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6.1            Introduction 

 Congenital heart disease is the most common congenital anomaly, occurring in 0.8 
per 100 live births, with many of these patients requiring treatment by interventional 
cardiology or cardiothoracic surgery during the fi rst year of life. Imaging algorithms 
in congenital heart disease continue to evolve, with more and more information 
obtained by noninvasive methods. Noninvasivity is even more relevant during the 
follow-up of such patients, and nuclear medicine techniques play a signifi cant role 
in many situations.  
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6.2     Heart 

 Nuclear medicine techniques have a well-established role in adult cardiovascular 
diseases, particularly for the evaluation of myocardial ischemia, risk assessment, 
and viability. The use of scintigraphy in pediatric nuclear cardiology is more lim-
ited, partly because of technical (relatively long acquisition time, limited spatial 
resolution with regard to small organ size) and dosimetric limitations. Nonetheless, 
scintigraphic characterization of myocardial perfusion and/or metabolism remains 
in many cases a precious support for clinical decisions. 

 High quality informative studies are obtained only by a dedicated approach, 
encompassing not only patient preparation and data acquisition, but also the clinical 
indication, which can differ broadly from the adult cardiology setting. Myocardial 
perfusion scintigraphy is useful in children with chest pain only when ECG and/or 
echocardiographic fi ndings are present [ 1 ]. 

6.2.1     Radiopharmaceuticals 

 Technetiated tracers represent the best choice for myocardial SPET in children. 
Both  99m Tc-methoxyisobutilisonitrile ( 99m Tc-MIBI) and  99m Tc-tetrofosmin have 
superior imaging quality compared to  201 Thallium ( 201 Tl), which has an unfavorable 
dosimetric profi le, resulting in a much higher absorbed dose. Hepatic clearance of 
MIBI and tetrofosmin may be slow in children, particularly in infants, with adverse 
effect on the evaluation of the inferior wall of the heart in small patients [ 2 ]. In this 
case, it is useful to prolong the waiting time after injection to 60–90 min. 

 Dose scaling should be performed following local regulations, aiming at a bal-
ance between radiation protection and the need for good quality images. Many dose 
reduction algorithms have been published and some of them are periodically 
adjusted to the evidence of research literature and made available online [EANM 
dose calculator, SNM dose, tool etc.]. Fasting (2–3 h) is required for stress imaging 
and when sedation is reasonably foreseen; it is advisable to perform rest imaging in 
the same condition, to improve reproducibility. 

 Positron emitting radiopharmaceuticals have been used in selected cases for the 
study of myocardial metabolism ( 18  F-FDG) and/or perfusion ( 13 NH and  82 Rb) in 
children [ 3 – 5 ], with promising results, especially with regard to the superior spatial 
resolution. The introduction of PET/MR scanner could increase the use of these 
radiotracers, offering a reduced radiation dose and simultaneous morpho-functional 
study.  

6.2.2     Stress Testing 

 Physical exercise (treadmill or bicycle) can be used as stressor, starting from 5 to 6 
years of age, depending on single patient’s characteristics, but pharmacologic test-
ing is more reproducible in infants and younger children, requiring less compliance 

P. Zucchetta



117

from patient and parents [ 6 ]. Adenosine (140 mcg/kg body weight per minute by an 
infusion pump for 4–6 min) has the signifi cant advantage over dypiridamole of a 
shorter duration of action (less than 30 s). Stopping the venous infusion is usually 
the only action required to control the possible side effects, mostly mild and self- 
limiting (fl ushing, vague abdominal discomfort) with no need for antagonist drugs, 
such as aminophylline for dypiridamole. Caffeine-containing foods (soft drinks, 
tea, etc.), teophylline, and similar drugs may interfere with adenosine action and 
should be avoided for 24 or better 48 h [ 7 ]. Adenosine and dypiridamole are contra-
indicated in children with history of asthma or signifi cant wheezing or with heart 
block. Radiopharmaceutical injection should be performed using a dedicated intra-
venous line at peak exercise or when the calculated drug dose has been adminis-
tered. It is possible to contemplate the injection of the radiotracer in the same line 
of drug infusion via a three-way stopcock, to reduce the stress due to multiple vene-
punctures, as is the case for many infants. However, one must interrupt the adenos-
ine infusion only for a few seconds, to avoid the rapid decrease of pharmacological 
action on the coronary fl ow.  

6.2.3     Image Acquisition and Processing 

 Image acquisition (180° orbit from +45° to –135°, 20–30 s/frame, high-resolution 
or ultra high-resolution collimators) usually starts 60–90 min after radiopharmaceu-
tical injection. Appropriate magnifi cation is required, depending on patient’s heart 
size. A double-head camera is preferable, in order to keep the acquisition time as 
low as possible, reducing the possibility of patient movement. Since motionless 
acquisition is essential for good quality images, sedation is usually required in neo-
nates, infants, and in most children aged less than 5–6 years. Small hearts and pro-
portionately small defect size make iterative reconstruction and the so-called 
“resolution recovery” algorithms preferable to standard image processing. It is pos-
sible to acquire gated studies (G-SPET), but signifi cant inaccuracies in volume 
determination and ejection fraction calculation could result from heart’s small size 
[ 8 ] in the younger age groups, even using 10–12 intervals sampling or more, to take 
in account high cardiac frequency. A normal variant of the distribution pattern of 
myocardial perfusion has been described in children, showing a reduced uptake in 
the antero-lateral segment of the left ventricle [ 9 ]. Moreover, the anatomy of con-
genital malformed hearts can differ largely from standard, requiring particular 
attention in the identifi cation of the ventricular chambers. In such cases, the use of 
hybrid imaging with low-dose CT (SPET-CT) can be useful [ 10 ].  

6.2.4     Kawasaki Disease 

 Kawasaki disease is an acute, self-limited vasculitis, occurring more frequently in 
infants and children between ages 1 and 8 years [ 11 ]. It is associated initially with 
fever, rash, adenopathy, and conjunctival and oral mucosa abnormalities. Coronary 
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arteries are frequently involved without prompt treatment and coronary aneurysms 
may develop (in up to 25 % of untreated children). About two thirds regress during 
the fi rst year after the acute illness, but some patients develop long-term coronary 
stenosis, even after aneurysm regression [ 12 – 14 ]. Moreover, perfusion defects have 
been described in the absence of detectable coronary lesions [ 15 ,  16 ]. They could be 
related to abnormal endothelial function, which has been demonstrated in some 
patients without coronary aneurysms, even years after recovery from the acute ill-
ness [ 17 ]. Echocardiography is the standard method for aneurysms identifi cation 
and follow-up, but myocardial perfusion scintigraphy is useful for noninvasive 
assessment of myocardial perfusion [ 18 ] and has a role in the follow-up of patients 
with persistent coronary aneurysms. The usefulness of myocardial perfusion scin-
tigraphy in the evaluation of possible long-term disturbances of ventricular micro-
circulation remains to be determined [ 19 ,  20 ].  

6.2.5     Anomalous Origin of the Left Coronary Artery 
from the Pulmonary Artery 

 Anomalous origin of the left coronary artery from the pulmonary artery (ALCAPA) 
is a rare (0.25–0.5 %) congenital cardiac abnormality, diagnosed mainly by echo-
cardiography and/or cardiac catheterization. It has a high mortality (up to 90 %) 
during the fi rst year life, if untreated [ 21 ,  22 ], but surgical repair has markedly 
improved survival (mortality below 5 % in some reports) [ 23 ,  24 ]. Nuclear medicine 
techniques can be useful in the postoperative follow-up. The extension of ischemic 
myocardium detected by SPET perfusion scintigraphy is related with the delay in 
functional recovery, and the presence of viable myocardium on FDG imaging is an 
important prognostic predictor [ 25 ]. 

 Myocardial perfusion imaging has been considered not helpful in patients with 
anomalous origin of RCA from LCA, because the right ventricular wall is too thin 
to be imaged at rest in the absence of right ventricular hypertrophy [ 1 ]. However, 
technical progress could lead to a change, as has been reported in a selected group 
of patients (Fig.  6.1 ) [ 26 ].

  Fig. 6.1    Male, 9 years, anomalous origin of the left coronary artery. MIBI myocardial perfusion 
scintigraphy. Reversible hypoperfusion in the anterior wall of the left ventricle       
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6.2.6        Transposition of the Great Arteries 

 Myocardial perfusion imaging has been frequently employed in children [ 27 ,  28 ] 
after surgical intervention involving mobilization and/or reimplantation of coro-
nary arteries, as in the arterial switch operation (ASO) for the transposition of the 
great arteries (TGA), where the coronary arteries are reimplanted at the time of 
surgery and may be prone to kinking, abnormal vasodilation, or failure to grow at 
the anastomosis level after reimplantation. Severe hypoperfusion, fi xed or revers-
ible, is usually associated with perioperative complications and brings a poorer 
prognosis. Perfusion defects can be detected frequently during the follow-up of 
patients treated with ASO, most commonly in the apical, lateral free wall of the left 
ventricle [ 28 – 30 ]. In most cases their size is small, and they have no infl uence on 
the ventricular performance. Their pathophysiologic signifi cance (i.e., microcircu-
lation disturbances or reduced endothelial function) and their prognostic value 
have not been yet established. Myocardial perfusion scintigraphy has been used 
also in the follow-up of TGA patients treated with the Mustard-Senning procedure 
(atrial switch), where the morphological right ventricle is the systemic ventricle 
and therefore develops a progressive hypertrophy, which can be complicated by 
regional ischemia [ 31 ], as it has been described in univentricular correction (Fontan 
procedure) [ 32 ].

6.2.7        Metabolic Syndromes 

 Nuclear medicine techniques have been applied to Duchenne muscular dystrophy 
(DMD), which is associated with myocardial degeneration and fi brosis. Myocardial 
lesions are segmentally distributed and start the basal inferior and infero-lateral 
walls of the left ventricle, progressing to midinferior, apical, and anterior segments, 
where a severe transmural fi brosis and fatty infi ltration has been observed, with 
increased glucose utilization on the FDG-PET study (perfusion metabolism mis-
match) [ 33 ]. 

 A recent study proved the utility of myocardial perfusion imaging in Williams 
syndrome, a multisystem disorder characterized by a deletion of the elastin gene, 
which leads to diffuse cardiovascular alterations, often involving the coronary 
arteries [ 34 ].   

6.3     Lung 

 Pulmonary blood fl ow disturbances are a frequent fi nding in congenital heart dis-
ease. They have often heavy consequences on the blood saturation and on the devel-
opment of the child, requiring prompt treatment and a prolonged follow-up. 
Furthermore, lung perfusion unbalance may be a complication of surgical manipu-
lation of the pulmonary arteries during palliative and/or corrective interventions. 
Lung perfusion scintigraphy represents an effective and safe technique for the 
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noninvasive study of pulmonary blood fl ow distribution and is a perfect complement 
to ultrasound techniques. 

6.3.1     Radiopharmaceuticals 

 The distribution of pulmonary blood fl ow can be assessed by lung perfusion scin-
tigraphy using technetium-labeled macro-aggregate of albumin ( 99m Tc-MAA) or 
albumin microspheres [ 35 ,  36 ]. Standard adult radioactivity dose must be reduced 
according to radiation protection regulation, preferably referring to a validated 
dose reduction algorithm [i.e., EANM dose calculator or similar]. A similar 
reduction in the number of injected particles (Table  6.1 ) is required, to avoid a 
signifi cant increase in pulmonary vascular resistance, even in infants with severe 
pulmonary hypertension. The method has proved to be safe even in patients with 
known signifi cant right-to-left shunts, where a further prudential reduction in the 
number of injected aggregates may be advisable, to limit to a minimum dissemi-
nation in the systemic circulation. The total amount of injected particles should 
not be less than 10,000–20,000, to avoid a signifi cant deterioration of image 
quality [ 37 ].

6.3.2        Patient Preparation 

 No specifi c preparation is required for lung perfusion scintigraphy and sedation is 
not routinely indicated, at least for standard acquisition. It is highly recommended 
to defer the exam when a concomitant illness (i.e., bronchopulmonary infections) 
can interfere with tracer distribution. Even low-grade bronchoconstriction can result 
in signifi cant redistribution of pulmonary blood fl ow [ 38 ], making diffi cult the 
interpretation of scintigraphic fi ndings. Therefore, it is advisable to wait for the 
resolution of respiratory symptoms before performing lung perfusion scan. The 
tracer is administered via a peripheral vein, avoiding whenever possible injection in 
a venous line, which can lead to “hot spot” artifacts. The site of administration is not 
relevant when normal atrial mixing is present and both lungs are perfused through a 
common blood supply. When these conditions are not met, the injection site must be 
adapted to the physiology of the pulmonary blood fl ow, taking in account the actual 
functional anatomy of the single patient. This is the case of some complex malfor-
mations or after some types of surgical repair (i.e. staged Fontan procedure), when 
multiple injections are required [ 39 ] (vide infra).  

   Table 6.1    Suggested numbers of injected particles for lung perfusion scintigraphy in children   

 Body weight  <5 kg  6–15 kg  16–20 kg  21–35 kg  >35 kg 

 Particles 
number 

 10,000–
50,000 

 50,000–
100,000 

 100,000–
200,000 

 200,000–
300,000 

 300,000 

  Further reduction is advisable when right-to-left shunting is present  
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6.3.3     Image Acquisition and Processing 

 Static images are acquired shortly after injection, in posterior and anterior views 
(200–500 kilocounts/frame, 256 × 256 matrix, acquisition zoom adapted to 
patient size), using ideally a parallel hole high-resolution collimator. Oblique 
views are obtained when necessary, to clarify dubious fi ndings. Relative lung 
perfusion is usually computed using geometric mean counts from region of inter-
est (ROI) on both lungs in anterior and posterior projections. However, calcula-
tions based on the single posterior projection have been shown to differ only 
slightly from values based on geometric mean [ 40 ]. Therefore it is possible to 
acquire only the posterior view, without losing signifi cant clinical data, making 
easier the acquisition in infants and uncooperative children. Moreover data 
obtained from anterior projection can be sometimes misleading, due to the sig-
nifi cant infl uence of heart position [ 41 ]. Extra- pulmonary tracer is usually negli-
gible and background subtraction can be useful only in few selected patients, 
presenting signifi cant right-to-left shunting and extremely hypoperfused lung. In 
this case background subtraction can correct for lung counts from extra-pulmo-
nary tissue, but care must be taken to adopt the same approach in the follow-up 
studies. It is also possible to quantify a right-to-left shunt, comparing the lung 
counts with the total extra-pulmonary activity on a whole body image [ 42 ] or 
with the brain counts [ 43 ].  

6.3.4     Typical Findings 

 The normal distribution for pulmonary blood fl ow usually in the 45–55 % range 
for the single lung (right + left = 100 %) and the ROI-based calculation is highly 
reproducible. The most frequent abnormality observed in congenital heart dis-
ease is a diffuse unilateral reduction of relative pulmonary blood fl ow, in most 
cases related to a stenosis of the left or (less frequently) right pulmonary artery. 
Nevertheless, the same pattern can occur by multiple peripheral stenoses of the 
main arterial branches or by diffuse vascular involvement affecting the whole 
lung; therefore, scintigraphic imaging represents only a step before the defi ni-
tive diagnosis. Focal hypoperfusion, which is unusual in children with congeni-
tal heart disease, is linked more often to a single peripheral stenosis. In some 
cases an apical hypoperfusion is observed on the same side of Blalock-Taussig 
shunt, probably as a sequel of vascular distortion during the surgical procedure 
[ 44 ,  45 ]. This kind of abnormality can persist after removing the shunt, but it has 
usually small impact on the global distribution of the blood fl ow to the affected 
lung. A functioning Blalock-Taussig shunt can lead to a variable underestima-
tion of the blood fl ow to the ipsilateral lung through a dilution effect of the 
systemic blood on the radiolabeled particles arriving via the pulmonary artery. 
The same dilution mechanism underlies the focal hypoactivity of lung segments 
perfused by persistent aorto-pulmonary connections, as is often observed in pul-
monary atresia [ 46 ].  
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6.3.5     Clinical Indications 

 Lung perfusion scintigraphy has a limited role in the early diagnostic work-up of 
congenital heart disease, because diagnosis and treatment planning rely in most 
cases on morphological imaging (echocardiography, MRI, cardiac catheteriza-
tion, etc.). The noninvasive evaluation of pulmonary blood fl ow distribution 
becomes critical after surgical palliation or correction, since an unbalance in 
lung perfusion may arise, without any clinical sign, even after successful uncom-
plicated one-stage correction of mild anomalies [ 47 ]. Echography can explore 
only the most proximal tract of pulmonary arteries; MRI or repeated angio-
graphic studies are too invasive for simple follow-up purposes, but the combina-
tion of ultrasound and lung perfusion scintigraphy allows a prolonged follow-up 
with little biological and economical cost. Therefore lung perfusion scan is indi-
cated in the follow-up of congenital heart disease whenever there is the need to 
evaluate the relative distribution of pulmonary blood fl ow [ 48 ]. The integration 
with ultrasound compensates for the inability of scintigraphy to detect a sym-
metric decrease in pulmonary blood fl ow, as in stenosis of the main trunk of the 
pulmonary artery or in bilateral balanced stenosis. On the other side, scintigra-
phy has the capability of look into the peripheral distribution of pulmonary blood 
fl ow without limitations related to anatomical anomalies. Typical indications for 
this approach are the tetralogy of Fallot (Fig.  6.2 ), the isolated stenosis of the 
pulmonary arteries, the monitoring after closure of a persistent ductus arteriosus 
or, as an emerging indication, the follow-up of anomalous pulmonary venous 
return. Even more relevant is the role of perfusion scanning in the follow-up of 
staged surgical repair, as in the correction following the principle of the Fontan 
circulation, where a single ventricle sustains both systemic and pulmonary 

a b

  Fig. 6.2    ( a ) Male, 6 months. Repair of tetralogy of Fallot. MAA pulmonary perfusion scintigra-
phy showing marked hypoperfusion of the left lung. ( b ) MAA pulmonary perfusion scintigraphy 3 
months after percutaneous balloon angioplasty of the left pulmonary artery. Marked improvement 
of the perfusion in the left lung       

 

P. Zucchetta



123

circulation and the superior and inferior vena cava fl ow directly in the pulmonary 
arteries, through surgical anastomosis. In this situation it is mandatory to split 
the dose between arm and leg injection, to evaluate correctly the contribution of 
SVC and IVC to pulmonary blood fl ow. A single injection would give a falsely 
asymmetric distribution, with a preferential fl ow to the right lung from the SVC 
or a prevalent fl ow to the left lung after leg injection (Fig.  6.3 ) [ 48 ]. MRI imaging 
can give more reliable results when a complete Fontan circulation is present 
[ 49 – 52 ]. Stenosis of the pulmonary arteries may persist after each phase of the 
staged repair, or it may arise as a consequence of surgical manipulation. The 
effects of reduced blood fl ow on vascular and/or pulmonary development can be 
corrected and even reverted with prompt treatment (surgical reintervention or, 
more often, angioplasty and endovascular stenting). The combination of seriate 
echographic and scintigraphic studies allows to limit the use of cardiac catheter-
ization, which can be employed only when angioplasty is required, leading to a 
signifi cant reduction of radiation exposure.

a b

c

  Fig. 6.3    ( a ) Female, 4 years. Fontan circulation (SVC and IVC anastomized to the pulmonary 
arteries). MAA pulmonary perfusion scintigraphy (split-dose) after injection in the upper limb: 
preferential distribution from SVC. ( b ) After injection in the lower limb, the lung perfusion is sym-
metric. ( c ) Subtraction image (summed injections – upper limb injection) showing the preferential 
contribution from the IVC to the left lung       
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   Lung perfusion scintigraphy has been used also in the follow-up of congenital 
diaphragmatic hernia and a relationship has been demonstrated between scinti-
graphic data and long-term prognosis [ 53 ,  54 ].      
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