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Preface

The 21st International Computing and Combinatorics Conference (COCOON 2015)
was held during August 4-6, 2015, in Beijing, China. COCOON 2015 provided a
forum for researchers working in the area of theoretical computer science and
combinatorics.

The technical program of the conference included 49 contributed regular papers
selected by the Program Committee from full submissions received in response to the
call for papers. The accepting rate is 48%. In addition, to increase opportunities for
exchange of research ideas, the conference also accepted 11 shorter papers. All the
papers were peer reviewed by at least three Program Committee members or external
reviewers. The papers cover various topics, including algorithms and data structures,
algorithmic game theory, approximation algorithms and online algorithms, automata,
languages, logic, and computability, complexity theory, computational learning theory,
cryptography, reliability and security, database theory, computational biology and
bioinformatics, computational algebra, geometry, number theory, graph drawing
and information visualization, graph theory, communication networks, optimization,
and parallel and distributed computing. Some of the papers will be selected for pub-
lication in special issues of Algorithmica, Theoretical Computer Science (TCS), and
Journal of Combinatorial Optimization (JOCO). It is expected that the journal version
papers will appear in a more complete form.

We would like to thank the Program Committee members and external reviewers for
volunteering their time to review conference papers. We would like to extend special
thanks to the publication, publicity, and local organization chairs for their hard work in
making COCOON 2015 a successful event. Last but not least, we would like to thank
all the authors for presenting their works at the conference.

August 2015 Dachuan Xu
Donglei Du
Dingzhu Du
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Mining Preserving Structures
in a Graph Sequence

Takeaki Uno! and Yushi Uno2®)

! National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku,
Tokyo 101-8430, Japan
uno@nii. jp
2 @Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho,
Naka-ku, Sakai 599-8531, Japan
uno@mi.s.osakafu-u.ac.jp

Abstract. In the recent research of data mining, frequent structures
in a sequence of graphs have been studied intensively, and one of the
main concern is changing structures along a sequence of graphs that can
capture dynamic properties of data. On the contrary, we newly focus on
“preserving structures” in a graph sequence that satisfy a given property
for a certain period, and mining such structures is studied. We bring
up two structures of practical importance, a connected vertex subset
and a clique that exist for a certain period. We consider the problem of
enumerating these structures and present polynomial delay algorithms
for the problems. Their running time may depend on the size of the
representation, however, if each edge has at most one time interval in
the representation, the running time is O(|V||E|?) for connected vertex
subsets and O(min{A® |E|?A}) for cliques, where the input graph is
G = (V, E) with maximum degree A. To the best of our knowledge, this
is the first systematic approach to the treatment of this notion, namely,
preserving structures.

1 Introduction

Extracting useful information from graph structured data has become important
in the era of explosive and complex data, and it is often achieved by specify-
ing and/or finding frequent substructures in a graph, that is, pattern mining in
graphs (or graph mining) [1,11,22]. In the case of hyperlink structure on the
Web (i.e., the webgraph), for example, a clique is considered to be formed by a
community, and finding it may be useful for tracing a social phenomenon on the
Web [21]. These observations imply that one of the most promising approaches
for graph mining is by enumeration, and efficient enumeration of crucial sub-
structures has a rich history. For cliques, a theoretically efficient algorithm is
presented in [15], and both [15] and [20] are state-of-the-art algorithms that per-
forms well in practice. Enumerations of paths and matchings are studied in [17]

A part of this research is supported by JST CREST and Grant-in-Aid for Scientific
Research (KAKENHI), No. 23500022 and 15H00853.
© Springer International Publishing Switzerland 2015

D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 3-15, 2015.
DOI: 10.1007/978-3-319-21398-9_1



4 T. Uno and Y. Uno

and [8], respectively, and enumeration of connected components is studied in [2].
Here, notice that all these algorithms work on a single (and thus “static”) graph.
In a recent and practical situation, however, it is often the case that graph
structures may change over time (i.e., “dynamic”), and such data is collected
periodically along a time series. In this setting, graph patterns appearing sequen-
tially could be more important. Along this direction, there are some topics
of interest so far. Finding graph patterns that appear periodically in a graph
sequence is studied in [9,13]. Graph patterns frequently appear during a certain
period are also studied in [6]. On the other hand, some research address the
change patterns that appear frequently in a graph sequence composed of graphs
with edge insertions/deletions, such as changes between two time periods [3]
and changes of subsequences [10]. Furthermore, there are several studies focus-
ing on clustering of vertices by utilizing graph sequences [18,19]. However, these
research only concern with the “changes” or their frequency and periodicity.

Objective. Taking these preceding research into account, we propose a new
concept of graph mining; finding a part of a graph that satisfies a given property
continuously for a long time in a series of dynamically changing graphs, that is,
capturing invariables in change. More specifically, we consider the problem of
enumerating all substructures that satisfy a given property during a prescribed
period, i.e., those appearing in a consecutive subsequence of a graph sequence.
We call such structures preserving structures in a graph sequence, and the prob-
lem for enumerating all such structures preserving structure mining in general.
We consider connected vertex subsets and cliques for such properties. For exam-
ple, a community on the Web that is active for a long time may correspond
to a clique that exists in a consecutive sequence of webgraphs during a certain
period. As another example, a group of a species in a wildlife environment may
constitute a consecutive sequence of connected vertex subsets in a sequence of
graphs that are constructed from its trajectory data [4,12,14]. To the best of our
knowledge, this study is the first case in which a “long-lasting” or “unchanging”
structure is regarded as the target structure to be captured.

Contributions. In this paper, we first propose a new concept, that is, a pre-
serving structure in a graph sequence. By adopting this notion, we pose two
problems of mining preserving structures of practical importance: cliques and
connected vertex subsets.

We then propose efficient algorithms for solving the problems by enumerating
all connected vertex subsets or cliques for a certain time period in a given graph
sequence. For this purpose, we define a way of representing a graph sequence
as the input format. In this model, instead of representing a graph at each
time by the difference from the previous one which is used in the dynamic graph
model [7], we represent a graph sequence by explicitly associating each edge with
its time interval(s) during which it exists. Although there exist similar ways of
representing such data (e.g., [5]), our model is new in the sense that it introduces
a new parameter, namely the number of time intervals, which will be used to
estimate the running time of these algorithms. That is, it would be used as a
new measure in the complexity study.
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Our enumeration algorithms for preserving connected vertex subsets is based
on a recursive graph partition and for preserving cliques is based on the reverse
search, which is a framework for efficient enumeration algorithm design. While
a straightforward application of maximal clique enumeration may require a long
delay per output, our algorithms achieve polynomial delay by exploiting proper-
ties of the time intervals of edges. Compared to a naive algorithm, this reduces
the time complexity with a factor of the number of edges of an input graph.
Although our problem setting is fundamendal, it gives a new perspectives for
graphs that change over time, together with a way of data representations and
analysis of algorithms, which will pioneer a new research field.

Organization of the Paper. We give definitions and representations of graph
sequences and preserving structures together with basic terminology in Sect. 2.
In Sect. 3, we deal with the enumeration problem of preserving connected vertex
subsets. Then we discuss about the preserving clique enumeration problem in
Sect. 4. We conclude this paper in Sect. 5.

2 Preliminaries

2.1 A Graph Sequence and Its Representation

A graph G is an ordered pair of a verter set V and an edge set E, and is denoted
by G = (V, E). We assume that a vertex set V is {1,...,n} so that each vertex
has an index and can be treated as an integer. The neighborhood of a vertex
v € V is the set N(v) = {u € V | {u,v} € E}. The degree of a vertex v is
|N(v)|, and is denoted by deg(v). We use A to denote the maximum degree of a
graph. For a vertex subset U (C V), the induced subgraph G[U] of G by U is the
subgraph whose vertex set is U and edge set is composed of all edges in E that
connect vertices in U. For an edge set F', let V(F) denote the set of vertices that
are endpoints of some edges in F. Then for an edge subset F' (C E), we define
the induced subgraph G[F| of G by F by the subgraph G[V (F)].

A time stamp is an integer representing a discrete time, and we denote by
7T the ground set of all possible time stamps during which our graph is sup-
posed to exist. We assume 7 = {1,...,tnax} without loss of generality, and a
subset T of 7 is called a time stamp set. We say that an edge of a graph is
active at time stamp t if it exists at that moment. The edge set F of a supposed
graph consists only of edges that are active at some time stamps. To represent
a graph sequence, we associate a time stamp set with each edge on which it
is active. We call it an active time stamp set of that edge, and is defined by a
mapping 7 : E — 27. Then we define a graph sequence as a pair of a graph
G = (V,E) and a mapping 7, that is, (G,7). Now the active time stamp set
of an edge e is 7(e), and we define the active time stamp set of an edge set
F to be 7(F) = (\,cp 7(e). Given a graph sequence (G,7), we define a closure
graph G of G for a time stamp set T (C 7)) as the spanning subgraph in which
its edge set consists of edges whose active time stamp sets includes T, that is,
Gr = (V,{e | e € E,;T C 7(e)}). Especially in case of T = {t}, a singleton,
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we sometimes denote the closure graph for T' by G; by convention. Intuitively,
G represents a snapshot of G at time stamp t. By definition, G becomes G if
T=40.

A time stamp set is an (time) interval if it constitutes a single interval {¢,t+
1,...,t4+£} (¢ > 0). In this paper, it is sometimes assumed that the active time
stamp set of any edge is an interval, and we call this an interval assumption. Note
that we can assume this without loss of generality, since if an active time stamp
set of an edge is composed of multiple time intervals, we can replace it by a set
of parallel edges each of which has one of those intervals, respectively. Unlike the
existing ones, this way of representing a graph sequence has an advantage in its
extendability.

2.2 Preserving Structures

Let (G, 7) be a graph sequence, where G = (V, E) and 7 : E — 27 with a ground
time stamp set 7. We consider preserving structures in a graph sequence, that
is, a subgraph that consecutively satisfies certain properties, such as connected
vertex subsets and cliques in this paper. Especially, we are interested in maximal
ones in some sense, and we use the term “closed” which is usually employed in
the pattern mining field [16]; a closed pattern is a maximal pattern that is not
included in the other patterns with the same frequency.

A vertex subset U is connected if there exists a path between any two vertices
of U. In this case we also say that G[U] is connected. A vertex subset U is said to
be connected on a time stamp set T if U is connected at any time stamp in 7T'. Let
~(U) be the set of time stamps at which U is connected. We say that a connected
vertex subset U is closed if none of its superset U’ satisfies y(U) = v(U’).

A clique is a complete subgraph of a graph. In this paper, we define a clique
by its edge set, and thus we do not regard a single vertex as a clique. A clique is
called mazimal if none of its superset becomes a clique. An edge set F is called
active if 7(F) # 0, and 7(F) equals 7 if F = (. An active clique K in a graph
sequence is closed if no other clique K’ such that K C K’ satisfies 7(K) = 7(K).

3 Enumeration of Preserving Connected Vertex Subsets

In this section we study the closed connected vertex subsets in a graph sequence

(G, ), where G = (V, E) and 7 : E — 27 with a ground time stamp set 7. We

start by observing their properties, and then present how they are enumerated.
We first have the following simple observations.

Property 1 (closed under union). For two vertex subsets U and U’, if both U
and U’ are connected on a time stamp set T and UNU’ # (), then U U U’ is also
connected on T

For two partitions P and P’ of a universal set, let P AP’ denote the partition
composed of subsets given by the intersection of members of P and P/, i.e.,
PAP' ={I|I=HnNH HeP,H € P'}. A connected component of G is
a maximal vertex subset U such that G[U] is connected. The set of connected
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components of G gives a partition of the vertex set, and we denoted it by C(G).
For a time stamp set T = {¢;,,...,t;, }, let P(G,T') denote /\f=1 C(Gt,;j ), which
forms a partition of V.

Property 2 (partition). A connected vertex subset U on a time stamp set T is
included in one of vertex subsets of P(G,T).

Property 3 (subdivision). A connected vertex subset U in W on a time stamp
set T is contained in a vertex subset of P(G[W],T).

We denote the family of all maximal connected vertex subsets of G on
a time stamp set T by C(G,T). Property 1 ensures that C(G,T) becomes a
partition of V. In the subsequent discussions in this subsection, suppose the
interval assumption holds for T, and let T} ; denote an interval time stamp set
Tio = {t,t+1,...,t+¢}. In addition, we assume for simplicity that both ends of
any interval time stamp set T}, can be examined in O(1) time by some appro-
priate pre-process and data structures. Then we have the following two lemmas.

Lemma 1. For an interval time stamp set T, with a fized time stamp t,
C(G, Ty ) for all € (> 0) can be computed in O(|V||E|?) time.

Lemma 2. Any member U in C(G,T) is a closed connected vertex subset of
G on an interval time stamp set T.

Lemma 2 motivates us to compute C(G, T') for all possible interval time stamp
set T to enumerate all closed connected vertex subsets. For each time stamp ¢,
we compute C(G, T} ) for interval time stamp set T'= {¢,t+1,...,t+ ¢} for all
possible £. From Lemma 1, this computation can be done in O(|V||E|?) time.
Thus we obtain the following theorem, where we use ¢ = O(|E|) again.

Theorem 1. In a graph sequence (G, T), all closed connected vertex subsets can
be enumerated in O(|V||E|?) time. O

The correctness of this algorithm relies only on the above three properties,
therefore the algorithm can be applied to similar connectivity conditions satisfy-
ing these properties, such as strong connectivity of a directed graph and two-edge
connectivity of a graph.

Theorem 2. In a graph sequence (G, 7) in which G is a directed graph, all closed
strongly connected vertex subsets can be enumerated in O(|V||E|?) time. O

Theorem 3. In a graph sequence (G,T), all closed two-edge connected vertex
subsets in a graph can be enumerated in O(|V||E|?) time. O

In the case of two-vertex connectivity, Property 1 holds only when the inter-
section size of two components is no less than two. Thus, C(G,T) could not be a
partition of a vertex set. Instead of a vertex set, we represent a connected vertex
subset by all vertex pairs included in the subset. Using this representation, when
two subsets share at most one vertex, the intersection of their representations is
the empty set. Obviously this representation satisfies the other two properties,
thus we have the following theorem.
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Theorem 4. In a graph sequence (G, ), all closed two-vertex connected vertex
subsets can be enumerated in O(|V|?|E|?) time. |

4 Enumeration of Closed Active Cliques

This section discusses about the enumeration of all closed active cliques in a
graph sequence (G, 7). We first give some additional definitions for further argu-
ments and observe some basic properties of closed active cliques. After that
we state a simple output polynomial time algorithm as a warm-up, and then
we present a more efficient algorithm based on the reverse search whose time
complexity is much smaller than the simple algorithm.

For a time stamp set T, let Np(v) = {w | w € N(v),T C 7({v,w})} and
Nr(F) = Nyev(r) Nr(v) for an edge set F', that is, Nr(v) is the set of vertices
adjacent to v at all time stamps in T and N7 (F) is the set of vertices adjacent
to all vertices in V(F) at any time stamp in 7. For an edge set F' and a vertex
set U, F\U denotes the edge set obtained from F' by removing all edges incident
to some vertices in U, and F'NU denotes F'\ (V \ U). For an edge set F and a
vertex v, let M (F,v) denote the set of edges connecting v and a vertex in V(F).
Let I'(F) be the set of vertices v such that 7(F) C 7(M(F,v)).

Now let F<; be the edge set obtained from F' by removing edges incident to
vertices whose index is greater than i. By definition, F¢; is empty if ¢ < 1, and
is F'if i > n. A lexicographic order on a family of sets is a total order defined in
such a way that a set I is smaller than I’ when the smallest element in their
symmetric difference FAF’ belongs to F. For an active clique K in a graph
sequence, let X (K) denote the lexicographically smallest closed clique including
K among all closed cliques K’ such that 7(K') = 7(K).

4.1 A Simple Algorithm

Let (G, 7) be a graph sequence, where G = (V, E) and 7 : E — 27 with a ground
time stamp set 7. We observe a few basic properties of closed active cliques in a
graph sequence. Remember that a clique is defined by an edge set in this paper.

Lemma 3. For any active clique K, X (K) can be computed in O(min{|E|, A?})
time.

Proof. We can obtain X (K) by iteratively choosing the minimum vertex v in
N (k)(K) and adding edges of M(K,v) to K, until N, (x)(K) = 0. N-(x)(K)
can be computed in O(min{|E|, A%}) time by scanning all edges adjacent to
some edges in K. When we add N, (x)(K) to K, Nyx) (K U N (k) (K)) can be
computed in O(deg(v)) time by checking whether 7(K) C 7({u,v}) or not for
each u € N;(g)(K). Therefore the statement holds. O

Lemma 4. For any time stamp set T, any maximal clique K in Gr is closed.
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Proof. If K is not closed, G (k) includes a clique K’ such that K C K'. Since
T C7(K), T C 7(e) holds for any edge e € K’. This implies that K’ is a clique
in G, which contradicts the assumption. a

Conversely, we can easily see that any closed active clique K is maximal in
the graph G (k). This motivates us to compute all maximal cliques in all closure
graphs of possible active time stamp sets for enumerating all closed active cliques.

Lemma 5. All closed active cliques can be enumerated in O(|V||E|?) time for
each, under the interval assumption.

Proof. Under the interval assumption, the active time stamp set of any closed
active clique is also an interval. These active time stamp sets satisfy that the
both ends of the interval are given by the active time sets of some edges, thus
their number is bounded by |E|?. Let K be the family of cliques each of which
is a maximal clique in a closure graph of some of those active time stamp sets.
Then, from Lemma 4, we can see that |K| is bounded by the product of |E|? and
the number of closed active cliques. By using the algorithm in [15], the maximal
cliques can be enumerated in O(|V|+ |E|) time for each, and thus the maximal
cliques in K can be enumerated in O((|V| + | E|)|K]|) time. To check whether an
enumerated clique K is closed or not, we compute X (K) in O(|V| + |E|) time.
Since a closed active clique can be a maximal clique of G for at most |E|?
time stamp sets 7', the closed active cliques can be enumerated in O(|V||E|?)
time for each. O

4.2 An Efficient Algorithm Based on the Reverse Search

The reverse search is a scheme for constructing enumeration algorithms, and was
originally proposed by Avis and Fukuda [2] for some problems such as enumer-
ation of vertices of a polytope. The key idea of the reverse search is to define
an acyclic relation among the objects including the ones to be enumerated. An
acyclic relation induces a tree, which results in the so-called a parent-child rela-
tion, and we call the tree a family tree. Hence enumerating objects is realized by
traversing the tree according to the parent-child relation to visit all the objects.
In fact, the reverse search algorithm performs a depth-first search on the tree
induced by the parent-child relation, and is implemented by a procedure for enu-
merating all children of a given object. It starts from the root object that has no
parent and enumerates its children, and then it recursively enumerates children
for each child.

It is easy to see the correctness of the algorithm; that is, the tree induced by
the parent-child relation spans all the objects, and the algorithm visits all the
vertices of the tree by a depth-first search. When a procedure for enumerating
children takes at most O(A) time for each child, the computation time of the
reverse search algorithm is bounded by O(AN), where N is the number of objects
to be enumerated. Hence, if A is polynomial in terms of the input size, the entire
reverse search algorithm takes output polynomial time. In the following, we
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carefully observe the properties of a graph sequence, and prove that enumeration
of children can be done in polynomial time.

Now a more efficient algorithm for enumeration of closed active cliques can be
designed based on the reverse search. We start with giving some definitions and
fundamental observations. The scheme of the reverse search has already been
applied to enumeration maximal cliques [15], and our algorithm for closed active
cliques adopts their ideas. For an active clique K, let i(K) be the minimum
vertex ¢ satisfying X (K<;) = K. We define the parent P(K) of closed active
clique K by X(K<;(x)-1), and P(K) is not defined for K = X(0), which is
called the root of the family tree.

Lemma 6. The parent-child relation defined by P is acyclic.

Proof. Suppose that K is a closed active clique such that P(K) is defined. P(K)
is generated by removing vertices one by one from K, and adding vertices so that
the active time set does not change, thus 7(P(K)) always includes 7(kK). Since
X(K<iky-1) # K, P(K) is lexicographically smaller than K when 7(P(K)) =
7(K). Thus, either (a) P(K) has a larger active time set than K, or (b) P(K) has
the same active time set as K and is lexicographically smaller than K. Therefore
the statement holds. O

Lemma 7. Any vertex in P(K)<;x) \ K does not belong to N (k)(i(K)), and
thGT’GfOTE KSZ(K)—] = P(K)SZ(K) n NT(K)(’L(K))

Proof. Suppose that a vertex v in P(K)<;(x)\ K belongs to N (x)(i(K)). Then,
X(K<i(k)) has to include either v or another vertex u < wv. It implies that
X(K<ixy){1,...,i(K)} # K<jk), thereby X (K<;x)) # K. This contradicts
the definition of i(K). O

A subset F' of M(K,v) is called time maximal if F is included in no other
subset F’ of M(K,v) satistying 7(F) N 7(K) = 7(F') N 7(K). Let I(K,v) be
the set of all time maximal subsets of M (K,v). For a time maximal subset
F e I(K,v), we define C(K,F) = X(K<, NV (F)UF).

Lemma 8. If K’ is a child of non-root closed active clique K, then K' =
C(K,F) holds for some vertex v and F € I(K,i(K")).

PT’OOf. Let F' = M(KSZ(K/),Z(K/)) From Lemma 77 K/Si(K’)—l = KSi(K’)—l N
V(NT(K/)(’L(K/))) hOldS7 and thus K = X(Kgi(K’)—l N V(F) @] F) We next
show that F' is a member of I(K,i(K’)). Suppose that K’ is a child of K,
and F does not belong to I(K,i(K')), i.e., F is properly included in an edge
subset F' € I(K,i(K')) such that 7(F) = 7(F’). Then, the active time set of
K<k NV (F') is same as that of K/gi(K') = K<j(xky—1 NV (F)UF'. This implies
that X (KL, ;) includes several edges in F”, which contradicts the definition
of i(K'). O

Since X (K<,) # K holds for any v < i(K), we have the following corollary.
Corollary 1. C(K, F) is not a child of K for any FEI(K,v) satisfying v<i(K).
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It is true that any child is C(K, F) for some F. However, C(K,F) can-
not always be a child, that is, C(K, F) is a child of K if and only if P(K) =
P(C(K, F)). This implies that we can check whether C'(K, F') is a child or not
by computing P(K). Therefore, from Lemma 8, we obtain the following proce-
dure to enumerate children of K. For avoiding the duplicated output of the same
child K’, we output K’ only when K’ is generated from F' € I(K,i(K')).

Procedure. EnumChildren(K: non-root closed active clique)

1. for each F € I(K,v),v > i(K) do

2. compute C(K, F);

3. compute i(C(K, F)) and P(C(K, F));

4. if K =P(C(K,F)) and i(C(K, F)) = v then output C(K, F);
5. end for

For analyzing the complexity of this procedure, which will later be used as
a subroutine of the entire algorithm for enumerating closed active cliques, we
show some technical lemmas.

Lemma 9. P(K) can be computed in O(|E|) time.

Proof. Suppose that K is not the root, i.e., P(K) is defined. Let K’ be initialized
to the empty set, and we add vertices of K to K’ one by one from the small-
est vertices in the increasing order. In each addition, we maintain the change
of 7(K’) and N;(x)(K'). Then, we can find the minimum vertex v satisfying
7(K<y) = 7(K), and the minimum vertex u satisfying i = min{ N, x)(K<;—1)}
for any i € K,7 > u. We have i(K) = max{u, v}, since X (K<;) # K holds when
either 7(K) # 7(K<;) or i # min{N,(x)(K<;—1)} holds for some i € K,i > j.
Under the assumption that both ends of any interval time stamp set can be
examined in O(1) time, 7(K U {e}) can be computed in O(1) time from 7(K)
for any edge e. Thus, we can compute i(K) in O(min{|E|, A%}) time. Together
with Lemma 3, the statement holds. a

Lemma 10. If K is not the root, any child K' of K satisfies that K<;(xr) N
Koy #0-

Proof. 1f KSi(K’)ﬁK/gi(K/) = (), it holds that K/gi(K')qu = (). Since K/gi(K')—l
is always included in K, we have Klgi(K’)—l = (). Therefore, P(K') = X (@), which
implies that P(K) is the root. O

Lemma 11. If K is not the root, the children of K is enumerated by evaluating
at most min{A|E|, A3} edge sets under the interval assumption.

Proof. By the interval assumption, the ends of the active time set of any subset
F of I(K,v) is given by the ends of some edges in F, and thus |I(K,v)| is
bounded from above by A2, Lemma 10 ensures that if K is not the root, Step 2
of EnumChildren does not have to take care of vertices not adjacent to any vertex
of V(K). This means that we have to take care only of non-empty maximal subset
in I(K,v). Let I be the union of all non-empty subsets of I(K,v). Since each edge
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in F € I(K,v) is incident to some vertices in K, we have |I| < min{|E|, A%}. It
implies that the number of possible choices of two edges from some non-empty
I(K,v) is bounded from above by A -min{|E|, A%}. O

By the above lemmas, we can estimate the time complexity of the procedure
of enumerating children.

Lemma 12. Procedure EnumChildren enumerates all children of K in O(min
{AP |E|?A}) time under the interval assumption.

Proof. The correctness of the procedure comes from Lemma 8. We note that the
procedure never output any child more than once, since each child is generated
from its unique parent, a maximal subset included in F € I(K,i(K)). We then
observe that all non-empty subset F' € I(K,v),v > i(K) can be computed
in O(min{|E|, A%?}) time by scanning all edges adjacent to some edges in K,
and C(K, F) can be computed in O(min{|E|, A%?}) time in a straightforward
manner. From Lemma 11, the procedure iterates the loop for min{A|E|, A3}
edge sets, and each edge set spends O(min{|E|, A%}) time from Lemma 9. Thus,
we conclude the lemma. O

Now we describe our algorithm for enumerating all closed active cliques in a
graph sequence based on the reverse search as follows. It is presented in a slightly
different form by introducing a threshold o with respect to the length of active
time stamp sets by observing that 7(K) C 7(P(K)) always holds. It enumerates
all closed active cliques having active time sets larger than o by giving X (0)
(thus enumerates all when o is set to be 0).

Algorithm. EnumClosedActiveClique(K: closed active clique)
1. output K; prv := nil;
2. if prv = nil then K’ := the first clique found by EnumChildren(K);
else K’ := the clique found just after prv by EnumChildren(K);
. if there is no such clique K’ go to Step 8§;
K := K’; free up the memory for K’;
.if |P(K)| > o then call EnumClosedActiveClique(K);
K .= P(K);
. go to Step 2;
. if K is not the root then return;
. for each e € E do
if e is lexicographically minimum in X (e)
then EnumClosedActiveClique(X (e));

P OO U W

—_

—_
—_

. end for

Finally, we can establish the following theorem.

Theorem 5. Under the interval assumption, Algorithm EnumClosedAc-
tiveCliqgue enumerates all closed active cliqgues in a graph sequence in
O(N min{A5,|E|?A}) time and in O(|V| + |E|) space, where N is the number
of closed active cliques in a graph sequence.
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Proof. The correctness of the algorithm is easy to see from the framework of the
reverse search and Lemma 6. The computation time of the reverse search is given
by the product of the number of objects to be enumerated and the computation
time on each object. From Lemma 12, an iteration requires O(N min{ A%, |E|?A})
time for non-root closed active cliques. For the root K = X ()), we can enumer-
ate its children K’ satisfying the condition of Lemma 10 in O(N min{ A%, |E|2A})
time using procedure EnumChildren. When K<;(xny N KLjpery = 0, we have
K gn1 NK = (). This implies that K, gy is composed of an edge, thus by
generating X ({e}) for all e € E, we can enumerate the children that do not satisfy
the condition of Lemma 10, in O(min{|E|?, |E|A%}) time. Note that the duplica-
tion can be avoided by outputting X ({e}) only when e = argmin X ({e}). Since
N > |E|/A?, it holds that min{|E|?, |E|A%} < N min{A%,|E|>A}. Therefore the
time complexity of the algorithm is as stated.

In a straightforward implementation of the algorithm, each iteration may
take w(|V|+|E|) space for keeping the intermediate results of the computation in
memory, especially for all C (K, F'). We can reduce this by restarting the iteration
from the beginning. When we find a child K’ of K, we immediately generate the
recursive call with K’, before the termination of the enumeration of the children.
After the termination of the recursive call, we resume the enumeration of the
children. To save the memory, we restart from the beginning of the iteration, and
we pass through the children found before K’, and reconstruct all the necessary
variables. We note that the time complexity does not change by the restart, since
the number of restarts is bounded by the number of recursive calls generated
by the algorithm. A child is given by a maximal edge subset, and a maximal
edge subset is given by two edges. Thus, we can memorize a child by a constant
number of variables. The clique K is constructed by computing P(K'), thus it
is also not necessary to have K in memory, and can be re-constructed without
increasing the time complexity. The iteration with respect to the root takes
O(|V'] + |E|) space, therefore we have the atatement of the theorem. O

As we stated, since 7(K) C 7(P(K)) always holds, we have the following
corollary.

Corollary 2. Under the interval assumption, Algorithm EnumClosedActive-
Clique enumerates all closed active cliques having active time sets no shorter than
a given threshold o in O(min{A®, |E|>A}) time for each and in O(|V|+|E|) space.

Note again that the interval assumption can be set without loss of generality,
since we can replace an edge with multiple time intervals by parallel edges having
a single time interval for each, in their active time stamp sets. However, this
transformation increases the degrees of the vertices, thus the time complexity
may increase. If we set A to the maximum degree to the transformed graph,
then the results hold.

5 Conclusion

In this paper, we focused on the structures preserved in a sequence of graphs con-
tinuously for a long time, which we call “preserving structures”. We considered
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two structures, closed connected vertex subsets and closed active cliques, and
proposed efficient algorithms for enumerating these structures preserved during
a period no shorter than a prescribed length. An interesting future work is, of
course, to develop efficient algorithms for preserving structure mining problems
for other graph properties.
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Abstract. We study the problem of orienting the edges of a graph such
that the minimum over all the vertices of the absolute difference between
the outdegree and the indegree of a vertex is maximized. We call this
minimum the imbalance of the orientation, i.e. the higher it gets, the
more imbalanced the orientation is. We study this problem denoted by
MaxIm. We first present different characterizations of the graphs for
which the optimal objective value of MAXIM is zero. Next we show that
it is generally NP-complete and cannot be approximated within a ratio
of % + ¢ for any constant € > 0 in polynomial time unless P = NP even
if the minimum degree of the graph 6 equals 2. Finally we describe a
polynomial-time approximation algorithm whose ratio is equal to % for
graphs where § = 0[4] or § = 1[4] and (3 — 1) for general graphs.

Introduction and Notation

Let G = (V, E) be an undirected simple graph, we denote by d¢ the minimum
degree of the vertices of G. An orientation A of G is an assignment of a direction
to each undirected edge {uv} in E, i.e. any function on E of the form A({uv}) €
{uv,vu}, V{uv} € E. For each vertex v of G we denote by d¢(v) or d(v) the unori-
ented degree of v in G and by d} (v) or d* (v) (resp. d; (v) or d~(v)) the outdegree
(resp. indegree) of v in G w.r.t. A. Graph orientation is a well studied area in graph
theory and combinatorial optimization and thus a large variety of constrained ori-
entations as well as objective functions have been considered so far.

Among those arise the popular degree-constrained orientation problems: in
1976, Frank & Gyarfas [12] gave a simple characterization of the existence of
an orientation such that the outdgree of every vertex is between a lower and
an upper bound given for each vertex. Asahiro et al. in [1-3] proved the NP-
hardness of the weighted version of the problem where the maximum outdegree
is minimized, gave some inapproximability results, and studied similar problems
for different classes of graphs. Chrobak & Eppstein proved that for every planar
graph a 3-bounded outdegree orientation and a 5-bounded outdegree acyclic
orientation can be constructed in linear time [6].

Other problems involving other criterion on the orientation have been studied
such as acyclicity, diameter or connectivity. Robbins’ theorem (1939) for example
states that the graphs that have strong orientations are exactly the 2-edge-
connected graphs [18] and later (1985), Chung et al. provided a linear time
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algorithm for checking whether a graph has such an orientation and finding one
if it does [7]. Then in 1960, Nash-Williams generalized Robbin’s theorem showing
that an undirected graph has a k-arc-connected orientation if and only if it is
2k-edge-connected [17]. The problem called oriented diameter that consists in
finding a strongly connected orientation with minimum diameter was introduced
in 1978 by Chvatal & Thomassen: they proved that the problem is NP-hard
for general graphs [8]. It was then proven to be NP-hard even if the graph is
restricted to a subset of chordal graphs by Fomin et al. (2004) who gave also
approximability and inapproximability results [10].

For an orientation A of G = (V, E) and a vertex v we call |d (v) —d (v)| the
imbalance of v in G w.r.t A and thus we call min,ev |d} (v) — d; (v)| the imbal-
ance of A. Biedl et al. studied the problem of finding an acyclic orientation of
unweighted graphs minimizing the imbalance of each vertex: they proved that it
is solvable in polynomial time for graphs with maximum degree at most three but
NP-complete generally and for bipartite graphs with maximum degree six and
gave a %—approximation algorithm [5]. Then Kéra et al. closed the gap proving
the NP-completeness for graphs with maximum degree four. Furthermore, they
proved that the problem remains NP-complete for planar graphs with maximum
degree four and for 5-regular graphs [14].

Landau’s famous theorem [15] gives a condition for a sequence of non-negative
integers to be the score sequence or outdegree sequence of some tournament
(i.e. oriented complete graph) and later, Harary & Moser characterized score
sequences of strongly connected tournaments [13]. Analogous results for the
“imbalance sequences” of directed graphs are were given by Mubayi et al. [16]. In
1962, Ford & Fulkerson characterized the mixed graphs (i.e. partially oriented
graphs) which orientation can be completed in a eulerian orientation, that is
to say, an orientation for which the imbalance of each vertex equals zero [11].
Many other results related to orientation have been proposed. Some of them are
reviewed in [4].

Let us denote by B(G) the set of all the orientations of G, we consider the
problem of finding an orientation with maximized imbalance:

(MaxIm) MaxIM(G) = max min|d}(v) —d; (v)]
A€0(G) &€V

and we call MAXIM(G) the value of MaXIM for G. The minimum degree d¢ of
a graph G is a trivial upper bound for MaxIm(G).

The rest of this paper is organized as follows. In the first section, we give
several characterizations of the the graphs verifying MAXIM(G) = 0. In section
2, we will show that MAXIM is generally NP-complete even for graphs with
minimum degree 2 and inapproximable within a ratio % + ¢ for any constant
€ > 0 and then will give an approximation algorithm whose ratio is almost equal
to % Since the value of MAXIM for a graph is the minimum of the values of
MAXIM on its connected component, from here on in, all the graphs we consider
are assumed to be connected. For any graph G we will use the notations V(G)
and F(G) to refer to the set of vertices of G and the set of edges of G respectively.
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1 Characterizing the Graphs for which MaxIm(G) = 0

Now we ask ourselves which are the graphs verifying MaxIM(G) = 0. We will
start by unveiling several necessary conditions and properties of such graphs.
First we can show that concerning such a graph, we can find an orientation
satisfying several additional properties.

Proposition 1. Let G be a graph such that MAXIM(G) = 0 and w € V. Then

there exists an orientation A € 6(G) such that u is the only vertex of G with
imbalance equal to zero w.r.t. A.

Proof. Let A € 6(G) be an orientation minimizing [{v € V/|d} (v) — d (v)| =
0}|. We suppose that |[{v € V/|d}(v) — d;(v)| = 0}| > 2. We choose two dis-
tinet vertices v and w in {v € V/|d}(v) —d;(v)| = 0} and a path p = (v =
Ug, -+ ,U, = w) between v and w. If we switch the orientation of the edge
{upuq }, then the imbalance of uy becomes positive and necessarily the imbal-
ance of u; becomes zero otherwise the resulting orientation would contradict the
minimality of A. Using the same reasoning, if we switch the orientation of all the

edges {uou1}, -+, {un—2un—_1}, we obtain an orientation where both w,_; and
u, have an imbalance equal to zero while the imbalance is positive on all the
vertices ug, - - - ,un—2 and unchanged on all other vertices. So now if we switch

the orientation of the edge {u,—1u,} as well, then the resulting orientation con-
tradicts the minimality of A. Hence, |{v € V/|d}(v) — d(v)| = 0} = 1.

Now let v be this unique vertex of G such that |d} (v) —d; (v)] = 0. Let u # v
be an arbitrary vertex and let p = (v = wg, -+ ,u, = u) be a path between v
and u. By switching the orientation of all the edges {woui}, -, {un—2un—_1},
we obtain an orientation A’ where u has an imbalance equal to zero while the
imbalance is positive for ug and unchanged on all other vertices. a

This yields the following necessary condition: if G is a graph such that
MAXIM(G) = 0, then G is eulerian. For let w € V, we know there exists
Ae B(G) such that {v € V/|d}(v) —d;(v)| = 0} = {u}. Then d} (u) = d (u),
hence d(u) = df(u) + d;(u) = 2d}(u) is even. The following lemma about
eulerian graphs will prove useful for the proof of our characterization.

Lemma 2. If G is an eulerian graph, then there exists an elementary cycle
(hereafter just called cycle) C of G such that G—E(C') has at most one connected
component that is not an isolated vertex.

Proof. Being G eulerian and connected, it can be decomposed into edge-disjoint
cycles that we can order C, - - - , Cy, according to the following condition: Uj_, C;
is connected, Vi € [1,n]. Then C,, is the cycle we are looking for. O

Now let us define a certain family of graphs which will prove to be exactly
the graphs for which the optimal objective value of MAXIM is zero. Intuitively
they are the graphs for which every block is an odd cycle.
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Theorem 3. We define the class of graphs €°% as follows: a simple graph G
is in €°% if there exists Cy,--- ,C,, odd cycles (n > 1) such that:

L] U:l:1 CfL - G,

i1 o (1)
o [V(U,_1Cr)NV(Cy)| =1, Vie[2,n].

Then for any simple graph G, MAXIM(G) = 0 if and only if G € €°%.

Proof. e < We will work by induction on the number of cycles n contained
in the graph. Nothing is required for these cycles except that they must
be elementary. If n = 1, then our graph is an odd cycle which implies
MaxIM(G) = 0. Let n > 2, we assume that all graphs of €4 with k <n—1
cycles verify MAXIM(G) = 0. Let G € °% with n cycles Cy,---,C, as in

(1). Suppose there exists A € 6((1) with strictly positive imbalance. Let
us call G/ = U?;llCi the graph obtained from G after removing C,, and
let us take a look at Ajgg) the orientation of the edges of G’ obtained
from A as its restriction on E(G’). As G’ is a graph of n — 1 cycles in
%°4, our inductive hypothesis implies that we have a vertex u € V(G")
such that |dj1"E(G/)(u) - dZ‘E(G/)(u)| = 0. Necessarily, v = V(G") N V(C,).
Thus |df(u) — dj(u)] = |dj‘E(C”)(u) — dZ‘E(Cm(u)\ > 0 implying that
MaxIM(C,,) > 0 which is absurd because C,, is an odd cycle.

e = Since MAXIM(G) = 0, we know that G is eulerian. We will again work
by induction on the number of cycles n. If n = 1, then our graph is eulerian
with a unique cycle, hence it is a cycle. Now as MAXIM(G) = 0, necessarily
it is an odd cycle and is therefore in €°%. Let n > 2, we assume that all
graphs with & < n — 1 cycles verifying MAXIM(G) = 0 are in €°%. Let G
be a graph with n cycles such that MaXIM(G) = 0. Thanks to Lemma 2,
there exists an cycle C' of G such that G — E(C) has at most one connected
component G’ that is not an isolated vertex.

Suppose that MAXIM(G') > 0, let A € 8(6”) with strictly positive
imbalance. Let uwg € V(G') N V(C), we name the vertices of C as fol-
lows: ug,uq, -+ ,uxr = ug. Without loss of generality, we can assume that
di(ug) — dy(up) > 0; if it was not the case, replace A by its reverse. We
complete A in an orientation of G by orienting the edges of C: we orient
upuy from ug to u; and go on as follows:

vie[Lk—1], {1f u; € V(G'), we orient {uu;i1} as {u;—1u;},

otherwise, we orient {u;u;4+1} as {u;u;—1}.

Where orienting an edge {ab} as another edge {cd} means orienting it from
a to b if {ed} was oriented from ¢ to d and from b to a otherwise. Let us
have a look at the resulting orientation A’ (cf Figure 1): when completing A
in A’, the imbalance of the vertices in V(G")\{uo} was left unchanged, the
imbalance of the vertices in V(C)\V(G’) equals 2 and the imbalance of ug
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was either left unchanged or augmented by two. Hence A’ has strictly positive
imbalance which contraditcts MAXIM(G) = 0, therefore, MAXIM(G') = 0.

Suppose |V(G') N V(C)] > 2 and let u and v be 2 distinct vertices in
V(G") N V(C)) such that u # v. Thanks to proposition 1, we know that
there exists an orientation A € 6((1’) such that {w € V/|d}(w) — d; (w)| =
0} = {v} and without loss of generality, d7j(u) — d;(u) > 0. We name the
vertices of C' as follows: u = uguy - - - up = ug, v = u; and we complete A in
an orientation of G by orienting the edges of C: we orient {ugu;} from ug
and u; and go on as follows:

ifu; € V(G'), we orient {u;u;y1} as {u;—1u;},

v¢e[[1,k_1}]\{z},{

otherwise, we orient {u;u;y1} as {uu;—1}.

And we orient {uju;y1} as {wju;—1}. In the resulting orientation A’, the
imbalance of the vertices in V/(G")\{u, v} was left unchanged, the imbalance
of the vertices in V(C)\V(G’) equals 2, the imbalance of v was augmented
by two and the imbalance of u was either left unchanged or augmented by
two. Hence A’ contradicts MAXIM(G) = 0, therefore, |V(G') NV (C)| = 1.

Suppose C' is even. We call u € V(G’) such that V(G') NV (C) = {u},
and A € 6(6”) such that {v € V/|d}(v) — d;(v)] = 0} = {u}. We name
the vertices of C as follows: © = uguq - - up = ug and we complete A in an
orientation of G by orienting the edges of C: we orient {ugus} from wug to uy
and {wju;y1} as {uu;—1}, Vi € [1,k—1]. In the resulting orientation A’, the
imbalance of the vertices in V(G')\{u} was left unchanged, the imbalance
of the vertices in V(C)\V(G’) equals 2 and, C being even, the imbalance of
u was augmented by two. Hence A’ contradicts MAXIM(G) = 0, therefore,
C is odd.

As G’ is a graph with at most n — 1 cycles verifying MaxIM(G) = 0, by
induction hypothesis, there exist C1,--- ,C,_1 odd cycles such that:

o UMIC; =@,

o [V(UIZLCr) NV(Cy)| =1, Vi€ [2,n—1].
Adding the odd cycle C,, = C, we directly obtain that G € €°%.

O

Now in order to widen our perception of those graphs, let us show another

characterization.

Theorem 4. For every simple graph G,

G € €° < G is eulerian with no even cycle

Proof. e = By construction, every graph in %°% is eulerian with no even

cycle.
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;jl‘_'\ PaRiaine S0 ‘>'
N < K ¥ o

Fig. 1. The vertices of C' in G’ are left unchanged imbalance-wise, the other vertices
of C are set to 2 and in the end |d}, (uo) — dy, (uo)| > |df (uo) — d; (uo)| > 0
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Fig. 2. The vertices of C in G’ are left unchanged imbalance-wise except for v which
is set to 2, like the other vertices of C and in the end |d¥, (uo) — d;, (uo)| > |d} (uo) —
d; (uo)| >0

e <= We will once again work by induction on the number of cycles n.

If n = 1, then our graph is eulerian with a unique odd cycle, hence it is an
odd cycle and is therefore in €%,
Let n > 2, we assume that all eulerian graphs with no even cycle and k£ < n—1
odd cycles are in °%. Let G be a graph with no even cycle and n odd cycles.
Thanks to Lemma 2, there exists an odd cycle C of G such that G — E(C)
has only one connected component G’ that is not an isolated vertex. As G’ is
eulerian and even-cycle-free with n — 1 odd cycles, by induction hypothesis,
G’ € €°% hence there exist Cy,---,Cy,_1 odd cycles such that:

o UG =,

o [V(UIZLCr) NV(Cy)| =1, Vi € [2,n—1].
Suppose there exist u and v (u # v) belonging to V(U}Z]Cy,) N V(C). Since
G’ is connected, let p be an elementary path in G’ between v and v. We can
assume that u and v are the only vertices of C' contained in p, otherwise we
could replace v by the first vertex of C' encountered when travelling on p from
u. C' defines two other vertex-disjoint paths between u and v: one even that
we will call peyern, and one odd that we will call p,qq. p being vertex disjoint
with either peyen O Pogd, by concatenating it with the one corresponding to
its parity, we obtain an even cycle of G, contradicting our hypothesis on G.
This yields that |V(C) NV (G’)| = 1. From that we can conclude

o Uilei = G,

o [V(UIZNCy) NV(Cy)| =1, Vi € [2,n].
Hence G € €44,
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2 Complexity, Inapproximability and Approximability

In this section we will prove the NP-completeness and inapproximability of our
problem and give an approximation algorithm based on the special case of bipar-
tite graphs.

Concerning the complexity of MAXIM, we will show that the problem is NP-
complete. More precisely, that answering if MAXIM(G) equals 2 for a graph G
such that dg = 2 is NP-complete. For that purpose we will introduce a variant
of the satisfiability problem that we will reduce to a MAXIM instance: the not-
all-equal at most 3-SAT(3V).

Not-all-equal at most 3-SAT(3V) is a restriction of not-all-equal at most 3-
SAT which is itself a restriction of 3-SAT known to be NP-complete [19] where
each clause contains at most three literals and in each clause, not all the literals
can be true. Since 2-SAT can be solved in polynomial time, we hereafter deal
only with formulas having at least one three-literals clause. The added restriction
of not-all-equal at most 3-SAT(3V) is that each variable (not literal) appears at
most three times in a formula. The resulting problem is still NP-complete.

Lemma 5. The not-all-equal at most 3-SAT(3V) problem is NP-complete.
Proof. See Appendix A.

Now we will associate to a not-all-equal at most 3-SAT(3V) instance ¢ with
n variables {x1,--- ,z,} and m clauses {c1,--- ,¢n} a graph G, for which the
value w.r.t. MaxIMm will give the answer to whether ¢ is satisfiable or not. If
a variable x; occurs only in positive literals (resp. only in negative literals), it
follows that a satisfying assignment of the variables of ¢ must necssarily give
the value TRUE (resp. FALSE) to x;, therefore x; can be removed from ¢ with
conservation of the satisfiability. Thus, without loss of generality, we can assume
that in any not-all-equal at most 3-SAT(3V) formula, every variable occurs at
least once as a positive literal and at least once as a negative literal. G, consists
of gadgets that mimic the variables and the clauses of ¢ and additional edges
that connect them together:

e the gadget corresponding to a variable x; consists of two vertices labeled z;
and —z; and one edge connecting them:;

e the gadget corresponding to a two-literals clause ¢; = (I* Vv 1?), where I* and
12 are its literals, consists in two vertices labeled a{l and b{z corresponding
to ' and [? respectively (the index ”1¥” of the vertices labels stands for the
literal they represent, i.e. x; if [* is the variable z; and —x; if I* is the nega-
tion of the variable z;) and one edge connecting them;

e the gadget corresponding to a three-literals clause gadget consists in six ver-
tices and six edges. For a clause ¢; = (I' vV [? V [?), where [, [? and [ are
its literals (the order is arbitrary), three vertices labeled a{l, bgg and bﬂ cor-
respond to [!, I2 and I3 respectively. Three additional vertices are labeled
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u?, v3 and w’ and the gadgets’ edges are {a{luj}, {a{lvj}, {ujw;}, {vjw;},
{w;bl,} and {w;bj};

e Vi € [1,n], the vertex labeled z; (resp. —x;) is connected to all the vertices
labeled a , b] or b (vesp. al, , b7, or b7, ), Vj e [1,m].

Xy Xy

As an example, for a formula

o= (r1VxaVas) A(—x1VoxsVag) A(x V-oxeVag) A(zaV-zg), (2)

the corresponding graph G, is represented in Figure 3.

clause
gadgets

variable
gadgets

r1 TX1 X2 T2 I3 X3 T4 T4
Fig.3. G, for ¢ = (x1 V2 V3) A (mz1 V-3 Vag) A (21 V —@e V 2a) A (T2 V —24)

Theorem 6. A not-all-equal at most 3-SAT(3V) formula ¢ is satisfiable if and
only if MAXIM(G,,) = 2.

Proof. e = Suppose ¢ is satisfiable and let v : {z1,---,z,} —
{TRUE,FALSE} be a satisfying assignment of z1,---,z,. We know that
dg, = 2 which yields MAXIM(G,) < 2. So let us build an orientation

—
A € O(G,) which imbalance is greater than or equal to 2. First, we assign
an orientation to the edges of the variable gadget:

A{wi—i}) = {xpxl if v(xl)'— TRUE;
—x;x; otherwise.

For example, for the formula ¢ = (21 V -2y V 23) A (mz1 V 223 V 24) A
(1 V —xa Vag) A (z2 V 1y) satisfied by the assignment v(z1, 22, x3,24) =
(FALSE, TRUE, TRUE, TRUE), the edges of the variable gadgets of graph
G, are oriented as in figure 4(a). Since each variable x; occurs at least once
as a positive literal and at least once as a negative literal, 2 < de (z;) <3
and 2 < dg,(—z;) < 3, Vi € [1,n]. Then to ensure our objective on the
imbalance of A, the orientation of the edges connecting vertex gadgets and
clause gadgets must be such that Vi € [1,n], |df(z;) — dj(z;)| = de, (z;)
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(Vg V) (o Vg Vi) (xg Vg Vi) (xpVowp V) (o Vg V) o (kg Vg Vig)

(g v —g) (g vV —g)

X1 X1 X2 X X3 TX3 X4 X4 X1 X1 X2 71X X37X3 X4 X4
(a) orientation of the edges in the variable (b) orientation of the edges between the
gadgets variable gadgets and the clause gadgets
(xp Vg Viag)  (mxpveagVay) o (v Vg Vag)

(2 V—xg)

X1 TX] X2 TXp X3 X3 X4 X4

(c) orientation of the edges in the clause
gadgets

Fig. 4. G, corresponding to ¢ = (z1 V@2 Va3) A (—z1 V-xsVea) A(z1V 2 Vag) A
(z2 V —x4) satisfied by v(z1, z2,z3,z4) = (FALSE, TRUE, TRUE, TRUE)

and |d} (—x;)—d; (~x;)| = de, (—2;). In other words, for i € [1,n], if v(z;) =
TRUE (resp. v(z;) = FALSE), then the edges adjacent to the vertex z; are
oriented from x; (resp. to x;) and the edges adjacent to the vertex —zx; are
oriented to —x; (resp. from —z;), e.g. Figured(b).

So far, all the edges in the variables gadgets and the edges connecting the ver-
tex gadgets and the clause gadgets have been oriented and the vertices in the
variables gadgets have imbalance greater than or equal to 2. In order to com-
plete our orientation A we have to orient the edges in the clause gadgets.

Let ¢; = (I' V I?) be a two-literals clause. Since v satisfies ¢, we know that
exactly one of the two literals is true w.r.t. v. Which, according to the way we
oriented edges so far, means that exactly one of a{l and b{Q has one incoming
arc from a variable gadget and the other has one outgoing arc to a variable
gadget. If a{l is the one with the incoming arc from a variable gadget (mean-
ings that v(I') = TRUE), then we assign /1({@{1 b{Q b= (b{; a{l ), otherwise the
opposite. We obtain [d} (al,) — d; (ad,)| = |d} (b2) — dy (b2)| = 2.

Let ¢; = (I* VI V [3) (the order is identical to which was chosen to build the
clause gadget, i.e. dg,, (a{l) = 3 and de(b{Q) = dg, (bg) = 2) be at three-
literals clause. If the edge connecting a{l to a variable gadget is oriented to

aly (meanings that v(I') = TRUE), then we assign A({a}iu;}) = (ujal),
A({a}v;}) = (vial), A{ujw;}) = (ujw;) and A({vjw;}) = (vjw;). Since
v(I*) = TRUE, either both v(I?) and v(I®) are FALSE or exactly one of v(I?)
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and v(1*) is TRUE and one is FALSE. If both are FALSE then b, and b/
have an outgoing arc to a variable gadget. In that case, we orient wjbf; and
w;bj} to w; and we obtain |dj(a),) — dj(al))| = 3, |d}(bh) — dy(bl)] =
A ((63) = da(OR)] = |di(uy) = dy(u))|l = |d}(v;) = dy(vj)| = 2 and
|d} (w;) — d;(wj)| = 4. If exactly one of v(I2) and v(I*) is TRUE and one
is FALSE, then exactly one of b{z and b% has an incoming arc from a variable
gadget and the other an outgoing arc to a variable gadget. If b{z is the one with
the incoming arc from a variable gadget (meanings that v({*) = TRUE and
v(13) = FALSE), then we assign A({w;b,}) = (w;bf.) and A({w;bi}) =
(bgwj), otherwise the opposite. We obtain |dz(a{1) - dZ(a{l) = 3 and
A (02) — dy (02)] = 1A (B2) — dx (0)] = 1df (uy) — dy (uy)] = |df(v;) —
dy (vg)] = |dy (wy) — dy (wy)| = 2. ,

If, on the other hand, the edge connecting a{l to a variable gadget is ori-
ented from a{l (meanings that v(I') = FALSE), then we assign /1({(1{1 uj}) =

(adiuy), Al{afiv;}) = (adiv;), Aujw;}) = (wjuy) and A({vjw;}) = (wjv;).

By symmetry, we conclude in the same way that \dj(a'ljl) —dy(aj,)] = 3 and
AR 0) — dy ()| = a5 o) — dz ()] = |45 (uy) — dy ()| = () -
dy (vg)| = |d}y (wy) = dy (wy)] = 2.

Consequently, the imbalance of the resulting orientation A is greater than or
equal to 2, e.g. Figure 4(c).

< Now we assume that MAXIM(G,) = 2, let A € (_))(Gg,) with optimal
imbalance. Since all the vertices in the variable gadgets have degree at most
3, each vertex x; (or —x;) is necessarily adjacent to only incoming arcs or only

outgoing arcs w.r.t. A. We will show that the assignment v : {x1, -+ ,2,} —
{TRUE,FALSE} of z1,--- ,x, defined by

(1) = TRUE  if d}(z;) > d (2:);
" FALSE otherwise;

satisfies . Suppose ¢ doesn’t satisfy a clause ¢;, j € [1,m]. If ¢; is a two-
literals clause (I* V [?) then either v(I') = v(I?) = TRUE or v(I') = v(I?) =
FALSE, i.e. either both a], and b}, have an incoming arc from a variable
gadget or both have an outgoing arc to a variable gadget and in both cases,
whichever is the orientation assigned to aj,b/, by A, either aj, or b}, have
a zero imbalance which contradicts our assumption. So ¢; is a three-literals
clause (I' vV I? V 13) (the order is identical to which was chosen to build
the clause gadget, i.e. dg_(al) = 3 and dg,_(bl:) = dg, (b) = 2). Then
either v(I') = v(I?) = v(I3) = TRUE or v(l') = v(I?) = v(I13) = FALSE,
i.e. either all a,, b, and bj} have an incoming arc from a variable gadget
or they all have an outgoing arc to a variable gadget. In the first case, it
implies A({af,u;}) = (uyal,), A{ahv;}) = (vyalh), Aue;}) = (uju,).
A{vjw}) = (vjwy), A{wib}) = (wibp) and A({w;bp}) = (wyb3), and
we obtain |d}(w;) — d;(w;)| = 0 which contradicts the optimality of A.
Similarly, in the second case it implies that the orientations assigned to the
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edges of the clause gadgets are the opposite from the previous ones and we
obtain the same contradiction.
So we can conclude that v does satisfy .

(]

Corollary 7. MAxIM s NP-complete and inapproximable within % + ¢ where
e € R, unless P = NP.

Proof. Let ¢ € R, suppose that there existed a polynomial approximation
algorithm giving val > (% + ¢) MaxIM(G) for an input graph G. Let ¢ be a
not-all-equal at most 3-SAT(3V) formula and G, its associated graph. Since
G, contains at least one three-literals clause gadget, we know that G, con-
tains an even cycle and dg, = 2. This leads to MaXIM(G,,) € {1,2} and since
(3 + &) MaXIM(G,) < val < MAXIM(G,,), if the polynomial approximation
algorithm returns a value less than or equal to 1 then

(% +¢) MAXIM(G,) < 1= MaxIM(G,) < 2 = MaxIM(G,) =1,

and if it returns a value greater than 1, then MAXIM(G,) is greater than 1
hence equal to 2. In other words the polynomial approximation algorithm output
answers whether ¢ is satisfiable or not which is absurd unless P = NP. O

Now we consider the case of bipartite graphs: if G = (V1| | Vs, E) is a bipar-
tite graph, the orientation that consists in assigning to each edge in E the ori-
entation from its extremity in V; to its extremity in V2 has an imbalance equal
to dg, i.e. optimal. This simple case permits us to obtain the following lower
bound:

Theorem 8. For every graph G,
e
MaxIM(G) > [71 —1.

Proof. Let (V1,Va) be a partition of V' corresponding to a cut C C E such
that we have |§({v}) N C| > [@L Yv € V. Such a cut exists: for example a
maximum cardinality cut verifies this property, otherwise we could find a higher
cardinality cut by switching a vertex v € V s.t. |6({v}) N C| < [d(;)] from V4
to Va (or the contrary). Moreover, if we iterated this process starting from a
random cut, we would converge in polynomial time time to a such a cut. Now
we define A € 6(G) as follows. We begin by orienting all edges in C' from V;
to Vo. Then for any i € {1,2}, we orient the edges of the induced subgraph
G[V;]. We add a new vertex vy and an edge between vy and each vertex with
an odd degree in G[V;] if it isn’t eulerian and we consider a decomposition of
its edges into edge-disjoint cycles. we orient each of these cycles as a directed
cycle. Removing vy if necessary, the imbalance of each vertex in G[V;] is now
in {—1,0,1} which implies that Vv € V we have |d} (v) — d; (v)| > f@} -1,
hence, MAXIM(G) > [‘%G] -1 O
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8
Since the imbalance of the orientation defined in that proof is at least %~
MaXIM(G), we can derive a polynomial (3 — i)—approximation algorithm. It is
also easy to see that when 6 = 0[4] then MAXIM(G) > [2¢] while MaxIM(G) >

[9¢H7 when d¢ = 1[4]. This leads to a (4 )-approximation algorithm when either
da = 0[4] or ¢ = 1[4].

3 Further Research

While computing the most imbalanced orientation of a graph is generally diffi-
cult, the problem turns out to be easy for cactus graphs. It may be the same for
other graph classes, characterizing such graph classes would be interesting.

We are currently looking for efficient mathematical programming formula-
tions to solve the problem for large size graphs. Details will follow in the extended
version of the paper. One can also study the weighted version of the problem.

Appendix A Proof of Lemma 5

Let ¢ be a not-all-equal at most 3-SAT formula with n variables {z1,---,z,}
and m clauses {c1, - ,cn} and for all ¢ € [1,n], let k; € N be the number
of occurences of z; in ¢. We assume that there is at least one variable z; that
has at least 4 occurences in ¢ (otherwise ¢ is already a not-all-equal at most
3-SAT(3V) formula) and we will build from ¢ a not-all-equal at most 3-SAT(3V)
¢’ such that ¢ and ¢’ are equisatisfiable as follows.

e For all i € [1,n], if k; > 4 then we introduce k; new variables {z},- -, z¥}
and for [ € [1, k;] we replace the I-th occurence of z; in ¢ with .

e For all i € [1,n], if k; > 4 then we add k; new clauses {c} ,--- ,chi} where
for I € [1,k; — 1], ¢}, = (2} v —2{™") and ¢}, = (2! v ~z}).

Suppose there exists an assignment v : {x1,---,2,} — {TRUE,FALSE} of
1, , Ty satisfying . Then
, xp—o(ag) Vie[l,n] stk < 3;

v ot v(x;) Vi€ [1,n] st k; >4 and VI € [1, k];

is an assignment of the variables x; and z! satisfying ¢’ for

e Vj € [1,m], the values of the literals of ¢; w.r.t. v and v’ are piecewise equal
so v'(¢;) = v(cj) = TRUE and v’ is not-all-equal for ¢; as well as v is;

o Vi € [L,n] st ki >4,V € [Lki — 1], v'(z}) = o'(z}™) = v(z;) and
v (xF) = o' (¢}) = v(a;) so we directly have Vi € [1,k; —1], v/(ck,) = TRUE
and v/(c¥) = TRUE and v’ is not-all-equal for each of these clauses since
they all consist of two literals having opposite values w.r.t. v'.
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As an example, for a formula
o= (r1VzaVaz)A(mz1VoxzVag) Az V-ze) A(mx V-xg Voxg) Az Vas),

where 21 occurs five times and 23 four so we add nine new variables z1, 22, 3,
x1, 23, 23, 3, 23 and 23 and nine new clauses:

/

© =(x1V oxa Vi) A (-xi V ozd V) A (2 Voxs) A (mx] Voo Vo ox) A (25 V x)

Azt V—zt) A (2F Vv —ad) A (@ v -a) A (21 Vv —ad) A (2] Vo)

A(z3 vV —z3) A (23 V —xd) A (a5 Vv =) A (25 V —xs).

Now suppose there exists an assignment v’ of the z; and x! satisfying ¢ and
let i € [1,n] such that k; > 4. If we take a look at the clauses ¢l ,---,cki, we
notice that if v’(z}) = FALSE then for ¢} to be satisfied, v'(—a? ) TRUE ie.
v'(2?) = FALSE, then for 2. to be satlsﬁed v'(-2?) = TRUE ...etc. Repeating
this argument we obtain that if v ( H= FALSE then v/(z}) = v/(22) = - =
v'(2¥) = FALSE. Similarly, if v( ) = TRUE then for ¢! to be satisfied,
v/ (-2 !) = FALSE, ie. o'(z¥ ™) = TRUE, then for ki1 to be satisfied,
v’( fi_2) FALSE ...etc. Hence if v/(2F") = TRUE then o' (z¥) = o/ (25 71) =
= v/(z}) = TRUE. This yields that

Vi€ [1,n] st. ki >4, o' (z}) =0 (2?) = - =/ (aF).

Hence for all i € [1,n] such that k; > 4, we can replace z},---,

k:
z;" by a
unique variable x; and doing so the clauses c;,i, e ,c’;j become trivial and can

be removed and only ¢ remains. So the following assignment of z1,- -, z,:

. mio V(@) Vie[ln] stk <3;
Cxpe ' (x)) Vie [1,n] stk >4

satisfies . We have just shown that ¢ and ¢’ are equisatisfiable. a
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Abstract. We consider Cheeger Inequalities for general edge-weighted
directed graphs. Previously the directed case was considered by Chung
for a probability transition matrix corresponding to a strongly connected
graph with weights induced by a stationary distribution. An Eulerian
property of these special weights reduces these instances to the undi-
rected case, for which recent results on multi-way spectral partitioning
and higher-order Cheeger Inequalities can be applied.

We extend Chung’s approach to general directed graphs. In particular,
we obtain higher-order Cheeger Inequalities for the following scenarios:

(1) The underlying graph needs not be strongly connected.

(2) The weights can deviate (slightly) from a stationary distribution.

1 Introduction

There have been numerous works relating the expansion properties of an undi-
rected graph with the eigenvalues of its Laplacian [1,3,9]. Given an undirected
graph with non-negative edge weights, the weight of a vertex is the sum of the
weights of its incident edges. Then, the expansion p(S) of a subset S of vertices
is the ratio of the sum of the weights of edges having only one end-point in S to
the sum of the weights of vertices in S. The celebrated Cheeger’s Inequality [1,6]
relates the smallest expansion of a subset of vertices having at most half the sum
of vertex weights with the second smallest eigenvalue of the corresponding nor-
malized Laplacian. Recently, there have been extensions to the case where the
expansions of k disjoint subsets are related to the k-th smallest eigenvalue [13].
The notion of expansion can be extended to directed graphs, where the weight
of a vertex is the sum of the weights of its out-going edges. Then, the expan-
sion of a subset S is defined with respect to the sum of the weights of edges
going out of S. Chung [8] considered the special case for a probability transition
matrix whose non-zero entries correspond to the edges of a strongly connected
graph. The weights of the vertices are chosen according to the (unique) station-
ary distribution, and the weight of an edge is the probability mass going along
the edge under this stationary distribution. Under this specific choice of weights,
Chung has proved an analogous Cheeger’s Inequality [8] for directed graphs.

This research is partially funded by a grant from Hong Kong RGC under the contract
HKU17200214E.
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In this paper, we explore how this relationship between expansion and spec-
tral properties can be extended to more general cases for directed graphs. In
particular, we consider the following cases.

1. The directed graph is not strongly connected.
2. The weights of vertices deviate (slightly) from the stationary distribution.

As we shall explain, each of these cases violates the technical assumptions
that are used by Chung to derive the Cheeger Inequality for directed graphs.
We explore what expansion notions are relevant in these scenarios, and how to
define Laplacians whose eigenvalues can capture these notions.

1.1 Overview of Chung’s Approach [8]

All spectral arguments rely on some symmetric matrix, which has the desir-
able properties of having real eigenvalues and an orthonormal basis of eigenvec-
tors. For an undirected graph (with non-negative edge weights), its normalized
Laplacian is a symmetric matrix. To apply spectral analysis on directed graphs,
one should consider what the natural candidates for symmetric matrices should
be and whether they have any significance. We explain the importance of the
technical assumptions made by Chung in the analysis of the transition matrix
P associated with the random walk on some directed graph G(V, E).

(1) Choice of Weights. Suppose ¢ : V — R is a stationary distribution of
the transition matrix P. Then, the weights are chosen such that each vertex wu
has weight ¢(u), and each (directed) edge (u, v) has weight ¢(u) - P(u,v), which
is the probability mass going from u to v in one step of the random walk starting
from distribution ¢.

Suppose the starting vertex u of a random walk is chosen according to distri-
bution ¢. The expansion of a subset S has the following meaning: conditioning
on the event that w is in .S, it is the probability that the next step of the random
walk goes out of S.

This notion of expansion can be defined with respect to any distribution on
the vertex set V', but the edge weights induced by a stationary distribution has
the following Eulerian property: for any subset S of vertices, the sum of weights
of edges going out of S is the same as that of edges going into S.

Hence, one can consider the underlying undirected graph such that each

undirected edge has weight that is the average of those for the corresponding
directed edges in each direction. Then, because of the Eulerian property, for
any subset S, its expansion in the directed graph defined with respect to the
out-going edges is exactly the same as its expansion defined with respect to
the undirected graph (with edge weights defined above). Therefore, it suffices
to consider the normalized Laplacian of the undirected graph to analyze the
expansion properties of the directed graph.
(2) Irreducibility of Transition Matrix. This means that the underlying
directed graph with edges corresponding to transitions with non-zero probabili-
ties is strongly connected. Under this assumption, the stationary distribution is
unique, and every vertex has a positive mass.

If the directed graph is not strongly connected, a strongly connected compo-
nent is known as a sink if there is no edge going out of it. If there is more than
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one sink, the stationary distribution is not unique. Moreover, under any sta-
tionary distribution, any vertex in a non-sink has probability mass zero. Hence,
Chung’s method essentially deletes all non-sinks before considering the expan-
sion properties of the remaining graph.

In this paper, we explore ways to consider expansion properties that involve
the non-sinks of a directed graph that is not strongly connected.

1.2 Owur Contribution

The contribution of this paper is mainly conceptual, and offers an approach to
extend Chung’s spectral analysis of transition matrices to the scenarios when the
underlying directed graph is not strongly connected, or when the vertex weights
do not follow a stationary distribution. On a high level, our technique to handle
both issues is to add a new vertex to the graph and define additional transition
probabilities involving the new vertex such that the new underlying graph is
strongly connected, and the expansion properties for the old vertices are also
preserved in the new graph. Therefore, Chung’s technique can be applied after
the transformation. We outline our approaches and results as follows.

(1) Transition matrix whose directed graph is not necessarily strongly
connected. Given a transition matrix P corresponding to a random walk on a
graph G(V, E) and a subset S C V of vertices, we denote by P|g the submatrix
defined by restricting P only to the rows and the columns corresponding to S.

It is known [7] that the eigenvalues of P are the union of the eigenvalues of
P|c over all strongly connected components C' in directed graph G. An impor-
tant observation is that as long as the strongly connected components and the
transition probabilities within a component remain the same, the eigenvalues of
P are independent of the transition probabilities between different strongly con-
nected components. This suggests that it might be difficult to use spectral prop-
erties to analyze expansion properties involving edges between different strongly
connected components.

Therefore, we propose that it makes sense to consider the expansion proper-
ties for each strongly connected component separately. If C' is a sink (i.e., there
is no edge leaving C), then P|¢ itself is a probability transition matrix, for which
Chung’s approach can be applied by using the (unique) stationary distribution
on C.

However, if C' is a non-sink, then there is no stationary distribution for P|¢,
because there is non-zero probability mass leaking out of C' in every step of the
random walk. For the non-trivial case when |C| > 2, by the Perron-Frobenius
Theorem [10], there exists some maximal eigenvalue A > 0 with respect to the
complex norm, and unique (left) eigenvector ¢ with strictly positive coordinates
such that ¢TP|c = A@T. When ¢ is normalized such that all coordinates sum
to 1, we say that ¢ is the diluted stationary distribution of P|c. It is stationary in
the sense that if we start the random walk with distribution ¢, then conditioning
on the event that the next step remains in C' (which has probability \), we have
the same distribution ¢ on C.

Hence, we can define the expansion of a subset S in C' with respect to the
diluted stationary distribution ¢. Given a vertex u € C and a vertex v € V
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(that could be outside C'), the weight of the edge (u,v) is ¢(u) - P(u,v). Observe
that the sum of weights of edges going out of u is ¢(u). Hence, the expansion of
a subset S in C are due to edges leaving S that can either stay in or out of the
component C.

In order to analyze this notion of expansion using Chung’s approach, we
construct a strongly connected graph on the component C' together with a new
vertex vy, which absorbs all the probabilities leaking out of C, and returns them
to C according to the diluted stationary distribution ¢. This defines a probabil-
ity transition matrix P on the new graph that is strongly connected with various
nice properties. For instance, P has 1 as the maximal eigenvalue with the corre-
sponding left eigenvector formed from the diluted stationary distribution ¢ by
appending an extra coordinate corresponding to the new vertex with value 1— A.

One interesting technical result (Lemma 1) is that the new transition matrix
P preserves the spectral properties of P|¢ in the sense that the eigenvalues of
P can be obtained by removing A from the multi-set of eigenvalues of P|c and
including 1 and A — 1. In other words, other than the removal of A and the
inclusion of 1 and A\ — 1, all other eigenvalues are preserved, even up to their
algebraic and geometric multiplicities. R

Hence, we can use Chung’s approach to define a symmetric Laplacian for P,
and use the recent results from Lee et al. [13] on higher-order Cheeger Inequalities
to achieve an analogous result for a strongly connected component in a directed
graph. In particular, multi-way partition expansion is considered. For a subset
C of vertices, we denote:

pr(C) := min{max;cp p(S;) : S1,852,..., Sk are disjoint subsets of C}.

Theorem 1. Suppose C' is a strongly connected component of size n associated
with some probability transition matriz, and the expansion p(S) of a subset S of
vertices within C' is defined with respect to the diluted stationary distribution ¢
as described above.

Then, one can define a Laplacian matriz with dimension (n + 1) x (n + 1)
having eigenvalues 0 = A\ < Ao < -+ < A\p1q such that for 1 < k < n, we have

2 < pr(C) SO(K?) - /A1

(2) Vertex weights deviate from stationary distribution. Given a tran-
sition matrix P, recall that in Chung’s approach, the expansion is defined with
the careful choice of setting each vertex’s weight according to a stationary distri-
bution. We consider the case when the vertex weights ¢ : V' — Ry can deviate
from a stationary distribution of P.

Suppose each vertex is assigned a positive weight according to ¢. Then, the
following parameter measures how much ¢ deviates from a stationary distribu-

tion: o(u)
u
€:=1-—min
ueV Y oy ¢(v) - P(v,u)
A smaller value of ¢ means that ¢ is closer to a stationary distribution. In
particular, if € = 0, then ¢ is a stationary distribution.

Our idea is to first scale down all probabilities in P by a factor of (1 — ¢).
We add a new vertex vy to absorb the extra e probability from each existing
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vertex. Then, we define the transition probabilities from vy to the original ver-
tices carefully such that each original vertex u receives the same weight ¢(u)
after one step. In other words, we can append a new coordinate Correspondlng
to vg to ¢ to obtain a stationary distribution ¢ for the transition matrix P of
the augmented random walk. Moreover, for each subset S C V' of the original
vertices, the new expansion p(S) with respect to ¢ and P can be related to the
old expansion p(S) as follows: p(S) = (1 —¢€) - p(S) +e.

Therefore, we can apply Chung’s approach to P and a to construct a symmet-
ric Laplacian matrix, whose eigenvalues are related to the expansion properties
using the results by Lee et al. [13].

Theorem 2. Suppose n vertices have positive weights defined by ¢ : V. — R,
and £ > 0 is the parameter defined above. Then, there exists a symmetric Lapla-
cian matriz with dimension (n+1) X (n+1) and eigenvalues 0 = Ay < Ag < -+ <
Ant1 such that for 1 < k < n, we have 2 < (1—¢) - pp(V) +e < O(k?) - /Nt

In the full version, we show that if we allow a self-loop at the new vertex v
with negative weight, we can slightly improve the left hand side of the inequality
in Theorem 2.

1.3 Related Work

Since the Cheeger’s Inequality [6] was introduced in the context of Riemannian
geometry, analogous results have been achieved by Alon et al. [1,3] to relate the
expansion of an undirected graph with the smallest positive eigenvalue of the
associated Laplacian matrix. The reader is referred to the standard textbook by
Chung [9] on spectral graph theory for a more comprehensive introduction of
the subject.

As far as we know, the only previous attempt to apply spectral analysis
to directed graphs was by Chung [8], who reduced the special case of directed
instances induced by stationary distributions into undirected instances. On a
high level, our approach is to reduce general directed instances into instances
induced by stationary distributions.

Recently, for undirected instances, Lee et al. [13] extended Cheeger’s Inequal-
ity to relate higher order eigenvalues with multi-way spectral partition. This
result was further improved by Kwok et al. [12]. Since Chung’s approach [§]
made use of the Laplacian induced by an undirected instance, the higher order
Cheeger Inequalities can be directly applied to the cases considered by Chung.

The reader can refer to the survey on spectral partitioning by Shewchuck [15],
who also mentioned expansion optimization problems with negative edge
weights. Other applications of spectral analysis include graph coloring [2,4], web
search [5,11] clustering [14], image segmentation [16,17], etc.

2 Preliminaries

We consider a graph G(V, E') with non-negative edge weights w : E — Ry. In
most cases, we consider directed graphs, but we will also use results for undirected
graphs. Note that a vertex might have a self-loop (even in an undirected graph).
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For a subset S C V, 9(S) is the set of edges leaving S in a directed graph,
whereas in an undirected graph, it includes those edges having exactly one end-
point in S (excluding self-loops). Given the edge weights, vertex weights are
defined as follows. For each u € V| its weight w(u) is the sum of the weights of
its out-going edges (including its self-loop) in a directed graph, whereas in an
undirected graph, the edges incident on u are considered.

The expansion p(S) of a subset S (with respect to w) is defined as:

w(9(S)) _ Decais) wie)
w(S) Duesw(u)

In this paper, we use bold capital letters (such as A) to denote matrices and
bold small letters (such as ¢) to denote column vectors. The transpose of a matrix
A is denoted as AT. For a positive integer n, I, is the n x n identity matrix,
and 0,, and 1,, are the all zero’s and all one’s column vectors, respectively, of
dimension n, where the subscript n is omitted if the dimension is clear from
context.

Undirected Graphs. Suppose W is the symmetric matrix indicating the edge
weights w of an undirected graph of size n, and ® is the diagonal matrix whose
diagonal entries correspond to the vertex weights induced by w as described
above. Then, the normalized Laplacian of W is £ :=1,, — S :Woh 2.

Multi-way partition expansion is considered in Lee et al. [13] by considering
the following parameter. For C C V' and positive integer k, denote

pr(C) := min{max;cp p(S;) : S1, 52, ..., S are disjoint subsets of C}.

The following fact relates the eigenvalues of £ with the multi-way partition
expansion with respect to W, which may contain self-loops.

Fact 1. (Higher Order Cheeger’s Inequality [13]) Given a symmetric matric
W indicating the non-negative edge weights of an undirected graph, suppose its
normalized Laplacian £ as defined above has eigenvalues 0 = Ay < Ay < --- <
An. Then, for 1 < k < n, we have: )‘7’“ < (V) <Ok - V.

Chung’s Approach [8] to Transition Matrices. Given a probability tran-
sition matrix P (which is a square matrix with non-negative entries such that
every row sums to 1) corresponding to a random walk on vertex set V, and
non-negative vertex weight ¢, one can define edge weights w : V x V. — R, as
w(u,v) := ¢(u) - P(u,v). (Observe that these edge weights induce vertex weights
that are consistent with ¢.)

One interpretation of Chung’s approach is that the vertex weights ¢ are
chosen to be a stationary distribution of P, i.e., ¢TP = ¢T. Hence, the edge
weights w satisfy the following FEulerian property: for any subset S C V, we
have w(9(S)) = w(9(S)), where S :=V '\ S.

We can define edge weights @ for the (complete) undirected graph with vertex
set V' such that for u # v, @(u,v) = 3 (w(u,v) +w(v,u)), and each self-loop has
the same weight in @ and w.

Because of the Eulerian property of w, it is immediate that for all S C V,
w(0(S)) = w(A(S)), where 9(S) is interpreted according to the directed case
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on the left and to the undirected case on the right. Moreover, for all v € V,
w(u) = W(u). Hence, as far as expansion is concerned, it is equivalent to consider

the undirected graph with edge weights given by the matrix V/\\7, for which the
(higher-order) Cheeger Inequalities (as in Fact 1) can be readily applied.

Chung’s approach can be applied to any stationary distribution ¢ of P, but
special attention is paid to the case when P is irreducible, i.e., the edges cor-
responding to non-zero transition probabilities form a strongly connected graph
on V. The advantages is that in this case, the stationary distribution is unique,
and every vertex has non-zero probability.

In Section 3, we consider how to extend Chung’s approach to the case where
the underlying directed is not strongly connected. In Section 4, we consider the
case when the edge weights ¢ deviate (slightly) from a stationary distribution.

3 Directed Graphs with Multiple Strongly Connected
Components

In a directed graph, we say that a strongly connected component C is a sink, if
there is no edge leaving C. Otherwise, we say that it is a non-sink.

Even if the underlying directed graph of a given transition matrix is not
strongly connected, Chung’s approach [8] can still be applied if one chooses the
vertex weights according to some stationary distribution.

However, under any stationary distribution, the weight on any vertex in
a non-sink component must be zero. If we consider expansion using weights
induced by a stationary distribution, essentially we are considering only the sink
components. In this section, we explore if there is any meaningful way to con-
sider expansion properties involving the non-sink components. As we shall see,
it makes sense to consider the expansion properties of each strongly connected
component separately.

3.1 Motivation for Considering Components Separately

Suppose P is a probability transition matrix corresponding to a random walk
on some direted graph G(V, E). Given a subset C' C V, let P|c be the square
matrix restricting to the columns and the rows corresponding to C.

It is known [7, Theorem 3.22] that the eigenvalues of P are the union of the
eigenvalues of P|¢ over all strongly connected components C' in a directed graph
G. An important observation is that as long as the strongly connected compo-
nents and the transition probabilities within a component remain the same, the
eigenvalues of P are independent of the transition probabilities between different
strongly connected components. For instance, the figure below depicts a directed
graph, where the edges are labeled with the transition probabilities. Observe that
each vertex is its own strongly connected component.
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a 1—a
1
O N O=E

The transition matrix is:

Oal—a
P=|00 1 )
00 1

whose eigenvalues are {0,0, 1}, which are independent of the parameter a. This
suggests that it might be difficult to use spectral properties to analyze expan-
sion properties involving edges between different strongly connected components.
Hence, we propose that the expansion of each connected component should be
analyzed separately.

3.2 Defining Expansion via Diluted Stationary Distribution

Observe that if a strongly connected component C'is a sink, then the transition
matrix P|c has a stationary distribution, and we can apply Chung’s approach.
However, if C' is a non-sink, then not every row of P|c sums to 1, and so P|¢
has no stationary distribution.

However, since C'is a strongly connected component, by the Perron-Frobenius
Theorem [10], P|c has a unique maximum eigenvalue Apax > 0 with algebraic
and geometric multiplicity 1 such that every other eigenvalue (which might be
complex) has magnitude at most Apnax. Moreover,the associated eigenvector of
Amax has positive coordinates and is unique up to scaling. Suppose ¢ is the
(left) eigenvector which is normalized such that the coordinates sum to 1, i.e.,
Y ouey ¢(u) = 1 and OTP|c = Anax . We say that ¢ is the diluted stationary
distribution of P|c, because the distribution on vertices in C' is diluted by a
factor of Anax after one step of the random walk.

We use the diluted stationary distribution ¢ as vertex weights to define
expansion p(S) for S C C. Observe that the weight of edges leaving compo-
nent C' also contributes to the expansion.

3.3 Augmenting Graph to Achieve Stationary Distribution

Suppose the component C has size n, and has A\ .x < 1. In order to use Chung’s
approach, we construct an augmented graph G consisting of the component C'
and an extra vertex vg. For each v € C, all the original probabilities leaking
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out of C' from u are now directed to vg. For the new vertex vy, the transition
probabilities from vy to vertices in C' are given by the diluted stationary dis-
tribution ¢. Hence, the augmented graph G is strongly connected. We write
A =P|lc eR"™" and p =1, — Al, € R". The new transition matrix is

B — Ap e RV X (1)

¢ 0

Given a square matrix M, its determinant is denoted as [M|, and eig(M) is
the multi-set of its eigenvalues, which are roots of the polynomial |AI — M| in A.
We first show that the matrix B preserves the spectral properties of A.

Lemma 1 (Spectral Preservation). We have eig(B) = eig(A) — {\mas} +
{1, Anaz — 1}. Furthermore, if an eigenvalue A € eig(A) — {Amazy Amaz — 1}, it
has the same geometric multiplicity in A and B.

Proof. To prove the first part, it suffices to show that for all A € R,

AL — Al = DO = Qe = 1) = [Mg = B (4 = A,
because both sides are polynomials in A of degree n + 2. Hence, they must be
equivalent polynomials if they are equal for more than n + 2 values of .

If A = 1, then the right hand side is zero because B has eigenvalue 1; similarly,

if A = Amax, the left hand side is zero because A has eigenvalue Ay ax.
For A # 1, Aax, we have:

AL — A —p| |1, 1,
’)\In+1 - B‘ = : (1)
-t x| |0f 1

A, — A (A—1)1,

6T A—1
—(A—1) \un “A - (A=D1, (A —1)"1(—¢T) (3)
= (=D)AL, - A + 1,67, (4)

where (1) follows because the second determinant is 1. Moreover, (2) follows from
|X]| - Y| = |XY]|. Equation (3) follows from the identity that for invertible H,

EF
= |H|-|E - FH"'G|.
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Similarly, using |X| - |Y| = |XY| repeatedly, we have

In _1n AIn —-A + 1’rL T On
)\In — A + 1n¢T ()\ - )\max) = . ¢

of 1 oT A — Amax
I, 0, [MN,—A —(\—)nax)ls
= T .
)\,fmax 1 ¢T A— )\max

AL, — A —(A = Amax)1n
0, A= Amax+1

=2\, — Al (A = Amax + 1).

This completes the proof of the first part. To show that the geometry mul-
tiplicities of a common eigenvalue A # Apax, Amax — 1 are equal, we show that
x «— (%) is a bijection between A and B’s corresponding right eigenvectors.

Since A # Apax is an eigenvalue of A, if x is a corresponding eigenvector,
then ¢Tx = 0, because Aax¢d x = ¢T Ax = A\¢Tx. Hence, B(’g) =A(})-

Conversely, suppose (’;) is an eigenvector of B with eigenvalue A, where
x € R" and y € R. We have

Ax+ py = Ax (M- A)x = py
or
oTx = \y oTx = \y.

Then, ¢T()‘I - A)X = ()‘ - /\max)¢TX = (/\ - /\max))‘y'

But we also have ¢T py = ¢T(1—A1)y = (1—Apnax)y. Since the two quantities
are equal, this implies that A = 1, A — 1 or y = 0. By assumption, \ #
1, Amax — 1, and so the only possibility is y = 0, then Ax = Ax. This shows that
A has the same geometric multiplicity in A and B. O

3.4 Higher-Order Cheeger Inequalities for Component

Given a non-sink component C, we have described how to add an extra vertex
vg to construct an augmentedAgraph G with transition matrix B. Observe that
B has stationary distribution ¢ = (¢, 1 — A\pax), where ¢ is the diluted stationary
distribution of A. Hence, it follows that for all S C C, the old expansion p(S) is
the same as the new expansion p(S) in the augmented graph.

Therefore, we can apply Chung’s approach [8] and the spectral analysis by Lee
et al. [13] to obtain the following lemma, which is a restatement of Theorem 1.

Lemma 2 (Cheeger Inequalities for Component C). Suppose d is the
diagonal matriz whose diagonal entries are coordinates of the stationary distri-
buti0n$ of B. Moreover, suppose the normalized Laplacian L of the symmetric
matriz %(&'B + BT;I;) has eigenvalues 0 = Ay < Ao < --- < Apyy1. Then, for all

1<k<n, 2 <pp(C) <O(K?) -/ Ais1-
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Proof. We use the following inequality from [13]:

X < 5(@) < O - Vi,

Observe that if S C C does not contain the new vertex vg, then S has the
same expansion p(S) = p(S) in both graphs.

From £ + 1 disjoint subsets in the augmented graph (A?, we can get at least k
subsets of C' by removing the one containing vy. Hence, we have

p(C) < pios1 (G) < O((k + 1)2)y Nepr.

On the other hand, k disjoint subsets in C are also disjoint in G. Therefore,

S '
we have pp.(C) > pi(G) > 3+, as required. O

4 Vertex Weights Deviate from Stationary Distribution

In this section, we consider a transition matrix P whose underlying directed
graph G(V, E) (where n = |V|) is not necessarily strongly connected. Moreover,
each vertex has a positive weight given by a vector ¢ € R™ that is not necessarily
a stationary distribution of P. We wish to analyze the expansion with respect to
P and ¢ using spectral techniques. As in Section 3, we shall add an extra vertex
vp to form an augmented graph G.
We measure how much ¢ deviates from a stationary distribution by the fol-
lowing parameter:
_ . p(u)
€:=1—min

weV Y oy 0(v) - P(v,u)

A smaller value of ¢ means that ¢ is closer to a stationary distribution. In
particular, if € = 0, then ¢ is a stationary distribution.

Our idea is to first scale down all probabilities in P by a factor of (1 —¢). We
add a new vertex vy to absorb the extra € probability from each existing vertex.
Then, we define the transition probabilities from v to the original vertices care-
fully such that each original vertex u receives the same weight ¢(u) after one
step.

For each vertex u, the weight mass it obtains from vertices V' through the
scaled-down P is (1 —¢) )" . ¢(v)P(v,u). Hence, the new vertex v needs to
return mass weights to vertices in V' given by the vector m := ¢ — (1 — £)PT¢,
whose coordinates are non-negative by the choice of €. Normalizing by m™1,, =
e¢T1,, we have the vector p := Wmln of transition probabilities from vy to
vertices in V. N

The transition matrix of the augmented graph G is

~ (1—-¢e)Pel,
P-=
pt o0

Observe that G is strongly connected, and its stationary distribution can
be obtained by normalizing the vector a = (¢,e¢71,). In other words, we can
append a new coordinate corresponding to vy to ¢ to obtain a left eigenvector
a with eigenvalue 1 for matrix P.
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Moreover, for eacﬁl subset S C V of the original vertices, the new expansion
p(S) with respect to ¢ and P can be related to the old expansion p(9) as follows:
PS) = (1—2)- p(S) +=. o

Hence, we can apply Chung’s approach to P and ¢ to construct a symmetric
Laplacian matrix, whose eigenvalues are related to the expansion properties using
the results by Lee et al. [13]. The following lemma is a restatement of Theorem 2,
and its proof uses the same argument as in the proof of Lemma 2.

Lemma 3. Suppose d is the diagonal matriz whose diagonal entries are coor-
dinates of ¢ as defined above. Moreover, suppose the normalized Laplacian £ of
the symmetric matriz %(@P +PT®) has eigenvalues 0 = A\ < Ay < -+ < iy
Then, for all1 <k <n, 3 < (1—¢)-pp(V) +e < O(k?) - \/Nis1-
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Abstract. In the problem of obnoxious facility location, an obnoxious
facility is located in an area. To maximize the social welfare, e.g., the
sum of distances from all the agents to the facility, we have to get the
true locations of each agent. However, each agent may misreport his/her
location to stay far away from the obnoxious facility. In this paper, we
design strategy-proof mechanisms on locating an obnoxious facility on a
real line. Two objective functions, i.e., maximizing the sum of squares
of distances (maxSOS) and maximizing the sum of distances (maxSum),
have been considered. For maxSOS, a randomized strategy-proof mecha-
nism with approximation ratio 5/3 is given, meanwhile the lower bound is
proved to be at least 1.042. The lower bound of any randomized strategy-
proof mechanisms w.r.t. maxSum is proved to be 1.077. Moreover, an
extended model that each agent controls multiple locations is considered.
For this model, we investigate deterministic and randomized strategy-
proof mechanisms w.r.t. maxSum and maxSOS objectives, respectively.
The deterministic mechanisms are shown to be tight for both objectives.

1 Introduction

We consider the problem of locating an obnoxious facility on a line, where a set
of agents are located. In the view of algorithmic mechanism design, the agent’s
locations are private information and each agent attempts to maximize his/her
utility, i.e., stay far away from the obnoxious facility, by misreporting his/her
location. Mechanisms receive the declaration of agents as input and determine
the location. Our target is to design strategy-proof (or truthful) mechanisms to
maximize social welfare, i.e., the sum of squares of distances (maxSOS) or the
sum of distances (maxSum).

In the classical facility location game, the utility of an agent is the distance
from his/her true location to the nearest facility if there are multiple facilities,
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and each agent attempts to minimize his/her utility. In this work, we consider the
obnoxious facility location problem, in which each agent attempts to maximize
the utility, i.e., stay as far as possible from the facility. These problems arise in
many real applications, such as locating nuclear reactors, garbage dump sites,
ammunition dumps, and polluting plants in a community.

To measure the performance of the mechanisms for classical facility location
problem, the approximation ratio with respect to some given social objectives
has been considered. The approximation ratio is defined to be the worst-case
ratio between the mechanism’s objective value and the optimal solution. There
are mainly three objectives: minSum ( minimizing the sum of agents’ utilities),
minMaz (minimizing the maximum utility of agents), and minSOS (minimiz-
ing the sum of squares of agents’ utilities). Feldman and Wilf [2] pointed out
that the minSOS function is highly relevant in economic settings, the centroid
in geometry, or the center of mass in physics. Accordingly, for obnoxious facility
game, the social objectives are mazSum (maximizing the sum of agents’ utilities),
mazMin (maximizing the minimum utility of agents), and mazSOS (i.e., maxi-
mizing the sum of squares of agents’s utilities). Han and Du [4] mentioned that
for obnoxious facility game, any deterministic mechanisms for maxMin objective
are unbounded. Hence, in this paper, we only consider maxSum and maxSOS
two objectives. Observe that for obnoxious facility problem, if the number of
the facilities is more than one, locating all the facilities the same place is the
best choice. Due to the above reasons, in this work, we only consider the single
obnoxious facility game for maxSum and maxSOS objectives.

We then extend our model to a setting that each agent can control multiple loca-
tions and only one facility can be located. Procaccia and Tennenholtz [5] gave an
example of real estate agents for the classical facility location game, which is also
suitable for the obnoxious version. There are some other scenarios for the extended
model. We can take one community or one company with many branches be an
agent. For the extended model, we also consider deterministic and randomized
strategy-proof mechanisms for maxSum and maxSOS objectives. And as noted by
Schummer and Vohra [16], payment is not available in many real scenarios, espe-
cially in the social choice literature. Hence, we focus on the mechanism design with-
out payment.

Related work. The classical setting of the facility location game is to minimize
the utility function of each agent, where the utility function is the distance
from agent’s true location to the facility location. One direction of studying
this setting is to investigate the characterizations of strategy-proof mechanisms.
Moulin [14] and Schummer et al. [15] provided characterizations of deterministic
strategy-proof mechanisms on line, tree, and cycle networks. Recently, Dokow
et al. [10] gave a full characterization of strategy-proof mechanisms on line and
on sufficiently large cycles on a discrete graph. Fotakis and Tzamos [11] gave
a characterization of deterministic strategy-proof mechanisms with a bounded
approximation ratio for 2-Facility on the line.

On the algorithmic view of the classical setting, Procaccia and Tennenholtz [5]
first studied strategy-proof mechanisms with provable approximation ratios on the
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line for 1-Facility and 2-Facility for minSum and minMax objectives. Subsequently,
Lu et al. [6,7] improved some results for 2-Facility on a line and circle under the
minSum objective. Alon et al. [8] provided the approximation ratios achievable
by randomized and deterministic mechanisms for 1-Facility in circle and general
metrics under the minMax objective. Feldman and Wilf [2] studied the approx-
imation ratios for randomized and deterministic mechanisms under the minSOS
objective on aline. The extended model with multiple locations per agent was inves-
tigated in [5, 7] for locating one facility on aline for minSum and minMax objectives.
Thang [12], Fotakis and Tzamos [21] studied the k-Facility location problem.

For the setting of obnoxious facility game, the mechanism design with
the social objective maxSum was first studied by Cheng et al. [1]. They pre-
sented a 3-approximation group strategy-proof deterministic mechanism and a
lower bound of 2. They designed a randomized strategy-proof mechanism with
3/2-approximation. They also extended the work to tree and circle networks.
Furthermore, for the general network, they proposed a 4-approximation group
strategy-proof (GSP) deterministic mechanism and a 2-approximation group
strategy-proof randomized mechanism, respectively.

On the direction of characterizing the mechanisms, Ibara and Nagamochi [3]
first studied the characterization of deterministic strategy-proof mechanisms for
obnoxious facility location game. In their paper, they showed there is no strategy-
proof mechanism such that the number of candidates (locations output by the
mechanism for some reported locations) is more than two. Then they character-
ized (group) strategy-proof mechanisms for two candidates in the general met-
ric, in which a 4-approximation group strategy-proof mechanism in any metric
was proposed. Recently, Han and Du [4] also investigated the characterization
of deterministic strategy-proof mechanisms for the single-sinked policy domain.
Moreover, they showed that any deterministic group strategy-proof mechanisms
on the line have approximation ratio at least (1 + 21’)% if the social objective
function is L,-norm, which implies lower bounds of 3 and 5 for maxSum and
maxSOS objectives, respectively. Note that the lower bound of 3 is tight with
the upper bound given in [1].

Our Contributions. In this paper, we provide approximation results for obnox-
ious facility game with respect to maxSum and maxSOS objectives on the line.
We provide, for any randomized strategy-proof mechanisms, the lower bounds
are 1.077 and 1.042 with respect to maxSum and maxSOS objective. We provide
a strategy-proof randomized mechanism with approximation ratio 5/3.

We then extend the model such that each agent controls multiple locations.
The utility of an agent is the sum of the distances from this agent’s locations
to the facility. For maxSum objective, we provide a deterministic strategy-proof
mechanism with approximation ratio 3, which is tight with the lower bound [4].
In the case of randomized strategy-proof mechanism, we show a lower bound 10/9
and an upper bound 2. For maxSOS objective, the deterministic strategy-proof
mechanism is 5 ,which matches the lower bound of 5 in [4]. For the randomized
strategy-proof mechanisms, we show a lower bound of 1.13 and an upper bound
of 4. A summary of our results are illustrated in Table 1.
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Table 1. A summary of our results. UB and LB stands for upper bound and lower
bound, respectively. SP and GSP represent strategy-proof and group strategy-proof,
respectively. MultiLA stands for the model with multiple locations per agent.

Model Deterministic Randomized

maxSum UB: 3 GSP [1] | LB: 3 GSP [4] | UB: 3/2 [1] LB: 1.077 SP

maxSOS UB: 5 GSP [4] | LB: 5 GSP [4] | UB: 5/3 GSP | LB: 1.042 SP
MultiLA: maxSum| UB: 3 GSP LB: 3 SP [4 UB: 2 SP LB: 10/9 SP
MultiLA: maxSOS| UB: 5 GSP LB: 5 GSP [4] UB: 4 SP LB:1.13 SP

2 Model and Preliminaries

The possible location area G is represented by a line. For obnoxious facility
location problem, locating the facility at the infinity is the optimal location.
Hence, we restrict the line to a closed interval. For simplicity, suppose G is
within the interval [0, 2], i.e., G = [0,2]. Let N = {1,2,...,n} be a set of agents.
Each agent ¢ has an true location z; € G. We refer to = = (21, 22,...,2Z,) € G"
as the location profile.

The utility of agent 7 is the distance from xz; to the facility. Each agent
attempts to maximize his/her utility. The social welfare is maxSOS (the sum of
squares of agents’ utilities) or maxSum (the sum of agents’ utilities). The goal
of a mechanism is to provide a strategy-proof (or truthful) mechanism with the
maximum social welfare.

A deterministic mechanism is a function f : G™ — G that maps the reported
location profile to the location of a facility (which can be located anywhere in
G). When the facility is located at y € G, the utility of agent 4 is simply the
distance between x; and vy, i.e., D(y,x;) = |y — 24|, for all i € N.

A randomized mechanism is a function f : G™ — AG that maps the reported
location profile to a probability distribution over G. If f(x) = P, where P is a
probability distribution, agent i’s utility is defined to be the expected distance
between x; and y, i.e., D(P,z;) = Ey~p[ly — x;|], for all i € N.

A mechanism is strategy-proof if no agent can strictly increase his/her utility
by misreporting the location, regardless of the declarations of other agents. For-
mally, given a location profile x € G™, and for all ;, we have D(f(z;, x—;), ;) >
D(f(x},x_;),x;), where x_; = (x1,...,%i—1,Ti+1,--.,Ty) is the location profile
excluding agent 1.

A mechanism is said to be group strategy-proof (GSP) if no any set of agents
can all benefit by misreporting their locations, regardless of the reports of the
other agents. That is, given any location profile x = (zg, x_g) for any non-empty
subset of agents S C N and the misreported location z, there exists i € S such
that D(f(x)vxl) > D(f(mi%x—s)axi)'

Given a location profile z and the facility location y by a mechanism, the
social welfare of the mechanism is defined by SC(y,z). If the social objective
function is maxSum, then SC(y,z) = > ,cny Dy, %) = > ;cn |y — 4| If the
social objective function is maxSOS, then SC(y,z) = 3,y (y — x;)*. Moreover,
the social welfare of a distribution P of profile z is SC(P,z) = E,~p[SC(y, x)].
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We denote SC(opt,x) to be the optimal social welfare with respect to the
location profile z, i.e., SC(opt, ) = max,{SC(y,z)}. A mechanism f is said to
be p-approximation if SC(opt,z) < p- SC(f(z),x) for any location profile x.

Cheng et al. [1] pointed out that an optimal facility location will be at one of
two extreme points 0 or 2 for the maxSum objective. In the following, we show
that the property also holds for maxSOS objective.

Proposition 1. Given a location profile x, at least one of 0 and 2 is an optimal
location for maxSOS objective.

Proof. Given a location profile x, suppose that the optimal facility location is at
y, where zp, <y < xgy1. If necessary, we add xg (or x,41) if y is located between
0 and x; (or z, and 2). In the following, we show that if y is not located at 0
or 2, then we can move the facility to 0 or 2, the social welfare is not decreased,
which therefore the proposition follows.

The social welfare of location y given the profile x is

k n
SClopt,z) =Y (y—z:)*+ > (w —y)*
i=1 i=kt1

If K < n/2,let us consider the location at 0, otherwise the location is at 2.
Due to the the symmetric, without loss of generality, we only consider the case
when k < n/2.

The social welfare of location 0 is

k n
SC0,2) = (w:)*+ Y (1)
i=1 i=k+1
k n
=Y —zi—9)°+ Y (@wi-y+y)’
i=1 i=k+1
k k n
> SClopt,x) =2 4>+ v*+ > o
=1 i=1 i=k+1
> SC(opt, x).

O

To design strategy-proof mechanisms, we need the following notations in the
remaining paper. Let ny = [{i : 0 < x; < 1}| be the number of agents whose
declarations are in the interval [0, 1]. Let ng = |[{i : 1 < z; < 2}| be the number
of agents whose declarations are in the interval (1,2].

A deterministic strategy-proof mechanism was provided in [1] as below.

Mechanism 1: Set f(z) =0 if n; < ng and otherwise f(z) = 2.
Mechanism 1 was proved to be strategy-proof in [1]. Han and Du [4] showed

that Mechanism 1 achieves 5-approximation for maxSOS objective and the
approximation ratio is the best possible.
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3 Randomized Strategy-Proof Mechanisms

In this section, we study randomized strategy-proof mechanisms with respect
to maxSOS objective function. We first show a family of group strategy-proof
mechanisms with respect to ny, the number of agents whose reported locations
are within the interval [0, 1].

Mechanism RM: For any given profile z, the mechanism places the facility at
0 with probability «, and places the facility at 2 with probability 1 — «, where
0 < a <1 is a number that depends on z.

Lemma 1. The mechanism RM is group strategy-proof if o is a non-increasing
function on ny. (The proof can be found in the full version of the paper.)

_ 471,1n2+n§
Theorem 2. Let a = Bninatnitnd

its approzimation ratio is at most 5/3 for maxSOS objective.

. Mechanism RM is group strategy-proof and

Proof. Let B = = oo . Then o = % It is easy to check that o is a
non-increasing functlon on § and then a a non-increasing function on n;. The
group strategy-proof holds due to Lemma 1.

Let us consider the approximation ratio. To state conveniently, we let f
denote Mechanism RM. For any given location profile x = (x1,x2, ..., x,), the

social welfare of Mechanism RM is

SC(f(x),x):aZx?+(lfaZ — ;)2
i=1 i=1

From Proposition 1, the optimal facility location is either at 0 or 2. We
estimate the following upper bounds for optimal social welfare.

Zf Z 2 + Z z? < ny + 4ny (1)
i=1

z;€[0,1) z;€[1,2]

n

d2-z)P= ) 2-z)’+ D (2-2) <4nytny (2)

i=1 z;€[0,1) z;€[1,2]

We deal with two cases with respect to the optimal location.
Case 1. The optimal location is at 0, i.e., SC(opt,x) = 3.1, z7. The social
welfare of mechanism RM is

SC(f(x),x) = aSC(opt,x) + (1 — a)( Z —x;)? Z (2 —x4)%)

z; €[0,1) z; €[1,2]
> aSC(opt,z) + (1 —a)ny
nq
> o) —r
> aSClopt,z) + (1 04)n1 i SC(opt, x) (3)

Inequality (3) holds due to the inequality (1).
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Case 2. The optimal location is at 2, i.e., SC(opt,z) = > i, (2 — x;)*. The
social welfare of mechanism RM is

n

SC(f(x),x)=al Y ai+ Y ad)+(1-a)) (2-w)

z;€[0,1) z;€[1,2] i=1
> ang + (1 — a)SC(opt, x)
> aﬁSC(opt,x) + (1 - a)SC(opt, z), (4)

Inequality (4) holds due to the inequality (2).
From Inequality (3) and Inequality (4), we obtain the approximation ratio p
as below.
1 1
+ (1= a)ny/(ng +4n2) " ang/(4ny +n2) + (1 — «)

o0

p < max{
o)

2
The above approximation p reaches the maximum when o = m%.
2
Let 8 = ni/ng. Then p = Higiigz, and p reaches its maximum 5/3if 5 =1. O

3.1 Lower Bounds of Randomized Mechanisms

In this subsection, we first show that no randomized strategy-proof mechanism
can achieve approximation ratio smaller than 1.077 for maxSum objective. Then,
we extend the idea for designing a lower bound 1.04285 for any randomized
mechanisms with respect to maxSOS objective.

Theorem 3. The approximation ratio of any randomized strategy-proof mecha-
nisms for mazSum objective is at least 14/13 =~ 1.077.

Proof. Consider two agents with a location profile z = (1/3,5/3). Then
SC'(opt,x) = 2. Let y be the facility location determined by a randomized mech-
anism.

We assume there exists a strategy-proof randomized mechanism with approx-
imation ratio p < 1.077. It is worth to note that SC(y,z) = E[ly — 1/3| + |y —
5/3|] < 2. Without loss of generality, we assume E[|ly — 5/3|] < 1.

Let us consider a new profile 2’ = (1/3,2), where agent 2 misreports its
location to 2 other than 5/3. Let 3’ be the facility location of profile 2’. Due to
the strategy-proofness, then we obtain E[ly’ —5/3|] < E[ly —5/3|] < 1.

Denote Pr[y’ < 1/3] = ¢. To state simply, we let Ey; be E[|ly’ —5/3] : ¢’ <
1/3] and Es, be Elly’ —5/3| : ¥/ > 1/3]. Since the utility is nonnegative and the
expected value is larger than the minimum value, we get that

4
34 <Ely —5/3|]=FEy-q+ Ezr-(1—¢q) <1,

which therefore, ¢ < 3/4.
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In profile z’, the optimal location is at 0. Hence, we have SC(opt,z’) = 7/3.
Note that E[SC(y',z') : y' > 1/3] = 5/3. Hence, we get an upper bound of any
randomized mechanisms,

E[SC(y',2")] = E[SC(y',2") : v/ <1/3l¢ + E[SC(y',2") : v’ = 1/3](1 - q)

7 5
< = —(1—1q).
<3¢+30-9)
Then, the approximation ratio

7/3 B
sa+3(1—q) 5+2
Theorem 4. Any randomized strategy-proof mechanisms have an approxima-
tion ratio of at least 1.04285 for mazSOS objective.

p> > 14/13 ~ 1.077. ad

Proof. Consider a location profile with two agents © = (x1,x2), where zy =
l—a,zo =1+ aand 0 < a <1 is a constant that will be specified later. Then
SC(opt,z) = (14 a)* + (1 —a)? = 2(1 + a?).

Since E[(y — 71)?] + E[(y — 22)?] < SC(opt,x), w.lo.g, we assume that
Elly — 22|*] < (1 + a?). From Jensen’s inequality, we have (E[ly — z2|])? <
Elly — x2]?] < (1 + @?), which gives E[|ly — z2]] < V1 + a2.

Consider a new location profile 2’ = (1 —a,2). Let 3 be the random variable
of the facility location on profile z’. Due to the strategy-proofness, we have

Elly’ = 22 < Efly — 22f] < V1 +a?, (6)

otherwise, agent 2 in profile z will lie to 2.
Let Prly’ < 1— a] = q. Due to space constraints, we let Es; be E[|ly’ — x4 :
Yy <1—a]and Es, be E[|y’ — z2| : ¥’ > 1 — a]. From Inequality (6), we have

209 < Fa;-q< E[ly —xa|] = Eay-q+ Ezr-(1—-¢q) < V1+a2

Thus, we get that g < ¥ 1;”2.

It is worth to note that the optimal location of profile 2’ is 0, which gives
the optimal social welfare SC(opt,2') = 4 + (1 — a)?.

Now let us consider the social welfare for the profile z’. Due to space con-
straints, we let E; be E[SC(y,2") : ¥y < 1 — a] and E, be E[SC(y,2') :
y > 1— a]. We first consider the maximum value of social welfare if a facil-
ity 1 —a < z <2 is located. We get that

SC(z,a)=(z—(1—-a))*+(2—2)%=4+(1—-a)* +22> -2(3—a)z
<4+ (1—a)®+4(a—1)=SC(opt,z’) +4(a — 1), (7)

where the last inequality holds since 1 —a <z <2and 0 <a < 1.
Now we turn to the social welfare for the profile 2’. The social welfare is
E[SC(y,2")|=E-q+ E.-(1—q)
< g+ SC(opt,a') + (1 - q) - (SC(opt,a’) + 4(a — 1))
= SC(opt,z') +4(1 — ¢)(a — 1),
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where the inequality holds since E; < SC(opt, z’) and Inequality (7).
Ducto0<a<1,and g < 7”;(;“2, it holds that

V1+a?

E[SC(y,2")] <4+ (1—a)*+2(1 o

)(2a — 2).
The approximation ratio of the randomized mechanism is

4+ (1—a)? 4+ (1—a)?
T ESCW, )] T 44 (1-a)2 4201 - (20 - 2)

(8)

The right side of Inequality (8) reaches the maximum when a = 0.758267, then
we finally get p > 1.04285 by setting a = 0.758267. O

4 Multiple Locations Per Agent

In this section, we consider an extended model that each agent controls multiple
locations. Let w; be the number of locations controlled by agent ¢ € N. The set
of locations by agent ¢ is then z; = (z41, %42, - ., Ziw, ). The location profile is
now x = (x1,...,xx), and there are total n locations, i.e Ele w; = N.

As before, the utility of an agent ¢ is the sum of utilities of each location, i.e.,
D(f(x),zi) = Y52, | f(x) —wij|. For simplicity, let Y=, ()P = 37, 375", g(wis)P
forany p > 1, and any function g. In the remaining paper, the function g usually
refers to g(x;) = x; or g(x;) = 2 — x;.

4.1 Deterministic Strategy-Proof Mechanisms for Multiple
Locations Per Agent

It is quite natural to consider Mechanism 1 for this model. However, Mechanism
1 is not strategy-proof.

Lemma 2. Mechanism 1 is not strategy-proof for the multiple locations per
agent. (The proof can be found in the full version of the paper.)

Mechanism 1 is not strategy-proof since n; and no only represent the inde-
pendent locations without considering the agents. The reason motivates us to
consider the locations of an agent as an entirety. An agent is said to prefer 0 if

Given profile z, let Ni(x) be the set of agents who prefer 0 and Nz(x) be the
set of agents who prefer 0. Hence, |N1(z)| is the number of agents who prefer 0
and |Ny(z)| is the number of agents who prefer 2.

It is quite natural to consider the mechanism who locates the facility at 0 if
more agents prefer 0 than 2.

Mechanism MA:
For given location profile z, if | N1 (x)| < |Na(z)|, the mechanism returns location
2, otherwise places the facility at 0.
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Lemma 3. Mechanism MA is a group strategy-proof mechanism. (The proof
can be found in the full version of the paper.)

Theorem 5. Mechanism MA is a group strategy-proof mechanism, and its
approzimation ratio is O(n) for mazSOS objective. (The proof can be found in
the full version of the paper.)

Similar as Theorem 5, we obtain that the lower bound of Mechanism MA
is 2n — 1 and the upper bound is at most 2n — 1. Thus, we have the following
Corollary.

Corollary 1. Mechanism MA is a group strategy-proof mechanism, and its
approzimation ratio is ©(n) for mazSum objective.

Though Mechanism MA is group strategy-proof, the approximation ratio
is not constant. To get better approximation ratio, we provide the following
mechanism.

Mechanism TMA:
For given location profile z, the mechanism places the facility at 0 if
DoieNy () Wi = Die Ny () Wis otherwise the facility is allocated at 2.

Theorem 6. Mechanism TMA is a strategy-proof mechanism, and its approxi-
mation ratio is 3 for maxSum objective and 5 for maxSOS objective. (The proof
can be found in the full version of the paper.)

Remark: Han and Du [4] showed that the lower bounds of the general setting
where each agent only has one location are 3 and 5 for maxSum and maxSOS
objectives, respectively. The lower bounds are also valid for our models, and thus
our mechanism is tight for both objectives.

4.2 Randomized Strategy-Proof Mechanisms for Multiple Locations
Per Agent

In this subsection, we study randomized mechanisms for multiple locations per
agent model. We first consider the mechanism that choose only location 0 and
2 with positive probabilities. The mechanism is described as below.

Mechanism RMA:
Given a location profile z, the mechanism places the facility at 0 with probability
> _ieN, () Wi/n and selects the facility at 2 with probability } ;¢ v, ) wi/n.

Theorem 7. Mechanism RMA is a strategy-proof mechanism and its approz-
imation ratio is 4 for maxSOS objective. (The proof can be found in the full
version of the paper.)

Corollary 2. Mechanism RMA is a strategy-proof mechanism and its approx-
imation ratio is 2 for mazSum objective. (The proof can be found in the full
version of the paper.)
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4.3 Lower Bounds of Randomized Mechanisms for Multiple
Locations Per Agent

The lower bounds of randomized mechanisms in Section 3 are still valid for this
general model. However, we can improve the lower bounds due to multiple loca-
tions of each agent. The techniques of designing lower bounds are also different
from Section 3.

Theorem 8. Any randomized strateqy-proof mechanisms with multiple locations
per agent achieve an approximation ratio at least 10/9 for mazSum objective.
(The proof can be found in the full version of the paper.)

Theorem 9. The approximation ratio of any randomized strategy-proof mech-
anisms for multiple locations per agent are at least 1.13 for maxSOS objective.
(The proof can be found in the full version of the paper.)

5 Concluding Remarks

In this paper, we have studied strategy-proof mechanisms for different objective
functions of obnoxious facility location game on a real line. Both upper bounds
and lower bounds are provided for randomized mechanisms. Besides, we studied
an extended model that each agent controls multiple locations. The provided
deterministic mechanisms are the best possible.

There exist plentiful researches on facility location and obnoxious facility
location (e.g. surveys [18,19]). Tamir [20] considered k-maxMin and k-maxSum
obnoxious facility location problem on graph, and showed that the problem is
strongly NP-hard even the graph is a line. Berman and Drezner [17] studied
the obnoxious facility on a network to maximize the minimal distance. This
substantial work motivates us to investigate a lot of interesting work for future.
First, one may consider to extend our model to different networks, such as a
tree or a circle. Second, it is interesting to study two facilities or the general k
facilities location games.
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Abstract. In this paper we study a game problem, called bin packing
game with an interest matrix, which is a generalization of all the cur-
rently known bin packing games. In this game, there are some items with
positive sizes and identical bins with unit capacity as in the classical bin
packing problem; additionally we are given an interest matrix with ratio-
nal entries, whose element a;; stands for how much item ¢ likes item j.
The payoff of item ¢ is the sum of a;; over all items j in the same bin
with item 4, and each item wants to stay in a bin where it can fit and
its payoff is maximized. We find that if the matrix is symmetric, a pure
Nash Equilibrium always exists. However the PoA (Price of Anarchy)
may be very large, therefore we consider several special cases and give
bounds for PoA in them. We present some results for the asymmetric
case, too.

1 Introduction

In the bin packing problem, there are m items with positive rational sizes
{s1, 82, ..., Sn}, where each item has size at most 1, and infinitely many bins
with unit capacity are available. The goal is to pack the items into a minimum
number of bins, so that in any bin By, the sum of the sizes of the items being
packed there (called level of the bin) does not exceed the capacity of the bin;
i.e., the quantity s(By) = > ;. p, s is at most 1. There are many papers on this
topic; we refer to [2,3,6,7,9] for details.

The first bin packing game was introduced by Bilo [1]. Later another version
was proposed by Ma et al. [10], and recently a general version was developed by
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Désa and Epstein [4]. We call these bin packing games (or models) as BPGI,
BPG2, and BPGS3, respectively.

In case of the BPG1 model, the items in the same bin pay unit cost in total
for being in this bin. The items share the cost proportionally to their sizes: a
bigger item pays more, a smaller item pays less, i.e. an item with size s; pays
s;/s(By) for being in bin By.

In case of the BPG2 model, the cost of any bin is again unit, but the items of
any bin pay the same price for being in this bin, i.e. any item pays 1/k if there
are k items in the bin.

In case of model BPG3, each item i has two parameters s; and u;, where s; is
the size of the item (as usually), and a nonnegative weight u; is also specified for
item 4. Then, for being in any one bin By, the items in By pay proportionally to
their weights rather than to their sizes or their cardinality; i.e., item i pays wu; /U
cost for being in By, where Uy = ZieBk u;. This is a common generalization of
the two previous models BPG1 and BPG2, since if u; = s; for any item, we get
model BPG1, or if u; = 1 for any item, we get model BPG2.

Generalized Bin Packing Game. We introduce a new type of bin packing
games. This new game is a common generalization of all the above three models,
thus we call it Generalized Bin Packing Game and abbreviate it as GBPG for
short.

The motivation of this new model is to express that people make their deci-
sions not only considering money or cost, but they often also take into account
how much they like a certain situation. Let us consider the next simple example:
There is a party where the people sit down at tables (tables = bins). Then a
person is interested not only in the cost of sitting at some table (and paying for
the food and drinks he will have), but would also like to enjoy the party, and
therefore chooses a table where he/she finds the people appealing.

Formally, an instance Z = (A, S) of GBPG is given as follows. There are n
items with sizes S = {s1, S2,..., Sn}, where 0 < s; < 1, and an n x n rational
matrix A = [a;5], called the interest matrix, is also given. The payoft of item ¢
is p; = ZjeBk a;; if 7 is packed into bin By. Each item wants to stay in a bin
where it can fit and its payoff is maximized. All bins are assumed to be identical
with unit capacity. In the discussion below we assume that all a;; > 0, although
some facts remain valid for negative values, too. (Some remarks of this kind will
be given.) We note that also a;; is taken into account when defining the payoff
p; of item 3.

A packing of the items is called a Nash Equilibrium [11], or NE for short,
if no item can improve its payoff by moving to another bin in which it can fit.
Moreover, if all the items are packed into the minimum number of bins, we call
this packing an optimum packing, and denote it by OPT. Without the danger
of confusion, we also use OPT and NFE to denote the bins used by an OPT
packing and an N FE packing, respectively.

Price of Anarchy (PoA). An often used metric in case of bin packing games
is the Price of Anarchy (PoA, for short); it measures how large a NFE can be
compared to OPT, when the value of OPT gets large. More exactly,
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. NE

There are further metrics, too, such as price of stability (PoS), strong price
of anarchy, and so on; in this paper we deal only with PoA.

Previous Results. The bin packing game BPG1 was studied first by Bilo
in 2006 [1]. He proved that this game admits a NF, and that the PoA is in
the interval [1.6,1.667]. Epstein and Kleiman [8] obtained stronger estimates,
proving that the PoA is in [1.6416,1.6428].

For the BPG2 model it was proven that its PoA is at most 1.7. This result
got further improved in [5].

In case of model BPG3 [4], it was shown that many kinds of Nash equlibria
(NE, Strong NE, Strongly Pareto Optimal NE and Weakly Pareto Optimal NE)
exist. For the case of unit weights (which is equivalent to model BPG2), the PoA
is in [1.6966, 1.6994]; and for the weighted case, both of the lower and upper
bounds are 1.7. For other results, we refer to [5,13].

Our Contribution. When the interest matrix is symmetric, we prove that
there exists a NE for any instance. Generally, the value of PoA can be very
large, therefore we consider several specific types of the interest matrix [a;;].
The results are listed in the following table, where s; is the size of item ¢ and u;
is the weight of item ¢. The bounds for max{s;, s;} are quoted from [8], and the
lower bound in the last two columns is from [4].

a;j =||general| max{s;,s;} |min{s;,s;}| max{ui,u;} | u;+ u;

PoA|| oo |[1.6416, 1.6428]] oo  |[1.6966, 1.723]|[1.6966, 2]

Lastly we investigate the case of asymmetric matrices and find that a NE packing
does not exist for some instances. We give a sufficient condition to recognize this
situation of non-existing NE. On the other hand we give a sufficient condition
which guarantees that an asymmetric interest matrix can be converted to a
symmetric one.

2 Preliminaries

In this section, we first recall the definition of a classical algorithm for the bin
packing problem, and then prove that the game we study is a generalization of
all the known bin packing games.

First Fit for Bin Packing. For an input I of bin packing, let ALG(I) be
the number of bins used by algorithm ALG to pack this input, and let OPT(I)
denote an optimal solution. Algorithm First Fit (FF) is a classical algorithm,
which packs each item into the first bin where it fits. (If the item does not fit
into any opened bin, it is packed into a new bin.) First Ullmann [12] proved that
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FF(I) < 1.7-OPT(I)+3. Then, after several attempts to decrease the additive
constant, finally Désa and Sgall [6] proved that FF(I) < 1.7- OPT(I), what
means that the absolute approximation ratio of FF is at most 1.7. In another
work, Désa and Sgall [7] give a matching lower bound, thus these two papers
together prove that the bound 1.7 is tight.

Relation to the Earlier Models. The players in the games introduced earlier
wish to minimize their costs, while in our game the players wish to maximize their
payoff. In spite of this, the former bin packing game models can be considered
as special cases of Model GBPG, in the following way:

— BPG1 model: let a;; = s; - s5; or a;; = s;.
— BPG2 model: let a;; =1; or a;; = s;.
— BPG3 model: let a;; = u; - uj; or a;; = uy.

We only prove this claim for the BPG1 model; the assertion for the other two
models can be shown in a similar way.

Lemma 1. If a;; = s;- 55, or if a;; = s, for all 1 <4,5 < n, then our game
is equivalent to the BPG1 model in the sense that a NE for GBPG is also a NE
for BPG1, and vice versa.

Proof. Suppose a;; = s;-5;, and an item ¢ is packed into bin By. Then the payoff
of this item is p; = 3, p, (i - s5) = 8; - 8(By). This item is intended to go into
another bin By, if the payoff of item 4 will be bigger there (and item i fits there).
This new payoff is p; = 3 (si°5;) +5? = 8;-(s(By) + ;). Thus the movement
is possible if and only if p, > p;, i.e. s(B;)+s; > s(By). This is exactly the same
case (when the movement is possible) like the one in model BPG1. O

3 The Symmetric Case

We prove that for any symmetric matrix A, there always exists a pure NE for
our model GBPG. We give the proof by using a potential function.

Theorem 1. If matriz A is symmetric, then GBPG always has an NE.

Proof. The high-level idea is to associate each feasible packing with a potential in
such a way that the potential function is upper-bounded by a value computable
from the input, and to prove that once an item moves from one bin to another,
the total potential strictly increases. If this property holds, then no previous
state can occur again, thus a NE surely exists because there are only a finite
number of different configurations (packings).

Recall that if item ¢ is packed into bin By, then its payoff is p; = ZjeBk aij.
Given an input I and a packing for I, we define a potential function as

P= Zpi < n? Hil’E;X{aij}.
el
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Next we prove that if item ¢ moves from bin By to bin Bp, then the value
of P increases. Before moving from bin Bj, to bin By, let p; be the payoff of
item j and P =}, _; p;. After the movement, let p;- be the payoff of item j and
P = Dicr p;, and name bins By and By, as B;c and B;L, respectively.

Observe that for item j which is not packed in bin By or By, its payoff does
not change. Then we have

Pr=rP="p+ > p=> p—> p

jE€B;, JEB, JEB JEB
== )+ (Do p— D p)
jeB, JEB jEB,, jEB
=i+ D au)— i+ Y aj)
Jj€BR JEB,,
=(pi—p)+ () aij— Y ay) byay=a;
JjEBL ]EB;
= (P; —pi) + (ai; + Z Qij — Qg5 — Z a;;)
JEBR jeB,;

= (p; — pi) + (p; — pi) = 2(p; — pi) > O.

For the convergence steps, if we set A a rational matrix, let A > 0 be the
minimal integer such that Aa;; is integer for all components of A, and therefore
A(p; —p;) > 1, and the potential function will increase at least 2/A after a selfish
movement. After at most An? max; j{a;;/2} steps, we will have a NE. O

Remark 1. One can observe that the above proof works even when matrix A
has zero or negative entries. A natural interpretation of this extension is that
a;i; is positive if person i likes person j, and is negative if ¢ dislikes j.

Observation 1. For arbitrarily large real k there exists an interest matriz A,
for which the PoA is bigger than k, even if a;; € {0,1} is required for all
1<4,5 <n.

Proof. Given any real k, let n be an integer such that n > k. There are n items
{1,2,...,n}, each with size ¢ < 1/n. We pack the items into mutually distinct
bins. Let a;; = 1 for every ¢, and a;; = 0 for all 4 # j. The actual packing is a
NE, whereas the optimal solution uses only one bin. O

Recall that if all entries in the interest matrix A have the same value a;; = 1,
the PoA is upper-bounded by 1.6994 [4]. However, we find that the PoA can be
very large even if almost all entries are a;; = 1 and all the other elements satisfy
ai; =1 — € where € > 0 could be arbitrarily small.
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Proposition 1. Given 0 < § < 1/2, let k be an integer for which ké > 1. Then
there is a matriz A with size n x n, where n = k*, in which aj; =1 for at least
(1—1/k)-n? different pairs (i, ), moreover a;; = 1—3 for all the other entries,
and the PoA is at least k2.

The proof is left in the Appendix due to the page limitation.

3.1 Special Models

Now we give lower and upper estimates on PoA for several special cases of GBPG:
a;j = max{s;, s;}, a;; = min{s;, s;}, a;; = max{u;, u;}, and a;; = u; +u;, where
u; is the weight of item 4, which may be different from s;.

In the model a;; = max{u;,u;}, where u; means something that how much
person or item 4 is important. So a special (and natural) case is, where the items
correspond to some persons, some of them are famous while the other are not
famous. If we assume that u; = 1 if any person i is famous, and u; = p < 1 other-
wise, we model the situation that people like to be in the presence of famous, or
important persons. Or, more generally, any person gets an “importance” index,
this is the u; value. Then, the happiness between two persons, ¢ and j is defined
as a;; = max{u;, u;}. Further more in the special model a;; = max{s;, s;}, the
bigger item can enforce his want to the smaller item. This is a typical situation
in many cases.

In order to explore the relationship between a matrix A and the corresponding
value of PoA, we begin with the settings a;; = max{s;, s;} and a;; = min{s;, s;}.
For the former we prove that the PoA is at most 1.7, and find that some earlier
results also remain valid for this model. But the latter is substantially different
as the PoA can be arbitrarily large.

Proposition 2. If a;; = max{s;,s;}, then PoA is at most 1.7.

Proof. Our key observation is as follows: For any bin in a given packing, the
payoff of the smallest item is the total size of items in the bin, and the payoff
of any other item in the bin is at least this value. Consider a NE with bins
B, Bs, ..., By,. Assume that the bins are sorted such that s(By) > s(Bg) > ... >
$(Bm). We claim that no item in By, fits into By, for any h < k, i.e. the packing
can be viewed as a result of FF packing. Let ¢ be the smallest item in By, and
suppose for a contradiction that it fits into Bp. In By, the payoff of item i is
p; = s(By), whereas the payoff of this item is at least s(Bp) + s; > s(Bg) if it
moves to Bp; this contradicts the assumption that we are in a NVFE state. Thus
the claim follows. As we know that the asymptotic approximation ratio of FF
(and even the absolute approximation ratio of FF) is 1.7, we obtain that the
PoA in the current model is at most 1.7. O

Remark 2. We find that using the methods in [1], one can get 1.6 < PoA <
1.667; and using the methods in [8], one can further get 1.6416 < PoA < 1.6428.

Proposition 3. If a;; = min{s;, s;}, then PoA can be arbitrarily large.

The proof is left in the appendix.
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Theorem 2. Assume that each item i is associated with two parameters, the
size s; and the weight uw; > 0. If a;; = max{u;,u;}, then PoA is at most
3L <1.723
31 < 1.723.

Proof. Let us consider an NE with bins By, By, ..., By,. Given a bin Bj, let the
total weight and total size of the items in B; be u(B;) and s(B;), respectively;
and let the number of items in B; be |B;|. Suppose that there are two bins, say
By and Bs, such that s(Bjy) + s(Bz2) < 1. Assume without loss of generality that
u(B1) > u(Bz). Let ¢ be the item with the smallest weight in By. The payoff of
i is exactly u(Bsg), and it becomes at least u(B1) +u; > u(Bs) if the item moves
to By, contradicting the assumption that the packing is an NFE. Consequently,
s(B1) + s(B2) > 1 holds for any two bins. Moreover, we have the following
properties.

1. If item 7 is packed into Bj, its payoff satisfies p; > u(B;) and equality holds
only if ¢ has the minimum weight in B;.

2. If item k has the smallest or second smallest weight in Bj;, then p; <
U(B]) —+ U

Now we divide the bins into four groups:

G1={B; |0<s(B;) <1/2}, G={B;[1/2<s(B;)<2/3},
Gs={B;[2/3<s(B;) <3/4}, Gua={B;|s(B;)>3/4}.

Claim 1. |G4| < 1.

Proof: This follows from the fact that, as we have shown the beginning of the
argument, any two bins satisfy s(By) + s(Bz2) > 1 in any NE. O

Define G% = {B] | Bj S G27 |Bj| = 1}7 G% = {BJ | Bj S G37 ‘Bj| = 1},
G5T ={B; | B; € Ga,|B;| > 2}, G3t ={B;|B; € G3,|B;| > 2}.

Claim 2. The sole item in each bin of G} U G3 has a size larger than 1/2 (by
definition).

Claim 3. |G3T| < 1.

Proof: Suppose for a contradiction that at least two bins, say By and Bs belong to
GZ"; assume without loss of generality that u(B;) > u(Bz). From the definition
of G%Jr, we see that the item with the smallest weight or the second smallest
weight has a size at most % Let item k be the item. If item & moves to bin By,
then its payof! is at least u(By)+uy > u(Bs)+uy > pg, where py, is the payoff of
item k in bin Bs. So it is not difficult to see that the item in By has an incentive
to move to bin B;. Hence the assumption is false and |G2T| < 1. O
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Claim 4. With the exception of at most one bin, in each bin of G§+, both the
item with the minimum weight and the second minimum weight have size larger

than 1/4.

Proof: Consider any two bins of G§+, say B; and Bs. Assume without loss of
generality that u(B;) > u(Bz). In By, if any item ¢ with the smallest or the
second smallest weight has a size at most %7 then its payoff will get improved
from at most u(Bs) + u; to at least u(By)+ u;, by Properties 1 and 2. Therefore
each of them has a size larger than 1/4. O

Now we can proceed further with the proof of the theorem. We have an upper
bound

NE = |Gy| + |G| + |G3| + |G5T| + |G5T| + | G4l
<24 |Gyl + 1G3| + IG5 + |Gl

and a lower bound

|G3I +1GY| | 21G5*| | 3|Gal

OPT > 5 + 3 + R (1)

The size of each item in the bins of G3UGY is larger than 1/2; let us call these

items big. Hence, there are |G3| + |G| big items. In each bin of G3¥, except at

most one bin, there are at least two items with a size larger than 1/4 each; let

us call these items medium-sized items. Hence, there are at least 2(|G3T| — 1)

medium-sized items. Note that no two big items can be packed into the same
bin, therefore

OPT > |G3| + |G3|. (2)

Case 1. |G| + |G| > 2(|G3T| — 1). Then we also have
OPT > 2|G3"| — 2. (3)

We multiply the inequalities (1), (2), (3) by 22, £ and -k

18 187 13, respectively. Adding
them we obtain

31
1—80PT > |Gy +1GE| + |G3T| + |Gyl — 1/9,

thus

31 19
NE < |G3| +|G3| +|G3F| +|Ga| +2 < ROPT + 5 < 1.723-OPT +2.12.

Case 2. |G3| + |G| < 2(|G5F| — 1). Now, in any feasible packing, at most one
medium-sized item can be packed with a big item into the same bin, and the

2(1G27|-1)—|G3|—|G3] ..
(G| )3| 2l=1Gsl pipg, Therefore,

remaining medium-sized items need at least

2(1G2T| = 1) — |GL| — |GL
OPT > (G} + |G} + 2UGs"] >3 G3| — |G}

_ 263+ IGH), | 21657 -2
3 3 '
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24 4 3

Now we multiply the inequalities (1), (2), and (4) by {3, 15, and 13, respec-
tively. Adding them we obtain
31
ROPT > G5+ |G5 + 1G5+ |Gal — 1/9,
therefore we also have NE < %OPT + % < 1.7230PT + 2.12. O

Proposition 4. Assume that a;; = u;+u;, where u; > 0 is the weight of item i.
Then PoA is at most 2.

Proof. 1t suffices to show that the average level of bins in any N E is larger than
1/2. In fact, the average is this large already for any two bins. Indeed, consider
an NFE, and assume for a contradiction that there are two bins, say B; and
By, such that their total level is at most 1. Let u(B;) and u(Bg) be defined as
u(B1) = ep, wj and u(Bz2) =3, p, uj, respectively; we assume without loss
of generality that w(By) > u(Bs). Let | and k be the numbers of items in B
and Bs, respectively. Suppose first that [ > k, and let 7 be an arbitrary item in
By. We claim that ¢ would like to move to By. The actual payoff for item i is

pi= Y ay =Y (uitu;) =k u+u(Bs).
JEB:2 JEB2
If 4 moves to bin By, its payoff will be there
Pi= aitai= Y (ui+u)+2u=(+2) u+u(B),
JjE€EB1 jEB1

which is bigger than p;, thus the claim is verified. This contradicts the assumption
that the packing is a N E, therefore we must have | < k. Let i be the item in B,
for which u; is the biggest, and j be the item in By, for which u; is the smallest.
Then

If we move ¢ from By to Bs, its payoff changes by
c] = pi/ —pi = (k‘ “U; + ’LL(BQ) + 2’11,1‘) — (l S Ui+ u(Bl))
and if we move j from Bs to Bj, its payoff changes by
c2=p; —pj = (L u; +u(B1) +2u;) — (k- u; + u(B2))
=42 —-k)uj +u(Bq) —u(Bs).
Moreover, from (5) we have
c1+c = 2(ui + Uj) + (k- l)(uz — Uj) > 0.

This means that at least one of items ¢ and j will improve its payoff by moving
to the other bin, a contradiction. a

Remark 3. In the two latter models, if we set u; = 1 for all 7, then PoA > 1.6966
can be proved by the approach given in [4].
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4 Asymmetric Case

In this section we deal with the case where the matrix A is not symmetric.
First we observe by giving an example that NE may not always exist; more
precisely, from a suitably chosen initial packing, NE is not reached after any
infinite sequence of selfish steps. Then we describe a sufficient condition for
problem inputs, which ensures that there exists an initial packing and an infinite
sequence of feasible steps which never lead to an NE. However we find by another
example that the condition is not necessary. Finally we also give a sufficient
condition, where NE always exist.

Example 1. The following instance admits an initial packing which never ter-
minates with an NFE, independently of the value of the parameter p < 1.
Take three items 1, 2, and 3, each with size 0.5. Let a;; = 1 for ¢ = 1,2, 3,
a12 = ag3 = az1 = 1, and a1 = azz = a3 = p.

Proof. Assume that the three items are packed in three distinct bins. Then first
item 1 moves to share a bin with item 2. Then item 2 leaves item 1 alone and
moves to share a bin with item 3. Then item 3 leaves item 2 alone and moves to
share a bin with item 1. Then item 1 moves and again shares a bin with item
2, and the movement can be continued to infinity. Then there is no NF for the
above instance. a

In the following we give a generalization of the instance in Example 1, where
NE does not exits after any sequence of selfish steps. This part is related to line
graphs.

Line Graph. According to standard terminology, the vertices in the line graph
L(G) of G represent the edges of G, and two vertices of L(G) are adjacent if
and only if the corresponding edges of G share a vertex. So, each edge in L(G)
identifies three vertices, say v;,v;,v; in G, and two edges v;v;, v;v; on them,
sharing one vertex v;. Originally in G the edges are undirected; but now their
common vertex v; specifies the ordered pairs (¢, ), (¢, k). In case if a;; = a;x, we
remove the corresponding edge from L(G); and if equality does not hold, then
we orient the edge of L(G) from the smaller to the larger a-value; see Fig. 1 for
an illustration. We denote by H = (X, F') the oriented graph obtained in this
way. (This H, obviously, does not contain cycles of length 2.)

Compatibility Graph. Let Z = (A, S) be an instance of GBPG. We define
the compatibility graph to represent the pairs of items which can occur together
in a bin. This undirected graph, which we denote by G = (V, E), is described by
the following rules:

— the vertices are vy, vs, ..., vy, indexed according to the items;
— an unordered vertex pair v;v; is an edge if and only if 5; +5; < 1.
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1 2 €1,4
1 1 1 €
€1,2 €1,3
A — l-e 1 P €
p 1 1 ¢
€ € € € 3 4 €24 €23 €34

Fig. 1. Matrix, Compatibility Graph and Line Graph

Theorem 3. Let T = (A, S) be an instance of GBPG, and let H = (X, F)
be the oriented partial line graph as described above. If H contains a directed
(cyclically oriented) cycle, then there exists an initial packing of the items and
an infinite sequence of feasible steps along which NE is never reached.

Proof. Let C = z1z9 ... x4 be a directed cycle in H. We assume, without loss of
generality, that C' is a shortest cycle in H. Each xp (1 < k < {) corresponds
to some edge ey := v;, vj, of G, and we have e Negpq # 0 forall 1 < k < ¢
(subscript addition is taken modulo ¢ throughout the proof). We further observe:

Claim. For all k£ we have e Negt1 # €1 N epro.

Proof. Suppose for a contradiction that ex Negy1 = epy1 N egyra = vk, and
assume that e; = vpv;, for i = k,k 4+ 1,k + 2. Then, by the construction of H,
we have

Ok jre < Ok jry1 < Ok jjqa-

As a consequence, also xxk12 is an arc in H, because ey, and ey share vy and
the corresponding s-values satisfy the required inequality. This contradicts the
assumption that C is a shortest cycle in H, and hence the claim follows. [J

To prove the theorem we start with the initial packing where the two items
corresponding to the vertices of e; are in the same bin, and all the other items
are in mutually distinct bins. The claim implies that moving the item of e; Ney
from its bin to the bin of es \ e; is feasible. More generally, from a bin whose
contents are the two items belonging to ey, it is feasible to move e Negy1 to
the bin of eg41 \ eg, for any 1 < k < £. Consequently, in the first £ — 1 bins the
first £ items can circulate forever, without reaching NE at any time. O

Remark 4. The line graph of the input can be constructed in linear time in
terms of the input size, and it can also be tested in polynomial time whether the
line graph contains a directed cycle.

Lemma 2. Fven in a line graph of an input instance there is no directed cycle,
NFE may not occurs after finite steps of selfish improvement.

The proof is left in the appendix.
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Next we give a sufficient condition, which ensures that the game in an asym-
metric case can be converted to a symmetric game. The proof is left in the
Appendix.

Proposition 5. Assume that a;; > 0 for any pair (4, j). If there is a univariate

function g : N — R* such that %2 = 3((;)), then the asymmetric case can be
Jr
transformed to the symmetric case, and hence NE exists.

5 Conclusions and Further Research

In this paper we introduced a new type of bin packing game, which is a com-
mon generalization of all the previously considered bin packing games. Then we
studied several special types of it. There are several open questions left, let us
mention two of them.

1. What are the tight bounds on PoA for the models studied?

2. Determine the algorithmic complexity of the following decision problems.
Given T = (A, S), an instance of GBPG, together with an initial packing,
(a) is it true that NE is reached after a suitable sequence of steps?

(b) is it true that NE is reached after a finite number of steps, no matter
which feasible step is chosen at any time?
Is any of these problems polynomial-time solvable?
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Abstract. Cooperative games provide an appropriate framework for fair
and stable profit distribution in multiagent systems. In this paper, we
study the algorithmic issues on path cooperative games that arise from
the situations where some commodity flows through a network. In these
games, a coalition of edges or vertices is successful if they establish a
path from the source to the sink in the network, and lose otherwise.
Based on dual theory of linear programming and the relationship with
flow games, we provide the characterizations on the CS-core, least-core
and nucleolus of path cooperative games. Furthermore, we show that the
least-core and nucleolus are polynomially solvable for path cooperative
games defined on both directed and undirected network.

1 Introduction

A central question in cooperative game theory is how to distribute a certain
amount of profit generated by a group of agents N, denoted by a function (),
to each individual. It is often assumed that the grand coalition N is formed, since
in many games the total profit or costs are optimized if all agents work together.
To achieve this goal, the collective profit should be distributed properly so as to
minimize the incentive of subgroups of agents to deviate and form coalitions of
their own. A number of solution concepts have been proposed to capture this
intuition, such as the core, the least-core, and the nucleolus, which will be the
focus of this paper.

In this paper, we consider a kind of cooperative game models, path cooperative
games (PC-games), arising from the situations where some commodity (traffic,
liquid or information) flows through a network. In these games, each player
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controls an edge or a vertex of the network (called edge path cooperative games
or vertex edge path cooperative games, respectively), a coalition of players wins
if they establish a path from the source to the sink, and lose otherwise. We will
focus on the algorithmic problems on game solutions of path cooperative games,
especially core related solutions.

Path cooperative games have a natural correspondence with flow games. Flow
games were first introduced by Kalai and Zemel [13] and studied extensively by
many researchers. When there are public arcs in the network, the core of the
flow game is nonempty if and only if there is a minimum (s, t)-cut containing
no public arcs. And in this case, the core can be characterized by the mini-
mum (s, t)-cuts[13,18], and the nucleolus can also be computed efficiently[5,17].
Recently, Aziz et al. [1] introduced the threshold versions of monotone games,
including PC-games as a special case. Yoram [3] showed that computing e-core
for threshold network flow games is polynomial time solvable for unit capac-
ity networks, and NP-hard for networks with general capacities. For PC-games
defined on series-parallel graphs, Aziz et al.[1] showed that the nucleolus can be
computed in polynomial time. However, the complexity of computing the nucle-
olus for general PC-games remains open, from the algorithmic point of view, the
solution concepts of general PC-games have not been systematically discussed.

The algorithmic problems in cooperative games are especially interesting,
since except for the fairness and rationality requirements in the solution defi-
nitions, computational complexity is suggested be taken into consideration as
another measure of rationality for evaluating and comparing different solution
concepts (Deng and Papadimitriou [6]). The computational complexity of clas-
sical solution concepts has therefore been studied with growing interest during
the last decades. On the positive side, efficient algorithms have been proposed
for computing the core, the least-core and the nucleolus for, such as, assignment
games [20], cardinality matching games [14], unit flow games [5] and weighted
voting games [8]. On the negative side, the problems of computing the nucleolus
and testing whether a given distribution belongs to the core or the nucleolus are
proved to be NP-hard for minimum spanning tree games [9,10], flow games and
linear production games [5,11].

The main contribution of this work is the efficient characterizations of the
CS-core, least-core and the nucleolus of PC-games, based on linear programming
technique and the relationship with flow games. These characterizations yield
directly to efficient algorithms for the related solutions. The organization of the
paper is as follows.

In Section 2, the relevant definitions in cooperative game are introduced. In
Section 3, we first define PC-games (edge path cooperative game and vertex
path cooperative game), and then give the the characterizations of the core and
CS-core. Section 4 is dedicated to the efficient description of the least-core for
PC-games. In Section 5, we prove that the nucleolus is polynomially solvable for
both edge and vertex path cooperative games.
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2 Preliminaries

A cooperative game I' = (N, ) consists of a player set N = {1,2,--- ,n} and
a characteristic function v : 2 — R with ~(0)) = 0. For each coalition S C N,
~(S) represents the profit obtained by S without help of other players. The set
N is called the grand coalition. In what follows, we assume that v(S) > 0 for all
S C N, and v(0) = 0.

An imputation of I" is a payoff vector x = (21, ...z,) such that ),y z; =
Y(N) and z; > ~v({i}), Vi € N. The set of imputations is denoted by Z(I).
Throughout this paper, we use the shorthand notation z(S) = ), g z;. Given a
payoff vector x € Z(I"), the excess of coalition S C N with respect to z is defined
as: e(z, 5) = x(S) —~(95). This value measures the degree of S’s satisfaction with
the payoff x.

Core. The core of a game I', denoted by C(I'), is the set of payoff vectors
satisfying that, x € C(I") if and only if e(x,S) > 0 for all § C N. These
constraints, called group rationality, ensure that no coalition would have an
incentive to split from the grand coalition N, and do better on its own.

Least-core. When C(I") is empty, it is meaningful to relax the group rationality
constraints by e(x,S) > ¢ for all S C N (e < 0). We shall find the maximum
value £* such that the set {z € Z(I') : e(x, S) > ¢*,VS C N} is nonempty. This
set of imputations is called the least-core, denoted by LC(I'), and €* is called
the value of LC(I") or LC-value.

Nucleolus. Now we turn to the concept of the nucleolus. A payoff vector x
generates a 2"-dimensional excess vector §(z) = (e(z, S1), -+ ,e(x, San)), whose
components are arranged in a non-decreasing order. That is, e(z, S;) < e(z, S;)
for 1 < i < j < 2™ The nucleolus, denoted by n(I), is defined to be a payoff
vector that lexicographically maximizes the excess vector §(z) over the set of
imputations Z(I"). It was proved by Schmeidler [19] that the nucleolus of a game
with the nonempty imputation set contains exactly one element.

Monotone Games and Simple Games. A game I' = (N,7) is monotone
if v(8") < ~(S) whenever S C S. A game is called a simple game if it is a
monotonic game with v : 2% — {0,1} such that v(f) = 0 and y(N) = 1.
Simple games can be usually used to model situations where there is a task to
be completed, a coalition is labeled as winning if and only if it can complete the
task. Formally, coalition S C N is winning if v(S) = 1, and losing if v(S) = 0.
A player i is called a veto player if he or she belongs to all winning coalitions. It
is easy to see that, in a simple game, i is a veto player if and only if v(N) =1
but y(N \ {i}) = 0.

For simple games, Osborne[16] and Elkind et al. [7] gave the following result
on the core and the nucleolus.

Lemma 1. A simple game I' = (N, ~) has a nonempty core if and only if there
ezists a veto player. Moreover,
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1. x € C(I") if and only if x; =0 for each i € N who is not a veto player;
2. when C(I') # 0, the nucleolus of I' is given by x; = % if © is a veto player
and x; = 0 otherwise, where k is the number of veto players.

CS-core. Taking coalition structure into consideration, we can arrive at
another solution concept, CS-core. Given a cooperative game I' = (N,7v), a
coalition structure over N is a partition of N, i.e., a collection of subsets
csS = {C',---,CF} with U?ZlC’j = N and C'NC/ = ) for i # j and
i,7 € {1,--- ,k}. A vector x = (1, -+ ,x,) is a payoff vector for a coalition
structure CS = {C*,--- ,C*} if 2; > 0 for all i € N, and x(C7) = (C7) for
each j € {1,--- ,k}.

In general, an outcome of the game I' is a pair (CS, z), where CS is a coali-
tion structure and z is a corresponding payoff vector. The CS-core of the game
I' = (N,~), denoted by C.s(I'), is the set of outcomes (CS,z) satisfying the
constraints of “group rationality”. That is,

Ces(I') = {(CS,z) : ¥C € CS,2(C) =~v(C) and VS C N, z(S) > v(S5)}.

A stronger property that is also enjoyed by many practically useful games is
superadditivity. The game I' = (N, ) is superadditive if it satisfies v(S; U S3) >
~v(S1) + v(S2) for every pair of disjoint coalitions S, Sy C N. This implies that
the agents can earn at least as much profit by working together within the
grand coalition. Therefore, for superadditive games, it is always assumed that
the agents form the grand coalition. For a (non-superadditive) game I = (N, v),
we can define a new game I'™* = (N,~*) by setting

75(8) = S v(CS), VSC N

where CS, denotes the space of all coalition structures over S and v(CS) =
Y ceccs V(C). Tt is easy to verify that the game I'* is superadditive, and it is
called the superadditive cover of I'. The relationship between the CS-core of I
and the core of its superadditive cover I'* is presented in the following lemma
[4,12].

Lemma 2. A cooperative game I" = (N, ) has nonempty CS-core if and only if
its superadditive cover I'* = (N,~*) has a non-empty core. Moreover, if C(I'*) #
0, then Ces(I") = C(I™).

3 Path Cooperative Game and Its Core

Let D = (V, E;s,t) be a connected flow network with unit arc capacity (called
unit flow network), where V' is the vertex set, E is the arc set, s,t € V are the
source and the sink of the network respectively. In this paper, an (s, t)-path is
referred to as a directed path from s to ¢ that visits each vertex in V' at most
once.
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Let U, W C V be a partition of the vertex set V such that s € U and t € W,
then the set of arcs with tails in U and heads in W is called an (s,t)-edge-
cut, denoted by E C E. An (s, t)-verter-cut is a vertex subset V C V' \ {s,t}
such that D\ V is disconnected. An (s,t)-edge(vertex)-cut is minimum if its
cardinality is minimum. In the remainder of the paper, (s,t)-edge(vertex)-cuts
will be abbreviated as edge(vertex)-cut S for short. Given an edge-cut E, we
denote its indicator vector by Hz € {0, 1}/Z!, where Hz(e) = 1 if e € E, and 0
otherwise. The indicator vector of a vertex-cut is defined analogously.

Now we introduce two kinds of path cooperative games (PC-games), edge

path cooperative games and vertex path cooperative games.

Definition 1 (Path cooperative game, PC-game). Let D = (V, E;s,t) be
a unit flow network.

1. The associated edge path cooperative game (EPC-game) I'y = (E,vg) is:
— The player set is E;
B ve(S) =1 if D[S] admits an (s,t)-path;

VSCE, {’YE(S) =0 otherwise.

Here, D[S] denotes the induced subgraph with vertex set V' and edge set S.

2. The associated vertex path cooperative game(VPC-game) I'y = (V, vy ) is:
— The player set is V' \ {s,t};
Yw(T) =1 if induced subgraph D|T] admits an (s,t)-path;
- vTCV, .
Y (T) =0 otherwise.

Clearly, PC-games fall into the class of simple games. Therefore, we can get
the necessary and sufficient condition of the non-emptiness of the core directly
from Lemma 1.

Proposition 1. Given an EPC-game I'y and a VPC-game Iy associated with
network D = (V, E; s,t), then

1. C(I'g) # O if and only if the size of the minimum edge-cut of D is 1;
2. C(I'v) # 0 if and only if the size of the minimum vertez-cut of D is 1.

Moreover, when the core of a PC-game is nonempty, the only edge (vertex)
in the edge(vertex)-cut is a veto player, both the core and the nucleolus can be
given directly. In the following two sections, we only consider PC-games with
empty core.

We note that PC-games also have a natural correspondence with flow games
and in what follows, we will reveal the close relationship between flow games and
PC-games. Let D = (V, E; s,t) be a unit flow network. Given N C E, each edge
e € N is controlled by one player, i.e., we can identify the set of edges N with
the set of players. Edges not under control of any players, in E \ N, are called
public arcs; they can be used freely by any coalition. Thus, a unit flow network
with player set N is denoted as D{N) = (V, E; s, t)

Definition 2 (Simple flow game). The simple flow game I't(N) = (N,7)
associated with the unit network D(N) is defined as:
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1. The player set is N;
2. VS C N, ~(S) is the value of the maz-flow from s to t in D[S U (E\ N)]
(using only the edges in S and public edges).

Flow game is a classical combinatorial optimization game, which has been
extensively studied. The core of the flow game I’y (V) is nonempty if and only if
there is a minimum edge-cut without public edges [18]. In this case, the core is
exactly the convex hull of the indicator vectors of minimum edge-cuts without
public edges in D [13,18], and the nucleolus can also be computed in polynomial
time [5,17].

Now we turn to discuss the CS-core of PC-games. It is easy to see that for the
network D without public edges, the associated flow game is the superadditive
cover of the corresponding EPC-game. Thus, the nonemptiness of CS-core of
EPC-game follows directly from Lemma 2.

Proposition 2. Given an EPC-game I'g associated with network D =
(V, E;s,t), then the CS-core of I'y is monempty and it is exactly the convex
hull of the indicator vectors of minimum edge-cuts of D.

For a VPC-game, we can also establish some relationship with a flow game.
Given a network D = (V, E; s,t), we transform it into a new network Dy in the
following way.

(1) For each v € V'\ {s,t}, split it into two distinct vertices v and v";

(2) Connect v’ and v” by a new directed edge e, = (v',v”). The set of all
such edges is denoted by Ey;

(3) For original edge e = (u,v) € E, transform it into a new edge e = (u”,v")
in Dy (s=¢ =s"andt =1t =t").

(%1 (%

Eui e €y

! 1 ! i
Uy Uy Uy Uy

In the new constructed network Dy, the player set is just the set Ey and all
the other edges are viewed as public edges. It is easy to show that in the new
network Dy, there must be a minimum edge-cut containing only edges in Ey, .
Hence, we can verify that the flow game associated with the network Dy (Ey) is
the superadditive cover of the corresponding VPC-game defined on D. Similarly,
the nonemptiness of CS-core of VPC-game follows from Lemma 2 and the results
of core nonemptiness of flow games.

Proposition 3. Given an VPC-game Iy associated with network D =
(V, E;s,t), then the CS-core of I'y is mnonempty and it is exactly the convex
hull of the indicator vectors of minimum vertex-cuts of D.
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4 Least-Core of PC-Games

In this section, we first discuss the least-core of EPC-games. Throughout this
section, I'g is an EPC-game associated with the network D = (V, E; s,t) with
|E| = n. Denote by P the set of all (s,t)-path in D, and |P| = m. According to
the definitions of EPC-game and the least-core, it is shown that £LC(I'g) can be
formulated as the following linear program:

max €
z(E)=1 (1)
s.t. z(P)>1+e VPeP

In spite that the number of the constraints in (1) may be exponential in |E],
the L£C-value and a least-core imputation can be found efficiently by ellipsoid
algorithm with a polynomial-time separation oracle: Let (z,¢) be a candidate
solution for LP(LCg). We first check whether constraints (E) = 1 and z(e) > 0
(Ve € E) are satisfied. Then, checking whether z(P) > 1+ (VP € P) are
satisfied is transformed to solving the shortest (s,¢)-path in D with respect to
the edge length z(e) (Ve € E), and this can aslo be done in polynomial time.

In what follows, we aim at giving a succinct characterization of the least-core
for EPC-games. We first give the linear program model of the max-flow problem
on D and its dual:

max Z;nzl Yj

. Sy <1 i=1,2,.0n
LP (flow): s.t. Pjie;€P; ’ @
y]ZO j:1,2,...,m
min Y oz
DLP(flow) : ot Zei:eiepj z>1 §=1,2,..m (3)

Due to maz-flow and min-cut theorem, the optimum value of (2) and (3) are
equal, and the set of optimal solutions of (3) is exactly the convex hull of the
indicator vectors of the minimum edge-cut of D, which is denoted by Cg. On
the other hand, it is known that the core of the flow game I'y defined on D(E)
is also the convex hull of the indicator vectors of the minimum edge-cut of D.
Hence, we have

Theorem 1. Let I'y and I'y be an EPC-game and o flow game defined on
D = (V, E;s,t), respectively, f* be the value of the max-flow of D. Then,

x € LC(T'g) if and only if x = z/f* for some z € Cg.
Proof. Let © = (1 + €)z be a transformation, then (1) can be rewritten as

max €

1/(1+¢)
1 VP e P (4)
Ve, € £

s.t.

N
VACAS!
vl

W
N
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Combining the first constraint z(E) = 1/(1 + ¢) and the objective function, it
is easy to see that linear program (4) is the same as DLP(flow) (3). Since the
optimal value of (3) is also f*, Theorem 1 thus follows. O

Based on the relationship between a VPC-game and the corresponding flow
game discussed in Section 3, we can obtain a similar result on the least-core for
VPC-games (The proof is omitted).

Theorem 2. Let I'y = (E,~vyy) be a VPC-game defined on D = (V, E;s,t), f*
be the value of the mazx-flow of D, then

x € LC(I'y) if and only if x = z/ f* for some z € Cy.

Here Cy is the convex hull of the indicator vectors of minimum vertex-cuts in
D.

Theorem 1 and 2 show that for the unit flow network, the least-core of the
PC-game is equivalent to the core of the corresponding flow game in the sense
of scaling down by 1/f*. Hence, all the following problems for PC-games can be
solved efficiently:

— Computing the LC-value;
— Finding an imputation in £C(I'g) and LC(Iy);
— Checking whether a given imputation is in LC(I'g) or LC(Iy).

Remark. Path cooperative games have close relationship with a noncoopera-
tive two-person zero-sum game, called path intercept game [21]. In this model,
an “evader” attempts to select a path P from the source to the sink through
a given network. At the same time, an “interdictor” attempts to select an edge
e in this network to detect the evader. If the evader traverses through arc e,
he is detected; otherwise, he goes undetected. The interdictor aims to find a
probabilistic “edge-inspection” strategy to maximize the average probability of
detecting the evader. While for the evader, he wants to find a ”path-selection
strategy” to minimize the interdiction probability. Aziz et al.[2] observed that
the mixed Nash Equilibrium of path intercept games is the same as the least-core
of EPC-games. With max-min theorem in matrix game theory, the same result
can be obtained based on the similar analysis as in the proof of Theorem 1.

5 Nucleolus of PC-games

In this section, we aim at showing that the nucleolus of PC-games can be com-
puted in polynomial time. Given a game I' = (N, ~), Kopelowitz [15] showed
that the nucleolus n(I") can be obtained by recursively solving the following
standard sequence of linear programs SLP(n(I")):

max &

(S)=7(8)+er, VS€T, r=01, k-1
(S)>~(S)+e, W#£SCN\UZT,

e I(I).

. x
(k=1,2,---) " s.t. x
x
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Initially, set Jo = {0, N} and €9 = 0. The number ¢, is the optimal value of
the r-th program LP,, and J, = {S C N : z(S) = v(S) + &, Vz € X, }, where
X, ={x € R": (x,e,) is an optimal solution of LP,}.

As in the last section, we first discuss the nucleolus of EPC-games. Let I'g
be the EPC-game associated with network D = (V| E; s,t) with |E| = n, P be
the set of all (s,t)-paths and f* be the value of the max-flow of D. Denote £p
be the set of coalitions consisting of one-edge coalitions and path coalitions, i.e.,

Er={{e}:e€ E}U{PCE:P¢cPisan (st)path}.

We show that the sequential linear programs SLP(n(I'g)) of EPC-game I'g
can be simplified as follows.

max 3
z(e) = ey, VYe€ E.,r=0,1,...k—1
z(e) > e, Ve e E\U'_, E»
LpP]: z(P)=1/f*+¢e, VP e Prr=0,1,...k—1 (5)
s.t. o
z(P)=1/f*+e, VP eP\U,—oPr
z(e) >0, Vee &
z(F) =

where ¢, is the optimum value of LP,, X, = {z € R" : (x,¢,) is an optimal
solution of LP,}, P, ={P € P :2(P)=1+4¢,Vz € X,} and E, ={e € E:
z(e) = &,V € X, }. Initially, g9 = 0, Py = and Ey = 0.

Proposition 4. The nucleolus n(I'g) of EPC-game 'y defined on the network
D = (V, E;s,t) can be obtained by computing the linear programs LP}, in (5).

Proof. Firstly, we show that in sequential linear programs SLP(n(I")), only the
constraints corresponding to the the coalitions in £ (i.e., the one-edge coalitions
and path coalitions) are necessary in determining the nucleolus n(I'g).

In fact, for any winning coalition S C N (not a path), S can be decomposed
into a path P and some edges E' = S\ E(P). Then,

2(S) = y(S) =a(P) =1+ Y a(e) > z(P) — 1.

eckE’

Since z(e) > 0 for all e € E’, S cannot be fixed before P or any e € E’. After
P and all e € E' are fixed, S is also fixed, i.e., S is redundant. If S is a losing
coalition, then S is a set of edges with v(S) = 0 and 2(S5) —7(S) = >_.cgx(e) >
z(e),Ve € S. That is to say, S cannot be fixed before any e € S. When all
edges in S are fixed, S is fixed accordingly, i.e. S is also redundant in this case.
Therefore, deleting all the constraints corresponding to the coalitions not in Ep
will not change the result of SLP(n(I")).

The key point in remainder of the proof is the correctness of the third and the
forth constraints in (5), where we replace the original constraints z(P) =1+ ¢,
and x(P) > 1+ ¢ in SLP(n(I")) with new constraints z(P) = 1/f* + &, and
z(P) > 1/f* + ¢, respectively.
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In the process of solving the sequential linear programs, the optimal values
increase with k. Since C(I'g) = (), we know ¢; < 0. Note that we can always
find an optimal solution such that e; > —1 (for example z(e) = 1,Ve € E is a
feasible solution of the linear programming of LC(Ig)).

We can divide the process into two stages. The first stage is the programs
with —1 < &, < 0. In this case, the constraints x(e) > €,Ve € E cannot affect
the optimal solutions of the current programs, because x(e) > 0. Ignoring the
invalid constraints we can get (5) directly.

The second stage is the programs with ¢, > 0. When the programs arrive
at this stage, we can claim that all paths have been fixed. Otherwise, if there is
a path satisfying z(p) = 14 &, > 1, then we have x(p) = 1 (note z(E) = 1),
contradicting with the precondition that the value of maximum flow f* > 2. We
can omit the path constraints in this stage and then this implies (5).

This completes the proof of Proposition 4. O

In the following, we shall show that the nucleolus of PC-games can be solved
in polynomial time. Let I’y = (E,~) be the flow game defined on the unit flow
network D = (V| E;s,t). It is easy to show that the sequential linear programs

LP(n(I't)) can be simplified as LPy, (k=1,2,...):

max g
z(e) =g, Vee E.,r=0,1,...,.k—1
— z(P)=1+¢e. VPEeP.,r=0,1,..,k—1
LPe: g4 dz(e)>e ve e E\U'ZL B, (6)
w(P)>14¢ VPeP\U') P,
z(E) = f7,

where ¢, is the optimum value of fﬁr, X, ={z € R" : (z,g,) is an optimal
solution of LP,}, P, = {P € P:2(P)=1+¢.,Vo € X,} and E, = {e € E :
z(e) = &, Vo € X,.}. Initially, eg = 0, Py = 0 and Ey = 0.

Deng et al. [5] proved that the sequential linear programs fﬁk, (k=1,2...)
can be transformed to another sequential linear programs with only polynomial
number of constraints, and it follows that the nucleolus of flow game n(I'y) can
be found efficiently. Futhermore, Potters et al. [17], show that the nucleolus of
flow games with public edges can also be found in polynomial time when the core
is nonempty. Based on these known results, we discuss the algorithmic problem
on the nucleolus of PC-games in the following theorems.

Theorem 3. Let I'r and I'y be the EPC-game and flow game defined on a unit
flow network D = (V, Ej; s,t), respectively. The nucleolus of I'y can be computed
i polynomial time. Furthermore,

zen(Ig) if and only if z = x - f* € n(Iy),

where f* is the value of the maz-flow of D.
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Proof. Notice that the dimension of the feasible regions of LP/(k = 1,2...)

decreases in each step, so we can complete the process within at most | N| steps.
The key point here is to show that there is a one-to-one correspondence

between the optimal solutions of LP, (6) and that of LP; (5) (Vk =1,2,---).

We first prove that if (z*, £*) is an optimal solution of LP; (6), then (z*,e*) =
(z*/f*,€*/f*) is an optimal solution of LP;, (5).

When k = 1, we have Ey = (), Py = () in LP]. And it is easy to check the
feasibility and the optimality of (2*,&*) in LP]. To continue the proof recursively,
we need to explain Fy = El and P; = 751, i.e., the constraints which become
tight in every iteration are exactly the same in the two linear programs. For each
e € E, if z*(e) = &, then z*(e) = 2z*(e)/f* = &*/f* = &*. And if 2*(e) > &%,
then we have z*(e) > e*. Thus, F; = Ei. P1 = P1 can be shown analogously.
The other direction of the result can be shown similarly. That is, the conclusion
holds for k = 1.

For the rest iterations k = 2,3, ---, the proof can be carried out in a same
way. Here we omit the detail of the proof. Since the nucleolus of flow game can
be found in polynomial time, it follows that the nucleolus of EPC-game is also
efficiently solvable. O

As for the nucleolus of VPC-games, we also show that it is polynomially
solvable based on the relationship between a VPC-game and the corresponding
flow game demonstrated in Section 3. Due to the space limitation, the proof of
the following theroem is omitted.

Theorem 4. The nucleolus of VPC-games can be solved in polynomial time.

PC-games on Undirected Networks. Given an undirected network D =
— —

(V, E;s,t), we construct a directed network D = (V, E'; s,t) derived from D as

follows (see the following figure):

1. For edge e € E with end vertices v; and vs, transform it into two directed
edges €4, = (v11,v12) and €y, = (V21,v22);

2. Connect the two directed edges into a directed cycle via two supplemental
directed edges e and €.

V1 () : V12 Va1 !

Thus, the EPC-game defined on undirected network D = (V, E;s,t) is trans-
formed to an EPC-game defined on the constructed directed network D =
(v, E;s,t). Furthermore, it is easy to check that there exists one-to-one cor-
respondence for the game solution (such as, the core, the least-core and the
nucleolus) between the two games. As for a VPC-game defined on an undi-
rected network, we first transform it into EPC-game on an undirected network
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as demonstrated in Section 3, and then transform it to EPC-game on a directed
network in the same way as above. Henceforth, the algorithmic results for PC-
games can be generalized from directed networks to undirected networks.

Theorem 5. Computing the least-core and the nucleolus can be done in polyno-
maal time for both EPC-games and VPC-games defined on undirected networks.
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Abstract. A surprising equivalence between different forms of pebble
games on graphs - Dymond-Tompa pebble game (studied in [4]), Raz-
McKenzie pebble game (studied in [10]) and reversible pebbling (studied
in [1]) - was established recently by Chan[2]. Motivated by this equiv-
alence, we study the reversible pebble game and establish the following
results.

— We give a polynomial time algorithm for computing reversible peb-
bling number of trees. As our main technical contribution, we show
that the reversible pebbling number of any tree is exactly one more
than the edge rank colouring of the underlying undirected tree.

— By exploiting the connection with the Dymond-Tompa pebble game,
we show that complete binary trees have optimal pebblings that take
at most n©(°81°8(") gsteps. This substantially improves the previous
bound of n®1°8(™) gteps.

— Furthermore, we show that almost optimal (within (1 + €) factor for
any constant € > 0) pebblings of complete binary trees can be done
in polynomial number of steps.

— We also show a time-space tradeoff for reversible pebbling for families
of bounded degree trees: for any constant € > 0, such families can be
pebbled using O(n®) pebbles in O(n) steps. This generalizes a result
of Kralovic[7] who showed the same for chains.

1 Introduction

Pebbling games on graphs of various forms abstracts out resources in different
combinatorial models of computation (see [3]). The most obvious connection
is to the space used by the computation process. A pebble placed on a vertex
in a graph corresponds to storing the value at that vertex and an edge (a,b)
in the graph would represent a data-dependency - namely, value at b can be
computed only if the value at a is known (or stored). Devising the rules of
the pebbling game to capture the moves in the computation, and establishing
bounds for the total number of pebbles used at any point in time, give rise to a
combinatorial approach to proving bounds on the space used by the computation.
The Dymond-Tompa pebble game and the Raz-Mckenzie pebble games depict
some of the combinatorial barriers in proving bounds for depth (or parallel time)
of Boolean circuits (or parallel algorithms).
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Motivated by applications in the context of reversible computation (for exam-
ple, quantum computation), Bennett[1] introduced the reversible pebbling game.
Given any DAG G with a unique sink vertex 7, the reversible pebbling game
starts with no pebbles on G and ends with a pebble (only) on r. Pebbles can be
placed or removed from any vertex according to the following two rules.

1. To pebble v, all in-neighbours of v must be pebbled.
2. To unpebble v, all in-neighbours of v must be pebbled.

The goal of the game is to pebble the DAG G using the minimum number of
pebbles (also using the minimum number of steps).

Recently, Chan[2] showed that for any DAG G the number of pebbles required
for the reversible pebbling game is exactly the same as the number of pebbles
required for the Dymond-Tompa pebble game and the Raz-Mckenzie pebble
game. Chan[2] also studied the complexity of the following problem — Given
a DAG G = (V, E) with sink r and an integer 1 < k < |V, check if G can
be pebbled using at most k pebbles. He showed that this problem is PSPACE-
complete.

The irreversible black and black-white pebble games are known to be
PSPACE-complete on DAGs (see [5], [6]). When we restrict the irreversible black
pebbling game to be read-once (each vertex is pebbled only once), then the prob-
lem becomes NP-complete (see [11]). However, if we restrict the DAG to a tree,
the irreversible black pebble game[9] and black-white pebble game[13] are solv-
able in polynomial time. The key insight is that optimal irreversible (black or
black-white) pebbling number of trees can be achieved by read-once pebblings of
trees. This fact simplifies many arguments for irreversible pebblings of trees. For
example, deciding whether the pebbling number is at most & is in NP since the
optimal pebbling can be used as the certificate. We cannot show that reversible
pebbling is in NP using the same argument as we do not know whether the
optimal value can always be achieved using pebblings taking only polynomially
many steps.

Our Results: In this paper, we study reversible pebblings on trees. We show
that the reversible pebbling number of trees along with strategies achieving the
optimal value can be computed in polynomial time. Our main technical result is
that the reversible pebbling number of any tree is exactly one more than the edge
rank colouring of the underlying undirected tree. We then use the linear-time
algorithm given by Lam and Yue [8] for finding an optimal edge rank coloring of
the underlying undirected tree and show how to convert an optimal edge rank
coloring into an optimal reversible pebbling.

Chan[2] also raised the question whether we can find connections between
other parameters of different pebbling games. Although, we do not answer this
question, we show that the connection with Dymond-Tompa pebble game can be
exploited to show that complete binary trees have optimal pebblings that take

at most n@0°8108(n) gteps. This is a significant improvement over the trivial
nOUog(n) gteps.
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Furthermore, we show that “almost” (within (1 + €) factor for any constant
e > 0) optimal pebblings of complete binary trees can be done in polynomial
number of steps. We also generalize a time-space tradeoff result given for chains
by Kralovic 7] to families of bounded degree trees showing that for any constant
€ > 0, such families can be pebbled using O(n®) pebbles in O(n) steps.

2 Preliminaries

We assume familiarity with basic definitions in graph theory, such as those found

n [12]. A directed tree T' = (V, E) is called a rooted directed tree if there is an
r € V such that r is reachable from every vertex in T'. The vertex r is called the
root of the tree.

An edge rank coloring of an undirected tree T with k colours {1,. .., k} labels
each edge of T' with a colour such that if two edges have the same colour ¢, then
the path between these two edges consists of an edge with some colour j > i.
The minimum number of colours required for an edge rank colouring of T is
denoted by xL(T).

Definition 1. (Reversible Pebbling[1]) Let G be a rooted DAG with root r. A
reversible pebbling configuration of G is a subset of V' which denotes the set of
pebbled vertices). A reversible pebbling of G is a sequence of reversible pebbling
configurations P = (P, ..., Py) such that Py = ¢ and P, = {r} and for every
1,2 < i < m, we have

1. P, =P_1U{v} or P_y = P,U{v} and P; # P,_1 (Exzactly one vertez is
pebbled /unpebbled at each step).
2. All in-neighbours of v are in P;_1.

The number m is called the time taken by the pebbling P. The number of
pebbles or space used in a reversible pebbling of G is the maximum number of
pebbles on G at any time during the pebbling. The persistent reversible pebbling
number of G, denoted by R*(G), is the minimum number of pebbles required to
pebble G.

A closely related notion is that of visiting reversible pebbling, where the peb-
bling P satisfies (1) Pr = Py, = ¢ and (2) there exists a j such that r € P;. The
minimum number of pebbles required for a wvisiting pebbling of G is denoted by

R*(T).
It is easy to see that R?(G) < R*(G) < R?(G) + 1 for any DAG G.

Definition 2. (Dymond-Tompa Pebble Game [4]) Let G be a DAG with root r.
A Dymond-Tompa pebble game is a two-player game on G where the two players,
the pebbler and the challenger take turns. In the first round, the pebbler pebbles
the root vertex and the challenger challenges the root vertex. In each subsequent
round, the pebbler pebbles a (unpebbled) vertex in G and the challenger either
challenges the vertex just pebbled or re-challenges the vertexr challenged in the
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previous round. The pebbler wins when the challenger challenges a vertex v and
all in-neighbours of v are pebbled.

The Dymond-Tompa pebble number of G, denoted DT(G), is the minimum
number of pebbles required by the pebbler to win against an optimal challenger

play.

The Raz-Mckenzie pebble game is also a two-player pebble game played
on DAGs. The optimal value is denoted by RM(G). A definition for the Raz-
Mckenzie pebble game can be found in [10]. Although the Dymond-Tompa game
and the reversible pebbling game look quite different. The following theorem
reveals a surprising connection between them.

Theorem 1. (Theorems 6 and 7, [2]) For any rooted DAG G, we have DT(G) =
R*(G) = RM(G).

Definition 3. (Effective Predecessor [2]) Given a pebbling configuration P of a
DAG G with root r, a vertex v in G is called an effective predecessor of r if
there exists a path from v to r with no pebbles on the vertices in the path (except
at r).

Lemma 1. (Claim 3.11, [2]) Let G be any rooted DAG. There exists an optimal
pebbler strategy for the Dymond-Tompa pebble game on G such that the pebbler
always pebbles an effective predecessor of the currently challenged vertex.

We call the above pebbling strategy (resp. pebbler) as an upstream pebbling
strategy(resp. upstream pebbler). The height or depth of a tree is defined as the
maximum number of vertices in any root to leaf path. We denote by Ch,, the
rooted directed path on n vertices with a leaf as the root. We denote by Bty
the the complete binary tree of height h. We use root(Bty,) to refer to the root
of Bty. If v is any vertex in Bty, we use left(v) (right(v)) to refer to the left
(right) child of v. We use right® and left’ to refer to iterated application of these
functions. We use the notation Ch; + Bt to refer to a tree that is a chain of i
vertices where the source vertex is the root of a Bty,.

Definition 4. Wedefinethelanguage TREE-PEBBLE (TREE-VISITING-PEBBLE)
as the set of all tuples (T, k), where T is a rooted directed tree and k is an integer
satisfying1 < k < n, such that R*(T) < k (R*(T) < k).

In the rest of the paper, we use the term pebbling to refer to persistent

reversible pebbling unless explicitly stated otherwise.

3 Main Theorem

Definition 5. (Strategy Tree) Let T be a rooted directed tree. If T only has a
single vertex v, then any strateqy tree for T only has a single vertex labelled v.
Otherwise, we define a strategy tree for T as any tree satisfying

1. The root vertex is labelled with some edge e = (u,v) in T.
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2. The left subtree of root is a strategy tree for T, and the right subtree is a
strategy tree for T\ T,.

The following properties are satisfied by any strategy tree S of T = (V, E).

1. Each vertex has 0 or 2 children.

2. There are bijections from F to internal vertices of S & from V to leaves of
S.

3. Let v be any vertex in S. Then the subtree S, corresponds to the subtree
of T spanned by the vertices labelling the leaves of S,. If u and v are two
vertices in S such that one is not an ancestor of the other, then the subtrees
in T corresponding to u and v are vertex-disjoint.

Lemma 2. Let T be a rooted directed tree. Then R*(T) < k if and only if there
exists a strateqy tree for T of depth at most k.

Proof. We prove both directions by induction on |T'|. If T is a single vertex tree,
then the statement is trivial.

(if) Assume that the root of a strategy tree for T' of depth k is labelled by
an edge (u,v) in T. The pebbler then pebbles the vertex u. If the challenger
challenges u, the pebbler follows the strategy for T, given by the left subtree of
root. If the challenger rechallenges, the pebbler follows the strategy for T'\ T,
given by the right subtree of the root. The remaining game takes at most k — 1
pebbles by the inductive hypothesis. Therefore, the total number of pebbles used
is at most k.

(only if) Consider an upstream pebbler that uses at most k& pebbles. We are
going to construct a strategy tree of depth at most k. Assume that the pebbler
pebbles w in the first move where e = (u,v) is an edge in 7. Then the root
vertex of S is labelled e. Now we have R*(T,), R*(T \ T,) < k — 1. Let the left
(right) subtree be the strategy tree obtained inductively for T, (T'\ T,,). Since
the pebbler is upstream, the pebbler never places a pebble outside T, (T \ Ty)
once the challenger has challenged u (the root). O

Definition 6. (Matching Game) Let U be an undirected tree. Let Ty = U. At
each step of the matching game, we pick a matching M; from T; and contract all
the edges in M; to obtain the tree T; 1. The game ends when T; is a single vertex
tree. We define the contraction number of U, denoted c¢(U), as the minimum
number of matchings in the matching sequence required to contract U to the
single vertex tree.

Lemma 3. Let T be a rooted directed tree and let U be the underlying undirected
tree for T. Then R*(T) =k + 1 if and only if ¢(U) = k.

Proof. First, we describe how to construct a matching sequence of length k from
a strategy tree S of depth k + 1. Let the leaves of S be the level 0 vertices. For
1 > 1, we define the level 7 vertices to be the set of all vertices v in S such that
one child of v has level ¢ — 1 and the other child of v has level at most ¢ — 1.
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Define M; to be the set of all edges in U corresponding to level i vertices in .S.
We claim that M, ..., My is a matching sequence for U. Define S; as the set of
all vertices v in S such that the parent of v has level at least ¢ + 1 (S contains
only the root vertex). Let Q(i) be the statement “T;;; is obtained from 77 by
contracting all subtrees corresponding to vertices (see Property 3) in S;”. Let
P(i) be the statement “M; 1 is a matching in T;41”. We will prove Q(0) and
Qi) = P(i) and (Q(i) A P(i)) = Q(i+1). Indeed for i = 0, we have Q(0)
because 11 = U and Sy is the set of all leaves in S or vertices in T' (Property 2).
To prove Q(i) = P(i), observe that the edges of M;;1 correspond to vertices
in S where both children are in S;. So these edges correspond to edges in T;11
(by Q(4)) and these edges are pairwise disjoint since no two vertices in .S have a
common child.

To prove that (Q(i) AP(i)) = Q(i+1), consider the tree T; 2 obtained by
contracting M, from T; 1. Since Q(7) is true, this is equivalent to contracting
all subtrees corresponding to S; and then contracting the edges in M; 1 from 7.
The set S;4+1 can be obtained from S; by adding all vertices in .S corresponding to
edges in M,11 and then removing both children (of these newly added vertices)
from S;. This is equivalent to combining the subtrees removed from .S; using the
edge joining them. This is because M;;1 is a matching by P(i) and hence one
subtree in S; will never be combined with two other subtrees in S;. But then
contracting subtrees in S;;1 from 77 is equivalent to contracting .S; followed by
contracting M, 1.

We now show that a matching sequence of length at most k can be converted
to a strategy tree of depth at most k + 1. We use proof by induction. If the tree
T is a single vertex tree, then the statement is trivial. Otherwise, let e be the
edge in the last matching M}, in the sequence and let (u,v) be the corresponding
edge in T Label the root of S by e and let the left (right) subtree of root of S
be obtained from the matching sequence My, ..., My restricted to Ty, (T'\ Ty,).
By the inductive hypothesis, these subtrees have height at most k£ — 1. a

Lemma 4. For any undirected tree U, we have c¢(U) = xL(U).

Proof. Consider an optimal matching sequence for U. If the edge e is contracted
in M;, then label e with the color . This is an edge rank coloring. Suppose for
contradiction that there exists two edges e; and ey with label ¢ such that there
is no edge labelled some j > i between them. We can assume without loss of
generality that there is no edge labelled i between e; and ey since if there is one
such edge, we can let es to be that edge. Then e; and ey are adjacent in T; and
hence cannot belong to the same matching.

Consider an optimal edge rank coloring for U. Then in the i'" step all edges
labelled ¢ are contracted. This forms a matching since in between any two edges
labelled ¢, there is an edge labelled j > ¢ and hence they are not adjacent in
T;. O

The theorems in this section are summarized in Fig. 1

Theorem 2. Let T be a rooted directed tree and let U be the underlying undi-
rected tree for T. Then we have R*(T) = xL(U) + 1.
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VAN
AN

(a) The complete binary tree of height 3 (b) Optimal edge rank colouring
(3,1
. / \(2’ 1)
7 (6,3) (4,2) 1
SN N
6 3 (5,2)

5/ \2

Optlmal strategy tree

AN /\ /o
AN

(d) Optimal matching sequence

Fig. 1. This figure illustrates the equivalence between persistent reversible pebbling,
matching game and edge rank coloring on trees by showing an optimal strategy tree and
the corresponding matching sequence and edge rank colouring for height 3 complete
binary tree
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Corollary 1. R?(T) and R*(T) along with strategy trees achieving the optimal
pebbling value can be computed in polynomial time for trees.

Proof. We show that TREE-PEBBLE and TREE-VISITING-PEBBLE are polyno-
mial time equivalent. Let T be an instance of TREE-PEBBLE. Pick an arbitrary
leaf v of T and root the tree at v. By Theorem 2, the reversible pebbling number
of this tree is the same as that of T'. Let T” be the subtree rooted at the child of
v. Then we have R*(T) <k <= R*(T') <k -1

Let T be an instance of TREE-VISITING-PEBBLE. Let 7" be the tree obtained
by adding the edge (r,7’) to T where 7 is the root of T'. Then we have R?(T) <
k< R*(T")<k+1.

The statement of the theorem follows from Theorem 2 and the linear-time
algorithm for finding an optimal edge rank coloring of trees]8]. O

The following corollary is immediate from Theorem 1.

Corollary 2. For any rooted directed tree T, we can compute DT(T) and
RM(T) in polynomial time.

An interesting consequence of Theorem 2 is that the persistent reversible
pebbling number of a tree depends only on its underlying undirected graph. We
remark that this does not generalize to DAGs. Below we show two DAGs with
the same underlying undirected graph and different pebbling numbers.

1

AN
7
Z [ AN

6

(a) R*(G1) =5 (b) R*(G2) =

Fig.2. DAGs G; and G2 have the same underlying undirected graph and different
persistent pebbling numbers

4 Time Upper-Bound for an Optimal Pebbling of
Complete Binary Trees

Proposition 1. The following statements hold.

1. R*(Bt) > R*(Bty_1) + 1
2. R*(Bty) > h+2 forh>3
3. ([1]) R*(Chy,) < [logy(n)] + 1 for alln
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Proof. (1) In any persistent pebbling of Btp, consider the earliest time after
pebbling the root at which one of the subtrees of the root vertex has R?(Btj,_1)
pebbles. At this time, there is a pebble on the root and there is at least one
pebble on the other subtree of the root vertex. So, in total, there are at least
R?®(Bty_1) +2 > R*(Bts_1) + 1 pebbles on the tree.

(2) Ttem (1) and the fact that R*(Bts) = 5. O

Theorem 3. There exists an optimal pebbling of Bty that takes at most
nO(loglog(n)) steps.

Proof. We will describe an optimal upstream pebbler in a pebbler-challenger
game who pebbles root(Bty), left(root(Bty)), left(right(root(Bty))) and so
on. In general, the pebbler pebbles left(right'~!(root(Bty))) in the i** step for
1 <i < h—log(h). An upper bound on the number of steps taken (denoted by
t(h)) by the reversible pebbling obtained from this game (which is, recursively
pebble left(right'=!(root(Bty))) for 0 < i < h—log(h) and optimally pebble the
remaining tree Chy,_iog () + Bliog(n) Using any algorithm) is given below. Here
the term (2h — log(h) + 1)310g(h) is an upper bound on the number of different
pebbling configurations with 3log(h) pebbles, and therefore an upper bound for
time taken for optimally pebbling the tree Chy,_1og(n) + Bliog(n)-

t(h) < 2[t(h — 1) + t(h —2) + ... + t(log(h) + 1)] + (2h — log(h) + 1)*'*5"
< 2hit(h — 1) + (2h — log(h) + 1)° 5™

((Qh)h@ )310g(h))

= (log(n))CUee(m) — O loglog(n))

In the first step, the pebbler will place a pebble on left(root(Bty)) and the
challenger will re-challenge the root vertex. These moves are optimal. Before
the i*" step, the tree has pebbles on the root and left(right’(root(Bty)))
for 0 < j < i — 1. We argue that if i < h — log(h), placing a pebble
on left(right=*(root(Bty))) is an optimal move. If the pebbler makes this
move, then the cost of the game is max(R*(Btp,—1), R*(Ch; + Btp,—1)) =
R*(Ch; + Btp,—1) < R*(Btp,—1) +1 = p, where hy = h — i + 1. Note that
the inequality here is true when ¢ < h —log(h) by Prop 1. We consider all other
possible pebble placements on i*" step and prove that all of them are inferior.

— A pebble is placed on the path from the root to right'~!(root(Bty)) (inclu-
sive): The challenger will challenge the vertex on which this pebble is placed.
The cost of this game is then at least R*(Btp,) > p.

— A pebble is placed on a vertex with height less than hy —1: The challenger will
re-challenge the root vertex and the cost of the game is at least R*(Ch; +
Btp,—1).

The theorem follows. a
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5 Almost Optimal Pebblings of Complete Binary Trees

In this section, we show that we can get arbitrarily close to optimal pebblings
for complete binary trees using a polynomial number of steps.

Theorem 4. For any constant € > 0, we can pebble Bty using at most (1 + €)h
pebbles and nC1°e(1/9) steps for sufficiently large h.

Proof. Let k > 1 be an integer. Then consider the following pebbling strategy
parameterized by k.

1. Recursively pebble the subtrees rooted at left(right®(root(Bty))) for 0 <
i <k —1 and right*(root(Bty,)).

2. Leaving the (k4 1) pebbles on the tree (from the previous step), pebble the
root vertex using an additional k pebbles in 2k — 1 steps.

3. Retaining the pebble on the root, reverse step (1) to remove every other
pebble from the tree.

The number of pebbles and the number of steps used by the above strategy
on Bty for sufficiently large A is given by the following recurrences.

S(h) < S(h—k) + (k+1) < (kzl)h
k
T(h) <2 | T(h—i)| + (2k+2) < (2k)"(2k + 2) < n'*=®+1(2k 4 2)

where n is the number of vertices in Bty,.
If we choose k > 1/¢, then the theorem follows. O

6 Time-Space Trade-Offs for Bounded-Degree Trees

In this section, we study time-space trade-offs for bounded-degree trees.

Theorem 5. For any constant positive integer k, a bounded-degree tree T con-
sisting of n wvertices can be pebbled using at most O (nl/k) pebbles and O (2’“71)
pebbling mowves.

Proof. Let us prove this by induction on the value of k. In the base case (k = 1),
we are allowed to use O(n) pebbles. So, the best strategy would to place a pebble
on every vertex of T' in bottom-up fashion, starting from the leaf vertices. After
the root is pebbled, we unpebble each vertex in exactly the reverse order, while
leaving the root pebbled.

In this strategy, clearly, each vertex is pebbled and unpebbled at most once.
Hence the number of pebbling moves must be bounded by 2n. Hence, a tree can
be pebbled using O(n) pebbles in O(2n) moves.

Now consider that for k < ky — 1, where kg is an integer > 2, any bounded-
degree tree T with n vertices can be pebbled using O (nl/ k ) pebbles in O (2’“71)
moves. Assume that we are allowed O (nl/ k“) pebbles. To apply induction, we
will be decomposing the tree into smaller components. We prove the following.
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Claim. Let T’ be any bounded-degree tree with n’ > n(ko=1/ko vertices and
maximum degree A. There exists a subtree T” of T' such that the number of
vertices in T" is at least [n(o=1)/k0 /2| and at most [n(ko—1)/ko],

Proof. From the classical tree-separator theorem, we know that T can be divided

A
into two subtrees, where the larger subtree has between |n’/2| and [n/ . A—I—l—‘

vertices. The key is to recursively subdivide the tree in this way and continually
choose the larger subtree. However, we need to show that in doing this we will
definitely strike upon a subtree with the number of vertices within the required
range. Let Ty, T3, ... be the sequence of subtrees we obtain in these iterations.
Also let n; be the number of vertices in T for every 7. Note that Vi, [n;/2] <

A
Nit1 < ’V’Ui . AH-‘ . Assume that j is the last iteration where n; > [n(ko=1)/ko]

Clearly n;,q > [nko=1/ko /2] Also, by the definition of j, njy; < [nko=1)/ko],
Hence the proof. a

The final strategy will be as follows:

1. Separate the tree into 6(n'/*0) connected subtrees, each containing
0 (nko—1)/k0) vertices. Claim 6 shows that this can always be done.

2. Let us number these subtrees in the following inductive fashion: denote by
T1, the ‘lowermost’ subtree, i.e. every path to the root of 77 must originate
from a leaf of T'. Denote by T}, the subtree for which every path to the root
originates from either a leaf of 1" or the root of some T} for j < 4. Also, let
n; denote the number of vertices in T;.

3. Pebble T using O (n}/(’m*l)) =0 (nl/k") pebbles. From the induction

hypothesis, we know that this can be done using O (2k0*1n1) pebbling
moves.

4. Retaining the pebble on the root vertex of 77, proceed to pebble 15 in the
same way as above. Continue this procedure till the root vertex of T is
pebbled. Then proceed to unpebble every vertex other than the root of T'
by executing every pebble move upto this instant in reverse order.

Now we argue the bounds on the number of pebbles and pebbling moves of
the algorithm. Recall that the number of these subtrees is O (nl/ ko). Therefore,
the number of intermediate pebbles at the root vertices of these subtrees is
(0] (nl/ko). Additionally, while pebbling the last subtree, O (nl/ko) pebbles are
used. Therefore, the total number of pebbles at any time remains O (n!/*0). Each
of the subtrees are pebbled and unpebbled once (effectively pebbled twice). Thus,
the total number of pebbling moves is at most  , 20 (2’“0’1711-) =0 (Qkon). O

7 Discussion and Open Problems

We studied reversible pebbling on trees. Although there are polynomial time
algorithms for computing black and black-white pebbling numbers for trees, it
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was unclear, prior to our work, whether the reversible pebbling number for trees
could be computed in polynomial time. We also established that almost optimal
pebbling can be done in polynomial time.

We conclude with the following open problems.

— Prove or disprove that there is an optimal pebbling for complete binary trees
that takes at most O (nk) steps for a fixed k.

— Prove or disprove that the there is a constant £ such that optimal pebbling
for any tree takes at most O (nk) (for black and black-white pebble games,
this statement is true with k = 1).

— Give a polynomial time algorithm for computing optimal pebblings of trees
that take the smallest number of steps.
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Abstract. We study several combinatorial optimization problems which
combine the classic shop scheduling problems (open shop scheduling or
job shop scheduling) and the shortest path problem. The objective of
the considered problem is to select a subset of jobs that forms a feasible
solution of the shortest path problem, and to execute the selected jobs on
the open shop or job shop machines such that the makespan is minimized.
We show that these problems are NP-hard even if the number of machines
is two, and they cannot be approximated within a factor of less than 2 if
the number of machines is an input unless P = NP. We present several
approximation algorithms for these problems.

Keywords: Approximation algorithm - Combination of optimization
problems - Job shop - Open shop + Scheduling + Shortest path

1 Introduction

Combinatorial optimization involves many active subfields, e.g. network flows,
scheduling, bin packing. Usually these subfields are motivated by various appli-
cations or theoretical interests, and separately developed. The development of
science and technology makes it possible to integrate manufacturing, service
and management. At the same time, the decision-makers always need to deal
with problems involving more than one combinatorial optimization problems.
For instance, the network monitoring scenario described in [17] and the railway
manufacturing scenario [12].

Wang and Cui [17] introduced a problem combining two classic combinatorial
optimization problems, namely parallel machine scheduling and the vertex cover
problem. The combination problem is to select a subset of jobs that forms a
vertex cover, and to schedule it on some identical parallel machines such that
the makespan is minimized. This work also inspired the study of the combination
of different combinatorial optimization problems.

Flow shop, open shop and job shop are three basic models of multi-stage
scheduling problems. Nip and Wang [12] studied a combination problem that
combines two-machine flow shop scheduling and the shortest path problem.
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They argued that this problem is NP-hard, and proposed two approximation
algorithms with worst-case ratio 2 and 2 respectively. Recently, Nip et al. [13]
extended the results to the case that the number of flow shop machines is arbi-
trary. One motivation of this problem is manufacturing rail racks. We plan to
build a railway between two cities. How should we choose a feasible path in
a map, such that the corresponding rail tracks (jobs) can be manufactured on
some shop machines as early as possible? Similar scenarios can be found in
telecommunications and other transportation industries. It connects two clas-
sic combinatorial optimization problems, say shop scheduling and the shortest
path problem. An intuitive question is what will happen if the shop environment
is one of the other two well-known shop environments, i.e. open shop and job
shop. This is the core motivation for this current work. In this paper, we mainly
study two problems: the combination of open shop scheduling and the shortest
path problem, and the combination of job shop scheduling and the shortest path
problem.

The contributions of this paper are described as follows: (1) we argue that
these combination problems are NP-hard even if the number of machines is two,
and if the number of machines is an input, these problems cannot be approxi-
mated within a factor less than 2 unless P = NP; (2) we present several approxi-
mation algorithms with performance ratio summarized as follows in which € > 0
is any constant and p is the maximum operations per job in job shop scheduling.

Table 1. Performance of our algorithms

Number of Machines ‘ Open Shop ‘ Job Shop
2 FPTAS SHe*
m (fixed) PTAS** 0 (ﬁ;ﬁ%)
m (input) m m

* Assume that each job has at most 2 operations.
** A (2 + €)-approximation algorithm is also proposed.

The rest of the paper is organized as follows. In Section 2, we give a formal
definition of the combination problems stated above, and briefly review some
related problems and algorithms that will be used subsequently. In Section 3,
we study the computational complexity of these combination problems and give
an inapproximability result when the number of machines is an input. Section 4
provides several approximation algorithms for these problems. Some concluding
remarks are provided in Section 5.

2 Preliminaries

2.1 Problem Description

We first recall the definitions of open shop and the job shop scheduling problems
in the literatures.
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Given a set of n jobs J = {Jy,- -+, J,} and m machines M = {My,--- , M, },
each job has several operations. At the same time, each machine can process at
most one job and each job can be processed on one machine. In the open shop
scheduling problem (Om||Cpax), each job must be processed on each machine
exactly once, but the processing order can be arbitrary (in other words, the
sequence of machines through which job passes can differ between jobs). In the
job shop scheduling (Jm||Cmax), the processing order of each job is given in
advance, and may differ between jobs. Furthermore, each job is allowed to be
processed on the same machine more than once but consecutive operations of
the same job must be processed on different machines, and is not necessary to
go through all machines in the job shop. The goal of Om||Ciax o Jm||Crax is
to find a feasible schedule such that the makespan, that is, the completion time
of the last stage among all the jobs is minimum.

Now we define the combination problems considered in this paper.

Definition 1 (Om|shortest path|Cyax). Given a directed graph G = (V, A)
with two distinguished vertices s,t € V, and m machines. Each arc a; € A
corresponds to a job J; € J. The Om|shortest path|Cyax problem is to find an
s —t directed path P of G, and to schedule the jobs of Jp on the open (job) shop
machines such that the minimum makespan over all P, where Jp denotes the
set of jobs corresponding to the arcs in P.

Definition 2 (Jm|shortest path|Chax). Given a directed graph G = (V, A) with
two distinguished vertices s,t € V, and m machines. Each arc a; € A corre-
sponds to a job J; € J. The Jm|shortest path|Cyax problem is to find an s —t
directed path P of G, and to schedule the jobs of Jp on the job shop machines
such that the minimum makespan over all P, where Jp denotes the set of jobs
corresponding to the arcs in P.

Let the number of jobs (arcs) be n, i.e. |A| = |J| = n. Let p;; be the processing
times for J; on machine M;, and p;; be the frequency of J; processed on M;.
Notice p;; = 1 in the open shop.

It is not difficult to see that the shop scheduling problem (open shop or job
shop) and the classic shortest path problem are special cases of our problems.
For example, consider the following instances with m = 2 ([13]). If there is a
unique path from s to ¢ in G, as shown in the left of Fig. 1, our problem is
the two-machine shop scheduling problem (open shop or job shop). If all the
processing times on the second machine are zero, as shown in the right of Fig.
1, then our problem is equivalent to the classic shortest path with respect to the
processing times on the first machine. Therefore we say the considered problems
are the combinations of the shop scheduling problems and the shortest path
problem.

In this paper, we will use the results of some optimization problems that
have a similar structure to the classic shortest path problem. We introduce the
generalized shortest path problem defined in [13].

Definition 3. Given a weighted directed graph G = (V, A,w',---  w’) and two
distinguished vertices s,t € V with |A| = n, each arc a; € A,j =1,--- ,n is
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@(ﬁn:pzl) @(Plz-lm) @ . (1 P2n) .

Fig. 1. Special cases of our problems

associated with K weights wjl-, e ,wJK, and we define vector w* = (wh, wh, -

wk) for k=1,2,--- K. The goal of our shortest path problem SP(G,s,t, f) is
to find an s — t directed path P that minimizes f(w',w?,--- ,wx;x), in which
f is a given objective function and x € {0,1}" contains the decision variables

such that x; =1 if and only if a; € P.

For simplicity of notation, we denote SP instead of SP(G, s,t, f) in the rest
of the paper. Notice SP is a generalization of various shortest path problems.
For example, if we set K = 1 and f(w!,z) = w!-x, where - is the dot product, it
is the classic shortest path problem. If f(w!, w?, - w®;2) = max{w! - z,w? -

x,--- ,wk .z}, it is the min-max shortest path problem [1].

2.2 Review of Open Shop and Job Shop Scheduling

Gonzalez and Sahni [5] first gave a linear time optimal algorithm for O2||Ciax.
They also proved that Om||Ciax is NP-hard for m > 3, however whether it is
strongly NP-hard is still an outstanding open problem. A feasible shop schedule
is called dense when any machine is idle if and only if there is no job that could
be processed on it. Rdcsmény (see Bardny and Fiala [2]) observed that for any
dense schedule, the makespan is at most twice that of the optimal solution, which
leads to a greedy algorithm. Sevastianov and Woeginger [15] presented a PTAS
for fixed m, which is obtained by dividing jobs into large jobs and small jobs.
Their algorithm first optimally schedules the large jobs, then fills the operations
of the small jobs into the ‘gaps’. In this paper, we will use these algorithms, and
refer to them as the GS algorithm, Racsmany algorithm and the SW algorithm
respectively. We present the main results of these algorithms as follows.

Theorem 1 ([5]). The GS algorithm returns an optimal schedule for O2||Ciax in

linear time such that Cp.x = max maijEJ(plj + p2j), ZJjerljv ZJjergj .

Theorem 2 ([2,16]). Rdcsmdny algorithm returns a 2-approzimation algo-
rithm for Om||Ciax such that Cpax < ZJjEJplj + Zfil pir < 2C% ..., where Ji,
is the last completed job and it is processed on My, and C% .. denotes the optimal
makespan.

Theorem 3 ([15]). The SW algorithm is a PTAS for Om||Cyax.

For job shop scheduling problems, few polynomially solvable cases are known.
One is J2|op < 2|Cyax, which can be solved by Jackson’s rule [6] that is an
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extension of Johnson’s rule for F2||Cpax (flow shop scheduling problem with
two machines [8]), where op < 2 means there are at most 2 operations per job.

In fact, a slight change may lead to NP-hard problems. For instance, J2|op <
3|Cmax and J3|op < 2|Cax are NP-hard [9], J2|p;; € {1,2}|Cmax and J3|p;; =
1|Cmax are strongly NP-hard [10]. For the general case J||Ciax, Shmoys, Stein
and Wein [16] constructed a randomized approximation algorithm with worst-

log log(mpu)
job. Schmidt, Siegel and Srinivasan [14] obtained a deterministic algorithm with
the same bound by derandomizing. We refer to it as the SSW-SSS algorithm.
Moreover, for fixed m, the best known approximation algorithm is also proposed
in [16] with an approximation factor 2 4 €, where € > 0 is an arbitrary constant.
If p is a constant, the problem is denoted as Jm|op < p|Chax and admits a
PTAS [7]. We list the main results mentioned above as follows.

. log? . . .
case ratio O (M)7 where p is the maximum number of operations per

Theorem 4 ([6]). Jackson’s rule solves J2|op < 2|Ciax in O(nlogn) time.

Theorem 5 ([14,16]). The SSW-SSS algorithm solves Jm||Cmax in polynomial
time, and returns a schedule with makespan

log® (mp)
HijDij + max HijPij
log log(mu) ey JZEJ JE Z JE

Furthermore, a well-known inapproximability result is that O||Cax, F||Cmax
and J||Cpax cannot be approximated within 2 unless P = NP [18]. Recently,
Mastrolilli and Svensson [11] showed that J||Cyax cannot be approximated
within O(log(mu)'=¢) for € > 0 based on a stronger assumption than P # NP.

To conclude this subsection, we list some trivial bounds for a dense shop
schedule. Denote by Chax the makespan of an arbitrary dense shop schedule

with job set J, and we have

Cmax Z . max Z ,uzgpm ) (1)
Jed

and

Cmax < Z Z,Uijpij- (2)

Jied i=1

For each job, we have

Cmax > Z,uijpij, vJ; e J. (3)

i=1
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2.3 Review of Shortest Path Problems

It is well-known that Dijkstra algorithm solves the classic shortest path problem
with nonnegative edge weights in O(|V|?) time [3]. We have mentioned the min-
max shortest path problem, that is NP-hard even for K = 2, and Aissi, Bazgan
and Vanderpooten proposed an FPTAS if K is a fixed number [1]. We refer to
their algorithm as the ABV algorithm, which has the following result.

Theorem 6 ([1]). Given ¢ > 0, in a directed graph with K nonnegative
weights on each arc, where K is a fired number, the ABV algorithm finds a

path P between two specific vertices satisfying maX;c(i ... K} {Zajep w;} <

(14¢ max {Zavep, w;} for any path P’ between the two specified ver-
i€{1,2, K} J

tices, and the running time is O(|A||V|E+1/eK).

In this paper, sometimes we need to find the min-max shortest path among all
the paths visiting some specified arcs if such a path exists. We propose a modified
ABV algorithm for this problem, which will be involved in the complete version.

3 Computational Complexity

First, notice that Om||Cax and Jm||Cpax are special cases of the corresponding
combination problems, thus the combination problem is at least as hard as its
component optimization problems. On the other hand, we know that O2||Cpax
and J2|op < 2|Chax are polynomially solvable. However, we can simply verify
that the corresponding combination problems, say O2|shortest path|Cpa.x and
J2lop < 2,shortest path|Ciax, are NP-hard by adopting the same reduction
proposed in Theorem 2 of [12] for the NP-hardness of F2|shortest path|Ciax.
We summarize the results as Theorem 7.

Theorem 7. J2|shortest path|Cpax is strongly NP-hard; O2|shortest path|Cipax
and J2|op < 2, shortest path|Cpay are NP-hard.

Now we consider the case where the number of machines m is part of the
input. Williamson et al.[18] showed that it is NP-hard to approximate O||Ciax,
F||Cpax or J||Crax within a factor less than % by a reduction from the restricted
versions of 3-SAT. They also showed that deciding if there is a scheduling of
length at most 3 is in P. We show that for these problems combining with shortest
path problem, deciding if there is a scheduling of length at most 1 is still NP-
hard. Our proof is established by constructing a reduction from 3-Dimensional
Matching (3DM) that is NP-complete [4].

Theorem 8. For Olshortest path|Ciax, deciding if there is a scheduling of
length at most 1 is NP-hard.

Notice that the reduction in Theorem 8 is also valid for F'|shortest path|Crax
and J|shortest path|Ciax, since each job in the reduction has only one nonzero
processing time. Therefore we have the following result.
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Corollary 1. The problems O|shortest path|Chax, F|shortest path|Ciax and
J|shortest path|Ciax do not admit an approximation algorithm with worst-case
ratio less than 2, unless P = NP.

To our knowledge, the best known inapproximability results based on P # NP
for F||Crax, O||Cmax and J||Ciax are still %. The corollary implies that the com-
bination problems of the three shop scheduling problems and the shortest path
problem may have stronger inapproximability results than the original problems.

4 Approximation Algorithms

4.1 An Intuitive Algorithm for Arbitrary m

An intuitive algorithm was proposed for F2|shortest path|Cpax in [12]. The idea
is to find the classic shortest path by setting the weight of an arc to be the
sum of processing times of its corresponding job, and then schedule the returned
jobs by Johnson’s rule. This simple idea can be extended to the combination
problems we considered, even if the number of machines is an input.

Algorithm 1. The SD algorithm for Ol|shortest path|Cmax (J|shortest path|Cmax)

1: Find the shortest path in G with weights wjl ==Y, wijpij by Dijkstra algorithm.
For the returned path P, construct the job set Jp.

2: Obtain a dense schedule for the jobs of Jp by an arbitrary open (job) shop schedul-
ing algorithm. Let o be the returned job schedule and Ciax the returned makespan,
and denote the job set Jp by S.

3: return S, o and Chax.

Theorem 9. For O|shortest path|Cpax and J|shortest path|Cpax, the SD algo-
rithm is m-approzimated, and this bound is tight.

4.2 A Unified Algorithms for Fixed m

In [12], & %—approximation algorithm was proposed for F2|shortest path|Chax.
The idea is to iteratively find a feasible path by the ABV algorithm [1] with
two weights for each arc, and schedule the corresponding jobs by Johnson’s rule,
then adaptively modify the weights of arcs and repeat the procedures until we
obtain a feasible schedule with good guarantee. We generalize this idea to solve
the combination problems considered in this paper. We first propose a unified
framework which is denoted as UAR(Alg, p, m), where Alg is a polynomial
time algorithm used for shop scheduling, p is a control parameter to decide
the termination rule of the iterations and the jobs to be modified, and m is
the number of machines. The pseudocode of the UAR(Alg, p, m)algorithm is
described by Algorithm 2.

By setting the appropriate scheduling algorithms and control parameters, we
can derive algorithms for different combination problems. Notice that at most
n jobs are modified in the UAR(Alg, p, m) algorithm, therefore the iterations
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Algorithm 2. Algorithm UAR(Alg, p, m)

1: Initially,(w;,wjz, <, wi) i= (H1iPg, BeiP2j, s BmiPmy), for a; € A correspond-
ing to Jj.

2: Given € > 0, use the ABV algorithm [1] to obtain a feasible path P to SP, and
construct the corresponding job set as Jp.

3: Schedule the jobs of Jp by the algorithm Alg, denote the returned makespan as
Clhax, and the job schedule as o’.

4: S:=Jp, 0 := 0", Cmax = Cioax, D=0, M := (14+¢€) > > pijpij + 1.

Jj€Ji=1

5: while Jp N D = () and there exists J; in Jp satisfying > pijpi; > pCliax do
i=1

6:  for all jobs satisfy > wijpij > pCrax in J\D do
i=1

7 (wj, w3, wi*) = (M,M,--- ,M), D:=DU{J;}.

8: end for

9:  Use the ABV algorithm [1] to obtain a feasible path P to SP, and construct the
corresponding job set as Jp.

10:  Schedule the jobs of Jp by the algorithm Alg, denote the returned makespan as
C}yax, and the job schedule as o'.

11:  if Clax < Chmax then

12: S:=Jp,o:= 0'/7 Cmax = C;nax‘

13:  end if

14: end while

15: return S, 0 and Cpax.

execute at most n times. Since the scheduling algorithms for shop scheduling and
the ABV algorithm [1] are all polynomial time algorithms (for fixed m and €), we
claim that the following algorithms based on UAR(Alg, p, m) are polynomial-
time algorithms. We present the algorithms and prove their performance as
follows.

We first apply the UAR(Alg, p, m) algorithm to O2|shortest path|Ciax by
setting Alg be the GS algorithm [5] and p = 1. We refer to this algorithm as the
GAR algorithm.

Algorithm 3. The GAR algorithm for O2|shortest path|Ciax

1: Let m = 2, Alg be the GS algorithm [5] for O2||Crax and p = 1.
2: Solve the problem by using UAR(Alg, p, m).

Theorem 10. The GAR algorithm is an FPTAS for O2|shortest path|Cryax.

We point out that the proofs of the worst-case performance of algorithms
based on UAR(Alg, p, m) are quite similar. In the following proofs of this sub-
section, we will only describe the key ideas and main steps since the results can
be obtained by analogous arguments. We will adopt the same notations as in
the proof of Theorem 10, and also analyze the same two cases.

For Om|shortest path|Cpax where m is fixed, we obtain the following RAR
algorithm based on UAR(Alg, p, m) and Racsmény algorithm [2,16].
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Algorithm 4. The RAR algorithm for Om|shortest path|Cipax

1: Let Alg be Rdcsmény algorithm [2,16] for Om||Cimax and p = 3.
2: Solve the problem by using UAR(Alg, p, m).

Theorem 11. Given e > 0, the RAR algorithm is a (2+ €)-approzimation algo-
rithm for Om|shortest path|Cax.

The framework can also be applied to the combination problem of job shop
scheduling and the shortest path problem. For the combination of J2|op <
2|Cmax and the shortest path problem, we obtain a (% + €)-approximation algo-
rithm by using Jackson’s rule and setting p = % in the UAR(Alg, p, m) algo-
rithm. We refer to this algorithm as the JJAR algorithm, and describe it in
Algorithm 5. Recall that all p;; = 1 in J2Jop < 2|Cpax.

Algorithm 5. The JJAR algorithm for J2|op < 2,shortest path|Cpax

1: Let m = 2, Alg be Jackson’s rule for J2|op < 2|Cmax and p = 2.
2: Solve the problem by using UAR(Alg, p, m).

Before studying the worst-case performance of the JJAR algorithm, we estab-
lish the following lemma. Let (1 — 2) ((2 — 1)) indicate the order that a job
needs to be processed on M; (Ms) first and then on My (M).

Lemma 1. For J2|op < 2|Ciax, let C: . be the makespan returned by Jackson’s
rule. Suppose we change the processing order of all jobs to be (1 — 2) ((2 — 1)),
and the processing times keep unchanged. Then schedule the jobs by Johnsons
rule for F2||Ciax, and denote the makespan as CL . (C2..). We have C;,

2 max ( max max —
max{ max’ max} °

Now we can study the performance of the JJAR algorithm for J2jop <
2, shortest path|Ciax-

Theorem 12. Given € > 0, the JJAR algorithm is a (% + €)-approximation
algorithm for J2|op < 2, shortest path|Ciyax-

Finally, we study the general case Jm|shortest path|Cy,ax, where m is fixed.
By Theorem 5, we know that there exists o > 0, such that the SSW-SSS algo-
rithm [14,16] returns a schedule satisfying

log® (mp)
C, loo loo(1m.1) 137, 1M1, . 4
max = Uoglog(myr) | ie (i m) J;,“Jpﬂ +max2u iPij (4)

The factor « is decided by choosing the probability of the randomized steps and
the subsequent operations in the SSW-SSS algorithm [14,16] [14,16], and its
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value can be obtained by complicated calculation. Assume we determine such
value of . We can design an approximation algorithm with worst-case ratio

0 (k}gﬁ%) for Jmj|shortest path|Cpax. We refer to this algorithm as the

SAR algorithm, and describe it in Algorithm 6.

Algorithm 6. The SAR algorithm for Jm/|shortest path|Ci,ax

1: Let Alg be the SSW-SSS algorithm [14,16] for Jm||Cmax and p = %'
2: Solve the problem by using UAR(Alg, p, m).

Theorem 13. The SAR algorithm is an O (bﬁif%)—appmmmation algo-
rithm for Jm/|shortest path|Cpax.

Remind that the SAR algorithm relies on the assumption, that we can deter-
mine the constant « for the SSW-SSS algorithm [14,16]. We can calculate it
by following the details of the SSW-SSS algorithm [14,16], and in fact we can
choose « large enough to guarantee the performance ratio of our algorithm.

4.3 A PTAS for Om|shortest path|Cpax

In the previous subsection, we introduced a (2 + ¢)-approximation algorithm for
Om|shortest path|Cp,ax based on the UAR(Alg, p, m) algorithm. By a different
approach, we propose a (1 + ¢)-approximation algorithm for any ¢ > 0, i.e. a
PTAS. We also iteratively find feasible solutions, but guarantee that one of the
returned solutions has the same first N-th largest jobs with an optimal solution
where N is a given constant. Precisely speaking, we say job .J; is larger than job

Jipif max p;; > max pg. To do this, we enumerate all size N subsets
i€{1,-,m} i€{l,--,m}

JN of J, and then iteratively modify the weights of the graph such that the
jobs larger than any job in J~ will not be chosen. Then find a feasible solution
which contains all the jobs in J» corresponding to the modified graph, i.e., the
corresponding path is constrained to visit all the arcs corresponding to JV if
such a path exists.

To find a feasible solution in each iteration, we adopt the modified ABV
algorithm to obtain a near optimal min-max shortest path among all the paths
visiting the arcs corresponding to J¥ if such a path exists. Then we schedule the
selected jobs by [15] which is denoted as the SW algorithm [15] for Om/||Cppax.
We refer to our algorithm as the SAE algorithm, and describe it in Algorithm 7.

There are (Z) distinct subsets JV, thus the iterations between line 4 - line
12 run at most O(n”) times, that is a polynomial of n since N is a constant
when m and € are fixed. Since the modified ABV algorithm is an FPTAS and the
SW algorithm [15] is a PTAS, the running time of each iteration is also bounded
by the polynomial of n if m and e are fixed. It suffices to show that the SAE
algorithm terminates in polynomial time. The following theorem indicates the
SAE algorithm is a PTAS.
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Algorithm 7. The SAE algorithm for Om/|shortest path|Cpax

2'm(3+5)
1: Given 0 < e < 1, setN:m(w)
m m
2:Let D=0, M:=1+%5) > Y pii+1 Crax:= Y, > pij-
JjEJi=1 JjE€Ji=1
3: Initially, (w w3, W) == (p1j,P2j, -+ »Pmy), for a; € A corresponding to J;.
4: for all JV C J, W1th| N =N do
3 (wj7w]7"'7w] ) (p177p2],"',pmj),D2=@-
6 For jobs J, € J \ JV with max pjx > in max _pi;, set
ie{l,--- ,m} JjegN ie{l,--,m}

(wh,wi, - ,w) := (M,M,--- ,M), D:=DU{Jy}.

7:  Use the modified ABV algorithm to obtain a feasible path P of SP such that
the returned path visits all the arcs corresponding to JV if such a path exists.
Construct the corresponding job set as Jp.

8:  Schedule the jobs of Jp by the SW algorithm [15], denote the returned makespan
as Ciax, and the job schedule as o’.

9:  if Ol ax < Cmax then

10: S :=Jp,0:=0", Cuax := Cloox-
11: end if
12: end for

13: return S, o, Ciax.

Theorem 14. The SAFE algorithm is a PTAS for Jm|shortest path|Cpax.

5 Conclusions

This paper studies several problems combining two well-known combinatorial
optimization problems. We show the hardness of the problems, and present
some approximation algorithms. It is interesting to find approximation algo-
rithms with better worst-case ratios for J2lop < 2,shortest path|Ch.x and
Jm|shortest path|Ciax. Moreover, it needs further study to close the gap
between the 2-inapproximability results and the m-approximation algorithms
for O|shortest path|Cpax and J|shortest path|Chax. We can also consider other

interesting combinations of combinatorial optimization problems.
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Abstract. The Grundy number of a graph is the maximum number of
colors used by the greedy coloring algorithm over all vertex orderings.
In this paper, we study the computational complexity of GRUNDY COL-
ORING, the problem of determining whether a given graph has Grundy
number at least k. We show that GRUNDY COLORING can be solved in
time O*(2.443™) on graphs of order n. While the problem is known to
be solvable in time f(k,w) - n for graphs of treewidth w, we prove that
under the Exponential Time Hypothesis, it cannot be computed in time
O*(c¥), for any constant c. We also study the parameterized complexity
of GRUNDY COLORING parameterized by the number of colors, showing
that it is in FPT for graphs including chordal graphs, claw-free graphs,
and graphs excluding a fixed minor.

Finally, we consider two previously studied variants of GRUNDY COL-
ORING, namely WEAK GRUNDY COLORING and CONNECTED GRUNDY
COLORING. We show that WEAK GRUNDY COLORING is fixed-parameter
tractable with respect to the weak Grundy number. In stark contrast,
it turns out that checking whether a given graph has connected Grundy
number at least k is NP-complete already for k = 7.

1 Introduction

A k-coloring of a graph G is a surjective mapping ¢ : V(G) — {1,...,k} and
we say v is colored with ¢(v). A k-coloring ¢ is proper if any two adjacent
vertices receive different colors in ¢. The chromatic number x(G) of G is the
smallest k such that G has a k-coloring. Determining the chromatic number of
a graph is the most fundamental problem in graph theory. Given a graph G
and an ordering o = v1,...,v, of V(G), the first-fit algorithm colors vertex v;
with the smallest color that is not present among the set of its neighbors within
{v1,...,vi—1}. The Grundy number I'(G) is the largest k such that G admits
a vertex ordering on which the first-fit algorithm yields a proper k-coloring.
First-fit is presumably the simplest heuristic to compute a proper coloring of

F. Foucaud—This research was done while this author was a postdoctoral fellow at
the Department of Mathematics of University of Johannesburg (South Africa) and
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a graph. In this sense, the Grundy number gives an algorithmic upper bound
on the performance of any heuristic for the chromatic number. This notion was
first studied by Grundy in 1939 in the context of digraphs and games [11], and
formally introduced 40 years later by Christen and Selkow [8]. Many works have
studied the first-fit algorithm in connection with on-line coloring algorithms,
see e.g. [21]. A natural relaxation of this concept is the weak Grundy number,
introduced by Kierstead and Saoub [17], where the obtained coloring is not asked
to be proper. A more restricted concept is the one of connected Grundy number,
introduced by Benevides et al. [3], where the algorithm is given an additional
“local” restriction: at each step, the subgraph induced by the colored vertices
must be connected.

The goal of this paper is to advance the study of the computational com-
plexity of determining the Grundy number, the weak Grundy number and the
connected Grundy number of a graph.

Let us introduce the problems formally. Let G be a graph and let 0 =
v1,...,0, be an ordering of V(G). A (not necessarily proper) k-coloring ¢ :
V(G) = {1,...,k} of G is a first-fit coloring with respect to o if for every vertex
v; and every color ¢ with ¢ < ¢(v;), v; has a neighbor v; with ¢(v;) = ¢ for some
j < i. In particular, p(v;) = 1. A vertex ordering o = vy,...,v, is connected
if for every i, 1 < i < n, the subgraph induced by {vy,...,v;} is connected. A
k-coloring ¢ : V(G) — {1,...,k} is called the (i) weak Grundy, (ii) Grundy,
(iii) connected Grundy coloring of G, respectively, if it is a first-fit coloring with
respect to some vertex ordering o such that (i) ¢ and o has no restriction, (ii)
 is proper, (iii) ¢ is proper and o is connected, respectively.

The maximum number of colors used in a (weak, connected, respectively)
Grundy coloring is called the (weak, connected, respectively) Grundy number
and is denoted I'(G) (I""(G) and I'.(G), respectively). In this paper, we study
the complexity of computing these invariants.

GRUNDY COLORING
Input: A graph G, an integer k.
Question: Do we have I'(G) > k?

The problems WEAK GRUNDY COLORING and CONNECTED GRUNDY COL-
ORING are defined analogously.

Note that x(G) < I'(G) < A(G) + 1, where x(G) is the chromatic number
and A(G) is the maximum degree of G. However, the difference I'(G) — x(G)
can be (arbitrarily) large, even for bipartite graphs. For example, the Grundy
number of the tree of Figure 1 is 4, whereas its chromatic number is 2. Note that
this is not the case for I'. for bipartite graphs, since I'.(G) < 2 for any bipartite
graph G [3]. However, the difference I'.(G) — x(G) can be (arbitrarily) large even
for planar graphs [3].

Previous Results. GRUNDY COLORING remains NP-complete on bipartite
graphs [14] and their complements [25] (and hence claw-free graphs and Ps-
free graphs), on chordal graphs [23], and on line graphs [13]. Certain graph
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classes admit polynomial-time algorithms. There is a linear-time algorithm
for GRUNDY COLORING on trees [15]. This result was extended to graphs of
bounded treewidth by Telle and Proskurowski [24], which proposed a dynamic
programming algorithm running in time k9(®)20(wk)y — O(n3w2) for graphs
of treewidth w (in other words, their algorithm is in FPT for parameter k + w
and in XP for parameter w).! A polynomial-time algorithm for P;-laden graphs,
which contains all cographs as a subfamily, was given in [2].

Note that GRUNDY COLORING admits a polynomial-time algorithm when
the number & of colors is fixed [26], in other words, it is in XP for parameter k.

GRUNDY COLORING has polynomial-time constant-factor approximation
algorithms for inputs that are interval graphs [12,21], complements of chordal
graphs [12], complements of bipartite graphs [12] and bounded tolerance
graphs [17]. In general, however, there is a constant ¢ > 1 s.t. approximat-
ing GRUNDY COLORING within ¢ is impossible unless NP C RP [18]. It is not
known if a polynomial-time o(n)-factor approximation algorithm exists.

When parameterized by the graph’s order minus the number of colors,
GRUNDY COLORING was shown to be in FPT by Havet and Sempaio [14].

CONNECTED GRUNDY COLORING was introduced by Benevides et al. [3],
who proved it to be NP-complete, even for chordal graphs and for co-bipartite
graphs. WEAK GRUNDY COLORING is NP-complete [10].

Our Results. As pointed out in [24], no (extended) monadic second order expres-
sion is known for the property “I'(G) > k”. Therefore it is not clear whether
the algorithm of [24] can be improved, e.g. to an algorithm of running time
f(w) - poly(n). Nevertheless, on general graphs, we show that GRUNDY COLOR-
ING can be solved in time O*(2.443™).

As a lower bound to the positive algorithmic bounds, we show that under the
Exponential Time Hypothesis (ETH) [16], an O(c" - poly(n))-time algorithm for
GRUNDY COLORING does not exist (for any fixed constant ¢). Hence the expo-
nent n cannot be replaced by the treewidth in our O*(2.443™)-time algorithm.

We also study the parameterized complexity of GRUNDY COLORING param-
eterized by the number of colors, showing that it is in FPT for graphs including
chordal graphs, claw-free graphs, and graphs excluding a fixed minor.

Finally, we show that WEAK GRUNDY COLORING and CONNECTED GRUNDY
COLORING exhibit opposite computational behavior when viewed through the
lense of parameterized complexity (for the parameter “number of colors”). While
WEAK GRUNDY COLORING is shown to be FPT on general graphs, CONNECTED
GRUNDY COLORING is NP-complete even when k& = 7, i.e. does not belong to
XP (it is the only of the three studied problems to be in this case). Note that the
known NP-hardness proof for CONNECTED GRUNDY COLORING was only for an
unbounded number of colors [3].

! The first running time is not explicitly stated in [24] but follows from their meta-
theorem. The second one is deduced by the authors of [24] from the first one by
bounding k£ by wlog,n + 1.
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Due to space constraints, some proofs are deferred to the full version of the
paper [6].

2 Preliminaries

We defer many (classic) technical definitions to the full version [6], and only
give the ones related to Grundy colorings. Given a graph G, a colored witness
of height ¢, or simply called an ¢-witness, is a subgraph G’ of G, which comes
with a partition W = Wi - - W Wy of V(G’) such that for every i in 1,...,¢ (1)
W; # 0, and (2) W; is an independent dominating set of G[W; U --- U W,|. The
cell W; under W is called the color class of color i. A witness G’ of height £ is
said to be minimal if for every u € V(G”), G' —u with the partition Wy (g —fu
is not an ¢-witness.

Observation 1. For any graph G, I'(G) = k if and only if G allows a minimal
k-witness.

Observation 2. A minimal k-witness has a vertex of degree k — 1 (the root),
order at most 2571, and is included in the distance-k neighborhood of the root.

By these observations, k-GRUNDY COLORING can be solved by checking, for
every subset of 2871 vertices, if it contains a k-witness as an induced subgraph:

Corollary 3 ([26]). GRUNDY COLORING can be solved in time f(k:)nzkfl, i.e.
GRUNDY COLORING parameterized by the number k of colors is in XP.

Observation 4. In any Grundy coloring of G, a vertex with degree d cannot be
colored with color d + 2 or larger.

Proposition 5. Let G be a graph with a minimal Grundy coloring achieving
color k and let W be the corresponding minimal witness. Then, if a vertex u of
W is colored with k' < k, u has a neighbor colored with some color k" k" > k'.

Proof. If not, one could remove u from the witness, a contradiction.

Lemma 6. Let G be a graph and let G’ be the corresponding minimal {-witness
with the partition W := Wi W --- W Wy. Then, W; is an independent set which
dominates the set Uje[i+1,€] W; (and no proper subset of W; has this property).
In particular, Wy is a minimal independent dominating set of V(G').

For each i € [I], let ¢; be a rooted tree. We define v[t1, %o, ...,t;] as the tree
rooted at node v where v is linked to the root of each tree t;. The set (T%)x>1 is a
family of rooted trees (known as binomial trees) defined as follows (see Figure 1
for an illustration):

— T consist only of one node (incidentally the root), and
- Vk = 1, Tk+1 = U[Tl,TQ, ce ,Tk}.
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Fig. 1. The binomial tree T, where numbers denote the color of each vertex in a
first-fit proper coloring with largest number of colors

In a tree T}, with root v, for each i € [k], v(¢) denotes the root of T; (i.e. the i-th
child of v).
We now show a useful lemma about Grundy colorings of the tree Tj.

Lemma 7. The Grundy number of Ty is k. Moreover, there are exvactly two
Grundy colorings achieving color k, and a unique coloring if we impose that the
root is colored k.

The following result of Chang and Hsu [7] will prove useful:

Theorem 8 ([7]). Let G be a graph on n vertices for which every subgraph H
has at most d|V (H)| edges. Then I'(G) < loggyq/q(n) + 2.

3 Grundy Coloring: Algorithms and Complexity

3.1 An Exact Algorithm

A straightforward way to solve GRUNDY COLORING is to enumerate all possible
orderings of the vertex set and to check whether the greedy algorithm uses at
least k colors. This is a @(n!)-time algorithm. A natural question is whether
there is a faster exact algorithm. We now give such an algorithm.

We rely on two observations: (a) in a colored witness, every color class W; is
an independent dominating set in G[J,, W;| (Lemma 6), and (b) any indepen-
dent dominating set is a maximal independent set (and vice versa). The algo-
rithm is obtained by dynamic programming over subsets, and uses an algorithm
which enumerates all maximal independent sets.

Theorem 9. GRUNDY COLORING can be solved in time O*(2.44225™).

Proof. Let G = (V, E) be a graph. We present a dynamic programming algorithm
to compute I'(G). For simplicity, given S C V, we denote the Grundy number
of the induced subgraph G[S]| by I'(S). We recursively fill a table I'*(S) over
the subset lattice (2V,C) of V in a bottom-up manner starting from S = (). The
base case of the recursion is I'*(f)) = 0. The recursive formula is given as

I'*(S) =max{I"(S\X)+1| X C S is an independent dominating set of G[S]}.

Now let us show by induction on |S]| that I'*(S) = I'(S) for all S C V. The
assertion trivially holds for the base case. Consider a nonempty subset S C V;
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by induction hypothesis, I'*(S”) = I'(S’) for all S’ C S. Let X be a subset of S
achieving I'*(S) = I'*(S'\ X) + 1 and X’ be the set of the color class 1 in the
ordering achieving the Grundy number I'(.S).

Let us first see that I'™*(S) < I'(S). By induction hypothesis we have I"*(S'\
X) = I'(S\ X). Consider a vertex ordering o on S\ X achieving I'(S \ X).
Augmenting o by placing all vertices of X at the beginning of the sequence
yields a (set of) vertex ordering(s). Since X is an independent set, the first-fit
algorithm gives color 1 to all vertices in X, and since X is also a dominating set
for S\ X, no vertex of S\ X receives color 1. Therefore, the first-fit algorithm on
such ordering uses I'(S'\ X) + 1 colors. We deduce that I'(S) > I'(S\ X)+1=
I'*(S\ X)+1=1%(9).

To see that I'™(S) > I'(S), we first observe that I'(S\X’) > I'(S)—1. Indeed,
the use of the optimal ordering of S ignoring vertices of X’ on S\ X’ yields the
color I'(S) — 1. We deduce that I'(S) < I'(S\ X')+1 =I*(S\X)+1<
I*(S\ X)+1=I*(9).

As a minimal independent dominating set is a maximal independent set, we
can estimate the computation of the table by restricting X to the family of
maximal independent sets of G[S]. On an n-vertex graph, one can enumerate all
maximal independent sets in time 0(1.44225™) [20]. Checking whether a given
set is a minimal independent set is polynomial and thus, the number of execution
steps is dominated (up to a polynomial factor) by the number of recursion steps
taken. This is

> (n) - 1.44225" = (1 4 1.44225)".0
7
=0

We leave as an open question to improve this running time. However, we
note that the fast subset convolution technique [4] does not seem to be directly
applicable.

3.2 Lower Bound on the Treewidth Dependency

Let us recall that GRUNDY COLORING is known to be in XP for the parameter
treewidth, but its membership in FPT remains open.

The following result is inspired by ideas in [19] for proving near-optimality
of known algorithm on bounded treewidth graphs. Unlike [19] which is based on
the Strong ETH, our result is based on the ETH.

Theorem 10. Under the ETH, for any constant c, GRUNDY COLORING is not
solvable in time O*(c™) on graphs with feedback vertex set number (and hence
treewidth) at most w.

3.3 Grundy Coloring on Special Graph Classes

For each fixed kK, GRUNDY COLORING can be solved in polynomial time [26]
and thus GRUNDY COLORING parameterized by the number of colors is in XP.
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However, it is unknown whether it is in FPT for this parameter. We will next
show several positive results for H-minor-free, chordal and claw-free graphs.
Note that GRUNDY COLORING is NP-complete on chordal graphs [23] and on
claw-free graphs [25].

We first observe that the XP algorithm of [24] implies a pseudo-polynomial-
time algorithm on apex-minor-free graphs (such as planar graphs).

o

o . 2 )
Proposition 11. GRUNDY COLORING is n°U°8 ") _time solvable on apea-

minor-free graphs.

Proposition 12. GRUNDY COLORING parameterized by the number of colors is
in FPT for the class of graphs excluding a fixed graph H as a minor.

Proof. Notice that G contains a k-witness H as an induced subgraph if and only
if I'(G) > k. We can check, for every k-witness H, whether the input graph G
contains H as an induced subgraph. By Observation 1, it suffices to test only
the minimal k-witnesses. The number of minimal k-witnesses is bounded by
some function of k¥ and H-INDUCED SUBGRAPH ISOMORPHISM is in FPT when
parameterized by |V (H)| on graphs excluding H as a minor [9]. Therefore, one
can check if I'(G) > k by solving H-INDUCED SUBGRAPH ISOMORPHISM for all
minimal k-witnesses H. a

Proposition 13. Let C be a graph class for which every member G satisfies
tw(G) < f(I'(G)) for some function f. Then, GRUNDY COLORING parameter-
ized by the number of colors is in FPT on C. In particular, GRUNDY COLORING
1s in FPT on chordal graphs.

Proof. Since GRUNDY COLORING is in FPT for parameter combination of the
number of colors and the treewidth [24], the first claim is immediate. Moreover
w(G) < I'(G), hence if tw(G) < f(w(G)) we have tw(G) < f(I'(G)). For any
chordal graph G, tw(G) = w(G) — 1 [5]. O

Proposition 14. GRUNDY COLORING can be solved in time O (nkAk+1) =
nAA" for graphs of mazimum degree A.

Proof. Observation 2 implies that one can enumerate every distance-k-
neighbourhood of each vertex, test every k-coloring of this neighborhood, and
check if it is a valid Grundy k-coloring. Every such neighborhood has size at
most AR < AA+3 gince by Observation 4, k < A + 2. There are at most k®
k-colorings of a set of = elements. O

Corollary 15. Let C be a graph class for which every member G satisfies
A(G) < f(I'(@)) for some function f. Then, GRUNDY COLORING parameter-
1zed by the number of colors is in FPT for graphs in C. In particular, this holds
for the class of claw-free graphs.

Proof. Straightforward by Proposition 14. Moreover, let G be a claw-free graph,
and consider a vertex v of degree A(G). Since G is claw-free, the subgraph
induced by the neighbors of v has independence number at most 2, and hence
[(G) 2 X(G) 2 x(N(v)) > 262, 0
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4 Weak and Connected Grundy Coloring

Among the three versions of GRUNDY COLORING we consider in this paper,
WEAK GRUNDY COLORING is the least constrained while CONNECTED GRUNDY
COLORING appears to be the most constrained one. This intuition turns out
to be true when it comes to their parameterized complexity. When parame-
terized by the number of colors, WEAK GRUNDY COLORING is in FPT while
CONNECTED GRUNDY COLORING does not belong to XP.

We recall that WEAK GRUNDY COLORING is NP-complete [10].

Theorem 16. WEAK GRUNDY COLORING parameterized by number of colors
s in FPT.

The FPT-algorithm is based on the idea of color-coding by Alon et al. [1]. The
height of a minimal witness for I > k is bounded by a function of k. Since those
vertices of the same color do not need to induce an independent set, a random

coloring will identify a colorful minimal witness with a good probability.
We also remark that the approach used to prove Theorem 16 does not work

for GRUNDY COLORING because there is no control on the fact that a color class
is an independent set.

Minimal connected Grundy k-witnesses, contrary to minimal Grundy k-
witnesses (Observation 2), have arbitrarily large order: for instance, the cycle
C,, of order n (n > 4, n odd) has a Grundy 3-witness of order 4, but its unique
connected Grundy 3-witness is of order n: the whole cycle.

Observe that I'.(G) < 2 if and only if G is bipartite. Hence, CONNECTED
GRUNDY COLORING is polynomial-time solvable for any k < 3. However, we will
now show that this is not the case for larger values of k, contrary to GRUNDY
CoOLORING (Corollary 3). Hence, the parameterized version of the problem does
not belong to XP.

Theorem 17. CONNECTED GRUNDY COLORING is NP-hard even for k =17.

Proof. We give a reduction from 3-SAT 3-OCC, an NP-complete restriction of
3-SAT where each variable appears in at most three clauses [22], to CONNECTED
GRUNDY COLORING with & = 7. We first give the intuition of the reduction. The
construction consists of a tree-like graph of constant order (resembling binomial
tree Ts) whose root is adjacent to two vertices of a K¢ (this constitutes W) and
contains three special vertices a4, as1, and agq (which will have to be colored
with colors 1, 3, and 2 respectively), a connected graph P; which encodes the
variables and a path P, which encodes the clauses. One in every three vertices
of P, is adjacent to a4, a1 and asy. To achieve color 7, we will need to color
those vertices with color strictly greater than 3. This will be possible if and only
if the assignment corresponding to the coloring of P; satisfies all the clauses.
We now formally describe the construction. Let ¢ = (X = {z1,...,2,},C =
{C1,...,Cn}) be an instance of 3-SAT 3-OCC where no variable appears
always as the same literal. P, = ({i1,42,v} U{v;,7; | ¢ € [n]}, {{i1,i2}, {i2,v}}U
{{v,v;} U{v,7;} U{v;,7;} | ¢ € [n]}) consists of n triangles sharing the vertex v.
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Py=({p; | 7€ B3m—-1},{{pj;pj+1} | J € [3m —2]) consists of a path of length
3m — 1. For each j € [m] and i € [n], ¢; = psj—1 is adjacent to v; if x; appears
positively in C, and is adjacent to v; if z; appears negatively in C;. For each
J € [m], ¢; is adjacent to a4, as1, and agq.

Fig. 2. P, and P for the instance {z1V-z2Vas}, {z1VraV-za}, {-21VasVaa}, {z2V
-3 V 1‘4}

Intuitively, setting a literal to true consists of coloring the corresponding ver-
tices with 3. Therefore, a clause Cj is satisfied if ¢; has a 3 among its neighbors.
To actually satisfy a clause, one has to color ¢; with 4 or higher. Thus, ¢; must
also see a 2 in its neighborhood. We will show that the unique way of doing so
is to color p3;_2 with 2, so all the clauses have to be checked along the path P.

We give, in Figure 3, a coloring of P; corresponding to a truth assignment of
the instance SAT formula. One can check that when going along P> all the ¢;’s
are colored with color 4.

Fig. 3. A connected Grundy coloring such that all the ¢;’s are colored with color at
least 4

The constant gadget W is depicted in Figure 4. The waves between a4 and
ag and between ag and ai; correspond, respectively, to the gadgets encoding
the variables (P;) and the clauses (P2) described above and drawn in Figure 2.
A connected Grundy coloring achieving color 7 is given in Figure 5 provided that
going from ag to ai; can be done without coloring any vertex c¢; with color 2 or
less.



118 E. Bonnet et al.

Fig.5. A connected Grundy color-
ing of the constant gadget achieving
color 7. The order is given by the
sequence (a;)1<i<33-

Fig. 4. The constant gadget. The doubly-
circled vertices are adjacent to all the c;’s

(4 € [m]).

In the following claims, we use extensively Observation 1 which states that a
vertex with degree d gets color at most d + 1. We observe that coloring a vertex
of degree d with color d + 1 is useful only if we want to achieve color d + 1.
Indeed, otherwise, the vertex has all its neighbors already colored and cannot
be used in the sequel. Moreover, if one wants to color a neighbor y of a vertex
z in order to color x with a higher color, ¥ cannot receive a color greater than
its degree d(y). Hence, the only vertices that could achieve color k are vertices
of degree at least k — 1 having at least one neighbor of degree at least k — 1.

In the sequel, we call doubly-circled vertices the special vertices a4, as; and
a4, as they are doubly-circled in our figures.

Claim 17.A. To achieve color 7, asr needs to be colored with color 6 (while for
all i € [28,33], a; is still uncolored).

Claim 17.B. Vertices asg, aoa, as5, a3, a1s must receive color 1, 2, 3, 4, 5
respectively.

Claim 17.C. Vertex ay must receive color 4.

Claim 17.D. Vertex as must receive color 3.

Claim 17.D has further consequences: we must start the connected Grundy
coloring by giving colors 1 and 2 to a; and as. The only follow-up, for connectivity
reasons, is then to color as with color 3 and a4 with color 1. Thus, vertices as
and ag has to be colored with colors 2 and 1 respectively (so that a7y can be
colored 4). As, by Claim 17.B, ags must receive color 3, as4 must receive color 2
(since a4 has already color 1), so ajg must be colored 1.

Claim 17.E. Vertex a1 must receive color 3.
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Claim 17.F. The unique way of coloring a1, with color 1 without coloring any
vertex ¢; with color 1, 2, or 3 is to color all the c;’s for each j € [m].

We remark that opposite literals are adjacent, so for each i € [n], only one of
v; and ©; can be colored with color 3. We interpret coloring v; with 3 as setting
x; to true and coloring v; with 3 as setting x; to false.

Claim 17.G. To color each ¢j (j € [m]) of the path Py with a color at least 4,
the SAT formula must be satisfiable.

So, to achieve color 7 in a connected Grundy coloring, the SAT formula must
be satisfiable. The reverse direction consists of completing the coloring by giving
ais color 1 and a4 color 2, as shown in Figure 3 and Figure 5.

5 Concluding Remarks and Questions

We presented several positive and negative results concerning GRUNDY COLOR-
ING and two of its variants. To conclude this article, we suggest some questions
which might be useful as a guide for further studies.

There is a gap between the f(k,w) - n (and XP) algorithm of [24] and the
lower bound of Theorem 10. Is GRUNDY COLORING in FPT when parameterized
by treewidth? Two simpler questions are whether there is a better f(k,w)poly(n)
algorithm (for example with f(k,w) = k°(*)), and whether GRUNDY COLORING
is in FPT when parameterized by the feedback vertex set number (it is easy to
see that it is the case when parameterized by the vertex cover number).

GRUNDY COLORING (parameterized by the number of colors) is in XP, and
we showed it to be in FPT on many important graph classes. Yet, the question
whether it is in FPT or W[1]-hard remains unsolved. A perhaps more accessible
research direction is to settle this question on bipartite graphs.

It would also be interesting to determine the (classic) complexity of GRUNDY
COLORING on interval graphs. Also, we saw that the algorithm of [24] implies a
pseudo-polynomial algorithm for planar (even apex-minor-free) graphs, making
it unlikely to be NP-complete on this class. Is there a polynomial-time algorithm?

Concerning CONNECTED GRUNDY COLORING, we showed that it becomes
NP-complete for k = 7. As CONNECTED GRUNDY COLORING is polynomial-time
solvable for k < 3, its complexity status for 4 < k& < 6 and/or on restricted graph
classes remains open.
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Abstract. We consider the Minimum Independent Set Partition Prob-
lem (MISP) and its dual (MISPDual). The input is a multi-set of N vectors
from {0,1}", where U := {1,...,n} is the index set. In MISP, a thresh-
old k£ is given and the goal is to partition U into a minimum number of
subsets such that the projected vectors on each subset of indices have
multiplicity at least k, where the multiplicity is the number of times a
vector repeats in the (projected) multi-set. In MISPDual, a target num-
ber x is given instead of k, and the goal is to partition U into x subsets
to maximize k such that each projected vector appears at least k times.

The problem is inspired from applications in private voting verifi-
cation. Each of the N vectors corresponds to a voter’s preference for n
contests. The n contests are partitioned into x subsets such that each
voter receives a verifiable tracking number for each subset. For each sub-
set of contests, each voter’s tracking number together with the votes for
that subset is released in some public bulletin, which can be verified by
each voter. The multiplicity k£ of the vectors’ projection onto each subset
of indices ensures that the bulletin for each subset of contests satisfies
the standard privacy notion of k-anonymity.

In this paper, we show strong inapproximability results for both prob-
lems. For MISP, we show the problem is hard to approximate to within
a factor of n*~¢. For MISPDual, we show the problem is hard to approxi-
mate to within a factor of N*~¢. Here, ¢ can be any small constant. Note
that factors n and N approximation are trivial for MISP and MISPDual
respectively. Hence, our results imply that any polynomial-time algo-
rithm can almost do no better than the trivial one.

1 Introduction

We study the Minimum Independent Set Partition problem (MISP) and its
dual problem (MISPDual). This problem was raised by Wagner on cstheory.
stackexchange [12] in the context of data privacy [6]. We first describe the prob-
lem and an application scenario.
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In MISP, a multi-set Y of N vectors in {0,1}"™ is given together with a
multiplicity threshold k. Our goal is to partition the indices [n] into minimum
number x of subsets such that the projection of Y on each subset has multiplicity
at least k.

The dual problem MISPDual is also of interest, in which a multi-set Y of
vectors is also given. However, the target number x of parts is given, and the goal
is to return a y-partition of the indices [n] such that the minimum multiplicity
k of the projected vectors is maximized.

Application Scenario. The problem is motivated by privacy in voting verifi-
cation. We have N voters, each of whom is voting for n contests (with {0,1}
voting). To verify that all votes have been counted, each voter gets assigned a
verifiable tracking number during voting. Then, there is a public bulletin board
where all pairs of tracking numbers and votes are posted (where names of voters
are withheld) such that each voter can verify that his votes are correct using
his own tracking number. This could provide verifiability, but it is well-known
in the privacy community that simply replacing a user’s name with a random
id cannot achieve privacy [6], since a voter might be uniquely identified by the
way he votes in the n contests.

An expensive solution would be for each voter to get a separate tracking
number for each contest, but this would increase the space complexity to store
n numbers for each voter. Observe that if k£ is the minimum of the number of
minority votes over all n contests, this expensive solution achieves the standard
notion of k-anonymity [11].

To obtain a tradeoff between the space complexity of each voter and the
anonymity parameter, one solution is: after receiving all votes, partition the n
contests into some small number x of subsets such that within each subset of
contests, each voter has at least k — 1 other voters who vote in exactly the same
way in that subset of contests, for some parameter k. In the public bulletin
board, the x subsets of contests are released independently. Each voter needs to
store only x tracking numbers (one for each subset of contests), and k-anonymity
is achieved.

The case for MISP corresponds to the scenario when a parameter k is given,
and the goal is the minimize the number y of subsets to achieve k-anonymity.
For the dual problem MISPDual, the number x of subsets is given, and the goal
is to partition the contests into x subsets such that the anonymity parameter &
is maximized. Hence, it is of interest to investigate the complexity and hardness
of approximation for these problems.

Our Results and Techniques. We prove strong inapproximability results for
both problems MISP and MISPDual. We first give a reduction from graph col-
oring, which is NP-hard; in graph coloring, each vertex is assigned a color such
that no two adjacent vertices receive the same color. Intuitively, each index in [n]
stands for a vertex, while the vectors capture the properties of the graph coloring
problem. In our construction, a valid coloring corresponds to a partition with
multiplicity k, while an invalid coloring corresponds to one with multiplicity 1.
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The inapproximability of graph coloring implies that the approximation hard-
ness of MISP and MISPDual with y > 3 is at least n'=¢ and N'~¢ respectively.

However, we show that MISPDual with y = 2 is much harder than graph col-
oring with x = 2. Observe that deciding if a graph is 2-colorable can be solved
in polynomial time. Hence, to show the hardness of MISPDual with x = 2, we
need new reduction techniques. We give a novel reduction from the NP-hard
problem 3-SAT. Similar to graph coloring, some indices stand for variables and
their negations. Intuitively, one subset stands for “true” and the other stands
for “false”. In order to show approximation hardness, for any threshold &, our
reduction is carefully constructed such that a satisfiable assignment corresponds
to a partition with multiplicity at least k, while an unsatisfiable formula corre-
sponds to an instance such that any 2-partition has multiplicity only 1. This gap
property allows us to prove that it is NP-hard to approximate MISPDual within
factor N1—¢,

Our strong inapproximability results imply that there can be no efficient
approximation algorithms for the problems MISP and MISPDual in their most
general form. However, in real-world applications, the instances might have spe-
cial structures that facilitate useful heuristic algorithms, which we leave as future
research directions.

1.1 Historical Overview on Inapproximability

NP-Completeness has been developed in the 1970s [2,9]. Its success motivated
the study of approximation algorithms. The first such paper was by Johnson [8].
He considered the problems Max SAT, Independent Set, Coloring and Set Cover.
Several approximation algorithms have been proposed for these problems in this
paper.

The design and analysis of approximation algorithms have grown since then.
Several problems are shown to admit polynomial time approximation schemes
(PTAS), meaning that they can be approximated as close to the optimum as pos-
sible. It was known from the very beginning of approximation algorithms that
some problems do not admit PTAS. For instance, coloring can not be approxi-
mated within %—e, since 3-coloring is NP-hard. However, the inapproximabilities
for many hard problems remains unknown.

Modern theory of inapproximability starts from the development of PCP

systems, which are proved in [1]. Unlike conventional NP-hardness reduction,
PCP systems can be used more readily to achieve inapproximability hardness.
Based on PCP systems, several strong inapproximability have been proved since
then, e.g., MAX 3SAT [7], Set Cover [5] and Coloring [4,13]. In particular, one
of our reductions is based on the hardness of graph coloring [13].
Other Vector Partition Problems. Onn and Schulman [10] have also considered
vector partition problems in which the input is also a collection of vectors. How-
ever, the goal is to partition the vectors (as opposed the coordinate index set)
to maximize some convex objective function on the sum of vectors in each part.
They showed that if both the dimension and the number of parts are fixed, the
problem can be solved in strongly polynomial time.
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2 Problem Definition

We give the formal definition of the Minimum Independent Set Partition Problem
(MISP). The input is a positive integer n, a multi-set Y := {y1,y2,...,yn} of N
vectors in {0, 1}", and a multiplicity threshold k. We use U := [n] = {1,2,...,n}
to denote the set of indices.

Given a vector y and subset I C U of indices, we use y|x to denote the
projection of vector y on I. For instance, for y = (0,1,0,1,0,1) and I = {2,4,5},
ylr = (1,1,0). Given a multi-set Y, the projection of Y on I is a multi-set defined
similarly Y|y = {y|r : y € Y}.

A subset I C U of indices is k-independent (with respect to Y) if each vector
in the multi-set Y'|; has multiplicity at least k, where multiplicity denotes the
number of times a vector in Y|; repeats. A partition {I1,Is,...,I,} of U is
k-independent if each part I; is k-independent.

The goal is to find the smallest integer x and partition U into x subsets
I,..., I, such that each partition I; is k-independent.

Dual Problem. We also describe a dual version of the problem that we call
MISPDual. Similarly, a multi-set Y of vectors are given, and a target number x
of partitions is given instead of k. The goal is to maximize k and partition the
indices U into x subsets I1,..., I, such that each I; is k-independent.

3 General Reduction Schema

In this section, we reduce from the problem of graph coloring to MISP (and
MISPDual with x > 3); in a walid coloring of an undirected graph, each vertex
is assigned a color such that no two adjacent vertices receive the same color.
We convert from an undirected graph G = (V, E) to a multi-set of vectors such
that a valid coloring corresponds to satisfying some fixed multiplicity threshold
k while an invalid coloring leads to multiplicity 1. The use of this “k vs 1”7-gap
will be clear in the proof of the hardness of MISPDual. Because graph coloring
is hard to approximate [13], our reduction readily implies the approximation
hardness of MISP (and MISPDual with x > 3).

Our reduction depends on an arbitrarily chosen parameter k£ > 1 that is
the same as the given threshold in MISP or may depend on the graph size
n = |V|] in MISPDual. The index set is U := [n]. The multi-set Y consists of
N = k(n+1)+ (5) + (k — 1)|E| vectors in {0,1}", where E is the edges in
the complement graph of G. We also use u € V to denote an index of a vector.
Let MISP(G, k) be the instance reduced from graph G with parameter k. The
vectors in MISP(G, k) are defined as follows.

(I) An all-0’s vector, and the n vectors in the standard basis (each having
exactly one non-zero coordinate). Each of these vectors are repeated k
times. There are k(n + 1) such vectors.

(IT) Vectors of exactly two non-zero coordinates. There are ("

2) such vectors.
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(IIT) For each (u,v) ¢ E, the vector with exactly two non-zero entries at indices
u and v. Each of these vectors are repeated (k—1) times. There are (k—1)|E|
such vectors.

Figure 1 contains an example of the vectors for graph G = (V = {a,b,c,d}, E =
{{a,b},{a,c},{a,d}}) and k = 3. Observe that parts (I) and (II) only depend
on the size of graph G and k.

Note that a coloring of the graph gives a partition on U (and vice versa) in
a natural way, where vertices having the same color corresponds to a subset of
indices. Next we prove the relationship between colorings and partitions.

Theorem 1. For any k > 1 and graph G, G has a wvalid x-coloring iff
MISP(G, k) has a k-independent x-partition. If G does not have any valid x-
coloring, then any x-partition of MISP(G, k) is not 2-independent.

Proof. When G has a valid x-coloring, we can induce a y-partition from the
coloring. We prove it is k-independent. Given a subset I of indices, consider the
projected vectors in each part of the reduction.

Each projected vector in part (I) appears at least k times by the construction.
Each projected vector in (IIT) appears at least k times since it repeats k—1 times
in (ITT) and we can find a same one in (II).

For a vector in part (II), it depends on the indices v and v at which the
entries are non-zero. If at most one of them is included in I, then the projected
vector already appears k times in (I); otherwise, both u and v are included in 1.

Two vertices u and v can be included in the same part I only if they are not
neighbors in G; hence, the projected vector appears once from (II) and k£ — 1
times from (IIT). This proves the “only if” part.

On the other hand, if a y-partition is 2-independent, then we induce a x-
coloring for G from the partition. We claim the coloring is valid. For any vertices
u,v with the same color, we have a vector in (II) with u,v in the same part I
(the part corresponding to their color). Such vector appears only once in (II).
It appears in (III) at least once, since the partition is 2-independent. Hence u, v
cannot be neighbours in G, thus it is a valid coloring. Notice k-independent
implies 2-independent. This proves the “if” part and the contrapositive proves
the second statement.

Theorem 2. The inapprozimability of MISP is n'=¢ for arbitrarily small € >
0, unless P = NP; this means that if a k-independent partition has minimum
number of parts x, it is NP-hard to return a k-independent partition with at
most n' =€ - x parts. Moreover, the result holds for any constant k > 2.

Proof. We want to show a reduction from a coloring instance G to an instance
of MISP. Use the “reduction schema” in Theorem 1 with k& > 2 to get a multi-set
Y, which is a MISP instance with threshold k.

It is immediate from Theorem 1 that the minimum y such that there is a
k-independent partition with x parts in the MISP instance is the same as the
chromatic number of G (the minimum number of colors needed to color G).
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Thus, the inapproximability of graph coloring can be applied to MISP. The
inapproximability of chromatic number is n!=¢, by [13], meaning that it is NP-
hard to approximate chromatic number within a factor of n'~¢. Hence, it is also
NP-hard to approximate MISP within a factor of n!~—¢.

4 Approximation Hardness of MISPDual

In this section, we show that the dual problem of maximizing the multiplicity of
the projections into partitions with x > 3 is hard to approximate. In Section 5,
we show that even for y = 2, the problem is hard.

Theorem 3. For arbitrarily small constant € > 0, there is no polynomial time
algorithm that approzimates MISPDual within a factor of N'~¢, where N is the
number of vectors in the given multi-set Y'; moreover this result holds for any
constant x > 3, unless P=NP.

Remark 1. We comment on choosing “n vs N” as the parameter to express
approximation hardness. In MISP, a trivial solution is to partition U into n
singletons, and hence, it is natural to compare with the trivial solution with
approximation ratio n. Hence, inapproximability within factor n!~¢ is a strong
indicator that no efficient algorithm would exist.

In MISPDual, since any partition would give multiplicity 1, and the maximum
possible multiplicity is the number N of vectors, inapproximability within factor
N'~¢ indicates that there is no efficient algorithm. Observe that we can also
derive n¢ hardness for MISPDual for any constant C'.

Proof. We use the fact [3] that the problem of deciding whether a graph is x-
colorable is NP-complete for any xy > 3. We reduce the problem of deciding
whether a graph G is y-colorable to MISPDual, such that for a “YES” instance,
the multiplicity of MISPDual solution is at least k, otherwise the multiplicity is
at most 1. Later we will set k = n® for some large enough constant C' = £2(1).

Given a graph G, we use the “reduction schema” in Theorem 1 with k = n®
to get a multi-set Y, which is a MISPDual instance with the same y (target
number of parts). Suppose the graph is y-colorable. From Theorem 1, we know
that the MISPDual has a solution with multiplicity at least k. On the other
hand, if the graph is not y-colorable, then MISPDual only has solutions with
multiplicity 1, since otherwise it will contradict Theorem 1.

Note that the gap between “NO” and “YES” instances is 1 vs k.

We next prove no polynomial algorithm can approximate MISPDual within
a factor better (smaller) than k& = n®. Note that the size N of Y is at most
k(n+1)+(3)+(k—1)[E] < n“*1° hence this will imply no polynomial algorithm
can approximate MISPDual within a factor better than Nesm,

Suppose there is an algorithm A that can approximate MISPDual within a
factor better than k. Then, we can decide whether a graph is y-colorable by
examining if the multiplicity is greater than 1. Hence, it is NP-hard to approx-
imate MISPDual within a factor better than & = nC > No+m. Note that for
constant C, this is a polynomial-time reduction.
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_C

Setting C' large enough such that &5

> 1 — € gives the result.

5 Improved Approximation Hardness of MISPDual

This is the most technical part of the paper. In view of Section 4, it is natural
to ask whether MISPDual with x = 2 is polynomial-time solvable, as deciding if
a graph is 2-colorable has an easy solution.

In this section, we answer this question negatively. We show strong inap-
proximability result for MISPDual with x = 2. Observe that the reduction from
graph coloring no longer works. To derive such a result, we need some problem
with binary choice to tackle 2-partition. It turns out that 3-SAT does the job. In
our construction the two parts correspond to “true” and “false” literals. At the
same time, “true” and “false” literals are distinguishable via additional indices.
The inapproximability comes from the fact that any satisfiable assignment cor-
responds to a 2-partition with high multiplicity, while any non-satisfiable assign-
ment corresponds to a 2-partition with low multiplicity. In particular, we prove
the following result.

Theorem 4. For arbitrarily small constant € > 0, there s no polynomial algo-
rithm that approzimates MISPDual with x = 2 within a factor of N'=¢, unless
P=NP.

Proof. We use the fact that 3-SAT is NP-hard [9]. We construct a reduction from
3-SAT to MISPDual with y = 2. Consider an instance of 3-SAT: C = Al_,C; =
Al_i(ci1Veia Veis), with I clauses and p distinct variables.

Here ¢; ; can be x or —z. Without loss of generality, we assume that x and
-z do not appear in the same clause. It is obvious that p < 3I, and we further
assume that p,l > 2 to avoid trivial cases. The property of our reduction is that
a satisfiable 3-SAT instance corresponds a MISPDual solution with multiplicity
at least k (later fixed to be 1(2)), while a non-satisfiable 3-SAT corresponds to
a MISPDual solution with multiplicity at most 1. Notice that the gap “1 vs k”
is used to derive the inapproximability result.

We next give the construction for the reduction from 3-SAT to MISPDual with
X = 2. We need a parameter k > 2 to be fixed later, which will be polynomially
related to I. We denote the resulting MISPDual instance by MISPDual(C, k),
where C' is the 3-SAT instance and k is the parameter.

Our reduction will generate a multi-set Y of vectors from {0, 1}(1++2P) with
index set U := [l + 1 + 2p]. The first | indices are identification indices and are
denoted by [1..[]. The (I + 1)-th index is the separation index and is denoted by
(I +1). The last 2p indices correspond to literals (and their negations) and are
denoted by the literals, e.g., z or —x. The use of identification and separation
indices will become clear in the proof.

NOTATION. To simplify description, coordinates not mentioned are 0.

There are four parts of vectors as below:
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(I) There are 2k vectors:
The 1st vector is the vector with the first [ coordinates being 1.
The 2nd to the k-th vectors are the vectors with the first [ + 1 coordinates
being 1.
The (k + 1)-st vector is the vector with the (I + 1)-st coordinate being 1.
The remaining k& — 1 vectors are all zero vectors.
The use of (I) is to force the identification indices 1..I to be in different
part from the separation index [ + 1 in a “good” partition. Notice that
some (0, 1) will appear only once otherwise.
(IT) There are (2k + 1)p vectors. For each variable x, we have (2k + 1) vectors
described as below:
(IL.z) The first k vectors are the vectors with coordinates (z, ~z) being (0, 1).
The next k vectors are the vectors with coordinates (z, —z) being (1,0).
The last vector is a vector with indices (z, ~z) being (1, 1).
The use of (II) is to force x and —x to be apart. Since there will be only
one (1,1) if the two indices are put together. In a “good” partition, literals
setting to be “true” are supposed to be within the identification indices’
(the first [ indices) partition, while the “false” are in the separation index’s
(the [ + 1-st index) partition.
(ITI) There are (3k + 1)l vectors. For each clause C; = 2V y V z (with literals x,
y and z), we have 3k + 1 vectors:
(IIL.i) The first k vectors are the vectors with the i-th coordinate set to 1 and
coordinates (—y, —z) set to 1.
The next k vectors are the vectors with the i-th coordinate set to 1 and
the coordinates (—x,—z) set to 1.
The next k vectors are the vectors with the i-th coordinate set to 1 and
the coordinates (—z, —y) set to 1.
The last vector is the vector with the i-th coordinate set to 1 and the
coordinates (—x, —y, —z) set to 1.
Note that for all the (3k + 1) vectors, the i-th coordinate is set to 1.
The use of (III) is to force the variables to satisfy the constraints. Notice
that if a clause is not satisfied, then all the indices —x, -y, -z are on the
“true” side (together with the first ! indices), causing (1,1,1) to appear
only once in the projection onto the coordinates (=, =y, =z). On the other
hand, as long as the not all indices —x, -y, -z are included on the “true”
side, any vector will appear at least k times. Notice the use of identification
indices (the first ! indices) here. With different identification indices, clauses
will not affect each other.
(IV) There are Ik vectors. For each clause C; = x V y V z there are k vectors as
follows.
(IV.i) The k vectors are the same with the coordinates (—z, -y, —z) set to 1.

1
0

Notice that in (IV) the identifier columns are set to 0, which is different
from (III). The idea is to handle the situation when in (IIL.7) all -z, -y, -z are
partitioned into the “false” side. If this happens, the vector (projected on the
“false” side with the (I + 1)-st index) will repeat at least k times. Figure 2 (in
appendix) gives an example for (zVyV 2) A (-y V —z V w) with k = 2.
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It remains to show that a satisfiable assignment corresponds to an k-
independent partition, while a non-satisfiable assignment corresponds to a
MISPDual instance such that any 2-partition is not 2-independent.

Lemma 1. For all k > 1 and 3-SAT instance C, if C has a satisfiable assign-
ment, then MISPDual(C, k) has a k-independent 2-partition.

Proof. Give a satisfiable assignment, we partition the indices set U into 2 subsets
T and F as follows. The first [ indices [1..[] are included in T, and the (I + 1)-st
index is in F'. For each literal x, if x = true then the index z is included in T
and the index —z is included in F'; otherwise, the index —x is in T" and the index
r isin F.

We next consider the vectors in each part projected on 7" and F'.

Claim. In (I), each vector appears at least k times on both T and F.

Proof. First we consider the each vector in (I) projected on T'. By construction,
in the first [ coordinates, each of the all 1’s and all 0’s vectors is repeated k
times, and other coordinates are all set to 0.

For the projections on F, only the (I 4+ 1)-st index has non-zero values and
it contains exactly k 1’s and k 0’s. Hence, in (I), each projected vector repeats
at least k times.

Claim. In (II.z), each vector appears at least k times on both T" and F'.

Proof. It can be seen that the only non-zero values are at indices z and —x. At
both x and —x, we have more than k£ 0’s and k 1’s.

By the construction we know that z and —x are assigned to different parts.
In each part, the only non-zero coordinate is repeated at least k times, for each
of the two values 0 and 1.

Claim. In (II1.7), each vector appears at least k times on both 7" and F.

Proof. We denote the i-th clause by C; = zVy\V z, where z, y, z can be a variable
or its negation. By construction, at least 1 of -z, —y,—z is in F, since it is a
satisfiable assignment. For instance, suppose —z is in F’; other situations follow
the same argument.

Consider projections on F'. Since the first [ indices are not in F', we can find
at least k same vectors in (IIL.i) and (IV.9) (in case —z,—y, -z € F).

Now consider the projections on T'. Vectors in (IIL.7) projected on T only
differ at indices —~x and —y. It can be seen from the construction that no matter
which part each of the indices =z and —y goes, each projected vector still appears
at least k times. Hence, result of Claim 5 follows.

Claim. In (IV), each vector appears at least k times on both T and F.
Proof. This follows immediately from the construction.

The result of Lemma 1 follows, since each projected vector repeats at least
k times.
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Lemma 2. For all k > 1 and 3-SAT instance C, if MISPDual(C, k) has a 2-
independent 2-partition, then C has a satisfiable assignment.

Proof. We first argue that if the 2-partition is 2-independent, then the identifi-
cation (first ) indices and the separation (I 4+ 1-st) index should be in different
subsets. Similarly, z and =« should be in different subsets. Then, an assignment
is derived (such that literals on the same side as the identification indices are
set to true) and analyzed.

Claim. Each of the indices [1..[] is in the subset different from the subset con-
taining the index [ + 1.

Proof. Note that the only 1’s at index [+ 1 happens in vectors 2 to k+1. Suppose
on the contrary that some index in j € [1..]] is in the same subset at index [+ 1.
Then, at the coordinates (4, 4+ 1), the projection (0,1) will appear only once
due to vector k + 1. This contradicts 2-independence.

We denote T as the subset containing [1..]], and F as the other subset F'.
Claim. For each literal z, x and —z are in different subsets.

Proof. Notice that we assume that no x and —x appear in the same clause. As a
result, there will be no vector with coordinates (z, —x) being (1,1) in (LIILIV).
Such a vector appears only once in (IT). The result follows as the partition is
2-independent.

From this point it is obvious that we should assign true to the literals in T
and false to the literals in F'. Next we prove that this is indeed a satisfying
assignment.

Claim. Every clause C; is satisfied by the above assignment.

Proof. Suppose C; = x V y V z is not satisfied. Then, it must be the case that
-z, —y, —z € T. We consider the vectors in (IIL.7) projected on T'. From the con-
struction, in (I11.7) there will be exactly one vector with coordinates (—z, -y, —2)
being (1,1,1).

We argue that this vector projected on T" does not appear anywhere else. To
see this, note that the identification indices are included in T', which is different
from all other parts except (IIL.7). In (II1.7), such vector (projected on T') only
appears once, and hence the result follows.

This completes the proof of Lemma 2.
The following corollary is the contrapositive of Lemma 2.

Corollary 1. Forallk > 1 and 3-SAT instance C, if C' does not have any satis-
fiable assignment, then any 2-partition for MISPDual(C, k) is not 2-independent.
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At this point, we can see that there is a gap of 1 vs k, meaning that to dis-
tinguish satisfiable 3-SAT from unsatisfiable ones, we only need to distinguish
between multiplicity 1 and k. Hence, any polynomial algorithm that approxi-
mates MISPDual within a factor better than k will imply P=NP.

We can set k = [© for some large enough constant C, and observing that N <
1¢F10 we conclude that there is no polynomial algorithm with approximation
ratio better than N1,

Choosing C large enough (depending on €) completes the proof of Theorem 4.

Appendix
Identifiers|separator| x |“ xl y |“ yl zZ |ﬁ zl W |“ W
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Fig.1. G = (V = {a,b,¢,d},E = Fig.2. (zVyV z) A (-yV 2V w) with
{{a,b},{a,c},{a,d}}) with k = 3 k = 2; unspecified entries are 0
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Abstract. In this paper we study a generalization of classic FEEDBACK
VERTEX SET problem in the realm of multivariate complexity analysis.
We say that a graph F' is an [-forest if we can delete at most [ edges from
F to get a forest. That is, F' is at most [ edges away from being a forest.
In this paper we introduce the ALMOST FOREST DELETION problem,
where given a graph G and integers k and [, the question is whether
there exists a subset of at most k vertices such that its deletion leaves us
an [-forest. We show that this problem admits an algorithm with running
time 2908 R0M and a kernel of size O(kl(k 4 1)). We also show that
the problem admits a W algorithm on bounded treewidth graphs,
using which we design a subexponential algorithm for the problem on
planar graphs.

1 Introduction

In the field of graph algorithms, vertex deletion problems constitute a consid-
erable fraction. In these problems we need to delete a small number of vertices
such that the resulting graph satisfies certain properties. Many well known prob-
lems like VERTEX COVER and FEEDBACK VERTEX SET fall under this category.
Most of these problems are NP-complete due to a classic result by Lewis and
Yannakakis [19]. The field of parameterized complexity tries to provide efficient
algorithms for these NP-complete problems by going from the classical view of
single-variate measure of the running time to a multi-variate one. It aims at
getting algorithms of running time f (k)no(l), where k is an integer measuring
some aspect of the problem. The integer k is called the parameter. In most of
the cases, the solution size is taken to be the parameter, which means that this
approach gives faster algorithms when the solution is of small size. For more
background, the reader is referred to the monographs [4,7,20].

Recently, there has been a trend of exploiting other structural properties of
the graph other than the solution size [2,3,6,14,18]. For further reading, reader
may refer to the recent survey by Fellows et al. [5]. In an earlier work, Guo
et al. [13] introduced the notion of “distance from triviality” which looked at
structural parameterization as a natural way to deal with problems which are
polynomial time solvable on some graph classes. They argued that we could ask
the same problems on some other (bigger) graph class which is close to the graph
class on which the problem is polynomial time solvable, but the parameter is the
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closeness or the distance from the original graph class instead of the solution
size.

In the same spirit, we introduce the notion of distance from tractability.
We know that vertex deletion problems deal with deletion of vertices to get to
some graph class. For example, the VERTEX COVER problem deals with deleting
vertices such that the resulting graph does not have any edge. Similarly, the
well known FEEDBACK VERTEX SET problem talks about deleting vertices such
that the resulting graph is a forest. What if we want to delete vertices so that
the resulting graph class is close to the earlier graph class, while taking the
measure of closeness as a parameter? This approach takes us from single variate
parameterized algorithms to multivariate ones, which throws some light on the
interplay between the parameters concerned. More precisely, they tell us about
the trade-offs if we want to go away from the tractable version of a problem, and
hence the term “distance from tractability”. We also point out that the term
can be a bit misleading, since in the case of this paper, we do find out tractable
(FPT) algorithms for these problems when we consider both the parameters.
But for want of a better term, we use it here.

There is already some work done which can be seen as examples of the
notion of parameterizing by distance from tractability. For example, the PARTIAL
VERTEX COVER and other related partial cover problems [1,10] come to mind,
where after the deletion of a small set of vertices, the resulting graph is close to
an edgeless graph. In these problems, the measure of closeness is the number of
edges. Similarly, work has been done on vertex deletion to get a graph of certain
treewidth, which can be looked as deletion of vertices to get a graph close to a
forest, where the measure of the closeness is the treewidth of the graph.

The algorithms of the above mentioned kind show the correlation between the
solution size and the distance from tractability. Let the distance from tractability
be the parameter ¢, and k be the number of vertices to be deleted. Suppose
we have an algorithm with running time say f(£)9®*)n®®) | then is it possible
to obtain an algorithm with running time hy (€)ho(k)n®M? That is, could we
disentangle the function depending on both ¢ and k to a product of functions
where each function depends only on one of £ and k. Answer to this question is yes
if we take f(£)9() f(k)9®F)n®M) However, if we ask for an algorithm with running
time h(£)2°@FE)ROM) then it becomes interesting. This kind of question can be
asked for several problems. For an example, it is known that the TREEWIDTH-1-
DELETION problem, where the objective is to test whether there exists a vertex
subset of size at most k such that its deletion leaves a graph of treewidth at
most 1. For n = 0 and 1 this correspond to the VERTEX COVER and FEEDBACK
VERTEX SET problems, respectively. It is known that TREEWIDTH-7-DELETION
admits an algorithm with running time f(n)*n®® [9,15]. However, it is not
known whether there exists an algorithm with running time h(n)2°®)n0M),
Clearly, algorithms with running time h(ﬁ)?o(g(k))no(l) are more desirable.

The FEEDBACK VERTEX SET problem has been widely studied in the field of
parameterized algorithms. A series of results have improved the running times
to 0*(3.619%) in deterministic setting [17] and O*(3*) in randomized setting [3],
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where the O* notation hides the polynomial factors. Looking at this problem in
the notion of distance from tractability, the number of edges comes to mind as
a natural measure of distance. More precisely, we try to address the question of
deleting vertices such that the resulting graph is [ edges away from being a forest.
We call such forests [-forests, and the problem ALMOST FOREST DELETION. The
main focus of this paper is to design algorithm for this problem with parameters
both I and k.

Our Results. We show that ALMOST FOREST DELETION can be solved in
time (9*(5.0024“*”). We arrive at the result using the iterative compression
technique which was introduced in [21] and a non-trivial measure which helps us
in getting the desired running time. Then we explore the kernelization complexity
of the problem, and show that ALMOST FOREST DELETION admits a polynomial
kernel with O(kl(k + 1)) edges. For arriving at the result, we first make use of
the Expansion Lemma and Gallai’s theorem for reducing the maximum degree
of the graph, and then we bound the size of the graph. It is easy to see that
for a YES instances (G, k,1) of ALMOST FOREST DELETION, the treewidth of
G is bounded by k + . Since we have an algorithm of the form O*(c**+1) on
general graphs, the question of finding an O* (c*) algorithm becomes interesting
for bounded treewidth graphs. We answer this question affirmatively by giving
an O*(17*%) algorithm for graphs which come with a tree decomposition of
width tw. This algorithm, along with the notion of bidimensionality gives rise
to an algorithm for ALMOST FOREST DELETION on planar graphs running in
time 2°0(VIFR) RO Our methods are based on the known methods to solve the
FEEDBACK VERTEX SET problem.

2 Preliminaries

For a graph G, we denote the set of vertices of the graph by V(G) and the set
of edges of the graph by E(G). For a set S C V(G), the subgraph of G induced
by S is denoted by G[S] and it is defined as the subgraph of G with vertex set
S and edge set {(u,v) € E(G) : u,v € S}, and the subgraph obtained after
deleting S is denoted as G — S. If H is a subgraph of G, we write H C G and for
two graphs G1 = (V1, Eq) and Gy = (Va, Es), by G1 U G2, we denote the graph
(V1 U Vo, Eq U Es). All vertices adjacent to a vertex v are called neighbours of
v and the set of all such vertices is called the neighbourhood of v. A k-flower
in a graph is a set of k cycles which are vertex disjoint except for one vertex
v, which is shared by all the cycles in the set. The vertex v is called center of
the flower and the cycles are called the petals of the flower. A forest is a graph
which does not contain any cycle. An [-forest is a graph which is at most [ edges
away from being a forest, i.e. the graph can be transformed into a forest by
deleting at most [ edges. For a connected component C' of a graph, we call the
quantity |E(G[C])| — |C|+ 1 the excess of C and denote it by ex(C). It can also
be equivalently defined as the minimum number of edges we need to delete from
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the connected component to get to a tree. For a graph G, let C be the set of its
connected components. We define the excess of the graph, ex(G) as follows.

ex(G) = Y ex(C)

cecC

As in the case of components, this measure can be equivalently defined as the
minimum number of edges we need to delete from G to to get to a forest. It is
easy to see that a graph G is an [-forest if and only if ex(G) < I. For X C V(G)
such that G — X is an [-forest, we call X an [-forest deletion set of G. We denote
{1,...,n} by [n]. We define the ALMOST FOREST DELETION problem as follows.

ALMOST FOREST DELETION

Input: A graph G, integers k and [.

Parameter(s): 1,k

Question: Does there exist X C V(@) such that | X| < k and G — X is
an [-forest?

Observation 1. Let G’ be a subgraph of G. If G is an l-forest, then so is G'.
Observation 2. If G is an l-forest, it has at most V(G) — 1+ 1 edges.

Lemma 3. Let G be a graph. If there exists a vertex v such that v is not part
of any cycle in G, then ex(G —{v}) = ex(G). Furthermore, if v is part of a cycle
in G, then ex(G — {v}) < ex(G) — 1.

Lemma 4. Let X C V(G) be a set of vertices of G which do not belong to any
cycle. Then, G is an l-forest if and only if G — X is an l-forest.

Lemma 5. Any [-forest can have at most | edge disjoint cycles.

Kernelization. A kernelization algorithm for a parameterized language L is
a polynomial time procedure which takes as input an instance (z,kq,...,k;),
where k;’s are the parameters and returns an instance (2, k{, ..., k) such that
(@, k1,..., k) € L if and only if (a/,k],...,k)) € L and |2'| < h(ki,..., k) and
ki < g(ki,..., k) for all i € [I], for some computable functions h, g. The returned
instance is said to be a kernel for L and the function h is said to be the size of
the kernel.

Treewidth. Let G be a graph. A tree-decomposition of a graph G is a pair
(T, & = {Xt}rev(m)) such that

= Uev(m Xt = V(G),

— for every edge xy € E(G) there is a t € V(T) such that {x,y} C X, and

— for every vertex v € V(G) the subgraph of T induced by the set {¢ | v € X;}
is connected.
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The width of a tree decomposition is max;ey () |X¢| — 1 and the treewidth of
G is the minimum width over all tree decompositions of G and is denoted by
tw(G).

A tree decomposition (T, X) is called a nice tree decomposition if T is a tree
rooted at some node r where X,. = (), each node of T has at most two children,
and each node is of one of the following kinds:

1. Introduce node: a node t that has only one child ¢ where X; D Xy and
| Xi| = [Xv |+ 1.

2. Forget node: a node t that has only one child ¢ where X; C Xy and

‘Xt| = |Xt/| - 1

Join node: a node ¢ with two children ¢; and ¢2 such that X; = X;, = X4,.

4. Base node: a node t that is a leaf of T, is different than the root, and
X =0.

@

Notice that, according to the above definition, the root r of T is either a forget
node or a join node. It is well known that any tree decomposition of G can be
transformed into a nice tree decomposition maintaining the same width in linear
time [16]. We use G; to denote the graph induced by the vertex set Uy Xy, where
t’ ranges over all descendants of ¢, including ¢. By E(X;) we denote the edges
present in G[X,].

3 An O*(c(*®) Algorithm for ALMOST FOREST DELETION

In this section we will present a ¢t¥)p®M algorithm for ALMOST FOREST
DELETION. We use the well known technique of iterative compression and arrive
at the desired running time after defining a non-trivial measure.

Given an instance (G,k,l) of ALMOST FOREST DELETION, let V(G) =
{v1,...,v,} and define vertex sets V; = {v1,...,v;}, and let the graph G; =
G[Vi]. We iterate through the instances (G, k,1) starting from ¢ = k + 1. For
the i*" instance, we try to find an [-forest deletion set S; of size at most k, with
the help of a known I[-forest deletion set S; of size at most k£ 4+ 1. Formally, the
compression problem we address is the following.

ALMOST FOREST DELETION COMPRESSION

Input: A graph G, an [-forest deletion set S of G of size at most k+1,
integers k and [.

Parameter(s): k, 1

Question: Does there exist X C V(G) such that | X| < k and G — X is
an [-forest?

Lemma 6. If ALMOST FOREST DELETION COMPRESSION can be solved in
f(k,)n® time, then ALMOST FOREST DELETION can be solved in f(k,l)n°tt
time.
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For designing an algorithm for ALMOST FOREST DELETION COMPRESSION,
let the input instance be (G, S, k, ). We guess a subset Y C S with the intention
of picking these vertices in our hypothetical solution for this instance and not
picking the rest of the vertices of S in the solution. We delete the set Y from
the graph and decrease k by |Y|. We then check if the graph G[S \ Y] is an
I-forest and if it is not, then reject this guess of Y as a spurious guess. Suppose
that G[S'\ Y] is indeed an [-forest. Then, it remains only to check if there is
an [-forest deletion set S’ of the size k' = k — |Y'| which is disjoint from S\ Y,
and G — (Y US’) is an [-forest. More precisely, we have an instance of AFDDC,
which is defined as follows.

ArLMOST FOREST DELETION DISJOINT COMPRESSION (AFDDC)

Input: A graph G, an [-forest deletion set S of G, integers k and I.

Parameter(s): k,

Question: Does there exist X C V(G) such that X NS =0, | X| < k and
G — X is an [-forest?

To solve the problem, we first design a set of reduction rules.

Reduction Rule 1. If there exists a vertex v of degree at most 1 in the graph,
delete it.

Reduction Rule 2. If there exists v € V(G)\ S such that G[SU{v}] is not an
l-forest, delete v and decrease k by 1.

Reduction Rule 3. If there exists a vertex v € V(G)\ S of degree two, such
that at least one of its neighbours is in V(G) \ S, then delete v and put a new
edge between its neighbours (even if they were already adjacent). If both of v’s
edges are to the same vertex, delete v and put a new self loop on the adjacent
vertex (even if it has self loop(s) already).

It is easy to see that after the exhaustive applications of reduction rules 1-3,
if there exists a vertex of degree at most 1 in G — S, then it has at least 2
neighbours in S.

Now we are ready to describe our algorithm for AFDDC. Given an input
instance (G, S, k,1) of AFDDC, we first apply reduction rules 1, 2 and 3 exhaus-
tively. If k£ < 0, then we return that the given instance is a NO instance.

Now, we look for a vertex v of degree at most 1 in G — S and we branch
by either including v in our solution or excluding it. More precisely, we call the
algorithm recursively on (G — {v}, S,k —1,1) and (G, SU{v}, k,1). If one of the
recursive call returns YES, then we say that the instance was a YES instance. If
there does not exist a vertex of degree at most 1 in G — S, then there must be
a vertex v which is part of a cycle. In this case we branch on this vertex, and
call the algorithm recursively on (G —{v}, S,k —1,1) and (G, SU{v}, k,1) as we
did in the previous case. This concludes the description of the algorithm. The
correctness of the algorithm follows from the correctness of reduction rules and
the fact that the branching is exhaustive.
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To analyze the running time of the algorithm, we define a measure ¢(I) for
the input instance I = (G, S, k, 1) as follows.

o(I) = ak + Bee(S) + (I — ex(G[S])) + 6(ex(G — S))

Here, cc(S) denotes the number of connected components of G[S] and «, g,
v, 6 are positive constants such that § > 5. We will assume these properties for
now, and will fix the values of these constants later.

Lemma 7. None of the reduction rules 1-3 increases the measure ¢(I).
Lemma 8. AFDDC can be solved in time O*((4.0024)%(5.0018)").

Proof. When be branch on a vertex v of degree at most 1 in G — S, the measure
drops by « in the first branch. In the other branch, depending on whether v’s
neighbours in S belong to different components or to the same component, the
measure drops by at least 8 or . This gives us branching factors of (a, 3) and
(a,y). Branching on a vertex v, which is part of a cycle in G — S, gives us a
branching factor of (o + d,6 — 3). We ran a numerical program to find values
of a, B, v and ¢, which optimize the running time of the algorithm. Putting
a =145 8 =1.35,~v=1.35and § = 1.9 gives us the worst case running time
of (4.0024)%(5.0018)!n°M). 0

Given Lemma 8, the algorithm for ALMOST FOREST DELETION COMPRES-
SION runs in time O(X5_, (") - (4.0024)/(5.0018)! - n®M) = O (5.0024+D),
Here, the factor of (kjl) is for the guesses we make for the set S. Finally applying
Lemma 6, we get the following theorem.

Theorem 9. ALMOST FOREST DELETION can be solved in O*(5.0024+D)
time.

4 O(kl(k +1)) Kernel for ALMOST FOREST DELETION

In this section, we give the kernelization algorithm for ALMOST FOREST DELE-
TION. First we give a set of reduction rules which help us bound the size of the
output instance. Throughout the section, we apply the reduction rules in order,
that is, while applying a reduction rule we assume that all the reduction rules
stated previously in the section have been applied exhaustively.

Reduction Rule 4. If there exists a vertex v of degree at most 1 in the graph,
delete it.

Reduction Rule 5. If there exists a vertex v € V(G) of degree two then delete
v and put a new edge between its neighbours (even if they were already adjacent).
If both of v’s edges are to the same vertex, delete v and put a new self loop on
the adjacent vertex (even if it has self loop(s) already).
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Reduction Rule 6. If any edge has multiplicity more that 1+ 2, then delete all
but I + 2 copies of that edge.

Given an instance (G, k,[) of ALMOST FOREST DELETION, we apply reduc-
tion rules 4-6 exhaustively. Observe that after the application of these reduction
rules, the graph has degree at least 3, as all the vertices of degrees 1 and 2 are
taken care of by Reduction Rule 4 and Reduction Rule 5 respectively.

Lemma 10. If a graph G has minimum degree at least 3, mazimum degree at
most d, and an l-forest deletion set of size at most k, then it has less than
21+ k(d + 1) vertices and less than 2kd + 3l edges.

Lemma 10 gives rise to the following reduction rule immediately.

Reduction Rule 7. After the application of reduction rules 4, 5 and 6 exhaus-
tiwely, if either |V(G)| > 2l + k(d+ 1) or |E(G)| > 2kd + 31, where d is the

maximum degree of the graph, return that the given instance is a NO instance.

After this, all that is left is to reduce the maximum degree of the graph. After
the exhaustive application of reduction rules 4, 5 and 6, if the maximum degree
of the graph is already bounded by (k +1)(3[ 4 8) then we already have a kernel
with O(kl(k +1)) vertices and O(kl(k +1)) edges. Hence we assume, for the rest
of the section, that after the exhaustive application of reduction rules 4- 7, there
exists a vertex v with degree greater than (k + 1)(3] + 8). We need one more
reduction rule before we proceed further.

Reduction Rule 8. If there is a vertex v with more than 1 self loops, delete v
and decrease k by 1.

We now try to reduce the high degree vertices. The idea is that either a
high degree vertex participates in many cycles (and contributes many excess
edges) and hence should be part of the solution, or only a small part of its
neighbourhood is relevant for the solution. We formalize these notions by use
of Gallai’s theorem to find flowers and applying a set of reduction rules. Given
a set T C V(G), by T-path we mean set of paths of positive length with both
endpoints in 7.

Theorem 11 (Gallai, [11]). Given a simple graph G, a set T C V(G) and an
integer s, one can in polynomial time find either

— a family of s + 1 pairwise vertez-disjoint T-paths, or
- a set B of at most 2s wvertices, such that in G — B no connected component
contains more than one vertex of T'.

We would want to have the neighborhood of a high degree vertex as the set
T for applying Gallai’s theorem and for detecting flowers. But we need to be
careful, as the graph in its current form contains multiple edges and self loops.
Let v be a vertex with high degree. The vertices in N (v) which have at least two
parallel edges to v can be greedily picked to form a petal of the flower. Let L be
the set of vertices in N(v) which have at least two parallel edges to v.
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Reduction Rule 9. If |L| > k + 1, delete v and decrease k by 1.

Let G be the graph G — L with all parallel edges replaced with single edges,
and all self loops removed. It is not hard to show that finding an f-flower in G
centered at v is equivalent to finding an f — |L| flower in G centered at v for any
f > |L|. Now we apply Gallai’s theorem on G with 7' = N(v) and s = k+1—|L|.
If the theorem returns a collection of vertex disjoint 7T-paths, then it is easy
to see that they are in one to one correspondence with cycles including v, and
hence can be considered petals of the flower centered at v.

Reduction Rule 10. If the application of Gallai’s theorem returns a flower
with more than s petals, then delete v and decrease k by 1.

We now deal with the case when the application of Gallai’s theorem returns a
set B of at most 2(k+1—|L|) vertices, such that in G— B no connected component
contains more than one vertex of T. Let Z = BU L. Clearly, |Z| < 2(k+1) —|L|.
Now we look at the set of connected components of G — (Z U {v}). Let us call
this set C.

Reduction Rule 11. If more than k+1 components of C' contain a cycle, then
return that the instance is a NO instance.

Lemma 12. After applying reduction rules 4—11 exhaustively, there are at least
21+ 2)(k +1) components in C which are trees and connected to v with exactly
one edge.

Proof. The number of self loops on v is bounded by [ due to Reduction Rule 8.
Number of edges from v to Z is bounded by |B|+ (I4+2)|L| < 2(k+1—|L|)+ (I +
DL =2(k+1)+I|L| < (k+1)(I+2). As degree of v is greater than (k+1)(3]+38),
at least (k+1)(314+8)—(k+1)(I4+2)—1 > (k+1)(2l+5) connected components in
C' have exactly one vertex which is is neighbour of v. Out of these, the number
of connected components containing cycles is bounded by k + [ by Reduction
Rule 11. Hence, at least 2(I + 2)(k 4 [) connected components are trees and are
connected to v by exactly one edge. a

Before we proceed further, we state the Expansion Lemma. Let G be a bipar-
tite graph with vertex bipartition (A, B). For a positive integer ¢, a set of edges
M C E(G) is called a g-expansion of A into B if every vertex of A is incident
with exactly ¢ edges of M, and exactly ¢|A| vertices in B are incident to M.

Lemma 13 (Expansion Lemma, [8]). Let ¢ > 1 be a positive integer and G
be a bipartite graph with vertex bipartition (A, B) such that |B| > q|A| and there
are no isolated vertices in B. Then there exist nonempty vertex sets X C A and
Y C B such that there is a q-expansion of X into Y and no vertexr in' Y has a
neighbor outside X, that is, N(Y) C X. Furthermore, the sets X and'Y can be
found in time polynomial in the size of G.



142 A. Rai and S. Saurabh

Let D the set of connected components of C' which are trees and connected
to v with exactly one edge. We have shown that |D| > 2(I + 2)(k + 1). Now we
construct an auxiliary bipartite graph H as follows. In one partition of H, we
have a vertex for every connected component in D, and the other partition is Z.
We put an edge between A € D and v € Z if some vertex of A is adjacent to v.
Since every connected component in D is a tree and has only one edge to v, some
vertex in it has to have a neighbour in Z, otherwise Reduction Rule 1 would
apply. Now we have that |Z] < 2(k 4+ [) and every vertex in D is adjacent to
some vertex in Z, we may apply Expansion Lemma with ¢ = [+ 2. This means,
that in polynomial time, we can compute a nonempty set Z C Z and a set of
connected components D C D such that:

1. Na(Upep D) = Z U {v}, and

2. Bach z € Z will have [ + 2 private components AL, A% ... A2 ¢ D such
that z € Ng(A?) for all i € [ +2]. By private we mean that the components
AL A2 .. A2 are all different for different z € Z.

Lemma 14. For any l-forest deletion set X of G that does not contain v, there
exists an l-forest deletion set X' in G such that | X'| <|X|, X'N(Uep A) =0

and 7 C X'.
Now we are ready to give the final reduction rule.

Reduction Rule 12. Delete all edges between v and UAeﬁA and put | + 2

parallel edges between v and z for all z € Z.

Theorem 15. ALMOST FOREST DELETION admits a kernel with O(kl(k + 1))
vertices and O(kl(k +1)) edges.

Proof. First we show that either we have a kernel of the desired size or one of
the reduction rules 4-12 apply. So, we only need to define a measure which is
polynomial in the size of the graph and show that each of the reduction rules
decrease the measure by a constant. We define the measure of a graph G to
be ¢(G) = 2|V (G)| + |E<it2|, where E<;.o is set of edges with multiplicity at
most [ 4+ 2. Then we show that each of the reduction rules either terminate the
algorithm or decrease the measure by a constant. O

5 An O*(c™) Algorithm for ALMOST FOREST DELETION

In this section, we first design an algorithm, which given an instance (G, k) of
ALMOST FOREST DELETION along with a tree decomposition of G of width
at most tw, solves it in time O*(c*™). Then, using that algorithm, we give
a subexponential time algorithm for ALMOST FOREST DELETION on planar
graphs.

Theorem 16. Given an instance (G, k,1) of ALMOST FOREST DELETION along
with tree decomposition of G of width at most tw, it can be solved in O*(c*W)
time.
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Proof. For solving the problem in desired running time, we do dynamic pro-
gramming on the tree decomposition of GG in a bottom-up manner, while storing
partial solution for each node of the tree. We use representative sets to store the
information about connectivity of the partial solutions. This can be done using
graphic matroid of a clique on vertices which are mapped to the tree node. We
also need to store the information about the extra edges. But since in an [-forest
it does not matter where exactly the extra edges are, we can make use of this
fact and solve the problem efficiently. a

Theorem 17 (Planar Extended Grid Theorem [12,22]). Let t be a non-
negative integer. Then every planar graph G of treewidth at least %t contains
B, as a minor. Furthermore, for every € > 0 there exists an O(n?) algorithm
that, for a given n-vertexr planar graph G and integer t, either outputs a tree
decomposition of G of width at most (% + €)t, or returns that B is a minor of

G, where B; denotes a grid of dimension t X t.

Lemma 18. Let X be an [-forest deletion set of H; of size at most k, then

t<VI+3k+1.

Theorems 16 and 17, along with Lemma 18 are combined to get the subex-
ponential time algorithm on planar graphs.

Theorem 19. ALMOST FOREST DELETION can be solved in 2°(VIHF) nOQ) time
on planar graphs.

6 Conclusions

In this paper we studied ALMOST FOREST DELETION and obtained a polynomial
kernel as well as a single exponential time algorithm for the problem. It would
be interesting to study other classical problems from this view-point of distance
from tractability using a suitable measure of distance.
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Abstract. Given an undirected weighted graph G = (V,E), a set
C1,Cy, ..., Cy of cycles is called a cycle cover of V' if V! C UF_,V(C})
and its cost is the maximum weight of the cycles. The Min-Max Cycle
Cover Problem(MMCCP) is to find a minimum cost cycle cover of V with
at most k cycles. The Rooted Min-Max Cycle Cover Problem(RMMCCP)
is to find a minimum cost cycle cover of V\D with at most k cycles and
each cycle contains one vertex in D. The Minimum Cycle Cover Prob-
lem(MCCP) aims to find a cycle cover of V' of cost at most A with min-
imum number of cycles. We propose approximation algorithms for the
MMCCP, RMCCP and MCCP with ratios 5, 6 and 24/5, respectively.
Our results improve the previous algorithms in term of both approxima-
tion ratios and running times. Moreover, we transform a p-approximation
algorithm for the TSP into approximation algorithms for the MMCCP,
RMCCP and MCCP with ratios 4p, 4p + 1 and 4p, respectively.

Keywords: Vehicle routing - Cycle cover - Traveling salesman problem -
Approximation algorithm

1 Introduction

In the last two decades, considerable research attention has been devoted to the
following fundamental vehicle routing problem. Given a fleet of k vehicles and
a general network, there is exactly one customer located at each vertex. Each
vehicle has to start from some vertex to visit some customers and return to
the same vertex. There is a travel cost for each pair of vertices that obeys the
triangle inequality. The goal is to find a routing for the vehicles to collectively
visit all the customers such that the maximum traveling cost of the vehicles is
minimum. If described by graph theoretic language, the above problem is to
cover all the vertices of an undirected weighted graph with at most k cycles such
that the maximum weight of the cycles is minimum. It is called the Min-Max
Cycle Cover Problem(MMCCP) in the literature(see [15]). In the rooted version,
called the Rooted Min-Max Cycle Cover Problem(RMMCCP), the objective is
to use at most k rooted cycles, i.e., cycles contain one vertex of a given depot set
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DOI: 10.1007/978-3-319-21398-9_12



148 W. Yu and Z. Liu

of vertices, to cover the non-depot vertices such that the maximum weight of the
cycles is minimum. In the MMCCP and RMMCCP, if an upper bound A > 0 is
given for the weight of each cycle and the goal is to minimize the number of cycles
used to cover the vertices, we obtain the Minimum Cycle Cover Problem(MCCP)
and the Rooted Minimum Cycle Cover Problem(RMCCP), respectively.

The above-mentioned vehicle routing problems and their variants find numer-
ous applications in operations research and computer science. RMMCCP and
MMCCP were introduced by Even et al. [6] to model “Nurse Station Loca-
tion Problem”. Campbell et al. [4] illustrated how disaster relief efforts can be
improved by efficient algorithms for min-max cycle/path cover problems. Xu
et al. [15] described some applications of cycle cover problems in wireless sensor
networks. For more practical examples involving min-max and minimum vehicle
routing problems we refer to [1,14,16-18] and the references therein.

Unfortunately, all the problems RMMCCP, MMCCP, RMCCP, MCCP are
NP-hard since they are extensions of the well-know Traveling Salesman Problem.
Therefore, previous results mainly focus on devising approximation algorithms
with good performance ratios.

1.1 Previous Works

Xu et al. [18] showed that both the MMCCP and the RMMCCP cannot be
approximated within ratio 4/3, unless P=NP. Xu and Wen [16] gave an inap-
proximability bound of 20/17 for the single-depot RMMCCP. By the NP-
completeness of the well-known Hamiltonian Cycle Problem, both the MCCP
and the RMCCP can not be approximated within ratio 2.

For the MMCCP, a closely related problem, called the Min-Max Tree Cover
Problem(MMTCP), can be obtained by replacing cycles with trees. On the one
hand, the optimal value of the MMTCP can not be greater than that of the
MMCCP. On the other hand, by duplicating each edge of a feasible solution of
the MMTCP we obtain a feasible solution of MMCCP with the objective value
doubled. Therefore, any a-approximation algorithm for the MMTCP implies a
2a-approximation algorithm for the MMCCP. Even et al. [6] and Arkin et al.
[1] developed independently 4-approximation algorithms for the MMTCP by
different algorithmic techniques. Khani and Salavatipour [10] give an improved
3-approximation algorithm, which implies a 6-approximation algorithm for the
MMCCP. Xu et al. [18] also derived an approximation algorithm with the same
ratio 6. These algorithms were improved to a 16/3-approximation algorithm by
Xu et al. [15].

For the RMMCCP, Xu et al. [18] proposed a 7-approximation algorithm.
Later, Xu et al. [15] improved the approximation ratio to 19/3. For the single-
depot RMMCCP, Frederickson et al. [7] achieved a better ratio of p+1, where p is
the approximation ratio of the best available algorithm for the Traveling Sales-
man Problem. By using the well-known Christofides” Algorithm[5] this implies a
5/2-approximation algorithm. Moreover, Nagamochi [11], Nagamochi and Okada
[11,13] obtained better results on a special case of the RMMCCP where the graph
is the metric closure of a tree.
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In the MCCP, by replacing cycles with trees we derive the Minimum Tree
Cover Problem(MTCP), which is also named as Bounded Tree Cover Problem
n [10]. Since a cycle of weight at most A can be splitted into two paths(which
are also trees) of weight at most % by removing properly two edges, two times
the optimal value of the MCCP can not be less than the optimal value of the
corresponding MTCP with the upper bound on the weight of the trees reset to
%. On the other hand, by doubling the edges of a feasible solution of the MTCP
with the revised upper bound we obtain a feasible solution of the MCCP. There-
fore, any a-approximation algorithm for the MTCP implies a 2a-approximation
algorithm for the MCCP. Arkin et al. [1] developed a 6-approximation algorithm
for the MCCP. This result is also implied by the 3-approximation algorithm for
the MTCP in the same paper. Khani and Salavatipour [10] gave an improved
5/2-approximation algorithm for the MTCP, which indicates a 5-approximation
algorithm for the MCCP.

The 