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Abstract. Let G = (V, E) be an undirected graph. A minus dominat-
ing function for G is a function f : V → {−1, 0,+1} such that for each
vertex v ∈ V , the sum of the function values over the closed neighbor-
hood of v is positive. The weight of a minus dominating function f for
G, denoted by w(f(V )), is

∑
f(v) over all vertices v ∈ V . The minus

domination (MD) number of G is the minimum weight for any minus
dominating function for G. The minus domination (MD) problem asks
for the minus dominating function which contributes the MD number. In
this paper, we first show that the MD problem is W [2]-hard for general
graphs. Then we show that the MD problem is NP-complete for subcu-
bic bipartite planar graphs. We further show that the MD problem is
APX-hard for graphs of maximum degree seven. Lastly, we present the
first fixed-parameter algorithm for the MD problem on subcubic graphs,
which runs in O∗(2.37615k) time, where k is the MD number of the graph.

1 Introduction

Let G = (V,E) be an undirected graph. A minus dominating function for G
is a function f : V → {−1, 0,+1} such that for each vertex v ∈ V , the sum
of the function values over the closed neighborhood of v is positive, where the
closed neighborhood of v is the set contains v and all neighbors of v. The weight
of a minus dominating function f for G, denoted by w(f(V )), is

∑
f(v) over all

vertices v ∈ V . The minus domination (MD) number of G, denoted by γ−(G), is
the minimum weight for any minus dominating function for G. The minus domi-
nation (MD) problem asks for the minus dominating function which contributes
the MD number.

According to [9], we can see that the function values +1 and −1 of the signed
domination problem can be formulated as yes-no decisions for social networks.
In a similar fashion, the function values +1, 0, and −1 of the MD problem
can be formulated as yes-uncertain-no decisions for in social networks. In the
following, we first mention related work on complexities. Dunbar et al. [4,5]
first showed that the MD problem is NP-complete for bipartite graphs and for
chordal graphs, and can be solved in linear time for trees. Then, Damaschke [2]
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showed that the MD problem is NP-complete for planar graphs of maximum
degree 4. They [2] also showed that for every fixed k there is a polynomial-time
algorithm, which runs in time O(38k ·n8k), for deciding whether a given graph G
of maximum degree 4 satisfies γ−(G) ≤ k. Recently, Faria et al. [6] showed that
the MD problem is NP-complete for splitgraphs, and is polynomial for graphs
of bounded rankwidth and for strongly chordal graphs.

Next, we survey the related work on parameterized complexities. It is known
that Downey et al. [3] showed that the domination problem is W [2]-complete.
Then, Faria et al. [6] showed that the MD problem has no fixed-parameter algo-
rithm, i.e., not in W [0], unless P = NP . They also show that the MD problem
is fixed-parameter tractable for planar graphs, when parameterized by the size
of f , the number of vertices x ∈ V with f(x) = 1, and for d-degenerate graphs,
when parameterized by the size of f and by d.

Lastly, we survey the related work on approximation complexities for graphs
of bounded degree. First, Alimonti and Kann [1] showed that the domination
problem is APX-hard on subcubic graphs. Then, Damaschke [2] showed that the
MD number cannot be approximated in polynomial time within a factor 1 + ε,
for some ε > 0, for graphs of maximum degree 4, unless P = NP .

Outline. We organize the rest of this paper as follows. In Section 2, we show
that the MD problem is W [2]-hard for general graphs. In Section 3, we show
that the MD problem is NP-complete for subcubic bipartite planar graphs. In
Section 4, we show the MD problem is APX-hard for graphs of maximum degree
7. In Section 5, with a very involved analysis, we obtain the first FPT-algorithm
for the MD problem on subcubic graphs G, which runs in time O∗(2.37615k),
where k is the MD number of G.

2 W [2]-hardness for General Graphs

In this section, by reducing the domination problem to the MD problem, we
show that the MD problem on general connected graphs is W [2]-hard. Thus we
introduce domination problem as follows. A dominating set of a graph G = (V,E)
is a vertex set D ⊆ V such that for each vertex v ∈ V , there exists at least one
vertex in the closed neighborhood NG[v] belonging to D. In other words, we
can label the vertices in V with {0,+1} such that the closed neighborhood of
each vertex is positive. The domination number of G, denoted by γ(G) is the
cardinality of the minimum dominating set of G. The domination problem asks
for a dominating set which contributes the domination number γ(G). Downey
et al. [3] showed that the domination problem on general connected graphs is
W [2]-complete.

In our reduction, we need to make use of a graph H as shown in Figure 1(a).
If we label the vertices of H as shown in Figure 1(a), where there are four vertices
labeled with +1 and five vertices labeled with −1, then the weight for such a
minus domination function is −1. In the following lemma, we show that −1 is
in fact the minimum weight which a legitimate minus dominating function for
graph H can provide.
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Fig. 1. (a) Graph H with weight −1. (b) A key with minimum weight 3.

Lemma 1. The MD number of graph H shown in Figure 1(a) is at least −1.

Proof. Suppose to the contrary that γ−(H) ≤ −2. Let f be a minus dominating
function of H whose weight is not more than −2. Let P be the set of vertices
labeled with +1 in H. If γ−(H) ≤ −2, then we have |P | ≤ 3. It is clear that
|P | > 1. If |P | = 2, it is easy to see that the rest vertices should label with 0
in H. Thus we have |P | �= 2. If |P | = 3, then there are at most three vertices
labeled with −1 in H. Thus we also have |P | �= 3. With such a contradiction,
we thus have γ−(H) ≥ −1. �	

With this lemma, now we show the W [2]-hardness for the MD problem.

Theorem 1. The MD problem is W [2]-hard for general connected graphs.

Proof. We reduce the domination problem to our problem as follows. Given a
graph G = (V,E), we construct a new graph G′ as described below. Initially we
set G′ to be G. Then we add each vertex v of G′ a set of degG(v) + 1 keys as
shown in Figure 1(b), and connect v to a7 of each keys in this set, where degG(v)
is the degree of vertex v in G. Note that at most one of vertex in each key can
be labeled with −1, and thus the weight for each key is greater than or equal to
three. We let F be the set of newly added vertices. Next, we add 6m+2n copies
of graph H into graph G′ and denote them by H1,H2, . . . , H6m+2n, respectively.
Let vertex set Y = V (H1)∪. . .∪V (H6m+2n). Then we take any previously added
key, say ρ. Now, we connect the vertex a1 of ρ to the corresponding vertex x2 of
each copy Hi; i = {1, . . . , 6m + 2n} of graph H. This completes the construction
of the graph G′. Let V ′ be the set of vertices in G′. As G is a connected graph,
graph G′ is also a connected graph by our construction. In the following, we
show that there is a domination set of size at most k in G if and only if there is
a minus dominating function with weight at most k in G′.

Assume that there is a dominating set D of size at most k in G. Then we will
show that there is a minus dominating function f with weight at most k of G′.
We construct a function f , which labels vertices in F as Figure 1(b), vertices in
D with value 0, vertices in V \D with value −1. We also label the corresponding
vertices x2, x3, x7, x8 with value +1 and x1, x4, x5, x6, x9 with value −1 for each
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Hi; i = {1, . . . , 6m + 2n}. Now, we claim that f is a minus dominating function
of G′ with weight at most k. Clearly, the sum weight of the closed neighborhood
of any vertex in F ∪ Y is positive. Then we consider vertices in V ′ \ (F ∪ Y ).
For any vertex v in V ′ \ (F ∪ Y ), since D is a dominating set, there is at least
one vertex in NG′ [v] ∩ D. Thus more than half of the vertices in NG′ [v] are
labeled with +1 in function f . Thus the weight for induced subgraph G[N ′

G[v]]
is positive. Hence, f is a legitimate minus dominating function of G′. Since the
weight of each Hi is at least −1 by Lemma 1, we obtain that

w(f(V ′)) ≤ −(n − k) + (−1)(6m + 2n) + 3(2m + n) = k.

Conversely, we can also show that if f is a minus dominating function of G′

with weight at most k, then there is a dominating set size at most k in G. The
proof is omitted here. Hence, we complete the proof. �	
3 NP-completeness for Subcubic Bipartite Planar Graphs

A graph is called cubic if its vertex degrees are degree three, and subcubic if its
vertex degrees are at most three. It has been shown in [2] that the MD problem on
planar graphs of maximum degree four is NP-complete. In this section, we show
that the MD problem is NP-complete even for subcubic bipartite planar graphs.
We leave open the question that whether the MD problem is NP-complete for
cubic bipartite planar graphs. For showing our NP-completeness results, we make
use of a lemma presented by Damaschke in [2].

Lemma 2 (Lemma 3 of [2]). In any graph, we consider a vertex x of degree
1 and the unique neighbor w of x. Then there is an optimal minus dominating
function such that f(x) = 0 and f(w) = 1.

Then we show the main NP-completeness theorem in the following.

Theorem 2. The MD problem is NP-complete for subcubic bipartite planar
graphs.

Proof. Clearly, the problem is in NP. We reduce the planar 3SAT problem [7]
to this problem. The input instance for the planar 3SAT problem is a set
{x1, x2, . . . , xn} of n variables and a Boolean expression with conjunctive normal
form Φ = c1 ∧ c2 ∧ . . . ∧ cm of m clauses, where each clause consists of exactly
three literals, such that the variable clause graph of the input instance is planar.
The planar 3SAT problem asks for whether there exists a truth assignment to
the variables so that the Boolean expression Φ is satisfied. We then describe our
polynomial-time reduction as follows.

Variable Gadget. First, we construct the variable gadget Vi for a variable xi.
The variable gadget Vi for xi is a circular linkage as shown in Figure 2(a). We
connect 4m + 2 keys (of Figure 1(b)) together as shown in Figure 2(a), where
2m + 1 keys are connected as a chain of keys for the upper part of Vi, and the
other 2m + 1 keys are connected as a chain of keys for the lower part of Vi .
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Fig. 2. Gadget Vi for variable xi: (a) xi = True; (b) xi = False. Note that vertices
xi,j and xi,j represents the positive and negative literals for xi, respectively. They are
used to connect to a clause gadget Cj .

The connection of the keys is performed by the introduction of a cycle of length
8m + 4. See Figure 2(a). We call such a circular linkage a cycle of keys. See
Figure 2(a). We let ui and vi be the leftmost and the rightmost endpoints of Vi.
Then we let ui, ui,1, ui,2, . . . , ui,4m+1, vi be the upper chain starting from ui to vi.
Similarly, we let ui, vi,1, vi,2, . . . , vi,4m+1, vi be the lower chain starting from ui to
vi. The vertices ui,2, ui,4, . . . , ui,4m and vi,2, vi,4, . . . , vi,4m are used for connecting
with clause gadgets. That is, ui,2, ui,6, . . . , ui,4m−2 and vi,2, vi,6, . . . , vi,4m−2 are
parts for positive literals xi,j , and ui,4, ui,8, . . . , ui,4m and vi,4, vi,8, . . . , vi,4m are
parts for negative literals xi,j . The interior of the whole variable gadget can
be duplicated to make a longer gadget so that there are enough ports on the
variable gadget for connecting to the corresponding literal gadgets of the related
clauses in the later context.

Next, we first describe the truth assignment of the optimal minus dominating
function for a key. The labeling method in Figure 1(b) is optimal, whose weight
is 3. There is another way of optimal labeling such that the lowest vertex of
the key is labeled with value 0. Since the lowest vertex of a key is connected to
the main body of variable gadget, it is always advantageous to use the labeling
method shown in Figure 1(b).

Then we describe the truth assignment of the optimal minus dominating
function for the whole variable gadget. To attain the assignment of minimum
weight, the internal cycle of variable gadget Vi may be labeled as either the way
in Figure 2(a) or the way in Figure 2(b). In either way, the sum of the weights
f(x) for x ∈ Vi is 8m and such f(x) is the minimum minus dominating function.
We use the domination way in Figure 2(a) to represent that xi = True, and the
other domination way in Figure 2(b) to represent that xi = False.

Clause Gadget. We use clause gadgets to connect to the variable gadgets directly
and there is no link gadget. Now we are prepared to construct the clause
gadget Cj for clause cj = xi ∨ xk ∨ x� which contains 28 vertices, that is,
p1, . . . , p8, q1, . . . , q8, r1, . . . , r8, s1, s2, s3, t, and 33 edges as shown in Figure 3(a).
The vertices p0, q0 and r0 lie in variable gadgets Vi, Vk and V�, respectively. If
xi is True or False, then p0 connects to a vertex in Vi which represents xi,j or
xi,j , respectively. Similarly, if xk is True or False, then q0 connects to a vertex
in Vk which represents xk,j or xk,j , respectively. If x� is True, then r0 connects
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to a vertex in V� which represents x�,j ; otherwise, if x� is False, then r0 connects
to a vertex in V� which represents x�,j . This completes the construction of the
clause gadget.

We denote the minimum weight for the clause gadget by

F (Cj) = min
f

{
∑

x

f(x) | x ∈ {p1, . . . , p8, q1, . . . , q8, r1, . . . , r8, s1, s2, s3, t} }.

By Lemma 2, we assign f(p1) = f(q1) = f(r1) = 1, f(p2) = f(q2) = f(r2) =
0, f(p6) = f(q6) = f(r6) = 1 and f(p7) = f(q7) = f(r7) = 0. Then since∑

x∈N [p4]
f(x) ≥ 1,

∑
x∈N [q4]

f(x) ≥ 1,
∑

x∈N [r4]
f(x) ≥ 1 and

∑
x∈N [s1]

f(x) ≥
1, thus F (Cj) ≥ 10. Here we claim that if a clause is True, then F (Cj) meets
the lower bound, that is, F (Cj) = 10; otherwise, if a clause is False, then
F (Cj) = 11.

To prove F (Cj) = 10 for a True clause gadget, we show that there exists
an assignment of f(x) such that

∑
x∈N [p4]

f(x) = 1,
∑

x∈N [q4]
f(x) = 1,

∑
x∈N [r4]

f(x) = 1, and
∑

x∈N [t] f(x) = 1. To prove F (Cj) = 11 for a false

clause gadget, we show that there exists an assignment of f(x) such that one of∑
x∈N [p4]

f(x),
∑

x∈N [q4]
f(x),

∑
x∈N [r4]

f(x), and
∑

x∈N [t] f(x) is two, and the
rest of them are one.

Analysis of Truth Assignment. We need to analyze totally four cases for the
truth assignments for the clause gadget mentioned above. We discuss the case
that all three literals are False in the following paragraph since it is the most
important case. As for the other three cases, we omit the analysis.

Suppose that all three literals xi, xk and x� are False as shown in
Figure 3(d). We prove that F (Cj) = 10 is impossible as follows. Suppose that
F (Cj) = 10. Then

∑
x∈N [y] f(x) = 1 for y ∈ {p4, q4, r4, t}. Since xi, xk and x� are

False, we assign f(x) for x ∈ N [p4] by setting f(p3) = 1 and f(p4) = f(p5) = 0,
and we perform the similar labeling for x ∈ N [q4] and for x ∈ N [r4]. On the
other hand, it is easy to check that the minimum sum of weight of vertices in
{p8, q8, r8, s1, s2, s3, t} is not less than 2. Hence, F (Cj) ≥ 11.
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In a true assignment of clause cj , the minimum weight of F (Cj) for the
optimal minus dominating function for gadget Cj is 10, which is omitted due
to lack of space. Hence, the Boolean expression Φ is satisfied if and only if the
constructed graph has a minus dominating function of weight n(8m + 4) + 10m.

�	
4 APX-hardness for Graphs of Maximum Degree 7

In this section, we show that the MD problem for graphs of maximum degree
7 is APX-hard. Alimonti and Kann [1] show that the domination problem is
APX-hard on subcubic graphs. Here we use a well-known technique called L-
reduction to show the APX-hardness for the MD problem. See [8] for more details
on L-reduction. We show that our problem satisfies the two main properties of
L-reduction.

We perform an L-reduction f from an instance of the domination problem
on subcubic graphs to the corresponding instance of the MD problem on graphs
of maximum degree 7.

Given a subcubic graph G = (V,E), we construct a graph G′ = (V ′, E′) as
follows. For each vertex v in V , we add degG(v) + 1 keys as Figure 1(b) and
connect a7 of each key to v. This completes the construction of G′. For each
vertex v ∈ V , we have just added one more edge connecting to the vertex v for
each edge adjacent to v in graph G. Since graph G is subcubic, we have that G′

is of maximum degree 7. Next, we obtain the following lemma.

Lemma 3. Let G = (V,E) be a subcubic graph and let the corresponding G′ =
(V ′, E′) constructed as described above. If D∗ is a minimum dominating set of
G, and f∗ is a minimum minus dominating function of G′. Then w(f∗(V ′)) =
|D∗| + 6m + 2n, where n = |V | and m = |E|.
Proof. We construct a function f by assigning the vertices {a1, a3, a6, a7} in each
keys with value +1, we label D∗ and the vertices {a2, a4} in each keys with value
0, and label other vertices with value −1. Then we verify whether function f is
a valid minus dominating function of G′, that is, we verify whether NG[x] > 0
for each vertex x in G′.

It is clear that the sum of function values of the neighborhood of each vertex
in keys is greater than 0. Now we claim that the same holds for the remaining
vertices in V ′. For a vertex v labeled with 0, the vertex has at most degG(v)
neighbors labeled with −1, since there are degG(v) + 1 keys connecting to v, we
obtain that NG[x] > 0. Moreover, we consider au vertex labeled with −1 in V ′.
Since the corresponding vertex of u in G is not in D∗, there must be at least a
neighbor of u in G′ labeled with value 0. Hence, the sum of the function values
of the closed neighborhood of u is positive. Then we calculate the weight for
minus dominating function f , w(f) = 3(2m + n) − (n − |D∗|) = 6m + 2n + |D∗|.
Thus we have w(f∗) ≤ w(f) = 3(2m + n) − (n − k) = 6m + 2n + |D∗|.

Now let f∗ be the minimum minus dominating function of G′, let vertex set
D in G collect those vertices labeled with 0 and +1 in f∗. Then we claim that
D is a dominating set of G, in other words, we claim that for each vertex v in
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G\D, there is at least a neighbor in D. Let v′ be a vertex labeled with −1 in G′.
Note that there are 2 degG(v) + 2 vertices in NG′ [v′]. It is clear that the vertices
in NG′ [v′] ∩ F \ {v} must be labeled with +1. Since f∗ is a minus dominating
function, the sum of NG′ [v′] must be positive. Hence, there must exist at least
one neighbor of v /∈ F is labeled with 0 or +1. That is, D is a dominating set
of G. Then we calculate the size of set D. |D| ≤ w(f∗) − 3(2m + n) + n =
w(f∗) − 6m − 2n. Thus we have |D∗| ≤ |D| ≤ w(f∗) − 6m − 2n. Hence we have
w(f∗(V ′)) = |D∗| + 6m + 2n. This completes the proof. �	

Since G is a subcubic graph, we have m ≤ 3n
2 . Moreover, according to

Lemma 4, n ≤ 5|D∗|. Hence, w(f∗) = |D∗| + 6m + 2n ≤ |D∗| + 9n + 2n ≤
|D∗| + 55|D∗| = 56|D∗|. Since w(f∗) ≤ 56|D∗|, then α = 56.

Now we consider a minus dominating function f of G′, we can construct a
dominating set D for G by the above algorithm, then we have |D| = w(f)−6m−
2n. Thus we obtain that |D| − |D∗| = w(f) − 6m − 2n − (w(f∗) − 6m − 2n) =
w(f) − w(f∗) Thus β = 1. Hence, we have proved that f is an L-reduction with
α = 56 and β = 1. Finally, we obtain the following theorem.

Theorem 3. The MD problem is APX-hard for graphs of maximum degree 7.

5 An FPT-algorithm for Subcubic Graphs

In Section 2, we have shown that the MD problem for subcubic bipartite planar
graphs is NP-complete. It thus follows that the MD problem for subcubic graphs
is NP-complete. Then it is interesting to study FPT-algorithms for the MD
problem on subcubic graphs parameterized by the MD number. Th the best of
our knowledge, there is no such FPT-algorithm in the literature.

In this section, we thus present the first FPT-algorithm for the MD problem
on subcubic graphs G parameterized by the MD number k. In the following
lemma, we begin with showing that our problem has a kernel of size 5k. Then
with an involved analysis, we come up with an FPT-algorithm which runs in
time O∗(2.37615k).

Lemma 4. There is a kernel of size 5k for the MD problem on subcubic graphs,
and the bound is tight, where k is the weight for the minus dominating function
of graph G.

Proof. Let G = (V,E) be a subcubic graph. For any minus dominating function
of G with weight k, we claim that |V | ≤ 5k. We divide weight k into two parts,

+1
0

0

0 -1+1 +1

+1 +1
0 0

(a) (b)

3-element

-1+1 +1

0 0

(c)

Fig. 4. (a)(b) The two conditions for weight +1. (c) A minus dominating function of
five vertices with weight 1.
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such that one part contains any vertex labeled with +1, whose neighbors are all
not labeled with −1, and the other part contains any vertex labeled with +1,
which has a neighbor labeled with −1. For the first part, If every single value one
of the weight k is from this part, each value one contains at most four vertices see
Figure 4(a), let V1 be a set contains these vertices, we have n ≤ 4k. Second, let
v be a vertex labeled with value −1, it is clear that v has at least two neighbors
labeled with value +1, and the distance to any other vertex labeled with −1 is
at least three. Thus we obtain a 3-element, which contains v labeled with value
−1 and its two neighbors see Figure 4(b), which labeled with +1. Moreover,
for any pair of such subsets, their intersection is empty. Let u be the vertices
labeled with +1, which is neighboring 3-element, it is clear that u belongs to a
3-element or to V1. Next we consider the vertices labeled with 0, which connect
to 3-element. We can observe that the vertices which labeled with 0 and connect
to vertex labeled with −1 in 3-element, the vertices either the vertex connect to
+1 in 3-element or the vertex labeled 0 in V1. So the second part contains at
most five vertices. If every single value of the weight k is from the second part,
we have n ≤ 5k. Finally, we can observe that all the vertices are concerned in
the above two part. Hence, we can obtain a kernel of size 5k as an upper bound
for the MD problem on subcubic graphs. Furthermore, For a graph with five
vertices labeled as in Figure 4(c) is k = 1 and n = 5, so the bound of kernel is
tight. �	

According to this lemma, a näıve FPT-algorithm can be easily obtained
via the brute-force method which runs in O∗(35k) = O∗(243k) time. Contrary
to the brute-force algorithm, we claim that our FPT-algorithm runs in time
O∗(2.37615k) = O∗(75.7397k), which is a great improvement. Now, our FPT-
algorithm is presented in the following theorem. We first give the detailed algo-
rithm and its correctness proof, and then analyze its time complexity.

Theorem 4. The MD problem for subcubic graphs G can be solved in
O∗(2.37615k) time, where k is the MD number of G.

Proof. Due to Lemma 4, we only need to consider the given subcubic graph G
with kernel size of 5k. Since disconnected components of a graph can be handled
separately, we assume that the given graph G is connected in the following
context. We also use N [·] to represent NG[·] for simplicity.

The details of our algorithm are as follows. In our algorithm, we grow a poten-
tial optimal minus dominating set D incrementally, where the minus dominating
set D is a subset of vertices in V labeled with values +1, 0 or −1. The label of a
vertex is the value of vertex assigned by a specific minus dominating function of
G. A vertex is called labeled if it has been assigned a value; otherwise, it is called
unlabeled. The weight for the closed neighborhood N [v] of a labeled vertex v is
called valid (resp. invalid) if all the vertices in N [v] are labeled, and the sum of
weights of the vertices in N [v] is positive (resp. non-positive). In the process, we
maintain a list L of unlabeled vertices which are the neighboring vertices of the
currently labeled vertices in D. Initially, L is set to contain one degree-3 vertex of
the input graph G, and D = ∅. During each iteration of our algorithm, we select
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an arbitrary unlabeled vertex y from list L as the focus vertex, and we assume
that x is a labeled vertex adjacent to y in D ∩ N [y]. We set Δ = N [N [y]] \ D.
Then our algorithm makes execution branches on all different ways of assigning
values to vertices in Δ of new unlabeled vertices in N [N [y]] \ D, we performing
detailed case analysis from Case 1 to Case 15. In the case analysis, our algorithm
makes subsequent recursions only on those feasible ways of value assignment in
the corresponding cases. For each of such subsequent recursions, the vertices of
Δ, which have been labeled, are added into D, resulting in a larger labeled dom-
inating set D + Δ. Then for each vertex v in D + Δ, if all the vertices in N [v]
are labeled, we then check whether the weight for N [v] is valid. If we reach any
weight for closed neighborhood of a vertex, which is invalid, then the current
execution branch is aborted; otherwise, we proceed to update D and L for the
next round of execution. We update D by setting D = D + Δ, and then we
update list L accordingly by visiting the neighboring vertices of the neighbors
of vertices in Δ. More precisely, the vertices in Δ are removed from L, and the
unlabeled vertices in the neighborhoods of vertices in Δ are added into L. It is
clear that such an update takes only O(1) time. We then proceed to the next
execution round with the updated D and L as parameters. We repeat such a
selection step until all vertices in G are labeled, that is, L becomes empty. Thus
we obtain a candidate minus dominating set D.

In the selection process, we enumerate and store all possible candidates of
D according to the above recursive procedure. When all branches of the selec-
tion process finished, we obtain a set of candidate minus dominating sets D for
the input graph G. We choose the one with minimum weight among all these
candidates. This completes our algorithm.

Case analysis for selection step. We divide the analysis into two parts: the initial
step and the general selection step.

The initial step. We choose one degree-3 vertex v is placed in D. Then add
one neighbor u of v is subsequently into D. In these two beginning steps, there
are 8 choices to labeled vertices u and v, since u and v cannot both be of value
−1. In any subsequent step, we focus on an unlabeled vertex y, which has a
neighbor x in D. Now the degree of x and y can be one, two or three. However,
it is easy to see that the worst case happens when both degree of x and y are
three. We only need to perform the detailed case analysis for such a case. Thus
in the following, we assume that the degree of both x and y are three. Due to the
above initial step, we know that x must have another neighbor x1 in D. Thus
we have in total 15 cases to analyze by considering which vertices of N [N [y]] lie
in d. See Figure 5.

The selection step. We analyze all possible labeling ways to find the optimal
minus dominating function. Due to lack of space, we only provide the analysis of
Case 1 (Figure 5(a)) in the following. The analysis of Cases 2 to 15 are omitted.

Case 1. Let x2 be the third neighbor of x, let y1 and y2 be the other two
neighbors of y, and let z1, z2 be the neighbors of y1, z3, z4 be the neighbors of y2.
Since y1 and y2 are symmetric, we need to consider 15 cases depending on the
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content of Δ, the set of unlabeled vertices in the subgraph of G. See Figures 5(a)
to (o). Δ = {y, x2, y1, y2, z1, z2, z3, z4}. That is, {x, x1} ⊂ D. See Figure 5(a).

x y

y1

y2

z1

z4

(a)

x1

z3

z2

x2

(b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n)

? ? ? ? ?

?? ?

? ? ?

(g)

? ?

?

(o)

?

Fig. 5. This figure shows the 15 cases, where the labeled vertices in D are drawn as
black disks, the unlabeled vertices in Δ as circles, and the question mark in circle is
where we analyze whether the vertex is labeled or unlabeled in this case

In order to reduce the number of cases we need to consider under a specific
case, we only need to consider the worst-case scenarios in each of the cases. For
such a purpose, we make the following three assumptions. We remark that the
three assumptions will be applied to all the subsequent cases in this proof.

(i) If there is an edge not in the subgraph, let u, v be the endpoints. Then
we can add two vertices u′ and v′, where we connect u to u′ and connect
v to v′. Thus we can label the subgraph with constrain : the value of u
and v′ is same, so as v and u′. We can observe that the number of feasible
ways of labeling the vertices with constrain is less than the vertices without
constrains, which we will consider in other cases. Hence, we do not need to
consider adding some edges in subgraphs.

(ii) We observe that a vertex labeled with −1 need to have at least two vertices
labeled with +1 as its neighbors, and a vertex labeled with +1 can have
vertices labeled with +1, 0 or −1 as its neighbors. Thus for a specific case,
the worst-case scenario for the number of feasible ways to label the vertices
in Δ is when the labeled vertices for the specific case (for instance, vertices
x and y in Case 1) are all assigned value +1.

(iii) We observe that, for a graph G, if there is a connected graph H is delete
a vertex v from G, the number choices to labeling vertices in H are less
than or equal to number of choices of graph to labeling G with v assigned
value +1. Hence, we do not need to consider the subgraph which delete
some vertices.

For Case 1, according to assumption (i), we suppose that there is no edge con-
necting any pair of vertices in the subgraph, and according to assumption (ii),
we suppose that x and x1 are labeled with +1. We have two situations depending
on whether x2 is labeled. In Case 1(a), we first consider x2 is unlabeled, thus x2

has at most 3 choices for its labeling, say with value −1, 0 or +1. Now we focus
on vertex y1. First we consider to label y1 with value −1, then {z1, z2} has at
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most 3 choices for assigning, and {y2, z3, z4 has at most 14 choices. Thus there
are at most 42 choices if y1 is labeled with −1. Second, we consider to label y1
with value 0, then {z1, z2} has at most 6 choices for assigning the values, and
{y2, z3, z4} has at most 17 choices; hence, there are at most 102 choice if y1 is
labeled 0. Lastly, we consider to label y1 with value +1, then {z1, z2} has at most
8 choices for assigning the values, and {y2, z3, z4} has at most 17 choices. Thus
there are at most 136 choice if y1 is labeled +1. After all of x2, y1, y2, z1, z2, z3, z4
are labeled, it is clear that we can label vertex y with an unique minimum value,
such that the weights for neighborhoods of x, y, y1 and y2 are positive, respec-
tively. By multiplying with the three choices for the value of x2. Thus there are
at most 3×(42+102+136) = 840 feasible ways in total to label the eight vertices
in Δ for Case 1(a).

For Case 1(b), where x2 is labeled, we use similar argument as the analysis
for Case 1(a). But we do not need to multiply three choices for the value of x2.
Thus there are at most 240 feasible ways in total to label the seven vertices in
Δ for Case 1(b). This finishes the analysis of Case 1.

In the above detailed analysis, we obtain the recurrence relation T (n) ≤
840(n − 8) + O(1) for the worst-case running time of Case 1(a). By analyzing
all 15 cases in Figure 5 and solving the corresponding recurrence relations, we
thus have the worst-case running time for the whole algorithm, which occurs at
Case 5(a) (see Figure 5(e)). Hence we obtain that the total running time of our
algorithm is T (n) = O∗(2.3761n) = O∗(2.37615k). �	
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