 3m,
PreUnifiers(P−(i)) = ∅, then S ∪ {e} is not unifiable.

As an example of applying the above corollary, consider the following instance
of our running example.

Example 24. Given the cycle x0(f(a, g(a, a), a)) .= f(a, g(x0(f(a, b)), a)), none
of the P−(i) for 0 < i ≤ 6 are unifiable. Using the above corollary, we can
conclude that this problem is not unifiable.

We will proceed next to the refinement of PUA but first, we need to modify
unification equations and the predicate cyclic. This modification is required in
order to apply the refinement at most once per cyclic equation.

Definition 25 (Marked equations). Given a unification equation λzn.t
.=

λzn.s, let λzn.t
.=•

λzn.s be its marked version. The function cyclic now fails
if e is marked.

The idea of the following procedure is the following. When running on a
unifiable problem, the extra equations added by the (Cycle) rule will also be
unifiable for some 0 < i ≤ 3m according to Lemma 22. On the contrary, when a
problem is not unifiable, the generated sets P−(i) must all be processed before
any rule is applied to e. If none is unifiable, we get on all branches of the search
(Symbol-Clash) failure nodes and therefore will not apply any further rule to
e and the procedure will terminate. Corollary 23 also tells us that in that case
the problem is indeed not unifiable. In the case the problem is not unifiable but
some set P−(i) is, we will proceed with the unifiability of e, which might not
terminate.

Definition 26 (RPUA). The procedure RPUA has the same set of rules as PUA

(see Fig. 1) but has, in place of (Imitate) and (Project), the rules in Fig. 3.
In addition, all rules apply to marked and unmarked equations in the same way.

Regular Patterns in Second-Order Unification 567

Fig. 3. RPUA- Pre-unification with refined termination

3.3 The Correctness of the Refinement

In this section we prove the soundness and completeness of the procedure. Both
are proved relatively to PUA.

Theorem 27 (Soundness of RPUA). If S′ is obtained from a unification sys-
tem S using RPUA and is in pre-solved form, then σS′ |FV(S) ∈ PreUnifiers(S).

For proving the completeness of RPUA, we need one more definition.

Definition 28 (Imitation blocks). Let D be a derivation in PUA, and let e
be an unmarked cyclic equation. The imitation block for e in D is the following
inductive set:

– e is in the imitation block.
– if there is an application of (Imitate) on an equation in the block, then its

principal cycle is also in the block.

The size of the block is the size of the set plus 1.

The intuition behind this definition is that imitation blocks help us recon-
struct, out of some arbitrary derivation, the exact i for constructing P−(i).

Theorem 29 (Completeness of RPUA). If θ is a pre-unifier of a unification
system S, then there exists a pre-solved system S′, which is obtainable from S
using RPUA such that σS′ |FV(S) ≤s θ.

3.4 Termination and Decidability Results

The most interesting property of RPUA is that it terminates on some cases where
PUA does not and, at the same time, has no additional asymptotic complexity.
We will investigate these two claims next.

We first prove that RPUA terminates on at least all problems on which PUA
terminates.

568 T. Libal

Theorem 30. Let S be a unification system, then PUA terminates on it only if
RPUA does.

We now prove that RPUA terminates, in contrast to PUA, on more classes of
problems.

As noted above, in order for RPUA to terminate on problems on which PUA
does not terminate, one must use the eager strategy of, upon calling (Cycle),
attempting to unify all generated sets P−(i) before applying any rule to e. In
order for RPUA not to compute unnecessary steps, we will also add a constraint
on the calls to (Imitate) and (Project).

Definition 31 (Possible pairs). Given a problem S ∪ {e} ∪ P−(i), an equa-
tion e′ derived from e and an equation e′′ derived from P−(i) are paired if e′

was derived from the set generated by applying (Imitate) i times on e and the
generated principle cycles, then applying one (Project) and then following the
rule applications used for deriving e′′ from P−(i).

The intuition behind possible pairs, as demonstrated in the following exam-
ple, is that one can optimize the execution of the procedure by applying the
same rules to pairs of equations.

Example 32. Consider the equation from previous examples and consider the
application of (Cycle) with i = 4, so P−(4) = {t

.= D3(s), y2s
.= r2, y1s

.= r1}.
After applying 3 times (Imitate) and a (Project) on e and its generated
principal cycles (among other rules), we obtain {t

.= D′
3(s), y

′
2s

.= r2, y
′
1s

.=
r1, y

′
3t

.= y′
1s} where D′

3 is equal to D3 except for the renaming of the free
variables. Then the following are possible pairs:

– t
.= D′

3(s) and t
.= D3(s).

– y′
2s

.= r2 and y2s
.= r2.

– y′
1s

.= r1 and y1s
.= r1.

Note that the equation y′
3t

.= y′
1s, has no possible pair.

Definition 33 (RPUA strategy). When running RPUA, we require the following
stategies:

– Given an unmarked cyclic equation, do the following:
• let i = 1.
• apply (Cycle) with i.
• exhaustively apply RPUA on the equations in P−(i).
• if a pre-solved form is found, break. Otherwise increment i by 1 (as long

as i ≤ 3m).
• try to apply (Symbol-Clash) on the current problem.

– Always apply the same (Project) or (Imitate) on both equations in a pos-
sible pair.

Theorem 34 (Correctness of the strategy). RPUA with the strategy is sound
and complete.

Regular Patterns in Second-Order Unification 569

We can now define a new class of second-order unification problems and show
it to be decidable when using RPUA, in contrast to PUA.

Definition 35 (Projected cycles). A cycle x0t
.= C(x0s) is called a projected

cycle if:

1. t is ground.
2. for all positions p in C which are not on the main path of C:

(a) d(t|p) < d(s).
(b) t|p = C|p.

Theorem 36. PUA does not terminate on problems containing projected cycles.

In the next theorem, we assert that the unifiability of problems in this class
can be decided using RPUA. The idea behind the proof is that, if the problem is
unifiable, it is unifiable only by substitutions which map each of the variables yj

i

to terms λz.sj
i where z does not occur in sj

i . Such substitutions will always unify
the equations yj

i t
.= yi−ms and therefore, our computed supersets are actually

complete sets of unifiers.

Theorem 37. RPUA decides the unification problem of projected cycles.

3.5 Asymptotic Analysis

In the last part of the paper we discuss the complexity of RPUA. We will mea-
sure the complexity of both procedures in the number of “don’t-know” non-
deterministic calls done along the derivation. A naive consideration of RPUA might
suggest that it has an asymptotically exponential slow-down, in the number and
size of the cyclic equations, on problems on which PUA terminates. We will show
next that both procedures have the same complexity.

Theorem 38. The number of “don’t know” non-deterministic choices in runs
of RPUA on some problem S when using the strategy is the same as in runs of
PUA on S.

4 Conclusion

Second-order unification problems play an important role within general higher-
order unification. Many important theorems, like those in arithmetic which
can be finitely axiomatized in second-order logic, require only unification over
second-order formulas. Nevertheless, except for few results like the one by Levy
[13] for deciding acyclic second-order unification problems, these problems are
treated within the general procedures for higher-order problems. In this paper
we have attempted to show that these problems are inherently simpler than
general higher-order problems and that one can design for them (theoretically)
improved unification procedures. We showed that for these problems, one can

570 T. Libal

compute information which is static for arbitrarily long runs and which can be
used in order to improve termination.

The fact that the procedure has the same asymptotic complexity does not
mean that it is as efficient as Huet’s. Indeed, even in the most efficient implemen-
tation where different computations of the P sets are done using the previous set
information, care should be taken to back-track at the right points and those,
extra machinery is required. On the other hand, this procedure might also be
implemented in a more efficient way that Huet’s. This can be achieved by taking
advantage of the natural parallelism which is inherent in the procedure in the
form of the separate computation of the 3m P sets. The claims in this paragraph
have still to be demonstrated and the implementation of this procedure, both
in a sequential form and in a parallel form, is planned using the multi-agent
architecture of LEO-III [24].

An extension to higher-order logic is far from being trivial. The main difficulty
is that the number of higher-order variables does not decrease when applying
projections. One of the consequences is that, in contrary to the second-order case
where infinite sequences of cyclic problems can only be generated by applying
imitations, such sequences can also be generated using projections. Even if this
obstacle can be overcome by detecting these cycles, the fact that the total number
of higher-order variables does not decrease at each P set, renders our procedure
ineffective.

An interesting extension to the work presented in the paper is to consider also
the equations in the set P \P−. This set was considered in this paper only with
regard to deciding the unification problem of projected cycles. We have started
a very promising work on using this set in order to build finite tree automata
which, together with unifiers of the finitely many P− sets, can be used in order to
decide the unification problem of far more complex cases than projected cycles.

References

1. Abdulrab, H., Goralcik, P., Makanin, G.S.: Towards parametrizing word equations.
ITA 35(4), 331–350 (2001)

2. Andrews, P., Issar, S., Nesmith, D., Pfenning, F.: The tps theorem proving system.
In: Lusk, E.R., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 760–761.
Springer, Heidelberg (1988)

3. Barendregt, H.P.: The Lambda Calculus - Its Syntax and Semantics. Studies in
Logic and the Foundations of Mathematics, vol. 103. North-Holland, Amsterdam
(1984)

4. Benzmüller, C., Paulson, L., Theiss, F., Fietzke, A.: The LEO-II project. In: Pro-
ceedings of the Fourteenth Workshop on Automated Reasoning, Bridging the Gap
between Theory and Practice. Imperial College, London (2007)

5. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5(2), 56–68
(1940)

6. Comon, H.: Completion of rewrite systems with membership constraints. part i:
deduction rules. J. Symb. Comput. 25(4), 397–419 (1998)

7. Farmer, W.M.: A unification algorithm for second-order monadic terms. Ann. Pure
Appl. Logic 39(2), 131–174 (1988)

Regular Patterns in Second-Order Unification 571

8. Farmer, W.M.: Simple second-order languages for which unification is undecidable.
Theor. Comput. Sci. 87(1), 25–41 (1991)

9. Huet, G.P.: A unification algorithm for typed lambda-calculus. Theor. Comput.
Sci. 1(1), 27–57 (1975)

10. Jaffar, J.: Minimal and complete word unification. J. ACM (JACM) 37(1), 47–85
(1990)

11. Le Chenadec, P.: The finite automaton of an elementary cyclic set. Technical
Report RR-0824, INRIA, April 1988

12. Levy, J.: Linear second-order unification. In: Ganzinger, H. (ed.) RTA 1996. LNCS,
vol. 1103, pp. 332–346. Springer, Heidelberg (1996)

13. Levy, J.: Decidable and undecidable second-order unification problems. In: Nipkow,
T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 47–60. Springer, Heidelberg (1998)

14. Makanin, G.S.: On the decidability of the theory of free groups. In: FCT, pp.
279–284 (1985). (in Russian)

15. Miller, D.: Unification of simply typed lambda-terms as logic programming. In: 8th
International Logic Programming Conference, pp. 255–269. MIT Press (1991)

16. Paulson, L.: Isabelle: the next seven hundred theorem provers. In: Lusk, E.R.,
Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 772–773. Springer, Heidelberg
(1988)

17. Prehofer, C.: Decidable higher-order unification problems. In: Bundy, A. (ed.)
CADE 1994. LNCS, vol. 814, pp. 635–649. Springer, Heidelberg (1994)

18. Schmidt-Schauß, M.: A decision algorithm for stratified context unification. J. Log.
Comput. 12(6), 929–953 (2002)

19. Schmidt-Schauß, M., Schulz, K.U.: On the exponent of periodicity of minimal solu-
tions of context equations. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp.
61–75. Springer, Heidelberg (1998)

20. Schmidt-Schauß, M., Schulz, K.U.: Solvability of context equations with two con-
text variables is decidable. J. Symb. Comput. 33(1), 77–122 (2002)

21. Schmidt-Schauß, M., Schulz, K.U.: Decidability of bounded higher-order unifica-
tion. J. Symb. Comput. 40(2), 905–954 (2005)

22. Snyder, W., Gallier, J.H.: Higher-order unification revisited: complete sets of trans-
formations. J. Symb. Comput. 8(1/2), 101–140 (1989)

23. Snyder, W.S.: Complete sets of transformations for general unification. Ph.D. the-
sis, Philadelphia, PA, USA (1988). AAI8824793

24. Wisnieski, M., Steen, A., Benzmüller, C.: The Leo-III project. In: Bolotov, A.,
Kerber, M. (eds) Joint Automated Reasoning Workshop and Deduktionstreffen, p.
38 (2014)

25. Zaionc, M.: The regular expression descriptions of unifier sets in the typed lambda
calculus. Fundamenta Informaticae X, 309–322 (1987). North-Holland

Theorem Proving with Bounded
Rigid E -Unification

Peter Backeman and Philipp Rümmer(B)

Uppsala University, Uppsala, Sweden
philipp.ruemmer@it.uu.se

Abstract. Rigid E -unification is the problem of unifying two expres-
sions modulo a set of equations, with the assumption that every variable
denotes exactly one term (rigid semantics). This form of unification was
originally developed as an approach to integrate equational reasoning
in tableau-like proof procedures, and studied extensively in the late 80 s
and 90s. However, the fact that simultaneous rigid E -unification is unde-
cidable has limited practical adoption, and to the best of our knowledge
there is no tableau-based theorem prover that uses rigid E -unification.
We introduce simultaneous bounded rigid E -unification (BREU), a new
version of rigid E -unification that is bounded in the sense that variables
only represent terms from finite domains. We show that (simultaneous)
BREU is NP-complete, outline how BREU problems can be encoded as
propositional SAT-problems, and use BREU to introduce a sound and
complete sequent calculus for first-order logic with equality.

1 Introduction

The integration of efficient equality reasoning in tableaux and sequent calculi
is a long-standing challenge, and has led to a wealth of theoretically intriguing,
yet surprisingly few practically satisfying solutions. Among others, a family of
approaches related to the (undecidable) problem of computing simultaneous rigid
E-unifiers have been developed, by utilising incomplete unification procedures
in such a way that an overall complete first-order calculus is obtained. To the
best of our knowledge, however, none of those procedures has led to competitive
theorem provers.

We introduce simultaneous bounded rigid E-unification (BREU), a new ver-
sion of rigid E -unification that is bounded in the sense that variables only rep-
resent terms from finite domains. BREU is significantly simpler than ordinary
rigid E -unification, in terms of computational complexity as well as algorith-
mic aspects, and therefore a promising candidate for efficient implementation.
BREU still enables the design of complete first-order calculi, but also makes
combinations with techniques from the SMT field possible, in particular the use
of congruence closure to handle ground equations.

This work was partly supported by the Microsoft PhD Scholarship Programme and
the Swedish Research Council.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 572–587, 2015.
DOI: 10.1007/978-3-319-21401-6 39

Theorem Proving with Bounded Rigid E-Unification 573

1.1 Background and Motivating Example

We start by illustrating our approach using the following problem (from [5]):

φ = ∃x, y, u, v.

(
(a �≈ b ∨ g(x, u, v) ≈ g(y, f(c), f(d))) ∧
(c �≈ d ∨ g(u, x, y) ≈ g(v, f(a), f(b)))

)

To show validity of φ, a Gentzen-style proof (or, equivalently, a tableau) can be
constructed, using free variables for x, y, u, v:

A
a ≈ b � g(X, U, V) ≈ g(Y, f(c), f(d))

B
c ≈ d � g(U, X, Y) ≈ g(V, f(a), f(b))

� (a �≈ b ∨ g(X, U, V) ≈ g(Y, f(c), f(d))) ∧ (c �≈ d ∨ g(U, X, Y) ≈ g(V, f(a), f(b)))

� φ

To finish this proof, both A and B need to be closed by applying fur-
ther rules, and substituting concrete terms for the variables. The substitution
σl = {X �→ Y,U �→ f(c), V �→ f(d)} makes it possible to close A through
equational reasoning, and σr = {X �→ f(a), U �→ V, Y �→ f(b)} closes B, but
neither closes both. Finding a substitution that closes both branches is known as
simultaneous rigid E-unification (SREU), and has first been formulated in [9]:

Definition 1 (Rigid E-Unification). Let E be a set of equations, and s, t be
terms. A substitution σ is called a rigid E -unifier of s and t if sσ ≈ tσ follows
from Eσ via ground equational reasoning. A simultaneous rigid E -unifier σ is a
common rigid E-unifier for a set (Ei, si, ti)n

i=1 of rigid E-unification problems.

In our example, two rigid E -unification problems have to be solved:

E1 = {a ≈ b}, s1 = g(X,U, V), t1 = g(Y, f(c), f(d)),
E2 = {c ≈ d}, s2 = g(U,X, Y), t2 = g(V, f(a), f(b)).

We can observe that σs = {X �→ f(a), Y �→ f(b), U �→ f(c), V �→ f(d)} is a
simultaneous rigid E -unifier, and suffices to finish the proof of φ. In general, of
course, the SREU problem famously turned out undecidable [4], which makes
the style of reasoning shown here problematic.

Different solutions have been proposed to address this situation, including
potentially non-terminating, but complete E -unification procedures [8], and ter-
minating but incomplete algorithms that are nevertheless sufficient to create
complete proof procedures [5,11]. The practical impact of such approaches has
been limited; to the best of our knowledge, there is no (at least no actively
maintained) theorem prover based on such explicit forms of SREU.

This paper introduces a new approach, bounded rigid E-unification (BREU),
which belongs to the class of “terminating, but incomplete” algorithms for
SREU. In contrast to ordinary SREU, our method only considers E -unifiers
where substituted terms are taken from some predefined finite set. This directly
implies decidability of the unification problem; as we will see later, the prob-
lem is in fact NP-complete, even for the simultaneous case, and can be handled
efficiently using SAT technology. In our experiments, cases with hundreds of

574 P. Backeman and P. Rümmer

simultaneous unification problems and thousands of terms were well in reach,
and future advances in terms of algorithm design and efficient implementation
are expected to further improve scalability.

For sake of presentation, BREU operates on formulae that are normalised by
means of flattening (observe that φ and φ′ are equivalent):

φ′ = ∀z1, z2, z3, z4.

(

f(a) �≈ z1 ∨ f(b) �≈ z2 ∨ f(c) �≈ z3 ∨ f(d) �≈ z4 ∨

∃x, y, u, v. ∀z5, z6, z7, z8.

⎛

⎝
g(x, u, v) �≈ z5 ∨ g(y, z3, z4) �≈ z6 ∨
g(u, x, y) �≈ z7 ∨ g(v, z1, z2) �≈ z8 ∨
((a �≈ b ∨ z5 ≈ z6) ∧ (c �≈ d ∨ z7 ≈ z8))

⎞

⎠

⎞

⎠

A proof constructed for φ′ has the same structure as the one for φ, with the
difference that all function terms are now isolated in the antecedent:

A′

. . . , g(X, U, V) ≈ o5, a ≈ b � o5 ≈ o6

B′

. . . , g(U, X, Y) ≈ o7, c ≈ d � o7 ≈ o8
...

f(a) ≈ o1 ∨ f(b) ≈ o2 ∨ f(c) ≈ o3 ∨ f(d) ≈ o4 � ∃x, y, u, v. ∀z5, z6, z7, z8. . . .
(∗)

...

� ∀z1, z2, z3, z4. . . .

To obtain a bounded rigid E -unification problem, we now restrict the terms
considered for instantiation of X,Y,U, V to the symbols that were in scope
when the variables were introduced (at (∗) in the proof): X ranges over con-
stants {o1, o2, o3, o4}, Y over {o1, o2, o3, o4,X}, and so on. Since the problem is
flat, those sets contain representatives of all existing ground terms at point (∗)
in the proof. It is therefore possible to find a simultaneous E -unifier, namely the
substitution σb = {X �→ o1, Y �→ o2, U �→ o3, V �→ o4}.

It has long been observed that this restricted instantiation strategy gives rise
to a complete calculus for first-order logic with equality. The strategy was first
introduced as dummy instantiation in the seminal work of Kanger [13] (in 1963,
i.e., even before the introduction of unification), and later studied under the
names subterm instantiation and minus-normalisation [6,7]; the relationship to
SREU was observed in [5]. The impact on practical theorem proving was again
limited, however, among others because no efficient search procedures for dummy
instantiation were available [7]. The present paper addresses this topic and makes
the following main contributions:

– we define bounded rigid E -unification, as a restricted version of SREU, and
investigate its complexity (Sect. 3);

– we present a sound, complete, and backtracking-free BREU-based sequent
calculus for first-order with equality (Sects. 4–6);

– we give a preliminary experimental evaluation, comparing with other tableau-
based theorem provers (Sect. 7).

Theorem Proving with Bounded Rigid E-Unification 575

1.2 Further Related Work

For a general overview of research on equality handling in sequent calculi and
related systems, as well as on SREU, we refer the reader to the detailed handbook
chapter [6]. The following paragraphs survey some of the more recent work.

Our work is partly motivated by a recent line of research on backtracking-
free tableau calculi with free variables [10], capturing unification conditions as
constraints that are attached to literals or tableau branches. This calculus was
extended to handle equality using superposition-style inferences in [11], build-
ing on results from [5]. Our work resembles both [5,11] in that we define an
incomplete version of SREU, but show it to be sufficient for complete first-order
reasoning. Our variant BREU is incomparable in completeness to the SREU
solving in [5,11]: BREU is able to derive a solution for the example shown in
Sect. 1.1, which [5,11] cannot; on the other hand, the procedures in [5,11] are
able to synthesise new terms of unbounded size as unifiers, whereas our proce-
dure only considers terms from predefined bounded domains. The calculus in
[11] was further extended to handle linear integer arithmetic in [14], however,
excluding functions (but including uninterpreted predicates, to which functions
can be reduced via axioms), leading to a further unification problem that is
incomparable in expressiveness.

Equality handling was integrated into hyper tableaux in [2], again using
superposition-style inferences, and also including redundancy criteria. This work
deliberately avoids the use of rigid free variables shared between multiple tableau
branches, so that branches can be closed one at a time, and there is no need for
simultaneous E -unification. The calculus was implemented in the Hyper prover,
against which we compare our implementation in Sect. 7.

2 Preliminaries

We assume familiarity with classical first-order logic and Gentzen-style calculi
(see e.g., [8]). Given countably infinite sets C of constants (denoted by c, d, . . .),
Vb of bound variables (written x, y, . . .), and V of free variables (denoted by
X,Y, . . .), as well as a finite set F of fixed-arity function symbols (written
f, g, . . .), the syntactic categories of formulae φ and terms t are defined by

φ ::= φ ∧ φ
∣
∣ φ ∨ φ

∣
∣ ¬φ

∣
∣ ∀x.φ

∣
∣ ∃x.φ

∣
∣ t ≈ t, t ::= c

∣
∣ x

∣
∣ X

∣
∣ f(t, . . . , t).

Note that we distinguish between constants and zero-ary functions for reasons
that will become apparent later. We generally assume that bound variables x
only occur underneath quantifiers ∀x or ∃x. Semantics of terms and formulae
without free variables is defined as is common using first-order structures (U, I)
consisting of a non-empty universe U , and an interpretation function I.

We call constants and (free or bound) variables atomic terms, and all other
terms compound terms. A flat equation is an equation between atomic terms, or
an equation of the form f(t1, . . . , tn) ≈ t0, where t0, . . . , tn are atomic terms.
A flat formula is a formula φ in which functions only occur in flat equations.

576 P. Backeman and P. Rümmer

A formula φ is positively flat (negatively flat) if it is flat, and every occurrence of
a function symbol is underneath an even (odd) number of negations. Note that
every formula can be transformed to an equivalent positively flat (negatively
flat) formula; we will usually assume that such preprocessing has been applied to
formulae handled by our procedures. This kind of preprocessing is also standard
for congruence closure procedures [1], and similarly used in SMT solvers.

If Γ is a finite set of positively flat formulae (the antecedent), and Δ a finite
set of negatively flat formulae (the succedent), then Γ � Δ is called a sequent. A
sequent Γ � Δ without free variables is called valid if the formula

∧
Γ → ∨

Δ
is valid. A calculus rule is a binary relation between finite sets of sequents (the
premises) and sequents (the conclusion).

A substitution is a mapping of variables to terms, such that all but finitely
many variables are mapped to themselves. Symbols σ, θ, . . . denote substitutions,
and we use post-fix notation φσ or tσ to denote application of substitutions. An
atomic substitution is a substitution that maps variables only to atomic terms.
We write u[r] do denote that r is a sub-expression of a term or formula u.

Definition 2 (Replacement relation [16]). The replacement relation →E

induced by a set of equations E is defined by: u[l] → u[r] if l ≈ r ∈ E. The
relation ↔∗

E represents the reflexive, symmetric and transitive closure of →E.

3 Bounded Rigid E -Unification

We present bounded rigid E -Unification, a restriction of rigid E -unification in
the sense that we now require solutions to be atomic substitutions such that
variables are only mapped to smaller atomic terms according to a given partial
order �. This order takes over the role of an occurs-check of regular unification.

Definition 3 (BREU). A bounded rigid E -unification (BREU) problem is a
triple U = (�, E, e), with � being a partial order over atomic terms such that
for all variables X the set {s | s � X} is finite; E is a finite set of flat equations;
and e = s ≈ t is an equation between atomic terms (the target equation). An
atomic substitution σ is called a bounded rigid E -unifier of s and t if sσ ↔∗

Eσ tσ
and Xσ � X for all variables X.

Note that the partial order � is in principle an infinite object. However, only
a finite part of it is relevant for defining and solving a BREU problem, which
ensures that BREU problems can effectively be represented.

Definition 4 (Simultaneous BREU). A simultaneous bounded rigid E -uni-
fication problem is a pair (�, (Ei, ei)n

i=1) such that each triple (�, Ei, ei) is a
bounded rigid E-unification problem. An atomic substitution σ is a simultaneous
bounded rigid E -unifier for (�, (Ei, ei)n

i=1) if σ is a bounded rigid E-unifier for
each problem (�, Ei, ei).

A solution to a simultaneous BREU problem can be used to close all branches
in a proof tree. In Sect. 4 we present the connection in detail.

Theorem Proving with Bounded Rigid E-Unification 577

Example 5. We revisit the example introduced in Sect. 1.1, which leads to the
following simultaneous BREU problem (�, {(E1, e1), (E2, e2)}):

E1 = E ∪ {a ≈ b}, e1 = o5 ≈ o6, E2 = E ∪ {c ≈ d}, e2 = o7 ≈ o8,

E =
{

f(a) ≈ o1, f(b) ≈ o2, f(c) ≈ o3, f(d) ≈ o4,
g(X,U, V) ≈ o5, g(Y, o3, o4) ≈ o6, g(U,X, Y) ≈ o7, g(V, o1, o2) ≈ o8

}

with {a, b, c, d} ≺ o1 ≺ o2 ≺ o3 ≺ o4 ≺ X ≺ Y ≺ U ≺ V ≺ o5 ≺ o6 ≺ o7 ≺ o8.
A unifier to this problem is sufficient to close all goals of the tree up to

equational reasoning; one solution is σ = {X �→ o1, Y �→ o2, U �→ o3, V �→ o4}.

While SREU is undecidable in the general case, BREU is decidable; the exis-
tence of bounded rigid E -unifiers can be decided in non-deterministic polynomial
time, since it can be verified in polynomial time that a substition σ is a solution
of a (possibly simultaneous) BREU problem (and since an E -unifier only has
to consider variables that occur in the problem, it can be represented in space
linear in the size of the BREU problem). Hardness follows from the fact that
propositional satisfiability can be reduced to BREU, by virtue of the following
construction.

3.1 Reduction of SAT to BREU

Consider propositional formulae φb, which are assumed to be constructed using
the following operators:

φb ::= p
∣
∣ ¬φb

∣
∣ φb ∨ φb

where p is a propositional symbol.
A formula φb of this kind is converted to a BREU problem by introducing

two constants 0 and 1; two function symbols for and fnot; for each propositional
symbol p in φb, a variable Xp such that 0 ≺ Xp and 1 ≺ Xp; and for each
sub-formula ψ of φb, a constant cψ and an equation:

Xp ≈ cψ if ψ = p,
fnot(cψ1) ≈ cψ if ψ = ¬ψ1,
for(cψ1 , cψ2) ≈ cψ if ψ = ψ1 ∨ ψ2.

The above, together with the set of equations {for(0,0) ≈ 0, for(0,1) ≈
1, for(1,0) ≈ 1, for(1,1) ≈ 1, fnot(0) ≈ 1, fnot(1) ≈ 0} defining the semantics
of the Boolean operators, and a target equation cφb

≈ 1 yields a BREU problem
that is naturally equivalent to the problem of checking satisfiability of φb. Indeed,
every E -unifier can be translated to an assignment A of the propositional symbols
such that A |= φb.

Theorem 6. Satisfiability of BREU problems is NP-complete.

578 P. Backeman and P. Rümmer

3.2 Generalisations

A number of generalisations in the definition of BREU are possible, but can
uniformly be reduced to BREU as formulated in Definition 3, without causing a
blow-up in the size of the BREU problem.

General Target Constraints. Most importantly, there is no need to restrict BREU
to single target equations e, instead arbitrary positive Boolean combinations
of equations can be solved; this observation is useful for integration of BREU
into calculi. Any such combination of equations can be transformed to a single
target equation using a construction resembling that in Sect. 3.1, at the cost of
introducing a linear number of new symbols and defining equations.

For the remainder of the paper, we assume that e in Definition 3 can indeed
be any positive Boolean combination of atomic equations.

Arbitrary Equations. BREU problems containing arbitrary (i.e., possibly non-
flat) equations in E or as target equation can be handled by reduction to equisat-
isfiable BREU problems with only flat equations, in a manner similar to [1]. Any
non-flat equation of the form t[f(c̄)] ≈ s can be replaced by two new equations
t[d] ≈ s and f(c̄) ≈ d, where d is a fresh constant; the symmetric case, and non-
flat target equations are handled similarly. Iterating this reduction eventually
results in a problem with only flat equations.

Non-atomic E-unifiers. It is further possible to consider partial orders � over
arbitrary terms, as long as the set {s | s � X} is still finite for all variables X.
Reduction to problems as in Definition 3 is done by introducing a fresh constant ct

and a (possibly non-flat) equation t ≈ ct for each compound term t occurring in
a set {s | s � X} for some variable X in the BREU problem. A new order �′ is
defined by replacing compound terms t with constants ct, in such a way that

{s | s �′ X} = {s | s � X, s is atomic} ∪ {ct | t � X, t is compound}.

With this in mind, it is possible to relax Definition 3 by including non-atomic
unifiers σ (which might map variables to compound terms) as solutions to a
BREU problem, as long as the condition Xσ � X holds for all variables X.

Example 7. Consider the generalised BREU problem B = (�, E, e) defined by

E = {f(f(a, b), c) ≈ g(b), f(X,Y) ≈ c, g(b) ≈ a}, e = a ≈ c,

a ≺ b ≺ c ≺ f(a, a) ≺ f(a, b) ≺ f(b, a) ≺ f(b, b) ≺ X ≺ Y.

Intuitively, the order � encodes the fact that an E -unifier has to be constructed
that maps every variable to a term with at most one occurrence of f , and no
occurrence of g. A solution is the substitution σ = {X �→ f(a, b), Y �→ c}.

An equisatisfiable BREU problem according to Definition 3 is B′ = (�′

, E′, e′}:

E′ =
{

f(d1, c) ≈ d2, f(a, b) ≈ d1, g(b) ≈ d2, f(X,Y) ≈ c, g(b) ≈ a,
f(a, a) ≈ d3, f(a, b) ≈ d4, f(b, a) ≈ d5, f(b, b) ≈ d6

}

,

e′ = e = a ≈ c, a ≺′ b ≺′ c ≺′ d3 ≺′ d4 ≺′ d5 ≺′ d6 ≺′ X ≺′ Y,

with the E -unifier σ′ = {X �→ d4, Y �→ c}.

Theorem Proving with Bounded Rigid E-Unification 579

3.3 Encoding of E -Unification into SAT

Since satisfiability of BREU problems is NP-complete, a natural approach to
compute solutions is an encoding as a propositional SAT problem, so that the
performance of modern SAT solvers can be put to use. A procedure for solving a
BREU problem will consist of three steps: (i) generating a candidate E -unifier σ;
(ii) using congruence closure [1] to calculate the equivalence relation induced by
the candidate σ and the equations of the BREU problem; and (iii) checking if
the BREU target equation is satisfied by this relation.

Each of these steps can be encoded into SAT. Candidate E -unifiers σ are
represented by a set of bit-vector variables storing the index of the term Xσ
that each variable X is mapped to. To guess candidate E -unifiers, it is then just
necessary to encode the conditions Xσ � X as a propositional formula.

A congruence closure procedure can be modelled by representing intermediate
results (i.e., equivalence relations) as a sequence of union-find data structures.
To represent such a data structure in SAT, it suffices to introduce one bit-vector
variable per atomic term t occurring in the BREU problem, storing the index of
the parent of t in the union-find forest. Propositional constraints are added to
characterise well-formed union-find forests, and to define the derivation of each
forest from the previous one.

Lastly, to check the correctness of the candidate σ, it is asserted that the
target equation is satisfied in the last union-find structure.

4 A First-Order Logic Calculus with E -Unification

We will now introduce our sequent calculus for first-order logic with equality.
The calculus operates only on flat formulae, and is kept quite minimalist to illus-
trate the use of free variables and BREU for delayed instantiation; for practical
purposes, many refinements are possible, some of which are outlined in Sect. 6.
The BREU procedure is utilised to define a global closure rule that discharges all
goals of a proof tree simultaneously. Proof construction is intended to be done in
upward direction and backtracking-free manner, following the proof procedures
presented in [10,14]; this is possible because all calculus rules are non-destructive
and the overall calculus proof-confluent. We will show that fair application of
the proof rules is complete.

The propositional, first-order, and equational rules of the calculus are shown
in Table 1. Propositional and first-order rules mostly correspond to the classical
system LK [8], however, keeping all structural rules implicit (Γ and Δ are sets of
formulae). The first-order rules use Skolem symbols c ∈ C for existential quanti-
fiers in the antecedent, and fresh free variables X ∈ V for universal quantifiers;
and similarly for formulae in the succedent.

The equational rules simplify terms by means of ordered ground rewriting.
Given a proof tree, we introduce a strict partial order ≺ ⊆ (C∪V)2 over constants
and free variables reflecting the order in which symbols are introduced by the
rules ∀l, ∀r, ∃l, ∃r: we define s ≺ t if the constant or variable t was introduced
above the symbol s, or if s is a symbol already occurring in the root sequent and

580 P. Backeman and P. Rümmer

Table 1. Our sequent calculus for first-order logic with equality. In rules ∀l and ∃r,
X is a fresh variable, whereas the rules ∃l and ∀r introduce a fresh constant c. In ≈l
and ≈r, the equation (t′ ≈ s′)[t/s] is the result of replacing all occurrences of t with s.

Γ, φ, ψ � Δ

Γ, φ ∧ ψ � Δ
∧l Γ � φ, Δ Γ � ψ, Δ

Γ � φ ∧ ψ, Δ
∧r Γ � φ, Δ

Γ, ¬φ � Δ
¬l

Γ, φ � Δ Γ, ψ � Δ

Γ, φ ∨ ψ � Δ
∨l Γ � φ, ψ, Δ

Γ � φ ∨ ψ, Δ
∨r Γ, φ � Δ

Γ � ¬φ, Δ
¬r

Γ, ∀x.φ, φ[x/X] � Δ

Γ, ∀x.φ � Δ
∀l Γ � φ[x/c], Δ

Γ � ∀x.φ, Δ
∀r Γ � Δ

Γ, s ≈ s � Δ
≈elim

Γ, φ[x/c] � Δ

Γ, ∃x.φ � Δ
∃l Γ � ∃x.φ, φ[x/X], Δ

Γ � ∃x.φ, Δ
∃r ∗

Γ � s ≈ s, Δ
≈close

Γ, t ≈ s � Δ

Γ, s ≈ t � Δ
≈orient where t
 s

Γ, t ≈ s, (t′ ≈ s′)[t/s] � Δ

Γ, t ≈ s, t′ ≈ s′ � Δ
≈l

where t
 s and t′
 s′, the term t occurs
in t′ ≈ s′, and if t = t′ then s′
 s

Γ, t ≈ s � (t′ ≈ s′)[t/s], Δ

Γ, t ≈ s � t′ ≈ s′, Δ
≈r where t
 s and the term t occurs in t′ ≈ s′

∗
Γ1 � Δ1

. . . ∗
Γn � Δn

breu

. . .
...

Γ � Δ

where Γ1 � Δ1, . . . , Γn � Δn are all open goals
of the proof, Ei = {t ≈ s ∈ Γi} are flat
antecedent equations, ei =

∨{t ≈ s ∈ Δi} are
succedent equations, and the simultaneous
BREU problem (�, (Ei, ei)

n
i=1) is solvable

t is introduced by some rule in the proof. For instance, for the proof shown in
Sect. 1.1, the partial order shown in Example 5 is derived.

By slight abuse of notation, we also write s ≺ f(t1, . . . , tn) if s does not
start with a function symbol. The rule ≈orient moves the bigger term to the
left-hand side of an equation. ≈l and ≈r can be used to replace occurrences of
the (bigger) left-hand side term of an equation with the smaller right-hand side
term; this rewriting is purely ground and does not unify expressions containing
free variables (unification is entirely left to the breu closure rule discussed in
the next paragraph). As a consequence, and since ≺ is well-founded, rewriting
is terminating and confluent, and in fact implements a congruence closure pro-
cedure [1] that eventually replaces every term with a unique representative term
of its equivalence class modulo equations in the antecedent.

The breu rule operates globally and closes all remaining goals of a proof
if a global E -unifier σ exists that solves some succedent equation in each goal.
The rule makes use of the non-strict partial order � corresponding to ≺, with
the implication that every variable X can be mapped to symbols that were
introduced prior to X in the proof. To encode non-emptiness of the universe, we
assume that there is some constant c⊥ ∈ C below all variables X ∈ V in a proof

Theorem Proving with Bounded Rigid E-Unification 581

(c⊥ ≺ X for all X ∈ V); if the proof itself does not contain such a constant, it
is assumed that c⊥ is some fresh constant with c⊥ ≺ X for all variables X.

5 Properties of the Calculus

5.1 Soundness

The soundness of the calculus from Table 1 can be shown by substituting con-
stants for all free variables, and observing the local soundness of each rule.

Lemma 8. Suppose Γ � Δ is a sequent without free variables. If a closed proof
can be constructed for Γ � Δ using the calculus in Table 1, then Γ � Δ is valid.

Proof. We assume that a proof for Γ � Δ was closed using rule breu, with a
unifier σ that maps every variable X occurring in the proof to a constant Xσ ∈ C
with Xσ ≺ X. In case all goals were closed using ≈close, Xσ can be some
arbitrary constant with Xσ ≺ X.

By induction, it can be shown that the instance (Γ ′ � Δ′)σ = Γ ′σ � Δ′σ of
every sequent Γ ′ � Δ′ occurring in the proof is valid. This is the case for every
goal discharged using rule breu by definition. For all other rules, it is the case
that if the σ-instance of the premises is valid, then also the σ-instance of the
conclusion is valid. We show two cases, the other rules are verified similarly:

– ∃l: assume that the instantiated premise (Γ, φ[x/c] � Δ)σ is valid. Since
c is fresh, we know that X ≺ c for all free variables X in Γ,∃x.φ � Δ.
Therefore Xσ ≺ c, and it follows that (Γ,∃x.φ � Δ)σ does not contain c.
Validity of (Γ, φ[x/c] � Δ)σ then implies validity of ∀x.(

∧
Γ ∧ φ → ∨

Δ)σ,
and equivalently of (Γ,∃x.φ � Δ)σ.

– ≈l: assume that (Γ, t ≈ s, (t′ ≈ s′)[t/s] � Δ)σ is valid. Then the conclusion
(Γ, t ≈ s, t′ ≈ s′ � Δ)σ is valid, too, since the conjunctions (t ≈ s ∧ t′ ≈ s′)σ
and (t ≈ s ∧ (t′ ≈ s′)[t/s])σ are equivalent.

Since the root sequent Γ � Δ does not contain any free variables, it is implied
that (Γ � Δ)σ = Γ � Δ is valid. ��

5.2 Completeness

The completeness of the calculus can be shown using a model construction argu-
ment (e.g., [8]), which also implies that every attempt to construct a proof of
a valid sequent in a “fair” manner will ultimately be successful; this ensures
that proofs can always be found without the need for backtracking (although
backtracking might sometimes lead to success more quickly, of course).

We call a proof search strategy for the calculus in Table 1 fair if the propo-
sitional and first-order rules ∧l, ∧r, ∨l, ∨r, ¬l, ¬r, ∀l, ∀r, ∃l, ∃r are always
eventually applied when they are applicable to some formula, and if every proof
goal in which one of those rules is applicable is eventually expanded. This implies,

582 P. Backeman and P. Rümmer

in particular, that ∀l and ∃r are applied unboundedly often to every quanti-
fied formula. Fairness does not mandate the application of the equational rules,
which are subsumed by breu; eager application of equational rules is in practice
cheap and advisable for performance, however.

Lemma 9 (Completeness of fair proof search). Suppose Γ � Δ is a
sequent without free variables, and suppose that a proof is constructed in a fair
manner. If Γ � Δ is valid, then eventually a proof tree will be obtained that can
be closed using the rule breu.

In order to prove this lemma, we first consider a “ground” version GC of our
calculus, obtained by removing the rule breu, and by replacing ∀l and ∃r with
the following ground rules:

Γ,∀x.φ, φ[x/c] � Δ

Γ,∀x.φ � Δ
∀lg,

Γ � ∃x.φ, φ[x/c],Δ
Γ � ∃x.φ,Δ

∃rg

where c is an arbitrary constant. GC has the property that systematic appli-
cation of the rules will either eventually produce a closed proof, or lead to a
saturated (possibly infinite) branch from which a model can be derived:

Definition 10. An open proof branch in GC labelled with sequents Γ0 � Δ0,
Γ1 � Δ1, . . . (where Γ0 � Δ0 is the root of the proof) is called saturated if

(i) the branch is finite and no rule is applicable in the goal sequent Γn � Δn; or
(ii) the branch is infinite, and for the limit sets Γ∞,Δ∞ of formulae occurring

on the branch, as well as the sets Γ p,Δp of persistent formulae

Γ∞ =
⋃

i≥0

Γi , Δ∞ =
⋃

i≥0

Δi , Γp =
⋃

i≥0

⋂

j≥i

Γj , Δp =
⋃

i≥0

⋂

j≥i

Δj

it is the case that (a) Γp only contains equations and ∀-quantified formulae;
(b) Δp only contains equations and ∃-quantified formulae; (c) none of the
rules ≈elim, ≈close, ≈orient, ≈l, ≈r is applicable in Γp � Δp; (d) at
least one constant c occurs on the branch; (e) for every formula ∀x.φ ∈ Γp

and every constant c occurring on the branch, there is an instance φ[x/c] ∈
Γ∞; and (f) for every formula ∃x.φ ∈ Δp and every constant c there is an
instance φ[x/c] ∈ Δ∞.

The ability to construct saturated branches follows directly from the observa-
tion that application of the GC -rules other than ∀lg and ∃lg terminates (because
≺ is well-founded), and that ∀lg and ∃lg can be managed in a fair way using
a work queue. The property (ii)–(d) encodes non-emptiness of universes, and is
ensured by instantiating every formula ∀x.φ ∈ Γp and ∃x.φ ∈ Δp at least once
on every branch (e.g., using the ≺-smallest constant c⊥).

Lemma 11. If a (finite or infinite) GC proof contains a saturated branch, then
the root sequent Γ � Δ has a counter-model (is invalid).

Theorem Proving with Bounded Rigid E-Unification 583

Proof. We use persistent equations to construct a structure S = (U, I). In case
of a finite saturated branch, persistent formulae are the ones in the goal; with-
out loss of generality, we assume that also finite branches contain at least one
constant. U is chosen as the set of constants that do not occur as left-hand
side of some persistent antecedent equation; left-hand side terms are interpreted
as the right-hand side constants. In case the value of some function applica-
tion f(c1, . . . , cn) is not determined by the equations, we set the value to some
arbitrary constant c ∈ U :

U = {c ∈ C | c occurs in Γ∞ ∪ Δ∞} \ {c | c ≈ d ∈ Γp}

I(c) =

{
d if there exists an equation c ≈ d ∈ Γp

c otherwise

I(f)(c1, . . . , cn) =

{
d if there exists an equation f(c1, . . . , cn) ≈ d ∈ Γp

c otherwise, for some arbitrary c ∈ U

Since no equational rule is applicable in Γp � Δp, it is clear that valS(t ≈ s) =
true for every t ≈ s ∈ Γp, and valS(t ≈ s) = false for every t ≈ s ∈ Δp.

By well-founded induction over the equations in Γ∞, it can then be shown
that in fact all equations in Γ∞ evaluate to true under S. For this we define a
well-founded order ≺′ over flat equations (for c, d ∈ C, c̄, c̄′ ∈ C∗, f, g ∈ F , and
≺lex the well-founded lexicographic order induced by ≺):

(c ≈ d) ≺′ (c′ ≈ d′) ⇔ (d, c) ≺lex (d′, c′), (c ≈ d) ≺′ (f(c̄) ≈ d′),
(f(c̄) ≈ d) ≺′ (g(c̄′) ≈ d′) ⇔ f = g and (d, c̄) ≺lex (d′, c̄′).

In particular, note that in any application of rule ≈l we have (t ≈ s) ≺′ (t′ ≈ s′)
and (t′ ≈ s′)[t/s] ≺′ (t′ ≈ s′); this implies that if all equations ≺′-smaller than
t′ ≈ s′ hold, then also t′ ≈ s′ holds. In the same way, it can be proven that all
equations in Δ∞ evaluate to false.

By induction over the depth of formulae we can conclude that all formulae
(not only equations) in Γ∞ evaluate to true, and all formulae in Δ∞ to false. ��
Proof. (Lem. 9) Assume that an (unsuccessful) attempt was made to construct
a proof P for the valid sequent Γ � Δ by fair application of the rules in Table 1.
We define a global mapping v : V → C of variables occurring in P to constants,
and use v to map P to a GC -proof with a saturated branch. The mapping v
is defined successively by depth-first traversal of P , visiting sequents closer to
the root earlier than sequents further away. Note that for each branch that has
not been closed by applying ≈close, fairness implies that ∀l (∃r) has been
applied infinitely often to every universally quantified formula in the antecedent
(existentially quantified formula in the succedent).

When a node is visited where a new variable X is introduced by ∀l or ∃r for
a quantified formula φ, set v(X) = c for some constant c ≺ X that is ≺-minimal
among the constants that have not yet been assigned for the same formula φ on
this branch. If no such constant exists, an arbitrary constant c ≺ X is chosen. On

584 P. Backeman and P. Rümmer

every infinite branch, this ensures that for every quantified formula φ handled via
∀l or ∃r, and every constant c occurring on the branch, there is some application
of ∀l or ∃r to φ such that the introduced variable X is mapped to c = v(X).

The function v can then be used to translate P to a GC -proof P ′, replacing
each variable X with the constant v(X), and inserting exhaustive applications
of the equational rules wherever they are applicable. By Lemma 11 and since
Γ � Δ is valid, each branch in P ′ can be closed after finitely many steps through
≈close. This implies that it has to be possible to close the corresponding finite
prefix of the original proof P using rule breu, with the mapping v restricted to
the variables occurring in the prefix as E -unifier. ��

6 Refinements of the Calculus

The presented calculus can be refined in many practically relevant ways; in
the scope of this paper, we only outline three modifications that we use in our
implementation (also see Sect. 7).

General Instantiation. Similar the subterm instantiation method proposed by
Kanger [13], our system explicitly generates constants representing all terms
possibly required for instantiation of quantified formulae, through application
of ∃l and ∀r. While subterm instantiation is complete, it has been observed
(e.g., in [6]) that resulting proofs can sometimes be significantly longer than
the shortest proofs that can be obtained when considering arbitrary instances
of quantified formulae. Instantiation with new terms can be simulated in our
systems by adding a rule tot representing the totality axiom ∀x̄.∃y. f(x̄) ≈ y,
which iteratively increases the range of terms considered for substitution by the
breu rule. In tot, f is a function symbol, X1, . . . , Xn are fresh variables, and
c is a fresh constant (and we set Xi ≺ c for all i ∈ {1, . . . , n}):

Γ, f(X1, . . . , Xn) ≈ c � Δ

Γ � Δ
tot

Local Closure. The closure rule breu can be generalised to operate not only on
complete proof trees, but also on arbitrary sub-trees, and thus be used to guide
proof expansion. For any sub-tree t, it can be checked (i) whether all goals in
t contain equations that are simultaneously E -unifiable; as long as this is not
the case, proof expansion can focus on t, since rules applied to branches outside
of t will not be helpful; and (ii) whether the goals in t are E -unifiable with a
unifier σ such that Xσ = X for all variables X that occur outside of t; in this
case, t can be closed permanently and does not have to be considered again. It is
also possible to define a notion of unsatisfiable cores for E -unification problems,
which can further refine the selection of goals to be expanded.

Ground Instantiation. It has also been observed that handling of quantifiers
using free variables is very powerful, but is excessively expensive in case of sim-
ple quantified formulae that have to be instantiated many times, and provides

Theorem Proving with Bounded Rigid E-Unification 585

Table 2. Comparison of our prototypical implementation on TPTP benchmarks. The
numbers indicate how many benchmarks in each group could be solved; the runtime
per benchmark was limited to 240 s (wall clock time). All experiments were done on an
AMD Opteron 2220 SE machine, running 64-bit Linux, heap space limited to 1.5GB.

FOF FOF CNF CNF

with eq. w/o eq. with eq. w/o eq.

Princess + BREU 211 325 203 252

Hyper 1.0 16112014 [2] 119 378 160 305

leanCoP 2.2 (CASC-J7) 153 379 −a −a

a leanCoP cannot process benchmarks in the TPTP CNF
dialect.

little guidance for proof construction. Possible solutions include the use of con-
nection conditions, universal variables, or simplification rules [3,12]. In our imple-
mentation, we use a more straightforward hybrid approach that combines free
variables with ground instantiation through E-matching [15]; in combination,
free variables and e-matching can solve significantly more problems than either
technique individually. E-matching can be integrated naturally in our calculus
without losing completeness, following [15]; in general this requires the use of
the rule tot shown above.

7 Experimental Results

We are in the process of implementing our BREU algorithm, and the calculus
from Sect. 4, as an extension of the Princess theorem prover [14].1 Our implemen-
tation uses the SAT encoding outlined in Sect. 3.3, and the Sat4j solver to solve
the resulting constraints; we also include the refinements discussed in Sect. 6.
Considered benchmarks were randomly selected TPTP v.6.1.0 problems with
status Theorem or Unsatisfiable. To illustrate strengths and weaknesses of the
compared tools, the benchmarks were categorised into FOF (first-order) prob-
lems with equality, FOF problems without equality, CNF (clause normal form)
problems with equality, and CNF problems without equality. 500 benchmarks
from all of TPTP were chosen in each group.

We compared our BREU implementation with the tableau provers Hyper and
leanCoP from the CASC-J7 competition. Hyper uses the superposition-based
equality reasoning from [2], whereas leanCoP relies on explicit equality axioms.
The experimental results shown in Table 2 are still preliminary, and expected to
change as further optimisations in our BREU procedure are done. However, it
can be seen that even our current implementation of BREU shows performance
that is comparable with the other tableau systems in all groups of benchmarks,
and outperforms the other systems on benchmarks with equality.

1 http://user.it.uu.se/∼petba168/breu/.

http://user.it.uu.se/~petba168/breu/

586 P. Backeman and P. Rümmer

Conclusion

We have introduced bounded rigid E -unification, a new variant of SREU, and
illustrated how it can be used to construct sound and complete theorem provers
for first-order logic with equality. We believe that BREU is a promising approach
to handling of equality in tableaux and related calculi. Apart from improved
algorithms for solving BREU, and an improved implementation, in future work
we plan to consider the combination of BREU with other theories, in particular
arithmetic, and integration of BREU with DPLL(T)-style clause learning.

Acknowledgements. We would like to thank Christoph M. Wintersteiger for com-
ments on this paper, and the anonymous referees for helpful feedback.

References

1. Bachmair, L., Tiwari, A., Vigneron, L.: Abstract congruence closure. J. Autom.
Reasoning 31(2), 129–168 (2003)

2. Baumgartner, P., Furbach, U., Pelzer, B.: Hyper tableaux with equality. In:
Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 492–507. Springer,
Heidelberg (2007)

3. Beckert, B.: Equality and other theories. In: D’Agostino, M., Gabbay, D.,
Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods. Kluwer, Dordrecht
(1999)

4. Degtyarev, A., Voronkov, A.: Simultaneous rigid E-Unification is undecidable.
In: Kleine Büning, H. (ed.) CSL 1995. LNCS, vol. 1092, pp. 178–190. Springer,
Heidelberg (1996)

5. Degtyarev, A., Voronkov, A.: What you always wanted to know about rigid E-
Unification. J. Autom. Reasoning 20(1), 47–80 (1998)

6. Degtyarev, A., Voronkov, A.: Equality reasoning in sequent-based calculi. In: Hand-
book of Automated Reasoning (in 2 volumes). Elsevier and MIT Press (2001)

7. Degtyarev, A., Voronkov, A.: Kanger’s Choices in Automated Reasoning. Springer,
The Netherlands (2001)

8. Fitting, M.C.: First-Order Logic and Automated Theorem Provin. Graduate Texts
in Computer Science, 2nd edn. Springer-Verlag, Berlin (1996)

9. Gallier, J.H., Raatz, S., Snyder, W.: Theorem proving using rigid e-unification
equational matings. In: LICS. pp. 338–346. IEEE Computer Society (1987)

10. Giese, M.A.: Incremental closure of free variable tableaux. In: Goré, R.P.,
Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 545–560.
Springer, Heidelberg (2001)

11. Giese, M.A.: A model generation style completeness proof for constraint tableaux
with superposition. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS
(LNAI), vol. 2381, pp. 130–144. Springer, Heidelberg (2002)

12. Giese, M.: Simplification rules for constrained formula tableaux. In: TABLEAUX,
pp. 65–80 (2003)

13. Kanger, S.: A simplified proof method for elementary logic. In: Siekmann, J.,
Wrightson, G. (eds.) Automation of Reasoning 1: Classical Papers on Compu-
tational Logic 1957–1966, pp. 364–371. Springer, Heidelberg (1983). originally
appeared in 1963

Theorem Proving with Bounded Rigid E-Unification 587

14. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008)

15. Rümmer, P.: E-matching with free variables. In: Bjørner, N., Voronkov, A. (eds.)
LPAR-18 2012. LNCS, vol. 7180, pp. 359–374. Springer, Heidelberg (2012)

16. Tiwari, A., Bachmair, L., Rueß, H.: Rigid E-Unification revisited. In: CADE. pp.
220–234, CADE-17. Springer-Verlag, London (2000)

SAT/SMT

Expressing Symmetry Breaking in DRAT Proofs

Marijn J.H. Heule(B), Warren A. Hunt Jr., and Nathan Wetzler

The University of Texas, Austin, USA
marijn@cs.utexas.edu

Abstract. An effective SAT preprocessing technique is the addition of
symmetry-breaking predicates: auxiliary clauses that guide a SAT solver
away from needless exploration of isomorphic sub-problems. Symmetry-
breaking predicates have been in use for over a decade. However, it was
not known how to express the addition of these predicates in proofs of
unsatisfiability. Hence, results obtained by symmetry breaking cannot
be validated by existing proof checkers. We present a method to express
the addition of symmetry-breaking predicates in DRAT, a clausal proof
format supported by top-tier solvers. We applied this method to generate
SAT problems that have not been previously solved without symmetry-
breaking predicates. We validated these proofs with an ACL2-based,
mechanically-verified DRAT proof checker and the proof-checking tool
of SAT Competition 2014.

1 Introduction

Satisfiability (SAT) solvers can be applied to decide hard combinatorial prob-
lems that contain symmetries. Breaking problem symmetries typically boosts
solver performance as it prevents a solver from needlessly exploring isomorphic
parts of a search space. One common method to eliminate symmetries is to add
symmetry-breaking predicates [1–3]. However, expressing the addition in existing
SAT proof formats is an open problem, which leaves it hard to validate some
solver results. We present a method to express the use of symmetry-breaking
predicates in the DRAT proof format [4], which is supported by top-tier SAT
solvers and was used to validate the results of SAT Competition 2014.

Recent successes of SAT-based technology include solving some long-standing
open problems such as the Erdős Discrepancy Conjecture [5], computing Van der
Waerden numbers [6], and producing minimal sorting networks [7]. Symmetry-
breaking techniques have been applied to each of these problems and allows one
to solve them more efficiently. Our new method facilitates the creation of proofs
for unsatisfiability results when symmetry-breaking techniques are applied.

The state-of-the-art tool shatter [8] performs static symmetry-breaking by
adding symmetry-breaking predicates to a given problem. Static symmetry-
breaking starts by converting a SAT problem into a graph. This graph is used to
detect symmetries, which are then transformed into predicates (represented as

The authors are supported by DARPA contract number N66001-10-2-4087.

c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 591–606, 2015.
DOI: 10.1007/978-3-319-21401-6 40

592 M.J.H. Heule et al.

clauses) and added to the SAT problem. Dynamic symmetry-breaking [9] adds
symmetric versions of learned clauses to the problem. This technique is the most
useful when few symmetries exist, which is the case for graph-coloring problems.

We present the expression of adding symmetry-breaking predicates in the
DRAT proof format using unavoidable subgraphs. Given an undirected, fully-
connected graph G, H is an unavoidable subgraph of G if every 2-edge-coloring of
G contains H as a monochromatic subgraph. The best-known type of unavoid-
able subgraphs are cliques (Ramsey numbers), but there are many other types of
graphs for which unavoidability has been studied; an online dynamic survey [10]
lists over 600 articles on the topic. SAT solvers have severe difficulty solving
unavoidable subgraph problems without symmetry-breaking predicates.

Given a satisfiability problem F , we produce a satisfiability-equivalent prob-
lem F ′ that contains symmetry-breaking predicates. The formula F ′ is similar
to the result of applying shatter (modulo variable renaming). Additionally, we
produce a partial DRAT proof that expresses the conversion from F to F ′. We
solve F ′ using an off-the-shelf SAT solver that can emit DRAT proofs. We val-
idate this proof result by merging the partial proof with the SAT solver proof
and then we check that the combined result is valid with our drat-trim tool [4]
or our mechanically-verified checker [11]. We evaluate this method on some hard
combinatorial problems.

The remainder of the paper is structured as follows. After some preliminary
and background information in Sect. 2, the DRAT proof system is explained in
Sect. 3 and the addition of symmetry-breaking predicates is presented in Sect. 4.
Breaking a single symmetry may require many clause addition and deletion steps
in order to express it in a DRAT proof, as discussed is Sect. 5. In Sect. 6, we detail
how to break multiple symmetries. Our tool chain and evaluation are exhibited
in Sects. 7 and 8 and we conclude in Sect. 9.

2 Preliminaries

We briefly review necessary background concepts: conjunctive normal form,
Boolean constraint propagation, and blocked clauses.

Conjunctive Normal Form (CNF). For a Boolean variable x, there are two
literals, the positive literal, denoted by x, and the negative literal, denoted by
x̄. A clause is a finite disjunction of literals, and a CNF formula is a finite
conjunction of clauses. A clause is a tautology if it contains both x and x̄ for
some variable x. Given a clause C = (l1 ∨ · · · ∨ lk), C denotes the conjunction of
its negated literals, i.e., (l̄1) ∧ · · · ∧ (l̄k). The set of literals occurring in a CNF
formula F is denoted by LIT(F). A truth assignment for a CNF formula F is
a partial function τ that maps literals l ∈ LIT(F) to {t, f}. If τ(l) = v, then
τ(l̄) = ¬v, where ¬t = f and ¬f = t. Furthermore:

– A clause C is satisfied by assignment τ if τ(l) = t for some l ∈ C.
– A clause C is falsified by assignment τ if τ(l) = f for all l ∈ C.
– A CNF formula F is satisfied by assignment τ if τ(C) = t for all C ∈ F .
– A CNF formula F is falsified by assignment τ if τ(C) = f for some C ∈ F .

Expressing Symmetry Breaking in DRAT Proofs 593

A CNF formula with no satisfying assignments is called unsatisfiable. A clause
C is logically implied by formula F if adding C to F does not change the set
of satisfying assignments of F . Two formulas are logically equivalent if they
have the same set of solutions over the common variables. Two formulas are
satisfiability equivalent if both have a solution or neither has a solution. Any
formula containing the empty clause ε is unsatisfiable.
Resolution. Given two clauses C1 = (x∨a1∨. . .∨an) and C2 = (x̄∨b1∨. . .∨bm),
the resolution rule states that the clause C = (a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm), can
be inferred by resolving on x. We call C the resolvent of C1 and C2 and write
C = C1 � C2. Clause C is logically implied by a formula containing C1 and C2.
Boolean Constraint Propagation and Asymmetric Tautologies. For a
CNF formula F , Boolean constraint propagation (BCP) (or unit propagation)
simplifies F based on unit clauses; that is, it repeats the following until it reaches
a fixpoint: if there is a unit clause (l) ∈ F , remove all clauses that contain the
literal l from the set F \ {(l)} and remove the literal l̄ from all clauses in F .
We write F �1 ε to denote that BCP applied to F derives the empty clause.
A clause C is an asymmetric tautology (AT) with respect to formula F if and
only if F ∧ C �1 ε. Asymmetric tautologies are logically implied by F .

Example 1. Consider the formula F = (ā∨ b)∧ (b̄∨ c)∧ (b̄∨ c̄). Clause C = (ā) is
an asymmetric tautology with respect to F , because F ∧ C �1 ε. BCP removes
literal ā, resulting in the new unit clause (b). After removal of the literals b̄, two
complementary unit clauses (c) and (c̄) are created. �

Blocked Clauses. Given a CNF formula F , a clause C, and a literal l ∈ C,
the literal l blocks C with respect to F if (i) for each clause D ∈ F with l̄ ∈ D,
C � D is a tautology, or (ii) l̄ ∈ C, i.e., C is itself a tautology. Given a CNF
formula F , a clause C is blocked with respect to F if there is a literal that
blocks C with respect to F . Addition and removal of blocked clauses results in
satisfiability-equivalent formulas [12], but not logically-equivalent formulas.

Example 2. Consider the formula (a∨b)∧(a∨ b̄∨ c̄)∧(ā∨c). Clause (a∨ b̄∨ c̄) is a
blocked clause, because its literal a is blocking it: the only resolution possibility
is with (ā ∨ c) which results in tautology (b̄ ∨ c̄ ∨ c). �

3 Validating DRAT Proofs

A clause C is called redundant with respect to a formula F if F ∧ {C} is satis-
fiability equivalent to F . A proof of unsatisfiability (also called a refutation) is
a sequence of redundant clauses, called lemmas, containing the (unsatisfiable)
empty clause ε. There are two prevalent types of unsatisfiability proofs: resolu-
tion proofs and clausal proofs. Several formats have been designed for resolution
proofs [13–15], but they all share the same disadvantages. Resolution proofs
are often huge, and it is hard to express important techniques, such as conflict
clause minimization, with resolution steps. Other techniques, such as bounded

594 M.J.H. Heule et al.

variable addition, cannot be polynomially-simulated by resolution. Clausal proof
formats [4,16,17] are syntactically similar; they involve a sequence of clauses that
are claimed to be redundant with respect to a given formula. It is important that
redundant clauses can be checked in polynomial time. Clausal proofs may include
deletion information to reduce the validation cost [18,19]. The drat-trim [4]
utility can efficiently validate clausal proofs provided in the DRAT format; this
format is backwards compatible with earlier clausal proof formats and was used
to check the results of SAT Competition 2014.

Resolution asymmetric tautologies (or RAT clauses) [20] are a generalization
of both asymmetric tautologies and blocked clauses. A clause C has RAT on
l ∈ C (referred to as the pivot literal) with respect to a formula F if for all
D ∈ F with l̄ ∈ D, it holds that F ∧ C ∧ (D \ {(l)}) �1 ε.

Not only can RAT be computed in polynomial time, but all preprocess-
ing, inprocessing, and solving techniques in state-of-the-art SAT solvers can be
expressed in terms of addition and removal of RAT clauses [20]. A DRAT proof,
short for Deletion Resolution Asymmetric Tautology, is a sequence of addition
and deletion steps of RAT clauses. Figure 1 shows an example DRAT proof.

Fig. 1. Left, a formula in DIMACS CNF format, the conventional input format for
SAT solvers. Right, a DRAT proof for that formula. Each line in the proof is either
an addition step (no prefix) or a deletion step identified by the prefix “d”. Spacing in
both examples is used to improve readability. Each clause in the proof should be an
asymmetric tautology or a RAT clause using the first literal as the pivot.

Example 3. Consider CNF formula F = (a ∨ b ∨ c̄) ∧ (ā ∨ b̄ ∨ c) ∧ (b ∨ c ∨ d̄) ∧
(b̄ ∨ c̄ ∨ d) ∧ (a ∨ c ∨ d) ∧ (ā ∨ c̄ ∨ d̄) ∧ (ā ∨ b ∨ d) ∧ (a ∨ b̄ ∨ d̄), which is shown in
DIMACS format in Fig. 1 (left), where 1 represents a, 2 is b, 3 is c and negative
numbers represent negation. The first clause in the proof, (ā), is a RAT clause
with respect to F because all possible resolvents are asymmetric tautologies:

Expressing Symmetry Breaking in DRAT Proofs 595

F ∧ (a) ∧ (b̄) ∧ (c) �1 ε using (a ∨ b ∨ c̄)
F ∧ (a) ∧ (c̄) ∧ (d̄) �1 ε using (a ∨ c ∨ d)
F ∧ (a) ∧ (b) ∧ (d) �1 ε using (a ∨ b̄ ∨ d̄)

�

Let F be a CNF formula and P be a DRAT proof for F . The number of lines
in a proof P is denoted by |P |. For each i ∈ {0, . . . , |P |}, a CNF formula F i

P is
defined below. Li refers to the lemma (redundant clause) on line i of P .

F i
P :=

⎧
⎨

⎩

F if i = 0
F i−1

P \ {Li} if the prefix of Li is “d′′

F i−1
P ∪ {Li} otherwise

Each lemma addition step is validated using a RAT check, while lemma deletion
steps are ignored as their only purpose is to reduce the validation costs. Let li
denote the first literal in lemma Li. The RAT check for lemma Li in proof P
for CNF formula F succeeds if and only if Li has the property RAT on literal li
with respect to F i−1

P . Moreover, lemma L|P | must be the empty clause.

4 Symmetries in Propositional Formulas

Two graphs G and H are isomorphic if there exists an edge-preserving bijection
from the vertices of G to the vertices of H. A symmetry (or automorphism) of a
graph G is an edge-preserving bijection of G onto itself. Symmetries in the graph
representation of SAT problems may cause solvers to explore symmetric parts
of the search space again and again. This problem can be avoided by adding
symmetry-breaking predicates [1]: the clause-literal graph for a given formula is
created, the automorphisms of the graph are computed, and the automorphisms
are converted into symmetry-breaking predicates.

A clause-literal graph of a CNF formula F is an undirected graph with a
vertex for each clause and each literal occurrence in F . A literal vertex and
a clause vertex are connected if and only if the designated literal occurs in
the corresponding clause. Two clause vertices are never connected. Two literal
vertices are connected if and only if the corresponding literals are complements.

A symmetry σ = (x1, . . . , xn)(p1, . . . , pn) of a CNF formula F is an edge-
preserving bijection of the clause-literal graph of F , that maps variable xi onto
pi with i ∈ {1..n}. The sequence (p1, . . . , pn) is a permutation of (x1, . . . , xn) in
which each pi is potentially negated. If xi is mapped onto pi, then x̄i is mapped
onto p̄i. Note that the clauses in the clause-literal graph are permuted by a
symmetry, but we can ignore this aspect when it comes to symmetry break-
ing. Breaking σ can be achieved by enforcing that the assignment to literals
x1, x2, . . . , xn is lexicographically less than or equal to (≤) the assignment to
literals p1, p2, . . . , pn. This is a choice as ≥ could have been used instead.

596 M.J.H. Heule et al.

Example 4. Consider the problem whether a path of two edges is an unavoidable
subgraph for graphs of order 3. We name the vertices a, b, and c. The existence of
an edge between a and b, a and c, and b and c is represented by the Boolean vari-
ables xa,b, xa,c, and xb,c, respectively. The propositional formula that expresses
this problem and the labels of the clauses are shown below.

C1
︷ ︸︸ ︷
(xa,b∨xa,c) ∧

C2
︷ ︸︸ ︷
(xa,b∨xb,c) ∧

C3
︷ ︸︸ ︷
(xa,c∨xb,c) ∧

C4
︷ ︸︸ ︷
(x̄a,b∨x̄a,c) ∧

C5
︷ ︸︸ ︷
(x̄a,b∨x̄b,c) ∧

C6
︷ ︸︸ ︷
(x̄a,c∨x̄b,c)

The clause-literal graph of this formula is shown in Fig. 2 together with three
isomorphic graphs that can be obtained by permuting the nodes of the clause-
literal graph. The three symmetries are (ignoring the permutation of clauses):

(xa,b, xa,c, xb,c)(x̄a,b, x̄a,c, x̄b,c); (xa,b, xa,c)(xa,c, xa,b); (xa,c, xb,c)(xb,c, xa,c).

These symmetries can be broken by enforcing xa,b, xa,c, xb,c ≤ x̄a,b, x̄a,c, x̄b,c

(or equivalently (xa,b ≤ x̄a,b) ≡ x̄a,b); xa,b, xa,c ≤ xa,c, xa,b (or equivalently
xa,b ≤ xa,c); and xa,c, xb,c ≤ xb,c, xa,c (or equivalently xa,c ≤ xb,c), respectively.
The clausal representation is: (x̄a,b), (x̄a,b ∨ xa,c), and (x̄a,c ∨ xb,c). �

Expressing the constraint x1, x2, . . . , xn ≤ p1, p2, . . . , pn in clauses with (only)
variables in F can be done as follows:

(x̄1 ∨ p1) ∧ (x̄1 ∨ x̄2 ∨ p2) ∧ (p1 ∨ x̄2 ∨ p2) ∧ (x̄1 ∨ x̄2 ∨ x̄3 ∨ p3) ∧
(x̄1 ∨ p2 ∨ x̄3 ∨ p3) ∧ (p1 ∨ x̄2 ∨ x̄3 ∨ p3) ∧ (p1 ∨ p2 ∨ x̄3 ∨ p3) ∧ . . .

The above scheme adds 2n − 1 clauses. Using auxiliary variables ai, it requires
only a linear number of clauses, i.e., 3n − 2, to express this constraint:

(x̄1 ∨ p1) ∧ (a1 ∨ x̄1) ∧ (a1 ∨ p1) ∧ (ān−1 ∨ x̄n ∨ pn) ∧
∧

i∈{2..n−1}

(
(āi−1 ∨ x̄i ∨ pi) ∧ (ai ∨ āi−1 ∨ x̄i) ∧ (ai ∨ āi−1 ∨ pi)

) (1)

So ai is true if ai−1 is true and pi ≤ xi holds (using a0 is true). Optionally, the
following blocked clauses [12] can be added: (ā1∨x1∨p̄1), (āi∨ai−1)∧(āi∨xi∨p̄i)
for i ∈ {2..n − 1}. State-of-the-art SAT solvers, such as Lingeling, remove
blocked clauses during preprocessing since they are useless in practice [21].

5 Breaking a Single Symmetry

In this section, we demonstrate how to break a single symmetry within a DRAT
proof. Breaking multiple symmetries is more complicated, which will be discussed
in Sect. 6. Breaking a single symmetry consists of three steps: adding definitions,
redefining involved clauses, and adding symmetry-breaking predicates. Below we
discuss these three steps in detail using the following notation. The formula F0

expresses the initial formula with symmetry σ. Formula F1 expresses the result

Expressing Symmetry Breaking in DRAT Proofs 597

Fig. 2. Four isomorphic clause-literal graphs for the CNF formula in Example 4. Notice
that the four graphs are identical modulo the labeling of the nodes. Below each graph,
the permutation of the nodes is shown compared to the top-left graph. The permutation
of clauses is omitted in symmetries throughout this paper.

of adding definitions (step 1); formula F2 expresses the result after redefining
involved clauses in F1 (steps 1 and 2); and formula F3 expresses the result after
adding symmetry-breaking predicates to F2 (all three steps).

Adding Definitions. The first step consists of introducing auxiliary variables
si. For a given symmetry σ = (x1, . . . , xn)(p1, . . . , pn), these variables are defined
as follows: si ≡ (xi, . . . , xn > pi, . . . , pn) with i ∈ {1..n}. Variable s1 is the only
important auxiliary variable and we refer to it as the primal-swap variable. The
other si variables with i > 1 are used to efficiently compute s1. The definitions
of si with i ∈ {1..n} require 6n − 3 clauses:

∧

i∈{1..n−1}

(
(si ∨ x̄i ∨ pi) ∧ (si ∨ x̄i ∨ s̄i+1) ∧ (si ∨ pi ∨ s̄i+1) ∧

(s̄i ∨ xi ∨ p̄i) ∧ (s̄i ∨ xi ∨ si+1) ∧ (s̄i ∨ p̄i ∨ si+1)
) ∧

(sn ∨ x̄n ∨ pn) ∧ (s̄n ∨ xn) ∧ (s̄n ∨ p̄n)

(2)

These clauses can be added to the formula by blocked clause addition in
the reverse order as listed in the equation above: first add all clauses containing
literals sn and s̄n, second add clauses containing literals sn−1 and s̄n−1, etc.

598 M.J.H. Heule et al.

Additionally, we introduce n auxiliary Boolean variables x′
i with i ∈ {1..n}

which are defined as follows. If the primal-swap variable s1 is assigned to false,
then x′

i ↔ xi, otherwise x′
i ↔ pi. In clauses this definition is expressed as

∧

i∈{1..n}

(
(x′

i ∨ x̄i ∨ s1) ∧ (x̄′
i ∨ xi ∨ s1) ∧ (x′

i ∨ p̄i ∨ s̄1) ∧ (x̄′
i ∨ pi ∨ s̄1)

)
. (3)

All these clauses are blocked on the xi and x̄i literals. The definitions of x′
1 and

p′
1 can be expressed more compactly using only three clauses per definition:

(x′
1 ∨ x̄1 ∨ p̄1) ∧ (x̄′

1 ∨ x1) ∧ (x̄′
1 ∨ p1) ≡ x′

1 := AND(x1, p1)
(p̄′

1 ∨ x1 ∨ p1) ∧ (p′
1 ∨ x̄1) ∧ (p′

1 ∨ p̄1) ≡ p′
1 := OR(x1, p1)

The more compact definitions are also blocked on the prime literals. All clauses
contain only one prime literal and all clauses are blocked on the prime literal.
Therefore, they can be added to a DRAT proof in arbitrary order.

Redefining Involved Clauses. In the second step of breaking symmetry
σ = (x1, . . . , xn)(p1, . . . , pn), we redefine the involved clauses Cj , i.e., those
clauses in F0 that contain at least one literal xi or x̄i with i ∈ {1..n} by clauses
C ′

j , a copy of Cj with all literals xi and x̄i replaced by literals x′
i and x̄′

i, respec-
tively.

The clauses C ′
j do not have RAT with respect to F1, the formula resulting

after adding definitions. However, the clauses C ′
j ∪ {s1} and C ′

j ∪ {s̄1} have AT
with respect to F1, with s1 referring to the primal-swap variable from the prior
step. Using this observation, we express redefining Cj into C ′

j with j ∈ {1..m}
using 4m operations: add C ′

j ∪ {s1}, add C ′
j , delete C ′

j ∪ {s1} and delete Cj .
Notice that we use C ′

j ∪ {s1} as an auxiliary clause to add C ′
j : C ′

j has AT with
respect to F1 ∪ {C ′

j ∪ {s1}} because C ′
j ∪ {s̄1} has AT with respect to F1.

Adding Symmetry-Breaking Predicates. After adding definitions (step 1)
and redefining involved clauses (step 2), all assignments for which x′

1, . . . , x
′
n >

p′
1, . . . , p

′
n are eliminated: if x1, . . . , xn > p1, . . . , pn, then s1 is assigned to true

which will swap xi and pi with i ∈ {1..n}. To express this knowledge, i.e.,
x′
1, . . . , x

′
n ≤ p′

1, . . . , p
′
n, in clauses that have RAT with respect to F2, we first

introduce auxiliary variables yi as follows:

(y1 ∨ x̄′
1) ∧ (y1 ∨ p′

1) ∧ (ȳ1 ∨ x′
1 ∨ p̄′

1) ∧
∧

i∈{2..n−1}

(
(yi ∨ ȳi−1 ∨ x̄′

i) ∧ (yi ∨ ȳi−1 ∨ p′
i) ∧ (ȳi ∨ yi−1) ∧ (ȳi ∨ x′

i ∨ p̄′
i)

) (4)

Notice that all these clauses have the RAT property on their first literal when
added in the order as shown in (4). Afterwards, we add the following clauses:

(x̄′
1 ∨ p′

1) ∧
∧

i∈{2..n}
(ȳi−1 ∨ x̄′

i ∨ p′
i) (5)

The clauses (5) are logically implied by F2 after the addition of (4). Notice that
the clauses (4) and (5) together are the same as (1), but with the blocked clauses.
The blocked clauses are required to add (5), but can be removed afterwards.

Expressing Symmetry Breaking in DRAT Proofs 599

Partial Symmetry Breaking. To this point, we considered breaking a sym-
metry fully. However, symmetries can also broken partially. Given a symmetry
σ = (x1, . . . , xn)(p1, . . . , pn), we refer to partial symmetry breaking as using a
subset of x1, . . . , xn and the corresponding pi for the clauses (2), (4), and (5).
However, also with partial symmetry breaking, the full set of clauses (3) should
be used and also redefining involved clauses should not change.

Example 5. Consider the symmetry σ = (x1, x2, x3, x4)(x3, x4, x1, x2). We could
partially break σ by using only a subset, say σ′ = (x1, x3)(x3, x1). This would
result in the symmetry-breaking predicate x1 ≤ x3 which is a weakened version
of the predicate x1, x2 ≤ x3, x4 that would be been created by fully breaking σ.

6 Breaking Multiple Symmetries

Given a problem with k symmetries, tools that add symmetry-breaking predi-
cates add the clauses (1) for each symmetry. However, breaking k > 1 symmetries
cannot be expressed in DRAT by applying the above procedure (all three steps)
only once for each symmetry. Two symmetries are dependent if they have at least
one overlapping variable. If two symmetries are dependent, it requires more than
two swaps to break them both.

Example 6. Consider the formula F = (x1∨x2)∧(x1∨x3)∨(x2∨x3)∨(x̄1∨x̄2∨x̄3)
and its two symmetries: σ1 = (x1, x2)(x2, x1) and σ2 = (x2, x3)(x3, x2). Breaking
symmetry σ1 would result in adding the clauses

(x′
1 ∨ x̄1 ∨ x̄2), (x̄′

1 ∨ x1), (x̄′
1 ∨ x2), (x̄′

2 ∨ x1 ∨ x2), (x′
2 ∨ x̄1), (x′

2 ∨ x̄2).

Applying the definitions, F can be converted to F ′ = (x′
1 ∨ x′

2) ∧ (x′
1 ∨ x3) ∨

(x′
2∨x3)∨(x̄′

1∨x̄′
2∨x̄3). From the definitions, it follows that x′

1 ≤ x′
2, or (x̄′

1∨x′
2).

Now, let us break symmetry σ2 by adding the clauses

(x′′
2 ∨ x̄′

2 ∨ x̄3), (x̄′′
2 ∨ x′

2), (x̄
′′
2 ∨ x3), (x̄′

3 ∨ x′
2 ∨ x3), (x′

3 ∨ x̄′
2), (x

′
3 ∨ x̄3).

Again, applying the definitions, F ′ can be converted to F ′′ = (x′
1 ∨ x′′

2) ∧
(x′

1 ∨x′
3)∨ (x′′

2 ∨x′
3)∨ (x̄′

1 ∨ x̄′′
2 ∨ x̄′

3). Notice that (x̄′
1 ∨x′′

2), i.e., x′
1 ≤ x′′

2 does not
hold. Consider the satisfying assignment x1 = 1, x2 = 1, x3 = 0. Following the
definitions, x′

1 = 1, x′
2 = 1 and x′′

2 = 0, x′
3 = 1. Observe that 0 = x′′

2 < x′
1 = 1.

In order to break both σ1 and σ2, we need to break σ1 again. �

The problem in Example 6 is caused by dependent symmetries. Breaking
dependent symmetries requires applying the symmetry-breaking procedure, i.e.,
the three steps to break a single symmetry, again and again. We can limit the
number of times the procedure has to be applied if the dependent symmetries
have a frequently occurring pattern: a symmetry chain. Consider symmetries
of the form σi = (xi,1, . . . , xi,n, xi,n+1, . . . , xi,2n)(xi,n+1, . . . , xi,2n, xi,1, . . . , xi,n).
A symmetry chain 〈σ1, . . . , σk〉 is a sequence of such symmetries with the addi-
tional property that xi+1,j = xi,j+n with 1 ≤ i < k and 1 ≤ j ≤ n. We denote

600 M.J.H. Heule et al.

a symmetry chain by (x1,1, . . . , x1,n)(x2,1, . . . , x2,n) . . . (xk,1, . . . , xk,n). Breaking
such a symmetry chain will add the following constraints to the formula

x1,1, . . . , x1,n ≤ x2,1, . . . , x2,n ≤ · · · ≤ xk,1, . . . , xk,n.

We first will explain how to express breaking a symmetry chain wihtin a
DRAT proof. Afterwards we will show how to convert dependent symmetries
into a chain, which might weaken the symmetry-breaking predicates.

Breaking a Symmetry Chain using Sorting Networks. A sorting network,
consisting of k wires and c comparators, sorts k values using c comparisons.
Values flow across the wires. A comparator connects two wires, compares the
incoming values, and sorts them by assigning the smaller value to one wire, and
the larger to the other. Figure 3 shows a sorting network of four wires (horizontal
lines) and five comparators (vertical lines). The best algorithms in practice for
sorting k wires are based on pairwise sorting [22] or Batcher’s Merge-Exchange
algorithm [23] which produce sorting networks with O(k log2 k) comparators.

Sorting networks can be used to break a symmetry chain. For a symmetry
chain 〈σ1, . . . , σk〉, we use a sorting network with k wires. For each comparator in
the network we apply the symmetry-breaking procedure once. Since comparators
may skip certain wires, such as the first and second comparator in Fig. 3, we need
to compute that symmetry.

Fig. 3. A sorting network that sorts the assignments of a symmetry chain of length 4.

Example 7. Consider the symmetry chain: (x1, x5)(x2, x6)(x3, x7)(x4, x8). The
symmetry-breaking predicates will express that x1, x5 ≤ x2, x6 ≤ x3, x7 ≤ x4, x8.
In order to convert any assignment on those variables, the symmetry-breaking
procedure is applied five times, i.e., the size of the smallest sorting network
on four wires. Figure 3 illustrates such a sorting network. The first comparator
in this network connects the wires 2 and 4. This corresponds to applying the
symmetry-breaking procedure of the symmetry (x2, x6, x4, x8)(x4, x8, x2, x6).

Breaking Multiple Symmetries. Not all dependent symmetries form a chain.
If k dependent symmetries cannot be expressed as a chain, it may require more
than O(k log k) swaps to break them. This is illustrated below.

Example 8. Consider two symmetries: σ1 = (x1, x4, x2, x5)(x2, x5, x1, x4) and
σ2 = (x2, x4, x3, x6)(x3, x6, x2, x4). Notice σ1 and σ2 are dependent and cannot

Expressing Symmetry Breaking in DRAT Proofs 601

be expressed as a symmetry chain. A symmetry chain of length three (a chain
of two symmetries) can be broken using three swaps: the size of the smallest
sorting network with 3 wires has 3 comparators. However, breaking σ1 and σ2

requires four swaps for the assignment x1 = x2 = x4 = x6 = 1 and x3 = x5 = 0.

x1 x2 x3

1 1 0
1 0 1
x4 x5 x6

σ1−−→
x′
1 x′

2 x3

1 1 0
0 1 1
x′
4 x′

5 x6

σ2−−→
x′
1 x′′

2 x′
3

1 0 1
1 1 0
x′′
4 x′

5 x′
6

σ1−−→
x′′
1 x′′′

2 x′
3

0 1 1
1 1 0

x′′′
4 x′′

5 x′
6

σ2−−→
x′′
1 x′′′′

2 x′′
3

0 1 1
0 1 1

x′′′′
4 x′′

5 x′′
6

�

Dependent symmetries that do not form a chain can be broken using a sorting
network, by breaking them partially, which will be discussed below.

Converting Symmetries into a Symmetry Chain. Some applications, such
as computing unavoidable subgraphs, have dependent symmetries that cannot be
expressed as a symmetry chain. However, we can still use the above procedure if
we partially break such symmetries. We apply the following method: given a set
of dependent symmetries, we compute a subset of each symmetry such that they
form a symmetry chain. These shorter symmetries are used for partial symmetry
breaking as discussed at the end of Sect. 5.

Example 9. Consider the symmetries in Example 8. First, we compute a subset of
σ′
1 ⊆ σ1 and σ′

2 ⊆ σ2 such that σ′
1 and σ′

2 form a chain, say σ′
1 = (x1, x2)(x2, x1)

and σ′
2 = (x2, x3)(x3, x2). Second, we will use σ′

1 and σ′
2 for the sorting networks

and apply the partial symmetry breaking.

7 Tools and Evaluation

Several tools are necessary to produce a DRAT proof for a given formula F
that incorporates symmetry breaking. Figure 4 shows an overview of the tool
chain. Six tools are used: a formula-to-graph converter, a symmetry extractor, a
symmetry-breaking converter, a SAT solver, and a DRAT proof checker. These
tools are used in four phases:

I The symmetries σ of F are computed by transforming F into a clause-literal
graph (see Sect. 4). A symmetry-extraction tool, such as saucy [24], can be
used to obtain the symmetries.

II Formula F is converted into a satisfiability-equivalent formula F ′, a copy of
F for which the symmetries σ are broken. F ′ is equivalent (modulo variable
renaming) to adding symmetry-breaking predicates to F using a symmetry-
breaking tool. Additionally, the conversion from F to F ′ is expressed as a
partial DRAT proof. Our new tool, sym2drat, implements this second phase,
i.e., computing F ′ and a partial DRAT proof.

III The formula F ′ is solved by a SAT solver, which produces a DRAT proof.
Most state-of-the-art SAT solvers now support emission of DRAT proofs.

602 M.J.H. Heule et al.

IV The last step consists of verifying the result of both the symmetry-breaking
tool and the SAT solver. The partial DRAT proof and the DRAT proof of
F ′ are merged, which is accomplished by concatenating the proofs. A proof
checker, such as drat-trim [4], validates whether the merged proof is a
refutation for the input formula F .

Fig. 4. Tool chain to produce DRAT proofs that incorporate symmetry breaking. The
rectangle boxes are files, while the round boxes are tools. Phase I consists of the tools
transformer and saucy, phase II consists of the sym2drat tool, phase III uses an off-
the-shelf SAT solver, and phase IV consists of tools to merge and validate the proofs.

Below we will discuss the tools that we developed for phases II and IV.
We used off-the-shelf tools for the phases I and III.

7.1 The Tool sym2drat

The main tool that we developed for expressing symmetry-breaking as DRAT
proofs is sym2drat. This tool requires two inputs: a CNF formula F and a
set of symmetries of F . Two files are emitted by sym2drat: a CNF formula F ′

with symmetry-breaking predicates and a partial DRAT proof that expresses the
conversion of F into F ′. Our tool sym2drat constructs sorting networks based
on the pairwise sorting algorithm [22], which reduces the number of swaps (and
thus the size of the partial DRAT proof) by roughy a factor of two compared to
the bubble sorting network for most problems on which we experimented, i.e.,
problems containing around 20 symmetries. The sym2drat tool preprocesses the
input symmetries such that they form a set of symmetry chain, see Sect. 6.

Expressing Symmetry Breaking in DRAT Proofs 603

7.2 Improving DRAT Proof-Checking Tools

Apart from implementing sym2drat, we improved two tools that validate DRAT
proofs. The first tool we improved is drat-trim: the fast DRAT proof checker
written in C that was used to validate the results of SAT Competition 2014.
The current version of drat-trim does not support validating partial proofs:
a sequence of clauses that are all redundant with respect to a given formula,
but that does not terminate with the empty clause. Checking partial proofs
allows one to validate the output of sym2drat. We extended drat-trim with the
option to validate partial proofs1. This feature was very useful for developing
our method to express using symmetry-breaking in DRAT proofs. We expect
this feature to be helpful to discover how other techniques, such as Gaussian
Elimination and cardinality resolution, can be expressed with DRAT proofs.

Our mechanically-verified, RAT validation tool [25], written in ACL2, has
undergone significant improvements. This tool was originally designed to demon-
strate the soundness of a basic algorithm used to validate RAT proofs. Efficiency
of the tool was not a priority. Recent work [11] has been devoted to improving the
performance of this tool while maintaining its proof of correctness (soundness).
The underlying data structures have been moved from cons-based lists to ACL2
STOBJs (Single Thread OBJects) which offer support for LISP arrays, reducing
the linear-time cost for accesses and updates to constant-time. This seemingly
small change has a large impact on performance but also required a substan-
tial proof effort. A new ACL2 data structure, called farray, was developed to
facilitate proof development with STOBJs. A mechanical proof of equivalence was
established to show that the new tool behaves exactly the same as the original
tool, preserving the proof of correctness of the original tool.

8 Evaluation

We evaluated the usefulness of our new method by computing and validating
“compact” DRAT proofs2 on some hard combinatorial problems.

Ramsey Number Four. Ramsey theory addresses unavoidable patterns. The most
well-known pattern is unavoidable cliques. The size of the smallest graph that
has an unavoidable clique of size k is called Ramsey number k. Ramsey number
four is 18. Showing that any graph of size 18 has an unavoidable clique of size
4 can be encoded using a formula consisting of 2 · (

18
4

)
= 6120 clauses, each of

length 6. The SAT solvers Lingeling and glucose were unable to determine in
24 hours that the formula is unsatisfiable.

The CNF formula F that encodes Ramsey number four has 18 symmetries:
any permutation of vertices and complementing the graph. SAT solvers can
determine that formula F ′, with symmetry-breaking predicates produced by
sym2drat, is unsatisfiable in less than a second. We merged the proof of F ′,
1 available at http://www.cs.utexas.edu/∼marijn/drat-trim/.
2 available at http://www.cs.utexas.edu/∼marijn/sbp/.

http://www.cs.utexas.edu/~marijn/drat-trim/
http://www.cs.utexas.edu/~marijn/sbp/

604 M.J.H. Heule et al.

produced by glucose 3.0, with the partial DRAT proof, produced by sym2drat.
This proof can be checked by drat-trim in 1.9 seconds. We validated the proof
using our ACL2-based, mechanically-verified RAT checker [11] as well. These
tools allow one to obtain a mechanically-verified proof in the ACL2 theorem
prover that Ramsey number four is 18. We envision that this tool chain is a
useful template to obtain trustworthy results of hard combinatorial problems.

Erdős Discrepancy Conjecture. Let S = 〈s1, s2, s3, . . . 〉 be an infinite sequence
of 1’s or −1’s. Erdős Discrepancy Conjecture states that for any C there exists
an d and k such that

∣
∣
∣
∣
∣

k∑

i=1

si·d

∣
∣
∣
∣
∣
> C

Recently, the case C = 2 was proved using SAT solvers, resulting in a clausal
proof of 13Gb [5]. The problem contains one symmetry (swapping 1’s and −1’s),
but it was not broken in the original approach. We proved the conjecture using
our tool chain with glucose 3.0 and validated the DRAT proof using drat-trim.
The size of our proof is slightly more than 2Gb in syntactically the same format
as the original proof. Symmetry breaking allowed us to pick a variable which can
be added to the formula, similar to the unit (x̄a,b) in Example 4. We choose unit
(s̄60) as it occurs frequently in the original CNF formula. The combination of
symmetry-breaking and selecting a good unit variable resulted in a proof a sixth
of the size of the original one. The tool drat-trim can reduce the new proof to
850 Mb by removing redundant lemmas and discarding the deletion information.

Two Pigeons per Hole. One family of hard problems in the SAT Competitions
of 2013 and 2014 are a variation of the pigeon hole principle. The Two-Pigeons-
per-Hole (TPH) family consists of problems encoding that 2k + 1 pigeons can
be placed into k holes such that each hole has at most two pigeons. Most SAT
solvers can refute the problem for k = 6, but they cannot solve problems of
size k > 6 within an hour, unless symmetry breaking or cardinality resolution is
applied. It is not yet known how to express cardinality resolution in the existing
SAT proof formats. Previously, there was no approach to produce DRAT proofs
for the difficult instances of this family (k > 6). Using our method, we produced
and checked DRAT proofs for this family for k ≤ 12 within an hour.

A TPH problem of size k contains 2k + 1 symmetries of length k expressing
that the pigeons are interchangeable. After breaking these symmetries, TPH
problems become very easy and can be solved instantly. However, the number of
involved clauses per symmetry is large and the formulas contain many clauses.
As a consequence, expressing a single swap results in many clause addition and
deletion steps. For k = 12, our method results in a 4Gb proof. The size of the
DRAT proof sharply increases with k and so does the time to validate the proof.

Expressing Symmetry Breaking in DRAT Proofs 605

9 Conclusions

Validating proofs of unsatisfiability helps one gain confidence in the correct-
ness of SAT solver results, even when some SAT solvers have been shown to
contain errors on an implementation [26] and conceptual level [20]. We presented
a method to express symmetry breaking in DRAT, the most widely-supported
proof format for SAT solvers. Our method allows, for the first time, validation
of SAT solver results obtained via symmetry breaking, thereby validating the
results of symmetry extraction tools as well.

Symmetry breaking is often crucial when solving hard combinatorial prob-
lems. Our method provides a missing link to establish trust that results on
these problems are correct. We demonstrated our method on hard combinatorial
problems such as Ramsey number four and the Erdős Discrepancy Conjecture.
We also constructed DRAT proofs of two-pigeons-per-hole (TPH) problems.
Larger TPH problems can only be solved with either symmetry-breaking or car-
dinality resolution. It was previously unknown how to produce proofs for either
technique, but we demonstrate proofs for the former in this paper. Hence, this
work brings us closer to validation of all SAT solver results.

References

1. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for
search problems. In: KR 1996, pp. 148–159. Morgan Kaufmann (1996)

2. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult sat
instances in the presence of symmetry. In: Proceedings of the 39th Design Automa-
tion Conference, pp. 731–736 (2002)

3. Gent, I.P., Smith, B.M.: Symmetry breaking in constraint programming. In: Horn,
W. (ed.) ECAI 2000, pp. 599–603. IOS Press (2000)

4. Wetzler, N., Heule, M.J.H., Hunt Jr, W.A.: DRAT-trim: efficient checking and
trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014.
LNCS, vol. 8561, pp. 422–429. Springer, Heidelberg (2014)

5. Konev, B., Lisitsa, A.: A SAT attack on the Erdős discrepancy conjecture. In: Sinz,
C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 219–226. Springer, Heidelberg
(2014)

6. Kouril, M., Paul, J.L.: The van der Waerden number W(2, 6) is 1132. Exp. Math.
17(1), 53–61 (2008)

7. Codish, M., Cruz-Filipe, L., Frank, M., Schneider-Kamp, P.: Twenty-five compara-
tors is optimal when sorting nine inputs (and twenty-nine for ten). In: ICTAI 2014,
pp. 186–193. IEEE Computer Society (2014)

8. Aloul, F.A., Sakallah, K.A., Markov, I.L.: Efficient symmetry breaking for boolean
satisfiability. IEEE Trans. Comput. 55(5), 549–558 (2006)

9. Schaafsma, B., Heule, M.J.H., van Maaren, H.: Dynamic symmetry breaking by
simulating zykov contraction. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584,
pp. 223–236. Springer, Heidelberg (2009)

10. Radziszowski, S.P.: Small Ramsey numbers. Electron. J. Comb. #DS1 (2014)
11. Wetzler, N.D.: Efficient, mechanically-verified validation of satisfiability solvers.

Ph.D. dissertation, The University of Texas at Austin, May 2015

606 M.J.H. Heule et al.

12. Kullmann, O.: On a generalization of extended resolution. Discrete Appl. Math.
96–97, 149–176 (1999)

13. Zhang, L., Malik, S.: Validating sat solvers using an independent resolution-based
checker: practical implementations and other applications. In: DATE, pp. 10880–
10885 (2003)

14. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

15. Biere, A.: Picosat essentials. JSAT 4(2–4), 75–97 (2008)
16. Van Gelder, A.: Verifying rup proofs of propositional unsatisfiability. In: ISAIM

(2008)
17. Heule, M.J.H., Hunt Jr, W.A., Wetzler, N.: Verifying refutations with extended

resolution. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 345–359.
Springer, Heidelberg (2013)

18. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Trimming while checking clausal
proofs. In: Formal Methods in Computer-Aided Design, pp. 181–188. IEEE (2013)

19. Heule, M.J.H., Hunt Jr, W.A., Wetzler, N.: Bridging the gap between easy gener-
ation and efficient verification of unsatisfiability proofs. Softw. Test. Verif. Reliab.
(STVR) 24(8), 593–607 (2014)

20. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer, Hei-
delberg (2012)

21. Järvisalo, M., Biere, A., Heule, M.J.H.: Blocked clause elimination. In: Esparza,
J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer,
Heidelberg (2010)

22. Parberry, I.: The pairwise sorting network. Parallel Process. Lett. 2, 205–211 (1992)
23. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of Spring

Joint Computer Conference, AFIPS 1968, pp. 307–314. ACM (1968)
24. Darga, P.T., Liffiton, M.H., Sakallah, K.A., Markov, I.L.: Exploiting structure in

symmetry detection for cnf. In: DAC 2004, pp. 530–534. ACM (2004)
25. Wetzler, N., Heule, M.J.H., Hunt Jr, W.A.: Mechanical verification of SAT refu-

tations with extended resolution. In: Blazy, S., Paulin-Mohring, C., Pichardie, D.
(eds.) ITP 2013. LNCS, vol. 7998, pp. 229–244. Springer, Heidelberg (2013)

26. Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT
and QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175,
pp. 44–57. Springer, Heidelberg (2010)

MathCheck: A Math Assistant
via a Combination of Computer Algebra

Systems and SAT Solvers

Edward Zulkoski(B), Vijay Ganesh, and Krzysztof Czarnecki

University of Waterloo, Waterloo, ON, Canada
ezulkosk@gsd.uwaterloo.ca

Abstract. We present a method and an associated system, called Math-
Check, that embeds the functionality of a computer algebra system
(CAS) within the inner loop of a conflict-driven clause-learning SAT
solver. SAT+CAS systems, a la MathCheck, can be used as an assis-
tant by mathematicians to either counterexample or finitely verify open
universal conjectures on any mathematical topic (e.g., graph and number
theory, algebra, geometry, etc.) supported by the underlying CAS system.
Such a SAT+CAS system combines the efficient search routines of mod-
ern SAT solvers, with the expressive power of CAS, thus complementing
both. The key insight behind the power of the SAT+CAS combination
is that the CAS system can help cut down the search-space of the SAT
solver, by providing learned clauses that encode theory-specific lemmas,
as it searches for a counterexample to the input conjecture (just like the
T in DPLL(T)). In addition, the combination enables a more efficient
encoding of problems than a pure Boolean representation.

In this paper, we leverage the graph-theoretic capabilities of an open-
source CAS, called SAGE. As case studies, we look at two long-standing
open mathematical conjectures from graph theory regarding properties
of hypercubes: the first conjecture states that any matching of any d-
dimensional hypercube can be extended to a Hamiltonian cycle; and
the second states that given an edge-antipodal coloring of a hypercube,
there always exists a monochromatic path between two antipodal ver-
tices. Previous results have shown the conjectures true up to certain
low-dimensional hypercubes, and attempts to extend them have failed
until now. Using our SAT+CAS system, MathCheck, we extend these
two conjectures to higher-dimensional hypercubes. We provide detailed
performance analysis and show an exponential reduction in search space
via the SAT+CAS combination relative to finite brute-force search.

1 Introduction

Boolean conflict-driven clause-learning (CDCL) SAT and SAT-Modulo Theories
(SMT) solvers have become some of the leading tools for solving complex prob-
lems expressed as logical constraints [3]. This is particularly true in software
engineering, broadly construed to include testing, verification, analysis, synthe-
sis, and security. Modern SMT solvers such as Z3 [6], CVC4 [2], STP [12], and
c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 607–622, 2015.
DOI: 10.1007/978-3-319-21401-6 41

608 E. Zulkoski et al.

VeriT [4] contain efficient decision procedures for a variety of first-order theories,
such as uninterpreted functions, quantified linear integer arithmetic, bitvectors,
and arrays. However, even with the expressiveness of SMT, many constraints,
particularly ones stemming from mathematical domains such as graph theory,
topology, algebra, or number theory are non-trivial to solve using today’s state-
of-the-art SAT and SMT solvers.

Computer algebra systems (e.g., Maple, Mathematica, and SAGE), on the
other hand, are powerful tools that have been used for decades by mathemati-
cians to perform symbolic computation over problems in graph theory, topology,
algebra, number theory, etc. However, computer algebra systems (CAS) lack the
search capabilities of SAT/SMT solvers.

In this paper, we present a method and a prototype tool, called MathCheck,
that combines the search capability of SAT solvers with powerful domain knowl-
edge of CAS systems (i.e. a toolbox of algorithms to solve a broad range of
mathematical problems). The tool MathCheck can solve problems that are
too difficult or inefficient to encode as SAT problems. MathCheck can be used
by mathematicians to finitely check or counterexample open conjectures. It can
also be used by engineers who want to readily leverage the joint capabilities
of both CAS systems and SAT solvers to model and solve problems that are
otherwise too difficult with either class of tools alone.

The key concept behind MathCheck is that it embeds the functionality
of a computer algebra system (CAS) within the inner loop of a CDCL SAT
solver. Computer algebra systems contain state-of-the-art algorithms from a
broad range of mathematical areas, many of which can be used as subrou-
tines to easily encode predicates relevant both in mathematics and engineering.
The users of MathCheck write predicates in the language of the CAS, which
then interacts with the SAT solver through a controlled SAT+CAS interface.
By imposing restrictions on the CAS predicates, we ensure correctness
(i.e. soundness) of this SAT+CAS combination. The user’s goal is to finitely
check or find counterexamples to a Boolean combination of predicates (some-
what akin to a quantifier-free SMT formula). The SAT solver searches for coun-
terexamples in the domain over which the predicates are defined, and invokes
the CAS to learn clauses that help cutdown the search space (akin to the “T”
in DPLL(T)).

In this work, we focus on constraints from the domain of graph theory,
although our approach is equally applicable to other areas of mathematics. Con-
straints such as connectivity, Hamiltonicity, acyclicity, etc. are non-trivial to
encode with standard solvers [25]. We believe that the method described in this
paper is a step in the right direction towards making SAT/SMT solvers useful
to a broader class of mathematicians and engineers than before.

While we believe that our method is probably the first such combination
of SAT+CAS systems, there has been previous work in attempting to extend
SAT solvers with graph reasoning [8,14,22]. These works can loosely be divided
into two categories: constraint-specific extensions, and general graph encodings.
As an example of the first case, efficient SAT-based solvers have been designed

MathCheck: A Math Assistant via a Combination of Computer Algebra 609

to ensure that synthesized graphs contain no cycles [14]. In [22], Hamiltonicity
checks are reduced to Native Boolean cardinality constraints and lazy connectiv-
ity constraints. While more efficient than standard encodings of acyclicity and
Hamiltonicity constraints, these approaches lack generality. On the other hand,
approaches such as in CP(Graph) [8], a constraint satisfaction problem (CSP)
solver extension, encode a core set of graph operations with which complicated
predicates (such as Hamiltonicity) can be expressed. Global constraints [8] can
be tailored to handle predicate-specific optimizations. Although it can be non-
trivial to efficiently encode global constraints, previous work has defined efficient
procedures which enforce graph constraints, such as connectivity, incrementally
during search [17]. Our approach is more general than the above approaches,
because CAS systems are not restricted to graph theory. One might also con-
sider a general SMT theory-plugin for graph theory however given the diverse
array of predicates and functions within the domain, a monolithic theory-plugin
(other than a CAS system) seems impractical at this time.

Main Contributions:1

Contribution I: Analysis of a SAT+CAS Combination Method and the
MathCheck tool. In Sect. 3, we present a method and tool that combines a
CAS with SAT, denoted as SAT+CAS, facilitating the creation of user-defined
CAS predicates. Such tools can be used by mathematicians to finitely search
or counterexample universal sentences in the language of the underlying CAS.
The current version of our tool, MathCheck, allows users to easily specify
and solve complex graph-theoretic questions using the simple interface provided.
Although our current focus is predicates based in graph theory, the system is
easily extended to other domains.

Contribution II: Results on Two Open Graph-Theoretic Conjectures
over Hypercubes. In Sect. 4, we use our system to extend results on two long-
standing open conjectures related to hypercubes. Conjecture 1 states that any
matching of any d-dimensional hypercube can extend to a Hamiltonian cycle.
Conjecture 2 states that given an edge-antipodal coloring of a hypercube, there
always exists a monochromatic path between two antipodal vertices. Previous
results have shown Conjecture 1 (resp. Conjecture 2) true up to d = 4 [10](resp.
d = 5 [9]); we extend these two conjectures to d = 5 (resp. d = 6).

Contribution III: Performance Analysis of MathCheck. In Sect. 5, we
provide detailed performance analysis of MathCheck in terms of how much
search space reduction is achieved relative to finite brute-force search, as well as
how much time is consumed by each component of the system.

2 Background

We assume standard definitions for propositional logic, basic mathematical logic
concepts such as satisfiability, and solvers. We denote a graph G = 〈V,E〉 as a
1 All code+data is available at https://bitbucket.org/ezulkosk/sagesat.

https://bitbucket.org/ezulkosk/sagesat

610 E. Zulkoski et al.

Fig. 1. High-level overview of the MathCheck architecture, which is similar to
DPLL(T)-style SMT solvers. MathCheck takes as input a formula over fragments
of mathematics supported by the underlying CAS system, and produces either a coun-
terexample or a proof that none exists.

set of vertices V and edges E, where an edge eij connects the pair of vertices vi
and vj . We only consider undirected graphs in this work. The order of a graph is
the number of vertices it contains. For a given vertex v, we denote its neighbors
– vertices that share an edge with v – as N(v). The hypercube of dimension d,
denoted Qd, consists of 2d vertices and 2d−1 · d edges, and can be constructed
in the following way (see Fig. 3a): label each vertex with a unique binary string
of length d, and connect two vertices with an edge if and only if the Hamming
distance of their labels is 1. A matching of a graph is a subset of its edges that
mutually share no vertices. A vertex is matched (by a matching) if it is incident to
an edge in the matching, else it is unmatched. A maximal matching M is a match-
ing such that adding any additional edge to M violates the matching property.
A perfect matching (resp. imperfect matching) M is a matching such that all
(resp. not all) vertices in the graph are incident with an edge in M . A forbidden
matching is a matching such that some unmatched vertex v exists and every
v′ ∈ N(v) is matched. Inituitively, no superset of the matching can match v.
Vertices in Qd are antipodal if their binary strings differ in all positions (i.e.
opposite “corners” of the cube). Edges eij and ekl are antipodal if {vi, vk} and
{vj , vl} are pairs of antipodal vertices. A 2-edge-coloring of a graph is a labeling
of the edges with either red or blue. A 2-edge-coloring is edge-antipodal if the
color of every edge differs from the color of the edge antipodal to it.

3 Contribution I: SAT+CAS Combination Architecture

This section describes the combination architecture of a CAS system with a
SAT solver, the method underpinning the MathCheck tool. Figure 1 provides
a schematic of MathCheck. The key idea behind such combinations is that the
CAS system is integrated in the inner loop of a conflict-driven clause-learning
SAT solver, akin to how a theory solver T is integrated into a DPLL(T) sys-
tem [19]. The grammar of the input language of MathCheck is sketched in
Fig. 2. MathCheck allows the user to define predicates in the language of CAS
that express some mathematical conjecture. The input mathematical conjecture

MathCheck: A Math Assistant via a Combination of Computer Algebra 611

is expressed as a set of assertions and queries, such that a satisfying assignment
to the conjunction of the assertions and negated queries constitute a counterex-
ample to the conjecture. We refer to this conjunction simply as the input formula
in the remainder of the paper. First, the formula is translated into a Boolean
constraint that describes the set of structures (e.g., graphs or numbers) referred
to in the conjecture. Second, the SAT solver enumerates these structures in an
attempt to counterexample the input conjecture. The solver routinely queries
the CAS system during its search (given that the CAS system is integrated
into its inner loop) to learn clauses (akin to callback plugins in programmatic
SAT solvers [13] or theory plugins in DPLL(T) [19]). Clauses thus learned can
dramatically cutdown the search space of the SAT solver.

Combining the solver with CAS extends each of the individual tools in the
following ways. First, off-the-shelf SAT (or SMT) solvers contain efficient search
techniques and decision procedures, but lack the expressiveness to easily encode
many complex mathematical predicates. Even if a problem can be easily reduced
to SAT/SMT, the choice of encoding can be very important in terms of perfor-
mance, which is typically non-trivial to determine, especially for non-experts on
solvers. For example, Velev et al. [25] investigated 416 ways to encode Hamil-
tonian cycles to SAT as permutation problems to determine which encodings
were the most effective. Further, such a system can take advantage of many
built-in common structures in a CAS (e.g., graph families such as hypercubes),
which can greatly simplify specifying structures and complex predicates. On the
other side, CAS’s contain many efficient functions for a broad range of mathe-
matical properties, but often lack the robust search routines available in SAT.

Here we provide a very high-level overview, with more details in Sect. 3.2
below. Please refer to Fig. 1, which depicts the SAT+CAS combination. Given a
formula over graph variables in the language of MathCheck (refer to Sect. 3.1),
we conjoin the assertions with the negated queries, and preprocess it as described
below. When the SAT solver finds a partial model, additional checks are per-
formed by the CAS using “CAS predicates.” The potential solution is either
deemed a valid counterexample to the conjecture and returned to the user, or
the SAT search is refined with learned clauses. Output is either SAT and a coun-
terexample to the conjecture, or UNSAT along with a proof certificate. Although
similar to DPLL(T) approach of SMT solvers in many aspects, we note several
important differences in terms extensibility, power, and flexibility: (1) rather
than a monolithic theory plugin for graphs, we opt for a more extensible app-
roach by incorporating the CAS, allowing new predicates (say, over, numbers,
geometry, algebra, etc.) to be easily defined via the CAS functionality; (2) the
CAS predicates are essentially defined using Python code interpreted by the
CAS. This gives considerable additional power to the SAT+CAS combination;
(3) the user may flexibly decide that certain predicates may be encoded directly
to Boolean logic via bit-blasting, and thus take advantage of the efficiency of
CDCL solvers in certain cases.

612 E. Zulkoski et al.

3.1 Input Language of MathCheck

The input to MathCheck is a tuple 〈S, φ〉, where S is a set of graph variables
and φ is a formula over S as defined by the abbreviated grammar in Fig. 2.
A graph variable G = 〈GV , GE〉 indicates the vertices and edges that can poten-
tially occur in its instantiation, denoted GI . A graph variable G is essentially a
set of |V | Boolean variables (one for each vertex), and |E| Boolean variables for
edges. Setting an edge eij (resp. vertex vi) to True means that eij (resp. vi) is a
part of the graph instantiation GI . Through a slight abuse of notation, we often
define a graph variable G = Qd, indicating that the sets of Booleans in GV and
GE correspond to the vertices and edges in the hypercube Qd, respectively.

Fig. 2. Grammar LG of MathCheck’s Input Language.

LG is essentially defined as propositional logic, extended to allow predi-
cates over graph variables (as in Fig. 2). Predicates can be defined by the user,
and are classified as either SAT predicates or CAS predicates. SAT predicates
are blasted to propositional logic, using the mapping from graph components
(i.e. vertices and edges) to Boolean variables.2 As an example, for any graph
variable G used in an input formula, we add an EdgeImpliesVertices(G) con-
straint, indicating that an edge cannot exist without its corresponding vertices:

EdgeImpliesVertices(G) :
∧

{eij ⇒ (vi ∧ vj) | eij ∈ GE}. (1)

CAS predicates, which are essentially Python code interpreted by the CAS,
check properties of instantiated (non-variable) graphs and are defined as pieces of
code in the language of the CAS. In our case, we use the SAGE CAS [23], which
for now can be thought of as a collection of Python modules for mathematics.

3.2 Architecture of MathCheck

The architecture of MathCheck is given in Fig. 1. The Preprocessor prepares
φ for the inner CAS-DPLL loop using standard techniques. First, we create nec-
essary Boolean variables that correspond to graph components (vertices and
edges) as described above. We replace each SAT predicate via bit-blasting with
its propositional representation in situ (with respect to φ’s overall propositional
2 For notational convenience, we often use existential quantifiers when defining con-

straints; these are unrolled in the implementation. We only deal with finite graphs.

MathCheck: A Math Assistant via a Combination of Computer Algebra 613

structure), such that any assignment found by the SAT solver can be encoded
into graphs adhering to the SAT predicates. Finally, Tseitin-encoding and a
Boolean abstraction of φ is performed such that CAS predicates are abstracted
away by new boolean variables; since these techniques are well-known, we do
not discuss them further. This phase produces three main outputs: the CNF
Boolean abstraction φB of the SAT predicates, a mapping from graph compo-
nents to Booleans G2B, and a mapping T2B from CAS predicate definitions to
Boolean variables. The CAS predicates themselves are fed into the CAS. The
SAT+CAS interface acts similar to the DPLL(T) interface between the DPLL
loop and theory-plugins, ensuring that partial assignments from the SAT solver
satisfy theory-specific CAS predicates. After an assignment is found, literals cor-
responding to abstracted CAS predicates are checked. The SAT+CAS interface
provides an API that allows CAS predicates to interact with the SAT solver,
which modifies the API from the programmatic SAT solver Lynx [13].

3.3 Implementation

Wehaveprototypedour systemadopting the lazy-SMTsolver approach (as in [21]),
specifically combining the Glucose SAT solver [1] with the SAGE CAS [23]. Minor
modifications to Glucose were made to call out to SAGE whenever an assignment
was found (of theBoolean abstraction).TheSAT+CAS interface extends the exist-
ing SAT interface in SAGE. We further performed extensive checks on our results,
including verifying the SAT solver’s resolution proofs using DRUP-trim [16] as well
as checking the learned clauses produced by CAS predicates, however do not elab-
orate now due to space constraints.

Fig. 3. (a) The red edges denote a generated matching, where the blue vertex 000 is
restricted to be unmatched, as discussed in Sect. 4. A Hamiltonian cycle that includes
the matching is indicated by the arrows. (b) An edge-antipodal 2-edge-coloring of the
cube Q3. Not a counterexample to Conjecture 2 due to the red (or blue) path from 000
to 111.

4 Contribution II: Two Results Regarding Open
Conjectures over Hypercubes

We use our system to prove two long-standing open conjectures up to a certain
parameter (dimension) related to hypercubes. Hypercubes have been studied for

614 E. Zulkoski et al.

theoretical interest, due to their nice properties such as regularity and symmetry,
but also for practical uses, such as in networks and parallel systems [5].

4.1 Matchings Extend to Hamiltonian Cycles

The first conjecture we look at was posed by Ruskey and Savage on matchings of
hypercubes in 1993 [20]; although it has inspired multiple partial results [10,15]
and extensions [11], the general statement remains open:

Conjecture 1 (Ruskey and Savage, [20]). For every dimension d, any matching
of the hypercube Qd can be extended to a Hamiltonian cycle.

Consider Fig. 3a. The red edges correspond to a matching and the arrows
depict a Hamiltonian cycle extending the matching. Intuitively, the conjecture
states that for any d-dimensional hypercube Qd, no matter which matching M
we choose, we can find a Hamiltonian cycle of Qd that goes through M . Our
encoding searches for matchings, and checks a sufficient subset of the full set
of matchings of Qd to ensure that the conjecture hold for a given dimension
(by returning UNSAT and a proof). As we will show, constraints such as ensuring
that a potential model is a matching are easily encoded with SAT predicates,
while constraints such as “extending to a Hamiltonian cycle” are expressed easily
as CAS predicates.

Previous results have shown this conjecture true for d ≤ 4,3 however the com-
binatorial explosion of matchings on higher dimensional hypercubes makes analy-
sis increasingly challenging, and a general proof has been evasive. We demon-
strate using our approach the first result that Conjecture 1 holds for Q5 – the
5-dimensional hypercube. We use a conjunction of SAT predicates to generate a
sufficient set of matchings of the hypercube, which are further verified by a CAS
predicate to check if the matching can not be extended to a Hamiltonian cycle
(such that a satisfying model would counterexample the conjecture).

Note that the simple approach of generating all matching of Qd does not
scale (see Table 1 below), and the approach would take too long, even for d = 5.
We prove several lemmas to reduce the number of matchings analyzed. In the
following, we use the graph variable G = Qd, such that its vertex and edge
variables correspond to the vertices and edges in Qd.

It is straightforward to encode matching constraints as a SAT predicate. For
every pair of incident edges e1, e2, we ensure that only one can be in the matching
(i.e. at most one of the two Booleans may be True), which can be encoded as:

Matching(G) :
∧

{(¬e1 ∨ ¬e2) | e1, e2 ∈ GE ∧ isIncident?(e1, e2)}. (2)

The number of clauses generated by the above translation is 2d · (
d
2

)
, which

can be understood as: for each of the 2d vertices in Qd, ensure that each of the
d incident edges to that vertex are pairwise not both in the matching.
3 We were unable to find the original source of the results for d ≤ 4, however the result

is asserted in [10]. We also verified these results using our system.

MathCheck: A Math Assistant via a Combination of Computer Algebra 615

A previous result from Fink [10] demonstrated that any perfect matching of
the hypercube for d ≥ 2 can be extended to a Hamiltonian cycle. Our search
for a counterexample to Conjecture 1 should therefore only consider imperfect
matchings, and even further, only maximal forbidden matchings as shown below.
To encode this, we ensure that at least one vertex is not matched by any gen-
erated matching. Since all vertices are symmetric in a hypercube, we can, with-
out loss of generality, choose a single vertex v0 that we ensure is not matched.
We encode that all edges incident to v0 cannot be in the matching:

Forbidden(G):
∧

{¬e | e ∈ GE ∧ isIncident?(v0, e)}. (3)

A further key observation to reduce the matchings search space is that, if a
matching M extends to a Hamiltonian cycle, then any matching M ′ such that
M ′ ⊆ M can also be extended to a Hamiltonian cycle.

Observation 1. All matchings can be extended to a Hamiltonian cycle if and
only if all maximal forbidden matchings can be extended to a Hamiltonian cycle.

Proof. The forward direction is straightforward. For the reverse, suppose all
maximal forbidden matchings can be extended to a Hamiltonian cycle. For any
non-maximal matching M , we can always greedily add edges to M to make it
maximal. Call the maximized matching M ′. If M ′ is perfect, Fink’s result on
perfect matchings can be applied. If not, then it is a maximal forbidden matching,
and by assumption it can be extended to a Hamiltonian cycle. In either case,
the resulting Hamiltonian cycle must pass through the original matching M . ��

We encode this by adding the following constraints to MathCheck:

EdgeOn(G):
∧

{v ⇒ ∃e∈X e|v ∈ GV },

s.t. X = {e|e ∈ GE ∧ isIncident?(v, e)}
(4)

Maximal(G):
∧

{(vi ∨ vj) | eij ∈ GE}. (5)

Equation 4 states that if a vertex is on, then one of its incident edges must be
in the matching. Equation 5 ensures that we only generate maximal matchings.

Proposition 1. The conjunction of Constraints 1 – 5 encode exactly the set of
maximal forbidden matchings of the hypercube in which a designated vertex v0
is prevented from being matched.

Proof. It is clear from above that any model generated will be a forbidden match-
ing by Constraints 2 and 3 – we prove that Eqs. 4 and 5 ensure maximality.
Suppose M is a non-maximal matching. Then there exists an edge e such that
the matching does not match either of its endpoints. By Constraints 1 and 4,
no edge is incident with either endpoint. But then edge e could be added with-
out violating the matching constraints, and Constraint 5 is violated. Thus, any
matching generated must be maximal. It remains to show that all forbidden

616 E. Zulkoski et al.

maximal matchings that exclude v0 can be generated. Let M be an forbidden
maximal matching such that v0 is unmatched. We construct a satisfying variable
assignment over Constraints 1 – 5 which encodes M as follows:

{e | e ∈ M} ∪ {¬e | e ∈ GE\M}∪
{v | ∃e∈M isIncident?(v, e)} ∪ {¬v |� ∃e∈M isIncident?(v, e)}.

(6)

Constraint 2 holds since M is a matching, and therefore no two incident edges
can both be in M . Constraint 3 holds since it is assumed that v0 is not matched,
and therefore no edge incident to v0 can be in M . Constraints 1 and 4 hold
simply because they encode the definition of a matched vertex, and the second
line of Eq. 6 ensures that only matched vertices are in the satisfying assignment.
Constraint 5 holds since M is maximal. ��

Fig. 4. CAS-defined predicates from each case study. In ExtendsToHamiltonian, g
corresponds to the matching found by the SAT solver. In AntipodalMonochromatic, g
refers to the graph induced by a single color in the 2-edge-coloring.

To check if each matching extends to a Hamiltonian cycle, we create the CAS
predicate ExtendsToHamiltonian (see Fig. 4), which reduces the formula to an
instance of the traveling salesman problem (TSP). Let M be a matching of Qd.
We create a TSP instance 〈Qd,W 〉, where Qd is our hypercube, and W are the
edge weights, such that edges in the matching (red edges in Fig. 3a) have weight
1, and otherwise weight 2 (black edges).

Proposition 2. A Hamiltonian cycle exists through M in Qd if and only if
TSP (〈Qd,W 〉) = 2 ∗ |V | − |M |, where |V | is the number of vertices in Qd.

Proof. Since Qd has |V | vertices, any Hamiltonian cycle must contain |V | edges.
(⇐) From our encoding, it is clear that 2 ∗ |V | − |M | is the minimum weight
that could possibly be outputted by TSP, and this can only be achieved by
including all edges in the matching and |V | − |M | edges not in the matching.

MathCheck: A Math Assistant via a Combination of Computer Algebra 617

(⇒) The Hamiltonian cycle through M has |M | edges contributing a weight of
1, and |V | − |M | edges contributing a weight of 2. The total weight is therefore
|M | + (2 ∗ (|V | − |M |)) = 2 ∗ |V | − |M |. From above, this is also the minimum
weight cycle that TSP could produce. ��

Finally, after each check of ExtendsToHamiltonian that evaluates to True,
we add a learned clause, based on computations performed in the predicate, to
prune the search space. Since a TSP instance is solved we obtain a Hamiltonian
cycle C of the cube. Clearly, any future matchings that are subsets of C can be
extended to a Hamiltonian cycle; our learned constraint prevents these subsets
(below h refers to the Boolean variable abstracting the CAS predicate):

∨
{e | e ∈ QdE\C} ∪ {h}, where C is the learned Hamiltonian cycle. (7)

Our full formula for Conjecture 1 is therefore:

assert EdgeImpliesV ertices(G) ∧ Matching(G)∧
Forbidden(G) ∧ EdgeOn(G) ∧ Maximal(G)

query ExtendsToHamiltonian(G)
(8)

4.2 Connected Antipodal Vertices in Edge-Antipodal Colorings

The second conjecture deals with edge-antipodal colorings of the hypercube:

Conjecture 2 ([7]). For every dimension d, in every edge-antipodal 2-edge-coloring
of Qd, there exists a monochromatic path between two antipodal vertices.

Consider the 2-edge-coloring of the cube in Fig. 3b. Although the coloring is
edge-antipodal, it is not a counterexample, since there is a monochromatic (red)
path from 000 to 111, namely 〈000, 100, 110, 111〉. In this case, constraints such
as edge-antipodal-ness are expressed with SAT predicates. We ensure that no
monochromatic path exists between two antipodal vertices with a CAS predicate.
Previous work has shown that the conjecture holds up to dimension 5 [9] – we
show that the conjecture holds up to dimension 6.

We begin with a graph variable G = Q6, and constrain it such that its instan-
tiation corresponds to a 2-edge-coloring of the hypercube. More specifically, since
there are only two colors, we associate edges in G’s instantiation GI (i.e. edges
evaluated to True) with the color red, and the edges in Qd\GI with blue.
An important known result is that for a given coloring, the graph induced by
edges of one color is isomorphic to the other. It is therefore sufficient to check
only one of the color-induced graphs for a monochromatic antipodal path.

We first ensure that any coloring generated is edge-antipodal.

EdgeAntipodal(G):
∧

{(¬e1 ∧ e2) ∨ (e1 ∧ ¬e2)

| e1, e2 ∈ GE ∧ isAntipodal?(e1, e2)}.
(9)

618 E. Zulkoski et al.

Table 1. The number of matchings of the hypercube were computed using our tool in
conjunction with sharpSAT [24]: a tool for the #SAT problem. Note that the numbers
for forbidden matchings are only lower bounds, since we only ensure that the origin
vertex is unmatched. However, any unfound matchings are isomorphic to found ones.

Dimensions Matchings Forbidden Matchings Maximal Forbidden Matchings

2 7 3 0

3 108 42 2

4 41,025 14,721 240

5 13,803,794,944 4,619,529,024 6,911,604

Note that for every edge there is exactly one unique antipodal edge to it.
Since there are 2d−1 · d edges in Qd, and therefore 2d−2 · d pairs of antipodal
edges, there are 22

d−2·d possible 2-edge-colorings that are antipodal. We can
reduce the search space by using a recent result from Feder and Suber [9]:

Theorem 1 [9]. Call a labeling of Qd simple if there is no square 〈x, y, z, t〉
such that exy and ezt are one color, and eyz and etx are the other. Every simple
coloring has a pair of antipodal vertices joined by a monochromatic path.

We therefore prevent simple colorings by ensuring that such a square exists:

Nonsimple(G):
∨

{(¬exy ∧ eyz ∧ ¬ezt ∧ etx) ∨ (exy ∧ ¬eyz ∧ ezt ∧ ¬etx)

| exy, eyz, ezt, etx ∈ GE ∧ isSquare?(exy, eyz, ezt, etx)}.
(10)

It remains to check whether an antipodal monochromatic path exists, which
is checked by the CAS predicate AntipodalMonochromatic in Fig. 4. Given a
graph g, which contains only the red colored edges, we first compute the pairs
of antipodal vertices in Qd. Using the built-in shortest path algorithm of the
CAS, we check whether or not any of the pairs are connected, indicating that an
antipodal monochromatic path exists. In the case when predicate returns True,
we learn the constraint that all future colorings should not include the found
antipodal path P (m abstracts the CAS predicate):

∨
{¬e | e ∈ P} ∪ {m}, where P is the learned path. (11)

The full formula for Conjecture 2 is then:

assert EdgeImpliesV ertices(G) ∧ EdgeAntipodal(G) ∧ NonSimple(G)
query AntipodalMonochromatic(G)

(12)

5 Contribution III: Performance Analysis of MathCheck

We ran Formula 8 with d = 5 and Formula 12 with d = 6 until completion. Since
both runs returned UNSAT, we conclude that both conjectures hold for these
dimensions, which improves upon known results for both conjectures.

MathCheck: A Math Assistant via a Combination of Computer Algebra 619

Fig. 5. Cumulative times spent in the SAT solver and CAS predicates during the two
case studies. SAT solver performance degrades during solving (as indicated by the
increasing slope of the line), due to the extra learned clauses and more constrained
search space.

All experiments were performed on a 2.4 GHz 4-core Lenovo Thinkpad lap-
top with 8 GB of RAM, running 64-bit Linux Mint 17. We used SAGE ver-
sion 6.3 and Glucose version 3.0. Formula 8 required 348,150 checks of the
ExtendsToHamiltonian predicate, thus learning an equal number of Hamil-
tonian cycles in the process, and took just under 8 h. Formula 12 required 86,612
checks of the AntipodalMonochromatic predicate (learning the same number of
monochromatic paths), requiring 1 h 35 min of runtime. We note that for lower
dimensional cubes solving time was far less (< 20 seconds for either case study).
We find it unlikely that this approach can be used for higher-dimensions, without
further lemmas to reduce the search space.

The approach we have described significantly dominates näıve brute-force
approaches for both conjectures; learned clauses greatly reduce the search space
and cut the number of necessary CAS predicate checks. Given the data in
Table 1 and the number of calls to ExtendsToHamiltonian for Q5, a brute-force
check of all matchings (resp. forbidden matchings) of Q5 would require 39,649
(resp. 20) times more checks of the predicate (i.e. that many more TSP calls)
than our approach. Similar comparisons can be made for the second case study.

Figure 5 depicts how much time is consumed by the SAT solver and CAS
predicates in both case studies. The lines denote the cumulative time, such that
the right most point of each line is the total time consumed by the respective sys-
tem component. The near-linear lines for the CAS predicate calls indicate that
each check consumed roughly the same amount of time. SAT solving ultimately
dominates the runtime in both case studies, particularly due to later calls to
the solver when many learned clauses have been added by CAS predicates, and
the search space is highly constrained. This suggests several optimizations as
future work. For example, if SAT solver calls are rapidly requiring more time
(e.g., around iteration 75,000 in the second plot of Fig. 5), more sophisticated
CAS routines can be used to produce more learned clauses per call (such as by
learning constraints corresponding to all cycles isomorphic to the found one in

620 E. Zulkoski et al.

case study 1), in order to reduce the number of necessary SAT calls. Alterna-
tively, one can attempt to condense the learned clauses, which are generated
independently of each other, into a more compact Boolean representation.

One of our motivations for this work was to allow complicated predicates to
be easily expressed, so it is worth commenting on the size of the actual predicates.
Since predicates were written using SAGE (which is built on top of Python), the
pseudocode written in Fig. 4 matches almost exactly with the actual code, with
small exceptions such as computing the antipodal pairs in the second one. All
other function calls correspond to built-in functions of the CAS. Learn-functions
were also short, requiring less than 10 lines of code each.

6 Related Work

As already noted, our approach of combining a CAS system within the inner-loop
of a SAT solver most closely resembles and is inspired by the DPLL(T) [19]. There
are also similarities with the idea of programmatic SAT solver Lynx [13], which is
an instance-specific version of DPLL(T). Also, our tool MathCheck is inspired
by the recent SAT-based results on the Erdős discrepency conjecture [18]. Other
works [8,14,22] have extended solvers to handle graph constraints, as discussed in
Sect. 1, by either creating solvers for specific graphpredicates [14,22], or bydefining
a core set of constraints with which to build complex predicates [8]. Our approach
contains positive aspects from both: state-of-the-art algorithms from the CAS can
be used to define new predicates easily, and the methodology is general, in that
new predicates can be defined using the CAS. Several tools have combined a CAS
with SMT solvers for various purposes, mainly focusing on the non-linear arith-
metic algorithms provided by many CAS’s. For example, the VeriT SMT solver [4]
also uses functionality of the REDUCE CAS4 for non-linear arithmetic support.
Our work is more in the spirit of DPLL(T), rather than modifying the decision
procedure for a single theory.

7 Conclusions and Future Work

In this paper, we present MathCheck, a combination of a CAS in the inner-
loop of a conflict-driven clause-learning SAT solver, and we show that this
combination allows for highly expressive predicates that are otherwise non-
trivial/infeasible to encode as purely Boolean formulas. Our approach combines
the well-known domain-specific abilities of CAS with the search capabilities of
SAT solvers thus enabling us to verify long-standing open mathematical conjec-
tures over hypercubes (up to particular dimension), not feasible by either kind of
tool alone. We further discussed how our system greatly dominates näıve brute-
force search techniques for the case studies. We stress that the approach is not
limited to this domain, and we intend to extend our work to other branches of
mathematics supported by CAS’s, such as number theory. Another direction we
4 http://www.reduce-algebra.com/index.htm.

http://www.reduce-algebra.com/index.htm

MathCheck: A Math Assistant via a Combination of Computer Algebra 621

plan to investigate is integration with a proof-producing SMT solver, such as
VeriT. In addition to taking advantage of the extra power of an SMT solver, the
integration with VeriT will allow us to more easily produce proof certificates.

References

1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
IJCAI 9, 399–404 (2009)

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

3. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T.(eds.): Handbook of Satisfia-
bility. FAIA, vol. 185. IOS Press (February 2009)

4. Bouton, T., de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: veriT: an open,
trustable and efficient SMT-solver. In: CADE (2009)

5. Chen, Y-C., Li, K-L.: Matchings extend to perfect matchings on hypercube net-
works. In: IMECS, vol. 1. Citeseer (2010)

6. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

7. Devos, M., Norine, S.: Edge-antipodal Colorings of Cubes. http://garden.irmacs.
sfu.ca/?q=op/edge antipodal colorings of cubes

8. Dooms, G., Deville, Y., Dupont, P.E.: CP(Graph): introducing a graph computa-
tion domain in constraint programming. In: van Beek, P. (ed.) CP 2005. LNCS,
vol. 3709, pp. 211–225. Springer, Heidelberg (2005)

9. Feder, T., Subi, C.: On hypercube labellings and antipodal monochromatic paths.
Discrete Appl. Math. 161(10), 1421–1426 (2013)

10. Fink, J.: Perfect matchings extend to hamilton cycles in hypercubes. J. Comb.
Theor. B 97(6), 1074–1076 (2007)

11. Fink, J.: Connectivity of matching graph of hypercube. SIDMA 23(2), 1100–1109
(2009)

12. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer,
Heidelberg (2007)

13. Ganesh, V., O’Donnell, C.W., Soos, M., Devadas, S., Rinard, M.C., Solar-Lezama,
A.: Lynx: a programmatic sat solver for the rna-folding problem. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 143–156. Springer, Heidelberg
(2012)

14. Gebser, M., Janhunen, T., Rintanen, J.: SAT modulo graphs: acyclicity. In: Fermé,
E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 137–151. Springer, Heidelberg
(2014)

15. Gregor, P.: Perfect matchings extending on subcubes to hamiltonian cycles of
hypercubes. Discrete Math. 309(6), 1711–1713 (2009)

16. Heule, M.J.H., Hunt, W.A., Wetzler, N.: Trimming while checking clausal proofs.
In: FMCAD, pp. 181–188. IEEE (2013)

17. Holm, J., De Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-
nectivity. J. ACM (JACM) 48(4), 723–760 (2001)

http://garden.irmacs.sfu.ca/?q=op/edge_antipodal_colorings_of_cubes
http://garden.irmacs.sfu.ca/?q=op/edge_antipodal_colorings_of_cubes

622 E. Zulkoski et al.

18. Konev, B., Lisitsa, A.: A SAT attack on the Erdős discrepancy conjecture. In: SAT
(2014)

19. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and abstract DPLL
modulo theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI),
vol. 3452, pp. 36–50. Springer, Heidelberg (2005)

20. Ruskey, F., Savage, C.: Hamilton cycles that extend transposition matchings in
Cayley graphs of Sn. SIDMA 6(1), 152–166 (1993)

21. Sebastiani, R.: Lazy satisfiability modulo theories. J. Satisfiability Boolean Model.
Comput. 3, 141–224 (2007)

22. Soh, T., Le Berre, D., Roussel, S., Banbara, M., Tamura, N.: Incremental SAT-
based method with native boolean cardinality handling for the hamiltonian cycle
problem. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 684–693.
Springer, Heidelberg (2014)

23. Stein, W.A.(et al).: Sage Mathematics Software (Version 6.3) (2010)
24. Thurley, M.: sharpSAT – counting models with advanced component caching and

implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
424–429. Springer, Heidelberg (2006)

25. Velev, M.N., Gao, P.: Efficient SAT techniques for absolute encoding of permuta-
tion problems: application to hamiltonian cycles. In: SARA (2009)

Linear Integer Arithmetic Revisited

Martin Bromberger(B), Thomas Sturm, and Christoph Weidenbach

Max Planck Institute for Informatics, Saarbrücken, Germany
{mbromber,sturm,weidenb}@mpi-inf.mpg.de

Abstract. We consider feasibility of linear integer programs in the con-
text of verification systems such as SMT solvers or theorem provers.
Although satisfiability of linear integer programs is decidable, many
state-of-the-art solvers neglect termination in favor of efficiency. It is
challenging to design a solver that is both terminating and practically
efficient. Recent work by Jovanović and de Moura constitutes an impor-
tant step into this direction. Their algorithm CUTSAT is sound, but
does not terminate, in general. In this paper we extend their CUTSAT
algorithm by refined inference rules, a new type of conflicting core, and
a dedicated rule application strategy. This leads to our algorithm CUT-
SAT++, which guarantees termination.

Keywords: Linear arithmetic · SMT · SAT · DPLL · Linear
programming · Integer arithmetic

1 Introduction

Historically, feasibility of linear integer problems is a classical problem, which
has been addressed and thoroughly investigated by at least two independent
research lines: (i) integer and mixed real integer linear programming for opti-
mization [9], (ii) first-order quantifier elimination and decision procedures for
Presburger Arithmetic and corresponding complexity results [3,6,10–13]. We are
interested in feasibility of linear integer problems, which we simply call problems,
in the context of the combination of theories, as they occur, e.g., in the context
of SMT solving or theorem proving. From this perspective, both these research
lines address problems that are too general for our purposes: with the former,
the optimization aspects go considerably beyond pure feasibility. The latter con-
siders arbitrary Boolean combinations of constraints and quantifier alternation
or even parametric problems.

Consequently, the SMT community has developed several interesting
approaches on their own [1,4,7]. These solvers typically neglect termination and
completeness in favor of efficiency. More precisely, these approaches are based on
a branch-and-bound strategy, where the rational relaxation of an integer prob-
lem is used to cut off and branch on integer solutions. Together with the known
a priori integer bounds [11] for a problem this yields a terminating and complete
algorithm. However, these bounds are so large that for many practical problems
the resulting branch-and-bound search space cannot be explored in reasonable
c© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNAI 9195, pp. 623–637, 2015.
DOI: 10.1007/978-3-319-21401-6 42

624 M. Bromberger et al.

time. Hence, the a priori bounds are not integrated in the implementations of
the approaches.

On these grounds, the recent work by Jovanović and de Moura [8], although
itself not terminating, constitutes an important step towards an algorithm that
is both efficient and terminating. The termination argument does no longer rely
on bounds that are a priori exponentially large in the occurring parameters.
Instead, it relies on structural properties of the problem, which are explored by
their CUTSAT algorithm. The price for this result is an algorithm that is by
far more complicated than the above-mentioned branch-and-bound approach. In
particular, it has to consider divisibility constraints in addition to inequalities.

Our interest in an algorithm for integer constraints originates from a pos-
sible combination with superposition, e.g., see [5]. In the superposition context
integer constraints are part of the first-order clauses. Variables in constraints
are typically unguarded so that an efficient decision procedure for this case is a
prerequisite for an efficient combined procedure.

Our contribution is an extension and refinement of the CUTSAT algorithm,
which we call CUTSAT++. In contrast to CUTSAT, our CUTSAT++ gen-
erally terminates. The basic idea of both algorithms is to reduce a problem
containing unguarded integer variables to a problem containing only guarded
variables. These unguarded variables are not eliminated. Instead, one explores
the unguarded variables by adding constraints on smaller variables to the prob-
lem, with respect to a strict total ordering where all unguarded variables are
larger than all guarded variables. After adding sufficiently many constraints,
feasibility of the problem depends only on guarded variables. Then a CDCL
style algorithm tests for feasibility by employing exhaustive propagation. The
most sophisticated part is to “turn” an unguarded variable into a guarded vari-
able. Quantifier elimination techniques, such as Cooper elimination [3], do so
by removing the unguarded variable. In case of Cooper elimination, the price
to pay is an exponentially growing Boolean structure and exponentially grow-
ing coefficients. Since integer linear programming is NP-complete, all algorithms
known today cannot prevent such a kind of behavior, in general. Since Cooper
elimination does not care about the concrete structure of a given problem, the
exponential behavior is almost guaranteed. The idea of both CUTSAT and CUT-
SAT++ is, therefore, to simulate a lazy variation of Cooper elimination. This
leaves space for model assumptions and simplification rules in order for the algo-
rithm to adapt to the specific structure of a problem and, hence, to systematically
avoid certain cases of the worst-case exponential behavior observed with Cooper
elimination.

The paper is organized as follows. After fixing some notation in Sect. 2, we
present three examples for problems where CUTSAT diverges. The divergence of
CUTSAT can be fixed by respective refinements on the original CUTSAT rules.
However, in a fourth example the combination of the refinements results in a
frozen state. Our conclusion is that CUTSAT lacks, in addition to the refine-
ments, a third type of conflicting core, which we call diophantine conflicting core.
Theorem 5, in Sect. 3, actually implies that any procedure that is based on what

Linear Integer Arithmetic Revisited 625

we call weak Cooper elimination needs to consider this type of conflicting core
for completeness. In Sects. 4–5 we refine the inference rules for the elimination
of unguarded variables on the basis of weak Cooper elimination (Sect. 3) and
show their soundness, completeness, and termination. Finally, we give conclu-
sions and point at possible directions for future research. For detailed proofs of
our Theorems and Lemmas see [2].

2 Motivation

We use variables x, y, z, k, possibly with indices. Furthermore, we use integer
constants a, b, c, d, e, l, v, u, linear polynomials p, q, r, s, and constraints I, J ,
possibly with indices. As input problems, we consider finite sets of constraints C
corresponding to and sometimes used as conjunction over their elements. Each
constraint I is either an inequality anxn + . . . + a1x1 + c ≤ 0 or a divisibility
constraint d | anxn + . . . + a1x1 + c. We denote coeff(I, xi) = ai ∈ Z. vars(C)
denotes the set of variables occurring in C. We sometimes write C(x) in order
to emphasise that x ∈ vars(C). A problem C is satisfiable if ∃X.C holds, where
X = vars(C). For true we denote � and for false we denote ⊥. Since d | cx+s ≡
d | −cx + −s, we may assume that c > 0 for all d | cx + s ∈ C. A variable x is
guarded in a problem C if C contains constraints of the form x − ux ≤ 0 and
−x + lx ≤ 0. Otherwise, x is unguarded in C. Note that guarded variables are
bounded as defined in [8] but not vice versa. A constraint is guarded if it contains
only guarded variables. Otherwise, it is unguarded.

Our algorithm CUTSAT++ aims at deciding whether or not a given problem
C is satisfiable. It either ends in the state unsat or in a state 〈υ, sat〉, where υ is
a satisfiable assignment for C. In order to reach one of those two final states, the
algorithm produces lower bounds x ≥ b and upper bounds x ≤ b for the variables
in C. The produced bounds are stored in a sequence M = [[γ1, . . . , γn]], which
describes a partial model. The empty sequence is denoted by [[]]. We use [[M,γ]]
and [[M1,M2]] to denote the concatenation of a bound γ at the end of M and
M2 at the end of M1, respectively.

By lower(x,M) = b and upper(x,M) = b we denote the value b of the
greatest lower bound x ≥ b and least upper bound x ≤ b for a variable x in M ,
respectively. If there is no lower (upper) bound for x in M , then lower(x,M) =
−∞ (upper(x,M) = ∞). The definitions of upper and lower are extended to
polynomials as done in [8]. The partial model M is complete if all variables x
are fixed in the sense that upper(x,M) = lower(x,M). In this case we define
υ[M] as the assignment that assigns to every variable x the value lower(x,M).

A state in CUTSAT++ is of the form S = 〈M,C〉 or S = 〈M,C〉 � I,
or one of the two final states 〈υ, sat〉, unsat. The initial-state for a problem C
is 〈[[]], C〉. For a state S = 〈M,C〉(� I), an inequality p ≤ 0 is a conflict if
lower(p, M) > 0. For a state S = 〈M,C〉(� I), a divisibility constraint d | ax+ p
is a conflict if all variables in p are fixed and d � ab + lower(p, M) for all b such
that lower(x,M) ≤ b ≤ upper(x,M). In a state S = 〈M,C〉 � I, the constraint
I is always a conflict. A state is frozen if it is not a final state and no rule is
applicable.

626 M. Bromberger et al.

Via applications of the rule Decide, CUTSAT++ adds decided bounds x ≤ b
or x ≥ b to the sequence M in state S [8]. A decided bound generally assigns
a variable x to the lower or upper bound of x in M . Via applications of the
propagation rules, CUTSAT++ adds propagated bounds x ≥I b or x ≤I b to the
sequence M , where I is a generated constraint, called justification. To this end,
the function bound(J, x,M) computes the strictest bound b and the function
tight(J, x,M) computes the corresponding justification I for constraint J under
the partial model M .

We are now going to discuss three examples where CUTSAT diverges. The
first one shows that CUTSAT can apply Conflict and Conflict-Div infinitely
often to constraints containing unguarded variables.

Example 1. Let

C := {−x ≤ 0
︸ ︷︷ ︸

Ix

,−y ≤ 0
︸ ︷︷ ︸

Iy

,−z ≤ 0
︸ ︷︷ ︸

Iz1

, z ≤ 0
︸ ︷︷ ︸

Iz2

, z + 1 ≤ 0
︸ ︷︷ ︸

Iz3

, 1 − x + y ≤ 0
︸ ︷︷ ︸

J1

, x − y ≤ 0
︸ ︷︷ ︸

J2

}

be a problem. Let Si = 〈Mi, C〉 for i ∈ N be a series of states with:

M0 := [[x ≥Ix 0, y ≥Iy 0, z ≥Iz1 0, z ≤Iz2 0]],
Mi+1 := [[Mi, x ≥J1 i + 1, y ≥J2 i + 1]].

Let the variable order be given by z ≺ y ≺ x. CUTSAT with a two-layered strat-
egy, after propagating all constraints Ix, Iy, Iz1, Iz2 , applies the rules Decide,
Conflict, and Backjump to propagate arbitrarily large lower bounds for the
unguarded variables x and y and, therefore, diverges. Notice that the conflicting
core {Iz1, Iz3} is guarded, which admits the application of Conflict.

A straightforward fix to Example 1 is to limit the application of the Con-
flict and Conflict-Div rules to guarded constraints. Our second example shows
that CUTSAT can still diverge by infinitely many applications of the Solve-Div
rule [8].

Example 2. Let di be the sequence with d0 := 2 and dk+1 := dk
2 for k ∈ N, let

C0 = {4 | 2x + 2y, 2 | x + z} be a problem, and let S0 = 〈[[]], C0〉 be the initial
CUTSAT state. Let the variable order be given by x ≺ y ≺ z. Then CUTSAT
has divergent runs S0 ⇒CS S1 ⇒CS S2 ⇒CS For instance, let CUTSAT
apply the Solve-Div rule whenever applicable. By an inductive argument, Solve-
Div is applicable in every state Sn = 〈[[]], Cn〉, and the constraint set Cn has the
following form:

Cn =
{{2dn | dnx + dny, dn | dn

2 y − dn

2 z} if n is odd,

{2dn | dnx + dny, dn | dn

2 x + dn

2 z} if n is even.

Therefore, CUTSAT applies Solve-Div infinitely often and diverges.

A straightforward fix to Example 2 is to limit the application of Solve-Div
to maximal variables in the variable order ≺. Our third example shows that

Linear Integer Arithmetic Revisited 627

CUTSAT can apply Conflict and Conflict-Div [8] infinitely often. The Exam-
ple 3 differs from Example 1 in that the conflicting core contains also unguarded
variables.

Example 3. Let

C := {−x ≤ 0
︸ ︷︷ ︸

Ix

,−y ≤ 0
︸ ︷︷ ︸

Iy

,−z ≤ 0
︸ ︷︷ ︸

Iz1

, z ≤ 0
︸ ︷︷ ︸

Iz2

, 1 − x + y + z ≤ 0
︸ ︷︷ ︸

J1

, x − y − z ≤ 0
︸ ︷︷ ︸

J2

}}

be a problem. Let Si = 〈Mi, C〉 for i ∈ N be a series of states with:

M0 := [[x ≥Ix 0, y ≥Iy 0, z ≥Iz1 0, z ≤Iz2 0]],
Mi+1 := [[Mi, x ≥J1 i + 1, y ≥J2 i + 1]].

Let the variable order be given by z ≺ x ≺ y. CUTSAT with a two-layered strat-
egy, after propagating all constraints Ix, Iy, Iz1, Iz2, possibly applies the rules
Decide, Conflict, and Backjump to propagate arbitrarily large lower bounds for
the unguarded variables x and y and, thus, diverges. Notice that the conflicting
core {J1, J2} is bounded in [8] after we fix x and y with Decide to their current
respective lower bounds. This in turn admits the application of Conflict.

Applying the fix suggested for Examples 1–3 results in a frozen state. Here,
a straightforward fix is to change the definition of conflicting cores to cover only
those cores where the conflicting variable is the maximal variable.1

The fixes that we suggested for the above examples are restrictions to CUT-
SAT which have the consequence that Conflict(-Div) cannot be applied to
unguarded constraints, Solve-Div is only applicable for the elimination of the
maximal variable, and the conflicting variable x is the maximal variable in the
associated conflicting core C ′. However, our next and final example shows that
these restrictions lead to frozen states.

Example 4. Let CUTSAT include restrictions to maximal variables in the defin-
ition of conflicting cores and in the Solve-Div rule as described above. Let there
be additional restrictions in CUTSAT to the rules Conflict and Conflict-Div
such that these rules are only applicable to conflicts that contain no unguarded
variable. Let

C := {−x ≤ 0
︸ ︷︷ ︸

Ix1

, x − 1 ≤ 0
︸ ︷︷ ︸

Ix2

,−y ≤ 0
︸ ︷︷ ︸

Iy

, 6 | 4y + x
︸ ︷︷ ︸

J

}

be a problem. Let M := [[x ≥Ix1 0, x ≤Ix2 1, y ≥Iy 0, x ≥ 1, y ≤ 0]] be a bound
sequence. Let the variable order be given by x ≺ y. CUTSAT has a run starting
in state S′

0 = 〈[[]], C〉 that ends in the frozen state S = 〈M,C〉. Let CUTSAT
propagate Ix1, Ix2, Iy and fix x to 1 and y to 0 with two Decisions. Through
these Decisions, the constraint J is a conflict. Since y is unguarded, CUTSAT
cannot apply the rule Conflict-Div. Furthermore, [8] has defined conflicting cores
1 The restrictions to maximal variables in the definition of conflicting cores and to the

Solve-Div rule were both confirmed as missing but necessary in a private communi-
cation with Jovanović.

628 M. Bromberger et al.

as either interval or divisibility conflicting cores. The state S contains neither
an interval or a divisibility conflicting core. Therefore, CUTSAT cannot apply
the rule Resolve-Cooper. The remaining rules are also not applicable because
all variables are fixed and there is only one divisibility constraint. Without the
before introduced restriction to the rule Conflict(-Div), CUTSAT diverges on
the example. For more details see [2].

3 Weak Cooper Elimination

In order to fix the frozen state of Example 4 in the previous section, we are
going to introduce in Sect. 4 a new conflicting core, which we call diophantine
conflicting core. For understanding diophantine conflicting cores, as well as fur-
ther modifications to be made, it is helpful to understand the connection between
CUTSAT and a variant of Cooper’s quantifier elimination procedure [3].

The original Cooper elimination takes a variable x, a problem C(x), and
produces a disjunction of problems equivalent to ∃x.C(x):

∃x.C(x) ≡
∨

0≤k<m

C−∞(k) ∨
∨

−ax+p≤0∈C(x)

∨

0≤k<a·m

[

a | p + k ∧ C

(
p + k

a

)]

,

where a > 0 and m = lcm{d ∈ Z : (d | ax + p) ∈ C(x)}. If there exists no
constraint of the form −ax+p ≤ 0 ∈ C(x), then C−∞(x) = {(d | ax+p) ∈ C(x)}.
Otherwise, C−∞(x) = ⊥. One application of Cooper elimination results in a
disjunction of quadratically many problems out of a single problem. Iteration
causes an exponential increase in the coefficients due to the multiplication with
a because division is not part of the language.

Our notion of weak Cooper elimination is a variant of Cooper elimination,
which is very helpful to understand problems around CUTSAT. The idea is,
instead of building a disjunction over all potential solutions for x, to add addi-
tional guarded variables and constraints without x that guarantee the existence
of a solution for x. We assume here that C(x) contains only one divisibility con-
straint for x. If not, exhaustive application of div-solve to divisibility constraints
for x removes all constraints except one: div-solve(x, d1 | a1x+p1, d2 | a2x+p2) =
(d1d2 | dx + c1d2p1 + c2d1p2, d | −a1p2 + a2p1), where d = gcd(a1d2, a2d1), and
c1 and c2 are integers such that c1a1d2 + c2a2d1 = d [3,8]. Now weak Cooper
elimination takes a variable x, a problem C(x), and produces a new problem by
replacing ∃x.C(x) with:

∃K.

(

{I ∈ C(x) : coeff(x, I) = 0} ∪ {gcd(c, d) | s} ∪
⋃

k∈K

Rk

)

where d | cx + s ∈ C(x), k ∈ K is a newly introduced variable for every
pair of constraints −ax + p ≤ 0 ∈ C(x) and bx − q ≤ 0 ∈ C(x), and

Rk = {−k ≤ 0, k − m ≤ 0, bp − aq + bk ≤ 0, a | k + p, ad | cp + as + ck}
is a resolvent for the same inequalities, where m := lcm

(
a, ad

gcd(ad,c)

)
− 1. Note

Linear Integer Arithmetic Revisited 629

the existential quantifier ∃K, where all variables k ∈ K are guarded by their
respective Rk.

Let ν be a satisfiable assignment for the formula after one weak Cooper
elimination step on C(x). Then we compute a strictest lower bound x ≥ lx and a
strictest upper bound x ≤ ux from C(x) for the variable x under the assignment
ν. We now argue that there is a value for x such that x ≥ lx, x ≤ ux, and
d | cx + s are all satisfied. Whenever lx �= −∞ and ux �= ∞, the bounds x ≥ lx,
x ≤ ux are given by respective constraints of the form −ax + p ≤ 0 ∈ C(x)
and bx − q ≤ 0 ∈ C(x) such that lx = � ν(p)

a � and ux = � ν(q)
b �. In this case,

the extension of ν with ν(x) = ν(k+p)
a satisfies C(x) because the constraint

a | k + p ∈ Rk guarantees that ν(x) ∈ Z, the constraint bp − aq + bk ≤ 0 ∈ Rk

guarantees that lx ≤ ν(x) ≤ ux, and the constraint ad | cp + as + ck ∈ Rk

guarantees that ν satisfies d | cx + s ∈ C(x). Whenever lx = −∞ (ux = ∞) we
extend ν by an arbitrary small (large) value for x that satisfies d | cx+s ∈ C(x).
There exist arbitrarily small (large) solutions for x and d | cx + ν(s) because
gcd(c, d) | s is satisfied by ν.

The advantage of weak Cooper elimination, compared to Cooper elimination,
is that the output is still a conjunctive problem in contrast to a disjunction of
problems. CUTSAT++ performs weak Cooper elimination not in one step but
subsequently adds to the states the constraints from the Rk as well as the divis-
ibility constraint gcd(c, d) | s with respect to a strict ordering on the unguarded
variables.

The following Theorem, for which we have just outlined the proof, states the
correctness of weak Cooper elimination.

Theorem 5.

∃x.C(x) ≡ ∃K.

(

{I ∈ C(x) : coeff(x, I) = 0} ∪ {gcd(c, d) | s} ∪
⋃

k∈K

Rk

)

The extra divisibility constraint gcd(c, d) | s in weak Cooper elimination is
necessary whenever the problem C(x) has no constraint of the form −ax + p ≤
0 ∈ C(x) or bx − q ≤ 0 ∈ C(x). For example, let C(x) = {y − 1 ≤ 0,−y + 1 ≤
0, 6 | 2x+y} be a problem and x be the unguarded variable we want to eliminate.
As there are no inequalities containing x, weak Cooper elimination without the
extra divisibility constraint returns C′ = {y − 1 ≤ 0,−y + 1 ≤ 0}. While C ′ has
a satisfiable assignment ν(y) = 1, C(x) has not since 2x+1 is never divisible by
2 or 6.

For any Rk introduced by weak Cooper elimination we can also show the
following Lemma:

Lemma 6. Let k be a new variable. Let a, b, c > 0. Then,

(∃x.{−ax + p ≤ 0, bx − q ≤ 0, d | cx + s})
≡ (∃k.{−k ≤ 0, k − m ≤ 0, bp − aq + bk ≤ 0, a | k + p, ad | cp + as + ck}).

That means satisfiability of the respective Rk guarantees a solution for the
triple of constraints it is derived from. An analogous Lemma holds for the divis-
ibility constraint gcd(c, d) | s introduced by weak Cooper elimination:

630 M. Bromberger et al.

Lemma 7.
(∃x.d | cx + s) ≡ gcd(c, d) | s.

That means satisfiability of gcd(c, d) | s guarantees a solution for the divisi-
bility constraint d | cx+s. The rule Resolve-Cooper (Fig. 1) in our CUTSAT++
exploits these properties by generating the Rk and constraint gcd(c, d) | s in the
form of strong resolvents in a lazy way. Furthermore, it is not necessary for the
divisibility constraints to be a priori reduced to one, as done for weak Cooper
elimination. Instead, the rules Solve-Div-Left and Solve-Div-Right (Fig. 1) per-
form lazy reduction.

4 Strong Conflict Resolution Revisited

Weak Cooper elimination is capable of exploring all unguarded variables to even-
tually create a problem where feasibility only depends on guarded variables. It
is simulated in a lazy manner through an additional set of CUTSAT++ rules
(Fig. 1). Instead of eliminating all unguarded variables before the application of
CUTSAT++, the rules perform the same intermediate steps as weak Cooper
elimination, viz., the combination of divisibility constraints via div-solve and
the construction of resolvents, to resolve and block conflicts in unguarded con-
straints. As a result, CUTSAT++ can avoid some of the intermediate steps of
weak Cooper elimination. Furthermore, CUTSAT++ is not required to apply
the intermediate steps of weak Cooper elimination one variable at a time. The
lazy approach of CUTSAT++ does not eliminate unguarded variables. In the
worst case CUTSAT++ has to perform all of weak Cooper elimination’s inter-
mediate steps. Then the strictly-two-layered strategy (Definition 13) guarantees
that CUTSAT++ recognizes that all unguarded conflicts have been produced.

The eventual result is the complete algorithm CUTSAT++, which is a com-
bination of the rules Resolve-Cooper, Solve-Div-Left, Solve-Div-Right (Fig. 1),
a strictly-two-layered strategy (Definition 13), and the CUTSAT rules: Prop-
agate, Propagate-Div, Decide, Conflict, Conflict-Div, Sat, Unsat-Div, Forget,
Slack-Intro2, Resolve, Skip-Decision, Backjump, Unsat, and Learn [2,8].

The lazy approach has the advantage that CUTSAT++ might find a satis-
fiable assignment or detect unsatisfiability without encountering and resolving
a large number of unguarded conflicts. This means the number of divisibility
constraint combinations and introduced resolvents might be much smaller in the
lazy approach of CUTSAT++ than during the elimination with weak Cooper
elimination.

In order to simulate weak Cooper elimination, CUTSAT++ uses a total order
≺ over all variables such that y ≺ x for all guarded variables y and unguarded
variables x. While termination requires that the order is fixed from the begin-
ning for all unguarded variables, the ordering among the guarded variables can
be dynamically changed. In relation to weak Cooper elimination, the order ≺
2 As recommended in [8], CUTSAT++ uses the same slack variable for all Slack-Intro

applications.

Linear Integer Arithmetic Revisited 631

describes the elimination order for the unguarded variables, viz., xi ≺ xj if xj

is eliminated before xi. A variable x is called maximal in a constraint I if x is
contained in I and all other variables in I are smaller, i.e., y ≺ x. The maximal
variable in I is also called its top variable (x = top(I)).

Definition 8. Let S = 〈M,C〉 be a state, C ′ ⊆ C, x the top variable in C ′, and
let all other variables in C ′ be fixed. The pair (x,C ′) is a conflicting core if it is
of one of the following three forms

(1) C ′ = {−ax + p ≤ 0, bx − q ≤ 0} and the lower bound from −ax + p ≤ 0
contradicts the upper bound from bx − q ≤ 0, i.e., bound(−ax + p ≤ 0, x,M) >
bound(bx−q ≤ 0, x,M); in this case (x,C ′) is called an interval conflicting core
and its strong resolvent is ({−k ≤ 0, k−a+1 ≤ 0}, {bp−aq+bk ≤ 0, a | k+p}).
(2) C ′ = {−ax + p ≤ 0, bx − q ≤ 0, d | cx + s} and bl = bound(−ax + p ≤
0, x,M), bu = bound(bx − q ≤ 0, x,M), bl ≤ bu, and for all bd ∈ [bl, bu] we have
d � cbd + lower(s, M); in this case (x,C ′) is called a divisibility conflicting core
and its strong resolvent is ({−k ≤ 0, k −m ≤ 0}, {bp− aq + bk ≤ 0, a | k + p, ad |
cp + as + ck}).
(3) C′ = {d | cx + s} and for all bd ∈ Z we have d � cbd + lower(s, M); in this
case (x,C ′) is called a diophantine conflicting core and its strong resolvent is
(∅, {gcd(c, d) | s}).
In the first two cases k is a fresh variable and m = lcm

(
a, ad

gcd(ad,c)

)
− 1.

We refer to the respective strong resolvents for a conflicting core (x,C ′) by
the function cooper(x,C ′), which returns a pair (Rk, Rc) as defined above. Note
that the newly introduced variable k is guarded by the constraints in Rk. If there
is a conflicting core (x,C ′) in some state S, then x is called a conflicting variable.
A potential conflicting core is a pair (x,C ′) if there exists a state S where (x,C ′)
is a conflicting core.

Next, we define a generalization of strong resolvents. Since the strong resol-
vents generated out of conflicting cores will be further processed by CUTSAT++,
we must guarantee that any set of constraints implying the feasibility of the con-
flicting core constraints prevents a second application of Resolve-Cooper to the
same conflicting core. All strong resolvents of Definition 8 are also strong resol-
vents in the sense of the below definition (see also end of Sect. 3).

Definition 9. A set of constraints R is a strong resolvent for the pair (x,C ′)
if it holds that R → ∃x.C ′ and ∀J ∈ R. top(J) ≺ x.

The rule Resolve-Cooper (Fig. 1) requires that the conflicting variable x of
the conflicting core (x,C ′) is the top variable in the constraints of C ′. This sim-
ulates a setting where all variables y with x ≺ y are already eliminated. We
restrict Resolve-Cooper to unguarded constraints because weak Cooper elimina-
tion modifies only unguarded constraints.

Lemma 10. Let S = 〈M,C〉 be a CUTSAT++ state. Let C ′ ⊆ C and x be an
unguarded variable. Let R ⊆ C be a strong resolvent for (x,C ′). Then Resolve-
Cooper is not applicable to (x,C′).

632 M. Bromberger et al.

For the resolvent R to block Resolve-Cooper from being applied to the
conflicting core (x,C ′), CUTSAT++ has to detect all conflicts in R. Detect-
ing all conflicts in R is only possible if CUTSAT++ fixes all variables y with
y ≺ x and if Resolve-Cooper is only applicable if there exists no conflict I with
top(I) ≺ x. Therefore, the remaining restrictions of Resolve-Cooper justify the
above Lemma.

If we add strong resolvents again and again, then CUTSAT++ will reach
a state after which every encounter of a conflicting core guarantees a conflict
in a guarded constraint. From this point forward, CUTSAT++ will not apply
Resolve-Cooper. The remaining guarded conflicts are resolved with the rules
Conflict and Conflict-Div [8].

The rules Solve-Div-Left and Solve-Div-Right (Fig. 1) combine divisibility
constraints as it is done a priori to weak Cooper elimination. In these rules, we
restrict the application of div-solve(x, I1, I2) to constraints where x is the top
variable and where all variables y in I1 and I2 with y �= x are fixed. The ordering
restriction simulates the order of elimination, i.e., we apply div-solve(x, I1, I2) in
a (simulated) setting where all variables y with x ≺ y appear to be eliminated in
I1 and I2. Otherwise, divergence would be possible (see Example 2). Requiring
smaller variables to be fixed prevents the accidental generation of a conflict for
an unguarded variable xi by div-solve(x, I1, I2).

Thanks to an eager top-level propagating strategy, as defined below, any
unguarded conflict in CUTSAT++ is either resolved with Solve-Div-Right
(Fig. 1) or CUTSAT++ constructs a conflicting core that is resolved with
Resolve-Cooper. Both cases may require multiple applications of the Solve-Div-
Left rule (Fig. 1). We define the following further restrictions on the CUTSAT++
rules, which will eventually generate the above described behavior.

Definition 11. Let �� ∈ {≤,≥}. We call a strategy for CUTSAT++ eager top-
level propagating if we restrict propagations and decisions for every state 〈M,C〉
in the following way:

1. Let x be an unguarded variable. Then we only allow to propagate bounds
x �� bound(I, x, M) if x is the top variable in I. Furthermore, if I is a
divisibility constraint d | ax + p, then we only propagate d | ax + p if:
(a) either lower(x,M) �= −∞ and upper(x,M) �= ∞ or
(b) gcd(a, d) | lower(p, M) holds and d | ax + p is the only divisibility con-

straint in C with x as top variable.
2. Let x be an unguarded variable. Then we only allow decisions γ = x �� b if:

(a) for every constraint I ∈ C with x = top(I) all occurring variables y �= x
are fixed

(b) there exists no I ∈ C where x = top(I) and I is a conflict in [[M,γ]]
(c) either lower(x,M) �= −∞ and upper(x,M) �= ∞ or there exists at most

one divisibility constraint in C with x as top variable.

An eager top-level propagating strategy has two advantages. First, the strat-
egy dictates an order of influence over the variables, i.e., a bound for unguarded
variable x is influenced only by previously propagated bounds for variables y with

Linear Integer Arithmetic Revisited 633

Fig. 1. Our strong conflict resolution rules

y ≺ x. Furthermore, the strategy makes only decisions for unguarded variable x
when all constraints with x = top(I) are fixed and satisfied by the decision. This
means, any conflict I ∈ C with x = top(I) is impossible as long as the decision
for x remains on the bound sequence. For the same purpose, i.e., avoiding con-
flicts I where x = top(I) is fixed by a decision, CUTSAT++ backjumps in the
rules Resolve-Cooper and Solve-Div-Right to a state where this is not the case.

Definition 12. A strategy is reasonable if Propagate applied to constraints of
the form ±x − b ≤ 0 has the highest priority over all rules and the Forget Rule
is applied only finitely often [8].

Definition 13. A strategy is strictly-two-layered if:
(1) it is reasonable, (2) it is eager top-level propagating, (3) the Forget, Conflict,
Conflict-Div rules only apply to guarded constraints, (4) Forget cannot be applied
to a divisibility constraint or a constraint contained in a strong resolvent, and
(5) only guarded constraints are used to propagate guarded variables.

The above strictly-two-layered strategy is the final restriction to CUT-
SAT++. With the condition 13-(3) it partitions conflict resolution into two lay-
ers: While every unguarded conflict is handled with the rules Resolve-Cooper,

634 M. Bromberger et al.

Fig. 2. The Forget, Slack-Intro, Sat, Unsat, and Unsat-Div rules

Solve-Div-Left, and Solve-Div-Right (Fig. 1), every guarded conflict is handled
with the rules Conflict(-Div) [2]. The conditions 13-(1) and 13-(5) make the
guarded variables independent from the unguarded variables. The conditions 13-
(2) and 13-(4) give a guarantee that the rules Resolve-Cooper, Solve-Div-Left,
and Solve-Div-Right are applied at most finitely often. We assume for the remain-
der of the paper that all runs of CUTSAT++ follow a strictly-two-layered
strategy.

5 Termination and Completeness

The CUTSAT++ rules are Propagate, Propagate-Div, Decide, Conflict, Conflict-
Div, Sat, Unsat-Div, Forget, Slack-Intro, Resolve, Skip-Decision, Backjump,
Unsat, and Learn [2,8], as well as Resolve-Cooper, Solve-Div-Left, and Solve-
Div-Right (Fig. 1). For the termination proof of CUTSAT++, we consider a
(possibly infinite) sequence of rule applications 〈[[]], C0〉 = S0 ⇒CS S1 ⇒CS . . . on
a problem C0, following the strictly-two-layered strategy.

First, this sequence reaches a state Ss (s ∈ N
+
0) after a finite derivation of rule

applications S0 ⇒CS . . . ⇒CS Ss such that there is no further application of the
rules Slack-Intro and Forget (Fig. 2) after state Ss: Such a state Ss exists for two
reasons: Firstly, the strictly-two-layered strategy employed by CUTSAT++ is

Linear Integer Arithmetic Revisited 635

also reasonable. The reasonable strategy explicitly forbids infinite applications
of the rule Forget. Secondly, the Slack-Intro rule is applicable only to stuck
variables and only once to each stuck variable. Only the initial set of variables
can be stuck because all variables x introduced during the considered derivation
are introduced with at least one constraint x − b ≤ 0 that allows at least one
propagation for the variable. Therefore, the rules Slack-Intro and Forget are
applicable at most finitely often.

Next, the sequence reaches a state Sw (w ≥ s) after a finite derivation of
rule applications Ss ⇒CS . . . ⇒CS Sw such that there is no further applica-
tion of the rules Resolve-Cooper, Solve-Div-Left, and Solve-Div-Right after state
Sw: The rules Resolve-Cooper, Solve-Div-Left, Solve-Div-Right, and Slack-Intro
are applicable only to unguarded constraints. Through the strictly-two-layered
strategy, they are also the only rules producing unguarded constraints. There-
fore, they form a closed loop with respect to unguarded constraints, which
we use in our termination proof. We have shown in the previous paragraph
that Ss ⇒CS . . . ⇒CS Sw contains no application of the rule Slack-Intro. By
Lemma 10, an application of Resolve-Cooper to the conflicting core (x,C ′) pre-
vents any further applications of Resolve-Cooper to the same core. By Defini-
tion 8, the constraints learned through an application of Resolve-Cooper contain
only variables y such that y ≺ x. Therefore, an application of Resolve-Cooper
blocks a conflicting core (x,C ′) and introduces potential conflicting cores only
for smaller variables than x. This strict decrease in the conflicting variables
guarantees that we encounter only finitely many conflicting cores in unguarded
variables. Therefore, Resolve-Cooper is applicable at most finitely often. An anal-
ogous argument applies to the rules Solve-Div-Left and Solve-Div-Right. Thus
the rules Resolve-Cooper, Solve-Div-Left, and Solve-Div-Right are applicable at
most finitely often.

Next, the sequence reaches a state Sb (b ≥ w) after a finite derivation of rule
applications Sw ⇒CS . . . ⇒CS Sb such that for every guarded variable x the
bounds remain invariant, i.e., lower(x,Mb) = lower(x,Mj) and upper(x,Mb) =
upper(x,Mj) for every state Sj = 〈Mj , Cj〉(� Ij) after Sb = 〈Mb, Cb〉(� Ib)
(j ≥ b): The strictly-two-layered strategy guarantees that only bounds of guarded
variables influence the propagation of further bounds for guarded variables. Any
rule application involving unguarded variables does not influence the bounds for
guarded variables. A proof for the termination of the solely guarded case was
already provided in [8]. We now know that the sequence after Sb contains no
further propagations, decisions, or conflict resolutions for the guarded variables.

Next, the sequence reaches a state Su (u ≥ b) after a finite derivation of rule
applications Sb ⇒CS . . . ⇒CS Su such that also for every unguarded variable x the
bounds remain invariant, i.e., lower(x,Mb) = lower(x,Mj) and upper(x,Mb) =
upper(x,Mj) for every state Sj = 〈Mj , Cj〉(� Ij) after Su = 〈Mu, Cb〉(� Iu)
(j ≥ u). After Sb, CUTSAT++ propagates and decides only unguarded vari-
ables or ends with an application of Sat or Unsat(-Div). CUTSAT++ employs
the strictly-two-layered strategy, which is also an eager top-level propagating
strategy. Through the top variable restriction for propagating constraints, the

636 M. Bromberger et al.

eager top-level propagating strategy induces a strict order of propagation over
the unguarded variables. Therefore, any bound for an unguarded variable x is
influenced only by bounds for variables y ≺ x. This strict variable order guar-
antees that unguarded variables are propagated and decided only finitely often.

After state Su, only the rules Sat, Unsat, and Unsat-Div are applicable, which
lead all to a final state. Hence, the sequence S0 ⇒CS S1 ⇒CS . . . is finite. We
conclude that CUTSAT++ always terminates:

Theorem 14. If CUTSAT++ starts from an initial state 〈[[]], C0〉, then there is
no infinite derivation sequence.

All CUTSAT++ rules are sound, i.e., if 〈Mi, Ci〉(� Ii) ⇒CS 〈Mj , Cj〉(� Ij),
then any satisfiable assignment υ for Cj is a satisfiable assignment also for Ci.
The rule Resolve-Cooper is sound because of the Lemmas 6 and 7. The soundness
of Solve-Div-Left and Solve-Div-Right follows from the fact that div-solve is an
equivalence preserving transformation. The soundness proofs for all other rules
are either trivial or given in [8].

Furthermore, CUTSAT++ never reaches a frozen state. Let x be the smallest
unfixed variable with respect to ≺. Whenever x is guarded we can propagate
a constraint ±x − b ≤ 0 ∈ C and then fix x by introducing a decision. If
we cannot propagate any bound for x, then x is unguarded and stuck and,
therefore, Slack-Intro is applicable. If we cannot fix x by introducing a decision,
then x is unguarded and there is a conflict. Guarded conflicts are resolved via
the Conflict(-Div) rules. Unguarded conflicts are resolved via the strong conflict
resolution rules. Unless a final state is reached, CUTSAT has always a rule
applicable.

Summarizing, CUTSAT++ is terminating, sound, and never reaches a frozen
state. In combination with the fact that Sat is applicable only if a satisfiable solu-
tion υ[M] is found and that Unsat and Unsat-Div detect trivially unsatisfiable
constraints, these facts imply completeness:

Theorem 15. If CUTSAT++ starts from an initial state 〈[[]], C0〉, then it either
terminates in the unsat state and C0 is unsatisfiable, or it terminates with
〈υ, sat〉 where υ is a satisfiable assignment for C0.

6 Conclusion and Future Work

The starting point of our work was an implementation of CUTSAT [8] as a theory
solver for hierarchic superposition [5]. In that course, we observed divergence for
some of our problems. The analysis of those divergences led to the development
of the CUTSAT++ algorithm presented in this paper, which is a substantial
extension of CUTSAT by means of the weak Cooper elimination described in
Sect. 3.

As a next step, we plan to develop a prototypical implementation of CUT-
SAT++, to test its efficiency on benchmark problems. Depending on the out-
come, we consider integrating CUTSAT++ as a theory solver for hierarchic
superposition modulo linear integer arithmetic [5].

Linear Integer Arithmetic Revisited 637

Finally, we point at some possible improvements of CUTSAT++. We see
great potential in the development of constraint reduction techniques from
(weak) Cooper elimination [3]. For practical applicability such reduction tech-
niques might be crucial. The choice of the variable order ≺ has considerable
impact on the efficiency of CUTSAT++. It might be possible to derive suitable
orders via the analysis of the problem structure. We might benefit from results
and experiences of research in quantifier elimination with variable elimination
orders.

Acknowledgments. This research was supported in part by the German Transre-
gional Collaborative Research Center SFB/TR 14 AVACS and by the ANR/DFG
project STU 483/2-1 SMArT.

References

1. Barrett, C.W., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on demand in
SAT modulo theories. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS
(LNAI), vol. 4246, pp. 512–526. Springer, Heidelberg (2006)

2. Bromberger, M., Sturm, T., Weidenbach, C.: Linear integer arithmetic revisited.
ArXiv e-prints, abs/1503.02948 (2015)

3. Cooper, D.C.: Theorem proving in arithmetic without multiplication. In:
Meltzer, B., Michie, D. (eds.) 1971 Proceedings of the Seventh Annual Machine
Intelligence Workshop, Edinburgh. Machine Intelligence, vol. 7, pp. 91–99. Edin-
burgh University Press (1972)

4. Dillig, I., Dillig, T., Aiken, A.: Cuts from proofs: a complete and practical technique
for solving linear inequalities over integers. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 233–247. Springer, Heidelberg (2009)

5. Fietzke, A., Weidenbach, C.: Superposition as a decision procedure for timed
automata. Math. Comput. Sci. 6(4), 409–425 (2012)

6. Fischer, M.J., Rabin, M.: Super-exponential complexity of Presburger arithmetic.
SIAM-AMS Proc. 7, 27–41 (1974)

7. Griggio, A.: A practical approach to satisability modulo linear integer arithmetic.
JSAT 8(1/2), 1–27 (2012)

8. Jovanović, D., de Moura, L.: Cutting to the chase. J. Autom. Reasoning 51(1),
79–108 (2013)

9. Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R.,
Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.): 50 Years of Integer Programming
1958–2008. Springer, Heidelberg (2010)

10. Lasaruk, A., Sturm, T.: Weak quantifier elimination for the full linear theory of the
integers. A uniform generalization of Presburger arithmetic. Appl. Algebra Eng.
Commun. Comput. 18(6), 545–574 (2007)

11. Papadimitriou, C.H.: On the complexity of integer programming. J. ACM 28(4),
765–768 (1981)

12. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen. welchem die Addition als einzige Operation hervortritt. In: Comptes
Rendus du premier congres de Mathematiciens des Pays Slaves, pp. 92–101.
Warsaw, Poland (1929)

13. Weispfenning, V.: The complexity of almost linear diophantine problems. J. Symb.
Comput. 10(5), 395–403 (1990)

Author Index

Alama, Jesse 73
Aoto, Takahito 101
Avigad, Jeremy 378

Backeman, Peter 572
Balbiani, Philippe 539
Baumgartner, Peter 285, 367
Bax, Joshua 367
Blanchette, Jasmin Christian 197
Boudou, Joseph 539
Bromberger, Martin 623
Bubel, Richard 517

Cave, Andrew 272
Chocron, Paula 419
Czarnecki, Krzysztof 607

D’Silva, Vijay 450
Danas, Ryan 434
David, Amélie 214
de Moura, Leonardo 378
Din, Crystal Chang 517
Dougherty, Daniel J. 434
Dutertre, Bruno 482

Echenim, Mnacho 311

Fontaine, Pascal 419
Fulton, Nathan 527
Furbach, Ulrich 55

Ganesh, Vijay 607
Gascón, Adrià 482
Giesl, Jürgen 105
Goré, Rajeev 501
Gorzny, Jan 356
Gransden, Thomas 246

Hähnle, Reiner 517
Heule, Marijn J.H. 591
Hirokawa, Nao 101, 127
Hóu, Zhé 501
Hunt, Warren A. 591

Iborra, José 163

Jacquemard, Florent 137
Janičić, Predrag 256
Ji, Kailiang 295

Kaliszyk, Cezary 389
Kissinger, Aleks 326
Kojima, Yoshiharu 137
Kong, Soonho 378

Libal, Tomer 557

Maliković, Marko 256
Marić, Filip 256
Martin, Ursula 29
Mesnard, Frédéric 105
Mitsch, Stefan 527

Nagele, Julian 101
Nishida, Naoki 101, 163

Ogawa, Mizuhito 111
Oppenheimer, Paul E. 73
Oyamaguchi, Michio 111

Passmore, Grant Olney 181
Paulson, Lawrence C. 231
Peltier, Nicolas 311
Pelzer, Björn 55
Pientka, Brigitte 272
Plaisted, David A. 3
Platzer, André 467, 527

Quesel, Jan-David 527

Raman, Rajeev 246
Reger, Giles 339, 399
Reynolds, Andrew 197
Ringeissen, Christophe 419
Rubio, Albert 105
Rümmer, Philipp 572

Saghafi, Salman 434
Sakai, Masahiko 111, 137
Sato, Haruhiko 152
Schon, Claudia 55

Schulz, Stephan 389
Shintani, Kiraku 127
Sturm, Thomas 623
Suda, Martin 399

Thiemann, René 105
Tishkovsky, Dmitry 339
Tiu, Alwen 501
Tiwari, Ashish 482
Tourret, Sophie 311

Urban, Caterina 450
Urban, Josef 389

van Doorn, Floris 378
Vidal, Germán 163
Völp, Marcus 527
von Raumer, Jakob 378

Voronkov, Andrei 339, 399
Vyskočil, Jiří 389

Waldmann, Johannes 105
Waldmann, Uwe 367
Walkinshaw, Neil 246
Weidenbach, Christoph 623
Wetzler, Nathan 591
Winkler, Sarah 152
Woltzenlogel Paleo, Bruno 356

Yamada, Akihisa 163

Zalta, Edward N. 73
Zamdzhiev, Vladimir 326
Zankl, Harald 101
Zulkoski, Edward 607

640 Author Index

	Preface
	Affiliated Events
	Organization
	Abstracts of Invited Talks
	History and Prospects for First-OrderAutomated Deduction
	On the Role of Proof Theoryin Automated Deduction
	Stumbling Around in the Dark:Lessons from Everyday Mathematics
	Automated Reasoning in the Wild
	The Herbrand Manifesto
	Thinking Inside the Box

	Automating Leibniz’s Theory of Concepts
	Confluence Competition 2015
	The CADE-25 ATP System CompetitionCASC-25
	Termination Competition (termCOMP 2015)

	Contents
	Past, Present and Future of Automated Deduction
	History and Prospects for First-Order Automated Deduction
	1 Introduction and General Comments
	1.1 Search Space Issues

	2 Pre-resolution
	3 Early Post-resolution
	3.1 The Argonne Group
	3.2 Other Early Work
	3.3 AI and Theorem Proving
	3.4 Personal Experiences

	4 Late Post-resolution
	5 Comments on Resolution
	6 Propositional Calculus and SMT
	7 Equality and Term Rewriting Systems
	8 Discussion of Prover Features
	8.1 First-Order
	8.2 Model-Based Reasoning with Backtracking
	8.3 Goal Sensitivity
	8.4 Importance of Goal-Sensitivity
	8.5 Proof Confluence
	8.6 Evalution of Methods

	9 More Search Space Discussion
	9.1 Terminology
	9.2 Literal Size Bounds
	9.3 Bounded Depth Resolution Refutations
	9.4 Herbrand Set Size Bound
	9.5 Summary

	10 Additional Comments
	References

	Stumbling Around in the Dark: Lessons from Everyday Mathematics
	1 Introduction
	2 The Power of Collaboration: polymath
	3 Examples, Conjectures, Concepts and Proofs: minipolymath
	4 Questions and Answers: mathoverflow
	5 Everyday Calculation: GAP
	6 Learning from the Everyday

	Invited Talks
	Automated Reasoning in the Wild
	1 Introduction
	2 Deep Question Answering
	3 Lessons for Automated Reasoning
	4 Common Sense and Cognitive Science
	5 Conclusion
	References

	Automating Leibniz's Theory of Concepts
	1 Introduction
	2 Overview of Object Theory and Two Applications
	2.1 The Basics of Object Theory
	2.2 Application to Possible Worlds
	2.3 Application to Leibniz's Theory of Concepts

	3 Summary of Our Representational Techniques
	3.1 Representing Second-Order Syntax Using First-Order Syntax
	3.2 Representing the Two Modes of Predication
	3.3 Representing Identity Claims
	3.4 Representing Definite Descriptions
	3.5 Representing -Expressions

	4 Representing the Fundamental Theorem
	5 Techniques for Speeding up the Workflow
	6 Observations
	6.1 What We've Learned
	6.2 Future Work

	References

	Competition Descriptions
	Confluence Competition 2015
	1 Introduction
	2 Categories
	3 Problems and Evaluation Process
	4 Competition Platform and LiveView
	References

	Termination Competition (termCOMP 2015)
	1 Introduction
	2 Competition Categories
	2.1 Termination Analysis
	2.2 Complexity Analysis
	2.3 Certified Categories

	3 Termination Problem Data Base
	4 Running the Competition

	Rewriting
	Non-E-Overlapping, Weakly Shallow, and Non-Collapsing TRSs are Confluent
	1 Introduction
	2 Preliminaries
	2.1 Abstract Reduction System
	2.2 Term Rewriting System

	3 Extensions of Convergent Abstract Reduction Systems
	4 Reduction Graphs
	4.1 Reduction Graphs and Monotonic Extension
	4.2 Constructor Expansion

	5 Tower of Constructor Expansions
	5.1 Enriching Reduction Graph
	5.2 Properties of Tower of Expansions on Weakly Shallow Systems

	6 Bottom-Up Construction of Convergent Reduction Graph
	6.1 Removing Redundant Edges and Merging Components
	6.2 Construction of a Convergent and Subterm-Closed Graph

	7 Conclusion
	References

	CoLL: A Confluence Tool for Left-Linear Term Rewrite Systems
	1 Introduction
	2 Preliminaries
	3 Confluence via Church-Rosser Modulo
	3.1 Associative Unification
	3.2 Coherence
	3.3 Commutative Unification

	4 Commutation
	4.1 Commutation Criteria
	4.2 Commutation Theorem

	5 Implementation
	6 Conclusion
	References

	Term Rewriting with Prefix Context Constraints and Bottom-Up Strategies
	1 Introduction
	2 Preliminaries
	3 Regularity Preservation for pCTRSs
	3.1 Linear and Flat pCTRSs
	3.2 Left-(linear and Flat) pCTRSs

	4 Bottom-Up Rewrite Strategy
	4.1 Definition
	4.2 Tree Automata Completion

	5 Left-Linear and Right-Ground pCTRSs
	6 Conclusion
	References

	Encoding Dependency Pair Techniques and Control Strategies for Maximal Completion
	1 Introduction
	2 Preliminaries
	3 Encodings
	4 Control Strategies
	5 Implementation
	6 Experiments
	References

	Reducing Relative Termination to Dependency Pair Problems
	1 Introduction
	2 Preliminaries
	3 Relative Termination as a Dependency Pair Problem
	4 Syntactic Conditions for Weak-Decreasingness
	5 Improving Applicability
	6 Relative Termination and Minimality
	7 Experimental Evaluation
	8 Related Work
	9 Conclusion
	References

	Decision Procedures
	Decidability of Univariate Real Algebra with Predicates for Rational and Integer Powers
	1 Introduction
	2 Preliminaries
	3 Decision Procedure
	3.1 Deciding Rationality Constraints
	3.2 Deciding Integrality Constraints

	4 Examples
	4.1 Example 1
	4.2 Example 2
	4.3 Example 3

	5 Discussion and Related Work
	6 Conclusion
	References

	A Decision Procedure for (Co)datatypes in SMT Solvers
	1 Introduction
	2 (Co)datatypes
	3 The Decision Procedure
	4 Implementation as a Theory Solver in CVC4
	5 Evaluation on Isabelle Problems
	6 Conclusion
	References

	Deciding ATL* Satisfiability by Tableaux
	1 Introduction
	2 Syntax and Semantics of ATL*
	2.1 Syntax of ATL*
	2.2 Concurrent Game Models
	2.3 Semantics of ATL*

	3 Tableau-Based Decision Procedure for ATL*
	4 Construction Phase: Decomposition and Saturation
	5 Construction Phase: Dynamic Analysis of Successor Formulae
	6 Elimination Phase
	7 Results and Sketches of Proofs
	8 Implementation of the Procedure
	9 Conclusion
	References

	Interactive/Automated Theorem Proving and Applications
	A Formalisation of Finite Automata Using Hereditarily Finite Sets
	1 Introduction
	2 Background
	3 Deterministic Automata; the Myhill-Nerode Theorem
	3.1 Basic Definition of DFAs
	3.2 Myhill-Nerode Relations
	3.3 The Myhill-Nerode Theorem
	3.4 Constructing a DFA from a Myhill-Nerode Relation

	4 Nondeterministic Automata and Closure Proofs
	4.1 Basic Definition of NFAs
	4.2 The Powerset Construction
	4.3 Other Closure Properties

	5 State Minimisation for DFAs
	5.1 The Left and Right Languages of a State
	5.2 A Collapsing Construction
	5.3 The Uniqueness of Minimal DFAs
	5.4 Brzozowski's Minimisation Algorithm

	6 Related Work
	7 Conclusions
	References

	SEPIA: Search for Proofs Using Inferred Automata
	1 Introduction
	2 Background
	2.1 Inferring EFSMs with MINT
	2.2 Motivating Example

	3 SEPIA System Description
	3.1 Generating Traces from Existing Proofs
	3.2 Inferring the Model
	3.3 Searching for a Proof

	4 Evaluation
	4.1 Methodology
	4.2 Results

	5 Related Work
	6 Conclusion and Future Work
	References

	Proving Correctness of a KRK Chess Endgame Strategy by Using Isabelle/HOL and Z3
	1 Introduction
	2 Chess Rules and Endgame Strategies
	3 KRK Chess Endgame and Bratko-style Strategy
	4 Correctness Proofs for Bratko-style Strategy
	5 Related Work
	6 Conclusions and Further Work
	References

	Inductive Beluga: Programming Proofs
	1 Introduction
	2 Inductive Proofs as Recursive Programs
	2.1 Representing Well-Typed Terms and Evaluation in LF
	2.2 Representing Reducibility Using Indexed Types
	2.3 First-Class Contexts and Simultaneous Substitutions
	2.4 Developing Proofs Interactively
	2.5 Totality Checking

	3 Related Work and Conclusion
	References

	New Techniques for Automating and Sharing Proofs
	SMTtoTPTP -- A Converter for Theorem Proving Formats
	1 Introduction
	2 SMT-LIB and TFF
	3 SMTtoTPTP Algorithm
	4 Limitations
	5 Extensions
	6 Other Features
	References

	CTL Model Checking in Deduction Modulo
	1 Introduction
	2 Deduction Modulo
	3 Computation Tree Logic
	4 Alternative Semantics of CTL
	5 Rewrite Rules for CTL
	6 Applications
	6.1 Polarized Resolution Modulo
	6.2 Experimental Evaluation

	7 Conclusion and Future Work
	References

	Quantifier-Free Equational Logic and Prime Implicate Generation
	1 Introduction
	2 Clauses with Uninterpreted Functions in Equational Logic
	3 Implicate Generation
	4 Clause Storage and Redundancy Detection
	5 Experimental Results
	6 Conclusion
	References

	Quantomatic: A Proof Assistant for Diagrammatic Reasoning
	1 Introduction
	2 Diagrammatic Reasoning
	3 Constructing Proofs in Quantomatic
	4 Simplification Procedures
	5 Example Project: Bialgebras
	6 Architecture
	7 Availability, Related, and Future Work
	References

	Automating First-Order Logic
	Cooperating Proof Attempts
	1 Introduction
	2 Vampire and AVATAR
	2.1 Saturation Algorithms
	2.2 Strategies in Vampire
	2.3 AVATAR

	3 Interleaved Scheduling
	3.1 Motivation
	3.2 Interleaving Architecture

	4 Proof Attempt Cooperation via the Splitting Module
	4.1 Motivation
	4.2 Organising Cooperation
	4.3 Example of Cooperation

	5 Evaluation
	5.1 Experimental Setup
	5.2 Results
	5.3 The Impact of Interleaving
	5.4 The Impact of Sharing AVATAR
	5.5 Summary

	6 Related Work
	7 Conclusion
	References

	Towards the Compression of First-Order Resolution Proofs by Lowering Unit Clauses
	1 Introduction
	2 The Resolution Calculus
	3 First-Order Challenges
	4 A Linear Greedy Variant of First-Order LowerUnits
	5 Experiments
	6 Conclusions and Future Work
	References

	Beagle -- A Hierarchic Superposition Theorem Prover
	1 Introduction
	2 Hierarchic Theorem Proving
	3 Background Reasoning
	3.1 Linear Integer Arithmetic
	3.2 Other Arithmetic Features

	4 Proof Procedure
	5 Implementation
	6 Performance
	7 Availability
	References

	The Lean Theorem Prover (System Description)
	1 Introduction
	2 The Kernel
	3 Elaboration
	4 The User Interface
	5 Conclusion
	References

	System Description: E.T. 0.1
	1 Introduction
	2 Overview of E.T
	3 Feature Generators
	4 Premise Selectors
	4.1 Generalized SInE in E
	4.2 MePo3

	5 E Strategies and Global Optimization
	6 Experimental Analysis
	7 Conclusion and Future Work
	References

	Playing with AVATAR
	1 Introduction
	2 AVATAR by Example
	3 Proof Attempts in Vampire
	4 Introducing Splitting
	5 Varying the Architecture
	6 Experiments
	7 Conclusion
	References

	Combinations
	A Polite Non-Disjoint Combination Method: Theories with Bridging Functions Revisited
	1 Introduction
	2 Preliminaries
	3 The Combination Problem
	4 A Combination Procedure for Bridging Functions
	5 Standard Interpretations
	5.1 Lists with Length
	5.2 Combining Lists with an Arbitrary Theory of Elements
	5.3 Trees with Bridging Functions over the Integers

	6 Conclusion
	References

	Exploring Theories with a Model-Finding Assistant
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Logic in Geometric Form

	3 Model-Finding via the Chase
	3.1 Augmentation: Exploring the Set of Models
	3.2 Provenance and the Witnessing Signature

	4 Implementation
	5 Examples
	6 Future Work
	References

	Abstract Interpretation as Automated Deduction
	1 Introduction
	2 Reachability as Second-Order Satisfiability
	2.1 Weak Monadic Second Order Theories of One Successor
	2.2 Encoding Reachability in WS1S(T)

	3 Lattices and Substructural First-Order Theories
	3.1 First-Order Substructural Theories
	3.2 Lattices from Substructural Theories

	4 Abstract Transformers, Deduction and Abduction
	5 Abstract Interpreters as Second-Order Solvers
	6 Related Work, Discussion and Conclusion
	References

	Hybrid Sytems and Program Synthesis
	A Uniform Substitution Calculus for Differential Dynamic Logic
	1 Introduction
	2 Differential-Form Differential Dynamic Logic
	2.1 Syntax
	2.2 Dynamic Semantics
	2.3 Static Semantics
	2.4 Correctness of Static Semantics

	3 Uniform Substitutions
	3.1 Correctness of Uniform Substitutions
	3.2 Soundness

	4 Differential Dynamic Logic Axioms
	5 Differential Equations and Differential Axioms
	5.1 Differentials: Invariants, Cuts, Effects, and Ghosts
	5.2 Differential Substitution Lemmas
	5.3 Soundness

	6 Conclusions
	References

	Program Synthesis Using Dual Interpretation
	1 Introduction
	2 Component-Based Program Synthesis
	2.1 Functional Requirements
	2.2 Nonfunctional Requirements
	2.3 Problem Definition

	3 Synthesis Approach
	3.1 Synudic: A Language for Synthesis Using Dual Interpretations on Components
	3.2 From Synudic Sketches to Yices Formulas

	4 Bitvector Manipulation Programs
	5 Cryptographic Constructions
	5.1 Synthesis of Padding-Based Encryption Schemes
	5.2 Synthesis of Block Ciphers Modes of Operation

	6 Conclusion
	References

	Logics and Systems for Program Verification
	Automated Theorem Proving for Assertions in Separation Logic with All Connectives
	1 Introduction
	2 Separation Logic
	3 LSSL: A Labelled Sequent Calculus for SL
	4 Comparison with Existing Proof Calculi
	5 Inference Rules for Data Structures
	6 Proof Search and Experiment
	7 Conclusion
	References

	KeY-ABS: A Deductive Verification Tool for the Concurrent Modelling Language ABS
	1 Introduction
	2 The Design of KeY-ABS
	2.1 System Workflow
	2.2 The Concurrency Model of ABS
	2.3 Verification Approach for ABS Programs
	2.4 Syntax and Semantics of the KeY-ABS Logic
	2.5 Rule Formalisation
	2.6 KeY-ABS Architecture

	3 The Usage of KeY-ABS
	4 Conclusion
	References

	KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Systems
	1 Introduction
	2 KeYmaera X Feature Overview
	3 KeYmaera X Tool Architecture
	4 Related Work
	References

	Tableaux Methods for Propositional Dynamic Logics with Separating Parallel Composition
	1 Introduction
	2 PRSPDL
	3 Complexity Upper Bound for PRSPDL
	4 Fischer-Ladner Closure over L; ? *
	4.1 Placeholders and Marking Functions
	4.2 Fischer-Ladner Closure

	5 Tableaux Method for L; ? * over C-det
	5.1 Rules of the Tableaux Method
	5.2 Soundness
	5.3 Completeness

	6 Optimal Decision Procedure for L; ? Over C-det
	6.1 Semantic Tableaux Method
	6.2 Optimal Decision Procedure

	7 Conclusion and Future Works
	References

	Unification
	Regular Patterns in Second-Order Unification
	1 Introduction
	2 Preliminaries
	2.1 Typed Lambda Calculus
	2.2 Contexts and Pre-unification

	3 The Refinement Procedure
	3.1 Cyclic Equations and Their Properties
	3.2 The Refinement Procedure
	3.3 The Correctness of the Refinement
	3.4 Termination and Decidability Results
	3.5 Asymptotic Analysis

	4 Conclusion
	References

	Theorem Proving with Bounded Rigid E-Unification
	1 Introduction
	1.1 Background and Motivating Example
	1.2 Further Related Work

	2 Preliminaries
	3 Bounded Rigid E-Unification
	3.1 Reduction of SAT to BREU
	3.2 Generalisations
	3.3 Encoding of E-Unification into SAT

	4 A First-Order Logic Calculus with E-Unification
	5 Properties of the Calculus
	5.1 Soundness
	5.2 Completeness

	6 Refinements of the Calculus
	7 Experimental Results
	References

	SAT/SMT
	Expressing Symmetry Breaking in DRAT Proofs
	1 Introduction
	2 Preliminaries
	3 Validating DRAT Proofs
	4 Symmetries in Propositional Formulas
	5 Breaking a Single Symmetry
	6 Breaking Multiple Symmetries
	7 Tools and Evaluation
	7.1 The Tool sym2drat
	7.2 Improving DRAT Proof-Checking Tools

	8 Evaluation
	9 Conclusions
	References

	MathCheck: A Math Assistant via a Combination of Computer Algebra Systems and SAT Solvers
	1 Introduction
	2 Background
	3 Contribution I: SAT+CAS Combination Architecture
	3.1 Input Language of MathCheck
	3.2 Architecture of MathCheck
	3.3 Implementation

	4 Contribution II: Two Results Regarding Open Conjectures over Hypercubes
	4.1 Matchings Extend to Hamiltonian Cycles
	4.2 Connected Antipodal Vertices in Edge-Antipodal Colorings

	5 Contribution III: Performance Analysis of MathCheck
	6 Related Work
	7 Conclusions and Future Work
	References

	Linear Integer Arithmetic Revisited
	1 Introduction
	2 Motivation
	3 Weak Cooper Elimination
	4 Strong Conflict Resolution Revisited
	5 Termination and Completeness
	6 Conclusion and Future Work
	References

	Author Index

