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Abstract. A complete graph is the graph in which every two vertices
are adjacent. For a graph G = (V,E), the complete width of G is the
minimum k such that there exist k independent sets Ni ⊆ V , 1 ≤ i ≤ k,
such that the graph G′ obtained from G by adding some new edges
between certain vertices inside the sets Ni, 1 ≤ i ≤ k, is a complete
graph. The complete width problem is to compute the complete width of
a given graph. In this paper we study the complete width problem. We
show that the complete width problem is NP-hard on 3K2-free bipartite
graphs and polynomially solvable on 2K2-free bipartite graphs and on
(2K2, C4)-free graphs. As a by-product, we obtain the following new
results: the edge clique cover problem is NP-complete on K2,2,2-free
co-bipartite graphs and polynomially solvable on K2,2-free co-bipartite
graphs and on (2K2, C4)-free graphs. We also determine all graphs of
small complete width k ≤ 3.

Keywords: Probe graphs · Split graphs · Bipartite graphs · Complete
width · Edge clique cover

1 Introduction

Let G = (V,E) be a simple and undirected graph. A subset U ⊆ V is an
independent set, respectively, a clique if no two, respectively, every two vertices
of U are adjacent. The complete graph with n vertices is denoted by Kn. The
path and cycle with n vertices of length n − 1, respectively, of length n, is
denoted by Pn, respectively, Cn. For a vertex v ∈ V we write N(v) for the set
of its neighbors in G. A universal vertex v is one such that N(v)∪{v} = V . For
a subset U ⊆ V we write G[U ] for the subgraph of G induced by U and G − U
for the graph G[V − U ]; for a vertex v we write G − v rather than G[V \ {v}].

Given a graph class C, a graph G = (V,E) is called a probe C graph if there
exists an independent set N ⊆ V (of nonprobes) and a set of new edges E′ ⊆ (

N
2

)

between certain nonprobe vertices such that the graph G′ = (V,E ∪ E′) is in
the class C, where

(
N
2

)
stands for the set of all 2-element subsets of N. A graph

G = (V,E) with a given independent set N ⊆ V is said to be a partitioned probe
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C graph if there exists a set E′ ⊆ (
N
2

)
such that the graph G′ = (V,E ∪ E′) is in

the class C. In both cases, G′ is called a C embedding of G. Thus, a graph is a
(partitioned) probe C graph if and only if it admits a C embedding.

Recently, the concept of probe graphs has been generalized as a width param-
eter of graph class in [4]. Let C be a class of graphs. The C-width of a graph G
is the minimum number k of independent sets N1, . . . , Nk in G such that there
exists an embedding G′ ∈ C of G such that for every edge xy in G′ which is not
an edge of G there exists an i with x, y ∈ Ni. A collection of such k independent
sets Ni, i = 1, . . . , k is called a C witness (of G′). In the case k = 1, G is a probe
C-graph. The C-width problem asks for a given graph G and an integer k if the
C-width of G is at most k. Graphs of C-width k are also called k-probe C-graph.
Note that graphs in C are, by convenience, 1-probe C-graphs.

In [4], the complete width and block-graph width have been investigated.
The authors proved that, for fixed k, graphs of complete width k can be char-
acterized by finitely many forbidden induced graphs, their proof is however not
constructive. They also showed, implicitly, that complete width k graphs and
block-graph width k graphs can be recognized in cubic time. The case k = 1,
e.g., probe complete graphs and probe block graphs, has been discussed in depth
in [17]. The case k = 2 is discussed in [18].

Graphs do not contain an induced subgraph isomorphic to a graph H are
called H-free. More generally, a graph is (H1, . . . , Ht)-free if it does not contain
an induced subgraph isomorphic to one of the graphs H1, . . . , Ht. For two graphs
G and H, we write G + H for the disjoint union of G and H, and for an integer
t ≥ 2, tG stands for the disjoint union of t copies of G. The complete k-partite
with ni vertices in color class i is denoted by Kn1,...,nk

. For graph classes not
defined here see, for example, [2,3,10].

In this paper we study the complete width problem (given G and k, is the
complete width of G at most k?). We show that

– complete width is NP-complete, even on 3K2-free bipartite graphs, and
– computing the complete width of a 2K2-free bipartite graph (chain graph),

and more generally, of a (2K2,K3)-free graph can be done in polynomial
time,

– computing the complete width of a 2K2-free chordal graph (split graph), and
more generally, of a (2K2, C4)-free graph can be done in polynomial time.

Moreover, we give structural characterizations for graphs of complete width at
most 3.

In the next section we point out a relation between complete width and the
most popular notion of edge clique cover of graphs. Then we prove our results
in the last three sections. As we will see, it follows from our results on complete
width that edge clique cover is NP-complete on K2,2,2-free co-bipartite graphs
and is polynomially solvable on K2,2-free co-bipartite graphs.
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2 Complete Width and Edge Clique Cover

An edge clique cover of a graph G is a family of cliques (complete subgraphs)
such that each edge of G is in at least one member of the family. The minimal
cardinality of an edge clique cover is the edge clique cover number, denoted by
θe(G).

The edge clique cover problem, the problem of deciding if θe(G) ≤ k,
for a given graph G and an integer k, is NP-complete [13,16,22], even when
restricted to graphs with maximum degree at most six [14], or planar graphs
[6]. edge clique cover is polynomially solvable for graphs with maximum
degree at most five [14], for line graphs [22,23], for chordal graphs [7,24], and
for circular-arc graphs [15].

In [16] it is shown that approximating the clique covering number within
a constant factor smaller than two is NP-hard. In [11], it is shown that edge
clique cover is fixed-parameter tractable with respect to parameter k; see also
[8] for more recent discussions on the parameterized complexity aspects.

We write cow(G) to denote the complete width of the graph G. As usual, G
denotes the complement of G. In [4], the authors showed that complete width
is NP-complete on general graphs, by observing that

Proposition 1 ([4]). For any graph G, cow(G) = θe(G)

Proposition 1 and the known results about edge clique cover imply:

Theorem 1. (1) Computing the complete width is NP-hard, and remains NP-
hard when restricted to graphs of minimum degree at least n − 7, and to
co-planar graphs.

(2) Computing the complete width of graphs of minimum degree at least n − 6
and of co-chordal graphs can be done in polynomial time.

In [5], it is conjectured that edge clique cover, and thus complete
width, is NP-complete for P4-free graphs (also called cographs).

3 Computing Complete Width is Hard for 3K2-free
Bipartite Graphs

A bipartite graph G = (V,E) is a graph whose vertex set V can be partitioned
into two sets X and Y such that for any edge xy ∈ E, x ∈ X and y ∈ Y . Bipartite
graphs without induced cycles of length at least six are called chordal bipartite.
A biclique cover of a graph G is a family of complete bipartite subgraphs of G
whose edges cover the edges of G. The biclique cover number, also called the
bipartite dimension, of G is the minimum number of bicliques needed to cover
all edges of G.

Given a graph G and a positive integer k, the biclique cover problem of
G asks whether the edges of G can be biclique covered by at most k bicliques.
The following theorem is well known.
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Theorem 2 ([21,22]). biclique cover is NP-complete on bipartite graphs,
and remains NP-complete on chordal bipartite graphs.

For convenience, a bipartite graph G = (V,E) with a bipartition V = X ∪ Y
into independent sets X and Y is denoted as G = (X + Y,E). Let BC(G) =
(X + Y, F ), where F = {xy | x ∈ X, y ∈ Y, and xy �∈ E}. We call BC(G)
the bipartite complement of G = (X + Y,E). Note that BC(C6) = 3K2 and
BC(C8) = C8. Hence if G is chordal bipartite, then BC(G) is (3K2, C8)-free
bipartite.

In [4], the authors showed that the complete width problem is NP-complete
on general graphs. We now establish our main theorem for sharping that result
of [4].

Theorem 3. complete width is NP-complete on bipartite graphs, and
remains NP-complete on (3K2, C8)-free bipartite graphs.

Proof. We prove this theorem by reducing biclique cover to complete
width.

Let (G, k) be an input instance of the biclique cover problem, where G =
(X + Y,E) is a bipartite graph. We construct an input instance (G′, k′) of the
complete width problem as follows.

– G′ is the bipartite graph obtained from the bipartite complement BC(G) =
(X + Y, F ) of G by adding two new vertices x and y and adding all edges
between x and vertices in Y ∪ {y} and between y and vertices in X ∪ {x}.
More formally, G′ = (X ′ + Y ′, F ′) with X ′ = X ∪ {x}, Y ′ = Y ∪ {y}, and
F ′ = F ∪ {xu | u ∈ Y ∪ {y}} ∪ {yv | v ∈ X ∪ {x}}.

– Set k′ := k + 2.

We claim that the biclique cover number of G is at most k if and only if the
complete width of G′ is at most k′ = k + 2.

First, let {Bi | 1 ≤ i ≤ k} be a biclique cover of G, where Bi = (Xi + Yi, Ei)
with Xi ⊆ X,Yi ⊆ Y . Then, as each Bi is a biclique in G, each Ni = Xi ∪ Yi is
an independent set in G′. Set Nk+1 := X ′ and Nk+2 := Y ′. Then it is easy to
check that the k′ = k + 2 independent sets Ni, 1 ≤ i ≤ k + 2, form a complete
witness of G′. That is, cow(G′) ≤ k′.

Conversely, let {Ni | 1 ≤ i ≤ k + 2} be a complete witness of G′. Then we
may assume that

x, y �∈ Ni, 1 ≤ i ≤ k.

(To see this, consider a vertex u ∈ X. As {Ni | 1 ≤ i ≤ k + 2} is a complete
witness of G′, u and x must belong to Nt for some t ∈ {1, . . . , k + 2}. Therefore,
Nt ⊆ X ∪ {x} = X ′ because x is adjacent to all vertices in Y ′. Clearly, we can
replace Nt by X ′ and, if x ∈ Ni for some i �= t, replace Ni by Ni −{x} to obtain
a new witness such that Nt = X ′ and x is contained only in Nt. Similarly, there
is some s such that Ns = Y ′ and y is contained only in Ns. By re-numbering if
necessary, we may assume that t = k + 1 and s = k + 2.)
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Thus, by construction of G′, N1, . . . , Nk are independent sets in BC(G) and
form a complete witness of BC(G). Therefore, Bi = G[Ni], 1 ≤ i ≤ k, are
bicliques in G forming a biclique cover of G. That is, θe(G) ≤ k.

Note that if G is chordal bipartite, then BC(G), hence the bipartite graph
G′ cannot contain 3K2 and C8 as induced subgraphs. �

Theorem 3 and Proposition 1 imply the following corollary.

Corollary 1. edge clique cover is NP-complete on K2,2,2-free co-bipartite
graphs.

4 Polynomially Solvable Cases

In this section we establish some cases in which complete width can be solved
in polynomial time. Actually, in each of these cases we will show that the com-
plete width of the graphs under consideration can be computed in polynomial
time.

4.1 2K2-free Bipartite Graphs

Bipartite graphs without induced 2K2 are known in literature under the name
chain graphs ([25]) or difference graphs ([12]). They can be characterized as
follows.

Proposition 2 (see [20]). A bipartite graph G = (X + Y,E) is a chain graph
if and only if for all vertices u, v ∈ X, N(u) ⊆ N(v) or N(v) ⊆ N(u).

Theorem 4. The complete width of chain graphs can be computed in polynomial
time.

Proof. (Sketch) Observe first that if u, v are two vertices in a graph G such
that N(u) = N(v) (in particular, u and v are non-adjacent), then cow(G) =
cow(G−u) (if v is not universal in G−u) or cow(G) = cow(G−u)+1 (otherwise).

Let G = (X +Y,E) be a 2K2-free bipartite graph with at least three vertices.
As observed above, we may assume that for any pair of vertices u, v of G, N(u) �=
N(v). Thus, |X| ≥ 2, |Y | ≥ 2, and G has at most one non-trivial connected
component and at most one trivial component which is then the unique isolated
vertex of G. Let us also assume that the isolated vertex (if any) of G belongs
to X. By Proposition 2, the vertices of X can be numbered v1, v2, . . . , v|X| such
that N(v1) ⊂ N(v2) ⊂ . . . ⊂ N(v|X|) = Y . Thus, G is disconnected if and only if
v1 is the isolated vertex of G if and only if N(v1) = ∅. Clearly, such a numbering
can be computed in polynomial time.

Write Ni = {v1, . . . , vi} ∪ (Y \ N(vi)), 1 ≤ i ≤ |X|. Since N(vj) ⊂ N(vi)
for j < i, Ni is an independent set, and since N(v|X|) = Y , N|X| = X. In case
N(v1) �= ∅, let N|X|+1 = Y . (Note that in case N(v1) = ∅, i.e., v1 is the isolated
vertex of G, N1 = Y ∪ {v1}.)
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We claim that

cow(G) =

{
|X|, if N(v1) = ∅
|X| + 1, otherwise

Moreover, N1, . . . , N|X| and N|X|+1 (if N(v1) �= ∅) together form a complete
witness of G.
Proof of the Claim: First, to see that the collection of the independent sets N1,

. . . , N|X| and N|X|+1 (if N(v1) �= ∅) is a complete witness of G, let u, v be two
non-adjacent vertices of G. If u and v in X, say u = vi or v = vj for some
1 ≤ i < j ≤ |X|, then u, v ∈ Nj . If u ∈ X and v ∈ Y , say u = vi for some
1 ≤ i ≤ |X|, then u, v ∈ Ni. So let u, v ∈ Y . In this case, let i ≤ j be the
smallest integers such that u ∈ N(vi), v ∈ N(vj). If i > 1 then u, v �∈ N(v1),
hence u, v ∈ N1. Thus, let u ∈ N(v1). Then, in particular N(v1) �= ∅ and hence
u, v ∈ N|X|+1 = Y .

In particular, cow(G) is at most the right hand side stated in the claim.
Next, observe that the claim is clearly true in case |X| = 2. So, let |X| ≥ 3.

Note that in G − v1, N(v2) is not empty, hence by induction, cow(G − v1) =
|X \ {v1}| + 1 = |X| and N′

1 = N2 \ {v1}, . . . , N′
|X|−1 = N|X| \ {v1} and N′

|X| =
N|X|+1 = Y form a complete witness of G−v1. Now, if N(v1) = ∅ then cow(G) ≥
cow(G − v1) = |X|, hence cow(G) = |X|. So, let N(v1) �= ∅. In this case, for any
u ∈ N(v2) \ N(v1) and any maximal independent set I of G containing v1 and
u, N′

i �⊆ I. Thus, cow(G) ≥ cow(G − v1) + 1 = |X| + 1, hence cow(G) = |X| + 1.
�

Theorem 4 and Proposition 1 imply the following corollary.

Corollary 2. The edge clique cover number of C4-free co-bipartite graphs can
be computed in polynomial time.

4.2 (2K2,K3)-free Graphs

We extend Theorem 4 on K2-free bipartite graphs by showing that complete
width is polynomially solvable for large class of 2K2-free triangle-free graphs.

Theorem 5. The complete width of (2K2,K3)-free graphs can be computed in
polynomial time.

Proof. (Sketch) Let G be a (2K2,K3)-free graph. If G has no induced C5, then
G is 2K2-free bipartite, hence we are done by Theorem 4.

So let G contain an induced C5, say C = v1v2v3v4v5v1. As in the proof of
Theorem 4, we may assume that N(u) �= N(v) for any non-adjacent vertices u
and v of G. Then it can be shown that C is the non-trivial connected component
of G. Thus, cow(G) = 5. �
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4.3 Split Graphs

A split graph is one whose vertex set can be partitioned into a clique Q and an
independent set S. For convenience, a split graph is denoted as G = (Q + S,E).
It is well known that split graphs can be characterized as follows.

Proposition 3 ([9]). The following statements are equivalent for any graph G.

(i) G a split graph;
(ii) G is a (2K2, C4, C5)-free graph;
(iii) G is a 2K2-free chordal graph;
(iv) G and G are chordal.

In particular, split graphs are complements of chordal graphs. Hence, by
Theorem 1 (2), computing the complete width of split graphs can be done in
polynomial time. Below, however, we give here a simple and direct way for doing
this. Moreover, our solution will be useful for computing the complete width of
pseudo split graphs. The class of pseudo split graphs are not necessarily co-
chordal and properly contains all split graphs.

It is not hard to see that a universal vertex is impossible to be a non-probe
vertex. Thus in the following, we consider the split graphs G = (Q + S,E) with
no universal vertex.

Theorem 6. For a split graph G = (Q + S,E) with no universal vertex, the
complete width of G is either |Q| or |Q| + 1.

Proof. Assume that the complete width of G is k. That is, there is an embedding
G′ of G such that for every edge xy in G′ but not in G there are independent
sets N1, . . . , Nk in G such that {x, y} ⊆ Ni for some i. By the definition, G[Q] is
a clique. Thus it is impossible that there are two vertices of Q in the same Ni
for 1 ≤ i ≤ k. That is, each Ni contains at most one vertex in Q. Therefore, the
complete width of G is at least |Q|.

On the other hand, for each vertex v ∈ Q, let Nv = V \ N(v). Then, each
Nv, v ∈ Q, is an independent set. Further, for each Nv, we can fill edges vu,
u ∈ Nv − v. Finally, for the final set S, we make G[S] a clique by filling edge xy
for any two vertices x, y ∈ S. The resulting graph is a complete graph. That is,
the complete width of G is at most |Q| + 1. This completes the proof. �

By Theorem 6, only two cases for determining the complete width of a split
graph. For the split graph G = (Q+S,E), let Nv = V \N(v) for v ∈ Q. We have
the following lemma.

Lemma 1. For a split graph G = (Q + S,E) with no universal vertex, if for
any two vertices x, y ∈ S, there is an Nv, v ∈ Q, such that x, y ∈ Nv, then the
complete width of G is |Q|; otherwise it is |Q| + 1.

Proof. Assume that for any two vertices x, y ∈ S, there is an Nv, v ∈ Q such
that x, y ∈ Nv. We show that the complete width of G is |Q|. Without loss of
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generality, we assume all the Nv’s are ordered as the sequence of N1, N2, . . . , N|Q|.
For completing G into Kn, for each Nv, we fill the edges vu, u ∈ (Nv ∩ S).
Furthermore, assume that Ni is the last set that contains x and y for any two
vertices x, y ∈ S. That is, {x, y} ⊆ Ni but {x, y} �⊆ Nj for each j > i. Then the
edge xy is filled in Ni. By assumption, every edge in G[S] can be filled in some
Ni. Thus the complete width of G is |Q|.

On the other hand, if there is no Ni contains x and y for some x, y ∈ S, then
there is no way to fill x, y in N1, N2, . . . , N|Q|. Therefore the complete width of G
is |Q| + 1. �

By Lemma 1, for any two vertices x, y ∈ S, we can check whether there
is a vertex v ∈ Q such that both xv and yv are not in E. By using adjacency
matrix of G, all the work can be done in O(n3) time. Thus, we have the following
theorem.

Theorem 7. The complete width of split graphs can be computed in polynomial
time.

4.4 Pseudo-split Graphs

Graphs without induced 2K2 and no induced C4 are called pseudo-split graphs.
Thus, by Proposition 3, the class of pseudo-split graphs properly contains the
class of split graphs. Note that a pseudo-split graph may contain an induced
C5, hence it need not be co-chordal. Pseudo-split graphs can be characterized as
follows.

Theorem 8 ([1,19]). A graph is pseudo-split if and only if its vertex set can
be partitioned into three sets Q,S,C such that Q is a clique, S is an independent
set, C induces a C5 or is empty, there are all possible edges between Q and C,
and there are no edges between S and C.

Note that it can be recognized in linear time if a graph is a pseudo split graph,
and if so, a partition stated in Theorem 8 can be found in linear time [19].

Theorem 9. The complete width of pseudo-split graphs can be computed in poly-
nomial time.

Proof. Let G = (V,E) be a pseudo-split graph without universal vertices. Let
V = Q + S + C be a partition as in Theorem 8. We may assume that C �= ∅
otherwise we are done by Theorem 7.

So let C be the induced C5 = v1v2v3v4v5v1. Then, clearly, the |Q| + 5 inde-
pendent sets V − N(v), v ∈ Q, and S ∪ {vi, vi+2} (indices are taken modulo 5),
1 ≤ i ≤ 5, can be used for completing G. Thus, by Theorem 6, and by noting
that cow(C5) = 5, we have cow(G) = |Q| + 5. �

Theorem 4 and Proposition 1 imply the following corollary (note that the
complement of a pseudo-split is also a pseudo-split graph).

Corollary 3. The edge clique cover number of pseudo-split graphs can be com-
puted in polynomial time.
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5 Graphs of Small Complete Width

We describe in this section graphs of small complete width k ≤ 3. These are
particularly 2K2-free and our descriptions are good in the sense that they imply
polynomial time recognition for these graph classes.

Complete Width-1 and Complete Width-2 Graphs

A complete split graph is a split graph G = (Q + S,E) such that every vertex
in the clique Q is adjacent to every vertex in the independent set S. Such a
partition is also called a complete split partition of a split graph. Note that if
the complete split graph G = (Q + S,E) is not a clique, then G has exactly one
complete split partition V = Q∪S. Furthermore, each vertex in Q is a universal
vertex.

Graphs of complete width one can be characterized as follows.

Theorem 10 ([17]). The following statements are equivalent.

(i) G is a probe complete graph;
(ii) G is a {K2 + K1, C4}-free graph;
(iii) G is a complete split graph.

The join G � H is obtained from G + H by adding all possible edges xy
between any vertex x in G and any vertex y in H. Graphs of complete width at
most two can be characterized as follows.

Theorem 11 ([18]). A graph G is a 2-probe complete graph if and only if G is
{2K2, P4,K3 + K1, (K2 + K1) � 2K1, C4 � 2K1}-free.

Complete Width-3 Graphs

Substituting a vertex v in a graph G by a graph H results in the graph obtained
from (G − v) ∪ H by adding all edges between vertices in NG(v) and ver-
tices in H. The Net consists of six vertices a, b, c, a′, b′ and c′ and six edges
aa′, bb′, cc′, a′b′, b′c′ and a′c′.

Graphs of complete width at most 3 can be characterized as follows.

Theorem 12. Let Q be the set (possibly empty) of universal vertices of the
graph G. G is a 3-probe complete graph if and only if G − Q has at most one
non-trivial connected component which is obtained from the Net by substituting
the vertices by (possibly empty) independent sets.

Proof. (Sketch) First, assume that G is a 3-probe complete graph, and let N1, N2,
N3 be a complete witness of G. Then G is 2K2-free and Q = V (G) \ N1 ∩ N2 ∩ N3
is the set of all universal vertices of G. Moreover, as G is 2K2-free, G − Q has
at most one non-trivial connected component and I = N1 ∩ N2 ∩ N3 is the set of
all isolated vertices of G − Q.
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The non-trivial connected component N of G − Q is partitioned into the
following six independent sets. I12 = (N1 ∩ N2) \ N3, I13 = (N1 ∩ N3) \ N2, I23 =
(N2 ∩ N3) \ N1, I1 = N1 \ (N2 ∪ N3), I2 = N2 \ (N1 ∪ N3), and I3 = N3 \ (N1 ∪ N2).
Then there are all possible edges between I1 and I2, I3, I23, between I2 and
I1, I3, I13, between I3 and I1, I2, I12, and there are no other edges between these
independent sets. Thus, N is obtained from the Net by substituting the vertices
by these six independent sets.

Next, assume that G − Q has at most one non-trivial connected component
which is obtained from the Net by substituting the vertices by (possibly empty)
independent sets. Let I be the set of trivial connected components and let N be
the non-trivial connected component of G − Q. Let N be obtained from the Net
by substituting its vertices a, b, c, a′, b′, c′ by independent set Ia, Ib, Ic, Ia′ , Ib′ , Ic′ ,
respectively. Then N1 = I ∪ Ia ∪ Ib′ ∪ Ic′ , N2 = I ∪ Ib ∪ Ia′ ∪ Ic′ , and N3 =
I ∪ Ic ∪ Ia′ ∪ Ib′ from a complete witness of G. �

We note that, using modular decomposition, one can recognize graphs
obtained from the Net by substituting vertices by independent sets in linear
time. Hence Theorem 12 gives a linear time recognition for 3-probe complete
graphs. We also remark that there is a characterization for 3-probe complete
graphs by 14 forbidden induced subgraphs.

6 Conclusion

In this paper we have shown that complete width is NP-complete on 3K2-free
bipartite graphs (equivalently, edge clique cover is NP-complete on K2,2,2-
free co-bipartite graphs). So, an obvious open question is: What is the computa-
tional complexity of complete width on 2K2-free graphs? Equivalently, what
is the computational complexity of edge clique cover on C4-free graphs? We
have given partial results in this direction by showing that complete width
is polynomially solvable on (2K2,K3)-free graphs and on (2K2, C4)-free graphs.
(Equivalently, edge clique cover is polynomially solvable on (C4, 3K1)-free
graphs and on (C4, 2K2)-free graphs.)

Another interesting question is the following. The time complexities of many
problems coincide on split graphs and bipartite graphs, e.g., the dominating set
problem. However, for the complete width problem, they are different, one is in
P and the other is in NP-complete. Trees are a special class of bipartite graphs.
Many problems become easy on trees. However, we do not know the hardness of
the complete width problem on trees.
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V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 44–54. Springer, Heidelberg (2001)

7. Ma, S., Wallis, W.D., Wu, J.: Clique covering of chordal graphs. Utilitas Mathe-
matica 36, 151–152 (1989)

8. Cygan, M., Pilipczuky, M., Pilipczuk, M.: Known algorithms for EDGE CLIQUE
COVER are probably optimal. In: Proc. SODA, 1044–1053 (2013)

9. Foldes, S., Hammer, P.L.: Split graphs. Congressus Numerantium, No. XIX, 311–
315 (1977)

10. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Dis-
crete Math., vol. 57, 2nd edn. Elsevier, Amsterdam (2004)
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