
Dachuan Xu · Donglei Du
Dingzhu Du (Eds.)

 123

LN
CS

 9
19

8

21st International Conference, COCOON 2015
Beijing, China, August 4–6, 2015
Proceedings

Computing
and Combinatorics

Lecture Notes in Computer Science 9198

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Dachuan Xu • Donglei Du
Dingzhu Du (Eds.)

Computing
and Combinatorics
21st International Conference, COCOON 2015
Beijing, China, August 4–6, 2015
Proceedings

123

Editors
Dachuan Xu
Beijing University of Technology
Beijing
China

Donglei Du
University of New Brunswick
Fredericton
Canada

Dingzhu Du
University of Texas at Dallas
Richardson
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-21397-2 ISBN 978-3-319-21398-9 (eBook)
DOI 10.1007/978-3-319-21398-9

Library of Congress Control Number: 2015943451

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The 21st International Computing and Combinatorics Conference (COCOON 2015)
was held during August 4-6, 2015, in Beijing, China. COCOON 2015 provided a
forum for researchers working in the area of theoretical computer science and
combinatorics.

The technical program of the conference included 49 contributed regular papers
selected by the Program Committee from full submissions received in response to the
call for papers. The accepting rate is 48%. In addition, to increase opportunities for
exchange of research ideas, the conference also accepted 11 shorter papers. All the
papers were peer reviewed by at least three Program Committee members or external
reviewers. The papers cover various topics, including algorithms and data structures,
algorithmic game theory, approximation algorithms and online algorithms, automata,
languages, logic, and computability, complexity theory, computational learning theory,
cryptography, reliability and security, database theory, computational biology and
bioinformatics, computational algebra, geometry, number theory, graph drawing
and information visualization, graph theory, communication networks, optimization,
and parallel and distributed computing. Some of the papers will be selected for pub-
lication in special issues of Algorithmica, Theoretical Computer Science (TCS), and
Journal of Combinatorial Optimization (JOCO). It is expected that the journal version
papers will appear in a more complete form.

We would like to thank the Program Committee members and external reviewers for
volunteering their time to review conference papers. We would like to extend special
thanks to the publication, publicity, and local organization chairs for their hard work in
making COCOON 2015 a successful event. Last but not least, we would like to thank
all the authors for presenting their works at the conference.

August 2015 Dachuan Xu
Donglei Du
Dingzhu Du

Conference Organization

Program Chairs

Dingzhu Du University of Texa at Dallas, USA
Donglei Du University of New Brunswick, Canada
Dachuan Xu Beijing University of Technology, China

Publication Chairs

Chenchen Wu Tianjin University of Technology, China
Fengmin Wang Beijing University of Technology, China

Publicity Chairs

Gaidi Li Beijing University of Technology, China
Xuegang Chen North China Electric Power University
Jianfeng Ren Qufu Normal University, China

Local Organization Chairs

Dachuan Xu Beijing University of Technology, China
Xianyuan Zhao Beijing University of Technology, China

Program Committee

Hee-Kap Ahn Pohang University of Science and Technology, Korea
Yossi Azar Tel-Aviv University, Israel
Vladimir Braverman Jonhs Hopkins University, USA
Zhipeng Cai Georgia State University, USA
Yixin Cao Hungarian Academy of Sciences, Hungary
Xi Chen Columbia University, USA
Zhixiang Chen University of Texas Pan American, USA
Janos Csirik University of Szeged, Hungary
Dingzhu Du University of Texas at Dallas, USA
Donglei Du University of New Brunswick, Canada
Zachary Friggstad University of Alberta, Canada
Xiaodong Hu Chinese Academy of Sciences, China
Tsan-Sheng Hsu Academia Sinica, Taiwan
Klaus Jansen University of Kiel, Germany
Iyad Kanj DePaul University, USA
Ming-Yang Kao Northwestern University, USA

Donghyun Kim North Carolina Central University, USA
Piotr Krysta University of Liverpool, UK
Minming Li City University of Hong Kong, SAR China
Guohui Lin University of Alberta, Canada
Julian Mestre University of Sydney, Australia
Rolf Moehring Technische Universität Berlin, Germany
Benjamin Moseley Toyota Technological Institute, Japan
Mitsunori Ogihara University of Miami, USA
Desh Ranjan Old Dominion University, USA
Yilin Shen Samsung Research America, USA
Takeshi Tokuyama Tohoku University, Japan
Marc Uetz University of Twente, The Netherlands
Dachuan Xu Beijing University of Technology, China
Jinhui Xu State University of New York at Buffalo, USA

Additional Reviewers

Aaronson, Scott
Ahmad, Yanif
Anastasiadis, Eleftherios
Ateniese, Giuseppe
Aydinlioglu, Baris
Bei, Liu
Beisegel, Jesse
Bienkowski, Marcin
Biswas, Abhishek
Bonsma, Paul
Bouland, Adam
Broersma, Hajo
Buchbinder, Niv
Buffett, Scott
Burns, Randal
Byrka, Jarek
Chen, Danyang
Chen, Xujin
Chen, Zihe
Chestnut, Stephen
Cohen, Ilan
Cui, Lei
Dasari, Naga Shailaja
Eden, Alon
Epstein, Leah
Feldman, Michal
Fischer, Felix

Fotakis, Dimitris
Ghorbani, Ali
Gudmundsson, Joachim
Guo, Linke
Han, Xin
Huang, Ziyun
Hwang, Yoonho
Ivkin, Nikita
Jin, Yong
Kaluza, Maren
Kelly, Terence
Kim, Hyunbum
Kim, Min-Gyu
Klavzar, Sandi
Klein, Kim-Manuel
Klimm, Max
Köhler, Ekkehard
Kononov, Alexander
Korman, Matias
Kraft, Stefan
Kwok, Tsz Chiu
Land, Felix
Land, Kati
Levin, Keith
Li,Wenjun
Li, Yuchao
Liang, Dongyue

VIII Conference Organization

Liu, Xianliang
Liu, Yangwei
Liu, Zaoxing
Maack, Marten
Mahalanobis, Ayan
Mikkelsen, Jesper W.
Nadeem, Tamer
Nguyen, Nam P.
Nikhil Bansal
Obenshain, Daniel
Oh, Eunjin
Ono, Hirotaka
Pal, Marcin
Papamichail, Dimitris
Park, Dongwoo
Pluhár, András
Poon, Chung Keung
Pruhs, Kirk
Rahman, Md. Saidur
Rau, Malin
Rosenberg, Burton
Roytman, Alan
Sanders, Peter
Son, Junggab
Son,Wanbin
Song,Wei
Tong, Guanmo
Tu, Jianhua
Uma, RN
Vardi, Adi

Vasiliev, Saveliy
Vinar, Tomas
Vorsanger, Greg
Wang,Wei
Wang, Xiangyu
Wang, Yishui
Wang, Yu-Shuen
Wang, Zhenbo
Watrigant, Rémi
Wolff, Alexander
Wong, Prudence
Wu, Chenchen
Wu, Lidong
Wu, Weiwei
Xu, Yicheng
Yamanaka, Katsuhisa
Yang, Lin
Yoon, Sangduk
You, Jie
Yuan, Jing
Yuan, Jinjiang
Zhang, Jialin
Zhang, Jinshan
Zhang, Qiang
Zhao, Liang
Zhao, Yingchao
Zhong, Jiaofei
Zhou, Nanrun
Zhu, Yuqing

Conference Organization IX

Contents

Graph Algorithms I

Mining Preserving Structures in a Graph Sequence 3
Takeaki Uno and Yushi Uno

On the Most Imbalanced Orientation of a Graph . 16
Walid Ben-Ameur, Antoine Glorieux, and José Neto

Cheeger Inequalities for General Edge-Weighted Directed Graphs 30
T.-H. Hubert Chan, Zhihao Gavin Tang, and Chenzi Zhang

Game Theory and Algorithms

Strategy-Proof Mechanism for Obnoxious Facility Location on a Line 45
Deshi Ye, Lili Mei, and Yong Zhang

Bin Packing Game with an Interest Matrix . 57
Zhenbo Wang, Xin Han, György Dósa, and Zsolt Tuza

The Least-Core and Nucleolus of Path Cooperative Games 70
Qizhi Fang, Bo Li, Xiaohan Shan, and Xiaoming Sun

Reversible Pebble Game on Trees. 83
Balagopal Komarath, Jayalal Sarma, and Saurabh Sawlani

Computational Complexity

Combinations of Some Shop Scheduling Problems and the Shortest Path
Problem: Complexity and Approximation Algorithms 97

Kameng Nip, Zhenbo Wang, and Wenxun Xing

Complexity of Grundy Coloring and Its Variants . 109
Édouard Bonnet, Florent Foucaud, Eun Jung Kim, and Florian Sikora

On the Complexity of the Minimum Independent Set Partition Problem 121
T.-H. Hubert Chan, Charalampos Papamanthou, and Zhichao Zhao

Bivariate Complexity Analysis of ALMOST FOREST DELETION 133
Ashutosh Rai and Saket Saurabh

Approximation Algorithms

Improved Approximation Algorithms for Min-Max and Minimum Vehicle
Routing Problems . 147

Wei Yu and Zhaohui Liu

Improved Approximation Algorithms for the Maximum Happy Vertices
and Edges Problems . 159

Peng Zhang, Tao Jiang, and Angsheng Li

An Approximation Algorithm for the Smallest Color-Spanning
Circle Problem . 171

Yin Wang and Yinfeng Xu

Approximation Algorithms for the Connected Sensor Cover Problem 183
Lingxiao Huang, Jian Li, and Qicai Shi

Circuits Algorithms

Skew Circuits of Small Width . 199
Nikhil Balaji, Andreas Krebs, and Nutan Limaye

Correlation Bounds and #SAT Algorithms for Small Linear-Size Circuits . . . 211
Ruiwen Chen and Valentine Kabanets

Commuting Quantum Circuits with Few Outputs are Unlikely
to be Classically Simulatable . 223

Yasuhiro Takahashi, Seiichiro Tani, Takeshi Yamazaki,
and Kazuyuki Tanaka

Evaluating Matrix Circuits . 235
Daniel König and Markus Lohrey

Computing and Graph

Approximation and Nonapproximability for the One-Sided Scaffold
Filling Problem. 251

Haitao Jiang, Jingjing Ma, Junfeng Luan, and Daming Zhu

Packing Cubes into a Cube in (D[3)-Dimensions. 264
Yiping Lu, Danny Z. Chen, and Jianzhong Cha

Towards Flexible Demands in Online Leasing Problems 277
Shouwei Li, Alexander Mäcker, Christine Markarian,
Friedhelm Meyer auf der Heide, and Sören Riechers

Lower Bounds for the Size of Nondeterministic Circuits 289
Hiroki Morizumi

XII Contents

Computing Minimum Dilation Spanning Trees in Geometric Graphs 297
Aléx F. Brandt, Miguel F.A. de M. Gaiowski, Pedro J. de Rezende,
and Cid C. de Souza

Speedy Colorful Subtrees. 310
W. Timothy J. White, Stephan Beyer, Kai Dührkop, Markus Chimani,
and Sebastian Böcker

Graph Algorithms II

Algorithmic Aspects of Disjunctive Domination in Graphs 325
B.S. Panda, Arti Pandey, and S. Paul

Algorithmic Aspect of Minus Domination on Small-Degree Graphs 337
Jin-Yong Lin, Ching-Hao Liu, and Sheung-Hung Poon

Time-Space Tradeoffs for Dynamic Programming Algorithms in Trees
and Bounded Treewidth Graphs . 349

Niranka Banerjee, Sankardeep Chakraborty, Venkatesh Raman,
Sasanka Roy, and Saket Saurabh

Reducing Rank of the Adjacency Matrix by Graph Modification 361
S.M. Meesum, Pranabendu Misra, and Saket Saurabh

Knapsack and Allocation

On the Number of Anchored Rectangle Packings for a Planar Point Set 377
Kevin Balas and Csaba D. Tóth

Approximate Truthful Mechanism Design for Two-Dimensional Orthogonal
Knapsack Problem . 390

Deshi Ye and Guochuan Zhang

Online Integrated Allocation of Berths and Quay Cranes in Container
Terminals with 1-Lookahead . 402

Jiayin Pan and Yinfeng Xu

Disjoint Path Allocation with Sublinear Advice . 417
Heidi Gebauer, Dennis Komm, Rastislav Královič, Richard Královič,
and Jasmin Smula

Graph Algorithms III

Dynamic Tree Shortcut with Constant Degree . 433
T.-H. Hubert Chan, Xiaowei Wu, Chenzi Zhang, and Zhichao Zhao

Contents XIII

The Rectilinear Steiner Tree Problem with Given Topology
and Length Restrictions . 445

Jens Maßberg

Compact Monotone Drawing of Trees . 457
Xin He and Dayu He

A Measure and Conquer Approach for the Parameterized Bounded
Degree-One Vertex Deletion . 469

Bang Ye Wu

Random

Sampling in Space Restricted Settings. 483
Anup Bhattacharya, Davis Issac, Ragesh Jaiswal, and Amit Kumar

Entropy of Weight Distributions of Small-Bias Spaces
and Pseudobinomiality. 495

Louay Bazzi

Optimal Algorithms for Running Max and Min Filters on Random Inputs . . . 507
Hongyu Liang, Shengxin Liu, and Hao Yuan

Model Checking MSVL Programs Based on Dynamic Symbolic Execution . . . 521
Zhenhua Duan, Kangkang Bu, Cong Tian, and Nan Zhang

Geometric Cover

On the Complete Width and Edge Clique Cover Problems 537
Van Bang Le and Sheng-Lung Peng

Unique Covering problems with Geometric Sets. 548
Pradeesha Ashok, Sudeshna Kolay, Neeldhara Misra, and Saket Saurabh

Linear Time Approximation Schemes for Geometric Maximum Coverage . . . 559
Jian Li, Haitao Wang, Bowei Zhang, and Ningye Zhang

Complexity and Security

Private Certificate-Based Remote Data Integrity Checking
in Public Clouds . 575

Huaqun Wang and Jiguo Li

Maximal and Maximum Transitive Relation Contained in a Given
Binary Relation . 587

Sourav Chakraborty, Shamik Ghosh, Nitesh Jha, and Sasanka Roy

XIV Contents

An Improved Kernel for the Complementary Maximal Strip
Recovery Problem. 601

Shuai Hu, Wenjun Li, and Jianxin Wang

On Symbolic Ultrametrics, Cotree Representations, and Cograph Edge
Decompositions and Partitions . 609

Marc Hellmuth and Nicolas Wieseke

Bounds for the Super Extra Edge Connectivity of Graphs 624
Chia-Wen Cheng and Sun-Yuan Hsieh

Encoding and Security

Quantifying Communication in Synchronized Languages. 635
Zhe Dang, Thomas R. Fischer, William J. Hutton III,
Oscar H. Ibarra, and Qin Li

Simultaneous Encodings for Range and Next/Previous Larger/Smaller
Value Queries . 648

Seungbum Jo and Srinivasa Rao Satti

A New Non-Merkle-Damgård Structural Hash Function
with Provable Security . 661

Shenghui Su, Tao Xie, and Shuwang Lü

A Public Key Cryptoscheme Using Bit-Pairs with Provable
Semantical Security. 674

Shenghui Su, Shuwang Lü, and Maozhi Xu

Network and Algorithms

An Algorithmic Framework for Labeling Network Maps 689
Jan-Henrik Haunert and Benjamin Niedermann

Smoothed Analysis of the Minimum-Mean Cycle Canceling Algorithm
and the Network Simplex Algorithm. 701

Kamiel Cornelissen and Bodo Manthey

DD-POR: Dynamic Operations and Direct Repair in Network Coding-Based
Proof of Retrievability. 713

Kazumasa Omote and Tran Phuong Thao

Evaluating Bayesian Networks via Data Streams . 731
Andrew McGregor and Hoa T. Vu

Contents XV

Algorithm

On Energy-Efficient Computations with Advice . 747
Hans-Joachim Böckenhauer, Richard Dobson, Sacha Krug,
and Kathleen Steinhöfel

Multi-Radio Channel Detecting Jamming Attack Against Enhanced Jump-Stay
Based Rendezvous in Cognitive Radio Networks . 759

Yang Gao, Zhaoquan Gu, Qiang-Sheng Hua, and Hai Jin

Upper Bounds on Fourier Entropy . 771
Sourav Chakraborty, Raghav Kulkarni, Satyanarayana V. Lokam,
and Nitin Saurabh

Author Index . 783

XVI Contents

Graph Algorithms I

Mining Preserving Structures
in a Graph Sequence

Takeaki Uno1 and Yushi Uno2(B)

1 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku,
Tokyo 101-8430, Japan

uno@nii.jp
2 Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho,

Naka-ku, Sakai 599-8531, Japan
uno@mi.s.osakafu-u.ac.jp

Abstract. In the recent research of data mining, frequent structures
in a sequence of graphs have been studied intensively, and one of the
main concern is changing structures along a sequence of graphs that can
capture dynamic properties of data. On the contrary, we newly focus on
“preserving structures” in a graph sequence that satisfy a given property
for a certain period, and mining such structures is studied. We bring
up two structures of practical importance, a connected vertex subset
and a clique that exist for a certain period. We consider the problem of
enumerating these structures and present polynomial delay algorithms
for the problems. Their running time may depend on the size of the
representation, however, if each edge has at most one time interval in
the representation, the running time is O(|V ||E|3) for connected vertex
subsets and O(min{Δ5, |E|2Δ}) for cliques, where the input graph is
G = (V, E) with maximum degree Δ. To the best of our knowledge, this
is the first systematic approach to the treatment of this notion, namely,
preserving structures.

1 Introduction

Extracting useful information from graph structured data has become important
in the era of explosive and complex data, and it is often achieved by specify-
ing and/or finding frequent substructures in a graph, that is, pattern mining in
graphs (or graph mining) [1,11,22]. In the case of hyperlink structure on the
Web (i.e., the webgraph), for example, a clique is considered to be formed by a
community, and finding it may be useful for tracing a social phenomenon on the
Web [21]. These observations imply that one of the most promising approaches
for graph mining is by enumeration, and efficient enumeration of crucial sub-
structures has a rich history. For cliques, a theoretically efficient algorithm is
presented in [15], and both [15] and [20] are state-of-the-art algorithms that per-
forms well in practice. Enumerations of paths and matchings are studied in [17]

A part of this research is supported by JST CREST and Grant-in-Aid for Scientific
Research (KAKENHI), No. 23500022 and 15H00853.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 3–15, 2015.
DOI: 10.1007/978-3-319-21398-9 1

4 T. Uno and Y. Uno

and [8], respectively, and enumeration of connected components is studied in [2].
Here, notice that all these algorithms work on a single (and thus “static”) graph.

In a recent and practical situation, however, it is often the case that graph
structures may change over time (i.e., “dynamic”), and such data is collected
periodically along a time series. In this setting, graph patterns appearing sequen-
tially could be more important. Along this direction, there are some topics
of interest so far. Finding graph patterns that appear periodically in a graph
sequence is studied in [9,13]. Graph patterns frequently appear during a certain
period are also studied in [6]. On the other hand, some research address the
change patterns that appear frequently in a graph sequence composed of graphs
with edge insertions/deletions, such as changes between two time periods [3]
and changes of subsequences [10]. Furthermore, there are several studies focus-
ing on clustering of vertices by utilizing graph sequences [18,19]. However, these
research only concern with the “changes” or their frequency and periodicity.
Objective. Taking these preceding research into account, we propose a new
concept of graph mining; finding a part of a graph that satisfies a given property
continuously for a long time in a series of dynamically changing graphs, that is,
capturing invariables in change. More specifically, we consider the problem of
enumerating all substructures that satisfy a given property during a prescribed
period, i.e., those appearing in a consecutive subsequence of a graph sequence.
We call such structures preserving structures in a graph sequence, and the prob-
lem for enumerating all such structures preserving structure mining in general.
We consider connected vertex subsets and cliques for such properties. For exam-
ple, a community on the Web that is active for a long time may correspond
to a clique that exists in a consecutive sequence of webgraphs during a certain
period. As another example, a group of a species in a wildlife environment may
constitute a consecutive sequence of connected vertex subsets in a sequence of
graphs that are constructed from its trajectory data [4,12,14]. To the best of our
knowledge, this study is the first case in which a “long-lasting” or “unchanging”
structure is regarded as the target structure to be captured.
Contributions. In this paper, we first propose a new concept, that is, a pre-
serving structure in a graph sequence. By adopting this notion, we pose two
problems of mining preserving structures of practical importance: cliques and
connected vertex subsets.

We then propose efficient algorithms for solving the problems by enumerating
all connected vertex subsets or cliques for a certain time period in a given graph
sequence. For this purpose, we define a way of representing a graph sequence
as the input format. In this model, instead of representing a graph at each
time by the difference from the previous one which is used in the dynamic graph
model [7], we represent a graph sequence by explicitly associating each edge with
its time interval(s) during which it exists. Although there exist similar ways of
representing such data (e.g., [5]), our model is new in the sense that it introduces
a new parameter, namely the number of time intervals, which will be used to
estimate the running time of these algorithms. That is, it would be used as a
new measure in the complexity study.

Mining Preserving Structures in a Graph Sequence 5

Our enumeration algorithms for preserving connected vertex subsets is based
on a recursive graph partition and for preserving cliques is based on the reverse
search, which is a framework for efficient enumeration algorithm design. While
a straightforward application of maximal clique enumeration may require a long
delay per output, our algorithms achieve polynomial delay by exploiting proper-
ties of the time intervals of edges. Compared to a naive algorithm, this reduces
the time complexity with a factor of the number of edges of an input graph.
Although our problem setting is fundamendal, it gives a new perspectives for
graphs that change over time, together with a way of data representations and
analysis of algorithms, which will pioneer a new research field.
Organization of the Paper. We give definitions and representations of graph
sequences and preserving structures together with basic terminology in Sect. 2.
In Sect. 3, we deal with the enumeration problem of preserving connected vertex
subsets. Then we discuss about the preserving clique enumeration problem in
Sect. 4. We conclude this paper in Sect. 5.

2 Preliminaries

2.1 A Graph Sequence and Its Representation

A graph G is an ordered pair of a vertex set V and an edge set E, and is denoted
by G = (V,E). We assume that a vertex set V is {1, . . . , n} so that each vertex
has an index and can be treated as an integer. The neighborhood of a vertex
v ∈ V is the set N(v) = {u ∈ V | {u, v} ∈ E}. The degree of a vertex v is
|N(v)|, and is denoted by deg(v). We use Δ to denote the maximum degree of a
graph. For a vertex subset U (⊆ V), the induced subgraph G[U] of G by U is the
subgraph whose vertex set is U and edge set is composed of all edges in E that
connect vertices in U . For an edge set F , let V (F) denote the set of vertices that
are endpoints of some edges in F . Then for an edge subset F (⊆ E), we define
the induced subgraph G[F] of G by F by the subgraph G[V (F)].

A time stamp is an integer representing a discrete time, and we denote by
T the ground set of all possible time stamps during which our graph is sup-
posed to exist. We assume T = {1, . . . , tmax} without loss of generality, and a
subset T of T is called a time stamp set. We say that an edge of a graph is
active at time stamp t if it exists at that moment. The edge set E of a supposed
graph consists only of edges that are active at some time stamps. To represent
a graph sequence, we associate a time stamp set with each edge on which it
is active. We call it an active time stamp set of that edge, and is defined by a
mapping τ : E → 2T . Then we define a graph sequence as a pair of a graph
G = (V,E) and a mapping τ , that is, (G, τ). Now the active time stamp set
of an edge e is τ(e), and we define the active time stamp set of an edge set
F to be τ(F) =

⋂
e∈F τ(e). Given a graph sequence (G, τ), we define a closure

graph GT of G for a time stamp set T (⊆ T) as the spanning subgraph in which
its edge set consists of edges whose active time stamp sets includes T , that is,
GT = (V, {e | e ∈ E, T ⊆ τ(e)}). Especially in case of T = {t}, a singleton,

6 T. Uno and Y. Uno

we sometimes denote the closure graph for T by Gt by convention. Intuitively,
Gt represents a snapshot of G at time stamp t. By definition, GT becomes G if
T = ∅.

A time stamp set is an (time) interval if it constitutes a single interval {t, t+
1, . . . , t + �} (� ≥ 0). In this paper, it is sometimes assumed that the active time
stamp set of any edge is an interval, and we call this an interval assumption. Note
that we can assume this without loss of generality, since if an active time stamp
set of an edge is composed of multiple time intervals, we can replace it by a set
of parallel edges each of which has one of those intervals, respectively. Unlike the
existing ones, this way of representing a graph sequence has an advantage in its
extendability.

2.2 Preserving Structures

Let (G, τ) be a graph sequence, where G = (V,E) and τ : E → 2T with a ground
time stamp set T . We consider preserving structures in a graph sequence, that
is, a subgraph that consecutively satisfies certain properties, such as connected
vertex subsets and cliques in this paper. Especially, we are interested in maximal
ones in some sense, and we use the term “closed” which is usually employed in
the pattern mining field [16]; a closed pattern is a maximal pattern that is not
included in the other patterns with the same frequency.

A vertex subset U is connected if there exists a path between any two vertices
of U . In this case we also say that G[U] is connected. A vertex subset U is said to
be connected on a time stamp set T if U is connected at any time stamp in T . Let
γ(U) be the set of time stamps at which U is connected. We say that a connected
vertex subset U is closed if none of its superset U ′ satisfies γ(U) = γ(U ′).

A clique is a complete subgraph of a graph. In this paper, we define a clique
by its edge set, and thus we do not regard a single vertex as a clique. A clique is
called maximal if none of its superset becomes a clique. An edge set F is called
active if τ(F) �= ∅, and τ(F) equals T if F = ∅. An active clique K in a graph
sequence is closed if no other clique K ′ such that K ⊂ K ′ satisfies τ(K) = τ(K ′).

3 Enumeration of Preserving Connected Vertex Subsets

In this section we study the closed connected vertex subsets in a graph sequence
(G, τ), where G = (V,E) and τ : E → 2T with a ground time stamp set T . We
start by observing their properties, and then present how they are enumerated.

We first have the following simple observations.

Property 1 (closed under union). For two vertex subsets U and U ′, if both U
and U ′ are connected on a time stamp set T and U ∩U ′ �= ∅, then U ∪U ′ is also
connected on T .

For two partitions P and P ′ of a universal set, let P ∧P ′ denote the partition
composed of subsets given by the intersection of members of P and P ′, i.e.,
P ∧ P ′ = {I | I = H ∩ H ′,H ∈ P,H ′ ∈ P ′}. A connected component of G is
a maximal vertex subset U such that G[U] is connected. The set of connected

Mining Preserving Structures in a Graph Sequence 7

components of G gives a partition of the vertex set, and we denoted it by C(G).
For a time stamp set T = {ti1 , . . . , tik}, let P(G,T) denote

∧k
j=1 C(Gtij

), which
forms a partition of V .

Property 2 (partition). A connected vertex subset U on a time stamp set T is
included in one of vertex subsets of P(G,T).

Property 3 (subdivision). A connected vertex subset U in W on a time stamp
set T is contained in a vertex subset of P(G[W], T).

We denote the family of all maximal connected vertex subsets of G on
a time stamp set T by C(G,T). Property 1 ensures that C(G,T) becomes a
partition of V . In the subsequent discussions in this subsection, suppose the
interval assumption holds for T , and let Tt,� denote an interval time stamp set
Tt,� = {t, t+1, . . . , t+�}. In addition, we assume for simplicity that both ends of
any interval time stamp set Tt,� can be examined in O(1) time by some appro-
priate pre-process and data structures. Then we have the following two lemmas.

Lemma 1. For an interval time stamp set Tt,� with a fixed time stamp t,
C(G,Tt,�) for all � (≥ 0) can be computed in O(|V ||E|2) time.

Lemma 2. Any member U in C(G,T) is a closed connected vertex subset of
G on an interval time stamp set T .

Lemma 2 motivates us to compute C(G,T) for all possible interval time stamp
set T to enumerate all closed connected vertex subsets. For each time stamp t,
we compute C(G,Tt,�) for interval time stamp set T = {t, t + 1, . . . , t + �} for all
possible �. From Lemma 1, this computation can be done in O(|V ||E|2) time.
Thus we obtain the following theorem, where we use � = O(|E|) again.

Theorem 1. In a graph sequence (G, τ), all closed connected vertex subsets can
be enumerated in O(|V ||E|3) time. �

The correctness of this algorithm relies only on the above three properties,
therefore the algorithm can be applied to similar connectivity conditions satisfy-
ing these properties, such as strong connectivity of a directed graph and two-edge
connectivity of a graph.

Theorem 2. In a graph sequence (G, τ) in which G is a directed graph, all closed
strongly connected vertex subsets can be enumerated in O(|V ||E|3) time. �
Theorem 3. In a graph sequence (G, τ), all closed two-edge connected vertex
subsets in a graph can be enumerated in O(|V ||E|3) time. �

In the case of two-vertex connectivity, Property 1 holds only when the inter-
section size of two components is no less than two. Thus, C(G,T) could not be a
partition of a vertex set. Instead of a vertex set, we represent a connected vertex
subset by all vertex pairs included in the subset. Using this representation, when
two subsets share at most one vertex, the intersection of their representations is
the empty set. Obviously this representation satisfies the other two properties,
thus we have the following theorem.

8 T. Uno and Y. Uno

Theorem 4. In a graph sequence (G, τ), all closed two-vertex connected vertex
subsets can be enumerated in O(|V |2|E|3) time. �

4 Enumeration of Closed Active Cliques

This section discusses about the enumeration of all closed active cliques in a
graph sequence (G, τ). We first give some additional definitions for further argu-
ments and observe some basic properties of closed active cliques. After that
we state a simple output polynomial time algorithm as a warm-up, and then
we present a more efficient algorithm based on the reverse search whose time
complexity is much smaller than the simple algorithm.

For a time stamp set T , let NT (v) = {w | w ∈ N(v), T ⊆ τ({v, w})} and
NT (F) =

⋂
v∈V (F) NT (v) for an edge set F , that is, NT (v) is the set of vertices

adjacent to v at all time stamps in T and NT (F) is the set of vertices adjacent
to all vertices in V (F) at any time stamp in T . For an edge set F and a vertex
set U , F \U denotes the edge set obtained from F by removing all edges incident
to some vertices in U , and F ∩ U denotes F \ (V \ U). For an edge set F and a
vertex v, let M(F, v) denote the set of edges connecting v and a vertex in V (F).
Let Γ (F) be the set of vertices v such that τ(F) ⊆ τ(M(F, v)).

Now let F≤i be the edge set obtained from F by removing edges incident to
vertices whose index is greater than i. By definition, F≤i is empty if i < 1, and
is F if i ≥ n. A lexicographic order on a family of sets is a total order defined in
such a way that a set F is smaller than F ′ when the smallest element in their
symmetric difference F�F ′ belongs to F . For an active clique K in a graph
sequence, let X(K) denote the lexicographically smallest closed clique including
K among all closed cliques K ′ such that τ(K ′) = τ(K).

4.1 A Simple Algorithm

Let (G, τ) be a graph sequence, where G = (V,E) and τ : E → 2T with a ground
time stamp set T . We observe a few basic properties of closed active cliques in a
graph sequence. Remember that a clique is defined by an edge set in this paper.

Lemma 3. For any active clique K, X(K) can be computed in O(min{|E|,Δ2})
time.

Proof. We can obtain X(K) by iteratively choosing the minimum vertex v in
Nτ(K)(K) and adding edges of M(K, v) to K, until Nτ(K)(K) = ∅. Nτ(K)(K)
can be computed in O(min{|E|,Δ2}) time by scanning all edges adjacent to
some edges in K. When we add Nτ(K)(K) to K, Nτ(K)(K ∪ Nτ(K)(K)) can be
computed in O(deg(v)) time by checking whether τ(K) ⊆ τ({u, v}) or not for
each u ∈ Nτ(K)(K). Therefore the statement holds. �

Lemma 4. For any time stamp set T , any maximal clique K in GT is closed.

Mining Preserving Structures in a Graph Sequence 9

Proof. If K is not closed, Gτ(K) includes a clique K ′ such that K ⊂ K ′. Since
T ⊆ τ(K), T ⊆ τ(e) holds for any edge e ∈ K ′. This implies that K ′ is a clique
in GT , which contradicts the assumption. �

Conversely, we can easily see that any closed active clique K is maximal in
the graph Gτ(K). This motivates us to compute all maximal cliques in all closure
graphs of possible active time stamp sets for enumerating all closed active cliques.

Lemma 5. All closed active cliques can be enumerated in O(|V ||E|3) time for
each, under the interval assumption.

Proof. Under the interval assumption, the active time stamp set of any closed
active clique is also an interval. These active time stamp sets satisfy that the
both ends of the interval are given by the active time sets of some edges, thus
their number is bounded by |E|2. Let K be the family of cliques each of which
is a maximal clique in a closure graph of some of those active time stamp sets.
Then, from Lemma 4, we can see that |K| is bounded by the product of |E|2 and
the number of closed active cliques. By using the algorithm in [15], the maximal
cliques can be enumerated in O(|V | + |E|) time for each, and thus the maximal
cliques in K can be enumerated in O((|V | + |E|)|K|) time. To check whether an
enumerated clique K is closed or not, we compute X(K) in O(|V | + |E|) time.
Since a closed active clique can be a maximal clique of GT for at most |E|2
time stamp sets T , the closed active cliques can be enumerated in O(|V ||E|3)
time for each. �

4.2 An Efficient Algorithm Based on the Reverse Search

The reverse search is a scheme for constructing enumeration algorithms, and was
originally proposed by Avis and Fukuda [2] for some problems such as enumer-
ation of vertices of a polytope. The key idea of the reverse search is to define
an acyclic relation among the objects including the ones to be enumerated. An
acyclic relation induces a tree, which results in the so-called a parent-child rela-
tion, and we call the tree a family tree. Hence enumerating objects is realized by
traversing the tree according to the parent-child relation to visit all the objects.
In fact, the reverse search algorithm performs a depth-first search on the tree
induced by the parent-child relation, and is implemented by a procedure for enu-
merating all children of a given object. It starts from the root object that has no
parent and enumerates its children, and then it recursively enumerates children
for each child.

It is easy to see the correctness of the algorithm; that is, the tree induced by
the parent-child relation spans all the objects, and the algorithm visits all the
vertices of the tree by a depth-first search. When a procedure for enumerating
children takes at most O(A) time for each child, the computation time of the
reverse search algorithm is bounded by O(AN), where N is the number of objects
to be enumerated. Hence, if A is polynomial in terms of the input size, the entire
reverse search algorithm takes output polynomial time. In the following, we

10 T. Uno and Y. Uno

carefully observe the properties of a graph sequence, and prove that enumeration
of children can be done in polynomial time.

Now a more efficient algorithm for enumeration of closed active cliques can be
designed based on the reverse search. We start with giving some definitions and
fundamental observations. The scheme of the reverse search has already been
applied to enumeration maximal cliques [15], and our algorithm for closed active
cliques adopts their ideas. For an active clique K, let i(K) be the minimum
vertex i satisfying X(K≤i) = K. We define the parent P (K) of closed active
clique K by X(K≤i(K)−1), and P (K) is not defined for K = X(∅), which is
called the root of the family tree.

Lemma 6. The parent-child relation defined by P is acyclic.

Proof. Suppose that K is a closed active clique such that P (K) is defined. P (K)
is generated by removing vertices one by one from K, and adding vertices so that
the active time set does not change, thus τ(P (K)) always includes τ(K). Since
X(K≤i(K)−1) �= K, P (K) is lexicographically smaller than K when τ(P (K)) =
τ(K). Thus, either (a) P (K) has a larger active time set than K, or (b) P (K) has
the same active time set as K and is lexicographically smaller than K. Therefore
the statement holds. �

Lemma 7. Any vertex in P (K)≤i(K) \ K does not belong to Nτ(K)(i(K)), and
therefore K≤i(K)−1 = P (K)≤i(K) ∩ Nτ(K)(i(K)).

Proof. Suppose that a vertex v in P (K)≤i(K) \K belongs to Nτ(K)(i(K)). Then,
X(K≤i(K)) has to include either v or another vertex u < v. It implies that
X(K≤i(K))∩{1, . . . , i(K)} �= K≤i(K), thereby X(K≤i(K)) �= K. This contradicts
the definition of i(K). �

A subset F of M(K, v) is called time maximal if F is included in no other
subset F ′ of M(K, v) satisfying τ(F) ∩ τ(K) = τ(F ′) ∩ τ(K). Let I(K, v) be
the set of all time maximal subsets of M(K, v). For a time maximal subset
F ∈ I(K, v), we define C(K,F) = X(K≤v ∩ V (F) ∪ F).

Lemma 8. If K ′ is a child of non-root closed active clique K, then K ′ =
C(K,F) holds for some vertex v and F ∈ I(K, i(K ′)).

Proof. Let F = M(K≤i(K′), i(K ′)). From Lemma 7, K ′
≤i(K′)−1 = K≤i(K′)−1 ∩

V (Nτ(K′)(i(K ′))) holds, and thus K = X(K≤i(K′)−1 ∩ V (F) ∪ F). We next
show that F is a member of I(K, i(K ′)). Suppose that K ′ is a child of K,
and F does not belong to I(K, i(K ′)), i.e., F is properly included in an edge
subset F ′ ∈ I(K, i(K ′)) such that τ(F) = τ(F ′). Then, the active time set of
K≤i(K′)∩V (F ′) is same as that of K ′

≤i(K′) = K≤i(K′)−1∩V (F)∪F . This implies
that X(K ′

≤i(K′)) includes several edges in F ′, which contradicts the definition
of i(K ′). �

Since X(K≤v) �= K holds for any v < i(K), we have the following corollary.

Corollary 1. C(K,F) is not a child of K for any F∈I(K, v) satisfying v<i(K).

Mining Preserving Structures in a Graph Sequence 11

It is true that any child is C(K,F) for some F . However, C(K,F) can-
not always be a child, that is, C(K,F) is a child of K if and only if P (K) =
P (C(K,F)). This implies that we can check whether C(K,F) is a child or not
by computing P (K). Therefore, from Lemma 8, we obtain the following proce-
dure to enumerate children of K. For avoiding the duplicated output of the same
child K ′, we output K ′ only when K ′ is generated from F ∈ I(K, i(K ′)).

Procedure. EnumChildren(K: non-root closed active clique)
1. for each F ∈ I(K, v), v > i(K) do
2. compute C(K,F);
3. compute i(C(K,F)) and P (C(K,F));
4. if K = P (C(K,F)) and i(C(K,F)) = v then output C(K,F);
5. end for

For analyzing the complexity of this procedure, which will later be used as
a subroutine of the entire algorithm for enumerating closed active cliques, we
show some technical lemmas.

Lemma 9. P (K) can be computed in O(|E|) time.

Proof. Suppose that K is not the root, i.e., P (K) is defined. Let K ′ be initialized
to the empty set, and we add vertices of K to K ′ one by one from the small-
est vertices in the increasing order. In each addition, we maintain the change
of τ(K ′) and Nτ(K)(K ′). Then, we can find the minimum vertex v satisfying
τ(K≤v) = τ(K), and the minimum vertex u satisfying i = min{Nτ(K)(K≤i−1)}
for any i ∈ K, i ≥ u. We have i(K) = max{u, v}, since X(K≤j) �= K holds when
either τ(K) �= τ(K≤j) or i �= min{Nτ(K)(K≤i−1)} holds for some i ∈ K, i > j.
Under the assumption that both ends of any interval time stamp set can be
examined in O(1) time, τ(K ∪ {e}) can be computed in O(1) time from τ(K)
for any edge e. Thus, we can compute i(K) in O(min{|E|,Δ2}) time. Together
with Lemma 3, the statement holds. �

Lemma 10. If K is not the root, any child K ′ of K satisfies that K≤i(K′) ∩
K ′

≤i(K′) �= ∅.

Proof. If K≤i(K′)∩K ′
≤i(K′) = ∅, it holds that K ′

≤i(K′)−1∩K = ∅. Since K ′
≤i(K′)−1

is always included in K, we have K ′
≤i(K′)−1 = ∅. Therefore, P (K ′) = X(∅), which

implies that P (K) is the root. �

Lemma 11. If K is not the root, the children of K is enumerated by evaluating
at most min{Δ|E|,Δ3} edge sets under the interval assumption.

Proof. By the interval assumption, the ends of the active time set of any subset
F of I(K, v) is given by the ends of some edges in F , and thus |I(K, v)| is
bounded from above by Δ2. Lemma 10 ensures that if K is not the root, Step 2
of EnumChildren does not have to take care of vertices not adjacent to any vertex
of V (K). This means that we have to take care only of non-empty maximal subset
in I(K, v). Let I be the union of all non-empty subsets of I(K, v). Since each edge

12 T. Uno and Y. Uno

in F ∈ I(K, v) is incident to some vertices in K, we have |I| ≤ min{|E|,Δ2}. It
implies that the number of possible choices of two edges from some non-empty
I(K, v) is bounded from above by Δ · min{|E|,Δ2}. �

By the above lemmas, we can estimate the time complexity of the procedure
of enumerating children.

Lemma 12. Procedure EnumChildren enumerates all children of K in O(min
{Δ5, |E|2Δ}) time under the interval assumption.

Proof. The correctness of the procedure comes from Lemma 8. We note that the
procedure never output any child more than once, since each child is generated
from its unique parent, a maximal subset included in F ∈ I(K, i(K)). We then
observe that all non-empty subset F ∈ I(K, v), v > i(K) can be computed
in O(min{|E|,Δ2}) time by scanning all edges adjacent to some edges in K,
and C(K,F) can be computed in O(min{|E|,Δ2}) time in a straightforward
manner. From Lemma 11, the procedure iterates the loop for min{Δ|E|,Δ3}
edge sets, and each edge set spends O(min{|E|,Δ2}) time from Lemma 9. Thus,
we conclude the lemma. �

Now we describe our algorithm for enumerating all closed active cliques in a
graph sequence based on the reverse search as follows. It is presented in a slightly
different form by introducing a threshold σ with respect to the length of active
time stamp sets by observing that τ(K) ⊆ τ(P (K)) always holds. It enumerates
all closed active cliques having active time sets larger than σ by giving X(∅)
(thus enumerates all when σ is set to be 0).

Algorithm. EnumClosedActiveClique(K: closed active clique)
1. output K; prv := nil;
2. if prv = nil then K ′ := the first clique found by EnumChildren(K);

else K ′ := the clique found just after prv by EnumChildren(K);
3. if there is no such clique K ′ go to Step 8;
4. K := K ′; free up the memory for K ′;
5. if |P (K)| ≥ σ then call EnumClosedActiveClique(K);
6. K := P (K);
7. go to Step 2;
8. if K is not the root then return;
9. for each e ∈ E do

10. if e is lexicographically minimum in X(e)
then EnumClosedActiveClique(X(e));

11. end for

Finally, we can establish the following theorem.

Theorem 5. Under the interval assumption, Algorithm EnumClosedAc-
tiveClique enumerates all closed active cliques in a graph sequence in
O(N min{Δ5, |E|2Δ}) time and in O(|V | + |E|) space, where N is the number
of closed active cliques in a graph sequence.

Mining Preserving Structures in a Graph Sequence 13

Proof. The correctness of the algorithm is easy to see from the framework of the
reverse search and Lemma 6. The computation time of the reverse search is given
by the product of the number of objects to be enumerated and the computation
time on each object. From Lemma 12, an iteration requires O(N min{Δ5, |E|2Δ})
time for non-root closed active cliques. For the root K = X(∅), we can enumer-
ate its children K ′ satisfying the condition of Lemma 10 in O(N min{Δ5, |E|2Δ})
time using procedure EnumChildren. When K≤i(K′) ∩ K ′

≤i(K′) = ∅, we have
K ′

≤i(K′)−1 ∩ K = ∅. This implies that K ′
≤i(K′) is composed of an edge, thus by

generating X({e}) for all e ∈ E, we can enumerate the children that do not satisfy
the condition of Lemma 10, in O(min{|E|2, |E|Δ2}) time. Note that the duplica-
tion can be avoided by outputting X({e}) only when e = arg min X({e}). Since
N ≥ |E|/Δ2, it holds that min{|E|2, |E|Δ2} ≤ N min{Δ5, |E|2Δ}. Therefore the
time complexity of the algorithm is as stated.

In a straightforward implementation of the algorithm, each iteration may
take ω(|V |+|E|) space for keeping the intermediate results of the computation in
memory, especially for all C(K,F). We can reduce this by restarting the iteration
from the beginning. When we find a child K ′ of K, we immediately generate the
recursive call with K ′, before the termination of the enumeration of the children.
After the termination of the recursive call, we resume the enumeration of the
children. To save the memory, we restart from the beginning of the iteration, and
we pass through the children found before K ′, and reconstruct all the necessary
variables. We note that the time complexity does not change by the restart, since
the number of restarts is bounded by the number of recursive calls generated
by the algorithm. A child is given by a maximal edge subset, and a maximal
edge subset is given by two edges. Thus, we can memorize a child by a constant
number of variables. The clique K is constructed by computing P (K ′), thus it
is also not necessary to have K in memory, and can be re-constructed without
increasing the time complexity. The iteration with respect to the root takes
O(|V | + |E|) space, therefore we have the atatement of the theorem. �

As we stated, since τ(K) ⊆ τ(P (K)) always holds, we have the following
corollary.

Corollary 2. Under the interval assumption, Algorithm EnumClosedActive-
Clique enumerates all closed active cliques having active time sets no shorter than
a given threshold σ in O(min{Δ5, |E|2Δ}) time for each and in O(|V |+ |E|) space.

Note again that the interval assumption can be set without loss of generality,
since we can replace an edge with multiple time intervals by parallel edges having
a single time interval for each, in their active time stamp sets. However, this
transformation increases the degrees of the vertices, thus the time complexity
may increase. If we set Δ to the maximum degree to the transformed graph,
then the results hold.

5 Conclusion

In this paper, we focused on the structures preserved in a sequence of graphs con-
tinuously for a long time, which we call “preserving structures”. We considered

14 T. Uno and Y. Uno

two structures, closed connected vertex subsets and closed active cliques, and
proposed efficient algorithms for enumerating these structures preserved during
a period no shorter than a prescribed length. An interesting future work is, of
course, to develop efficient algorithms for preserving structure mining problems
for other graph properties.

References

1. Arimura, H., Uno, T., Shimozono, S.: Time and space efficient discovery of maximal
geometric graphs. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS
(LNAI), vol. 4755, pp. 42–55. Springer, Heidelberg (2007)

2. Avis, D., Fukuda, K.: Reverse search for enumeration. Discr. Appl. Math. 65,
21–46 (1996)

3. Berlingerio, M., Bonchi, F., Bringmann, B., Gionis, A.: Mining graph evolution
rules. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML
PKDD 2009, Part I. LNCS, vol. 5781, pp. 115–130. Springer, Heidelberg (2009)

4. Buchin, K., Buchin, M., van Kreveld, M., Speckmann, B., Staals, F.: Trajectory
grouping structure. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013.
LNCS, vol. 8037, pp. 219–230. Springer, Heidelberg (2013)

5. Xuan, B.B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. Int. J. of Foundations of Computer Science 14,
267–285 (2003)

6. Borgwardt, K.M., Kriegel, H.P., Wackersreuther, P.: Pattern mining in frequent
dynamic subgraphs. In: Proc. 6th IEEE ICDM, pp. 818–822 (2006)

7. Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsification–A technique
for speeding up dynamic graph algorithms. J. ACM 44, 669–696 (1997)

8. Fukuda, K., Matsui, T.: Finding all the perfect matchings in bipartite graphs.
Applied Mathematics Letters 7, 15–18 (1994)

9. Han, J., Dong, G., Yin, Y.: Efficient mining of partial periodic patterns in time
series database. In: Proc. 15th IEEE ICDE, pp. 106–115 (1999)

10. Inokuchi A., Washio, T.: A fast method to mine frequent subsequences from graph
sequence data. In: Proc. 8th IEEE ICDM, pp. 303–312 (2008)

11. Mining graph data: A. Inokuchi T. Washio and H. Motoda. Complete mining of
frequent patterns from graphs. Machine Learning 50, 321–354 (2003)

12. Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-
temporal data. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005.
LNCS, vol. 3633, pp. 364–381. Springer, Heidelberg (2005)

13. Lahiri, M. Berger-Wolf, T.Y.: Mining periodic behavior in dynamic social networks.
In: Proc. 8th IEEE ICDM, pp. 373–382 (2008)

14. Li, Z., Ding, B., Han, J., Kays, R.: Swarm: Mining relaxed temporal moving object
clusters. In: Proc. 36th Int’l Conf. on VLDB, pp. 723–734 (2010)

15. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In:
Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 260–272.
Springer, Heidelberg (2004)

16. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association
rules using closed itemset lattices. J. Information Systems 24, 25–46 (1999)

17. Read, R.C., Tarjan, R.E.: Bounds on backtrack algorithms for listing cycles, paths,
and spanning trees. Networks 5, 237–252 (1975)

18. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: GraphScope: Parameter-free
mining of large time-evolving graphs. In: Proc. 13th ACM Int’l Conf. on KDD,
pp. 687–696 (2007)

Mining Preserving Structures in a Graph Sequence 15

19. Tantipathananandh, C., Berger-Wolf, T.: Constant-factor approximation algo-
rithms for identifying dynamic communities. In: Proc. 15th ACM Int’l Conf. on
KDD, pp. 827–836 (2009)

20. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for gener-
ating all maximal cliques and computational experiments. Theor. Comp. Sci. 363,
28–42 (2006)

21. Uno, Y., Ota, Y., Uemichi, A.: Web structure mining by isolated cliques. IEICE
Transactions on Information and Systems E90–D, 1998–2006 (2007)

22. Yan, X., Han, J.: GSPAN: graph-based substructure pattern mining. In: Proc. 2nd
IEEE ICDM, pp. 721–724 (2002)

On the Most Imbalanced Orientation of a Graph

Walid Ben-Ameur(B), Antoine Glorieux, and José Neto

Institut Mines-Télécom, Télécom SudParis, CNRS Samovar UMR 5157,
9 Rue Charles Fourier, 91011 Evry Cedex, France

{walid.benameur,antoine.glorieux,jose.neto}@telecom-sudparis.eu

Abstract. We study the problem of orienting the edges of a graph such
that the minimum over all the vertices of the absolute difference between
the outdegree and the indegree of a vertex is maximized. We call this
minimum the imbalance of the orientation, i.e. the higher it gets, the
more imbalanced the orientation is. We study this problem denoted by
MaxIm. We first present different characterizations of the graphs for
which the optimal objective value of MaxIm is zero. Next we show that
it is generally NP-complete and cannot be approximated within a ratio
of 1

2
+ ε for any constant ε > 0 in polynomial time unless P = NP even

if the minimum degree of the graph δ equals 2. Finally we describe a
polynomial-time approximation algorithm whose ratio is equal to 1

2
for

graphs where δ ≡ 0[4] or δ ≡ 1[4] and (1
2

− 1
δ
) for general graphs.

Introduction and Notation

Let G = (V,E) be an undirected simple graph, we denote by δG the minimum
degree of the vertices of G. An orientation Λ of G is an assignment of a direction
to each undirected edge {uv} in E, i.e. any function on E of the form Λ({uv}) ∈
{uv, vu}, ∀{uv} ∈ E. For each vertex v of G we denote by dG(v) or d(v) the unori-
ented degree of v in G and by d+Λ(v) or d+(v) (resp. d−

Λ(v) or d−(v)) the outdegree
(resp. indegree) of v in G w.r.t. Λ. Graph orientation is a well studied area in graph
theory and combinatorial optimization and thus a large variety of constrained ori-
entations as well as objective functions have been considered so far.

Among those arise the popular degree-constrained orientation problems: in
1976, Frank & Gyárfás [12] gave a simple characterization of the existence of
an orientation such that the outdgree of every vertex is between a lower and
an upper bound given for each vertex. Asahiro et al. in [1–3] proved the NP-
hardness of the weighted version of the problem where the maximum outdegree
is minimized, gave some inapproximability results, and studied similar problems
for different classes of graphs. Chrobak & Eppstein proved that for every planar
graph a 3-bounded outdegree orientation and a 5-bounded outdegree acyclic
orientation can be constructed in linear time [6].

Other problems involving other criterion on the orientation have been studied
such as acyclicity, diameter or connectivity. Robbins’ theorem (1939) for example
states that the graphs that have strong orientations are exactly the 2-edge-
connected graphs [18] and later (1985), Chung et al. provided a linear time
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 16–29, 2015.
DOI: 10.1007/978-3-319-21398-9 2

On the Most Imbalanced Orientation of a Graph 17

algorithm for checking whether a graph has such an orientation and finding one
if it does [7]. Then in 1960, Nash-Williams generalized Robbin’s theorem showing
that an undirected graph has a k-arc-connected orientation if and only if it is
2k-edge-connected [17]. The problem called oriented diameter that consists in
finding a strongly connected orientation with minimum diameter was introduced
in 1978 by Chv́atal & Thomassen: they proved that the problem is NP-hard
for general graphs [8]. It was then proven to be NP-hard even if the graph is
restricted to a subset of chordal graphs by Fomin et al. (2004) who gave also
approximability and inapproximability results [10].

For an orientation Λ of G = (V,E) and a vertex v we call |d+Λ(v)−d−
Λ(v)| the

imbalance of v in G w.r.t Λ and thus we call minv∈V |d+Λ(v) − d−
Λ (v)| the imbal-

ance of Λ. Biedl et al. studied the problem of finding an acyclic orientation of
unweighted graphs minimizing the imbalance of each vertex: they proved that it
is solvable in polynomial time for graphs with maximum degree at most three but
NP-complete generally and for bipartite graphs with maximum degree six and
gave a 13

8 -approximation algorithm [5]. Then Kára et al. closed the gap proving
the NP-completeness for graphs with maximum degree four. Furthermore, they
proved that the problem remains NP-complete for planar graphs with maximum
degree four and for 5-regular graphs [14].

Landau’s famous theorem [15] gives a condition for a sequence of non-negative
integers to be the score sequence or outdegree sequence of some tournament
(i.e. oriented complete graph) and later, Harary & Moser characterized score
sequences of strongly connected tournaments [13]. Analogous results for the
“imbalance sequences” of directed graphs are were given by Mubayi et al. [16]. In
1962, Ford & Fulkerson characterized the mixed graphs (i.e. partially oriented
graphs) which orientation can be completed in a eulerian orientation, that is
to say, an orientation for which the imbalance of each vertex equals zero [11].
Many other results related to orientation have been proposed. Some of them are
reviewed in [4].

Let us denote by
−→
O (G) the set of all the orientations of G, we consider the

problem of finding an orientation with maximized imbalance:

(MaxIm) MaxIm(G) = max
Λ∈−→

O (G)

min
v∈V

|d+Λ(v) − d−
Λ (v)|

and we call MaxIm(G) the value of MaxIm for G. The minimum degree δG of
a graph G is a trivial upper bound for MaxIm(G).

The rest of this paper is organized as follows. In the first section, we give
several characterizations of the the graphs verifying MaxIm(G) = 0. In section
2, we will show that MaxIm is generally NP-complete even for graphs with
minimum degree 2 and inapproximable within a ratio 1

2 + ε for any constant
ε > 0 and then will give an approximation algorithm whose ratio is almost equal
to 1

2 . Since the value of MaxIm for a graph is the minimum of the values of
MaxIm on its connected component, from here on in, all the graphs we consider
are assumed to be connected. For any graph G we will use the notations V (G)
and E(G) to refer to the set of vertices of G and the set of edges of G respectively.

18 W. Ben-Ameur et al.

1 Characterizing the Graphs for which MaxIm(G) = 0

Now we ask ourselves which are the graphs verifying MaxIm(G) = 0. We will
start by unveiling several necessary conditions and properties of such graphs.
First we can show that concerning such a graph, we can find an orientation
satisfying several additional properties.

Proposition 1. Let G be a graph such that MaxIm(G) = 0 and u ∈ V . Then
there exists an orientation Λ ∈ −→

O (G) such that u is the only vertex of G with
imbalance equal to zero w.r.t. Λ.

Proof. Let Λ ∈ −→
O (G) be an orientation minimizing |{v ∈ V/|d+Λ(v) − d−

Λ(v)| =
0}|. We suppose that |{v ∈ V/|d+Λ(v) − d−

Λ (v)| = 0}| ≥ 2. We choose two dis-
tinct vertices v and w in {v ∈ V/|d+Λ(v) − d−

Λ (v)| = 0} and a path p = (v =
u0, · · · , un = w) between v and w. If we switch the orientation of the edge
{u0u1}, then the imbalance of u0 becomes positive and necessarily the imbal-
ance of u1 becomes zero otherwise the resulting orientation would contradict the
minimality of Λ. Using the same reasoning, if we switch the orientation of all the
edges {u0u1}, · · · , {un−2un−1}, we obtain an orientation where both un−1 and
un have an imbalance equal to zero while the imbalance is positive on all the
vertices u0, · · · , un−2 and unchanged on all other vertices. So now if we switch
the orientation of the edge {un−1un} as well, then the resulting orientation con-
tradicts the minimality of Λ. Hence, |{v ∈ V/|d+Λ(v) − d−

Λ (v)| = 0}| = 1.
Now let v be this unique vertex of G such that |d+Λ(v)−d−

Λ(v)| = 0. Let u �= v
be an arbitrary vertex and let p = (v = u0, · · · , un = u) be a path between v
and u. By switching the orientation of all the edges {u0u1}, · · · , {un−2un−1},
we obtain an orientation Λ′ where u has an imbalance equal to zero while the
imbalance is positive for u0 and unchanged on all other vertices. ��

This yields the following necessary condition: if G is a graph such that
MaxIm(G) = 0, then G is eulerian. For let u ∈ V , we know there exists
Λ ∈ −→

O (G) such that {v ∈ V/|d+Λ(v) − d−
Λ (v)| = 0} = {u}. Then d+Λ(u) = d−

Λ(u),
hence d(u) = d+Λ(u) + d−

Λ (u) = 2d+Λ(u) is even. The following lemma about
eulerian graphs will prove useful for the proof of our characterization.

Lemma 2. If G is an eulerian graph, then there exists an elementary cycle
(hereafter just called cycle) C of G such that G−E(C) has at most one connected
component that is not an isolated vertex.

Proof. Being G eulerian and connected, it can be decomposed into edge-disjoint
cycles that we can order C1, · · · , Cn according to the following condition: ∪i

k=1Ci

is connected, ∀i ∈ �1, n�. Then Cn is the cycle we are looking for. ��

Now let us define a certain family of graphs which will prove to be exactly
the graphs for which the optimal objective value of MaxIm is zero. Intuitively
they are the graphs for which every block is an odd cycle.

On the Most Imbalanced Orientation of a Graph 19

Theorem 3. We define the class of graphs C odd as follows: a simple graph G
is in C odd if there exists C1, · · · , Cn odd cycles (n ≥ 1) such that:

• ∪n
i=1 Ci = G,

• |V (∪i−1
k=1Ck) ∩ V (Ci)| = 1, ∀i ∈ �2, n�.

(1)

Then for any simple graph G, MaxIm(G) = 0 if and only if G ∈ C odd.

Proof. • ⇐ We will work by induction on the number of cycles n contained
in the graph. Nothing is required for these cycles except that they must
be elementary. If n = 1, then our graph is an odd cycle which implies
MaxIm(G) = 0. Let n ≥ 2, we assume that all graphs of C odd with k ≤ n−1
cycles verify MaxIm(G) = 0. Let G ∈ C odd with n cycles C1, · · · , Cn as in
(1). Suppose there exists Λ ∈ −→

O (G) with strictly positive imbalance. Let
us call G′ = ∪n−1

i=1 Ci the graph obtained from G after removing Cn and
let us take a look at Λ|E(G′) the orientation of the edges of G′ obtained
from Λ as its restriction on E(G′). As G′ is a graph of n − 1 cycles in
C odd, our inductive hypothesis implies that we have a vertex u ∈ V (G′)
such that |d+Λ|E(G′)

(u) − d−
Λ|E(G′)

(u)| = 0. Necessarily, u = V (G′) ∩ V (Cn).

Thus |d+Λ(u) − d−
Λ(u)| = |d+Λ|E(Cn)

(u) − d−
Λ|E(Cn)

(u)| > 0 implying that
MaxIm(Cn) > 0 which is absurd because Cn is an odd cycle.

• ⇒ Since MaxIm(G) = 0, we know that G is eulerian. We will again work
by induction on the number of cycles n. If n = 1, then our graph is eulerian
with a unique cycle, hence it is a cycle. Now as MaxIm(G) = 0, necessarily
it is an odd cycle and is therefore in C odd. Let n ≥ 2, we assume that all
graphs with k ≤ n − 1 cycles verifying MaxIm(G) = 0 are in C odd. Let G
be a graph with n cycles such that MaxIm(G) = 0. Thanks to Lemma 2,
there exists an cycle C of G such that G − E(C) has at most one connected
component G′ that is not an isolated vertex.

Suppose that MaxIm(G′) > 0, let Λ ∈ −→
O (G′) with strictly positive

imbalance. Let u0 ∈ V (G′) ∩ V (C), we name the vertices of C as fol-
lows: u0, u1, · · · , uk = u0. Without loss of generality, we can assume that
d+Λ(u0) − d−

Λ(u0) > 0; if it was not the case, replace Λ by its reverse. We
complete Λ in an orientation of G by orienting the edges of C: we orient
u0u1 from u0 to u1 and go on as follows:

∀i ∈ �1, k − 1�,

{
if ui ∈ V (G′), we orient {uiui+1} as {ui−1ui},

otherwise, we orient {uiui+1} as {uiui−1}.

Where orienting an edge {ab} as another edge {cd} means orienting it from
a to b if {cd} was oriented from c to d and from b to a otherwise. Let us
have a look at the resulting orientation Λ′ (cf Figure 1): when completing Λ
in Λ′, the imbalance of the vertices in V (G′)\{u0} was left unchanged, the
imbalance of the vertices in V (C)\V (G′) equals 2 and the imbalance of u0

20 W. Ben-Ameur et al.

was either left unchanged or augmented by two. Hence Λ′ has strictly positive
imbalance which contraditcts MaxIm(G) = 0, therefore, MaxIm(G′) = 0.

Suppose |V (G′) ∩ V (C)| ≥ 2 and let u and v be 2 distinct vertices in
V (G′) ∩ V (C)) such that u �= v. Thanks to proposition 1, we know that
there exists an orientation Λ ∈ −→

O (G′) such that {w ∈ V/|d+Λ(w) − d−
Λ(w)| =

0} = {v} and without loss of generality, d+Λ(u) − d−
Λ (u) > 0. We name the

vertices of C as follows: u = u0u1 · · · uk = u0, v = ul and we complete Λ in
an orientation of G by orienting the edges of C: we orient {u0u1} from u0

and u1 and go on as follows:

∀i ∈ �1, k − 1� \ {l},

{
if ui ∈ V (G′), we orient {uiui+1} as {ui−1ui},

otherwise, we orient {uiui+1} as {uiui−1}.

And we orient {ulul+1} as {ulul−1}. In the resulting orientation Λ′, the
imbalance of the vertices in V (G′)\{u, v} was left unchanged, the imbalance
of the vertices in V (C)\V (G′) equals 2, the imbalance of v was augmented
by two and the imbalance of u was either left unchanged or augmented by
two. Hence Λ′ contradicts MaxIm(G) = 0, therefore, |V (G′) ∩ V (C)| = 1.

Suppose C is even. We call u ∈ V (G′) such that V (G′) ∩ V (C) = {u},
and Λ ∈ −→

O (G′) such that {v ∈ V/|d+Λ(v) − d−
Λ(v)| = 0} = {u}. We name

the vertices of C as follows: u = u0u1 · · · uk = u0 and we complete Λ in an
orientation of G by orienting the edges of C: we orient {u0u1} from u0 to u1

and {uiui+1} as {uiui−1}, ∀i ∈ �1, k−1�. In the resulting orientation Λ′, the
imbalance of the vertices in V (G′)\{u} was left unchanged, the imbalance
of the vertices in V (C)\V (G′) equals 2 and, C being even, the imbalance of
u was augmented by two. Hence Λ′ contradicts MaxIm(G) = 0, therefore,
C is odd.

As G′ is a graph with at most n − 1 cycles verifying MaxIm(G) = 0, by
induction hypothesis, there exist C1, · · · , Cn−1 odd cycles such that:

◦ ∪n−1
i=1 Ci = G′,

◦ |V (∪i−1
k=1Ck) ∩ V (Ci)| = 1, ∀i ∈ �2, n − 1�.

Adding the odd cycle Cn = C, we directly obtain that G ∈ C odd.
��

Now in order to widen our perception of those graphs, let us show another
characterization.

Theorem 4. For every simple graph G,

G ∈ C odd ⇔ G is eulerian with no even cycle

Proof. • ⇒ By construction, every graph in C odd is eulerian with no even
cycle.

On the Most Imbalanced Orientation of a Graph 21

G′
u0

u1uk−1

C

Fig. 1. The vertices of C in G′ are left unchanged imbalance-wise, the other vertices
of C are set to 2 and in the end |d+

Λ′(u0) − d−
Λ′(u0)| ≥ |d+

Λ(u0) − d−
Λ (u0)| > 0

G′
u v

u1uk−1

C

Fig. 2. The vertices of C in G′ are left unchanged imbalance-wise except for v which
is set to 2, like the other vertices of C and in the end |d+

Λ′(u0) − d−
Λ′(u0)| ≥ |d+

Λ(u0) −
d−

Λ (u0)| > 0
.

• ⇐ We will once again work by induction on the number of cycles n.
If n = 1, then our graph is eulerian with a unique odd cycle, hence it is an
odd cycle and is therefore in C odd.
Let n ≥ 2, we assume that all eulerian graphs with no even cycle and k ≤ n−1
odd cycles are in C odd. Let G be a graph with no even cycle and n odd cycles.
Thanks to Lemma 2, there exists an odd cycle C of G such that G − E(C)
has only one connected component G′ that is not an isolated vertex. As G′ is
eulerian and even-cycle-free with n − 1 odd cycles, by induction hypothesis,
G′ ∈ C odd, hence there exist C1, · · · , Cn−1 odd cycles such that:

◦ ∪n−1
i=1 Ci = G′,

◦ |V (∪i−1
k=1Ck) ∩ V (Ci)| = 1, ∀i ∈ �2, n − 1�.

Suppose there exist u and v (u �= v) belonging to V (∪n−1
k=1Ck) ∩ V (C). Since

G′ is connected, let p be an elementary path in G′ between u and v. We can
assume that u and v are the only vertices of C contained in p, otherwise we
could replace v by the first vertex of C encountered when travelling on p from
u. C defines two other vertex-disjoint paths between u and v: one even that
we will call peven and one odd that we will call podd. p being vertex disjoint
with either peven or podd, by concatenating it with the one corresponding to
its parity, we obtain an even cycle of G, contradicting our hypothesis on G.
This yields that |V (C) ∩ V (G′)| = 1. From that we can conclude

◦ ∪n
i=1Ci = G,

◦ |V (∪i−1
k=1Ck) ∩ V (Ci)| = 1, ∀i ∈ �2, n�.

Hence G ∈ C odd.
��

22 W. Ben-Ameur et al.

2 Complexity, Inapproximability and Approximability

In this section we will prove the NP-completeness and inapproximability of our
problem and give an approximation algorithm based on the special case of bipar-
tite graphs.

Concerning the complexity of MaxIm, we will show that the problem is NP-
complete. More precisely, that answering if MaxIm(G) equals 2 for a graph G
such that δG = 2 is NP-complete. For that purpose we will introduce a variant
of the satisfiability problem that we will reduce to a MaxIm instance: the not-
all-equal at most 3-SAT(3V).

Not-all-equal at most 3-SAT(3V) is a restriction of not-all-equal at most 3-
SAT which is itself a restriction of 3-SAT known to be NP-complete [19] where
each clause contains at most three literals and in each clause, not all the literals
can be true. Since 2-SAT can be solved in polynomial time, we hereafter deal
only with formulas having at least one three-literals clause. The added restriction
of not-all-equal at most 3-SAT(3V) is that each variable (not literal) appears at
most three times in a formula. The resulting problem is still NP-complete.

Lemma 5. The not-all-equal at most 3-SAT(3V) problem is NP-complete.

Proof. See Appendix A.

Now we will associate to a not-all-equal at most 3-SAT(3V) instance ϕ with
n variables {x1, · · · , xn} and m clauses {c1, · · · , cm} a graph Gϕ for which the
value w.r.t. MaxIm will give the answer to whether ϕ is satisfiable or not. If
a variable xi occurs only in positive literals (resp. only in negative literals), it
follows that a satisfying assignment of the variables of ϕ must necssarily give
the value TRUE (resp. FALSE) to xi, therefore xi can be removed from ϕ with
conservation of the satisfiability. Thus, without loss of generality, we can assume
that in any not-all-equal at most 3-SAT(3V) formula, every variable occurs at
least once as a positive literal and at least once as a negative literal. Gϕ consists
of gadgets that mimic the variables and the clauses of ϕ and additional edges
that connect them together:

• the gadget corresponding to a variable xi consists of two vertices labeled xi

and ¬xi and one edge connecting them;

• the gadget corresponding to a two-literals clause cj = (l1 ∨ l2), where l1 and
l2 are its literals, consists in two vertices labeled aj

l1 and bj
l2 corresponding

to l1 and l2 respectively (the index ”lk” of the vertices labels stands for the
literal they represent, i.e. xi if lk is the variable xi and ¬xi if lk is the nega-
tion of the variable xi) and one edge connecting them;

• the gadget corresponding to a three-literals clause gadget consists in six ver-
tices and six edges. For a clause cj = (l1 ∨ l2 ∨ l3), where l1, l2 and l3 are
its literals (the order is arbitrary), three vertices labeled aj

l1 , bj
l2 and b′j

l3 cor-
respond to l1, l2 and l3 respectively. Three additional vertices are labeled

On the Most Imbalanced Orientation of a Graph 23

uj , vj and wj and the gadgets’ edges are {aj
l1uj}, {aj

l1vj}, {ujwj}, {vjwj},
{wjb

j
l2} and {wjb

′j
l3};

• ∀i ∈ �1, n�, the vertex labeled xi (resp. ¬xi) is connected to all the vertices
labeled aj

xi
, bj

xi
or b′j

xi
(resp. aj

¬xi
, bj

¬xi
or b′j

¬xi
), ∀j ∈ �1,m�.

As an example, for a formula

ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ ¬x4), (2)

the corresponding graph Gϕ is represented in Figure 3.

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

a1
x1 b1¬x2

b′1
x3

a2
¬x1 b2¬x3

b′2
x4

a3
x1 b3¬x2

b′3
x4 a4

x2 b4¬x4

v1 v2 v3

u1 u2 u3

w1 w2 w3 clause
gadgets

variable
gadgets

Fig. 3. Gϕ for ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ ¬x4)

Theorem 6. A not-all-equal at most 3-SAT(3V) formula ϕ is satisfiable if and
only if MaxIm(Gϕ) = 2.

Proof. • ⇒ Suppose ϕ is satisfiable and let v : {x1, · · · , xn} →
{TRUE,FALSE} be a satisfying assignment of x1, · · · , xn. We know that
δGϕ

= 2 which yields MaxIm(Gϕ) ≤ 2. So let us build an orientation
Λ ∈ −→

O (Gϕ) which imbalance is greater than or equal to 2. First, we assign
an orientation to the edges of the variable gadget:

Λ({xi¬xi}) =

{
xi¬xi if v(xi) = TRUE;
¬xixi otherwise.

For example, for the formula ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧
(x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ ¬x4) satisfied by the assignment v(x1, x2, x3, x4) =
(FALSE,TRUE, TRUE,TRUE), the edges of the variable gadgets of graph
Gϕ are oriented as in figure 4(a). Since each variable xi occurs at least once
as a positive literal and at least once as a negative literal, 2 ≤ dGϕ

(xi) ≤ 3
and 2 ≤ dGϕ

(¬xi) ≤ 3, ∀i ∈ �1, n�. Then to ensure our objective on the
imbalance of Λ, the orientation of the edges connecting vertex gadgets and
clause gadgets must be such that ∀i ∈ �1, n�, |d+Λ(xi) − d−

Λ(xi)| = dGϕ
(xi)

24 W. Ben-Ameur et al.

Fig. 4. Gϕ corresponding to ϕ = (x1 ∨ ¬x2 ∨ x3)∧ (¬x1 ∨ ¬x3 ∨ x4)∧ (x1 ∨ ¬x2 ∨ x4)∧
(x2 ∨ ¬x4) satisfied by v(x1, x2, x3, x4) = (FALSE, TRUE, TRUE, TRUE)

and |d+Λ(¬xi)−d−
Λ (¬xi)| = dGϕ

(¬xi). In other words, for i ∈ �1, n�, if v(xi) =
TRUE (resp. v(xi) = FALSE), then the edges adjacent to the vertex xi are
oriented from xi (resp. to xi) and the edges adjacent to the vertex ¬xi are
oriented to ¬xi (resp. from ¬xi), e.g. Figure4(b).
So far, all the edges in the variables gadgets and the edges connecting the ver-
tex gadgets and the clause gadgets have been oriented and the vertices in the
variables gadgets have imbalance greater than or equal to 2. In order to com-
plete our orientation Λ we have to orient the edges in the clause gadgets.
Let cj = (l1 ∨ l2) be a two-literals clause. Since v satisfies ϕ, we know that
exactly one of the two literals is true w.r.t. v. Which, according to the way we
oriented edges so far, means that exactly one of aj

l1 and bj
l2 has one incoming

arc from a variable gadget and the other has one outgoing arc to a variable
gadget. If aj

l1 is the one with the incoming arc from a variable gadget (mean-
ings that v(l1) = TRUE), then we assign Λ({aj

l1b
j
l2}) = (bj

l2a
j
l1), otherwise the

opposite. We obtain |d+Λ(aj
l1) − d−

Λ(aj
l1)| = |d+Λ(bj

l2) − d−
Λ(bj

l2)| = 2.
Let cj = (l1 ∨ l2 ∨ l3) (the order is identical to which was chosen to build the
clause gadget, i.e. dGϕ

(aj
l1) = 3 and dGϕ

(bj
l2) = dGϕ

(b′j
l3) = 2) be at three-

literals clause. If the edge connecting aj
l1 to a variable gadget is oriented to

aj
l1 (meanings that v(l1) = TRUE), then we assign Λ({aj

l1uj}) = (uja
j
l1),

Λ({aj
l1vj}) = (vja

j
l1), Λ({ujwj}) = (ujwj) and Λ({vjwj}) = (vjwj). Since

v(l1) = TRUE, either both v(l2) and v(l3) are FALSE or exactly one of v(l2)

On the Most Imbalanced Orientation of a Graph 25

and v(l3) is TRUE and one is FALSE. If both are FALSE then bj
l2 and b′j

l3

have an outgoing arc to a variable gadget. In that case, we orient wjb
j
l2 and

wjb
′j
l3 to wj and we obtain |d+Λ(aj

l1) − d−
Λ(aj

l1)| = 3, |d+Λ(bj
l2) − d−

Λ(bj
l2)| =

|d+Λ((b′j
l3) − d−

Λ ((b′j
l3)| = |d+Λ(uj) − d−

Λ (uj)| = |d+Λ(vj) − d−
Λ(vj)| = 2 and

|d+Λ(wj) − d−
Λ(wj)| = 4. If exactly one of v(l2) and v(l3) is TRUE and one

is FALSE, then exactly one of bj
l2 and b′j

l3 has an incoming arc from a variable
gadget and the other an outgoing arc to a variable gadget. If bj

l2 is the one with
the incoming arc from a variable gadget (meanings that v(l2) = TRUE and
v(l3) = FALSE), then we assign Λ({wjb

j
l2}) = (wjb

j
l2) and Λ({wjb

′j
l3}) =

(b′j
l3wj), otherwise the opposite. We obtain |d+Λ(aj

l1) − d−
Λ(aj

l1)| = 3 and
|d+Λ(bj

l2) − d−
Λ(bj

l2)| = |d+Λ(b′j
l3) − d−

Λ(b′j
l3)| = |d+Λ(uj) − d−

Λ (uj)| = |d+Λ(vj) −
d−

Λ(vj)| = |d+Λ(wj) − d−
Λ(wj)| = 2.

If, on the other hand, the edge connecting aj
l1 to a variable gadget is ori-

ented from aj
l1 (meanings that v(l1) = FALSE), then we assign Λ({aj

l1uj}) =
(aj

l1uj), Λ({aj
l1vj}) = (aj

l1vj), Λ({ujwj}) = (wjuj) and Λ({vjwj}) = (wjvj).
By symmetry, we conclude in the same way that |d+Λ(aj

l1) − d−
Λ(aj

l1)| = 3 and
|d+Λ(bj

l2) − d−
Λ(bj

l2)| = |d+Λ(b′j
l3) − d−

Λ(b′j
l3)| = |d+Λ(uj) − d−

Λ (uj)| = |d+Λ(vj) −
d−

Λ(vj)| = |d+Λ(wj) − d−
Λ(wj)| = 2.

Consequently, the imbalance of the resulting orientation Λ is greater than or
equal to 2, e.g. Figure 4(c).

• ⇐ Now we assume that MaxIm(Gϕ) = 2, let Λ ∈ −→
O (Gϕ) with optimal

imbalance. Since all the vertices in the variable gadgets have degree at most
3, each vertex xi (or ¬xi) is necessarily adjacent to only incoming arcs or only
outgoing arcs w.r.t. Λ. We will show that the assignment v : {x1, · · · , xn} →
{TRUE,FALSE} of x1, · · · , xn defined by

v(xi) =

{
TRUE if d+Λ(xi) > d−

Λ (xi);
FALSE otherwise;

satisfies ϕ. Suppose ϕ doesn’t satisfy a clause cj , j ∈ �1,m�. If cj is a two-
literals clause (l1 ∨ l2) then either v(l1) = v(l2) = TRUE or v(l1) = v(l2) =
FALSE, i.e. either both aj

l1 and bj
l2 have an incoming arc from a variable

gadget or both have an outgoing arc to a variable gadget and in both cases,
whichever is the orientation assigned to aj

l1b
j
l2 by Λ, either aj

l1 or bj
l2 have

a zero imbalance which contradicts our assumption. So cj is a three-literals
clause (l1 ∨ l2 ∨ l3) (the order is identical to which was chosen to build
the clause gadget, i.e. dGϕ

(aj
l1) = 3 and dGϕ

(bj
l2) = dGϕ

(b′j
l3) = 2). Then

either v(l1) = v(l2) = v(l3) = TRUE or v(l1) = v(l2) = v(l3) = FALSE,
i.e. either all aj

l1 , bj
l2 and b′j

l3 have an incoming arc from a variable gadget
or they all have an outgoing arc to a variable gadget. In the first case, it
implies Λ({aj

l1uj}) = (uja
j
l1), Λ({aj

l1vj}) = (vja
j
l1), Λ({ujwj}) = (ujwj),

Λ({vjwj}) = (vjwj), Λ({wjb
j
l2}) = (wjb

j
l2) and Λ({wjb

′j
l3}) = (wjb

′j
l3), and

we obtain |d+Λ(wj) − d−
Λ(wj)| = 0 which contradicts the optimality of Λ.

Similarly, in the second case it implies that the orientations assigned to the

26 W. Ben-Ameur et al.

edges of the clause gadgets are the opposite from the previous ones and we
obtain the same contradiction.
So we can conclude that v does satisfy ϕ.

��

Corollary 7. MaxIm is NP-complete and inapproximable within 1
2 + ε where

ε ∈ R
∗
+, unless P = NP.

Proof. Let ε ∈ R
∗
+, suppose that there existed a polynomial approximation

algorithm giving val ≥ (12 + ε)MaxIm(G) for an input graph G. Let ϕ be a
not-all-equal at most 3-SAT(3V) formula and Gϕ its associated graph. Since
Gϕ contains at least one three-literals clause gadget, we know that Gϕ con-
tains an even cycle and δGϕ

= 2. This leads to MaxIm(Gϕ) ∈ {1, 2} and since
(12 + ε)MaxIm(Gϕ) ≤ val ≤ MaxIm(Gϕ), if the polynomial approximation
algorithm returns a value less than or equal to 1 then

(
1
2

+ ε)MaxIm(Gϕ) ≤ 1 ⇒ MaxIm(Gϕ) < 2 ⇒ MaxIm(Gϕ) = 1;

and if it returns a value greater than 1, then MaxIm(Gϕ) is greater than 1
hence equal to 2. In other words the polynomial approximation algorithm output
answers whether ϕ is satisfiable or not which is absurd unless P = NP. ��

Now we consider the case of bipartite graphs: if G = (V 1
⊔

V2, E) is a bipar-
tite graph, the orientation that consists in assigning to each edge in E the ori-
entation from its extremity in V1 to its extremity in V2 has an imbalance equal
to δG, i.e. optimal. This simple case permits us to obtain the following lower
bound:

Theorem 8. For every graph G,

MaxIm(G) ≥ �δG

2
� − 1.

Proof. Let (V1, V2) be a partition of V corresponding to a cut C ⊂ E such
that we have |δ({v}) ∩ C| ≥ �d(v)

2 �, ∀v ∈ V . Such a cut exists: for example a
maximum cardinality cut verifies this property, otherwise we could find a higher
cardinality cut by switching a vertex v ∈ V s.t. |δ({v}) ∩ C| < �d(v)

2 � from V1

to V2 (or the contrary). Moreover, if we iterated this process starting from a
random cut, we would converge in polynomial time time to a such a cut. Now
we define Λ ∈ −→

O (G) as follows. We begin by orienting all edges in C from V1

to V2. Then for any i ∈ {1, 2}, we orient the edges of the induced subgraph
G[Vi]. We add a new vertex v0 and an edge between v0 and each vertex with
an odd degree in G[Vi] if it isn’t eulerian and we consider a decomposition of
its edges into edge-disjoint cycles. we orient each of these cycles as a directed
cycle. Removing v0 if necessary, the imbalance of each vertex in G[Vi] is now
in {−1, 0, 1} which implies that ∀v ∈ V we have |d+Λ(v) − d−

Λ(v)| ≥ �d(v)
2 � − 1,

hence, MaxIm(G) ≥ � δG

2 � − 1. ��

On the Most Imbalanced Orientation of a Graph 27

Since the imbalance of the orientation defined in that proof is at least � δG
2 �−1

δG
·

MaxIm(G), we can derive a polynomial (12 − 1
δG

)-approximation algorithm. It is
also easy to see that when δG ≡ 0[4] then MaxIm(G) ≥ � δG

2 � while MaxIm(G) ≥
� δG+1

2 � when δG ≡ 1[4]. This leads to a (12)-approximation algorithm when either
δG ≡ 0[4] or δG ≡ 1[4].

3 Further Research

While computing the most imbalanced orientation of a graph is generally diffi-
cult, the problem turns out to be easy for cactus graphs. It may be the same for
other graph classes, characterizing such graph classes would be interesting.

We are currently looking for efficient mathematical programming formula-
tions to solve the problem for large size graphs. Details will follow in the extended
version of the paper. One can also study the weighted version of the problem.

Appendix A Proof of Lemma 5

Let ϕ be a not-all-equal at most 3-SAT formula with n variables {x1, · · · , xn}
and m clauses {c1, · · · , cm} and for all i ∈ �1, n�, let ki ∈ N be the number
of occurences of xi in ϕ. We assume that there is at least one variable xi that
has at least 4 occurences in ϕ (otherwise ϕ is already a not-all-equal at most
3-SAT(3V) formula) and we will build from ϕ a not-all-equal at most 3-SAT(3V)
ϕ′ such that ϕ and ϕ′ are equisatisfiable as follows.

• For all i ∈ �1, n�, if ki ≥ 4 then we introduce ki new variables {x1
i , · · · , xki

i }
and for l ∈ �1, ki� we replace the l-th occurence of xi in ϕ with xl

i.

• For all i ∈ �1, n�, if ki ≥ 4 then we add ki new clauses {c1xi
, · · · , cki

xi
} where

for l ∈ �1, ki − 1�, cl
xi

= (xl
i ∨ ¬xl+1

i) and cl
xi

= (xl
i ∨ ¬x1

i).

Suppose there exists an assignment v : {x1, · · · , xn} → {TRUE,FALSE} of
x1, · · · , xn satisfying ϕ. Then

v′ :
xi �→ v(xi) ∀i ∈ �1, n� s.t. ki ≤ 3;
xl

i �→ v(xi) ∀i ∈ �1, n� s.t. ki ≥ 4 and ∀l ∈ �1, ki�;

is an assignment of the variables xi and xl
i satisfying ϕ′ for

• ∀j ∈ �1,m�, the values of the literals of cj w.r.t. v and v′ are piecewise equal
so v′(cj) = v(cj) = TRUE and v′ is not-all-equal for cj as well as v is;

• ∀i ∈ �1, n� s.t. ki ≥ 4, ∀l ∈ �1, ki − 1�, v′(xl
i) = v′(xl+1

i) = v(xi) and
v′(xki

i) = v′(x1
i) = v(xi) so we directly have ∀l ∈ �1, ki −1�, v′(cl

xi
) = TRUE

and v′(cki
xi

) = TRUE and v′ is not-all-equal for each of these clauses since
they all consist of two literals having opposite values w.r.t. v′.

28 W. Ben-Ameur et al.

As an example, for a formula

ϕ = (x1∨¬x2∨x3)∧(¬x1∨¬x3∨x4)∧(x1∨¬x2)∧(¬x1∨¬x3∨¬x4)∧(x1∨x3),

where x1 occurs five times and x3 four so we add nine new variables x1
1, x2

1, x3
1,

x4
1, x5

1, x1
3, x2

3, x3
3 and x4

3 and nine new clauses:

ϕ′ =(x1
1 ∨ ¬x2 ∨ x1

3) ∧ (¬x2
1 ∨ ¬x2

3 ∨ x4) ∧ (x3
1 ∨ ¬x2) ∧ (¬x4

1 ∨ ¬x3
3 ∨ ¬x4) ∧ (x5

1 ∨ x4
3)

∧ (x1
1 ∨ ¬x2

1) ∧ (x2
1 ∨ ¬x3

1) ∧ (x3
1 ∨ ¬x4

1) ∧ (x4
1 ∨ ¬x5

1) ∧ (x5
1 ∨ ¬x1

1)

∧ (x1
3 ∨ ¬x2

3) ∧ (x2
3 ∨ ¬x3

3) ∧ (x3
3 ∨ ¬x4

3) ∧ (x4
3 ∨ ¬x1

3).

Now suppose there exists an assignment v′ of the xi and xl
i satisfying ϕ′ and

let i ∈ �1, n� such that ki ≥ 4. If we take a look at the clauses c1xi
, · · · , cki

xi
, we

notice that if v′(x1
i) = FALSE then for c1xi

to be satisfied, v′(¬x2
i) = TRUE, i.e.

v′(x2
i) = FALSE, then for c2xi

to be satisfied, v′(¬x3
i) = TRUE ...etc. Repeating

this argument, we obtain that if v′(x1
i) = FALSE then v′(x1

i) = v′(x2
i) = · · · =

v′(xki
i) = FALSE. Similarly, if v′(xki

i) = TRUE then for cki
xi

to be satisfied,
v′(¬xki−1

i) = FALSE, i.e. v′(xki−1
i) = TRUE, then for cki−1

xi
to be satisfied,

v′(¬xki−2
i) = FALSE ...etc. Hence if v′(xki

i) = TRUE then v′(xki
i) = v′(xki−1

i) =
· · · = v′(x1

i) = TRUE. This yields that

∀i ∈ �1, n� s.t. ki ≥ 4, v′(x1
i) = v′(x2

i) = · · · = v′(xki
i).

Hence for all i ∈ �1, n� such that ki ≥ 4, we can replace x1
i , · · · , xki

i by a
unique variable xi and doing so the clauses c1xi

, · · · , cki
xi

become trivial and can
be removed and only ϕ remains. So the following assignment of x1, · · · , xn:

v :
xi �→ v′(xi) ∀i ∈ �1, n� s.t. ki ≤ 3;
xi �→ v′(x1

i) ∀i ∈ �1, n� s.t. ki ≥ 4;

satisfies ϕ. We have just shown that ϕ and ϕ′ are equisatisfiable. ��

References

1. Asahiro, Y., Jansson, J., Miyano, E., Ono, H., Zenmyo, K.: Approximation algo-
rithms for the graph orientation minimizing the maximum weighted outdegree. In:
Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 167–177. Springer,
Heidelberg (2007)

2. Asahiro, Y., Miyano, E., Ono, H.: Graph classes and the complexity of the graph
orientation minimizing the maximum weighted outdegree. In: Proceedings of the
Fourteenth Computing: the Australasian Theory Symposium(CATS2008), Wollon-
gong, NSW, Australia (2008)

3. Asahiro, Y., Jansson, J., Miyano, E., Ono, H.: Degree-constrained graph orienta-
tion: maximum satisfaction and minimum violation. In: Kaklamanis, C., Pruhs, K.
(eds.) WAOA 2013. LNCS, vol. 8447, pp. 24–36. Springer, Heidelberg (2014)

4. Bang-Jensen, J., Gutin, G.: Orientations of graphs and digraphs in Digraphs: The-
ory, Algorithms and applications, 2nd edition, pp. 417–472. Springer (2009)

On the Most Imbalanced Orientation of a Graph 29

5. Biedl, T., Chan, T., Ganjali, Y., Hajiaghayi, M., Wood, D.R.: Balanced vertex-
orderings of graphs. Discrete Applied Mathematics 48(1), 27–48 (2005)

6. Chrobak, M., Eppstein, D.: Planar orientations with low out-degree and com-
paction of adjacency matrices. Theoretical Computer Sciences 86, 243–266 (1991)

7. Chung, F., Garey, M., Tarjan, R.: Strongly connected orientations of mixed multi-
graphs. Networks 15, 477–484 (1985)

8. Chvátal, V., Thomassen, C.: Distances in orientation of graphs. Journal of Com-
binatorial Theory, Series B 24, 61–75 (1978)

9. Diestel, R.: Graph Theory, 4th edn. Springer (2010)
10. Fomin, F., Matamala, M., Rapaport, I.: Complexity of approximating the oriented

diameter of chordal graphs. Journal of Graph Theory 45(4), 255–269 (2004)
11. Ford, L.R., Fulkerson, D.R.: Flows in networks. Princeton University Press, Prince-

ton (1962)
12. Frank, A., Gyárfás, A.: How to orient the edges of a graph? Colloquia Mathematica

Societatis János Bolyai 18, 353–364 (1976)
13. Harary, F., Krarup, J., Schwenk, A.: Graphs suppressible to an edge. Canadian

Mathematical Bulletin 15, 201–204 (1971)
14. Kára, J., Kratochv́ıl, J., Wood, D.R.: On the complexity of the balanced ver-

tex ordering problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595,
pp. 849–858. Springer, Heidelberg (2005)

15. Landau, H.G.: On dominance relations and the structure of animal societies III.
the condition for a score structure. The Bulletin of Mathematical Biophysics 15,
143–148 (1953)

16. Mubayi, D., Will, T.G., West, D.B.: Realizing Degree Imbalances in Directed
Graphs. Discrete Mathematics 239(173), 147–153 (2001)

17. Nash-Williams, C.: On orientations, connectivity and odd vertex pairings in finite
graphs. Canadian Journal of Mathematics 12, 555–567 (1960)

18. Robbins, H.: A theorem on graphs with an application to a problem of traffic
control. American Mathematical Monthly 46, 281–283 (1939)

19. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the
10th Annual ACM Symposium on Theory of Computing, pp. 216–226 (1978)

Cheeger Inequalities for General Edge-Weighted
Directed Graphs

T.-H. Hubert Chan, Zhihao Gavin Tang, and Chenzi Zhang(B)

The University of Hong Kong, Hong Kong, China
{hubert,zhtang,czzhang}@cs.hku.hk

Abstract. We consider Cheeger Inequalities for general edge-weighted
directed graphs. Previously the directed case was considered by Chung
for a probability transition matrix corresponding to a strongly connected
graph with weights induced by a stationary distribution. An Eulerian
property of these special weights reduces these instances to the undi-
rected case, for which recent results on multi-way spectral partitioning
and higher-order Cheeger Inequalities can be applied.

We extend Chung’s approach to general directed graphs. In particular,
we obtain higher-order Cheeger Inequalities for the following scenarios:

(1) The underlying graph needs not be strongly connected.
(2) The weights can deviate (slightly) from a stationary distribution.

1 Introduction

There have been numerous works relating the expansion properties of an undi-
rected graph with the eigenvalues of its Laplacian [1,3,9]. Given an undirected
graph with non-negative edge weights, the weight of a vertex is the sum of the
weights of its incident edges. Then, the expansion ρ(S) of a subset S of vertices
is the ratio of the sum of the weights of edges having only one end-point in S to
the sum of the weights of vertices in S. The celebrated Cheeger’s Inequality [1,6]
relates the smallest expansion of a subset of vertices having at most half the sum
of vertex weights with the second smallest eigenvalue of the corresponding nor-
malized Laplacian. Recently, there have been extensions to the case where the
expansions of k disjoint subsets are related to the k-th smallest eigenvalue [13].

The notion of expansion can be extended to directed graphs, where the weight
of a vertex is the sum of the weights of its out-going edges. Then, the expan-
sion of a subset S is defined with respect to the sum of the weights of edges
going out of S. Chung [8] considered the special case for a probability transition
matrix whose non-zero entries correspond to the edges of a strongly connected
graph. The weights of the vertices are chosen according to the (unique) station-
ary distribution, and the weight of an edge is the probability mass going along
the edge under this stationary distribution. Under this specific choice of weights,
Chung has proved an analogous Cheeger’s Inequality [8] for directed graphs.

This research is partially funded by a grant from Hong Kong RGC under the contract
HKU17200214E.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 30–41, 2015.
DOI: 10.1007/978-3-319-21398-9 3

Cheeger Inequalities for General Edge-Weighted Directed Graphs 31

In this paper, we explore how this relationship between expansion and spec-
tral properties can be extended to more general cases for directed graphs. In
particular, we consider the following cases.
1. The directed graph is not strongly connected.
2. The weights of vertices deviate (slightly) from the stationary distribution.

As we shall explain, each of these cases violates the technical assumptions
that are used by Chung to derive the Cheeger Inequality for directed graphs.
We explore what expansion notions are relevant in these scenarios, and how to
define Laplacians whose eigenvalues can capture these notions.

1.1 Overview of Chung’s Approach [8]

All spectral arguments rely on some symmetric matrix, which has the desir-
able properties of having real eigenvalues and an orthonormal basis of eigenvec-
tors. For an undirected graph (with non-negative edge weights), its normalized
Laplacian is a symmetric matrix. To apply spectral analysis on directed graphs,
one should consider what the natural candidates for symmetric matrices should
be and whether they have any significance. We explain the importance of the
technical assumptions made by Chung in the analysis of the transition matrix
P associated with the random walk on some directed graph G(V,E).
(1) Choice of Weights. Suppose φφφ : V → R+ is a stationary distribution of
the transition matrix P. Then, the weights are chosen such that each vertex u
has weight φ(u), and each (directed) edge (u, v) has weight φ(u) · P (u, v), which
is the probability mass going from u to v in one step of the random walk starting
from distribution φφφ.

Suppose the starting vertex u of a random walk is chosen according to distri-
bution φφφ. The expansion of a subset S has the following meaning: conditioning
on the event that u is in S, it is the probability that the next step of the random
walk goes out of S.

This notion of expansion can be defined with respect to any distribution on
the vertex set V , but the edge weights induced by a stationary distribution has
the following Eulerian property: for any subset S of vertices, the sum of weights
of edges going out of S is the same as that of edges going into S.

Hence, one can consider the underlying undirected graph such that each
undirected edge has weight that is the average of those for the corresponding
directed edges in each direction. Then, because of the Eulerian property, for
any subset S, its expansion in the directed graph defined with respect to the
out-going edges is exactly the same as its expansion defined with respect to
the undirected graph (with edge weights defined above). Therefore, it suffices
to consider the normalized Laplacian of the undirected graph to analyze the
expansion properties of the directed graph.
(2) Irreducibility of Transition Matrix. This means that the underlying
directed graph with edges corresponding to transitions with non-zero probabili-
ties is strongly connected. Under this assumption, the stationary distribution is
unique, and every vertex has a positive mass.

If the directed graph is not strongly connected, a strongly connected compo-
nent is known as a sink if there is no edge going out of it. If there is more than

32 T.-H. Hubert Chan et al.

one sink, the stationary distribution is not unique. Moreover, under any sta-
tionary distribution, any vertex in a non-sink has probability mass zero. Hence,
Chung’s method essentially deletes all non-sinks before considering the expan-
sion properties of the remaining graph.

In this paper, we explore ways to consider expansion properties that involve
the non-sinks of a directed graph that is not strongly connected.

1.2 Our Contribution

The contribution of this paper is mainly conceptual, and offers an approach to
extend Chung’s spectral analysis of transition matrices to the scenarios when the
underlying directed graph is not strongly connected, or when the vertex weights
do not follow a stationary distribution. On a high level, our technique to handle
both issues is to add a new vertex to the graph and define additional transition
probabilities involving the new vertex such that the new underlying graph is
strongly connected, and the expansion properties for the old vertices are also
preserved in the new graph. Therefore, Chung’s technique can be applied after
the transformation. We outline our approaches and results as follows.
(1) Transition matrix whose directed graph is not necessarily strongly
connected. Given a transition matrix P corresponding to a random walk on a
graph G(V,E) and a subset S ⊆ V of vertices, we denote by P|S the submatrix
defined by restricting P only to the rows and the columns corresponding to S.

It is known [7] that the eigenvalues of P are the union of the eigenvalues of
P|C over all strongly connected components C in directed graph G. An impor-
tant observation is that as long as the strongly connected components and the
transition probabilities within a component remain the same, the eigenvalues of
P are independent of the transition probabilities between different strongly con-
nected components. This suggests that it might be difficult to use spectral prop-
erties to analyze expansion properties involving edges between different strongly
connected components.

Therefore, we propose that it makes sense to consider the expansion proper-
ties for each strongly connected component separately. If C is a sink (i.e., there
is no edge leaving C), then P|C itself is a probability transition matrix, for which
Chung’s approach can be applied by using the (unique) stationary distribution
on C.

However, if C is a non-sink, then there is no stationary distribution for P|C ,
because there is non-zero probability mass leaking out of C in every step of the
random walk. For the non-trivial case when |C| ≥ 2, by the Perron-Frobenius
Theorem [10], there exists some maximal eigenvalue λ > 0 with respect to the
complex norm, and unique (left) eigenvector φφφ with strictly positive coordinates
such that φφφTP|C = λφφφT. When φφφ is normalized such that all coordinates sum
to 1, we say that φφφ is the diluted stationary distribution of P|C . It is stationary in
the sense that if we start the random walk with distribution φφφ, then conditioning
on the event that the next step remains in C (which has probability λ), we have
the same distribution φφφ on C.

Hence, we can define the expansion of a subset S in C with respect to the
diluted stationary distribution φφφ. Given a vertex u ∈ C and a vertex v ∈ V

Cheeger Inequalities for General Edge-Weighted Directed Graphs 33

(that could be outside C), the weight of the edge (u, v) is φ(u) ·P (u, v). Observe
that the sum of weights of edges going out of u is φ(u). Hence, the expansion of
a subset S in C are due to edges leaving S that can either stay in or out of the
component C.

In order to analyze this notion of expansion using Chung’s approach, we
construct a strongly connected graph on the component C together with a new
vertex v0, which absorbs all the probabilities leaking out of C, and returns them
to C according to the diluted stationary distribution φφφ. This defines a probabil-
ity transition matrix P̂ on the new graph that is strongly connected with various
nice properties. For instance, P̂ has 1 as the maximal eigenvalue with the corre-
sponding left eigenvector formed from the diluted stationary distribution φφφ by
appending an extra coordinate corresponding to the new vertex with value 1−λ.

One interesting technical result (Lemma 1) is that the new transition matrix
P̂ preserves the spectral properties of P|C in the sense that the eigenvalues of
P̂ can be obtained by removing λ from the multi-set of eigenvalues of P|C and
including 1 and λ − 1. In other words, other than the removal of λ and the
inclusion of 1 and λ − 1, all other eigenvalues are preserved, even up to their
algebraic and geometric multiplicities.

Hence, we can use Chung’s approach to define a symmetric Laplacian for P̂,
and use the recent results from Lee et al. [13] on higher-order Cheeger Inequalities
to achieve an analogous result for a strongly connected component in a directed
graph. In particular, multi-way partition expansion is considered. For a subset
C of vertices, we denote:

ρk(C) := min{maxi∈[k] ρ(Si) : S1, S2, . . . , Sk are disjoint subsets of C}.

Theorem 1. Suppose C is a strongly connected component of size n associated
with some probability transition matrix, and the expansion ρ(S) of a subset S of
vertices within C is defined with respect to the diluted stationary distribution φφφ
as described above.

Then, one can define a Laplacian matrix with dimension (n + 1) × (n + 1)
having eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn+1 such that for 1 ≤ k ≤ n, we have

λk

2 ≤ ρk(C) ≤ O(k2) ·
√

λk+1.

(2) Vertex weights deviate from stationary distribution. Given a tran-
sition matrix P, recall that in Chung’s approach, the expansion is defined with
the careful choice of setting each vertex’s weight according to a stationary distri-
bution. We consider the case when the vertex weights φφφ : V → R+ can deviate
from a stationary distribution of P.

Suppose each vertex is assigned a positive weight according to φφφ. Then, the
following parameter measures how much φφφ deviates from a stationary distribu-
tion:

ε := 1 − min
u∈V

φ(u)
∑

v∈V φ(v) · P (v, u)
.

A smaller value of ε means that φφφ is closer to a stationary distribution. In
particular, if ε = 0, then φφφ is a stationary distribution.

Our idea is to first scale down all probabilities in P by a factor of (1 − ε).
We add a new vertex v0 to absorb the extra ε probability from each existing

34 T.-H. Hubert Chan et al.

vertex. Then, we define the transition probabilities from v0 to the original ver-
tices carefully such that each original vertex u receives the same weight φ(u)
after one step. In other words, we can append a new coordinate corresponding
to v0 to φφφ to obtain a stationary distribution φ̂φφ for the transition matrix P̂ of
the augmented random walk. Moreover, for each subset S ⊂ V of the original
vertices, the new expansion ρ̂(S) with respect to φ̂φφ and P̂ can be related to the
old expansion ρ(S) as follows: ρ̂(S) = (1 − ε) · ρ(S) + ε.

Therefore, we can apply Chung’s approach to P̂ and φ̂φφ to construct a symmet-
ric Laplacian matrix, whose eigenvalues are related to the expansion properties
using the results by Lee et al. [13].

Theorem 2. Suppose n vertices have positive weights defined by φ : V → R+,
and ε ≥ 0 is the parameter defined above. Then, there exists a symmetric Lapla-
cian matrix with dimension (n+1)×(n+1) and eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤
λn+1 such that for 1 ≤ k ≤ n, we have λk

2 ≤ (1−ε) ·ρk(V)+ε ≤ O(k2) ·
√

λk+1.

In the full version, we show that if we allow a self-loop at the new vertex v0
with negative weight, we can slightly improve the left hand side of the inequality
in Theorem 2.

1.3 Related Work

Since the Cheeger’s Inequality [6] was introduced in the context of Riemannian
geometry, analogous results have been achieved by Alon et al. [1,3] to relate the
expansion of an undirected graph with the smallest positive eigenvalue of the
associated Laplacian matrix. The reader is referred to the standard textbook by
Chung [9] on spectral graph theory for a more comprehensive introduction of
the subject.

As far as we know, the only previous attempt to apply spectral analysis
to directed graphs was by Chung [8], who reduced the special case of directed
instances induced by stationary distributions into undirected instances. On a
high level, our approach is to reduce general directed instances into instances
induced by stationary distributions.

Recently, for undirected instances, Lee et al. [13] extended Cheeger’s Inequal-
ity to relate higher order eigenvalues with multi-way spectral partition. This
result was further improved by Kwok et al. [12]. Since Chung’s approach [8]
made use of the Laplacian induced by an undirected instance, the higher order
Cheeger Inequalities can be directly applied to the cases considered by Chung.

The reader can refer to the survey on spectral partitioning by Shewchuck [15],
who also mentioned expansion optimization problems with negative edge
weights. Other applications of spectral analysis include graph coloring [2,4], web
search [5,11] clustering [14], image segmentation [16,17], etc.

2 Preliminaries

We consider a graph G(V,E) with non-negative edge weights w : E → R+. In
most cases, we consider directed graphs, but we will also use results for undirected
graphs. Note that a vertex might have a self-loop (even in an undirected graph).

Cheeger Inequalities for General Edge-Weighted Directed Graphs 35

For a subset S ⊆ V , ∂(S) is the set of edges leaving S in a directed graph,
whereas in an undirected graph, it includes those edges having exactly one end-
point in S (excluding self-loops). Given the edge weights, vertex weights are
defined as follows. For each u ∈ V , its weight w(u) is the sum of the weights of
its out-going edges (including its self-loop) in a directed graph, whereas in an
undirected graph, the edges incident on u are considered.

The expansion ρ(S) of a subset S (with respect to w) is defined as:

w(∂(S))
w(S)

=

∑
e∈∂(S) w(e)

∑
u∈S w(u)

.

In this paper, we use bold capital letters (such as A) to denote matrices and
bold small letters (such as φφφ) to denote column vectors. The transpose of a matrix
A is denoted as AT. For a positive integer n, In is the n × n identity matrix,
and 0n and 1n are the all zero’s and all one’s column vectors, respectively, of
dimension n, where the subscript n is omitted if the dimension is clear from
context.

Undirected Graphs. Suppose W is the symmetric matrix indicating the edge
weights w of an undirected graph of size n, and Φ is the diagonal matrix whose
diagonal entries correspond to the vertex weights induced by w as described
above. Then, the normalized Laplacian of W is L := In − Φ− 1

2 WΦ− 1
2 .

Multi-way partition expansion is considered in Lee et al. [13] by considering
the following parameter. For C ⊆ V and positive integer k, denote

ρk(C) := min{maxi∈[k] ρ(Si) : S1, S2, . . . , Sk are disjoint subsets of C}.
The following fact relates the eigenvalues of L with the multi-way partition

expansion with respect to W, which may contain self-loops.

Fact 1. (Higher Order Cheeger’s Inequality [13]) Given a symmetric matrix
W indicating the non-negative edge weights of an undirected graph, suppose its
normalized Laplacian L as defined above has eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤
λn. Then, for 1 ≤ k ≤ n, we have: λk

2 ≤ ρk(V) ≤ O(k2) ·
√

λk.

Chung’s Approach [8] to Transition Matrices. Given a probability tran-
sition matrix P (which is a square matrix with non-negative entries such that
every row sums to 1) corresponding to a random walk on vertex set V , and
non-negative vertex weight φφφ, one can define edge weights w : V × V → R+ as
w(u, v) := φ(u) ·P (u, v). (Observe that these edge weights induce vertex weights
that are consistent with φφφ.)

One interpretation of Chung’s approach is that the vertex weights φφφ are
chosen to be a stationary distribution of P, i.e., φφφTP = φφφT. Hence, the edge
weights w satisfy the following Eulerian property : for any subset S ⊆ V , we
have w(∂(S)) = w(∂(S)), where S := V \ S.

We can define edge weights ŵ for the (complete) undirected graph with vertex
set V such that for u 	= v, ŵ(u, v) = 1

2 (w(u, v) + w(v, u)), and each self-loop has
the same weight in ŵ and w.

Because of the Eulerian property of w, it is immediate that for all S ⊆ V ,
w(∂(S)) = ŵ(∂(S)), where ∂(S) is interpreted according to the directed case

36 T.-H. Hubert Chan et al.

on the left and to the undirected case on the right. Moreover, for all u ∈ V ,
w(u) = ŵ(u). Hence, as far as expansion is concerned, it is equivalent to consider
the undirected graph with edge weights given by the matrix Ŵ, for which the
(higher-order) Cheeger Inequalities (as in Fact 1) can be readily applied.

Chung’s approach can be applied to any stationary distribution φφφ of P, but
special attention is paid to the case when P is irreducible, i.e., the edges cor-
responding to non-zero transition probabilities form a strongly connected graph
on V . The advantages is that in this case, the stationary distribution is unique,
and every vertex has non-zero probability.

In Section 3, we consider how to extend Chung’s approach to the case where
the underlying directed is not strongly connected. In Section 4, we consider the
case when the edge weights φφφ deviate (slightly) from a stationary distribution.

3 Directed Graphs with Multiple Strongly Connected
Components

In a directed graph, we say that a strongly connected component C is a sink, if
there is no edge leaving C. Otherwise, we say that it is a non-sink.

Even if the underlying directed graph of a given transition matrix is not
strongly connected, Chung’s approach [8] can still be applied if one chooses the
vertex weights according to some stationary distribution.

However, under any stationary distribution, the weight on any vertex in
a non-sink component must be zero. If we consider expansion using weights
induced by a stationary distribution, essentially we are considering only the sink
components. In this section, we explore if there is any meaningful way to con-
sider expansion properties involving the non-sink components. As we shall see,
it makes sense to consider the expansion properties of each strongly connected
component separately.

3.1 Motivation for Considering Components Separately

Suppose P is a probability transition matrix corresponding to a random walk
on some direted graph G(V,E). Given a subset C ⊆ V , let P|C be the square
matrix restricting to the columns and the rows corresponding to C.

It is known [7, Theorem 3.22] that the eigenvalues of P are the union of the
eigenvalues of P|C over all strongly connected components C in a directed graph
G. An important observation is that as long as the strongly connected compo-
nents and the transition probabilities within a component remain the same, the
eigenvalues of P are independent of the transition probabilities between different
strongly connected components. For instance, the figure below depicts a directed
graph, where the edges are labeled with the transition probabilities. Observe that
each vertex is its own strongly connected component.

Cheeger Inequalities for General Edge-Weighted Directed Graphs 37

1

2 3

a 1− a

1
1

The transition matrix is:

P =

⎛

⎜
⎜
⎝

0 a 1 − a

0 0 1

0 0 1

⎞

⎟
⎟
⎠ ,

whose eigenvalues are {0, 0, 1}, which are independent of the parameter a. This
suggests that it might be difficult to use spectral properties to analyze expan-
sion properties involving edges between different strongly connected components.
Hence, we propose that the expansion of each connected component should be
analyzed separately.

3.2 Defining Expansion via Diluted Stationary Distribution

Observe that if a strongly connected component C is a sink, then the transition
matrix P|C has a stationary distribution, and we can apply Chung’s approach.
However, if C is a non-sink, then not every row of P|C sums to 1, and so P|C
has no stationary distribution.

However, since C is a strongly connected component, by the Perron-Frobenius
Theorem [10], P|C has a unique maximum eigenvalue λmax ≥ 0 with algebraic
and geometric multiplicity 1 such that every other eigenvalue (which might be
complex) has magnitude at most λmax. Moreover,the associated eigenvector of
λmax has positive coordinates and is unique up to scaling. Suppose φφφ is the
(left) eigenvector which is normalized such that the coordinates sum to 1, i.e.,∑

u∈V φ(u) = 1 and φφφTP|C = λmax φφφ. We say that φφφ is the diluted stationary
distribution of P|C , because the distribution on vertices in C is diluted by a
factor of λmax after one step of the random walk.

We use the diluted stationary distribution φφφ as vertex weights to define
expansion ρ(S) for S ⊆ C. Observe that the weight of edges leaving compo-
nent C also contributes to the expansion.

3.3 Augmenting Graph to Achieve Stationary Distribution

Suppose the component C has size n, and has λmax < 1. In order to use Chung’s
approach, we construct an augmented graph Ĝ consisting of the component C
and an extra vertex v0. For each u ∈ C, all the original probabilities leaking

38 T.-H. Hubert Chan et al.

out of C from u are now directed to v0. For the new vertex v0, the transition
probabilities from v0 to vertices in C are given by the diluted stationary dis-
tribution φφφ. Hence, the augmented graph Ĝ is strongly connected. We write
A = P|C ∈ R

n×n, and µ = 1n − A1n ∈ R
n. The new transition matrix is

B =

⎛

⎝
A µ

φφφT 0

⎞

⎠ ∈ R
(n+1)×(n+1).

Given a square matrix M, its determinant is denoted as |M|, and eig(M) is
the multi-set of its eigenvalues, which are roots of the polynomial |λI−M| in λ.
We first show that the matrix B preserves the spectral properties of A.

Lemma 1 (Spectral Preservation). We have eig(B) = eig(A) − {λmax} +
{1, λmax − 1}. Furthermore, if an eigenvalue λ ∈ eig(A) − {λmax, λmax − 1}, it
has the same geometric multiplicity in A and B.

Proof. To prove the first part, it suffices to show that for all λ ∈ R,∣
∣
∣λIn − A

∣
∣
∣ (λ − 1)(λ − (λmax − 1)) =

∣
∣
∣λIn+1 − B

∣
∣
∣ (λ − λmax),

because both sides are polynomials in λ of degree n + 2. Hence, they must be
equivalent polynomials if they are equal for more than n + 2 values of λ.

If λ = 1, then the right hand side is zero because B has eigenvalue 1; similarly,
if λ = λmax, the left hand side is zero because A has eigenvalue λmax.

For λ 	= 1, λmax, we have:

∣
∣
∣λIn+1 − B

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

λIn − A −µ

−φφφT λ

∣
∣
∣
∣
∣
∣
·

∣
∣
∣
∣
∣
∣

In 1n

0T
n 1

∣
∣
∣
∣
∣
∣

(1)

=

∣
∣
∣
∣
∣
∣

λIn − A (λ − 1)1n

−φφφT λ − 1

∣
∣
∣
∣
∣
∣

(2)

= (λ − 1)
∣
∣
∣λIn − A − (λ − 1)1n(λ − 1)−1(−φφφT)

∣
∣
∣ (3)

= (λ − 1)
∣
∣
∣λIn − A + 1nφφφT

∣
∣
∣ , (4)

where (1) follows because the second determinant is 1. Moreover, (2) follows from
|X| · |Y| = |XY|. Equation (3) follows from the identity that for invertible H,

∣
∣
∣
∣
∣
∣

E F

G H

∣
∣
∣
∣
∣
∣
= |H| · |E − FH−1G|.

Cheeger Inequalities for General Edge-Weighted Directed Graphs 39

Similarly, using |X| · |Y| = |XY| repeatedly, we have

∣
∣
∣λIn − A + 1nφφφT

∣
∣
∣ (λ − λmax) =

∣
∣
∣
∣
∣
∣

In −1n

0T
n 1

∣
∣
∣
∣
∣
∣
·

∣
∣
∣
∣
∣
∣

λIn − A + 1nφφφT 0n

φφφT λ − λmax

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

In 0n

−φφφT

λ−λmax
1

∣
∣
∣
∣
∣
∣
·

∣
∣
∣
∣
∣
∣

λIn − A −(λ − λmax)1n

φφφT λ − λmax

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

λIn − A −(λ − λmax)1n

0n λ − λmax + 1

∣
∣
∣
∣
∣
∣

=
∣
∣
∣λIn − A

∣
∣
∣ (λ − λmax + 1).

This completes the proof of the first part. To show that the geometry mul-
tiplicities of a common eigenvalue λ 	= λmax, λmax − 1 are equal, we show that
x ←→

(
x
0

)
is a bijection between A and B’s corresponding right eigenvectors.

Since λ 	= λmax is an eigenvalue of A, if x is a corresponding eigenvector,
then φφφTx = 0, because λmaxφφφ

Tx = φφφTAx = λφφφTx. Hence, B
(
x
0

)
= λ

(
x
0

)
.

Conversely, suppose
(
x
y

)
is an eigenvector of B with eigenvalue λ, where

x ∈ R
n and y ∈ R. We have

{
Ax + µy = λx
φφφTx = λy

or

{
(λI − A)x = µy

φφφTx = λy.

Then, φφφT(λI − A)x = (λ − λmax)φφφTx = (λ − λmax)λy.
But we also have φφφTµy = φφφT(1−A1)y = (1−λmax)y. Since the two quantities

are equal, this implies that λ = 1, λmax − 1 or y = 0. By assumption, λ 	=
1, λmax − 1, and so the only possibility is y = 0, then Ax = λx. This shows that
λ has the same geometric multiplicity in A and B.

3.4 Higher-Order Cheeger Inequalities for Component

Given a non-sink component C, we have described how to add an extra vertex
v0 to construct an augmented graph Ĝ with transition matrix B. Observe that
B has stationary distribution φ̂φφ = (φφφ, 1−λmax), where φφφ is the diluted stationary
distribution of A. Hence, it follows that for all S ⊆ C, the old expansion ρ(S) is
the same as the new expansion ρ̂(S) in the augmented graph.

Therefore, we can apply Chung’s approach [8] and the spectral analysis by Lee
et al. [13] to obtain the following lemma, which is a restatement of Theorem 1.

Lemma 2 (Cheeger Inequalities for Component C). Suppose Φ̂ is the
diagonal matrix whose diagonal entries are coordinates of the stationary distri-
bution φ̂φφ of B. Moreover, suppose the normalized Laplacian L of the symmetric
matrix 1

2 (Φ̂B + BTΦ̂) has eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn+1. Then, for all
1 ≤ k ≤ n, λk

2 ≤ ρk(C) ≤ O(k2) ·
√

λk+1.

40 T.-H. Hubert Chan et al.

Proof. We use the following inequality from [13]:
λk

2 ≤ ρ̂k(Ĝ) ≤ O(k2) ·
√

λk.
Observe that if S ⊆ C does not contain the new vertex v0, then S has the

same expansion ρ(S) = ρ̂(S) in both graphs.
From k + 1 disjoint subsets in the augmented graph Ĝ, we can get at least k

subsets of C by removing the one containing v0. Hence, we have
ρk(C) ≤ ρ̂k+1(Ĝ) ≤ O((k + 1)2)

√
λk+1.

On the other hand, k disjoint subsets in C are also disjoint in Ĝ. Therefore,
we have ρk(C) ≥ ρk(Ĝ) ≥ λk

2 , as required.

4 Vertex Weights Deviate from Stationary Distribution

In this section, we consider a transition matrix P whose underlying directed
graph G(V,E) (where n = |V |) is not necessarily strongly connected. Moreover,
each vertex has a positive weight given by a vector φφφ ∈ R

n that is not necessarily
a stationary distribution of P. We wish to analyze the expansion with respect to
P and φφφ using spectral techniques. As in Section 3, we shall add an extra vertex
v0 to form an augmented graph Ĝ.

We measure how much φφφ deviates from a stationary distribution by the fol-
lowing parameter:

ε := 1 − min
u∈V

φ(u)
∑

v∈V φ(v) · P (v, u)
.

A smaller value of ε means that φφφ is closer to a stationary distribution. In
particular, if ε = 0, then φφφ is a stationary distribution.

Our idea is to first scale down all probabilities in P by a factor of (1−ε). We
add a new vertex v0 to absorb the extra ε probability from each existing vertex.
Then, we define the transition probabilities from v0 to the original vertices care-
fully such that each original vertex u receives the same weight φ(u) after one
step.

For each vertex u, the weight mass it obtains from vertices V through the
scaled-down P is (1 − ε)

∑
v∈V φ(v)P (v, u). Hence, the new vertex v0 needs to

return mass weights to vertices in V given by the vector m := φφφ − (1 − ε)PTφφφ,
whose coordinates are non-negative by the choice of ε. Normalizing by mT1n =
εφφφT1n, we have the vector µ := m

εφφφT1n
of transition probabilities from v0 to

vertices in V .
The transition matrix of the augmented graph Ĝ is

P̂ =

⎛

⎝
(1 − ε)P ε1n

µT 0

⎞

⎠ .

Observe that Ĝ is strongly connected, and its stationary distribution can
be obtained by normalizing the vector φ̂φφ = (φφφ, εφφφT1n). In other words, we can
append a new coordinate corresponding to v0 to φφφ to obtain a left eigenvector
φ̂φφ with eigenvalue 1 for matrix P̂.

Cheeger Inequalities for General Edge-Weighted Directed Graphs 41

Moreover, for each subset S ⊆ V of the original vertices, the new expansion
ρ̂(S) with respect to φ̂φφ and P̂ can be related to the old expansion ρ(S) as follows:
ρ̂(S) = (1 − ε) · ρ(S) + ε.

Hence, we can apply Chung’s approach to P̂ and φ̂φφ to construct a symmetric
Laplacian matrix, whose eigenvalues are related to the expansion properties using
the results by Lee et al. [13]. The following lemma is a restatement of Theorem 2,
and its proof uses the same argument as in the proof of Lemma 2.

Lemma 3. Suppose Φ̂ is the diagonal matrix whose diagonal entries are coor-
dinates of φ̂φφ as defined above. Moreover, suppose the normalized Laplacian L of
the symmetric matrix 1

2 (Φ̂P̂+ P̂TΦ̂) has eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn+1.
Then, for all 1 ≤ k ≤ n, λk

2 ≤ (1 − ε) · ρk(V) + ε ≤ O(k2) ·
√

λk+1.

References

1. Alon, N.: Eigenvalues and expanders. Combinatorica 6(2), 83–96 (1986)
2. Alon, N., Kahale, N.: A spectral technique for coloring random 3-colorable graphs.

SIAM J. Comput. 26(6), 1733–1748 (1997)
3. Alon, N., Milman, V.D.: lambda, isoperimetric inequalities for graphs, and super-

concentrators. J. Comb. Theory, Ser. B 38(1), 73–88 (1985)
4. Aspvall, B., Gilbert, J.R.: Graph coloring using eigenvalue decomposition. SIAM

Journal on Algebraic Discrete. Methods 5(4), 526–538 (1984)
5. Brin, S., Page, L.: Reprint of: The anatomy of a large-scale hypertextual web search

engine. Computer Networks 56(18), 3825–3833 (2012)
6. Cheeger, J.: A lower bound for the smallest eigenvalue of the laplacian. Problems

in analysis 625, 195–199 (1970)
7. Chen, W.K., Lauwerier, H.A., Koiter, W.T.: Applied Graph Theory: Graphs and

Electrical Networks. North-Holland Series in Applied Mathematics and Mechanics.
Elsevier Science (2014)

8. Chung, F.: Laplacians and the cheeger inequality for directed graphs. Annals of
Combinatorics 9(1), 1–19 (2005)

9. Chung, F.R.K.: Spectral graph theory, vol. 92. American Mathematical Soc. (1997)
10. Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge University Press (1990)
11. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM

46(5), 604–632 (1999)
12. Kwok, T.C., Lau, L.C., Lee, Y.T., Gharan, S.O., Trevisan, L.: Improved cheeger’s

inequality: analysis of spectral partitioning algorithms through higher order spec-
tral gap. In: STOC, pp. 11–20 (2013)

13. Lee, J.R., Gharan, S.O., Trevisan, L.: Multiway spectral partitioning and higher-
order cheeger inequalities. J. ACM 61(6), 37 (2014)

14. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algo-
rithm. In: NIPS, pp. 849–856 (2001)

15. Shewchuk, J.R.: Ladies and gentlemen, allow me to introduce spectral and isoperi-
metric graph partitioning (2011)

16. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell. 22(8), 888–905 (2000)

17. Tolliver, D., Miller, G.L.: Graph partitioning by spectral rounding: applications
in image segmentation and clustering. In: IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 1053–1060 (2006)

Game Theory and Algorithms

Strategy-Proof Mechanism for Obnoxious
Facility Location on a Line

Deshi Ye1, Lili Mei1, and Yong Zhang2,3(B)

1 College of Computer Science, Zhejiang University, Hangzhou, China
{yedeshi,meilili}@zju.edu.cn

2 Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Beijing, China

zhangyong@siat.ac.cn
3 Department of Computer Science, The University of Hong Kong, Hong Kong, China

Abstract. In the problem of obnoxious facility location, an obnoxious
facility is located in an area. To maximize the social welfare, e.g., the
sum of distances from all the agents to the facility, we have to get the
true locations of each agent. However, each agent may misreport his/her
location to stay far away from the obnoxious facility. In this paper, we
design strategy-proof mechanisms on locating an obnoxious facility on a
real line. Two objective functions, i.e., maximizing the sum of squares
of distances (maxSOS) and maximizing the sum of distances (maxSum),
have been considered. For maxSOS, a randomized strategy-proof mecha-
nism with approximation ratio 5/3 is given, meanwhile the lower bound is
proved to be at least 1.042. The lower bound of any randomized strategy-
proof mechanisms w.r.t. maxSum is proved to be 1.077. Moreover, an
extended model that each agent controls multiple locations is considered.
For this model, we investigate deterministic and randomized strategy-
proof mechanisms w.r.t. maxSum and maxSOS objectives, respectively.
The deterministic mechanisms are shown to be tight for both objectives.

1 Introduction

We consider the problem of locating an obnoxious facility on a line, where a set
of agents are located. In the view of algorithmic mechanism design, the agent’s
locations are private information and each agent attempts to maximize his/her
utility, i.e., stay far away from the obnoxious facility, by misreporting his/her
location. Mechanisms receive the declaration of agents as input and determine
the location. Our target is to design strategy-proof (or truthful) mechanisms to
maximize social welfare, i.e., the sum of squares of distances (maxSOS) or the
sum of distances (maxSum).

In the classical facility location game, the utility of an agent is the distance
from his/her true location to the nearest facility if there are multiple facilities,

This work is supported by NSFC (No. 61433012, U1435215, 11171086) Natu-
ral Science Foundation of Hebei A2013201218, Shenzhen basic research project
(JCYJ20120615140531560), HKU small project funding 201309176064.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 45–56, 2015.
DOI: 10.1007/978-3-319-21398-9 4

46 D. Ye et al.

and each agent attempts to minimize his/her utility. In this work, we consider the
obnoxious facility location problem, in which each agent attempts to maximize
the utility, i.e., stay as far as possible from the facility. These problems arise in
many real applications, such as locating nuclear reactors, garbage dump sites,
ammunition dumps, and polluting plants in a community.

To measure the performance of the mechanisms for classical facility location
problem, the approximation ratio with respect to some given social objectives
has been considered. The approximation ratio is defined to be the worst-case
ratio between the mechanism’s objective value and the optimal solution. There
are mainly three objectives: minSum (minimizing the sum of agents’ utilities),
minMax (minimizing the maximum utility of agents), and minSOS (minimiz-
ing the sum of squares of agents’ utilities). Feldman and Wilf [2] pointed out
that the minSOS function is highly relevant in economic settings, the centroid
in geometry, or the center of mass in physics. Accordingly, for obnoxious facility
game, the social objectives are maxSum (maximizing the sum of agents’ utilities),
maxMin (maximizing the minimum utility of agents), and maxSOS (i.e., maxi-
mizing the sum of squares of agents’s utilities). Han and Du [4] mentioned that
for obnoxious facility game, any deterministic mechanisms for maxMin objective
are unbounded. Hence, in this paper, we only consider maxSum and maxSOS
two objectives. Observe that for obnoxious facility problem, if the number of
the facilities is more than one, locating all the facilities the same place is the
best choice. Due to the above reasons, in this work, we only consider the single
obnoxious facility game for maxSum and maxSOS objectives.

We then extend ourmodel to a setting that each agent can controlmultiple loca-
tions and only one facility can be located. Procaccia and Tennenholtz [5] gave an
example of real estate agents for the classical facility location game, which is also
suitable for the obnoxious version. There are some other scenarios for the extended
model. We can take one community or one company with many branches be an
agent. For the extended model, we also consider deterministic and randomized
strategy-proof mechanisms for maxSum and maxSOS objectives. And as noted by
Schummer and Vohra [16], payment is not available in many real scenarios, espe-
cially in the social choice literature. Hence, we focus on the mechanism design with-
out payment.

Related work. The classical setting of the facility location game is to minimize
the utility function of each agent, where the utility function is the distance
from agent’s true location to the facility location. One direction of studying
this setting is to investigate the characterizations of strategy-proof mechanisms.
Moulin [14] and Schummer et al. [15] provided characterizations of deterministic
strategy-proof mechanisms on line, tree, and cycle networks. Recently, Dokow
et al. [10] gave a full characterization of strategy-proof mechanisms on line and
on sufficiently large cycles on a discrete graph. Fotakis and Tzamos [11] gave
a characterization of deterministic strategy-proof mechanisms with a bounded
approximation ratio for 2-Facility on the line.

On the algorithmic view of the classical setting, Procaccia and Tennenholtz [5]
first studied strategy-proof mechanisms with provable approximation ratios on the

Strategy-Proof Mechanism for Obnoxious Facility Location on a Line 47

line for 1-Facility and 2-Facility forminSumandminMax objectives. Subsequently,
Lu et al. [6,7] improved some results for 2-Facility on a line and circle under the
minSum objective. Alon et al. [8] provided the approximation ratios achievable
by randomized and deterministic mechanisms for 1-Facility in circle and general
metrics under the minMax objective. Feldman and Wilf [2] studied the approx-
imation ratios for randomized and deterministic mechanisms under the minSOS
objective ona line.The extendedmodelwithmultiple locationsper agentwas inves-
tigated in [5,7] for locatingone facility ona line forminSumandminMaxobjectives.
Thang [12], Fotakis and Tzamos [21] studied the k-Facility location problem.

For the setting of obnoxious facility game, the mechanism design with
the social objective maxSum was first studied by Cheng et al. [1]. They pre-
sented a 3-approximation group strategy-proof deterministic mechanism and a
lower bound of 2. They designed a randomized strategy-proof mechanism with
3/2-approximation. They also extended the work to tree and circle networks.
Furthermore, for the general network, they proposed a 4-approximation group
strategy-proof (GSP) deterministic mechanism and a 2-approximation group
strategy-proof randomized mechanism, respectively.

On the direction of characterizing the mechanisms, Ibara and Nagamochi [3]
first studied the characterization of deterministic strategy-proof mechanisms for
obnoxious facility location game. In their paper, they showed there is no strategy-
proof mechanism such that the number of candidates (locations output by the
mechanism for some reported locations) is more than two. Then they character-
ized (group) strategy-proof mechanisms for two candidates in the general met-
ric, in which a 4-approximation group strategy-proof mechanism in any metric
was proposed. Recently, Han and Du [4] also investigated the characterization
of deterministic strategy-proof mechanisms for the single-sinked policy domain.
Moreover, they showed that any deterministic group strategy-proof mechanisms
on the line have approximation ratio at least (1 + 2p)

1
p if the social objective

function is Lp-norm, which implies lower bounds of 3 and 5 for maxSum and
maxSOS objectives, respectively. Note that the lower bound of 3 is tight with
the upper bound given in [1].

Our Contributions. In this paper, we provide approximation results for obnox-
ious facility game with respect to maxSum and maxSOS objectives on the line.
We provide, for any randomized strategy-proof mechanisms, the lower bounds
are 1.077 and 1.042 with respect to maxSum and maxSOS objective. We provide
a strategy-proof randomized mechanism with approximation ratio 5/3.

We then extend the model such that each agent controls multiple locations.
The utility of an agent is the sum of the distances from this agent’s locations
to the facility. For maxSum objective, we provide a deterministic strategy-proof
mechanism with approximation ratio 3, which is tight with the lower bound [4].
In the case of randomized strategy-proof mechanism, we show a lower bound 10/9
and an upper bound 2. For maxSOS objective, the deterministic strategy-proof
mechanism is 5 ,which matches the lower bound of 5 in [4]. For the randomized
strategy-proof mechanisms, we show a lower bound of 1.13 and an upper bound
of 4. A summary of our results are illustrated in Table 1.

48 D. Ye et al.

Table 1. A summary of our results. UB and LB stands for upper bound and lower
bound, respectively. SP and GSP represent strategy-proof and group strategy-proof,
respectively. MultiLA stands for the model with multiple locations per agent.

Model Deterministic Randomized
maxSum UB: 3 GSP [1] LB: 3 GSP [4] UB: 3/2 [1] LB: 1.077 SP
maxSOS UB: 5 GSP [4] LB: 5 GSP [4] UB: 5/3 GSP LB: 1.042 SP

MultiLA: maxSum UB: 3 GSP LB: 3 SP [4] UB: 2 SP LB: 10/9 SP
MultiLA: maxSOS UB: 5 GSP LB: 5 GSP [4] UB: 4 SP LB: 1.13 SP

2 Model and Preliminaries

The possible location area G is represented by a line. For obnoxious facility
location problem, locating the facility at the infinity is the optimal location.
Hence, we restrict the line to a closed interval. For simplicity, suppose G is
within the interval [0, 2], i.e., G = [0, 2]. Let N = {1, 2, . . . , n} be a set of agents.
Each agent i has an true location xi ∈ G. We refer to x = (x1, x2, . . . , xn) ∈ Gn

as the location profile.
The utility of agent i is the distance from xi to the facility. Each agent

attempts to maximize his/her utility. The social welfare is maxSOS (the sum of
squares of agents’ utilities) or maxSum (the sum of agents’ utilities). The goal
of a mechanism is to provide a strategy-proof (or truthful) mechanism with the
maximum social welfare.

A deterministic mechanism is a function f : Gn → G that maps the reported
location profile to the location of a facility (which can be located anywhere in
G). When the facility is located at y ∈ G, the utility of agent i is simply the
distance between xi and y, i.e., D(y, xi) = |y − xi|, for all i ∈ N .

A randomized mechanism is a function f : Gn → ΔG that maps the reported
location profile to a probability distribution over G. If f(x) = P , where P is a
probability distribution, agent i’s utility is defined to be the expected distance
between xi and y, i.e., D(P, xi) = Ey∼P [|y − xi|], for all i ∈ N .

A mechanism is strategy-proof if no agent can strictly increase his/her utility
by misreporting the location, regardless of the declarations of other agents. For-
mally, given a location profile x ∈ Gn, and for all x′

i, we have D(f(xi, x−i), xi) ≥
D(f(x′

i, x−i), xi), where x−i = (x1, . . . , xi−1, xi+1, . . . , xn) is the location profile
excluding agent i.

A mechanism is said to be group strategy-proof (GSP) if no any set of agents
can all benefit by misreporting their locations, regardless of the reports of the
other agents. That is, given any location profile x = (xS , x−S) for any non-empty
subset of agents S ⊆ N and the misreported location x′

S , there exists i ∈ S such
that D(f(x), xi) ≥ D(f(x′

S , x−S), xi).
Given a location profile x and the facility location y by a mechanism, the

social welfare of the mechanism is defined by SC(y, x). If the social objective
function is maxSum, then SC(y, x) =

∑
i∈N D(y, xi) =

∑
i∈N |y − xi|. If the

social objective function is maxSOS, then SC(y, x) =
∑

i∈N (y −xi)2. Moreover,
the social welfare of a distribution P of profile x is SC(P, x) = Ey∼P [SC(y, x)].

Strategy-Proof Mechanism for Obnoxious Facility Location on a Line 49

We denote SC(opt, x) to be the optimal social welfare with respect to the
location profile x, i.e., SC(opt, x) = maxy{SC(y, x)}. A mechanism f is said to
be ρ-approximation if SC(opt, x) ≤ ρ · SC(f(x), x) for any location profile x.

Cheng et al. [1] pointed out that an optimal facility location will be at one of
two extreme points 0 or 2 for the maxSum objective. In the following, we show
that the property also holds for maxSOS objective.

Proposition 1. Given a location profile x, at least one of 0 and 2 is an optimal
location for maxSOS objective.

Proof. Given a location profile x, suppose that the optimal facility location is at
y, where xk ≤ y < xk+1. If necessary, we add x0 (or xn+1) if y is located between
0 and x1 (or xn and 2). In the following, we show that if y is not located at 0
or 2, then we can move the facility to 0 or 2, the social welfare is not decreased,
which therefore the proposition follows.

The social welfare of location y given the profile x is

SC(opt, x) =
k∑

i=1

(y − xi)2 +
n∑

i=k+1

(xi − y)2.

If k ≤ n/2, let us consider the location at 0, otherwise the location is at 2.
Due to the the symmetric, without loss of generality, we only consider the case
when k ≤ n/2.

The social welfare of location 0 is

SC(0, x) =
k∑

i=1

(xi)2 +
n∑

i=k+1

(xi)2

=
k∑

i=1

(y − xi − y)2 +
n∑

i=k+1

(xi − y + y)2

≥ SC(opt, x) − 2
k∑

i=1

y2 +
k∑

i=1

y2 +
n∑

i=k+1

y2

≥ SC(opt, x).

��
To design strategy-proof mechanisms, we need the following notations in the

remaining paper. Let n1 = |{i : 0 ≤ xi ≤ 1}| be the number of agents whose
declarations are in the interval [0, 1]. Let n2 = |{i : 1 < xi ≤ 2}| be the number
of agents whose declarations are in the interval (1, 2].

A deterministic strategy-proof mechanism was provided in [1] as below.

Mechanism 1: Set f(x) = 0 if n1 ≤ n2 and otherwise f(x) = 2.

Mechanism 1 was proved to be strategy-proof in [1]. Han and Du [4] showed
that Mechanism 1 achieves 5-approximation for maxSOS objective and the
approximation ratio is the best possible.

50 D. Ye et al.

3 Randomized Strategy-Proof Mechanisms

In this section, we study randomized strategy-proof mechanisms with respect
to maxSOS objective function. We first show a family of group strategy-proof
mechanisms with respect to n1, the number of agents whose reported locations
are within the interval [0, 1].

Mechanism RM: For any given profile x, the mechanism places the facility at
0 with probability α, and places the facility at 2 with probability 1 − α, where
0 ≤ α ≤ 1 is a number that depends on x.

Lemma 1. The mechanism RM is group strategy-proof if α is a non-increasing
function on n1. (The proof can be found in the full version of the paper.)

Theorem 2. Let α = 4n1n2+n2
2

8n1n2+n2
1+n2

2
. Mechanism RM is group strategy-proof and

its approximation ratio is at most 5/3 for maxSOS objective.

Proof. Let β = n1
n2

= n1
n−n1

. Then α = 1+4β
1+8β+β2 . It is easy to check that α is a

non-increasing function on β and then a a non-increasing function on n1. The
group strategy-proof holds due to Lemma 1.

Let us consider the approximation ratio. To state conveniently, we let f
denote Mechanism RM. For any given location profile x = (x1, x2, . . . , xn), the
social welfare of Mechanism RM is

SC(f(x), x) = α

n∑

i=1

x2
i + (1 − α)

n∑

i=1

(2 − xi)2.

From Proposition 1, the optimal facility location is either at 0 or 2. We
estimate the following upper bounds for optimal social welfare.

n∑

i=1

x2
i =

∑

xi∈[0,1)

x2
i +

∑

xi∈[1,2]

x2
i ≤ n1 + 4n2 (1)

n∑

i=1

(2 − xi)2 =
∑

xi∈[0,1)

(2 − xi)2 +
∑

xi∈[1,2]

(2 − xi)2 ≤ 4n1 + n2 (2)

We deal with two cases with respect to the optimal location.
Case 1. The optimal location is at 0, i.e., SC(opt, x) =

∑n
i=1 x2

i . The social
welfare of mechanism RM is

SC(f(x), x) = αSC(opt, x) + (1 − α)(
∑

xi∈[0,1)

(2 − xi)2 +
∑

xi∈[1,2]

(2 − xi)2)

≥ αSC(opt, x) + (1 − α)n1

≥ αSC(opt, x) + (1 − α)
n1

n1 + 4n2
SC(opt, x) (3)

Inequality (3) holds due to the inequality (1).

Strategy-Proof Mechanism for Obnoxious Facility Location on a Line 51

Case 2. The optimal location is at 2, i.e., SC(opt, x) =
∑n

i=1(2 − xi)2. The
social welfare of mechanism RM is

SC(f(x), x) = α(
∑

xi∈[0,1)

x2
i +

∑

xi∈[1,2]

x2
i) + (1 − α)

n∑

i=1

(2 − xi)2

≥ αn2 + (1 − α)SC(opt, x)

≥ α
n2

n1 + 4n2
SC(opt, x) + (1 − α)SC(opt, x), (4)

Inequality (4) holds due to the inequality (2).
From Inequality (3) and Inequality (4), we obtain the approximation ratio ρ

as below.

ρ ≤ max{ 1
α + (1 − α)n1/(n1 + 4n2)

,
1

αn2/(4n1 + n2) + (1 − α)
} (5)

The above approximation ρ reaches the maximum when α = 4n1n2+n2
2

8n1n2+n2
1+n2

2
.

Let β = n1/n2. Then ρ = 1+8β+β2

1+4β+β2 , and ρ reaches its maximum 5/3 if β = 1. ��

3.1 Lower Bounds of Randomized Mechanisms

In this subsection, we first show that no randomized strategy-proof mechanism
can achieve approximation ratio smaller than 1.077 for maxSum objective. Then,
we extend the idea for designing a lower bound 1.04285 for any randomized
mechanisms with respect to maxSOS objective.

Theorem 3. The approximation ratio of any randomized strategy-proof mecha-
nisms for maxSum objective is at least 14/13 ≈ 1.077.

Proof. Consider two agents with a location profile x = (1/3, 5/3). Then
SC(opt, x) = 2. Let y be the facility location determined by a randomized mech-
anism.

We assume there exists a strategy-proof randomized mechanism with approx-
imation ratio ρ < 1.077. It is worth to note that SC(y, x) = E[|y − 1/3| + |y −
5/3|] ≤ 2. Without loss of generality, we assume E[|y − 5/3|] ≤ 1.

Let us consider a new profile x′ = (1/3, 2), where agent 2 misreports its
location to 2 other than 5/3. Let y′ be the facility location of profile x′. Due to
the strategy-proofness, then we obtain E[|y′ − 5/3|] ≤ E[|y − 5/3|] ≤ 1.

Denote Pr[y′ < 1/3] = q. To state simply, we let E2,l be E[|y′ − 5/3| : y′ <
1/3] and E2,r be E[|y′ −5/3| : y′ ≥ 1/3]. Since the utility is nonnegative and the
expected value is larger than the minimum value, we get that

4
3
q ≤ E[|y′ − 5/3|] = E2,l · q + E2,r · (1 − q) ≤ 1,

which therefore, q ≤ 3/4.

52 D. Ye et al.

In profile x′, the optimal location is at 0. Hence, we have SC(opt, x′) = 7/3.
Note that E[SC(y′, x′) : y′ ≥ 1/3] = 5/3. Hence, we get an upper bound of any
randomized mechanisms,

E[SC(y′, x′)] = E[SC(y′, x′) : y′ < 1/3]q + E[SC(y′, x′) : y′ ≥ 1/3](1 − q)

≤ 7
3
q +

5
3
(1 − q).

Then, the approximation ratio

ρ ≥ 7/3
7
3q + 5

3 (1 − q)
=

7
5 + 2q

≥ 14/13 ≈ 1.077. ��

Theorem 4. Any randomized strategy-proof mechanisms have an approxima-
tion ratio of at least 1.04285 for maxSOS objective.

Proof. Consider a location profile with two agents x = (x1, x2), where x1 =
1 − a, x2 = 1 + a and 0 < a ≤ 1 is a constant that will be specified later. Then
SC(opt, x) = (1 + a)2 + (1 − a)2 = 2(1 + a2).

Since E[(y − x1)2] + E[(y − x2)2] ≤ SC(opt, x), w.l.o.g, we assume that
E[|y − x2|2] ≤ (1 + a2). From Jensen’s inequality, we have (E[|y − x2|])2 ≤
E[|y − x2|2] ≤ (1 + a2), which gives E[|y − x2|] ≤

√
1 + a2.

Consider a new location profile x′ = (1−a, 2). Let y′ be the random variable
of the facility location on profile x′. Due to the strategy-proofness, we have

E[|y′ − x2|] ≤ E[|y − x2|] ≤
√

1 + a2, (6)

otherwise, agent 2 in profile x will lie to 2.
Let Pr[y′ < 1 − a] = q. Due to space constraints, we let E2,l be E[|y′ − x2| :

y′ < 1 − a] and E2,r be E[|y′ − x2| : y′ ≥ 1 − a]. From Inequality (6), we have

2aq ≤ E2,l · q ≤ E[|y′ − x2|] = E2,l · q + E2,r · (1 − q) ≤
√

1 + a2.

Thus, we get that q ≤
√
1+a2

2a .
It is worth to note that the optimal location of profile x′ is 0, which gives

the optimal social welfare SC(opt, x′) = 4 + (1 − a)2.
Now let us consider the social welfare for the profile x′. Due to space con-

straints, we let El be E[SC(y′, x′) : y′ < 1 − a] and Er be E[SC(y′, x′) :
y′ ≥ 1 − a]. We first consider the maximum value of social welfare if a facil-
ity 1 − a ≤ z ≤ 2 is located. We get that

SC(z, x′) = (z − (1 − a))2 + (2 − z)2 = 4 + (1 − a)2 + 2z2 − 2(3 − a)z
≤ 4 + (1 − a)2 + 4(a − 1) = SC(opt, x′) + 4(a − 1), (7)

where the last inequality holds since 1 − a ≤ z ≤ 2 and 0 < a ≤ 1.
Now we turn to the social welfare for the profile x′. The social welfare is

E[SC(y′, x′)] = El · q + Er · (1 − q)
≤ q · SC(opt, x′) + (1 − q) · (SC(opt, x′) + 4(a − 1))
= SC(opt, x′) + 4(1 − q)(a − 1),

Strategy-Proof Mechanism for Obnoxious Facility Location on a Line 53

where the inequality holds since El ≤ SC(opt, x′) and Inequality (7).
Due to 0 < a ≤ 1, and q ≤

√
1+a2

2a , it holds that

E[SC(y′, x′)] ≤ 4 + (1 − a)2 + 2(1 −
√

1 + a2

2a
)(2a − 2).

The approximation ratio of the randomized mechanism is

ρ ≥ 4 + (1 − a)2

E[SC(y′, x′)]
≥ 4 + (1 − a)2

4 + (1 − a)2 + 2(1 −
√
1+a2

2a)(2a − 2)
. (8)

The right side of Inequality (8) reaches the maximum when a = 0.758267, then
we finally get ρ ≥ 1.04285 by setting a = 0.758267. ��

4 Multiple Locations Per Agent

In this section, we consider an extended model that each agent controls multiple
locations. Let wi be the number of locations controlled by agent i ∈ N . The set
of locations by agent i is then xi = (xi1, xi2, . . . , xiwi

). The location profile is
now x = (x1, . . . , xk), and there are total n locations, i.e

∑k
i=1 wi = n.

As before, the utility of an agent i is the sum of utilities of each location, i.e.,
D(f(x), xi) =

∑wi

j=1 |f(x)−xij |. For simplicity, let
∑

i g(xi)p =
∑

i

∑wi

j=1 g(xij)p

for any p ≥ 1, and any function g. In the remaining paper, the function g usually
refers to g(xi) = xi or g(xi) = 2 − xi.

4.1 Deterministic Strategy-Proof Mechanisms for Multiple
Locations Per Agent

It is quite natural to consider Mechanism 1 for this model. However, Mechanism
1 is not strategy-proof.

Lemma 2. Mechanism 1 is not strategy-proof for the multiple locations per
agent. (The proof can be found in the full version of the paper.)

Mechanism 1 is not strategy-proof since n1 and n2 only represent the inde-
pendent locations without considering the agents. The reason motivates us to
consider the locations of an agent as an entirety. An agent is said to prefer 0 if
D(0, xi) ≥ D(2, xi).

Given profile x, let N1(x) be the set of agents who prefer 0 and N2(x) be the
set of agents who prefer 0. Hence, |N1(x)| is the number of agents who prefer 0
and |N2(x)| is the number of agents who prefer 2.

It is quite natural to consider the mechanism who locates the facility at 0 if
more agents prefer 0 than 2.

Mechanism MA:
For given location profile x, if |N1(x)| ≤ |N2(x)|, the mechanism returns location
2, otherwise places the facility at 0.

54 D. Ye et al.

Lemma 3. Mechanism MA is a group strategy-proof mechanism. (The proof
can be found in the full version of the paper.)

Theorem 5. Mechanism MA is a group strategy-proof mechanism, and its
approximation ratio is Θ(n) for maxSOS objective. (The proof can be found in
the full version of the paper.)

Similar as Theorem 5, we obtain that the lower bound of Mechanism MA
is 2n − 1 and the upper bound is at most 2n − 1. Thus, we have the following
Corollary.

Corollary 1. Mechanism MA is a group strategy-proof mechanism, and its
approximation ratio is Θ(n) for maxSum objective.

Though Mechanism MA is group strategy-proof, the approximation ratio
is not constant. To get better approximation ratio, we provide the following
mechanism.

Mechanism TMA:
For given location profile x, the mechanism places the facility at 0 if∑

i∈N1(x)
wi ≥

∑
i∈N2(x)

wi, otherwise the facility is allocated at 2.

Theorem 6. Mechanism TMA is a strategy-proof mechanism, and its approxi-
mation ratio is 3 for maxSum objective and 5 for maxSOS objective. (The proof
can be found in the full version of the paper.)

Remark: Han and Du [4] showed that the lower bounds of the general setting
where each agent only has one location are 3 and 5 for maxSum and maxSOS
objectives, respectively. The lower bounds are also valid for our models, and thus
our mechanism is tight for both objectives.

4.2 Randomized Strategy-Proof Mechanisms for Multiple Locations
Per Agent

In this subsection, we study randomized mechanisms for multiple locations per
agent model. We first consider the mechanism that choose only location 0 and
2 with positive probabilities. The mechanism is described as below.

Mechanism RMA:
Given a location profile x, the mechanism places the facility at 0 with probability∑

i∈N1(x)
wi/n and selects the facility at 2 with probability

∑
i∈N2(x)

wi/n.

Theorem 7. Mechanism RMA is a strategy-proof mechanism and its approx-
imation ratio is 4 for maxSOS objective. (The proof can be found in the full
version of the paper.)

Corollary 2. Mechanism RMA is a strategy-proof mechanism and its approx-
imation ratio is 2 for maxSum objective. (The proof can be found in the full
version of the paper.)

Strategy-Proof Mechanism for Obnoxious Facility Location on a Line 55

4.3 Lower Bounds of Randomized Mechanisms for Multiple
Locations Per Agent

The lower bounds of randomized mechanisms in Section 3 are still valid for this
general model. However, we can improve the lower bounds due to multiple loca-
tions of each agent. The techniques of designing lower bounds are also different
from Section 3.

Theorem 8. Any randomized strategy-proof mechanisms with multiple locations
per agent achieve an approximation ratio at least 10/9 for maxSum objective.
(The proof can be found in the full version of the paper.)

Theorem 9. The approximation ratio of any randomized strategy-proof mech-
anisms for multiple locations per agent are at least 1.13 for maxSOS objective.
(The proof can be found in the full version of the paper.)

5 Concluding Remarks

In this paper, we have studied strategy-proof mechanisms for different objective
functions of obnoxious facility location game on a real line. Both upper bounds
and lower bounds are provided for randomized mechanisms. Besides, we studied
an extended model that each agent controls multiple locations. The provided
deterministic mechanisms are the best possible.

There exist plentiful researches on facility location and obnoxious facility
location (e.g. surveys [18,19]). Tamir [20] considered k-maxMin and k-maxSum
obnoxious facility location problem on graph, and showed that the problem is
strongly NP-hard even the graph is a line. Berman and Drezner [17] studied
the obnoxious facility on a network to maximize the minimal distance. This
substantial work motivates us to investigate a lot of interesting work for future.
First, one may consider to extend our model to different networks, such as a
tree or a circle. Second, it is interesting to study two facilities or the general k
facilities location games.

References

1. Cheng, Y., Yu, W., Zhang, G.: Strategy-proof approximation mechanisms for an
obnoxious facility game on networks. Theoretical Computer Science 35(3), 513–526
(2011)

2. Feldman, M., Wilf, Y.: Strategyproof facility location and the least squares objec-
tive. In: Proceedings of the 14th ACM Conference on Electronic Commerce (EC
2013), pp. 873–890 (2013)

3. Ibara, K., Nagamochi, H.: Characterizing mechanisms in obnoxious facility game.
In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 301–311. Springer, Heidelberg
(2012)

4. Han, Q., Du, D.: Moneyless strategy-proof mechanism on single-sinked policy
domain: characterization and applications, Issue 2012, Part 8. Working paper series
(University of New Brunswick, Faculty of Business Administration)

56 D. Ye et al.

5. Procaccia, A.D., Tennenholtz, M.: Approximate mechanism design without money.
In: Proceedings of the 10th ACM conference on Electronic Commerce (EC 2009),
pp. 177–186 (2009)

6. Lu, P., Sun, X., Wang, Y., Zhu, Z.A.: Asymptotically optimal strategy-proof mech-
anisms for two-facility games. In: Proceedings of the 11th ACM conference on
Electronic Eommerce (EC 2010), pp. 315–324 (2010)

7. Lu, P., Wang, Y., Zhou, Y.: Tighter bounds for facility games. In: Leonardi, S.
(ed.) WINE 2009. LNCS, vol. 5929, pp. 137–148. Springer, Heidelberg (2009)

8. Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: Strategyproof approxi-
mation of the minimax on networks. Mathematics of Operations Research 35(5),
513–526 (2010)

9. Nissim, K., Smorodinsky, R., Tennenholtz, M.: Approximately optimal mechanism
design via differential privacy. In: Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference (ITCS 2012), pp. 203–213 (2012)

10. Dokow, E., Feldman, M., Meir, R., Nehama, I.: Mechanism design on discrete lines
and cycles. In: Proceedings of the 13th ACM Conference on Electronic Commerce
(EC 2012), pp. 423–440 (2012)

11. Fotakis, D., Tzamos, C.: On the power of deterministic mechanisms for facility
location games. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013, Part I. LNCS, vol. 7965, pp. 449–460. Springer, Heidelberg (2013)

12. Thang, N.K.: On (group) strategy-proof mechanisms without payment for facility
location games. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 531–538.
Springer, Heidelberg (2010)

13. Gibbard, A.: Manipulation of voting schemes: a general result. Econometrica: Jour-
nal of the Econometric Society, 587–601 (1973)

14. Moulin, H.: On strategy-proofness and single peakedness. Public Choice 35(4),
437–455 (1980)

15. Schummer, J., Vohra, R.V.: Strategy-proof location on a network. Journal of Eco-
nomic Theory 104(2), 405–428 (2002)

16. Schummer, J., Vohra, R.V.: Mechanism design without money. In: Algorithmic
Game Theory, chap. 10, pp. 243–299, Cambridge (2007)

17. Berman, O., Drezner, Z.: A note on the location of an obnoxious facility on a
network. European Journal of Operational Research 120(1), 215–217 (2000)

18. Erkut, E., Neuman, S.: Analytical models for locating undesirable facilities. Euro-
pean Journal of Operational Research 40(3), 275–291 (1989)

19. ReVelle, C., Eiselt, H.: Location analysis: A synthesis and survey. European Journal
of Operational Research 165(1), 1–19 (2005)

20. Tamir, A.: Obnoxious facility location on graphs. SIAM Journal on Discrete Math-
ematics 4(4), 550–567 (1991)

21. Fotakis, D., Tzamos, C.: Strategyproof facility location for concave cost functions.
In: Proceedings of the 14th ACM Conference on Electronic Commerce (EC 2013),
pp. 435–452 (2013)

Bin Packing Game with an Interest Matrix

Zhenbo Wang1, Xin Han2(B), György Dósa3, and Zsolt Tuza4,5

1 Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
zwang@math.tsinghua.edu.cn

2 Software School, Dalian University of Technology, Dalian 116620, China
hanxin.mail@gmail.com

3 Department of Mathematics, University of Pannonia, Veszprém 8200, Hungary
dosagy@almos.vein.hu

4 Department of Computer Science and Systems Technology,
University of Pannonia, Veszprém, Hungary

5 Alfréd Rényi Institute of Mathematics, Budapest, Hungary
tuza@dcs.uni-pannon.hu

Abstract. In this paper we study a game problem, called bin packing
game with an interest matrix, which is a generalization of all the cur-
rently known bin packing games. In this game, there are some items with
positive sizes and identical bins with unit capacity as in the classical bin
packing problem; additionally we are given an interest matrix with ratio-
nal entries, whose element aij stands for how much item i likes item j.
The payoff of item i is the sum of aij over all items j in the same bin
with item i, and each item wants to stay in a bin where it can fit and
its payoff is maximized. We find that if the matrix is symmetric, a pure
Nash Equilibrium always exists. However the PoA (Price of Anarchy)
may be very large, therefore we consider several special cases and give
bounds for PoA in them. We present some results for the asymmetric
case, too.

1 Introduction

In the bin packing problem, there are n items with positive rational sizes
{s1, s2, ..., sn}, where each item has size at most 1, and infinitely many bins
with unit capacity are available. The goal is to pack the items into a minimum
number of bins, so that in any bin Bk, the sum of the sizes of the items being
packed there (called level of the bin) does not exceed the capacity of the bin;
i.e., the quantity s(Bk) =

∑
i∈Bk

si is at most 1. There are many papers on this
topic; we refer to [2,3,6,7,9] for details.

The first bin packing game was introduced by Bilò [1]. Later another version
was proposed by Ma et al. [10], and recently a general version was developed by

Z. Wang—Partially supported by NSFC No. 11371216.
X. Han—Partially supported by NSFC(11101065), LJQ2012003, RGC(HKU716-
412E) and “the Fundamental Research Funds for the Central Universities”.
G. Dósa, Z. Tuza—Partially supported by TÁMOP-4.2.2.A-11/1/KONV-2012-0072.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 57–69, 2015.
DOI: 10.1007/978-3-319-21398-9 5

58 Z. Wang et al.

Dósa and Epstein [4]. We call these bin packing games (or models) as BPG1,
BPG2, and BPG3, respectively.

In case of the BPG1 model, the items in the same bin pay unit cost in total
for being in this bin. The items share the cost proportionally to their sizes: a
bigger item pays more, a smaller item pays less, i.e. an item with size si pays
si/s(Bk) for being in bin Bk.

In case of the BPG2 model, the cost of any bin is again unit, but the items of
any bin pay the same price for being in this bin, i.e. any item pays 1/k if there
are k items in the bin.

In case of model BPG3, each item i has two parameters si and ui, where si is
the size of the item (as usually), and a nonnegative weight ui is also specified for
item i. Then, for being in any one bin Bk, the items in Bk pay proportionally to
their weights rather than to their sizes or their cardinality; i.e., item i pays ui/Uk

cost for being in Bk, where Uk =
∑

i∈Bk
ui. This is a common generalization of

the two previous models BPG1 and BPG2, since if ui = si for any item, we get
model BPG1, or if ui = 1 for any item, we get model BPG2.

Generalized Bin Packing Game. We introduce a new type of bin packing
games. This new game is a common generalization of all the above three models,
thus we call it Generalized Bin Packing Game and abbreviate it as GBPG for
short.

The motivation of this new model is to express that people make their deci-
sions not only considering money or cost, but they often also take into account
how much they like a certain situation. Let us consider the next simple example:
There is a party where the people sit down at tables (tables = bins). Then a
person is interested not only in the cost of sitting at some table (and paying for
the food and drinks he will have), but would also like to enjoy the party, and
therefore chooses a table where he/she finds the people appealing.

Formally, an instance I = (A,S) of GBPG is given as follows. There are n
items with sizes S = {s1, s2, ..., sn}, where 0 < si ≤ 1, and an n × n rational
matrix A = [aij], called the interest matrix, is also given. The payoff of item i
is pi =

∑
j∈Bk

aij if i is packed into bin Bk. Each item wants to stay in a bin
where it can fit and its payoff is maximized. All bins are assumed to be identical
with unit capacity. In the discussion below we assume that all aij ≥ 0, although
some facts remain valid for negative values, too. (Some remarks of this kind will
be given.) We note that also aii is taken into account when defining the payoff
pi of item i.

A packing of the items is called a Nash Equilibrium [11], or NE for short,
if no item can improve its payoff by moving to another bin in which it can fit.
Moreover, if all the items are packed into the minimum number of bins, we call
this packing an optimum packing, and denote it by OPT . Without the danger
of confusion, we also use OPT and NE to denote the bins used by an OPT
packing and an NE packing, respectively.

Price of Anarchy (PoA). An often used metric in case of bin packing games
is the Price of Anarchy (PoA, for short); it measures how large a NE can be
compared to OPT , when the value of OPT gets large. More exactly,

Bin Packing Game with an Interest Matrix 59

PoA = lim
k→∞

sup
{

NE

OPT
| OPT = k

}

.

There are further metrics, too, such as price of stability (PoS), strong price
of anarchy, and so on; in this paper we deal only with PoA.

Previous Results. The bin packing game BPG1 was studied first by Bilò
in 2006 [1]. He proved that this game admits a NE, and that the PoA is in
the interval [1.6, 1.667]. Epstein and Kleiman [8] obtained stronger estimates,
proving that the PoA is in [1.6416, 1.6428].

For the BPG2 model it was proven that its PoA is at most 1.7. This result
got further improved in [5].

In case of model BPG3 [4], it was shown that many kinds of Nash equlibria
(NE, Strong NE, Strongly Pareto Optimal NE and Weakly Pareto Optimal NE)
exist. For the case of unit weights (which is equivalent to model BPG2), the PoA
is in [1.6966, 1.6994]; and for the weighted case, both of the lower and upper
bounds are 1.7. For other results, we refer to [5,13].

Our Contribution. When the interest matrix is symmetric, we prove that
there exists a NE for any instance. Generally, the value of PoA can be very
large, therefore we consider several specific types of the interest matrix [aij].
The results are listed in the following table, where si is the size of item i and ui

is the weight of item i. The bounds for max{si, sj} are quoted from [8], and the
lower bound in the last two columns is from [4].

aij = general max{si, sj} min{si, sj} max{ui, uj} ui + uj

PoA ∞ [1.6416, 1.6428] ∞ [1.6966, 1.723] [1.6966, 2]

Lastly we investigate the case of asymmetric matrices and find that a NE packing
does not exist for some instances. We give a sufficient condition to recognize this
situation of non-existing NE. On the other hand we give a sufficient condition
which guarantees that an asymmetric interest matrix can be converted to a
symmetric one.

2 Preliminaries

In this section, we first recall the definition of a classical algorithm for the bin
packing problem, and then prove that the game we study is a generalization of
all the known bin packing games.

First Fit for Bin Packing. For an input I of bin packing, let ALG(I) be
the number of bins used by algorithm ALG to pack this input, and let OPT (I)
denote an optimal solution. Algorithm First Fit (FF) is a classical algorithm,
which packs each item into the first bin where it fits. (If the item does not fit
into any opened bin, it is packed into a new bin.) First Ullmann [12] proved that

60 Z. Wang et al.

FF (I) ≤ 1.7 ·OPT (I)+3. Then, after several attempts to decrease the additive
constant, finally Dósa and Sgall [6] proved that FF (I) ≤ 1.7 · OPT (I), what
means that the absolute approximation ratio of FF is at most 1.7. In another
work, Dósa and Sgall [7] give a matching lower bound, thus these two papers
together prove that the bound 1.7 is tight.

Relation to the Earlier Models. The players in the games introduced earlier
wish to minimize their costs, while in our game the players wish to maximize their
payoff. In spite of this, the former bin packing game models can be considered
as special cases of Model GBPG, in the following way:

– BPG1 model: let aij = si · sj ; or aij = sj .
– BPG2 model: let aij = 1; or aij = si.
– BPG3 model: let aij = ui · uj ; or aij = uj .

We only prove this claim for the BPG1 model; the assertion for the other two
models can be shown in a similar way.

Lemma 1. If aij = si · sj, or if aij = sj, for all 1 ≤ i, j ≤ n, then our game
is equivalent to the BPG1 model in the sense that a NE for GBPG is also a NE
for BPG1, and vice versa.

Proof. Suppose aij = si ·sj , and an item i is packed into bin Bk. Then the payoff
of this item is pi =

∑
j∈Bk

(si · sj) = si · s(Bk). This item is intended to go into
another bin Bl, if the payoff of item i will be bigger there (and item i fits there).
This new payoff is p′

i =
∑

j∈Bl
(si ·sj)+s2i = si ·(s(Bl)+si). Thus the movement

is possible if and only if p′
i > pi, i.e. s(Bl)+ si > s(Bk). This is exactly the same

case (when the movement is possible) like the one in model BPG1. ��

3 The Symmetric Case

We prove that for any symmetric matrix A, there always exists a pure NE for
our model GBPG. We give the proof by using a potential function.

Theorem 1. If matrix A is symmetric, then GBPG always has an NE.

Proof. The high-level idea is to associate each feasible packing with a potential in
such a way that the potential function is upper-bounded by a value computable
from the input, and to prove that once an item moves from one bin to another,
the total potential strictly increases. If this property holds, then no previous
state can occur again, thus a NE surely exists because there are only a finite
number of different configurations (packings).

Recall that if item i is packed into bin Bk, then its payoff is pi =
∑

j∈Bk
aij .

Given an input I and a packing for I, we define a potential function as

P =
∑

i∈I

pi ≤ n2 max
i,j

{aij}.

Bin Packing Game with an Interest Matrix 61

Next we prove that if item i moves from bin Bk to bin Bh, then the value
of P increases. Before moving from bin Bk to bin Bh, let pj be the payoff of
item j and P =

∑
i∈I pi. After the movement, let p

′
j be the payoff of item j and

P
′
=

∑
i∈I p

′
i, and name bins Bk and Bh as B

′
k and B

′
h, respectively.

Observe that for item j which is not packed in bin Bk or Bh, its payoff does
not change. Then we have

P
′ − P =

∑

j∈B
′
k

p
′
j +

∑

j∈B
′
h

p
′
j −

∑

j∈Bk

pj −
∑

j∈Bh

pj

= (
∑

j∈B
′
h

p
′
j −

∑

j∈Bh

pj) + (
∑

j∈B
′
k

p
′
j −

∑

j∈Bk

pj)

= (p
′
i +

∑

j∈Bh

aji) − (pi +
∑

j∈B
′
k

aji)

= (p
′
i − pi) + (

∑

j∈Bh

aij −
∑

j∈B
′
k

aij) by aij = aji

= (p
′
i − pi) + (aii +

∑

j∈Bh

aij − aii −
∑

j∈B
′
k

aij)

= (p
′
i − pi) + (p

′
i − pi) = 2(p

′
i − pi) > 0.

For the convergence steps, if we set A a rational matrix, let Δ > 0 be the
minimal integer such that Δaij is integer for all components of A, and therefore
Δ(p

′
i−pi) ≥ 1, and the potential function will increase at least 2/Δ after a selfish

movement. After at most Δn2 maxi,j{aij/2} steps, we will have a NE. ��

Remark 1. One can observe that the above proof works even when matrix A
has zero or negative entries. A natural interpretation of this extension is that
aij is positive if person i likes person j, and is negative if i dislikes j.

Observation 1. For arbitrarily large real k there exists an interest matrix A,
for which the PoA is bigger than k, even if aij ∈ {0, 1} is required for all
1 ≤ i, j ≤ n.

Proof. Given any real k, let n be an integer such that n > k. There are n items
{1, 2, ..., n}, each with size ε ≤ 1/n. We pack the items into mutually distinct
bins. Let aii = 1 for every i, and aij = 0 for all i �= j. The actual packing is a
NE, whereas the optimal solution uses only one bin. ��

Recall that if all entries in the interest matrix A have the same value aij = 1,
the PoA is upper-bounded by 1.6994 [4]. However, we find that the PoA can be
very large even if almost all entries are aij = 1 and all the other elements satisfy
aij = 1 − ε where ε > 0 could be arbitrarily small.

62 Z. Wang et al.

Proposition 1. Given 0 < δ < 1/2, let k be an integer for which kδ > 1. Then
there is a matrix A with size n × n, where n = k4, in which aij = 1 for at least
(1−1/k) ·n2 different pairs (i, j), moreover aij = 1− δ for all the other entries,
and the PoA is at least k2.

The proof is left in the Appendix due to the page limitation.

3.1 Special Models

Now we give lower and upper estimates on PoA for several special cases of GBPG:
aij = max{si, sj}, aij = min{si, sj}, aij = max{ui, uj}, and aij = ui+uj , where
ui is the weight of item i, which may be different from si.

In the model aij = max{ui, uj}, where ui means something that how much
person or item i is important. So a special (and natural) case is, where the items
correspond to some persons, some of them are famous while the other are not
famous. If we assume that ui = 1 if any person i is famous, and ui = p < 1 other-
wise, we model the situation that people like to be in the presence of famous, or
important persons. Or, more generally, any person gets an “importance” index,
this is the ui value. Then, the happiness between two persons, i and j is defined
as aij = max{ui, uj}. Further more in the special model aij = max{si, sj}, the
bigger item can enforce his want to the smaller item. This is a typical situation
in many cases.

In order to explore the relationship between a matrix A and the corresponding
value of PoA, we begin with the settings aij = max{si, sj} and aij = min{si, sj}.
For the former we prove that the PoA is at most 1.7, and find that some earlier
results also remain valid for this model. But the latter is substantially different
as the PoA can be arbitrarily large.

Proposition 2. If aij = max{si, sj}, then PoA is at most 1.7.

Proof. Our key observation is as follows: For any bin in a given packing, the
payoff of the smallest item is the total size of items in the bin, and the payoff
of any other item in the bin is at least this value. Consider a NE with bins
B1, B2, ..., Bm. Assume that the bins are sorted such that s(B1) ≥ s(B2) ≥ ... ≥
s(Bm). We claim that no item in Bk fits into Bh for any h < k, i.e. the packing
can be viewed as a result of FF packing. Let i be the smallest item in Bk, and
suppose for a contradiction that it fits into Bh. In Bk, the payoff of item i is
pi = s(Bk), whereas the payoff of this item is at least s(Bh) + si > s(Bk) if it
moves to Bh; this contradicts the assumption that we are in a NE state. Thus
the claim follows. As we know that the asymptotic approximation ratio of FF
(and even the absolute approximation ratio of FF) is 1.7, we obtain that the
PoA in the current model is at most 1.7. ��

Remark 2. We find that using the methods in [1], one can get 1.6 ≤ PoA ≤
1.667; and using the methods in [8], one can further get 1.6416 ≤ PoA ≤ 1.6428.

Proposition 3. If aij = min{si, sj}, then PoA can be arbitrarily large.

The proof is left in the appendix.

Bin Packing Game with an Interest Matrix 63

Theorem 2. Assume that each item i is associated with two parameters, the
size si and the weight ui > 0. If aij = max{ui, uj}, then PoA is at most
31
18 < 1.723.

Proof. Let us consider an NE with bins B1, B2, ..., Bm. Given a bin Bj , let the
total weight and total size of the items in Bj be u(Bj) and s(Bj), respectively;
and let the number of items in Bj be |Bj |. Suppose that there are two bins, say
B1 and B2, such that s(B1)+ s(B2) ≤ 1. Assume without loss of generality that
u(B1) ≥ u(B2). Let i be the item with the smallest weight in B2. The payoff of
i is exactly u(B2), and it becomes at least u(B1)+ui > u(B2) if the item moves
to B1, contradicting the assumption that the packing is an NE. Consequently,
s(B1) + s(B2) > 1 holds for any two bins. Moreover, we have the following
properties.

1. If item i is packed into Bj , its payoff satisfies pi ≥ u(Bj) and equality holds
only if i has the minimum weight in Bj .

2. If item k has the smallest or second smallest weight in Bj , then pk <
u(Bj) + uk.

Now we divide the bins into four groups:

G1 = {Bj | 0 < s(Bj) ≤ 1/2}, G2 = {Bj | 1/2 < s(Bj) ≤ 2/3},

G3 = {Bj | 2/3 < s(Bj) ≤ 3/4}, G4 = {Bj | s(Bj) > 3/4}.

Claim 1. |G1| ≤ 1.
Proof: This follows from the fact that, as we have shown the beginning of the
argument, any two bins satisfy s(B1) + s(B2) > 1 in any NE. �

Define G1
2 = {Bj | Bj ∈ G2, |Bj | = 1}, G1

3 = {Bj | Bj ∈ G3, |Bj | = 1},

G2+
2 = {Bj | Bj ∈ G2, |Bj | ≥ 2}, G2+

3 = {Bj | Bj ∈ G3, |Bj | ≥ 2}.

Claim 2. The sole item in each bin of G1
2 ∪ G1

3 has a size larger than 1/2 (by
definition).

Claim 3. |G2+
2 | ≤ 1.

Proof: Suppose for a contradiction that at least two bins, say B1 and B2 belong to
G2+

2 ; assume without loss of generality that u(B1) ≥ u(B2). From the definition
of G2+

2 , we see that the item with the smallest weight or the second smallest
weight has a size at most 1

3 . Let item k be the item. If item k moves to bin B1,
then its payoff is at least u(B1)+uk ≥ u(B2)+uk > pk, where pk is the payoff of
item k in bin B2. So it is not difficult to see that the item in B2 has an incentive
to move to bin B1. Hence the assumption is false and |G2+

2 | ≤ 1. �

64 Z. Wang et al.

Claim 4. With the exception of at most one bin, in each bin of G2+
3 , both the

item with the minimum weight and the second minimum weight have size larger
than 1/4.
Proof: Consider any two bins of G2+

3 , say B1 and B2. Assume without loss of
generality that u(B1) ≥ u(B2). In B2, if any item i with the smallest or the
second smallest weight has a size at most 1

4 , then its payoff will get improved
from at most u(B2)+ui to at least u(B1)+ui, by Properties 1 and 2. Therefore
each of them has a size larger than 1/4. �

Now we can proceed further with the proof of the theorem. We have an upper
bound

NE = |G1| + |G1
2| + |G1

3| + |G2+
2 | + |G2+

3 | + |G4|
≤ 2 + |G1

2| + |G1
3| + |G2+

3 | + |G4|,

and a lower bound

OPT ≥ |G1
2| + |G1

3|
2

+
2|G2+

3 |
3

+
3|G4|

4
. (1)

The size of each item in the bins of G1
2∪G1

3 is larger than 1/2; let us call these
items big. Hence, there are |G1

2| + |G1
3| big items. In each bin of G2+

3 , except at
most one bin, there are at least two items with a size larger than 1/4 each; let
us call these items medium-sized items. Hence, there are at least 2(|G2+

3 | − 1)
medium-sized items. Note that no two big items can be packed into the same
bin, therefore

OPT ≥ |G1
2| + |G1

3|. (2)

Case 1. |G1
2| + |G1

3| ≥ 2(|G2+
3 | − 1). Then we also have

OPT ≥ 2|G2+
3 | − 2. (3)

We multiply the inequalities (1), (2), (3) by 24
18 , 6

18 , and 1
18 , respectively. Adding

them we obtain
31
18

OPT ≥ |G1
2| + |G1

3| + |G2+
3 | + |G4| − 1/9,

thus

NE ≤ |G1
2| + |G1

3| + |G2+
3 | + |G4| + 2 ≤ 31

18
OPT +

19
9

< 1.723 · OPT + 2.12.

Case 2. |G1
2| + |G1

3| < 2(|G2+
3 | − 1). Now, in any feasible packing, at most one

medium-sized item can be packed with a big item into the same bin, and the
remaining medium-sized items need at least 2(|G2+

3 |−1)−|G1
2|−|G1

3|
3 bins. Therefore,

OPT ≥ |G1
2| + |G1

3| +
2(|G2+

3 | − 1) − |G1
2| − |G1

3|
3

=
2(|G1

2| + |G1
3|)

3
| +

2|G2+
3 | − 2
3

. (4)

Bin Packing Game with an Interest Matrix 65

Now we multiply the inequalities (1), (2), and (4) by 24
18 , 4

18 , and 3
18 , respec-

tively. Adding them we obtain

31
18

OPT ≥ |G1
2| + |G1

3| + |G2+
3 | + |G4| − 1/9,

therefore we also have NE ≤ 31
18OPT + 19

9 < 1.723OPT + 2.12. ��
Proposition 4. Assume that aij = ui+uj, where ui > 0 is the weight of item i.
Then PoA is at most 2.

Proof. It suffices to show that the average level of bins in any NE is larger than
1/2. In fact, the average is this large already for any two bins. Indeed, consider
an NE, and assume for a contradiction that there are two bins, say B1 and
B2, such that their total level is at most 1. Let u(B1) and u(B2) be defined as
u(B1) =

∑
j∈B1

uj and u(B2) =
∑

j∈B2
uj , respectively; we assume without loss

of generality that u(B1) ≥ u(B2). Let l and k be the numbers of items in B1

and B2, respectively. Suppose first that l ≥ k, and let i be an arbitrary item in
B2. We claim that i would like to move to B1. The actual payoff for item i is

pi =
∑

j∈B2

aij =
∑

j∈B2

(ui + uj) = k · ui + u(B2).

If i moves to bin B1, its payoff will be there

p′
i =

∑

j∈B1

aij + aii =
∑

j∈B1

(ui + uj) + 2ui = (l + 2) · ui + u(B1),

which is bigger than pi, thus the claim is verified. This contradicts the assumption
that the packing is a NE, therefore we must have l < k. Let i be the item in B1

for which ui is the biggest, and j be the item in B2, for which uj is the smallest.
Then

ui ≥ u(B1)/l ≥ u(B2)/l > u(B2)/k ≥ uj . (5)

If we move i from B1 to B2, its payoff changes by

c1 = pi
′ − pi = (k · ui + u(B2) + 2ui) − (l · ui + u(B1))

= (k + 2 − l)ui + u(B2) − u(B1);

and if we move j from B2 to B1, its payoff changes by

c2 = pj
′ − pj = (l · uj + u(B1) + 2uj) − (k · uj + u(B2))

= (l + 2 − k)uj + u(B1) − u(B2).

Moreover, from (5) we have

c1 + c2 = 2(ui + uj) + (k − l)(ui − uj) > 0.

This means that at least one of items i and j will improve its payoff by moving
to the other bin, a contradiction. ��
Remark 3. In the two latter models, if we set ui = 1 for all i, then PoA ≥ 1.6966
can be proved by the approach given in [4].

66 Z. Wang et al.

4 Asymmetric Case

In this section we deal with the case where the matrix A is not symmetric.
First we observe by giving an example that NE may not always exist; more
precisely, from a suitably chosen initial packing, NE is not reached after any
infinite sequence of selfish steps. Then we describe a sufficient condition for
problem inputs, which ensures that there exists an initial packing and an infinite
sequence of feasible steps which never lead to an NE. However we find by another
example that the condition is not necessary. Finally we also give a sufficient
condition, where NE always exist.

Example 1. The following instance admits an initial packing which never ter-
minates with an NE, independently of the value of the parameter p < 1.
Take three items 1, 2, and 3, each with size 0.5. Let ai,i = 1 for i = 1, 2, 3,
a12 = a23 = a31 = 1, and a21 = a32 = a13 = p.

Proof. Assume that the three items are packed in three distinct bins. Then first
item 1 moves to share a bin with item 2. Then item 2 leaves item 1 alone and
moves to share a bin with item 3. Then item 3 leaves item 2 alone and moves to
share a bin with item 1. Then item 1 moves and again shares a bin with item
2, and the movement can be continued to infinity. Then there is no NE for the
above instance. ��

In the following we give a generalization of the instance in Example 1, where
NE does not exits after any sequence of selfish steps. This part is related to line
graphs.

Line Graph. According to standard terminology, the vertices in the line graph
L(G) of G represent the edges of G, and two vertices of L(G) are adjacent if
and only if the corresponding edges of G share a vertex. So, each edge in L(G)
identifies three vertices, say vi, vj , vk in G, and two edges vivj , vivk on them,
sharing one vertex vi. Originally in G the edges are undirected; but now their
common vertex vi specifies the ordered pairs (i, j), (i, k). In case if aij = aik, we
remove the corresponding edge from L(G); and if equality does not hold, then
we orient the edge of L(G) from the smaller to the larger a-value; see Fig. 1 for
an illustration. We denote by H = (X,F) the oriented graph obtained in this
way. (This H, obviously, does not contain cycles of length 2.)

Compatibility Graph. Let I = (A,S) be an instance of GBPG. We define
the compatibility graph to represent the pairs of items which can occur together
in a bin. This undirected graph, which we denote by G = (V,E), is described by
the following rules:

– the vertices are v1, v2, ..., vn, indexed according to the items;
– an unordered vertex pair vivj is an edge if and only if si + sj ≤ 1.

Bin Packing Game with an Interest Matrix 67

A =

1 1 1 ε

1−ε 1 p ε

p 1 1 ε

ε ε ε ε 3

1

4

2

e2,4 e2,3 e3,4

e1,2 e1,3

e1,4

Fig. 1. Matrix, Compatibility Graph and Line Graph

Theorem 3. Let I = (A,S) be an instance of GBPG, and let H = (X,F)
be the oriented partial line graph as described above. If H contains a directed
(cyclically oriented) cycle, then there exists an initial packing of the items and
an infinite sequence of feasible steps along which NE is never reached.

Proof. Let C = x1x2 ... x� be a directed cycle in H. We assume, without loss of
generality, that C is a shortest cycle in H. Each xk (1 ≤ k ≤ �) corresponds
to some edge ek := vikvjk of G, and we have ek ∩ ek+1 �= ∅ for all 1 ≤ k ≤ �
(subscript addition is taken modulo � throughout the proof). We further observe:

Claim. For all k we have ek ∩ ek+1 �= ek+1 ∩ ek+2.
Proof. Suppose for a contradiction that ek ∩ ek+1 = ek+1 ∩ ek+2 = vk, and
assume that ei = vkvji for i = k, k + 1, k + 2. Then, by the construction of H,
we have

ak,jk < ak,jk+1 < ak,jk+2 .

As a consequence, also xkxk+2 is an arc in H, because ek and ek+2 share vk and
the corresponding s-values satisfy the required inequality. This contradicts the
assumption that C is a shortest cycle in H, and hence the claim follows. �

To prove the theorem we start with the initial packing where the two items
corresponding to the vertices of e1 are in the same bin, and all the other items
are in mutually distinct bins. The claim implies that moving the item of e1 ∩ e2
from its bin to the bin of e2 \ e1 is feasible. More generally, from a bin whose
contents are the two items belonging to ek, it is feasible to move ek ∩ ek+1 to
the bin of ek+1 \ ek, for any 1 ≤ k ≤ �. Consequently, in the first � − 1 bins the
first � items can circulate forever, without reaching NE at any time. ��

Remark 4. The line graph of the input can be constructed in linear time in
terms of the input size, and it can also be tested in polynomial time whether the
line graph contains a directed cycle.

Lemma 2. Even in a line graph of an input instance there is no directed cycle,
NE may not occurs after finite steps of selfish improvement.

The proof is left in the appendix.

68 Z. Wang et al.

Next we give a sufficient condition, which ensures that the game in an asym-
metric case can be converted to a symmetric game. The proof is left in the
Appendix.

Proposition 5. Assume that aij > 0 for any pair (i, j). If there is a univariate
function g : N → R+ such that aij

aji
= g(i)

g(j) , then the asymmetric case can be
transformed to the symmetric case, and hence NE exists.

5 Conclusions and Further Research

In this paper we introduced a new type of bin packing game, which is a com-
mon generalization of all the previously considered bin packing games. Then we
studied several special types of it. There are several open questions left, let us
mention two of them.

1. What are the tight bounds on PoA for the models studied?
2. Determine the algorithmic complexity of the following decision problems.

Given I = (A,S), an instance of GBPG, together with an initial packing,
(a) is it true that NE is reached after a suitable sequence of steps?
(b) is it true that NE is reached after a finite number of steps, no matter

which feasible step is chosen at any time?
Is any of these problems polynomial-time solvable?

References

1. Bilò, V.: On the packing of selfish items. In: Proc. of the 20th International Parallel
and Distributed Processing Symposium (IPDPS 2006), 9 p. IEEE (2006)

2. Coffman Jr., E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D.: Bin packing
approximation algorithms: survey and classification. In: Pardalos, P.M., Du, D.-Z.,
Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 455–531.
Springer, New York (2013)

3. Coffman, E.G., Galambos, G., Martello, S., Vigo, D.: Bin packing approximation
algorithms: combinatorial analysis. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook
of Combinatorial Optimization, pp. 151–208. Kluwer, Dordrecht (1999)

4. Dosa, G., Epstein, L.: Generalized selfish bin packing, arXiv:1202.4080, 1–43 (2012)
5. Dósa, G., Epstein, L.: The convergence time for selfish bin packing. In: Lavi, R.

(ed.) SAGT 2014. LNCS, vol. 8768, pp. 37–48. Springer, Heidelberg (2014)
6. Dósa, G., Sgall, J.: First fit bin packing: a tight analysis. In: Portier, N., Wilke, T.

(eds) Proceedings of the 30th Symposium on the Theoretical Aspects of Computer
Science (STACS 2013), pp. 538–549, Kiel, Germany (2013)

7. Dósa, G., Sgall, J.: Optimal analysis of best fit bin packing. In: Esparza, J.,
Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572,
pp. 429–441. Springer, Heidelberg (2014)

8. Epstein, L., Kleiman, E.: Selfish Bin Packing. Algorithmica 60(2), 368–394 (2011)
9. Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to the Theory

of NP-Completeness. Freeman, New York (1979)

http://arxiv.org/abs/1202.4080

Bin Packing Game with an Interest Matrix 69

10. Ma, R., Dósa, G., Han, X., Ting, H.-F., Ye, D., Zhang, Y.: A note on a selfish bin
packing problem. Journal of Global Optimization 56(4), 1457–1462 (2013)

11. Nash, J.: Non-cooperative games. Annals of Mathematics 54(2), 286–295 (1951)
12. Ullman, J.D.: The performance of a memory allocation algorithm. Technical Report

100, Princeton Univ., Princeton, NJ (1971)
13. Yu, G., Zhang, G.: Bin packing of selfish items. In: Papadimitriou, C., Zhang, S.

(eds.) WINE 2008. LNCS, vol. 5385, pp. 446–453. Springer, Heidelberg (2008)

The Least-Core and Nucleolus
of Path Cooperative Games

Qizhi Fang1, Bo Li1(B), Xiaohan Shan2, and Xiaoming Sun2

1 School of Mathematical Sciences, Ocean University of China, Qingdao, China
qfang@ouc.edu.cn, boli198907@gmail.com

2 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
{shanxiaohan,sunxiaoming}@ict.ac.cn

Abstract. Cooperative games provide an appropriate framework for fair
and stable profit distribution in multiagent systems. In this paper, we
study the algorithmic issues on path cooperative games that arise from
the situations where some commodity flows through a network. In these
games, a coalition of edges or vertices is successful if they establish a
path from the source to the sink in the network, and lose otherwise.
Based on dual theory of linear programming and the relationship with
flow games, we provide the characterizations on the CS-core, least-core
and nucleolus of path cooperative games. Furthermore, we show that the
least-core and nucleolus are polynomially solvable for path cooperative
games defined on both directed and undirected network.

1 Introduction

A central question in cooperative game theory is how to distribute a certain
amount of profit generated by a group of agents N , denoted by a function γ(N),
to each individual. It is often assumed that the grand coalition N is formed, since
in many games the total profit or costs are optimized if all agents work together.
To achieve this goal, the collective profit should be distributed properly so as to
minimize the incentive of subgroups of agents to deviate and form coalitions of
their own. A number of solution concepts have been proposed to capture this
intuition, such as the core, the least-core, and the nucleolus, which will be the
focus of this paper.

In this paper, we consider a kind of cooperative game models, path cooperative
games (PC-games), arising from the situations where some commodity (traffic,
liquid or information) flows through a network. In these games, each player

Q. Fang—The first author is supported by the National Natural Science Foundation
of China (NSFC) (NO. 11271341). The fourth author is supported in part by the
National Natural Science Foundation of China Grant 61170062, 61222202, 61433014
and the China National Program for support of Top-notch Young Professionals.
This work is also partially supported by the National Natural Science Foundation
of China (NSFC) (NO. 61173009.) Finally, we would like to acknowledge our editors
and a superb set of anonymous referees for their excellent suggestions.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 70–82, 2015.
DOI: 10.1007/978-3-319-21398-9 6

The Least-Core and Nucleolus of Path Cooperative Games 71

controls an edge or a vertex of the network (called edge path cooperative games
or vertex edge path cooperative games, respectively), a coalition of players wins
if they establish a path from the source to the sink, and lose otherwise. We will
focus on the algorithmic problems on game solutions of path cooperative games,
especially core related solutions.

Path cooperative games have a natural correspondence with flow games. Flow
games were first introduced by Kalai and Zemel [13] and studied extensively by
many researchers. When there are public arcs in the network, the core of the
flow game is nonempty if and only if there is a minimum (s, t)-cut containing
no public arcs. And in this case, the core can be characterized by the mini-
mum (s, t)-cuts[13,18], and the nucleolus can also be computed efficiently[5,17].
Recently, Aziz et al. [1] introduced the threshold versions of monotone games,
including PC-games as a special case. Yoram [3] showed that computing ε-core
for threshold network flow games is polynomial time solvable for unit capac-
ity networks, and NP-hard for networks with general capacities. For PC-games
defined on series-parallel graphs, Aziz et al.[1] showed that the nucleolus can be
computed in polynomial time. However, the complexity of computing the nucle-
olus for general PC-games remains open, from the algorithmic point of view, the
solution concepts of general PC-games have not been systematically discussed.

The algorithmic problems in cooperative games are especially interesting,
since except for the fairness and rationality requirements in the solution defi-
nitions, computational complexity is suggested be taken into consideration as
another measure of rationality for evaluating and comparing different solution
concepts (Deng and Papadimitriou [6]). The computational complexity of clas-
sical solution concepts has therefore been studied with growing interest during
the last decades. On the positive side, efficient algorithms have been proposed
for computing the core, the least-core and the nucleolus for, such as, assignment
games [20], cardinality matching games [14], unit flow games [5] and weighted
voting games [8]. On the negative side, the problems of computing the nucleolus
and testing whether a given distribution belongs to the core or the nucleolus are
proved to be NP-hard for minimum spanning tree games [9,10], flow games and
linear production games [5,11].

The main contribution of this work is the efficient characterizations of the
CS-core, least-core and the nucleolus of PC-games, based on linear programming
technique and the relationship with flow games. These characterizations yield
directly to efficient algorithms for the related solutions. The organization of the
paper is as follows.

In Section 2, the relevant definitions in cooperative game are introduced. In
Section 3, we first define PC-games (edge path cooperative game and vertex
path cooperative game), and then give the the characterizations of the core and
CS-core. Section 4 is dedicated to the efficient description of the least-core for
PC-games. In Section 5, we prove that the nucleolus is polynomially solvable for
both edge and vertex path cooperative games.

72 Q. Fang et al.

2 Preliminaries

A cooperative game Γ = (N, γ) consists of a player set N = {1, 2, · · · , n} and
a characteristic function γ : 2N → R with γ(∅) = 0. For each coalition S ⊆ N ,
γ(S) represents the profit obtained by S without help of other players. The set
N is called the grand coalition. In what follows, we assume that γ(S) ≥ 0 for all
S ⊆ N , and γ(∅) = 0.

An imputation of Γ is a payoff vector x = (x1, ...xn) such that
∑

i∈N xi =
γ(N) and xi ≥ γ({i}), ∀i ∈ N . The set of imputations is denoted by I(Γ).
Throughout this paper, we use the shorthand notation x(S) =

∑
i∈S xi. Given a

payoff vector x ∈ I(Γ), the excess of coalition S ⊆ N with respect to x is defined
as: e(x, S) = x(S)−γ(S). This value measures the degree of S’s satisfaction with
the payoff x.

Core. The core of a game Γ , denoted by C(Γ), is the set of payoff vectors
satisfying that, x ∈ C(Γ) if and only if e(x, S) ≥ 0 for all S ⊆ N . These
constraints, called group rationality, ensure that no coalition would have an
incentive to split from the grand coalition N, and do better on its own.

Least-core. When C(Γ) is empty, it is meaningful to relax the group rationality
constraints by e(x, S) ≥ ε for all S ⊆ N (ε < 0). We shall find the maximum
value ε∗ such that the set {x ∈ I(Γ) : e(x, S) ≥ ε∗,∀S ⊆ N} is nonempty. This
set of imputations is called the least-core, denoted by LC(Γ), and ε∗ is called
the value of LC(Γ) or LC-value.

Nucleolus. Now we turn to the concept of the nucleolus. A payoff vector x
generates a 2n-dimensional excess vector θ(x) = (e(x, S1), · · · , e(x, S2n)), whose
components are arranged in a non-decreasing order. That is, e(x, Si) ≤ e(x, Sj)
for 1 ≤ i < j ≤ 2n. The nucleolus, denoted by η(Γ), is defined to be a payoff
vector that lexicographically maximizes the excess vector θ(x) over the set of
imputations I(Γ). It was proved by Schmeidler [19] that the nucleolus of a game
with the nonempty imputation set contains exactly one element.

Monotone Games and Simple Games. A game Γ = (N, γ) is monotone
if γ(S′) ≤ γ(S) whenever S′ ⊆ S. A game is called a simple game if it is a
monotonic game with γ : 2N → {0, 1} such that γ(∅) = 0 and γ(N) = 1.
Simple games can be usually used to model situations where there is a task to
be completed, a coalition is labeled as winning if and only if it can complete the
task. Formally, coalition S ⊆ N is winning if γ(S) = 1, and losing if γ(S) = 0.
A player i is called a veto player if he or she belongs to all winning coalitions. It
is easy to see that, in a simple game, i is a veto player if and only if γ(N) = 1
but γ(N \ {i}) = 0.

For simple games, Osborne[16] and Elkind et al. [7] gave the following result
on the core and the nucleolus.

Lemma 1. A simple game Γ = (N, γ) has a nonempty core if and only if there
exists a veto player. Moreover,

The Least-Core and Nucleolus of Path Cooperative Games 73

1. x ∈ C(Γ) if and only if xi = 0 for each i ∈ N who is not a veto player;
2. when C(Γ) 	= ∅, the nucleolus of Γ is given by xi = 1

k if i is a veto player
and xi = 0 otherwise, where k is the number of veto players.

CS-core. Taking coalition structure into consideration, we can arrive at
another solution concept, CS-core. Given a cooperative game Γ = (N, γ), a
coalition structure over N is a partition of N , i.e., a collection of subsets
CS = {C1, · · · , Ck} with ∪k

j=1C
j = N and Ci ∩ Cj = ∅ for i 	= j and

i, j ∈ {1, · · · , k}. A vector x = (x1, · · · , xn) is a payoff vector for a coalition
structure CS = {C1, · · · , Ck} if xi ≥ 0 for all i ∈ N , and x(Cj) = γ(Cj) for
each j ∈ {1, · · · , k}.

In general, an outcome of the game Γ is a pair (CS, x), where CS is a coali-
tion structure and x is a corresponding payoff vector. The CS-core of the game
Γ = (N, γ), denoted by Ccs(Γ), is the set of outcomes (CS, x) satisfying the
constraints of “group rationality”. That is,

Ccs(Γ) = {(CS, x) : ∀C ∈ CS, x(C) = γ(C) and ∀S ⊆ N,x(S) ≥ γ(S)}.

A stronger property that is also enjoyed by many practically useful games is
superadditivity. The game Γ = (N, γ) is superadditive if it satisfies γ(S1 ∪S2) ≥
γ(S1) + γ(S2) for every pair of disjoint coalitions S1, S2 ⊆ N . This implies that
the agents can earn at least as much profit by working together within the
grand coalition. Therefore, for superadditive games, it is always assumed that
the agents form the grand coalition. For a (non-superadditive) game Γ = (N, γ),
we can define a new game Γ ∗ = (N, γ∗) by setting

γ∗(S) = max
CS∈CS

S

γ(CS), ∀S ⊆ N

where CS
S

denotes the space of all coalition structures over S and γ(CS) =∑
C∈CS γ(C). It is easy to verify that the game Γ ∗ is superadditive, and it is

called the superadditive cover of Γ . The relationship between the CS-core of Γ
and the core of its superadditive cover Γ ∗ is presented in the following lemma
[4,12].

Lemma 2. A cooperative game Γ = (N, γ) has nonempty CS-core if and only if
its superadditive cover Γ ∗ = (N, γ∗) has a non-empty core. Moreover, if C(Γ ∗) 	=
∅, then Ccs(Γ) = C(Γ ∗).

3 Path Cooperative Game and Its Core

Let D = (V,E; s, t) be a connected flow network with unit arc capacity (called
unit flow network), where V is the vertex set, E is the arc set, s, t ∈ V are the
source and the sink of the network respectively. In this paper, an (s, t)-path is
referred to as a directed path from s to t that visits each vertex in V at most
once.

74 Q. Fang et al.

Let U,W ⊆ V be a partition of the vertex set V such that s ∈ U and t ∈ W ,
then the set of arcs with tails in U and heads in W is called an (s, t)-edge-
cut, denoted by Ē ⊆ E. An (s, t)-vertex-cut is a vertex subset V̄ ⊆ V \ {s, t}
such that D \ V̄ is disconnected. An (s, t)-edge(vertex)-cut is minimum if its
cardinality is minimum. In the remainder of the paper, (s, t)-edge(vertex)-cuts
will be abbreviated as edge(vertex)-cut S for short. Given an edge-cut Ē, we
denote its indicator vector by HĒ ∈ {0, 1}|E|, where HĒ(e) = 1 if e ∈ Ē, and 0
otherwise. The indicator vector of a vertex-cut is defined analogously.

Now we introduce two kinds of path cooperative games (PC-games), edge
path cooperative games and vertex path cooperative games.

Definition 1 (Path cooperative game, PC-game). Let D = (V,E; s, t) be
a unit flow network.

1. The associated edge path cooperative game (EPC-game) ΓE = (E, γE) is:
− The player set is E;

− ∀S ⊆ E,
{

γE(S) = 1 if D[S] admits an (s, t)-path;
γE(S) = 0 otherwise.

Here, D[S] denotes the induced subgraph with vertex set V and edge set S.

2. The associated vertex path cooperative game(VPC-game) ΓV = (V, γV) is:
− The player set is V \ {s, t};
− ∀T ⊆ V ,

{
γV (T) = 1 if induced subgraph D[T] admits an (s, t)-path;
γV (T) = 0 otherwise.

Clearly, PC-games fall into the class of simple games. Therefore, we can get
the necessary and sufficient condition of the non-emptiness of the core directly
from Lemma 1.

Proposition 1. Given an EPC-game ΓE and a VPC-game ΓV associated with
network D = (V,E; s, t), then

1. C(ΓE) 	= ∅ if and only if the size of the minimum edge-cut of D is 1;
2. C(ΓV) 	= ∅ if and only if the size of the minimum vertex-cut of D is 1.

Moreover, when the core of a PC-game is nonempty, the only edge (vertex)
in the edge(vertex)-cut is a veto player, both the core and the nucleolus can be
given directly. In the following two sections, we only consider PC-games with
empty core.

We note that PC-games also have a natural correspondence with flow games
and in what follows, we will reveal the close relationship between flow games and
PC-games. Let D = (V,E; s, t) be a unit flow network. Given N ⊆ E, each edge
e ∈ N is controlled by one player, i.e., we can identify the set of edges N with
the set of players. Edges not under control of any players, in E \ N , are called
public arcs; they can be used freely by any coalition. Thus, a unit flow network
with player set N is denoted as D〈N〉 = (V,E; s, t)

Definition 2 (Simple flow game) . The simple flow game Γf 〈N〉 = (N, γ)
associated with the unit network D〈N〉 is defined as:

The Least-Core and Nucleolus of Path Cooperative Games 75

1. The player set is N ;
2. ∀S ⊆ N , γ(S) is the value of the max-flow from s to t in D[S ∪ (E \ N)]

(using only the edges in S and public edges).

Flow game is a classical combinatorial optimization game, which has been
extensively studied. The core of the flow game Γf 〈N〉 is nonempty if and only if
there is a minimum edge-cut without public edges [18]. In this case, the core is
exactly the convex hull of the indicator vectors of minimum edge-cuts without
public edges in D [13,18], and the nucleolus can also be computed in polynomial
time [5,17].

Now we turn to discuss the CS-core of PC-games. It is easy to see that for the
network D without public edges, the associated flow game is the superadditive
cover of the corresponding EPC-game. Thus, the nonemptiness of CS-core of
EPC-game follows directly from Lemma 2.

Proposition 2. Given an EPC-game ΓE associated with network D =
(V,E; s, t), then the CS-core of ΓE is nonempty and it is exactly the convex
hull of the indicator vectors of minimum edge-cuts of D.

For a VPC-game, we can also establish some relationship with a flow game.
Given a network D = (V,E; s, t), we transform it into a new network DV in the
following way.

(1) For each v ∈ V \ {s, t}, split it into two distinct vertices v′ and v′′;
(2) Connect v′ and v′′ by a new directed edge ev = (v′, v′′). The set of all

such edges is denoted by EV ;
(3) For original edge e = (u, v) ∈ E, transform it into a new edge e = (u′′, v′)

in DV (s = s′ = s′′ and t = t′ = t′′).

In the new constructed network DV , the player set is just the set EV and all
the other edges are viewed as public edges. It is easy to show that in the new
network DV , there must be a minimum edge-cut containing only edges in EV .
Hence, we can verify that the flow game associated with the network DV 〈EV 〉 is
the superadditive cover of the corresponding VPC-game defined on D. Similarly,
the nonemptiness of CS-core of VPC-game follows from Lemma 2 and the results
of core nonemptiness of flow games.

Proposition 3. Given an VPC-game ΓV associated with network D =
(V,E; s, t), then the CS-core of ΓV is nonempty and it is exactly the convex
hull of the indicator vectors of minimum vertex-cuts of D.

76 Q. Fang et al.

4 Least-Core of PC-Games

In this section, we first discuss the least-core of EPC-games. Throughout this
section, ΓE is an EPC-game associated with the network D = (V,E; s, t) with
|E| = n. Denote by P the set of all (s,t)-path in D, and |P| = m. According to
the definitions of EPC-game and the least-core, it is shown that LC(ΓE) can be
formulated as the following linear program:

max ε

s.t.

⎧
⎨

⎩

x(E) = 1
x(P) ≥ 1 + ε ∀P ∈ P
xi ≥ 0 ∀ i ∈ E

(1)

In spite that the number of the constraints in (1) may be exponential in |E|,
the LC-value and a least-core imputation can be found efficiently by ellipsoid
algorithm with a polynomial-time separation oracle: Let (x, ε) be a candidate
solution for LP(LCE). We first check whether constraints x(E) = 1 and x(e) ≥ 0
(∀e ∈ E) are satisfied. Then, checking whether x(P) ≥ 1 + ε (∀P ∈ P) are
satisfied is transformed to solving the shortest (s, t)-path in D with respect to
the edge length x(e) (∀e ∈ E), and this can aslo be done in polynomial time.

In what follows, we aim at giving a succinct characterization of the least-core
for EPC-games. We first give the linear program model of the max-flow problem
on D and its dual:

LP(flow):

max
∑m

j=1 yj

s.t.

{ ∑

Pj :ei∈Pj

yj ≤ 1 i = 1, 2, ..., n

yj ≥ 0 j = 1, 2, ...,m

(2)

DLP(flow) :
min

∑n
i=1 xi

s.t.
{∑

ei:ei∈Pj
xi ≥ 1 j = 1, 2, ...,m

xi ≥ 0 i = 1, ..., n

(3)

Due to max-flow and min-cut theorem, the optimum value of (2) and (3) are
equal, and the set of optimal solutions of (3) is exactly the convex hull of the
indicator vectors of the minimum edge-cut of D, which is denoted by CE . On
the other hand, it is known that the core of the flow game Γf defined on D〈E〉
is also the convex hull of the indicator vectors of the minimum edge-cut of D.
Hence, we have

Theorem 1. Let ΓE and Γf be an EPC-game and a flow game defined on
D = (V,E; s, t), respectively, f∗ be the value of the max-flow of D. Then,

x ∈ LC(ΓE) if and only if x = z/f∗ for some z ∈ CE .

Proof. Let x = (1 + ε)z be a transformation, then (1) can be rewritten as

max ε

s.t.

⎧
⎨

⎩

z(E) = 1/(1 + ε)
z(P) ≥ 1 ∀P ∈ P
zi ≥ 0 ∀ei ∈ E

(4)

The Least-Core and Nucleolus of Path Cooperative Games 77

Combining the first constraint z(E) = 1/(1 + ε) and the objective function, it
is easy to see that linear program (4) is the same as DLP(flow) (3). Since the
optimal value of (3) is also f∗, Theorem 1 thus follows. ��

Based on the relationship between a VPC-game and the corresponding flow
game discussed in Section 3, we can obtain a similar result on the least-core for
VPC-games (The proof is omitted).

Theorem 2. Let ΓV = (E, γV) be a VPC-game defined on D = (V,E; s, t), f∗

be the value of the max-flow of D, then

x ∈ LC(ΓV) if and only if x = z/f∗ for some z ∈ CV .

Here CV is the convex hull of the indicator vectors of minimum vertex-cuts in
D.

Theorem 1 and 2 show that for the unit flow network, the least-core of the
PC-game is equivalent to the core of the corresponding flow game in the sense
of scaling down by 1/f∗. Hence, all the following problems for PC-games can be
solved efficiently:

– Computing the LC-value;
– Finding an imputation in LC(ΓE) and LC(ΓV);
– Checking whether a given imputation is in LC(ΓE) or LC(ΓV).

Remark. Path cooperative games have close relationship with a noncoopera-
tive two-person zero-sum game, called path intercept game [21]. In this model,
an “evader” attempts to select a path P from the source to the sink through
a given network. At the same time, an “interdictor” attempts to select an edge
e in this network to detect the evader. If the evader traverses through arc e,
he is detected; otherwise, he goes undetected. The interdictor aims to find a
probabilistic “edge-inspection” strategy to maximize the average probability of
detecting the evader. While for the evader, he wants to find a ”path-selection
strategy” to minimize the interdiction probability. Aziz et al.[2] observed that
the mixed Nash Equilibrium of path intercept games is the same as the least-core
of EPC-games. With max-min theorem in matrix game theory, the same result
can be obtained based on the similar analysis as in the proof of Theorem 1.

5 Nucleolus of PC-games

In this section, we aim at showing that the nucleolus of PC-games can be com-
puted in polynomial time. Given a game Γ = (N, γ), Kopelowitz [15] showed
that the nucleolus η(Γ) can be obtained by recursively solving the following
standard sequence of linear programs SLP (η(Γ)):

LPk

(k = 1, 2, · · ·) :

max ε

s.t.

⎧
⎨

⎩

x(S) = γ(S) + εr, ∀S ∈ Jr r = 0, 1, · · · , k − 1
x(S) ≥ γ(S) + ε, ∀∅ 	= S ⊂ N \ ∪k−1

r=0Jr

x ∈ I(Γ).

78 Q. Fang et al.

Initially, set J0 = {∅, N} and ε0 = 0. The number εr is the optimal value of
the r-th program LPr, and Jr = {S ⊆ N : x(S) = γ(S) + εr,∀x ∈ Xr}, where
Xr = {x ∈ Rn : (x, εr) is an optimal solution of LPr}.

As in the last section, we first discuss the nucleolus of EPC-games. Let ΓE

be the EPC-game associated with network D = (V,E; s, t) with |E| = n, P be
the set of all (s, t)-paths and f∗ be the value of the max-flow of D. Denote EΓ

be the set of coalitions consisting of one-edge coalitions and path coalitions, i.e.,

EΓ = {{e} : e ∈ E} ∪ {P ⊆ E : P ∈ P is an (s, t)-path}.

We show that the sequential linear programs SLP (η(ΓE)) of EPC-game ΓE

can be simplified as follows.

LP ′
k :

max ε

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x(e) = εr, ∀e ∈ Er, r = 0, 1, ..., k − 1
x(e) ≥ ε, ∀e ∈ E\

⋃k−1
r=0 Er

x(P) = 1/f∗ + εr, ∀P ∈ Pr, r = 0, 1, ..., k − 1
x(P) ≥ 1/f∗ + ε, ∀P ∈ P\

⋃k−1
r=0 Pr

x(e) ≥ 0, ∀e ∈ E
x(E) = 1.

(5)

where εr is the optimum value of LPr, Xr = {x ∈ Rn : (x, εr) is an optimal
solution of LPr}, Pr = {P ∈ P : x(P) = 1 + εr,∀x ∈ Xr} and Er = {e ∈ E :
x(e) = εr,∀x ∈ Xr}. Initially, ε0 = 0, P0 = ∅ and E0 = ∅.

Proposition 4. The nucleolus η(ΓE) of EPC-game ΓE defined on the network
D = (V,E; s, t) can be obtained by computing the linear programs LP ′

k in (5).

Proof. Firstly, we show that in sequential linear programs SLP (η(Γ)), only the
constraints corresponding to the the coalitions in EΓ (i.e., the one-edge coalitions
and path coalitions) are necessary in determining the nucleolus η(ΓE).

In fact, for any winning coalition S ⊆ N (not a path), S can be decomposed
into a path P and some edges E′ = S\E(P). Then,

x(S) − γ(S) = x(P) − 1 +
∑

e∈E′
x(e) ≥ x(P) − 1.

Since x(e) ≥ 0 for all e ∈ E′, S cannot be fixed before P or any e ∈ E′. After
P and all e ∈ E′ are fixed, S is also fixed, i.e., S is redundant. If S is a losing
coalition, then S is a set of edges with γ(S) = 0 and x(S)−γ(S) =

∑
e∈S x(e) ≥

x(e),∀e ∈ S. That is to say, S cannot be fixed before any e ∈ S. When all
edges in S are fixed, S is fixed accordingly, i.e. S is also redundant in this case.
Therefore, deleting all the constraints corresponding to the coalitions not in EΓ

will not change the result of SLP (η(Γ)).
The key point in remainder of the proof is the correctness of the third and the

forth constraints in (5), where we replace the original constraints x(P) = 1 + εr

and x(P) ≥ 1 + ε in SLP (η(Γ)) with new constraints x(P) = 1/f∗ + εr and
x(P) ≥ 1/f∗ + ε, respectively.

The Least-Core and Nucleolus of Path Cooperative Games 79

In the process of solving the sequential linear programs, the optimal values
increase with k. Since C(ΓE) = ∅, we know ε1 < 0. Note that we can always
find an optimal solution such that ε1 > −1 (for example x(e) = 1

n ,∀e ∈ E is a
feasible solution of the linear programming of LC(ΓE)).

We can divide the process into two stages. The first stage is the programs
with −1 < εr < 0. In this case, the constraints x(e) ≥ ε,∀e ∈ E cannot affect
the optimal solutions of the current programs, because x(e) ≥ 0. Ignoring the
invalid constraints we can get (5) directly.

The second stage is the programs with εr ≥ 0. When the programs arrive
at this stage, we can claim that all paths have been fixed. Otherwise, if there is
a path satisfying x(p) = 1 + εr ≥ 1, then we have x(p) = 1 (note x(E) = 1),
contradicting with the precondition that the value of maximum flow f∗ ≥ 2. We
can omit the path constraints in this stage and then this implies (5).

This completes the proof of Proposition 4. ��

In the following, we shall show that the nucleolus of PC-games can be solved
in polynomial time. Let Γf = (E, γ) be the flow game defined on the unit flow
network D = (V,E; s, t). It is easy to show that the sequential linear programs
LP (η(Γf)) can be simplified as L̃P k, (k = 1, 2, ...) :

L̃P k :

max ε

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x(e) = εr ∀e ∈ Er, r = 0, 1, ..., k − 1
x(P) = 1 + εr ∀P ∈ Pr, r = 0, 1, ..., k − 1
x(e) ≥ ε ∀e ∈ E\

⋃k−1
r=0 Er

x(P) ≥ 1 + ε ∀P ∈ P\
⋃k−1

r=0 Pr

x(E) = f∗,

(6)

where εr is the optimum value of L̃P r, Xr = {x ∈ Rn : (x, εr) is an optimal
solution of L̃P r}, Pr = {P ∈ P : x(P) = 1 + εr,∀x ∈ Xr} and Er = {e ∈ E :
x(e) = εr,∀x ∈ Xr}. Initially, ε0 = 0, P0 = ∅ and E0 = ∅.

Deng et al. [5] proved that the sequential linear programs L̃P k, (k = 1, 2...)
can be transformed to another sequential linear programs with only polynomial
number of constraints, and it follows that the nucleolus of flow game η(Γf) can
be found efficiently. Futhermore, Potters et al. [17], show that the nucleolus of
flow games with public edges can also be found in polynomial time when the core
is nonempty. Based on these known results, we discuss the algorithmic problem
on the nucleolus of PC-games in the following theorems.

Theorem 3. Let ΓE and Γf be the EPC-game and flow game defined on a unit
flow network D = (V,E; s, t), respectively. The nucleolus of ΓE can be computed
in polynomial time. Furthermore,

x ∈ η(ΓE) if and only if z = x · f∗ ∈ η(Γf),

where f∗ is the value of the max-flow of D.

80 Q. Fang et al.

Proof. Notice that the dimension of the feasible regions of LP ′
k(k = 1, 2...)

decreases in each step, so we can complete the process within at most |N | steps.
The key point here is to show that there is a one-to-one correspondence

between the optimal solutions of L̃P k (6) and that of LP ′
k (5) (∀k = 1, 2, · · ·).

We first prove that if (z∗, ε̃∗) is an optimal solution of L̃P k (6), then (x∗, ε∗) =
(z∗/f∗, ε̃∗/f∗) is an optimal solution of LP ′

k (5).
When k = 1, we have E0 = ∅, P0 = ∅ in LP ′

1. And it is easy to check the
feasibility and the optimality of (z∗, ε∗) in LP ′

1. To continue the proof recursively,
we need to explain E1 = Ẽ1 and P1 = P̃1, i.e., the constraints which become
tight in every iteration are exactly the same in the two linear programs. For each
e ∈ E, if z∗(e) = ε̃∗, then x∗(e) = z∗(e)/f∗ = ε̃∗/f∗ = ε∗. And if z∗(e) > ε̃∗,
then we have x∗(e) > ε∗. Thus, E1 = Ẽ1. P1 = P̃1 can be shown analogously.
The other direction of the result can be shown similarly. That is, the conclusion
holds for k = 1.

For the rest iterations k = 2, 3, · · · , the proof can be carried out in a same
way. Here we omit the detail of the proof. Since the nucleolus of flow game can
be found in polynomial time, it follows that the nucleolus of EPC-game is also
efficiently solvable. ��

As for the nucleolus of VPC-games, we also show that it is polynomially
solvable based on the relationship between a VPC-game and the corresponding
flow game demonstrated in Section 3. Due to the space limitation, the proof of
the following theroem is omitted.

Theorem 4. The nucleolus of VPC-games can be solved in polynomial time.

PC-games on Undirected Networks. Given an undirected network D =
(V,E; s, t), we construct a directed network

−→
D = (V,

−→
E ; s, t) derived from D as

follows (see the following figure):

1. For edge e ∈ E with end vertices v1 and v2, transform it into two directed
edges −→e v1 = (v11, v12) and −→e v2 = (v21, v22);

2. Connect the two directed edges into a directed cycle via two supplemental
directed edges −→e 1 and −→e 2.

Thus, the EPC-game defined on undirected network D = (V,E; s, t) is trans-
formed to an EPC-game defined on the constructed directed network

−→
D =

(V,
−→
E ; s, t). Furthermore, it is easy to check that there exists one-to-one cor-

respondence for the game solution (such as, the core, the least-core and the
nucleolus) between the two games. As for a VPC-game defined on an undi-
rected network, we first transform it into EPC-game on an undirected network

The Least-Core and Nucleolus of Path Cooperative Games 81

as demonstrated in Section 3, and then transform it to EPC-game on a directed
network in the same way as above. Henceforth, the algorithmic results for PC-
games can be generalized from directed networks to undirected networks.

Theorem 5. Computing the least-core and the nucleolus can be done in polyno-
mial time for both EPC-games and VPC-games defined on undirected networks.

References

1. Aziz, H., Brandt, F., Harrenstein, P.: Monotone cooperative games and their
threshold versions. In: Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems, vol. 1, pp. 1107–1114 (2010)

2. Aziz, H., Sørensen, T.B.: Path coalitional games (2011). arXiv preprint
arXiv:1103.3310

3. Bachrach, Y.: The least-core of threshold network flow games. In: Murlak, F.,
Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 36–47. Springer, Heidelberg
(2011)

4. Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational aspects of coop-
erative game theory. Synthesis Lectures on Artificial Intelligence and Machine
Learning 5(6), 1–168 (2011)

5. Deng, X., Fang, Q., Sun, X.: Finding nucleolus of flow game. Journal of combina-
torial optimization 18(1), 64–86 (2009)

6. Deng, X., Papadimitriou, C.H.: On the complexity of cooperative solution concepts.
Mathematics of Operations Research 19(2), 257–266 (1994)

7. Elkind, E., Goldberg, L.A., Goldberg, P.W., Wooldridge, M.: Computational
complexity of weighted threshold games. In: Proceedings of the National
Conference on Artificial Intelligence, vol. 22, p. 718 (2007)

8. Elkind, E., Pasechnik, D.: Computing the nucleolus of weighted voting games. In:
Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 327–335 (2009)

9. Faigle, U., Kern, W., Fekete, S.P., Hochstättler, W.: On the complexity of testing
membership in the core of min-cost spanning tree games. International Journal of
Game Theory 26(3), 361–366 (1997)

10. Faigle, U., Kern, W., Kuipers, J.: Note computing the nucleolus of min-cost
spanning tree games is np-hard. International Journal of Game Theory 27(3),
443–450 (1998)

11. Fang, Q., Zhu, S., Cai, M., Deng, X.: On computational complexity of membership
test in flow games and linear production games. International Journal of Game
Theory 31(1), 39–45 (2002)

12. Greco, G., Malizia, E., Palopoli, L., Scarcello, F.: On the complexity of the core
over coalition structures. In: IJCAI, vol. 11, pp. 216–221. Citeseer (2011)

13. Kalai, E., Zemel, E.: Generalized network problems yielding totally balanced
games. Operations Research 30(5), 998–1008 (1982)

14. Kern, W., Paulusma, D.: Matching games: the least-core and the nucleolus.
Mathematics of Operations Research 28(2), 294–308 (2003)

15. Kopelowitz, A.: Computation of the kernels of simple games and the nucleolus of
n-person games. Technical report, DTIC Document (1967)

http://arxiv.org/abs/1103.3310

82 Q. Fang et al.

16. Osborne, M.J., Rubinstein, A.: A course in game theory. Cambridge, Massachusetts
(1994)

17. Potters, J., Reijnierse, H., Biswas, A.: The nucleolus of balanced simple flow
networks. Games and Economic Behavior 54(1), 205–225 (2006)

18. Reijnierse, H., Maschler, M., Potters, J., Tijs, S.: Simple flow games. Games and
Economic Behavior 16(2), 238–260 (1996)

19. Schmeidler, D.: The nucleolus of a characteristic function game. SIAM Journal on
applied mathematics 17(6), 1163–1170 (1969)

20. Solymosi, T., Raghavan, T.E.S.: An algorithm for finding the nucleolus of
assignment games. International Journal of Game Theory 23(2), 119–143 (1994)

21. Washburn, A., Wood, K.: Two-person zero-sum games for network interdiction.
Operations Research 43(2), 243–251 (1995)

Reversible Pebble Game on Trees

Balagopal Komarath(B), Jayalal Sarma, and Saurabh Sawlani

Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai, India

baluks@gmail.com

Abstract. A surprising equivalence between different forms of pebble
games on graphs - Dymond-Tompa pebble game (studied in [4]), Raz-
McKenzie pebble game (studied in [10]) and reversible pebbling (studied
in [1]) - was established recently by Chan[2]. Motivated by this equiv-
alence, we study the reversible pebble game and establish the following
results.

– We give a polynomial time algorithm for computing reversible peb-
bling number of trees. As our main technical contribution, we show
that the reversible pebbling number of any tree is exactly one more
than the edge rank colouring of the underlying undirected tree.

– By exploiting the connection with the Dymond-Tompa pebble game,
we show that complete binary trees have optimal pebblings that take
at most nO(log log(n)) steps. This substantially improves the previous
bound of nO(log(n)) steps.

– Furthermore, we show that almost optimal (within (1 + ε) factor for
any constant ε > 0) pebblings of complete binary trees can be done
in polynomial number of steps.

– We also show a time-space tradeoff for reversible pebbling for families
of bounded degree trees: for any constant ε > 0, such families can be
pebbled using O(nε) pebbles in O(n) steps. This generalizes a result
of Královic[7] who showed the same for chains.

1 Introduction

Pebbling games on graphs of various forms abstracts out resources in different
combinatorial models of computation (see [3]). The most obvious connection
is to the space used by the computation process. A pebble placed on a vertex
in a graph corresponds to storing the value at that vertex and an edge (a, b)
in the graph would represent a data-dependency - namely, value at b can be
computed only if the value at a is known (or stored). Devising the rules of
the pebbling game to capture the moves in the computation, and establishing
bounds for the total number of pebbles used at any point in time, give rise to a
combinatorial approach to proving bounds on the space used by the computation.
The Dymond-Tompa pebble game and the Raz-Mckenzie pebble games depict
some of the combinatorial barriers in proving bounds for depth (or parallel time)
of Boolean circuits (or parallel algorithms).

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 83–94, 2015.
DOI: 10.1007/978-3-319-21398-9 7

84 B. Komarath et al.

Motivated by applications in the context of reversible computation (for exam-
ple, quantum computation), Bennett[1] introduced the reversible pebbling game.
Given any DAG G with a unique sink vertex r, the reversible pebbling game
starts with no pebbles on G and ends with a pebble (only) on r. Pebbles can be
placed or removed from any vertex according to the following two rules.

1. To pebble v, all in-neighbours of v must be pebbled.
2. To unpebble v, all in-neighbours of v must be pebbled.

The goal of the game is to pebble the DAG G using the minimum number of
pebbles (also using the minimum number of steps).

Recently, Chan[2] showed that for any DAG G the number of pebbles required
for the reversible pebbling game is exactly the same as the number of pebbles
required for the Dymond-Tompa pebble game and the Raz-Mckenzie pebble
game. Chan[2] also studied the complexity of the following problem – Given
a DAG G = (V,E) with sink r and an integer 1 ≤ k ≤ |V |, check if G can
be pebbled using at most k pebbles. He showed that this problem is PSPACE-
complete.

The irreversible black and black-white pebble games are known to be
PSPACE-complete on DAGs (see [5], [6]). When we restrict the irreversible black
pebbling game to be read-once (each vertex is pebbled only once), then the prob-
lem becomes NP-complete (see [11]). However, if we restrict the DAG to a tree,
the irreversible black pebble game[9] and black-white pebble game[13] are solv-
able in polynomial time. The key insight is that optimal irreversible (black or
black-white) pebbling number of trees can be achieved by read-once pebblings of
trees. This fact simplifies many arguments for irreversible pebblings of trees. For
example, deciding whether the pebbling number is at most k is in NP since the
optimal pebbling can be used as the certificate. We cannot show that reversible
pebbling is in NP using the same argument as we do not know whether the
optimal value can always be achieved using pebblings taking only polynomially
many steps.

Our Results: In this paper, we study reversible pebblings on trees. We show
that the reversible pebbling number of trees along with strategies achieving the
optimal value can be computed in polynomial time. Our main technical result is
that the reversible pebbling number of any tree is exactly one more than the edge
rank colouring of the underlying undirected tree. We then use the linear-time
algorithm given by Lam and Yue [8] for finding an optimal edge rank coloring of
the underlying undirected tree and show how to convert an optimal edge rank
coloring into an optimal reversible pebbling.

Chan[2] also raised the question whether we can find connections between
other parameters of different pebbling games. Although, we do not answer this
question, we show that the connection with Dymond-Tompa pebble game can be
exploited to show that complete binary trees have optimal pebblings that take
at most nO(log log(n)) steps. This is a significant improvement over the trivial
nO(log(n)) steps.

Reversible Pebble Game on Trees 85

Furthermore, we show that “almost” (within (1 + ε) factor for any constant
ε > 0) optimal pebblings of complete binary trees can be done in polynomial
number of steps. We also generalize a time-space tradeoff result given for chains
by Královic [7] to families of bounded degree trees showing that for any constant
ε > 0, such families can be pebbled using O(nε) pebbles in O(n) steps.

2 Preliminaries

We assume familiarity with basic definitions in graph theory, such as those found
in [12]. A directed tree T = (V,E) is called a rooted directed tree if there is an
r ∈ V such that r is reachable from every vertex in T . The vertex r is called the
root of the tree.

An edge rank coloring of an undirected tree T with k colours {1, . . . , k} labels
each edge of T with a colour such that if two edges have the same colour i, then
the path between these two edges consists of an edge with some colour j > i.
The minimum number of colours required for an edge rank colouring of T is
denoted by χ′

e(T).

Definition 1. (Reversible Pebbling[1]) Let G be a rooted DAG with root r. A
reversible pebbling configuration of G is a subset of V which denotes the set of
pebbled vertices). A reversible pebbling of G is a sequence of reversible pebbling
configurations P = (P1, . . . , Pm) such that P1 = φ and Pm = {r} and for every
i, 2 ≤ i ≤ m, we have

1. Pi = Pi−1 ∪ {v} or Pi−1 = Pi ∪ {v} and Pi �= Pi−1 (Exactly one vertex is
pebbled/unpebbled at each step).

2. All in-neighbours of v are in Pi−1.

The number m is called the time taken by the pebbling P. The number of
pebbles or space used in a reversible pebbling of G is the maximum number of
pebbles on G at any time during the pebbling. The persistent reversible pebbling
number of G, denoted by R•(G), is the minimum number of pebbles required to
pebble G.

A closely related notion is that of visiting reversible pebbling, where the peb-
bling P satisfies (1) P1 = Pm = φ and (2) there exists a j such that r ∈ Pj. The
minimum number of pebbles required for a visiting pebbling of G is denoted by
Rφ(T).

It is easy to see that Rφ(G) ≤ R•(G) ≤ Rφ(G) + 1 for any DAG G.

Definition 2. (Dymond-Tompa Pebble Game [4]) Let G be a DAG with root r.
A Dymond-Tompa pebble game is a two-player game on G where the two players,
the pebbler and the challenger take turns. In the first round, the pebbler pebbles
the root vertex and the challenger challenges the root vertex. In each subsequent
round, the pebbler pebbles a (unpebbled) vertex in G and the challenger either
challenges the vertex just pebbled or re-challenges the vertex challenged in the

86 B. Komarath et al.

previous round. The pebbler wins when the challenger challenges a vertex v and
all in-neighbours of v are pebbled.

The Dymond-Tompa pebble number of G, denoted DT (G), is the minimum
number of pebbles required by the pebbler to win against an optimal challenger
play.

The Raz-Mckenzie pebble game is also a two-player pebble game played
on DAGs. The optimal value is denoted by RM(G). A definition for the Raz-
Mckenzie pebble game can be found in [10]. Although the Dymond-Tompa game
and the reversible pebbling game look quite different. The following theorem
reveals a surprising connection between them.

Theorem 1. (Theorems 6 and 7, [2]) For any rooted DAG G, we have DT (G) =
R•(G) = RM(G).

Definition 3. (Effective Predecessor [2]) Given a pebbling configuration P of a
DAG G with root r, a vertex v in G is called an effective predecessor of r if
there exists a path from v to r with no pebbles on the vertices in the path (except
at r).

Lemma 1. (Claim 3.11, [2]) Let G be any rooted DAG. There exists an optimal
pebbler strategy for the Dymond-Tompa pebble game on G such that the pebbler
always pebbles an effective predecessor of the currently challenged vertex.

We call the above pebbling strategy (resp. pebbler) as an upstream pebbling
strategy(resp. upstream pebbler). The height or depth of a tree is defined as the
maximum number of vertices in any root to leaf path. We denote by Chn the
rooted directed path on n vertices with a leaf as the root. We denote by Bth
the the complete binary tree of height h. We use root(Bth) to refer to the root
of Bth. If v is any vertex in Bth, we use left(v) (right(v)) to refer to the left
(right) child of v. We use righti and lefti to refer to iterated application of these
functions. We use the notation Chi + Bth to refer to a tree that is a chain of i
vertices where the source vertex is the root of a Bth.

Definition 4. Wedefinethe languageTREE-PEBBLE(TREE-VISITING-PEBBLE)
as the set of all tuples (T, k), where T is a rooted directed tree and k is an integer
satisfying 1 ≤ k ≤ n, such that R•(T) ≤ k (Rφ(T) ≤ k).

In the rest of the paper, we use the term pebbling to refer to persistent
reversible pebbling unless explicitly stated otherwise.

3 Main Theorem

Definition 5. (Strategy Tree) Let T be a rooted directed tree. If T only has a
single vertex v, then any strategy tree for T only has a single vertex labelled v.
Otherwise, we define a strategy tree for T as any tree satisfying

1. The root vertex is labelled with some edge e = (u, v) in T .

Reversible Pebble Game on Trees 87

2. The left subtree of root is a strategy tree for Tu and the right subtree is a
strategy tree for T \ Tu.

The following properties are satisfied by any strategy tree S of T = (V,E).

1. Each vertex has 0 or 2 children.
2. There are bijections from E to internal vertices of S & from V to leaves of

S.
3. Let v be any vertex in S. Then the subtree Sv corresponds to the subtree

of T spanned by the vertices labelling the leaves of Sv. If u and v are two
vertices in S such that one is not an ancestor of the other, then the subtrees
in T corresponding to u and v are vertex-disjoint.

Lemma 2. Let T be a rooted directed tree. Then R•(T) ≤ k if and only if there
exists a strategy tree for T of depth at most k.

Proof. We prove both directions by induction on |T |. If T is a single vertex tree,
then the statement is trivial.

(if) Assume that the root of a strategy tree for T of depth k is labelled by
an edge (u, v) in T . The pebbler then pebbles the vertex u. If the challenger
challenges u, the pebbler follows the strategy for Tu given by the left subtree of
root. If the challenger rechallenges, the pebbler follows the strategy for T \ Tu

given by the right subtree of the root. The remaining game takes at most k − 1
pebbles by the inductive hypothesis. Therefore, the total number of pebbles used
is at most k.

(only if) Consider an upstream pebbler that uses at most k pebbles. We are
going to construct a strategy tree of depth at most k. Assume that the pebbler
pebbles u in the first move where e = (u, v) is an edge in T . Then the root
vertex of S is labelled e. Now we have R•(Tu), R•(T \ Tu) ≤ k − 1. Let the left
(right) subtree be the strategy tree obtained inductively for Tu (T \ Tu). Since
the pebbler is upstream, the pebbler never places a pebble outside Tu (T \ Tu)
once the challenger has challenged u (the root). ��

Definition 6. (Matching Game) Let U be an undirected tree. Let T1 = U . At
each step of the matching game, we pick a matching Mi from Ti and contract all
the edges in Mi to obtain the tree Ti+1. The game ends when Ti is a single vertex
tree. We define the contraction number of U , denoted c(U), as the minimum
number of matchings in the matching sequence required to contract U to the
single vertex tree.

Lemma 3. Let T be a rooted directed tree and let U be the underlying undirected
tree for T . Then R•(T) = k + 1 if and only if c(U) = k.

Proof. First, we describe how to construct a matching sequence of length k from
a strategy tree S of depth k + 1. Let the leaves of S be the level 0 vertices. For
i ≥ 1, we define the level i vertices to be the set of all vertices v in S such that
one child of v has level i − 1 and the other child of v has level at most i − 1.

88 B. Komarath et al.

Define Mi to be the set of all edges in U corresponding to level i vertices in S.
We claim that M1, . . . , Mk is a matching sequence for U . Define Si as the set of
all vertices v in S such that the parent of v has level at least i + 1 (Sk contains
only the root vertex). Let Q(i) be the statement “Ti+1 is obtained from T1 by
contracting all subtrees corresponding to vertices (see Property 3) in Si”. Let
P (i) be the statement “Mi+1 is a matching in Ti+1”. We will prove Q(0) and
Q(i) =⇒ P (i) and (Q(i) ∧ P (i)) =⇒ Q(i + 1). Indeed for i = 0, we have Q(0)
because T1 = U and S0 is the set of all leaves in S or vertices in T (Property 2).
To prove Q(i) =⇒ P (i), observe that the edges of Mi+1 correspond to vertices
in S where both children are in Si. So these edges correspond to edges in Ti+1

(by Q(i)) and these edges are pairwise disjoint since no two vertices in S have a
common child.

To prove that (Q(i)∧P (i)) =⇒ Q(i+1), consider the tree Ti+2 obtained by
contracting Mi+1 from Ti+1. Since Q(i) is true, this is equivalent to contracting
all subtrees corresponding to Si and then contracting the edges in Mi+1 from T1.
The set Si+1 can be obtained from Si by adding all vertices in S corresponding to
edges in Mi+1 and then removing both children (of these newly added vertices)
from Si. This is equivalent to combining the subtrees removed from Si using the
edge joining them. This is because Mi+1 is a matching by P (i) and hence one
subtree in Si will never be combined with two other subtrees in Si. But then
contracting subtrees in Si+1 from T1 is equivalent to contracting Si followed by
contracting Mi+1.

We now show that a matching sequence of length at most k can be converted
to a strategy tree of depth at most k + 1. We use proof by induction. If the tree
T is a single vertex tree, then the statement is trivial. Otherwise, let e be the
edge in the last matching Mk in the sequence and let (u, v) be the corresponding
edge in T . Label the root of S by e and let the left (right) subtree of root of S
be obtained from the matching sequence M1, . . . , Mk−1 restricted to Tu (T \Tu).
By the inductive hypothesis, these subtrees have height at most k − 1. ��
Lemma 4. For any undirected tree U , we have c(U) = χ′

e(U).

Proof. Consider an optimal matching sequence for U . If the edge e is contracted
in Mi, then label e with the color i. This is an edge rank coloring. Suppose for
contradiction that there exists two edges e1 and e2 with label i such that there
is no edge labelled some j ≥ i between them. We can assume without loss of
generality that there is no edge labelled i between e1 and e2 since if there is one
such edge, we can let e2 to be that edge. Then e1 and e2 are adjacent in Ti and
hence cannot belong to the same matching.

Consider an optimal edge rank coloring for U . Then in the ith step all edges
labelled i are contracted. This forms a matching since in between any two edges
labelled i, there is an edge labelled j > i and hence they are not adjacent in
Ti. ��

The theorems in this section are summarized in Fig. 1

Theorem 2. Let T be a rooted directed tree and let U be the underlying undi-
rected tree for T . Then we have R•(T) = χ′

e(U) + 1.

Reversible Pebble Game on Trees 89

1

2

4 5

3

6 7

(a) The complete binary tree of height 3

1

2

4

2

5

1

3

3

6

1

7

2

4

(b) Optimal edge rank colouring

(3, 1)

(7, 3)

7 (6, 3)

6 3

(2, 1)

(4, 2)

4 (5, 2)

5 2

1

(c) Optimal strategy tree

1

2

4 5

3

6 7

T1 1

2

4

3

7

T2 1

2 3

T3 1

3

T4

1T5

(d) Optimal matching sequence

Fig. 1. This figure illustrates the equivalence between persistent reversible pebbling,
matching game and edge rank coloring on trees by showing an optimal strategy tree and
the corresponding matching sequence and edge rank colouring for height 3 complete
binary tree

90 B. Komarath et al.

Corollary 1. Rφ(T) and R•(T) along with strategy trees achieving the optimal
pebbling value can be computed in polynomial time for trees.

Proof. We show that TREE-PEBBLE and TREE-VISITING-PEBBLE are polyno-
mial time equivalent. Let T be an instance of TREE-PEBBLE. Pick an arbitrary
leaf v of T and root the tree at v. By Theorem 2, the reversible pebbling number
of this tree is the same as that of T . Let T ′ be the subtree rooted at the child of
v. Then we have R•(T) ≤ k ⇐⇒ Rφ(T ′) ≤ k − 1.

Let T be an instance of TREE-VISITING-PEBBLE. Let T ′ be the tree obtained
by adding the edge (r, r′) to T where r is the root of T . Then we have Rφ(T) ≤
k ⇐⇒ R•(T ′) ≤ k + 1.

The statement of the theorem follows from Theorem 2 and the linear-time
algorithm for finding an optimal edge rank coloring of trees[8]. ��

The following corollary is immediate from Theorem 1.

Corollary 2. For any rooted directed tree T , we can compute DT (T) and
RM(T) in polynomial time.

An interesting consequence of Theorem 2 is that the persistent reversible
pebbling number of a tree depends only on its underlying undirected graph. We
remark that this does not generalize to DAGs. Below we show two DAGs with
the same underlying undirected graph and different pebbling numbers.

1

2 4

3

5

6

7

(a) R•(G1) = 5

1

2 4

3

5

6

7

(b) R•(G2) = 6

Fig. 2. DAGs G1 and G2 have the same underlying undirected graph and different
persistent pebbling numbers

4 Time Upper-Bound for an Optimal Pebbling of
Complete Binary Trees

Proposition 1. The following statements hold.

1. R•(Bth) ≥ R•(Bth−1) + 1
2. R•(Bth) ≥ h + 2 for h ≥ 3
3. ([1]) R•(Chn) ≤ �log2(n) + 1 for all n

Reversible Pebble Game on Trees 91

Proof. (1) In any persistent pebbling of Bth, consider the earliest time after
pebbling the root at which one of the subtrees of the root vertex has Rφ(Bth−1)
pebbles. At this time, there is a pebble on the root and there is at least one
pebble on the other subtree of the root vertex. So, in total, there are at least
Rφ(Bth−1) + 2 ≥ R•(Bth−1) + 1 pebbles on the tree.

(2) Item (1) and the fact that R•(Bt3) = 5. ��

Theorem 3. There exists an optimal pebbling of Bth that takes at most
nO(log log(n)) steps.

Proof. We will describe an optimal upstream pebbler in a pebbler-challenger
game who pebbles root(Bth), left(root(Bth)), left(right(root(Bth))) and so
on. In general, the pebbler pebbles left(righti−1(root(Bth))) in the ith step for
1 ≤ i < h − log(h). An upper bound on the number of steps taken (denoted by
t(h)) by the reversible pebbling obtained from this game (which is, recursively
pebble left(righti−1(root(Bth))) for 0 ≤ i < h−log(h) and optimally pebble the
remaining tree Chh−log(h) + Btlog(h) using any algorithm) is given below. Here
the term (2h − log(h) + 1)3 log(h) is an upper bound on the number of different
pebbling configurations with 3 log(h) pebbles, and therefore an upper bound for
time taken for optimally pebbling the tree Chh−log(h) + Btlog(h).

t(h) ≤ 2 [t(h − 1) + t(h − 2) + . . . + t(log(h) + 1)] + (2h − log(h) + 1)3 log(h)

≤ 2ht(h − 1) + (2h − log(h) + 1)3 log(h)

= O
(
(2h)h(2h)3 log(h)

)

= (log(n))O(log(n)) = nO(log log(n))

In the first step, the pebbler will place a pebble on left(root(Bth)) and the
challenger will re-challenge the root vertex. These moves are optimal. Before
the ith step, the tree has pebbles on the root and left(rightj(root(Bth)))
for 0 ≤ j < i − 1. We argue that if i < h − log(h), placing a pebble
on left(righti−1(root(Bth))) is an optimal move. If the pebbler makes this
move, then the cost of the game is max(R•(Bth1−1), R•(Chi + Bth1−1)) =
R•(Chi + Bth1−1) ≤ R•(Bth1−1) + 1 = p, where h1 = h − i + 1. Note that
the inequality here is true when i < h − log(h) by Prop 1. We consider all other
possible pebble placements on ith step and prove that all of them are inferior.

– A pebble is placed on the path from the root to righti−1(root(Bth)) (inclu-
sive): The challenger will challenge the vertex on which this pebble is placed.
The cost of this game is then at least R•(Bth1) ≥ p.

– A pebble is placed on a vertex with height less than h1−1: The challenger will
re-challenge the root vertex and the cost of the game is at least R•(Chi +
Bth1−1).

The theorem follows. ��

92 B. Komarath et al.

5 Almost Optimal Pebblings of Complete Binary Trees

In this section, we show that we can get arbitrarily close to optimal pebblings
for complete binary trees using a polynomial number of steps.

Theorem 4. For any constant ε > 0, we can pebble Bth using at most (1 + ε)h
pebbles and nO(log(1/ε)) steps for sufficiently large h.

Proof. Let k ≥ 1 be an integer. Then consider the following pebbling strategy
parameterized by k.

1. Recursively pebble the subtrees rooted at left(righti(root(Bth))) for 0 ≤
i ≤ k − 1 and rightk(root(Bth)).

2. Leaving the (k + 1) pebbles on the tree (from the previous step), pebble the
root vertex using an additional k pebbles in 2k − 1 steps.

3. Retaining the pebble on the root, reverse step (1) to remove every other
pebble from the tree.

The number of pebbles and the number of steps used by the above strategy
on Bth for sufficiently large h is given by the following recurrences.

S(h) ≤ S(h − k) + (k + 1) ≤ (k + 1)
k

h

T (h) ≤ 2

[
k∑

i=1

T (h − i)

]

+ (2k + 2) ≤ (2k)h(2k + 2) ≤ nlog(k)+1(2k + 2)

where n is the number of vertices in Bth.
If we choose k > 1/ε, then the theorem follows. ��

6 Time-Space Trade-Offs for Bounded-Degree Trees

In this section, we study time-space trade-offs for bounded-degree trees.

Theorem 5. For any constant positive integer k, a bounded-degree tree T con-
sisting of n vertices can be pebbled using at most O

(
n1/k

)
pebbles and O

(
2kn

)

pebbling moves.

Proof. Let us prove this by induction on the value of k. In the base case (k = 1),
we are allowed to use O(n) pebbles. So, the best strategy would to place a pebble
on every vertex of T in bottom-up fashion, starting from the leaf vertices. After
the root is pebbled, we unpebble each vertex in exactly the reverse order, while
leaving the root pebbled.

In this strategy, clearly, each vertex is pebbled and unpebbled at most once.
Hence the number of pebbling moves must be bounded by 2n. Hence, a tree can
be pebbled using O(n) pebbles in O(2n) moves.

Now consider that for k ≤ k0 − 1, where k0 is an integer ≥ 2, any bounded-
degree tree T with n vertices can be pebbled using O

(
n1/k

)
pebbles in O

(
2kn

)

moves. Assume that we are allowed O
(
n1/k0

)
pebbles. To apply induction, we

will be decomposing the tree into smaller components. We prove the following.

Reversible Pebble Game on Trees 93

Claim. Let T ′ be any bounded-degree tree with n′ > n(k0−1)/k0 vertices and
maximum degree Δ. There exists a subtree T ′′ of T ′ such that the number of
vertices in T ′′ is at least �n(k0−1)/k0/2� and at most �n(k0−1)/k0.

Proof. From the classical tree-separator theorem, we know that T ′ can be divided

into two subtrees, where the larger subtree has between �n′/2� and
⌈

n′ · Δ

Δ + 1

⌉

vertices. The key is to recursively subdivide the tree in this way and continually
choose the larger subtree. However, we need to show that in doing this we will
definitely strike upon a subtree with the number of vertices within the required
range. Let T ′

1, T
′
2, . . . be the sequence of subtrees we obtain in these iterations.

Also let ni be the number of vertices in T ′
i for every i. Note that ∀i, �ni/2� ≤

ni+1 ≤
⌈

vi · Δ

Δ + 1

⌉

. Assume that j is the last iteration where nj > �n(k0−1)/k0.

Clearly nj+1 ≥ �n(k0−1)/k0/2�. Also, by the definition of j, nj+1 ≤ �n(k0−1)/k0.
Hence the proof. ��

The final strategy will be as follows:

1. Separate the tree into θ(n1/k0) connected subtrees, each containing
θ(n(k0−1)/k0) vertices. Claim 6 shows that this can always be done.

2. Let us number these subtrees in the following inductive fashion: denote by
T1, the ‘lowermost’ subtree, i.e. every path to the root of T1 must originate
from a leaf of T . Denote by Ti, the subtree for which every path to the root
originates from either a leaf of T or the root of some Tj for j < i. Also, let
ni denote the number of vertices in Ti.

3. Pebble T1 using O
(
n
1/(k0−1)
1

)
= O

(
n1/k0

)
pebbles. From the induction

hypothesis, we know that this can be done using O
(
2k0−1n1

)
pebbling

moves.
4. Retaining the pebble on the root vertex of T1, proceed to pebble T2 in the

same way as above. Continue this procedure till the root vertex of T is
pebbled. Then proceed to unpebble every vertex other than the root of T
by executing every pebble move upto this instant in reverse order.

Now we argue the bounds on the number of pebbles and pebbling moves of
the algorithm. Recall that the number of these subtrees is O

(
n1/k0

)
. Therefore,

the number of intermediate pebbles at the root vertices of these subtrees is
O

(
n1/k0

)
. Additionally, while pebbling the last subtree, O

(
n1/k0

)
pebbles are

used. Therefore, the total number of pebbles at any time remains O
(
n1/k0

)
. Each

of the subtrees are pebbled and unpebbled once (effectively pebbled twice). Thus,
the total number of pebbling moves is at most

∑
i 2O

(
2k0−1ni

)
= O

(
2k0n

)
. ��

7 Discussion and Open Problems

We studied reversible pebbling on trees. Although there are polynomial time
algorithms for computing black and black-white pebbling numbers for trees, it

94 B. Komarath et al.

was unclear, prior to our work, whether the reversible pebbling number for trees
could be computed in polynomial time. We also established that almost optimal
pebbling can be done in polynomial time.

We conclude with the following open problems.

– Prove or disprove that there is an optimal pebbling for complete binary trees
that takes at most O

(
nk

)
steps for a fixed k.

– Prove or disprove that the there is a constant k such that optimal pebbling
for any tree takes at most O

(
nk

)
(for black and black-white pebble games,

this statement is true with k = 1).
– Give a polynomial time algorithm for computing optimal pebblings of trees

that take the smallest number of steps.

References

1. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM Journal of
Computing 18(4), 766–776 (1989)

2. Chan, S.M.: Just a pebble game. In: Proceedings of the 28th Conference on Com-
putational Complexity (CCC), pp. 133–143 (2013)

3. Chan, S.M.: Pebble Games and Complexity. PhD thesis, EECS Department, Uni-
versity of California, Berkeley, August 2013

4. Dymond, P.W., Tompa, M.: Speedups of deterministic machines by synchronous
parallel machines. Journal of Computer and System Sciences 30(2), 149–161 (1985)

5. Gilbert, J.R., Lengauer, T., Tarjan, R.E.: The pebbling problem is complete in
polynomial space. SIAM Journal on Computing 9(3), 513–524 (1980)

6. Hertel, P., Pitassi, T.: The pspace-completeness of black-white pebbling. SIAM J.
Comput. 39(6), 2622–2682 (2010)

7. Král’ovic, R.: Time and space complexity of reversible pebbling. In: Pacholski, L.,
Ružička, P. (eds.) SOFSEM 2001. LNCS, vol. 2234, p. 292. Springer, Heidelberg
(2001)

8. Lam, T.W., Yue, F.L.: Optimal edge ranking of trees in linear time. In: Proc. of the
9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 436–445 (1998)

9. Loui, M.C.: The space complexity of two pebbles games on trees. Technical Report
MIT/LCS/TM-133, Massachusetts Institute of Technology (1979)

10. Raz, R., McKenzie, P.: Separation of the monotone NC hierarchy. Combinatorica
19(3), 403–435 (1999). Conference version appeared in proceedings of 38th Annual
Symposium on Foundations of Computer Science (FOCS 1997, Pages 234–243)

11. Sethi, R.: Complete register allocation problems. SIAM Journal on Computing,
pp. 226–248(1975)

12. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, September 2000
13. Yannakakis, M.: A polynomial algorithm for the min-cut linear arrangement of

trees. Journal of the ACM 32(4), 950–988 (1985)

Computational Complexity

Combinations of Some Shop Scheduling
Problems and the Shortest Path Problem:
Complexity and Approximation Algorithms

Kameng Nip, Zhenbo Wang(B), and Wenxun Xing

Department of Mathematical Sciences, Tsinghua University, Beijing, China
zwang@math.tsinghua.edu.cn

Abstract. We study several combinatorial optimization problems which
combine the classic shop scheduling problems (open shop scheduling or
job shop scheduling) and the shortest path problem. The objective of
the considered problem is to select a subset of jobs that forms a feasible
solution of the shortest path problem, and to execute the selected jobs on
the open shop or job shop machines such that the makespan is minimized.
We show that these problems are NP-hard even if the number of machines
is two, and they cannot be approximated within a factor of less than 2 if
the number of machines is an input unless P = NP. We present several
approximation algorithms for these problems.

Keywords: Approximation algorithm · Combination of optimization
problems · Job shop · Open shop · Scheduling · Shortest path

1 Introduction

Combinatorial optimization involves many active subfields, e.g. network flows,
scheduling, bin packing. Usually these subfields are motivated by various appli-
cations or theoretical interests, and separately developed. The development of
science and technology makes it possible to integrate manufacturing, service
and management. At the same time, the decision-makers always need to deal
with problems involving more than one combinatorial optimization problems.
For instance, the network monitoring scenario described in [17] and the railway
manufacturing scenario [12].

Wang and Cui [17] introduced a problem combining two classic combinatorial
optimization problems, namely parallel machine scheduling and the vertex cover
problem. The combination problem is to select a subset of jobs that forms a
vertex cover, and to schedule it on some identical parallel machines such that
the makespan is minimized. This work also inspired the study of the combination
of different combinatorial optimization problems.

Flow shop, open shop and job shop are three basic models of multi-stage
scheduling problems. Nip and Wang [12] studied a combination problem that
combines two-machine flow shop scheduling and the shortest path problem.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 97–108, 2015.
DOI: 10.1007/978-3-319-21398-9 8

98 K. Nip et al.

They argued that this problem is NP-hard, and proposed two approximation
algorithms with worst-case ratio 2 and 3

2 respectively. Recently, Nip et al. [13]
extended the results to the case that the number of flow shop machines is arbi-
trary. One motivation of this problem is manufacturing rail racks. We plan to
build a railway between two cities. How should we choose a feasible path in
a map, such that the corresponding rail tracks (jobs) can be manufactured on
some shop machines as early as possible? Similar scenarios can be found in
telecommunications and other transportation industries. It connects two clas-
sic combinatorial optimization problems, say shop scheduling and the shortest
path problem. An intuitive question is what will happen if the shop environment
is one of the other two well-known shop environments, i.e. open shop and job
shop. This is the core motivation for this current work. In this paper, we mainly
study two problems: the combination of open shop scheduling and the shortest
path problem, and the combination of job shop scheduling and the shortest path
problem.

The contributions of this paper are described as follows: (1) we argue that
these combination problems are NP-hard even if the number of machines is two,
and if the number of machines is an input, these problems cannot be approxi-
mated within a factor less than 2 unless P = NP; (2) we present several approxi-
mation algorithms with performance ratio summarized as follows in which ε > 0
is any constant and μ is the maximum operations per job in job shop scheduling.

Table 1. Performance of our algorithms

Number of Machines Open Shop Job Shop

2 FPTAS 3
2

+ ε*

m (fixed) PTAS** O
(

log2(mμ)
log log(mμ)

)

m (input) m m

* Assume that each job has at most 2 operations.
** A (2 + ε)-approximation algorithm is also proposed.

The rest of the paper is organized as follows. In Section 2, we give a formal
definition of the combination problems stated above, and briefly review some
related problems and algorithms that will be used subsequently. In Section 3,
we study the computational complexity of these combination problems and give
an inapproximability result when the number of machines is an input. Section 4
provides several approximation algorithms for these problems. Some concluding
remarks are provided in Section 5.

2 Preliminaries

2.1 Problem Description

We first recall the definitions of open shop and the job shop scheduling problems
in the literatures.

Combinations of Shop Scheduling and Path 99

Given a set of n jobs J = {J1, · · · , Jn} and m machines M = {M1, · · · ,Mm},
each job has several operations. At the same time, each machine can process at
most one job and each job can be processed on one machine. In the open shop
scheduling problem (Om||Cmax), each job must be processed on each machine
exactly once, but the processing order can be arbitrary (in other words, the
sequence of machines through which job passes can differ between jobs). In the
job shop scheduling (Jm||Cmax), the processing order of each job is given in
advance, and may differ between jobs. Furthermore, each job is allowed to be
processed on the same machine more than once but consecutive operations of
the same job must be processed on different machines, and is not necessary to
go through all machines in the job shop. The goal of Om||Cmax or Jm||Cmax is
to find a feasible schedule such that the makespan, that is, the completion time
of the last stage among all the jobs is minimum.

Now we define the combination problems considered in this paper.

Definition 1 (Om|shortest path|Cmax). Given a directed graph G = (V,A)
with two distinguished vertices s, t ∈ V , and m machines. Each arc aj ∈ A
corresponds to a job Jj ∈ J . The Om|shortest path|Cmax problem is to find an
s− t directed path P of G, and to schedule the jobs of JP on the open (job) shop
machines such that the minimum makespan over all P , where JP denotes the
set of jobs corresponding to the arcs in P .

Definition 2 (Jm|shortest path|Cmax). Given a directed graph G = (V,A) with
two distinguished vertices s, t ∈ V , and m machines. Each arc aj ∈ A corre-
sponds to a job Jj ∈ J . The Jm|shortest path|Cmax problem is to find an s − t
directed path P of G, and to schedule the jobs of JP on the job shop machines
such that the minimum makespan over all P , where JP denotes the set of jobs
corresponding to the arcs in P .

Let the number of jobs (arcs) be n, i.e. |A| = |J | = n. Let pij be the processing
times for Jj on machine Mi, and μij be the frequency of Jj processed on Mi.
Notice μij = 1 in the open shop.

It is not difficult to see that the shop scheduling problem (open shop or job
shop) and the classic shortest path problem are special cases of our problems.
For example, consider the following instances with m = 2 ([13]). If there is a
unique path from s to t in G, as shown in the left of Fig. 1, our problem is
the two-machine shop scheduling problem (open shop or job shop). If all the
processing times on the second machine are zero, as shown in the right of Fig.
1, then our problem is equivalent to the classic shortest path with respect to the
processing times on the first machine. Therefore we say the considered problems
are the combinations of the shop scheduling problems and the shortest path
problem.

In this paper, we will use the results of some optimization problems that
have a similar structure to the classic shortest path problem. We introduce the
generalized shortest path problem defined in [13].

Definition 3. Given a weighted directed graph G = (V,A,w1, · · · , wK) and two
distinguished vertices s, t ∈ V with |A| = n, each arc aj ∈ A, j = 1, · · · , n is

100 K. Nip et al.

Fig. 1. Special cases of our problems

associated with K weights w1
j , · · · , wK

j , and we define vector wk = (wk
1 , wk

2 , · · · ,

wk
n) for k = 1, 2, · · · ,K. The goal of our shortest path problem SP (G, s, t, f) is

to find an s − t directed path P that minimizes f(w1, w2, · · · , wK ;x), in which
f is a given objective function and x ∈ {0, 1}n contains the decision variables
such that xj = 1 if and only if aj ∈ P .

For simplicity of notation, we denote SP instead of SP (G, s, t, f) in the rest
of the paper. Notice SP is a generalization of various shortest path problems.
For example, if we set K = 1 and f(w1, x) = w1 ·x, where · is the dot product, it
is the classic shortest path problem. If f(w1, w2, · · · , wK ;x) = max{w1 · x,w2 ·
x, · · · , wK · x}, it is the min-max shortest path problem [1].

2.2 Review of Open Shop and Job Shop Scheduling

Gonzalez and Sahni [5] first gave a linear time optimal algorithm for O2||Cmax.
They also proved that Om||Cmax is NP-hard for m ≥ 3, however whether it is
strongly NP-hard is still an outstanding open problem. A feasible shop schedule
is called dense when any machine is idle if and only if there is no job that could
be processed on it. Rácsmány (see Bárány and Fiala [2]) observed that for any
dense schedule, the makespan is at most twice that of the optimal solution, which
leads to a greedy algorithm. Sevastianov and Woeginger [15] presented a PTAS
for fixed m, which is obtained by dividing jobs into large jobs and small jobs.
Their algorithm first optimally schedules the large jobs, then fills the operations
of the small jobs into the ‘gaps’. In this paper, we will use these algorithms, and
refer to them as the GS algorithm, Rácsmány algorithm and the SW algorithm
respectively. We present the main results of these algorithms as follows.

Theorem 1 ([5]).The GS algorithm returns an optimal schedule for O2||Cmax in
linear time such that Cmax = max

{
maxJj∈J(p1j + p2j),

∑
Jj∈J p1j ,

∑
Jj∈J p2j

}
.

Theorem 2 ([2,16]). Rácsmány algorithm returns a 2-approximation algo-
rithm for Om||Cmax such that Cmax ≤

∑
Jj∈J plj +

∑m
i=1 pik ≤ 2C∗

max, where Jk

is the last completed job and it is processed on Ml, and C∗
max denotes the optimal

makespan.

Theorem 3 ([15]). The SW algorithm is a PTAS for Om||Cmax.

For job shop scheduling problems, few polynomially solvable cases are known.
One is J2|op ≤ 2|Cmax, which can be solved by Jackson’s rule [6] that is an

Combinations of Shop Scheduling and Path 101

extension of Johnson’s rule for F2||Cmax (flow shop scheduling problem with
two machines [8]), where op ≤ 2 means there are at most 2 operations per job.

In fact, a slight change may lead to NP-hard problems. For instance, J2|op ≤
3|Cmax and J3|op ≤ 2|Cmax are NP-hard [9], J2|pij ∈ {1, 2}|Cmax and J3|pij =
1|Cmax are strongly NP-hard [10]. For the general case J ||Cmax, Shmoys, Stein
and Wein [16] constructed a randomized approximation algorithm with worst-
case ratio O

(
log2(mμ)

log log(mμ)

)
, where μ is the maximum number of operations per

job. Schmidt, Siegel and Srinivasan [14] obtained a deterministic algorithm with
the same bound by derandomizing. We refer to it as the SSW-SSS algorithm.
Moreover, for fixed m, the best known approximation algorithm is also proposed
in [16] with an approximation factor 2 + ε, where ε > 0 is an arbitrary constant.
If μ is a constant, the problem is denoted as Jm|op ≤ μ|Cmax and admits a
PTAS [7]. We list the main results mentioned above as follows.

Theorem 4 ([6]). Jackson’s rule solves J2|op ≤ 2|Cmax in O(n log n) time.

Theorem 5 ([14,16]). The SSW-SSS algorithm solves Jm||Cmax in polynomial
time, and returns a schedule with makespan

O

⎛

⎝ log2(mμ)
log log(mμ)

⎛

⎝ max
i∈{1,··· ,m}

∑

Jj∈J

μijpij + max
Jj∈J

m∑

i=1

μijpij

⎞

⎠

⎞

⎠ .

Furthermore, a well-known inapproximability result is that O||Cmax, F ||Cmax

and J ||Cmax cannot be approximated within 5
4 unless P = NP [18]. Recently,

Mastrolilli and Svensson [11] showed that J ||Cmax cannot be approximated
within O(log(mμ)1−ε) for ε > 0 based on a stronger assumption than P �= NP.

To conclude this subsection, we list some trivial bounds for a dense shop
schedule. Denote by Cmax the makespan of an arbitrary dense shop schedule
with job set J , and we have

Cmax ≥ max
i∈{1,··· ,m}

⎧
⎨

⎩

∑

Jj∈J

μijpij

⎫
⎬

⎭
, (1)

and

Cmax ≤
∑

Jj∈J

m∑

i=1

μijpij . (2)

For each job, we have

Cmax ≥
m∑

i=1

μijpij , ∀Jj ∈ J. (3)

102 K. Nip et al.

2.3 Review of Shortest Path Problems

It is well-known that Dijkstra algorithm solves the classic shortest path problem
with nonnegative edge weights in O(|V |2) time [3]. We have mentioned the min-
max shortest path problem, that is NP-hard even for K = 2, and Aissi, Bazgan
and Vanderpooten proposed an FPTAS if K is a fixed number [1]. We refer to
their algorithm as the ABV algorithm, which has the following result.

Theorem 6 ([1]). Given ε > 0, in a directed graph with K nonnegative
weights on each arc, where K is a fixed number, the ABV algorithm finds a
path P between two specific vertices satisfying maxi∈{1,2,··· ,K}

{∑
aj∈P wi

j

}
≤

(1 + ε) max
i∈{1,2,··· ,K}

{∑
aj∈P ′ wi

j

}
for any path P ′ between the two specified ver-

tices, and the running time is O(|A||V |K+1/εK).

In this paper, sometimes we need to find the min-max shortest path among all
the paths visiting some specified arcs if such a path exists. We propose a modified
ABV algorithm for this problem, which will be involved in the complete version.

3 Computational Complexity

First, notice that Om||Cmax and Jm||Cmax are special cases of the corresponding
combination problems, thus the combination problem is at least as hard as its
component optimization problems. On the other hand, we know that O2||Cmax

and J2|op ≤ 2|Cmax are polynomially solvable. However, we can simply verify
that the corresponding combination problems, say O2|shortest path|Cmax and
J2|op ≤ 2, shortest path|Cmax, are NP-hard by adopting the same reduction
proposed in Theorem 2 of [12] for the NP-hardness of F2|shortest path|Cmax.
We summarize the results as Theorem 7.

Theorem 7. J2|shortest path|Cmax is strongly NP-hard; O2|shortest path|Cmax

and J2|op ≤ 2, shortest path|Cmax are NP-hard.

Now we consider the case where the number of machines m is part of the
input. Williamson et al.[18] showed that it is NP-hard to approximate O||Cmax,
F ||Cmax or J ||Cmax within a factor less than 5

4 by a reduction from the restricted
versions of 3-SAT. They also showed that deciding if there is a scheduling of
length at most 3 is in P. We show that for these problems combining with shortest
path problem, deciding if there is a scheduling of length at most 1 is still NP-
hard. Our proof is established by constructing a reduction from 3-Dimensional
Matching (3DM) that is NP-complete [4].

Theorem 8. For O|shortest path|Cmax, deciding if there is a scheduling of
length at most 1 is NP-hard.

Notice that the reduction in Theorem 8 is also valid for F |shortest path|Cmax

and J |shortest path|Cmax, since each job in the reduction has only one nonzero
processing time. Therefore we have the following result.

Combinations of Shop Scheduling and Path 103

Corollary 1. The problems O|shortest path|Cmax, F |shortest path|Cmax and
J |shortest path|Cmax do not admit an approximation algorithm with worst-case
ratio less than 2, unless P = NP.

To our knowledge, the best known inapproximability results based on P �= NP
for F ||Cmax, O||Cmax and J ||Cmax are still 5

4 . The corollary implies that the com-
bination problems of the three shop scheduling problems and the shortest path
problem may have stronger inapproximability results than the original problems.

4 Approximation Algorithms

4.1 An Intuitive Algorithm for Arbitrary m

An intuitive algorithm was proposed for F2|shortest path|Cmax in [12]. The idea
is to find the classic shortest path by setting the weight of an arc to be the
sum of processing times of its corresponding job, and then schedule the returned
jobs by Johnson’s rule. This simple idea can be extended to the combination
problems we considered, even if the number of machines is an input.

Algorithm 1. The SD algorithm for O|shortest path|Cmax (J |shortest path|Cmax)

1: Find the shortest path in G with weights w1
j :=

∑m
i=1 μijpij by Dijkstra algorithm.

For the returned path P , construct the job set JP .
2: Obtain a dense schedule for the jobs of JP by an arbitrary open (job) shop schedul-

ing algorithm. Let σ be the returned job schedule and Cmax the returned makespan,
and denote the job set JP by S.

3: return S, σ and Cmax.

Theorem 9. For O|shortest path|Cmax and J |shortest path|Cmax, the SD algo-
rithm is m-approximated, and this bound is tight.

4.2 A Unified Algorithms for Fixed m

In [12], a 3
2 -approximation algorithm was proposed for F2|shortest path|Cmax.

The idea is to iteratively find a feasible path by the ABV algorithm [1] with
two weights for each arc, and schedule the corresponding jobs by Johnson’s rule,
then adaptively modify the weights of arcs and repeat the procedures until we
obtain a feasible schedule with good guarantee. We generalize this idea to solve
the combination problems considered in this paper. We first propose a unified
framework which is denoted as UAR(Alg, ρ, m), where Alg is a polynomial
time algorithm used for shop scheduling, ρ is a control parameter to decide
the termination rule of the iterations and the jobs to be modified, and m is
the number of machines. The pseudocode of the UAR(Alg, ρ, m)algorithm is
described by Algorithm 2.

By setting the appropriate scheduling algorithms and control parameters, we
can derive algorithms for different combination problems. Notice that at most
n jobs are modified in the UAR(Alg, ρ, m) algorithm, therefore the iterations

104 K. Nip et al.

Algorithm 2. Algorithm UAR(Alg, ρ, m)
1: Initially,(w1

j , w2
j , · · · , wm

j) := (μ1jp1j , μ2jp2j , · · · , μmjpmj), for aj ∈ A correspond-
ing to Jj .

2: Given ε > 0, use the ABV algorithm [1] to obtain a feasible path P to SP , and
construct the corresponding job set as JP .

3: Schedule the jobs of JP by the algorithm Alg, denote the returned makespan as
C′

max, and the job schedule as σ′.

4: S := JP , σ := σ′, Cmax := C′
max, D := ∅, M := (1 + ε)

∑
Jj∈J

m∑
i=1

μijpij + 1.

5: while JP ∩ D = ∅ and there exists Jj in JP satisfying
m∑

i=1

μijpij ≥ ρC′
max do

6: for all jobs satisfy
m∑

i=1

μijpij ≥ ρC′
max in J\D do

7: (w1
j , w2

j , · · · , wm
j) := (M, M, · · · , M), D := D ∪ {Jj}.

8: end for
9: Use the ABV algorithm [1] to obtain a feasible path P to SP , and construct the

corresponding job set as JP .
10: Schedule the jobs of JP by the algorithm Alg, denote the returned makespan as

C′
max, and the job schedule as σ′.

11: if C′
max < Cmax then

12: S := JP , σ := σ′, Cmax := C′
max.

13: end if
14: end while
15: return S, σ and Cmax.

execute at most n times. Since the scheduling algorithms for shop scheduling and
the ABV algorithm [1] are all polynomial time algorithms (for fixed m and ε), we
claim that the following algorithms based on UAR(Alg, ρ, m) are polynomial-
time algorithms. We present the algorithms and prove their performance as
follows.

We first apply the UAR(Alg, ρ, m) algorithm to O2|shortest path|Cmax by
setting Alg be the GS algorithm [5] and ρ = 1. We refer to this algorithm as the
GAR algorithm.

Algorithm 3. The GAR algorithm for O2|shortest path|Cmax

1: Let m = 2, Alg be the GS algorithm [5] for O2||Cmax and ρ = 1.
2: Solve the problem by using UAR(Alg, ρ, m).

Theorem 10. The GAR algorithm is an FPTAS for O2|shortest path|Cmax.

We point out that the proofs of the worst-case performance of algorithms
based on UAR(Alg, ρ, m) are quite similar. In the following proofs of this sub-
section, we will only describe the key ideas and main steps since the results can
be obtained by analogous arguments. We will adopt the same notations as in
the proof of Theorem 10, and also analyze the same two cases.

For Om|shortest path|Cmax where m is fixed, we obtain the following RAR
algorithm based on UAR(Alg, ρ, m) and Rácsmány algorithm [2,16].

Combinations of Shop Scheduling and Path 105

Algorithm 4. The RAR algorithm for Om|shortest path|Cmax

1: Let Alg be Rácsmány algorithm [2,16] for Om||Cmax and ρ = 1
2
.

2: Solve the problem by using UAR(Alg, ρ, m).

Theorem 11. Given ε > 0, the RAR algorithm is a (2+ ε)-approximation algo-
rithm for Om|shortest path|Cmax.

The framework can also be applied to the combination problem of job shop
scheduling and the shortest path problem. For the combination of J2|op ≤
2|Cmax and the shortest path problem, we obtain a (32 + ε)-approximation algo-
rithm by using Jackson’s rule and setting ρ = 2

3 in the UAR(Alg, ρ, m) algo-
rithm. We refer to this algorithm as the JJAR algorithm, and describe it in
Algorithm 5. Recall that all μij = 1 in J2|op ≤ 2|Cmax.

Algorithm 5. The JJAR algorithm for J2|op ≤ 2, shortest path|Cmax

1: Let m = 2, Alg be Jackson’s rule for J2|op ≤ 2|Cmax and ρ = 2
3
.

2: Solve the problem by using UAR(Alg, ρ, m).

Before studying the worst-case performance of the JJAR algorithm, we estab-
lish the following lemma. Let (1 → 2) ((2 → 1)) indicate the order that a job
needs to be processed on M1 (M2) first and then on M2 (M1).

Lemma 1. For J2|op ≤ 2|Cmax, let CJ
max be the makespan returned by Jackson’s

rule. Suppose we change the processing order of all jobs to be (1 → 2) ((2 → 1)),
and the processing times keep unchanged. Then schedule the jobs by Johnson’s
rule for F2||Cmax, and denote the makespan as C1

max (C2
max). We have CJ

max ≤
max{C1

max, C
2
max}.

Now we can study the performance of the JJAR algorithm for J2|op ≤
2, shortest path|Cmax.

Theorem 12. Given ε > 0, the JJAR algorithm is a (32 + ε)-approximation
algorithm for J2|op ≤ 2, shortest path|Cmax.

Finally, we study the general case Jm|shortest path|Cmax, where m is fixed.
By Theorem 5, we know that there exists α > 0, such that the SSW-SSS algo-
rithm [14,16] returns a schedule satisfying

C ′
max ≤ α

log2(mμ)
log log(mμ)

⎛

⎝ max
i∈{1,··· ,m}

∑

Jj∈J ′
μijpij + max

j∈J ′

m∑

i=1

μijpij

⎞

⎠ . (4)

The factor α is decided by choosing the probability of the randomized steps and
the subsequent operations in the SSW-SSS algorithm [14,16] [14,16], and its

106 K. Nip et al.

value can be obtained by complicated calculation. Assume we determine such
value of α. We can design an approximation algorithm with worst-case ratio
O

(
log2(mμ)

log log(mμ)

)
for Jm|shortest path|Cmax. We refer to this algorithm as the

SAR algorithm, and describe it in Algorithm 6.

Algorithm 6. The SAR algorithm for Jm|shortest path|Cmax

1: Let Alg be the SSW-SSS algorithm [14,16] for Jm||Cmax and ρ = log log(mμ)

2α log2(mμ)
.

2: Solve the problem by using UAR(Alg, ρ, m).

Theorem 13. The SAR algorithm is an O
(

log2(mμ)
log log(mμ)

)
-approximation algo-

rithm for Jm|shortest path|Cmax.

Remind that the SAR algorithm relies on the assumption, that we can deter-
mine the constant α for the SSW-SSS algorithm [14,16]. We can calculate it
by following the details of the SSW-SSS algorithm [14,16], and in fact we can
choose α large enough to guarantee the performance ratio of our algorithm.

4.3 A PTAS for Om|shortest path|Cmax

In the previous subsection, we introduced a (2 + ε)-approximation algorithm for
Om|shortest path|Cmax based on the UAR(Alg, ρ, m) algorithm. By a different
approach, we propose a (1 + ε)-approximation algorithm for any ε > 0, i.e. a
PTAS. We also iteratively find feasible solutions, but guarantee that one of the
returned solutions has the same first N -th largest jobs with an optimal solution
where N is a given constant. Precisely speaking, we say job Jj is larger than job
Jk if max

i∈{1,··· ,m}
pij > max

i∈{1,··· ,m}
pik. To do this, we enumerate all size N subsets

JN of J , and then iteratively modify the weights of the graph such that the
jobs larger than any job in JN will not be chosen. Then find a feasible solution
which contains all the jobs in JN corresponding to the modified graph, i.e., the
corresponding path is constrained to visit all the arcs corresponding to JN if
such a path exists.

To find a feasible solution in each iteration, we adopt the modified ABV
algorithm to obtain a near optimal min-max shortest path among all the paths
visiting the arcs corresponding to JN if such a path exists. Then we schedule the
selected jobs by [15] which is denoted as the SW algorithm [15] for Om||Cmax.
We refer to our algorithm as the SAE algorithm, and describe it in Algorithm 7.

There are
(

n
N

)
distinct subsets JN , thus the iterations between line 4 - line

12 run at most O(nN) times, that is a polynomial of n since N is a constant
when m and ε are fixed. Since the modified ABV algorithm is an FPTAS and the
SW algorithm [15] is a PTAS, the running time of each iteration is also bounded
by the polynomial of n if m and ε are fixed. It suffices to show that the SAE
algorithm terminates in polynomial time. The following theorem indicates the
SAE algorithm is a PTAS.

Combinations of Shop Scheduling and Path 107

Algorithm 7. The SAE algorithm for Om|shortest path|Cmax

1: Given 0 < ε < 1, set N = m
(

m(3+ε)
ε

)2 m(3+ε)
ε

.

2: Let D := ∅, M := (1 + ε
3
)
∑

Jj∈J

m∑
i=1

pij + 1, Cmax :=
∑

Jj∈J

m∑
i=1

pij .

3: Initially, (w1
j , w2

j , · · · , wm
j) := (p1j , p2j , · · · , pmj), for aj ∈ A corresponding to Jj .

4: for all JN ⊂ J , with |JN | = N do
5: (w1

j , w2
j , · · · , wm

j) := (p1j , p2j , · · · , pmj), D := ∅.
6: For jobs Jk ∈ J \ JN with max

i∈{1,··· ,m}
pik > min

Jj∈JN
max

i∈{1,··· ,m}
pij , set

(w1
k, w2

k, · · · , wm
k) := (M, M, · · · , M), D := D ∪ {Jk}.

7: Use the modified ABV algorithm to obtain a feasible path P of SP such that
the returned path visits all the arcs corresponding to JN if such a path exists.
Construct the corresponding job set as JP .

8: Schedule the jobs of JP by the SW algorithm [15], denote the returned makespan
as C′

max, and the job schedule as σ′.
9: if C′

max < Cmax then
10: S := JP , σ := σ′, Cmax := C′

max.
11: end if
12: end for
13: return S, σ, Cmax.

Theorem 14. The SAE algorithm is a PTAS for Jm|shortest path|Cmax.

5 Conclusions

This paper studies several problems combining two well-known combinatorial
optimization problems. We show the hardness of the problems, and present
some approximation algorithms. It is interesting to find approximation algo-
rithms with better worst-case ratios for J2|op ≤ 2, shortest path|Cmax and
Jm|shortest path|Cmax. Moreover, it needs further study to close the gap
between the 2-inapproximability results and the m-approximation algorithms
for O|shortest path|Cmax and J |shortest path|Cmax. We can also consider other
interesting combinations of combinatorial optimization problems.

Acknowledgments. Wang’s research has been supported by NSFC No. 11371216 and
Bilateral Scientific Cooperation Project between Tsinghua University and KU Leuven.
Xing’s research has been supported by NSFC No. 11171177.

References

1. Aissi, H., Bazgan, C., Vanderpooten, D.: Approximating min-max (regret) versions
of some polynomial problems. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006.
LNCS, vol. 4112, pp. 428–438. Springer, Heidelberg (2006)

2. Bárány, I., Fiala, T.: Többgépes ütemezési problémák közel optimális megoldása
(in Hungarian). Szigma - Matematikai - Közgazdasági Folyóirat 15, 177–191 (1982)

108 K. Nip et al.

3. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman, San Francisco (1979)

5. Gonzalez, T., Sahni, S.: Open shop scheduling to minimize finish time. Journal of
the Association for Computing Machinery 23, 665–679 (1976)

6. Jackson, J.R.: An extension of Johnson’s results on job-lot scheduling. Naval
Research Logistics Quarterly 3, 201–203 (1956)

7. Jansen, K., Solis-Oba, R., Sviridenko, M.: Makespan minimization in job shops:
A linear time approximation scheme. SIAM Journal on Discrete Mathematics 16,
288–300 (2003)

8. Johnson, S.M.: Optimal two- and three-stage production schedules with setup times
included. Naval Research Logistics Quarterly 1, 61–68 (1954)

9. Lenstra, J.K., Kan, A.R., Brucker, P.: Complexity of machine scheduling problems.
Annals of Operations Research 1, 343–362 (1977)

10. Lenstra, J.K., Rinnooy Kan, A.: Computational complexity of discrete optimiza-
tion. Annals of Operations Research 4, 121–140 (1979)

11. Mastrolilli, M., Svensson, O.: Hardness of approximating flow and job shop schedul-
ing problems. Journal of the Association for Computing Machinery 58, 20:1–20:32
(2011)

12. Nip, K., Wang, Z.: Combination of two-machine flow shop scheduling and shortest
path problems. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936,
pp. 680–687. Springer, Heidelberg (2013)

13. Nip, K., Wang, Z., Talla Nobibon, F., Leus, R.: A Combination of Flow Shop
Scheduling and the Shortest Path Problem. Journal of Combinatorial Optimization
29, 36–52 (2015)

14. Schmidt, J.P., Siegel, A., Srinivasan, A.: Chernoff-hoeffding bounds for applications
with limited independence. SIAM Journal on Discrete Mathematics 8, 223–250
(1995)

15. Sevastianov, S.V., Woeginger, G.J.: Makespan minimization in open shops: A
polynomial time approximation scheme. Mathematical Programming 82, 191–198
(1998)

16. Shmoys, D.B., Stein, C., Wein, J.: Improved approximation algorithms for shop
scheduling problems. SIAM Journal on Computing 23, 617–632 (1994)

17. Wang, Z., Cui, Z.: Combination of parallel machine scheduling and vertex cover.
Theoretical Computer Science 460, 10–15 (2012)

18. Williamson, D.P., Hall, L.A., Hoogeveen, J.A., Hurkens, C.A.J., Lenstra, J.K.,
Sevast’janov, S.V., Shmoys, D.B.: Short shop schedules. Operations Research 45,
288–294 (1997)

Complexity of Grundy Coloring and Its Variants

Édouard Bonnet1,2, Florent Foucaud3, Eun Jung Kim1, and Florian Sikora1(B)

1 PSL, LAMSADE - CNRS UMR 7243, Université Paris-Dauphine, Paris, France
{edouard.bonnet,eunjung.kim,florian.sikora}@dauphine.fr

2 Hungarian Academy of Sciences, Budapest, Hungary
3 LIMOS - CNRS UMR 6158, Université Blaise Pascal, Clermont-ferrand, France

florent.foucaud@gmail.com

Abstract. The Grundy number of a graph is the maximum number of
colors used by the greedy coloring algorithm over all vertex orderings.
In this paper, we study the computational complexity of Grundy Col-

oring, the problem of determining whether a given graph has Grundy
number at least k. We show that Grundy Coloring can be solved in
time O∗(2.443n) on graphs of order n. While the problem is known to
be solvable in time f(k,w) · n for graphs of treewidth w, we prove that
under the Exponential Time Hypothesis, it cannot be computed in time
O∗(cw), for any constant c. We also study the parameterized complexity
of Grundy Coloring parameterized by the number of colors, showing
that it is in FPT for graphs including chordal graphs, claw-free graphs,
and graphs excluding a fixed minor.

Finally, we consider two previously studied variants of Grundy Col-

oring, namely Weak Grundy Coloring and Connected Grundy

Coloring. We show that Weak Grundy Coloring is fixed-parameter
tractable with respect to the weak Grundy number. In stark contrast,
it turns out that checking whether a given graph has connected Grundy
number at least k is NP-complete already for k = 7.

1 Introduction

A k-coloring of a graph G is a surjective mapping ϕ : V (G) → {1, . . . , k} and
we say v is colored with ϕ(v). A k-coloring ϕ is proper if any two adjacent
vertices receive different colors in ϕ. The chromatic number χ(G) of G is the
smallest k such that G has a k-coloring. Determining the chromatic number of
a graph is the most fundamental problem in graph theory. Given a graph G
and an ordering σ = v1, . . . , vn of V (G), the first-fit algorithm colors vertex vi

with the smallest color that is not present among the set of its neighbors within
{v1, . . . , vi−1}. The Grundy number Γ (G) is the largest k such that G admits
a vertex ordering on which the first-fit algorithm yields a proper k-coloring.
First-fit is presumably the simplest heuristic to compute a proper coloring of

F. Foucaud—This research was done while this author was a postdoctoral fellow at
the Department of Mathematics of University of Johannesburg (South Africa) and
at LAMSADE.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 109–120, 2015.
DOI: 10.1007/978-3-319-21398-9 9

110 É. Bonnet et al.

a graph. In this sense, the Grundy number gives an algorithmic upper bound
on the performance of any heuristic for the chromatic number. This notion was
first studied by Grundy in 1939 in the context of digraphs and games [11], and
formally introduced 40 years later by Christen and Selkow [8]. Many works have
studied the first-fit algorithm in connection with on-line coloring algorithms,
see e.g. [21]. A natural relaxation of this concept is the weak Grundy number,
introduced by Kierstead and Saoub [17], where the obtained coloring is not asked
to be proper. A more restricted concept is the one of connected Grundy number,
introduced by Benevides et al. [3], where the algorithm is given an additional
“local” restriction: at each step, the subgraph induced by the colored vertices
must be connected.

The goal of this paper is to advance the study of the computational com-
plexity of determining the Grundy number, the weak Grundy number and the
connected Grundy number of a graph.

Let us introduce the problems formally. Let G be a graph and let σ =
v1, . . . , vn be an ordering of V (G). A (not necessarily proper) k-coloring ϕ :
V (G) → {1, . . . , k} of G is a first-fit coloring with respect to σ if for every vertex
vi and every color c with c < ϕ(vi), vi has a neighbor vj with ϕ(vj) = c for some
j < i. In particular, ϕ(v1) = 1. A vertex ordering σ = v1, . . . , vn is connected
if for every i, 1 � i � n, the subgraph induced by {v1, . . . , vi} is connected. A
k-coloring ϕ : V (G) → {1, . . . , k} is called the (i) weak Grundy, (ii) Grundy,
(iii) connected Grundy coloring of G, respectively, if it is a first-fit coloring with
respect to some vertex ordering σ such that (i) ϕ and σ has no restriction, (ii)
ϕ is proper, (iii) ϕ is proper and σ is connected, respectively.

The maximum number of colors used in a (weak, connected, respectively)
Grundy coloring is called the (weak, connected, respectively) Grundy number
and is denoted Γ (G) (Γ ′(G) and Γc(G), respectively). In this paper, we study
the complexity of computing these invariants.

Grundy Coloring

Input: A graph G, an integer k.
Question: Do we have Γ (G) � k?

The problems Weak Grundy Coloring and Connected Grundy Col-

oring are defined analogously.
Note that χ(G) � Γ (G) � Δ(G) + 1, where χ(G) is the chromatic number

and Δ(G) is the maximum degree of G. However, the difference Γ (G) − χ(G)
can be (arbitrarily) large, even for bipartite graphs. For example, the Grundy
number of the tree of Figure 1 is 4, whereas its chromatic number is 2. Note that
this is not the case for Γc for bipartite graphs, since Γc(G) � 2 for any bipartite
graph G [3]. However, the difference Γc(G)−χ(G) can be (arbitrarily) large even
for planar graphs [3].

Previous Results. Grundy Coloring remains NP-complete on bipartite
graphs [14] and their complements [25] (and hence claw-free graphs and P5-
free graphs), on chordal graphs [23], and on line graphs [13]. Certain graph

Complexity of Grundy Coloring and Its Variants 111

classes admit polynomial-time algorithms. There is a linear-time algorithm
for Grundy Coloring on trees [15]. This result was extended to graphs of
bounded treewidth by Telle and Proskurowski [24], which proposed a dynamic
programming algorithm running in time kO(w)2O(wk)n = O(n3w2) for graphs
of treewidth w (in other words, their algorithm is in FPT for parameter k + w
and in XP for parameter w).1 A polynomial-time algorithm for P4-laden graphs,
which contains all cographs as a subfamily, was given in [2].

Note that Grundy Coloring admits a polynomial-time algorithm when
the number k of colors is fixed [26], in other words, it is in XP for parameter k.

Grundy Coloring has polynomial-time constant-factor approximation
algorithms for inputs that are interval graphs [12,21], complements of chordal
graphs [12], complements of bipartite graphs [12] and bounded tolerance
graphs [17]. In general, however, there is a constant c > 1 s.t. approximat-
ing Grundy Coloring within c is impossible unless NP ⊆ RP [18]. It is not
known if a polynomial-time o(n)-factor approximation algorithm exists.

When parameterized by the graph’s order minus the number of colors,
Grundy Coloring was shown to be in FPT by Havet and Sempaio [14].

Connected Grundy Coloring was introduced by Benevides et al. [3],
who proved it to be NP-complete, even for chordal graphs and for co-bipartite
graphs. Weak Grundy Coloring is NP-complete [10].

Our Results. As pointed out in [24], no (extended) monadic second order expres-
sion is known for the property “Γ (G) � k”. Therefore it is not clear whether
the algorithm of [24] can be improved, e.g. to an algorithm of running time
f(w) · poly(n). Nevertheless, on general graphs, we show that Grundy Color-

ing can be solved in time O∗(2.443n).
As a lower bound to the positive algorithmic bounds, we show that under the

Exponential Time Hypothesis (ETH) [16], an O(cw · poly(n))-time algorithm for
Grundy Coloring does not exist (for any fixed constant c). Hence the expo-
nent n cannot be replaced by the treewidth in our O∗(2.443n)-time algorithm.

We also study the parameterized complexity of Grundy Coloring param-
eterized by the number of colors, showing that it is in FPT for graphs including
chordal graphs, claw-free graphs, and graphs excluding a fixed minor.

Finally, we show that Weak Grundy Coloring and Connected Grundy

Coloring exhibit opposite computational behavior when viewed through the
lense of parameterized complexity (for the parameter “number of colors”). While
Weak Grundy Coloring is shown to be FPT on general graphs, Connected

Grundy Coloring is NP-complete even when k = 7, i.e. does not belong to
XP (it is the only of the three studied problems to be in this case). Note that the
known NP-hardness proof for Connected Grundy Coloring was only for an
unbounded number of colors [3].

1 The first running time is not explicitly stated in [24] but follows from their meta-
theorem. The second one is deduced by the authors of [24] from the first one by
bounding k by w log2 n+ 1.

112 É. Bonnet et al.

Due to space constraints, some proofs are deferred to the full version of the
paper [6].

2 Preliminaries

We defer many (classic) technical definitions to the full version [6], and only
give the ones related to Grundy colorings. Given a graph G, a colored witness
of height �, or simply called an �-witness, is a subgraph G′ of G, which comes
with a partition W = W1 � · · · � W� of V (G′) such that for every i in 1, . . . , � (1)
Wi �= ∅, and (2) Wi is an independent dominating set of G[Wi ∪ · · · ∪ W�]. The
cell Wi under W is called the color class of color i. A witness G′ of height � is
said to be minimal if for every u ∈ V (G′), G′ −u with the partition W|V (G′)−{u}
is not an �-witness.

Observation 1. For any graph G, Γ (G) � k if and only if G allows a minimal
k-witness.

Observation 2. A minimal k-witness has a vertex of degree k − 1 (the root),
order at most 2k−1, and is included in the distance-k neighborhood of the root.

By these observations, k-Grundy Coloring can be solved by checking, for
every subset of 2k−1 vertices, if it contains a k-witness as an induced subgraph:

Corollary 3 ([26]). Grundy Coloring can be solved in time f(k)n2k−1
, i.e.

Grundy Coloring parameterized by the number k of colors is in XP.

Observation 4. In any Grundy coloring of G, a vertex with degree d cannot be
colored with color d + 2 or larger.

Proposition 5. Let G be a graph with a minimal Grundy coloring achieving
color k and let W be the corresponding minimal witness. Then, if a vertex u of
W is colored with k′ < k, u has a neighbor colored with some color k′′, k′′ > k′.

Proof. If not, one could remove u from the witness, a contradiction.

Lemma 6. Let G be a graph and let G′ be the corresponding minimal �-witness
with the partition W := W1 � · · · � W�. Then, Wi is an independent set which
dominates the set

⋃
j∈[i+1,�] Wj (and no proper subset of Wi has this property).

In particular, W1 is a minimal independent dominating set of V (G′).

For each i ∈ [l], let ti be a rooted tree. We define v[t1, t2, . . . , tl] as the tree
rooted at node v where v is linked to the root of each tree ti. The set (Tk)k�1 is a
family of rooted trees (known as binomial trees) defined as follows (see Figure 1
for an illustration):

– T1 consist only of one node (incidentally the root), and
– ∀k � 1, Tk+1 = v[T1, T2, . . . , Tk].

Complexity of Grundy Coloring and Its Variants 113

4

3

2

1 1

2

1 1

Fig. 1. The binomial tree T4, where numbers denote the color of each vertex in a
first-fit proper coloring with largest number of colors

In a tree Tk with root v, for each i ∈ [k], v(i) denotes the root of Ti (i.e. the i-th
child of v).

We now show a useful lemma about Grundy colorings of the tree Tk.

Lemma 7. The Grundy number of Tk is k. Moreover, there are exactly two
Grundy colorings achieving color k, and a unique coloring if we impose that the
root is colored k.

The following result of Chang and Hsu [7] will prove useful:

Theorem 8 ([7]). Let G be a graph on n vertices for which every subgraph H
has at most d|V (H)| edges. Then Γ (G) � logd+1/d(n) + 2.

3 Grundy Coloring: Algorithms and Complexity

3.1 An Exact Algorithm

A straightforward way to solve Grundy Coloring is to enumerate all possible
orderings of the vertex set and to check whether the greedy algorithm uses at
least k colors. This is a Θ(n!)-time algorithm. A natural question is whether
there is a faster exact algorithm. We now give such an algorithm.

We rely on two observations: (a) in a colored witness, every color class Wi is
an independent dominating set in G[

⋃
j�i Wj] (Lemma 6), and (b) any indepen-

dent dominating set is a maximal independent set (and vice versa). The algo-
rithm is obtained by dynamic programming over subsets, and uses an algorithm
which enumerates all maximal independent sets.

Theorem 9. Grundy Coloring can be solved in time O∗(2.44225n).

Proof. Let G = (V, E) be a graph. We present a dynamic programming algorithm
to compute Γ (G). For simplicity, given S ⊆ V , we denote the Grundy number
of the induced subgraph G[S] by Γ (S). We recursively fill a table Γ ∗(S) over
the subset lattice (2V , ⊆) of V in a bottom-up manner starting from S = ∅. The
base case of the recursion is Γ ∗(∅) = 0. The recursive formula is given as

Γ ∗(S) = max{Γ ∗(S\X)+1 | X ⊆ S is an independent dominating set of G[S]}.

Now let us show by induction on |S| that Γ ∗(S) = Γ (S) for all S ⊆ V . The
assertion trivially holds for the base case. Consider a nonempty subset S ⊆ V ;

114 É. Bonnet et al.

by induction hypothesis, Γ ∗(S′) = Γ (S′) for all S′ ⊂ S. Let X be a subset of S
achieving Γ ∗(S) = Γ ∗(S \ X) + 1 and X ′ be the set of the color class 1 in the
ordering achieving the Grundy number Γ (S).

Let us first see that Γ ∗(S) � Γ (S). By induction hypothesis we have Γ ∗(S \
X) = Γ (S \ X). Consider a vertex ordering σ on S \ X achieving Γ (S \ X).
Augmenting σ by placing all vertices of X at the beginning of the sequence
yields a (set of) vertex ordering(s). Since X is an independent set, the first-fit
algorithm gives color 1 to all vertices in X, and since X is also a dominating set
for S \X, no vertex of S \X receives color 1. Therefore, the first-fit algorithm on
such ordering uses Γ (S \ X) + 1 colors. We deduce that Γ (S) � Γ (S \ X) + 1 =
Γ ∗(S \ X) + 1 = Γ ∗(S).

To see that Γ ∗(S) � Γ (S), we first observe that Γ (S\X ′) � Γ (S)−1. Indeed,
the use of the optimal ordering of S ignoring vertices of X ′ on S \ X ′ yields the
color Γ (S) − 1. We deduce that Γ (S) � Γ (S \ X ′) + 1 = Γ ∗(S \ X ′) + 1 �
Γ ∗(S \ X) + 1 = Γ ∗(S).

As a minimal independent dominating set is a maximal independent set, we
can estimate the computation of the table by restricting X to the family of
maximal independent sets of G[S]. On an n-vertex graph, one can enumerate all
maximal independent sets in time O(1.44225n) [20]. Checking whether a given
set is a minimal independent set is polynomial and thus, the number of execution
steps is dominated (up to a polynomial factor) by the number of recursion steps
taken. This is

n∑

i=0

(
n

i

)

· 1.44225i = (1 + 1.44225)n.��

We leave as an open question to improve this running time. However, we
note that the fast subset convolution technique [4] does not seem to be directly
applicable.

3.2 Lower Bound on the Treewidth Dependency

Let us recall that Grundy Coloring is known to be in XP for the parameter
treewidth, but its membership in FPT remains open.

The following result is inspired by ideas in [19] for proving near-optimality
of known algorithm on bounded treewidth graphs. Unlike [19] which is based on
the Strong ETH, our result is based on the ETH.

Theorem 10. Under the ETH, for any constant c, Grundy Coloring is not
solvable in time O∗(cw) on graphs with feedback vertex set number (and hence
treewidth) at most w.

3.3 Grundy Coloring on Special Graph Classes

For each fixed k, Grundy Coloring can be solved in polynomial time [26]
and thus Grundy Coloring parameterized by the number of colors is in XP.

Complexity of Grundy Coloring and Its Variants 115

However, it is unknown whether it is in FPT for this parameter. We will next
show several positive results for H-minor-free, chordal and claw-free graphs.
Note that Grundy Coloring is NP-complete on chordal graphs [23] and on
claw-free graphs [25].

We first observe that the XP algorithm of [24] implies a pseudo-polynomial-
time algorithm on apex-minor-free graphs (such as planar graphs).

Proposition 11. Grundy Coloring is nO(log2 n)-time solvable on apex-
minor-free graphs.

Proposition 12. Grundy Coloring parameterized by the number of colors is
in FPT for the class of graphs excluding a fixed graph H as a minor.

Proof. Notice that G contains a k-witness H as an induced subgraph if and only
if Γ (G) � k. We can check, for every k-witness H, whether the input graph G
contains H as an induced subgraph. By Observation 1, it suffices to test only
the minimal k-witnesses. The number of minimal k-witnesses is bounded by
some function of k and H-Induced Subgraph Isomorphism is in FPT when
parameterized by |V (H)| on graphs excluding H as a minor [9]. Therefore, one
can check if Γ (G) � k by solving H-Induced Subgraph Isomorphism for all
minimal k-witnesses H. ��
Proposition 13. Let C be a graph class for which every member G satisfies
tw(G) � f(Γ (G)) for some function f . Then, Grundy Coloring parameter-
ized by the number of colors is in FPT on C. In particular, Grundy Coloring

is in FPT on chordal graphs.

Proof. Since Grundy Coloring is in FPT for parameter combination of the
number of colors and the treewidth [24], the first claim is immediate. Moreover
ω(G) � Γ (G), hence if tw(G) � f(ω(G)) we have tw(G) � f(Γ (G)). For any
chordal graph G, tw(G) = ω(G) − 1 [5]. ��
Proposition 14. Grundy Coloring can be solved in time O

(
nkΔk+1

)
=

nΔΔO(Δ)
for graphs of maximum degree Δ.

Proof. Observation 2 implies that one can enumerate every distance-k-
neighbourhood of each vertex, test every k-coloring of this neighborhood, and
check if it is a valid Grundy k-coloring. Every such neighborhood has size at
most Δk+1 � ΔΔ+3 since by Observation 4, k � Δ + 2. There are at most kx

k-colorings of a set of x elements. ��
Corollary 15. Let C be a graph class for which every member G satisfies
Δ(G) � f(Γ (G)) for some function f . Then, Grundy Coloring parameter-
ized by the number of colors is in FPT for graphs in C. In particular, this holds
for the class of claw-free graphs.

Proof. Straightforward by Proposition 14. Moreover, let G be a claw-free graph,
and consider a vertex v of degree Δ(G). Since G is claw-free, the subgraph
induced by the neighbors of v has independence number at most 2, and hence
Γ (G) � χ(G) � χ(N(v)) � Δ(G)

2 . ��

116 É. Bonnet et al.

4 Weak and Connected Grundy Coloring

Among the three versions of Grundy Coloring we consider in this paper,
Weak Grundy Coloring is the least constrained while Connected Grundy

Coloring appears to be the most constrained one. This intuition turns out
to be true when it comes to their parameterized complexity. When parame-
terized by the number of colors, Weak Grundy Coloring is in FPT while
Connected Grundy Coloring does not belong to XP.

We recall that Weak Grundy Coloring is NP-complete [10].

Theorem 16. Weak Grundy Coloring parameterized by number of colors
is in FPT.

The FPT-algorithm is based on the idea of color-coding by Alon et al. [1]. The
height of a minimal witness for Γ ′ � k is bounded by a function of k. Since those
vertices of the same color do not need to induce an independent set, a random
coloring will identify a colorful minimal witness with a good probability.

We also remark that the approach used to prove Theorem 16 does not work
for Grundy Coloring because there is no control on the fact that a color class
is an independent set.

Minimal connected Grundy k-witnesses, contrary to minimal Grundy k-
witnesses (Observation 2), have arbitrarily large order: for instance, the cycle
Cn of order n (n > 4, n odd) has a Grundy 3-witness of order 4, but its unique
connected Grundy 3-witness is of order n: the whole cycle.

Observe that Γc(G) � 2 if and only if G is bipartite. Hence, Connected

Grundy Coloring is polynomial-time solvable for any k � 3. However, we will
now show that this is not the case for larger values of k, contrary to Grundy

Coloring (Corollary 3). Hence, the parameterized version of the problem does
not belong to XP.

Theorem 17. Connected Grundy Coloring is NP-hard even for k = 7.

Proof. We give a reduction from 3-SAT 3-OCC, an NP-complete restriction of
3-SAT where each variable appears in at most three clauses [22], to Connected

Grundy Coloring with k = 7. We first give the intuition of the reduction. The
construction consists of a tree-like graph of constant order (resembling binomial
tree T6) whose root is adjacent to two vertices of a K6 (this constitutes W) and
contains three special vertices a4, a21, and a24 (which will have to be colored
with colors 1, 3, and 2 respectively), a connected graph P1 which encodes the
variables and a path P2 which encodes the clauses. One in every three vertices
of P2 is adjacent to a4, a21 and a24. To achieve color 7, we will need to color
those vertices with color strictly greater than 3. This will be possible if and only
if the assignment corresponding to the coloring of P1 satisfies all the clauses.

We now formally describe the construction. Let φ = (X = {x1, . . . , xn}, C =
{C1, . . . , Cm}) be an instance of 3-SAT 3-OCC where no variable appears
always as the same literal. P1 = ({i1, i2, v} ∪ {vi, vi | i ∈ [n]}, {{i1, i2}, {i2, v}} ∪
{{v, vi} ∪ {v, vi} ∪ {vi, vi} | i ∈ [n]}) consists of n triangles sharing the vertex v.

Complexity of Grundy Coloring and Its Variants 117

P2 = ({pj | j ∈ [3m − 1]}, {{pj , pj+1} | j ∈ [3m − 2]) consists of a path of length

3m − 1. For each j ∈ [m] and i ∈ [n], cj
def= p3j−1 is adjacent to vi if xi appears

positively in Cj , and is adjacent to vi if xi appears negatively in Cj . For each
j ∈ [m], cj is adjacent to a4, a21, and a24.

a4
i1

i2
v

v1 v1 v2 v2 v3 v3 v4 v4 a6

a9 c1 c2 c3 c4 a11

P1

P2

Fig. 2. P1 and P2 for the instance {x1∨¬x2∨x3}, {x1∨x2∨¬x4}, {¬x1∨x3∨x4}, {x2∨
¬x3 ∨ x4}

Intuitively, setting a literal to true consists of coloring the corresponding ver-
tices with 3. Therefore, a clause Cj is satisfied if cj has a 3 among its neighbors.
To actually satisfy a clause, one has to color cj with 4 or higher. Thus, cj must
also see a 2 in its neighborhood. We will show that the unique way of doing so
is to color p3j−2 with 2, so all the clauses have to be checked along the path P2.

We give, in Figure 3, a coloring of P1 corresponding to a truth assignment of
the instance SAT formula. One can check that when going along P2 all the cj ’s
are colored with color 4.

1
2

1
2

3 1 3 1 1 3 3 1 1

1 2 4 1 2 4 1 2 4 1 2 4 1

Fig. 3. A connected Grundy coloring such that all the cj ’s are colored with color at
least 4

The constant gadget W is depicted in Figure 4. The waves between a4 and
a6 and between a9 and a11 correspond, respectively, to the gadgets encoding
the variables (P1) and the clauses (P2) described above and drawn in Figure 2.
A connected Grundy coloring achieving color 7 is given in Figure 5 provided that
going from a9 to a11 can be done without coloring any vertex cj with color 2 or
less.

118 É. Bonnet et al.

a1 a2

a3

a4

a5 a6

a7

a8 a9

a10 a11

a12 a13 a14

a15

a16 a17

a18

a19

a20a21

a22a23

a24

a25a26

a27

a28

a29

a30 a31

a32

a33

Fig. 4. The constant gadget. The doubly-
circled vertices are adjacent to all the cj ’s
(j ∈ [m]).

1 2

3

1

2 1

4

2 1

2 1

3 1 2

5

1 2

1

2

13

24

2

31

6

1

2

3 4

5

7

Fig. 5. A connected Grundy color-
ing of the constant gadget achieving
color 7. The order is given by the
sequence (ai)1�i�33.

In the following claims, we use extensively Observation 1 which states that a
vertex with degree d gets color at most d+1. We observe that coloring a vertex
of degree d with color d + 1 is useful only if we want to achieve color d + 1.
Indeed, otherwise, the vertex has all its neighbors already colored and cannot
be used in the sequel. Moreover, if one wants to color a neighbor y of a vertex
x in order to color x with a higher color, y cannot receive a color greater than
its degree d(y). Hence, the only vertices that could achieve color k are vertices
of degree at least k − 1 having at least one neighbor of degree at least k − 1.

In the sequel, we call doubly-circled vertices the special vertices a4, a21 and
a24, as they are doubly-circled in our figures.

Claim 17.A. To achieve color 7, a27 needs to be colored with color 6 (while for
all i ∈ [28, 33], ai is still uncolored).

Claim 17.B. Vertices a26, a22, a25, a23, a15 must receive color 1, 2, 3, 4, 5
respectively.

Claim 17.C. Vertex a7 must receive color 4.

Claim 17.D. Vertex a3 must receive color 3.

Claim 17.D has further consequences: we must start the connected Grundy
coloring by giving colors 1 and 2 to a1 and a2. The only follow-up, for connectivity
reasons, is then to color a3 with color 3 and a4 with color 1. Thus, vertices a5
and a6 has to be colored with colors 2 and 1 respectively (so that a7 can be
colored 4). As, by Claim 17.B, a25 must receive color 3, a24 must receive color 2
(since a4 has already color 1), so a18 must be colored 1.

Claim 17.E. Vertex a21 must receive color 3.

Complexity of Grundy Coloring and Its Variants 119

Claim 17.F. The unique way of coloring a11 with color 1 without coloring any
vertex cj with color 1, 2, or 3 is to color all the cj’s for each j ∈ [m].

We remark that opposite literals are adjacent, so for each i ∈ [n], only one of
vi and vi can be colored with color 3. We interpret coloring vi with 3 as setting
xi to true and coloring vi with 3 as setting xi to false.

Claim 17.G. To color each cj (j ∈ [m]) of the path P2 with a color at least 4,
the SAT formula must be satisfiable.

So, to achieve color 7 in a connected Grundy coloring, the SAT formula must
be satisfiable. The reverse direction consists of completing the coloring by giving
a13 color 1 and a14 color 2, as shown in Figure 3 and Figure 5.

5 Concluding Remarks and Questions

We presented several positive and negative results concerning Grundy Color-

ing and two of its variants. To conclude this article, we suggest some questions
which might be useful as a guide for further studies.

There is a gap between the f(k, w) · n (and XP) algorithm of [24] and the
lower bound of Theorem 10. Is Grundy Coloring in FPT when parameterized
by treewidth? Two simpler questions are whether there is a better f(k, w)poly(n)
algorithm (for example with f(k, w) = kO(w)), and whether Grundy Coloring

is in FPT when parameterized by the feedback vertex set number (it is easy to
see that it is the case when parameterized by the vertex cover number).

Grundy Coloring (parameterized by the number of colors) is in XP, and
we showed it to be in FPT on many important graph classes. Yet, the question
whether it is in FPT or W[1]-hard remains unsolved. A perhaps more accessible
research direction is to settle this question on bipartite graphs.

It would also be interesting to determine the (classic) complexity of Grundy

Coloring on interval graphs. Also, we saw that the algorithm of [24] implies a
pseudo-polynomial algorithm for planar (even apex-minor-free) graphs, making
it unlikely to be NP-complete on this class. Is there a polynomial-time algorithm?

Concerning Connected Grundy Coloring, we showed that it becomes
NP-complete for k = 7. As Connected Grundy Coloring is polynomial-time
solvable for k � 3, its complexity status for 4 � k � 6 and/or on restricted graph
classes remains open.

References

1. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42(4), 844–856
(1995)

2. Araujo, J., Sales, C.L.: On the Grundy number of graphs with few P4’s. Discrete
Applied Mathematics 160(18), 2514–2522 (2012)

3. Benevides, F., Campos, V., Dourado, M., Griffiths, S., Morris, R., Sampaio, L.,
Silva, A.: Connected greedy colourings. In: Pardo, A., Viola, A. (eds.) LATIN
2014. LNCS, vol. 8392, pp. 433–441. Springer, Heidelberg (2014)

120 É. Bonnet et al.

4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast
subset convolution. In: Proc. 39th Annual ACM Symposium on Theory of Com-
puting, STOC 2007, pp. 67–74. ACM (2007)

5. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11(1–2),
1–21 (1993)

6. Bonnet, E., Foucaud, F., Kim, E.J., Sikora, F.: Complexity of grundy coloring and
its variants (2014). CoRR, abs/1407.5336

7. Chang, G.J., Hsu, H.-C.: First-fit chromatic numbers of d-degenerate graphs.
Discrete Mathematics 312(12–13), 2088–2090 (2012)

8. Christen, C.A., Selkow, S.M.: Some perfect coloring properties of graphs. Journal
of Combinatorial Theory, Series B 27(1), 49–59 (1979)

9. Flum, J., Grohe, M.: Fixed-parameter tractability, definability, and model-
checking. SIAM Journal on Computing 31(1), 113–145 (2001)

10. Goyal, N., Vishwanathan, S.: NP-completeness of undirected Grundy numbering
and related problems. Manuscript (1997)

11. Grundy, P.M.: Mathematics and games. Eureka 2, 6–8 (1939)
12. Gyárfás, A., Lehel, J.: On-line and first fit colorings of graphs. Journal of Graph

Theory 12(2), 217–227 (1988)
13. Havet, F., Maia, A.K., Yu, M.-L.: Complexity of greedy edge-colouring. Research

report RR-8171, INRIA, December 2012
14. Havet, F., Sampaio, L.: On the Grundy and b-chromatic numbers of a graph.

Algorithmica 65(4), 885–899 (2013)
15. Hedetniemi, S.M., Hedetniemi, S.T., Beyer, T.: A linear algorithm for the Grundy

(coloring) number of a tree. Congressus Numerantium 36, 351–363 (1982)
16. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential

complexity? Journal of Computer and System Sciences 63(4), 512–530 (2001)
17. Kierstead, H.A., Saoub, K.R.: First-fit coloring of bounded tolerance graphs. Dis-

crete Applied Mathematics 159(7), 605–611 (2011)
18. Kortsarz, G.: A lower bound for approximating Grundy numbering. Discrete Math-

ematics & Theoretical Computer Science 9(1) (2007)
19. Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs of bounded

treewidth are probably optimal. In: Proc. 22nd Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2011, pp. 777–789. SIAM (2011)

20. Moon, J., Moser, L.: On cliques in graphs. Israel Journal of Mathematics 3(1),
23–28 (1965)

21. Narayanaswamy, N.S., Babu, R.S.: A note on first-fit coloring of interval graphs.
Order 25(1), 49–53 (2008)

22. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)
23. Sampaio, L.: Algorithmic aspects of graph colouring heuristics. PhD thesis, Uni-

versity of Nice-Sophia Antipolis, November 2012
24. Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on par-

tial k-trees. SIAM Journal on Discrete Mathematics 10(4), 529–550 (1997)
25. Zaker, M.: The Grundy chromatic number of the complement of bipartite graphs.

Australasian Journal of Combinatorics 31, 325–329 (2005)
26. Zaker, M.: Results on the Grundy chromatic number of graphs. Discrete Mathe-

matics 306(23), 3166–3173 (2006)

On the Complexity of the Minimum
Independent Set Partition Problem

T.-H. Hubert Chan1, Charalampos Papamanthou2, and Zhichao Zhao1(B)

1 Department of Computer Science, The University of Hong Kong, Hong Kong, China
{hubert,zczhao}@cs.hku.hk

2 Department of Electrical and Computer Engineering,
UMIACS University of Maryland, College Park, USA

cpap@umd.edu

Abstract. We consider the Minimum Independent Set Partition Prob-
lem (MISP) and its dual (MISPDual). The input is a multi-set of N vectors
from {0, 1}n, where U := {1, . . . , n} is the index set. In MISP, a thresh-
old k is given and the goal is to partition U into a minimum number of
subsets such that the projected vectors on each subset of indices have
multiplicity at least k, where the multiplicity is the number of times a
vector repeats in the (projected) multi-set. In MISPDual, a target num-
ber χ is given instead of k, and the goal is to partition U into χ subsets
to maximize k such that each projected vector appears at least k times.

The problem is inspired from applications in private voting verifi-
cation. Each of the N vectors corresponds to a voter’s preference for n
contests. The n contests are partitioned into χ subsets such that each
voter receives a verifiable tracking number for each subset. For each sub-
set of contests, each voter’s tracking number together with the votes for
that subset is released in some public bulletin, which can be verified by
each voter. The multiplicity k of the vectors’ projection onto each subset
of indices ensures that the bulletin for each subset of contests satisfies
the standard privacy notion of k-anonymity.

In this paper, we show strong inapproximability results for both prob-
lems. For MISP, we show the problem is hard to approximate to within
a factor of n1−ε. For MISPDual, we show the problem is hard to approxi-
mate to within a factor of N1−ε. Here, ε can be any small constant. Note
that factors n and N approximation are trivial for MISP and MISPDual
respectively. Hence, our results imply that any polynomial-time algo-
rithm can almost do no better than the trivial one.

1 Introduction

We study the Minimum Independent Set Partition problem (MISP) and its
dual problem (MISPDual). This problem was raised by Wagner on cstheory.
stackexchange [12] in the context of data privacy [6]. We first describe the prob-
lem and an application scenario.

This research is partially funded by a grant from Hong Kong RGC under the contract
HKU719312E.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 121–132, 2015.
DOI: 10.1007/978-3-319-21398-9 10

cstheory.stackexchange
cstheory.stackexchange

122 T.-H. Hubert Chan et al.

In MISP, a multi-set Y of N vectors in {0, 1}n is given together with a
multiplicity threshold k. Our goal is to partition the indices [n] into minimum
number χ of subsets such that the projection of Y on each subset has multiplicity
at least k.

The dual problem MISPDual is also of interest, in which a multi-set Y of
vectors is also given. However, the target number χ of parts is given, and the goal
is to return a χ-partition of the indices [n] such that the minimum multiplicity
k of the projected vectors is maximized.

Application Scenario. The problem is motivated by privacy in voting verifi-
cation. We have N voters, each of whom is voting for n contests (with {0, 1}
voting). To verify that all votes have been counted, each voter gets assigned a
verifiable tracking number during voting. Then, there is a public bulletin board
where all pairs of tracking numbers and votes are posted (where names of voters
are withheld) such that each voter can verify that his votes are correct using
his own tracking number. This could provide verifiability, but it is well-known
in the privacy community that simply replacing a user’s name with a random
id cannot achieve privacy [6], since a voter might be uniquely identified by the
way he votes in the n contests.

An expensive solution would be for each voter to get a separate tracking
number for each contest, but this would increase the space complexity to store
n numbers for each voter. Observe that if k is the minimum of the number of
minority votes over all n contests, this expensive solution achieves the standard
notion of k-anonymity [11].

To obtain a tradeoff between the space complexity of each voter and the
anonymity parameter, one solution is: after receiving all votes, partition the n
contests into some small number χ of subsets such that within each subset of
contests, each voter has at least k − 1 other voters who vote in exactly the same
way in that subset of contests, for some parameter k. In the public bulletin
board, the χ subsets of contests are released independently. Each voter needs to
store only χ tracking numbers (one for each subset of contests), and k-anonymity
is achieved.

The case for MISP corresponds to the scenario when a parameter k is given,
and the goal is the minimize the number χ of subsets to achieve k-anonymity.
For the dual problem MISPDual, the number χ of subsets is given, and the goal
is to partition the contests into χ subsets such that the anonymity parameter k
is maximized. Hence, it is of interest to investigate the complexity and hardness
of approximation for these problems.

Our Results and Techniques. We prove strong inapproximability results for
both problems MISP and MISPDual. We first give a reduction from graph col-
oring, which is NP-hard; in graph coloring, each vertex is assigned a color such
that no two adjacent vertices receive the same color. Intuitively, each index in [n]
stands for a vertex, while the vectors capture the properties of the graph coloring
problem. In our construction, a valid coloring corresponds to a partition with
multiplicity k, while an invalid coloring corresponds to one with multiplicity 1.

On the Complexity of the Minimum Independent Set Partition Problem 123

The inapproximability of graph coloring implies that the approximation hard-
ness of MISP and MISPDual with χ ≥ 3 is at least n1−ε and N1−ε respectively.

However, we show that MISPDual with χ = 2 is much harder than graph col-
oring with χ = 2. Observe that deciding if a graph is 2-colorable can be solved
in polynomial time. Hence, to show the hardness of MISPDual with χ = 2, we
need new reduction techniques. We give a novel reduction from the NP-hard
problem 3-SAT. Similar to graph coloring, some indices stand for variables and
their negations. Intuitively, one subset stands for “true” and the other stands
for “false”. In order to show approximation hardness, for any threshold k, our
reduction is carefully constructed such that a satisfiable assignment corresponds
to a partition with multiplicity at least k, while an unsatisfiable formula corre-
sponds to an instance such that any 2-partition has multiplicity only 1. This gap
property allows us to prove that it is NP-hard to approximate MISPDual within
factor N1−ε.

Our strong inapproximability results imply that there can be no efficient
approximation algorithms for the problems MISP and MISPDual in their most
general form. However, in real-world applications, the instances might have spe-
cial structures that facilitate useful heuristic algorithms, which we leave as future
research directions.

1.1 Historical Overview on Inapproximability

NP-Completeness has been developed in the 1970s [2,9]. Its success motivated
the study of approximation algorithms. The first such paper was by Johnson [8].
He considered the problems Max SAT, Independent Set, Coloring and Set Cover.
Several approximation algorithms have been proposed for these problems in this
paper.

The design and analysis of approximation algorithms have grown since then.
Several problems are shown to admit polynomial time approximation schemes
(PTAS), meaning that they can be approximated as close to the optimum as pos-
sible. It was known from the very beginning of approximation algorithms that
some problems do not admit PTAS. For instance, coloring can not be approxi-
mated within 4

3 −ε, since 3-coloring is NP-hard. However, the inapproximabilities
for many hard problems remains unknown.

Modern theory of inapproximability starts from the development of PCP
systems, which are proved in [1]. Unlike conventional NP-hardness reduction,
PCP systems can be used more readily to achieve inapproximability hardness.
Based on PCP systems, several strong inapproximability have been proved since
then, e.g., MAX 3SAT [7], Set Cover [5] and Coloring [4,13]. In particular, one
of our reductions is based on the hardness of graph coloring [13].
Other Vector Partition Problems. Onn and Schulman [10] have also considered
vector partition problems in which the input is also a collection of vectors. How-
ever, the goal is to partition the vectors (as opposed the coordinate index set)
to maximize some convex objective function on the sum of vectors in each part.
They showed that if both the dimension and the number of parts are fixed, the
problem can be solved in strongly polynomial time.

124 T.-H. Hubert Chan et al.

2 Problem Definition

We give the formal definition of the Minimum Independent Set Partition Problem
(MISP). The input is a positive integer n, a multi-set Y := {y1, y2, . . . , yN} of N
vectors in {0, 1}n, and a multiplicity threshold k. We use U := [n] = {1, 2, . . . , n}
to denote the set of indices.

Given a vector y and subset I ⊆ U of indices, we use y|X to denote the
projection of vector y on I. For instance, for y = (0, 1, 0, 1, 0, 1) and I = {2, 4, 5},
y|I = (1, 1, 0). Given a multi-set Y , the projection of Y on I is a multi-set defined
similarly Y |I := {y|I : y ∈ Y }.

A subset I ⊆ U of indices is k-independent (with respect to Y) if each vector
in the multi-set Y |I has multiplicity at least k, where multiplicity denotes the
number of times a vector in Y |I repeats. A partition {I1, I2, . . . , Iχ} of U is
k-independent if each part Ii is k-independent.

The goal is to find the smallest integer χ and partition U into χ subsets
I1, . . . , Iχ such that each partition Ii is k-independent.

Dual Problem. We also describe a dual version of the problem that we call
MISPDual. Similarly, a multi-set Y of vectors are given, and a target number χ
of partitions is given instead of k. The goal is to maximize k and partition the
indices U into χ subsets I1, . . . , Iχ such that each Ii is k-independent.

3 General Reduction Schema

In this section, we reduce from the problem of graph coloring to MISP (and
MISPDual with χ ≥ 3); in a valid coloring of an undirected graph, each vertex
is assigned a color such that no two adjacent vertices receive the same color.
We convert from an undirected graph G = (V,E) to a multi-set of vectors such
that a valid coloring corresponds to satisfying some fixed multiplicity threshold
k while an invalid coloring leads to multiplicity 1. The use of this “k vs 1”-gap
will be clear in the proof of the hardness of MISPDual. Because graph coloring
is hard to approximate [13], our reduction readily implies the approximation
hardness of MISP (and MISPDual with χ ≥ 3).

Our reduction depends on an arbitrarily chosen parameter k > 1 that is
the same as the given threshold in MISP or may depend on the graph size
n = |V | in MISPDual. The index set is U := [n]. The multi-set Y consists of
N = k(n + 1) +

(
n
2

)
+ (k − 1)|E| vectors in {0, 1}n, where E is the edges in

the complement graph of G. We also use u ∈ V to denote an index of a vector.
Let MISP(G, k) be the instance reduced from graph G with parameter k. The
vectors in MISP(G, k) are defined as follows.

(I) An all-0’s vector, and the n vectors in the standard basis (each having
exactly one non-zero coordinate). Each of these vectors are repeated k
times. There are k(n + 1) such vectors.

(II) Vectors of exactly two non-zero coordinates. There are
(
n
2

)
such vectors.

On the Complexity of the Minimum Independent Set Partition Problem 125

(III) For each (u, v) /∈ E, the vector with exactly two non-zero entries at indices
u and v. Each of these vectors are repeated (k−1) times. There are (k−1)|E|
such vectors.

Figure 1 contains an example of the vectors for graph G = (V = {a, b, c, d}, E =
{{a, b}, {a, c}, {a, d}}) and k = 3. Observe that parts (I) and (II) only depend
on the size of graph G and k.

Note that a coloring of the graph gives a partition on U (and vice versa) in
a natural way, where vertices having the same color corresponds to a subset of
indices. Next we prove the relationship between colorings and partitions.

Theorem 1. For any k > 1 and graph G, G has a valid χ-coloring iff
MISP(G, k) has a k-independent χ-partition. If G does not have any valid χ-
coloring, then any χ-partition of MISP(G, k) is not 2-independent.

Proof. When G has a valid χ-coloring, we can induce a χ-partition from the
coloring. We prove it is k-independent. Given a subset I of indices, consider the
projected vectors in each part of the reduction.

Each projected vector in part (I) appears at least k times by the construction.
Each projected vector in (III) appears at least k times since it repeats k−1 times
in (III) and we can find a same one in (II).

For a vector in part (II), it depends on the indices u and v at which the
entries are non-zero. If at most one of them is included in I, then the projected
vector already appears k times in (I); otherwise, both u and v are included in I.

Two vertices u and v can be included in the same part I only if they are not
neighbors in G; hence, the projected vector appears once from (II) and k − 1
times from (III). This proves the “only if” part.

On the other hand, if a χ-partition is 2-independent, then we induce a χ-
coloring for G from the partition. We claim the coloring is valid. For any vertices
u, v with the same color, we have a vector in (II) with u, v in the same part I
(the part corresponding to their color). Such vector appears only once in (II).
It appears in (III) at least once, since the partition is 2-independent. Hence u, v
cannot be neighbours in G, thus it is a valid coloring. Notice k-independent
implies 2-independent. This proves the “if” part and the contrapositive proves
the second statement.

Theorem 2. The inapproximability of MISP is n1−ε for arbitrarily small ε >
0, unless P = NP; this means that if a k-independent partition has minimum
number of parts χ, it is NP-hard to return a k-independent partition with at
most n1−ε · χ parts. Moreover, the result holds for any constant k ≥ 2.

Proof. We want to show a reduction from a coloring instance G to an instance
of MISP. Use the “reduction schema” in Theorem 1 with k ≥ 2 to get a multi-set
Y , which is a MISP instance with threshold k.

It is immediate from Theorem 1 that the minimum χ such that there is a
k-independent partition with χ parts in the MISP instance is the same as the
chromatic number of G (the minimum number of colors needed to color G).

126 T.-H. Hubert Chan et al.

Thus, the inapproximability of graph coloring can be applied to MISP. The
inapproximability of chromatic number is n1−ε, by [13], meaning that it is NP-
hard to approximate chromatic number within a factor of n1−ε. Hence, it is also
NP-hard to approximate MISP within a factor of n1−ε.

4 Approximation Hardness of MISPDual

In this section, we show that the dual problem of maximizing the multiplicity of
the projections into partitions with χ ≥ 3 is hard to approximate. In Section 5,
we show that even for χ = 2, the problem is hard.

Theorem 3. For arbitrarily small constant ε > 0, there is no polynomial time
algorithm that approximates MISPDual within a factor of N1−ε, where N is the
number of vectors in the given multi-set Y ; moreover this result holds for any
constant χ ≥ 3, unless P=NP.

Remark 1. We comment on choosing “n vs N” as the parameter to express
approximation hardness. In MISP, a trivial solution is to partition U into n
singletons, and hence, it is natural to compare with the trivial solution with
approximation ratio n. Hence, inapproximability within factor n1−ε is a strong
indicator that no efficient algorithm would exist.

In MISPDual, since any partition would give multiplicity 1, and the maximum
possible multiplicity is the number N of vectors, inapproximability within factor
N1−ε indicates that there is no efficient algorithm. Observe that we can also
derive nC hardness for MISPDual for any constant C.

Proof. We use the fact [3] that the problem of deciding whether a graph is χ-
colorable is NP-complete for any χ ≥ 3. We reduce the problem of deciding
whether a graph G is χ-colorable to MISPDual, such that for a “YES” instance,
the multiplicity of MISPDual solution is at least k, otherwise the multiplicity is
at most 1. Later we will set k = nC for some large enough constant C = Ω(1ε).

Given a graph G, we use the “reduction schema” in Theorem 1 with k = nC

to get a multi-set Y , which is a MISPDual instance with the same χ (target
number of parts). Suppose the graph is χ-colorable. From Theorem 1, we know
that the MISPDual has a solution with multiplicity at least k. On the other
hand, if the graph is not χ-colorable, then MISPDual only has solutions with
multiplicity 1, since otherwise it will contradict Theorem 1.

Note that the gap between “NO” and “YES” instances is 1 vs k.
We next prove no polynomial algorithm can approximate MISPDual within

a factor better (smaller) than k = nC . Note that the size N of Y is at most
k(n+1)+

(
n
2

)
+(k−1)|E| ≤ nC+10, hence this will imply no polynomial algorithm

can approximate MISPDual within a factor better than N
C

C+10 .
Suppose there is an algorithm A that can approximate MISPDual within a

factor better than k. Then, we can decide whether a graph is χ-colorable by
examining if the multiplicity is greater than 1. Hence, it is NP-hard to approx-
imate MISPDual within a factor better than k = nC > N

C
C+10 . Note that for

constant C, this is a polynomial-time reduction.

On the Complexity of the Minimum Independent Set Partition Problem 127

Setting C large enough such that C
C+10 > 1 − ε gives the result.

5 Improved Approximation Hardness of MISPDual

This is the most technical part of the paper. In view of Section 4, it is natural
to ask whether MISPDual with χ = 2 is polynomial-time solvable, as deciding if
a graph is 2-colorable has an easy solution.

In this section, we answer this question negatively. We show strong inap-
proximability result for MISPDual with χ = 2. Observe that the reduction from
graph coloring no longer works. To derive such a result, we need some problem
with binary choice to tackle 2-partition. It turns out that 3-SAT does the job. In
our construction the two parts correspond to “true” and “false” literals. At the
same time, “true” and “false” literals are distinguishable via additional indices.
The inapproximability comes from the fact that any satisfiable assignment cor-
responds to a 2-partition with high multiplicity, while any non-satisfiable assign-
ment corresponds to a 2-partition with low multiplicity. In particular, we prove
the following result.

Theorem 4. For arbitrarily small constant ε > 0, there is no polynomial algo-
rithm that approximates MISPDual with χ = 2 within a factor of N1−ε, unless
P=NP.

Proof. We use the fact that 3-SAT is NP-hard [9]. We construct a reduction from
3-SAT to MISPDual with χ = 2. Consider an instance of 3-SAT: C = ∧l

i=1Ci =
∧l

i=1(ci,1 ∨ ci,2 ∨ ci,3), with l clauses and p distinct variables.
Here ci,j can be x or ¬x. Without loss of generality, we assume that x and

¬x do not appear in the same clause. It is obvious that p ≤ 3l, and we further
assume that p, l ≥ 2 to avoid trivial cases. The property of our reduction is that
a satisfiable 3-SAT instance corresponds a MISPDual solution with multiplicity
at least k (later fixed to be lΩ(1

ε)), while a non-satisfiable 3-SAT corresponds to
a MISPDual solution with multiplicity at most 1. Notice that the gap “1 vs k”
is used to derive the inapproximability result.

We next give the construction for the reduction from 3-SAT to MISPDual with
χ = 2. We need a parameter k ≥ 2 to be fixed later, which will be polynomially
related to l. We denote the resulting MISPDual instance by MISPDual(C, k),
where C is the 3-SAT instance and k is the parameter.

Our reduction will generate a multi-set Y of vectors from {0, 1}(1+l+2p), with
index set U := [l + 1 + 2p]. The first l indices are identification indices and are
denoted by [1..l]. The (l + 1)-th index is the separation index and is denoted by
(l + 1). The last 2p indices correspond to literals (and their negations) and are
denoted by the literals, e.g., x or ¬x. The use of identification and separation
indices will become clear in the proof.
NOTATION. To simplify description, coordinates not mentioned are 0.

There are four parts of vectors as below:

128 T.-H. Hubert Chan et al.

(I) There are 2k vectors:
The 1st vector is the vector with the first l coordinates being 1.
The 2nd to the k-th vectors are the vectors with the first l + 1 coordinates
being 1.
The (k + 1)-st vector is the vector with the (l + 1)-st coordinate being 1.
The remaining k − 1 vectors are all zero vectors.
The use of (I) is to force the identification indices 1..l to be in different
part from the separation index l + 1 in a “good” partition. Notice that
some (0, 1) will appear only once otherwise.

(II) There are (2k + 1)p vectors. For each variable x, we have (2k + 1) vectors
described as below:

(II.x) The first k vectors are the vectors with coordinates (x,¬x) being (0, 1).
The next k vectors are the vectors with coordinates (x,¬x) being (1, 0).
The last vector is a vector with indices (x,¬x) being (1, 1).

The use of (II) is to force x and ¬x to be apart. Since there will be only
one (1, 1) if the two indices are put together. In a “good” partition, literals
setting to be “true” are supposed to be within the identification indices’
(the first l indices) partition, while the “false” are in the separation index’s
(the l + 1-st index) partition.

(III) There are (3k + 1)l vectors. For each clause Ci = x ∨ y ∨ z (with literals x,
y and z), we have 3k + 1 vectors:

(III.i) The first k vectors are the vectors with the i-th coordinate set to 1 and
coordinates (¬y,¬z) set to 1.
The next k vectors are the vectors with the i-th coordinate set to 1 and
the coordinates (¬x,¬z) set to 1.
The next k vectors are the vectors with the i-th coordinate set to 1 and
the coordinates (¬x,¬y) set to 1.
The last vector is the vector with the i-th coordinate set to 1 and the
coordinates (¬x,¬y,¬z) set to 1.
Note that for all the (3k + 1) vectors, the i-th coordinate is set to 1.

The use of (III) is to force the variables to satisfy the constraints. Notice
that if a clause is not satisfied, then all the indices ¬x,¬y,¬z are on the
“true” side (together with the first l indices), causing (1, 1, 1) to appear
only once in the projection onto the coordinates (¬x,¬y,¬z). On the other
hand, as long as the not all indices ¬x,¬y,¬z are included on the “true”
side, any vector will appear at least k times. Notice the use of identification
indices (the first l indices) here. With different identification indices, clauses
will not affect each other.

(IV) There are lk vectors. For each clause Ci = x ∨ y ∨ z there are k vectors as
follows.

(IV.i) The k vectors are the same with the coordinates (¬x,¬y,¬z) set to 1.

Notice that in (IV) the identifier columns are set to 0, which is different
from (III). The idea is to handle the situation when in (III.i) all ¬x,¬y,¬z are
partitioned into the “false” side. If this happens, the vector (projected on the
“false” side with the (l + 1)-st index) will repeat at least k times. Figure 2 (in
appendix) gives an example for (x ∨ y ∨ z) ∧ (¬y ∨ ¬x ∨ w) with k = 2.

On the Complexity of the Minimum Independent Set Partition Problem 129

It remains to show that a satisfiable assignment corresponds to an k-
independent partition, while a non-satisfiable assignment corresponds to a
MISPDual instance such that any 2-partition is not 2-independent.

Lemma 1. For all k > 1 and 3-SAT instance C, if C has a satisfiable assign-
ment, then MISPDual(C, k) has a k-independent 2-partition.

Proof. Give a satisfiable assignment, we partition the indices set U into 2 subsets
T and F as follows. The first l indices [1..l] are included in T , and the (l + 1)-st
index is in F . For each literal x, if x = true then the index x is included in T
and the index ¬x is included in F ; otherwise, the index ¬x is in T and the index
x is in F .

We next consider the vectors in each part projected on T and F .

Claim. In (I), each vector appears at least k times on both T and F .

Proof. First we consider the each vector in (I) projected on T . By construction,
in the first l coordinates, each of the all 1’s and all 0’s vectors is repeated k
times, and other coordinates are all set to 0.

For the projections on F , only the (l + 1)-st index has non-zero values and
it contains exactly k 1’s and k 0’s. Hence, in (I), each projected vector repeats
at least k times.

Claim. In (II.x), each vector appears at least k times on both T and F .

Proof. It can be seen that the only non-zero values are at indices x and ¬x. At
both x and ¬x, we have more than k 0’s and k 1’s.

By the construction we know that x and ¬x are assigned to different parts.
In each part, the only non-zero coordinate is repeated at least k times, for each
of the two values 0 and 1.

Claim. In (III.i), each vector appears at least k times on both T and F .

Proof. We denote the i-th clause by Ci = x∨y∨z, where x, y, z can be a variable
or its negation. By construction, at least 1 of ¬x,¬y,¬z is in F , since it is a
satisfiable assignment. For instance, suppose ¬z is in F ; other situations follow
the same argument.

Consider projections on F . Since the first l indices are not in F , we can find
at least k same vectors in (III.i) and (IV.i) (in case ¬x,¬y,¬z ∈ F).

Now consider the projections on T . Vectors in (III.i) projected on T only
differ at indices ¬x and ¬y. It can be seen from the construction that no matter
which part each of the indices ¬x and ¬y goes, each projected vector still appears
at least k times. Hence, result of Claim 5 follows.

Claim. In (IV), each vector appears at least k times on both T and F .

Proof. This follows immediately from the construction.

The result of Lemma 1 follows, since each projected vector repeats at least
k times.

130 T.-H. Hubert Chan et al.

Lemma 2. For all k > 1 and 3-SAT instance C, if MISPDual(C, k) has a 2-
independent 2-partition, then C has a satisfiable assignment.

Proof. We first argue that if the 2-partition is 2-independent, then the identifi-
cation (first l) indices and the separation (l + 1-st) index should be in different
subsets. Similarly, x and ¬x should be in different subsets. Then, an assignment
is derived (such that literals on the same side as the identification indices are
set to true) and analyzed.

Claim. Each of the indices [1..l] is in the subset different from the subset con-
taining the index l + 1.

Proof. Note that the only 1’s at index l+1 happens in vectors 2 to k+1. Suppose
on the contrary that some index in j ∈ [1..l] is in the same subset at index l +1.
Then, at the coordinates (j, l + 1), the projection (0, 1) will appear only once
due to vector k + 1. This contradicts 2-independence.

We denote T as the subset containing [1..l], and F as the other subset F .

Claim. For each literal x, x and ¬x are in different subsets.

Proof. Notice that we assume that no x and ¬x appear in the same clause. As a
result, there will be no vector with coordinates (x,¬x) being (1, 1) in (I,III,IV).
Such a vector appears only once in (II). The result follows as the partition is
2-independent.

From this point it is obvious that we should assign true to the literals in T
and false to the literals in F . Next we prove that this is indeed a satisfying
assignment.

Claim. Every clause Ci is satisfied by the above assignment.

Proof. Suppose Ci = x ∨ y ∨ z is not satisfied. Then, it must be the case that
¬x,¬y,¬z ∈ T . We consider the vectors in (III.i) projected on T . From the con-
struction, in (III.i) there will be exactly one vector with coordinates (¬x,¬y,¬z)
being (1, 1, 1).

We argue that this vector projected on T does not appear anywhere else. To
see this, note that the identification indices are included in T , which is different
from all other parts except (III.i). In (III.i), such vector (projected on T) only
appears once, and hence the result follows.

This completes the proof of Lemma 2.

The following corollary is the contrapositive of Lemma 2.

Corollary 1. For all k > 1 and 3-SAT instance C, if C does not have any satis-
fiable assignment, then any 2-partition for MISPDual(C, k) is not 2-independent.

On the Complexity of the Minimum Independent Set Partition Problem 131

At this point, we can see that there is a gap of 1 vs k, meaning that to dis-
tinguish satisfiable 3-SAT from unsatisfiable ones, we only need to distinguish
between multiplicity 1 and k. Hence, any polynomial algorithm that approxi-
mates MISPDual within a factor better than k will imply P=NP.

We can set k = lC for some large enough constant C, and observing that N ≤
lC+10, we conclude that there is no polynomial algorithm with approximation
ratio better than N

C
C+10 .

Choosing C large enough (depending on ε) completes the proof of Theorem 4.

Appendix

Fig. 1. G = (V = {a, b, c, d}, E =
{{a, b}, {a, c}, {a, d}}) with k = 3

Fig. 2. (x ∨ y ∨ z) ∧ (¬y ∨ ¬x ∨ w) with
k = 2; unspecified entries are 0

Acknowledgments. We would like to thank David Wagner for posting the problem
online [12] and for useful discussions.

132 T.-H. Hubert Chan et al.

References

1. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of np.
J. ACM 45(1), 70–122 (1998)

2. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of
the Third Annual ACM Symposium on Theory of Computing, STOC 1971,
pp. 151–158. ACM, New York (1971)

3. Dailey, D.P.: Uniqueness of colorability and colorability of planar 4-regular graphs
are np-complete. Discrete Mathematics 30(3), 289–293 (1980)

4. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. In: Proceedings of
the Eleventh Annual IEEE Conference on Computational Complexity, pp. 278–287
(1996)

5. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652
(1998)

6. Ganta, S.R., Kasiviswanathan, S.P., Smith, A.: Composition attacks and auxiliary
information in data privacy. In: Proceedings of the 14th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD, pp. 265–273.
ACM, New York (2008)

7. H̊astad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)
8. Johnson, D.S.: Approximation algorithms for combinatorial problems. In: Proceed-

ings of the Fifth Annual ACM Symposium on Theory of Computing, STOC 1973,
pp. 38–49. ACM, New York (1973)

9. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press (1972)

10. Onn, S., Schulman, L.J.: The vector partition problem for convex objective func-
tions. Math. Oper. Res. 26(3), 583–590 (2001)

11. Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5), 557–570 (2002)

12. Wagner, D.: Find index set partition that has large projections (2013).
http://cstheory.stackexchange.com/questions/17562/find-index-set-partition-that-
has-large-projections

13. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory of Computing 3(6), 103–128 (2007)

http://cstheory.stackexchange.com/questions/17562/find-index-set-partition-that-has-large-projections
http://cstheory.stackexchange.com/questions/17562/find-index-set-partition-that-has-large-projections

Bivariate Complexity Analysis of Almost

Forest Deletion

Ashutosh Rai(B) and Saket Saurabh

The Institute of Mathematical Sciences, Chennai, India
{ashutosh,saket}@imsc.res.in

Abstract. In this paper we study a generalization of classic Feedback

Vertex Set problem in the realm of multivariate complexity analysis.
We say that a graph F is an l-forest if we can delete at most l edges from
F to get a forest. That is, F is at most l edges away from being a forest.
In this paper we introduce the Almost Forest Deletion problem,
where given a graph G and integers k and l, the question is whether
there exists a subset of at most k vertices such that its deletion leaves us
an l-forest. We show that this problem admits an algorithm with running
time 2O(l+k)nO(1) and a kernel of size O(kl(k + l)). We also show that
the problem admits a ctwnO(1) algorithm on bounded treewidth graphs,
using which we design a subexponential algorithm for the problem on
planar graphs.

1 Introduction

In the field of graph algorithms, vertex deletion problems constitute a consid-
erable fraction. In these problems we need to delete a small number of vertices
such that the resulting graph satisfies certain properties. Many well known prob-
lems like Vertex Cover and Feedback Vertex Set fall under this category.
Most of these problems are NP-complete due to a classic result by Lewis and
Yannakakis [19]. The field of parameterized complexity tries to provide efficient
algorithms for these NP-complete problems by going from the classical view of
single-variate measure of the running time to a multi-variate one. It aims at
getting algorithms of running time f(k)nO(1), where k is an integer measuring
some aspect of the problem. The integer k is called the parameter. In most of
the cases, the solution size is taken to be the parameter, which means that this
approach gives faster algorithms when the solution is of small size. For more
background, the reader is referred to the monographs [4,7,20].

Recently, there has been a trend of exploiting other structural properties of
the graph other than the solution size [2,3,6,14,18]. For further reading, reader
may refer to the recent survey by Fellows et al. [5]. In an earlier work, Guo
et al. [13] introduced the notion of “distance from triviality” which looked at
structural parameterization as a natural way to deal with problems which are
polynomial time solvable on some graph classes. They argued that we could ask
the same problems on some other (bigger) graph class which is close to the graph
class on which the problem is polynomial time solvable, but the parameter is the
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 133–144, 2015.
DOI: 10.1007/978-3-319-21398-9 11

134 A. Rai and S. Saurabh

closeness or the distance from the original graph class instead of the solution
size.

In the same spirit, we introduce the notion of distance from tractability.
We know that vertex deletion problems deal with deletion of vertices to get to
some graph class. For example, the Vertex Cover problem deals with deleting
vertices such that the resulting graph does not have any edge. Similarly, the
well known Feedback Vertex Set problem talks about deleting vertices such
that the resulting graph is a forest. What if we want to delete vertices so that
the resulting graph class is close to the earlier graph class, while taking the
measure of closeness as a parameter? This approach takes us from single variate
parameterized algorithms to multivariate ones, which throws some light on the
interplay between the parameters concerned. More precisely, they tell us about
the trade-offs if we want to go away from the tractable version of a problem, and
hence the term “distance from tractability”. We also point out that the term
can be a bit misleading, since in the case of this paper, we do find out tractable
(FPT) algorithms for these problems when we consider both the parameters.
But for want of a better term, we use it here.

There is already some work done which can be seen as examples of the
notion of parameterizing by distance from tractability. For example, the Partial
Vertex Cover and other related partial cover problems [1,10] come to mind,
where after the deletion of a small set of vertices, the resulting graph is close to
an edgeless graph. In these problems, the measure of closeness is the number of
edges. Similarly, work has been done on vertex deletion to get a graph of certain
treewidth, which can be looked as deletion of vertices to get a graph close to a
forest, where the measure of the closeness is the treewidth of the graph.

The algorithms of the above mentioned kind show the correlation between the
solution size and the distance from tractability. Let the distance from tractability
be the parameter �, and k be the number of vertices to be deleted. Suppose
we have an algorithm with running time say f(�)g(k)nO(1), then is it possible
to obtain an algorithm with running time h1(�)h2(k)nO(1)? That is, could we
disentangle the function depending on both � and k to a product of functions
where each function depends only on one of � and k. Answer to this question is yes
if we take f(�)g(�)f(k)g(k)nO(1). However, if we ask for an algorithm with running
time h(�)2O(g(k))nO(1) then it becomes interesting. This kind of question can be
asked for several problems. For an example, it is known that the Treewidth-η-
Deletion problem, where the objective is to test whether there exists a vertex
subset of size at most k such that its deletion leaves a graph of treewidth at
most η. For η = 0 and 1 this correspond to the Vertex Cover and Feedback

Vertex Set problems, respectively. It is known that Treewidth-η-Deletion

admits an algorithm with running time f(η)knO(1) [9,15]. However, it is not
known whether there exists an algorithm with running time h(η)2O(k)nO(1).
Clearly, algorithms with running time h(�)2O(g(k))nO(1) are more desirable.

The Feedback Vertex Set problem has been widely studied in the field of
parameterized algorithms. A series of results have improved the running times
to O∗(3.619k) in deterministic setting [17] and O∗(3k) in randomized setting [3],

Bivariate Complexity Analysis of Almost Forest Deletion 135

where the O∗ notation hides the polynomial factors. Looking at this problem in
the notion of distance from tractability, the number of edges comes to mind as
a natural measure of distance. More precisely, we try to address the question of
deleting vertices such that the resulting graph is l edges away from being a forest.
We call such forests l-forests, and the problem Almost Forest Deletion. The
main focus of this paper is to design algorithm for this problem with parameters
both l and k.

Our Results. We show that Almost Forest Deletion can be solved in
time O∗(5.0024(k+l)). We arrive at the result using the iterative compression
technique which was introduced in [21] and a non-trivial measure which helps us
in getting the desired running time. Then we explore the kernelization complexity
of the problem, and show that Almost Forest Deletion admits a polynomial
kernel with O(kl(k + l)) edges. For arriving at the result, we first make use of
the Expansion Lemma and Gallai’s theorem for reducing the maximum degree
of the graph, and then we bound the size of the graph. It is easy to see that
for a Yes instances (G, k, l) of Almost Forest Deletion, the treewidth of
G is bounded by k + l. Since we have an algorithm of the form O∗(c(k+l)) on
general graphs, the question of finding an O∗(ctw) algorithm becomes interesting
for bounded treewidth graphs. We answer this question affirmatively by giving
an O∗(17tw) algorithm for graphs which come with a tree decomposition of
width tw. This algorithm, along with the notion of bidimensionality gives rise
to an algorithm for Almost Forest Deletion on planar graphs running in
time 2O(

√
l+k)nO(1). Our methods are based on the known methods to solve the

Feedback Vertex Set problem.

2 Preliminaries

For a graph G, we denote the set of vertices of the graph by V (G) and the set
of edges of the graph by E(G). For a set S ⊆ V (G), the subgraph of G induced
by S is denoted by G[S] and it is defined as the subgraph of G with vertex set
S and edge set {(u, v) ∈ E(G) : u, v ∈ S}, and the subgraph obtained after
deleting S is denoted as G−S. If H is a subgraph of G, we write H ⊆ G and for
two graphs G1 = (V1, E1) and G2 = (V2, E2), by G1 ∪ G2, we denote the graph
(V1 ∪ V2, E1 ∪ E2). All vertices adjacent to a vertex v are called neighbours of
v and the set of all such vertices is called the neighbourhood of v. A k-flower
in a graph is a set of k cycles which are vertex disjoint except for one vertex
v, which is shared by all the cycles in the set. The vertex v is called center of
the flower and the cycles are called the petals of the flower. A forest is a graph
which does not contain any cycle. An l-forest is a graph which is at most l edges
away from being a forest, i.e. the graph can be transformed into a forest by
deleting at most l edges. For a connected component C of a graph, we call the
quantity |E(G[C])| − |C| + 1 the excess of C and denote it by ex(C). It can also
be equivalently defined as the minimum number of edges we need to delete from

136 A. Rai and S. Saurabh

the connected component to get to a tree. For a graph G, let C be the set of its
connected components. We define the excess of the graph, ex(G) as follows.

ex(G) =
∑

C∈C
ex(C)

As in the case of components, this measure can be equivalently defined as the
minimum number of edges we need to delete from G to to get to a forest. It is
easy to see that a graph G is an l-forest if and only if ex(G) ≤ l. For X ⊆ V (G)
such that G−X is an l-forest, we call X an l-forest deletion set of G. We denote
{1, . . . , n} by [n]. We define the Almost Forest Deletion problem as follows.

Almost Forest Deletion

Input: A graph G, integers k and l.
Parameter(s): l, k
Question: Does there exist X ⊆ V (G) such that |X| ≤ k and G − X is

an l-forest?

Observation 1. Let G′ be a subgraph of G. If G is an l-forest, then so is G′.

Observation 2. If G is an l-forest, it has at most V (G) − 1 + l edges.

Lemma 3. Let G be a graph. If there exists a vertex v such that v is not part
of any cycle in G, then ex(G−{v}) = ex(G). Furthermore, if v is part of a cycle
in G, then ex(G − {v}) ≤ ex(G) − 1.

Lemma 4. Let X ⊆ V (G) be a set of vertices of G which do not belong to any
cycle. Then, G is an l-forest if and only if G − X is an l-forest.

Lemma 5. Any l-forest can have at most l edge disjoint cycles.

Kernelization. A kernelization algorithm for a parameterized language L is
a polynomial time procedure which takes as input an instance (x, k1, . . . , kl),
where ki’s are the parameters and returns an instance (x′, k′

1, . . . , k
′
l) such that

(x, k1, . . . , kl) ∈ L if and only if (x′, k′
1, . . . , k

′
l) ∈ L and |x′| ≤ h(k1, . . . , kl) and

k′
i ≤ g(k1, . . . , kl) for all i ∈ [l], for some computable functions h, g. The returned

instance is said to be a kernel for L and the function h is said to be the size of
the kernel.

Treewidth. Let G be a graph. A tree-decomposition of a graph G is a pair
(T,X = {Xt}t∈V (T)) such that

– ∪t∈V (T)Xt = V (G),
– for every edge xy ∈ E(G) there is a t ∈ V (T) such that {x, y} ⊆ Xt, and
– for every vertex v ∈ V (G) the subgraph of T induced by the set {t | v ∈ Xt}

is connected.

Bivariate Complexity Analysis of Almost Forest Deletion 137

The width of a tree decomposition is maxt∈V (T) |Xt| − 1 and the treewidth of
G is the minimum width over all tree decompositions of G and is denoted by
tw(G).

A tree decomposition (T,X) is called a nice tree decomposition if T is a tree
rooted at some node r where Xr = ∅, each node of T has at most two children,
and each node is of one of the following kinds:

1. Introduce node: a node t that has only one child t′ where Xt ⊃ Xt′ and
|Xt| = |Xt′ | + 1.

2. Forget node: a node t that has only one child t′ where Xt ⊂ Xt′ and
|Xt| = |Xt′ | − 1.

3. Join node: a node t with two children t1 and t2 such that Xt = Xt1 = Xt2 .
4. Base node: a node t that is a leaf of T, is different than the root, and

Xt = ∅.

Notice that, according to the above definition, the root r of T is either a forget
node or a join node. It is well known that any tree decomposition of G can be
transformed into a nice tree decomposition maintaining the same width in linear
time [16]. We use Gt to denote the graph induced by the vertex set ∪t′Xt′ , where
t′ ranges over all descendants of t, including t. By E(Xt) we denote the edges
present in G[Xt].

3 An O∗(c(l+k)) Algorithm for Almost Forest Deletion

In this section we will present a c(l+k)nO(1) algorithm for Almost Forest

Deletion. We use the well known technique of iterative compression and arrive
at the desired running time after defining a non-trivial measure.

Given an instance (G, k, l) of Almost Forest Deletion, let V (G) =
{v1, . . . , vn} and define vertex sets Vi = {v1, . . . , vi}, and let the graph Gi =
G[Vi]. We iterate through the instances (Gi, k, l) starting from i = k + 1. For
the ith instance, we try to find an l-forest deletion set Ŝi of size at most k, with
the help of a known l-forest deletion set Si of size at most k + 1. Formally, the
compression problem we address is the following.

Almost Forest Deletion Compression

Input: A graph G, an l-forest deletion set S of G of size at most k+1,
integers k and l.

Parameter(s): k, l
Question: Does there exist X ⊆ V (G) such that |X| ≤ k and G − X is

an l-forest?

Lemma 6. If Almost Forest Deletion Compression can be solved in
f(k, l)nc time, then Almost Forest Deletion can be solved in f(k, l)nc+1

time.

138 A. Rai and S. Saurabh

For designing an algorithm for Almost Forest Deletion Compression,
let the input instance be (G,S, k, l). We guess a subset Y ⊆ S with the intention
of picking these vertices in our hypothetical solution for this instance and not
picking the rest of the vertices of S in the solution. We delete the set Y from
the graph and decrease k by |Y |. We then check if the graph G[S \ Y] is an
l-forest and if it is not, then reject this guess of Y as a spurious guess. Suppose
that G[S \ Y] is indeed an l-forest. Then, it remains only to check if there is
an l-forest deletion set S′ of the size k′ = k − |Y | which is disjoint from S \ Y ,
and G− (Y ∪S′) is an l-forest. More precisely, we have an instance of AFDDC,
which is defined as follows.

Almost Forest Deletion Disjoint Compression (AFDDC)

Input: A graph G, an l-forest deletion set S of G, integers k and l.
Parameter(s): k, l
Question: Does there exist X ⊆ V (G) such that X ∩ S = ∅, |X| ≤ k and

G − X is an l-forest?

To solve the problem, we first design a set of reduction rules.

Reduction Rule 1. If there exists a vertex v of degree at most 1 in the graph,
delete it.

Reduction Rule 2. If there exists v ∈ V (G) \S such that G[S ∪{v}] is not an
l-forest, delete v and decrease k by 1.

Reduction Rule 3. If there exists a vertex v ∈ V (G) \ S of degree two, such
that at least one of its neighbours is in V (G) \ S, then delete v and put a new
edge between its neighbours (even if they were already adjacent). If both of v’s
edges are to the same vertex, delete v and put a new self loop on the adjacent
vertex (even if it has self loop(s) already).

It is easy to see that after the exhaustive applications of reduction rules 1-3,
if there exists a vertex of degree at most 1 in G − S, then it has at least 2
neighbours in S.

Now we are ready to describe our algorithm for AFDDC. Given an input
instance (G,S, k, l) of AFDDC, we first apply reduction rules 1, 2 and 3 exhaus-
tively. If k < 0, then we return that the given instance is a No instance.

Now, we look for a vertex v of degree at most 1 in G − S and we branch
by either including v in our solution or excluding it. More precisely, we call the
algorithm recursively on (G − {v}, S, k − 1, l) and (G,S ∪ {v}, k, l). If one of the
recursive call returns Yes, then we say that the instance was a Yes instance. If
there does not exist a vertex of degree at most 1 in G − S, then there must be
a vertex v which is part of a cycle. In this case we branch on this vertex, and
call the algorithm recursively on (G−{v}, S, k − 1, l) and (G,S ∪{v}, k, l) as we
did in the previous case. This concludes the description of the algorithm. The
correctness of the algorithm follows from the correctness of reduction rules and
the fact that the branching is exhaustive.

Bivariate Complexity Analysis of Almost Forest Deletion 139

To analyze the running time of the algorithm, we define a measure φ(I) for
the input instance I = (G,S, k, l) as follows.

φ(I) = αk + βcc(S) + γ(l − ex(G[S])) + δ(ex(G − S))

Here, cc(S) denotes the number of connected components of G[S] and α, β,
γ, δ are positive constants such that δ > β. We will assume these properties for
now, and will fix the values of these constants later.

Lemma 7. None of the reduction rules 1-3 increases the measure φ(I).

Lemma 8. AFDDC can be solved in time O∗((4.0024)k(5.0018)l).

Proof. When be branch on a vertex v of degree at most 1 in G−S, the measure
drops by α in the first branch. In the other branch, depending on whether v’s
neighbours in S belong to different components or to the same component, the
measure drops by at least β or γ. This gives us branching factors of (α, β) and
(α, γ). Branching on a vertex v, which is part of a cycle in G − S, gives us a
branching factor of (α + δ, δ − β). We ran a numerical program to find values
of α, β, γ and δ, which optimize the running time of the algorithm. Putting
α = 1.45, β = 1.35, γ = 1.35 and δ = 1.9 gives us the worst case running time
of (4.0024)k(5.0018)lnO(1).
�

Given Lemma 8, the algorithm for Almost Forest Deletion Compres-

sion runs in time O(
∑k

i=0

(
k+1

i

)
· (4.0024)i(5.0018)l · nO(1)) = O∗(5.0024(k+l)).

Here, the factor of
(
k+1

i

)
is for the guesses we make for the set S. Finally applying

Lemma 6, we get the following theorem.

Theorem 9. Almost Forest Deletion can be solved in O∗(5.0024(k+l))
time.

4 O(kl(k + l)) Kernel for Almost Forest Deletion

In this section, we give the kernelization algorithm for Almost Forest Dele-

tion. First we give a set of reduction rules which help us bound the size of the
output instance. Throughout the section, we apply the reduction rules in order,
that is, while applying a reduction rule we assume that all the reduction rules
stated previously in the section have been applied exhaustively.

Reduction Rule 4. If there exists a vertex v of degree at most 1 in the graph,
delete it.

Reduction Rule 5. If there exists a vertex v ∈ V (G) of degree two then delete
v and put a new edge between its neighbours (even if they were already adjacent).
If both of v’s edges are to the same vertex, delete v and put a new self loop on
the adjacent vertex (even if it has self loop(s) already).

140 A. Rai and S. Saurabh

Reduction Rule 6. If any edge has multiplicity more that l+2, then delete all
but l + 2 copies of that edge.

Given an instance (G, k, l) of Almost Forest Deletion, we apply reduc-
tion rules 4-6 exhaustively. Observe that after the application of these reduction
rules, the graph has degree at least 3, as all the vertices of degrees 1 and 2 are
taken care of by Reduction Rule 4 and Reduction Rule 5 respectively.

Lemma 10. If a graph G has minimum degree at least 3, maximum degree at
most d, and an l-forest deletion set of size at most k, then it has less than
2l + k(d + 1) vertices and less than 2kd + 3l edges.

Lemma 10 gives rise to the following reduction rule immediately.

Reduction Rule 7. After the application of reduction rules 4, 5 and 6 exhaus-
tively, if either |V (G)| ≥ 2l + k(d + 1) or |E(G)| ≥ 2kd + 3l, where d is the
maximum degree of the graph, return that the given instance is a No instance.

After this, all that is left is to reduce the maximum degree of the graph. After
the exhaustive application of reduction rules 4, 5 and 6, if the maximum degree
of the graph is already bounded by (k + l)(3l + 8) then we already have a kernel
with O(kl(k + l)) vertices and O(kl(k + l)) edges. Hence we assume, for the rest
of the section, that after the exhaustive application of reduction rules 4- 7, there
exists a vertex v with degree greater than (k + l)(3l + 8). We need one more
reduction rule before we proceed further.

Reduction Rule 8. If there is a vertex v with more than l self loops, delete v
and decrease k by 1.

We now try to reduce the high degree vertices. The idea is that either a
high degree vertex participates in many cycles (and contributes many excess
edges) and hence should be part of the solution, or only a small part of its
neighbourhood is relevant for the solution. We formalize these notions by use
of Gallai’s theorem to find flowers and applying a set of reduction rules. Given
a set T ⊆ V (G), by T -path we mean set of paths of positive length with both
endpoints in T .

Theorem 11 (Gallai, [11]). Given a simple graph G, a set T ⊆ V (G) and an
integer s, one can in polynomial time find either

– a family of s + 1 pairwise vertex-disjoint T -paths, or
– a set B of at most 2s vertices, such that in G − B no connected component

contains more than one vertex of T .

We would want to have the neighborhood of a high degree vertex as the set
T for applying Gallai’s theorem and for detecting flowers. But we need to be
careful, as the graph in its current form contains multiple edges and self loops.
Let v be a vertex with high degree. The vertices in N(v) which have at least two
parallel edges to v can be greedily picked to form a petal of the flower. Let L be
the set of vertices in N(v) which have at least two parallel edges to v.

Bivariate Complexity Analysis of Almost Forest Deletion 141

Reduction Rule 9. If |L| > k + l, delete v and decrease k by 1.

Let Ĝ be the graph G − L with all parallel edges replaced with single edges,
and all self loops removed. It is not hard to show that finding an f -flower in G
centered at v is equivalent to finding an f −|L| flower in Ĝ centered at v for any
f ≥ |L|. Now we apply Gallai’s theorem on Ĝ with T = N(v) and s = k+ l−|L|.
If the theorem returns a collection of vertex disjoint T -paths, then it is easy
to see that they are in one to one correspondence with cycles including v, and
hence can be considered petals of the flower centered at v.

Reduction Rule 10. If the application of Gallai’s theorem returns a flower
with more than s petals, then delete v and decrease k by 1.

We now deal with the case when the application of Gallai’s theorem returns a
set B of at most 2(k+l−|L|) vertices, such that in Ĝ−B no connected component
contains more than one vertex of T . Let Z = B ∪L. Clearly, |Z| ≤ 2(k + l)−|L|.
Now we look at the set of connected components of Ĝ − (Z ∪ {v}). Let us call
this set C.

Reduction Rule 11. If more than k+ l components of C contain a cycle, then
return that the instance is a No instance.

Lemma 12. After applying reduction rules 4−11 exhaustively, there are at least
2(l + 2)(k + l) components in C which are trees and connected to v with exactly
one edge.

Proof. The number of self loops on v is bounded by l due to Reduction Rule 8.
Number of edges from v to Z is bounded by |B|+(l+2)|L| ≤ 2(k+ l−|L|)+(l+
2)|L| = 2(k+l)+l|L| ≤ (k+l)(l+2). As degree of v is greater than (k+l)(3l+8),
at least (k+ l)(3l+8)−(k+ l)(l+2)− l ≥ (k+ l)(2l+5) connected components in
C have exactly one vertex which is is neighbour of v. Out of these, the number
of connected components containing cycles is bounded by k + l by Reduction
Rule 11. Hence, at least 2(l + 2)(k + l) connected components are trees and are
connected to v by exactly one edge.
�

Before we proceed further, we state the Expansion Lemma. Let G be a bipar-
tite graph with vertex bipartition (A,B). For a positive integer q, a set of edges
M ⊆ E(G) is called a q-expansion of A into B if every vertex of A is incident
with exactly q edges of M , and exactly q|A| vertices in B are incident to M .

Lemma 13 (Expansion Lemma, [8]). Let q ≥ 1 be a positive integer and G
be a bipartite graph with vertex bipartition (A,B) such that |B| ≥ q|A| and there
are no isolated vertices in B. Then there exist nonempty vertex sets X ⊆ A and
Y ⊆ B such that there is a q-expansion of X into Y and no vertex in Y has a
neighbor outside X, that is, N(Y) ⊆ X. Furthermore, the sets X and Y can be
found in time polynomial in the size of G.

142 A. Rai and S. Saurabh

Let D the set of connected components of C which are trees and connected
to v with exactly one edge. We have shown that |D| ≥ 2(l + 2)(k + l). Now we
construct an auxiliary bipartite graph H as follows. In one partition of H, we
have a vertex for every connected component in D, and the other partition is Z.
We put an edge between A ∈ D and v ∈ Z if some vertex of A is adjacent to v.
Since every connected component in D is a tree and has only one edge to v, some
vertex in it has to have a neighbour in Z, otherwise Reduction Rule 1 would
apply. Now we have that |Z| ≤ 2(k + l) and every vertex in D is adjacent to
some vertex in Z, we may apply Expansion Lemma with q = l + 2. This means,
that in polynomial time, we can compute a nonempty set Ẑ ⊆ Z and a set of
connected components D̂ ⊆ D such that:

1. NG(
⋃

D∈ ̂D D) = Ẑ ∪ {v}, and
2. Each z ∈ Ẑ will have l + 2 private components A1

z, A
2
z, . . . A

l+2
z ∈ D̂ such

that z ∈ NG(Ai
z) for all i ∈ [l +2]. By private we mean that the components

A1
z, A

2
z, . . . A

l+2
z are all different for different z ∈ Ẑ.

Lemma 14. For any l-forest deletion set X of G that does not contain v, there
exists an l-forest deletion set X ′ in G such that |X ′| ≤ |X|, X ′ ∩ (

⋃
A∈ ̂D A) = ∅

and Ẑ ⊆ X ′.

Now we are ready to give the final reduction rule.

Reduction Rule 12. Delete all edges between v and
⋃

A∈ ̂D A and put l + 2
parallel edges between v and z for all z ∈ Ẑ.

Theorem 15. Almost Forest Deletion admits a kernel with O(kl(k + l))
vertices and O(kl(k + l)) edges.

Proof. First we show that either we have a kernel of the desired size or one of
the reduction rules 4-12 apply. So, we only need to define a measure which is
polynomial in the size of the graph and show that each of the reduction rules
decrease the measure by a constant. We define the measure of a graph G to
be φ(G) = 2|V (G)| + |E≤l+2|, where E≤l+2 is set of edges with multiplicity at
most l + 2. Then we show that each of the reduction rules either terminate the
algorithm or decrease the measure by a constant.
�

5 An O∗(ctw) Algorithm for Almost Forest Deletion

In this section, we first design an algorithm, which given an instance (G, k) of
Almost Forest Deletion along with a tree decomposition of G of width
at most tw, solves it in time O∗(ctw). Then, using that algorithm, we give
a subexponential time algorithm for Almost Forest Deletion on planar
graphs.

Theorem 16. Given an instance (G, k, l) of Almost Forest Deletion along
with tree decomposition of G of width at most tw, it can be solved in O∗(ctw)
time.

Bivariate Complexity Analysis of Almost Forest Deletion 143

Proof. For solving the problem in desired running time, we do dynamic pro-
gramming on the tree decomposition of G in a bottom-up manner, while storing
partial solution for each node of the tree. We use representative sets to store the
information about connectivity of the partial solutions. This can be done using
graphic matroid of a clique on vertices which are mapped to the tree node. We
also need to store the information about the extra edges. But since in an l-forest
it does not matter where exactly the extra edges are, we can make use of this
fact and solve the problem efficiently.
�

Theorem 17 (Planar Extended Grid Theorem [12,22]). Let t be a non-
negative integer. Then every planar graph G of treewidth at least 9

2 t contains
�t as a minor. Furthermore, for every ε > 0 there exists an O(n2) algorithm
that, for a given n-vertex planar graph G and integer t, either outputs a tree
decomposition of G of width at most (92 + ε)t, or returns that �t is a minor of
G, where �t denotes a grid of dimension t × t.

Lemma 18. Let X be an l-forest deletion set of �t of size at most k, then
t ≤

√
l + 3k + 1.

Theorems 16 and 17, along with Lemma 18 are combined to get the subex-
ponential time algorithm on planar graphs.

Theorem 19. Almost Forest Deletion can be solved in 2O(
√

l+k)nO(1) time
on planar graphs.

6 Conclusions

In this paper we studied Almost Forest Deletion and obtained a polynomial
kernel as well as a single exponential time algorithm for the problem. It would
be interesting to study other classical problems from this view-point of distance
from tractability using a suitable measure of distance.

References

1. Amini, O., Fomin, F.V., Saurabh, S.: Implicit branching and parameterized partial
cover problems. J. Comput. Syst. Sci. 77(6), 1159–1171 (2011)

2. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of
bounded treewidth. Comput. J. 51(3), 255–269 (2008)

3. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M.,
Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in
single exponential time. In: IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22–25, 2011,
pp. 150–159 (2011)

4. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer (2013)

144 A. Rai and S. Saurabh

5. Fellows, M.R., Jansen, B.M.P., Rosamond, F.A.: Towards fully multivari-
ate algorithmics: Parameter ecology and the deconstruction of computational
complexity. Eur. J. Comb. 34(3), 541–566 (2013)

6. Fellows, M.R., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F.A., Saurabh,
S.: The complexity ecology of parameters: An illustration using bounded max leaf
number. Theory Comput. Syst. 45(4), 822–848 (2009)

7. Flum, J., Grohe, M.: Parameterized Complexity Theory (Texts in Theoretical
Computer Science. An EATCS Series). Springer-Verlag New York Inc., Secaucus
(2006)

8. Fomin, F.V., Lokshtanov, D., Misra, N., Philip, G., Saurabh, S.: Hitting forbid-
den minors: approximation and kernelization. In: 28th International Symposium
on Theoretical Aspects of Computer Science, STACS 2011, March 10–12, 2011,
Dortmund, Germany, pp. 189–200 (2011)

9. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar f-deletion: approxi-
mation, kernelization and optimal FPT algorithms. In: 53rd Annual IEEE Sympo-
sium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA,
October 20–23, 2012, pp. 470–479 (2012)

10. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Subexponential algorithms
for partial cover problems. Inf. Process. Lett. 111(16), 814–818 (2011)

11. Gallai, T.: Maximum-minimum stze und verallgemeinerte faktoren von graphen.
Acta Mathematica Academiae Scientiarum Hungarica 12(1–2), 131–173 (1964)

12. Gu, Q., Tamaki, H.: Improved bounds on the planar branchwidth with respect to
the largest grid minor size. Algorithmica 64(3), 416–453 (2012)

13. Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing
problems: distance from triviality. In: Downey, R.G., Fellows, M.R., Dehne, F.
(eds.) IWPEC 2004. LNCS, vol. 3162, pp. 162–173. Springer, Heidelberg (2004)

14. Kawarabayashi, K., Mohar, B., Reed, B.A.: A simpler linear time algorithm for
embedding graphs into an arbitrary surface and the genus of graphs of bounded
tree-width. In 49th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2008, October 25–28, 2008, Philadelphia, PA, USA, pp. 771–780 (2008)

15. Kim, E.J., Langer, A., Paul, C., Reidl, F., Rossmanith, P., Sau, I., Sikdar, S.:
Linear kernels and single-exponential algorithms via protrusion decompositions.
In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013,
Part I. LNCS, vol. 7965, pp. 613–624. Springer, Heidelberg (2013)

16. Kloks, T.: Treewidth, Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994)

17. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf.
Process. Lett. 114(10), 556–560 (2014)

18. Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Deconstructing intractability -
A multivariate complexity analysis of interval constrained coloring. J. Discrete
Algorithms 9(1), 137–151 (2011)

19. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

20. Niedermeier, R.: Invitation to Fixed Parameter Algorithms (Oxford Lecture Series
in Mathematics and Its Applications). Oxford University Press, USA (2006)

21. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett.
32(4), 299–301 (2004)

22. Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J.
Comb. Theory, Ser. B 62(2), 323–348 (1994)

Approximation Algorithms

Improved Approximation Algorithms
for Min-Max and Minimum Vehicle

Routing Problems

Wei Yu and Zhaohui Liu(B)

Department of Mathematics, East China University of Science and Technology,
Shanghai 200237, China

{yuwei,zhliu}@ecust.edu.cn

Abstract. Given an undirected weighted graph G = (V, E), a set
C1, C2, . . . , Ck of cycles is called a cycle cover of V ′ if V ′ ⊂ ∪k

i=1V (Ci)
and its cost is the maximum weight of the cycles. The Min-Max Cycle
Cover Problem(MMCCP) is to find a minimum cost cycle cover of V with
at most k cycles. The Rooted Min-Max Cycle Cover Problem(RMMCCP)
is to find a minimum cost cycle cover of V \D with at most k cycles and
each cycle contains one vertex in D. The Minimum Cycle Cover Prob-
lem(MCCP) aims to find a cycle cover of V of cost at most λ with min-
imum number of cycles. We propose approximation algorithms for the
MMCCP, RMCCP and MCCP with ratios 5, 6 and 24/5, respectively.
Our results improve the previous algorithms in term of both approxima-
tion ratios and running times. Moreover, we transform a ρ-approximation
algorithm for the TSP into approximation algorithms for the MMCCP,
RMCCP and MCCP with ratios 4ρ, 4ρ + 1 and 4ρ, respectively.

Keywords: Vehicle routing · Cycle cover · Traveling salesman problem ·
Approximation algorithm

1 Introduction

In the last two decades, considerable research attention has been devoted to the
following fundamental vehicle routing problem. Given a fleet of k vehicles and
a general network, there is exactly one customer located at each vertex. Each
vehicle has to start from some vertex to visit some customers and return to
the same vertex. There is a travel cost for each pair of vertices that obeys the
triangle inequality. The goal is to find a routing for the vehicles to collectively
visit all the customers such that the maximum traveling cost of the vehicles is
minimum. If described by graph theoretic language, the above problem is to
cover all the vertices of an undirected weighted graph with at most k cycles such
that the maximum weight of the cycles is minimum. It is called the Min-Max
Cycle Cover Problem(MMCCP) in the literature(see [15]). In the rooted version,
called the Rooted Min-Max Cycle Cover Problem(RMMCCP), the objective is
to use at most k rooted cycles, i.e., cycles contain one vertex of a given depot set
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 147–158, 2015.
DOI: 10.1007/978-3-319-21398-9 12

148 W. Yu and Z. Liu

of vertices, to cover the non-depot vertices such that the maximum weight of the
cycles is minimum. In the MMCCP and RMMCCP, if an upper bound λ > 0 is
given for the weight of each cycle and the goal is to minimize the number of cycles
used to cover the vertices, we obtain the Minimum Cycle Cover Problem(MCCP)
and the Rooted Minimum Cycle Cover Problem(RMCCP), respectively.

The above-mentioned vehicle routing problems and their variants find numer-
ous applications in operations research and computer science. RMMCCP and
MMCCP were introduced by Even et al. [6] to model “Nurse Station Loca-
tion Problem”. Campbell et al. [4] illustrated how disaster relief efforts can be
improved by efficient algorithms for min-max cycle/path cover problems. Xu
et al. [15] described some applications of cycle cover problems in wireless sensor
networks. For more practical examples involving min-max and minimum vehicle
routing problems we refer to [1,14,16–18] and the references therein.

Unfortunately, all the problems RMMCCP, MMCCP, RMCCP, MCCP are
NP-hard since they are extensions of the well-know Traveling Salesman Problem.
Therefore, previous results mainly focus on devising approximation algorithms
with good performance ratios.

1.1 Previous Works

Xu et al. [18] showed that both the MMCCP and the RMMCCP cannot be
approximated within ratio 4/3, unless P=NP. Xu and Wen [16] gave an inap-
proximability bound of 20/17 for the single-depot RMMCCP. By the NP-
completeness of the well-known Hamiltonian Cycle Problem, both the MCCP
and the RMCCP can not be approximated within ratio 2.

For the MMCCP, a closely related problem, called the Min-Max Tree Cover
Problem(MMTCP), can be obtained by replacing cycles with trees. On the one
hand, the optimal value of the MMTCP can not be greater than that of the
MMCCP. On the other hand, by duplicating each edge of a feasible solution of
the MMTCP we obtain a feasible solution of MMCCP with the objective value
doubled. Therefore, any α-approximation algorithm for the MMTCP implies a
2α-approximation algorithm for the MMCCP. Even et al. [6] and Arkin et al.
[1] developed independently 4-approximation algorithms for the MMTCP by
different algorithmic techniques. Khani and Salavatipour [10] give an improved
3-approximation algorithm, which implies a 6-approximation algorithm for the
MMCCP. Xu et al. [18] also derived an approximation algorithm with the same
ratio 6. These algorithms were improved to a 16/3-approximation algorithm by
Xu et al. [15].

For the RMMCCP, Xu et al. [18] proposed a 7-approximation algorithm.
Later, Xu et al. [15] improved the approximation ratio to 19/3. For the single-
depot RMMCCP, Frederickson et al. [7] achieved a better ratio of ρ+1, where ρ is
the approximation ratio of the best available algorithm for the Traveling Sales-
man Problem. By using the well-known Christofides’ Algorithm[5] this implies a
5/2-approximation algorithm. Moreover, Nagamochi [11], Nagamochi and Okada
[11,13] obtained better results on a special case of the RMMCCP where the graph
is the metric closure of a tree.

Improved Approximation Algorithms for Min-Max and Minimum 149

In the MCCP, by replacing cycles with trees we derive the Minimum Tree
Cover Problem(MTCP), which is also named as Bounded Tree Cover Problem
in [10]. Since a cycle of weight at most λ can be splitted into two paths(which
are also trees) of weight at most λ

2 by removing properly two edges, two times
the optimal value of the MCCP can not be less than the optimal value of the
corresponding MTCP with the upper bound on the weight of the trees reset to
λ
2 . On the other hand, by doubling the edges of a feasible solution of the MTCP
with the revised upper bound we obtain a feasible solution of the MCCP. There-
fore, any α-approximation algorithm for the MTCP implies a 2α-approximation
algorithm for the MCCP. Arkin et al. [1] developed a 6-approximation algorithm
for the MCCP. This result is also implied by the 3-approximation algorithm for
the MTCP in the same paper. Khani and Salavatipour [10] gave an improved
5/2-approximation algorithm for the MTCP, which indicates a 5-approximation
algorithm for the MCCP.

The approximability of the RMCCP is far less understood. All the existing
results focus on the case of one single depot vertex, which are called the Distance
Constrained Vehicle Routing Problem by Nagarajan and Ravi [14]. The authors
proposed a min{log n, log λ}-approximation algorithm for the general problem
and a 2-approximation algorithm for the problem defined on the metric closure
of a tree. Recently, Friggstad and Swamy [8] obtained an improved log λ

log log λ -
approximation algorithm for the general problem.

1.2 Our Results and Techniques

In this paper we focus on the MMCCP, RMMCCP and MCCP. Our main con-
tributions are fourfold. Firstly, we obtain a 5-approximation algorithm for the
MMCCP, which improves the previous best 16/3-approximation algorithm by
Xu et al. [15]. Meanwhile, this algorithm also improves the running time from
O(n5 log

∑
e∈E w(e)) to O(n3 log

∑
e∈E w(e)), where n is the number of vertices,

E is the edge set of the graph and w(e) is the weight of edge e. Moreover, we
transform a ρ-approximation algorithm for the TSP into a 4ρ-approximation
algorithm for the MMCCP, which implies further improvement on the perfor-
mance ratio for the problem defined on some special metrics(e.g. Euclidean met-
ric). Secondly, we show that any α-approximation algorithm for the MMCCP
implies an (α + 1)-approximation algorithm for the RMMCCP. This indicates a
6-approximation algorithm for the RMMCCP, beating the 19/3-approximation
algorithm in [15] in term of both performance ratio and running time. Thirdly,
we devise a 24/5-approximation algorithm for the MCCP with running time
O(n4). In contrast, the previous best 5-approximation algorithm by Khani and
Salavatipour [10] runs in O(n5) time. Lastly, we introduce a new matching-based
upper bound analysis for the MMCCP which proves to be more efficient than
the strategy of doubling tree edges in the literature.

The rest of the paper is organized as follows. We formally state the problems
and give some preliminary results in Section 2. We deal with the MMCCP and
RMMCCP in Section 3 and Section 4, respectively. The MCCP is treated in
Section 5.

150 W. Yu and Z. Liu

2 Preliminaries

Given an undirected weighted graph G = (V,E) with vertex set V and edge set
E, w(e) denotes the weight or length of edge e. If e = (u, v), we also use w(u, v)
to denote the weight of e. For B > 0, G[B] is the subgraph of G obtained by
removing all the edges in E with weight greater than B. For a subgraph H(e.g.
tree, cycle, path, matching) of G, let V (H), E(H) be the vertex set and edge
set of H, respectively. The weight of H is defined as w(H) =

∑
e∈E(H) w(e).

If H is connected, let MST (H) be the minimum spanning tree on V (H) and
its weight w(MST (H)) is simplified to wT (H). A cycle C is also called a tour
on V (C). The weight of a path or cycle is also called its length. A cycle(path,
tree) containing only one vertex and no edges is a trivial cycle(path, tree) and
its weight is defined as zero.

For a subset V ′ of V , a set C1, C2, . . . , Ck of cycles(some of them may be
trivial cycles) is called a cycle cover of V ′ if V ′ ⊂ ∪k

i=1V (Ci). And the cost of
this cycle cover is defined as max1≤i≤k w(Ci), i.e., the maximum weight of the
cycles. Particularly, a cycle cover of V is simply called a cycle cover. By replacing
cycles with trees we can define tree cover and its cost similarly.

Now we formally state the problems.

Definition 1. In the Min-Max Cycle Cover Problem(MMCCP), we are given an
undirected complete graph G = (V,E) with a metric nonnegative weight function
w on E and a positive integer k, the goal is to find a minimum cost cycle cover
with at most k cycles.

Definition 2. In the Rooted Min-Max Cycle Cover Problem(RMMCCP), we are
given an undirected complete graph G = (V,E) with a metric nonnegative weight
function w on E, a depot set D ⊂ V , and a positive integer k, the objective is
to find a minimum cost cycle cover of V \D with at most k cycles such that each
cycle contains exactly one vertex of D.

Definition 3. In the Minimum Cycle Cover Problem(MCCP), we are given an
undirected complete graph G = (V,E) with a metric nonnegative weight function
w on E and a positive λ, the aim is to find a cycle cover of cost at most λ such
that the number of cycles in the cycle cover is minimum.

Note that in the above problem definitions we assume that the graph is
complete. This involves no loss of generality, since we can take the metric closure
of a connected graph G if it is not complete. When G is not connected, we simply
consider the corresponding problems defined on each connected component. We
also suppose w.l.o.g. that the weight of the edges and λ are integers.

Given an instance of the MMCCP(RMMCCP, MCCP), OPT indicates the
optimal value and each cycle in the optimal solution is called an optimum cycle.
By the triangle inequality, we can assume w.l.o.g that any two optimum cycles
are vertex-disjoint. We use n to denote the number of vertices of G.

The following cycle-splitting and tree-decomposition results are very useful
in the design and analysis of our algorithms.

Improved Approximation Algorithms for Min-Max and Minimum 151

Lemma 1. [1,7,18] Given a tour C on V ′ and B > 0, we can split the tour
into �w(C)

B � paths of length at most B such that each vertex is located at exactly
one path in O(|V ′|) time.

Lemma 2. [6,10] Given B > 0 and a tree T with maxe∈E(T) w(e) ≤ B, we
can decompose T into k ≤ max{�w(T)

B �, 1} edge-disjoint trees T1, T2, . . . , Tk with
w(Ti) ≤ 2B for each i = 1, 2, . . . , k in O(|V (T)|) time.

3 Min-Max Cycle Cover

In this section we first show how to transform a ρ-approximation algo-
rithm for the TSP into a 4ρ-approximation algorithm for the MMCCP. Next
we give a 5-approximation algorithm for the MMCCP with running time
O(n3 log

∑
e∈E w(e)).

As in the previous results, an α-approximation algorithm can be derived
in two phases. First, we guess a objective value λ. If OPT ≤ λ, we succeed in
constructing a cycle cover with at most k cycles of cost no more than αλ. Second,
by a binary search in [0,

∑
e∈E w(e)] we find the minimum value λ∗ such that a

cycle cover with at most k cycles whose cost is at most αλ∗ can be constructed.
This cycle cover is an α-approximate solution since λ∗ ≤ OPT by definition.
Since the second phase is standard, we focus on the first phase.

Given a ρ-approximation algorithm for the TSP, our first algorithm is
described below.

Algorithm MMCCP (ρ, λ)

Step 1. Delete all the edges with weight greater than λ
2 in G. The resulted graph

G[λ
2] has p connected components F1, F2, . . . , Fp.

Step 2. For each i = 1, 2, . . . , p, find a ρ-approximate tour TSPi on V (Fi) and
split it into ki = max{�w(TSPi)

2ρλ �, 1} paths of length no more than 2ρλ by
Lemma 1.

Step 3. Connect the two end vertices of each path constructed in Step 2 to
obtain

∑p
i=1 ki cycles which constitute a cycle cover. If

∑p
i=1 ki ≤ k, return

this cycle cover; otherwise, return failure.

Let C∗
1 , C∗

2 , . . . , C∗
k′ with k′ ≤ k be all the vertex-disjoint optimum cycles.

First, we give two observations that are also noted in [18] and [15]. For any
e = (u, v) ∈ C∗

i , the weight of C∗
i consists of w(e) and the weight of a path

P from u to v. By the triangle inequality, w(P) ≥ w(e). This implies OPT ≥
w(C∗

i) ≥ 2w(e). So we have

Observation 1. If OPT ≤ λ, then w(e) ≤ λ
2 for each e ∈ ∪k′

i=1E(C∗
i).

By this observation the vertex set of each optimum cycle is contained entirely
in exactly one of V (F1), V (F2), . . . , V (Fp). As a consequence, the optimum cycles
whose vertex sets are contained in V (Fi) constitute a cycle cover of V (Fi).
Moreover, the cost of this cycle cover of V (Fi) is at most OPT since the length
of each optimum cycle is no more than OPT .

152 W. Yu and Z. Liu

Observation 2. If OPT ≤ λ, the optimum cycles can be partitioned into p
groups such that the ith(i = 1, 2, . . . , p) group consisting of k∗

i ≥ 1 optimum
cycles is a cycle cover of V (Fi) with cost at most λ.

This observation leads to an upper bound on the length of the tour on V (Fi).

Lemma 3. If OPT ≤ λ, w(TSPi) ≤ ρ(2k∗
i − 1)λ for i = 1, 2, . . . , p.

Proof. For each i = 1, 2, . . . , p, by Observation 2 we have k∗
i ≥ 1 optimum cycles

that constitute a cycle cover of V (Fi). Since Fi is a connected component we
can add a set Ei ⊂ E(Fi) of k∗

i − 1 edges to these cycles to obtain a connected
subgraph Hi. After that we double all the edges of Ei in Hi to obtain a Eulerian
graph H ′

i on V (Fi). By shortcutting the repeated vertices of the Eulerian tour
of H ′

i we generate a tour Ti on V (Fi). Due to Ei ⊂ E(Fi) and Step 1, w(e) ≤ λ
2

for all e ∈ Ei, which implies w(Ei) ≤ (k∗
i − 1) · λ

2 . So

w(Ti) ≤ w(H ′
i) ≤ k∗

i λ + 2w(Ei) ≤ k∗
i λ + 2(k∗

i − 1) · λ

2
= (2k∗

i − 1)λ, (1)

where the second inequality follows from OPT ≤ λ.
Since TSPi is a ρ-approximate solution, we have w(TSPi) ≤ ρw(Ti). Com-

bining this inequality with (1) proves the lemma. ��

Now we are ready to prove the following lemma.

Lemma 4. If OPT ≤ λ, Algorithm MMCCP (ρ, λ) returns a cycle cover with
at most k cycles whose cost is at most 4ρλ in polynomial time.

Proof. For each i = 1, 2, . . . , p, TSPi is a tour on V (Fi). By Lemma 1, each
vertex of V (Fi) is contained in some path splitted from TSPi and hence included
in some cycle constructed in Step 3. Consequently, the set of cycles in Step 3
constitute a cycle cover. Since OPT ≤ λ, by Lemma 3 we have

p∑

i=1

ki =
p∑

i=1

max{�w(TSPi)
2ρλ

�, 1} ≤
p∑

i=1

max{�k∗
i − 1

2
�, 1} ≤

p∑

i=1

k∗
i = k′ ≤ k ,

where the second inequality follows from the integrality of k∗
i ≥ 1 and the last

inequality holds since k′ is the number of cycles used by the optimal solution.
Therefore, the algorithm returns the cycle cover generated in Step 3. To see

that the cost of this cycle cover is at most 4ρλ, it is sufficient to note that all
the paths derived in Step 2 have a length of at most 2ρλ and the weight of the
edge connecting the two end vertices of each path cannot exceed the length of
the path due to the triangle inequality.

As for the time complexity, Step 1 takes O(n2) time. In Step 2, finding the
approximate tour can be done in polynomial time since we run a polynomial
time approximation algorithm for the TSP, and the cycle-splitting procedure
takes O(n) time by Lemma 1. Step 3 can also be completed in O(n) time. To
sum up, Algorithm MMCCP (ρ, λ) runs in polynomial time. ��

Improved Approximation Algorithms for Min-Max and Minimum 153

Using Lemma 4 at most log
∑

e∈E w(e) times to conduct a binary search we
obtain the following theorem.

Theorem 1. Given a ρ-approximation algorithm for the TSP, there is a 4ρ-
approximation algorithm for the MMCCP.

This theorem implies good approximation algorithms for the MMCCP
defined on some special metrics. Particularly, by the PTAS for the Euclidean
TSP given by Arora [2] we have the following result.

Corollary 1. For any ε > 0, there is a (4 + ε)-approximation algorithm for the
MMCCP defined on any fixed d-dimensional Euclidean space.

Remark 1. Karakawa et al. [9] proved a stronger version of Lemma 2 for trees on
a Euclidean space, which can derive by a similar approach in [15] approximation
algorithms for MMCCP defined on a d-dimensional Euclidean space with ratios
5.208(d = 2) and 5.237(d ≥ 3), respectively.

In what follows, we plug in Christofides’ Algorithm in Step 2 of Algorithm
MMCCP (ρ, λ) and make a refined analysis to obtain a 5-approximation algo-
rithm. The modified algorithm is described as follows:

Algorithm MMCCP (λ)

Step 1. Delete all the edges with weight greater than λ
2 in G. The resulted graph

G[λ
2] has p connected components F1, F2, . . . , Fp.

Step 2. For each i = 1, 2, . . . , p, compute MST (Fi) and determine the set Si

of vertices in V (Fi) that are of odd degree in MST (Fi). Find a minimum
weight perfect matching Mi on Si and add Mi to MST (Fi) to obtain an
Eulerian graph Gi on V (Fi). Shortcut the repeated vertices of the Eulerian
tour of Gi to obtain a tour TSPi on V (Fi). Split the tour into at most
ki = max{�w(TSPi)

5
2λ

�, 1} paths of length no more than 5
2λ by Lemma 1.

Step 3. Connect the two end vertices of each path constructed in Step 2 to
obtain

∑p
i=1 ki cycles which constitute a cycle cover. If

∑p
i=1 ki ≤ k, return

this cycle cover; otherwise, return failure.

Lemma 5. If OPT ≤ λ, w(TSPi) ≤ (52k∗
i − 1)λ for i = 1, 2, . . . , p.

Proof. For each i = 1, 2, . . . , p, we construct subgraphs Hi, H ′
i and tour Ti in

exactly the same way as in the proof of Lemma 3. Since Hi is a connected
subgraph of Fi we have

wT (Fi) ≤ w(Hi) ≤ k∗
i λ + w(Ei) ≤ k∗

i λ + (k∗
i − 1) · λ

2
=

(
3
2
k∗

i − 1
2

)

λ, (2)

where the second inequality follows from OPT ≤ λ and the third inequality
holds by w(e) ≤ λ

2 for all e ∈ Ei.
By shortcutting we can transform tour Ti into a tour T ′

i on V (Mi) with
w(T ′

i) ≤ w(Ti) due to the triangle inequality. It is well known that T ′
i can be

154 W. Yu and Z. Liu

decomposed into two edge-disjoint perfect matching on V (Mi). Thus by the
optimality of Mi we have

w(Mi) ≤ 1
2
w(T ′

i) ≤ 1
2
w(Ti) ≤

(

k∗
i − 1

2

)

λ, (3)

where the last inequality follows from (1). Therefore, by (2) and (3) we obtain

w(TSPi) ≤ wT (Fi) + w(Mi) ≤
(

3
2
k∗

i − 1
2

)

λ +
(

k∗
i − 1

2

)

λ =
(

5
2
k∗

i − 1
)

λ. ��

It can be seen that finding TSPi for each i = 1, 2, . . . , p takes O(|V (Fi)|3),
which dominates the time complexity of Algorithm MMCCP (λ). Consequently,
the algorithm runs in

∑p
i=1 O(|V (Fi)|3)) = O(

∑p
i=1 |V (Fi)|3) = O(n3) time.

By Lemma 5 and a similar proof to Lemma 4 we derive the following lemma.

Lemma 6. If OPT ≤ λ, Algorithm MMCCP (λ) returns a cycle cover with at
most k cycles whose cost is at most 5λ in O(n3) time.

Using this lemma to perform a binary search we obtain

Theorem 2. There is a 5-approximation algorithm for the MMCCP that runs
in O(n3 log

∑
e∈E w(e)) time.

Combining Theorem 1 and Theorem 2 we have

Theorem 3. Given a ρ-approximation algorithm for the TSP, there exists a
min{4ρ, 5}-approximation algorithm for the MMCCP.

4 Rooted Min-Max Cycle Cover

One can transform an α-approximation algorithm for the MMCCP into an
(α+1)-approximation algorithm for the RMMCCP as follows. First, by ignoring
the depot set D we obtain an instance of the MMCCP. Then we run the α-
approximation algorithm for this instance to obtain a cycle cover C1, C2, . . . , Ck̄

of V \D with k̄ ≤ k. Next for each i = 1, 2, . . . , k̄ we choose an arbitrary ver-
tex vi from Ci with (u′

i, vi), (u′′
i , vi) ∈ E(Ci), determine di ∈ D such that

w(vi, di) = mind∈D w(vi, d) and derive a cycle C ′
i with E(C ′

i) = (E(Ci) \
{(u′

i, vi), (u′′
i , vi)}) ∪ {(u′

i, di), (u′′
i , di)}. Then C ′

1, C
′
2, . . . , C

′
k̄

is a feasible cycle
cover for the RMMCCP. To show this is indeed an (α + 1)-approximation algo-
rithm, we only need two facts: (i)the optimal value of the instance of the MMCCP
can not exceed OPT , i.e., the optimal value of the original instance of the RMM-
CCP; (ii)w(C ′

i) ≤ w(Ci)+2w(vi, di) and w(vi, di) ≤ OPT/2 for each i. The first
inequality follows from the triangle inequality. The second one holds because each
vi must locate in the same optimum cycle with some depot d′

i ∈ D of weight no
more than OPT , one of the two paths along the optimum cycle between v and
d′

i is of length at most OPT/2. By the triangle inequality, w(vi, d
′
i) ≤ OPT/2

and hence w(vi, di) ≤ w(vi, d
′
i) ≤ OPT/2.

Therefore, all the results on the MMCCP can be applied to the RMMCCP
with a loss of 1 in the approximation ratio.

Improved Approximation Algorithms for Min-Max and Minimum 155

Theorem 4. Given a ρ-approximation algorithm for the TSP, there exists a
min{4ρ + 1, 6}-approximation algorithm for the RMMCCP. Particularly, there
is an O(n3 log

∑
e∈E w(e)) time 6-approximation algorithm for the RMMCCP.

5 Minimum Cycle Cover

In this section we give approximation algorithms for the MCCP. First, we show
how to apply the results for the MMCCP in Section 3 to obtain approximation
algorithms with the same ratio. After that we propose an algorithm with better
performance ratio for the MCCP.

Recall that in the MCCP, λ > 0 is given in advance and the aim is to find a
cycle cover of cost at most λ such that the number of cycles is minimum. To turn
Algorithm MMCCP (ρ, λ) into an approximation algorithm for the MCCP, we
need only split the tour TSPi into paths of length at most λ

2 instead of 2ρλ in
Step 2. Moreover, in Step 3 we always return the cycle cover of cost at most λ.

Algorithm MCCP (ρ)

Step 1. Delete all the edges with weight greater than λ
2 in G. The resulted graph

G[λ
2] has p connected components F1, F2, . . . , Fp.

Step 2. For each i = 1, 2, . . . , p, find a ρ-approximate tour TSPi on V (Fi) and
split it into ki = max{�w(TSPi)

λ
2

�, 1} paths of length at most λ
2 by Lemma 1.

Step 3. Connect the two end vertices of each path constructed in Step 2 to obtain∑p
i=1 ki cycles which constitute a cycle cover. Return this cycle cover.

By a similar analysis to Algorithm MMCCP (ρ, λ) one can show the above
algorithm is a 4ρ-approximation algorithm for the MCCP. A counterpart to
Theorem 2 can also be established. So we have

Theorem 5. Given a ρ-approximation algorithm for the TSP, there exists a
min{4ρ, 5}-approximation algorithm for the MCCP. Particularly, there exists a
5-approximation algorithm for the MCCP that runs in O(n3) time.

Next we present a 24/5-approximation algorithm for the MCCP that runs in
O(n4) time. In contrast, Khani and Salavatipour [10] gave a 5/2-approximation
algorithm for the Minimum Tree Cover Problem that runs in O(n5) time, which
implies a 5-approximation for the MCCP with the same running time. Our algo-
rithm adopts a similar approach to the algorithm for the Min-Max Tree Cover
Problem also proposed in [10]. However, we make a refined analysis on cycles
instead of trees which leads to an improved approximation ratio and simplify
the algorithm to obtain a better running time.

The basic idea of the algorithm is as follows. First, we delete all the edges
with weight greater than λ

5 to obtain the graph G[λ
5]. Let F1, F2, . . . , Fl be

the connected components of G[λ
5] with wT (Fi) ≤ λ

2 (i = 1, 2, . . . , l), called light
components. The rest of connected components Fl+1, Fl+2, . . . , Fl+h of G[λ

5] with
wT (Fi) > λ

2 (i = l + 1, l + 2, . . . , l + h) are called heavy components. Next we

156 W. Yu and Z. Liu

construct a tree cover of cost at most λ
2 . Since wT (Fi) ≤ λ

2 for i = 1, 2, . . . , l we
choose the minimum spanning trees of some light components as the trees in the
final tree cover. For the minimum spanning trees of the other light components
we connect them properly to the heavy components, which results in h modified
heavy components F ′

l+1, F
′
l+2, . . . , F

′
l+h. And for each modified heavy component

we decompose its minimum spanning tree into a set of trees of weight at most λ
2

by Lemma 2 and put them into the final tree cover. Lastly, for each tree of the
tree cover we double all the edges to obtain a Eulerian graph and shortcut the
repeated vertices of the Eulerian tour to derive a cycle cover of cost at most λ.

To guide the choice of the minimum spanning trees of light components to
be connected to heavy components, we define wmin(Fi) with 1 ≤ i ≤ l as the
minimum weight of edges in G with one vertex in V (Fi) and the other vertex in
∪l+h

s=l+1V (Fs) and construct a bipartite graph.

Definition 4. Given an integer a with 0 ≤ a ≤ l, the bipartite graph Ha has l
light vertices u1, u2, . . . , ul, a null vertices x1, x2, . . . , xa and l − a heavy vertices
y1, y2, . . . , yl−a. For all i = 1, 2, . . . , l and j = 1, 2, . . . , a, there is an edge (ui, xj)
of weight 0. For i = 1, 2, . . . , l, if wmin(Fi) ≤ λ

2 we add an edge (ui, yj) of weight
wT (Fi) + wmin(Fi) to Ha for each j = 1, 2, . . . , l − a. There are no other edges
in Ha.

Now we formally describe our algorithm below.

Algorithm MCCP

Step 1. Delete all the edges with weight greater than λ
5 in G to obtain G[λ

5] with
light components F1, F2, . . . , Fl and heavy components Fl+1, Fl+2, . . . , Fl+h.

Step 2. For a = 0, 1, . . . , l, set Ta := ∅ and Sa := ∅.
(i) Find a minimum weight perfect matching Ma in Ha(if there is no perfect

matching in Ha set a := a + 1 and go to Step 2);
(ii) If (ui, xj) ∈ Ma, put MST (Fi) into Ta;
(iii) If (ui, yj) ∈ Ma, connect MST (Fi) to some heavy component by the edge

corresponding to wmin(Fi). This results in h modified heavy components
F ′

l+1, F
′
l+2, . . . , F

′
l+h. For each s = l+1, l+2, . . . , l+h, decompose MST (F ′

s)
by Lemma 2 into a set of trees of weight at most λ

2 and put them into Ta.
(iv) For each tree in Ta, double all the edges to obtain an Eulerian graph and

shortcut the repeated vertices of the Eulerian tour of this graph to obtain a
cycle. Put this cycle into Sa.

Step 3. Among all the nonempty Sa, return the one contains the minimum num-
ber of cycles.

By construction it is easy to see that each nonempty Sa is a cycle cover of
cost no greater than λ. We proceed to show that for some a the number of cycles
in Sa is not greater than 24

5 OPT .
Let OPT = k and C∗

1 , C∗
2 , . . . , C∗

k be the vertex-disjoint optimum cycles.
Given a cycle C, if V (Fi) ∩ V (C) �= ∅ for some i with 1 ≤ i ≤ l + h, we say that
Fi is incident to C or C is incident to Fi. Therefore, all the optimum cycles can

Improved Approximation Algorithms for Min-Max and Minimum 157

be classified into three types. The first type of optimum cycles, called light cycles,
are incident to only light components. The second type of optimum cycles, i.e.
heavy cycles, are incident to only heavy components. The last type of optimum
cycles, known as bad cycles, are incident to at least one light component and at
least one heavy component. Let kl, kh, kb be the number of light, heavy and bad
cycles, respectively. Clearly, k = kl + kh + kb.

Next we analyze the execution of the algorithm for a = a′ with 0 ≤ a′ ≤ l,
where a′ is the number of light components incident to at least one light cycle,
and bound the number of cycles in Sa′ which is identical to the number of trees
in Ta′ . If we define F0 as an empty light component which contains neither a
vertex nor an edge, we can assume without loss of generality that F0, F1, . . . , Fa′

are the light components incident to at least one light cycle. An edge of weight
greater than λ

5 is referred to as a long edge. Since an optimum cycle(particularly
a light cycle) is of length no more than λ, it cannot contain more than four long
edges and hence a′ ≤ 4kl, which implies

Lemma 7. For a = a′, Step 2(ii) of Algorithm MCCP generates a′ ≤ 4kl trees.

Lemma 8. For a = a′,
∑l+h

s=l+1 wT (F ′
s) ≤ 6

5 (kh + kb)λ.

Lemma 9. For a = a′, Step 2(iii) of Algorithm MCCP generates at most
24
5 (kh + kb) trees.

By Lemma 7 and Lemma 9 we deduce

Lemma 10. |Sa′ | = |Ta′ | ≤ 24
5 k.

By his lemma and a simple analysis of the complexity of Algorithm MCCP
we have

Theorem 6. There is a 24
5 -approximation algorithm for the MCCP that runs

in O(n4) time.

Combining this theorem with Theorem 5 we obtain

Theorem 7. Given a ρ-approximation algorithm for the TSP, there exists a
min{4ρ, 24

5 }-approximation algorithm for the MCCP.

Acknowledgments. The authors are grateful to the anonymous referees for their
helpful comments. This research is supported in part by the National Natural Science
Foundation of China under grants number 11171106, 11301184, 11301475.

References

1. Arkin, E.M., Hassin, R., Levin, A.: Approximations for minimum and min-max
vehicle routing problems. Journal of Algorithms 59, 1–18 (2006)

2. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems. Journal of the ACM 45, 753–782 (1998)

158 W. Yu and Z. Liu

3. Bhattacharya, B., Hu, Y.: Approximation algorithms for the multi-vehicle schedul-
ing problem. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II.
LNCS, vol. 6507, pp. 192–205. Springer, Heidelberg (2010)

4. Campbell, A.M., Vandenbussche, D., Hermann, W.: Routing for relief efforts.
Transportation Science 42, 127–145 (2008)

5. Christofides, N.: Worst-case analysis of a new heuristic for the traveling sales-
man problem. Technical Report, Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, PA (1976)

6. Even, G., Garg, N., Koemann, J., Ravi, R., Sinha, A.: Min-max tree covers of
graphs. Operations Research Letters 32, 309–315 (2004)

7. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some
routing problems. SIAM Journal on Computing 7(2), 178–193 (1978)

8. Friggstad, Z., Swamy, C.: Approximation algorithms for regret-bounded vehicle
routing and applications to distance-constrained vehicle routing. In: the Proceed-
ings of the 46th Annual ACM Symposium on Theory of Computing, pp. 744–753
(2014)

9. Karakawa, S., Morsy, E., Nagamochi, H.: Minmax tree cover in the euclidean space.
Journal of Graph Algorithms and Applications 15, 345–371 (2011)

10. Khani, M.R., Salavatipour, M.R.: Approximation algorithms for min-max tree
cover and bounded tree cover problems. Algorithmica 69, 443–460 (2014)

11. Nagamochi, H.: Approximating the minmax rooted-subtree cover problem. IEICE
Transactions on Fundamentals of Electronics E88–A, 1335–1338 (2005)

12. Nagamochi, H., Okada, K.: Polynomial time 2-approximation algorithms for the
minmax subtree cover problem. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC
2003. LNCS, vol. 2906, pp. 138–147. Springer, Heidelberg (2003)

13. Nagamochi, H., Okada, K.: Approximating the minmax rooted-tree cover in a tree.
Information Processing Letters 104, 173–178 (2007)

14. Nagarajan, V., Ravi, R.: Approximation algorithms for distance constrained vehicle
routing problems. Networks 59(2), 209–214 (2012)

15. Xu, W., Liang, W., Lin, X.: Approximation algorithms for Min-max Cycle Cover
Problems. IEEE Transactions on Computers (2013). doi:10.1109/TC.2013.2295609

16. Xu, Z., Wen, Q.: Approximation hardness of min-max tree covers. Operations
Research Letters 38, 408–416 (2010)

17. Xu, Z., Xu, L., Li, C.-L.: Approximation results for min-max path cover problems
in vehicle routing. Naval Research Logistics 57, 728–748 (2010)

18. Xu, Z., Xu, L., Zhu, W.: Approximation results for a min-max location-routing
problem. Discrete Applied Mathematics 160, 306–320 (2012)

http://dx.doi.org/10.1109/TC.2013.2295609

Improved Approximation Algorithms
for the Maximum Happy Vertices

and Edges Problems

Peng Zhang1(B), Tao Jiang2,3, and Angsheng Li4

1 School of Computer Science and Technology,
Shandong University, Jinan 250101, China

algzhang@sdu.edu.cn
2 Department of Computer Science and Engineering,
University of California, Riverside, CA 92521, USA

jiang@cs.ucr.edu
3 MOE Key Lab of Bioinformatics and Bioinformatics Division,

TNLIST/Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China

4 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

angsheng@ios.ac.cn

Abstract. The Maximum Happy Vertices (MHV) problem and the
Maximum Happy Edges (MHE) problem are two fundamental prob-
lems arising in the study of the homophyly phenomenon in large scale
networks. Both of these two problems are NP-hard. Interestingly, the
MHE problem is a natural generalization of Multiway Uncut, the com-
plement of the classic Multiway Cut problem. In this paper, we present
new approximation algorithms for MHV and MHE based on randomized
LP-rounding techniques. Specifically, we show that MHV can be approx-
imated within 1

Δ+1
, where Δ is the maximum vertex degree, and MHE

can be approximated within 1
2

+
√
2
4

f(k) ≥ 0.8535, where f(k) ≥ 1 is a
function of the color number k. These results improve on the previous
approximation ratios for MHV, MHE as well as Multiway Uncut in the
literature.

1 Introduction

Homophyly [5, Chapter4] is one of the basic laws governing the structures of
large scale networks, which states that edges in a network tend to connect nodes
with the same or similar attributes. For example, in a social network, people are
more likely to connect with people they like, as the old proverb says, “birds of a
feather flock together”.

As another example, Li et al. [9] recently conducted an interesting experi-
ment to predict the keywords of a paper from the citation network in high energy

P. Zhang—Work was done while the first author was visiting at the University of
California - Riverside, USA.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 159–170, 2015.
DOI: 10.1007/978-3-319-21398-9 13

160 P. Zhang et al.

physics theory 1 by using the homophyly law. The network consists of 27, 770
vertices (i.e., papers) and 352, 807 directed edges (i.e., citations). However, only
1, 214 papers have keywords annotated by their authors. The task was to predict
the keywords of the remaining papers. By the homophyly law, papers within a
small community of the network should share common keywords. The prediction
algorithm used by [9] is as follows. (1) Find a small community for each paper,
if any. After this step, there are 20, 310 papers found in communities, and only
1, 409 papers from amongst them have keywords. (2) Extract the most popular
10 keywords from the known keywords in each community as the remarkable
common attributes of this community. (3) For every paper in a community, pre-
dict that all or some of the 10 remarkable common keywords of this community
are the keywords of the paper by checking whether the keywords appear in either
the title or the abstract of the paper. Surprisingly, this simple rule successfully
finds keywords for 14, 123 (70%) un-annotated papers. The experiment suggests
that real networks do satisfy the homophyly law, and that the homophyly law
could be used as a principle for predicting common attributes in a large network.

In a network where the homophyly law holds but some vertices have unknown
attributes, as in the case of the above example where keywords are considered
as attributes, one may consider the natural question of how to assign (or pre-
dict) attributes so that the homophyly law is followed to the greatest degree.
Following this idea, and identifying attributes with colors, Li and Zhang [10]
recently introduced two interesting maximization problems in terms of graph
coloring. For simplicity, they focused on the case that each vertex has only one
color.

Definition 1. The Maximum Happy Vertices (MHV) problem.
(Instance) We are given an undirected graph G = (V,E) with vertex weights

{wv}, a color set C = {1, 2, · · · , k}, and a partial vertex coloring function c : V �→
C. That is, c assigns colors only to a part of the vertices in V .

(Goal) A vertex is happy if it shares the same color with all its neighbors.
The goal is to color all the uncolored vertices such that the total weight of happy
vertices is maximized.

Definition 2. The Maximum Happy Edges (MHE) problem.
(Instance) We are given an undirected graph G = (V,E) with edge weights

{we}, a color set C = {1, 2, · · · , k}, and a partial vertex coloring function c : V �→
C.

(Goal) An edge is happy if its two endpoints have the same color. The goal
is to color all the uncolored vertices such that the total weight of happy edges is
maximized.

Remarks. (i) When every vertex (resp., edge) has unit weight, the MHV
(resp., MHE) problem is to maximize the total number of happy vertices (resp.,
edges). (ii) The partial vertex coloring function c is given in the input. When
a vertex v has a color specified by function c, we also say that vertex v has a

1 http://snap.stanford.edu/data/cit-HepTh.html.

http://snap.stanford.edu/data/cit-HepTh.html

Improved Approximation Algorithms for the MHV and Edges Problems 161

pre-specified color (that is, c(v)). The MHV and MHE problems actually ask
for a total vertex coloring. (iii) The coloring in MHV and MHE is completely
different from the well-known Graph Coloring problem, which asks to color all
vertices with the minimum number of colors such that each edge has its two
endpoints with different colors.

The MHV and MHE problems can also be viewed as two classification prob-
lems. Given a set of objects to be classified and a set of colors, a classification
problem can be depicted as from a very high level assigning a color to each object
in a way that is consistent with some observed data or structure [1,7]. In our
problems, the observed structure is homophyly.

1.1 Related Work

MHV and MHE are two quite natural and fundamental algorithmic problems.
Surprisingly, as introduced before, they arise only very recently from the study of
network homophyly [10]. Li and Zhang [10] proved that both MHV and MHE are
already NP-hard even if the color number k is fixed. More precisely, when k ≥ 3,
MHV and MHE are NP-hard. When k = 2, MHV and MHE are polynomial
time solvable. Li and Zhang [10] proposed a 1

2 -approximation algorithm for (the
unit weight version of) MHE based on a combinatorial partitioning strategy. For
(the unit weight version of) MHV, they gave two approximation algorithms. One
algorithm is based on a greedy approach, whose approximation ratio is 1

k . The
other algorithm is based on a subset-growth technique, whose approximation
ratio is Ω(Δ−3), where Δ is the maximum vertex degree in the input graph.

The MHE problem is closely related to the Multiway Uncut problem [8],
which is the complement of the classic Multiway Cut problem [2–4,6,11].

Definition 3. The Multiway Uncut problem.
(Instance) An undirected graph G = (V,E) with edge weights {we}, and a

terminal set S = {s1, s2, · · · , sk}.
(Goal) Find a partition {V1, V2, · · · , Vk} of V such that for each i, si is con-

tained in Vi, and the total weights of edges not cut by the partition is maximized.

The goal of the Multiway Uncut problem is equivalent to coloring all the
non-terminal vertices such that the total weight of happy edges is maximized.
From the viewpoint of coloring, in the Multiway Uncut problem there is only
one vertex si that has the pre-specified color i, for each 1 ≤ i ≤ k. So, Multiway
Uncut is just a special case of the MHE problem. The current best approximation
ratio for Multiway Uncut is 0.8535, due to Langberg et al. [8].

Given an undirected graph G = (V,E) with costs defined on edges and a
terminal set S ⊆ V , the Multiway Cut problem asks for a set of edges with
the minimum total cost such that its removal from graph G separates all ter-
minals in S from one another. The Multiway Cut problem is NP-hard even if
there are only three terminals and each edge has a unit cost [4]. The current
best approximation ratio known for the Multiway Cut problem is 1.2965 [11].
Since the optimization goals of Multiway Cut and MHE are completely different

162 P. Zhang et al.

(minimization vs. maximization), the approximation results for Multiway Cut
do not directly extend to MHE.

1.2 Our Results

In this paper, we give improved approximation algorithms for MHV and MHE
based on randomized rounding in linear programming. Specifically, we show that
MHV can be approximated within 1

Δ+1 , and MHE can be approximated within
1
2 +

√
2
4 f(k), where f(k) = (1−1/k)

√
k(k−1)+1/

√
2

k−1+1/2k ≥ 1. These results significantly
improve on the previous approximation ratios for MHV and MHE in [10]. Our
randomized rounding approach is motivated by the work of Kleinberg and Tardos
[7] on the uniform Metric Labeling problem and the work of Langberg et al. [8] on
the Multiway Uncut problem. However, our approximation ratio analyses require
nontrivial extension. From a high-level viewpoint, the analyses of the randomized
rounding scheme in [7,8] were performed in an edge-by-edge manner. In contrast,
our analysis for the MHV problem considers a group of vertices at each time, and
this extension essentially requires the structural properties of the MHV problem.

Since Multiway Uncut is a special case of MHE, the above results also means
that the Multiway Uncut problem can be approximated within 1

2 +
√
2
4 f(k). For

fixed values of k, this ratio improves upon the result 0.8535 in [8]. For exam-
ple, when k = 3, 4, 5 and 10, our ratios are 0.8818, 0.8739, 0.8694, and 0.8611,
respectively. We get this improvement because we unite a simple randomized
algorithm and the randomized rounding procedure in [8]. When k approaches
infinity, the ratio tends to 1

2 +
√
2
4 = 0.8535 · · · , coinciding with the ratio given

in [8].
Notations. Throughout the paper, we use OPT to denote the optimal value

of an optimization problem and OPTf to denote the optimal value of the corre-
sponding fractional problem (when linear programming is involved).

2 Algorithms for MHV

Let Δ be the maximum vertex degree in the input graph. In this section, we
show that the MHV problem can be approximated within 1

Δ+1 in polynomial
time by randomized LP-rounding. Li and Zhang [10] gave a simple greedy 1

k -
approximation algorithm for the MHV problem, which is briefly shown as Algo-
rithm G below. Therefore, to achieve the 1

Δ+1 -approximation, we can safely
assume k ≥ Δ + 1.

Algorithm G.
1 Just color all the uncolored vertices in the same color. Since there are k

colors, we obtain k vertex colorings for graph G.
2 Output the coloring that has the largest total weight of happy vertices.

Lemma 1. Without loss of generality, we may assume that k ≥ Δ + 1. �	

Improved Approximation Algorithms for the MHV and Edges Problems 163

The linear programming relaxation for the MHV problem is shown as (LP-V)
below. To explain that (LP-V) is really an LP-relaxation for MHV, consider its
corresponding integer linear program. That is, the variable constraint is replaced
by the constraint xv, xi

v, yi
v ∈ {0, 1},∀i,∀v.

Here, variable yi
v indicates whether vertex v is colored in i, xi

v indicates
whether v is happy by color i, and xv indicates whether v is happy. Constraint
(2) is concerned with vertices that have pre-specified colors. Then, constraint (1)
says that each vertex must be colored and can have only one color. In constraint
(3), the notation B(v) means the ball centered at vertex v, i.e., the set of vertex
v itself and all its neighbors. By constraint (3), vertex v is happy by color i only
when all the vertices in B(v) are colored in i. Note that constraint (3) can be
replaced by the linear constraint xi

v ≤ yi
u,∀i,∀v,∀u ∈ B(v).

max
∑

v∈V

wvxv (LP-V)

s.t.
∑

i

yi
v = 1, ∀v (1)

yi
v = 1, ∀i,∀v s.t. c(v) = i (2)

xi
v = min

u∈B(v)
{yi

u}, ∀i,∀v (3)

xv =
∑

i

xi
v, ∀v (4)

xv, xi
v, yi

v ≥ 0, ∀i,∀v

We mention that in the integer version of (LP-V), any vertex can be happy
in only one color. For otherwise suppose for some vertex v, we have xi1

v = 1 and
xi2

v = 1, where i1 �= i2. Then by constraint (3), we have yi1
u = 1 and yi2

u = 1 for
any vertex u ∈ B(v), but this immediately contradicts constraint (1). The similar
property holds for LP-relaxation (LP-V), as shown in the following Lemma 2.

Lemma 2. In any feasible solution to (LP-V), we have 0 ≤ xv ≤ 1 for any
vertex v.

Proof. Suppose for some vertex v we have xv =
∑k

i=1 xi
v > 1. Take any

vertex u′ ∈ B(v). For this vertex u′, by constraint (3), we have
∑

i yi
u′ ≥∑

i minu∈B(v){yi
u} =

∑
i xi

v > 1. This is in contradiction with constraint (1). �	

The straightforward strategy that colors vertex u by color i with probability
yi

u would yield an integral solution with poor approximation ratio. Instead, we
use the rounding technique proposed by Kleinberg and Tardos [7] to round a
fractional solution to (LP-V). The algorithm is shown as Algorithm R. In step
3 of the algorithm, the notation [k] denotes the set {1, 2, · · · , k}.

Algorithm R.
1 Solve (LP-V) to obtain an optimal solution (x, y).
2 while there exists some uncolored vertex do

164 P. Zhang et al.

3 Pick a color i ∈ [k] uniformly at random.
4 Pick a parameter ρ ∈ [0, 1] uniformly at random.
5 For each uncolored vertex v, if yi

v ≥ ρ, then color v in i.
6 endwhile

Langberg et al. [8] used the same rounding technique as in Algorithm R for
the Multiway Uncut problem. We adopt the high-level idea of the analyses in [7]
and [8]. However, both the analyses in [7] and [8] for the randomized rounding
scheme were performed in an edge-by-edge manner. We non-trivially extend the
analyses of [7,8] to Algorithm R for the MHV problem below. In contrast, our
analysis considers a group of vertices at each time, and this extension essentially
requires the structural properties of the MHV problem. We begin with a simple
assumption.

Lemma 3. Without loss of generality, we may assume that |B(v)| ≥ 2 for every
vertex v.

Proof. By definition, if |B(v)| = 1, then v is an isolated vertex. In this case, either
v is already happy (It has a pre-specified color), or v can become happy (It is
uncolored. Then we just color v in any color). So, all the isolated vertices can be
safely removed from the graph without affecting the analysis of approximation
ratio of the algorithm R. �	

In Algorithm R, each execution of steps 3 to 5 is called a round. The algorithm
may iterate steps 3 to 5 for many rounds. If a ball B(v) contains no colored
vertices, then B(v) is called a blank ball. If a ball B(v) contains only one color,
then B(v) is called a monochrome ball.

Lemma 4. Consider a ball B(v) which is blank at the beginning of some round.
Then the probability that in this round all (uncolored) vertices in B(v) are colored
in the same color is xv

k .

Proof. Fix some color i. The probability that color i is picked is 1
k . All vertices

in B(v) are colored in i if and only if ρ ≤ minu∈B(v){yi
u} = xi

v. So, conditioned
on the event that color i is picked, the probability that all vertices in B(v) is
colored in i is xi

v.
By the above analysis, the probability that all vertices in B(v) are colored

in the same color is
∑

i
1
kxi

v = xv

k . �	

Remarks. Let B(v) be a ball which is blank at the beginning of some round.
It is easy to see that even if parts of the vertices in B(v) are colored in this
round, it is still possible that all vertices in B(v) are colored in the same color in
the course of the algorithm (due to the subsequent round(s)). This probability is
beyond Lemma 4 and is omitted in the analysis of the algorithm. See the proof
of Theorem 1. Of course, the approximation ratio proved in Theorem 1 holds
even with this omission.

Improved Approximation Algorithms for the MHV and Edges Problems 165

Lemma 5. Consider a ball B(v) which is blank at the beginning of some round.
Then the probability that in this round some vertex in B(v) is colored is ≤
1
k (Δ + 1 − xv).

Proof. By step 5 of Algorithm R, there is a vertex in B(v) that will be colored
in i by the current round, if and only if ρ falls in the interval [0,maxu∈B(v){yi

u}].
So, the probability that in this round some vertex in B(v) is colored is

∑

i

1
k

max
u∈B(v)

{yi
u} =

1
k

∑

i

max
u∈B(v)

{yi
u}. (5)

On the other hand, for any color i, we have minu∈B(v){yi
u}+maxu∈B(v){yi

u} ≤∑
u∈B(v) yi

u, since |B(v)| ≥ 2 by Lemma 3. This implies

∑

i

(

min
u∈B(v)

{yi
u} + max

u∈B(v)
{yi

u}
)

≤
∑

i

∑

u∈B(v)

yi
u =

∑

u∈B(v)

∑

i

yi
u =
(1)

|B(v)| ≤ Δ + 1.

Therefore, we have
∑

i

max
u∈B(v)

{yi
u} ≤ Δ + 1 −

∑

i

min
u∈B(v)

{yi
u} =

(3),(4)
Δ + 1 − xv. (6)

By (5) and (6), the probability that in this round some vertex in B(v) is
colored is ≤ 1

k (Δ + 1 − xv). �	

Lemma 6. Consider a blank ball B(v). The probability that all vertices in B(v)
are colored in the same round (and hence in the same color) is ≥ xv

Δ+1−xv
.

Proof. Let p be the probability defined in the lemma. Fix the r-th round (r ≥ 1)
in the execution course of the algorithm. Define N<r as the event that all vertices
in B(v) are not colored before the r-th round, and Ar the event that all vertices
in B(v) are colored in the r-th round. Since the random variables i and ρ in
Algorithm R are chosen independently across rounds, we have

p =
∞∑

r=1

Pr[N<r] · Pr[Ar|N<r]. (7)

We first calculate the probability Pr[N<r]. Let t be a round (t ≥ 1). Define
Nt as the event that all vertices in B(v) are not colored in the t-th round. Then

Pr[N<r] = Pr[N<r−1] Pr[Nr−1|N<r−1]
= (Pr[N<r−2] Pr[Nr−1|N<r−2]) Pr[Nr−1|N<r−1]
= · · ·
= Pr[N<1] Pr[N1|N<1] Pr[N2|N<2] Pr[N3|N<3] · · · Pr[Nr−1|N<r−1]

=
r−1∏

t=1

Pr[Nt|N<t], (8)

166 P. Zhang et al.

where the last equality holds since, by the given condition in the lemma, B(v) is
a blank ball (at the beginning of the algorithm), and hence we have Pr[N<1] = 1.
Note that we also have Pr[N1|N<1] = Pr[N1].

Define Et as the event that there exists a vertex in B(v) that is colored in
the t-th round. Then we have Pr[Nt|N<t] = 1 − Pr[Et|N<t]. By Lemma 5, we
obtain Pr[Nt|N<t] ≥ 1 − Δ+1−xv

k . Consequently, we get

Pr[N<r] ≥
(8)

(

1 − Δ + 1 − xv

k

)r−1

. (9)

By Lemma 4, we know

Pr[Ar|N<r] =
xv

k
. (10)

Now we can give our estimation of the probability p:

p ≥
(7),(9),(10)

∞∑

r=1

(

1 − Δ + 1 − xv

k

)r−1

· xv

k
=

xv

Δ + 1 − xv
. �	

The following Lemma 7 is used to analyze the probability that a vertex v
is happy whose ball B(v) is a monochrome ball. While it is the counterpart of
Lemma 6 for a vertex whose ball is a blank ball, we have to be careful for the
analysis in Lemma 7, since in a monochrome ball, there is already a used color.
Although the two proofs are similar, the proof of Lemma 7 is more complicated
than that of Lemma 6. The proof of Lemma 7 is omitted here due to space
limitation and will be given in the full version.

Lemma 7. Consider a monochrome ball B(v) with pre-specified color i∗. The
probability that all the uncolored vertices in B(v) are colored in i∗ in the same
round is ≥ xv

Δ−xv
.

Define B0 as the set of vertices whose B(v)’s are blank at the beginning of
Algorithm R, and B1 the set of vertices whose B(v)’s are monochrome at the
beginning of Algorithm R.

Lemma 8. For vertex v �∈ B0 ∪ B1, we have xv = 0.

Proof. Since v �∈ B0 ∪ B1, by definition, there are at least two different pre-
specified colors in B(v). Suppose u1 and u2 are two vertices in B(v) with two
pre-specified colors i1 and i2, respectively. Without loss of generality, we can
assume that i1 = 1 and i2 = 2.

For vertex u1, we have y1
u1

= 1 and y2
u1

= · · · = yk
u1

= 0. So, for each
2 ≤ i ≤ k, we have minu∈B(v){yi

u} = 0. Then consider color 1. Since y2
u2

= 1, we
know y1

u2
= 0. Therefore, minu∈B(v){y1

u} = 0. This means xv =
∑

i xi
v = 0. �	

Theorem 1. Algorithm R is a 1
Δ+1 -approximation algorithm for MHV.

Improved Approximation Algorithms for the MHV and Edges Problems 167

Proof. Let random variable SOL represent the total weight of happy vertices
found by Algorithm R. Obviously, only vertices in B0 and B1 may be happy. So,
we have

E[SOL] =
∑

v∈B0

wv Pr[B(v) is finally colored in only one color] +

∑

v∈B1

wv Pr[B(v) is finally colored in only one color]

≥
∑

v∈B0

wvxv

Δ + 1 − xv
+

∑

v∈B1

wvxv

Δ − xv
(by Lemmas 6 and 7)

≥ 1
Δ + 1

∑

v∈B0∪B1

wvxv =
(LM8)

1
Δ + 1

∑

v

wvxv ≥ 1
Δ + 1

OPT,

where the first equality is due to the linearity of expectation. Note that at the
first inequality, we omit the probability that all vertices in B(v) are colored in
the same color across rounds (see remarks after Lemma 4). �	

Algorithm R for the MHV problem can be derandomized in polynomial time
by the standard conditional expectation method. The derandomization details
can be found in [7, Section5]. Hence, the MHV problem actually can be approx-
imated deterministically within 1

Δ+1 .

3 Algorithms for MHE

The following linear program (LP-E) is an LP-relaxation for the MHE problem.
In the corresponding integer program of (LP-E), variable yi

v indicates whether
vertex v is colored in i, xi

e indicates whether edge e is happy by color i (i.e., its
two endpoints are all colored in i), and xe indicates whether edge e is happy.

max
∑

e∈E

wexe (LP-E)

s.t.
∑

i

yi
v = 1, ∀v (11)

yi
v = 1, ∀i,∀v s.t. c(v) = i (12)

xi
e = min{yi

u, yi
v}, ∀i,∀e = (u, v) (13)

xe =
∑

i

xi
e, ∀e

xe, x
i
e, y

i
v ≥ 0, ∀i,∀v,∀e

Constraint (12) describes the vertices that have pre-specified colors. Con-
straint (11) says that each vertex has exactly one color. Constraint (13) says
that edge e is happy by color i only when both its two endpoints are colored
in i. Note that constraint (13) is linear since it can be replaced by xi

e ≤ yi
u

168 P. Zhang et al.

and xi
e ≤ yi

v. Furthermore, by constraint (11), it is impossible for an edge to be
simultaneously satisfied by two different colors. Therefore, (LP-E) is really an
LP-relaxation for the MHE problem.

Let (x, y) be an optimal fractional solution to (LP-E). To obtain an inte-
gral solution, a straightforward LP-rounding technique is to color vertex v in i
with probability yi

v. We can show this strategy will generate an integral solution
whose value could be as bad as 1/k times OPTf (LP-E) (the fractional optimum
of (LP-E)). This approximation is unsatisfactory, and thus we adopt the ran-
domized rounding technique of Kleinberg and Tardos [7] again to round (x, y).
The algorithm is essentially the same as Algorithm R, except that in step 1
we solve (LP-E) instead of (LP-V). For simplicity, we still call the randomized
rounding algorithm Algorithm R.

Then Consider the following simple randomized algorithm, namely, Algo-
rithm P for MHE.

Algorithm P.
1 Pick a color i ∈ [k] uniformly at random.
2 Color all the uncolored vertices in i.

The final algorithm for MHE is shown as Algorithm A.

Algorithm A.
1 With probability λ run Algorithm R, and with probability 1−λ run Algo-

rithm P.
2 Return the coloring found (by either R or P) in step 1.

Let E2 be the set of edges with both endpoints being given some pre-specified
colors, E1 the set of edges with only one endpoint being given a pre-specified
color, and E0 the set of edges with no endpoints that have pre-specified colors.
Then (E2, E1, E0) is a partition of the edge set E. The edges in E2 can be further
classified into two categories: happy edges and unhappy edges. Since Algorithm
A can obtain all happy edges in E2 (namely, the approximation ratio for this
part of edges is 1), for simplicity of analysis, we may assume that there is no
edges of E2 in the input graph.

Let e = (u, v) be an edge. Note that 0 ≤ xe =
∑

i xi
e ≤

∑
i yi

u = 1. The
following lemmas are known from [7,8].

Lemma 9 ([7,8]). Let e be an edge in E1. Then Pr[e is happy in R] = xe.

Lemma 10 ([8]). Let e be an edge in E0. Then Pr[e is happy in R] ≥ xe

2−xe
.

Theorem 2. The MHE problem can be approximated within 1
2 +

√
2
4 f(k), where

k is the number of colors and f(k) = (1−1/k)
√

k(k−1)+1/
√
2

k−1+1/2k ≥ 1.

Improved Approximation Algorithms for the MHV and Edges Problems 169

Proof. Let random variables R1, P1, A1 be the total weight of happy edges in
E1 found by Algorithms R, P, and A, respectively. Then, by Lemma 9, we have

E[A1] = (1 − λ)E[P1] + λE[R1]

= (1 − λ)
∑

e∈E1

we Pr[e is happy in P] + λ
∑

e∈E1

we Pr[e is happy in R]

= (1 − λ)
∑

e∈E1

we

k
+ λ

∑

e∈E1

wexe =
∑

e∈E1

(
1 − λ

k
we + λwexe

)

≥
∑

e∈E1

(
1 − λ

k
+ λ

)

wexe.

Let random variables R0, P0, A0 be the total weight of happy edges in E0

found by Algorithms R, P, and A, respectively. Then, by Lemma 10, we have

E[A0] = (1 − λ)E[P0] + λE[R0]

= (1 − λ)
∑

e∈E0

we Pr[e is happy in P] + λ
∑

e∈E0

we Pr[e is happy in R]

≥ (1 − λ)
∑

e∈E0

we + λ
∑

e∈E0

wexe

2 − xe
=

∑

e∈E0

(

(1 − λ)we +
λwexe

2 − xe

)

≥
∑

e∈E0,xe>0

(
1 − λ

xe
+

λ

2 − xe

)

wexe ≥
∑

e∈E0,xe>0

(
1
2

+
√

λ(1 − λ)
)

wexe

=
∑

e∈E0

(
1
2

+
√

λ(1 − λ)
)

wexe,

where the last inequality holds since minxe∈[0,1]{ 1−λ
xe

+ λ
2−xe

} ≥ 1
2 +

√
λ(1 − λ).

Let random variable A be the total weight of happy edges found by Algorithm
A. Therefore, we get

E[A] = E[A1] + E[A0]

≥
∑

e∈E1

(
1 − λ

k
+ λ

)

wexe +
∑

e∈E0

(
1
2

+
√

λ(1 − λ)
)

wexe

≥ min
{

1 − λ

k
+ λ,

1
2

+
√

λ(1 − λ)
} ∑

e∈E

wexe.

Solving 1−λ
k + λ = 1

2 +
√

λ(1 − λ), we get λ = 2k2+2−3k+
√
2k4−2k3

2(2k2−2k+1) . (The other
root of λ cannot lead to good approximation ratio and is omitted.) For our choice
of λ, its value is between 0.8227 · · · and 0.8535 · · · when k ≥ 3. (The problem is
polynomial time solvable when k = 2). With this value of λ, the approximation

ratio is 1
2 +

√
2
4 f(k), where f(k) = (1−1/k)

√
k(k−1)+1/

√
2

k−1+1/2k ≥ 1. �	

Algorithms A, P and R can all be derandomized in polynomial time by the
conditional expectation method. So the result in Theorem 2 is a deterministic
result.

170 P. Zhang et al.

Since Multiway Uncut is a special case of MHE, Theorem 2 also means that
the Multiway Uncut problem can be approximated within 1

2 +
√
2
4 f(k). For fixed

values of k, this ratio improves upon the ratio 0.8535 of [8]. For example, when
k = 3, 4, 5, and 10, our ratios are 0.8818, 0.8739, 0.8694, and 0.8611, respectively.
When k approaches infinity, the ratio tends to 1

2 +
√
2
4 = 0.8535 · · · , coinciding

with the ratio given in [8]. We get this improvement because we make use of the
randomized Algorithm P, while [8] does not.

Acknowledgments. Peng Zhang is supported by the State Scholarship Fund
of China, Natural Science Foundation of Shandong Province (ZR2012FZ002 and
ZR2013FM030), and the Fundamental Research Funds of Shandong University
(2015JC006).

Angsheng Li is supported by the hundred talent program of the Chinese Academy
of Sciences, and the grand challenge program, Network Algorithms and Digital Infor-
mation, Institute of Software, Chinese Academy of Sciences.

References

1. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth and Brooks, Monterey, CA, USA (1984)

2. Buchbinder, N., Naor, J., Schwartz, R.: Simplex partitioning via exponential
clocks and the multiway cut problem. In: Proc. STOC, pp. 535–544 (2013)

3. Calinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for
multiway cut. Journal of Computer and System Sciences 60(3), 564–574 (2000)

4. Dahlhaus, E., Johnson, D., Papadimitriou, C., Seymour, P., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM Journal on Computing 23, 864–894
(1994)

5. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press (2010)

6. Karger, D., Klein, P., Stein, C., Thorup, M., Young, N.: Rounding algorithms for
a geometric embedding of minimum multiway cut. Mathematics of Operations
Research 29(3), 436–461 (2004)

7. Kleinberg, J., Tardos, É.: Approximation algorithms for classification problems
with pairwise relationships: metric labeling and markov random fields. Journal of
the ACM 49(5), 616–639 (2002)

8. Langberg, M., Rabani, Y., Swamy, C.: Approximation algorithms for graph homo-
morphism problems. In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.)
APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 176–187. Springer,
Heidelberg (2006)

9. Li, A., Li, J., Pan, Y.: Homophyly/kinship hypothesis: natural communities, and
predicting in networks. Physica A 420, 148–163 (2015)

10. Li, A., Zhang, P.: Algorithmic aspects of homophyly of networks. Manuscript
(2012). arXiv:1207.0316

11. Sharma, A., Vondrák, J.: Multiway cut, pairwise realizable distributions, and
descending thresholds. In: Proc. STOC, pp. 724–733 (2014)

http://arxiv.org/abs/1207.0316

An Approximation Algorithm for the Smallest
Color-Spanning Circle Problem

Yin Wang1,2(B) and Yinfeng Xu1,2

1 School of Management, Xi’an Jiaotong University, Xi’an 710049, China
2 The State Key Lab for Manufacturing Systems Engineering, Xi’an 710049, China

yinaywang@stu.xjtu.edu.cn, yfxu@mail.xjtu.edu.cn

Abstract. To find a minimum radius circle in which at least one
point of each color lies inside, we have researched the smallest enclos-
ing circle problem for n points with m different colors. The former
research proposed a π-approximation algorithm with a running time
O(n2 + nm log m). In this paper, we construct a color-spanning set for
each point and find the smallest enclosing circle to cover all points of each
color-spanning set. The approach to find each color-spanning set is based
on the nearest neighbor points which have different colors. An approx-
imation algorithm to compute the minimum diameter of the enclosing
circle is proposed with the time of O(nm log n + n log m) at most. The
approximation ratio of our algorithm is less than 2. In conclusion, both
approximation ratio and complexity are improved by our proposed algo-
rithm.

Keywords: Computational geometry · Colored set · Approximation
algorithm · The minimum diameter color-spanning set problem

1 Introduction

The motivation for the geometric facility location problem comes from the base
site selection problem. Based on the arrangement of no different points, a couple
of related optimization problems for a set s of n points have already been studied
in the literature. Dobkin et al.[1] and Overmas et al.[2] treated the problems of
finding minimum perimeter convex k-gons. Their O(k2n log n + k5n) Alogrithm
result was inmproved to O(n log n + k5n) by Agarwal et al. [3]. Under the con-
dition of k ≤ n

2 , Eppstein et al. [4] studied the smallest ploytopes and proposed
a O(n2 log n) time algorithms using the Farthest color Voronoi diagram.

Depending on the practical requirements of different applications, variations
of problems have been proposed. As associated with different categories, all
points are marked by different colors. However, sometimes the information like
the locations are not known exactly (Beresfor et al. [5], Cheng et al. [6]). A con-
tinuous region which can be a disc model is proposed in difference papers (Wenqi
Ju et al. [7]). Then, it is always the objective to find the boundary of a geomet-
rical model to cover all properties.
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 171–182, 2015.
DOI: 10.1007/978-3-319-21398-9 14

172 Y. Wang and Y. Xu

Abellanas et al.[8] showed an algorithm for smallest color-spanning objects
of axis-parallel rectangle and the narrowest strip. Two constant factor approxi-
mation algorithms were proposed for the minimum perimeter of the convex hull
by Wenqi Ju et al. [7]. And their algorithms cost time of O(n2 + nm log m) and
O(min{n(n − m)2, nm (n − m)}) with the ratio of π and

√
2 respectively. How-

ever, as well as some other variants of theses problems are based on the smallest
plogons but Morton et al.[9] proved that such k-gons might not exist for k > 7.

However, the former research mostly focus on computing the smallest cover-
ing polygons with colored vertices. If the colored points are in general position, it
is proved to be NP-hard for some problems (Fleischer and Xu [10], Wenqi Ju et
al.[7]). The versions of constrained circle were proposed (Kamrmakar et al. [11])
and solved by the polynomial time algorithms. Zhang et al. [12] showed a brute
force algorithm with O(nk) time for the minimum diameter color-spanning set
problem(MDCS).

The problems above are often referred to as the color-spanning set problem
(CSSP). Each imprecise point is modelled by a set of k points with m kind
of given colors. Each point only has one of the m given colors and the possible
location of each point is already known. The color-spanning set contain one point
in each color set at least and its number of points is not less than m (n ≥ k ≥ m).
In this paper, we study the smallest color-spanning circle in general position and
without the constrained of center and color numbers.

For multicolored point sets, there are solutions to several problems, such as
the bichromatic closest, see e.g. Agarwal et al. [13]. Interestingly, the approach
in paper of Eppstein et al. [14] for the smallest polytopes, like the group Steiner
tree by Graf et al. [15], is also based on the nearest neighbors. In this paper,
for each point, we cosider the nearest neighbor point which has different color
firstly. Then we can find a color-spanning set based on these nearest neighbors.
For every color-spanning set, we can find a circle to cover all points of the set.
Our purpose is to find the minimum diameter of these circles.

2 Problem Statement and Notations

2.1 Problem Statement

In the color-spanning set problem, each point in the set P = {p1, p2, ..., pn} is
associated with a color from a set of m colors (m ≤ n). Let Si be the set of
points in the color class i (i = 1, 2, ...,m). We use i to denote the color of the
point pij and j to lable the differentiate points in Si which have different position
in the plane. A new point set named the color-spanning set is constituted such
that at least one point of each color lies inside it.

Without loss of generality, we make the following assumption on general
position: (1) each point has and only has one of the m given colors and there is
no horizontal or vertical line passing through two or more points. (2) the number
of colors is fixed. (3) considering the concision, the Euclidean distance between
two points is supposed to be known as its position information, but the exact
position of each point is uncertain.

An Approximation Algorithm for the Smallest 173

Definition 1. We call a circle color-spanning if all points in this circle contains
at least one of each color set Si. The objective is to find the minimum diameter
circle cs to cover a color-spanning set.

Meanwhile, this circle should meet the following conditions: (1) covering all
the points in color-spanning set, (2) having the minimum diameter, (3) contain-
ing all m given colors. From all above, we can define this problem to find the
minimum diameter of this circle as the smallest color-spanning circle (SCSC)
problem.

2.2 Notations

The two properties of every point are color and position. j is used to mark each
point with unique position in the plane, since the exact position is unknown. Let
pij denote the point with the color of i when its position is j, for 1 ≤ i ≤ m and
1 ≤ j < n.

Definition 2. Let Vij denote a point set of all points in each color-spanning
circle. For each point pij , we can constitute a color-spanning set Vij with m − 1
different colors from pij . Then we have the point set

Vij = {pij , p1, . . . , pk, . . . , pm−2, pm−1}.

We assume the number of points in each Vij is not less than m. The rank of
points in each Vij is denoted as k (1 ≤ k ≤ m). Let each pij be the first one of
Vij and called as initial point. The distance between pij and other points of Vij

decides their rank k in each Vij .
The points in each color-spanning set Vij should satisfy two properties: dif-

ferent colors and shortest interval with pij . Satisfied all the property above, the
point set can be regard as the color-spanning set Vij of each point pij .

Definition 3. The intervals of pij and other points in Vij constitute a sequence
Iij . Similarly, let the sequence Iij as Iij = {d1, d2, . . . , dm−2, dm−1}. We denote
a set of the nearest distinct color distance as Iij .

An approach to find the candidates of a color-spanning set is searching the
distance sequence Iij . That is to say, the furthest distance of the nearest distinct
color neighbors to pij is the maximum one in the sequence Iij and denoted as
follows: dij→m−1 = max {Iij}. With the hypothesis of its uniqueness, dij→m−1

is accoresponding to the endpoint pm−1 in Vij . By the analogy, dm−2→ij is the
second furthest one. For the further computing, dij stands for the solution to
the diameter of SCSC problem.

3 An Algorithm for the Color-Spanning Sets

Our aim is to cover all m given colors using the smallest circle. We conside one
of the n points briefly. By that analogy, the others can be computed by the same
way. Finally, the smallest one of these n color-spanning circles is our solution.

174 Y. Wang and Y. Xu

According to the definitions above, we can deduce that the color points in
each color-spanning set should satisfy two constraints: closest to initial point pij
in each color set si and cover all m colors.

As we know, Vij is the color-spanning set of pij . The purpose of this paper
is to find the smallest color-spanning circle. We present an algorithm to find the
nearest distinct colored points of each point pij . As this purpose, the approach
is based on the nearest distinct color distance Iij for each pij . After finding the
furthest distinct colored distance for each given point, the color-spanning set Vij

can be constituted. The processes are shown in Algorithm 1.

Algorithm 1. Contitute a color-spanning set for each pij
For each initial point pij :

1: for all color sets except the one pij belong to do
2: for all points in each color set Sx except the one pij belong to do find the

nearest point to initial point pij in each color set
3: if a point is the nearest one to pij in color set sx then
4: save this point as px and add it to point set Vij .
5: end if
6: end for
7: end for

For n points with m colors, the Algorithm 1 above can constitute a color-
spanning point set for each pij .

Definition 4. With each Iij , we can get the rainbow circles of this color-
spanning set. The rainbow circle set of each color-spanning set Vij is defined
as a group of concentric circles. Seen in Fig.1 . Thus, we have the following
result.

The rainbow circles set Cij (k, dk) = {c1, c2, . . . , ck, . . . , cm−2, cm−1} is a set
of m − 1 concentric circles with the center on pij . The radius of rainbow circle
ck is depended on the nearest distinct color distance dk in each Iij . For each
pij , every colored circle ck has two propertie as we proposed by Lemma 1 and
Lemma 2 as below.

Lemma 1. There is k colors covered by the colored circle ck.

Proof. The center of these circles is the initial point pij . The radiu of ck is equal
to dij→m−1, which is belong to Iij . If the distance between any point and pij is
not longer than the radiu of ck, the color of this point is covered by ck. According
to Algorithm 1, there is k points contain this condition. Besides, all these points
have different colors as the definition of Vij . ��

We can know the cm−1 and cm−2 are the largest and second largest circle in
each set of rainbow circles from definition 4. According to Lemma 1, the circle
cm−1 of each pij contains all given m colors.

An Approximation Algorithm for the Smallest 175

Fig. 1. The rainbow circles for each pij

Lemma 2. The point pm−1 is the only one with the color of circle cm−1.

Proof. Let the color of circle cm − 1 be x. If there is any point with color x
inside the rainbow circle cm−1, the point pm−1 cannot be the nearest to pij with
color x. ��

Theorem 1. The complexity for constituting each color-spanning set Vij is
O(m log n).

Proof. Each point can be the initial point pij of n possible color-spanning sets
and its distances to other points are supposed to be known. Otherwise, we need
time O(log nx) to find the nearest point to pij in each color set Si , where nx

is the number of points in color set Sx. As we know, there are n points in the
plane. Then,

m−1∑

x=1

nx+ni = n

the ni is the number of points in Si which is the color set the pij belong to.
Therefore, it spends O(log n) to comupte the nearest distance to pij in each
color set at most. For m − 1 color set except the one pij belong to, it cost time
of O(m log n) to constitute each Vij at most.

��

176 Y. Wang and Y. Xu

4 An Approximation Algorithm for SCSC Problem

4.1 An Approximation Algorithm

For each initial point, according to the Algorithm 1 above, each Vij can be
consisted by the nearest neighbor points to pij with m given different colors.
Based on the conclusions above, we come up with an approximation algorithm
for the SCSC problem. The first and quite simple idea to do is computing dm−1

and dm−2 of each Vij . The procedure is shown by Algorithm 2.

Algorithm 2. An Approximation Algorithm
For given n point

1: for all initial point pij do
2: for all points in Vij do
3: save the furthest one to pij as pm−1 and define their interval as dm−1 ;
4: end for
5: for all points in Vij except pm−1 do
6: save the furthest one to pij as pm−2 and define their interval as dm−2 ;
7: end for
8: for all pm−1 and pm−2 of pij do
9: compute dij = dm−1 + dm−2

10: end for
11: end for
12: for all dij do
13: compute the minimal one and save as ds = min {dm−1 + dm−2}
14: end for

The dij is the sum of dm−1 and dm−2 of each Vij in this Approximation
Algorithm. We can draw a circle cs with diameter of the minimum value of dij .
The diameter of cs is the approximation solution and denoted as ds. Therefore
the following assertion holds.

Definition 5. A union set contains pm−1 and all points in circle cm−2. We
define it as A for each Vij , where A ⊆ Vij .

We draw a circle denoted as cij with the diameter of dij for each Vij . Let the
line Lij through the initial point pij and pm−1. For each Vij , the projection of
each point pk on Lij is noted as pk

′. Find a point On Lij saved as pm−2
′, which

is on the left of pij and has the same interval with pm−2 to pij . Each candidate
cij of the approximation circle should satisfy properties as follows. Firstly, it can
cover all given colors. Secondly, the center of this circle is at the middle of pm−2

′

and pm−1. Finally, the diameter dij of cij is equal to the sum of dm−1 and dm−2.

Lemma 3. Each cij can cover all given m colors.

An Approximation Algorithm for the Smallest 177

Proof. As we know, cij contains all points in the union set A above. Seen in
Fig. 2. Furthermore, the points in A contain all points the circle cm−2 for each pij .
Therefore, the m−1 colors of points in cm−2 are also covered by A. Furthermore,
the color of pm−1 is unique in Vij and it is contain by A too. As the result,A can
cover all m given colors, so does cij . ��

Fig. 2. The color-spanning circle cij of each pij

4.2 The Upper Bound and Lower Bound of the SCSC Problem

According to the conclusions above, we know each cij can contain all given m
colors. In each cij , pm−1 and pm−2

′ is always on the boundary. Shown in the
Fig.2, we can find the position of each point in A desides the optimal circle.
The exact position is uncertainty, while distances between each two points are
certain in this paper. Therefore, three cases of the possible position of all point
in A are existed. We donot think about the region outside the rainbow circle
cm−1 for each Vij .

Case 1: The projection on Lij of pm−2 in on the left of pij , just like the Fig 2.
Let pm−2

′′ be the projection of pm−2. The radius of cij , which is saved as dij ,
should be equal to the distance of pm−2

′′ and its center oij . It can be show as :

rij = dij/2 = |oijpm−2|

And if the pm−2 should not be out of circle cij , then

dm−2 = |pijpm−2| ≥ |pijpm−2
′′| .

178 Y. Wang and Y. Xu

Fig. 3. Case 1

If and only if the equality hold up, we can get the minimum of the radius. That
means,

rij = |oijpm−2
′′| = |oijpm−2|

Therefore, when the position of pm−2 is overlap with the point pij , we can
find the worst case of the circle cij . The diameter of the smallest cij is the
minimal value under the worst case.

Case 2: Denote the pk as any point in A.c between pij and pm−1. As dm−1 ≥
dm−2, the minimum of this radius should not be less than dm−1. The optimal
diameter is the minimal value of dm−1 and save as dt. Seen in Fig. 4.

Case 3: When not all points in A satify

dpm−1pk

2 ≤ dpijpm−1
2 − dpijpk

2

and their projections is not on the right of pij but the point pm−2. Seen in Fig. 5.

The argument for case 3 is quite simlar to the proof of case 1. If the diameter
of circle is less than dm−1, it is certain that the points whose projection is on
the right of pij cannot be covered by this circle. Therefore, the optimal diameter
in cases should be more than dt in case 2 but less than the ds.

The maximum value of the four cases is the finally worst case of each color-
spanning set of pij . As the result, we can prove the worst case is the situation
where pm−2, pij and pm−1 are on one line Lij .

Lemma 4. The lower bound of the SCSC problem is the circle with the diameter
dt, where dt = min{dm−1}.

An Approximation Algorithm for the Smallest 179

Fig. 4. Case 2

Fig. 5. Case 3

180 Y. Wang and Y. Xu

Proof. As the conclusion of the lemma 4, we can find the minimum possible
radius in the case 2, which is shown as Fig 4. As the case of min {dm−1}, the
point pij and pm−1 in ct cannot be out of this optimal circle. Moreover, |pijpm−2|
is the diameter of the circle. Chords cannot be longer than diameter in one
circle. So the diameter dopt of color-spanning circle cannot be less than the
interval between pij and pm−1 of ct. The length of minimal value of dm−1 is
the lower bound of the diameter of color-spanning circle. Denote it as dt, then
dt = min{dm−1}. ��

Lemma 5. The optimal solution of SCSC problem cannot be less than the
minimum of the furthest distinct colored distances dm−1, as dopt ≥ min{dm−1}.

Proof. According to the argument of case 1, the upper bound of the optimal
solution depends on the minimal worst case. That solution cannot be less than
the approximation solution rs =

{
dm−1+dm−2

2

∣
∣
∣ min {dm−1}

}
. ��

From the argument above, Theorem 2 can be concluded.

Theorem 2. The upper bound of the SCSC problem is the smallest cij . The
low bound of the SCSC problem is the circle with the diameter of the minimum
dm−1.

4.3 The Approximation Ratio

Theorem 3. The approximation ratio r(A) is the value between 1 and 2, r(A) ∈
[1, 2].

Proof. According to the analysis of case 1 above, when the pm−2 and pm−2
′ in

circle cs is overlap, r(A) = 1. Moreover, in case 2, if a circle with radius of dm−1
2

is satisfied center at middle of pij and pm−1, all points of Vij can be covered. As
a result, r(A) = 2.Therefore, we can know the approximation ratio is between 1
and 2 and depends on the ratio of dm−1 and dm−2 of the circle rs. We compute
the approximation ratio r(A) as follows.

r (A) = sup
I

A (I)
opt (I)

As the argument of case 1 and case 2, we have the conclusion as below.

r (A) =
min {dm−1 + dm−2}

min {dm−1}

Because ds is the minimum value of dij , the sum of min {dm−1} and
dm−2

∣
∣
min{dm−1} can not more than ds. dm−2

∣
∣
min{dm−1} means the dm−2 in the

circle ct. Then,

r (A) ≤
min {dm−1} + dm−2

∣
∣
min{dm−1}

min {dm−1}
= 1 +

dm−1

dm−1

∣
∣
min{dm−1}

An Approximation Algorithm for the Smallest 181

As dm−2 is not alway more than dm−1 in each Vij , we have the conclusion:

1 ≤ r (A) ≤ 2.

The ratio of our approximation algorithm can be proved.
��

4.4 The Complexity of the Approximation Algorithm

Theorem 4. The time complexity for computing the approximation solution of
the minimum circle color-spanning set is O(nm log n + n log m).

Proof. According to Algorithm 1, each initial point runs less than O(m log n)
time to find the point set Vij . The step 1 and step 2 cost the same time of
O(log m) to find dm−1 and dm−2 of each Vij . However, the number of initial
point pij is n, such that we can get n color-spanning sets Vij . As a result,
traversal of all initial points still need n times. Furthermore, it spend O(log n)
to find the smallest one. Then, we know

O(n) = T (n(m log n + 2 log m) + log n) = O(nm log n + n log m).

As the result, the time complexity of this approximation algorithm is
O(nm log n + n log m). ��

Conclusion

Given a set of n points, which is a unit set of m colored sets, we study the
smallest circle to cover at least one of each colored set. Based on the worst case
analysis, we present an algorithm to find a color-spanning set for every point.
Based on the theory of geometric properties, the upper bound and lower bound
of the SCSC problem are computed. The proposed approximation algorithm has
an improved ratio (less than) 2. If the distance of each two points is known, the
running time of the approximation algorithm is improved to O(nm log n + n log
m).

Acknowledgments. The authors would like to acknowledge the financial support of
Grants (No.61221063) from NSF of China and (No.IRT1173) from PCSIRT of China.

References

1. Dobkin, D.P., Drysdale, R.L., Guibas, L.J.: Finding smallest polygons. Computa-
tional Geometry 1, 181–214 (1983)

2. Overmars, M.H., Rote, G., Woeginger, G.: Finding minimum area k-gons. Utrecht
University, Department of Computer Science (1989)

3. Aggarwal, A., Imai, H., Katoh, N., et al.: Finding k points with minimum spanning
trees and related problems. In: Proceedings of the Fifth Annual Symposium on
Computational Geometry, pp. 283–291. ACM (1989)

182 Y. Wang and Y. Xu

4. Eppstein, D., Overmas, M.H., Rote, G., Woeginger, G.: Finding minimum area
k-gons. Discrete Comput. Geom. 7, 45–58 (1992)

5. Beresford, A.R., Stajano, F.: Location privacy in pervasive computing. IEEE Per-
vasive computing 2(1), 46–55 (2003)

6. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Querying imprecise data in mov-
ing object environments. IEEE Transactions on Knowledge and Data Engineering
16(9), 1112–1127 (2004)

7. Ju, W., Fan, C., Luo, J., et al.: On some geometric problems of color-spanning
sets. Journal of Combinatorial Optimization 26(2), 266–283 (2013)

8. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B.,
Sacristán, V.: Smallest color-spanning objects. In: Meyer auf der Heide, F. (ed.)
ESA 2001. LNCS, vol. 2161, pp. 278–289. Springer, Heidelberg (2001)

9. Morton, J.D., et al.: Sets with no empty convex 7-gons. Canadian Mathematical
Bulletin 26(4), 482 (1983)

10. Fleischer, R., Xu, X.: Computing minimum diameter color-spanning sets. In: Lee,
D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 285–292.
Springer, Heidelberg (2010)

11. Karmakar, A., Roy, S., Das, S.: Fast computation of smallest enclosing circle with
center on a query line segment. Information Processing Letters 108(6), 343–346
(2008)

12. Zhang, D., et al.: Keyword search in spatial databases: towards searching by doc-
ument. In: IEEE 25th International Conference on Data Engineering, ICDE 2009,
pp. 688–699 (2009)

13. Agarwal, P.K., Edelsbrunner, H., Schwarzkopf, O., et al.: Euclidean minimum span-
ning trees and bichromatic closest pairs. Discrete and Computational Geometry
6(1), 407–422 (1991)

14. Eppstein, D., Erickson, J.: Iterated nearest neighbors and finding minimal poly-
topes. Discrete and Computational Geometry 11(1), 321–350 (1994)

15. Graf, T., Hinrichs, K.: Algorithms for proximity problems on colored point sets.
Universitt Mnster, Angewandte Mathematik und Informatik (1992)

Approximation Algorithms for the Connected
Sensor Cover Problem

Lingxiao Huang, Jian Li, and Qicai Shi(B)

Institute for Interdisciplinary Information Sciences (IIIS),
Tsinghua University, Beijing 100084, China

{huanglx12,sqc12}@mails.tsinghua.edu.cn, lijian83@mail.tsinghua.edu.cn

Abstract. We study the minimum connected sensor cover problem
(MIN-CSC) and the budgeted connected sensor cover (Budgeted-CSC)
problem, both motivated by important applications in wireless sensor
networks. In both problems, we are given a set of sensors and a set of
target points in the Euclidean plane. In MIN-CSC, our goal is to find a set
of sensors of minimum cardinality, such that all target points are covered,
and all sensors can communicate with each other (i.e., the communica-
tion graph is connected). We obtain a constant factor approximation
algorithm, assuming that the ratio between the sensor radius and com-
munication radius is bounded. In Budgeted-CSC problem, our goal is to
choose a set of B sensors, such that the number of targets covered by the
chosen sensors is maximized and the communication graph is connected.
We also obtain a constant approximation under the same assumption.

1 Introduction

In many applications, we would like to monitor a region or a collection of targets
of interests by deploying a set of wireless sensor nodes. A key challenge in such
applications is the limited energy supply for each sensor node. Hence, design-
ing efficient algorithms for minimizing energy consumption and maximizing the
lifetime of the network is an important problem in wireless sensor networks and
many variations have been studied extensively. We refer interested readers to
the book by Du and Wan [11] for many algorithmic problems in this domain.

In this paper, we consider two important sensor coverage problems. Now, we
introduce some notations and formally define our problem. We are given a set S
of n sensors in R

d. All sensors in S have the same communication range Rc and
the same sensing range Rs. In other words, two sensors s and s′ can communicate
with each other if dist(s, s′) ≤ Rc, and a target point p can be covered by sensor
s if dist(p, s) ≤ Rs. We use D(s,R) to denote the disk with radius R centered at
point s. Let Dc(s) = D(s,Rc) and Ds(s) = D(s,Rs).

Research supported in part by the National Basic Research Program of China Grant
2015CB358700, 2011CBA00300, 2011CBA00301, the National Natural Science Foun-
dation of China Grant 61202009, 61033001, 61361136003.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 183–196, 2015.
DOI: 10.1007/978-3-319-21398-9 15

184 L. Huang et al.

Assumption 1. In this paper, we assume that Rs/Rc can be upper bounded by a
constant C = O(1) (i.e., Rs/Rc ≤ C). Note that this assumption holds for most
practical applications. Without loss of generality, we can assume that Rc = 1.
Hence, Rs = O(1).

The first problem we study is the the minimum Connected sensor cover-
ing (MIN-CSC) problem. This problem considers the problem of selecting the
minimum number of sensors that form a connected network and detect all the
targets. It is somewhat similar, but different from, the connected dominating set
problem. We will discuss the difference shortly. The formal problem definition is
as follows:

Definition 1. MIN-CSC: Given a set S of sensors and a set P of target points,
find a subset S ′ ⊆ S of minimum cardinality such that all points in P are covered
by the union of sensor areas in S ′ and the communication links between sensors
in S ′ form a connected graph.

In some applications, instead of monitoring a set of discrete target points,
we would like to monitor a continuous range R, such as a rectangular area.
Such problems can be easily converted into a MIN-CSC with discrete points, by
creating a target point (which we need to cover) in each cell of the arrangement
of the sensing disks {Ds(s)}s∈S restricted in R (see [36] for details).

The second problem studied in this paper is the Budgeted connected sensor
cover (Budgeted-CSC) problem. The problem setting is the same as MIN-CSC,
except that we have an upper bound on the number of sensors we can open, and
the goal becomes to maximize the number of covered targets.

Definition 2. Budgeted-CSC: Given a set S of sensors , a set P of target points
and a positive integer B, find a subset S ′ ⊆ S such that |S ′| ≤ B and the number
of points in P covered by the union of sensor areas in S ′ is maximum and the
communication links between sensors in S ′ form a connected graph.

1.1 Previous Results and Our Contributions

MIN-CSC. The MIN-CSC problem was first proposed by Gupta et al. [19].
They gave an O(r ln n)-approximation (r is an upper bound of the hop-distance
between any two sensors having nonempty sensing intersections). Wu et al. [36]
give an O(r)-approximation algorithm, which is best approximation ratio known
so far (in terms of r). If Rs ≤ Rc/2, r = 1 and the above result implies a constant
approximation. However, even Rs is slightly larger than Rc/2, r may still be arbi-
trarily large. We also notice that if r = O(1), we must have Rs/Rc = O(1). So
Assumption 1 is a weaker assumption than the assumption that r = O(1).

MIN-CSC is in fact a special case the group Steiner tree problem (as also
observed in Wu et al [36]). In fact, this can be seen as follows: consider the
communication graph (the edges are the communication links). For each tar-
get, we create a group which consists for all sensor nodes that can cover

Approximation Algorithms for the Connected Sensor Cover Problem 185

the target. The goal is to find a minimum cost tree spanning all groups.1

Garg et al [16], combined with the optimal probabilistic tree embedding [13],
obtained an O(log3 n) factor approximation algorithm the group Steiner tree
problem via LP rounding. Chekuri et al. [6] obtained nearly the same approxi-
mation ratio using pure combinatorial method.

Our first main contribution is a constant factor approximation algorithm for
MIN-CSC under Assumption 1, improving on the aforementioned results. Our
improvement heavily rely on the geometry of the problem (which the group
Steiner tree approach ignores).

Theorem 1. There is a polynomial time approximation algorithm which can
achieve an approximation factor O(C2) for MIN-CSC. Under Assumption 1, the
approximation factor is a constant.

Budgeted-CSC. Recall in Budgeted-CSC, we have a budget B, which is the
upper bound of the number of sensors we can use and our goal is to maximize
the number of covered target points. Kuo et al.[25] study this problem under the
assumption that the communication and the sensing radius of sensors are the
same (i.e., Rs = Rc). They obtained an O(

√
B)-approximation by transforming

the problem to a more general connected submodular function maximization
problem.

Recently, Khuller et al. [23] obtained a constant approximation for the bud-
geted generalized connected dominating set problem, defined as follows: Given an
undirected graph G(V,E) and budget B, and a monotone special submodular
function 2 f : 2V → Z

+, find a subset S ⊆ V such that |S| ≤ B, S induces
a connected subgraph and f(S) is maximized. If Rs ≤ Rc/2 in Budgeted-CSC,
the coverage function f(S) (the number of targets covered by sensor set S) is
a special submodular function. Hence, we have a constant approximation for
Budgeted-CSC when Rs ≤ Rc/2. When Rs > Rc/2, f(S) may not be special
submodular and the algorithm and analysis in [23] do not provide any approxi-
mation guarantee for Budgeted-CSC.

We note that it is also possible to adapt the greed approach developed by
group Steiner tree [6] and polymatroid Steiner tree [4] to get polylogarithmic
approximation for Budgeted-CSC. However, it is unlike the approach can be
made to achieve constant approximation factors, and we omit the details.

In this paper, we improve the above results by presenting the first constant
factor approximation algorithm under the more general Assumption 1.

1 Notice that the group Steiner tree is edge-weighted but MIN-CSC is node-weighted.
However, since all nodes have the same (unit) weight, the edge-weight and node-
weight of a tree differ by at most 1.

2 f is a special submodular function if (1) f is submodular: f(A ∪ {v}) − f(A) ≥
f(B∪{v})−f(B) for any A ⊂ B ⊆ V ; (2) f(A∪X)−f(A) = f(A∪B∪X)−f(A∪B)
if N(X) ∪ N(B) = ∅ for any X, A, B ⊆ V . Here, N(X) denotes the neighborhood of
X (including X).

186 L. Huang et al.

Theorem 2. There is a polynomial time approximation algorithm which can
achieve approximation factor of 1

102C2 for Budgeted-CSC. Under Assumption 1,
the approximation factor is O(1).

Our algorithm is inspired by, but completely different from [23]. In particular,
we make crucial use of the geometry of the problem to get around the issue
required by [23] (i.e., the coverage function is required to be special submodular
in their work).

1.2 Other Related Work

MIN-CSC is closely related to the the minimum dominating set (MIN-DS) and
the minimum connected dominating set (MIN-CDS) problem. In fact, if the com-
munication radius Rc is the same as the sensing radius Rs, MIN-CSC reduces
to MIN-CDS. In general graphs, MIN-CDS inherits the inapproximability of set
cover, so it is NP-hard to approximation MIN-CDS within a factor of ρ ln n for
any ρ < 1 [10,14]. Improving upon Klein et al. [24], Guha et al.[18] obtained a
1.35 ln n-approximation, which is the best result known for general graphs.

Lichtenstein et al. [27] proved that MIN-CDS in unit disk graphs (UDG)
is NP-hard (which also implies that MIN-CSC is NP-hard). The first constant
approximation algorithm for the unweighted MIN-CDS problem in UDG was
obtained by Wan et al.[33]. This was later improved by Cheng et al.[7], who gave
the first PTAS. For the weighted (connected) dominating set problem , Ambühl
et al. [1] obtained the first constant ratio approximation algorithms for both
problems (the constants are 72 and 94 for MIN-DS and MIN-CDSrespectively).
The constants were improved in a series of subsequent papers [9,21,35,38]. Very
recently, Li and Jin [26] obtained the first PTAS for weighted MIN-DS and an
improved constant approximation for weighted MIN-CDS in UDG. Many vari-
ants of MIN-DS and MIN-CDS, motivated by various applications in wireless
sensor network, have been studied extensively. See [11] for a comprehensive
treatment.

Budgeted-CSC is a special case of the submodular function maximization
problem subject to a cardinality constraint and a connectivity constraint. Sub-
modular maximization under cardinality constraint, which generalizes the maxi-
mum coverage problem, is a classical combinatorial optimization problem and it
is known the optimal approximation is 1−1/e [14,29]. Submodular maximization
under various more general combinatorial constraints (in particular, downward
monotone set systems) is a vibrant research area in theoretical computer science
and there have been a number of exciting new developments in the past few
years (see e.g., [3,32] and the references therein). The connectivity constraint
has also been considered in some previous work [23,25,37], some of which we
mentioned before.

Approximation Algorithms for the Connected Sensor Cover Problem 187

2 Preliminaries

We need the following maximum coverage (MaxCov) in our algorithms.

Definition 3. MaxCov: Given a universe U of elements and a family S of sub-
sets of U , and a positive integer B, find a subset S ′ ⊆ S such that |S ′| ≤ B and
the number of elements covered by ∪S∈S′S is maximized.

We need to following well known result, by [20,29].

Lemma 1 (Corollary 1.1 of Hochbaum et al. [20]). The greedy algorithm
is a (1 − 1

e)-approximation for MaxCov.

A closely related problem is the hitting set problem.

Definition 4. HitSet: Given a universe U of weighted elements (with weight
function c : U → R

+) and a family S of subsets of U find a subset H ⊆ U such
that H ∩ S �= ∅ for all S ∈ S (i.e., H hits every subset in S) and

∑
u∈H cu is

minimized.

The HitSet problem is equivalent to the set cover problem (where the elements
and subsets switch roles). It is well known that a simple greedy algorithm can
achieve an approximation factor of lnn for HitSet and the factor is essentially
optimal [10,14]. In this paper, we use a geometric version of HitSet in which the
set of given elements are points in R

2 and the subsets are induced by given disks
(i.e., each S ∈ S is the subset of points that can be covered by a given disk).
Geometric hitting set admits constant factor approximation algorithms (even
PTAS) for many geometric objects (including disks) [2,5,8,28,31]. As mentioned
in the introduction, MIN-CSC is a special case of the following group Steiner tree
(GST) problem.

Definition 5. GST: We are given an undirected graph G = (V,E, c,F) where
c : E → Z

+ is the edge cost function, and F is a collection of subsets of V .
Each subset in F is called a group. The goal is to find a subtree T , such that
T ∩S �= ∅ for all S ∈ F (i.e., T spans all groups) and the cost of the tree

∑
e∈T ce

is minimized.

Our algorithm for Budgeted-CSC also needs the following quota Steiner tree
(QST) problem.

Definition 6. QST: Given an undirected graph G = (V,E, c, p) (c : E → Z
+ is

the edge cost function, p : V → Z
+ is the vertex profit function) and an integer q,

find a subtree T = arg maxT⊂E,
∑

e∈T c(e)≤q

∑
vi∈T p(vi) of the graph G (T tries

to collect as much profit as possible subject to the quota constraint).

Johnson et al. [22] proposed the QST problem and proved that any
α-approximation for the k-MST problem yields an α-approximation for the QST
problem. Combining with the 2-approximation for k-MST developed by Garg
[15], we can get a 2-approximation for the QST problem.

Lemma 2. These is an approximation algorithm with approximation factor 2
for QST.

188 L. Huang et al.

3 Minimum Connected Sensor Cover

We first construct an edge-weighted graph Gc as follows: If dist(s, s′) ≤ Rc, we
add an edge between s and s′ (It is easy to see that Gc is in fact a unit disk
graph). Gc is called the communication graph. Recall that MIN-CSC requires us
to find a set of vertices that induces a connected subgraph in the communication
graph Gc.

First, we note that Gc may have several connected components. We can see
any feasible solution must be contained in a single connected component (oth-
erwise, the solution can not induce a connected graph). Our algorithm tries to
find a solution in every connected component. Our final solution will be the one
with the minimum cost among all connected component. Note that for some
connected component, there may not be a feasible solution in that component
(some target point can not be covered by any point in that component), and our
algorithm ignores such component.

From now on, we fix a connected component C in Gc. Similar with Wu
et al. [36], we formulate the MIN-CSC problem as a group Steiner tree (GST)
problem. Each edge e ∈ G[C] is associated with a cost ce = 1. For each target
p ∈ P, we create a group

gp(p) = C ∩ D(p,Rs) = {s | s ∈ C, dist(p, s) ≤ Rs}.

The goal is to find a tree T (in G[C]) such that T ∩ gp(p) �= ∅ for all p ∈ P and
the cost is minimized. We can easily see the GST instance constructed above
is equivalent to the original MIN-CSC problem (the cost of the tree T is the
number of nodes in T minus 1). The GST problem can be formulated as the
following linear integral program: We pick a root r ∈ C for the tree T (we need
to enumerate all possible roots). For each edge e ∈ G[C], we use Boolean variable
xe to denote whether we choose edge e.

minimize
∑

e∈G[C]
xe (1)

subject to
∑

e∈∂(S)

xe ≥ 1, for all S ⊂ C such that r ∈ S and ∃p, S ∩ Gp = ∅;

xe ∈ {0, 1}, ∀e ∈ G[C].

The second constraint says that for any cut ∂(S) that separates the root r
from any group, there must be at least one chosen edge. By replacing xe ∈ {0, 1}
with x ∈ [0, 1], we obtain the linear programming relaxation of (1) (denoted
as Lp-GST). By the duality between flow and cut, we can see that the second
constraint is equivalent to dictating that we can send at least 1 unit of flow
from the root r to nodes in gp(p), for each p. This flow viewpoint (also observed
in the original GST paper [16]) will be particularly useful to us later. So we
write down the flow LP explicitly as follows. We first replace every undirected
edge e = (u, v) by two directed arcs (u, v) and (v, u). For each p ∈ P and each

Approximation Algorithms for the Connected Sensor Cover Problem 189

directed arc (u, v), we have a variable xp
uv indicating the flow of commodity p on

arc (u, v). We use yp
v =

∑
u xp

uv −
∑

w xp
vw to denote the net flow of commodity p

into node v. Then Lp-GST can be equivalently rewritten as the following linear
program (denoted as Lp-flow):

minimize
∑

(u,v)∈G[C]
xuv (2)

subject to yp
v =

∑

u

xp
uv −

∑

w

xp
vw for all v ∈ C

yp
r = −1 for all p ∈ P,
∑

v∈gp(p)

yp
v ≥ 1 for all p ∈ P,

yp
u = 0 for all u �∈ gp(p), u �= r,

xp
uv ≤ xuv for all p ∈ P, u, v ∈ C,

xp
uv, yp

v ∈ [0, 1], for all u, v ∈ G[C].

Now, we describe our algorithm. Our algorithm mainly consists of two steps.
In the first step, we extract a geometric hitting set instance from the optimal
fractional solution of Lp-flow. We can find an integral solution H for the hitting
set problem and we can show its cost is at most O(C2OPT). Moreover all sensors
in H can cover all target points p ∈ P. In the second step, we extract a Steiner
tree instance, again from the optimal fractional solution of Lp-flow. We show it
is possible to round the Steiner tree LP to get a constant approximation integral
Steiner tree, which can connect all points in H.

Step 1: Constructing the Hitting Set Problem :
We first solve the linear program Lp-flow and obtain the fractional optimal

solution (xuv, yv). Let Opt(Lp-flow) to denote the optimal value of Lp-flow. We
place a grid with grid size l =

√
2
2 in the plane (i.e., each cell is a

√
2
2 ×

√
2
2 square).

For each p ∈ P, consider the set of sensors gp(p), that is the set of sensors which
can cover p. Since gp(p) is contained in a disk of radius Rs ≤ C, there are at
most

√
2
2 O(C2) = O(1) grid cells that may contain some points in gp(p). Since∑

v∈gp(p) yp
v ≥ 1, there must be a cell (say cl(p)) such that

∑

v∈gp(p)∩cl(p)

yp
v ≥ Ω(1/C2) = Ω(1). (3)

Now, we construct a geometric hitting set (HitSet) instance (U ,F) as follows:
Let the set of points be U = ∪p∈P(gp(p) ∩ cl(p)) and the family of subsets be
F = {gp(p)}p∈P . The goal is to choose a subset H of U such that gp(p) ∩ H �= ∅
for all p ∈ P (i.e., we want to hit every set in F). Write the linear program
relaxation for the HitSet problem (denoted as Lp-HS):

190 L. Huang et al.

minimize
∑

u∈U
zu (4)

subject to
∑

u∈gp(p)

zu ≥ 1 for all p ∈ P,

zu ∈ [0, 1], for all u ∈ U .

Let Opt(Lp-HS) to denote the optimal value of Lp-HS. We need the following
simple lemma. Due to space constraints, the proof can be found in the full
version of this paper.3

Lemma 3. Opt(Lp-HS) ≤ O(C2Opt(Lp-flow)).

Bronnimann et al. [2], combined with the existence of ε-net of size O(1/ε) for
disks (see e.g., [30]), showed that we can round the above linear program Lp-HS
to obtain an integral solution (i.e., an actual hitting set) H ⊂ U such that
|H| ≤ O(Opt(Lp-HS)) (the connection to ε-net was made simpler and more
explicit in Even et al. [12]). Hence, |H| ≤ O(C2OPT).

Step 2: Constructing the Steiner Tree Problem : Recall that for each
p ∈ P, there is a cell cl(p) such that

∑
v∈gp(p)∩cl(p) yp

v ≥ Ω(1/C2). Consider
the collection Δ = {cl(p) | p ∈ P} of all such cells (if there is a cell which
contains the root r, we exclude it from Δ), from each cell cl ∈ Δ, we pick an
arbitrary point, called the representative node v(cl) of cl. From Equation 3 (i.e.,∑

v∈gp(p)∩cl(p) yp
v ≥ Ω(1/C2)), we can see at least Ω(1/C2) flow of commodity

p that enters cl(p). Now, we reroute such flow to the representative v(cl(p)),
in order to create a Steiner tree LP. Consider the optimal fractional solution
(xuv, yv) of Lp-flow. We would like to create another feasible fractional solution
(x̂uv, ŷv) for Lp-flow.

– (Flow Rerouting) For each node u ∈ gp(p) ∩ cl(p), let x̃p
uv(cl(p)) ←

xp
uv(cl(p)) + yu. In other words, we route the flow excess at node u to node

v(cl(p)). After such updates, for each u ∈ gp(p) ∩ cl(p), u �= v(cl(p)) we can
see the flow excess is zero, or equivalently ỹp

u = 0. The flow excess at node
v(cl(p)) is

ỹp
v(cl(p)) =

∑

v∈gp(p)∩cl(p)

yp
v ≥ Ω(1/C2).

We repeat the above process for all cl ∈ Δ.
– By uniformly increasing all variables, we obtain another feasible solution

(x̂uv, ŷv):

x̂p
uv = min{C2x̃p

uv, 1} and ŷp
v = min{C2ỹp

v , 1}.

Then, it is easy to see that ŷp
v(cl) ≥ 1 for all cl ∈ Δ. In equivalent words, at

least 1 unit flow (thinking x̂p
uv as flow value on (u, v)) that enters v(cl(p)).

3 A full version is available from the CS arXiv.

Approximation Algorithms for the Connected Sensor Cover Problem 191

Now, consider the Steiner tree problem in G(C) in which the set of termi-
nals is defined to be Ter = {r} ∪ {v(cl) | cl ∈ Δ}. Let x̌e = maxp∈P x̂p

uv +
maxp∈P x̂p

vu(Notice that Lp-flow is formulated on directed graphs and Steiner
tree is formulated on undirected graphs. Here e is the undirected edge corre-
sponding to directed edges uv and vu). It is easy to see that x̌e is a feasible
solution for the following linear program relaxation for the Steiner tree problem
(denoted as Lp-ST):

minimize
∑

e∈G[C]
xe (5)

subject to
∑

e∈∂(S)

xe ≥ 1, for all S ⊂ C such that r ∈ S and ∃cl ∈ Δ, v(cl) �∈ S

xe ∈ {0, 1}, ∀e ∈ G[C].

Lemma 4. Opt(Lp-ST) ≤ O(C2Opt(Lp-flow)).

It is well known that the integrality gap of the Steiner tree problem is a
constant [34]. In particular, it is known that using the primal-dual method (based
on Lp-ST) in [17] (see also [34, Chapter7.2]), we can obtain an integral solution
xe such that

∑

e∈G[C]
xe ≤ 2Opt(Lp-ST) ≤ O(C2Opt(Lp-flow)) ≤ O(C2OPT).

Let J be the set of vertices spanned by the integral Steiner tree {xe}. The above
discussion shows that |J | ≤ O(C2OPT). Our final solution (the set of sensors we
choose) is Sol = H ∪ J. The feasibility of Sol is proved in the following simple
lemma.

Lemma 5. Sol is a feasible solution.

Proof. We only need to show that Sol induces a connected graph and covers all
the target points. Obviously, H covers all target points, so does Sol. Since J is
a Steiner tree, thus connected. Moreover, J connects all representatives v(cl) for
all cl ∈ Δ. H consists of only sensors in cl ∈ Δ. So every sensor in v ∈ H (say
v ∈ cl) is connected to the representative v(cl). So H ∪ J induces a connected
subgraph. ��

Lastly, we need to show the performance guarantee. This is easy since we
have shown that both |H| ≤ O(C2OPT) and |J | ≤ O(C2OPT). So |Sol| =
O(C2OPT) = O(OPT) since C is assumed to be a constant.

4 Budgeted Connected Sensor Cover

Again we assume that Rc = 1 and Rs = C. Recall that our goal is to find a
subset S ′ ⊆ S of sensors with cardinality B which induces a connected subgraph

192 L. Huang et al.

and covers as many targets as possible. We first construct the communication
graph Gc as in Section 3. Again, we only need to focus on a connected component
of Gc. Then we find a square Q in the Euclidean plane large enough such that
all of the n sensors are inside Q. We partition Q into small square cells of equal
size. Let the side length of each cell be l =

√
2
2 . Denote the cell in the ith row

and jth column of the partition as cli,j . Let Vi,j = {v ∈ S | v ∈ cli,j} be the
collection of sensors in cli,j . We then partition these cells into k2 different cell
groups CGa,b, where k = �2C/l + 1�. In particular, we let

CGa,b = {cli,j | i ≡ a(mod k), j ≡ b(mod k)} for a ∈ [k], b ∈ [k].

and Va,b = S ∩ CGa,b be the collection of sensors in CGa,b.
With the above value k, we make a simple but useful observation as follows.

Observation 1. There is no target covered by two different sensors contained
in two different cells of CGa,b.

Denote the optimal solution of Budgeted-CSC problem as OPT. In this section, we
present an O

(
1

C2

)
factor approximation algorithm for the Budgeted-CSC prob-

lem.

4.1 The Algorithm

For 0 ≤ a, b < k, we repeat the following two steps, and output a tree T with
O

(
B

)
vertices (sensors) which covers the maximum number of targets. Then

based on T , we find a subtree T̃ with exactly B vertices as our final output.

Step 1: Reassign profit : The profit p(S) of a subset S ⊆ S is the number
of targets covered by S. p(S) is a submodular function. In this step, we design
a new profit function (called modified profit function) p̂ : S → Z

+ for the set
of sensors. To some extent, p̂ is a linearized version of p (module a constant
approximation factor).

Now, we explain in details how p̂ is defined. Fix a cell group CGa,b. 4 For the
vertices in CGa,b, we use the greedy algorithm to reassign profits of the vertices
in Va,b. Among all vertices in Va,b, we pick a vertex v1 which can cover the most
number of targets, and use this number as its modified profit p̂(v1). Remove the
chosen vertex and targets covered by it. We continue to pick the vertex v2 in
Va,b which can cover the most number of uncovered targets. Set the modified
profit p̂(v2) to be the number of newly covered targets. Repeat the above steps
until all the sensors in Va,b have been picked out. For other vertices v which are
not in Va,b, we simply set their modified profit p̂(v) as 0.

Let us first make some simple observations about p and p̂. We use p̂(S) to
denote

∑
v∈S p̂(v). First, it is not difficult to see that p̂(S) ≤ p(S) for any subset

S ⊆ S. Second, we can see that it is equivalent to run the greedy algorithm
for each cell in CGa,b separately (due to Observation 1). Suppose S1 ⊆ clc,d,

4 For each CGa,b, we define a modified profit function p̂a,b. For ease of notation, we
omit the subscripts.

Approximation Algorithms for the Connected Sensor Cover Problem 193

S2 ⊆ clc′,d′ where clc,d and clc′,d′ are two different cells in CGa,b, then p(S1∪S2) =
p(S1) + p(S2) due to Observation 1.

Consider a cell clc,d ∈ CGa,b. Let Dc,d = {v1, v2, ..., vn} ⊆ clc,d ∩S, where the
vertices are indexed by the order in which they were selected by the greedy algo-
rithm. Let Di

c,d = {v1, v2, ..., vi} be the first i vertices in Dc,d. By the following
lemma, we can see that the modified profit function p̂ is a constant approxima-
tion to true profit function p over any vertex subset V ⊆ Va,b.

Lemma 6. For a set of vertices V in the same cell clc,d ∈ CGa,b, such that
|V | ≤ i, we have that p(Di

c,d) = p̂(Di
c,d) ≥ (1 − 1/e)p(V).

Proof. By the greedy rule, we can see p(Di
c,d) = p̂(Di

c,d). By Lemma 1, we know
that p̂(Di

c,d) ≥ (1 − 1/e)max|V |≤i p(V). ��

Step 2: Guess the optimal profit and calculate a tree T : Although the
actual profit of OPT is unknown, we can guess the profit of OPT (by enumerating
all possibilities). For each 0 ≤ a, b < k, we calculate in this step a tree T of size
at most 4B, using the QST algorithm (see Lemma 2). We can show that among
these trees (for different a, b values), there must be one tree of profit no less than
1
k2

(
1 − 1

e

)
OPT.

After choosing the best tree T with the highest profit, we construct a subtree
T̃ of size B based on T as our final solution of Budgeted-CSC.

We first show that there exists 0 ≤ a, b < k, such that based on the modified
profit p̂ on CGa,b, there exists a tree with at most 2B vertices of total modified
profit at least 1

k2

(
1 − 1

e

)
OPT. We use TOPT to denote the set of vertices of the

optimal solution.

Lemma 7. There exists a tree T0 in Gc, |T0| ≤ 2B such that p̂(T0) ≥
1
k2

(

1 − 1
e

)

OPT.

Then, by the Lemma 2 and Lemma 7, if we run the QST algorithm (with
p̂ as the profit function), we can obtain the suitable tree T with at most 4B
vertices of profit at least 1

k2

(
1 − 1

e

)
p(OPT). The pseudocode of the algorithm

can be found in the full version of the paper.

Lemma 8. Let T be the tree obtained by the above step, then p(T) ≥
1
k2

(
1 − 1

e

)
OPT

Proof. By Lemma 7, we can obtain a tree T with at most 4B. We also have
p̂(T) ≥ 1

k2

(
1 − 1

e

)
OPT. Since p(S) ≥ p̂(S) for any S, we have proved the lemma.

��

Finally, we construct a subtree T̃ of B vertices based on tree T . This can
be done using a simple dynamic program, in the same way as [23]. Denote the
subtree with highest total profit as T̃ . We can show the following lemma.5

5 The proof is similar to that in [23] and can be find in the full version of the paper.

194 L. Huang et al.

Lemma 9. p(T̃) ≥ 1
8p(T).

Use the same dynamic programming algorithm in Khuller et al. [23],
we can find T̃ from tree T . Combining Lemma 8 and Lemma 9, p(T̃) ≥
1
8

(
1 − 1

e

)
1

(2
√
2C+1)2

OPT = 1
12.66(8C2+4

√
2C+1)

OPT ≥ 1
102C2 OPT (When C is

large). Thus, we have obtained Theorem 2.

5 Conclusion and Future Work

There are several interesting future directions. The first obvious open question
is that whether we can get constant approximations for MIN-CSC and Budgeted-
CSC without Assumption 1 (it would be also interesting to obtain approximation
ratios that have better dependency on C). Generalizing the problem further, an
interesting future direction is the case where different sensors have different
transmission ranges and sensing ranges. Whether the problems admit better
approximation ratios than the (more general) graph theoretic counterparts is
still wide open.

References

1. Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-factor approxi-
mation for minimum-weight (connected) dominating sets in unit disk graphs. In:
Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM
2006. LNCS, vol. 4110, pp. 3–14. Springer, Heidelberg (2006)

2. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite vc-dimension.
DCG 14(1), 463–479 (1995)

3. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submod-
ular function subject to a matroid constraint. SICOMP 40(6), 1740–1766 (2011)

4. Calinescu, G., Zelikovsky, A.: The polymatroid steiner problems. JCO 9(3),
281–294 (2005)

5. Chan, T.M., Grant, E., Könemann, J., Sharpe, M.: Weighted capacitated, pri-
ority, and geometric set cover via improved quasi-uniform sampling. In: SODA,
pp. 1576–1585. SIAM (2012)

6. Chekuri, C., Even, G., Kortsarz, G.: A greedy approximation algorithm for the
group steiner problem. Discrete Applied Mathematics 154(1), 15–34 (2006)

7. Cheng, X., Huang, X., Li, D., Wu, W., Du, D.Z.: A polynomial-time approximation
scheme for the minimum-connected dominating set in ad hoc wireless networks.
Networks 42(4), 202–208 (2003)

8. Clarkson, K.L., Varadarajan, K.: Improved approximation algorithms for geometric
set cover. DCG 37(1), 43–58 (2007)

9. Dai, D., Yu, C.: A 5+ ε-approximation algorithm for minimum weighted dominat-
ing set in unit disk graph. TCS 410(8), 756–765 (2009)

10. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings
of the 46th Annual ACM Symposium on Theory of Computing, pp. 624–633. ACM
(2014)

11. Du, D.Z., Wan, P.J.: Connected Dominating Set: Theory and Applications,
vol. 77. Springer Science & Business Media (2012)

Approximation Algorithms for the Connected Sensor Cover Problem 195

12. Even, G., Rawitz, D., Shahar, S.M.: Hitting sets when the vc-dimension is small.
IPL 95(2), 358–362 (2005)

13. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. In: STOC, pp. 448–455. ACM (2003)

14. Feige, U.: A threshold of ln n for approximating set cover. JACM 45(4), 634–652
(1998)

15. Garg, N.: Saving an epsilon: a 2-approximation for the k-mst problem in graphs.
In: STOC, pp. 396–402. ACM (2005)

16. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for
the group steiner tree problem. In: SODA, pp. 253–259. SIAM (1998)

17. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. SICOMP 24(2), 296–317 (1995)

18. Guha, S., Khuller, S.: Improved methods for approximating node weighted steiner
trees and connected dominating sets. Information and computation 150(1), 57–74
(1999)

19. Gupta, H., Zhou, Z., Das, S.R., Gu, Q.: Connected sensor cover: self-organization
of sensor networks for efficient query execution. IEEE/ACM Transactions on Net-
working 14(1), 55–67 (2006)

20. Hochbaum, D.S., Pathria, A.: Analysis of the greedy approach in problems of
maximum k-coverage. Naval Research Logistics 45(6), 615–627 (1998)

21. Huang, Y., Gao, X., Zhang, Z., Wu, W.: A better constant-factor approximation
for weighted dominating set in unit disk graph. JCO 18(2), 179–194 (2009)

22. Johnson, D.S., Minkoff, M., Phillips, S.: The prize collecting steiner tree problem:
theory and practice. In: SODA, vol. 1, p. 4. Citeseer (2000)

23. Khuller, S., Purohit, M., Sarpatwar, K.K.: Analyzing the optimal neighborhood:
algorithms for budgeted and partial connected dominating set problems. In: SODA,
pp. 1702–1713. SIAM (2014)

24. Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-
weighted steiner trees. Journal of Algorithms 19(1), 104–115 (1995)

25. Kuo, T.W., Lin, K.J., Tsai, M.J.: Maximizing submodular set function with
connectivity constraint: theory and application to networks. In: INFOCOM,
pp. 1977–1985. IEEE (2013)

26. Li, J., Jin, Y.: A PTAS for the weighted unit disk cover problem. In: Halldórsson,
M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS,
vol. 9134, pp. 898–909. Springer, Heidelberg (2015)

27. Lichtenstein, D.: Planar formulae and their uses. SICOMP 11(2), 329–343 (1982)
28. Mustafa, N.H., Ray, S.: PTAS for geometric hitting set problems via local search.

In: SCG, pp. 17–22. ACM (2009)
29. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for

maximizing submodular set functions. Mathematical Programming 14(1), 265–294
(1978)

30. Pyrga, E., Ray, S.: New existence proofs ε-nets. In: SCG, pp. 199–207. ACM (2008)
31. Varadarajan, K.: Weighted geometric set cover via quasi-uniform sampling. In:

STOC, pp. 641–648. ACM (2010)
32. Vondrák, J., Chekuri, C., Zenklusen, R.: Submodular function maximization

via the multilinear relaxation and contention resolution schemes. In: STOC,
pp. 783–792. ACM (2011)

33. Wan, P.J., Alzoubi, K.M., Frieder, O.: Distributed construction of connected domi-
nating set in wireless ad hoc networks. In: INFOCOM, vol. 3, pp. 1597–1604. IEEE
(2002)

196 L. Huang et al.

34. Williamson, D.P., Shmoys, D.B.: The design of approximation algorithms.
Cambridge University Press (2011)

35. Willson, J., Ding, L., Wu, W., Wu, L., Lu, Z., Lee, W.: A better constant-
approximation for coverage problem in wireless sensor networks (preprint)

36. Wu, L., Du, H., Wu, W., Li, D., Lv, J., Lee, W.: Approximations for minimum
connected sensor covereq:cellsum. In: INFOCOM, pp. 1187–1194. IEEE (2013)

37. Zhang, W., Wu, W., Lee, W., Du, D.Z.: Complexity and approximation of the con-
nected set-cover problem. Journal of Global Optimization 53(3), 563–572 (2012)

38. Zou, F., Wang, Y., Xu, X.H., Li, X., Du, H., Wan, P., Wu, W.: New approxima-
tions for minimum-weighted dominating sets and minimum-weighted connected
dominating sets on unit disk graphs. TCS 412(3), 198–208 (2011)

Circuits Algorithms

Skew Circuits of Small Width

Nikhil Balaji1(B), Andreas Krebs2, and Nutan Limaye3

1 Chennai Mathematical Institute, Chennai, India
nikhil@cmi.ac.in

2 University of Tübingen, Tübingen, Germany
mail@krebs-net.de

3 Indian Institute of Technology, Bombay, India
nutan@cse.iitb.ac.in

Abstract. In this work, we study the power of bounded width branch-
ing programs by comparing them with bounded width skew circuits.

It is well known that branching programs of bounded width have
the same power as skew circuit of bounded width. The naive approach
converts a BP of width w to a skew circuit of width w2. We improve this
bound and show that BP of width w ≥ 5 can be converted to a skew
circuit of width 7. This also implies that skew circuits of bounded width
are equal in power to skew circuits of width 7. For the other way, we
prove that for any w ≥ 2, a skew circuit of width w can be converted
into an equivalent branching program of width w. We prove that width-2
skew circuits are not universal while width-3 skew circuits are universal
and that any polynomial sized CNF or DNF is computable by width 3
skew circuits of polynomial size.

We prove that a width-3 skew circuit computing Parity requires expo-
nential size. This gives an exponential separation between the power of
width-3 skew circuits and width-4 skew circuits.

1 Introduction

The Boolean circuit complexity class NC1 consists of Boolean functions com-
putable by polynomial sized logarithmic depth circuits. Basic arithmetic oper-
ations like addition, multiplication and division are known to be in NC1. All
regular languages have uniform NC1 families deciding them and there is a regu-
lar language which is NC1-hard. Over the years, several useful characterizations
of NC1 have emerged: NC1 contains exactly those regular languages that are
characterized by having a monoid containing a non-solvable group. They are
also equally expressive as Branching Programs of constant width. Our interest
in NC1 is motivated by the celebrated result of Barrington [Bar89], that Branch-
ing Programs of width 5 are sufficient to capture NC1 in its entirety.

Branching programs have been pivotal to our understanding of computation
with limited resources. They were first defined in [Lee59] and formally stud-
ied by Masek in his thesis [Mas76]. Borodin et al.[BDFP86] proved that AC0

is contained in the class of functions computed by bounded width branching

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 199–210, 2015.
DOI: 10.1007/978-3-319-21398-9 16

200 N. Balaji et al.

programs and conjectured that Majority cannot be computed by them. In a sur-
prising result, Barrington showed that in fact, width 5 branching programs can
compute all of NC1 and hence the Majority function.

After the strong lower bound results of [Raz87][Smo87] for AC0, the ques-
tion of proving lower bounds for NC1 gained a lot of attention. However this
has turned out to be a notorious open problem. The branching program char-
acterization of NC1 has provided an avenue to understand the power of classes
that reside inside NC1. Though proving lower bounds for width 5 branching
programs is equivalent to proving lower bounds for NC1, it is conceivable that
proving lower bounds for width 4 branching programs is easier. In this regard, it
is known [Bar85] that width 3 branching programs of a restricted type (permuta-
tion branching programs) require exponential size to compute the AND function.
It is worthwhile to contrast this against the situation at width 5, where permu-
tation branching programs are known to be as powerful as general branching
programs of width 5 and hence NC1 itself.

It is known that bounded width branching programs can be equivalently
thought of as bounded width skew circuits (see for example [RR10]). Here, we
take a closer look at this relationship. The folklore construction1 converts a
polynomial size branching program of width w into a polynomial size skew circuit
of width w2. We improve this construction and show that any bounded width
branching program of width greater than or equal to 5 can be converted into an
equivalent skew circuit of width 7. We also study the conversion of skew circuits
into branching programs. Here, the known construction converts a skew circuit
of width w into a branching program of width w + 1 [RR10]. We improve this
construction and prove that a polynomial size skew circuit of width w can be
converted into a polynomial size branching program of width w. These results
prove that width 7 skew circuits of polynomial size characterize NC1.

These structural results allow us to examine the set of languages in NC1 by
varying the width of skew circuits between 1 and 7. Like for permutation branch-
ing programs, some natural questions arise for bounded width skew circuits. We
start by examining the power of width 2 skew circuits. We observe that they are
not universal as they cannot compute parity of two bits.

We then study the power of width 3 skew circuits. Recall that a CNF (DNF)
is an AND (OR) of ORs (ANDs) of variables, i.e. in a CNF the AND gate is
(possibly) non-skew. We implement a CNF by a width 3 skew circuit. Formally,
we prove that any k-CNF or any k-DNF of size s has width 3 skew circuits of
length O(sk). Given that any Boolean function on n variables has a CNF of
exponential (in n) size, this also proves that width 3 skew circuits are universal.

We consider the problem of proving lower bound for width 3 skew circuits. A
natural candidate is a function which has no polynomial sized CNF or DNF. It
is known that Parity is one such function. We prove that Parity requires width
3 skew circuits of exponential size. We observe that Parity and Approximate
Majority have respectively, linear and polynomial size width 4 skew circuits.
This separates width 3 skew circuits from width 4 skew circuits.

1 Replace each wire by an AND gate and each node by an OR gate.

Skew Circuits of Small Width 201

2 Preliminaries

A directed acyclic graph G = (V, E) is called layered if the vertex set of the
graph can be partitioned, V = V1 ∪ . . . ∪ V� in such a way that for each edge
e = (u, v) there exists 1 ≤ i < � such that u ∈ Vi and v ∈ Vi+1. Given a layered
graph G the length of the graph is the number of layers in it and the width of
the graph is the maximum over i ∈ [�], |Vi|.
Definition 1. (Branching Programs) A Deterministic Branching Program (BP)
is a layered directed acyclic graph G with the following properties:

– There is a designated source vertex s in the first layer (of in-degree 0) and
a sink vertex t (of out-degree 0) in the last layer.

– The edges are labelled by an element of X ∪ {0, 1}, where X is the set of
input variables to the branching program.

The branching program naturally computes a boolean function f(X), where
f(X) = 1 if and only if there is path from s to t in which each edge is labelled
by a true literal or a constant 1 on input X. The length (width) of the BP is
the length (respectively, width) of the underlying layered DAG.

We will denote the class of languages accepted by width-w BP by BPw.
Barrington [Bar85][Bar89] defined a restricted notion of branching programs
called the Permutation Branching Program (PBP):

Definition 2. (Permutation Branching Programs as a graph) A width-w PBP
is a layered width w BP in which the following conditions hold:

– There are designated source vertices s1, s2, . . . , sw in the first layer, say layer
1 (of in-degree 0) and sink vertices t1, t2, . . . , tw (of out-degree 0) in the last
layer, layer �.

– Each layer has exactly w vertices.
– In each layer 1 ≤ i < �, all the edges are labelled by a unique variable, say

xji .
– In each layer 1 ≤ i ≤ � and b ∈ {0, 1}, the edges activated when xji = b

forms a permutation/matching, say θi,b.

The permutation branching program naturally computes a boolean function
f(X), where f(X) = 1 if and only if there is path from s1 to t1, s2 to t2, and
so on till sw to tw, where in each path each edge is labelled by a true literal
or a constant 1 on input X. We will refer to the class of languages accepted by
polynomial sized width-w PBP by PBPw.

The above definition of PBP can be rephrased as follows:

Definition 3. (Permutation Branching Programs as a set of instructions) A
width-w length-� PBP is a program given by a set of � instructions in which for
any 1 ≤ i ≤ �, the ith instruction is a three tuple 〈ji, θi, σi〉, where ji is an index
from {1, 2, . . . , |X|}, θi, σi are permutations of {1, 2, . . . , w}. The output of the
instruction is θi if xji = 1 and it is σi if xji = 0. The output of the program on
input x is the product of the output of each instruction of the program on x.

202 N. Balaji et al.

We say that a permutation branching program computes a function f if there
exists a fixed permutation π �= id such that for every x such that f(x) = 1 the
program outputs π and for every x such that f(x) = 0 the program outputs id2.

It is easy to see that the above two definitions of PBP are equivalent.

Definition 4. (Skew Circuits) An AND gate is called skew if all but one of its
children are input variables. A Boolean circuit in which all the AND gates are
skew is called a skew circuit.

We assume that the skew circuits are layered. The width of the circuit is the
maximum number of gates in any layer. The layer may have AND, OR or input
gates. Each type of gate contributes towards the width. We assume that the
fan-in of the AND gates is bounded by 2 and there are no NOT gates (negations
appear only for the input variables)3. We denote the class of languages decided
by width-w skew circuits by SKw. The following lemma summarises some well
known connections between BPw, PBPw, SKw.

Lemma 1. Let w ∈ N. Then For any w, PBPw ⊆ BPw, for any w ≥ 5, BPw ⊆
PBPw [Bar89] and for any w, BPw is contained in SKw2

(see e.g. [RR10]).

Definition 5. (Approximate Majority) Approximate Majority ApproxMaja,n :
{0, 1}n → {0, 1} is the promise problem defined as: mathsfApproxMaja,n(x) :=
0 if x has at most a no. of 1s and is 1 if x has at least n − a no. of 1s.

3 Branching Programs and Skew Circuits

Here we analyze the conversion from branching programs to skew circuits and
vice versa. First we recall the following folklore lemma.

Lemma 2. (Folklore) Let f : {0, 1}n → {0, 1} be a Boolean function computed
by a width-w length-� branching program with at most k edges between any two
consecutive layers and with the additional property that each layer reads at most
one variable or its negation. Then there is a skew circuit of width max{w+2, k}
and size O((k + w)�) computing f .

3.1 Permutation Branching Programs to Skew Circuits

A permutation θ is called a transposition if either it is the identity permutation
or there exists i �= j such that θ(i) = j, θ(j) = i and for all k �= i �= j, θ(k) = k.
We call a transposition non-trivial if it is not the identity permutation, trivial
otherwise.

2 This is often called the strong acceptance condiction. Other notions of acceptance
have been studied in the literature. See for example [Bro05].

3 This assumption is not without loss of generality. However, we will see that when
a branching program is converted into a skew circuits, exactly this type of skew
circuits arise.

Skew Circuits of Small Width 203

Definition 6. (Transposition Branching Programs, TBP) A width-w length-
� TBP is a program given by a set of � instructions in which for any 1 ≤
i ≤ �, the ith instruction is a three tuple 〈ji, θi, σi〉, where ji is an index
from {1, 2, . . . , |X|}, θi, σi are transpositions of {1, 2, . . . , w}. The output of the
instruction is θi if xji = 1 and it is σi if xji = 0. The output of the program on
input x is the product of the output of each instruction of the program on x.

Lemma 3. Given a width-w PBP of length � there is an equivalent width-w
TBP of length O(w�).

Proof. It is known (see e.g. [Her06]) that any permutation of {1, 2, . . . , w} can be
written as a product of W transpositions of {1, 2, . . . , w}, where W = O(w). Let
P be a width-w PBP of length �. Consider the ith instruction in the program,
say 〈ji, θi, σi〉. We know that we can write θi as a product of W transpositions,
i.e. θi = ti,1 · ti,2 . . . ti,W , where for 1 ≤ j ≤ W ti,j is a transposition. Similarly,
we have σi = si,1 · si,2 . . . si,W , where si,j is a transposition for 1 ≤ j ≤ W .

To give a TBP equivalent to P , we replace every instruction 〈ji, θi, σi〉 in P
by the following: 〈ji, ti,1, id〉 · 〈ji, ti,2, id〉 . . . 〈ji, ti,W , id〉 ·〈ji, id, si,1〉 · 〈ji, id, si,2〉
. . . 〈ji, id, si,W 〉. By a simple inductive argument we can prove that the the trans-
position branching program thus obtained is equivalent to P . As W = O(w),
the upper bound on the length of the resulting branching program follows.

We defined TBPs as a set of instructions. Like in the case of PBPs, the
definition of TBPs can be rephrased in terms of the underlying DAG. We observe
the following about the DAG resulting from TBPs.

A width-w TBP is a layered width w PBP in which the following conditions
hold: (1) There are designated source vertices s1, s2, . . . , sw in the first layer,
say layer 1 (of in-degree 0) and sink vertices t1, t2, . . . , tw (of out-degree 0) in
the last layer, layer �, (2) Each layer has exactly w vertices, (3) In each layer
all the edges are labelled by a unique variable, (4) In each layer 1 ≤ i ≤ �,
one of the following holds: (4a) either the edges corresponding to xji = 1 form
a non-trivial transposition and the edges cooresponding to xji = 0 form the
identity permutation or (4b) the edges corresponding to xji = 0 form a non-
trivial transposition and the edges cooresponding to xji = 1 form the identity
permutation.

Remark 1. As a result of the above properties of the TBP the total number of
distinct edges between any two layers in a width-w TBP is at most w + 2: there
are w edges corresponding to the identity permutation, 2 edges corresponding to
the transposition of two elements, and w − 2 edges corresponding to the identity
maps for all but the two transposed elements. The w − 2 last edges overlap with
the w edges corresponding to the identity permutation.

Lemma 4. PBPw ⊆ SKw+2.

Proof. Given a PBPw for L of size s, by Lemma 3 we know that L also has a
width-w TBP. By Remark 1 the underlying DAG for the TBP has at most w+2
edges between any two consecutive layers. Using Lemma 2 we get a skew circuit
of width w + 2 for L. Note that the size of such a circuit is O(ws).

204 N. Balaji et al.

Using Barrington’s characterization of NC1 and Lemma 4 we get the follow-
ing: NC1 = BP5 = PBP5 ⊆ SK7.

3.2 Skew Circuits to Branching Programs

In this section we start from a skew circuit of bounded width and convert it into
a branching program of bounded width. Formally, we prove the following:

Theorem 2. If C is a skew circuit of width w and length � then there is an
equivalent branching program P of width w and size O(w�).

Proof. Recall that in a skew circuit C, AND gates have fan-in 2 and at least one
child is an input variable whereas OR gates have arbitrary fan-in and arbitrary
predecessors. Given a skew circuit C of width w and length �0 we will construct
a branching program P of width w that will recognize the same language. Let
Gi1, . . . , Giw be the gates of C on layer i for i = 1, . . . , �0.

Let X = {�i1 , �i2 , . . . , �iL} (|X| = L) be the set of layers on which there is at
least one input gate. Without loss of generality we assume that in each j ∈ [L]
the gate G�ij w is an input gate. (There may be other input gates as well.)

We will construct a branching program of length s = L+2 and width w. The
nodes in the branching program in layer �ij ∈ X will be called Nj0, . . . , Nj(w−1).
The nodes N00 and N(s−1)(w−1) are respectively, initial and target nodes.

The nodes N11, . . . , N(s−1)(w−1) will, by our construction, compute the value
of the nodes in a layer in X. More formally, for every input x, the gate G�jc

in layer �j of the circuit (and layer j in X) evaluates to 1 iff the node Njc can
be reached from the initial node. Since the gate Giw in X is an input gate we
will not add corresponding gate in the branching program. We have completely
specified the vertex set of the branching program P .

We now describe the edge set of P . We add an edge from N(j−1)0 to Nj0
labeled by 1 for every 1 ≤ j ≤ s − 1. This ensures that all nodes Nj0 are always
reachable from the initial node.

Suppose that the layer �j and �j +1 are both in X, i.e. �j+1 = �j +1, then the
edges between the nodes in the layer �j and �j+1 in the branching program are
easy to state. A node Nj+1c is connected to Njd if there is an edge between the
corresponding gates G�j+1c and G�jd. Also the edge in the branching program is
labeled by 1 if the gate G�jd is an OR gate, and labeled by the variable xi (or
its negtion ¬xi) if G�jd is an AND gate querying xi, resp. ¬xi. If an OR gate
in �j is connected to an input gate, we generate an edge to Nj0 labeled by the
literal queried by the input gate.

Now assume that the layer �j is in X and �j+1 is the next layer in X and
�j+1 > �j + 1. Then in the skew circuit, no input gates occur strictly between
the layers �j and �j+1. This implies that there are no AND gates in the layers
�j + 2, . . . , �j+1. Hence the functions computed by the gates in layer �j+1 are
ORs of some gates in layer �j +1. In layer gates in layer �j +1 are ORs of either
ANDs of gates in layer �j + 1 and an input variable or ORs of directly gates in
layer �j + 1. Therefore, we add the following edges in the branching program:

Skew Circuits of Small Width 205

a node N(j+1)c is connected to Njd if the OR function computed by G�j+1c has
G�jd as one of the inputs. This edge in the branching program is labeled by 1
if this was a direct OR, it is labeled by the variable xi (or its negtion ¬xi) it it
was an ‘or’ of an ‘and’ querying xi resp. ¬xi. e.

It is easy to verify by induction on the layers that Njc is reachable from the
inital gate if the corresponding gate evaluates true. Finally we add an edge from
the node corresponding to the output gate to N(s−1)(w−1).

Putting together Lemma 4 and Theorem 2 we get the following corollary:

Corollary 1. NC1 = BP5 = PBP5 = SK7

4 Width ≤ 7 Skew Circuits

Here we study the structure of the languages in NC1 by investigating properties
of skew circuits of width 7 or less. By definition SKi ⊆ SKi+1 for 1 ≤ i ≤ 6. We
start by proving that width 2 circuits are not universal (We defer the proofs to
the full version of the paper due to lack of space).

Lemma 5. A width 2 skew circuit of any size cannot compute Parity of 2 bits.

Recall that a k-DNF of size s on n variables is an OR of s terms, where each
term is an AND of at most k literals from {x1, x2, . . . , xn, ¬x1, ¬x2, . . . , ¬xn}.
Similarly, k-CNF of size s on n variables is an AND of s clauses, where each
clause is an OR of at most k literals from {x1, x2, . . . , xn, ¬x1, ¬x2, . . . , ¬xn}.

Lemma 6. Let f be a k-DNF of size s on n variables. Then f has a width-3
skew circuit of length O(sk).

We defer the proof of the above lemma to the full version of the paper due
to lack of space. As any Boolean function on n variables has an n-DNF of size
at most 2n, we get the following corollary.

Corollary 2. Let f : {0, 1}n → {0, 1}. Then f can be computed by width-3 skew
circuit of length O(n2n), i.e. width-3 skew circuits are universal.

Lemma 7. Let f be a k-CNF of size s on n variables. Then f has a width-3
skew circuit of length O(sk).

Proof. Note that in a CNF, the top AND gate gets clauses as inputs. That is, the
AND gate is not skew. However, it is still possible to get a skew circuit for CNFs.
We prove this by induction on the number of clauses, i.e. s. The base case is
s = 1. This is just an OR of literals, which is computable by width-2 skew circuit
of length O(k). Let fi(x1, . . . , xn) = C1∧ . . .∧Ci be computable by width-3 skew
circuit of length O(ik). Now fi+1 = fi ∧ Ci+1 (where Ci+1 = xj1 ∨ xj2 . . . ∨ xjk)
is computed as follows: fi+1 = (. . . ((fi ∧ xj1)∨ (fi ∧ xj2) . . . (fi ∧ xjk)) . . .). Note
that we need width 1 each for the fi, the AND gate and the input variable.
(Even though we require width 3 to compute fi, after the computation, it just
requires width 1 to carry around the value of the function to the next stage).
(See Figure 1.) �

206 N. Balaji et al.

∧

fi ∨

xj1 xj2 . . . xjk

∨

∧

fi xj1

∧

fi xj2

. . . ∧

fi xjk

fi ∈ SK3

fi fi fi

< < <

> > >xjkxj2xj1

.

Fig. 1. Width 3 skew circuits for CNFs

By a result of Viola [Vio09], it is known that Approximate Majority is
computable by P-uniform depth-3 circuits of polynomial size with alternat-
ing AND/OR layers with the output gate being an OR gate. This along with
Lemma 7 above yields:

Corollary 3. ApproxMaja,n has skew circuits of width 4 and polynomial length.

Razborov[Raz87] and Smolensky[Smo87] show that Parity does not have con-
stant depth circuit of polynomial size. It also implies that Parity does not have
polynomial size CNFs or DNFs . However, we now show that Parity has skew
circuits of width 4 and polynomial size.

Lemma 8. Parity on n variables has a skew circuit of width 4 and length O(n).

Proof. This is an easy observation which comes from the fact that Parity has a
branching program of width 2 and length O(n). This fact along with part 3 of
Lemma 1 proves the result. �

5 Parity and SK3

In this section we prove that Parity does not have polynomial length width-3
skew circuits. As Parity has width 4 skew circuits of linear length (Lemma 8),
this separates SK3 from SK4.

Theorem 3. SK3
� SK4.

In order to prove this we first show that any width three skew circuit com-
puting Parity can be converted into a normal form. We then show that any
polynomial sized circuit of that normal form cannot compute Parity.

Lemma 9. Let C be a Boolean width 3 skew circuit with size s(n) computing
Parityn. The circuit C can be converted into another circuit D such that D
computes Parity of at least n − 2 bits and has the following structure:

Skew Circuits of Small Width 207

1. The top gate of D is an OR of at most 3s(n)2 disjoint skew circuits, say
C1, C2, . . . , Cm, where m ≤ 3s(n)2.

2. The sum of sizes of all Cis is at most O(s(n)3)
3. At most two of these circuits have width 3 and all the other have width at

most 2.

Lemma 10. Let D be a circuit satisfying properties 1,2,3 from Lemma 9 and
computing Parityn. Then there exists a constant c such that the size of D is at
least 2n/nc.

Using Lemma 9 and Lemma 10 it is easy to see that the lower bound for
Parity follows.

5.1 Proof of Lemma 9

Let C be a width three circuit computing Parity of n bits of size s(n). The top
gate of C cannot be AND as, by fixing the input wires of the AND gate, we can
fix the output of the circuit, however, Parity of n bits cannot be fixed by fixing
< n bits. Therefore, we can assume that the top gate is an OR gate. We prove
the following structural statement about the skew circuits (We defer the proof
of the proposition to the full version of the paper due to lack of space):

Proposition 1. Let C be any width three skew circuit computing Parity of n
bits. Let k be the highest layer in C consisting of only AND gates, say g1

k, g2
k, g3

k.
We can convert this into another width 3 skew circuit D computing Parity of at
least n − 2 bits such that no layer of D contains three AND gates.

Therefore, we will now assume that we have a circuit D which computes
parity of at least n − 2 bits in which no layer consists of only AND gates.

Let G = (V, E) denote the DAG underlying the circuit D. Let X ⊆ V denote
the subset of gates which have a path to the top gate via only OR gates. Note
that all the vertices in this set are themselves OR gates. We refer to the set of
vertices X as ORSET.

Let Xin ⊆ V denote the set of vertices in V \ X which have an edge incident
from it to some vertex in X. Similarly, let Xout ⊆ V denote the set of vertices
in V \ X which have an edge incident to them from some vertex in X.

(a) Disconnect all edges incident to the set Xout from X. Let the new dangling
wires be labelled with the constant 0 input.

(b) If after step (a) any AND gates receives constant input 0 then delete the
gate and if any OR gate receives constant input 0 then delete this input of
the OR gate.

(c) In the graph obtained after steps (a) and (b), consider V \ X. This dis-
connects the DAG G and gives rise to some connected components, say
X1, X2, . . . , X�. For each i ∈ [�] and edge (u, v) such that u ∈ Xi and v ∈ X
let Ci,u be the subgraph (DAG) of Xi with u as its sink.

Proposition 2. The step (a) does not change the output function of the circuit.

208 N. Balaji et al.

The proof of the above is deferred to the full version of the paper.Note that
V \X is partitioned by Xis, ∴ � ≤ s(n). Also, ∪m

i=1Xi ⊆ V \X, hence
∑m

i=1 |Xi| ≤
s(n). The number of edges in G is ≤ 3s(n). Therefore, the total number of edges
between any Xi and X is at most 3s(n) and the number of circuits Cu,i is at
most s(n)2 and each such circuit is of size at most s(n). This proves parts 1, 2
of Lemma 9.

We will now prove part 3 of Lemma 9. The top gate of D is the same as
the top gate of C, and it is an OR gate. Therefore, this gate is in the ORSET.
Now as long as there are OR gates on the layers, we have at least one gate per
layer in the ORSET. Finally, if there is a layer with no OR gates, then this
layer must have at least one input variable (as D does not have any layer with
three AND gates). The other two gates at this layer be g, h. Let Xg, Xh be two
DAGs rooted at g and h, respectively, and Cg and Ch be the two corresponding
circuits. These are possibly width three circuits. However, all other connected
components of V \ X are of width at most 2 due to step (b) above. This gives
Part 3 of Lemma 9.

5.2 Proof of Lemma 10

Let D be the circuit given by Lemma 9. Let n0 denote the number of unfixed
variables. Let C1, C2, . . . , Cm be circuits given by Lemma 9. We know that at
most two circuits among these have width 3. Let us assume without loss of
generality that the two circuits are C1, C2. The output gates of these circuits are
AND gates, say G1 and G2, respectively. These being skew circuits, all but one
of the inputs of the AND gates are input gates. We will first prove the following
proposition.

Proposition 3. By fixing at most 2 variables both G1 and G2 can be set to 0.

The proof of this proposition is deferred to the full version of the paper.
Let N denote the number of variables which were not set. Here, N ≥ n0 − 2.

The new circuit, say D′, is now an OR of C3, C4, . . . , Cm and by our assumption,
it computes Parity of N variables. We will show that OR of polynomially many
polynomial size width-2 skew circuits cannot compute Parity.

Let us fix some notation. Let L⊕ denote the 1 set of parity, i.e. L⊕ = {x ∈
{0, 1}N | Parity(x) = 1}. We know that |L⊕| = 2N−1. For any Boolean circuit
C, let LC denote {x ∈ {0, 1}N | C(x) = 1}. Note that as D′ above is an OR of
C3, C4 . . . , Cm, we have LD′ = ∪m

i=3LCi
.

Definition 7. We say that a Boolean circuit C α-approximates a function f :
{0, 1}n → {0, 1} if the following conditions hold:

– ∀x ∈ {0, 1}n, if f(x) = 0 then C(x) = 0, i.e. C has no false positives.
– The ratio of |{x | C(x) = 1}| to |{x | f(x) = 1}| is at least α

For the sake of contradiction we have assumed that D′ computes parity of
N bits. Assuming this and from the fact that LD′ = ∪m

i=3LCi
, we get that there

Skew Circuits of Small Width 209

exists an i ∈ {3, 4, . . . , m} such that Ci 1/m-approximates parity of N bits.
We will now prove that no such Ci exists, which will give us the contradiction.
Formally, we prove the following:

Claim. Let D′ and C3, C4, . . . , Cm be defined as above. There does not exists
i ∈ {3, 4, . . . , m} such that Ci 1/m-approximates Parity of N bits.

Proof. Suppose there exists a Ci which 1/m-approximates parity of N bits.
Recall that Ci is a width 2 skew circuit. Let the last layer be L and the first
layer be 1. Let �i1 , �i2 , . . . , �it be the layers in which there is one input gate,
with �i1 being closest to layer 1 and �it being closest to layer L. (Note that, we
can assume without loss of generality that layer 1 is the only layer which has
two input gates.) Let the variables queried by these gates be xi1 , xi2 , . . . , xit ,
respectively. Let hit+1 denote the output gate in layer L. Similarly, let hi1 be the
gate in layer �i1 (other than the input gate), hi2 be the gate in layer �i2 (other
than the input gate) and so on till hit be the gate in layer �it (other than the
input gate).

As there are no NOT gates in the circuit, hij+1 is a monotone function of
xij , hij for every 1 ≤ j ≤ t. There is a unique value of xij , say bij ∈ {0, 1}, such
that by setting xij = bij , hij+1 becomes a non-trivial function of hij . (This is
because, there are at most 6 different monotone functions on two bits, two of
which cannot occur in a minimal circuit. And the other four (AND, OR, NAND,
NOR) have this property.)

Note that, the setting of xit = bit will not fix the value of hit . Suppose hit

gets fixed due to this setting. In that case, value of hit+1 will also get fixed.
Suppose the value of hit+1 becomes 1, then for all settings of x �= xit , hit+1 will
continue to have value 1. But we have assumed that Ci has no false positives.
Therefore, this is not possible. On the other hand, if the value of hit+1 gets fixed
to 0, then for all settings of variables x �= xit the circuit will output 0. That is,
for 2N−1 different inputs the circuit will output 0. However, we have assumed
that the circuit outputs 1 for at least 2N−1/m many inputs.

Assuming xit = bit and xit �= xit−1 , we will repeat this argument for xit−1 .
Let xit−1 = bit−1 be the setting of xit−1 which makes hit a function of hit−1 .
Suppose this setting of xit−1 fixes hit then that will inturn fix hit+1 . As before,
to avoid false positives, the value of hit+1 cannot be fixed to 1. And to ensure
that the circuit evaluated to 1 on at least 2N−1/m inputs, it cannot be fixed to
0.

In this way, we can repeat the argument for k distinct variables as long as k <
(N −1)−�logm�. Let k0 be such that k0 = ω(logm) and k0 < (N −1)−�logm�.
We fix k0 distinct variables as above. But now note that any other setting of
these k0 variables fixes the value of hit+1 to 0. Therefore, the circuit can be 1
on at most O(2N−k0) inputs. But this contradicts our assumption that hit+1

evaluated to 1 on at least 2N /m inputs from L⊕. �

210 N. Balaji et al.

6 Discussion

The above study provides a wide range of interesting questions, answers to
which may improve our understanding of functions in NC1. Namely, the ques-
tions regarding lower bounds for width k skew circuits for 4 ≤ k ≤ 6. Some of
these questions could be more tractable than the daunting question of proving
lower bounds for NC1 circuits. We conjecture that Majority is a function with
respect to which width 4 circuits will have exponential lower bound. Towards
proving such a result, it may be interesting to obtain a normal form for width 4
skew circuits. It may also be possible that any function in NC1 is computable by
width k circuits for 4 ≤ k ≤ 6. Such a result will tighten the connection between
branching programs and skew circuits.

References

[Bar85] Barrington, D.A.: Width-3 permutation branching programs. Technical
Memo MIT/LCS/TM-293, Massachusetts Institute of Technology, Labo-
ratory for Computer Science (1985)

[Bar89] Barrington, D.A.: Bounded-width polynomial-size branching programs can
recognize exactly those languages in NC1. Journal of Computer and System
Sciences 38, 150–164 (1989)

[BDFP86] Borodin, A., Dolev, D., Fich, F.E., Paul, W.: Bounds for width two branch-
ing programs. SIAM Journal on Computing 15(2), 549–560 (1986)

[Bro05] Brodsky, A.: An impossibility gap between width-4 and width-5 permuta-
tion branching programs. Information Processing Letters 94(4), 159–164
(2005)

[Her06] Herstein, I.N.: Topics in algebra. John Wiley & Sons (2006)
[Lee59] Lee, C.-Y.: Representation of switching circuits by binary-decision pro-

grams. Bell System Technical Journal 38(4), 985–999 (1959)
[Mas76] Masek, W.J.: A fast algorithm for the string editing problem and decision

graph complexity. PhD thesis, Massachusetts Institute of Technology (1976)
[Raz87] Razborov, A.A.: Lower bounds on the size of bounded depth circuits over

a complete basis with logical addition. Mathematical Notes 41(4), 333–338
(1987)

[RR10] Rao, B.V.R.: A study of width bounded arithmetic circuits and the com-
plexity of matroid isomorphism. [HBNI TH 17] (2010)

[Smo87] Smolensky, R.: Algebraic methods in the theory of lower bounds for boolean
circuit complexity. In: Proceedings of the nineteenth annual ACM sympo-
sium on Theory of computing, pp. 77–82. ACM (1987)

[Vio09] Viola, E.: On approximate majority and probabilistic time. Computational
Complexity 18(3), 337–375 (2009)

Correlation Bounds and #SAT Algorithms
for Small Linear-Size Circuits

Ruiwen Chen1(B) and Valentine Kabanets2

1 School of Informatics, University of Edinburgh, Edinburgh, UK
rchen2@inf.ed.ac.uk

2 School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
kabanets@cs.sfu.ca

Abstract. We revisit the gate elimination method, generalize it to prove
correlation bounds of boolean circuits with Parity, and also derive deter-
ministic #SAT algorithms for small linear-size circuits. In particular, we
prove that, for boolean circuits of size 3n − n0.51, the correlation with

Parity is at most 2−nΩ(1)
, and there is a #SAT algorithm running in

time 2n−nΩ(1)
; for circuit size 2.99n, the correlation with Parity is at

most 2−Ω(n), and there is a #SAT algorithm running in time 2n−Ω(n).
Similar correlation bounds and algorithms are also proved for circuits of
size almost 2.5n over the full binary basis B2.

Keywords: Boolean circuit · Random restriction · Correlation bound ·
Satisfiability algorithm

1 Introduction

Connections between circuit lower bounds and efficient algorithms have been
explicitly exploited in several recent breakthroughs. In particular, the “ran-
dom restriction” technique, which was used to prove circuit lower bounds, was
extended to get both satisfiability algorithms and average-case lower bounds for
boolean formulas [6,16,17,22] and AC0 circuits [2,13].

For de Morgan formulas, Santhanam [22] gave a #SAT algorithm running in
time 2n−Ω(n) for formulas of linear size; the algorithm is based on a generalization
of the “shrinkage under random restrictions” property, which was used to prove
formula lower bounds [11,25]. Santhanam [22] observed that, one can define
a random process of restrictions such that the formula size shrinks with high
probability. This concentrated shrinkage implies not only #SAT algorithms but
also correlation bounds. As shown in [22], a linear-size de Morgan formula has
correlation at most 2−Ω(n) with Parity; the correlation of two n-input functions
f and g is |Pr[f(x) = g(x)] − Pr[f(x) �= g(x)]|, where x is chosen uniformly
at random from {0, 1}n. Santhanam’s algorithm was extended to 2n−nΩ(1)

-time
#SAT algorithms for de Morgan formulas of size n2.49 in [6] and size n2.63 in [7].
For formulas over the full binary basis B2, Seto and Tamaki [24] extended [22]

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 211–222, 2015.
DOI: 10.1007/978-3-319-21398-9 17

212 R. Chen and V. Kabanets

Table 1. Worst-case and average-case lower bounds for computing Parity

Worst-Case Lower Bounds Average-Case Upper / Lower Bounds

AC0 s = exp(nθ(1
d−1)) [10,26] ε = 2−Ω(n/(log s)d−1) [12]

De Morgan s = n2−θ(1) [25] ε � 2−Ω(n2/s) ε � 2−Ω(n/
√

s) [1,21]

formulas ε � 2−Ω(n/c2) for s = cn [22]

U2-circuits s = 3n − θ(1) [23] ε � 2−Ω(3n−s) ε � 2−Ω((3n−s)2/n) [This work]

to give a 2n−Ω(n)-time #SAT algorithm for B2-formulas of linear size, and also
showed that such formulas cannot approximately compute affine extractors.

On the other hand, Komargodski, Raz, and Tal [16,17] also used the con-
centrated shrinkage property to generalize the worst-case formula lower bounds
to the average case. They gave an explicit function (computable in polynomial
time) such that de Morgan formulas of size n2.99 can compute correctly on at
most 1/2 + 2−nΩ(1)

fraction of inputs. Combining the techniques in [6,17], one
can get a randomized 2n−nΩ(1)

-time #SAT algorithm for de Morgan formulas of
size n2.99.

1.1 Our Results and Techniques

In this work, we get correlation bounds and #SAT algorithms for general boolean
circuits. We consider circuits over the full binary basis B2 and circuits over the
basis U2 = B2 \ {⊕,≡}.

We prove that, for U2-circuits of size 3n − nε for ε > 0.5, the correlation
with Parity is at most 2−nΩ(1)

, and there is a #SAT algorithm running in time
2n−nΩ(1)

; for U2-circuits of size 3n − εn for ε > 0, the correlation is at most
2−Ω(n), and there is a #SAT algorithm running in time 2n−Ω(n). For B2-circuits,
we give a similar #SAT algorithm for circuits of size almost 2.5n, and show the
average-case hardness of computing affine extractors using such circuits.

Our correlation bounds of U2-circuits with Parity are almost optimal, up to
constant factors in the exponents. In fact, one can construct a U2-circuit of size
3n− l which computes Parity on at least 1/2+2−Ω(l) fraction of inputs. Table 1
summarizes the known worst-case and average-case lower bounds against Parity
for several restricted circuit models. Note that, for the average-case bounds, we
express the correlation ε as a function of the circuit size s.

However, there is still a gap between our average-case lower bounds and the
worst-case lower bounds. The best known worst-case explicit lower bound is
5n − o(n) for U2-circuits [15,18], and 3n − o(n) for B2-circuits [3].

For #SAT algorithms, there is a known algorithm for B2-circuits by Nurk [20]
which runs in time O(20.4058s) for circuits of size s. The running time of our
algorithm for B2-circuits is almost the same as Nurk’s [20]. We are not aware of
any #SAT algorithm for U2-circuits.

Our Techniques. We extend the gate elimination method which was previ-
ously used to prove worst-case circuit lower bounds [3,9,15,18,23,28]. We define

Correlation Bounds and #SAT Algorithms for Small Linear-Size Circuits 213

a random process of restrictions such that the circuit size shrinks with high
probability. This is similar to the concentrated shrinkage approach for boolean
formulas [6,16,17,22,24]. We analyze this random process using the concentra-
tion bound given by a variant of Azuma’s inequality as in [6]. This analysis
is then used to get both correlation bounds and #SAT algorithms. The same
approach works for both U2-circuits and B2-circuits, although we need different
rules on defining restrictions.

As a byproduct of our algorithms, we show that small linear-size circuits
have decision trees of non-trivial size. In particular, U2-circuits of size s have
equivalent decision trees of size 2n−Ω((3n−s)2/n), and B2-circuits of size s have
parity decision trees of size 2n−Ω((2.5n−s)2/n). Our correlation bounds follow
directly from such non-trivial decision-tree representations.

Related Work. For U2-circuits, the best known worst-case lower bound is
5n − o(n) by Iwama and Morizumi [15], improving upon a 4.5n − o(n) lower
bound by Lachish and Raz [18], a 4n − c lower bound against symmetric func-
tions by Zwick [28], and a 3n − c lower bound against Parity by Schnorr [23].
For B2-circuits, the best known worst-case lower bound is 3n−o(n) by Blum [3];
Demenkov and Kulikov [9] gives an alternative proof of this lower bound against
affine dispersers. Nurk [20] gave a satisfiability algorithm in time O(20.4058s) for
B2-circuits of size s. Nurk’s algorithm [20] is also based on gate elimination and
the running time is similar to ours, although we use a slightly different case anal-
ysis for gate elimination. We are not aware of any previous average-case lower
bounds (correlation bounds) for general circuits.

2 Preliminaries

2.1 Circuits

Let B be a binary basis, i.e., a set of boolean functions on two variables. A
B-circuit on n input variables is a directed acyclic graph with (1) nodes of in-
degree 0 labeled by variables or constants, which we call inputs, and (2) nodes
of in-degree 2 labeled by functions from B, which we call gates. There is a single
node of out-degree 0, designated as the output. Without loss of generality, we
assume, for each variable xi, there is at most one input labeled by xi. A circuit
on n variables computes a boolean function f : {0, 1}n → {0, 1}. For two nodes
u and v, we will write u → v if u feeds into v.

We consider two binary bases: the full basis B2, which contains all boolean
functions on two variables, and the basis U2 = B2 \ {⊕,≡}. Specifically, the
basis B2 contains the following 16 functions f(x, y): (1) six degenerate functions:
0, 1, x, ¬x, y, ¬y; (2) eight ∧-type functions: x ∧ y, x ∨ y, and the variations
by negating one or both inputs; (3) two ⊕-type functions: x ⊕ y, x ≡ y.

The size of a circuit C, denoted by s(C), is the number of gates in C. The
circuit size of a function f : {0, 1}n → {0, 1} is the minimal size of a boolean
circuit computing f . For convenience, we define μ(C) = s(C) + N(C), where

214 R. Chen and V. Kabanets

N(C) is the number of inputs that C depends on. We let μ(C) = 0 if C is
constant, and μ(C) = 1 if C is a literal.

A restriction ρ is a mapping from the input variables to {0, 1, ∗}. For a
circuit C, the restricted circuit C|ρ is obtained by fixing xi = b for all xi such
that ρ(xi) = b ∈ {0, 1}.

It is convenient to work with circuits without redundant nodes or wires. We
will call a non-constant circuit (over U2 or B2) simplified if it does not have
the following: (1) nodes labeled by constants, (2) gates labeled by degenerate
functions, (3) non-output gates with out-degree 0, or (4) any input x and two
gates u, v with three wires x → u, x → v, u → v.

Lemma 1. For any circuit C, there is a polynomial-time algorithm transform-
ing C into an equivalent simplified circuit C ′ such that s(C ′) � s(C) and
μ(C ′) � μ(C).

Proof (Sketch). Cases (1)-(3) are trivial. For case (4), suppose w is the other
node feeding into u. If C is over B2, then v computes a binary function of x and
w; if C is over U2, then v computes an ∧-type function of x and w (because a ⊕-
type function requires at least 3 gates). In either case, we can connect w directly
to v, remove the wire u → v, and change the gate label of v. By checking through
each input and gate, the transformation can be done in polynomial time.
�

2.2 Correlation

Definition 1. Let f and g be two boolean functions on n input variables. The
correlation of f and g is defined as

Corr(f, g) = |Pr[f(x) = g(x)] − Pr[f(x) �= g(x)]| = |2Pr[f(x) = g(x)] − 1| ,

where x is chosen uniformly at random from {0, 1}n.

The correlation of f with a circuit class C is the maximum of Corr(f, C)
for any C ∈ C. Note that, a circuit C has correlation c with f if and only if
C computes f or its negation correctly on a fraction (1 + c)/2 of all inputs.
The correlation bound is also referred to as the average-case lower bound in the
literature.

2.3 Decision Tree

A decision tree is a tree where (1) each internal node is labeled by a variable
x, and has two outgoing edges labeled by x = 0 and x = 1, and (2) each leaf
is labeled by a constant 0 or 1. A decision tree computes a boolean function
by tracking the paths from the root to leaves. The size of a decision tree is the
number of leaves of the tree.

A parity decision tree extends a decision tree such that each internal node is
labeled by the parity of a subset of variables (including one single variable as a
special case). We insist that, for each path from the root to a leaf, the parities
appearing in the internal nodes are linearly independent.

Correlation Bounds and #SAT Algorithms for Small Linear-Size Circuits 215

2.4 Concentration Bounds

A sequence of random variables X0,X1, . . . , Xn is called a supermartingale with
respect to a sequence of random variables R1, . . . , Rn if E[Xi | Ri−1, . . . , R1] �
Xi−1, for 1 � i � n. The following is a variant of Azuma’s inequality which
holds for supermartingales with one-side bounded differences.

Lemma 2 ([6]). Let {Xi}n
i=0 be a supermartingale with respect to {Ri}n

i=1.
Let Yi = Xi − Xi−1. If, for every 1 � i � n, the random variable Yi (con-
ditioned on Ri−1, . . . , R1) assumes two values with equal probability, and there
exists ci � 0 such that Yi � ci, then, for any λ � 0, we have Pr[Xn −X0 � λ] �
exp

(
− λ2

2
∑n

i=1 c2i

)
.

3 U2-circuits

All known lower bounds for U2-circuits [15,18,23,28] were proved using the gate
elimination method. We will generalize this method by defining a random process
of restrictions under which the circuit size reduces with high probability. This
allows us to get a #SAT algorithm for U2-circuits of size almost 3n, and also
prove a correlation bound against Parity.

3.1 Concentrated Shrinkage Under Restrictions

We call an ∧-type function of two variables a twig. We now define a random
process of restrictions where, at each step, we pick a variable or a twig and
randomly assign it a value 0 or 1; we also simplify the circuit by eliminating
unnecessary gates. The choice of variables or twigs at each step is determined by
the following cases: (1) If the circuit is a literal, choose the variable in the literal.
(2) If there is an input x with out-degree at least two, choose x. (3) Otherwise,
there must be a gate u fed by two variables having out-degree 1; we choose u
(which is a twig).

Let C be a simplified U2-circuit on inputs x1, . . . , xn. Let C ′ be the simplified
circuit obtained after one step of restriction. Then we have the following lemma
on the reduction of μ(C).

Lemma 3. Suppose μ(C) � 4. Let σ = μ(C)−μ(C ′). Then we have σ � 3, and
E[σ] � 4.

Proof. Consider the following cases (see also Figure 3.1):

(1) Suppose there is an input xi feeding into two gates u and v. By Lemma 1,
there is no edge between u and v. We randomly assign 0 or 1 to xi, and
consider the following sub-cases on the successors of u and v.

216 R. Chen and V. Kabanets

u v

xi

(1.a)

w

u v

xi

(1.b)

u

xi xj

(2)

Fig. 1. Cases in Lemma 3

(a) If u and v feed into two different successors, we have the following pos-
sibilities. If under one assignment to xi, none of u, v become constants,
then we can eliminate xi, u, v; and under the other assignment to xi,
since both of u, v will be constants, we can eliminate two more gates
(successors of u, v); thus we have Pr[σ � 5] � 1/2, and σ � 3. If under
each assignment to xi, only one of u, v becomes a constant, then we can
eliminate xi, u, v and one successor; thus σ � 4.

(b) If u and v feed into one single common successor w, we have similar
situations as above. If under one assignment to xi, both u and v become
constants, then we can eliminate xi, u, v, w and a successor of w; and
under the other assignment to xi, we can eliminate xi, u, v. If under
each assignment to xi, only one of u, v becomes a constant, then we can
eliminate xi, u, v, w.

(2) If all inputs have out-degree 1, find a gate u fed by two inputs, say xi and
xj . We randomly assign 0 and 1 to u; for each assignment, eliminate xi, xj , u
and at least one successor of u. Then we have σ � 4.

In all cases, we have σ � 3, and E[σ] � 4.
�

Next consider the reduction of μ(C) under a sequence of restrictions. Let
C0 := C, and, for i = 1, . . . , d, let Ci be the circuit obtained after the i-th step.
For convenience, we let μi := μ(Ci). Let Ri be the random value assigned to the
variable or twig at each step. We define a sequence of random variables {Zi} as
follows:

Zi =

{
μi − (μi−1 − 4), μi−1 � 4,

0, μi−1 < 4.

Note that 0 < μi−1 < 4 holds only when Ci−1 itself is a literal or a twig, which
means Ci will be a constant.

Lemma 4. Let X0 = 0 and Xi =
∑i

j=1 Zi. Then we have Zi � 1, and {Xi} is
a supermartingale with respect to {Ri}.

Correlation Bounds and #SAT Algorithms for Small Linear-Size Circuits 217

Proof. By Lemma 3, conditioning on R1, . . . , Ri−1, when μi−1 � 4, we have μi �
μi−1−3 and E[μi] � μi−1−4. Therefore, we get Zi � 1, E[Zi | Ri−1, . . . , R1] � 0,
and E[Xi | Ri−1, . . . , R1] � Xi−1. Thus {Xi} is a supermartingale with respect
to {Ri}.
�

Lemma 5. For λ � 0, Pr [μd � max{μ0 − 4d + λ, 1}] � exp(−λ2/2d).

Proof. Conditioning on R1, . . . , Ri−1, the variable Zi assumes two values with
equal probability. By Lemma 4, we have {Xi} is a supermartingale with respect
to {Ri}, and Zi � ci ≡ 1. Applying the bound in Lemma 2, we have

Pr

[
d∑

i=1

Zi � λ

]

� exp
(

−λ2

2d

)

.

When μd > 0, we have
∑d

i=1 Zi = μd − μ0 + 4d. Let E1 be the event that
μd > 0; let E2 be the event that

∑d
i=1 Zi � λ. Then the final probability is

Pr[E1 ∧ E2] � Pr[E2] � exp(−λ2/2d).
�

3.2 #SAT Algorithms

We now give a #SAT algorithm for circuits of size almost 3n based on the
concentrated reduction of circuit size.

Theorem 1. For U2-circuits of size s < 3n, there is a deterministic #SAT
algorithm running in time 2n−Ω((3n−s)2/n).

Proof. Let C be a circuit on n inputs x1, . . . , xn with size s < 3n. Let μ0 :=
μ(C) � s+n. We use the following procedure to construct a generalized decision
tree, where each internal node is labeled by a variable or a twig. We start with
the root node and C.

– If C is a constant, label the current node by this constant and return.
– Use the cases in Lemma 3 to find either a variable or a twig; denote it by u.

Label the current node by u.
– Build two outgoing edges labeled by u = 0 and u = 1. For each child node,

simplify the circuit, and recurse.

We say a complete assignment to x1, . . . , xn is consistent with a path (from
the root to a leaf) if it satisfies the restrictions along the path. Since each
assignment a ∈ {0, 1}n is consistent with only one path, the paths give a dis-
joint partitioning of the boolean cube {0, 1}n. To count the number of satisfying
assignments for C, one can count for each path with leaf labeled by 1, and return
the summation. Restrictions along each path is essentially a read-once 2-CNF,
for which counting is easy. We next only need to bound the size of the tree.

We wish to bound the probability that a random path has length larger than
n − k, for k to be chosen later. Let λ = 4(n − k) − μ0 + 1. Then by Lemma 5, at
depth n − k, the restricted circuit becomes a constant with probability at least

218 R. Chen and V. Kabanets

1 − exp(−λ2/2(n − k)) � 1 − 2−cλ2/n for a constant c > 0. The total number of
paths with length larger than n − k is at most 2n−k · 2−cλ2/n · 2k � 2n−cλ2/n.
Therefore, the size of the tree is at most 2n−k+2n−cλ2/n. Choosing k = (3n−s)/8,
both the tree size and the running time of the counting algorithm are bounded
by 2n−Ω((3n−s)2/n).
�

The following corollary is immediate.

Corollary 1. (1) For U2-circuits of size 3n − εn with ε > 0, there is a deter-
ministic #SAT algorithm running in time 2n−Ω(n). (2) For U2-circuits of size
3n − nε with ε > 0.5, there is a deterministic #SAT algorithm running in time
2n−nΩ(1)

.

3.3 Correlation with Parity

Schnorr [23] proved a 3n−c lower bound for computing Parity using the following
fact: a simplified U2-circuit computing Parity cannot have any input variable
with out-degree exactly 1. Indeed, if such an input x exists, one can fix all other
variables such that the gate fed by x becomes a constant, but this makes the
function independent of x, which is impossible for Parity.

We next generalize this lower bound to the average case by showing that a
U2-circuit of size s < 3n cannot approximate well with Parity. The proof is by
converting the generalized decision tree constructed in the proof of Theorem 1
into a normal decision tree without twigs, and argue that the tree size will not
increase too much, as stated in the next lemma (the proof is left in the full
version [5] of the paper).

Lemma 6. Any function computed by a U2-circuit of size s < 3n has a decision
tree of size 2n−Ω((3n−s)2/n).

The following lemma gives a simple relationship between the size of a decision
tree and its correlation with Parity. It was previously used to derive correlation
bounds for de Morgan formulas [22] and AC0 circuits [13].

Lemma 7 ([22]). A decision tree of size 2n−k has correlation at most 2−k with
Parity.

Theorem 2. Let C be a U2-circuit of size s < 3n. Then its correlation with
Parity is at most 2−Ω((3n−s)2/n). In particular, for s = 3n − εn with ε > 0, the
correlation is at most 2−Ω(n); for s = 3n − nε with ε > 0.5, the correlation is at
most 2−nΩ(1)

.

Proof. The proof is immediate by Lemmas 6 and 7.
�
The above correlation bounds with Parity almost match with the upper

bounds. To see this, we can construction an approximate circuit for Parity in
the following way. Divide n inputs into l groups each of size n/l, use circuits of
size 3(n/l − 1) to compute Parity exactly for each group, and then take the dis-
junction of the outputs from all groups. This circuit outputs 0 with probability
2−l, but whenever it outputs 0, it agrees with Parity. Thus its correlation with
Parity is at least 2−l. The circuit size is 3(n/l − 1) · l + l = 3n − 2l.

Correlation Bounds and #SAT Algorithms for Small Linear-Size Circuits 219

4 B2-circuits

In this section, we give #SAT algorithms and correlation bounds for B2-circuits
of size almost 2.5n.

4.1 Concentrated Shrinkage and #SAT Algorithms

Given a simplified B2-circuit C, we will construct a generalized parity decision
tree, where each internal node is labeled by either a twig or a parity of a subset
of variables. Starting from the root with the given circuit C, we use the following
case analysis to identify labels and build branches recursively.

If the circuit becomes a constant, we label the current node by the constant;
then this node is a leaf. If the circuit is a literal or a gate fed by two variables,
then we choose the variable of the literal or the circuit itself as the label, and
build two branches. Otherwise, consider a topological order on the gates of the
circuit, and let u be the first gate which is either ⊕-type of out-degree at least
2 or ∧-type. Consider the following cases (see also Figure 4.1):

(1) If u is a ⊕-type gate of out-degree at least 2, then it computes ⊕i∈Ixi (or
its negation) for some subset I ⊆ [n]. We choose ⊕i∈Ixi as the label, and
build two branches; for the branch ⊕i∈Ixi = b ∈ {0, 1}, we replace u by a
constant, and substitute an arbitrary variable xj for j ∈ I by a sub-circuit
⊕i∈I\{j}xi ⊕ b. In both branches, we can eliminate one variable xj , and at
least 3 gates (u and its two successors).

(2) If u is an ∧-type gate fed by some ⊕-type gate v, suppose w is the other
node feeding into u.

– If w has out-degree 1, then we choose the parity function computed at v
as the label, and build two branches similar to Case (1). In one branch,
we can eliminate some input xj and two gates v, u; in the other branch,
we can eliminate two more nodes: w and a successor of u.

– If w has out-degree at least 2, then it must be a variable. We choose w
as the label, and build two branches. In one branch, we can eliminate w
and its two successors; in the other branch, we can eliminate two more
gates: v and a successor of u.

(3) If u is an ∧-type gate fed by two inputs xi and xj where at least one of them,
say xi, has out-degree at least 2, then we choose xi as the label and build
two branches. In one branch, we can eliminate xi and its two successors; in
the other branch, we can eliminate one more gate: a successor of u.

(4) If u is an ∧-type gate fed by two inputs each of out-degree 1, then choose the
twig computed at u as the label. In both branches, we can eliminate xi, xj , u
and a successor of u.

Consider a random path from the root of the decision tree to its leaves. Let
C0 := C, and let Ci be the restricted circuit obtained at depth i. Let μi := μ(Ci).
The next lemma follows directly from the above case analysis.

220 R. Chen and V. Kabanets

u⊕

(1)

u∧

v⊕ w

(2)

u∧

xi xj

v

(3)

u∧

xi xj

(4)

Fig. 2. Cases for eliminating gates in B2-circuits

Lemma 8. If μi > 4, then μi − μi+1 � 3, and E[μi − μi+1] � 3.5. If μi � 4,
then μi+1 = 0.

Then we have the following concentrated shrinkage.

Lemma 9. For λ � 0, Pr [μd � max{μ0 − 3.5d + λ, 1}] � exp(−λ2/2d).

Theorem 3. For B2-circuits of size s < 2.5n, there is a deterministic #SAT
algorithm running in time 2n−Ω((2.5n−s)2/n). In particular, for s = 2.5n − εn
with ε > 0, the algorithm runs in time 2n−Ω(n); for s = 2.5n − nε with ε > 0.5,
the algorithm runs in time 2n−nΩ(1)

.

We omit the proofs of Lemma 9 and Theorem 3 since they are similar to the
proofs of Lemma 5 and Theorem 1.

4.2 Correlation Bounds

Demenkov and Kulikov [9] proved that affine dispersers for sources of dimension
d requires B2-circuits of size 3n−Ω(d). We next extend this result to the average
case by showing that affine extractors have small correlations with B2-circuits
of size less than 2.5n.

Definition 2. Let F2 be the finite field with elements {0, 1}. A function
AE : Fn

2 → F2 is a (k, ε)-affine extractor if for any uniform distribution X over
some k-dimensional affine subspace of Fn

2 , |Pr[AE(X) = 1] − 1/2| � ε.

We will need the following constructions of affine extractors.

Theorem 4 ([4,19,27]). (1) For any δ > 0 there exists a polynomial-time
computable (k, ε)-affine extractor AE1 : {0, 1}n → {0, 1} with k = δn and ε =
2−Ω(n). (2) There exists a constant c > 0 and a polynomial-time computable
(k, ε)-affine extractor AE2 : {0, 1}n → {0, 1} with k = cn/

√
log log n and ε =

2−nΩ(1)
.

We will prove our correlation bounds using the following representation of
B2-circuits by parity decision trees.

Correlation Bounds and #SAT Algorithms for Small Linear-Size Circuits 221

Lemma 10. Any function computed by a B2-circuit of size s < 2.5n is com-
putable by a parity decision tree of size 2n−Ω((2.5n−s)2/n).

The proof, which we omit here, is almost the same as the proof of Lemma 6.
That is, using the algorithm in Theorem 3, one can construct a generalized parity
decision tree which may have twigs, and then expand the twigs and argue that
the tree size does not increase much. Note that, when we restrict a twig, the two
variables in the twig are completely eliminated; when we restrict a parity, since
one variable is substituted, all parity restrictions are linearly independent.

The following lemma gives the correlation of (relatively small) parity decision
trees with affine extractors given in Theorem 4. It was implicit in [24] and was
also given in [8].

Lemma 11 ([8,24]). (1) For any δ > 0, a parity decision tree of size 2n−k for
k = δn has correlation at most 2−Ω(n) with AE1. (2) There is a constant c > 0
such that a parity decision tree of size 2n−k for k = cn/

√
log log n has correlation

at most 2−nΩ(1)
with AE2.

The next theorem follows by Lemma 10 and Lemma 11.

Theorem 5. (1) For any δ > 0 and B2-circuit of size 2.5n− δn, its correlation
with AE1 is at most 2−Ω(n). (2) There exists a constant c > 0 such that, for
any B2-circuit of size 2.5n − cn/ 4

√
log log n, its correlation with AE2 is at most

2−nΩ(1)
.

5 Open Questions

It is open whether our correlation bounds (for the size almost 3n for U2-circuits,
and almost 2.5n for B2-circuits) can be improved to match with the best known
worst-case lower bounds (for the size almost 5n for U2-circuits, and almost 3n
for B2-circuits). Pseudorandom generators for boolean formulas were constructed
in [14] based on concentrated shrinkage and decomposition of the formula tree. It
would be interesting to get pseudorandom generators for general boolean circuits.

References

1. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds
by polynomials. JACM 48(4), 778–797 (2001)

2. Beame, P., Impagliazzo, R., Srinivasan, S.: Approximating ac0 by small height
decision trees and a deterministic algorithm for #ac0 sat. In: Proceedings of the
2012 IEEE Conference on Computational Complexity, CCC 2012 (2012)

3. Blum, N.: A Boolean function requiring 3n network size. Theoretical Computer
Science 28, 337–345 (1984)

4. Bourgain, J.: On the construction of affine-source extractors. Geometric and Func-
tional Analysis 17(1), 33–57 (2007)

5. Chen, R., Kabanets, V.: Correlation bounds and #sat algorithms for small linear-
size circuits. ECCC 21, 184 (2014)

222 R. Chen and V. Kabanets

6. Chen, R., Kabanets, V., Kolokolova, A., Shaltiel, R., Zuckerman, D.: Mining circuit
lower bound proofs for meta-algorithms. In: CCC 2014 (2014)

7. Chen, R., Kabanets, V., Saurabh, N.: An improved deterministic #SAT algorithm
for small de Morgan formulas. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z.
(eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 165–176. Springer, Heidelberg
(2014)

8. Cohen, G., Shinkar, I.: The complexity of DNF of parities. ECCC 21, 99 (2014)
9. Demenkov, E., Kulikov, A.S.: An elementary proof of a 3n−o(n) lower bound on

the circuit complexity of affine dispersers. In: Murlak, F., Sankowski, P. (eds.)
MFCS 2011. LNCS, vol. 6907, pp. 256–265. Springer, Heidelberg (2011)

10. H̊astad, J.: Almost optimal lower bounds for small depth circuits. In: STOC 1986,
pp. 6–20 (1986)

11. H̊astad, J.: The shrinkage exponent of de Morgan formulae is 2. SIAM Journal on
Computing 27, 48–64 (1998)

12. H̊astad, J.: On the correlation of parity and small-depth circuits. ECCC 19, 137
(2012)

13. Impagliazzo, R., Matthews, W., Paturi, R.: A satisfiability algorithm for AC0.
In: SODA 2012, pp. 961–972 (2012)

14. Impagliazzo, R., Meka, R., Zuckerman, D.: Pseudorandomness from shrinkage.
In: FOCS 2012, pp. 111–119 (2012)

15. Iwama, K., Morizumi, H.: An explicit lower bound of 5n−o(n) for boolean circuits.
In: MFCS 2002, pp. 353–364 (2002)

16. Komargodski, I., Raz, R.: Average-case lower bounds for formula size. In: STOC
2013, pp. 171–180 (2013)

17. Komargodski, I., Raz, R., Tal, A.: Improved average-case lower bounds for demor-
gan formula size. In: FOCS 2013, pp. 588–597 (2013)

18. Lachish, O., Raz, R.: Explicit lower bound of 4.5n−o(n) for boolena circuits.
In: STOC 2001, pp. 399–408. ACM, New York (2001)

19. Li, X.: A new approach to affine extractors and dispersers. In: CCC 2011,
pp. 137–147 (2011)

20. Nurk, S.: An o(20.4058m) upper bound for circuit sat. PDMI Preprint (2009)
21. Reichardt, B.: Reflections for quantum query algorithms. In: SODA 2011,

pp. 560–569 (2011)
22. Santhanam, R.: Fighting perebor: new and improved algorithms for formula and

qbf satisfiability. In: FOCS 2010, pp. 183–192 (2010)
23. Schnorr, C.: Zwei lineare untere schranken für die komplexität boolescher funktio-

nen. Computing 13(2), 155–171 (1974)
24. Seto, K., Tamaki, S.: A satisfiability algorithm and average-case hardness for for-

mulas over the full binary basis. In: CCC 2012, pp. 107–116 (2012)
25. Subbotovskaya, B.A.: Realizations of linear functions by formulas using and or,

not. Soviet Math. Doklady 2, 110–112 (1961)
26. Yao, A.C.: Separating the polynomial-time hierarchy by oracles. In: FOCS 1985,

pp. 1–10 (1985)
27. Yehudayoff, A.: Affine extractors over prime fields. Combinatorica 31(2), 245–256

(2011)
28. Zwick, U.: A 4n lower bound on the combinational complexity of certain symmet-

ric boolean functions over the basis of unate dyadic boolean functions. SIAM J.
Comput. 20(3), 499–505 (1991)

Commuting Quantum Circuits
with Few Outputs are Unlikely
to be Classically Simulatable

Yasuhiro Takahashi1(B), Seiichiro Tani1, Takeshi Yamazaki2,
and Kazuyuki Tanaka2

1 NTT Communication Science Laboratories, NTT Corporation,
Atsugi 243-0198, Japan

{takahashi.yasuhiro,tani.seiichiro}@lab.ntt.co.jp
2 Mathematical Institute, Tohoku University, Sendai 980-8578, Japan

{yamazaki,tanaka}@math.tohoku.ac.jp

Abstract. We study the classical simulatability of commuting quantum
circuits with n input qubits and O(log n) output qubits, where a quantum
circuit is classically simulatable if its output probability distribution can
be sampled up to an exponentially small additive error in classical poly-
nomial time. Our main result is that there exists a commuting quantum
circuit that is not classically simulatable unless the polynomial hierar-
chy collapses to the third level. This is the first formal evidence that
a commuting quantum circuit is not classically simulatable even when
the number of output qubits is exponentially small. Then, we consider a
generalized version of the circuit and clarify the condition under which it
is classically simulatable. We apply these results to examining the ability
of IQP circuits to implement fundamental operations, and to examining
the classical simulatability of slightly extended Clifford circuits.

1 Introduction and Summary of Results

One of the most important challenges in quantum information processing is
to understand the difference between quantum and classical computation. An
approach to meeting this challenge is to study the classical simulatability of
quantum computation. Previous studies have shown that restricted models of
quantum computation, such as commuting quantum circuits, contribute to this
purpose [1,2,4,6,7,9,10]. Because of the simplicity of such restricted models,
they also contribute to identifying the source of the computational power of
quantum computers. It is thus of interest to study their classical simulatability.

We study the classical simulatability of commuting quantum circuits with n
input qubits and O(poly(n)) ancillary qubits initialized to |0〉, where a commut-
ing quantum circuit is a quantum circuit consisting of pairwise commuting gates,
each of which acts on a constant number of qubits. When every gate in a commut-
ing quantum circuit acts on at most c qubits, the circuit is said to be c-local. A
commuting quantum circuit is a restricted model of quantum computation in the

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 223–234, 2015.
DOI: 10.1007/978-3-319-21398-9 18

224 Y. Takahashi et al.

sense that all the gates in the circuit can be applied in an arbitrary order. More-
over, there exists a basis in which all the gates are diagonal and thus, under some
conditions, they can be implemented simultaneously [5]. In spite of these severe
restrictions, as mentioned below, there are evidences that commuting quantum
circuits are not classically simulatable in various settings [2,7]. This remarkable
feature makes such circuits particularly interesting for study.

For considering the classical simulatability, we adopt strong and weak sim-
ulations. The strong simulation of a quantum circuit is to compute its output
probability in classical polynomial time and the weak one is to sample its out-
put probability distribution likewise. Any strongly simulatable quantum circuit
is easily shown to be weakly simulatable. Our main focus is on the hardness of
classically simulating quantum circuits and thus we mainly consider weak simu-
latability, which yields a stronger result. Previous hardness results on the weak
simulatability are usually obtained with respect to multiplicative errors [2,6,10].
They can usually be turned into hardness results with respect to exponentially
small additive errors, although in general it is difficult to exactly determine the
relative strength of these error settings. In this paper, we deal with exponen-
tially small additive errors. We note that our hardness results in this paper can
be turned into hardness results with respect to multiplicative errors.

Bremner et al. [2] showed that there exists a 2-local IQP circuit with
O(poly(n)) output qubits such that it is not weakly simulatable (under a plausi-
ble assumption), where an IQP circuit is a commuting quantum circuit such that
each commuting gate is diagonal in the X-basis {(|0〉 ± |1〉)/

√
2}. This means

that, when the number of output qubits is large, even a simple commuting quan-
tum circuit is powerful. On the other hand, Ni et al. [7] showed that any 2-local
commuting quantum circuit with O(log n) output qubits is strongly simulatable,
whereas there exists a 3-local commuting quantum circuit with only one output
qubit such that it is not strongly simulatable (under a plausible assumption).
Thus, when the number of output qubits is O(log n), the classical simulatabil-
ity of commuting quantum circuits depends on the number of qubits affected
by each gate. A natural question is whether there exists a commuting quantum
circuit with O(log n) output qubits such that it is not weakly simulatable.

We provide the first formal evidence for answering the question affirmatively:

Theorem 1. There exists a 5-local commuting quantum circuit with O(log n)
output qubits such that it is not weakly simulatable unless the polynomial hier-
archy PH collapses to the third level, i.e., unless PH = Δp

3.

It is believed that PH does not collapse to any level. Thus, the circuit in The-
orem 1 is a desired evidence. To prove Theorem 1, we first show the existence
of a depth-3 quantum circuit An with O(poly(n)) output qubits such that it is
not weakly simulatable unless PH = Δp

3. Our idea for constructing the circuit
in Theorem 1 is to decrease the number of the output qubits by combining An

with the OR reduction quantum circuit [5], which reduces the computation of
the OR function on k bits to that on O(log k) bits. The resulting circuit has
O(log n) output qubits and is not weakly simulatable unless PH = Δp

3, but it

Commuting Quantum Circuits with Few Outputs 225

Fig. 1. Circuit (F †
n ⊗ H⊗l)D(Fn ⊗ H⊗l), where n = 5, s = 2, t = 4, and l = 3

is not a commuting quantum circuit. An important observation is that the OR
reduction circuit can be transformed into a 2-local commuting quantum circuit.
We regard a quantum circuit consisting of An, g, and A†

n as a single gate A†
ngAn

for any gate g that is either a ΛX gate or a commuting gate in the commuting
OR reduction circuit, where A†

n is the circuit obtained from An by reversing the
order of the gates and replacing each gate with its inverse. A rigorous analysis
of a quantum circuit consisting of the gates A†

ngAn implies Theorem 1.
Then, we study the weak simulatability of a generalized version of the circuit

in Theorem 1. We assume that we are given two quantum circuits Fn and D: Fn

has n input qubits, s = O(poly(n)) ancillary qubits, and t output qubits, and D
is a commuting quantum circuit on t + l qubits such that each commuting gate
is diagonal in the Z-basis {|0〉, |1〉}, where l = O(log n). We consider the circuit
of the form depicted in Fig. 1, which we denote as (F †

n ⊗ H⊗l)D(Fn ⊗ H⊗l),
although its precise definition is provided in Section 3.2. The input qubits and
output qubits of the circuit are the input qubits of Fn and the l qubits on which
H gates are applied, respectively. In particular, when Fn is An and D consists
only of controlled phase-shift gates, a commuting version of the whole circuit is
the circuit in Theorem 1. We show the following relationship:

Theorem 2. If Fn is weakly simulatable, then (F †
n ⊗ H⊗l)D(Fn ⊗ H⊗l) with

l = O(log n) output qubits is also weakly simulatable.

This is a generalization of the previous result that any IQP circuit with O(log n)
output qubits is weakly simulatable [2], which corresponds to the case when Fn is
a layer of H gates. We show Theorem 2 by generalizing the proof of the previous
result. Theorem 2 implies a suggestion on how to improve Theorem 1 in terms of
locality as follows. Choosing a depth-3 quantum circuit as Fn yields the 5-local
commuting quantum circuit in Theorem 1 and a possible way to construct a 3- or
4-local one that is not weakly simulatable would be to somehow choose a depth-2
quantum circuit as Fn. By Theorem 2, such a construction is impossible. This is
because, since any depth-2 quantum circuit is weakly simulatable [10], choosing a
depth-2 quantum circuit as Fn yields only a weakly simulatable quantum circuit.

226 Y. Takahashi et al.

We consider two applications of our results. The first one is to examine the
ability of IQP circuits to implement a fundamental operation, the OR reduction
operation defined as follows: a quantum operation on n + m qubits is called
an OR reduction operation if it maps |x〉|0m〉 to |x〉|η〉 for any x ∈ {0, 1}n,
where m = O(log n), |η〉 = |0m〉 if x = 0n, and 〈0m|η〉 = 0 otherwise [5]. This
operation is shown to be quite useful for significantly reducing the depth of
quantum circuits with a certain gate set [5,8]. A 2-local commuting quantum
circuit can implement an OR reduction operation as will be shown in the proof
of Theorem 1, but we provide an evidence that IQP circuits cannot:

Theorem 3. For any OR reduction operation, there does not exist an IQP cir-
cuit for implementing it unless PH = Δp

3.

Theorem 3 provides the reason for the difference, which is shown by Theorem 1,
between IQP circuits and 5-local commuting quantum circuits in terms of the
weak simulatability. It also shows the limitation of the computational power of
IQP circuits. The proof of Theorem 3 is a direct application of Theorems 1 and 2.

The second application is to examine the weak simulatability of slightly
extended Clifford circuits. For comparison, let us consider Clifford circuits with
n input qubits, O(poly(n)) ancillary qubits in a product state, and O(log n)
output qubits. A simple extension of the proof in Refs. [3,6] implies that any
Clifford circuit in this setting is strongly simulatable. We show the following
theorem:

Theorem 4. There exists a Clifford circuit augmented by a depth-1 non-Clifford
layer with O(poly(n)) ancillary qubits in a particular product state and with
O(log n) output qubits such that it is not weakly simulatable unless PH = Δp

3.

Just like Theorems 1 and 2, Theorem 4 contributes to understanding a subtle
difference between quantum and classical computation. The proof of Theorem 4
is a simple modification of the proof of Theorem 1.

2 Preliminaries

2.1 Quantum Circuits

The elementary gates in this paper are a Hadamard gate H, a phase-shift gate
R(θ) with angle θ = ±2π/2k for any k ∈ N, and a controlled-Z gate ΛZ, where

H =
1√
2

(
1 1
1 −1

)

, R(θ) =
(

1 0
0 eiθ

)

, ΛZ =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟
⎟
⎠ .

We denote R(π), R(π/2), and HR(π)H as Z, P , and X, respectively, where Z
and X (with Y = iXZ and identity I) are called Pauli gates. We also denote
HΛZH as ΛX, which is a CNOT gate, where H acts on the target qubit. A
quantum circuit consists of the elementary gates. A Clifford circuit is a quantum

Commuting Quantum Circuits with Few Outputs 227

circuit consisting only of H, P , and ΛZ. A commuting quantum circuit is a
quantum circuit consisting of pairwise commuting gates, where we do not require
that each commuting gate be one of the elementary gates. In other words, when
we think of a quantum circuit as a commuting quantum circuit, we are allowed
to regard a group of elementary gates in the circuit as a single gate and we
require that such gates be pairwise commuting. An IQP circuit is a commuting
quantum circuit such that each commuting gate is diagonal in the X-basis {(|0〉±
|1〉)/

√
2} [2]. Any IQP circuit on s qubits can be represented as follows: the first

part consists of H gates on s qubits, the middle part a commuting quantum
circuit D, and the last part H gates on s qubits, where each commuting gate in
D is diagonal in the Z-basis {|0〉, |1〉}.

The complexity measures of a quantum circuit are its size and depth. The
size of a quantum circuit is the number of elementary gates in the circuit. To
define the depth, we consider the circuit as a set of layers 1, . . . , d consisting
of one-qubit or two-qubit gates, where gates in the same layer act on pairwise
disjoint sets of qubits and any gate in layer j is applied before any gate in layer
j + 1. The depth of the circuit is the smallest possible value of d [4]. It might be
natural to require that each gate in a layer be one of the elementary gates, but
for simplicity, when we count the depth, we allow any one-qubit or two-qubit
gates that can be obtained as a sequence of elementary gates in the circuit. This
does not essentially affect our results, since, regardless of whether we adopt the
requirement or not, the depth of the circuit we are interested in is a constant. A
quantum circuit can use ancillary qubits initialized to |0〉.

We deal with a uniform family of polynomial-size quantum circuits {Cn}n≥1,
where each Cn has n input qubits and O(poly(n)) ancillary qubits, and angles θ
of phase-shift gates in Cn are restricted to ±2π/2k with k = O(poly(n)). Some
of the input and ancillary qubits are called output qubits. At the end of the
computation, Z-measurements, i.e., measurements in the Z-basis, are performed
on the output qubits. The uniformity means that there exists a polynomial-time
deterministic classical algorithm for computing the function 1n �→ Cn, where Cn

is the classical description of Cn. A symbol denoting a quantum circuit, such
as Cn, also denotes its matrix representation in some fixed basis. Any quantum
circuit in this paper is understood to be an element of a uniform family of
quantum circuits and thus, for simplicity, we deal with a quantum circuit Cn in
place of a family {Cn}n≥1. We require that each commuting gate in a commuting
quantum circuit act on a constant number of qubits. When every commuting gate
acts on at most c qubits, the circuit is said to be c-local [7].

2.2 Classical Simulatability and Complexity Classes

We deal with polynomial-size classical circuits and randomized classical cir-
cuits [2] to model polynomial-time deterministic classical algorithms and
their probabilistic versions, respectively. Let Cn be a quantum circuit with
n input qubits, O(poly(n)) ancillary qubits, and m output qubits. For any
x ∈ {0, 1}n, there exists an output probability distribution {(y,Pr[Cn(x) =
y])}y∈{0,1}m , where Pr[Cn(x) = y] is the probability of obtaining y ∈ {0, 1}m by

228 Y. Takahashi et al.

Z-measurements on the output qubits of Cn with the input state |x〉. The clas-
sical simulatability is defined as follows [2,6,7,9,10]:

Definition 1. – Cn is strongly simulatable if Pr[Cn(x) = y] and its marginal
output probability can be computed up to an exponentially small additive
error in classical O(poly(n)) time. More precisely, for any 0 < m′ ≤ m, m′

output qubits chosen from the m output qubits of Cn, and polynomial p, there
exists a polynomial-size classical circuit Dn such that, for any x ∈ {0, 1}n

and y′ ∈ {0, 1}m′
, |Dn(x, y′) − Pr[Cn(x) = y′]| ≤ 1/2p(n).

– Cn is weakly simulatable if {(y,Pr[Cn(x) = y])}y∈{0,1}m can be sampled
up to an exponentially small additive error in classical O(poly(n)) time.
More precisely, for any polynomial p, there exists a polynomial-size random-
ized classical circuit Rn such that, for any x ∈ {0, 1}n and y ∈ {0, 1}m,
|Pr[Rn(x) = y] − Pr[Cn(x) = y]| ≤ 1/2p(n).

Any strongly simulatable quantum circuit is weakly simulatable [2,10].
The following two complexity classes are important for our discussion [2]:

Definition 2. Let L be a language, i.e., L ⊆ {0, 1}∗.

– L ∈ PostBQP if there exists a polynomial-size quantum circuit Cn with n
input qubits, O(poly(n)) ancillary qubits, one output qubit, and one partic-
ular qubit (other than the output qubit) called the postselection qubit such
that, for any x ∈ {0, 1}n, Pr[postn(x) = 0] > 0, Pr[Cn(x) = 1|postn(x) =
0] ≥ 2/3 if x ∈ L, and Pr[Cn(x) = 1|postn(x) = 0] ≤ 1/3 if x /∈ L, where the
event “postn(x) = 0” means that the classical outcome of the Z-measurement
on the postselection qubit is 0.

– L ∈ PostBPP if there exists a polynomial-size randomized classical circuit Rn

with n input bits that, for any x ∈ {0, 1}n, outputs Rn(x),postn(x) ∈ {0, 1}
such that Pr[postn(x) = 0] > 0, Pr[Rn(x) = 1|postn(x) = 0] ≥ 2/3 if x ∈ L,
and Pr[Rn(x) = 1|postn(x) = 0] ≤ 1/3 if x /∈ L.

We use the notation postn(x) = 0 both in the quantum and classical settings,
but the meaning will be clear from the context.

Another important class is the polynomial hierarchy PH =
⋃

j≥1 Δp
j . Here,

Δp
1 = P and Δp

j+1 = PNΔp
j for any j ≥ 1, where P is the class of languages

decided by polynomial-size classical circuits and NΔp
j is the non-deterministic

class associated to Δp
j [2]. It is believed that PH �= Δp

j for any j ≥ 1. As
shown in Ref. [2], if PostBQP ⊆ PostBPP, then PH = Δp

3. It can be shown that,
in our setting of elementary gates and quantum circuits, this relationship also
holds when the condition Pr[postn(x) = 0] > 0 in the definition of PostBQP is
replaced with the condition that, for some polynomial q (depending only on Cn),
Pr[postn(x) = 0] ≥ 1/2q(n). In the following, we adopt the latter condition.

3 Commuting Quantum Circuits

3.1 Hardness of the Weak Simulation

A key component of the circuit in Theorem 1 is a depth-3 quantum circuit
with O(poly(n)) output qubits such that it is not weakly simulatable unless

Commuting Quantum Circuits with Few Outputs 229

 2 2 2

Input qubits Output qubits 1 2 3 4 5 6

|0⟩ |0⟩

 2 2 2

Input qubits Output qubits |0⟩ |0⟩
(a)

(b)

Fig. 2. (a): The non-commuting OR reduction circuit, where the gate represented by
two black circles connected by a vertical line is a ΛZ gate, i.e., a controlled-R(2π/21)
gate, and the gate “2” is an R(2π/22) gate. (b): The commuting OR reduction circuit.

PH = Δp
3. Such a circuit exists when weak simulatability is defined with respect

to a multiplicative error [2]. We analyze its weak simulatability with an expo-
nentially small additive error (Definition 1) and show the following lemma:

Lemma 1. There exists a depth-3 polynomial-size quantum circuit with
O(poly(n)) output qubits such that it is not weakly simulatable unless PH = Δp

3.

The proof is omitted in this paper. We decrease the number of the output qubits
of the circuit in Lemma 1 using the OR reduction circuit [5]. The OR reduction
circuit with b input qubits has m = log(b + 1)� ancillary qubits, which are
also output qubits. For any input state |x〉|0m〉 with x ∈ {0, 1}b, the circuit
outputs |x〉|η〉, where |η〉 = |0m〉 if x = 0b and 〈0m|η〉 = 0 otherwise. The first
part consists of H gates on the ancillary qubits. The middle part consists of b
controlled-R(2π/2k) gates over all 1 ≤ k ≤ m, where each gate uses an input
qubit as the control qubit and an ancillary qubit as the target qubit. The last
part is the same as the first one. We call the circuit the non-commuting OR
reduction circuit. It is depicted in Fig. 2(a), where b = 3.

An important observation is that the non-commuting OR reduction circuit
can be transformed into a 2-local commuting quantum circuit. This is shown
by considering a quantum circuit consisting of gates gj on two qubits, where
gj is a controlled-R(2π/2k) gate sandwiched between H gates on the target
qubit. Since H2 = I and controlled-R(2π/2k) gates are pairwise commuting
gates on two qubits, the operation implemented by the circuit is the same as
that implemented by the non-commuting OR reduction circuit and the gates gj

are pairwise commuting gates on two qubits. We call the circuit the commuting
OR reduction circuit. It is depicted in Fig. 2(b), where b = 3. Combining this
circuit with the circuit in Lemma 1 implies the following lemma:

230 Y. Takahashi et al.

Lemma 2. There exists a commuting quantum circuit with O(log n) output
qubits such that it is not weakly simulatable unless PH = Δp

3.

Proof. We assume that PH �= Δp
3. Lemma 1 and its proof imply that there

exists a depth-3 polynomial-size quantum circuit An with n input qubits, a + b
ancillary qubits, and b + 2 output qubits such that it is not weakly simulatable,
where a = O(poly(n)) and b = O(poly(n)). Moreover, the proof that An is not
weakly simulatable depends only on Pr[An(x) = 0b+11] and Pr[An(x) = 0b+10]
for any x ∈ {0, 1}n. We decrease the number of the first b + 1 output qubits,
which are the postselection qubits, using the commuting OR reduction circuit.
To do so, we construct a quantum circuit En with n input qubits, a + b + m + 1
ancillary qubits, and m+1 output qubits as follows, where m = log(b+2)�. As
an example, En is depicted in Fig. 3(a), where n = 5, a = 0, and b = 2.

1. Apply An on n input qubits and a + b ancillary qubits, where the input
qubits of En are those of An.

2. Apply a ΛX gate on the last output qubit of An and on an ancillary qubit
(other than the ancillary qubits in Step 1), where the output qubit is the
control qubit.

3. Apply a commuting OR reduction circuit on the b + 1 postselection qubits
and m ancillary qubits (other than the ancillary qubits in Steps 1 and 2),
where the b + 1 qubits are the input qubits of the OR reduction circuit.

4. Apply A†
n as in Step 1, where A†

n is the circuit obtained from An by reversing
the order of the gates and replacing each gate with its inverse.

The output qubits of En are the m + 1 ancillary qubits used in Steps 2 and 3.
Step 4 does not affect the output probability distribution of En, but it allows
us to construct the commuting quantum circuit described below. By the con-
struction of En, for any x ∈ {0, 1}n, Pr[An(x) = 0b+11] = Pr[En(x) = 0m1]
and Pr[An(x) = 0b+10] = Pr[En(x) = 0m0]. This implies that En is not weakly
simulatable. The proof is the same as that of Lemma 1 except that the number
of output qubits we need to consider is only m + 1 = O(log n).

We regard a quantum circuit consisting of An, g, and A†
n (in this order) as

a single gate A†
ngAn for any gate g that is either a ΛX gate in Step 2 of En

or gj in the commuting OR reduction circuit. We consider a quantum circuit
consisting of the gates A†

ngAn. The input qubits and output qubits of En are
naturally considered as the input qubits and output qubits of the new circuit,
respectively. The new circuit based on En in Fig. 3(a) is depicted in Fig. 3(b).
Since these gates g in En are pairwise commuting, so are the gates A†

ngAn.
Moreover, since the depth of An is three and g acts on two qubits, A†

ngAn acts
on a constant number of qubits. By the construction of the new circuit, its output
probability distribution is the same as that of En. Thus, the new circuit is not
weakly simulatable. ��

We analyze A†
ngAn in the above proof, which implies the following lemma:

Lemma 3. For any gate A†
ngAn in the proof of Lemma 2, there exists a quantum

circuit on at most five qubits that implements the gate.

The proof is omitted in this paper. The above lemmas imply Theorem 1.

Commuting Quantum Circuits with Few Outputs 231

(a) (b)

 5 5† 5 5† 5 5† 5 5†
Input qubits ⋯

Output qubits
|0⟩ |0⟩ |0⟩ |0⟩ |0⟩ 1 2 3 4 5 6 ⋯ 1 6

Fig. 3. (a): Circuit En, where n = 5, a = 0, and b = 2. The gate represented by a
black circle and ⊕ connected by a vertical line is a ΛX gate. The gates gj are the ones
in Fig. 2(b). (b): The commuting quantum circuit based on En in (a).

3.2 Weak Simulatability of a Generalized Version

As in Fig. 2(a), a non-commuting OR reduction circuit with b + 1 input qubits
can be represented as three parts: the first part consists of H gates on m qubits,
the middle part a quantum circuit D′, and the last part H gates on m qubits,
where m = log(b+2)� and D′ consists only of controlled-R(2π/2k) gates. Since
ΛX (in Step 2 of En in the proof of Lemma 2) is HΛZH, the circuit in Theorem 1
can be represented similarly: the first part consists of An and H gates on m + 1
qubits, the middle part D′′, and the last part A†

n and H gates on m + 1 qubits,
where D′′ consists of D′ and ΛZ, and An is the depth-3 quantum circuit (with
a + b ancillary qubits and b + 2 output qubits) described above. The output
qubits of the whole circuit are the m + 1 qubits on which H gates are applied.

We consider a generalized version of the circuit in Theorem 1. We assume
that we are given two quantum circuits Fn and D: Fn has n input qubits, s =
O(poly(n)) ancillary qubits, and t output qubits, and D is a commuting quantum
circuit on t + l qubits such that each commuting gate is diagonal in the Z-basis,
where l = O(log n). We construct a quantum circuit with n input qubits, s + l
ancillary qubits, and l output qubits as follows, where we denote this circuit as
(F †

n ⊗H⊗l)D(Fn ⊗H⊗l). As an example, the circuit is depicted in Fig. 1, where
n = 5, s = 2, t = 4, and l = 3.

1. Apply Fn on n input qubits and s ancillary qubits, where the input qubits
of the whole circuit are those of Fn.

2. Apply H gates on l ancillary qubits (other than the ancillary qubits in
Step 1).

3. Apply D on t+ l qubits, which are the output qubits of Fn and the ancillary
qubits in Step 2.

4. Apply H gates as in Step 2 and then F †
n as in Step 1.

The output qubits of the whole circuit are the l qubits on which H gates are
applied. The circuit in Theorem 1 corresponds to the case when Fn = An,

232 Y. Takahashi et al.

D = D′′, s = a + b, t = b + 2, and l = m + 1. When Fn is a layer of H gates
with arbitrary s and t, the circuit (F †

n ⊗ H⊗l)D(Fn ⊗ H⊗l), which becomes an
IQP circuit, is weakly simulatable [2]. A simple generalization of the proof of the
previous result implies Theorem 2. The detailed proof is omitted in this paper.

4 Applications

4.1 IQP Circuits and 2-local Commuting Quantum Circuits

To exhibit the difference between IQP circuits and 2-local commuting quan-
tum circuits, we consider OR reduction operations (defined in Section 1). For
example, the operation implemented by the commuting OR reduction circuit
in Section 3 is an OR reduction operation. This immediately shows that there
exists a 2-local commuting quantum circuit for implementing an OR reduction
operation. In contrast, Theorem 3 shows that IQP circuits cannot implement
any OR reduction operation unless PH = Δp

3. We now prove the theorem:

Proof. We assume that PH �= Δp
3 and there exists an IQP circuit (on s qubits)

for implementing an OR reduction operation. We use this IQP circuit in place
of the commuting OR reduction circuit in the proof of Lemma 2. The resulting
circuit Bn is the same as the one depicted in Fig. 3(a) except that the middle
part (excluding a ΛX gate) becomes the IQP circuit. The proof of the lemma
implies that Bn is not weakly simulatable.

We simplify Bn. Recall that, by the definition, the IQP circuit on s qubits
can be represented as follows: the first part consists of H gates on the s qubits,
the middle part a commuting quantum circuit D, and the last part H gates
on the s qubits, where each commuting gate in D is diagonal in the Z-basis.
The third layer of An included in Bn can be decomposed into two sublayers:
the first sublayer consists of ΛZ gates and the second sublayer H gates. All the
H gates are cancelled out by the corresponding H gates in the first part of the
IQP circuit. Similarly, all the H gates in the first layer of A†

n are cancelled out
by the corresponding H gates in the last part of the IQP circuit. When an H
gate in the IQP circuit is applied on a qubit on which no gate is applied in the
third layer of An, it can be regarded as a gate in the second layer of An or A†

n.
Thus, by adding the ΛZ gates in the third layer of An and in the first layer
of A†

n to D, we can regard An as a depth-2 quantum circuit and thus Bn is a
quantum circuit of the form in Theorem 2 with Fn = An of depth 2. Since any
depth-2 quantum circuit is weakly simulatable [10], Bn is weakly simulatable.
This contradicts the above observation. Thus, if PH �= Δp

3, there does not exist
an IQP circuit for implementing an OR reduction operation. ��

4.2 Clifford Circuits

We consider Clifford circuits with n input qubits, O(poly(n)) ancillary qubits,
and O(log n) output qubits, where the ancillary qubits are allowed to be in
a general product state. Such a Clifford circuit with only one output qubit is
strongly simulatable [3,6]. We can simply extend this property as follows:

Commuting Quantum Circuits with Few Outputs 233

(a) (b)

 5

Output qubits
| ⟩ | ⟩ |0⟩ |0⟩ |0⟩ 2 2 2

 2 2 2

|0⟩ |0⟩

|0⟩
|0⟩
|0⟩

|0⟩ |0⟩

Input qubits

Fig. 4. (a): Circuit E′
n, where n = 5, a = 0, and b = 2. The dashed box represents

the middle part of the non-commuting OR reduction circuit. (b): The circuit obtained
from the middle part in (a). The qubits in state |0〉 are new ancillary qubits.

Lemma 4. Any Clifford circuit with O(poly(n)) ancillary qubits in a general
product state and with O(log n) output qubits is strongly simulatable.

The proof is omitted in this paper.
Just like Lemma 1, we can show the following lemma:

Lemma 5. There exists a Clifford circuit with O(poly(n)) ancillary qubits in
a particular product state and with O(poly(n)) output qubits such that it is not
weakly simulatable unless PH = Δp

3.

The proof is also omitted. The proof of Lemma 2 leads to the following lemma:

Lemma 6. There exists a Clifford circuit combined with an OR reduction circuit
with O(poly(n)) ancillary qubits in a particular product state and with O(log n)
output qubits such that it is not weakly simulatable unless PH = Δp

3.

Proof. We assume that PH �= Δp
3. Lemma 5 and its proof imply that there

exists a Clifford circuit An with n input qubits, a = O(poly(n)) ancillary
qubits initialized to |0〉, b = O(poly(n)) ancillary qubits initialized to |ϕ〉 =
(|0〉 + eiπ/4|1〉)/

√
2, and b + 2 output qubits such that it is not weakly simulat-

able. Moreover, the proof that An is not weakly simulatable depends only on
Pr[An(x) = 0b+11] and Pr[An(x) = 0b+10] for any x ∈ {0, 1}n. Just like En in
the proof of Lemma 2, we construct a quantum circuit E′

n with n input qubits
and a + b + m + 1 ancillary qubits as follows, where m = log(b + 2)�. As an
example, E′

n is depicted in Fig. 4(a), where n = 5, a = 0, and b = 2.

1. Apply An on n input qubits, a ancillary qubits initialized to |0〉, and b ancil-
lary qubits initialized to |ϕ〉, where the input qubits of E′

n are those of An.
2. Apply a ΛX gate on the last output qubit of An and on an ancillary qubit.
3. Apply a non-commuting OR reduction circuit on the b + 1 postselection

qubits and m ancillary qubits.

234 Y. Takahashi et al.

The output qubits of E′
n are the m + 1 ancillary qubits used in Steps 2 and 3.

We can show that E′
n is not weakly simulatable as in the proof of Lemma 2. ��

We replace the non-commuting OR reduction circuit with a constant-depth
OR reduction circuit with unbounded fan-out gates [5], where an unbounded
fan-out gate can be considered as a sequence of ΛX gates with the same control
qubit. Decomposing the unbounded fan-out gates into ΛX gates in the constant-
depth OR reduction circuit yields a Clifford circuit augmented by a depth-1 non-
Clifford layer, which consists only of controlled phase-shift gates. This procedure
transforms the middle part of the non-commuting OR reduction circuit in Step 3,
which is the only part in E′

n that includes non-Clifford gates, into a quantum
circuit that has ΛX gates and a depth-1 layer consisting of all the gates in the
middle part. The circuit obtained in this way from the middle part in Fig. 4(a)
is depicted in Fig. 4(b). This transformation with Lemma 6 implies Theorem 4.

Acknowledgments. We thank the anonymous referees for valuable comments. S.T. is
deeply grateful to the ELC project (Grant-in-Aid for Scientific Research on Innovative
Areas MEXT Japan) for encouraging the research presented in this paper.

References

1. Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. In:
Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC),
pp. 333–342 (2011)

2. Bremner, M.J., Jozsa, R., Shepherd, D.J.: Classical simulation of commuting
quantum computations implies collapse of the polynomial hierarchy. Proceedings
of the Royal Society A 467, 459–472 (2011)

3. Clark, S., Jozsa, R., Linden, N.: Generalized Clifford groups and simulation of
associated quantum circuits. Quantum Information and Computation 8(1&2),
106–126 (2008)

4. Fenner, S.A., Green, F., Homer, S., Zhang, Y.: Bounds on the power of
constant-depth quantum circuits. In: Lískiewicz, M., Reischuk, R. (eds.) FCT 2005.
LNCS, vol. 3623, pp. 44–55. Springer, Heidelberg (2005)

5. Høyer, P., Špalek, R.: Quantum fan-out is powerful. Theory of Computing 1(5),
81–103 (2005)

6. Jozsa, R., van den Nest, M.: Classical simulation complexity of extended Clifford
circuits. Quantum Information and Computation 14(7&8), 633–648 (2014)

7. Ni, X., van den Nest, M.: Commuting quantum circuits: efficient classical
simulations versus hardness results. Quantum Information and Computation
13(1&2), 54–72 (2013)

8. Takahashi, Y., Tani, S.: Collapse of the hierarchy of constant-depth exact
quantum circuits. In: Proceedings of the 28th IEEE Conference on Computational
Complexity (CCC), pp. 168–178 (2013)

9. Takahashi, Y., Yamazaki, T., Tanaka, K.: Hardness of classically simulating
quantum circuits with unbounded Toffoli and fan-out gates. Quantum Informa-
tion and Computation 14(13&14), 1149–1164 (2014)

10. Terhal, B.M., DiVincenzo, D.P.: Adaptive quantum computation, constant-
depth quantum circuits and Arthur-Merlin games. Quantum Information and
Computation 4(2), 134–145 (2004)

Evaluating Matrix Circuits

Daniel König and Markus Lohrey(B)

Universität Siegen, Siegen, Germany
lohrey@eti.uni-siegen.de

Abstract. The circuit evaluation problem (also known as the com-
pressed word problem) for finitely generated linear groups is studied. The
best upper bound for this problem is coRP, which is shown by a reduc-
tion to polynomial identity testing (PIT). Conversely, the compressed
word problem for the linear group SL3(Z) is equivalent to PIT. In the
paper, it is shown that the compressed word problem for every finitely
generated nilpotent group is in DET ⊆ NC2. Within the larger class of
polycyclic groups we find examples where the compressed word problem
is at least as hard as PIT for skew arithmetical circuits.

1 Introduction

The study of circuit evaluation problems has a long tradition in theoretical
computer science and is tightly connected to many aspects in computational
complexity theory. One of the most important circuit evaluation problems is
polynomial identity testing (PIT): The input is an arithmetic circuit, whose
internal gates are labelled with either addition or multiplication and its input
gates are labelled with variables (x1, x2, . . .) or constants (−1, 0, 1), and it is
asked whether the output gate evaluates to the zero polynomial (in this paper, we
always work in the polynomial ring over the coefficient ring Z or Zp for a prime
p). Based on the Schwartz-Zippel-DeMillo-Lipton Lemma, Ibarra and Moran
[10] proved that PIT over Z or Zp belongs to the class coRP (co-randomized
polynomial time). Whether PIT ∈ P is an important problem. In [11] it was
shown that if there is a language in DTIME(2O(n)) with circuit complexity 2Ω(n),
then P = BPP (and hence P = RP = coRP). On the other hand, Kabanets and
Impagliazzo [12] proved that if PIT belongs to P, then (i) there is a language in
NEXPTIME that does not have polynomial size circuits, or (ii) the permanent
is not computable by polynomial size arithmetic circuits. Both conclusions are
major open problem in complexity theory. Hence, although it is quite plausible
that PIT ∈ P, it is difficult to prove.

Circuit evaluation problems can be also studied for other structures than
polynomial rings, in particular non-commutative structures. For finite monoids,
the circuit evaluation was studied in [6], where it was shown that for every non-
solvable finite monoid the circuit evaluation problem is P-complete, whereas
for every solvable finite monoid, the circuit evaluation problem belongs to the
parallel complexity class DET ⊆ NC2. Starting with [17] the circuit evaluation
problem has been also studied for infinite finitely generated (f.g) monoids, in
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 235–248, 2015.
DOI: 10.1007/978-3-319-21398-9 19

236 D. König and M. Lohrey

particular infinite f.g. groups. In this context, the input gates of the circuit are
labelled with generators of the monoid, the internal gates compute the product of
the two input gates, and it is asked whether the circuit evaluates to the identity
element. In [17] and subsequent work, the circuit evaluation problem is also
called the compressed word problem (CWP). This is due to the fact that if one
forgets the underlying monoid structure of a multiplicative circuit, the circuit
simply evaluates to a word over the monoid generators labelling the input gates.
This word can be of length exponential in the number of circuit gates, and the
circuit can be seen as a compressed representation of this word. In this context,
circuits are also known as straight-line programs and are intensively studied in
the area of string compression [18].

Concerning the CWP, polynomial time algorithms have been developed for
many important classes of groups, e.g., finite groups, f.g. nilpotent groups, f.g.
free groups, graph groups (also known as right-angled Artin groups), and vir-
tually special groups. The latter contain all Coxeter groups, one-relator groups
with torsion, fully residually free groups, and fundamental groups of hyperbolic
3-manifolds; see [19]. For the important class of f.g. linear groups, i.e., f.g. groups
of matrices over a field, the CWP reduces to PIT (over Z or Zp, depending on
the characteristic of the field) and hence belongs to coRP [19]. Vice versa, in [19]
it was shown that PIT over Z reduces to the CWP for the linear group SL3(Z).
This result indicates that derandomizing the CWP for a f.g. linear group will be
in general very difficult.

In this paper, we further investigate the tight correspondence between com-
mutative circuits over rings and non-commutative circuits over linear groups.
In Sec. 6 we study the complexity of the CWP for f.g. nilpotent groups. It is
known to be in P [19]. Here, we show that for every f.g. nilpotent group the
CWP belongs to the parallel complexity class DET ⊆ NC2, which is the class of
all problems that are NC1-reducible to the computation of the determinant of
an integer matrix, see [8]. To the knowledge of the authors, f.g. nilpotent groups
are the only examples of infinite groups for which the CWP belongs to NC. Even
for free groups, the CWP is P-complete [17]. The main step of our proof for f.g.
nilpotent groups is to show that for a torsion-free f.g. nilpotent group G the
CWP belongs to the logspace counting class C=L (and is in fact C=L-complete
if G �= 1). To show this, we use the fact that a f.g. torsion-free nilpotent group
embeds into the group UTd(Z) of d-dimensional unitriangular matrices over Z for
some d. Then, we reduce the CWP for UTd(Z) to the C=L-complete problem,
whether two additive circuits over the naturals evaluate to the same number.
Let us mention that there are several C=L-complete problems related to linear
algebra [1].

We also study the CWP for the matrix group UTd(Z) for the case that the
dimension d is not fixed, i.e., part of the input (Sec. 7). In this case, the CWP
turns out to be complete for the counting class C=LogCFL, which is the LogCFL-
analogue of C=L.

Finally, in Sec. 8 we move from nilpotent groups to polycyclic groups. These
are solvable groups, where every subgroup is finitely generated. By results of

Evaluating Matrix Circuits 237

Maltsev, Auslander, and Swan these are exactly the solvable subgroups of GLd(Z)
for some d. We prove that polynomial identity testing for skew arithmetical
circuits reduces to the CWP for a specific 2-generator polycyclic group of Hirsch
length 3. A skew arithmetical circuit is an arithmetic circuit (as defined in the
first paragraph of the introduction) such that for every multiplication gate, one
of its input gates is an input gate of the circuit, i.e., a variable or a constant.
These circuits exactly correspond to algebraic branching programs. Even for
skew arithmetical circuits, no polynomial time algorithm is currently known
(although the problem belongs to coRNC).

Full proofs can be found in the long version [14].

2 Arithmetical Circuits

We use the standard notion of (division-free) arithmetical circuits. Let us fix a set
X = {x1, x2, . . .} of variables. An arithmetical circuit is a triple C = (V, S, rhs),
where (i) V is a finite set of gates, (ii) S ∈ V is the output gate, and (iii) for
every gate A, rhs(A) (the right-hand side of A) is either a variable from X,
one of the constants −1, 0, 1, or an expression of the form B + C (then A is
an addition gate) or B · C (then A is a multiplication gate), where B and C
are gates. Moreover, there must exist a linear order < on V such that B < A
whenever B occurs in rhs(A). A gate A with rhs(A) ∈ X ∪ {0,−1, 1} is an input
gate. Over a fixed ring (R,+, ·) (which will be (Z,+, ·) in most cases) we can
evaluate every gate A ∈ V to a polynomial valC(A) with coefficients from R
and variables from X (val stands for “value”). Moreover let val(C) = valC(S) be
the polynomial to which C evaluates. Two arithmetical circuits C1 and C2 are
equivalent over the ring (R,+, ·) if val(C1) = val(C2).

Fix an arithmetical circuit C = (V, S, rhs). We can view C as a directed acyclic
graph (dag), where every node is labelled with a variable or a constant or an
operator +, ·. If rhs(A) = B ◦ C (for ◦ one of the operators), then there is an
edge from B to A and C to A. The depth depth(A) (resp., multiplication depth
mdepth(A)) of the gate A is the maximal number of gates (resp., multiplication
gates) along a path from an input gate to A. So, input gates have depth one
and multiplication depth zero. The depth (resp., multiplication depth) of C is
depth(C) = depth(S) (resp., mdepth(C) = mdepth(S)). The formal degree deg(A)
of a gate A is 1 if A is an input gate, max{deg(B), deg(C)} if rhs(A) = B+C, and
deg(B) + deg(C) if rhs(A) = B · C. The formal degree of C is deg(C) = deg(S).
A positive circuit is an arithmetical circuit without input gates labelled by the
constant −1. An addition circuit is a positive circuit without multiplication
gates. A variable-free circuit is a circuit without variables. It evaluates to an
element of the underlying ring. A skew circuit is an arithmetical circuit such
that for every multiplication gate A with rhs(A) = B · C, one of the gates B,C
is an input gate.

In the rest of the paper we will also allow more complicated expressions
in right-hand sides for gates. For instance, we may have a gate with rhs(A) =
(B + C) · (D + E). When writing down such a right-hand side, we implicitly

238 D. König and M. Lohrey

assume that there are additional gates in the circuit, with (in our example) right
hand sides B + C and D + E, respectively. The proof of the following lemma
uses standard ideas.

Lemma 1. Given an arithmetical circuit C one can compute in logspace positive
circuits C1, C2 such that val(C) = val(C1) − val(C2) for every ring. Moreover, for
i ∈ {1, 2} we have deg(Ci) ≤ deg(C), depth(Ci) ≤ 2 · depth(C), and mdepth(Ci) ≤
mdepth(C).

Polynomial identity testing (PIT) for a ring R is the following computational
problem: Given an arithmetical circuit C (with variables x1, . . . , xn), does
val(C) = 0 hold, i.e., does C evaluate to the zero-polynomial in R[x1, . . . , xn]? It
is an outstanding open problem in complexity theory, whether PIT for Z can be
solved in polynomial time.

3 Complexity Classes

The counting class #L consists of all functions f : Σ∗ → N for which there
is a logspace bounded nondeterministic Turing machine M such that for every
w ∈ Σ∗, f(w) is the number of accepting computation paths of M on input
x. The class C=L contains all languages A for which there are two functions
f1, f2 ∈ #L such that for every w ∈ Σ∗, w ∈ A if and only if f1(w) = f2(w). The
class C=L is closed under logspace many-one reductions. The canonical C=L-
complete problem is the following: The input consists of two dags G1 and G2

and vertices s1, t1 (in G1) and s2, t2 (in G2), and it is asked whether the number
of paths from s1 to t1 in G1 is equal to the number of paths from s2 to t2 in G2.
A reformulation of this problem is: Given two variable-free addition circuits C1

and C2, does val(C1) = val(C2) hold?
We use standard definitions concerning circuit complexity, see e.g. [26]. In

particular we will consider the class TC0 of all problems that can be solved
by a polynomial size circuit family of constant depth that uses NOT-gates and
unbounded fan-in AND-gates, OR-gates, and majority-gates. For DLOGTIME-
uniform TC0 it is required in addition that for binary coded gate numbers u and
v, one can (i) compute the type of gate u in time O(|u|) and (ii) check in time
O(|u| + |v|) whether u is an input gate for v. Note that the circuit for inputs
of length n has at most p(n) gates for a polynomial p(n). Hence, the binary
codings u and v have length O(log n), i.e., the above computations can be done
in DTIME(log n). This is the reason for using the term “DLOGTIME-uniform”.
If majority gates are not allowed, we obtain the class (DLOGTIME-uniform)
AC0. The class (DLOGTIME-uniform) NC1 is defined by (DLOGTIME-uniform)
polynomial size circuit families of logarithmic depth that use NOT-gates and
fan-in-2 AND-gates and OR-gates. A language A is AC0-reducible to languages
B1, . . . , Bk if A can be solved with a DLOGTIME-uniform polynomial size circuit
family of constant depth that uses NOT-gates and unbounded fan-in AND-gates,
OR-gates, and Bi-gates (1 ≤ i ≤ k). Here, a Bi-gate (it is also called an oracle
gate) receives an ordered tuple of inputs x1, x2, . . . , xn and outputs 1 if and

Evaluating Matrix Circuits 239

only if x1x2 · · · xn ∈ Bi. Sometimes, also the term “uniform constant depth
reducibility” is used for this type of reductions. In the same way, the weaker
NC1-reducibility can be defined. Here, one counts the depth of a Bi-gate with
inputs x1, x2, . . . , xn as log n. The class DET contains all problems that are NC1-
reducible to the computation of the determinant of an integer matrix, see [8]. It
is known that C=L ⊆ DET ⊆ NC2, see e.g. [4, Sec.4].

An NAuxPDA is a nondeterministic Turing machine with an additional push-
down store. The class LogCFL ⊆ NC2 is the class of all languages that can be
accepted by a polynomial time bounded NAuxPDA whose work tape is loga-
rithmically bounded (but the pushdown store is unbounded). If we assign to
the input the number of accepting computation paths of such an NAuxPDA,
we obtain the counting class #LogCFL. In [25] it is shown that a function
f : {0, 1}∗ → N belongs to #LogCFL if and only if there exists a logspace-
uniform family (Cn)n≥1 of positive arithmetic circuits such that Cn computes
the mapping f restricted to {0, 1}n and there is a polynomial p(n) such that
the formal degree of Cn is bounded by p(n). The class C=LogCFL contains all
languages A for which there are two functions f1, f2 ∈ #LogCFL such that for
every w ∈ Σ∗, w ∈ A if and only if f1(w) = f2(w). We need the following lemma,
whose proof is based on folklore ideas:

Lemma 2. There is an NAuxPDA P that gets as input a positive variable-free
arithmetic circuit C and such that the number of accepting computations of P
on input C is val(C). Moreover, the running time is bounded polynomially in
depth(C) · deg(C).

4 Matrices and Groups

In this paper we are concerned with certain subclasses of linear groups. A group
is linear if it is isomorphic to a subgroup of GLd(F) (the group of all invertible
(d × d)-matrices over the field F) for some field F .

A (n-step) solvable group G is a group G, which has a a subnormal series
G = Gn�Gn−1�Gn−2� · · ·�G1�G0 = 1 (i.e., Gi is a normal subgroup of Gi+1

for all 0 ≤ i ≤ n−1) such that every quotient Gi+1/Gi is abelian (0 ≤ i ≤ n−1).
If every quotient Gi+1/Gi is cyclic, then G is called polycyclic. The number of
0 ≤ i ≤ n − 1 such that Gi+1/Gi

∼= Z is called the Hirsch length of G; it does
not depend on the chosen subnormal series. If Gi+1/Gi

∼= Z for all 0 ≤ i ≤ n−1
then G is called strongly polycyclic. A group is polycyclic if and only if it is
solvable and every subgroup is finitely generated. Polycyclic groups are linear.
Auslander and Swan [5,24] proved that the polycyclic groups are exactly the
solvable groups of integer matrices.

For a group G its lower central series is the series G = G1 � G2 � G3 � · · ·
of subgroups, where Gi+1 = [Gi, G], which is the subgroup generated by all
commutators [g, h] with g ∈ Gi and h ∈ G. Indeed, Gi+1 is a normal subgroup
of Gi. The group G is nilpotent, if its lower central series terminates after finitely
many steps in the trivial group 1. Every f.g. nilpotent group is polycyclic.

240 D. König and M. Lohrey

Let G be a f.g. group and let G be finitely generated as a group by Σ.
Then, as a monoid G is finitely generated by Σ ∪ Σ−1 (where Σ−1 = {a−1 |
a ∈ Σ} is a disjoint copy of Σ and a−1 stands for the inverse of the generator
a ∈ Σ). Recall that the word problem for G is the following computational
problem: Given a string w ∈ (Σ ∪ Σ−1)∗, does w evaluate to the identity of G.
Kharlampovich proved that there exist finitely presented 3-step solvable groups
with an undecidable word problem. On the other hand, for every f.g. linear group
the word problem can be solved in deterministic logarithmic space by results of
Lipton and Zalcstein [16] and Simon [23]. This applies in particular to polycyclic
groups. Robinson proved in his thesis that the word problem for a polycyclic
group belongs to TC0 [21], but his circuits are not uniform. Waack considered
in [27] arbitrary f.g. solvable linear groups (which include the polycyclic groups)
and proved that their word problems belong to logspace-uniform NC1. In [14]
we combine Waack’s technique with the famous division breakthrough result by
Hesse, Allender, and Barrington [9] to show that for every f.g. solvable linear
group the word problem belongs to DLOGTIME-uniform TC0.

5 Straight-Line Programs and the Compressed Word
Problem

A straight-line program (briefly, SLP) is basically a multiplicative circuit over a
monoid. We define an SLP over the finite alphabet Σ as a triple G = (V, S, rhs),
where V is a finite set of variables (or gates), S ∈ V is the start variable (or
output gate), and rhs maps every variable to a right-hand side rhs(A), which is
either a symbol a ∈ Σ, or of the form BC, where B,C ∈ V . As for arithmetical
circuits we require that there is a linear order < on V such that B < A, whenever
B occurs in rhs(A). The terminology “(start) variable” (instead of “(output)
gate”) comes from the fact that an SLP is quite often defined as a context-
free grammar that produces a single string over Σ. This string is defined in
the obvious way by iteratively replacing variables by the corresponding right-
hand sides, starting with the start variable. We denote this string with val(G).
The unique string over Σ, derived from the variable A ∈ V , is denoted with
valG(A). We will also allow more general right-hand sides from (V ∪Σ)∗, but by
introducing new variables we can always obtain an equivalent SLP in the above
form.

If we have a monoid M , which is finitely generated by the set Σ, then there
exists a canonical monoid homomorphism h : Σ∗ → M . Then, an SLP G over
the alphabet Σ can be evaluated over the monoid M , which yields the monoid
element h(val(G)). In this paper, we are only interested in the case that the
monoid M is a f.g. group G. Let G be finitely generated as a group by Σ. An
SLP over the alphabet Σ ∪ Σ−1 is also called an SLP over the group G. In this
case, we will quite often identify the string val(G) ∈ (Σ ∪ Σ−1)∗ with the group
element g ∈ G to which it evaluates. We will briefly write “val(G) = g in G” in
this situation.

Evaluating Matrix Circuits 241

The main computational problem we are interested in is the compressed word
problem for a f.g. group G (with a finite generating set Σ), briefly CWP(G). The
input for this problem is an SLP G over the alphabet Σ ∪ Σ−1, and it is asked
whether val(G) = 1 in G (where of course 1 denotes the group identity). The
term “compressed word problem” comes from the fact that this problem can be
seen as a succinct version of the classical word problem for G, where the input is
an explicitly given string w ∈ (Σ ∪ Σ−1)∗ instead of an SLP-compressed string.

The compressed word problem is related to the classical word problem. For
instance, the classical word problem for a f.g. subgroup of the automorphism
group of a group G can be reduced to the compressed word problem for G,
and similar results are known for certain group extensions, see [19] for more
details. There are several important classes of groups, for which the compressed
word problem can be solved in polynomial time, and for finitely generated linear
groups the compressed word problem belongs to co-randomized polynomial time,
see the introduction. In [6] the parallel complexity of the compressed word prob-
lem (there, called the circuit evaluation problem) for finite groups was studied,
and the following result was shown:

Theorem 1 ([6]). Let G be a finite group. If G is solvable, then CWP(G) belongs
to the class DET ⊆ NC2. If G is not solvable, then CWP(G) is P-complete.

6 CWP for Finitely Generated Nilpotent Groups

In [19] it was shown that the compressed word problem for a finitely generated
nilpotent group can be solved in polynomial time. The main result of this section
is:

Theorem 2. Let G �= 1 be a f.g. torsion-free nilpotent group. Then CWP(G) is
complete for the class C=L.

For the lower bound let G be a non-trivial f.g. torsion-free nilpotent group. Since
G �= 1, G contains Z. Hence, it suffices to prove the following:

Lemma 3. CWP(Z) is hard for C=L.

Proof. An SLP G over the generator 1 of Z and its inverse −1 is nothing else
than a variable-free arithmetical circuit C without multiplication gates. Using
Lemma 1 we can construct in logspace two addition circuits C1 and C2 such that
val(C) = 0 if and only if val(C1) = val(C2). Checking the latter is complete for
C=L as remarked in Sec. 3.
�

For the upper bound in Thm. 2, we use the fact that every torsion-free f.g.
nilpotent group can be represented by unitriangluar integer matrices. Let A be a
(d×d)-matrix over Z. With A[i, j] we denote the entry of A in row i and column j.
The matrix A is triangular if A[i, j] = 0 whenever i > j, i.e., all entries below the
main diagonal are 0. A unitriangular matrix is a triangular matrix A such that
A[i, i] = 1 for all 1 ≤ i ≤ d, i.e., all entries on the main diagonal are 1. We denote

242 D. König and M. Lohrey

the set of unitriangular (d × d)-matrices over Z with UTd(Z). This is a group
with respect to matrix multiplication. Let 1 ≤ i < j ≤ d. With Ti,j we denote
the matrix from UTd(Z) such that Ti,j [i, j] = 1 and Ti,j [k, l] = 0 for all k, l with
1 ≤ k < l ≤ d and (k, l) �= (i, j). The notation Ti,j does not specify the dimension
d of the matrix, but the dimension will be always clear from the context. The
group UTd(Z) is generated by the finite set Γd = {Ti,i+1 | 1 ≤ i < d}, see e.g.
[7]. For every torsion-free f.g. nilpotent group G there exists some d ≥ 1 such
that G ≤ UTd(Z) [13, Thm.17.2.5]. Hence, the upper bound in Thm. 2 follows
from:

Lemma 4. For every d ≥ 1, CWP(UTd(Z)) belongs to C=L.

For the rest of this section let us fix a number d ≥ 1 and consider the unitrian-
gluar matrix group UTd(Z). Consider an SLP G = (V, S, rhs) over the alphabet
Γd ∪ Γ−1

d , where Γd is the finite generating set of UTd(Z) from Sec. 4. Note that
for every variable A ∈ V , valG(A) is a word over the alphabet Γd ∪ Γ−1

d . We
identify in the following this word with the matrix to which it evaluates. Thus,
valG(A) ∈ UTd(Z).

Assume we have given an arithmetical circuit C. A partition
⊎m

i=1 Vi of the
set of all multiplication gates of C is called structure-preserving if for all multi-
plication gates u, v of C the following holds: If there is a non-empty path from
u to v in (the dag corresponding to) C then there exist 1 ≤ i < j ≤ d such that
u ∈ Vi and v ∈ Vj . In a first step, we transform our SLP G in logspace into a
variable-free arithmetical circuit C of multiplication depth at most d such that
G evaluates to the identity matrix if and only if C evaluates to 0. Moreover, we
also compute a structure-preserving partition of the multiplication gates of C.
This partition will be needed for the further computations. The degree bound
in the following lemma will be needed in Sec. 7.

Lemma 5. From the SLP G = (V, S, rhs) we can compute in logspace a variable-
free arithmetical circuit C with mdepth(C) ≤ d and deg(C) ≤ 2(d − 1), such that
val(G) = Idd if and only if val(C) = 0. In addition we can compute in logspace a
structure-preserving partition

⊎d
i=1 Vi of the set of all multiplication gates of C.

Proof. The set of gates of C is W = {Ai,j | A ∈ V, 1 ≤ i < j ≤ d} {T}, where
T is the output gate. The idea is simple: Gate Ai,j will evaluate to the matrix
entry valG(A)[i, j]. To achieve this, we define the right-hand side mapping of the
circuit G (which we denote again with rhs) as follows: If rhs(A) = M ∈ Γd ∪Γ−1

d ,
then rhs(Ai,j) = M [i, j] ∈ {−1, 0, 1}, and if rhs(A) = BC, then rhs(Ai,j) =
Bi,j + Ci,j +

∑
i<k<j Bi,k · Ck,j (which is the rule for matrix multiplication

taking into account that all matrices are unitriangular). Finally, we set rhs(T) =∑
1≤i<j≤d S2

i,j . Then, val(C) = 0 iff valG(S)[i, j] = 0 for all 1 ≤ i < j ≤ d iff
val(G) is the identity matrix.

Concerning the multiplication depth, note that the multiplication depth of
the gate Ai,j is bounded by j − i: The only multiplications in rhs(Ai,j) are of the
form Bi,kCk,j (and these multiplications are not nested). Hence, by induction,
the multiplication depth of Ai,j is bounded by 1+max{k−i, j−k | i < k < j} =

Evaluating Matrix Circuits 243

j−i. It follows that every gate Si,j has multiplication depth at most d−1, which
implies that the output gate T has multiplication depth at most d. Similarly, it
can be shown by induction that deg(Ai,j) ≤ j − i. Hence, deg(Ai,j) ≤ d − 1 for
all 1 ≤ i < j ≤ d, which implies that the formal degree of the circuit is bounded
by 2(d − 1).

The structure-preserving partition
⊎d

i=1 Vi of the set of all multiplication
gates of C can be defined as follows: All gates corresponding to multiplications
Bi,k · Ck,j in rhs(Ai,j) are put into the set Vj−i. Finally, all gates corresponding
to multiplications S2

i,j in rhs(T) are put into Vd. It is obvious that this partition
is structure-preserving.
�

In a second step we apply Lemma 1 and construct from the above circuit C two
variable-free positive circuits C1 and C2, both having multiplication depth at most
d such that val(C) = val(C1) − val(C2). Hence, our input SLP G evaluates to the
indentity matrix if and only if val(C1) = val(C2). Moreover, using the construction
from Lemma 1 it is straightforward to compute in logspace a structure-preserving
partition

⊎d
i=1 Vk,i of the the set of all multiplication gates of Ck (k ∈ {1, 2}).

The following lemma concludes the proof that CWP(UTd(Z)) belongs to C=L.
For the proof one eliminates in a single phase all multiplication gates in a layer.
This can be achieved by a logspace reduction, and since the total number of
layers is constant, the whole elimination procedure works in logspace.

Lemma 6. Let d be constant. From a given variable-free positive circuit C of
multiplication depth d together with a structure-preserving partition

⊎d
i=1 Vi of

the set of all multiplication gates of C, we can compute in logarithmic space a
variable-free addition circuit D such that val(C) = val(D).

So far, we have restricted to torsion-free f.g. nilpotent groups. For general f.g.
nilpotent groups, we use the fact that every f.g. nilpotent group contains a
torsion-free normal f.g. nilpotent subgroup of finite index [13, Thm. 17.2.2], in
order to show that the compressed word problem for every f.g. nilpotent group
belongs to the complexity class DET: To do this we need the following result.
For the proof one can adopt the proof of [19, Thm.4.4], where the statement is
shown for polynomial time many-one reducibility instead of AC0-reducibility.

Theorem 3. Let G be a finitely generated group. For every normal subgroup H
of G with a finite index, CWP(G) is AC0-reducible to CWP(H) and CWP(G/H).

We can now show:

Theorem 4. For every f.g. nilpotent group, the compressed word problem is in
DET.

Proof. Let G be a f.g. nilpotent group. If G is finite, then the result follows from
Thm. 1 (every nilpotent group is solvable). If G is infinite, then G has a f.g.
torsion-free normal subgroup H of finite index [13, Thm. 17.2.2]. Subgroups and
quotients of nilpotent groups are nilpotent too [22, Chapter5], hence H and G/H
are nilpotent; moreover H is finitely generated. By Thm. 2, CWP(H) belongs to

244 D. König and M. Lohrey

C=L ⊆ DET. Moreover, by Thm. 1, CWP(G/H) ∈ DET as well. Finally, Thm. 3
implies CWP(G) ∈ DET.
�

Actually, Thm. 4 can be slightly extended to groups that are (f.g. nilpotent)-by-
(finite solvable) (i.e., groups that have a normal subgroup, which is f.g. nilpotent,
and where the quotient is finite solvable. This follows from Thm. 3 and the fact
that the compressed word problem for a finite solvable group belongs to DET
(Thm. 1).

7 The Uniform CWP for Unitriangular Groups

For Lemma 4 it is crucial that the dimension d is a constant. In this section,
we consider a uniform variant of the compressed word problem for UTd(Z). We
denote this problem with CWP(UT∗(Z)). The input consists of a unary encoded
number d and an SLP, whose terminal symbols are generators of UTd(Z) or their
inverses. Alternatively, we can assume that the terminal symbols are arbitrary
matrices from UTd(Z) with binary encoded entries (given such a matrix M , it
is easy to construct an SLP over the generator matrices that produces M). The
question is whether the SLP evaluates to the identity matrix. We show that this
problem is complete for the complexity class C=LogCFL.

Theorem 5. The problem CWP(UT∗(Z)) is complete for C=LogCFL.

Proof. We start with the upper bound. Consider an SLP G, whose terminal
symbols are generators of UTd(Z) or their inverses. The dimension d is clearly
bounded by the input size. Consider the variable-free arithmetic circuit C con-
structed from G in Lemma 5 and let C1 and C2 be the two variable-free positive
arithmetic circuits obtained from C using Lemma 1. Then G evaluates to the
identity matrix if and only if val(C1) = val(C2). Moreover, the formal degrees
deg(C1) and deg(C2) are bounded by 2(d − 1), i.e., polynomially bounded in the
input length. Finally, we compose a logspace machine that computes from the
input SLP G the circuit Ci with the NAuxPDA from Lemma 2 to get an NAux-
PDA Pi such that the number of accepting computation paths of Pi on input
G is exactly val(Ci). Moreover, the running time of Pi on input G is bounded
polynomially in (2d − 1) · depth(Ci) ∈ O(d · |G|).

Let us now show that CWP(UT∗(Z)) is hard for C=LogCFL. Let (C1,n)n≥0

and (C2,n)n≥0 be two logspace-uniform families of positive arithmetical circuits
of polynomially bounded size and formal degree. Let w = a1a2 · · · an ∈ {0, 1}n

be an input for the circuits C1,n and C2,n. Let Ci be the variable-free positive
arithmetical circuit obtained from Ci,n by replacing every xj-labelled input gate
by aj ∈ {0, 1}. By [3, Lemma 3.2] we can assume that every gate of Ci is labelled
by its formal degree. By adding if necessary additional multiplication gates,
where one input is set to 1, we can assume that C1 and C2 have the same formal
degree d ≤ p(n) for a polynomial p. Analogously, we can assume that if A is an
addition gate in C1 or C2 with right-hand side B + C, then deg(B) = deg(C) =
deg(A). All these preprocessing steps can be carried out in logarithmic space.

Evaluating Matrix Circuits 245

We will construct in logarithmic space an SLP G over the alphabet Γd+1 ∪
Γ−1

d+1, where Γd+1 is our canonical generating set for the matrix group UTd+1(Z),
such that G evaluates to the identity matrix if and only if val(C1) = val(C2). Let
vi be the output value of Ci. We first construct in logspace an SLP G1 that
evaluates to the matrix T v1

1,d. In the same way we can construct in logspace a
second SLP G2 that evaluates to T−v2

1,d . Then, by concatenating the two SLPs G1

and G2 we obtain the desired SLP.
The variables of G1 are Ab

i,j , where A is a gate of C1, b ∈ {−1, 1}, and 1 ≤ i <
j ≤ d such that j − i is the formal degree of A. The SLP G1 will be constructed
in such a way that valG1(A

b
i,j) = T b·v

i,j , where v = valC1(A). If rhsC1(A) = 0,
then we set rhsG1(A

b
i,j) = Id and if rhsC1(A) = 1, then we set rhsG1(A

b
i,j) = T b

i,j .
If rhsC1(A) = B + C, then we set rhsG1(A

b
i,j) = Bb

i,jC
b
i,j . Correctness follows

immediately by induction. Note that deg(B) = deg(C) = deg(A) = j − i, which
implies that the gates Bb

i,j and Cb
i,j exist. Finally, if rhsC1(A) = B · C, then we

set rhsG1(A
1
i,j) = B−1

i,k C−1
k,jB

1
i,kC1

k,j and rhsG1(A
−1
i,j) = C−1

k,jB
−1
i,k C1

k,jB
1
i,k, where

k is such that deg(B) = k − i and deg(B) = j − k. Such a k exists since
j − i = deg(A) = deg(B) + deg(C). Correctness follows by induction and the
simple fact that T−a

i,j , T−b
j,k T a

i,j , T
b
j,k = T ab

i,k for all a, b ∈ Z and 1 ≤ i < j < k ≤ d;
see [20].
�

8 CWP for Polycyclic Groups

In this section we look at the compressed word problem for polycyclic groups.
Since every polycyclic group is f.g. linear, the compressed word problem for a
polycyclic group can be reduced to PIT. Here, we show a lower bound: There is a
polycyclic group G such that PIT for skew arithmetical circuits can be reduced
to CWP(G). In this context, it is interesting to note that PIT for arbitrary
circuits can be reduced to the compressed word problem to the linear (but not
polycyclic) group SL3(Z) [19, Thm.4.16].

Let us start with a specific example of a polycyclic group. Consider the two
matrices

ga =
(

a 0
0 1

)

and h =
(

1 1
0 1

)

, (1)

where a ∈ R, a ≥ 2. Let Ga = 〈ga, h〉 ≤ GL2(R). Let us remark that, for instance,
the group G2 is not polycyclic, see e.g. [28, p. 56]. On the other hand, we have:

Proposition 1. The group G = G1+
√
2 is polycyclic.

The main result of this section is:

Theorem 6. Let a ≥ 2. Polynomial identity testing for skew arithmetical cir-
cuits is logspace-reducible to the compressed word problem for the group Ga.

In particular, there exist polycyclic groups for which the compressed word prob-
lem is at least as hard as polynomial identity testing for skew circuits. Recall that

246 D. König and M. Lohrey

it is not known, whether there exists a polynomial time algorithm for polynomial
identity testing restricted to skew arithmetical circuits.

For the proof of Thm. 6, we use the following result from [2] (see the proof
of [2, Prop. 2.2], where the result is shown for a = 2, but the proof works for
any a ≥ 2):

Lemma 7. Let C be an arithmetical circuit of size n with variables x1, . . . , xm

and let p(x1, . . . , xm) = val(C). Let a ≥ 2 be a real number. Then p(x1, . . . , xn)

is the zero-polynomial if and only if p(α1, . . . , αn) = 0, where αi = a2i·n
2

for
1 ≤ i ≤ m.

Proof of Thereom 6. Let us fix a skew arithmetical circuit C of size n with m
variables x1, . . . , xm. We will define an SLP G over the alphabet {ga, g−1

a , h, h−1}
such that val(G) = Id in Ga if and only if val(C) = 0. First of all, using iterated
squaring, we can construct an SLP H with variables A1, A

−1
1 . . . , Am, A−1

m (and
some other auxiliary variables) such that

valH(Ai) = g2
i·n2

a =
(

αi 0
0 1

)

and valH(A−1
i) = g−2i·n

2

a =
(

α−1
i 0
0 1

)

.

We now construct the SLP G as follows: The set of variables of G consists of
the gates of C and the variables of H. We copy the right-hand sides from H
and define the right-hand side for a gate A of C as follows: (i) rhsG(A) = hn

if rhsC(A) = n ∈ {0,−1, 1}, (ii) rhsG(A) = BC if rhsC(A) = B + C, and (iii)
rhsG(A) = AiBA−1

i if rhsC(A) = xi · B.
A straightforward induction shows that for every gate A of C we have the

following, where we denote for better readability the polynomial valC(A) to which
gate A evaluates with pA:

valG(A) =
(

1 pA(α1, . . . , αn)
0 1

)

We finally take the output gate S of the skew circuit C as the start variable
of G. Then, val(G) yields the identity matrix in the group Ga if and only if
pS(α1, . . . , αn) = 0. By Lemma 7 this is equivalent to val(C) = pS(x1, . . . , xn) =
0.
�
Actually, we can carry out the above reduction for a class of arithmetical circuits
that is slightly larger than the class of skew arithmetical circuits. Let us define
a powerful skew circuit as an arithmetical circuit, where for every multiplication
gate A, rhs(A) is of the form xe

i ·B, where e ≥ 0 is a binary coded number. Such a
circuit can be converted into an ordinary arithmetical circuit, which, however is
no longer skew. To extend the reduction from the proof of Thereom 6 to powerful
skew circuits, we set for a gate A with rhsC(A) = xe

i · B: rhsG(A) = Ae
i BA−e

i .
The powers Ae

i and A−e
i can be defined using additional multiplication gates.

In our recent paper [15], we introduced powerful skew circuits, and proved that
for this class, PIT belongs to coRNC. We applied this result to the compressed
word problem for wreath products.

Evaluating Matrix Circuits 247

Let us look again at the group G = G1+
√
2 from Prop. 1. A closer inspection

(see [14]) shows that [G,G] ∼= Z × Z and G/[G,G] ∼= Z × Z2. Hence, G has a
subnormal series of the form G � H �Z×Z�Z� 1, where H has index 2 in G
and H/(Z × Z) ∼= Z. The group H is strongly polycyclic and has Hirsch length
3. By Thm. 3 we obtain:

Corollary 1. There is a strongly polycyclic group H of Hirsch length 3 such
that polynomial identity testing for skew circuits is polynomial time reducible to
CWP(H).

References

1. Allender, E., Beals, R., Ogihara, M.: The complexity of matrix rank and feasible
systems of linear equations. Comput. Complex. 8(2), 99–126 (1999)

2. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the
complexity of numerical analysis. SIAM J. Comput. 38(5), 1987–2006 (2009)

3. Allender, E., Jiao, J., Mahajan, M., Vinay, V.: Non-commutative arithmetic
circuits: Depth reduction and size lower bounds. Theor. Comput. Sci. 209(1–2),
47–86 (1998)

4. Àlvarez, C., Jenner, B.: A very hard log-space counting class. Theor. Comput. Sci.
107(1), 3–30 (1993)

5. Auslander, L.: On a problem of Philip Hall. Annals of Mathematics 86(2), 112–116
(1967)

6. Beaudry, M., McKenzie, P., Péladeau, P., Thérien, D.: Finite monoids: From word
to circuit evaluation. SIAM J. Comput. 26(1), 138–152 (1997)

7. Biss, D.K., Dasgupta, S.: A presentation for the unipotent group over rings with
identity. Journal of Algebra 237(2), 691–707 (2001)

8. Cook, S.A.: A taxonomy of problems with fast parallel algorithms. Inform. Control
64, 2–22 (1985)

9. Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth threshold cir-
cuits for division and iterated multiplication. J. Comput. System Sci. 65, 695–716
(2002)

10. Ibarra, O.H., Moran, S.: Probabilistic algorithms for deciding equivalence of
straight-line programs. J. Assoc. Comput. Mach. 30(1), 217–228 (1983)

11. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits:
derandomizing the XOR lemma. In: Proc. STOC 1997, pp. 220–229. ACM Press
(1997)

12. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means
proving circuit lower bounds. Comput. Complex. 13(1–2), 1–46 (2004)

13. Kargapolov, M.I., Merzljakov, J.I.: Fundamentals of the Theory of Groups.
Springer (1979)

14. König, D., Lohrey, M.: Evaluating matrix circuits (2015). arXiv.org
15. König, D., Lohrey, M.: Parallel identity testing for algebraic branching programs

with big powers and applications (2015). arXiv.org
16. Lipton, R.J., Zalcstein, Y.: Word problems solvable in logspace. J. Assoc. Comput.

Mach. 24(3), 522–526 (1977)
17. Lohrey, M.: Word problems and membership problems on compressed words. SIAM

J. Comput. 35(5), 1210–1240 (2006)

248 D. König and M. Lohrey

18. Lohrey, M.: Algorithmics on SLP-compressed strings: A survey. Groups Complexity
Cryptology 4(2), 241–299 (2012)

19. Lohrey, M.: The Compressed Word Problem for Groups. SpringerBriefs in Mathe-
matics. Springer (2014)

20. Lohrey, M.: Rational subsets of unitriangular groups. International Journal of Alge-
bra and Computation (2015). doi:10.1142/S0218196715400068

21. Robinson, D.: Parallel Algorithms for Group Word Problems. Ph.D. thesis, UCSD
(1993)

22. Rotman, J.J.: An Introduction to the Theory of Groups, 4th edn. Springer (1995)
23. Simon, H.-U.: Word problems for groups and contextfree recognition. In: Proceed-

ings of Fundamentals of Computation Theory, FCT 1979, pp. 417–422. Akademie-
Verlag (1979)

24. Swan, R.: Representations of polycyclic groups. Proc. Am. Math. Soc. 18, 573–574
(1967)

25. Vinay, V.: Counting auxiliary pushdown automata and semi-unbounded arithmetic
circuits. In: Proc. Structure in Complexity Theory Conference, pp. 270–284. IEEE
Computer Society (1991)

26. Vollmer, H.: Introduction to Circuit Complexity. Springer (1999)
27. Waack, S.: On the parallel complexity of linear groups. ITA 25(4), 265–281 (1991)
28. Wehrfritz, B.A.F.: Infinite Linear Groups. Springer (1977)

http://dx.doi.org/10.1142/S0218196715400068

Computing and Graph

Approximation and Nonapproximability
for the One-Sided Scaffold Filling Problem

Haitao Jiang(B), Jingjing Ma, Junfeng Luan, and Daming Zhu

School of Computer Science and Technology, Shandong University,
Jinan 250101, People’s Republic of China

{htjiang,jfluan,dmzhu}@sdu.edu.cn, mjjdha@163.com

Abstract. Scaffold filling is an interesting combinatorial optimization
problem from genome sequencing. The one-sided scaffold filling problem
can be stated as: given an incomplete scaffold with some genes miss-
ing and a reference scaffold, the purpose is to insert the missing genes
back into the incomplete scaffold(called ”filling the scaffold”), such that
the number of common adjacencies between the filled scaffold and the
reference scaffold is maximized. This problem is NP-hard for genome
with duplicated genes, and can be approximated within 1.25 by a very
complicated combinatorial method. In this paper, we firstly improve the
approximation factor to 6/5 by not-oblivious local search; then we show
that this problem is MAX-SNP-complete.

1 Introduction

Motivation
Scaffold filling is a necessary step in the Next Generation Sequencing (NGS),
which has greatly improved the speed of genome sequencing. Though the speed
and quantity grows hugely by NGS, the accuracy is still not high enough.
The bottleneck is that these sequences are often only a part of the complete
genome, but concatenating them together to a whole genome, in general, still an
intractable problem in the sense of computer algorithm. Currently, most sequenc-
ing results for genomes usually are in the form of scaffolds or contigs. Sometimes,
applying these incomplete genomes for genomic analysis will introduce unneces-
sary errors. So it is natural to fill the missing gene fragments into the incomplete
genome in a combinatorial way, and to obtain an ‘augmented’ genome which is
closer to some reference genome.

Known Results
In reference [13], Muñoz et al. proposed the one-sided permutation scaffold filling
problem, and devised an exact algorithm to minimize the genome rearrangement
distance, i.e., the Double Cut and Join distance. Subsequently, Jiang et al. con-
sidered the permutation scaffold filling problem without any reference genome,
they show that it is polynomially solvable under the breakpoint distance.

For genomes containing some duplicated genes, their scaffold filling becomes
more difficult. Firstly, to measure the similarity between genomes with gene
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 251–263, 2015.
DOI: 10.1007/978-3-319-21398-9 20

252 H. Jiang et al.

repetition, there are three general criterion: the exemplar genomic distance [14],
the minimum common string partition (MCSP) distance [3] and the maximum
number of common string adjacencies [1,11,12]. Unfortunately, unless P=NP,
the former two criterion are hard to be computed and even hard to be approx-
imated [2–4,7–9]. Therefore, the measure of the maximum number of common
adjacenciesis is meaningful in itself.

Though the breakpoint distance on genomes with duplicated genes makes no
sense, its complementary distance, the number of common adjacencies, formly
defined by Jiang and Zhu [11,12], shows very good computable properties. Under
the measure of common adjacencies, there are a series of related works. For the
one-sided scaffold filling problem, Jiang et al. proved that its decision problem
is NP-complete, and designed a 1.33-approximation algorithm with a greedy
strategy [11,12]. Recently, Liu et al. improve the approximation factor to 1.25
by a combinatorial method, their key idea is a step to compute a maximum
matching of a constructed bipartite graph, as well as a step of local improvement
[15]. For the two-sided scaffold filling problem, as a generalization of the one-
sided problem, it is also NP-hard. In [16], Liu et al. propose the first non-trivial
polynomial time approximation algorithm with a ratio 3/2.

Our Contributions

1. An 6/5-approximation algorithm for the one-sided scaffold filling problem
by a not-oblivious local search method. The ”not-oblivious” local search was
systematic described in [5]. The main idea is not improving the objective
function directly , but improving another function that contains the same
parameters to objective function but different indexes. With respect to local
search, we just use 1-substitution;

2. We prove that the scaffold filling problem is MAX-SNP-complete by an
L-reduction from the Maximum 3-Dimensional Matching problem [17].

2 Preliminaries

Firstly, we review some necessary definitions, which are also defined in [12].
Throughout this paper, we only consider unsigned genes and genomes. Given a
gene family Σ, a string P is called permutation if each element in Σ appears
exactly once in P . We use c(P) to denote the set of elements in permutation P .
A string S is called sequence if some genes appear more than once in S, and c(S)
denotes genes of S, which is a multi-set of elements in Σ. For example, Σ = {a,
b, c, d}, S = acdabcd, c(S) = {a, a, b, c, c, d, d}. A scaffold is an sequence,
typically obtained by some sequencing and assembling process. A substring with
m genes is called an m-substring, and a 2-substring is also called a pair, as the
genes are unsigned, the relative order of the two genes of a pair does not matter,
i.e., the pair xy is equal to the pair yx. Given a scaffold S=s1s2s3 · · · sn, let
PAIRS = {s1s2, s2s3, . . . , sn−1sn} be the set of pairs in S.

Given two scaffolds S=s1s2 · · · sn and T=t1t2 · · · tm, if sisi+1 = tjtj+1 (or
sisi+1 = tj+1tj),where sisi+1 ∈ PAIRS and tjtj+1 ∈ PAIRT , we say that

Approximation and Nonapproximability for the One-Sided Scaffold 253

sisi+1 and tjtj+1 (or tj+1tj) are matched to each other. Once sisi+1 is matched
to a pair tjtj+1 in PAIRT ,it will never be matched to another pair tktk+1 (k �= j)
in PAIRT . Also, we claim that each pair can be matched at most one time, and
any pair should be matched if possible.We denote the match between PAIRS

and PAIRT as R = {(s, t)| s is matched to t, and s ∈ PAIRS , t ∈ PAIRT }. If
the cardinality of R is maximized, we call it maximum match. We will base it
to identify a pair in S and T as a common adjacency or a breakpoint.

Definition 1. Given two scaffolds S=s1s2 · · · sn and T=t1t2 · · · tm, let R be a
maximum match between PAIRS and PAIRT . A matched pair in S or T with
respect to R is called an adjacency, and an unmatched pair with respect to R
is called a breakpoint in S and T respectively.

It follows from the definition that scaffolds S and T contain the same adja-
ciencies but distinct breakpoints. The maximum matched pairs in T (or equally,
in S) is called the adjacency set between S and T , denoted as a(S, T). By bS(S, T)
and bT (S, T) we denote the set of breakpoints in S and T respectively. We will
illuminate the above involved definitions by Fig.1.

scaffold T = 〈a c d a b c d 〉
scaffold S = 〈a b d c a c d〉

PAIRT = {ac, cd, da, ab, bc, cd}
PAIRS = {ab, bd, dc, ca, ac, cd}

matched pairs : (ac ↔ ca), (cd ↔ dc), (ab ↔ ab), (cd ↔ cd)

a(S, T) = {ac, cd, ab, cd}
bT (S, T) = {da, bc}
bS(S, T) = {bd, ac}

Fig. 1. An example for adjacency, breakpoint and related definitions

Given two scaffolds S=s1s2 · · · sn and T=t1t2 · · · tm, as we can see, each gene
except the four ending ones is involved in two adjacencies or two breakpoints or
one adjacency and one breakpoint. To get rid of this unbalance, we add ”∗” to
both the ends of S and T . Then, in the following part of this paper, we assume
that S=s0s1 · · · snsn+1 and T=t0t1 · · · tmtm+1, where s0=sn+1=t0=tm+1=∗.

For a sequence S and a multi-set of elements X, let S + X be the set of all
possible resulting sequences after filling all the elements in X into S. Now, we
put forward the problems we study in this paper formally.

Definition 2. Two-sided Scaffold Filling Problem(TSSF-MNA problem).
Input: two scaffolds S and T over a gene set Σ and two multi-sets of elements
X and Y , where X = c(T) − c(S) and Y = c(S) − c(T).
Question: Find S′ ∈ S + X and T ′ ∈ T + Y such that |a(S′, T ′)| is maximized.

254 H. Jiang et al.

The one-sided SF-MNA problem is a special instance of the TSSF-MNA
problem where Y is empty, and is the problem we studied in this paper.The
definition of it is described below.

Definition 3. One-sided Scaffold Filling Problem(OSSF-MNA problem).
Input: a complete scaffold T and an incomplete scaffold S over a gene set Σ, a
multi-set X = c(T) − c(S) �= ∅, while c(S) − c(T) = ∅ .
Question: Find S′ ∈ S + X such that |a(S′, T)| is maximized.

Note that while the TSSF-MNA problem is more general and more difficult,
the OSSF-MNA is more practical as a lot of genome analysis are based on some
reference genome [13].

3 An Approximation Algorithm by Local Search

In this section, we show a local search algorithm for the one-sided scaffold filling
problem, before that, we recall a key algorithm presented in [15] by Liu et al.,
which is actually a method of filling a scaffold, guaranteeing that on average each
insertion of a single gene would generate at least one common adjacency. In our
algorithm, after the local search step, we call that algorithm Insert-Whole-String
in [15].

Theorem 1. There exists a polynomial time algorithm to fill a scaffold, guaran-
teeing that the number of adjacencies increased is not smaller than the number
of genes inserted.

3.1 An Equivalent Goal

The goal of solving this problem is to insert the genes of X into scaffold Sand
obtain as many adjacencies as possible. No matter in what order the genes are
inserted, they appears in groups in the final S′ ∈ S +X, so we can consider that
S′ is obtained by inserting strings (composed of genes of X) into S.

Obviously, inserting a string of length one (i.e., a single gene) will generate
at most two more adjacencies, and inserting a string of length m will generate
at most m+1 more adjacencies. Therefore, there would be two types of inserted
strings.

– good string: a string of k missing genes x1, x2, . . . , xk are inserted
in between sisi+1 in scaffold S to obtain k+1 adjacencies (i.e.,
six1, x1x2, . . . , xk−1xk, xksi+1), where sisi+1 is a breakpoint.
In this case, x1, x2, . . . , xk is called a k-good string, sisi+1 is called a dock,
and we also say that sisi+1 docks the corresponding k-good string x1 . . . xk.

– bad string: a sequence of l missing genes y1, y2, . . . , yl are inserted
in between sjsj+1 in scaffold S to obtain l adjacencies (i.e., sjy1 or
ylsj+1, y1y2, . . . , yl−1yl), where sjsj+1 is a breakpoint;
or a sequence of l missing genes y1, y2, . . . , yl are inserted in between sjsj+1

in scaffold S to obtain l+1 adjacencies (i.e., sjy1, y1y2, . . . , yl−1yl, ylsj+1),
where sjsj+1 is an adjacency.

Approximation and Nonapproximability for the One-Sided Scaffold 255

scaffold T = 〈...a x b ...a y z b...c y z d...c y d 〉
scaffold S = 〈a b...c d...c z d...a....b...y...y...〉

missing genes X = {x, y, z}
good strings : {x : docked by ab, yz : docked by ab, y : docked by cz}

some bad strings : {x : inserted right after the second a, y : inserted inbetween zd}

Fig. 2. An example for good strings and bad strings

The following figure shows some examples of good strings and bad strings.
From Theorem 1 and the definition of good strings, we can describe the

optimal solution in the following formula. Let N0 = |a(S, T)| be the number
of adjacencies between S and T , |OPT | be the number of adjacencies in some
optimal solution,and bi be the number of i-good strings in this optimal solution.
Assume the length of good strings is at most p. Then we have,

|OPT | = N0 + |X| +
p∑

i=0

bi

Since Theorem 1 guarantees at least N0 + |X| adjacencies are increased, to
obtain a better solution, we focus on searching enough number of good strings.
The following Lemma shows the bound for the optimal number of adjacen-
cies,and how many good strings we should obtain to reach a approximation
factor of 6/5.

Lemma 1. Let |APP | be the number of adjacencies obtained by an algorithm
and b′

i be the number of i-good strings in this algorithm, then the approximation
factor is 6/5, provided that 4b1 + 3b3 + 2b3 + b4 ≤ 6b′

1 + 6b′
2 + 6b′

3 + 6b′
4.

Proof. Since |OPT | = N0 + |X| +
∑p

i=0 bi and |APP | = N0 + |X| +
∑q

i=0 b′
i,

where q is the greatest length of good strings by the algorithm. Then we have,

|OPT | = N0 + |X| +
q∑

i=1

bi

= N0 + |X| + b1 + b2 + b3 + b4 +
q∑

i=5

bi

≤ N0 + |X| + b1 + b2 + b3 + b4 + (|X| − b1 − 2b2 − 3b3 − 4b4)/5

≤ N0 +
6
5
(|X| +

4
6
b1 +

3
6
b2 +

2
6
b3 +

1
6
b4)

≤ N0 +
6
5
(|X| + b′

1 + b′
2 + b′

3 + b′
4)

≤ 6
5
|APP |

��

256 H. Jiang et al.

From Lemma 1, we will obtain the approximation factor of 6/5, as long as the
number of good strings in our algorithm is at least 4/6b1+3/6b2+2/6b3+1/6b4,
i.e., 4b1 + 3b3 + 2b3 + b4 ≤ 6b′

1 + 6b′
2 + 6b′

3 + 6b′
4.

3.2 Description of the Local Search Algorithm

From Lemma 1, the key purpose of our algorithm is to obtain enough num-
ber of good strings of length 1, 2, 3, and 4. Let b′

i be the number of i-good
strings computed by our algorithm. There are three stages in our algorithm:
the first is a greedy stage, which provides an initial solution for the local search
step; then the algorithm improves the solution by a local search method, during
which, the algorithm iteratively optimizes the function D = b′

1 + b′
2/2 + b′

3/6 by
1-substitution; finally, the algorithm inserts the remaining genes, guaranteeing
that each insertion of a gene will generate at least one more adjacency. we show
the algorithm as follows.

Algorithm 1. Scaffold Filling by Local Search
1: for (i from 1 to 4) do
2: Identify the breakpoints and adjacencies in T and S, Si−good = φ
3: while (X �= φ, and there is an i-string x1 · · · xi composed of i genes in X is

docked at swsw+1, where swsw+1 ∈ bT (S, T)) do
4: { insert the i-string x1, · · · , xi between sw and sw+1 in S, and obtain S′.
5: S = S′, Si−good = Si−good ∪ {x1, · · · , xi}
6: bT (S, T) = bT (S, T) − {swsw+1}, X = X − {x1, · · · , xi} }
7: end while
8: end for
9: Set b′

i be the number of i-good strings currently.
10: b′

i be the number of i-good strings currently.
11: Sgood = S1−good ∪ S2−good ∪ S3−good

12: for (i from 1 to 4) do
13: b′

i = |Si−good|
14: end for
15: Set D = b′

1 + b′
2/2 + b′

3/6.
16: while there exists a good string α, whose deletion will bring at least one other

good string β, and increase D do
17: Delete α from Sgood; add the new good strings α brings to Sgood.
18: end while
19: Insert the remaining genes according to the Insert-Whole-String() method in [15].

4 Proof of the Approximation Factor

In our algorithm, we try to find good strings as many as possible. But a good
string (say Is) found by our algorithm may make other good strings in the
optimal solution infeasible, we say Is destroys them. The following lemma shows

Approximation and Nonapproximability for the One-Sided Scaffold 257

that the number of good strings that could be destroyed by a given good string
is bounded.

Lemma 2. An i-good string can destroy at most i + 1 good strings in some
optimal solution.

Proof. Assume that an i-good string Is is inserted in between some breakpoint
sjsj+1 in S. Then each of its genes, if was not occupied by Is, can be part of a
distinct good string respectively in some optimal solution. Also, there may exist
another good string that could be inserted in between the breakpoint sjsj+1 in
the optimal solution. Totally, at most i+1 good strings in the optimal solution
could be destroyed by Is. ��
Corollary 1. An i-good string in the optimal solution can be destroyed at most
i + 1 times by good strings from other solutions.

To prove the approximation factor, we only need to compare the solution of
our algorithm with a fixed optimal solution. If a good string appears both in
our solution and the optimal solution, it will not affect our analysis, so we only
consider the distinct good strings between our solution and the optimal solution.

Let S′
i be the set of i-good strings found by our algorithm, and |S′

i| = b′
i,

i ∈ {1, 2, 3, 4}. Let Si be the set of i-good strings in the optimal solution, and
|Si| = bi, i ∈ {1, 2, 3, 4}. To analyze the relationship between the number of
good strings we found and good strings in the optimal solution, we construct
an imaginary bipartite graph G = (L,R,E). L =

⋃4
i=1 S′

i, R =
⋃4

i=1 Si, and if a
good string α ∈ L destroys a good string β ∈ R, there would be an edge between
them in G. (See Fig-3.)

Fig. 3. Sketch of the imaginary graph

For a vertex α ∈ L ∪ R, let d(α) be the degree of α in G. We found that the
graph G has the following properties.

Lemma 3. In R, there is no isolated vertex.

Proof. Since the Scaffold Filling by Local Search algorithm searches for good
strings greedily first, any good string of length 1,2,3 and 4 in the optimal solution
would other be chosen or be destroyed. If chose, it will not appear in R; If
destroyed,it will appear in R, connecting to some good strings in L. The local
search stage will not left a good string unchosen. ��

258 H. Jiang et al.

Lemma 4. For any vertex c′
j ∈ S′

j ⊆ L (j=1,2,3), no vertex ci ∈ Si with i < j
and d(ci) = 1 can connect to c′

j, and at most one vertex cj ∈ Sj with d(cj) = 1
can connect to c′

j.

Proof. The local search stage aims at maximizing D = b′
1 + b′

2/2 + b′
3/6 by

1-substitution, so whenever there is a good string of length less than j whose
degree is one, or more than one good strings of length j whose degree are one
connecting to c′

j , a 1-substitution would be applied. ��

Lemma 5. For any vertex c′
j ∈ S′

j ⊆ L (j = 1, 2, 3), at most j + 1 vertices
in R, the degree of which is one and the length of which are greater than j, can
connect to c′

j.

Proof. From Lemma 4, at most one j-good strings with one degree in R can
connect to a j-good string in L. The local search stage aims at maximizing
D = b′

1 + b′
2/2 + b′

3/6 by 1-substitution, so if there is a j-good string in R, it
would be impossible that a good string of length less than j whose degree is one
in R connect to it. From Lemma 2, c′

j can destroy at most j + 1 good strings of
the optimal solution. So the lemma follows. ��

Lemma 6. For any vertex ci ∈ Si ⊆ R(i = 1, 2, 3, 4), ci is connecting to at least
one vertex c′

j ∈ S′
j ⊆ L(j = 1, 2, 3, 4) with j ≤ i.

Proof. From the construction of the imaginary graph ,we know ci is connecting
to at least one vertex c′

j ∈ S′
j . Assume to the contrary that there exists a vertex

ci ∈ Si, which connects to some vertices (∈ S′
j) with j ≤ i. Then ci is destroyed

by some good strings of length greater than i. Since the algorithm Scaffold
Filling by Local Search search for good strings greedily first, then ci would other
be chosen or be destroyed by at least one chosen good strings of length i or less.
Once it was chosen, since it would destroy at most i + 1 good strings, from the
function D = b′

1 + b′
2/2 + b′

3/6, it will not be replaced by some good strings of
length greater than i, so the exclusive possibility to replace it is replacing it by
a good strings of length i or less and some other good strings. So no matter how
many times it was chosen and replaced, it will keep connecting to at least one
good string of length i or less. ��

Let Xi be the number of i-good strings in the optimal solution, and Yi be
the number of other i-good strings, i.e., bi = Xi + Yi. Let Kij be the number of
j-good stings whose degree are one in the optimal solution connecting to i-good
stings in our solution. from Lemma 6, we know that 1 ≤ i ≤ j ≤ 4. Let Hij

be the number of edges between i-good stings in our solution and j-good stings
whose degree are not one in the optimal solution, where j > i.

Lemma 7. 4b1 + 3b2 + 2b3 + b4 ≤ 6b′
1 + 6b′

2 + 5b′
3 + 5b′

4.

Proof. From Lemma 4,5, we have,

X1 ≤ b′
1 − (K12 + K13 + K14)/2 (1)

Approximation and Nonapproximability for the One-Sided Scaffold 259

Since other 1-good strings has degree at least 2, and from Lemma 6, all the
degrees are contributed by the 1-good string in our solution, and each 1-good
sting can contribute at most 2 degree. Thus we have,

2Y1 + X1 ≤ 2b′
1 − (K12 + K13 + K14 + H12 + H13 + H14) (2)

Similar argument holds for X2, Y2,X3, Y3, then we have,

X2 − K12 ≤ b′
2 − (K23 + K24)/3 (3)

2Y2 + X2 − K12 − H12 ≤ 3b′
2 − (K23 + K24 + H23 + H24) (4)

X3 − K13 − K23 ≤ b′
3 − K34/4 (5)

2Y3 + X3 − K13 − K23 − H13 − H23 ≤ 4b′
3 − (K34 + H34) (6)

Use (1)+(2)
2 , (3)+(4)

2 , (5)+(6)
2 , we have,

b1 ≤ 3b′
1/2 − 3(K12 + K13 + K14)/4 − (H12 + H13 + H14)/2 (7)

b2 ≤ 2b′
2 + K12 − 2(K23 + K24)/3 − (H23 + H24)/2 + H12/2 (8)

b3 ≤ 5b′
2/2 + K13 + K23 − 5K34/8 − H34/2 + (H13 + H23)/2 (9)

As for the 4-good strings, since each 4-good string in our solution can connect
to at most 5 4-good strings of the optimal solution, thus we have

b4 ≤ 5b′
4 + (K14 + K24 + K34) + (H14 + H24 + H34)/2 (10)

Use 4 × (7) + 3 × (8) + 2 × (9) + (10), we will have,

4b1 + 3b2 + 2b3 + b4 ≤ 6b′
1 + 6b′

2 + 5b′
3 + 5b′

4 (11)

Directly form Lemma 1 and Lemma 7, we have,

Theorem 2. The algorithm Scaffold Filling by Local Search guarantees an
approximation factor of 6/5.

5 The Scaffold Filling Problem is MAX-SNP-complete

In reference [12], Jiang et al., has proved that the Scaffold Filling Problem is
NP-hard. In this section, we show that this problem is MAX-SNP-complete,
which makes a polynomial time approximation schemes nearly impossible. To
complete this proof, we need to construct an L-reduction from a known MAX-
SNP-complete problem (the Maximum 3-Dimensional Matching problem in this
paper), to the One-sided Scaffold Filling Problem. Though the reduction method
here is similar to that of [12], we conduct a stricter analysis, and produce a
stronger negative result.

260 H. Jiang et al.

Definition 4. Maximum 3-Dimensional Matching [17].
Instance:Set T ⊆ X × Y × Z, where X, Y , and Z are disjoint.
Solution: A matching for T, i.e., a subset M ⊆ T such that no elements in M
agree in any coordinate.
Measure: Cardinality of the matching, i.e., |M |.

The variation in which the number of occurrences of any element in X, Y or
Z is bounded by 3, is called the 3-bounded Maximum 3-Dimensional Matching
problem, abbreviated as 3DM − 3. The 3-bounded Maximum 3-Dimensional
Matching problem is Shown to be MAX SNP-complete in [18].

We consider a more special variation of the 3-bounded Maximum
3-Dimensional Matching problem, in which each pair of triples in T can share at
most one common element, we call this problem 3-bounded 1-common Maximum
3-Dimensional Matching, abbreviated as (3DM − 3)1.

Theorem 3. (3DM − 3)1 is MAX SNP-complete.

Proof. It suffices to show that the 3-bounded Maximum 3-Dimensional Matching
problem can be L-reduced to (3DM −3)1. Construct an instance of (3DM −3)1

from an instance of 3-bounded Maximum 3-Dimensional Matching as follows.
Given an instance I of 3-bounded Maximum 3-Dimensional Matching with
|X| = |Y | = |Z| = q and m triples (3q ≥ m), for each triple Tu = (xi, yj , zk), con-
struct the following 5 triples: T ′

u = {(xi, yu,1, zu,2), (xu,1, yu,2, zk), (xu,2, yj , zu,1),
(xu,1, yu,1, zu,1), (xu,2, yu,2, zu,2)}. Then, in the (3DM −3)1 instance I ′, we have
|X ′| = |Y ′| = |Z ′| = q + 2m and 5m triples. It remains to show that this
reduction satisfies the two inequalities of an L-reduction.

Firstly, if Tu was chosen as a triple of OPT (I), we can choose the former
three triples of T ′

u into OPT (I ′), note that this is the unique way to choose
three disjoint triples from T ′

u; and if not, we can choose the latter two triples
of T ′

u into OPT (I ′). So, |OPT (I ′)| = |OPT (I)| + 2m. Since each triple of I
can share common elements with at most 6 other triples, then OPT (I) ≥ m/7.
Thus, |OPT (I ′)| ≤ |OPT (I)| + 14|OPT (I)| = 15|OPT (I)|.

For a solution c(I ′) of I ′, we choose Tu into a corresponding solution c(I)
of I if and only if c(I ′) contains three triples of T ′

u. If |c(I ′)| ≤ 2m, we have
|OPT (I)| − |c(I)| ≤ |OPT (I)| − (|OPT (I ′)| − 2m) ≤ |OPT (I ′)| − |c(I ′)|. On
the other hand, if |c(I ′)| > 2m, since there are only m groups of T ′

us, there
should be at least |c(I ′)| − 2m groups of T ′

us, from which we choose 3 triples,
so |c(I)| ≥ |c(I ′)| − 2m. Therefore, |OPT (I)| − |c(I)| ≤ (|OPT (I ′)| − 2m) −
(|c(I ′)| − 2m) = |OPT (I ′)| − |c(I ′)|. This completes the proof. ��

Now, we L-reduce (3DM − 3)1 to the One-sided Scaffold Filling problem.

Theorem 4. The One-sided Scaffold Filling problem is MAX SNP-complete.

Proof. Suppose that we are given a (3DM − 3)1 instance I with |X| = |Y | =
|Z| = q and m triples (3q ≥ m). Assume that each element appears at least once
in the triples,i.e., q ≤ m. We construct an instance J of the One-sided Scaffold
Filling problem as follows. Let the elements to be inserted are X∪Y ∪Z. For each

Approximation and Nonapproximability for the One-Sided Scaffold 261

triple Tu = (xi, yj , zk), we construct two substrings T ′
u = gufuxiyjzkf

′
ug′

u and
M ′

u = g′
ufuf ′

ugu. For an element of X, say xi, appearing l ≤ 3 times in the triples,
we denote each appearance by x1

i , x2
i ,. . . , xl

i respectively. Similar denotations are
used for the elements of Y and Z. There are also 3m − 3q + 4 new elements as
separators. We denote the concatenation of strings by Π.

S = Πq
i=1(x

1
i r

1
xx2

i r
2
xy1

i r
1
yy

2
i r

2
yz

1
i r

1
zz

2
i r

2
z)R1R2Π

�m/2�
i=1 (M ′

2i−1)R3R4Π
�m/2�
i=1 (M ′

2i)

T = Πq
i=1(r

1
xr2xr1yr

2
yr

1
zr

2
z)R3R2R4R1Π

m
i=1(T

′
i)

Note that x1
i = x2

i = xi, and if xi appears only once, then x1
i , r

1
x, x2

i , r
2
x are all

empty strings; if xi appears twice, then then x2
i , r

2
x are all empty strings. We can

observe that there is no common adjacency between S and T , and S contains
10m − 6q + 4 elements while T has 10m − 3q + 4 elements. Next, we show that
this reduction fulfills the two inequalities of an L-reduction.

Firstly, if Tu was chosen as a triple of OPT (I), we can insert xi, yj , zk into
M ′

u, which brings 4 common adjacencies. For these elements not covered by
OPT (I), Theorem 1 ensures that each insertion of an element will bring at least
one common adjacencies. Since the common adjacencies of OPT (J) must be the
following four forms: f ′

uxi, xiyj , yjzk, zkf
′
u, since each pair of triples shares at

most one element, then xiyj , yjzk can be obtained at most once, the unique way
to obtain such four common adjacencies, is to insert the three elements of Tu

into M ′
u.

Then, we prove that there is no good strings of length greater than 3 in
OPT (J). Observe that the unique to obtain one more common adjacency to to
insert some elements into a M ′

u. Assume to the contrary that s1s2 · · · sr (r ≥ 4
) be a r-good string by inserting it into M ′

v, then s1 ∈ X ∩ Tv, sr ∈ Z ∩ Tv,
which means that s2 ∈ Y ∩ Tv and sr−1 ∈ Y ∩ Tv, a contradiction. Therefore,
|OPT (J)| = |OPT (I)| + 3q ≤ |OPT (I)| + 3m. Since each triple of I can share
common elements with at most 6 other triples, then OPT (I) ≥ m/7. Thus,
|OPT (J)| ≤ |OPT (I)| + 21|OPT (I)| = 22|OPT (I)|.

For a solution c(J) of J , we choose Tu into a corresponding solution c(I)
of I if and only if c(J) contains four common adjacencies f ′

uxi, xiyj , yjzk, zkf
′
u.

If |c(J)| ≤ 3q, we have |OPT (I)| − |c(I)| ≤ |OPT (I)| = |OPT (J)| − 3q ≤
|OPT (J)| − |c(J)|. On the other hand, if |c(J)| > 3q, there should be at least
|c(J)|−3q M ′

us, from which we obtain 4 common adjacencies by insertions of the
three elements of a triple, so |c(I)| ≥ |c(J)| − 3q. Therefore, |OPT (I)| − |c(I)| ≤
(|OPT (J)| − 3q) − (|c(J)| − 3q) = |OPT (J)| − |c(J)|. This completes the proof.

��

6 Conclusion

In this paper, we investigate the One-sided Scaffold Filling problem, we improve
the approximation factor from 1.25 to 1.2 by a not-oblivious local search method.

262 H. Jiang et al.

Our algorithm is quite implementable since we only use 1-substitution. A mean-
ingful future work is to analyze the performance by c-substitution for any con-
stant c, We believe that, with c increasing, the approximation ratio could be
improved slightly. but this would stop for some c.

We define a term called ”good string”, which help us describe the optimal
solution very well, upon this, by intuition, it seems that this problem could admit
a PTAS. But our MAX-SNP-complete proof prevents it.

Acknowledgments. This research is partially supported NSF of China under grant
61202014 and 61472222, by NSF of Shandong Provence (China) under grant
ZR2012FQ008 and ZR2012FZ002, by China Postdoctoral Science Foundation funded
project under grant 2011M501133 and 2012T50614.

References

1. Angibaud, S., Fertin, G., Rusu, I., Thevenin, A., Vialette, S.: On the approximabil-
ity of comparing genomes with duplicates. J. Graph Algorithms and Applications
13(1), 19–53 (2009)

2. Blin, G., Fertin, G., Sikora, F., Vialette, S.: The Exemplar Breakpoint Dis-

tance for non-trivial genomes cannot be approximated. In: Das, S., Uehara, R.
(eds.) WALCOM 2009. LNCS, vol. 5431, pp. 357–368. Springer, Heidelberg (2009)

3. Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with
moves. In: Proc. 13th ACM-SIAM Symp. on Discrete Algorithms (SODA 2002),
pp. 667–676 (2002)

4. Chen, Z., Fowler, R., Fu, B., Zhu, B.: On the inapproximability of the exemplar
conserved interval distance problem of genomes. J. Combinatorial Optimization
15(2), 201–221 (2008)

5. Khanna, S., Motwani, R., Madhu, S., Umesh, V.: On syntactic versus computational
views of approximability. SIAM Journal on Computing 28(1), 164–191 (1998)

6. Chen, Z., Fu, B., Xu, J., Yang, B., Zhao, Z., Zhu, B.: Non-breaking similarity of
genomes with gene repetitions. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS,
vol. 4580, pp. 119–130. Springer, Heidelberg (2007)

7. Chen, Z., Fu, B., Zhu, B.: The approximability of the exemplar breakpoint dis-
tance problem. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041,
pp. 291–302. Springer, Heidelberg (2006)

8. Goldstein, A., Kolman, P., Zheng, J.: Minimum common string partitioning
problem: hardness and approximations. In: Fleischer, R., Trippen, G. (eds.) ISAAC
2004. LNCS, vol. 3341, pp. 484–495. Springer, Heidelberg (2004). also in: The Elec-
tronic Journal of Combinatorics 12 (2005), paper R50

9. Jiang, M.: The zero exemplar distance problem. In: Tannier, E. (ed.)
RECOMB-CG 2010. LNCS, vol. 6398, pp. 74–82. Springer, Heidelberg (2010)

10. Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint
distance. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 83–92.
Springer, Heidelberg (2010)

11. Jiang, H., Zhong, F., Zhu, B.: Filling scaffolds with gene repetitions: maximizing
the number of adjacencies. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS,
vol. 6661, pp. 55–64. Springer, Heidelberg (2011)

Approximation and Nonapproximability for the One-Sided Scaffold 263

12. Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint and
related distances. IEEE/ACM Trans. Bioinformatics and Comput. Biology 9(4),
1220–1229 (2012)

13. Muñoz, A., Zheng, C., Zhu, Q., Albert, V., Rounsley, S., Sankoff, D.: Scaffold filling,
contig fusion and gene order comparison. BMC Bioinformatics 11, 304 (2010)

14. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11),
909–917 (1999)

15. Liu, N., Jiang, H., Zhu, D., Zhu, B.: An Improved Approximation Algorithm
for Scaffold Filling to Maximize the Common Adjacencies. IEEE/ACM Trans.
Comput. Biology Bioinform. 10(4), 905–913 (2013)

16. Liu, N., Zhu, D.: The algorithm for the two-sided scaffold filling problem. In: Chan,
T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013. LNCS, vol. 7876, pp. 236–247.
Springer, Heidelberg (2013)

17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman (1979)

18. Kann, V.: Maximum bounded 3-dimensional matching is MAX SNP-complete.
Inform. Process. Lett. 37, 27–35 (1991)

© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 264–276, 2015.
DOI: 10.1007/978-3-319-21398-9_21

Packing Cubes into a Cube in (D>3)-Dimensions

Yiping Lu1(), Danny Z. Chen2, and Jianzhong Cha1

1 School of Mechanical, Electronic and Control Engineering,
Beijing Jiaotong University, Beijing 100044, China

{yplu,jzcha}@bjtu.edu.cn
2 Department of Computer Science and Engineering,

University of Notre Dame, Notre Dame, IN 46556, USA
dchen@cse.nd.edu

Abstract. The problem of determining whether a set of cubes can be orthogo-
nally packed into a cube has been studied in 2-diminson, 3-dimension, and
(d>3)-dimensions. Open questions were asked on whether this problem is NP-
complete in three articles in 1989, 2005, and 2009, respectively. In 1990, the
problem of packing squares into a square was shown to be NP-complete by
Leung et al. Recently, the problem of packing cubes into a cube in 3-D was
shown to be NP-complete by Lu et al. In this paper, we show that the problem
in (d>3)-dimensions is NP-complete in the strong sense, thus settling the related
open question posed by previous researchers.

Keywords: Packing problems · Cube packing · NP-completeness

1 Introduction

2-D square packing and 3-D and (d>3)-D cube packing have been intensely studied
(e.g., see [1, 2, 3, 4, 5, 7, 8, 9, 10, 11]). All known solutions to the cube packing prob-
lem are mainly based on approximation or heuristic methods. Determining the com-
plexity of the cube packing problem is needed for developing effective algorithms for
it. The common belief is that for all (d ≥2)-D, the cube packing problem is NP-
complete. In fact, NP-complete proofs have been given for the problem in 2-D and
3-D. However, it should be pointed out that, unlike many other geometric problems,
the known NP-complete proofs of the cube packing problem in 2-D and 3-D do not
immediately translate into a satisfactory NP-complete proof for the version in (d>3)-
D. Thus, proving the NP-completeness of the problem in (d>3)-D is still needed.

The NP-completeness of the problem of ‘packing multiple rectangles into a rectan-
gle’ follows trivially because one of its special cases can be degenerated to the well-
known knapsack problem [6].

In 1989, Li and Cheng [10] showed that both the problem of ‘packing multiple
squares into a rectangle’ and the problem of ‘packing multiple rectangles into a
square’ are NP-complete, but posted a question on the NP-completeness of the prob-
lem of ‘packing squares into a square’.

Li and Cheng’s question [10] was answered by Leung et al. [9] in 1990, who
proved that the problem of ‘packing squares into a square’ is indeed NP-complete;

 Packing Cubes into a Cube in (D>3)-Dimensions 265

but, the NP-completeness of the problem version in (d>2)-D (i.e., the problem of
packing multiple cubes into a cube in (d>2)-dimension) was still not settled.

In 2005 and 2009, Epstein and van Stee [5] and Harren [7], respectively, posed the
determination of NP-completeness of this cube packing problem in (d>2)-D as an
open problem.

The 3-D version of the problem was proved to be NP-complete recently [11].
In this paper, we show that the (d>3)-D version of the problem is strongly NP-

complete, thus completely settling the open problem posed by Epstein and van Stee
[5] and Harren [7]. Our proof is based on a unified construction scheme for the prob-
lem in all (d≥2)-dimensions, which actually simplifies the proofs for the 2-D and 3-D
cases in [9, 11].

1.1 The Problem of Packing Multiple Cubes into a Cube

The problem of packing multiple cubes into a cube in (d>1)-D is that of orthogonally
packing a set of small cubic items into a big cubic volume without any interior over-
lapping among the small cubic items. The problem is formally defined as follows.

THE PROBLEM OF PACKING CUBES INTO A CUBE

INSTANCE:
A big cube C and a set of small cubes, 1 2{ , ,..., }nL c c c= , whose
sizes are all positive integers.

QUESTION:
Can all cubes of L be packed into C orthogonally without any
intersection of the interior points between any two cubes of L ?

1.2 The 3-Partition Problem

In this paper, we reduce the 3-partition problem to the problem of packing cubes into
a cube. The 3-partition problem is known to be NP-complete in the strong sense [6],
which is formally defined as follows.
THE 3-PARTITION PROBLEM

INSTANCE: A set of 3m (1m >) positive integers, 1 2 3{ , ,..., }mS a a a= , and a

bound B , such that for every i , 1 3i m≤ ≤ , / 4 / 2iB a B< < , and
3

1

m

ii
a mB

=
= .

QUESTION: Can S be partitioned into m disjoint subsets 1 2, ,..., mS S S , such

that for each j with 1 j m≤ ≤ , the sum of all elements in jS is

exactly B ? Note that the constraints of the problem require that each
subset jS should have exactly 3 elements of S .

Note that even if we assume that m is a multiple of 3, the 3-partition problem is still
NP-complete in the strong sense [11]. In the rest of this paper, we assume that m is a
multiple of 3, and write 3 'm m= when it is needed, where 'm is a positive integer.

266 Y. Lu et al.

The rest of this paper is organized as follows. In Section 2, we review the related
results. In Sections 3, we give new NP-completeness proofs of the cube packing
problem in 2-D. This proof is much simplified in comparison with those in [9, 11],
and thus it is much easier to be extended to the higher dimensional version. In
Section 4, we show that the cube packing problem in (2)d > -D is NP-complete in

the strong sense. Section 5 concludes the paper.

2 Review of Related Work

2.1 Li and Cheng’s Work on Packing Squares into a Rectangle

In 1989, Li and Cheng [10] proved that the problem of packing squares into a rectan-
gle is NP-complete. Their proof is based on a reduction from the 3-partition problem.
Given an instance I of the 3-partition problem, they constructed an instance pI of

packing squares into a rectangle in the following way (see Fig. 1):

(3 , (/ 2))C A B m A B= + + , 1 2 3{(), (),..., ()}mL A a A a A a= + + + ,

where (1) / 4A m B> − , C is a rectangle of size (3) (/ 2)A B m A B+ × + , and L is a

list of 3m squares of sizes 1A a+ , 2A a+ , …, 3mA a+ , respectively.

If the instance I has a partition, let 1 2 3{ , , }i i i iS a a a= , then it is clear that the in-

stance pI has a packing as shown in Fig. 1.

If the instance pI has a packing, then at most m squares can be packed into C’s

vertical dimension of length (/ 2)m A B+ . This is because if 1m + squares are

packed into C’s vertical dimension, then the total height of these squares will be big-
ger than (1)(/ 4) (/ 2) ((1) / 4) (/ 2)m A B m A B A m B m A B+ + = + + − − > + . For simi-

lar reason, at most 3 squares can be packed into C’s horizontal dimension. Since the
total number of squares is 3 m⋅ and no overlap among the packed squares is allowed,
the only packing that is possible will have m levels of squares with 3 squares per
level. Hence, we can obtain a partition that divides the 3m squares into m groups

(1,...,)iG i m= , where each group contains 3 squares.

Let 1 2 3{ , , }i i i iG A a A a A a= + + + . Then it must be true that

1 2 3 3i i iA a A a A a A B+ + + + + ≤ +
i.e.,

1 2 3i i ia a a B+ + ≤ .

Since 1 2 3
1

()
m

i i i
i

a a a mB
=

+ + = , it has to be true that 1 2 3i i ia a a B+ + = for every i =

1, 2, …, m, which implies that the 3-partition problem instance I has a partition.

 Packing Cubes into a Cube in (D>3)-Dimensions 267

2.2 Leung et al.’s Work on Packing Squares into a Square

In 1990，Leung et al. [9] showed that packing multiple squares into a square is NP-
complete. Their proof is also based on a reduction from the 3-partition problem.

Leung et al.’s construction is shown in Fig. 2. In the big square C , multiple small
squares are packed. The area α in C is a rectangular area that is similar to Li and
Cheng’s construction [10] shown in Fig. 1 (the only difference is that the former is rotated
by 90 degrees). To the left of the area α , some bigger squares are packed in the area β

A very big square is packed into the square area γ that is below the area α β .

Finally, in the area ε that is to the left of the area α β γ and in the area δ that is

on top of the area α β γ ε , other squares are packed as tightly as possible.

Leung et al. showed that if there is a packing for the constructed instance, then the
packing in the area α is just like the one constructed by Li and Cheng, and thus the
instance of the 3-partition problem has a partition.

Fig. 1. Packing squares into a rectangle
[10]

Fig. 2 Packing squares into a square [9]

268 Y. Lu et al.

2.3 Lu et al.’s Work on Packing Cubes into a Cube in 3-D

Recently, Lu et al. [11] showed that packing multiple cubes into a cube in 3-D is NP-
complete. The proof of Lu et al. can be viewed as a 3-D extension of the proof by
Leung et al. [9]. In their construction, Lu et al. [11] made some simplification of the
proof in [9], and also used one big cubic item in the constructed packing instance,
corresponding to the big square γ in Leung et al.’s construction (see Fig. 2).

In the remaining of this paper, we further simplify Leung et al.’s construction [9],
in order to make it into the basis of the construction for our proof that can be easily
extended to (d≥3)-dimensions. In this simplified construction, unlike the ones in
[9, 11], we no longer use the “big” cubic item in the packing instance.

3 Packing Cubes into a Cube in 2-D

We first simplify Leung et al.’s construction for the 2-D case [9]. Given an instance
I of the 3-partition problem, 1 2 3, { , ,..., }mB S a a a= , where 3 'm m= is a multiple of

3 and 8m ≥ , we construct an instance 'I of the square packing problem in 2-D, as
follows.

Let / 2p m = ， 3 (1) 1A p p B= + + , and 3l A B= + . Note that because 8m ≥ ,

we have 2p ≥ .

The big square C (the packing space) is of size (1) (1)p p l p p l+ × + .

There are 4 types of square items to be packed into C, as follows (see Fig. 3).
 3m α -squares whose sizes are , 1, 2,...,3iA a i m+ = , respectively. Because

of their sizes, if I has a partition, then the α -squares can be all packed into
the rectangular area α whose size is (/ 2)l m A B× + . Note that the packing

of the α -squares into area α is the same as that constructed by Li and
Cheng [10] shown in Fig. 1.

 (1) 'p p m+ − β -squares whose sizes are all of l lβ = − '(/ 2) / ((1) ')m B p p m+ − .

Because of their size, the β -squares can clearly be packed into the rectangular

area β whose size is ((1) (/ 2))l p p l m A B× + − + . Note that the size of a β -

square is larger than 3A , because

'(/ 2) / ((1) ') 3 '(/ 2) / ((1) ')

3 '(/ 2) / (/ 2 ') 3 '(/ 2) / (3 '/ 2 ') 3 .

l l m B p p m A B m B p p m

A B m B m m A B m B m m A

β = − + − = + − + −

> + − − = + − − =

 1p + γ -squares whose sizes are all of pl . All γ -squares can be packed in-

to the rectangular area γ whose size is (1)pl p p l× + , as shown in Fig. 3.

 (1)p p − δ -squares whose sizes are all (1)p l+ . All δ -squares can be

packed into the rectangular area δ whose size is (1)(1) (1)p p l p p l− + × + ,

as shown in Fig. 3.

 Packing Cubes into a Cube in (D>3)-Dimensions 269

Lemma 1. The packing instance 'I can be constructed from I in polynomial time of
m . If I has a partition, then 'I has a packing.

Lemma 2. In the instance 'I , if all α -squares and β -squares can be packed into

the rectangular area α β (or any rectangular area of size (1)l p p l× + or

(1)p p l l+ ×), then I has a partition.

Proof: Without loss of generality, we assume that the packing area is α β as

shown in Fig. 3. To simplify the discussion, we imagine a situation in which every β
-square is divided into 9 identical squares of size / 3lβ each. This will create

9 (1) 9 ' 9 (1) 3p p m p p m+ − = + − such squares whose (same) sizes are all larger than

A since 3l Aβ > . Because each of the 3m α -squares is of a size larger than A ,

we now have totally 9 (1)p p + squares whose sizes are all larger than A , and they

will be packed into the area α β . We call all these squares the A -squares. Note

that if all α -squares and β -squares can be packed into the area α β , then clearly

all the 9 (1)p p + A -squares can be packed into the area α β as well.

Note that no more than 3 (1)p p + A -squares can be packed side by side along a

vertical line inside α β . This is because if 3 (1) 1p p + + A -squares are packed in

this way, then the packing space needed in the vertical direction will be larger than
the size of the area α β in the vertical dimension, due to

(3 (1) 1) 3 (1) 3 (1) 3 (1) (1)p p A p p A A p p A p p B p p l+ + = + + > + + + > +

l

α

β

γ δ

pl (1)(1)p p l− +

(1)p p l+

Fig. 3. Packing squares into a square

270 Y. Lu et al.

Also, no more than 3 A -squares can be packed side by side along a horizontal line
inside α β since 4 3A A B l> + = . Thus, the number of A -squares that are

packed into the area α β cannot be bigger than 3 3 (1)p p⋅ + which is exactly the

total number of A -squares. Hence, if a packing of α β is achievable, then the A -

squares must be put approximately at the cell positions of a (roughly) uniform grid of
size 3 3 (1)p p× + , with 3 (1)p p + layers along the vertical direction and 3 cells along

the horizontal direction. Subject to the space constraint in the horizontal direction, this
packing means that the A -squares are partitioned into 3 (1)p p + sets each of which

contains 3 A -squares whose size sum is no bigger than l .
The A -squares that are divided from one β -square should actually be packed to-

gether, meaning that all A -squares divided from the β -squares are partitioned

among themselves. Thus, the α -squares are partitioned into m sets each of which
contains 3 α -squares whose size sum is no bigger than l . By referring to the discus-
sions in Section 2.1, the instance I has a partition. □

(a) A case with w pl= (b) A case with [, (1)]w pl p l∈ +

Fig. 4. Examples of packing the γ -squares

Lemma 3. In any achievable packing of the instance , all -squares must be packed

into a rectangular area of size or , where

(see Fig. 4).

Proof: In this proof, we consider only the γ -squares and the δ -squares. In this situa-

tion, if a packing of 'I is achievable, then clearly all γ -squares and all

δ -squares can be packed into C without any overlapping in their interior.

'I γ
(1)w p p l× + (1)p p l w+ × [, (1)]w pl p l∈ +

1p +
(1)p p −

 Packing Cubes into a Cube in (D>3)-Dimensions 271

Note that the space of C can hold at most 2p -squares. We call a packing that

packs -squares into a -packing. Suppose we first construct a -packing

(a -packing is certainly achievable). Then at most -squares can be removed

from C to make room for packing the -squares (otherwise, the number of -

squares packed into will be smaller than).

Assume is first packed tightly using -squares (i.e., a -packing), and

there are still -squares to be packed into in a certain manner. We now analyze

how many -squares must be removed from C.
As shown in Fig. 5(a), suppose γ -squares 1 2, ,...γ γ are to be packed into C

which is already tightly packed by 2p δ -squares. We want to determine the lower

bound Nδ of how many δ -squares must be removed from C to avoid any interior

overlap. We can shift each γ -square that is packed into C to the left (and to the

bottom) until it touches the boundary of C or another γ -square without affecting

the value of Nδ . Note that if a γ -square is shifted to the left (bottom), it will not

cause more δ -squares to be removed and it will leave more space for the δ -
square(s) to its right (top) such that they are less likely to be removed. For example,
the Nδ value of Fig. 5(a) is no bigger than the Nδ value of Fig. 5(b). To determine

Nδ , we can enumerate γ -squares row by row from left to right.

More specifically, we focus on each row of γ -squares and see how many

δ -squares should be removed. Let jm be the number of γ -squares in the j th row,

and jn be the lower bound of the number of δ -squares that must be removed due to

δ
2p δ C δ δ

δ p δ
1p + γ δ

C (1)p p −
C 2p δ δ

γ C

δ

(a) γ -squares are packed in a δ -packing. (b) γ -squares are shifted to low-left.

Fig. 5. Packing γ -squares into a δ -packing

272 Y. Lu et al.

the packing of the j th row of γ -squares. Then, (1)j jm pl n p l≤ + must hold (oth-

erwise, there will not be enough space for jm γ -squares in the j th row). When

1j = , we have

1 1
1

11

if 1,

if 11 ,

m m p
n

m pm

< +
= = +−

. (1)

Note that because of the edge lengths of γ -squares and δ -squares, for any

1j p< + , the j th row of γ -squares overlaps with the j th row of δ -squares.

Thus Equ. (1) also holds for all 1j p< + . But, for 1j p= + , the j th row of γ -

squares can use the space provided by δ -squares in the (1)j − th row; thus no more

δ -square is needed to be removed due to the j th row of γ -squares.

Thus, we have

if 1 and 1,

if 1 and 11 ,

, if 10

j j

jj j

m m p j p

m p j pn m

j p

 < + < +
 = + < += −
 = +

. (2)

We can explain Equ. (2) in the following way: For packing one γ -square into a

δ -packing, we generally need to remove one δ -square; but for every fully packed
row or column, one δ -square can be saved. For example, in Fig. 5(b), if there is a 'γ
-square at the top of the first column, then it will not increase Nδ ; neither the ''γ -

square located at the (1)p + th column will increase Nδ .

Now returning to our 2-D square packing problem, there are 2p p− δ -squares

and +1p γ -squares to be packed into C . This is equivalent to that we remove from

C at most p δ -squares from a δ -packing for the packing of the +1p γ -squares

into C (in other words, we can save one δ -square). Note that this is possible only if
we pack all these γ -squares into one row or one column, i.e., all +1p γ -squares

must be packed into a rectangular area of size (1)w p p l× + or (1)p p l w+ × , where

[, (1)]w pl p l∈ + . □

Lemma 4. If there is a packing for the instance 'I , then all α -squares and β -

squares can be packed into the rectangular area α β (or any area of size

(1)l p p l× + or (1)p p l l+ ×).

Theorem 1. The problem of packing multiple squares into a square is NP-complete in
the strong sense.

Proof: The problem of packing multiple squares into a square is in NP because a non-
deterministic Turing machine can guess a solution and check whether the squares
overlap in polynomial time of the square numbers, which is a polynomial of m . The
3-partition problem is NP-complete in the strong sense. Based on Lemmas 1, 2, 3, and
4, the theorem follows. □

 Packing Cubes into a Cube in (D>3)-Dimensions 273

4 Packing Cubes into a Cube in (2)d > -D

4.1 Notation

In (2)d > -D, we use to represent a boxy region (or boxy item) whose

size in the th dimension is (). When the location of the region is

significant, we use to represent a boxy region defined in the
th dimension by the open interval . We call the origin of

the region. We also use to represent the boxy region when

we focus only on its size.

For a point , we say is inside a region

 if for all .

A region is defined as a set of (infinitely many) points in

()-D . We say that two regions overlap if

and only if they share some common inside points. Region is inside region if

and only if all inside points of are also inside points of .

We say that the union of two boxy regions is also a boxy region if and only if they
have different sizes in no more than one dimension. For example, the union of two
boxy regions

 and

is the boxy region because they

have different sizes only in the th dimension. In the rest of this paper, we only
discuss unions of boxy regions if the result is also a boxy region.

For simplicity, we will continue to use to represent a cube’s size (i.e., its size
in every dimension is), and call the direction of the th dimension the th
direction.

4.1.1 The Packing Instance in (2d >)-D

Given an instance I of the 3-partition problem, 1 2 3, { , ,..., }mB S a a a= , where

3 'm m= is a multiple of 3 and 8m ≥ , we construct an instance '''I of the cube
packing problem in (2)d > -D, as follows.

I. Parameters

Let / 2p m = , 3 (1) 1A p p B= + + , 3l A B= + , / 2h A B= + , and 3w h= .

II. The packing space
The packing space C is a cubic region of size (1)q p p l= + . Without loss of

generality, let the origin of C be (0,0,..., 0) . Writing in the boxy region

1 2(, ,...,)dr r r

i ir 1,2,...,i d=

1 2 1 2(, ,...,)(, ,...,)d de e e r r r

i (,)i i ie e r+ 1 2(, ,...,)de e e

1 2 ... dr r r× × × 1 2(, ,...,)dr r r

1 2{ , ,..., }dX x x x= X 1 2(, , ...,)(de e e

1 2(, ,...,)dr r r (,)i i i ix e e r∈ + 1,2,...,i d=

1 2 1 2(, ,...,)(, ,...,)d de e e r r r

3d > 1 2{ { , ,..., } | (,)}d i i i iX x x x x e e r= ∀ ∈ +

1R 2R

1R 2R

1 1 1 1(0,0,...,0)(,..., , ', ,...,)i i i dr r r r rε − +=

2 1 1 1(0,...,0, ',0,...,0)(,..., , '', ,...,)i i i i dr r r r r rε − +=

1 2 1 1 1(0,0,...,0)(,..., , ' '', ,...,)i i i i dr r r r r rε ε − += +
i

r
r i i

274 Y. Lu et al.

notation, C = (0,0,..., 0)(, ,...,)q q q . We construct C by a series of unions

of the following boxy regions:
 The region (0,0,..., 0)(, , , ,...,)l mh w w wα = , which is the union of the

following regions:

1 (0,0,0,..., 0)(, , ,...,)a l mh h h= ,

2 (0,0, ,0,..., 0)(, , 2 , ,...,)a h l mh h h h= ,

3 (0,0,0, ,0,..., 0)(, , , 2 , ,...,)a h l mh w h h h= ,

…,

1 (0,0,0,..., 0,)(, , ,..., , 2)da h l mh w w h− = .

It can be verified that 1 2 1(() ...) dα α α α− = .

 The Region β which includes the following regions (not by the un-

ion operations):

0 (0, ,0,..., 0)(, , ,..., ,)mh l q mh w w wβ = − ,

1 (0,0, ,0,..., 0)(, , , ,...,)w l q q w w wβ = − ,

2 (0,0,0, ,0,..., 0)(, , , , ,...,)w l q q q w w wβ = − ,

…,

2 (0,0, 0,0...,0,)(, , , ,...,)d w l q q q q wβ − = − .

 The Region γ : (,0,0,..., 0)(, , ,...,)l pl q q qγ = .

 The Region δ : (,0,0,..., 0)((1)(1) , , ,...,)l pl p p l q q qδ = + − + .

The union of the above regions is (0,0,..., 0)(, ,...,)C q q q= .

III. The cubic item list L
The list L of packing cubes includes the following items.
 The α -cubes: 13d m− cubes, which include:

 The 1α -cubes: 3m cubes of sizes iA a+ , 1, 2,...,3i m= , respective-

ly;
 The 2α -cubes: 23d m m− − cubes, all of size A B+ ;

 The 3α -cubes: 22 3 2d m m−⋅ − cubes, all of size A .

 The β -cubes, which consist of:

 The 0β -cubes: (1) 'p p m+ − cubes, all of size

() / ((1) ')q mh p p m− + − ;

 The 1β -cubes: (1)((1) 1)p p p p+ + − cubes, all of size

() / ((1) 1)l q w p pβ = − + − ;

 The 2β -cubes: 2 2(1) ((1) 1)p p p p+ + − cubes, all of size lβ ;

 … …
 The 2dβ − -cubes: 2 2(1) ((1) 1)d dp p p p− −+ + − cubes, all of size lβ .

 The γ -cubes: 1(1)dp −+ cubes, all of size pl .

 The δ -cubes: 1d dp p −− cubes, all of size (1)p l+ .

 Packing Cubes into a Cube in (D>3)-Dimensions 275

Lemma 5. The packing instance '''I can be constructed in polynomial time of m ,
and if I has a partition, then '''I has a packing.

Lemma 6. In the packing instance '''I , if all α -cubes and all β -cubes can be

packed into the region α β (or any region of size (, ,...,)l q q , (, , ,...,)q l q q , …, or

(,..., ,)q q l), then the instance I has a partition.

Lemma 7. In any realizable packing of the instance '''I , all γ -cubes

must be packed into a boxy region of size (1) ... (1)w p p l p p l× + × × + ,

(1) (1) ... (1)p p l w p p l p p l+ × × + × × + ,…, or (1) ... (1)p p l p p l w+ × × + × , where

[, (1)]w pl p l∈ + .

Lemma 8. If the instance '''I has an achievable packing, then all α -cubes
and all β -cubes can be packed into the region α β (or any region

of size (1) ... (1)l p p l p p l× + × × + , (1) (1) ... (1)p p l l p p l p p l+ × × + × × + , …, or

(1) ... (1)p p l p p l l+ × × + ×).

Theorem 2. The problem of packing multiple cubes into a cube in (3)d > -D is

NP-complete in the strong sense.

5 Conclusions

We have proved that the problem of packing cubes into a cube in (3)d > -D is NP-

complete in the strong sense. Together with the 2-D and 3-D results in [9, 11], this
completely settles the open question posted in [5, 7].

Acknowledgement. The research of D. Z. Chen was supported in part by NSF under Grant
CCF-1217906.

References

1. Bansal, N., Correa, J.R., Kenyon, C., Sviridenko, M.: Bin Packing in Multiple Dimen-
sions: Inapproximability Results and Approximation Schemes. Mathematics of Operations
Research 31(1), 31–49 (2006)

2. Caprara, A., Lodi, A., Monaci, M.: Fast Approximation Schemes for Two-stage,
Two-dimensional Bin Packing. Mathematics of Operations Research 30, 136–156 (2005)

3. Chung, F.R.K., Garey, M.R., Johnson, D.S.: On Packing Two-dimensional Bins. SIAM
Journal on Algebraic and Discrete Methods 3, 66–76 (1982)

4. Correa, J.R., Kenyon, C.: Approximation schemes for multidimensional packing. In: Proc.
15th ACM–SIAM Symposium on Discrete Algorithms, pp. 179–188 (2004)

5. Epstein, L., van Stee, R.: Online Square and Cube Packing. Acta Informatica 41(9),
595–606 (2005)

6. Garey, M., Johnson, D.: Computer and Intractability – A Guide to the Theory of
NP-Completeness. Freeman, New York (1979)

276 Y. Lu et al.

7. Harren, R.: Approximation Algorithms for Orthogonal Packing Problems for Hypercubes.
Theoretical Computer Science 410(44), 4504–4532 (2009)

8. Kohayakawa, Y., Miyazawa, F.K., Raghavan, P., Wakabayashi, Y.: Multidimensional
Cube Packing. Algorithmica 40, 173–187 (2004)

9. Leung, J.Y.-T., Tam, W.T., Wong, C.S., Chin, F.Y.L.: Packing Squares into a Square.
Journal of Parallel and Distributed Computing 10, 271–275 (1990)

10. Li, K., Cheng, K.H.: Complexity of resource allocation and job scheduling problems in
partitionable mesh connected systems. In: Proc. of 1st Annual IEEE Symposium of Paral-
lel and Distributed Processing, pp. 358–365. Silver Spring, MD (1989)

11. Lu, Y., Chen, D.Z., Cha, J.: Packing Cubes into a Cube is NP-complete in the Strong
Sense. Journal of Combinatorial Optimization 29(1), 197–215 (2015)

12. Miyazawa, F.K., Wakabayashi, Y.: Cube Packing. Theoretical Computer Science 297,
355–366 (2003)

Towards Flexible Demands
in Online Leasing Problems

Shouwei Li, Alexander Mäcker, Christine Markarian(B),
Friedhelm Meyer auf der Heide, and Sören Riechers

Heinz Nixdorf Institute and Computer Science Department,
University of Paderborn, Fürstenallee 11, 33102 Paderborn, Germany

{shouwei.li,alexander.maecker,christine.markarian,
fmadh,soeren.riechers}@uni-paderborn.de

Abstract. We consider online leasing problems in which demands arrive
over time and need to be served by leasing resources. We introduce a
new model for these problems such that a resource can be leased for K
different durations each incurring a different cost (longer leases cost less
per time unit). Each demand i can be served anytime between its arrival
ai and its deadline ai + di by a leased resource. The objective is to meet
all deadlines while minimizing the total leasing costs. This model is a
natural generalization of Meyerson’s ParkingPermitProblem (FOCS
2005) in which di = 0 for all i. We propose an online algorithm that
is Θ(K + dmax

lmin
)-competitive where dmax and lmin denote the largest

di and the shortest available lease length, respectively. We also extend
the SetCoverLeasing problem by deadlines and give a competitive
online algorithm which also improves on existing solutions for the original
SetCoverLeasing problem.

Keywords: Online algorithms · Leasing · Infrastructure problems ·
Parking permit problem · Deadlines

1 Introduction

Typical infrastructure problems consider scenarios where one has to buy cer-
tain resources (e.g., facilities, network nodes, or network connections) in order
to generate or improve a given infrastructure (e.g., a supply network). Classical
examples of these problems are FacilityLocation, SetCover, and Stein-

erTree. These problems have a large number of applications in networks, busi-
ness, logistics and planning. From a theoretical point of view, they are not only
widely studied in the offline, but also in the online setting, where the decision
of when and which resources to buy must be taken as soon as demands are
revealed without knowledge about future demands [2–4]. A common assumption

This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Center ‘On-The-Fly Computing’ (SFB 901) and
the International Graduate School ‘Dynamic Intelligent Systems’.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 277–288, 2015.
DOI: 10.1007/978-3-319-21398-9 22

278 S. Li et al.

in related literature is that a resource that is bought once can be used forever
without additional costs. This, however, is not true in many real-world scenarios.
Instead, the leasing concept is gaining more and more importance in practice.
Consider, for example, cloud vendors providing resources to clients. Using leas-
ing, clients are being provided with cheaper, more flexible resources and cloud
providers are increasing their profits by reducing their upfront and administra-
tive costs [5]. In 2005, Meyerson [1] introduced the first theoretical Leasing

Model with the ParkingPermitProblem. Here, each day, we want to use
the car if it is raining, whereas we walk if it is sunny. If we take the car, we
must have a valid parking permit, and there are K different types of parking
permits (leases), each with its own duration and cost. The goal is to buy a set
of parking permits in order to cover all rainy days and minimize the total cost
of purchases (without using weather forecasts). Similar models were later stud-
ied for infrastructure problems including FacilityLocation, SetCover, and
SteinerTree [1,6–9].

We introduce a new model where, in contrast to related work, demands do
not have to be served immediately. As a natural extension, demands can be post-
poned up to some fixed period of time resulting in a deadline for each demand.
For instance, consider a travel agency that offers guided tours to tourists. Each
day, new tourists may arrive with deadlines that represent the day their vacation
ends. Tourists arriving want to attend the guided tour before leaving. Now, the
travel agency pays for each time a guide (tour) is needed. To optimize its profit,
the agency must make wise decisions regarding when to hire a guide and for how
long such that the longer (more consecutive days) a guide is hired, the lower the
costs per day will be. We will represent this by different lease types representing
different lease lengths. The decision of buying a lease cannot be modified during
the process, i. e. we cannot tell the guide to stay shorter or longer after having
hired her.

Another application can be found in the cloud, where cloud clients, who are
flexible regarding when to use the resources (e.g., any day within two weeks will
do), will be happy to be offered better resource prices for a later day by cloud
vendors.

Our Contribution. In the light of capturing such scenarios, we extend the
line of leasing by introducing deadlines. We propose the OnlineLeasingWith-

Deadlines problem (OLD) for which we give a deterministic (optimal) algo-
rithm. OLD captures the scenario introduced above, where a travel agency has
to provide guided tours for tourists arriving and leaving their vacation at differ-
ent times. We give an O(K + dmax

lmin
)-competitive online algorithm for the OLD

problem, where K is the number of leases, dmax the longest client length (i. e.,
the longest vacation of a tourist) and lmin the shortest lease length (i. e., the
minimum length a guide can be hired for).

In the second part of the paper, we also extend the SetCoverLeasing

model [6,9], and introduce the SetCoverLeasingWithDeadlines problem
(SCLD) which we solve by extending techniques we develop for OLD. Here, we

Towards Flexible Demands in Online Leasing Problems 279

give an O(log(m·(K+ dmax

lmin
)) log lmax)-competitive online algorithm. Our results

also imply an improvement for the SetCoverLeasing problem by removing the
time dependency from the competitive factor.

Organization of the Paper. Section 2 presents the state of the art and gives
some preliminaries. Section 3 introduces the new model and gives a deterministic
algorithm. Section 4 introduces SCLD and presents a randomized algorithm for
the latter. Section 5 concludes the paper with suggestions for future work.

2 Related Work and Preliminaries

In this section, we give an overview of leasing problems and present some pre-
liminaries.

Related Work. Meyerson [1] gave a deterministic O(K)-competitive and a
randomized O(log K)-competitive algorithm along with matching lower bounds
for the ParkingPermitProblem. Inspired by Meyerson’s work, Anthony and
Gupta [6] generalized his idea by introducing the first leasing variants of Facil-
ityLocation, SetCover, and SteinerTree: FacilityLeasing, SetCover-

Leasing, and SteinerTreeLeasing, respectively. They gave offline algorithms
for these problems, resulting from an interesting relationship between infras-
tructure leasing problems and stochastic optimization. They achieved O(K),
O(log n), and O(min(K, log n))-approximations for the offline variants of met-
ric FacilityLeasing, SetCoverLeasing, and SteinerTreeLeasing, respec-
tively. Nagarajan and Williamson [7] later improved the O(K)-approximation to
a 3-approximation and gave an O(K log n)-competitive algorithm for the online
variant of metric FacilityLeasing. Kling et al. [8] improved the results by
Nagarajan and Williamson [7] for FacilityLeasing by removing the depen-
dency on n (and thereby on time), where n is the number of clients. They gave
an O(lmax log(lmax))-competitive algorithm where lmax is the maximum lease
length. Abshoff et al. [9] gave the first online algorithm for SetCoverLeasing

and improved previous results for online non-leasing variants of SetCover.

Preliminaries. Meyerson [1] showed that it is sufficient to have a simplified
Leasing Model in which (1) lease lengths lk are powers of two and (2) leases
of the same type do not overlap. Instances/solutions having these properties are
said to obey the interval model. Similar properties have been used in related
settings [1,8] and we detail these insights for completeness’ sake. The following
lemma states the effect of this model on the approximation guarantee.

Lemma 1. Any c-competitive algorithm for the interval model can be trans-
formed to a 4c-competitive algorithm for the general leases model.

Proof. Consider a leasing problem instance I for general leases and construct a
new instance I ′ by rounding each lease length lk ∈ N to the next larger power of

280 S. Li et al.

two. That is, the lease lengths of I ′ are l′k := 2�log lk�. Let S′ denote the solution
constructed by the c-approximation algorithm for the interval model when given
I ′. From S′, we construct a solution S for I as follows: for each lease of type k
bought at time t in solution S′, buy two consecutive leases of type k at times t
and t + lk. Since lk + lk ≥ l′k, any lease pair in S covers at least all the demands
covered by the original lease in S′. Moreover, we have cost(S) = 2 cost(S′) ≤
2c · cost(Opt

′), where Opt’ denotes an optimal solution for I ′ in the interval
model. Now, note that an optimal solution Opt for I in the general model yields
a solution S̃ for I ′ in the interval model as follows: for each lease of type k bought
at time t in solution Opt, buy two leases of type k at times �t/l′k�·l′k and �t/l′k�·l′k.
These leases cover at least all the demands of the original lease and obey the
interval model. Thus, we get cost(Opt

′) ≤ cost(S̃) = 2 cost(Opt). The lemma’s
statement follows by combining both inequalities.

3 Online Leasing with Deadlines

In this section, we introduce the OnlineLeasingWithDeadlines problem
(OLD) and give a deterministic primal-dual algorithm.

3.1 Problem Definition

On each day t, a number of clients with deadlines t + di (we say a client with
interval [t, t + di], where each day corresponds to a distance of 1 in the interval)
arrives. There are K different types of leases, each with its own duration and cost
(longer leases tend to cost less per day). A client arriving on day t with deadline
t + d is served if there is a lease which covers at least one day of its interval.
This also implies that we can replace all clients arriving on a day t by only the
client with the lowest deadline that arrives on that day. Thus, throughout this
chapter, we will assume without loss of generality that on every day t, either (i)
no client or (ii) only one client with deadline t + d arrives. The goal is to buy a
set of leases such that all arriving clients are served while minimizing the total
cost of purchases.

A lease of type k has cost ck and length lk. lmin and lmax denote the short-
est and the longest lease length, respectively. We denote by dmax and dmin the
longest and the shortest interval length of the clients, respectively. An online
algorithm now does not only need to serve clients while minimizing cost, but
also needs to decide when to serve a client. Since resources expire after some
time, decisions regarding when to serve a client are critical. An online algorithm
may decide to serve a client on some day just to realize later on that postpon-
ing it would have been a better choice because a later lease could have served
more clients. Or, the opposite is true, where an online algorithm may decide to
postpone serving a client whereas serving it earlier by enlarging a lease that has
been bought would have cost less.

We formulate OLD using integer linear programming (ILP) (see Figure 1).
We refer to a type k lease starting at time t as (k, t), a client arriving at time

Towards Flexible Demands in Online Leasing Problems 281

t with deadline t + d as (t, d), and an interval [a, a + b] as Iba. The collection of
all leases is L and the collection of all clients is D. We denote by Lt all leases
covering day t. We say a lease (k, t′) ∈ L is a candidate to client (t, d) ∈ D if
Idt ∩ I lkt′
= ∅. The sum in the objective function represents the costs of buying
the leases. The indicator variable X(k,t) tells us whether lease (k, t) is bought or
not. The primal constraints guarantee that each client (t, d) ∈ D is served. A
dual variable Y (t, d) is assigned to each client (t, d).

min
∑

(k,t)∈L

X(k,t) · ck

Subject to: ∀(t, d) ∈ D :
∑

(k,t′)∈L,Id
t

⋂

I
lk
t′ �=∅

X(k,t′) ≥ 1

∀(k, t) ∈ L : X(k,t) ∈ {0, 1}

max
∑

(t,d)∈D

Y(t,d)

Subject to: ∀(k, t) ∈ L :
∑

(t′,d)∈D,Id
t′
⋂

I
lk
t �=∅

Y(t′,d) ≤ ck

∀(t, d) ∈ D : Y(t,d) ≥ 0

Fig 1. ILP Formulation of OLD

3.2 Deterministic Algorithm

In this section, we present a deterministic primal-dual algorithm for OLD, for
which we give the analysis in the following section.

We adopt the interval model (Lemma 1) in which leases of type k are available
only at times t that are a multiple of the corresponding lease length lk. Thus,
any day t can be covered by exactly K different leases. Therefore, when a client
(t, d) ∈ D arrives, our algorithm needs to decide on which day t′ ∈ [t, t + d]
to serve it and it needs to specify one of the K leases in Lt′ . For every lease
(k, t) ∈ L, we define its contribution to be the sum of the values of the dual
variables corresponding to clients having (k, t) as a candidate. We say (t′, d)
contributes to (k, t) if (k, t) is a candidate of (t′, d) and Y(t′,d) > 0. Two clients
(t′, d′) and (t, d) with t′ < t intersect if their corresponding intervals Id

′
t′ and Idt

intersect at t′ + d′.

Algorithm. When a client (t, d) arrives, if it does not intersect any client
(t′, d′) with a non-zero dual variable where t′ < t, we perform the following two
steps.

282 S. Li et al.

Step 1: We increase the dual variable Y(t,d) of the client until the constraint
of some candidate (k, t′) becomes tight, i.e.,

∑

(t,d)∈D:Id
t ∩I

lk
t′ �=∅

Y(t,d) = ck.

We then buy all the leases in Lt with a tight constraint (we set their primal
variable to 1). At this point, the following proposition holds.

Proposition 1. There exists at least one lease with a tight constraint that
covers t.

Proof. Assume, for contradiction, that there is no lease with a tight constraint in
Lt. Then according to the algorithm, there must be a lease with a tight constraint
in Lj , j ∈ [t + 1, t + d] (we do not stop increasing the client’s dual variable until
some constraint becomes tight). Moreover, before (t, d) arrives, the contribution
to every lease in Lt is at least the contribution to its corresponding lease in Lj ,
j ∈ [t + 1, t + d]. To show that the latter is true, assume, for contradiction, that
there is a lease (k, t′) in Lj , j ∈ [t + 1, t + d], with a contribution greater than
that of its corresponding lease (k, t′′) in Lt. Then, there must be a client which
has contributed to (k, t′) and not to (k, t′′) (a client contributes the same to all
its candidates). This is only possible if this client has arrived after (t, d), which
is a contradiction. Hence, if the constraint of some lease in Lj , j ∈ [t + 1, t + d],
becomes tight when (t, d) arrives, then the constraint of its corresponding lease
in Lt must become tight as well (at any day, there are exactly K lease types).

�

Step 2: By the proposition above, we have that the algorithm buys at least
one lease in Lt. Even though the client is now served, we do one more step. We
buy the lease(s) from Lt+d which correspond(s) to what is bought in Step 1 from
Lt (we set the primal variable(s) to 1).

3.3 Analysis

We show that the primal-dual algorithm above is O(K)-competitive for uniform
OLD and O(K+ dmax

lmin
)-competitive for non-uniform OLD. We also show that the

analysis of our algorithm is tight. This also implies an O(K)-competitive factor
for the ParkingPermitProblem (we just set dmax to 0) which coincides with
the tight result given by Meyerson [1].

Proposition 2. Both the primal and the dual solutions constructed by the algo-
rithm are feasible.

Proof. It is easy to see that the dual constraints are never violated since the
algorithm stops increasing the dual variables as soon as some constraint becomes
tight. As for the primal solution, we show that each client (t, d) ∈ D is served.
When a client (t, d) arrives, we have two possibilities: either (t, d) intersects a

Towards Flexible Demands in Online Leasing Problems 283

previous client or it does not. If it does not, then our algorithm makes sure it
is served in Step 1. Otherwise if it intersects a previous client (t′, d) with Y(t′,d)
being zero, our algorithm makes sure it serves (t, d) in Step 1. If Y(t′,d) is greater
than zero, then our algorithm already covered days t′ and t′ + d to serve (t′, d).
Since (t, d) and (t′, d) intersect at t′ + d, (t, d) is therefore served as well. �

Theorem 1. The primal-dual algorithm achieves an optimal O(K)- and an
O(K + dmax

lmin
)-competitive ratio for uniform and non-uniform OLD respectively.

Proof. Let P ⊆ L denote the primal solution constructed by the algorithm.
Because the dual constraint is tight for each (k, t) ∈ P , we have

ck =
∑

(t′,d)∈D:Id
t′∩I

lk
t �=∅

Y(t′,d).

Hence,

∑

(k,t)∈P

ck =
∑

(k,t)∈P

∑

(t′,d)∈D:Id
t′∩I

lk
t �=∅

Y(t′,d) =
∑

(t′,d)∈D

Y(t′,d)

∑

(k,t)∈P :Id
t′∩I

lk
t �=∅

1.

Whenever the algorithm buys leases to serve (t′, d) ∈ D, it only buys can-
didates from Lt′ (Step 1) and Lt′+d (Step 2). Since there are exactly K leases
at any day, it therefore buys at most 2K candidates. If the algorithm does not
buy any further candidates of (t′, d), we get an O(K)-competitive ratio by weak
duality theorem (both primal and dual solutions are feasible) since

∑

(k,t)∈P :Id
t′∩I

lk
t �=∅

1 ≤ 2K.

This will be the case for uniform OLD since any client sharing common
candidates with (t′, d) intersects (t′, d) at t′ + d thus being served at t′ + d
and the algorithm does not buy any further candidates of (t′, d). As for non-
uniform OLD, the algorithm may buy more of (t′, d)’s candidates when new
clients sharing common candidates with (t′, d) arrive in the coming days. We
upper bound the total number of these candidates as follows.

∑

(k,t)∈P :Id
t′∩I

lk
t �=∅

1 ≤
t′+d∑

i=t′
|Li| ≤

K∑

j=1

⌈
dmax

lj

⌉

.

By Lemma 1 we have that lj ’s are increasing and powers of two. Hence, the right
sum above can be bounded by the sum of a geometric series with ratio half.

K∑

j=1

⌈
dmax

lj

⌉

≤ K + dmax

[
1
l1

(
1 − (1/2)K

1 − 1/2

)]

= K + dmax

[
2
l1

(
1 − (1/2)K

)
]

.

284 S. Li et al.

Since K ≥ 1 we have

K + dmax

[
2
l1

(
1 − (1/2)K

)
]

≤ K +
dmax

l1
.

Therefore,

∑

(k,t)∈P :Id
t′∩I

lk
t �=∅

1 ≤ K +
dmax

lmin

since the algorithm can not buy more than K + dmax

lmin
candidates. �

(a) Leases bought by our primal-dual
algorithm are marked in red.

(b) Leases bought by an optimal algo-
rithm are marked in green.

Fig. 2. Comparison of our primal-dual and an optimal algorithm for a specific instance
of our problem. It is easy to see that the primal-dual algorithm pays almost dmax/lmin

times what the optimal algorithm would pay.

Proposition 3. The analysis of the aforementioned algorithm is tight.

Proof. A lower bound of Ω(K) follows immediately from the lower bound of
Ω(K) for the ParkingPermitProblem by setting dmax = 0. We now give
a tight example for Ω(dmax/lmin) for the non-uniform case. Let dmax and lmin

be arbitrary. For our problem instance, we start with a client (0, dmax) and
add clients ((i − 1) · lmin, i · lmin) for i ∈ {2, . . . , �dmax/lmin�}. Similarly, we add
2 different lease types, one with length lmin and cost 1, and one with length
2�log2(dmax)� and cost 1 + ε. See Figure 2 for a visualization. Now, in order to
cover client (0, dmax), the dual variable of this client is increased until

∑

(t,d)∈D:Id
t ∩I

lk
t′ �=∅

Y(t,d) = ck, (1)

and this happens at the same time for all leases of length lmin in the interval
Idmax
0 . The algorithm then only buys the leases at the start and at the end

point. However, to cover clients ((i−1) · lmin, i · lmin) for i ∈ {2, . . . , �dmax/lmin�},
the algorithm buys all the short leases, as constraint (1) is already tight from
the prior step. This leads to an overall cost of at least �dmax/lmin�, whereas the
optimal algorithm only buys the long lease with cost 1 + ε. �

Towards Flexible Demands in Online Leasing Problems 285

4 Application to Set Cover Leasing

In this section, we introduce the SetCoverLeasingWithDeadlines problem
(SCLD) and give an O(log(m · (K + dmax

lmin
)) log lmax)-competitive algorithm.

4.1 Problem Definition

SCLD is a generalization of SetCoverLeasing in which elements arrive over
time and must be covered by sets from a family of subsets of these elements.
Each set can be leased for K different periods of time. Leasing a set S for a
period k incurs a cost ckS and allows S to cover its elements for the next lk time
steps. The objective is to minimize the total cost of the sets leased, such that
elements arriving at any time t are covered by sets which contain them and are
leased during time t. SCLD extends SetCoverLeasing by allowing elements to
have deadlines and be covered any time before their deadline. We define SCLD
analogously to non-uniform OLD and formulate it using ILP (see Figure 3).

We denote by p the maximum number of sets an element belongs to, by n
the number of elements, and by m the number of sets. We refer to a set S with
lease type k starting on day t as (S, k, t) and an element e arriving on day t with
deadline t + d as (e, t, d). The collection of all set triples is F and the collection
of all element triples is U . We say (S, k, t′) ∈ F is a candidate to (e, t, d) ∈ U if
e ∈ S and Idt ∩ I lkt′
= ∅. The sum in the objective function represents the costs
of buying the sets. The indicator variable X(S,k,t) tells us whether (S, k, t) is
bought or not. An element is covered if at least one of its candidates is bought.
The primal constraints guarantee that each (e, t, d) ∈ U is covered.

min
∑

(S,k,t)∈F

X(S,k,t) · ckS

Subject to: ∀(e, t, d) ∈ U :
∑

(S,k,t′)∈F,Id
t

⋂

I
lk
t′ �=∅,e∈S

X(S,k,t′) ≥ 1

∀(S, k, t) ∈ F : X(S,k,t) ∈ {0, 1}

Fig 3. ILP of SCLD

4.2 Randomized Algorithm

In this section, we present a randomized algorithm for SCLD. We denote by
F(e,t,d) the collection of all candidates of (e, t, d). Our algorithm first solves the
LP of SCLD and then rounds it to solve its ILP. The algorithm maintains for
each set (S, k, t) ∈ U , 2 �log(lmax)� independent random variables r(Skt)(q),
1 ≤ q ≤ 2 �log(lmax)�, distributed uniformly in the interval [0, 1]. We define
μSkt := min{r(Skt)(q)}.

286 S. Li et al.

Algorithm 1. SetCoverLeasingWithDeadlines
When an element (e, t, d) arrives,
(i) (LP solution) while

∑
(S,k,t)∈F(e,t,d)

X(S,k,t) < 1;

X(S,k,t) = X(S,k,t) · (1 + 1/ckS) + 1

|F(e,t,d)|·ckS
(ii) (ILP solution) Round X(S,k,t) to 1 if X(S,k,t) > μSkt and if (e, t, d) is not yet
covered, buy the cheapest (S, k, t) ∈ F(e,t,d) (set its primal variable to 1).

4.3 Analysis

We show that the algorithm above is O(log(p · (K + dmax

lmin
)) log lmax) = O(log(m ·

(K + dmax

lmin
)) log lmax)-competitive for SCLD.

It is easy to see that Algorithm 1 constructs a feasible solution ILP to
SetCoverLeasing. To compute the total expected cost CILP of ILP, we
first bound the cost of the LP solution CLP by O(log(p · (K + dmax

lmin
))) =

O(log(m · (K + dmax

lmin
))) · Opt, where Opt is the optimal solution cost of ILP.

Then, we show that CILP is at most O(log lmax) times CLP and hence deduce
the expected O(log(m·(K+ dmax

lmin
)) log lmax)-competitive factor of the algorithm.

To do so, we partition the time horizon into intervals of length lmax.
Due to the interval model (Lemma 1), all leases of all sets end on days
i : i = 0 mod lmax. Hence, we bound CILP over any interval of length lmax

by O(log(m · (K + dmax

lmin
)) log lmax)) · Optlmax

, where Optlmax
is the optimum

over the corresponding interval of length lmax. Summing up over all such inter-
vals yields our competitive factor for SCLD.

Lemma 2. The cost CLP (lmax) of the LP solution over an interval of length lmax

is at most O(log(p · (K + dmax

lmin
))) ·Optlmax

= O(log(m · (K + dmax

lmin
))) ·Optlmax

where Optlmax
is the cost of the optimal solution over this interval.

Proof. We fix any interval of length lmax from our partition. Any set (SOPT , k, t′)
in the optimum solution over this interval has been a candidate for some element
(e, t, d). When (e, t, d) arrives, our algorithm increases the primal variables of
(e, t, d)’s candidates until they sum up to one. After O(ckSOPT

· log
∣
∣F(e,t,d)

∣
∣)

increases, X(SOPT ,k,t′) becomes greater than one and the algorithm makes no
further increases. Furthermore, these increases never add a total of more than 2
to the primal variables. This is because

∑

(S,k,t)∈F(e,t,d)

ckS ·
(

X(S,k,t)

ckS
+

1
ckS

·
∣
∣F(e,t,d)

∣
∣
)

≤ 2,

since
∑

(S,k,t)∈F(e,t,d)
X(S,k,t) < 1 before the increase. The same holds for any

other set in the optimum solution over this interval. Using a similar argument
as in OLD, we can bound

∣
∣F(e,t,d)

∣
∣ by p · (K + dmax

lmin
) (there are at most dmax

lmin

leases for each of the at most p candidate sets). This completes the proof of the
lemma. �

Towards Flexible Demands in Online Leasing Problems 287

Lemma 3. The cost CILP (lmax) of the ILP solution over an interval of length
lmax is at most O(log lmax) · CLP (lmax), where CLP (lmax) is the cost of the LP
solution over this interval.

Proof. We fix any interval of length lmax from our partition. The probability to
buy a set (S, k, t) ∈ F in this interval is proportional to the value of its primal
variable. Hence, CILP (lmax) is upper bounded by

∑

(S,k,t)∈F

2 log(lmax + 1) · ckS · X(S,k,t).

To guarantee feasibility, every time an element is not covered, the algorithm
buys the cheapest candidate, which is a lower bound to Optlmax

. The proba-
bility that an element is not covered is at most 1/(lmax)2. Since the random
variables are drawn independently, we can add the expected costs incurred by
the corresponding at most lmax elements and deduce a negligible expected cost
of lmax · 1/(lmax)2 · Optlmax

which concludes the proof of the lemma. �

From the two lemmas above, we deduce the following theorem.

Theorem 2. There is an online randomized algorithm for SCLD with a com-
petitive factor of

O(log(p · (K +
dmax

lmin
)) log lmax) = O(log(m · (K +

dmax

lmin
)) log lmax).

SetCoverLeasing is nothing but a special case of SCLD if we set dmax = 0.
Hence, we deduce the following corollary thereby improving the previous result
for SetCoverLeasing [9] from O(log(m · K) log n) to O(log(m · K) log lmax)
by removing the dependency on n and therefore on time.

Corollary 1. There is an online randomized algorithm for SetCoverLeasing

that has a time-independent O(log(p · K) log lmax) = O(log(m · K) log lmax)-
competitive factor.

5 Conclusion

We have extended the line of leasing by introducing a new model for online leas-
ing problems. As a first infrastructure leasing problem, we have defined Set-

CoverLeasing with the new model and proceeding in this direction, we plan
to study other infrastructure leasing problems starting with FacilityLeasing

and SteinerTreeLeasing.
Our model introduces flexibility to demands, thus capturing more general

applications. Demands in our model have the flexibility of having a deadline.
It will be interesting to extend this work to include models that handle other
flexibilities (e.g., can be served on specific days within some period of time).
Furthermore, demands in our model require a single day to be served. Allowing
demands that require more than one day to be served can be a natural extension

288 S. Li et al.

of our model. Even though the techniques used in this paper do not carry over
directly to this extension, they still give first insights.

Along the same line of leasing lies the important unanswered question of
what the price of online leasing is. All algorithms for online leasing problems so
far build upon the algorithms for the non-leasing variants of their corresponding
problems and the ParkingPermitProblem algorithm. Since all these prob-
lems generalize the ParkingPermitProblem, the only lower bound we have
for these problems is Ω(K + f(·)), where K is the lower bound for the Park-

ingPermitProblem and f(·) the lower bound for the underlying non-leasing
variant of the problem. It is still not known whether we can prove stronger lower
bounds for these problems.

Another interesting direction would be to have a stochastic view of online
leasing problems, where demands and/or their deadlines are given according to
some probability distribution.

References

1. Meyerson, A.: The parking permit problem. In: Proceedings of the 46th Annual
IEEE Symposium on Foundations of Computer Science(FOCS), pp. 274–284 (2005)

2. Meyerson, A.: Online facility location. In: Proceedings of the 42nd Annual IEEE
Symposium on Foundations of Computer Science(FOCS), pp. 426–431 (2001)

3. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The online set cover
problem. In: Proceedings of the 35th Annual ACM Symposium on the Theory of
Computation(STOC), pp. 100–105 (2003)

4. Berman, P., Coulston, C.: Online algorithms for Steiner tree problems. In: Proceed-
ings of the 29th Annual ACM Symposium on the Theory of Computation(STOC),
pp. 344–353 (1997)

5. Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., Tsafrir, D.: Deconstructing amazon
EC2 spot instance pricing. In: Proceedings of the 3rd IEEE International Conference
on Cloud Computing Technology and Science(Cloud-Com), pp. 304–311 (2011)

6. Anthony, B.M., Gupta, A.: Infrastructure leasing problems. In: Fischetti, M.,
Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 424–438. Springer,
Heidelberg (2007)

7. Nagarajan, C., Williamson, D.P.: Offline and online facility leasing. In: Lodi,
A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 303–315.
Springer, Heidelberg (2008)

8. Kling, P., Meyer auf der Heide, F., Pietrzyk, P.: An algorithm for online facility
leasing. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355,
pp. 61–72. Springer, Heidelberg (2012)

9. Abshoff, S., Markarian, C., Meyer auf der Heide, F.: Randomized online algorithms
for set cover leasing problems. In: Zhang, Z., Wu, L., Xu, W., Du, D.-Z. (eds.)
COCOA 2014. LNCS, vol. 8881, pp. 25–34. Springer, Heidelberg (2014)

Lower Bounds for the Size
of Nondeterministic Circuits

Hiroki Morizumi(B)

Interdisciplinary Graduate School of Science and Engineering,
Shimane University, Matsue, Shimane 690-8504, Japan

morizumi@cis.shimane-u.ac.jp

Abstract. Nondeterministic circuits are a nondeterministic computa-
tion model in circuit complexity theory. In this paper, we prove a 3(n−1)
lower bound for the size of nondeterministic U2-circuits computing the
parity function. It is known that the minimum size of (deterministic)
U2-circuits computing the parity function exactly equals 3(n− 1). Thus,
our result means that nondeterministic computation is useless to com-
pute the parity function by U2-circuits and cannot reduce the size from
3(n − 1). To the best of our knowledge, this is the first nontrivial lower
bound for the size of nondeterministic circuits (including formulas, con-
stant depth circuits, and so on) with unlimited nondeterminism for an
explicit Boolean function. We also discuss an approach to proving lower
bounds for the size of deterministic circuits via lower bounds for the size
of nondeterministic restricted circuits.

1 Introduction

Proving lower bounds for the size of Boolean circuits is a central topic in cir-
cuit complexity theory. The gate elimination method is one of well-known proof
techniques to prove lower bounds for the size of Boolean circuits, and has been
used to prove many linear lower bounds including the best known lower bounds
for the size of Boolean circuits over the basis B2 [2][3] and the basis U2 [6][4].

In this paper, we show that the gate elimination method works well also
for nondeterministic circuits. For deterministic circuits, it is known that the
minimum size of U2-circuits computing the parity function exactly equals 3(n −
1) [7]. The proof of the lower bound is based on the gate elimination method
and has been known as a typical example that the method is effective. In this
paper, we prove a 3(n − 1) tight lower bound for the size of nondeterministic
U2-circuits computing the parity function, which means that nondeterministic
computation is useless to compute the parity function by U2-circuits and cannot
reduce the size from 3(n − 1).

To the best of our knowledge, our result is the first nontrivial lower bound
for the size of nondeterministic circuits (including formulas, constant depth cir-
cuits, and so on) with unlimited nondeterminism for an explicit Boolean function.

This work was supported by JSPS KAKENHI Grant Number 15K11986.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 289–296, 2015.
DOI: 10.1007/978-3-319-21398-9 23

290 H. Morizumi

In this paper, we show that, for U2-circuits, a known proof technique (i.e., the
gate elimination method) for deterministic circuits is applicable to the nondeter-
ministic case. This implies the possibility that proving lower bounds for the size
of nondeterministic circuits may not be so difficult in contrast with the intuition
and known proof techniques might be applicable to the nondeterministic case
also for other circuits. One of motivations to prove lower bounds for the size of
nondeterministic circuits is from some relations between the size of deterministic
circuits and nondeterministic circuits. We also discuss an approach to proving
lower bounds for the size of deterministic circuits via lower bounds for the size
of nondeterministic restricted circuits.

2 Preliminaries

2.1 Definitions

Circuits are formally defined as directed acyclic graphs. The nodes of in-degree 0
are called inputs, and each one of them is labeled by a variable or by a constant
0 or 1. The other nodes are called gates, and each one of them is labeled by
a Boolean function. The fan-in of a node is the in-degree of the node, and the
fan-out of a node is the out-degree of the node. There is a single specific node
called output.

We denote by B2 the set of all Boolean functions f : {0, 1}2 → {0, 1}. By U2

we denote B2 −{⊕,≡}, i.e., U2 contains all Boolean functions over two variables
except for the XOR function and its complement. A Boolean function in U2 can
be represented as the following form:

f(x, y) = ((x ⊕ a) ∧ (y ⊕ b)) ⊕ c,

where a, b, c ∈ {0, 1}. A U2-circuit is a circuit in which each gate has fan-in 2
and is labeled by a Boolean function in U2. A B2-circuit is similarly defined.

A nondeterministic circuit is a circuit with actual inputs (x1, . . . , xn) ∈
{0, 1}n and some further inputs (y1, . . . , ym) ∈ {0, 1}m called guess inputs.
A nondeterministic circuit computes a Boolean function f as follows: For
x ∈ {0, 1}n, f(x) = 1 iff there exists a setting of the guess inputs {y1, . . . , ym}
which makes the circuit output 1. In this paper, we call a circuit without guess
inputs a deterministic circuit to distinguish it from a nondeterministic circuit.

The size of a circuit is the number of gates in the circuit. The depth of a circuit
is the length of the longest path from an input to the output in the circuit. We
denote by sizedc(f) the size of the smallest deterministic U2-circuit computing
a function f , and denote by sizendc(f) the size of the smallest nondeterministic
U2-circuit computing a function f .

While we mainly consider U2-circuits in this paper, we also consider other
circuits in Section 4. A formula is a circuit whose fan-out is restricted to 1. The
parity function of n inputs x1, . . . , xn, denoted by Parityn, is 1 iff

∑
xi ≡ 1

(mod 2).

Lower Bounds for the Size of Nondeterministic Circuits 291

Fig. 1. Proof of Theorem 1

2.2 The Gate Elimination Method

The proof of our main result is based on the gate elimination method, and based
on the proof of the deterministic case. In this subsection, we have a quick look
at them.

Consider a gate g which is labeled by a Boolean function in U2. Recall that
any Boolean function in U2 can be represented as the following form:

f(x, y) = ((x ⊕ a) ∧ (y ⊕ b)) ⊕ c,

where a, b, c ∈ {0, 1}. If we fix one of two inputs of g so that x = a or y = b, then
the output of g becomes a constant c. In such case, we call that g is blocked.

Theorem 1 (Schnorr [7]).

sizedc(Parityn) = 3(n − 1).

Proof. Assume that n ≥ 2. Let C be an optimal deterministic U2-circuit com-
puting Parityn. Let g1 be a top gate in C, i.e., whose two inputs are connected
from two inputs xi and xj , 1 ≤ i, j ≤ n. Then, xi must be connected to another
gate g2, since, if xi is connected to only g1, then we can block g1 by an assign-
ment of a constant to xj and the output of C becomes independent from xi,
which contradicts that C computes Parityn. By a similar reason, g1 is not the
output of C. Let g3 be a gate which is connected from g1. See Figure 1.

We prove that we can eliminate at least 3 gates from C by an assignment
to xi. We assign a constant 0 or 1 to xi such that g1 is blocked. Then, we can
eliminate g1, g2 and g3. If g2 and g3 are the same gate, then the output of g2
(= g3) becomes a constant, which means that g2 (= g3) is not the output of
C and we can eliminate another gate which is connected from g2 (= g3). Thus,
we can eliminate at least 3 gates and the circuit come to compute Parityn−1

or ¬Parityn−1. For deterministic circuits, it is obvious that sizedc(Parityn−1) =
sizedc(¬Parityn−1). Therefore,

292 H. Morizumi

sizedc(Parityn) ≥ sizedc(Parityn−1) + 3
...
≥ 3(n − 1).

x ⊕ y can be computed with 3 gates by the following form:

(x ∧ ¬y) ∨ (¬x ∧ y).

Therefore, sizedc(Parityn) ≤ 3(n − 1).
�

3 Proof of the Main Result

In this section, we prove the main theorem. For deterministic circuits, there must
be a top gate whose two inputs are connected from two (actual) inputs xi and xj ,
1 ≤ i, j ≤ n. However, for nondeterministic circuits, there may be no such gate,
since there are not only actual inputs but also guess inputs in nondeterministic
circuits. We need to defeat the difficulty. See Section 2.2 for the definition of
“block”.

Theorem 2.
sizendc(Parityn) = 3(n − 1).

Proof. By theorem 1,

sizendc(Parityn) ≤ sizedc(Parityn) = 3(n − 1).

Assume that n ≥ 2. Let C be an optimal nondeterministic U2-circuit com-
puting Parityn. We prove that we can eliminate at least 3 gates from C by an
assignment of a constant 0 or 1 to an actual input.

Case 1. There is an actual input xi, 1 ≤ i ≤ n, which is connected to at least
two gates.

Let g1 and g2 be gates which are connected from xi. Since we can block g1
by an assignment of a constant to xi, g1 is not the output of C and there is a
gate g3 which is connected from g1. See Figure 2.

We prove that we can eliminate at least 3 gates from C by an assignment
to xi. We assign a constant 0 or 1 to xi such that g1 is blocked. Then, we can
eliminate g1, g2 and g3. If g2 and g3 are the same gate, then the output of g2
(= g3) becomes a constant, which means that g2 (= g3) is not the output of C
and we can eliminate another gate which is connected from g2 (= g3). Thus, we
can eliminate at least 3 gates.

Case 2. Every actual input is connected to at most one gates.
Let g1 be a gate in C such that one of two inputs is connected from an actual

input xi and the other is connected from a node v whose output is dependent

Lower Bounds for the Size of Nondeterministic Circuits 293

Fig. 2. Case 1

on only guess inputs and independent from actual inputs. (v may be a gate and
may be a guess input.) Consider that an assignment to actual inputs and guess
inputs is given. Then, if the value of the output of v blocks g1 by the assignment,
then the output of C must be 0, since, if the output of C is 1, then the value
of the Boolean function which is computed by C becomes independent from xi,
which contradicts that C computes Parityn. (Note that the output of C can be
0. The difference is from the definition of nondeterministic circuits.) We use the
fact above and reconstruct C as follows.

Let c be a constant 0 or 1 such that if the output of v is c, then g1 is blocked.
We fix the input of g1 from v to ¬c and eliminate g1. We prepare a new output
gate g2 and connect the two inputs of g2 from the old output gate and v. g2 is
labeled by a Boolean function in U2 so that the output of g2 is 1 iff the input from
the old output gate is 1 and the input from v is ¬c. Let C ′ be the reconstructed
circuit. See Figure 3.

In the reconstruction, we eliminated one gate (g1) and added one gate (g2).
Thus, the size of C ′ equals the size of C. In C ′, if the output of v is c, then the
output of C ′ becomes 0 by g2. If the output of v is ¬c, then the output of C ′ equals
the output of the old output gate and g1 has been correctly eliminated since we
fixed the input of g1 from v to ¬c in the reconstruction. Thus, C and C ′ compute
a same Boolean function. We repeat such reconstruction until the reconstructed
circuit satisfies the condition of Case 1. The repetition must be ended, since one
repetition increases continuous gates whose one input is dependent on only guess
inputs (i.e., g2) at the output. Note that g1 is not included in the continuous
gates, since the output of C must depend on at least two actual inputs.

Thus, we can eliminate at least 3 gates for all cases and the circuit come to
compute Parityn−1 or ¬Parityn−1.

Lemma 1.
sizendc(Parityn−1) = sizendc(¬Parityn−1).

294 H. Morizumi

Fig. 3. Case 2

Proof. Let C ′ be a nondeterministic U2-circuit computing Parityn−1. For non-
deterministic circuits, notice that negating the output gate in C ′ does not give a
circuit computing ¬Parityn−1. We negate an arbitrary actual input xi, 1 ≤ i ≤ n,
in C ′ and obtain a nondeterministic U2-circuit which computes ¬Parityn−1 and
has the same size to C ′, which can be done by relabeling each Boolean function
of all gates which are connected from xi.
�
Therefore,

sizendc(Parityn) ≥ sizendc(Parityn−1) + 3
...
≥ 3(n − 1).

Thus, the theorem holds.
�

4 Discussions

In this paper, we proved a 3(n − 1) lower bound for the size of nondeterministic
U2-circuits computing the parity function. To the best of our knowledge, this
is the first nontrivial lower bound for the size of nondeterministic circuits with
unlimited nondeterminism for an explicit Boolean function. In this section, as one
of motivations to prove lower bounds for the size of nondeterministic circuits, we
discuss an approach to proving lower bounds for the size of deterministic circuits
via lower bounds for the size of nondeterministic restricted circuits.

It is known that the Tseitin transformation [8] converts an arbitrary Boolean
circuit to a CNF formula. We restate the Tseitin transformation as the form of
the following theorem.

Lower Bounds for the Size of Nondeterministic Circuits 295

Theorem 3. Any B2-circuit of n inputs and size s can be converted to a non-
deterministic 3CNF formula of n actual inputs, s guess inputs, and size O(s).

Proof. We prepare one guess input for the output of each gate in the B2-circuit,
and use the Tseitin transformation.
�

Thus, if we hope to prove a nonlinear lower bound for the size of deterministic
general circuits, (which is a major open problem in circuit complexity theory,)
then it is enough to prove a nonlinear lower bound for the size of nondeterministic
circuits in the theorem. The nondeterministic circuit in Theorem 3 is a constant
depth circuit with depth two and some restrictions. In this paper, we saw that,
for U2-circuits, a known proof technique (i.e., the gate elimination method) for
deterministic circuits is applicable to the nondeterministic case. It remains future
work whether many known ideas or techniques for constant depth circuits are
applicable to nondeterministic circuits.

The basic idea of the proof of Theorem 3 and the Tseitin transformation can
be widely applied. We show another example in which guess inputs are prepared
for a part of gates in the circuit.

Theorem 4. Any B2-circuit of n inputs, size O(n) and depth O(log n) can be
converted to a nondeterministic formula of n actual inputs, O(n/ log log n) guess
inputs, and size O(n1+ε), where ε > 0 is an arbitrary small constant.

Proof. Let C be such a B2-circuit. It is known that we can find O(n/ log log n)
edges in C whose removal yields a circuit of depth at most ε log n ([9],
Section 14.4.3 of [1]). We prepare O(n/ log log n) guess inputs for the edges,
and one guess input for the output of C. Consider that an assignment to actual
inputs and guess inputs is given. It can be checked whether the value of each
guess input corresponds to correct computation by O(n/ log log n) nondeter-
ministic formulas of size nε, since the depth is at most ε log n. We construct a
nondeterministic formula so that it outputs 1 iff all guess inputs are correct and
the guess input which corresponds to the output of C is 1.
�

For the case that the number of guess inputs is limited, there is a known
lower bound for the size of nondeterministic formulas [5].

References

1. Arora, S., Barak, B.: Computational Complexity - A Modern Approach. Cambridge
University Press (2009)

2. Blum, N.: A boolean function requiring 3n network size. Theor. Comput. Sci. 28,
337–345 (1984)

3. Demenkov, E., Kulikov, A.S.: An elementary proof of a 3n−o(n) lower bound on the
circuit complexity of affine dispersers. In: Murlak, F., Sankowski, P. (eds.) MFCS
2011. LNCS, vol. 6907, pp. 256–265. Springer, Heidelberg (2011)

4. Iwama, K., Morizumi, H.: An explicit lower bound of 5n - o(n) for boolean circuits.
In: Proc. of MFCS, pp. 353–364 (2002)

296 H. Morizumi

5. Klauck, H.: Lower bounds for computation with limited nondeterminism. In: Proc.
of CCC, pp. 141–152 (1998)

6. Lachish, O., Raz, R.: Explicit lower bound of 4.5n - o(n) for boolean circuits. In:
Proc. of STOC, pp. 399–408 (2001)

7. Schnorr, C.: Zwei lineare untere schranken für die komplexität boolescher funktio-
nen. Computing 13(2), 155–171 (1974)

8. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In:
Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic,
pp. 115–125 (1968)

9. Valiant, L.G.: Graph-theoretic properties in computational complexity. J. Comput.
Syst. Sci. 13(3), 278–285 (1976)

Computing Minimum Dilation Spanning Trees
in Geometric Graphs

Aléx F. Brandt, Miguel F.A. de M. Gaiowski,
Pedro J. de Rezende(B), and Cid C. de Souza

Institute of Computing, University of Campinas, Campinas, Brazil
rezende@ic.unicamp.br

Abstract. Let P be a set of points in the plane and G(P) be the asso-
ciated geometric graph. Let T be a spanning tree of G(P). The dilation
of a pair of points i and j of P in T is the ratio between the length of the
path between i and j in T and their Euclidean distance. The dilation of
T is the maximum dilation among all pairs of points in P . The minimum
dilation spanning tree problem (MDSTP) asks for a tree with minimum
dilation. So far, no exact algorithm has been proposed in the literature to
compute optimal solutions to the MDSTP. This paper aims at filling this
gap. To this end, we developed an algorithm that combines an integer
programming model, a geometric preprocessing and an efficient heuristic
for the MDSTP. We report on computational tests in which, for the first
time, instances of up to 20 points have been solved to proven optimality.

Keywords: Minimum dilation · Stretch factor · Geometric Graphs

1 Introduction

In many practical applications, one is faced with problems requiring the con-
struction of a low cost network connecting a set of locations that satisfy certain
quality requirements. Depending on how the cost and the quality are measured,
different optimization problems emerge.

In this paper, we consider one such case, known as the minimum dilation
spanning tree problem. Let P be a set of n points in the plane. For every u, v ∈
P , duv denotes the Euclidean distance between u and v. The geometric graph,
G(P) = (P,E), is the weighted complete graph whose vertex-set is P and whose
edge weights are given by the Euclidean distances between the corresponding
endpoints. Consider a spanning subgraph H of G(P). Let u, v be two vertices
in H. The distance on H between u, v is defined as the length of a shortest
path πH(u, v) connecting u to v in H, denoted |πH(u, v)|, or infinite when v is
unreachable from u. As usual, the length of a path is defined as the sum of the
weights of its edges. The dilation (also known as stretch factor or distortion [1])

Research supported by grants: CNPq (302804/2010-2, 477692/2012-5, 311140/2014-
9, 139107/2012-6), FAPESP (2015/08734-9, 2012/17965-6), and Faepex.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 297–309, 2015.
DOI: 10.1007/978-3-319-21398-9 24

298 A.F. Brandt et al.

of H is defined as ρ(H) = max
u,v∈P

|πH(u, v)|/duv, see [2]. Since ρ(G(P)) = 1, the

interesting problems arise when a proper subgraph of G(P) is sought.1 An often
considered situation is when we limit to some constant k the number of edges that
can be used to build the network while seeking to obtain the minimum dilation.
As this problem only makes sense when the resulting subgraph is connected,
the smallest value for k is n − 1, restricting the plausible subgraphs to the
spanning trees of G(P). This gives rise to the minimum dilation spanning tree
problem (mdstp), which is known to be NP-hard [3]. Figure 1 shows an example.
Moreover, thus far, no o(n) approximate algorithm for the mdstp is known [3].

Fig. 1. A geometric graph G(P,E) and its minimum dilation spanning tree

This paper focuses on the design of an exact algorithm for the mdstp, which
is effective in practice for applications that require actual optimal solutions.

Motivation. The investigation of minimum dilation problems is prompted
by their applications to robotics, network topology design and many others
(see [1,4]). While the literature does not yet include exact algorithms for the
mdstp, we believe that producing optimal solutions may enable us to identify
geometric properties that can lead to algorithms that are more effective in prac-
tice. Studying the mdstp may reveal relevant information for solving similar
problem for other classes of graphs.

Related Work. Experimental works published on dilation problems attempt
to find, for a given t, (sub)optimal t-spanners minimizing the total edge weight,
vertex degrees, the number of edges for a fixed dilation, the spanner diameter or
the number of crossings ([5,6]). In contrast to what is done here, none of these
look for a subgraph that minimizes the dilation within a given family.

Some important bounds for the minimum dilation of spanning trees are the
worst case lower bound Ω(n) achieved by the vertex set of a regular n-gon [1]
1 The reader will find ample material on the related concept of t-spanners in [1,2].

Computing Minimum Dilation Spanning Trees in Geometric Graphs 299

and the upper bound n − 1 guaranteed by the minimum weight spanning tree
[4]. Also, Cheong, Haverkort and Lee [3] (Klein and Kutz [7]) presented a set P
of five (seven) points in the plane for which any MDST has self-intersections.

Our Contribution. This work presents the first exact algorithm for the mdstp.
The method employs a mixed integer linear programming (milp) model that may
be computed by state-of-the-art solvers. However, as the milp formulation, can
easily grow to an unmanageable size, we developed a preprocessing phase that
exploits the geometry of the problem to significantly reduce the model. More-
over, while as the preprocessing requires the knowledge of good viable solutions,
we designed a metaheuristic that yields high quality solutions. As a convenient
byproduct, these fine primal bounds also allow the milp solver to do early prun-
ing of the enumeration tree during the branch-and-bound algorithm. As a result
of this strategy, we were able to find provably optimal solutions for instances of
the mdstp with up to 20 points, which is unprecedented and, from our expe-
rience, extremely challenging as the largest instances took 30 minutes of CPU
time. To enable future comparisons, we also make available our benchmark of
thousands of instances, as well as scripts for generating pseudo-random point
sets based on either fixed or image-based distributions.

Text Organization. In Section 2 a milp formulation for the problem is given.
Section 3 shows how any known primal bounds can be used in preprocessing
routines that, a priori, retain or discard edges from participating in an optimal
solution or from being in a path joining two vertices in such a solution. These
routines strongly influence the performance of our method since, ultimately, they
reduce the size of the milp model. A grasp based heuristic that we developed
for the mdstp is presented in Section 4. The computational tests are reported
in Section 5 and Section 6 discusses future research directions.

2 A milp Model for the mdstp

The milp formulation aims at building paths with limited dilation between all
pairs of vertices in such a way that the union of these paths is a spanning tree.
This dilation is then minimized in the objective function.

The characterization of the paths is achieved by means of a multicommodity
flow network model in which there is a special unitary flow between each distinct
pair of vertices. This makes it possible to obtain the length of a particular path
and to bound its dilation. The flow model is defined on the directed graph
DG(P) = (P,A) obtained from G(P) by replacing each of its edges by two
directed arcs. A binary variable xab

ij is introduced corresponding to the flow
of the commodity ab (the one associated to the path from a to b) through
the directed arc (i, j). Naturally, xab

ij is set to one if and only if the arc (i, j)
belongs to the path from a to b in an optimal solution. It is easy to see that
a full characterization of a spanning tree can be determined from the subset of
variables of the form xij

ij since, once one of these is set to 1, the (unique) path

300 A.F. Brandt et al.

from i to j is comprised solely by the edge {i, j}. The last element of the model
is a continuous variable ρ that represents the optimum. The formulation reads:

min ρ (1)
∑

i∈V \{a}
xab

ia −
∑

i∈V \{a}
xab

ai = −1 ∀a, b ∈ V (2)

∑

i∈V \{j}
xab

ij −
∑

i∈V \{j}
xab

ji = 0 ∀j ∈ V \ {a, b}, ∀a, b ∈ V (3)

∑

i∈V \{b}
xab

ib −
∑

i∈V \{b}
xab

bi = 1 ∀a, b ∈ V (4)

xab
ij + xab

ji − xij
ij ≤ 0 ∀{i, j} ∈ E, ∀a, b ∈ V (5)

∑

{i,j}∈E

xij
ij = |V | − 1 (6)

∑

(i,j)∈A

dij

dab
xab

ij − ρ ≤ 0 ∀a, b ∈ V (7)

x ∈ B
|A|·|E| (8)

The objective function (1) simply asks for a solution of minimum dilation. For
a given pair of points a and b, (2), (3) and (4) impose that the variables xab

describe a path from a to b in the final solution. Once we have the description of
the paths between all vertex pairs it remains to ensure that we have a connected
structure with only n − 1 edges, implying that the resulting subgraph is acyclic.
This is done by two sets of constraints: (5) which does the coupling of the arcs
in the paths and the edges in the tree and (6) that restricts the number of edges
in the solution. Finally, (7) constrains the dilation of every path to be no larger
than ρ. As the objective function minimizes ρ, it is clear that, in the solution,
this variable is equal to the maximum dilation among all pairs of vertices.

This formulation is based on the extended multicommodity flow model
described in [8] for the spanning tree problem. An important feature of that
model is that it gives a complete description of the convex hull of the integer
solutions of the spanning tree problem, called the spanning tree polytope. Besides,
the number of constraints and variables in this linear system is polynomial in
the size of the input graph, i.e., the model is compact. Basically, in this formu-
lation one chooses an arbitrary vertex as the root of the tree, in our case vertex
zero, and flows a especial commodity to each other vertex. In reality, the original
coupling constraints are slightly more complex than the one presented here as
they also ensure that every pair of commodities flows in the same direction in
each arc. This is done by enforcing the inequalities x0k

ij +x0k′
ji −xij

ij ≤ 0, for all k,
k′ in V \ {0} and {i, j} in E. Our formulation relinquishes this full description
in favor of a more compact and still correct model by using (5).

One may have noticed that the model (1)–(8) already has an enormous num-
ber of constraints and variables, both of which are Θ(n4). The massive size of the
model severely affects the performance of milp solvers. It is worth noting that

Computing Minimum Dilation Spanning Trees in Geometric Graphs 301

other options regarding the coupling constraints exist, some of which leading to
tighter linear relaxations. However, these alternative formulations are even larger
than the one given here. Besides, in early experiments where they were used, we
observed little or no actual gain in the dual bounds – the professed benefit of
using such relaxations – despite a noticeable increase in execution times.

In the next section, we discuss how a known primal (upper) bound can be
used to accelerate the search for a proven optimal solution. Essentially, this is
done by exploiting geometric properties that allow us to fix some of the variables
of our milp model. As we mentioned in the previous paragraph, the size of the
formulation can be a bottleneck for the direct usage of our method. Therefore,
the effectiveness of the preprocessing is a key step for the success of the approach.

3 Preprocessing

Suppose that a feasible solution for the mdstp has been computed by some
heuristic, whose dilation is ρ′. Now, based on geometric properties, we devise
routines that allow the identification of edges of the geometric graph G(P) that
must or must not be in any tree with dilation less than or equal to ρ′. Alterna-
tively, we may be able to reach the weaker but relevant conclusion that an edge
may be required to or forbidden from being part of the path between a specific
pair of vertices in any solution with dilation not exceeding ρ′. As said earlier,
these findings allow us to reduce the size of the milp model as discussed below.

Consider the first case, where we conclude that an edge {i, j} is or is not part
of a tree with dilation bounded from above by ρ′. The xij

ij variable is either set to
one or to zero. Due to (5), the latter case also forces all the O(n2) path variables
associated to arc (i, j) to be set to zero. On the other hand, if {i, j} is forced to
be in the optimal tree, all the O(n2) path variables xij

kl for (k, l) ∈ A \ (i, j) are
required to take value zero by (2)–(4). Of course, in this case, the O(n) equations
describing the path from i to j can also be removed from the model.

Let us focus now on the case where we conclude that a given arc (i, j) is or
is not in the path from a to b, with {i, j} �= {a, b}. When this arc is identified as
a required part of the path, not only the variable xab

ij but also the corresponding
edge variable xij

ij is set to one. As discussed earlier, the latter assignment prop-
agates the setting of variables to arc variables (a, b). On the other hand, if (i, j)
is not in the path from a to b and no other information is at hand, only the flow
variable can be set to zero. Thus, in contrast to the previous analysis, there is
no direct propagation of variable assignments. But, as we shall see, depending
on the distribution of the points of P on the plane and on the primal bound, a
large number of variables may be set, considerably reducing the model size.

Below, we describe three routines that trigger the setting of some variable.
We assume that a, b, u and v are four distinct points in P , and ρ′ is an upper
bound for the minimum dilation of the spanning trees of G(P).

The Ellipse-based Elimination Routine. Let T be a spanning tree and
suppose u is a vertex on the path πT (a, b), i.e., πT (a, b) = πT (a, u)∪πT (u, b). The
dilation of the pair {a, b} in T is given by ρT (a, b) = |πT (a,b)|

dab
. From the triangle

302 A.F. Brandt et al.

inequality, we have πT (a, u) ≥ dau and πT (u, b) ≥ dub and ρT (a, b) ≥ dau+dub

dab
.

Hence, if T has dilation at most ρ′, the following constraint must hold:

dau + dub

dab
≤ ρT (a, b) ≤ ρ′ , (9)

which means that u must lie on or inside the ellipse with foci a and b having a
major axis of length ρ′ · dab. In other words, given an upper bound ρ′ for the
dilation and two vertices a and b, only the points in the ellipse defined by (9)
can be on the path joining a and b in a tree with dilation not exceeding ρ′. A
similar argument appears in [7], where the mdstp is proven to be NP-hard.

Furthermore, all O(n) arcs incoming to or outgoing from any discarded vertex
are precluded from being part of the path between a and b and may, therefore,
be removed from the model, i.e., the corresponding variables may be set to zero.

The Long Arc Elimination Routine. Once the vertices inside the ellipse with
foci a and b have been identified, it may still be possible to discard arcs joining
pairs of them from the path from a to b. Consider two such vertices, say, u and
v, with {u, v} �= {a, b}. If the arc (u, v) is in a solution with dilation bounded by
ρ′, the triangle inequality requires that the following inequality holds:

dau + duv + dvb

dab
≤ ρT (a, b) ≤ ρ′ . (10)

Clearly, when the above inequality is not satisfied, the arc (u, v) cannot belong
to the path joining a and b in a solution with dilation limited to ρ′. Since the
flow is directed from a to b, using the arc (u, v) is not the same as including (v, u)
in the path. So, (10) must be applied to every arc of A, i.e., both directions of
the respective edge have to be considered.

This routine can be viewed as an extension of the previous one, in the sense
that it evaluates subpaths with two intermediate vertices instead of just one.
Longer subpaths could be analyzed in almost the same way. However, the com-
plexity of such tasks would increase quickly rendering them impractical.

The Edge Fixing Routine. A very handy situation occurs when an ellipse
with foci a and b contains no other points of P in its interior. We will refer to it
as an “empty” ellipse. Of course, if the ellipse’s major axis has length ρ′ ·dab the
only way to connect a and b in a tree with dilation no greater than ρ′ is through
the edge ab. In other words, this edge is fixed (i.e., must belong to that tree).

As edges are ascertained to be part of the tree, the subgraph they induce is
a forest containing connected components of two or more vertices. Two types of
reductions of the milp model can then occur. Firstly, any edge between two ver-
tices on the same component that is not already fixed corresponds to a variable
that can be set to zero; otherwise a cycle would be formed. The same holds for
the path variables associated to the arcs corresponding to those edges. Similarly,
every two vertices in a connected component induced by fixed edges have their
paths already defined. Hence, the flow variables on this route can be set to one
while, at the same time, all other flow variables associated to arcs on alternative
paths can be set to zero.

Computing Minimum Dilation Spanning Trees in Geometric Graphs 303

4 A grasp for the mdstp

Greedy Randomized Adaptive Search Procedure (grasp) is a metaheuristic
widely applied to combinatorial optimization problems. Since it is reported to
produce high quality solutions within a short computing time [9], we employ
it to find good primal bounds for the mdstp. We assume that the reader is
familiar with the workings of a basic grasp algorithm. So, to explain its use in
the context of the mdstp, just the construction and the local search phases are
described.

Firstly, a solution is built by randomizing Prim’s algorithm [10] for building
a minimum spanning tree (mst) from the (complete) geometric graph G(P).
This randomization simply expands the purely greedy choice of a vertex to be
added to a partially built mst to a uniformly distributed selection of a vertex
from a Restricted Candidate List (rcl) of vertices. This list is constructed in
the following way. Let dm (Dm) denote the length of the shortest (longest) edge
connecting the current (incomplete) mst to the vertices that are not yet part
of this mst. Given an α in the interval [0, 1] we take into the rcl each vertex
of G(P) whose distance to the current (incomplete) mst is within the range
[dm, (1 − α)dm + αDm]. Clearly, the smaller α is, the shorter the rcl will be,
and the choice of α = 0 leads to a purely greedy algorithm, while α = 1 turns it
into a randomized one. In our implementation, at each iteration of the grasp’s
construction phase, a new value for α is chosen from the set {0.0, 0.1, . . . , 1.0}
with equal probability, leading to a likely diverse sequence of viable solutions.

Secondly, in the local search phase, attempts are made to improve known
solutions. For the sake of efficiency, the perturbations defining the neighborhood
of a solution should be quickly computable. That is why, for the mdstp the
naive approach of merely replacing a tree edge for another is undesirable. After
all, that might drastically alter the dilation between unpredictably many pairs
of vertices in an arbitrary way and even the tree’s. For this reason, we devised
a controlled method for navigating within a neighborhood of a given solution,
called Triangle. Let u and v two non-adjacent vertices in a spanning tree T and
z be a vertex in the unique path from u to v in T . Suppose that a and b are the
vertices adjacent to z in this path. Denote by TA (TB) the subtree containing
vertex a (b) and obtained from T by removing the edge (a, z) ((b, z)). Replacing
(a, z) by (a, b) changes T in such a way that the dilation of the pair {u, v}
decreases. On the other hand, by the triangle inequality, we know exactly which
pairs of vertices may have their dilation worsened. To see this, define A and B
as the set of vertices in TA and TB , respectively, and Z = P − (A ∪ B). Clearly,
the pairs of vertices from A × Z are the only ones for which the dilation needs
to be recalculated. Although there may still be O(n2) such pairs, in practice,
significant reductions in computing times were observed when we applied this
method. A homologous analysis holds if we replace (b, z) by (b, a), instead.

To overcome the drawback of the Triangle method, which generates only
two neighbor solutions, we devised an extended version called Path. This new
neighborhood iterates the Triangle local search through consecutive triples of
vertices along a path joining two vertices with maximum dilation. Path achieves
a compromise between neighborhood size and the time needed to explore it. The
attentive reader will realize that, given a path of length k, the size of the Path

304 A.F. Brandt et al.

neighborhood is 2k, instead of only 2 for Triangle. Although exploring more
solutions is, of course, more expensive, our tests showed that the slight increase
in running time was compensated by the gain in quality of the yielded solutions.

Two strategies to halt local search are commonly applied: first improvement
and best improvement (see [11]). Experimentation lead us to chose the former,
since best improvement proved too time consuming for the minute benefit it
generates after its inherently exhaustive search.

Our implementation also applies path relinking [11] to a pool of elite solutions.
This pool is created throughout the iterations to store the best known solutions,
cost wise, as well as those whose costs are within a certain threshold of the
best primal bound. Moreover, diversity, measured according to the number of
elements in the symmetric difference between two solutions, is also favored. To
describe the path relinking process employed here, given two elite solutions S
and S′, we need to outline how to iteratively perturb S into S′, giving us a
path in the search space within which a new improved solution is likely to be
found [11]. Suppose that S and S′ are the starting and target trees, respectively.
The path relinking S and S′ is traversed as follows. An edge e ∈ S′ −S is added
to S creating a cycle. The removal of another edge in S−S′ from this cycle leads
to a new tree which is a step closer to S′. Clearly, k such iterations create k new
trees among which there may be one with lower dilation than both S and S′.

Lastly, notice that the size of the elite set influences the overall performance
of grasp. Too many solutions makes the algorithm run too slow, whereas too
few solutions may thwart its ability to generate any improvement. In our tests,
we found that a good strategy is to store all the solutions found during the
grasp iterations that resulted in an update of the best known solution up to
that point. In our implementation, path relinking is executed after 1000 iterations
of the loop construction phase/local search phase have been completed.

We conclude this section reiterating that, in this paper, grasp must be viewed
solely as a tool to help in attaining optimality. An in depth investigation on the
theme of heuristics, in its own right, for themdstp is deserving of future attention.

5 Computational Results

This section discusses the experiments we carried out. We begin by describing
the characteristics of our benchmark and of the computational environment. We
continue the section with the presentation and analyses of the results obtained.

Instances. We generated a benchmark consisting of instances comprised of uni-
formly distributed points on a 10×10 square. The coordinates of the points and
the distances between two points were both rounded to six decimal places in order
to avoid arithmetic pitfalls and to facilitate future comparisons. To promote the
fulfillment of the latter goal, the entire benchmark is made available for download
at www.ic.unicamp.br/∼cid/Problem-instances/Dilation. The set consists
of 30 instances for each number of points from the sequence 10, 12, 14, 16, 18, 20.

Computing Environment. The results reported here were obtained on iden-
tical machines featuring: Intel R© Xeon R© CPU E3-1230 V2 @ 3.30GHz (4 cores
and 8 threads) processors; 32GB of RAM; running OS Ubuntu 12.04; using a

Computing Minimum Dilation Spanning Trees in Geometric Graphs 305

g++ 4.6.3 compiler and the milp solver IBM R© ILOG R© CPLEX R© Optimization
Studio 12.5.1. The solver was allowed to use all 8 threads simultaneously and to
run for at most 30 minutes. Most CPLEX parameters were left at default values,
although some changes are noteworthy: (i) the use of Traditional Branch & Cut
search method instead of Dynamic Search; (ii) higher branching priorities were
enforced on the edge variables in detriment of the arc ones; and (iii) the relative
and absolute gaps were set to 10−7.

Results. We now discuss the relevant tests we ran to assess the efficiency of
our algorithm. Since the application of our approach depends on the computa-
tion of good primal bounds, our first analysis focus on the performance of the
grasp metaheuristic. To evaluate that, we present in Table 1 statistics relative
to the execution of the heuristic on instances for which the optimum was found.
The first column of this table displays the number of points per instance. Two
groups of four columns follow reporting minimum, average, standard deviation
and maximum values, respectively for the gap relative to the optima and for the
running times (in milliseconds).

As seen from these results, grasp solutions are of very high quality, at least
for the instance sizes considered in our tests. Despite some fluctuation in the
gaps, one can perceive a slight loss in quality as the sizes of the instances increase.
Since the main purpose of this work is to compute optimal solutions and, as we
will see, we are still unable to prove optimality for instances of more than 20
points, we decided not to invest more time in improving the grasp heuristic at
this time. Clearly, since the mdstp is NP-hard, pursuing this goal would be an
interesting investigation in its own right. But, for now, let us just remark that
the CPU times spent by the heuristic, as is, are insignificant on our benchmark.

Next, we analyze the roles played by the primal information and by the
preprocessing in the computation of optimal solutions. To accomplish this task,
five different variants of the milp solver were tested: (i) None: corresponds to
the execution of CPLEX with default options and the complete model given in
Section 2; (ii) Sol: same as in (i), but with CPLEX also fed with the upper
bound as well as an optimal solution; (iii) PreP: same as in (i) except that, in
this case, the model is reduced through the preprocessing discussed in Section 3;
(iv) UB+PreP: same as in (iii) but, besides the preprocessing, the optimum is
also given as an upper bound to CPLEX; and, finally, (v) Sol+PreP: same as in
(iv) but adding as the part of the input an optimal solution.

At first glance, the usage of optimal solutions and bounds in these initial
tests may sound strange. However, this information was given instead of grasp
outcomes because, as said before, the heuristic results present some oscillation
even when equal sized instances are compared. Besides, the quality of the heuris-
tic solution was also seen to deteriorate slightly as the instance size increases. By
using optimal information, we intend to minimize the effects of these phenomena
which, otherwise, could lead to biased conclusions. The influence of the degra-
dation of the quality of the primal information in the computation of optimal
solutions is evaluated later in this section.

The strategy to assess the contributions of the present work should now be
clear from the choice of these variants. An obvious way to speed up the running
time of an enumeration algorithm is to provide as input a primal bound and a

306 A.F. Brandt et al.

solution with cost equal to this bound. A comparison between the performances
of None and Sol answers the question on how much is gained by applying this
standard technique to the mdstp.

Notice that state-of-the art solvers like CPLEX, are equipped with powerful
algebraic preprocessing routines that, when fed with primal information, can
dramatically reduce the milp formulation. Hence, to evaluate the importance
of our geometric preprocessing, we tested the three remaining variants, all of
which include this preprocessing. In PreP we constrain ourselves to the model

Table 1. Statistics for the grasp metaheuristic

Size
Dilation Gap to Opt. Sols (%) Grasp Runtime (ms)
Min Average Std Dev. Max Min Average Std Dev. Max

10 0 0,07 0,41 2,23 22 44,3 8,8 60
12 0 0,14 0,76 4,15 48 65,8 10,9 90
14 0 0,05 0,22 1,12 65 93,7 17,7 140
16 0 0,01 0,06 0,31 100 125,5 14,4 157
18 0 0,38 1,47 7,38 113 148,2 23,3 198
20 0 0,47 1,62 7,37 147 186,9 16,6 230

Table 2. Statistics for five variations of the milp solver

Size Method # Opt
Sols

Avg Exec
Time (s)

Feas
Sols

% Avg
Gap

Wins
Avg Fxd
Edges

Avg free
vars (%)

10 Sol+PreP 30 0.2 0 – 23 4.0 32.3
UB+PreP 30 0.2 0 – 7 4.0 32.3
PreP 30 0.3 0 – 0 4.0 32.3
Sol 30 1.5 0 – 0 0.0 100.0
None 30 5.0 0 – 0 0.0 100.0

12 Sol+PreP 30 1.5 0 – 29 4.5 35.4
UB+PreP 30 1.8 0 – 1 4.5 35.4
PreP 30 1.9 0 – 0 4.5 35.4
Sol 30 22.5 0 – 0 0.0 100.0
None 30 83.1 0 – 0 0.0 100.0

14 Sol+PreP 30 4.9 0 – 27 4.4 39.6
UB+PreP 30 7.6 0 – 3 4.4 39.6
PreP 30 7.7 0 – 0 4.4 39.6
Sol 30 121.0 0 – 0 0.0 100.0
None 27 588.0 3 4.3 0 0.0 100.0

16 Sol+PreP 30 42.3 0 – 24 4.1 45.8
UB+PreP 30 54.6 0 – 4 4.1 45.8
PreP 30 64.3 0 – 2 4.1 45.8
Sol 20 387.0 10 25.6 0 0.0 100.0
None 3 1661.0 27 39.7 0 0.0 100.0

18 Sol+PreP 27 222.1 3 43.5 19 4.7 46.6
UB+PreP 26 211.1 2 27.4 5 4.7 46.6
PreP 26 208.4 3 38.8 3 4.7 46.6
Sol 12 647.4 18 37.8 0 0.0 100.0
None 0 – 5 72.1 0 0.0 100.0

20 Sol+PreP 21 261.5 9 44.7 12 4.1 49.1
UB+PreP 23 466.7 0 – 5 4.1 49.1
PreP 22 400.3 4 46.5 6 4.1 49.1
Sol 4 1328.6 26 41.3 0 0.0 100.0
None 0 – 13 95.2 0 0.0 100.0

Computing Minimum Dilation Spanning Trees in Geometric Graphs 307

Fig. 2. Variation of the number of optima found as the primal bound deteriorates

reduction, leaving out the primal information. To measure the effect of adding
the latter, piece by piece, we first provide only the upper bound in UB+PreP
and, finally, the complete information in Sol+PreP.

The results obtained by the milp variants are summarized in Table 2. For
each instance size displayed in the first column, there are five rows, each cor-
responding to one variant, as shown in the second column. The third column
exhibits the number of optima obtained and the next column shows the aver-
age execution time achieved by the corresponding variant, over the instances
for which it reached a proven optimum. The fifth column shows the number
of instances for which optimality was not proved but that the solver found a
feasible solution. In the following column, the value corresponds to the aver-
age gaps of the latter solutions. The seventh column gives the total number of
instances where the variant outperformed the remaining ones. The eighth and
ninth columns allow an assessment of the model reductions resulting from the
geometric preprocessing. They include, first, reports of the average number of
variables selected by the edge fixing routine, followed by the average percentage
of variables that remain in the model after all preprocessing routines have been
executed. Percentages are calculated in terms of the total number of variables
in the complete milp model.

Consider the 90 instances of the three largest sizes. Variant None could only
solve 3 of them to optimality, suggesting that the milp model, alone, is not
very useful. A substantial gain was obtained when the primal information was
made available in Sol as 36 instances were now solved to optimality. Finally,
the contribution of the preprocessing can be fully appreciated when we compare
these numbers to those of the three last variants. One can see that any of them
solved at least twice as many instances as the other variants where no geometric
preprocessing was performed.

Once we have established the relevance of our geometric preprocessing, the
3 variants that use it should still be compared. The numbers of proven optima
were 48, 49 and 48 for Sol+PreP, UB+PreP and PreP, respectively. This might
suggest a small advantage for UB+PreP. However, a closer analysis of the data

308 A.F. Brandt et al.

shows that the number of feasible solutions (including optimal ones) obtained by
these variants were 180, 171 and 175, respectively, leaving the UB+PreP variant
behind the other two and Sol+PreP in a better position. The advantage of
Sol+PreP becomes even more apparent when we turn our attention to the overall
performance of the algorithm, including the evaluation of the running times. As
can be seen on column “Wins”, Sol+PreP has a total of 134 instances, compared
to 25 of UB+PreP and 11 of PreP. Concerning the execution times (fourth
column), the benefit of employing the routines in Section 3 speaks for itself: just
contrast None vs. PreP and Sol vs. Sol+PreP. Therefore, one concludes that
the geometric preprocessing is crucial for the success of the algorithm.

The last two columns of Table 2 confirm that the preprocessing is indeed
a powerful tool for model reduction. In this context, the primal information is
fundamental since, without an upper bound, no preprocessing could have been
done, in the first place. Moreover, the knowledge of a solution with cost equal
to this bound accelerates the convergence of the algorithm, emphasizing the
importance of obtaining good primal solutions, as done by our grasp.

Since grasp is a heuristic, we cannot guarantee the quality of the primal
information yielded by the procedure. Therefore, another relevant issue to con-
sider is how much the overall algorithm’s performance deteriorates as the upper
bound used for preprocessing and given as input to the solver worsens. This anal-
ysis can be carried out based on the bar graph shown in Fig. 2. The data refer
to the executions of the milp variant UB+PreP over the 30 instances of size 18
with the upper bounds given by the dilation of the optimal solution multiplied
by 1.00, 1.05, 1.10 and 1.25. The bars reflect the cumulative number of optimal
solutions found for each of these multiplying factors and measured at every 180
seconds for up to half an hour. For example, after 720 seconds, the number of
instances solved was 25, 19, 15 and 6 for each of the aforementioned multiply-
ing factors. From this graph, it is quite clear that the algorithm’s performance
declines rapidly as the upper bound decreases. From the previous analyses, this
effect is likely to be a repercussion of the loss of efficiency of the preprocessing.

6 Future Directions

Some issues are currently being investigated to improve the method presented
here, including: (i) the customization of the choice of the branch variable accord-
ing to geometric properties; (ii) the use of grasp and geometric preprocessing in
all nodes of the enumeration tree; and, (iii) the use of other milp formulations.

References

1. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, New York (2007)

2. Peleg, D., Schäfer, A.A.: Graph spanners. Journal of Graph Theory 13(1), 99–116
(1989)

3. Cheong, O., Haverkort, H., Lee, M.: Computing a minimum-dilation spanning tree
is NP-hard. Comput. Geom. Theory Appl. 41(3), 188–205 (2008)

4. Aronov, B., de Berg, M., Cheong, O., Gudmundsson, J., Haverkort, H., Smid,
M., Vigneron, A.: Sparse geometric graphs with small dilation. Computational
Geometry 40(3), 207–219 (2008)

Computing Minimum Dilation Spanning Trees in Geometric Graphs 309

5. Sigurd, M., Zachariasen, M.: Construction of minimum-weight spanners. In: Albers,
S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 797–808. Springer, Heidelberg
(2004)

6. Farshi, M., Gudmundsson, J.: Experimental study of geometric t-spanners. J. Exp.
Algorithmics 14, 3:1.3–3:1.39 (2009)

7. Klein, R., Kutz, M.: Computing geometric minimum-dilation graphs Is NP-hard.
In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 196–207.
Springer, Heidelberg (2007)

8. Magnanti, T.: Wolsey: Optimal trees. CORE discussion paper. Center for Opera-
tions Research and Econometrics (1994)

9. Resende, M.G.C., Ribeiro, C.C.: Greedy randomized adaptive search procedures:
advances, hybridizations, and applications. In: Glover, F., Kochenberger, G.A.
(eds.) Handbook of Metaheuristics, vol. 57. International Series in Operations
Research and Management Science. second edn., pp. 219–249. Springer (2009)

10. Prim, R.C.: Shortest connection networks and some generalizations. The Bell Sys-
tems Technical Journal 36(6), 1389–1401 (1957)

11. Ribeiro, C.C., Resende, M.G.C.: Path-relinking intensification methods for stochas-
tic local search algorithms. Computers and Operations Research 37, 498–508
(2010)

Speedy Colorful Subtrees

W. Timothy J. White1(B), Stephan Beyer2, Kai Dührkop1,
Markus Chimani2, and Sebastian Böcker1

1 Chair for Bioinformatics, Friedrich-Schiller-University, Jena, Germany
{tim.white,kai.duehrkop,sebastian.boecker}@uni-jena.de

2 Institute of Computer Science, University of Osnabrück, Osnabrück, Germany
{stephan.beyer,markus.chimani}@uni-osnabrueck.de

Abstract. Fragmentation trees are a technique for identifying molecu-
lar formulas and deriving some chemical properties of metabolites—small
organic molecules—solely from mass spectral data. Computing these
trees involves finding exact solutions to the NP-hard Maximum Col-

orful Subtree problem. Existing solvers struggle to solve the large
instances involved fast enough to keep up with instrument throughput,
and their performance remains a hindrance to adoption in practice.

We attack this problem on two fronts: by combining fast and effective
reduction algorithms with a strong integer linear program (ILP) formu-
lation of the problem, we achieve overall speedups of 9.4 fold and 8.8 fold
on two sets of real-world problems—without sacrificing optimality. Both
approaches are, to our knowledge, the first of their kind for this prob-
lem. We also evaluate the strategy of solving global problem instances,
instead of first subdividing them into many candidate instances as has
been done in the past. Software (C++ source for our reduction pro-
gram and our CPLEX/Gurobi driver program) available under LGPL at
https://github.com/wtwhite/speedy colorful subtrees/.

1 Introduction

Metabolites—small molecules involved in cellular reactions—provide a direct
functional signature of cellular state. Untargeted metabolomics aims to identify
all such compounds present in a biological or environmental sample, and the
predominant technology in use is mass spectrometry (MS). This remains a chal-
lenging problem, in particular for the many compounds that cannot be found in
any spectral library [17,18]. Here we consider tandem mass spectra (MS2), which
measure the masses and abundances of fragments of an isolated compound.

A first step toward full structural elucidation of a compound is the iden-
tification of its molecular formula. While it is possible to derive the molecular
formula for a given exact mass, measurement inaccuracies have to be considered.
Even for high-accuracy instruments, when using an appropriate error range for
the mass measurement there may be thousands of possible molecular formulas
for a given mass [7]. Approaches for identifying the correct formula include iso-
tope pattern analysis [3], fragmentation pattern analysis [2], or a combination
of both [8,9,11,12,15].
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 310–322, 2015.
DOI: 10.1007/978-3-319-21398-9 25

https://github.com/wtwhite/speedy_colorful_subtrees/

Speedy Colorful Subtrees 311

Computation of fragmentation trees [12] is a highly powerful method for frag-
mentation pattern analysis: In the 2013 CASMI (Critical Assessment of Small
Molecule Identification) Challenge for identifying molecular formulas, a com-
bination of fragmentation tree and isotope pattern analysis was selected “best
automated tool” [6,10]. In addition, fragmentation tree structure can help to
derive information about an unknown compound’s structure [13,16]. Peaks in
the spectrum are annotated with molecular formulas by looking for consistent
explanations, using knowledge of possible fragmentation events and their prob-
abilities. This translates into finding exact solutions to the NP-hard Maximum

Colorful Subtree (MCS) problem, described later. Unfortunately the prob-
lem instances generated can contain over 100,000 edges, and the performance
of existing approaches cannot keep up with the throughput of the MS instru-
ments, sometimes limiting the method’s appeal in practice. Heuristics often fail
to find the optimal solution, and a simple integer linear program (ILP) has been
identified as the fastest exact method [14].

We attack this problem on two fronts: by combining fast and effective reduc-
tion algorithms with facet-defining inequalities for the ILP formulation of the
problem, we achieve overall speedups of 9.4 fold and 8.8 fold on two sets of real-
world problems—without sacrificing optimality. Both approaches are, to our
knowledge, the first of their kind for this problem. We also evaluate the strategy
of solving global problem instances, instead of first subdividing them into many
candidate instances as has been done in the past. Here, we will not evaluate the
quality of solutions, as these are identical for any exact method; also, we will
assume the edge weights of the MCS problem to be given [5].

1.1 Fragmentation Trees Are Maximum Colorful Subtrees

Consider an MS2 spectrum containing k peaks p1, . . . , pk, having mass-to-charge
(m/z) ratios mi and peak intensities qi for 1 ≤ i ≤ k, listed in decreasing
m/z order. Following Böcker and Rasche [2], we use the Round-Robin algorithm
[1] to find all possible explanations of the parent peak—that is, all candidate
molecular formulas having m/z approximately equal to m1. Each such formula
becomes the 1-colored root vertex in a separate MCS instance graph. Within
each MCS instance, i-colored vertices are added for each possible explanation of
peak pi, for all 2 ≤ i ≤ k. Whenever the molecular formula of v is a subformula of
the formula of u, indicating that v could possibly be generated by fragmenting u,
we add a directed edge (u, v) and assign an edge weight (which may be positive,
negative or zero) according to a probabilistic model of fragmentation. Intuitively,
a rooted colorful subtree T in one of these graphs maps each peak to at most
one molecular formula in such a way that all formulas in T are consistent with
fragmentation of the candidate formula at the root, with the tree of highest total
weight corresponding to the best such explanation. By calculating the weights of
these optimal trees for all MCS instances and ranking them, the best candidate
formula for the spectrum can be determined. Fig. 1 shows an example.

312 W.T.J. White et al.

C22H23NO7
413.147

C22H21NO6
395.137

C22H12NO2
322.087

C19H14O5
322.084

C22H10NO
304.076

C19H12O4
304.074

C21H12NO
294.092

C18H14O4
294.089

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
el
at
iv
e
ab
un

da
nc
e

m/z
280 300 320 340 360 380 400 420

H2O

H2O

CO

C3H7NO

Fig. 1. Example MS2 spectrum and resulting MCS instance. Nodes (peak explanations)
show their molecular formulas and weights. Edges (fragmentation events) in the optimal
subtree are solid and labeled with their neutral losses. Edge weights not shown.

The full version of this paper discusses a technique for solving a single global
MCS instance representing the entire problem, instead of multiple candidate
instances.

Formally, an instance of the MCS problem is given by (V,E,C,w, c, r) where
V is the set of vertices, E � V 2 is the set of directed edges, C is the set of colors,
w : E → R is the weight function on edges, c : V → C is the function defining
colors for each vertex, and r ∈ V is a distinguished vertex called the root. The
graph (V,E) is acyclic, and there is a path from r to every v ∈ V .

A subgraph G′ ⊆ G is colorful iff all vertices in G′ have different colors. The
weight of an edge e = (u, v) ∈ E is given by w(u, v), and we define w(u, v) = −∞
when (u, v) /∈ E. We further extend this function to operate on any subgraph G′

in the usual way, by summing over all edges in G′. A subgraph X ⊆ G dominates
a subgraph Y ⊆ G iff w(X) ≥ w(Y).

We would like to assign weights to both edges and vertices: the former to
reflect the likelihood of the specific neutral loss in question; the latter to capture
peak-specific or explanation-specific information such as peak intensity, mass
deviation between measurement and prediction, and estimates of formula plau-
sibility. In order to represent a weight function w′ : V ∪ E → R on both vertices
and edges using a weight function w : E → R on edges only, we can simply
set w(u, v) := w′(u, v) + w′(v) for each (u, v) ∈ E, since every valid subtree
containing v must contain exactly one incoming edge (u, v).

Our goal is to find a maximum colorful r-rooted subtree T of G: that is,
among all subtrees rooted at r and in which at most one vertex of any given
color appears, a subtree having maximum total weight. This problem is NP-
hard. It remains NP-hard even if G is a tree with unit edge weights [2], or if
color constraints are dropped [14].1

We say that a subgraph G′ is below a vertex u iff there is a path of zero or
more edges from u to every vertex in G′. We denote by Gu the unique maximal

1 When edge weights are constrained to be nonnegative and color constraints are
dropped, all leaves will appear in some optimal solution and the problem reduces to
the polynomial-time-solvable maximum spanning tree problem.

Speedy Colorful Subtrees 313

subgraph of G below u. A color i is below u iff there exists a path from u to
a vertex of color i. Furthermore a color i is below a color i′ iff there exists an
i′-colored vertex u such that i is below u. A subtree T of a graph G is full in
G iff it is rooted at some vertex u of G, and every edge in G below u is in T .
We use the term “cost” to describe a (typically negative) quantity that is to be
added to a weight to produce another weight. We also declare a vertex to be an
ancestor of itself, and use the adjective strict to denote non-self ancestors.

Let n := |V |, m := |E|, and k := |C|. Let δ−(U) := {(v, u) | u ∈ U, v /∈ U},
δ+(U) := {(u, v) | u ∈ U, v /∈ U}, and δ(U) := δ−(U) ∪ δ+(U). When U = {u}
we dispense with the braces. We also define Vi := {v ∈ V | c(v) = i}.

2 Data Reduction

Our data reduction rules seek to shrink an MCS instance X to a smaller instance
X ′ by deleting edges that are provably unnecessary—that is, edges that are
simultaneously absent from some optimal solution to X. Here we outline our
rules and their computationally efficient implementations.

Vertex Upper Bounds. The following sections describe upper bounds U(·) on
the maximum-weight subtree rooted at some vertex u. Particular upper bounds
are named by subscripting U ; when just U with no subscript appears, it means
that any arbitrary upper bound can be substituted. Trivially we have that
U(u) ≥ 0 for all u, since the 0-weight tree containing just u and no edges is
a subtree rooted at u. A computationally useful property of all vertex upper
bounds is that they remain valid in the face of edge deletions, enabling reduc-
tions to safely delete multiple edges in between bound updates.

Child Upper Bound. A simple upper bound Uχ(·) for a given vertex u can be
obtained by considering the upper bounds of u’s children and the edges leading
from u to them. Specifically we may choose, among all u’s outgoing edges to
i-colored children (u, v) ∈ δ+(u) ∩ δ−(Vi), either the edge (u, v) that maximises
w(u, v) + U(v) or no edge if this expression is negative. Summing across colors
i yields equation (1). This bound tends to become very loose for vertices near
the top of the graph, since high-weight edges near the bottom of the graph will
usually be visited by large numbers of paths. Nevertheless it is capable of elim-
inating many edges near the bottom of the graph when applied to the vertex
upper bound reduction rule. It can be considerably strengthened by incorporat-
ing other vertex upper bounds, such as the Colorful Forest upper bound.

Uχ(u) =
∑

i∈{c(v)|(u,v)∈E}
max

{
0, max

(u,v)∈E,
c(v)=i

(
w(u, v) + U(v)

)}
(1)

We calculate this bound in O(m log k) time and O(n+k) space using dynamic
programming.

314 W.T.J. White et al.

Colorful Forest Upper Bound. We next describe an upper bound Uλ(·)
obtained by relaxing the subtree constraint. Consider a vertex u, and the sub-
graph Gu below u. Suppose that for each color i below u we choose either no
edge, or some edge (v, v′) ∈ E(Gu) such that c(v′) = i. All colorful forests in
Gu may be generated by choosing incoming edges in this way, and this set of
subgraphs contains the set of all colorful subtrees rooted at u, so the problem of
finding a maximum-weight colorful forest in Gu is a relaxation of the u-rooted
MCS problem. The optimal solution to the relaxed problem is easily found by
choosing, for each color i, the maximum-weight incoming edge when this is pos-
itive and no edge otherwise, yielding an upper bound on the weight of a colorful
subtree rooted at u. This is given in equation (2).

Uλ(u) =
∑

i∈C

max
{

0, max
(v,v′)∈E(Gu),

c(v′)=i

w(v, v′)
}

(2)

Dynamic programming permits calculation in O(km) time and O(kn) space.

Strengthening the Colorful Forest Bound. The Colorful Forest bound can
be strengthened by noticing that whenever the forest that it constructs fails to
be a tree, we can determine an upper bound on the cost that must be incurred
to transform it into one. This upper bound can be added to the weight of the
forest to produce a new, stronger vertex upper bound UΛ(·). Here we merely
mention that careful implementation allows this stronger bound to be computed
in the same time complexity as the original; for a full description, see the full
version of this paper.

Anchor Lower Bound. Given that a vertex u is in the solution T , what is
a lower bound La(u, v) on the cost of forcing in a given vertex v? Here we
assume that T does not already contain a c(v)-colored vertex, and only consider
attaching v to a vertex in T by a single edge.

If v is a child of u, then clearly w(u, v) is a possibility. Regardless, it may still
be possible to attach v to a strict ancestor of u. Specifically, since the “anchor”
vertex u is in T by assumption, either u = r or one of the parents of u is also in
T . Therefore to form a lower bound, we have the option of attaching v to u if
this is possible, or to the worst of u’s parents, recursively:

La(u, v) =

{
max

{
w(u, v),min(p,u)∈E La(p, v)

}
, u
= r

w(r, v), u = r

recalling that we define w(u, v) = −∞ whenever (u, v) /∈ E. (La(u, v) will pro-
duce −∞ iff there is some path from r to u that contains no vertex with an edge
to v.)

La(·, ·) can be computed via dynamic programming in O(n2) time and space.
It is also helpful to define La′(u, v) := min(p,u)∈E La(p, v). This variant of

La(·, ·) excludes any direct edge from u to v from consideration.

Speedy Colorful Subtrees 315

Slide Lower Bound. Suppose we have a solution T which contains a vertex
u. We want to calculate a lower bound Ls(u, v) on the cost of changing T into
a new solution T ′ by replacing u with another given vertex v of the same color
as u. We call this the Slide lower bound because in the usual representation of
fragmentation graphs, vertices of the same color occupy the same row, so forcing
v into and u out of T is akin to horizontally sliding the endpoint of an edge
in T from u to v. Such a modification may in general completely change the
vertices and edges in the tree below u, subject to the important restriction that
it respects color usage: that is, it only ever transforms a subtree Tu into a subtree
T ′

v such that c(T ′
v) ⊆ c(Tu). This reflects the fact that we cannot safely insert

vertices of new colors, because these colors may already be in use by other parts
of the solution. The full version of this paper describes how to compute Ls(u, v)
by dynamic programming in O(mnk) time and space, where nk is the maximum
number of vertices of any color.

Vertex Upper Bound Rule. If for some edge (u, v) we have that w(u, v) +
U(v) ≤ 0, then clearly any solution containing (u, v) is dominated by a solu-
tion in which (u, v) and any subtree below it have been deleted, implying that
(u, v) can be safely deleted. Applying this rule before other rules removes certain
uninteresting special cases from consideration.

Slide Rule. Whenever two edges exist from a vertex u to distinct vertices v
and v′ of the same color, there is an opportunity to apply the Slide reduction
rule. If

w(u, v′) − w(u, v) + Ls(v, v′) > 0 (3)

holds then any solution T containing (u, v) can be improved by sliding (u, v) to
(u, v′). This rule can be strengthened by replacing the first term with La(u, v′),
which affords us the chance to connect v′ to an ancestor of u. We may then
usefully allow v′ = v to eliminate edges (u, v) that can always be replaced with
a better edge (a, v), where a is a strict ancestor of u.2

Dominating Path Rule. The idea behind the Slide rule can be taken further:
instead of trying to replace an edge (u, v) with another single edge from an
ancestor of u to a vertex of the same color as v, we can replace it with a chain of
d edges connecting vertices v1, . . . , vd+1, with the starting point v1 an ancestor
of u and the endpoint vd+1 obeying c(vd+1) = c(v) as before. However we must
now pay a price for forcing in each internal vertex vj for all 2 ≤ j ≤ d in
this chain, because the solution may already contain some different vertex of
color c(vj) that needs to be dealt with. This can be done for each such internal
vertex by using the Slide lower bound. Suppose the path we wish to force in
contains some i-colored vertex x, but the solution already contains a conflicting

2 The full version of this paper discusses a subtlety regarding floating-point arithmetic
and comparisons for equality.

316 W.T.J. White et al.

vertex—an i-colored vertex y
= x. The solution can be patched up by deleting
the incoming edge to y and sliding any subtree below y so that it appears below
x for a total cost of Ls(y, x)−w(p, y), where p is y’s parent in the solution. Since
we do not know, for any color i, which i-colored vertex (if any) is already in
the solution, we must take the worst case over all i-colored vertices and all their
possible incoming edges:

Lforce(x) = min
y∈Vc(x)

(
Ls(y, x) − max

(p,y)∈E
w(p, y)

)
(4)

It is now possible to state a recursion to calculate an upper bound on the cost
to force in a given vertex x, assuming that a vertex u is already in the solution:

f(u, x) = min
{

0, α, α + Lforce(x)
}

(5)

α = max
{

La(u, x), max
p, (p,x)∈E

(
f(u, p) + w(p, x)

)}
(6)

We now have that an edge (u, v) can be deleted if there exists an edge (x, z)
such that c(z) = c(v) and w(x, z) + f(u, x) + Ls(v, z) > w(u, v). f(u, x) can be
calculated in O(n) space because its first argument never varies during recursion.

Two further reduction rules, the Implied Edge rule and the Color Combining
rule, are described in the full version of this paper.

3 Integer Linear Programming

Rauf et al. [14] surveyed different methods to obtain optimal solutions of the
MCS problem, including an integer linear program (ILP). We extend this to
obtain a strictly stronger LP relaxation, and solve the resulting ILP using the
cutting plane method.

The ILP of Rauf et al. [14] is equivalent to

max
∑

(u,v)∈E

w(u, v)xe (7a)

s. t.
∑

e∈δ−(Vi)

xe ≤ 1 ∀i ∈ C, (7b)

∑

e∈δ−(v)

xe ≥ x(v,u) ∀(v, u) ∈ E, v
= r (7c)

xe ∈ {0, 1} ∀e ∈ E (7d)

where xe is assigned 1 iff the directed edge e is included in the solution. For
each v ∈ V \ {r} their formulation also includes a constraint

∑
e∈δ−(v) xe ≤ 1,

but these constraints are redundant due to the colorful forest constraints (7b),
which ensure that every color is contained in the solution at most once and that
there is at most one incoming directed edge for each vertex. The connectivity

Speedy Colorful Subtrees 317

r

v1

v2
v3

−3

2
2

2

(a) the input graph, each
vertex has a different color

r

v1

v2
v3

0.5

0.5
0.5

0.5

(b) optimal solution of LP
relaxation of (7) with
objective value 1.5

r

v1

v2
v3

1

1
1

(c) optimal solution of LP
relaxation of (7)∧(8) with
objective value 1

Fig. 2. An example showing that the LP relaxation of (7) including (8) is strictly
stronger than without (8)

constraints (7c) say that for each non-root vertex of V , there may only be out-
going directed edges if there is an incoming directed edge. Note that the ILP
has a linear number of constraints and variables, so its linear relaxation can be
solved as-is without separation.

In this paper, we add the constraints
∑

e∈δ−(Vi)

xe ≤
∑

f∈δ−(S)

xf ∀i ∈ C ∀S ⊆ V, Vi ⊆ S (8)

that prohibit splits and joins of fractional values. The constraints are valid for
the ILP since they only forbid the case where the left-hand side is 1 and the
right-hand side is 0, which could only happen if the result is not connected.
However, the constraints make the LP relaxation strictly stronger, as can be
seen in Fig. 2: in Fig. 2(b) the incoming value of v1 is 0.5 and the incoming
value of v3 is 1 which is forbidden by (8) for S = {v1, v2, v3} and i = c(v3).

We first solve the LP for a subset of the constraints. Then, we solve the
separation problem: we search (8) for one or more violated constraints, add them
to the LP, and re-solve, iterating the process until there are no further violated
constraints. Here, the separation problem can be answered by finding, for each
i ∈ C, a minimum r-Vi-cut in the solution network (V,E, x) and testing if it is less
than

∑
e∈δ−(Vi)

xe. Although (8) contains an exponential number of constraints,
the separation problem can be solved in polynomial time using a Maximum Flow
algorithm, and only a small number of iterations are typically needed to find a
feasible LP solution.

Theorem 1. (7b) and (8) provide facet-defining inequalities of the problem
polytope and are the only necessary ones.

The proof is given in the full version of this paper. Although just these
inequalities suffice for correctness, we also keep (7c) for evaluation in practice
because they do not need to be separated.

318 W.T.J. White et al.

4 Results and Discussion

We tested the performance of our reductions and ILP improvements on a spectral
dataset containing 1232 compounds that appear in the KEGG http://www.kegg.
jp metabolite database. From this we selected hard instances where the “classic”
ILP from Rauf et al. [14]—previously being the fastest exact method for the MCS
problem—showed poor running times. We computed fragmentation graphs for
each compound and built two datasets for evaluation:

– graphs100: A set containing the 10 hardest candidate instances as well as a
random sample of a further 90 hard candidate instances. We use this dataset
to measure the performance of our reductions and ILP improvements.

– fmm1: A set of 20 hard global instances, comprising 86358 candidate instances
in total. We use this dataset to compare the heretofore typical strategy of solv-
ing all candidate MCS instances separately, to solving a single global instance.
Results for this dataset are given in the full version of this paper.

Rauf et al. [14] found that 95 % of MCS instances could be solved by ILP in
under 5 seconds, while some took up to 5.6 minutes. To this end, it is sufficient
to consider the hard instances in our comparison. The full version of this paper
describes both the datasets and our results in more detail.

We implemented our reductions in ft reduce, a C++ program that under-
stands a simple language for describing the sequence of reductions to perform,
affording flexibility in testing different orders and combinations of reductions.
We selected three representative reduction scripts to analyse:

– R1 computes vertex upper bounds using both the Child bound and the Col-
orful Forest bound, and then applies the Vertex Upper Bound rule.

– R2 does the same, but uses the strengthened Colorful Forest bound.
– R3 applies R2 and then all remaining reduction rules.

Each script iterates until no more edges can be removed. The full version of this
paper gives the complete scripts.

We implemented our new ILP formulation using a C++ driver pro-
gram linked with CPLEX 12.6.0 (http://www.ibm.com/software/integration/
optimization/cplex-optimization-studio/). Our new facet-defining cuts can be
turned on or off using a command-line argument. In the remainder, we call
the solver with these cuts turned on “CPLEX+Cuts”, and the solver with them
turned off “CPLEX” or “stock CPLEX”. For the separation of the split-and-join
constraints, we use the Maximum Flow code by Cherkassky and Goldberg [4].
We also performed tests using Gurobi 5.5.0 (http://www.gurobi.com/), although
we were not able to implement the cuts efficiently using its callback framework.

All computational experiments were performed on a cluster of four 12-CPU
2.4GHz E5645 Linux machines with 48 GB RAM each. All reductions and all
ILP solver runs for the graphs100 dataset ran to completion with a RAM limit
of 4 GB and a time limit of 2 hours in place. For the fmm1 dataset, the memory
limit was increased from 4 GB to 12 GB, but some instances failed to run to

http://www.kegg.jp
http://www.kegg.jp
http://www.ibm.com/software/integration/optimization/cplex-optimization-studio/
http://www.ibm.com/software/integration/optimization/cplex-optimization-studio/
http://www.gurobi.com/

Speedy Colorful Subtrees 319

completion in the 2 hour limit. Our reduction program is single-threaded, and
ILP solvers were operated in single-threaded mode. All time measurements are
in elapsed (wallclock) seconds, and exclude time spent on I/O.

4.1 Results for graphs100 Dataset

Fig. 3 (left) shows the effectiveness of our reductions in shrinking the graphs100
problem instances. Every R1 or R2 reduction removed at least 11.6 % of the
edges, and every R3 reduction removed at least 35.4 %, with the average reduc-
tions being 62.4 %, 64.3 % and 70.4 % for R1, R2 and R3, respectively. Many
instances produced much larger reductions, and it is clear from Fig. 3 (left) that
reduced instance size is only very weakly correlated with original instance size.

Fig. 3 (right) compares the performance of various combinations of reduc-
tion scripts and ILP solvers. Two effects are immediately apparent: using the
strengthened ILP formulation improves average solution times for CPLEX by
at least a factor of 4; and applying either the R1 or R2 reduction script pro-
duces anywhere from a 30.9 % decrease (from unreduced to R2 on stock CPLEX)
to a 57.6 % decrease (from unreduced to R1 on CPLEX+Cuts). We note with
particular interest that applying both techniques is substantially more effective
than would be expected by performing each separately: assuming their effects
on running time to be independent, we would expect that both performing an
R1 reduction and changing from stock CPLEX to CPLEX+Cuts would result in
instances taking on average 0.69109∗0.25065 = 0.173 times as long to solve, but

0

50

100

150

200

250

#
ed
ge
s/
10
00

edges after R3
edges R3 R2
edges R2 R1
edges R1 unreduced

0

2000

4000

6000

8000

10000

12000

R
un

ni
ng

tim
e
(s
)

CPLEX CPLEX + Cuts Gurobi

Solver

Reduce instances
Solve original instances
Solve R1 instances
Solve R2 instances
Solve R3 instances

Fig. 3. Left: Comparing unreduced and reduced instance sizes for each graphs100
instance. The bottom bar in each stack gives the number of edges after R3 reduction;
higher bars correspond to weaker reductions, with the entire stack indicating the unre-
duced instance size. Right: Running time evaluation for all graphs100 instances. Each
column shows the total elapsed time needed to solve all 100 instances, with reduction
time broken out as a black bar at the top.

320 W.T.J. White et al.

in fact we find that they take only 0.106 times as long—a relative improvement
of 38.7 %, representing a 9.42-fold overall reduction in execution time.

In the other direction, we observe that both stock CPLEX and CPLEX+Cuts
take slightly longer to solve the R2 instances than the R1 instances, despite the
fact that every R2 instance’s edge set is a strict subset of the corresponding R1
instance’s edge set, having on average 5.1 % fewer edges. We can only surmise
that the additional edges removed by using the strengthened Colorful Forest
bound destroyed some structure sought by CPLEX’s various heuristics.

The more expensive R3 reductions are a net improvement for the stock
CPLEX and Gurobi solvers, but result in an overall slowdown for CPLEX+Cuts.

The highest memory usage on any unreduced instance was 1166MB, 1199MB
and 956MB for stock CPLEX, CPLEX+Cuts and Gurobi, respectively. On
reduced instances these figures dropped to 853MB, 498MB and 640MB. The
highest memory usage by our ft reduce program was 15MB, 15MB and 31MB
for R1, R2 and R3 reductions, respectively.

5 Conclusion

We have presented two highly effective techniques for accelerating the optimal
solution of MCS instances, thereby bringing practical de novo identification of
metabolite molecular formulas a step closer to reality. The two methods com-
plement each other admirably: applying both yields a larger speedup than the
product of the speedups obtained by applying each separately. Based on our
experiments with two real-world datasets, we find that it is essentially always
advantageous to use our strengthened ILP formulation and to apply our simple
reductions, and frequently advantageous to apply our more complex ones.

The lion’s share of the improvement in running times comes from our new,
facet-defining cutting planes for ILP solvers. ILP solvers have demonstrated
effectiveness across a wide range of hard optimization problems, and we antici-
pate that they will remain the dominant approach to solving MCS problems. At
the same time, the problem reductions we present offer immediately-available
speedups (and, often, memory usage reductions) not only for ILP formula-
tions but for any exact or heuristic solution method, such as the “brute force”
algorithm of Böcker and Rasche [2] or the Tree Completion heuristic of Rauf
et al. [14].

We noted above that the use of fragmentation trees goes beyond the determi-
nation of molecular formulas [13]: see for instance Shen et al. [16] where fragmen-
tation trees are used in conjunction with machine learning to search a molecular
structure database using fragmentation spectra. In this analysis pipeline, com-
puting fragmentation trees accounts for more than 90 % of the total running
time. To this end, faster methods for this task are highly sought.

Speedy Colorful Subtrees 321

References

1. Böcker, S., Lipták, Z.: A fast and simple algorithm for the Money Changing Prob-
lem. Algorithmica 48(4), 413–432 (2007)

2. Böcker, S., Rasche, F.: Towards de novo identification of metabolites by analyz-
ing tandem mass spectra. Bioinformatics 24, I49–I55 (2008). Proc. of European
Conference on Computational Biology (ECCB 2008)

3. Böcker, S., Letzel, M., Lipták, Z., Pervukhin, A.: SIRIUS: Decomposing isotope
patterns for metabolite identification. Bioinformatics 25(2), 218–224 (2009)

4. Cherkassky, B., Goldberg, A.: On implementing push-relabel method for the max-
imum flow problem. Algorithmica 19, 390–410 (1997)

5. Dührkop, K., Böcker, S.: Fragmentation trees reloaded. In: Przytycka, T.M. (ed.)
RECOMB 2015. LNCS, vol. 9029, pp. 65–79. Springer, Heidelberg (2015)

6. Dührkop, K., Hufsky, F., Böcker, S.: Molecular formula identification using isotope
pattern analysis and calculation of fragmentation trees. Mass Spectrom 3(special
issue 2), S0037 (2014)

7. Kind, T., Fiehn, O.: Metabolomic database annotations via query of elemental
compositions: Mass accuracy is insufficient even at less than 1 ppm. BMC Bioin-
formatics 7(1), 234 (2006)

8. Menikarachchi, L.C., Cawley, S., Hill, D.W., Hall, L.M., Hall, L., Lai, S., Wilder, J.,
Grant, D.F.: MolFind: A software package enabling HPLC/MS-based identification
of unknown chemical structures. Anal Chem 84(21), 9388–9394 (2012)

9. Meringer, M., Reinker, S., Zhang, J., Muller, A.: MS/MS data improves automated
determination of molecular formulas by mass spectrometry. MATCH-Commun
Math Co 65, 259–290 (2011)

10. Nishioka, T., Kasama, T., Kinumi, T., Makabe, H., Matsuda, F., Miura, D.,
Miyashita, M., Nakamura, T., Tanaka, K., Yamamoto, A.: Winners of CASMI2013:
Automated tools and challenge data. Mass Spectrom 3(special issue 2), S0039
(2014)

11. Pluskal, T., Uehara, T., Yanagida, M.: Highly accurate chemical formula prediction
tool utilizing high-resolution mass spectra, MS/MS fragmentation, heuristic rules,
and isotope pattern matching. Anal Chem 84(10), 4396–4403 (2012)

12. Rasche, F., Svatoš, A., Maddula, R.K., Böttcher, C., Böcker, S.: Computing
fragmentation trees from tandem mass spectrometry data. Anal Chem 83(4),
1243–1251 (2011)

13. Rasche, F., Scheubert, K., Hufsky, F., Zichner, T., Kai, M., Svatoš, A., Böcker,
S.: Identifying the unknowns by aligning fragmentation trees. Anal Chem 84(7),
3417–3426 (2012)

14. Rauf, I., Rasche, F., Nicolas, F., Böcker, S.: Finding maximum colorful subtrees in
practice. J Comput Biol 20(4), 1–11 (2013)

15. Rojas-Chertó, M., Kasper, P.T., Willighagen, E.L., Vreeken, R.J., Hankemeier, T.,
Reijmers, T.H.: Elemental composition determination based on MSn. Bioinformat-
ics 27, 2376–2383 (2011)

16. Shen, H., Dührkop, K., Böcker, S., Rousu, J.: Metabolite identification through
multiple kernel learning on fragmentation trees. Bioinformatics 30(12), 157–164
(2014). Proc. of Intelligent Systems for Molecular Biology (ISMB 2014)

322 W.T.J. White et al.

17. Tautenhahn, R., Cho, K., Uritboonthai, W., Zhu, Z., Patti, G.J., Siuzdak, G.: An
accelerated workflow for untargeted metabolomics using the METLIN database.
Nat Biotechnol 30(9), 826–828 (2012)

18. Wishart, D.S., Knox, C., Guo, A.C., Eisner, R., Young, N., Gautam, B., Hau,
D.D., Psychogios, N., Dong, E., Bouatra, S., Mandal, R., Sinelnikov, I., Xia, J.,
Jia, L., Cruz, J.A., Lim, E., Sobsey, C.A., Shrivastava, S., Huang, P., Liu, P.,
Fang, L., Peng, J., Fradette, R., Cheng, D., Tzur, D., Clements, M., Lewis, A.,
Souza, A.D., Zuniga, A., Dawe, M., Xiong, Y., Clive, D., Greiner, R., Nazyrova,
A., Shaykhutdinov, R., Li, L., Vogel, H.J., Forsythe, I.: HMDB: A knowledgebase
for the human metabolome. Nucleic Acids Res 37, D603–D610 (2009)

Graph Algorithms II

Algorithmic Aspects
of Disjunctive Domination in Graphs

B.S. Panda1, Arti Pandey1(B), and S. Paul2

1 Department of Mathematics, Indian Institute of Technology Delhi Hauz Khas,
New Delhi 110016, India

{bspanda,artipandey}@maths.iitd.ac.in
2 Advanced Computing and Microelectronics Unit, Indian Statistical Institute,

Kolkata 700108, India
paulsubhabrata@gmail.com

Abstract. For a graph G = (V, E), a set D ⊆ V is called a disjunctive
dominating set of G if for every vertex v ∈ V \ D, v is either adjacent
to a vertex of D or has at least two vertices in D at distance 2 from it.
The cardinality of a minimum disjunctive dominating set of G is called
the disjunctive domination number of graph G, and is denoted by γd

2 (G).
TheMinimum Disjunctive Domination Problem (MDDP) is to find a
disjunctive dominating set of cardinality γd

2 (G). Given a positive integer
k and a graph G, the Disjunctive Domination Decision Problem

(DDDP) is to decide whether G has a disjunctive dominating set of
cardinality at most k. In this article, we first propose a polynomial time
algorithm for MDDP in proper interval graphs. Next we tighten the NP-
completeness of DDDP by showing that it remains NP-complete even in
chordal graphs. We also propose a (ln(Δ2 + Δ + 2) + 1)-approximation
algorithm for MDDP, where Δ is the maximum degree of input graph
G = (V, E) and prove that MDDP can not be approximated within (1−
ε) ln(|V |) for any ε > 0 unless NP ⊆ DTIME(|V |O(log log |V |)). Finally, we
show that MDDP is APX-complete for bipartite graphs with maximum
degree 3.

Keywords: Domination · Chordal graph · Graph algorithm · Approx-
imation algorithm · Np-complete · Apx-complete

1 Introduction

Let G = (V,E) be a graph. For a vertex v ∈ V , let NG(v) = {u ∈ V |uv ∈ E} and
NG[v] = NG(v) ∪ {v} denote the open neighborhood and the closed neighborhood
of v, respectively. For two distinct vertices u, v ∈ V , the distance distG(u, v)
between u and v is the length of a shortest path between u and v. A vertex
u dominates v if either u = v or u is adjacent to v. A set D ⊆ V is called a
dominating set of G = (V,E) if each v ∈ V is dominated by a vertex in D,
that is, |NG[v] ∩ D| ≥ 1 for all v ∈ V . The domination number of a graph G,
denoted by γ(G), is the minimum cardinality of a dominating set of G. For a
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 325–336, 2015.
DOI: 10.1007/978-3-319-21398-9 26

326 B.S. Panda et al.

graph G, the Minimum Domination problem is to find a dominating set of
cardinality γ(G). Domination in graphs is one of the classical problems in graph
theory and it has been well studied from theoretical as well as algorithmic point
of view [9,10]. Over the years, many variants of domination problem have been
studied in the literature due to its application in different fields. The concept of
disjunctive domination is a recent and an interesting variation of domination [8].

In domination problem, our goal is to place minimum number of sentinels
at some vertices of the graph so that all the remaining vertices are adjacent
to at least one sentinel. In practice, depending upon the monitoring power,
we can have different types of sentinels. To secure the graph with different
types of sentinels, we need concept of different variants of domination. Efforts
made in this direction have given rise to different types of domination, such as,
distance domination, exponential domination, secondary domination. In some
cases, it might happen that the monitoring power of a sentinel is inversely pro-
portional to the distance, that is, the domination power of a vertex reduces
as the distance increases. Motivated by this idea, Goddard et al. [8] have
introduced the concept of disjunctive domination which captures the notion
of decay in domination with increasing distance. A set Dd ⊆ V is called a
b-disjunctive dominating set of G if every vertex v ∈ V \ Dd is either adjacent
to a vertex in Dd or there are at least b vertices of Dd within a distance of two
from v. The minimum cardinality of a b-disjunctive dominating set of G is called
the b-disjunctive domination number of G and it is denoted by γd

b (G). A vertex
v is said to be b-disjunctively dominated by Dd ⊆ V if either v ∈ Dd or v is
adjacent to a vertex of Dd or has at least b vertices in Dd at distance 2 from
it. Note that disjunctive domination is more general concept than distance two
domination, since the parameter γd

1 (G) is the distance two domination number.
For simplicity, 2-disjunctive domination is called disjunctive domination. The
disjunctive domination problem and its decision version are defined as follows:

Minimum Disjunctive Domination Problem (MDDP)

Instance: A graph G = (V,E).
Solution: A disjunctive dominating set Dd of G.
Measure: Cardinality of the set Dd.

Disjunctive Domination Decision Problem (DDDP)

Instance: A graph G = (V,E) and a positive integer k ≤ |V |.
Question: Does there exist a disjunctive dominating set Dd of G such that

|Dd| ≤ k?

The concept of disjunctive domination has been introduced recently in 2014
[8] and further studied in [11]. In [8], Goddard et al. have proven bounds on dis-
junctive domination number for specially regular graphs and claw-free graphs.
They have shown that the decision version of b-disjunctive domination is NP-
complete for planar and bipartite graphs and also designed a dynamic program-
ming based linear time algorithm to find a minimum b-disjunctive dominating

Algorithmic Aspects of Disjunctive Domination in Graphs 327

set in a tree. In [11], Henning et al. have studied the relation between domina-
tion number and disjunctive domination number of a tree T and proved that
γ(T) ≤ 2γd

2 (T) − 1. They have also given a constructive characterization of
the trees achieving equality in this bound. On the other hand, a variation of
disjunctive domination is also studied in the literature (see [12]).

In this paper, our focus is on algorithmic study of disjunctive domination
problem. The rest of the paper is organized as follows. In Section 2, we give some
pertinent definitions and notations that would be used in the rest of the paper.
In this section, we also observe some graph classes where domination problem is
NP-complete but disjunctive domination can be easily solved and vice versa. This
motivates us to study the status of the problem in other graph classes. In Section
3, we design a polynomial time algorithm for disjunctive domination problem in
proper interval graphs, an important subclass of chordal graphs. In Section 4,
we prove that DDDP remains NP-complete for chordal graphs. In Section 5, we
design a polynomial time approximation algorithm for MDDP for general graph
G with approximation ratio ln(Δ2 +Δ+2)+1, where Δ is the maximum degree
of G. In this section, we also prove that MDDP can not be approximated within
(1−ε) ln(|V |) for any ε > 0 unless NP ⊆ DTIME(|V |O(log log |V |)). In addition, for
bipartite graphs with maximum degree 3, MDDP is shown to be APX-complete
in this section. Finally, Section 6 concludes the paper.

2 Preliminaries

2.1 Notations

Let G = (V,E) be a graph. Let N2
G(v) denote the set of vertices which are at

distance 2 from the vertex v in graph G. Let G[S], S ⊆ V denote the induced
subgraph of G on the vertex set S. The degree of a vertex v ∈ V , denoted by
dG(v), is the number of neighbors of v, that is, dG(v) = |NG(v)|. The minimum
degree and maximum degree of a graph G is defined by δ(G) = minv∈V dG(v)
and Δ(G) = maxv∈V dG(v), respectively. A set S ⊆ V is called an independent
set of G if uv /∈ E for all u, v ∈ S. A set K ⊆ V is called a clique of G if uv ∈ E
for all u, v ∈ K. A set C ⊆ V is called a vertex cover of G if for each edge
ab ∈ E, either a ∈ C or b ∈ C. Let n and m denote the number of vertices and
number of edges of G, respectively. In this paper, we only consider connected
graphs with at least two vertices.

2.2 Graph Classes

A graph G is said to be a chordal graph if every cycle in G of length at least four
has a chord, that is, an edge joining two non-consecutive vertices of the cycle.
Let F be a family of sets. The intersection graph of F is obtained by taking
each set in F as a vertex and joining two sets in F if and only if they have a
non-empty intersection. A graph G is an interval graph if G is the intersection
graph of a family F of intervals on the real line. A graph G is called a proper

328 B.S. Panda et al.

interval graph if it is the intersection graph of a family F of intervals on the real
line such that no interval in F contains another interval in F set-theoretically.
A vertex v ∈ V (G) is a simplicial vertex of G if NG[v] is a clique of G. An
ordering α = (v1, v2, ..., vn) is a perfect elimination ordering (PEO) of G if vi is
a simplicial vertex of Gi = G[{vi, vi+1, ..., vn}] for all i, 1 ≤ i ≤ n. A graph G
has a PEO if and only if G is chordal [7]. A PEO α = (v1, v2, . . . , vn) of a chordal
graph is a bi-compatible elimination ordering (BCO) if α−1 = (vn, vn−1, . . . , v1),
that is, the reverse of α, is also a PEO of G. A graph G has a BCO if and only
if G is a proper interval graph [14].

2.3 Domination vs Disjunctive Domination

In this subsection, we make some observations on complexity difference of domi-
nation and disjunctive domination problem. It is known that domination problem
is NP-complete for split graphs [4] and for graphs with diameter two [2]. But dis-
junctive domination problem can be easily solved in these graph classes. Because,
disjunctive domination number is at most 2 in these classes and γd

2 (G) = 1 if
and only if G contains a vertex of degree n − 1. Next, we define a graph class,
called GC graph, for which domination problem is easily solvable, but disjunctive
domination problem is NP-complete.

Definition 1 (GC graph). A graph G′ = (V ′, E′) is said to be a GC graph
if it can be constructed from a general graph G = (V,E) by adding a pendant
vertex to every vertex of G. Formally, V ′ = V ∪ {wi | 1 ≤ i ≤ n} and E′ =
E ∪ {viwi | 1 ≤ i ≤ n}.

Note that, every vertex of a GC graph G′ is either a pendant vertex or
adjacent to a unique pendant vertex and hence, γ(G′) = n. In Section 4, we
show that DDDP is NP-complete for the class of GC graphs.

3 Polynomial Time Algorithm for Proper Interval Graphs

In this section, we present a polynomial time algorithm to find a minimum
cardinality disjunctive dominating set in proper interval graphs.

Let α = (v1, v2, . . . , vn) be a BCO of the proper interval graph G. Let
MaxNG(vi) denote the maximum index neighbor of vi with respect to the order-
ing α. We start with an empty set D. At each iteration i of the algorithm, we
update the set D in such a way that the vertex vi and all the vertices which
appear before vi in the BCO α, are disjunctively dominated by the set D. At the
end of nth iteration, D disjunctively dominate all the vertices of graph G. The
algorithm DISJUNCTIVE-PIG for finding a minimum cardinality disjunctive
dominating set in a proper interval graph is given below.

Next we give the proof of correctness of the algorithm. Let α = (v1, v2, . . . , vn)
be the BCO of a proper interval graph G. Define the set Vi = {v1, v2, . . . , vi},
1 ≤ i ≤ n, and V0 = ∅. Also suppose that Di denotes the set D obtained after
processing vertex vi, 1 ≤ i ≤ n, and D0 = ∅. We will prove that Dn is a minimum
cardinality disjunctive dominating set of G.

Algorithmic Aspects of Disjunctive Domination in Graphs 329

Algorithm 1. DISJUNCTIVE-PIG(G,α = (v1, v2, . . . , vn))
Initialize D = ∅;
for i = 1 : n do

Compute NG[vi] ∩ D and N2
G(vi) ∩ D;

Case 1: Either NG[vi] ∩ D �= ∅, or |N2
G(vi) ∩ D| ≥ 2

No update in D is done;
Case 2: NG[vi] ∩ D == ∅ and N2

G(vi) ∩ D == ∅
Update D as D = D ∪ {MaxNG(vi)};

Case 3: NG[vi] ∩ D == ∅ and |N2
G(vi) ∩ D| == 1

Find vr ∈ N2
G(vi) ∩ D;

vj = MaxNG[vi]; vk = MaxNG[vj];
S = {vi+1, vi+2, . . . , vj−1};
Subcase 3.1: For every v ∈ S, either vvk ∈ E or d(v, vr) = 2

Update D as D = D ∪ {vk};
Subcase 3.2: vs is the least index vertex in S such that
d(vs, vk) = 2 and d(vs, vr) > 2

Update D as D = D ∪ {MaxNG(vs)};
return D;

Theorem 1. For each i, 0 ≤ i ≤ n, the following statements are true:

(a) Di disjunctively dominates the set Vi.
(b) There exists a minimum cardinality disjunctive dominating set D∗

d such that
Di is contained in D∗

d.

Proof. We prove the theorem by induction on i. The basis step is trivial as
D0 = ∅. Next assume that the theorem is true for i − 1. So, (a) Di−1 disjunc-
tively dominates the set Vi−1, (b) there exists a minimum cardinality disjunctive
dominating set D∗

d such that Di−1 is contained in D∗
d.

Next we prove the theorem for i. According to our algorithm, we need to
discuss the following three cases.

Case 1: Either NG[vi] ∩ Di−1 	= ∅, or |N2
G(vi) ∩ Di−1| ≥ 2.

Here Di = Di−1. It is easy to notice that all the conditions of the theorem
are satisfied.

Case 2: NG[vi] ∩ Di−1 = ∅ and N2
G(vi) ∩ Di−1 = ∅.

Here Di = Di−1 ∪ {vj} where vj = MaxNG(vi). Hence, condition (a) of the
theorem is trivially satisfied. If vj ∈ D∗

d, then Di ⊆ D∗
d. Hence both the condi-

tions of the theorem are satisfied, and D∗
d is the required minimum cardinality

disjunctive dominating set of G. If vj /∈ D∗
d, then there are two possibilities:

(I) There exists a vertex vp ∈ NG[vi] ∩ D∗
d.

Define the set D∗∗
d = (D∗

d \ {vp})∪{vj}. Note that Di ⊆ D∗∗
d , and |D∗

d| = |D∗∗
d |.

Now, to prove condition (b) of the theorem, it is enough to show that D∗∗
d is a

disjunctive dominating set of G. Note that Di−1 ∪ {vj} ⊆ D∗∗
d . Now consider an

arbitrary vertex va of G. If a < i, then the vertex va is disjunctively dominated

330 B.S. Panda et al.

by the set Di−1, and hence by D∗∗
d . If a ≥ i, and vp ∈ NG[a], then vj ∈ NG[va].

If a ≥ i, and vp ∈ N2
G(va), then vj ∈ NG[va] or vj ∈ N2

G(va). This proves that
D∗∗

d is a disjunctive dominating set of G.

(II) For q < s, vertices vq, vs ∈ N2
G(vi) ∩ D∗

d.
Let MaxNG(vi) = vj and MaxNG(vj) = vk. Then q < s ≤ k. Let vt =
MaxNG(vs) and vr = MaxNG(vt). We again consider three possibilities:

(i) q < s < i
Here r ≤ j. Now consider an arbitrary vertex va of G. If a < i, then the vertex
va is disjunctively dominated by the set Di−1. If a ≥ i, and vs ∈ N2

G(va) or
vq, vs ∈ N2

G(vi), then vj ∈ NG[va]. Hence (D∗
d \ {vq, vs}) ∪ {vj} is a disjunctive

dominating set of G of cardinality less than |D∗
d|, which is a contradiction, as

D∗
d is a minimum disjunctive dominating set of G. Therefore, this situation will

never arise.
(ii) q < i < s
Consider an arbitrary vertex va of G. If a < i, then the vertex va is disjunctively
dominated by the set Di−1. If a ≥ i, and vq ∈ N2

G(va), then vj ∈ NG[va]. If a ≥ i,
and vq /∈ N2

G(va), and either vs ∈ NG[va] or vs ∈ N2
G(va), then either vj ∈ NG[va]

or vt ∈ NG[va]. Hence, if we define D∗∗
d = (D∗

d \ {vq, vs}) ∪ {vj , vt}, then D∗∗
d

is a minimum cardinality disjunctive dominating set of G and Di ⊆ D∗∗
d . This

proves the condition (b) of the theorem.
(iii) i < q < s
Here s ≤ k. Consider an arbitrary vertex va of G. If a < i, then the vertex
va is disjunctively dominated by the set Di−1. If a ≥ i, and vq ∈ NG[va] or
vs ∈ NG[va] or vq, vs ∈ N2

G(va) or vs ∈ N2
G(va), then either vj ∈ NG[va] or

vt ∈ NG[va]. Hence, if we define D∗∗
d = (D∗

d \ {vq, vs}) ∪ {vj , vt}, then D∗∗
d is a

minimum cardinality disjunctive dominating set of G and Di ⊆ D∗∗
d . This proves

the condition (b) of the theorem.

Case 3: NG[vi] ∩ Di−1 = ∅ and |N2
G(vi) ∩ Di−1| = 1.

In this case as well, condition (a) and condition (b) of the theorem are satis-
fied. Due to space constraints, the proof is omitted.

Hence our theorem is proved.
�

In view of the above theorem, the set D computed by the algorithm
DISJUNCTIVE-PIG is a minimum cardinality disjunctive dominating set of
G. Now, we show that the algorithm DISJUNCTIVE-PIG can be implemented
in polynomial time. We use the adjacency list representation of the graph. We
maintain an array Dset for the set D such that Dset[j] = 1 if vj ∈ D. We
maintain the all pair distance matrix Dist[1..n, 1..n] such that Dist[i, j] is the
distance between vi and vj . This can be done in O(n3) time. Now NG[vi]∩D can
be computed in O(n) time by looking up Dist matrix and array Dset. Similarly,
N2

G(vi) ∩ D can be computed in O(n) time. Also MaxNG(vi) can be computed
in O(n) time. Hence, in any iteration, all the operations can be done in O(n2)
time. Therefore overall time is O(n3), as number of iterations are n. Since, BCO
of a proper interval graph can be computed in O(n + m) time [15], and all the

Algorithmic Aspects of Disjunctive Domination in Graphs 331

computations in the algorithm DISJUNCTIVE-PIG can be done in O(n3) time,
we have the following theorem.

Theorem 2. MDDP can be solved in O(n3) time in proper interval graphs.

However, the algorithm DISJUNCTIVE-PIG can be implemented in O(n +
m) time using additional data structures. The details are omitted due to space
constraints.

4 NP-completeness

In this section, we prove that DDDP is NP-complete for chordal graphs. For
that, we first show that DDDP is NP-complete for GC graphs. To prove this
NP-completeness result, we use a reduction from another variant of domination
problem, namely 2-domination problem. For a graph G = (V,E), a set D2 ⊆ V
is called 2-dominating set if every vertex v ∈ V \ D2 has at least two neighbors
in D2. Given a positive integer k and a graph G = (V,E), the 2-domination
Decision Problem (2DDP) is to decide whether G has a 2-dominating set of
cardinality at most k. It is known that 2DDP is NP-complete for chordal graphs
[13]. The following lemma shows that DDDP is NP-complete for GC graphs.

Lemma 1. DDDP is NP-complete for GC graphs.

Proof. Clearly, DDDP is in NP for GC graphs. To prove the NP-hardness, we
give a polynomial transformation from 2DDP for general graphs. Let G = (V,E)
where V = {v1, v2, . . . , vn}, and a positive integer k be an instance of 2DDP.
Given G, we construct the graph G′ = (V ′, E′) in the following way: V ′ =
V ∪ {wi | 1 ≤ i ≤ n} and E′ = E ∪ {viwi | 1 ≤ i ≤ n}. Clearly G′ is a GC graph
and it can be constructed from G in polynomial time.

The following claim is enough to complete the proof of the theorem.
Claim 1 G has a 2-dominating set of cardinality at most k if and only if G′ has
a disjunctive dominating set of cardinality at most k.

Proof. (Proof of the claim) Let D2 be a 2-dominating set of G of cardinality at
most k. Clearly D2 is a disjunctive dominating set of G′. Because every vi ∈ V ′

either is in D2 or dominated by at least two vertices of D2 and every wi ∈ V ′

is either dominated by vi ∈ D2 or contains at least two vertices from D2 at
a distance of two. Hence, G′ has a disjunctive dominating set of cardinality at
most k.

Conversely, suppose that Dd is a disjunctive dominating set of G′ of cardinal-
ity at most k. Note that, every vertex of G′ is either a pendant vertex or a support
vertex. Also, the vertex set of graph G is exactly the set of all support vertices of
G′. Let P be the set of pendant vertices of graph G′, i.e., P = {wi | 1 ≤ i ≤ n}.
If a pendant vertex wi ∈ Dd, then the set D′

d = (Dd \ {wi}) ∪ {vi} still remains
a disjunctive dominating set of G′ of cardinality at most k. So, without loss of
generality we assume that Dd ∩ P = ∅. Now for every vertex vi ∈ V , either
vi ∈ Dd or |NG(vi) ∩ Dd| ≥ 2. If not, let there is a vertex vi ∈ V \ Dd such that

332 B.S. Panda et al.

|NG(vi) ∩ Dd| ≤ 1. This implies that the vertex wi ∈ V ′ is neither dominated
nor has at least two vertices from Dd at a distance of two, contradicting the fact
that Dd is a disjunctive dominating set of G′. Hence, Dd is a 2-dominating set
of G of cardinality at most k.
�

Hence, it is proved that DDDP is NP-complete for GC graphs.
�

It is easy to observe that, if the graph G is chordal, then the constructed
graph G′ in Lemma 1 is also chordal. Hence, we have the following theorem.

Theorem 3. DDDP is NP-complete for chordal graphs.

5 Approximation Results

5.1 Approximation Algorithm

In this subsection, we propose a (ln(Δ2 + Δ + 2) + 1)-approximation algorithm
for MDDP. Our algorithm is based on the reduction from MDDP to the Con-

strained Multiset Multicover (CMSMC) problem. We first recall the def-
inition of the Constrained Multiset Multicover problem.

Let X be a set and F be a collection of subsets of X. The Set Cover

problem is to find a smallest sub-collection, say C of F , such that C covers all the
elements of X, that is, ∪S∈CS = X. The Constrained Multiset Multicover

problem is a generalization of the Set Cover problem. In this problem, F is
the collection of multisets of X, that is, each element x ∈ X occurs in a multiset
S ∈ F with arbitrary multiplicity, and each element x ∈ X has an integer
coverage requirement rx which specifies how many times x has to be covered.
Note that each set S ∈ F is chosen at most once. So, for a given set X, a
collection F of multisets of X, and integer requirement rx for each x ∈ X, the
CMSMC problem is to find a smallest collection C ⊆ F , such that C covers each
element x in X at least rx times. In the case, when rx is constant for each x ∈ X,
then C is called a rx-cover of X, and the CMSMC problem is to find a minimum
cardinality rx-cover of X.

Theorem 4. The Minimum Disjunctive Domination Problem for a graph
G = (V,E) with maximum degree Δ can be approximated with an approximation
ratio of ln(Δ2 + Δ + 2) + 1.

Proof. Let us show the transformation from MDDP to the CMSMC problem.
Construction : Let G = (V,E) be a graph with n vertices and m edges where
V = {v1, v2, . . . , vn} (an instance of MDDP). Now we construct an instance of
the CMSMC problem, that is, a set X, a family F of multisets of X, and a vector
R = (rx)x∈X (rx is a non-negative integer for each x ∈ X) in the following way:

X = V , F = {F1, F2, . . . , Fn}, where for each i, 1 ≤ i ≤ n, Fi is a multiset
which contains two copies of each element in NG[vi] and one copy of the set of
elements which are at distance 2 from the vertex vi in graph G, rx = 2 for each
x ∈ X.

Algorithmic Aspects of Disjunctive Domination in Graphs 333

Now we first need to prove the following correspondence.
Claim 2 The set D = {vi1 , vi2 , . . . , vik} is a disjunctive dominating set of G if
and only if C = {Fi1 , Fi2 , . . . , Fik} is a 2-cover of X.

Proof. The proof is omitted due to space constraints.
�

By the above claim, if D∗
d is a minimum cardinality disjunctive dominating set

of G and C∗ is an optimal 2-cover of X, then |D∗
d| = |C∗|. In [16], S. Rajgopalan

and V. V. Vazirani gave a greedy approximation algorithm for the CMSMC
problem, which achieves an approximation ratio of ln(|FM |) + 1, where FM is
the maximum cardinality multiset in F . Let C∗ be an optimal 2-cover and C′ be
a 2-cover obtained by greedy approximation algorithm, then |C′| ≤ (ln(|FM |) +
1) · |C∗|. Given a 2-cover of X, we can also obtain a disjunctive dominating set
of graph G of same cardinality. Suppose that D′

d is a disjunctive dominating set
of G obtained from 2-cover C′ of X. Then |D′

d| ≤ (ln(|FM |) + 1) · |D∗
d|. If the

maximum degree of the graph G is Δ, then the cardinality of a set in family
C will be at most 2(Δ + 1) + Δ(Δ − 1), which is equal to Δ2 + Δ + 2. Hence
|D′

d| ≤ (ln(Δ2 + Δ + 2) + 1) · |D∗
d|. This completes the proof of the theorem.
�

5.2 Lower Bound on Approximation Ratio

To obtain the lower bound, we give an approximation preserving reduction from
the Minimum Domination problem. The following approximation hardness
result for the Minimum Domination problem is already known.

Theorem 5. [5] For a graph G = (V,E), the Minimum Domination problem
can not be approximated within (1− ε) ln |V | for any ε > 0 unless NP ⊆ DTIME
(|V |O(log log |V |)).

Theorem 6. For a graph G = (V,E), MDDP can not be approximated within
(1 − ε) ln |V | for any ε > 0 unless NP ⊆ DTIME(|V |O(log log |V |)).

Proof. Let us describe the reduction from the Minimum Domination problem
to MDDP. Let G = (V,E), where V = {v1, v2, . . . , vn} be an instance of the
Minimum Domination problem. Now, we construct a graph H = (VH , EH) an
instance of MDDP in the following way: VH = V ∪ {wi, zi | 1 ≤ i ≤ n} ∪ {p, q},
EH = E ∪ {viwi, wizi, zip | 1 ≤ i ≤ n} ∪ {pq}.

Fig. 1 illustrates the construction of the graph H from a given graph G. Note
that |VH | = 3|V | + 2.

If D∗ is a minimum cardinality dominating set of G, then D∗ ∪ {p} is a
disjunctive dominating set of H. Hence for a minimum cardinality disjunctive
dominating set D∗

d of H, |D∗
d| ≤ |D∗| + 1.

On the other hand, let Dd be a disjunctive dominating set of H. Consider
the vertex wi. Since wi is disjunctively dominated by the set Dd, one of the
following possibilities may occur:
(i) vi ∈ Dd, (ii) wi ∈ Dd or zi ∈ Dd, (iii) |N2

H(wi) ∩ Dd| ≥ 2, that is, NG(vi) ∩
Dd 	= ∅.

334 B.S. Panda et al.

p
q

v1
v2

vn

w1

w2

wn

z1
z2

zn

G

H

Fig. 1. An illustration to the construction of H from G

If (ii) occurs, then define Dd = (Dd\{wi, zi})∪{vi}. Do it for all i, 1 ≤ i ≤ n.
Note that the set D = Dd ∩ V dominates all the vertices of G, and |D| ≤ |Dd|.

Now suppose that MDDP can be approximated with an approximation ratio
of α, where α = (1 − ε) ln(|VH |) for some fixed ε > 0, by a polynomial time
approximation algorithm APPROX-DISJUNCTIVE. Let l be a fixed positive
integer. Consider the following algorithm to compute a dominating set of a given
graph G.

Algorithm 2. APPROX-DOMINATION(G)
Input: A graph G = (V,E).
Output: A dominating set D of graph G.
begin

if there exists a minimum dominating set D′ of cardinality ≤ l then
D = D′;

else
Construct the graph H;
Compute a disjunctive dominating set Dd of H using the
algorithm APPROX-DISJUNCTIVE;
for i = 1 : m do

if wi ∈ Dd or zi ∈ Dd then
Dd = (Dd \ {wi, zi}) ∪ {vi};

D = Dd ∩ V ;
return D;

Clearly, the algorithm APPROX-DOMINATION outputs a dominating set
of G in polynomial time. If the cardinality of a minimum dominating set of G
is at most l, then it can be computed in polynomial time. So, we consider the
case, when the cardinality of a minimum dominating set of G is greater than l.
Let D∗ denotes a minimum cardinality dominating set of G, and D∗

d denotes a
minimum cardinality disjunctive dominating set of H. Note that |D∗| > l.

Let D be the dominating set of G computed by the algorithm APPROX-
DOMINATION, then |D| ≤ |Dd| ≤ α|D∗

d| ≤ α(|D∗| + 1) = α(1 + 1
|D∗|)|D∗| <

α(1 + 1
l)|D∗|.

Since ε is fixed, there exists a positive integer l such that 1
l < ε. So,

|D| < α(1 + ε)|D∗| = (1 − ε)(1 + ε) ln(|VH |)|D∗| = (1 − ε′) ln(|VH |)|D∗|.

Algorithmic Aspects of Disjunctive Domination in Graphs 335

Since |VH | = 3|V | + 1, and |V | is very large, ln(|VH |) ≈ ln(|V |). Hence |D| <
(1 − ε′) ln(|V |)|D∗|. Hence, the dominating set D computed by the algorithm
APPROX-DOMINATION achieves an approximation ratio of (1− ε′) ln(|V |) for
some ε′ > 0.

By Theorem 5, if the Minimum Domination problem can be approximated
within a ratio of (1−ε′) ln(|V |), then NP ⊆ DTIME(|V |O(log log |V |)). This proves
that for a graph H = (VH , EH), MDDP can not be approximated within a ratio
of (1 − ε) ln(|VH |) unless NP ⊆ DTIME(|VH |O(log log |VH |)).
�

5.3 APX-completeness

In this subsection, we prove that MDDP is APX-complete for bounded degree
graphs. To prove this, we need the concept of L-reduction, which is defined as
follows.

Definition 2. Given two NP optimization problems F and G and a polynomial
time transformation f from instances of F to instances of G, we say that f is an
L-reduction if there are positive constants α and β such that for every instance
x of F

1. optG(f(x)) ≤ α · optF (x).
2. for every feasible solution y of f(x) with objective value mG(f(x), y) = c2 we

can in polynomial time find a solution y′ of x with mF (x, y′) = c1 such that
|optF (x) − c1| ≤ β|optG(f(x)) − c2|.

To show the APX-completeness of a problem Π ∈APX, it is enough to show
that there is an L-reduction from some APX-complete problem to Π [3].

By Theorem 4, it is clear that MDDP can be approximated within a constant
factor for bounded degree graphs. Thus the problem is in APX for bounded
degree graphs. To show the APX-hardness of MDDP, we give an L-reduction
from the Minimum Vertex Cover Problem (MVCP) for 3-regular graphs
which is known to be APX-complete [1].

Theorem 7. The Minimum Disjunctive Domination Problem is APX-
complete for bipartite graphs with maximum degree 3.

Proof. The proof is omitted due to space constraints.

6 Conclusion

In this article, we have proposed a linear time algorithm for MDDP in proper
interval graphs. We have also tightened the NP-completeness of DDDP by show-
ing that it remains NP-complete even in chordal graphs. From approximation
point of view, we have proposed an approximation algorithm for MDDP in gen-
eral graphs and have shown that this problem is APX-complete for bipartite
graphs with maximum degree 3. It would be interesting to study the complexity
of this problem in other graph classes and also the relation between disjunctive
domination number and other domination parameters.

336 B.S. Panda et al.

References

1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theoret.
Comput. Sci. 237(1–2), 123–134 (2000)

2. Ambalath, A.M., Balasundaram, R., Rao H., C., Koppula, V., Misra, N., Philip, G.,
Ramanujan, M.S.: On the kernelization complexity of colorful motifs. In: Raman,
V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 14–25. Springer, Heidelberg
(2010)

3. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A.,
Protasi, M.: Complexity and approximation. Springer, Berlin (1999)

4. Bertossi, A.A.: Dominating sets for split and bipartite graphs. Inf. Process. Lett.
19(1), 37–40 (1984)

5. Chleb́ık, M., Chleb́ıková, J.: Approximation hardness of dominating set problems
in bounded degree graphs. Inform. and Comput. 206, 1264–1275 (2008)

6. Dankelmann, P., Day, D., Erwin, D., Mukwembi, S., Swart, H.: Domination with
exponential decay. Discrete Math. 309, 5877–5883 (2009)

7. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific J.
Math. 15, 835–855 (1965)

8. Goddard, W., Henning, M.A., McPillan, C.A.: The disjunctive domination number
of a graph. Quaestiones Math. 37(4), 547–561 (2014)

9. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of domination in
graphs. Marcel Dekker Inc., New York (1998)

10. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs, Advanced
Topics. Marcel Dekker Inc., New York (1998)

11. Henning, M.A., Marcon, S.A.: Domination versus disjunctive domination in trees.
Discrete Appl. Math. (2014)

12. Henning, M.A., Naicker, V.: Disjunctive total domination in graphs. J. Comb.
Optim. (2014). doi:10.1007/s10878-014-9811-4

13. Jacobson, M.S., Peters, K.: Complexity questions for n-domination and related
parameters. In: Eighteenth Manitoba Conference on Numerical Mathematics and
Computing, Winnipeg, MB (1988), Congr. Numer. 68, 722 (1989)

14. Jamison, R.E., Laskar, R.: Elimination orderings of chordal graphs. In: Combina-
torics and applications. ISI, Calcutta, pp. 192–200 (1982, 1984)

15. Panda, B.S., Das, S.K.: A linear time recognition algorithm for proper interval
graphs. Inform. Process. Lett. 87(3), 153–161 (2003)

16. Rajgopalan, S., Vazirani, V.V.: Primal-dual RNC approximation algorithms for set
cover and covering integer programs. SIAM J. Comput. 28, 526–541 (1999)

http://dx.doi.org/10.1007/s10878-014-9811-4

Algorithmic Aspect of Minus Domination
on Small-Degree Graphs

Jin-Yong Lin1, Ching-Hao Liu1(B), and Sheung-Hung Poon2

1 Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
yongdottw@hotmail.com, chinghao.liu@gmail.com

2 School of Computing and Informatics, Institut Teknologi Brunei,
Gadong, Brunei Darussalam
sheung.hung.poon@gmail.com

Abstract. Let G = (V, E) be an undirected graph. A minus dominat-
ing function for G is a function f : V → {−1, 0,+1} such that for each
vertex v ∈ V , the sum of the function values over the closed neighbor-
hood of v is positive. The weight of a minus dominating function f for
G, denoted by w(f(V)), is

∑
f(v) over all vertices v ∈ V . The minus

domination (MD) number of G is the minimum weight for any minus
dominating function for G. The minus domination (MD) problem asks
for the minus dominating function which contributes the MD number. In
this paper, we first show that the MD problem is W [2]-hard for general
graphs. Then we show that the MD problem is NP-complete for subcu-
bic bipartite planar graphs. We further show that the MD problem is
APX-hard for graphs of maximum degree seven. Lastly, we present the
first fixed-parameter algorithm for the MD problem on subcubic graphs,
which runs in O∗(2.37615k) time, where k is the MD number of the graph.

1 Introduction

Let G = (V,E) be an undirected graph. A minus dominating function for G
is a function f : V → {−1, 0,+1} such that for each vertex v ∈ V , the sum
of the function values over the closed neighborhood of v is positive, where the
closed neighborhood of v is the set contains v and all neighbors of v. The weight
of a minus dominating function f for G, denoted by w(f(V)), is

∑
f(v) over all

vertices v ∈ V . The minus domination (MD) number of G, denoted by γ−(G), is
the minimum weight for any minus dominating function for G. The minus domi-
nation (MD) problem asks for the minus dominating function which contributes
the MD number.

According to [9], we can see that the function values +1 and −1 of the signed
domination problem can be formulated as yes-no decisions for social networks.
In a similar fashion, the function values +1, 0, and −1 of the MD problem
can be formulated as yes-uncertain-no decisions for in social networks. In the
following, we first mention related work on complexities. Dunbar et al. [4,5]
first showed that the MD problem is NP-complete for bipartite graphs and for
chordal graphs, and can be solved in linear time for trees. Then, Damaschke [2]
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 337–348, 2015.
DOI: 10.1007/978-3-319-21398-9 27

338 J.-Y. Lin et al.

showed that the MD problem is NP-complete for planar graphs of maximum
degree 4. They [2] also showed that for every fixed k there is a polynomial-time
algorithm, which runs in time O(38k ·n8k), for deciding whether a given graph G
of maximum degree 4 satisfies γ−(G) ≤ k. Recently, Faria et al. [6] showed that
the MD problem is NP-complete for splitgraphs, and is polynomial for graphs
of bounded rankwidth and for strongly chordal graphs.

Next, we survey the related work on parameterized complexities. It is known
that Downey et al. [3] showed that the domination problem is W [2]-complete.
Then, Faria et al. [6] showed that the MD problem has no fixed-parameter algo-
rithm, i.e., not in W [0], unless P = NP . They also show that the MD problem
is fixed-parameter tractable for planar graphs, when parameterized by the size
of f , the number of vertices x ∈ V with f(x) = 1, and for d-degenerate graphs,
when parameterized by the size of f and by d.

Lastly, we survey the related work on approximation complexities for graphs
of bounded degree. First, Alimonti and Kann [1] showed that the domination
problem is APX-hard on subcubic graphs. Then, Damaschke [2] showed that the
MD number cannot be approximated in polynomial time within a factor 1 + ε,
for some ε > 0, for graphs of maximum degree 4, unless P = NP .

Outline. We organize the rest of this paper as follows. In Section 2, we show
that the MD problem is W [2]-hard for general graphs. In Section 3, we show
that the MD problem is NP-complete for subcubic bipartite planar graphs. In
Section 4, we show the MD problem is APX-hard for graphs of maximum degree
7. In Section 5, with a very involved analysis, we obtain the first FPT-algorithm
for the MD problem on subcubic graphs G, which runs in time O∗(2.37615k),
where k is the MD number of G.

2 W [2]-hardness for General Graphs

In this section, by reducing the domination problem to the MD problem, we
show that the MD problem on general connected graphs is W [2]-hard. Thus we
introduce domination problem as follows. A dominating set of a graph G = (V,E)
is a vertex set D ⊆ V such that for each vertex v ∈ V , there exists at least one
vertex in the closed neighborhood NG[v] belonging to D. In other words, we
can label the vertices in V with {0,+1} such that the closed neighborhood of
each vertex is positive. The domination number of G, denoted by γ(G) is the
cardinality of the minimum dominating set of G. The domination problem asks
for a dominating set which contributes the domination number γ(G). Downey
et al. [3] showed that the domination problem on general connected graphs is
W [2]-complete.

In our reduction, we need to make use of a graph H as shown in Figure 1(a).
If we label the vertices of H as shown in Figure 1(a), where there are four vertices
labeled with +1 and five vertices labeled with −1, then the weight for such a
minus domination function is −1. In the following lemma, we show that −1 is
in fact the minimum weight which a legitimate minus dominating function for
graph H can provide.

Algorithmic Aspect of Minus Domination on Small-Degree Graphs 339

x2 x3

x1

x4 x5 x6

x8x7

x9

1 1

11

−1

−1

−1 −1

−1

a1 a2

a3 a4

a5

a6

a7

1

1 0

0

−1

1

1

(a) (b)

Fig. 1. (a) Graph H with weight −1. (b) A key with minimum weight 3.

Lemma 1. The MD number of graph H shown in Figure 1(a) is at least −1.

Proof. Suppose to the contrary that γ−(H) ≤ −2. Let f be a minus dominating
function of H whose weight is not more than −2. Let P be the set of vertices
labeled with +1 in H. If γ−(H) ≤ −2, then we have |P | ≤ 3. It is clear that
|P | > 1. If |P | = 2, it is easy to see that the rest vertices should label with 0
in H. Thus we have |P | �= 2. If |P | = 3, then there are at most three vertices
labeled with −1 in H. Thus we also have |P | �= 3. With such a contradiction,
we thus have γ−(H) ≥ −1. �	

With this lemma, now we show the W [2]-hardness for the MD problem.

Theorem 1. The MD problem is W [2]-hard for general connected graphs.

Proof. We reduce the domination problem to our problem as follows. Given a
graph G = (V,E), we construct a new graph G′ as described below. Initially we
set G′ to be G. Then we add each vertex v of G′ a set of degG(v) + 1 keys as
shown in Figure 1(b), and connect v to a7 of each keys in this set, where degG(v)
is the degree of vertex v in G. Note that at most one of vertex in each key can
be labeled with −1, and thus the weight for each key is greater than or equal to
three. We let F be the set of newly added vertices. Next, we add 6m+2n copies
of graph H into graph G′ and denote them by H1,H2, . . . , H6m+2n, respectively.
Let vertex set Y = V (H1)∪. . .∪V (H6m+2n). Then we take any previously added
key, say ρ. Now, we connect the vertex a1 of ρ to the corresponding vertex x2 of
each copy Hi; i = {1, . . . , 6m + 2n} of graph H. This completes the construction
of the graph G′. Let V ′ be the set of vertices in G′. As G is a connected graph,
graph G′ is also a connected graph by our construction. In the following, we
show that there is a domination set of size at most k in G if and only if there is
a minus dominating function with weight at most k in G′.

Assume that there is a dominating set D of size at most k in G. Then we will
show that there is a minus dominating function f with weight at most k of G′.
We construct a function f , which labels vertices in F as Figure 1(b), vertices in
D with value 0, vertices in V \D with value −1. We also label the corresponding
vertices x2, x3, x7, x8 with value +1 and x1, x4, x5, x6, x9 with value −1 for each

340 J.-Y. Lin et al.

Hi; i = {1, . . . , 6m + 2n}. Now, we claim that f is a minus dominating function
of G′ with weight at most k. Clearly, the sum weight of the closed neighborhood
of any vertex in F ∪ Y is positive. Then we consider vertices in V ′ \ (F ∪ Y).
For any vertex v in V ′ \ (F ∪ Y), since D is a dominating set, there is at least
one vertex in NG′ [v] ∩ D. Thus more than half of the vertices in NG′ [v] are
labeled with +1 in function f . Thus the weight for induced subgraph G[N ′

G[v]]
is positive. Hence, f is a legitimate minus dominating function of G′. Since the
weight of each Hi is at least −1 by Lemma 1, we obtain that

w(f(V ′)) ≤ −(n − k) + (−1)(6m + 2n) + 3(2m + n) = k.

Conversely, we can also show that if f is a minus dominating function of G′

with weight at most k, then there is a dominating set size at most k in G. The
proof is omitted here. Hence, we complete the proof. �	

3 NP-completeness for Subcubic Bipartite Planar Graphs

A graph is called cubic if its vertex degrees are degree three, and subcubic if its
vertex degrees are at most three. It has been shown in [2] that the MD problem on
planar graphs of maximum degree four is NP-complete. In this section, we show
that the MD problem is NP-complete even for subcubic bipartite planar graphs.
We leave open the question that whether the MD problem is NP-complete for
cubic bipartite planar graphs. For showing our NP-completeness results, we make
use of a lemma presented by Damaschke in [2].

Lemma 2 (Lemma 3 of [2]). In any graph, we consider a vertex x of degree
1 and the unique neighbor w of x. Then there is an optimal minus dominating
function such that f(x) = 0 and f(w) = 1.

Then we show the main NP-completeness theorem in the following.

Theorem 2. The MD problem is NP-complete for subcubic bipartite planar
graphs.

Proof. Clearly, the problem is in NP. We reduce the planar 3SAT problem [7]
to this problem. The input instance for the planar 3SAT problem is a set
{x1, x2, . . . , xn} of n variables and a Boolean expression with conjunctive normal
form Φ = c1 ∧ c2 ∧ . . . ∧ cm of m clauses, where each clause consists of exactly
three literals, such that the variable clause graph of the input instance is planar.
The planar 3SAT problem asks for whether there exists a truth assignment to
the variables so that the Boolean expression Φ is satisfied. We then describe our
polynomial-time reduction as follows.

Variable Gadget. First, we construct the variable gadget Vi for a variable xi.
The variable gadget Vi for xi is a circular linkage as shown in Figure 2(a). We
connect 4m + 2 keys (of Figure 1(b)) together as shown in Figure 2(a), where
2m + 1 keys are connected as a chain of keys for the upper part of Vi, and the
other 2m + 1 keys are connected as a chain of keys for the lower part of Vi .

Algorithmic Aspect of Minus Domination on Small-Degree Graphs 341

(b)(a)

1
1 0

0

−1
1
1

1
1 0

0

−1
1
1

1
1 0

0

−1
1
1

1
1 0

0

−1
1
1

1
1 0

0

−1
1
1

0 −1

1
1 0

0

−1
1
1

1
1 0

0

−1
1
1

1
1 0

0

−1
1
1

1
1 0

0

−1
1
1

1
1 0

0

−1
1
1

−1 0
00 −1 −1

00 −1 −1

0

0

0

0

−1

−1

−1

−1
ui vi

ui,1 ui,9 ui,1 ui,9

xi,1 xi,1 xi,2 xi,2

xi,1 xi,1 xi,2 xi,2

xi,1 xi,1 xi,2 xi,2

ui vi

xi,1 xi,1 xi,2 xi,2

ui,3 ui,5 ui,7 ui,3 ui,5 ui,7

10
0 1

−1
1
1

10
0 1

−1
1
1

10
0 1

−1
1
1

10
0 1

−1
1
1

10
0 1

−1
1
1

10
0 1

−1
1
1

10
0 1

−1
1
1

10
0 1

−1
1
1

10
0 1

−1
1

1

10
0 1

−1
1

1
vi,1 vi,9vi,3 vi,5 vi,7 vi,1 vi,9vi,3 vi,5 vi,7

Fig. 2. Gadget Vi for variable xi: (a) xi = True; (b) xi = False. Note that vertices
xi,j and xi,j represents the positive and negative literals for xi, respectively. They are
used to connect to a clause gadget Cj .

The connection of the keys is performed by the introduction of a cycle of length
8m + 4. See Figure 2(a). We call such a circular linkage a cycle of keys. See
Figure 2(a). We let ui and vi be the leftmost and the rightmost endpoints of Vi.
Then we let ui, ui,1, ui,2, . . . , ui,4m+1, vi be the upper chain starting from ui to vi.
Similarly, we let ui, vi,1, vi,2, . . . , vi,4m+1, vi be the lower chain starting from ui to
vi. The vertices ui,2, ui,4, . . . , ui,4m and vi,2, vi,4, . . . , vi,4m are used for connecting
with clause gadgets. That is, ui,2, ui,6, . . . , ui,4m−2 and vi,2, vi,6, . . . , vi,4m−2 are
parts for positive literals xi,j , and ui,4, ui,8, . . . , ui,4m and vi,4, vi,8, . . . , vi,4m are
parts for negative literals xi,j . The interior of the whole variable gadget can
be duplicated to make a longer gadget so that there are enough ports on the
variable gadget for connecting to the corresponding literal gadgets of the related
clauses in the later context.

Next, we first describe the truth assignment of the optimal minus dominating
function for a key. The labeling method in Figure 1(b) is optimal, whose weight
is 3. There is another way of optimal labeling such that the lowest vertex of
the key is labeled with value 0. Since the lowest vertex of a key is connected to
the main body of variable gadget, it is always advantageous to use the labeling
method shown in Figure 1(b).

Then we describe the truth assignment of the optimal minus dominating
function for the whole variable gadget. To attain the assignment of minimum
weight, the internal cycle of variable gadget Vi may be labeled as either the way
in Figure 2(a) or the way in Figure 2(b). In either way, the sum of the weights
f(x) for x ∈ Vi is 8m and such f(x) is the minimum minus dominating function.
We use the domination way in Figure 2(a) to represent that xi = True, and the
other domination way in Figure 2(b) to represent that xi = False.

Clause Gadget. We use clause gadgets to connect to the variable gadgets directly
and there is no link gadget. Now we are prepared to construct the clause
gadget Cj for clause cj = xi ∨ xk ∨ x� which contains 28 vertices, that is,
p1, . . . , p8, q1, . . . , q8, r1, . . . , r8, s1, s2, s3, t, and 33 edges as shown in Figure 3(a).
The vertices p0, q0 and r0 lie in variable gadgets Vi, Vk and V�, respectively. If
xi is True or False, then p0 connects to a vertex in Vi which represents xi,j or
xi,j , respectively. Similarly, if xk is True or False, then q0 connects to a vertex
in Vk which represents xk,j or xk,j , respectively. If x� is True, then r0 connects

342 J.-Y. Lin et al.

−1

1

0 1

(a)

00 1r1 r2

r3

r4

xk = True

0r0 −1x� = True r0

F (Cj) = 10 F (Cj) = 10010 0100 0
r5 r6 r7

1 1
0

0

0

10

xi = True

p2

p8

p3

p4

p5

p6

p7
p0

p1

q2

q3

q4

q8

q0

q1

1

1

1
t

0
0 0

r8

s1

s2 s3

1

0

0
0

0

0

0

1 1

q5

q6

q7 0

0
0

0

0

0

1 1

xk = Truexi = True

0

0 0

0

0

0 0

0

0

0

00

1 1 1 1

1

01

−1r0

F (Cj) = 10 0100

xk = Falsexi = True

0

0 0

0

0

0 0

0

0

01

1 1 1 1

1

01

−1r0

F (Cj) = 11 0100

xk = Falsexi = False

0 1

0

0

0 0

0

0

01

1 1 1 1

(b) (c) (d)

x� = False x� = False x� = False

1 0
0

0

0

10
1 0

0

0

0

10

0 0 0 0 0−1 −1

Fig. 3. Gadget Cj for clause cj : (a) xi = xk = x� = True; (b) xi = xk = True and
x� = False; (c) xi = True and xk = x� = False; (d) xi = xk = x� = False

to a vertex in V� which represents x�,j ; otherwise, if x� is False, then r0 connects
to a vertex in V� which represents x�,j . This completes the construction of the
clause gadget.

We denote the minimum weight for the clause gadget by

F (Cj) = min
f

{
∑

x

f(x) | x ∈ {p1, . . . , p8, q1, . . . , q8, r1, . . . , r8, s1, s2, s3, t} }.

By Lemma 2, we assign f(p1) = f(q1) = f(r1) = 1, f(p2) = f(q2) = f(r2) =
0, f(p6) = f(q6) = f(r6) = 1 and f(p7) = f(q7) = f(r7) = 0. Then since∑

x∈N [p4]
f(x) ≥ 1,

∑
x∈N [q4]

f(x) ≥ 1,
∑

x∈N [r4]
f(x) ≥ 1 and

∑
x∈N [s1]

f(x) ≥
1, thus F (Cj) ≥ 10. Here we claim that if a clause is True, then F (Cj) meets
the lower bound, that is, F (Cj) = 10; otherwise, if a clause is False, then
F (Cj) = 11.

To prove F (Cj) = 10 for a True clause gadget, we show that there exists
an assignment of f(x) such that

∑
x∈N [p4]

f(x) = 1,
∑

x∈N [q4]
f(x) = 1,

∑
x∈N [r4]

f(x) = 1, and
∑

x∈N [t] f(x) = 1. To prove F (Cj) = 11 for a false

clause gadget, we show that there exists an assignment of f(x) such that one of∑
x∈N [p4]

f(x),
∑

x∈N [q4]
f(x),

∑
x∈N [r4]

f(x), and
∑

x∈N [t] f(x) is two, and the
rest of them are one.

Analysis of Truth Assignment. We need to analyze totally four cases for the
truth assignments for the clause gadget mentioned above. We discuss the case
that all three literals are False in the following paragraph since it is the most
important case. As for the other three cases, we omit the analysis.

Suppose that all three literals xi, xk and x� are False as shown in
Figure 3(d). We prove that F (Cj) = 10 is impossible as follows. Suppose that
F (Cj) = 10. Then

∑
x∈N [y] f(x) = 1 for y ∈ {p4, q4, r4, t}. Since xi, xk and x� are

False, we assign f(x) for x ∈ N [p4] by setting f(p3) = 1 and f(p4) = f(p5) = 0,
and we perform the similar labeling for x ∈ N [q4] and for x ∈ N [r4]. On the
other hand, it is easy to check that the minimum sum of weight of vertices in
{p8, q8, r8, s1, s2, s3, t} is not less than 2. Hence, F (Cj) ≥ 11.

Algorithmic Aspect of Minus Domination on Small-Degree Graphs 343

In a true assignment of clause cj , the minimum weight of F (Cj) for the
optimal minus dominating function for gadget Cj is 10, which is omitted due
to lack of space. Hence, the Boolean expression Φ is satisfied if and only if the
constructed graph has a minus dominating function of weight n(8m + 4) + 10m.

�	

4 APX-hardness for Graphs of Maximum Degree 7

In this section, we show that the MD problem for graphs of maximum degree
7 is APX-hard. Alimonti and Kann [1] show that the domination problem is
APX-hard on subcubic graphs. Here we use a well-known technique called L-
reduction to show the APX-hardness for the MD problem. See [8] for more details
on L-reduction. We show that our problem satisfies the two main properties of
L-reduction.

We perform an L-reduction f from an instance of the domination problem
on subcubic graphs to the corresponding instance of the MD problem on graphs
of maximum degree 7.

Given a subcubic graph G = (V,E), we construct a graph G′ = (V ′, E′) as
follows. For each vertex v in V , we add degG(v) + 1 keys as Figure 1(b) and
connect a7 of each key to v. This completes the construction of G′. For each
vertex v ∈ V , we have just added one more edge connecting to the vertex v for
each edge adjacent to v in graph G. Since graph G is subcubic, we have that G′

is of maximum degree 7. Next, we obtain the following lemma.

Lemma 3. Let G = (V,E) be a subcubic graph and let the corresponding G′ =
(V ′, E′) constructed as described above. If D∗ is a minimum dominating set of
G, and f∗ is a minimum minus dominating function of G′. Then w(f∗(V ′)) =
|D∗| + 6m + 2n, where n = |V | and m = |E|.

Proof. We construct a function f by assigning the vertices {a1, a3, a6, a7} in each
keys with value +1, we label D∗ and the vertices {a2, a4} in each keys with value
0, and label other vertices with value −1. Then we verify whether function f is
a valid minus dominating function of G′, that is, we verify whether NG[x] > 0
for each vertex x in G′.

It is clear that the sum of function values of the neighborhood of each vertex
in keys is greater than 0. Now we claim that the same holds for the remaining
vertices in V ′. For a vertex v labeled with 0, the vertex has at most degG(v)
neighbors labeled with −1, since there are degG(v) + 1 keys connecting to v, we
obtain that NG[x] > 0. Moreover, we consider au vertex labeled with −1 in V ′.
Since the corresponding vertex of u in G is not in D∗, there must be at least a
neighbor of u in G′ labeled with value 0. Hence, the sum of the function values
of the closed neighborhood of u is positive. Then we calculate the weight for
minus dominating function f , w(f) = 3(2m + n) − (n − |D∗|) = 6m + 2n + |D∗|.
Thus we have w(f∗) ≤ w(f) = 3(2m + n) − (n − k) = 6m + 2n + |D∗|.

Now let f∗ be the minimum minus dominating function of G′, let vertex set
D in G collect those vertices labeled with 0 and +1 in f∗. Then we claim that
D is a dominating set of G, in other words, we claim that for each vertex v in

344 J.-Y. Lin et al.

G\D, there is at least a neighbor in D. Let v′ be a vertex labeled with −1 in G′.
Note that there are 2 degG(v) + 2 vertices in NG′ [v′]. It is clear that the vertices
in NG′ [v′] ∩ F \ {v} must be labeled with +1. Since f∗ is a minus dominating
function, the sum of NG′ [v′] must be positive. Hence, there must exist at least
one neighbor of v /∈ F is labeled with 0 or +1. That is, D is a dominating set
of G. Then we calculate the size of set D. |D| ≤ w(f∗) − 3(2m + n) + n =
w(f∗) − 6m − 2n. Thus we have |D∗| ≤ |D| ≤ w(f∗) − 6m − 2n. Hence we have
w(f∗(V ′)) = |D∗| + 6m + 2n. This completes the proof. �	

Since G is a subcubic graph, we have m ≤ 3n
2 . Moreover, according to

Lemma 4, n ≤ 5|D∗|. Hence, w(f∗) = |D∗| + 6m + 2n ≤ |D∗| + 9n + 2n ≤
|D∗| + 55|D∗| = 56|D∗|. Since w(f∗) ≤ 56|D∗|, then α = 56.

Now we consider a minus dominating function f of G′, we can construct a
dominating set D for G by the above algorithm, then we have |D| = w(f)−6m−
2n. Thus we obtain that |D| − |D∗| = w(f) − 6m − 2n − (w(f∗) − 6m − 2n) =
w(f) − w(f∗) Thus β = 1. Hence, we have proved that f is an L-reduction with
α = 56 and β = 1. Finally, we obtain the following theorem.

Theorem 3. The MD problem is APX-hard for graphs of maximum degree 7.

5 An FPT-algorithm for Subcubic Graphs

In Section 2, we have shown that the MD problem for subcubic bipartite planar
graphs is NP-complete. It thus follows that the MD problem for subcubic graphs
is NP-complete. Then it is interesting to study FPT-algorithms for the MD
problem on subcubic graphs parameterized by the MD number. Th the best of
our knowledge, there is no such FPT-algorithm in the literature.

In this section, we thus present the first FPT-algorithm for the MD problem
on subcubic graphs G parameterized by the MD number k. In the following
lemma, we begin with showing that our problem has a kernel of size 5k. Then
with an involved analysis, we come up with an FPT-algorithm which runs in
time O∗(2.37615k).

Lemma 4. There is a kernel of size 5k for the MD problem on subcubic graphs,
and the bound is tight, where k is the weight for the minus dominating function
of graph G.

Proof. Let G = (V,E) be a subcubic graph. For any minus dominating function
of G with weight k, we claim that |V | ≤ 5k. We divide weight k into two parts,

+1
0

0

0 -1+1 +1

+1 +1
0 0

(a) (b)

3-element

-1+1 +1

0 0

(c)

Fig. 4. (a)(b) The two conditions for weight +1. (c) A minus dominating function of
five vertices with weight 1.

Algorithmic Aspect of Minus Domination on Small-Degree Graphs 345

such that one part contains any vertex labeled with +1, whose neighbors are all
not labeled with −1, and the other part contains any vertex labeled with +1,
which has a neighbor labeled with −1. For the first part, If every single value one
of the weight k is from this part, each value one contains at most four vertices see
Figure 4(a), let V1 be a set contains these vertices, we have n ≤ 4k. Second, let
v be a vertex labeled with value −1, it is clear that v has at least two neighbors
labeled with value +1, and the distance to any other vertex labeled with −1 is
at least three. Thus we obtain a 3-element, which contains v labeled with value
−1 and its two neighbors see Figure 4(b), which labeled with +1. Moreover,
for any pair of such subsets, their intersection is empty. Let u be the vertices
labeled with +1, which is neighboring 3-element, it is clear that u belongs to a
3-element or to V1. Next we consider the vertices labeled with 0, which connect
to 3-element. We can observe that the vertices which labeled with 0 and connect
to vertex labeled with −1 in 3-element, the vertices either the vertex connect to
+1 in 3-element or the vertex labeled 0 in V1. So the second part contains at
most five vertices. If every single value of the weight k is from the second part,
we have n ≤ 5k. Finally, we can observe that all the vertices are concerned in
the above two part. Hence, we can obtain a kernel of size 5k as an upper bound
for the MD problem on subcubic graphs. Furthermore, For a graph with five
vertices labeled as in Figure 4(c) is k = 1 and n = 5, so the bound of kernel is
tight. �	

According to this lemma, a näıve FPT-algorithm can be easily obtained
via the brute-force method which runs in O∗(35k) = O∗(243k) time. Contrary
to the brute-force algorithm, we claim that our FPT-algorithm runs in time
O∗(2.37615k) = O∗(75.7397k), which is a great improvement. Now, our FPT-
algorithm is presented in the following theorem. We first give the detailed algo-
rithm and its correctness proof, and then analyze its time complexity.

Theorem 4. The MD problem for subcubic graphs G can be solved in
O∗(2.37615k) time, where k is the MD number of G.

Proof. Due to Lemma 4, we only need to consider the given subcubic graph G
with kernel size of 5k. Since disconnected components of a graph can be handled
separately, we assume that the given graph G is connected in the following
context. We also use N [·] to represent NG[·] for simplicity.

The details of our algorithm are as follows. In our algorithm, we grow a poten-
tial optimal minus dominating set D incrementally, where the minus dominating
set D is a subset of vertices in V labeled with values +1, 0 or −1. The label of a
vertex is the value of vertex assigned by a specific minus dominating function of
G. A vertex is called labeled if it has been assigned a value; otherwise, it is called
unlabeled. The weight for the closed neighborhood N [v] of a labeled vertex v is
called valid (resp. invalid) if all the vertices in N [v] are labeled, and the sum of
weights of the vertices in N [v] is positive (resp. non-positive). In the process, we
maintain a list L of unlabeled vertices which are the neighboring vertices of the
currently labeled vertices in D. Initially, L is set to contain one degree-3 vertex of
the input graph G, and D = ∅. During each iteration of our algorithm, we select

346 J.-Y. Lin et al.

an arbitrary unlabeled vertex y from list L as the focus vertex, and we assume
that x is a labeled vertex adjacent to y in D ∩ N [y]. We set Δ = N [N [y]] \ D.
Then our algorithm makes execution branches on all different ways of assigning
values to vertices in Δ of new unlabeled vertices in N [N [y]] \ D, we performing
detailed case analysis from Case 1 to Case 15. In the case analysis, our algorithm
makes subsequent recursions only on those feasible ways of value assignment in
the corresponding cases. For each of such subsequent recursions, the vertices of
Δ, which have been labeled, are added into D, resulting in a larger labeled dom-
inating set D + Δ. Then for each vertex v in D + Δ, if all the vertices in N [v]
are labeled, we then check whether the weight for N [v] is valid. If we reach any
weight for closed neighborhood of a vertex, which is invalid, then the current
execution branch is aborted; otherwise, we proceed to update D and L for the
next round of execution. We update D by setting D = D + Δ, and then we
update list L accordingly by visiting the neighboring vertices of the neighbors
of vertices in Δ. More precisely, the vertices in Δ are removed from L, and the
unlabeled vertices in the neighborhoods of vertices in Δ are added into L. It is
clear that such an update takes only O(1) time. We then proceed to the next
execution round with the updated D and L as parameters. We repeat such a
selection step until all vertices in G are labeled, that is, L becomes empty. Thus
we obtain a candidate minus dominating set D.

In the selection process, we enumerate and store all possible candidates of
D according to the above recursive procedure. When all branches of the selec-
tion process finished, we obtain a set of candidate minus dominating sets D for
the input graph G. We choose the one with minimum weight among all these
candidates. This completes our algorithm.

Case analysis for selection step. We divide the analysis into two parts: the initial
step and the general selection step.

The initial step. We choose one degree-3 vertex v is placed in D. Then add
one neighbor u of v is subsequently into D. In these two beginning steps, there
are 8 choices to labeled vertices u and v, since u and v cannot both be of value
−1. In any subsequent step, we focus on an unlabeled vertex y, which has a
neighbor x in D. Now the degree of x and y can be one, two or three. However,
it is easy to see that the worst case happens when both degree of x and y are
three. We only need to perform the detailed case analysis for such a case. Thus
in the following, we assume that the degree of both x and y are three. Due to the
above initial step, we know that x must have another neighbor x1 in D. Thus
we have in total 15 cases to analyze by considering which vertices of N [N [y]] lie
in d. See Figure 5.

The selection step. We analyze all possible labeling ways to find the optimal
minus dominating function. Due to lack of space, we only provide the analysis of
Case 1 (Figure 5(a)) in the following. The analysis of Cases 2 to 15 are omitted.

Case 1. Let x2 be the third neighbor of x, let y1 and y2 be the other two
neighbors of y, and let z1, z2 be the neighbors of y1, z3, z4 be the neighbors of y2.
Since y1 and y2 are symmetric, we need to consider 15 cases depending on the

Algorithmic Aspect of Minus Domination on Small-Degree Graphs 347

content of Δ, the set of unlabeled vertices in the subgraph of G. See Figures 5(a)
to (o). Δ = {y, x2, y1, y2, z1, z2, z3, z4}. That is, {x, x1} ⊂ D. See Figure 5(a).

x y

y1

y2

z1

z4

(a)

x1

z3

z2

x2

(b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n)

? ? ? ? ?

?? ?

? ? ?

(g)

? ?

?

(o)

?

Fig. 5. This figure shows the 15 cases, where the labeled vertices in D are drawn as
black disks, the unlabeled vertices in Δ as circles, and the question mark in circle is
where we analyze whether the vertex is labeled or unlabeled in this case

In order to reduce the number of cases we need to consider under a specific
case, we only need to consider the worst-case scenarios in each of the cases. For
such a purpose, we make the following three assumptions. We remark that the
three assumptions will be applied to all the subsequent cases in this proof.

(i) If there is an edge not in the subgraph, let u, v be the endpoints. Then
we can add two vertices u′ and v′, where we connect u to u′ and connect
v to v′. Thus we can label the subgraph with constrain : the value of u
and v′ is same, so as v and u′. We can observe that the number of feasible
ways of labeling the vertices with constrain is less than the vertices without
constrains, which we will consider in other cases. Hence, we do not need to
consider adding some edges in subgraphs.

(ii) We observe that a vertex labeled with −1 need to have at least two vertices
labeled with +1 as its neighbors, and a vertex labeled with +1 can have
vertices labeled with +1, 0 or −1 as its neighbors. Thus for a specific case,
the worst-case scenario for the number of feasible ways to label the vertices
in Δ is when the labeled vertices for the specific case (for instance, vertices
x and y in Case 1) are all assigned value +1.

(iii) We observe that, for a graph G, if there is a connected graph H is delete
a vertex v from G, the number choices to labeling vertices in H are less
than or equal to number of choices of graph to labeling G with v assigned
value +1. Hence, we do not need to consider the subgraph which delete
some vertices.

For Case 1, according to assumption (i), we suppose that there is no edge con-
necting any pair of vertices in the subgraph, and according to assumption (ii),
we suppose that x and x1 are labeled with +1. We have two situations depending
on whether x2 is labeled. In Case 1(a), we first consider x2 is unlabeled, thus x2

has at most 3 choices for its labeling, say with value −1, 0 or +1. Now we focus
on vertex y1. First we consider to label y1 with value −1, then {z1, z2} has at

348 J.-Y. Lin et al.

most 3 choices for assigning, and {y2, z3, z4 has at most 14 choices. Thus there
are at most 42 choices if y1 is labeled with −1. Second, we consider to label y1
with value 0, then {z1, z2} has at most 6 choices for assigning the values, and
{y2, z3, z4} has at most 17 choices; hence, there are at most 102 choice if y1 is
labeled 0. Lastly, we consider to label y1 with value +1, then {z1, z2} has at most
8 choices for assigning the values, and {y2, z3, z4} has at most 17 choices. Thus
there are at most 136 choice if y1 is labeled +1. After all of x2, y1, y2, z1, z2, z3, z4
are labeled, it is clear that we can label vertex y with an unique minimum value,
such that the weights for neighborhoods of x, y, y1 and y2 are positive, respec-
tively. By multiplying with the three choices for the value of x2. Thus there are
at most 3×(42+102+136) = 840 feasible ways in total to label the eight vertices
in Δ for Case 1(a).

For Case 1(b), where x2 is labeled, we use similar argument as the analysis
for Case 1(a). But we do not need to multiply three choices for the value of x2.
Thus there are at most 240 feasible ways in total to label the seven vertices in
Δ for Case 1(b). This finishes the analysis of Case 1.

In the above detailed analysis, we obtain the recurrence relation T (n) ≤
840(n − 8) + O(1) for the worst-case running time of Case 1(a). By analyzing
all 15 cases in Figure 5 and solving the corresponding recurrence relations, we
thus have the worst-case running time for the whole algorithm, which occurs at
Case 5(a) (see Figure 5(e)). Hence we obtain that the total running time of our
algorithm is T (n) = O∗(2.3761n) = O∗(2.37615k). �	

References

1. Alimonti, P., Kann, V.: Hardness of approximating problems on cubic graphs. In:
Proc. 3rd Italian Conference on Algorithms and Complexity (CIAC), pp. 288–298
(1997)

2. Damaschke, P.: Minus domination in small-degree graphs. Discrete Applied
Mathematics 108(1–2), 53–64 (2001)

3. Downey, R.G., Fellows, M.R.: Parameterized Complexity, 3rd edn. Springer (1999)
4. Dunbar, J., Goddard, W., Hedetniemi, S., McRae, A., Henning, M.A.: The algo-

rithmic complexity of minus domination in graphs. Discrete Applied Mathematics
68(1–2), 73–84 (1996)

5. Dunbar, J., Hedetniemi, S., McRae, A., Henning, M.A.: Minus domination in graphs.
Discrete Applied Mathematics 199(1–3), 35–47 (1999)

6. Faria, L., Hon, W.-K., Kloks, T., Liu, H.-H., Wang, T.-M., Wang, Y.-L.: On
complexities of minus domination. In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA
2013. LNCS, vol. 8287, pp. 178–189. Springer, Heidelberg (2013)

7. Lichtenstein, D.: Planar formulae and their uses. SIAM Journal on Computing
11(2), 329–343 (1982)

8. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity
classes. Journal of Computer and System Sciences 43(3), 425–440 (1991)

9. Zheng, Y., Wang, J., Feng, Q., Chen, J.: FPT results for signed domination.
In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287,
pp. 572–583. Springer, Heidelberg (2012)

Time-Space Tradeoffs for Dynamic Programming
Algorithms in Trees and Bounded

Treewidth Graphs

Niranka Banerjee1, Sankardeep Chakraborty1, Venkatesh Raman1(B),
Sasanka Roy2, and Saket Saurabh1

1 The Institute of Mathematical Sciences, CIT Campus,
Taramani, Chennai 600 113, India

{nirankab,sankardeep,vraman,saket}@imsc.res.in
2 Chennai Mathematical Institute, H1, SIPCOT IT Park,

Siruseri, Chennai 603 103, India
sasanka@cmi.ac.in

Abstract. The well-known Courcelle’s theorem states that many graph
properties (that are expressible in monadic second order logic) can be
solved in linear time on graphs of bounded treewidth. Logspace ver-
sions of this using automata theoretic framework are also known. In this
paper, we develop an alternate methodology using the standard table-
based dynamic programming approach to give a space efficient version of
Courcelle’s theorem. We assume that the given graph and its tree decom-
position are given in a read-only memory. Our algorithms use the recently
developed stack-compression machinery and the classical framework of
Borie et al. to develop time-space tradeoffs for dynamic programming
algorithms that use O(p logp n) variables where 2 ≤ p ≤ n is a param-
eter. En route we also generalize the stack compression framework to
a broader class of algorithms, which we believe can be of independent
interest.

1 Introduction

The aim of this paper is to demonstrate the power of two class of algorithms –
one classical [16] and one recent [10] – and to show that a combination of them
provides simple space efficient algorithms for graphs of bounded treewidth even
when the tree of the decomposition is given in a read-only memory.

It is well-known [14] that many problems that are NP-hard on general graphs
can be solved in linear time, using dynamic programming, on trees and graphs of
bounded treewidth. This is captured by the most general theorem due to Cour-
celle [19] which states that properties that can be expressed in Counting Monadic
Second Order Logic (CMSO) can be tested in linear time on graphs of bounded
treewidth. Aspvall et al. [9] considered the space required by such dynamic pro-
gramming algorithms, and showed that the entire computation through a simple
post-order traversal requires only O(w) tables (each of size f(t) for some function

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 349–360, 2015.
DOI: 10.1007/978-3-319-21398-9 28

350 N. Banerjee et al.

f of the treewidth t) where w is the pathwidth of the tree of the tree decom-
position. In particular, as the pathwidth of a tree on n nodes is O(log n), this
implies that O(log n) tables are sufficient. Bodlaender and Telle [15] later show
that a set that realizes the optimum solution can be determined in O(n logs n)
time using an additional O(s) words of space where s ≤

√
cn/2 is a parameter

where c is an upper bound on the degree of a vertex in the tree decomposition
(see Definition 1 in Section 4).

Our main objective in this paper is to implement these standard dynamic
programming algorithms in the read-only memory model where the input tree
is given in a read-only input. Apart from adjacency of the graph, we can only
access the leftmost child, right sibling and the bags of each node in constant time
(in particular, we do not assume parent pointers which poses a challenge when
doing a bottom-up traversal). We show that the above bounds can be achieved if
we use an additional stack that could grow to linear size. Our next step is then to
use the recent method of Barba et al.[10] to reduce the space to O(log n) words,
without too much degradation in time. Towards this end, we first generalize the
stack-compression method to a broader class of stack algorithms.

Related Work. Elberfeld et al.[24] showed that Bodlaender’s [12] linear time
algorithm (to determine whether a given graph has treewidth at most k for a fixed
k) and Courcelle’s [19] linear time algorithm (to determine the satisfiability of a
CMSO expressible property on a bounded treewidth graph) can be implemented
in O(1) words, i.e. using logarithmic bits of space. However, the algorithm of
Elberfeld et al. [24] is reasonably complicated, and is based on the automata
theoretic framework of Courcelle’s theorem, while we use the natural table based
approach of the dynamic programming algorithms.

Recently there has been a spate of work in space efficient graph and geometric
algorithms [17,23,7,5,2,27,22,11,6,3] due to their theoretical interest and practi-
cal motivation for implementation in small hand held devices [4]. For example,
for the Maximum Independent Set problem covered by our main result in
this paper, Bhattacharya et al. [11] gave an O(n) algorithm using O(h) word
space; here h is the height of the tree that could be as high as n. In contrast, our
algorithm gives the optimum value in O(n) time and O(nε) words of space even
for weighted trees and bounded treewidth graphs. It can also output a set real-
izing the optimum value in the same time and space for unweighted trees. But
for weighted trees and bounded treewidth graphs, reporting a solution set takes
O(n2) time using the same space. We also have algorithms that take O(log n)
words of space and O(n1+ε) time to output the optimum value. Here ε is any
fixed positive constant less than 1.

Our results, apart from adding to the growing body of literature on space
efficient graph algorithms, bring to light the recent technique to reduce the space
requirement of algorithms that use only a stack (that could grow to linear size)
and a constant number of auxiliary words.

Organization of the Paper. In Section 2, we first explain the general work-
ing scheme of stack based algorithms and also state the main lemma from [10].

Time-Space Tradeoffs for Dynamic Programming Algorithms in Trees 351

Then we provide our generalization of the stack based algorithms, and prove our
stack compression lemma for the generalization. In Section 3 we provide algo-
rithms for specific problems on trees using the stack compression machinery, as a
warm up for our general result. In Section 4 we develop our main space efficient
algorithm for problems expressible in CMSO. We also consider the weighted
versions and the modifications necessary to output the solution set. Section 5
contains some concluding remarks.
Model. Our algorithms work in read-only memory model where the input ele-
ments cannot be modified or moved. We believe that read-only memory model
is a natural model to study algorithms on graphs. Our algorithms work with
the standard left-most child, right-sibling based representation for rooted trees
[18] (this is slightly weaker in contrast to the doubly connected edge list repre-
sentation used in [8,11]). I.e. we assume that the tree (of the input or of the
tree-decomposition is given in a representation where the children of a node are
organized in a linked list. I.e. given a node label, we can find the bag associated
with it, its left-most child and its right sibling in constant time. In particular, we
do not have parent pointers associated with the nodes, unless stated otherwise.

For the weighted versions of the algorithms and for graphs of bounded treewi-
dth, we assume that weights or the bag sets of the vertices are given in a separate
array indexed by the labels of the vertices of the tree (which we assume are in
{1, 2, . . . n}). For bounded treewidth graphs, apart from the tree decomposition,
we also need the graph in read-only memory, represented in a way that adjacency
can be checked in constant time. As for output, the algorithms will output values
during the execution in a write once array, which cannot be accessed by the
algorithm after reporting. We also denote the set of natural numbers by N.
When measuring extra space, we count the number of variables or words used
by the algorithm, in addition to the input in read-only memory. We assume that
standard RAM computations (including additions, multiplications and logical
operations) can be done in constant time.

2 Generalized Stack Framework

In what follows, we explain the general scheme of stack based algorithms defined
in [10]. Let A be a class of deterministic algorithms which uses a stack and
optionally other auxiliary data structures of constant size. The operations that
can be supported are push, pop and accessing the k topmost elements of the
stack for a constant k.

Let X ∈ A be any algorithm and a1, a2, · · · , an ∈ I be the values of the
input, in the order in which they are treated by A. We only assume that given
ai, we can access the next input element in constant time. We will call X a
stack based algorithm if, given a set of ordered input I, X processes ai ∈ I
one by one in order and based on ai, the top k elements of the stack and the
auxiliary data structures’ current configuration, it decides to pop some elements
off the stack first then push i (or some function of i) along with some constant
words of information into the stack. Then the computation moves forward to

352 N. Banerjee et al.

the next element, until all the elements are exhausted. The final result which is
stored in the stack, is then output by popping them one by one until the stack is
empty. Any algorithm following this structure is called a stack based algorithm.
We provide the pseudocode below for completeness [10].

Algorithm 1. Basic scheme of a stack based algorithm
1: Initialize stack and auxiliary data structure DS with O(1) elements from I
2: for all subsequent input a ∈ I do
3: while some-condition(a, DS, STACK.TOP(1),· · · , STACK.TOP(k)) do
4: STACK.POP
5: end while
6: if another-condition(a, DS, STACK.TOP(1),· · · , STACK.TOP(k)) then
7: STACK.PUSH(a)
8: end if
9: end for

10: Report(STACK)

For such stack based algorithms, in [10] they prove the following result.

Lemma 1 (Theorem 2, [10]). Any stack algorithm which takes O(n) time
and Θ(n) space can be adapted so that, for any parameter 2 ≤ p ≤ n, it solves
the problem in O(n1+(1/ log p)) time using O(p logp n) variables.

The main idea of their proof is to divide the input into blocks in the order in
which the input is processed. The size of the block depends on the allowed work
space. During the execution of the stack algorithm, we store only the first and the
last elements of the block which was pushed into the stack (except up to two top
blocks that are stored in full). While simulating the algorithm, if we ever need
any value not stored in stack, we invoke a reconstruction operation to generate
the block containing that element and proceed. For efficiently supporting the
reconstruction operation, we also store the content of the auxiliary data structure
just after the first element of each block is pushed into the stack.

Our first observation is that we can generalize the above stack based algo-
rithms to a broader class of algorithms and still prove a version of Lemma 1.
More specifically,

– while we continue to assume that there can be at most one push while
processing an element, we can let it precede and succeed with a sequence of
pops (the original framework only allowed it to be preceded with pops.)

– We allow the number of auxiliary variables to be a parameter t, which need
not be a constant, and any of the auxiliary variables can be accessed in
a constant time. This is possible if we simply assume that the auxiliary
variables form an array of t elements. We then capture the time and space
also as a function of the number of auxiliary variables.

Time-Space Tradeoffs for Dynamic Programming Algorithms in Trees 353

– We assume that the next element to be processed could depend on the pushes
and pops done and hence could take more than a fixed constant time to
determine. In fact, as the input is in read-only memory, the algorithm may
make several scans over the input (along with the stack and auxiliary storage)
and take, say some g(n, t) time (as k is a constant, we ignore its dependence
in g) to find the next element to process.

– We will also assume that each element is processed at most once.
– Finally, we allow the condition that decides what to push into the stack or

whether to pop the stack element to take time an arbitrary function h(n, t)
of n and t and space s(n) words.

Hence each push and pop can take h(n, t) time, and hence the entire algorithm
takes O(nh(n, t) + ng(n, t)) time using s(n) + t words apart from a stack. We
also allow the algorithm to output elements to a write-once output array along
the way. We call such a stack algorithm, a generalized stack based algorithm.
We give the pseudocode below.

Algorithm 2. Basic scheme of a generalized stack based algorithm
1: Initialize the stack and auxiliary data structure DS of size t
2: Initialize the first input element a to be processed.
3: repeat
4: while some-condition(a, input, DS, STACK.TOP(1),· · · , STACK.TOP(k)) do
5: STACK.POP
6: end while
7: if some-condition(a, input, DS, STACK.TOP(1),· · · , STACK.TOP(k)) then
8: STACK.PUSH(a)
9: end if

10: while some-condition(a, input, DS, STACK.TOP(1),· · · , STACK.TOP(k)) do
11: STACK.POP
12: end while
13: a ← next(a) (next(a) is computed based on a, all the pops and push done in

this step as well as the input set)
14: until a is NULL

For such generalized stack based algorithms, we can prove the following the-
orem:

Theorem 1. Any generalized stack algorithm that takes O(n(h(n, t) + g(n, t)))
time and O(n + t + s(n)) space can be adapted so that, for any parameter
2 ≤ p ≤ n, it solves the problem in O((h(n, t) + g(n, t))n1+(1/ log p)) time using
O(pt logp n+ s(n)) variables, where O(n) space is for the explicit stack and O(t)
space is for auxiliary data structures, s(n) space and h(n, t) time to check the
conditions for pushes and pops, and g(n, t) time to find the next element to
process.

354 N. Banerjee et al.

Proof. (Sketch) The space for auxiliary data structures plays a role in Lemma 1
when we compress a block in the stack, and store the ‘context’ of the auxiliary
data structures with the first element of the block. In our case, we can store the
values of the t variables into the stack, thereby increasing the storage space by
a factor of t.

Also the reconstruction steps in Lemma 1 simulate the original stack algo-
rithm repeatedly (sometimes with recursive calls), and hence the ability to com-
pute the next element of an element after processing that element (which could
take more than a constant time) does not affect the analysis in any way. At the
base case of the recursive step of reconstruction, a block of size p is reconstructed
with full stack space of size p which takes O(p(g(n, t)+h(n, t))) time (as only the
elements of that block are pushed and popped), so T (p) = O(p(g(n, t)+h(n, t))).
The general step remains as before resulting in the earlier recurrence for the total
running time as T (n) = 2pT (n

p) + O(p) which solves to the claimed runtime
bound. ��

3 Algorithms on Rooted Trees

In the next section we give a generic algorithm for problems expressible in CMSO
over graphs of bounded treewidth. In this section we explain our algorithms for
specific problems on rooted trees. Apart from serving as a warm up to the general
result, this serves to illustrate the main idea that to obtain a space efficient
algorithm, all we need to do is to turn a natural dynamic programming based
algorithm into a stack based algorithm and then use Theorem 1 to obtain the
desired trade-off between space and time. Thus, these algorithms are useful in
practice. We exemplify our approach by giving algorithms for Minimum Vertex
Cover, Maximum Independent Set and Minimum Weighted Dominating
Set (MWDS).

Theorem 2. Minimum Vertex Cover and Maximum Independent Set
can be solved on a rooted tree on n vertices in O(n1+(1/ log p)) time using
O(p logp n) variables of extra space where 2 ≤ p ≤ n. We can also output the
corresponding set for each of the above problems in the same time and space.
The output is generated through an output array (which cannot be seen/used by
the algorithm once the output has been generated) which will list out the vertices.

Proof. We explore the tree in a depth first fashion by pushing elements into
the stack as we traverse until we find the leaf. After we compute the values
at the leaf, we pop the stack, and we transfer its value to its parent (which
is at the top of the stack). Thus we get around the lack of parent pointer by
pushing elements into the stack as we traverse (and so the parent is at the top
of the stack when an element is popped), but then this lets the stack grow to
size n. Then we apply the stack compression of Theorem 1 to reduce the space.
First notice that this algorithm as we described fits into our generalized stack
framework (with t, g(n, t), h(n, t) and s(n) as constants) and hence Theorem
1 can be applied. Note that we require the generalized stack framework as the

Time-Space Tradeoffs for Dynamic Programming Algorithms in Trees 355

next vertex to be processed in the depth first search is a function of the pushes
and pops and hence may take more than a constant time. Also in the depth first
search, sometimes a push is followed by the pops (which wasn’t allowed in the
original stack framework). Below we give specific details of the algorithm for the
problems claimed in the theorem.
Minimum Vertex Cover: A standard algorithm to find a minimum vertex
cover in a tree is based on the observation that if v is a vertex with degree 1,
then there exists a minimum vertex cover that contains v’s unique neighbor u.

Hence the algorithm repeatedly includes the neighbor of leaf nodes into the
solution and deletes them (and their leaf neighbors) from the tree, until the tree
becomes empty. This algorithm can be implemented using a stack as follows:
we do a depth first traversal of the tree starting from the root, including every
vertex into the stack along with a bit 0 associated with the vertex (to indicate
our initial guess to exclude that vertex from the solution) as we visit. The first
popping happens when we visit a leaf. While popping out a vertex (after visiting
its entire subtree), if its value remains as 0, we make its parent (which would
be at the top of the stack) 1. Once a node becomes 1, it stays as 1 during its
lifetime in the stack. While popping a node if its associated bit is 1, we output
it in the output array.

Clearly this implements the above algorithm as we pop only elements that are
leaves or have become leaves after some deletion of vertices and before throwing
when a leaf has value 0, we make its parent 1.

Depth first order can be implemented by accessing a node’s leftmost child to
push at every step. Once we know that a node has no children, then we find its
right sibling (the next child of its parent to visit in the depth first order) to add
to stack before popping the node. This completes the algorithm, and it is easy
to see that this algorithm essentially implements the algorithm outlined above
using a stack and a constant number of variables. When a vertex assigned 0 is
popped it implies that it is a leaf and hence its parent is assigned 1 which is
correct by the observation above. Maximum Independent Set can be solved
similarly (by switching the role of 1 and 0 in the above algorithm). ��

A Weighted Case. The algorithms we described for Minimum Vertex Cover
use the observation that for any leaf, its unique neighbor can be picked up in
any minimum vertex cover. This is no longer true in the weighted variants of
these problems (see Appendix for definitions). Thus, in this case we resort to
a modification of standard dynamic programming algorithm. We exemplify the
approach via Minimum Weighted Dominating Set (MWDS). However, this
comes at a cost: now we cannot output the desired set in the same running time,
though it is possible to output the set with a linear factor increase in the runtime.

Theorem 3. MWDS can be solved, on a rooted tree with n vertices, in time
O(n1+(1/ log p)) using O(p logp n) variables of extra space where 2 ≤ p ≤ n.

Proof. For MWDS the standard dynamic programming algorithm (see [26] for
an algorithm for MWDS in bounded treewidth graphs) needs the values at each

356 N. Banerjee et al.

child of a node before computing the value of the node, which may result in some
non-trivial storage at each node of the tree. A dynamic programming algorithm
works as follows. It computes four quantities I(v),D(v),DE(v), E(v) for each
vertex v, which are defined as below.

1. E(v) = The size of a minimum dominating set of the subtree rooted at v,
that does not contain the vertex v.

2. DE(v) = The size of a minimum dominating set of the subtree rooted at v
that dominates all vertices of the subtree except possibly v.

3. I(v) = The size of a minimum dominating set of the subtree rooted at v that
contains vertex v.

4. D(v) = The size of a minimum dominating set of the subtree rooted at v.

Clearly D(v) = min{I(v), E(v)}. It is easy to find these values for leaf nodes,
and once we have computed these quantities for all the children of a node v,
they can be computed for v as follows: let u1, u2, . . . ud be the children of v. Let
H(v) =

∑d
i=1 D(ui). Then

I(v) = w(v) +
∑d

i=1 DE(ui), DE(v) = min{I(v),H(v)},
E(v) = min1≤i≤d{I(ui) +

∑d
k=1,k �=i D(uk)}

Now, all these quantities can be computed in a depth first order as follows.
We initialize DE(u),H(u) and E(u) to 0, and I(u) to w(u), as we push a vertex
u into the stack. Once we pop a vertex u, we would have visited its entire subtree,
and hence computed these values for that vertex. We can then easily compute
D(u) for that vertex. Then we update its parent (which is at the top of the stack)
with its contribution to all of these quantities of its parent. More precisely, for
the parent vertex v, we make I(v) ← I(v) + DE(u);H(v) ← H(v) + D(u).

Updating E(v) is a bit tricky, but it becomes easier, if we rewrite the quantity
E(v) in the above equation as,

E(v) =

{
d∑

i=1

D(ui) + min
1≤i≤d

(I(ui) − D(ui))

}

= H(v) + min
1≤i≤d

(I(ui) − D(ui)).

To compute H(v), we simply keep track of min{I(u)−D(u)} over its children u
of v and also the vertex u that realizes the minimum. When we pop a vertex u,
we update the DE value of its parent v as H(v) = H(v) + D(u) and update the
min{I(u) − D(u)} at its parent by (I(u) − D(u)) if the (I(u) − D(u)) quantity
is smaller. When all the children are popped, E(v) is set to E(v) = H(v) +
(I(u)−D(u)). It is easy to see that the above expression correctly computes the
four quantities in a postorder traversal using just a stack and the final answer
is given by D(root). As the algorithm visits the tree in postorder traversal and
uses just a stack, by similar argument to that of Theorem 2, the result follows
using Theorem 1. ��

4 Algorithms for Graphs of Bounded Treewidth

In this section we design space efficient version of optimization variant of Cour-
celle’s Theorem. We follow the proof of Borie et al. [16] and use the machinery

Time-Space Tradeoffs for Dynamic Programming Algorithms in Trees 357

of stack compression to obtain the desired theorem. We start with the notations
and the language in which we will be working with.

Treewidth. For a rooted tree T and a non-root node t ∈ V (T), by parent(t)
we denote the parent of t in the tree T . For two nodes u, t ∈ T , we say that u
is a descendant of t, denoted u � t, if t lies on the unique path connecting u to
the root. Note that every node is thus its own descendant.

Definition 1 (tree decomposition). A tree decomposition of a graph G is a
pair (T, β), where T is a rooted tree and β : V (T) → 2V (G) is a mapping such
that:

– for each node v ∈ V (G) the set {t ∈ V (G)|v ∈ β(t)} induces a nonempty
and connected subtree of T ,

– for each edge e ∈ E(G) there exists t ∈ V (T) such that e ⊆ β(t).

The set β(t) is called the bag at t, while sets β(u) ∩ β(v) for uv ∈ E(T)
are called adhesions. Following the notation from [25], for a tree decomposition
(T, β) of a graph G we define auxiliary mappings σ, γ : V (T) → 2V (G) as

σ(t) =

{
∅ if t is the root of T

β(t) ∩ β(parent(t)) otherwise

γ(t) =
⋃

u�t

β(u)

We now define a class of graph optimization problems, called min/max-
CMSO[ψ], with one problem for each CMSO sentence ψ on graphs, where ψ
has a free vertex (edge) set variable S. We refer to [1,19,20] and the book of
Courcelle and Engelfriet [21] for a detailed introduction to CMSO. In [21], CMSO
is referred to as CMS2. The min-CMSO problem defined by ψ is denoted by
min-CMSO[ψ] and defined as follows.

min-CMSO[ψ]
Input: A graph G = (V,E).
Question: Find the cardinality of a minimum sized subset S ⊆ V (S ⊆ E)
(if exists) such that (G,S) |= ψ.

The definition of max-CMSO[ψ] problem is analogous to the min-CMSO[ψ]
problem. The only difference is that now we try to find a maximum sized subset
S ⊆ V . Here, we only give an algorithm for min/max-CMSO[ψ] problems
when S is a vertex subset. All of our results can be extended to edge setting in a
straightforward way. In particular, an edge set problem on graph G = (V,E) can
be transformed to a vertex subset problem on the edge-vertex incidence graph
I(G) of G, which is a bipartite graph with vertex bipartition’s V and E with
edges between vertices v ∈ V and e ∈ E if and only if v is incident with e
in G. It is well-known that the treewidth of G and I(G) only differ by a factor

358 N. Banerjee et al.

of 2. To make the translation work in the proof, it is sufficient to use the fact that
the property of being an incidence graph of a graph G is expressible in CMSO.
From now on we only concentrate on min/max-CMSO[ψ] problems defined over
vertex subsets.

Now we give a couple of examples of problems, that can be encoded using
min/max-CMSO[ψ]. To express Maximum Independent Set we do as fol-
lows. Given a graph G and a vertex subset X, a simple constant length formula
indp(X) that verifies that X is an independent set of G is: ∀x∈X∀y∈X¬adj(x, y).
Thus we can express Maximum Independent Set using the above logical
sentence. Let us consider another example, namely, Minimum Dominating
Set. Given a graph G and a vertex subset X, a simple constant length for-
mula dom(X) that verifies that X is a dominating set of G is: ∀x∈V (G)[x ∈
X ∨ ∃y∈Xadj(x, y)].

Dynamic Programming Algorithms over Tree Decompositions. The
standard dynamic programming algorithms on bounded treewidth graphs for
standard optimization problems, see [13,1,14] proceed by doing a bottom-up
traversal of the tree computing tables at every node starting from the leaves.
Aspvall et al., in [9] identify the space requirement of the algorithms and argue
that O(log n) ‘open tables’ are sufficient in the bottom-up implementation. Bod-
laender and Telle [15], building on the work of Aspvall et al., claim that any
property expressible in monadic second order logic can be implemented using
O(log n) tables in the bottom-up traversal.

However, implementing this in the read-only memory model without parent
pointers, provide challenges in terms of space, and that is our task in this section.

In particular, we provide an alternate O(log n) word space algorithm that
precludes the need for parent pointers in the input representation, and uses the
stack compression machinery recently developed by Barba et al. [10] to prove
the following theorem.

Theorem 4. (♠)1 Let G be a graph given with a tree decomposition (T =
(VT , ET), β) of width k. Then min/max-CMSO[ψ]can be solved in time O(τ(k)·
n1+(1/ log p)) time and O(τ(k) · p logp n) space algorithm, for any parameter
2 ≤ p ≤ n. Here, |V | = n and τ is a function of k alone.

In fact we prove a weighted variant of Theorem 4. We also obtain an algorithm
that not only outputs the weight of a value of a maximum weighted subset (or a
minimum weighted subset) S such that (G,S) |= ψ, but also the set S. We call
this version of the problem Constructive-Weighted-min/max-CMSO[ψ].

Theorem 5. (♠) Let G be a graph given with a tree decomposition (T =
(VT , ET), β) of width k. Then Constructive-Weighted-min/max-CMSO[ψ]
can be solved in time O(τ(k) ·n2+(2/ log p)) time and O(τ(k) ·p logp n) space algo-
rithm, for any parameter 2 ≤ p ≤ n. Here, |V | = n and τ is a function of k
alone.
1 Proofs of results marked with (♠) will appear in full version.

Time-Space Tradeoffs for Dynamic Programming Algorithms in Trees 359

5 Conclusion

We have shown that several optimization problems can be solved on trees and
bounded treewidth graphs using logarithmic number of extra variables, in poly-
nomial time even when the input tree is given in a read-only memory. We achieve
this by modifying the standard dynamic programming algorithms to use only
a stack and using the recent stack compression routine to reduce space. Barba
et al. [10] also provide a stack compression scheme that can be used to reduce
work space to O(1) words provided the (full stack) algorithm satisfies what they
called a “green” property. The standard dynamic programming algorithms we
use are not “green”. It would be interesting to see whether our approach can
be extended to obtain algorithms using only O(1) or even o(log n) words. This
would give an alternate o(log n) (words of) space version of Courcelle’s theo-
rem. Another open problem is whether this approach helps to give an alternate
logarithmic space version of Bodlaender’s theorem [12].

Bodlaender and Telle [15] give a divide and conquer strategy to find the opti-
mum set in O(n log n) time (against a naive O(n2) time) using O(log n) words
of extra space, when the tree of the tree-decomposition has a constant number
of children for each node. Extending this (in the read-only memory model) to
the case when each node has an arbitrary number of children, or to obtain a
‘nice-tree decomposition’ from a general tree-decomposition and implementing
their approach in logarithmic (words of) space in read-only memory model, are
challenging problems. It would also be interesting to find other applications of
our generalized stack compression framework.

References

1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
Journal of Algorithms 12, 308–340 (1991)

2. Asano, T.: Constant-Working-Space Algorithms for Image Processing. In: Nielsen,
F. (ed.) ETVC 2008. LNCS, vol. 5416, pp. 268–283. Springer, Heidelberg (2009)

3. Asano, T.: Constant-Working-Space Algorithms: How Fast Can We Solve Problems
without Using Any Extra Array? In: Hong, S.-H., Nagamochi, H., Fukunaga, T.
(eds.) ISAAC 2008. LNCS, vol. 5369, pp. 1–1. Springer, Heidelberg (2008)

4. Asano, T.: Designing Algorithms with Limited Work Space. In: Ogihara, M., Tarui,
J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 1–1. Springer, Heidelberg (2011)

5. Asano, T., Doerr, B.: Memory-constrained algorithms for shortest path prob-
lem. In: Proceedings of the 23rd Annual Canadian Conference on Computational
Geometry, CCCG (2011)

6. Asano, T., Kirkpatrick, D., Nakagawa, K., Watanabe, O.: Õ(
√
n)-Space and

polynomial-time algorithm for planar directed graph reachability. In: Csuhaj-Varjú,
E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635,
pp. 45–56. Springer, Heidelberg (2014)

7. Asano, T., Mulzer, W., Rote, G., Wang, Y.: Constant-work-space algorithms for
geometric problems. JoCG 2(1), 46–68 (2011)

8. Asano, T., Mulzer, W., Wang, Y.: Constant-work-space algorithms for shortest
paths in trees and simple polygons. J. Graph Algorithms Appl. 15(5), 569–586
(2011)

360 N. Banerjee et al.

9. Aspvall, B., Telle, J.A., Proskurowski, A.: Memory requirements for table
computations in partial k-tree algorithms. Algorithmica 27(3), 382–394 (2000)

10. Barba, L., Korman, M., Langerman, S., Sadakane, K., Silveira, R.: Space-time
trade-offs for stack-based algorithms. Algorithmica (2014) (in press)

11. Bhattacharya, B.K., De, M., Nandy, S.C., Roy, S.: Maximum independent set for
interval graphs and trees in space efficient models. In: Proceedings of the 26th
Canadian Conference on Computational Geometry, CCCG (2014)

12. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

13. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor.
Comput. Sci. 209(1–2), 1–45 (1998)

14. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of
bounded treewidth. Comput. J. 51(3), 255–269 (2008)

15. Bodlaende, H.L., Telle, J.A.: Space-efficient construction variants of dynamic
programming. Nord. J. Comput. 11(4), 374–385 (2004)

16. Borie, R.B.: Gary Parker, R., Tovey, C.A.: Automatic generation of linear-
time algorithms from predicate calculus descriptions of problems on recursively
constructed graph families. Algorithmica 7(5&6), 555–581 (1992)

17. Bose, P., Morin, P.: An improved algorithm for subdivision traversal without extra
storage. Int. J. Comput. Geometry Appl. 12(4), 297–308 (2002)

18. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press (2009)

19. Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of
finite graphs. Inform. and Comput. 85, 12–75 (1990)

20. Courcelle, B.: The expression of graph properties and graph transformations in
monadic second-order logic. In: Handbook of Graph Grammars and Computing by
Graph Transformation, vol. 1, pp. 313–400. World Sci. Publ., River Edge (1997)

21. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic.
Cambridge University Press (2012)

22. Datta, S., Limaye, N., Nimbhorkar, P., Thierauf, T., Wagner, F.: Planar graph
isomorphism is in log-space. In: Proceedings of the 24th Annual IEEE Conference
on Computational Complexity, CCC 2009, pp. 203–214 (2009)

23. De, M., Nandy, S.C., Roy, S.: Convex hull and linear programming in read-only
setup with limited work-space. CoRR, abs/1212.5353 (2012)

24. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of
bodlaender and courcelle. In: 51th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2010, pp. 143–152 (2010)

25. Grohe, M., Marx, D.: Structure theorem and isomorphism test for graphs with
excluded topological subgraphs. SIAM J. Comput. 44(1), 114–159 (2015)

26. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press (2006)

27. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17:1–17:24
(2008)

Reducing Rank of the Adjacency Matrix
by Graph Modification

S.M. Meesum1(B), Pranabendu Misra1, and Saket Saurabh1,2

1 Institute of Mathematical Sciences, Chennai, India
{meesum,pranabendu,saket}@imsc.res.in

2 University of Bergen, Bergen, Norway

Abstract. The main topic of this article is to study a class of graph
modification problems. A typical graph modification problem takes as
input a graph G, a positive integer k and the objective is to add/delete
k vertices (edges) so that the resulting graph belongs to a particular
family, F , of graphs. In general the family F is defined by forbidden sub-
graph/minor characterization. In this paper rather than taking a struc-
tural route to define F , we take algebraic route. More formally, given a
fixed positive integer r, we define Fr as the family of graphs where for
each G ∈ Fr, the rank of the adjacency matrix of G is at most r. Using
the family Fr we initiate algorithmic study, both in classical and param-
eterized complexity, of following graph modification problems: r-Rank

Vertex Deletion, r-Rank Edge Deletion and r-Rank Editing.
These problems generalize the classical Vertex Cover problem and a
variant of the d-Cluster Editing problem. We first show that all the
three problems are NP-Complete. Then we show that these problems are
fixed parameter tractable (FPT) by designing an algorithm with run-
ning time 2O(k log r)nO(1) for r-Rank Vertex Deletion, and an algo-
rithm for r-Rank Edge Deletion and r-Rank Editing running in

time 2O(f(r)
√
k log k)nO(1). We complement our FPT result by designing

polynomial kernels for these problems.

1 Introduction

A typical graph modification problem takes as an input a graph G, a positive
integer k and the objective is to add/delete k vertices (edges) so that the resulting
graph belongs to a particular family, F , of graphs. One of the classical way to
define F is by defining what is called graph property. A graph property Π is a set
of graphs, which is closed under isomorphism. The property Π is non-trivial if
it includes infinitely many graphs and also excludes infinitely many graphs. The
property Π is called hereditary if for any graph G ∈ Π, all induced subgraphs
of G are also present in Π. A hereditary property Π has an induced forbidden
set characterization if there is a family Forb(Π) of graphs such that, a graph G
is in Π if and only if no induced subgraph of G is in Forb(Π). Another way of
defining F is by excluding some forbidden minors. A graph H is said to be a
minor of a graph G, if H can be obtained from G be deleting some edges and
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 361–373, 2015.
DOI: 10.1007/978-3-319-21398-9 29

362 S.M. Meesum et al.

vertices, and contracting some edges. A hereditary property Π has a forbidden
minor characterization if there is a family Forb(Π) of graphs such that no graph
in Π has a graph in Forb(Π) as a minor. For a graph property Π the Π-Graph

Modification problem is defined as follows. Given a graph G and a positive
integer k, can we delete (edit) at most k vertices (edges) so that the resulting
graph G′ is in Π?

Lewis and Yannakakis have shown that for any Π which is non-trivial and
hereditary, the corresponding vertex deletion problems are NP-Complete [13,18].
In addition for several graph properties, the corresponding edge editing prob-
lem are known to be NP-Complete as well [2]. This motivates the study of these
problems in algorithmic paradigms that are meant for coping with NP-hardness,
such as approximation algorithms and parameterized complexity. In this paper,
we study yet another kinds of graph modification problems in the framework
of parameterized complexity. In this framework, each instance of the problem
is parameterized, i.e. assigned a number k, which is called the parameter, which
represents some property of the instance. For example, a typical parameter is the
size of the optimum solution to the instance. The problem is called fixed parame-
ter tractable (FPT), if a parameterized instance (x, k) of the problem is solvable
in time f(k)nO(1), where n is the size of the instance. A parameterized problem
is said to admit a polynomial kernel if there is a polynomial time algorithm that
given an instance of the problem, outputs an equivalent instance whose size is
bounded by a polynomial in the parameter. It is known that whenever Π has
finite induced forbidden set characterization (that is, |Forb(Π)| is finite), the cor-
responding deletion problems are known to be FPT [3]. Similarly, whenever Π
is characterized by a finite forbidden set of minors, the corresponding problems
are FPT by a celebrated result of Robertson and Seymour [16]. These problems
include classical problems such as Vertex Cover, Feedback Vertex Set,
Split Vertex Deletion. There has also been extensive study of graph modifi-
cation problems when the corresponding Forb(Π) is not finite, such as Chordal

Vertex Deletion, Interval Vertex Deletion, Chordal Completion

and Odd Cycle Transversal [4,5,8,15].
In this paper we step aside and study a class of graph modification prob-

lems that are defined algebraically rather than structurally. Given a graph G,
two most important matrices that can be associated with it are its adjacency
matrix AG or the corresponding laplacian LG. One could study graph modi-
fication problems where after editing edges/vertices, the resulting graph has a
certain kind of eigenvalue spectrum or has a certain upper bound on the second
eigenvalue or the corresponding adjacency matrix satisfies certain properties.
The topic of this paper is one of these kind of problems. In particular we want
the adjacency matrix of the resulting graph to be some fixed constant r. To
define these problems formally, for a positive integer r, define Πr to be the set
of graphs G such that the rank of the adjacency matrix AG is at most r. The
rank of the adjacency matrix AG is an important quantity in graph theory. It
also has connections to many fundamental graph parameters such as the clique
number, diameter, domination number etc. [1]. All these motivate the study of
the following problems.

Reducing Rank of the Adjacency Matrix by Graph Modification 363

r-Rank Vertex Deletion Parameter: k
Input: A graph G and a positive integer k
Question: Can we delete at most k vertices from G so that rank(AG) ≤ r?

We use � to denote the standard symmetric difference of sets.

r-Rank Editing Parameter: k
Input: A graph G and a positive integer k
Question: Can we find a set F ⊆ V (G) × V (G) of size at most k such that
rank(AG′) ≤ r, where G′ = (V (G), E(G) � F)?

The set F denotes a set of edits to be performed on the graph G. The �
operation acts on the sets as follows: if (u, v) ∈ F and (u, v) ∈ E(G) then we
delete the corresponding edge from G and if (u, v) ∈ F and (u, v) /∈ E(G) then
we add the corresponding edge to G. We also consider a variant of r-Rank

Editing, called r-Rank Edge Deletion, where we are allowed to only delete
edges.

These problems are also related to some well known problems in graph
algorithms. Observe that if rank(AG) = 0, then G is an empty graph and if
rank(AG) = 2 then G is a complete bipartite graph with some isolated vertices.
There are no graphs such that rank(AG) = 1. So for r = 0, r-Rank Vertex

Deletion is the well known Vertex Cover problem. Similarly for r = 2, a
solution to r-Rank Edge Deletion is a complement of a solution to Maxi-

mum Edge Biclique, where the goal is to find a bi-clique subgraph of the given
graph with maximum number of edges [14]. A graph G is called a Cluster Graph
if every component is a clique. We may also view the above problems as variants
of the d-Cluster Vertex Deletion and d-Cluster Editing. In d-Cluster

Vertex Deletion, we wish to delete at most k vertices of the graph, so that
the resulting graph is a cluster graph with at most d components. Similarly in
d-Cluster Editing we wish to add/delete at most k edges to the graph, so
that the resulting graph is a cluster graph with at most d components. These
problems are known to be NP-hard and they admit FPT algorithms parameter-
ized by the solution size [7,9,10]. In our problems, instead of reducing the graph
to a disjoint union of d cliques, we ask that the graph be reduced to a graph
of low rank adjacency matrix. In this paper, we obtain following results about
these problems.

– We first show that all the three problems are NP-Complete.
– Then we show that these problems are FPT by designing an algorithm with

running time 2O(k log r)nO(1) for r-Rank Vertex Deletion, and an algo-
rithm for r-Rank Edge Deletion and r-Rank Editing running in time
2O(f(r)

√
k log k)nO(1). Observe that the edge-editing problem admits a sub-

exponential FPT algorithm.
– Finally, we design polynomial kernels for these problems.

Our results are based on structural observations on graphs with low rank adja-
cency matrix and applications of some elementary methods in parameterized
complexity.

364 S.M. Meesum et al.

2 Preliminaries

We use R and N to denote the set of reals and integers, respectively. For two
sets X and Y , we define X � Y = (X \ Y) ∪ (Y \ X), i.e. the set of all elements
which are exactly in X or Y but not both. A vector v of length n is an ordered
sequence of n values from R. A collection of vectors {v1, v2, . . . , vk} are said to
be linearly dependent if there exist values a1, a2, . . . , ak, not all zeros, such that∑k

i=1 aivi = 0. Otherwise these vectors are called linearly independent. A matrix
A of dimension n × m, is a sequence of values (aij). The i-th row of A is defined
as the vector (ai1, ai2, . . . , aim) and the j-th column of A is defined as the vector
(a1j , a2j , . . . , anj). The row set and the column set of A are denoted by R(A)
and C(A) respectively. For I ⊆ R(A) and J ⊆ C(A), we define AI,J =

(
aij | i ∈

I, j ∈ J
)
, i.e. it is the submatrix (or minor) of A with the row set I and the

column set J . The rank of a matrix is the cardinality of the maximum sized
collection of columns which are linearly independent. Equivalently, the rank of
a matrix is the cardinality of the maximum sized collection of rows which are
linearly independent. It is denoted by rank(A).

For a graph G, we use V (G) and E(G) to denote the vertex set and the edge
set of G. For a set of vertices V and a set of edges E on V , we use (V,E) to
denote the graph formed by them. Let the vertex set be ordered as V (G) =
{v1, v2, . . . , vn}. We only consider simple graphs in this paper, i.e. every edge is
distinct and the two endpoints of an edge are also distinct. The complement of a
graph G is defined as the graph G = (V (G), E(G)) where E(G) = {(u, v)|(u, v) ∈
(V (G) × V (G)) \ E(G), u �= v}. The adjacency matrix of G, denoted by AG, is
defined as the n × n matrix whose rows and columns are indexed by V (G), such
that AG(i, j) = 1 if and only if (vi, vj) ∈ E(G). For a vertex v ∈ V (G), we use
R(v) to denote the row of AG corresponding to v. Similarly we define C(v) to
denote the column of AG corresponding to v. For a set of vertices S ⊆ V (G),
we use R(X) and C(Y) to denote the set of rows and columns corresponding
to the vertices in S. Similarly for X,Y ⊆ V (G), we use AX,Y to denote the
submatrix of AG corresponding to rows in R(X) and columns in C(Y). For a
vertex v ∈ G, N(v) = {u ∈ G|(u, v) ∈ E(G)} denotes the neighbourhood of v,
and N [v] = N(v)∪{v} denotes the closed neighbourhood of v. An independent set
in a graph G is a set of vertices X such that for every pair of vertices u, v ∈ X,
(u, v) /∈ E. A clique on n vertices, denoted by Kn, is a graph on n vertices such
that every pair of vertices has an edge between them. A bi-clique is a graph G,
where V (G) = V1 � V2 and for every pair of vertices v1 ∈ V1 and v2 ∈ V2, there
is an edge (v1, v2) ∈ E(G). When |V1| = |V2| = n we denote the biclique by
Kn,n. We can similarly define complete multipartite graphs. For a set of vertices
U and a graph G, G[U] denotes the induced subgraph of G on U ∩ V (G), and
G \ U denotes the graph G[V (G) \ U].

Given a graph G, we define a relation ∼ on V (G). Two vertices u and v are
u ∼ v if and only if N(u) = N(v). This definition gives us the following lemma.

Lemma 1. (i) u ∼ v, if and only if R(u) = R(v) and C(u) = C(v).
(ii) ∼ partitions V as V1, V2, . . . , Vl where each Vi is an independent set in G.

Reducing Rank of the Adjacency Matrix by Graph Modification 365

(iii) For each pair of Vi and Vj, either there are no edges between Vi and Vj, or
G[Vi � Vj] is a bi-clique.

The subsets V1, . . . , Vl are called independent modules of the graph G. We also
refer to Vi as an equivalence class in G. The reduced graph of G is the graph
G∼ as follows. The vertex set is V (G∼) = {u1, . . . , ul} where l is the num-
ber of independent modules of G. The edge set is E(G∼) = {(ui, uj)|G[Vi �
Vj] is a bi-clique }.

We denote the adjacency matrix of G∼ by A∼
G. Observe that every vertex of

G∼ has a distinct neighbourhood, therefore all the columns of A∼
G are distinct.

We now have the following lemma.

Lemma 2 (Proposition 1. [1]). rank(AG) = rank(A∼
G).

Following result by Lovas̈z [12] gives us a bound on the number of vertices
in G∼, when rank(AG) = r.

Theorem 1. If the rank of the adjacency matrix of a graph G is r then the
number of vertices in G∼ is at most c · 2

r
2 for an absolute constant c.

The following corollary of the above theorem is used extensively in our algo-
rithms.

Theorem 2 (�1). For every fixed r, the number of distinct reduced graphs G∼

such that rank(G∼) = r, is upper bounded by c ·22r , for some absolute constant c.

We also require the following lemma from [1](Proposition 7).

Lemma 3. The only reduced graph of rank r with no isolated vertices and Kr

as a subgraph is Kr itself.

We also require the following results in the subsequent proofs.

Lemma 4 (�). G∼ is isomorphic to an induced subgraph of G.

Observation 3 (�) If G′ is an induced subgraph of G, then rank(AG′) ≤
rank(AG).

3 Reducing Rank by Deleting Vertices

In this section, we consider r-Rank Vertex Deletion.
The set of vertices whose deletion reduces the rank to r is called solution

set and k the solution size. We call r the target rank. We begin with a struc-
tural observation on the solution set of a given instance of r-Rank Vertex

Deletion.

1 Due to space constraints, proofs of the results marked � have been omitted. These
will appear in the full version of the paper.

366 S.M. Meesum et al.

Lemma 5. Let (G, k) be an instance to r-Rank Vertex Deletion and ∼ be
the equivalence relation on V (G). If S ⊆ V (G) is a minimal solution for the
instance (G, k) then it either contains all the vertices of an equivalence class
defined by ∼ on V (G) or none of it.

Proof. Let S ⊆ V (G) be a minimal solution, such that S contains at least one
vertex of an equivalence class V1 but it does not contain all of the vertices in V1.
Observe that all the vertices of V1 \ S have the same neighbourhood in G \ S,
and so they go to the same equivalence class in G \S. Let S′ = S \V1. We claim
that S′ is a valid solution.

Let V ′
1 , . . . , V

′
l be a partition of V (G\S) into independent modules such that

(V1 \ S) ⊆ V ′
1 . Now, consider the graph G \ S′ and the partition of V (G \ S′)

as V ′′
1 , V ′′

2 , . . . , V ′′
l , where V ′′

1 = V ′
1 ∪ V1 and V ′′

i = V ′
i ∀i ≥ 2. Now observe

that for any u, v ∈ V ′′
i , N(u) = N(v). And for any u and v from different

classes N(u) �= N(v), because G \ S is an induced subgraph of G \ S′, and
(N(u) ∩ V (G \ S)) �= (N(v) ∩ V (G \ S)). Thus V ′′

1 , . . . , V ′′
l is a partition of

V (G \ S′) into independent modules. Further observe that (V ′′
i ∪ V ′′

j) induces a
complete bi-clique in G\S′ if and only if (V ′

i ∪V ′
j) induces a complete bi-clique in

G\S′. Therefore G\S and G\S′ have the same reduced graph. So by Lemma 2,
rank(AG\S) = rank(AG\S′).

So S′
� S is also a solution. But this contradicts the minimality of S, which

implies that no such S exists. �

We obtain the following useful corollary of the above lemma.

Corollary 1. A minimal solution to an instance (G, k) of r-Rank Vertex

Deletion is disjoint from any equivalence class of G of cardinality greater
than k.

We also have the following useful observation.

Observation 4 (�) Let S be a solution to an instance (G, k) of r-Rank Ver-

tex Deletion. Let U ⊆ V (G). Then S ∩ U is a solution to the instance
(G[U], k).

3.1 NP Completeness

Recall that r-Rank Vertex Deletion may be defined as a node-deletion prob-
lem with respect to the graph class Πr. Since Πr is non-trivial and hereditary,
therefore this problem is NP-Complete [13,18].

Theorem 5 (�). r-Rank Vertex Deletion is NP-Complete.

The proof of the theorem above appears in the full version of the paper, it gives
a reduction from the Vertex Cover problem.

Reducing Rank of the Adjacency Matrix by Graph Modification 367

3.2 A Parameterized Algorithm for r-Rank Vertex Deletion

Let (G, k) be an instance of r-Rank Vertex Deletion. Let G∼ be the reduced
graph of G. We have the following corollary of Lemma 5.

Corollary 2 (�). Let G′ be obtained from G by removing all but k + 1 vertices
from each equivalence class of vertices in G. Then the instances (G, k) and (G′, k)
are equivalent instances of r-Rank Vertex Deletion.

The rank of a matrix can be defined alternatively in terms of determinant of
its square submatrices as follows.

Definition 1. A matrix A over real numbers has rank equal to r if all the
(r + 1) × (r + 1) submatrices of A have determinant zero and there exists a
submatrix of size r × r such that its determinant is non-zero.

Let H be a collection of subsets of a set U . Then S ⊆ U is called a hitting
set of H, if S intersects every set in the collection H. We shall use the notion
of hitting set to show that r-Rank Vertex Deletion admits a polynomial
kernel. Let G be a graph with adjacency matrix An×n. Let H(G) = {X ∪ Y :
X,Y ⊆ V (G), |X| = |Y | = r + 1, rank(AX,Y) = r + 1} be a family of sets over
V (G).

Lemma 6. For any S ⊆ V (G), the rank of the adjacency matrix of G \ S is at
most r if and only if S is a hitting set of H(G).

Proof. Let A be the adjacency matrix of G and let H = H(G). For S ⊆ V (G),
let A \ S denote the adjacency matrix of the graph G \ S. Observe that A \ S is
obtained from A by deleting the rows and columns corresponding to the vertices
in S.

Let S ⊆ V (G) be such that A \ S has rank at most r, but S is not a hitting
set of H. Then there is a set in H which is not hit by S and corresponds to a set
of rows and columns whose submatrix has rank equal to r + 1, which is present
in A \ S. This is a contradiction.

Conversely, let S be any hitting set of H, but A \ S has rank greater than
r + 1. Then there is a submatrix of A \ S of size (r + 1) × (r + 1) which has rank
equal to r + 1, which is also a submatrix of A. Then by the definition of H, the
set of vertices corresponding to this submatrix is present in H. But then S hits
this set, which contradicts the fact that the rows and columns corresponding to
these vertices are present in A \ S. �

As a corollary of the above lemma, we immediately obtain a FPT algorithm for
r-Rank Vertex Deletion by branching on any set X ∪ Y in H(G).

Theorem 6 (�). r-Rank Vertex Deletion admits an FPT algorithm run-
ning in time 2O(k log r)nO(1).

368 S.M. Meesum et al.

Now, we show that r-Rank Vertex Deletion admits a polynomial ker-
nel, by an application of the well known Sunflower lemma. We begin with the
definition of a sunflower. A sunflower with k petals and a core Y is a collection
of sets S1, . . . , Sk such that Si ∩ Sj = Y for all i �= j; the sets Si \ Y are petals,
and we require that none of the sets Si is empty. Note that a family of pairwise
disjoint sets is also a sunflower.

Lemma 7 (Sunflower Lemma [11]). Let F be a family of sets with each set
having cardinality equal to s. If |F| > s!(k + 1)s then F contains a sunflower
with k + 2 petals.

Theorem 7 (�). r-Rank Vertex Deletion admits a kernel having at most
(2(r + 1)) · (2(r + 1))!(k + 1)2r+2 vertices.

4 Reducing Rank by Editing Edges

In this section, we consider the problem of reducing the rank of a given graph
by editing it’s edge set. As before, we parameterize the problem by the solution
size k. For the ease of presentation, we define the following notation. Let G be
a graph and F be a set of edits. Let G′ = G � F and H = G′∼. Then each
vertex h of H corresponds to an equivalence class V ′

h of G′. Let φ be a map from
V (G) to V (H), which maps a vertex v ∈ V (G) to the vertex h ∈ V (H) if v ∈ Vh.
Observe that, for a given graph G, F uniquely determines (φ,H). And let (φ,H)
be such that for every vertex h ∈ V (H) there is a vertex in v ∈ V (G) such that
φ(v) = h. Then we can find a set F of edits to E(G) such that the reduced
graph of H is the same as the reduced graph G � F . For each pair of vertices
u, v in G such that φ(u) �= φ(v), if (u, v) ∈ E(G) and (φ(u), φ(v)) /∈ E(H), then
we need to delete the edge (u, v). Therefore we add (u, v) to F . Similarly, if
(u, v) /∈ E(G) and (φ(u), φ(v)) ∈ E(H) then we need to add the edge (u, v). So
we add (u, v) to F . This completes the description of F and observe that it is
uniquely determined by φ and H.

We now have the following lemma about the structure of minimal solutions
of r-Rank Editing.

Lemma 8. Let F be a minimal solution to an instance (G, k) of r-Rank Edit-

ing. Then for any two independent equivalence classes Vi and Vj of G, either F
contains all the edges Vi × Vj or it contains none of them.

Proof. Let G′ denote the graph obtained after performing the edits in F on G.
Let H = G′∼ and φ be the map as defined above. Suppose there is an equivalence
class V1 in G whose vertices go into different equivalence classes of G′. Let u be
any vertex in V1 which received the minimum number of edits among all the
vertices in V1, and let hu = φ(u). Pick any vertex v ∈ V1 which goes into a
different equivalence class than that of u in the edited graph G′. Define the map
ψ from V (G) to V (H) as ψ(v) = hu and ψ(w) = φ(w) for all w ∈ V \ {v}. Let
F ′′ be the set of edits corresponding to (ψ,H) and G′′ = G�F ′′. Let H ′ be the

Reducing Rank of the Adjacency Matrix by Graph Modification 369

induced subgraph of H such that every vertex of H ′ is the image of some vertex
of G under the map φ. If V (H ′) = V (H) then G′′∼ is the graph H. Otherwise, by
Lemma 4, H ′∼ is an induced subgraph of H ′. Since H ′ is an induced subgraph of
H, therefore H ′∼ is isomorphic to an induced subgraph of H. Since G′′∼ = H ′∼,
therefore by Observation 3, rank(AG′′) ≤ rank(AH) = rank(AG′). Let F ′

u be the
set of edits in F ′ with u as one endpoint, and let F ′′

v = {(v, w)|(u, v) ∈ F ′
u,

w �= v}. Observe that F ′′ = (F ′ ∪ F ′′
v) \ (F ′

v ∪ {(u, v)}), where F ′
v denotes the

edits in F ′ with v as one end point. Then clearly |F ′′| ≤ |F ′|.
We iteratively perform the above operation for all those vertices in V1 which

are mapped to a different equivalence class in G′. Thus we can find a solution
such that all the vertices of V1 go to the same equivalence class after editing.
Moreover, applying this operation ensures that all the vertices in an equivalence
class in G receive the same set of edits.

To complete the proof, observe that the graph induced on two equivalence
classes is a complete bipartite graph. After editing, suppose Vi and Vj are con-
tained in Wi and Wj respectively, where Wi and Wj are the equivalence classes
of the edited graph. If Wi = Wj then all the vertices between Vi and Vj have
been deleted. If Wi �= Wj then all the edges of Vi × Vj are present if and only if
Wi and Wj have an edge. �

We can show a similar lemma for r-Rank Edge Deletion.

4.1 NP Completeness

We give a reduction from the d-Clustering problem, which is defined as follows.
Given a graph G and two positive integers d and k, find a set F of k edges such
that the graph (V,E � F) is the partition of at most d disjoint cliques. This
problem is known to be NP-Complete for any d ≥ 2 [17]. However it is FPT
when parameterized by k [7].

Theorem 8. r-Rank Editing is NP-Complete for any r ≥ 3

Proof. It is clear that the problem is in NP, since we can verify any claimed
solution in polynomial time.

To show that the problem is NP hard for a fixed r ≥ 3, we give a reduction
from the 2-Clustering problem. Given an instance (G, k); let V = V (G),
E = E(G) and n = |V |. We define an instance of r-Rank Editing as follows.
Let Z be the complete (r − 2)-partite graph Kk+2,...,k+2, where each partition
has exactly k + 2 vertices, and all the edges between any two partitions are
present. Observe that it has rank r − 2 and has Kr−2 as it’s reduced graph. We
construct the graph H by taking the complement G of G, a copy of the graph
Z and adding all edges between the vertices of Z and vertices in G. Then the
instance of r-Rank Editing is (H, k). Let E = E(G).

In the forward direction, suppose that the instance (G, k) has a mini-
mal solution F of size at most k such that G′ = (V,E � F) is a parti-
tion of two disjoint cliques X and Y . Then observe that H ′ = (V ∪ V (Z),

370 S.M. Meesum et al.

(E �F)∪E(Z)∪E(Z, V (G))) is a graph with Kr or Kr−1 as it’s reduced graph.
Thus H ′ has rank r or r − 1.

In the reverse direction, suppose F is a minimal solution of size k for (H, k).
Let H ′ =

(
V ∪ V (Z), (E � F) ∪ E(Z) ∪ E(Z, V (G))

)
. Observe that there are

no isolated vertices in H ′, since every vertex has at least k + 1 neighbours in H.
Since each equivalence class of H[Z] has k + 2 vertices and |F | ≤ k, therefore
by Lemma 8, F ∩ {(E(Z) ∪ E(Z, V (G))} = φ. Thus F ⊆ V (G) × V (G), and any
independent equivalence class of H ′ is contained in either V (G) or V (Z). Now
suppose that X and Y are two equivalence classes of H ′ which are contained in
V (G) such that H ′[X∪Y] is a bi-clique. Then observe that the induced subgraph
H ′[X∪Y ∪V (Z)] has no isolated vertices and it has Kr as it’s reduced subgraph.
Therefore by Lemma 3, the reduced graph of H ′ is also Kr, which implies that
X and Y form a partition of V (G). And if we cannot find such an X and Y , then
H ′[V (G)] contains no edges and so the reduced graph of H ′ is Kr−1. Therefore
H ′[V (G)] is either an independent set or a bi-clique, and so H ′[V (G)] can be
partitioned into at most 2 cliques. Since (V,E � F) = H ′[V (G)], we have that
F is a solution to the instance (G, k). �

For r-Rank Edge Deletion, we can show the following theorem, by reducing
from the Maximum Edge Bi-Clique Problem [14].

Theorem 9 (�). For any fixed r ≥ 2, r-Rank Edge Deletion is NP-
Complete.

4.2 A Parameterized Algorithm for r-Rank Editing

We now show that r-Rank Editing is FPT parameterized by the solution size
and admits a polynomial kernel. The results for r-Rank Edge Deletion follow
in a similar manner. We call a vertex v ∈ V , an affected vertex with respect to
the solution F , if there is some edge in F which is incident on v. Observe that
by Lemma 8, if a vertex in an equivalence class is affected with respect to a
minimal solution F , then every vertex in V1 is also affected. In that case, we say
that the equivalence class V1 is affected by F .

Lemma 9 (�). For any instance (G, k) of the r-Rank Editing problem. If G∼

has more than c · 2r/2 + 2k vertices then the instance has no solution.

As a corollary of the above result and Lemma 8, we have the following kernel
for r-Rank Editing.

Theorem 10 (�). r-Rank Editing admits a kernel with O((2r/2+2k)·(k+1))
vertices.

Next, let A be the adjacency matrix of G, and let AX,Y be a submatrix
of A having rank r + 1 where X and Y correspond to a subset of rows and
columns respectively. Then observe that any solution to the instance (G, k),
must edit an edge contained in AX,Y . This observation immediately gives us an
FPT algorithm for r-Rank Editing, in a similar way to Theorem 6.

Reducing Rank of the Adjacency Matrix by Graph Modification 371

Theorem 11. r-Rank Editing admits an FPT algorithm running in time
2O(k log r)nO(1).

However we can obtain a sub-exponential algorithm for r-Rank Editing,
by using an algorithm of Damaschke et. al. [6]. We begin with the definition
of the closed neighbourhood relation on G. We define a relation ≈ on vertices
of G, where u ≈ v if and only if N [u] = N [v] in G. Observe that ≈ is an
equivalence relationship on vertices of G, where each equivalence class is a clique.
Let V1, . . . , Vl be a partition of vertices V (G). We define the ≈-reduced graph G≈

as follows: the vertex set is V (G≈) = {u1, . . . , ul} and the edge set is E(G≈) =
{(ui, uj) if and only if all the edges between Vi and Vj are present in E(G)}.
Note that G≈ may contain several isolated vertices.

The H-Bag Editing problem is defined as follows.

H-Bag Editing Parameter: k
Input : Graphs G, H and an integer k.
Question: Can we find a set F of k edges such that ≈-reduced graph of
G′ = (V (G), E(G) � F) is an induced subgraph of H?

Theorem 12 ([6]). Any bag modification problem with a fixed graph H can be
solved in O∗(2O(

√
klogk)) time2.

We show how to use the above algorithm to obtain a sub-exponential FPT
algorithm for r-Rank Editing.

Lemma 10. Given a graph G, let G∼ denote the reduced graph with respect
to the excluded neighborhood relation ∼ and let G≈ denote the reduced graph
with respect to the closed neighborhood relation ≈. Then the graph (G)≈ is the
complement of G∼.

Proof. Observe that it suffices to prove that the equivalence classes of ≈ in G
are exactly the same as the equivalence classes of ∼ in G. Consider the forward
direction. Suppose u ∼ v for u, v ∈ V [G], we want to prove that u ≈ v in G. As
u ∼ v, NG(u) = NG(v) therefore NG[u] = V [G]\NG(u) = V [G]\NG(v) = NG[v],
moreover (u, v) ∈ E[G], which implies u ≈ v in G. We can show the reverse
direction in a similar way. Since the ∼-equivalence classes of G are same as the
≈-equivalence classes of G, their corresponding reduced graphs are complements
of each other. �

Corollary 3. If H is a ∼-reduced graph then its complement is a ≈-reduced
graph.

Theorem 13 (�). An instance (G, k) r-Rank Editing can be solved in
O∗(2O(

√
klogk)) time.

2 The O∗ notation hides the terms depending on r which is assumed to be a constant,
and polynomial multiplicative factors.

372 S.M. Meesum et al.

5 Conclusion

In this paper we studied the vertex deletion and edge edition problems of reduc-
ing the “rank of the graph”. We saw that the problems are NP-Complete and
they admit FPT algorithms and kernels.

We conclude with a few open problems. Is it possible to obtain improved
kernels and algorithms for these problems? In particular, is it possible to improve
the exponent of the subexponential algorithm for r-Rank Editing? Further,
what is complexity of the problem of reducing the number of distinct eigenvalues
of a graph by deleting a few vertices or editing a few edges?

References

1. Akbari, S., Cameron, P.J., Khosrovshahi, G.B.: Ranks and signatures of adjacency
matrices (2004)

2. Burzyn, P., Bonomo, F., Durán, G.: Np-completeness results for edge modification
problems. Discrete Applied Mathematics 154(13), 1824–1844 (2006)

3. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters 58(4), 171–176 (1996)

4. Cao, Y., Marx, D.: Chordal editing is fixed-parameter tractable. In: STACS,
pp. 214–225 (2014)

5. Cao, Y., Marx, D.: Interval deletion is fixed-parameter tractable. ACM Transac-
tions on Algorithms (TALG) 11(3), 21 (2015)

6. Damaschke, P., Mogren, O.: Editing the simplest graphs. In: Pal, S.P., Sadakane,
K. (eds.) WALCOM 2014. LNCS, vol. 8344, pp. 249–260. Springer, Heidelberg
(2014)

7. Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Tight bounds
for parameterized complexity of cluster editing with a small number of clusters.
Journal of Computer and System Sciences 80(7), 1430–1447 (2014)

8. Fomin, F.V., Villanger, Y.: Subexponential parameterized algorithm for minimum
fill-in. SIAM Journal on Computing 42(6), 2197–2216 (2013)

9. Guo, J.: A more effective linear kernelization for cluster editing. In: Chen, B.,
Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 36–47.
Springer, Heidelberg (2007)

10. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter
algorithms for cluster vertex deletion. Theory of Computing Systems 47(1)
(2010)

11. Jukna, S.: Extremal combinatorics: with applications in computer science. Springer
Science & Business Media (2011)

12. Kotlov, A., Lovász, L.: The rank and size of graphs. Journal of Graph Theory
23(2), 185–189 (1996)

13. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary proper-
ties is np-complete. Journal of Computer and System Sciences 20(2), 219–230
(1980)

14. Peeters, R.: The maximum edge biclique problem is np-complete. Discrete Applied
Mathematics 131(3), 651–654 (2003)

Reducing Rank of the Adjacency Matrix by Graph Modification 373

15. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research
Letters 32(4), 299–301 (2004)

16. Robertson, N., Seymour, P.D.: Graph minors. xiii. the disjoint paths problem.
Journal of Combinatorial Theory, Series B 63(1), 65–110 (1995)

17. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete
Appl. Math. 144(1-2) (2004)

18. Yannakakis, M.: Node-and edge-deletion np-complete problems. In: STOC,
pp. 253–264. ACM (1978)

Knapsack and Allocation

On the Number of Anchored Rectangle Packings
for a Planar Point Set

Kevin Balas1,2 and Csaba D. Tóth1,3(B)

1 California State University Northridge, Los Angeles, CA, USA
balask@lamission.edu, cdtoth@acm.org

2 Los Angeles Mission College, Sylmar, CA, USA
3 Tufts University, Medford, MA, USA

Abstract. We consider packing axis-aligned rectangles r1, . . . , rn in the
unit square [0, 1]2 such that a vertex of each rectangle ri is a given point
pi (i.e., ri is anchored at pi); and explore the combinatorial structure of
all locally maximal configurations. When the given points are lower-left
corners of the rectangles, then the number of maximal packings is shown
to be at most 2nCn, where Cn is the nth Catalan number. The number
of maximal packings remains exponential in n when the points may be
arbitrary corners of the rectangles. Our upper bounds are complemented
with exponential lower bounds.

1 Introduction

Let P be a finite set of points p1, . . . , pn in the unit square [0, 1]2. An anchored
rectangle packing for P is a set of axis-aligned empty rectangles r1, . . . , rn, that
lie in [0, 1]2, are interior-disjoint, and point pi is one of the four corners of ri for
i = 1, . . . , n. We say that rectangle ri is anchored at pi. In a lower-left anchored
rectangle packing (L-anchored packing, for short), pi is the lower-left corner of
ri for all i.

Anchored rectangle packings have applications in map labeling in geographic
information systems [15–17] and VLSI design [18]. A fundamental problem is
to find the maximum total area A(P) (resp., AL(P)) of the rectangles in an
anchored (resp., L-anchored) rectangle packing of P . Allen Freedman conjectured
(c.f. [23,24]) that if (0, 0) ∈ P , then P admits an L-anchored rectangle packing
of area at least 1/2, that is AL(P) ≥ 1/2. The currently known best lower bound
in this case is AL(P) ≥ 0.091 due to Dumitrescu and Tóth [11].

A rectangle ri with lower-left anchor pi = (ai, bi), can be parameterized by
two variables xi and yi such that ri = [ai, xi] × [bi, yi]. Consequently, the area
of an L-anchored rectangle packing is a continuous multivariable function in 2n
variables

∑n
i=1 area(ri) =

∑n
i=1(xi−ai)(yi−bi), over a domain determined by the

geometric constraints of the packing. We call an L-anchored rectangle packing
maximum (resp., maximal) if it attains the global (resp., a local) maximum
of this function. We define maximum and maximal anchored rectangle packing
analogously.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 377–389, 2015.
DOI: 10.1007/978-3-319-21398-9 30

378 K. Balas and C.D. Tóth

Fig. 1. Left: a set P of 5 points in the unit square [0, 1]2 and an anchored rectangle
packing for P . Middle: a maximal anchored rectangle packing for P . Right: A maximal
L-anchored rectangle packing for P .

For computing the maximum area, AL(P) or A(P), for a given point set P ,
it is instrumental to estimate the number of maximum packings. It is easily seen
that the number of maximum packings is at least exponential in n = |P | if,
for example, P contains n points on a diagonal of [0, 1]2. The enumeration of
locally maximal configurations, which can be computed greedily, combined with
reverse search [7] yields a simple strategy for finding the global maximum. In
this paper, we control the number of (locally) maximal anchored and L-anchored
rectangle packings. For an integer n ∈ N, let M(n) (resp., ML(n)) denote the
largest number of maximal rectangle packings over all sets P ⊂ [0, 1]2 of n
noncorectilinear points (two points are corectilinear if they have the same x- or
y-coordinate).

Results. In this paper, we prove exponential upper and lower bounds for ML(n)
and M(n). Our upper bound for ML(n) is expressed in terms of the nth Catalan
number Cn = 1

n+1

(
2n
n

)
∼ 4n/(n3/2

√
π).

Theorem 1. We have Ω(4n/
√

n) ≤ ML(n) ≤ Cn2n = Θ(8n/n3/2).

Note that both the lower and upper bounds are larger than Cn. The lower
bound follows from an explicit construction. The upper bound is the combination
of two tight upper bounds. Each L-anchored rectangle packing induces a sub-
division of [0, 1]2 into “staircases” (L-subdivisions, defined in Sec. 3). We show
that the number of L-subdivisions for n points is at most Cn, and this bound
is attained when the points form an antichain under the product order. We also
show that each L-subdivision is induced by at most 2n−1 L-anchored rectangle
packings, and this bound is attained when the points form a chain under the
product order.

The machinery developed for the proof of Theorem 1 does not extend to
general anchored rectangle packings. Nevertheless, we can prove that the number
of maximal (any corner) anchored rectangle packings is exponential

Theorem 2. There exist constants 1 < c1 < c2 such that Ω(cn1) ≤ M(n) ≤
O(cn2).

We derive an exponential upper bound using the contact graph of the rectan-
gles in a packing. Specifically, we show that the contact graph can be represented
by a planar embedding of the contact graph in which the vertices are points in

On the Number of Anchored Rectangle Packings for a Planar Point Set 379

the rectangles, and the edges are represented by polylines with at most one
bend per edge. The number of graphs with such an embedding is known to be
exponential [12]. We can encode all maximal anchored rectangle packings for
P using one such graph and O(n) bits of additional information. This leads to
an exponential upper bound.

Remark. In a maximal anchored or L-anchored rectangle packing, we may
assume that all vertices of all rectangles lie on one of the (n + 2)2 “grid points”
induced by the vertical and horizontal lines passing through the n points in P and
the corners of [0, 1]2 (cf. Sec. 2). This crucial property discretizes the problem,
but is insufficient for establishing an exponential upper bound. By choosing the
points (xi, yi) among the grid points, we obtain only a weak upper bound of
(n − 1)n (resp., (n!)2 for L-anchored packings).

Related Work. Packing axis-aligned rectangles in a rectangular container,
albeit without anchors, is the unifying theme of several classic optimization
problems. The 2D knapsack problem, strip packing, and 2D bin packing involve
arranging a set of given rectangles in the most economic fashion [3,8,14]. The
maximum weight independent set for rectangles involves selecting a maximal
area packing from a set of given rectangles [4]. These optimization problems are
NP-hard, and there is a rich literature on the best approximation algorithms.
Our problem setup is fundamentally different: the rectangles have variable sizes,
but their location is constrained by the anchors. In this sense, it is reminiscent
to classic Voronoi diagrams for n points in the plane. However, the Voronoi cells
tile the space without gaps. Area maximization problems arise in the context of
Voronoi games [5,9], where two players alternately choose points in a bounding
box and wish to maximize the total area of the Voronoi cells of their points.

Combinatorial bounds for the number of some other geometric configura-
tions on n points in the plane have been studied extensively. Determining the
maximum number of (geometric) triangulations on n points in the plane cap-
tivated researchers for decades. The current best upper and lower bounds are
Ω(8.65n) and O(30n) [10,20]. Ackerman et. al. [1,2] established an upper bound
of O(18n/n4) for the number of rectangulations of n points in [0, 1]2, where
a rectangulation is a subdivision of [0, 1]2 into n + 1 rectangles by n axis-
parallel segments, each containing a given point. This structure is reminiscent
of L-subdivisions, defined in Sec. 3, for which we prove a tight upper bound
of Cn ≤ O(4n/n3/2). The number of anchored rectangle packings has not been
studied before. It is not known if finding the maximum area of an anchored
rectangle packing of n given points is NP-hard.

2 Discretization of Maximal Anchored Rectangle
Packings

Let P ⊂ [0, 1]2 be a set of noncorectilinear points p1, . . . , pn. The vertical and
horizontal lines that pass through the points in P and the edges of the bounding
box are called grid lines. The grid points are the intersections of the grid lines.

380 K. Balas and C.D. Tóth

It is easy to see that all vertices of a maximal L-anchored rectangle packing must
be grid points.

Proposition 1. If an L-anchored rectangle packing for P has maximal area,
then all corners of all rectangles are grid points.

Proof. Consider an anchored rectangle packing of maximal area. The left and
bottom edges are on grid lines. This implies that each rectangle may only expand
up and to the right. Because the packing is of maximal area, no rectangle can
expand (while other rectangles are fixed). The upper and right edges of each
rectangle are necessarily in contact with the bottom and left edges of other
rectangles or with the bounding box. This places the upper-right vertex at the
intersection of two grid lines and thus on a grid point. We have shown that the
lower-left and the upper-right corner of every rectangle is a grid point. From
the definition of grid lines, this implies that all corners of all rectangles are grid
points. �

The situation is more subtle when the rectangles can be anchored at arbitrary
corners. Specifically, a local maximum may be attained at a “plateau” where
the configuration can vary continuously while maintaining the same maximal
area. A transformation that maintains the total area of the rectangles is called
equiareal.

Proposition 2. If an anchored rectangle packing for P has maximal area, then

– the local maximum is isolated, and all vertices of all rectangles are grid
points, or

– there is an equiareal continuous deformation to an anchored rectangle pack-
ing in which all vertices of all rectangles are grid points; furthermore, the
deformation either creates a contact between two previously disjoint rectan-
gles, or decreases the area of some rectangle to 0.

Proof. Consider a maximal anchored rectangle packing for P . Suppose that at
least one rectangle has a vertical or horizontal edge not on a grid line. Assume
first that a vertical edge of a rectangle is not on a grid line. Let � be the vertical
line through the leftmost such edge. Denote by L the set of rectangles whose
right edges intersect �, and R the set of rectangles whose left edges intersect �.
We can deform the rectangles in L and R simultaneously by translating �. The
sum of heights of rectangles in L equals the sum of heights of rectangles in R,
otherwise translating � in one of the two possible directions increases the total
area before � becomes a grid line. When � shifts to the left, the rectangles in L
shrink and may potentially reach 0 area; while the rectangles in R expand and
may potentially reach another rectangle. However, because of the choice of �, all
edges of such a rectangle lie on grid lines. Translate � until the area of a rectangle
in L drops to 0, or the left edge of a rectangle in R reaches the boundary of a
new rectangle or the bounding box. Repeat this operation for the next leftmost
line � until all vertical edges are on grid lines.

On the Number of Anchored Rectangle Packings for a Planar Point Set 381

Note that horizontal edges were not affected by the above transformations.
We can now deform the horizontal edges of the rectangles (independent of the
vertical edges) by repeating the argument starting with the topmost horizontal
line. Necessarily, all vertices of all rectangles become grid points. �

In the remainder of the paper, we consider maximal anchored rectangle packings
in which the vertices of all rectangles are grid points.

3 Lower-Left Anchored Rectangle Packings

The key tool for the proof of Theorem 1 is a subdivision of the unit square
[0, 1]2 into staircase polygons, defined below. Let P = {p1, . . . , pn} be a set of
noncorectilinear points in [0, 1]2. We may assume that (0, 0) �∈ P (by scaling P ,
if necessary, since maximality is an affine invariant). Let q = (0, 0) denote the
lower-left corner of [0, 1]2.

An L-shape for a point pi (i = 1, . . . , n) is the union of a horizontal and a
vertical segment whose left and bottom endpoint, respectively, is pi. Refer to
Fig. 2(a). An L-subdivision for P is formed by n L-shapes for pi (i = 1, . . . , n)
such that the top and right endpoint of each L-shape lies in another L-shape or
the boundary of [0, 1]2. The L-shapes subdivide [0, 1]2 into n+1 simple polygons,
called staircases. By construction, the lower-left corner of each staircase is either
q = (0, 0) or a point in P . The upper-right vertices of a staircase are called steps
of the staircase.

r1

p1

(a) (b) (c) (d)

Fig. 2. (a) An L-subdivision for P . (b) An L-subdivion induced by a maximal
L-anchored rectangle packing. (c) Maximal anchored rectangles in the staircases that do
not form a maximal L-anchored rectangle packing: rectangle r1 could expand. (d) For
n points on the line y = x, ML(P) = 2n−1.

Proposition 3. In every L-subdivision for P , the n staircases anchored at the
points in P jointly have at most 2n − 1 steps.

Proof. Each step of a staircase is either the upper-right corner of [0, 1]2, or a
top or right endpoint of an L-shape. Every such point is the step of a unique
staircase. The n L-shapes yield 2n steps, and the upper-right corner of [0, 1]2

yields one step. The staircase anchored at q = (0, 0) has at least two steps, hence
the remaining staircases jointly have at most 2n + 1 − 2 = 2n − 1 steps. �

382 K. Balas and C.D. Tóth

Maximal L-anchored packings versus L-subdivisions

Proposition 4. For every maximal L-anchored rectangle packing of P , there is
an L-subdivision such that rectangle ri lies in the staircase anchored at pi for
i = 1, . . . , n.

Proof. Let r1, . . . , rn be an L-anchored rectangle packing for p1, . . . , pn ∈ [0, 1]2.
For each i = 1, . . . , n − 1, successively draw an L-shape as follows (refer to
Fig. 2(b)). First extend the bottom edge of ri to the right until it hits the
bounding box, the left edge of another rectangle, or a previously drawn L-shape.
Similarly, extend the left edge of ri up until it hits the bounding box, the bottom
edge of another rectangle, or a previously drawn L-shape. The n L-shapes form
an L-subdivision. By construction, the L-shapes are disjoint from the interior
of the rectangles r1, . . . , rn, hence each rectangle lies in a staircase. Since the
lower-left corner of each staircase is q = (0, 0) or a point in P , each staircase
with lower-left corner pi ∈ P contains the rectangle anchored at pi. �

In the L-subdivision described in Proposition 4, each rectangle ri (i =
1, . . . , n) is a maximal rectangle within a staircase polygon. However, the con-
verse is not necessarily true. Choose maximal rectangles, in all staircases, with
lower-left corners in P . This need not produce a maximal L-anchored rectangle
packing for P . See an example in Fig. 2(c). Nevertheless, we can derive an upper
bound for ML(P).

Proposition 5. In every L-subdivision for P , |P | = n, there are at most 2n−1

possible ways to choose a maximal rectangle in each staircase whose lower-left
corner is in P . This bound is the best possible.

Proof. If the staircases anchored at the n points in P have t1, . . . , tn steps, then
there are precisely

∏n
i=1 ti different ways to choose a maximal anchored rectangle

in each. By Proposition 3 and the arithmetic-geometric mean inequality yields
n∏

i=1

ti ≤
(

1
n

n∑

i=1

ti

)n

=
(

2 − 1
n

)n

< 2n. (1)

The maximum of
∏n

i=1 ti subject to
∑n

i=1 ti = 2n − 1 and t1, . . . , tn ∈ N is
attained when the t′is are distributed as evenly as possible, say, t1 = . . . =
tn−1 = 2 and tn = 1. Consequently,

∏n
i=1 ti ≤ 2n−1. This upper bound is

attained when the points in P form a chain in the product order (e.g., points on
the line y = x), then n − 1 staircases have 2 steps, and the staircase incident to
(1, 1) has only 1 step (Fig. 2(d)). �

Let S(P) be the number of all L-subdivisions for a noncorectilinear point set
P ; and let S(n) = max|P |=n S(P). By Proposition 5, we have ML(P) ≤ S(P)2n

and ML(n) ≤ S(n)2n.

The Number of L-subdivisions. We prove a tight upper bound for S(n), the
maximum number of L-subdivisions for a set of n points in the unit square. Our
upper bound is expressed in terms of the nth Catalan number Cn = 1

n+1

(
2n
n

)
∼

4n/
√

πn3.

On the Number of Anchored Rectangle Packings for a Planar Point Set 383

Lemma 1. For every n ∈ N, we have S(n) = Cn.

Proof. Lower bound. Let P be a set of n points that form an antichain under
the product order (e.g., points on the line y = 1−x). In this case, each staircase
anchored at a point in P is a rectangle, and it is well known [21,22] that the
number of rectangular subdivisions is the Catalan number Cn. Hence S(P) = Cn

in this case.
Upper Bound. Let P be an arbitrary noncorectilinear set of n points in [0, 1]2.

We may assume that the points p1, . . . pn are sorted by their x-coordinates, that
is, x1 < . . . < xn. If the points form an antichain under the product order,
then their y-coordinates are monotone decreasing, and S(P) = Cn. Otherwise,
we incrementally modify the y-coordinates of the points to become monotone
decreasing such that the number of L-subdivisions increases. In each incremental
step, we modify the y-coordinate of one point.

Suppose that the points in P do not form an antichain under the prod-
uct order; and i is the smallest index such that the points with larger indices,
{pj ∈ P : j > i}, form an antichain and are incomparable to all other points
(refer to Fig. 3). Let Z0 be the minimum axis-aligned rectangle incident to (0, 1)
that contains the points p1, . . . , pi−1; and let Z1 be the minimum axis-aligned
rectangle incident to (1, 0) that contains the points pi+1, . . . , pn. By the choice
of i, the boxes Z0 and Z1 are on opposite sides of the vertical line x = xi, as well
as a horizontal line below y = min1≤k≤i yk. Let p′

i be the intersection of these
two lines.

pi

ri

r′
i

p′
i

A

B

C

abc

C

B

A

cb

Z0

Z3

Z2

Z1

Z0

Z1

Z3

Z2

p′
i

a

Fig. 3. Left: A schematic image of an L-subdivision D for P . Right: The corresponding
L-subdivision D′ for the modified point set P ′.

We move point pi to p′
i. Denote by P ′ the modified point set. In order to show

S(P) ≤ S(P ′), we construct an injective map f : S(P) → S(P ′). For every L-
subdivision D of the point set P , we construct a unique L-subdivision D′ = f(D)
of the modified point set P ′. Let D be an L-subdivision of P (Fig. 3, left). Since
no other point dominates pi, the staircase anchored at pi is a rectangle, that we
denote by ri. We introduce some notation. Some horizontal segments of L-shapes

384 K. Balas and C.D. Tóth

of points in Z0 cross the right edge of Z0: Let A, B, and C, respectively, denote
the number of L-shapes whose horizontal segments pass above ri, hit the left edge
of ri, and pass below ri. Similarly, some vertical segments of L-shapes of points
in Z1 cross the top edge of Z1: Let a, b, and c, respectively, denote the number of
L-shapes whose vertical segments pass right of ri, hit the bottom edge of ri, and
end strictly below the bottom edge of ri. Let Z2 be the axis-aligned rectangle that
contains all intersections between the A horizontal segments passing above ri
and the a vertical segments right of ri. Similarly, let Z3 contain the intersections
between the C horizontal segments passing below ri and the c vertical segments
that end strictly below ri.

We can now define the L-subdivision D′ for the modified point set P ′. The
arrangement of L-shapes restricted to the boxes Z0 and Z1 remains the same.
Consequently, A + B + C horizontal segments exit the right edge of Z0, and
a + b + c vertical segments exit the top edge of Z1. Draw an L-shape for the
point p′

i such that it blocks the B lowest horizontal segments that exit Z0 and
the b leftmost vertical segments that exit Z1. Group the remaining horizontal
(resp., vertical) segments into bundles of size A and C (resp., a and c). Let the
groups of size A and a intersect in the same pattern as in Z2, and the groups of
size C and c as in Z3. This completes the description of the L-subdivision D′.
By construction D′ = f(D) is a unique L-subdivision, and the function f is
injective. �

We are now ready to prove Theorem 1.

Theorem 1. We have Ω(4n/
√

n) ≤ ML(n) ≤ Cn2n = Θ(8n/n3/2).

Proof. Let P be a set of n noncorectilinear points in the unit square. By
Proposition 4, every maximal L-anchored rectangle packing for P can be con-
structed by considering an L-subdivision for P , and then choosing a maximal
rectangle from each staircase anchored at a point in P . By Lemma 1, we have
S(P) ≤ S(n) = Cn L-subdivisions for P . By Proposition 5, there are at most
2n−1 ways to choose maximal rectangles in the staircases. Consequently, we have
ML(P) ≤ S(P)2n−1 ≤ Cn2n−1.

Even though both Proposition 5 and Lemma 1 are tight, their combination
is not tight, since they are attained on different point configurations: n points
that form a chain or an antichain under the product order. Our lower bound

Fig. 4. One point at the origin and n − 1 points on the line y = 1 − x

On the Number of Anchored Rectangle Packings for a Planar Point Set 385

is based on the following construction (refer to Fig. 4). Place one point at the
origin and n − 1 points on the line y = 1 − x. The L-shape of the first point is
contained in the boundary of [0, 1]2, and the last n − 1 points admit Cn−1 =
1
n

(
2n−2
n−1

)
∼ 4n−1/

√
(n − 1)3π L-subdivisions. The first point has a staircase with

n steps (t1 = n), all other staircases are rectangles (ti = 1, for i = 2, . . . , n).
Consequently, ML(P) = S(P)

∏n
i=1 ti = Cn−1 · n = Θ(4n/

√
n), as required. �

4 General Anchored Rectangle Packings

In this section, we prove Theorem 2. We show that a maximal anchored rect-
angle packing for a point set P can be reconstructed from the contact graph of
the rectangles, and from O(n) bits of additional information. Since a maximal
rectangle packing may contain rectangles of 0 area (cf. Proposition 2), we need
to be careful defining contact graphs.

The contact graph of a rectangle packing is a graph G = (V,E), where V
corresponds to the set of vertices, E to the set of edges, and two vertices are
connected by an edge iff the corresponding rectangles have positive area and
intersect in a nontrivial line segment; or one rectangle has 0 area and lies on the
boundary of the other rectangle. It is easy to see that the contact graph of a
rectangle packing is planar. However, the number of n-vertex planar graphs is
super-exponential [13]. The number of graphs reduces to exponential with suit-
able geometric conditions. For a set P of n points in the plane, for example,
the number of straight-line graphs with vertex set P is only exponential. An
exp(O(n)) bound was first shown by Ajtai et al. [6] using the crossing number
method. The current best upper bound is O(187.53n), due to Sharir and Shef-
fer [20]. The contact graphs of any anchored rectangle packings for P can be
embedded in the plane such that the vertex set is P , but these graphs cannot
always be realized by straight-line edges. It turns out that a weaker condition
will suffice: a 1-bend embedding of a planar graph G = (V,E) is an embedding
in which the vertices are distinct points in the plane, and the edges are polylines
with one bend per edge (that is, each edge is the union of two incident line seg-
ments). Frankeke and Tóth [12] proved recently that for every n-element point
set, the number of such graphs is at most exp(O(n)).

Lemma 2. Let P = {p1, . . . , pn} be a noncorectilinar set in [0, 1]2. The contact
graph of every maximal anchored rectangle packing for P has a 1-bend embedding
in which the vertex representing rectangle ri is point pi for i = 1, . . . , n.

The proof would be straightforward if the anchors were in the interior of the rect-
angles. In that case, we could simply choose a bend point on the common bound-
ary between two rectangles in contact, and then draw a 1-bend edge between
their anchors via the bend point. When the anchors are at corners of the rect-
angles, we need to be more careful to prevent any overlap between adjacent
edges.

Proof. Let r1, . . . , rn be a maximal anchored rectangle packing for P . For every
i = 1, . . . , n, point pi is a corner of the rectangle ri. For every two rectangles

386 K. Balas and C.D. Tóth

Fig. 5. Left: A maximal anchored rectangle packing for P . Thick lines indicate the
L-shapes incident to the points in P . Right: A 1-bend embedding of the contact graph
of the rectangles.

in contact, ri and rj , choose an arbitrary preliminary bend point q0(i, j) on the
common boundary of ri and rj .

Define the L-shape anchored at pi as the union of the two edges of ri incident
to pi. Note that the relative interiors of the n L-shapes are pairwise disjoint, since
the points p1, . . . , pn are noncorectilinear. Let the bend point q(i, j) = q0(i, j)
if the preliminary bend point is not on an L-shape or if one of the rectangles
has 0 area. Otherwise, assume q0(i, j) is on the L-shape of pi. Then choose a
bend point q(i, j) in the interior of ri in a sufficiently small neighborhood of the
preliminary point q0(i, j). Now, for any two rectangles in contact, ri and rj , draw
a 1-bend edge between pi and pj via q(i, j). No two edges cross or overlap, and
hence we obtain a 1-bend embedding of the contact graph of the rectangles. �

For a fixed point set P , by Lemma 2, the contact graph of every maximal
anchored rectangle packing admits a 1-bend embedding on the vertex set P .
However, several maximal anchored rectangle packings may yield the same con-
tact graph (as an abstract graph). We show that all maximal anchored rectangle
packings for P can be encoded by their contact graphs and O(n) bits of additional
information. By Proposition 2, we may assume that all vertices of a maximal
rectangle packing are grid points. Furthermore, we may also assume that there
is no equiareal continuous deformation that creates a new contact or reduces the
area of a rectangle to 0.

Fix a noncorectilinear point set P = {p1, . . . , pn}. Every maximal anchored
rectangle packing r1, . . . , rn is encoded by the following information:

(1) The contact graph G of the rectangles r1, . . . , rn;
(2) for i = 1, . . . n, an indicator variable σi such that σi = 0 iff area(ri) = 0;
(3) for i = 1, . . . n, the position of the anchor pi in ri (lower-left, lower-right,

etc.);
(4) for each edge (i, j) of G, the orientation of the line segment ri ∩ rj .

We now show that we can uniquely reconstruct a maximal anchored rectangle
packing from this information.

On the Number of Anchored Rectangle Packings for a Planar Point Set 387

Lemma 3. For every noncorectilinear point set P , every code described above
determines at most one maximal anchored rectangle packing for P , which can be
(re)constructed in polynomial time.

Proof. We are given the points p1, . . . , pn, and for every i = 1, . . . , n, we know
which corner of the rectangle ri is pi. To reconstruct the rectangles ri (i =
1, . . . , n), it is enough to find the corner of ri opposite to pi, which we denote
by (xi, yi). That is ri = [min(ai, xi),max(ai, xi)] × [min(bi, yi),max(bi, yi)]. We
determine the parameters xi (resp., yi) with the following strategy.

Consider a rectangle ri, and assume without loss of generality that pi is
the lower-left corner of ri. If ri is not in contact with any rectangle rj
such that ri ∩ rj is vertical and ai < aj , then xi = 1 (that is, ri extends
to the right edge of the bounding box [0, 1]2). If ri is in contact with
a rectangle rj such that the segment ri ∩ rj is vertical, ai < aj , and
the anchor pj is the lower-left or upper-left corner of rj , then we have
xi = aj . Analogous conditions determine yi in some cases.

We now show that our assumptions from Proposition 2 ensure that the above
strategy determines xi and yi for all i = 1, . . . , n. If the above strategy fails to
find xi, then ri is in contact with a rectangle rj such that the segment ri ∩ rj is
vertical, ai < aj , but pj is the lower-right or upper-right corner of rj . In this case,
we call (ri, rj) a horizontal pair. Analogously, if the strategy does not find yi,
then ri is part of some vertical pair (ri, rj). The horizontal (resp., vertical) pairs
define a subgraph of the contact graph, that we denote by GH (resp., GV). Each
connected component C of the graph GH (resp., GV) corresponds to rectangles
whose left or right edge lies on some common vertical (resp., horizontal) line �.

Consider a component C of GH (the argument is analogous for GV). The
line � must be right of all lower-left and upper-left anchors of rectangles in C,
and left of all lower-right and upper-right anchors. Suppose that there exists a
maximal anchored rectangle packing that satisfies these constraints. Denote by
L ⊂ C (resp., R ⊂ C) the set of rectangles whose right (resp., left) edges lie
on �. Similarly to the proof of Proposition 2, we deform the rectangles in L and
R simultaneously by translating �. If the sum of heights of rectangles in L and
R differ, then translating � in one of the two possible directions increases the
total area, contradicting maximality. If the sum of heights of rectangles in L
and R are equal, then translating � in any direction is an equiareal deformation.
We can now translate � left until the area of a rectangle in L drops to 0 or a
rectangle in R is in contact with a new rectangle on the left of �. This contradicts
our assumption that equiareal deformations create neither new contacts nor new
rectangles of 0 area. Consequently, GH (resp., GV) is the empty graph, there are
neither horizontal nor vertical pairs, and the above strategy uniquely determines
xi and yi for all i = 1, . . . , n. �
Theorem 2. There exist constants 1 < c1 < c2 such that Ω(cn1) ≤ M(n) ≤
O(cn2).

Proof. The combination of Lemmas 2 and 3 yields the upper bound. Theorem 1
gives the lower bound.

388 K. Balas and C.D. Tóth

5 Conclusions

We have considered two variants of anchored rectangle packings: the anchors pi
were required to be either the lower-left or arbitrary corners of the rectangles ri.
We could consider a variant that we call relaxed anchored rectangle packing,
where the anchors pi are contained in the rectangles ri. In this case, the max-
imum area of a rectangle packing is always 1, since the bounding box can be
subdivided into n parallel strips, each containing a point in P . Note that a rect-
angle ri = [xi, x

′
i]× [yi, y′

i] is now described by 4 variables. In a relaxed anchored
rectangle packing, however, a local maximum need not attain the global max-
imum. Nevertheless, the technique of Section 4 extends to this variant: each
maximal rectangle packing can be reconstructed from the contact graphs of the
rectangles (which has an embedding using polylines with at most one bend per
edge), and O(1) bits of additional information per rectangle. Consequently, the
number of locally maximal packings for an n-element point set is bounded by
exp(O(n)).

Analogous problems arise for anchored packings with other simple geomet-
ric shapes, such as circular disks or positive homothets of some convex body.
For packings with object of bounded description complexity, the configuration
space can be parameterized with O(n) variables, and some of the techniques
developed here do generalize. However, several crucial steps in our work have
relied on properties of axis-aligned rectangles. Determining the maximum area
covered by a packing remains open for both anchored and L-anchored rectangle
packings. For other geometric shapes (e.g., circular disks), finding the maximum
area covered by relaxed anchored variants is already a challenging problem.

References

1. Ackerman, E.: Counting problems for geometric structures: rectangulations, floor-
plans, and quasi-planar graphs, PhD thesis, Technion (2016)

2. Ackerman, E., Barequet, G., Pinter, R.: On the number of rectangulations of a
planar point set. J. Combin. Theory, Ser. A 113(6), 1072–1091 (2006)

3. Adamaszek, A., Wiese, A.: Approximation schemes for maximum weight indepen-
dent set of rectangles. In: Proc. 54th FOCS. IEEE (2013)

4. Adamaszek, A., Wiese, A.: A quasi-PTAS for the two-dimensional geometric knap-
sack problem. In: Proc. 26th SODA. SIAM (2015)

5. Ahn, H.-K., Cheng, S.-W., Cheong, O., Golin, M., van Oostrum, R.: Competitive
facility location: the Voronoi game. Theoret. Comput. Sci. 310, 457–467 (2004)

6. Ajtai, M., Chvátal, V., Newborn, M., Szemerédi, E.: Crossing-free subgraphs.
Annals Discrete Math. 12, 9–12 (1982)

7. Avis, D., Fukuda, K.: Reverse search for enumeration Discrete Appl. Math. 65,
21–46 (1996)

8. Bansal, N., Khan, A.: Improved approximation algorithm for two-dimensional bin
packing. In: Proc. 25th SODA, pp. 13–25. SIAM (2014)

9. Cheong, O., Har-Peled, S., Linial, N., Matoušek, J.: The one-round Voronoi game.
Discrete Comput. Geom. 31, 125–138 (2004)

On the Number of Anchored Rectangle Packings for a Planar Point Set 389

10. Dumitrescu, A., Schulz, A., Sheffer, A., Tóth, C.D.: Bounds on the maximum
multiplicity of some common geometric graphs. SIAM J. Discrete Math. 27(2),
802–826 (2013)

11. Dumitrescu, A., Tóth, C.D.: Packing anchored rectangles. In: Proc. 23rd SODA,
pp. 294–305. SIAM (2012); and Combinatorica 35(1), 39–61 (2015)

12. Francke, A., Tóth, C.D.: A census of plane graphs with polyline edges. In: Proc.
30th SoCG, pp. 242–250. ACM Press (2014)

13. Giménez, O., Noy, M.: Asymptotic enumeration and limit laws of planar graphs.
J. AMS 22, 309–329 (2009)

14. Harren, R., Jansen, K., Prädel, L., van Stee, R.: A (5/3 + ε)-approximation for
strip packing. Comput. Geom. 47(2), 248–267 (2014)

15. Kakoulis, K.G., Tollis, I.G.: Labeling algorithms, chap. 28. In: Tamassia, R. (ed.)
Handbook of Graph Drawing and Visualization. CRC Press (2013)

16. Knuth, D., Raghunathan, A.: The problem of compatible representatives. SIAM
J. Discete Math. 5, 36–47 (1992)

17. van Kreveld, M., Strijk, T., Wolff, A.: Point labeling with sliding labels. Comput.
Geom. 13, 21–47 (1999)

18. Murata, H., Fujiyoshi, K., Nakatake, S., Kajitani, Y.: VLSI module placement
based on rectangle-packing by the sequence-pair. IEEE Trans. CAD Integrated
Circuits and Systems 15(12) (1996)

19. Santos, F., Seidel, R.: A better upper bound on the number of triangulations of a
planar point set. J. Combin. Theory, Ser. A 102, 186–193 (2003)

20. Sharir, M., Sheffer, A.: Counting plane graphs: cross-graph charging schemes.
Combinat. Probab. Comput. 22, 935–954 (2013)

21. Stanley, R.: Problem k8 in Catalan addendum to Enumerative Combinatorics,
vol. 2, May 25, 2013. http://www-math.mit.edu/∼rstan/ec/catadd.pdf

22. Thomas, H.: New combinatorial descriptions of the triangulations of cyclic poly-
topes and the second higher Stasheff-Tamari posets. Order 19(4), 327–342 (2002)

23. Tutte, W.: Recent Progress in Combinatorics: Proceedings of the 3rd Waterloo
Conference on Combinatorics, May 1968. Academic Press, New York (1969)

24. Winkler, P.: Packing rectangles. In: Mathematical Mind-Benders, pp. 133–134,
A.K. Peters Ltd., Wellesley (2007)

http://www-math.mit.edu/~{r}stan/ec/catadd.pdf

Approximate Truthful Mechanism Design
for Two-Dimensional Orthogonal

Knapsack Problem

Deshi Ye(B) and Guochuan Zhang

College of Computer Science, Zhejiang University, Hangzhou 310027, China
{yedeshi,zgc}@zju.edu.cn

Abstract. This paper provides a technique for designing truthful mech-
anisms for a combinatorial optimization problem, which requires com-
position algorithms. We show that the composition algorithm A ◦ B
is monotone if the algorithm A and the algorithm B are both mono-
tone. Then, we apply this technique to the two-dimensional orthogonal
knapsack problem with provable approximation bounds, improving the
previous results in [5].

Keywords: Mechanism design · Knapsack auction · Approximation
algorithms

1 Introduction

Traditional optimization problems assume that the input data are available to
the algorithm designer. However, in many Internet applications, such as com-
binatorial auction, the algorithms whose inputs are provided by selfish agents
prefer to lie if there are benefits for themselves. Mechanism design is to deal
with such selfish settings. The mechanism designer proposes allocation and pay-
ment algorithms for all agents beforehand, the agents then decide to report their
own input data. Without loss of generality, assume that agents are rational and
attempt to maximize their own utilities. Most of previous research work concerns
on incentive compatible or truthful mechanisms, in which a dominate strategy for
an agent is to report the true input data. Designing efficient truthful mechanisms
that approximate the optimal social welfare was first considered by Nisan and
Ronen [27]. Two different social objective functions of mechanisms were studied
in this approach. One is about the utilitarian optimization problems, such as
combinatorial auction and the knapsack problem. The other is to minimize the
makespan of parallel machines with private speeds.

Technique designing for combinatorial auctions was well studied. Mu’alem
and Nisan [26] provided several ways to combine two allocations algorithms,
such as the MAX operator and the If-Then-Else operator. They studied the

D. Ye—Research was supported in part by China Scholarship Council.
G. Zhang—Research was supported by NSFC(11271325).

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 390–401, 2015.
DOI: 10.1007/978-3-319-21398-9 31

Approximate Truthful Mechanism Design 391

mechanisms for restricted combinatorial auctions where the subset of items of
each bidder is known and only the valuation of these items is unknown by the
mechanism (the single parameter case), a 2-approximation mechanism based on
the greedy method for the knapsack problem was provided. Briest et al. [10]
designed a new approach in rounding scheme that leads to monotone FPTASs,
and therefore a monotone FPTAS for knapsack problem. Moreover, the prob-
lems considered in [10] are of multi-parameter. Chekuri and Gamzu [12] stud-
ied the greedy iterative packing truthful mechanism for the multiple knapsack
problem. By presenting a property of loser-independent, they gave a truthful
(2+ε)-approximate mechanism among single-minded agents, and (e/(e−1)+ε)-
approximate mechanism for knapsacks with identical capacity. When the number
of knapsacks is a fixed constant, Briest et al. [10] presented a monotone PTAS for
the multiple knapsack problem. Grandoni et al. [19] designed monotone truthful
multi-criteria FPTASs for multi-objective problems, which implies a monotone
truthful FPTAS for the multi-dimensional knapsack problem. However, their
FPTASs may violate each budget constraint by a factor (1 + ε). In general, var-
ious techniques appeared for the multi-dimensional packing problems, such as
the convex-decomposition technique [24] as well as maximal-in-range [17].

In this work we aim at a technique for designing truthful mechanisms for
the two-dimensional orthogonal knapsack with composition algorithms. In two-
dimensional orthogonal knapsack(2DOK) (or Rectangle packing (RP)), it is
asked to pack a set of rectangles into a bin (or a larger rectangle), where each
rectangle is associated with a value. The goal is to maximize the total value of
the selected rectangles that can be packed into the bin. This problem is moti-
vated by the scenario in the advertising auction. In web applications there is a
rectangle space available for advertisements. A set of advertisers would like to
bid a room for displaying their graphical advertisements. An advertisement is
usually a rectangle. The auctioneer (the owner of the space) has to choose a set
of rectangles that can be packed into the space while the social welfare is max-
imized. If all the advertisements have the same width, the problem is reduced
to the classical knapsack auction. Note that our problem differs from the multi-
dimensional knapsack auction [19] in the fact our problem involves geometric
constraints. Babaioff and Blumrosen [5] dealt with selling advertisement space
on a newspaper page that can be modelled by packing convex figures in a plane,
in which they show an O(R)-approximation truthful mechanism if convex figures
are rectangles, where R is the ratio of the maximum diameter of a rectangle and
the minimum width of a rectangle.

1.1 Related Work

The maximization problem of rectangle packing was considered in the litera-
ture. Jansen and Zhang [21] designed a (2+ε)-approximation algorithm. For the
special case of maximizing the number of packed rectangles, Jansen and Zhang
provided an asymptotic FPTAS (AFPTAS) as well as a PTAS. Resource aug-
mentation was studied by Fishkin et al. [18]. For the multiple knapsack problem,
FPTAS was ruled out even for two knapsacks unless P=NP [11,13]. Kellerer [22]

392 D. Ye and G. Zhang

devised a PTAS if the knapsacks are identical. Chekuri and Khanna [13] pro-
vided a PTAS for the general multiple knapsack problem. Jansen [20] showed
that there exists an EPTAS. However, there is no EPTAS for the two-dimensional
knapsack problem [23].

1.2 Our Contribution

Our main result is to design truthful mechanisms for the two-dimensional orthog-
onal knapsack problem via a composable algorithm. We show that the composi-
tion algorithm A◦B is monotone if the algorithm A (selection part) is monotone
and the algorithm B (allocation part) is monotone. Suppose that ε > 0 is a given
number. We first provide a monotone truthful and deterministic algorithm A◦B
and show that the approximation ratio is at most 7+ ε. If rotation of 90 degrees
is allowed, we obtain an approximation ratio of at most 3+ε. Moreover, for mul-
tiple knapsacks, we derive a (9 + ε)-approximation algorithm for fixed number
of knapsacks and a 14.2378-approximation algorithm for any arbitrary number
of knapsacks. Again, with rotation, the bound can be improved to 7.5 + ε. For
square packing we can achieve a better bound of 3 + ε. Therefore we give small
constant truthful approximation bounds and improve the previous bounds in [5].

2 The Two-Dimensional Orthogonal Knapsack Problem

The optimization version of the two-dimensional orthogonal knapsack problem
is to select a set of rectangles with maximum value such that they can be packed
into a given knapsack (a rectangle). Suppose that the knapsack has capacity
C = (a, b), where C is a rectangle with width a and height b. In the view of
mechanism design, items are controlled by selfish agents, and each rectangle
(or item) j has its true type (aj , bj , vj), where 0 < aj ≤ a is the width of
rectangle j and 0 < bj ≤ b is the height of rectangle j, and vj is the value
of this item. Each agent j sends her bid (a′

j , b
′
j , v

′
j) to a mechanism, and then

the mechanism computes the output O and the payments for every agent based
on the bids of all agents. Thus, the mechanism for two-dimensional orthogonal
knapsack problem is an allocation algorithm A and a payment function pA. The
mechanism’s goal is to maximize the social welfare, i.e., the total value of selected
items assigned in the knapsack.

Let d = (d1, d2, . . . , dn) be the bidders of all agents, where dj is the dec-
laration of agent j and n is the number of agents. If agent j reports her true
type, then dj = (aj , bj , vj). We consider single-minded version introduced by
Lehmann, Oćallaghan, and Shoham [25]. Let O(d) be the allocations of the
mechanism based on the reporting d and each Oj(d) ∈ O(d) is the allocation
for each agent j. Each Oj(d) is a rectangle, and Oj(d) is empty if agent j is not
selected. We define (aj , bj) ≤ Oj(d) if aj is no more than the width of Oj(d) and
bj is no more than the height of Oj(d), i.e., the rectangle (aj , bj) can be packed

Approximate Truthful Mechanism Design 393

inside the rectangle Oj(d). The value function vj(Oj(d)) for each output Oj(d)
is given as below.

vj(Oj(d)) =
{

vj , if(aj , bj) ≤ Oj(d)
0, otherwise.

(1)

In addition, we only consider unknown size of this problem, meaning that the
size of rectangle is only known by the corresponding agent. Each agent j may
declare any value of aj and bj . An agent j’s utility in a mechanism (A, pA) is

uj(d) = vj(Oj(d)) − pA
j

by the bidding of d, where pA
j is the payment for agent j. Each agent attempts

to maximize her utility, and thus might manipulate the mechanism by declaring
a false type. A mechanism is truthful or incentive compatible, if no agent j would
increase her utility by any false declaration, i.e.

uj((aj , bj , vj), (a′
−j , b

′
−j , v

′
−j)) ≥ uj((a′

j , b
′
j , v

′
j), (a

′
−j , b

′
−j , v

′
−j))

for any declaration (a′
j , b

′
j , v

′
j).

For any instance I, let SC(I) be the total value obtained by a mechanism, and
OPT (I) be the total value obtained by an optimal solution, then the mechanism
is ρ-approximation if OPT (I)

SC(I) ≤ ρ.

2.1 The Mechanism

A bid (a′
j , b

′
j , v

′
j) of agent j is a winning declaration if (aj , bj) ≤ Oj (this

item is selected in the knapsack), otherwise, it is a losing declaration. For a
bid (a′

j , b
′
j , v

′
j), a declaration (a′′

j , b′′
j , v′′

j) is said to be a higher declaration if
a′′

j ≤ a′
j and b′′

j ≤ b′
j , and v′′

j ≥ v′
j . For the simplification we let d = (a, b, v) =

((a1, b1, v1), (a2, b2, v2), . . . , (an, bn, vn)). Let (a−j , b−j , v−j) denote the declara-
tion without agent j, which can be represented as

((a1, b1, v1), . . . , (aj−1, bj−1, vj−1), (aj+1, bj+1, vj+1), . . . , (an, bn, vn)).

Definition 2.1. (Monotone) We say that an algorithm A for two-dimensional
orthogonal knapsack problem is monotone if, for any agent bidder j, (a′

j , b
′
j , v

′
j)

is a winning declaration then any higher declaration also wins.

From the property of monotone, we observe that algorithm A defines a critical
value θA

j , which is the minimum value v′
j such that (a′

j , b
′
j , v

′
j) is a winning

declaration if we fix the declaration of (a′
−j , b

′
−j , v

′
−j) and declaration (a′

j , b
′
j).

We say that algorithm A is exact if Oj(d′) = (a′
j , b

′
j) or Oj(d′) = ∅ for each

declaration (a′
j , b

′
j , v

′
j) of d′.

Definition 2.2. The payment pA associated with the monotone allocation algo-
rithm A that is based on the critical value is defined by pA

j = θA
j if agent j wins,

and pA
j = 0 otherwise.

394 D. Ye and G. Zhang

A mechanism MA = (A, pA) is normalized , if its payment pA is defined as
in Definition 2.2, i.e. agents that are not selected pay 0.

Theorem 2.3. [10] Let A be a monotone and exact algorithm for some util-
itarian problem and single-minded agents. Then the normalized mechanism
MA = (A, pA) is truthful.

Proof. Briest et al. [10] showed that the theorem is valid for a single dimensional
knapsack problem, generalized from the combinatorial auction problem [25]. This
result can be easily extended to our 2-dimensional orthogonal knapsack problem
as it is utilitarian. For the sake of completeness, we give the sketch of the proof.

For any agent j, let us fix the declarations of any other agents. The true type
of agent j is (aj , bj , vj). The first step is to prove that the utility function of
the declaration (a′

j , b
′
j , vj) is at least that of the arbitrary declaration (a′

j , b
′
j , v

′
j)

for any v′
j . It is worth to mention that the critical value is independent of j′s

declaration of v′
j . Let θj be the critical value of declaration (a′

j , b
′
j , v

′
j). If agent

j is selected or not selected in both declarations, the utilities are the same. If
the agent j is not selected in declaration (a′

j , b
′
j , vj) and selected in declaration

(a′
j , b

′
j , v

′
j), we have v′

j ≥ θj > vj . Thus, the utility of agent j in declaration of
(a′

j , b
′
j , v

′
j) is negative, while the utility of agent j in declaration of (a′

j , b
′
j , vj)

is zero. Conversely, if the agent j is selected in declaration (a′
j , b

′
j , vj) and not

selected in declaration (a′
j , b

′
j , v

′
j), we have the utility of agent j is non-negative

and zero for these two declarations, respectively.
The second step is to show the utility of declaration of (aj , bj , vj) is no less

than (a′
j , b

′
j , vj) for any (a′

j , b
′
j). If a′

j < aj or b′
j < bj , from the exactness,

the value of agent j is zero and hence the utility is non positive. Observe that
the utility of a truth declaration is non-negative. Therefore, the utility is not
increasing by such a kind of lying.

Let us focus on the lying that a′
j ≥ aj and b′

j ≥ bj . Let θj and θ′
j be the critical

values according to the true declaration and the lying declaration, respectively.
We have θj ≤ θ′

j from the monotonicity of the allocation algorithm A. If the
agent j is not selected by lying declaration, its utility is zero, while the true
declaration is non-negative. If the agent j is selected in both declaration, the
utility of true declaration is vj − θj that is no less than the utility of lying
declaration vj − θ′

j . Now, we only consider that the agent j is not selected in
true declaration. In this case we have vj < θj ≤ θ′

j , which indicates the utility
of agent j is negative if it is selected by lying to (a′

j , b
′
j , vj). ��

Hence it is sufficient to design a monotone allocation algorithm to obtain
a truthful mechanism for our problem by Theorem 2.3. To this end, in the
following, we provide a composition algorithm.

2.2 Composition Algorithm

Given two algorithms A and B, we define the composition of algorithm A ◦B in
the following way: For any given input I, run the algorithm A on I and let O1

Approximate Truthful Mechanism Design 395

be the set of winners. Then run the algorithm B on O1 and let O2 be the set of
winners. The output of algorithm A ◦ B is the allocation of items in O2.

For any instance I of the two-dimensional knapsack problem (a, b, v), we
define a new instance I ′, which is a one-dimensional knapsack problem (s, v),
where sj = aj · bj is the area of the rectangle item j, and the capacity of the
knapsack is C = a · b. A bit overuse of notations, in the remainder of this paper,
C is the area of the rectangle (a, b) when we refer to the capacity of the one-
dimensional knapsack problem, and C is the rectangle (a, b) when we refer to
the two-dimensional knapsack.

Composition Algorithm A ◦ B

1. Run 1-dimensional knapsack algorithm A for the new instance I ′, return the
set of selected items O1.

2. Run algorithm B on the instance O1 for 2-dimensional orthogonal knapsack
problem, return the set of selected items O2.

Theorem 2.4. If the algorithm A and the algorithm B are both monotone, then
its composition algorithm A ◦ B is monotone.

Proof. Suppose that the agent j with true type (aj , bj , vj) is a winning declara-
tion. Then we need to prove that a higher declaration j′ = (a′

j , b
′
j , v

′
j) is also a

winner, i.e. aj ≥ a′
j , bj ≥ b′

j and vj ≤ v′
j . Since j is a winner, then j ∈ O2 and

we have j ∈ O1 too. It holds that j′ ∈ O1 since algorithm A is monotone. We
know j′ ∈ O2 because of the algorithm B is monotone, which therefore j′ is also
a winner. ��

2.3 Monotone Algorithm

An item Rj is called big if aj > a/2 and bj > b/2; it is wide if aj > a/2 and
bj ≤ b/2; it is tall if aj ≤ a/2 and bj > b/2; and it is small if aj ≤ a/2 and
bj ≤ b/2.

Lemma 2.5. [21] If the total area of a set T of items is at most C/2 and there
are no tall items (or there are no wide items), then the items in T can be packed
into a bin with capacity C.

Now we are ready to show a monotone algorithm for the two-dimensional
orthogonal knapsack problem.

Lemma 2.6. Algorithm 1 is monotone.

Proof. Note that Algorithm 1 is composable, which consists of algorithms A and
B. For any agent j that is a winner, if its declaration is higher, we have s′

j ≤ sj

and v′
j ≥ vj . The algorithm A in line 2 has already been proved to be monotone

in the accordingly references.
For algorithm B, the monotone is shown as below. If the output of original

declaration is due to G1, i.e., it returns the m items with largest value, then,
clearly, it is monotone since item j will also be a winner from v′

j ≥ vj .

396 D. Ye and G. Zhang

Algorithm 1.. Allocation algorithm for 2-dimensional knapsack problem
1: For any input I (ai, bi, vi), the new instance I ′ is (si, vi), where si = ai · bi, and the

capacity of the knapsack is C = ab, where (a, b) is the capacity of the knapsack in
input I.

2: Algorithm A: Run a monotone algorithm A for 1-dimensional knapsack prob-
lem on this new instance I ′. Let O1 be the output, and V (O1) be the value of
total selected items. Specifically, in case of single knapsack, we adopt the mono-
tone FPTAS [10] for the 1-dimensional knapsack problem as algorithm A. For
multiple knapsack problem with fixed number of knapsacks, we adopt the mono-
tone PTAS [10] for the general assignment problem as algorithm A. For multiple
knapsack problem with arbitrarily number of knapsacks, we adopt the monotone
algorithm in [12] as algorithm A.

3: Algorithm B: Let m be the number of knapsacks. Select m items with maximal
value from O1. Denote these m items as G1. Let α be a constant that will be given
later.

4: if V (G1) ≥ αV (O1), then
5: return Assign each item in G1 to a different knapsack respectively.
6: else
7: Remove all the big items from O1.
8: Then consider two sets of remaining items, T1 consists of wide items and small

items, T2 consists of tall items and small items. We choose the set Th with larger
value, i.e. V (Th) = max(V (T1), V (T2)).

9: We adopt the monotone algorithm A for 1-dimensional knapsack problem on the
instance Th. However, we set the capacity of the knapsacks to be C/2. Denote
the selected items in this step as G2.

10: For the output G2, we adopt the 2-dimensional packing algorithm as indicated
in Lemma 2.5 by Jansen and Zhang [21] to pack these items in the original
knapsack with capacity C = (a, b).

11: end if

If the output of original declaration is G2, fixing other declarations, agent j
reports a higher declaration j′. We denote it as d′. The output of d′ is either
G′

1 or G′
2. If it is G′

1, i.e. the total value of the largest m items is larger than
αV (O1), noting that the total value of the largest m items in original declarations
is smaller than αV (O1) due to the output is G2, then item j must be selected.

If the output of d′ is G′
2, we know that all big items are not included in Th.

The item j is a wide item (or tall) or a small item. If j is a small item, its higher
bidder j′ is also a small item. If j is a wide (or tall) item, its higher bidder either
is a wide (or tall) item or a small item, i.e. the item with a high declaration is
also in Th. A higher declaration of item j ensures that item j must be selected
due to the monotone of the algorithm A. Thus, the algorithm B is monotone.
Since, algorithm A and B are both monotone, by Theorem 2.4, Algorithm 1 is
monotone. ��

Lemma 2.7. Let the approximation ratio of algorithm A be ρA ≥ 1. For any
given ε > 0, the approximation ratio of Algorithm 1 for m = 1 is 7ρ2A by letting

Approximate Truthful Mechanism Design 397

α = 1/7. The approximation ratio of Algorithm 1 for m ≥ 2 is 9ρ2A by letting
α = 9.

Proof. Let V opt be the value of selected items achieved by any optimal algorithm.
We know V opt ≤ ρAV (O1). Let V (O2) be the value of selected items achieved by
Algorithm 1. If the algorithm B outputs the m items with the maximum value,
we have V (O2) ≥ αV (O1), and then V opt ≤ ρA

α V (O2) follows.
If the final accepted items are due to G2, we show its value is at least αV (O1).

In this case, the maximum value among these items is no more than αV (O1).
Note that in Th, there are no both wide items and tall items. W.l.o.g, we

assume there is no tall item, i.e. each item has height at most of b/2. According
to the algorithm B, we apply the algorithm A to select items among Th with the
capacity of a knapsack C/2.

Now we are going to find a lower bound of the optimal value of selecting
items in Th with capacity C/2, which is denoted by V ∗(Th). For the O1 items in
each knapsack, it is a feasible solution for a single knapsack with capacity C. Let
us consider each knapsack j. Denote the value of items in the knapsack j to be
V (Th, j), and we have V (Th) =

∑m
j=1 V (Th, j). We split the knapsack j into two

identical sub-knapsacks, each with capacity C/2 with width a and height b/2.
See Figure 1 for an illustration. We get three sets of items, the items below the
divided line, the item crossing the divided line, and the items above the divided
line, respectively. It is worth to note that the area of all these three sets is at
most of C/2. Then select one set with maximum value in each knapsack implies
that the optimal value is at least V (Th, j)/3 for any m knapsacks.

On the other hand, if we remove γ ≥ 2 big items in the knapsack j, then the
total area in this knapsack is at most of C/2, and all items from Th in knapsack
j can be selected by an optimal algorithm with capacity C/2.

In all, the value of the selected items in an optimal solution in knapsack j is
at least V (Th, j)/3 if γ ≤ 1, or at least V (Th, j) if γ ≥ 2, where γ is the number
of big items in knapsack j from O1.

a

b
2

b
2

Fig. 1. Illustration of the split knapsack

Regarding the approximation ratios, let us first consider m = 1, i.e., the
single knapsack problem. Suppose that γ big items are removed, the value lost
is at most γαV (O1). In case of m = 1, we have γ ≤ 3. Hence the total value of

398 D. Ye and G. Zhang

items in O1 without counting removed items is at least (1− γα)V (O1), then the
value of the selected items Th is V (Th) = max(V (T1), V (T2)) ≥ 1−γα

2 V (O1).
We have V ∗(Th) ≥ V (Th)/3 ≥ 1−α

6 V (O1) if γ ≤ 1, and V ∗(Th) ≥ V (Th) ≥
(1−3α)

2 V (O1) if γ ≥ 2. It holds that V ∗(Th) ≥ min{ 1−α
6 V (O1),

(1−3α)
2 V (O1)}.

Let α = 1/7. Note that min{1−α
6 , 1−3α

2 } = 1/7.

V (O2) ≥ V ∗(Th)/ρA

≥ min{α,
1 − α

6
,
1 − 3α

2
}V (O1)/ρA

=
1
7
V (O1)/ρA ≥ 1

7ρ2A
V opt.

Now we consider the approximation ratios for multiple knapsacks, in which
m ≥ 2. W.l.o.g, we assume that each of the first k knapsacks removes at most one
big item. Then in the left m−k knapsacks, each will remove at least two big items.
Hence, we know V ∗(Th) ≥ 1

3

∑k
j=1 V (Th, j) +

∑m
j=k+1 V (Th, j) ≥ V (Th)/3. On

the other hand, 2V (Th) ≥ V (O1)−
∑m

j=1 V (B, j), where V (B, j) is the total value
of big jobs in knapsack j in O1. From the fact that the final output is G2, the value
of the largest m items is at most αV (O1), and there are at most 3m big items,
we have

∑m
j=1 V (B, j) ≤ 3αV (O1). Thus, V ∗(Th) ≥ V (Th)/3 ≥ 1−3α

6 V (O1).
The approximation ratio 9ρ2A follows from the following inequality by letting

α = 9.

V (O2) ≥ min{αV (O1), V ∗(Th)/ρA}

≥ min{α,
1 − 3α

6
}V (O1)

≥ min{α,
1 − 3α

6
}V opt/ρ2A.

��

Theorem 2.8. Let the mechanism employ Algorithm 1 as the allocation algo-
rithm and adopt the associated critical value payment scheme. Then it is an
approximation truthful mechanism for a number of knapsack problems including
the 2-dimensional orthogonal knapsack problem, the multiple orthogonal knap-
sack problem with a constant number of knapsacks, and the multiple orthogonal
knapsack problem with arbitrary number of knapsacks. The respective approxi-
mation ratios are at most 7 + ε, 9 + ε, and 9e/(e − 1) + ε, for any fixed ε > 0.

Proof. The monotonicity has been proved from Lemma 2.6. Let us consider the
approximation ratios by Lemma 2.7. For m = 1, let δ > 0 be an arbitrarily
small positive number, we adopt the monotone FPTAS [10] as the algorithm A,
hence ρA = 1 + δ. Thus, let ε > 0, and select δ such that 14δ + 7δ2 ≤ ε, the
approximation ratio for single 2-dimensional knapsack problem is at most 7 + ε.

For m ≥ 2, Briest, Krysta, and Vöcking [10] provided a monotone PTAS for
the generalized assignment problem with constant number of knapsacks, where
knapsack problem is a special case of generalized assignment problem. Hence, for

Approximate Truthful Mechanism Design 399

any ε > 0, we obtain a (9 + ε)-approximation algorithm for any fixed m knap-
sacks. While, for arbitrary number of knapsacks, Chekuri and Gamzu [12] pro-
vided e/(e − 1) + ε monotone algorithm for multiple knapsack problem with
identical capacity, which indicates a 9e/(e − 1) + ε ≈ 14.2378 + ε for our prob-
lem. ��

2.4 Packing Square Items or Allowing Rotation

In this section, we consider a special case of packing rotatable items, i.e., the
allocation algorithm allows to rotate an item by 90 degrees. In particular, we
consider the items are squares, i.e. for each item i we have ai = bi. These two
special cases have a common property that an algorithm can always ensure that
there are no both wide items and tall items. In square items version, all items
are either a big item or a small item. In the rotatable version, one can rotate a
tall item or a wide item such that only one kind of such item remains.

The key idea to improve the approximation ratio is that we do not need to
choose between wide items and tall items. We revise allocation algorithm B in
Algorithm 1 as below: Apply algorithm A to solve the instance O1 after rotating
all tall items into wide items if necessary, while the capacity of the knapsack is
set to C/2.

Corollary 2.9. If all the items are squares or rotation of items are allowed in
the allocation algorithm, then for any given ε > 0, assuming the approximation
ratio of algorithm A in Algorithm 1 to be ρA, the approximation ratio for the
multiple 2-dimensional knapsack problem is 3ρ2A.

Proof. The monotonicity of the revised algorithm is analogous to Lemma 2.6,
because any higher declaration of an item from Th still belongs to Th because
there are no both width items and tall items.

Lemma 2.5 guarantees the feasibility of packing of the selected items. Let
us consider the approximation ratio. We have the optimal value V ∗(Th) for
the knapsack problem with capacity C/2 is at least V (O1)/3 from the proof of
Lemma 2.7. Let V (O2) be the value of final selected items by our algorithm,
and V opt be the optimal value. Clearly, V opt ≤ ρA · V (O1) and V (O1)/3 ≤
V ∗(Th) ≤ ρA · V (O2). Therefore, we have V opt ≤ 3ρ2A · V (O2), which gives the
approximation ratio at most of 3ρ2A. ��

Remark: For m = 1 and multiple knapsacks with constant number of knapsacks,
the approximation ratio for the case of square items or with rotation is 3+ε due to
algorithm A is 1+ε approximated [10]. For multiple knapsacks with an arbitrary
number of knapsacks, the approximation ratio is 3(e/(e − 1))2 + ε ≈ 7.5 + ε due
to algorithm A [12] is e/(e − 1) + ε approximated.

3 Concluding Remarks

We have presented techniques for designing truthful mechanisms for the two-
dimensional orthogonal knapsack problem. We hope that our technique can be

400 D. Ye and G. Zhang

flexible and extended to other problems with composition algorithms. Note that
for the two-dimensional orthogonal knapsack problem, if item sizes are public,
then the (3 + ε)-approximation algorithm provided by Jansen and Zhang [21] is
a truthful mechanism. Recall that the non-strategic algorithm achieves an upper
bound of 2+ε [21]. It is worth to see a better truthful mechanism. Another inter-
esting problem is to see if it is possible to design a truthful PTAS for the multi-
ple one-dimensional knapsack problem with an arbitrary number of knapsacks,
which therefore reduces the approximation ratio for the multiple two-dimensional
orthogonal knapsack problems automatically.

References

1. Andelman, N., Azar, Y., Sorani, M.: Truthful approximation mechanisms for
scheduling selfish related machines. In: Diekert, V., Durand, B. (eds.) STACS 2005.
LNCS, vol. 3404, pp. 69–82. Springer, Heidelberg (2005)

2. Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In: Proceed-
ings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 482–491 (2001)

3. Archer, A.F.: Mechanisms for discrete optimization with rational agents. Ph.D.
thesis, Cornell University (2004)

4. Auletta, V., De Prisco, R., Penna, P., Persiano, G.: Deterministic truthful approx-
imation mechanisms for scheduling related machines. In: Diekert, V., Habib, M.
(eds.) STACS 2004. LNCS, vol. 2996, pp. 608–619. Springer, Heidelberg (2004)

5. Babaioff, M., Blumrosen, L.: Computationally-feasible truthful auctions for convex
bundles. Games and Economic Behavior 63(2), 588–620 (2008)

6. Bougeret, M., Dutot, P.-F., Jansen, K., Otte, C., Trystram, D.: A fast
5/2-approximation algorithm for hierarchical scheduling. In: D’Ambra, P., Guar-
racino, M., Talia, D. (eds.) Euro-Par 2010, Part I. LNCS, vol. 6271, pp. 157–167.
Springer, Heidelberg (2010)

7. Bougeret, M., Dutot, P.F., Jansen, K., Otte, C., Trystram, D.: Approximating the
non-contiguous multiple organization packing problem. In: Calude, C.S., Sassone,
V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 316–327. Springer, Heidelberg (2010)

8. Bougeret, M., Dutot, P.F., Jansen, K., Otte, C., Trystram, D.: Approximation
algorithms for multiple strip packing. In: Bampis, E., Jansen, K. (eds.) WAOA
2009. LNCS, vol. 5893, pp. 37–48. Springer, Heidelberg (2010)

9. Bougeret, M., Dutot, P.F., Trystram, D.: An extention of the 5/2-approximation
algorithm using oracle. Research Report (2010)

10. Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mech-
anism design. SIAM Journal on Computing 40(6), 1587–1622 (2011)

11. Caprara, A., Kellerer, H., Pferschy, U.: The multiple subset sum problem. SIAM
Journal on Optimization 11, 308–319 (2000)

12. Chekuri, C., Gamzu, I.: Truthful mechanisms via greedy iterative packing. In:
Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) Approximation, Randomization,
and Combinatorial Optimization. LNCS, vol. 5687, pp. 56–69. Springer, Heidelberg
(2009)

13. Chekuri, C., Khanna, S.: On multi-dimensional packing problems. In: Proceedings
of the 10th annual ACM-SIAM symposium on Discrete Algorithms (SODA), pp.
185–194 (1999)

Approximate Truthful Mechanism Design 401

14. Christodoulou, G., Kovács, A.: A deterministic truthful ptas for scheduling related
machines. In: Proceedings of the 21th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 1005–1016 (2010)

15. Coffman, E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for
level oriented two-dimensional packing algorithms. SIAM Journal on Computing
9, 808–826 (1980)

16. Dhangwatnotai, P., Dobzinski, S., Dughmi, S., Roughgarden, T.: Truthful approx-
imation schemes for single-parameter agents. In: Proceedings of 49th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 15–24 (2008)

17. Dughmi, S., Roughgarden, T.: Black-box randomized reductions in algorithmic
mechanism design. In: Proceedings of the 51st Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 775–784 (2010)

18. Fishkin, A.V., Gerber, O., Jansen, K., Solis-Oba, R.: On packing rectangles with
resource augmentation: Maximizing the profit. Algorithmic Operations Research
3(1), 1–12 (2008)

19. Grandoni, F., Krysta, P., Leonardi, S., Ventre, C.: Utilitarian mechanism
design for multi-objective optimization. In: Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 573–584
(2010)

20. Jansen, K.: Parameterized approximation scheme for the multiple knapsack
problem. SIAM Journal on Computing 39, 1392–1412 (2009)

21. Jansen, K., Zhang, G.: Maximizing the total profit of rectangles packed into a
rectangle. Algorithmica 47(3), 323–342 (2007)

22. Kellerer, H.: A polynomial time approximation scheme for the multiple
knapsack problem. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A.
(eds.) RANDOM 1999 and APPROX 1999. LNCS, vol. 1671, pp. 51–62. Springer,
Heidelberg (1999)

23. Kulik, A., Shachnai, H.: There is no eptas for two-dimensional knapsack. Informa-
tion Processing Letters 110(16), 707–710 (2010)

24. Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear
programming. Journal of the ACM 58(6), 25 (2011)

25. Lehmann, D., Oćallaghan, L.I., Shoham, Y.: Truth revelation in approximately
efficient combinatorial auctions. Journal of the ACM (JACM) 49(5), 577–602
(2002)

26. Mu’Alem, A., Nisan, N.: Truthful approximation mechanisms for
restricted combinatorial auctions. Games and Economic Behavior 64(2),
612–631 (2008)

27. Nisan, N., Ronen, A.: Algorithmic mechanism design. In: Proceedings of
the thirty-first annual ACM Symposium on Theory of Computing (STOC),
pp. 129–140 (1999)

28. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM
Journal on Computing 26, 401–409 (1997)

29. Ye, D., Han, X., Zhang, G.: Online multiple-strip packing. Theoretical Computer
Science 412(3), 233–239 (2011)

30. Ye, D., Zhang, G.: Coordination mechanisms for selfish parallel jobs scheduling
- (extended abstract). In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012.
LNCS, vol. 7287, pp. 225–236. Springer, Heidelberg (2012)

31. Zhuk, S.: Approximate algorithms to pack rectangles into several strips. Discrete
Mathematics and Applications 16(1), 73–85 (2006)

Online Integrated Allocation of Berths and Quay
Cranes in Container Terminals with 1-Lookahead

Jiayin Pan1,2(B) and Yinfeng Xu1,2

1 School of Management, Xi’an Jiaotong University, Xi’an 710049, China
panjy1991@stu.xjtu.edu.cn

2 The State Key Lab for Manufacturing Systems Engineering, Xi’an 710049, China
yfxu@mail.xjtu.edu.cn

Abstract. This paper studies an online over-list model of the inte-
grated allocation of berths and quay cranes in container terminals with
1-lookahead ability. The objective is to minimize the maximum com-
pletion time of container vessels, i.e., the makespan. We focus on two
different types of vessels, three berths and a small number of QCs in
the hybrid berth layout, with 1-lookahead information. We propose a
(1 +

√
2)
/
2-competitive algorithm for the case with 4 cranes and a 5/4-

competitive algorithm for the case with 5 cranes, respectively. Both of
the algorithms are proved to be optimal.

Keywords: Scheduling · Online algorithm · Lookahead information ·
Container terminal

1 Introduction

Recently, the optimization problems involved in seaside operations planning
attract increasing attention in the operation research and transportation research
literatures. The seaside operations planning in container terminals basically com-
prises the berth allocation problem (BAP), the quay crane assignment problem
(QCAP), and the quay crane scheduling problem (QCSP). Since BAP and QCAP
are much interrelated in practice, a trend towards an integrated solution of berth
and QC(quay crane) resources is observed in the recent literatures (see Bierwirth
and Meisel, 2010; Carlo et al., 2013)

Most literatures investigated the offline version of the BAP-QCAP problem
such that the scheduler knows the complete information of all vessels at the
beginning. Park and Kim (2003) provided pioneering integration approaches,
they decided on the berthing position, the berthing time, and the number of
cranes to assign to each vessel together. Lokuge and Alahakoon (2007) studied
a dynamic BAP-QCAP problem with hybrid berths, aiming at minimizing total
waiting time and minimizing total tardiness. They developed a multi-agent sys-
tem which constitutes a feedback loop integration of the BAP and the QCAP.
Giallombardo et al.(2010), Blazewicz et al.(2011) and Zhen et al.(2011) pre-
sented a mixed integer programming and gave a tatu search algorithm for a
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 402–416, 2015.
DOI: 10.1007/978-3-319-21398-9 32

Online Integrated Allocation of Berths and Quay Cranes 403

dynamic BAP-QCAP problem in the discrete berth layout. Liang et al.(2011)
considered a dynamic discrete BAP-QCAP problem as a non-linear bi-objective
programming model. Chen et al. (2012) presented a mixed integer programming
to solve the problem which the objective was minimizing tardiness.

Zhang et al.(2008) studied the online version of container vessel scheduling
at the earliest. They considered the QC scheduling problem with non-crossing
constraints, and considered both online over-list and over-time model, with the
objective of minimizing the makespan. Zhang et al. developed an algorithm that
proved a m/�log 2(m + 1)�-competitive for the over-list model and an algorithm
that proved a 3-competitive for the general model of over-time model where m
is the number of QCs.

There are some related studies about online model with lookahead informa-
tion in the field of scheduling. Mandelbaum et al. (2010) studied online parallel
machines scheduling with k-lookahead, where k is the number of lookahead jobs.
For the objective of minimizing the makespan, they found a 1-competitive online
algorithm when there were only two job types. Zheng et al.(2013) studied online
single machine scheduling, also with k-lookahead jobs case, showed that the
lookahead ability can effective improve the competitive performance of online
strategy.

In this paper, we investigate the online vesion of the BAP-QCAP problem
with 1-lookahead in the hybrid berth layout (Imai et al., 2005), focus on the
over-list model that vessels are released one by one. As in practice, the ves-
sels dynamically arrive at the container terminal. The scheduler can foresee the
information of the vessels that arrive in the next a couple of days, and produce
a schedule to be executed in the next day for the vessels based on FCFS rule.
Namely, the scheduler makes the decision on the assignment of a current vessel
with the information of the current vessel and next k vessels. Hence, we model
the above FCFS-based assignment pattern as the online over-list BAP-QCAP
problem with k-lookahead information, and evaluate the performance of such
kind of strategies. More precisely, we consider the cases with three berths, four
or five QCs, and have 1-lookahead information. We prove that there exist optimal
online algorithms with competitive ratios of (1 +

√
2)

/
2 and 5/4, respectively.

The rest of this work is organized as follows. Section 2 describes the problem
and gives some notations. In Section 3 and 4, we deal with the case with 4 and 5
QCs respectively, and present a matching upper and lower bound for each case.
Finally Section 5 concludes this work.

2 Problem Statement and Basic Notations

There are some vessels that request service (loading or unloading containers) by
berths and QCs in the quay. In this paper, we only consider two types of vessels,
each type corresponds to a service request with uniform vessel size and processing
load. More precisely, the small request corresponds to small vessel size which
needs one berth to assign, and its processing load is equal to one. However, the
large request corresponds to large vessel size which needs two consecutive berths

404 J. Pan and Y. Xu

to assign, and its processing load is equal to Δ (≥ 2). For simplicity, let ri = 1
and ri = Δ denote a small request and a large request respectively. Considering
the physical restrictions imposed on the number of QCs to be assigned to a
vessel, we further assume that a small (or large) request can be serviced by two
(or four) QCs at most simultaneously. Namely, the processing time of a small
(or large) request ri is equal to 1/mi (or Δ/mi) units of time where mi is the
number of QCs for processing the request. A list of requests I = {r1, r2, . . . , rn}
(n ≥ 1) are to be released one by one. The scheduler must immediately allocate
the service combination of berth and QC as well as starting time. In addition
to the information about the current request in list, the scheduler has all the
information about the next 1 request in the list. The objective is to minimize
the makespan, i.e., the end time of the last completed request.

As both berth and QC are expensive resources in the container terminal,
generally, many ports in China have very limited number of berths and QCs.
Hence, we focus on the scenario with three consecutive berths. Which serve either
three small requests or one small request and one large request simultaneously,
implying there at most need 6 QCs. According to the actual situation, in this
paper, we consider 4 and 5 QCs. The QCs move in the same rail, satisfying the
non-cross constraint. We denote the three berths by b1, b2 and b3 from left to
right, and by q1, q2, . . . , qm the m (4 ≤ m ≤ 6) QCs from left to right in the
quay.

For a request ri, we denote its start and end time by si and ei. ti,m (m =
{1, 2, 3}) denotes the earliest time by which at least m consecutive berths have
completed all of their currently allocated requests. Ci,j denotes the earliest time
by which berth bj has completed all of its currently allocated requests.

Adopting the quadruple notation scheme in Bierwirth and Meisel (2010),
we denotes this problem as hybr |online − over − list, LD = 1 |BAP − QCAP |
Cmax, where LD means the number of lookahead requests.

To evaluate the performance of an online strategy A, we often use the com-
petitive ratio (Borodin and El-Yaniv, 1998). For any request input instance I, let
CA(I), C∗(I) be the makespan of schedule produced by an online algorithm A and
that of an optimal schedule respectively. Then algorithm A is ρ-competitive where

ρ = inf
r

{

r

∣
∣
∣
∣
CA(I)
C∗(I)

≤ r

}

3 The Case with Four QCs

In this section we focus on the case with 3 berths and 4 QCs in the prob-
lem hybr |online − over − list, LD = 1 |BAP − QCAP | Cmax. Firstly, we ana-
lyze the lower bound, i.e., no online algorithm can perform better than it from
a worst-case point of view. Secondly, we present an online algorithm named
MLIST. Before analyzing the lower bound and algorithm, we first introduce two
definitions.

Online Integrated Allocation of Berths and Quay Cranes 405

Definition 1. Waste time segment and available time segment: For an idle time
segment [si, ei), let q be the number of idle QCs. If 0 < q(ei − si) < 1, then
[si, ei) is a waste time segment, denoted by Tw. Otherwise, [si, ei) is an available
time segment, denoted by Ta.

The segment of each request ri may induce a forced idle time segment, i.e.,
an idle time segment [si, ei), only for during [si, ei), there exist idle QCs. If
0 < q(ei − si) < 1, where q is the number of the idle QCs, even a small request
later on cannot be satisfied within the time segment, and thus [si, ei) is a waste
time segment. Otherwise, [si, ei) is an available time segment. Set Ta=[t1,t2)
where t1=si, t2=ei, and Ta=[0,0) initially. And let |Ta| denote the total available
time, |Tw| denote the total waste time.

3.1 Lower Bound

Theorem 1. For problem hybr |online − over − list, LD = 1 |BAP − QCAP |
Cmax, any online scheduling algorithm has a competitive ratio of at least
(1 +

√
2)

/
2.

Proof. To prove the theorem, we construct a request input sequence I. I contains
at least two requests. Let Cmax(I) and C∗(I) be the makespan of schedule
produced by A and an optimal offline algorithm OPT, respectively.

According to the requires of the request for the berth and quay cranes, if
request ri = Δ, then A has four choices: processes ri on two consecutive berths
with one, two, three or four QCs. For processing ri with one QC, there always
exists at least one idle QC during [si, ei), A won’t select it. If request ri = 1,
then A has two choices: processes ri on a single berth with one or two QCs.

Assume I contains the first request r1 = Δ, with lookahead r2 = 1. If A
processes r1 with four QCs on berths b1, b2, no more requests arrive, which
implying Cmax(I) ≥ 1/2 + Δ/4. While OPT processes the requests r1 and r2
with three and one QC respectively, at time 0. C∗(I) = max {Δ/3, 1}. Except
Δ ≥ 6, OPT processes the request r1 and r2 with four and two QCs respectively,
at time 0. C∗(I) = 1/2 + Δ/4. If A processes r1 with three QCs on berth b1,
b2, offline adversary releases request r3 = 1 with no more requests, implying
Cmax(I) ≥ min {max {Δ/3, 2} , 1/2 + Δ/3}. While OPT processes the request
r1 with four QCs on berths b1, b2, r2 with two QCs on berth b1, and r3 with
two QCs on berth b2, at time 0. C∗(I) = 1/2 + Δ/4. If A processes r1 with two
QCs on berth b1, b2, then no more requests arrive. Cmax(I) ≥ Δ/2, while OPT
processes the request r1 and r2 with three and one QC respectively,at time 0.
C∗(I) = max {Δ/3, 1}. ExceptΔ ≥ 6, OPT processes the request r1 and r2 with
four and two QCs respectively, at time 0, C∗(I) = 1/2 + Δ/4.

After processed. We have ρ ≥ (1 +
√

2)
/
2, setting Δ = (6 + 12

√
2)

/
7. For

the sake of completeness, this middle paragraph is presented in Appendix A.
The theorem follows. ��

406 J. Pan and Y. Xu

3.2 Algorithm MLIST

On the release of any request ri (i ≥ 1), if i = n, then the scheduler can lookahead
rn is the last request of consequence I, so we can optimal assign this request to
minimize Cmax. Otherwise, 1 ≤ i ≤ n − 1, MLIST behaves as follows.

Case 1. ri = Δ, ri+1 = 1. There are two subcases in the following:
– Case 1.1. When (2 + 2

√
10)

/
3 ≤ Δ ≤ (6 + 12

√
2)

/
7, for the case with

|Ta| ≥ 3, assign ri to the two idle consecutive berths with three QCs,
and reset Ta. Otherwise, set si = max {Ci,1, Ci,2}, and assign ri to the
leftmost two berths with three QCs.

– Case 1.2. When 2 ≤ Δ ≤ (2 + 2
√

10)
/
3 or Δ ≥ (6 + 12

√
2)

/
7 , assign ri

to the leftmost two berths with four QCs. Set si = max {Ci,1, Ci,2}.
Case 2. ri = Δ, ri+1 = Δ. For the case with |Ta| ≥ 3, assign ri to the two idle

consecutive berths with three QCs, and reset Ta. Otherwise, assign ri to the
leftmost two berths with four QCs. Set si = max {Ci,1, Ci,2}.

Case 3. ri = 1, ri+1 = 1. When Ta = [0, 0) , assign ri to the berth b1 with two
QCs. Set si = Ci,1. Otherwise, assign ri to the idle berth, reset Ta.

Case 4. ri = 1, ri+1 = Δ. There are two subcases below:
– Case 4.1. When (2 + 2

√
10)

/
3 ≤ Δ ≤ (6 + 12

√
2)

/
7, for the case

with Ta = [0, 0), assign ri to the berth b1 with one QC. Set si =
max {Ci,1, Ci,2, Ci,3}. For the other case, assign ri to the idle berth, reset
Ta.

– Case 4.2. when 2 ≤ Δ ≤ (2 + 2
√

10)
/
3 or Δ ≥ (6 + 12

√
2)

/
7, for the case

with Ta = [0, 0), assign ri to the berth b1 with two QCs, set si = Ci,1.
Otherwise, assign ri to the idle berth, reset Ta.

Theorem 2. For problem hybr |online − over − list, LD = 1 |BAP − QCAP |
Cmax, with 3 berths and 4 QCs, MLIST is (1 +

√
2)

/
2 -competitive.

Proof. Given any request input sequence I = {r1, r2, ..., rn}. Let Cσ(I) and
C∗(I) be the makespan of a schedule produced by MLIST and by an optimal
offline algorithm OPT. Based on the interval of Δ, we consider two cases.

Case 1. (2 + 2
√

10)
/
3 ≤ Δ ≤ (6 + 12

√
2)

/
7, there are four subcases in the

following.
Case 1.1. The last two requests are rn−1 = Δ, rn = 1.
Case 1.1.1. Ta = [0, 0), we have C∗(I) = Cσ(I) = Cn−2(I) + max{Δ

3 , 1}.
Case 1.1.2. |Tw| = k(Δ/3 − 1) or 3k(1 − Δ/3) (k ≥ 1), it indicates that the

sequence contains pairs of (ri = Δ, ri+1 = 1) or (ri = 1, ri+1 = Δ) before rn−1,
and those requests consist of k large and k small requests. Assume that excluding
those ∈‖ requests, Cmax = t before rn−1, then Cσ(I) = t+(k +1)max {Δ/3, 1},
C∗(I) ≥ t + (k + 1)(Δ + 1)/4, Cσ(I)/C∗(I) ≤ (8

√
10 − 20)

/
5.

Case 1.1.3. |Tw| = k(Δ/3 − 1) or 3k(1 − Δ/3) (k ≥ 0) and |Ta| = 3, it
indicates that the sequence contains pairs of (ri = Δ, ri+1 = 1) or (ri = 1,
ri+1 = Δ) before rn−1, those requests consist of k large and k small requests.
And rn−2 = 1. Assume that excluding those 2k requests, Cmax = t before rn−2,

Online Integrated Allocation of Berths and Quay Cranes 407

then Cσ(I) = t+k max {Δ/3, 1}+Δ/3+1/2, C∗(I) ≥ t+(k + 1)(Δ + 1) + 1/4,
Cσ(I)

/
C∗(I) ≤ (1 +

√
2)

/
2.

Case 1.2. The last two requests are rn−1 = Δ, rn = Δ.
Case 1.2.1. Ta = [0, 0), we have C∗(I) = Cσ(I) = Cn−2(I) + Δ/2.
Case 1.2.2. |Tw| = k(Δ/3 − 1) or 3k(1 − Δ/3) (k ≥ 1), it indicates that the

sequence contains pairs of (ri = Δ, ri+1 = 1) or (ri = 1, ri+1 = Δ) before rn−1,
and those requests consist of k large and k small requests. Assume that excluding
those 2k requests, Cmax = t before rn−1, then Cσ(I) = t+k max {Δ/3, 1}+Δ/2,
C∗(I) ≥ t + [k(Δ + 1) + 2Δ]/4, Cσ(I)/C∗(I) ≤ (8

√
10 − 20)

/
5.

Case 1.2.3. |Tw| = k(Δ/3 − 1) or 3k(1 − Δ/3) (k ≥ 0) and |Ta| = 3, it
indicates that the sequence contains pairs of (ri = Δ, ri+1 = 1) or (ri = 1, ri+1 =
Δ) before rn−1, those requests consist of k large and k small requests. And
rn−2 = 1. Assume that excluding those 2k requests, Cmax = t before rn−2, then
Cσ(I) = t + (k+1)max {Δ/3, 1} + Δ/4, C∗(I) ≥ t + [(k + 1)(Δ + 1) + Δ]/4,
Cσ(I)/C∗(I) ≤ (8

√
10 − 20)

/
5.

Case 1.3. The last two requests are rn−1 = 1, rn = 1.
Case 1.3.1. Ta = [0, 0), we have C∗(I) = Cσ(I) = Cn−2(I) + 1/2.
Case 1.3.2. |Ta| = 1, it indicates that the list doesn’t contain (ri = Δ, ri+1 =

1) or (ri = 1, ri+1 = Δ) sequence before rn−1, then C∗(I) = Cσ(I) = Cn−2(I)+
1/2, Cσ(I)/C∗(I) = 1.

Case 1.3.3. |Tw| = k(Δ/3 − 1) or 3k(1 − Δ/3) (k ≥ 1), it indicates that the
sequence contains pairs of (ri = Δ, ri+1 = 1) or (ri = 1, ri+1 = Δ) before rn−1,
and those requests consist of k large and k small requests. Assume that excluding
those 2k requests, Cmax = t before rn−1 , then Cσ(I) = t+1/2+k max {Δ/3, 1},
C∗(I) ≥ t + [k(Δ + 1) + 2]/4, Cσ(I)/C∗(I) ≤ (8

√
10 − 20)

/
5.

Case 1.3.4. |Ta| = 1 and |Tw| = k(Δ/3 − 1) or 3k(1 − Δ/3) (k ≥ 1),
it indicates that the sequence contains pairs of (ri = Δ, ri+1 = 1) or (ri =
1, ri+1 = Δ) before rn−1, those requests consist of k large and k small requests.
And rn−2 = 1. Assume that excluding those 2k requests, Cmax = t before
rn−2, then Cσ(I) ≤ t + 1 + k max {Δ/3, 1}, C∗(I) ≥ t + [k(Δ + 1) + 3]/4,
Cσ(I)

/
C∗(I) ≤ (28 − 4

√
10)

/
13.

Case 1.3.5. |Ta| = Δ/3 and |Tw| = k(Δ/3 − 1) or 3k(1 − Δ/3) (k ≥ 0),
it indicates that the sequence contains pairs of (ri = Δ, ri+1 = 1) or (ri =
1, ri+1 = Δ) before rn−1, those requests consist of k large and k small requests.
And rn−2 = Δ. Assume that excluding those 2k requests, Cmax = t before rn−2,
then Cσ(I) = t + 1/2 + k max {Δ/3, 1}, C∗(I) ≥ t + [(k + 1)(Δ + 1) + 1]/4,
Cσ(I)/C∗(I) ≤ (8

√
10 − 20)

/
5.

Case 1.4. The last two requests are rn−1 = 1, rn = Δ.
Case 1.4.1. Ta = [0, 0), we have C∗(I) = Cσ(I) = Cn−2(I) + max{Δ

3 , 1}.
Case 1.4.2. |Ta| = Δ/3, it indicates rn−2 = Δ. Assume Cmax = t before rn−2,

then C∗(I) = Cσ(I) = t + Δ/4 + max {Δ/3, 1}, Cσ(I)/C∗(I) = 1.
Case 1.4.3. |Tw| = k(Δ/3 − 1) or 3k(1 − Δ/3) (k ≥ 1), it indicates that the

sequence contains pairs of (ri = Δ, ri+1 = 1) or (ri = 1, ri+1 = Δ) before rn−1,
and those requests consist of k large and k small requests. Assume that excluding

408 J. Pan and Y. Xu

those 2k requests, Cmax = t before rn−1 , then Cσ(I) = t+(k+1)max {Δ/3, 1},
C∗(I) ≥ t + (k + 1)(Δ + 1)/4, Cσ(I)

/
C∗(I) ≤ (8

√
10 − 20)

/
5.

Case 1.4.4. |Ta| = Δ/3 and |Tw| = k(Δ/3 − 1) or 3k(1 − Δ/3) (k ≥ 1), it
indicates that the sequence contains pairs of (ri = Δ, ri+1 = 1) or (ri = 1, ri+1 =
Δ) before rn−1, and those requests consist of k large and k small requests, and
rn−2 = Δ. Assume that excluding those 2k requests, Cmax = t before rn−2, then
Cσ(I) = t + (k+1)max {Δ/3, 1} + Δ/4, C∗(I) ≥ t + [(k + 1)(Δ + 1) + Δ]/4,
Cσ(I)/C∗(I) ≤ (8

√
10 − 20)

/
5.

Case 1.4.5. |Ta| = 1 and |Tw| = k(Δ/3−1) or 3k(1−Δ/3) (k ≥ 0), it indicates
that the sequence contains pairs of (ri = Δ, ri+1 = 1) or (ri = 1, ri+1 = Δ)
before rn−1, and those requests consist of k large and k small requests, and
rn−2 = 1. Assume that excluding those 2k requests, the Cmax = t before rn−2,
then Cσ(I) = t+1/2+k max {Δ/3, 1}+Δ/4, C∗(I) ≥ t+[(k + 1)(Δ + 1) + 1]/4,
Cσ(I)

/
C∗(I) ≤ (8

√
10 − 20)

/
5.

Case 2. Otherwise, 2 ≤ Δ ≤ (2 + 2
√

10)
/
3 or Δ ≥ (6 + 12

√
2)

/
7. In this

condition, the algorithm is the same as that in Zheng et al., we can refer
to their proof(see Appendix B). With the limit of interval of Δ, we can get
Cσ(I)

/
C∗(I) ≤ (1 +

√
2)

/
2.

The theorem follows. ��

4 The Case with Five QCs

In this section we focus on the case with 3 berths and 5 QCs in the
problem hybr |online − over − list, LD = 1 |BAP − QCAP | Cmax, analyze the
lower bound and present an online algorithm named GTR. Similarly, before ana-
lyzing the lower bound and algorithm, we first introduce two definitions (Zheng
et al.).

Definition 2. Strict waste time segment and strict available time segment: For
an idle time segment [ek, si), with ri is a large request, and request rk is scheduled
before the request ri. If 0 < si − ek < 1/2, the idle time segment [ek, si) is a
strict waste time segment, denoted by T ∗

w
. Otherwise, [ek, si) is a strict available

time segment, denoted by T ∗
a
.

The segment of each large request ri may induce a forced idle time segment,
i.e., an idle time segment [ek, si) (for some 1 ≤ k < i, request rk is scheduled
before the request ri, no matter which berths and QCs assigned)only for during
[ek, si), there exists idle QCs,. If 0 < si − ek < 1/2, a small request later on
cannot be satisfied within the time segment, thus it is a waste time segment.
Otherwise, it is an available time segment. Set T ∗

a
=[t1,t2) where t1=ek, t2=si,

and T ∗
a
=[0,0) initially.

4.1 Lower Bound

Theorem 3. For problem hybr |online − over − list, LD = 1 |BAP − QCAP |
Cmax, any online scheduling algorithm has a competitive ratio of at least 5/4.

Online Integrated Allocation of Berths and Quay Cranes 409

Proof. To prove the theorem, we construct a request input sequence I. I contains
at least two requests. Let Cmax(I) and C∗(I) be the makespan of schedule
produced by A and an optimal offline algorithm OPT, respectively.

The first request r1 = 1, and lookahead r2 = 1. If A processes r1 with
two QCs on berth b1, offline adversary releases request r3 = Δ and r4 = Δ,
Cmax(I) ≥ 1/2+Δ/2. While OPT processes the request r1 with one QC on berth
b1 at time 0, r2 with one QC on berth b1 after completing r1, and r3 with four
QCs on berth b2, b3 at time 0, r4 with four QCs on berth b2, b3 after completing
r3. C∗(I) = max {2,Δ/2}. Setting Δ = 4, we have Cmax(I)/C∗(I) ≥ 5/4. If A
processes r1 with one QC on berth b1, no more requests arrive. Cmax(I) ≥ 1.
While OPT processes r1 ,r2 with two QCs on different berths at time 0. C∗(I) =
1/2. Cmax(I)/C∗(I) ≥ 2. The theorem follows. ��

4.2 Algorithm GTR

On the release of any request ri (i ≥ 1), if i = n, then the scheduler can lookahead
rn is the last request of consequence I, so we can optimal assign this request to
minimize Cmax. Otherwise, 1 ≤ i ≤ n − 1, A behaves as follows.

Case 1. ri = Δ, ri+1 = 1. There are four subcases in the following:
– Case 1.1. ti,1 = ti,2 = ti,3. If Δ ≥ 3, assign ri to the two leftmost berths

with four QCs. If 3 ≥ Δ ≥ 2, assign ri to the rightmost two berths with
three QCs. Set si = ti,1.

– Case 1.2. ti,1 = ti,2 < ti,3. If Ci,1 = ti,1, assign ri to the leftmost two
berths with four QCs. If Ci,1 = ti,3, assign ri to the rightmost two berths
with three QCs. Set si = ti,3.

– Case 1.3. ti,1 < ti,2 = ti,3. If Δ ≥ 3, assign ri to the leftmost two berths
with four QCs. If 3 ≥ Δ ≥ 2, when Ci,1 = ti,1, assign ri to the rightmost
two berths with three QCs. When Ci,1 = ti,3, assign ri to the leftmost
two berths with four QCs. Set si = ti,3.

– Case 1.4. ti,1 < ti,2 < ti,3. Assign ri to the leftmost two berths with four
QCs, set si = ti,3.

case 2. ri = Δ, ri+1 = Δ. If ti,1 = ti,2 < ti,3, and Ci,1 = ti,3, assign ri to the
rightmost two berths with three QCs. Otherwise, assign ri to the leftmost
two berths with four QCs. Set si = ti,3.

case 3. ri = 1, ri+1 = 1. If T ∗
a

= [t1, t2) �= [0, 0), set si = t2 and assign ri to idle
berth. Otherwise if T ∗

a
= [0, 0), there are the following four subcases.

– Case 3.1. ti,1 = ti,2 = ti,3. Assign ri to the leftmost berth with two QCs,
set si = ti,1.

– Case 3.2. ti,1 = ti,2 < ti,3. Assign ri to the middle berth with two QCs,
set si = ti,1.

– Case 3.3. ti,1 < ti,2 = ti,3. When Ci,1 = ti,3, if ti,2−ti,1 < 1/2, assign ri to
the leftmost berth with two QCs, set si = ti,3. If ti,2−ti,1 ≥ 1/2, assign ri

to the rightmost berth with one QC, set si = ti,1. When Ci,1 = ti,1,assign
ri to the leftmost berth with two QCs, set si = ti,1.

410 J. Pan and Y. Xu

– Case 3.4. ti,1 < ti,2 < ti,3. Assign ri to the middle berth with two QCs,
set si = ti,1.

case 4. ri = 1, ri+1 = Δ. If T ∗
a

= [t1, t2) �= [0, 0), set si = t2 and assign ri to the
idle berth. Otherwise if T ∗

a
= [0, 0), there are the following four subcases.

– Case 4.1. ti,1 = ti,2 = ti,3. If Δ ≥ 3, assign ri to the rightmost berths
with one QC. If 3 ≥ Δ ≥ 2, assign ri to the leftmost berth with two
QCs. Set si = ti,1.

– Case 4.2. ti,1 = ti,2 < ti,3. When Δ ≥ 3, if Ci,1 = ti,3, ti,2 − ti,1 = 1/2
and Δ ≥ 6, assign ri to the middle berth with two QCs. If Ci,1 = ti,1,
assign ri to the rightmost berth with one QC. Otherwise, assign ri to the
leftmost berth with two QCs. When 3 ≥ Δ ≥ 2, assign ri to the middle
berth with two QCs.

– Case 4.3. ti,1 < ti,2 = ti,3. If Δ ≥ 3, assign ri to the rightmost berths
with one QC. If 3 ≥ Δ ≥ 2, when Ci,1 = ti,1, assign ri to the leftmost
berth with two QCs. When Ci,1 = ti,3, assign ri to the rightmost berth
with one QC. Set si = ti,1.

– Case 4.4. ti,1 < ti,2 < ti,3. Assign ri to the middle berth with two QCs,
set si = ti,1.

Lemma 1. When Δ ≥ 3, if there exists a T ∗
w
segment in schedule σ (the schedule

produced by GTR), then the schedule σ should have the sequence ri−2 = 1,
ri−1 = 1, ri = Δ, rj = Δ (j > i), with the condition ti−2,1 = ti−2,2 = ti−2,3

and Δ ≤ 6. When 3 ≥ Δ ≥ 2, if there exists a T ∗
w

segment in schedule σ, then
the schedule σ should have the sequence ri−1 = 1, ri = Δ or ri−1 = Δ, ri = 1,
rj = Δ (j > i), with the condition ti−1,1 = ti−1,2 = ti−1,3.

Proof. By the definition of T ∗
w

and the description of the algorithm, T ∗
w

exists
because the assignment of at least two large requests, denoted by ri, rj (j > i),
and ri is assigned to the rightmost berths with three QCs, rj is assigned to the
leftmost berths with four QCs. T ∗

w
is on b1.

When Δ ≥ 3, by the description of the algorithm, only in case 1.2 (Ci,1 = ti,3)
and 2.1, the large request will be assigned to the rightmost berths with three
QCs. For the case 1.2 (Ci,1 = ti,3) and 2.1, ti,1 = ti,2 < ti,3 and Ci,1 = ti,3, it
occurs by ri−2 = 1 and ri−1 = 1, ri−2 assigned to the leftmost berth. For the case
ri−2 assigned to berth b1, should satisfy the condition that ti−2,1 = ti−2,2 = ti−2,3

or ti−2,1 < ti−2,2 = ti−2,3 = Ci−2,1 with ti−2,2 − ti−2,1 < 1/2. For the case ri−1

assigned to berth b1, should satisfy the condition that Ci−2,1 = ti−2,1 = ti−2,2 <
ti−2,3, ti−2,2 − ti−2,1 < 1/2 and Δ ≤ 6. So we can find that if there exists a T ∗

w

segment, the schedule σ should have the sequence ri−2 = 1, ri−1 = 1, ri = Δ,
rj = Δ (j > i), ti−2,1 = ti−2,2 = ti−2,3 and Δ ≤ 6.

When 3 ≥ Δ ≥ 2, the same proof as Δ ≥ 3, we can find that if it exists a T ∗
w

segment, the schedule σ should have the sequence ri−1 = 1, ri = Δ or ri−1 = Δ,
ri = 1, rj = Δ (j > i) and ti−1,1 = ti−1,2 = ti−1,3.

The lemma follows. ��

Lemma 2. There is at most one T ∗
a

segment in schedule σ, and it is by the
same condition as T ∗

w
.

Online Integrated Allocation of Berths and Quay Cranes 411

Proof. By the definition of T ∗
a
, it is easy to find T ∗

a
segment formed by the same

condition as T ∗
w

segment. But different with T ∗
w

segment, 0 < si − ek < 1/2. In a
T ∗

a
segment, si − ek ≥ 1/2. That means, once the schedule σ has a T ∗

a
segment,

the after small requests will be assigned in the idle berths, until 0 < si−ek < 1/2.
So there is at most one T ∗

a
segment in schedule σ. The lemma follows. ��

Theorem 4. For problem hybr |online − over − list, LD = 1 |BAP − QCAP |
Cmax with 3 berths and 5 QCs, GTR is 5/4 -competitive.

Proof. Given any request input sequence I = {r1, r2, ..., rn}. Let Cσ(I) and
C∗(I) be the makespan of a schedule produced by GTR and by an optimal
offline algorithm OPT. Based on the interval of Δ, we consider two cases .

Case 1. Δ ≥ 3, we consider four subcases by the existence of T ∗
a , T ∗

w.
Case 1.1. T ∗

w
= φ, T ∗

a
= [0, 0). We consider five subcases by the assignment

of rn−1, rn.
Case 1.1.1. tn−1,1 = tn−1,2 = tn−1,3. It is easy to prove Cσ(I) = C∗(I).
Case 1.1.2. rn−1 = Δ, rn = 1. When rn−1 is assigned by algorithm cases

1.2(Ci,1 = ti,3), 1.3, 1.4, for T ∗
a

= [0, 0), T ∗
w

= φ, thus the left four QCs
on leftmost two berths are kept busy during [0, Cσ(I)), we have Cσ(I) ≤
tn−1,3+max {1,Δ/4}, C∗(I) ≥ tn−1,3+(1 + Δ)/5−(tn−1,3 − tn−1,1)/5, implying
Cσ(I)/C∗(I) ≤ 5/4. When rn−1 is assigned by algorithm case 1.2 (Ci,1 = ti,1),
implying Δ ≤ 6, tn−1,3 − tn−1,1 = 1 and tn−1,3 ≥ 1, thus before assign rn−1,
T ∗

w
= φ, and maybe exist one T ∗

a
segment with t2 − t1 = 1/2 or not. If

before assign rn−1, T ∗
a

= [0, 0), then Cσ(I) = max {tn−1,1 + Δ/3, tn−1,3 + 1/2},
C∗(I) ≥ tn−1,1 + (1 + Δ)/5 + (tn−1,3 − tn−1,1)/5, implying Cσ(I)/C∗(I) ≤
5/4. If before assign rn−1, T ∗

a = [t1, t2) with t2 − t1 = 1/2, thus Cσ(I) =
max {tn−1,1 + Δ/3, tn−1,3}, C∗(I) ≥ tn−1,1 + Δ/5 + (tn−1,3 − tn−1,1)/5. Since
there exist a T ∗

a
segment, then tn−1,1 ≥ Δ/3, we get Cσ(I)/C∗(I) ≤ 20/17.

Case 1.1.3. rn−1 = Δ, rn = Δ. For T ∗
w

= φ, T ∗
a

= [0, 0) and thus the left
QCs on leftmost two berths are kept busy during [0, Cσ(I)), we have C∗(I) ≥
4Cσ(I)/5.

Case 1.1.4. rn−1 = 1, rn = 1. Before assign rn−1, T ∗
w

= φ, but there maybe
exist a T ∗

a
segment with t2 − t1 = 1 or t2 − t1 = 1/2. If before assign rn−1,

T ∗
a

= [0, 0), then we have Cσ(I) ≤ tn−1,3 + 1/2 and C∗(I) ≥ tn−1,3 + 2/5 −
(tn−1,3 − tn−1,1)/5 ≥ 4tn−1,3/5 + 2/5, so Cσ(I)/C∗(I) ≤ 5/4. If before assign
rn−1, T ∗

a
= [t1, t2) and t2 − t1 = 1/2, then the last completed request before

rn−1 is a large request. Notice that there is a waste of QC utility equal to 1 in
T ∗

a
, thus C∗(I) ≥ tn−1,3+2/5−(tn−1,3 − tn−1,1)/5−1/5. By the case condition,

meaning Δ = 3 (k + 1)/2 ≥ 9/2, Cσ(I) = tn−1,3, then Cσ(I)/C∗(I) < 5/4. If
before assign rn−1, T ∗

a
= [t1, t2) and t2 − t1 = 1. Notice that there is a waste

of QC utility equal to 2 in T ∗
a
, so Cσ(I) = tn−1,3 and C∗(I) ≥ tn−1,3 + 2/5 −

(tn−1,3 − tn−1,1)/5 − 2/5, then Cσ(I)/C∗(I) ≤ 5/4.
Case 1.1.5. rn−1 = 1, rn = Δ. For T ∗

w
= φ, T ∗

a
= [0, 0) and thus the left four

QCs on leftmost two berths are kept busy during [0, Cσ(I)), we have C∗(I) ≥
4Cσ(I)/5.

412 J. Pan and Y. Xu

Case 1.2. T ∗
a

= [0, 0) and T ∗
w

= φ. Assume there are p T ∗
w

segments, for
each T ∗

w
= [t∗

1
, t∗

2
), t∗

2
− t∗

1
= 1/2, then tn,1 ≥ pt2. we have C∗(I) ≥ Cσ(I) −

(Cσ(I) − tn,1)/5 − p (t2 − t1)/5 ≥ 4Cσ(I)/5.
Case 1.3. T ∗

a
= [t1, t2) �= [0, 0) and T ∗

w
= φ. By the case condition, tn,1 ≥ t2,

C∗(I) ≥ Cσ(I) − (Cσ(I) − tn,1)/5 − (t2 − t1)/5 ≥ 4Cσ(I)/5.
Case 1.4. T ∗

a
= [t1, t2) �= [0, 0) and T ∗

w
= [t∗

1
, t∗

2
) �= φ. By the lemma condition,

implying t2 − t1 = Δ/3 − k/2 > 1/2, t∗
2

− t∗
1

= Δ/3 − k∗/2 < 1/2 and tn,1 ≥ t2.
Assume there are p T ∗

w
segment, then t1 ≥ p. C∗(I) ≥ Cσ(I)−(Cσ(I) − tn,1)/5−

(t2 − t1)/5 − p
(
t∗
2

− t∗
1

)/
5 ≥ 4Cσ(I)/5.

Case 2. 3 > Δ ≥ 2, we consider four cases by the existence of T ∗
a , T ∗

w .
Case 2.1. T ∗

w
= φ, T ∗

a
= [0, 0), we consider four subcases by the assignment

of rn−1, rn.
Case 2.1.1. rn−1 = Δ, rn = 1. There are two situations in this case,

before assign rn−1, T ∗
a = [0, 0) or T ∗

a = [t1, t2), t2 − t1 = 1/2. If before
assign rn−1, T ∗

a
= [0, 0), then Cσ(I) ≤ tn−1,3 + Δ/3, C∗(I) ≥ tn−1,3 +

(1 + Δ)/5 − (tn−1,3 − tn−1,1)/5 ≥ 4tn−1,3/5 + (1 + Δ)/5, thus Cσ(I)/C∗(I) <
5/4. If before assign rn−1, T ∗

a
= [t1, t2), t2 − t1 = 1/2. By the case condi-

tion, the last completed request in σ before rn−1. So Cσ(I) ≤ tn−1,3 + Δ/4,
C∗(I) ≥ tn−1,3 +(1 + Δ)/5− (tn−1,3 − tn−1,1)/5−1/5 ≥ 4tn−1,3/5+Δ/5. Thus
Cσ(I)/C∗(I) < 5/4.

Case 2.1.2. rn−1 = Δ, rn = Δ. For T ∗
a

= [0, 0), T ∗
w

= φ and thus the left
QCs on leftmost two berths are kept busy during [0, Cσ(I)), we have C∗(I) ≥
4Cσ(I)/5.

Case 2.1.3. rn−1 = 1, rn = 1. Before assign rn−1, T ∗
w = φ, and there may exist

a T ∗
a segment with t2 − t1 = 1 or t2 − t1 = 1/2. If before assign rn−1, T ∗

a = [0, 0),
then we have Cσ(I) ≤ tn−1,3+1/2, C∗(I) ≥ tn−1,3+2/5−(tn−1,3 − tn−1,1)/5 ≥
4tn−1,3/5+2/5 = 4Cσ(I)/5. If before assign rn−1, T ∗

a
= [t1, t2) and t2−t1 = 1/2,

then the last completed request before rn−1 is a large request. Notice that there
is a waste of QC utility equal to 1 in T ∗

a , thus Cσ(I) = max {tn−1,1 + 1, tn−1,3},
C∗(I) ≥ tn−1,3+2/5−(tn−1,3 − tn−1,1)/5−1/5. When tn−1,3 ≤ tn−1,1+1, by the
lemma condition, implying tn−1,3−tn−1,1 = Δ/4, tn−1,1 ≥ kΔ/3, k(Δ/3−1/2) =
p/2 and p ≥ 1. We can get Cσ(I)/C∗(I) ≤ 8/7. When tn−1,3 > tn−1,1 + 1,
C∗(I) ≥ tn−1,3 + 2/5 − (tn−1,3 − tn−1,1)/5 − 1/5 ≥ 4Cσ(I)/5. If before assign
rn−1, T ∗

a
= [t1, t2) and t2−t1 = 1. Notice that there is a waste of QC utility equal

to 2 in Ta, so Cσ(I) = tn−1,3 and C∗(I) ≥ tn−1,3 + 2/5 − (tn−1,3 − tn−1,1)/5 −
1/5 ≥ 4Cσ(I)/5.

Case 2.1.4. rn−1 = 1, rn = Δ. For T ∗
a

= [0, 0), T ∗
w

= φ and thus the left
QCs on leftmost two berths are kept busy during [0, Cσ(I)), we have C∗(I) ≥
4Cσ(I)/5.

Cases 2.2, 2.3, 2.4 are the same as cases 1.2, 1.3, 1.4 respectively.
The theorem follows. ��

5 Conclusion

This paper considers an online integrated allocation of berths and quay cranes
in container terminal with 1-lookahead. We focus on the hybrid layout with

Online Integrated Allocation of Berths and Quay Cranes 413

three berths and four, five cranes, and present an online deterministic algorithm
respectively, which are proved to be optimal in competitiveness. In the future,
we will focus on the case of six cranes, and consider k-lookahead case.

Acknowledgments. The authors would like to acknowledge the financial support of
Grants (No.61221063.) from NSF of China and (No.IRT1173) from PCSIRT of China.

Appendix

A: Lower bound of the case with four QCs

we show the complete calculation process as follow.
If A processes r1 with two QCs on berth b1, we get:

Cmax(I) ≥ 1/2 + Δ/4 (1)
Δ ≥ 6, C∗(I) = 1/2 + Δ/4 (2)
6 ≥ Δ ≥ 3, C∗(I) = Δ/3 (3)
3 ≥ Δ ≥ 2, C∗(I) = 1 (4)

If A processes r1 with three QCs on berth b1, b2, we get:

Δ ≥ 6, Cmax(I) ≥ Δ/3 (5)
6 ≥ Δ ≥ 9/2, Cmax(I) ≥ 2 (6)
9/2 ≥ Δ ≥ 2, Cmax(I) ≥ 1/2 + Δ/3 (7)
C∗(I) = 1/2 + Δ/4 (8)

If A processes r1 with two QCs on berth b1, b2, we get:

Cmax(I) ≥ Δ/2 (9)
Δ ≥ 6, C∗(I) = 1/2 + Δ/4 (10)
6 ≥ Δ ≥ 3, C∗(I) = Δ/3 (11)
3 ≥ Δ ≥ 2, C∗(I) = 1 (12)

After processed Eqs.(1-4),we have:

Δ ≥ 6, ρ ≥ 1 (13)

6 ≥ Δ ≥ 3, ρ ≥ max
{

6 + 3Δ

4Δ

}

(14)

3 ≥ Δ ≥ 2, ρ ≥ max
{

2 + Δ

4

}

(15)

414 J. Pan and Y. Xu

After processed Eqs.(5-8),we have:

Δ ≥ 6, ρ ≥ max
{

4Δ

6 + 3Δ

}

≥ 1 (16)

6 ≥ Δ ≥ 9/2, ρ ≥ max
{

8
2 + Δ

}

(17)

9/2 ≥ Δ ≥ 2, ρ ≥ max
{

6 + 4Δ

6 + 3Δ

}

(18)

After processed Eqs.(9-12),we have:

Δ ≥ 6, ρ ≥ max
{

2Δ

2 + Δ

}

≥ 1 (19)

6 ≥ Δ ≥ 3, ρ ≥ 3
2

(20)

3 ≥ Δ ≥ 2, ρ ≥ Δ

2
(21)

From Eqs.(13-21),we get:

Δ ≥ 6, ρ ≥ 1 (22)

6 > Δ ≥ 9
2
, ρ ≥ max

{
3Δ + 6

4Δ

}

, ρ ≥ 13
12

(23)

9
2

> Δ ≥ 6 + 12
√

2
7

, ρ ≥ max
{

3Δ + 6
4Δ

}

, ρ ≥ 1 +
√

2
2

(24)

6 + 12
√

2
7

> Δ ≥ 3, ρ ≥ max
{

4Δ + 6
3Δ + 6

}

, ρ ≥ 1 +
√

2
2

(25)

3 > Δ ≥ 2 + 2
√

10
3

, ρ ≥ max
{

4Δ + 6
3Δ + 6

}

, ρ ≥ 6
5

(26)

2 + 2
√

10
3

> Δ ≥ 2, ρ ≥ 4 +
√

10
6

(27)

Setting Δ = (6 + 12
√

2)
/
7, then ρ ≥ (1 +

√
2)

/
2.

B: Theorem 2

As in case 2, namely, 2 ≤ Δ ≤ (2 + 2
√

10)
/
3 or Δ ≥ (6 + 12

√
2)

/
7, the algorithm

is the same as that in Zheng et al., we can refer to their proof. For the sake of
completeness, we present their proof here:

Proof. Given any request input sequence I = {r1, r2, ..., rn}. let σ be the sched-
ule produced by LIST. Let Cσ(I) be the makespan of σ, and C∗(I) that of a
schedule produced by an optimal onine algorithm OPT. We consider two cases
below.

Online Integrated Allocation of Berths and Quay Cranes 415

Case 1. The last request is a large one, i.e., rn = Δ. For the case with
T ∗

a
= [0, 0), we have C∗(I) = Cσ(I) = Cn,1 + Δ/4 since neither LIST nor OPT

makes any waste of QC utility within [0, Cσ(I)).
For the other case with T ∗

a
= [t1, t2) �= [0, 0), let k ≥ 1 be the number of large

requests after time t2. Cσ(I) = t2+kΔ/4. If t2 = 1/2 and k = 1, implying n = 2,
r1 = 1 and r2 = Δ, then C∗(I) ≥ min {1/2 + Δ/4,max {1,Δ/3}} and thus
Cσ(I)/C∗(I) ≤ 5/4; otherwise if either t2 ≥ 1 or k ≥ 2, C∗(I) ≥ t2+kΔ/4−1/4
and Cσ(I)/C∗(I) ≤ 6/5.

Case 2. The last request is a small request, i.e., rn = 1. We claim that
T ∗

a
= [0, 0) in σ since otherwise rn would have been processed in the T ∗

a
. Divide

this case into two subcases by whether Cn,1 = Cn,2.
Case 2.1. Cn,1 = Cn,2, In this case Cσ(I) = Cn,1 + 1/2. If either n = 1 or

n = 3 with r1 = r2 = r3 = 1, we have Cn,1 ≤ 1/2 and Cσ(I) = C∗(I); if n = 2
and r1 = Δ, then Cn,1 = Δ/4 and C∗(I) ≥ min {1/2 + Δ/4,max {1,Δ/3}},
implying Cσ(I)/C∗(I) ≤ 5/4; otherwise if Cn,1 ≥ 1, then C∗(I) ≥ Cn,1 + 1/4,
implying a ratio of at most 6/5.

Case 2.2. Cn,1 < Cn,2 (or Cn,2 < Cn,1). Then we have by previous analysis
that Cn,2 = Cn,1 + 1/2 (or Cn,1 = Cn,2 + 1/2), and thus Cσ(I) = C∗(I).

The theorem follows. ��

References

1. Bierwirth, C., Meisel, F.: A survey of berth allocation and quay crane schedul-
ing problems in container terminals. European Journal of Operational Research
202(3), 615–627 (2010)

2. Blazewicz, J., Cheng, T.C.E., Machowiak, M., Oguz, C.: Berth and quay crane
allocation: a moldable task scheduling model. Journal of The Operational Research
Society 62, 1189–1197 (2011)

3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, New York (1998)

4. Carlo, H., Vis, I., Roodbergen, K.: Seaside operations in container terminals: litera-
ture overview, trends, and research directions. Flexible Services and Manufacturing
Journal, 1–39 (2013)

5. Chen, J.H., Lee, D.H., Cao, J.X.: A combinatorial benders cuts algorithm for the
quayside operation problem at container terminals. Transportation Research Part
E: Logistics and Transportation Review 48(1), 266–275 (2012), select Papers from
the 19th International Symposium on Transportation and Traffic Theory

6. Giallombardo, G., Moccia, L., Salani, M., Vacca, I.: Modeling and solving the
tactical berth allocation problem. Transportation Research Part B: Methodological
44(2), 232–245 (2010)

7. Imai, A., Sun, X., Nishimura, E., Papadimitriou, S.: Berth allocation in a container
port: using a continuous location space approach. Transportation Research Part
B: Methodological 39(3), 199–221 (2005)

8. Liang, C., Guo, J., Yang, Y.: Multi-objective hybrid genetic algorithm for quay
crane dynamic assignment in berth allocation planning. Journal of Intelligent Man-
ufacturing 22(3), 471–479 (2011)

416 J. Pan and Y. Xu

9. Lokuge, P., Alahakoon, D.: Improving the adaptability in automated vessel schedul-
ing in container ports using intelligent software agents. European Journal of Oper-
ational Research 177(3), 1985–2015 (2007)

10. Mandelbaum, M., Shabtay, D.: Scheduling unit length jobs on parallel machines
with lookahead information. Journal of Scheduling 14(4), 335–350 (2011)

11. Park, Y.M., Kim, K.H.: A scheduling method for berth and quay cranes. OR
Spectrum 25(1), 1–23 (2003)

12. Zhang, L., Khammuang, K., Wirth, A.: On-line scheduling with non-crossing con-
straints. Operations Research Letters 36(5), 579–583 (2008)

13. Zhen, L., Chew, E.P., Lee, L.H.: An integrated model for berth template and yard
template planning in transshipment hubs. Transportation Science 45(4), 483–504
(2011)

14. Zheng, F., Cheng, Y., Liu, M., Xu, Y.: Online interval scheduling on a single
machine with finite lookahead. Computers & Operations Research 40(1), 180–191
(2013)

15. Zheng, F., Qiao, L., Liu, M., Chu, C.: Online integrated allocation for small num-
bers of berths and quay cranes in container terminals (working paper)

Disjoint Path Allocation with Sublinear Advice

Heidi Gebauer1, Dennis Komm2, Rastislav Královič3, Richard Královič4,
and Jasmin Smula2(B)

1 Institute of Applied Mathematics and Physics, Zurich University of Applied
Sciences, Winterthur, Switzerland

geba@zhaw.ch
2 Department of Computer Science, ETH Zürich, Zürich, Switzerland

{dennis.komm,jasmin.smula}@inf.ethz.c
3 Department of Computer Science, Comenius University, Bratislava, Slovakia

kralovic@dcs.fmph.uniba.sk
4 Google Inc., Zürich, Switzerland

Abstract. We study the disjoint path allocation problem. In this set-
ting, a path P of length L is given, and a sequence of subpaths of P
arrives online, one in every time step. Each such path requests a perma-
nent connection between its two end-vertices. An online algorithm can
admit or reject such a request; in the former case, none of the involved
edges can be part of any other connection. We investigate how much
additional binary information (called “advice”) can help to obtain a good
solution. It is known that, with roughly log2 log2 L advice bits, it can be
guaranteed that a log2 L-competitive solution is computed. In this paper,
we prove the surprising result that, with L1−ε advice bits, it is not possi-
ble to obtain a solution with a competitive ratio better than (δ log2 L)/2,
where 0 < δ < ε < 1. This shows an interesting threshold behavior of the
problem. A fairly good competitive ratio, namely log2 L, can be obtained
with very few advice bits. However, any increase of the advice does not
help any further until an almost linear number of advice bits is supplied.
Then again, it is also known that linear advice allows for optimality.

1 Introduction

The input of an online problem arrives piecewise as a sequence of n requests
x1, . . . , xn in consecutive time steps. An online algorithm Alg computes a
sequence of answers y1, . . . , yn, where each answer yi, 1 ≤ i ≤ n, must be given in
the ith time step while only depending on the requests x1, . . . , xi that are known
up to this point. If the given online problem is a maximization problem, we assess
the solution quality of Alg by comparing the gain of its solution to the one hypo-
thetically reachable if the whole input sequence were known in advance; this is
modeled by an offline algorithm Opt that has this knowledge. More formally,
Alg is called c-competitive if there is a non-negative constant (with respect to
the input length) α such that, on any instance I = (x1, . . . , xn) of the given

Partially funded by SNF grant 200021-141089 and VEGA grant 1/0979/12.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 417–429, 2015.
DOI: 10.1007/978-3-319-21398-9 33

418 H. Gebauer et al.

online maximization problem, we have gain(Opt(I)) ≤ c · gain(Alg(I)) + α;
the smallest c for which this holds is called the competitive ratio of Alg. If the
above inequality even holds with α = 0, we call Alg strictly c-competitive. This
framework, called competitive analysis, has been around for three decades now
[17] and has become the standard tool to investigate the performance of online
algorithms. For a detailed introduction to online algorithms and competitive
analysis, we refer the reader to the literature [6]. Similar to the approximation
ratio that measures what is lost when computing a solution to a hard offline
problem in polynomial time, the competitive ratio tells us what is lost due to
incomplete knowledge of the input at hand. However, since a complete absence
of knowledge about the input is unrealistic in many real-world environments, it
is reasonable to ask to what extent some certain additional information about
the yet unrevealed requests can be exploited. While there are many models such
as semi-online problems [10] where some specific parameters of the input are
known, the advice complexity of an online problem tries a more general app-
roach. Here, we augment an online algorithm with an advice tape that may
contain any binary information about the input. We may think of the advice
as being prepared by an oracle that sees the whole input in advance. An online
algorithm Alg with such an additional resource is called an online algorithm
with advice. Alg is called c-competitive with advice complexity b if, for every
input I of the given problem, there is some advice string φ such that Alg has a
competitive ratio of at most c while never accessing more than the first b bits of
φ. Note that we assume that the advice string is infinitely long [4,13]. This way,
Alg cannot determine itself when the advice “ends,” which may carry some addi-
tional information. Consequently, online algorithms with advice generalize many
other approaches that assume additional information. Here, lower bounds are
of particular interest, i. e., statements of the sort that some specific competitive
ratio can never be reached with some given amount of additional information,
no matter what this information actually is.

In this paper, we continue the study of the disjoint path allocation problem on
paths, DPA for short. Here, we are given a path P of length L, i. e., with L + 1
vertices. A request is equal to a non-empty subpath of L. Alg must answer
any such request by either admitting or rejecting it; this decision is final. If the
request is admitted, a permanent connection between the two end-vertices of the
subpath is established. After that, all involved edges are busy and cannot be part
of any other connection. Therefore, a feasible solution corresponds to a set of
edge-disjoint paths, namely the admitted subpaths of L. We call a request blocked
if it cannot be admitted as the consequence of an earlier admission; an example
is shown in Fig. 1. Note that, if L is known in advance (as a parameter of the
problem), we can easily set the constant α of the definition of the competitive
ratio to L − 1, which implies that every online algorithm that admits at least
one request (e. g., a simple greedy algorithm) is indeed 1-competitive; this is, of
course, undesirable for a serious analysis. In this paper, we therefore assume that
L is given with the first request, and is thus a part of the input.

Disjoint Path Allocation with Sublinear Advice 419

0 4 8 12 16 20

Fig. 1. An example of a DPA instance for L = 20. The requests arrive from top to
bottom. If, e. g., an online algorithm admits the first one in time step 1, it cannot admit
the second one. It is easy to see that no algorithm can admit more than 2 requests.

The advice complexity is usually a function b of the input length n. However,
since the competitive ratio of algorithms for DPA is commonly a function of the
graph size and we consider paths of length L only, we define b as a function of L.

We now discuss known results, describe our contribution, and put it into
context. Due to space constraints, some of the technical details are omitted.

1.1 Related Work

A first model of online computation with advice was given by Dobrev et al. [9].
The model used in this paper was introduced by Hromkovič et al. [13] and first
applied by Böckenhauer et al. [4]. There is an alternative model of computing
with advice introduced by Emek et al. [11]. In this setting, the advice is not
read from a tape, but it is supplied in every time step, and the number of
advice bits is the same in every time step. Both models have so far been used
to study a large number of problems, including the paging problem [4,14], the
k-server problem [3,11,12,16], or metrical task systems [11]. One of the first
online problems studied in the model of computing with advice as we use it
in this paper was the DPA problem [4]. However, the authors of [4] mainly
studied both the advice complexity and the reachable competitive ratio with
respect to the input length n. The authors gave a lower bound of roughly n/(2c)
advice bits to obtain a strictly c-competitive solution. In this paper, we use the
length L of the underlying path as a measurement, which is more consistent with
the classical work [6]. With respect to L, the bound presented by Böckenhauer
et al. [4] translates to roughly (log2 L)/c, which is improved exponentially by
our main result. Böckenhauer et al. [5] noted that there is a log2 L-competitive
online algorithm with advice that uses �log2�log2 L�� advice bits; this is a direct
consequence from the “classify-and-randomly-select” algorithm from Awerbuch
et al. [1]. Barhum et al. [2] generalized this technique and combined it with
advice yielding online algorithms with advice that use a small amount of advice
bits and obtain a solution of high quality. Moreover, they showed that L − 1
advice bits are both sufficient and necessary to be optimal. So far, no lower
bound on the competitive ratio (except for optimality) that is achievable when
reading ω(log2 L) advice bits is known.

420 H. Gebauer et al.

1.2 Outline, Techniques, and Results

The remainder of this paper is devoted to giving non-trivial lower bounds on the
number of advice bits necessary to obtain a certain competitive ratio. The result
implies two interesting bounds.

1. For any c smaller than 1/2 ·(log2 L)/(log2 log2 L)1/4, any c-competitive online
algorithm with advice needs to read at least Ω

(
L/(4c c4)

)
advice bits. Note

that this bound is more general than the one presented by Barhum et al. [2],
which only gives a statement for b ≤ log2 log2(L/2).

2. For any δ, 0 < δ < 1, any (δ/2 · log2 L)-competitive online algorithm
with advice needs to read at least ω(L1−ε) advice bits, for any constant ε
with δ < ε < 1. This complements the upper bound of log2 L using
�log2�log2 L�� advice bits [4]. The result is particularly surprising as it shows
that we need almost double exponentially more advice to be (δ/2 · log2 L)-
competitive instead of log2 L-competitive. Indeed, the number of advice bits
necessary is almost linear. Then again, with a linear number of advice bits,
it is possible to compute an optimal solution [2].

We prove the result by constructing a set I of instances such that any deter-
ministic online algorithm can achieve the competitive ratio c only on a small
fraction of the instances from I. The number of these instances is bounded by
some probabilistic arguments. All these instances can be organized as the leaves
of a tree, such that paths from the root to some inner vertex v correspond to
the instances that are leaves of the subtree rooted at v. Then we show that
any online algorithm with advice needs to read many advice bits to achieve a
competitive ratio of at most c on all instances from I.

2 The Main Result

We start with some technical preliminaries that we need for the analysis of the
given online algorithm with advice. For our calculations, we need Bernoulli’s
inequality, which states the following [7].

Fact 1. For every x ∈ R
≥−1 and every n ∈ N

≥0, we have (1+x)n ≥ 1+nx. ��

The following argumentation involves a random variable with hypergeometric
distribution. Therefore, we now establish a result that follows from a well-known
bound for the tail of the hypergeometric distribution. First, let us recall that a
random variable with hypergeometric distribution with parameters M , N , and
n counts the number of black balls drawn from an urn containing N balls, out of
which exactly M are black, when drawing n balls uniformly at random without
replacement (see, e. g., [15]). The following bound was established by Chvátal [8].

Fact 2. Consider a discrete random variable X with hypergeometric distribu-
tion with parameters M , N , and n, i. e.,

Pr(X = i) =
(

M

i

)(
N − M

n − i

)/(
N

n

)

.

Disjoint Path Allocation with Sublinear Advice 421

0 4 8 12 16 20 24 28 32

Fig. 2. An example of an instance from the constructed instance set I for a path of
length L = 32 and h = 3. There are four phases with L/2h = 4 requests each. Open
requests are depicted by dashed lines. All other requests are closed (and therefore
belong to the optimal solution).

Then, with e = 2.71828 . . . being Euler’s number, we have

E(X) = n · M/N and P (X ≤ E(X) − tn) ≤ e−2t2n, for any t ≥ 0 . ��

We have to adapt this result slightly for our purposes.

Corollary 1. Let X be a discrete random variable with hypergeometric distri-
bution with parameters M , N , and n, and let t ≥ 0. Then, for every M ′ ≤ M ,
we have

Pr
(

X ≤ n · M ′

N
− tn

)

≤ e−2t2n .

Now let us describe how to construct the set I of instances for DPA. For
the sake of simplicity, let L be a power of 2. Furthermore, let h := h(L) be a
parameter depending on L with

h ∈ N
≥1 and h ≤ log2 L − 1 . (1)

Then the requests are presented to the algorithm in h + 1 phases. In each
phase i, with 1 ≤ i ≤ h+1, the algorithm is given L/2h edge-disjoint requests of
length 2h−i+1. Hence, in the first phase, L/2h edge-disjoint subpaths of length 2h

are presented, whose concatenation forms the complete path P . Half of the
requests from phase i, with 1 ≤ i ≤ h, are so-called closed requests, for which
no intersecting requests will be presented anymore, and which hence belong to
the optimal solution computed by an optimal algorithm Opt. The other half
of these requests are open, i. e., they are split into two edge-disjoint requests of
length 2h−i each, which are then presented in phase i+1. Finally, in phase h+1,
the algorithm is given L/2h subpaths of length 1 each, which all belong to the
optimal solution; for an example, see Figs. 2 and 3.

Observation 1. The optimal solution on any instance I from I has a gain of

gain(Opt(I)) =
(h + 2)L

2h+1
.

422 H. Gebauer et al.

0 4 8 12 16 20 24 28 32

Fig. 3. When given the instance from Fig. 2 as an input, a deterministic algorithm Alg

might admit the requests as depicted in this picture. Admitted requests are marked by
thick lines. By admitting a request, all requests that intersect with this request become
blocked, which is depicted by areas shaded in gray.

Proof. For every phase i with 1 ≤ i ≤ h, there are L/2h+1 requests that belong
to the optimal solution, and additionally, there are L/2h ones from phase h + 1,
which yields

h · L

2h+1
+

L

2h
=

h L

2h+1
+

2L

2h+1
=

(h + 2)L
2h+1

. ��

Let us introduce another parameter f := f(c), such that f > 0. Both parame-
ters f and h must be chosen according to the competitive ratio that an algorithm
is supposed to achieve. In the remainder of this chapter, we prove the following
general theorem.

Theorem 1. Any online algorithm for DPA with a competitive ratio of

c :=
h + 2

2 ·
(
1 + h

f

)

needs to read at least b := L/(2h f2) · log2 e − log2 h advice bits.

After that, we choose concrete values for f and h to obtain more tangible
lower bounds, which are formulated as corollaries at the end of this section.

We start our argumentation by making the following observation. The set I
of instances can naturally be represented by a

(L/2h

L/2h+1

)
-ary tree of depth h (i. e.,

with h + 1 levels), as depicted in Fig. 4. The root is on level 0 and corresponds
to all instances from I. There are

(L/2h

L/2h+1

)
instances on level 1, each of them

representing all instances with the same particular set of open requests from
phase 1. Any vertex on level i represents the set of all instances with the same
particular sets of open requests from phases 1, . . . , i. Hence, for all instances that
are represented by the same vertex on level i, the requests presented in the first
i+1 phases are exactly the same. Every leaf is located on level h and corresponds
to a single instance from I.

Now consider some vertex v on level i with 0 ≤ i ≤ h and some arbitrary
instance Iv represented by v. Then, any deterministic algorithm Alg, given Iv as
its input, is always in the same state at the beginning of phase i+1, independently

Disjoint Path Allocation with Sublinear Advice 423

v

w.

.

Fig. 4. An example of an instance tree. Figs. 2 and 3 are both placed in a scenario with
a path of length 32 and h + 1 = 4 phases (hence, with L/2h = 4 requests presented
per phase). In this scenario, there are 6 possibilities to choose L/2h+1 = 2 out of the
4 requests to be open in every phase. Hence, every inner vertex of the corresponding
instance tree has exactly 6 children (most of which are only indicated by dots due
to space restrictions). The root represents all instances, the vertex v represents all
instances in which the same set of requests from phase 1 are open, and each leaf on
level h represents all instances in which the same set of requests from phases 1, . . . , h
are open, hence, each leaf represents a single instance.

0 4 8 12 16 20 24 28 32

Fig. 5. In the instance tree from Fig. 4, on every level there must be one vertex that
contains the instance from Fig. 3. Without loss of generality, on level 1, let this vertex
be v. Then, v also contains the instance depicted in this figure. In both instances, the
same requests from phase 1 are open, and thus, the requests presented in the first two
phases are the same for all instances represented by v. Hence, at the beginning of and
also throughout phase 2, each fixed deterministic algorithm Alg must be in the same
state given any instance corresponding to v as its input, having seen and admitted the
exact same requests so far.

of the instance that it gets as its input, i. e., it has seen and admitted the same
requests so far on every instance represented by v; see Fig. 5.

From now on, let Alg be an arbitrary, but fixed deterministic algorithm
for DPA. For a given vertex v on level i, let γ(i) be the gain of Alg on any
instance represented by v during phase i, hence, the number of admitted requests
during this phase. Moreover, let γ̂(i) be the gain of Alg during all phases up to
and including phase i, hence, γ̂(i) :=

∑i
j=1 γ(j).

Let us introduce the following notion of bad phases and vertices. We call a
phase i a bad phase for Alg if, at the beginning of this phase, at least

di−1 := γ̂(i−1) − (i − 1) · L

2h · f
(2)

requests from phase i are already blocked. Furthermore, let us call a vertex v on
level i− 1 bad for Alg if, when Alg is given any instance corresponding to v as

424 H. Gebauer et al.

its input, phase i is bad for Alg. Phases and vertices that are not bad are called
good. Moreover, let us define the set of requests from phase i that are blocked
at the beginning of phase i + 1 (including those that were admitted in phase i,
which are blocking themselves) to be Ri.

Lemma 1. If at least di/2 requests from Ri are open, then phase i + 1 is bad
for Alg.

Proof. Underneath each open request from phase i, two requests appear in
phase i + 1. If di/2 requests from Ri are open, then at least di requests are
presented in phase i+1 that are already blocked at the beginning of phase i+1.
This matches the definition of a bad phase. ��

Lemma 2. The fraction of bad vertices on level i is at least

(
1 − e−L/(2h·f2)

)i

.

Proof. We prove the claim by induction on i. On level i = 0, there is only one
vertex, namely the root representing all instances from I. Obviously, the algo-
rithm did not admit any requests before phase 1, and hence, γ̂(0) = 0. According
to its definition, the root is bad if phase 1 is bad for Alg. This, in turn, is the
case if at least 0 requests are blocked at the beginning of phase 1 when Alg is
processing any instance; see (2). This is obviously true, and hence the base case
is covered.

Let us now assume that the claim holds for some level i − 1. We will show
that the claim then also holds for level i. From now on, let v be some bad vertex
on level i−1. First we prove that the fraction of bad vertices among the children
of v is at least 1 − e−L/(2h·f2).

Since v is bad, phase i must be bad for Alg, given any instance Iv corre-
sponding to v as its input. Therefore, for each such instance Iv, at least di−1

requests from phase i are already blocked at the beginning of phase i. As Alg

admits γ(i) further requests in this phase, at least di−1 + γ(i) requests from
phase i are blocked at the beginning of phase i + 1, including the admitted
requests from phase i. This set of requests corresponds to the set Ri defined
earlier. From Lemma 1, we know that, if at least di/2 requests from Ri are open,
then phase i+1 is bad, which implies that at the beginning of phase i+1, at least
di requests from phase i + 1 are already blocked. Since the set of instances that
correspond to a child w of v is a subset of the set of instances that correspond
to v, and since we just showed that phase i+1 is bad for an arbitrary instance Iv,
phase i + 1 is also bad for each instance Iw; Fig. 6 gives an example.

Hence, a sufficient condition for w to be bad is that at least di/2 requests
from Ri are open when giving Alg an instance Iw as its input. Thus, we have
the following scenario. There are N := L/2h requests in phase i, as in every
phase. Out of these, M ≥ M ′ := di−1 + γ(i) are blocked at the beginning of
phase i + 1. The set of these requests is Ri. Each child w of v corresponds to
the set of instances in which the same set of n := L/2h+1 requests from phase i

Disjoint Path Allocation with Sublinear Advice 425

0 4 8 12 16 20 24 28 32

Fig. 6. This instance, like those from Figs. 3 and 5, corresponds to the vertex v from
Fig. 4. The deterministic algorithm Alg admits γ̂(1) = 2 requests in phase 1. Hence,
d1 = γ̂(1) − 1 ·L/(2h · f) = 2− 32/(23 · f) = 2− 4/f < 2. Since 2 requests from phase 2
are already blocked at the beginning of this phase, v is a bad vertex. Wlog, let w from
Fig. 4 be the vertex on level 2 containing the instance from this picture. The vertex w
is bad if, out of all requests from phase 3, at least d2 = γ̂(2)−2·32/(23 ·f) = 3−8/f < 3
are blocked at the beginning of phase 3. Hence, in this instance, out of the 3 requests
from phase 2 that are blocked after phase 2, at least d2/2 < 1.5 must be open. This is
clearly the case, since 2 such requests are open; thus, w is bad.

are open requests. We are interested in the fraction p of children w of v that
correspond to instances in which at least di/2 requests from Ri are open. This is
equivalent to the following. We have an urn containing N balls (i. e., requests),
out of which M ≥ M ′ are black (i. e., in Ri), we draw n balls (i. e., open n
requests) without replacement, and we are interested in the probability that the
number of black balls drawn (i. e., open requests from Ri) is at least di/2.

Let X be a random variable that counts the number of open requests from Ri

in this scenario. Note that X has a hypergeometric distribution with parame-
ters M ≥ di−1 + γ(i), N = L/2h, and n = L/2h+1, and we are interested
in Pr(X ≥ di/2). With

di

2
=

1
2

(

γ̂(i) − i · L

2h · f

)

=
di−1

2
+

γ(i)

2
− L

2h+1 · f

we obtain

Pr
(

X ≥ di

2

)

≥ Pr
(

X >
di

2

)

= 1 − Pr
(

X ≤ di−1

2
+

γ(i)

2
− L

2h+1 · f

)

. (3)

Corollary 1 gives us a means to bound

Pr
(

X ≤ n · M ′

N
− t · n

)

= Pr

(

X ≤ L

2h+1
· di−1 + γ(i)

L
2h

− t · L

2h+1

)

= Pr
(

X ≤ di−1 + γ(i)

2
− t · L

2h+1

)

from above for any t ≥ 0. Hence, choosing t := 1/f yields

Pr
(

X ≤ di−1 + γ(i)

2
− t · L

2h+1

)

= Pr
(

X ≤ di−1

2
+

γ(i)

2
− L

2h+1 · f

)

.

426 H. Gebauer et al.

Then, according to Corollary 1, we get

Pr
(

X ≤ di−1 + γ(i)

2
− L

2h+1f

)

≤ e−L/(2hf2) . (4)

Finally, combining (3) and (4), we obtain

Pr
(

X ≥ di

2

)

≥ 1 − Pr
(

X ≤ di−1

2
+

γ(i)

2
− L

2h+1 · f

)

≥ 1 − e−L/(2hf2) .

Hence, we have now shown that, for each bad vertex v on level i − 1, the
fraction of bad vertices among its children is at least 1 − e−L/(2h f2).

At this point, we are almost done. The only thing that remains to do is
to exhibit a connection to the number of bad vertices on level i. All vertices on
level i−1 have the same number of children and due to the induction hypothesis,
for every bad vertex on level i − 1, a fraction of at least 1 − e−L/(2h f2) of its
children is bad. Hence, the fraction of bad vertices on level i is at least

(
1 − e−L/(2h f2)

)i−1

·
(
1 − e−L/(2h f2)

)
=

(
1 − e−L/(2h f2)

)i

. ��

A direct consequence from this result that many vertices are bad is that many
instances are bad for Alg.

Corollary 2. For any deterministic online algorithm Alg, the fraction of
instances in I which are bad for Alg is at least

(
1 − e−L/(2h f2)

)h

.

Proof. Every single instance corresponds to a leaf in the instance tree, and is
thus located at level h. Plugging in the result of Lemma 2 proves the statement.

��

We have now shown that there are many bad instances for a given deterministic
algorithm Alg for DPA. What we will show next is that the choice of the term
“bad” was indeed justified for these instances, i. e., that Alg can actually only
admit few requests on any bad instance.

Lemma 3. Let Alg be an arbitrary but fixed deterministic algorithm for DPA,
and let I ∈ I be a bad instance for Alg. Then, the gain of Alg on I is at most

gain(Alg(I)) ≤ L

2h

(

1 +
h

f

)

.

Proof. According to the definition of bad vertices (2), an instance (correspond-
ing to a vertex on level h of the instance tree) is bad if there are at least
dh = γ̂(h) − h · L/(2hf) requests from phase h + 1 that are already blocked at

Disjoint Path Allocation with Sublinear Advice 427

the beginning of phase h+1. In this last phase, Alg is presented L/2h requests,
and thus, the number of requests Alg can admit in this phase is

γ(h+1) ≤ L

2h
−

(

γ̂(h) − h · L

2h f

)

=
L

2h
·
(

1 +
h

f

)

− γ̂(h) .

For the number of admitted intervals at the end of the computation and thus,
for the total gain of Alg on any bad instance I, we obtain

γ̂(h) + γ(h+1) ≤ γ̂(h) +
L

2h
·
(

1 +
h

f

)

− γ̂(h) =
L

2h
·
(

1 +
h

f

)

. ��

All in all, we have shown that, for a fixed deterministic algorithm Alg, there
are many instances on which Alg has only small gain. We now combine these
results to prove Theorem 1.

Proof of Theorem 1. Consider an arbitrary but fixed deterministic algo-
rithm Alg for DPA. The competitive ratio of Alg on an arbitrary bad instance I
is, according to Lemma 3 and Observation 1,

c =
gain(Opt(I))
gain(Alg(I))

≥
(h+2)L
2h+1

L
2h

·
(
1 + h

f

) =
2h

2h+1
· h + 2
(
1 + h

f

) =
h + 2

2
(
1 + h

f

) .

Now consider an arbitrary online algorithm A with advice for DPA that reads
b advice bits. We can interpret A in the usual way as a set of 2b deterministic
algorithms, A = {Alg1, . . . ,Alg2b} [3,4]. From Corollary 2, we know that, for
every such deterministic algorithm Algi, the fraction of good instances from I,
and hence the fraction of instances on which Algi has a competitive ratio of at
most (h + 2)/(2(1 + h/f)), is at most

1 −
(

1 − 1
eL/(2h f2)

)h

≤ h

eL/(2h f2)
,

where we used Bernoulli’s inequality (Fact 1), plugging in the values n := h and
x := −1/eL/(2h f2). Note that this is legitimate as long as 2h > 0 and f > 0,
since then L/(2h f2) ≥ 0 and hence x ≥ −1.

Obviously, the best case for A is met if the good instances of all Algi’s, 1 ≤
i ≤ 2b are pairwise disjoint. Therefore, the number of deterministic algorithms
that are necessary to guarantee a competitive ratio of at most (h+2)/(2(1+h/f))
for every instance from I is at least (eL/(2hf2))/h.

To be able to distinguish this many different deterministic strategies, the
number of advice bits the online algorithm Alg has to read is at least

log2

(
eL/(2h f2)

h

)

=
L

2h f2
· log2 e − log2 h . ��

428 H. Gebauer et al.

Now that we have established a general lower bound that gives a minimum
number of advice bits necessary to achieve a specific competitive ratio, we use
Theorem 1 to get two concrete lower bounds by choosing concrete values for h
and f that are in accordance with (1).

Corollary 3. For any c = c(L) with 1 < c ≤ 1/2 · (log2 L)/(log2 log2 L)1/4, any
online algorithm for DPA that achieves a competitive ratio of c needs to read at
least Ω

(
L/(4c c4)

)
advice bits.

Finally, from Theorem 1 we can also derive a more concrete result on the number
of advice bits necessary to achieve competitive ratios in the order of log2 L.

Corollary 4. Let δ be an arbitrary constant with 0 < δ < 1. Any online algo-
rithm for DPA that achieves a competitive ratio of δ/2 · log2 L needs to read at
least ω(L1−ε) advice bits, for any constant ε with δ < ε < 1.

Acknowledgments. The authors would like to thank Hans-Joachim Böckenhauer
and Juraj Hromkovič for very valuable discussions.

References

1. Awerbuch, B., Bartal, Y., Fiat, A., Rosén, A.: Competitive non-preemptive call
control. In: Proc. of SODA 1994, pp. 312–320. SIAM (1994)

2. Barhum, K., Böckenhauer, H.-J., Forǐsek, M., Gebauer, H., Hromkovič, J., Krug,
S., Smula, J., Steffen, B.: On the Power of Advice and Randomization for the
Disjoint Path Allocation Problem. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J.,
Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 89–101. Springer, Heidel-
berg (2014)

3. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complex-
ity of the k-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part I. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)

4. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the
Advice Complexity of Online Problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

5. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: Online
algorithms with advice. Technical Report 614, Department of Computer Science.
ETH Zurich (2009)

6. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press (1998)

7. Carothers, N.L.: Real analysis. Cambridge University Press (2000)
8. Chvátal, V.: The tail of the hypergeometric distribution. Discrete Mathematics

25(3), 285–287 (1979)
9. Dobrev, S., Královič, R., Pardubská, D.: Measuring the problem-relevant informa-

tion in input. Theoretical Informatics and Applications (RAIRO) 43(3), 585–613
(2009)

10. Epstein, L., Favrholdt, L.M.: Optimal preemptive semi-online scheduling to min-
imize makespan on two related machines. Operations Research Letters 30(4),
269–275 (2002)

Disjoint Path Allocation with Sublinear Advice 429

11. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
Theoretical Computer Science 412(24), 2642–2656 (2011)

12. Gupta, S., Kamali, S., López-Ortiz, A.: On Advice Complexity of the k -server Prob-
lem under Sparse Metrics. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO
2013. LNCS, vol. 8179, pp. 55–67. Springer, Heidelberg (2013)

13. Hromkovič, J., Královič, R., Královič, R.: Information Complexity of Online Prob-
lems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36.
Springer, Heidelberg (2010)

14. Komm, D., Královič, R.: Advice complexity and barely random algorithms. Theo-
retical Informatics and Applications (RAIRO) 45(2), 249–267 (2011)

15. Rice, J. A.: Mathematical Statistics and Data Analysis. Duxbury Press, 3rd edn.
(2007)

16. Renault, M.P., Rosén, A.: On Online Algorithms with Advice for the k -Server
Problem. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164,
pp. 198–210. Springer, Heidelberg (2012)

17. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)

Graph Algorithms III

Dynamic Tree Shortcut with Constant Degree

T.-H. Hubert Chan, Xiaowei Wu, Chenzi Zhang(B), and Zhichao Zhao

The University of Hong Kong, Hong Kong, China
{hubert,xwwu,czzhang,zczhao}@cs.hku.hk

Abstract. Given a rooted tree with n nodes, the tree shortcut problem
is to add a set of shortcut edges to the tree such that the shortest path
from each node to any of its ancestors is of length O(log n) and the
degree increment of each node is constant. We consider in this paper
the dynamic version of the problem, which supports node insertion and
deletion. For insertion, a node can be inserted as a leaf node or an internal
node by sub-dividing an existing edge. For deletion, a leaf node can be
deleted, or an internal node can be merged with its single child. We
propose an algorithm that maintains a set of shortcut edges in O(log n)
time for an insertion or deletion.

1 Introduction

The problem of adding a set of shortcut edges S to a tree T (V,E) to reduce
the hop-diameter of the resulting graph G(V,E ∪ S) has been studied for many
years [1,4,5,11,14,15]. We call a simple path P from node u to v in G straight
if the sequence of nodes in P is a sub-sequence of the unique path from u to v
in T . The hop-diameter of the graph is the maximum number of edges in the
shortest straight path between any two nodes in the graph. Given a rooted tree
with n nodes, the hop-diameter of the tree can be as large as Θ(n). In appli-
cations like index-based search or broadcast in tree-networks, the hop-diameter
(or the height) of the tree is crucial to the performance. To improve the efficiency,
researchers have been analysing how to add shortcut edges between ancestor and
descendant such that the hop-diameter of the resulting graph is small (i.e., log n).
Note that the hop-diameter can be easily reduced to O(1) by adding a shortcut
edge between each pair of ancestor and descendant in the tree. However, the
resulting graph has maximum degree Ω(n). Hence another objective on short-
cutting a tree is the degree increment on each node u ∈ V , which is the number
of edges in S incident to u. We refer to the problem of shortcutting a tree as the
tree-shortcut problem, which has application to spanners [6,10].

A natural extension of the tree-shortcut problem is to support operations
on the tree [9]. In the dynamic setting, the tree structure will be changed in
each iteration (by one operation) and we need to maintain the set of shortcut
edges such that the hop-diameter and the degree increment on each node are

This research is partially funded by a grant from Hong Kong RGC under the contract
HKU17200214E.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 433–444, 2015.
DOI: 10.1007/978-3-319-21398-9 34

434 T.-H.H. Chan et al.

still bounded. We refer to the dynamic version of the tree-shortcut problem
as the dynamic-tree-shortcut problem. We consider in this paper the dynamic-
tree-shortcut problem that supports two kinds of operations: node insertion and
deletion. The insertion operation inserts a node to the tree as a leaf node or as an
internal node by sub-dividing an existing edge. The deletion operation deletes a
leaf node (together with the incident edge) or an internal node that has a single
child (the internal node is merged with its child after the deletion).

1.1 Related Works

Yao [15] studied a special version of tree-shortcut problem that has applica-
tion to range query, in which the given tree is a single chain with n nodes. It
is shown in [15] that we can add Θ(n) shortcut edges to guarantee O(α(n))
hop-diameter, where α(n) is the inverse Ackermann function introduced by Tar-
jan [12]. Note that the maximum degree increment on each node in their con-
struction is Ω(n

1
α(n)). Their hop-diameter is proved to be asymptotically optimal,

if the total number of shortcut edges is Θ(n). Their result was later generalized
to arbitrary trees by Chazelle [5] and Thorup [14] such that Θ(n) shortcut edges
are added to a tree with n nodes to obtain O(α(n)) hop-diameter and Ω(n

1
α(n))

degree increment. Conjecture on a generalized version of the tree-shortcut prob-
lem on directed graphs were also made [13], but it was later disproved [7,8].
Solomon and Elkin [11] considered the trade-off between degree increment and
hop-diameter of the tree-shortcut problem, and proposed an algorithm that guar-
antees O(k) degree increment on each node and O(logk n + α(k)) hop-diameter
by adding O(n) shortcut edges to the tree, where k is any integer less than
n. Note that [11] obtained, for the first time, constant degree increment and
O(log n) hop-diameter for the tree-shortcut problem. However, operations such
as node insertion and deletion are not supported by their data structure.

As a parallel line of research, the dynamic-tree-shortcut problem is also exten-
sively studied. Sleator and Tarjan [9] derived a dynamic data structure that can
be used to shortcut a tree such that the degree increment on each node and the
hop-diameter are both bounded by O(log n). Moreover, they showed that the
data structure can be maintained in O(log n) time against operations such as
cutting a tree into two by removing one edge, or linking two trees by adding
an edge. Note that node insertion and deletion are special cases of the above
operations and hence are also supported by [9]. A centroid decomposition of the
tree and a biased search tree [3] on each centroid path were maintained in [9]. We
adopt similar ideas on constructing shortcut edges for the dynamic-tree-shortcut
problem and improve their result by reducing the degree increment to a constant.

1.2 Our Contribution

Given a rooted tree with n nodes, we construct in this paper a dynamic data
structure for shortcut edges that guarantees O(1) degree increment on each node
and O(log n) hop-diameter. Moreover, we show that our data structure can be

Dynamic Tree Shortcut with Constant Degree 435

maintained against node insertions and deletions in O(log n) time by adding
or deleting O(log n) shortcut edges after each operation. We summarize and
compare some related results as follows.

Degree-increment Hop-diameter Update time for node insertion/deletion

[5,14] Ω(n1/α(n)) O(α(n)) Not supported
[11] O(k) O(logk n + α(k)) Not supported
[9] O(log n) O(log n) O(log n)

This paper O(1) O(log n) O(log n)

In the table, n is the number of nodes in the tree (before node insertion/deletion), k
is any integer less than n and α(n) is the inverse Ackermann function of n.

2 Preliminaries

Given a rooted tree T (V,E), the distance d(u, v) between two nodes u, v ∈ V is
the number of edges in the unique path from u to v in the tree. For each internal
node u ∈ V , let Child(u) be the set of children of u in the tree. We use [n] to
denote {1, 2, . . . , n} for any positive integer n and log n to denote log2 n.

Definition 1 (Operation). There are two kinds of operations on the tree.
– Insertion. Operation (x, insertion) inserts a new node x to the tree T (V,E).

The new node x can be inserted as a child of an existing node or an internal
node that subdivides an existing tree edge. Note that x indicates a position in
the new tree.

– Deletion. Operation (x, deletion) deletes an existing node x, which is either
a leaf node or an internal node with only one child, from the tree T (V,E).
If x is a leaf node, then the edge incident to x is also deleted; otherwise x is
merged with its single child. Note that x specifies a node in the original tree.

Definition 2 (Shortcut Edge). In a rooted tree, a shortcut edge is an edge
between a node and one of its descendants.

Let S be a set of shortcut edges built on T (V,E). Let G(V,E ∪ S) be the
graph obtained by adding the shortcut edges in S to the tree T (V,E). In the
dynamic setting, we always use G and T to denote the current graph and tree
(after the operations and updates).

For each edge e = (u, v) ∈ E ∪ S, let le = d(u, v) be its length. Note that
le = 1 for all e ∈ E. A path (from node u1 to node uq) is denoted by a sequence
of nodes P = (u1, u2, . . . , uq). The length of path P = (u1, u2, . . . , uq) is the sum
of lengths of the edges in the path, which is

∑q−1
i=1 l(ui,ui+1) =

∑q−1
i=1 d(ui, ui+1).

With a slight abuse of notation, we use |P | to denote the number of nodes in P
and u ∈ P to denote that u ∈ V is in the path.

Definition 3 (Straight Path). A path P = (u1, u2, . . . , uq) is straight iff its
length equals the distance d(u1, uq) between u1 and uq.

436 T.-H.H. Chan et al.

Definition 4 (Hop-distance, Hop-diameter, Degree). The hop-distance
hG(u, v) between two nodes u, v ∈ V in G is the minimum number of edges in a
straight path from u to v. The hop-diameter ΔG = maxu,v∈V {hG(u, v)} of G is
the maximum hop-distance between any two nodes. Let degS(u) be the number of
shortcut edges incident to u ∈ V . We call degS(u) the degree of u. The maximum
degree in G is denoted by degS := maxu∈V {degS(u)}.
Theorem 1. A set of shortcut edges S for a rooted tree T (V,E) of n nodes can
be found such that graph G(V,E ∪ S) ensures ΔG = O(log n) and degS = O(1).
For each operation on T , shortcut edges S can be maintained in O(log n) time,
where n is the number of nodes before the operation.

We prove Theorem 1 in the rest of this paper by providing a data structure in
Section 3, and an algorithm in Section 4 to maintain the data structure against
operations. The following definitions are important for the construction and the
update algorithm. Let Tu be the sub-tree rooted at node u. We denote by |Tu|
the number of nodes in Tu.

Definition 5 (Heavy Child Mapping). For any internal node u, a child x of
u is heavy iff 4|Tx| ≥ maxy∈Child(u){|Ty|}. A mapping f that maps each internal
node u to one of its children is called a heavy child mapping iff f(u) is a heavy
child of u for all internal node u ∈ V .

Note that the heavy child mapping may be non-unique. For each internal
node u we set f(u) = arg maxx∈Child(u){|Tx|} when the tree T (V,E) is given at
the beginning. We may change the mapping f in the update algorithm. However,
we always maintain f as a heavy child mapping after each update. Based on the
heavy child mapping f(u), let ŵu = |Tu| − |Tf(u)| for each internal node u and
ŵu = 1 for each leaf node u.

Definition 6 (Proper Weighting). A weighting function w that assigns an
integer weight wu to each node u ∈ V is a proper weighting iff wu ∈ [ŵu

4 , 4ŵu].

Note that a proper weighting is based on a heavy child mapping. The proper
weighting on all nodes is also not unique. We set wu = ŵu for each node u ∈ V
when the tree T (V,E) is given at the beginning. We may change the weights of
nodes in the update algorithm. However, we always maintain the proper weight-
ing w after each update. Given a path P = (u1, u2, . . . , uq) and a proper weight-
ing w, let w(P) =

∑q
i=1 wui

. Unless otherwise specified, we assume that a heavy
child mapping f and a proper weighting w are maintained throughout this paper.

3 The Structure of Shortcut Edges

To build shortcut edges on the tree, we first break the tree into centroid paths
and then build shortcut edges within each centroid path. We further break a
centroid path into buckets, each of which contains O(log n) consecutive nodes.
We build Static-Path-Shortcut (Section 3.1) on each bucket and Dynamic-Path-
Shortcut (Section 3.2) between buckets using biased-skip-list. Due to page limit,
missing proofs are provided in the full version.

Dynamic Tree Shortcut with Constant Degree 437

Centroid Paths. For each internal node u ∈ V , we call (u, f(u)) a joint. Let
Ef = {(u, f(u))|u is an internal node in V } be the set of all joints. We call the
edges in E\Ef links. Given a rooted tree T (V,E) and a heavy child mapping
f , we partition the tree into paths P1, P2, . . . , Pr by removing all links. We call
each of those paths a centroid path, and the set of centroid paths the Tree-
Decomposition of T . The set of centroid paths can be induced by Tf (V,Ef). For
all i ∈ [r], we have Pi = (x, f(x), f(f(x)), . . .) for some x ∈ V . We call x the
top-node of Pi.

Claim 1. The nodes in the path P from any node u ∈ V to the root of the tree
are contained in at most O(log n) centroid paths.

Proof. Note that P consists of joints and links. For each link (x, y) in P such
that x ∈ Child(y), we have x �= f(y). By definition of heavy child mapping f , we
have |Ty| ≥ 5

4 |Tx|, which means that the number of links in P is O(log n). Since
all consecutive joints in P are contained in the same centroid path, the nodes in
P are contained in at most O(log n) centroid paths.

3.1 Static Path Shortcut

In this section, we consider how to add shortcut edges to a path. Given P and w,
the Static-Path-Shortcut defined as follows is a set of shortcut edges and must
be unique. We can run Alg. 1 as SPS(P, 1, q, t) to construct it.

Definition 7 (Static-Path-Shortcut). Given a path P = (u1, u2, . . . , uq) and
a proper weighting w, let tk =

∑
i∈[k] wui

for all k ∈ [q] and t0 = 0. If q ≤ 2,
then the Static-Path-Shortcut of P is an empty set; otherwise the Static-Path-
Shortcut of P contains the edge (u1, um), where tm−1 <

tq

2 ≤ tm, and the edges in
the Static-Path-Shortcuts of sub-paths (u2, . . . , um−1) and (um+1, . . . , uq). A sub-
path (ui, . . . , uj) is empty if j < i.

Lemma 1. Given a path P = (u1, u2, . . . , uq) and proper weighting w, its Static-
Path-Shortcut S can be constructed in O(q) time such that degS = O(1) and
hG(u1, ui) = O(log w(P)

wui
) for i ∈ [q], where we consider P as a tree rooted at u1.

Algorithm 1. SPS(P, i, j, t):
Input: Path P = (u1, u2, . . . , uq), positions 1 ≤ i < j ≤ q and cumulative weights t.
1: if i + 1 < j then
2: τ ← tj+ti−1

2
;

3: find integer l ≥ 0 such that ti+2l−1 ≤ τ ≤ ti+2l+1−1 or tj−2l+1+1 ≤ τ ≤ tj−2l+1.
4: find m such that tm−1 < τ ≤ tm in the above range using binary search.
5: return {(ui, um)} ∪ SPS(P, i + 1, m − 1, t) ∪ SPS(P, m + 1, j, t)

438 T.-H.H. Chan et al.

3.2 Dynamic Path Shortcut

Definition 8 (Path-Decomposition). Given a path P = (u1, u2, . . . , uq), a
Path-Decomposition of P is a sequence of buckets B1, B2, . . . , Bk such that
Bi = (ubi−1+1, ubi−1+2, . . . , ubi

) for all i ∈ [k], where 0 = b0 < b1 < b2 < . . . <
bk = q. The number of nodes in each bucket Bi, denoted by |Bi| = bi − bi−1,
satisfies 2 log(4n) ≤ |Bi| ≤ 10 log(4n). For the case when |P | < 2 log(4n), we set
k = 1 and the bucket size requirement is removed.

Note that the Path-Decomposition of a path P may be non-unique. We
ensure 4 log(4n) ≤ |Bi| ≤ 8 log(4n) when the tree is given for the first time
but only maintain 2 log(4n) ≤ |Bi| ≤ 10 log(4n) in the update algorithms. If
|P | ≤ 8 log(4n), we use one bucket to contain all nodes. We consider a bucket
as a sub-path of the path P . We use u ∈ Bi to denote that u is in bucket Bi.
Given a proper weighting w, let w(Bk) = 1 and w(Bi) =

∑
u∈Bi+1

wu be the
weight of Bi, for i ∈ [k − 1]. Note that by definition, the weight of a bucket is
the total weight of nodes in the next bucket. The reason behind this definition
will be clear in the proof of Lemma 2.

Definition 9 (Biased-Skip-List [2]). Given a sequence of buckets B1, B2 . . . ,
Bk and a proper weighting w, a biased-skip-list h assigns an integer height hi

to each bucket Bi such that (1) �log w(Bi)� ≤ hi ≤ log(4n) for all i ∈ [k]; (2)
h1 = hk = hmax = maxi∈[k]{hi}.
Definition 10 (Successor Pointer). Given a biased-skip-list h, for each height
t ≤ hmax, buckets of height at least t are kept in sorted order in a doubly linked list
called t-list. The successor pointer si,t points to the successor of Bi in t-list.

Recall the following algorithms [2] of direct search and finger search.

Algorithm 2. Direct Search(h, s, x):
Input: biased-skip-list h, successor pointers s and target bucket Bx.
1: i ← 1; j ← hmax;
2: while i �= x do
3: if si,j ≤ x then
4: i ← si,j ;
5: else if i < x then
6: j ← j − 1;

Algorithm 3. Finger Search(h, s, x, y):
Input: biased-skip-list h, successor pointers s, start bucket Bx and target bucket By.
1: i ← x; j ← hx;
2: while i �= y do
3: if j < hi AND si,j+1 ≤ y then � Up phase.
4: i ← si,j+1; j ← j + 1;
5: else if si,j ≤ y then
6: i ← si,j ;
7: else if i < y then � Down phase.
8: j ← j − 1;

Dynamic Tree Shortcut with Constant Degree 439

Fact 1 ([2]). Given a biased-skip-list, the time complexity for direct search
of bucket Bx is O(log w(P)

w(Bx)
) and the time complexity for finger search is

O(log w(P)). The time complexity to maintain the biased-skip-list(s) is O(log W)
for the following operations, where W = max{Wa,Wb}, Wa and Wb are the total
weights of buckets before and after the operation, respectively: (1) adding, deleting
or re-weighting one bucket. (2) splitting a biased-skip-list into two. (3) merging
two biased-skip-lists into one.

Definition 11 (Dynamic-Path-Shortcut). Given a Path-Decomposition
B1, B2, . . . , Bk of path P = (u1, u2, . . . , uq) and a biased-skip-list h on the buck-
ets, the Dynamic-Path-Shortcut is a set of shortcut edges that contains
– edges in the Static-Path-Shortcut of each bucket Bi,
– (ubi−1+1, ubi−hi+1) and (ubi−hi+1, ubi

) for all i ∈ [k],
– (ubi−t+1, ubj−t+1) and (ubi−t+2, ubj−t+1) for all i, j, t such that 2 ≤ t ≤ hi

and Bj = si,t,
– (ubi

, ubi+1) for all i ∈ [k − 1].

Lemma 2. Given a path P with proper weighting w, its Dynamic-Path-Shortcut
S guarantees degS = O(1), hG(u1, ui) = O(log w(P)

wui
) and hG(ui, uj) =

O(log(4n)) for all ui, uj ∈ P .

Lemma 3. To maintain the Dynamic-Path-Shortcut(s) of path P , the time com-
plexity for the update algorithms is O(log(4n)) for the following operations.
– Adding, removing or re-weighting (while maintaining a proper weighting)

a node u ∈ P .
– Splitting the path P into two paths by deleting one edge in P .
– Concatenate a path P ′, with its Dynamic-Path-Shortcut, to the end of P .

3.3 Dynamic Tree Shortcut

Definition 12 (Dynamic-Tree-Shortcut). Given a rooted tree T (V,E), a
heavy child mapping f and a proper weighting w, the Dynamic-Path-Shortcut
of T contains all edges in the Dynamic-Path-Shortcut of each centroid path Pi

in the Tree-Decomposition P1, P2, . . . , Pr of T .

Lemma 4. Given a rooted tree T of n nodes, the Dynamic-Path-Shortcut S
guarantees degS = O(1) and hG(u, v) = O(log n) for each ancestor-descendant
pair (u, v).

Proof. First observe that degS = O(1) by Lemma 2 and the disjunction of
centroid paths.

Let P be the tree path from node v to its ancestor u, which is a sub-path
of the tree path from v to the root. By Claim 1, nodes in P are contained in
k = O(log n) centroid paths. Let P ′

1, P
′
2, . . . , P

′
k be those centroid paths such

that u ∈ P ′
1, v ∈ P ′

k and the parent of the top-node of P ′
i+1 is contained in P ′

i ,
for all i ∈ [k − 1].

440 T.-H.H. Chan et al.

Let xi be the top-node of P ′
i , for all i ∈ [k]. For all i ∈ [k − 1], let yi ∈ P ′

i

be the parent of xi+1. Let yk = v. Hence P follows v = yk � (xk, yk−1) �
(xk−1, yk−2) � . . . � (x2, y1) � u. By definition of proper weighting, for all
1 < i ≤ k we have

w(P ′
i) ≤ 4|Txi

| ≤ 4(|Tyi−1 | − |Tf(yi−1)|) = 4ŵyi−1 ≤ 16wyi−1 .

Instead of following tree path P , by Lemma 3, there exists a constant c such
that we can use the Dynamic-Path-Shortcut of each centroid path to reach xi

from yi by a straight path of length c log w(P ′
i)

wyi
for all 1 < i ≤ k, and reach u

from y1 by a straight path of length O(log n).
Hence the hop-distance between v and u using Dynamic-Path-Shortcut is

hG(u, v) ≤ O(log n) +
k∑

i=2

(c log
w(P ′

i)
wyi

+ 1) ≤ O(log n) + k + c

k∑

i=2

(log
16wyi−1

wyi

)

≤ O(log n) + (4c + 1)k + c log
wy1

wv
= O(log n).

4 Update Algorithm for Operations

We have introduced how to build shortcut edges on a given tree such that the
degree increment and the diameter are bounded after the construction. In this
section, we will describe how to update the Dynamic-Tree-Shortcut after each
operation (x, insertion/deletion) by giving update algorithms. The real challenge
for maintaining the Dynamic-Tree-Shortcut is that the heavy child mapping f
and proper weighting w, if not updated accordingly, may not hold due to the
change of the number of nodes. Throughout this section, we assume the current
number of nodes n in the tree is large enough.

By Definition 12, as long as the heavy child mapping f , the proper weight-
ing w and the Dynamic-Path-Shortcut of each centroid path are maintained,
the Dynamic-Tree-Shortcut is maintained as Lemma 4. For the maintainance of
Dynamic-Path-Shortcut, the most crucial part is to maintain the buckets. We
define three statuses of an object: intact, safe and risky, where an object is a bucket
or a node or a joint. We call an object maintained iff it is in one of those three sta-
tuses. Note that the status of an object may change after each operation.

intact safe risky

Bucket B |B|
log(4n)

∈ [4, 8] |B|
log(4n)

∈ [3, 4) ∪ (8, 9] |B|
log(4n)

∈ [2, 3) ∪ (9, 10]

Node u wu
ŵu

= 1 wu
ŵu

∈ [1
2
, 1) ∪ (1, 2] wu

ŵu
∈ [1

4
, 1
2
) ∪ (2, 4]

Joint (u, f(u))
|Tf(u)|

maxv∈Child(u) |Tv| = 1
|Tf(u)|

maxv∈Child(u) |Tv| ∈ [1
2
, 1)

|Tf(u)|
maxv∈Child(u) |Tv| ∈ [1

4
, 1
2
)

For the case when a centroid path P is of size |P | ≤ 10 log(4n), since
one bucket B is sufficient to contain the whole path, we call the bucket B
intact if |B| ≤ 8 log(4n); safe if 8 log(4n) < |B| ≤ 9 log(4n) and risky if

Dynamic Tree Shortcut with Constant Degree 441

9 log(4n) < |B| ≤ 10 log(4n). By the above definitions, at the beginning when
the tree is given, the Dynamic-Tree-Shortcut we construct in Section 3 ensures
that all buckets, joints and nodes are intact.

Due to page limit, the update algorithms for the reconstruction of risky
buckets, risky joints and risky nodes are deferred to the full version. All those
algorithms rebuild a risky object and turn it intact.

We give the following algorithm to update the Dynamic-Tree-Shortcut
for each operation (x, insertion/deletion). Given an operation (x, insertion/
deletion), we call a joint (u, f(u)) touched if u is an ancestor of x; a node u
touched if u is in the path P from x to the root and f(u) /∈ P . Let k1 = 18 and
k2 = 36 be constant parameters.

Algorithm 4. Update(x, insertion/deletion)
1: insert or delete a node at position x
2: update the Dynamic-Path-Shortcut of the centroid path containing x � Lemma 3
3: n ← n + 1 if x is inserted; n ← n − 1 if x is deleted
4: rebuild an arbitrary risky bucket (if exist)
5: rebuild k1 touched risky joints that are closest to x (if exist)
6: rebuild k2 touched risky nodes that are closest to x (if exist)

Lemma 5. Given a Dynamic-Tree-Shortcut of a rooted tree such that all buck-
ets, joints and nodes are intact, Alg. 4 keeps all buckets, joints and nodes main-
tained for any sequence of operations.

We prove Lemma 5 by analysing the buckets, joints and nodes one by one as
follows. The analysis of maintaining nodes is in the full version.

4.1 Maintaining the Buckets

Lemma 6. Alg. 4 keeps all buckets maintained for any sequence of operations,
if initially all buckets are intact.

Proof. First we show that it takes more than n
2 operations to turn a bucket from

intact to risky, or from safe to not-maintained, where n is number of nodes in the
tree before those operations. Notice that if the size of a bucket is changed after
operation (x, insertion/deletion), then it must be in the centroid path containing
x. By Alg. 4 line 2 and Lemma 3, the bucket will be reconstructed and become
intact. Hence the only case a bucket B changes from intact to risky is due to the
change of the number of nodes in the tree, while the size of the bucket remains
unchanged. Let n′ be the number of nodes in the tree when bucket B becomes
risky. Then we have either 4 log(4n) ≤ |B| < 3 log(4n′) or 9 log(4n′) < |B| ≤
8 log(4n). In the first case we have n′ −n > n4/3 −n = n(n1/3 − 1) > n > n

2 and
in the second case we have n − n′ > n − n8/9 = n(1 − n−1/9) > n

2 . Since n is
changed by 1 after each operation, the number of operations needed to change
a bucket from intact to risky is more than n

2 . Similar argument can be applied

442 T.-H.H. Chan et al.

to show that the number of operations needed to change a bucket from safe to
not-maintained is also more than n

2 .
Assume the contrary of Lemma 6 and let bucket B be the first bucket that

is not maintained. Consider the last moment t when B is safe and let n∗ be
the number of nodes in the tree at moment t. Since each safe or risky bucket
at moment t must be of size at least 2 log(4n∗), the number of safe or risky
buckets is at most n∗

2 log(4n∗) . Consider moment t + n∗
2 , after n∗

2 operations. Note
that at this moment, all intact buckets at moment t and buckets created after
moment t must not be risky. Moreover, bucket B must be risky at this moment,
by the above analysis. However, since B is risky between moment t and t+ n∗

2 , a
risky bucket other than B must be rebuilt after each of the past n∗

2 operations,
which is a contradiction since there are at most n∗

2 log(4n∗) risky buckets between

moment t and moment t + n∗
2 .

4.2 Maintaining the Joints

Note that the status of a joint (u, f(u)) will not change if the sizes of all sub-
trees of u remain unchanged. Hence we only need to maintain the joints that are
touched, after each operation. For each joint (u, f(u)), between its two consecu-
tive rebuilds, we call the last moment before (u, f(u)) is changed from intact to
safe the marginal moment of (u, f(u)).

Definition 13 (Class). We put joints into classes Ci, i ∈ [log n], right after
their marginal moments. A joint (u, f(u)) is put into Ci iff |Tf(u)| ∈ [2i, 2i+1).
A joint (u, f(u)) ∈ Ci is removed from Ci if it is touched by 2i−1 operations
after its marginal moment.

We show that joints in classes are either safe or intact. Since risky joints may
be rebuilt, each joint can be put into and removed from classes multiple times.

Lemma 7. For all i ∈ [log n], each joint (u, f(u)) ∈ Ci is either safe or intact.

Proof. It suffices to show that (u, f(u)) ∈ Ci will become risky only after
being touched by more than 2i−1 operations. Consider the marginal moment
of (u, f(u)). Since (u, f(u)) is intact at this moment, we have |Tf(u)| ≥ |Tx| for
all x ∈ Child(u). Let t = |Tf(u)| ∈ [2i, 2i+1) at this marginal moment.

Now consider the time when (u, f(u)) becomes risky. Let t′ = |Tf(u)| at
this moment. Since (u, f(u)) is risky, there exists y ∈ Child(u) such that y �=
f(u) and |Ty| > 2t′. Note that at the marginal moment of (u, f(u)), we have
|Ty| ≤ t, as argued above. Since only one node is inserted or deleted in each
operation, the number of operations between the above two moments, is more
than |t − t′| + |t − 2t′| = t(|1 − t′

t | + |1 − 2 t′
t |) ≥ t

2 ≥ 2i−1.

Lemma 8. Each operation touches at most 4 joints in each class.

Dynamic Tree Shortcut with Constant Degree 443

Proof. Fix one operation and one class Ci. Consider any joint (u, f(u)) ∈ Ci.
Similar to the proof of Lemma 7, let t = |Tf(u)| ∈ [2i, 2i+1) at the marginal
moment of (u, f(u)). Note that at the marginal moment, u has another child
v �= f(u) such that |Tv| = t, since (u, f(u)) becomes safe after the next operation.
Since (u, f(u)) can only be touched by 2i−1 ≤ t

2 operations, at any moment when
(u, f(u)) ∈ Ci we have maxy∈Child(u){|Ty|} ≤ 2min{|Tf(u)|, |Tv|}, as argued in
Lemma 7. Hence for all joint (u, f(u)) ∈ Ci, we have maxy∈Child(u){|Ty|} ≤
2
3 |Tu|. Let (x1, f(x1)), (x2, f(x2)), . . . , (xl, f(xl)) be all joints in Ci touched by
this operation such that xj+1 is a descendant of xj for all j ∈ [l − 1], we have

2i−2i−1 ≤ |Tf(xl)| ≤ 2
3
|Txl

| ≤ (
2
3
)l−1|Tx2 | ≤ (

2
3
)l−1(2i+1+2i−1) = 5(

2
3
)l−12i−1,

which implies that l ≤ 1 +
⌊

log 5
log 3

2

⌋
= 4.

Lemma 9. Alg. 4 keeps all joints maintained for any sequence of operations, if
initially all joints are intact.

Proof. Assume the contrary and let (u, f(u)) be the first joint that is not main-
tained such that all other joints in Tu are maintained. Consider the last moment t
when (u, f(u)) is safe and the moment t′ when (u, f(u)) becomes not maintained.
Let r = |Tf(u)| at moment t and r′ = |Tf(u)| at moment t′. Let v ∈ Child(u) such
that |Tv| > 4r′ at moment t′. Note that |Tv| ≤ 2r at moment t since (u, f(u)) is
safe at moment t. Let m be the number of operations that touch (f(u), f(f(u)))
or (v, f(v)) between moment t and t′. Similar to the proof of Lemma 7, we have
m ≥ |r − r′| + |2r − 4r′| ≥ r

2 .
Now consider all joints in Tf(u) and Tv at moment t. Note that there are at

most 3r joints. We count the number of reconstructions of risky joints between
moment t and t′. A risky joint may become risky again after being rebuilt and
hence a joint may be counted multiple times. Note that the classes do not contain
the touched joints (u, f(u)) such that |Tf(u)| = 1. However, at most three such
joints are touched by each operation. The total number of reconstructions of
risky joints between moment t and t′ can be upper bounded by 3r + 3m+the
number of joints that are removed from the node-classes, which by Lemma 8, is
3r + 3m +

∑
i∈[log n]

4m
2i−1 ≤ 3r + 3m + 8m ≤ 17m.

Since by assumption (u, f(u)) is not maintained at moment t′, by Alg. 4
line 5, k1 = 18 risky joints in Tf(u) or Tv are rebuilt after each of those m
operations, which implies that k1m = 18m ≤ 17m and is a contradiction.

4.3 Time Complexity Analysis

Lemma 10. The time complexity of Algorithm 4 is O(log n).

Proof. As argued in Lemma 3, updating the Dynamic-Path-Shortcut after insert-
ing or deleting one node can be done in O(log n) time. As proved in the full ver-
sion, rebuilding a risky bucket/joint/node can be done in O(log n) time. Hence
we only need to find the risky bucket/joints/nodes in O(log n) time.

444 T.-H.H. Chan et al.

If we use a max-heap to store the sizes of all buckets and a min-heap to store
the sizes of the buckets that contain only a fraction of some centroid path, then
it takes O(log n) time to find the bucket with maximum size and the bucket with
minimum size such that does not contain a whole centroid path. Note that if
there exist any risky buckets, then one of those two buckets must be risky. We
prove the following fact in the full version.

Claim 2. It takes O(log n) time to find the k1 touched risky joints that are
closest to x after each operation (x, insertion/deletion).

As proved in Lemma 1, at most O(log n) nodes can be touched by each
operation and hence O(log n) time suffices to update their weights and to identify
the risky nodes.

References

1. Alon, N., Schieber, B.: Optimal preprocessing for answering on-line product
queries. Technical report (1987)

2. Bagchi, A., Buchsbaum, A.L., Goodrich, M.T.: Biased skip lists. Algorithmica
42(1), 31–48 (2005)

3. Samuel, W.: Bent, Daniel D Sleator, and Robert E Tarjan. Biased search trees.
SIAM Journal on Computing 14(3), 545–568 (1985)

4. Bodlaender, H.L., Tel, G., Santoro, N.: Trade-offs in non-reversing diameter. Nord.
J. Comput. 1(1), 111–134 (1994)

5. Chazelle, B.: Computing on a free tree via complexity-preserving mappings. Algo-
rithmica 2, 337–361 (1987)

6. Elkin, M., Solomon, S.: Optimal euclidean spanners: really short, thin and lanky.
In: STOC, pp. 645–654 (2013)

7. Hesse, W.: Directed graphs requiring large numbers of shortcuts. In: SODA,
pp. 665–669 (2003)

8. Raskhodnikova, S.: Transitive-Closure Spanners: A Survey. In: Goldreich, O. (ed.)
Property Testing. LNCS, vol. 6390, pp. 167–196. Springer, Heidelberg (2010)

9. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26(3), 362–391 (1983)

10. Solomon, S.: From hierarchical partitions to hierarchical covers: optimal fault-
tolerant spanners for doubling metrics. In: STOC, pp. 363–372 (2014)

11. Solomon, S., Elkin, M.: Balancing Degree, Diameter and Weight in Euclidean
Spanners. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346,
pp. 48–59. Springer, Heidelberg (2010)

12. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM
22(2), 215–225 (1975)

13. Thorup, M.: On shortcutting digraphs. In: Proceedings of the 18th International
Workshop on Graph-Theoretic Concepts in Computer Science, WG 1992, London,
UK, pp. 205–211. Springer (1993)

14. Thorup, M.: Parallel shortcutting of rooted trees. J. Algorithms 23(1), 139–159
(1997)

15. Yao, A.C.-C.: Space-time tradeoff for answering range queries (extended abstract).
In: STOC, pp. 128–136 (1982)

The Rectilinear Steiner Tree Problem
with Given Topology and Length Restrictions

Jens Maßberg(B)

Institut für Optimierung und Operations Research, Universität Ulm, Ulm, Germany
jens.massberg@uni-ulm.de

Abstract. We consider the problem of embedding the Steiner points of
a Steiner tree with given topology into the rectilinear plane. Thereby,
the length of the path between a distinguished terminal and each other
terminal must not exceed given length restrictions. We want to minimize
the total length of the tree.

The problem can be formulated as a linear program and therefore
it is solvable in polynomial time. In this paper we analyze the structure
of feasible embeddings and give a combinatorial polynomial time algo-
rithm for the problem. Our algorithm combines a dynamic programming
approach and binary search and relies on the total unimodularity of a
matrix appearing in a sub-problem.

Keywords: Steiner trees with given topology · Rectilinear Steiner
trees · Dynamic programming · Totally unimodular · Shallow light
Steiner trees

1 Introduction

The Rectilinear Steiner Tree Problem With Given Topology And

Length Restrictions can be stated as follows. The input (S, T, r, p, l) consists
of a set of terminals T with positions p : T → R

2, a tree S with T ⊆ V (S), a
distinguished terminal r ∈ T - called the root of the tree - and length restrictions
lt ∈ R≥0 for all t ∈ T .

The task is to find an embedding π : V (S) → R
2 of the vertices of the tree

into the plane with π(t) = p(t) for all t ∈ T , such that for all t ∈ T the length
dπ(t) of the unique path from r to t in S with edge set ES [r, t] has length at
most lt, that is,

dπ(t) =
∑

{v,w}∈ES [r,t]

||π(v) − π(w)||1 ≤ lt (1)

and the total length

c(π) :=
∑

{v,w}∈E(S)

||π(v) − π(w)||1 (2)

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 445–456, 2015.
DOI: 10.1007/978-3-319-21398-9 35

446 J. Maßberg

of the tree is minimized. The tree S is called Steiner tree and the vertices in
V (S) \ S Steiner points. Throughout this paper we assume w.l.o.g. that the
root is placed at the origin, that is, p(r) = (0, 0). By adding Steiner points and
edges of length zero we can assume that the terminals are leaves of S and that all
Steiner points have degree 3. Moreover, we denote by πx(v) and πy(v) the x- and
y-coordinate, respectively, of π(v) for an embedding π and a vertex v ∈ V (S).

A further generalization of the problem is to extend it to other metrics or
to consider length restrictions between any pair of terminals. In this paper we
restrict ourselves to the �1 metric and length restrictions between one distin-
guished vertex and all other terminals, as this case has a strong application in
practice.

Our problem is motivated by an application arising in VLSI design, where
one of the main challenges is to build so-called repeater trees. These are tree-
like structures consisting of wires and possibly so-called repeater circuits and
their task is to distribute a signal from a source circuit to several sink circuits.
Thereby, the signal is delayed. In order to guarantee, that the chip works on the
desired speed, timing constraints are given, that is, the signal has to arrive at
each sink circuit not later than a given individual time bound. There are several
heuristics to build such repeater trees (see e.g. [1]).

A repeater tree can be modeled as a Steiner tree connecting the source and
the sinks and containing repeater circuits at some of the Steiner points. The
length of a repeater tree corresponds to its power consumption. So the question
arises, if the length of a given tree can be reduced by moving the positions of the
Steiner points. Bartoschek et al. [1] have shown, that by adding repeater circuits
at appropriate positions the delay of a signal on a path from the source to a
sink is approximately proportional to the length of the path. Thus the timing
constraints directly yield length restrictions on root-terminal paths. It turns
out, that the Rectilinear Steiner Tree Problem with given Topology and Length
restrictions is a good model for the task to minimize the power consumption of
given repeater trees without changing their topology.

If we are allowed to change the topology of the tree, the problem becomes
NP-hard, as it contains the Rectilinear Steiner Tree Problem [4]. If, additionally,
lt = ||p(s) − p(t)||1 for all t ∈ T , that is, all root-terminal paths are shortest
paths, we end at the Rectilinear Steiner Arborescence Problem, which is also
NP-hard ([8,9]). In the case where the length restrictions are the same for all
terminals we have the case of Shallow Light Steiner Trees (see e.g. [7]).

However, if we have to keep the topology, but do not have any length restric-
tions, an optimal embedding can be computed in linear time using dynamic pro-
gramming (see e.g. [6]). To our knowledge, the problem of embedding a Steiner
tree with a given topology satisfying length restrictions has not been considered
yet. In this paper we present the first combinatorial polynomial time algorithm
that computes an optimal embedding.

Figure 1 (i) shows an instance with seven terminals drawn as black squares
and 5 Steiner points drawn as white circles. Figure (ii) shows an optimal solution
if there are no length restrictions. In Figure (iii) an optimal solution is shown,

The Rectilinear Steiner Tree Problem with Given Topology 447

if we have length restrictions lt1 = 5, lt2 = 6 and ls = ∞ otherwise. If there
are no length restrictions, then there always exists an optimal solution where
the Steiner points are positioned at the so called Hanan grid on T (see [5]).
With length restrictions, this is no longer true. Nevertheless, we prove that if
the positions of the terminals and the length restrictions are integral, then there
always exists an solution on half-integral positions.

(i) (ii) (iii)

r

t1

t2

Fig. 1. Instance (i), optimal embedding without length restrictions (ii) and optimal
embedding with length restrictions lt1 = 5 and lt2 = 6 (iii). The regular dotted grid
has a lattice spacing of 1.

The problem can be formulated as a linear program by extending the LPs pre-
sented in [2] [6]. Therefore it can be solved in polynomial time by non-combina-
torial algorithms. Nevertheless, we are interested in a combinatorial algorithm
for the problem.

After introducing several definitions concerning the movement of components
of the tree in Section 2, we present our main observations in Section 3. Among
others, we prove that there always exists an optimal embedding where the Steiner
points are on half-integral positions. Based on this observation, we introduce in
Section 4 a dynamic programming algorithm which is the main ingredient to
achieve a pseudo-polynomial time algorithm. Refining this algorithm we finally
gain a polynomial time algorithm in Section 5.

2 Moving Components

Before we come to the main observations of the paper we examine how the
movements of Steiner points of a given embedding influence the total length
of the tree and the length of root-terminal paths. First we start with several
definitions that we need throughout this paper.

If π is an embedding, then an x-component C at position x(C) with respect
to π, x(C) ∈ R, is a connected subtree C of T such that all vertices in C
have x-coordinate x(C). An x-component C is called maximal if there does not
exist any x-component C ′ with C � C ′. A component always depends on the
embedding π. In the following, we omit π in the notation if it is clear from the
context. In an analogous way we define a y-component C at position y(C). In
the remainder of the paper we introduce several definitions and state lemmata

448 J. Maßberg

concerning x-components. By symmetry, these definitions and lemmata also hold
for y-components.

Let Γ (V (C)) be the neighbors of the vertices of C. For an x-component C
we define

Γπ
<(C) := {v ∈ Γ (V (C)) : πx(v) < x(C)} and (3)

Γπ
>(C) := {v ∈ Γ (V (C)) : πx(v) > x(C)}. (4)

In an analogous way we define Γπ
<(C) and Γπ

>(C) for a y-components C. If C
is a component not containing r, then the predecessor of C is the unique vertex
v ∈ Γπ

>(C) ∪ Γπ
<(C) such that v is on the root-w path for all w ∈ V (C). For

simplicity of notation we define

sign(C) =

{
1 if the predecessor of C is in Γ<(C)
−1 otherwise.

(5)

If C is an x-component with respect to some embedding π then we say that
we move C by δ if we replace π by the embedding π′ defined by

π′(v) :=

{
π(v) + (δ, 0) for all v ∈ V (C) \ T,

π(v) otherwise.
(6)

We say, that we move C towards its predecessor if δ · sign(C) < 0.
If C is a maximal component containing no terminals, then we define R(C)

to be the set of terminals t such that the unique root-t path P passes C, that
is, V (P) ∩ V (C) 	= ∅ and the path enters and leaves C at the same side, that is,
we have either |V (P) ∩ Γ>(C)| = 2 or |V (P) ∩ Γ<(C)| = 2. If we choose δ ∈ R

with |δ| small enough and move C by δ, then the length of all root-t paths with
t ∈ R(C) change by 2sign(C)δ. The length of any other root-terminal path does
not change.

Figure 2 illustrates some of the definitions.
If π and π′ are two embedding, then we say that π′ preserves the local order

of π if for every edge (v, w) ∈ E(S) we have

(πx(v) ≤ πx(w)) ⇒ (π′
x(v) ≤ π′

x(w)) and (7)
(πy(v) ≤ πy(w)) ⇒ (π′

y(v) ≤ π′
y(w)). (8)

Note, that by (7) if πx(v) = πx(w) then π′
x(v) = π′

x(w) and analogously for y.
This implies that each component with respect to π is also a component with
respect to π′ (but not necessarily the other way round!). Moreover, if v is a
vertex of an x-component that contains terminals, we have πx(v) = π′

x(v).
Now we can analyze how the length of the embedding and of root-terminal

paths change if we move maximal components simultaneously and the local order
is preserved.

The Rectilinear Steiner Tree Problem with Given Topology 449

r

t1

t2

t3

t4

t5

t6

s1

s2

s3
s4

s5

(i)

y(C)

y(C) + δ

(ii)

Fig. 2. (i) An embedding π with a maximal y-component C with V (C) = {s1, s3, s4},
predecessor s2, Γ>(C) = {t2, s5}, Γ<(C) = {t1, s2, t6}, sign(C) = 1 and R(C) =
{t1, t6}. (ii) Embedding obtained by moving C by δ < 0. The new embedding preserves
the local positions of π. The length of all root-t with t ∈ R(C) changed by 2sign(C)δ =
2δ (< 0).

Lemma 1. Let π be an embedding, Δ be the set of all maximal x- and y-
components, and δC ∈ R for C ∈ Δ. Denote by π′ the embedding we obtain
by moving each component C ∈ Δ by δC . If π′ preserves the local order of π then

c(π′) = c(π) +
∑

C∈Δ

δC (|Γπ
<(C)| − |Γπ

>(C)|) . (9)

Moreover we have for all t ∈ T :

dπ′(t) = dπ(t) +
∑

C∈Δ:t∈R(C)

2sign(C) · δC . (10)

Proof. Consider an x-component C ∈ Δx. If we move C, then only the length of
edges {v, w} ∈ E(S) with v ∈ V (C) and w /∈ V (C) are changed. Let {v, w} be
such an edge and assume w ∈ Γπ

<(C), that is πx(w) < πx(v). As the local order
is preserved, we have π′

x(w) ≤ π′
x(v). But then moving C by δ increases the

length of the edge {v, w} by δ. In an analogous way we see that the length of the
edge decreases by δ if w ∈ Γπ

>(C). Summing up the changes over all components
we obtain (9).

Now consider a terminal t ∈ T . Again, as the local order is preserved by π′,
the length of the root-t path is only influenced by components C with t ∈ R(C).
Consider such a component C. If we move C by |δC | towards the predecessor of
C, the length of the path is reduced by 2|δC |. On the other hand, if we move
C in the other direction by |δC |, then the length is increased by 2|δC |. In total,
the length changes by sign(C)2 · δC . Summing up over all such components, we
obtain (10). �

The following observation is crucial in order to prove that there exist optimal
solutions that are half-integral.

450 J. Maßberg

R(C1) ∩ R(C2) = ∅ R(C1) ∩ R(C2) = ∅ R(C2) ⊆ R(C1)

r

C1

C2

v1

v2

r

C1

C2

v1

v2

v

r

C1

C2

v1

v2

v

Fig. 3. The possible positions of two maximal y-components within a tree.

Lemma 2. If Δ is a set of maximal x-components that do not contain terminals,
then {R(C)}C∈Δ is a laminar family.

Proof. Let C1, C2 ∈ Δ. By definition V (C1)∩V (C2) = ∅. For i ∈ {1, 2} let vi be
the vertex of V (Ci) that is adjacent to the predecessor of Ci. Note that vi is on
the unique r-t path for every t ∈ R(Ci) (see Figure 3). Now assume that neither
v1 is on the r-v2 path nor v2 is on the r-v1 path. Then R(C1) ∩ R(C2) = ∅.
Otherwise, assume w.l.o.g. that v1 is on the r-v2 path. In this case there exists a
unique vertex v on the v1-v2 path satisfying v ∈ Γπ

>(C1)∪Γπ
<(C1). Now note that

for all t ∈ R(C2) the length of the r-t path changes when moving C1 if and only
if the length of the r-v path changes when moving C1. Hence, R(C2) ⊆ R(C1)
or R(C2) ∩ R(C1) = ∅. This implies the desired result. �

Before we continue with the main result we make another simple observation:

Proposition 1. If π is an embedding and there exists a vertex t ∈ T such that
dπ(t) > ||p(t) − p(r)||1, then there exists a component C such that moving C
towards its predecessor decreases the length of the root-t path.

3 Main Section

In this section we prove that if all terminals are on integral coordinates and
all length restrictions are integral, then there exists an optimal half-integral
embedding. More precisely we prove that for any given feasible embedding π
there exists a feasible half-integral embedding σ of at most the same cost such
that the �∞ distance between the positions of a vertex in both embeddings is at
most 0.5. To this end we consider a sub problem that can be formulated as a
linear program based on a totally unimodular matrix.

We start with some observations on half-integral embeddings.

Proposition 2. Every half-integral embedding has half-integral cost.

Proof. Obviously, all edges in such an embedding have half-integral lengths and
thus the total length is also half-integral. �

Proposition 3. In every half-integral embedding π the length of every root-
terminal path has integral length.

The Rectilinear Steiner Tree Problem with Given Topology 451

Proof. Let t ∈ T and denote by P the unique root-t path in S. If P is a shortest
path, then the length of P is ||π(r) − π(t)||1, which is integral. If P is not
a shortest path, then by Proposition 1 there exists a component C such that
moving C towards its predecessor decreases the length of P . As π is half-integral,
we can move C by 0.5 towards its predecessor, reducing the length of P by 1
and obtaining a new half-integral embedding π′. Then by induction the length
of P must be integral. �

The main theorem of this section is the following.

Theorem 1. If π is an embedding for an instance (S, T, r, p, l) where all posi-
tions and length restrictions are integral, then there exists an half-integral embed-
ding σ with maxv∈V ||π(v) − σ(v)||∞ ≤ 0.5 and c(σ) ≤ c(π).

Proof. For x ∈ R we denote by I(x) the smallest interval in R with half-integral
boundaries such that x is in the interior of the interval, that is,

I(x) := [�2x − 1�/2, �2x + 1�/2] . (11)

For a point (x, y) ∈ R
2 we set I((x, y)) := I(x)×I(y). We show that there exists

an half-integral embedding σ with

σ(v) ∈ I(π(v)) for all v ∈ V (12)

such that c(σ) ≤ c(π).
Let σ be a feasible embedding for (S, T, r, p, l) of minimum cost satisfying

(12). If there are several such embeddings we choose one with a minimal number
of components that are not on half-integral coordinates. We denote this number
by N(σ) and prove that N(σ) = 0. Suppose that this is not the case. The idea
is to move maximal components such that N(σ) gets smaller without increasing
c(σ). As π trivially satisfies (12), we have c(σ) ≤ c(π).

Let Δx and Δy be the sets of maximal x- and y-components, respectively,
with respect to σ that are not on half-integral coordinates and set Δ := Δx∪̇Δy.
Then N(σ) = |Δ|. For C ∈ Δ we set

z∗
C :=

{
x(C) − �2x(C)� /2 C ∈ Δx,

y(C) − �2y(C)� /2 C ∈ Δy.
(13)

Consider a vector z ∈ [0, 0.5]Δ. Starting with the embedding σ and moving
each component C ∈ Δ by zC − z∗

C in x- or y-direction, depending if C ∈ Δx

or C ∈ Δy, respectively, we obtain a new embedding τ(z). Note that by the
definition of z∗

C this embedding is half-integral if and only if z ∈ {0, 0.5}Δ.
Observe that τ(0) is half-integral, but it does not necessarily satisfy the length
restrictions. Since by construction τ(0) preserves the local order of σ we can
apply Lemma 1 and conclude that for all t ∈ T the length of the root-t path
with respect to τ(0) is

dτ(0)(t) = dσ(t) +
∑

C∈Δ:t∈R(C)

2sign(C) · (−z∗
C). (14)

452 J. Maßberg

σ τ0 τ ′

Fig. 4. Detail of an embedding σ with three maximal components not on half-integral
positions. The embeddings τ0 and τ ′ preserve the local order of σ.

As τ(0) is integral, this length is also integral by Proposition 3.
Using z as a variable we can formulate a linear program reflecting the new

cost of the embedding τ(z) and the length restrictions, under the assumption
that τ(z) preserves the local oder of σ:

min c(σ) +
∑

C∈Δ

(zC − z∗
C) · (|Γπ

<(C)| − |Γπ
>(C)|),

s.t. dσ(t) +
∑

C∈Δ:t∈R(C)

2sign(C)(zC − z∗
C) ≤ lt ∀t ∈ T (15)

and 0 ≤ 2zC ≤ 1 ∀C ∈ Δ. (16)

As z = z∗ is a feasible solution the linear program has an optimal solution (see
also Figure 4). Substituting 2zC by z′

C for all C ∈ Δ and using (14) we obtain
the modified linear program (P’):

min
∑

C∈Δ

z′
C/2 · (|Γπ

<(C)| − |Γπ
>(C)|),

s.t.
∑

C∈Δ:t∈R(C)

sign(C)z′
C ≤ lt − dτ(0)(t) ∀t ∈ T (17)

and 0 ≤ z′
C ≤ 1 ∀C ∈ Δ. (18)

We show that the matrix A defined by the left side of the inequalities (17) is
totally unimodular. Note that all entries of a column of A are either non-negative
or non-positive. Thus multiplying all rows with non-positive entries by −1 we
obtain a non-negative matrix where each column correspond to the characteristic
vectors of {R(C)}C∈Δ = {R(C)}C∈Δx

∪̇{R(C)}C∈Δy
. Recall, that by Lemma 2

the sets {R(C)}C∈Δx
and {R(C)}C∈Δy

are laminar families. We conclude that
the rows of A correspond to the characteristic vectors of the union of two laminar
families. Edmonds [3] proved, that such matrices are totally unimodular.

Consequently, as the right hand side of (17) is integral, the constraints in
(18) are integral and A is totally unimodular, there exists an optimal solution
for (P’) that is integral which further implies that the original LP has an half-
integral optimal solution ẑ. But then τ(ẑ) is also half integral and satisfies (12)
and c(τ(ẑ)) ≤ c(σ).

The Rectilinear Steiner Tree Problem with Given Topology 453

If τ(ẑ) preserves the local order of σ, then τ(ẑ) is the embedding we are
looking for and we are done. Otherwise choose λ > 0 minimal such that τλ

defined by τλ(v) = λσ(v)+ (1−λ)τ(ẑ)(v) for all v ∈ V preserves the local order
of σ. Note that λ is well defined as the set of all embeddings preserving the local
order of σ is closed. As the cost and length functions are convex, τλ is a feasible
embedding and c(τλ) ≤ λc(σ)+ (1−λ)c(τ(ẑ)) ≤ c(σ). Moreover, every maximal
x- or y-component of σ is also an x- or y-component of τλ, respectively, implying
N(τλ) ≤ N(σ). As τλ−δ is not preserving the local order of σ for all δ < 0 but
for δ ≥ 0 there must be an edge (v, w) with (σx(v) < σx(w) and τλ

x (v) = τλ
x (w))

or (σy(v) < σy(w) and τλ
y (v) = τλ

y (w)). As the only components that are moved
are not on half-integral position with respect to σ, we must have N(τλ) < N(σ)
contradicting the choice of σ. This finishes the proof. �

Conclusion 2 If all positions and length restrictions are integral, then there
exists an optimal embedding that is half-integral.

4 Dynamic Programming

A consequence of the previous section is, that any non-optimal half-integral
embedding can be improved by small half-integral movements of the Steiner
points.

Lemma 3. If π is an half-integral embedding that is not optimal, then there
exists an half-integral embedding π′ with π(v) − π′(v) ∈ {−0.5, 0, 0.5}2 for all
v ∈ V (S) and c(π′) ≤ c(π) − 0.5.

Proof. Let σ be an optimal half-integral embedding. For λ ∈ (0, 1) we define
πλ by πλ(v) = λπ(v) + (1 − λ)σ(v) for all v ∈ V (S). As π is not optimal
and by the convexity of the length function, πλ is a feasible embedding and
we have c(πλ) ≤ λc(π) + (1 − λ)c(σ) ≤ c(π). Choose λ small enough such
that maxv∈V (S) ||π(v) − πλ(v)||∞ < 0.5. Now Theorem 1 yields an half-integral
embedding π′ satisfying maxv∈V ||π(v)−π′(v)||∞ ≤ maxv∈V ||π(v)−πλ(v)||∞ +
||πλ(v) − π′(v)||∞ < 1 and c(π′) ≤ c(πλ) < c(π). The claim follows by observing
that π′ and π are half-integral. �

This lemma gives a direct idea for an algorithm based on dynamic program-
ming to improve a non-optimal half-integral embedding. In the following, we
interpret S as an arborescence rooted at r and denote by Γ+(v) the children
of a vertex v ∈ V (S). For simplicity of notation we set πδ(v) := π(v) + δ for
δ ∈ {−0.5, 0, 0.5}. Moreover, we expand the definition of length restrictions to
Steiner points: Initially we set lπt := lt for all t ∈ T . For each vertex v ∈ V (S)
whose children have a length restriction, we recursively set

lπv = min
w∈Γ+(v)

lπw − ||π(v) − π(w)||1.

Given an half-integral embedding π we want to compute an half-integral
embedding π′ with π(v) − π′(v) ∈ {−0.5, 0, 0.5}2 and c(π′) minimal. Note, that

454 J. Maßberg

in this case the length of every root-terminal path changes by at most 2n. As,
additionally, π′ is half-integral, lπ

′
v is half-integral and |lπ′

v − lπv | ≤ 2n for all
v ∈ V (S).

Thus it is sufficient to compute for every vertex v ∈ V (S), every translation
δ ∈ {−0.5, 0, 0.5}2 and every possible length restriction l ∈ {lπv − 2n, lπv − 2n +
0.5, . . . , lπv −2n+2n−0.5, lπv +2n} the minimum length γ(v, δ, l) of an embedding
of the arborescence rooted at v such that v is positioned at πδ(v) and v satisfies
the length restriction l. For a terminal t we have γ(t, δ, l) = 0 if δ = (0, 0) and
l ≤ lt. Otherwise, we set γ(t, δ, l) = ∞. For all other vertices v ∈ V (T) we
obviously have γ(v, δ, l) =

∑

w∈Γ+(v)

min
δ′∈{−0.5,0,0.5}2

γ (w, δ′, l − ||πδ(v) − πδ′(w)||1) + ||πδ(v) − πδ′(w)||1.

It follows, that the length of an optimal embedding π′ with π(v) − π′(v) ∈
{−0.5, 0.0.5}2 is γ(r, (0, 0), 0). This number can be computed in O(n2) time:
There are O(n2) different triples (v, δ, l) for which γ(v, δ, l) has to be computed
and each of these computations can be done in constant time.

To compute a global optimal solution, we start with the trivial embedding,
where all Steiner points are positioned at the root. This solution has cost C =∑

t∈T ||p(t)||1. Then we apply the dynamic programming approach as long as
the cost of the newly computed embedding decreases. As the cost is reduced
by at least 0.5 in every round, we must obtain an optimal embedding after 2C
iterations. Thus our algorithm has a pseudo polynomial running time of O(Cn2).
In the next section we show how to refine this approach in order to achieve a
polynomial running time.

5 An Optimal Polynomial Time Algorithm

We refine the ideas of the previous sections in order to obtain a polynomial time
algorithm for our problem. In the first algorithm the Steiner points are moved by
at most 0.5 in each direction in every call of the dynamic programming. The idea
of the refined algorithm is to move the Steiner points by 2k for a suitable k ∈ Z in
the first rounds. As soon as no improvements can be obtained by moving Steiner
points by 2k, we reduce the moving distance to 2k−1 and continue applying the
dynamic programming (see Algorithm 1). Repeating this procedure we finally
move the Steiner points by 0.5, obtaining an optimal embedding.

Due to space limitation and as the proofs are very technical without giving
much more insight into the problem we omit a detailed description.

Theorem 3. The rectilinear Steiner tree embedding problem with length restric-
tions can be solved in polynomial time by a combinatorial algorithm.

Proof (outline). Consider Algorithm 1. In the last iteration of the main loop, the
dynamic programming is applied with step width 0.5 until no further improve-
ments are made. Therefore, by Lemma 3 the computed solution is optimal.

The Rectilinear Steiner Tree Problem with Given Topology 455

Input: An integral instance (S, T, r, p, l) with p(r) = (0, 0).
Output: An optimal embedding π : V (G) \ T → R

2.

1 Set m ← min{m′ ∈ N : |px(v)| ≤ 2m
′
and |py(v)| ≤ 2m

′ ∀v ∈ V (S)};
2 Set π(s) ← (0, 0) for all Steiner points s ∈ V (S) \ T ;
3 k ← m;
4 while k ≥ −1 do
5 Improve embedding π by applying the dynamic programming with step

width 2k until no further length reduction is obtained;
6 k ← k − 1;

7 end
8 return π;

Algorithm 1. Optimal polynomial time algorithm.

(i) (ii)

r

a

b

c

Fig. 5. Instance for the Steiner tree embedding problem (i) and an optimal embedding
if there are no length restrictions (ii)

It can be shown, that for each k, the dynamic programming is called at
most O(n) times. As each call of the dynamic programming can be imple-
mented to run in time O(n2), the total running time is O(mn3) where m =
�log2(max{|px(t)|, |py(t)| : t ∈ T})�. Finally observe, that m is polynomially
bounded in the size of the instance. �

Figures 5 and 6 show how the algorithm works on an example. Figure 5 (i)
shows the instance and Figure 5 (ii) an optimal embedding of length 35 if there
are no length restrictions. In Figure 6 the embeddings computed by our algorithm
are shown. As input we used the instance from Figure 5 with length restrictions
la = 10, lb = 11 and lc = 20. As max{|px(t)|, |py(t)| : t ∈ T} = 10 we have
m = 4. Thus the algorithm begins with an embedding where all Steiner points
are 2m−1-integral (Figure 6 (i)). The last one is the final optimal embedding of
length 37.5. For each k the dynamic programming is called at most twice, the
first time the length is reduced, the second time an embedding of the same cost
is computed, proving that it is an optimal one.

456 J. Maßberg

(i) (ii) (iii)

(iv) (v) (vi)

Fig. 6. Run of the algorithm on the instance shown in Figure 5 (i) with length restric-
tions la = 10, lb = 11 and lc = 20. Figure (vi) shows the final optimal solution.

References

1. Bartoschek, C., Held, S., Maßberg, J., Rautenbach, D., Vygen, J.: The repeater tree
construction problem. Information Processing Letters 110(24), 1079–1083 (2010)

2. Victor Cabot, A., Francis, R.L., Stary, M.A.: A network flow solution to a rectilinear
distance facility location problem. AIIE Transactions 2(2) 132–141 (1970)

3. Edmonds, J.: Submodular functions, matroids and certain polyhedra. In:
Gordon, Breach (eds.) Combinatorial Structures and Their Applications, New York,
pp. 68–87 (1970)

4. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete.
SIAM Journal on Applied Mathematics 32(4), 826–834 (1977)

5. Hanan, M.: On Steiner’s problem with rectilinear distance. SIAM Journal on Applied
Mathematics 14(2), 255–265 (1966)

6. Jiang, T., Wang, L.: Computing shortest networks with fixed topologies. Advances
in Steiner Trees. vol. 6. Combinatorial Optimization, pp. 39–62. Springer, US (2000)

7. Kortsarz, G., Peleg, D.: Approximating the weight of shallow Steiner trees. Discrete
Applied Mathematics 93(2–3), 265–285 (1999)

8. Rao, S.K., Sadayappan, P., Hwang, F.K., Shor, P.W.: The rectilinear Steiner
arborescence problem. Algorithmica 7(1–6), 277–288 (1992)

9. Shi, W., Chen, S.: The rectilinear Steiner arborescence problem is NP-complete.
SIAM Journal on Computation 35(3), 729–740 (2005)

Compact Monotone Drawing of Trees

Xin He(B) and Dayu He

Department of Computer Science and Engineering,
State University of New York at Buffalo, Buffalo, NY 14260, USA

{xinhe,dayuhe}@buffalo.edu

Abstract. A monotone drawing of a graph G is a straight-line drawing
of G such that, for every pair of vertices u, w in G, there exists a path
Puw in G that is monotone in some direction l. (Namely, the order of
the orthogonal projections of the vertices of Puw on l is the same as the
order they appear in Puw.)

The problem of finding monotone drawing for trees has been studied in
several recent papers. The main focus is to reduce the size of the drawing.
Currently, the smallest drawing size is O(n1.5) × O(n1.5). In this paper,
we present a linear time algorithm for constructing monotone drawing
of trees on a grid of size at most O(n1.205) × O(n1.205). This is the first
result achieving o(n3) drawing area for solving this problem.

1 Introduction

A straight-line drawing of a plane graph G is a drawing Γ in which each vertex
of G is drawn as a distinct point on the plane and each edge of G is drawn as
a line segment connecting two end vertices without any edge crossing. A path
P in a straight-line drawing Γ is monotone if there exists a line l such that the
orthogonal projections of the vertices of P on l appear along l in the order they
appear in P . We call l a monotone line (or monotone direction) of P . Γ is called
a monotone drawing of G if it contains at least one monotone path Puw between
every pair of vertices u,w of G. We call the monotone direction luw of Puw the
monotone direction for u,w.

The monotone drawings are introduced by Angelini et al. as a new visual-
ization paradigm in [1]. Consider the example described in [1]: a traveler uses a
road map to find a route from a town u to a town w. He would like to easily
spot a path connecting u and w. This task is harder if each path from u to w on
the map has legs moving away from u. The traveler rotates the map to better
perceive its content. Hence, even if in the original map orientation all the paths
from u to w have annoying back and forth legs, the traveler might be happy
to find one map orientation where a path from u to w smoothly goes from left
to right. This approach is also motivated by human subject experiments: it was
shown the “geodesic tendency” (paths following a given direction) is important
in understanding the structure of the underlying graphs [10].

X. He—Research supported in part by NSF Grant CCR-1319732.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 457–468, 2015.
DOI: 10.1007/978-3-319-21398-9 36

458 X. He and D. He

The monotone drawing is also closely related to several other important graph
drawing problems. In a monotone drawing, each monotone path is monotone
with respect to a different line. In an upward drawing [6,7], every directed path
is monotone with respect to the positive y direction. Even more related to the
monotone drawings are the greedy drawings [2,12,13]. In a greedy drawing, for
any two vertices u, v, there exists a path Puv from u to v such that the Euclidean
distance from an intermediate vertex of Puv to the destination v decreases at each
step. In a monotone drawing, for any two vertices u, v, there exists a path Puv

from u to v and a line luv such that the Euclidean distance from the projection
of an intermediate vertex of Puv on l to the projection of the destination v on l
decreases at each step.

Related Works: Angelini et al. [1] showed that every tree of n vertices has
a monotone drawing of size O(n2) × O(n) (using a DFS-based algorithm), or
O(nlog2 3) × O(nlog2 3) = O(n1.58) × O(n1.58) (using a BFS-based algorithm). It
was also shown that every biconnected planar graph of n vertices has a mono-
tone drawing in real coordinate space. Several papers have been published after
[1]. The focus of the research is to identify the graph classes having monotone
drawings and, if so, to find their monotone drawings with size as small as possi-
ble. It was shown in [3] that every planar graph has a monotone drawing of size
O(n) × O(n2). However, the drawing presented in [3] is not straight line. It may
need up to 4n−10 bends in the drawing. Recently Hossain and Rahman showed
that every planar graph has a monotone drawing of size O(n2) × O(n) [9].

The monotone drawing problem for trees is particularly important. Any
drawing result for trees can be applied to any connected graphs G: First we
construct a spanning tree T for G, then find a monotone drawing Γ for T . Γ is
automatically a monotone drawing for G (although not necessarily planar).

Both the DFS- and BFS-based tree drawing algorithms in [1] use the so-called
Stern-Brocot tree to generate a set of n − 1 primitive vectors (will be defined
later) in increasing order of slope. Then both algorithms do a post-order traversal
of the input tree, and assign each edge a corresponding primitive vector as its
slope. Such drawings of trees are called slope-disjoint. Kindermann et al. in [11]
proposed another version of slope-disjoint algorithm, but using a different set of
primitive vectors (based on Farey sequence), which slightly decreases the grid
size to O(n1.5) × O(n1.5). It remains an open problem to find a tree monotone
drawing algorithm with area o(n3).

Our Results: In this paper, we show that every n-vertex tree admits a monotone
drawing on a grid of size at most O(n1.205) × O(n1.205). To the best knowledge
of the authors, this is the first monotone drawing with o(n3) area for trees. Our
drawings are slope-disjoint, and use Farey sequence to generate the primitive
vectors as in [11]. However we use a set of more compact primitive vectors by
introducing a tree trimming operation (see Lemma 2).

The paper is organized as follows. Section 2 introduces definitions and pre-
liminary results on monotone drawings. In Section 3, we give our algorithm
for constructing monotone drawing of trees. Section 4 concludes the paper and
discusses future works.

Compact Monotone Drawing of Trees 459

2 Preliminaries

Let p be a point in the plane and l be a half-line with p as its starting point. The
slope of l, denote by slope(l), is the angle spanned by a ccw (we abbreviate the
words “counterclockwise” and “clockwise” as ccw and cw respectively) rotation
that brings the positive x-axis to overlap with l.

In this paper, we only consider straight line drawings (i.e. each edge of G
is drawn as a straight line segment between its end vertices.) Let Γ be such a
drawing of G and let e = (u,w) be an edge of G. The direction of e, denoted by
d(u,w) or d(e), is the half-line starting at u and passing through w. The slope
of an edge (u,w), denoted by slope(u,w), is the slope of d(u,w). Observe that
slope(u,w) = slope(w, u)−180◦. When comparing directions and their slopes, we
assume that they are applied at the origin of the axes.

Let P (u1, uk) = (u1, . . . , uk) be a path of G. We also use P (u1, uk) to denote
the drawing of the path in Γ . P (u1, uk) is monotone with respect to a direction
l if the orthogonal projections of the vertices u1, . . . , uk on l appear in the same
order as they appear on the path. P (u1, uk) is monotone if it is monotone with
respect to some direction. A drawing Γ is monotone if there exists a monotone
path P (u,w) for every pair of vertices u,w in G.

Let e1 and e2 be the edges in P (u1, uk) with the smallest and the largest slope,
respectively. e1 and e2 are called the extremal edges of P (u1, uk). The closed
interval [slope(e1), slope(e2)] is called the range of P (u1, uk) and denoted by
range(P (u1, uk)). Note slope(ui, ui+1) ∈ range(P (u1, uk)) for all edges (ui, ui+1)
(i = 1, . . . , k − 1) in P (u1, uk).

The following property is proved in [1].

Property 1. A path P (u1, uk) with range [slope(e1), slope(e2)] is monotone if
and only if slope(e2) − slope(e1) < 180◦.

3 Monotone Drawings of Trees

Let T be a tree rooted at r. For each vertex u in T , T (u) denotes the subtree
of T rooted at u. |T | denotes the number of vertices in T . T is called a full tree
if every internal vertex (except the root r) of T has at least two children. The
following fact is trivial.

Fact 1. Let T be a full tree with n vertices. Let n1 be the number of internal
vertices and n2 the number of leaves in T . Then (1) n1 ≤ n2; and (2) n =
n1 + n2 ≤ 2n2.

The set of primitive vectors of size d is defined as:

Pd = {(x, y) | x and y are integers, gcd(x, y) ∈ {1, d}, 1 ≤ x ≤ y ≤ d}

If we consider each entry (x, y) ∈ Pd to be the rational number y/x and order
them by value, we get the so called Farey sequence Fd (see [8]). The property of

460 X. He and D. He

Farey sequence is well understood. It is known |Fd| = 3d2/π2 + O(d log d) ([8],
Thm 331). Thus |Pd| = |Fd| ≥ 3d2/π2. Let P ′

d be the set of vectors that are the
reflections of the vectors in Pd through the line x = y. Define:

Pd = Pd ∪ P ′
d = {(x, y) | x and y are integers, gcd(x, y) ∈ {1, d}, 1 ≤ x, y ≤ d}

Fig 1 (1) shows the vectors in P3. We will refer the members of Pd either as
vectors or fractions. We have |Pd| ≥ 6d2/π2. Moreover, the members of Pd can
be enumerated in O(|Pd|) time [11]. The Stern-Brocot tree is an infinite binary
tree whose nodes are labeled by the rational numbers {y/x | (x, y) ∈ ∪∞

d=1Pd}
in an elegant way [5,14].

1

2

3

4

5
6

5

5

0
1

2

3

4

5
6

(2)
5

5

0

(3) (4)

7 7

0 1 2 3

1

2

(1)

3

(5)

Fig. 1. Examples

Next, we outline the algorithm in [1] for monotone drawing of trees.

Definition 1. [1] A slope-disjoint drawing of a tree T is such that:

1. For each vertex u in T , there exist two angles α1(u) and α2(u), with 0 <
α1(u) < α2(u) < 180◦ such that, for every edge e that is either in T (u) or
that connects u with its parent, it holds that α1(u) < slope(e) < α2(u);

2. for any vertex u in T and a child v of u, it holds that α1(u) < α1(v) <
α2(v) < α2(u);

3. for every two vertices v1, v2 with the same parent, it holds that either α1(v1) <
α2(v1) < α1(v2) < α2(v2) or α1(v2) < α2(v2) < α1(v1) < α2(v1).

Based on Property 1, the following theorem was proved in [1].

Theorem 1. Every slope-disjoint drawing of a tree is monotone.

Remark 1. By Theorem 1, as long as the slopes of the edges in a drawing of a
tree T guarantee the slope-disjoint property, one can arbitrarily assign lengths
to the edges always obtaining a monotone drawing of T .

Algorithm 1 produces a monotone drawing for full trees. It was described in [1].
(But the presentation here is slightly modified).

Compact Monotone Drawing of Trees 461

Algorithm 1. Monotone-Full-Tree
Input: A full tree T = (V, E) with n vertices.
1. Take any set V = {(x1, y1), . . . , (xn−1, yn−1)} of n − 1 distinct primitive vectors,

sorted by increasing yi/xi value.
2. Assign the vectors in V to the edges of T in ccw post-order. (Namely, recursively

visit the subtrees of T rooted at the children of the root r in ccw order; then visit
the root).

3. Draw the root r of T at the point (0, 0). Then draw other vertices of T in ccw
pre-order as follows:

3.1 Let w be the vertex to be drawn next; let u be the parent of w which has been
drawn at a location (x(u), y(u)).

3.2 Let (xi, yi) be the primitive vector assigned to the edge (u, w) in step 2. Draw w
at the location (x(w), y(w)) where x(w) = x(u) + xi and y(w) = y(u) + yi.

Fig 1 (2) shows a full tree T . The numbers next to the edges indicate the
order they are assigned the vectors in V = P3. Fig 1 (3) shows the drawing of T
produced by Algorithm 1.

It was shown in [1] that the drawing obtained in Algorithm 1 is slope-disjoint
and hence monotone. Two versions of Algorithm 1 were given in [1]. Both use
the Stern-Brocot tree T to generate the vector set V needed in step 1. The
BFS version of the algorithm collects the vectors from T in a breath-first-search
fashion. This leads to a drawing of size O(nlog2 3) × O(nlog2 3) = O(n1.58) ×
O(n1.58). The DFS version of the algorithm collects the vectors from T in a
depth-first-search fashion. This leads to a drawing of size O(n) × O(n2). The
algorithm in [11] for finding monotone drawing of trees is essentially another
version of Algorithm 1. It uses the vectors in Pd (with d = 4

√
n) for the set V

in step 1. This leads to a monotone drawing of size O(n1.5) × O(n1.5).
Next, we modify Algorithm 1 so that it can handle general (not necessarily

full) trees. Let T be such a tree. Let w be an internal vertex in T with just one
child. In a monotone drawing of T , we draw the two edges incident to w with
the same slope (so the two angles at either side of w are 180◦). This motivates
the following definition.

Definition 2. A branch of T is a path P = (u1, . . . , uk) (k ≥ 3) in T such that:

– ui is the child of ui+1 for 1 ≤ i ≤ k − 1;
– For each i = 2, . . . , k − 1, ui has exactly one child;
– u1 is either a leaf, or has at least two children;
– uk is either the root, or has at least two children.

Definition 3. Let T be a tree. By replacing each branch P = (u1, . . . , uk) of T
with a single edge (u1, uk), we obtain a full tree, which is called the skeleton tree
of T and denoted by T s.

The tree in Fig 1 (2) is the skeleton tree of the tree shown in Fig 1 (4).
Algorithm 2 finds a monotone drawing of a general tree T .

462 X. He and D. He

Algorithm 2. Monotone-General-Tree
Input: A (general) tree T = (V, E) with n vertices.
0. Construct the skeleton tree T s of T . Let ns be the number of vertices in T s.
1. Take any set Vs = {(x1, y1), . . . , (xns−1, yns−1)} of ns −1 distinct primitive vectors,

sorted by increasing yi/xi value.
2. Assign the vectors in Vs to the edges of T s in ccw post order.
3.0. Let (u, w) be an edge in T s corresponding to a branch P (u1, uk) = (u =

u1, u2, . . . , uk = w) in T . Let (x, y) be the vector assigned to the edge (u, w) in
step 2. Assign the vector (x, y) to all edges (ui, ui+1) (1 ≤ i ≤ k − 1) in P (u1, uk).
Do the same for every branch in T . (Every edge in T is assigned a vector in Vs by
now).

3. Draw the vertices of T as in step 3 of Algorithm 1.

Fig 1 (5) shows the drawing of the tree in Fig 1 (4) produced by Algorithm
2. By Remark 1, it can be shown Algorithm 2 produces a monotone drawing of
a general tree T .

Let α = 1+
√
5

2 � 1.618 and ᾱ = 1−
√
5

2 � −0.618 be the two roots of the
equation x2 − x − 1 = 0. Let β = log2 α � 0.694.

Let {F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . , Fk = Fk−1 + Fk−2, . . . } be the
Fibonacci sequence. It is known that Fk = αk+1

√
5

− ᾱk+1
√
5

. It is easy to show

Fk ≤ αk+1.5
√
5

for all k ≥ 1.
Let d and D be two positive integers with d < D. (Their values will be

determined later). The vectors in Pd are called short vectors. The vectors in
PD −Pd are called long vectors. The idea of our algorithm is as follows: First we
“trim” the input tree T by deleting some subtrees from T such that the height
of each deleted subtree is small. The resulting tree T1, with reduced size, can
be drawn by using short vectors. Then we draw the deleted subtrees by using
long vectors. Because the heights of the deleted subtrees are small, this will not
increase the drawing size too much. To make this idea work, we must make
sure there are enough long vectors between any two consecutive short vectors
(ordered by their slopes), as shown in the following:

Lemma 1. Let 0 < δ < 1 and λ > 0 be two constants. Define Δ = δ + λβ,
d = 2nδ and D = 3nΔ. Let y1/x1 and y2/x2 be any two consecutive short
vectors in Pd with y1/x1 < y2/x2. Then there exist at least nλ − 1 long vectors
y/x in PD − Pd such that y1/x1 < y/x < y2/x2.

Proof. Since y1/x1 and y2/x2 are consecutive fractions in Pd, we have y2x1 −
y1x2 = 1 ([8], Theorem 28) and x1 + x2 > d ([8], Theorem 30).

Define an operator � of two fractions as follows:

y1
x1

� y2
x2

=
y1 + y2
x1 + x2

Compact Monotone Drawing of Trees 463

Let y3/x3 = y1
x1

� y2
x2

. It is easy to show y3/x3 is a fraction strictly between y1/x1

and y2/x2. Similarly, let y4/x4 = y1/x1 � y3/x3 and y5/x5 = y3/x3 � y2/x2, we
will have three fractions y4/x4 < y3/x3 < y5/x5 strictly between y1/x1 and y2/x2.

Repeat this process, we can generate all fractions between y1/x1 and y2/x2

in the form of a binary tree, called the Stern-Brocot tree for y1/x1 and y2/x2,
denoted by T (y1/x1, y2/x2), as follows. (The original Stern-Brocot tree defined
in [5,14] is for the fractions y1/x1 = 0/1 and y2/x2 = 1/0).

T (y1/x1, y2/x2) has two nodes y1/x1 and y2/x2 in level 0. The level 1 contains
a single node r labeled by the fraction y3/x3 = y1/x1 � y2/x2, which is the right
child of y1/x1, and is the left child of y2/x2. An infinite ordered binary tree
rooted at y3/x3 is constructed as follows. Consider a node y/x of the tree. The
left child of y/x is y/x � y′/x′ where y′/x′ is the ancestor of y/x that is closest
to y/x (in terms of graph-theoretical distance in T (y1/x1, y2/x2)) and that has
y/x in its right subtree. The right child of y/x is y/x�y′′/x′′ where y′′/x′′ is the
ancestor of y/x that is closest to y/x and that has y/x in its left subtree. (Fig
2 shows a portion of the Stern-Brocot tree T (4/5, 5/6). The leftmost column
indicate the level numbers).

4
5

5
6���

���
9
11

13
16

14
17

������
������

17
21

22
27

23
28

19
23

���
���

���
���

21
26

30
37

35
43

31
38

32
39

37
45

33
40

24
29

�
�

	
	

�
�

	
	

�
�

	
	

�
�

	
	

0

1

2

3

4

1d

2d

3d

5d

8d

Fig. 2. The first 5 levels of the Stern-Brocot tree T (4/5, 5/6)

All fractions in T (y1/x1, y2/x2) are distinct and strictly between y1/x1

and y2/x2. The following facts are either directly from the definition of
T (y1/x1, y2/x2) or can be shown by easy induction:

1. Each node at level k is the result of the operator � applied to a node in level
k − 1 and a node in level ≤ k − 2.

2. For each level k, there exists a node that is the result of the operator �
applied to a node in level k − 1 and a node in level k − 2.

3. Let Vk be the set of the fractions contained in T (y1/x1, y2/x2) from level 1
through level k. Then |Vk| = 2k − 1.

4. For each node y/x with the left child y′/x′ and the right child y′′/x′′, we have
y′/x′ < y/x < y′′/x′′. So the in-order traversal of T (y1/x1, y2/x2) lists the
fractions in Vk in increasing order.

464 X. He and D. He

5. Define the size of a node y/x to be max{x, y}. The size of the nodes in level
0 (i.e. the two nodes y1/x1 and y2/x2) is bounded by 1 · d = F1 · d (because
both y1/x1 and y2/x2 are fractions in Pd).

6. The size of the node in level 1 (i.e. the node y3/x3) is bounded by 2 ·d = F2 ·d
(because x3 = x1 + x2 ≤ 2d and y3 = y1 + y2 ≤ 2d).

7. For each q ≥ 2, the size of level q nodes is bounded by Fq+1 · d. (The last
column in Fig 2 show the upper bounds of the size of the level q fractions.)

Set k = λ log2 n. Then |Vk| = 2λ log2 n − 1 = nλ − 1.
The size of any fraction in Vk is bounded by:

Fk+1 · d ≤ αk+2.5

√
5

· d =
α2.5

√
5

αλ log2 n · d =
α2.5

√
5

nλ log2 α · 2nδ < 3nδ+λβ = D

Since there are no short vectors between y1/x1 and y2/x2, all members in Vk are
long vectors. Thus the lemma holds. �

Next we describe how to “trim” a tree T with n vertices. To simplify notation,
we use L = {1, 2, . . . , p} to denote the set of the leaves in T ordered from left
to right. Let Pk (1 ≤ k ≤ p) be the path in T from the leaf k to the root r. T|k
denotes the subtree of T consisting of the vertices to the left of Pk (including
the vertices in Pk).

For each pair i, j (1 ≤ i < j ≤ p), P (i, j) denotes the path in T from the leaf i
to the leaf j. When walking along P (i, j) from i to j, we encounter some subtrees
of T on the right side of P (i, j). Denote by D(i, j) the set of these subtrees. For
notation convenience, D(0, k) denotes the set of the subtrees of T located to the
left of the path Pk, and D(k, p + 1) denotes the set of the subtrees of T located
to the right of the path Pk.

Let T1 be a subtree obtained from T by deleting some subtrees from T . T1

is called a trimmed subtree of T if every leaf in T1 is also a leaf in T . Consider a
trimmed subtree T1 of T . Let L1 = {i1, . . . , iq} ⊆ L be the set of the leaves in
T1. For each k (0 ≤ k ≤ q), the subtrees in D(ik, ik+1) are deleted from T when
constructing T1. (Here D(i0, i1) = D(0, i1) and D(iq, iq+1) = D(iq, p + 1).) The
subtrees in D(ik, ik+1) are called the kth trimmed set of T with respect to T1.

Definition 4. Let 0 < γ < 1 be a constant. A trimmed subtree T1 of T is
γ-well-trimmed if the following conditions hold:

1. T1 has ≤ nγ leaves.
2. Every trimmed set of T with respect to T1 contains < n1−γ vertices.

Lemma 2. [Trimming Lemma]: Every tree T has a γ-well-trimmed subtree
T1 for any 0 < γ < 1.

Proof. Let L = {1, 2, . . . , p} be the set of the leaves in T ordered from left to
right. If p ≤ nγ , then T itself is a γ-well-trimmed subtree and we are done. Now
suppose p > nγ . We need to select a subset L1 = {i1, . . . , iq} ⊆ L (1 ≤ i1 < i2 <
. . . < iq ≤ p) as the leaf set of T1, and trim all leaves in L − L1 from T .

Compact Monotone Drawing of Trees 465

Temporarily add a dummy child 0 of the root as the left most leaf of T .
Initially, set i0 = 0. Suppose that we have selected the leaf ik. We describe how
to select the next leaf ik+1 ∈ L1. Let t > ik be the leaf in L with the smallest
index such that (see Fig 3 (1)):

|T|t| − |T|ik | ≥ n1−γ (1)

i k

D(i ,i)k+1k

i k i k+1t−1

(1)

r

| i

i

T

k

u

P

k

t =i
k+1

v

kD(i ,i)k+1

t j

e2

t
1

e
1

(2)

Fig. 3. Examples

We set ik+1 = t, add ik+1 into L1 and delete all subtrees in D(ik, ik+1) from
T . If no such leaf t exists, then ik is the last leaf selected in L1. We delete all
subtrees in D(ik, p + 1) from T . The process stops and the resulting subtree is
T1. By the choice of t, we have:

|T|t−1| − |T|ik | < n1−γ (2)

Clearly D(ik, ik+1) ⊆ T|t−1−T|ik (see Fig 3 (1)). This implies: |D(ik, ik+1)| ≤
|T|t−1| − |T|ik | < n1−γ .

By using (1) repeatedly, we have: |T|ik | ≥ k ·n1−γ . Let iq be the last selected
leaf in L1, we have:

n ≥ |T|iq | ≥ q · n1−γ

This implies q ≤ nγ . Thus T1 is a γ-well-trimmed subtree of T . �

Now we can describe Algorithm 3 for constructing compact monotone draw-
ing of trees.

Theorem 2. Algorithm 3 produces a monotone drawing of size at most O(nl)×
O(nl) where l = max{1 + δ, δ + (1 − 2δ)(1 + β)}.

Proof. We analyze the drawing size step by step.
Step 3: Since T s

1 has at most n2δ leaves, |T s
1 | ≤ 2n2δ by Fact 1. So T s

1 has at
most 2n2δ − 1 edges. The set Pd contains at least 6 · (2nδ)2/π2 ≥ 2n2δ primary

466 X. He and D. He

Algorithm 3. δ-Monotone-Drawing
Input: A tree T = (V, E) with n vertices, and a constant 0 < δ < 1/2.
1. Construct a 2δ-well-trimmed subtree T1 of T .
2. Construct the skeleton subtree T s

1 of T1.
3. Let V be the set of short primary vectors in Pd (where d = 2nδ).
4. Draw T s

1 by using the vectors in V as in Algorithm 1.
5. Modify the drawing of T s

1 to the drawing of T1 as in Algorithm 2, still using vectors
in V.

6. Let i1, . . . , iq be the leaves of T1. For each k (0 ≤ k ≤ q), draw the vertices in the
kth trimmed set D(ik, ik+1), using the long vectors in PD − Pd where D = 3nΔ

with Δ = δ + (1 − 2δ)β

vectors. Thus, there are enough vectors in V in step 3 to complete the drawing
in step 4.

Step 5: The length of the longest path in T1 is at most n − 1. Since we use
only short vectors (the length of whose projection on x- and y-axis is at most
2nδ), the size of the drawing of T1 obtained in step 5 is at most 2n1+δ × 2n1+δ.

Step 6: We need to describe the drawing of the subtrees in each D(ik, ik+1).
Consider any pair of edges e1 and e2 on P (ik, ik+1). Suppose that when walking
from the leaf ik to the leaf ik+1 along the path P (ii, ik+1), we pass e1 before
e2. Let u be the second end vertex of e1 and v be the first end vertex of e2 we
encounter. Consider each edge pair e1 and e2 such that the following hold (see
Fig 3 (2)):

– e1 and e2 are assigned distinct consecutive vectors in V;
– some subtrees in D(ik, ik+1), (say t1, . . . tj), are attached to a vertex in

P (ik, ik+1) between u and v. (Namely the root of each ti (1 ≤ i ≤ j) is a
child of a vertex in P (ik, ik+1) that is between u and v, inclusive).

By Definition 4, each D(i, j) has less than n1−2δ vertices. So there are < n1−2δ

vertices and edges in ∪j
i=1ti. Let (x1, y1) and (x2, y2) be the short vectors assigned

to e1 and e2 respectively. Let Δ = δ+(1−2δ)β and D = 3nΔ. By Lemma 1, there
are at least n1−2δ − 1 long vectors in PD − Pd whose slopes are strictly between
y1/x1 and y2/x2. So we can assign these long primary vectors to the edges in
∪j

i=1ti in ccw post-order. (If ti contains branches, the edges in the same branch
are assigned the same vector as in Algorithm 2). Such assignment guarantees
the slope-disjoint property. All subtrees in D(ik, ik+1) are drawn this way. Thus
the drawing of T obtained in step 6 is monotone by Theorem 1.

The length of the longest path in each ti (1 ≤ i ≤ j) is at most n1−2δ.
Note that the x- and y-projections of the long vectors used to draw the edges
in ti are bounded by D = 3nδ+(1−2δ)β . So the drawing of each ti adds at most
3nδ+(1−2δ)β+(1−2δ) to the x- and y-directions of the drawing of T1. Thus the size
of the drawing for T is at most O(nl) × O(nl) where l = max{1 + δ, δ + (1 −
2δ)(1 + β)}. �

Compact Monotone Drawing of Trees 467

For example, when δ = 1/4, we have 1 + δ > δ + (1 − 2δ)(1 + β). So Algorithm
3 produces a drawing of size O(n5/4) × O(n5/4).

Lemma 3. Algorithm 3 takes O(n) time.

Proof. Steps 2 - 5 of Algorithm 3 are modifications of Algorithm 1 and 2. By
results in [1,11], these two algorithms take O(n) time. The implementation of
Step 6 is straightforward. So we just need to describe the details of Step 1: how
to find a well-trimmed subtree T1 of T .

Let L = {1, . . . p} be the leaf set of T . We need to identify a subset L1 =
{i1, . . . , iq} ⊆ L of leaves in T1.

For each leaf i (1 ≤ i ≤ p) of T , let vi be the lowest common ancestor of the
leaf i − 1 and the leaf i in T . Let pi be the path from i to vi. It is easy to see:

|T|i| − |T|i−1| = |pi| − 1

By performing a ccw post-order traversal on T , we can easily calculate |pi|
for each leaf i ∈ L in linear time. Recall that the leaf ik+1 is the smallest index
such that

|T|ik+1 | − |T|ik | ≥ n1−2δ

Thus, knowing |pi| for each leaf i ∈ L, we can identify the leaf set L1 =
{i1, . . . , iq} of T1 in linear time. �

When δ = β
2(1+β) � 0.205, we have 1 + δ = δ + (1 − 2δ)(1 + β). Then

l = max{1 + δ, δ + (1 − 2δ)(1 + β)} = 1 + δ = 1 + β
2(1+β) . From Theorem 2 and

Lemma 3, we obtain our main result:

Theorem 3. Every tree T with n vertices has a monotone drawing of size at
most O(nl)×O(nl), where l = 1+ β

2(1+β) � 1.205. The drawing can be constructed
in O(n) time.

4 Conclusion

In this paper, we showed that any n-vertex tree has a monotone drawing on an
O(n1.205) × O(n1.205) grid, and such drawing can be constructed in O(n) time.

Finding a monotone drawing of trees with even smaller grid size appears to
be an interesting challenge. We mention a possible way for improving our result:

The 2δ-well-trimmed subtree T1 has at most n2δ leaves. In the analysis, we
assume the worst case that the length of the longest path in T1 is n − 1. In this
case, there are many long branches in T1. Is it possible to draw such a special tree
(n vertices, but at most n2δ leaves) on a grid smaller than O(n1+δ) × O(n1+δ)?
A positive answer will reduce the drawing size of general trees.

468 X. He and D. He

References

1. Angelini, P., Colasante, E., Di Battista, G., Frati, F., Patrignani, M.: Monotone
Drawings of Graphs. Journal of Graph Algorithms and Applications 16(1), 5–35
(2012)

2. Angelini, P., Frati, F., Grilli, L.: An Algorithm to Construct Greedy Drawings of
Triangulations. Journal of Graph Algorithms and Applications 14(1), 19–51 (2010)

3. Angelini, P., Didimo, W., Kobourov, S., Mchedlidze, T., Roselli, V., Symvonis, A.,
Wismath, S.: Monotone Drawings of Graphs with Fixed Embedding. Algorithmica
(2013). doi:10.1007/s00453-013-9790-3

4. Arkin, E.M., Connelly, R., Mitchell, J.S.: On Monotone Paths among Obstacles
with Applications to Planning Assemblies. In: SoCG 1989, pp. 334–343 (1989)

5. Brocot, A.: Calcul des Rouages par Approximation. Nouvelle Methode, Revue
Chronometrique 6, 186–194 (1860)

6. Di Battista, G., Tamassia, R.: Algorithms for Plane Representations of Acyclic
Digraphs. Theor. Comput. Sci. 61, 175–198 (1988)

7. Garg, A., Tammassia, R.: On the Computational Complexity of Upward and
Rectilinear Planarity Testing. SIAM J. Comp. 31(2), 601–625 (2001)

8. Hardy, G., Write, E.M.: An Introduction to the Theory of Numbers, 5th edn.
Oxford University Press (1989)

9. Hossain, M.I., Rahman, M.S.: Monotone Grid Drawings of Planar Graphs. In:
Chen, J., Hopcroft, J.E., Wang, J. (eds.) FAW 2014. LNCS, vol. 8497, pp. 105–116.
Springer, Heidelberg (2014)

10. Huang, W., Eades, P., Hong, S.-H.: A Graph Reading Behavior: Geodesic-Path
Tendency. In Proceedings of IEEE Pacific Visualization Symposium, pp. 137–144
(2009)

11. Kindermann, P., Schulz, A., Spoerhase, J., Wolff, A.: On Monotone Drawings of
Trees. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 488–500.
Springer, Heidelberg (2014)

12. Moitra, A., Leighton, T.: Some Results on Greedy Embeddings in Metric Spaces.
In: Proceedings FOCS 2008, pp. 337–346 (2008)

13. Papadimitriou, C.H., Ratajczak, D.: On a Conjecture Related to Geometric
Routing. Theoretical Computer Science 344(1), 3–14 (2005)

14. Stern, M.A.: Ueber eine Zahlentheoretische Funktion. Journal fur die reine und
angewandte Mathematik 55, 193–220 (1958)

http://dx.doi.org/10.1007/s00453-013-9790-3

A Measure and Conquer Approach
for the Parameterized Bounded
Degree-One Vertex Deletion

Bang Ye Wu(B)

National Chung Cheng University, Chiayi 621, Taiwan, R.O.C
bangye@cs.ccu.edu.tw

Abstract. Measure & Conquer is an approach helpful for designing
branching algorithms. A key point in the approach is how to design
the measure. Given a graph G = (V,E) and an integer k, the Bounded

Degree-one Deletion problem asks for if there exists a subset D of at
most k vertices such that the degree of any vertex in G[V \D] is upper
bounded by one. Combining the parameter with a potential as the mea-
sure in Measure & Conquer, where the potential is a lower bound of the
decrement of the parameter, we design a branching algorithm running
in polynomial space and O(1.882k + |V ||E|) time, which improves the
current best parameterized complexity O∗(2k) of the problem.

Keywords: Parameterized algorithm · Measure and conquer · Branch
and reduce · Bounded degree-one deletion · Vertex cover P3

1 Introduction

Designing parameterized and exact exponential algorithms is an important issue
to cope with NP-hard problems and attracts many researchers to devote them-
selves to this area [6,7,10]. Branch & Reduce is one of the major techniques in
designing such algorithms, in which one applies some reduction rules, branches
the problem into two or more subproblems, and then solves the subproblems
recursively. For a branching algorithm, its time complexity is usually determined
by a set of recurrences which come from the branching rules. To analyze the time
complexity, a traditional method finds the largest root (branching factor) of each
recurrence and then obtains an upper bound of the worst-case.

As an example, consider the well-known parameterized Vertex Cover, in
which one looks for a vertex subset of size at most k covering all the edges of
the input graph, i.e., the removal of a vertex cover leaves an independent set.
A clear and crucial observation is that if we determine not to select a vertex v
into a solution, then all its neighbors must be selected. This branch rule gives
us a recurrence T (k) = T (k − 1) + T (k − d(v)), where T (k) is the parameterized
complexity and d(v) is the degree of v. Now consider the following similar but
more difficult problem, and it is the problem we consider in this paper. By
G[V \ D], we denote the subgraph induced by V \ D.
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 469–480, 2015.
DOI: 10.1007/978-3-319-21398-9 37

470 B.Y. Wu

Bounded-Degree-one Deletion (1-BDD)

Instance: A graph G = (V,E) and a positive integer k.
Question: Does there exist D ⊆ V of size at most k such that the
maximum degree of G[V \ D] is at most 1?

If one uses the above branching rule on this problem, then a difficulty arises: Since
we cannot immediately determine which of the neighbors should be selected,
there is no decrement on the parameter. However, once a vertex is determined
not to be selected, we indeed make some progress. The difficulty comes from
that it is hard to reflect the progress by using the traditional analysis method.
Although usually in such a case one may still design a branching algorithm by
exploring more detailed local structure or consider two or more branching stages,
it leads to a minute and complicated algorithm.

Measure & Conquer [11] is an approach for designing branching algorithms
and can be used to cope with such situations. In addition to balancing a set of
recurrences to get a better bound, one of the key points in Measure & Conquer
is to design a measure to reflect the progress. A potential function estimates a
lower bound of the decrement of the parameter. In this paper we demonstrate
that using a potential function and the Measure & Conquer approach is helpful
for designing parameterized algorithms. For the 1-BDD problem, once we decide
not to select a vertex v, at most one of its neighbors can be left, and therefore
we can increase the potential by d(v) − 1. With the intention of utilizing the
potential and introducing the potential as an additional parameter, it is easier
to design an efficient Branch & Reduce algorithm, which is the main result we
show in this paper.

Related Work. In the literature, the 1-BDD problem is also known as the
Vertex Cover P3 problem, since a 1-BDD set covers all P3 (path of three
vertices), i.e., for each P3 in the input graph, at least one of the three vertices
is chosen. Both Vertex Cover and 1-BDD problem are special cases of the δ-
BDD problem, in which the maximum degree of the remaining graph must be at
most δ. Since a 1-BDD set cover all P3 in the graph, by the kernelization results
for 3-Hitting Set [1], it is easy to show that the 1-BDD problem is fixed-
parameter tractable. Chen et al. [12] gave a kernelization algorithm to obtain
a kernel of size 6k. Several fixed-parameter algorithms were developed for the
δ-BDD problem [9,13,15]. For 1-BDD, Moser et. al. [14] gave an algorithm with
time complexity O(2.31k + kn) based on bounded search trees and developed
an O(2k · k2 + kn)-time algorithm by the iterated-compression technique. An
O∗(2k)-time algorithm was also given with the name Vertex Cover P3 [17].
Currently the best parameterized complexity with solution size as the parameter
is O∗(2k).

There are also some results of exact algorithms and approximation algo-
rithms in the literature. Kardoš et al. [8] gave an exact algorithm for the
Vertex Cover P3 problem running in time O∗(1.5171n), and Chang et al.
improved the complexity to O∗(1.4658n) [3]. A randomized approximation was
given with an expected approximation ratio 23/11 for Vertex Cover P3 [8].

A Measure and Conquer Approach 471

A 2-approximation algorithm by using linear programming approaches was given
by Tu and Zhou [19]. Later, they also gave a greedy algorithm and showed that
it is a 2-approximation algorithm [18].

Betzler et al. [2] showed that when parameterized by the treewidth of the
input graph and δ is unbounded, δ-BDD is W[1]-hard. In the same paper, they
showed that it becomes fixed-parameter tractable with respect to the combined
parameters of the treewidth and the solution size.

New Results. Instead of solving only the 1-BDD problem, we consider the
following more general problem.

Red-White BDD (RW-BDD) problem
Instance: A graph G = (V,E) and an integer k ≥ 0, where V = R ∪ W
is partitioned into a red subset R and a white subset W .
Question: Is there a vertex subset D with size at most k such that in
G[V \ D] each red vertex has degree 0 and each white vertex has degree
at most one?

When all vertices are red, Red-White BDD is the same as Vertex Cover;
and if V = W , it degenerates to the 1-BDD problem. The intuition of trans-
forming the 1-BDD problem to Red-White BDD is that we color a vertex red
when one of its neighbors is decided not to be selected into the 1-BDD set. In
this paper, we design reduction and branching rules and obtain an algorithm
with polynomial space and time complexity O∗(1.882k) for the Red-White

BDD problem, and thus improve the current best result O∗(2k) for the 1-BDD
problem.

Organization. The remaining paragraphs are organized as follows. We intro-
duce some notation in Section 2. In Section 3, we show some properties used in
the algorithm, and the branching algorithm is in Section 4. Finally concluding
remarks are given in Section 5.

2 Preliminaries

The following notation will be used. For two sets X and Y , the difference is
denoted by X \ Y . Let G = (V,E) be a graph with vertex set V and edge set
E. In the remaining paragraphs, G = (V,E) is always the input graph. Each
vertex is either red or white, and let R and W denote the sets of red and white
vertices, respectively. A red/white path is a path consisting of only red/white
vertices. The similar definitions are used for red/white edges, cycles, components
and cliques.

For S ⊆ V , G[S] denotes the subgraph induced by S. A vertex subset D is
a red-white bounded degree deletion set, RW-BDD for short, if the degree of any
red vertex in G[V \ D] is 0 and the degree of any white vertex in G[V \ D] is at

472 B.Y. Wu

most one. That is, after removing a RW-BDD set, the remaining subgraph is a
collection of isolated vertices and white edges.

For v ∈ V , let N [v] and N(v) denote the closed and open neighborhoods
of v in G, respectively, i.e., N(v) = {u | (u, v) ∈ E} and N [v] = {v} ∪ NG(v).
For a vertex subset U , let N [U] =

⋃
v∈U NG[v] and N(U) = N [U] \ U . Let

d(v) = |N(v)| denote the degree of v. For a vertex set S, NS(v) = N(v) ∩ S
and dS(v) = |NS(v)|. Particularly NR(v) and NW (v) denote the red and white
neighborhoods of v, respectively. Thus, dR(v) and dW (v) are the numbers of red
and white neighbors, respectively.

As in the literature, we define a parameterized problem as a decision problem.
A branching algorithm, also known as search-tree algorithm, solves a problem by
branching into two or more cases and solving the subproblems recursively until
some terminal cases. Reduction rules may be used in the recursive procedure to
reduce the instance. A reduction rule must be sound. That is, it does not change
the yes/no-answer.

Since an RW-BDD set must cover all white P3 and all edges with one or two
red endpoints in the graph, by the kernelization results for 3-Hitting Set [1], a
kernel of O(k2) vertices can be obtained in O(mn) time, where n and m denote
the numbers of vertices and edges of the input graph, respectively.

Let P(I, k) be a parameterized problem, where I and k are the instance and
the parameter, respectively. A function f mapping instances to nonnegative real
numbers is a potential function if f(I) is a lower bound of the parameter for
instance I, i.e., the answer of P(I, k) is no whenever k < f(I).

3 Some Observations

While recursively searching the solution, some vertices are selected, and some
are discarded. By “selecting a vertex”, we mean to put it into the RW-BDD set.
By “discarding a vertex”, we mean that we decide to exclude the vertex from
the RW-BDD set. Any vertex which has been selected or discarded is removed
from the instance. A white vertex is colored red when one of its neighbors is
discarded. In the following, we list some properties. Since they can be easily
obtained by definitions or come from previous results for Vertex Cover, we
omit the proofs.

– When a red vertex v is discarded, all vertices in N(v) must be selected, i.e.,
put into the RW-BDD set.

– When a white vertex v is discarded, all its red neighbors must be selected and
at most one of its white neighbors can be not selected. Let G′ be the graph
constructed from G by removing NR[v] and making NW (v) a red clique. Then,
(G, k) has a solution discarding v if and only if (G′, k − dR(v)) has a solution.

– For v ∈ W and dW (v) = 0, we can color v red without changing the yes/no
answer.

– (Red Deg-1 rule) If v ∈ R and N(v) = {u}, then there is an optimal solution
selecting u and discarding v.

A Measure and Conquer Approach 473

– (White Deg-1 rule) If v ∈ W and N(v) = {u}, then there is an optimal
solution discarding v. Therefore we can have the two subcases: If u ∈ R, then
we select u and discard v. If u ∈ W , then we color u red and discard v.

– Solving the RW-BDD problem on an isolated red component is equivalent to
solving the Vertex Cover on it.

– For an isolated white cycle, a minimum RW-BDD set can be found in poly-
nomial time.

– (Red Deg-2 folding rule, [4]). Suppose that N(v) = {u,w} and v, u, w are all
red. If u and w are adjacent, then there is an optimal solution selecting {u,w}
and discarding v. If u and w are not adjacent, we can merge u and w, discard
v, and then reduce the parameter k by one. Note that this rule can be also
applied if v ∈ W and u,w ∈ R (v can be colored red since it has no white
neighbor.)

An induced white path (s, vr, vr−1, . . . , v1), r ≥ 0, is a white tail if (1)
dW (s) ≤ 1, dW (v1) = 1 and dW (vi) = 2 for all 1 < i ≤ r; (2) 1 ≤ dR(s) ≤ 2
and dR(vi) = 0 for all 1 ≤ i ≤ r. When r = 0, a white tail is in fact only a
white vertex with one or two red neighbors, and it can be reduced trivially. For
simplicity, we also regard it as a white tail.

Lemma 1 (Tail reduction). Let (s, vr, vr−1, . . . , v1) be a white tail. By apply-
ing a series of Red/White Deg-1 and possibly Red Deg-2 folding rules, the white
tail can be resolved in polynomial time. If r < 2, then at least one red vertex is
selected; otherwise at least one white vertex is selected.

Proof. When r = 0, dW (s) = 0, and we can color it red. Then either a Red Deg-1
or Red Deg-2 folding can be applied, and we select a red vertex. We consider
the following cases.

– r = 1. We can discard v1 and color s red. Then, Red Deg-1 or Red Deg-2
folding rule can be applied on s according to dR(s) = 1 or 2. The effect is
equivalent to selecting a red vertex.

– r = 2. We can discard v1 and color v2 red. Then v2 is a degree-1 red vertex,
and therefore we select s. Thus, we select a white vertex.

– r = 3. We can discard v1 and color v2 red. Then v2 is a degree-1 red vertex,
and therefore we select v3. After v3 is selected, it becomes the case of r = 0.

When r > 3, there must be an optimal solution selecting v3 and discarding
{v1, v2}. The process repeats every three vertices. �	
We use the following simple scheme to calculate the potential p.

– Initially set p = 0.
– When R = ∅, set p = 0.
– When a set of white vertex C becomes a red clique, p ← p + |C| − 1.
– When a red vertex v is selected, p ← p − 1.

In a red clique, all but at most one vertex must be selected. It is easy to see that
p is a lower bound since it is increased only when a set of white vertices becomes
a red clique. The following property is immediate and we omit the proof.

Lemma 2. The size of any vertex cover of G[R] is at least p.

474 B.Y. Wu

4 Branching Algorithm

In this section we shall show a branching algorithm for the RW-BDD problem.
The input of the branching algorithm is a 6-tuple (G,R,W, k, p), where k is the
parameter of solution size and p is the potential. The branching algorithm begins
with a kernelization, and then exhaustively applies a set of reduction rules and
check the terminal cases. Finally it performs the branching rules. In the next
two subsections, we first give the details of the algorithm, and then the time
complexity is shown.

4.1 Reduction and Branching Rules

The following reduction rules R1–R6 are used in the branching algorithm. The
reduction rules come from the observation in the previous section.

R1: Discard all isolated vertices and isolated white edges.
R2: For v ∈ R, if d(v) = 1, then remove N [v] and k ← k − 1.
R3: For v ∈ W , if dW (v) = 0, then color v red.
R4: For v ∈ W and N(v) = {u}, if u ∈ W , then remove v and color u red; else

remove u, v and k ← k − 1.
R5: For any red component, check if the size of its minimum vertex cover is at

most k. If not, then no solution; else remove the component and reduce k
by the size of its minimum vertex cover.

R6: If there is an isolated white cycle, then check if the size of its minimum RW-
BDD set is at most k. If not, then no solution; else remove the component
and reduce k by the size of its minimum RW-BDD set.

Lemma 3. When p = k, if D is a k-vertex RW-BDD, then D ∩W = ∅, and the
problem can be solved in O(1.274k) time.

Proof. If v ∈ W ∩D, then D\{v} would be a vertex cover of G[R], a contradiction
to Lemma 2. Thus, D∩W = ∅, which means that any solution discards all white
vertices. If there is a white vertex v with dW (v) = 2, there is no solution, since
there is a white P3. Otherwise, we discard all white vertices and select all their
red neighbors N(W). Finally, we check if there is a (k − |N(W)|)-size vertex
cover of the remaining (red) graph, which can be solved by a fixed-parameter
vertex-cover algorithm in O(1.274k) time [5]. �	

There are three terminal cases D1–D3. Note that the terminal conditions are
check in this order and after the reduction rules are exhaustively applied. We
also remark that in the literature a reduction rule is sometimes defined as a
polynomial process, while R5 employs a fixed-parameter vertex-cover algorithm
with running time O(1.274k) [5]. One way to meet such a definition is to keep
all red components and resolve them in a terminal condition. However, it is
equivalent.

A Measure and Conquer Approach 475

D1: If k ≥ 0 and R = W = ∅, then output “yes” and stop.
D2: If k ≤ 0 or k < p, then no solution.
D3: If k = p, then solve the problem according to Lemma 3.

After the reduction rules are exhaustively applied, we can conclude the following
properties.

Each vertex has degree at least two. Furthermore, if R �= ∅, then W ∩
N(R) �= ∅; and if R = ∅, then there must be a vertex of degree at least
three.

The following branching rules are performed in this order. In each branching
rule, we choose a white vertex and branch into selecting and discarding it.

1. If there exists v ∈ W such that dW (v) ≥ 3, then branch into discarding and
selecting v. (W3-branch)

2. If there exists v ∈ W such that dR(v) ≥ 3, then branch into discarding and
selecting v. (R3-branch)

3. If there exists s ∈ W such that dW (s) = 1, then perform the following path
branch. Note that in this case, 0 < dR(s) < 3 and dW (v) < 3 for any v ∈ W .
Find a white path (s, v1, v2, . . . , vr, . . .) such that dR(vi) = 0 for all 1 ≤ i < r
and dR(vr) > 0. If dW (vr) = 2 or dR(vr) ≥ dR(s), then choose vr and branch
into discarding and selecting vr. Otherwise, vr is the other endpoint of this
white path and dR(vr) < dR(s), and we branch into discarding and selecting
s in this case.

4. If all the above branch rules cannot be applied, then dW (v) = 2 for any
v ∈ W , i.e., G[W] is a collection of cycles. Note that for any white cycle C,
NR(C) �= ∅. Then, perform the following cycle branch: Pick a white vertex s
with maximal dR(s) and branch into discarding and selecting s.

4.2 Time Complexity

Similar to the branching factor method, to find the time complexity of the
branching algorithm, we establish a set of recurrences, but there are two vari-
ables k and p. To meet the convention that the time complexity is an increasing
function, we use a variable substitution. Let T (k, q) be the time complexity with
parameter k and potential p = k − q. By the technique of iterative kernelization
[16], we can ignore the polynomial terms in the recurrences for simplicity.

By the terminal cases and Lemma 3, the boundary conditions are as follows.

T (k, q) =
{

O(1) if k = 0 or terminal cases D1 and D2;
O(1.274k) if q = 0 at terminal case D3.

(1)

Next, we consider the four branching rules. Note that after we select a white
vertex, the complexity becomes T (k−1, q−1) since the potential is not reduced.
But, after selecting a red vertex, the complexity becomes T (k − 1, q).

Lemma 4. If a W3-branch is applied,

T (k, q) ≤ T (k − 1, q − 1) + T (k, q − 2). (2)

476 B.Y. Wu

Proof. In a W3-branch, we pick a white vertex v with dW (v) ≥ 3. If v is selected,
k ← k − 1 and p does not change, and the time complexity is T (k − 1, q − 1).
If v is discarded, we construct G′ from G by making NW (v) a red clique and
removing v and NR(v). The parameter k ← k − dR(v), and the potential p ←
p + dW (v) − 1 − dR(v). Thus, q ← q − dW (v) + 1. In the worst case, dR(v) = 0
and dW (v) = 3, and therefore the time complexity is T (k, q − 2). �	

Lemma 5. If an R3-branch is applied,

T (k, q) = T (k − 1, q − 1) + T (k − 3, q). (3)

Proof. In an R3-branch, we pick a white vertex v with dR(v) ≥ 3. If v is selected,
the time complexity is T (k−1, q−1). If v is discarded, at least three red vertices
are selected. Both k and p are reduced by three in the worst case, and therefore
the time complexity is T (k − 3, q). �	

The path-branch is somewhat more complicated, and the analysis of cycle-branch
is based on path-branch. The path-branch is divided into three cases for the sake
of obtaining a better result for cycle-branch.

Lemma 6 (R0-path branch). If (s, v1, v2, . . . , vr, t) is a white path in which
dW (s) = dR(s) = dW (t) = dR(t) = 1 and for each 1 ≤ i ≤ r, dR(vi) = 0 and
dW (vi) = 2, then we can make a path-branch with time complexity T (k, q) =
2T (k − 2, q − 1).

Proof. Let NR(s) = {u} and NR(t) = {w}. First, if r = 0, at least two vertices
in {s, t, u, w} must be selected, and it is easy to verify that there is an optimal
solution selecting the two red vertices and discarding the white ones. In this case
we do not need to branch.

In case of r ≥ 1, we branch on selecting or discarding s. After selecting s,
we can perform a tail reduction, and by Lemma 1 at least one vertex will be
selected. The complexity is T (k−2, q−1). If we discard s, its red neighbor u must
be selected and v1 changes to red. After v1 is colored red, a series of reductions
similar to the tail reduction can also be applied, and at least one white vertex
will be selected. Thus the time complexity is also T (k − 2, q − 1). �	

Lemma 7 (R1-path branch). Suppose that dW (v) ≤ 2 and dR(v) ≤ 2 for each
v ∈ W . If dW (s) = dR(s) = 1 for some s ∈ W , then we can make a path-branch
with time complexity T (k, q) = T (k−2, q−1)+max{T (k−2, q−1), T (k−3, q)}.

Proof. By the degree-one reduction, we can assume that dR(v) > 0 for any
degree-1 white vertex v. Since s must be an endpoint of a white path (s =
v0, v1, v2, . . .), let vr be the first vertex on the white path such that dR(vr) > 0.
We branch into selecting or discarding vr. There are two cases: dW (vr) = 2 or
dW (vr) = 1.

Suppose that dW (vr) = 1, i.e., vr is the other endpoint of this white path.
If dR(vr) = dR(s) = 1, then by Lemma 6 we have T (k, q) = 2T (k − 2, q − 1).
Otherwise, according to the path-branch rule, we have that dR(vr) = 2. If we

A Measure and Conquer Approach 477

select vr, a tail reduction can be followed, and the complexity is T (k − 2, q − 1).
If we discard vr, its two red neighbors must be selected and a tail reduction can
also be applied. The time complexity is T (k − 3, q). So, in this case, the total
time complexity is T (k − 2, q − 1) + max{T (k − 2, q − 1), T (k − 3, q)}.

Suppose that dW (vr) = 2. For the case of selecting vr, there must be a tail
reduction can be performed on the subpath (s, . . . , vr−1), and the complexity is
T (k − 2, q − 1). If we discard vr, its red neighbors must be selected. Further, its
two white neighbors change to red and edge (vr−1, vr+1) is added, which raises
the potential by one. Since dR(s) = 1, a tail reduction or a Red Deg-2 folding
can also be applied on the subpath. The complexity is therefore T (k − 2, q − 1).
The overall time complexity in this case is 2T (k − 2, q − 1).

In summary, T (k, q) = T (k −2, q −1)+max{T (k −3, q), T (k −2, q −1)}. �	

Lemma 8 (R2-path branch). Suppose that dW (v) ≤ 2 and dR(v) ≤ 2 for
each v ∈ W . If dW (s) = 1 and dR(s) = 2 for some s ∈ W , then we can make a
path-branch with time complexity T (k, q) = T (k−2, q−1)+max{T (k−3, q), T (k−
1, q − 1)}.

Proof. The proof is similar to Lemma 7 except for the case that dW (vr) = 2
and we discard vr. In this case, since dR(s) = 2, maybe neither tail reduction
nor Red Deg-2 folding can be applied. It leads to a worse time complexity of
T (k − 1, q − 1)+T (k − 2, q − 1). The overall time complexity is T (k − 2, q − 1)+
max{T (k − 3, q), T (k − 1, q − 1)}. �	

The following corollary summaries Lemmas 6–8.

Corollary 1. If a path-branch is applied,

T (k, q) = T (k − 2, q − 1) + max{T (k − 3, q), T (k − 1, q − 1)} (4)

In Lemma 9, we shall show that Eq. (5) and (6) describe the time complexity
when a cycle-branch is applied.

T (k, q)

= T (k − 3, q − 2) + max
{

T (k − 4, q − 1)
T (k − 3, q − 2)

}

+ max

⎧
⎨

⎩

T (k − 2, q − 1)
T (k − 3, q − 2) + T (k − 4, q − 1)
2T (k − 3, q − 2)

⎫
⎬

⎭
. (5)

T (k, q)

= T (k − 2, q − 1) + T (k − 3, q − 2) + max
{

T (k − 4, q − 1)
T (k − 2, q − 2)

}

. (6)

Lemma 9. If a cycle-branch is applied, the time complexity is given by Eq. (5)
and (6).

478 B.Y. Wu

Proof. When a cycle-branch is applied, all white vertices have white degree two.
That is, each component in G[W] is a cycle. Let C be such a white cycle. A
vertex in C is a port if it has a red neighbor.

If C has only one port, it is not hard to verify that there is an optimal solution
selecting the port. Suppose that C has exactly two ports s and t. After selecting
s, we can perform a tail reduction, which give the time complexity T (k−2, q−1).
If s is discarded, the red neighbors of s must be selected. In addition, similar to
the tail reduction, at least one vertex on C can be determined to select. So for
the case of two ports, the time complexity is T (k, q) = 2T (k − 2, q − 1).

Now we consider the case of more than two ports. Let s be the port with
maximal red neighbors. We further divide into two subcases:

– dR(s) = 1. Since all vertices on C has at most one red neighbor, after selecting
s, an R1-path branch can be applied. The time complexity is T (k −3, q −2)+
max{T (k − 4, q − 1), T (k − 3, q − 2)}. In case of discarding s, we first select
its red neighbor, and then make its two white neighbors a red clique (edge).
Following this change, either a Red Deg-2 folding or an R1-path branch can
be performed, which give the time complexity T (k − 2, q − 1) or T (k − 3, q −
2) + max{T (k − 4, q − 1), T (k − 3, q − 2)}. The overall time complexity in this
case is given by (5).

– dR(s) = 2. When selecting s, an R1-path or R2-path branch can be applied. If
an R1-path branch is applied, it is better than the case of dR(s) = 1. Therefore
it is sufficient to consider the case that an R2-path branch is applied. By
Lemma 8, the time complexity is T (k − 3, q − 2) + max{T (k − 4, q − 1), T (k −
2, q−2)}. When discarding s, two red neighbors of s can be selected, and then
again we make its two white neighbors a red clique (edge). However, following
this change, maybe no reduction can be applied, and the time complexity is
T (k − 2, q − 1). The overall time complexity in this case is given by (6).

�	

Theorem 1. The RW-BDD problem can be solved in O(1.882k +mn) time and
polynomial space, where n and m denote the numbers of vertices and edges of
the input graph, respectively.

Proof. The height of the search tree is apparently polynomial, and therefore it
takes polynomial space. Initially we perform the kernelization in O(mn) time.
We need to show the time complexity of the recursive part. By the technique
of iterative kernelization [16], the polynomial terms in the recurrences can be
ignored. To find an upper bound of T (k, q), one looks for a function f(k, q) =
xkyq satisfying the worst case of the recurrences. First, the boundary condition
T (k, 0) ∈ O(1.274k) yield a constraint x ≥ 1.274.

It is clear that the running time of each reduction rule is a polynomial in k,
except for R5, in which we find a vertex cover to resolve a red component. If
R5 is applied, we find a vertex cover of size i ≤ k in O(1.274i) time, and the
recurrence is

T (k, q) = max
0<i≤k

{T (k − i, q) + O(1.274i)}. (7)

A Measure and Conquer Approach 479

The recurrence yields the same constraint x ≥ 1.274 as the boundary conditions.
For the branching rules, by Eq. (2)–(6), we have the following inequalities.

xy2 ≥ y + x from Eq. (2)
x3y ≥ x2 + y from Eq. (3)
x3y ≥ x + max{y, x2} from Eq. (4)

x4y2 ≥ x + max{y, x} + max{x2y, x + y, 2x} from Eq. (5)
x4y2 ≥ x2y + x + max{y, x2} from Eq. (6)

Since initially the potential p = 0, the final time complexity is T (k, k), and
therefore the goal is to minimize xy. By numerical method, it can be easily
verified that x = 1.288 and y = 1.461 satisfies the inequalities, i.e., T (k, q) ≤
1.288k · 1.461q for all k, q ≥ 0. Thus, T (k, k) ∈ O(1.882k), and the overall time
complexity is O(1.882k + mn). �	

Corollary 2. The 1-BDD problem can be solved in O(1.882k + mn) time and
polynomial space, where n and m denote the numbers of vertices and edges of
the input graph, respectively.

5 Concluding Remarks

In this paper we demonstrate that using a potential function and the Measure
& Conquer approach is helpful for designing parameterized algorithms. By sub-
stituting y = xλ, we can transform Eq. (1)–(6) into one-variable recurrences and
then find the same upper bound of T (k, k) by the standard Measure & Conquer
method. Since there are only two variables and the proof is clear, we keep the
current proof in Theorem 1.

There are in fact 13 recurrences in Eq. (1)–(6). For example, there are 6 com-
binations which are written together in (5). However, the current upper bound
is dominated by Eq. (2) and (3). It will be not surprised if the time complexity
can be further improved. Particularly, by a more detailed discussion on the case
that dW (v) ≤ 3 and dR(v) = 0 for each white vertex v, one may release the
constraint from Eq. (2) and then improve the time complexity. Another future
work is to extend the current approach to the δ-BDD problem for δ > 1.

Acknowledgments. This work was supported in part by NSC 101-2221-E-194-025-
MY3 and MOST 103-2221-E-194-025-MY3 from National Science Council/Ministry of
Science and Technology, Taiwan, R.O.C.

References

1. Abu-Khzam, F.N.: Kernelization algorithms for d-hitting set problems. In: Dehne,
F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 434–445. Springer,
Heidelberg (2007)

2. Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On bounded-degree ver-
tex deletion parameterized by treewidth. Discrete Applied Mathematics 160, 53–60
(2012)

480 B.Y. Wu

3. Chang, M.S., Chen, L.H., Hung, L.J., Liu, Y.Z., Rossmanith, P., Sikdar, S.: An
O∗(1.4658n)-time exact algorithm for the maximum bounded-degree-1 set prob-
lem. In: Proceedings of the 31st Workshop on Combinatorial Mathematics and
Computation Theory, pp. 9–18 (2014)

4. Chen, J., Kanj, I.A., Jia, W.: Vertex cover: Further observations and further
improvements. Journal of Algorithms 41(2), 280–301 (2001)

5. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoretical
Computer Science 411(40–42), 3736–3756 (2010)

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer-Verlag (1999)
7. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.

Springer-Verlag (2013)
8. Kardoš, F., Katrenič, J., Schiermeyer, I.: On computing the minimum 3-path vertex

cover and dissociation number of graphs. Theoretical Computer Science 412, 7009–
7017 (2011)

9. Fellows, M.R., Guo, J., Moser, H., Niedermeier, R.: A generalization of nemhauser
and trotters local optimization theorem. Journal of Computer and System Sciences
77(6), 1141–1158 (2011)

10. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer (2010)
11. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the

analysis of exact algorithms. J. ACM 56(5), 25:1–25:32 (2009)
12. Chen, J., Fernau, H., Shaw, P., Wang, J., Yang, Z.: Kernels for packing and covering

problems. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) AAIM 2012 and FAW
2012. LNCS, vol. 7285, pp. 199–211. Springer, Heidelberg (2012)

13. Komusiewicz, C., Hffner, F., Moser, H., Niedermeier, R.: Isolation concepts for
efficiently enumerating dense subgraphs. Theoretical Computer Science 410(38–
40), 3640–3654 (2009)

14. Moser, H., Niedermeier, R., Sorge, M.: Exact combinatorial algorithms and exper-
iments for finding maximum k-plexes. Journal of Combinatorial Optimization
24(3), 347–373 (2012)

15. Nishmura, N., Ragde, P., Thilikos, D.M.: Fast fixed-parameter tractable algorithms
for nontrivial generalizations of vertex cover. Discrete Applied Mathematics 152,
229–245 (2005)

16. Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-
tractable algorithms. Information Processing Letters 73(3–4), 125–129 (2000)

17. Tu, J.: A fixed-parameter algorithm for the vertex cover P3 problem. Information
Processing Letters 115, 96–99 (2015)

18. Tu, J., Zhou, W.: A factor 2 approximation algorithm for the vertex cover P3

problem. Information Processing Letters 111, 683–686 (2011)
19. Tu, J., Zhou, W.: A primal-dual approximation algorithm for the vertex cover P3

problem. Theoretical Computer Science 412, 7044–7048 (2011)

Random

Sampling in Space Restricted Settings

Anup Bhattacharya1, Davis Issac2, Ragesh Jaiswal1(B), and Amit Kumar1

1 Department of Computer Science and Engineering, IIT Delhi, New Delhi, India
{anupb,rjaiswal,amitk}@cse.iitd.ac.in

2 Max Planck Institute for Informatics, Saarbrücken, Germany
dissac@mpi-inf.mpg.de

Abstract. Space efficient algorithms play a central role in dealing with
large amount of data. In such settings, one would like to analyse the
large data using small amount of “working space”. One of the key steps
in many algorithms for analysing large data is to maintain a (or a small
number) random sample from the data points. In this paper, we consider
two space restricted settings – (i) streaming model, where data arrives
over time and one can use only a small amount of storage, and (ii) query
model, where we can structure the data in low space and answer sam-
pling queries. In this paper, we prove the following results in above two
settings:

– In the streaming setting, we would like to maintain a random sample
from the elements seen so far. We prove that one can maintain a ran-
dom sample using O(log n) random bits and O(log n) space, where
n is the number of elements seen so far. We can extend this to the
case when elements have weights as well.

– In the query model, there are n elements with weights w1, . . . , wn

(which are w-bit integers) and one would like to sample a random
element with probability proportional to its weight. Bringmann and
Larsen (STOC 2013) showed how to sample such an element using
nw+1 space (whereas, the information theoretic lower bound is nw).
We consider the approximate sampling problem, where we are given
an error parameter ε, and the sampling probability of an element
can be off by an ε factor. We give matching upper and lower bounds
for this problem.

1 Introduction

Space efficient algorithms are important when data is too large and cannot be
stored in the working memory. Such algorithms have become important with the
increasing popularity of mobile devices. These devices, in many cases have small
amount of working memory. Also, there is an increasing need to process the huge
amount of data being generated over the internet for purposes of data mining.
In such scenarios, there is a need for analyzing the data in a streaming fashion.

Davis Issac—Major part of this work was done when the author was at IIT Delhi.
Ragesh Jaiswal— Ragesh Jaiswal acknowledges the support of ISF-UGC India-Israel
joint research grant 2014.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 483–494, 2015.
DOI: 10.1007/978-3-319-21398-9 38

484 A. Bhattacharya et al.

This is popularly known as the streaming setting. Note that in all these cases,
the other resources such as the running time and amount of randomness1 are
equally important because these determine the power required for processing the
data. With the size of computing devices becoming smaller, power is becoming
the most important resource to optimize in all such space-restricted settings.

In this work, we look at the basic problem of random sampling. The problem
is very simple. Given n objects, the goal is to sample an object (or a few objects)
uniformly at random. This is called uniform sampling. We can also consider
non-uniform sampling where the objects come along with some weights and
the goal is to sample an object with probability proportional to its weight. We
discuss these sampling problems in two space-restricted settings. The first setting
is the streaming setting, where the data items are available as a stream (i.e.,
the ith data item is available at time i) and one does not a priori know the
number of data items that one should expect to see. In such cases, maintaining
a random sample at all times is more challenging than sampling in the classical
setting where all data items are present in the memory. This is partly because
we cannot store all the data items in the stream due to space-restrictions. The
second space-restricted setting that we discuss is the query model. Here, we talk
about non-uniform sampling with respect to a given distribution. In this model,
one is allowed to pre-process the data and store a representation in small space
so as to be able to quickly answer sampling queries. Next, we discuss our results
in the above two settings.

1.1 Sampling in the Streaming Setting

In this setting, the data items are available as a stream. That is, the ith data
item can be assumed to arrive at time i. Here, we are interested in maintaining
a uniformly random sample at all times. We will generalise this for non-uniform
sampling. We would like the sampling algorithm to be one-pass and it should
save only one data item (since each data item could be very large – files/packets)
in its working memory.

The most basic method of doing this is called reservoir sampling and it pro-
ceeds in the following manner: Let the items be denoted by O1, ... and the storage
location used to store one item in the stream be denoted by S. Store the first
object O1 in S. Subsequently, for Oi, replace the previously stored item in S
with Oi with probability 1

i and continue without changing S with the remain-
ing probability. Whenever a sample is required, output the object stored in S.
Suppose n objects have been seen until the time when the sample was produced.
The probability that S stores Oi is 1

i · i
i+1 · ... · n−1

n = 1
n . So, we sample with

the desired uniform distribution. However, the amount of randomness required
in this procedure is large. Let us try to estimate the number of random bits
required in this sampling procedure. After Oi arrives, the procedure will need
random bits to decide whether the item stored in S needs to be replaced with
Oi. This should happen with probability exactly 1

i . So, at least log i random

1 Note that typically a pseudorandom generator is used for generating random bits.

Sampling in Space Restricted Settings 485

bits will be required for this2. So, the number of random bits required for this
procedure is at least

∑n
i=1 log i = Ω(n log n) in expectation3. This should be

contrasted with the amount of random bits needed to uniformly sample in the
classical setting where all the items are present in the memory. In this case, in
the classical setting where all the n objects are present in the memory, we will
need just log n random bits in expectation. In this work, we address the gap in
the amount of randomness required in the streaming versus the classical settings.
We will consider a model in which strict bounds on randomness may be defined
as opposed to comparing expected amount of randomness required in classical
and streaming settings. We will first formalise the problem and then show that
as far as amount of randomness is concerned, there is no gap in the streaming
and the classical settings.

First, we note that upper bounds on randomness cannot be defined with
respect to perfectly uniform sampling. To see this, let us assume that n > 2 is
a prime number. For the sake of contradiction, assume that a uniform sample
can be generated using r random bits for some finite r. This means that there
is a function f : {0, 1}r → [n] such that for all i, j ∈ [n], |{x|f(x) = i}| =
|{x|f(x) = j}|. This means that 2r is divisible by n. This is a contradiction since
n is a prime number. One natural way of formalising the question of randomness
efficiency with respect to uniform sampling is to allow the sampling algorithm
to return a null answer (denoted by ⊥) with certain small probability ε. This
means that the sampling algorithm is allowed not to output any member of the
set {1, ..., n} with probability at most ε. Let us call this model uniform sampling
with ε-error. We can easily argue (see Section 2) that Ω(log n

ε) random bits are
required for uniform sampling with ε-error. Following is a simple algorithm that
does uniform sampling with ε-error using O(log n

ε)-bits of randomness: With
the error parameter ε fixed, we first compute the smallest integer r such that
�2r/n� > 1 and 2r mod n ≤ ε · 2r. Let k = �2r/n�. Consider a function f
that maps the first k r-bit strings (ordered lexicographically) to 1, the next k
r-bit strings to 2 and so on. The last (2r mod n) strings are mapped to ⊥. The
sampling algorithm computes the function f on r random bits and outputs the
value of the function.

Our Contributions: Can the sampling ideas of the classical setting be extended
to the streaming setting? The answer is negative. The main bottleneck in the
streaming setting is that the value of n is not known in advance whereas the
sampling algorithm in the streaming setting must maintain a sample at all times.
In this work, we give a sampling algorithm that uses O(log n

ε)-bits of randomness,
uses O(log n

ε)-space, and has a running time of O(n + log n
ε). Moreover, the

running time for processing each item is a constant except for the first item which

2 Actually, more random bits might be required since i might not be a power of 2 and
hence we might need to do rejection sampling. We can say that O(log i) random bits
are needed in expectation.

3 We will discuss a more advanced sampling technique by Vitter that requires
Ω((log n)2) random bits in expectation.

486 A. Bhattacharya et al.

is O(log 1
ε). 4 We also extend these results for non-uniform sampling. Section 2

gives details of these results. It is important to point out that the lower bound
on the number of random bits remains the same if the sampling algorithm is
allowed to store more than one item from the stream. Our sampling algorithm
matches this lower bound while storing only one item from the stream.

Related Work: The initial techniques for sampling and reservoir sampling were
discussed in [Knu81,Vit84,Vit85]. Vitter’s [Vit85] work was one of the early
works on sampling in the streaming setting where the author was interested in
sampling records that were stored in a magnetic tape by making a pass over
the tape. However, the computational resource that the author was interested in
optimising was the running time of the sampling algorithm and not the amount
of randomness or the space. In fact, the author assumed that one can sample
random numbers of arbitrary precision in the interval [0, 1] in constant time.
Li [Li94] gave quantitative improvement over Vitter’s work, again in terms of the
running time bounds. Park et al. [POS07] extended these ideas for sampling with
replacement whereas Efraimidis and Spirakis [ES06] did the same for weighted
sampling. Babcock et al. [BDM02] gave sampling algorithms where the sample
is required to be among the most recent items seen in the stream. They maintain
a random sample over a moving window of the most recent items in the stream.

Comparison with Vitter’s Reservoir Sampling: Vitter’s work on reservoir
sampling [Vit85] is the most relevant previous work on this topic. So, it is impor-
tant to compare our results with those in [Vit85]. We have already seen the
most elementary reservoir sampling technique where the ith item is stored with
probability 1/i. The expected number of random bits required for this is O(log i)
and so the expected number of random bits required for the overall algorithm is
O(n log n). Note that this basic technique accesses fresh random bits for every
item of the stream. A somewhat more sophisticated technique in [Vit85] reduces
the number of times random bits are accessed by the sampling algorithm. This
technique works as follows: Suppose at time instance i, we have the ith item
stored as the sample in the storage space S. At this time, a positive integer s is
chosen from a particular probability distribution fi : Z → [0, 1]. This number s
denotes the number of stream items that the algorithm will skip before saving the
item (i+s+1). This probability distribution was defined as fi(s) = i

(i+s)(i+s+1) .
So randomness is required only for picking these “skips”. It was shown in the
paper that the expected number of times such skips need to be picked is O(log n).
In order to sample from the distribution fi, the paper assumes that one can uni-
formly sample a real number u of arbitrary precision from [0, 1]. One simple idea
is to consider the cumulative distribution Fi(s) =

∑
i≤s fi(s) and then pick the

smallest value s such that Fi(s) ≥ u.
Before further discussion regarding Vitter’s work, let us draw a comparison

between the models considered by our work and that in [Vit85]. First, in our

4 The running time is in terms of the number of arithmetic operations. If we take into
account the number of bit-operations, then these bounds are larger by a multiplica-
tive factor of O

(
(log n

ε
)2
)
.

Sampling in Space Restricted Settings 487

model, randomness is consumed only in terms of random bits. The reservoir
sampling described above uses uniform random samples of arbitrary precision
from [0, 1]. The second difference one should note is that both basic reservoir
sampling and the one described above gives guarantees in terms of expected
value of the randomness used. In our model, we are interested in the worst case
number of random bits used given that the sampling algorithm is allowed to make
some error. So, in some sense, one may interpret our algorithm as a Monte Carlo
algorithm and Vitter’s reservoir sampling algorithm as a Las Vegas algorithm.

In order to compare our results more closely, we need to remove the require-
ment of uniform samples from [0, 1] in Vitter’s algorithm. So, the next ques-
tion we address is whether one can sample from the distribution fi using few
random bits instead of uniform samples in [0, 1]. Let us try to design an algo-
rithm that sample s from the distribution fi such that the expected number
of random bits used by the algorithm is small. Towards this, we first note that
Pr[s > i] = 1 −

∑
j≤i fi(j) = 1 −

∑
j≤i

(
i

i+j − i
i+j+1

)
≤ 1/2. We now consider

the problem as sampling from the set {0, 1, ..., i + 1} as per a distribution D,
where ∀j ≤ i,D(j) = fi(j) and D(i + 1) = Pr[s > i]. With respect to sampling
s from fi, the (i + 1)th item in the above problem corresponds to the case when
s > i and in this case we will draw a conditional sample from {i + 1, i + 2, ...}.
Note that if we can show that the expected number of random bits used in the
above problem of sampling from {0, 1, ..., i+1} is R, then the expected number of
random bits required for sampling s using fi will be O(R). So, let us just focus
on the sampling problem above. For this we use the technique of Bringmann
and Larsen [BL13] (see section 2.1). We will construct an array A that contains
numbers in {0, 1, ..., i + 1}. A contains the number j exactly �(i + 2) · D(j)� + 1
times. The sampling algorithm is as follows:

1. Pick a uniformly random k ∈ {1, ..., |A|}.
2. If (k = 1 or A[k]
= A[k − 1])

with probability (1 − frac((i + 2) · D(A[k]))) go to step 1.
3. return A[k].

Here frac(x) = x − �x�. Bringmann and Larsen [BL13] show that the above
sampling procedure returns a sample as per distribution D in constant expected
time. Let us estimate the randomness required by this sampling procedure.
Note that |A| ≤ 2(i + 2) and so step 1 costs O(log i) random bits. Also, since
D(j) = i

(i+j)(i+j+1) , the cost for simulating step 2 is O(log i) random bits. So,
the expected number of random bits required in this sampling procedure is
O(log i). As per our discussion earlier, this means that the expected number
of bits required to sample s from the distribution fi is O(log i). This further
means that the expected number of bits required for Vitter’s reservoir sampling
algorithm is O(log2 n).

In the classical model where all the items are in memory, the expected number
of random bits required to sample is O(log n). So, within the model considered by
Vitter’s algorithm where one is interested in the expected number of random bits,
there is a gap between the bounds in the classical and the streaming settings.

488 A. Bhattacharya et al.

An interesting question is whether this gap should exist. Recall, that in our
model where we are interested in the number of random bits when the sampling
algorithm is allowed to err with small probability, we show there is no such gap
between the classical and streaming settings.

1.2 Succinct Sampling

The second space-restricted setting that we consider is a non-streaming setting
where the set of elements are integers {1, ..., n}. The most natural model of sam-
pling in the non-streaming setting is the query model. This is the model used by
Bringmann and Larsen [BL13] in their work. Our work within this model may
be interpreted as a natural extension of their work. The inputs are w-bit inte-
gers x1, ..., xn. The model includes a pre-processing step where appropriate data
structures may be created. Queries for producing a sample as per the weighted
distribution are made and should be processed quickly using the data structures
created in the pre-processing step. The weighted distribution means that the
query algorithm should output i with probability xi

∑

j xj
.

Bringmann and Larsen [BL13] observed that the classical Walker’s alias
method [Wal74] in the word RAM model (here unit operations may be per-
formed on words of size w bits) has a pre-processing algorithm that runs in time
O(n), answers a sampling query in O(1) expected time, and uses a storage of size
n(w+2 log n+o(1)) bits. In order to analyse the space usage, they defined a sys-
tematic case where the input is read-only and a non-systematic case where the
input representation may be changed to reduce the total space. The redundancy
of a solution is the number of bits used in addition to the information-theoretic
minimum required for storing the input. Given this, the Walker’s alias solu-
tion has a redundancy of (2n log n + o(n))-bits. Bringmann and Larsen [BL13]
improved this and gave a solution in the systematic case where the preprocess-
ing time is O(n), expected query time is O(1), and the redundancy is n + O(w).
They also gave a solution that has 1 bit of redundancy in the non-systematic
case. Furthermore, they showed optimality of their results. However, all their
results are for exact sampling. In our work, we extend their work to approximate
sampling in the word RAM model.

In many realistic scenarios, we might not be required to sample exactly
according to the weighted distribution x1, ..., xn. One such scenario is the sam-
pling based algorithms for k-means clustering such as the PTAS by Jaiswal et
al. [JKS14] where the algorithms are robust against small errors in sampling
probability. This indeed was the starting point of this work. It may be sufficient
to sample from a distribution such that the sampling probabilities are close to
the exact sampling probabilities defined by the weights x1, ..., xn. We will con-
sider two models for closeness. First is the additive model where the ith item’s
sampling probability may be between

(
xi/(

∑
j xj) − ε

)
and

(
xi/(

∑
j xj) + ε

)

for some small ε. Second is the multiplicative model where the ith item’s sampling
probability may be between (1 − ε) ·

(
xi/(

∑
j xj)

)
and (1 + ε) ·

(
xi/(

∑
j xj)

)

for some small ε.

Sampling in Space Restricted Settings 489

Before we state our results for approximate sampling, we should first under-
stand the differences between exact and approximate sampling in terms of space
usage. Note that the information theoretic lower bound on the amount of space
required to do exact weighted sampling given n w-bit integers as input is nw. 5

However, in case of approximate sampling, the information theoretic bounds can
be much lower since we can use some lossy representation of the inputs that does
not affect the sampling probabilities too much but saves much space. Given this,
the non-systematic case (where data is not read-only and may be re-structured)
seems more relevant than the systematic case (where the inputs are read-only
and have to be retained). So, in our work we discuss only the non-systematic
case for approximate sampling. Note that all the algorithms that we study have
optimal pre-processing time of O(n) and optimal query time of O(1).

Our Contributions: We show that in the multiplicative model, the lower bound
on the space requirement is Ω(n log w+n log 1

ε). We design a sampling algorithm
and show that the space usage of our algorithm matches this lower bound. In
the additive model, we give similar results. However, in this case our algorithms
match the lower bound only when ε is a constant independent of n. Due to space
limitations, we discuss the details of these contributions in the full version of the
paper. 6

Related Work: Walker [Wal74] gave a solution for exact sampling in the clas-
sical setting. Kronmal and Peterson [KP79] improved the preprocessing time
of Walker’s method. Bringmann and Panagiotou [BP12] studied variants of
sampling from discrete distribution problems. All the above mentioned works
used Real RAM model of computation. Bringmann and Larsen [BL13] analysed
Walker’s alias method in Word RAM model of computation and also gave better
bounds for exact sampling from discrete distribution problems. Their work is
most relevant to our current work on succinct sampling and our results may be
regarded as a natural extension to [BL13].

2 Sampling in the Streaming Setting

The input consists of a stream of distinct objects O1, O2, ..., where the object
Oi can be thought of as arriving at time i. At any point of time, we would
like to maintain a random sample from the set of objects seen so far. More
formally, we would like to maintain a random variable Xt for all time t such
that Pr[Xt = Oi] is same for all i = 1, . . . , t. As mentioned in the introduction,
this property cannot be achieved for all values of t. Therefore, the input also
specifies a parameter ε – the algorithm is allowed to output a null object ⊥ with
probability at most ε. Therefore, we want the following property to hold for all
time t: Pr[Xt = ⊥] ≤ ε,Pr[Xt = O1] = Pr[Xt = O2] = · · · = Pr[Xt = Ot]. We
5 This is not a trivial observation since x1, ..., xn and x1/2, ..., xn/2 give the same

weighted distribution. See Lemma 5.1 in [BL13].
6 The full version of this paper may be found at the following arXiv link: http://arxiv.

org/abs/1407.1689

http://arxiv.org/abs/1407.1689
http://arxiv.org/abs/1407.1689

490 A. Bhattacharya et al.

shall call such a sequence Xt of random variables uniform samples (with error
parameter ε, which will be implicit in the discussion).

In the setting of streaming algorithms, we would like to limit the space avail-
able to the algorithm. We allow the algorithm to store only one object at any
point of time (besides some local variables) – this is motivated by the fact that
each object may be quite large (objects could be large files/packets etc.), and
so it may not be feasible to store too many objects in the local memory of the
program.

Consider the amount of random bits needed to uniformly sample in the clas-
sical setting where all the n items are present in the memory and we need a
random sample among these items. It is not difficult to show that O

(
log n

ε

)
bits

of randomness suffice (w.r.t. uniform sampling with ε-error). In fact, it is also
fairly easy to show that any algorithm (even in the non-streaming setting) needs
at least these many random bits. We give details of the lower bound on number
of random bits in Section 2.1. In Section 2.2, we show that we can maintain an
exact sample with only O

(
log n

ε

)
bits of randomness (till time n). These results

may be extended to the weighted case. We discuss the results for the weighted
case in the full version of the paper.

2.1 Background

We consider the off-line problem of generating a uniform sample with error
parameter ε from the set of objects O1, . . . , On. The proof of the next lemma
may be found in the full version of this paper.

Lemma 1. We can generate a uniform sample with error parameter ε from a
set of n distinct objects using O(log n

ε) random bits. Further, any algorithm for
generating such a sample must use Ω(log n

ε) random bits.

The above idea for upper bound does not work in the streaming setting. The
main problem in the streaming setting is that the value of n is not known in
advance whereas the algorithm needs to maintain a uniform sample at all times.
One solution is reservoir sampling where fresh random bits are used after every
new item arrives. However, as we have seen, this is costly in terms of the amount
of randomness used. In the next section, we discuss a sampling algorithm in the
streaming setting that uses O(log n

ε) random bits till time n, and hence, matches
the lower bound result mentioned above.

2.2 Uniform Samples in the Streaming Setting

Let us try to understand some of the challenges of designing sampling algorithms
in the streaming setting. Recall that Xt is the random object maintained by the
algorithm at time t. Since the algorithm is allowed to store only one object at
any time, it does not store any other object at time t. At time t + 1, when Ot+1

arrives, the algorithm has only three choices for Xt+1 – Xt, Ot+1 or ⊥. We shall
use rt to denote the number of random bits used by our algorithm till time t.

Sampling in Space Restricted Settings 491

Given a sequence xt of rt random bits, let ft(xt) denote the object stored by the
algorithm at time t, i.e., Xt = ft(xt). Note that the functions ft need to satisfy a
“consistency” property: if x ∈ {0, 1}rt is a prefix of a string y ∈ {0, 1}rt+1 , then
ft+1(y) is either ft(x) or Ot+1 or ⊥. This is due to the restriction of the streaming
setting. Note that the only stream elements one has access to at time t + 1 are
Xt and Ot+1. We now describe our algorithm that we call the doubling-chopping
algorithm.

The Algorithm. For each time t and i ∈ {1, . . . , t} ∪ {⊥}, the algorithm will
maintain an ordered set Ht

i ⊆ {0, 1}rt of strings x for which ft(x) = Oi (or ⊥).
Of course, this will lead to large space complexity – we will later show that these
sets can be maintained implicitly. Initially, at time 0, H0

⊥ = ∅ and r0 = 0. We
first describe the doubling step in Figure 1. The goal of this step is to ensure
that 2rt stays larger than (t+1)2

ε . Whenever this does not happen, we increase
the value of rt to ensure that this is the case. The functions ft are updated
accordingly – they just look at the first rt bits of the input.

Algorithm Double(t) :

1. rt ← rt−1.
2. For i ∈ {1, ..., t − 1} ∪ {⊥}
• Initialize Ht

i ← Ht−1
i .

3. While 2rt < (t+1)2

ε

(i) rt ← rt + 1.
(ii) For i ∈ {1, ..., t−1}∪{⊥}

• Initialize H ← ∅.
• For each x ∈ Ht

i in order
append 0x to H.

• For each x ∈ Ht
i in order

append 1x to H.
• Ht

i ← H.

Algorithm Chop(t) :

1. For every i ∈ {1, . . . , t − 1}
• Define T t

i ← last
(
|Ht

i | − � 2rt

t
�
)

strings

in Ht
i .

• Define Ht
i ← Ht

i \ T t
i .

2. Initialize T ← ∅.
3. For i = 1, . . . , t − 1

T ← append(T, T t
i).

4. If |T | > �2rt/t�
(a) T t

t ← last
(
|T | − � 2rt

t
�
)

strings in T .

(b) Ht
t ← T \ T t

t and Ht
⊥ ← append(Ht

⊥, T t
t)

Else
(i) T t

⊥ ← last �2rt/t� − |T | strings of Ht
⊥.

(ii) Set Ht
⊥ ← Ht

⊥ \ T t
⊥ and

Ht
t ← append(T t

⊥, T).

Fig. 1. The doubling and chopping steps

Note that after we call the algorithm Double, the new rt − rt−1 bits do not
participate in the choice of random sample. In Step 3 of the Double algorithm,
the set Ht

i is an ordered list – “append” adds an element to the end of the list.
The next step, which we call the chopping step, shows how to modify the

function ft so that some probability mass moves towards Ot. The algorithm is
described in Figure 1. The function append(T1, T2) takes two ordered lists and
outputs a new list obtained by first taking all the elements in T1 followed by the
elements in T2 (in the same order). The algorithm maintains the sets Ht

i , where

492 A. Bhattacharya et al.

i ∈ {1, . . . , t} ∪ {⊥}. Given these sets, the function ft is immediate. If the string
x ∈ {0, 1}rt lies in the set Ht

i , then ft(x) = Oi.
To summarise, at time t > 1, we first call the function Double(t) and then

the function Chop(t). The initial conditions (at time t = 1) are r1 = �log 4
ε�,

H1
1 = {0, 1}r1 , and H1

⊥ = ∅. It is also easy to check that the functions ft satisfy
the consistency criteria.

Lemma 2. Suppose x ∈ {0, 1}rt−1 and y ∈ {0, 1}rt−rt−1 . Then, ft(yx) is either
ft−1(x) or Ot or ⊥.

Proof. Let x and y be as above. Suppose x ∈ Ht−1
i (and so, ft−1(x) = i). After

the Double(t) function call, yx ∈ Ht
i . Now consider the function Chop(t). After

Step 1, if yx /∈ Ht
i , then it must be the case that yx gets added to the set T .

Now, notice that the strings in T get added to either Ht
t or Ht

⊥. This proves the
lemma. ��

The lemma above implies that we can execute the algorithm by storing only one
object at any time. Now, we show that the number of random bits used by the
algorithm is small.

Lemma 3. The number of random bits used by the algorithm till time n is
O(log n

ε).

Proof. Till time n, the algorithm uses at most rn bits and 2rn ≤ 2(n+1)2

ε . ��

The correctness of the algorithm follows from the next lemma.

Lemma 4. For all time t > 0, and i ∈ {1, ..., t}, |Ht
i | =

⌊
2rt

t

⌋
, and |Ht

⊥| ≤ ε·2rt .

Proof. The proof is by induction on t. The base case (t = 1) is true from the
initial conditions r1 = �log 4

ε�, H1
1 = {0, 1}r1 , and H1

⊥ = ∅. Now suppose the
lemma is true for t−1. At time t, we first call Double(t). For each x ∈ Ht−1

i , we
just append all bit strings of length rt − rt−1 to it and this set of strings to Ht

i .
Therefore, when this procedure ends, |Ht

i | = 2rt−rt−1 · � 2rt−1

t−1 �, for i = 1, . . . , t−1
(using induction hypothesis) and we have

|Ht
i | = 2rt−rt−1 ·

⌊
2rt−1

t − 1

⌋

≥ 2rt−rt−1 ·
(

2rt−1

t − 1
− 1

)

≥ 2rt

t
(since 2rt−1 ≥ t2/ε)

In Step 1 of the procedure Chop(t), we ensure that |Ht
i | becomes � 2rt

t � (this
step can be done, because the |Ht

i | was at least � 2rt

t �). After this step, we do
not change Ht

i for i = 1, . . . , t − 1, and hence, the induction hypothesis is true
for these sets. It remains to check the size of Ht

t and Ht
⊥.

First assume that |T | ≥ � 2rt

t �. In this case, Ht
t gets exactly � 2rt

t � elements.
Now suppose |T | < � 2rt

t �. First observe that Ht
⊥ and T are disjoint. Since all

strings not in Ht
i , i = 1, . . . , t − 1 belong to either Ht

⊥ or T , it follows that

|Ht
⊥| + |T | = 2rt − (t − 1) ·

⌊
2rt

t

⌋

≥
⌊

2rt

t

⌋

.

Sampling in Space Restricted Settings 493

Therefore, |Ht
⊥| is at least � 2rt

t �−|T |, and Step 4(i) in this case can be executed.
Clearly, |Ht

t | becomes � 2rt

t � as well. Finally,

|Ht
⊥| = 2rt − t ·

⌊
2rt

t

⌋

≤ 2rt − t

(
2rt

t
− 1

)

= t ≤ ε · 2rt ,

where the last inequality follows from the definition of rt. ��

Space Complexity. Note that the use of the sets Ht
i in our algorithm was just

for sake of clarity. We need not maintain these sets explicitly. For the current
random string x (at time t), we just need to keep track of the set Ht

i to which
it belongs – call this set L(x) (the location of x). In fact, not only we will keep
track of L(x), but we will also keep track of the rank of x in the set L(x) – recall
that the sets Ht

i are ordered lists, and so, the rank of an element is its position
in this order. In addition, we will also keep track of |Ht

i | for i ∈ {1, ..., t} ∪ {⊥}.
Note that this includes saving only two numbers since |Ht

1| = ... = |Ht
t |. The

pseudocodes of our algorithms for implementation purposes are given in the full
version of this paper.

Lemma 5. For every time t, the location and the rank of the current random
string xt can be maintained using O(log t

ε) space.

Proof. Suppose the statement is true for t − 1, and say, xt−1 ∈ Ht−1
i . During

Double(t), we will append a random string y ∈ {0, 1}rt−rt−1 to xt−1, i.e., xt =
yxt−1. For every string preceding xt−1 in Ht−1

i , we will add 2rt−rt−1 strings to
Ht

i . Hence, one can easily determine the rank of xt in Ht
i . Using this fact, we

can check whether xt gets transferred to T or not during Step 1 of Chop(t).
Moreover, since we know the size of the sets Ht

i (at the beginning of Step 1), we
can even calculate the rank of t in T . Since we also know the size of Ht

⊥, we can
check if xt gets transferred to Ht

t or Ht
⊥ in Step 4 (and its rank in this set). The

space needed by the algorithm is proportional to rt, which is O(log t
ε). ��

Running Time. Finally, we analyse the running time of the algorithm after n
time steps. The total number of iterations of While loop across all invocations
of Double until time step n is at most rn, i.e., O(log n

ε). The time taken by
Chop(t) is proportional to constant number of arithmetic operations – Step 1
is constant number of operations. If the string happens to be in T , its rank
can be computed using constant number of operations, and similarly for Step
4. Therefore, the total running time till time n is O(n + log n

ε). However, the
running time of Double per unit time step can be more than a constant. It is
not difficult to see that except for time step t = 1 (when we need to initialise
r1 = �log 4

ε� etc.) and t = 2 (when r2 ≤ r1 +3), rt+1 is at most rt +2. Therefore,
except for time step t = 1, the running time per time step is proportional to a
constant number of arithmetic operations.

Note that in the above analysis, the running time is in terms of the number
of arithmetic operations. However, as n grows, the number of bit operations

494 A. Bhattacharya et al.

is a more relevant measure. Since at each time step, the arithmetic operations
are over numbers of size O(log n

ε)-bits, the total running time in terms of bit

operations will be O
((

log n
ε

)2 · (n + log n
ε)

)
and the per item running time will

be O
(
(log (i/ε))2

)
(w.r.t. the ith item).

The techniques in this section generalises to weighted sampling. The analysis
may be found in the full version of this paper.

Acknowledgments. RJ and AK would like to thank Karl Bringmann for discussion
on Succinct Sampling. They would also like to thank the Indo-German IMPECS pro-
gram for making the interaction possible.

References

[BDM02] Babcock, B., Datar, M., Motwani, R.: Sampling from a moving window
over streaming data. In: Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2002. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, pp. 633–634 (2002)

[BL13] Bringmann, K., Larsen, K.G.: Succinct sampling from discrete distributions.
In: Proceedings of the Forty-fifth Annual ACM Symposium on Theory of
Computing, STOC 2013, pp. 775–782. ACM, New York (2013)

[BP12] Bringmann, K., Panagiotou, K.: Efficient sampling methods for discrete
distributions. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.)
ICALP 2012, Part I. LNCS, vol. 7391, pp. 133–144. Springer, Heidelberg
(2012)

[ES06] Efraimidis, P.S., Spirakis, P.G.: Weighted random sampling with a reservoir.
Information Processing Letters 97(5), 181–185 (2006)

[JKS14] Jaiswal, R., Kumar, A., Sen, S.: A simple D2-sampling based PTAS for
k-means and other clustering problems. Algorithmica 70(1), 22–46 (2014)

[Knu81] Knuth, D.E.: The Art of Computer Programming, vol. 2. Addison-Wesley
(1981)

[KP79] Kronmal, R.A., Peterson Jr, A.V.: On the alias method for generating ran-
dom variables from a discrete distribution. The American Statistician 33(4),
214–218 (1979)

[Li94] Li, K.-H.: Reservoir-sampling algorithms of time complexity o(n(1 +
log N/n)). ACM Trans. Math. Software 20(4), 481–493 (1994)

[POS07] Park, B.-H., Ostrouchov, G., Samatova, N.F.: Sampling streaming data with
replacement. Computational Statistics and Data Analysis 52(2), 750–762
(2007)

[Vit84] Vitter, J.S.: Faster methods for random sampling. Comm. ACM 27(7),
703–718 (1984)

[Vit85] Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Software
11(1), 37–57 (1985)

[Wal74] Walker, A.J.: New fast method for generating discrete random numbers with
arbitrary frequency distributions. Electronics Letters 10(8), 127–128 (1974)

Entropy of Weight Distributions of Small-Bias
Spaces and Pseudobinomiality

Louay Bazzi(B)

ECE Department, American University of Beirut, Beirut, Lebanon
louay.bazzi@aub.edu.lb

Abstract. A classical bound in information theory asserts that small
L1-distance between probability distributions implies small difference in
Shannon entropy, but the converse need not be true. We show that if
a probability distribution on {0, 1}n has small-bias, then the converse
holds for its weight distribution in the proximity of the binomial distri-
bution. Namely, we argue that if a probability distribution μ on {0, 1}n

is δ-biased, then ‖μ − binn‖2
1 ≤ (2 ln 2)(nδ + H(binn) − H(μ)), where

μ is the weight distribution of μ and binn is the binomial distribution
on {0, . . . , n}. We use this relation to study the notion of pseudobino-
miality: we call a probability distributions on {0, 1}n pseudobinomial if
the weight distribution of each of its restrictions and translations is close
to the binomial distribution. We show that, for spaces with small bias,
the pseudobinomiality error in the L1-sense is equivalent to that in the
entropy-difference-sense. We also study the notion of average case pseu-
dobinomiality and the resulting questions on the pseudobinomiality of
sums of independent small-bias spaces.

Keywords: Pseudorandomness · Small-bias · Shannon entropy · Pseu-
dobinomiality · Fourier analysis

1 Introduction

The ultimate goal of pseudorandomness is to construct low complexity PRGs
which look random to all small circuits. Without hardness assumptions [9,17],
asymptotically optimal seed lengths are not known even for simple models such
as depth-2 circuits and log-space computations. Among the simplest desirable
properties of a PRG are the almost k-wise independence property and the
stronger small-bias property [15]. Small-bias probability distributions have vari-
ous applications in pseudorandomness (e.g., [5,13,19] and the references therein).
A probability distribution on {0, 1}n has small bias if it looks like the uniform
distribution to all parity functions on subsets of the n input variables. More for-
mally, consider the characters {χz}z∈{0,1}n of the abelian group structure Z

n
2 on

{0, 1}n: χz(x) def= (−1)
∑

i xizi . A probability distribution μ on {0, 1}n is δ-biased
if |Eμχz| ≤ δ for each nonzero z ∈ {0, 1}n [15]. Probability distributions with
the δ-bias property and support size

(
n
δ

)Θ(1) can be explicitly constructed from
linear codes [1,15].
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 495–506, 2015.
DOI: 10.1007/978-3-319-21398-9 39

496 L. Bazzi

The original question which motivated the work reported in this paper is
the problem of explicitly constructing small subsets S ⊂ {0, 1}n such that for
each nonempty subset of indices I ⊂ {1, . . . , n} and each translation vector
u ∈ {0, 1}I , the weight distribution of the translation (over F2) by u of the
restriction of S to {0, 1}I looks like the binomial distribution on {0, . . . , |I|}. We
call S ε-pseudobinomial if the distance from the binomial distribution is at most
ε in the L1-sense, for each I and u.

The ε-pseudobinomiality property is a natural extension of the ε-bias prop-
erty. The more general problem of constructing PRGs for combinatorial shapes
was studied by Gopalan et al. [7]. Without hardness assumptions, it is an open
problem to construct ε-pseudobinomial spaces of size polynomial in n and 1

ε , i.e.,
of seed length O(log n

ε).
Nisan generator for log-space [16] gives an n−c-pseudobinomial space of seed

length O(log2 n), for each constant c. The work of Gopalan et al. [7] leads to an
ε-pseudobinomial space of seed length O(log n+log2 1

ε), which matches the seed
length of Nisan generator in the inverse polynomial error regime and improves
on it in the subpolynomoial regime. Independently and concurrently with the
present paper, De [6] constructed a PRG for combinatorial sums, which results
in an ε-pseudobinomial space of seed length O(log3/2 n

ε). Independently and
concurrently also, Gopalan, Kane and Meka [8] constructed an ε-pseudobinomial
space of seed length O(log n

ε logO(1) log n
ε).

A related problem was studied by Lovett et al. [13] and independently by
Meka and Zuckerman [14] who constructed an O(log n) seed-length PRG which
fools mod-M gates, where M = O(1) is a power of a prime. Another related work
is by Rabani and Shpilka [18], who constructed explicit polynomial complexity
ε-nets for threshold functions.

In the remainder of this introductory section, we summarize our results and
outline the rest of the paper in Section 1.1, then we give some preliminaries in
Section 1.2.

1.1 Contribution

Motivated by the above question, we present in this paper a systematic study
of pseudobinomial spaces. To get stared, we ignore in Section 2 translations and
restrictions, and in general we study the weight distributions μ of probability dis-
tributions μ on {0, 1}n compared to the binomial distribution binn on {0, . . . , n}.
We show that if μ has small bias, then it is enough to guarantee that the entropy
H(μ) of its weight distribution is close the entropy H(binn) of the binomial in
order to conclude that μ is close to binn in the L1-sense. In particular, we show
that ‖μ − binn‖21 ≤ (2 ln 2)(nδ + H(binn) − H(μ)). The key result behind this
bound is a lemma which asserts the non-positivity of all the Fourier coefficients
of the log-binomial function L : {0, 1}n → R given by L(x) = lg binn(|x|). We
also give a specific applications of the negative spectrum lemma to the weight
entropy of even weight strings.

Entropy of Weight Distributions of Small-Bias Spaces and Pseudobinomiality 497

In Section 3, we study the notion of pseudobinomiality and we conclude that,
for spaces with n−Θ(1)-small bias, the pseudobinomiality error in the L1-sense is
equivalent to that in the entropy-difference-sense, in the n−Θ(1)-error regime.

In Section 4, we study the minimum weight entropy Hmin(μ) of a probability
distribution μ on {0, 1}n, which we define as the minimum Shannon entropy of
the weight distribution of a translation of μ. To compare Hmin(μ) to H(binn),
we study the related notion of average weight entropy Havg(μ), which we define
as the average entropy of the weight distribution of a random translation of
μ. Thus, Hmin(μ) ≤ Havg(μ). We show that Havg(μ) ≤ H(binn), where the
inequality is strict unless μ is the uniform distribution. In Section 5, we study
the notion of average case pseudobinomiality, and we conclude that for spaces
with n−Θ(1)-small bias, Havg(μ) is n−Θ(1)-close to H(binn). In Section 6, we
study local pseudobinomiality and we show that it follows from small bias.

Finally, we discuss in Section 7 resulting questions on the pseudobinomi-
ality of sums of independent small-bias spaces. Reingold and Vadhan asked
whether the sum of two independent n−O(1)-biased spaces fools log-space [14].
Since any distribution which fools log-space must be pseudobinomial, a nat-
ural question is whether the sum of any two independent δ-biased spaces is
O((δn)Θ(1))-pseudobinomial. Using the above results, we show that this ques-
tion is equivalent to the weaker question of whether for all independent δ-
biased random vectors X,Y ∈ {0, 1}n, the entropy of the weight of the sum
H(|X + Y |) ≥ min{H(|X|),H(|Y |)} − O((nδ)Θ(1)).

Due to space limitations, we sketch in this paper the key ideas behind the
proofs of some of the above claims. The complete proofs are in the full version
of the paper [3].

1.2 Preliminaries

We summarize in this section basic Fourier analysis and information theory
preliminaries used in this paper.

Fourier Transform Preliminaries. The study of boolean functions using
harmonic analysis methods dates back to the 70’s (e.g., [11,12]). Identify the
hypercube {0, 1}n with the group Z

n
2 . The characters of the abelian group Z

n
2

are {χz}z∈Z
n
2
, where χz : {0, 1}n → {−1, 1} is given by χy(x) = (−1)

∑n
i=1 xiyi .

Consider the vector space L({0, 1}n) of complex1 valued functions on {0, 1}n

endowed with the inner product 〈, 〉 associated with the uniform distribution Un

on {0, 1}n: 〈f, g〉 = EUn
fg = 2−n

∑
x f(x)g(x), where ¯ is the complex conju-

gation operator. The characters {χz}z form an orthonormal basis of L({0, 1}n),
i.e., for each z, z′ ∈ {0, 1}n, 〈χz, χz′〉 = 0 if z
= z′ and 〈χz, χz〉 = 1.

If f ∈ L({0, 1}n), its Fourier transform f̂ ∈ L({0, 1}n) is given by the coeffi-
cients of the unique expansion of f in terms of {χz}z:

f(x) =
∑

z f̂(z)χz(x) and f̂(z) = 〈f, χz〉 = EUn
fχz.

1 Except for Lemma 4, all the objects in this paper are over the reals.

498 L. Bazzi

We have ̂̂
f = 2nf and 〈f, g〉 = 2n〈f̂ , ĝ〉 =

∑
z f̂(z)ĝ(z). A special case of the

latter identity is Parseval’s equality: EUn
|f |2 =

∑
z |f̂(z)|2 = ‖f̂‖22.

Weight Distributions. Throughout the paper, n ≥ 1 is an integer. If
x ∈ {0, 1}n, the weight of x, which we denote by |x|, is the number of nonzero
coordinates of x. If μ is a probability distributions on {0, 1}n, we denote the
weight distribution of μ by μ. That is, μ is the probability distribution on
[0 : n] def= {0, 1, . . . , n} given by μ(w) = μ(x ∈ {0, 1}n : |x| = w). The uni-
form distribution on {0, 1}n is denoted by Un and the binomial distribution on

[0 : n] is denoted by binn. Thus, binn(w) = (n
w)
2n for all w ∈ [0 : n], and binn = Un.

Information Theory Preliminaries. Let X be a finite set and γ1 and γ2 be
two probability distributions on X . In our setup, we are interested in X = [0 : n].
The similarity between γ1 and γ2 is captured by various measures, some of which
are the L1 distance, the relative entropy and the much weaker notions of distance
in entropy. The L1 distance is also called total variation since

‖γ1 − γ2‖1 def=
∑

w |γ1(w) − γ2(w)| = 2maxA⊂X |γ1(A) − γ2(A)|. (1)

The relative entropy of γ1 with respect to γ2 is given by

D(γ1||γ2) def=
∑

w

γ1(w) lg
γ1(w)
γ2(w)

,

where lg = log2 is the base-2 logarithm. The relative entropy is not symmetric
but it satisfies the nonnegativity property D(γ1||γ2) ≥ 0 with equality iff γ1 = γ2.
If γ is a probability distributions on X , the Shannon entropy of γ is defined as
H(γ) def= −

∑
w γ(w) lg γ(w).

We have the following classical relations between L1 distance, relative entropy
and distance in entropy.

Lemma 1 ([4]). If γ1 and γ2 are two probability distributions on a finite set
X , then

(a) (Pinsker’s bound) ‖γ1 − γ2‖21 ≤ (2 ln 2)D(γ1||γ2)
(b) (Entropy-difference bound) If ε = ‖γ1 − γ2‖1 ≤ 1

2 , then |H(γ1) −
H(γ2)| ≤ ε lg |X |

ε . Note that for X = [0 : n] and ε = n−c, where c > 0
is constant, we have ε lg |X |

ε = O(n−c log n).

See [4] for a general information theory reference. The entropy is a function of
the probability distribution, but in some cases it is convenient to argue on the
random variables. If A is a random variable taking values in a finite set, its
entropy H(A) def= H(μA), where μA is the probability distribution of A. If B is
another random variable taking values in a finite set, for each value of b of B,
H(A|B = b) def= H(μA|B=b), where μA|B=b is the probability distribution of A

Entropy of Weight Distributions of Small-Bias Spaces and Pseudobinomiality 499

given B = b. The conditional entropy of A given B is H(A|B) def= Eb∼μB
H(A|B =

b). The mutual information is I(A;B) def= H(A) − H(A|B). The joint entropy
is H(A,B) def= H(μA,B), where μA,B is the joint probability distributions of A
and B. The basic properties of mutual information are: I(A;B) = I(B;A) =
H(A,B) − H(A) − H(B) ≥ 0.

2 Entropy of Weight Distributions and Small-Bias

We are interested in probability distributions on [0 : n] which are weight distri-
butions μ of probability distributions μ on {0, 1}n. We would like to study the
conditions under which μ is close to the binomial distribution binn. The entropy-
difference bound (Lemma 1.b) asserts that small L1-distance between probability
distributions implies small difference in entropy, but the converse need not be
true. We show in this section that if μ has small-bias, then the converse holds for
its weight distribution μ in the proximity of the binomial distribution (Theorem
1). The key result behind this bound is the negative spectrum lemma (Lemma
3). We conclude this section with a specific applications of the negative spectrum
lemma: we show that the entropy of the weight of even weight strings is strictly
larger than that of odd weight strings if n is even.

The maximum entropy of a probability distribution on [0 : n] is lg (n + 1) and
it is achieved by the uniform distribution U[0:n] on [0 : n]. The entropy H(binn)
of the binomial distribution is is approximately half the maximum entropy:

Lemma 2 (Entropy of the binomial [10]). H(binn) = 1
2 lg πen

2 + O(1
n).

Thus, H(binn) =
(

1
2 + Θ

(
1

lg n

))
H(U[0:n]).

It is not hard to see that there are probability distributions μ on {0, 1}n such
that |H(binn) − H(μ)| is as small as zero but ‖binn − μ‖1 = Θ(1). We show
that if a probability distribution μ on {0, 1}n has small bias, then it is enough to
guarantee that H(binn) − H(μ) is small to conclude that ‖μ − binn‖1 is small.

Theorem 1 (Entropy-difference converse bound). Let μ be a probability
distributions on {0, 1}n. If μ is δ-biased, then

D(μ||binn) ≤ nδ + H(binn) − H(μ).

Hence, ‖μ− binn‖21 ≤ (2 ln 2)(nδ +H(binn)−H(μ)) by Pinsker’s bound (Lemma
1.a).

Accordingly, we obtain from the nonnegativity of relative entropy the following
corollary.

Corollary 1 (Maximum entropy of the weight distribtions of small-
bias spaces). Let μ be a probability distribution on {0, 1}n. If μ is δ-biased,
then H(μ) ≤ H(binn) + nδ.

500 L. Bazzi

That is, unlike arbitrary probability distribution on {0, 1}n, H(μ) cannot be
significantly higher than the entropy of the binomial if it has small bias. For an
arbitrary μ, the entropy of its weight distribution can be as large as H(U[0:n]) =
lg (n + 1) ≈ 2H(binn) (e.g., let μ be uniformly supported by a subset S ⊂ {0, 1}n

such that for each w ∈ [0 : n], S contains exactly one string of weight w).
The key behind the entropy-difference converse bound is the following lemma.

Lemma 3 (Negative spectrum lemma). Let L : {0, 1}n → R be log-binomial
function given by: L(x) = lg binn(|x|). Then the Fourier transform L̂ of L is
non-positive: L̂(z) ≤ 0 for each z ∈ {0, 1}n. Moreover, L̂(z) = 0 if |z| odd, and
L̂(z) < 0 if z
= 0 and |z| even.

The origin of the log-binomial function in our context is the equation

D(μ||binn) = EUn
L − EμL + H(binn) − H(μ),

which holds for any probability distribution μ on {0, 1}n and follows from the
definitions of D,H, and L. The negative spectrum lemma implies that ‖L̂‖1 is
small, namely ‖L̂‖1 = −

∑
z L̂(z) = −L(0) = − lg binn(0) = n, which implies

the entropy-difference converse bound since |EUn
L − EμL| ≤ ‖L̂‖1δ.

The proof of the negative spectrum lemma is analytical in nature. It boils
down to showing that if m ≥ 2 is even and a, b ≥ 0 are integers, then

βm(a, b) def=
m∑

w=0

(−1)w

(
m

w

)

lg
(

m + a + b

w + a

)

< 0.

At a high level, we do this by first showing that limc→∞ βm(c, c) = 0 using de
Moivre-Laplace normal approximation of the binomial. Then we argue that βm

is strictly increasing in the sense that βm(a, b) < βm(a + a′, b + b′) for each
a, b, a′, b′ ≥ 0 such that not both a′ and b′ are zero. We derive the latter from
the inequality

∑
w(−1)w

(
m
w

)
lg (w + i) < 0, for all i ≥ 0 and even m ≥ 2, which

we establish by examining the Taylor series of the logarithm and the moment
generating function gs : {0, 1}m → R given by gs(x) = (−1)|x|es(|x|−m/2).

Specific Application of the Negative Spectrum Lemma: It follows from
the negative spectrum lemma that the entropy of the weight distribution of even
weight strings is strictly larger than that of odd weight strings if n is even.

Corollary 2 (Weight entropy of the even weight strings). Let En ∈
{0, 1}n be a uniformly random vector of even weight and On ∈ {0, 1}n a uni-
formly random vector of odd weight. Then H(|En|) = H(|On|) if n is odd, and
H(|En|) > H(|On|) if n is even

Entropy of Weight Distributions of Small-Bias Spaces and Pseudobinomiality 501

3 Pseudobinomiality

We study in this section the notion of pseudobinomiality in the L1 and
entropy senses. We conclude from the entropy-difference bound and the entropy-
difference converse bound that for spaces with n−Θ(1)-small bias, the two notions
are equivalent in the n−Θ(1)-error regime (Corollary 3).

First we need some notations on translations and restrictions. If μ is a prob-
ability distribution on {0, 1}n and u ∈ {0, 1}n is a translation vector, define the
translation σuμ of μ by u to be the probability distribution on {0, 1}n given
by (σuμ)(x) = μ(x + u). If I ⊂ [n] is nonempty, the restriction μI of μ on I
is the probability distribution on {0, 1}I given by μI(y) = μ(x : xI = y). We
also use the previously defined notations on {0, 1}n for probability distributions
on {0, 1}I . For instance, bin|I| is the binomial distribution on [0 : |I|], and if
u ∈ {0, 1}I , then σuμI is the weight distribution of the translation σuμI of the
restriction μI of μ.

Definition 1 (Pseudobinomiality in the L1-sense). A probability distri-
bution μ on {0, 1}n is called ε-pseudobinomial in the L1-sense if the weight
distribution of each translation of a restriction of μ is ε-close to the binomial
distribution in the L1-sense. That is, μ is ε-pseudobinomial in the L1-sense if
for each nonempty set of indices I ⊂ [n] and each translation vector u ∈ {0, 1}I ,
we have ‖σuμI − bin|I|‖1 ≤ ε.

It follows from the total variation equation (1) that μ is ε-pseudobinomial in
L1-sense iff 2|σuμI(A) − bin|I|(A)| ≤ ε, for all nonempty I ⊂ [n], all A ⊂ I
and u ∈ {0, 1}I . The ε-bias property corresponds to the special case when A is
the subset of even numbers in [0 : |I|]. Accordingly, ε-pseudobinomiality in the
L1-sense implies ε-bias. It is a natural extension of the ε-bias property, which is
also invariant under translations and preserved by restrictions.

Similarly, we can define pseudobinomiality in the L∞-sense and the L2-sense.
They are both equivalent to pseudobinomiality in the L1 sense in the n−Θ(1)-
error regime 2 . In more classical pseudorandomness terms, ε-pseudobinomiality
in the L∞-sense is equivalent to ε-fooling3 all functions fa,b : {0, 1}n → {0, 1}
given by fa,b(x) = 1 iff

∑
i aixi = b, where a ∈ {0,±1}n and b ∈ Z. Thus,

constructing ε-pseudobinomial spaces is a special case of the problem of of con-
structing PRGs for combinatorial shapes considered by Gopalan et al. [7].

A related work is that of Lovett et al. [13] and Meka and Zuckerman [14] who
gave an O(log n) seed-length PRG which fools mod-M gates, where M = O(1)
is a power of a prime. The framework of Mod-M gates allows the coefficients
{ai}i to take arbitrary values mod M , but the restriction M = O(1) makes pseu-
dobinomiality more difficult to achieve. Another related work is by Rabani and

2 With the Lp pseudobinomiality error of μ defined as εp(μ)
def
= minI,u ‖σuμI−bin|I|‖p,

we have ε∞(μ) ≤ ε2(μ) ≤ ε1(μ) ≤√(n + 1)ε2(μ) ≤ (n + 1)ε∞(μ).
3 A probability distribution μ on {0, 1}n ε-fools a function f : {0, 1}n → {0, 1} if

|Eµf − EUnf | ≤ ε.

502 L. Bazzi

Shpilka [18], who constructed explicit polynomial complexity ε-nets for thresh-
old functions. A threshold function ta,b : {0, 1}n → {0, 1} given by ta,b(x) = 1
iff

∑
i aixi ≤ b, where a ∈ R

n and b ∈ R. The result of [18] is an explicit con-
striction of a subset S ⊂ {0, 1}n of size polynomial in n and 1

ε such that for all
a ∈ R

n and b ∈ R, if EUn
ta,b > ε, then ESta,b
= 0. In the context of thresh-

old functions, n−Θ(1)-pseudobinomiality is equivalent to n−Θ(1)−fooling binary
threshold functions ta,b corresponding to the case when a ∈ {0,±1}n and b ∈ Z.

We define below pseudobinomiality in the entropy-sense.

Definition 2 (Minium weight entropy). If μ is a probability distribution on
{0, 1}n, define the min-weight entropy of μ: Hmin(μ) = minu∈{0,1}n H(σuμ),
i.e., Hmin(μ) is the minimum Shannon entropy of the weight distribution of a
translation of μ.

Definition 3 (Pseudobinomiality in the entropy-sense). A probability dis-
tribution μ on {0, 1}n is called ε-pseudobinomial in the entropy-sense if for each
nonempty index subset I ⊂ [n], we have Hmin(μI) ≥ H(bin|I|) − ε.

It follows from the entropy-difference bound (Lemma 1.b) and the entropy-
difference converse bound (Theorem 1) that for spaces with n−Θ(1)-small bias,
pseudobinomiality in the L1-sense is equivalent to pseudobinomiality in the
entropy-sense in the n−Θ(1)-error regime.

Corollary 3 (Pseudobinomiality: L1 and entropy equivalence). let μ be
a δ-biased probability distribution μ on {0, 1}n and ε > 0. Then:

a) If ε ≤ 1/2 and μ is ε-pseudobinomial in the L1-sense, then it ε lg n+1
ε -

pseudobinomial in the entropy-sense.
b) If μ is ε-pseudobinomial in entropy-sense then it is

√
(2 ln 2)(nδ + ε)-pseudo

binomial in the L1-sense.

4 Min-Weight Entropy, Average-Weight Entropy, and the
Binomial Entropy

We elaborate in this section on the notion of min-weight entropy compared to
the binomial entropy, and we study the related notion of average-weight entropy.
There are distributions μ on {0, 1}n such that the weight distribution μ of μ is
the uniform distribution on [0 : n], and hence H(μ) = log (n + 1) ≈ 2H(binn).
We note that each probability μ on {0, 1}n has a translation whose weight dis-
tribution has entropy at most H(binn), and hence Hmin(μ) ≤ H(binn). We
argue also that the inequality is strict unless μ is the uniform distribution Un

on {0, 1}n. To do so, we study the notion of average-weight entropy which we
obtain by replacing the min with an average and we can interpret in terms of
conditional entropy. We compare H(binn) to the average-weight entropy, which
is an upper bound on the min-weight entropy.

Entropy of Weight Distributions of Small-Bias Spaces and Pseudobinomiality 503

Definition 4 (Average-weight entropy). If μ be a probability distribution
on {0, 1}n, define the average-weight entropy Havg(μ) of μ to be the average
Shannon entropy of the weight distribution of a random translation of μ, i.e.,
Havg(μ) def= Eu∼Un

H(σuμ) = H(|X + U | | U), where X ∼ μ and U ∼ Un are
independent.

By definition, Hmin(μ) ≤ Havg(μ). On the other hand, H(binn) − Havg(μ)
is the mutual information between the weight |X + U | of X + U and U :

H(binn) − Havg(μ) = H(|X + U |) − H(|X + U | | U) = I(|X + U |;U) ≥ 0.

We argue that the inequality is strict unless μ is the uniform distribution.

Theorem 2 (Min-weight entropy, avg-weight-entropy, and the bino-
mial entropy). Let μ be a probability distribution on {0, 1}n. Then Hmin(μ) ≤
Havg(μ) ≤ H(binn), where the inequality Havg(μ) ≤ H(binn) is strict unless
μ is the uniform distribution Un on {0, 1}n. That is, Un is the unique maxi-
mum min-weight entropy distribution and the unique maximum average-weight
entropy distribution.

5 Average Case Pseudobinomiality

We study in this section average-case pseudobinomiality. We show that for spaces
with small bias, the weight distribution of a random translation of the space is
close the binomial distribution in both the L1 and entropy senses. To do so, we
start with the L2 distance.

Theorem 3 (Average case pseudobinomiality). Let μ be a δ-biased proba-
bility distribution on {0, 1}n, then

a) Eu∼Un
‖σuμ − binn‖22 ≤ δ2

b) Eu∼Un
‖σuμ − binn‖1 ≤ δ

√
n + 1

c) I(|X + U |;U) = H(binn) − Havg(μ) = O(nδ +
√

nδ lg 1
δ), where X ∼ μ and

U ∼ Un are independent, and I is the mutual information function.

Thus, if the bias is small, almost all translation of μ have weight distributions
close to the binomial distribution. In this sense, small-bias implies average case
pseudobinomiality.

The key behind the average L2-bound (a) is the following lemma which is
inspired by an argument in the paper of Viola [19] (the argument used to estab-
lish Lemma 3 in [19]).

Lemma 4 (Variance bound). If f : {0, 1}n → C and μ is a δ-biased probabil-
ity distribution on {0, 1}n, then Eu∼Un

|Eσuμf−EUn
f |2 ≤ δ2(EUn

|f |2−|EUn
f |2).

The proof of the variance bound is based on Parseval’s equality. We derive (a)
by applying the variance bound to f = Iw for all w ∈ [0 : n], where Iw :
{0, 1}n → {0, 1} is the weight indicator function given by Iw(x) = 1 iff |x| = w.
The average L1-bound (b) follows from (a) via Jensen’s inequality. The average-
weight entropy bound (c) follows from (b), Jensen’s inequality and the negative
spectrum lemma.

504 L. Bazzi

6 Local Pseudobinomiality

It is not hard to show that small-bias does not imply pseudobinomiality in the
L1-sense or the entropy-sense even if the bias is exponentially small, but it is
enough to guarantee local pseudobinomiality on small subsets of indices.

Lemma 5. There exists a 2−Ω(n)-biased probability distribution μ on {0, 1}n

such that ‖μ − binn‖1 = Θ(1) and H(binn) − H(μ) = Ω(1).

Lemma 6 (Local pseudobinomiality). Let k ≥ 1 and μ be a δ-biased proba-
bility distribution μ on {0, 1}n. Then for each nonempty I ⊂ [n] of size |I| ≤ k,
and each u ∈ {0, 1}I , we have ‖σuμI − bin|I|‖1 ≤ 2δ2k/2.

7 Sum of Spaces Conjectures

The work of Viola [19] suggests exploring the derandomization capabilities of
small-bias spaces. Reingold and Vadhan asked whether the sum of two indepen-
dent n−O(1)-biased spaces fools log-space [14]. Since any distribution which fools
log-space must be pseudobinomial, a natural question is whether the sum of two
independent δ-biased spaces is O((δn)Θ(1))-pseudobinomial.

If X,Y ∈ {0, 1}n are independent random vectors distributed according to
μX and μY , consider the sum X + Y over F2. The probability distribution of
X + Y is the convolution μX ∗ μY : (μX ∗ μY)(z) =

∑
x μX(x)μY (x + z).

Conjecture 1 (Pseudobinomiality of sum). For all independent δ-biased ran-
dom vectors X,Y ∈ {0, 1}n, the sum X + Y is O((nδ)Θ(1))-pseudobinomial in
the L1-sense.

That is, there exist constants a, b, c, n0 > 0, such that for each δ > 0, for each
integer n > n0, and all independent δ-biased random vectors X,Y ∈ {0, 1}n, the
sum X + Y is aδbnc-pseudobinomial in the L1-sense.

Using the above results, we show that Conjecture 1 is equivalent to each of the
following three conjectures.

Conjecture 2 (Entropy of sum). For all independent δ-biased random vectors
X,Y ∈ {0, 1}n, the Shannon entropy of the weight of X + Y satisfies H(|X +
Y |) ≥ H(binn) − O((nδ)Θ(1)).

That is, there exist constants a, b, c, n0 > 0, such that for each δ > 0, for each
integer n > n0, and all independent δ-biased random vectors X,Y ∈ {0, 1}n,
H(|X + Y |) ≥ H(binn) − aδbnc.

Conjecture 3 (Entropy of sum without the binomial: max version). For
all independent δ-biased random vectors X,Y ∈ {0, 1}n,

H(|X + Y |) ≥ max{H(|X|),H(|Y |)} − O((nδ)Θ(1)).

Entropy of Weight Distributions of Small-Bias Spaces and Pseudobinomiality 505

Conjecture 4 (Entropy of sum without the binomial: min version). For
all independent δ-biased random vectors X,Y ∈ {0, 1}n,

H(|X + Y |) ≥ min{H(|X|),H(|Y |)} − O((nδ)Θ(1)).

Lemma 7. Conjectures 1,2,3 and 4 are equivalent.

If A and B are real valued random variables (taking values in a finite set for
instance), a simple conditioning argument show that

H(A + B) ≥ max{H(A),H(B)}.

Unfortunately, the picture is more complex in the context of weight distributions
and mod-2 sums; we show that for highly biased X or Y , the entropy H(|X+Y |)
can be smaller than H(|X|) and H(|Y |).

Lemma 8. For infinitely many values of n, there exists a coset S ⊂ F
n
2 of an

F2-linear code such that H(|X|) = H(|Y |) = Θ(log n) but H(|X + Y |) = Θ(1),
where X and Y are random vectors chosen independently and uniformly from S.

Lemma 9. . There exist a 2−Ω(n)-biased random vector X ∈ {0, 1}n and a
deterministic vector Y ∈ {0, 1}n such that H(|X + Y |) = H(|X|) − Ω(1).

The equivalence between Conjectures 1 and 2 follows from the equivalence
between pseudobinomiality in the L1-sense and the entropy-sense, the fact that
small-bias is preserved by restrictions and is invariant under translations, and
the local pseudobinomiality of small-bias spaces. In Conjectures 3 and 4, we get
rid of the binomial distribution using Theorem 3.c, which says that the average-
weight entropy of a small-bias space is a good approximation of the entropy
of the binomial distribution. Namely, to show that Conjecture 2 follows from
Conjecture 4, we argue using Theorem 3.c that there is u ∈ {0, 1}n such that
both H(|X + u|) and H(|Y + u|) are close to H(binn), and hence by Conjec-
ture 4 applied to X + u and Y + u, H(|X + Y |) = H(|(X + u) + (Y + u)|) is
close to H(binn). The fact that Conjecture 3 follows from Conjecture 2 is based
on Corollary 1, which asserts that the entropy of the weight distribution of a
probability distribution on {0, 1}n with small bias cannot significantly exceed
H(binn).

Finally, we note that, by conditioning on Y , the above conjectures follow
from the following (possibly stronger) conjecture.

Conjecture 5 (Lower sandwiching the weight-entropy function). For any
δ-biased random vector X ∈ {0, 1}n, the weight-entropy function h : {0, 1}n → R

given by h(u) def= H(|X + u|) has a lower sandwiching function g ≤ h such that
EUn

(h − g) = O((nδ)Θ(1)) and δ‖ĝ‖1 = O((nδ)Θ(1)).

Lemma 10. Conjecture 5 implies Conjecture 2.

Acknowledgments. The author would like to thank Ibrahim Abou-Faycal for helpful
discussions.

506 L. Bazzi

References

1. Alon, N., Goldreich, O., Hastad, J., Peralta, R.: Simple Constructions of Almost
k-wise Independent Random Variables. Random Structures and Algorithms 3(3),
289–304 (1992)

2. Azar, Y., Motwani, R., Naor, J.: Approximating probability distributions using
small sample spaces. Combinatorica 18(2), 151–171 (1998)

3. Bazzi, L.: Entropy of weight distributions of small-bias spaces and pseudobinomial-
ity. Submitted. Available at Electronic Colloquium on Computational Complexity,
Report TR14-112 (2014)

4. Cover, T., Thomas, J.: Elements of Information Theory, 2nd edn. Wiley (2006)
5. De, A., Etesami, O., Trevisan, L., Tulsiani, M.: Improved pseudorandom genera-

tors. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010. LNCS,
vol. 6302, pp. 504–517. Springer, Heidelberg (2010)

6. De, A.: Beyond the central limit theorem: asymptotic expansions and pseu-
dorandomness for combinatorial sums. Available at Electronic Colloquium on
Computational Complexity, Report TR14-125 (2014)

7. Gopalan, P., Meka, R., Reingold, O., Zuckerman, D.: Pseudorandom generators
for combinatorial shapes. SIAM Journal of Computing 42, 1051–1076 (2013)

8. Gopalan, P., Kane, D., Meka, R.: Pseudorandomness for concentration bounds and
signed majorities. arXiv:1411.4584 [cs.CC] (2014)

9. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits:
derandomizing the XOR lemma. In: Proc. 29th Annual ACM Symposium on the
Theory of Computing, pp. 220–229 (1997)

10. Jacquet, P., Szpankowski, W.: Entropy computations via analytic depoissonization.
IEEE Transactions on Information Theory. 45(4), 1072–1081 (1999)

11. Kahn, J., Kalai, G., Linial, N.: The influence of variables on Boolean functions.
In: Proc. of the 29th Annual Symposium on Foundations of Computer Science,
pp. 68–80 (1988)

12. Lechner, R.J.: Harmonic analysis of switching functions. In: Recent Development
in Switching Theory, pp. 122–229. Academic Press (1971)

13. Lovett, S., Reingold, O., Trevisan, L., Vadhan, S.: Pseudorandom bit generators
that fool modular sums. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) Approx-
imation, Randomization, and Combinatorial Optimization. LNCS, vol. 5687,
pp. 615–630. Springer, Heidelberg (2009)

14. Meka, R., Zuckerman, D.: Small-bias spaces for group products. In: Dinur, I.,
Jansen, K., Naor, J., Rolim, J. (eds.) Approximation, Randomization, and Combi-
natorial Optimization. LNCS, vol. 5687, pp. 658–672. Springer, Heidelberg (2009)

15. Naor, J., Naor, M.: Small bias probability spaces: efficient constructions and
applications. SIAM J. on Computing 22(4), 838–856 (1993)

16. Nisan, N.: Pseudorandom generators for space-bounded computation. Combina-
torica 12(4), 449–461 (1992)

17. Nisan, N., Wigderson, A.: Hardness vs. randomness. In: Proc. 29th IEEE
Symposium on Foundations of Computer Science, pp. 2–11 (1988)

18. Rabani, Y., Shpilka, A.: Explicit construction of a small epsilon-net for lin-
ear threshold functions. In: Proc. 40th Annual ACM Symposium on Theory of
Computing, pp. 649–658 (2009)

19. Viola, E.: The sum of d small-bias generators fools polynomials of degree d. In:
IEEE Conference on Computational Complexity, pp. 124–127 (2008)

http://arxiv.org/abs/1411.4584

Optimal Algorithms for Running Max and Min
Filters on Random Inputs

Hongyu Liang1, Shengxin Liu2(B), and Hao Yuan3

1 Facebook, Inc., Menlo Park, USA
hongyuliang86@gmail.com

2 Department of Computer Science, City University of Hong Kong,
Kowloon Tong, Hong Kong (HK)
shengxliu2-c@my.cityu.edu.hk

3 Bopu Technologies, Shenzhen, China
hao@bopufund.com

Abstract. Given a d-dimensional array and an integer p, the max (or
min) filter is the set of maximum (or minimum) elements within a d-
dimensional sliding window of edge length p inside the array. The current
best algorithm for computing the 1D max (or min) filter, due to Yuan
and Atallah [14], uses 1+o(1) comparisons per sample in the worst case.
As a direct consequence, the d-dimensional max (or min) filter can be
computed in (1 + o(1))d comparisons per sample, and the d-dimensional
max and min filters can be computed simultaneously using (2 + o(1))d
comparisons per sample. Both bounds are the best known results for the
corresponding problems, on both worst-case inputs and independently
and identically distributed (i.i.d.) inputs.

In this paper, we present an algorithm for computing d-dimensional
max and min filters simultaneously on i.i.d. inputs that uses 1.5 + o(1)
expected comparisons per sample. This is the first algorithm for d-
dimensional max and min filters (on i.i.d. inputs) that gets rid of the
dependence on d in (the dominating term of) the number of compar-
isons needed. It is also asymptotically optimal. In particular, for the 1D
case, our algorithm improves the previous best upper bound of 2 + o(1)
to 1.5+o(1). As a by-product of our algorithm, we can also compute the
d-dimensional max (or min) filter on i.i.d. inputs using 1+ o(1) expected
comparisons per sample, which matches the bound for the 1D case.

1 Introduction

Given an array X = (X[1],X[2], · · · ,X[n]) and an integer p, the 1D running
max filter of X is the collection of maximum elements within each window of
length p in X, i.e., maxj∈[i,i+p−1] X[j] for all 1 ≤ i ≤ n − p + 1. By changing
max to min we get the 1D running min filter of X. The d-dimensional max and
min filters can be defined similarly, where the input is a d-dimensional array and

This work was fully supported by a grant from the Research Grants Council of the
Hong Kong Special Administrative Region, China [Project No. CityU 124411].

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 507–520, 2015.
DOI: 10.1007/978-3-319-21398-9 40

508 H. Liang et al.

Fig. 1. Examples of running max/min filters with n = 6 and p = 3. The picture on the
left represents a 1D instance, and that on the right is a 2D example. The maximum
over each red area is an item of the corresponding max filter.

each window is a d-dimensional hypercube of edge length p. (See Figure 1 for
examples of d = 1 and d = 2.)

The running max and min filters correspond to the dilation and erosion
operators over gray-scale images using flat structuring elements, which are fun-
damental operators in the area of morphological image analysis [10]. Thus, the
problem of computing max and min filters has attracted much attention these
years. Following previous work (e.g. [1,5,11]), the efficiency of algorithms for
computing the filters is measured by the number of comparisons per sample,
i.e., the total number of comparisons between input elements made by the algo-
rithm over the number of sample (or output) points. The other computational
costs (e.g., comparisons between indices used in an iteration) are not taken into
account.

It is obvious that the 1D max (or min) filter can be computed using p − 1
comparisons per sample in the näıve way, but this is far from optimal. In fact,
there is an algorithm due to Yuan and Atallah [14] that computes the 1D max
(or min) filter using only 1 + o(1) comparisons per sample, which is optimal up
to the o(1) term. (Here the o(1) term is with respect to p, i.e., it tends to 0 when
p tends to infinity.) A direct consequence is that the d-dimensional max (or min)
filter can be computed in (1 + o(1))d comparisons per sample by applying the
algorithm for the 1D case d times, using a structuring element decomposition
approach [7]. Also, the d-dimensional max and min filters can be computed
simultaneously in (2 + o(1))d comparisons per sample. These are the currently
best known upper bounds for d-dimensional max and min filters, on both worst-
case inputs and independently and identically distributed (i.i.d.) inputs. There
are two natural and interesting questions proposed in the literature:

– (Proposed in [14]) Can we simultaneously compute max and min filters faster
than simply applying the algorithm for max (or min) filter twice?

– (Proposed in [5]) Can we do better in the case of i.i.d. inputs?

1.1 Our Contributions

In this work, we study d-dimensional max and min filters on i.i.d. inputs with
fixed dimension d ≥ 1, and answer both questions above in the affirmative.

Optimal Algorithms for Running Max and Min Filters on Random Inputs 509

Table 1. The number of comparisons per sample used in various algorithms for d-
dimensional max and/or min filters on i.i.d. inputs. An entry marked with ‘�’ means
that the same bound also applies to worst-case inputs.

max (or min) filter max and min filters together
Pitas [9] O(d log p) � O(d log p) �

van Herk [11]; Gil and Werman [6] (3 − o(1))d � (6 − o(1))d �

Gevorkian et al. [4] (2.5 − o(1))d (5 − o(1))d
Gil and Kimmel [5] (1.25 + o(1))d (2 + o(1))d

Yuan and Atallah [14] (1 + o(1))d � (2 + o(1))d �

This work 1 + o(1) 1.5 + o(1)

More specifically, we present an algorithm for computing d-dimensional max
and min filters simultaneously on i.i.d. inputs that uses 1.5 + o(1) expected
comparisons per sample, for every fixed d ≥ 1. To the best of our knowledge, ours
is the first algorithm for d-dimensional max and min filters on i.i.d. inputs that
gets rid of the dependence on d in (the dominating term of) the complexity. In
particular, for the special 1D case, our algorithm uses 1.5+o(1) comparisons per
sample for computing 1D max and min filters simultaneously, improving upon
the previous best upper bound of 2 + o(1) (which can be obtained by applying
the algorithm of Yuan and Atallah [14] twice). We also note that our algorithm
is optimal up to the o(1) term, due to the fact that at least 1.5n comparisons are
required for computing both the maximum and minimum elements of a given
sequence of length n with i.i.d. input elements (see [2]).

As a by-product of our result, we can also compute the d-dimensional max
(or min) filter on i.i.d. inputs using 1 + o(1) expected comparisons per sample,
which matches the bound for the 1D case due to Yuan and Atallah [14] and
improves the previous best result of (1 + o(1))d for every fixed d ≥ 2. Table 1
compares our results with some previous work on d-dimensional max and/or min
filters with i.i.d. inputs.

We remark that our contributions are mainly theoretical, i.e., we give an
asymptotically optimal algorithm for computing d-dimensional max and min
filters. Due to the heavy uses of iterations and partitions over the input array,
our algorithm may not perform better than the existing algorithms on instances
with low dimensions or small window sizes. More details of our algorithm will be
shown later. Moreover, we omit most technical proofs due to space limitations.

1.2 Related Work

Pitas [9] showed how to compute the 1D max filter using O(log p) comparisons
per sample, which is the first work that improves upon the trivial bound of
p−1. The first algorithm for 1D max filter that achieves a constant upper bound
was proposed independently by van Herk [11] and Gil and Werman [6], which
requires 3 − o(1) comparisons per sample. Their algorithm (HGW for short) fits

510 H. Liang et al.

implicitly into a two-stage framework, which consists of a preprocessing stage
and a merging stage. This framework was followed by almost all the later works
in this line, which achieve their improvements by reducing the complexity of the
preprocessing stage and/or the merging stage.

Gil and Kimmel [5] presented an algorithm (which we will call GK for short)
for 1D max filter that uses 1.5+ o(1) comparisons per sample, which is obtained
by improving both the preprocessing and merging stages of HGW. Recently,
Yuan and Atallah [14] further reduced the complexity to 1 + o(1) comparisons
per sample, which is the best possible up to the lower order term. Their algorithm
(YA for short) also indicates that the d-dimensional max filter can be computed
by (1 + o(1))d comparisons per sample. All the aforementioned algorithms can
be trivially adapted for the min filter as well.

Previous works are also concerned with the case where the input array is com-
posed of independently and identically distributed (i.i.d.) elements. Gevorkian,
Astola, and Atourian [4] gave an algorithm that uses 2.5 − o(1) expected com-
parisons per sample to compute the 1D max filter on i.i.d. inputs. The GK
algorithm [5] can compute the 1D max filter in 1.25+o(1) expected comparisons
per sample on i.i.d. inputs. They also showed that the 1D max and min filters
can be computed simultaneously using 2 + o(1) comparisons per sample, which
is better than running their algorithm twice. Their result for 1D max filter was
superseded by the YA algorithm [14], which only makes 1 + o(1) comparisons
per sample even on worst-case inputs (and thus also on i.i.d. inputs).

The problem of computing min (or max) filter can also be reduced to the
Range Minimum Query (RMQ) problem. In the RMQ problem, we are given an
input array and are required to preprocess the array, so that each query asking
for the minimum element within some window can be answered efficiently. When
the input to RMQ is a 1D array, there is an algorithm with linear preprocessing
time and space that can answer each query in constant time [3]. The idea is
to reduce the problem to the Nearest Common Ancestor problem [8] on the
Cartesian tree [12]. Using this approach, the 1D min (or max) filter can be
computed using at most 2 comparisons per sample. The RMQ problem on high-
dimension input arrays was studied by Yuan and Atallah [13]. For each fixed
d ≥ 2, their algorithm preprocesses the d-dimensional input array in linear time,
and answers each query using 2d − 1 comparisons.

2 Preliminaries

In this section, we introduce some notation used in the paper. Given two pos-
itive integers p and d, let [p] := {1, 2, . . . , p} and [p]d := {(i1, i2, · · · , id) | 1 ≤
i1, · · · , id ≤ p}. For an array A of length n, we write A[i] to denote its i-th
element, and use A[i ∼ j] to denote the subarray of A that starts from A[i] and
ends with A[j]. The array A can also be written as A[1 ∼ n]. The maximum
and minimum over elements in A are denoted by maxA and minA, respectively.
For example, maxA[3 ∼ 5] = max{A[3], A[4], A[5]}. These notations can be nat-
urally generalized to the high-dimension case. For example, given a 2D array

Optimal Algorithms for Running Max and Min Filters on Random Inputs 511

B = B[1 ∼ 2, 1 ∼ 3], we have minB[1 ∼ 1, 2 ∼ 3] = min{B[1, 2], B[1, 3]}. We
use log to denote the logarithm with base 2.

Windows and Max/Min Filters

We next formally introduce the d-dimensional max/min filter problems studied
in this paper. We start with the special case d = 1, which has been extensively
studied before.

Let X = X[1 ∼ n] be an input array (or sequence) of length n, and p ≥ 2
be an integer. We assume that the elements of the array are drawn from a
totally ordered set S (for example, the set of integers). The 1D max filter of
X is an array Y = Y [1 ∼ n − p + 1] where Y [i] = maxX[i ∼ i + p − 1] for all
1 ≤ i ≤ n−p+1. Similarly, the 1D min filter of X is an array Z = Z[1 ∼ n−p+1]
with Z[i] = minX[i ∼ i+ p− 1] for 1 ≤ i ≤ n− p+ 1. Equivalently, the max (or
min) filter can be regarded as the set of maximum (or minimum) elements over
a sliding window of length p in X.

We now generalize the concepts to higher dimensions. Suppose X = X[1 ∼
n, · · · , 1 ∼ n] is a d-dimensional array where each dimension has length n, and
p ≥ 2 is an integer. For each (i1, · · · , id) ∈ [n − p + 1]d, we define

Wi1,··· ,id = X[i1 ∼ i1 + p − 1, · · · , id ∼ id + p − 1],

which is called a window with edge length p in X. We also call (i1, · · · , id) the
starting index of Wi1,··· ,id . (For example, if d = 1, n = 4 and p = 3, then there
are two windows of edge length p, namely W1 = X[1 ∼ 3] and W2 = X[2 ∼ 4].)

Let W (X) denote the set of all windows with edge length p in X, i.e., W (X) =
{Wi1,··· ,id | (i1, · · · , id) ∈ [n − p + 1]d}. The max filter of X (with edge length
p) is {max W | W ∈ W (X)}, and the min filter of X (with edge length p) is
{min W | W ∈ W (X)}. (Here we regard them as multisets, i.e., two elements in
the set with the same value are still considered as distinct elements.)

In the d-dimensional max filter problem, we are given a d-dimensional array
and an integer p, and the goal is to compute the max filter with edge length
p. The d-dimensional min filter problem can be defined analogously. The d-
dimensional max and min filters problem is to compute the max and min filters
simultaneously.

Complexity Measure

We are interested in designing algorithms for computing max and/or min filters
with low complexity in the comparison model, i.e., only the number of compar-
isons between elements in S is counted. The other computational costs, like
comparisons between indices used in an iteration, are not taken into consid-
eration. Following convention in the literature, the complexity is measured by
the number of comparisons per sample, i.e., the ratio of the total number of
comparisons over the number of output terms.

We focus on the asymptotic complexity; that is, we assume n → ∞ and
p → ∞. In accordance with usual situations and previous studies, we also assume

512 H. Liang et al.

n is very large compared to p, i.e., n/p → ∞ as n → ∞. However, in this paper
we will only consider the case where d is a fixed integer, i.e., it stays fixed as n
and p tend to infinity.

Notice that the d-dimensional max (or min) filter problem requires (n−p+1)d

outputs. By our assumption on the parameters, we have
nd ≥ (n − p + 1)d = nd(1 − (p − 1)/n)d ≥ nd(1 − d(p − 1)/n) = (1 − o(1))nd.

Therefore, when calculating the number of comparisons per sample, if we replace
the denominator (n − p + 1)d with nd, the result will increase by at most a
1 + o(1) factor, which does not affect the asymptotic form. Thus, for simplicity
of expressions, we may assume that we have nd output terms.

3 Our Results

Our main result in this paper is as follows.

Theorem 1. For every fixed integer d ≥ 1, there is an algorithm for comput-
ing the d-dimensional max and min filters simultaneously that makes 1.5 + o(1)
expected comparisons per sample on i.i.d. inputs.

As pointed out before, the previously best known algorithm for the d-dimensional
max and min filters requires (2+o(1))d comparisons per sample, on both worst-
case and i.i.d. inputs. Thus, our algorithm is the first one that gets rid of the
dependence on d in (the dominating term of) the complexity. In particular, for
the 1D case, our algorithm improves the previous best upper bound of 2 + o(1)
to 1.5 + o(1).

We also note that our bound is optimal up to the o(1) term, which can be
easily proved using the following fact (see [2]): given an input sequence of length
n, computing both the maximum and the minimum of the whole input cannot
be done in less than 1.5n comparisons, even for i.i.d. inputs.

As a by-product of our algorithm, we also improve the complexity for com-
puting d-dimensional max (or min) filter on i.i.d. inputs, removing for the first
time the dependence on d in (the dominating term of) the complexity.

Theorem 2. For every fixed integer d ≥ 1, there is an algorithm for computing
the d-dimensional max (or min) filter that uses 1 + o(1) expected comparisons
per sample on i.i.d. inputs.

To solve the problem, we follow a two-stage framework similar to that mentioned
before. Note that all previous approaches under this framework only work for
the 1D case. We develop novel preprocessing and merging stages that work for
any constant dimension, whose efficiency is characterized by the following two
theorems.

Theorem 3. For any fixed d ≥ 1, our preprocessing stage for d-dimensional
max and min filters can be completed using 1.5 + o(1) expected comparisons per
sample on i.i.d. inputs. If only max (or min) filter is required, it can be finished
using 1 + o(1) expected comparisons per sample.

Optimal Algorithms for Running Max and Min Filters on Random Inputs 513

Fig. 2. An instance with d = 2, n = 6, and p = 3. (For space reasons we use xi,j

to denote X[i, j].) The middle picture represents the division of the input array into
(n/p)d = 4 blocks in the preprocessing stage. The right picture reflects how the max-
imum of a p × p window is computed in the merging stage; each such window can be
decomposed into (at most) 2d = 4 basic hyperrectangles.

Theorem 4. For any fixed d ≥ 1, our merging stage for d-dimensional max and
min filters can be completed using o(1) comparisons per sample.

Theorem 3, combined with the merging stage of the GK algorithm [5], directly
yields an algorithm for 1D max and min filters using 1.5 + o(1) comparisons per
sample. However, their merging stage does not directly apply to the case d ≥ 2.
To deal with this issue, we also design a new merging stage that works for all
constant dimensions using only o(1) comparisons per sample.

4 Two-Stage Framework for d-dimensional Max and Min
Filters

In this section, we present the two-stage framework for computing the d-
dimensional max and min filters on i.i.d. inputs.

Assume the input d-dimensional array is X[1 ∼ n, · · · , 1 ∼ n], and the
edge-length of a window is p. The elements of X are independently and
identically distributed. Recall that the set of windows with edge length p
is W (X) = {Wi1,··· ,id | 1 ≤ i1, · · · , id ≤ n − p + 1}, where Wi1,··· ,id =
X[i1 ∼ i1 + p − 1, · · · , id ∼ id + p − 1]. The goal is to compute the max fil-
ter {max W | W ∈ W (X)} and min filter {min W | W ∈ W (X)}. We write
W = W (X) for notational simplicity.

Intuitively, we can regard (indices of) the input array as a d-dimensional
hypercube of edge length n, with the indices considered as the coordinates. (Note
that a 1D hypercube is just a line segment, and a 2D hypercube is a square. See
Figure 2 for examples of d = 2.)

4.1 The Preprocessing Stage

The structure of our preprocessing stage is summarized as Algorithm 1.
The details of the algorithm are explained below.

514 H. Liang et al.

Algorithm 1. The preprocessing stage

1 Divide the entire array into a set of (n/p)d disjoint blocks
B = {Bi1,··· ,id | 1 ≤ i1, · · · , id ≤ n/p}, where each block is a smaller
d-dimensional array with length p in each dimension.

2 for each block H ∈ B do
3 Compute max R and min R for every basic hyperrectangle R ∈ R(H) using

Algorithm 2.
4 end

Line 1 of Algorithm 1

At the start of Algorithm 1, we partition the entire array into (n/p)d smaller
d-dimensional arrays each of which is called a block. More formally, the set of
blocks is

B = {Bi1,··· ,id | 1 ≤ i1, · · · , id ≤ n/p},
where, for all 1 ≤ i1, · · · , id ≤ n/p,

Bi1,··· ,id = X[(i1 − 1)p + 1 ∼ i1p, (i2 − 1)p + 1 ∼ i2p, · · · , (id − 1)p + 1 ∼ idp].

(We assume w.l.o.g. that n is a multiple of p; otherwise some blocks near the
boundary may have edge length smaller than p, but the asymptotic form of our
results will not be affected.) Note that each block is also a window in W .

See Figure 2 for an example of this hypercube-division idea in 2D.

Corners and Basic Hyperrectangles

We next explain what a basic hyperrectangle means (which is referred to in
line 3 of Algorithm 1). Consider a particular block H = Bi1,··· ,id ∈ B. Clearly,
when regarded as a hypercube, H contains 2d “corners.” (For instance, in the
1D case, the two endpoints of a line segment are its corners.) We are interested
in those (integer-coordinated) hyperrectangles lying inside H that contain at
least one such corner, which are called basic hyperrectangles. To be rigorous, we
give formal definitions of the corners and basic hyperrectangles associated with
a block.

Definition 1 (Corners). Let H = H[1 ∼ q, · · · , 1 ∼ q] be a d-dimensional
array of edge length q. Define the corner set of H as

C(H) := {(j1, j2, · · · , jd) | j1, j2, · · · , jd ∈ {1, q}}.
(Note that it is a set of indices.) Each element of C(H) is called a corner of H.
Clearly |C(H)| = 2d.

Definition 2 (Basic Hyperrectangles). Let H = H[1 ∼ q, · · · , 1 ∼ q] be
a d-dimensional array of edge length q. A basic hyperrectangle inside H is a
sub-array of H of the form

H[lb1 ∼ ub1, lb2 ∼ ub2, · · · , lbd ∼ ubd],

Optimal Algorithms for Running Max and Min Filters on Random Inputs 515

where for any 1 ≤ t ≤ d, we require 1 ≤ lbt ≤ ubt ≤ q, and lbt = 1 or ubt = q.
(Intuitively, at least one of lbt and ubt “hits the boundary.”)

Clearly each basic hyperrectangle inside H contains at least one corner of H.
For each corner c ∈ C(H), let R(H, c) denote the set of basic hyperrectangles
containing c. Let R =

⋃
c∈C(H) R(H, c) be the set of all basic hyperrectangles

inside H.

Let us see an example. For the 2D case, see the instance in Figure 2 which
shows an instance of the 1D case, the corner set of the block B1 is C(B1) = {1, 3}.
For each corner of a block, there are 9 basic hyperrectangles containing the
corner. For example, the basic hyperrectangles containing the top-right corner
of B1,2 are X[1 ∼ i, j ∼ 6] for all 1 ≤ i ≤ 3 and 4 ≤ j ≤ 6.

The following propositions are immediate from the definitions.

Proposition 1. For each block H ∈ B and each corner c ∈ C(H), there are
exactly pd basic hyperrectangles containing c, i.e., |R(H, c)| = pd.

Proposition 2. For each block H ∈ B, |R(H)| = |
⋃

c∈C(H) R(H, c)| ≤ (2p)d.

Lines 2–4 of Algorithm 1

We now turn back to Algorithm 1. In lines 2–4, Algorithm 1 computes max R
and minR for every basic hyperrectangle R. The task is decomposed into sub-
problems, i.e., for each block H (the for loop in line 2), it computes maxR
and min R for all basic hyperrectangles in R(H) (line 3) using Algorithm 2.
This is the most substantial part of this stage, for which we design an algorithm
that uses only 1.5 + o(1) comparisons per sample on i.i.d. inputs (or 1 + o(1)
comparisons per sample if only the max (or min) filter is needed). The details
of this part will be given later in this section.

After finishing the computations for all the (n/p)d blocks, our preprocessing
stage is complete.

Remark. We note that, for the special case d = 1, our preprocessing stage actu-
ally has the same goal with that of GK [5], but we use a different approach. We
explain below why their tasks coincide. In the GK framework, the input sequence
is first divided into n/p subsequences each of size p, which are exactly the blocks
in our definition. Then, they compute the maximums (and minimums) over all
prefixes and suffixes of each block; these prefixes and suffixes are precisely the
basic hyperrectangles in our notation. Thus, when restricted on 1D inputs, the
function of our preprocessing stage coincides with that of the existing frame-
work. However, our algorithm for computing the prefix/suffix maximums and
minimums is different from the previous ones (GK [5] and YA [14]), and is more
efficient on i.i.d. inputs.

516 H. Liang et al.

Algorithm 2. Algorithm for computing {max R,min R | R ∈ R(H)} for
fixed H ∈ B

1 Divide H into a collection of pd/2 sub-blocks
sub(H) = {Hk1,··· ,kd | 1 ≤ k1, · · · , kd ≤ √

p}, each of which is a d-dimensional
hypercube with edge length

√
p.

2 for each sub-block Hk1,··· ,kd ∈ sub(H) do
3 Compute zmax

k1,··· ,kd
= max Hk1,··· ,kd and zmin

k1,··· ,kd
= min Hk1,··· ,kd .

4 end

5 for each corner c ∈ C(H) do
6 Compute max R and min R for all R ∈ R(H, c).
7 end

Dealing with Basic Hyperrectangles

In this part, we show how to compute the maximums and minimums over all basic
hyperrectangles inside a block. Fix a block H = Bi1,··· ,id . Recall the notation
that C(H) is the corner set of H, R(H) is the set of basic hyperrectangles inside
H, and R(H, c) is the set of basic hyperrectangles containing the corner c. Our
main result in this section is as follows.

Theorem 5. For each block H, we can compute {max R | R ∈ R(H)} and
{min R | R ∈ R(H)} using (1.5 + o(1))pd expected comparisons. If only
{max R | R ∈ R(H)} or {min R | R ∈ R(H)} are needed, the computation
can be done in (1 + o(1))pd expected comparisons.

Plugging this result into Algorithm 1, we can perform the preprocessing stage
using 1.5+ o(1) expected comparisons per sample (or 1+ o(1) expected compar-
isons per sample if only the max filter is required), and thus Theorem 3 is proved.
We present our algorithm that achieves the bound in Theorem 5 as Algorithm 2.

4.2 The Merging Stage

The goal of this stage is to obtain the max and min filters using the information
gathered in the preprocessing stage, i.e., the maximums and minimums of all
the basic hyperrectangles. Clearly, each window W ∈ W is the (disjoint) union
of at most 2d basic hyperrectangles from distinct blocks (see Figure 2). This
observation directly yields a (trivial) algorithm for the merging stage that uses
2(2d−1) comparisons per sample: to compute max W, just use 2d−1 comparisons
to find out the maximum among the 2d maximums of basic hyperrectangles, and
another 2d − 1 comparisons for the minimums.

To reduce the merging complexity to o(1), our idea is to use a binary search
procedure similar to the merging stage of GK [5] which works only for the 1D
case. The basic idea is as follows. As noted before, each window W ∈ W is the
disjoint union of (at most) 2d basic hyperrectangles. On each of the d dimensions,

Optimal Algorithms for Running Max and Min Filters on Random Inputs 517

it “crosses” (at most) two “large” blocks, each of which consists of 2d−1 normal
blocks. (See Figure 2 for an example. Consider the vertical dimension. Then the
two large blocks are B1,1 ∪ B1,2 and B2,1 ∪ B2,2. The window shown in the right
picture crosses the boundary between these two large blocks.)

We want to determine which of the two large blocks contains the maximum
element of W. We show that it can be done using a binary search procedure in
o(1) comparisons per sample on every dimension. Then, we know exactly which
basic hyperrectangle contains the maximum element of W. (For example, in
Figure 2, if we know that the maximum of the window is in both the top part
and the left side, then it is in the top-left red basic hyperrectangle.) Since the
maximum over this basic hyperrectangle has been obtained in the preprocessing
stage, we can determine max W without further comparisons. In consequence,
our merging stage can be finished in o(1) comparisons per sample. More details
are exhibited below. (Note that Theorem 4 does not require the input elements
to be i.i.d., and thus it may be useful in possible future algorithms dealing with
worst-case inputs.)

Generalized Binary Search

This part is devoted to proving Theorem 4. We will give our merging stage for
d-dimensional max and min filters that only uses o(1) comparisons per sample.
Our algorithm is a binary search procedure generalizing that of GK [5]. The idea
is to find out, over each of the d dimensions, on which side the maximum of a
window lies. After gathering these information, we can find a basic hyperrect-
angle that contains a maximum element of the window, and thus can determine
the maximum of the window using the information obtained in the preprocessing
stage.

We give an outline of our merging stage for the max filter in Algorithm 3,
which can be trivially adapted for the min filter by changing the objective from
max to min. To make our statement clearer, we need to introduce some more
notations. Consider a window W = Wi1,··· ,id ∈ W . For each dimension t ∈ [d],
let lt = 	it/p
 and rt = lt + 1 = 	it/p
 + 1. We define

B(W) = {Bb1,··· ,bd | (∀t ∈ [d]) bt ∈ {lt, rt}}.

Clearly |B(W)| = 2d. By the definition of blocks, we know that W is totally
contained in the union of the 2d blocks in B(W).

Next, for every dimension t ∈ [d], we define

Blow
t (W) = {Bb1,··· ,bd ∈ B(W) | bt = lt} (1)

and
Bhigh

t (W) = {Bb1,··· ,bd ∈ B(W) | bt = rt}. (2)

Intuitively, Blow
t (W) and Bhigh

t (W) partition the blocks into two sides, a “low”
side and a “high” side, according to their indices on the t-th dimension. We take

518 H. Liang et al.

Figure 2 as an example. Consider the window W2,3 shown in the right picture.
In this case we have l1 = 1, r1 = 2, l2 = 1, r2 = 2. Then,

B(W) = {B1,1,B1,2,B2,1,B2,2}.

On the first dimension (or, the vertical dimension), we have Blow
1 (W) =

{B1,1,B1,2} and Bhigh
1 (W) = {B2,1,B2,2}. On the second dimension (or, the hori-

zontal dimension), we have Blow
2 (W) = {B1,1,B2,1} and Bhigh

2 (W) = {B1,2,B2,2}.
We say window W is low on dimension t if (at least one of) its maximum

element(s) belongs to some block in Blow
t (W), and say W is high on dimension t

otherwise.

Analysis of Algorithm 3

We now analyze Algorithm 3. In lines 1–3, it aims to decide whether W is low or
high on each dimension for all W ∈ W . The idea is as follows: For any window
W ∈ W , if we know whether W is low or high on every dimension, we can find
out a block, say H, which contains a maximum element of W. Note that W ∩ H
is a basic hyperrectangle inside H, whose maximum has been obtained in the
preprocessing stage. Thus, we can determine max W = max(W ∩ H) without
further comparisons. This is what the algorithm does in lines 4–7. (For example,
in Figure 2, if we know the maximum element of the window is low in the
vertical dimension and high in the horizontal dimension, then it must belong to
the top-right blue basic hyperrectangle inside B1,2.)

Algorithm 3. Merging stage for d-dimensional max filters
Output: Compute max W for all W ∈ W .

1 for each dimension r ∈ [d] do
2 Determine whether the windows in W are low or high on dimension r.
3 end
4 for each window W ∈ W do
5 Find the block H that contains a maximum element of W. Then W ∩ H is a

basic hyperrectangle inside H.
6 Set max W ← max(W ∩ H).

7 end
8 return {max W | W ∈ W }

By the above analysis, the comparisons between elements that happened in
Algorithm 3 are only due to lines 1–3. The next theorem shows that we do not
need many comparisons for these steps.

Theorem 6. For any dimension t ∈ [d], we can decide using O(np log(p)/p)
comparisons whether W is low or high on dimension t for all W ∈ W simulta-
neously.

Optimal Algorithms for Running Max and Min Filters on Random Inputs 519

Since there are only d = O(1) dimensions, by Theorem 6 we can implement
lines 1–3 of Algorithm 3 using O(np log(p)/p) comparisons, or O(log(p)/p) = o(1)
comparisons per sample. Hence, Theorem 4 is proved.

5 Conclusions

In this work, we showed how to compute the max and min filters simultaneously
on constant-dimension arrays with i.i.d. elements using 1.5 + o(1) comparisons
per sample, which is optimal up to the lower order term. Also, the d-dimensional
max filter itself can be computed using 1+o(1) comparisons per sample on i.i.d.
inputs for fixed d. However, on worst-case inputs, the best known algorithm
for d-dimensional max (or min) filter still requires (1 + o(1))d comparisons per
sample. An interesting open question is whether this dependence of d in the
complexity is intrinsic. Also, for the special 1D case, can we improve the worst-
case comparison bound for simultaneous max and min filters from 2 + o(1) to
less than 2, or even 1.5 + o(1)?

References

1. Coltuc, D.: Mathematical complexity of running filters on semi-groups and related
problems. IEEE Transactions on Signal Processing 56(7), 3191–3197 (2008)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms,
3rd edn. MIT press (2009)

3. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geom-
etry problems. In: Proceedings of the 16th Annual ACM Symposium on Theory of
Computing (STOC), pp. 135–143 (1984)

4. Gevorkian, D.Z., Astola, J.T., Atourian, S.M.: Improving Gil-Werman algorithm
for running min and max filters. IEEE Transactions on Pattern Analysis and
Machine Intelligence 19(5), 526–529 (1997)

5. Gil, J., Kimmel, R.: Efficient dilation, erosion, opening, and closing algo-
rithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(12),
1606–1617 (2002)

6. Gil, J., Werman, M.: Computing 2-D min, median, and max filters. IEEE
Transactions on Pattern Analysis and Machine Intelligence 15(5), 504–507 (1993)

7. Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical
morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence 9(4),
532–550 (1987)

8. Harel, D., Tagjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing 13(2), 338–355 (1984)

9. Pitas, I.: Fast algorithms for running ordering and max/min calculation. IEEE
Transactions on Circuits and Systems 36(6), 795–804 (1989)

10. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer-
Verlag New York, Inc. (2003)

11. van Herk, M.: A fast algorithm for local minimum and maximum filters on
rectangular and octagonal kernels. Pattern Recognition Letters 13(7), 517–521
(1992)

520 H. Liang et al.

12. Vuillemin, J.: A unifying look at data structures. Communications of the ACM
23(4), 229–239 (1980)

13. Yuan, H., Atallah, M.J.: Data structures for range minimum queries in multidi-
mensional arrays. In: Proceedings of the 21st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 150–160 (2010)

14. Yuan, H., Atallah, M.J.: Running max/min filters using 1+o(1) comparisons per
sample. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(12),
2544–2548 (2011)

Model Checking MSVL Programs
Based on Dynamic Symbolic Execution

Zhenhua Duan, Kangkang Bu, Cong Tian(B), and Nan Zhang

Institute of Computing Theory and Technology, and ISN Laboratory,
Xidian University, Xi’an 710071, China

ctian@mail.xidian.edu.cn

Abstract. In this paper, we propose a DSE based model checking app-
roach (DSE-MC) for verifying programs written in Modelling, Simulation
and Verification Language (MSVL) [1,3]. For doing so, we adopt a DSE
method to execute an MSVL program to generate a symbolic execution
tree (SEtree) which is used as the abstract model of the program. Fur-
ther, a property to be verified is specified by a Propositional Projection
Temporal Logic (PPTL) formula [8,13]. To check whether or not the
program satisfies the property, first the SEtree and the negation of the
property are both described in Labelled Normal Form Graphs (LNFGs)
[21], then the product of two LNFGs is produced. As a result, a counter
example is encountered if the product is not empty. Otherwise, we cannot
determine if the program satisfies the property. In this case, the verifica-
tion process could be restarted with new inputs. In this way, a software
system written in C can also be verified since the C program can be
transformed to an MSVL program automatically by using toolkit MSV
[19] developed by us.

Keywords: DSE · Constraints · Temporal logic · MSVL · Model
checking

1 Introduction

Symbolic execution (SE) is first proposed for program testing [2] that uses sym-
bolic values as inputs instead of real data. It represents the values of program
variables as symbolic expressions which are functions of the input symbolic val-
ues. Subsequently, SE has been used for bugs finding [4] and verification con-
dition generation [5,6], among others. Dynamic symbolic execution (DSE) [7,9]
enhances traditional symbolic execution [2] by combing concrete execution and
symbolic execution together. Essentially, DSE repeatedly runs a program both
concretely and symbolically. After each run, all the branches off the execution
path are collected, and then one of them is selected to generate new inputs for
the next run to explore a new path. A symbolic execution tree (SEtree) depicts

The research is supported by the NSFC under Grant No. 61133001, 61322202,
61420106004 and 91418201.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 521–533, 2015.
DOI: 10.1007/978-3-319-21398-9 41

522 Z. Duan et al.

all executed paths during the symbolic execution. A path condition is maintained
for each path and it is a formula over the symbolic inputs built by accumulating
constraints satisfied by those inputs in order for execution to follow that path.
A path is infeasible if its path condition is unsatisfiable. Otherwise, the path is
feasible.

Recently, symbolic execution has been used for software verification [10–12]
as an alternative to the existing model checking techniques based on Counter
Example Guided Abstraction Refinement (CEGAR) [14,15] method. Essentially,
the general technique followed by symbolic execution-like tools starts with the
concrete model of the program and then, the model is checked for the desired
property via symbolic execution by proving that all paths to certain error nodes
are infeasible (i.e., error nodes are unreachable). For instance, when DSE is
applied to checking a program against a regular property specified by an automa-
ton [16] , an execution path satisfies the property if the sequence of the events in
the path is accepted by the automaton, and this path is an accepted path. DSE
improves the coverage through symbolic execution, and avoids false alarms by
actually running the program. More importantly, DSE can use the information
of the concrete execution to simplify complex symbolic reasonings and handle
the environment problem. However, the disadvantages of DSE based verification
are obvious. The first challenge is the exponential number of symbolic paths.
The approaches of [10–12] tackle successfully this fundamental problem by elim-
inating from the concrete model those facts which are irrelevant or too-specific
for proving the unreachability of the error nodes. However, the problem is still
remained. The second problem is that different notations are used to specify
programs, symbolic execution trees and properties of programs to be verified.
For instance, usually, a program is written in C or Java language, an SEtree is
described by a graph and a property of the program is specified by an automaton
[16] or temporal logic formula [17]. This makes the verification much complicated.
The third problem is that some probes need to be inserted in the context of the
program, and they are normally done manually.

In this paper, we are motivated to propose a DSE based model checking
approach (DSE-MC) for verifying programs written in Modelling, Simulation
and Verification Language (MSVL) [1,3]. For doing so, we adopt a DSE method
to execute an MSVL program to generate an SEtree which is later used as the
abstract model of the program. Further, a property to be verified is specified
by a Propositional Projection Temporal Logic (PPTL) formula [8,13]. To check
whether or not the program satisfies the property, first the SEtree and the nega-
tion of the property are both described in Label Normal Form Graphs (LNFGs)
[21], then the product of two LNFGs is produced. As a result, a counter exam-
ple is encountered if the product is not empty. Otherwise, we do not know if
the program satisfies the property. In this case, the verification process could
be restarted with new inputs. This means that the proposed model checking
approach is incomplete. In this aspect, it is some what similar to Bounded
Model Checking (BMC) [18]. In this way, a software system written in C can
also be verified since the C program can be transformed to an MSVL program

Model Checking MSVL Programs Based on Dynamic Symbolic Execution 523

automatically by toolkit MSV [19] developed by us. However, DSE-MC is an
abstract model checking and is suitable for verifying software systems. Compar-
ing with CEGAR approach, the advantages of DSE-MC lie in four aspects: (1)
the abstract model (i.e., symbolic execution tree) is automatically generated by
means of dynamic symbolic execution of MSVL programs and SMT solver (i.e.,
Z3); (2)we do not need to insert probes into the context of an MSVL program
as other DSE methods do; (3) a program and a property of the program are
both in the same logic system (PTL) [8]; (4) the speed of DSE-MC is relatively
quicker than CEGAR method since an SEtree is smaller than an abstract model
generated using CEGAR.

The paper is organized as follows: the next section describes the Dynamic
Symbolic Execution of MSVL programs including DSE algorithm, extended
MSVL interpreter, search strategy and constraint solving, and generating sym-
bolic execution tree. The DSE based model checking approach is formalized in
detail in section 3. In section 4, a case study is given to show how DSE based
model checking works. Finally, conclusion is drawn in section 5.

2 Dynamic Symbolic Execution of MSVL Programs

Dynamic symbolic execution of MSVL programs is an improvement of sym-
bolic execution where symbolic execution is performed simultaneously with con-
crete execution. DSE includes three main phases. The first phase is to execute
programs symbolically and concretely to record the satisfied path constraints.
The second phase is to select a constraint to negate from the path constraints
according to the search strategy. The third phase is to solve the modified path
constraints by using SMT solver Z3 to generate new inputs and to execute the
program with the new inputs. By repeating this process, almost all feasible exe-
cution paths are swept through.

2.1 Dynamic Symbolic Execution Algorithm

Essentially, to implement the dynamic symbolic execution of a program, the most
frequently used method is the instrumentation-based approach. This approach
instruments a program by inserting probes which perform symbolic execution
to extract symbolic path constraints, then executes the instrumented code on
a standard compiler or an interpreter which is determined by the type of the
programming language. With this approach, the instrumentation code performs
symbolic execution, while the original code performs concrete execution, then,
as a result, the whole program is executed both symbolically and concretely at
the same time.

Unlike the instrumentation-based approach, the dynamic symbolic execution
of MSVL programs does not require such instrumentation, instead, implements
a non-standard interpreter of MSVL programs which extends the original MSVL
interpreter[3]. We extends the standard, concrete execution semantics of MSVL
programs with symbolic execution semantics. The symbolic information is stored

524 Z. Duan et al.

in symbolic memory map S and symbolic path constraints PCs, and is propa-
gated as needed, during the symbolic execution. The symbolic memory map S
is defined as a mapping from program variables to symbolic expressions which
record the symbolic values of all variables that are handled symbolically. The
symbolic path constraints PCs =< pc1, pc2, · · ·, pcn > are defined as a list of
formulas over symbolic input values which record the symbolic path constraints
the current execution satisfies. Further, we need to define Input map I, which
maps input variables to its initial values before the execution of the program.
One advantage of our approach is that we can exploit all execution information
at runtime, since the MSVL Interpreter possesses all necessary information.

We now give the algorithm DSE-MC for dynamic symbolic executing MSVL
programs. The basic idea of this algorithm is similar to the traditional one. Given
an MSVL program P as input, we first initialize I, S and PCs to be ø. Next, P is
executed with input I by the extended MSVL Interpreter both symbolically and
concretely. During the execution, the symbolic values of program variables and
the path constraints along the path of the execution are collected and stored in
S and PCs respectively. Once an MSVL program is executed, a symbolic path is
generated and added to the SEtree of P subsequently. The symbolic path repre-
sents the models of P generated by the inputs which satisfy the path constraints
of the current execution. Then, we select one constraint from PCs and negate
the selected constraint, and solve the modified path constraints, to generate
further inputs which possibly direct the program along alternative paths. The
selection of the constraints to be negated depends on a search strategy. Finally,
we execute P with the new inputs repeatedly until the termination conditions
are met. Actually, if all the feasible paths are executed or the pre-defined bound
is reached, the termination conditions are met. The pseudo-code for DSE-MC is
shown in Algorithm 1.

Algorithm 1. Dynamic Symbolic Execution of MSVL Programs

Function DSE-MC(P)
/* Input: P is an MSVL program*/
/* Output: The Symbolic Execution Tree of P */
begin function

1: I = ø; S = ø; PCs = ø;
2: while termination conditions are not met
3: SymbolicPath=ExtMSVLInterpreter (P , I, S, PCs);
4: AddToSET (SymbolicPath);
5: i = pick a constraint from PCs ;
6: I = Solve (pc1,pc2,· · · , ¬pci);
7: end while

end function

Extended MSVL Interpreter: The MSVL programs are executed only con-
cretely by the original MSVL Interpreter. To execute MSVL programs both
concretely and symbolically, we extend the MSVL Interpreter to implement the

Model Checking MSVL Programs Based on Dynamic Symbolic Execution 525

symbolic execution semantics. There are three main extensions of the MSVL
Interpreter.

Algorithm 2. Dynamic Symbolic Execution of MSVL Programs using BDFS

Function DSE-MC-BDFS(P , max depth)
/* Input: P is an MSVL program, max depth is the max execution times of P */
/* Output: The Symbolic Execution Tree of P */
begin function
1: I = ø; S = ø;PCs = ø;
2: SymbolicPath=ExtMSVLInterpreter (P , I, S, PCs);
3: AddToSET (SymbolicPath);
4: BDFS (0, max depth, PCs, P , I, S);

end function
function BDFS(pos, depth, PCs, P , I, S)
/* Input:pos is the index of the path constraint picked to negate, depth is the max execution times of P

PCs is the path constraints collected in previous execution
P is a MSVL program, I is the input of P , S is the symbolic memory map */

begin function
1: if depth ≥ 0 do
2: for i = pos to PCs.size() do
3: I = Solve(pc1,pc2,· · · , ¬pci);
4: SymbolicPath =ExtMSVLInterpreter (P , I, S, PCs);
5: AddToSET (SymbolicPath);
6: depth − −;
7: BDFS (i + 1, depth, PCs, P , I, S);
8: end for
9: end if

end function

An MSVL program can be written as a logically equivalent conjunction of two
programs Present and Remains (i.e., normal form) by the reduction process.
Present part consists of immediate assignments to program variables, output
of program variables, true, false or empty, and is executed at the current state.
Remains part is what is executed in the subsequent state. In other words, any
MSVL statements such as Sequential statements, Projection statements, Parallel
statements and while statements can be reduced to their normal forms (NFs).
In particular, the while statements can be transformed to if statement according
to its definition while b do p

def= (p∧q)∗ ∧�(empty → ¬b). Therefore, to execute
an MSVL program, we first transform it to its NF, then to interpret the present
part, and further to execute its next part (Remains) recursively. In the extended
interpreter, we focus on the dynamic symbolic execution as follows.

(1) For each input statement such as input() and empty, the symbolic memory
map S introduces a mapping x �−→ sx from variable x to a fresh symbolic
constant sx which is regarded as the symbolic value of variable x. When the
MSVL program is first executed, the input map I is ø. Thus, we need to generate
the inputs randomly. When the MSVL program is executed again, the inputs
are generated by SMT solver Z3.

(2) For each assignment statement such as x <== e where e is an arith-
metic expression that contains symbolic variables, the symbolic memory map
S updates the mapping of x to S(e) which is obtained by evaluating e in the
current symbolic memory map. For example, suppose that the symbolic mem-
ory map is S = [x �−→ sx, y �−→ sy, z �−→ sz], after the symbolic execution of
x <== 2∗y+z, the symbolic memory map becomes S = [x �−→ 2∗sy +sz, y �−→

526 Z. Duan et al.

sy, z �−→ sz]. For each assignment statement such as x <== e where e is an
arithmetic expression that contains no symbolic variables, the symbolic memory
map is not updated, the statements are just executed concretely.

(3) For each conditional statement such as if b then p else q, if the concrete
execution takes the then branch, the symbolic constraint S(b) is appended to
PCs. Otherwise, the symbolic constraint S(¬b) is added.

Formally, we can construct a function called ExtMSV LInterpreter
(P, I, S, PCs) to fulfil the above functions. In fact, this function is the program
that implements the new interpreter. It is omitted here.

Search Strategy and Constraint Solving: To execute all the paths in
MSVL programs, we implement a commonly used bounded-depth-first(BDFS)
strategy. In the BDFS, each run is executed based on path constraints collected
in the previous run. The pseudo-code implementing BDFS strategy is shown in
Algorithm 2.

The procedure Solve in Algorithm 2 transforms the new path constraints
into the format that SMT solver Z3 can deal with and then calls Z3 to produce a
solution that satisfies the new path constraints as the new inputs. If the new path
constraints are unsatisfiable, another constraint is negated until satisfiable path
constraints are found. We choose Z3 as our constraint solver, because it provides
more extensive supports to solve linear arithmetic and non-linear arithmetic
constraints.

Symbolic Execution Tree: The SEtree characterizes the execution paths of a
program and is generated at the end of DSE. In general, in an SEtree, a node
represents the statements executed, labeled with the statement number, and
a directed arc represents a transfer of control between statement executions,
labeled with the changes of the symbolic memory map S and symbolic path
constraints PCs, if any, caused by the execution of the preceding statement.
The traditional SEtree is modified to be the system model of MSVL programs.
On one hand, each node is changed to specify a program in MSVL. On the other
hand, each directed arc is changed to specify a state formula. The modified
SEtree can be regarded as the LNFG of the MSVL program. For example, the
corresponding traditional and modified SEtrees of the MSVL program in Fig.1(a)
are shown in Fig.1(b) and Fig.2(d) respectively.

2.2 An Example

We use a simple example to illustrate how an MSVL program performs DSE
to generate its SEtree. Consider the MSVL program P shown in Fig. 1(a). In
P , there are three variables that can be handled symbolically and four paths
introduced by the two if statements in lines 5-9 and lines 10-14. According to
the values of the three variables and the relationships among them, P runs
following different paths. To construct the SEtree of P , we need to execute it at
least four times to explore all the existing four paths in P .

There are two points we should pay attention to when executing P symboli-
cally. The first is that input variables x and y are given symbolic values sx and

Model Checking MSVL Programs Based on Dynamic Symbolic Execution 527

(a) An MSVL Program P (b) Traditional SEtree of P

Fig. 1. An MSVL program and its traditional SEtree

sy respectively when the input statements in line 3 and line 4 are executed. The
second is that the PCs are initialized to ø before the execution, and updated
after the execution of if statements in lines 5-9 and lines 10-14.

Now we describe the dynamic symbolic execution of P . In the first itera-
tion of the DSE, it is assumed that the initial input is I1 = (x = 1, y = 5)
which is generated randomly. Executing P both concretely and symbolically by
the extended MSVL Interpreter, the path this execution followed is recorded in
symbolic path constraints PCs, the details of the execution such as the changes
of symbolic memory map S and PCs are shown in Fig. 2(a), where μ and ν in
the figure represent statements if(x < y) then {x:=x+3 and z:=x+y}else{x:=x+3
and z:=x-y} and if(z=6) then {x:= x+1 and y := y+1}else{x:= x-1 and y:=y-
1} respectively. [sx/x, sy/y,NIL/z] in Fig. 2 means the values of variables x,
y and z are sx, sy and NIL respectively. The symbolic path constraints col-
lected in the first iteration are PCs 1 =< sx < sy, sx + sy = 6 >, which
mean P takes the then branch of the first and the second if statement. With
BDFS search strategy, we negate a constraint in the current execution and
remove the subsequent constraints to obtain a modified symbolic path con-
straints PCs 1′ =< sx ≥ sy >. Next, we solve PCs 1′ to obtain input I2 that
drives the next execution along an alternative path. Suppose that the new input
generated by Z3 is I2 = (x = 3, y = 2). Then, in the second iteration, P takes
the else branch of the first and the second if statement. The path < 0, 1, 5, 6, 4 >
in Fig. 2(b) is the path this execution followed. For this execution, the path
constraints PCs 2 =< sx ≥ sy, sx − sy �= 6 > are gathered. We next solve
the PCs 2′ =< sx ≥ sy, sx − sy = 6 >, obtained by negating the last constraint
and generate I3 for the third execution. The third and fourth iterations that run
with inputs I3 = (x = 8, y = 2) and I4 = (x = 1, y = 2) are similar to the
second iteration. The paths < 0, 1, 5, 7, 4 > in Fig. 2(c) and < 0, 1, 2, 8, 4 > in
Fig. 2(d) are the paths the third and fourth execution take respectively. After the

528 Z. Duan et al.

(a) The first iteration (b) The second iteration

(c) The third iteration (d) The fourth iteration

Fig. 2. Dynamic Symbolic Execution of MSVL Program P

fourth execution of P , the dynamic symbolic execution algorithm is terminated
because all the four paths have been explored. At last, the whole SEtree of P is
constructed as shown in Fig. 2(d).

3 Model Checking MSVL Programs

The DSE based model checking approach is formalized in detail in this section.
This approach can be divided into three major parts:the system model, the
property and the model checking algorithm.

3.1 System Model

A path of a program execution is a model of the program, the set of all the paths
of program executions is called all the models of the program, or program models
for short. A path in an SEtree is an abstract path with constraints, which is the
representative of all the paths satisfying the constraints. In other words, each
path in the SEtree represents an equivalence class of paths (or inputs). Thus,
the SEtree can be regarded as an abstract program model of an MSVL program.

With the method of program verification based on model checking, a system
model means all the models of the program to be verified. Thus, the correctness
of program verification can be guaranteed only if the SEtree completely covers
the program models. However, we may not obtain complete abstract models in
some cases. To combat the problem, we should increase the coverage degree of
the program models as much as possible. Here we give a formal definition of the

Model Checking MSVL Programs Based on Dynamic Symbolic Execution 529

coverage degree, if A � B � C where A, B and C are sets, we say, C includes
B and A, B includes A. On the contrary, A and B cover part of C, and further
B has a higher coverage degree over C than A.

3.2 Property

Propositional projection temporal logic (PPTL) [8,13] with the full regular
expressive power is employed as the property specification language in our offline
model checking approach. Thus, any MSVL programs with regular properties can
be automatically verified with our offline model checking approach.

Let Prop be a countable set of atomic propositions and B = {true, false}
the boolean domain. Usually, we use small letters, possibly with subscripts, like
p,q,r to denote atomic propositions and capital letters, possibly with subscripts,
like P, Q, R to represent general PPTL formulas. Then the formula P of PPTL
is defined by the following grammar:

P ::= p | ¬P | P1 ∧ P2 | © P | (P1, . . . , Pm) prj P | P+

where p ∈ Prop, © (next),+ (chop-plus) and prj (projection) are temporal
operators, and ¬,∧ are similar as that in the classical propositional logic. We
define a state s over Prop to be a mapping from Prop toB, s : Prop → B. We
use s[p] to denote the valuation of p at state s. Intervals and interpretations can
be defined in the same way as in the first order case PTL [8]. The definitions
for NFs and NFGs as well as LNFGs of PPTL formulas are the same as that
presented in [21]. If the property to be verified is specified by a PPTL formula
P , we can construct the LNFG of ¬P for the subsequent verification according
to its normal form [21].

3.3 Model Checking Algorithm

With our offline model checking algorithm for an MSVL program, the MSVL
program M is modeled as its SEtree Am, and property to be verified is specified
by a PPTL formula P . To check if the MSVL program satisfying P is valid,
we first obtain SEtree Am by the dynamic symbolic execution of M . Then, we
transform ¬P to an LNFG Aϕ, the transformation algorithm is given in [21].
Finally, we calculate the product of Am and Aϕ. If the product LNFG is not
empty then a counter example is found, otherwise we cannot determine if the
MSVL program satisfying the property is valid. In this case, the verification
process could be restarted with new inputs. The algorithm is shown in Fig. 3.

Since model Am and property P of a system are both described in the
same logic framework PTL, it enables us to improve the efficiency of verifi-
cation because of the avoidance of some transformations. However, there exists
a problem that we should pay attention to, that is, it cannot be guaranteed that
the SEtree we obtain covers all the models of an MSVL program. If we find a
counter example during verification, the MSVL program satisfying the property
is not valid. However, if there exist no counter examples, whether or not the

530 Z. Duan et al.

Fig. 3. Offline Model Checking MSVL

MSVL program satisfies the property cannot be determined. Thus, we should
improve the coverage degree of the program models in the corresponding SEtree
to improve the completeness of DSE-MC approach.

4 A Case Study

In this section, a typical example is presented to illustrate how the offline model
checking approach can be utilized in the verification of real-world programs.

4.1 AC-controller Example

We use the AC-controller example presented in [7], which is used to compare
the efficiency of traditional testing approach with the testing approach based
on dynamic symbolic execution. Fig. 4(a) shows the AC-controller example
simulating a controller for an air-conditioning system which is implemented
by C. Initially, the room is hot and the door is closed, so the ac controller
is on. We can send a message to control the system. Different messages have
different meanings and operations. From the code, we can also find when
is room hot&&is door closed&&!ac is true, the system will be collapsed.

(a) A C program (b) A MSVL program

Fig. 4. AC- controller example

Model Checking MSVL Programs Based on Dynamic Symbolic Execution 531

4.2 Verification

To verify AC-controller example, we first transform the original C program
(remove the statement if(is room hot&&is door closed&&!ac)abort();) to an
equivalent MSVL program as shown in Fig. 4(b) using toolkit MSV developed

Fig. 5. The symbolic execution tree of AC- controller example

Fig. 6. The LNFG of the negation of Property

532 Z. Duan et al.

by us [19]. Then, we construct the SEtree of the MSVL program using Algo-
rithm 2. The SEtree is shown in Fig. 5. In Fig. 5, letters h, d, a and m represent
the variables is room hot, is door closed, ac and message respectively, and sm

represents the symbolic value of message. Next, we specify the property to be
verified by a PPTL formula. It is easy to find out that the property needs to
be verified is “After a message is sent, AC-Controller should never be off when
the room is hot and the door is closed”. By employing propositions p, q and
r to denote is room hot = 1, is door closed = 1 and ac = 1 respectively, this
property can be specified by P = len(2);�((p ∧ q) → r) in PPTL. The LNFG
of ¬P is shown in Fig. 6. Finally, the product of the SEtree and the LNFG of
¬P is calculated. We can find a counter example that violates P when the input
value is 3. The path< 0, 1, 2, 3, 4, 14, 15 > in Fig. 5 is the counter example.

5 Conclusion

We proposed a DSE based model checking approach for verifying MSVL pro-
grams. This approach can be used to verify software systems since C/Verilog
programs can be transformed to MSVL programs by using toolkit MSV devel-
oped by us. Basically, the approach is based on abstract models because an
SEtree can be viewed as an abstract model. The advantage is that the proposed
method is a unified, automatical and quick approach. However, this method is an
incomplete model checking approach like BMC in some sense because a counter
example is the real one for the original program if the product of the SEtree
and the LNFG of the negation of property is not empty. However, if there are no
counter examples to be encountered we cannot determine if the original program
satisfies the property. Therefore, in the future, we intend to further investigate
how to improve the coverage degree of symbolic execution trees to the models
of a program.

References

1. Ma, Q., Duan, Z., Zhang, N., Wang, X.: Verification of distributed systems with the
axiomatic system of MSVL. Formal Aspects of Computing 27(1), 103–131 (2015)

2. King, J.C.: Symbolic Execution and Program Testing. Journal of ACM, 385–394
(1976)

3. Ma, Y., Duan, Z., Wang, X., Yang, X.: An Interpreter for framed tempura and its
application. In: Proceedings TASE 2007, pp. 251–260 (2007)

4. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: automati-
cally generating inputs of death. In: Proceedings of CCS 2006, pp. 322–335 (2006)

5. Beckert, B., Hahnle, R., Schmitt, P.H.: Verification of Object-Oriented Software.
LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

6. Jacobs, B., Piessens, F.: The Verifast Program Verifier (2008)
7. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.

In: Proceedings of PLDI 2005, pp. 213–223 (2010)
8. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press,

Beijing (2006)

Model Checking MSVL Programs Based on Dynamic Symbolic Execution 533

9. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
Proceedings of ESEC FSE 2005, pp. 263C–272 (2005)

10. Jaffar, J., Santosa, A.E., Voicu, R.: An interpolation method for CLP traversal.
In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 454–469. Springer, Heidelberg
(2009)

11. McMillan, K.L.: Lazy annotation for program testing and verification. In: Touili,
T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 104–118. Springer,
Heidelberg (2010)

12. Harris, W.R., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Program analysis via
satisfiability modulo path programs. In: Proceedings of POPL 2010, pp. 71–82
(2010)

13. Duan, Z.: An extended interval temporal logic and a framing technique for temporal
logic programming, Ph.D. thesis, University of Newcastle upon Tyne (1996)

14. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: CounterrExample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

15. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: Proceedings of PLDI 2001, pp. 203–213 (2001)

16. Zhang, Y., Chen, Z., Wang, J., Dongy, W., Liu, Z.: Regular property guided
dynamic symbolic execution. In: Proceedings of ICSE 2015 (2015)

17. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems-
specification. Springer (1992). ISBN 978-3-540-97664-6

18. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Bounded model checking. Advances in
computers 58, 117–148 (2003)

19. Yang, K., Duan, Z., Tian, C.: Modeling and Verification of REC Handover Protocol.
Electronic Notes Theoretical Computer Science 309, 51–62 (2014)

20. Duan, Z., Tian, C.: A unified model checking approach with projection temporal
logic. In: Proceedings of ICFEM 2008, pp. 167–186 (2008)

21. Duan, Z., Tian, C.: A practical decision procedure for Propositional Projection
Temporal Logic with infinite models. Theoretical Computer Science 554, 169–190
(2014)

Geometric Cover

On the Complete Width
and Edge Clique Cover Problems

Van Bang Le1 and Sheng-Lung Peng2(B)

1 Institut Für Informatik, Universität Rostock, Rostock, Germany
van-bang.le@uni-rostock.de

2 Department of Computer Science and Information Engineering,
National Dong Hwa University, Hualien 974, Taiwan

slpeng@mail.ndhu.edu.tw

Abstract. A complete graph is the graph in which every two vertices
are adjacent. For a graph G = (V,E), the complete width of G is the
minimum k such that there exist k independent sets Ni ⊆ V , 1 ≤ i ≤ k,
such that the graph G′ obtained from G by adding some new edges
between certain vertices inside the sets Ni, 1 ≤ i ≤ k, is a complete
graph. The complete width problem is to compute the complete width of
a given graph. In this paper we study the complete width problem. We
show that the complete width problem is NP-hard on 3K2-free bipartite
graphs and polynomially solvable on 2K2-free bipartite graphs and on
(2K2, C4)-free graphs. As a by-product, we obtain the following new
results: the edge clique cover problem is NP-complete on K2,2,2-free
co-bipartite graphs and polynomially solvable on K2,2-free co-bipartite
graphs and on (2K2, C4)-free graphs. We also determine all graphs of
small complete width k ≤ 3.

Keywords: Probe graphs · Split graphs · Bipartite graphs · Complete
width · Edge clique cover

1 Introduction

Let G = (V,E) be a simple and undirected graph. A subset U ⊆ V is an
independent set, respectively, a clique if no two, respectively, every two vertices
of U are adjacent. The complete graph with n vertices is denoted by Kn. The
path and cycle with n vertices of length n − 1, respectively, of length n, is
denoted by Pn, respectively, Cn. For a vertex v ∈ V we write N(v) for the set
of its neighbors in G. A universal vertex v is one such that N(v)∪{v} = V . For
a subset U ⊆ V we write G[U] for the subgraph of G induced by U and G − U
for the graph G[V − U]; for a vertex v we write G − v rather than G[V \ {v}].

Given a graph class C, a graph G = (V,E) is called a probe C graph if there
exists an independent set N ⊆ V (of nonprobes) and a set of new edges E′ ⊆

(
N
2

)

between certain nonprobe vertices such that the graph G′ = (V,E ∪ E′) is in
the class C, where

(
N
2

)
stands for the set of all 2-element subsets of N. A graph

G = (V,E) with a given independent set N ⊆ V is said to be a partitioned probe
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 537–547, 2015.
DOI: 10.1007/978-3-319-21398-9 42

538 V.B. Le and S.-L. Peng

C graph if there exists a set E′ ⊆
(
N
2

)
such that the graph G′ = (V,E ∪ E′) is in

the class C. In both cases, G′ is called a C embedding of G. Thus, a graph is a
(partitioned) probe C graph if and only if it admits a C embedding.

Recently, the concept of probe graphs has been generalized as a width param-
eter of graph class in [4]. Let C be a class of graphs. The C-width of a graph G
is the minimum number k of independent sets N1, . . . , Nk in G such that there
exists an embedding G′ ∈ C of G such that for every edge xy in G′ which is not
an edge of G there exists an i with x, y ∈ Ni. A collection of such k independent
sets Ni, i = 1, . . . , k is called a C witness (of G′). In the case k = 1, G is a probe
C-graph. The C-width problem asks for a given graph G and an integer k if the
C-width of G is at most k. Graphs of C-width k are also called k-probe C-graph.
Note that graphs in C are, by convenience, 1-probe C-graphs.

In [4], the complete width and block-graph width have been investigated.
The authors proved that, for fixed k, graphs of complete width k can be char-
acterized by finitely many forbidden induced graphs, their proof is however not
constructive. They also showed, implicitly, that complete width k graphs and
block-graph width k graphs can be recognized in cubic time. The case k = 1,
e.g., probe complete graphs and probe block graphs, has been discussed in depth
in [17]. The case k = 2 is discussed in [18].

Graphs do not contain an induced subgraph isomorphic to a graph H are
called H-free. More generally, a graph is (H1, . . . , Ht)-free if it does not contain
an induced subgraph isomorphic to one of the graphs H1, . . . , Ht. For two graphs
G and H, we write G + H for the disjoint union of G and H, and for an integer
t ≥ 2, tG stands for the disjoint union of t copies of G. The complete k-partite
with ni vertices in color class i is denoted by Kn1,...,nk

. For graph classes not
defined here see, for example, [2,3,10].

In this paper we study the complete width problem (given G and k, is the
complete width of G at most k?). We show that

– complete width is NP-complete, even on 3K2-free bipartite graphs, and
– computing the complete width of a 2K2-free bipartite graph (chain graph),

and more generally, of a (2K2,K3)-free graph can be done in polynomial
time,

– computing the complete width of a 2K2-free chordal graph (split graph), and
more generally, of a (2K2, C4)-free graph can be done in polynomial time.

Moreover, we give structural characterizations for graphs of complete width at
most 3.

In the next section we point out a relation between complete width and the
most popular notion of edge clique cover of graphs. Then we prove our results
in the last three sections. As we will see, it follows from our results on complete
width that edge clique cover is NP-complete on K2,2,2-free co-bipartite graphs
and is polynomially solvable on K2,2-free co-bipartite graphs.

On the Complete Width and Edge Clique Cover Problems 539

2 Complete Width and Edge Clique Cover

An edge clique cover of a graph G is a family of cliques (complete subgraphs)
such that each edge of G is in at least one member of the family. The minimal
cardinality of an edge clique cover is the edge clique cover number, denoted by
θe(G).

The edge clique cover problem, the problem of deciding if θe(G) ≤ k,
for a given graph G and an integer k, is NP-complete [13,16,22], even when
restricted to graphs with maximum degree at most six [14], or planar graphs
[6]. edge clique cover is polynomially solvable for graphs with maximum
degree at most five [14], for line graphs [22,23], for chordal graphs [7,24], and
for circular-arc graphs [15].

In [16] it is shown that approximating the clique covering number within
a constant factor smaller than two is NP-hard. In [11], it is shown that edge

clique cover is fixed-parameter tractable with respect to parameter k; see also
[8] for more recent discussions on the parameterized complexity aspects.

We write cow(G) to denote the complete width of the graph G. As usual, G
denotes the complement of G. In [4], the authors showed that complete width

is NP-complete on general graphs, by observing that

Proposition 1 ([4]). For any graph G, cow(G) = θe(G)

Proposition 1 and the known results about edge clique cover imply:

Theorem 1. (1) Computing the complete width is NP-hard, and remains NP-
hard when restricted to graphs of minimum degree at least n − 7, and to
co-planar graphs.

(2) Computing the complete width of graphs of minimum degree at least n − 6
and of co-chordal graphs can be done in polynomial time.

In [5], it is conjectured that edge clique cover, and thus complete

width, is NP-complete for P4-free graphs (also called cographs).

3 Computing Complete Width is Hard for 3K2-free
Bipartite Graphs

A bipartite graph G = (V,E) is a graph whose vertex set V can be partitioned
into two sets X and Y such that for any edge xy ∈ E, x ∈ X and y ∈ Y . Bipartite
graphs without induced cycles of length at least six are called chordal bipartite.
A biclique cover of a graph G is a family of complete bipartite subgraphs of G
whose edges cover the edges of G. The biclique cover number, also called the
bipartite dimension, of G is the minimum number of bicliques needed to cover
all edges of G.

Given a graph G and a positive integer k, the biclique cover problem of
G asks whether the edges of G can be biclique covered by at most k bicliques.
The following theorem is well known.

540 V.B. Le and S.-L. Peng

Theorem 2 ([21,22]). biclique cover is NP-complete on bipartite graphs,
and remains NP-complete on chordal bipartite graphs.

For convenience, a bipartite graph G = (V,E) with a bipartition V = X ∪ Y
into independent sets X and Y is denoted as G = (X + Y,E). Let BC(G) =
(X + Y, F), where F = {xy | x ∈ X, y ∈ Y, and xy �∈ E}. We call BC(G)
the bipartite complement of G = (X + Y,E). Note that BC(C6) = 3K2 and
BC(C8) = C8. Hence if G is chordal bipartite, then BC(G) is (3K2, C8)-free
bipartite.

In [4], the authors showed that the complete width problem is NP-complete
on general graphs. We now establish our main theorem for sharping that result
of [4].

Theorem 3. complete width is NP-complete on bipartite graphs, and
remains NP-complete on (3K2, C8)-free bipartite graphs.

Proof. We prove this theorem by reducing biclique cover to complete

width.
Let (G, k) be an input instance of the biclique cover problem, where G =

(X + Y,E) is a bipartite graph. We construct an input instance (G′, k′) of the
complete width problem as follows.

– G′ is the bipartite graph obtained from the bipartite complement BC(G) =
(X + Y, F) of G by adding two new vertices x and y and adding all edges
between x and vertices in Y ∪ {y} and between y and vertices in X ∪ {x}.
More formally, G′ = (X ′ + Y ′, F ′) with X ′ = X ∪ {x}, Y ′ = Y ∪ {y}, and
F ′ = F ∪ {xu | u ∈ Y ∪ {y}} ∪ {yv | v ∈ X ∪ {x}}.

– Set k′ := k + 2.

We claim that the biclique cover number of G is at most k if and only if the
complete width of G′ is at most k′ = k + 2.

First, let {Bi | 1 ≤ i ≤ k} be a biclique cover of G, where Bi = (Xi + Yi, Ei)
with Xi ⊆ X,Yi ⊆ Y . Then, as each Bi is a biclique in G, each Ni = Xi ∪ Yi is
an independent set in G′. Set Nk+1 := X ′ and Nk+2 := Y ′. Then it is easy to
check that the k′ = k + 2 independent sets Ni, 1 ≤ i ≤ k + 2, form a complete
witness of G′. That is, cow(G′) ≤ k′.

Conversely, let {Ni | 1 ≤ i ≤ k + 2} be a complete witness of G′. Then we
may assume that

x, y �∈ Ni, 1 ≤ i ≤ k.

(To see this, consider a vertex u ∈ X. As {Ni | 1 ≤ i ≤ k + 2} is a complete
witness of G′, u and x must belong to Nt for some t ∈ {1, . . . , k + 2}. Therefore,
Nt ⊆ X ∪ {x} = X ′ because x is adjacent to all vertices in Y ′. Clearly, we can
replace Nt by X ′ and, if x ∈ Ni for some i �= t, replace Ni by Ni −{x} to obtain
a new witness such that Nt = X ′ and x is contained only in Nt. Similarly, there
is some s such that Ns = Y ′ and y is contained only in Ns. By re-numbering if
necessary, we may assume that t = k + 1 and s = k + 2.)

On the Complete Width and Edge Clique Cover Problems 541

Thus, by construction of G′, N1, . . . , Nk are independent sets in BC(G) and
form a complete witness of BC(G). Therefore, Bi = G[Ni], 1 ≤ i ≤ k, are
bicliques in G forming a biclique cover of G. That is, θe(G) ≤ k.

Note that if G is chordal bipartite, then BC(G), hence the bipartite graph
G′ cannot contain 3K2 and C8 as induced subgraphs. �

Theorem 3 and Proposition 1 imply the following corollary.

Corollary 1. edge clique cover is NP-complete on K2,2,2-free co-bipartite
graphs.

4 Polynomially Solvable Cases

In this section we establish some cases in which complete width can be solved
in polynomial time. Actually, in each of these cases we will show that the com-
plete width of the graphs under consideration can be computed in polynomial
time.

4.1 2K2-free Bipartite Graphs

Bipartite graphs without induced 2K2 are known in literature under the name
chain graphs ([25]) or difference graphs ([12]). They can be characterized as
follows.

Proposition 2 (see [20]). A bipartite graph G = (X + Y,E) is a chain graph
if and only if for all vertices u, v ∈ X, N(u) ⊆ N(v) or N(v) ⊆ N(u).

Theorem 4. The complete width of chain graphs can be computed in polynomial
time.

Proof. (Sketch) Observe first that if u, v are two vertices in a graph G such
that N(u) = N(v) (in particular, u and v are non-adjacent), then cow(G) =
cow(G−u) (if v is not universal in G−u) or cow(G) = cow(G−u)+1 (otherwise).

Let G = (X +Y,E) be a 2K2-free bipartite graph with at least three vertices.
As observed above, we may assume that for any pair of vertices u, v of G, N(u) �=
N(v). Thus, |X| ≥ 2, |Y | ≥ 2, and G has at most one non-trivial connected
component and at most one trivial component which is then the unique isolated
vertex of G. Let us also assume that the isolated vertex (if any) of G belongs
to X. By Proposition 2, the vertices of X can be numbered v1, v2, . . . , v|X| such
that N(v1) ⊂ N(v2) ⊂ . . . ⊂ N(v|X|) = Y . Thus, G is disconnected if and only if
v1 is the isolated vertex of G if and only if N(v1) = ∅. Clearly, such a numbering
can be computed in polynomial time.

Write Ni = {v1, . . . , vi} ∪ (Y \ N(vi)), 1 ≤ i ≤ |X|. Since N(vj) ⊂ N(vi)
for j < i, Ni is an independent set, and since N(v|X|) = Y , N|X| = X. In case
N(v1) �= ∅, let N|X|+1 = Y . (Note that in case N(v1) = ∅, i.e., v1 is the isolated
vertex of G, N1 = Y ∪ {v1}.)

542 V.B. Le and S.-L. Peng

We claim that

cow(G) =

{
|X|, if N(v1) = ∅
|X| + 1, otherwise

Moreover, N1, . . . , N|X| and N|X|+1 (if N(v1) �= ∅) together form a complete
witness of G.
Proof of the Claim: First, to see that the collection of the independent sets N1,

. . . , N|X| and N|X|+1 (if N(v1) �= ∅) is a complete witness of G, let u, v be two
non-adjacent vertices of G. If u and v in X, say u = vi or v = vj for some
1 ≤ i < j ≤ |X|, then u, v ∈ Nj . If u ∈ X and v ∈ Y , say u = vi for some
1 ≤ i ≤ |X|, then u, v ∈ Ni. So let u, v ∈ Y . In this case, let i ≤ j be the
smallest integers such that u ∈ N(vi), v ∈ N(vj). If i > 1 then u, v �∈ N(v1),
hence u, v ∈ N1. Thus, let u ∈ N(v1). Then, in particular N(v1) �= ∅ and hence
u, v ∈ N|X|+1 = Y .

In particular, cow(G) is at most the right hand side stated in the claim.
Next, observe that the claim is clearly true in case |X| = 2. So, let |X| ≥ 3.

Note that in G − v1, N(v2) is not empty, hence by induction, cow(G − v1) =
|X \ {v1}| + 1 = |X| and N′

1 = N2 \ {v1}, . . . , N′
|X|−1 = N|X| \ {v1} and N′

|X| =
N|X|+1 = Y form a complete witness of G−v1. Now, if N(v1) = ∅ then cow(G) ≥
cow(G − v1) = |X|, hence cow(G) = |X|. So, let N(v1) �= ∅. In this case, for any
u ∈ N(v2) \ N(v1) and any maximal independent set I of G containing v1 and
u, N′

i �⊆ I. Thus, cow(G) ≥ cow(G − v1) + 1 = |X| + 1, hence cow(G) = |X| + 1.
�

Theorem 4 and Proposition 1 imply the following corollary.

Corollary 2. The edge clique cover number of C4-free co-bipartite graphs can
be computed in polynomial time.

4.2 (2K2,K3)-free Graphs

We extend Theorem 4 on K2-free bipartite graphs by showing that complete

width is polynomially solvable for large class of 2K2-free triangle-free graphs.

Theorem 5. The complete width of (2K2,K3)-free graphs can be computed in
polynomial time.

Proof. (Sketch) Let G be a (2K2,K3)-free graph. If G has no induced C5, then
G is 2K2-free bipartite, hence we are done by Theorem 4.

So let G contain an induced C5, say C = v1v2v3v4v5v1. As in the proof of
Theorem 4, we may assume that N(u) �= N(v) for any non-adjacent vertices u
and v of G. Then it can be shown that C is the non-trivial connected component
of G. Thus, cow(G) = 5. �

On the Complete Width and Edge Clique Cover Problems 543

4.3 Split Graphs

A split graph is one whose vertex set can be partitioned into a clique Q and an
independent set S. For convenience, a split graph is denoted as G = (Q + S,E).
It is well known that split graphs can be characterized as follows.

Proposition 3 ([9]). The following statements are equivalent for any graph G.

(i) G a split graph;
(ii) G is a (2K2, C4, C5)-free graph;
(iii) G is a 2K2-free chordal graph;
(iv) G and G are chordal.

In particular, split graphs are complements of chordal graphs. Hence, by
Theorem 1 (2), computing the complete width of split graphs can be done in
polynomial time. Below, however, we give here a simple and direct way for doing
this. Moreover, our solution will be useful for computing the complete width of
pseudo split graphs. The class of pseudo split graphs are not necessarily co-
chordal and properly contains all split graphs.

It is not hard to see that a universal vertex is impossible to be a non-probe
vertex. Thus in the following, we consider the split graphs G = (Q + S,E) with
no universal vertex.

Theorem 6. For a split graph G = (Q + S,E) with no universal vertex, the
complete width of G is either |Q| or |Q| + 1.

Proof. Assume that the complete width of G is k. That is, there is an embedding
G′ of G such that for every edge xy in G′ but not in G there are independent
sets N1, . . . , Nk in G such that {x, y} ⊆ Ni for some i. By the definition, G[Q] is
a clique. Thus it is impossible that there are two vertices of Q in the same Ni
for 1 ≤ i ≤ k. That is, each Ni contains at most one vertex in Q. Therefore, the
complete width of G is at least |Q|.

On the other hand, for each vertex v ∈ Q, let Nv = V \ N(v). Then, each
Nv, v ∈ Q, is an independent set. Further, for each Nv, we can fill edges vu,
u ∈ Nv − v. Finally, for the final set S, we make G[S] a clique by filling edge xy
for any two vertices x, y ∈ S. The resulting graph is a complete graph. That is,
the complete width of G is at most |Q| + 1. This completes the proof. �

By Theorem 6, only two cases for determining the complete width of a split
graph. For the split graph G = (Q+S,E), let Nv = V \N(v) for v ∈ Q. We have
the following lemma.

Lemma 1. For a split graph G = (Q + S,E) with no universal vertex, if for
any two vertices x, y ∈ S, there is an Nv, v ∈ Q, such that x, y ∈ Nv, then the
complete width of G is |Q|; otherwise it is |Q| + 1.

Proof. Assume that for any two vertices x, y ∈ S, there is an Nv, v ∈ Q such
that x, y ∈ Nv. We show that the complete width of G is |Q|. Without loss of

544 V.B. Le and S.-L. Peng

generality, we assume all the Nv’s are ordered as the sequence of N1, N2, . . . , N|Q|.
For completing G into Kn, for each Nv, we fill the edges vu, u ∈ (Nv ∩ S).
Furthermore, assume that Ni is the last set that contains x and y for any two
vertices x, y ∈ S. That is, {x, y} ⊆ Ni but {x, y} �⊆ Nj for each j > i. Then the
edge xy is filled in Ni. By assumption, every edge in G[S] can be filled in some
Ni. Thus the complete width of G is |Q|.

On the other hand, if there is no Ni contains x and y for some x, y ∈ S, then
there is no way to fill x, y in N1, N2, . . . , N|Q|. Therefore the complete width of G
is |Q| + 1. �

By Lemma 1, for any two vertices x, y ∈ S, we can check whether there
is a vertex v ∈ Q such that both xv and yv are not in E. By using adjacency
matrix of G, all the work can be done in O(n3) time. Thus, we have the following
theorem.

Theorem 7. The complete width of split graphs can be computed in polynomial
time.

4.4 Pseudo-split Graphs

Graphs without induced 2K2 and no induced C4 are called pseudo-split graphs.
Thus, by Proposition 3, the class of pseudo-split graphs properly contains the
class of split graphs. Note that a pseudo-split graph may contain an induced
C5, hence it need not be co-chordal. Pseudo-split graphs can be characterized as
follows.

Theorem 8 ([1,19]). A graph is pseudo-split if and only if its vertex set can
be partitioned into three sets Q,S,C such that Q is a clique, S is an independent
set, C induces a C5 or is empty, there are all possible edges between Q and C,
and there are no edges between S and C.

Note that it can be recognized in linear time if a graph is a pseudo split graph,
and if so, a partition stated in Theorem 8 can be found in linear time [19].

Theorem 9. The complete width of pseudo-split graphs can be computed in poly-
nomial time.

Proof. Let G = (V,E) be a pseudo-split graph without universal vertices. Let
V = Q + S + C be a partition as in Theorem 8. We may assume that C �= ∅
otherwise we are done by Theorem 7.

So let C be the induced C5 = v1v2v3v4v5v1. Then, clearly, the |Q| + 5 inde-
pendent sets V − N(v), v ∈ Q, and S ∪ {vi, vi+2} (indices are taken modulo 5),
1 ≤ i ≤ 5, can be used for completing G. Thus, by Theorem 6, and by noting
that cow(C5) = 5, we have cow(G) = |Q| + 5. �

Theorem 4 and Proposition 1 imply the following corollary (note that the
complement of a pseudo-split is also a pseudo-split graph).

Corollary 3. The edge clique cover number of pseudo-split graphs can be com-
puted in polynomial time.

On the Complete Width and Edge Clique Cover Problems 545

5 Graphs of Small Complete Width

We describe in this section graphs of small complete width k ≤ 3. These are
particularly 2K2-free and our descriptions are good in the sense that they imply
polynomial time recognition for these graph classes.

Complete Width-1 and Complete Width-2 Graphs

A complete split graph is a split graph G = (Q + S,E) such that every vertex
in the clique Q is adjacent to every vertex in the independent set S. Such a
partition is also called a complete split partition of a split graph. Note that if
the complete split graph G = (Q + S,E) is not a clique, then G has exactly one
complete split partition V = Q∪S. Furthermore, each vertex in Q is a universal
vertex.

Graphs of complete width one can be characterized as follows.

Theorem 10 ([17]). The following statements are equivalent.

(i) G is a probe complete graph;
(ii) G is a {K2 + K1, C4}-free graph;
(iii) G is a complete split graph.

The join G � H is obtained from G + H by adding all possible edges xy
between any vertex x in G and any vertex y in H. Graphs of complete width at
most two can be characterized as follows.

Theorem 11 ([18]). A graph G is a 2-probe complete graph if and only if G is
{2K2, P4,K3 + K1, (K2 + K1) � 2K1, C4 � 2K1}-free.

Complete Width-3 Graphs

Substituting a vertex v in a graph G by a graph H results in the graph obtained
from (G − v) ∪ H by adding all edges between vertices in NG(v) and ver-
tices in H. The Net consists of six vertices a, b, c, a′, b′ and c′ and six edges
aa′, bb′, cc′, a′b′, b′c′ and a′c′.

Graphs of complete width at most 3 can be characterized as follows.

Theorem 12. Let Q be the set (possibly empty) of universal vertices of the
graph G. G is a 3-probe complete graph if and only if G − Q has at most one
non-trivial connected component which is obtained from the Net by substituting
the vertices by (possibly empty) independent sets.

Proof. (Sketch) First, assume that G is a 3-probe complete graph, and let N1, N2,
N3 be a complete witness of G. Then G is 2K2-free and Q = V (G) \ N1 ∩ N2 ∩ N3
is the set of all universal vertices of G. Moreover, as G is 2K2-free, G − Q has
at most one non-trivial connected component and I = N1 ∩ N2 ∩ N3 is the set of
all isolated vertices of G − Q.

546 V.B. Le and S.-L. Peng

The non-trivial connected component N of G − Q is partitioned into the
following six independent sets. I12 = (N1 ∩ N2) \ N3, I13 = (N1 ∩ N3) \ N2, I23 =
(N2 ∩ N3) \ N1, I1 = N1 \ (N2 ∪ N3), I2 = N2 \ (N1 ∪ N3), and I3 = N3 \ (N1 ∪ N2).
Then there are all possible edges between I1 and I2, I3, I23, between I2 and
I1, I3, I13, between I3 and I1, I2, I12, and there are no other edges between these
independent sets. Thus, N is obtained from the Net by substituting the vertices
by these six independent sets.

Next, assume that G − Q has at most one non-trivial connected component
which is obtained from the Net by substituting the vertices by (possibly empty)
independent sets. Let I be the set of trivial connected components and let N be
the non-trivial connected component of G − Q. Let N be obtained from the Net
by substituting its vertices a, b, c, a′, b′, c′ by independent set Ia, Ib, Ic, Ia′ , Ib′ , Ic′ ,
respectively. Then N1 = I ∪ Ia ∪ Ib′ ∪ Ic′ , N2 = I ∪ Ib ∪ Ia′ ∪ Ic′ , and N3 =
I ∪ Ic ∪ Ia′ ∪ Ib′ from a complete witness of G. �

We note that, using modular decomposition, one can recognize graphs
obtained from the Net by substituting vertices by independent sets in linear
time. Hence Theorem 12 gives a linear time recognition for 3-probe complete
graphs. We also remark that there is a characterization for 3-probe complete
graphs by 14 forbidden induced subgraphs.

6 Conclusion

In this paper we have shown that complete width is NP-complete on 3K2-free
bipartite graphs (equivalently, edge clique cover is NP-complete on K2,2,2-
free co-bipartite graphs). So, an obvious open question is: What is the computa-
tional complexity of complete width on 2K2-free graphs? Equivalently, what
is the computational complexity of edge clique cover on C4-free graphs? We
have given partial results in this direction by showing that complete width

is polynomially solvable on (2K2,K3)-free graphs and on (2K2, C4)-free graphs.
(Equivalently, edge clique cover is polynomially solvable on (C4, 3K1)-free
graphs and on (C4, 2K2)-free graphs.)

Another interesting question is the following. The time complexities of many
problems coincide on split graphs and bipartite graphs, e.g., the dominating set
problem. However, for the complete width problem, they are different, one is in
P and the other is in NP-complete. Trees are a special class of bipartite graphs.
Many problems become easy on trees. However, we do not know the hardness of
the complete width problem on trees.

References

1. Blázsik, Z., Hujter, M., Pluhár, A., Tuza, Z.: Graphs with no induced C4 and 2K2.
Discrete Mathematics 115, 51–55 (1993)

2. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Mono-
graphs on Discrete Mathematics and Applications, Philadelphia (1999)

On the Complete Width and Edge Clique Cover Problems 547

3. Chandler, D.B., Chang, M.-S., Kloks, T., Peng, S.-L.: Probe Graphs, (2009).
http://www.cs.ccu.edu.tw/∼hunglc/ProbeGraphs.pdf

4. Chang, M.-S., Hung, L.-J., Kloks, T., Peng, S.-L.: Block-graph width. Theoretical
Computer Science 412, 2496–2502 (2011)

5. Chang, M.-S., Kloks, T., Liu, C.-H.: Edge-clique graphs of cocktail parties have
unbounded rankwidth, (2012). arXiv:1205.2483 [cs.DM]

6. Chang, M.-S., Müller, H.: On the tree-degree of graphs. In: Brandstädt, A., Le,
V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 44–54. Springer, Heidelberg (2001)

7. Ma, S., Wallis, W.D., Wu, J.: Clique covering of chordal graphs. Utilitas Mathe-
matica 36, 151–152 (1989)

8. Cygan, M., Pilipczuky, M., Pilipczuk, M.: Known algorithms for EDGE CLIQUE
COVER are probably optimal. In: Proc. SODA, 1044–1053 (2013)

9. Foldes, S., Hammer, P.L.: Split graphs. Congressus Numerantium, No. XIX, 311–
315 (1977)

10. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Dis-
crete Math., vol. 57, 2nd edn. Elsevier, Amsterdam (2004)

11. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Data reduction and exact algo-
rithms for clique cover. ACM Journal of Experimental Algorithmics 13 (2008).
Article 2.2

12. Hammer, P.L., Peled, U.N., Sun, X.: Difference graphs. Discrete Applied Mathe-
matics 28, 35–44 (1990)

13. Holyer, I.: The NP-completeness of some edge-partition problems. SIAM Journal
on Computing 4, 713–717 (1981)

14. Hoover, D.N.: Complexity of graph covering problems for graphs of low degree.
Journal of Combinatorial Mathematics and Combinatorial Computing 11, 187–
208 (1992)

15. Hsu, W.-L., Tsai, K.-H.: Linear time algorithms on circular-arc graphs. Inf. Process.
Lett. 40, 123–129 (1991)

16. Kou, L.T., Stockmeyer, L.J., Wong, C.K.: Covering edges by cliques with regard
to keyword conflicts and intersection graphs. Comm. ACM 21, 135–139 (1978)

17. Le, V.B., Peng, S.-L.: Characterizing and recognizing probe block graphs. Theo-
retical Computer Science 568, 97–102 (2015)

18. Le, V.B., Peng, S.-L.: Good characterizations and linear time recognition for 2-
probe block graphs. In: Proceedings of the International Computer Symposium,
Taichung, Taiwan, December 12–14, 2014, pp. 22–31. IOS Press (2015). doi:10.
3233/978-1-61499-484-8-22

19. Maffray, F., Preissmann, M.: Linear recognition of pseudo-split graphs. Discrete
Applied Mathematics 52, 307–312 (1994)

20. Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics. Annals of
discrete mathematics, vol. 56. Elsevier, Amsterdam (1995)

21. Müller, H.: On edge perfectness and classes of bipartite graphs. Discrete Math.
149, 159–187 (1996)

22. Orlin, J.: Contentment in graph theory: covering graphs with cliques. Indagationes
Mathematicae 80, 406–424 (1977)

23. Pullman, N.J.: Clique covering of graphs IV. Algorithms. SIAM Journal on Com-
puting 13, 57–75 (1984)

24. Raychaudhuri, A.: Intersection number and edge clique graphs of chordal and
strongly chordal graphs. Congressus Numer. 67, 197–204 (1988)

25. Yannakakis, M.: Node-delection problems on bipartite graphs. SIAM Journal on
Computing 10, 310–327 (1981)

http://www.cs.ccu.edu.tw/~hunglc/ProbeGraphs.pdf
http://arxiv.org/abs/1205.2483
http://dx.doi.org/10.3233/978-1-61499-484-8-22
http://dx.doi.org/10.3233/978-1-61499-484-8-22

Unique Covering Problems with Geometric Sets

Pradeesha Ashok1, Sudeshna Kolay1, Neeldhara Misra2(B), and Saket Saurabh1

1 Institute of Mathematical Sciences, Chennai, India
{pradeesha,skolay,saket}@imsc.res.in

2 Indian Institute of Science, Bangalore, India
mail@neeldhara.com

Abstract. The Exact Cover problem takes a universe U of n elements,
a family F of m subsets of U and a positive integer k, and decides whether
there exists a subfamily(set cover) F ′ of size at most k such that each
element is covered by exactly one set. The Unique Cover problem also
takes the same input and decides whether there is a subfamily F ′ ⊆ F
such that at least k of the elements F ′ covers are covered uniquely(by
exactly one set). Both these problems are known to be NP-complete. In
the parameterized setting, when parameterized by k, Exact Cover is
W[1]-hard. While Unique Cover is FPT under the same parameter, it
is known to not admit a polynomial kernel under standard complexity-
theoretic assumptions.

In this paper, we investigate these two problems under the assumption
that every set satisfies a given geometric property Π. Specifically, we
consider the universe to be a set of n points in a real space R

d, d being a
positive integer. When d = 2 we consider the problem when Π requires
all sets to be unit squares or lines. When d > 2, we consider the problem
where Π requires all sets to be hyperplanes in R

d. These special versions
of the problems are also known to be NP-complete. When parameterizing
by k, the Unique Cover problem has a polynomial size kernel for all
the above geometric versions. The Exact Cover problem turns out to
be W[1]-hard for squares, but FPT for lines and hyperplanes. Further,
we also consider the Unique Set Cover problem, which takes the same
input and decides whether there is a set cover which covers at least k
elements uniquely. To the best of our knowledge, this is a new problem,
and we show that it is NP-complete (even for the case of lines). In fact,
the problem turns out to be W[1]-hard in the abstract setting, when
parameterized by k. However, when we restrict ourselves to the lines and
hyperplanes versions, we obtain FPT algorithms.

1 Introduction

The classic Set Cover problem is the following: For a set system (U,F) where
U is a finite universe of n elements and F is a family of subsets of U , is there a

N. Misra—Supported by the INSPIRE Faculty Scheme, DST India (project DSTO-
1209).

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 548–558, 2015.
DOI: 10.1007/978-3-319-21398-9 43

Unique Covering Problems with Geometric Sets 549

sub family of at most k sets in F whose union is U . We say that an element x
in U is covered by a set S from F if the set S contains the element x.

For several applications, it turns out that we would like to not only cover ele-
ments of U using sets in F , but also cover them uniquely. A common motivation
involves problems where covering elements by more than one set leads to noise
(for example, wireless networks), so we would like to ensure that an element is
covered, but by only one of the sets. This desired refinement manifests itself in
the following three natural variations of the Set Cover problem.

– All elements must be covered uniquely by at most k sets. (Exact Cover)
– All elements must be covered, and at least k elements must be covered

uniquely. (Unique Set Cover)
– At least k elements are covered uniquely. (Unique Cover)

In the first two variants, we are looking for a set cover with additional prop-
erties. Note that in the last setting, a valid solution may not be a set cover.

The Exact Cover problem was one of the twenty-one problems shown
to be NP-complete by Karp [6]. The Unique Cover problem was introduced
by Demaine et al in [1], and it may be considered a natural “maximization”
variant of Set Cover, and also a generalization of the Max Cut problem. The
Unique Set Cover problem combines elements of both these variants, and is
NP-complete as well.

The Geometric Setting. Geometric settings are among the most promising con-
texts for developing improved algorithms when faced with hardness in a general
setting. The geometric nature of the problem opens up several algorithmic possi-
bilities, and this is amply evidenced in the context of approximation algorithms.
Many geometric problems are known to admit good approximation algorithms,
even PTASes. In particular, the classical set cover and hitting set problems have
been very well-explored in the context of geometric objects [5,12]. In this situa-
tion, the universe is a point set in d-dimensional Euclidean space, and the sets
are defined by intersection of geometric objects with the point set. An object
covers a point if it contains it. We study the unique coverage variants for several
geometric objects, including lines, hyperplanes, squares, and rectangles.

Our Approach. In this work, we focus on the parameterized complexity of these
problems, both in the general abstract setting and carefully considered spe-
cial cases. In parameterized complexity each problem instance comes with a
parameter k and a central notion in parameterized complexity is fixed parameter
tractability (FPT). This means, for a given instance (x, k), solvability in time
f(k) · p(|x|), where f is an arbitrary function of k and p is a polynomial in the
input size. The parameterized problem is said to admit a polynomial kernel if
there is a polynomial time algorithm (the degree of polynomial is independent
of k), called a kernelization algorithm, that reduces the input instance down to
an instance with size bounded by a polynomial p(k) in k, while preserving the
answer.

550 P. Ashok et al.

Table 1. A summary of our results

Exact Cover Unique Cover Unique Set Cover

Parameter Size of solution Number of elements uniquely covered

Abstract Sets
W[1]-hard FPT W[1]-hard

Quadratic Element Kernel

Lines
FPT

V
C

-D
im

en
si

o
n FPT FPT

Quadratic Kernel Quadratic Kernel Poly Kernel

Hyperplanes R
d kO(d2)

kernel

kO(d) Instance Kernel
(Quadratic Element Kernel)

kO(d2)

kernel
Unit Squares W[1]-hard Poly Kernel Open

Studying the parameterized complexity of geometric problems has interesting
implications. On the one hand, a tractability result demonstrates the utility of
the geometric structure in contrast with the abstract setting. On the other, a
hardness result often has consequences for hardness of approximation; usually
it establishes evidence for the non-existence of the EPTAS. This has motivated
several studies of geometric problems from a parameterized perspective [8].

Our Results. In this work, we establish the following results, summarized also
in Table 1.

Exact Cover. We show that Exact Cover is W[1]-hard even in the restricted
setting where all the objects are unit squares (Lemma 1). On the positive
side, we show that Exact Cover is FPT for lines (Lemma 2). Further, if
the objects are hyperplanes in a d-dimensional Euclidean space, the Exact
Cover continues to be FPT parameterized by k and d (Lemma 3).

Unique Cover. For Unique Cover, a simple argument shows that the num-
ber of elements in the universe can be bounded by O(k2) (Lemma 4). This
shows that the problem is FPT. It turns out that this also implies a polyno-
mial kernel for various geometric objects (Corollary 2), using the fact that
these objects have bounded VC Dimension.

Unique Set Cover. We show that Unique Set Cover is W[1]-hard in the gen-
eral setting (Lemma 5) and NP-complete when restricted to lines (Lemma 6).
On the positive side, we show that the problem is FPT for families of bounded
intersection (Lemma 7) and hyperplanes in d dimensions (Lemma 8).

2 Preliminaries

Parameterized Complexity. A parameterized problem Π is a subset of Σ∗ ×
N. Given a parameterized decision problem with input x ∈ Σ∗ of size n, and
an integer parameter k, the goal in parameterized complexity is to design a
deterministic algorithm which decides the membership of the instance (x, k) in
Π in time f(k)nO(1), where f is a function of k alone. Problems which admit such
algorithms are said to be fixed parameter tractable (FPT). We call an algorithm,

Unique Covering Problems with Geometric Sets 551

with a running time of f(k)nO(1), an FPT algorithm, and such a running time,
an FPT running time. The theory of parameterized complexity was developed
by Downey and Fellows [3]. For recent developments, see the book by Flum and
Grohe [4].

Definition 1. A parameterized problem Π FPT-many-one reduces to another
parameterized problem Γ , if there is a polynomial p, computable functions f, g :
N → N , and a Turing machine T such that, given any input instance (x, k), T
outputs an instance (x′, k′) within f(k)p(|x|) time, with (x, k) ∈ Π if and only
if (x′, k′) ∈ Γ , and k′ ≤ g(k).

There is a hierarchy of problems in parameterized complexity. For the pur-
pose of this paper we will define the class W [1] with respect to a hard problem
in this class. The class W [1] is the class of all parameterized problems that
FPT-many-one reduce to the k-Clique problem parameterized by k. A parame-
terized problem is W[1]-hard if there is a FPT-many-one reduction from k-Clique,
parameterized by k, to the given problem. It is widely believed that FPT ⊂ W[1].
For further understanding of the various parameterized classes, refer to Flum and
Grohe [4].

Kernelization. A kernelization algorithm for a parameterized problem Π is a
polynomial time procedure which takes as input an instance (x, k), where k is the
parameter, and returns an instance (x′, k′) such that (x, k) ∈ Π if and only if
(x′, k′) ∈ Π and |x′| ≤ g(k) and k′ ≤ h(k), for some computable functions g, h.
The returned instance (x′, k′) is said to be the kernel for the instance (x, k) of Π.

Problem Definitions. A set system is a pair (U,F), where U is a universe of
n elements and F is a family of m subsets of U . Given a set system (U,F), a set
S is said to cover an element p ∈ U if p ∈ S. An element p is said to be covered
uniquely by a subfamily F ′ ⊆ F if there is exactly one set in F ′ which contains
p. The Set Cover problem asks for a smallest collection of subsets whose union
covers every element in the universe. We are now ready to define some of the
variations of this problem that we consider in our work.

Exact Cover Parameter: k
Input: A set system (U,F) of n elements and m sets, and a positive integer
k.
Question: Is there a subfamily F ′ ⊆ F of size at most k that covers every
element of U such that each element is contained in exactly one set in F ′?

Unique Cover Parameter: k
Input: A set system (U,F) of n elements and m sets, and a positive integer
k.
Question: Is there a subfamily F ′ ⊆ F such that, among the set of elements
covered by F ′, there is a subset S ⊂ U , |S| ≥ k with each element of S being
contained in exactly one set in F ′?

552 P. Ashok et al.

Unique Set Cover Parameter: k
Input: A set system (U,F) of n elements and m sets, and a positive integer
k.
Question: Is there a subfamily F ′ ⊆ F that covers every element of U such
that there is a subset S ⊆ U , |S| ≥ k where each element of S is contained
in exactly one set in F ′?

We consider some notions that will be useful in defining special set systems
that we will encounter during our study of these problems. A set system (U,F) is
said to have bounded intersection when there is a universal constant c such that
for any pair of sets F1, F2 ∈ F , |F1 ∩F2| ≤ c. A set system (U,F) is said to be a
set system of squares (lines) if U is a subset of n points in R

2 and each set F ∈ F
is the maximal set of points of U that are contained in a square(line) defined on
R

2. Similarly, a set system (U,F) is said to be a set system of hyperplanes if U
is a set of n points in R

d, for a fixed positive integer d, and each set F ∈ F is the
maximal set of points of U that are contained in a hyperplane defined on R

d.
Given a set system (U,F) of n elements and m sets, for every subset A ⊆ U

we define the family of sets FA = {S ∩ A|S ∈ F}.

Definition 2 (VC Dimension). Let (U,F) represent a set system. A subset
A ⊆ U is said to be shattered if for every B ⊆ A, there exists F ∈ F such that
F ∩ A = B. The Vapnik-Chervonenkis dimension(or VC dimension of (U,F) is
the supremum of the sizes of all shattered subsets of U .

Therefore, in general, the VC dimension of a set system could be infinite.
However, set systems of several geometric objects are known to have bounded
VC dimension. We refer the reader to [9] for further details on VC Dimension.
The following result is known from [13] about set systems of finite VC dimension.

Proposition 1. Let (U,F) be a set system with |U | = n and VC dimension d.
Then |F| ≤

(
n
0

)
+

(
n
1

)
+ · · · +

(
n
d

)

Hyperplanes An i-flat in R
d is the affine hull of i+1 affinely independent points.

The dimension of a (possibly infinite) set of points P , denoted as dim(P), is the
minimum i such that the entire set P is contained in an i-flat of Rd [7].

Observation 1. [7] For a pair of i-flat H1 and j-flat H2 , 1 ≤ j, i ≤ d − 1, if
H1 	⊂ H2 and H1 	⊂ H2, then dim(H1 ∩ H2) < min{i, j}.

In this paper we refer to (d − 1)-flats of Rd as hyperplanes.

3 Exact Cover

In this section, we consider the Exact Cover problem, parameterized by the
number k of sets in a solution family. Since this problem is known to be W[1]-
hard, it is natural to introduce properties on the input set family and see whether
the added structure makes the problem easier in these special cases. Here, we

Unique Covering Problems with Geometric Sets 553

restrict ourselves to geometric versions, where the universe is a set of points in
a real space R

d, for an appropriate integer d, while the set family is such that
every set satisfies a particular geometric property.

The W[1]-hardness of Exact Cover was shown in [11]. We give an alter-
native proof for this W[1]-hardness. This proof, with a little bit of modification,
shows that Exact Cover on set systems of unit squares is also W[1]-hard.

Proposition 2 (�). Exact Cover is W[1]-hard.1

Lemma 1 (�). Exact Cover on set systems of unit squares is W[1]-hard.

Kernels for Exact Cover with Lines and Hyperplanes. In contrast with the
hardness results that we have seen so far, we now turn to some algorithmic
results. First, when we consider our input universe to be a set of n points in
R

2 and our sets to be maximal sets of collinear points, we obtain a quadratic
kernel using a “high degree” reduction rule. This version of Exact Cover is
also NP-complete, and the proof for NP-hardness is very similar to the proof of
Lemma 6 given in the Appendix.

Let (P,L) be the input set system. In our discussion, we use the terms sets
and lines interchangeably. The input family could contain sets containing single
points. Our first reduction rule is taken directly from [7]. We remove all lines
(but for one) that pass through exactly one point.

Reduction Rule 1. For any input point p, from the set Lp = {L|L ∈ L and L∩
P = {p}}, delete all lines but one (say Lp).

Proposition 3. Reduction Rule 1 is sound.

Reduction Rule 2. In an instance(P,L, k), if there is a line L that contains
at least k + 1 input points then delete L and all lines intersecting with points on
L and decrease k by one. All points contained in L are deleted from the universe
U . Formally, the reduced instance is (P \ L,L \ {T | L ∩ T 	= ∅}, k − 1).

A similar reduction was given in [7] to exhibit a polynomial kernel for Point
Line Cover. We show the correctness of this reduction in this case.

Claim. Reduction Rule 2 is sound.

Proof. Suppose there is a solution, L′, for (P,L, k) which does not contain L.
Since L′ is a set cover of size at most k that excludes L, it includes at least
(k + 1) other lines to cover the points on L, as two lines intersect at at most
one point. This contradicts that L′ is a solution of the instance (P,L, k). Note
that this argument shows that any valid solution of the instance (P,L, k) must
contain L. Now, consider the subfamily of L comprising of lines that contain
points belonging to L:

L′′ := {T ∈ L | T 	= L, T ∩ L 	= ∅}.

1 The proofs of results marked with a � are in the Appendix.

554 P. Ashok et al.

Clearly, any solution that contains L does not contain any element of L′′, there-
fore, it is safe to remove these sets from the instance, establishing the correctness
of Reduction Rule 2. ��

The reduction is very robust, in the sense that a line as described above will
belong to any solution of the Exact Cover instance. On exhaustive application
of this reduction, a YES instance can have at most k2 remaining input points,
since k lines can only cover k2 points when each line has at most k points.

Therefore, if our reduced instance has more than k2 points, we correctly
return NO. Otherwise, due to Reduction Rule 1 and by the property of lines, we
can also bound the number of lines in the reduced instance to at most k4. Thus,
we have shown the following.

Lemma 2. Exact Cover on set systems of lines is FPT, with a polynomial
kernel.

A natural question is to consider input instances of Exact Cover which are
set systems of hyperplanes in R

d. We parameterize the Exact Cover problem
in this case by k+d. The following Lemma is obtained by extending the reduction
rules in [7]. In particular, it is shown in [7] that for any 1 ≤ i ≤ d − 1, if an
i-flat covers more than ki + 1 points, then these points can be replaced with
one representative. The crux of the argument is that all of these points are
covered “together” by a single hyperplane in any valid solution. In our argument,
we further this reduction rule by deleting all hyperplanes that contain a strict
subset of these points, because such hyperplanes are automatically forbidden
from being a part of any valid solution of Exact Cover. We refer the reader
to the Appendix and [7] for further details.

Lemma 3 (�). Exact Cover on set systems of hyperplanes in R
d is FPT

parameterized by k + d.

4 Unique Cover

The Unique Cover problem was studied in [11] and was found to be FPT. How-
ever, the problem does not have a polynomial kernel unless NP ⊆ coNP/poly,
as shown in [2]. In this section, we exhibit polynomial sized kernels for several
geometric versions, exploiting the geometric property satisfied by each set of the
input set system.

Recall that the Unique Cover problem is parameterized by the number of
elements that we desire to cover uniquely. To begin with, in the abstract setting,
we show that the number of elements in the universe can be bounded by k2. Note
that it is straightforward to bound the sizes of the individual sets in an instance
of Unique Cover, with the following observation.

Observation 2. If there exists Fi ∈ F such that |Fi| ≥ k, then the given
instance is a YES instance, with {Fi} serving as a valid solution.

Unique Covering Problems with Geometric Sets 555

We now turn to an argument for bounding the size of the universe in an
instance of Unique Cover.

Lemma 4 (�). Unique Cover admits a quadratic element kernel.

The following result regarding sets of bounded VC Dimension are now implied
by Proposition 1 and Lemma 4.

Corollary 1. Unique Cover on set systems of VC Dimension bounded by a
constant d admits a polynomial kernel.

As an immediate consequence, we get the existence of polynomial kernels
in special geometric cases, since these geometric set families have constant VC
Dimension.

Corollary 2 (�). Unique Cover admits a polynomial kernel for set systems
of lines, hyperplanes, axis-parallel rectangles and disks.

5 Unique Set Cover

We show that Unique Set Cover is W[1]-hard. However, as with the other
problems, assuming geometric properties on the set family provides positive
algorithmic results.

Lemma 5 (�). Unique Set Cover is W[1]-hard.

The reduction also shows that Unique Set Cover is NP-hard. In fact, even
when we consider the special case when the universe U is a set of n points in R

2

and each set is a line, the Unique Set Cover problem turns out to be NP-hard,
as we show in our next lemma.

Lemma 6 (�). Unique Set Cover on set systems of lines is NP-complete.

This NP-hardness reduction is very similar to the NP-hardness reduction for
Point Line Cover [10]. Unlike [10], we reduce the problem from 1-IN-3-SAT,
instead of 3-SAT.

This implies that Unique Set Cover on set systems with bounded intersec-
tion and Unique Set Cover on set systems of hyperplanes are also NP-hard.
In the parameterized context, although the problem is W[1]-hard in the general
setting, we look at some special cases where this problem can be solved in FPT
time. First, we make a few observations.

Observation 3. Let F ′ be a solution for Unique Set Cover. Then any min-
imal set cover contained in F ′ is also a solution for Unique Set Cover.

Thus, it is enough to find a minimal set cover that covers at least k elements
uniquely.

Observation 4. Any minimal set cover of size at least k is a Unique Set
Cover solution for a given instance. In particular, if the minimum set cover of
the given instance is of size at least k then it is a YES instance for the Unique
Set Cover problem.

Now, we turn to algorithmic results for special cases of Unique Set Cover.

556 P. Ashok et al.

Sets of Bounded Intersection. First, we consider set systems (U,F) where F has
the property that for any pair of sets F1, F2 ∈ F , |F1 ∩ F2| ≤ c.

Lemma 7. Unique Set Cover for sets of bounded intersection c is FPT when
parameterized by c + k.

Proof. Construct a minimal set cover S for the instance. If the size of S is at
least k, then it is a solution for Unique Set Cover, by Observation 4. Similarly,
if there is a set S ∈ S that contains at least k private elements, then too S is
a solution for Unique Set Cover. Suppose there are at most k − 1 sets in S
and each set has at most k − 1 private elements. By pigeonhole principle, there
must be a set S ∈ S which contains at least n/(k − 1) elements of U . The
number of elements in S that can belong to other sets of S is at most c(k − 2),
because of the bounded intersection property. If n

k−1 − c(k − 2) ≥ k then the
given instance is a YES instance. Otherwise, n

k−1 − c(k − 2) ≤ k − 1, which
implies that n ≤ (1 + c)(k − 1)2.

Since the sets have bounded pairwise intersection of at most c, any subset of
c + 1 elements can appear together in at most one set. Therefore, the number of
sets are bounded by nc+1 ≤ ((1+ c)(k −1)2)c+1. We can now guess the uniquely
covered elements, and the distribution of the uniquely covered elements in a
Unique Set Cover solution. Finally, we can check whether there are sets in
F to validate the guess in polynomial time. As the number of guesses is an FPT
function, the running time of this algorithm is FPT. ��

Hyperplanes in R
d. Next, we consider a geometric set system (U,F) where U is

a set of n points in R
d and sets in F are defined by hyperplanes in R

d. When
d = 2, these are lines and this is a special case of sets with bounded intersection.
For d > 2, hyperplanes do not have this property. Nonetheless, we obtain an
FPT algorithm for hyperplanes, by reducing the given instance to an instance
of Unique Set Cover for sets with bounded intersection.

Lemma 8. Unique Set Cover on set systems of hyperplanes in R
d is FPT.

Proof. Let U be the universe of n elements and F be the family of m hyperplanes
in R

d. The following Reduction Rule aims at reducing the number of points, while
maintaining the Unique Set Cover solution if there exists one.

Reduction Rule 3. for i from 1 to d − 1:
Suppose P ⊆ U is a set of at least ki points such that dim(P) = i, and P is
contained in at least one hyperplane of F . Suppose FP ⊆ F is the set of all
hyperplanes that contain P . If F \ FP is a set cover for U , then we say YES
for our input instance and exit. Otherwise, we delete all but ki points of P from
the universe. If a hyperplane becomes empty, we delete that hyperplane from F .

We prove the correctness of this reduction rule by induction on i. When i = 1,
P is a line with more than k points. We abuse notation and also use P to refer
to this collection of points. Suppose F \ FP is a set cover for the instance, let G
be a minimal set cover obtained from F \ FP . Then, by Observation 1, any set

Unique Covering Problems with Geometric Sets 557

in G can contain at most one point of P . To cover all elements of P , there must
be at least k + 1 sets in G. By Observation 4, we correctly say YES. If no such
set cover exists, then we know that any set cover for the input instance must
contain at least one hyperplane from FP . Let P ′ ⊂ P be the set of all but k
points that are deleted by the Reduction Rule and P ′′ = P \ P ′. Also, let F ′ be
the family of hyperplanes that became empty and got deleted from F . Suppose
G = {H1, . . . , Hl} is a minimal solution for (U,F , k). Since P is a line with more
than k points, there must be at least one Hi that contains all of P . Now, the
following cases can occur:

1. Suppose there are two planes Hi,Hj , 1 ≤ i 	= j ≤ l, both of which contain the
set P . Then none of the points in P are uniquely covered by this solution.
The points which are uniquely covered are not deleted as a result of this
Reduction Rule. Also, by definition of minimality, no hyperplane of G could
have become empty after this Reduction Rule was applied. Hence, G remains
a solution for Unique Set Cover in (U \ P ′,F \ F ′, k).

2. Suppose l > k. Since we have dealt with the case when P is covered be at
least 2 hyperplanes of G, we can assume that there is exactly one hyperplane
in G that contains P . There are at least k remaining hyperplanes in G. Since,
G is a minimal solution for Unique Set Cover, each of these remaining
hyperplanes cover a point uniquely, and none of these uniquely covered points
belong to P . Hence, G remains a solution for (U \ P ′,F \ F ′, k).

3. Finally, suppose l ≤ k, and as before, let H ∈ G be the hyperplane that
contains all points in P . Then at most l − 1 points of P are not uniquely
covered. All other points of P must be uniquely covered. In particular, at
most l − 1 points of P \ P ′ are not uniquely covered , which implies that at
least k − l +1 points in P \P ′ are uniquely covered by G. By minimality, for
each hyperplane H ′ in G \ {H} there is a point pH′ that is uniquely covered
by H ′. Thus, at least k−l+1 points from P \P ′ and l−1 points from G\{H}
are covered uniquely. Again, by minimality, no hyperplane of G could have
become empty because of application of the Reduction Rule. Hence, G is a
solution in (U \ P ′,F \ F ′, k).

On the other hand, let G′ be a minimal solution for (U \P ′,F \F ′, k). Assume G′

is not a solution for (U,F , k). Then each point in P ′′ is covered by a different set
in G′. Let this subfamily of G′, with at least k hyperplanes, be H′.Let G ∈ FP .
Consider G′ ∪ G, which is clearly a set cover for (U,F). Let S ⊂ G′ ∪ G be a
minimal set cover of (U,F). Suppose P1 ⊆ (U \ P ′) was a set of k points, such
that for each hyperplane H in H′ there is a point in P1 that it uniquely covers
with respect to G′. Let P2 ⊆ P1 be uniquely covered by S. Each point in P1 \ P2

has exactly one hyperplane in S, other than G, containing it. By the minimality
of S, this hyperplane has a point that is uniquely covered by it. Therefore, for
all of the points in P2 \ P1, either that point is uniquely covered by G or a
hyperplane (other than G) in S containing it is uniquely covering another point.
Therefore S still covers at least k points uniquely and is a solution for (U,F , k).

558 P. Ashok et al.

Now, assume i > 1 and the Induction Hypothesis is true for all j < i. By
arguments similar to the base case, the reduction rule is sound for i. The full
proof is in the Appendix. ��

We exhaustively apply this Reduction Rule. At the end, any hyperplane
contains at most kd−1 points. Let G be a minimal set cover for the instance. If
there are at least k+1 hyperplanes in G, then due to Observation 4, we correctly
say YES. Otherwise, there are at most k hyperplanes in the set cover G, which
implies that |U | ≤ k(d−1) · k. The number of hyperplanes that can contain these
points is at most (kd)d. Thus, we have a kernel for the problem. For the algorithm,
we guess k points P ⊆ U that are uniquely covered by a solution and the family
G of at most k hyperplanes that are responsible for this unique coverage. Let
FP = {H|H ∈ F \ G,∃p ∈ P s.t p ∈ H}. We check whether the family F \ FP

is a set cover or not. There are at most O(kkd2
) possible pairs (P,G). Thus the

problem is FPT. ��

References

1. Demaine, E.D., Feige, U., Hajiaghayi, M., Salavatipour, M.R.: Combination Can
Be Hard: Approximability of the Unique Coverage Problem. SIAM J. Comput. ()
38(4), 1464–1483 (2008)

2. Dom, M., Lokshtanov, D., Saurabh, S.: Kernelization Lower Bounds Through
Colors and IDs. ACM Trans. Algorithms 11(2), 13:1–13:20 (2014). doi:10.1145/
2650261

3. Downey, R.G., Fellows, M.R.: Parameterized Complexity, p. 530. Springer-Verlag
(1999)

4. Flum, J., Grohe, M.: Parameterized Complexity Theory (Texts in Theoretical
Computer Science. An EATCS Series). Springer-Verlag New York Inc (2006)

5. Hochbaum, D.S., Maass, W.: Fast approximation algorithms for a nonconvex
covering problem. Journal of algorithms 8(3), 305–323 (1987)

6. Karp, R.M.: Reducibility Among Combinatorial Problems. Complexity of
Computer Computations, pp. 85–103 (1972)

7. Langerman, S., Morin, P.: Covering things with things. Discrete & Computational
Geometry 33(4), 717–729 (2005)

8. Marx, Dániel: Efficient approximation schemes for geometric problems? In: Brodal,
Gerth Stølting, Leonardi, Stefano (eds.) ESA 2005. LNCS, vol. 3669, pp. 448–459.
Springer, Heidelberg (2005)

9. Matoušek, J.: Lectures on discrete geometry, vol. 108. Springer, New York (2002)
10. Megiddo, N., Tamir, A.: On the Complexity of Locating Linear Facilities in the

Plane. Oper. Res. Lett. 1(5), 194–197 (1982). doi:10.1016/0167-6377(82)90039-6
11. Misra, N., Moser, H., Raman, V., Saurabh, S., Sikdar, S.: The Parameterized

Complexity of Unique Coverage and Its Variants. Algorithmica, 517–544 (2013)
12. Mustafa, N., Ray, S.: PTAS for geometric hitting set problems via local search. In:

Proceedings of the 25th annual symposium on Computational geometry, pp. 17–22.
ACM (2009)

13. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative
frequencies of events to their probabilities. Theory of Probability & Its Applications
16(2), 264–280 (1971)

http://dx.doi.org/10.1145/2650261
http://dx.doi.org/10.1145/2650261
http://dx.doi.org/10.1016/0167-6377(82)90039-6

Linear Time Approximation Schemes
for Geometric Maximum Coverage

Jian Li1(B), Haitao Wang2, Bowei Zhang1, and Ningye Zhang1

1 Institute for Interdisciplinary Information Sciences (IIIS),
Tsinghua University, Beijing 100084, China

lijian83@mail.tsinghua.edu.cn, {bw-zh14,zhangny12}@mails.tsinghua.edu.cn
2 Department of Computer Science, Utah State University, Utah 84322, USA

haitao.wang@usu.edu

Abstract. We study approximation algorithms for the following geo-
metric version of the maximum coverage problem: Let P be a set of n
weighted points in the plane. We want to place m a × b rectangles such
that the sum of the weights of the points in P covered by these rectan-
gles is maximized. For any fixed ε > 0, we present efficient approximation
schemes that can find a (1 − ε)-approximation to the optimal solution.
In particular, for m = 1, our algorithm runs in linear time O(n log(1

ε
)),

improving over the previous result. For m > 1, we present an algorithm

that runs in O(n
ε

log(1
ε
) + m(1

ε
)O(min(

√
m, 1

ε
))) time.

Keywords: Maximum coverage · Geometric set cover · Polynomial-time
approximation scheme

1 Introduction

The maximum coverage problem is a classic problem in theoretical computer
science and combinatorial optimization. In this problem, we are given a universe
P of weighted elements, a family of subsets and a number k. The goal is to
select at most k of these subsets such that the sum of the weights of the cov-
ered elements in P is maximized. It is well-known that the most natural greedy
algorithm achieves an approximation factor of 1 − 1/e, which is essentially opti-
mal (unless P=NP) [17,20,25]. However, for several geometric versions of the
maximum coverage problem, better approximation ratios can be achieved (we
will mention some of such results below). In this paper, we mainly consider the
following geometric maximum coverage problem:

Jian Li, Bowei Zhang and Ningye Zhang’s research was supported in part by the
National Basic Research Program of China Grant 2015CB358700, 2011CBA00300,
2011CBA00301, the National Natural Science Foundation of China Grant 61202009,
61033001, 61361136003. Haitao Wang’s research was supported in part by NSF under
Grant CCF-1317143.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 559–571, 2015.
DOI: 10.1007/978-3-319-21398-9 44

560 J. Li et al.

Definition 1. (MaxCovR(P,m)) Let P be a set of n points in a 2-dimensional
Euclidean plane R

2. Each point p ∈ P has a given weight wp ≥ 0. The goal of
our geometric max-coverage problem (denoted as MaxCovR(P,m)) is to place m
a × b rectangles such that the sum of the weights of the covered points by these
rectangles is maximized. More precisely, let S be the union of m rectangles we
placed. Our goal is to maximize

Cover(P, S) =
∑

p∈P∩S

wp.

We also study the same coverage problem with unit disks, instead of rect-
angles. We denote the corresponding problem as MaxCovD(P,m). One natural
application of the geometric maximum coverage problem is the facility placement
problem. In this problem, we would like to locate a certain number of facilities to
serve the maximum number of clients. Each facility can serve a region (depending
on whether the metric is L1 or L2, the region is either a square or a disk).

1.1 m = 1

Previous Results: We first consider MaxCovR(P, 1). Imai and Asano [21], Nandy
and Bhattacharya [24] gave two different exact algorithms for MaxCovR(P, 1),
both running in time O(n log n). It is also known that solving MaxCovR(P, 1)
exactly in algebraic decision tree model requires Ω(n log n) time [4]. Tao et
al. [26] proposed a randomized approximation scheme for MaxCovR(P, 1). With
probability 1 − 1/n, their algorithm returns a (1 − ε)-approximate answer in
O(n log(1ε) + n log log n) time. In the same paper, they also studied the problem
in the external memory model.
Our Results: For MaxCovR(P, 1) we show that there is an approximation scheme
that produces a (1 − ε)-approximation and runs in O(n log(1ε)) time, improving
the result by Tao et al. [26].

1.2 General m > 1

Previous Results: Both MaxCovR(P,m) and MaxCovD(P,m) are NP-hard if m
is part of the input [22]. The most related work is de Berg, Cabello and Har-
Peled [12]. They mainly focused on using unit disks (i.e., MaxCovD(P,m)). They
proposed a (1 − ε)-approximation algorithm for MaxCovD(P,m) with time com-
plexity O(n(m/ε)O(

√
m)).

1 We note that their algorithm can be easily extended to MaxCovR with the
same time complexity.

We are not aware of any explicit result for MaxCovR(P,m) for general m > 1.

1 They were mainly interested in the case where m is a constant. So the running
time becomes O(n(1/ε)O(

√
m)) (which is the bound claimed in their paper) and the

exponential dependency on m does not look too bad for m = O(1). Since we consider
the more general case, we make the dependency on m explicit.

Linear Time Approximation Schemes for Geometric Maximum Coverage 561

It is known [12] that the problem admits a PTAS via the standard shifting
technique [19]. 2

Our Results: Our main result is an approximation scheme for MaxCovR(P,m)
which runs in time

O

(
n

ε
log

1
ε

+ m

(
1
ε

)Δ
)

,

where Δ = O(min(
√

m, 1
ε)). Our algorithm can be easily extended to other

shapes. The algorithm for approximating approximating MaxCovD(P,m) can be
found in the full version of this paper. 3 The running time of our algorithm is

O

(

n
(1

ε

)O(1)

+ m
(1

ε

)Δ
)

.

Following the convention of approximation algorithms, ε is a fixed constant.
Hence, the second term is essentially O(m) and the overall running time is essen-
tially linear O(n). Our algorithm follows the standard shifting technique [19],
which reduces the problem to a smaller problem restricted in a constant size
cell. The same technique is also used in de Berg et al. [12]. They proceeded by
first solving the problem exactly in each cell, and then use dynamic programming
to find the optimal allocation for all cells. 4

Our improvement comes from another two simple yet useful ideas. First, we
apply the shifting technique in a different way and make the side length of grids
much smaller (O(1ε), instead of O(m) in de Berg et al.’s algorithm [12]). Second,
we solve the dynamic program approximately. In fact, we show that a simple
greedy strategy (along with some additional observations) can be used for this
purpose, which allows us to save another O(m) term.

1.3 Other Related Work

There are many different variants for this problem. We mention some most
related problems here.

Barequet et al. [3], Dickerson and Scharstein [13] studied the max-enclosing
polygon problem which aims to find a position of a given polygon to cover
maximum number of points. This is the same as MaxCovR(P, 1) if a polygon
is a rectangle. Imai et al. [21] gave an optimal algorithm for the max-enclosing
rectangle problem with time complexity O(n log n).

MaxCovD(P,m) was introduced by Drezner [15]. Chazelle and Lee [9] gave
an O(n2)-time exact algorithm for the problem MaxCovD(P, 1). A Monte-Carlo

2 Hochbaum and Maass [19] obtained a PTAS for the problem of covering given points
with a minimal number of rectangles. Their algorithm can be easily modified into a
PTAS for MaxCovR(P, m) with running time nO(1/ε).

3 The full version of this paper can be found on CS arXiv.
4 In fact, their dynamic programming runs in time at least Ω(m2). Since they focused

on constant m, this term is negligible in their running time. But if m >
√

n, the
term can not be ignored and may become the dominating term.

562 J. Li et al.

(1 − ε)-approximation algorithm for MaxCovD(P, 1) was shown in [1], where P is
an unweighted point set. Aronov and Har-Peled [2] showed that for unweighted
point sets an O(nε−2 log n) time Monte-Carlo (1 − ε)-approximation algorithm
exists, and also provided some results for other shapes. de Berg et al. [12] pro-
vided an O(nε−3) time (1 − ε)-approximation algorithm.

For m > 1, MaxCovD(P,m) has only a few results. For m = 2, Cabello et
al. [7] gave an exact algorithm for this problem when the two disks are disjoint in
O(n8/3 log2 n) time. de Berg et al. [12] gave (1−ε)-approximation algorithms that
run in O(nε−4m+4 log2m−1 (1/ε)) time for m > 3 and in O(nε−6m+6 log (1/ε))
time for m = 2, 3.

The dual of the maximum coverage problem is the classical set cover problem.
The geometric set cover problem has enjoyed extensive study in the past two
decades. The literature is too vast to list exhaustively here. See e.g., [6,8,10,16,
23,27] and the references therein.

2 Preliminaries

We first define some notations and mention some results that are needed in our
algorithm. Denote by Gδ(a, b) the square grid with mesh size δ such that the
vertical and horizontal lines are defined as follows

Gδ(a, b) =
{
(x, y) ∈ R

2 | y = b + k · δ, k ∈ Z
} ∪ {(x, y) ∈ R

2 | x = a + k · δ, k ∈ Z
}

Given Gδ(a, b) and a point p = (x, y), we call the integer pair (�x/δ�, �y/δ�) the
index of p (the index of the cell in which p lies in).

Perfect Hashing: Dietzfetbinger et al. [14] shows that if each basic algebraic
operation (including {+,−,×,÷, log2, exp2}) can be done in constant time, we
can get a perfect hash family so that each insertion and membership query takes
O(1) expected time. In particular, using this hashing scheme, we can hash the
indices of all points, so that we can obtain the list of all non-empty cells in O(n)
expected time. Moreover, for any non-empty cell, we can retrieve all points lies
in it in time linear in the number of such points.

Linear Time Weighted Median and Selection: It is well known that finding the
weighted median for an array of numbers can be done in deterministic worst-
case linear time. The setting is as follows: Given n distinct elements x1, x2, ..., xn

with positive weights w1, w2, ..., wn. Let w =
∑n

i=1 wi. The weighted median is
the element xk satisfying

∑
xi<xk

wi < w/2 and
∑

xi>xk
wi ≤ w/2. Finding the

kth smallest elements for any array can also be done in deterministic worst-case
linear time. See e.g., [11].

An Exact Algorithm for MaxCovR(P, 1): As we mentioned previously, Nandy
and Bhattacharya [24] provided an O(n log n) exact algorithm for the
MaxCovR(P, 1) problem. We are going to use this algorithm as a subroutine
in our algorithm.

Linear Time Approximation Schemes for Geometric Maximum Coverage 563

3 A Linear Time Algorithm for MaxCovR(P, 1)

Notations: Without loss of generality, we can assume that a = b = 1, i.e., all
the rectangles are 1×1 squares, (by properly scaling the input). We also assume
that all points are in general positions. In particular, all coordinates of all points
are distinct. For a unit square r, we use w(r) to denote the sum of the weights of
the points covered by r. We say a unit square r is located at (x, y) if the top-left
corner of r is (x, y).

Now we present our approximation algorithm for MaxCovR(P, 1).

3.1 Grid Shifting

Recall the definition of a grid Gδ(a, b) (in Section 2). Consider the following four
grids: G2(0, 0),G2(0, 1),G2(1, 0),G2(1, 1) with δ = 2. We can easily see that for
any unit square r, there exists one of the above grids that does not intersect
r (i.e., r is inside some cell of the grid). This is also the case for the optimal
solution.

Now, we describe the overall framework, which is similar to that in [26]. Our
algorithm differs in several details. MaxCovCell(c) is a subroutine that takes
a 2 × 2 cell c as input and returns a unit square r that is a (1-ε)-approximate
solution if the problem is restricted to cell c. We present the details of Max-

CovCell in the next subsection.

Algorithm 1. MaxCovR(P, 1)
wmax ← 0
for each G ∈ {G2(0, 0), G2(0, 1), G2(1, 0), G2(1, 1)} do

Use perfect hashing to find all the non-empty cells of G.
for each non-empty cell c of G do

r ← MaxCovCell(c).
If w(r) > wmax, then wmax ← w(r) and rmax ← r.

end for;
end for;
return rmax;

As we argued above, there exists a grid G such that the optimal solution is
inside some cell c� ∈ G. Therefore, MaxCovCell(c�) should return a (1-ε)-
approximation for the original problem MaxCovR(P, 1).

3.2 MaxCovCell

In this section, we present the details of the subroutine MaxCovCell. Now
we are dealing with the problem restricted to a single 2 × 2 cell c. Denote the
number of point in c by nc, and the sum of the weights of points in c by Wc. We
distinguish two cases, depending on whether nc is larger or smaller than

(
1
ε

)2.
If nc <

(
1
ε

)2, we simply apply the O(n log n) time exact algorithm. [24]

564 J. Li et al.

Algorithm 2. Partition({x1, x2, ..., xn})
Find the weighted median xk (w.r.t. w-weight);
L = L ∪ {xk};
Generate S = {xi | wi < xk}, L = {xi | wi > xk};
If the sum of the weights of the points in S is lager than wd, run Partition(S);
If the sum of the weights of the points in L is lager than wd, run Partition(L);

The other case requires more work. In this case, we further partition cell c
into many smaller cells. First, we need the following simple lemma.

Lemma 1. Given n points in R
2 with positive weights w1, w2, ..., wn,

∑n
i=1 wi =

w. Assume that x1, x2, ..., xn are their distinct x-coordinates. We are also given
a value wd such that max(w1, w2, ..., wn) ≤ wd ≤ w, Then, we can find at most
2w/wd vertical lines such that the sum of the weights of points strictly between
(we do not count the points on these lines) any two adjacent lines is at most wd

in time O(n log(w/wd)).

Proof. See Algorithm 2. In this algorithm, we apply the weighted median algo-
rithm recursively. Initially we have a global variable L = ∅, which upon termi-
nation is the set of x-coordinates of the selected vertical lines. Each time we find
the weighted median xk and separate the point with the vertical line x = xk,
which we add into L. The sum of the weights of points in either side is at most
half of the sum of the weights of all the points. Hence, the depth of the recursion
is at most 	log(w/wd)
. Thus, the size of L is at most 2�log(w/wd)� ≤ 2w/wd, and
the running time is O(n log(w/wd)). ��

Now, we describe how to partition cell c into smaller cells. First we partition
c with some vertical lines. Let Lv to denote a set of vertical lines. Initially, L = ∅.
Let wd = ε·Wc

16 . We find all the points whose weights are at least wd. For each
such point, we add to Lv the vertical line that passes through the point. Then,
we apply Algorithm 2 to all the points with weights less than wd. Next, we add
a set Lh of horizontal lines in exactly the same way.

Lemma 2. The sum of the weights of points strictly between any two adjacent
lines in Lv is at most wd = ε·Wc

16 . The number of vertical lines in Lv is at most
32
ε . Both statements hold for Lh as well.

Proof. The first statement is straightforward from the description of the algo-
rithm. We only need to prove the upper bound of the number of the vertical lines.
Assume the sum of the weights of those points considered in the first (resp. sec-
ond) step is W1(resp. W2), W1 + W2 = Wc. The number of vertical lines in Lv

is at most

W1/

(
ε · Wc

16

)

+ 2W2/

(
ε · Wc

16

)

≤ 32
ε

.

The first term is due to the fact that the weight of each point we found in the
first step has weight at least ε·Wc

16 , and the second term directly follows from
Lemma 1. ��

Linear Time Approximation Schemes for Geometric Maximum Coverage 565

We add both vertical boundaries of cell c into Lv and both horizontal
boundaries of cell c into Lh. Now L = Lv ∪ Lh forms a grid of size at most
(32ε + 2) × (32ε + 2). Assume L = {(x, y) ∈ R

2 | y = yj , j ∈ {1, ..., u}} ∪ {(x, y) ∈
R

2 | x = xi, i ∈ {1, ..., v}}, with both {yi} and {xi} are sorted. L partitions c
into small cells. The final step of our algorithm is simply enumerating all the
unit squares located at (xi, yj), i ∈ {1, ..., u}, j ∈ {1, ..., v}, and return the one
with the maximum coverage. However, computing the coverage exactly for all
these unit squares is expensive. Instead, we only calculate the weight of these
unit square approximately as follows. For each unit square r, we only count the
weight of points that are in some small cell fully covered by r. Now, we show
this can be done in O

(
nc log

(
1
ε

)
+

(
1
ε

)2
)

time.
After sorting {yi} and {xi}, we can use binary search to identify which small

cell each point lies in. So we can calculate the sum of the weights of points at
the interior, edges or corners of all small cells in O(nc log

(
1
ε

)
) times.

Thus searching the unit square with the maximum (approximate) coverage
can be done with a standard incremental algorithm in O

(
1
ε

)2 time. Due to space
constraints, we omit the details which can be found in the full version of this
paper.

Putting everything together, we conclude that if nc ≥
(
1
ε

)2, the running time

of MaxCovCell(c) is O
(
nc log

(
1
ε

)
+

(
1
ε

)2
)

. We can conclude the main result
of this section with the following theorem.

Theorem 1. Algorithm 1 returns a (1-ε)-approximate answer forMaxCovR(P, 1)
in O(n log

(
1
ε

)
) time.

Proof. We only show the proof of the approximation guarantee of the algorithm.
The complete proof can be found in the full version of this paper. We only need
to prove that MaxCovCell(c) returns a (1-ε)-approximation for cell c. The
case nc <

(
1
ε

)2 is trivial since we apply the exact algorithm. So we only need to
prove the case of nc ≥

(
1
ε

)2.
Suppose the optimal unit square is r. Denote by Opt the weight of the optimal

solution. The size of c is 2 × 2, so we can use 4 unit squares to cover the entire
cell. Therefore, Opt ≥ (Wc

4). Suppose r is located at a point p, which is in the
strict interior of a small cell B separated by L. 5 Suppose the index of B is (i, j).
We compare the weight of r with I(i, j) (which is the approximate weight of the
unit square located at the top-left corner of B). By the rule of our partition,
the weight difference is at most 4 times the maximum possible weight of points
between two adjacent parallel lines in L. So I(i, j) ≥ Opt−4 · ε·Wc

16 ≥ (1− ε)Opt.
This completes the proof. ��

5 If p lies on the boundary of B, the same argument still works.

566 J. Li et al.

4 Linear Time Algorithms for MaxCovR(P,m)

4.1 Grid Shifting

For general m, we need the shifting technique [19]. Consider grids with a
different side length: G6/ε(a, b). We shift the grid to 6

ε different positions:
(0, 0), (1, 1),, (6ε − 1, 6

ε − 1). (For simplicity, we assume that 1
ε is an integer

and no point in P has an integer coordinate, so points in P will never lie on the
grid line. Let

G =
{
G6/ε(0, 0), ..., G6/ε(6/ε − 1, 6/ε − 1)

}
.

The following lemma is quite standard. The proof can be found in the full version
of this paper.

Lemma 3. There exist G� ∈ G and a (1− 2ε
3)-approximate solution R such that

none of the unit squares in R intersects G�.

We present a subroutine in section 4.4 which can approximately solve the
problem for a grid, and apply it to each non-empty grid in G. Then, in order
to compute our final output from those obtained solutions, we apply a dynamic
programming algorithm or a greedy algorithm which are shown in the next two
sections.

4.2 Dynamic Programming

Now consider a fixed grid G ∈ G. Let c1, . . . , ct be the cells of grid G and Opt be
the optimal solution that does not intersect G. Obviously, (6ε)2 unit squares are
enough to cover an entire 6

ε × 6
ε cell. Thus the maximum number of unit squares

we need to place in one single cell is mc = min{m, (6ε)2}.
Let Opt(ci, k) be the maximum weight we can cover with k unit squares

in cell ci. For each nonempty cell ci and for each k ∈ [mc], we find a (1 − ε
3)-

approximation F(ci, k) to Opt(ci, k). We will show how to achieve this later. Now
assume that we can do it.

Let OptF(m) be the optimal solution we can get from the values F(ci, k).
More precisely,

OptF(m) = max
k1,...,kt∈[mc]

{
t∑

i=1

F(ci, ki)
∣
∣
∣

t∑

i=1

ki = m

}

(1)

We can see that OptF(m) must be a (1− ε
3)-approximation to Opt. We can easily

use dynamic programming to calculate the exact value of OptF(m). Denote by
A(i, k) the maximum weight we can cover with k unit squares in cells c1, c2, ..., ci.
We have the following DP recursion:

A(i, k) =
{

maxmin(k,mc)
j=0 {A(i − 1, k − j) + F(ci, j)} if i > 1

F(c1, k) if i = 1

Linear Time Approximation Schemes for Geometric Maximum Coverage 567

The running time of the above simple dynamic programming is O(m2 · mc).
One may notice that each step of the DP is computing a (+,max) convolu-
tion. However, existing algorithms (see e.g., [5,28]) only run slightly better than
quadratic time. So the improvement would be quite marginal. But in the next
section, we show that if we would like to settle for an approximation to OptF(m),
the running time can be dramatically improved to linear.

4.3 A Greedy Algorithm

We first apply our MaxCovR(P, 1) algorithm in Section 3 to each cell ci, to
compute a (1 − ε2

9)-approximation of Opt(ci, 1). Let f(ci, 1) be the return val-
ues. 6 This takes O(n log 1

ε) time. Then, we use the selection algorithm to find
out the m cells with the largest f(ci, 1) values. Assume that those cells are
c1, ..., cm, cm+1, ..., ct, sorted from largest to smallest by f(ci, 1).

Lemma 4. Let Opt′ be the maximum weight we can cover using m unit squares
in c1, ..., cm. Then Opt′ ≥ (1 − ε2

9)Opt

Proof. Let k be the number of unit squares in Opt that are chosen from
cm+1, . . . , ct. This means there must be at least k cells in {c1, . . . , cm} such
that Opt does not place any unit square. Therefore we can always move all k
unit squares placed in cm+1, . . . , ct to these empty cells such that each empty
cell contains only one unit square. Denote the weight of this modified solution
by A. Obviously, Opt′ ≥ A. For any i,j such that 1 ≤ i ≤ m < j ≤ t, we have
Opt(ci, 1) ≥ f(ci, 1) ≥ f(cj , 1) ≥ (1 − ε2

9)Opt(cj , 1). Combining with a simple
observation that Opt(ci, k) ≤ kOpt(ci, 1), we can see that A ≥ (1 − ε2

9)Opt.
Therefore, Opt′ ≥ (1 − ε2

9)Opt. ��
Hence, from now on, we only need to consider the first m cells {c1, ..., cm}.

We distinguish two cases. If m ≤ 324(1ε)4, we just apply the dynamic program to
c1, ..., cm. The running time of the above dynamic programming is O((1ε)O(1)).

If m > 324(1ε)4, we can use a greedy algorithm to find a answer of weight at
least (1 − ε2

9)OptF(m).
Let b = (6ε)2. For each cell ci, we find the upper convex hull of 2D points

{(0,F(ci, 0)),(1,F(ci, 1)), . . . , (b,F(ci, b))}. See Figure 1. Suppose the convex
hull points are {(ti,0,F(ci, ti,0)), (ti,1,F(ci, ti,1)), ... , (ti,si

,F(ci, ti,si
))}, where

ti,0 = 0,ti,si
= b. For each cell, since the above points are already sorted from

left to right, we can compute the convex hull in O(b) time by Graham’s scan[18].
Therefore, computing the convex hulls for all these cells takes O(mb) time.

For each cell ci, we maintain a value pi representing that we are going to
place ti,pi

squares in cell ci. Initially for all i ∈ [m], pi = 0. In each stage, we
find the cell ci such that current slope (the slope of the next convex hull edge)

F(ci, ti,pi+1) − F(ci, ti,pi
)

ti,pi+1 − ti,pi

6 Both f(ci, 1) and F(ci, 1) are approximations of Opt(ci, 1), with slightly different
approximation ratios.

568 J. Li et al.

Fig. 1. F(ci, k) (left) and F̂(ci, k) (right)

is maximized. Then we add 1 to pi, or equivalently we assign ti,pi+1 − ti,pi
more

squares into cell ci. We repeat this step until we have already placed at least
m − b squares. We can always achieve this since we can place at most b squares
in one single cell in each iteration. Let m′ the number of squares we have placed
(m = b ≤ m′ ≤ m). For the remaining m − m′ squares, we allocate them
arbitrarily. We denote the algorithm by Greedy and let the value obtained be
Greedy(m′). Having the convex hulls, the running time of the greedy algorithm
is O(m).

Now we analyze the performance of the greedy algorithm.

Lemma 5. The above greedy algorithm computes an (1 − ε2/9)-approximation
to OptF(m).

Proof. Define an auxiliary function F̂(ci, k) as follows: If k = ti,j for some j,
F̂(ci, k) = F (ci, k). Otherwise, suppose ti,j < k < ti,j+1, then

F̂(ci, k) = F (ci, ti,j) +
F (ci, ti,j+1) − F (ci, ti,j)

ti,j+1 − ti,j
× (k − ti,j).

Intuitively speaking, F̂(ci, k)(See Figure 1) is the function defined by the upper
convex hull at integer points. 7 Thus, for all i ∈ [m], F̂(ci, k) is a concave function.
Obviously, F̂(ci, k) ≥ F(ci, k) for all i ∈ [m] and all k ∈ [b].

Let Opt
̂F(i) be the optimal solution we can get from the values F̂(ci, k) by

placing i squares. By the convexity of F̂(ci, k), the following greedy algorithm
is optimal: as long as we still have budget, we assign 1 more square to the cell
which provides the largest increment of the objective value. In fact, this greedy
algorithm runs in almost the same way as Greedy. The only difference is that
Greedy only picks an entire edge of the convex hull, while the greedy algorithm
here may stop in the middle of an edge (only happen for the last edge). Since
the marginal increment never increases, we can see that Opt

̂F(i) is concave.
By the way of choosing cells in our greedy algorithm, we make the following

simple but important observation:

Greedy(m′) = Opt
̂F(m

′) = OptF(m
′).

7 At first sight, it may appear that F(ci, k) should be a concave function. However,
this is not true. A counter-example is provided in the full version of this paper.

Linear Time Approximation Schemes for Geometric Maximum Coverage 569

So, our greedy algorithm is in fact optimal for m′. Combining with m − m′ ≤ b
and the concavity of Opt

̂F, we can see that

Opt
̂F(m

′) ≥ m − b

m
Opt

̂F(m) ≥
(

1 − ε2

9

)

OptF(m).

The last inequality holds because Opt
̂F(i) ≥ OptF(i) for any i. ��

4.4 Computing F(c, k)

Now we show the subroutine MaxCovCellM for computing F(c, k). We use a
similar partition algorithm as Section 3.2. The only difference is that this time we
need to partition the cell finer so that the maximum possible weight of points
between any two adjacent parallel partition lines is (ε3Wc

864). After partitioning
the cell, we enumerate all the possible ways of placing k unit squares at the grid
point. Similarly, for each unit square r, we only count the weight of points that
are in some cell fully covered by r.

We can adapt the algorithm in [12] to enumerate these possible choices in
O((1ε)Δ) time where Δ = O(min(

√
m, 1

ε)). The details can be found in the full
version of this paper. Now we prove the correctness of this algorithm.

Lemma 6. MaxCovCellM returns a (1 − ε
3) approximate answer for

Opt(ci, k).

Proof. We can use (6ε)2 unit squares to cover the entire cell, so Opt(ci, k) ≥
kε2Wc

72 . By the same argument as in Theorem 1, the difference between Opt(ci, k)
and the answer we got are at most 4k times the maximum possible weight of
points between two adjacent parallel partition lines. Therefore, the algorithm
returns a (1 − ε

3)-approximate answer of Opt(ci, k). ��

Now we can conclude the following theorem.

Theorem 2. Let P be a set of n weighted point, for any 0 < ε < 1 we can find
a (1 − ε)-approximate answer for MaxCovR(P,m) in time

O

(
n

ε
log

1
ε

+ m

(
1
ε

)Δ
)

,

where Δ = O(min(
√

m, 1
ε)).

The proof is similar to Theorem 1, and it is given in the full version of this paper.

570 J. Li et al.

References

1. Agarwal, P.K., Hagerup, T., Ray, R., Sharir, M., Smid, M., Welzl, E.: Translating
a planar object to maximize point containment. In: Möhring, R.H., Raman, R.
(eds.) ESA 2002. LNCS, vol. 2461, p. 42. Springer, Heidelberg (2002)

2. Aronov, B., Har-Peled, S.: On approximating the depth and related problems.
SICOMP 38(3), 899–921 (2008)

3. Barequet, G., Dickerson, M., Pau, P.: Translating a convex polygon to contain a
maximum number of points. Computational Geometry 8(4), 167–179 (1997)

4. Ben-Or, M.: Lower bounds for algebraic computation trees. In: STOC, pp. 80–86.
ACM (1983)

5. Bremner, D., Chan, T.M., Demaine, E.D., Erickson, J., Hurtado, F., Iacono, J.,
Langerman, S., Taslakian, P.: Necklaces, convolutions, and X + Y. In: Azar, Y.,
Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 160–171. Springer, Heidelberg
(2006)

6. Brönnimann, H., Goodrich, M.: Almost optimal set covers in finite vc-dimension.
DCG 14(1), 463–479 (1995)

7. Cabello, S., Dı́az-Báñez, J.M., Seara, C., Sellares, J.A., Urrutia, J., Ventura, I.:
Covering point sets with two disjoint disks or squares. Computational Geometry
40(3), 195–206 (2008)

8. Chan, T.M., Grant, E., Könemann, J., Sharpe, M.: Weighted capacitated, priority,
and geometric set cover via improved quasi-uniform sampling. In: SODA, SODA
2012, pp. 1576–1585. SIAM (2012)

9. Chazelle, B.M., Lee, D.-T.: On a circle placement problem. Computing 36(1–2),
1–16 (1986)

10. Clarkson, K.L., Varadarajan, K.: Improved approximation algorithms for geometric
set cover. DCG 37(1), 43–58 (2007)

11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press (2009)

12. de Berg, M., Cabello, S., Har-Peled, S.: Covering many or few points with unit
disks. Theory of Computing Systems 45(3), 446–469 (2009)

13. Dickerson, M., Scharstein, D.: Optimal placement of convex polygons to maximize
point containment. Computational Geometry 11(1), 1–16 (1998)

14. Dietzfelbinger, M., Hagerup, T., Katajainen, J., Penttonen, M.: A reliable random-
ized algorithm for the closest-pair problem. Journal of Algorithms 25(1), 19–51
(1997)

15. Drezner, Z.: Noteon a modified one-center model. Management Science 27(7),
848–851 (1981)

16. Even, G., Rawitz, D., Shahar, S.M.: Hitting sets when the vc-dimension is small.
IPL 95(2), 358–362 (2005)

17. Feige, U.: A threshold of ln n for approximating set cover. JACM 45(4), 634–652
(1998)

18. Graham, R.L.: An efficient algorith for determining the convex hull of a finite
planar set. Information processing letters 1(4), 132–133 (1972)

19. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing
problems in image processing and vlsi. JACM 32(1), 130–136 (1985)

20. Hochbaum, D.S., Pathria, A.: Analysis of the greedy approach in problems of
maximum k-coverage. Naval Research Logistics 45(6), 615–627 (1998)

21. Imai, H., Asano, T.: Finding the connected components and a maximum clique
of an intersection graph of rectangles in the plane. Journal of algorithms 4(4),
310–323 (1983)

Linear Time Approximation Schemes for Geometric Maximum Coverage 571

22. Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location
problems. SICOMP 13(1), 182–196 (1984)

23. Mustafa, N.H., Ray, S.: Ptas for geometric hitting set problems via local search.
In: SCG, pp. 17–22. ACM (2009)

24. Nandy, S.C., Bhattacharya, B.B.: A unified algorithm for finding maximum and
minimum object enclosing rectangles and cuboids. Computers & Mathematics with
Applications 29(8), 45–61 (1995)

25. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations
for maximizing submodular set functions. Mathematical Programming 14(1),
265–294 (1978)

26. Tao, Y., Hu, X., Choi, D.-W., Chung, C.-W.: Approximate maxrs in spatial
databases. Proceedings of the VLDB Endowment 6(13), 1546–1557 (2013)

27. Varadarajan, K.: Weighted geometric set cover via quasi-uniform sampling. In:
STOC, pp. 641–648. ACM (2010)

28. Williams, R.: Faster all-pairs shortest paths via circuit complexity. In: STOC,
pp. 664–673. ACM (2014)

Complexity and Security

Private Certificate-Based Remote Data Integrity
Checking in Public Clouds

Huaqun Wang1(B) and Jiguo Li2

1 School of Information Engineering, Dalian Ocean University, Dalian, China
wanghuaqun@aliyun.com

2 College of Computer and Information Engineering, Hohai University,
Nanjing, China

Abstract. When the clients store their data in public cloud, the stored
data is out of their control. In order to ensure the remote data integrity,
the remote data integrity checking (RDIC) is indispensable. In order
to overcome the certificate management problem in PKI and the key
escrow problem in identity-based setting, we propose a novel remote data
integrity checking model, i.e., certificate-based remote data integrity
checking (Cert-RDIC). This paper formalizes the private Cert-RDIC
model which consists of system model and security model. Then, this
paper presents the first private Cert-RDIC protocol whose security is
based on the hardness of the standard computational Diffie-Hellman
(CDH) problem. Our concrete private Cert-RDIC protocol can also be
transformed into public Cert-RDIC protocol. At the same time, by using
our proposed private Cert-RDIC protocol, the malicious clients can also
be detected by the public cloud servers (PCS).

Keywords: Remote data integrity checking · Certificate-based cryptog-
raphy · Cloud computing

1 Introduction

Along with the development of networking and computing technology, the cloud
computing has become a reality. Cloud computing can be used to process the
big data in order to mine the useful information. Cloud computing is a novel
and economic computing paradigm. The clients consign the cloud computing
server to manage their stored data. Thus, the clients avoid the capital expendi-
ture on hardware, software, and personnel maintenances, etc. Nowadays, security
problems have become the main barriers which affect the cloud computing devel-
opment. Due to the lack of physical control over the outsourced data, the clients
will be sensitive to their remote data integrity. Secure and efficient remote data
integrity checking is an inevitable security issue. At the same time, in order
to get rid of the certificate management and key escrow problem, certificate-
based cryptography is an important primitive designed to address this issue. In
the certificate-based cryptography, this paper studies the remote data integrity
model in public clouds.
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 575–586, 2015.
DOI: 10.1007/978-3-319-21398-9 45

576 H. Wang and J. Li

1.1 Related Work

When the client stores their own data on PCS, RDIC can be used to verify
whether PCS keeps the clients’ remote data integrity. In 2007, an important prob-
abilistic remote data integrity checking model is proposed by Ateniese et al. [1].
Their model is called the provable data possession (PDP). At the same time,
they designed two provably secure PDP protocols. By using the PDP model,
RDIC drastically reduces communication cost and enhances efficiency. When the
clients’ data dynamically change, the dynamic RDIC protocol is inevitable [2].
After Ateniese et al.’s pioneering work, many different PDP models and protocols
were proposed. These PDP protocols can be used in different application envi-
ronments [3–13]. When the verifier not only can verify the remote data integrity,
but also it can also retrieve the remote data, Shacham et al. proposed the model
of proof of retrievability (POR) which was also studied by Juels et al. [14,15].
Many different POR protocols were proposed [16–19]. Based on the role of veri-
fier, RDIC protocol is divided into two cases: private RDIC protocol and public
RDIC protocol. In private RDIC protocol, the verifier must possess some secret
information. In public RDIC protocol, any client can perform the RDIC pro-
tocol. Private RDIC protocols and public RDIC protocols have their respective
application fields.

In order to eliminate the burden of certificate management, identity-based
cryptography [20] are introduced into the cloud computing data management.
In 2013, by using the identity-based cryptography, Han et al. proposed identity-
based data storage in cloud computing [21,22]. In 2014, Wang et al. proposed
identity-based remote possession checking in public clouds [23].

By using the cloud computing, the stored remote data can be accessed by
the clients with independent geographical locations. The clients maybe some end
devices which are mobile and limited in computation and storage. Thus, it is
necessary to design the efficient and secure RDIC protocols in cloud computing.
Since PDP protocols are more suitable for the clients with mobile end devices,
our private Cert-RDIC architecture and protocol are based on the PDP.

1.2 Motivation and Contribution

In PKI architecture, the trusted third party will have to deal with the certificate
management which includes certificate generation, certificate usage, and certifi-
cate revocation. In order to get rid of the certificate management, identity-based
cryptography protocol is introduced into cloud computing. Regretfully, identity-
based RDIC protocol suffers from the key escrow problem. This paper focuses
on RDIC architecture and protocol in certificate-based cloud storage.

In 2003, Gentry introduced the notion of certificate-based encryption [24]. In
this model, a certificate acts not only as a certificate but also as a decryption
key. Certificate-based cryptography proposed by Gentry [24] combines the merit
of traditional public key cryptography and identity based cryptography, without
certificate management problem and key escrow problem. In 2004, Kang et al.
proposed the security notion of certificate-based signature [25]. Furthermore, Li

Private Certificate-Based Remote Data Integrity Checking in Public Clouds 577

et al. refined the security model of certificate-based signature and proposed two
concrete certificate-based signature schemes [26,27]. In public clouds, remote
data integrity checking will face many disadvantages when RDIC protocols were
designed in PKI or identity-based setting, such as certificate management, key
escrow, etc. In order to solve the above problem, we investigate a new RDIC
model incorporating certificate-based cryptography, i.e., the private Cert-RDIC
model. Our contributions are given from the three respects:

– Firstly, we formalize the private Cert-RDIC model.
– Secondly, we realize the first private Cert-RDIC protocol.
– Thirdly, by making some parameters public, our private Cert-RDIC protocol

can be transformed into public Cert-RDIC protocol.

1.3 Paper Organization

The rest of this paper is organized below. Section 2 formalizes the private
Cert-RDIC model. Section 3 presents our private Cert-RDIC protocol. Section 4
analyzes the proposed private Cert-RDIC protocol’s properties of security and
transformation. Finally, Section 5 concludes the paper.

2 Private Cert-RDIC Model

System model and security definition of private Cert-RDIC protocol are given
in the section. In the system model, there exist four entities which are described
below:

1. CA. This is an entity that issues digital certificates. It is trusted by the clients
and the PCS. The issued digital certificate certifies the ownership of a public
key by the named subject of the certificate. For example, the public key can
be the identity in identity-based public key cryptology. In this model of
trust relationships, CA is the trusted third party that is trusted by both the
subject (owner) of the certificate and the party relying upon the certificate.
CA is characteristic of many public key infrastructure (PKI) schemes.

2. Client. This is an entity that has massive data to be uploaded to PCS. They
maybe either individual consumers or group consumers.

3. PCS. This is an entity that is managed by the cloud service provider. PCS
has significant storage space and computation resource to manage the clients’
data.

4. Verifier. This is an entity that issues the remote data integrity checking
challenge and gets PCS’s response. Then, it verifies the response in order to
verify the remote data integrity.

Next, we give a formal private Cert-RDIC scheme in public clouds. In the
definition, the verifier is the client itself, i.e., it belongs to the private RDIC in
public clouds.

578 H. Wang and J. Li

Definition 1 (Private Cert-RDIC). A private Cert-RDIC protocol consists
of seven polynomial time algorithms (Setup, UserKeyGen, Certify, TagGen,
CheckTag, GenProof and CheckProof) which run below:

1. (params,X,Z, x, z) ← Setup(1k) is the parameter-generation algorithm.
When the security parameter k is input, the algorithm outputs the system
public parameters params, CA’s public key X, PCS’s public key Z, CA’s
master secret key x and PCS’s secret key z.

2. (pkID, skID) ← UserKeyGen(1k, params) is a probabilistic polynomial time
algorithm that is run by the client ID. It outputs the client’s secret key/public
key pair (skID, pkID).

3. CertID ← Certify(ID, x) is a probabilistic polynomial time certificate gen-
eration algorithm that is run by CA. When the client identity ID and CA’s
master secret key x are input, it outputs the client’s certificate CertID.

4. Tm ← TagGen(skID, CertID,m) is a probabilistic polynomial time algo-
rithm that is run by the client ID. When the secret key skID, the certificate
CertID and a file block m are input, it outputs the tag Tm.

5. {“success”, “failure”} ← CheckTag(z,X, pkID, Z, certID, ID, Tm) is run
by PCS to check the tag Tm. When the PCS’s secret key z, CA’s public key
X, the client’s public key pkID and certificate certID, PCS’s public key Z,
the client’s identity ID, and a tag Tm are input, it returns “success” or
“failure” representing that Tm is a correct tag or not.

6. V ← GenProof(params, ID, F, chal,Σ) is run by PCS to generate the
remote data integrity proof. When a challenge chal, an ordered collection
Σ of the verification tags, a stored block collection F and {params, ID} are
input, it returns V .

7. {“success”, “failure”} ← CheckProof(skID, Y,X,Z, ID, chal, certID, V)
is run by the client to validate a proof of remote data integrity. When the
parameters {skID, pkID,X, Z, I, chal, certID, V } are input, it returns “suc-
cess” or “failure” representing that V is a correct proof or not.

In our security model, CA is a secure and trusted entity. On the other hand,
a private Cert-RDIC protocol has to stay secure even if the prover (i.e., PCS)
is malicious. A malicious prover is interested in proving knowledge of some data
that she does not entirely know. The security of a private Cert-RDIC protocol
is defined below.

Definition 2 (Unforgeability). For any probabilistic polynomial time adver-
sary A, if the probability that A wins the private Cert-RDIC game is negligible,
then the private Cert-RDIC protocol is called secure. Between the adversary A
and the challenger C, the private Cert-RDIC game is given below:

1. Setup: In the phase, C creates the system parameters {params, (z, Z), (x,X),
(skID, pkID), CertID}. The symbols have the same meanings as in the Def-
inition 1. C sends (params, z, Z,X, pkID, CertID) to A and keeps the CA’s
secret key x and the client’s secret key skID confidential.

2. First-Phase: A adaptively makes Hash and Tag queries to C below:

Private Certificate-Based Remote Data Integrity Checking in Public Clouds 579

– Hash. Upon receiving A’s query, C responds with the hash values .
– Tag. Upon receiving A’s query m, C responds with the tag Tm ←

TagGen(skID, CertID,m). Without loss of generality, denote I1 as the
subscript set of queried block-tag pairs, i.e.,{(mi, Ti) : i ∈ I1}.

3. Challenge: C generates a challenge chal which defines the challenged blocks’
subscript set {i1, i2, · · · , ic} � I1 where c is an positive integer. A is required
to provide a proof of remote data integrity checking for chal.

4. Second-Phase: It is similar to the First-Phase. Denote I2 as the subscript
set of queried block-tag pairs, i.e., {(mi, Ti) : i ∈ I2}. The restriction is that
{i1, i2, · · · , ic} � I1 ∪ I2.

5. Forge: A computes a remote data integrity checking proof V which corre-
sponds to chal and returns V.

We say that A wins the private Cert-RDIC game if

CheckProof(skID, Y,X,Z, ID, chal, certID, V) = “success”

In order to state clearly the status of the unchallenged blocks, we give the
following definition.

Definition 3 ((ρ, δ) security). A private Cert-RDIC protocol is (ρ, δ) secure
if, given a fraction ρ of PCS-corrupted blocks, the probability that the corrupted
blocks are detected is at least δ.

3 Proposed Private Cert-RDIC Protocol

3.1 Bilinear Pairings

Let G1 and G2 be two cyclic multiplicative groups with the same prime order q.
Let e : G1 × G1 → G2 be a bilinear map, which satisfies the following properties:

1. Bilinearity: ∀g1, g2 ∈ G1 and a, b ∈ Zq, e(g1a, g2
b) = e(g1, g2)ab.

2. Non-degeneracy: ∃g3, g4 ∈ G1 such that e(g3, g4) �= 1G2 .
3. Computability: ∀g5, g6 ∈ G1, there is an efficient algorithm to calculate

e(g5, g6).

Our private Cert-RDIC protocol is constructed on the Gap Diffie-Hellman
group, where the computational Diffie-Hellman (CDH) problem is hard while
the decisional Diffie-Hellman (DDH) problem is easy. Gap Diffie-Hellman group
is defined below.

Definition 4 (Gap Diffie-Hellman (GDH) Group). Let g be a generator
of G1. Given g, ga, gb, gc ∈ G1 and unknown a, b, c ∈ Z∗

q , an efficient algorithm
exists to determine whether ab = c mod q holds by verifying e(ga, gb) = e(g, g)c

in polynomial time (DDH problem), while no efficient algorithm exists to compute
gab ∈ G1 with non-negligible probability within polynomial time (CDH problem).
A group G1 is a (t, ε)-GDH group if the DDH problem can be efficiently solved,
while no algorithm (t, ε)-breaks the CDH problem.

580 H. Wang and J. Li

3.2 Private Cert-RDIC Protocol Construction

The concrete private Cert-RDIC protocol comprises the procedures Setup,
UserKeyGen, Certify, TagGen, CheckTag, GenProof and CheckProof. When only
the client can perform the Cert-RDIC protocol, it is private Cert-RDIC proto-
col. Suppose that the client has stored n message blocks. Let the n blocks be
{m1,m2, · · · ,mn}. The private Cert-RDIC scheme can be described below.

– Setup: Let g be a generator of the group G1. CA chooses a random number
x ∈ Z∗

q and gets its secret/public key pair (x,X) where X = gx. PCS chooses
a random number z ∈ Z∗

q and gets its secret/public key pair (z, Z) where
Z = gz. G1,G2 and e are the same as the section 3.1. Three cryptographic
hash functions H,h, h1, a pseudo-random function f and pseudo-random
permutation π are given below:

H : {0, 1}∗ → Z∗
q , h : Z∗

q → G∗
1 , h1 : {0, 1}∗ → Z∗

q

f : Z∗
q × {1, 2, · · · , n} → Z∗

q , π : Z∗
q × {1, 2, · · · , n} → {1, 2, · · · , n}

The parameters {G1,G2, e, q, g,X,Z,H, h, h1, f, π} are made public.
– UserKeyGen: The client picks a secret value y ∈ Z∗

q and gets his
secret/public key pair (y, Y, u) where Y = gy, u ∈ G1.

– Certify. For the client with public key Y and the identity ID, to construct
ID’s certificate, CA picks r ∈ Z∗

q and computes

R = gr, σ = r + xH(ID, u,R, Y) mod q

CA sends the certificate (R, σ) to the client. The client sends the certificate
(R, σ) to PCS. Note that a correctly generated certificate should satisfy the
following equality: gσ=R · XH(ID,u,R,Y)

– TagGen: Based on the counter i, the client creates the tags sequentially.
The client computes ck = Zy+σ. For the block mi whose name, property,
etc. are contained in Ni, the client computes m̂i = h1(mi) and the tag
Ti = (h(ck,Ni, i)um̂i)σ+y. The client sends the block-tag pair (mi, Ti) to
PCS.

– CheckTag: Given the block-tag pair set {(mi, Ti), 1 ≤ i ≤ n}, PCS performs
the procedures for every i (1 ≤ i ≤ n) below:
1. PCS computes ck = (Y RXH(ID,u,R,Y))z and m̂i = h1(mi).
2. PCS verifies whether e(Ti, g) ?= e(h(ck,Ni, i)um̂i , Y RXH(ID,u,R,Y))

holds. If it holds, then PCS accepts it; otherwise, PCS rejects it and
queries the client for new block-tag pair.

– GenProof: Upon receiving the challenge chal = (c, k1, k2), PCS performs the
procedures below:
1. For 1 ≤ j ≤ c, ij = πk1(j), aj = fk2(j) are computed as the subscripts

and coefficients of the blocks for which the proof is generated. In fact,
the challenge chal determines an ordered set {c, i1, · · · , ic, a1, · · · , ac}.

2. Compute T =
∏c

j=1 T
aj

ij
, m̂ =

∑c
j=1 ajh1(mij).

Private Certificate-Based Remote Data Integrity Checking in Public Clouds 581

3. Output V = (T, m̂) as the response to the chal query.
– CheckProof: The client verifies the response V from the PCS below:

1. Compute ck = Zy+σ, ij = πk1(j) and aj = fk2(j).
2. Check the equation e(T, g) ?=e(

∏c
j=1 h(ck,Nij , ij)

ajum̂,YRX H(ID,u,R,Y)).
If it holds, output “success”. Otherwise, output “failure”.

A private Cert-RDIC protocol must be workable and correct. That is, if the
CA, the Client and the PCS are honest and follow the specified procedures,
the response V can pass the CheckProof phase. The correctness of our private
Cert-RDIC protocol is given below:

e(T, g) = e(
∏c

j=1 T
aj

ij
, g) = e(

∏c
j=1(h(ck,Nij , ij)u

m̂ij)(y+σ)aj , g)
= e(

∏c
j=1(h(ck,Nij , ij)u

m̂ij)aj , gy+σ)
= e(

∏c
j=1 h(ck,Nij , ij)

ajum̂, Y RXH(ID,u,R,Y))

4 Security Analysis

The security of the above private Cert-RDIC protocol is guaranteed by the
following lemmas and theorems.

Lemma 1. Suppose A is a (t, ε, qh, qt)-forger against our TagGen protocol, i.e.,
A can forge a valid tag with probability ε within time t. The groups G1 and G2 have
the prime order q. Then, the CDH problem can be solved with probability ε′ within
time t′ satisfying ε′ ≥ 1

9 and t′ ≤ 23qh(t+(qt+qh)texp+qhtmul)(qt+1)
ε

(
1 + 1

qt

)qt
where

texp denotes the time needed to perform a modular exponentiation in G1, tmul

denotes the time needed to perform a multiplication in G1, and qh, qt denote the
number of queries to the h-Oracle and TagGen-Oracle, respectively.

Proof. Let the uploaded subscript-block pairs be {(1,m1), (2,m2), · · · , (n,mn)}.
Taking the adversary A as a sub-routine, we construct a probabilistic polynomial
time algorithm F . If A can succeed to forge a valid tag, F can solve a given
instance of the CDH problem. Thus, F simulates the environment of A below.

The parameters (q,G1,G2, e, g, ga, gb) are made public. The goal of F is to
compute the value gab. Let (σ,R) be the client’s certificate and (x,X) be the CA’s
secret/public key pair. First, F picks a random u ∈ G1 and defines (Y = ga, u)
as the client’s public key and maintains four tables Tab1, Tab2, Tab3 and Tab4,
which are initialized empty. The client’s secret key a is unknown to F .

Hash functions H and h1. In the simulation, H and h1 are the real hash
function and are not oracles. When A queries H with (ID, u,R, Y), F responds
H(ID, u,R, Y). When A queries h1 with mi, F responds m̂i = h1(mi).

h-Oracle. When A queries h with (ck,Ni, i), F responds below:

1. If the query (ck,Ni, i) has been stored in theh-listTab1, i.e., (ck,Ni, i, zi, bi, di)
∈ Tab1 and 1 ≤ i ≤ n, F responds with h(ck,Ni, i) = ziu

−h1(mi).
2. Otherwise, based on the bivariate distribution Pr[di = 0] = 1

qh+1 , Pr[di =
1] = 1 − 1

qh+1 , F generates a random coin di ∈ {0, 1}.

582 H. Wang and J. Li

(a) F picks a random bi ∈ Z∗
q . If di = 1, F computes zi = gbi . If di = 0, F

computes zi = (gb)bi .
(b) F adds the tuple (ck,Ni, i, zi, bi, di) to the h-list Tab1 and responds

h(cn,Ni, i) = ziu
−h1(mi).

TagGen-Oracle. A queries TagGen-Oracle with (ck,Ni, i,mi). F responds A
below:

1. F runs h-Oracle and obtains h(cn,Ni, i). Let (ck,Ni, i, zi, bi, di) be the cor-
responding tuple in table h-list Tab1.

2. If di = 0, F reports failure and terminates. Otherwise, di = 1, define σi =
(gagσ)bi . Observe that Ti = (gagσ)bi = (gbi)a+σ = (h(ck,Ni, i)uh1(mi))a+σ

under the public parameters (ga, u). Then, F sends Ti to A.

Forge and Output. Finally, A forges a valid block-tag pair (mj , Tj) where
(ck,Nj , j,mj) has never been queried to TagGen-Oracle. If there is no tuple in
the h-list Tab1 containing (ck,Nj , j), F queries h-Oracle to ensure that such a
tuple exists. Next, F searches for the tuple (ck,Nj , j, zj , bj , dj) in Tab1. If dj = 1
then F reports failure and terminates. Otherwise (dj = 0), (ck,Nj , j,mj , Tj)
satisfies e(Tj , g) = e(h(ck,Nj , j)uh1(mj), Y gσ).

By using the oracle-replay technique [28], F can obtain another tag (mj , T̂j)
by using a different hash function ĥ. Then, F can get

e(T̂j , g) = e(h(ck,Nj , j)uh1(mj), Rgσ)

Based on the simulation process of h-Oracle, F knows the corresponding bj , b̂j

that satisfy h(ck,Nj , j) = (gb)bju−h1(mj), ĥ(ck,Nj , j) = (gb)b̂ju−h1(mj). Thus,
F can get e(Tj , g) = e((gb)bj , Y ·gσ), e(T̂j , g) = e((gb)b̂j , Y ·gσ). From the above
procedure, F gets e(Tj T̂

−1
j , g) = e((gb)bj−b̂j , Y · gσ) and obtains

gab =
[(

Tj T̂
−1
j

) (
gb

)−(bj−b̂j)σ
] 1

bj−b̂j

Probability analysis. The above proof comes from the F ’s perfect simulation.
Based on the simulation process, the probability that F succeeds to answer A’s
queries is P1 = (1 − 1

qt+1)qt . Thus, the attacker A can forge a valid tag with
probability ε̂ ≥ 1

qt+1P1ε = 1
qt+1 (1− 1

qt+1)qtε within the time t̂ ≈ t+(qt+qh)texp+
qhtmul. By using the oracle replay technique [28], A can get two different tags
on the same message and randomness with the probability ε′ ≥ 1

9 within time

t′ ≤ 23qht̂ε̂−1, i.e., t′ ≤ 23qh(t+(qt+qh)texp+qhtmul)(qt+1)
ε

(
1 + 1

qt

)qt
.

Based on the known assumption that the CDH problem is computationally
difficult, the following corollary is implied by the above Lemma 1.

Corollary 1 (Single-tag existential unforgeability). A single tag is exis-
tentially unforgeable if the CDH problem in G1 is hard.

Private Certificate-Based Remote Data Integrity Checking in Public Clouds 583

Lemma 2. Based on the unforgeability of a single tag (Corollary 1), the grouped
message-tag pair (m̂, T) can be forged only with negligible probability.

Proof. We will prove this lemma by contradiction. Suppose the forged message-
tag pair (m̂, T) can pass the client’s integrity checking, i.e.,

e(T, g) = e(
∏c

j=1 h(ck,Nij , ij)
ajum̂, Y RXH(ID,u,R,Y))

where aj = fk2(j) are random numbers, 1 ≤ j ≤ c. Then,

∏c
j=1 e(Tij , g)aj =

∏c
j=1 e(h(ck,Nij , ij)u

h1(mij
), Y RXH(ID,u,R,Y))aj

Suppose that the generator of G2 is d, and

e(Tij , g) = dxj , e(h(ck,Nij , ij)u
h1(mij

), Y RXH(ID,u,R,Y)) = dyj

then we can get

d
∑c

j=1 ajxj = d
∑c

j=1 ajyj ,
∑c

j=1 ajxj =
∑c

j=1 ajyj ,
∑c

j=1 aj(xj − yj) = 0

According to Corollary 1, a single tag is existentially unforgeable. So, there exist
at least two different indices j such that xj �= yj . Suppose there are s ≤ c pairs
(xj , yj) such that xj �= yj . Then, there exist qs−1 tuples (a1, a2, · · · , ac) satisfying
the above equation. As (a1, a2, · · · , ac) is a random vector, the probability that
the tuple satisfies the above equation is not greater than qs−1/qc ≤ qc−1/qc =
q−1. This probability is negligible.

Lemma 3. Assume some block-tag pair (ml, Tl) is modified and PCS substi-
tutes another valid block-tag pair (ml̂, Tl̂) for (ml, Tl). If PCS forges a response
(T, m̂) using the substituted block-tag, this response passes CheckProof only with
negligible probability.

Proof. Without loss of generality, we assume that the client sends the challenge
chal = (c, k1, k2), where l ∈ {1, 2, · · · , c}, l̂ �∈ {1, 2, · · · , c}.

Since the block-tag pair (ml, Tl) is modified, the public cloud server may
substitute another valid block-tag pair (ml̂, Tl̂) for (ml, Tl). Then,

T =
∏c

j=1,j �=l T
aj

ij
T al

mi
l̂

, m̂ =
∑c

j=1,j �=l ajmij + almil̂

where ai = fk2(i) is random number, 1 ≤ i ≤ c.
If the forged response passed the checking, then

e(T, g) = e(
∏c

j=1 h(ck,Nij , ij)
ajum̂, Y RXH(ID,u,R,Y))

i.e.,

e(
∏c

j=1,j �=l T
aj

ij
T al

mi
l̂

, g)

= e(
∏c

j=1,j �=l[h(ck,Nij , ij)
aj]u

∑c
j=1,j �=l ajh1(mij

)+alh1(mi
l̂
)
, Y RXH(ID,u,R,Y))

584 H. Wang and J. Li

Since the other block-tag pair is valid, we can get

e(T al
mi

l̂

, g) = e(h(ck,Nil , il)
alu

alh1(mi
l̂
)
, Y RXH(ID,u,R,Y))

According to the tag generation process, we know that

e(h(ck,Nil̂
, il̂)

alu
alh1(mi

l̂
)
, Y RXH(ID,u,R,Y))

= e(h(ck,Nil , il)
alu

alh1(mi
l̂
)
, Y RXH(ID,u,R,Y))

i.e., h(ck,Nil̂
, il̂) = h(ck,Nil , il).

Since h is collision-free hash function, the probability of h(ck,Nil̂
, il̂) =

h(ck,Nil , il) is 1
q , i.e., it is negligible.

Corollary 1 states that an untrusted PCS cannot forge individual tags to
cheat the client. Lemma 2 implies that the untrusted PCS cannot aggregate
fake tags to cheat the client. Lemma 3 shows that the untrusted PCS cannot
replace some tags to cheat the client. Hence, from the above results, we have the
following claim.

Theorem 1. The proposed private Cert-RDIC protocol is unforgeable in the
random oracle model if the CDH problem in G1 is hard.

Theorem 2. Suppose that the client has stored n block-tag pairs ((m1, T1), (m2,
T2), · · · , (mn, Tn)) in PCS and the PCS has modified t block-tag pairs. Let the chal-
lenge be chal = (c, k1, k2), the probability PX of detecting the modification satis-
fies:

1 − (
n − t

n
)c ≤ PX ≤ 1 − (

n − c + 1 − t

n − c + 1
)c

We omit the detailed proof since it is similar to the proof of deletion detec-
tion [1].

Theorem 3. Our proposed Cert-RDIC protocol is private Cert-RDIC protocol.
When the client is willing to publish some parameters, it can be transformed into
public Cert-RDIC protocol.

Proof. In the phase CheckProof, the parameter ck = Zy+σ cannot be computed by
other entities except of the client and PCS. Thus, other entities cannot perform
the verification formula e(T, g) = e(

∏c
j=1 h(ck,Nij , ij)

ajum̂, Y RXH(ID,u,R,Y)).
Thus, except of the client and the PCS, the other entities cannot the Cert-RDIC
protocol. Our proposed Cert-RDIC protocol is private Cert-RDIC protocol.

When the client decides to publish the parameter ck = Zy+σ, every entity can
perform the Cert-RDIC protocol. Thus, it is transformed into public Cert-RDIC
protocol.

On the other hand, in the phase CheckTag, PCS can check every received
block-tag pair. When some pairs are invalid, PCS will reject them. Thus, PCS
can avoid of the malicious clients and protect his own benefits. In order to
increase the verification efficiency, PCS can take use of the batch processing
technique and verify many block-tag pairs at the same time.

Private Certificate-Based Remote Data Integrity Checking in Public Clouds 585

5 Conclusion

Cert-RDIC combines the advantage of both PKC-RDIC and ID-RDIC as it
avoids the usage of certificates and does not suffer from the key escrow. Based
on these advantages, this paper formalizes the private Cert-RDIC model which
comprises system model and security model. Then, we present the first concrete
private Cert-RDIC protocol which is provably secure under the assumption that
the CDH problem is hard. When the client publishes some parameters, our
private Cert-RDIC protocol can be transformed into public Cert-RDIC protocol.

Acknowledgments. This work was partly supported by the Natural Science Founda-
tion of China (No.61272522, 61272542), by the Natural Science Foundation of Liaoning
Province (No. 2014020147), by the Program for Liaoning Excellent Talents in Uni-
versity (No. LR2014021), by the Research Project of Liaoning Provincial Education
Department (No. L2012259) and by the Fundamental Research Funds for the Central
Universities(No. 2013B07014).

References

1. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: CCS 2007, pp. 598–609 (2007)

2. Ateniese, G., DiPietro, R., Mancini, L.V., Tsudik, G.: Scalable and Efficient
Provable Data Possession. http://eprint.iacr.org/2008/114

3. Erway, C.C., Kupcu, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. In: CCS 2009, pp. 213–222 (2009)

4. Sebé, F., Domingo-Ferrer, J., Mart́ınez-Ballesté, A., Deswarte, Y., Quisquater, J.:
Efficient Remote Data Integrity checking in Critical Information Infrastructures.
IEEE Transactions on Knowledge and Data Engineering 20(8), 1034–1038 (2008)

5. Wang, H.: Identity-Based Distributed Provable Data Possession in Multi-Cloud
Storage. IEEE Transactions on Services Computing 8(2), 328–340 (2015)

6. Wang, H., Zhang, Y.: On the Knowledge Soundness of a Cooperative Provable
Data Possession Scheme in Multicloud Storage. IEEE Transactions on Parallel
and Distributed Systems 25(1), 264–267 (2014)

7. Wang, H., Wu, Q., Qin, B., Josep, D.: FRR: Fair Remote Retrieval of Outsourced
Private Medical Records in Electronic Health Networks. Journal of Biomedical
Informatics 50, 226–233 (2014)

8. Wang, H.: Anonymous Multi-Receiver Remote Data Retrieval for Pay-TV in Public
Clouds. IET Information Security 9(2), 108–118 (2015)

9. Wang, H.: Proxy Provable Data Possession in Public Clouds. IEEE Transactions
on Services Computing 6(4), 551–559 (2013)

10. Hao, Z., Yu, N.: A multiple-replica remote data possession checking protocol with
public verifiability. In: 2010 Second International Symposium on Data, Privacy,
and E-Commerce, pp. 84–89 (2010)

11. Barsoum, A.F., Hasan, M.A.: On Verifying Dynamic Multiple Data Copies over
Cloud Servers. IACR eprint report 447 (2011). http://eprint.iacr.org/2011/447.pdf

12. Wang, H., Zhang, Y.: On the Knowledge Soundness of a Cooperative Provable
Data Possession Scheme in Multicloud Storage. IEEE Transactions on Parallel
and Distributed Systems 25(1), 264–267 (2014)

http://eprint.iacr.org/2008/114
http://eprint.iacr.org/2011/447.pdf

586 H. Wang and J. Li

13. Wang, Q., Wang, C., Ren, K., Lou, W., Li, J.: Enabling Public Auditability and
Data Dynamics for Storage Security in Cloud Computing. IEEE Transactions on
Parallel and Distributed Systems 22(5), 847–859 (2011)

14. Juels, A., Kaliski, B.S.: PORs: proofs of retrievability for large files. In: CCS 2007,
pp. 584–597 (2007)

15. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

16. Bowers, K.D., Juels, A., Oprea, A.: Proofs of retrievability: theory and implemen-
tation. In: CCSW 2009, pp. 43–54 (2009)

17. Zheng, Q., Xu, S.: Fair and dynamic proofs of retrievability. In: CODASPY 2011,
pp. 237–248 (2011)

18. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplifica-
tion. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer,
Heidelberg (2009)

19. Zhu, Y., Wang, H., Hu, Z., Ahn, G.J., Hu, H.: Zero-Knowledge Proofs of
Retrievability. Sci. China Inf. Sci. 54(8), 1608–1617 (2011)

20. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

21. Han, J., Susilo, W., Mu, Y.: Identity-Based Data Storage in Cloud Computing.
Future Generation Computer Systems 29(3), 673–681 (2013)

22. Han, J., Susilo, W., Mu, Y.: Identity-Based Secure DistributedData Storage
Schemes. IEEE Trans. Computers 63(4), 941–953 (2014)

23. Wang, H., Wu, Q., Qin, B., Domingo-Ferrer, J.: Identity-based remote data
possession checking in public clouds. IET Information Security 8(2), 114–121
(2014)

24. Gentry, C.: Certificate-based encryption and the certificate revocation problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 272–293. Springer,
Heidelberg (2003)

25. Kang, B.G., Park, J.H., Hahn, S.G.: A certificate-based signature scheme. In:
Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 99–111. Springer,
Heidelberg (2004)

26. Li, J., Huang, X., Mu, Y., Susilo, W., Wu, Q.: Certificate-based signature: security
model and efficient construction. In: López, J., Samarati, P., Ferrer, J.L. (eds.)
EuroPKI 2007. LNCS, vol. 4582, pp. 110–125. Springer, Heidelberg (2007)

27. Li, J., Huang, X., Mu, Y., Susilo, W., Wu, Q.: Constructions of Certificate-Based
Signature Secure Against Key Replacement Attacks. Journal of Computer Security
18(3), 421–449 (2010)

28. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology 13(3), 361–396 (2000)

Maximal and Maximum Transitive Relation
Contained in a Given Binary Relation

Sourav Chakraborty1, Shamik Ghosh2, Nitesh Jha1(B), and Sasanka Roy1

1 Chennai Mathematical Institute, Chennai, India
{sourav,nj,sasanka}@cmi.ac.in

2 Department of Mathematics, Jadavpur University, Kolkata, India
sghosh@math.jdvu.ac.in

Abstract. We study the problem of finding a maximal transitive rela-
tion contained in a given binary relation. Given a binary relation of size
m defined on a set of size n, we present a polynomial time algorithm
that finds a maximal transitive sub-relation in time O(n2 + nm).

We also study the problem of finding a maximum transitive relation
contained in a binary relation. For the class of triangle-free relations
(directed graphs), we present a 0.874-approximation via the problem of
maximum directed cut.

1 Introduction

All relations considered in this study are binary relations. We represent a relation
alternately as a digraph to simplify the presentation at places (see Section 2
for definitions). Transitivity is a fundamental property of relations. Given the
importance of relations and the transitivity property, it is not surprising that
various related problems have been studied in detail and have found widespread
application in different fields of study.

Some of the fundamental problems related to transitivity that have been
long studied are - given a relation ρ, checking whether ρ is transitive, finding
the transitive closure of ρ, finding the maximum transitive relation contained in
ρ, partitioning ρ into smallest number of transitive relations. Various algorithms
have been proposed for these problems and some hardness results have also been
proved.

In this paper, we study two related problems on transitivity. First - given
a relation, obtain a maximal transitive relation contained in it. It is straight-
forward to see that this can be solved in poly-time, hence our goal is to do this
as efficiently as possible. Second - given a relation, obtain a maximum transitive
relation contained it. This problem was proven to be NP-complete in [11]. Here
our approach is to find approximate solutions.

The problem of finding amaximum transitive relation contained in a given rela-
tion is a generalisation of well-studied hard problems. For the class of triangle-free
graphs, the problem of finding a maximum transitive subgraph in a directed graph
is the same problem as the MAX-DICUT problem (see Section 4). MAX-DICUT
has well known inapproximability results.
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 587–600, 2015.
DOI: 10.1007/978-3-319-21398-9 46

588 S. Chakraborty et al.

We can also relate it to a problem of optimisation on a 3SAT instance. We
look at the relation as a directed graph G = (V,E), where |V | = n. For every
pair for distinct vertices (i, j) in V , create a boolean variable xij . Consider the
following 3SAT formula.

C =
∧

1�i<j<k�n

(xij ∨ xik ∨ xkj)

Let C ′ be a formula derived from C such that any literal with variable xij is
removed if (i, j) /∈ E. It is easy to see that a solution to C ′ represents a subgraph
of G. Specifically, a solution to C ′ is also transitive. To see this, observe that
for every triplet (i, j, k), if a clause (xij ∨ xik ∨ xkj) is satisfied, then either the
edge (i, j) is included or at least one of the edges (i, k) or (k, j) is excluded. To
get the maximum transitive subgraph, the solution must maximize the number
of variables set to 1. To conclude, the maximum transitive subgraph problem is
same as the problem of finding a satisfying solution to a 3SAT formula that also
maximizes the number of variables assigned the value ‘true’.

1.1 Our Results

The usual greedy algorithm for finding a maximal substructure - satisfying a
given property P - starts with the empty set and incrementally grows the sub-
structure while maintaining the property P. Finally it ends when the set becomes
maximal. Thus checking for maximality is a subroutine for the usual greedy algo-
rithm.

In the case of finding a maximal transitive relation contained in a given
relation the usual greedy algorithm takes O(n5) time, where n is the size of
the set on which the binary relation is defined. Using matrix multiplication as
a subroutine for checking maximality one can improve the running time of the
greedy algorithm to O(nω+2), where the matrix-multiplication of two n × n
matrices takes O(nω) time.

The other greedy approach for finding a maximal substructure could be to
start with an object O and slowly shrink the object until it satisfies the property
P. Unfortunately, this technique may not yield a maximal substructure - the
maximality may not be satisfied at the end.

In this paper we design an algorithm, for finding a maximal transitive sub-
relation in a given relation ρ. Our algorithm runs in time O(n3) where n is
the size of set on which the relation ρ is defined. Our algorithm does not use
any subroutine for checking for maximality. In fact the best known algorithm
for checking maximality in this case has running time O(nω+1) which is clearly
more than the running time of our algorithm.

Instead our algorithm follows the approach of the second kind of greedy
algorithms discussed above. Given the fact that usually this approach does not
guarantee that the output is maximal, we have to make some clever modification.
The algorithm as such is simple but the key is the proof of correctness, which is
quite involved.

Maximal and Maximum Transitive Relation 589

In fact we present an algorithm that runs in time O(nm+n2) where, n is the
size of the set on which the relation is defined and m is the size of the relation
ρ. To the best of our knowledge, no better algorithm for finding a maximal
transitive sub-relation is known. We present the algorithms and the proof of
correctness related to the following theorem in Section 3.

Theorem 1. Let ρ be a binary relation on a set of size n and let m be the size
of ρ. There is an algorithm that given ρ, outputs a maximal transitive relation
contained in ρ, in time O(n2 + nm).

In the case of finding a maximum transitive relation contained in a binary
relation, we present the following results.

Theorem 2. There exists a 0.25-approximation algorithm for obtaining a max-
imum transitive relation contained in a binary relation.

Theorem 3. There exists a 0.874-approximation algorithm for finding the
maximum transitive relation contained in a triangle-free relation (triangle-free
digraph).

These results have been arrived at by connecting the the problem of max-
imum transitive ‘sub-relations’ to the well known problems of MAX-CUT and
MAX-DICUT. This has been detailed in Section 4.

1.2 Related Results

The transitive property is a fundamental property of binary relations. Various
important algorithmic problems with respect to transitive property has been
studied and used. One very important and well studied problem is finding the
transitive closure of a binary relation ρ (that is the smallest binary relation
which contains ρ and is transitive). This problem of finding transitive closure
has been studied way back in 1960s. Warshall [9] gave an algorithm to find the
transitive closure is time O(n3), where n is the size of the set on which the
binary relation is defined. Using different techniques [5] gave an O(n2 + nm)
algorithms, where m is the number of relations in ρ. Modifying the algorithm
of Warshall, Nuutila [8] connected the problem of finding transitive closure with
matrix multiplication. With the latest knowledge of matrix multiplication ([4]
and [10]) we can compute the transitive closure of a binary relation on n elements
using O(n2.37) time complexity.

Another important problem connected to transitive property is the finding
the transitive reduction of a binary relation. Transitive reduction of a binary
relation ρ is the minimal sub-relation whose transitive closure is same as the
transitive closure of ρ. This was introduce by Aho et al [1] and they also gave
the tight complexity bounds. A closely related concept to the transitive reduction
is the maximal equivalent graph, introduced by Moyles [7].

Given a binary relation, partitioning it as a union of transitive relations is
another very important related problem (see [2]). A plethora of work has been
done on this problem in recent times as this problem has found application in
biomedical studies.

590 S. Chakraborty et al.

2 Notations

Let S = {1, 2, . . . , n}, where n is a natural number. A binary relation ρ on S is
a subset of the cross product S × S. We only consider binary relations in this
study. Any relation ρ on S can be represented by a (0, 1) matrix A = (aij)n×n

of size n × n, where

aij =
{

1, if (i, j) ∈ ρ
0, otherwise.

Similarly, a relation ρ on S can represented by a directed graph with S as the
vertex set and elements of ρ as the arcs of the directed graph.

In this paper we do not distinguish between a relation and its matrix rep-
resentation or its directed graph representation. So for a given relation ρ, if
(i, j) ∈ ρ, we sometimes refer to it as the arc (i, j) being present and sometimes
as the adjacency matrix entry ρij = 1.

If ρ is a binary relation on S then the size of ρ (denoted by m) is the number
of arcs in the directed graph corresponding to ρ. In other words, it is the number
of pairs (i, j) ∈ S × S such that (i, j) ∈ ρ.

If ρ is a binary relation on S we say ρ′ is contained in ρ (or is a sub-relation)
if for all i, j ∈ S, (i, j) ∈ ρ′ implies (i, j) ∈ ρ.

Definition 1. A binary relation ρ on S is called transitive if for all a, b, c ∈ S,
(a, b) ∈ ρ, (b, c) ∈ ρ implies (a, c) ∈ ρ.

For a binary relation ρ on S a sub-relation α is said to be a maximal transitive
relation contained in ρ if there does not exist any transitive relation β such that α
is strictly contained in β and β is contained in ρ. A maximum transitive relation
contained in ρ is a largest relation contained in ρ.

3 Maximal Transitive Relation Finding Algorithms

We first present an algorithm which finds a maximal transitive relation contained
in a given binary relation in O(n3) and then we improve it to obtain another
algorithm for this with time complexity O(n2 + mn).

3.1 O(n3) Algorithm for Finding Maximal Transitive Sub-relation

Theorem 4. Algorithm 1 correctly finds a maximal transitive sub-relation in
a given relation in time O(n3).

Proof. It is easy to see that the time complexity of the algorithm is O(n3).
For the proof of correctness, all we need to prove is that the output T of the
algorithm is transitive and maximal. The transitivity of the output T is proved
in Lemma 2 and the maximality of T is proved in Lemma 3.

Maximal and Maximum Transitive Relation 591

Algorithm 1. Finding a maximal transitive sub-relation
Input : An n × n matrix A = (aij) representing a relation.
Output: A matrix T = (tij) which is a maximal transitive sub-relation

contained in A.

1 for i ← 1 to n do
2 for j ← 1 to n, j �= i do
3 if aij = 1 then
4 for k = 1 to n do
5 if k �= j and aik = 0 then
6 set ajk = 0
7 end
8 if k �= i and akj = 0 then
9 set aki = 0

10 end

11 end

12 end

13 end

14 end
15 return A

3.2 Proof of Correctness of Algorithm 1

Before we prove the correctness of Algorithm 1, let us make some simple
observations about the algorithm. In this section we will treat the binary relation
on a set S as a directed graph with vertex set S. So the Algorithm 1 takes a
directed graph A on n vertices (labelled 1 to n) and outputs a directed transitive
subgraph T that is maximal, that is, one cannot add arcs from G to T to obtain
a bigger transitive graph. In the algorithm, note that changing an entry aij from
1 to 0 implies deletion of the arc (i, j).

Definition 2. At any stage of the Algorithm 1 we say the arc (a, b) is visited
if at some earlier stage of the algorithm when i = a in Line 1 and j = b in Line
2 we had aij = 1.

Remark 1. We first note the following obvious but important facts of the Algo-
rithm 1:

(1) No new arc is created during the algorithm because it never changes an
entry aij in the matrix A from 0 to 1. It only deletes arcs.

(2) Line 1, 2 and 3 of the algorithm implies that the algorithm visits the arcs
one by one (in a particular order). And while visiting an arc it decides
whether or not to delete some arcs.

(3) Since in Line 1 the i increases from 1 to n so the algorithm first visits the
arcs starting from vertex 1 and then the arcs starting from vertex 2 and
then the arcs starting from vertex 3 and so on.

592 S. Chakraborty et al.

(4) Arcs are deleted only in Line 6 and Line 9 in the algorithm.
(5) While the for loop in Line 1 is in the i-th iteration (that is when the algo-

rithm is visiting an arc starting at i) no arc starting from the i is deleted.
In Line 6 only arcs starting from j are deleted and j �= i from Line 2. And
in Line 9 only arcs ending in i are deleted.

(6) In Line 2 the condition j �= i is given just for ease of understanding the
algorithm. As such even if the condition was not there the algorithm would
have the same output because if j = i in Line 2 and the algorithm pass line
3 (that is aii = 1) then Line 6 would read as “if aik = 0 write aik = 0” and
Line 9 would read as “if aki = 0 write aki = 0”, both of which are no action
statement.

(7) Similarly, in Line 5 the condition k = j is given just for ease of understand-
ing of the algorithm. If the condition was not there even then the algorithm
would have produced the same result because from Line 3 we already have
aij = 1 and thus if k = j then aik = aij �= 0.

(8) Similarly, the condition k �= i in Line 9 has no particular role in the algo-
rithm.

One of the most important lemma for the proof of correctness is the following:

Lemma 1. An arc once visited in Algorithm 1 cannot be deleted later on.

Proof. Let us prove by contradiction.
Suppose at a certain point in the algorithm’s run the arc (i, j) has already

been visited, and then when the algorithm is visiting some other arc starting
from vertex r the algorithm decides to delete the arc (i, j).

If such an arc (i, j) which is deleted after being visited exists then there must
a first one also. Without loss of generality we can assume that the arc (i, j) is
the first such arc: that is when the algorithm decides to delete the arc (i, j) no
other arc that has been visited by the algorithm has been deleted.

By point number 3 in Remark 1, r ≥ i. From point number 5 in Remark 1
we can say that r �= i. So we have r > i.

We now consider two cases depending on whether the algorithm decides to
delete the arc (i, j) is Line 6 or Line 9.

r

i

j i

j

k

Case I Case II

Fig. 1. Diagrams of the two cases for Lemma 1

Maximal and Maximum Transitive Relation 593

Case I. Suppose (i, j) is deleted in Line 6, when the algorithm was visiting
an arc starting from vertex r. Since the algorithm is deleting (i, j) in Line 6 so
from Line 3 and Line 5 we have, at that stage, ari = 1 and arj = 0 (just like in
Figure 1(left)).

Since no arc is ever created by the algorithm (point 1 in Remark 1), ari was
1 when the arc (i, j) was visited. So at the stage when the algorithm was visiting
arc (i, j), arj must be 1, otherwise (r, i) would be deleted by Line 9. Thus (r, j)
was deleted after visiting the arc (i, j) and but before time (i, j) is being deleted.

By Remark 1(5), (r, j) cannot be deleted when visiting an arc starting from
r. So (r, j) must have been deleted when visiting an arc starting from vertex r1
and r1 < r.

We now split this case into two cases depending on whether r1 = j or r1 �= j.

r

i

j

r1

r

i

j

k
Case Ia Case Ib

Fig. 2. Diagram for subcases of Case 1 for Lemma 1

Case Ia: (r1 �= j)
By Remark 1(5) we know at the set of arcs starting from vertex r1 must have

remained unchanged during the r1-th iteration of Line 1.
But since in the r1-th iteration of Line 1 the arc (r, j) was deleted so (r1, r)

must have been present while (r1, j) was absent. Also if ar1i = 0 when visiting
the arc (r1, r), the algorithm would have found ar1r = 1 and ar1i = 0 and in that
case would have deleted (r, i) is Line 6. That would contradict that fact the the
arc (r, i) was present when the arc (i, j) was being deleted. Thus at the start of
the r1-th iteration of Line 1 the situation would have been like in Figure 2(left)).

But in that case, when visiting (r1, i) the algorithm would have found ar1i = 1
and ar1j = 0 and then would have deleted the arc (i, j). But by assumption the
arc (i, j) is deleted when visiting arc (r, i) and not an arc starting at r1. So we
get a contradiction. And thus if s �= j we have a contradiction.

Case Ib: (r1 = j)

594 S. Chakraborty et al.

Let the arc (r, j) be deleted when the algorithm was visiting the arc (r1, k)
(that is (j, k)) for some k. Since the arc (j, k) is deleted after the arc (i, j) is
visited and before the arc (r, i) is visited, so i < j < r.

Now consider the stage when the arc (j, k) is visited by the algorithm. If
arc (i, j) is not present at that time then the arc (i, j) would have been deleted
which would contradict the assumption that the arc (i, j) is deleted when the
algorithm was visiting (r, i). So just before the stage when the algorithm was
visiting arc (j, k) the situation would have been like in Figure 2(right)).

So the arc (i, k) was present when the algorithm was visiting the arc (j, k).
But since i < j so the arc (i, k) must have been visited already. By the minimality
condition that (i, j) is the first arc that is visited and then deleted and since the
arc (i, j) is deleted when visiting arc (r, i), so when the algorithm just started
visiting the arc (r, i) the arc (i, k) must be present. Also at that stage the arc
(r, k) was absent as it was absent when visiting the arc (j, k) and j < r. So when
the algorithm just started to visit (r, i) the situation would have been like in
Figure 2(right)) except the arc (r, j) would also have been missing.

When the algorithm was visiting the arc (j, k) the arc (r, k) was not there.
But when the algorithm visited the arc (i, j) the arc (r, k) must have been there,
else the arc (r, i) would have been deleted at that stage, which would contradict
our assumption that (i, j) was deleted when visiting (r, i). So the arc (r, k) must
have been deleted after the arc (i, k) was visited but before the arc (j, k) was
visited.

If the arc is deleted when visiting some arc starting with k then it means
that i < k < j. Now consider the stage when the algorithm was visiting (r, i). As
described earlier the situation would have been like in Figure 2(right)) except the
arc (r, j) would also have been missing. Since k < j so the algorithm would have
deleted (i, k) before it deleted (i, j). And since the algorithm has also visited
(i, k) earlier so this contradicts the the minimality condition of (i, j) being the
first visited arc to be deleted.

The other case being the arc deleted when visiting the some arc ending in r,
say (t, r), where i < t < j. Thus during the t-th iteration of Line 1 the arcs (t, r)
is present while the arc (t, k) is absent. Now, since in the t-th iteration the arc
(r, j) is not deleted thus it means that the arc (t, j) was present during the t-th
iteration of Line 1. But in that case since arcs (t, j) and (j, k) are present while
(t, k) is not present the algorithm would have deleted the arc (j, k) in the t-th
iteration of Line 1, this contradicts the assumption that the arc (r, j) is deleted
in the j-th iteration of Line 1 when visiting the arc (j, k).

Thus the arc (i, j) cannot be deleted by the algorithm in Line 6 when visiting
an arc starting from r.

Case II. Suppose (i, j) is deleted in Line 9, when the algorithm was visiting
an arc starting from vertex r. In this case j = r. And since r > i so j > i.
Say the arc (i, j) is deleted when visiting arc (j, k), for some vertex k. Since the
algorithm is deleting (i, j) in Line 9 so from Line 3 and Line 8 we have, at that
stage, ajk = 1 and aik = 0 (cf. Figure 1(left)).

Maximal and Maximum Transitive Relation 595

Now if aik was 0 when the algorithm visited the arc (i, j) then the algorithm
would have found aik = 0 and ai,j = 1 and in that case would have deleted the
arc (j, k) in Line 6. That would give a contradiction as in a later stage of the
algorithm (in particular in the j-th iteration of Line 1, with j > i) the arc (j, k)
is present. So when the arc (i, j) was visited the arc (i, k) was present.

Since by Remark 1(5) the arc (i, k) cannot be deleted in the ith iteration of
Line 1, so the arc (i, j) must have been visited in the i-th iteration of Line 1 and
must have been deleted by the algorithm at a later time but before the arc (i, j)
is deleted. But this would contradict the minimality of the arc (i, j).

Hence even in this case also we get a contradiction. So this completes the
proof.

The second lemma we need is the following. Because of limitation of space
we move the proof to the appendix.

Lemma 2. The matrix T output by the Algorithm 1 is transitive.

Using Lemma 2 and Lemma 1 we can finally prove the correctness of the
algorithm. Unfortunately because of the shortage of space we have to push the
proof of the following lemma to the appendix.

Lemma 3. The matrix T output by the Algorithm 1 is a maximal transitive
relation contained in A.

3.3 Better Running Time Analysis of Algorithm 1

If we do a better analysis of the running time of the Algorithm 1 we can
see that the algorithm has running time O(n2 + nm). To see it more formally
consider a new pseudocode of the algorithm that we present as Algorithm 2. It
is not hard to see that both the algorithms are basically same.

Theorem 5. Algorithm 2 correctly finds a maximal transitive relation contained
in a given binary relation in O(n2 + mn), where m is the number of 1’s in A.

Proof. The proof for correctness is same as in Theorem 4. We calculate only the
time complexity of the algorithm and it is given by

n∑

i=1

(n + kin), (where ki is the number of 1’s in the ith row)

= n2 + n
n∑

i=1

ki = n2 + mn.

596 S. Chakraborty et al.

Algorithm 2. Finding a maximal transitive sub-relation
Input : An n × n matrix A = (aij) representing a binary relation.
Output: A matrix T = (tij) which is a maximal transitive relation contained in

the given binary relation A.

1 for i ← 1 to n do
2 Initialize Bi = ∅
3 for each s ← 1 to n, j �= i do
4 if aij = 1 then
5 Include j in Bi

6 end

7 end
8 for each j ∈ Bi do
9 for each k = 1 to n do

10 if k �= j and aik = 0 then
11 Make ajk = 0
12 end
13 if k �= i and akj = 0 then
14 Make aki = 0
15 end

16 end

17 end

18 end

4 Maximum Transitive Relation

In this section, we study the problem of obtaining a maximum transitive relation
contained in a binary relation. We will be using the notation of directed graphs
for binary relations. In the following discussion, a ‘graph’ is a directed graph
unless otherwise stated.

First, we state a well known result from graph theory.

Lemma 4. There exists a bipartite subgraph of size m/2 in any graph with m
edges.

Obtaining such a bipartite graph deterministically in poly-time is a folklore
result. Observe that every bipartite graph is transitive. Given a cut of size k
in a directed graph, we can always obtain a transitive subgraph of size at least
k/2 by considering all the edges in one direction - the direction which has more
number of edges. This gives the following.

Theorem 6. There exists a poly-time algorithm to obtain an m/4 sized transi-
tive subgraph in any directed graph. This gives a 1/4-approximation algorithm
for maximum transitive subgraph problem.

The obvious question is - can we do better than m/4? We claim that the
constant 1/4 can not be improved in poly-time. For this we consider the class of
triangle-free graphs. From a recent result [3], we have the following result.

Maximal and Maximum Transitive Relation 597

Theorem 7. For every m, there exists a triangle-free graph with m edges in
which the size of any directed cut is at most m/4 + cm4/5.

Obtaining a transitive subgraph of size better than m/4 (in the constant mul-
tiple) would contradict the theorem - since we could input the counterexample
triangle-free directed graph and improve our cut size.

In order to improve upon the approximation factor, we focus on the class
of triangle-free directed graphs. First we make the following simple observation
about triangle-free directed graphs.

Lemma 5. In any transitive subgraph of a triangle-free graph, there are no
directed paths of length two.

Let G be a graph and U , V be a partition of the vertex set of H. A directed cut
(U, V) is the set of edges with a starting in U and ending point in V . The MAX-
DICUT problem is the problem of obtaining a largest directed cut in a graph.
This is NP-hard. [6] gives an approximation algorithm for the MAX-DICUT
problem.

Theorem 8 (see [6]). There exists a 0.874-approximation algorithm for the
MAX-DICUT problem.

As a corollary of Lemma 5, we have the following.

Lemma 6. In a triangle-free graph, every directed cut is also a transitive sub-
graph.

This implies that finding the maximum transitive subgraph is same as the
MAX-DICUT problem for triangle free graphs.

Theorem 9. There exists a 0.874-approximation algorithm for finding the max-
imum transitive subgraph in a triangle-free graph.

5 Conclusion

We have presented an algorithm that given a directed graph on n vertices and m
arcs outputs a maximal transitive sub-graph is time O(n2+nm). This is the first
algorithm for finding maximal transitive subgraph that we know of, that does
better than the usual greedy algorithm. Although it might be the case that this
is an optimal algorithm, we are unable to prove a lower bound for this problem.

There are many related problems for which one might expect similar kind of
algorithm - that is O(n3) time algorithm that does better than the usual greedy
algorithm. We would like to present them as open problems:

1. Given a directed graph G on n vertices and a transitive subgraph H of G,
check if H is a maximal transitive subgraph of G.

2. Given a directed graph G on n vertices and a subgraph H of G, find a
maximal transitive subgraph of G that also contains H.

Obviously an algorithm for the second problem would also give an algorithm
for the first problem.

598 S. Chakraborty et al.

Appendix

Proof of Lemma 2

Lemma 2. The matrix T output by the Algorithm 1 is transitive.

Proof. Suppose tij = 1 = tjk. By Remark 1(1) no arc is created. So at all stages
and in particular, at the initial stage aij = ajk = 1. Suppose aik = 0 at the
initial stage. Then when the algorithm visited (i, j) or (j, i) (whichever comes
first), the arc (j, k) or (i, j) (respectively) will be deleted for the lack of the arc
(i, k), as aij = ajk = 1 throughout (cf. Figure 3).

Thus suppose the arc (i, k) is deleted at some stage, say, r-th iteration of
Line 1. Now r > i, j for otherwise the arc (i, k) would be deleted before the i-th
or j-th iteration of Line 1. And in that case in the i-th or j-th iteration of Line
1 (depending on which of i and j is smaller) of Line 1 either (j, k) or (i, j) would
be deleted. And then at the end at least one of tij and tik must be 0.

But then the arc (i, k) during the i-th iteration of Line 1 (as i < r). Since
no arc is deleted once it is visited by Lemma 1, we have tik = 1. Therefore T is
transitive.

i

j

k

Fig. 3. Diagram for Lemma 2

Proof of Lemma 3

Lemma 3. The matrix T output by the Algorithm 1 is a maximal transitive
relation contained in A.

Proof. T is transitive by Lemma 2. Also by Remark 1(1) the output matrix is
contained in A. So the only thing remaining to prove is that the output matrix
T is maximal.

Now if T is not a maximal transitive sub-relation then there must be some
arc (say (a, b)) such that the transitive closure of T ∪ {(a, b)} is also contained
in A.

Now by Lemma 1, an arc once visited can never be deleted. Also the algorithm
is visiting every undeleted arc. Thus T is the collection of visited arcs and these
arcs are present at every stage of the algorithm.

Thus, every arc in the transitive closure of T ∪ {(a, b)} that is not in T must
have been deleted in some iteration of Line 1. Let (i, j) be the first arc to be

Maximal and Maximum Transitive Relation 599

deleted among all the arcs that are in the of transitive closure of T ∪{(a, b)} but
not in T .

Clearly the transitive closure of T ∪{(i, j)} is also contained in A, and all the
arcs in the transitive closure of T ∪ {(i, j)} either is never deleted or is deleted
after the arc (i, j) is deleted. Suppose the arc (i, j) is deleted in the r-th iteration
of Line 1. We have r �= i by Remark 1(5) and by Lemma 1 we have r < i.

We now consider two cases depending on whether r is j or not.

r

i

j i

j

k

Case I Case II

Fig. 4. Diagrams of the two cases for Lemma 3

Case I: r �= j
In this case, since the arc (i, j) was deleted in the r-iteration of Line 1, the

arc (i, j) must have been deleted when the algorithm was visiting the arc (r, i).
So at the stage when the arc (i, j) was deleted, the arc (r, j) must not have been
there (else the algorithm wouldn’t have deleted the arc (i, j)).

If arj = 0 in A, then trj = 0 (by Remark 1(1)). But by Lemma 1 tri = 1 as
the arc (r, i) is being visited. So T ∪ {(i, j)} is not transitive (cf. Figure 4(left)),
and the transitive closure of T ∪{(i, j)} must contain the arc (r, j). Thus arj = 1
in A, but the arc (r, j) is deleted in some stage of the algorithm but before the
visit of the r-th iteration of Line 1, say, at r1-th iteration of Line 1, with r1 < r.

Thus the arc (r, j) is in the transitive closure of T ∪{(i, j)} and it got deleted
before the deletion of arc (i, j). This is a contradiction to the fact that the arc
(i, j) was the first arc to be deleted. So when r �= j we have a contradiction.

Case II: r = j
In this case, since the arc (i, j) was deleted in the j-iteration of Line 1, the arc

(i, j) must have been deleted when the algorithm was visiting some arc (j, k), for
some vertex k. So at the stage when the arc (i, j) was deleted, the arc (i, k) must
not have been there (else the algorithm wouldn’t have deleted the arc (i, j)).

If aik = 0 in A, then tik = 0 (by Remark 1(1)). But by Lemma 1 tjk = 1 as
the arc (j, k) is being visited. So T ∪{(i, j)} is not transitive (cf. Figure 4(right)),
and the transitive closure of T ∪{(i, j)} must contain the arc (i, k). Thus aik = 1
in A, but the arc (i, k) is deleted in some stage of the algorithm but before the
visit of the j-th iteration of Line 1, say, at r1-th iteration of Line 1, with r1 < j.

600 S. Chakraborty et al.

Thus the arc (i, k) is in the transitive closure of T ∪{(i, j)} and it got deleted
before the deletion of arc (i, j). This is a contradiction to the fact that the arc
(i, j) was the first arc to be deleted. So when r = j we have a contradiction.

Since in both the case we face a contradiction so we have that the output T
is a maximal transitive relation contained in A.

References

1. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph.
SIAM J. Comput. 1(2), 131–137 (1972)

2. Alvarado, F.L., Pothen, A., Schreiber, R.: Highly parallel sparse triangular solu-
tion. In: George, A., Gilbert, J.R., Liu, J.W.H. (eds.) Graph Theory and Sparse
Matrix Computation. The IMA Volumes in Mathematics and its Applications,
vol. 56, pp. 141–157. Springer, New York (1993)

3. Chakraborty, S., Jha, N.: On the size of maximum directed cuts in triangle free
graphs (2015) (unpublished)

4. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
J. Symb. Comput. 9(3), 251–280 (1990)

5. Purdom Jr., P.W.: A transitive closure algorithm. BIT 10, 76–94 (1970)
6. Lewin, M., Livnat, D., Zwick, U.: Improved rounding techniques for the

MAX 2-sat and MAX DI-CUT problems. In: Cook, W.J., Schulz, A.S. (eds.) IPCO
2002. LNCS, vol. 2337, pp. 67–82. Springer, Heidelberg (2002)

7. Moyles, D.M., Thompson, G.L.: An algorithm for finding a minimum equivalent
graph of a digraph. J. ACM 16(3), 455–460 (1969)

8. Nuutila, E.: Efficient transitive closure computation in large digraphs. Acta
Polytechnica Scandinavia: Math. Comput. Eng. 74, 1–124 (1995)

9. Warshall, S.: A theorem on boolean matrices. J. ACM 9(1), 11–12 (1962)
10. Williams, V.V.: Multiplying matrices faster than coppersmith-winograd. In:

Proceedings of the 44th Symposium on Theory of Computing Conference, STOC
2012, New York, NY, USA, May 19–22, 2012, pp. 887–898 (2012)

11. Yannakakis, M.: Node- and edge-deletion np-complete problems. In: Proceedings
of the 10th Annual ACM Symposium on Theory of Computing, May 1–3, 1978,
San Diego, California, USA, pp. 253–264 (1978)

An Improved Kernel for the Complementary
Maximal Strip Recovery Problem

Shuai Hu, Wenjun Li(B), and Jianxin Wang

School of Information Science and Engineering, Central South University,
Changsha 410083, People’s Republic of China

liwenjun@csu.edu.cn

Abstract. We study the parameterized complexity of the complemen-
tary maximal strip recovery problem (CMSR), which is to delete the
minimum number of gene markers from two genetic maps so that the
remaining markers in the maps can be partitioned into matched strips.
It is known that the CMSR problem has a kernel of size bounded by
78k, and a question has been raised whether this bound can be fur-
ther improved. In this paper, we answer this question by presenting an
improved kernel of size 58k for the CMSR problem. Our results are based
on the techniques of building a weighted bipartite graph from a given
instance of the CMSR problem so that three additional and more pow-
erful reduction rules can be applied to further reduce the kernel size.

1 Introduction

In comparative genomics, a critical task is to decompose two or more genomes
into syntenic blocks, which are segments of chromosomes with similar contents.
This task is non-trivial when the genetic maps include noise and ambiguities.
The noise and ambiguities should be removed if we want to construct an accurate
syntenic block decomposition.

Motivated by this, a combinatorial problem has been formulated. We start
with some terminologies. A (gene) marker is given as a distinct symbol that is
signed either positive or negative (the symbol represents a family of the gene,
and the sign represents the orientation). A genetic map is a sequence of distinct
markers. A strip is a substring in a genetic map consisting of at least 2 markers.
Two strips match if either they are the same or one can be obtained from the
other by first reversing the sequence then negating all symbols (note that negat-
ing a negative symbol gives a positive symbol). Since all markers in a genetic
map are distinct, two matched strips must come from two genetic maps. The
maximal strip recovery problem (MSR) [5] is to remove markers from two given
genetic maps, with an optimization objective of keeping the maximum number of
markers, so that the resulting sequences can be partitioned into strips such that
there is a one-to-one mapping that maps each of the strips in one sequence to a

This work is supported by the National Natural Science Foundation of China under
Grants (61232001, 61472449, 61420106009, 61402054).

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 601–608, 2015.
DOI: 10.1007/978-3-319-21398-9 47

602 S. Hu et al.

matched strip in the other sequence. The complementary maximal strip recovery
problem (CMSR) is the same problem but with a complementary optimization
objective of minimizing the total number of removed markers.

For example, consider two genetic maps (where a symbol without bar is a
positive symbol and a symbol with a bar is a negative symbol):

G1 = (a1, a2, ā3, a4, a5, a6, ā7, ā8, a9, a10, a11),
G2 = (ā9, ā4, a7, ā6, a8, a1, a3, a2, ā11, ā10, ā5).

After removing markers ā3, a4, a5, ā8 from G1 and markers ā4, a8, a3, ā5

from G2, G1 becomes G′
1 = (a1, a2, a6, ā7, a9, a10, a11), which can be parti-

tioned into three strips (a1, a2), (a6, ā7, a9), (a10, a11), and G2 becomes G′
2 =

(ā9, a7, ā6, a1, a2, ā11, ā10), which can be partitioned into three strips (ā9, a7, ā6),
(a1, a2), (ā11, ā10). It is easy to see that there is a one-to-one mapping that maps
each of the strips in G′

1 to a matched strip in G′
2.

The complexity of the MSR and CMSR problems has been studied. It is
known that both problems are NP-hard [6]. Recently, it has also been shown that
both MSR and CMSR are APX-hard [7–9]. Heuristic algorithms based on MIS
and Max Clique have been developed for the problems [5,10]. The MSR prob-
lem has a polynomial-time 4-approximation algorithm [11]. The CMSR problem
has a polynomial-time 3-approximation algorithm [12], and this ratio has been
improved recently to 2.33 [13].

The parameterized complexity of the problems has also been considered.
Formally, an instance of the (parameterized) CMSR problem takes the form
(G1, G2; k), where G1 and G2 are genetic maps of the same length, and one
needs to decide whether k markers can be removed from each of G1 and G2 so
that the resulting sequences can be partitioned into strips such that there is a
one-to-one mapping that maps each of the strips in one sequence to a matched
strip in the other sequence. There is an O∗(3k)-time parameterized algorithm
for CMSR [12], and this upper bound has been improved recently to O∗(2.36k)
[14].

An issue closely related to parameterized algorithms is kernelization. A
kernelization algorithm for CMSR is a polynomial-time algorithm that on
an instance (G1, G2; k) produces another instance (G′

1, G
′
2; k

′) such that (1)
(G1, G2; k) is a YES-instance if and only if (G′

1, G
′
2; k

′) is a YES-instance; (2)
k′ ≤ k, and (3) the length of G′

1 plus the length of G′
2 is bounded by a func-

tion h(k) of the parameter k. The instance (G′
1, G

′
2; k

′) is called the kernel, and
the function h(k) is the size of the kernel. Kernelization algorithms measure
the effectiveness of polynomial-time preprocessing on a problem. Very recently,
Jiang and Zhu presented a kernelization algorithm for the CMSR problem whose
kernel size is bounded by 78k [15]. At the end of their work, Jiang and Zhu asked
whether this bound on the kernel size can be further improved [15].

In the current paper, we are focused on kernelization algorithms for the
CMSR problem. In particular, we present a kernelization algorithm for the
CMSR problem that has an improved kernel of size bounded by 58k. Our result is
based on techniques of building a weighted bipartite graph from a given instance
of the CMSR problem so that besides the reduction rules proposed by Jiang and

An Improved Kernel for the CMSR Problem 603

Zhu [15], three additional and more powerful reduction rules can be applied to
further reduce the kernel size.

2 Known Rules and Properties of CMSR

In this section, we briefly introduce some known reduction rules and structure
properties for CMSR that are going to be needed during our proofs. Rule 1-8
correspond to Rule 2.1-2.8 in [15] respectively.

Given an instance (G1, G2; k) of CMSR, we can identify, in quadratic time,
all maximal substrings in G1 and G2 that make matched strips. Such a maximal
substring of length larger than 1 is called a block, and those of length 1 are called
isolators. A maximal substring in either G1 or G2 that consists of only blocks
but no isolators is called a super-block. Obviously, super-blocks and sequences of
continuous isolators appear alternatively in G1 and G2 respectively.

Then, we can construct a weighted bipartite graph G = (V1, V2, E), where
each vertex in V1 or V2 represents a super-block of G1 or G2, and there is an
edge [v1, v2] ∈ E between two super-blocks v1 ∈ V1, v2 ∈ V2 iff they share two
matched blocks of length 2 or 3. We mention that the weights of vertices and
edges work only for the analysis of the kernel, therefore we define the weight
function later.

Let Σ be the symbol set for the input maps G1 and G2, Σ1 be a new symbol
set, with Σ1 ∩ Σ = ∅. A new symbol in Σ1 is used in the reduction rules, in
order to indicate a surely retained block in some optimal solution.

In the subsequent kernelization process, when we change the two matched
blocks of length 2 or 3 into a same new Σ1 symbol , it also implies that deleting
the corresponding edge.

Lemma 1. [12] There exists an optimal CMSR solution S satisfying that (1)
for any block b of length at least 4, b is totally disjoint with S; (2) for any block
c of length 2 or 3, c is either totally included in S, or totally disjoint with S.

Rule 1. For each pair of matched blocks of length at least 4, change them
into a same new symbol in Σ1 (and delete the corresponding old symbols in it
from Σ whenever such a new symbol in Σ1 is created).

Rule 2. For any pair of super-blocks s1 ∈ V1, s2 ∈ V2 which contain at
least two pairs of length-2 or length-3 matched blocks, ie., there are multi-edges
between s1 and s2 in the weighted bipartite graph, change each pair of the
matched blocks into a same new symbol in Σ1.

Rule 3. For any super-block (in V1 or V2) containing at least two length-3
blocks, change each length-3 block in this super-block and its matched block into
a new symbol in Σ1.

Rule 4. For any cycle in G, identify the length-2 or length-3 blocks involved
in the cycle and change each matched pair of them into a new symbol in Σ1.

Rule 5. Within any super-block, for all blocks between two symbols in Σ1,
change each of them and its matched block into a new symbol in Σ1. For the
leftmost (rightmost) super-block in G1 and G2, if there is no isolator on its left

604 S. Hu et al.

(right), for all blocks on the left (right) of symbols in Σ1, change each of them
and its matched block into a new symbol in Σ1.

Rule 6. If there exists a length-3 block in a super-block which contains
some Σ1 symbol, then change this length-3 block and its matched block into a
new Σ1 symbol.

Rule 7. If there exists a length-3 block in the leftmost (resp. rightmost)
super-block in G1 or G2, without any isolator on its left (resp. right), then change
this length-3 block and its matched block into a new Σ1 symbol.

Rule 8. For each sequence of Σ1 symbols π1, π2, ..., πj , where πi corresponds
to some block Ci, 1 ≤ i ≤ j.

Step (I): If the corresponding super-block is the leftmost (resp. rightmost)
super-block in G1 or G2, without any isolator on its left (resp. right), then
change Cj = d1d2 · · · dt (resp. C1 = c1c2 · · · cr) into a length-3 block Cj = d1βdt
(resp. C1 = c1αcr), and keep Cj (resp. C1); Otherwise, if j = 1, then change
C1 = c1c2 · · · cr into a length-4 block c1abcr, where a, b are new symbols not in
Σ or Σ1, and keep C1. If j > 1, then change C1 = c1c2 · · · cr into a length-3
block C1 = c1αcr and Cj = d1d2 · · · dt into a length-3 block Cj = d1βdt, where
α, β are new symbols not in Σ or Σ1, and keep C1 and Cj .

Step (II): Finally, delete all the blocks that are not kept in both G1 and G2.

Lemma 2. [15] Let G contain m connected components H1,H2, ...,Hm, and let
Hi have qi edges. Then, in between the vertices in G, there are at least Σm

i=1qi +
m − 2 sequences of continuous isolators in G1, G2.

Corollary 1. G has at most 4k + 2 vertices.

3 New Rules

In this section, we introduce three new reduction rules.

Rule 9. (1) If there exist four super-blocks v11, v12, v21, v22 in G, such that
(i) v11 and v21 share two matched length-3 blocks, (ii) v11 and v22 share two
matched length-2 blocks, (iii) v12 and v22 share two matched length-3 blocks ; or
(2) if there exist three super-blocks v11, v21, v22 in G, such that (i) v11 and v21
share two matched length-3 block, (ii) v11 and v22 share two matched length-2
blocks, (iii) v22 contains some Σ1 symbol.

Then, change each pair of these matched blocks into a new symbol in Σ1.
Rule 10. If there exist v11, v21, v22 in G, such that (i) v11 and v21 share two

matched length-2 blocks, (ii) v11 and v22 share another two matched length-2
blocks, (iii) v21 and v22 respectively contain some Σ1 symbol, then change each
pair of these matched length-2 blocks into a new symbol in Σ1.

Rule 11. If there exist two super-blocks v11, v21 in G, such that (i) v11, v21
share two matched length-2 blocks, (ii) v11, v21 either contains some Σ1 symbol
or be the leftmost (rightmost) super-block with no isolators on its left (right),
then change this pair of matched length-2 blocks into a new symbol in Σ1.

An Improved Kernel for the CMSR Problem 605

Lemma 3. Rule 9 is correct.

Proof. If condition (1) is satisfied, without loss of generality, assume that v11
and v12 are in G1, v21 and v22 are in G2, v21 contains Q1, v11 contains Q1, P1,
v22 contains P1, Q2, v12 contains Q2, where Qi (i = 1, 2) is some length-3 block,
P1 is some length-2 block. Obviously, Q1 has at most 3 isolated neighbors (1
in G1, 2 in G2), Q2 has at most 3 isolated neighbors (2 in G1, 1 in G2), P1

has at most 2 isolated neighbors (one each in G1 and G2). We distinguish three
cases. Case (i), if some optimal solution deletes only one of P1, Q1, Q2, by the
fact that Qi is of length 3, P1 is of length 2, we can keep P1 or Q1 or Q2 as
strips to have a solution at least as good as the assumed optimal solution. Case
(ii), if some optimal solution deletes only two of P1, Q1, Q2, by the fact that the
length of the deleted blocks are not shorter than the total length of their isolated
neighbors, we can keep P1 and Qi (i ∈ {1, 2}) (or Q1 and Q2) as strips to have
a solution at least as good as the assumed optimal solution. Case (iii), if some
optimal solution deletes P1, Q1 and Q2, by the same fact as case (ii), we can
keep P1, Q1 and Q2 as strips to have a solution at least as good as the assumed
optimal solution. If condition (2) is satisfied, the proof is quite the same as the
proof when condition (1) is satisfied, hence omitted. ��

Lemma 4. Rule 10 is correct.

Proof. Assume that v11 is in G1, v21 and v22 are in G2, the two pair of matched
blocks involved are P1(P2) and P3(P4). Each of them has at most 2 isolated
neighbors. If some optimal solution deletes one (or both) of them, by the fact
that they are of length 2, we can keep one (or both) of them as strips to have a
solution at least as good as the assumed optimal solution. ��

Lemma 5. Rule 11 is correct.

Proof. Assume that v11 and v21 share two matched length-2 blocks, denoted
by P1(P2), Simultaneously, v11, v21 either contains some Σ1 symbol or be the
leftmost (rightmost) super-block with no isolators on its left (right). Clearly,
P1(P2) has at most 2 isolated neighbors (1 in G1, 1 in G2). If there is some
optimal solution deletes P1 (i.e., P2), by the fact P1 is length-2 block, we can
keep P1 as strips to have a solution at least as good as the assumed optimal
solution. ��

4 An Improved Kernel for CMSR

To obtain the improved kernel, we need to apply the rules in the following order:
1, 2, 3, 4, 9, 6, 7, 10, 11, 5, 8. Let the resulting sequences be G′

1, G′
2.

In [15], Jiang and Zhu used an inverse amortized analysis. Here, we also
utilize this method to divide G1 or G2 into four sets : A – the CMSR solution,
which contains those symbols/blocks we remove from each of G1 and G2 (of a
total length k); B – those isolators which were kept in some strips in G1 − A
(also in G2 − A); C – those blocks identified by our kernelization algorithm,

606 S. Hu et al.

which are changed into Σ1 symbols; and D – the length-2/3 blocks that are not
removed in A, neither identified in C, these D blocks correspond to the edges in
the graph G.

To distinguish whether a super-block includes a Σ1 symbol, we use a solid
vertex to represent a super-block which includes one or more Σ1 symbols, and
use a hollow vertex to represent a super-block which includes no Σ1 symbol.

Theorem 1. CMSR has a kernel of size 58k.

Proof. The type-C set has been changed into new length-3/4 blocks in G′
1 (also

G′
2) by Rule 8. Let |A′|, |B′|, |C ′|, |D′| denote the total length of type-A,B,C,D

sets in G′
1 and G′

2 respectively.
From [15], we have known that

|A′| + |B′| = 2|A| + 2|B| ≤ 10k (1)

We firstly define weights of edges, w : E −→ R, w(e) = 4, if e corresponds
to two matched blocks of length 2; w(e) = 6, if e corresponds to two matched
blocks of length 3. Actually,

|D′| = Σe∈Gw(e) (2)

If Rule 1, 2, 3, 4, 9, 6, 7, 10, 11, 5 are applied (Rule 8 is a rule for recovery),
the resulting graph G has many useful properties, we summarize below:

(1) G is a forest, according to Rule 2, 4.
(2) Every super-block could contains at most one length-3 block, ie., every

vertex is adjacent to at most one edge of weight 6, according to Rule 3.
(3) The Σ1 symbols appear continuously in any super-block, according to

Rule 5.
(4) In any super-block, a Σ1 symbol and a length-3 block can not exist at the

same time, ie., a solid vertex can’t be adjacent to an edge of weight 6, according
Rule 6.

(5) A solid vertex can’t be adjacent to a solid vertex or a vertex/super-block
which is the leftmost (resp. rightmost) vertex/super-block with no isolators on
its left (resp. right), according to (4), Rule 11.

(6) A hollow vertex is adjacent to at most one solid vertex, according to Rule
10. If a hollow vertex is adjacent to a solid vertex, then for each edge adjacent
to this hollow vertex, its weight must be 4, according to (4), Rule 9.

Now we define weights of vertices, w : V1 ∪ V2 −→ R by the following steps:
(1) For each hollow vertex u, initially set w(u) = 6.
(2) For each solid vertex u, i) if u corresponds to the leftmost (resp. rightmost)

super-block, without any isolators on its left (resp. right), then set w(u) = 6;
otherwise, set w(u) = 12. ii) for each vertex v adjacent to this solid vertex u,
add w([u, v]) to w(v).

It’s easy to verify that, by the definition of w, for any solid vertex u, if u cor-
responds to the leftmost (resp. rightmost) super-block, without any isolators on
its left (resp. right), then w(u) = 6; otherwise, w(u) = 12; For any hollow vertex
v, if it is adjacent to some solid vertex, then w(v) = 10; otherwise, w(v) = 6.

An Improved Kernel for the CMSR Problem 607

According to Rule 8, we have

|C ′| ≤ Σv∈G, v is solidw(v) (3)

Next, we bound |D′| by the total weights of hollow vertices, ie., we prove
that

|D′| < Σv∈G, v is holloww(v) (4)

Do the following steps on V1 ∪ V2 ∪ E to create another weight function w′

and a modified new graph:
(1) For each edge e, initially set w′(e) = w(e).
(2) For each hollow vertex u, initially set w′(u) = 6.
(3) For each solid vertex u, i) if u corresponds to the leftmost (resp. rightmost)

super-block, without any isolators on its left (resp. right), then set w′(u) = 6;
otherwise, set w′(u) = 12. ii) for each vertex v adjacent to this solid vertex u,
create a new hollow vertex s, and shift the edge [v, u] to [v, s], ie. delete edge
[v, u], add edge [v, s], set w′([v, s]) = w([v, u]), and set w′(s) = w′[v, s].

Let the modified new weighted graph be G′. Then, we have

Σe∈G′w′(e) = Σe∈Gw(e) (5)

Σv∈G′, v is holloww′(v) = Σv∈G, v is holloww(v) (6)

After the weight function w′ is generated, the new graph G′ may have a few
new vertices, but it is still a forest. For each connected component H (i.e. a tree),
H either consists of only hollow vertices, or consists of only one isolated solid
vertex. Note that every vertex’s weight is no less than the maximum weight of
its adjacent edges, thus we have

Σe∈Hw′(e) < Σv∈Hw′(v),H
= φ (7)

For all connected components besides those isolated solid vertices, we have

Σe∈G′w′(e) < Σv∈G′, v is holloww′(v) (8)

Then,

|D′| = Σe∈Gw(e)
= Σe∈G′w′(e)
< Σv∈G′, v is holloww′(v)
= Σv∈G, v is holloww(v)

(9)

This verifies the correctness of inequality (4). Furthermore, we have

|C ′| + |D′| ≤ Σv∈Gw(v) ≤ 12 ∗ (4k − 2) + 6 ∗ 4 = 48k (10)

The case of equality occurs when |D′| = 0, ie., there is no edge in the graph
G, every super-block contains only Σ1 symbols.

Then the size of the kernel is bounded by

|A′| + |B′| + |C ′| + |D′| ≤ 10k + 48k ≤ 58k. (11)

��

608 S. Hu et al.

References

1. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer-Verlag (1999)
2. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg

(2006)
3. Niedermeier, R.: Invitation to fixed-parameter algorithms (2006)
4. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.

ACM SIGACT News 38(1), 31–45 (2007)
5. Zheng, C., Zhu, Q., Sankoff, D.: Removing noise and ambiguities from compara-

tive maps in rearrangement analysis. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 4(4), 515–522 (2007)

6. Wang, L., Zhu, B.: On the tractability of maximal strip recovery. Journal of
Computational Biology 17(7), 907–914 (2010)

7. Bulteau, L., Fertin, G., Rusu, I.: Maximal strip recovery problem with gaps:
hardness and approximation algorithms. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 710–719. Springer, Heidelberg (2009)

8. Jiang, M.: Inapproximability of maximal strip recovery. In: Dong, Y., Du, D.-Z.,
Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 616–625. Springer, Heidelberg
(2009)

9. Jiang, M.: Inapproximability of maximal strip recovery: II. In: Lee, D.-T., Chen,
D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 53–64. Springer, Heidelberg
(2010)

10. Choi, V., Zheng, C., Zhu, Q., Sankoff, D.: Algorithms for the extraction of synteny
blocks from comparative maps. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI
2007. LNCS (LNBI), vol. 4645, pp. 277–288. Springer, Heidelberg (2007)

11. Chen, Z., Fu, B., Jiang, M., Zhu, B.: On recovering syntenic blocks from
comparative maps. J. Comb. Optim. 18(3), 307–318 (2009)

12. Jiang, H., Li, Z., Lin, G., Wang, L., Zhu, B.: Exact and approximation algorithms
for the complementary maximal strip recovery problem. J. Comb. Optim. 23(4),
493–506 (2012)

13. Li, Z., Goebel, R., Wang, L., Lin, G.: An improved approximation algorithm for
the complementary maximal strip recovery problem. J. Comput. Syst. Sci. 78(3),
720–730 (2012)

14. Bulteau, L., Fertin, G., Jiang, M., Rusu, I.: Tractability and approximability of
maximal strip recovery. Theor. Comput. Sci. 440(441), 14–28 (2012)

15. Jiang, H., Zhu, B.: A linear kernel for the complementary maximal strip recovery
problem. Journal of Computer and System Sciences (2014)

On Symbolic Ultrametrics, Cotree
Representations, and Cograph Edge

Decompositions and Partitions

Marc Hellmuth1,2(B) and Nicolas Wieseke3

1 Department of Mathematics and Computer Science, University of Greifswald,
Walther-Rathenau-Strasse 47, 17487 Greifswald, Germany

mhellmuth@mailbox.org
2 Center for Bioinformatics, Saarland University, Building E 2.1,

66041 Saarbrücken, Germany
3 Parallel Computing and Complex Systems Group, Department of Computer

Science, Leipzig University, Augustusplatz 10, 04109 Leipzig, Germany
wieseke@informatik.uni-leipzig.de

Abstract. Symbolic ultrametrics define edge-colored complete graphs
Kn and yield a simple tree representation of Kn. We discuss, under which
conditions this idea can be generalized to find a symbolic ultrametric
that, in addition, distinguishes between edges and non-edges of arbitrary
graphs G = (V, E) and thus, yielding a simple tree representation of G.
We prove that such a symbolic ultrametric can only be defined for G if
and only if G is a so-called cograph. A cograph is uniquely determined by
a so-called cotree. As not all graphs are cographs, we ask, furthermore,
what is the minimum number of cotrees needed to represent the topology
of G. The latter problem is equivalent to find an optimal cograph edge
k-decomposition {E1, . . . , Ek} of E so that each subgraph (V, Ei) of G is
a cograph. An upper bound for the integer k is derived and it is shown
that determining whether a graph has a cograph 2-decomposition, resp.,
2-partition is NP-complete.

Keywords: Symbolic ultrametric · Cograph · Cotree · Edge partition ·
NP-complete

1 Introduction

Given an arbitrary edge-colored complete graph Kn = (V,E) on n vertices,
Böcker and Dress [4] asked, whether there is a tree representation of this Kn,
i.e., a rooted tree T = (W,F) with leaf set V together with a labeling t of the
non-leaf vertices in W \V so that the least common ancestor lca(x, y) of distinct
leaves x and y is labeled with the respective color of the edge [x, y] ∈ E. The pair
(T, t) is then called symbolic representation of the edge-colored graph Kn. The
authors showed, that there is a symbolic representation (T, t) if and only if the
map δ that assigns colors or symbols to the edges in E fulfills the properties of a
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 609–623, 2015.
DOI: 10.1007/978-3-319-21398-9 48

610 M. Hellmuth and N. Wieseke

so-called symbolic ultrametric [4]. Such maps are crucial for the characterization
of relationships between genes or proteins, so-called orthology relations [13–15],
that lie at the heart of many phylogenomic studies.

Inspired by the work of Böcker and Dress, we address the following problem:
Does there exist, for an arbitrary undirected graph G = (V,E) a symbolic ultra-
metric δ : V × V → M and thus, a symbolic representation (T, t) of G so that
one can distinguish between edges and non-edges of G? In other words, we ask
for a coloring δ of the edges [x, y] ∈ E, as well as the non-edges [x, y] �∈ E, so
that the topology of G can be displayed by a rooted vertex-labeled tree (T, t)
s.t. for all distinct vertices x, y ∈ V the labeling of the lowest common ancestor
lca(x, y) is equal to δ(x, y). The first result of this contribution provides that such
a symbolic ultrametric can only be defined for G if and only if G is a cograph.
This, in particular, establishes another new characterization of cographs.

Cographs are characterized by the absence of induced paths P4 on four ver-
tices. Moreover, Lerchs [16,17] showed that each cograph G = (V,E) is associ-
ated with a unique rooted tree T (G), called cotree. Obviously, not all graphs are
cographs and thus, don’t have a cotree representation. Therefore, we ask for the
minimum number of cotrees that are needed to represent the structure of a given
graph G = (V,E) in an unambiguous way. As it will turn out, this problem is
equivalent to find a decomposition Π = {E1, . . . , Ek} of E (the elements of Π
need not necessarily be disjoint) for the least integer k, so that each subgraph
Gi = (V,Ei), 1 ≤ i ≤ k is a cograph. Such a decomposition is called cograph edge
k-decomposition, or cograph k-decomposition, for short. If the elements of Π are
in addition pairwise disjoint, we call Π a cograph k-partition. We will prove that
finding the least integer k ≥ 2 so that G has a cograph k-decomposition or a
cograph k-partition is an NP-hard problem. Moreover, upper bounds for the inte-
ger k for any cograph k-decomposition are derived. These findings complement
results known about so-called cograph vertex partitions [1,10,11,26].

2 Basic Definitions

Graph. In what follows, we consider undirected simple graphs G = (V,E) with
vertex set V (G) = V and edge set E(G) = E ⊆

(
V
2

)
. The complement graph

Gc = (V,Ec) of G = (V,E), has edge set Ec =
(
V
2

)
\E. The graph K|V | = (V,E)

with E =
(
V
2

)
is called complete graph. A graph H = (W,F) is an induced

subgraph of G = (V,E), if W ⊆ V and all edges [x, y] ∈ E with x, y ∈ W are
contained in F . The degree deg(v) = |{e ∈ E | v ∈ e}| of a vertex v ∈ V is
defined as the number of edges that contain v. The maximum degree of a graph
is denoted with Δ.

Rooted Tree. A connected graph T is a tree, if T does not contain cycles. A
vertex of a tree T of degree one is called a leaf of T and all other vertices of
T are called inner vertices. The set of inner vertices of T is denoted by V 0. A
rooted tree T = (V,E) is a tree that contains a distinguished vertex ρT ∈ V
called the root. The first inner vertex lcaT (x, y) that lies on both unique paths
from distinct leaves x, resp., y to the root, is called most recent common ancestor

On Symbolic Ultrametrics, Cotree Representations 611

of x and y. If there is no danger of ambiguity, we will write lca(x, y) rather then
lcaT (x, y).

Symbolic Ultrametric and Symbolic Representation. In what follows, the set M
will always denote a non-empty finite set, the symbol � will always denote a
special element not contained in M , and M� := M ∪ {�}. Now, suppose X is
an arbitrary non-empty set and δ : X × X → M� a map. We call δ a symbolic
ultrametric if it satisfies the following conditions:

(U0) δ(x, y) = � if and only if x = y;
(U1) δ(x, y) = δ(y, x) for all x, y ∈ X, i.e. δ is symmetric;
(U2) |{δ(x, y), δ(x, z), δ(y, z)}| ≤ 2 for all x, y, z ∈ X; and
(U3) there exists no subset {x, y, u, v} ∈

(
X
4

)
such that δ(x, y) = δ(y, u) =

δ(u, v) �= δ(y, v) = δ(x, v) = δ(x, u).

Now, suppose that T = (V,E) is a rooted tree with leaf set X and that t : V →
M� is a map such that t(x) = � for all x ∈ X. To the pair (T, t) we associate
the map d(T,t) on X × X by setting, for all x, y ∈ X,

d(T,t) : X × X → M�; d(T,t)(x, y) = t(lcaT (x, y)). (1)

Clearly this map is symmetric and satisfies (U0). We call the pair (T, t) a symbolic
representation of a map δ : X × X → M�, if δ(x, y) = d(T,t)(x, y) holds for all
x, y ∈ X. For a subset W ⊆ X × X we denote with δ(W) the restriction of δ to
the set W .

Cographs and Cotrees. Complement-reducible graph, cographs for short, are
defined as the class of graphs formed from a single vertex under the closure of the
operations of union and complementation, namely: (i) a single-vertex graph is a
cograph; (ii) the disjoint union of cographs is a cograph; (iii) the complement of a
cograph is a cograph. Alternatively, a cograph can be defined as a P4-free graph
(i.e. a graph such that no four vertices induce a subgraph that is a path of length
3), although there are a number of equivalent characterizations of such graphs
(see e.g. [6] for a survey). It is well-known in the literature concerning cographs
that, to any cograph G, one can associate a canonical cotree T (G) = (V,E). This
is a rooted tree, leaf set equal to the vertex set V (G) of G and inner vertices
that represent so-called ”join” and ”union” operations together with a labeling
map t : V 0 → {0, 1} such that for all [x, y] ∈ E(G) it holds that t(lca(x, y)) = 1,
and t(v) �= t(wi) for all v ∈ V 0 and all children w1, . . . , wk ∈ V 0 of v, (cf. [8]).

Cograph k-Decomposition and Partition, and Cotree Representation. Let G =
(V,E) be an arbitrary graph. A decomposition Π = {E1, . . . Ek} of E is a called
(cograph) k-decomposition, if each subgraph Gi = (V,Ei), 1 ≤ i ≤ k of G is a
cograph. We call Π a (cograph) k-partition if Ei ∩ Ej = ∅, for all distinct i, j ∈
{1, . . . , k}. A k-decomposition Π is called optimal, if Π has the least number k of
elements among all cograph decompositions of G. Clearly, for a cograph only k-
decompositions with k = 1 are optimal. A k-decomposition Π = {E1, . . . Ek} is
coarsest, if no elements of Π can be unified, so that the resulting decomposition
is a cograph l-decomposition, with l < k. In other words, Π is coarsest, if for all

612 M. Hellmuth and N. Wieseke

subsets I ⊆ {1, . . . , k} with |I| > 1 it holds that (V,∪i∈IEi) is not a cograph.
Thus, every optimal k-decomposition is also always a coarsest one.

A graph G = (V,E) is represented by a set of cotrees T = {T1, . . . , Tk}, each
Ti with leaf set V , if and only if for each edge [x, y] ∈ E there is a tree Ti ∈ T

with t(lcaTi
(x, y)) = 1.

The Cartesian (Graph) Product G�H has vertex set V (G�H) = V (G)×V (H);
two vertices (g1, h1), (g2, h2) are adjacent in G�H if [g1, g2] ∈ E(G) and h1 = h2,
or [h1, h2] ∈ E(H) and g1 = g2. It is well-known that the Cartesian product is
associative, commutative and that the single vertex graph K1 serves as unit
element [12]. Thus, the product �n

i=1Gi of arbitrary many factors G1, . . . , Gn

is well-defined. For a given product �n
i=1Gi, we define the Gi-layer Gw

i of G
(through vertex w that has coordinates (w1, . . . , wn)) as the induced subgraph
with vertex set V (Gw

i) = {v = (v1, . . . , vn) ∈ ×n
i=1V (Gi) | vj = wj , for all j �=

i}. Note, Gw
i is isomorphic to Gi for all 1 ≤ i ≤ n, w ∈ V (�n

i=1Gi). The n-cube
Qn is the Cartesian product �n

i=1K2.

3 Symbolic Ultrametrics

Symbolic ultrametrics and respective representations as event-labeled trees, have
been first characterized by Böcker and Dress [4].

Theorem 1 ([4,13]). Suppose δ : V ×V → M� is a map. Then there is a sym-
bolic representation of δ if and only if δ is a symbolic ultrametric. Furthermore,
this representation can be computed in polynomial time.

Let δ : V ×V → M� be a map satisfying Properties (U0) and (U1). For each
fixed m ∈ M , we define an undirected graph Gm := Gm(δ) = (V,Em) with edge
set

Em = {{x, y} | δ(x, y) = m, x, y ∈ V } . (2)

Thus, the map δ can be considered as an edge coloring of a complete graph K|V |,
where each edge [x, y] obtains color δ(x, y). Hence, Gm denotes the subgraph of
the edge-colored graph K|V |, that contains all edges colored with m ∈ M . The
following result establishes the connection between symbolic ultrametrics and
cographs.

Theorem 2 ([13]). Let δ : V × V → M� be a map satisfying Properties (U0)
and (U1). Then δ is a symbolic ultrametric if and only if

(U2’) For all {x, y, z} ∈
(
V
3

)
there is an m ∈ M such that Em contains two of

the three edges {x, y}, {x, z}, and {y, z}.
(U3’) Gm is a cograph for all m ∈ M .

Assume now, we have given an arbitrary subgraph G = (V,E) ⊆ K|V |. Let δ
be a map defined on V ×V so that edges e ∈ E obtain a different color then the
non-edges e ∈ E(K|V |) \ E of G. The questions then arises, whether such a map
fulfilling the properties of symbolic ultrametric can be defined and thus, if there

On Symbolic Ultrametrics, Cotree Representations 613

is tree representation (T, t) of G. Of course, this is possible only if δ restricted
to E, resp., Ec is a symbolic ultrametric, while it also a symbolic ultrametric
on the complete graph K|V | = (V,E ∪Ec). The next theorem answers the latter
question and, in addition, provides a new characterization of cographs.

Theorem 3. Let G = (V,E) be an arbitrary (possibly disconnected) graph, W =
{(x, y) ∈ V × V | [x, y] ∈ E} and W c = {(x, y) ∈ V × V | [x, y] �∈ E}. There is a
symbolic ultrametric δ : V × V → M� s.t. δ(W) ∩ δ(W c) = ∅ if and only if G is
a cograph.

Proof. First assume that G is a cograph. Set δ(x, x) = � for all x ∈ V and set
δ(x, y) = δ(y, x) = 1 if [x, y] ∈ E and, otherwise, to 0. Hence, condition (U0)
and (U1) are fulfilled. Moreover, by construction |M | = 2 and thus, condition
(U2′) is trivially fulfilled. Furthermore, since G1(δ) and its complement G0(δ) are
cographs, (U3′) is satisfied. Theorem 2 implies that δ is a symbolic ultrametric.

Now, let δ : V ×V → M� be a symbolic ultrametric with δ(W)∩δ(W c) = ∅.
Assume for contradiction that G is not a cograph. Then G contains an induced
path P4 = a−b−c−d. Therefore, at least one edge e of this path P4 must obtain
a color δ(e) different from the other two edges contained in this P4, as otherwise
Gδ(e)(δ) is not a cograph and thus, δ is not a symbolic ultrametric (Theorem 2).
For all such possible maps δ “subdividing” this P4 we always obtain that two
edges of at least one of the underlying paths P3 = a − b − c or b − c − d must
have different colors. W.l.o.g. assume that δ(a, b) �= δ(b, c). Since [a, c] �∈ E and
δ(W) ∩ δ(W c) = ∅ we can conclude that δ(a, c) �= δ(a, b) and δ(a, c) �= δ(b, c).
But then condition (U2′) cannot be satisfied, and Theorem 2 implies that δ is
not a symbolic ultrametric. �

The latter result implies, that there is no hope for finding a map δ for a
graph G, that assigns symbols or colors to edges, resp., non-edges such that
for δ (and hence, for G) there is a symbolic representation (T, t), unless G is
already a cograph. The (decision version of the) problem to edit a given graph
G into a cograph G′, and thus, to find the closest graph G′ that has a symbolic
representation, is NP-complete [18,19]. In this contribution, we are interested in
the following problem: What is the minimum number of cotrees that are needed
to represent the topology of G in an unambiguous way?

4 Cotree Representation and Cograph k-Decomposition

Recollect, a graph G = (V,E) is represented by a set of cotrees T = {T1, . . . , Tk},
if and only if for each edge [x, y] ∈ E there is a tree Ti ∈ T with t(lcaTi

(x, y)) = 1.
Note, by definition, each cotree Ti determines a subset Ei = {[x, y] ∈ E |
t(lcaTi

(x, y)) = 1} of E. Hence, the subgraph (V,Ei) must be a cograph. There-
fore, in order to find the minimum number of cotrees representing a graph G, we
can equivalently ask for a decomposition Π = {E1, . . . , Ek} of E so that each
subgraph (V,Ei) is a cograph, where k is the least integer among all cograph
decompositions of G. Thus, we are dealing with the following two equivalent
problems.

614 M. Hellmuth and N. Wieseke

0 1

4 2

3

0’ 1’

4’ 2’

3’

Fig. 1. Full enumeration of all possibilities (which we leaf to the reader), shows that the
depicted graph has no cograph 2-decomposition. The existing cograph 3-decomposition
is also a cograph 3-partition; highlighted by dashed-lined, dotted and bold edges.

Problem. Cotree k-Representation
Input: Given a graph G = (V,E) and an integer k .
Question: Can G be represented by k cotrees?

Problem. Cograph k-Decomposition
Input: Given a graph G = (V,E) and an integer k.
Question: Is there a cograph k-decomposition of G?

Clearly, any cograph has an optimal 1-decomposition, while for cycles of
length > 4 or paths P4 there is always an optimal cograph 2-decomposition.
However, there are examples of graphs that do not have a 2-decomposition, see
Figure 1. To derive an upper bound for the integer k s.t. there is a cograph
k-decomposition for arbitrary graphs, the next theorem is given.

Theorem 4. For every graph G with maximum degree Δ there is a cograph k-
decomposition with 1 ≤ k ≤ Δ + 1 that can be computed in O(|V ||E| + Δ(|V | +
|E|)) time. Hence, any graph can be represented by at most Δ + 1 cotrees.

Proof. Consider a proper edge-colorings ϕ : E → {1, . . . , k} of G, i.e., an edge
coloring such that no two incident edges obtain the same color. Any proper edge-
coloring using k colors yields a cograph k-partition Π = {E1, . . . , Ek} where
Ei = {e ∈ E | ϕ(e) = i}, because any connected component in Gi = (V,Ei) is
an edge and thus, no P4’s are contained in Gi. Vizing’s Theorem [25] implies that
for each graph there is a proper edge-coloring using k colors with Δ ≤ k ≤ Δ+1.

An proper edge-coloring using at most Δ + 1 colors can be computed with
the Misra-Gries-algorithm in O(|V ||E|) time [20]. Since the (at most Δ + 1)
respective cotrees can be constructed in linear-time O(|V | + |E|) [9], we derive
the runtime O(|V ||E| + Δ(|V | + |E|)). �

Obviously, any optimal k-decomposition must also be a coarsest k-
decomposition, while the converse is in general not true, see Fig.2. The partition
Π = {E1, . . . , Ek} obtained from a proper edge-coloring is usually not a coarsest
one, as possibly (V,EJ) is a cograph, where EJ = ∪i∈JEi and J ⊆ {1, . . . , l}.

On Symbolic Ultrametrics, Cotree Representations 615

0 1

2

3 4

6

5

7

8

x

y

9

0 1

2

3 4

6

5

7

8

0’ 1’

2’

3’ 4’

6’

5’

7’

8’

x

0 1 2

3

41

0

5 4 1

5’ 4’ 1’ 0 1 2 3

5 6

41

0

0 0

X 4 Y 3

3’ 4’X Y

0 1 2

3

41

0

7 6 2

7’ 6’ 2’ 0 1 2

3

41

0

9 8 7

9 5’ 6’

0 1 2

3

41

0

8 3 0

8’ 3’ 0’0 1 2

41

0’ 1’ 2’

0 2

41

5 6

7’ 8’

0

Fig. 2. The shown (non-co)graph G has a 2-decomposition Π = {E1, E2}. Edges in the
different elements E1 and E2 are highlighted by dashed and solid edges, respectively.
Thus, two cotrees, shown in the lower part of this picture, are sufficient to represent the
structure of G. The two cotrees are isomorphic, and thus, differ only in the arrangement
of their leaf sets. For this reason, we only depicted one cotree with two different leaf
sets. Note, G has no 2-partition, but a coarsest 3-partition. The latter can easily be
verified by application of the construction in Lemma 1.

A graph having an optimal cograph Δ-decomposition is shown in Fig. 1. Thus,
the derived bound Δ + 1 is almost sharp. Nevertheless, we assume that this
bound can be sharpened:

Conjecture 1. For every graph G with maximum degree Δ there is a cograph
Δ-decomposition.

However, there are examples of non-cographs containing many induced P4’s
that have a cograph k-decomposition with k � Δ + 1, which implies that any
optimal k-decomposition of those graphs will have significantly less elements
than Δ + 1, see the following examples.

Example 1. Consider the graph G = (V,E) with vertex set V = {1, . . . , k} ∪
{a, b} and E = {[i, j] | i, j ∈ {1, . . . , k}, i �= j} ∪ {[k, a], [a, b]}. The graph G
is not a cograph, since there are induced P4’s of the form i − k − a − b, i ∈
{1, . . . , k − 1}. On the other hand, the subgraph H = (V,E \ {[k, a]}) has two
connected components, one is isomorphic to the complete graph Kk on k vertices
and the other to the complete graph K2. Hence, H is a cograph. Therefore, G

616 M. Hellmuth and N. Wieseke

has a cograph 2-partition {E \ {[k, a]}, {[k, a]}}, independent from k and thus,
independent from the maximum degree Δ = k.

Example 2. Consider the 2n-dimensional hypercube Q2n = (V,E) with maximum
degree 2n.Wewill showthat this hypercubehas a coarsest cographn-partitionΠ =
{E1, . . . , En}, which implies that for any optimal cograph k-decomposition of Q2n

we have k ≤ Δ/2.
We construct now a cograph n-partition of Q2n. Note, Q2n = �2n

i=1K2 =
�n

i=1(K2�K2) = �n
i=1Q2. In order to avoid ambiguity, we write �n

i=1Q2 as
�n

i=1Hi, Hi � Q2 and assume that Q2 has edges [0, 1], [1, 2], [2, 3], [3, 0].
The cograph n-partition of Q2n is defined as Π = {E1, . . . , En}, where Ei =
∪v∈V E(Hv

i). In other words, the edge set of all Hi-layers in Q2n constitute a
single class Ei in the partition for each i. Therefore, the subgraph G = (V,Ei)
consists of n connected components, each component is isomorphic to the square
Q2. Hence, Gi = (V,Ei) is a cograph.

Assume for contradiction that Π = {E1, . . . , En} is not a coarsest partition.
Then there are distinct classes Ei, i ∈ I ⊆ {1, . . . , n} such that GI = (V,∪i∈IEi)
is a cograph. W.l.o.g. assume that 1, 2 ∈ I and let v = (0, . . . , 0) ∈ V . Then,
the subgraph Hv

1 ∪ Hv
2 ⊆ Q2n contains a path P4 with edges [x, v] ∈ E(Hv

1) and
[v, a], [a, b] ∈ E(Hv

2), where x=(1,0,. . . ,0), a=(0,1,0. . . ,0) and b = (0, 2, 0 . . . , 0).
By definition of the Cartesian product, there are no edges connecting x with a
or b or v with b in Q2n and thus, this path P4 is induced. As this holds for all
subgraphs Hv

i ∪ Hv
j (i, j ∈ I distinct) and thus, in particular for the graph GI

we can conclude that classes of Π cannot be combined. Hence Π is a coarsest
cograph n-partition.

Because of the results of computer-aided search for n − 1-partitions and
decompositions of hypercubes Q2n we are led to the following conjecture:

Conjecture 2. Let k ∈ N and k > 1. Then the 2k-cube has no cograph k − 1-
decomposition, i.e., the proposed k-partition of the hypercube Q2k in Example 2
is also optimal.

The proof of the latter hypothesis would immediately verify the next conjec-
ture.

Conjecture 3. For every k ∈ N there is a graph that has an optimal cograph
k-decomposition.

Proving the last conjecture appears to be difficult. We wish to point out
that there is a close relationship to the problem of finding pattern avoiding
words, see e.g. [2,3,5,7,22,23]: Consider a graph G = (V,E) and an ordered
list (e1, . . . , em) of the edges ei ∈ E. We can associate to this list (e1, . . . , em)
a word w = (w1, . . . , wm). By way of example, assume that we want to find a
valid cograph 2-decomposition {E1, E2} of G and that G contains an induced
P4 consisting of the edges ei, ej , ek. Hence, one has to avoid assignments of the
edges ei, ej , ek to the single set E1, resp., E2. The latter is equivalent to find
a binary word (w1, . . . , wm) such that (wi, wj , wk) �= (X,X,X), X ∈ {0, 1} for

On Symbolic Ultrametrics, Cotree Representations 617

each of those induced P4’s. The latter can easily be generalized to find pat-
tern avoiding words over an alphabet {1, . . . , k} to get a valid k-decomposition.
However, to the authors knowledge, results concerning the counting of k-ary
words avoiding forbidden patterns and thus, verifying if there is any such word
(or equivalently a k-decomposition) are basically known for scenarios like: If
(p1, . . . pl) ∈ {1, . . . , k}l (often l < 3), then none of the words w that contain a
subword (wi1 , . . . , wil) = (p1, . . . pl) with ij+1 = ij + 1 (consecutive letter posi-
tions) or ij < ik whenever j < k (order-isomorphic letter positions) is allowed.
However, such findings are to restrictive to our problem, since we are looking for
words, that have only on a few, but fixed positions of non-allowed patterns. Nev-
ertheless, we assume that results concerning the recognition of pattern avoiding
words might offer an avenue to solve the latter conjectures.

4.1 NP-completeness and NP-hardness Results

We are now in the position to prove the NP-completeness of Cotree 2-
Representation and Cotree 2-Decomposition. These results allow to show
that the problem of determining whether there is cograph 2-partition is NP-
complete, as well.

We start with two lemmata concerning cograph 2-decompositions of the
graphs shown in Fig. 3 and 4.

Lemma 1. For the literal and extended literal graph in Figure 3 every cograph
2-decomposition is a uniquely determined cograph 2-partition.

In particular, in every cograph 2-partition {E1, E2} of the extended literal
graph, the edges of the triangle (0, 1, 2) must be entirely contained in one Ei and
the pending edge [6, 9] must be in the same edge set Ei as the edges of the of
the triangle. Furthermore, the edges [9, 10] and [9, 11] must be contained in Ej,
i �= j.

Proof. see Appendix.

Lemma 2. Given the clause gadget in Fig. 4.
For any cograph 2-decomposition, all edges of exactly two of the triangles in

the underlying three extended literal graphs must be contained in one Ei and not
in Ej, while the edges of the triangle of one extended literal graph must be in Ej

and not in Ei, i �= j.
Furthermore, for each cograph 2-decomposition exactly two of the edges e, e′

of the triangle (a, b, c) must be in one Ei while the other edge f is in Ej but
not in Ei, j �= i. The cograph 2-decomposition can be chosen so that in addition
e, e′ �∈ Ej, resulting in a cograph 2-partition of the clause gadget.

Proof. see Appendix.

We are now in the position to prove NP-completeness of Cograph 2-
Partition by reduction from the following problem.

618 M. Hellmuth and N. Wieseke

0 1

2

3 4

6

5

7

8

9 10

11

0 1

2

3 4

6

5

7

8

Fig. 3. Left the literal graph and right the extended literal graph with unique corre-
sponding cograph 2-partition (indicated by dashed and bold-lined edges) is shown

9’ 9”9

a b

c

Fig. 4. Shown is a clause gadget which consists of a triangle (a, b, c) and three extended
literal graphs (as shown in Fig. 3) with edges attached to (a, b, c). A corresponding
cograph 2-partition is indicated by dashed and bold-line edges.

6

9’93,2

x5

6

9W

x1

91,1

6

9V92,19V’91,3

x2

6

9””92,2

x3

6

9”93,3

x6

6

993,19-1292,3
9-1391,2

x4

C3

a3 b3

c3C2

a2 b2

c2C1

a1 b1

c1

93,2
91,1 92,191,3

92,2
93,393,192,3

91,2

Fig. 5. Shown is the graph Ψ as constructed in the proof of Theorem 6. In particular, Ψ
reflects the NAE 3-SAT formula ψ = {C1, C2, C3} with clauses C1 = (x1, x4, x2), C2 =
(x2, x3, x4) and C3 = (x4, x5, x6). Different literals obtain the same truth assignment
true or false, whenever the edges of the triangle in their corresponding literal gadget
are contained in the same set Ei of the cograph 2-partition, highlighted by dashed and
bold-lined edges.

On Symbolic Ultrametrics, Cotree Representations 619

Problem. Monotone NAE 3-SAT
Input: Given a set U of Boolean variables and a set of clauses

ψ = {C1, . . . , Cm} over U such that for all i = 1, . . . , m
it holds that |Ci| = 3 and Ci contains no negated variables.

Question: Is there a truth assignment to ψ such that in each Ci

not all three literals are set to true?

Theorem 5 ([21,24]). Monotone NAE 3-SAT is NP-complete.

Theorem 6. Cograph 2-Decomposition, and thus, Cotree
2-Representation is NP-complete.

Proof. see Appendix.

As the proof of Theorem 6 allows us to use cograph 2-partitions in all proof
steps, instead of cograph 2-decompositions, we can immediately infer the NP-
completeness of the following problem for k=2, as well.

Problem. Cograph k-Partition
Input: Given a graph G = (V,E) and an integer k.
Question: Is there a Cograph k-Partition of G?

Theorem 7. Cograph 2-Partition is NP-complete.

As a direct consequence of the latter results, we obtain the following theorem.

Theorem 8. Let G be a given graph that is not a cograph. The following three
optimization problems to find the least integer k > 1 so that there is a Cograph
k-Partition, or a Cograph k-Decomposition, or a Cotree k-Representation for the
graph G, are NP-hard.

Acknowledgments. This work was funded by the German Research Foundation
(DFG) (Proj. No. MI439/14-1).

References

1. Achlioptas, D.: The complexity of g-free colourability. Discrete Mathematics
165–166, 21–30 (1997). Graphs and Combinatorics

2. Bernini, A., Ferrari, L., Pinzani, R.: Enumeration of some classes of words avoiding
two generalized patterns of length three. arXiv preprint arXiv:0711.3387 (2007)

3. Bilotta, S., Grazzini, E., Pergola, E., Morgagni, V.G.B.: Counting binary words
avoiding alternating patterns. Journal of Integer Sequences 16(2), 3 (2013)

4. Böcker, S., Dress, A.W.M.: Recovering symbolically dated, rooted trees from
symbolic ultrametrics. Adv. Math. 138, 105–125 (1998)

5. Brändén, P., Mansour, T.: Finite automata and pattern avoidance in words.
Journal of Combinatorial Theory, Series A 110(1), 127–145 (2005)

6. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM
Monographs on Discrete Mathematics and Applications. Soc. Ind. Appl. Math.,
Philadephia (1999)

http://arxiv.org/abs/0711.3387

620 M. Hellmuth and N. Wieseke

7. Burstein, A., Mansour, T.: Words restricted by patterns with at most 2 distinct
letters. Electron. J. Combin. Number Theory 9(2), 1–16 (2002)

8. Corneil, D.G., Lerchs, H., Burlingham, L.K.S.: Complement reducible graphs.
Discr. Appl. Math. 3, 163–174 (1981)

9. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs.
SIAM Journal on Computing 14(4), 926–934 (1985)

10. Dorbec, P., Montassier, M., Ochem, P.: Vertex partitions of graphs into cographs
and stars. Journal of Graph Theory 75(1), 75–90 (2014)

11. Gimbel, J., Nesětřıl, J.: Partitions of graphs into cographs. Electronic Notes in
Discrete Mathematics 11, 705–721 (2002). The Ninth Quadrennial International
Conference on Graph Theory, Combinatorics, Algorithms and Applications

12. Hammack, R., Imrich, W., Klavžar, S.: Handbook of Product graphs, 2nd edn.
CRC Press, Boca Raton (2011)

13. Hellmuth, M., Hernandez-Rosales, M., Huber, K.T., Moulton, V., Stadler, P.F.,
Wieseke, N.: Orthology relations, symbolic ultrametrics, and cographs. Journal of
Mathematical Biology 66(1–2), 399–420 (2013)

14. Hellmuth, M., Wiesecke, N., Lenhof, H.P., Middendorf, M., Stadler, P.F.:
Phylogenomics with paralogs. PNAS 112(7), 2058–2063 (2015)

15. Lafond, M., El-Mabrouk, N.: Orthology and paralogy constraints: satisfiability and
consistency. BMC Genomics 15(Suppl. 6), S12 (2014)

16. Lerchs, H.: On cliques and kernels. Technical report, Dept. of Comput. Sci.
University of Toronto (1971)

17. Lerchs, H.: On the clique-kernel structure of graphs. Technical report, Dept. of
Comput. Sci. University of Toront (1971)

18. Liu, Y., Wang, J., Guo, J., Chen, J.: Cograph editing: complexity and parame-
terized algorithms. In: Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842,
pp. 110–121. Springer, Heidelberg (2011)

19. Liu, Y., Wang, J., Guo, J., Chen, J.: Complexity and parameterized algorithms for
cograph editing. Theoretical Computer Science 461, 45–54 (2012)

20. Misra, J., Gries, D.: A constructive proof of vizing’s theorem. Information
Processing Letters 41(3), 131–133 (1992)

21. Moret, B.M.: The Theory of Computation. Addison-Wesley (1997)
22. Pudwell, L.K.: Enumeration schemes for pattern-avoiding words and permutations.

ProQuest (2008)
23. Pudwell, L.K.: Enumeration schemes for words avoiding patterns with repeated

letters. Electron. J. Combin. Number Theory 8(A40), 1–19 (2008)
24. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of

the Tenth Annual ACM Symposium on Theory of Computing, STOC 1978,
pp. 216–226. ACM, New York (1978)

25. Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Journal of
Mathematical Biology 3, 23–30 (1964). (Russian)

26. Zhang, P.: A study on generalized solution concepts in constraint satisfaction and
graph colouring. Master’s thesis, University of British Columbia, Canada (2014)

On Symbolic Ultrametrics, Cotree Representations 621

Appendix

Proof of Lemma 1: It is easy to verify that the given cograph 2-partition
{E1, E2} in Fig. 3 fulfills the conditions and is correct, since G = (V,E1) and
G = (V,E2) do not contain induced P4’s and are, thus, cographs. We have to
show that it is also unique.

Assume that there is another cograph 2-decomposition {F1, F2}. Note, for
any cograph 2-decomposition {F1, F2} it must hold that two incident edges in
the triangle (0, 1, 2) are contained in one of the sets F1 or F2. W.l.o.g. assume
that [0, 1], [0, 2] ∈ F1.

Assume first that [1, 2] �∈ F1. In this case, because of the paths P4 = 6 −
2 − 0 − 1 and P4 = 2 − 0 − 1 − 5 it must hold that [2, 6], [1, 5] �∈ F1 and thus,
[2, 6], [1, 5] ∈ F2. However, in this case and due to the paths P4 = 6 − 2 − 1 − 4
and 2 − 0 − 1 − 4 the edge [1, 4] can neither be contained in F1 nor in F2, a
contradiction. Hence, [1, 2] ∈ F1.

Note, the square S1256 induced by vertices 1, 2, 5, 6 cannot have all edges in
F1, as otherwise the subgraph (V, F1) would contain the induced P4 = 6−5−1−0.
Assume that [1, 5] ∈ F1. As not all edges S1256 are contained in F1, at least
one of the edges [5, 6] and [2, 6] must be contained in F2. If only one of the
edges [5, 6], resp., [2, 6] is contained in F2, we immediately obtain the induced
P4 = 6−2−1−5, resp., 6−5−1−2 in (V, F1) and therefore, both edges [5, 6] and
[2, 6] must be contained in F2. But then the edge [2, 7] can neither be contained
in F1 (due to the induced P4 = 5 − 1 − 2 − 7) nor in F2 (due to the induced
P4 = 5 − 6 − 2 − 7), a contradiction. Hence, [1, 5] �∈ F1 and thus, [1, 5] ∈ F2 for
any 2-decomposition. By analogous arguments and due to symmetry, all edges
[0, 3], [0, 8], [1, 4], [2, 6], [2, 7] are contained in F2, but not in F1.

Moreover, due to the induced P4 = 7 − 2 − 6 − 5 and since [2, 6], [2, 7] ∈ F2,
the edge [5, 6] must be in F1 and not in F2. By analogous arguments and due to
symmetry, it holds that [3, 4], [7, 8] ∈ F1 and [3, 4], [7, 8] �∈ F2. Finally, none of the
edges of the triangle (0, 1, 2) can be contained in F2, as otherwise, we obtain an
induced P4 in (V, F2). Taken together, any 2-decomposition of the literal graph
must be a partition and is unique.

Consider now the extended literal graph in Figure 3. As this graph contains
the literal graph as induced subgraph, the unique 2-partition of the underlying
literal graph is determined as by the preceding construction. Due to the path
P4 = 7 − 2 − 6 − 9 with [2, 6], [2, 7] ∈ F2 we can conclude that [6, 9] �∈ F2 and
thus [6, 9] ∈ F1. Since there are induced paths P4 = 5−6−9−y, y = 10, 11 with
[5, 6], [6, 9] ∈ F1 we obtain that [9, 10], [9, 11] �∈ F1 and thus, [9, 10], [9, 11] ∈ F2

for any 2-decomposition (which is in fact a 2-partition) of the extended literal
graph, as claimed. �

Proof of Lemma 2: It is easy to verify that the given cograph 2-partition in
Fig. 4 fulfills the conditions and is correct, as G = (V,E1) and G = (V,E2) are
cographs.

622 M. Hellmuth and N. Wieseke

As the clause gadget contains the literal graph as induced subgraph, the
unique 2-partition of the underlying literal graph is determined as by the con-
struction given in Lemma 1. Thus, each edge of the triangle in each underlying
literal graph is contained in either one of the sets E1 or E2. Assume that edges
of the triangles in the three literal gadgets are all contained in the same set, say
E1. Then, Lemma 1 implies that [9, a], [9, c], [9′, a], [9′, b], [9′′, b], [9′′, c] ∈ E1 and
none of them is contained in E2. Since there are induced P4’s: 9 − a − b − 9′′,
9′ −a−c−9′′ and 9−c−b−9′, the edges [a, b], [a, c], [b, c] cannot be contained in
E1, and thus must be in E2. However, this is not possible, since then we would
have the induced paths P4 = 9 − a − 9′ − b in the subgraph (V,E1) a contra-
diction. Thus, the edges of the triangle of exactly one literal gadget must be
contained in a different set Ei than the edges of the other triangles in the other
two literal gadgets. W.l.o.g. assume that the 2-decomposition of the underlying
literal gadgets is given as in Fig. 4. and identify bold-lined edges with E1 and
dashed edges with E2.

It remains to show that this 2-decomposition of the underlying three lit-
eral gadgets determines which of the edges of triangle (a, b, c) are contained
in which of the sets E1 and E2. Due to the induced path 9 − a − b − 9′′ and
since [9, a], [9′′, b] ∈ E2, the edge [a, b] cannot be contained in E2 and thus, is
contained in E1. Moreover, if [b, c] �∈ E2, then then there is an induced path
P4 = b − 9′′ − c − 9 in the subgraph (V,E2), a contradiction. Hence, [b, c] ∈ E2

and by analogous arguments, [a, c] ∈ E2. If [b, c] �∈ E1 and [a, c] �∈ E1, then
we obtain a cograph 2-partition. However, it can easily be verified that there
is still a degree of freedom and [a, c], [b, c] ∈ E1 is allowed for a valid cograph
2-decomposition. �

Proof of Theorem 6: Given a graph G = (V,E) and cograph 2-decomposition
{E1, E2}, one can verify in linear time whether (V,Ei) is a cograph [9]. Hence,
Cograph 2-Partition ∈ NP.

We will show by reduction from Monotone NAE 3-SAT that Cograph
2-Decomposition is NP-hard. Let ψ = (C1, . . . , Cm) be an arbitrary instance
of Monotone NAE 3-SAT. Each clause Ci is identified with a triangle
(ai, bi, ci). Each variable xj is identified with a literal graph as shown in Fig.
3 (left) and different variables are identified with different literal graphs. Let
Ci = (xi1 , xi2 , xi3) and Gi1 , Gi2 and Gi3 the respective literal graphs. Then,
we extend each literal graph Gij by adding an edge [6, 9i,j]. Moreover, we add
to Gi1 the edges [9i,1, ai], [9i,1, ci], to Gi2 the edges [9i,2, ai], [9i,2, bi], to Gi3 the
edges [9i,3, ci], [9i,3, bi]. The latter construction connects each literal graph with
the triangle (ai, bi, ci) of the respective clause Ci in a unique way, see Fig. 4. We
denote the clause gadgets by Ψi for each clause Ci. We repeat this construction
for all clauses Ci of ψ resulting in the graph Ψ . An illustrative example is given
in Fig. 5. Clearly, this reduction can be done in polynomial time in the number
m of clauses.

We will show in the following that Ψ has a cograph 2-decomposition (resp.,
a cograph 2-partition) if and only if ψ has a truth assignment f .

On Symbolic Ultrametrics, Cotree Representations 623

Let ψ = (C1, . . . , Cm) have a truth assignment. Then in each clause Ci at
least one of the literals xi1 , xi2 , xi3 is set to true and one to false. We assign all
edges e of the triangle in the corresponding literal graph Gij to E1, if f(xij) =
true and to E2, otherwise. Hence, each edge of exactly two of the triangles (one
in Gij and one in Gij′ contained in one Er and not in Es, while the edges of the
other triangle in Gij′′ , j′′ �= j, j′ are contained in Es and not in Er, r �= s, as
needed for a possible valid cograph 2-decomposition (Lemma 2). We now apply
the construction of a valid 2-decomposition (or 2-partition) for each Ψi as given
in Lemma 2, starting with the just created assignment of edges contained in
the triangles in Gij , Gij′ and Gij′′ to E1 or E2. In this way, we obtain a valid
2-decomposition (or 2-partition) for each subgraph Ψi of Ψ . Thus, if there would
be an induced P4 in Ψ with all edges belonging to the same set Er, then this P4

can only have edges belonging to different clause gadgets Ψk, Ψl. By construction,
such a P4 can only exist along different clause gadgets Ψk and Ψl only if Ck and
Cl have a literal xi = xkm

= xln in common. In this case, Lemma 2 implies
that the edges [6, 9k,m] and [6, 9l,n] in Ψi must belong to the same set Er. Again
by Lemma 2, the edges [9k,m, y] and [9k,m, y′], y, y′ ∈ {ak, bk, ck} as well as the
edges [9l,n, y] and [9l,n, y′], y, y′ ∈ {al, bl, cl} must be in a different set Es than
[6, 9k,m] and [6, 9l,n]. Moreover, respective edges [5, 6] in Ψk, as well as in Ψl (Fig.
3) must then be in Er, i.e., in the same set as [6, 9k,m] and [6, 9l,n]. However, in
none of the cases it is possible to find an induced P4 with all edges in the same
set Er or Es along different clause gadgets. Hence, we obtain a valid cograph
2-decomposition, resp., cograph 2-partition of Ψ .

Now assume that Ψ has a valid cograph 2-decomposition (or a 2-partition).
Any variable xij contained in some clause Ci = (xi1 , xi2 , xi3) is identified with a
literal graph Gij . Each clause Ci is, by construction, identified with exactly three
literal graphs Gi1 , Gi2 , Gi3 , resulting in the clause gadget Ψi. Each literal graph
Gij contains exactly one triangle tj . Since Ψi is an induced subgraph of Ψ , we
can apply Lemma 2 and conclude that for any cograph 2-decomposition (resp.,
2-partition) all edges of exactly two of three triangles t1, t2, t3 are contained in
one set Er, but not in Es, and all edges of the other triangle are contained in
Es, but not in Er, s �= r. Based on these triangles we define a truth assignment
f to the corresponding literals: w.l.o.g. we set f(xi) =true if the edge e ∈ ti
is contained in E1 and f(xi) =false otherwise. By the latter arguments and
Lemma 2, we can conclude that, given a valid cograph 2-partitioning, the so
defined truth assignment f is a valid truth assignment of the Boolean formula
ψ, since no three different literals in one clause obtain the same assignment and
at least one of the variables is set to true. Thus, Cograph 2-Decomposition
is NP-complete

Finally, because Cograph 2-Decomposition and Cotree
2-Representation are equivalent problems, the NP-completeness of Cotree
2-Representation follows. �

Bounds for the Super Extra Edge Connectivity
of Graphs

Chia-Wen Cheng and Sun-Yuan Hsieh(B)

Department of Computer Science and Information Engineering, National Cheng
Kung University, No. 1, University Road, Tainan 701, Taiwan

{p78981037,hsiehsy}@mail.ncku.edu.tw

Abstract. Let G be a connected graph, S be a subset of edges in G, and
k be a positive integer. If G − S is disconnected and every component
has at least k vertices, then S is a k-extra edge-cut of G. The k-extra
edge-connectivity, denoted by λk(G), is the minimum cardinality over
all k-extra edge-cuts of G. If λk(G) exists and at least one component
of G − S contains exactly k vertices for any minimum k-extra edge-cut
S, then G is super-λk. Moreover, when G is super-λk, the persistence of
G, denoted by ρk(G), is the maximum integer m for which G − F is still
super-λk for any set F ⊆ E(G) with |F | ≤ m. It has been shown that
the bounds of ρk(G) when k ∈ {1, 2}. This study shows the bounds of
ρk(G) when k ≥ 3.

Keywords: Extra edge-connectivity · Fault tolerance · Super extra edge
connectivity

1 Introduction

The edge connectivity is an important measurement for reliability and fault
tolerance of networks. Given two vertex subsets S, T ⊆ V (G), notation [S, T] is
used to denote the set of edges having one endpoint in S and the other in T . An
edge-cut is an edge set of the form [S, S], where S is a nonempty proper subset
of V (G) and S denotes V (G) − S. A classic measure for the fault tolerance
and reliability of a communication network is the edge connectivity, denoted
by λ(G), which is the minimum cardinality of edge-cut, where G is underlying
network. Obviously, the remaining graph will be connected when the number
of edges deleted is less than λ(G). Hence, the larger λ(G) is, the more reliable
the network is. Numerous studies [2,4,5,8,12,13,15,18] discussed the special
edge-cut such that the remaining graph still satisfies some conditions when the
edge-cut is removed. One issue discussed each component has enough vertices in
the remaining graph. A k-extra edge-cut, where k ≥ 1 is an integer, is an edge-
cut such that each component of the remaining graph has at least k vertices
when the edge-cut has removed. Fàbrega and Fiol [4,5] generalized the concept
of the edge-connectivity to the k-extra edge-connectivity, denoted by λk(G), is
the minimum cardinality of a k-extra edge-cut for a graph. Note that the larger
λk(G) is, the more reliable the network is [9,10,14].
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 624–631, 2015.
DOI: 10.1007/978-3-319-21398-9 49

Bounds for the Super Extra Edge Connectivity of Graphs 625

A k-extra edge-connected graph is further said to be super k-extra edge-
connected (super-λk for short) if the remaining graph contains at least one com-
ponent has exactly k vertices for each minimum k-extra edge-cut being removed.
Recently, the sufficient conditions for graphs to be super-λk were discussed in
[12,13,15].

Link (edge) faults may occur when a network is activated, so it is important
to consider faulty networks. In this paper, we study the edge fault tolerance
of graphs with respect to super-λk properties. In the other words, we aim at
determining how many faulty edges can be tolerated such that the remaining
graph is still super-λk. Hong et al. [6] showed the bounds when k = 1, and Hong
and Xu [7] showed the bounds when k = 2. In this paper, we propose the bounds
for k ≥ 3.

The remainder of this paper is organized as follows. Section 2 provides some
definitions and notations. Section 3 shows the edge fault tolerance of graphs with
respect to super-λ3 graph. Section 4 shows the edge fault tolerance of graphs with
respect to super-λk graph when k ≥ 4. Section 5 provides concluding remarks.

2 Preliminaries

A graph G = (V,E) is a pair of the vertex set V and the edge set E, where V
is a finite set and E is a subset of {(u, v)| (u, v) is an unordered pair of V }. We
also use V (G) and E(G) to denote the vertex set and edge set of G, respectively.
Let n(G) = |V (G)| be the order of G. Two vertices u and v are adjacent if (u, v)
is an edge in G. We also say that the edge (u, v) incident to u and v, and u
and v are the endpoints of (u, v). For the endpoints of an edge, one is a neighbor
of the other. For a vertex v in G, we use NG(v) to denote the neighbors of v.
The degree of vertex v, denoted by dG(v), is the number of edges incident to
it. Let δ(G) = min{dG(v)| v ∈ V (G)}. A path 〈v1, v2, . . . , vk〉 is a sequence of
distinct vertices such that any two consecutive vertices are adjacent. Vertices v1
and vk are the endpoints of the path. A complete graph is a simple graph whose
vertices are pairwise adjacent; the (unlabeled) complete graph with n vertices is
denoted Kn.

An isomorphism from a simple graph G to a simple graph H is a one-to-one
and onto function π : V (G) → V (H) such that (u, v) ∈ E(G) if and only if
(π(u), π(v)) ∈ E(H). We say that “G is isomorphic to H”, written G ∼= H, if
there is an isomorphism from G to H.

Let k ≥ 1 be an integer. A edge set S ⊆ E(G) is a k-extra edge-cut if G − S
is disconnected and each component has at least k vertices. The k-extra edge
connectivity of G, denoted by λk(G), is defined as the minimum cardinality over
all k-extra edge-cuts of G. If λk(G) exists, then G is said to be λk-connected and
λ(G) = λ1(G) ≤ λ2(G) ≤ λ3(G) ≤ · · · ≤ λk(G) obviously. The following lemma
shows that the necessary and sufficient condition for a graph to be λk-connected.

Lemma 1. [11] Let k ≥ 1 be an integer and G be a connected graph. If G has
order at least 3k − 2, then G is λk-connected graph if and only if G contains no
such vertex u that every component of G − {u} has order at most k − 1.

626 C.-W. Cheng and S.-Y. Hsieh

Let X ⊆ V (G) and X = V (G) − X, use [X, X] to denote the set of edges
between X and X in G and ωG(X) = |[X, X]|. Notation G[X] is used to denote
the subgraph of G induced by X. Let ξk(G) = min{ωG(X) : X ⊆ V (G), |X| = k,
and G[X] is connected}. It has been shown that λk(G) ≤ ξk(G) holds for any
λk-connected graph, where k ≥ 1 [1,3,10].

Let Kt be a complete graph with t vertices, and let G1, G2, . . . , Gm be m
copies of Kt, where m ≥ 1 and t ≥ 1. Let v be a new vertex such that v is
adjacent to every vertex in ∪m

i=1V (Gi). Then, the resulting graph is denoted
by G∗

m,t. The following lemma shows a sufficient condition for a graph G to be
λk-connected and λk(G) ≤ ξk(G) for 1 ≤ k ≤ δ(G) + 1.

Lemma 2. [17] Let G be a connected graph with order at least 2(δ(G)+1). If G
is not isomorphic to G∗

m,δ(G) for any positive integer m, then λk(G) exists and
λk(G) ≤ ξk(G) for any k with 1 ≤ k ≤ δ(G) + 1.

A graph G is said to be λk-optimal if it satisfies λk(G) = ξk(G). Some prop-
erties of λk-optimal graphs were investigated in [16]. Moreover, if λk(G) exists
and at least one component of G−S contains exactly k vertices for any minimum
k-extra edge-cut S, then G is said to be super-λk. Obviously, λk(G) = ξk(G)
if G is super-λk. The following lemma show that the necessary and sufficient
condition for a λk-connected graph to be super-λk.

Lemma 3. Let G be a λk-connected graph with λk(G) ≤ ξk(G) for some k ≥ 1.
Then G is super-λk if and only if G is not λk+1-connected or ωG(X) > ξk(G)
holds for any vertex set X ⊆ V (G) with k + 1 ≤ |X| ≤ �n(G)/2� and G[X],
G[X] being connected.

Proof. Because ωG(X) > ξk(G) holds for any vertex set X ⊆ V (G) with k +1 ≤
|X| ≤ �|V (G)|/2� and G[X] and G[X] being connected, this implies λk+1(G) >
ξk(G). By Lemma 1.4 in [7], we know that G is super-λk if and only if G is
not λk+1-connected or λk+1(G) > ξk(G) for any k ≥ 1. Therefore, the result
holds. �

Let ηk(G) denote the number of edge-disjoint connected subgraphs with order
k such that each subgraph H of them satisfies ωG(V (H)) = ξk(G). For example,
consider a graph G shown in Fig. 1. Because vertices a and b are only two vertices
such that each of them has minimum degree in this graph, η1(G) = 2. Moreover,
because ωG({(a, b)}) = ξ2(G) = 4 and each of other edges e does not satisfy
the condition (i.e., ωG({the endpoints of e}) �= ξ2(G) = 4), η2(G) = 1. The
equality η3(G) = 2 holds because we can find two edge disjoint paths 〈a, c, b〉
and 〈a, d, b〉 such that ωG({a, c, b}) = ωG({a, d, b}) = ξ3(G) = 4. Finally, the
equality η4(G) = 2 holds because we can find two edge disjoint paths 〈a, c, d, b〉
and 〈d, a, b, c〉 such that ωG({a, c, d, b}) = ξ4(G) = 2.

Definition 1. Let k ≥ 1 be an integer. The persistence of the super-λk graph
G, denoted by ρk(G), is the maximum integer m for which G−F is still super-λk

for any set F ⊆ E(G) with |F | ≤ m.

Bounds for the Super Extra Edge Connectivity of Graphs 627

10K a b

c

d

Fig. 1. Illustration of ηk(G) for k = 1, 2, 3

Hong et al.[6] showed that min{λ2(G)−δ(G)−1, δ(G)−1} ≤ ρ1(G) ≤ δ(G)−1
for any super-λ1 and λ2-connected graph G. In addition, Hong and Xu [7] also
showed that min{λ3(G) − ξ2(G) − 1, δ(G) − 1} ≤ ρ2(G) ≤ δ(G) − 1 for any
super-λ2 and λ3-connected graph G with η2(G) ≥ δ(G). This study showed the
following bounds of ρk(G) for k ≥ 3:

1. ρk(G) = λ1(G) − 1 if graph G is super-λk, but not λk+1-connected,
2. min{λ4(G) − ξ3(G) − 1, η3(G) − 1, λ1(G) − 1} ≤ ρ3(G) ≤ λ1(G) − 1 for any

super-λ3 and λ4-connected graph G, and
3. min{λk+1(G) − ξk(G) − 1, ηk(G) − 1, δ(G) − k + 1, λ1(G) − 1} ≤ ρk(G) ≤

λ1(G) − 1 for any super-λk and λk+1-connected graph G, where k ≥ 4.

3 Bounds on the Persistence of Super-λ3 Graphs

If a graph G = (V,E) has a path with the endpoints u and v, then the distance
between u and v, denoted by dG(u, v) or simply d(u, v), is the least length of a
path between u and v. If G has no such path, then d(u, v) = ∞. The eccentricity
of a vertex u, denoted by ε(u), is maxv∈V d(u, v).

Let H1 be a connected graph with order at least six, which satisfies: (a) H1

contains no cycles of length greater than three and (b) there exists exactly one
vertex v0 ∈ V (H1) with degree greater than two, and v0 has excentricity equal or
less than two. Fig. 2 show that the graph H1 and another simple graph H2. The
following lemma show that the necessary and sufficient condition for a graph to
be λ3-connected.

Lemma 4. [1] A connected graph with order six is not λ3-connected if and only
if G is isomorphic to H1 or H2 (see Fig. 2). Furthermore, if G is λ3-connected,
then λ3(G) ≤ ξ3(G).

According to Lemma 4, we can find the edge fault tolerance of graph with
respect to λ3-connected.

Lemma 5. Let G be a λ3-connected graph with δ(G) ≥ 3. Then G − F is λ3-
connected graph and λ3(G − F) ≤ ξ3(G − F) for any F ⊆ E(G) with |F | ≤
λ1(G) − 1.

Proof. Assume that G − F is not λ3-connected. By Lemma 4, G − F ∼= H1 or
G − F ∼= H2. There are the following scenarios.

628 C.-W. Cheng and S.-Y. Hsieh

1H 2H 3H 4H

0v

... ...
... ...

... ...

... ...

...

Fig. 2. Illustration of Lemma 4 and Lemma 5

Case 1: δ(G − F) ≥ 2. In this case, G − F ∼= H3 (Fig. 2) and there are at least
six vertices with degree two in G − F . Hence,

|F | = |E(G)| − |E(G − F)| ≥ (6δ(G) − 6 · 2)
2

= 3δ(G) − 6 ≥ δ(G) ≥ λ1(G),

which leads to a contradiction.
Case 2: δ(G−F) = 1. There is exactly one vertex in G−F such that its degree

is one, and all edges of F are incident to this vertex. Hence, G − F is not
isomorphic to H2. By Lemma 4, G − F ∼= H4 (Fig. 2), there exists at least
four vertices with degree two. Note that all edges of F are incident to the
vertex with degree one, hence

|F | = |E(G)| − |E(G − F)| ≥ 4δ(G) − 4 · 2 ≥ δ(G) + 1 ≥ λ1(G),

which leads to a contradiction.

Combining the above cases completes the proof. �
Next, we show that the bounds of ρ3(G) for the super-λ3 graph G in Theo-

rem 1.

Theorem 1. Let G be a super-λ3 graph with δ(G) ≥ 3. Then the following
statements hold: (a) If G is not λ4-connected, then ρ3(G) = λ1(G) − 1. (b) If G
is λ4-connected, then min{λ4(G) − ξ3(G) − 1, η3(G) − 1, λ1(G) − 1} ≤ ρ3(G) ≤
λ1(G) − 1.

Proof. There exists one edge set F with size λ1(G) such that G − F is dis-
connected. Then, G − F is not super-λ3, which implies that ρ3(G) ≤ |F | − 1 =
λ1(G)−1. Next, we find the lower bound of ρ3(G) according to G is λ4-connected
or not.

(a) To prove that ρ3(G) ≥ λ1(G)−1, it suffices to show that for any F ⊆ E(G)
with |F | ≤ λ1(G) − 1, G − F is super-λ3. By Lemma 5, G − F is λ3-connected
with λ3(G − F) ≤ ξ3(G − F). Because G is not λ4-connected, G − F is also not
λ4-connected. By Lemma 3, G − F is super-λ3 and (a) is proved.

(b) Let m = min{λ4(G) − ξ3(G) − 1, η3(G) − 1, λ1(G) − 1}. To prove that
ρ3(G) ≥ m, it suffices to show that for any F ⊆ E(G) with |F | ≤ m, G′ = G−F

Bounds for the Super Extra Edge Connectivity of Graphs 629

is super-λ3. Note that |F | ≤ m ≤ λ1(G)−1. By Lemma 5, G−F is λ3-connected
with λ3(G − F) ≤ ξ3(G − F). If G − F is not λ4-connected, then by Lemma 3,
G − F is super-λ3 and (b) is proved. If G − F is λ4-connected, then let X be
any subset of V (G′) with |X| ≥ 4 and |X| ≥ 4 such that G′[X] and G′[X] are
connected. Hence,

ωG−F (X) ≥ ωG(X) − |F | ≥ λ4(G) − (λ4(G) − ξ3(G) − 1) = ξ3(G) + 1. (1)

Because |F | ≤ m ≤ η3(G) − 1, there exists one subgraph A with order three
such that ωG(A) = ξ3(G) and A − F is still connected. In the other words,

ξ3(G) = ωG(A) ≥ ωG−F (A) ≥ ξ3(G − F). (2)

According to equation (1) and (2), ωG−F (X) > ξ3(G − F). By Lemma 3,
G − F is super-λ3 and (b) is proved. �

4 Bounds on the Persistence of Super-λk Graphs for
k ≥ 4

First, we find the edge fault tolerance of graph with respect to λk-connected for
the positive integer k ≥ 2.

Lemma 6. Let G be a λk-connected graph with 2 ≤ k ≤ δ(G), and n(G) ≥
3δ(G) − 2. Then G − F is λk-connected graph for any F ⊆ E(G) with |F | ≤
λ1(G) − 1.

Proof. Obviously, G − F is connected because |F | ≤ λ1(G) − 1. If G − F is not
λk-connected, by Lemma 1, then there exists n(G) − 1 vertices with degree at
most k − 1 in G − F . Since δ(G) ≥ k, there are at least one edge of F incident
to each of the above n(G) − 1 vertices. Hence,

|F | ≥ �(n(G) − 1)/2� ≥ �(3δ(G) − 3)/2� > δ(G) − 1 ≥ λ1(G) − 1,

which leads to a contradiction. Therefore, G − F is λk-connected graph. �
Now, let G be a super-λk graph, but not λk+1-connected for k ≥ 4. We show

that the bounds of ρk(G) for k ≥ 4 in Theorem 2.

Theorem 2. Let G be a super-λk graph with 4 ≤ k ≤ δ(G), and n(G) ≥
3δ(G) − 2. If G is not λk+1-connected, then ρk(G) = λ1(G) − 1.

Proof. There exists one edge set F with size λ1(G) such that G − F is discon-
nected. Then G − F is not super-λk. We have ρk(G) ≤ |F | − 1 = λ1(G) − 1.

To prove that ρk(G) ≥ λ1(G) − 1, it suffices to show that for any F ⊆ E(G)
with |F | ≤ λ1(G) − 1, G − F is super-λk. By Lemma 6, G − F is λk-connected.
Since G is not λk+1-connected, G − F is also not λk+1-connected. Hence, every
minimum k-extra edge-cut of G − F isolates at least one connected subgraph of
order k. Therefore, G − F is super-λk and this theorem is proved. �

Next, we try to find out the bounds of ρk(G) for super-λk and λk+1-connected
graph G.

630 C.-W. Cheng and S.-Y. Hsieh

Lemma 7. Let G be a λk-connected graph with λk(G) ≤ ξk(G), k ≤ δ(G) + 1,
and n(G) ≥ 2δ(G) + 2. Then G − F is λk-connected graph and λk(G − F) ≤
ξk(G − F) for any F ⊆ E(G) with |F | ≤ min{δ(G) − k + 1, λ1(G) − 1}.

Proof. Since |F | ≤ λ1(G) − 1, G − F is connected. If G − F is not isomorphic
to G∗

m,k−1 for any positive integer m, by Lemma 2, then G − F is λk-connected
and λk(G − F) ≤ ξk(G − F) because n(G) ≥ 2δ(G) + 2 ≥ 2δ(G − F) + 2.

Hence, we only consider the case when G − F is isomorphic to G∗
m,k−1 for

some positive integer m. Note that |F | ≤ δ(G)−k+1, k−1 = δ(G−F) ≤ δ(G),
and there exists n(G) − 1 vertices with degree k − 1 in G − F . There are the
following scenarios.

Case 1: δ(G) ≥ k. In this case, δ(G) − k + 1 ≥ 1. Hence, there are at least
δ(G)−k +1 edges of F incident to each of the n(G)− 1 vertices with degree
k − 1 in G − F . Moreover, |F | > δ(G) − k + 1 because n(G) − 1 ≥ 3, which
leads to a contradiction.

Case 2: δ(G) = k − 1. In this case, |F | = δ(G) − k + 1 = 0 and G − F = G.
Obviously, G − F is λk-connected graph and λk(G − F) ≤ ξk(G − F). �

Theorem 3. Let G be a super-λk graph with k ≥ 4 and n(G) ≥ 2δ(G) + 2.
If G is λk+1-connected, then min{λk+1(G) − ξk(G) − 1, ηk(G) − 1, δ(G) − k +
1, λ1(G) − 1} ≤ ρk(G) ≤ λ1(G) − 1.

Proof. Let m = min{λk+1(G)−ξk(G)−1, ηk(G)−1, δ(G)−k+1, λ1(G)−1} and
|F | ≤ m. Then, let X be any subset of V (G′) with |X| ≥ k + 1 and |X| ≥ k + 1
such that G′[X] and G′[X] are connected if G − F is λk+1-connected.

According to the same analysis of Theorem 1, we know that

ωG−F (X) ≥ ωG(X) − |F | ≥ λk+1(G) − (λk+1(G) − ξk(G) − 1) = ξk(G) + 1 (3)

and
ξk(G) = ωG(A) ≥ ωG−F (A) ≥ ξk(G − F). (4)

Therefore, this result of Theorem 3 can be proved using a method similar to
that used in Theorem 1 (Lemma 7 is used in this process).

5 Conclusion

Fault-tolerance is an important issue for retaining the system’s reliability. This
study investigates edge fault tolerance of graphs with respect to super-λk.
Recently, the bounds of this result for k ∈ {1, 2} are already presented. In this
paper, we show that (1) ρk(G) = λ1(G) − 1 if the graph G is super-λk, but not
λk+1-connected for k ≥ 3, (2) min{λ4(G) − ξ3(G) − 1, η3(G) − 1, λ1(G) − 1} ≤
ρ3(G) ≤ λ1(G) − 1 for any super-λ3 and λ4-connected graph G, and (3)
min{λk+1(G)−ξk(G)−1, ηk(G)−1, δ(G)−k+1, λ1(G)−1} ≤ ρk(G) ≤ λ1(G)−1
for any super-λk and λk+1-connected graph G, where k ≥ 4. A future work
should be to evaluate tighter bounds of ρk(G) for the graphs which satisfy some
conditions.

Bounds for the Super Extra Edge Connectivity of Graphs 631

References

1. Bonsma, P., Ueffing, N., Volkmann, L.: Edge-cuts leaving components of order at
least three. Discrete Mathematics 256(1), 431–439 (2002)

2. Balbuena, C., Marcote, X.: The k-restricted edge-connectivity of a product of
graphs. Discrete Applied Mathematics 161(1), 52–59 (2013)

3. Esfahanian, A.H., Hakimi, S.L.: On computing a conditional edge-connectivity of
a graph. Information Processing Letters 27(4), 195–199 (1988)

4. Fàbrega, J., Fiol, M.A.: Extraconnectivity of graphs with large girth. Discrete
Mathematics 127(1), 163–170 (1994)

5. Fàbrega, J., Fiol, M.A.: On the extraconnectivity of graphs. Discrete Mathematics
155(1), 49–57 (1996)

6. Hong, Y., Meng, J., Zhang, Z.: Edge fault tolerance of graphs with respect to super
edge connectivity. Discrete Applied Mathematics 160(4), 579–587 (2012)

7. Hong, Z.M., Xu, J.M.: Vulnerability of super edge-connected networks. Theoretical
Computer Science 520, 75–86 (2014)

8. L̈u, M., Chen, G.L., Xu, X.R.: On super edge-connectivity of product graphs.
Applied Mathematics and Computation 207(2), 300–306 (2009)

9. Meng, J.X.: Optimally super-edge-connected transitive graphs. Discrete Mathe-
matics 260(1), 239–248 (2003)

10. Meng, J.X., Ji, Y.H.: On a kind of restricted edge connectivity of graphs. Discrete
applied mathematics 117, 183–193 (2002)

11. Ou, J.: Edge cuts leaving components of order at least m. Discrete mathematics
305(1), 365–371 (2005)

12. Shang, L., Zhang, H.: Sufficient conditions for graphs to be λ′-optimal and super-λ′.
Networks 49(3), 234–242 (2007)

13. Shang, L., Zhang, H.: Degree conditions for graphs to be λ3-optimal and super-λ3.
Discrete Mathematics 309(10), 3336–3345 (2009)

14. Wang, M., Li, Q.: Conditional edge connectivity properties, reliability comparison
and transitivity of graphs. Discrete Mathematics 258, 205–214 (2002)

15. Wang, S., Lin, S., Li, C.: Sufficient conditions for super k-restricted edge connec-
tivity in graphs of diameter 2. Discrete Mathematics 309(4), 908–919 (2009)

16. Xu, J.: Topological structure and analysis of interconnection networks. Springer
Publishing Company, Incorporated (2010)

17. Zhang, Z., Yuan, J.: A proof of an inequality concerning k-restricted edge connec-
tivity. Discrete mathematics 304(1), 128–134 (2005)

18. Zhao, W., Ou, J.: On restricted edge-connectivity of lexicographic product graphs.
International Journal of Computer Mathematics 91(8), 1618–1626 (2014)

Encoding and Security

Quantifying Communication in Synchronized
Languages

Zhe Dang1,2, Thomas R. Fischer2, William J. Hutton III2(B),
Oscar H. Ibarra3, and Qin Li1

1 School of Computer Science and Technology,
Anhui University of Technology, Ma’anshan, China

2 School of Electrical Engineering and Computer Science,
Washington State University, Pullman, WA 99164, USA

wiiliam.hutton@gmail.com
3 Department of Computer Science, University of California,

Santa Barbara, CA 93106, USA

Abstract. A mutual information rate is proposed to quantitatively
evaluate inter-process synchronized communication. For finite-state pro-
cesses with implicit communication that can be described by a counting
language, it is shown that the mutual information rate is effectively com-
putable. When the synchronization always happens between the same
two symbols at the same time (or with a fixed delay), the mutual infor-
mation rate is computable. In contrast, when the delay is not fixed, the
rate is not computable. Finally, it is shown that some cases exist where
the mutual information rate is not computable.

1 Introduction

Computer systems often run a set of processes communicating with a provided
interface for processes to talk with each other. The system may implement
highly complex functions; e.g., a concurrent system. Obviously, communications
between two processes contribute significantly to the complexity of the whole
system. Therefore, it is desirable to find a way to measure the quantity of the
communications between two processes. Since such communications are often
nondeterministic, the quantity would also be part of an indication of hardness
of testability when an analyst tests the system.

However, defining such a quantity is not trivial. Static analysis [3,19,23]
would not always work because the quantity we are looking for is a dynamic
indicator on how “tightly” two communicating processes are working together.
Another idea would be to use the classic theory of communication complexity
[13,18,21]. However, this theory aims at studying the minimal communication
bit-rate needed for a given communication task instead of analyzing the actual
amount of communication involved between given processes [27].

In this paper, we provide a metric to quantify the amount of communication
between two communicating processes where the communication mechanism is
synchronous. Our ideas are as follows. When a process runs, it demonstrates
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 635–647, 2015.
DOI: 10.1007/978-3-319-21398-9 50

636 Z. Dang et al.

a behavior, which is a sequence (or a word) of events. In this way, two pro-
cesses, when run synchronously, demonstrate two parallel aligned sequences. In
automata theory, the parallel sequences can be thought of a word of two tracks
called a synchronized word. The set of all such synchronized words that are the
actual runs of the two communication processes forms a synchronized language,
written as L12. The metric we study is defined as the information in bits shared
between two tracks (each called a string, and both strings are of the same length)
in a synchronized word of the language.

There has been already a definition of the amount of information contained
in a word. This definition was proposed by Shannon [22] and later Chomsky
and Miller [8], that we have evaluated through experiments [5,7,9,11]. For a
number n, we use Sn(L) to denote the number of words in a language L whose
length is n. The information rate λL of L is defined as λL = lim λn,L, where
λn,L = log Sn(L)

n . When the limit does not exist, we take the upper limit, which
always exists for a finite alphabet. Throughout this paper, we use log2.

The intuition behind Shannon’s definition is as follows. λn,L specifies the
average number of bits needed per symbol, i.e. bit rate, if one losslessly com-
presses a word of length n in L, while the information rate λL is simply the
asymptotic bit rate. In other words, λL is the average amount of information
per symbol contained in a word in L.

Notice that communication passes information between two processes. Let
L1 and L2 be the projections of the aforementioned synchronized language L12

to the first and second tracks, respectively. Let w1 and w2 be the aforementioned
two strings that form a two-track word w12, with length n in the synchronized
language L12. By definition, log Sn(L2) is the number of bits needed (on average)
to encode w2. Those bits are divided into two parts: a) the bits or the information
that w1 “knows” about or shares with w2 as the result of communication, and b)
the bits or the information that w1 does not share with w2. There are possibly
many occurrences of w2 in L2 to pair with w1 to make a two-track word in L12.
Due to nondeterminism, the mapping from w1 to w2 is one-to-many. Hence, for
part b), what w1 does not know is which branch to take in the mapping to
reach w2. Notice that Sn(L12)

Sn(L1)
is the average branching factor in the mapping.

Therefore, log Sn(L12) − log Sn(L1) is the number of bits needed to encode a
branch, i.e. the bits in part b). In summary, a) is the amount of information
shared between w1 and w2 on average, log Sn(L2) − (log Sn(L12) − log Sn(L1))
which equals log Sn(L1) + log Sn(L2) − log Sn(L12). Taking its asymptotic form,
we now define the mutual information rate to quantify the communication in
L12:

ηL12 = λL1 + λL2 − λL12 . (1)

In the paper, we show cases when computing the mutual information rate
is effective. These cases assume that the two processes are finite-state but the
implicit communication mechanism between the two makes the resulting syn-
chronized language L12 rather complex; e.g., a counting language (a regular
language constrained by a Presburger formula on counts of individual symbols
in a word. Notice that a counting language may be nonregular). We show that

Quantifying Communication in Synchronized Languages 637

when the synchronization always happens between two symbols that are the
same and that are at the same time, the mutual information is computable. The
proof is quite complex, which involves combinatorial analysis of the synchronized
words in L12 and properties from reversal-bounded counter machines [14]. Later,
we also show that this result can be further generalized to cases when the two
symbols are not necessarily synchronized at the same time (with a fixed delay).
However, the case of arbitrary delays is not computable. We also present some
other uncomputable cases as well.

We note that computing the mutual information rate of L12 is not trivial at
all. We have cases (see the comment right after Theorem 7) where the informa-
tion rates of L1 and L2 are computable but the information rate of L12 (and
hence the mutual information rate ηL12) is not computable. We also have cases
where the information rate of L12 is computable but the information rates of L1

and L2 are unknown to be computable or takes some nontrivial effort in proving
their computability (as we will do in the proof of Theorem 4).

2 Quantifying Communication with Information Rate

Let Σ be an alphabet and consider two languages L1 and L2 on the alphabet Σ.
For the purpose of this paper, a word on the alphabet represents an observable
behavior of a process, which is a sequence of its observable events. Such an event
can be, for instance, a state transition when the states are observable. Suppose
that Pi (i = 1, 2) is a process. One can think the two processes as two nodes
on a network, two concurrent programs running on a processor, two persons
monitored by a surveillance cameras in a building, or simply two people dancing
on a stage. When the two processes are observed together, a joint behavior is
obtained. To ease our presentation, we assume that, whenever an event (say a)
is observed in one process, an event (say b) is also observed in another process.
Hence, the two processes, intuitively, run at the same pace by observation. Actu-
ally, this assumption is made without loss of generality. This is because, one can
always introduce a new “idle” event into Σ. At the time when a is observed in
one process and, at this time, if no event is observed in another, we treat the
“no event” as the idle event. The two processes still run at the same pace by
observation.

With this formulation, a joint behavior is a synchronized word α on alphabet
Σk. Without loss of generality, we take k = 2 (i.e. two processes). It is trivial to
generalize all the results in the paper to an arbitrary k. In the two process case,
a synchronized word, α, is of the form

(a1
1, a

2
1) · · · (a1

n, a2
n) (2)

for some n and some words w1 = a1
1 · · · a1

n and w2 = a2
1 · · · a2

n in Σ∗. For nota-
tional convenience, we often write α = [w1, w2] while, implicitly, we assume that
the two projections w1 and w2 share the same length. In the sequence, w1 is
called the first coordinate of α while w2 is the second coordinate of α.

638 Z. Dang et al.

The synchronized word α can be thought of as being woven from its first
coordinate w1 and second coordinate w2. When one thinks of a joint run of
two synchronized processes as a synchronized word, a restriction may be placed
on the possible α so that not every pair of w1 and w2 can be woven into an
actual joint run. For instance, under the scenario that an event a in process
P1 must be synchronized with an event ȧ in process P2, the synchronized word
[aba, ȧȧȧ] cannot be a joint run. The exact form of the restriction can be an
explicit definition of the communication mechanism used between the processes
or an implicit constraint on the set L12 of all the synchronized words α observed
as joint runs. We take the latter approach. That is, in other words, we are
given a synchronization predicate R(w1, w2) to define the L12: for all w1 and w2,
[w1, w2] ∈ L12 iff R(w1, w2). Implicitly, R(w1, w2) assumes that the lengths of
w1 and w2 are the same. We use L1 to denote the projection of L12 onto the
first coordinate; i.e. L1 = {w1 : [w1, w2] ∈ L12}. L2 is defined similarly.

The information rate λL12 , defined in Section 1, can be thought of the entropy
of a pair of random variable (X,Y) with certain joint distribution p(X,Y). Then,
the information rate λL1 (resp. λL2) is naturally the entropy of random variable
X (resp. Y) with marginal distribution p(X) (resp. p(Y)) induced from the joint
distribution p(X,Y). In this sense, the mutual information rate between L1 and
L2 with respect to the synchronized language L12 is defined as in (1) which can
be intuitively seen from the classic Venn diagram of Shannon entropy [4].

The mutual information rate ηL12 can be used in quantifying the amount
of communication in the synchronized language L12. In other words, suppose
that P1 (resp. P2) is a process whose observable event sequences are exactly
those in L1 (resp. L2). When P1 and P2 run synchronously, a synchronization
mechanism (which is a form of communication) may be placed in the processes
so that the resulting joint run is guaranteed to be in L12. Now, when there is no
communication between the two, the two processes run independently and hence
L12 is simply the “Cartesian product” [L1, L2] = {[w1, w2] : w1 ∈ L1, w2 ∈ L2}
of L1 and L2. In this case, one can verify that ηL12 = 0. On the other hand,
when P1 and P2 must synchronize on every event; e.g., L12 = {[w1, w2] : w1 =
w2, w1 ∈ L1, w2 ∈ L2} and L1 = L2, one can verify that ηL12 = λL1 = λL2 .
That is, the synchronization mechanism makes sure that P1 and P2 share the
complete information. Intuitively, ηL12 characterize the average number of bits
transmitted between the two processes per event observed, asymptotically.

3 Computing Mutual Information Rate in Synchronized
Languages

Recall that, in order to compute the mutual information rate in a synchronized
language L12, it suffices for us to calculate the information rates λL1 , λL2 and
λL12 , according to (1). That is, we need algorithms to compute the information
rate of a language drawn from a class. The following is a fundamental result.

Theorem 1. The information rate of a regular language is computable [8].

Quantifying Communication in Synchronized Languages 639

The case when L is non-regular (e.g., L is the external behavior set of a software
system containing (unbounded) integer variables like counters and clocks) is
more interesting, considering the fact that a complex software system nowadays
is almost always of infinite state and the notion of information rate has been
used in software testing [25].

However, in such a case, computing the information rate is difficult (some-
times even not computable [16]) in general. Existing results (such as unambigu-
ous context-free languages [17], Lukasiewicz-languages [24], and regular timed
languages [1]) are limited and mostly rely on structure generating functions and
the theory of complex/real functions, which are also difficult to generalize. A
recent important result [6], using a convex optimization technique, will be used
in the paper. First, some definitions are needed.

A counter is a non-negative integer variable that can be incremented by 1,
decremented by 1, or remain unchanged. Additionally, a counter can be tested
for equality with 0. Let k be a non-negative integer. A nondeterministic k-
counter machine (NCM) is a one-way nondeterministic finite automaton, with
input alphabet Σ, augmented by k counters. For a non-negative integer r, we
use NCM(k,r) to denote the class of k-counter machines where each counter is
r-reversal-bounded; i.e. it makes at most r alternations between non-decreasing
and non-increasing modes in any computation; e.g., the following counter value
sequence 0 0 1 2 2 3 3 2 1 0 0 1 1 is of 2-reversal, where the reversals are
underlined. For convenience, we sometimes refer to a machine M in the class
as an NCM(k,r). In particular, when k and r are explicitly given, we call M
a reversal-bounded NCM. When M is deterministic, we use ‘D’ in place of ‘N’
(e.g., DCM). As usual, L(M) denotes the language that M accepts.

Reversal-bounded NCMs have been extensively studied since their intro-
duction in 1978 [14]; many generalizations are identified; e.g., multiple tapes,
two-way tapes, stacks, etc. In particular, reversal-bounded NCMs have found
applications in areas like Alur and Dill’s [2] time-automata [10,12], Paun’s [20]
membrane computing systems [15], and Diophantine equations [26].

In a recent paper [6], we have shown the following result.

Theorem 2. The information rate of the language accepted by a reversal-
bounded DCM is computable.

Notice that, in the theorem, the case for a reversal-bounded NCM is open.
We now recall a number of definitions that will be useful later. Let N be

the set of non-negative integers and k be a positive number. A subset S of Nk

is a linear set if there are vectors v0,v1, · · · ,vt, for some t, in Nk such that
S = {v|v = v0 + b1v1 + · · · + btvt, bi ∈ N}. S is a semi-linear set if it is a finite
union of linear sets. Let Σ = {a1, · · · , ak} be an alphabet. For each word α ∈ Σ∗,
define the Parikh map of α to be the vector #(α) = (#a1(α), · · · ,#ak

(α)), where
each symbol count #ai

(α) denotes the number of symbol ai’s in α. For a language
L ⊆ Σ∗, the Parikh map of L is the set #(L) = {#(α) : α ∈ L}. The language
L is semi-linear if #(L) is a semi-linear set. The following theorem is a classic
result needed in this paper:

640 Z. Dang et al.

Theorem 3. Let M be a reversal-bounded NCM. Then #(L(M)) is a semi-
linear set effectively computable from M [14].

Let Y be a finite set of integer variables. An atomic Presburger formula on
Y is either a linear constraint

∑
y∈Y ayy < b, or a mod constraint x ≡d c, where

ay, b, c and d are integers with 0 ≤ c < d. A Presburger formula can always
be constructed from atomic Presburger formulas using ¬ and ∧. Presburger
formulas are closed under quantification. Let S be a set of k-tuples in Nk. S
is Presburger definable if there is a Presburger formula P (y1, · · · , yk) such that
the set of non-negative integer solutions is exactly S. It is well-known that S is
a semi-linear set iff S is Presburger definable.

In the rest of the section, we focus on the case when the synchronization
predicate R in defining the L12 is given, how we are going to compute the
mutual information rate ηL12? In practice, such a predicate may be unknown
(e.g., a black box implementation of a concurrent system). We will investigate
how to estimate the mutual information rate ηL12 for this case in a forthcoming
paper.

When R is regular (i.e. the synchronized language L12 defined by R is a
regular language), both L1 and L2 are also clearly regular languages. Then from
Theorem 1 and the definition in (1), we have,

Corollary 1. The mutual information rate in a regular synchronized language
is computable.

The result implies that, for finite state processes that run synchronously, the
amount of communication between the two can be computed effectively.

A simple example would be two processes using a common resource as a
covert communication channel. Imagine one process, CW , is a covert writer, and
another process, CR, is a covert reader. In order to implement error-checking to
ensure 100% accuracy when transmitting a message, CW will not begin writing
symbols until CR acknowledges that it is ready to receive a symbol by synchro-
nizing with CW . When CR has received a symbol from CW , CR moves its tape
head left and overwrites the previous symbol on the tape with symbol it just
received from CW . CW is idle until the symbols match. This enables CW to wait
until CR has acknowledged the sent symbol before sending the next symbol. CW

sends an end-of-file symbol at the end of the message.
When R is not regular, computing the mutual information rate of L12 is

more difficult and, in many cases, is not even effective. This is because, in doing
so, the projected languages L1 and L2 are likely accepted by nondeterministic
automata and hence, as we have mentioned earlier, their information rates in (1)
are known to be computable for only a few cases. We now investigate the case
for a non-regular R where counts of symbols are involved. More precisely, we
employ a vector of variables #(a,b), a, b ∈ Σ and consider a Presburger formula
P over these variables. For a synchronized word α in (2), we use #(α) to indicate
the vector of all Parikh maps #(a,b)(α) (i.e. the number of pairs (a, b) appearing
in α), a, b ∈ Σ. A synchronized word α in (2) satisfies P if P (#(α)) holds.

Quantifying Communication in Synchronized Languages 641

We say that R is a counting predicate if it is specified by [Q1, Q2] ∧ P where
Q1 and Q2 are regular predicates and P is a Presburger formula. In consequence,
L12 that is defined by R is a counting language; i.e. L12 is the intersection of

– the Cartesian product of the regular languages Q̂1 = {w1 : Q1(w1)} and
Q̂2 = {w2 : Q2(w2)}, and

– the Presburger language P̂ = {α : P (#(α))}.

In other words, L12 is defined as [Q̂1, Q̂2] ∩ P̂ . By definition, a synchronized
word [w1, w2] is in L12 iff (a). w1 ∈ Q̂1 and w2 ∈ Q̂2, and (b). [w1, w2] ∈ P̂ .
Observe that condition (a) above specifies a condition independently applied on
w1 and w2. However, for condition (b), one can imagine an explicit communica-
tion mechanism between w1 and w2 is placed to enforce the condition P . We now
further specify an explicit (regular) synchronization mechanism Syn between the
two. As a result, the L12 is now a synchronized counting language and defined
by

[Q̂1, Q̂2] ∩ P̂ ∩ Ŝyn. (3)

We now investigate the cases when the mutual information rates for synchro-
nized counting languages are computable.

{∑−}∗

{∑−}∗

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

α1 ��

α2 ��

a

a

��

� �

b

b

��

� �

a

a

��

� �

�� �� ��

�� �� ��

Fig. 1. Scenario of 0-delay Syn where a, b ∈ Π

Syn is used to specify an explicit synchronization pattern between two state
sequences. A common pattern is to force certain state pairs to move together;
e.g., dancer A jumps iff dancer B jumps. Formally, we are given a subset of syn-
chronized symbols Π ⊆ Σ and define Σ− = Σ − Π to be the set of independent
symbols. The first pattern we consider is depicted as in Figure 1. In other words,
Ŝyn defines a regular language on alphabet (Σ− × Σ−) ∪ {(a, a) : a ∈ Π}. We
call such a Syn 0-delay.

642 Z. Dang et al.

Consider the previous covert writer and reader example. We now assume that
CW and CR agreed in advance on a subset of symbols Σ′ ⊆ Σ to be used for
the leaked information. Clearly, appearances of such symbols should be sparse
within the symbol stream transmitted. One can have various ways to specify the
sparsity. Here, we use a simple one: the total number of appearances of symbols
in Σ′ when the end-of-file marker is reached can not exceed 1% of the total
number of symbols transmitted. The synchronized language in consideration
now is a pair of state-symbol sequences of the reader and the writer running
synchronously and following the sparsity constraint. Clearly, the synchronized
language is nonregular and in fact it is a synchronized counting language.

Theorem 4. The mutual information rate in a synchronized counting language,
specified in (3) with a 0-delay Syn, is computable.

We shall point out that one can not simply obtain Theorem 4 from Theorem
1 since a counting language can be nonregular. Also, a difficulty of the proof
of Theorem 4 is the fact that the projected L1 and L2 from a synchronized
counting language L12 would be accepted by nondeterministic automata (as we
have mentioned earlier, information rate of languages accepted by (infinite state)
nondeterministic automata is rare to be known computable).

The second pattern of Syn is a slight generalization of the first, namely
d-delay Syn. It says that any two corresponding synchronization symbols are
separated away by exactly d symbols. Clearly, such a Syn is also regular.

It is straightforward to generalize the proof of Theorem 4 to d-delay Syn.

Theorem 5. The mutual information rate in a synchronized counting language,
specified in (3) with a d-delay Syn, is computable, for any given d.

Recall that Syn is intended to describe a “regular” communication mecha-
nism between two processes; i.e. the corresponding Ŝyn defines a regular lan-
guage (of synchronized words). However, we are not able to further generalize
Theorem 4 to such Syn. For instance, in Theorem 4, Ŝyn is a language on alpha-
bet (Σ− × Σ−) ∪ {(a, a) : a ∈ Π}. That is, a symbol a must be synchronized to
the same symbol a. When a symbol can be synchronized with multiple symbols,
it is open whether the theorems obtained so far still hold.

Some other non-regular patterns Syn are also interesting. One such example
is that the Syn allows arbitrary delay between two synchronized symbols. That
is, Syn = {[w1, w2] : w1 ↓Π= w2 ↓Π , w1, w2 ∈ Σ∗} where w1 ↓Π= w2 ↓Π says
that the projections of w1 and w2 on synchronization symbols Π (i.e. the results
of dropping symbols not in Π) are the same. This third pattern is called an
arbitrary-delay Syn. Notice that this pattern excludes “unaligned” sequences
like [eeaeeebee, ebeaeeeee], where a, b ∈ Π and e
∈ Π (Here, noticing that the
projections of the two words to Π are ab and ba respectively, which are not the
same).

The covert communication processes explained earlier are an example of this
pattern in practice when they are non-blocking and not time coupled. Although
there is an arbitrary amount of delay between CW sending a symbol and CR

Quantifying Communication in Synchronized Languages 643

acknowledging the receipt of the sent symbol, the processes could still be consid-
ered synchronous because CW will not send another symbol until CR acknowl-
edges the previous symbol.

However, for arbitrary-delay Syn, we have a (surprising) negative result.
This result also reveals that the synchronization mechanism plays a key role in
computing the mutual information rate.

Theorem 6. The mutual information rate in a synchronized counting language,
specified in (3) with an arbitrary-delay Syn is not computable.

There are also other cases when the mutual information rate is not com-
putable. For instance, a synchronization mechanism results in a L12 whose empti-
ness is undecidable (and hence its information rate is uncomputable). We will
investigate some of these undecidable cases.

Below, we use a pair of automata working in parallel to specify the synchro-
nization mechanism resulting the synchronized language L12 (i.e. the automata
are not necessarily the actual concurrent processes; we will see an example right
after Theorem 7 in a moment). Let M1 and M2 be two one-way determinis-
tic/nondeterministic automata. They work on two tapes separately and inde-
pendently. We use [w1, w2] to denote the two inputs on the two tapes. Notice
that the lengths of the two words w1 and w2 are equal (hence one may also think
it is a single input tape with two tracks – M1 and M2 work on the two tracks
respectively and they do not have to move in the same pace). However, these two
automata actually do not move completely independent. When one reads a sym-
bol a ∈ Π from its tape storing w1, the other must also read the same symbol a
from its tape storing w2, where a ∈ Π (Π ⊆ Σ is a given set of synchronization
symbols). In other words, w1 ↓Π= w2 ↓Π . Again, by assumption the lengths of
w1 and w2 are the same. We say that [w1, w2] is accepted by [M1,M2] if M1 and
M2 accept w1 and w2 at the ends of the two inputs, respectively. Here, L12 is
the synchronized language accepted by [M1,M2].

We now define more precisely how the one-way machines operate. We assume
that the input to a machine M has left and right end markers. At each step during
the computation on a given input w (which has left and right end markers, so the
input to M is actually #w$, where # and $ are the left and right end markers),
the machine’s input head can remain on the same cell or move one cell to the
right. (Note that the cell can contain #, $, or a symbol in Σ.) The input is
accepted if the machine eventually falls off the right end marker in an accepting
state. M is real-time if it does not have stationary moves, i.e. the input head
always moves one cell to the right.

Let M1 and M2 be two nondeterministic, one-way machines over input alpha-
bet Σ. Let Σ = Π ∪ Σ−, where Π and Σ− are the (possibly empty) sets of
synchronizing and non-synchronizing symbols, respectively.

We say that M1 and M2 have a synchronized accepting computation on a
pair of inputs (w1, w2) (the end markers are not shown) if the following holds:
(1): |w1| = |w2|, and (2): For i = 1, 2, Mi has an accepting computation on
wi such that if at time t, one machine is scanning a synchronizing symbol a,
then the other machine must also be scanning a at time t. Moreover, if on this

644 Z. Dang et al.

synchronizing symbol one machine makes a stationary move (i.e. remains on the
same cell), then the other machine must also make a stationary move.

If there is a synchronizing accepting computations on input pair (w1, w2), we
use the notation [w1, w2]. The set of all [w1, w2]’s is denoted by L12.

Theorem 7. It is undecidable, given two real-time 1-reversal deterministic
pushdown automata (resp., real-time deterministic one-counter automata) M1

and M2, whether L12 = ∅.
Notice that, in Theorem 7, the languages L1 and L2 (projected using L12) are

also accepted by real-time 1-reversal deterministic pushdown automata (resp.,
real-time deterministic one-counter automata). It is known that the information
rate of such languages is computable [17]. However, according to the theorem,
the information rate of L12 itself is not computable.

One can use the automata [M1,M2] in Theorem 7 to specify a quite complex
synchronization mechanism. For instance, consider two finite state processes P1

and P2 where they are required to synchronize only on one symbol a. We further
require that, when such synchronization happens, for each odd number i, the
number of (unsynchronized) symbols between the i-th a and the (i + 1)-th a
equals the number of (unsynchronized) symbols between the (i+1)-th a and the
(i + 2)-th a. For instance, [a bbc︸︷︷︸

3

a ccc︸︷︷︸
3

a b︸︷︷︸
1

a c︸︷︷︸
1

a, a dgg
︸︷︷︸

3

a gdd
︸︷︷︸

3

a g
︸︷︷︸

1

a d︸︷︷︸
1

a]

satisfies the requirement (which would be useful in a covert timing channel –
in this example, the covert writer leaks out two numbers 3 and 1. The second
copies of the 3 and the 1 are used as error-correcting at the covert reader’s side.).

But for reversal-bounded NCMs, we have:

Theorem 8. It is decidable, given two reversal-bounded NCMs M1 and M2,
whether L12 = ∅.
Corollary 2. We can effectively construct, given two reversal-bounded NCMs
(resp., DCMs) M1 and M2, a 2-tape reversal-bounded NCM (resp., DCM) M
that accepts L12.

For a set L ⊆ Σ∗ × Σ∗, let R(L) = {x1#x2 | (x1, x2) ∈ L, and S(L) =
{x1#xR

2 | (x1, x2) ∈ L}.

Corollary 3. The information rates of R(L12) and S(L12) for reversal-bounded
DCMs M1 and M2 are computable.

A reversal-bounded NPCM is a nondeterministic pushdown automaton aug-
mented with reversal-bounded counters. It is known that the emptiness, infinite-
ness, and disjointness problems for reversal-bounded NPCMs are decidable [14].

Corollary 4. It is decidable, given a reversal-bounded NPCM M1 and a
reversal-bounded NCM M2, whether L12 = ∅.

The next result shows that under some restriction, emptiness of L12 is decid-
able when both machines are reversal-bounded NPCMs.

Let k ≥ 0. A machine M is k-sync if every input it accepts has at most
k-occurrences of synchronizing symbols on accepted inputs.

Quantifying Communication in Synchronized Languages 645

Theorem 9. Let k ≥ 0. It is decidable, given two k-sync reversal-bounded
NPCMs M1 and M2 on accepted inputs (there is no restriction in the occur-
rences of non-synchronizing symbols), whether L12 = ∅.

We can refine the proof Theorem 9. As we noted before, given two machines
M1 and M2, we can think of the strings in L12 as a two-track tape, where the
first (resp., second) track is accepted by M1(resp.,M2).

Theorem 10. Let k ≥ 0. We can construct, given two k-sync reversal-bounded
NCMs (resp., reversal-bounded DCMs) M1 and M2, a reversal-bounded NCM
(resp., reversal-bounded DCM) M accepting L12.

Let M1 and M2 be k-sync reversal-bounded DCMs (i.e. the accepted strings
have at most k synchronizing symbols). We know from Theorem 10 that L12 is
accepted by a reversal-bounded DCM. We now show that the projection of L12

on the i-th coordinate (i = 1, 2) is accepted by a reversal-bounded DCM.

Lemma 1. Let M1 and M2 be k-sync reversal-bounded DCMs. Then Li = pro-
jection of L12 on the i-th coordinate is accepted by a reversal-bounded DCM for
i = 1, 2.

Corollary 5. The mutual information rate of L12 for k-sync DCMs M1 and
M2 is computable, for any k.

4 Conclusions

In this paper, the mutual information rate is proposed as a quantitative method for
analyzing inter-process synchronized communication. For finite-state processes
with implicit communication that can be described by a counting language, the
mutual information rate is effectively computable. When the synchronization
always occurs between the same two symbols at the same time (or with a fixed
delay), the mutual information rate is also computable. Finally, some cases are
described where the mutual information rate is not computable.

References

1. Asarin, E., Degorre, A.: Volume and entropy of regular timed languages: dis-
cretization approach. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS,
vol. 5710, pp. 69–83. Springer, Heidelberg (2009)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994)

3. Chen, H., Malacaria, P.: Quantitative analysis of leakage for multi-threaded
programs. In: PLAS 2007, pp. 31–40. ACM (2007)

4. Cover, T.M., Thomas, J.A.: Elements of information theory, 2nd edn.
Wiley-Interscience (2006)

646 Z. Dang et al.

5. Cui, C. , Dang, Z., Fischer, T., Ibarra, O.: Execution information rate for some
classes of automata. Information and Computation (2015) to appear

6. Cui, C., Dang, Z., Fischer, T.R., Ibarra, O.H.: Information rate of some classes
of non-regular languages: an automata-theoretic approach. In: Csuhaj-Varjú,
E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634,
pp. 232–243. Springer, Heidelberg (2014)

7. Cui, C., Dang, Z., Fischer, T.R., Ibarra, O.H.: Execution information rate for some
classes of automata. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B. (eds.) LATA
2013. LNCS, vol. 7810, pp. 226–237. Springer, Heidelberg (2013)

8. Chomsky, N., Miller, G.A.: Finite state languages. Information and Control 1,
91–112 (1958)

9. Cui, C., Dang, Z., Fischer, T.R., Ibarra, O.H.: Similarity in languages and
programs. Theor. Comput. Sci. 498, 58–75 (2013)

10. Dang, Z., Ibarra, O., Bultan, T., Kemmerer, R., Su, J.: Binary reachability analysis
of discrete pushdown timed automata. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 69–84. Springer, Heidelberg (2000)

11. Dang, Z., Ibarra, O., Li, Q.: Sampling a two-way finite automaton. In:
Automata, Universality, Computation, the series book: Emergence, Complexity
and Computation. Springer (2014)

12. Dang, Z.: Pushdown timed automata: a binary reachability characterization and
safety verification. Theoretical Computer Science 301(13), 93–121 (2003)

13. Gurari, E.M., Ibarra, O.H.: The complexity of decision problems for finite-turn
multicounter machines. Journal of Computer and System Sciences 22(2), 220–229
(1981)

14. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision
problems. J. ACM 25(1), 116–133 (1978)

15. Ibarra, O.H., Dang, Z., Egecioglu, O., Saxena, G.: Characterizations of catalytic
membrane computing systems. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS,
vol. 2747, pp. 480–489. Springer, Heidelberg (2003)

16. Kaminger, F.P.: The noncomputability of the channel capacity of context-sensitive
languages. Inf. Comput. 17(2), 175–182 (1970)

17. Kuich, W.: On the entropy of context-free languages. Information and Control
16(2), 173–20 (1970)

18. Kushilevitz, E.: Communication complexity. Advances in Computers 44, 331–360
(1997)

19. Muller, S., Chong, S.: Towards a practical secure concurrent language. SIGPLAN
Not. 47(10), 57–74 (2012)

20. Paun, G.: Membrane Computing, an Introduction. Springer (2000)
21. Papadimitriou, C.H., Sipser, M.: Communication complexity. Journal of Computer

and System Sciences 28(2), 260–269 (1984)
22. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication.

University of Illinois Press (1949)
23. Shaffer, A.B., Auguston, M., Irvine, C.E., Levin, T.E.: A security domain model

to assess software for exploitable covert channels. In: PLAS 2008, pp. 45–56. ACM
(2008)

24. Staiger, L.: The entropy of Lukasiewicz-languages. In: Kuich, W., Rozenberg, G.,
Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 155–165. Springer, Heidelberg
(2002)

Quantifying Communication in Synchronized Languages 647

25. Wang, E., Cui, C., Dang, Z., Fischer, T.R., Yang, L.: Zero-knowledge black box
testing: where are the faults? International Journal of Foundations of Computer
Science 25(2), 196–218 (2014)

26. Xie, G., Dang, Z., Ibarra, O.: A solvable class of quadratic Diophantine equations
with applications to verification of infinite-state systems. In: Baeten, J.C.M.,
Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719,
pp. 668–680. Springer, Heidelberg (2003)

27. Yao, A.C.: Some complexity questions related to distributive computing (prelimi-
nary report). In: STOC 1979, pp. 209–213. ACM (1979)

Simultaneous Encodings for Range
and Next/Previous Larger/Smaller

Value Queries

Seungbum Jo(B) and Srinivasa Rao Satti

Seoul National University, Seoul, South Korea
sbcho@tcs.snu.ac.kr, ssrao@cse.snu.ac.kr

Abstract. Given an array of n elements from a total order, we propose
encodings that support various range queries (range minimum, range
maximum and their variants), and previous and next smaller/larger value
queries. When query time is not of concern, we obtain a 4.088n + o(n)-
bit encoding that supports all these queries. For the case when we need
to support all these queries in constant time, we give an encoding that
takes 4.585n + o(n) bits, where n is the length of input array. We first
extend the original DFUDS [Algorithmica, 2005] encoding of the colored
2d-Min (Max) heap that supports the queries in constant time. Then,
we combine the extended DFUDS of 2d-Min heap and 2d-Max heap
using the Min-Max encoding of Gawrychowski and Nicholson [arXiv,
2014] with some modifications. We also obtain encodings that take lesser
space and support a subset of these queries.

1 Introduction

Given an array A[1 . . . n] of n elements from a total order, for 1 ≤ i ≤ j ≤ n, the
Range Minimum Query (RMinQA(i, j)) returns the position p such that A[p] is
the smallest value in the subarray A[i, . . . , j]. If there are repeated elements in
A, and there are some positions i ≤ r1 . . . rm ≤ j in A which are the positions of
minimum values between A[i] and A[j], RMinQA(i, j) returns an arbitrary posi-
tion among r1 . . . rm. In this case, we can define three additional queries: Range
Leftmost/Rightmost Minimum Queries (RLMinQA(i, j) and RRMinQA(i, j)),
and for 1 ≤ k ≤ m, Range k-th Minimum Query (RkMinQA(i, j)), which return
r1, rm and rk respectively. We can define the maximum queries (RMaxQA(i, j),
RLMaxQA(i, j), RRMaxQA(i, j), RkMaxQA(i, j)) analogous to the minimum
queries defined above.

We also consider the queries previous smaller/larger value (PSV A(i) and
PLV A(i)) which return the position of the nearest smaller/larger value among
A[1] . . . A[i − 1] in A. We can also define the next smaller/larger value queries
(NSV A(i) and NLV A)(i)) analogously.

We consider these problems in the encoding model in which we do not have
access to the original input array A at query time. The minimum size of an
encoding is also referred to as the effective entropy of the input data (with
respect to the queries) [9].
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 648–660, 2015.
DOI: 10.1007/978-3-319-21398-9 51

Simultaneous Encodings for Range and Value Queries 649

Previous Work. The range minimum/maximum problem has been well-studied
in the literature. It is well-known [2] that finding RMinQA can be transformed to
the problem of finding the LCA (Lowest Common Ancestor) between (the nodes
corresponding to) the two query positions in the Cartesian tree constructed on
A. Furthermore, since different topological structures of the Cartesian tree on
A give rise to different set of answers for RMinQA on A, one can obtain an
information-theoretic lower bound of 2n − Θ(lg n)1 bits on the encoding of A
that answers RMinQ queries. Fischer and Heun [7] introduced the 2d-Min heap,
which is a variant of the Cartesian tree, and showed how to encode it using the
Depth first unary degree sequence (DFUDS) [3] representation in 2n + o(n) bits
which supports RMinQA queries in constant time. Fischer and Heun [6] also
defined the approximate range median of minima query problem which returns
a position RkMinQA for some 1

16m ≤ k ≤ 15
16m, and proposed an encoding that

uses 2.54n+o(n) bits and supports the approximate RMinQ queries in constant
time, using a Super Cartesian tree.

For PSV A and NSV A, if all elements in A are distinct, then 2n + o(n) bits
are enough to answer the queries in constant time, by using the 2d-Min heap
of Fischer and Heun [7]. For the general case, Fischer [5] proposed the colored
2d-Min heap, that uses an optimal 2.54n+o(n) bits to answer PSV A and NSV A

in constant time.
One can support both RMinQA and RMaxQA in constant time trivially

using the encodings for RMinQA and RMaxQA queries, using a total of 4n +
o(n) bits. Gawrychowski and Nicholson reduce this space to 3n+o(n) bits while
maintaining constant time query time [8]. But their scheme works only when
there are no consecutive equal elements in A.

Our Results. We first extend the original DFUDS [3] for colored 2d-Min(Max)
heap that supports the queries in constant time. Then, we combine the extended
DFUDS of 2d-Min heap and 2d-Max heap using Gawrychowski and Nicholson’s
Min-Max encoding [8] with some modifications. As a result, we obtain the fol-
lowing non-trivial encodings that support a wide range of queries.

Theorem 1. An array A[1 . . . n] containing n elements from a total order can
be encoded using

(a) at most 3.167n + o(n) bits to support RMinQA, RMaxQA, RRMinQA,
RRMaxQA, PSV A, and PLV A queries;

(b) at most 3.322n + o(n) bits to support the queries in (a) in constant time;
(c) at most 4.088n + o(n) bits to support RMinQA, RRMinQA, RLMinQA,

RkMinQA,
PSV A, NSV A, RMaxQA, RRMaxQA, RLMaxQA, RkMaxQA, PLV A

and NLV A queries; and
(d) at most 4.585n + o(n) bits to support the queries in (c) in constant time.

If the array contains no two consecutive equal elements, then (a) and (b) take
3n + o(n) bits, and (c) and (d) take 4n + o(n) bits.
1 We use lg n to denote log2 n.

650 S. Jo and S.R. Satti

We assume the standard word-RAM model [11] with word size Θ(lg n).

2 Preliminaries

We first introduce some useful data structures that we use to encode various bit
vectors and balanced parenthesis sequences.

Bit Strings (Parenthesis Sequences). Given a string S[1 . . . n] over the
alphabet Σ = {(,)}, rankS(x, i) returns the number of occurrence of the string
x ∈ Σ∗ in S[1 . . . i] and selectS(x, i) returns the first position of i-th occurrence
of x ∈ Σ∗ in S. Combining the results from [12] and [14], one can show the
following.

Lemma 1 ([12], [14]). Let S be a string of length n over the alphabet Σ =
{′(′,′)′} containing m closing parentheses. One can encode S using lg

(
n
m

)
+o(n)

bits to support both rankS(x, i) and selectS(x, i) in constant time, for any |x| ≤
1/2 lg n. Also we can decode any lg n consecutive bits in S in constant time.

Balanced Parenthesis Sequences. Given a string S[1 . . . n] over the alphabet
Σ = {′(′,′)′}, if S is balanced and S[i] is an open (close) parenthesis, then we can
define findopenS(i) (findcloseS(i)) which returns the position of the matching
close (open) parenthesis to S[i]. Munro and Raman [13] showed that if we can
access any lg n-bit subsequence of S in constant time, then both findopenS and
findcloseS can be answered in constant time using an additional o(n) bits.

We use the following lemma (proof omitted) to bound the space usage of the
data structures described in Section 4.

Lemma 2. Given two positive integers a and n and a nonnegative integer k ≤ n,
lg

(
n
k

)
+ a(n − k) ≤ n lg (2a + 1).

2.1 2d-Min Heap

The 2d-Min heap [7] on A, denoted by Min(A), is designed to encode the answers
of RMinQA(i, j) efficiently. We can also define the 2d-Max heap on A (Max(A))
analogously. Min(A) is an ordered labeled tree with n + 1 nodes labeled with
0 . . . n. Each node in Min(A) is labeled by its preorder rank and each label
corresponds to a position in A. We extend the array A[1 . . . n] to A[0 . . . n] with
A[0] = −∞. In the labeled tree, the node x denotes the node labeled x. For every
vertex i, except for the root node, its parent node is (labeled with) PSV A(i).

Encoding of 2d-Min Heap. Depth first unary degree sequence (DFUDS) is
one of the well-known methods for representing ordinal trees [3]. It consists
of a balanced sequence of open and closed parentheses, which can be defined
inductively as follows. If the tree consists of the single node, its DFUDS is ‘()’.
Otherwise, if the ordinal tree T has k subtrees T1 . . . Tk, then its DFUDS, DT

Simultaneous Encodings for Range and Value Queries 651

is the sequence (k+1)dT1 . . . dTk
(i.e., k + 1 open parentheses followed by a close

parenthesis concatenated with the ‘partial’ DFUDS sequences dT1 . . . dTk
) where

dTi
, for 1 ≤ i ≤ k, is the DFUDS of the subtree Ti (i.e., DTi

) with the first open
parenthesis removed. From the above construction, it is easy to prove by induc-
tion that if T has n nodes, then the size of DT is 2n bits. The following lemma
shows that DFUDS representation can be used to support various navigational
operations on the tree efficiently.

Lemma 3 ([1], [3], [10]). Given an ordinal tree T on n nodes with DFUDS
sequence DT , one can construct an auxiliary structure of size o(n) bits to support
the following operations in constant time: for any two nodes x and y in T ,
- parentT (x) : Label of the parent node of node x.
- degreeT (x) : Degree of node x.
- depthT (x) : Depth of node x (The depth of the root node is 0).
- subtree sizeT (x) : Size of the subtree of T which has the x as the root node.
- next siblingT (x) : The label of the next sibling of the node x.
- childT (x, i) : Label of the i-th child of the node x.
- child rankT (x) : Number of siblings left to the node x.
- laT (x, i) : Label of the level ancestor of node x at depth i.
- lcaT (x, y) : Label of the least common ancestor of node x and y.
- pre rankT (i) : The preorder rank of the node in T corresponding to DT [i].
- pre selectT (x) : The first position of node with preorder rank x in DT .

Using the operations in Lemma 3, Fischer and Heun [7] showed that
RMinQA(i, j) can be answered in constant time using DMin(A). If the elements
in A are not distinct, RMinQA(i, j) returns the RRMinQA(i, j).

Fischer and Heun [7] also proposed a linear-time stack-based algorithm
to construct DMin(A). Their algorithm maintains a min-stack consisting of a
decreasing sequence of elements from top to the bottom. The elements of A into
the min-stack from right to left and before pushing the element A[i], all the
elements from the stack that are larger than A[i] are popped. The algorithm
construct a sequence S which is initialized to ε, the empty string, at the begin-
ning of the algorithm. Whenever k elements are popped from the stack and then
an element is pushed into the stack, (k) is prepended to S. Finally, after pushing
A[1] into the stack, if the stack contains m elements, then (m+1) is prepended
to S. One can show that this sequence S is the same as the DFUDS sequence
DMin(A). Analogously, one can construct DMax(A) using a similar stack-based
algorithm.

From the definition of 2d-Min heap, it is easy show that PSV A(i), for 1 ≤
i ≤ n, is the label corresponding to the parent of the node labeled i in Min(A).
Thus, using the encoding of Lemma 3 of 2n + o(n) bits, one can support the
PSV A(i) queries in constant time. A straightforward way to support NSV A(i) is
to construct the 2d-Min heap structure for the reverse of the array A, and encode
it using an additional 2n + o(n) bits. Therefore one can encode all answers of
PSV A and NSV A using 4n+o(n) bits with constant query time. To reduce this
size, Fischer proposed the colored 2d-Min heap [5]. This has the same structure
as normal 2d-Min heap, and in addition, the vertices are colored either red or

652 S. Jo and S.R. Satti

blue. Suppose there is a parent node x in the colored 2d-Min heap with its
children x1 . . . xk. Then for 1 < i ≤ k, node xi is colored red if A[xi] < A[xi−1],
and all the other nodes are colored blue (see (A) in Figure 1).

If all the elements in A are distinct, then a 2n+o(n)-bit encoding of Min(A)
is enough to support RMinQA, RRMinQA, PSV A and NSV A with constant
query time. In the general case, Fischer proposed an optimal 2.54n + o(n)-bit
encoding of colored 2d-Min heap on A using TC-encoding [4]. This encoding
also supports two additional operations, namely modified childCMin(A)(x, i) and
child rankCMin(A)(x), which answer the i-th red child of node x and the number
of red siblings to the left of node x, respectively, in constant time. Using these
operations, one can also support RLMinQA and RkMinQA in constant time.

2.2 Encoding Range Min-max Queries

One can support both RMinQA and RMaxQA in constant time by encoding
both Min(A) and Max(A) separately using 4n + o(n) bits. Gawrychowski and
Nicholson [8] reduce this space to 3n + o(n) bits while maintaining O(1) query
time. There are two key observations in their structure: (i) if we can access any
lg n-bit substring of DMin(A) and DMax(A) on O(1) time, we can still support
both queries in O(1) time, using an additional o(n) bits; (ii) if we generate
DMin(A) and DMax(A) using Fischer and Heun’s stack-based algorithm with
min and max-stack, then whenever we push A[i], 1 ≤ i < n in the reverse
order, we need to pop elements from exactly one of the min or max-stack, unless
A[i] = A[i + 1] (in which case, we do not pop elements from either stack).

Now we describe the overall encoding in [8] briefly. The structure consists of
two bit strings T and U along with various auxiliary structures. For 1 ≤ i < n, if
k elements are popped from the min (max)-stack when we push A[i](1 ≤ i < n)
into both the stacks (from right to left), we prepend (k−1) and 0(1) to the
currently generated T and U respectively. Initially, when i = n, both min and
max stacks push ‘)’ so we do not prepend anything to both strings. But we can
recover it easily because this is the last ‘)’ in common. Finally, after pushing
A[1] into both the stacks, we pop the remaining elements from them, and store
the number of these popped elements in min and max stack explicitly using lg n
bits. One can show that the size of T is at most 2n bits, and that of U is n − 1
bits. Thus the total space usage is at most 3n bits.

To recover any lg n-bit substring, DMin(A)[d1 . . . dlg n], in constant time we
first divide the DMin(A) into blocks of size lg n, and for the starting position of
each block, store its corresponding position in T . For this purpose, we construct
a bit string Bmin of length at most 2n such that Bmin[i] = 1 if and only if T [i]
corresponds to the start position of the ith-block in DMin(A). We encode Bmin

using the representation of Lemma 1 which takes o(n) bits since Bmin has only
2n/ lg n 1’s. Then if d1 belongs to the i-th block, it is enough to recover the i-th
and the (i + 1)-st blocks in the worst case.

Now, to recover the i-th block of DMin(A), we first compute the distance
between i-th and (i+1)-st 1’s in Bmin. If this distance is less than c lg n for some
fixed constant c > 9, we call it a min-good block, otherwise, we call it a min-bad

Simultaneous Encodings for Range and Value Queries 653

block. We can recover a min-good block in DMin(A) in O(c) time using a o(n)-bit
pre-computed table indexed by all possible strings of length lg n/4 bits for T
and U (we can find the position corresponding to the i-th block in U in constant
time), which stores the appropriate O(lg n) bits of DMin(A) obtained from them
(see [8] for details). For min-bad blocks, we store the answers explicitly. This
takes (2n/(c lg n)) · lg n = 2n/c additional bits. To save this additional space,
we store the min-bad blocks in compressed form using the property that any
min-bad block in DMin(A) and DMax(A) cannot overlap more than 4 lg n bits
in T , (since any 2 lg n consecutive bits in T consist of at least lg n bits from
either DMin(A) or DMax(A)). So, for c > 9 we can save more than lg n bits by
compressing the remaining (c − 4) lg n bits in T corresponding to each min-bad
block in DMin(A). Thus, we can reconstruct any lg n-bit substring of DMin(A)

(and DMax(A)) in constant time, using a total of 3n + o(n) bits.
We first observe that if there is a position 1 ≤ i < n such that A[i] = A[i+1],

we cannot decode the ‘)′ in T which corresponds to A[i] only using T and U since
we do not pop any elements from both min and max stacks when we push A[i]
into both stacks. Thus the encoding of [8] only works when there are no repeated
elements in A. We describe how to handle if there are repeated elements in A.

Gawrychowski and Nicholson [8] also show that any encoding that supports
both RMinQA and RMaxQA cannot use less than 3n − Θ(lg n) bits for suffi-
ciently large n (even if all elements in A are distinct).

3 Extended DFUDS for Colored 2d-Min Heap

In this section, we describe an encoding of colored 2d-Min heap on A (CMin(A))
using at most 3n+o(n) bits while supporting RMinQA, RRMinQA, RLMinQA,
RkMinQA, PSV A and NSV A in constant time, by storing the color information
of the nodes using a bit string of length at most n, in addition to the DFUDS
representation of CMin(A). (We can also encode the colored 2d-Max heap in a
similar way). In the worst case, this representation uses more space than the col-
ored 2d-Min heap encoding of Fischer [5], but the advantage is that it separates
the tree encoding from the color information. We later describe how to combine
the tree encodings of the 2d-Min heap and 2d-Max heap, and (separately) also
combine the color information of the two trees, to save space.

Now we describe the main encoding of CMin(A). The encoding consists of
two parts: DCMin(A) and Vmin. The sequence DCMin(A) is same as DMin(A), the
DFUDS representation of CMin(A), which takes 2n + o(n) bits and supports
the operations in Lemma 3 in constant time.

The bit string Vmin stores the color information of all nodes in CMin(A),
except the nodes which are the leftmost children of their parents (the color of
these nodes is always blue), as follows. Suppose there are 1 ≤ p ≤ n nodes which
are the leftmost children of their parents. Then, Vmin[i], stores 0 if the color of
the node nodeVmin

(i) = pre rankCMin(A)(findcloseDCMin(A)(selectDCMin(A)(i +
1, ‘((′)) + 1) in CMin(A) is red, and 1 otherwise, for 1 ≤ i ≤ n − p. This
follows from the observation that if there is an i, 1 ≤ i < 2n − 1 such that

654 S. Jo and S.R. Satti

DCMin(A)[i] = ‘(′ and DCMin(A)[i+1] = ‘)′, then DCMin(A)[i+2] corresponds to
the node which is the leftmost child of the node pre rankCMin(A)(DCMin(A)[i]),
so we skip these nodes by counting the pattern ‘((′ instead of ‘(′ in DCMin(A).
Also, we set Vmin[0] = 1, which corresponds to the first open parenthesis in
DCMin(A). Therefore, the total length of Vmin is n − p + 1. (We define the bit
string Vmax in a similar way.)

The following theorem (proof omitted) shows that encoding Min(A) and
Vmin separately, using 3n + o(n) bits, has the same functionality as CMin(A)
encoding of Fischer [5], which takes 2.54n + o(n) bits.

Theorem 2. For an array A[1 . . . n] of length n, there is an encoding for
A which takes at most 3n + o(n) bits and supports RMinQA, RRMinQA,
RLMinQA, RkMinQA, PSV A and NSV A in constant time.

4 Encoding Colored 2d-Min and Max Heaps

In this section, we describe our encodings for supporting various subsets of oper-
ations, proving the results stated in Section 1. As mentioned in Section 2.1, the
TC-encoding of the colored 2d-Min heap of Fischer [5] can answer RMinQA,
RLMinQA, RkMinQA, RRMinQA, PSV A and NSV A queries in O(1) time,
using 2.54n+o(n) bits. If we store a similar TC-encoding of colored 2d-Max heap
in addition, then we can support all the operations mentioned in Theorem 1(c)
in O(1) time, using at most 5.08n + o(n) bits.

We show that a combined encoding of DCMin(A) and DCMax(A), using at
most 3.167n+o(n) bits, can be used to answer RMinQA, RMaxQA, RRMinQA,
RRMaxQA, PSV A, and PLV A queries (Theorem 1(a)). To support the queries
in constant time, we use a less space-efficient data structure that encodes the
same structures, using at most 3.322n + o(n) bits (Theorem 1(b)). Similarly,
a combined encoding of DCMin(A), DCMax(A), Vmin and Vmax using at most
4.088n + o(n) bits can be used to answer RLMinQA, RkMinQA, NSV A,
RLMaxQA, RkMaxQA, and NLV A queries in addition (Theorem 1(c)). Again,
to support the queries in constant time, we obtain a less space-efficient data
structure using at most 4.58n + o(n) bits (Theorem 1(d)).

In the following, we first describe the data structure of Theorem 1(b) fol-
lowed by the structure for Theorem 1(d). Next we describe the encodings of
Theorem 1(a) and Theorem 1(c).

4.1 Combined Data Structure for DCMin(A) and DCMax(A)

As mentioned in Section 2.2, the encoding of Gawrychowski and Nicholson [8]
consists of two bit strings U and T of total length at most 3n, along with the
encodings of Bmin, Bmax and a few additional auxiliary structures of total size
o(n) bits. In this section, we denote this encoding by E. To encode the DFUDS
sequences of CMin(A) and CMax(A) in a single structure, we use E with some
modifications, which we denote by E′. As described in Section 2.2, encoding

Simultaneous Encodings for Range and Value Queries 655

scheme of Gawrychowski and Nicholson does not work if there is a position i,
for 1 ≤ i < n such that A[i] = A[i + 1]. To solve this problem, we define an
additional bit string C[1 . . . n] such that C[1] = 0, and for 1 < i ≤ n, C[i] = 1
iff A[i − 1] = A[i].If the bit string C has k ones in it, then we can represent
C using lg

(
n
k

)
+ o(n) bits while supporting rank, select queries and decoding

any lg n consecutive bits in C in constant time using Lemma 1. We also define
a new array A′[0 . . . n − k] by setting A′[0] = A[0] and for 0 < i ≤ n − k,
A′[i] = A[selectC(i, 0)]. We also define another sequence D′

CMin(A) of size 2n−k

as follows. Suppose DCMin(A′) = (δ1) . . . (δn−k), for some 0 ≤ δ1 . . . δn ≤ n − k,
then we set D′

CMin(A) = (δ1+ε1) . . . (δn−k+εn−k), where δi + εi is the number of
elements popped when A[i] is pushed into the min stack of A, for 1 ≤ i ≤ n − k.
(Analogously, we define D′

CMax(A).)
The encoding E′ defined on A consists of two bit strings U ′ and T ′, along with

B′
min, B′

max and additional auxiliary structures (as in E). Let U and T be the
bit strings in E defined on A′. Then U ′ is same as U in E. To obtain T ′, we add
some additional open parentheses to T as follows. Suppose T = (δ1) . . . (δn−k),
for some 0 ≤ δ1 . . . δn ≤ n − k. Then T ′ = (δ1+ε1) . . . (δn−k+εn−k), where δi + εi

is the number of elements are popped when A[i] is pushed into the min or max
stack of A, for 1 ≤ i ≤ n − k (see Figure 1 for an example). The encodings of
B′

min and B′
max are defined on D′

CMin(A), D′
CMax(A′) and T ′, similar to Bmin

and Bmax in E. Then the size of T ′ is at most 2n− k bits, size of U ′ is n− k − 1
bits, and the size of the encodings of the modified B′

min and B′
max is o(n) bits,

and all the other auxiliary structures use o(n) bits. Although we use E′ instead
of E, we can use the decoding algorithm in E without any modifications because
all the properties used in the algorithm still hold even though T ′ has additional
open parentheses compared to T . Therefore from E′ we can reconstruct any lg n
consecutive bits of D′

CMin(A) or D′
CMax(A) in constant time, and thus we can

support rank and select on these strings in constant time with o(n) additional
structures by Lemma 1.

We use the following auxiliary structures to decode DCMin(A) from D′
CMin(A)

and C. For this, we first define a correspondence between DCMin(A) and
D′

CMin(A) as follows. Note that both DCMin(A) and D′
CMin(A) have the same

number of open parentheses, but D′
CMin(A) has fewer close parentheses than

DCMin(A). The ith open parenthesis in DCMin(A) corresponds to the ith open
parenthesis in D′

CMin(A). Suppose there are � and �′ close parentheses between
the ith and the (i + 1)st open parentheses in DCMin(A) and D′

CMin(A) respec-
tively. Then the last �′ close parentheses in DCMin(A) correspond, in that order,
to the �′ close parentheses in D′

CMin(A); the remaining close parentheses in
DCMin(A) do not have a corresponding position in D′

CMin(A).
We construct three bit strings Pmin, Qmin and Rmin of lengths 2n − k,

�2n/ lg n� and �2n/ lg n�, respectively, as follows. For 1 ≤ i ≤ �2n/ lg n�, if the
position i lg n in DCMin(A) has its corresponding position j in D′

CMin(A), then
we set Pmin[j] = 1, Qmin[i] = 0 and Rmin[i] = 0. If position i lg n in DCMin(A)

has no corresponding position in D′
CMin(A) but for ki > 0 suppose there is a

656 S. Jo and S.R. Satti

Fig. 1. Data structure combining the colored 2d-Min heap (A) and colored 2d-Max
heap (B) of A. C is represented in uncompressed form.

leftmost position q = i lg n+ki < (i+1) lg n which has its corresponding position
j in D′

CMin(A), then we set Pmin[j] = 1, Qmin[i] = 1 and Rmin[i] = 0. Finally, if
all positions between i lg n and (i + 1) lg n in DCMin(A) have no corresponding
position in D′

CMin(A) we set Qmin[i] = 1 and Rmin[i] = 1. In remaining positions
for Pmin, Qmin and Rmin, we set their values as 0. We also store the values, ki, for
1 ≤ i ≤ �2n/ lg n�, whenever they are defined (as in the second case) explicitly.
Since the length of DCMin(A) is 2n and ki < lg n, we can store ki for all i
explicitly using at most 2n lg lg n/ lg n = o(n) bits.

Since these bit strings have at most 2n/ lg n 1’s, they can be represented
using the structure of Lemma 1, taking o(n) bits while supporting rank and
select queries in constant time. We define Pmax, Qmax, Rmax in the same way.

In addition to these bit strings, we construct two pre-computed tables for
decoding. To describe these tables, we first define two functions f and f ′ where
f(s, c) (f ′(s, c)) returns the substring of DCMin(A) of length at most |s + c|
whose starting (end) position corresponds to the starting (end) position of s.
Suppose s and c are substrings in D′

CMin(A) and C respectively. Then we define
two functions f(s, c) and f ′(s, c) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

f(s, ε) = s
f(ε, c) = ε
f(s, 1 · c1) =) · f(s, c1)
f((δ) · s1, 0 · c1) = (δ·) · f(s1, c1)

⎧
⎪⎪⎨

⎪⎪⎩

f ′(s, ε) = s
f ′(ε, c) = ε
f ′(s · (δ), c1 · 1) = f ′(s, c1)·)
f ′(s1 · (δ), c1 · 0) = f ′(s1, c1) · (δ·)

We construct a pre-computed table Tf that, for each possible choice of bit
strings s and c of length 1/4 lg n, stores the bit string f(s, c). So the total space
usage of Tf is 21/4 lg n · 21/4 lg n · (1/2 lg n) = o(n) bits. We can also construct Tf ′

defined analogous to Tf using o(n) bits.

Simultaneous Encodings for Range and Value Queries 657

Now we describe how to decode lg n consecutive bits of DCMin(A) in constant
time using above structures. (We can decode lg n consecutive bits of DCMax(A) in
a similar way.) Suppose we divide DCMin(A) into blocks of size lg n. As described
in Section 2.2, it is enough to show that for 1 ≤ i ≤ �2n/ lg n�, we can decode
i-th block of DCMin(A) in constant time. First, we check whether Rmin[i] is 0
or not. If this value is 0, then the i-th block in DCMin(A) consists of a sequence
of lg n consecutive close parentheses. Otherwise, there are two cases depend-
ing on the value of Qmin[i]. Let p = selectPmin

(i − rankRmin
(i, 1), 1) be the

position in D′
CMin(A) and cp = rankD′

CMin(A)
(p,′)′) if D′

CMin(A)[p] =′)′ and
rankD′

CMin(A)
(p,′)′) + 1 otherwise.

Case 1) Qmin[i] = 0. In this case, we first take the lg n consecutive bits
of D′

CMin(A) and C starting from the positions p and selectC(cp, 0) respectively.
(If the corresponding position in C does not exist, we set the corresponding sub-
string of C as ε.) Using these bit strings, we can decode the i-block in DCMin(A)

by looking up Tf with these substrings (a constant number of times, until the
pre-computed table generates the required lg n bits). Since the position p cor-
responds to the starting position of the i-th block in DCMin(A) in this case, we
can decode the i-th block of DCMin(A) in constant time.

Case 2) Qmin[i] = 1. First we decode lg n consecutive bits of DCMin(A) whose
starting position corresponds to the position p using the same procedure as Case
1). Next, we take the lg n consecutive bits of D′

CMin(A) and C ending with the
positions p and selectC(cp, 0) respectively. (If the corresponding position in C
does not exist, we set corresponding substring of C as the last lg n − 1 bits of C
with extra 0 in the rightmost position.) Then we can decode the lg n consecutive
bits of DCMin(A) whose ending position corresponds to the p by looking up Tf ′

(a constant number of times) with these substrings. By concatenating these two
substrings of DCMin(A), we can decode a 2 lg n-bit substring of DCMin(A) which
contains the starting position of the i-th block of DCMin(A) (since the starting
position of the i-th block in DCMin(A), and the position which corresponds to
p differ by at most lg n). Finally, we can obtain the i-th block in DCMin(A) by
jumping the first lg n − ki bits and taking lg n consecutive bits from there.

From the encoding described above, we can decode any lg n consecutive bits
of DCMin(A) and DCMax(A) in constant time. Therefore by Theorem 2, we can
answer all queries supported by CMin(A) and CMax(A) (without using the
color information) in constant time. If there are k elements such that A[i − 1] =
A[i] for 1 ≤ i ≤ n, then the size of C is lg

(
n
k

)
+ o(n) bits, and the size of E′ on

A is 3n− 2k + o(n) bits. All other auxiliary bit strings and tables take o(n) bits.
Therefore, by the Lemma 2, we can encode A using 3n − 2k + lg

(
n
k

)
+ o(n) ≤

((1+ lg 5)n+ o(n) < 3.322n+ o(n) bits. Also, this encoding supports the queries
in Theorem 1(a) which do not need the color information in constant time. This
proves Theorem 1(b).

658 S. Jo and S.R. Satti

Encoding Vmin and Vmax

We simply concatenate Vmax and Vmin on A and store it as bitstring V , and store
the length of Vmin using lg n bits (see V in Figure 1). If there are k elements such
that A[i − 1] = A[i] for 1 ≤ i ≤ n, Fischer and Heun’s stack based algorithm [7]
does not pop any elements from both stacks when these k elements and A[n]
are pushed into them. Before pushing any of the remaining elements in the max
and min stacks, we pop some elements from exactly one of the stacks. Also after
pushing A[1] into both the stacks, we pop the remaining elements from the stacks
in the final step. Supposing the min-stack pops p times during the stack based
algorithm (i.e., if the n elements are popped during p runs of pop operations),
then each run of pop operation generates exactly one open parenthesis such that
pre rankDCMin(A) of its matched closed parenthesis corresponds to leftmost child
in CMin(A). As described in Section 3, the size of Vmin is n − p + 1 bits, and
the size of Vmax is p + k + 1 bits. Thus the size of V is n + k + 2 bits.

Therefore, we can decode any lg n-bit substring of Vmin or Vmax in constant
time using V and the length of Vmin. By combining these structures with the
encoding of Theorem 1(b), we can support queries in Theorem 1(c) in constant
time. By Lemma 2, the total space of these structures is 4n−k +lg

(
n
k

)
+ o(n) ≤

((3 + lg 3)n + o(n) < 4.585n + o(n) bits. This proves Theorem 1(d).

4.2 Encoding Colored 2d-Min and Max Heap with Less Space

In this section, we give new encodings that prove Theorem 1(a) and Theo-
rem 1(c), which use less space but take more query time than the previous
encodings. To prove Theorem 1(a), we maintain the encoding E on A′ (instead
of the encoding E′ on A, used in the previous section). (f(s, c) is well-defined
when s and c are substring in DCMin(A′) and C respectively.) In addition, we
construct the concatenated sequence of Vmin and Vmax on A′ (not on A, as
before). If there are k elements such that A[i − 1] = A[i] for 1 ≤ i ≤ n, then the
size of E on A′ is at most 2(n − k) + (n − k) + o(n) bits, Tf and compressed
C in Theorem 1(b) are also preserved. Therefore the total size of these struc-
tures is at most 3(n − k) + lg

(
n
k

)
+ o(n) ≤ n lg 9 + o(n) < 3.167n + o(n) bits. If

we can reconstruct the sequences DCMin(A) and DCMax(A), by Theorem 2, we
can support all the required queries. We now describe how to decode the entire
DCMin(A) by this encoding. (Decoding DCMax(A) can be done in a similar way.)

Once we decode the sequence DCMin(A′), we reconstruct the sequence
DCMin(A) by scanning the sequences DCMin(A′) and C from left to right, and
using the lookup table Tf . Note that f(DCMin(A′), C) looses some open paren-
theses in DCMin(A) whose matched close parentheses are not in DCMin(A′) but
in f(DCMin(A′), C). So when we add m consecutive close parentheses from the r-
th position in DCMin(A′) in decoding with Tf , we add m more open parentheses
before the position pos = findopenDM in(A′)(r − 1). This proves Theorem 1(a).

To prove Theorem 1(c), we combine the concatenated sequence of Vmin

and Vmax on A′ whose total size is n − k + 2 bits to the above encoding.
Then we can reconstruct Vmin on A by adding m 1’s before the position

Simultaneous Encodings for Range and Value Queries 659

rankDM in(A′)(pos, ‘((′) in Vmin on A′ when m consecutive close parentheses are
added from the r-th position in DCMin(A′) in decoding with Tf . (Reconstruct-
ing Vmax on A can be done in a similar way.) The space usage of this encoding
is 4(n − k) + lg

(
n
k

)
+ o(n) ≤ n lg 17 + o(n) < 4.088n + o(n) bits. This proves

Theorem 1(c).

5 Conclusion

We obtained space-efficient encodings that support a large set of range and pre-
vious/next smaller/larger value queries. The encodings that support the queries
in constant time take more space than the ones that do not support the queries
in constant time.

We conclude with the following open problems.

– Supporting queries in the Theorem 1(c) in constant time with 4.088n+o(n)-
bits data structure

– As described in the Section 2, Gawrychowski and Nicholson [8] show that
any encoding that supports both RMinQA and RMaxQA cannot use less
than 3n −Θ(lg n) bits. This lower bound holds even if we assume that there
are no consecutive equal elements in A. In the general case, can we improve
the lower bound (or, is this bound tight)?

– What is the lower bound of space for encoding that supports queries in the
Theorem 1(c)?

References

1. Arroyuelo, D., Cánovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice.
In: ALENEX 2010, Austin, Texas, USA, January 16, 2010, pp. 84–97 (2010)

2. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Proceedings of
the LATIN 2000, pp. 88–94 (2000)

3. Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.:
Representing trees of higher degree. Algorithmica 43(4), 275–292 (2005)

4. Farzan, A., Munro, J.I.: A uniform paradigm to succinctly encode various families
of trees. Algorithmica 68(1), 16–40 (2014)

5. Fischer, J.: Combined data structure for previous- and next-smaller-values. Theor.
Comput. Sci. 412(22), 2451–2456 (2011)

6. Fischer, J., Heun, V.: Finding range minima in the middle: Approximations and
applications. Mathematics in Computer Science 3(1), 17–30 (2010)

7. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM Journal on Computing 40(2), 465–492 (2011)

8. Gawrychowski, P., Nicholson, P.K.: Optimal encodings for range min-max and
top-k (2014). CoRR abs/1411.6581, http://arxiv.org/abs/1411.6581

http://arxiv.org/abs/http://arxiv.org/abs/1411.6581

660 S. Jo and S.R. Satti

9. Golin, M., Iacono, J., Krizanc, D., Raman, R., Rao, S.S.: Encoding 2D range
maximum queries. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.)
ISAAC 2011. LNCS, vol. 7074, pp. 180–189. Springer, Heidelberg (2011)

10. Jansson, J., Sadakane, K., Sung, W.K.: Ultra-succinct representation of ordered
trees with applications. J. Comput. Syst. Sci. 78(2), 619–631 (2012)

11. Miltersen, P.B.: Cell probe complexity - a survey. In: FSTTCS (1999)
12. Munro, J.I., Raman, V., Rao, S.S.: Space efficient suffix trees. J. Algorithms 39(2),

205–222 (2001)
13. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static

trees. SIAM Journal on Computing 31(3), 762–776 (2001)
14. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-

tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3(4) (2007). Article 43

© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 661–673, 2015.
DOI: 10.1007/978-3-319-21398-9_52

A New Non-Merkle-Damgård Structural Hash Function
with Provable Security*

Shenghui Su1,2(), Tao Xie3, and Shuwang Lü4

1 Laboratory of Trusted Computing, Beijing University of Technology,
Beijing 100124, People’s Republic of China

reesse@126.com
2 College of Information Engineering, Yangzhou University,

Yangzhou 225009, People’s Republic of China
3 School of Computers, National University of Defense Technology,

Changsha 410073, People’s Republic of China
4 School of Computers, University of Chinese Academy of Sciences,

Beijing 100039, People’s Republic of China

Abstract. To check the integrity of an IP address efficiently and economically,
the authors propose a new non-Merkle-Damgård structural hash function which
is based on a multivariate permutation problem and an anomalous subset prod-
uct problem to which no subexponential time solutions are found so far. It in-
cludes an initialization algorithm and a compression algorithm, and converts a
short message of n bits treated as only a block into a digest of m bits, where 80

≤ m ≤ 232 and 80 ≤ m ≤ n ≤ 4096. Analysis shows that the new hash is
one-way, weakly collision-free, and strongly collision-free along with a proof,
and its security against existent attacks such as birthday attack and meet-in-the-
middle attack is to O(2m). In comparison with the Chaum-Heijst-Pfitzmann hash
based on a discrete logarithm problem, the new hash is lightweight, and opens a
door to convenience for utilization of lightweight digital signing schemes.

Keywords: Hash function · Compression algorithm · Merkle-Damgård
structure · Provable security · Birthday attack · Meet-in-the-middle attack

1 Introduction

A message digest from a hash function may be used to check the integrity of IP ad-
dresses in a packet so as to prevent the addresses from being tampered.

Traditionally, a hash function consists of a compression function and the Merkle-
Damgård (MD) structure [1][2]. Let ĥ be a hash function, and generally, it should be
computationally one-way, weakly collision-free, and strongly collision-free [3][4][5].

In this paper, the authors design a new non-MD structural hash function called
JUNA which is based on a multivariate permutation problem (MPP) and an anomal-

 S. Su––This work is supported by MOST with Project 2007CB311100 and 2009AA01Z441.

662 S. Su et al.

ous subset product problem (ASPP) [6], and includes two algorithms: an initialization
algorithm and a compression algorithm, converts a short message or a message digest
of n bits into an output string of m bits, where 80 ≤ m ≤ 232 and 80 ≤ m ≤ n ≤ 4096, and
moreover ensures that the security of the output against collision attacks is to the
O(2m) magnitude.

The new hash is efficient and economical in the check has two dominant novelties:
 designing the initialization algorithm based on a MPP which only has an exponential

time solution currently, and makes the new hash function be able to resist a birthday at-
tack; designing the compression algorithm based on an ASPP which also only has an
exponential time solution currently, and makes the new hash function be able to resist
other conventional attacks, especially a meet-in-the-middle attack. The significance of the
paper lies in the thing that a new non-MD structural hash function with an m-bit output
and the O(2m) magnitude security is first proposed by the authors while a classical iterative
hash function with an m-bit output bears only the O(2m

/

2) magnitude security.

Throughout the paper, unless otherwise specified, an even number n ≥ 80 is the bit-
length of a short message or the item-length of a sequence, the sign % denotes “mod-
ulo”, does “M – 1” with M prime, lg x means a logarithm of x to the base 2, ¬bi
does NOT operation of a bit bi, Þ does the maximal prime allowed in a coprime se-
quence, |x| does the absolute value of a number x, x does the order of x % M, S does
the size of a set S, and gcd(x, y) represents the greatest common divisor of two integ-
ers x and y. Without ambiguity, “% M ” is usually omitted in expressions.

2 Several Definitions

2.1 A Coprime Sequence

Definition 1: If A1, …, An are n pairwise distinct positive integers such that ∀ Ai and
Aj (i ≠ j), either gcd(Ai, Aj) = 1 or gcd(Ai, Aj) = F ≠ 1 with (Ai / F) ł Ak and (Aj / F) ł Ak
∀ k (≠ i, j) ∈ [1, n], these ordered integers are called a coprime sequence, denoted by
{A1, …, An}, and shortly {Ai}.

Note that the elements of a coprime sequence are not necessarily pairwise coprime,
but a sequence of which the elements are pairwise coprime is a coprime sequence.

For example, {21, 15, 29, 23, 11, 17, 19, 13} and {23, 7, 11, 3, 19, 13, 5, 17} are
two coprime sequences separately.

Property 1: Let {A1, …, An} be a coprime sequence. If randomly select k ∈ [1, n]
elements Ax1, …, Axk from the sequence, then the mapping from a subset {Ax1, …, Axk}

to a subset product G = ∏ k
i = 1 Axi is one-to-one, namely the mapping from b1…bn to G

= ∏ n
i = 1Ai

b
i is one-to-one, where b1…bn is a bit string.

Refer to [6] for its proof.

 A New Non-Merkle-Damgård Structural Hash Function with Provable Security* 663

2.2 A Bit Shadow and a Bit Long-Shadow

Definition 2: Let b1…bn ≠ 0 be a bit string. Then ḅi with i ∈ [1, n] is called a bit sha-
dow if it comes from such a rule: ḅi = 0 if bi = 0; ḅi = 1 + the number of succes-
sive 0-bits before bi if bi = 1; or ḅi = 1 + the number of successive 0-bits before bi +
the number of successive 0-bits after the rightmost 1-bit if bi is the leftmost 1-bit.

Notice that (3) of this definition is slightly different from that in [6].
For example, let b1…b8 = 01010110, then ḅ1…ḅ8 = 03020210.

Fact 1: Let ḅ1…ḅn be the bit shadow string of b1…bn ≠ 0. Then there is

n
i=1 ḅi = n.

Its proof is omitted due to limited pages.

Property 2: Let {A1, …, An} be a coprime sequence, and ḅ1…ḅn be the bit shadow
string of b1…bn ≠ 0. Then the mapping from b1…bn to G = ∏

n
i=1 Ai

ḅi is one-to-one [7].
Its proof is omitted due to limited pages.

Definition 3: Let ḅ1…ḅn be the bit shadow string of b1…bn ≠ 0. Then ƀi = ḅi 2
i with i

∈ [1, n] is called a bit long-shadow, where i = bi + (−1)
2(i – 1) / n (n / 2) = 0 or 1.

According to Definition 3, it is not difficult to understand that for every ƀi, there is
0 ≤ ƀi ≤ n when b1…bn ≠ 0.

For example, let b1…b8 = 01010110, then ƀ1…ƀ8 = 06020410.

Fact 2: Let ƀ1…ƀn be the bit long-shadow string of b1…bn ≠ 0. Then there is n ≤ n
i=1 ƀi ≤ 2n.

Its proof is omitted due to limited pages.

Property 3: Let ƀ1…ƀn be the bit long-shadow string of b1…bn ≠ 0. Then the mapping
from b1…bn to ƀ1…ƀn is one-to-one.

Its proof is omitted due to limited pages.

2.3 A Lever Function

The designing of the initialization algorithm of the new hash function is based on the
hard problem Ci ≡ (Ai W

ℓ

(i))

δ (% M) for i = 1, …, n first used for the REESSE1+
asymmetric cryptosystem, where the exponent ℓ(i) is called a lever function [6].

Definition 4: The secret parameter ℓ(i) in the transform of a non-MD structural hash
function is called a lever function, if it has the following features:

 ℓ(.) is an injection from the domain {1, …, n} to the codomain Ω ⊂ {5, …, } with large;
 the mapping between i and ℓ(i) is established randomly without an analytical expression;
 an attacker has to be faced with all the permutations of elements in Ω when in-

ferring a related private parameter from a public parameter or an initial value;
 the owner of the private parameter only need to consider the polynomial arith-

metic of elements in Ω when decrypting a ciphertext or seeking a collision.

Feature and make it clear that if n is large enough, it is infeasible for the at-
tacker to search all the permutations of elements in Ω exhaustively while the decryp-
tion or collision computation by the owner of the private parameter is feasible. Thus,
the amount of calculation on ℓ(.) is large at “a public terminal”, and is small at “a
private terminal”.

664 S. Su et al.

Property 4 (Indeterminacy of ℓ(.)): Let δ = 1 and Ci ≡ (Ai W ℓ
(i))δ (% M) with ℓ(i) ∈ Ω

= {5, …, n + 4} and Ai ∈ Λ = {2, …, Þ | 863 ≤ Þ ≤ 1201} for i = 1, …, n. Then ∀ W
(W ≠) ∈ (1,), and ∀ x, y, z (x ≠ y ≠ z) ∈ [1, n],

 when ℓ(x) + ℓ(y) = ℓ(z), there is ℓ(x) + W + ℓ(y) + W ≠ ℓ(z) + W (%);
 when ℓ(x) + ℓ(y) ≠ ℓ(z), there always exist Cx ≡ A′x W′ ℓ′(x) (% M), Cy ≡ A′y W′ ℓ′(y)

(% M), and Cz ≡ A′z W′ ℓ′(z) (% M) such that ℓ′(x) + ℓ′(y) ≡ ℓ′(z) (%) with A′z ≤ Þ.
Its proof is omitted due to limited pages.
Notice that letting Ω = {5, …, n + 4}, namely every ℓ(i) ≥ 5 makes seeking W from

W ℓ
(i) ≡ Ai

–1
 Ci (% M) face an unsolvable Galois group when the value of Ai ≤ Þ is

guessed [8], and moreover Property 4 still holds when Ω is any subset containing n
elements from {1, …, }.

Property 4 manifests that will continued fraction attack on Ci ≡ Ai W
ℓ

(i) (% M) by

Theorem 12.19 in Section 12.3 of [9] be utterly ineffectual only if elements in Ω are
fitly selected [10].

3 Design of the New Non-MD Structural Hash Function

The Chaum-Heijst-Pfitzmann hash function, a non-MD structural one, is appreciable. It is
based on a discrete logarithm problem, and proved to be strongly collision-free [11].

The new non-MD structural hash function is composed of two algorithms which
contain two main parameters m and n, where m denotes the bit-length of a modulus
used in the new hash, n denotes the bit-length of a short message or a message digest
from a classical hash function, and there are 80 ≤ m ≤ 232 with 80 ≤ m ≤ n ≤ 4096.

Additionally, Λ and Ω are two integral sets. Their lengths are selected as 210 ≤ Λ ≤
232 and n ≤ Ω = ñ ≤ 232, and moreover make 2n5Ω Λ5 ≥ 2m (see Section 4.1.1). No-
tice that 210 ≤ Λ ≤ 232 means 10 ≤ lgÞ ≤ 32.

For example, as m = 80 ≤ n, there should be Λ = 210 and Ω = n; as m = 96 ≤ n,
should Λ = 212 and Ω = n; as m = 112 ≤ n, should Λ = 214 and Ω = n; as m = 128 ≤
n, should Λ = 216 and Ω = 212; as m = 232 ≤ n, should Λ = 232 and Ω = 232.

3.1 Initialization Algorithm

This algorithm is employed by an authoritative third party or the owner of a key pair,
and only needs to be executed one time.

INPUT: the bit-length m of a modulus with 80 ≤ m ≤ 232;
the item-length n of a sequence with 80 ≤ m ≤ n ≤ 4096;
the maximal prime Þ with 10 ≤ lgÞ ≤ 32;
the size ñ of the set Ω with 2ñn5Þ5 ≥ 2m and n ≤ ñ ≤ 232.

S1: Produce Λ ← {2, 3, …, Þ};
produce a random coprime sequence {A1, …, An | Ai ∈ Λ}.

S2: Find a prime M with lg M = m such that / 2 is a prime,
or the least prime factor of / 2 > 4n(2ñ + 3).

S3: Pick W ∈ (1,) making W ≥ 2m – lgÞ; pick δ ∈ (1,) making gcd(δ,) = 1.
S4: Randomly yield Ω ← {+/−5, +/−7, …, +/−(2ñ + 3)};

randomly select pairwise distinct ℓ(i) ∈ Ω for i = 1, …, n.

 A New Non-Merkle-Damgård Structural Hash Function with Provable Security* 665

S5: Compute Ci ← (Ai W ℓ

(i))δ % M for i = 1, …, n.
OUTPUT: an initial value ({Ci}, M) which is public to the people.
A private parameter ({Ai}, {ℓ(i)}, W, δ) may be discarded, but must not be divulged.
At S3, to seek W, let W ≡ g / F (% M), where g is a generator of (*

M , ·) obtained
through Algorithm 4.80 in Section 4.6 of [3], and F < 2lgÞ is a factor of .

At S4, Ω = {+/−5, +/−7, …, +/−(2ñ + 3)} indicates that Ω is one of 2ñ potential
sets, indeterminate, and unknown to the public, where “+/−” means the selection of
the “+” or “−” sign. Notice that in the arithmetic modulo , −x represents – x.

Definition 5: Given ({Ci}, M), seeking the original ({Ai}, {ℓ(i)}, W, δ) from Ci ≡ (Ai

W
ℓ (i))δ (% M) with Ai ∈ {2, 3, …, Þ | 10 ≤ lgÞ ≤ 32} and ℓ(i) ∈ {+/−5, +/−7, …,

+/−(2ñ + 3) | n ≤ ñ ≤ 232} for i = 1, …, n is referred to as a multivariate permutation
problem, shortly MPP [6].

Property 5: The MPP Ci ≡ (Ai W
ℓ (i))δ (% M) with Ai ∈ {2, 3, …, Þ | 10 ≤ lgÞ ≤ 32}

and ℓ(i) ∈ {+/−5, +/−7, …, +/−(2ñ + 3) | n ≤ ñ ≤ 232} for i = 1, …, n is computational-
ly at least equivalent to the DLP in the same prime field.

Refer to [6] for its proof.

3.2 Compression Algorithm

This algorithm is employed by one who wants to obtain a short message digest.

INPUT: an initial value ({C1, …, Cn}, M), where lg M = m with 80 ≤ m ≤ n ≤ 4096;
A short message (or a digest from a classical hash function) b1…bn ≠ 0.

S1: Set k ← 0, i ← 1.
S2: If bi = 0 then

S2.1: let k ← k + 1, ḅi ← 0
else

S2.2: if i = k + 1 then let ← i;
S2.3: let ḅi ← k + 1, k ← 0.

S3: Let i ← i + 1; if i ≤ n then go to S2.
S4: Compute ḅ ← ḅ + k.
S5: Compute ḏ ← ∏

n
i=1 Ci

ƀi % M, where ƀi = ḅi 2
i with i = bi + (−1)

2(i – 1) / n (n / 2).

OUTPUT: a digest ḏ ≡ ∏

n
i=1 Ci

ƀi (% M) of which the bit-length is m.
It is easily known from Definition 3 that the max of {ƀ1, …, ƀn} is less than or

equal to n when b1…bn ≠ 0.

Definition 6: Given (ḏ, M), seeking the original ƀ1…ƀn from ḏ ≡ ∏

n
i=1 Ci

ƀi (% M),
where ƀi = ḅi 2

i with i = bi + (−1)
2(i – 1) / n (n / 2) and ḅi being a bit shadow is referred to as

an anomalous subset product problem, shortly ASPP [6].

Property 6: The ASPP ḏ ≡ ∏

n
i=1 Ci

ƀi (% M), where ƀi = ḅi 2
i with i = bi + (−1)

2(i – 1) / n (n / 2) and ḅi
being a bit shadow is computationally at least equivalent to the DLP in the same prime
field.

Refer to [6] for its proof.

666 S. Su et al.

4 Security Analysis of the New Hash Function

It is should be noted that lg M = m, but not n, is the security dominant parameter of
the new non-MD structural hash function.

4.1 Security of the Initialization Algorithm

Clearly, the security of the initialization algorithm depends on the security of the MPP

Ci ≡ (Ai W ℓ(i))δ (% M) with Ai ∈ Λ = {2, 3, …, Þ | 10 ≤ lgÞ ≤ 32} and ℓ(i) ∈ Ω =
{+/−5, +/−7, …, +/−(2ñ + 3) | n ≤ ñ ≤ 232} for i = 1, …, n.

In [6], we analyze the security of the MPP Ci ≡ (Ai Wℓ(i))δ (% M) with Ai ∈ {2, 3, …,
Þ | 863 ≤ Þ ≤ 1201} and ℓ(i) ∈ {5, 7, …, (2n + 3)} for i = 1, …, n from the three as-
pects, discover no subexponential time solution to it, and contrarily, find some evi-
dence which inclines people to believe that the MPP is computationally harder than
the DLP.

Considering that the set Ω is different from the old in [6], and the range of Þ is
larger than the old in [6], we will analyze the security of the MPP with different re-
strictions additionally.

4.1.1 Ineffectualness of Presupposing ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2)
Because of Ω = {+/−5, +/−7, …, +/−(2ñ + 3)}, when the absolute values |ℓ(x1)|, |ℓ(x2)|,
|ℓ(y1)|, |ℓ(y2)| are determined, the value ℓ(x1) + ℓ(x2) − (ℓ(y1) + ℓ(y2)) has 24 = 16 possi-
ble cases, which enhances the indeterminacy of the lever function, and increases the
complexity of an attack task for cracking the MPP to some extent.

Adversaries may try to eliminate W through judging ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2).
∀ x1, x2, y1, y2 ∈ [1, n], presuppose that ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2) holds.
Let Gz ≡ Cx1

Cx2
(Cy1

Cy2
)–1 (% M), namely Gz ≡ (Ax1

Ax2
(Ay1

Ay2
)–1)δ (% M).

If the adversaries divine the values of Ax1
, Ax2

, Ay1
, Ay2

, and compute u, vx1, vx2, vy1,
vy2 in at least LM[1/3, 1.923] time such that

Gz ≡ gu, Ax1 ≡ gvx1, Ax2 ≡ gvx2, Ay1 ≡ gvy1, Ay2 ≡ gvy2 (% M),
where g is a generator of (*

M , ·), then u ≡ (vx1 + vx2 – vy1 – vy2)δ (%).
If gcd(vx1 + vx2 – vy1 – vy2,) | u, the congruence in δ has solutions. Because each

of Ax1, Ax2, Ay1, Ay2 may traverse the interval Λ, and the subscripts x1, x2, y1, y2 are un-
fixed, the number of potential values of δ is about n4

 Λ4. Notice that the number of
non-repeated values of δ will be less than 2m.

In succession, need to seek W. Now, the most effectual approach to seeking W is
that for every i, the adversaries fix a value of δ, divine Ai and ℓ(i), and find the set i
according to Ci ≡ (Ai W ℓ

(i))δ (% M), where i is the set of possible values of W meeting
Ci ≡ (Ai W ℓ

(i))δ (% M) for i = 1, …, n. If there exist W1 ∈ 1, …, Wn ∈ n being pair-
wise equal, the divination of δ, {Ai}, and {ℓ(i)} is thought right; else fix another value
of δ, repeat the above process.

 A New Non-Merkle-Damgård Structural Hash Function with Provable Security* 667

Notice that due to / 2 = a prime or the least prime factor of / 2 > 4n(2ñ + 3),
W ℓ

(i) ≡ Ci
δ−1

Ai
−1 (% M) can be solved in polynomial time, and besides letting W = g

μ %
M is unnecessary.

It is not difficulty to understand that the size of every i is about (2Ω)Λ.
In summary, the time complexity of the above attack task is

Ŧ = (n + Λ)LM [1 / 3, 1.923] + (n4Λ4) + (n4Λ4)(2Ω Λ)n ≈ 2n5Ω Λ5.
Concretely speaking,
For m = n = 80 with Λ = 210 & Ω = 80, Ŧ > 2(26.3)5(26.3)(210)5 = 288 > 2m.
For m = n = 96 with Λ = 212 & Ω = 96, Ŧ > 2(26.5)5(26.5)(212)5 = 2100 > 2m.
For m = n = 112 with Λ = 214 & Ω = 112, Ŧ > 2(26.8)5(26.8)(214)5 = 2112 = 2m.
For m = n = 128 with Λ = 216 & Ω = 212, Ŧ > 2(27)5(212)(216)5 = 2128 = 2m.
For m = n = 232 with Λ = 232 & Ω = 232, Ŧ > 2(27.8)5(232)(232)5 = 2232 = 2m.
Thus, the time complexity of the attack by presupposing ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2)

is not less than O(2m) when Λ and Ω are chosen suitably.

4.1.2 Ineffectualness of Guessing W
Owing to 80 ≤ lgM ≤ 232, can be factorized in tolerable subexponential time, and
further a value of W can be guessed.

Adversaries may try to eliminate W through W W ≡ 1 (% M).
Raising either side of every equation Ci ≡ (Ai W ℓ

(i))δ (% M) to the W-th power yields

Ci

W ≡ (Ai)
δ W % M.

Suppose that the value of every Ai ∈ Λ = {2, 3, …, Þ | 10 ≤ lgÞ ≤ 32} is guessed,
or the possible values of every Ai are traversed.

Let Ci ≡ gu

i (% M), and Ai ≡ gv

i (% M), where g is a generator of (*
M , ·). Then

ui W ≡ vi W δ (%) (i = 1, …, n).
Notice that ui ≠ vi δ (%), and {v1, …, vn} is not a super increasing sequence.
The above congruence is seemingly the MH transform [12]. Actually, {v1 W, …,

vn W} is not a super increasing sequence, and moreover there is not necessarily lg (ui

W) = lg .
Because vi W ∈ [1,] is stochastic, the inverse δ–1 % not need be close to the

minimum / (ui W), 2 / (ui W), …, or (ui W – 1) / (ui W). Namely δ–1 may lie
at any integral position of the interval [k / (ui W), (k + 1) / (ui W)], where k = 0,
1, …, ui W – 1, which illustrates that the accumulation points of minima do not
exist. Further observing, in this case, when i traverses the interval [2, n], the number
of intersections of the intervals containing δ–1 is likely the max of {u1 W , …, un W }
which is promisingly close to . Therefore, the Shamir attack by the accumulation
point of minima is fully ineffectual [13].

Even if find out δ

–1 through the Shamir attack method, because each of { v1, …, vn}
has W solutions, the number of potential sequences {gv

1, …, gv
n} is up to W

n. Because
of needing to verify whether {gv

1, …, gv
n} is a coprime sequence for each different se-

quence {v1, …, vn}, the number of possible coprime sequences is in proportion to W

n.
Hence, the initial {A1, …, An} cannot be determined in subexponential time. Further, the
value of W cannot be computed, and the values of W and δ–1 cannot be verified, which

668 S. Su et al.

indicates that the MPP can also be resistant to the Shamir attack by the accumulation
point of minima.

Additionally, the adversaries may divine the value of Ai in about O(Λ) time with i
∈ [1, n], and compute δ by vi W ≡ ui W δ (%). However, because of W | , the
equation will have W solutions. Therefore, the time complexity of finding the origi-
nal δ is at least

Ŧ = (n + Λ)LM [1 / 3, 1.923] + ΛW ≥ (n + Λ)LM [1/3, 1.923] + 2lgÞ2m – lgÞ > 2m.
It is also not less than O(2m).

4.2 Security of the Compression Algorithm

The compression algorithm of which the input message is treated as only a block is
the main body of the new non-MD structural hash function, and thus, through it the
four natural properties of the new hash function are embodied dominantly.

Clearly, the security of the compression algorithm depends on the security of the
ASPP ḏ ≡ ∏

n
i=1 Ci

ƀi (% M), where ƀi = ḅi 2
i with i = bi + (−1)

2(i – 1) / n (n / 2) and ḅi being a bit
shadow.

In [6], we analyze the security of the ASPP Ḡ ≡ ∏

n
i=1 Ci

ḅi (% M) from the three as-
pects, discover no subexponential time solution to it, and contrarily, find some evi-
dence which inclines people to believe that Ḡ ≡ ∏

n
i=1 Ci

ḅi (% M) is computationally

harder than the DLP. Due to ƀi = ḅi 2
i ≥ ḅi, the security conclusion about Ḡ ≡ ∏

n
i=1 Ci

ḅi

(% M) is also suitable for ḏ ≡ ∏

n
i=1 Ci

ƀi (% M) which is just another form of the ASPP.

Hence ḏ ≡ ∏

n
i=1 Ci

ƀi (% M) has no subexponential time solution at present.

In what follows, we will analyze whether the compression formula ḏ ≡ ∏

n
i=1 Ci

ƀi (%
M) satisfies the four natural properties of a hash function, and especially resists the
three classical attacks or not.

In terms of Section 3.2, given the initial value ({Ci}, M) and a short message
b1…bn, it is transparently easy to calculate the digest ḏ ≡ ∏

n
i=1 Ci

ƀi (% M).

4.2.1 Compression Algorithm is Computationally One-way
Let C1 ≡ g

u
1 (% M), …, Cn ≡ g

u
n (% M), ḏ ≡ g

v (% M), where g is a generator of the

group (*
M, ·), and easily found when lg M < 1024.

Then, solving ḏ ≡ ∏

n
i=1 Ci

ƀi (% M) for ƀ1…ƀn, namely b1…bn, is equivalent to solving

ƀ1 u1 + … + ƀn un ≡ v (%),

which is called an anomalous subset sum problem, shortly ASSP [6], and computation-
ally at least equivalent to a subset sum problem (SSP) due to ƀi = ḅi 2

i ≥ ḅi ≥ bi ∈ [0, 1].
The SSP has been proved to be NP-complete in its feasibility recognition form

[14], and its computational version, especially the density-high or length-big one, is
NP-hard [3][15]. Hence, solving ASSP is at least NP-hard.

 A New Non-Merkle-Damgård Structural Hash Function with Provable Security* 669

Moreover in the non-MD structural hash function, there is n ≥ m = lg M and n ≥
ƀi ≥ bi ∈ [0, 1]. The knapsack density relevant to the ASSP ƀ1 u1 + … + ƀn un ≡ v (%

) roughly equals

D =

n
i=1 lg n / lg M = n lg n / m > lg n > 1,

which means that there exists many solutions to ƀ1 u1 + … + ƀn un ≡ v (%), namely
the original solution cannot be determined, or will not occur in a reduced lattice base
defined by LLL [16]. Notice that only such a ƀ1, …, ƀn from which a right bit string
can be deduced will be a reasonable solution vector. Experiments show that when D >
1, the probability that the original solution or a reasonable solution is found through
LLL lattice base reduction is almost zero [17].

Hence, LLL lattice base reduction attack on ASSP [16][18] is utterly ineffectual,
which illustrates that even although a DLP with the modulus bit-length less than 1024
can be solved, the original or a reasonable ƀ1…ƀn cannot be found yet in DLP subex-
ponential time, namely ḏ ≡ ∏

n
i=1 Ci

ƀi (% M) is computationally one-way.

4.2.2 Compression Algorithm is Weakly Collision-Free
Assume that b1…bn ≠ 0 is a short message or a message digest from a classical hash
function. By Definition 3, we easily understand that ƀi = ḅi 2

i ≤ n ∀i ∈ [1, n].

Given a short message b1…bn ≠ 0, and let b′1…b′n ≠ 0 be another short message to
need to be found.

Let ƀ1…ƀn be the bit long-shadow string of b1…bn, and ƀ′1…ƀ′n be the bit long-
shadow string of b′1…b′n.

Let lĥ be the compression algorithm of the new non-MD structural hash function
described in Section 3.2. Hence, we have

ḏ = lĥ(b1…bn) = ∏

n
i=1 Ci

ƀi % M, and ḏ ′ = lĥ(b′1…b′n) = ∏

n
i=1 Ci

ƀ′i % M,
where ƀi = ḅi 2

i with i = bi + (−1)
2(i – 1) / n (n / 2), and ƀ′i = ḅ′i 2

′
i with ′i = b′i + (−1)

2(i – 1) / n (n / 2).

If ḏ = ḏ ′, there is ∏

n
i=1 Ci

ƀi ≡ ∏

n
i=1 Ci

ƀ′i (% M).
Observe an extreme case.
Assume that C1 = … = Cn = C.
Owing to the max of 0 ≤ ƀi ≤ n, we define logically ∏n

i=1Cƀi ≡ ∏n
i=1C

(n + 1)n – iƀi (% M).
Under the circumstances, if ḏ = ḏ ′, then there is
∏

n
i=1 C

(n + 1)n – iƀi ≡ ∏

n
i=1 C

(n + 1)n – iƀ′i (% M), namely C

n i

=

1

(n + 1)n – iƀi ≡ C

n i

=

1

(n + 1)n – iƀ′i (% M).

Let z ≡

n
i=1 ƀi (n + 1)n – i (%), and z′ ≡

n
i=1 ƀ′i (n + 1)n – i (%).

Correspondingly, C z ≡ C z′ (% M).
We need to solve the above equation for z′.
If the order C is known, let z′ = z + kC, where k ≥ 1 is an integer. Once a fit k is

found, there will be C z ≡ C z

′ (% M), and a bit string can be inferred from ƀ′1…ƀ′n.
However, seeking C is of the integer factorization problem (IFP) at present because
the prime factors of must be known.

In practice, C1, …, Cn that are produced through the algorithm in Section 3.1 are
pairwise unequal, which implies that for any given short message b1…bn, seeking
another short message b′1…b′n such that ∏

n
i=1 Ci

ƀi ≡ ∏

n
i=1 Ci

ƀ′i (% M) is harder than the

670 S. Su et al.

IFP in computational complexity, namely b′1…b′n for lĥ(b1…bn) = lĥ(b′1…b′n) cannot
be found in IFP subexponential time.

Therefore, we say that the new non-MD structural hash function is weakly collision-free.

4.2.3 Compression Algorithm Is Resistant to Birthday Attack
First, observe an example of whether any two students in a class have the same birthday.

Suppose that the class has 23 students. If a teacher specifies a day (say February
12), then the chance that at least one student is born on that day is (1 – (364 / 365)23)
≈ 6.11 %. However, the probability that at least one student has the same birthday as
any other student is around (1 – (365×…×343 / 36523)) ≈ 50.73 %, which prompts
birthday attack on hash functions.

Birthday attack is widely exploited for finding any two messages and ′ such
that ĥ() = ĥ(′), namely (, ′) is a collision, where ĥ is a hash function [19]. If
the bit-length of a message digest is m, an adversary can find a collision (, ′) such
that ĥ() = ĥ(′) with probability 50% in roughly 1.1774 × 2m / 2 time, namely with
input of 1.1774 × 2m / 2 random messages [20].

However, to the new non-MD structural hash, a collision is transformed into a
mapping.

Theorem 1: The new non-MD structural hash function is resistant to birthday attack
on the assumption that the MPP and ASPP have only exponential time solutions.

Its proof is omitted due to limited pages.

4.2.4 Compression Algorithm is Resistant to Meet-in-the-Middle Attack
Meet-in-the-middle dichotomy used for attack on an intended expansion of a block
cipher was first developed by Diffie and Hellman in 1977 [21]. Section 3.10 of [3]
brings forth a meet-in-the-middle attack algorithm for solving a subset sum problem.

Let b1…bn be a short message, and its digest be ḏ ≡ ∏

n
i=1 Ci

ƀi (% M).
If bn / 2 = bn = 1 (thus, any bit shadow on the left of the middle point has no relation

with bits on the right), an adversary may attempt to attack the ASPP ḏ ≡ ∏

n
i=1 Ci

ƀi (%
M) by the meet-in-the-middle method.

However, owing to ƀi = ḅi 2
i with i = bi + (−1)

2(i – 1) / n (n / 2) for every i ∈ [1, n], when i
is from 1 to n / 2, there exists ƀ1…ƀn / 2 = (ḅ1 2b

1 + n / 2)…(ḅn / 2 2b
n),

which involves all the bits of the short message, namely a reasonable middle point does not exist.
If a fork is selected in proportion to (n / 3 : 2n / 3) or (n / 4 : 3n / 4), the right of the

fork substantially still involves all the bits b1, …, bn.
For instance, let n = 12, a short message (a bit string) = b1…b12, and a fork be to

(4 : 8), then
ƀ5…ƀ12 = (ḅ5 2b

11)(ḅ6 2b
12)(ḅ7 2b

1) (ḅ8 2b
2)(ḅ9 2b

3)(ḅ10 2b
4)(ḅ11 2b

5)(ḅ12 2b
6)

involves all the bits b1, …, b12.
The above dissection manifests that the meet-in-the-middle attack is essentially in-

effectual on the new non-MD structural hash function. Therefore, even if n = m,
namely the input length = the output length of the function, the time complexity of the
attack task is still O(2m) at present, but not O(m2m / 2).

 A New Non-Merkle-Damgård Structural Hash Function with Provable Security* 671

Besides, unlike

n
i=1 ci =

n
i=1 bi ci +

n
i=1 ¬bi ci in the SSP, there is not

∏

n
i=1 Ci = ∏

n
i=1 Ci

ƀi ∏

n
i=1 Ci

¬ƀi (% M)

in the ASPP, where ¬ƀi is the bit long-shadow of ¬bi, which implies there does not
exist an easy relation between the ASPP ḏ ≡ ∏

n
i=1 Ci

ƀi (% M) and the dichotomy.

4.2.5 Compression Algorithm is Strongly Collision-free
Theorem 2: If any arbitrary collision of the new non-MD structural hash function can be
found in subexponential time, the ASPP ∏

n
i=1 Ci

i ≡ 1 (% M) can be solved efficiently,

where i ∈ [−n, n] is the difference of two bit long-shadows at the same position.
Its proof is omitted due to limited pages.

5 Comparison with the Chaum-Heijst-Pfitzmann Hash

The Chaum-Heijst-Pfitzmann hash function is provably secure, and defined as follows [11]:

ĥ: w1, w2 ĥ(w1, w2) = α w
1 β w

2 % p ({0, ..., q − 1}2 → p − {0}),

where w1 and w2 are the two complementary parts of a short message, p and q (= (p −

1) / 2) are two big primes, and α and β are two generators of the group (*
p , ·). Hence,

the Chaum-Heijst-Pfitzmann function based on the difficulty of the DLP β = αx % p
compresses a short message of 2(lg p − 1) bits into a digest of lg p bits.

Let lg p = 1024, and then the time complexity of computing logα β % p is 280 ac-
cording to the subexponential time Lp[1/3, 1.923] [3], which means that the security
of the Chaum-Heijst- Pfitzmann hash is the 280 magnitude when lg p = 1024.

Let lg M = 80, and then the time complexity of solving the ASPP ḏ = ∏ n
i=1Ci

ƀi %
M for ƀ1, …, ƀn is also 280 since the ASPP only has an exponential time solution at
present [22], which means that the security of the new non-MD structural hash is also
the 280 magnitude when lg M = 80. Besides, let the bit-length n = 2046 of a short
message (w1, w2) = (b1…b1023, b1024…b2046) = b1…bn ≠ 0.

Under the same security, may draw a comparison between the new non-MD struc-
tural hash (the JUNA hash) and the Chaum-Heijst-Pfitzmann hash.

Table 1. Comparison between two non-MD structural hashes

 Chaum-Heijst-Pfitzmann hash JUNA hash
Running time (bit operations) 2(4lgp3) = 8589934592 4nm2 = 52428800 bit operations

Compression rate 1024 / 2046 ≈ 50.05% 80 / 2046 ≈ 3.91%
Resistant to birthday attack No

because the number of (w1, w2)′s
needed during birthday attack is
about 2lg p / 2 = 2512, and larger
than 280 which is the security
magnitude of the DLP.

Yes
because the number of b1…bn′s
needed during birthday attack is
about 2lg M / 2 = 240, and smaller
than 280 which is the security
magnitude of the ASPP.

Provably strongly collision-
free

Yes
on the assumption that a DLP has
a subexponential time solution.

Yes
on the assumption that an ASPP
has an exponential time solution.

672 S. Su et al.

In summary, the JUNA hash has some advantages over the Chaum-Heijst- Pfitzmann
one, and relatively the JUNA hash may be regarded lightweight.

6 Conclusion

In the paper, the authors propose a new non-MD structural hash function which contains the
initialization algorithm and the compression algorithm, and converts a short message or a
message digest of n bits into a string of m bits, where 80 ≤ m ≤ 232 and 80 ≤ m ≤ n ≤ 4096.

The authors analyze the security of the new non-MD structural hash function. The
analysis shows that the new non-MD structural hash is computationally one-way,
weakly collision-free, and strongly collision-free. Moreover, at present, any subexpo-
nential time algorithm for attacking the new non-MD structural hash is not found, and
its security is to the O(2m) magnitude.

Especially, the analysis illustrates that the new non-MD structural hash function is
resistant to birthday attack and meet-in-the-middle attack, and that the running time of
its compression algorithm is O(n m2) bit operations.

The new non-MD structural hash function also opens a door to convenience for the utilization
of a lightweight digital signing scheme of which the modulus length is not greater than 160 bits.

Acknowledgment. The authors would like to thank the Academicians Jiren Cai, Zhongyi Zhou,
Jianhua Zheng, Changxiang Shen, Zhengyao Wei, Binxing Fang, Guangnan Ni, Andrew C. Yao,
and Xicheng Lu for their important guidance, advice, and suggestions.

The authors also would like to thank the Professors Dingyi Pei, Jie Wang, Ronald L. Rivest,
Moti Yung, Adi Shamir, Dingzhu Du, Mulan Liu, Huanguo Zhang, Dengguo Feng, Yixian
Yang, Maozhi Xu, Hanliang Xu, Xuejia Lai, Yongfei Han, Yupu Hu, Dongdai Lin, Rongquan
Feng, Ping Luo, Jianfeng Ma, Lusheng Chen, Chuankun Wu, Wenbao Han, Bogang Lin,
Lequan Min, Qibin Zhai, Hong Zhu, Renji Tao, Zhiying Wang, Quanyuan Wu, and
Zhichang Qi for their important counsel, suggestions, and corrections.

References

1. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

2. Damgård, I.B.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

3. Menezes, A., Oorschot, P.V., Vanstone, S.: Handbook of Applied Cryptography. CRC
Press, London (1997)

4. Stallings, W.: Cryptography and Network Security: Principles and Practice, 2nd edn.
Prentice-Hall, New Jersey (1999)

5. Su, S., Yang, Y., Yang, B.: etc: Design and Analysis of a Hash Ring-iterative Structure.
Chinese Journal of Electronics 19(2), 232–236 (2010)

6. Su, S., Lü, S.: A Public Key Cryptosystem Based on Three New Provable Problems.
Theoretical Computer Science 426–427, 91–117 (2012)

7. Yan, S.Y.: Number Theory for Computing, 2nd edn. Springer, New York (2002)

 A New Non-Merkle-Damgård Structural Hash Function with Provable Security* 673

8. Hungerford, T.W.: Algebra. Springer, New York (1998)
9. Rosen, K.H.: Elementary Number Theory and Its Applications, 5th edn. Addison-Wesley,

Boston (2005)
10. Wiener, M.J.: Cryptanalysis of Short RSA Secret Exponents. IEEE Transactions on

Information Theory 36(3), 553–558 (1990)
11. Chaum, D., van Heijst, E., Pfitzmann, B.: Cryptographically strong undeniable signatures,

unconditionally secure for the signer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 470–484. Springer, Heidelberg (1992)

12. Merkle, R.C., Hellman, M.E.: Hiding information and Signatures in Trapdoor Knapsacks.
IEEE Transactions on Information Theory 24(5), 525–530 (1978)

13. Shamir, A.: A polynomial time algorithm for breaking the basic Merkle-Hellman
cryptosystem. In: 23th IEEE Symposium on the Foundations of Computer Science,
pp. 145–152. IEEE Press, New York (1982)

14. Du, D.Z., Ko, K., Hu, X.: Design and Analysis of Approximation Algorithms (in Chinese).
Higher Education Press, Beijing (2011)

15. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press,
Cambridge (2001)

16. Brickell, E.F.: Solving low density knapsacks. In: Advance in Cryptology: CRYPTO 1983,
pp. 25–37. Plenum Press, New York (1984)

17. Li T., Su, S.: Analysis of success rate of attacking knapsacks from JUNA cryptosystem by
LLL lattice basis reduction. In: 9th Int. Conf. on Comput. Intelligence and Security,
pp. 454–458. IEEE Press, New York (2013)

18. Coster, M.J., Joux, A., LaMacchia, B.A., et al.: Improved Low-Density Subset Sum
Algorithms. Computational Complexity 2(2), 111–128 (1992)

19. Bellare, M., Kohno, T.: Hash function balance and its impact on birthday attacks. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 401–418.
Springer, Heidelberg (2004)

20. Girault, M., Cohen, R., Campana, M.: A generalized birthday attack. In: Günther, C.G.
(ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 129–156. Springer, Heidelberg (1988)

21. Diffie, W., Hellman, M.E.: Exhaustive Cryptanalysis of the NBS Data Encryption
Standard. Computer 10(6), 74–84 (1977)

22. Su, S., Lü, S.: REESSE1+. Reward. Proof by Experiment. A New Approach to Proof of P
!= NP. Cornell University Library (2009). http://arxiv.org/pdf/0908.0482 (revised 2014)

© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 674–686, 2015.
DOI: 10.1007/978-3-319-21398-9_53

A Public Key Cryptoscheme Using Bit-Pairs
with Provable Semantical Security*

Shenghui Su1,2(), Shuwang Lü3, and Maozhi Xu4

1 Laboratory of Trusted Computing, Beijing University of Technology,
Beijing 100124, People’s Republic of China

reesse@126.com
2 College of Information Engineering, Yangzhou University,

Yangzhou 225009, People’s Republic of China
3 School of Computers, University of Chinese Academy of Sciences,

Beijing 100039, People’s Republic of China
4 School of Mathematics, Peking University, Beijing 100871, People’s Republic of China

Abstract. The authors give the definition and property of a bit-pair shadow, and
design the algorithms of a public key cryptoscheme based on a multivariate
permutation problem and an anomalous subset product problem to which no
subexponential time solutions are found so far, and regards a bit-pair as an op-
eration unit. Further, demonstrate that the decryption algorithm is correct, de-
duce the probability that a plaintext solution is nonunique is nearly zero, ana-
lyze the security of the new scheme against extracting a private key from a pub-
lic key and recovering a plaintext from a ciphertext on the assumption that an
integer factorization problem, a discrete logarithm problem, and a low-density
subset sum problem can be solved efficiently, and prove that new scheme using
random padding and permutation is semantically secure. The analysis shows
that the bit-pair method increases the density D of a related knapsack to 1+,

and decreases the modulus length lg M of the new scheme to

464, 544, or 640.

Keywords: Public key cryptoscheme · Semantical security · Bit-pair shadow ·
Random padding · Anomalous subset sum problem · Compact sequence

1 Introduction

In [1], we propose a prototypal public key cryptosystem called REESSE1+ which is
based on the three new provable problems, contains the five algorithms, and is used
for data encryption and digital signing. In REESSE1+, a ciphertext is defined as Ḡ ≡

∏ n
i=1Ci

ḅ
i (% M), an anomalous subset product problem (ASPP), where ḅ i is the bit

shadow of a bit bi, {Ci} is a public key, and n is the bit-length of a plaintext block [1].

 S. Su—This work is supported by MOST with Project 2007CB311100 and 2009AA01Z441.

 A Public Key Cryptoscheme Using Bit-Pairs with Provable Semantical Security* 675

Let C1 ≡ g
u

1 (% M), …, Cn ≡ g
u

n (% M), and Ḡ ≡ g
v (% M), where g is a generator of

(*
M, ·) which can be found when the modulus M < 21024 is factorized in tolerable sub-

exponential time [2]. Then solving Ḡ ≡ ∏n
i=1Ci

ḅ
i (% M) for ḅ1…ḅn is equivalent to solving

ḅ1 u1 + … + ḅn un ≡ v (%). (1)

where v may be substituted with v + k along with k ∈ [0, n – 1] [3].
Equation (1) is called an anomalous subset sum problem (ASSP) due to every ḅi ∈

[0, n] [1].
Likewise, due to every ḅi ∈ [0, n], {u1, …, un} is called a compact sequence [4].
May convert an ASSP into a subset sum problem (SSP) through converting ui to a

binary number, and thus the density of an ASSP knapsack is defined as

D = n
i=1 lg n / lg M = nlg n / lg M. (2)

Evidently, the parameters lg M and n have an important influence on the value of D.
In REESSE1+, there is D < 1, which means that the original solution to an ASSP

may possibly be found through the LLL lattice basis reduction algorithm [5][6]. The
LLL reduction algorithm is famous for it has a fatal threat to the classical MH knapsack
cryptosystem [7] which produces a ciphertext in the form of a subset sum problem.

To avoid the low density of a knapsack from an ASPP and to decrease the modulus
length of a system, on the basis of REESSE1+, we propose a new cryptoscheme
called JUNA which treats a bit-pair as an operation unit, fetches randomicity in when
a bit string is encrypted, and it is proved to be semantically secure.

Throughout this paper, unless otherwise specified, n ≥ 80 is the bit-length of a plain-
text block, ñ ≥ 144 is the item-length of a public key sequence, the sign % denotes
“modulo”, does “M – 1” with M prime, lg x means the logarithm of x to the base 2,
¬ does the opposite value of a bit, Þ does the maximal prime allowed in coprime
sequences, |x| does the absolute value of a number x, x does the order of an element x
% M, S does the size of a set S, gcd(a, b) represents the greatest common divisor of
two integers, and “bos” indicates the number of bit operations. Without ambiguity,
“% M” is usually omitted in expressions.

2 Several Definitions

2.1 A Coprime Sequence

Definition 1. If A1, …, An are n pairwise distinct positive integers such that ∀ Ai, Aj (i ≠ j),
either gcd(Ai, Aj) = 1 or gcd(Ai, Aj) = F ≠ 1 with (Ai / F) ł Ak and (Aj / F) ł Ak ∀ k ≠ i, j ∈ [1,
n], these integers are called a coprime sequence, denoted by {A1, …, An}, shortly {Ai}.

Note that the elements of a coprime sequence are not necessarily pairwise coprime,
but a sequence of which the elements are pairwise coprime is a coprime sequence.

Property 1. Let {A1, …, An} be a coprime sequence. If randomly select k ∈ [1, n]
elements Ax1, …, Axk from the sequence, then the mapping from a subset {Ax1, …, Axk}

676 S. Su et al.

to a subset product G = ∏ k
i = 1 Axi is one-to-one, namely the mapping from b1…bn to G

= ∏ n
i = 1Ai

b
i is one-to-one, where b1…bn is a bit string.

Refer to [1] for its proof.

2.2 A Bit Shadow

Definition 2. Let b1…bn ≠ 0 be a bit string. Then ḅi with i ∈ [1, n] is called a bit shadow
if it comes from such a rule: ḅi = 0 if bi = 0, ḅi = 1 + the number of successive 0-
bits before bi if bi = 1, or ḅi = 1 + the number of successive 0-bits before bi + the
number of successive 0-bits after the rightmost 1-bit if bi is the leftmost 1-bit.

Fact 1: Let ḅ1…ḅn be the bit shadow string of b1…bn ≠ 0. Then there is n
i=1ḅ i = n.

Property 2. Let {A1, …, An} be a coprime sequence, and ḅ1…ḅn be the bit shadow
string of b1…bn ≠ 0. Then the mapping from b1…bn to G = ∏ n

i=1 Ai
ḅ

i is one-to-one [8].

The proofs of Fact1 and Property 2 are omitted due to limited pages.

2.3 A Bit-Pair Shadow

To make the modulus M of the new cryptoscheme comparatively small, we will util-
ize the idea of a bit-pair string with 2 bits to 3 items.

In this wise, the length of a coprime sequence is changed to 3n / 2, namely {A1, …,
An} is substituted with {A1, A2, A3, …, A3n / 2 – 2, A3n / 2 – 1, A3n / 2} that may be logically
orderly partitioned into n / 2 triples of which each comprises 3 elements: A3j – 2, A3j – 1,
A3j with j ∈ [1, n / 2]. Likewise, a non-coprime sequence {C1, …, Cn} is substituted
with {C1, C2, C3, …, C3n / 2 – 2, C3n / 2 – 1, C3n / 2}, where (C3j – 2, C3j – 1, C3j) with j ∈ [1,
n /2] is acquired from (A3j – 2, A3j – 1, A3j) and other private parameters.

Definition 3. Let {A3j – 2, A3j – 1, A3j | j = 1, …, n /2} be a coprime sequence. Orderly
partition a bit string b1…bn into n /2 pairs B1, …, Bn / 2, where Bj with j ∈ [1, n / 2] has
four states: 00, 01, 10, and 11 which correspond to 1, A3j – 2, A3j – 1, and A3j respective-
ly. Then B1, …, Bn / 2 is called a bit-pair string, shortly B1…Bn / 2.

Property 3. Let {A3j – 2, A3j – 1, A3j | j = 1, …, n/2} be a coprime sequence, and B1…Bn / 2 be a
nonzero bit-pair string. Then the mapping from B1…Bn / 2 to G′ = ∏n/2

i=1(A3(i – 1) + Bi
)Bi

/

3 with A0

= 1 is one-to-one, where Bi / 3 = 0 or 1, and G′ is called a coprime subsequence product.
Its proof is parallel to that of Property 1 in [1].

Definition 4. Let B1…Bn / 2 be a nonzero bit-pair string. Then Ḅ i with i ∈ [1, n / 2] is
called a bit-pair shadow if it comes from such a rule: Ḅ i = 0 if Bi = 00, Ḅ i = 1 +
the number of successive 00-pairs before Bi if Bi ≠ 00, or Ḅ i = 1 + the number of
successive 00-pairs before Bi + the number of successive 00-pairs after the rightmost
non-00-pair if Bi is the leftmost non-00-pair.

Fact 2. Let Ḅ1…Ḅn / 2 be the bit-pair shadow string of B1…Bn / 2 ≠ 0. Then there is n/2
i=1Ḅi = n / 2.

Its proof is omitted due to limited pages.

 A Public Key Cryptoscheme Using Bit-Pairs with Provable Semantical Security* 677

Property 4. Let {A3j – 2, A3j – 1, A3j | j = 1, …, n /2} be a coprime sequence, and
Ḅ1…Ḅn / 2 be the bit-pair shadow string of B1…Bn / 2 ≠ 0. Then the mapping from
B1…Bn / 2 to G = ∏n/2

i=1 (A3(i – 1) + Bi
)Ḅ

i with A0 = 1 is one-to-one, where G is called an

anomalous coprime subsequence product.
Its proof is parallel to that of Property 2 in Section 2.2.

2.4 A Lever Function

Definition 5. The secret parameter ℓ(i) in the key transform of a public key crypto-
scheme is called a lever function, if it has the following features:

• ℓ(.) is an injection from the domain {1, …, n} to the codomain Ω ⊂ {5, …, } with
 large;

• the mapping between i and ℓ(i) is established randomly without an analytical
expression;

• an attacker has to be faced with all the arrangements of n elements in Ω when
extracting a related private key from a public key;

• the owner of a private key only needs to consider the accumulative sum of n
elements in Ω when recovering a related plaintext from a ciphertext.

The latter two points manifest that if n is large enough, it is infeasible for the
attacker to search all the permutations of elements in Ω exhaustively while the de-
cryption of a normal ciphertext is feasible in polynomial time in n. Thus, there are the
large amount of calculation on ℓ(.) at “a public terminal”, and the small amount of
calculation on ℓ(.) at “a private terminal”.

Notice that in arithmetic modulo , −x represents – x; considering the
speed of decryption, the absolute values of all the elements should be comparatively
small; the lower limit 5 will make seeking the root W from W ℓ

(i) ≡ Ai
–1

 Ci (% M)
face an unsolvable Galois group when the value of Ai ≤ 1201 is guessed [9].

Property 5 (Indeterminacy of ℓ(.)). Let δ = 1 and Ci ≡ (Ai W
ℓ

(i))δ (% M) with ℓ(i) ∈ Ω

= {5, 6, …, n + 4} and Ai ∈ Λ = {2, 3, …, Þ | Þ ≤ 1201} for i = 1, …, n. Then ∀ W
(W ≠) ∈ (1,) and ∀ x, y, z (x ≠ y ≠ z) ∈ [1, n],

 when ℓ(x) + ℓ(y) = ℓ(z), there is ℓ(x) + W + ℓ(y) + W ≠ ℓ(z) + W (%);
 when ℓ(x) + ℓ(y) ≠ ℓ(z), there always exist Cx ≡ A′x W′ ℓ′(x) (% M), Cy ≡ A′y W′ ℓ′(y)

(% M), and Cz ≡ A′z W′ ℓ′(z) (% M) such that ℓ′(x) + ℓ′(y) ≡ ℓ′(z) (%) with A′z ≤ Þ.
Refer to [1] for its proof.
Notice that according to the proof of Property 5 in [1], it is not difficult to understand

that when Ω = {5, 6, …, n + 4} is substituted with Ω = {+/−5, +/−7, …, +/−(2n + 3)},
where “+/−” means the selection of the “+” or “−” sign, Property 5 still holds.

3 Design of the New Cryptoscheme

Due to Lp[1/3, 1.923] = 280 with p prime and lg p ≈ 1024 [10], the shortest bit-length of
a plaintext block should be 80. In the new scheme, to acquire provable semantical securi-
ty, random 16 bits are appended the terminal of a plaintext block of n bits when it is
encrypted.

678 S. Su et al.

Let ñ = n + 16 with n = 80, 96, or 112. Additionally, two adjacent bits are orderly
treated as a unit, namely a bit-pair string B1…Bñ/2 is used to represent a plaintext
block b1…bñ ≠ 0.

3.1 Key Generation Algorithm

Considering decryption speed, the absolute values of elements of Ω should be as small
as possible, and every three successive elements of Ω are treated as a triple according
to 2 bits to 3 items.

Let Λ = {2, …, Þ}, where Þ = 937, 991, or 1201 corresponding to ñ = 96, 112, or

128 separately.
Let ĩ = lg M = 464, 544, or 640 corresponding to ñ = 96, 112, or 128 separately.
Assume that Āj is the maximum in (A3j – 2, A3j – 1, A3j) ∀ j ∈ [1, ñ /2].
The following algorithm is generally employed by the owner of a key pair.
INPUT: the integer n; the integer ĩ; the prime Þ.
S1: Let ñ ← n + 16, Λ ← {2, …, Þ};

yield the first ñ primes ṗ1, …, ṗñ in the natural number set;
yield Ω ← {(+/−(6j−1), +/−(6j+1), +/−(6j+3))Æ | j=1, …, ñ /2}.

S2: Produce an odd coprime {A1, …, A3ñ/2 | Ai ∈ Λ} = {A3j – 2, A3j – 1, A3j | j = 1, …, ñ/2};
arrange Ā1, …, Āñ / 2 to Āx1, …, Āxñ /2 in descending order.

S3: Find a prime M > Āx1

ñ

/

4 + 1

 ∏ñ / 4
i = 2Āxi making lg M = ĩ and

∏

k
i = 1 ṗi

e
i | , where k meets ∏

k
i = 1 ei ≥ 210 and ṗk < ñ.

S4: Produce pairwise distinct (ℓ(3j – 2), ℓ(3j – 1), ℓ(3j)) ∈ Ω for j = 1, …, ñ /2.
S5: Stochastically pick W, δ ∈ (1,) making W ≥ 2n – 20 and gcd(δ,) = 1.
S6: Compute Ci ← (Ai W ℓ

(i))δ % M for i = 1, …, 3ñ /2.

OUTPUT: a public key ({C1, …, C3ñ/2}, M); a private key ({A1, …, A3ñ/2}, W, δ, M).
The lever function {ℓ(1), …, ℓ(ñ/2)} is discarded but must not be divulged. Notice that
 at S1, Ω = {(+/−(6j − 1), +/−(6j + 1), +/−(6j + 3))Æ | j = 1, …, ñ /2} indicates that

Ω is one of (3!)ñ / 223ñ / 2 potential sets consisting of 3-tuple elements, where “+/−”
means the selection of the “+” or “−” sign, and the subscript Æ means that (+/−(6j−1),
+/−(6j+1), +/−(6j+3))Æ is a permutation of (+/−(6j−1), +/−(6j+1), +/−(6j+3));

 at S2, gcd(A3i – 2, A3i – 1, A3i) ≠ 1 (i ∈ [1, ñ /2]) is allowed ― (33, 32, 3) for exam-
ple since only one of three elements will occur in the product G;

 at S3, the inequation M >Āx1

ñ

/

4

+

1∏ñ/4

i=2Āxi assures that a ciphertext can be decrypted correctly;
 at S5, let W ≡ g / F (% M), then W = / gcd(, / F) [9], where F ≥ 2n – 20 is a

factor of , and g is a generator by Algorithm 4.80 in Section 4.6 of [10].

Definition 6. Given ({C1, …, C3ñ / 2}, M), seeking the original ({A1, …, A3ñ / 2},
{ℓ(1), …, ℓ(3ñ /2)}, W, δ) from Ci ≡ (Ai W ℓ

(i))δ (% M) with Ai ∈ Λ = {2, …, Þ | Þ ≤

1201} and ℓ(i) from Ω = {(+/−(6j−1), +/−(6j+1), +/−(6j+3))P | j = 1, …, ñ /2} for i =
1, …, 3ñ /2 is referred to as a multivariate permutation problem (MPP).

Property 6: The MPP Ci ≡ (Ai W ℓ

(i))δ (% M) with Ai ∈ Λ = {2, …, Þ | Þ ≤ 1201} and

ℓ(i) from Ω = {(+/−(6j−1), +/−(6j+1), +/−(6j+3))P | j=1, …, ñ /2} for i = 1, …, 3ñ /2
is computationally at least equivalent to the DLP in the same prime field.

Refer to Section 4.1 of [1] for its proof.

 A Public Key Cryptoscheme Using Bit-Pairs with Provable Semantical Security* 679

3.2 Encryption Algorithm

This algorithm is employed by a person who wants to encrypt plaintexts.
INPUT: a public key ({C1, …, C3ñ / 2}, M);

the bit-pair string B1…Bn / 2 of a plaintext block b1…bn ≠ 0.
Notice that if the number of 00-pairs in B1…Bn/2 is larger than n/4, let b1…bn = ¬b1…¬bn

in order that a related ciphertext can be decrypted conforming to the constraint on M.
S1: Yield a random bit string bn + 1…bñ appended to b1…bn;

form B1…Bñ / 2 until the number of 00-pairs ≤ ñ /4.
S2: Set C0 ← 1, k ← 0, i ← 1, ← 0.
S3: If Bi = 00 then let k ← k + 1, Ḅi ← 0

else {let Ḅi ← k + 1, k ← 0; if = 0 then ← i else null.}
S4: Let i ← i + 1; if i ≤ ñ /2 then goto S3.
S5: If k ≠ 0 then let Ḅ ← Ḅ + k.
S6: Stochastically produce r1…rñ / 2 ∈ {0, 1}ñ / 2; set r ← 1.
S7: Compute Ḡ ← ∏ñ / 2

i = 1 (Cri(3(i – 1) + Bi) + ¬ri(3(i – Ḅi) + Bi))
Ḅ

i % M.

OUTPUT: a ciphertext Ḡ.
Obviously, a different ciphertext will be outputted every time an identical plaintext is

inputted repeatedly. The identical plaintext may correspond to at most 2ñ/42ñ-n different
ciphertexts because ñ/2 bit-pairs may be interlaced by a 00-pair and a non-00-pair, and
bn+1…bñ is produced randomly. It will take the running time of O(ñ2ñ

/

22ñ

-

nlg2M) bit

operations exhaustively to search all the possible ciphertexts of a plaintext.
Note a JUNA ciphertext ∏ñ/2

i=1(Cri(3(i – 1) + Bi) + ¬ri(3(i – Ḅi) + Bi))
Ḅ

i (% M) is different from a Naccache-

Stern ciphertext c ≡ ∏

n
i=1 vi

b
i (% M) [11], where vi ≡ i

1

/

δ (% M) with i prime is a public key.

Definition 7. Given ({C1, …, C3ñ / 2}, M) and Ḡ, seeking B1…Bñ / 2 from Ḡ′ ≡ ∏ñ/2
i=1

(C3(i – 1) + Bi
)Bi

/3 (% M) with C0 = 1 is referred to as a subset product problem (SPP),

where B1…Bñ / 2 is the bit-pair string of b1…bñ ≠ 0.

Property 7. The SPP Ḡ′ ≡ ∏ñ/2
i=1 (C3(i – 1) + Bi

)Bi
/3 (% M) with C0 = 1 is computationally at least

equivalent to the DLP in the same prime field, where B1…Bñ/2 ≠ 0 is a bit-pair string.

Definition 8: Given ({C1, …, C3ñ / 2}, M) and Ḡ, seeking B1…Bñ / 2 from Ḡ ≡ ∏ñ/2
i=1

(C3(i – 1) + Bi
)Ḅ

i (% M) or Ḡ ≡ ∏ñ/2
i=1 (Cri(3(i – 1) + Bi) + ¬ri(3(i – Ḅi) + Bi))

Ḅ
i (% M) with C0 = 1 and r1…rñ / 2 a

random bit string is referred to as an anomalous subset product problem (ASPP), where
Ḅ1…Ḅñ/2 is the bit-pair shadow string of B1…Bñ / 2 corresponding to b1…bñ ≠ 0.

Property 8: The ASPP Ḡ ≡ ∏ñ/2
i=1 (C3(i – 1) + Bi

)Ḅ
i (% M) with C0 = 1 is computationally at

least equivalent to the DLP in the same prime field, where Ḅ1…Ḅñ / 2 is the bit-pair
shadow string of B1…Bñ / 2 ≠ 0.

Property 9: The ASPP Ḡ ≡ ∏ñ/2
i=1 (Cri(3(i – 1) + Bi) + ¬ri(3(i – Ḅi) + Bi))

Ḅ
i (% M) with C0 = 1 and

r1…rñ / 2 a random bit string is computationally at least equivalent to the DLP in the
same prime field, where Ḅ1…Ḅñ / 2 is the bit-pair shadow string of B1…Bñ / 2 ≠ 0.

The proofs of Property 7, 8, 9 are omitted due to limited pages.

680 S. Su et al.

3.3 Decryption Algorithm

This algorithm is employed by a person who wants to decrypt ciphertexts.
INPUT: a private key ({A1, …, A3ñ / 2}, W, δ, M); a ciphertext Ḡ.
It should be noted that due to 2|ñ/2

i=1 Ḅi and 2łℓ(ri(3(i–1)+Bi)+¬ri(3(i–Ḅi)+Bi)) for i ∈
[1, ñ/2] with ℓ(0) = 0, ḵ = ñ/2

i=1 Ḅi ℓ(ri(3(i–1)+Bi)+¬ri(3(i–Ḅi)+Bi)) must be even.

S1: Compute Z0 ← Ḡ δ−1

 % M; set Z1 ← Z0, ṣ ← 0.
S2: If 2 | Zṣ then {do Zṣ ← Zṣ W 2(–1)ṣ % M; goto S2.}
S3: Set B1…Bn / 2 ← 0, j ← 0, k ← 0, ṽ ← 0, i ← 1, G ← Zṣ.
S4: If (A3 i – j)

ṽ +

1 | G then {let ṽ ← ṽ + 1; goto S4.}

S5: Let j ← j + 1; if ṽ = 0 and j ≤ 2 then goto S4.
S6: If ṽ = 0 then

S6.1: let k ← k + 1, i ← i + 1
else

S6.2: compute G ← G / (A3 i – j)
ṽ;

S6.3: if k > 0 or ṽ ≥ i then let Bi ← 3 – j, i ← i + 1 else let Bi + ṽ – 1 ← 3 – j, i ← i + ṽ ;
S6.4: set ṽ ← 0, k ← 0.

S7: If i ≤ ñ /2 and G ≠ 1 then set j ← 0, goto S4.
S8: If G ≠ 1 then {set ṣ ← ¬ṣ ; do Zṣ ← ZṣW

2(–1)ṣ % M; goto S2.}
S9: Extract B1…Bn / 2 from B1…Bñ / 2.
OUTPUT: a related plaintext B1…Bn / 2, namely b1…bn.
Notice that only if Ḡ is a true ciphertext, can the algorithm always terminate normally,

and b1…bn will be original although r1…rñ/2 is brought into an encryption process.

4 Correctness and Uniqueness

4.1 Correctness of the Decryption Algorithm

Because (*
M , ·) is an Abelian group, namely a commutative group, ∀ḵ ∈ [1,], there is W

ḵ

(W –1)ḵ ≡ W ḵ (W ḵ
)–1 ≡ 1 (% M), where W ∈ [1,] is any arbitrary integer.

Fact 3: Let ḵ = ñ/2
i=1 Ḅi ℓ(ri(3(i–1)+Bi)+¬ri(3(i–Ḅi)+Bi)) % with ℓ(0) = 0, where

Ḅ1…Ḅñ/2 is the bit-pair shadow string of B1…Bñ/2 corresponding to b1…bñ ≠ 0, and

r1…rñ/2 is a random bit string. Then Ḡδ
−1

(W –1)ḵ ≡ ∏ñ/2
i=1 (Ari(3(i – 1) + Bi) + ¬ri(3(i – Ḅi) + Bi))

Ḅ
i (% M).

Its proof is omitted due to limited pages.
Notice that in practice, ḵ is unknowable in advance.
However, because |ḵ | < ñ(2(3ñ/2)+3) / 2 = 3ñ(ñ + 1) / 2 is comparatively small, we may

search ḵ heuristically by multiplying W–2 or W2 % M and judging whether G = 1 after it is
divided exactly by some (A3 i – j)

ṽ. It is known from the decryption algorithm that the orig-
inal B1…Bñ/2 will be acquired at the same time the condition G = 1 is satisfied.

4.2 Uniqueness of a Plaintext Solution

Because the public key {C1, …, C3ñ/2} is a non-coprime sequence, the mapping from
B1…Bñ/2 to Ḡ = ∏ñ/2

i=1 (Cri(3(i – 1) + Bi) + ¬ri(3(i – Ḅi) + Bi))
Ḅ

i % M is theoretically many-to-one.

 A Public Key Cryptoscheme Using Bit-Pairs with Provable Semantical Security* 681

It might possibly result in the nonuniqueness of a plaintext solution B1…Bñ/2 when Ḡ is
being unveiled.

Fact 4. The probability that a plaintext solution for Ḡ = ∏ñ / 2
i = 1 (Cri(3(i – 1) + Bi) + ¬ri(3(i – Ḅi) +

Bi))
Ḅ

i % M is nonunique is nearly zero.

Its proof is omitted due to limited pages.

5 Security Analysis of a Private Key

In the below cryptanalysis, we suppose that the integer factorization problem (IFP) N

= pq with lgN < 1024 [2], the discrete logarithm problem (DLP) y ≡ gx (% p) with
lg p < 1024 [12][13], and the subset sum problem (SSP) of low density s ≡ n

i=1ci bi
(% M) with D ≈ n / lgM < 1 and n < lgM < 1024 [7] can be solved in tolerable
subexponential time or in polynomial time [14].

Notice that the structure of the set Ω consisting of triples has no change in essence
compared with the Ω in [1].

Hence, the security analysis of a private key is similar to Section 4 of [1].

6 Security Analysis of a Plaintext

The security of a plaintext depends on the ASPP Ḡ ≡ ∏ñ/2
i=1 (Cri(3(i – 1) + Bi) + ¬ri(3(i – Ḅi) + Bi))

Ḅ
i (%

M) with C0 = 1 and r1…rñ/2 a random bit string.

Definition 9. Let A and B be two computational problems. A is said to reduce to B in
polynomial time, written as A ≤

P
T B, if there is an algorithm for solving Α which calls,

as a subroutine, a hypothetical algorithm for solving B, and runs in polynomial time,
excluding the time of the algorithm for B [10][15].

Definition 10. Let A and B be two computational problems. If A ≤

P
T B and B ≤

P
T A,

then A and B are said to be computationally equivalent, written as A =

P
T B [10][15].

Definition 9 and 10 suggest a reductive proof method called polynomial time Tur-
ing reduction (PTR) [15].

Naturally, we will enquire whether A <

P
T B exists or not. The definition of A <

P
T B

may possibly be given theoretically, but the proof of A <

P
T B is not easy in practice.

Let Ĥ(y = f(x)) represent the complexity or hardness of solving the problem y = f(x)
for x [14].

6.1 Resisting LLL Lattice Basis Reduction

We know that after a lattice basis is reduced through the LLL algorithm, the final
reduced base will contain the shortest or approximately shortest vectors, but among
them does not necessarily exist the original solution to a subset sum problem because
only if

682 S. Su et al.

 the solution vector for the SSP is the shortest,
 the shortest vector is unique in the lattice,

will the original solution vector appear in the reduced base with large probability.
In the new cryptoscheme, there are ñ = 96, 112, or 128 and lg M = 464, 544, or

640. Under the circumstances, the DLP and IFP can be solved in tolerable subexpo-
nential time, namely the DLP and IFP cannot resist the attack of adversaries.

We first consider the ASPP Ḡ ≡ ∏ñ/2
i=1 (C3(i – 1) + Bi

)Ḅ
i (% M).

For convenience, extend Ḅ1…Ḅñ/2 to ḅ′1…ḅ′3ñ/2 by the following rule for i = 1, …, ñ / 2:
 when Ḅi = 0, let ḅ′3(i – 1) + 1 = ḅ′3(i – 1) + 2 = ḅ′3(i – 1) + 3 = 0;
 when Ḅi ≠ 0, let ḅ′3(i – 1) + 1 = ḅ′3(i – 1) + 2 = ḅ′3(i – 1) + 3 = 0, and ḅ′3(i – 1) + Bi

 = Ḅi.

In this way, the ASPP Ḡ ≡ ∏ñ/2
i=1 (C3(i – 1) + Bi

)Ḅ
i (% M) is converted into Ḡ ≡ ∏3ñ/2

i=1 Ci
ḅ′

i (% M).

Let g be a generator of the group (*
M, ·).

Let C1 ≡ g
u

1 (% M), …, C3ñ / 2 ≡ g
u

3ñ / 2 (% M), and Ḡ ≡ g
v (% M).

Then, through a conversion in subexponential time, seeking B1…Bñ / 2 from Ḡ is
equivalent to seeking ḅ′1…ḅ′3ñ / 2 from the congruence

u1 ḅ′1 + … + u3ñ / 2 ḅ′3ñ / 2 ≡ v (%), (3)

where v may be substituted with v + k along with k ∈ [0, 3ñ /2] [3].
Similar to Section 1, {u1, …, u3ñ / 2} is called a compact sequence due to every ḅ′i ∈

[0, ñ /4 + 1] [4], and solving Equation (3) for ḅ′1…ḅ′3ñ / 2 is called an ASSP [1].
May also convert this ASSP into a SSP through splitting ui into bits, and thus ac-

cording to ḅ′i ∈ [0, ñ /4 + 1], the density of the related ASSP knapsack is defined as D
= 3ñ/2

i=1 lg(ñ /4 + 1) / lg M = (3ñ /2)lg(ñ /4 + 1) / lg M. Namely,

D = 3ñlg(ñ /4 + 1) / (2lg M). (4)

which is slightly different from Formula (2).
Concretely speaking, in the new cryptoscheme, there are
D = 144 × 5 / 464 ≈ 1.5517 > 1 for ñ = 96 and lg M = 464;
D = 168 × 5 / 544 ≈ 1.5441 > 1 for ñ = 112 and lg M = 544;
D = 192 × 6 / 640 ≈ 1.8000 > 1 for ñ = 128 and lg M = 640.
Therefore, Equation (3) does represent an ASSP of high density, which indicates

that many different subsets will have the same sum, and probability that the original
solution vector will occur in the final reduced lattice basis is nearly zeroth. Mean-
while, our experiment demonstrates that the original solution vector does not occur in
the final reduced base [16].

Because Ḡ ≡ ∏ñ/2
i=1 (C3(i – 1) + Bi

)Ḅ
i (% M) is only a special case of Ḡ ≡ ∏ñ/2

i=1 (Cri(3(i – 1) + Bi)

+ ¬ri(3(i – Ḅi) + Bi))
Ḅ

i (% M), the latter is also able to resist the LLL lattice basis reduction.

6.2 Avoiding Meet-in-the-middle Attack

Meet-in-the-middle dichotomy was first developed in 1977 [17]. Section 3.10 of [10]
puts forward a meet-in-the-middle attack on a subset sum problem. It is not difficult
to understand that the time complexity of the above algorithm is O(n2n / 2).

 A Public Key Cryptoscheme Using Bit-Pairs with Provable Semantical Security* 683

Likewise, currently the versatile meet-in-the-middle dichotomy may be used to as-
sault the ASSP Ḡ ≡ ∏ñ/2

i=1 (Cri(3(i – 1) + Bi) + ¬ri(3(i – Ḅi) + Bi))
Ḅ

i (% M) with entries

(∏ñ/4
i=1 (Cri(3(i – 1) + Bi) + ¬ri(3(i – Ḅi) + Bi))

Ḅ
i, (r1, …, rñ / 4), (B1, …, Bñ / 4))

for (r1, …, rñ/4) ∈ {0, 1}ñ/4 and (B1, …, Bñ/4) ∈ {00, 01, 10, 11}ñ/4 when Bñ/4 ≠ 00 and
Bñ/2 ≠ 00 which occurs with probability 9 / 16 = 0.5625. Obviously, the random bit
string r1…rñ/4 extends the scope of exhaustive search. Further, It is easy to see that the
running time of this attack task is O(ñ2ñ/22ñ/4lg2M) = O(ñ23ñ/4lg2M) bit operations.

Concretely speaking,
when ñ = 96 namely n = 80 with lg M = 464, Ŧm = 2723 × 96 / 4(29)2 = 297 > 280 bos;
when ñ = 112 namely n = 96 with lg M = 544, Ŧm = 2723 × 112 / 4(210)2 = 2111 > 296 bos;
when ñ = 128 namely n = 112 with lg M = 640, Ŧm = 2823 × 128 / 4(210)2 = 2124 > 2112 bos.
Therefore, the new cryptoscheme can resist the meet-in-the-middle attack.

6.3 Avoiding Adaptive-chosen-Ciphertext Attack

Most of public key cryptoschemes may probably be faced with adaptive-chosen-
ciphertext attack [18]. However, It is lucky the Cramer-Shoup asymmetric encryption
scheme is very indistinguishable and nonmalleable [19], and proven to be secure
against the adaptive-chosen-ciphertext attack under the cryptographic assumptions
[20]. So is the OAEP+ scheme [21].

6.3.1 Indistinguishability of Ciphertexts
In the encryption process of a JUNA plaintext, a random padding string of ñ − n
bits is appended to the terminal of the JUNA plaintext, which changes the original
plaintext to an extended plaintext, and a random permutation string of ñ /2 bits is
introduced into the arrangement of bit-pairs of the extended plaintext, which is equiv-
alent to the thing that the order of triple items of a public key is varied along with
every encryption.

Due to the interlacement of 00-pairs and non-00-pairs and the randomicity of bit
string generation, the padding string and the permutation string make one identical
original plaintext be able to correspond to at most 2ñ / 42ñ - n (exponential in n) different
ciphertexts. It will take the running time of O(ñ2ñ / 22ñ - nlg2M) bit operations exhaus-
tively to search all the possible ciphertexts of an original plaintext. Therefore, the
correspondence between any arbitrary ciphertext and a related original plaintext are
indistinguishable in subexponential time.

Concretely speaking, the running time of searching all the ciphertexts of an origi-
nal plaintext is

Ŧs = (96)29 6 / 229 6 - 80(464)2 ≈ 28 8 > 28 0 for n = 80, ñ = 96, and lg M = 464;
Ŧs = (112)21 1 2 / 221 1 2 - 96(544)2 ≈ 29 8 > 29 6 for n = 96, ñ = 112, and lg M = 544;
Ŧs = (128)2128/22128-112(644)2 ≈ 2108 ≈ 2112 for n = 112, ñ = 128, and lg M = 640.

684 S. Su et al.

6.3.2 Nonmalleability of Ciphertexts
An encryption scheme is said to be malleable if it is possible for an adversary to trans-
form a ciphertext into another ciphertext revertible to a related plaintext. That is, giv-
en an cipher-text of a plaintext , it is possible to generate another ciphertext which
can decrypt to the plaintext f() without necessarily knowing or learning , where f
is a known function [19].

By way of examples, let a RSA ciphertext = e % N, then ze = (z)e % N is a
malleation of which decrypts to f() = z % N. Again let an ElGamal ciphertext
= (gr, yr % p), then (gr, zyr % p) is a malleation of (gr, yr % p) which decrypts to
f() = z % p. Thus, if ′ = z % p is known, then = ′z-1 % p is found.

In the new cryptoscheme, there is the ciphertext Ḡ = E(Ḃ) = ∏ñ/2
i=1 (Cri(3(i – 1) + Bi) + ¬ri(3(i –

Ḅi) + Bi))
Ḅ

i % M which takes a bit-pair as an operation unit, where Ḃ = B1…Bñ/2 is a re-
lated extended plaintext, and thus, evidently the plaintext function f(Ḃ) = zḂ % M is
not suitable for Ḡ. Again considering that Bj occurs in the subscript of multiplied Ci,
and moreover is relevant to the random bit string r1…rñ/2 that can be guessed only in
exponential time, it is impossi-ble to exist other plaintext function f(Ḃ) which corres-
ponds to the malleation of E(Ḃ) = Ḡ.

6.3.3 Proof of the Semantical Security
If the security requirement of a cryptoscheme can be stated formally in an antagonis-
tic model, as opposed to heuristically, with clear assumptions that certain computa-
tional problems are intractable, and an adversary has access to he algorithms of the
cryptoscheme as well as enough computational resources, the cryptoscheme possesses
provable security [22][23].

Definition 11. A cryptoscheme is said to be semantically secure if an adversary who
knows the encryption algorithm of the cryptoscheme and is in possession of a cipher-
text is unable to determine any information about the related plaintext [22].

It is subsequently demonstrated that semantic security is equivalent to another de-
finition of security called ciphertext indistinguishability [24]. If a cryptoscheme has
the property of indistinguishability, then an adversary will be unable to distinguish a
pair of ciphertexts based on the two plaintexts encrypted by a challenger.

A chosen plaintext attack (CPA) is an attack model for cryptanalysis which pre-
sumes that the attacker has the capability to choose arbitrary plaintexts to be en-
crypted and obtain the corresponding ciphertexts that are expected to decrease the
security of an encryption scheme [23].

Definition 12. A cryptoscheme is said to be IND-CPA (indistinguishable under cho-
sen plaintext attack), namely semantically secure against chosen plaintext attack, if
the adversary cannot determine which of the two plaintexts was chosen by a challen-
ger, with probability significantly greater than 1/2, where 1 /2 means the success rate
of random guessing [23][25].

For a probabilistic asymmetric cryptoscheme based on computational security, in-
distinguishability under chosen plaintext attack is illuminated by a game between an
adversary and a challenger, where the adversary is regarded as a probabilistic poly-
nomial time Turing machine, which means that it must complete the game and output
a guess within a polynomial number of operation steps.

 A Public Key Cryptoscheme Using Bit-Pairs with Provable Semantical Security* 685

Notice that for the JUNA cryptoscheme, the adversary may be also regarded as a
probabilistic subexponential time Turing machine since no subexponential time solu-
tion to the MPP or ASPP is found so far.

Theorem 1. The JUNA cryptoscheme is semantically secure against chosen plaintext
attack on the assumption that the MPP and ASPP cannot be solved in subexponential time.

Its proof is omitted due to limited pages.

7 Conclusion

The new cryptoscheme builds its security firmly on two intractabilities: the MPP Ci =
(AiW

ℓ(i))δ % M with Ai ∈ Λ and ℓ(i) from Ω and the ASPP Ḡ ≡ ∏ñ/2
i=1 (Cri(3(i – 1) + Bi)+¬ri(3(i –

Ḅi) + Bi))
Ḅ

i (% M) to which no subexponential time solutions are found, and there exist

only exponential time solutions so far [26], utilizes a bit-pair string to decrease the
bit-length of the modulus M, exploits a bit-pair shadow string to guard against the
LLL lattice basis reduction attack, and adopts the approaches of introducing a random
bit string into an encryption and appending a random bit string to a plaintext to avoid-
ing the adaptive-chosen-ciphertext attack and the meet-in-the-middle dichotomy.

As ñ = 96, 112, or 128, there exists lg M = 464, 544, or 640, which assures that when
a JUNA ciphertext Ḡ with r1…rñ/2 = 1…1 is converted into an ASSP through a discrete
logarithm, the density of a related ASSP knapsack is pretty high, and larger than 1.

There always exists contradiction between time and security, so does between
space and security, and so does between time and space. We attempt to find a balance
which is none other than a delicate thing among time, space, and security.

Acknowledgment. The authors would like to thank the Academicians Jiren Cai, Zhongyi Zhou,
Jianhua Zheng, Changxiang Shen, Zhengyao Wei, Binxing Fang, Guangnan Ni, Andrew C.
Yao, and Xicheng Lu for their important guidance, advice, and suggestions.

The authors also would like to thank the Professors Dingyi Pei, Jie Wang, Ronald L. Rivest,
Moti Yung, Adi Shamir, Dingzhu Du, Mulan Liu, Huanguo Zhang, Dengguo Feng, Yixian
Yang, Hanliang Xu, Xuejia Lai, Yongfei Han, Yupu Hu, Dongdai Lin, Rongquan Feng, Ping
Luo, Jianfeng Ma, Lusheng Chen, Chuankun Wu, Tao Xie, Wenbao Han, Bogang Lin, Lequan
Min, Qibin Zhai, Hong Zhu, Renji Tao, Zhiying Wang, Quanyuan Wu, and Zhichang Qi for
their important counsel, suggestions, and corrections.

References

1. Su, S., Lü, S.: A Public Key Cryptosystem Based on Three New Provable Problems. Theo-
retical Computer Science 426–427, 91–117 (2012)

2. Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Signatures and
Public-key Cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

3. Niemi, V.: A new trapdoor in knapsacks. In: Damgård, I.B. (ed.) EUROCRYPT 1990.
LNCS, vol. 473, pp. 405–411. Springer, Heidelberg (1991)

686 S. Su et al.

4. Orton, G.A.: A multiple-iterated trapdoor for dense compact knapsacks. In: De Santis, A.
(ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 112–130. Springer, Heidelberg (1995)

5. Brickell, E.F.: Solving low density knapsacks. In: Advance in Cryptology: CRYPTO 1983,
pp. 25–37. Plenum Press, New York (1984)

6. Coster, M.J., Joux, A., LaMacchia, B.A., et al.: Improved Low-Density Subset Sum
Algorithms. Computational Complexity 2(2), 111–128 (1992)

7. Merkle, R.C., Hellman, M.E.: Hiding information and Signatures in Trapdoor Knapsacks.
IEEE Transactions on Information Theory 24(5), 525–530 (1978)

8. Yan, S.Y.: Number Theory for Computing, 2nd edn. Springer, Berlin (2002)
9. Hungerford, T.W.: Algebra. Springer, New York (1998)

10. Menezes, A.J., Oorschot, P.V., Vanstone, S.: Handbook of Applied Cryptography. CRC
Press, London (2001)

11. Naccache, D., Stern, J.: A new public-key cryptosystem. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 27–36. Springer, Heidelberg (1997)

12. ElGamal, T.: A Public-key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

13. Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. Cambridge Univ.
Press, Cambridge (1999)

14. Davis, M.: The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable
Problems and Computable Functions. Dover Publications, Mineola (2004)

15. Du, D.Z., Ko, K.: Theory of Computational Complexity. John Wiley & Sons, New York
(2000)

16. Li, T., Su, S.: Analysis of success rate of attacking knapsacks from JUNA cryptosystem by
LLL lattice basis reduction. In: 9th Int. Conf. On Computational Intelligence and Security,
pp. 454–458. IEEE Press, New York (2013)

17. Diffie, W., Hellman, M.E.: Exhaustive Cryptanalysis of the NBS Data Encryption
Standard. Computer 10(6), 74–84 (1977)

18. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462,
pp. 1–12. Springer, Heidelberg (1998)

19. Dolev, D., Dwork, C., Naor, M.: Nonmalleable Cryptography. SIAM Journal on
Computing 30(2), 391–437 (2000)

20. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

21. Shoup, V.: OAEP reconsidered. In: Advance in Cryptology: Crypto 2001, pp. 239–259.
Springer, New York (2001)

22. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker keeping
secret all partial information. In: 14th Annual ACM Symposium on Theory of Computing,
pp. 365–377. ACM, New York (1982)

23. Bellare, M.: Practice-oriented provable security. In: Okamoto, E. (ed.) ISW 1997. LNCS,
vol. 1396. Springer, Heidelberg (1998)

24. Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Computer and System
Sciences 28, 270–299 (1984)

25. Katz, J., Lindell, Y.: Introduction to Modern Cryptography: Principles and Protocols.
Chapman & Hall / CRC, Boca Raton (2007)

26. Su, S., Lü, S.: REESSE1+. Reward. Proof by Experiment. A New Approach to Proof of
P != NP. Cornell University Library (2009). http://arxiv.org/pdf/0908.0482 (revised 2014)

Network and Algorithms

An Algorithmic Framework
for Labeling Network Maps

Jan-Henrik Haunert1 and Benjamin Niedermann2(B)

1 University of Osnabrück, Osnabrück, Germany
2 Karlsruhe Institute of Technology, Karlsruhe, Germany

niedermann@kit.edu

Abstract. Drawing network maps automatically comprises two chal-
lenging steps, namely laying out the map and placing non-overlapping
labels. In this paper we tackle the problem of labeling an already existing
network map considering the application of metro maps. We present a
flexible and versatile labeling model. Despite its simplicity, we prove that
it is NP-complete to label a single line of the network. For a restricted
variant of that model, we introduce an efficient algorithm that optimally
labels a single line. Based on that algorithm, we present a general and
sophisticated workflow for multiple metro lines, which is experimentally
evaluated on real-world metro maps.

1 Introduction

Label placement and geographic network visualization are classical problems in
cartography, which independently of each other have received the attention of
computer scientists. Label placement usually deals with annotating point, line
or area features of interest in a map with text labels such that the associations
between the features and the labels are clear and the map is kept legible [8]. Geo-
graphic network visualization, on the other hand, often aims at a geometrically
distorted representation of reality that allows information about connectivity,
travel times, and required navigation actions to be retrieved easily. Computing
a good network visualization is thus related to finding a layout of a graph with
certain favorable properties [14]. For example, to avoid visual clutter in metro
maps, an octilinear graph layout is often chosen, in which the orientation of each
edge is a multiple of 45◦ [10,11,13]. Alternatively, one may choose a curvilinear
graph layout, that is, to display the metro lines as curves [4,12].

Computing a graph layout for a metro map and labeling the stops have been
considered as two different problems that can be solved in succession [13], but
also integrated solutions have been suggested [10,11]. Nevertheless, in practice,
metro maps are often drawn manually by cartographers or designers, as the
existing algorithms do not achieve results of sufficient quality in adequate time.

This work was started at the seminar “Drawing Graphs and Maps with Curves”
organized by S. Fabrikant, S. G. Kobourov, M. Nöllenburg and M. Teillaud; Schloss
Dagstuhl, Germany, April 2013.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 689–700, 2015.
DOI: 10.1007/978-3-319-21398-9 54

690 J.-H. Haunert and B. Niedermann

For example, Nöllenburg and Wolff [10] report that their method needed 10 hours
and 31 minutes to compute a labeled metro map of Sydney that they present
in their article, while an unlabeled map for the same instance was obtained
after 23 minutes—both results were obtained without proof of optimality but
with similar optimality gaps. On the other hand Wang and Chi [13] present an
algorithm that creates the graph layout and labeling within one second, but they
cannot guarantee that labels do not overlap each other or the metro lines.

An integrated approach to computing a graph layout and labeling the stops
allows consideration to be given to all quality criteria of the final visualiza-
tion. On the other hand, treating both problems separately will probably reduce
computation time. Moreover, we consider the labeling of a metro map as an
interesting problem on its own, since, in some situations, the layout of the net-
work is given as part of the input and must not be changed. In a semi-automatic
workflow, for example, a cartographer may want to draw or alter a graph layout
manually before using an automatic method to place labels, probably to test
multiple different labeling styles with the drawing. Hence, a labeling algorithm
is needed that is rather flexible in dealing with different labeling styles.

In this paper, we are given the layout of a metro map consisting of several
metro lines on which stops (also called stations) are located. For each stop we
are further given its name, which should be placed close to its position. We first
introduce a versatile and general model for labeling metro maps; see Section 2.
Like many labeling algorithms for point sets [1,2,5], our algorithm uses a discrete
set of candidate labels for each point. Often, each label is represented by a
rectangle wrapping the text. Since we also want to use curved labels, however,
we represent a label by a simple polygon approximated from a fat curve, that
is, a curve of certain width reflecting the text height. We then prove that even
in that simple model labeling a single metro line is NP-complete considering
different labeling styles. Hence, we restrict the set of candidates satisfying certain
properties, which allows us to solve the problem on one metro line C in O(n2)
time, where n is the number of stops of C; see Section 3. This algorithm optimizes
the labeling with respect to a weighting function that is based on Imhof’s [8]
classical criteria of cartographic quality. Utilizing that algorithm, we present an
efficient heuristic for labeling a metro map consisting of multiple metro lines; see
Section 4. Finally, we evaluate our approach presenting experiments conducted
on realistic metro maps; see Section 5. Note that “stops” on “metro lines” can
refer more generally to points of interest on the lines of any kind of a network
map. We address labeling styles for octilinear graph layouts and curvilinear graph
layouts that use Bézier curves. The more general model behind our method,
however, subsumes but is not limited to these particular styles.

We sincerely thank Herman Haverkort, Arlind Nocaj, Aidan Slingsby and Jo
Wood for helpful and interesting discussions.

2 Labeling Model

We assume that the metro lines are given by directed, non-self-intersecting curves
in the plane described by polylines, which for example have been derived by

An Algorithmic Framework for Labeling Network Maps 691

approximating Bézier curves. We denote that set of metro lines by M. Further,
the stops of each metro line C ∈ M are given by an ordered set SC of points
on C going from the beginning to the end of C. For two stops s, s′ ∈ SC we
write s < s′ if s lies before s′. We denote the union of the stops among all metro
lines by S and call the tuple (M,S) a metro map.

s

�n

Fig. 1. Fan of candi-
dates created by fat
Bézier curves

For each stop s ∈ S we are further given a name
that should be placed close to it. In contrast to previous
work, we do not follow traditional map labeling abstract-
ing from the given text by bounding boxes. Instead we
model a label � of a stop s ∈ S as a simple polygon.
For example, a label could have been derived by approx-
imating a fat curve prescribing the name of the stop; see
Fig. 1. For each stop s we are given a set Ks of labels,
which we also call candidates of s. The set

⋃
s∈S Ks is

denoted by K.
Since “names should disturb other map content as

little as possible”[8], we strictly forbid overlaps between
labels and lines as well as label-label overlaps. Further,
each stop must be labeled. Hence, a set L ⊆ K is called

a labeling if (1) no two labels of L intersect each other, (2) no label � ∈ L
intersects any metro line C ∈ M, and (3) for each stop s ∈ S there is exactly
one label � ∈ L ∩ Ks.

Definition 1 (MetroMapLabeling)
Given: Metro map (M,S), candidates K and weighting function w : 2K → R

+.
Find, if it exists: Optimal labeling L of (M,S,K, w), i.e., w(L) ≤ w(L′) for any
labeling L′ ⊆ K.

The model allows us to create arbitrarily shaped label candidates for a metro
map. In our evaluation we have considered two different labeling styles. The
first style, OctilinStyle, creates for each stop a set of octilinear rectangles as
label candidates; see Fig. 2. We use that style for octilinear maps. The second
style, CurvedStyle, creates for each stop a set of fat Bézier curves as label
candidates, which are then approximated by simple polygons; see Fig. 1. We use
that style for curvilinear metro maps, in order to adapt the curvilinear style of

s
s

(a) (b) (c) (d) (e)

ss

Fig. 2. Construction of octilinear candidates for a stop s of an ocitlinear metro map.
(a) s lies on a horizontal segment. (b) s lies on a vertical segment. (c) s lies on a
diagonal segment. (d) s lies on a crossing of two diagonal segments. (e) s lies on a
crossing of a vertical and horizontal segment.

692 J.-H. Haunert and B. Niedermann

s1

s2
s3 s4 s5

s6

consecutive

switchover
switchover

C

s′′
s

�

�′′

C

s′

�′

s′′
s

�

�′′= �v

�′=�u

s′
C

(a) (b) (c)

Fig. 3. (a) Consecutive stops and switchovers. (b) The candidates satisfy the transi-
tivity property. (c) The candidates do not satisfy the transitivity property.

the metro map. The basic idea is that a label perpendicularly emanates from
a stop with respect to its metro line and then becomes horizontal to sustain
legibility. In the full version [7] we motivate our choice of candidates based on
cartographic criteria and give detailed descriptions for both labeling styles.

Theorem 1. It is NP-complete to decide whether a feasible labeling exists, even
if the labels are based on OctilinStyle or CurvedStyle and the map has
only one metro line.

The proof uses a reduction from the NP-complete problem monotone planar
3SAT [9] and can be easily adapted to other labeling styles; see full version [7].
Note that the complexity of labeling points using a finite set of axis-aligned
rectangular label candidates is a well-studied NP-complete problem, e.g., see [5,
6]. However, since we do not necessarily use axis-aligned rectangles as labels and
since we place the labels along metro lines, it is not obvious how to reduce a
point-feature labeling instance on an instance of MetroMapLabeling.

3 Labeling Algorithm for a Single Metro Line

We now study the case that the given instance I = (M,S,K, w) consists only of
one metro line C. Based on cartographic criteria we introduce three additional
assumptions on I, which allows us to efficiently solve MetroMapLabeling.

For each stop s ∈ S, we assume that each candidate � ∈ Ks is assigned to
one side of C; either � is a left candidate assigned to the left side of C, or �
is a right candidate assigned to the right side of C. For appropriately defined
candidate sets those assignments correspond with the geometric positions of the
candidates, i.e., left (right) candidates lie on the left (right) hand side of C.

Assumption 1 (Separated Labels). Candidates that are assigned to different
sides of C do not intersect.

This assumption is normally not a real restriction, because for appropriately
defined candidate sets the line C separates both types of candidates geometri-
cally. We further require what we call the transitivity property.

Assumption 2 (Transitivity Property). For any three stops s, s′, s′′ ∈ S
with s < s′ < s′′ and any three candidates � ∈ Ks, �′ ∈ Ks′ and �′′ ∈ Ks′′

assigned to the same side of C, it holds that if neither � and �′ intersect nor �′

and �′′ intersect then also � and �′′ do not intersect; see also Fig. 3(b)–(c).

An Algorithmic Framework for Labeling Network Maps 693

In our experiments we established Assumption 1 and Assumption 2 by remov-
ing candidates greedily. In Section 5 we show that for real-world metro maps and
the considered candidate sets we remove only few labels, which indicates that
those assumptions have only a little influence on the labelings.

Two stops s, s′ ∈ S with s < s′ are consecutive if there is no other stop s′′ ∈ S
with s < s′′ < s′; see Fig. 3(a). For two consecutive stops s1, s2 ∈ S we say that
each two candidates �1 ∈ Ks1 and �2 ∈ Ks2 are consecutive and denote the set
that contains each pair of consecutive labels in L ⊆ K by PL ⊆ L × L. Further,
two consecutive labels �1, �2 ∈ KC form a switchover (�1, �2) if they are assigned
to opposite sides of C, whereas (�1, �2) denotes an ordered set indicating the
order of the stops of �1 and �2. Two switchovers of C are consecutive in L ⊆ K if
there is no switchover in L in between of both. We define the set of all switchovers
in K by W and the set of consecutive switchovers in L ⊆ K by ΓL ⊆ W × W.

Based on cartographic criteria extracted from Imhof’s “general principles and
requirements” for map labeling [8], we require a weighting function w : 2K → R

+

of the following form; see also the full version [7] for a detailed motivation of w.

Assumption 3 (Linear Weighting Function). For any L ⊆ K we require

w(L) =
∑

�∈L
w1(�) +

∑

(�1,�2)∈PL

w2(�1, �2) +
∑

(σ1,σ2)∈ΓL

w3(σ1, σ2),

where w1 : L → R rates a single label, w2 : PL → R rates two consecutive labels
and w3 : ΓL → R rates two consecutive switchovers.

In particular, we define w such that it penalizes the following structures to sus-
tain readbility. (1) Steep or highly curved labels. (2) Consecutive labels that lie
on different sides of C, or that are shaped differently. (3) Consecutive switchovers
that are placed close to each other.

If I = ({C},S,K, w) satisfies Assumption 1–3, we call MetroMapLabeling

also SoftMetroLineLabeling. We now introduce an algorithm that solves
this problem in O(n2k4) time, where n = |S| and k = max{|Ks| | s ∈ S}. Note
that k is typically constant. We assume w.l.o.g. that K contains only candidates
that do not intersect C. Omitted proofs are found in the full version [7].

Labels on One Side. We first assume that all candidate labels in K are assigned
either to the left or to the right side of C; without loss of generality to the left
side of C. For two stops s, s′ ∈ S we denote the instance restricted to the stops
{s, s′}∪{s′′ ∈ S | s < s′′ < s′} by I[s, s′]. We denote the first stop of C by s and
the last stop by s. The transitivity property directly yields the next lemma.

Lemma 1. Let s, s′ and s′′ be stops with s < s′ < s′′, L be a labeling of I[s, s′],
� ∈ L ∩ Ks and �′ ∈ L ∩ Ks′ . Any �′′ ∈ Ks′′ intersecting � also intersects �′.

Hence, the lemma states that �′ separates L from the candidates of the stops
succeeding s′. We use this observation as follows. Based on K we define a directed
acyclic graph G = (V,E); see Fig. 4(a)–(b). This graph contains a vertex u for
each candidate � ∈ K and the two vertices x and y. We call x the source and y the

694 J.-H. Haunert and B. Niedermann

s′
1

s1

σ

σ′

�1

�2

�′
2

�′
1

I(σ, σ′]
s2

s′
2

= Aσ,σ′

d1
d2

d3 d4

hAσ,σ′

⊥
�

dummy
switchover

dummy
switchover

x

�1

�2

�3

�4

�5

�6

�7

�8

�9

y

C�1
�2

�3

�4 �5 �6

�7
�8 �9(a)

(b)

(c)

Fig. 4. Illustrations for labeling a single metro line. (a) A one-sided instance and (b)
the acyclic directed graph GI based on its labels. (c) A two-sided instance with a
labeling. The switchovers σ′ and σ separate the labeling into a two-sided and a one-
sided instance.

target of G. Let �u denote the candidate that belongs to the vertex u ∈ V \{x, y}.
For each pair u, v ∈ V \{x, y} the graph contains the edge (u, v) if and only if the
stop of �u lies directly before the stop of �v and, furthermore, �u and �v do not
intersect. Further, for each vertex u of any candidate of s the graph contains the
edge (x, u), and for each vertex u of any candidate of s the graph contains the
edge (u, y). For an edge (u, v) ∈ E we define its weight we as follows. For u �= x
and v �= y we set we = w1(�v) + w2(�u, �v). For x = u we set we = w1(�v) and
for v = y we set we = 0. An x-y path P ⊆ E in G is a path in G that starts
at x and ends at y. Its weight is w(P) =

∑
e∈P we. The x-y path with minimum

weight among all x-y path is the shortest x-y path.

Lemma 2. For any x-y path P in G there is a labeling L of I with w(P) = w(L)
and for any labeling L of I there is an x-y path P in G with w(P) = w(L).

The lemma relies on Lemma 1 and in particular proves that a short-
est x-y path P in G corresponds with an optimal labeling of I. Due to [3,
Chapter 24], P can be constructed in O(|V | + |E|) time using a dyn. program-
ming approach, which we call MinPath. In particular MinPath considers each
edge only once. There are O(n · k) vertices in G and each vertex has at most k
incoming edges, which implies that there are O(n · k2) edges. Since MinPath

considers each edge only once, we compute the edges of G on demand, which
saves storage.

Theorem 2. If I is one-sided, SoftMetroLineLabeling can be optimally
solved in O(nk2) time and O(nk) space.

Labels on Both Sides. If candidates lie on both sides of the metro line, we solve
the problem utilizing the algorithm for the one-sided case.

Consider a labeling L of I and let σ, σ′ be two switchovers in L such that σ
lies before σ′ and no other switchover lies in between both; see Fig. 4(c). Roughly
spoken, σ and σ′ induce a two-sided instance that lies before σ and a one-sided
instance that lies in between both switchovers σ and σ′.

An Algorithmic Framework for Labeling Network Maps 695

Lemma 3. Let s, s′
1, s′

2 and s′′ be stops with s < s′
1 < s′

2 < s′′; s′
1 and s′

2 are
consecutive. Let L be a labeling of I[s, s′

2], � ∈ L∩Ks, �′
1 ∈ L∩Ks′

1
, �′

2 ∈ L∩Ks′
2

s.t. (�′
1, �

′
2) is a switchover. Any �′′ ∈ Ks′′ intersecting � intersects �′

1 or �′
2.

Hence, the lemma yields that for the one-sided instance we can choose any
labeling; as long as this labeling does not intersect any label of σ or σ′, it com-
poses with σ, σ′ and the labeling of the two-sided instance to one labeling for
the instance up to σ′. We use that observation as follows.

Let σ = (�1, �2) and σ′ = (�′
1, �

′
2) be two switchovers in W. Let s1 and s2 be

the stops of �1 and �2, and let s′
1 and s′

2 be the stops of �′
1 and �′

2, respectively;
see Fig. 4(c). We assume that σ < σ′, i.e., s1 < s′

1. Let I(σ, σ′] be the instance
restricted to the stops {s ∈ S | s2 < s < s′

1} ∪ {s′
1, s

′
2}, where (σ, σ′] indicates

that the stops of σ′ belong to that instance, while the stops of σ do not.
The switchovers σ and σ′ are compatible if �2 and �′

1 are assigned to the same
side of C, and there is a labeling for I[s1, s′

2] such that it contains �1, �2, �′
1 and

�′
2 and, furthermore, σ and σ′ are the only switchovers in that labeling. Let L be

the optimal labeling among those labelings. We denote the labeling L \ {�1, �2}
of I(σ, σ′] by Aσ,σ′ . Utilizing Theorem 2, we obtain Aσ,σ′ in O(n · k2) time.

For any labeling L of an instance J let hL ∈ L be the label of the first stop
in J and let tL ∈ L be the label of the last stop in J ; hL is the head and tL is
the tail of L. For technical reasons we extend S by the dummy stops d1, d2, d3
and d4 such that d1 < d2 < s < d3 < d4 for any stop s ∈ S. For d1 and d2 we
introduce the dummy switchover ⊥ and for d3 and d4 the dummy switchover
.
We define that ⊥ and
 are compatible to all switchovers in W and that ⊥
and
 are compatible, if there is a one-sided labeling for I. Conceptually, each
dummy switchover consists of two labels that are assigned to both sides of C.
Further, neither ⊥ nor
 has any influence on the weight of a labeling. Hence,
w.l.o.g. we assume that they are contained in any labeling.

Similar to the one-sided case we define a directed acyclic graph G′ = (V ′, E′).
This graph contains a vertex u for each switchover W∪{⊥,
}. Let σu denote the
switchover that belongs to the vertex u ∈ V . In particular let x denote the vertex
of ⊥ and y denote the vertex of
. For each pair u, v ∈ V the graph contains the
edge (u, v) if and only if σu and σv are compatible and σu < σv. The weight we

of an edge e = (u, v) in G′ is we = w(Aσu,σv
) + w3(σu, σv) + w2(�u

2 , hAσu,σv
),

where σu = (�u
1 , �u

2). In the special case that σu and σv share a stop, we set
we = w3(σu, σv) + w2(�v

1, �
v
2) + w1(�v

2), where σv = (�v
1, �

v
2).

Let P be an x-y path in G′ and let e1 = (x = v0, v1), e2 = (v1, v2), . . . , el =
(vl−1, vl = y) be the edges of P . For a vertex vi of P with 0 ≤ i ≤ l we write σi

instead of σvi
. We denote the set

⋃l
i=1 Aσi−1,σi

by LP .

Lemma 4. a) The graph G′ has an x-y path if and only if I has a labeling.
b) Let P be a shortest x-y path in G′, then LP is an optimal labeling of I.

The proof is based on Lemma 3; see [7]. By Lemma 4 a shortest x-y path P in G′

corresponds with an optimal labeling L of C, if this exists. Using MinPath we
construct P in O(|V ′| + |E′|) time. Since W contains O(nk2) switchovers, the
graph G′ contains O(nk2) vertices and O(n2k4) edges. As MinPath considers

696 J.-H. Haunert and B. Niedermann

4th
Step

3rd
Step

2nd
Step

1st
Step

Fig. 5. Schematic illustration of the presented workflow. 1st Step: generation of can-
didates. 2nd Step: scaling and creation of initial labeling (red labels). 3rd Step: pre-
selection of candidates. 4th Step: Solving the metro lines independently.

each edge only once, we compute the edges of G′ on demand using O(nk2)
storage. We compute the weight of the incoming edges of a vertex v ∈ V ′ utilizing
the one-sided case. Proceeding naively, this approach needs O(n3k6) time overall.

Reusing already computed information, we improve that result as follows.
Let (u1, v), . . . , (uk, v) denote the incoming edges of v such that σu1 ≤ · · · ≤ σuk

,
i.e., the stop of σui

’s first label does not lie after the stop of σuj
’s first label with

i < j. Further, let σv = (�1v, �2v) and let Gi be the graph for the one-sided
instance I[si, s] considering only candidates that lie on the same side as �1v,
where si is the stop of the second label of σui

and s is the stop of �1v. Let Pi

be the shortest xi-yi path in Gi, where xi and yi denote the source and target
of Gi, respectively. We observe that excluding the source and target, the graph
Gi is a sub-graph of G1 for all 1 ≤ i ≤ k. Further, since a sub-path of a shortest
path is also a shortest path among all paths having the same end vertices, we
can assume without loss of optimality that when excluding xi and yi from Pi,
the path Pi is a sub path of P1 for all 1 ≤ i ≤ k. We therefore only need to
compute G1 and P1 and can use sub-paths of P1 in order to gain the weights
of all incoming edges of v. Hence, we basically apply for each vertex v ∈ V the
algorithm for the one-sided case once using O(nk2) time per vertex. We then
can compute the weights in O(1) time per edge, which yields the next result.

Theorem 3. SoftMetroLineLabeling can be optimally solved in O(n2k4)
time and O(nk2) space.

4 Multiple Metro Lines

We now sketch a workflow that heuristically solves MetroMapLabeling uti-
lizing the algorithm presented for SoftMetroLineLabeling; see Fig. 5 for a
schematic illustration and the full version [7] for a detailed description.
1. Candidate generation. Depending on the labeling style, we generate a discrete

set of candidate labels for every stop. Hence, we are given (M,S,K, w).
2. Scaling. We compute the scale of the map such that the existence of a feasible

labeling is guaranteed. To that end we determine for each stop s ∈ S a left
and a right label of Ks. Using a simple reduction on 2SAT, we check in linear
time whether those labels admit a feasible labeling. If this is not the case,

An Algorithmic Framework for Labeling Network Maps 697

we scale the metro map. Using a binary-search-like procedure on the scaling
factor we find in that manner an appropriate scaling for the metro map.

3. Candidate pre-selection. We greedily remove candidates from K such that
each metro line satisfies the properties required by SoftMetroLineLa-

beling. Further, we ensure that no two candidates of different metro lines
intersect. This allows us to label each metro line independently of the others.

4. Final candidate selection. For each metro line, we compute the optimal label-
ing using the dynamic programming approach presented in Section 3.

The workflow yields a heuristic that relies on the conjecture that using optimal
algorithms in single steps is sufficient to obtain good labelings.

5 Evaluation

To evaluate our approach presented in Section 4, we did a case study on the
metro systems of Sydney and Vienna, which have been used as benchmarks
before [4,10,13]. For Sydney we took the curved layout from [4, Fig. 1a] and
the ocitlinear layouts from [10, Fig. 9a,b], while for Vienna we took the curved
layout from [4, Fig. 8c] and the ocitlinear layouts from [10, Fig. 12a,b]. Since the
metro lines of Sydney are not only paths, we disassembled those metro lines into
single paths. We did this by hand and tried to extract as long paths as possible.
We took the positions of the stops as presented in the corresponding papers. In
the curved layout of Sydney we removed the stops Tempe and Martin Place (in
Fig. 6 marked as dots), because both stops are tightly enclosed by metro lines
such that only the placement of very small labels is possible. This is not so much
a problem of our approach, but of the given layout. In a semi-automatic approach
the designer would then need to change the layout. For the curvilinear layouts
we used labels of CurvedStyle and for the octilinear layouts we used labels of
OctilinStyle. For the layouts of [10, Fig. 9b,13b] the authors present labelings;
see Fig. 7 for an example. For any other layout they do not give labelings.

The experiments were performed on a single core of an Intel(R) Core(TM)
i7-3520M CPU processor. The machine is clocked at 2.9 GHz, and has 4096 MB
RAM. Our implementation is written in Java.

To assess the usefulness of the dynamic program introduced in Section 3 we
further ran experiments in which the dynamic program is replaced by a simple
greedy algorithm; see full version [7]. That variant of our algorithm is called
Greedy, while the original one using the dynamic program is called DynProg.

Table 1 presents our quantitative results for the considered instances. For
Sydney3 the labelings are found in Fig. 6 and for Sydney2 a labeling created by
DynProg is found in Fig. 7. The full version [7] contains all labelings.

We first note that with respect to the total number of created candidates
only few labels are removed for enforcing Assumption 1 and Assumption 2;
see Table 1, A12. This indicates that requiring those assumptions is not a real
restriction on a realistic set of candidates, even though they seem to be artificial.

Running Time. Even for large networks as Sydney, our algorithm DynProg

needs less than 2 seconds; see Table 1. This proves that our approach is applicable

698 J.-H. Haunert and B. Niedermann

Table 1. Experimental results for Sydney and Vienna. Algo.: The applied algorithm;
DP=DynProg, G=Greedy. Candidates: No. of candidates after the first and third
step. A12: No. of labels removed to establish Assumption 1 and Assumption 2. Running
Time: Running time broken down into the single steps of the algorithm. Times less
than 0.05 seconds are marked with �. Quality : w(LG)

w(LDP)
= ratio between the weights

of the labeling LG obtained by Greedy and LDP obtained by DynProg. SO=No. of
switchovers.

Candidates Running Time Quality

Instance Source Layout Algo. 1st 3rd A12 1st 2nd 3rd 4th
∑ w(LG)

w(LDP)
SO

Sydney1 [10, Fig. 9a] Octi.
DP 1164 1005

6
0.3 0.9 0.3 0.2 1.7

3.3
6

G 1164 1006 0.3 0.9 � � 1.2 16

Sydney2 [10, Fig. 9b] Octi.
DP 1104 954

2
0.3 1.0 0.2 0.1 1.6

3.5
5

G 1104 954 0.3 0.9 � � 1.2 19

Sydney3 [4, Fig. 1a] Curved
DP 1259 1020

2
0.3 1.2 0.3 0.1 1.9

1.2
8

G 1259 1020 0.4 1.2 � � 1.6 28

Vienna1 [10, Fig. 13a] Octi.
DP 532 444

4
0.2 0.5 0.2 � 0.9

2.1
6

G 532 445 0.2 0.5 � � 0.7 12

Vienna2 [10, Fig. 13b] Octi.
DP 468 319

1
0.2 0.5 0.2 � 0.9

2.3
7

G 468 321 0.2 0.5 � � 0.7 16

Vienna3 [4, Fig. 8c] Curved
DP 600 536

0
0.3 0.9 0.2 � 1.4

1.2
7

G 600 536 0.3 0.9 � � 1.1 12

(a) Sydney3 : DynProg, CurvedStyle

Layout from [4, Fig. 1a.].
(b) Sydney3 : Greedy, CurvedStyle

Layout from [4, Fig.1a].

Fig. 6. Labelings for Sydney using DynProg and Greedy

for scenarios in which the map designer wants to adapt the layout and its labeling
interactively. In particular in those scenarios not every of the four steps must

An Algorithmic Framework for Labeling Network Maps 699

D
oo
ns
id
e

Ro
ot
y
H
ill

M
t D
ru
itt

St
M
ar
ys

W
er
rin
gt
on

Ki
ng
sw
oo
d

Pe
nr
ith

Em
u
Pl
ai
ns

Canley Vale

Fairfield

Yennora

Guildford

Berala

Loftus

Engadine

Heathcote

Waterfall

Wynyard

Glenfield

Town Hall

North Sydney

Ci
rc
ul
ar
Q
ua
y

Seven Hills

Toongabbie

Pendle Hill

Wentworthville

Westmead

Parramatta

Hornsby

Central

Ki
rr
aw
ee

G
ym
ea

M
ira
nd
a

Ca
rin
gb
ah

W
oo
lo
ow
ar
e

Cr
on
ul
la

Normanhurst

Thornleigh

Pennant Hills

Beecroft

Cheltenham

Epping

Eastwood

Denistone

West Ryde

Meadowbank

Rhodes

Concord West

North Strathfield

Tempe

Cabramatta

Sutherland

Wolli Creek

Milsons Point

Asquith

Mt Colah

Mt Kuring−gai

Berowra

Waverton

Wollstonecraft

St Leonards

Artarmon

Chatswood

Roseville

Lindfield

Killara

Gordon

Pymble

Turramurra

Warrawee

Wahroonga

Waitara

M
ac
do
na
ld
to
w
n

N
ew
to
w
n

St
an
m
or
e

Pe
te
rs
ha
m

Le
w
is
ha
m

Su
m
m
er
H
ill

As
hfi
el
d

Cr
oy
do
n

Bu
rw
oo
d

Liverpool

Se
ft
on

Rosehill

Camellia

Rydalmere

Dundas

Telopea

Carlingford

St James

Merrylands

Museum

Erskineville

St Peters

Arncliffe

Banksia

Rockdale

Kogarah

Carlton

Allawah

Hurstville

Penshurst

Mortdale

Oatley

Como

Jannali

H
ol
sw
or
th
y

Ea
st
H
ill
s

Pa
na
ni
a

Re
ve
sb
y

Pa
ds
to
w

Ri
ve
rw
oo
d

N
ar
w
ee

Be
ve
rly
H
ill
s

Ki
ng
sg
ro
ve

htro
N

yelxe
B Ba

rd
w
el
l P
ar
k

Tu
rr
el
la

Clyde

Olympic Park

Granville

Casula

Leumeah

Minto

Ingleburn

Macquarie Fields

Harris Park

Martin Place

Strathfield

Campbelltown

Flemington

International

Domestic

Mascot

Green Square

Regents Park

Birrong

M
ar
ric
kv
ill
e

D
ul
w
ic
h
H
ill

H
ur
ls
to
ne
Pa
rk

Ca
nt
er
bu
ry

Ca
m
ps
ie

Be
lm
or
e

La
ke
m
ba

W
ile
y
Pa
rk

Pu
nc
hb
ow
l

Ba
nk
st
ow
n

Ya
go
on
a

Ki
ng
s
Cr
os
s

Ed
ge
cl
iff

Bo
nd
i J
un
ct
io
n

Ca
rr
am
ar

Vi
lla
w
oo
d

Le
ig
ht
on
fie
ld

Ch
es
te
r H
ill

Lidcombe

Blacktown

H
om
eb
us
h

Warwick Farm

Auburn

Marayong

Quakers Hill

Schofields

Riverstone

Vineyard

Mulgrave

Windsor

Clarendon

East Richmond

Richmond

Macarthur

Sy
de
nh
am

Redfern

(a) Original labeling by [10] (b) Sydney2 : DynProg, OctilinStyle

Layout from [10, Fig. 9b.].

Fig. 7. Labelings for Sydney

be repeated each time, which improves computing time. For example, after once
applying the scaling step (2nd step – the most time consuming step), the instance
does not need to be rescaled again. Further, DynProg is only moderately slower
than Greedy; 0.5 seconds in maximum, see Table 1, Sydney1.

Quality. We observe that in all labelings created by DynProg there are only
few switchovers, namely 5–8; see Table 1, column SO. Hence, there are long
sequences of consecutive labels that lie on the same side of their metro line; see
corresponding figures. In particular the switchovers are placed such that those
sequences are regularly sized. The labels of a single sequence are mostly directed
into the same x-direction and in particular they are similarly shaped so that
those sequences of labels form regular patterns as desired. The alignment of the
labels is chosen so that they blend in with the alignment of their adjacent labels.

In contrast Greedy yields significantly more switchovers, namely 12–28.
Consequently, there are many distracting switches of labels from one side to the
other of the metro line; e.g. see Fig. 6. The sequences of consecutive labels lying
on the same side are therefore much shorter. Further, several adjacent labels
point in opposite x-directions, which results in distracting effects. Altogether, the
labelings that are obtained by Greedy do not look regular, but cluttered. Dyn-

Prog solves those problems since it considers the metro line globally yielding an
optimal labeling for a single line. This observation is also reflected in Table 1,
col. w(LG)

w(LDP) , which shows that the weight computed by Greedy is significantly
larger than the weight computed by DynProg. Hence, the better quality of
DynProg prevails the slightly better running time of Greedy.

We observe that both Nöllenburg and Wolff’s and our labelings of Sydney
look quite similar, whereas our labeling has less switchovers; see Fig. 7. The same

700 J.-H. Haunert and B. Niedermann

applies for the labelings of the layout of Vienna; see full version [7]. Recall that
their approach needed more than 10 hours to compute a labeled metro map of
Sydney. Since they need only up to 23 minutes to compute the layout without
labeling, it lends itself to first apply their approach to gain a layout and then
to apply our approach to construct a corresponding labeling. Similarly, it lends
itself to combine our approach with that one of Wang and Chi; for a comparison
see the full version [7]. Their approach is faster, however, in contrast to our
approach, it does not necessarily yield occlusion-free labelings, which may result
in hardly readable metro maps.

In conclusion our workflow is a reasonable alternative and improvement for
the approaches presented both by Nöllenburg and Wolff, and by Wang and Chi.

References

1. Agarwal, P.K., van Kreveld, M., Suri, S.: Label placement by maximum
independent set in rectangles. Comp. Geom.-Theor. Appl. 11, 209–218 (1998)

2. Christensen, J., Marks, J., Shieber, S.: An empirical study of algorithms for
point-feature label placement. Acm. T. Graphic. 14(3), 203–232 (1995)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press (2009)

4. Fink, M., Haverkort, H., Nöllenburg, M., Roberts, M., Schuhmann, J., Wolff, A.:
Drawing metro maps using Bézier curves. In: Didimo, W., Patrignani, M. (eds.)
GD 2012. LNCS, vol. 7704, pp. 463–474. Springer, Heidelberg (2013)

5. Formann, M., Wagner, F.: A packing problem with applications to lettering of
maps. In: ACM Sympos. on Comput. Geom., pp. 281–288 (1991)

6. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the
plane are np-complete. Inf. Process. Lett. 12(3), 133–137 (1981)

7. Haunert, J.-H., Niedermann, B.: An algorithmic framework for labeling network
maps (2015). CoRR, abs/1505.00164

8. Imhof, E.: Positioning names on maps. Am. Cartographer, 128–144 (1975)
9. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343

(1982)
10. Nöllenburg, M., Wolff, A.: Drawing and labeling high-quality metro maps by

mixed-integer programming. IEEE T. Vis. Comput. Gr. 17(5), 626–641 (2011)
11. Stott, J., Rodgers, P., Martinez-Ovando, J., Walker, S.: Automatic metro map

layout using multicriteria optimization. IEEE T. Vis. Comput. Gr. 17(1), 101–114
(2011)

12. van Goethem, A., Meulemans, W., Reimer, A., Haverkort, H., Speckmann, B.:
Topologically safe curved schematisation. Cartogr. J. 50(3), 276–285 (2013)

13. Wang, Y.-S., Chi, M.-T.: Focus+context metro maps. IEEE T. Vis. Comput. Gr.
17(12), 2528–2535 (2011)

14. Wolff, A.: Graph drawing and cartography. In: Tamassia, R. (ed.) Handbook of
Graph Drawing and Visualization, chapter 23, pp. 697–736. CRC Press (2013)

Smoothed Analysis of the Minimum-Mean Cycle
Canceling Algorithm and the Network Simplex

Algorithm

Kamiel Cornelissen and Bodo Manthey(B)

University of Twente, Enschede, The Netherlands
{k.cornelissen,b.manthey}@utwente.nl

Abstract. The minimum-cost flow (MCF) problem is a fundamental
optimization problem with many applications and seems to be well
understood. Over the last half century many algorithms have been devel-
oped to solve the MCF problem and these algorithms have varying worst-
case bounds on their running time. However, these worst-case bounds are
not always a good indication of the algorithms’ performance in practice.
The Network Simplex (NS) algorithm needs an exponential number of
iterations for some instances, but it is considered the best algorithm in
practice and performs best in experimental studies. On the other hand,
the Minimum-Mean Cycle Canceling (MMCC) algorithm is strongly
polynomial, but performs badly in experimental studies.

To explain these differences in performance in practice we apply the
framework of smoothed analysis. For the number of iterations of the
MMCC algorithm we show an upper bound of O(mn2 log(n) log(φ)).
Here n is the number of nodes, m is the number of edges, and φ is a
parameter limiting the degree to which the edge costs are perturbed.
We also show a lower bound of Ω(m log(φ)) for the number of iterations
of the MMCC algorithm, which can be strengthened to Ω(mn) when
φ = Θ(n2). For the number of iterations of the NS algorithm we show a
smoothed lower bound of Ω(m · min{n, φ} · φ).

1 Introduction

The minimum-cost flow (MCF) problem is a well-studied problem with many
applications in, for example, modeling transportation and communication net-
works [1,7]. Over the last half century many algorithms have been developed to
solve it. The first algorithms proposed in the 1960s were all pseudo-polynomial.
These include the Out-of-Kilter algorithm by Minty [17] and by Fulkerson [8], the
Cycle Canceling algorithm by Klein [13], the Network Simplex (NS) algorithm
by Dantzig [5], and the Successive Shortest Path (SSP) algorithm by Jewell [11],
Iri [10], and Busacker and Gowen [4]. In 1972 Edmonds and Karp [6] proposed
the Capacity Scaling algorithm, which was the first polynomial MCF algorithm.
In the 1980s the first strongly polynomial algorithms were developed by Tar-
dos [24] and by Orlin [18]. Later, several more strongly polynomial algorithms

A full version with all proofs is available at http://arxiv.org/abs/1504.08251.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 701–712, 2015.
DOI: 10.1007/978-3-319-21398-9 55

http://arxiv.org/abs/1504.08251.

702 K. Cornelissen and B. Manthey

were proposed such as the Minimum-Mean Cycle Canceling (MMCC) algorithm
by Goldberg and Tarjan [9] and the Enhanced Capacity Scaling algorithm by
Orlin [19], which currently has the best worst-case running time. For a more
complete overview of the history of MCF algorithms we refer to Ahuja et al. [1].

When we compare the performance of several MCF algorithms in theory
and in practice, we see that the algorithms that have good worst-case bounds
on their running time are not always the ones that perform best in practice.
Zadeh [25] showed that there exist instances for which the Network Simplex
(NS) algorithm has exponential running time, while the Minimum-Mean Cycle
Canceling (MMCC) algorithm runs in strongly polynomial time, as shown by
Goldberg and Tarjan [9]. In practice however, the relative performance of these
algorithms is completely different. Kovács [15] showed in an experimental study
that the NS algorithm is much faster than the MMCC algorithm on practical
instances. In fact, the NS algorithm is even the fastest MCF algorithm of all. An
explanation for the fact that the NS algorithm performs much better in practice
than indicated by its worst-case running time is that its worst-case instances are
very contrived and unlikely to occur in practice. To better understand the prac-
tical performance for the NS algorithm and the MMCC algorithm, we analyze
these algorithms in the framework of smoothed analysis.

Smoothed analysis was introduced by Spielman and Teng [22] to explain why
the simplex algorithm usually needs only a polynomial number of iterations in
practice, while in the worst case it needs an exponential number of iterations.
In the framework of smoothed analysis, an adversary can specify any instance
and this instance is then slightly perturbed before it is used as input for the
algorithm. This perturbation can model, for example, measurement errors or
numerical imprecision. In addition, it can model noise on the input that can
not be quantified exactly, but for which there is no reason to assume that it is
adversarial. Algorithms that have a good smoothed running time often perform
well in practice. We refer to two surveys [16,23] for a summary of results that
have been obtained using smoothed analysis.

We consider a slightly more general model of smoothed analysis, introduced
by Beier and Vöcking [2]. In this model the adversary can not only specify the
mean of the noisy parameter, but also the type of noise. We use the following
smoothed input model for the MCF problem. An adversary can specify the
structure of the flow network including all nodes and edges, and also the exact
edge capacities and budgets of the nodes. However, the adversary can not specify
the edge costs exactly. For each edge e the adversary can specify a probability
density ge : [0, 1] → [0, φ] according to which the cost of e is drawn at random.
The parameter φ determines the maximum density of the density function and
can therefore be interpreted as the power of the adversary. If φ is large, the
adversary can very accurately specify each edge cost and we approach worst-
case analysis. If φ = 1, the adversary has no choice but to specify the uniform
density on the interval [0, 1] and we have average-case analysis.

Brunsch et al. [3] were the first to show smoothed bounds on the running
time of an MCF algorithm. They showed that the SSP algorithm needs O(mnφ)

Smoothed Analysis of the Minimum-Mean Cycle Canceling Algorithm 703

iterations in expectation and has smoothed running time O(mnφ(m+n log(φ))),
since each iteration consists of finding a shortest path. They also provide a lower
bound of Ω(m·min{n, φ}·φ) for the number of iterations that the SSP algorithm
needs, which is tight for φ = Ω(n). These bounds show that the SSP algorithm
needs only a polynomial number of iterations in the smoothed setting, in contrast
to the exponential number it needs in the worst case, and explains why the
SSP algorithm performs quite well in practice. In order to fairly compare the
SSP algorithm with other MCF algorithms in the smoothed setting, we need
smoothed bounds on the running times of these other algorithms. Brunsch et
al. [3] asked particularly for smoothed running time bounds for the MMCC
algorithm, since the MMCC algorithm has a much better worst-case running
time than the SSP algorithm, but performs worse in practice. It is also interesting
to have smoothed bounds for the NS algorithm, since the NS algorithm is the
fastest MCF algorithm in practice. However, until now no smoothed bounds were
known for other MCF algorithms. In this paper we provide smoothed lower and
upper bounds for the MMCC algorithm, and a smoothed lower bound for the
NS algorithm.

For the MMCC algorithm we prove an upper bound of O(mn2 log(n) log(φ))
for the expected number of iterations that the MMCC algorithm needs
(Section 2). For dense graphs, this is an improvement over the Θ(m2n) iter-
ations that the MMCC algorithm needs in the worst case, if we consider φ a
constant (which is reasonable if it models, for example, numerical imprecision
or measurement errors).

We also provide a lower bound (Section 3.1) on the number of iterations
that the MMCC algorithm needs. For every n, every m ∈ {n, n + 1, . . . , n2},
and every φ ≤ 2n, we provide an instance with Θ(n) nodes and Θ(m) edges
for which the MMCC algorithm requires Ω(m log(φ)) iterations. For φ = Ω(n2)
we can improve our lower bound (Section 3.2). We show that for every n ≥ 4
and every m ∈ {n, n + 1, . . . , n2}, there exists an instance with Θ(n) nodes and
Θ(m) edges, and φ = Θ(n2), for which the MMCC algorithm requires Ω(mn)
iterations. This is indeed a stronger lower bound than the bound for general φ,
since we have m log(φ) = Θ(m log(n)) for φ = Θ(n2).

For the NS algorithm we provide a lower bound (Section 4) on the number of
non-degenerate iterations that it requires. In particular, we show that for every
n, every m ∈ {n, . . . , n2}, and every φ ≤ 2n there exists a flow network with Θ(n)
nodes and Θ(m) edges, and an initial spanning tree structure for which the NS
algorithm needs Ω(m · min{n, φ} · φ) non-degenerate iterations with probability
1. The existence of an upper bound is our main open problem. Note that our
bound is the same as the lower bound that Brunsch et al. [3] found for the
smoothed number of iterations of the SSP algorithm. This is no coincidence,
since we use essentially the same instance (with some minor changes) to show
our lower bound. We show that with the proper choice of the initial spanning tree
structure for the NS algorithm, we can ensure that the NS algorithm performs
the same flow augmentations as the SSP algorithm and therefore needs the same
number of iterations (plus some degenerate ones).

704 K. Cornelissen and B. Manthey

In the rest of our introduction we introduce the MCF problem, the MMCC
algorithm and the NS algorithm in more detail. In the rest of our paper, all
logarithms are base 2.

1.1 Minimum-Cost Flow Problem

A flow network is a simple directed graph G = (V,E) together with a nonneg-
ative capacity function u : E → R+ defined on the edges. For convenience, we
assume that G is connected and that E does not contain a pair (u, v) and (v, u) of
reverse edges. For the MCF problem, we also have a cost function c : E → [0, 1]
on the edges and a budget function b : V → R on the nodes. Nodes with nega-
tive budget require a resource, while nodes with positive budget offer it. A flow
f : E → R+ is a nonnegative function on the edges that satisfies the capacity
constraints, 0 ≤ f(e) ≤ u(e) (for all e ∈ E), and flow conservation constraints
b(v) +

∑
e=(u,v)∈E f(e) =

∑
e′=(v,w)∈E f(e′) (for all v ∈ V). The cost c(f) of a

flow f is defined as the sum of the flow on each edge times the cost of that edge,
that is, c(f) =

∑
e∈E c(e) ·f(e). The objective of the minimum-cost flow problem

is to find a flow of minimum cost or conclude that no feasible flow exists.
In our analysis we often use the concept of a residual network, which we

define here. For an edge e = (u, v) we denote the reverse edge (v, u) by e−1.
For flow network G and flow f , the residual network Gf is defined as the graph
Gf = (V,Ef ∪ Eb). Here Ef =

{
e | e ∈ E and f(e) < u(e)

}
is the set of forward

edges with capacity u′(e) = u(e) − f(e) and cost c′(e) = c(e). Eb =
{
e | e−1 ∈

E and f(e−1) > 0
}

is the set of backward edges with capacity u′(e) = f(e−1)
and cost c′(e) = −c(e−1). Here u′(e) is also called the residual capacity of edge
e for flow f .

1.2 Minimum-Mean Cycle Canceling Algorithm

The MMCC algorithm works as follows:

– First we find a feasible flow using any maximum-flow algorithm.
– Next, as long as the residual network contains cycles of negative total cost,

we find a cycle of minimum-mean cost and maximally augment flow along
this cycle.

– We stop when the residual network does not contain any cycles of negative
total cost.

For a more elaborate description of the MMCC algorithm, we refer to Korte
and Vygen [14]. In the following, we denote the mean cost of a cycle C by
μ(C) =

(∑
e∈C c(e)

)
/|C|. Also, for any flow f , we denote the mean cost of the

cycle of minimum-mean cost in the residual network Gf by μ(f).
Goldberg and Tarjan [9] proved in 1989 that the Minimum-Mean-Cycle Can-

celing algorithm runs in strongly polynomial time. Five years later Radzik and
Goldberg [21] slightly improved this bound on the running time and showed
that it is tight. In the following we will focus on the number of iterations the

Smoothed Analysis of the Minimum-Mean Cycle Canceling Algorithm 705

MMCC algorithm needs, that is, the number of cycles that have to be canceled.
A bound on the number of iterations can easily be extended to a bound on the
running time, by noting that a minimum-mean cycle can be found in O(nm)
time, as shown by Karp [12]. The tight bound on the number of iterations that
the MMCC algorithm needs is as follows.

Theorem 1.1 (Radzik and Goldberg). The number of iterations needed by
the MMCC algorithm is bounded by O(nm2) and this bound is tight.

To prove our smoothed bounds in the next sections, we use another result
by Korte and Vygen [14, Corollary 9.9] which states that the absolute value of
the mean cost of the cycle that is canceled by the MMCC algorithm, |μ(f)|,
decreases by at least a factor 1/2 every mn iterations.

Theorem 1.2 (Korte and Vygen). Every mn iterations of the MMCC algo-
rithm, |μ(f)| decreases by at least a factor 1/2.

1.3 Network Simplex Algorithm

The Network Simplex (NS) algorithm starts with an initial spanning tree struc-
ture (T,L, U) and associated flow f , where each edge in E is assigned to exactly
one of T , L, and U , and it holds that

– f(e) = 0 for all edges e ∈ L,
– f(e) = u(e) for all edges e ∈ U ,
– 0 ≤ f(e) ≤ u(e) for all edges e ∈ T ,
– the edges of T form a spanning tree of G (if we consider the undirected

version of both the edges of T and the graph G).

If the MCF problem has a feasible solution, such a structure can always be found
by first finding any feasible flow and then augmenting flow along cycles consisting
of only edges that have a positive amount of flow less than their capacity, until
no such cycles remain. Note that the structure (T,L, U) uniquely determines
the flow f , since the edges in T form a tree. In addition to the spanning tree
structure, the NS algorithm also keeps track of a set of node potentials π(v) for
all nodes v ∈ V . The node potentials are defined such that the potential of a
specified root node is 0 and that the potential for other nodes is such that the
reduced cost cπ(u, v) = c(u, v) − π(u) + π(v) of an edge (u, v) equals 0 for all
edges (u, v) ∈ T .

In each iteration, the NS algorithm tries to improve the current flow by
adding an edge to T that violates its optimality condition. An edge in L violates
its optimality condition if it has strictly negative reduced cost, while an edge in
U violates its optimality condition if it has strictly positive reduced cost. One of
the edges e that violates its optimality condition is added to T , which creates a
unique cycle C in T . Flow is maximally augmented along C, until the flow on one
of the edges e′ ∈ C becomes 0 or reaches its capacity. The edge e′ leaves T , after
which T is again a spanning tree of G. Next we update the sets T , L, and U ,

706 K. Cornelissen and B. Manthey

the flow and the node potentials. This completes the iteration. If any edges
violating their optimality condition remain, another iteration is performed. One
iteration of the NS algorithm is also called a pivot. The edge e that is added to
T is called the entering edge and the edge e′ that leaves T is called the leaving
edge. Note that in some cases the entering edge can be the same edge as the
leaving edge. Also, if one of the edges in the cycle C already contains flow equal
to its capacity, the flow is not changed in that iteration, but the spanning tree
T still changes. Such an iteration we call degenerate.

Note that in each iteration, there can be multiple edges violating their opti-
mality condition. There are multiple possible pivot rules that determine which
edge enters T in this case. In our analysis we use the (widely used in practice)
pivot rule that selects as the entering edge, from all edges violating their opti-
mality condition, the edge for which the absolute value of its reduced cost |cπ(e)|
is maximum. In case multiple edges in C are candidates to be the leaving edge,
we choose the one that is most convenient for our analysis.

If a strongly feasible spanning tree structure [1] is used, it can be shown
that the number of iterations that the NS algorithm needs is finite. However,
Zadeh [25] showed that there exist instances for which the NS algorithm (with
the pivot rule stated above) needs an exponential number of iterations. Orlin [20]
developed a strongly polynomial version of the NS algorithm, which uses cost-
scaling. However, this algorithm is rarely used in practice and we will not consider
it in the rest of our paper. For a more elaborate discussion of the NS algorithm
we refer to Ahuja et al. [1].

2 Upper Bound for the MMCC Algorithm

In this section we show an upper bound of O(mn2 log(n) log(φ)) for the expected
number of iterations that the MMCC algorithm needs starting from the initial
residual network Gf̃ for the feasible starting flow f̃ for flow network G = (V,E).
Note that we assumed in Section 1.1 that G is simple and that E does not
contain a pair (u, v) and (v, u) of reverse edges. This implies that for each pair
of nodes u, v ∈ V , there is always at most one edge from u to v and at most one
edge from v to u in any residual network Gf . We first show that the number of
cycles that appears in at least one residual network Gf for a feasible flow f on
G, is bounded by (n + 1)!, where n = |V |.

Lemma 2.1. The total number of cycles that appears in any residual network
Gf for a feasible flow f on G, is bounded by (n + 1)!.

We next show that the probability that any particular cycle has negative
mean cost close to 0 can be bounded. In the rest of this section, ε > 0.

Lemma 2.2. The probability that an arbitrary cycle C has mean cost μ(C) ∈
[−ε, 0[can be bounded by nεφ.

Corollary 2.3. The probability that there exists a cycle C with μ(C) ∈ [−ε, 0[
is at most (n + 1)!nεφ.

Smoothed Analysis of the Minimum-Mean Cycle Canceling Algorithm 707

Lemma 2.4. If none of the residual networks Gf for feasible flows f on G
contain a cycle C with μ(C) ∈ [−ε, 0[, then the MMCC algorithm needs at most
mn�log2(1/ε)� iterations.

Theorem 2.5. The expected number of iterations that the MMCC algorithm
needs is O(mn2 log(n) log(φ)).

3 Lower Bound for the MMCC Algorithm

3.1 General Lower Bound

In this section we describe a construction that, for every n, every m ∈ {n, n +
1, . . . , n2}, and every φ ≤ 2n, provides an instance with Θ(n) nodes and Θ(m)
edges for which the MMCC algorithm requires Ω(m log(φ)) iterations. For sim-
plicity we describe the initial residual network G, which occurs after a flow
satisfying all the budgets has been found, but before the first minimum-mean
cycle has been canceled. For completeness, we will explain at the end of the
description of G how to choose the initial network, budgets, and starting flow
such that G is the first residual network.

We now describe how to construct G given n, m, and φ. In the following,
we assume φ ≥ 64. If φ is smaller than 64, the lower bound on the number of
iterations reduces to Ω(m) and a trivial instance with Θ(n) nodes and Θ(m)
edges will require Ω(m) iterations. We define kw = 	 1

2 (log(φ) − 4)
 and kx =
	 1
2 (log(φ) − 5)
. Note that this implies that kx = kw or kx = kw − 1. For the

edge costs we define intervals from which the edge costs are drawn uniformly at
random. We define G = (V, E) as follows.

– V = {a, b, c, d} ∪ U ∪ V ∪ W ∪ X, where U = {u1, . . . , un}, V = {v1, . . . , vn},
W = {w1, . . . , wkw

}, and X = {x1, . . . , xkx
}.

– E = Euv ∪ Ea ∪ Eb ∪ Ec ∪ Ed ∪ Ew ∪ Ex.
– Euv is an arbitrary subset of U × V of cardinality m. Each edge (ui, vj) has

capacity 1 and cost interval [0, 1/φ].
– Ea contains the edges (a, ui), Eb contains the edges (ui, b), Ec contains the

edges (c, vi), and Ed contains the edges (vi, d) (i = 1, . . . , n). All these edges
have infinite capacity and cost interval [0, 1/φ].

– Ew contains the edges (d,wi) and (wi, a) (i = 1, . . . , kw). An edge (d,wi) has
capacity m and cost interval [0, 1/φ]. An edge (wi, a) has capacity m and
cost interval [−22−2i,−22−2i + 1/φ].

– Ex contains the edges (b, xi) and (xi, c) (i = 1, . . . , kx). An edge (b, xi) has
capacity m and cost interval [0, 1/φ]. An edge (xi, c) has capacity m and
cost interval [−21−2i,−21−2i + 1/φ].

Note that all cost intervals have width 1/φ and therefore correspond to valid
probability densities for the edge costs, since the costs are drawn uniformly at
random from these intervals. The edges of the types (wi, a) and (xi, c) have a cost
interval that corresponds to negative edge costs. The residual network with these

708 K. Cornelissen and B. Manthey

negative edge costs can be obtained by having the following original instance
(before computing a flow satisfying the budget requirements): All nodes, edges,
costs and capacities are the same as in G, except that instead of the edges of type
(wi, a) we have edges (a,wi) with capacity m and cost interval [22−2i−1/φ, 22−2i]
and instead of the edges of type (xi, c) we have edges (c, xi) with capacity m
and cost interval [21−2i − 1/φ, 21−2i]. In addition, node a has budget kwm, node
c has budget kxm, the nodes of the types wi and xi have budget −m and all
other nodes have budget 0. If we now choose as the initial feasible flow the flow
that sends m units from a to each node of type wi and from c to each node of
type xi then we obtain the initial residual network G.

We now show that the MMCC algorithm needs Ω(m log(φ)) iterations for the
initial residual network G. First we make some basic observations. The minimum-
mean cycle C never contains the path Pj = (d,wj , a) if the path Pi = (d,wi, a)
has positive residual capacity for some i < j, since the mean cost of C can be
improved by substituting Pj by Pi in C. Analogously, C never contains the path
Pj = (b, xj , c) if the path Pi = (b, xi, c) has positive residual capacity for some
i < j. Also, since all cycles considered have mean cost strictly less than 1/φ,
cycles will never include more edges with cost at least −1/φ than necessary. In
addition, since the edges of type (wi, a) and (xi, c) are saturated in the order
cheapest to most expensive, none of these edges will ever be included in reverse
direction in the minimum-mean cycle. The above observations lead to three
candidate types for the minimum-mean cycle: cycles of type (d,wi, a, u, v, d),
of type (b, xi, c, v, u, b), and of type (d,wi, a, u, b, xj , c, v, d). Here u and v are
arbitrary nodes in U and V , respectively. In the following series of lemmas we
compare the mean costs of these cycle types. Here u and v are again arbitrary
nodes in U and V , possibly different for the cycles that are compared. In our
computations we always assume worst-case realization of the edge costs, that is,
if we want to show that a cycle C1 has lower mean cost than a cycle C2, we
assume that all edges in C1 take the highest cost in their cost interval, while all
edges in C2 take the lowest cost in their cost interval (an edge that appears in
both C1 and C2 can even take its highest cost in C1 and its lowest cost in C2 in
the analysis).

Lemma 3.1. The cycle C1 = (d,wi, a, u, v, d) has lower mean cost than the
cycle C2 = (b, xi, c, v, u, b).

Lemma 3.2. The cycle C1 = (b, xi, c, v, u, b) has lower mean cost than the cycle
C2 = (d,wi+1, a, u, v, d).

Lemma 3.3. The cycle C1 = (d,wi, a, u, v, d) has lower mean cost than the
cycle C2 = (d,wi, a, u, b, xi, c, v, d).

Lemma 3.4. The cycle C1 = (b, xi, c, v, u, b) has lower mean cost than the cycle
C2 = (b, xi, c, v, d, wi+1, a, u, b).

The above observations and lemmas allow us to determine the number of
iterations that the MMCC algorithm needs for residual network G.

Smoothed Analysis of the Minimum-Mean Cycle Canceling Algorithm 709

Theorem 3.5. The MMCC algorithm needs m(kw + kx) iterations for residual
network G, independent of the realization of the edge costs.

Proof (sketch). Using Lemma 3.1, Lemma 3.2, Lemma 3.3, and Lemma 3.4 we
show that the first m iterations cancel cycles of type (d,w1, a, u, v, d), the next
m iterations cancel cycles of type (b, x1, c, v, u, b), the next m iterations cancel
cycles of type (d,w2, a, u, v, d), etc. The total number of iterations is therefore
m(kw + kx).

The instance G and Theorem 3.5 allow us to state a lower bound on the
number of iterations that the MMCC algorithm needs in the smoothed setting.

Theorem 3.6. For every n, every m ∈ {n, n + 1, . . . , n2}, and every φ ≤ 2n,
there exists an instance with Θ(n) nodes and Θ(m) edges for which the MMCC
algorithm requires Ω(m log(φ)) iterations, independent of the realization of the
edge costs.

3.2 Lower Bound for φ Dependent on n

In Section 3.1 we considered the setting where φ does not depend on n. In this
setting we showed that the MMCC algorithm needs Ω(m log(φ)) iterations. We
can improve the lower bound if φ is much larger than n. In this section we
consider the case where φ = Ω(n2). In particular, we show that for every n ≥ 4
and every m ∈ {n, . . . , n2} there exists an instance with Θ(n) nodes, Θ(m) edges,
and φ = Θ(n2) for which the MMCC algorithm needs Ω(mn) iterations.

The initial residual network H that we use to show our bound is very similar
to the initial residual network G that was used to show the bound in Section 3.1.
Below we describe the differences. We set φ = 400000n2. The constant of 400000
is large, but for the sake of readability and ease of calculations we did not try
to optimize it.

– The node set W now consists of n nodes {w1, . . . , wn} and the node set X
now consists of n nodes {x1, . . . , xn}.

– Node a is split into two nodes a1 and a2. From node a1 to a2 there is a
directed path consisting of n edges, all with infinite capacity and cost interval
[0, 1/φ]. Edges (a, ui) are replaced by edges (a2, ui) with infinite capacity
and cost interval [0, 1/φ]. Edges (wi, a) are replaced by edges (wi, a1) with
capacity m and cost interval [−(n−3

n)2i−2
,−(n−3

n)2i−2 + 1
φ].

– Node c is split into two nodes c1 and c2. From node c1 to c2 there is a directed
path consisting of n edges, all with infinite capacity and cost interval [0, 1/φ].
Edges (c, vi) are replaced by edges (c2, vi) with infinite capacity and cost
interval [0, 1/φ]. Edges (xi, c) are replaced by edges (xi, c1) with capacity m

and cost interval [−(n−3
n)2i−1

,−(n−3
n)2i−1 + 1

φ].

Note that this is a valid choice of cost intervals for the edges (wi, a1) and
(xi, c1) and that they all have negative costs, since (xn, c1) is the most expensive
of them and we have

710 K. Cornelissen and B. Manthey

−
(

n − 3
n

)2n−1

+
1
φ

≤ −
(

1 − 3
n

)2n

+
1

400000n2
≤ −(e−6)2+

1
6400000

< 0. (1)

As in Section 3.1, there are three candidate types for the minimum-mean cost
cycle: cycles of type (d,w, a, u, v, d), cycles of type (b, x, c, v, u, b), and cycles of
type (d,w, a, u, b, x, c, v, d). Again we assume worst-case realizations of the edge
costs and compare the mean costs of cycles of the different types in a series of
lemmas.

Lemma 3.7. The cycle C1 = (d,wi, a, u, v, d) has lower mean cost than the
cycle C2 = (b, xi, c, v, u, b).

Lemma 3.8. The cycle C1 = (b, xi, c, v, u, b) has lower mean cost than the cycle
C2 = (d,wi+1, a, u, v, d).

Lemma 3.9. The cycle C1 = (d,wi, a, u, v, d) has lower mean cost than the
cycle C2 = (d,wi, a, u, b, xi, c, v, d).

Lemma 3.10. The cycle C1 = (b, xi, c, v, u, b) has lower mean cost than the
cycle C2 = (b, xi, c, v, d, wi+1, a, u, b).

The above lemmas allow us to determine the number of iterations that the
MMCC algorithm needs for initial residual network H.

Theorem 3.11. The MMCC algorithm needs 2mn iterations for initial residual
network H, independent of the realization of the edge costs.

Initial residual network H and Theorem 3.11 allow us to state a lower bound
for the number of iterations that the MMCC Algorithm needs in the smoothed
setting for large φ.

Theorem 3.12. For every n ≥ 4 and every m ∈ {n, n + 1, . . . , n2}, there exists
an instance with Θ(n) nodes and Θ(m) edges, and φ = Θ(n2), for which the
MMCC algorithm requires Ω(mn) iterations, independent of the realization of
the edge costs.

4 Lower Bound for the Network Simplex Algorithm

In this section we provide a lower bound of Ω(m · min{n, φ} · φ) for the number
of iterations that the NS algorithm requires in the setting of smoothed analysis.
The instance of the MCF problem that we use to show this lower bound is very
similar to the instance used by Brunsch et al. [3] to show a lower bound on the
number of iterations that the SSP algorithm needs in the smoothed setting. The
differences are that they scaled their edge costs by a factor of φ, which we do
not, that we add an extra path from node s to node t, and that the budgets of
the nodes are defined slightly differently. We can show that every non-degenerate
iteration of the NS algorithm for our instance corresponds with an iteration of
the SSP algorithm for the instance of Brunsch et al. Because of space constraints
we omit the analysis and only provide our main result.

Smoothed Analysis of the Minimum-Mean Cycle Canceling Algorithm 711

Theorem 4.1. For every n, every m ∈ {n, . . . , n2}, and every φ ≤ 2n there
exists a flow network with Θ(n) nodes and Θ(m) edges, and an initial spanning
tree for which the Network Simplex algorithm needs Ω(m · min{n, φ} · φ) non-
degenerate iterations with probability 1.

5 Discussion

In Section 4 we showed a smoothed lower bound of Ω(m · min{n, φ} · φ) for the
number of iterations that the NS algorithm needs. This bound is the same as
the smoothed lower bound that Brunsch et al. [3] showed for the SSP algorithm.
For the SSP algorithm this lower bound is even tight in case φ = Ω(n). Still,
the NS algorithm is usually much faster in practice than the SSP algorithm. We
believe that the reason for this difference is that the time needed per iteration
is much less for the NS algorithm than for the SSP algorithm. In practical
implementations, the entering edge is usually picked from a small subset (for
example of size Θ(

√
m)) of the edges, which removes the necessity of scanning all

edges for the edge which maximally violates its optimality conditions. Also, the
spanning tree structure allows for fast updating of the flow and node potentials,
in particular when the flow changes on only a small fraction of the edges. For
the SSP algorithm an iteration consists of finding a shortest path, which takes
O(m + n log(n)) time. The experimental results of Kovács [15] seem to support
this claim, since on all test instances the SSP algorithm is slower than the NS
algorithm, but never more than a factor m. To allow a better comparison of
the SSP algorithm and the NS algorithm in the smoothed setting, it would be
useful to have a smoothed upper bound on the running time of the NS algorithm.
Finding such an upper bound is our main open problem.

There is a gap between our smoothed lower bound of Ω(m log(φ))
(Section 3.1) for the number of iterations that the MMCC algorithm requires
and our smoothed upper bound of O(mn2 log(n) log(φ)). Since our lower bound
for the MMCC algorithm is weaker than the lower bound for the SSP algo-
rithm, while the MMCC algorithm performs worse on practical instances than
the SSP algorithm, we believe that our lower bound for the MMCC algorithm
can be strengthened. Our stronger lower bound of Ω(mn) in case φ = Ω(n2)
(Section 3.2) is another indication that this is likely possible.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin. J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall (1993)

2. Beier, R., Vöcking, B.: Random knapsack in expected polynomial time. Journal of
Computer and System Sciences 69(3), 306–329 (2004)

3. Brunsch, T., Cornelissen, K., Manthey, B., Röglin, H., Rösner, C.: Smoothed anal-
ysis of the successive shortest path algorithm. Computing Research Repository
1501.05493 [cs.DS], arXiv 2015. Preliminary version at SODA (2013)

712 K. Cornelissen and B. Manthey

4. Busacker, R.G., Gowen, P.J.: A procedure for determining a family of minimum-
cost network flow patterns. Technical Report Technical Paper 15, Operations
Research Office (1960)

5. Dantzig, G.B.: Linear programming and extensions. Rand Corporation Research
Study. Princeton Univ. Press, Princeton (1963)

6. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the ACM 19(2), 248–264 (1972)

7. Ford, Jr. L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press
(1962)

8. Fulkerson, D.R.: An out-of-kilter algorithm for minimal cost flow problems. Journal
of the SIAM 9(1), 18–27 (1961)

9. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by canceling
negative cycles. J. ACM 36(4), 873–886 (1989)

10. Iri, M.: A new method for solving transportation-network problems. Journal of the
Operations Research Society of Japan 3(1,2), 27–87 (1960)

11. Jewell, W.S.: Optimal flow through networks. Operations Research 10(4), 476–499
(1962)

12. Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete
Mathematics 23(3), 309–311 (1978)

13. Klein, M.: A primal method for minimal cost flows with applications to the assign-
ment and transportation problems. Management Science 14(3), 205–220 (1967)

14. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 1st
edn. Springer Publishing Company, Incorporated (2007)

15. Kovács, P.: Minimum-cost flow algorithms: An experimental evaluation. Optimiza-
tion Methods and Software 30(1), 94–127 (2015)

16. Manthey, B., Röglin, H.: Smoothed analysis: Analysis of algorithms beyond worst
case. it - Information Technology 53(6), 280–286 (2011)

17. Minty, G.J.: Monotone networks. In Proceedings of the Royal Society of London
A, pp. 194–212 (1960)

18. Orlin, J.B.: Genuinely polynomial simplex and non-simplex algorithms for the
minimum cost flow problem. Technical report, Sloan School of Management. MIT,
Cambridge, Technical Report No. 1615–84 (1984)

19. Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Operations
Research 41(2), 338–350 (1993)

20. Orlin, J.B.: A polynomial time primal network simplex algorithm for minimum
cost flows. Math. Program. 77, 109–129 (1997)

21. Radzik, T., Goldberg, A.V.: Tight bounds on the number of minimum-mean cycle
cancellations and related results. Algorithmica 11(3), 226–242 (1994)

22. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004)

23. Spielman, D.A., Teng, S.-H.: Smoothed analysis: an attempt to explain the behav-
ior of algorithms in practice. Communications of the ACM 52(10), 76–84 (2009)

24. Tardos, É.: A strongly polynomial minimum cost circulation algorithm. Combina-
torica 5(3), 247–256 (1985)

25. Zadeh, N.: A bad network problem for the simplex method and other minimum
cost flow algorithms. Mathematical Programming 5(1), 255–266 (1973)

DD-POR: Dynamic Operations and Direct
Repair in Network Coding-Based Proof

of Retrievability

Kazumasa Omote and Tran Phuong Thao(B)

Japan Advanced Institute of Science and Technology (JAIST),
1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan

{omote,tpthao}@jaist.ac.jp

Abstract. POR (Proof of Retrievability) is a protocol by which clients
can distribute their data to cloud servers and can check if the data stored
in the servers is available and intact. Based on the POR, the network cod-
ing is applied to improve network throughput. Although many network
coding-based PORs have been proposed, most of them have not achieved
the following practical features: direct repair and dynamic operations. In
this paper, we propose the DD-POR (Dynamic operations and Direct
repair in network coding-based POR) to address these shortcomings.
When a server is corrupted, the DD-POR can support the direct repair
in which the data stored in the corrupted server can be repaired using
the data provided directly from the healthy servers. The client is thus
free from the burden of data repair. Furthermore, the DD-POR allows
the client to efficiently perform dynamic operations, i.e., modification,
insertion and deletion.

Keywords: Proof of retrievability · Network coding · Direct repair ·
Dynamic operations

1 Introduction

Since the amount of data is increasing exponentially, data storage and data man-
agement become burdensome tasks of the clients. Therefore, storage providers
called clouds are proposed to allow the clients to store, manage, and share their
data portably and easily from anywhere via the Internet. However, because cloud
providers could not be untrustworthy, this system introduces three security chal-
lenges: data availability, data integrity and data confidentiality. Ensuring data
availability and data integrity is the primary requirement before ensuring data
confidentiality because data availability and data integrity are the prerequisites
of the existence of a system. This paper thus focuses on data availability and data
integrity. To allow the client to check whether the data stored in the cloud servers
is available and intact, researchers proposed Proof of Retrievability (POR) [1–3],
which is the challenge-response protocol between a client and a server. Based
on the POR, the following three approaches are commonly used: replication,
erasure coding, and network coding. In the replication [4–6], the client stores
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 713–730, 2015.
DOI: 10.1007/978-3-319-21398-9 56

714 K. Omote and T.P. Thao

a file replica in each server. The client can perform periodic server checks. If a
server is corrupted, the client will uses a healthy replica to repair the corruption.
The drawback of this approach is the high storage cost for the redundant repli-
cas. To address this drawback, the erasure coding was proposed [7–10]. Instead
of storing file replicas as in the replication, the client stores file blocks in each
server. Hence, the storage cost can be reduced. However, the drawback of this
approach is that to repair a corrupted server, the client must reconstruct the
original file before generating the new coded blocks. The computation cost is
thus increased during data repair. To address this drawback, the network coding
was proposed [11–13] in which the client does not need to reconstruct the orig-
inal file before repairing the corruption. Instead, the client retrieves the coded
blocks in the healthy servers to generate the new file blocks. Therefore, this paper
focuses on the network coding. Furthermore, the data stored in the servers can-
not be checked without an additional information: Message Authentication Code
(MAC) (used for a symmetric key setting), or signature (used for an asymmetric
key setting). A MAC is also called a tag. This paper is based on a symmetric key
setting which is well-known to be more efficient than an asymmetric key setting.
The MAC is thus used in the proposed scheme.

Network Coding-Based POR. Dimakis et al. [14] were the first to apply the
network coding to distributed storage systems and achieve a reduction in the com-
munication overhead of the repair component. Li et al. [15] introduced the tree-
structure data regeneration with the linear network coding to achieve an efficient
regeneration traffic and bandwidth capacity by using an undirected-weighted
maximum spanning tree. Chen et al. then proposed the Remote Data Checking for
Network Coding-based distributed storage system (RDC-NC) [16] which provides
an elegant data repair by recoding encoded blocks in healthy servers during repair.
H.Chen et al. proposed the NC-Cloud scheme [17] to improve cost-effective repair
using the functional minimum-storage regenerating (FMSR) codes and lighten
the encoding requirement of storage nodes during repair. However, most of these
schemes have the following shortcomings. Firstly, the schemes can only support
the indirect repair. That is, to repair a corrupted server, the client must require
the healthy servers to provide aggregated coded blocks and aggregated tags, and
send them back to the client. The client then checks the provided coded blocks
using the tags, and computes the new coded blocks and new tags to replace the
corruption. The client sends these new coded blocks and tags to the new server.
Such a repair mechanism is a troublesome task for the client. Because the data
repair is performed very often during the system lifetime, the client thus incurs
high computation and communication costs. Secondly, the schemes do not con-
sider the dynamic operations. That is, the client can only perform the data check
and data retrieval, but cannot perform the modification, insertion and deletion. A
few PORs were proposed to deal with the dynamic operations, e.g, [18–21]. How-
ever, all these schemes are based on the erasure coding, not the network coding.

There are two most notable schemes which are related to our proposed
scheme. The first one is the MD-POR [22], which can support the direct repair,

DD-POR: Dynamic Operations and Direct Repair 715

but cannot support the dynamic operations. The second one is the NC-Audit
[23], which also considered the direct repair and dynamic operations. However,
when the direct repair is supported, this scheme cannot prevent the pollution
attack which is a common attack of the network coding. This is because the new
server cannot check the provided coded blocks. Furthermore, the authors only
discuss about the dynamic operations without clear details. For example, for
the modification, the authors discuss how to update the tag without mentioning
how to update the coded blocks which are related to the modified file block. For
the insertion, the authors mentioned that the insertion does not work in their
scheme. For the deletion, there is no concrete explanation.

Contribution. This paper proposes the DD-POR scheme with the following
contributions:

• Direct repair: when a server is corrupted, the healthy servers will provide
their coded blocks and tags directly to the new server without sending them
back to the client. Then, the new server can check them to prevent the
pollution attack, and can compute the new coded blocks and the tags for
itself. The client is thus free from the repair process.

• Dynamic operations: the client not only can check and retrieve the data, but
also can modify, insert and delete the data.

• Symmetric key setting: our scheme does not use any public key for the effi-
ciency. The direct repair feature introduces a difficulty that how to allow the
new server which is untrusted to check and compute the new coded blocks
and the tags without using a public key, our scheme can address this problem
by using an orthogonal key technique called InterMac [24].

Roadmap. The backgrounds of the POR, network coding and InterMac are
described in Section 2. The adversarial model is presented in Section 3. The
DD-POR scheme is proposed in Section 4. The security and efficiency analyses
are given in Section 5 and 6. The conclusion is drawn in Section 7.

2 Background

2.1 The POR Framework

The POR [1–3] is a challenge-response protocol between a verifier V (client) and
a prover P (server), and consists of the functions defined below.

– KGen(λ) → κ: run by V . This function takes a security parameter s as
the input and outputs a secret key κ (For a asymmetric key system, κ is a
public/private key pair.)

– Encode(F, κ) → F ′: run by V . This function takes an original file F and κ
as input, and outputs an encoded file F ∗, and then sends F ∗ to P .

– Check() → {accept/deny}: run by both V and P . Firstly, V generates a
challenge c and sends c to P . P then computes a response r and sends r
back to V . V finally verifies P based on c and r.

716 K. Omote and T.P. Thao

– Repair(): run by V . When a corruption is detected, V executes this function
to repair the corruption. The technique of repair depends on each specific
scheme, i.e, replication, erasure coding or network coding.

2.2 Network Coding in Distributed Storage System

The network coding [11–13] is proposed for cost-efficiency in data transmission.
The model system consists of a client and multiple servers. The client owns a
file F and wants to store the redundant coded blocks in the servers in a way
that the client can reconstruct F and can repair the coded blocks in a corrupted
server. The client firstly divides F into m blocks: F = v1|| · · · ||vm ∈ F

z
q . Each

vk ∈ F
z
q where k ∈ {1, · · · ,m} and F

z
q denotes a z-dimensional finite field over a

prime q. The client then augments vk with a vector of length m which contains a
single ‘1’ in the position k and (m − 1) single ‘0’s elsewhere. The resulting block
is called augmented block (says, wk). wk has the following form:

wk = (vk,

m
︷ ︸︸ ︷
0, · · · , 0, 1
︸ ︷︷ ︸

k

, 0, · · · , 0) ∈ F
z+m
q (1)

Thereafter, the client randomly chooses m coefficients α1, · · · , αm ∈ Fq to
compute coded blocks using the linear combination c =

∑m
k=1 αk · wk ∈ F

z+m
q .

The clients stores these coded blocks in the servers. To reconstruct F , any m
coded blocks are required to solve m augmented blocks w1, · · · , wm using the
accumulated coefficients contained in the last m coordinates of each coded block.
After the m augmented blocks are solved, m file blocks v1, · · · , vm are obtained
from the first coordinate of each augmented block. Finally, F is reconstructed by
concatenating the file blocks. Note that the matrix consisting of the coefficients
used to construct any m coded blocks should have full rank. R. Koetter et al.
[13] proved that if the prime q is chosen large enough and the coefficients are
chosen randomly, the probability for the matrix having full rank is high. When
a server is corrupted, the client repairs it by retrieving the coded blocks from
the healthy servers and linearly combining them to regenerate the new coded
blocks. An example of the data repair is given in Figure 1.

2.3 InterMac

When we deal with the direct repair, the difficulty is how to allow the new server
which is untrusted to check the provided coded blocks using its key without
learning the secret key of the client. The InterMac [24] is a suitable technique
to generate such a key for the new server. Basically, the InterMac is proposed to
generate a vector which is orthogonal to a given set of vectors. Formally, given
the set of vectors {w1, · · · , wm} and an integer p ∈ Z

∗
q , p �= 1, the algorithm

outputs a vector kp s.t. kp · wk = 0, ∀k ∈ {1, · · · ,m}.
(1) The main algorithm InterMac is described as follows:
InterMac({w1, · · · , wm}, p) → kp:

– Find the span π of w1, · · · , wm ∈ F
z+m
q .

– Construct the matrix M in which {w1, · · · , wm} are the rows of M .

DD-POR: Dynamic Operations and Direct Repair 717

Fig. 1. The client stores the coded blocks in the server S1, S2, S3. Suppose that S1 is
corrupted, the client repair it by the linear combinations of the coded blocks from S2

and S3.

– Find the null-space of M , denoted by π⊥
M , which is the set of all vectors

u ∈ F
z+m
q s.t. M · uT = 0.

– Find the basis vectors of π⊥
M , denoted by b1, · · · , bz ∈ F

z+m
q // Theorem 1

will explain why the number of the basis vectors is z.
– Let B = {b1, · · · , bz}
– Compute kp ← Kg(B).

(2) The sub-algorithm Kg used in InterMac is given as follows:
Kg(B = {b1, · · · , bz}) → kp:

– Let f be a Pseudorandom function s.t. K × P × [1, z] → Fq.
– Generate ri ← f(k, p, i) ∈ Fq,∀i ∈ {1, · · · , z} where k ∈ K, p ∈ P.
– Compute kp ←

∑z
i=1 ri · bi ∈ F

z+m
q .

Theorem 1. Given {w1, · · · , wm} ∈ F
z+m
q , the number of basis vectors of π⊥

M

is z.

Proof. rank(M) = m. Let πM be the space spanned by the rows of M . For any
m×(z+m) matrix, the rank-nullity theorem gives: rank(M)+nullity(M) = z+m
where nullity(M) is the dimension of π⊥

M . Therefore, dim(π⊥
M) = (z+m)−m = z.

In other words, the number of basis vectors of π⊥
M is z. In the InterMac, we denote

the basis vectors by {b1, · · · , bz}. ��

3 Adversarial Model

In our scheme, the client is trusted, and the servers are untrusted. Assume that
the servers do not collude with each other. The servers can perform two types of
attacks:

(1) In the check phase: the servers disrupts the system or modifies the data. These
attacks can be commonly prevented by the tags, we thus do not focus on these
attacks.

718 K. Omote and T.P. Thao

(2) In the repair phase: the servers can perform: (i) the pollution attack which
is a common attack of the network coding, and (ii) the curious attack which is
a special attack of the direct repair. We focus on these in the security analysis.

– Pollution Attack. A malicious server firstly uses a valid coded block to pass
the check phase, but then injects an invalid coded block in the repair phase
to prevent data repair. An example is given as follows:

• Encode: the client encodes the augmented blocks (w1, w2, w3) to six
coded blocks: c11, c12 (stored in the server S1), c21, c22 (stored in the
server S2), and c31, c32 (stored in the server S3). Suppose that S1 will
perform a pollution attack.

• Check: S3 is corrupted.
• Repair: S3 should be repaired by two coded blocks: c′

31 (which is a linear
combination of c11 and c12) and c′

32 (which is a linear combination of
c21 and c22). However, S1 is not detected because this time is the repair
phase, not the check phase. The client still thinks S1 is healthy, and thus
the client requests the coded blocks from S1 and S2. S1 will provide an
invalid coded block c′′

31 to the client instead of c′
31.

– Curious Attack. This attack is performed by the new server in the repair
phase. Every repair time, the new server is given a key kr constructed from
the secret key kC of the client and a variant kp. Having kr, the new server
tries to obtain kC in order to pass the check phases in the later epochs.

4 Our Proposed Scheme

4.1 Notations

Throughout theDD-PORscheme, the following notations and definitions are used:
– C denotes the client.
– F denotes the original file.
– m denotes the number of file blocks.
– n denotes the number of servers.
– d denotes the number of coded blocks in each server.
– k denotes the file block index (k ∈ {1, · · · ,m}).
– i denotes the server index (i ∈ {1, · · · , n}).
– j denotes the coded block index in each server (j ∈ {1, · · · , d}).
– vk denotes the file block (k ∈ {1, · · · ,m}).
– wk denotes the augmented block of vk.
– twk

denote the tag of wk.
– Si denotes the server.
– cij denotes the j-th coded block stored in Si.
– tcij denotes the tag of cij .
– l denotes the number of healthy servers used for data repair.
– Sr denotes the corrupted server.
– S′

r denotes the new server which is used to replace Sr.
– F

z
q is the z-dimensional finite field F over a prime q.

DD-POR: Dynamic Operations and Direct Repair 719

4.2 Construction

Setup
(1) Create augmented blocks: C divides F into m blocks F = v1|| · · · ||vm. Each
vk ∈ F

z
q where k ∈ {1, · · · ,m}. C creates m augmented blocks as Eq. 1.

(2) Keygen: C generates two types of keys:
– The key of the client (kC): kC

rand← F
z+m
q .

– The one-time key of the new server every repair time (kr): C generates
p

rand← Z
∗
q , p �= 1 (p is generated every repair time). C computes a key

kp ← InterMac({w1, · · · , wm}, p). The property of kp is that kp · wk = 0
where k ∈ {1, · · · ,m}. Let kr = kC + kp ∈ F

z+m
q . kC is static, only kp is

re-computed every repair time. kr is sent to the new server only when the
repair phase is executed.

Encode
(1) C computes a tag for each augmented block as follows:

– For ∀k ∈ {1, · · · ,m}, C computes tag: twk
= wk · kC ∈ Fq.

(2) C computes nd coded blocks and nd corresponding tags as follows:
For ∀i ∈ {1, · · · , n},∀j ∈ {1, · · · , d}:

– C generates m coefficients: αijk
rand← Fq where k ∈ {1, · · · ,m}.

– C computes code block: cij =
∑m

k=1 αijk · wk ∈ F
z+m
q .

– C compute tag: tcij =
∑m

k=1 αijk · twk
∈ Fq.

(3) C sends d pairs of {cij , tcij} where j ∈ {1, · · · , d} to the server Si.

Check
(1) C requires Si to provide its aggregated coded block and aggregated tag.
(2) Si (i ∈ {1, · · · , n}) combines its coded blocks and tags as follows:

– Si generates d coefficients: βij
rand← Fq where ∀j ∈ {1, · · · , d}.

– Si combines coded blocks: cSi
=

∑d
j=1 βij · cij ∈ F

z+m
q .

– Si combines tags: tSi
=

∑d
j=1 βij · tcij ∈ Fq.

– Si sends {cSi
, tSi

} to C.
(3) C verifies Si as follows:
For ∀i ∈ {1, · · · , n}:

– C computes t′Si
= cSi

· kC ∈ Fq.
– C checks the following equation. If it holds, Si is healthy. Otherwise, Si is

corrupted.
tSi

= t′Si
(2)

Repair. Suppose Sr is corrupted. A set of l healthy servers {Si1 , · · · , Sil} are
required to provide data to a new server S′

r, which is used to replace Sr.
(1)Si (i ∈ {i1, · · · , il}) provides its data to S′

r as follows:
– Si generates d coefficients: βij

rand← Fq where j ∈ {1, · · · , d}.
– Si combines coded blocks: cSi

=
∑d

j=1 βij · cij ∈ F
z+m
q .

– Si combines tags: tSi
=

∑d
j=1 tij · βij ∈ Fq.

– Si sends {cSi
, tSi

} to S′
r.

720 K. Omote and T.P. Thao

(2) S′
r checks Si(i ∈ {i1, · · · , il}) as follows:

– S′
r computes t′Si

= cSi
· kr ∈ Fq.

– S′
r checks if the following equation holds:

t′Si
= tSi

(3)
(3) S′

r computes d new coded blocks and d corresponding tags:
For ∀j ∈ {1, · · · , d}:

– S′
r generates l coefficients: γri

rand← Fq where i ∈ {i1, · · · , il}.
– S′

r computes new coded block: crj =
∑il

i=i1
γri · cSi

∈ F
z+m
q .

– S′
r computes new tag: trj =

∑il
i=i1

γri · tSi
∈ Fq.

4.3 Correctness

(1) We firstly prove the correctness of Eq. 2:
tSi

=
∑d

j=1 βij · tcij =
∑d

j=1

∑m
k=1 βij ·αijk · twk

=
∑d

j=1

∑m
k=1 βij ·αijk ·wk ·kC .

t′Si
= cSi

· kC =
∑d

j=1 βij · cij · kC =
∑d

j=1

∑m
k=1 βij · αijk · wk · kC = tSi

.
(2) We prove the correctness of Eq. 3
tSi =

∑d
j=1 βij · tcij =

∑d
j=1

∑m
k=1 βij · αijk · twk =

∑d
j=1

∑m
k=1 βij · αijk · wk · kC .

t′
Si

= cSi · kr =
∑d

j=1 βij · cij · kr =
∑d

j=1

∑m
k=1 βij · αijk · wk · (kC + kp)

=
∑d

j=1

∑m
k=1 βij · αijk · wk · kC // kp · wk = 0

= tSi

4.4 Dynamic Operations

When C performs a dynamic operation on a file block, herein introduces a diffi-
culty of the task: how the servers deal with the coded blocks which are related
to the modified/inserted/deleted file block. The trivial solution is to encode data
again. This solution incurs very high costs. In our solution, the old coded blocks
and tags stored in the servers can be re-used, and only a small additional com-
putation is needed for the dynamic operations.

Firstly, we give the following theorem, which will form the basis of the
dynamic operations.

Theorem 2. The basis vector of the matrix consisting of m augmented blocks
is unique.

Proof. Let M be the matrix in which each of m augmented blocks is a row in M :

M =

⎛

⎜
⎜
⎜
⎝

w1

w2

...
wm

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

v1, 1, 0, 0, · · · , 0
v2, 0, 1, 0, · · · , 0

...
vm, 0, · · · , 0, 1

⎞

⎟
⎟
⎟
⎠

Because the dimension of M is m× (m+1), the number of pivot variables is
m and the number free variables is (m + 1) − m = 1. Thus, the number of basis
vectors of M is 1. ��

DD-POR: Dynamic Operations and Direct Repair 721

Modification. Suppose that C modifies a file block vX to a new file block v′
X .

Let wX and w′
X be the augmented block of vX and v′

X , respectively.
(1) C re-computes kr for the next repair time:

Let M be the matrix consisting of m augmented blocks. After the modifica-
tion, only vX is changed and other elements in M are not changed. Namely, M
is changed to M ′ as follows:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1, 1, 0, 0, · · · , 0
v2, 0, 1, 0, · · · , 0

...
vX , 0, · · · , 0, 1︸ ︷︷ ︸

X

, 0, · · · , 0

...
vm, 0, · · · , 0, 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

modification→ M ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1, 1, 0, 0, · · · , 0
v2, 0, 1, 0, · · · , 0

...

v′
X , 0, · · · , 0, 1︸ ︷︷ ︸

X

, 0, · · · , 0

...
vm, 0, · · · , 0, 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Observer that the modification does not affect kC , but affect kr(= kC + kp)
because kp is constructed from M . This is why we need to update kr.

– Because the number of columns in M is (m + 1), and because the number
of basis vectors of M is 1 (Theorem 2), we have that the unique basis vector
of M consists of (m + 1) elements (says, B = [b1, · · · , bm+1]). Similarly, the
unique basis vector of M ′ also consists of (m + 1) elements (says, B′ =
[b′

1, · · · , b′
m+1]). We need to find B′ from B.

– Because only vX in M is changed and other elements are not changed, C
only needs to re-compute the (X +1)-th element of B by (−v′

X · b1) mod q.
Namely,

B′ = [b1, · · · , bX , (−v′
X · b1) mod q , bX+2, · · · , bm+1] (4)

– C then computes k′
p ← Kg(B′) (described in Section 2.3). C finally sends

k′
r = kC + k′

p to the new server when the next repair phase is executed.
(2) C computes the tag for w′

k. Each server updates its coded blocks and tags:
– C computes the tag: t′X = w′

X · kC ∈ Fq, and sends {w′
X , t′X} to each Si.

– Si updates its coded blocks and tags as follows:

For ∀j ∈ {1, · · · , d}:
{

c′
ij = cij − αijX · wX + αijX · w′

X = cij + αijX · Δw
t′ij = tij − αijX · tX + αijX · t′X = tij + αijX · Δt

where cij and tij are the old coded block and tag. Δw = w′
X − wX ,

Δt = t′X − tX . The coefficient αijX can be found in the (X + 1)-th ele-
ment of cij .

Insertion. Suppose that C inserts a file block vI after the existing file block vX .
Let wI be the augmented block of vI .
(1) C modifies kC :

Before the insertion, because an augmented block has (m + 1) elements

(wk = (vk,

m
︷ ︸︸ ︷
0, · · · , 0, 1
︸ ︷︷ ︸

k

, 0, · · · , 0)), thus kC also has (m + 1) elements (says,

kC = [k1, · · · , km+1]). After the insertion, because an augmented block has

722 K. Omote and T.P. Thao

(m + 2) elements (w′
k = (vk,

m+1
︷ ︸︸ ︷
0, · · · , 0, 1
︸ ︷︷ ︸

k

, 0, · · · , 0)), and thus the new k′
C also

has (m + 2) elements (says, k′
C = [k′

1, · · · , k′
m+2]). Given kC , we find k′

C as
follows:

k′
C = [k1, · · · , kX+1, kI , kX+2, · · · , km+1] (5)

– The first (X + 1) elements of k′
C are the same as these of kC .

– The (X + 2)-th element of k′
C (denoted by kI) is computed as: kI

rand← Fq.
– The last (m − X) elements of k′

C are the same as the last (m − X) elements
of kC .

The reason that we construct such k′
C will be explained in Step 3 (tag update).

(2) C re-computes kr for the next repair time:
After the insertion, the matrix M is changed as follows:

– In each of the first X rows, a single ‘0’ is padded in the final position.
– In the inserted row (wI), vI is the first element, a ‘1’ bit is the (X + 1)-th

element counted from the second element and ‘0’ elsewhere.
– In each of the last (m − X) rows, a single ‘0’ is padded in the final position

and the single ‘1’ is shipped to the next right position.

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1, 1, 0, · · · , 0
...

vX , 0, · · · , 0, 1︸ ︷︷ ︸
X

, 0, · · · , 0

vX+1 , 0, · · · , 0, 1︸ ︷︷ ︸
X+1

, 0, · · · , 0

...
vm, 0, · · · , 0, 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
m×(m+1)

insertion→ M ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1, 1, 0, · · · , 0
...

vX , 0, · · · , 0, 1︸ ︷︷ ︸
X

, 0, · · · , 0

vI , 0, · · · , 0, 1︸ ︷︷ ︸
X+1

, 0, · · · , 0

vX+1, 0, · · · , 0, 1︸ ︷︷ ︸
X+2

, 0, · · · , 0

...
vm, 0, · · · , 0, 1︸ ︷︷ ︸

m+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
(m+1)×(m+2)

We now update k′
r as follows:

– Let B = [b1, · · · , bm+1] and B′ = [b′
1, · · · , b′

m+2] be the basis vector of M
and M ′, respectively. Given B, we firstly find B′:

• The first (X + 1) elements of B′ are the same as these of B:
(b′

1 = b1), · · · , (b′
X+1 = bX+1)

• The last (m − X + 1) elements of B′ are simply computed as:{
b′
X+2 = (−vI · b1) mod q

b′
t = bt−1 where t ∈ {X + 3, · · · ,m + 2}

In other words:
B′ = [b1, · · · , bX+1, (−vI · b1) mod q , bX+2, · · · , bm+1] (6)

DD-POR: Dynamic Operations and Direct Repair 723

– C then computes k′
p ← Kg(B′) (described in Section 2.3). C finally sends

k′
r = k′

C + k′
p to the new server when the next repair phase is executed.

(3) C computes a tag for wI . Each server Si updates its coded blocks and tags :
– C computes a tag for wI as: tI = wI · k′

C , then sends {wI , tI} to Si.
– Si updates its coded blocks as follows:

An old coded block has (m + 1) elements: cij = (
∑m

k=1 αijk ·
wk, αij1, · · · , αijm). Let cij [x] denote the x-th element of cij (x ∈ {1, · · · ,m+
1}). We compute the new coded block as:
c′
ij = (

∑m
k=1 αijkwk + αijIwI , αij1, · · · , αijX , αijI , αij(X+1), · · · , αijm)

= (cij [1] + αijIwI , cij [2], · · · , cij [X + 1], αijI , cij [X + 2], · · · , cij [m+1])
(7)

where αijI ← Fq.
– Si updates its tags as follows:

By constructing k′
C as Step 1, the tags of the augmented blocks before the

insertion are:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

tw1

...
twX

tw(X+1)

...
twm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= M · kC =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v1, 1, 0, · · · , 0
...

vX , 0, · · · , 0, 1
︸ ︷︷ ︸

X

, 0, · · · , 0

vX+1 , 0, · · · , 0, 1
︸ ︷︷ ︸

X+1

, 0, · · · , 0

...
vm, 0, · · · , 0, 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

k1
...

k(X+1)
k(X+2)

...
km+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v1k1 + k2
...

vXk1 + k(X+1)
v(X+1)k1 + k(X+2)

...
vmk1 + km+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The tags of the augmented blocks after the insertion are:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t′w1
...

t′wX

tI
t′w(X+1)

...
t′wm+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= M ′ · k′
C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v1, 1, 0, · · · , 0
...

vX , 0, · · · , 0, 1
︸ ︷︷ ︸

X

, 0, · · · , 0

vI , 0, · · · , 0, 1
︸ ︷︷ ︸

X+1

, 0, · · · , 0

vX+1, 0, · · · , 0, 1︸ ︷︷ ︸
X+2

, 0, · · · , 0

...
vm, 0, · · · , 0, 1

︸ ︷︷ ︸
m+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

k1
...

k(X+1)

kI
k(X+2)

...
km+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v1k1 + k2
...

vXk1 + k(X+1)

vIk1 + kI
v(X+1)k1 + k(X+2)

...
vmk1 + km+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

724 K. Omote and T.P. Thao

Observe that before and after the insertion, the first (X+1) tags and the last
(m − X) tags are not changed; only a new tag tI , which is the tag of wI , is
inserted. Furthermore, the old tag of cij is computed as tij =

∑m
k=1 αijk ·twk

.
We are now ready to compute the tag for c′

ij as follows:

tc′
ij

=
X∑

k=1

αijktwk
+ αijI tI +

m∑

k=X+1

αijktwk
= tcij + αijItI (8)

where αijI is the same as in Eq. 7.

Deletion. Suppose that C deletes the X-th file block (vX). Let wX be the
augmented block of vX .
(1) C modifies kC :

Similar to the insertion operation, before the deletion, the key of C has the
form: kC = [k1, · · · , km+1]. After the deletion, C simply removes the (X + 1)-th
element in kC . Namely,

k′
C = [k1, · · · , kX , kX+2, · · · , km+1] (9)

The reason to construct such k′
C will be explained in Step 3 (tag update).

(2) C re-computes kr for the next repair time:
After the deletion, the matrix M is now changed as follows:

– In each of the first (X−1) rows, the single ‘0’ in the final position is removed.
– The X-th row is removed.
– In each of the last (m − X) rows, the single ‘1’ is shipped to the previous

left position and the single ‘0’ in the final position is removed.

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v1, 1, 0, · · · , 0
...

vX−1, 0, · · · , 0, 1
︸ ︷︷ ︸

X−1

, 0, · · · , 0

vX , 0, · · · , 0, 1
︸ ︷︷ ︸

X

, 0, · · · , 0

vX+1, 0, · · · , 0, 1
︸ ︷︷ ︸

X+1

, 0, · · · , 0

...
vm, 0, · · · , 0, 1

︸ ︷︷ ︸
m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
m×(m+1)

deletion→ M ′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v1, 1, 0, · · · , 0
...

vX−1, 0, · · · , 0, 1
︸ ︷︷ ︸

X−1

, 0, · · · , 0

vX+1, 0, · · · , 0, 1
︸ ︷︷ ︸

X

, 0, · · · , 0

...
vm, 0, · · · , 0, 1

︸ ︷︷ ︸
m−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
(m−1)×m

We now update k′
r as follows:

– Let B = [b1, · · · , bm+1] be the basis vector of M .
– To compute the basis vector B′ of M ′, C simply removes the (X + 1)-th

element of B. Namely,
B′ = [b1, · · · , bX , bX+2, · · · , bm+1] (10)

DD-POR: Dynamic Operations and Direct Repair 725

– C then computes k′
p ← Kg(B′) (Section 2.3). C finally sends k′

r = k′
C + k′

p to
the new server when the next repair phase is executed.

(3) Si updates its coded blocks and tags :
– Si updates its coded blocks:

Because an old coded block has (m + 1) elements: cij = (
∑m

k=1 αijk ·
wk, αij1, · · · , αijm) and let cij [x] denote the x-th element of cij where
x ∈ {1, · · · ,m + 1}, we compute the new coded block as follows:
c′
ij = (

∑X−1
k=1 αijkwk +

∑m
k=X+1 αijkwk, αij1, · · · , αij(X−1), αij(X+1), · · · , αijm)

= (cij [1] − αijXwX , cij [2], · · · , cij [X], cij [X + 2], · · · , cij [m + 1])
(11)

where αijX = cij [X + 1].
– Si updates its tags as follows:

By constructing k′
C as Step 1, the tags of the augmented blocks before the

deletion are:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

tw1

...
twX−1

twX

tw(X+1)

...
twm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= M · kC =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v1, 1, 0, · · · , 0
...

vX−1, 0, · · · , 0, 1︸ ︷︷ ︸
X−1

, 0, · · · , 0

vX , 0, · · · , 0, 1
︸ ︷︷ ︸

X

, 0, · · · , 0

vX+1, 0, · · · , 0, 1︸ ︷︷ ︸
X+1

, 0, · · · , 0

...
vm, 0, · · · , 0, 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

k1
...

k(X+1)
...

km+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v1k1 + k2
...

vX−1k1 + kX
vXk1 + k(X+1)

vX+1k1 + k(X+2)
...

vmk1 + km+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The tags of all augmented blocks after the insertion are:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t′w1
...

t′wX−1

t′w(X+1)

...
t′wm+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= M ′ · k′
C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v1, 1, 0, · · · , 0
...

vX−1, 0, · · · , 0, 1︸ ︷︷ ︸
X−1

, 0, · · · , 0

vX+1, 0, · · · , 0, 1︸ ︷︷ ︸
X

, 0, · · · , 0

...
vm, 0, · · · , 0, 1

︸ ︷︷ ︸
m−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

k1
...

kX
k(X+2)

...
km+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v1k1 + k2
...

vX−1k1 + kX
v(X+1)k1 + k(X+2)

...
vmk1 + km+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Observe that before and after the deletion, the X-th tag is removed and the
other tags are still the same. Furthermore, the old tag of cij is computed

726 K. Omote and T.P. Thao

as: tij =
∑m

k=1 αijk · twk
. We are now ready to compute the tag for c′

ij as
follows:

tc′
ij

=
X−1∑

k=1

αijktwk
+

m∑

k=X+1

αijktwk
= tcij − αijXtX (12)

where αijX is the same as in Eq. 11.

5 Security Analysis

We firstly show our scheme is secure from the pollution attack and curious attack
as follows.

Theorem 3. The DD-POR is secured from the pollution and curious attacks.

Proof. (1) Pollution attack: suppose that A is a malicious server in a set of
l servers which are used to repair the corrupted server. A injects an invalid
pair of (cA, tA) to the new server S′

r. Then S′
r will check (cA, tA) using the

key kr ∈ F
z+m
q . Because S′

r is assumed to not collude with the other servers,
kr ∈ F

z+m
q is only known by S′

r. Thus, A can only pass the verification of S′
r

with a probability 1/qz+m via the brute-force search. If q is chosen large enough
(e.g, 160 bits), the probability is 1/(2160)z+m, which is negligible.

Consider that the S′
r itself is a malicious server who will perform the pollution

attack in the next epoch. Even though S′
r holds kr, S′

r cannot pass the verification
in the repair phase because kr is a one-time repair key. Another new server will
be given a key k′

r �= kr.
(2) Curious attack: the new server is given the key kr = kC + kp ∈ F

z+m
q .

Similar to the pollution attack, the probability of the new server to learn kC is
1/qz+m via the brute-force search. This probability is from learning kC directly
or learning kp and then obtaining kC by kC = kr−kp. If q is chosen large enough
(e.g, 160 bits), the probability is 1/(2160)z+m, which is negligible. ��

We also describe the condition to reconstruct F via the following theorem.

Theorem 4. F can be reconstructed if in any epoch, at least l out of n servers
collectively store m coded blocks which are linearly independent combinations of
m augmented blocks, and the matrix consisting of the accumulated coefficients
has full rank (i.e, the rank is m).

Proof. Si contains d coded blocks: {cij}(j ∈ {1, · · · , d}). cij is computed from
m augmented blocks w1, · · · , wm by cij =

∑m
k=1 αijk · wk ∈ F

z+m
q . Therefore, to

reconstruct F , m augmented blocks are viewed as the unknowns that need to
be solved. To solve these unknowns, at least m coded blocks are required s.t the
coefficient matrix has full rank.

⎧
⎪⎪⎨

⎪⎪⎩

c(ij)1 =
∑m

k=1 α(ijk)1
· wk

c(ij)2 =
∑m

k=1 α(ijk)2
· wk

· · ·
c(ij)m =

∑m
k=1 α(ijk)m

· wk

DD-POR: Dynamic Operations and Direct Repair 727

Let l be the number of servers (l < n) which collectively stores these m coded
blocks. Because each server stores d coded blocks, l = 	m

d
. ��

6 Efficiency Analysis

The efficiency comparison is given in Table 1. Because the MD-POR and NC-
Audit schemes focus on the public authentication, the system models have one
more entity called TPA (Third Party Auditor) who is delegated the task of
checking the servers by C. For the fair comparison, we assume that the check
task in these schemes is performed by C.

Table 1. The comparison

RDC-NC [16] MD-POR [22] NC-Audit [23] DD-POR

Feature Direct repair No Yes Not completed (*) Yes
Dynamic operations No No No Yes
Symmetric key Yes Yes Yes Yes

Encode Client-side O(mnd) O(mnd) O(mnd) O(mnd)
Computation Server-side O(1) O(1) O(1) O(1)

Check Client-side O(n) O(n) O(n) O(n)
Computation Server-side O(dn) O(dn) O(dn) O(dn)

Repair Client-side O(dl) O(1) O(1) O(1)
Computation Server-side O(dl) O(dl) O(dl) O(dl)

Modification Client-side N/A N/A N/A O(1)
Computation Server-side N/A N/A N/A O(dn)

Insertion Client-side N/A N/A N/A O(1)
Computation Server-side N/A N/A N/A O(dn)

Deletion Client-side N/A N/A N/A O(1)
Computation Server-side N/A N/A N/A O(dn)

N/A means not applicable due to the lack of support. (*) In the NC-Audit, the direct
repair can lead to the pollution attack because the new server cannot check the provided
coded blocks.

Encode Computation. In all the schemes, C needs O(m) to compute m tags
for m augmented blocks, and O(mnd) to compute nd coded blocks along with the
tags. The complexity on the client-side is thus O(mnd). Meanwhile, the servers
only need to receive the coded blocks and tags from C without any computation.
The complexity on the server-side is thus O(1).

Check Computation. In all the schemes, C needs O(1) to verify the aggregated
coded block and tag of each server. Therefore, the complexity on the client-side
is O(n) to verify n servers. Meanwhile, each server needs to combine d coded
blocks and d tags to compute the aggregated coded block and aggregated tag,
respectively. Therefore, the complexity of n servers is O(dn).

728 K. Omote and T.P. Thao

Repair Computation. In the RDC-NC scheme, C needs O(l) to check l pairs
of the provided coded block and tag from the healthy servers, and needs O(dl)
to compute d pairs of new coded blocks and tags using the linear combinations
of l pairs of the provided coded blocks and tags. Therefore, the complexity on
the client-side is O(dl). In the MD-POR, NC-Audit and DD-POR schemes, the
complexity on the client-side is O(1) because C does not need to do anything
due to the direct repair.

In the RDC-NC scheme, each of l servers combines its d coded blocks and
d tags to compute the aggregated coded block and aggregated tag, respectively.
Therefore, the complexity on the server-side is O(dl). In the MD-POR, NC-Audit
and DD-POR schemes, l healthy servers perform as in the RDC-NC (O(dl)), and
the new server performs the task of C as in the RDC-NC (O(dl)). Therefore, the
complexity on the server-side is O(dl).

Modification Computation. In the DD-POR, C only needs O(1) to re-
compute kr (Step 1), and O(1) to compute the new tag of the modified aug-
mented block (Step 2). Therefore, the complexity on the client-side is O(1).
Meanwhile, each server needs O(d) to update the coded blocks and tags (Step
2). Therefore, the complexity of n servers is O(dn).

Insertion Computation. In the DD-POR, C only needs O(1) to modify kC
(Step 1), O(1) to re-compute kr (Step 2), and O(1) to compute the tag of the
inserted augmented block (Step 3). Therefore, the complexity on the client-side
is O(1). Meanwhile each server needs O(d) to update the coded blocks and tags
(Step 3). Therefore, the complexity of n servers is O(dn).

Deletion Computation. In the DD-POR, C only needs O(1) to modify kC
(Step 1), and O(1) to re-compute kr (Step 2). Thus, the complexity on the client-
side is O(1). Meanwhile each server needs O(d) to update the coded blocks and
tags (Step 3). Thus, the complexity of n servers is O(dn).

7 Conclusion

This paper proposes a network coding-based POR scheme, name DD-POR, to
support the direct repair and the dynamic operations in a symmetric key setting.
The idea is based on the InterMac technique which can generate a key such s.t
the key is orthogonal to the augmented blocks. The security analysis is showed to
prevent the pollution attack and curious attack. The efficiency analysis is given
based on complexity theory to compare with the previous scheme.

References

1. Juels, A., Kaliski, B.: PORs: Proofs of retrievability for large files. In: 14th ACM
Computer and Communications Security Conf., CCS, pp. 584–597 (2007)

2. Shacham, H., Waters, B.: Compact Proofs of Retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

DD-POR: Dynamic Operations and Direct Repair 729

3. Bowers, K., Juels, A., Oprea, A.: Proofs of retrievability: theory and implementa-
tion. In: ACM Workshop on Cloud Computing Security, CCSW, pp. 43–54 (2009)

4. Bolosky, W.J., Douceur, J.R., Ely, D., Theimer, M.: Feasibility of a serverless
distributed file system deployed on an existing set of desktop PCs. SIGMETRICS
2000, 34–43 (2000)

5. Curtmola, R., Khan, O., Burns, R., Ateniese, G.: MR-PDP: Multiple-Replica
Provable Data Possession. In: 28th Distributed Computing Systems Conf., ICDCS,
pp. 411–420 (2008)

6. Zhang, Z., Lian, Q., Lin, S., Chen, W., Chen, Y., Jin, C.: Bitvault: A highly
reliable distributed data retention platform. ACM SIGOPS Operating Systems
Review 41(2), 27–36 (2007)

7. Aguilera, M.K., Janakiraman, R., Xu, L.: Efficient fault-tolerant distributed
storage using erasure codes. Tech. Rep., Washington University in St. Louis (2004)

8. Bowers, K., Juels, A., Oprea, A.: HAIL: A high-availability and integrity layer for
cloud Storage. In: 16th ACM Computer and Communications Security Conf., CCS,
pp. 187–198 (2009)

9. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of Retrievability via Hardness
Amplification. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127.
Springer, Heidelberg (2009)

10. Hendricks, J., Ganger, G.R., Reiter, M.: Verifying distributed erasure-coded data.
In: 26th ACM Principles of Distributed Computing Symposium, pp. 163–168
(2007)

11. Ahlswede, R., Cai, N., Li, S., Yeung, R.: Network information flow. IEEE Trans.
46(4), 1204–1216 (2000)

12. Li, S., Yeung, R., Cai, N.: Linear Network Coding. IEEE Trans. 49(2), 371–381
(2003)

13. Koetter, R., Muriel, M.: An Algebraic Approach to Network Coding. IEEE/ACM
Trans. on Networking (TON) 11(5), 782–795 (2003)

14. Dimakis, A., Godfrey, P., Wu, Y., Wainwright, M., Ramchandran, K.: Network
coding for distributed storage systems. IEEE Trans. Information Theory 56(9),
4539–4551 (2010)

15. Li, J., Yang, S., Wang, X., Xue, X., Li, B.: Tree-structured Data Regeneration
in Distributed Storage Systems with Network Coding. In: 29th IEEE Information
Commun. Conf., pp. 2892–2900 (2000)

16. Chen, B., Curtmola, R., Ateniese, G., Burns, R.: Remote Data Checking for
Network Coding-based Distributed Storage Systems. In: ACM Workshop on Cloud
Computing Security, pp. 31–42 (2010)

17. Chen, H.C.H., Hu, Y., Lee, P.P.C., Tang, Y.: NCCloud: A Network-Coding-Based
Storage System in a Cloud-of-Clouds. IEEE Trans. on Computers 63(1), 31–44
(2014)

18. Cash, D., Küpçü, A., Wichs, D.: Dynamic Proofs of Retrievability via Oblivious
RAM. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 279–295. Springer, Heidelberg (2013)

19. Elaine, S., Emil, S., Charalampos, P.: Practical dynamic proofs of retrievability.
In: CCS, pp. 325–336 (2013)

20. Chen, B., Curtmola, R.: Robust dynamic remote data checking for public clouds.
In: Proc of. ACM Conf. on Computer and Communications Security, CCS,
pp. 1043–1045 (2012)

21. Wang, Q., Wang, C., Ren, K., Lou, W., Li, J.: Enabling Public Auditability and
Data Dynamics for Storage Security in cloud Computing. IEEE Trans. Parallel
and Distributed System 22(5), 847–859 (2011)

730 K. Omote and T.P. Thao

22. Omote, K., Thao, T.: MD-POR: Multi-source and Direct Repair for Network
Coding-based Proof of Retrievability. Int. Journal of Distributed Sensor Networks
(IJDSN) ArticleID:586720, January 2015

23. Le, A., Markopoulou, A.: NC-Audit: Auditing for network coding storage. In:
NetCod 2012, pp. 155–160 (2012)

24. Le, A., Markopoulou, A.: On detecting pollution attacks in inter-session network
coding. 31st IEEE Conf. on Computer Communications, INFOCOM, pp. 343–351
(2012)

Evaluating Bayesian Networks via Data Streams

Andrew McGregor and Hoa T. Vu(B)

University of Massachusetts, Amherst, USA
{mcgregor,hvu}@cs.umass.edu

Abstract. Consider a stream of n-tuples that empirically define the
joint distribution of n discrete random variables X1, . . . , Xn. Previous
work of Indyk and McGregor [6] and Braverman et al. [1,2] addresses the
problem of determining whether these variables are n-wise independent
by measuring the �p distance between the joint distribution and the prod-
uct distribution of the marginals. An open problem in this line of work
is to answer more general questions about the dependencies between the
variables. One powerful way to express such dependencies is via Bayesian
networks where nodes correspond to variables and directed edges encode
dependencies. We consider the problem of testing such dependencies in
the streaming setting. Our main results are:
1. A tight upper and lower bound of Θ̃(nkd) on the space required to

test whether the data is consistent with a given Bayesian network
where k is the size of the range of each Xi and d is the max in-degree
of the network.

2. A tight upper and lower bound of Θ̃(kd) on the space required to
compute any 2-approximation of the log-likelihood of the network.

3. Finally, we show space/accuracy trade-offs for the problem of inde-
pendence testing using �1 and �2 distances.

1 Introduction

The problem of testing n-wise independence in data streams has attracted recent
attention in streaming algorithms literature [1,2,6]. In that problem, the stream
consists of a length m sequence of n-tuples that empirically defines a joint
distribution of n random variables X1,X2, . . . , Xn where each Xi has range
[k] := {1, 2, . . . k}. Specifically, the stream defines the joint probability mass
function (pmf):

P(x1, . . . , xn) = P(X1 = x1,X2 = x2, . . . , Xn = xn) :=
f(x1, x2, . . . , xn)

m
, (1)

where f(x1, x2, . . . , xn) is the number of tuples equal to (x1, x2, . . . , xn). The
marginal probability of a subset of variables {Xj}j∈S is defined as:

P(Xj = xj ∀j ∈ S) :=
∑

x�∈[k] for all � �∈S

P(X1 = x1,X2 = x2, . . . , Xn = xn) .

This work was supported by NSF Awards CCF-0953754, IIS-1251110, CCF-1320719,
and a Google Research Award.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 731–743, 2015.
DOI: 10.1007/978-3-319-21398-9 57

732 A. McGregor and H.T. Vu

The goal of the previous work was to determine whether this distribution is
close to being a product distribution or equivalently, whether the corresponding
random variables are close to being independent by estimating:

(∑

x1,...,xn∈[k]

∣
∣P(X1 = x1, . . . , Xn = xn) − P(X1 = x1) . . .P(Xn = xn)

∣
∣p

)1/p

:=
∥
∥
∥
∥P(X1, . . . , Xn) − P(X1) . . .P(Xn)

∥
∥
∥
∥

p

:= Ep(∅).

However, it is natural to ask more general questions about the depen-
dencies between the variables, e.g., can we identify an Xi such that the
other random variables are independent conditioned on Xi or whether there
is an ordering Xσ(1),Xσ(2),Xσ(3), . . . such that Xσ(i) is independent of
Xσ(1),Xσ(2), . . . , Xσ(i−2) conditioned on Xσ(i−1).

The standard way to represent such dependencies is via Bayesian networks.
A Bayesian network is an acyclic graph G with a node Xi corresponding to each
variable Xi along with a set of directed edges E that encode a factorization of
the joint distribution. Specifically, if Pa(Xi) = {Xj : (Xj → Xi) ∈ E} are the
parents of Xi in G then the Bayesian network represents the assertion that for
all x1, x2, . . . , xn, the joint distribution can be factorized as follows:

P(X1 = x1,X2 = x2, . . . , Xn = xn) =
n∏

i=1

P(Xi = xi|Xj = xj ∀ Xj ∈ Pa(Xi)) .

For example, E = ∅ corresponds to the assertion that the Xi are fully inde-
pendent whereas the graph on nodes {X1,X2,X3} with directed edges X1 →
X2,X1 → X3 corresponds to the assertion that X2 and X3 are independent
conditioned on X1.

Bayesian networks have been extensively studied and applied in artificial
intelligence, machine learning, data mining, and other areas. In these applica-
tions the focus is typically on Bayesian networks where d is small, since we wish
to be able to compactly represent the joint distribution through local conditional
probability distributions.

In this paper we consider the problem of evaluating how well the observed
data fits a Bayesian network. The data stream of tuples in [k]n and a Bayesian
network G defines an empirical distribution PG with the pmf:

PG(x1, . . . , xn) :=
n∏

i=1

P(Xi = xi|Xj = xj ∀ Xj ∈ Pa(Xi)), (2)

where

P(Xi = xi|Xj = xj for all j ∈ Pa(Xi)) =
P(Xi = xi)

P(Xj = xj , ∀Xj ∈ Pa(Xi))
. (3)

is just the fraction of tuples whose ith coordinate is xi amongst the set of tuples
whose jth coordinate is xj for all Xj ∈ Pa(Xi). We then define the error of G

Evaluating Bayesian Networks via Data Streams 733

to be the �p norm, for p ∈ {1, 2}, of the difference between the joint distribution
and the factorization PG:

Ep(G) :=
(∑

x1,...,xn∈[k]

|P(x1, . . . , xn) − PG(x1, . . . , xn)|p
) 1

p := ‖P − PG‖p.

Clearly, if the factorization implied by G is valid then Ep(G) = 0. More
generally, if Ep(G) is small then we consider the factorization to be close to
valid. The use of �p distance to measure “closeness” was considered previously
in the Bayesian network literature [7,11]. However, the space required to compute
these measures was considered a major drawback because it was assumed that
it would be necessary to explicitly store the full joint distribution whose space
complexity is O(kn). Our results show that this is not the case. Note that when
G is the empty graph, Ep(∅) is the quantity measured in [1,2,6].

In many applications, data comes in a streaming fashion. When it comes to
very large data volume, it is important to maintain a data structure that uses
small memory and estimates different statistics about the data accurately at
the same time. As the space requirement to measure the accuracy of Bayesian
networks is as large as O(kn) and as the size of our data set m increases, our
problem of evaluating Bayesian networks via data streams with small memory
is of considerable importance.

1.1 Our Results

Here, and henceforth we use k, n, d and m to denote the range of the variables,
the number of the variables, the maximum in-degree of the network and the
length of the stream respectively.

1. Testing and Estimating �p Accuracy. For any Bayesian network G, we present
a single-pass algorithm using Θ̃(nkd) space1 for the problem of testing
whether the data is consistent with G, i.e., Ep(G) = 0. We prove a matching
lower bound showing that the dependence on n, k, and d is optimal. We also
present a Õ(ε−2nkd+1)-space algorithm for estimating Ep(G) up to a (1+ ε)
factor. The lower bound is based on the Local Markov Property, a result
from Bayesian Networks literature, and a reduction from communication
complexity.

2. Estimating Log-Likelihood. Next, we present a single-pass Õ(nkd)-space algo-
rithm that estimates the log-likelihood of a given network. We also prove a
lower bound of Ω(kd) for any factor 2 approximation of this quantity. As
an application, we can find the branching tree network that approximately
maximizes the log-likelihood of the observed streaming data in space Õ(n2k)
with O(n2) post-processing time. Our algorithm is based on the Chow-Liu
tree [4] construction.

1 Õ omits all poly-logarithmic factors of m, n, and k.

734 A. McGregor and H.T. Vu

3. Trade-offs for Independence Testing. We revisit the problem of independence
testing in Section 5 and present space/accuracy trade-offs for estimating
Ep(∅). Specifically, for p = 1, we can achieve an (n − 1)/t-approximation for
any constant 1 ≤ t < n/2 using O(poly n) space compared to the (1 ± ε)-
approximation algorithm in [2] with space that is doubly-exponential in n.
For p = 2, we present an O(poly n)-space algorithm with additive error
compared to the O(3n)-space algorithm in [1] with multiplicative error.

1.2 Notation

A ⊥ B | C denotes the assertion that random variables A,B are independent
conditioned on C, i.e., P(A = a,B = b|C = c) = P(A = a|C = c)P(B = b|C = c)
for all a, b, c in the range of A,B,C. Pa(Xi) denotes the set of variables that are
parents of Xi and ND(Xi) denotes the set of variables that are non-descendants
of Xi, other than Pa(Xi). If X1, . . . , Xn ∈ [k] then we use (X1, . . . , Xn) denote
a tuple of n variables in [k]n or equivalently a single variable in the range [kn].

2 Algorithms for Estimating Ep(G)

In this section, we present approximation algorithms for estimating Ep(G) for
an arbitrary Bayesian network G and a more efficient algorithm just to test if
Ep(G) = 0.

2.1 (1 + ε)-Approximation Using Õ(nkd+1) Space

We first note that the factorized distribution PG can be computed and stored
exactly in O(nkd+1 log m) bits since, by Eq. (1) and Eq. (3), it suffices to compute

∑
a∈[k]n : aj=xj ∀j s.t Xj∈{Xi}∪Pa(Xi)

f(a)
∑

a∈[k]n : aj=xj ∀j s.t Xj∈Pa(Xi)
f(a)

.

for each i ∈ [n] and each of at most kd+1 combinations of values for Xi and
Pa(Xi). Given this observation, it is straightforward to approximate Ep(G) given
any data stream “sketch” algorithm that returns a (1 + ε) estimate for the �p

norm of a vector v. Kane et al. [10] presented such as algorithm that uses space
that is logarithmic in the dimension of the vector.

Specifically, we apply the algorithm on a vector v defined as follows. Consider
v to be indexed as [k] × [k] × . . . × [k]. On the arrival of tuple (x1, . . . , xn), we
increment the coordinate corresponding to (x1, . . . , xn) by 1/m. At the end of
the stream, v encodes the empirical joint distribution. For each (x1, . . . , xn), we
now decrement the corresponding coordinate by PG(x1, . . . , xn). At this point,
vx1,...,xn

= P(x1, . . . , xn) − PG(x1, . . . , xn) and hence the �p norm of v is Ep(G).
Hence, returning the estimate from the algorithm yields a 1 + ε approximation
to Ep(G) as required.

Evaluating Bayesian Networks via Data Streams 735

Note that this simple approach also improves over existing work [2] on the
case of measuring �p(G) when G has no edges (i.e., measuring how far the data
is from independent) unless n is very small compared to k. The space used
in previous work is doubly-exponential in n but logarithmic in k whereas our
approach uses Õ(nk) space and hence, our approach is more space-efficient unless
k > 2nn

/n.

Theorem 1. There exists a single-pass algorithm that computes (1 ± ε) Ep(G)
with probability at least 1 − δ using Õ(ε−2kd+1n log δ−1) space.

2.2 2n-Approximation Using Õ(poly(n)kd) Space

We now give an alternative algorithm with a weaker approximation guarantee
but requires a smaller space in terms of k and d.

Theorem 2. There exists a single-pass Õ(poly(n) · kd)-space algorithm that
computes an O(n)-approximation of E1(G) with probability at least 1 − δ.

We first briefly describe the algorithm. Without loss of generality, assume Xn,
Xn−1, . . . , X1 form a topological order in G. Such an order must always exist
since G is acyclic. Let X(i, n) denote (Xi, . . . , Xn).

1. For each i ∈ [n − 1], compute a (1 + ε)-factor approximation of

vi :=

∣∣∣∣P(X(i, n)) − P(Xi| Pa(Xi))P(X(i + 1, n))

∣∣∣∣.

We shall explain how to get the approximation shortly.
2. Return the sum of the estimators above.

Proof. We start by showing that E1(G) ≤
∑n−1

i=1 vi ≤ 2n E1(G). The first
inequality is derived as follows.

E1(G) ≤
∣∣∣∣P(X) − P(X1| Pa(X1))P(X(2, n))

∣∣∣∣

+

∣∣∣∣P(X1| Pa(X1))P(X(2, n)) − P(X1| Pa(X1))P(X2| Pa(X2))P(X(3, n))

∣∣∣∣

+ . . . +

∣∣∣∣
n−2∏
i=1

(
P(Xi| Pa(Xi)

)
P(Xn−1, Xn) −

n∏
i=1

P(Xi| Pa(Xi))

∣∣∣∣ (4)

=

n−1∑
i=1

∣∣∣∣P(X(i, n)) − P(Xi| Pa(Xi))P(X(i + 1, n))

∣∣∣∣ =
n−1∑
i=1

vi.

The first inequality follows from the triangle-inequality. For each ith term in
Equation (4), we can factor out {P(Xj |Pa(Xj))}j∈[i−1] which sums (over Xj)
to 1 as the inner factors do not involve Xj .

Next, we show that vi ≤ 2 E1(G). By the triangle-equality we have:

vi ≤
∣∣∣∣P(X(i, n)) −

∏
j≥i

P(Xj | Pa(Xj))

∣∣∣∣

+

∣∣∣∣
∏
j≥i

P(Xj | Pa(Xj)) − P(Xi| Pa(Xi))P(X(i + 1, n)

∣∣∣∣.

736 A. McGregor and H.T. Vu

To bound each term on the right, we first introduce the following notation:

gk(x) = P(Xk = xk|Xj = xj for all Xj ∈ Pa(Xk))

Then,
∣

∣

∣

∣

∣

∣

P(X(i, n)) −
∏

j≥i

P(Xj |Pa(Xj))

∣

∣

∣

∣

∣

∣

=
∑

b∈[k]n−i+1

∣

∣

∣

∣

∑

a∈[k]i−1

P(X(1, i − 1) = a,X(i, n) = b) −
(

∑

a∈[k]i−1

∏

1≤q<i

gq(ab)

)

·
∏

j≥i

gj(ab)

)∣

∣

∣

∣

≤
∑

a∈[k]i−1

b∈[k]n−i+1

∣

∣

∣

∣

P(X = ab) −
∏

1≤q<i

gq(ab) ·
∏

j≥i

gj(ab)

∣

∣

∣

∣

= E1(G).

The second term is equal to |
∏

j≥i+1 P(Xj |Pa(Xj)) − P(X(i + 1, n)| which is
of similar form as the first term and can be upper bounded by E1(G) similarly.
We approximate each vi as follows. For each c ∈ [kd], we have:

vi(c) = P(Pa(Xi) = c)

∣∣∣∣P(X(i, n)|Pa(Xi) = c)

− P(Xi| Pa(Xi) = c)P(X(i + 1, n)| Pa(Xi) = c)

∣∣∣∣.

We can compute P(Pa(Xi) = c) exactly and approximate vi(c) using Theorem 9.
Because vi =

∑
c∈[kd] vi(c), to get an estimate for vi, we simply take the sum of

the estimates for each vi(c). Since we need to do this for all i ∈ [n], c ∈ [kd], the
space usage is Õ(poly(n) · kd).

2.3 Decision Problem

We now show that testing Ep(G) = 0 can indeed be done in space that is tight
with the lower bound in terms of n, k, d.

Definition 1. A Bayesian network G with vertices X1, ..,Xn satisfies the Local
Markov Property if Xi ⊥ ND(Xi) | Pa(Xi) for all i ∈ [n].

We rely on the following theorem. Its proof can be found in many Bayesian
networks literature such as [8].

Theorem 3. (Local Markov Property) Any given Bayesian network G satisfies
Ep(G) = 0 iff it satisfies the Local Markov Property.

The idea is to check the Local Markov Property for each variable in the
network. However, to match the lower bound, we also need to resolve a subtle
issue regarding storing the random vectors.

Theorem 4. There exists an Õ(kdn)-space single-pass algorithm that tests
Ep(G) = 0 with probability at least 1 − δ.

Evaluating Bayesian Networks via Data Streams 737

Proof. For each Xi, because |ND(Xi)| ≤ n, ND(Xi) can be viewed as a single
variable that takes at most kn different values. We need to check if:

η(i) :=

∥∥∥∥P(Xi, ND(Xi)| Pa(Xi)) − P(Xi| Pa(Xi))P(ND(Xi)| Pa(Xi))

∥∥∥∥
2

= 0.

Call this testing algorithm Ai. We define η(i, c) to be the distance above with
Pa(Xi) = c. We have η(i) =

∑
c∈[k]| Pa(Xi)| η(i, c). For any fixed c, we can test

η(i, c) = 0 by running the algorithm from Theorem 9.
For some S ⊆ {X1, . . . , Xn} and x ∈ [k]n, let xS denote the tuple of {xj :

Xj ∈ S}. The algorithm in Theorem 9 incrementally maintains the following
sketches:

t1 =
∑

a∈[k],b∈[k]| ND(Xi)|,x:xi=a,xND(Xi)
=b,xPa(Xi)

=c

f(x)γaλb

t2 =
∑

a∈[k],x:xi=a,xPa(Xi)
=c

f(x)γa and t3 =
∑

b∈[k]| ND(Xi)|,x:xND(Xi)
=b,xPa(Xi)

=c

f(x)λb

where λ, γ ∈ {−1, 1}kn

are 4-wise independent vectors. The space required to
store these vectors is O(log kn) = O(n log k). It can be shown that [1,6]:

E[(
t1
m

− t2t3
m2

)2] = η(i, c)2 and Var[(
t1
m

− t2t3
m2

)2] ≤ 9η(i, c)4.

Hence, to have a factor 10 approximation of the distance that tests if η(i, c) = 0
with probability at least 1 − δ/(kdn), we need to use O(log kd + log δ−1 + log n)
independent λ, γ’s in parallel and take the median of the estimators. We need to
do this for all c ∈ [k]|Pa(Xi)|. Run Ai for all i ∈ [n]. The key observation is that
all Ai’s may use the same set of these 4-wise independent vectors. So the total
space to run A1, . . . ,An is:

O(nkd(log kd + log δ−1 + log n) log m︸ ︷︷ ︸
space to store the sketches

+ kd(log kd + log δ−1 + log n)n log k︸ ︷︷ ︸
space to store the random vectors

) = Õ(nkd).

By the union bound, we can tell if there is an Xi that does not satisfy the local
Markov property with probability at least 1 − δ in the space that is optimal up
to a polylogarithmic factor.

3 Lower Bounds for Estimating Ep(G)

Next, we show that the decision algorithm and the approximation algorithm above
are optimal and near-optimal respectively. It has been shown that independence
testing via �p distance can be done in O(polylog k) space. The open question we
are trying to answer is whether it is still possible to test more general dependencies
in O(polylog k) space. Unfortunately, the answer is, in general, no. We first prove
that for testing whether two variables are perfectly independent given the third
variable, any constant-pass streaming algorithm requires Ω(k) space.

738 A. McGregor and H.T. Vu

The proofs of our lower bounds use the standard technique of reducing from
a communication complexity problem. In particular, we consider the disjointness
problem where Alice and Bob each have a string x ∈ {1, 2}k and y ∈ {1, 2}k

respectively and want evaluate DISJ(x, y) where

DISJ(x, y) =

{
0 if there exists i such that xi = yi = 1
1 otherwise

A classic result [9] shows that any (randomized) protocol with constant number
of rounds for this problem requires Ω(k) bits to be communicated. The following
remark is useful in our reduction.

Lemma 1. Given a stream of two binary samples in the format (A,B) as
(a, 2), (2, b). Then, A,B are independent iff a, b are not both equal 1.

Proof. If a = b = 1, then P(A = 1, B = 2) = 0.5
= P(A = 1)P(B = 2) =
0.5 × 0.5 = 0.25. Otherwise, one can easily check that P(A,B) = P(A)P(B).

Proposition 1. There exists a network G such that any constant-pass algorithm
that decides if Ep(G) = 0 with probability at least 2/3 requires Ω(kd) space.

Proof. Consider the Bayesian network G with vertices X1, . . . , Xd, Y, Z where
each Xi is a parent of X1,X2, . . . , Xi−1, Y, and Z. Let X = (X1, . . . , Xd). Then,

Ep(G) =

∥∥∥∥P(Y, Z|X)P(X) − P(Y |X)P(Z|X)
(d∏

i=1

P(Xi|Xi+1, . . . , Xd

)∥∥∥∥
p

=

∥∥∥∥P(Y, Z|X)P(X) − P(Y |X)P(Z|X)P(X)

∥∥∥∥
p

. (5)

We make the reduction from DISJ where Alice and Bob, with bit strings a and
b of length kd, generate the stream SA and SB of (Y,Z,X)-tuples respectively:

SA = {(a1, 2,x) : x ∈ [k]d} , SB = {(2, b1,x) : x ∈ [k]d} .

By Equation (5), we have that Ep(G) = 0 iff Y ⊥ Z|{X = c} for all c ∈ [k]d.
By Lemma 1, this is satisfied iff DISJ(a, b) = 1. Therefore, any constant-pass
algorithm that decides if Ep(G) = 0 requires Ω(kd) space.

We now construct a more sophisticated reduction to incorporate n in the lower
bound.

Theorem 5. There exists a Bayesian network G such that any constant-pass
algorithm that determines if Ep(G) = 0 with probability at least 2/3 requires
Ω(nkd) space.

Proof. Without loss of generality, assume n is a power of 2. Let x ∈ {1, 2}nk, y ∈
{1, 2}nk be an instance of DISJ where it be convenient to index x and y by
[n] × [k]. The Bayesian network we consider is balanced binary tree with leaves
A1, B1, A2, B2, . . . , An, Bn and internal nodes Rj

i where R1
i in the parent of

Evaluating Bayesian Networks via Data Streams 739

R3
1

R2
1 R2

2

R1
1 R1

2 R1
3 R1

4

A1 B1 A2 B2 A3 B3 A4 B4

Fig. 1. Construction for n = 4

Ai and Bi and Rj
i is the parent of Rj−1

2i−1 and Rj−1
2i for j > 1. The root node is

Rlog n+1
1 . See Figure 1. The variables Rj

i will take 3k different values and it will
be convenient to index these values as [3]× [k]. The leaf variables take either the
value 1 or 2.

Alice generates a stream that defines samples from the joint distribution
based on x. Each sample generated satisfies the following criteria and all distinct
samples that obey this criteria are generated:

1. Rlog n+1
1 ∈ {(1, z), (2, z) : z ∈ [k]}.

2. If Rj
i = (1, z) for j > 1:

– The left child Rj−1
2i−1 ∈ {(1, z), (2, z)} and the right child Rj−1

2i = (3, z).
3. If Rj

i = (2, z) for j > 1:
– The left child Rj−1

2i−1 = (3, z) and the right child Rj−1
2i ∈ {(1, z), (2, z)}.

4. If Rj
i = (3, z) for j > 1:

– Both the values for the children Rj−1
2i−1 and Rj−1

2i are (3, z).
5. If R1

i ∈ {(1, z), (2, z)}:
– The values for the children are Ai = xi,z, Bi = 2

6. If R1
i = (3, z):

– The values for the children are Ai = 2, Bi = 2

Bob then generates a series samples in a similar manner except that Rule 5
becomes: If R1

i ∈ {(1, z), (2, z)}, then Ai = 2, Bi = yi,z.
Note that each sample defined by either Alice or Bob specifies a path from

the root to a pair Ai, Bi as following: Starting from the root, if the current node’s
value is equal to (1, z), then go to its left child; on the other hand, if its value is
equal to (2, z), then go to the right child. Once we commit to a direction, every
descendant on the other direction is set to (3, z) for the R nodes and 2 for the
A and B nodes.

First assume that DISJ(x, y) = 0. Then xi,z = yi,z = 1 for some z ∈ [k], i ∈
[n]. By Lemma 1 we infer that Ai and Bi are not independent conditioned on
either R1

i = (1, z) or R1
i = (2, z) and hence, Ep(G)
= 0.

740 A. McGregor and H.T. Vu

Conversely, assume that DISJ(x, y) = 1. The Local Markov Property says
that if every vertex is independent of its non-descendants given its parents then
Ep(G) = 0.

– First we show that it is true for any Rj
i variable. Conditioned on the parent

of Rj
i taking the value (3, z), Rj

i is constant and hence independent of non-
descendants. Conditioned on the parent of Rj

i taking the value (1, z) or (2, z),
the values of the non-descendants of Rj

i are fixed and hence independent
of Rj

i .
– Next, we show that it is true for any Ai variable. The argument for Bi

is identical. Conditioned on R1
i = (3, z), then Ai is constant and hence

independent of all non-descendants. If R1
i = (1, z) or R1

i = (2, z), the values
of all non-descendants, except possibly Bi, are fixed. But by Lemma 1, Bi

is independent of Ai conditioned on R1
i since DISJ(x, y) = 1.

Hence, DISJ(x, y) = 1 iff Ep(G) = 0 and therefore testing if Ep(G) = 0 requires
Ω(nk) space.

To extend the lower bound to Ω(nkd) consider an instance of DISJ of length
nkd. Let the variables in G be children of all d − 1 new variables D1, . . . , Dd−1

where there is a directed edge between Di → Dj for i > j. Call the new network
G′. Similar to the proof of Proposition 1, to solve DISJ on the wth pair of bit
strings of length nk where w ∈ [kd−1], Alice and Bob generate samples with
variables in G as described above and set (D1, . . . , Dd−1) = w. Hence, any
streaming algorithm that decides if Ep(G′) = 0 requires Ω(nkd) space.

4 Log-Likelihood and Approximate Chow-Liu Trees

While it is natural to test the networks using �1 or �2 distance, it is more conve-
nient to use the log-likelihood to learn the structure of certain types of Bayesian
networks. Let x(j) be the jth sample in the stream. The log-likelihood of G given
the data stream is:

L(D, G) =
1

m

m∑
i=1

log PG(x(i)) = −
n∑

j=1

H(Xj | Pa(Xj))

By using the entropy estimation algorithm of Chakrabarti et al. [3] to estimate
the conditional entropies H(Xj |Pa(Xj)) for each of the O(kd) possible values of
Pa(Xj), we can approximate L(D,G) up to a factor 1 + ε.

Theorem 6. There is a single-pass algorithm that returns a (1+ ε) approxima-
tion of L(D,G) for a given Bayesian network G w.h.p using Õ(ε−2nkd) space.

We prove that the above algorithm is tight in terms of k and d.

Theorem 7. There exists a Bayesian network G with such that any single-pass
streaming algorithm that outputs a 2-approximation of L(D,G) requires Ω(kd)
space.

Evaluating Bayesian Networks via Data Streams 741

Proof. Let t = 10dkd log k. Consider the network with nodes {Xi}i∈[t] that are
all children of {Yi}i∈[d]. Let Y = (Y1, . . . , Yd). Then,

L(D, G) = −
t∑

i=1

H(Xi|Y) −
d∑

i=1

H(Yi).

Using ideas from [6], we make the following reduction. Given an instance of
DISJ with bit strings a, b of length kd where we may assume |{i : ai = 1}| = |{i :
bi = 1}| = kd/4. If Alice and Bob generate samples from the joint distribution
(X1, . . . , Xt,Y):

SA = {(1, . . . , 1, i) : ai = 1}, SB = {(2, . . . , 2, i) : bi = 1} .

where i ∈ [kd] specifies the values for Y. If DISJ(a, b) = 1 then
H(Xi|Y) = 0 and furthermore

∑t
i=1 H(Xi|Y) = 0. If DISJ(a, b) = 1 then

H(Xi|Y) ≥ 4/kd and hence,
∑t

i=1 H(Xi|Y) ≥ 40d log k. Because
∑d

i=1 H(Yi) ≤
d log k, a 2-approximation of L(D,G) distinguishes

∑t
i=1 H(Xi|Y) = 0 from

∑t
i=1 H(Xi|Y) ≥ 40d log k.

The famous Chow-Liu tree [4], TCL, is the tree with d = 1 that maximizes the
log-likelihood. Chow-Liu tree is particularly important as it is the only known
closed form structural learning algorithm that is polynomial time. We show that
there is a single-pass algorithm that approximates TCL.

Theorem 8. There is a single-pass algorithm that outputs a rooted tree T
such that L(D,T) ≥ (1 − ε)L(D,TCL) with probability at least 1 − δ in
Õ(n2kε−2 log(δ−1)) space. The post processing time is O(n2).

5 Space-Accuracy Trade-offs in Independence Testing

From previous work on independence testing [1,2,6], we may assume:

Theorem 9. There exist single-pass algorithms that computes a (1 ± ε)-
approximation of Ep(∅) with probability at least 1 − δ and uses

1. O((ε−1 log(mkδ−1))O(n)n

) space for p = 1
2. O(3nε−2(log k + log m) log δ−1) space for p = 2.

By simply appealing to Theorem 2, we have an interesting trade-off between the
space usage and the approximation accuracy when testing n-wise independence
using �1 distance. Specifically, we can have an O(n)-approximation of E1(∅)
but using only O(poly(n) polylog(k)) space compared to the space of doubly-
exponential in n in Theorem 9.

Proposition 2. There is a single-pass algorithm that outputs a O(n)-
approximation of E1(∅) using O(poly(n, ε−1) · polylog(m, k, δ−1)) space.

We can even achieve a stronger approximation guarantee:

742 A. McGregor and H.T. Vu

Theorem 10. For any constant 1 ≤ t < n/2, there is a single-pass algorithm that
outputs a (1 ± ε)(n − 1)/t-approximation for E1(∅) using Õ(poly(n, ε−1)) space.

We can approximate E2(∅) as stated in Theorem 9 up to a factor (1±ε) using O(3n)
space. However, if we allow the error to be additive, we only need O(n) space.

Theorem 11. There exists an O(n3ε−2 log(mk) log δ−1)-space single-pass algo-
rithm that outputs E2(∅) ± ε with probability at least 1 − δ.

Proof. The main idea is to rewrite E2(∅) as follows:

E2(∅)=
∑

x∈[k]n

P(X=x)2+
n∏

i=1

∑

xi∈[k]

P(Xi = xi)2 − 2
∑

x∈[k]n

P(X=x)
n∏

i=1

P(Xi = xi).

It is possible to estimate the values of
∑

xi∈[k] P(Xi = xi)2 for all i ∈ [n] and
∑

x∈[k]n P(X = x)2 up to a multiplicative factor of (1+ε/n) in O(n3ε−2 log(km+
δ−1)) space using an existing algorithm for estimating the second frequency
moment [10]. This implies a (1+ε) multiplicative approximation for the first two
terms. However, since

∑
x∈[k]n P(X = x)2 ≤ 1 and

∏n
i=1

∑
xi∈[k] P(Xi = xi)2 ≤ 1

this implies an additive 2ε approximation to the first two terms.
It remains to show we can approximate

∑
x∈[k]n P(X = x)

∏n
i=1 P(Xi = xi)

in small space. To argue this let

H = {(x1, . . . , xn) ∈ [k]n : P(X1 = x1, . . . , Xn = xn) ≥ ε)} .

We will show that it is possible to construct a set H ′ such that H ⊆ H ′ and for
all (x1, . . . , xn) ∈ H ′, we may estimate P(Xi = xi) and P(X1 = x1, . . . , Xn = xn)
up to a factor (1 + ε).

To do this we use the Count-Min sketch [5] which has the following properties:

Claim. There exists a O(ε−2 log δ−1(log m + log t))-space streaming algorithm
that, when run on any stream of length m defining a frequency vector y of length
t, returns a set of indices and estimates C = {(i, ỹi) : yi ≤ ỹi ≤ (1 + ε)yi} such
that (i, ỹi) ∈ C for all yi ≥ ε|y|. We call S = {i : (i, ỹi) ∈ C} the ε-cover of y.

In our case y will be a pmf vector, i.e., the frequency vector normalized by
dividing each coordinate by m and hence |y| = 1. Thus we can find an ε-cover S
of the joint pmf and an ε-cover Si of the marginal pmf of each variable Xi. Let

H ′ = {(x1, . . . , xn) ∈ S : xi ∈ Si for all i ∈ [n]} .

Note that if P(X1 = x1, . . . , Xn = xn) ≥ ε then P(X1 = x1) ≥ ε, . . . ,P(Xn =
xn) ≥ ε. Therefore, the ε-covers constructed using the Count-Min sketch give a
multiplicative estimate

∑
x∈H′ P(X = x)

∏n
i=1 P(Xi = xi). Furthermore,

∑
x �∈H′

P(X = x)

n∏
i=1

P(Xi = xi) ≤
∑

x:P(X=x)<ε

P(X = x)P(X1 = xn)

≤ ε
∑

x1∈[k]

P(X1 = x1) = ε.

and therefore the total additive error in our estimate of E2(∅) is O(ε).

Evaluating Bayesian Networks via Data Streams 743

References

1. Braverman, V., Chung, K.M., Liu, Z., Mitzenmacher, M., Ostrovsky, R.: Ams
without 4-wise independence on product domains. In: STACS, pp. 119–130 (2010)

2. Braverman, V., Ostrovsky, R.: Measuring independence of datasets. In: STOC,
pp. 271–280 (2010)

3. Chakrabarti, A., Cormode, G., McGregor, A.: A near-optimal algorithm for
estimating the entropy of a stream. ACM Transactions on Algorithms 6(3) (2010)

4. Chow, C., Liu, C.: Approximating discrete probability distributions with depen-
dence trees. IEEE Trans. Inf. Theor. 14(3), 462–467 (2006). http://dx.doi.org/10.
1109/TIT.1968.1054142

5. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms 55(1), 58–75 (2005)

6. Indyk, P., McGregor, A.: Declaring independence via the sketching of sketches. In:
SODA, pp. 737–745 (2008)

7. Jensen, F.V., Nielsen, T.D.: Bayesian networks and decision graphs. Springer
(2007)

8. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to
variational methods for graphical models. Springer (1998)

9. Kalyanasundaram, B., Schintger, G.: The probabilistic communication complexity
of set intersection. SIAM Journal on Discrete Mathematics 5(4), 545–557 (1992)

10. Kane, D.M., Nelson, J., Porat, E., Woodruff, D.P.: Fast moment estimation in data
streams in optimal space. In: STOC, pp. 745–754 (2011)

11. Pappas, A., Gillies, D.F.: A New Measure for the Accuracy of a Bayesian Network.
In: Coello Coello, C.A., de Albornoz, Á., Sucar, L.E., Battistutti, O.C. (eds.)
MICAI 2002. LNCS (LNAI), vol. 2313, pp. 411–419. Springer, Heidelberg (2002)

http://dx.doi.org/10.1109/TIT.1968.1054142
http://dx.doi.org/10.1109/TIT.1968.1054142

Algorithm

On Energy-Efficient Computations with Advice

Hans-Joachim Böckenhauer1(B), Richard Dobson2,
Sacha Krug1, and Kathleen Steinhöfel2

1 Department of Computer Science, ETH Zürich, Zürich, Switzerland
{hjb,sacha.krug}@inf.ethz.ch

2 Department of Informatics, King’s College London, London, UK
{richard.dobson,kathleen.steinhofel}@kcl.ac.uk

Abstract. Online problems have always played an important role in
computer science. Here, not the whole input is known at the beginning,
but it is only revealed gradually. These problems frequently occur in
practice, and therefore the performance of algorithms for such problems
is of great theoretical and practical interest. One such online problem is
energy management in electronic devices, e. g., smartphones. As such a
device is usually not being used permanently, it is reasonable to change to
a lower-energy state (like hibernation) after a certain idle time. Resum-
ing from hibernation, however, also needs a certain amount of energy;
therefore, hibernation should only happen if the idle period is long.

Advice complexity is a recent approach for measuring the information
content of an online problem, i. e., the amount of knowledge about the
future parts of the input that is necessary to compute a high-quality
solution. The approach allows for a more fine-grained analysis of the
hardness of online problems than the classical competitive analysis.

We analyze the advice complexity of this problem. For systems with
two states, we construct an online algorithm with advice that is 1.8-
competitive with one advice bit and 1.6-competitive with five advice bits,
whereas every deterministic algorithm without advice is known to be no
better than 2-competitive. Moreover, the algorithm’s competitive ratio
converges fast towards e/(e−1) with an increasing number of advice bits.
For competitive ratios in the range [1, e/(e − 1)], we present two comple-
mentary algorithms: one behaves optimally on a certain prefix, and the
other falls asleep on the longest phases. Conversely, we show that every
algorithm with a competitive ratio less than 1 + 1/(4w + 2), where w is
the wake-up energy, needs to read a linear number of advice bits.

1 Introduction

When a computer is turned on, it consumes energy. Even if the system is idle, it
will continue to consume energy despite not being actively used. Many modern
devices are equipped with several low-power sleep states, which can reduce the
amount of energy consumed when the system is idle. One of the most common

This work was partially supported by SNF grant 200021-141089, EPSRC grant
EP/H501312/1, and LMS grant SC7-1314-08.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 747–758, 2015.
DOI: 10.1007/978-3-319-21398-9 58

748 H.-J. Böckenhauer et al.

low-power states is to dim or turn off the screen of the device; this has been
shown to significantly reduce power consumption in smart phones [10].

Sleep state management is a fundamental energy efficiency problem; it is
considered to be of great importance as it has the potential to significantly reduce
the energy consumption of a computer system without reducing its performance
when it is in use. Any offline sleep state problem can be solved optimally using
a simple algorithm, but the online version of the problem is much harder.

An online algorithm is used to solve a problem where information becomes
available over time. Sleator and Tarjan [17] introduced the idea of assessing the
worst-case performance of an online algorithm in terms of its competitive ratio,
i. e., the ratio between the cost of its solution and an optimal offline solution.

For many problems, lower bounds on the competitive ratio achievable by
deterministic online algorithms were shown [9]. To quantify the gap in knowledge
between an offline algorithm and an online algorithm A, the framework of online
computation with advice comes in handy [7,11]. Here, A is supported by an all-
knowing oracle that prepares an infinitely long binary advice tape φ before the
computation begins. A may access the bits of φ in sequential order at any time
during the computation. We are interested in the advice complexity of A, i. e.,
the total number of advice bits that A reads from φ. The goal for the oracle
and A is thus to agree on a method to encode information in as few advice
bits as possible. Many online problems have been analyzed in this framework,
e. g., graph coloring [3,4,17], disjoint path allocation [2], k-server [6,13,16], or
paging [7].

In this paper, we apply this framework to the sleep states management prob-
lem with two states. We devise an algorithm with advice that can optimally solve
any sleep state problem using n/2 advice bits, where n is the length of the input.
Starting from this, we devise a c-competitive online algorithm for the problem,
for 1 ≤ c ≤ n, thus establishing a direct tradeoff between advice complexity
and competitive ratio. We construct a complementary algorithm that reads the
indices of the longest phases of the input. Moreover, already with only a constant
number of advice bits, we can achieve a lot. We establish a parameterized upper
bound by constructing another c-competitive online algorithm for the problem,
for c ≥ e/(e−1). In particular, this algorithm is 1.8-competitive with one advice
bit and 1.6-competitive with only five advice bits. We complement these upper
bounds with a lower bound of 1+1/(4w +2)− ε on the competitive ratio of any
deterministic online algorithm reading sublinear advice, where w is the wake-up
energy.

2 Preliminaries and Related Work

Before we begin, we need to define formally the framework we are using. For an
instance I of an online problem, let Opt(I) denote an optimal solution for I and
let A(I) denote the solution computed by an online algorithm A on I. Moreover,
let cost(Opt(I)) and cost(A(I)) denote the costs of the respective solutions. We
can now define the competitive ratio formally.

On Energy-Efficient Computations with Advice 749

Definition 1. An online algorithm A for an online minimization problem U is
c-competitive if there is a non-negative constant α such that, for any instance I
of U , we have cost(A(I)) ≤ c · cost(Opt(I)) + α. If α = 0, then we say that A is
strictly c-competitive. Moreover, A is optimal if it is strictly 1-competitive.

The framework of online computation with advice is defined as follows.

Definition 2. An online algorithm with advice computes, on an input sequence
I = (r1, r2, . . . , rn), the output sequence Aφ(I) = (y1, y2, . . . , yn), where yi is
computed from r1, r2, . . . , ri, φ, and φ is the content of the advice tape, i. e., an
infinite binary sequence.

Definition 3. An online algorithm A is c-competitive with advice complex-
ity s(n) if there is a non-negative constant α such that, for every n and
every instance I of length at most n, there is a φ such that cost(Aφ(I)) ≤
c · cost(Opt(I)) + α and at most s(n) bits of φ have been accessed during the
computation of Aφ(I). As above, if α = 0, then A is strictly c-competitive with
advice complexity s(n), and if A is optimal if it is strictly 1-competitive.

In some cases, an algorithm with advice may need to know the entire input;
in other cases, a few bits are sufficient to find the optimal solution. For the ski-
rental problem [9], for instance, a single advice bit is sufficient to be optimal.
For the classic knapsack problem, Böckenhauer et al. [8] showed that a single
advice bit is sufficient to be 2-competitive, even though no deterministic online
algorithm for this problem can have a bounded competitive ratio.

We consider a computer system that can be in one of two states. There is a
wake state in which it can process work and a sleep state that needs less energy
but in which the system cannot process work.1 In every time step, the system
either receives a job to process or not. When it is in the sleep state and such a
job arrives, it has to wake up; this needs additional energy. Clearly, it is a good
idea to go to sleep at the beginning of a long idle period. In an online setting,
the algorithm obviously does not know when this is the case. This motivates our
treatment of the problem in the advice complexity setting. The formal problem
definition is as follows.

Definition 4. The sleep states management problem with 2 states (2-SSM) is
the following online minimization problem.

Let {s1, s2} be the set of states; s1 is the wake state and s2 the sleep state.
Moreover, let p and w be positive integers. (If the system is in state s1, it needs
p energy per time step; if it is in state s2, it needs w energy to “wake up.”)

The input I = (r1, r2, . . . , rn) consists of a sequence of n requests ri ∈ {0, 1}.
(ri = 1 means that there is a job to be processed in the current time step.) After
every request ri, an online algorithm A decides which state si it wants to change to,
with the restriction that, if ri = 1, then A has to change to state s1. (It has to wake
up to process the job.) Formally, the output sequence is A(I) = (y1, y2, . . . , yn),
1 Of course, these states are just what is usually called “on” and “off.” To stay consis-

tent with the literature, however, we use the terms “wake state” and “sleep state.”

750 H.-J. Böckenhauer et al.

with yi = f(r1, r2, . . . , ri−1) ∈ S, for some computable function f , and yi = s1
whenever ri = 1. Initially, A is in state s1.

The cost of A(I) is defined as follows. Every request after which A changes
to or remains in state s1 costs p. Moreover, every request after which A changes
from state s2 to state s1 costs w.

Irani et al. [14] noted that this problem is an instance of the iterated ski rental
problem. The offline problem is simple and can be solved optimally using a sys-
tem that switches off at the beginning of every idle period that is longer than w/p.
There is a simple deterministic 2-competitive online algorithm for 2-SSM, and
this is also a lower bound for deterministic algorithms [1]. Using randomization,
one can construct an online algorithm for 2-SSM with an expected competitive
ratio of e/(e − 1), and this bound is tight for randomized algorithms [15].

3 Upper Bounds

We now consider online algorithms with advice for 2-SSM. We present two c-
competitive algorithms, one for c ∈ (e/(e − 1), 2] and one for c ∈ [1, e/(e − 1)].

We begin by observing that already one advice bit helps us to beat the
deterministic competitive ratio of 2 significantly.

Theorem 1. There is a strictly 1.8-competitive online algorithm for 2-SSM that
reads one advice bit.

Proof. Let A1 be the deterministic algorithm that goes to sleep after b := w/p
time steps in each idle sequence, and let A2 be the algorithm that goes to sleep
already after b/2 time steps. The advice bit then simply indicates which of the
two algorithms should be used.

First, note that A1 is optimal for idle phases of length at most b, and 2-
competitive for longer phases. For A2, we distinguish three cases. For short idle
phases of length less than b/2, A2 is also optimal. For medium idle phases of
length l, with b/2 ≤ l < b, it incurs costs of b/2 · p + w = 1.5w, whereas the
optimal solution has cost l · p. The competitive ratio is therefore 1.5b/l. Finally,
for long idle phases of length at least b, A2 again has cost b/2 · p + w, but the
optimal solution has cost w, resulting in a competitive ratio of 1.5.

In the following, we assume for computational ease that all idle phases have
length at most b. (The adversary has no advantage of producing longer phases,
i. e., it cannot increase the algorithms’ competitive ratio.)

Let x0, x1, x2 be the fraction of short, medium, and long phases, respectively.
The competitive ratio of A1 is therefore x0 · 1+x1 · 1+x2 · 2, and the one of A2 is
x0 ·1+x1 ·1.5b/l+x2 ·1.5 ≤ x0 ·1+x1 ·3+x2 ·1.5. Since our algorithm takes the
better one, it obtains a competitive ratio of min{x0 +x1 +2x2, x0 +3x1 +1.5x2}.
As we are interested in an upper bound, we need to find values that maximize
this term. Since both A1 and A2 are optimal on short periods, we can safely ignore
them for our worst-case analysis. That is, we set x0 := 0 above. Also, we have
x0 + x1 + x2 = 1 and hence x1 = 1 − x2. The expression above thus simplifies to

min{0 + 1 − x2 + 2x2, 0 + 3(1 − x2) + 1.5x2} = min{1 + x2, 3 − 1.5x2}.

On Energy-Efficient Computations with Advice 751

0 2 4 6 8 10 12 14

1.6

1.7

1.8

1.9

2

advice bits

co
m
p
et
it
iv
e
ra
ti
o

Fig. 1. The upper bound from Theorem 2, for 1 ≤ l ≤ 14

Setting 1 + x2 = 3 − 1.5x2 yields x2 = 0.8 and thus x1 = 0.2. The competitive
ratio of our algorithm is thus at most min{1 + 0.8, 3 − 1.5 · 0.8} = 1.8. ��

We can generalize this approach to more advice bits. For this, we need the
following technical result. The proof has been omitted due to space restrictions.

Lemma 1. For any two positive integers l and i, we have

(1 + 2l)i−12l

2(i+1)l
=

1
2l

+
i−1∑

j=1

(1 + 2l)j−1

2(j+1)l
.

The following upper bound starts at a competitive ratio of 2 with no advice
and converges fast to e/(e − 1) ≈ 1.5820, as one can see in Section 3. Note that
already five advice bits suffice to achieve a competitive ratio below 1.6.

Theorem 2. There is an online algorithm for 2-SSM that reads l advice bits,
where l ≥ 0 may be a function of n, and achieves a competitive ratio of

1 +
1

(
1 + 1

2l

)2l − 1
.

Proof. Let again b := w/p, and let Ai be the deterministic algorithm that goes
to sleep after ib2−l time steps in each idle sequence, for 1 ≤ i ≤ 2l. The advice
bits again simply indicate which of the 2l algorithms to use. On idle periods of
length at most 2−lb, all 2l algorithms are optimal. The more interesting part,
however, is to figure out the algorithms’ competitive ratio for longer idle periods.
To this end, we first determine the power consumption of each algorithm and
then the power consumption of an optimal algorithm.

In the following, a j-period, for 0 ≤ j ≤ 2l−1, is an idle period of length in the
interval (j2−lb, (j + 1)2−lb], and a 2l-period is an idle period of length b. (As in
the proof of Theorem 1, we assume without loss of generality that all idle phases

752 H.-J. Böckenhauer et al.

have length at most b.) Moreover, for 1 ≤ i ≤ 2l and 0 ≤ j ≤ 2l, let cost(Ai(IPj))
denote the total cost of algorithm Ai on a j-period. We define cost(Opt(IPj))
analogously. Finally, let CRi(IPj) = cost(Ai(IPj))/ cost(Opt(IPj)).

One easily verifies that Ai is optimal on idle periods of length at most i2−lb.
Formally, CRi(IPj)) = 1 ⇐⇒ j ≤ i − 1. We are, however, more interested in
the values CRi(IPj), for j ≥ i.

Ai falls asleep after time step i2−lb and then needs w energy to wake up again,
so cost(Ai(IPj)) = i2−lbp + w, for 1 ≤ i ≤ 2l. An optimal algorithm stays awake
all the time. That is, cost(Opt(IPj)) ≥ j2−lbp, for 0 ≤ j ≤ 2l. Combining all of
this yields

CRi(IPj) = 1, for 0 ≤ j ≤ i − 1, and

CRi(IPj) =
cost(Ai(IPj))

cost(Opt(IPj))
≤ i2−lbp + w

j2−lbp
=

i + 2l

j
, for i ≤ j ≤ 2l.

To continue our analysis, let xj be the fraction of j-periods in the whole
input, for 0 ≤ j ≤ 2l. Obviously, we have

∑
xj = 1. For notational ease, let

x := (x1, x2, . . . , x2l), and let CRi(x) denote the competitive ratio of Ai on an
instance where the fractions of idle periods correspond to x.

Note that there may be arbitrarily many jobs between two idle periods. If
there are such jobs, however, they only improve the algorithm’s competitive ratio.
Therefore, without loss of generality, we do not consider these jobs, but only the
competitive ratio of Ai on the idle periods. We get

CRi(x) ≤
2l∑

j=0

xj CRi(IPj) =
i−1∑

j=0

xj + (i + 2l)
2l∑

j=i

xj

j
. (1)

The oracle writes the index of the best algorithm on the tape. The adver-
sary tries to construct a worst-case instance by selecting the values xj appro-
priately. We can safely assume that it sets x0 := 0, since all algorithms
are optimal on these very short idle periods. Therefore, Adv tries to maxi-
mize min1≤i≤2l{CRi(x)} by choosing x = (x1, x2, . . . , x2l) ∈ [0, 1]2

l

such that∑
xj = 1.
We now show that the best strategy for the adversary is to select values

x1, x2, . . . , x2l such that all algorithms Ai can guarantee the same competitive
ratio on corresponding instances. Assume for contradiction that there was some
better strategy for Adv, i. e., one in which the competitive ratios of all 2l algorithms
is higher. Let x′ := (x′

1, x
′
2, . . . , x

′
2l) be the respective values. Clearly, x
= x′. Let

j be the highest index at which x and x′ differ. That is, xi = x′
i, for all i > j. In

other words, let j ∈ {2, 3, . . . , 2l} be the maximum value such that we have

j−1∑

i=1

x′
i <

j−1∑

i=1

xi and
2l∑

i=j

x′
i >

2l∑

i=j

xi or (2)

j−1∑

i=1

x′
i >

j−1∑

i=1

xi and
2l∑

i=j

x′
i <

2l∑

i=j

xi. (3)

On Energy-Efficient Computations with Advice 753

If (2) holds, then we have CR1(x′) < CR1(x), because the coefficients of the
xi in CR1(x) decrease, and therefore the overall value becomes smaller again. If
(3) holds, then we have CRj(x′) < CRj(x), since the coefficients of all xi with
i < j in CRj(x) are 1 and thus smaller than those with i ≥ j. Therefore, the
overall value becomes smaller again. In both cases, the competitive ratio of at
least one algorithm decreases, and thus selecting the xi such that all algorithms
can guarantee the same competitive ratio is indeed the best strategy for the
adversary. We claim that the values

x2l =
1

1 + S
and x2l−j =

(2l − j)(1 + 2l)j−1

2(j+1)l
x2l , for 1 ≤ j ≤ 2l − 1, (4)

satisfy this condition, where S =
∑2l−1

j=1 (2l − j)(1 + 2l)j−1/2(j+1)l.

First, note that
∑2l

j=1 xj =
∑2l−1

j=1 xj + x2l = x2lS + x2l = S
1+S + 1

1+S = 1.
Second, we need to show that indeed all algorithms achieve the same com-

petitive ratio. We consider the difference of the competitive ratios of algorithms
A2l−i+1 and A2l−i, for 1 ≤ i ≤ 2l − 1. Using (1) and the fact that x0 = 0, we get

CR(A2l−i+1(I)) − CR(A2l−i(I)) =
2l−i∑

j=1

xj + (2l − i + 1 + 2l)
2l∑

j=2l−i+1

xj

j

−
2l−i−1∑

j=1

xj − (2l − i + 2l)
2l∑

j=2l−i

xj

j

= x2l−i − (2l+1 − i)
x2l−i

2l − i
+

2l∑

j=2l−i+1

xj

j

= x2l−i − (2l+1 − i)
x2l−i

2l − i
+

x2l

2l
+

i−1∑

j=1

x2l−j

2l − j

Using (4), we obtain

CR(A2l−i+1(I)) − CR(A2l−i(I))

= x2l ·
(

(2l − i)(1 + 2l)i−1

2(i+1)l
− (2l+1 − i)(1 + 2l)i−1

2(i+1)l
+

1
2l

+
i−1∑

j=1

(1 + 2l)j−1

2(j+1)l

)

= x2l ·

⎛

⎝− (1 + 2l)i−12l

2(i+1)l
+

1
2l

+
i−1∑

j=1

(1 + 2l)j−1

2(j+1)l

⎞

⎠ ,

where the second factor is 0 due to Lemma 1. Thus, all algorithms achieve the
same competitive ratio on instances with idle periods according to (4). Using
(1) and the fact that x0 = 0, we get CR(A2l(I)) ≤

∑2l−1
j=1 xj + 2l+1x2l/2l =

∑2l−1
j=1 xj +2x2l = 1+x2l = 1+1/(1+S). It remains to show that 1+1/(1+S) =

1+1/((1+1/2l)2
l − 1), which is equivalent to showing that S = (1+1/2l)2

l − 2.
We have

754 H.-J. Böckenhauer et al.

S =
2l−1∑

j=1

(2l − j)(1 + 2l)j−1

2(j+1)l
=

1
22l·l

·
2l−1∑

j=1

2l(2l−1−j) · (2l − j) · (1 + 2l)j−1

=
1

22l·l
·
2l−1∑

j=1

2l(j−1) · j · (1 + 2l)2
l−1−j =

(1 + 2l)2
l−1

2(2l+1)l
·
2l−1∑

j=1

j · 2lj

(1 + 2l)j

=
1

(1 + 2l)2
·
(

1 + 2l

2l

)2l+1

·
2l−1∑

j=1

j ·
(

2l

1 + 2l

)j

.

We have now simplified the sum to a standard form. It is well-known that∑n
j=1 jxj = ((nx − n − 1)xn+1 + x)/(1 − x)2 [12]. Using this, we get

S =
1

(1 + 2l)2
·
(

1 + 2l

2l

)2l+1

·
((2l − 1) 2l

1+2l
− (2l − 1) − 1)

(
2l

1+2l

)2l

+ 2l

1+2l

(
1

1+2l

)2

=
(

1 + 2l

2l

)2l+1

·

⎛

⎝
(

2l − 1
2l + 1

2l − 2l

)(
2l

1 + 2l

)2l

+
2l

1 + 2l

⎞

⎠

= (1 + 2l)
(

2l − 1 − (2l + 1)
2l + 1

)

+
(

1 + 2l

2l

)2l

= −2 +
(

1 +
1
2l

)2l

. ��

Note that this result implies that, for an arbitrarily small ε > 0, there is an
(e/(e − 1) + ε)-competitive online algorithm that reads only a constant number
of advice bits. For the range [1, e/(e − 1)], we consider two different algorithms.

For the first one, first observe that at least one job has to be processed
between any two idle periods. Therefore, an input instance of length n contains
at most n/2 idle periods. For optimality, an algorithm can simply read one advice
bit at the beginning of each idle period to determine the state it should change
to. Generalizing this, we obtain an algorithm that provides advice for a certain
prefix of the input instance.

Theorem 3. There is an online algorithm A for 2-SSM that achieves a strict
competitive ratio of n − 4l + (4l2 + 2l)/n and reads at most l advice bits.

Proof. First, A reads the l advice bits from the tape. This is sufficient to be
optimal on a prefix of the instance of length 2l, since the number of idle periods
can at most be half of the number of requests, as we already observed above.

More precisely, A behaves as follows on the first 2l requests. Whenever a new
idle period begins, it reads an advice bit to determine whether to fall asleep or
not. (There can be at most l idle periods in this part of the instance.) For the
remaining part of the instance, A always stays awake.

Let us now analyze the competitive ratio of A. On the instance prefix of
length 2l, it is optimal, i. e., it has a competitive ratio of CR1 = 1. The worst
case for the remaining instance is that there is a job at the beginning and then

On Energy-Efficient Computations with Advice 755

only idle requests until the very end. The algorithm stays awake and incurs a
cost of n−2l, although an optimal algorithm would fall asleep immediately after
the job and thus incur a cost of 1. Therefore, A achieves a competitive ratio of
CR2 = n − 2l on the second part of the instance. The total competitive ratio is
the weighted average of these two competitive ratios, i. e.,

2l

n
· CR1 +

n − 2l

n
· CR2 =

2l

n
· 1 +

n − 2l

n
· (n − 2l) = n − 4l +

4l2 + 2l

n
. ��

For l = n/2, this yields that n/2 advice bits suffice to be optimal.
For the second algorithm, the oracle encodes the starting indices of the longest

idle phases. The algorithm then falls asleep during those phases and remains
awake at all others.

Theorem 4. There is an online algorithm A for 2-SSM with a strict competitive
ratio of 1 − 1/�l/�log n� + n/�l/�log n�2 that reads at most l advice bits.

Proof. The algorithm A first reads the number �log n from the advice tape.
This needs at most �log n advice bits. Then, A reads the starting indices of
the k := �l/�log n� − 1 longest idle periods from the advice tape for which the
optimal strategy is to fall asleep. (If there are less such phases, we can simply
encode some indices several times.) Each such index can be encoded using �log n
advice bits; therefore, A reads �log n + k�log n ≤ l advice bits in total.

The behavior of A is now fairly obvious: For all these idle periods, it falls
asleep. For all other idle periods, it stays awake.

It remains to analyze the competitive ratio of A. In the following, we assume,
without loss of generality, that k + 1 divides n. (Otherwise, our bound only gets
better.) Clearly, the worst case is when there is one long idle period for which A
has no advice. The maximum possible length of this idle period is n/(k+1), which
is, e. g., the case when there are k + 1 idle periods in total, all of equal length.
This results in a competitive ratio of 1 on a fraction of k/(k + 1) of the input,
and a competitive ratio of n/(k+1) on the remaining fraction of 1/(k+1) of the
input. The competitive ratio of A is the weighted sum of these two competitive
ratios, i. e., k/(k + 1) · 1 + 1/(k + 1) · n/(k + 1) = k/(k + 1) + n/(k + 1)2. ��

Observe that the bound of Theorem 4 is strictly greater than 1 for any n. This
means that, for every n, there is a c ∈ (1, e/(e − 1)] such that only Theorem 3
establishes an upper bound in the range [1, c]. Conversely, for the values n = 22

m

,
for some m ∈ N, and l = n/4 = 22

k−2, Theorem 4 yields an upper bound of
1 − 1/(22

m−m−2) + 1/(22
m−2m−4), which is clearly much better than the bound

22
m−2+1/2 from Theorem 3. Moreover, it tends to 1 for increasing n and thus is

below e/(e − 1) for infinitely many n. Hence, the two results are complementary.

4 Lower Bounds

Recently, a general technique was established to prove lower bounds on the advice
complexity of online problems. This technique consists of a reduction from the

756 H.-J. Böckenhauer et al.

string guessing problem, which was studied by Böckenhauer et al. [5]. As the
name implies, the problem consists of guessing a string over an alphabet of fixed
size. Here, we consider the variant with known history, i. e., the algorithm gets
immediate feedback whether its guess for the current character was correct.

Definition 5. The bit guessing problem with known history (BGKH) is the
following online minimization problem. The input I = (n, d1, d2, . . . , dn) consists
of a natural number n and the bits d1, d2, . . . , dn, which are revealed one by
one. An online algorithm A computes the output sequence A(I) = y1y2 . . . yn,
where yi = f(n, d1, d2, . . . , di−1) ∈ {0, 1}, for some computable function f . The
algorithm is not required to respond with any output in the last time step. The
cost of a solution A(I) is the number of wrongly guessed bits, i. e., the Hamming
distance Ham(d, A(I)) between d = d1d2 . . . dn and A(I).

The following lower bound for BGKH is known.

Theorem 5 (Böckenhauer et al. [5]). Every deterministic algorithm for
BGKH that can guarantee to be correct in more than αn bits, for 1/2 ≤ α < 1,
needs to read at least (1−H(α))n many advice bits, where H denotes the binary
entropy function, i. e., H(α) := −(1 − α) log2(1 − α) − α log2 α. ��

We use this to establish a linear lower bound on the advice complexity for
c-competitiveness. The next result shows that linear advice is necessary not only
to achieve optimality, but also to get arbitrarily close to it. (Note that we can
always scale p and w and therefore assume p = 1 without loss of generality.)

Theorem 6. Every online algorithm for 2-SSM needs to read at least

1 − H(2w + 2 − (2w + 1)c)
2w + 2

· n ∈ Θ(n)

advice bits to be strictly (c− ε)-competitive, for 1 < c ≤ 1+ 1
4w+2 and any ε > 0.

Proof. We prove the statement by a reduction from BGKH. For any string guess-
ing instance (m, d1, d2, . . . , dm), we construct a corresponding 2-SSM instance of
length (2w + 2)m, consisting of subintervals of the form

(r1, r2, . . . , r2w+2) = (1, 0, 0, . . . , 0
︸ ︷︷ ︸

w−1

, 1, 0, 0, . . . , 0, 0, 0
︸ ︷︷ ︸

w+1

) if di = 0 and

(r1, r2, . . . , r2w+2) = (1, 0, 0, . . . , 0, 0, 0
︸ ︷︷ ︸

w+1

, 1, 0, 0, . . . , 0
︸ ︷︷ ︸

w−1

) if di = 1,

where we write rj instead of ri,j , for 1 ≤ j ≤ 2w + 2, to improve readability.
We first look at what an optimal algorithm Opt does on such an instance.

Since Opt always falls asleep for idle periods that are longer than the break-even
point b := w/p = w, it is asleep during the second idle period for intervals of the
first type, and during the first idle period for intervals of the second type.

Put differently, for the first type of interval, Opt falls asleep on rw+2, so far
having a cost of w +1. To wake up when the next interval starts, it incurs a cost

On Energy-Efficient Computations with Advice 757

of w. The total cost is therefore 2w + 1. On intervals of the second type, Opt
falls asleep on r2, then wakes up again on rw+3 and stays awake until the end of
the subinterval. Therefore, it has cost 1 + w + w = 2w + 1. That is, Opt incurs
a cost of (2w + 1)m.

Suppose now that there was an online algorithm A that achieves a competitive
ratio of c − ε, for 1 < c ≤ 1 + 1/(4w + 2), and reads less than (1 − H(2w + 2 −
(2w + 1)c))m advice bits. We assume, without loss of generality, that A knows
the structure of the instances and hence always behaves optimal for the second
idle period of a subinterval, i. e., for the requests rw+2, rw+3, . . . , r2w+2. That is,
if di = 0, then A sleeps on those requests, and if di = 1, then A is awake on the
requests rw+3, rw+4, . . . , r2w+2. (Whether it is already awake on rw+2 depends
on previous requests.)

For r1, A always has to be awake. For r2, r3, . . . , rw, A does not know the type
of the current subinterval. We now argue briefly that we can assume, without
loss of generality, that, in each subinterval, A is either awake on all these requests
or asleep on all these requests. In other words, it does not fall asleep or wake up
when processing such a request. For the latter, the argumentation is trivial. No
reasonable algorithm ever wakes up on an idle request.2 On the other hand, the
algorithm knows that there is always an idle period on the requests r2, r3, . . . , rw.
Therefore, any algorithm that falls asleep on any of these requests can be replaced
by an algorithm that falls asleep on r2 and that has at least the same competitive
ratio. From rw+1 on, A knows the type of the current subinterval and therefore
behaves like Opt.

For an interval of the first type, if A falls asleep on the second request, it incurs
cost 1+w+1+w = 2w+2. If it stays awake, it incurs cost 1+(w−1) ·1+1+w =
2w +1. For an interval of the second type, if A falls asleep on the second request,
it incurs cost 1 + w + 1 + (w − 1) · 1 = 2w + 1. If it stays awake, it incurs cost
1 + (w + 1) · 1 + 1 + (w − 1) · 1 = 2w + 2.

We can use A to construct an online algorithm A′ for BGKH as follows. The
algorithm A′ simply outputs 1 whenever A falls asleep on the second request,
and it outputs 0 otherwise. One easily sees that, if A outputs a solution with
cost (2w + 1)m + k, then A′ outputs k wrong bits. We already know that A is
(c − ε)-competitive, i. e., it outputs a solution of cost less than

(2w + 1)mc = (2w + 1)m(1 + c − 1) = (2w + 1)m + (2w + 1)m(c − 1)
︸ ︷︷ ︸

k

.

Therefore, A′ outputs less than k = (2w +1)m(c− 1) wrong bits, i. e., A′ outputs
more than m − k = (2w + 2 − (2w + 1)c)m correct bits. Moreover, since A
reads less than (1 − H(2w + 2 − (2w + 1)c))m advice bits, so does A′. Setting
α := 2w + 2 − (2w + 1)c, however, this contradicts Theorem 5, and therefore
there is no such algorithm A′. Note that the condition 1/2 ≤ α < 1 holds due to
the range of c. ��

2 This could be characterized as being “lazy”, using the same term as in the k-server
problem, where it denotes a similar property of algorithms.

758 H.-J. Böckenhauer et al.

References

1. Albers, S.: Energy-efficient algorithms. Comm. of the ACM 53, 86–96 (2010)
2. Barhum, K., Böckenhauer, H.-J., Forǐsek, M., Gebauer, H., Hromkovič, J., Krug, S.,

Smula, J., Steffen, B.: On the Power of Advice and Randomization for the Disjoint
Path Allocation Problem. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa,
A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 89–101. Springer, Heidelberg
(2014)

3. Bianchi, M.P., Böckenhauer, H.-J., Hromkovič, J., Keller, L.: Online Coloring of
Bipartite Graphs with and without Advice. In: Gudmundsson, J., Mestre, J., Viglas,
T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 519–530. Springer, Heidelberg
(2012)

4. Bianchi, M.P., Böckenhauer, H.-J., Hromkovič, J., Krug, S., Steffen, B.: On the
Advice Complexity of the Online L(2, 1)-Coloring Problem on Paths and Cycles.
Theoretical Computer Science 554, 22–39 (2014)

5. Böckenhauer, H.-J., Hromkovič, J., Komm, D., Krug, S., Smula, J., Sprock, A.:
The String Guessing Problem as a Method to Prove Lower Bounds on the Advice
Complexity. Theoretical Computer Science 554, 95–108 (2014)

6. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complex-
ity of the k-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.): ICALP
2011, Part I. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)

7. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the
Advice Complexity of Online Problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

8. Böckenhauer, H.-J., Komm, D., Královič, R., Rossmanith, P.: On the Advice Com-
plexity of the Knapsack Problem. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS,
vol. 7256, pp. 61–72. Springer, Heidelberg (2012)

9. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis.
Cambridge University Press (1998)

10. Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In:
USENIX 2010, pp. 21–21 (2010)

11. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
Theoretical Computer Science 412(24), 2642–2656 (2011)

12. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. A Foundation
for Computer Science, 2nd edn. Addison-Wesley (1994)

13. Gupta, S., Kamali, S., López-Ortiz, A.: On Advice Complexity of the k -server Prob-
lem under Sparse Metrics. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO
2013. LNCS, vol. 8179, pp. 55–67. Springer, Heidelberg (2013)

14. Irani, S., Shukla, S., Gupta, R.: Algorithms for power savings. ACM Transactions
on Algorithms 3(4) (2007)

15. Karlin, A.R., Manasse, M.S., McGeoch, L.A., Owicki, S.: Competitive randomized
algorithms for non-uniform problems. In: SODA 1990, pp. 301–309 (1990)

16. Renault, M.P., Rosén, A.: On Online Algorithms with Advice for the k -Server
Problem. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164,
pp. 198–210. Springer, Heidelberg (2012)

17. Seibert, S., Sprock, A., Unger, W.: Advice Complexity of the Online Color-
ing Problem. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878,
pp. 345–357. Springer, Heidelberg (2013)

18. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)

Multi-Radio Channel Detecting Jamming Attack
Against Enhanced Jump-Stay Based Rendezvous

in Cognitive Radio Networks

Yang Gao1(B), Zhaoquan Gu1, Qiang-Sheng Hua2, and Hai Jin2

1 Institute for Interdisciplinary Information Sciences, Tsinghua University,
Beijing, People’s Republic of China
y-gao13@mails.tsinghua.edu.cn

2 Services Computing Technology and System Lab/Cluster and Grid Computing Lab,
School of Computer Science and Technology, Huazhong University of Science

and Technology, Wuhan, People’s Republic of China

Abstract. Rendezvous problem has been attracting much attention as
a fundamental process to construct the Cognitive Radio Network (CRN).
Many elegant algorithms have been proposed to achieve rendezvous on
some common channel in a short time, but they are vulnerable to the
jamming attacks where a jammer may exist listening or blocking the
channels[14]. In this paper, we propose the Multi-Radio Channel Detect-
ing Jamming Attack (MRCDJA) problem where the jammer can access
multiple channels simultaneously. We assume the users adopting the
Enhanced Jump Stay (EJS)[8] algorithm, which guarantees rendezvous
by generating a channel hopping sequence, and our goal is to determine
the hopping sequence as quickly as possible.

1 Introduction

Cognitive Radio Network (CRN) has become a new paradigm to alleviate the
spectrum scarcity problem since the unlicensed spectrum is overcrowded while
the licensed spectrum has low utilization[15]. There are two kinds of users in
CRN, the so-called primary users (PUs) who own the licensed spectrum and the
secondary users (SUs) who can use the particular licensed spectrum that are not
occupied. Unless otherwise specified, ‘users’ mentioned hereafter refers to SUs.

In constructing such a CRN, rendezvous is a fundamental procedure for the
users to establish a link on a common licensed channel for communication[10].
Many algorithms have been proposed to reduce the time needed to rendezvous[2,
4,8,9] by constructing a hopping sequence. Let U be the set of the available chan-
nels and |U | = M , the state-of-the-art results guaranteed rendezvous in O(M2)
time slots[8]. However, these algorithms are vulnerable to Channel Detecting
Jamming Attack (CDJA)[14] where a jammer exists trying to listen or block the

This work was supported in part by the National Basic Research Program of China
Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of
China Grant 61103186, 61033001, 61361136003.

c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 759–770, 2015.
DOI: 10.1007/978-3-319-21398-9 59

760 Y. Gao et al.

channels[14]. The intuition of the CDJA is to determine one user’s channel hop-
ping sequence based on the listened channels and to jam the predicted channels
against rendezvous.

Recently, multiple radios architecture has been widely used in wireless
networks[1,7,12,13] and many problems can be solved efficiently. In this paper,
we propose Multi-Radio Channel Detecting Jamming Attack (MRCDJA) where
the jammer can listen or block n (n > 1) channels simultaneously and the goal
is to determine the user’s channel hopping sequence as quick as possible. Since
Enhanced Jump Stay (EJS)[8] is one representative state-of-the-art algorithm,
we design multi-radio jamming algorithm against EJS.

In this paper, we first review the EJS algorithm and the CDJA algorithm as
the cornerstones, then we design an efficient algorithm to determine the channel
hopping sequence when the users can use any channel in the set U . We show
that the sequence can be figured out in O(Mn) expected time, which is n times
better than the result in [14]. Moreover, when some channels are occupied by
the PUs, we provide another efficient algorithm for the MRCDJA problem, we
show that if the ratio of the available channels is more than 40%, our algorithms
can guarantee fast successful attack with probability more than 80%. We also
evaluate our proposed algorithms and the results show that our algorithms can
determine the hopping sequence quickly.

The rest of the paper is organized as follows. Preliminaries are provided in
the next section. In Section 3, we review the EJS algorithm. In Section 4, we
show our main results by providing efficient algorithms to figure out the channel
hopping sequences. In Section 5, we conduct simulations for our algorithms.
Finally, we conclude the paper in Section 6.

2 Preliminaries

We consider a CRN with two users that are trying to rendezvous with each
other and a jammer who aims to break the rendezvous process by blocking some
licensed channels. We suppose the licensed spectrum is divided into M non-
overlapping channels labeled U = {1, 2, . . . ,M} and the labels are known to the
users and the jammer.1

Time is supposed to be divided into slots of equal length of 2t, where t
is the time duration for establishing a connection. In each time slot, the user
can access one channel for rendezvous attempt, while the jammer can choose
n > 1 channels for listening (detecting) or blocking. Here listening or detecting
means that the jammer can check some channels to see if the user is accessing
these channels in the same time. The users can achieve rendezvous only if they
access the same channel in the same time slot and the jammer doesn’t block
the channel. We assume the users start the rendezvous process asynchronously,
i.e. the two users doesn’t need to start in the same time slot. Obviously, we can
1 It is reasonable to make this assumption since the channels are easy to be distin-
guished by frequency, however there are some research on the case when the labels
are not known to the users[5,6].

Multi-Radio Channel Detecting Jamming Attack 761

consider the rendezvous process as slot-aligned even in the asynchronous setting
since the duration of each time slot is 2t[6]. In this paper, we assume the jammer
starts detecting the channels before all users starting to access channels.

Before the users start the rendezvous process, they sense the licensed spec-
trum to check whether the channels in U are occupied. We say that a channel
is available for the user if it is not occupied by any nearby PUs. After the spec-
trum sensing stage, each user i has a set of available channels Ci ⊆ U and they
can begin rendezvous attempt by accessing the available channels. The users
are said to be symmetric if the available channel set is U for both of them, i.e.
C1 = C2 = U [8], otherwise, they are asymmetric, i.e. C1 ⊆ U,C2 ⊆ U [8]. In
this paper, we design efficient algorithms for the jammer to detect the chan-
nel hopping sequence to prevent rendezvous between the users. We assume the
users adopting the Enhanced Jump Stay (EJS)[8] algorithm and formulate the
problem as:

Problem 1 (MRCDJA). Suppose two users run the EJS algorithm for ren-
dezvous, while the jammer who can access n > 1 channels simultaneously tries
to determine the channel hopping sequence of one user. The goal is to design an
efficient algorithm to detect the sequence as quickly as possible.

3 Review of the Enhanced Jump-Stay Algorithm

Since Enhanced Jump Stay (EJS)[8] is one representative rendezvous algorithm,
we review the intuition of the algorithm in this section. The algorithm works as
follows: each user generates its own channel hopping sequence in rounds. Each
round consists of three jump patterns and one stay pattern where each pattern
lasts for P time slots (P is the smallest prime number such that P ≥ M). In the
first round, the user chooses a random channel i ∈ [1, P] as a start channel and
a random number r ∈ C as the step length, where C is the available channel
set of this user. In the jump patterns of the first round where time t suits
0 ≤ t < 3P , the user chooses channel (i + tr − 1) mod P + 1, then in the stay
pattern (3P ≤ t < 4P), the user stays on channel r. The j-th (j > 1) round is
generated in the same way, except that the start channel is (i + j − 2)%P + 1
and the step length remains r. For example M = 5, P = 5, i = 3, r = 1, we show
the first two rounds of the channel sequence:

3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,1,1,1,1,1,(3+1),5,1,2,3,4,5,1,2,3,4,5,1,2,3,1,1,1,1,1,...

Notice that (3 + 1) represents the start channel of the second round as
described above.

There are two special situations we need to consider. The first one is P �= M ,
channel x (x > M) doesn’t exist and thus we map it to x − M . The second one
is the asymmetric situation, where some channels in U may be occupied by the
PUs, and thus the user just choose a random channel in its available channel set
to replace the unavailable channel.

762 Y. Gao et al.

Fig. 1. Example for rendezvous of two users

For example, suppose M = 4, P = 5, the available channel set C = {1, 3, 4},
i = 3, r = 1. It is obvious that channel 5 doesn’t exist and it should be mapped
to channel 1. Since channel 2 doesn’t belong to C, the user chooses a random
channel from C once it should access channel 2. Therefore, the new sequence is:

3,4,1,1,3,3,4,1,1,4,3,4,1,1,1,1,1,1,1,1,(3+1),1,1,1,3,4,1,1,4,3,4,1,1,4,3,1,1,1,1,1,...

In this paper, we use two important lemmas in [11] as:

Lemma 1. Given a positive integer P , if r ∈ [1, P) is relatively prime to P ,
i.e., the common factor between them is 1, then for any x ∈ [0, P) the sequence
S =< x%P + 1, (x + r)%P + 1, ..., (x + (P − 1)r)%P + 1 > is a permutation of
< 1, 2, ..., P >.2[11]

Lemma 2. Given a prime number P , if r1 and r2 are two different numbers in
(0, P), then for any x1, x2 ∈ [0, P), there must be an integer k ∈ [0, P) such that
(x1 + kr1)%P = (x2 + kr2)%P . [11]

Combining these two Lemmas, the following theorem is proved.

Theorem 1. Under the symmetric setting, any two users performing EJS
achieve rendezvous in at most 4P time slots, under asymmetric setting the time
is at most 4P (P + 1 − G) time slots, where P is the smallest prime number
greater or equal to M and G is the number of channels commonly available to
the two users. [8]

Fig. 1 is an example of rendezvous under symmetric setting. Here U =
{1, 2, 3, 4}, P = 5, user 1 chooses channel 3 as its start channel and 2 as its step
length, user 2 chooses channel 2 as its start channel and 1 as its step length.
User 2 starts 3 time slots later than user 1, they rendezvous at the 4th time slot
(the start time is based on the later user’s clock) on channel 1, here channel 1
is mapped from channel 5 for both users.

Remark 1. The Expected Time To Rendezvous (ETTR) of EJS is proved to be
no more than 3

2P + 3 in [8]. However, it is a very loose bound. In our work, we
derive a much more accurate estimation (1324P + O(1)). Due to the page limits,
we left the proof and simulation in the full version [3].

2 We use the symbol % as the meaning of mod function in this paper.

Multi-Radio Channel Detecting Jamming Attack 763

4 Multi-Radio Jamming Attack Algorithm

In this section, we design efficient algorithms for the jammer to attack the
rendezvous process. Clearly, if the jammer can figure out one user’s hopping
sequence, it can block the predicted channels to prevent rendezvous between
the users. First, we review the existing work of CDJA[14] problem, then we
design efficient algorithms for both symmetric and asymmetric situations when
the jammer can access n channels. We show that we can improve the efficiency
to figure out the hopping sequence by adopting multiple radios.

4.1 The Existing Work

In [14], the attack scheme against the Jump Stay (JS) algorithm[11] under sym-
metric setting is proposed and the basic idea is to find the start channel and
the step length of one user. The key intuition is that if the jammer detects that
the user has accessed channel c1 at time t1, and c2 at t2 (t1, t2 are based on the
jammer’s own clock), where (t1 − t2)%P �= 0, it can calculate the step length r
used by this user. This is due to the reason that c1 and c2 can be written as:

c1 = (i + (t1 + Δt)r − 1)%P + 1
c2 = (i + (t2 + Δt)r − 1)%P + 1

here Δt is the time difference between the jammer and the user’s clocks. We
have ((t2 − t1)r)%P = (c2 − c1)%P and the r is unique. Formally, see Alg. 1.

Algorithm 1. StepLength
1: Input: t1, c1, t2, c2
2: Output: the step length r;
3: for r = 1 to P do
4: if ((t2 − t1)r)%P = (c2 − c1)%P then
5: Return r;
6: end if
7: end for

However, the algorithm in [14] restricts that the jammer can choose channels
only in {P −M +1, P −M +2, ...M} since this wouldn’t cause any ambiguity. For
example in Fig. 1, the jammer shouldn’t choose to listen on channel 1, otherwise
it cannot tell whether it is the actual channel 1 or it is mapped from channel 5 in
the user’s original sequence when it detects that the user is accessing channel 1.

In the next subsections we give our attack scheme to the Enhanced Jump Stay
Algorithm (EJS) under both symmetric and asymmetric settings. We assume the
jammer can access n (n > 1) channels simultaneously and our scheme doesn’t
need the channel selection restriction. The two improvements make the attack
more efficient.

764 Y. Gao et al.

Algorithm 2. Multi-Radio Attack Algorithm Under Symmetric Setting
1: Input: M,P, n;
2: Output: the step length r;
3: Choose n random channels A = {a1, a2...an} from [1,M];
4: Keep listening on channels in A until the first signal appears, say it is on channel

bx at time tx;
5: Randomly select another channel d in [1,M] but not in A, A = A \ {bx}⋃ d;
6: Keep listening on channels in A until the first signal appears, say it is on channel

by at time ty;
7: if bx > P − M and by > P − M then
8: Return StepLength(tx, bx, ty, by);
9: else if bx ≤ P − M and by > P − M then
10: r1 = StepLength(tx, bx, ty, by), r2 = StepLength(tx, bx +M, ty, by);
11: Check ((by + r1 − 1)%P)%M + 1 and ((by + r2 − 1)%P)%M + 1 at time ty + 1
12: Return the right step length;
13: else if bx > P − M and by ≤ P − M then
14: r1 = StepLength(tx, bx, ty, by), r2 = StepLength(tx, bx, ty, by +M);
15: Check ((by + r1 − 1)%P)%M + 1 and ((by + M + r2 − 1)%P)%M + 1 at time

ty + 1
16: Return the right step length;
17: else
18: r1 = StepLength(tx, bx, ty, by), r2 = StepLength(tx, bx + M, ty, by), r3 =

StepLength(tx, bx, ty, by +M), r4 = StepLength(tx, bx +M, ty, by +M);
19: Check the four channels at time ty + 1: ((by + r1 − 1)%P)%M + 1, ((by + r2 −

1)%P)%M+1, ((by+M+r3 −1)%P)%M+1, or ((by+M+r4 −1)%P)%M+1,
if the jammer doesn’t have enough radios, keep on checking at time ty + 2;

20: Return the right step length;
21: end if

4.2 Symmetric Situation

We first give the intuition for finding the step length r: the jammer chooses n
channels randomly from [1,M] and keeps listening on these channels, one radio to
one channel. Once getting a signal from some channel bx at time tx, the jammer
randomly chooses another channel replacing bx and keeps on detecting until the
second signal appears on channel by at time ty. If both bx and by are greater than
P − M , which means they won’t cause any ambiguity, the jammer can find r
immediately. If one channel is not greater than P −M , for example bx < P −M ,
then the jammer needs to consider two cases: {bx, by} and {bx+M, by}, for either
of them the jammer can get a step length. Since the jammer can access more
than one channels each time slot, it can check which of the two cases is right in
the next time slot. It is similar when bx and by are all not greater than P − M ,
in this case the jammer should check out 4 step lengths in the next 1 or 2 time
slots. Formally, please refer to Alg. 2.

In Alg. 2, the input M denotes the number of available channels, P is the
smallest prime that P ≥ M and n is the number of radios the jammer has.
The function StepLength refers to Alg. 1. In line 3-6 the jammer gets the two

Multi-Radio Channel Detecting Jamming Attack 765

Fig. 2. Example of Alg. 2

signals (tx, bx), (ty, by), in line 7-21 the jammer calculates the step length based
on different situations of bx, by.

We show two examples of Alg. 2 in Fig. 2. The blocks represent the first jump
pattern of the user. Here M = 9, P = 11, the user’s start channel is 3 and the
step length is 4. The jammer has 3 radios.

Case a is shown above the blocks. From the beginning, the jammer chooses
channel 4,5,6. When the user chooses channel 4 (the dark yellow block labeled 4)
in the 4-th time slot, the jammer gets the signal and changes to listen on channel
5,6,7. In the 7-th time slot a signal on channel 5 appears. Thus the jammer can
calculate the step length of the user, it knows the next channel chosen by the
user is 9, and so on.

Case b is shown below the blocks. The jammer chooses channel 2,5,8 from
the beginning. In the 3-rd time slot, it gets the signal from channel 2 (the light
green block labeled 2(11) which means it is mapped from 11), then it changes to
channel 3,5,8 until a signal on channel 8 appears in the 5-th time slot. But the
jammer cannot get the step length immediately because it doesn’t know whether
channel 2 is the actual 2 or it is mapped from 11. If it is mapped from 11, the
step length should be 4, and the next channel should be 1, otherwise the step
length should be 3 and the next channel should be 2. So in the 6-th time slot the
jammer listens on channel 1 and 2 and makes sure that 4 is the real step length.

After getting the step length, another important problem we should solve is
the start time of the user, because without knowing the start time the jammer
cannot decide when will the user enter the stay pattern. From Lemma 1, we can
easily derive that each available channel will appear in each jump pattern. If the
jammer starts detecting earlier than the user starts, it can get the step length
or some alternative step lengths in the first jump pattern of user, i.e. in P time
slots after the user starts. So the jammer can confirm the right step length r
before the user entering the stay pattern. After the jammer gets r, it allocates
one radio staying on channel r. When it gets 3 consecutive signals on channel r,
say at time t, t+1, t+2, it knows the user has entered the stay pattern, either t,
t+1 or t+2 is the start time of the stay pattern. Thus the jammer can calculate
the alternative start time and start channels of the user, when the stay pattern
ends and the next round starts, the jammer can make sure which is right.

766 Y. Gao et al.

4.3 Analysis of Alg. 2

In this section, we analyze the expected time and maximum time of Alg. 2. There
are two important lemmas as follows.

Lemma 3. Given m ≥ n ≥ 3, if we sample n numbers from {1, 2...m} without
repeating, say the numbers are a1 < a2 < a3... < an, then the expected value of
a2 and a3 are E(a2) = 2(m+1)

n+1 ,E(a3) = 3(m+1)
n+1 .

Due to the page limits, the proof of the lemma can be found in the full
version [3].

Remark 2. Actually we can prove that E(ai) = i×(m+1)
n+1 for all i in {1, 2, 3...n}.

Lemma 4. Given m > n ≥ 1, If we sample n + 1 numbers from {1, 2...m}
without repeating, say they are S = {a1, a2, a3...an+1}, let p = min{a1, a2...an},
q = min{x : x ∈ S \ {p}, x > p}, then E(q) = (m+1)(2n+3)

(n+1)(n+2) .

Proof. We divide the problem into two cases. First, an+1 < p, which means an+1

is the smallest in S, so q is the third smallest number in S, from Theroem 3,
E(q) = 3(m+1)

n+2 . Second, an+1 > p, in this case, q is the second smallest number

in S, E(q) = 2(m+1)
n+2 . So we have:

E(q) = E(q|an+1 < p)Pr{an+1 < p} + E(q|an+1 > p)Pr{an+1 > p}

=
3(m + 1)

n + 2
1

n + 1
+

2(m + 1)
n + 2

n

n + 1

=
(m + 1)(2n + 3)
(n + 1)(n + 2)

According to the two lemmas, we can derive the theorem as:

Theorem 2. By using Alg. 2 for finding the sequence generated by the user, the
maximum time is P − n + 4, and the expected time is (M+1)(2n+3)

(n+1)(n+2) + O(1). M is
the number of channels, P is the smallest prime that P ≥ M , n is the number
of radios the jammer has.

Proof. From Section 4.2 we know that Alg. 2 ends in at most 2 time slots after
detecting two signals, and all the channels appear in the first jump pattern of the
sequence generated by the user. So the worst case is that the jammer chooses n
channels which appears at the end of the first jump pattern, thus the maximum
time is no more than P − n + 2 + 2 = P − n + 4.

Then we prove the expected time, we focus only on the first jump pattern
of the sequence because Alg. 2 ends in the first jump pattern. Since P − M is
much smaller comparing to P and M , we assume M = P , then we know the
jump pattern is a permutation of {1, 2, ..., P}. Notice that even though each
channel appears on each position of the permutation with equal probability,
the permutation is not a completely random permutation. However, since the

Multi-Radio Channel Detecting Jamming Attack 767

Fig. 3. Example of Alg. 3

jammer chooses n completely random channels to detect, we can just consider the
case when the permutation is 1, 2, 3, ..., P . Suppose the jammer chooses channel
set S = {a1, a2, ..., an} to detect, the first signal will appear on channel p where
p = min{S}, then the jammer changes the channel from p to an+1, now it
listens on S \ {p}

⋃
{an+1}, and the second signal should be on channel q where

q = {x : x = min{S}, x > p}. We can see that the problem is the same with
Lemma 4, so the expected time is (M+1)(2n+3)

(n+1)(n+2) + O(1).

4.4 Asymmetric Situation

Due to the spectrum sensing technique, the user may find some channels occu-
pied by the PUs which means the user cannot access these channels, this is the
so-called asymmetric setting. We assume that the jammer knows the available
channel set of the user due to the same spectrum sensing technique. In Remark
3 we briefly discuss the situation where the jammer doesn’t know the set at all.

Similar to the symmetric setting, the purpose of the jammer is to find the
step length and the start time chosen by the user. The main intuition is the same
as Alg. 2: the jammer waits on some channels and then calculates the step length
along with the start time. The difference is that the jammer may detect some
channels that are randomly chosen by the user, this may interfere the jammer
and the jammer may get the wrong step length.

Our solution is that the jammer keeps detecting until there are 3 signals, say
channel b1 at time t1, b2 at t2, b3 at t3, that satisfy:

StepLength(t1, b1, t2, b2) = StepLength(t2, b2, t3, b3) = StepLength(t3, b3, t1, b1)

The jammer considers StepLength(t1, b1, t2, b2) as the step length, and
{b1, b2, b3} as the channels not randomly chosen by the user. It uses
StepLength(t1, b1, t2, b2) and b3 for generating the remain sequence. We call
{b1, b2, b3} “good channels”.

Take Fig. 3 as an example, the arrows point to the channels that the jammer
gets, the dark yellow arrows point to the “good channels”. If they are not chosen
randomly by the user and are in the same round as the picture shows, the jammer
can get the right step length from the 3 signals. Formally, please refer to Alg. 3.
In Alg. 3, the input P,M, n are defined the same way with Alg. 2. Initially, the
jammer holds a set B in line 3, when it hears channel b at time t, it adds (t, b)
into B. In line 6, the jammer judges all the triplets in B, and if it fails to find
the step length, in line 9 it changes the channel from b to another channel and
keeps on listening.

768 Y. Gao et al.

Algorithm 3. Multi-Radio Attack Algorithm Under Asymmetric Model
1: Input: P,M, n, the available channel set C = {c1, c2, ..., ck} of the user;
2: Output: the step length r;
3: Set B = ∅;
4: Sample n channels A = {a1, a2...an} without repeating from C;
5: Keep listening on channels in A until the first signal appears, say it is on channel

b at time t, B = B
⋃{(t, b)};

6: if there exists (tx, bx), (ty, by), (tz, bz) in B such that StepLength(tx, b
′
x, ty, b

′
y) =

StepLength(tx, b
′
x, tz, b

′
z) = StepLength(ty, b

′
y, tz, b

′
z), here b′

x = bx or bx +M(only
when bx ≤ P − M), so are b′

y and b′
z then

7: Return StepLength(tx, b
′
x, ty, b

′
y);

8: else
9: Randomly select another channel d ∈ C \ A, A = A \ {b}⋃{d}, goto Line 5.
10: end if

Notice that “good channels” are not always good. Sometime three channels
not in the same round or containing random channels can also satisfy the above
equation. This means our algorithm cannot guarantee finding the right step
length. We discuss why our algorithm still works well in the next subsection.

When the jammer gets the step length r, another important problem is the
start time and we tackle it similarly as the symmetric situation, where the jam-
mer allocates one radio on channel r to find the time of entering the stay pattern,
and then it can know the start time of the user.

Remark 3. When the jammer doesn’t know the available channel set of the user,
it can still use Alg. 3 to make the attack, by just choosing n random channels
to listen. However, this makes the algorithm slower, and we leave more study of
this situation to the future work.

4.5 Analysis of Alg. 3

In this section we discuss why Alg. 3 works well even though sometime “good
channels” may not be “good”. Suppose the number of all channels is M and
the number of available channels for the user is λM , P is the smallest prime
no less than M , the jammer has n radios and starts detecting earlier than the
user starts. In the jump patterns of the first round which last for 3P time slots,
there are about 3Pλ channels which are not chosen randomly. For each of these
channels, the probability of being detected by the jammer is about n/(Pλ), so
on average, the jammer can detect about 3Pλ × n/(Pλ) = 3n channels which
are not random channels in the jump patterns of the first round. Thus we can
expect that Alg. 3 ends in the first round with great probability, which means
there is great chance that the jammer can find really good “good channels” in
the first round. Our simulation results in the full version [3] shows that, the
probability of successful attack in the first round is more than 80% when the
ratio of available channels is more than 40%.

A good way to make the calculation of the step length more accurate is to
run Alg. 3 multiple times. In each time, the jammer can get a step length r and

Multi-Radio Channel Detecting Jamming Attack 769

(a) Expectation and estimation of the
time of Alg. 2

(b) The expected time of running Alg.
3 once

Fig. 4. Simulation Results

it is easy to see that the real step length appears more times than the other false
r. Notice that under the asymmetric setting, the rendezvous time is no longer
within 4P time slots, so the jammer can try to run Alg. 3 several times to get an
accurate r. Moreover, our simulation result in Section 5 shows that the average
time for Alg. 3 is always within P time slots.

5 Performance Evaluation

In this section we conduct extensive simulations to evaluate our algorithms. We
use R language to implement the simulation, in each experiment we get the
result as the average of more than 20000 separate runs. Due to page limits, we
only show part of the simulations results, you can refer to the full version [3] for
all the simulation results.

Fig. 4(a). shows the expected time of Alg. 2. The x-bar represents different
numbers of available channels, while the y-bar represents the expected time. We
do experiment in case the jammer can access 3, 5 or 7 channels. We also use the
CDJA[14] to attack the EJS users. From the figure, we can see that our result
is better than CDJA. In each case our estimation which is based on Theorem. 2
is also shown in the figure, they are almost the same as the experiment result.
The gap is no more than 2.

Fig. 4(b) shows the expected time of Alg. 3. Here we assume there are totally
100 channels and the jammer starts detecting earlier than both users, the x-bar
represents the ratio of available channels of the user. The y-bar represents the
expected time. We can see that there is no much difference when the ratio
changes, but the number of radios the jammer has is very important. However,
even if the jammer can detect only 2 channels each time slot, the expected time
is around 100, this means in expectation Alg. 3 can end in the 1st pattern of the
1st round. It coincides with our analysis in Section 4.5.

770 Y. Gao et al.

6 Conclusion

In this paper, we propose the Multi-Radio Channel Detecting Jamming Attack
(MRCDJA) problem where the jammer can listen or block n ≥ 2 channels simul-
taneously to prevent rendezvous between the users. We assume the users adopt-
ing the Enhanced Jump Stay (EJS)[8] algorithm for rendezvous attempt and we
design efficient algorithms to determine the users’ channel hopping sequence. For
the symmetric users that can use all channels in the channel set, our algorithm
is n times faster than the current methods. For asymmetric users, our algorithm
can also work well. Finally we conduct extensive simulations for evaluation. In
the future, we are to explore efficient attack algorithms when the users are also
equipped with multiple radios for rendezvous attempt.

References

1. Draves, R., Pahye, J., Zill, B.: Routing in multi-radio, multi-hop wireless mesh
networks. In: MobiCom (2004)

2. Gu,Z.,Hua,Q.-S.,Wang,Y., Lau,F.C.M.:NearlyOptimalAsynchronousBlindRen-
dezvous Algorithm for Cognitive Radio Networks. In: SECON (2013)

3. Gao, Y., Gu, Z., Hua, Q.-S., Jin, H.: Multi-Radio Channel Detecting Jam-
ming Attack Against Enhanced Jump-Stay Based Rendezvous in Cognitive Radio
Networks. http://grid.hust.edu.cn/qshua/cocoon15 full.pdf

4. Gu, Z., Hua, Q.-S., Dai, W.: Local Sequence Based Rendezvous Algorithms for
Cognitive Radio Networks. In: SECON (2014)

5. Gu, Z., Hua, Q.-S., Wang, Y., Lau, F.C.M.: Oblivious Rendezvous in Cognitive
Radio Networks. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576,
pp. 165–179. Springer, Heidelberg (2014)

6. Gu, Z., Hua, Q.-S., Dai, W.: Fully Distributed Algorithms for Blind Rendezvous
in Cognitive Radio Networks. In: MOBIHOC (2014)

7. Li, G., Gu, Z., Lin, X., Pu, H., Hua, Q.-S.: Deterministic Distributed Rendezvous
Algorithms for Multi-Radio Cognitive Radio Networks. In: MSWiM (2014)

8. Lin, Z., Liu, H., Chu, X., Leung, Y.-W.: Enhanced Jump-Stay Rendezvous
Algorithm for Cognitive Radio Networks. IEEE Communications Letters (2013)

9. Liu, H., Lin, Z., Chu, X., Leung, Y.-W.: Jump-Stay Rendezvous Algorithm for
Cognitive Radio Networks. IEEE Transactions on Parallel and Distributed Systems
23(10), 1867–1881 (2012)

10. Liu, H., Lin, Z., Chu, X., Leung, Y.-W.: Taxonomy and Challenges of Rendezvous
Algorithms in Cognitive Radio Networks. In: ICNC (2012)

11. Liu, H., Lin, Z., Chu, X., Leung, Y.-W.: Jump-Stay Based Channel-Hopping
Algorithm with Guaranteed Rendezvous for Cognitive Radio Networks. In: INFO-
COM (2011)

12. Paul, R., Jembre, Y.-Z., Choi, Y.-J.: Multi-interface rendezvous in self-organizing
cognitive radio networks. In: DySPAN (2014)

13. Yang, D., Shin, J., Kim, C.: Deterministic Rendezvous Scheme in Multichannel
Access Networks. Electronics Letters (2010)

14. Oh, Y.-H., Thuente, D.-J.: Channel Detecting Jamming Attacks Against
Jump-Stay Based Channel Hopping Rendezvous Algorithm for Cognitive Radio
Networks. In: ICCCN (2013)

15. Zhao, Q., Sadler, B.-M.: A Survey of Dynamic Spectrum Acess (signalprocessing,
networking and regulatory policy). IEEE Signal Processing Magazine (2007)

http://grid.hust.edu.cn/qshua/cocoon15_full.pdf

Upper Bounds on Fourier Entropy

Sourav Chakraborty1, Raghav Kulkarni2,
Satyanarayana V. Lokam3, and Nitin Saurabh4(B)

1 Chennai Mathematical Institute, Chennai, India
sourav@cmi.ac.in

2 Centre for Quantum Technologies, Singapore, Singapore
kulraghav@gmail.com

3 Microsoft Research India, Bangalore, India
satya@microsoft.com

4 The Institute of Mathematical Sciences, Chennai, India
nitin@imsc.res.in

Abstract. Given a function f : {0, 1}n → R, its Fourier Entropy is

defined to be −∑S f̂2(S) log f̂2(S), where f̂ denotes the Fourier trans-
form of f . This quantity arises in a number of applications, especially in
the study of Boolean functions. An outstanding open question is a conjec-
ture of Friedgut and Kalai (1996), called the Fourier Entropy Influence
(FEI) Conjecture, asserting that the Fourier Entropy of any Boolean
function f is bounded above, up to a constant factor, by the total influ-
ence (= average sensitivity) of f .

In this paper we give several upper bounds on the Fourier Entropy of
Boolean as well as real valued functions. We first give upper bounds on
the Fourier Entropy of Boolean functions in terms of several complexity
measures that are known to be bigger than the influence. These com-
plexity measures include, among others, the logarithm of the number of
leaves and the average depth of a parity decision tree. We then show that
for the class of Linear Threshold Functions (LTF), the Fourier Entropy
is at most O(

√
n). It is known that the average sensitivity for the class

of LTF is bounded by Θ(
√

n). We also establish a bound of Od(n
1− 1

4d+6)
for general degree-d polynomial threshold functions. Our proof is based
on a new upper bound on the derivative of noise sensitivity. Next we pro-
ceed to show that the FEI Conjecture holds for read-once formulas that
use AND, OR, XOR, and NOT gates. The last result is independent of a
recent result due to O’Donnell and Tan [14] for read-once formulas with
arbitrary gates of bounded fan-in, but our proof is completely elementary
and very different from theirs. Finally, we give a general bound involv-
ing the first and second moments of sensitivities of a function (average
sensitivity being the first moment), which holds for real valued functions
as well.

1 Introduction

Fourier transforms are extensively used in a number of fields such as engineer-
ing, mathematics, and computer science. Within theoretical computer science,
c© Springer International Publishing Switzerland 2015
D. Xu et al. (Eds.): COCOON 2015, LNCS 9198, pp. 771–782, 2015.
DOI: 10.1007/978-3-319-21398-9 60

772 S. Chakraborty et al.

Fourier analysis of Boolean functions evolved into one of the most useful and
versatile tools; see the book [13] for a comprehensive survey of this area and
pointers to numerous other sources of literature on this subject. In particular,
it plays an important role in several results in complexity theory, learning the-
ory, social choice, inapproximability, metric spaces, etc. If f̂ denotes the Fourier
transform of a Boolean function f , then

∑
S⊆[n] f̂

2(S) = 1 and hence we can

define an entropy of the distribution given by f̂2(S):

H(f) :=
∑

S⊆[n]

f̂2(S) log
1

f̂2(S)
. (1)

The Fourier Entropy-Influence (FEI) Conjecture, made by Friedgut and Kalai [5]
in 1996, states that for every Boolean function, its Fourier entropy is bounded
above by its total influence :

Fourier Entropy-Influence Conjecture. There exists a universal constant C such
that for all f : {0, 1}n → {+1,−1},

H(f) ≤ C · Inf(f) , (2)

where Inf(f) is the total influence of f which is the same as the average sensitivity
as(f) of f . The latter quantity may be intuitively viewed as the expected number
of coordinates of an input which, when flipped, will cause the value of f to be
changed, where the expectation is w.r.t. the uniform distribution on the input
assignments of f .

1.1 Motivation

Resolving the FEI conjecture is one of the most important open problems in
the Fourier analysis of Boolean functions. The conjecture intuitively asserts that
if the Fourier coefficients of a Boolean function are “smeared out,” then its
influence must be large, i.e., at a typical input, the value of f changes in several
different directions. The original motivation for the conjecture in [5] stems from
a study of threshold phenomena in random graphs.

The FEI conjecture has numerous applications. It implies a variant of Man-
sour’s Conjecture [11] stating that for a Boolean function computable by a DNF
formula with m terms, most of its Fourier mass is concentrated on poly(m)-
many coefficients. A proof of Mansour’s conjecture would imply a polynomial
time agnostic learning algorithm for DNF’s [6] answering a major open question
in computational learning theory.

The FEI conjecture also implies that for any n-vertex graph property, the
influence is at least c(log n)2. The best known lower bound, by Bourgain and
Kalai [1], is Ω((log n)2−ε), for any ε > 0. See [9], [15] and [10] for a detailed
explanation on these and other consequences of the conjecture.

Upper Bounds on Fourier Entropy 773

1.2 Prior Work

The first progress on the FEI conjecture was made in 2010 in [10] showing
that the conjecture holds for random DNFs. O’Donnell et al. [15] proved that
the conjecture holds for symmetric functions and more generally for any d-part
symmetric functions for constant d. They also established the conjecture for
functions computable by read-once decision trees. Keller et al. [9] studied a
generalization of the conjecture to biased product measures on the Boolean cube
and proved a variant of the conjecture for function with extremely low Fourier
weight on the high levels. O’Donnell and Tan [14] verified the conjecture for
read-once formulas using a composition theorem for the FEI conjecture. Wan
et al. [16] studies the conjecture from the point of view of existence of efficient
prefix-free codes for the random variable, X ∼ f̂2, that is distributed according
to f̂2. Using this interpretation they verify the conjecture for bounded read
decision trees. It is also relatively easy to show that the FEI conjecture holds for
a random Boolean function, e.g., see [3] for a proof. By direct calculation, one
can verify the conjecture for simple functions like AND, OR, Majority, Tribes etc.

1.3 Our Results

We report here various upper bounds on Fourier entropy that may be viewed as
progress toward the FEI conjecture.

Upper bounds by Complexity Measures. The Inf(f) of a Boolean function f is
used to derive lower bounds on a number of complexity parameters of f such
as the number of leaves or the average depth of a decision tree computing f .
Hence a natural weakening of the FEI conjecture is to prove upper bounds on
the Fourier entropy in terms of such complexity measures of Boolean functions.
By a relatively easy argument, we show that

H(f) = O(log L(f)), (3)

where L(f) denotes the minimum number of leaves in a decision tree that com-
putes f . If DNF(f) denotes the minimum size of a DNF for the function f , note
that DNF(f) ≤ L(f). Thus improving (3) with O(logDNF(f)) on the right hand
side would resolve Mansour’s conjecture – a long-standing open question about
sparse Fourier approximations to DNF formulas motivated by applications to
learning theory – and a special case of the FEI conjecture for DNF’s. We note
that (3) also holds when the queries made by the decision tree involve parities
of subsets of variables, conjunctions of variables, etc. It also holds when L(f) is
generalized to the number of subcubes in a subcube partition that represents f .
Note that for a Boolean function

Inf(f) ≤ log(Lc(f)) ≤ log(L(f)) ≤ D(f),

where Lc(f) is number of subcubes in a subcube partition that represents f and
D(f) is the depth of the decision tree computing f .

774 S. Chakraborty et al.

We also prove the following strengthening of (3):

H(f) = O(d̄(f)), (4)

where d̄(f) denotes the average depth of a decision tree computing f (observe
that d̄(f) ≤ log(L(f))). Note that the average depth of a decision tree is also
a kind of entropy: it is given by the distribution induced on the leaves of a
decision tree when an input is drawn uniformly at random. Thus (4) relates the
two kinds of entropy, but only up to a constant factor. We further strengthen
(4) by improving the right-hand side in (4) to average depth of a parity decision
tree computing f , that is, queries made by the decision tree are parities of a
subset of variables.

Upper bounds on the Fourier Entropy of Polynomial Threshold Functions. The
Fourier Entropy-Influence conjecture is known to be true for unweighted thresh-
old functions, i.e., when f(x) = sign(x1+ · · ·+xn −θ) for some integer θ ∈ [0..n].
This follows as a corollary of the result due to O’Donnell et al. [15] that the
FEI conjecture holds for all symmetric Boolean functions. It is known that the
influence for the class of linear threshold functions is bounded by Θ(

√
n) (where

the lower bound is witnessed by Majority [12]). Recently Harsha et al. [7] studied
average sensitivity of polynomial threshold function (see also [4]). They proved
that average sensitivity of degree-d polynomial threshold functions is bounded
by Od(n1−(1/4d+6)), where Od(·) denotes that the constant depends on degree
d. This suggests a natural and important weakening of the FEI conjecture: Is
Fourier Entropy of polynomial threshold functions bounded by a similar function
of n as their average sensitivity? In this paper we answer this question in the
positive. An important ingredient in our proof is a bound on the derivative of
noise sensitivity in terms of the noise parameter.

FEI inequality for Read-Once Formulas. We also prove that the FEI conjecture
holds for a special class of Boolean functions: Read-Once Formulas over {AND,
OR and XOR}, i.e., functions computable by a tree with AND, OR and XOR gates
at internal nodes and each variable (or its negation) occurring at most once at
the leaves. Our result is independent of a very recent result by O’Donnell and
Tan [14] that proves the FEI conjecture holds for read-once formulas that allow
arbitrary gates of bounded fan-in. However, our proof is completely elementary
and very different from theirs. Prior to these results, O’Donnell et al. [15] proved
that the FEI conjecture holds for read-once decision trees. Our result for read-
once formulas is a strict generalization of their result. For instance, the tribes
function is computable by read-once formulas but not by read-once decision trees.
Our proof for read-once formulas is a consequence of a kind of tensorizability
for {0, 1}-valued Boolean functions. In particular, we show that an inequality
similar to the FEI inequality is preserved when functions depending on disjoint
sets of variables are combined by AND, OR and XOR operators.

Upper Bounds on Fourier Entropy 775

A Bound for Real valued Functions via Second Moment. Recall [8] that total influ-
ence Inf(f) or average sensitivity as(f) is related to f̂ by the well-known identity:
as(f) = Inf(f) =

∑
S |S| f̂2(S). Hence, an equivalent way to state the FEI con-

jecture is that there is an absolute constant C such that for all Boolean f ,

H(f) ≤ C ·
∑

S

|S| f̂2(S) . (5)

Here, we prove that for all δ, 0 ≤ δ ≤ 1, and for all f with
∑

S f̂2(S) = 1, and
hence for Boolean f in particular,

H(f) ≤
∑

S

|S|1+δ f̂2(S) + (log n)O(1/δ) . (6)

An alternative interpretation of the above theorem states

H(f) ≤ as(f)1−δ · as2(f)δ + (log n)O(1/δ) , (7)

where as2(f) :=
∑

S |S|2 f̂2(S). We also mention that as2(f) ≤ s(f)2 (see [2]),
where s(f) is the maximum sensitivity of f .

It is important to note that (6) holds for arbitrary, i.e., even non-Boolean,
f such that (without loss of generality)

∑
S f̂2(S) = 1. On the other hand,

there are examples of non-Boolean f for which the FEI conjecture (5) is false.
Combining (7) with a “tensorizability” property [15] of H(f) and as(f), it is
possible to show that for all f , H(f) = O(as(f) log n). Hence proving the FEI
conjecture should involve removing the “extra” log factor while exploiting the
Boolean nature of f .

Remainder of the paper. We give basic definitions in Section 2. Section 3 contains
upper bounds in terms of complexity measures. In Section 4 and Section 5 we
consider special classes of Boolean functions namely, the polynomial threshold
functions and Read-Once formulas. We then provide bounds for real valued
functions in Section 6. Due to space limitations, proofs had to be omitted from
this extended abstract. For a more complete version, please see [2].

2 Preliminaries

We recall here some basic facts of Fourier analysis. For a detailed treatment
please refer to [13,17]. Consider the space of all functions from {0, 1}n to R,
endowed with the inner product 〈f, g〉 = 2−n

∑
x∈{0,1}n f(x)g(x). The char-

acter functions χS(x) := (−1)
∑

i∈S xi for S ⊆ [n] form an orthonormal basis
for this space of functions w.r.t. the above inner product. Thus, every func-
tion f : {0, 1}n −→ C of n Boolean variables has the unique Fourier expan-
sion: f(x) =

∑
S⊆[n] f̂(S)χS(x). The vector f̂ = (f̂(S))S⊆[n] is called the

Fourier transform of the function f . The Fourier coefficient f̂(S) of f at S is

776 S. Chakraborty et al.

then given by, f̂(S) = 2−n
∑

x∈{0,1}n f(x)χS(x). The norm of a function f is
defined to be ‖f‖ =

√
〈f, f〉. Orthonormality of {χS} implies Parseval’s iden-

tity : ‖f‖2 =
∑

S f̂2(S).
We only consider finite probability distributions in this paper. The entropy

of a distribution D is given by, H(D) :=
∑

i∈D pi log 1
pi

. In particular, the binary
entropy function, denoted by H(p), equals −p log p − (1 − p) log(1 − p). All log-
arithms in the paper are base 2, unless otherwise stated.

We consider Boolean functions with range {−1,+1}. For an f : {0, 1}n →
{−1,+1}, ‖f‖ is clearly 1 and hence Parseval’s identity shows that for Boolean
functions

∑
S f̂2(S) = 1. This implies that the squared Fourier coefficients can

be thought of as a probability distribution and the notion of Fourier Entropy
(1) is well-defined.

The influence of f in the i-th direction, denoted Infi(f), is the fraction of
inputs at which the value of f gets flipped if we flip the i-th bit:

Infi(f) = 2−n|{x ∈ {0, 1}n : f(x) �= f(x ⊕ ei)}| ,

where x ⊕ ei is obtained from x by flipping the i-th bit of x.
The (total) influence of f , denoted by Inf(f), is

∑n
i=1 Infi(f). The influence

of i on f can be shown, e.g., [8], to be Infi(f) =
∑

S�i f̂(S)2 and hence it follows
that Inf(f) =

∑
S⊆[n] |S|f̂(S)2.

For x ∈ {0, 1}n, the sensitivity of f at x, denoted sf (x), is defined to be
sf (x) := |{i : f(x) �= f(x ⊕ ei), 1 ≤ i ≤ n}|, i.e., the number of coordinates of x,
which when flipped, will flip the value of f . The (maximum) sensitivity of the
function f , denoted s(f), is defined to be the largest sensitivity of f at x over
all x ∈ {0, 1}n: s(f) := max{sf (x) : x ∈ {0, 1}n}. The average sensitivity of f ,
denoted as(f), is defined to be as(f) := 2−n

∑
x∈{0,1}n sf (x). It is easy to see

that Inf(f) = as(f) and hence we also have as(f) =
∑

S⊆[n] |S|f̂(S)2.
The noise sensitivity of f at ε, 0 ≤ ε ≤ 1, denoted NSε(f), is given by

Prx,y∼εx [f(x) �= f(y)] where y ∼ε x denotes that y is obtained by flipping each
bit of x independently with probability ε. It is easy to see that NSε(f) = 1

2 −
1
2

∑
S(1− 2ε)|S|f̂(S)2. Hence the derivative of NSε(f) with respect to ε, denoted

NSε
′(f), equals

∑
S �=∅ |S|(1 − 2ε)|S|−1f̂(S)2.

3 Bounding Entropy Using Complexity Measures

In this section, we prove upper bounds on Fourier entropy in terms of some com-
plexity parameters associated to decision trees and subcube partitions.

3.1 via Leaf Entropy : Average Decision Tree Depth

Let T be a decision tree computing f : {0, 1}n → {+1,−1} on variable set X =
{x1, . . . , xn}. If A1, . . . , AL are the sets (with repetitions) of variables queried
along the root-to-leaf paths in the tree T , then the average depth (w.r.t. the

Upper Bounds on Fourier Entropy 777

uniform distribution on inputs) of T is defined to be d̄ :=
∑L

i=1 |Ai|2−|Ai|. Note
that the average depth of a decision tree is also a kind of entropy: if each leaf λi

is chosen with the probability pi = 2−|Ai| that a uniformly chosen random input
reaches it, then the entropy of the distribution induced on the λi is H(λi) =
−

∑
i pi log pi =

∑
i |Ai|2−|Ai|. Here, we will show that the Fourier entropy is at

most twice the leaf entropy of a decision tree.
W.l.o.g., let x1 be the variable queried by the root node of T and let T1 and

T2 be the subtrees reached by the branches x1 = +1 and x1 = −1 respectively
and let g1 and g2 be the corresponding functions computed on variable set Y =
X \{x1}. Let d̄ be the average depth of T and d̄1 and d̄2 be the average depths of
T1 and T2 respectively. We first observe a fairly straightforward lemma relating
Fourier coefficients of f to the Fourier coefficients of restrictions of f .

Lemma 1. Let S ⊆ {2, . . . , n}.

(i) f̂(S) = (ĝ1(S) + ĝ2(S))/2.
(ii) f̂(S ∪ {1}) = (ĝ1(S) − ĝ2(S))/2.
(iii) d̄ = (d̄1 + d̄2)/2 + 1.

Using Lemma 1 and concavity of entropy we establish the following technical
lemma, which relates the entropy of f to entropies of restrictions of f .

Lemma 2. Let g1 and g2 be defined as before in Lemma 1. Then,

H(f) ≤ 1
2
H(g1) +

1
2
H(g2) + 2 . (8)

Let d̄(f) denote the minimum average depth of a decision tree computing f .
As a consequence of Lemma 2 we obtain the following bound.

Theorem 1. For every Boolean function f , H(f) ≤ 2 · d̄(f).

Remark 1. The constant 2 in the bound of Theorem 1 cannot be replaced by 1.
Indeed, let f(x, y) = x1y1 + · · · + xn/2yn/2 mod 2 be the inner product mod 2
function. Then because f̂2(S) = 2−n for all S ⊆ [n], H(f) = n. On the other
hand, it can be shown that d̄(f) = 3

4n − o(n). Hence, the constant must be at
least 4/3.

Average Parity Decision Tree Depth. Let L be a linear transformation.
Applying the linear transformation on a Boolean function f we obtain another
Boolean function Lf which is defined as Lf(x) := f(Lx), for all x ∈ {0, 1}n.
Before proceeding further, we note down a useful observation.

Proposition 2. Let f : {0, 1}n → {+1,−1} be a Boolean function. For an
invertible linear transformation L ∈ GLn(F2), H(f) = H(Lf).

778 S. Chakraborty et al.

Let T be a parity decision tree computing f : {0, 1}n → {+1,−1} on variable
set X = {x1, . . . , xn}. Note that a parity decision tree computing f also computes
Lf and vice versa. This implies that we can always ensure that a variable is
queried at the root node of T via a linear transformation. Let us denote the
new variable set, after applying the linear transformation, by Y = {y1, . . . , yn}.
W.l.o.g, let y1 be the variable queried at the root. Let T1 and T2 be the subtrees
reached by the branches y1 = 0 and y1 = 1 respectively and let g1 and g2 be the
corresponding functions computed on variable set Y \ {y1}. Using Proposition 2
we see that the proof of Lemma 1 and Lemma 2 goes through in the setting of
parity decision trees too. Hence, we get the following strengthening of Theorem 1.

Theorem 3. For every Boolean function f , H(f) ≤ 2 · ⊕-d̄(f), where ⊕-d̄(f)
denotes the minimum average depth of a parity decision tree computing f .

3.2 via L1-norm (or Concentration) : Decision Trees and Subcube
Partitions

Note that a decision tree computing a Boolean function f induces a partition of
the cube {0, 1}n into monochromatic subcubes, i.e., f has the same value on all
points in a given subcube, with one subcube corresponding to each leaf. But there
exist monochromatic subcube partitions that are not induced by any decision
tree. Consider any subcube partition C computing f (see [2]). There is a natu-
ral way to associate a probability distribution with C: Ci has probability mass
2−(number of co-ordinates fixed by Ci). Let us call the entropy associated with
this probability distribution partition entropy. Based on the results of the pre-
vious subsection, a natural direction would be to prove that the Fourier entropy
is bounded by the partition entropy. Unfortunately we were not quite able to
show that but, interestingly, there is a very simple proof to see that the Fourier
entropy is bounded by the logarithm of the number of partitions in C. In fact, the
proof gives a slightly better upper bound of the logarithm of the spectral-norm
of f . For completeness sake, we note this observation [2] but we remark that it
should be considered folklore. Our goal in presenting the generalization to sub-
cube partitions is also to illustrate a different approach. The approach uses the
concentration property of the Fourier transform and uses a general, potentially
powerful, technique. One way to do this is to use a result due to Bourgain and
Kalai (Theorem 3.2 in [9]). However, we give a more direct proof (see [2]) for the
special case of subcube partitions.

4 Upper Bound on Fourier Entropy of Threshold
Functions

In this section, we establish a better upper bound on the Fourier entropy of
polynomial threshold functions. We show that the Fourier entropy of a linear
threshold function is bounded by O(

√
n), and for a degree-d threshold function

it is bounded by Od(n1− 1
4d+6). We remark that the bound is significant because

Upper Bounds on Fourier Entropy 779

the average sensitivity of a linear threshold function on n variables is bounded
by O(

√
n), and this is tight. Also the bound on the Fourier entropy of degree-d

threshold functions is the best known bound on their average sensitivity [4,7].
For f : {0, 1}n → {+1,−1}, let W k[f] :=

∑
|S|=k f̂(S)2 and W≥k[f] :=

∑
|S|≥k f̂(S)2. We now state our main technical lemma which translates a bound

on noise sensitivity to a bound on the derivative of noise sensitivity.

Lemma 3. Let f : {0, 1}n → {+1,−1} be such that NSε(f) ≤ α · εβ, where α is
independent of ε and β < 1. Then, NSε

′(f) ≤ 3
1−e−2 · α

1−β · (1/ε)1−β .

From [15] we have the following bound on entropy.

Lemma 4. [15] Let f : {0, 1}n → {+1,−1} be a Boolean function. Then,
H(f) ≤ 1

ln 2 Inf[f] + 1
ln 2

∑n
k=1 W k[f]k ln n

k + 3 · Inf[f] .

Using Lemma 3 we prove a technical lemma that provides a bound on∑n
k=1 W k[f]k ln n

k .

Lemma 5. Let f : {0, 1}n → {+1,−1} be a Boolean function. Then,
∑n

k=1 W k[f]k ln n
k ≤ exp(1/2) · 3

1−e−2 · 41−β

(1−β)2 · α · n1−β .

Using Lemma 5 and Lemma 4 we obtain the following theorem which bounds
the Fourier entropy of a Boolean function.

Theorem 4. Let f : {0, 1}n → {+1,−1} be a Boolean function such that
NSε(f) ≤ α · εβ. Then

H(f) ≤ C ·
(

Inf[f] +
41−β

(1 − β)2
· α · n1−β

)

,

where C is a universal constant.

In particular, for polynomial threshold functions there exist non-trivial
bounds on their noise sensitivity.

Theorem 5 (Peres’s Theorem). [12] Let f : {0, 1}n → {+1,−1} be a linear
threshold function. Then NSε(f) ≤ O(

√
ε).

Theorem 6. [7] For any degree-d polynomial threshold function f : {0, 1}n →
{+1,−1} and 0 < ε < 1, NSε(f) ≤ 2O(d) · ε1/(4d+6).

As corollaries of Theorem 4, using Theorem 5 and Theorem 6, we obtain the
following bounds on the Fourier entropy of polynomial threshold functions.

Corollary 1. Let f : {0, 1}n → {+1,−1} be a linear threshold function. Then,
H(f) ≤ C · √

n, where C is a universal constant.

Corollary 2. Let f : {0, 1}n → {+1,−1} be a degree-d polynomial threshold
function. Then, H(f) ≤ C · 2O(d) · n1− 1

4d+6 , where C is a universal constant.

780 S. Chakraborty et al.

5 Entropy-Influence Inequality for Read-Once Formulas

In this section, we will prove the Fourier Entropy-Influence conjecture for read-
once formulas using AND, OR, XOR, and NOT gates. We note that a recent (and
independent) result of O’Donnell and Tan [14] proves the conjecture for read-once
formulas with arbitrary gates of bounded fan-in. But since our proof is completely
elementary and very different from theirs, we choose to present it here.

It is well-known that both Fourier entropy and average sensitivity add up
when two functions on disjoint sets of variables are added modulo 2. Our main
result here is to show that somewhat analogous “tensorizability” properties hold
when composing functions on disjoint sets of variables using AND and OR oper-
ations.

For f : {0, 1}n → {+1,−1}, let fB denote its 0-1 counterpart: fB ≡ 1−f
2 .

Let’s define: H(fB) :=
∑

S

f̂B
2
(S) log

1

f̂B
2
(S)

. (9)

An easy relation enables translation between H(f) and H(fB):

Lemma 6. Let p = Pr[fB = 1] = f̂B(∅) =
∑

S f̂B
2
(S) and q := 1 − p. Then,

H(f) = 4 · H(fB) + ϕ(p), where (10)
ϕ(p) := H(4pq) − 4p(H(p) − log p). (11)

For 0 ≤ p ≤ 1, let’s also define: ψ(p) := p2 log
1
p2

− 2H(p). (12)

� Intuition: Before going on, we pause to give some intuition about the choice
of the function ψ and the function κ below (15). In the FEI conjecture (2), the
right hand side, Inf(f), does not depend on whether we take the range of f to be
{−1,+1} or {0, 1}. In contrast, the left hand side, H(f), depends on the range
being {−1,+1}. Just as the usual entropy-influence inequality composes w.r.t.
the parity operation (over disjoint variables) with {−1,+1} range, we expect a
corresponding inequality with {0, 1} range to hold for the AND operation (and
by symmetry for the OR operation). However, Lemma 6 shows the translation to
{0, 1}-valued functions results in the annoying additive “error” term ϕ(p). Such
additive terms that depend on p create technical difficulties in the inductive
proofs below and we need to choose the appropriate functions of p carefully.

For example, we know 4H(fB) + ϕ(p) = H(f) = 4H(1 − fB) + ϕ(q) from
Lemma 6. If the conjectured inequality for the {0, 1}-valued entropy-influence
inequality has an additive error term ψ(p) (see (13) below), then we must have
H(fB) − H(1 − fB) = ψ(p) − ψ(q) = (ϕ(q) − ϕ(p))/4 = p2 log 1

p2 − q2 log 1
q2 ,

using (11). Hence, we may conjecture that ψ(p) = p2 log 1
p2 + (an additive term

symmetric w.r.t. p and q). Given this and the other required properties, e.g.,
Lemma 7 below, for the composition to go through, lead us to the definition of

Upper Bounds on Fourier Entropy 781

ψ in (12). Similar considerations w.r.t. composition by parity operation (in addi-
tion to those by AND, OR, and NOT) leads us to the definition of κ in (15). �

Let us define the FEI01 Inequality (the 0-1 version of FEI) as follows:

H(fB) ≤ c · as(f) + ψ(p), (13)

where p = f̂B(∅) = Prx[fB(x) = 1] and c is a constant to be fixed later.
The following technical lemma gives us the crucial property of ψ:

Lemma 7. For ψ as above and p1, p2 ∈ [0, 1], p1 · ψ(p2) + p2 · ψ(p1) ≤ ψ(p1p2).

Given this lemma, an inductive proof yields our theorem for read-once for-
mulas over the complete basis of {AND,OR,NOT}.

Theorem 7. The FEI01 inequality (13) holds for all read-once Boolean formu-
las using AND, OR, and NOT gates, with constant c = 5/2.

To switch to the usual FEI inequality (in the {−1,+1} notation), we combine
(13) and (10) to obtain

H(f) ≤ 10 · as(f) + κ(p), where (14)
κ(p) := 4ψ(p) + ϕ(p) = −8H(p) − 8pq − (1 − 4pq) log(1 − 4pq). (15)

Since it uses the {−1,+1} range, we expect that (14) should be preserved
by parity composition of functions. The only technical detail is to show that the
function κ also behaves well w.r.t. parity composition. We show that this indeed
happens. This leads us to the main theorem of this section:

Theorem 8. If f is computed by a read-once formula using AND, OR, XOR,
and NOT gates, then H(f) ≤ 10 Inf(f) + κ(p).

Remark 2. The parity function on n variables shows that the bound in
Theorem 8 is tight; it is not tight without the additive term κ(p). It is easy to ver-
ify that −10 ≤ κ(p) ≤ 0 for p ∈ [0, 1]. Hence the theorem implies H(f) ≤ 10Inf(f)
for all read-once formulas f using AND, OR, XOR, and NOT gates.

6 A Bound for Real Valued Functions via Second
Moment

Due to space constraints we only state the theorem here, the full proof appears
in [2].

Theorem 9. If f =
∑

S⊆[n] f̂(S)χS is a real-valued function on the domain

{0, 1}n such that
∑

S |f̂(S)2| = 1 then for any δ > 0,

∑

S⊆[n]

f̂(S)2 log

(
1

f̂(S)2

)

=
∑

S

|S|1+δ f̂(S)2+2 log1+δ n+2(2 log n)1+δ/δ(log n)2 .

782 S. Chakraborty et al.

As a corollary to Theorem 9, we also obtain the bound (7) in terms of the
first and second moments of sensitivities of a function.

Acknowledgements. N. Saurabh thanks Ryan O’Donnell for helpful discussions on
Lemma 3.

References

1. Bourgain, J., Kalai, G.: Influences of variables and threshold intervals under group
symmetries. Geometric and Functional Analysis GAFA 7(3), 438–461 (1997)

2. Chakraborty, S., Kulkarni, R., Lokam, S.V., Saurabh, N.: Upper bounds on fourier
entropy. Tech. rep., Electronic Colloquium on Computational Complexity (ECCC),
TR13-052 (2013). http://eccc.hpi-web.de/report/2013/052

3. Das, B., Pal, M., Visavaliya, V.: The entropy influence conjecture revisited. Tech.
rep. (2011). arXiv:1110.4301

4. Diakonikolas, I., Raghavendra, P., Servedio, R., Tan, L.: Average sensitivity and
noise sensitivity of polynomial threshold functions. SIAM Journal on Computing
43(1), 231–253 (2014)

5. Friedgut, E., Kalai, G.: Every monotone graph property has a sharp threshold.
Proceedings of the American Mathematical Society 124(10), 2993–3002 (1996)

6. Gopalan, P., Kalai, A.T., Klivans, A.R.: Agnostically learning decision trees. In:
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC
2008, pp. 527–536 (2008)

7. Harsha, P., Klivans, A., Meka, R.: Bounding the sensitivity of polynomial threshold
functions. Theory of Computing 10(1), 1–26 (2014)

8. Kahn, J., Kalai, G., Linial, N.: The influence of variables on boolean functions. In:
Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer
Science, pp. 68–80 (1988)

9. Keller, N., Mossel, E., Schlank, T.: A note on the entropy/influence conjecture.
Tech. rep. arXiv:1105.2651 (2011)

10. Klivans, A., Lee, H., Wan, A.: Mansour’s conjecture is true for random dnf
formulas. In: Proceedings of the 23rd Conference on Learning Theory,
pp. 368–380 (2010)

11. Mansour, Y.: An o(nlog logn) learning algorithm for dnf under the uniform
distribution. Journal of Computer and System Sciences 50(3), 543–550 (1995)

12. O’Donnell, R.: Computational applications of noise sensitivity. Ph.D. thesis. MIT
(2003)

13. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press (2014)
14. O’Donnell, R., Tan, L.Y.: A composition theorem for the fourier entropy-influence

conjecture. In: Proceedings of Automata, Languages and Programming - 40th
International Colloquium (2013)

15. O’Donnell, R., Wright, J., Zhou, Y.: The fourier entropy-influence conjecture for
certain classes of boolean functions. In: Proceedings of Automata, Languages and
Programming - 38th International Colloquium, pp. 330–341 (2011)

16. Wan, A., Wright, J., Wu, C.: Decision trees, protocols and the entropy-influence
conjecture. In: Innovations in Theoretical Computer Science, ITCS 2014, pp. 67–80
(2014)

17. de Wolf, R.: A brief introduction to fourier analysis on the boolean cube. Theory
of Computing, Graduate Surveys 1, 1–20 (2008)

http://eccc.hpi-web.de/report/2013/052
http://arxiv.org/abs/1110.4301
http://arxiv.org/abs/1105.2651

Author Index

Ashok, Pradeesha 548

Balaji, Nikhil 199
Balas, Kevin 377
Banerjee, Niranka 349
Bazzi, Louay 495
Ben-Ameur, Walid 16
Beyer, Stephan 310
Bhattacharya, Anup 483
Böckenhauer, Hans-Joachim 747
Böcker, Sebastian 310
Bonnet, Édouard 109
Brandt, Aléx F. 297
Bu, Kangkang 521

Cha, Jianzhong 264
Chakraborty, Sankardeep 349
Chakraborty, Sourav 587, 771
Chan, T.-H. Hubert 30, 121, 433
Chen, Danny Z. 264
Chen, Ruiwen 211
Cheng, Chia-Wen 624
Chimani, Markus 310
Cornelissen, Kamiel 701

Dang, Zhe 635
de Rezende, Pedro J. 297
de Souza, Cid C. 297
Dobson, Richard 747
Dósa, György 57
Duan, Zhenhua 521
Dührkop, Kai 310

Fang, Qizhi 70
Fischer, Thomas R. 635
Foucaud, Florent 109

Gaiowski, Miguel F.A. de M. 297
Gao, Yang 759
Gebauer, Heidi 417
Ghosh, Shamik 587

Glorieux, Antoine 16
Gu, Zhaoquan 759

Han, Xin 57
Haunert, Jan-Henrik 689
He, Dayu 457
He, Xin 457
Hellmuth, Marc 609
Hsieh, Sun-Yuan 624
Hu, Shuai 601
Hua, Qiang-Sheng 759
Huang, Lingxiao 183
Hutton III, William J. 635

Ibarra, Oscar H. 635
Issac, Davis 483

Jaiswal, Ragesh 483
Jha, Nitesh 587
Jiang, Haitao 251
Jiang, Tao 159
Jin, Hai 759
Jo, Seungbum 648

Kabanets, Valentine 211
Kim, Eun Jung 109
Kolay, Sudeshna 548
Komarath, Balagopal 83
Komm, Dennis 417
König, Daniel 235
Královič, Rastislav 417
Královič, Richard 417
Krebs, Andreas 199
Krug, Sacha 747
Kulkarni, Raghav 771
Kumar, Amit 483

Le, Van Bang 537
Li, Angsheng 159
Li, Bo 70
Li, Jian 183, 559
Li, Jiguo 575

Li, Qin 635
Li, Shouwei 277
Li, Wenjun 601
Liang, Hongyu 507
Limaye, Nutan 199
Lin, Jin-Yong 337
Liu, Ching-Hao 337
Liu, Shengxin 507
Liu, Zhaohui 147
Lohrey, Markus 235
Lokam, Satyanarayana V. 771
Lü, Shuwang 661, 674
Lu, Yiping 264
Luan, Junfeng 251

Ma, Jingjing 251
Mäcker, Alexander 277
Manthey, Bodo 701
Markarian, Christine 277
Maßberg, Jens 445
McGregor, Andrew 731
Meesum, S.M. 361
Mei, Lili 45
Meyer auf der Heide, Friedhelm 277
Misra, Neeldhara 548
Misra, Pranabendu 361
Morizumi, Hiroki 289

Neto, José 16
Niedermann, Benjamin 689
Nip, Kameng 97

Omote, Kazumasa 713

Pan, Jiayin 402
Panda, B.S. 325
Pandey, Arti 325
Papamanthou, Charalampos 121
Paul, S. 325
Peng, Sheng-Lung 537
Poon, Sheung-Hung 337

Rai, Ashutosh 133
Raman, Venkatesh 349
Riechers, Sören 277
Roy, Sasanka 349, 587

Sarma, Jayalal 83
Satti, Srinivasa Rao 648

Saurabh, Nitin 771
Saurabh, Saket 133, 349, 361, 548
Sawlani, Saurabh 83
Shan, Xiaohan 70
Shi, Qicai 183
Sikora, Florian 109
Smula, Jasmin 417
Steinhöfel, Kathleen 747
Su, Shenghui 661, 674
Sun, Xiaoming 70

Takahashi, Yasuhiro 223
Tanaka, Kazuyuki 223
Tang, Zhihao Gavin 30
Tani, Seiichiro 223
Thao, Tran Phuong 713
Tian, Cong 521
Tóth, Csaba D. 377
Tuza, Zsolt 57

Uno, Takeaki 3
Uno, Yushi 3

Vu, Hoa T. 731

Wang, Haitao 559
Wang, Huaqun 575
Wang, Jianxin 601
Wang, Yin 171
Wang, Zhenbo 57, 97
White, W. Timothy J. 310
Wieseke, Nicolas 609
Wu, Bang Ye 469
Wu, Xiaowei 433

Xie, Tao 661
Xing, Wenxun 97
Xu, Maozhi 674
Xu, Yinfeng 171, 402

Yamazaki, Takeshi 223
Ye, Deshi 45, 390
Yu, Wei 147
Yuan, Hao 507

Zhang, Bowei 559
Zhang, Chenzi 30, 433
Zhang, Guochuan 390

784 Author Index

Zhang, Nan 521
Zhang, Ningye 559
Zhang, Peng 159

Zhang, Yong 45
Zhao, Zhichao 121, 433
Zhu, Daming 251

Author Index 785

	Preface
	Conference Organization
	Contents
	Graph Algorithms I
	Mining Preserving Structures in a Graph Sequence
	1 Introduction
	2 Preliminaries
	2.1 A Graph Sequence and Its Representation
	2.2 Preserving Structures

	3 Enumeration of Preserving Connected Vertex Subsets
	4 Enumeration of Closed Active Cliques
	4.1 A Simple Algorithm
	4.2 An Efficient Algorithm Based on the Reverse Search

	5 Conclusion
	References

	On the Most Imbalanced Orientation of a Graph
	1 Characterizing the Graphs for which MAXtwo(G)=0
	2 Complexity, Inapproximability and Approximability
	3 Further Research
	References

	Cheeger Inequalities for General Edge-Weighted Directed Graphs
	1 Introduction
	1.1 Overview of Chung's Approach chung2005laplacians
	1.2 Our Contribution
	1.3 Related Work

	2 Preliminaries
	3 Directed Graphs with Multiple Strongly Connected Components
	3.1 Motivation for Considering Components Separately
	3.2 Defining Expansion via Diluted Stationary Distribution
	3.3 Augmenting Graph to Achieve Stationary Distribution
	3.4 Higher-Order Cheeger Inequalities for Component

	4 Vertex Weights Deviate from Stationary Distribution
	References

	Game Theory and Algorithms
	Strategy-Proof Mechanism for Obnoxious Facility Location on a Line
	1 Introduction
	2 Model and Preliminaries
	3 Randomized Strategy-Proof Mechanisms
	3.1 Lower Bounds of Randomized Mechanisms

	4 Multiple Locations Per Agent
	4.1 Deterministic Strategy-Proof Mechanisms for Multiple Locations Per Agent
	4.2 Randomized Strategy-Proof Mechanisms for Multiple Locations Per Agent
	4.3 Lower Bounds of Randomized Mechanisms for Multiple Locations Per Agent

	5 Concluding Remarks
	References

	Bin Packing Game with an Interest Matrix
	1 Introduction
	2 Preliminaries
	3 The Symmetric Case
	3.1 Special Models

	4 Asymmetric Case
	5 Conclusions and Further Research
	References

	The Least-Core and Nucleolus of Path Cooperative Games
	1 Introduction
	2 Preliminaries
	3 Path Cooperative Game and Its Core
	4 Least-Core of PC-Games
	5 Nucleolus of PC-games
	References

	Reversible Pebble Game on Trees
	1 Introduction
	2 Preliminaries
	3 Main Theorem
	4 Time Upper-Bound for an Optimal Pebbling of Complete Binary Trees
	5 Almost Optimal Pebblings of Complete Binary Trees
	6 Time-Space Trade-Offs for Bounded-Degree Trees
	7 Discussion and Open Problems
	References

	Computational Complexity
	Combinations of Some Shop Scheduling Problems and the Shortest Path Problem: Complexity and Approximation Algorithms
	1 Introduction
	2 Preliminaries
	2.1 Problem Description
	2.2 Review of Open Shop and Job Shop Scheduling
	2.3 Review of Shortest Path Problems

	3 Computational Complexity
	4 Approximation Algorithms
	4.1 An Intuitive Algorithm for Arbitrary m
	4.2 A Unified Algorithms for Fixed m
	4.3 A PTAS for Om|shortest path|Cmax

	5 Conclusions
	References

	Complexity of Grundy Coloring and Its Variants
	1 Introduction
	2 Preliminaries
	3 Grundy Coloring: Algorithms and Complexity
	3.1 An Exact Algorithm
	3.2 Lower Bound on the Treewidth Dependency
	3.3 Grundy Coloring on Special Graph Classes

	4 Weak and Connected Grundy Coloring
	5 Concluding Remarks and Questions
	References

	On the Complexity of the Minimum Independent Set Partition Problem
	1 Introduction
	1.1 Historical Overview on Inapproximability

	2 Problem Definition
	3 General Reduction Schema
	4 Approximation Hardness of MISPDual
	5 Improved Approximation Hardness of MISPDual
	References

	Bivariate Complexity Analysis of Almost Forest Deletion
	1 Introduction
	2 Preliminaries
	3 An O*(c(l+k)) Algorithm for Almost Forest Deletion
	4 O(kl(k+l)) Kernel for Almost Forest Deletion
	5 An O*(ctw) Algorithm for Almost Forest Deletion
	6 Conclusions
	References

	Approximation Algorithms
	Improved Approximation Algorithms for Min-Max and Minimum Vehicle Routing Problems
	1 Introduction
	1.1 Previous Works
	1.2 Our Results and Techniques

	2 Preliminaries
	3 Min-Max Cycle Cover
	4 Rooted Min-Max Cycle Cover
	5 Minimum Cycle Cover
	References

	Improved Approximation Algorithms for the Maximum Happy Vertices and Edges Problems
	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 Algorithms for MHV
	3 Algorithms for MHE
	References

	An Approximation Algorithm for the Smallest Color-Spanning Circle Problem
	1 Introduction
	2 Problem Statement and Notations
	2.1 Problem Statement
	2.2 Notations

	3 An Algorithm for the Color-Spanning Sets
	4 An Approximation Algorithm for SCSC Problem
	4.1 An Approximation Algorithm
	4.2 The Upper Bound and Lower Bound of the SCSC Problem
	4.3 The Approximation Ratio
	Theorem 3.

	4.4 The Complexity of the Approximation Algorithm

	References

	Approximation Algorithms for the Connected Sensor Cover Problem
	1 Introduction
	1.1 Previous Results and Our Contributions
	1.2 Other Related Work

	2 Preliminaries
	3 Minimum Connected Sensor Cover
	4 Budgeted Connected Sensor Cover
	4.1 The Algorithm

	5 Conclusion and Future Work
	References

	Circuits Algorithms
	Skew Circuits of Small Width
	1 Introduction
	2 Preliminaries
	3 Branching Programs and Skew Circuits
	3.1 Permutation Branching Programs to Skew Circuits
	3.2 Skew Circuits to Branching Programs

	4 Width 7 Skew Circuits
	5 Parity and SK3
	5.1 Proof of Lemma 9
	5.2 Proof of Lemma 10

	6 Discussion
	References

	Correlation Bounds and #SAT Algorithms for Small Linear-Size Circuits
	1 Introduction
	1.1 Our Results and Techniques

	2 Preliminaries
	2.1 Circuits
	2.2 Correlation
	2.3 Decision Tree
	2.4 Concentration Bounds

	3 U2-circuits
	3.1 Concentrated Shrinkage Under Restrictions
	3.2 #SAT Algorithms
	3.3 Correlation with Parity

	4 B2-circuits
	4.1 Concentrated Shrinkage and #SAT Algorithms
	4.2 Correlation Bounds

	5 Open Questions
	References

	Commuting Quantum Circuits with Few Outputs are Unlikely to be Classically Simulatable
	1 Introduction and Summary of Results
	2 Preliminaries
	2.1 Quantum Circuits
	2.2 Classical Simulatability and Complexity Classes

	3 Commuting Quantum Circuits
	3.1 Hardness of the Weak Simulation
	3.2 Weak Simulatability of a Generalized Version

	4 Applications
	4.1 IQP Circuits and 2-local Commuting Quantum Circuits
	4.2 Clifford Circuits

	References

	Evaluating Matrix Circuits
	1 Introduction
	2 Arithmetical Circuits
	3 Complexity Classes
	4 Matrices and Groups
	5 Straight-Line Programs and the Compressed Word Problem
	6 CWP for Finitely Generated Nilpotent Groups
	7 The Uniform CWP for Unitriangular Groups
	8 CWP for Polycyclic Groups
	References

	Computing and Graph
	Approximation and Nonapproximability for the One-Sided Scaffold Filling Problem
	1 Introduction
	2 Preliminaries
	3 An Approximation Algorithm by Local Search
	3.1 An Equivalent Goal
	3.2 Description of the Local Search Algorithm

	4 Proof of the Approximation Factor
	5 The Scaffold Filling Problem is MAX-SNP-complete
	6 Conclusion
	References

	Packing Cubes into a Cube in (D>3)-Dimensions
	1 Introduction
	1.1 The Problem of Packing Multiple Cubes into a Cube
	1.2 The 3-Partition Problem

	2 Review of Related Work
	2.1 Li and Cheng’s Work on Packing Squares into a Rectangle
	2.2 Leung et al.’s Work on Packing Squares into a Square
	2.3 Lu et al.’s Work on Packing Cubes into a Cube in 3-D

	3 Packing Cubes into a Cube in 2-D
	4 Packing Cubes into a Cube in (d > 2) -D
	4.1 Notation

	5 Conclusions
	References

	Towards Flexible Demands in Online Leasing Problems
	1 Introduction
	2 Related Work and Preliminaries
	3 Online Leasing with Deadlines
	3.1 Problem Definition
	3.2 Deterministic Algorithm
	3.3 Analysis

	4 Application to Set Cover Leasing
	4.1 Problem Definition
	4.2 Randomized Algorithm
	4.3 Analysis

	5 Conclusion
	References

	Lower Bounds for the Size of Nondeterministic Circuits
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 The Gate Elimination Method

	3 Proof of the Main Result
	4 Discussions
	References

	Computing Minimum Dilation Spanning Trees in Geometric Graphs
	1 Introduction
	2 A milp Model for the mdstp
	3 Preprocessing
	4 A grasp for the mdstp
	5 Computational Results
	6 Future Directions
	References

	Speedy Colorful Subtrees
	1 Introduction
	1.1 Fragmentation Trees Are Maximum Colorful Subtrees

	2 Data Reduction
	3 Integer Linear Programming
	4 Results and Discussion
	4.1 Results for graphs100 Dataset

	5 Conclusion
	References

	Graph Algorithms II
	Algorithmic Aspects of Disjunctive Domination in Graphs
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Graph Classes
	2.3 Domination vs Disjunctive Domination

	3 Polynomial Time Algorithm for Proper Interval Graphs
	4 NP-completeness
	5 Approximation Results
	5.1 Approximation Algorithm
	5.2 Lower Bound on Approximation Ratio
	5.3 APX-completeness

	6 Conclusion
	References

	Algorithmic Aspect of Minus Domination on Small-Degree Graphs
	1 Introduction
	2 W[2]-hardness for General Graphs
	3 NP-completeness for Subcubic Bipartite Planar Graphs
	4 APX-hardness for Graphs of Maximum Degree 7
	5 An FPT-algorithm for Subcubic Graphs
	References

	Time-Space Tradeoffs for Dynamic Programming Algorithms in Trees and Bounded Treewidth Graphs
	1 Introduction
	2 Generalized Stack Framework
	3 Algorithms on Rooted Trees
	4 Algorithms for Graphs of Bounded Treewidth
	5 Conclusion

	Reducing Rank of the Adjacency Matrix by Graph Modification
	1 Introduction
	2 Preliminaries
	3 Reducing Rank by Deleting Vertices
	3.1 NP Completeness
	3.2 A Parameterized Algorithm for r-Rank Vertex Deletion

	4 Reducing Rank by Editing Edges
	4.1 NP Completeness
	4.2 A Parameterized Algorithm for r-Rank Editing

	5 Conclusion
	References

	Knapsack and Allocation
	On the Number of Anchored Rectangle Packings for a Planar Point Set
	1 Introduction
	2 Discretization of Maximal Anchored Rectangle Packings
	3 Lower-Left Anchored Rectangle Packings
	4 General Anchored Rectangle Packings
	5 Conclusions
	References

	Approximate Truthful Mechanism Design for Two-Dimensional Orthogonal Knapsack Problem
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 The Two-Dimensional Orthogonal Knapsack Problem
	2.1 The Mechanism
	2.2 Composition Algorithm
	2.3 Monotone Algorithm
	2.4 Packing Square Items or Allowing Rotation

	3 Concluding Remarks
	References

	Online Integrated Allocation of Berths and Quay Cranes in Container Terminals with 1-Lookahead
	1 Introduction
	2 Problem Statement and Basic Notations
	3 The Case with Four QCs
	3.1 Lower Bound
	3.2 Algorithm MLIST

	4 The Case with Five QCs
	4.1 Lower Bound
	4.2 Algorithm GTR

	5 Conclusion
	References

	Disjoint Path Allocation with Sublinear Advice
	1 Introduction
	1.1 Related Work
	1.2 Outline, Techniques, and Results

	2 The Main Result
	References

	Graph Algorithms III
	Dynamic Tree Shortcut with Constant Degree
	1 Introduction
	1.1 Related Works
	1.2 Our Contribution

	2 Preliminaries
	3 The Structure of Shortcut Edges
	3.1 Static Path Shortcut
	3.2 Dynamic Path Shortcut
	3.3 Dynamic Tree Shortcut

	4 Update Algorithm for Operations
	4.1 Maintaining the Buckets
	4.2 Maintaining the Joints
	4.3 Time Complexity Analysis

	References

	The Rectilinear Steiner Tree Problem with Given Topology and Length Restrictions
	1 Introduction
	2 Moving Components
	3 Main Section
	4 Dynamic Programming
	5 An Optimal Polynomial Time Algorithm
	References

	Compact Monotone Drawing of Trees
	1 Introduction
	2 Preliminaries
	3 Monotone Drawings of Trees
	4 Conclusion
	References

	A Measure and Conquer Approach for the Parameterized Bounded Degree-One Vertex Deletion
	1 Introduction
	2 Preliminaries
	3 Some Observations
	4 Branching Algorithm
	4.1 Reduction and Branching Rules
	4.2 Time Complexity

	5 Concluding Remarks
	References

	Random
	Sampling in Space Restricted Settings
	1 Introduction
	1.1 Sampling in the Streaming Setting
	1.2 Succinct Sampling

	2 Sampling in the Streaming Setting
	2.1 Background
	2.2 Uniform Samples in the Streaming Setting
	The Algorithm.
	Space Complexity.
	Running Time.

	References

	Entropy of Weight Distributions of Small-Bias Spaces and Pseudobinomiality
	1 Introduction
	1.1 Contribution
	1.2 Preliminaries
	Fourier Transform Preliminaries.
	Weight Distributions.
	Information Theory Preliminaries.

	2 Entropy of Weight Distributions and Small-Bias
	Specific Application of the Negative Spectrum Lemma:

	3 Pseudobinomiality
	4 Min-Weight Entropy, Average-Weight Entropy, and the Binomial Entropy
	5 Average Case Pseudobinomiality
	6 Local Pseudobinomiality
	7 Sum of Spaces Conjectures
	References

	Optimal Algorithms for Running Max and Min Filters on Random Inputs
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	3 Our Results
	4 Two-Stage Framework for d-dimensional Max and Min Filters
	4.1 The Preprocessing Stage
	4.2 The Merging Stage

	5 Conclusions
	References

	Model Checking MSVL Programs Based on Dynamic Symbolic Execution
	1 Introduction
	2 Dynamic Symbolic Execution of MSVL Programs
	2.1 Dynamic Symbolic Execution Algorithm
	2.2 An Example

	3 Model Checking MSVL Programs
	3.1 System Model
	3.2 Property
	3.3 Model Checking Algorithm

	4 A Case Study
	4.1 AC-controller Example
	4.2 Verification

	5 Conclusion
	References

	Geometric Cover
	On the Complete Width and Edge Clique Cover Problems
	1 Introduction
	2 Complete Width and Edge Clique Cover
	3 Computing Complete Width is Hard for 3K2-free Bipartite Graphs
	4 Polynomially Solvable Cases
	4.1 2K2-free Bipartite Graphs
	4.2 (2K2, K3)-free Graphs
	4.3 Split Graphs
	4.4 Pseudo-split Graphs

	5 Graphs of Small Complete Width
	6 Conclusion
	References

	Unique Covering Problems with Geometric Sets
	1 Introduction
	2 Preliminaries
	3 Exact Cover
	4 Unique Cover
	5 Unique Set Cover
	References

	Linear Time Approximation Schemes for Geometric Maximum Coverage
	1 Introduction
	1.1 m=1
	1.2 General m>1
	1.3 Other Related Work

	2 Preliminaries
	3 A Linear Time Algorithm for MaxCovR(P,1)
	3.1 Grid Shifting
	3.2 MaxCovCell

	4 Linear Time Algorithms for MaxCovR(P,m)
	4.1 Grid Shifting
	4.2 Dynamic Programming
	4.3 A Greedy Algorithm
	4.4 Computing F(c,k)

	References

	Complexity and Security
	Private Certificate-Based Remote Data Integrity Checking in Public Clouds
	1 Introduction
	1.1 Related Work
	1.2 Motivation and Contribution
	1.3 Paper Organization

	2 Private Cert-RDIC Model
	3 Proposed Private Cert-RDIC Protocol
	3.1 Bilinear Pairings
	3.2 Private Cert-RDIC Protocol Construction

	4 Security Analysis
	5 Conclusion
	References

	Maximal and Maximum Transitive Relation Contained in a Given Binary Relation
	1 Introduction
	1.1 Our Results
	1.2 Related Results

	2 Notations
	3 Maximal Transitive Relation Finding Algorithms
	3.1 O(n3) Algorithm for Finding Maximal Transitive Sub-relation
	3.2 Proof of Correctness of Algorithm 1
	3.3 Better Running Time Analysis of Algorithm 1

	4 Maximum Transitive Relation
	5 Conclusion
	References

	An Improved Kernel for the Complementary Maximal Strip Recovery Problem
	1 Introduction
	2 Known Rules and Properties of CMSR
	3 New Rules
	4 An Improved Kernel for CMSR
	References

	On Symbolic Ultrametrics, Cotree Representations, and Cograph Edge Decompositions and Partitions
	1 Introduction
	2 Basic Definitions
	3 Symbolic Ultrametrics
	4 Cotree Representation and Cograph boldsymbolk-Decomposition
	4.1 NP-completeness and NP-hardness Results

	References

	Bounds for the Super Extra Edge Connectivity of Graphs
	1 Introduction
	2 Preliminaries
	3 Bounds on the Persistence of Super-3 Graphs
	4 Bounds on the Persistence of Super-k Graphs for k4
	5 Conclusion
	References

	Encoding and Security
	Quantifying Communication in Synchronized Languages
	1 Introduction
	2 Quantifying Communication with Information Rate
	3 Computing Mutual Information Rate in Synchronized Languages
	4 Conclusions
	References

	Simultaneous Encodings for Range and Next/Previous Larger/Smaller Value Queries
	1 Introduction
	2 Preliminaries
	2.1 2d-Min Heap
	2.2 Encoding Range Min-max Queries

	3 Extended DFUDS for Colored 2d-Min Heap
	4 Encoding Colored 2d-Min and Max Heaps
	4.1 Combined Data Structure for DCMin(A) and DCMax(A)
	4.2 Encoding Colored 2d-Min and Max Heap with Less Space

	5 Conclusion
	References

	A New Non-Merkle-Damgård Structural Hash Function with Provable Security
	1 Introduction
	2 Several Definitions
	2.1 A Coprime Sequence
	2.2 A Bit Shadow and a Bit Long-Shadow
	2.3 A Lever Function

	3 Design of the New Non-MD Structural Hash Function
	3.1 Initialization Algorithm
	3.2 Compression Algorithm

	4 Security Analysis of the New Hash Function
	4.1 Security of the Initialization Algorithm
	4.2 Security of the Compression Algorithm

	5 Comparison with the Chaum-Heijst-Pfitzmann Hash
	6 Conclusion
	References

	A Public Key Cryptoscheme Using Bit-Pairs with Provable Semantical Security
	1 Introduction
	2.1 A Coprime Sequence
	2.2 A Bit Shadow
	2.3 A Bit-Pair Shadow
	2.4 A Lever Function

	3 Design of the New Cryptoscheme
	3.1 Key Generation Algorithm
	3.2 Encryption Algorithm
	3.3 Decryption Algorithm

	4 Correctness and Uniqueness
	4.1 Correctness of the Decryption Algorithm
	4.2 Uniqueness of a Plaintext Solution

	5 Security Analysis of a Private Key
	6 Security Analysis of a Plaintext
	6.1 Resisting LLL Lattice Basis Reduction
	6.2 Avoiding Meet-in-the-middle Attack
	6.3 Avoiding Adaptive-chosen-Ciphertext Attack

	7 Conclusion
	References

	Network and Algorithms
	An Algorithmic Framework for Labeling Network Maps
	1 Introduction
	2 Labeling Model
	3 Labeling Algorithm for a Single Metro Line
	4 Multiple Metro Lines
	5 Evaluation
	References

	Smoothed Analysis of the Minimum-Mean Cycle Canceling Algorithm and the Network Simplex Algorithm
	1 Introduction
	1.1 Minimum-Cost Flow Problem
	1.2 Minimum-Mean Cycle Canceling Algorithm
	1.3 Network Simplex Algorithm

	2 Upper Bound for the MMCC Algorithm
	3 Lower Bound for the MMCC Algorithm
	3.1 General Lower Bound
	3.2 Lower Bound for Dependent on n

	4 Lower Bound for the Network Simplex Algorithm
	5 Discussion
	References

	DD-POR: Dynamic Operations and Direct Repair in Network Coding-Based Proof of Retrievability
	1 Introduction
	2 Background
	2.1 The POR Framework
	2.2 Network Coding in Distributed Storage System
	2.3 InterMac

	3 Adversarial Model
	4 Our Proposed Scheme
	4.1 Notations
	4.2 Construction
	4.3 Correctness
	4.4 Dynamic Operations

	5 Security Analysis
	6 Efficiency Analysis
	7 Conclusion
	References

	Evaluating Bayesian Networks via Data Streams
	1 Introduction
	1.1 Our Results
	1.2 Notation

	2 Algorithms for Estimating `3́9`42`"̇613A``45`47`"603AEp(G)
	2.1 (1+)-Approximation Using (nkd+1) Space
	2.2 2n-Approximation Using (`3́9`42`"̇613A``45`47`"603Apoly(n) kd) Space
	2.3 Decision Problem

	3 Lower Bounds for Estimating `3́9`42`"̇613A``45`47`"603AEp (G)
	4 Log-Likelihood and Approximate Chow-Liu Trees
	5 Space-Accuracy Trade-offs in Independence Testing
	References

	Algorithm
	On Energy-Efficient Computations with Advice
	1 Introduction
	2 Preliminaries and Related Work
	3 Upper Bounds
	4 Lower Bounds
	References

	Multi-Radio Channel Detecting Jamming Attack Against Enhanced Jump-Stay Based Rendezvous in Cognitive Radio Networks
	1 Introduction
	2 Preliminaries
	3 Review of the Enhanced Jump-Stay Algorithm
	4 Multi-Radio Jamming Attack Algorithm
	4.1 The Existing Work
	4.2 Symmetric Situation
	4.3 Analysis of Alg. 2
	4.4 Asymmetric Situation
	4.5 Analysis of Alg. 3

	5 Performance Evaluation
	6 Conclusion
	References

	Upper Bounds on Fourier Entropy
	1 Introduction
	1.1 Motivation
	1.2 Prior Work
	1.3 Our Results

	2 Preliminaries
	3 Bounding Entropy Using Complexity Measures
	3.1 via Leaf Entropy : Average Decision Tree Depth
	3.2 via L1-norm (or Concentration) : Decision Trees and Subcube Partitions

	4 Upper Bound on Fourier Entropy of Threshold Functions
	5 Entropy-Influence Inequality for Read-Once Formulas
	6 A Bound for Real Valued Functions via Second Moment
	References

	Author Index

