
Chapter 5
Life Insurance: Reserving

5.1 Introduction

The insurer’s debt position, which is an obvious implication of the single-premium
arrangement, must be realized also when other premium arrangements are adopted.
This need clearly emerged in Sect. 4.4.1. We recall that an asset accumulation–
decumulation process develops, throughout the policy duration, against the insurer’s
debt position. A technical tool for assessing the insurer’s debt is provided by the
so-called mathematical reserve.

The need for assessing the insurer’s position with respect to an insurance policy
emerges at any time during the policy duration. In particular, we can recognize:

• “ordinary” needs which emerge, for example, in relation to:

– the balance sheet, which must display the total insurer’s debt toward the poli-
cyholders;

– the sharing of profits with the policyholders, which, in particular, can be related
to the proportion of assets contributed by each policy;

• “extraordinary” needs, related for example to the interruption of periodic premium
payment, and hence the need for assessing the policyholder’s credit and then

– converting the policy into a “paid-up” one, namely a policy for which no further
premium payment is required;

– determining the amount to be paid by the insurer in the case of “surrender”.

5.2 General Aspects

We refer to a generic insurance policy, and focus on benefits and net premiums only.
That is, we start disregarding expenses and related expense loadings. We assume that
the policy term is m, but a generalization to lifelong policies is straightforward, by
setting m = ω − x (where ω denotes as usual the maximum attainable age).
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Let t1, t2 denote two integer times (policy anniversaries), with 0 ≤ t1 < t2 ≤ m.
We define the following notation which proves to be useful when dealing with the
definition of the mathematical reserve:

• Y (t1, t2) denotes the random present value at time t1 of the benefits which fall due
in the time interval (t1, t2);

• X (t1, t2) denotes the random present value at time t1 of the premiums to be cashed
in the time interval (t1, t2).

Remark 1 The notation just defined generalizes the one we used in Chap. 4 to denote the random
present values of benefits and premiums. Indeed, Y = Y (0, m) and X = X (0, m).

Then, we define:

• Ben(t1, t2) = E[Y (t1, t2)], i.e., the expected present value (or actuarial value) at
time t1 of the benefits which fall due in the time interval (t1, t2);

• Prem(t1, t2) = E[X (t1, t2)], i.e., the expected present value (or actuarial value) at
time t1 of the premiums to be cashed in the time interval (t1, t2).

Remark 2 It is worth commenting in some detail which of the benefits and premiums paid at the
extremes of the time interval (t1, t2), i.e., at times t1 and t2, are included in the quantities Y (t1, t2)
and Ben(t1, t2) (for benefits), X (t1, t2) and Prem(t1, t2) (for premiums).

In general terms, if an amount is paid at a given time t because it is due at the beginning
of year (t, t + 1), we say that it is paid at time t in advance. Conversely, if it is paid at time t
because due at the end of year (t − 1, t), then we say that it is paid at time t in arrears. The rule
we adopt when defining the flows included in the quantities Y (t1, t2), Ben(t1, t2), X (t1, t2), and
Prem(t1, t2) is the following. Premiums and benefits paid at time t1 in advance are included, while
benefits paid at time t1 in arrears are excluded. Benefits paid at time t2 in arrears are included, while
premiums and benefits paid at time t2 in advance are excluded. Actually, the time interval addressed
by the quantities Y (t1, t2), Ben(t1, t2), X (t1, t2), and Prem(t1, t2) runs from the beginning of year
(t1, t1 +1) to the end of year (t2 −1, t2). Of course, all the flows falling due at a time t , t1 < t < t2,
are included in such quantities. The rule will clearly emerge in Example 5.2.1, as well as in the
following sections.

We now assume that the actuarial values rely on the first-order basis, i.e., the
pricing basis TB1. The notations Ben′ and Prem′ reflect this hypothesis.

It is well known that the equivalence principle requires

Prem′(0, m) = Ben′(0, m) (5.2.1)

On the contrary, all the following situations may occur, at least in principle, when
intervals shorter than the whole policy duration are referred to:

Prem′(0, t) � Ben′(0, t) (5.2.2a)

Prem′(t, m) � Ben′(t, m) (5.2.2b)

(we recall that t is an integer time).

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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Further, we can find:

Prem′(t, t + 1) � Ben′(t, t + 1) (5.2.3)

where the term on the left-hand side denotes, for example, the annual level premium,
whereas the term on the right-hand side denotes the natural premium.

Example 5.2.1 Consider a m-year term insurance, providing a unitary benefit (that
is, C = 1), with single premium Π , or annual level premiums P payable for the
whole policy duration. We have:

Ben′(0, m) = m A′
x

Prem′(0, m) =
{

Π in the case of single premium

P ä′
x :m� in the case of annual level premiums

For t = 1, 2, . . . , m − 1, we have:

Ben′(t, m) = m−t A′
x+t

Prem′(t, m) =
{

0 in the case of single premium

P ä′
x+t :m−t� in the case of annual level premiums

Further, for t = 0, 1, . . . , m − 1, we have:

Ben′(t, t + 1) = 1 A′
x+t = P [N]

t

Prem′(t, t + 1) =

⎧⎪⎨
⎪⎩

Π in the case of single premium, if t = 0

0 in the case of single premium, if t ≥ 1

P in the case of annual level premiums

❑

5.3 The Policy Reserve

5.3.1 Definition

Refer to the time interval (t, m), with t = 0, 1, . . . , m; let Vt denote the quantity
such that:

Prem′(t, m) + Vt = Ben′(t, m) (5.3.1)
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Clearly, from Eq. (5.2.1) we obtain

V0 = 0 (5.3.2)

Conversely, for t > 0, the amount Vt fulfills the equivalence principle given that
only “residual” benefits and premiums are referred to.

We note that if Ben′(t, m) > Prem′(t, m), then the insurer is in a debt position.
Hence, the financing condition can be simply expressed by the inequality Vt ≥ 0
which means no credit position. From Eq. (5.3.1) we also note that, if Ben′(t, m) >

Prem′(t, m), the amount Vt together with the future premiums exactly meets the
future benefits.

The quantity
Vt = Ben′(t, m) − Prem′(t, m) (5.3.3)

is called the prospective net reserve. The adjective “prospective” denotes that the
reserve refers to the “future” time interval, namely from time t onwards (the retro-
spective reserve will be shortly addressed in Sect. 5.3.6), whereas “net” recalls that
we are not allowing for expenses and related loadings. Of course, the reserve we
have defined is a policy reserve, as it refers to an insurance contract (the portfolio
reserve will be dealt with in Sect. 6.1). The expression mathematical reserve is also
used.

As already mentioned, the reserve, defined by (5.3.3), is assessed adopting the
pricing basis TB1. Hence, it can be considered a prudential valuation of the insurer’s
debt. However, as the pricing basis leads to an implicit safety loading, the “degree” of
prudence cannot be easily determined. An explicit approach to a safe-side assessment
of the reserve will be presented in Sects. 6.1.2 and 6.1.3.

5.3.2 The Policy Reserve for Some Insurance Products

The following examples are straightforward applications of formula (5.3.3), which
defines the reserve. If not otherwise stated, we assume unitary benefits. We first
consider insurance products financed by annual level premiums. It is understood
that, for each product, the premium P must rely on the appropriate formula (see
Sect. 4.4.2).

For a whole life insurance, with lifelong premiums, we find:

Vt = A′
x+t − P ä′

x+t (5.3.4)

In the case of s-year temporary premiums, we have:

Vt =
{

A′
x+t − P(s) ä′

x+t :s−t� if t < s

A′
x+t if t ≥ s

(5.3.5)

http://dx.doi.org/10.1007/978-3-319-21377-4_6
http://dx.doi.org/10.1007/978-3-319-21377-4_6
http://dx.doi.org/10.1007/978-3-319-21377-4_6
http://dx.doi.org/10.1007/978-3-319-21377-4_4
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The reserve of a term insurance, with premiums payable for the whole policy
duration, is given by:

Vt = m−t A′
x+t − P ä′

x+t :m−t� (5.3.6)

For a pure endowment insurance, we have:

Vt = m−t E ′
x+t − P ä′

x+t :m−t� (5.3.7)

and for an endowment insurance:

Vt = A′
x+t,m−t� − P ä′

x+t :m−t� (5.3.8)

We now address, for t > 0, insurance products financed by a single premium. For
a pure endowment insurance, we have:

Vt = m−t E ′
x+t (5.3.9)

whereas for an immediate life annuity in advance, we find:

Vt = ä′
x+t (5.3.10)

When a premium arrangement based on single-recurrent premiums is adopted,
the reserve can be easily determined via iterated application of the single-premium
reserve formula. For example, consider a pure endowment insurance, and assume
that, at time t , the amounts �S0,�S1, . . . �St−1 have been financed according to the
scheme presented in Sect. 4.4.5 (see relations (4.4.36)). The sum insured cumulated
up to time t is then St . Hence, the reserve is given by

Vt = m−t E ′
x+t

t−1∑
h=0

�Sh = St m−t E ′
x+t (5.3.11)

In a whole life insurance, the sum assured cumulated up to time t is Ct . Then, we
find:

Vt = A′
x+t

t−1∑
h=0

�Ch = Ct A′
x+t (5.3.12)

In particular, if i ′ = 0 we have (see (4.4.39)):

Vt =
t−1∑
h=0

Πh (5.3.13)

http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_4
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Remark We note that, although the arrangement based on single-recurrent premiums falls in
the category of periodic premium arrangements, a reserve formula similar to (5.3.7) (for the pure
endowment insurance) or (5.3.5) (for the whole life insurance) cannot be adopted because the
amount of premiums payable from time t onwards is, at least in principle, unknown.

5.3.3 The Time Profile of the Policy Reserve

The policy reserve, Vt , is a function of time t . When analyzing its behavior against
time, we assume that the insured is alive at time t .

As we have so far assumed that the reserve is calculated by adopting the pricing
basis, the reserve itself at the policy issue, namely at time t = 0, is equal to zero,
whatever the premium arrangement (see (5.2.1) and (5.3.2)). However, in the case
of a single premium, Π , it is usual to focus on the reserve immediately after cashing
the premium itself, denoted by V0+ , hence setting:

V0+ = V0 + Π = Π (5.3.14)

As regards the value of the reserve at maturity, i.e., at time m, for a term insurance
we clearly have:

Vm = 0 (5.3.15)

Conversely, for a pure endowment and an endowment insurance with a unitary
amount as the benefit in case of survival, we find:

Vm = 1 (5.3.16)

We now move to the time profile for t = 1, 2, . . . (thus, restricting the analysis at
the policy anniversaries). Since we have chosen numerical life tables (the input of the
calculation procedures), although derived from an analytical model (the Heligman–
Pollard law), to express mortality assumptions, the time profile of the reserve (the
output) can only be analyzed in numerical terms. Notwithstanding, some arguments
emerging from the numerical inspection have a wide range of application. A number
of examples follow.

Example 5.3.1 The reserve of a single-premium term insurance is plotted in Fig. 5.1,
whereas the case of annual level premium is referred to in Fig. 5.2. In both the cases,
data are as follows: sum assured C = 1 000, x = 40, m = 10; the pricing basis is
TB1 = (0.02, LT1).

In Fig. 5.3, the reserves corresponding to various ages at entry are plotted. The
other data are unchanged. Conversely, Fig. 5.4 displays the reserves related to various
policy durations, age x = 40. ❑
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Fig. 5.1 Term insurance;
single premium
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Fig. 5.2 Term insurance;
annual level premiums
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Fig. 5.3 Term insurances,
with various ages at entry;
annual level premiums
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The following features of the reserve of the term insurance should be pointed out.

• The reserve is, in any case, very small if compared to the sum assured.
• In the case of a single premium, the premium itself is progressively used according

to the mutuality mechanism working in the insurer’s portfolio, and hence the
reserve decreases throughout the policy duration.
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Fig. 5.4 Term insurances,
with various durations;
annual level premiums
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Fig. 5.5 Reserve profile
depending on the age at entry
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• In the case of annual level premiums, the reserve initially grows, since the level
premium slightly exceeds the corresponding natural premium (see Sect. 4.4.3, and
Example 4.4.3 in particular), then it decreases and is equal to zero at the end,
because the insurer has no obligation if the insured is alive at maturity.

• Still in the case of annual level premiums, the reserve profile is higher when the age
at entry is higher, for a given policy term; this can be explained in terms of variation
of the natural premiums throughout the policy duration (again, see Sect. 4.4.3, and
Example 4.4.3; see also Fig. 5.5, in which the solid horizontal lines represent the
amount of the level premium for initial ages x ′ and x ′′, respectively). A similar
argument explains the higher values of the reserve, for a given age at policy issue,
when the policy term is greater.

Figure 5.6 explains the variation (either positive or negative) in the reserve value,
in the case of annual premiums.

Example 5.3.2 We refer to a decreasing term insurance (see Sect. 4.3.4). Data are
as follows: x = 40, m = 10, TB1 = (0.02, LT1). The sums assured are given by

http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_4
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Fig. 5.6 Annual variations
in the reserve of a term
insurance (annual level
premiums)
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Fig. 5.7 Decreasing term
insurance; single premium
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Fig. 5.8 Decreasing term
insurance; annual level
premiums
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Ch+1 = 10−h
10 1 000, h = 0, 1, . . . , 9. The reserve profile in the case of a single

premium is plotted in Fig. 5.7. Conversely, Fig. 5.8 displays the reserve in the case
of annual level premiums payable for the whole policy duration. The violation of
the financing condition is apparent. Shortening the premium payment period leads
to the reserve profiles plotted in Figs. 5.9 and 5.10. In particular, the former shows
an insufficient shortening (s = 8), whereas the latter displays a feasible arrangement
(s = 7). ❑
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Fig. 5.9 Decreasing term
insurance; shortened annual
level premiums (s = 8)
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Fig. 5.10 Decreasing term
insurance; shortened annual
level premiums (s = 7)
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Fig. 5.11 Pure endowment;
single premium
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Example 5.3.3 The reserve of a single-premium pure endowment is plotted in
Fig. 5.11, whereas the case of annual level premium is referred to in Fig. 5.12. In
both the cases, data are as follows: sum assured C = 1 000, x = 40, m = 10,
TB1 = (0.02, LT1). ❑

The reserve of a pure endowment is increasing throughout the whole policy dura-
tion. Figure 5.13 shows the causes of annual increments in the reserve, in the case
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Fig. 5.12 Pure endowment;
annual level premiums
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Fig. 5.13 Annual variation
in the reserve of a pure
endowment (annual level
premiums)
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of annual premiums. In particular, we recall that each individual reserve is annually
credited with a share of reserves released by the insureds who died in that year (see
also Case 4a in Sect. 1.7.4, and Fig. 1.24 in particular).

Example 5.3.4 Figures 5.14 and 5.15 refer to an endowment insurance, with single
premium and annual level premiums, respectively. Data are as for the pure endow-
ment. ❑

The time profile of the reserve of an endowment insurance almost coincides with
that of a pure endowment. In fact, the difference between the two reserves is the
reserve of a term insurance (assuming that the same technical basis is adopted in the
three insurance products), and hence it is very small, as already noted. It is worth
noting, however, that the rationale underlying the annual variations in the reserve of
an endowment insurance is quite different. Indeed, the payment of death benefits to
insureds who die implies that shares of each individual reserve are annually subtracted
from the reserve itself. See Fig. 5.16, in which the mutuality effect works in a negative
sense with respect to insureds who are still alive.

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
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Fig. 5.14 Endowment
insurance; single premium
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Fig. 5.15 Endowment
insurance; annual level
premiums
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Fig. 5.16 Annual variation
in the reserve of an
endowment insurance
(annual level premiums)
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Example 5.3.5 Figures 5.17 and 5.18 refer to a whole life insurance, with single
premium and annual level premiums payable for s = 20 years, respectively. Data
are as follows: C = 1 000, x = 50, TB1 = (0.02, LT1). ❑

The time profile of the reserve of a whole life insurance is increasing, in both the
case of single premium and annual level premiums, and tends to the sum assured C .
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Fig. 5.17 Whole life
insurance; single premium
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Fig. 5.18 Whole life
insurance; temporary annual
level premiums
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Fig. 5.19 Single-premium
life annuity
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In the case of annual premiums, we note that, when all the premiums have been paid,
the behavior of the reserve coincides with that of the single-premium reserve.

Example 5.3.6 The reserve of a single-premium immediate life annuity (in arrears)
is plotted in Fig. 5.19. Data are as follows: b = 100, x = 65, TB1 = (0.02, LT4).
Conversely, Fig. 5.20 shows the time profile of a fund (whose initial amount is equal
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Fig. 5.20 Withdrawal
process
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to the single premium of the immediate life annuity), from which the annual amount
b = 100 is withdrawn; the interest rate is 0.02. The withdrawal process exhausts the
fund in 21 years. On this aspect, see Sect. 1.2.5, Case 4c. ❑

The reserve of an immediate life annuity is decreasing throughout the whole
policy duration. Figure 5.21 shows the causes of annual decrements in the reserve.
We note, in particular, that the mutuality mechanism works as in the pure endowment.
Of course, no mutuality mechanism works in the withdrawal process (see Fig. 1.3).
The presence of the mutuality mechanism in the life annuity explains the substantial
difference between the time profiles shown in Figs. 5.19 and 5.20, respectively.

5.3.4 Change in the Technical Basis

In some circumstances, the reserve must be calculated by adopting a technical basis
(called the reserving basis, or valuation basis) other than the pricing basis used for
determining the premiums. Such a need can arise, for example, because:

• a “realistic” assessment of the insurer’s debt is required, in order to single out the
safety component included in the reserve;

http://dx.doi.org/10.1007/978-3-319-21377-4_1
http://dx.doi.org/10.1007/978-3-319-21377-4_1
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• an important change in the financial or biometric scenario makes the reserve
(assessed according to the pricing basis) either no longer prudential, or conversely
too high.

The former issue will be addressed in Sect. 6.1.3; how to allow for the consequences
of a change in the scenario is the topic of the present section.

Assume that a significant change in the scenario is accounted for when assessing
the reserves. This change can be due, for example, to an important variation observed
in the mortality, or to different forecasts about the return on investments. The con-
sequent variation in the reserve (when positive) can constitute a compulsory action,
imposed by the supervisory authority.

Figure 5.22 sketches the consequences of a change in the scenario. First, the
new scenario is expressed by an updated second-order basis, TB2∗, which, in its
turn, suggests the adoption of a new first-order basis, TB1∗. This basis will be used
as a pricing basis, and hence adopted in pricing as well as reserving, for policies
written after the scenario change. Conversely, premiums of in-force policies cannot
be changed, since policy conditions are guaranteed at the policy issue. Thus, for these
policies, the basis TB1∗ is only used to update the reserves.

Several approaches to the reserve updating are available, at least in principle. We
focus on some approaches, referring to an endowment insurance with annual level
premiums payable for the whole policy duration. As usual, x denotes the insured’s
age at policy issue, m the duration, C the sum insured in both the cases of death and
survival. We assume that the shift in the technical basis occurs at time τ ; the updated
reserve will be denoted with V [u]

t , for t ≥ τ . Further, we assume that the shift implies
an increase in the reserve; hence, V [u]

τ > Vτ .
The updated reserve is defined as the amount that, at time τ , together with the

actuarial value of the future premiums (whose amount P has been stated at policy
issue), meets (according to the equivalence principle) the actuarial value of the future
benefits; both the actuarial values rely on the new basis TB1∗. In formal terms:

V [u]
τ + P ä∗

x+τ :m−τ� = CA∗
x+τ,m−τ� (5.3.17)

Fig. 5.22 Shift to new
technical bases because of a
change in scenario TB2

TB1

Premiums,
Reserves

change in
scenario

TB2*

TB1*

NEW POLICIES:
Premiums, Reserves

IN-FORCE POLICIES:
Reserves

http://dx.doi.org/10.1007/978-3-319-21377-4_6
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In more general terms, the equivalence principle requires that the following con-
dition is fulfilled:

(Vτ + �Vτ ) + (P + �P) ä∗
x+τ :m−τ� = CA∗

x+τ,m−τ� (5.3.18)

Condition (5.3.18) is an equation in the two unknowns �Vτ and �P . Particular
solutions of (5.3.18) suggest practicable approaches to the updating problem. It is
understood that, whatever is the particular solution chosen, the insurer is charged
with both amounts �Vτ and �P .

1. Set
�Vτ = V [u]

τ − Vτ (5.3.19)

and hence �P = 0; Eq. (5.3.18) reduces to (5.3.17). This approach implies an
immediate rise in the reserve (at time τ ) and hence turns out to be the most
prudential. For all integer t , t ≥ τ , we then have:

V [u]
t = CA∗

x+t,m−t� − P ä∗
x+t :m−t� (5.3.20)

2. Less prudential approaches consist in a lower rise, �Vτ , in the reserve, that is

0 < �Vτ < V [u]
τ − Vτ (5.3.21)

followed by premium integrations (“paid” by the insurer), �P , which amortize
the missing share of the required increment in the reserve, namely the amount
V [u]

τ − (Vτ + �Vτ ). A particular approach in this category can be of prominent
practical interest. Let P∗ denote the annual premium according to the pricing
basis TB1∗, namely the premium such that P∗ ä∗

x :m� = CA∗
x,m�. Then, set

�P = P∗ − P (5.3.22)

From (5.3.18), it follows:

�Vτ = CA∗
x+τ,m−τ� − P∗ ä∗

x+τ :m−τ� − Vτ (5.3.23)

It is worth noting that the resulting reserve, Vτ +�Vτ , coincides with the reserve,
V ∗

τ = CA∗
x+τ,m−τ� − P∗ ä∗

x+τ :m−τ�, which will pertain to new policies issued
according to the basis TB1∗. Hence, the advantage of this particular approach con-
sists in a reserve accumulation process coinciding with that for the new policies.
For all integer t , t ≥ τ , we then have:

V ∗
t = CA∗

x+t,m−t� − P∗ä∗
x+t :m−t� (5.3.24)

3. Set �Vτ = 0; hence, from (5.3.18) we obtain:
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Fig. 5.23 Updating the reserve because of a shift in the technical basis

�P = CA∗
x+τ,m−τ� − P ä∗

x+τ :m−τ� − Vτ

ä∗
x+τ :m−τ�

= V [u]
τ − Vτ

ä∗
x+τ :m−τ�

(5.3.25)

Thus, the whole required update in the reserve, that is V [u]
τ − Vτ , is amortized in

m − τ years. For all integer t , t ≥ τ , denoting with Ṽt the resulting reserve, we
then have:

Ṽt = CA∗
x+t,m−t� − (P + �P) ä∗

x+t :m−t� (5.3.26)

with �P given by (5.3.25). Clearly, this approach does not provide a prudential
solution.

The solutions we have described lead to the reserve profiles sketched in Fig. 5.23a
(for simplicity, the reserve profile is represented by a solid line, i.e., disregarding the
jumps corresponding to annual premiums).

Of course, other technical solutions are available, even outside the framework
designed by condition (5.3.18). We just mention the following one.

4. Set �Vτ = 0. Let
s = max{r − τ, 0} (5.3.27)

with r < m. Then, if s ≥ 1, set:

Q = V [u]
τ − Vτ

ä∗
x+τ :s�

(5.3.28)
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Table 5.1 Updating the reserve because of a shift in the technical basis

t Vt V [u]
t V ∗

t Ṽt

(1) (2) (3)

0 0.00

1 53.59

2 108.64

3 165.21

4 223.37

5 283.19

6 344.75

7 408.16

8 473.51 570.03 509.62 473.51

9 540.95 628.54 576.35 545.16

10 610.63 687.83 643.97 617.76

11 682.71 747.99 712.59 691.43

12 757.42 809.14 782.33 766.30

13 835.00 871.41 853.35 842.55

14 915.74 934.97 925.83 920.37

15 1 000.00 1 000.00 1 000.00 1 000.00

Of course, if s = 0 we simply have:

Q = V [u]
τ − Vτ (5.3.29)

Hence, the premium integration, Q, amortizes the required increase in the reserve
in a period shorter than the residual policy duration (see Fig. 5.23b).

Example 5.3.7 Refer to an endowment insurance with annual level premiums
payable for the whole policy duration. Data are as follows: C = 1 000, x = 50,
m = 15, TB1 = (0.03, LT1). The resulting annual premium is P = 55.13. At
time τ = 8, because of a decrease in interest rates, the technical basis shifts to
TB1∗ = (0.01, LT1). The resulting annual premium is P∗ = 64.27. Table 5.1 dis-
plays the reserve Vt which relies on the basis TB1, and the reserves V [u]

t , V ∗
t , and

Ṽt , calculated according to formulae (5.3.20), (5.3.24), and (5.3.26), respectively. ❑

5.3.5 The Reserve at Fractional Durations

The analysis of the time profile of the reserve has been so far restricted to the pol-
icy anniversaries, namely integer durations since the policy issue. The extension to
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fractional durations is, however, of practical interest. For example, the need for cal-
culating the policy reserve (and the portfolio reserve, as well) at times other than the
policy anniversaries arises when assessing the items of the balance sheet.

The calculation of the exact value of the policy reserve at all past durations can
be carried out in a time-continuous setting. In such a setting, a mortality law must
be available, instead of a numerical life table. In the actuarial practice, however, it
is rather common to work in a time-discrete framework (as we are actually doing)
and to obtain approximations to the exact value of the reserve via interpolation
procedures, in particular by adopting linear interpolation formulae. Here we illustrate
the interpolation approach, focussing on some examples.

Consider an insurance policy, for example, a term insurance, with premium
arrangement based on natural premiums. The reserve is, of course, equal to zero
at all the policy anniversaries, before cashing the premium which falls due at that
time; thus Vt = 0 for all integer t . Immediately after cashing the premium, the
insurer’s debt (and the corresponding asset) is clearly equal to the premium itself;
hence, denoting with Vt+ the reserve after cashing the premium, we have:

Vt+ = P [N]
t ; t = 0, 1, . . . (5.3.30)

Then, the premium is used throughout the year according to the mutuality mechanism
and, again, we have Vt+1 = 0. At time t + r , with 0 < r < 1, we let:

Vt+r = (1 − r) Vt+ = (1 − r) P [N]
t (5.3.31)

The resulting time profile of the reserve is plotted in Fig. 5.24.
As the second example, we refer to an insurance product (e.g., an endowment

insurance) with annual level premiums P . After cashing the premium which falls
due at time t , the reserve increases from Vt to

Vt+ = Vt + P (5.3.32)

Then, the linear interpolation yields:

Vt+r = (1 − r) Vt+ + r Vt+1 = [(1 − r) Vt + r Vt+1] + (1 − r) P (5.3.33)

Fig. 5.24 Interpolated
reserve profile in the case of
natural premiums re
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Fig. 5.25 Reserve
interpolation in the case of
annual level premiums

1+t
2

1+tt0

2

P

1+tV
PVt +

tV

time 

re
se

rv
e 

Fig. 5.26 Interpolated
reserve profile in the case of
annual level premiums: an
example

0 21 3

P

P

P

P
P

P

time 

re
se

rv
e 

m-2 m-1m-3 m 

See Fig. 5.25. We note, in particular, the following aspects.

• Interpolating between Vt (instead of Vt+) and Vt+1 would cause an apparent under-
estimation of the reserve at all times between t and t + 1 (again, see Fig. 5.25).

• The “use” of the premium P depends on the specific insurance product addressed.
For example, if we consider an endowment insurance, the share of the premium
used to cover death benefits according to the mutuality mechanism is decreasing
throughout the policy duration (as we will see in Sect. 5.4.3); this fact determines
a time profile of the reserve like that plotted in Fig. 5.26.

As the third example, we consider an insurance product (for example, a term
insurance, or a pure endowment, or an endowment insurance), with a single premium
Π . In this case, there is no jump in the reserve profile, but at the payment of the single
premium, when the reserve jumps from V0 = 0 to V0+ = Π . Then, the interpolation
procedure is as follows:

Vr = (1 − r) V0+ + r V1 (5.3.34a)

Vt+r = (1 − r) Vt + r Vt+1 for t = 1, 2, . . . (5.3.34b)

See Fig. 5.27.
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Fig. 5.27 Interpolated
reserve profile in the case of
single premium: an example
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Finally, we refer to single-premium life annuities, providing an annual benefit b.
The jumps in the reserve profile correspond to the annual payments of the benefit,
as illustrated in Fig. 5.28. For a life annuity in arrears (panel (a)), taking as usual
V0+ = Π , the interpolation is as follows:

Vr = (1 − r) V0+ + r (V1 + b) (5.3.35a)

Vt+r = (1 − r) Vt + r (Vt+1 + b) for t = 1, 2, . . . (5.3.35b)

where Vt = a′
x+t . For a life annuity in advance (panel (b)), taking again V0+ = Π ,

the interpolation is as follows:

Vr = (1 − r) (V0+ − b) + r V1 (5.3.36a)

Vt+r = (1 − r) (Vt − b) + r Vt+1 for t = 1, 2, . . . (5.3.36b)

with Vt = ä′
x+t .
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Fig. 5.28 Interpolated reserve profile for life annuities
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5.3.6 The Retrospective Reserve

The (prospective) policy reserve has been defined as the balancing term, Vt , which
transforms inequality (5.2.2b) into relation (5.3.1). Looking at inequality (5.2.2a),
and hence referring to the time interval (0, t), we can define the so-called retrospective
reserve.

Let Bt denote the amount such that

Prem′(0, t) = Bt + Ben′(0, t) (5.3.37)

The amount Bt can be interpreted as the actuarial value (at the policy issue) of the
benefit that the insurer should pay at time t if the insured decides (at that time) to
abandon the contract, stopping the premium payment and renouncing all the benefits
which fall due after time t .

Clearly, this interpretation holds if Bt > 0, namely Prem′(0, t) > Ben′(0, t).
Actually, this inequality should be satisfied: indeed, if Bt > 0, then the insurer is in
a debt position and hence the financing condition is fulfilled.

The benefit, Wt , whose actuarial value at time t = 0 is given by Bt , is then defined
by the following relation:

Bt = Wt t E ′
x (5.3.38)

Hence, we find:

Wt = 1

t E ′
x

(
Prem′(0, t) − Ben′(0, t)

)
(5.3.39)

The quantity Wt is called the retrospective reserve. Note that the term 1
t E ′

x
, namely

the actuarial accumulation factor (see Sect. 4.2.10), plays the role of referring the
valuation at time t .

Remark The interpretation of Wt as the amount to be paid by the insurer in the case the policyholder
abandons the contract, although interesting under a theoretical perspective, requires in practice
various adjustments. For example, expenses should be accounted for, and penalties could be applied
in determining the amount paid by the insurer. We will return on these issues in Sect. 5.7.

The following examples are straightforward applications of formula (5.3.39),
which defines the retrospective reserve.

In insurance products which provide a death benefit (term insurance, whole life
insurance, and endowment insurance), the insurer’s liability is given by the coverage
of the death risk over the time interval (0, t). Thus, assuming a unitary benefit, and
annual level premiums payable throughout the whole policy duration, we have, for
all these products:

Wt = 1

t E ′
x

(
P ä′

x :t� − t A′
x

)
(5.3.40)

where P denotes the annual premium related to the specific product addressed.

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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In a pure endowment with annual level premiums, we have:

Wt = 1

t E ′
x

P ä′
x :t� (5.3.41)

as this product does not provide any benefit in the time interval (0, t) (of course, if
t < m, where m denotes the policy term).

In the case of a single premium (given, according to the equivalence principle, by
the actuarial value of the benefits), we have for an endowment insurance:

Wt = 1

t E ′
x

(A′
x,m� − t A′

x ) (5.3.42)

Replacing A′
x,m� with A′

x or m A′
x , we have the retrospective reserve for the whole

life insurance and the term insurance, respectively.
For a single-premium pure endowment, we have:

Wt = 1

t E ′
x

m E ′
x (5.3.43)

Remark In spite of the adjective “retrospective,” the reserve we are dealing with cannot be
interpreted as an ex-post quantification of the “past” liabilities (namely, those preceding time t) of
the insurer and the insured. From (5.3.39), it is apparent that the calculation of the retrospective
reserve first relies on the valuation at time 0 of the benefits and premiums pertaining to the interval
(0, t) (and hence “future” with respect to time 0), and then on a valuation at time t via the actuarial
accumulation factor 1

t E ′
x

.

Let us go back to the reserve of the single-premium pure endowment (see (5.3.43)).
We note that, for this insurance product, the prospective reserve is given by Vt =
m−t E ′

x+t . Further, we have m E ′
x = t E ′

x m−t E ′
x+t (see (4.2.53)), and hence:

Wt = Vt (5.3.44)

thus, the prospective and the retrospective reserve coincide. Result (5.3.44) holds
under rather general conditions. This topic is beyond the scope of this chapter. So,
we will simply provide a further example, and some final remarks as well.

We refer to a whole life insurance, with annual level premium P payable for the
whole policy duration. The single premium is, of course, given by A′

x . The following
relations hold:

A′
x = t A′

x + t E ′
x A′

x+t (5.3.45a)

ä′
x = ä′

x :t� + t E ′
x ä′

x+t (5.3.45b)

P ä′
x = A′

x (5.3.45c)

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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The prospective reserve for this insurance product is given by (5.3.4). By using
relations (5.3.45), we find:

Vt = A′
x − t A′

x

t E ′
x

− P
ä′

x − ä′
x :t�

t E ′
x

= 1

t E ′
x

(
P a′

x :t� − t A′
x

)
= Wt (5.3.46)

that is, the coincidence between the prospective and the retrospective reserves.
Whenever relations similar to those expressed by formulae (5.3.45) hold, we

have the coincidence between the two reserves, provided that the same technical
basis is used for both the reserves. However, relations of this type do not hold, for
example, in relation to some insurance products which provide benefits depending
on the lifetimes of more than one individual. In those products, the reserve at time t
depends on which insureds are alive at that time, i.e., on the “status” (either actual
or hypothetical) of the insured group, whereas the retrospective reserve, which first
requires a valuation at time 0, can only represent a weighted average of the “possible”
prospective reserves at time t .

5.3.7 The Actuarial Accumulation Process

To introduce some interesting relations between the reserving process and the pre-
mium flows, we will just refer to an example, provided by an m-year term insurance
with annual level premiums payable for the whole policy duration. We assume a
unitary sum insured.

The natural premiums of the term insurance are expressed by (4.4.27), namely
P [N]

h = 1 A′
x+h = (1 + i ′)−1 q ′

x+h , for h = 0, 1, . . . , m − 1. The reserve premiums,

P [AS]
h , are defined by (4.4.35).

Consider the actuarial value at the policy issue of the reserve premiums pertaining
to the first t policy years. This value is given by:

t−1∑
h=0

P [AS]
h h E ′

x = P
t−1∑
h=0

h E ′
x −

t−1∑
h=0

1 A′
x+h h E ′

x (5.3.47)

From the following relations:

t−1∑
h=0

h E ′
x = ä′

x :t� (5.3.48a)

t−1∑
h=0

1 A′
x+h h E ′

x = t A′
x (5.3.48b)

we then find that the actuarial value of the reserve premiums can be expressed as
follows:

http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_4
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P ä′
x :t� − t A′

x = t E ′
x Wt (5.3.49)

(see also (5.3.40)). Finally, we obtain:

Wt = 1

t E ′
x

t−1∑
h=0

P [AS]
h h E ′

x =
t−1∑
h=0

P [AS]
h

1

t−h E ′
x+h

(5.3.50)

Thus, the retrospective reserve is the result of the actuarial accumulation of the
reserve premiums pertaining to the policy years preceding the time of valuation of
the reserve itself. From a more practical perspective, we can say that the retrospective
reserve originates thanks to the accumulation of assets exceeding the benefits.

On the one hand, the interpretation relying on the actuarial accumulation of the
reserve premiums can be useful in understanding the time profile of the reserve (see
Sect. 5.3.3). On the other hand, a different splitting of the annual premium allows
us to interpret the policy reserve as the result of a purely financial accumulation
process. As we will see in Sect. 5.4, this alternative splitting of the annual premiums
is of paramount importance in interpreting the intermediation role of a life insurer.

We just mention that, conversely, the prospective reserve at time t can be expressed
as minus the actuarial value (at that time) of the future reserve premiums, namely:

Vt = −
m−t−1∑

h=0

P [AS]
t+h h E ′

x+t (5.3.51)

5.4 Risk and Savings

The first topic addressed in this section relates to recursive procedures for the cal-
culation of the policy reserve. Nonetheless, the practical interest of the topic goes
well beyond computational aspects. In fact, the topic itself constitutes the starting
point for an in depth analysis of the role of a life insurance company. In particular,
technical aspects will emerge, concerning the life insurer as a player in both the
financial intermediation and the risk pooling process.

5.4.1 A (Rather) General Insurance Product

We refer to an insurance product, with the following characteristics: term m, age at
policy issue x , sum insured in the case of death C , sum insured in the case of survival
at maturity S, annual level premiums, P , payable for the whole policy duration, and
hence given by:
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P = C m A′
x + S m E ′

x

ä′
x :m�

(5.4.1)

For example,

• setting S = 0, C > 0, we have the term insurance, with constant sum assured;
• setting S > 0, C = 0, we find the pure endowment;
• setting S = C > 0, we have the (standard) endowment insurance;
• setting S > C > 0, we have the endowment insurance with additional survival

benefit.

A number of possible generalizations allow us to recognize other insurance prod-
ucts. For example,

• setting S = 0, C > 0, m = ω − x , we find the whole life insurance;
• setting S = 0, and replacing C with a sequence C1, C2, . . . , Cm , we have the term

insurance with varying benefit, and, in particular, the decreasing term insurance;
• replacing P with a sequence P0, P1, . . . , Pm−1, we can represent arrangements

based on variable premiums; in particular:

– with P0 = P1 = · · · = Ps−1, Ps = Ps+1 = · · · = Pm−1 = 0, we have
arrangements based on level premiums payable over a shortened period (s < m);

– setting P0 > 0, P1 = P2 = · · · = Pm−1 = 0, we represent the single-premium
arrangement;

– the natural premium arrangement is obviously represented by setting Ph = P [N]
h ,

for h = 0, 1, . . . , m − 1.

Other generalizations allow us to represent various types of life annuities. Notwith-
standing, in what follows we refer to the insurance product defined at the beginning
of this section.

5.4.2 Recursive Equations

The policy reserve, at time t , of the insurance product defined above is given by:

Vt = Ben′(t, m)− Prem′(t, m) = C m−t A′
x+t + S m−t E ′

x+t − P ä′
x+t :m−t� (5.4.2)

We can also write:

Vt = C 1 A′
x+t − P + C 1|m−t−1 A′

x+t + S m−t E ′
x+t − P 1|ä′

x+t :m−t−1� (5.4.3)

and, after a little algebra, we get to the following expression:

Vt + P = C 1 A′
x+t + Vt+1 1 E ′

x+t (5.4.4)
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Fig. 5.29 Recursive equations: interpretations

or, in more explicit terms:

Vt + P = C (1 + i ′)−1 q ′
x+t + Vt+1 (1 + i ′)−1 p′

x+t (5.4.5)

Recursive Eq. (5.4.5) is called the Fouret equation (1891). We note the following
features.

• Actuarial values in (5.4.5) are referred at time t , as both the financial and the
probabilistic evaluation are referred at that time (that is, the insured is assumed to
be alive at time t).

• Equation (5.4.5) describes an “equilibrium” situation in the time interval (t, t + 1):
the assets available at time t (the reserve Vt and the premium P just cashed) exactly
meet the liabilities which fall due at time t + 1, namely:

– the sum assured C , in the case of death;
– the reserve Vt+1, which is needed either to continue the policy in the case of

survival (if t + 1 < m), or to be paid as sum S at maturity (if t + 1 = m)

(see Fig. 5.29, upper panel).
• The policy reserve can be calculated by an iterative application of (5.4.5): start-

ing from V0 = 0, the equation allows us to calculate V1, V2, . . . , Vm (with the
“final” check Vm = S); conversely, starting from Vm = S, we can calculate
Vm−1, Vm−2, . . . , V0 (with V0 = 0).

Alternative expressions of (5.4.5) are the following ones:
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(Vt + P) (1 + i ′) = Cq′
x+t + Vt+1 p′

x+t (5.4.6)

Vt + P = (C − Vt+1) (1 + i ′)−1 q ′
x+t + Vt+1 (1 + i ′)−1 (5.4.7)

(Vt + P) (1 + i ′) = (C − Vt+1) q ′
x+t + Vt+1 (5.4.8)

We note the following aspects.

• In Eqs. (5.4.6) and (5.4.8) (called the Kanner equation, 1869), the financial evalu-
ation is referred to time t + 1 (whereas the probabilistic evaluation is still referred
to time t).

• In Eqs. (5.4.7) and (5.4.8), the reserve Vt+1 appears as a liability certain at time
t + 1 (that is, in both the cases of death and survival), whereas the death benefit
(if any) is split into two shares,

C = (C − Vt+1) + Vt+1 (5.4.9)

namely:

– the amount C − Vt+1, which is called the sum at risk (or the net amount at risk),
to stress that it is not yet available but funded (year by year) via the mutuality
mechanism;

– the amount Vt+1, which is not “at risk,” as the reserve has to be used anyhow
(sooner or later)

(see Fig. 5.29, lower panel).
• In the case of no death benefit (C = 0), or a death benefit smaller than the reserve

(C < Vt ), the amount at risk is negative; in these cases, if the insured dies in
the year, the sum at risk (the whole reserve, in the case C = 0) is released for
mutuality and thus contributes to financing the benefits pertaining to the policies
still in-force.

Remark 1 It is worth stressing that the term “risk” is used, in this context, according to its traditional
actuarial meaning, that is “risk of death.” Other risk causes (e.g., investment risks) are not involved.

Remark 2 Recursive Eqs. (5.4.5)–(5.4.8) can be easily interpreted also referring to a portfolio of
policies. Let Nt denotes the (given) number of policies in-force at time t , and Nt+1 the random
number of policies in-force at time t + 1, namely the number of insureds still alive. Further, let Dt
denote the random number of insureds dying in the year; thus, Dt = Nt − Nt+1. Refer, for example,
to Eq. (5.4.6). We can write:

(Nt Vt + Nt P)(1 + i ′) = Nt q ′
x+t C + Nt p′

x+t Vt+1 (5.4.10)

On the left-hand side of Eq. (5.4.10), we find the amount of resources (reserves and premiums)
pertaining to policies in-force at time t , cumulated to time t + 1. As regards the right-hand side
of the equation, we first note that Nt p′

x+t = E[Nt+1] is the expected number of insureds alive at
time t + 1, whereas Nt q ′

x+t = E[Dt ] is the expected number of insureds dying in the year. The
interpretation of the right-hand side of Eq. (5.4.10) in terms of insurer’s expected obligations is then
straightforward.
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5.4.3 Risk Premium and Savings Premium

From Eq. (5.4.7), we obtain:

P = [(C − Vt+1) (1 + i ′)−1 q ′
x+t ] + [Vt+1 (1 + i ′)−1 − Vt ] (5.4.11)

so that the two following components of the annual premium can be recognized:

P [R]
t = (C − Vt+1) (1 + i ′)−1 q ′

x+t (5.4.12a)

P [S]
t = Vt+1 (1 + i ′)−1 − Vt (5.4.12b)

The two components are called the risk premium and the savings premium, respec-
tively.

The savings premiums maintain the reserving process. In fact, from (5.4.12b) we
find:

Vt+1 = (Vt + P [S]
t ) (1 + i ′) (5.4.13)

and then:

Vt+1 = P [S]
0 (1 + i ′)t+1 + P [S]

1 (1 + i ′)t + · · · + P [S]
t (1 + i ′) (5.4.14)

It turns out that the policy reserve is the result of the financial accumulation of the
savings premiums. Conversely, the risk premium is the premium of a one-year term
insurance to cover the sum at risk.

We note that the two premium components are not necessarily both positive.
In particular, if the sum at risk is negative, the risk premium is negative. See the
following numerical examples for further details.

Example 5.4.1 Table 5.2 refers to a term insurance, with annual level premiums
(denoted by Pt , as in following examples other premium arrangements will be
addressed), payable for the whole policy duration. In particular, the decomposi-
tion of the annual premium into risk premium and savings premium is displayed.
Further, the natural premiums and the time profiles of the reserve and the sum at risk
are shown. Data are as follows: C = 1 000, x = 50, m = 10, TB1 = (0.02, LT1). It
is interesting to note that the risk premiums are very close to the natural premiums,
as the reserve is very small and hence the sum at risk almost coincides with the sum
assured.

Table 5.3 refers to a single-premium term insurance. Clearly, P0 = Π = C m A′
x .

Data are as above. Natural premiums coincide, of course, with those in Table 5.2; in
fact, natural premiums only depend on the benefit structure, while they are indepen-
dent of the specific premium arrangement. All the savings premiums, but the first
one, are negative and represent the “use” of the reserve in the mutuality process. ❑

Example 5.4.2 A pure endowment is referred to in Table 5.4. Data are as follows:
S = 1 000, x = 50, m = 10, TB1 = (0.02, LT1). As C = 0, the sum at risk is



300 5 Life Insurance: Reserving

Table 5.2 Term insurance (annual level premiums)

t Pt P [N]
t P [R]

t P [S]
t Vt C − Vt

0 5.40 3.31 3.31 2.09 0.00 –

1 5.40 3.68 3.66 1.74 2.14 997.86

2 5.40 4.08 4.05 1.35 3.95 996.05

3 5.40 4.52 4.49 0.91 5.40 994.60

4 5.40 5.01 4.98 0.42 6.44 993.56

5 5.40 5.56 5.52 −0.12 7.00 993.00

6 5.40 6.17 6.13 −0.73 7.01 992.99

7 5.40 6.84 6.80 −1.40 6.41 993.59

8 5.40 7.58 7.56 −2.16 5.11 994.89

9 5.40 8.41 8.41 −3.01 3.01 996.99

10 – – – – 0 1 000.00

Table 5.3 Term insurance (single premium)

t Pt P [N]
t P [R]

t P [S]
t Vt C − Vt

0 48.52 3.31 3.16 45.35 0.00 –

1 0.00 3.68 3.52 −3.52 46.26 953.74

2 0.00 4.08 3.91 −3.91 43.60 956.40

3 0.00 4.52 4.35 −4.35 40.48 959.52

4 0.00 5.01 4.85 −4.85 36.85 963.15

5 0.00 5.56 5.41 −5.41 32.64 967.36

6 0.00 6.17 6.03 −6.03 27.78 972.22

7 0.00 6.84 6.73 −6.73 22.19 977.81

8 0.00 7.58 7.52 −7.52 15.76 984.24

9 0.00 8.41 8.41 −8.41 8.41 991.59

10 – – – – 0.00 1 000.00

negative, and then all the risk premiums are negative; hence we find P [S]
t > P for all

t . This means that the premium P is insufficient to maintain the reserving process,
which in fact needs for the contributions provided by the reserves of the policies
terminating because of the insureds’ death. Formally, this feature clearly appears by
rewriting Eq. (5.4.8) for the pure endowment; indeed, we find:

(Vt + P) (1 + i ′) + Vt+1 q ′
x+t = Vt+1 (5.4.15)

where the term Vt+1 q ′
x+t represents the contribution mentioned above. ❑

Example 5.4.3 Table 5.5 refers to a (standard) endowment insurance. Data are as
follows: C = S = 1 000, x = 50, m = 10, TB1 = (0.02, LT1). All the entries
in Table 5.5 can be obtained as the sum of the corresponding entries in Tables 5.2
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Table 5.4 Pure endowment (annual level premiums)

t Pt P [N]
t P [R]

t P [S]
t Vt C − Vt

0 86.30 0.00 −0.29 86.60 0.00 –

1 86.30 0.00 −0.66 86.96 88.33 −88.33

2 86.30 0.00 −1.11 87.41 178.80 −178.80

3 86.30 0.00 −1.66 87.96 271.53 −271.53

4 86.30 0.00 −2.33 88.63 366.68 −366.68

5 86.30 0.00 −3.14 89.45 464.42 −464.42

6 86.30 0.00 −4.12 90.43 564.95 −564.95

7 86.30 0.00 −5.30 91.61 668.48 −668.48

8 86.30 0.00 −6.72 93.02 775.29 −775.29

9 86.30 971.98 −8.41 94.71 885.68 −885.68

10 – – – – 1 000.00 −1 000.00

Table 5.5 Endowment insurance (annual level premiums)

t Pt P [N]
t P [R]

t P [S]
t Vt C − Vt

0 91.71 3.31 3.01 88.69 0.00 –

1 91.71 3.68 3.00 88.70 90.46 909.54

2 91.71 4.08 2.95 88.76 182.75 817.25

3 91.71 4.52 2.83 88.87 276.94 723.06

4 91.71 5.01 2.65 89.05 373.12 626.88

5 91.71 5.56 2.38 89.32 471.42 528.58

6 91.71 6.17 2.00 89.70 571.96 428.04

7 91.71 6.84 1.50 90.20 674.90 325.10

8 91.71 7.58 0.84 90.86 780.40 219.60

9 91.71 980.39 0.00 91.71 888.69 111.31

10 – – – – 1 000.00 0.00

and 5.4. We note that all the risk premiums and the savings premiums are positive.
This suggests to look at the endowment insurance as the combination of an m-
year financial transaction and a sequence of one-year term insurances, as shown
in Table 5.6. The interpretation is as follows. An individual, instead of purchasing
a m-year endowment insurance with sum insured C , and hence paying the annual
premiums P , could in each year:

• invest the amount P [S]
t in a fund, managed by a financial institution, and annually

credited with the interest rate i ′;
• pay the amount P [R]

t to an insurer to buy a one-year term insurance for a sum
assured such that the sum itself plus the balance of the fund is equal to C .
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Table 5.6 The endowment insurance as a combination of transactions

Year (t, t + 1) A m-year financial transaction A sequence of m one-year term insurances

Payment (at
time t)

Result (at time
t + 1)

Payment (at
time t)

Result (at time
t + 1)

(0, 1) P [S]
0 V1 P [R]

0 C − V1

(1, 2) P [S]
1 V2 P [R]

1 C − V2

(2, 3) P [S]
2 V3 P [R]

2 C − V3

… … … … …

(m − 2, m − 1) P [S]
m−2 Vm−1 P [R]

m−2 C − Vm−1

(m − 1, m) P [S]
m−1 = P Vm = C P [R]

m−1 = 0 C − Vm = 0

It is easy to check that, in both the case of survival and the case of death prior to
maturity, the amounts paid by the individual and the benefits obtained by the ben-
eficiaries coincide with the corresponding outflows and inflows of the endowment
insurance. It is worth stressing, however, that the “equivalence” between the endow-
ment insurance and the set of transactions described above relies on some important
assumptions that, at least to some extent, are rather unrealistic. In particular, the
financial transaction should guarantee a constant interest rate i ′, as a (traditional)
endowment insurance does. As regards the one-year term insurances, the life table
adopted for calculating the premiums could be changed throughout the m years,
thanks to mortality improvements in the population, and hence with an advantage to
the insured; on the contrary, if medical examinations are required, the death proba-
bilities could be raised because of worsened health conditions. In conclusion, while
the interpretation we have sketched is useful to understand the two-fold role of a life
insurance company, it should not be meant as aiming to prove analogies among the
results of different transactions. ❑

Example 5.4.4 Table 5.7 refers to a single-premium immediate life annuity (in
arrears). Data are as follows: b = 100, x = 65, TB1 = (0.02, LT4). The tech-
nical structure of a life annuity requires a generalization of the recursive equations.
First, we set C = 0 in Eq. (5.4.6), and then we generalize the equation as follows:

(Vt + Pt )(1 + i ′) = (Vt+1 + b) p′
x+t (5.4.16)

where V0 = 0, P0 = Π = a′
x , and Pt = 0, for t = 1, 2, . . . . Equation (5.4.16)

allows us to split the annual benefit b in order to single out the resources used to
finance the benefit itself. To simplify the notation, we assume V0 = Π ; hence, we
can simply write, for t = 0, 1, 2, . . . :

Vt (1 + i ′) = (Vt+1 + b) p′
x+t (5.4.17)
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Table 5.7 Life annuity in arrears (single premium)

t Pt P [N]
t P [R]

t P [S]
t Vt b = 100

Reserve
con-
sumption

Interest Mortality
credit

0 1 706.88 97.48 −9.81 1 716.69 0.00 − − −
1 0.00 97.41 −10.72 10.72 1 651.02 55.86 34.14 10.00

2 0.00 97.33 −11.70 11.70 1 594.97 56.04 33.02 10.94

3 0.00 97.23 −12.76 12.76 1 538.81 56.16 31.90 11.94

4 0.00 97.13 −13.89 13.89 1 482.60 56.21 30.78 13.02

5 0.00 97.01 −15.11 15.11 1 426.43 56.18 29.65 14.17

… … … … … … … … …

10 0.00 96.16 −22.43 22.43 1 149.01 54.72 24.07 21.21

11 0.00 95.92 −24.16 24.16 1 094.87 54.14 22.98 22.88

12 0.00 95.65 −25.97 25.97 1 041.41 53.46 21.90 24.64

13 0.00 95.35 −27.87 27.87 988.73 52.68 20.83 26.49

14 0.00 95.01 −29.85 29.85 936.93 51.80 19.77 28.43

15 0.00 94.63 −31.90 31.90 886.11 50.82 18.74 30.44

… … … … … … … … …

20 0.00 91.93 −43.17 43.17 650.12 44.48 13.89 41.62

21 0.00 91.20 −45.57 45.57 607.16 42.97 13.00 44.03

22 0.00 90.37 −47.99 47.99 565.78 41.38 12.14 46.48

23 0.00 89.46 −50.43 50.43 526.04 39.73 11.32 48.95

24 0.00 88.45 −52.88 52.88 488.01 38.04 10.52 51.44

25 0.00 87.34 −55.32 55.32 451.70 36.30 9.76 53.94

… … … … … … … … …

After a little algebra, we find:

b = [
Vt − Vt+1

] + [
Vt i ′

] +
[

Vt (1 + i ′)
q ′

x+t

p′
x+t

]
(5.4.18)

The interpretation of (5.4.18) is straightforward:

• the first term on the right-hand side is the amount of benefit financed by the reserve
consumption;

• the second term is the amount financed by the interest on the reserve at the begin-
ning of the year (which coincides with the single premium if t = 0);
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Fig. 5.30 Resources
financing the annual benefit

• the third term represents the contribution from the mutuality mechanism, i.e., the
mortality credit; indeed, it can be easily interpreted rewriting the fraction in terms
of the expected number of survivors as follows:

q ′
x+t

p′
x+t

= �′
x+t − �′

x+t+1

�′
x+t+1

where the �′’s denote the expected numbers of survivors according to the first-order
table.

The splitting of the annual benefit is shown by the last three columns of Table 5.7
and, in graphical terms, by Fig. 5.30. It clearly appears that the mutuality effect
becomes more and more important as t increases, because of an increasing mortality
among annuitants. To single out the risk and savings components, we generalize
Eq. (5.4.7), again setting C = 0:

Vt + Pt = −Vt+1 (1 + i ′)−1 q ′
x+t + Vt+1 (1 + i ′)−1 + b (1 + i ′)−1 p′

x+t (5.4.19)

where (as in (5.4.16)) V0 = 0, P0 = Π = a′
x , and Pt = 0, for t = 1, 2, . . . . From

(5.4.19), after a little algebra we obtain:

Pt = [
(Vt+1 + b) (1 + i ′)−1 − Vt

] + [
(−Vt+1 − b) (1 + i ′)−1 q ′

x+t

]
(5.4.20)

and then

P [R]
t = (−Vt+1 − b) (1 + i ′)−1 q ′

x+t (5.4.21a)

P [S]
t = (Vt+1 + b) (1 + i ′)−1 − Vt (5.4.21b)
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Hence, P [R]
t < 0 for all t , and, for t = 1, 2, . . . , as Pt = 0 then P [S]

t = −P [R]
t >

0. Thus, reserves released by the annuitants dying in the various years maintain
the reserves of the surviving annuitants, according to the mutuality mechanism. As
regards the natural premiums, we have, for all t :

P [N]
t = b (1 + i ′)−1 p′

x+t (5.4.22)

Table 5.7 shows the numerical results. ❑

5.4.4 Life Insurance Products versus Financial Accumulation

Consider the whole life insurance, financed via single-recurrent premiums, and
assume i ′ = 0 (see Sect. 4.4.5). As already noted, according to this arrangement
no mortality risk is borne by the insurer. The formal proof is straightforward. In
the case of death in year t , the sum paid to the beneficiary is Ct = ∑t−1

h=0 Πh

(see Eq. (4.4.39)); the reserve at time t is Vt = ∑t−1
h=0 Πh (see Eq. (5.3.13)). Thus,

Ct = Vt , and hence the sum at risk is equal to zero.
In general, any product in which the death benefit coincides with the policy reserve

is just a financial accumulation product. In fact, from

Ct = Vt (5.4.23)

it follows:
P [R]

t = 0 (5.4.24)

and hence
P [S]

t = P (5.4.25)

so that the reserve coincides with the accumulation of the premiums P (or Pt , or Πt ).
A financial accumulation product can be transformed into a “real” insurance

product via redefinition of the death benefit Ct , which can be expressed as a function
of the reserve Vt , such that the following inequality holds:

Ct > Vt (5.4.26)

(instead of (5.4.23)). This transformation can be mandatory because of regulation,
or can be useful for tax purposes, etc. Some examples follow; in the related figures,
the dashed line represents the policy reserve.

1. Choose the amount K , and set:

Ct = Vt + K (5.4.27)

Thus, the sum at risk is K ; see Fig. 5.31.

http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_4
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Fig. 5.31 Constant sum at
risk

Ct

K

time 

Fig. 5.32 Proportional sum
at risk

time 

Ct

α Vt

Fig. 5.33 Sum at risk with
an upper bound

time 

C 

Ct

K

2. Choose the rate α, and set:
Ct = (1 + α) Vt (5.4.28)

Thus, the sum at risk is α Vt ; see Fig. 5.32.
3. Choose the amounts K and C , and set:

Ct = min{Vt + K , C} (5.4.29)

Thus, the sum at risk is min{K , C − Vt }; see Fig. 5.33.
4. Choose the amounts K and C , and set:

Ct = max{Vt + K , C} (5.4.30)

Thus, the sum at risk is max{K , C − Vt }; see Fig. 5.34.
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Fig. 5.34 Sum at risk with a
lower bound

time 

Ct

K

C 

Remark We note that in case 3 above, it may turn out Ct < Vt , namely if Vt increases above C .
Given the purposes of the policy design, it is not acceptable that Ct < Vt . Thus, the death benefit

Ct = max{min{Vt + K , C}, Vt } (5.4.31)

should rather be considered instead of (5.4.29).

5.5 Expected Profits

The approach to the profit assessment we have described in Sect. 4.3.8 simply relies
on a comparison between actuarial values of benefits, namely between the actuarial
value calculated by adopting the scenario basis, i.e., TB2, and the actuarial value
assumed as the single premium, hence calculated by adopting the prudential basis,
i.e., TB1.

A deeper analysis of expected profits requires further steps. In particular:

1. premium arrangements other than that based on a single premium must be allowed
for;

2. as life insurance contracts usually have a multi-year duration, it can be useful to
attribute a share of the (total) expected profit to each policy year; hence, annual
profits are defined, showing the profit emerging throughout the policy duration;

3. further elements, which can constitute sources of profit/loss should be taken into
account, and typically

• expenses and expense loadings;
• lapses, surrenders, and policy alterations.

Issues 1 and 2 are dealt with in the present section; indeed, the mathematical
reserve provides a tool for a “natural” definition of expected annual profits. Con-
versely, topic 3 will be discussed in Chap. 6, in the framework of a life portfolio
analysis.

http://dx.doi.org/10.1007/978-3-319-21377-4_4
http://dx.doi.org/10.1007/978-3-319-21377-4_6
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5.5.1 Expected Annual Profits

We refer to Eq. (5.4.6) which can also be written as follows:

(Vt + P) (1 + i ′) − Cq′
x+t − Vt+1 p′

x+t = 0 (5.5.1)

Equation (5.5.1) relates to policy year (t, t + 1), and expresses a balance between
resources (the reserve at the beginning of the year and the premium) and expected
obligations (the sum in the case of death and the reserve at the end of the year). The
balance relies on the adoption of the same technical basis, namely the first-order
basis TB1, in all the elements of Eq. (5.5.1), and this, in its turn, follows from the
assumptions adopted in defining the policy reserve (see Sect. 5.3.1).

Conversely, assume that:

• a realistic estimate of the yield from the investment of the amount Vt + P is
expressed by the interest rate i ′′;

• the mortality in the portfolio can be described in realistic terms by probabilities
q ′′

x+t .

Thus, the scenario basis TB2 can be introduced into Eq. (5.5.1). The shift to TB2
clearly results in a different meaning of some quantities. Actually, we obtain:

(Vt + P) (1 + i ′′) − Cq′′
x+t − Vt+1 p′′

x+t = PLt+1 (5.5.2)

where PLt+1 ( >
<

0) denotes the expected annual profit/loss arising from the “dis-
tance” between TB1 and TB2. We note that PLt+1 is referred to time t + 1, for a
policy assumed to be in-force at time t .

Remark Equation (5.5.2) can be easily interpreted also referring to a portfolio of policies. A similar
interpretation has been provided for Eq. (5.4.6) (see Remark 2 in Sect. 5.4.2). Let Nt denotes the
(given) number of policies in-force at time t , and Nt+1 the random number of policies in-force at
time t + 1, namely the number of insureds still alive. Then, we can write:

Nt Vt + Nt P + (Nt Vt + Nt P) i ′′ − Nt q ′′
x+t C − Nt p′′

x+t Vt+1 = Nt PLt+1 (5.5.3)

All quantities can be interpreted as in Eq. (5.4.10). In particular: Nt p′′
x+t = E[Nt+1], Nt q ′′

x+t =
E[Dt ]. Note, however, that the expected numbers are now calculated according to TB2. In Eq. (5.5.3),
we can recognize some of the (main) items of the Profit & Loss Statement (briefly P & L). In general,
the P & L Statement refers to a specific period (say, a year) and indicates how the profit/loss
originates from income net of expenditure. As we are only addressing one generation of policies,
and we are disregarding expenses and related loadings as well as lapses and surrenders, the resulting
representation is extremely simplified (see Table 5.8). Further, an obvious adjustment in the benefits
is needed when referring to the last year of the policy duration.
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Table 5.8 Actuarial values
as items of a P & L statement

P & L statement

Income

Premiums Nt P

Income from investments (Nt Vt + Nt P) i ′′

Expenditure

Benefits paid E[Dt ] C

Change in liabilities E[Nt+1] Vt+1 − Nt Vt

Profit Nt PLt+1

5.5.2 Splitting the Annual Profit

We now refer to Eq. (5.4.8), written as follows:

(Vt + P) (1 + i ′) − (C − Vt+1) q ′
x+t − Vt+1 = 0 (5.5.4)

Adopting the scenario basis TB2, as in Eq. (5.5.2), we have:

(Vt + P) (1 + i ′′) − (C − Vt+1)q
′′
x+t − Vt+1 = PLt+1 (5.5.5)

Then, by subtracting (5.5.4) from (5.5.5), we obtain the so-called contribution
formula (proposed by S. Homans, 1863):

(Vt + P) (i ′′ − i ′) + (C − Vt+1) (q ′
x+t − q ′′

x+t ) = PLt+1 (5.5.6)

which suggests the splitting of the expected annual profit into two terms:

PL
[fin]
t+1 = (Vt + P) (i ′′ − i ′) (5.5.7a)

PL
[m/l]
t+1 = (C − Vt+1) (q ′

x+t − q ′′
x+t ) (5.5.7b)

The quantity PL
[fin]
t+1 is the financial margin, namely the component of the expected

annual profit originated by the spread between the interest rates, i ′′ − i ′. Clearly, as
Vt + P > 0, the financial margin is positive if and only if i ′′ > i ′.

The component PL
[m/l]
t+1 is the mortality/longevity margin, which arises from the

difference between the mortality rates at the various ages. We note that:

• if C − Vt+1 > 0, the mortality/longevity margin is positive if and only if q ′
x+t >

q ′′
x+t ;

• if C − Vt+1 < 0, the mortality/longevity margin is positive if and only if q ′
x+t <

q ′′
x+t .
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Table 5.9 Term insurance: expected profits

t Vt PLt PL
[fin]
t PL

[m/l]
t

0 0.00 − − −
1 0.76 0.14 0.02 0.12

2 1.40 0.16 0.03 0.13

3 1.92 0.18 0.03 0.15

4 2.29 0.20 0.04 0.16

5 2.48 0.22 0.04 0.18

6 2.49 0.24 0.04 0.20

7 2.27 0.27 0.04 0.22

8 1.81 0.29 0.04 0.25

9 1.06 0.31 0.04 0.27

10 0.00 0.33 0.03 0.30

Thus, the sign of the sum at risk is the driving factor in the choice of the life table to be
adopted in the first-order basis, TB1, in order to obtain implicit safety loadings, and
hence positive expected profits. For pricing insurance products with a positive sum at
risk (for example: the term insurance, the whole life insurance, and the endowment
insurance), a life table with a mortality higher than that actually expected in the
portfolio should be chosen. On the contrary, products with a negative sum at risk (the
pure endowment and the life annuities) require a mortality assumption lower than
the mortality actually expected.

Example 5.5.1 Table 5.9 refers to a term insurance. Policy data are as follows: C =
1 000, x = 40, m = 10; annual level premiums, P , are payable throughout the
whole policy duration. The pricing basis is TB1 = (0.02, LT1); we then find: P =
1.93. Expected profits are calculated by adopting the second-order basis TB2 =
(0.03, LT2). We note that the poor financial content of the term insurance implies
very low financial profits, whereas more important contributions to the expected
profits come from the mortality assumptions.

Table 5.10 refers to an endowment insurance. Policy data are as follows: C =
1 000, x = 50, m = 15. Annual level premiums, P , are payable throughout the
whole policy duration. The pricing basis is TB1 = (0.02, LT1); we then find: P =
59.54. Expected profits are calculated by adopting the second-order basis TB2 =
(0.03, LT2). Unlike the term insurance, the endowment insurance has important
financial contents, so that the spread between interest rates originates significant
contributions to the expected profits. On the contrary, mortality profits are low, and
definitely decreasing as the sum at risk decreases. As we will see in Sect. 7.3, the
financial profit is shared with policyholders, through an adjustment of benefits. ❑

http://dx.doi.org/10.1007/978-3-319-21377-4_7
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Table 5.10 Endowment insurance: expected profits

t Vt PLt PL
[fin]
t PL

[m/l]
t

0 0.00 − − −
1 57.54 0.91 0.60 0.32

2 116.11 1.50 1.17 0.33

3 175.74 2.10 1.76 0.34

4 236.46 2.70 2.35 0.35

5 298.33 3.32 2.96 0.36

6 361.40 3.94 3.58 0.36

7 425.75 4.57 4.21 0.36

8 491.45 5.20 4.85 0.35

9 558.59 5.85 5.51 0.34

10 627.30 6.50 6.18 0.32

11 697.70 7.15 6.87 0.28

12 769.96 7.81 7.57 0.24

13 844.26 8.47 8.29 0.18

14 920.85 9.14 9.04 0.10

15 1 000.00 9.80 9.80 0.00

5.5.3 The Expected Total Profit

The sequence of expected profits/losses PL1, PL2, . . . , PLm , which are originated
yearly by the policy, can be interpreted as a temporary life annuity. The expected
present value of this annuity, PL, according to the scenario basis TB2, is given by:

PL =
m−1∑
t=0

PLt+1 (1 + i ′′)−(t+1)
t p′′

x (5.5.8)

which can be interpreted as the expected value of the total profit/loss, expressed as
a present value at time 0.

It is possible to check that, assuming V0 = 0 and Vm = S, and plugging Eq. (5.5.2)
into (5.5.8), we find the following expression:

PL =
m−1∑
t=0

P (1+i ′′)−t
t p′′

x −
m−1∑
t=0

C (1+i ′′)−(t+1)
t |1q ′′

x −S (1+i ′′)−m
m p′′

x (5.5.9)

in which the policy reserve does not appear. We note that the result expressed by
(5.5.9) holds thanks to the use of the TB2 for discounting the expected annual profits.
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Equation (5.5.9) can also be written as follows:

PL =
m−2∑
t=0

t p′′
x (1 + i ′′)−(t+1)

[
P (1 + i ′′) − Cq′′

x+t

]
+ m−1 p′′

x (1 + i ′′)−m [
P (1 + i ′′) − Cq′′

x+m−1 − S p′′
x+m−1

]
(5.5.10)

The quantities in brackets, namely

CFt+1 = P (1 + i ′′) − Cq′′
x+t ; t = 0, 1, . . . , m − 2 (5.5.11a)

CFm = P (1 + i ′′) − Cq′′
x+m−1 − S p′′

x+m−1 (5.5.11b)

represent the expected annual cash flows, referred to a policy in-force at time t or
m − 1, respectively, each cash flow being cumulated at the end of the relevant year.

Thus, the expected total profit is the expected present value of the life annuity
which consists of the expected annual cash flows. In formal terms:

PL =
m−1∑
t=0

CFt+1 (1 + i ′′)−(t+1)
t p′′

x (5.5.12)

Hence, the reserve profile affects the expected annual profits and then the emer-
gence of profit throughout time, i.e., the timing of the profit, while it does not affect
the total amount of the expected profit.

Example 5.5.2 We refer to the insurance products addressed in Example 5.5.1. We
find

• for the term insurance: PL = 1.93;
• for the endowment insurance: PL = 55.90.

❑

The following example can help in understanding the effect of the reserve on the
emerging of expected profits.

Example 5.5.3 Refer to an endowment insurance with annual premiums payable
for the whole policy duration. Data are as follows: C = 1 000, x = 50, m = 15;
TB1 = (0.02, LT1), TB2 = (0.03, LT2). Figure 5.35 displays the policy reserves
calculated with the interest rates 0, 0.02 (namely i ′), and 0.04; possible negative
values have been replaced by 0.

Table 5.11 shows the annual profits, PL
(0.00)

t , PL
(0.02)

t , and PL
(0.04)

t , corresponding
to the three reserve profiles. It clearly emerges that high reserve values (compared
to those obtained using the interest rate i ′ = 0.02) imply a heavy expected loss
in the first year, which is recovered by positive expected profits in the following
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Fig. 5.35 Endowment
insurance (annual level
premiums)
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Table 5.11 Endowment insurance (annual level premiums)

t V (0.00)
t PL

(0.00)

t V (0.02)
t PL

(0.02)

t V (0.04)
t PL

(0.04)

t

0 0.00 – 0.00 – 0.00 –

1 198.08 −139.20 57.54 0.91 0.00 58.28

2 254.82 8.01 116.11 1.50 16.10 41.90

3 311.50 9.72 175.74 2.10 74.82 −0.37

4 368.13 11.42 236.46 2.70 135.75 −0.95

5 424.72 13.12 298.33 3.32 199.00 −1.55

6 481.32 14.82 361.40 3.94 264.71 −2.17

7 537.95 16.51 425.75 4.57 333.02 −2.83

8 594.66 18.21 491.45 5.20 404.11 −3.51

9 651.51 19.89 558.59 5.85 478.16 −4.24

10 708.55 21.58 627.30 6.50 555.39 −5.00

11 765.86 23.26 697.70 7.15 636.07 −5.81

12 823.54 24.95 769.96 7.81 720.48 −6.66

13 881.69 26.63 844.26 8.47 808.99 −7.58

14 940.46 28.31 920.85 9.14 902.00 −8.56

15 1 000.00 30.00 1 000.00 9.80 1 000.00 −9.62

PL
(0.00) = 55.90 PL

(0.02) = 55.90 PL
(0.04) = 55.90

years. Conversely, low reserve values lead to an accelerated emerging of expected
profits, compensated by expected losses in the following years. Of course, we find

PL
(0.00) = PL

(0.02) = PL
(0.04) = 55.90 (see Example 5.5.2). ❑

Some results, which emerge from Example 5.5.3, can be generalized. In particular,
it can be proved that:
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• a lower interest rate adopted in the reserve calculation implies higher reserve
values, and hence a “delay” in profit emerging;

• a higher interest rate adopted in the reserve calculation implies lower reserve
values, and hence an “acceleration” in profit emerging.

5.5.4 Cash Flows, Profits, and Premium Margins

By comparing Eq. (5.5.11) to Eq. (5.5.2), we find (as Vm = S) the following relations:

PLt+1 = CFt+1 + Vt (1 + i ′′) − Vt+1 p′′
x+t ; t = 0, 1, . . . , m − 2 (5.5.13a)

PLm = CFm + Vm−1 (1 + i ′′) (5.5.13b)

In respect of the annual profit/loss, the role of the policy reserve, and its change in
particular, then consists in attributing shares of premiums to policy years, so shifting
from “cash-based” valuations (the CF’s) to “pertinence-based” valuations (the PL’s).

Example 5.5.4 Profit profile and cash flow profile are compared in Tables 5.12 and
5.13, which refer to a term insurance and an endowment insurance, respectively.
Policy data and technical bases TB1 and TB2 are as in Example 5.5.1. ❑

Of course, different time profiles of the reserve lead to different premium attri-
butions and hence, as shown in Example 5.5.3, to different profit profiles. A very
particular reserve profile and the related profit profile will be presented in Sect. 5.5.5.

Moreover, specific profit profiles can be generated by adopting a different
approach to profit assessment. An interesting approach is described in what follows.

Table 5.12 Term insurance
(annual level premiums) t PLt CFt (P − P ′′) (1 + i ′′)

1 0.14 0.90 0.23

2 0.16 0.78 0.23

3 0.18 0.65 0.23

4 0.20 0.51 0.23

5 0.22 0.35 0.23

6 0.24 0.17 0.23

7 0.27 −0.03 0.23

8 0.29 −0.25 0.23

9 0.31 −0.49 0.23

10 0.33 −0.76 0.23
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Table 5.13 Endowment
insurance (annual level
premiums)

t PLt CFt (P − P ′′) (1 + i ′′)
1 0.91 58.28 4.84

2 1.50 57.95 4.84

3 2.10 57.58 4.84

4 2.70 57.17 4.84

5 3.32 56.72 4.84

6 3.94 56.22 4.84

7 4.57 55.66 4.84

8 5.20 55.04 4.84

9 5.85 54.36 4.84

10 6.50 53.60 4.84

11 7.15 52.76 4.84

12 7.81 51.82 4.84

13 8.47 50.79 4.84

14 9.14 49.65 4.84

15 9.80 −938.67 4.84

Refer to Eq. (5.5.9), and set:

ä′′
x :m� =

m−1∑
t=0

(1 + i ′′)−t
t p′′

x (5.5.14)

m A′′
x =

m−1∑
t=0

(1 + i ′′)−(t+1)
t |1q ′′

x (5.5.15)

m E ′′
x = (1 + i ′′)−m

m p′′
x (5.5.16)

The expected total profit can be expressed as follows:

PL = P ä′′
x :m� − C m A′′

x − S m E ′′
x (5.5.17)

Let P ′′ denote the “second-order premium,” namely the annual level premium
calculated by adopting the scenario basis TB2, such that:

P ′′ ä′′
x :m� = C m A′′

x + S m E ′′
x (5.5.18)

The expected total profit/loss can then be expressed as the actuarial value of the
temporary life annuity whose items are the annual premium margins:

PL = (P − P ′′) ä′′
x :m� (5.5.19)
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The following aspects should be stressed.

• The result expressed by Eq. (5.5.19) is extremely intuitive: indeed, the expected
total profit/loss is due to the difference between the premium charged to the poli-
cyholder (P) and the premium fulfilling the equivalence principle under realistic
assumptions (P ′′), which clearly leads to a zero expected profit.

• Equation (5.5.19) generalizes to the case of annual premiums the result expressed
by Eq. (4.3.27) for the single-premium arrangement.

• According to Eq. (5.5.19), we could assume as the expected annual profit the
amount

PLt = (P − P ′′) (1 + i ′′); t = 1, 2, . . . , m (5.5.20)

so originating a flat profit profile. Note, however, that this can lead to a significant
acceleration in the emerging of profits (see Example 5.5.5).

Example 5.5.5 From Tables 5.12 and 5.13, which refer to a term insurance and an
endowment insurance, respectively, it clearly appears that, in both the insurance
products, the assumption (5.5.20) leads to a significant acceleration in the profit
profile. ❑

5.5.5 Expected Profits According to Best-Estimate Reserving

Consider the expected present value of future benefits net of future premiums, accord-
ing to the scenario basis TB2, that is, in formal terms:

V [BE]
t = C m−t A′′

x+t + S m−t E ′′
x+t − P ä′′

x+t :m−t� (5.5.21)

The quantity V [BE]
t is usually called the best-estimate reserve.

In particular, we have:

V [BE]
0 = C m A′′

x + S m E ′′
x − P ä′′

x :m� (5.5.22)

and hence (see Eqs. (5.5.18) and (5.5.19)):

V [BE]
0 = (P ′′ − P) ä′′

x :m� = −PL (5.5.23)

Thus, the quantity −V [BE]
0 = PL represents the “value” of the policy (at the time

of its issue), meant as the expected present value of profits/losses originated by the
policy itself throughout its duration.

Assume now, for the policy reserve Vt , the following values:

V0 = 0; Vt = V [BE]
t , for t = 1, 2, . . . , m − 1; Vm = S (5.5.24)

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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By using Eq. (5.5.2), with the reserves as defined by (5.5.24), after a little algebra
we obtain the following results:

PL1 = −V [BE]
0 (1 + i ′′) (5.5.25a)

PLt = 0; t = 2, . . . , m (5.5.25b)

Thus, the expected total profit/loss completely emerges in the first policy year.

Remark The particular profit profile originated by the best-estimate reserve witnesses the existence
of two basic approaches to profit emerging. The Deferral & Matching approach is a traditional
feature of actuarial models. The basic idea underlying this approach is that the total profit arises
progressively throughout time. The profit assessment procedure basically consists of two steps:
• assessment of annual results (typically: cash flows and profits);
• calculation of the total profit as the expected present value of annual results.

The Assets & Liabilities approach is a feature of financial models. The profit assessment procedure
basically consists of two steps:
• the total profit is given by the difference between the value of assets (e.g., the single premium,

or the credit for future periodic premiums) and the value of liabilities (the insurer’s obligations);
• possible annual profits are only given by changes in the values of assets and liabilities.

5.6 Reserving for Expenses

Equation (5.3.3) defines the “net reserve,” in which benefits and net premiums are
only involved. We can extend the definition, and thus define the “total reserve,” in
which expenses and loading for expenses are also included:

V [tot]
t = Ben′(t, m) + Exp′(t, m) − Prem′(t, m) − Load′(t, m) (5.6.1)

where Exp′(t, m) and Load′(t, m) represent the actuarial values at time t of future
expenses and expense loadings, respectively, calculated according to the first-order
basis. It turns out that V [tot]

t can be determined including the future expenses in the
insurer’s liabilities and directly accounting for the expense-loaded premiums instead
of the net premiums.

Of course, we also have
V [tot]

t = Vt + V [E]
t (5.6.2)

where V [E]
t = Exp′(t, m) − Load′(t, m) just allows for expenses and expense load-

ings.
Notwithstanding, it is much more useful to deal separately with the various

expense components and the related loadings. First, we note that the need for reserv-
ing arises because of a time-mismatching between the insurer’s inflow and outflow
streams. So, as regards expenses and related loadings, we can exclude premium col-
lection expenses, as these are supposed to occur at the same time the relevant loading
is cashed.
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Acquisition costs can also be excluded from further analysis in the case of a single
premium. Conversely, in the case of periodic premiums payable for s years, we can
define the (negative) acquisition cost reserve, which in fact represents the insurer’s
credit for the related loadings to be cashed in future years:

V [A]
t =

{
−Λ[A] ä′

x+t :s−t� for t ≤ s − 1

0 for t ≥ s
(5.6.3)

The quantity
V [Z]

t = Vt + V [A]
t (5.6.4)

is called the Zillmer reserve. In general, we have V [Z]
t ≤ Vt , and in particular, in the

first policy years, we may find V [Z]
t < 0. We note that the Zillmer reserve implies

a “clearing” between insurer’s credit and debt, and, (also) for this reason, in many
countries zillmerization is not allowed when assessing the balance sheet portfolio
reserve.

General administration expenses do not originate any reserve if the premiums are
payable for the whole policy duration, that is if s = m. On the contrary, if s < m the
reserve for general administration expenses is defined as follows:

V [G]
t =

{
γ C ä′

x+t :m−t� − Λ[G] ä′
x+t :s−t� for t ≤ s − 1

γ C ä′
x+t :m−t� for t ≥ s

(5.6.5)

In the case of a single premium, we have:

V [G]
t = γ C ä′

x+t :m−t� (5.6.6)

In some countries (in particular in Continental Europe), it is usual to define the
following reserve:

V [I]
t = Vt + V [G]

t (5.6.7)

which is called in Germany the Inventardeckungscapital.
It is easy to prove that the reserve, V [tot]

t , allowing for all the expenses and the
related loadings, as well as for benefits and net premiums, can be expressed as
follows:

V [tot]
t = Vt + V [A]

t + V [G]
t (5.6.8)

Example 5.6.1 We refer to the insurance products and the related data considered
in Example 4.5.1. Tables 5.14 and 5.15 display the various reserves allowing for
expenses and related loadings. ❑

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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Table 5.14 Whole life insurance (level premiums; s = 15)

t Vt V [A]
t V [G]

t V [Z]
t V [I]

t V [tot]
t

0 0.00 0.00 0.00 0.00 0.00 0.00

1 42.57 −18.85 0.76 23.72 43.33 24.48

2 85.79 −17.68 1.55 68.11 87.34 69.66

3 129.69 −16.49 2.35 113.20 132.04 115.55

4 174.28 −15.27 3.17 159.01 177.45 162.18

5 219.57 −14.03 4.02 205.54 223.59 209.56

… … … … … … …

12 559.31 −4.60 10.74 554.71 570.05 565.45

13 611.76 −3.11 11.86 608.64 623.62 620.50

14 665.46 −1.58 13.02 663.88 678.49 676.90

15 720.56 0.00 14.25 720.56 734.81 734.81

16 730.68 0.00 13.74 730.68 744.42 744.42

… … … … … … …

24 807.47 0.00 9.82 807.47 817.29 817.29

25 816.33 0.00 9.37 816.33 825.70 825.70

… … … … … … …

Table 5.15 Endowment insurance (level premiums; s = m = 15)

t Vt V [A]
t V [G]

t V [Z]
t V [I]

t V [tot]
t

0 0.00 0.00 0 0.00 0.00 0.00

1 57.54 −34.52 0 23.02 57.54 23.02

2 116.11 −32.38 0 83.73 116.11 83.73

3 175.74 −30.19 0 145.54 175.74 145.54

4 236.46 −27.97 0 208.49 236.46 208.49

5 298.33 −25.70 0 272.63 298.33 272.63

… … … … … … …

12 769.96 −8.43 0 761.53 769.96 761.53

13 844.26 −5.70 0 838.56 844.26 838.56

14 920.85 −2.90 0 917.95 920.85 917.95

15 1 000.00 0.00 0 1 000.00 1 000.00 1 000.00

5.7 Surrender Values and Paid-Up Values

As mentioned in Sect. 4.1.2, the calculation of surrender values and paid-up values
should account for the policyholder’s credit at the time of the contract alteration.
The net policyholder’s credit (that is, the amount which allows for benefits, expenses
and expense-loaded premiums) is given by the reserve V [tot]

t , defined by (5.6.8). As

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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this reserve coincides in many cases with the Zillmer reserve V [Z]
t (see, for instance,

Table 5.15 in Example 5.6.1) we just focus on the Zillmer reserve.
The surrender value, denoted as Rt , can be determined as follows:

Rt = ϕ(t) V [Z]
t (5.7.1)

Note that the function ϕ(t) (0 ≤ ϕ(t) ≤ 1, and usually equal to 0 for t = 1, 2 only),
aims at penalizing the surrendering policyholders. Commonly, the penalty decreases
as t increases, and to this purpose the function should be increasing. The penalty can
be justified as follows:

• from a legal point of view, the policyholder breaks the contract;
• from an economic point of view, the insurer can recover, via the penalty, future

profits expected from the contract.

Other formulae are also commonly adopted in insurance practice. For endowment
insurance products, with maturity at time m and annual level premiums payable for
m years, the so-called proportional rule is frequently adopted. If C denotes the sum
insured, we have:

Rt = t

m
C (1 + i∗)−(m−t) (5.7.2)

Thus, a share of the sum insured, proportional to the number of annual premiums
already paid, is discounted at a rate i∗, higher than the interest rate in the technical
basis. Formula (5.7.2) can be justified looking at the time profile of the policy reserve
in an endowment insurance, which is very close to a linear profile (see, for example,
Fig. 5.15). The discounting rate i∗ can be used as a parameter to allow for both
zillmerisation and penalty.

To illustrate the reduction of the sum insured when converting an insurance con-
tract into a paid-up one, we refer to a m-year pure endowment, with sum insured S
and annual level premiums payable for the whole policy duration.

Assume that the policyholder asks for the reduction at time t , namely after paying
the annual premiums at times 0, 1, . . . , t −1. A share of the Zillmer reserve, V [Z]

t , is
then used (as a “single” premium) to finance the paid-up contract, namely the reduced
benefit at maturity, S[red], and the general administration expenses (quantified as
results from (4.5.6a)) for the residual duration.

In formal terms, S[red] is the solution of the following equation:

ϕ̄(t) V [Z]
t = S[red] (

m−t E ′
x+t + γ ä′

x+t :m−t�
)

(5.7.3)

The function ϕ̄(t) (0 < ϕ̄(t) ≤ 1) determines a penalty charged to the policyholder
when shifting to the paid-up contract, and can be justified similarly to the surrender
penalty (see above). However, as the contract goes on, we usually have ϕ̄(t) ≥ ϕ(t).

Formula (5.7.3) relies on the equivalence principle, and hence leads to a result
consistent with this actuarial calculation principle. Nonetheless, other (approximate)
formulae are often adopted in insurance practice. For example, according to the

http://dx.doi.org/10.1007/978-3-319-21377-4_4
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proportional rule, in an endowment insurance with maturity at time m and annual
level premiums payable for m years, the amount S[red] can be determined as follows:

S[red] = t

m
S (5.7.4)

5.8 References and Suggestions for Further Reading

All the actuarial textbooks on life insurance mathematics and technique deal with
the calculation of reserves. Hence, the reader can refer to Bowers et al. (1997),
Dickson et al. (2013), Gerber (1995), Gupta and Varga (2002), Koller (2012), Norberg
(2002), Promislow (2006), and Rotar (2007).

The traditional approach to the profit assessment at the policy level is proposed
by Promislow (2006), whereas Gupta and Varga (2002) place special emphasis on
mortality profits.
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