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Abstract. We study several combinatorial optimization problems which
combine the classic shop scheduling problems (open shop scheduling or
job shop scheduling) and the shortest path problem. The objective of
the considered problem is to select a subset of jobs that forms a feasible
solution of the shortest path problem, and to execute the selected jobs on
the open shop or job shop machines such that the makespan is minimized.
We show that these problems are NP-hard even if the number of machines
is two, and they cannot be approximated within a factor of less than 2 if
the number of machines is an input unless P = NP. We present several
approximation algorithms for these problems.
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1 Introduction

Combinatorial optimization involves many active subfields, e.g. network flows,
scheduling, bin packing. Usually these subfields are motivated by various appli-
cations or theoretical interests, and separately developed. The development of
science and technology makes it possible to integrate manufacturing, service
and management. At the same time, the decision-makers always need to deal
with problems involving more than one combinatorial optimization problems.
For instance, the network monitoring scenario described in [17] and the railway
manufacturing scenario [12].

Wang and Cui [17] introduced a problem combining two classic combinatorial
optimization problems, namely parallel machine scheduling and the vertex cover
problem. The combination problem is to select a subset of jobs that forms a
vertex cover, and to schedule it on some identical parallel machines such that
the makespan is minimized. This work also inspired the study of the combination
of different combinatorial optimization problems.

Flow shop, open shop and job shop are three basic models of multi-stage
scheduling problems. Nip and Wang [12] studied a combination problem that
combines two-machine flow shop scheduling and the shortest path problem.
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They argued that this problem is NP-hard, and proposed two approximation
algorithms with worst-case ratio 2 and 3

2 respectively. Recently, Nip et al. [13]
extended the results to the case that the number of flow shop machines is arbi-
trary. One motivation of this problem is manufacturing rail racks. We plan to
build a railway between two cities. How should we choose a feasible path in
a map, such that the corresponding rail tracks (jobs) can be manufactured on
some shop machines as early as possible? Similar scenarios can be found in
telecommunications and other transportation industries. It connects two clas-
sic combinatorial optimization problems, say shop scheduling and the shortest
path problem. An intuitive question is what will happen if the shop environment
is one of the other two well-known shop environments, i.e. open shop and job
shop. This is the core motivation for this current work. In this paper, we mainly
study two problems: the combination of open shop scheduling and the shortest
path problem, and the combination of job shop scheduling and the shortest path
problem.

The contributions of this paper are described as follows: (1) we argue that
these combination problems are NP-hard even if the number of machines is two,
and if the number of machines is an input, these problems cannot be approxi-
mated within a factor less than 2 unless P = NP; (2) we present several approxi-
mation algorithms with performance ratio summarized as follows in which ε > 0
is any constant and μ is the maximum operations per job in job shop scheduling.

Table 1. Performance of our algorithms

Number of Machines Open Shop Job Shop

2 FPTAS 3
2

+ ε*

m (fixed) PTAS** O
(

log2(mμ)
log log(mμ)

)

m (input) m m

* Assume that each job has at most 2 operations.
** A (2 + ε)-approximation algorithm is also proposed.

The rest of the paper is organized as follows. In Section 2, we give a formal
definition of the combination problems stated above, and briefly review some
related problems and algorithms that will be used subsequently. In Section 3,
we study the computational complexity of these combination problems and give
an inapproximability result when the number of machines is an input. Section 4
provides several approximation algorithms for these problems. Some concluding
remarks are provided in Section 5.

2 Preliminaries

2.1 Problem Description

We first recall the definitions of open shop and the job shop scheduling problems
in the literatures.
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Given a set of n jobs J = {J1, · · · , Jn} and m machines M = {M1, · · · ,Mm},
each job has several operations. At the same time, each machine can process at
most one job and each job can be processed on one machine. In the open shop
scheduling problem (Om||Cmax), each job must be processed on each machine
exactly once, but the processing order can be arbitrary (in other words, the
sequence of machines through which job passes can differ between jobs). In the
job shop scheduling (Jm||Cmax), the processing order of each job is given in
advance, and may differ between jobs. Furthermore, each job is allowed to be
processed on the same machine more than once but consecutive operations of
the same job must be processed on different machines, and is not necessary to
go through all machines in the job shop. The goal of Om||Cmax or Jm||Cmax is
to find a feasible schedule such that the makespan, that is, the completion time
of the last stage among all the jobs is minimum.

Now we define the combination problems considered in this paper.

Definition 1 (Om|shortest path|Cmax). Given a directed graph G = (V,A)
with two distinguished vertices s, t ∈ V , and m machines. Each arc aj ∈ A
corresponds to a job Jj ∈ J . The Om|shortest path|Cmax problem is to find an
s− t directed path P of G, and to schedule the jobs of JP on the open (job) shop
machines such that the minimum makespan over all P , where JP denotes the
set of jobs corresponding to the arcs in P .

Definition 2 (Jm|shortest path|Cmax). Given a directed graph G = (V,A) with
two distinguished vertices s, t ∈ V , and m machines. Each arc aj ∈ A corre-
sponds to a job Jj ∈ J . The Jm|shortest path|Cmax problem is to find an s − t
directed path P of G, and to schedule the jobs of JP on the job shop machines
such that the minimum makespan over all P , where JP denotes the set of jobs
corresponding to the arcs in P .

Let the number of jobs (arcs) be n, i.e. |A| = |J | = n. Let pij be the processing
times for Jj on machine Mi, and μij be the frequency of Jj processed on Mi.
Notice μij = 1 in the open shop.

It is not difficult to see that the shop scheduling problem (open shop or job
shop) and the classic shortest path problem are special cases of our problems.
For example, consider the following instances with m = 2 ([13]). If there is a
unique path from s to t in G, as shown in the left of Fig. 1, our problem is
the two-machine shop scheduling problem (open shop or job shop). If all the
processing times on the second machine are zero, as shown in the right of Fig.
1, then our problem is equivalent to the classic shortest path with respect to the
processing times on the first machine. Therefore we say the considered problems
are the combinations of the shop scheduling problems and the shortest path
problem.

In this paper, we will use the results of some optimization problems that
have a similar structure to the classic shortest path problem. We introduce the
generalized shortest path problem defined in [13].

Definition 3. Given a weighted directed graph G = (V,A,w1, · · · , wK) and two
distinguished vertices s, t ∈ V with |A| = n, each arc aj ∈ A, j = 1, · · · , n is
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Fig. 1. Special cases of our problems

associated with K weights w1
j , · · · , wK

j , and we define vector wk = (wk
1 , wk

2 , · · · ,

wk
n) for k = 1, 2, · · · ,K. The goal of our shortest path problem SP (G, s, t, f) is

to find an s − t directed path P that minimizes f(w1, w2, · · · , wK ;x), in which
f is a given objective function and x ∈ {0, 1}n contains the decision variables
such that xj = 1 if and only if aj ∈ P .

For simplicity of notation, we denote SP instead of SP (G, s, t, f) in the rest
of the paper. Notice SP is a generalization of various shortest path problems.
For example, if we set K = 1 and f(w1, x) = w1 ·x, where · is the dot product, it
is the classic shortest path problem. If f(w1, w2, · · · , wK ;x) = max{w1 · x,w2 ·
x, · · · , wK · x}, it is the min-max shortest path problem [1].

2.2 Review of Open Shop and Job Shop Scheduling

Gonzalez and Sahni [5] first gave a linear time optimal algorithm for O2||Cmax.
They also proved that Om||Cmax is NP-hard for m ≥ 3, however whether it is
strongly NP-hard is still an outstanding open problem. A feasible shop schedule
is called dense when any machine is idle if and only if there is no job that could
be processed on it. Rácsmány (see Bárány and Fiala [2]) observed that for any
dense schedule, the makespan is at most twice that of the optimal solution, which
leads to a greedy algorithm. Sevastianov and Woeginger [15] presented a PTAS
for fixed m, which is obtained by dividing jobs into large jobs and small jobs.
Their algorithm first optimally schedules the large jobs, then fills the operations
of the small jobs into the ‘gaps’. In this paper, we will use these algorithms, and
refer to them as the GS algorithm, Rácsmány algorithm and the SW algorithm
respectively. We present the main results of these algorithms as follows.

Theorem 1 ([5]).The GS algorithm returns an optimal schedule for O2||Cmax in
linear time such that Cmax = max

{
maxJj∈J(p1j + p2j),

∑
Jj∈J p1j ,

∑
Jj∈J p2j

}
.

Theorem 2 ([2,16]). Rácsmány algorithm returns a 2-approximation algo-
rithm for Om||Cmax such that Cmax ≤ ∑

Jj∈J plj +
∑m

i=1 pik ≤ 2C∗
max, where Jk

is the last completed job and it is processed on Ml, and C∗
max denotes the optimal

makespan.

Theorem 3 ([15]). The SW algorithm is a PTAS for Om||Cmax.

For job shop scheduling problems, few polynomially solvable cases are known.
One is J2|op ≤ 2|Cmax, which can be solved by Jackson’s rule [6] that is an
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extension of Johnson’s rule for F2||Cmax (flow shop scheduling problem with
two machines [8]), where op ≤ 2 means there are at most 2 operations per job.

In fact, a slight change may lead to NP-hard problems. For instance, J2|op ≤
3|Cmax and J3|op ≤ 2|Cmax are NP-hard [9], J2|pij ∈ {1, 2}|Cmax and J3|pij =
1|Cmax are strongly NP-hard [10]. For the general case J ||Cmax, Shmoys, Stein
and Wein [16] constructed a randomized approximation algorithm with worst-
case ratio O

(
log2(mμ)

log log(mμ)

)
, where μ is the maximum number of operations per

job. Schmidt, Siegel and Srinivasan [14] obtained a deterministic algorithm with
the same bound by derandomizing. We refer to it as the SSW-SSS algorithm.
Moreover, for fixed m, the best known approximation algorithm is also proposed
in [16] with an approximation factor 2 + ε, where ε > 0 is an arbitrary constant.
If μ is a constant, the problem is denoted as Jm|op ≤ μ|Cmax and admits a
PTAS [7]. We list the main results mentioned above as follows.

Theorem 4 ([6]). Jackson’s rule solves J2|op ≤ 2|Cmax in O(n log n) time.

Theorem 5 ([14,16]). The SSW-SSS algorithm solves Jm||Cmax in polynomial
time, and returns a schedule with makespan

O

⎛
⎝ log2(mμ)

log log(mμ)

⎛
⎝ max

i∈{1,··· ,m}

∑
Jj∈J

μijpij + max
Jj∈J

m∑
i=1

μijpij

⎞
⎠

⎞
⎠ .

Furthermore, a well-known inapproximability result is that O||Cmax, F ||Cmax

and J ||Cmax cannot be approximated within 5
4 unless P = NP [18]. Recently,

Mastrolilli and Svensson [11] showed that J ||Cmax cannot be approximated
within O(log(mμ)1−ε) for ε > 0 based on a stronger assumption than P �= NP.

To conclude this subsection, we list some trivial bounds for a dense shop
schedule. Denote by Cmax the makespan of an arbitrary dense shop schedule
with job set J , and we have

Cmax ≥ max
i∈{1,··· ,m}

⎧
⎨
⎩

∑
Jj∈J

μijpij

⎫
⎬
⎭ , (1)

and

Cmax ≤
∑
Jj∈J

m∑
i=1

μijpij . (2)

For each job, we have

Cmax ≥
m∑

i=1

μijpij , ∀Jj ∈ J. (3)
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2.3 Review of Shortest Path Problems

It is well-known that Dijkstra algorithm solves the classic shortest path problem
with nonnegative edge weights in O(|V |2) time [3]. We have mentioned the min-
max shortest path problem, that is NP-hard even for K = 2, and Aissi, Bazgan
and Vanderpooten proposed an FPTAS if K is a fixed number [1]. We refer to
their algorithm as the ABV algorithm, which has the following result.

Theorem 6 ([1]). Given ε > 0, in a directed graph with K nonnegative
weights on each arc, where K is a fixed number, the ABV algorithm finds a
path P between two specific vertices satisfying maxi∈{1,2,··· ,K}

{∑
aj∈P wi

j

}
≤

(1 + ε) max
i∈{1,2,··· ,K}

{∑
aj∈P ′ wi

j

}
for any path P ′ between the two specified ver-

tices, and the running time is O(|A||V |K+1/εK).

In this paper, sometimes we need to find the min-max shortest path among all
the paths visiting some specified arcs if such a path exists. We propose a modified
ABV algorithm for this problem, which will be involved in the complete version.

3 Computational Complexity

First, notice that Om||Cmax and Jm||Cmax are special cases of the corresponding
combination problems, thus the combination problem is at least as hard as its
component optimization problems. On the other hand, we know that O2||Cmax

and J2|op ≤ 2|Cmax are polynomially solvable. However, we can simply verify
that the corresponding combination problems, say O2|shortest path|Cmax and
J2|op ≤ 2, shortest path|Cmax, are NP-hard by adopting the same reduction
proposed in Theorem 2 of [12] for the NP-hardness of F2|shortest path|Cmax.
We summarize the results as Theorem 7.

Theorem 7. J2|shortest path|Cmax is strongly NP-hard; O2|shortest path|Cmax

and J2|op ≤ 2, shortest path|Cmax are NP-hard.

Now we consider the case where the number of machines m is part of the
input. Williamson et al.[18] showed that it is NP-hard to approximate O||Cmax,
F ||Cmax or J ||Cmax within a factor less than 5

4 by a reduction from the restricted
versions of 3-SAT. They also showed that deciding if there is a scheduling of
length at most 3 is in P. We show that for these problems combining with shortest
path problem, deciding if there is a scheduling of length at most 1 is still NP-
hard. Our proof is established by constructing a reduction from 3-Dimensional
Matching (3DM) that is NP-complete [4].

Theorem 8. For O|shortest path|Cmax, deciding if there is a scheduling of
length at most 1 is NP-hard.

Notice that the reduction in Theorem 8 is also valid for F |shortest path|Cmax

and J |shortest path|Cmax, since each job in the reduction has only one nonzero
processing time. Therefore we have the following result.
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Corollary 1. The problems O|shortest path|Cmax, F |shortest path|Cmax and
J |shortest path|Cmax do not admit an approximation algorithm with worst-case
ratio less than 2, unless P = NP.

To our knowledge, the best known inapproximability results based on P �= NP
for F ||Cmax, O||Cmax and J ||Cmax are still 5

4 . The corollary implies that the com-
bination problems of the three shop scheduling problems and the shortest path
problem may have stronger inapproximability results than the original problems.

4 Approximation Algorithms

4.1 An Intuitive Algorithm for Arbitrary m

An intuitive algorithm was proposed for F2|shortest path|Cmax in [12]. The idea
is to find the classic shortest path by setting the weight of an arc to be the
sum of processing times of its corresponding job, and then schedule the returned
jobs by Johnson’s rule. This simple idea can be extended to the combination
problems we considered, even if the number of machines is an input.

Algorithm 1. The SD algorithm for O|shortest path|Cmax (J |shortest path|Cmax)

1: Find the shortest path in G with weights w1
j :=

∑m
i=1 μijpij by Dijkstra algorithm.

For the returned path P , construct the job set JP .
2: Obtain a dense schedule for the jobs of JP by an arbitrary open (job) shop schedul-

ing algorithm. Let σ be the returned job schedule and Cmax the returned makespan,
and denote the job set JP by S.

3: return S, σ and Cmax.

Theorem 9. For O|shortest path|Cmax and J |shortest path|Cmax, the SD algo-
rithm is m-approximated, and this bound is tight.

4.2 A Unified Algorithms for Fixed m

In [12], a 3
2 -approximation algorithm was proposed for F2|shortest path|Cmax.

The idea is to iteratively find a feasible path by the ABV algorithm [1] with
two weights for each arc, and schedule the corresponding jobs by Johnson’s rule,
then adaptively modify the weights of arcs and repeat the procedures until we
obtain a feasible schedule with good guarantee. We generalize this idea to solve
the combination problems considered in this paper. We first propose a unified
framework which is denoted as UAR(Alg, ρ, m), where Alg is a polynomial
time algorithm used for shop scheduling, ρ is a control parameter to decide
the termination rule of the iterations and the jobs to be modified, and m is
the number of machines. The pseudocode of the UAR(Alg, ρ, m)algorithm is
described by Algorithm 2.

By setting the appropriate scheduling algorithms and control parameters, we
can derive algorithms for different combination problems. Notice that at most
n jobs are modified in the UAR(Alg, ρ, m) algorithm, therefore the iterations
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Algorithm 2. Algorithm UAR(Alg, ρ, m)
1: Initially,(w1

j , w2
j , · · · , wm

j ) := (μ1jp1j , μ2jp2j , · · · , μmjpmj), for aj ∈ A correspond-
ing to Jj .

2: Given ε > 0, use the ABV algorithm [1] to obtain a feasible path P to SP , and
construct the corresponding job set as JP .

3: Schedule the jobs of JP by the algorithm Alg, denote the returned makespan as
C′

max, and the job schedule as σ′.

4: S := JP , σ := σ′, Cmax := C′
max, D := ∅, M := (1 + ε)

∑
Jj∈J

m∑
i=1

μijpij + 1.

5: while JP ∩ D = ∅ and there exists Jj in JP satisfying
m∑

i=1

μijpij ≥ ρC′
max do

6: for all jobs satisfy
m∑

i=1

μijpij ≥ ρC′
max in J\D do

7: (w1
j , w2

j , · · · , wm
j ) := (M, M, · · · , M), D := D ∪ {Jj}.

8: end for
9: Use the ABV algorithm [1] to obtain a feasible path P to SP , and construct the

corresponding job set as JP .
10: Schedule the jobs of JP by the algorithm Alg, denote the returned makespan as

C′
max, and the job schedule as σ′.

11: if C′
max < Cmax then

12: S := JP , σ := σ′, Cmax := C′
max.

13: end if
14: end while
15: return S, σ and Cmax.

execute at most n times. Since the scheduling algorithms for shop scheduling and
the ABV algorithm [1] are all polynomial time algorithms (for fixed m and ε), we
claim that the following algorithms based on UAR(Alg, ρ, m) are polynomial-
time algorithms. We present the algorithms and prove their performance as
follows.

We first apply the UAR(Alg, ρ, m) algorithm to O2|shortest path|Cmax by
setting Alg be the GS algorithm [5] and ρ = 1. We refer to this algorithm as the
GAR algorithm.

Algorithm 3. The GAR algorithm for O2|shortest path|Cmax

1: Let m = 2, Alg be the GS algorithm [5] for O2||Cmax and ρ = 1.
2: Solve the problem by using UAR(Alg, ρ, m).

Theorem 10. The GAR algorithm is an FPTAS for O2|shortest path|Cmax.

We point out that the proofs of the worst-case performance of algorithms
based on UAR(Alg, ρ, m) are quite similar. In the following proofs of this sub-
section, we will only describe the key ideas and main steps since the results can
be obtained by analogous arguments. We will adopt the same notations as in
the proof of Theorem 10, and also analyze the same two cases.

For Om|shortest path|Cmax where m is fixed, we obtain the following RAR
algorithm based on UAR(Alg, ρ, m) and Rácsmány algorithm [2,16].
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Algorithm 4. The RAR algorithm for Om|shortest path|Cmax

1: Let Alg be Rácsmány algorithm [2,16] for Om||Cmax and ρ = 1
2
.

2: Solve the problem by using UAR(Alg, ρ, m).

Theorem 11. Given ε > 0, the RAR algorithm is a (2+ ε)-approximation algo-
rithm for Om|shortest path|Cmax.

The framework can also be applied to the combination problem of job shop
scheduling and the shortest path problem. For the combination of J2|op ≤
2|Cmax and the shortest path problem, we obtain a (32 + ε)-approximation algo-
rithm by using Jackson’s rule and setting ρ = 2

3 in the UAR(Alg, ρ, m) algo-
rithm. We refer to this algorithm as the JJAR algorithm, and describe it in
Algorithm 5. Recall that all μij = 1 in J2|op ≤ 2|Cmax.

Algorithm 5. The JJAR algorithm for J2|op ≤ 2, shortest path|Cmax

1: Let m = 2, Alg be Jackson’s rule for J2|op ≤ 2|Cmax and ρ = 2
3
.

2: Solve the problem by using UAR(Alg, ρ, m).

Before studying the worst-case performance of the JJAR algorithm, we estab-
lish the following lemma. Let (1 → 2) ((2 → 1)) indicate the order that a job
needs to be processed on M1 (M2) first and then on M2 (M1).

Lemma 1. For J2|op ≤ 2|Cmax, let CJ
max be the makespan returned by Jackson’s

rule. Suppose we change the processing order of all jobs to be (1 → 2) ((2 → 1)),
and the processing times keep unchanged. Then schedule the jobs by Johnson’s
rule for F2||Cmax, and denote the makespan as C1

max (C2
max). We have CJ

max ≤
max{C1

max, C
2
max}.

Now we can study the performance of the JJAR algorithm for J2|op ≤
2, shortest path|Cmax.

Theorem 12. Given ε > 0, the JJAR algorithm is a (32 + ε)-approximation
algorithm for J2|op ≤ 2, shortest path|Cmax.

Finally, we study the general case Jm|shortest path|Cmax, where m is fixed.
By Theorem 5, we know that there exists α > 0, such that the SSW-SSS algo-
rithm [14,16] returns a schedule satisfying

C ′
max ≤ α

log2(mμ)
log log(mμ)

⎛
⎝ max

i∈{1,··· ,m}

∑
Jj∈J ′

μijpij + max
j∈J ′

m∑
i=1

μijpij

⎞
⎠ . (4)

The factor α is decided by choosing the probability of the randomized steps and
the subsequent operations in the SSW-SSS algorithm [14,16] [14,16], and its
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value can be obtained by complicated calculation. Assume we determine such
value of α. We can design an approximation algorithm with worst-case ratio
O

(
log2(mμ)

log log(mμ)

)
for Jm|shortest path|Cmax. We refer to this algorithm as the

SAR algorithm, and describe it in Algorithm 6.

Algorithm 6. The SAR algorithm for Jm|shortest path|Cmax

1: Let Alg be the SSW-SSS algorithm [14,16] for Jm||Cmax and ρ = log log(mμ)

2α log2(mμ)
.

2: Solve the problem by using UAR(Alg, ρ, m).

Theorem 13. The SAR algorithm is an O
(

log2(mμ)
log log(mμ)

)
-approximation algo-

rithm for Jm|shortest path|Cmax.

Remind that the SAR algorithm relies on the assumption, that we can deter-
mine the constant α for the SSW-SSS algorithm [14,16]. We can calculate it
by following the details of the SSW-SSS algorithm [14,16], and in fact we can
choose α large enough to guarantee the performance ratio of our algorithm.

4.3 A PTAS for Om|shortest path|Cmax

In the previous subsection, we introduced a (2 + ε)-approximation algorithm for
Om|shortest path|Cmax based on the UAR(Alg, ρ, m) algorithm. By a different
approach, we propose a (1 + ε)-approximation algorithm for any ε > 0, i.e. a
PTAS. We also iteratively find feasible solutions, but guarantee that one of the
returned solutions has the same first N -th largest jobs with an optimal solution
where N is a given constant. Precisely speaking, we say job Jj is larger than job
Jk if max

i∈{1,··· ,m}
pij > max

i∈{1,··· ,m}
pik. To do this, we enumerate all size N subsets

JN of J , and then iteratively modify the weights of the graph such that the
jobs larger than any job in JN will not be chosen. Then find a feasible solution
which contains all the jobs in JN corresponding to the modified graph, i.e., the
corresponding path is constrained to visit all the arcs corresponding to JN if
such a path exists.

To find a feasible solution in each iteration, we adopt the modified ABV
algorithm to obtain a near optimal min-max shortest path among all the paths
visiting the arcs corresponding to JN if such a path exists. Then we schedule the
selected jobs by [15] which is denoted as the SW algorithm [15] for Om||Cmax.
We refer to our algorithm as the SAE algorithm, and describe it in Algorithm 7.

There are
(

n
N

)
distinct subsets JN , thus the iterations between line 4 - line

12 run at most O(nN ) times, that is a polynomial of n since N is a constant
when m and ε are fixed. Since the modified ABV algorithm is an FPTAS and the
SW algorithm [15] is a PTAS, the running time of each iteration is also bounded
by the polynomial of n if m and ε are fixed. It suffices to show that the SAE
algorithm terminates in polynomial time. The following theorem indicates the
SAE algorithm is a PTAS.
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Algorithm 7. The SAE algorithm for Om|shortest path|Cmax

1: Given 0 < ε < 1, set N = m
(

m(3+ε)
ε

)2 m(3+ε)
ε

.

2: Let D := ∅, M := (1 + ε
3
)
∑

Jj∈J

m∑
i=1

pij + 1, Cmax :=
∑

Jj∈J

m∑
i=1

pij .

3: Initially, (w1
j , w2

j , · · · , wm
j ) := (p1j , p2j , · · · , pmj), for aj ∈ A corresponding to Jj .

4: for all JN ⊂ J , with |JN | = N do
5: (w1

j , w2
j , · · · , wm

j ) := (p1j , p2j , · · · , pmj), D := ∅.
6: For jobs Jk ∈ J \ JN with max

i∈{1,··· ,m}
pik > min

Jj∈JN
max

i∈{1,··· ,m}
pij , set

(w1
k, w2

k, · · · , wm
k ) := (M, M, · · · , M), D := D ∪ {Jk}.

7: Use the modified ABV algorithm to obtain a feasible path P of SP such that
the returned path visits all the arcs corresponding to JN if such a path exists.
Construct the corresponding job set as JP .

8: Schedule the jobs of JP by the SW algorithm [15], denote the returned makespan
as C′

max, and the job schedule as σ′.
9: if C′

max < Cmax then
10: S := JP , σ := σ′, Cmax := C′

max.
11: end if
12: end for
13: return S, σ, Cmax.

Theorem 14. The SAE algorithm is a PTAS for Jm|shortest path|Cmax.

5 Conclusions

This paper studies several problems combining two well-known combinatorial
optimization problems. We show the hardness of the problems, and present
some approximation algorithms. It is interesting to find approximation algo-
rithms with better worst-case ratios for J2|op ≤ 2, shortest path|Cmax and
Jm|shortest path|Cmax. Moreover, it needs further study to close the gap
between the 2-inapproximability results and the m-approximation algorithms
for O|shortest path|Cmax and J |shortest path|Cmax. We can also consider other
interesting combinations of combinatorial optimization problems.
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