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Abstract. We consider packing axis-aligned rectangles r1, . . . , rn in the
unit square [0, 1]2 such that a vertex of each rectangle ri is a given point
pi (i.e., ri is anchored at pi); and explore the combinatorial structure of
all locally maximal configurations. When the given points are lower-left
corners of the rectangles, then the number of maximal packings is shown
to be at most 2nCn, where Cn is the nth Catalan number. The number
of maximal packings remains exponential in n when the points may be
arbitrary corners of the rectangles. Our upper bounds are complemented
with exponential lower bounds.

1 Introduction

Let P be a finite set of points p1, . . . , pn in the unit square [0, 1]2. An anchored
rectangle packing for P is a set of axis-aligned empty rectangles r1, . . . , rn, that
lie in [0, 1]2, are interior-disjoint, and point pi is one of the four corners of ri for
i = 1, . . . , n. We say that rectangle ri is anchored at pi. In a lower-left anchored
rectangle packing (L-anchored packing, for short), pi is the lower-left corner of
ri for all i.

Anchored rectangle packings have applications in map labeling in geographic
information systems [15–17] and VLSI design [18]. A fundamental problem is
to find the maximum total area A(P ) (resp., AL(P )) of the rectangles in an
anchored (resp., L-anchored) rectangle packing of P . Allen Freedman conjectured
(c.f. [23,24]) that if (0, 0) ∈ P , then P admits an L-anchored rectangle packing
of area at least 1/2, that is AL(P ) ≥ 1/2. The currently known best lower bound
in this case is AL(P ) ≥ 0.091 due to Dumitrescu and Tóth [11].

A rectangle ri with lower-left anchor pi = (ai, bi), can be parameterized by
two variables xi and yi such that ri = [ai, xi] × [bi, yi]. Consequently, the area
of an L-anchored rectangle packing is a continuous multivariable function in 2n
variables

∑n
i=1 area(ri) =

∑n
i=1(xi−ai)(yi−bi), over a domain determined by the

geometric constraints of the packing. We call an L-anchored rectangle packing
maximum (resp., maximal) if it attains the global (resp., a local) maximum
of this function. We define maximum and maximal anchored rectangle packing
analogously.
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Fig. 1. Left: a set P of 5 points in the unit square [0, 1]2 and an anchored rectangle
packing for P . Middle: a maximal anchored rectangle packing for P . Right: A maximal
L-anchored rectangle packing for P .

For computing the maximum area, AL(P ) or A(P ), for a given point set P ,
it is instrumental to estimate the number of maximum packings. It is easily seen
that the number of maximum packings is at least exponential in n = |P | if,
for example, P contains n points on a diagonal of [0, 1]2. The enumeration of
locally maximal configurations, which can be computed greedily, combined with
reverse search [7] yields a simple strategy for finding the global maximum. In
this paper, we control the number of (locally) maximal anchored and L-anchored
rectangle packings. For an integer n ∈ N, let M(n) (resp., ML(n)) denote the
largest number of maximal rectangle packings over all sets P ⊂ [0, 1]2 of n
noncorectilinear points (two points are corectilinear if they have the same x- or
y-coordinate).

Results. In this paper, we prove exponential upper and lower bounds for ML(n)
and M(n). Our upper bound for ML(n) is expressed in terms of the nth Catalan
number Cn = 1

n+1

(
2n
n

) ∼ 4n/(n3/2
√

π).

Theorem 1. We have Ω(4n/
√

n) ≤ ML(n) ≤ Cn2n = Θ(8n/n3/2).

Note that both the lower and upper bounds are larger than Cn. The lower
bound follows from an explicit construction. The upper bound is the combination
of two tight upper bounds. Each L-anchored rectangle packing induces a sub-
division of [0, 1]2 into “staircases” (L-subdivisions, defined in Sec. 3). We show
that the number of L-subdivisions for n points is at most Cn, and this bound
is attained when the points form an antichain under the product order. We also
show that each L-subdivision is induced by at most 2n−1 L-anchored rectangle
packings, and this bound is attained when the points form a chain under the
product order.

The machinery developed for the proof of Theorem 1 does not extend to
general anchored rectangle packings. Nevertheless, we can prove that the number
of maximal (any corner) anchored rectangle packings is exponential

Theorem 2. There exist constants 1 < c1 < c2 such that Ω(cn1 ) ≤ M(n) ≤
O(cn2 ).

We derive an exponential upper bound using the contact graph of the rectan-
gles in a packing. Specifically, we show that the contact graph can be represented
by a planar embedding of the contact graph in which the vertices are points in
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the rectangles, and the edges are represented by polylines with at most one
bend per edge. The number of graphs with such an embedding is known to be
exponential [12]. We can encode all maximal anchored rectangle packings for
P using one such graph and O(n) bits of additional information. This leads to
an exponential upper bound.

Remark. In a maximal anchored or L-anchored rectangle packing, we may
assume that all vertices of all rectangles lie on one of the (n + 2)2 “grid points”
induced by the vertical and horizontal lines passing through the n points in P and
the corners of [0, 1]2 (cf. Sec. 2). This crucial property discretizes the problem,
but is insufficient for establishing an exponential upper bound. By choosing the
points (xi, yi) among the grid points, we obtain only a weak upper bound of
(n − 1)n (resp., (n!)2 for L-anchored packings).

Related Work. Packing axis-aligned rectangles in a rectangular container,
albeit without anchors, is the unifying theme of several classic optimization
problems. The 2D knapsack problem, strip packing, and 2D bin packing involve
arranging a set of given rectangles in the most economic fashion [3,8,14]. The
maximum weight independent set for rectangles involves selecting a maximal
area packing from a set of given rectangles [4]. These optimization problems are
NP-hard, and there is a rich literature on the best approximation algorithms.
Our problem setup is fundamentally different: the rectangles have variable sizes,
but their location is constrained by the anchors. In this sense, it is reminiscent
to classic Voronoi diagrams for n points in the plane. However, the Voronoi cells
tile the space without gaps. Area maximization problems arise in the context of
Voronoi games [5,9], where two players alternately choose points in a bounding
box and wish to maximize the total area of the Voronoi cells of their points.

Combinatorial bounds for the number of some other geometric configura-
tions on n points in the plane have been studied extensively. Determining the
maximum number of (geometric) triangulations on n points in the plane cap-
tivated researchers for decades. The current best upper and lower bounds are
Ω(8.65n) and O(30n) [10,20]. Ackerman et. al. [1,2] established an upper bound
of O(18n/n4) for the number of rectangulations of n points in [0, 1]2, where
a rectangulation is a subdivision of [0, 1]2 into n + 1 rectangles by n axis-
parallel segments, each containing a given point. This structure is reminiscent
of L-subdivisions, defined in Sec. 3, for which we prove a tight upper bound
of Cn ≤ O(4n/n3/2). The number of anchored rectangle packings has not been
studied before. It is not known if finding the maximum area of an anchored
rectangle packing of n given points is NP-hard.

2 Discretization of Maximal Anchored Rectangle
Packings

Let P ⊂ [0, 1]2 be a set of noncorectilinear points p1, . . . , pn. The vertical and
horizontal lines that pass through the points in P and the edges of the bounding
box are called grid lines. The grid points are the intersections of the grid lines.
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It is easy to see that all vertices of a maximal L-anchored rectangle packing must
be grid points.

Proposition 1. If an L-anchored rectangle packing for P has maximal area,
then all corners of all rectangles are grid points.

Proof. Consider an anchored rectangle packing of maximal area. The left and
bottom edges are on grid lines. This implies that each rectangle may only expand
up and to the right. Because the packing is of maximal area, no rectangle can
expand (while other rectangles are fixed). The upper and right edges of each
rectangle are necessarily in contact with the bottom and left edges of other
rectangles or with the bounding box. This places the upper-right vertex at the
intersection of two grid lines and thus on a grid point. We have shown that the
lower-left and the upper-right corner of every rectangle is a grid point. From
the definition of grid lines, this implies that all corners of all rectangles are grid
points. �

The situation is more subtle when the rectangles can be anchored at arbitrary
corners. Specifically, a local maximum may be attained at a “plateau” where
the configuration can vary continuously while maintaining the same maximal
area. A transformation that maintains the total area of the rectangles is called
equiareal.

Proposition 2. If an anchored rectangle packing for P has maximal area, then

– the local maximum is isolated, and all vertices of all rectangles are grid
points, or

– there is an equiareal continuous deformation to an anchored rectangle pack-
ing in which all vertices of all rectangles are grid points; furthermore, the
deformation either creates a contact between two previously disjoint rectan-
gles, or decreases the area of some rectangle to 0.

Proof. Consider a maximal anchored rectangle packing for P . Suppose that at
least one rectangle has a vertical or horizontal edge not on a grid line. Assume
first that a vertical edge of a rectangle is not on a grid line. Let � be the vertical
line through the leftmost such edge. Denote by L the set of rectangles whose
right edges intersect �, and R the set of rectangles whose left edges intersect �.
We can deform the rectangles in L and R simultaneously by translating �. The
sum of heights of rectangles in L equals the sum of heights of rectangles in R,
otherwise translating � in one of the two possible directions increases the total
area before � becomes a grid line. When � shifts to the left, the rectangles in L
shrink and may potentially reach 0 area; while the rectangles in R expand and
may potentially reach another rectangle. However, because of the choice of �, all
edges of such a rectangle lie on grid lines. Translate � until the area of a rectangle
in L drops to 0, or the left edge of a rectangle in R reaches the boundary of a
new rectangle or the bounding box. Repeat this operation for the next leftmost
line � until all vertical edges are on grid lines.
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Note that horizontal edges were not affected by the above transformations.
We can now deform the horizontal edges of the rectangles (independent of the
vertical edges) by repeating the argument starting with the topmost horizontal
line. Necessarily, all vertices of all rectangles become grid points. �

In the remainder of the paper, we consider maximal anchored rectangle packings
in which the vertices of all rectangles are grid points.

3 Lower-Left Anchored Rectangle Packings

The key tool for the proof of Theorem 1 is a subdivision of the unit square
[0, 1]2 into staircase polygons, defined below. Let P = {p1, . . . , pn} be a set of
noncorectilinear points in [0, 1]2. We may assume that (0, 0) �∈ P (by scaling P ,
if necessary, since maximality is an affine invariant). Let q = (0, 0) denote the
lower-left corner of [0, 1]2.

An L-shape for a point pi (i = 1, . . . , n) is the union of a horizontal and a
vertical segment whose left and bottom endpoint, respectively, is pi. Refer to
Fig. 2(a). An L-subdivision for P is formed by n L-shapes for pi (i = 1, . . . , n)
such that the top and right endpoint of each L-shape lies in another L-shape or
the boundary of [0, 1]2. The L-shapes subdivide [0, 1]2 into n+1 simple polygons,
called staircases. By construction, the lower-left corner of each staircase is either
q = (0, 0) or a point in P . The upper-right vertices of a staircase are called steps
of the staircase.

r1

p1

(a) (b) (c) (d)

Fig. 2. (a) An L-subdivision for P . (b) An L-subdivion induced by a maximal
L-anchored rectangle packing. (c) Maximal anchored rectangles in the staircases that do
not form a maximal L-anchored rectangle packing: rectangle r1 could expand. (d) For
n points on the line y = x, ML(P ) = 2n−1.

Proposition 3. In every L-subdivision for P , the n staircases anchored at the
points in P jointly have at most 2n − 1 steps.

Proof. Each step of a staircase is either the upper-right corner of [0, 1]2, or a
top or right endpoint of an L-shape. Every such point is the step of a unique
staircase. The n L-shapes yield 2n steps, and the upper-right corner of [0, 1]2

yields one step. The staircase anchored at q = (0, 0) has at least two steps, hence
the remaining staircases jointly have at most 2n + 1 − 2 = 2n − 1 steps. �
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Maximal L-anchored packings versus L-subdivisions

Proposition 4. For every maximal L-anchored rectangle packing of P , there is
an L-subdivision such that rectangle ri lies in the staircase anchored at pi for
i = 1, . . . , n.

Proof. Let r1, . . . , rn be an L-anchored rectangle packing for p1, . . . , pn ∈ [0, 1]2.
For each i = 1, . . . , n − 1, successively draw an L-shape as follows (refer to
Fig. 2(b)). First extend the bottom edge of ri to the right until it hits the
bounding box, the left edge of another rectangle, or a previously drawn L-shape.
Similarly, extend the left edge of ri up until it hits the bounding box, the bottom
edge of another rectangle, or a previously drawn L-shape. The n L-shapes form
an L-subdivision. By construction, the L-shapes are disjoint from the interior
of the rectangles r1, . . . , rn, hence each rectangle lies in a staircase. Since the
lower-left corner of each staircase is q = (0, 0) or a point in P , each staircase
with lower-left corner pi ∈ P contains the rectangle anchored at pi. �

In the L-subdivision described in Proposition 4, each rectangle ri (i =
1, . . . , n) is a maximal rectangle within a staircase polygon. However, the con-
verse is not necessarily true. Choose maximal rectangles, in all staircases, with
lower-left corners in P . This need not produce a maximal L-anchored rectangle
packing for P . See an example in Fig. 2(c). Nevertheless, we can derive an upper
bound for ML(P ).

Proposition 5. In every L-subdivision for P , |P | = n, there are at most 2n−1

possible ways to choose a maximal rectangle in each staircase whose lower-left
corner is in P . This bound is the best possible.

Proof. If the staircases anchored at the n points in P have t1, . . . , tn steps, then
there are precisely

∏n
i=1 ti different ways to choose a maximal anchored rectangle

in each. By Proposition 3 and the arithmetic-geometric mean inequality yields
n∏

i=1

ti ≤
(

1
n

n∑

i=1

ti

)n

=
(

2 − 1
n

)n

< 2n. (1)

The maximum of
∏n

i=1 ti subject to
∑n

i=1 ti = 2n − 1 and t1, . . . , tn ∈ N is
attained when the t′is are distributed as evenly as possible, say, t1 = . . . =
tn−1 = 2 and tn = 1. Consequently,

∏n
i=1 ti ≤ 2n−1. This upper bound is

attained when the points in P form a chain in the product order (e.g., points on
the line y = x), then n − 1 staircases have 2 steps, and the staircase incident to
(1, 1) has only 1 step (Fig. 2(d)). �

Let S(P ) be the number of all L-subdivisions for a noncorectilinear point set
P ; and let S(n) = max|P |=n S(P ). By Proposition 5, we have ML(P ) ≤ S(P )2n

and ML(n) ≤ S(n)2n.

The Number of L-subdivisions. We prove a tight upper bound for S(n), the
maximum number of L-subdivisions for a set of n points in the unit square. Our
upper bound is expressed in terms of the nth Catalan number Cn = 1

n+1

(
2n
n

) ∼
4n/

√
πn3.
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Lemma 1. For every n ∈ N, we have S(n) = Cn.

Proof. Lower bound. Let P be a set of n points that form an antichain under
the product order (e.g., points on the line y = 1−x). In this case, each staircase
anchored at a point in P is a rectangle, and it is well known [21,22] that the
number of rectangular subdivisions is the Catalan number Cn. Hence S(P ) = Cn

in this case.
Upper Bound. Let P be an arbitrary noncorectilinear set of n points in [0, 1]2.

We may assume that the points p1, . . . pn are sorted by their x-coordinates, that
is, x1 < . . . < xn. If the points form an antichain under the product order,
then their y-coordinates are monotone decreasing, and S(P ) = Cn. Otherwise,
we incrementally modify the y-coordinates of the points to become monotone
decreasing such that the number of L-subdivisions increases. In each incremental
step, we modify the y-coordinate of one point.

Suppose that the points in P do not form an antichain under the prod-
uct order; and i is the smallest index such that the points with larger indices,
{pj ∈ P : j > i}, form an antichain and are incomparable to all other points
(refer to Fig. 3). Let Z0 be the minimum axis-aligned rectangle incident to (0, 1)
that contains the points p1, . . . , pi−1; and let Z1 be the minimum axis-aligned
rectangle incident to (1, 0) that contains the points pi+1, . . . , pn. By the choice
of i, the boxes Z0 and Z1 are on opposite sides of the vertical line x = xi, as well
as a horizontal line below y = min1≤k≤i yk. Let p′

i be the intersection of these
two lines.

pi

ri

r′
i

p′
i

A

B

C

abc

C

B

A

cb

Z0

Z3

Z2

Z1

Z0

Z1

Z3

Z2

p′
i

a

Fig. 3. Left: A schematic image of an L-subdivision D for P . Right: The corresponding
L-subdivision D′ for the modified point set P ′.

We move point pi to p′
i. Denote by P ′ the modified point set. In order to show

S(P ) ≤ S(P ′), we construct an injective map f : S(P ) → S(P ′). For every L-
subdivision D of the point set P , we construct a unique L-subdivision D′ = f(D)
of the modified point set P ′. Let D be an L-subdivision of P (Fig. 3, left). Since
no other point dominates pi, the staircase anchored at pi is a rectangle, that we
denote by ri. We introduce some notation. Some horizontal segments of L-shapes
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of points in Z0 cross the right edge of Z0: Let A, B, and C, respectively, denote
the number of L-shapes whose horizontal segments pass above ri, hit the left edge
of ri, and pass below ri. Similarly, some vertical segments of L-shapes of points
in Z1 cross the top edge of Z1: Let a, b, and c, respectively, denote the number of
L-shapes whose vertical segments pass right of ri, hit the bottom edge of ri, and
end strictly below the bottom edge of ri. Let Z2 be the axis-aligned rectangle that
contains all intersections between the A horizontal segments passing above ri
and the a vertical segments right of ri. Similarly, let Z3 contain the intersections
between the C horizontal segments passing below ri and the c vertical segments
that end strictly below ri.

We can now define the L-subdivision D′ for the modified point set P ′. The
arrangement of L-shapes restricted to the boxes Z0 and Z1 remains the same.
Consequently, A + B + C horizontal segments exit the right edge of Z0, and
a + b + c vertical segments exit the top edge of Z1. Draw an L-shape for the
point p′

i such that it blocks the B lowest horizontal segments that exit Z0 and
the b leftmost vertical segments that exit Z1. Group the remaining horizontal
(resp., vertical) segments into bundles of size A and C (resp., a and c). Let the
groups of size A and a intersect in the same pattern as in Z2, and the groups of
size C and c as in Z3. This completes the description of the L-subdivision D′.
By construction D′ = f(D) is a unique L-subdivision, and the function f is
injective. �

We are now ready to prove Theorem 1.

Theorem 1. We have Ω(4n/
√

n) ≤ ML(n) ≤ Cn2n = Θ(8n/n3/2).

Proof. Let P be a set of n noncorectilinear points in the unit square. By
Proposition 4, every maximal L-anchored rectangle packing for P can be con-
structed by considering an L-subdivision for P , and then choosing a maximal
rectangle from each staircase anchored at a point in P . By Lemma 1, we have
S(P ) ≤ S(n) = Cn L-subdivisions for P . By Proposition 5, there are at most
2n−1 ways to choose maximal rectangles in the staircases. Consequently, we have
ML(P ) ≤ S(P )2n−1 ≤ Cn2n−1.

Even though both Proposition 5 and Lemma 1 are tight, their combination
is not tight, since they are attained on different point configurations: n points
that form a chain or an antichain under the product order. Our lower bound

Fig. 4. One point at the origin and n − 1 points on the line y = 1 − x
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is based on the following construction (refer to Fig. 4). Place one point at the
origin and n − 1 points on the line y = 1 − x. The L-shape of the first point is
contained in the boundary of [0, 1]2, and the last n − 1 points admit Cn−1 =
1
n

(
2n−2
n−1

) ∼ 4n−1/
√

(n − 1)3π L-subdivisions. The first point has a staircase with
n steps (t1 = n), all other staircases are rectangles (ti = 1, for i = 2, . . . , n).
Consequently, ML(P ) = S(P )

∏n
i=1 ti = Cn−1 · n = Θ(4n/

√
n), as required. �

4 General Anchored Rectangle Packings

In this section, we prove Theorem 2. We show that a maximal anchored rect-
angle packing for a point set P can be reconstructed from the contact graph of
the rectangles, and from O(n) bits of additional information. Since a maximal
rectangle packing may contain rectangles of 0 area (cf. Proposition 2), we need
to be careful defining contact graphs.

The contact graph of a rectangle packing is a graph G = (V,E), where V
corresponds to the set of vertices, E to the set of edges, and two vertices are
connected by an edge iff the corresponding rectangles have positive area and
intersect in a nontrivial line segment; or one rectangle has 0 area and lies on the
boundary of the other rectangle. It is easy to see that the contact graph of a
rectangle packing is planar. However, the number of n-vertex planar graphs is
super-exponential [13]. The number of graphs reduces to exponential with suit-
able geometric conditions. For a set P of n points in the plane, for example,
the number of straight-line graphs with vertex set P is only exponential. An
exp(O(n)) bound was first shown by Ajtai et al. [6] using the crossing number
method. The current best upper bound is O(187.53n), due to Sharir and Shef-
fer [20]. The contact graphs of any anchored rectangle packings for P can be
embedded in the plane such that the vertex set is P , but these graphs cannot
always be realized by straight-line edges. It turns out that a weaker condition
will suffice: a 1-bend embedding of a planar graph G = (V,E) is an embedding
in which the vertices are distinct points in the plane, and the edges are polylines
with one bend per edge (that is, each edge is the union of two incident line seg-
ments). Frankeke and Tóth [12] proved recently that for every n-element point
set, the number of such graphs is at most exp(O(n)).

Lemma 2. Let P = {p1, . . . , pn} be a noncorectilinar set in [0, 1]2. The contact
graph of every maximal anchored rectangle packing for P has a 1-bend embedding
in which the vertex representing rectangle ri is point pi for i = 1, . . . , n.

The proof would be straightforward if the anchors were in the interior of the rect-
angles. In that case, we could simply choose a bend point on the common bound-
ary between two rectangles in contact, and then draw a 1-bend edge between
their anchors via the bend point. When the anchors are at corners of the rect-
angles, we need to be more careful to prevent any overlap between adjacent
edges.

Proof. Let r1, . . . , rn be a maximal anchored rectangle packing for P . For every
i = 1, . . . , n, point pi is a corner of the rectangle ri. For every two rectangles
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Fig. 5. Left: A maximal anchored rectangle packing for P . Thick lines indicate the
L-shapes incident to the points in P . Right: A 1-bend embedding of the contact graph
of the rectangles.

in contact, ri and rj , choose an arbitrary preliminary bend point q0(i, j) on the
common boundary of ri and rj .

Define the L-shape anchored at pi as the union of the two edges of ri incident
to pi. Note that the relative interiors of the n L-shapes are pairwise disjoint, since
the points p1, . . . , pn are noncorectilinear. Let the bend point q(i, j) = q0(i, j)
if the preliminary bend point is not on an L-shape or if one of the rectangles
has 0 area. Otherwise, assume q0(i, j) is on the L-shape of pi. Then choose a
bend point q(i, j) in the interior of ri in a sufficiently small neighborhood of the
preliminary point q0(i, j). Now, for any two rectangles in contact, ri and rj , draw
a 1-bend edge between pi and pj via q(i, j). No two edges cross or overlap, and
hence we obtain a 1-bend embedding of the contact graph of the rectangles. �

For a fixed point set P , by Lemma 2, the contact graph of every maximal
anchored rectangle packing admits a 1-bend embedding on the vertex set P .
However, several maximal anchored rectangle packings may yield the same con-
tact graph (as an abstract graph). We show that all maximal anchored rectangle
packings for P can be encoded by their contact graphs and O(n) bits of additional
information. By Proposition 2, we may assume that all vertices of a maximal
rectangle packing are grid points. Furthermore, we may also assume that there
is no equiareal continuous deformation that creates a new contact or reduces the
area of a rectangle to 0.

Fix a noncorectilinear point set P = {p1, . . . , pn}. Every maximal anchored
rectangle packing r1, . . . , rn is encoded by the following information:

(1) The contact graph G of the rectangles r1, . . . , rn;
(2) for i = 1, . . . n, an indicator variable σi such that σi = 0 iff area(ri) = 0;
(3) for i = 1, . . . n, the position of the anchor pi in ri (lower-left, lower-right,

etc.);
(4) for each edge (i, j) of G, the orientation of the line segment ri ∩ rj .

We now show that we can uniquely reconstruct a maximal anchored rectangle
packing from this information.
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Lemma 3. For every noncorectilinear point set P , every code described above
determines at most one maximal anchored rectangle packing for P , which can be
(re)constructed in polynomial time.

Proof. We are given the points p1, . . . , pn, and for every i = 1, . . . , n, we know
which corner of the rectangle ri is pi. To reconstruct the rectangles ri (i =
1, . . . , n), it is enough to find the corner of ri opposite to pi, which we denote
by (xi, yi). That is ri = [min(ai, xi),max(ai, xi)] × [min(bi, yi),max(bi, yi)]. We
determine the parameters xi (resp., yi) with the following strategy.

Consider a rectangle ri, and assume without loss of generality that pi is
the lower-left corner of ri. If ri is not in contact with any rectangle rj
such that ri ∩ rj is vertical and ai < aj , then xi = 1 (that is, ri extends
to the right edge of the bounding box [0, 1]2). If ri is in contact with
a rectangle rj such that the segment ri ∩ rj is vertical, ai < aj , and
the anchor pj is the lower-left or upper-left corner of rj , then we have
xi = aj . Analogous conditions determine yi in some cases.

We now show that our assumptions from Proposition 2 ensure that the above
strategy determines xi and yi for all i = 1, . . . , n. If the above strategy fails to
find xi, then ri is in contact with a rectangle rj such that the segment ri ∩ rj is
vertical, ai < aj , but pj is the lower-right or upper-right corner of rj . In this case,
we call (ri, rj) a horizontal pair. Analogously, if the strategy does not find yi,
then ri is part of some vertical pair (ri, rj). The horizontal (resp., vertical) pairs
define a subgraph of the contact graph, that we denote by GH (resp., GV ). Each
connected component C of the graph GH (resp., GV ) corresponds to rectangles
whose left or right edge lies on some common vertical (resp., horizontal) line �.

Consider a component C of GH (the argument is analogous for GV ). The
line � must be right of all lower-left and upper-left anchors of rectangles in C,
and left of all lower-right and upper-right anchors. Suppose that there exists a
maximal anchored rectangle packing that satisfies these constraints. Denote by
L ⊂ C (resp., R ⊂ C) the set of rectangles whose right (resp., left) edges lie
on �. Similarly to the proof of Proposition 2, we deform the rectangles in L and
R simultaneously by translating �. If the sum of heights of rectangles in L and
R differ, then translating � in one of the two possible directions increases the
total area, contradicting maximality. If the sum of heights of rectangles in L
and R are equal, then translating � in any direction is an equiareal deformation.
We can now translate � left until the area of a rectangle in L drops to 0 or a
rectangle in R is in contact with a new rectangle on the left of �. This contradicts
our assumption that equiareal deformations create neither new contacts nor new
rectangles of 0 area. Consequently, GH (resp., GV ) is the empty graph, there are
neither horizontal nor vertical pairs, and the above strategy uniquely determines
xi and yi for all i = 1, . . . , n. �
Theorem 2. There exist constants 1 < c1 < c2 such that Ω(cn1 ) ≤ M(n) ≤
O(cn2 ).

Proof. The combination of Lemmas 2 and 3 yields the upper bound. Theorem 1
gives the lower bound.
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5 Conclusions

We have considered two variants of anchored rectangle packings: the anchors pi
were required to be either the lower-left or arbitrary corners of the rectangles ri.
We could consider a variant that we call relaxed anchored rectangle packing,
where the anchors pi are contained in the rectangles ri. In this case, the max-
imum area of a rectangle packing is always 1, since the bounding box can be
subdivided into n parallel strips, each containing a point in P . Note that a rect-
angle ri = [xi, x

′
i]× [yi, y′

i] is now described by 4 variables. In a relaxed anchored
rectangle packing, however, a local maximum need not attain the global max-
imum. Nevertheless, the technique of Section 4 extends to this variant: each
maximal rectangle packing can be reconstructed from the contact graphs of the
rectangles (which has an embedding using polylines with at most one bend per
edge), and O(1) bits of additional information per rectangle. Consequently, the
number of locally maximal packings for an n-element point set is bounded by
exp(O(n)).

Analogous problems arise for anchored packings with other simple geomet-
ric shapes, such as circular disks or positive homothets of some convex body.
For packings with object of bounded description complexity, the configuration
space can be parameterized with O(n) variables, and some of the techniques
developed here do generalize. However, several crucial steps in our work have
relied on properties of axis-aligned rectangles. Determining the maximum area
covered by a packing remains open for both anchored and L-anchored rectangle
packings. For other geometric shapes (e.g., circular disks), finding the maximum
area covered by relaxed anchored variants is already a challenging problem.
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Annals Discrete Math. 12, 9–12 (1982)

7. Avis, D., Fukuda, K.: Reverse search for enumeration Discrete Appl. Math. 65,
21–46 (1996)

8. Bansal, N., Khan, A.: Improved approximation algorithm for two-dimensional bin
packing. In: Proc. 25th SODA, pp. 13–25. SIAM (2014)

9. Cheong, O., Har-Peled, S., Linial, N., Matoušek, J.: The one-round Voronoi game.
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