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Abstract. This paper analyzes the assumptions of the decision mak-
ing models in the context of artificial general intelligence (AGI). It is
argued that the traditional approaches, exemplified by decision theory
and reinforcement learning, are inappropriate for AGI, because their fun-
damental assumptions on available knowledge and resource cannot be
satisfied here. The decision making process in the AGI system NARS is
introduced and compared with the traditional approaches. It is concluded
that realistic decision-making models must acknowledge the insufficiency
of knowledge and resources, and make assumptions accordingly.

1 Formalizing Decision-Making

An AGI system needs to make decisions from time to time. To achieve its goals,
the system must execute certain operations, which are chosen from all possi-
ble operations, according to the system’s beliefs on the relations between the
operations and the goals, as well as their applicability to the current situation.

On this topic, the dominating normative model is decision theory [3,12].
According to this model, “decision making” means to choose one action from a
finite set of actions that is applicable at the current state. Each action leads to
some consequent states according to a probability distribution, and each conse-
quent state is associated with a utility value. The rational choice is the action
that has the maximum expected utility (MEU).

When the decision extends from single actions to action sequences, it is often
formalized as a Markov decision process (MDP), where the utility function is
replaced by a reward value at each state, and the optimal policy, as a collection
of decisions, is the one that achieves the maximum expected total reward (usually
with a discount for future rewards) in the process. In AI, the best-known app-
roach toward solving this problem is reinforcement learning [4,16], which uses
various algorithms to approach the optimal policy.

Decision theory and reinforcement learning have been widely considered as
setting the theoretical foundation of AI research [11], and the recent progress in
deep learning [9] is increasing the popularity of these models. In the current AGI
research, an influential model in this tradition is AIXI [2], in which reinforcement
learning is combined with Solomonoff induction [15] to provide the probability
values according to algorithmic complexity of the hypotheses used in prediction.
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Every formal model is based on some fundamental assumptions to encapsu-
late certain beliefs about the process to be modeled, so as to provide a coherent
foundation for the conclusions derived in the model, and also to set restrictions
on the situations where the model can be legally applied. In the following, four
major assumptions of the above models are summarized.

The assumption on task: The task of “decision making” is to select the best
action from all applicable actions at each state of the process.

The assumption on belief: The selection is based on the system’s beliefs
about the actions, represented as probability distributions among their con-
sequent states.

The assumption on desire: The selection is guided by the system’s desires
measured by a (utility or reward) value function defined on states, and the
best action is the one that with the maximum expectation.

The assumption on budget: The system can afford the computational
resources demanded by the selection algorithm.

There are many situations where the above assumptions can be reasonably
accepted, and the corresponding models have been successfully applied [9,11].
However, there are reasons to argue that artificial general intelligence (AGI) is
not such a field, and there are non-trivial issues on each of the four assumptions.

Issues on Task: For a general-purpose system, it is unrealistic to assume that
at any state all the applicable actions are explicitly listed. Actually, in human
decision making the evaluation-choice step is often far less significant than diag-
nosis or design [8]. Though in principle it is reasonable to assume the system’s
actions are recursively composed of a set of basic operations, decision makings
often do not happen at the level of basic operations, but at the level of composed
actions, where there are usually infinite possibilities. So decision making is often
not about selection, but selective composition.

Issues on Belief: For a given action, the system’s beliefs about its possible
consequences are not necessarily specified as a probability distribution among
following states. Actions often have unanticipated consequences, and even the
beliefs about the anticipated consequences usually do not fully specify a “state”
of the environment or the system itself. Furthermore, the system’s beliefs about
the consequences may be implicitly inconsistent, so does not correspond to a
probability distribution.

Issues on Desire: Since an AGI system typically has multiple goals with con-
flicting demands, usually no uniform value function can evaluate all actions with
respect to all goals within limited time. Furthermore, the goals in an AGI system
change over time, and it is unrealistic to expect such a function to be defined
on all future states. How desirable a situation is should be taken as part of the
problem to be solved, rather than as a given.

Issues on Budget: An AGI is often expected to handle unanticipated prob-
lems in real time with various time requirements. In such a situation, even if
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the decision-making algorithms are considered as of “tractable” computational
complexity, they may still fail to satisfy the requirement on response time in the
given situation.

None of the above issues is completely unknown, and various attempts have
been proposed to extend the traditional models [1,13,22], though none of them
has rejected the four assumptions altogether. Instead, a typical attitude is to take
decision theory and reinforcement learning as idealized models for the actual AGI
systems to approximate, as well as to be evaluated accordingly [6].

What this paper explores is the possibility of establishing normative models
of decision making without accepting any of the above four assumptions. In the
following, such a model is introduced, then compared with the classical models.

2 Decision Making in NARS

The decision-making model to be introduced comes from the NARS project
[17,18,20]. The objective of this project is to build an AGI in the framework
of a reasoning system. Decision making is an important function of the system,
though it is not carried out by a separate algorithm or module, but tightly
interwoven with other functions, such as reasoning and learning. Limited by the
paper length, the following description only briefly covers the aspects of NARS
that are directly related to the current discussion.

NARS is designed according to the theory that “intelligence” is the abil-
ity for a system to be adaptive while working with insufficient knowledge and
resources, that is, the system must depend on finite processing capability, make
real-time responses, open to unanticipated problems and events, and learn from
its experience. Under this condition, it is impossible for the truth-value of beliefs
of the system to be defined either in the model-theoretic style as the extent of
agreement with the state of affairs, or in the proof-theoretic style as the extent of
agreement with the given axioms. Instead, it is defined as the extent of agreement
with the available evidence collected from the system’s experience.

Formally, for a given statement S, the amount of its positive evidence and
negative evidence are defined in an idealized situation and measured by amounts
w+ and w−, respectively, and the total amount evidence is w = w+ + w−. The
truth-value of S is a pair of real numbers, 〈f, c〉, where f , frequency, is w+/w so
in [0, 1], and c, confidence, is w/(w + 1) so in (0, 1). Therefore a belief has a
form of “S〈f, c〉”. As the content of belief, statement S is a sentence in a formal
language Narsese. Each statement expresses a relation among a few concepts.
For the current discussion, it is enough to know that a statement may have
various internal structures for different types of conceptual relation, and can
contain other statements as components. In particular, implication statement
P ⇒ Q and equivalence statement P ⇔ Q express “If P then Q” and “P if and
only if Q”, respectively, where P and Q are statements themselves.

As a reasoning system, NARS can carry out three types of inference tasks:

Judgment. A judgment also has the form of “S〈f, c〉”, and represents a piece
of new experience to be absorbed into the system’s beliefs. Besides adding
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it into memory, the system may also use it to revise or update the pre-
vious beliefs on statement S, as well as to derive new conclusions using
various inference rules (including deduction, induction, abduction, analogy,
etc.). Each rule uses a truth-value function to calculate the truth-value of the
conclusion according to the evidence provided by the premises. For example,
the deduction rule can take P 〈f1, c1〉 and P ⇒ Q 〈f2, c2〉 to derive Q〈f, c〉,
where 〈f, c〉 is calculated from 〈f1, c1〉 and 〈f2, c2〉 by the truth-value func-
tion for deduction.1 There is also a revision rule that merges distinct bodies
of evidence on the same statement to produce more confident judgments.

Question. A question has the form of “S?”, and represents a request for the
system to find the truth-value of S according to its current beliefs. A question
may contain variables to be instantiated. Besides looking in the memory for
a matching belief, the system may also use the inference rules backwards
to generate derived questions, whose answers will lead to answers of the
original question. For example, from question Q? and belief P ⇒ Q 〈f, c〉,
a new question P? can be proposed by the deduction rule. When there are
multiple candidate answers, a choice rule is used to find the best answer
among them, based on truth-value, simplicity, and so on.

Goal. A goal has the form of “S!”. Similar to logic programming [5], in NARS
certain concepts are given a procedural interpretation, so a goal is taken
as a statement to be achieved, and an operation as a statement that can
be achieved by an executable routine. The processing of a goal also includes
backward inference guided by beliefs that generates derived goals. For exam-
ple, from goal Q! and belief P ⇒ Q 〈f, c〉, a new goal P ! can be proposed
by the deduction rule. If the content of a goal corresponds to an executable
operation, the associated routine is invoked to directly realize the goal, like
what a Prolog built-in predicate does.

Under the restriction of the available knowledge and resources, no task can
be accomplished perfectly. Instead, what the system attempts is to accomplish
them as much as allowed by its available knowledge and resources. In NARS,
decision making is most directly related to the processing of goals, though the
other inference activities are also relevant.2

In Narsese, an operation is expressed by an operator (which identifies the
associated routine) with an argument list (which includes both input and out-
put arguments). The belief about the execution condition and consequence of an
operation is typically represented as “(condition, operation) ⇒ consequence”,
which is logically equivalent to “condition ⇒ (operation ⇒ consequence)”.3

This belief can be used in different ways. In an idealized situation (where the

1 Since P and Q can be events with an occurence time, the same rules can be used
for temporal reasoning, which is described in more detail in [21].

2 Different types of inference tasks may work together. For example, from important
judgments of low confidence, questions can be derived, and from certain questions,
goals can be derived, which if pursued give rise to curious and exploratory behaviors.

3 Like other beliefs, there is a truth-value attached, which is omitted here to simplify
the discussion.
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uncertainty of the belief and the existence of other beliefs and tasks are ignored),
if “condition” is true, the execution of “operation” will make “consequence” true
by forward inference; when “consequence!” is a goal, backward inference will
generate “condition!” as a derived goal. When the latter goal is satisfied (either
confirmed by a belief or achieved recursively by other operations), “operation!”
becomes another derived goal, which is directly achieved by invoking the asso-
ciated routine. Here the process looks similar to logic programming, though the
situation is more complicated, especially in backward inference.

As an open system working in real time, new tasks can come while the system
is still working on other goals, and there is no guarantee that all the co-existing
goals are consistent with each other in what they demand the system to do.
Even if all the innate and given goals are consistent, the derived ones may
not be, since they usually come as means to achieve certain goal in isolation,
without considering their impacts on the other goals. Even among goals that are
consistent with each other in content, they still compete for resources, especially
processing time. In NARS, to fully process a goal means to take all relevant
beliefs into consideration. Since the system’s capability is finite and the goals
all should be accomplished as soon as possible, it is usually impossible to fully
process all of them. Consequently, it becomes necessary to have preference among
goals to indicate their different significance to the system.

Instead of defining a separate measurement for preference, NARS takes the
“desire as belief” approach [10]. The desire-value of statement S is taken as the
truth-value of statement S ⇒ D, where D is a virtual statement representing
the “desired state” where all the system’s goals are satisfied. D is “virtual” in
the sense that its content is not explicitly spelled out, nor is it actually stored
in the system’s memory. It is only used in the conceptual design to turn the
processing of the desire-values into that of the related truth-values. While every
judgement has an assigned truth-value, every goal has an assigned desire-value.
Like a truth-value, the intuitive meaning of a desire-value can also be explained
using idealized situations. S has desire-value 〈w+/w,w/(w + 1)〉 if the system
believes that if S is realized, w+ of its w consequences are “good”, while the rest
of them are “bad”, with respect to the system’s goals. In this way, the system can
calculate the desire-value of a statement according to the desire-value of another
statement and the belief that linked them, using the truth-value functions of the
inference rules. For example, the desire-value of statement S1, d1, is interpreted
as the truth-value of statement S1 ⇒ D, so can be used with the truth-value
of belief S2 ⇒ S1, t1, by the deduction function to calculate d2, the truth-value
of S2 ⇒ D, which is the desire-value of statement S2. In this process the exact
content of D is irrelevant, as far as it is the same in its two usages. Even without
going into the details of the above calculation, it is easy to see that d2 depends
on both d1 and t1. S2 is highly desired only when S1 is highly desired and the
implication relation S2 ⇒ S1 is strongly supported by available evidence.

Similarly, the revision rule can be used to merge conflicting desire-values. For
example, after a high desire-value of S2 is established by a goal S1, another goal
S3 is taken into consideration, but the system believes that it can be realized
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only when S2 is not realized. By deduction again S2 will get another desire-value
d′
2 whose frequency value is low. Now the revision rule can combine d2 and d′

2

into d′′
2 , as the desire-value of S2 when both goals S1 and S3 are taken into

account. In this case, whether S2 will still be treated as a goal depends on the
total evidence – if the frequency factor in d′′

2 is too low, it will not be pursued
by the system, despite of the positive evidence from S1. In this way, “decision
making” in NARS can be discussed in two senses:

– In a narrow sense, it corresponds to the decision of whether to turn a state-
ment ‘S’ into a goal ‘S!’. As explained above, this decision mainly depends
on the current desire-value of S, especially the frequency factor in it.

– In a broad sense, it corresponds to the process in which the related factors,
especially the desire value of S, are decided. As explained above, this process
may consist of many steps and involve many tasks and beliefs.

As argued in several other publications (such as [18,20]), since NARS takes
a unified approach toward AGI, many cognitive functions are interwoven in it
and carried out by the same underlying process, rather than by interconnected
modules. This is true for functions like “reasoning”, “learning”, as well as “deci-
sion making”. What is special about the latter is that the decision of whether
to pursue a new goal is a binary commitment, a “to do or not to do” matter,
which is based on the current beliefs and desires that are all matters of degree.

3 Comparison and Discussion

The objective of this paper is not to explain the details of decision-making in
NARS, but to use NARS as an example to show the feasibility of building a
normative model of decision-making where none of the four traditional assump-
tions is made. In the following each of these assumptions is contrasted with the
corresponding assumption in NARS.

The Assumption on Task

Decision making eventually is about the selection of an action among alterna-
tives. However, it does not have to be directly formalized as a selection algorithm
with a list of alternatives as input – finding the alternatives is also important.

NARS takes the decision to be “Whether to pursue a goal”, so it also covers
the situation where a goal is not directly achieved by an operation, but via
derived goals. Here “to execute an operation” is just a special case of “to achieve a
goal”, where the content of the goal happens to be an operation. On the contrary,
the traditional models leave the derivation of goals out of the model, even though
it is a crucial aspect of decision making.

For a given goal, NARS considers each alternative one by one, and each
of which is a derived goal, with operation as a special case. In each case, the
comparison is between “pursue the goal” and “not to pursue the goal”. For a
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given goal, the system may pursue zero, one, or multiple derived goals, and some
of the alternatives may be discovered or constructed in the process. Unlike in
the traditional models, in this approach there is no demand for an exhaustive
list of mutually exclusive actions to be available in advance for each decision.

The traditional decision-making process can still be carried out in NARS as
a special case. If all possible actions are listed, and only one of them can be
selected, then the evidence favoring one action will be taken as evidence against
the other actions. Consequently, the best action selected by the traditional model
will also be the one selected by the choice rule of NARS, and its selection will
block the others under the mutual-exclusion restriction.

The Assumption on Belief

In all the models the selection of action is based on the system’s relevant beliefs
about its preconditions and its effects. In the traditional models, these two
aspects are embedded in the states of the environment, while in NARS they
are expressed by statements. In general, a statement only partially specifies a
state.

Based on the assumption of insufficient knowledge, in NARS even if a belief
(condition, operation) ⇒ consequence has a relatively high frequency and confi-
dence, condition does not necessarily specifies the operation’s full preconditions,
nor consequence its full effects. This approach is taken, not because the “state-
based” approach is bad, but because it is unrealistic. Even POMDP (partially
observable Markov decision process) models are too idealized on this aspect,
where states still need to be estimated from observations, since the Markov prop-
erty is defined only in a state-based representation. There have been attempts in
reinforcement learning study to change the “flat” state space into a hierarchical
one. However, the current approaches all assume static abstractions, and how to
get dynamic abstractions is still acknowledged as an open problem [1]. For a gen-
eral purpose system, it is crucial to move between different levels of abstractions,
as well as to generate them at run time. A statement-based description satisfies
such a need. An AGI should be able to work in a non-stationary environment,
where the states of the environment never accurately repeat. In such a situation,
though it still makes sense to talk about “the state of the environment”, to use
them to specify an operation is not possible, because future states are usually
different from past ones. A statement, on the other hand, only captures certain
aspect of states, so can be repeatedly observed in experience. If a classifier is used
to merge similar states, then it actually turns the model into “statement-based”,
since here one “state” may correspond to different situations.

Another difference between NARS and the traditional models is that the
truth-value in NARS is not probability. This topic has been discussed in previous
publications [18,20], so only the major arguments are summarized:

– In NARS, truth-value measures degree of belief according to available evi-
dence, which may change over time without converging to a limit, so is not
a function defined on the space of statements.
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– Each statement is evaluated according to its own available evidence, so all
the truth-values of the beliefs do not necessarily form a consistent probability
distribution, and there can be inconsistency among beliefs.

– Because of the above reasons, the calculation and revision of truth-value
cannot be handled as Bayesian conditioning or other theorems of probability
theory. Instead, their calculations are based on the semantics of NARS, using
extended Boolean functions.

Once again, this is the case, because under the assumption of insufficient knowl-
edge and resources, an AGI usually cannot maintain a consistent probability
distribution among its beliefs, no matter how preferred such a situation is.

In particular, Solomonoff probability [2,15] is not accepted in NARS, since
it demands unrealistic resources, as well as is justified by interpreting “Occam’s
Razor” as “Simple hypotheses are preferred because they are more likely to
be true”. In NARS, “Occam’s Razor” is interpreted as “Simple hypotheses are
preferred because they demands less resources”. Therefore, it is respected in
resource allocation, but not in truth-value calculation.

The Assumption on Desire

As a derivative of belief, in NARS desire is also defined on statements, rather
than on states. Beside the partiality nature, it has additional desirable features.

In both decision theory and reinforcement learning, it is assumed that the
states are evaluated by a single value function (utility function or reward func-
tion). Though such a treatment is natural for many practical problems, it has
trouble to be extended into general-purpose systems where there are usually mul-
tiple goals at the same time. Because of the conflicts and competitions among
the goals, the “value” of an action usually should be judged according to its
effects on all the existing goals. When these goals are incommensurable, it is
hard to justify such a function. The traditional models simply assume the exis-
tence of the function, so as to put the burden on the practitioners. Introducing a
monetary measurement like commonly used is not always natural or justifiable.

NARS does not depend on an overall value function, but defines desire-value
on statements, including goals as a subset. When considering each action, in
many situations it is hard, if not impossible, to judge its value against the “ulti-
mate goal” or “super goal” of the system. Instead, it is usually judged with
respect to each goal that happens to be considered at the time, and more con-
siderations will bring other related goals into account to revise its desire-value,
as explained previously. In the way, the overall desire-value is constructed by the
system, not given to it. Furthermore, this construction is adaptive and context-
sensitive, so it is not a fixed function defined on states or statements.

In the discussions about the safety of AI, many people have incorrectly
assumed that the key is to give the system a “super goal” that is beneficial to
human beings. In reality an intelligent system cannot always decide its actions
by checking them against such a super goal, due to knowledge-resource restric-
tion. What really matter are the currently active goals, which may have become
inconsistent with the initial goal from which they were derived [19].
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The Assumption on Budget

One of the most noticeable characteristics of NARS is the resources restriction
in its theoretical foundation. On the contrary, most normative models regard
the insufficiency of computational time and space as implementation issues and
exclude them from theoretical considerations [6]. It has been argued in several
of our publications that “optimum decisions made with sufficient resource” and
“optimum decisions made with insufficient resource” are different problems that
demand different solutions. Many cognitive functions observed in the human
mind were evolved to deal with resource allocation, such as attention, forgetting,
and emotion [7,14]. Their impacts on decision making cannot be understood if
the resource restriction is omitted.

For NARS, to work in real time means that each problem instance (not
problem type) has an associated time requirement that can only be determined
at runtime, and the available resources of the system cannot be predetermined,
since it depends on the co-existent tasks. To work in such a situation, in NARS
there is no “decision making algorithm” with a fixed computational complexity.
Instead, a decision-making process is formed at runtime by a large number of
inference steps, and the number and order of the steps are determined at the
moment by many factors, so that even if the same problem occurs at different
moments, its processing and even the result may be different. NARS cannot
guarantee to consider all possibilities when a decision is made, but it considers
as many as the current resource supply allows. A lot of work has been done in
reinforcement learning to improve efficiency, but the results are all in the form
of fixed algorithms, which cannot handle variable time pressure. NARS on the
other hand is designed to work under the assumption of insufficient resources,
with insufficient time as special case.

4 Conclusion

Mainly because of the insufficiency of knowledge and resources, certain basic
assumptions of the traditional models of decision making, namely decision theory
and reinforcement learning, cannot be accepted in realistic situations where AGI
systems should work. These assumptions include:

– “Decision making” means to select the best action from all applicable actions.
– Beliefs on actions are expressed as probabilistic transitions among states.
– Desires are measured by a value function defined on states.
– The system can afford the resources demanded by the involved algorithms.

Though the traditional models can still be extended and revised, they cannot
drop all these fundamental assumptions without becoming fundamentally differ-
ent models.4 They should not be taken as idealized models to be approximated,
since these assumptions change the nature of the problem of decision making.
4 There is no space in this paper to discuss approaches where some of them are rejected.
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The practice of NARS shows that it is feasible to put decision making in a
normative model that is based on the assumption of insufficient knowledge and
resources. Such a model shares many features with the human mind, while is still
justified according to certain principles of rationality. This direction is similar
to ideas like Simon’s “bounded rationality” [13], except those ideas are rarely
formalized and specified in details to be implementable in computers. Compared
to them, NARS provides a much more detailed model, which is also implemented
and under testing.5
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