
Jordi Bieger · Ben Goertzel
Alexey Potapov (Eds.)

 123

LN
AI

 9
20

5

8th International Conference, AGI 2015
Berlin, Germany, July 22–25, 2015
Proceedings

Artificial
General Intelligence

Lecture Notes in Artificial Intelligence 9205

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Jordi Bieger • Ben Goertzel
Alexey Potapov (Eds.)

Artificial
General Intelligence
8th International Conference, AGI 2015
Berlin, Germany, July 22–25, 2015
Proceedings

123

Editors
Jordi Bieger
Reykjavik University
Reykjavik
Iceland

Ben Goertzel
Hong Kong Polytechnic University
Hong Kong SAR

Alexey Potapov
Saint Petersburg State University

of Information Technologies,
Mechanics and Optics

St. Petersburg
Russia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-21364-4 ISBN 978-3-319-21365-1 (eBook)
DOI 10.1007/978-3-319-21365-1

Library of Congress Control Number: 2015943355

LNCS Sublibrary: SL7 – Artificial Intelligence

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

Almost exactly 60 years ago, in the summer of 1955, John McCarthy coined the term
“artificial intelligence” (AI) to refer to “the science and engineering of making intelli-
gent machines” in a proposal for a summer research project at Darthmouth College. The
subsequent Darthmouth Conferences of 1956 are often credited with the creation of the
field of AI. But as the problem proved much more difficult than anticipated, disillu-
sionment set in. The goal of creating machines that could think at a level comparable to
humans was set aside by many, in favor of the creation of “smart” applications that were
highly successful in specialized domains. Since then “AI” and “narrow AI” have
become almost synonymous and the development of systems showing more general
intelligence in a wide variety of domains was seen as unattainable.

But after having been largely ignored for many decades, the last ten years have seen
a small resurgence in the pursuit of what we now call artificial general intelligence
(AGI). While the contributions of narrow AI to science and society are undeniable,
many researchers were frustrated with the lack of progress toward the larger goal of AI.
Armed with novel technology and ideas, a new optimism has taken hold of the
community. Creating thinking machines may be a daunting task, but many people
today believe that it is not impossible, and that we can take steps toward that goal if we
keep our eye on the ball.

The AGI conference series, organized by the AGI Society, has been the main venue
for bringing together researchers in this re-emerging field. For the past eight years it has
facilitated the exchange of knowledge and ideas by providing an accessible platform
for communication and collaboration. This volume contains the research papers
accepted for presentation at the Eighth Conference on Artificial General Intelligence
(AGI-15), held during July 22–25, 2015, in Berlin. A total of 72 research papers were
submitted to the conference, and after desk rejecting 14 (19 %), each paper was
reviewed by at least two, and on average 2.93, Program Committee members. We
accepted 23 papers for oral presentation (32 %) as well as 19 posters (26 %), of which
one was withdrawn.

In addition to these contributed talks, the conference featured Jürgen Schmidhuber,
director of the Swiss AI lab IDSIA in Lugano, and Frank Wood, associate professor at
the University of Oxford, who gave invited keynote speeches on “The Deep Learning
RNNaissance” and probabilistic programming with the Anglican language. José
Hernández-Orallo, professor at the Polytechnic University of Valencia, gave a tutorial
on the evaluation of intelligent systems. Another tutorial was given by Alexey Potapov,
professor at the ITMO University and St. Petersburg State University, on the minimum
description length principle. A third tutorial, given by Nil Geisweiler, Cosmo Harrigan
and Ben Goertzel, described how to combine program learning and probabilistic logic
in OpenCog. Martin Balek and Dusan Fedorcak presented a visual editor for designing
the architecture of artificial brains. Finally, the conference also featured workshops on
Socioeconomic Implications of AGI and on Synthetic Cognitive Development and

Integrated-Distributed Agency, organized in collaboration with the Global Brain
Institute at the Free University of Brussels.

Finally, many thanks are due to those who helped organize the conference,
including Jan Klauck, Joscha Bach, and many others; and to the conference’s sponsors
including Kurzweil AI, Keen Software House, and the OpenCog Foundation.

May 2015 Jordi Bieger
Ben Goertzel

Alexey Potapov

VI Preface

Organization

Organizing Committee

Ben Goertzel
(Conference Chair)

AGI Society, USA

Joscha Bach MIT and Harvard University, USA
Matthew Iklé Adams State University, USA
Jan Klauck
(Local Chair)

Austrian Space Forum, Austria

Program Chairs

Jordi Bieger Reykjavik University, Iceland
Alexey Potapov AIDEUS and ITMO University, Russia

Program Committee

Bo An Nanyang Technological University, China
Itamar Arel University of Tennessee, USA
Joscha Bach MIT and Harvard University, USA
Tarek Besold University of Osnabrück, Germany
Cristiano Castelfranchi Institute of Cognitive Sciences and Technologies, Italy
Antonio Chella University of Palermo, Italy
Blerim Emruli Luleå University of Technology, Sweden
Stan Franklin University of Memphis, USA
Deon Garrett Icelandic Institute for Intelligent Machines, Iceland
Nil Geisweiller Novamente LLC, USA
Helmar Gust University of Osnabrück, Germany
José Hernández-Orallo Polytechnic University of Valencia, Spain
Bill Hibbard University of Wisconsin–Madison, USA
Marcus Hutter Australian National University, Australia
Matthew Iklé Adams State University, USA
Benjamin Johnston University of Sydney, Australia
Cliff Joslyn Pacific Northwest National Laboratory, USA
Randal Koene Carboncopies.org, USA
Kai-Uwe Kühnberger University of Osnabrück, Germany
Shane Legg Google Inc., USA
Moshe Looks Google Inc., USA
Maricarmen Martinez University of Los Andes, Colombia
Amedeo Napoli LORIA Nancy, France
Eric Nivel Icelandic Institute for Intelligent Machines, Iceland

Laurent Orseau Google Inc., USA
Guenter Palm Ulm University, Germany
Maxim Peterson ITMO University, Russia
Paul Rosenbloom University of Southern California, USA
Rafal Rzepka Hokkaido University, Japan
Samer Schaat Vienna Technical University, Austria
Ute Schmid University of Bamberg, Germany
Jürgen Schmidhuber IDSIA, Switzerland
Javier Snaider Google Inc., USA
Bas Steunebrink IDSIA, Switzerland
Claes Strannegård University of Gothenburg, Sweden
Kristinn Thórisson Reykjavik University, Iceland
Julian Togelius IT University of Copenhagen, Denmark
Mario Verdicchio University of Bergamo, Italy
Pei Wang Temple University, USA
Roman Yampolskiy University of Louisville, USA
Byoung-Tak Zhang Seoul National University, South Korea

Additional Reviewers

Mayank Daswani Australian National University, Australia
Tom Everitt Stockholm University, Sweden
Matthias Jakubec Vienna Technical University, Austria
Jan Leike Australian National University, Australia
Lydia Chaido Siafara Vienna Technical University, Austria
Qiong Wu Nanyang Technological University, China

Steering Committee

Ben Goertzel AGI Society, USA (Chair)
Marcus Hutter Australian National University, Australia

VIII Organization

Contents

Papers Presented Orally

Modeling Motivation in MicroPsi 2 . 3
Joscha Bach

Genetic Programming on Program Traces as an Inference Engine
for Probabilistic Languages . 14

Vita Batishcheva and Alexey Potapov

Scene Based Reasoning . 25
Frank Bergmann and Brian Fenton

Anchoring Knowledge in Interaction: Towards a Harmonic
Subsymbolic/Symbolic Framework and Architecture
of Computational Cognition . 35

Tarek R. Besold, Kai-Uwe Kühnberger, Artur d’Avila Garcez,
Alessandro Saffiotti, Martin H. Fischer, and Alan Bundy

Safe Baby AGI. 46
Jordi Bieger, Kristinn R. Thórisson, and Pei Wang

Observation, Communication and Intelligence in Agent-Based Systems 50
Nader Chmait, David L. Dowe, David G. Green, and Yuan-Fang Li

Reflective Variants of Solomonoff Induction and AIXI 60
Benja Fallenstein, Nate Soares, and Jessica Taylor

Are There Deep Reasons Underlying the Pathologies of Today’s Deep
Learning Algorithms? . 70

Ben Goertzel

Speculative Scientific Inference via Synergetic Combination of Probabilistic
Logic and Evolutionary Pattern Recognition . 80

Ben Goertzel, Nil Geisweiller, Eddie Monroe, Mike Duncan,
Selamawit Yilma, Meseret Dastaw, Misgana Bayetta, Amen Belayneh,
Matthew Ikle’, and Gino Yu

Stochastic Tasks: Difficulty and Levin Search . 90
José Hernández-Orallo

Instrumental Properties of Social Testbeds . 101
Javier Insa-Cabrera and José Hernández-Orallo

Towards Human-Level Inductive Functional Programming 111
Susumu Katayama

Anytime Bounded Rationality . 121
Eric Nivel, Kristinn R. Thórisson, Bas Steunebrink,
and Jürgen Schmidhuber

Ultimate Intelligence Part I: Physical Completeness and Objectivity
of Induction . 131

Eray Özkural

Towards Emotion in Sigma: From Appraisal to Attention 142
Paul S. Rosenbloom, Jonathan Gratch, and Volkan Ustun

Inferring Human Values for Safe AGI Design . 152
Can Eren Sezener

Two Attempts to Formalize Counterpossible Reasoning in Deterministic
Settings . 156

Nate Soares and Benja Fallenstein

Bounded Cognitive Resources and Arbitrary Domains 166
Abdul Rahim Nizamani, Jonas Juel, Ulf Persson, and Claes Strannegård

Using Localization and Factorization to Reduce the Complexity
of Reinforcement Learning . 177

Peter Sunehag and Marcus Hutter

Towards Flexible Task Environments for Comprehensive Evaluation
of Artificial Intelligent Systems and Automatic Learners 187

Kristinn R. Thórisson, Jordi Bieger, Stephan Schiffel, and Deon Garrett

Assumptions of Decision-Making Models in AGI . 197
Pei Wang and Patrick Hammer

Issues in Temporal and Causal Inference . 208
Pei Wang and Patrick Hammer

The Space of Possible Mind Designs . 218
Roman V. Yampolskiy

Papers Presented as Posters

A Definition of Happiness for Reinforcement Learning Agents 231
Mayank Daswani and Jan Leike

Expression Graphs: Unifying Factor Graphs and Sum-Product Networks. . . . 241
Abram Demski

X Contents

Toward Tractable Universal Induction Through Recursive Program
Learning . 251

Arthur Franz

How Can Cognitive Modeling Benefit from Ontologies? Evidence
from the HCI Domain . 261

Marc Halbrügge, Michael Quade, and Klaus-Peter Engelbrecht

C-Tests Revisited: Back and Forth with Complexity 272
José Hernández-Orallo

A New View on Grid Cells Beyond the Cognitive Map Hypothesis 283
Jochen Kerdels and Gabriele Peters

Programming Languages and Artificial General Intelligence 293
Vitaly Khudobakhshov, Andrey Pitko, and Denis Zotov

From Specialized Syntax to General Logic: The Case of Comparatives. 301
Ruiting Lian, Rodas Solomon, Amen Belayneh, Ben Goertzel,
Gino Yu, and Changle Zhou

Decision-Making During Language Understanding by Intelligent Agents. . . . 310
Marjorie McShane and Sergei Nirenburg

Plan Recovery in Reactive HTNs Using Symbolic Planning 320
Lydia Ould Ouali, Charles Rich, and Nicolas Sabouret

Optimization Framework with Minimum Description Length Principle
for Probabilistic Programming . 331

Alexey Potapov, Vita Batishcheva, and Sergey Rodionov

Can Machines Learn Logics? . 341
Chiaki Sakama and Katsumi Inoue

Comparing Computer Models Solving Number Series Problems. 352
Ute Schmid and Marco Ragni

Emotional Concept Development . 362
Claes Strannegård, Simone Cirillo, and Johan Wessberg

The Cyber-Physical System Approach Towards Artificial General
Intelligence: The Problem of Verification . 373

Zoltán T}osér and András L}orincz

Analysis of Types of Self-Improving Software . 384
Roman V. Yampolskiy

Contents XI

On the Limits of Recursively Self-Improving AGI 394
Roman V. Yampolskiy

Gödel Agents in a Scalable Synchronous Agent Framework 404
Jörg Zimmermann, Henning H. Henze, and Armin B. Cremers

Author Index . 415

XII Contents

Papers Presented Orally

© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 3–13, 2015.
DOI: 10.1007/978-3-319-21365-1_1

Modeling Motivation in MicroPsi 2

Joscha Bach()

Massachusetts Institute of Technology, Cambridge, MA, USA
joscha@mit.edu

Abstract. The MicroPsi architecture combines neuro-symbolic representations
with autonomous decision making and motivation based learning. MicroPsi’s
motivational system reflects cognitive, social and physiological needs, and can
account for individual variance and personality traits. Here, we describe the
current state of the model that structures the behavior of cognitive agents in
MicroPsi2.

Keywords: Artificial general intelligence · Micropsi2 · Motivation ·
Motivational system · Cognitive architectures

1 Introduction

MicroPsi [1] is an architecture for Artificial General Intelligence, based on a
framework for creating and simulating cognitive agents [2]. Work on MicroPsi started
in 2003. The current version of the framework, MicroPsi2 [3], is implemented in the
Python programming language and may interface with various simulation worlds,
such as Minecraft (see [4]). MicroPsi agents are hierarchical spreading activation
networks that realize perceptual learning, motor control, memory formation and
retrieval, decision making, planning and affective modulation.

One of MicroPsi’s main areas of research concerns modeling a motivational
system: whereas intelligence may be seen as problem solving in the pursuit of a given
set of goals, human generality and flexibility stems largely from the ability to identify
and prioritize suitable goals. An artificial system that is meant to model human
cognition will have to account for this kind of autonomy. Our solution does not
presuppose any goals, but instead a minimal orthogonal set of systemic needs, which
are signaled to the cognitive system as urges. Goals are established as the result of
learning how to satisfy those needs in a given environment, and to avoid their
frustration. Since needs constantly change, the system will have to reevaluate its goals
and behaviors continuously, which results in a dynamic equilibrium of activities.
While cognition can change goals, expectations of reward and priorities, it cannot
directly influence the needs itself.

MicroPsi’s model of motivation [5] has its origins in the Psi theory [6, 7] and has
recently been extended to account for a more detailed understanding of personality
traits, aesthetic appreciation and romantic affection. While current MicroPsi2 agents
do not implement all aspects of the motivational system (especially not the full set of
need dimensions), the model is general enough to be adapted to a variety of

4 J. Bach

applications, and has been integrated into other cognitive architectures, such as
OpenCog [8]. In the following, I will focus especially on the discussion of concepts
that can be transferred into other systems.

2 From Needs to Behavior

Since generally intelligent agents are not restricted to a fixed set of tasks and goals,
they have to establish their own goals. These result from a pre-defined set of needs, or
demands, which reflect what the agent has to consume, to achieve or to avoid, to thrive
in its environment. Each need d reflects a variable cd that varies between a target value
vd (the set-point at which the demand is fully satisfied) and a critical extreme v0 (a
point that may reflect where the system stops functioning). Whenever a need arises and
no autonomous regulation is possible (for instance, metabolic regulation or
transpiration to adjust the body temperature), the need is signaled by an urge indicator.

The difference between the target value and the current value is the strength of the
urge: urged = | vd – cd |

The distance between the current value and the extremum corresponds to the
urgency of satisfying the demand: urgencyd = | vd – cd | · | vd – v0 |

–1

We could also specify that the range of a demand may extend below and above the
set-point, so the urgency will have to reflect the distance from the current value to the
nearest extremum. In practice, however, human demand regulation often uses two
different urges for controlling upper and lower deviations from the set-point. For
instance, heating and cooling, feeding and satiation, resting and exercising use
different signals and control mechanisms.

Fig. 1. Needs govern cognitive modulation, priming, learning and decision-making

Urge signals fulfill several roles in the cognitive system (figure 1). Their intensity
governs arousal, execution speed and the resolution of cognitive processing
(modulation). Changes in the urges indicate the satisfaction or frustration of the
corresponding needs. Rapid changes are usually the result of an action of the agent, or
of an event has happened to the agent. These changes are indicated with pleasure
signals (corresponding to satisfaction) or displeasure signals (frustration). Pleasure
and displeasure signals are used as reinforcements for motivational learning (figure
2). Each type of signal is connected to an associator. Associators establish a con-
nection between two representations in MicroPsi; here, between the urge signal and
the current situation or action. Furthermore, learning strengthens associations between
the current situation and those that preceded it. In combination with mechanisms for

 Modeling Motivation in MicroPsi 2 5

forgetting and memory consolidation, this results in learning behavior sequences that
end in goal situations. Goals are actions or situations that allow satisfying the urge
(appetitive goals), or that threaten to increase the urge (aversive goals).

A motive is an urge that has been associated with a particular goal. Each action of a
MicroPsi agent is based on an active motive, i.e. directed on reaching an appetitive
goal, or avoiding an aversive goal.

Fig. 2. Motivational learning

 The association between urges and goals allows the agent to identify possible
remedies whenever the need arises in the future, and prime its perception and memory
retrieval towards the currently active urges. Most importantly, urges signal the current
demands of the system, and thereby inform decision-making.

3 Types of Needs

The needs of a cognitive system fall into three groups: physiological needs, social
needs and cognitive. Note that needs do not form a hierarchy, as for instance
suggested by Maslow [9], but all act on the same level. This means that needs do not
have to be satisfied in succession (many needs may never be fully satisfied), but
concurrently. To establish priorities between different urges, each one is multiplied
with a weight parameter weightd that expresses its importance relative to other needs.
Each need has a decayd that specifies how quickly the cd drops towards v0 when left
alone, and thus, how often it has to be replenished. Furthermore, each need has a
parameter gaind and lossd, which expresses how much it reacts to satisfaction or
frustration. Using a suitable parameter set [weight, decay, gain, loss] for each demand
or an agent, we can account for individual variance of motivational traits, and
personality properties [10].

Physiological needs regulate the basic survival of the organism and reflect demands
of the metabolism and physiological well-being. The corresponding urges originate in
proprioceptive measurements, levels of hormones and nutrients in the bloodstream, etc.
Physiological needs include sustenance (food and drink), physical integrity and pain
avoidance, rest, avoidance of hypothermia and hyperthermia, and many more.
(See figure 3 for an example implementation of physiological needs in MicroPsi2.)

6 J. Bach

Fig. 3. Implementation of physiological needs in MicroPsi2 (D. Welland)

Social needs direct the behavior towards other individuals and groups. They are
satisfied and frustrated by social signals and corresponding mental representations,
but pleasure and displeasure from these sources is not necessarily less relevant to a
subject than physiological pain. Consequently, people are often willing to sacrifice
their food, rest, health or even their life to satisfy a social goal (getting recognition,
supporting a friend, saving a child, winning a partner, maintaining one’s integrity,
avoiding loss of reputation etc.). Individual differences in the weight of social needs
may result in more altruist or egotist, extraverted or introverted, abrasive or agreeable,
romantic or a-romantic personalities.

Fig. 4. Needs and motivator structure

Cognitive needs give rise to open-ended problem solving, skill-acquisition,
exploration, play and creativity. Differences in the weight of cognitive needs may
influence conscientiousness vs. spontaneity, openness, and hedonism.

Social Needs
Affiliation is the need for recognition and acceptance by other individuals or groups. It
is satisfied by legitimacy signals, such as smiles and praise, and frustrated by frowns

 Modeling Motivation in MicroPsi 2 7

and reproach (anti-legitimacy signals). The effect of a legitimacy signal depends on
its perceived strength, and the social weight (reputation) that the agent attaches to its
source. For instance, praise from a highly respected individual typically results in a
larger gain than anonymous praise. Affiliation plays the role of a virtual currency, of-
fering rewards for cooperative behavior, and punishment for defection. A high decay
of affiliation results in a personality that requires frequent attention from the environ-
ment, and introversion might be the outcome of a low decay or weight of affiliation.

Internal Legitimacy (“honor”) is a variant of affiliation that is directed on the
conformance to internalized social norms. It directs social behavior in the absence of
direct observers. Here, the source of legitimacy signals is the agent itself.

Nurturing is the need to altruistically care for other individuals or groups. It gets
satisfied by subjectively increasing the well-being of someone else. The amount of
satisfaction derived from an act nurturing depends on the social weight that the agent
attaches to the object of his efforts. Supporting a cherished person or group will result
in greater satisfaction than giving to an anonymous recipient. Psychopathy may be the
result of the absence of a need for nurturing. Repeated exchange of affiliation and
nurturing with another individual results in bonding, i.e. motivational learning will
strongly establish that individual as a target for the respective urges. Philia/friendship
is expressed as the reciprocal and mutual exchange of affiliation and nurturing
between two individuals – it does not require an additional mechanism.

Romantic affection is the need to form a bond with a specific individual, leads to
courtship behavior, and signals inclination for parental investment. Unlike libido,
which is the physiological need for sexual gratification with a range of partners,
romantic affection is directed on closeness and exclusive identification with a single
partner [11]. A high weight of romantic affection may result in a propensity for
limerence (an intense and sometimes dysfunctional infatuation), while a low one
generates an a-romantic personality. Love, like friendship, is not an individual need
(nor is it a single emotion). Instead, it may be best understood as a set of states, which
differ based on the elementary mechanisms that are involved or absent: affiliation,
nurturing, romantic affection and libido.

Dominance is the need to rise within the social hierarchies, or to maintain one’s
place. A high weight of dominance leads to competitive behavior, and may result in a
greater willingness to take risks or exert aggression to ascend.

Cognitive Needs

Competence is either task-related, effect-related or general:
• Epistemic, or task-related competence measures success at individual skills. The

execution of a skill, and acquisition of new skills lead to satisfaction; failure, or
anticipation of failure to frustration.

• Effect-related competence measures the ability to exert changes in the
environment, with a gain that is proportional to the size of the observed effect.

• General competence is a compounded measure of the ability to satisfy needs
(including the acquisition of epistemic competence). The strength of the urge is
used as a heuristic to reflect on general performance, and to predict success at
unknown tasks. Low general competence amounts to a lack of confidence.

8 J. Bach

Anticipated or factual failure at tasks may lead to an urge to replenish competence,
which may be achieved by picking another task with a high probability of success.
This dynamic may contribute to procrastination.

Exploration is the need to acquire certainty about objects and processes in the
environment. The confirmation of uncertain expectations of perception and action
increases certainty (and thus reduces the need for exploration); violations of
expectations or a lack of available predictions increase the need for certainty. The
strength of the urge for exploration is used as a heuristic for the degree of uncertainty
in the given situation.

Stimulus-oriented aesthetics is the need for intrinsically pleasant stimuli, such as
harmonious sounds, certain environmental features, tactile sensations. The favorable
response to these stimuli is either a by-product of sensory processing, or serves
indirect purposes (such as seeking out fertile land, identifying healthy mating
prospects etc.).

Abstract aesthetics is the need to identify structure in mental representations, and
to replace existing mental representations with more efficient ones. Abstract
aesthetics is responsible for the discovery of mathematical elegance, musical
arrangement, and for pleasure generated through the revision of conceptual structures.

4 Decision-Making

According to the Psi theory, all behaviors are either directed on the satisfaction of a
need, or on the avoidance of the frustration of a need. Even serendipitous behavior is
directed on need satisfaction (on exploration, rest or aesthetics). Identifying goals and
suitable actions is the task of the decision-making system (figure 5).

Once a need becomes active and cannot be resolved by autonomous regulation, an
urge signal is triggered, which brings the need to the attention of the reactive layer of
the cognitive agent. Through past experiences, the urge has been associated with
various actions, objects and situations that satisfied it in the past (appetitive goals),
and situations and objects that frustrated it (aversive goals). Via activation spreading
along these associations, relevant content in memory and perception is highlighted.

If an appetitive goal is perceived immediately, and there is no significant
interference with current activity, the urge can be satisfied opportunistically, which
will not require significant attentional processing. Otherwise, the agent attempts to
suppress the new urge (by subtracting a selection threshold that varies based on the
strength and urgency of the already dominant motive).

If the urge overcomes the selection threshold, and turns out to be stronger than the
currently dominant urge, the current behavior is interrupted. The agent now tries to
recall an applicable strategy, using spreading activation to identify a possible
sequence of actions/world states from the current world situation (i.e., the currently
active world model) to one of the highlighted appetitive goals. If such a strategy
cannot be discovered automatically, the agent engages additional attentional resources
and attempts to construct a plan, by matching known world situations and actions into
a possible chain that can connect the current world situation to one of the appetitive
goals. (At the moment, MicroPsi2 uses a simple hill-climbing planner, but many
planning strategies can be used.)

 Modeling Motivation in MicroPsi 2 9

Fig. 5. Decision-making sequence

If plan construction fails, the agent gives up on pursuing the current urge, but
increases its need for exploration (which will increase the likelihood of orientation
behaviors to acquire additional information about the current situation, or even trigger
experimental and explorative behavior strategies).

A successfully identified plan or automatism amounts to a motive (a combination
of an active urge, a goal, and a sequence of actions to reach that goal). The strength of
the motive is determined by estimating the reward of reaching the goal, the urgency of
resolving the need, the probability of success, and dividing the result of these factors
by the estimated cost of implementing the plan. The strongest motive will be raised to
an intention, that is, it becomes the new dominant motive, and governs the actions of
the agent. The probability of succeeding in implementing a strategy is currently
estimated as the sum of the task specific competence (i.e. how likely the strategy
succeeded in the past), and the general competence (to account for the agents general
ability or inability to improvise and succeed in unknown circumstances).

5 Modulation

The strength of the needs of the agents does not only establish which goals an agent
follows, but also how it pursues them. Cognitive and perceptual processing are
configured by a set of global modulators (figure 6):

Arousal reflects the combined strength and urgency of the needs of the agent.
Arousal is reflected in more energy expenditure in actions, action readiness, stronger
responses to sensory stimuli, and faster reactions [12].

Valence represents a qualitative evaluation of the current situation. Valence is
determined by adding all current pleasure signals to a baseline, and then subtracting
all displeasure and currently active urges.

10 J. Bach

Aggression/submission determines the stance towards an attended object.
Aggression is especially triggered by a negatively valenced reaction to another agent
manifestly blocking a relevant goal (i.e., anger), and increases the likelihood of
sanctioning behavior (fight). A low competence also leads to a low value of
aggression, and reduces the inclination to engage (flight). In a more general sense,
aggression suggests whether to approach or retract from the attended object, a middle
value marks indifference.

Fig. 6. Primary and attentional modulators

The combination of valence, arousal and aggression defines an affective state of
the agent, and has originally been described by Wundt [13], who called the
third dimension tension, and argued that each emotion can be characterized by their
pleasurableness, intensity and stressfulness. The Wundt model of affect has
been reinvented and modified numerous times in the history of psychology; the third
dimension has also been identified as acceptance/rejection by Schlosberg [14] and
submission/dominance by Mehrabian [15]. Note that arousal, valence and aggression
are not themselves affects or emotions, but dimensions of a space of cognitive
configurations. Affects are regions within that space. (Mehrabian calls this model
PAD, for pleasure, arousal and dominance.)

MicroPsi uses currently six cognitive modulators. In addition to the three
dimensions discussed above, these are:

Resolution level, the level of detail when performing cognitive and perceptual
tasks. A high resolution will consider more details and thus often arrive at more
accurate solutions and representations, while a low resolution allows faster responses.
In MicroPsi, the resolution level is interpreted as the width of activation spreading in
neuro-symbolic representations.

Suppression has already been mentioned in the context of decision-making. This
modulator defines a selection threshold, which amounts to a stronger focus on the
current task, and a narrower direction of attention. Suppression is a mechanism to
avoid oscillations between competing motives.

Securing rate determines the frequency of obtaining/updating information from the
environment. A dynamic environment requires more cognitive resources for

 Modeling Motivation in MicroPsi 2 11

perceptual processing, while a static environment frees resources for deliberation and
reflection. In other words, the securing rate determines the direction of attention:
outwards, into the environment, or inwards, onto the mental stage.

The three additional modulator dimensions configure the attention of a MicroPsi
agent, by determining its width/detail, its focus, and its direction.

The values of the modulators are determined by the configurations of the urges,
and by interaction among the modulators themselves (figure 7). Arousal is determined
by the strength and urgency of all needs. A high arousal will also increase the
resolution level and increase the suppression. The resolution level is increased by the
strength of the current motive, but reduced by its urgency, allowing for faster
responses. Suppression is increased by the strength and urgency of the currently
leading motive, and is reduced by a low general competence. The securing rate is
decreased by the strength and urgency of the leading motive, but increases with low
competence and a high need for exploration (which is equivalent to experienced
uncertainty). Aggression is triggered by agents or obstacles that prevent the
realization of an important motive, and reduced by low competence.

Fig. 7. The dynamics of modulation

Additionally, each modulator has at least four more or less fixed parameters that
account for individual variance between subjects: the baseline is the default value of
the modulator; the range describes the upper and lower bound of its changes, the
volatility defines the reaction to change, and the duration describes the amount of
time until the modulator returns to its baseline.

Emotions are either undirected, and can be described as typical configurations of the
modulators, along with competence and experienced uncertainty, or they are a valenced
reaction to an object, i.e. a particular motivationally relevant mental representation,
combined with an affective state. Examples of undirected emotions are joy (positive
valence and high arousal), bliss (positive valence and low arousal) or angst (negative
valence, high experienced uncertainty, submission and low competence). Directed
emotions are fear (negative valence directed on an aversive goal, submissiveness and
low competence) and anger (negative valence directed on an agent that prevented an
appetitive goal or caused the manifestation of an aversive goal, aggression, high
arousal). Jealousy may either manifest as a fear (directed on losing romantic attachment
or affiliation; submission), or as aggression (directed on an agent that prevents
satisfaction of affiliative or romantic needs).

12 J. Bach

6 Summary

MicroPsi explores the combination of a neuro-symbolic cognitive architecture with a
model of autonomous, polytelic motivation. Motives result from the association of
urges with learned goals, and plans to achieve them. Urges reflect various
physiological, social and cognitive needs. Cognitive processes are modulated in
response to the strength and urgency of the needs, which gives rise to affective states,
and allows for the emergence of emotions.

The current incarnation, MicroPsi2, adds further details to this motivational model,
especially a more detailed set of social needs (nurturing, dominance and romantic
affection). Parameters for each need (weight, gain, loss and decay) account for
individual variation and modeling of personality traits. Modulators reflect valence,
arousal and fight/flight tendency, as well as detail, focus and direction of attention.
Modulators are parameterized by baseline, range, volatility and duration. We are
currently applying the MicroPsi motivation model for analyzing the behavior of
human subjects in computer games. The motivation model is also used to control
behavior learning of autonomous AI agents in simulated environments.

While MicroPsi agents are implemented as hierarchical spreading activation
networks, the underlying theory of motivation can be integrated into other cognitive
models as well.

Acknowledgements. The implementation of MicroPsi would not be possible without the
contributions of Ronnie Vuine, Dominik Welland and Priska Herger. I am grateful for generous
support by and discussions with Dietrich Dörner, Martin Nowak and Jeffrey Epstein. Current
work on MicroPsi is supported by the Program of Evolutionary Dynamics at Harvard University,
and the Playful Systems Group at the MIT Media Lab.

References

1. Bach, J.: Principles of Synthetic Intelligence – An architecture of motivated cognition.
Oxford University Press (2009)

2. Bach, J., Vuine, R.: Designing Agents with MicroPsi Node Nets. In: Günter, A., Kruse, R.,
Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 164–178. Springer, Heidelberg
(2003)

3. Bach, J.: MicroPsi 2: The Next Generation of the MicroPsi Framework. In: Bach, J.,
Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS, vol. 7716, pp. 11–20. Springer, Heidelberg
(2012)

4. Short, D.: Teaching Scientific Concepts Using a Virtual World—Minecraft. Teaching
Science 58(3), 55–58 (2012)

5. Bach, J.: A Framework for Emergent Emotions, Based on Motivation and Cognitive
Modulators. International Journal of Synthetic Emotions (IJSE) 3(1), 43–63 (2012)

6. Dörner, D.: Bauplan für eine Seele. Reinbeck (1999)
7. Dörner, D., Bartl, C., Detje, F., Gerdes, J., Halcour, D.: Die Mechanik des Seelenwagens.

Handlungsregulation. Verlag Hans Huber, Bern (2002)

 Modeling Motivation in MicroPsi 2 13

8. Cai, Z., Goertzel, B., Zhou, C., Zhang, Y., Jiang, M., Yu, G.: OpenPsi: Dynamics of a
computational affective model inspired by Dörner’s PSI theory. Cognitive Systems
Research 17–18, 63–80 (2012)

9. Maslow, A., Frager, R., Fadiman, J.: Motivation and Personality, 3rd edn. Addison-
Wesley, Boston (1987)

10. Bach, J.: Functional Modeling of Personality Properties Based on Motivational Traits. In:
Proceedings of ICCM-7, International Conference on Cognitive Modeling, pp. 271–272.
Berlin, Germany (2012)

11. Fisher, H.E.: Lust, attraction and attachment in mammalian reproduction. Human Nature
9(1), 23–52 (1998)

12. Pfaff, D.W.: Brain Arousal and Information Theory: Neural and Genetic Mechanisms.
Harvard University Press, Cambridge, MA (2006)

13. Wundt, W.: Gefühlselemente des Seelenlebens. In: Grundzüge der physiologischen
Psychologie II. Engelmann, Leipzig (1910)

14. Schlosberg, H.S.: Three dimensions of emotion. Psychological Review 1954(61), 81–88
(1954)

15. Mehrabian, A.: Basic dimensions for a general psychological theory. Oelgeschlager, Gunn
& Hain Publishers, pp. 39–53 (1980)

© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 14–24, 2015.
DOI: 10.1007/978-3-319-21365-1_2

Genetic Programming on Program Traces
as an Inference Engine for Probabilistic Languages

Vita Batishcheva2 and Alexey Potapov1,2()

1 ITMO University, St. Petersburg, Russia
potapov@aideus.com

2 St. Petersburg State University, St. Petersburg, Russia
elokkuu@gmail.com

Abstract. Methods of simulated annealing and genetic programming over
probabilistic program traces are developed firstly. These methods combine expres-
siveness of Turing-complete probabilistic languages, in which arbitrary generative
models can be defined, and search effectiveness of meta-heuristic methods. To use
these methods, one should only specify a generative model of objects of interest
and a fitness function over them without necessity to implement domain-specific
genetic operators or mappings from objects to and from bit strings. On the other
hand, implemented methods showed better quality than the traditional mh-query
on several optimization tasks. Thus, these results can contribute to both fields of
genetic programming and probabilistic programming.

Keywords: Probabilistic programming · Genetic programming · Program traces

1 Introduction

Two crucial approaches in AGI are cognitive architectures and universal algorithmic
intelligence. These approaches start from very different points and sometimes are
even treated as incompatible. However, we believe [1] that they should be united
in order to build AGI that is both efficient and general. However, a framework is
required that can help to intimately combine them on the conceptual level and the
level of implementation. Probabilistic programming could become a suitable basis for
developing such a framework. Indeed, on the one hand, query procedures in the
Turing-complete probabilistic programming languages (PPLs) can be used as direct
approximations of universal induction and prediction, which are the central components
of universal intelligence models. On the other hand, probabilistic programming has
already been successfully used in cognitive modeling [2].

Many solutions in probabilistic programming utilize efficient inference techniques
for particular types of generative models (e.g. Bayesian networks) [3, 4]. However,
Turing-complete languages are much more promising in the context of AGI. These
PPLs allow for specifying generative models in the form of arbitrary programs includ-
ing programs which generate other programs. Inference over such generative models
automatically results in inducing programs in user-defined languages. Thus, the same
inference engine can be used to solve a very wide spectrum of problems.

 Genetic Programming on Program Traces as an Inference Engine 15

On the one hand, the performance of generic inference methods in PPLs can be ra-
ther low even for models with a small number of random choices [5]. These methods
are most commonly based on random sampling (e.g. Monte-Carlo Markov Chains) [2,
6]. There are some works on developing stronger methods of inference in Turing-
complete probabilistic languages (e.g. [5, 7]), but they are not efficient for all cases,
e.g. for inducing programs, although some progress in this direction is achieved [8].
Thus, more appropriate inference methods are needed, and genetic programming (GP)
can be considered as a suitable candidate since it has already been applied to universal
induction [9] and cognitive architectures [10].

On the other hand, wide and easy applicability of inference in PPLs is also desira-
ble by evolutionary computations. Indeed, one would desire to be able to apply some
existing implementation of genetic algorithms simply by defining the problem at hand
without developing binary representations of solutions or implementing problem-
specific recombination and mutation operators (and some attempts to overcome this
also exist in the field of genetic programming, e.g. [11]).

Consequently, it is interesting to combine generality of inference over declarative
models in Turing-complete PPLs and strength of genetic programming. This combi-
nation will give a generic tool for fast prototyping of genetic programming methods
for arbitrary domain specific languages simply by specifying a function generating
programs in a target language. It can also extend the toolkit of PPLs, since conven-
tional inference in probabilistic programming is performed for conditioning, while
genetic programming is intended for optimization of fitness functions.

In this paper, we present a novel approach to inference in PPLs based on genetic
programming and simulated annealing, which are applied to probabilistic program
(computation) traces. Each program trace is the instantiation of the generative model
specified by the program. Recombinations and mutations of program traces guarantee
that their results can be generated by the initial probabilistic program. Thus, program
traces are used as a “universal genetic code” for arbitrary generative models, and it is
enough to only specify such a model in the form of a probabilistic program to perform
evolutionary computations in the space of its instantiations. To the best of our know-
ledge, there are no works devoted to implementing an inference engine for PPLs on
the base of genetic programming, so this is the main contribution of our paper.

In [12] authors indicated that “current approaches to Probabilistic Programming are
heavily influenced by the Bayesian approach to machine learning” and the optimiza-
tion approach is promising since “optimization techniques scale better than search
techniques”. That is, our paper can also be viewed as the work in this direction, which
is much lesser explored in the field of probabilistic programming.

2 Background

Probabilistic Programs
Since general concepts of genetic programming are well known, we will concentrate
on probabilistic programming. Some PPLs extend existing languages preserving
their semantics as a particular case. Programs in these languages typically include
calls to (pseudo-)random functions. PPLs use an extended set of random functions

16 V. Batishcheva and A. Potapov

corresponding to different common distributions including Gaussian, Beta, Gamma,
multinomial, etc. Evaluation of such a program with random choices is performed in
the same way as evaluation of this program in the base (non-probabilistic) language.

However, programs in PPLs are treated as generative models defining distributions
over possible return values [5], and their direct evaluation can be interpreted as taking
one sample from corresponding distributions. Multiple evaluation of a program can be
used to estimate an underlying distribution.

PPLs go further and support programs defining conditional distributions. Such a
program contains a final condition indicating whether the result of program evaluation
should be accepted or not (in some languages an “observe” statement can be placed
anywhere to impose conditions on intermediate results). The simplest way to sample
from conditional distributions is the rejection sampling, in which a program is simply
evaluated many times while its final condition is not satisfied. However, the rejection
sampling can be extremely inefficient even for rather simple models.

One can utilize a method for efficient inference of conditional probabilities without
sampling for a restricted set of models, but generic inference methods should be used
for Turing-complete languages. One of such widely used methods is based on Monte-
Carlo Markov Chains (MCMC), namely, the Metropolis-Hastings (MH) algorithm.
This algorithm uses stochastic local search to sample such instances, for which the
given condition will remain true. To implement it for models specified by probabilis-
tic programs, one needs to introduce small changes to the return values of elementary
random procedures called in these programs, so these values should be memoized [2].

MCMC can be much more efficient than rejection sampling for evaluating post-
erior distributions. However, without utilizing some additional techniques it can be as
bad as the rejection sampling (or even worse due to overheads) in retrieving the first
appropriate sample. One can easily check this on the example of the following simple
Church program (mh-query 1 1 (define xs (repeat 20 flip)) xs (all xs)).

In this program, the list of 20 random Boolean values is defined, and this list is re-
turned, when all its values are true. If one replaces “mh-query 1 1” with “rejection-
query”, calculation time will slightly decrease. However, retrieving many samples by
mh-query will be much faster than executing rejection-query many times. Thus, the
unsolved problem here is the problem of finding the first admissible instantiation of a
model. This is done blindly in both MCMC and the rejection sampling.

In many practical problems, a user can convert a strict condition into a soft one or
even can initially have a task with the goal to optimize some function. Thus, query
procedures which accept a fitness-function for optimization instead of a strict condi-
tion for satisfying can be used as a part of MCMC sampling as well as they can be
used independently for solving optimization problems.

Implemented Language
Since exploration of solution spaces in probabilistic programming require manipula-
tions with random choices made during program evaluation, development of new
query procedures is connected with interfering in the evaluation process. Since no
language supports flexible enough external control of this process, it was easier for us
to implement a new interpreter. However, we decided not to develop a new language,
but to reproduce (using Scheme as the host language) some basic functionality of

 Genetic Programming on Program Traces as an Inference Engine 17

Church [2] including a number of simple functions (+, -, *, /, and, or, not, list, car,
cdr, cons, etc.), several random functions (flip, random_integer, gaussian, multinomi-
al), declaration of variables and functions (define, let), function calls with recursion.
Also, “quote” and “eval” were implemented. For example, the following program is
acceptable (which is passed to our interpreter as the quoted list)

'((define (tree) (if (flip 0.7) (random-integer 10)
 (list (tree) (tree))))
 (tree))

Traditional Lisp interpreters will return different results on each run of such pro-
grams. Interpreters of PPLs provide for query functions, which are used for calculat-
ing posterior probabilities or to perform sampling in accordance with the specified
condition. We wanted to extend this language with GP-based query procedures, which
accept fitness-functions instead of strict conditions. Let’s consider how genetic opera-
tors can be implemented in these settings.

3 Genetic Operators for Computation Traces

Mutations
To combine genetic programming with probabilistic languages we treat each run of a
program as a candidate solution. The source of variability of these candidate solutions
comes from different outcomes of random choices during evaluation. Mutations con-
sist in slight modifications of the random choices performed during the previous eval-
uation that resembles some part of the MH-algorithm. All these choices should be
cached and bound to the execution context, in which they were made. To do this, we
implemented the following representation of program traces, which idea (but not its
implementation) is similar to that used in the mh-query implementation in Church [2].

In this representation, each expression in the original program during recursive
evaluation is converted to the structure (struct IR (rnd? val expr) #:transparent), where
IR is the name of the structure, rnd? is #t if random choices were made during evalua-
tion of the expression expr; val is the result of evaluation (one sample from the distri-
bution specified by expr). interpret-IR-prog function was implemented for evaluating
programs (lists of expressions) given in symbolic form. Consider some examples.

• (interpret-IR-prog '(10)) (list (IR #f 10 10)) meaning that the result of evalua-
tion of the program containing only one expression 10 is 10 and it is not random.

• (interpret-IR-prog '((gaussian 0 1))) (list (IR #t -0.27 (list 'gaussian (IR #f 0 0)
(IR #f 1 1)))) meaning that the result of evaluation of (gaussian 0 1) was -0.27.

• (interpret-IR-prog '((if #t 0 1))) (list (IR #f 0 (list 'if (IR #f #t #t) (IR #f 0 0)
1))) meaning that only one branch was evaluated.

• In the more complex case, random branch can be expanded depending on the
result of evaluation of the stochastic condition: (interpret-IR-prog '((if (flip) 0 1)))
 (list (IR #t 1 (list 'if (IR #t #f '(flip)) 0 (IR #f 1 1)))).

• In definitions of variables only their values are transformed to IR: (interpret-IR-
prog '((define x (flip)))) (list (list 'define 'x (IR #t #f '(flip)))). Evaluation of

18 V. Batishcheva and A. Potapov

definitions results in changes of the environment as usual. Let-expressions have
similar behavior, but they have a body to be evaluated. Function definitions are
kept unchanged. Non-library function application is replaced by its body and let-
binding of its arguments.

• Symbols, which can be found in the environment, are replaced by their values:
(interpret-IR-prog '((define x (random-integer 10)) x)) (list (list 'define 'x (IR
#t 5 (list 'random-integer (IR #f 10 10)))) (IR #t 5 'x)).

The evaluated program can be evaluated again, and previously made random
choices can be taken into account during this re-evaluation. We extended interpret-IR-
prog in such a way that it can accept both initial programs and their IR expansions
(since re-evaluation process can run into branches not expanded yet, such unification
is necessary to deal with mixed cases also).

During each following re-evaluation of the expanded program, deterministic ex-
pressions are not evaluated again, but their previous values are used. All stochastic
expressions are evaluated in the same way as during the first run except calls to the
basic random functions, which behavior is changed. These functions are modified in
order to take previously returned values into account. The mutation speed parameter p
added to interpret-IR-prog indicates, how close new values should be to previous
values. For example, the previous result of (flip) is changed with probability equals to
p. Re-evaluation of (IR #t v (gaussian x0 s)), where v is the previously returned value,
x0 is mean and s is sigma, will correspond to (gaussian v (* p s)), but in other imple-
mentations it could be biased towards x0.

For example, the result of re-evaluation of the IR expression (list (IR #t -0.27 (list
'gaussian (IR #f 0 0) (IR #f 1 1)))) using p=0.01 can be (list (IR #t -0.26 (list 'gaussian
(IR #f 0 0) (IR #f 1 1)))).

Simulated Annealing
The described interpreter is already enough to implement an optimization query based
on simulated annealing. Let the program be given, which last expression returns the
value of energy (fitness) function to be minimized. Then, we can re-evaluate this pro-
gram many times preferring evaluation results with lower value of the last expression.

Simulated annealing maintains only one program trace (in the form of IR expan-
sion). It executes interpret-IR-prog to generate new candidate solutions (with transi-
tion probabilities derived by the interpreter for the given program and parameterized
by the temperature), and accepts them with probability (/ 1 (+ 1 (exp (/ dE t)))), where
dE is the difference of energies of the candidate and current solutions, and t is the
current temperature (other acceptance probabilities can be used).

On each iteration, candidate solutions are generated until acceptance (although the
number of tries is limited), and the temperature is decreased from iteration to itera-
tion. We implemented annealing-query on the base of this approach.

Crossover
Crossover also utilizes program traces. However, it requires dual re-evaluation of two
expansions of a program. These expansions are interpreted together as the same pro-
gram, while their structures match (and they should match except variations caused by

 Genetic Programming on Program Traces as an Inference Engine 19

random choices). The main difference is in application of the basic random functions
since the previously returned values from both parents should be taken into account.

For example, in our implementation, the dual flip randomly returns one of the pre-
vious values, and the dual Gaussian returns (+ (* v1 e) (* v2 (- 1 e))), where v1 and
v2 are the previous values, and e is the random value in [0, 1] (one can bias the result
of this basic element of crossover towards initial Gaussian distribution). Mutations are
introduced simultaneously with crossover for the sake of efficiency.

However, such a branch can be encountered during re-evaluation that has not been
expanded yet in one or both parents. In the latter case, this branch is evaluated simply
as it was the first execution. Otherwise it is re-evaluated for the parent, for which it
has already been expanded (without crossover, but with mutations). It is not expanded
for another parent, since this expansion will be random and not evaluated by fitness
function, so it will simply clutter information from the more relevant parent.

Children can contain earlier expanded, but now unused branches, which can be ac-
tivated again in later generations due to a single mutation or even crossover. These
parts of the expanded program resemble junk DNA and fast genetic adaptations.

Let us consider one simple, but interesting case for crossover, namely a recursive
stochastic procedure '((define (tree) (if (flip 0.7) (random-integer 10) (list (tree)))).
Expansion of (tree) can produce large computation traces, so let us consider results of
crossover on the level of values of the last expression.

'(6 9) + '(8 0) '(7 6)
'(7 9) + '((0 7) (7 4)) '(7 (7 4))
'((3 (7 (1 7))) 5) + '((5 2) 2) '((4 (7 (1 7))) 2)

It can be seen that while the structure of trees matches, two program traces are re-
evaluated together and results of random-integer are merged in leaves, but when the
structure diverges, a subtree is randomly taken from one of the parents (depending on
the result of re-evaluating (flip 0.7)). This type of crossover for generated trees auto-
matically follows from the implemented crossover for program traces. Of course,
someone might want to use a different crossover operator based on the domain-
specific knowledge, e.g. to exchange arbitrary subtrees in parents. The latter is diffi-
cult to do in our program trace representation (and additional research is needed to
develop a more flexible representation). On the other hand, recombination of program
traces during dual re-evaluation guarantees that its result can be produced by the ini-
tial program, and also provides for some flexibility.

Using the described genetic operators, evolution-query was implemented.

4 Empirical Evaluation

We considered three tasks, each of which can be set both for conditional sampling and
fitness-function optimization. Three query functions were compared – mh-query
(web-church), annealing-query and evolution-query (Scheme implementation). mh-
query was used to retrieve only one sample (since we were interested in its efficiency
on this step; moreover, the tasks didn’t require posterior distributions).

20 V. Batishcheva and A. Potapov

Curve Fitting
Consider the generative polynomial model y=poly(x|ws), which parameters defined as
normally distributed random variables should be optimized to fit observations {(xi,
yi)}. Implementation of poly is straightforward. The full generative model should also
include noise, but such a model will be useless since it is almost impossible to blindly
guess noise values. Instead, MSE is used in annealing-query and evolution-query, and
the following condition is used in mh-query.

(define (noisy-equals? x y) (flip (exp (* -30 (expt (- x y) 2)))))
(all (map noisy-equals? ys-gen ys))

noisy-equals? can randomly be true, even if its arguments differ, but with decreas-
ing probability. Speed of this decrease is specified by the value, which equals 30 in
the example code. The smaller this value, the looser the equality holds. We chose
such the value that mh-query execution time approximately equals to that of anneal-
ing-query and evolution-query (which execution time is controlled by the specified
number of iterations), so we can compare precision of solutions found by different
methods. Of course, such comparison is quite loose, but it is qualitatively adequate
since linear increase of computation time will yield only logarithmic increase of pre-
cision. The results for several functions and data points are shown in Table 1.

Table 1. Average RMSE

Task
RMSE

mh-query annealing-query evolution-query

4x2+3x xs=(0 1 2 3) 1.71 0.217 0.035

4x2+3x xs=(0 0.1 0.2 0.3 0.4 0.5) 0.94 0.425 0.010

0.5x3–x xs=(0 0.1 0.2 0.3 0.4 0.5) 0.467 0.169 0.007

It can be seen that mh-query is inefficient here – it requires very loose noise-

equals? yielding imprecise results. Stricter condition results in huge increase of
computation time. Evolution-query is the most precise, while annealing-query works
correctly, but converges slower. The worst precision is achieved, when wn is selected
incorrectly. It is important to see, how crossover on program traces results in child-
ren’s “phenotypes”. Consider the example of how crossover affects ws values

'(1.903864 -11.119573 4.562440) +
'(-20.396958 -12.492696 -0.735389 3.308482)

 '(-5.232313 -11.462677 2.3152821 3.308482)

The values in same positions are averaged with random weights (although these
weights are independent for different positions as in geometric semantic crossover). If
lengths (i.e. wn) of parent’s vector parameters ws differ, the child’s wn value will
correspond to that of one of the parents or will be between them.

 Genetic Programming on Program Traces as an Inference Engine 21

Subset Sum Problem
In the subset sum problem, a set of integer numbers is given, and a nonempty subset
should be found such that its sum equals a given integer value (we will assume that
the sum equals 1 and skip the check of non-triviality of the solution for the sake of
simplicity). Integers in each set were generated as random numbers from a certain
range, e.g. -10000 to 10000. A random subset was selected, and the last number was
calculated as 1 minus sum of elements in this subset. The following program specifies
the generative model for this task.

(define xs '(9568 5716 8382 7900 -5461 5087 1138 -1111 -9695 -5468 6345
 -1473 -7521 -4323 9893 -9032 -4715 3699 5104 1551))

(define (make-ws n) (if (= n 0) '() (cons (flip) (make-ws (- n 1)))))
(define ws (make-ws (length xs)))
(define (summ xs ws) (if (null? xs) 0
 (+ (if (car ws) (car xs) 0) (summ (cdr xs) (cdr ws)))))

(define subset-sum (summ xs ws))

mh-query was executed using the condition (equal? subset-sum 1), while anneal-
ing-query and evolution-query were executed to minimize (abs (- subset-sum 1)).
Direct comparison of different queries appeared to be difficult on this task. However,
the results are qualitatively similar. All methods either stably find correct solutions
(this is the case, when the task dimensionality is about 15 or less or when the range of
numbers is small and many subsets can sum up to the desirable value) or all the me-
thods fail (to achieve this, one should take numbers from a larger range and take the
set size 20 or more).

However, for certain task complexities intermediate results can be obtained. In par-
ticular, the following results were obtained for the range [-10000, 10000] and the set
sizes 20÷25. With as much as twice time limit of annealing-query and evolution-
query, mh-query was able to find correct solutions in 83% cases. annealing-query and
evolution-query yielded approximately 75% correct solutions (their performance vary
depending on settings, and annealing-query showed more stable results, while our
simple form of genetic programming had some tendency to get stuck in local extre-
ma). It should be pointed out that in the rest 25% cases the solution found is almost
optimal (error equals to 1).

Let’s make sure that these slightly superficial results of genetic programming are
not due to its invalid functioning. Consider the following typical effect of crossover
over program traces on the “phenotype” level.

'(#t #f #t #t #t #t #t #f #t #t) + '(#f #f #t #t #f #t #f #t #t #f) '(#t #f #t #t #t #t #f #f #t #f)
One can see that this is the uniform crossover. It is possibly not the most interest-

ing one, but it is correct. From this example, it can also be seen that optimization que-
ries on probabilistic programs fit well for solving deterministic problems.

Integer Number Sequence Prediction
One more test task we considered was the task of integer number sequence prediction.
We restricted the set of possible sequences to polynomials, but it can easily be ex-
tended to the wider class of sequences defined by recurrence relations. Consider the
following fragment of the generative model.

22 V. Batishcheva and A. Potapov

; recursively generating expressions

(define xs '(1 2 3 4 5 6))
(define ys '(3 7 13 21 31 43))
(define (gen-expr) (if (flip 0.6)
 (if (flip) 'x (random-integer 10))
 (list (multinomial '(+ - *) '(1 1 1)) (gen-expr) (gen-expr))))
(define (f x) (eval (list 'let (list (list 'x x)) expr)))

After these definitions, the function f(x) is used to map all xs and check if the re-
sult matches ys or to calculate the total deviation depending on the query type.

We ran tests for different sequences and compared the results. mh-query wasn’t
able to find a solution in each run. Depending on the web browser, it either finished
with “Maximum call stack size exceeded” error or worked extremely long in some
runs. annealing-query and evolution-query also were not able to find precise solutions
in each case and terminated with imprecise solutions. Percentages of runs, in which
correct solutions were found, are shown in Table 2. The value of xs was '(0 1 2 3 4 5).

Table 2. Percentage of correct solutions

ys
Correct answers, %

mh-query annealing-query evolution-query

'(0 1 2 3 4 5) 90% 100% 100%

'(0 1 4 9 16 25) 20% 100% 100%

'(1 2 5 10 17 26) 10% 70% 80%

'(1 4 9 16 25 36) 0% 90% 80%

'(1 3 11 31 69 131) 0% 90% 60%

mh-query yielded surprisingly bad results here, although its inference over other

recursive models can be successful. evolution-query also yielded slightly worse re-
sults than annealing-query. The reason probably consists in that this task could not be
well decomposed into subtasks, so crossover doesn’t yield benefits, but annealing can
approach to the best solution step by step.

Nevertheless, it seems that crossover operator over program traces produces quite
reasonable results in the space of phenotypes. If the structure of the parents matches,
each leaf is randomly taken from one of the parents, e.g. '(+ (+ 3 x) x) + '(- (- x x) x)
 '(- (+ x x) x). In nodes, in which the structure diverges, a subtree is randomly taken
from one of the parents, e.g.

'(- (- (* (* 3 (* x x)) 3) (- x 8)) (* (- x 0) x)) +'(- 3 (- 5 x)) '(- 3 (* (- x 0) x))
'(* (+ 4 x) x) + '(* (* 2 (- 1 x)) 7) '(* (* 4 x) 7)
“Phenotypic” crossover effect is somewhat loose, but not meaningless, and it pro-

duces valid candidate solutions, which inherit information from their parents.

 Genetic Programming on Program Traces as an Inference Engine 23

5 Conclusion

We developed the methods of simulated annealing and genetic programming over
probabilistic program traces. For the best of our knowledge, this is the first implemen-
tation of such methods. The same functions for genetic operators over program traces
were used to solve optimization problems for very different types of objects including
parametrically defined functions, sets, and symbolic expressions without producing
invalid candidate solutions. Our implementation corresponds to the uniform crossov-
er. Other types of genetic operators are to be implemented, since our implementation
showed advantage over annealing only in the task of learning real-valued models. It is
interesting to combine probabilistic programming with advanced genetic program-
ming systems such as MOSES [10].

In spite of simplicity of the used meta-heuristic search methods, they outperformed
the standard mh-query. Although this comparison doesn’t mean that annealing-query
or evolution-query can replace mh-query since they solve different tasks, it shows that
they can be combined and also optimization queries can be useful to extend semantics
of PPLs. Still, efficiency of general inference methods is insufficient, and this could
be one of the principle obstacles in the path to AGI. Possibly, one general inference
method cannot be efficient in all problem domains, so it should be automatically spe-
cialized w.r.t. each domain encountered by an AGI-agent implying that such methods
should be deeply combined with cognitive architectures.

Acknowledgements. This work was supported by Ministry of Education and Science of the
Russian Federation, and by Government of Russian Federation, Grant 074-U01.

References

1. Potapov, A., Rodionov, S., Myasnikov, A., Begimov, G.: Cognitive Bias for Universal
Algorithmic Intelligence (2012). arXiv:1209.4290v1 [cs.AI]

2. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.: Church:
a language for generative models (2008). arXiv:1206.3255 [cs.PL]

3. Minka, T., Winn, J.M., Guiver, J.P., Knowles, D.: Infer.NET 2.4. Microsoft Research
Camb. (2010). http://research.microsoft.com/infernet

4. Koller, D., McAllester, D.A., Pfeffer, A.: Effective Bayesian inference for stochastic
programs. Proc. National Conference on Artificial Intelligence (AAAI), pp. 740–747
(1997)

5. Stuhlmüller, A., Goodman, N.D.: A dynamic programming algorithm for inference in
recursive probabilistic programs (2012). arXiv:1206.3555 [cs.AI]

6. Milch, B., Russell, S.: General-purpose MCMC inference over relational structures. In:
Proc. 22nd Conference on Uncertainty in Artificial Intelligence, pp. 349–358 (2006)

7. Chaganty, A., Nori, A.V., Rajamani, S.K.: Efficiently sampling probabilistic programs via
program analysis. In: Proc. Artificial Intelligence and Statistics, pp. 153–160 (2013)

8. Perov, Y., Wood, F.: Learning Probabilistic Programs (2014). arXiv:1407.2646 [cs.AI]

24 V. Batishcheva and A. Potapov

9. Solomonoff, R.: Algorithmic Probability, Heuristic Programming and AGI. In: Baum, E.,
Hutter, M., Kitzelmann, E. (eds). Advances in Intelligent Systems Research, vol. 10 (proc.
3rd Conf. on Artificial General Intelligence), pp. 151–157 (2010)

10. Goertzel, B., Geisweiller, N., Pennachin, C., Ng, K.: Integrating feature selection into
program learning. In: Kühnberger, K.-U., Rudolph, S., Wang, P. (eds.) AGI 2013. LNCS,
vol. 7999, pp. 31–39. Springer, Heidelberg (2013)

11. McDermott, J., Carroll, P.: Program optimisation with dependency injection. In: Krawiec,
K., Moraglio, A., Hu, T., Etaner-Uyar, A., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831,
pp. 133–144. Springer, Heidelberg (2013)

12. Gordon, A.D., Henzinger, Th.A., Nori, A.V., Rajamani, S.K.: Probabilistic programming.
In: Proc. International Conference on Software Engineering (2014)

© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 25–34, 2015.
DOI: 10.1007/978-3-319-21365-1_3

Scene Based Reasoning

Frank Bergmann() and Brian Fenton

Calle Aprestadora 19, 12o 2a, E-08902 L'Hospitalet de LLobregal, Catalonia, Spain
fraber@fraber.de, brian.fenton@gmail.com

Abstract. This paper describes Scene Based Reasoning (SBR), a cognitive
architecture based on the notions of “scene” and “plan”. Scenes represent
real-world 3D scenes as well as planner states. Introspection maps internal SBR
data-structures into 2D “scene diagrams” for self-modeling and meta-reasoning.
On the lowest level, scenes are represented as 3D scene graphs (as in computer
gaming), while higher levels use Description Logic to model the relationships
between scene objects. A plethora of subsystems implement perception, action,
learning and control operations on the level of “plans”, with scenes acting as
planner states.

Keywords: Cognitive architecture · Self-model · Meta-reasoning · Description
logics · Introspection · Multi-agent · Plan reasoning

1 Introduction

In this paper we describe Scene Based Reasoning (SBR), a cognitive architecture in
the tradition of SOAR [14], ACT-R [1] and similar systems [10]. Particular similari-
ties exist with the ICARUS system [16] with respect to the explicit representation of
plans with decompositions, the “grounding in physical states”, the purpose of control-
ling a physical agent, the use of observable attributes as a semantic base and spatial
roles/ relationships between objects. Both systems share a development roadmap that
includes modeling social interaction [16].

The distinctive characteristic of SBR is the use of “scenes”, which can be thought
of as a generalization of “scene graphs” [24] (as in computer gaming in order to
represent 3D world states), Description Logic [2] (in order to represent the relation-
ships between scene objects) and STRIPS style planner states [7] (in order to model
time and action). Scenes are also used to represent internal SBR data-structures using
a kind of “gödelization” (encoding properties of the reasoning system in object-level
language): For example a “plan” (a directed graph composed of nodes and arrows)
can be mapped into a 2D “scene diagram”, similar to the way that humans draw fig-
ures and diagrams in order to gain clarity about complex subject matters. Once the
plan is available as a 2D scene, SBR can apply its object recognition and reasoning
mechanisms in order to classify the plan, create abstractions, analyze its effects, com-
pare it with other plans and modify the plan. The improved plan can be tested in a
“simulation sandbox” or the real world and can finally be converted back to an inter-
nal SBR structures for inclusion in the standard inventory of the system.

26 F. Bergmann and B. Fenton

Applying a similar procedure to the class hierarchy of objects (represented as a De-
scription Logic TBox structure) allows the SBR system to talk about “beliefs” without
the need for higher order or modal logic. Updated beliefs can be "written" to a new
TBox, and this TBox can be tested in a sandbox against cases from the Episodic
Memory etc. The same mechanism can be applied to belief sets of other agents in
order to perform a "what-would-he-do" analysis and other types of social reasoning.

Applying "gödelization" to the recent history of cognitive events ("thoughts") al-
lows the system to talk about it's own cognitive process. Cognitive events include the
visual recognition of an object, sensory inputs, a change in attention focus, discover-
ing the missing piece in a planning or reasoning process etc. A separate paper will
explore these meta-reasoning properties in the context of the "Self-Model Theory of
Subjectivity" [17].

A second distinctive feature of SBR is the use of "plans" as first order objects and
as the "unit of analysis" for most subsystems - we could even talk about "Plan Based
Reasoning": Perception at the highest abstraction level is plan recognition, action is
plan execution, episodic memory is storing past plan executions, planning is plan
generation, and plan learning is the acquisition of new plans, sub-plans (task decom-
positions) and execution statistics. Language comprehension is plan recognition and
language generation basically serves to integrate other agents into the subject's plans
(to be treated in a future paper). Plan optimization is implemented as a plan itself,
allowing the SBR system to improve it's own improvement strategy.

Fig. 1. An overview of SBR subsystems working together for simplified close-loop robot con-
trol. 3D reconstruction converts sensor data into a scene, which serves as an initial state for the
planner to develop plans. The attention subsystem executes plan actions and controls the atten-
tion focus in order to track execution.

In this paper the authors focus on the technical aspects of the SBR architecture and
a consistent definition of the SBR subsystems. A prototypical implementation of SBR
exists as the "TinyCog" open-source project on http://tinycog.sourceforge.net/. Tiny-
Cog currently runs several demos using a scene representation that unifies description
logics with planner states.

 Scene Based Reasoning 27

2 Comparison

SBR shares characteristics with SOAR, ACT-R, ICARUS and a number of lesser
known cognitive architectures. The "Jonny Jackanapes" architecture [11] includes a
"fusion" of HTN planning with Description Logics. [22] describes a cognitive archi-
tecture with a focus on plan recognition designed to infer the intents of competitive
agents. PELA [12] describes a probabilistic planner that learns from interactions with
the world.

The symbolic "scene" representation resembles [21] semantic networks, while
scene graphs are commonly used in computer gaming [24]. [4] combine scene graphs
with semantic networks to model human vision and propose this as a representation
for "mental images".

[5] surveyed the combination of physics simulation and planning. IJCAI 2015 will
host an "Angry Birds Competition" that will require physics simulation.

[9] surveyed the combination of planning and description logics. [20] introduces
situation calculus to the FLEX DL system in order to allow for planning with DL
ABox structures.

The SBR attention subsystem resembles the [15] "Meander" subsystem for
the ICARUS cognitive architecture with similar execution tracking and re-planning
properties.

3 Architecture Overview

The proposed architecture consists of four layers with several subsystems each:

Fig. 2. The SBR Architecture layer stack

3.1 Subsystems Overview

The "Interface" layer converts sensor data into scenes and executes planner tasks.

3D Scene Reconstruction. Converts 2D sensor data into a 3D scene graph and per-
forms the reverse operation.

Senso-Motoric. Provides the interfaces between the SBR planner and the sensors and
actuators available as part of a physical or simulated robot.

28 F. Bergmann and B. Fenton

The "Planner" layer creates, recognizes and executes plans:

SBR Planner. The core of the SBR system, which takes as input an initial scene and
a goal represented by a sub-scene. It returns a number of plans represented by HTN
tasks, together with confidence scores.

Prediction Subsystem. Predicts the behavior of objects and agents during planning
operations.

Episodic Memory. Stores large amounts of scenes, split into key frames and indexed
by the included objects and their properties [19].

The "Reasoning" layer implements reasoning capabilities on top of the planner.

Plan Reasoning. Implements operations on plans that together allow for improving
plans and meta-reasoning about plans.

Logical Reasoning. Implements a Description Logic on top of the SBR planner,
maintaining beliefs about the world, together with a confidence score.

The "Control" layer provides high-level control of a SBR system.

Attention Subsystem. Controls the "focus of attention" of the SBR system, executes
plans and contains the system's "persistent goals".

3.2 Data Structures

Objects. Untyped list of key-value tuples ("attributes") with values that can be integ-
ers, real numbers, strings or references to other objects. Symbolic object descriptions
are created using the "object configurator" explained below.

Agents. Objects that maintain a "persistent goal hierarchy" and a set of beliefs.
Agents represent humans, animals, robots and AGI instances in planning processes.

Relations. Named and directed arrows between two objects.

Fig. 3. A sample scene with a scene graph and a symbolic representation

Scenes. Represent real-world 3D constellations and "mental images" as well as se-
mantic networks for logical reasoning. On the lowest level, scenes are implemented as
3D scene graphs ([24], as in computer gaming) consisting of a number of "objects",
together with their position and surface texture so that they can be rendered into a 2D
image by a rendering engine. On higher levels, scene graph details are ignored, object
characteristics are abstracted into attributes and spatial object constellations are en-
coded into semantic relations. Finally, scenes are used as an "ABox" for Description

 Scene Based Reasoning 29

Fig. 4. "Eating dinner" - A plan for eating dinner, explaining the relationship between scenes,
scripts and plans. Tasks (in blue) may have multiple learned decompositions that are combined
by the planner to create plans with utility and cost.

Logics reasoning. Scenes provide for self-referentiality and meta-reasoning by
representing plans and other internal SBR objects as a 2D diagrams.

Sub-Scenes. Scenes with only partially filled object attributes. Sub-scenes are used as
rule-heads and to describe the state change effect of an action.

Scripts. Consist of sequences of scenes (similar to [Schank et al 1977]) representing a
transition through time of the included objects.

Key Frames. Scenes marking the start and end points of important transitions.

Plans. A tree with one root task which is decomposed into a sequence of sub-tasks.

4 3D Scene Reconstruction

This subsystems performs the conversion of 2D sensor data into a 3D scene using an
iterative algorithm depicted below.

Fig. 5. 3D Scene Reconstruction: 1) Perform classical 2D feature extraction (edges, textures,
…) and retrieve episodic memory (EM) object matches. 2) Check the EM for scenes that con-
tain all or part of the objects. 3) Construct a plausible scene with expectations from higher SBR
levels. 4) Configure 3D objects (position, textures, …) for best fit with the sensor data. 5)
Render the scene including lightning and filters. 6) Calculate "deltas" on edges, textures etc. 7)
Use deltas to correct object position and state.

30 F. Bergmann and B. Fenton

5 Prediction Subsystem or "Sandbox"

This subsystem performs a probabilistic prediction of the behavior of objects and
agents in a scene in order to perform a "what-if" simulation of likely outcomes of
actions, effectively providing a simulation sandbox to the SBR planner.

• A physics engine [5] predicts the behavior of passive objects.
• An "abstracted physics simulation" predicts object behavior for longer time spans

based on spatial relationship and previously observed scripts.
• A "social reasoning simulation" predicts the behavior of agents in a scene as a

reaction to SBR actions. This simulation "spawns" a new instance of the SBR sys-
tem per agent with the agent's parameters and simulates the agent's likely actions
similar to [13].

The prediction subsystem can predict the behavior of the SBR system itself, as it
can be modeled just like other actors. This can be thought to be part of a SBR "self-
model".

6 SBR Planner

The SBR takes as input an initial scene and a goal and returns a number of plans,
together with probability scores. The proposed planner includes several features from
recent research:

• Spatial-temporal planning language: The SBR planner operates on scenes instead
of FOL formulas.

• Probabilistic planning: SBR tasks have multiple outcomes.
• Timeline planning: SBR tasks take a certain time to complete.
• Multi-agent planning: The prediction subsystem predicts the behavior of agents

and movable objects.
• Resource-bound operations: The planner will return first plans that are fast to gen-

erate, and then propose additional plans if time is available.

Fig. 6. Eating dinner satisfies hunger: Sub-scenes describe conditions and effects of tasks

Planning with these characteristics is only partially understood as of today and the
authors have not found any reference to practical systems combining stochastic plan-
ning and HTNs for more than toy domains. In the face of this situation, the authors
sketch below a new approach that relies on "active tasks" and "worst-case analysis" in
order to cope with the increased branching factor of probabilistic planning:

Active Task. A planner task with a known decomposition, together with statistics
about past executions of the task in the episodic memory, along the lines of

 Scene Based Reasoning 31

PRODIGY [25] and PELA [12]. Past execution may have included re-planning or
escalation processes in order to deal with local failures, which have an impact on the
cost of the action and its duration.

The statistics of past executions of active tasks are analyzed with respect to the fac-
tors leading to success.

Worst-Case Analysis. Undesired outcomes from all tasks in a plan are treated indivi-
dually, as opposed to calculating probability distributions over "histories" [8]. Com-
bined with the cost of executing the plan and the impact of a failed plan, the SBR
planner can calculate a risk compensation and decide whether to pursue this path,
develop a better plan or to choose non-action.

6.1 Example: Solving Equations

The following example of solving an equation demonstrates how 2D scene represen-
tations can provide the basis for symbolic reasoning.

Fig. 7. Solving equations using the SBR planner

1. The 3D reconstruction subsystem passes the 2D sensor data to a statistical algo-
rithm in order to recognize the type and value of each object, resulting in a symbol-
ic representation.

2. The reconstruction subsystem determines the symbolic "left-of" spatial relation-
ships between the objects.

3. The HTN planner then applies "actions" to the symbolic representation in order to
simplify and solve the expression. Rules were learned during training sessions.

7 Reasoning About Plans

This subsystem implements several operations on plans that together allow SBR to
acquire, simulate, optimize and reason about plans:

Plan Recognition. Plan recognition analyzes sensor input in order to determine the
Plans of all involved agents [3]. This process detects errors during 3D scene recogni-
tion and triggers investigation and learning processes.

Plan Simulation. The prediction subsystem's "abstracted physics simulation" allows
to simulate object behavior in a scene, effectively creating a "sandbox".

32 F. Bergmann and B. Fenton

Plan Statistics. The episodic memory maintains a history of "scripts" of past plan
executions, including the initial conditions and outcomes by means of the initial and
last scene. This allows to apply clustering and learning algorithms beyond the scope
of this paper.

Plan Optimization. Convert plans into 2D scenes using a "pen on paper" representa-
tion, compare, tweak, merge, mix and match different plans, pre-validate plans using
simulation and execute the new plan in the real world. All of these optimization steps
are implemented as meta-plans that can be optimized as well.

8 Logical Reasoning

The logical reasoning subsystem uses Description Logics (DL) [2] to maintains be-
liefs about the world together with confidence scores in a way similar to FLEX [20].
FLEX inference rules closely resemble SBR planner tasks, allowing the SBR planner
to execute inferences rules directly without the need for a separate DL system. The
DL "ABox" resembles SBR scenes, allowing to use DL in order to model symbolic
object relationships.

Using this architecture, the system can talk about its beliefs ("all birds can fly":
confidence=0.9), can test potential new hypotheses against a base of episodic memory
cases and track "clashes" (contradictions during reasoning like "penguin P is a bird
but doesn't fly") to the their axioms. New beliefs can be acquired via machine learn-
ing and checked against the episodic memory for consistency and explanation capa-
bility of actor's behavior. All of these operations are performed by "active tasks".

9 Attention Subsystem

The Attention Subsystem maintains a list of "persistent goals", a portfolio of plans
and controls a "focus of attention" while tracking the execution of plans.

Persistent Goals. A list of medium and long term goals. Persistent goals are created
manually by a human system operator (Asimov's laws of robotics), as a reaction to
"urges" or by SBR-Planner as part of a plan that can't be executed immediately.

Attention Focus. Most of the time the attention focus lies with the images from a
camera of a robot running SBR, but attention can also be focused on parts of the "self-
model". Sensor data are processed by 3D reconstruction and passed on to the episodic
memory in order to retrieve "associations", i.e. plans and scripts associated with the
focused objects in their context. These "ideas popping up" are matched against active
"persistent plans" in order to determine if the idea could contribute to an active plan.

When executing plans or "active tasks", the attention focus tracks the current vs.
planned world state and initiates re-planning if necessary.

Portfolio of Plans. A set of plans created in order to satisfy the list of persistent
goals. The attention subsystem evaluates the plans according to utility, cost and
chance for success and execute the plan with the highest value.

 Scene Based Reasoning 33

10 Learning

Statistical learning is essential for a cognitive architecture based on a probabilistic
planner. However, most references to learning algorithms have been omitted in the
previous sections because their role is limited to auxiliary and relatively well unders-
tood tasks like calculating task success probabilities, guiding the planner search
process or clustering parameter values in order to generate new concepts. Also, the
exact choice of algorithms is irrelevant to the general AGI architecture.

This section summarizes the areas where statistical algorithms are employed:

3D Scene Reconstruction. Identify approximately objects and their positions from
sensor data.

SBR Planner. Learn and propose applicable planner tasks to given problems, learn
task decompositions, learn success factors for executing tasks.

Prediction Subsystem. Predict the behavior of agents as a script.

Episodic Memory. Maintain statistics about object occurrences in scenes, successful
execution of tasks, identify scenes leading to successful plan execution.

Plan Reasoning. Classify plans for generalization.

Logical Reasoning. Classify concepts for generalization, learn DL implication links
based on example.

Attention Subsystem. Learn the utility function of plans.

Also, non-statistical learning is employed:

Attention Subsystem. When trying to "understand" an input 3D script, the plan rec-
ognition system will try to classify all objects and to determine the plans of all in-
volved agents. Lack of such understanding may trigger active investigation, including
"asking the operator" or getting closer to the agents in order to gather better sensor
input.

Acknowledgment. The authors are grateful to Ben Goertzel, Sergio Jiménez, Anders Jonsson
and José Hernandez-Orallo for their comments on early drafts of this paper.

References

1. Anderson, J.R., Lebiere, C.: The newell test for a theory of cognition. Behavioral and
Brain Sciences 26(05), 587–601 (2003)

2. Brachman, R.J.: What’s in a concept: structural foundations for semantic networks. Inter-
national Journal of Man-Machine Studies 9(2), 127–152 (1977)

3. Carberry, S.: Techniques for plan recognition. User Modeling and User-Adapted Interac-
tion 11(1–2), 31–48 (2001)

4. Croft, D., Thagard, P.: Dynamic imagery: a computational model of motion and visual
analogy. In: Model-Based Reasoning, pp. 259–274. Springer (2002)

5. Davis, E., Marcus, G.: The scope and limits of simulation in cognition and automated
reasoning. Artificial Intelligence (2013)

34 F. Bergmann and B. Fenton

6. Erol, K.: Hierarchical task network planning: formalization, analysis, and implementation.
Ph.D. thesis, University of Maryland (1996)

7. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial intelligence 2(3), 189–208 (1972)

8. Ghallab, M., Nau, D., Traverso, P.: Automated planning: theory & practice. Elsevier
(2004)

9. Gil, Y.: Description logics and planning. AI Magazine 26(2), 73 (2005)
10. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part 1,

Springer (2014)
11. Hartanto, R., Hertzberg, J.: Fusing DL reasoning with HTN planning. In: Dengel, A.R.,

Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds.) KI 2008. LNCS
(LNAI), vol. 5243, pp. 62–69. Springer, Heidelberg (2008)

12. Jim_enez Celorrio, S.: Planning and learning under uncertainty. Ph.D. thesis, Universidad
Carlos III de Madrid, Escuela Politécnica Superior (2011)

13. Konolige, K., Nilsson, N.J.: Multiple-agent planning systems. AAAI. 80, 138–142 (1980)
14. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architecture for general intelligence.

Artificial intelligence 33(1), 1–64 (1987)
15. Langley, P.: An adaptive architecture for physical agents. In: The 2005 IEEE/WIC/ACM

International Conference on Web Intelligence, 2005. Proceedings, pp. 18–25. IEEE (2005)
16. Langley, P.: Altering the ICARUS architecture to model social cognition (2013).

http://www.isle.org/~langley/talks/onr.6.13.ppt
17. Langley, P., McKusick, K.B., Allen, J.A., Iba, W.F., Thompson, K.: A design for the

ICARUS architecture. ACM SIGART Bulletin 2(4), 104–109 (1991)
18. Metzinger, T.: Being no One: The Self-Model Theory of Subjectivity. MIT Press (2003)
19. Nuxoll, A.M., Laird, J.E.: Extending cognitive architecture with episodic memory. In:

Proceedings of the National Conference on Artificial Intelligence. vol. 22, p. 1560. Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999 (2007)

20. Quantz, J.J., Dunker, G., Bergmann, F., Kellner, I.: The FLEX system. KIT Report 124,
Technische Universität Berlin (1995)

21. Quillian, M.: A notation for representing conceptual information: An application to seman-
tics and mechanical English paraphrasing, sp-1395. System Development Corporation,
Santa Monica (1963)

22. Santos Jr., E.: A cognitive architecture for adversary intent inferencing: Structure of know-
ledge and computation. In: AeroSense 2003, pp. 182–193. International Society for Optics
and Photonics (2003)

23. Schank, R.C., Abelson, R.P.: Scripts, plans, goals, and understanding: An inquiry into hu-
man knowledge structures. Erlbaum (1977)

24. Strauss, P.S.: IRIS inventor, a 3d graphics toolkit. In: Proceedings of the Eighth Annual
Conference on Object-oriented Programming Systems, Languages, and Applications,
pp. 192–200. OOPSLA 1993, ACM, New York, NY, USA (1993). http://doi.acm.org/10.
1145/165854.165889

25. Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E., Blythe, J.: Integrating planning
and learning: The prodigy architecture. Journal of Experimental & Theoretical Artificial
Intelligence 7(1), 81–120 (1995)

Anchoring Knowledge in Interaction: Towards
a Harmonic Subsymbolic/Symbolic Framework
and Architecture of Computational Cognition

Tarek R. Besold1(B), Kai-Uwe Kühnberger1, Artur d’Avila Garcez2,
Alessandro Saffiotti3, Martin H. Fischer4, and Alan Bundy5

1 Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
{tbesold,kkuehnbe}@uos.de

2 City University London, London, UK
a.garcez@city.ac.uk

3 Örebro University, Örebro, Sweden
asaffio@aass.oru.se

4 University of Potsdam, Potsdam, Germany
martinf@uni-postdam.de

5 University of Edinburgh, Edinburgh, Scotland
a.bundy@ed.ac.uk

Abstract. We outline a proposal for a research program leading to a
new paradigm, architectural framework, and prototypical implementa-
tion, for the cognitively inspired anchoring of an agent’s learning, knowl-
edge formation, and higher reasoning abilities in real-world interactions:
Learning through interaction in real-time in a real environment triggers
the incremental accumulation and repair of knowledge that leads to the
formation of theories at a higher level of abstraction. The transforma-
tions at this higher level filter down and inform the learning process as
part of a permanent cycle of learning through experience, higher-order
deliberation, theory formation and revision.

The envisioned framework will provide a precise computational the-
ory, algorithmic descriptions, and an implementation in cyber-physical
systems, addressing the lifting of action patterns from the subsymbolic
to the symbolic knowledge level, effective methods for theory formation,
adaptation, and evolution, the anchoring of knowledge-level objects, real-
world interactions and manipulations, and the realization and evaluation
of such a system in different scenarios. The expected results can pro-
vide new foundations for future agent architectures, multi-agent systems,
robotics, and cognitive systems, and can facilitate a deeper understand-
ing of the development and interaction in human-technological settings.

1 A Harmonic Analogy

Natural agents in many situations in their reasoning seem to rely on an enormous
richness of representations (multimodal, grounded, embodied and situated), with
many layers of representation at different levels of abstraction, together with

c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 35–45, 2015.
DOI: 10.1007/978-3-319-21365-1 4

36 T.R. Besold et al.

dynamic re-organization of knowledge. Also, real-world situations require agents
to perform what can be interpreted as dynamic changes or alignments of repre-
sentation, as different agents might use different languages and levels of descrip-
tion. Unfortunately, when trying to follow the natural example by transferring
and (re)creating this representational richness and diversity to artificial agents,
the resulting mismatches cannot be cured by standardization, but arise due to
differences in the environment, tasks to be solved, levels of abstraction, etc. Addi-
tionally, real-world applications also demand online and bidirectional learning
that takes place in real-time, as well as the adaptation to changes in the envi-
ronment, to the presence of new agents, and to task changes.

A conceptually similar situation presents itself in the domain of music: Music
appears on different levels as there are, among others, a physical level (audio
data), a MIDI level, a chord progression level, a harmonic, melodic, rhythmic
level, a score level, a structural level of a piece of music, a (semantic) meta-level
for describing music. Concerning the interaction and transfer of information
between levels, in certain cases there are obvious mappings (e.g. MIDI level to
score to harmonic structure), in others there are partial or incomplete mappings
(e.g. harmonic structure to score, rhythmic to physical level), in others there are
fuzzy or tentative mappings (e.g. melody to harmony (in an idiom) or to rhyth-
mic level (in an idiom), physical to structural level of a piece of music), and
between others there are no mappings at all (e.g. MIDI level to semantic/meta
level, melodic level to structural to harmonic level). Also, music can be described
in different representation formats on all levels. A piece of music can then be
considered as a multi-layered multi-representational entity with certain connec-
tions and constraints (in form of relations, mappings etc.) between the layers,
where, for instance, changing the chord progression influences (in an obvious,
partial, or fuzzy way) many (but not all) other levels.

From a functional perspective, pieces of music that have been analyzed in
such a multi-representational way could, among others, be used to learn or
to detect obvious mappings between the layers, to detect novelties and cor-
relations, to systematically unfold the specific properties of pieces (or classes
thereof)/idioms/genres of music, or to find the invariant properties of music
(e.g. a change of melody changes systematically the score, but does not affect
the larger structure of the piece).

Returning to the agent setting by way of analogy we envision a system oper-
ating on different levels of representations (corresponding to different formal lay-
ers in the system’s architecture) similar to the musical case. The hierarchy could
consist, for instance, of a (lowest) neural layer learning on the perception/motor
level, an anchoring layer learning elementary (semi-)symbolic representations of
objects, a reactive layer taking over in critical situations, a deep learning layer
learning on more abstract levels, a symbolic layer doing reasoning and planning,
and a (higher) symbolic layer providing the core ontology. Like in music, some
of these layers have obvious, some have partial, some have fuzzy, and some have
no mappings/relations between themselves.

Anchoring Knowledge in Interaction 37

Now, a corresponding architecture should be in a “pre-established” harmony:
Triggering an abstract plan to move from A to B should result in the motor
action to move from A to B, classifying on the neural level a certain perceptual
input such as, for instance, a chair should result in the activation of the concept
“chair” in the ontology or the working memory, and so on. And whilst the
basic links might be hard coded, learning a new concept on the subsymbolic
level should somehow result in a new concept entry in the ontology, i.e., there
should be interaction between the different layers in terms of information and
conceptualizations. Finally, when thinking about a simulated or actual system
that is operating on these interacting levels in a multi-representational manner
it should allow for similar mechanisms and interactions as in the music case.

2 The Core Ideas

Addressing the challenges outlined in the previous section and taking inspiration
in the sketched analogy to the musical domain, we propose the development of
a new approach and integrated techniques that will enable the sustainable and
accessible creation of large-scale integrated knowledge repositories for use by
multi-agent systems or as part of a cyber-physical system. In this note, we sug-
gest a research program for the community working on embedded intelligence.
This program for ’anchoring knowledge in interaction’, aims at developing, the-
oretically and practically, a conceptual framework and corresponding architec-
ture that model an agent’s knowledge, thinking, and acting truly as interrelated
parts of a unified cognitive capacity. That is, knowledge is seen as multi-layered
phenomenon that appears at different levels of abstraction, promotes interaction
between these levels of abstraction, is influenced by the interaction between agent
and environment (potentially including other agents), and is essentially linked
to actions, perception, thinking, and being. The program’s long term vision,
thus, is a radically new paradigm in what concerns interaction styles (which are
action-centered, embodied, multi-modal), knowledge repositories (with different
levels and forms of knowledge representation, as, e.g., multi-modal, hybrid), and
user modeling and communication through learning and adaptation.

The scientific aims of the described endeavor target advances at different
conceptual and topical levels (covering, among others, all three levels of analysis
of a cognitive system described in [19]). On the embodiment level, it shall be
shown that elementary forms of representations can be learned from an agent’s
interactions within an environment. The resulting multi-modal representations
may be noisy, they may be uncertain and vague, it may be the case that different
agents have different languages for representing knowledge, or that changes in
the environment may come into play. On this level, building on recent advances
in the study of embodied cognition, the main development will therefore be an
extension of the well-known anchoring framework in robotics [5] to grounding
not only objects, but also certain general observable properties appearing in the
environment.

The embodiment view of knowledge provides an interaction-based neural rep-
resentation of knowledge that is not represented at the conceptual level. Neural

38 T.R. Besold et al.

systems can promote robust learning from data, as part of an online learning
and reasoning cycle to be measured in terms of an improved experience, a faster
adaptation to a new task, and the provision of clear descriptions. On this level,
a lifting procedure shall be specified that will produce descriptions, thus lifting
grounded situations and an agent’s action patterns to a more abstract (symbolic)
representation, using techniques from machine learning like deep networks and
analogy-making. This can be seen as a natural consequence of recent research
developed for deep learning and neural-symbolic computing, the crucial added
value over the state of the art being the combination of these new methodologies
with analogical transfer of information between representation systems.

Knowledge at a symbolic level is usually considered to be static and error-
intolerant. Due to the fact that initial multi-modal representations lifted from
the subsymbolic level can be error-prone, and that different agents might use dif-
ferent and a priori possibly incompatible representation languages, the program’s
objective at the level of symbolic representations is a dynamic re-organization
based on ontology repair mechanisms, analogy, concept invention, and knowl-
edge transfer. These mechanisms foster adaptation of an agent to new situations,
the alignment between representations of different agents, the reformulation of
knowledge entries, and the generation of new knowledge.

In summary, the envisioned account of the emergence of representations
through cognitive principles in an agent (or multi-agent) setting can be con-
ceptualized as follows: Grounding knowledge in cognitively plausible multimodal
interaction paradigms; lifting grounded situations into more abstract representa-
tions; reasoning by analogy and concept blending at more abstract levels; repair
and re-organization of initial and generated abstract representations.

Applications for such a framework are manifold and not limited to the “clas-
sical” realm of robotic systems or other embodied artificial agents. Also, for
instance, future tools in e-learning education – in order to guarantee sustainable
and life-long learning tools for different groups of learners – will focus on aspects
such as, for instance, adaptivity to target groups of learners, modeling of the
knowledge level of group members, multi-modality, integration of a richer reper-
toire of interaction styles of learning including action-centered set-ups, promotion
of cooperative and social learning, etc. Such devices are inconceivable without a
cognitive basis, adaptation, multiple representations, concept invention, repair
mechanisms, analogical transfer, different knowledge levels, and robust learning
abilities.

3 The Core Objectives

The core idea is that knowledge is multi-layered, i.e. there is no static, fixed, and
definite representation of knowledge, rather agents have to adapt, learn, and re-
organize knowledge continuously on different levels while interacting with other
agents and their environment. Thus, the future architecture aims to anchor and
embody knowledge by the interaction between the agent and its environment
(possibly including other agents), to give an approach to lift the resulting situ-
ated action patterns to a symbolic level, to reason by analogy on the abstract

Anchoring Knowledge in Interaction 39

and the subsymbolic level, to adapt, or in case of clashes, repair the initial rep-
resentations in order to fit to new situations, and to evaluate the approach in
concrete settings providing feedback to the system in a reactive-adaptive evolu-
tionary cycle.

The project’s scope is primarily focused on providing answers to several long-
standing foundational questions. Arguably the most prominent among these,
together with answers based on the conceptual commitments underlying the
discussed research program, are:
1.) How does knowledge develop from the concrete interaction sequences to the
abstract representation level? The crucial aspect is the lifting of grounded situ-
ations to more abstract representations.
2.) How can experience be modeled? Experience can be explained by deep learn-
ing.
3.) How is deeper understanding of a complex concept made possible? Theory
repair makes precisely this possible.
4.) To which extent do social aspects play a role? Analogical transfer of knowl-
edge between agents is a central aspect concerning efficient and flexible learning
and understanding.

Although efforts are directed towards reintegrating the different aspects of
agent cognition spanning from abstract knowledge to concrete action, there is
also a strong drive toward new concepts and paradigms of cognitive and agent-
based systems. A fresh look at the embodiment problem is proposed, as the
envisioned account goes significantly beyond the perception-action loop and
addresses the problem of the possibility of higher intelligence where it occurs,
namely at the level of the emergence of abstract knowledge based on an agent’s
concrete interaction with the environment. Similarly, learning aspects are tack-
led not only on a technical level, but furthermore pushed beyond the technical
area by gaining inspiration from cognitive science and concept-guided learning
in the sense of analogical learning and concept blending, as well as from newer
findings in neural networks learning.

4 Structure and Methods

The new approach for modeling knowledge in its breadth, namely from its
embodied origins to higher level abstractions, from the concrete interaction
between an agent and its environment to the abstract level of knowledge trans-
fer between agents, and from the holistic view of knowledge as an interplay
between perception, (inter)action, and reasoning to specific disembodied views
of knowledge, touches on different aspects and fields of research. It therefore
requires the integration of expressive symbolic knowledge representation for-
malisms, relational knowledge, variables, and first-order logic on the one hand
with representations of sensorimotor experiences, action patterns, connectionist
representations, and multi-modal representations on the other.

The different topics above will be formalized, algorithmically specified, imple-
mented in running applications and evaluated. With respect to the formalization,

40 T.R. Besold et al.

research methods from machine learning (e.g. cross-validation [9] or layer-wise
model selection [1] in deep networks) will be used to learn conceptual knowl-
edge from subsymbolic data, i.e. to extract knowledge from such networks in
order to lift and enable transfer learning on the conceptual level. This type of
conceptual knowledge will be used as input to the analogy-making process to
generate new concepts by abstraction and transfer of knowledge in a domain-
independent and multi-modal setting. The formalization of the analogy process,
including the computation of generalizations [21], and the multi-modal embodied
representations potentially change the signatures of the underlying language(s).
Therefore, the theory of institutions [8] will be used as methodology in which
dynamic changes of languages can be rigorously formalized. The repair of the-
ories and concept invention mechanisms will be linked to analogy-making and
are methodologically formalized in a higher-order logical framework [3,17].

The corresponding research program is structured into interrelated thrusts:
1.) Cognitive Foundations of Knowledge: New embodied approaches
to understanding human cognition, augmenting the traditional symbol
manipulation-based accounts, emphasize the importance of sensorimotor inter-
actions as part of knowledge formation [10]. Thereby, they provide the starting
point for a systematic assessment of basic learning signatures in the presence
of different sensorimotor experiences, leading to recommendations for the devel-
opment of cognitively-inspired formal frameworks for embodied computation,
in particular, for the specification of learning mechanisms, analogy, and repair
mechanisms.

Together with approaches from computational neuroscience and network-
level cognitive modeling (as, e.g., the recently proposed framework of conceptors
in dynamical system models [15]) work in this thrust will create the cognitively-
inspired foundations and low-level input representations and content for the
subsequent stages of processing and reasoning.
2.) Anchoring Knowledge in Perception, Action, and Interaction:
Anchoring [5] in robotic systems is the problem of how to create, and to maintain
in time and space the connection between the symbol- and the signal-level repre-
sentations of the same physical object. Anchoring this far is concerned with the
grounding of symbols that refer to specific object entities, i.e. anchoring can be
considered as a special case of the symbol grounding problem limited to physical
objects.

While different approaches to solving this foundational problem have been
proposed [4], a satisfactory answer is still elusive and the arising difficulties are
manifold: In a distributed system, individual agents may need to anchor objects
from perceptual data coming either from sensors embedded directly on the robot
or information coming from external devices. Further, agents each with their
own anchoring module may need to reach a consensus in order to successfully
perform a task in a cooperative way. Also Human-Robot Interaction (HRI)-
oriented communication about objects requires a coordinated symbol-percept
link between human and robot.

Anchoring Knowledge in Interaction 41

In the envisioned framework, building on [16]’s results on cooperative anchor-
ing and on [6]’s symbiotic HRI robotic systems, anchoring happens under even
more general conditions: anchoring is performed both top-down and bottom-up
during learning; new symbols for new objects and categories are dynamically
introduced by repair and concept invention mechanisms; the denotation of a
symbol used in communication must be consistent across the communicating
agents; anchoring must enable the establishment of analogical links across dif-
ferent agents.
3.) Lifting Knowledge from the Subsymbolic to the Symbolic Level:
The elementary forms of representations referred to above, which may be noisy,
vague, and uncertain, have been made suitable for learning through the use of
neural networks, notably recently deep networks.

Deep learning is a form of representation learning aiming at discovering mul-
tiple levels of representation. Also, recent advances in the area of deep learning
have shown promising results when applied to real-time processing of multi-
modal data [7], and state-of-the-art deep learning methods and algorithms have
been able to train deep networks effectively when applied to different kinds of
networks, knowledge fusion, and transfer learning [2]. However, more expressive
descriptions and forms of representation have become more difficult to obtain
from neural networks.

Following a neural-symbolic approach, neural learning will be combined with
temporal knowledge representation using variations of the Restricted Boltzmann
Machine model [14]. The resulting approach will offer a method for validat-
ing hypotheses through the symbolic description of the trained networks whilst
robustly dealing with uncertainty and errors through a Bayesian inference model.
Furthermore, the use of Gärdenfors’ “conceptual spaces” [11] to link symbolic
and subsymbolic data, as done in [16], will also be investigated and tested for
its applicability and feasibility in the proposed complex sensing, learning, and
reasoning cycle.
4.) Analogy/Blending: Analogy is classically understood as a method to
detect and operate on structural commonalities between two domains, and in
cognitive science and cognitive AI has been applied to a variety of tasks, e.g. intel-
ligence tests [18], learning with sketches [20], or naive physics [21]. Unfortunately,
until now analogy engines are designed only for highly specialized domains, nei-
ther multi-modal representations nor embodied interaction with the environment
is taken into account, abstraction and knowledge projection from source to tar-
get are usually restricted to a few stages of analogical comparisons, and repair
strategies for faulty inputs are rather limited.

The described approach brings analogical reasoning from a computer science
perspective closer to its cognitive origins: generalizability, multi-modal represen-
tations, and embodied interaction with the environment are considered to be
essential for analogy-making in this project. Furthermore, analogies will directly
be linked to repair mechanisms in order to facilitate the resolution of errors. Thus,
analogies are re-considered concerning their foundations and re-conceptualized
concerning their methodological basis, as well as their applications.

42 T.R. Besold et al.

5.) Concept Formation/Reformation: An important way in which new con-
cepts are formed is by the evolution of existing concepts that have proved inad-
equate: Such inadequacies are often revealed by failures of inference using the
old concepts. Researchers lately explored how these inadequacies can trigger
conceptual change in different domains as, e.g., physics [17] or in ontologies [12].

The resulting domain-specific diagnosis and repair mechanisms bore strong
similarities to each other: The so called reformation algorithm (a modification of
unification) is an attempt to capture the generality behind these mechanisms and
provide a domain-independent diagnosis and repair mechanism for conceptual
change (cf. [3] for an example). Based on this approach, generic mechanisms for
repairing agents’ faulty representations (especially those produced by imperfect
analogies) will be developed, implemented, and evaluated in a variety of domains
going far beyond current (domain specific) solutions.

5 First Steps Towards an Implementation

At the current stage, the suggested research program is still mostly in its concep-
tion and planning phase. Nonetheless, a basic conceptual architecture (see Fig. 1)
can already be laid out based on the considerations discussed in the previous sec-
tions: depending on the perspective and degree of abstraction, this architecture
can either be sub-divided into five hierarchical layers (respectively correspond-
ing to the five thrusts sketched in the previous section) or can be conceptualized
as structured in three (partially overlapping) functional components. In the lat-
ter case, the cognitive foundations and the anchoring layer are combined into a
low-level subsymbolic module, analogy/blending and concept formation/repair
into a high-level symbolic module, and anchoring, knowledge lifting, and anal-
ogy into an intermediate module bridging in the direction from the low-level to
the high-level component. Concerning the individual modules, interaction hap-
pens both between layers within components (as, e.g., between analogy/blending
and concept formation/reformation layer) as well as across components (as, e.g.,
through the feedback from the concept formation/reformation to the anchoring).
This results in an architecture adhering to and implementing the “harmonic anal-
ogy” setting from the introductory section, with changes in one layer propagating
to others in order to maintain a “harmonic” configuration.

Within the low-level module, conceptors and similar approaches are employed
in order to establish a certain initial structure of the perceptual input stream on
a subsymbolic level, additionally reinforcing the proto-structure already imposed
by the properties of the embodiment-inspired approach to computation. This ini-
tial structure can then be used as basis upon which the anchoring layer oper-
ates, coupling elements of this structure to objects and entities in the perceived
environment and/or to action-based percepts of the agent. This coupling goes
beyond the classical accounts of anchoring in that not only correspondences
on the object/entity level are created, but also properties and attributes of
objects/entities are addressed. Thus, subsymbolic correspondences between the
initial structured parts of the perceptual input stream as representational vehicles

Anchoring Knowledge in Interaction 43

Fig. 1. An overview of the conceptual structure, functional components, and the inter-
play between layers of the envisioned architecture implementing the cycle of learning
through experience, higher-order deliberation, theory formation and revision

and their actual representational content are established. These vehicle-content
pairs then can be arranged in a hierarchical structure, both on object/entity
level and on connected object/entity-specific property levels, based on general
attributes of the perceptual input stream (as, e.g., order of occurrence of the
respective structures, relations between structures) hinting at elements of the rep-
resentational content, and on direct properties of the representations in their func-
tion and form as representational vehicles.

Within the high-level module, analogy and blending are applied on rich logic-
based representations to find corresponding concepts and knowledge items, to
transfer and adapt knowledge from one context into an analogically-related simi-
lar one, and to combine existing concepts into new concepts based on analogical
correspondences between the inputs. Still, these processes are error-prone in
that they can reveal inconsistencies between existing concepts, or can introduce
new inconsistencies by concept combination or concept transfer and adaptation.
Arising inconsistencies can then be addressed by the top-level concept formation
and reformation layer, allowing to repair inconsistent symbolic representations
through manipulations of the representational structure and to introduce new
representations or concepts by introducing new representational elements – and,
when doing so, informing and influencing the subsymbolic anchoring layer to
perform corresponding adaptations in its vehicle-content correspondences.

Finally, the intermediate module bridging from low-level to high-level pro-
cessing takes the correspondences between representing structures and repre-
sentational content established by the anchoring layer, and uses deep learning

44 T.R. Besold et al.

techniques for representation learning in order to lift the subsymbolic vehicle-
content pairs to a logic-based form of representation. Here, the corresponding
learning process will take into account already existing knowledge on the sym-
bolic side by way of analogy both, over vehicle-content pairs and over the learn-
ing process itself (i.e., resulting in a form of cross-informed transfer learning):
When presuming a (fairly low) basic level of continuity of the environment and
the perceptual input stream, on the one hand, over time the symbolic forms of
newly lifted vehicle-content pairs most likely will share analogical commonalities
with already existing concept and knowledge items which can then be used to
foster the lifting process, while on the other hand successive or parallel lifting
processes also can cross-inform each other leveraging the analogical structure
over processes and exploiting shared or similar sub-parts.

6 (Far) Beyond Multi-level Data Fusion

At first sight, similarities between the proposed research project and work in
multi-level data fusion might be suggested, questioning the sketched approach’s
novelty or added value over existing accounts.

Still, the differences are significant. Data fusion tries to leverage the advan-
tage of receiving several data streams concerning the same source for getting
a more precise characterization of the source: “data fusion techniques combine
data from multiple sensors and related information from associated databases to
achieve improved accuracy and more specific inferences than could be achieved
by the use of a single sensor alone.” [13]. Even when leaving aside the targeted
improvements and extensions to existing techniques, such as performing anchor-
ing also on the attribute level, the ambition of the research project sketched in
this paper goes far beyond this: The final goal is the development of a cognitively-
inspired combination of low-level sensing with high-level reasoning in an attempt
of anchoring (symbolic) knowledge in (subsymbolic) perception and (inter)action
in a continuous feedback loop.

If successful, this would in all likelihood constitute a significant step towards
the (re)creation of the foundation for cognitive capacities and forms of reasoning
in next generation systems in artificial intelligence, as well as major progress
towards developing a computational test bench and agent model for theories
from cognitive science.

References

1. Arnold, L., Paugam-Moisy, H., Sebag, M.: Unsupervised layer-wise model selection
in deep neural networks. In: Proceedings of ECAI 2010: 19th European Conference
on Artificial Intelligence, pp. 915–920. IOS Press (2010)

2. Bengio, Y.: Learning Deep Architectures for AI. Foundations and Trends in
Machine Learning 2(1), 1–127 (2009)

3. Bundy, A.: The interaction of representation and reasoning. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences 469(2157)
(2013)

Anchoring Knowledge in Interaction 45

4. Chella, A., Frixione, M., Gaglio, S.: Anchoring symbols to conceptual spaces: the
case of dynamic scenarios. Robotics and Autonomous Systems 43(2–3), 175–188
(2003)

5. Coradeschi, S., Saffiotti, A.: Anchoring symbols to sensor data: preliminary report.
In: Proceedings of the 17th AAAI Conference, pp. 129–135. AAAI Press (2000)

6. Coradeschi, S., Saffiotti, A.: Symbiotic Robotic Systems: Humans, Robots, and
Smart Environments. IEEE Intelligent Systems 21(3), 82–84 (2006)

7. De Penning, H.L.H., Garcez, A.S.D., Lamb, L.C., Meyer, J. J. C.: A Neural-
symbolic cognitive agent for online learning and reasoning. In: Proceedings of
the 22nd International Joint Conference on Artificial Intelligence, pp. 1653–1658.
AAAI Press (2011)

8. Diaconescu, R.: Institution-independent Model Theory. Birkhäuser, 1st edn. (2008)
9. Dietterich, T.G.: Approximate Statistical Tests for Comparing Supervised Classi-

fication Learning Algorithms. Neural Comput. 10(7), 1895–1923 (1998)
10. Fischer, M.H.: A hierarchical view of grounded, embodied, and situated numerical

cognition. Cognitive Processing 13(1), 161–164 (2012)
11. Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. MIT Press (2000)
12. Gkaniatsou, A., Bundy, A., Mcneill, F.: Towards the automatic detection and cor-

rection of errors in automatically constructed ontologies. In: 8th International Con-
ference on Signal Image Technology and Internet Based Systems 2012, pp. 860–867
(2012)

13. Hall, D., Llinas, J.: An introduction to multisensor data fusion. Proceedings of the
IEEE 85(1), 6–23 (1997)

14. Hinton, G.E.: A practical guide to training restricted boltzmann machines. In:
Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the
Trade, 2nd edn. LNCS, vol. 7700, pp. 599–619. Springer, Heidelberg (2012)

15. Jaeger, H.: Controlling recurrent neural networks by conceptors. arXiv (2014),
1403.3369v1 [cs.CV] (March 13, 2014)

16. LeBlanc, K., Saffiotti, A.: Cooperative anchoring in heterogeneous multi-robot
systems. In: 2008 IEEE International Conference on Robotics and Automation,
pp. 3308–3314 (2008)

17. Lehmann, J., Chan, M., Bundy, A.: A Higher-Order Approach to Ontology Evo-
lution in Physics. Journal on Data Semantics 2(4), 163–187 (2013)

18. Lovett, A., Forbus, K., Usher, J.: A structure-mapping model of raven’s progressive
matrices. In: 32nd Annual Meeting of the Cognitive Science Society, pp. 2761–2766
(2010)

19. Marr, D.: Vision. A Computational Investigation into the Human Representation
and Processing of Visual Information. W. H. Freeman and Company (1982)

20. McLure, M., Friedman, S., Forbus, K.: Learning concepts from sketches via ana-
logical generalization and near-misses. In: 32nd Annual Meeting of the Cognitive
Science Society, pp. 1726–1731 (2010)

21. Schwering, A., Krumnack, U., Kühnberger, K.U., Gust, H.: Syntactic Principles of
Heuristic-Driven Theory Projection. Journal of Cognitive Systems Research 10(3),
251–269 (2009)

Safe Baby AGI

Jordi Bieger1(B), Kristinn R. Thórisson1,2, and Pei Wang3

1 Center for Analysis and Design of Intelligent Agents / School of Computer Science,
Reykjavik University, Menntavegur 1, 101, Reykjavik, Iceland

jordi13@ru.is
2 Icelandic Institute for Intelligent Machines,

Uranus, Menntavegur 1, 101, Reykjavik, Iceland
thorisson@ru.is

3 Department of Computer and Information Sciences, Temple University,
Philadelphia, PA19122, USA

pei.wang@temple.edu

Abstract. Out of fear that artificial general intelligence (AGI) might
pose a future risk to human existence, some have suggested slowing or
stopping AGI research, to allow time for theoretical work to guarantee
its safety. Since an AGI system will necessarily be a complex closed-loop
learning controller that lives and works in semi-stochastic environments,
its behaviors are not fully determined by its design and initial state, so
no mathematico-logical guarantees can be provided for its safety. Until
actual running AGI systems exist – and there is as of yet no consensus on
how to create them – that can be thoroughly analyzed and studied, any
proposal on their safety can only be based on weak conjecture. As any
practical AGI will unavoidably start in a relatively harmless baby-like
state, subject to the nurture and education that we provide, we argue
that our best hope to get safe AGI is to provide it proper education.

Keywords: Artificial intelligence · Nurture · Nature · AI safety ·
Friendly AI

1 Introduction

Various kinds of robot uprisings have long been a popular trope of science fiction.
In the past decade similar ideas have also received more attention in academic
circles [2,4,7]. The “fast takeoff” hypothesis states that an “intelligence explo-
sion” might occur where a roughly human-level AI rapidly improves immensely
by acquiring resources, knowledge and/or software – in a matter of seconds,
hours or days: too fast for humans to react [2]. Furthermore, AI would not
inherently care about humanity and its values, so unless we solve the difficult
task of exactly codifying our wishes into the AI’s motivational system, it might
wipe out humanity – by accident or on purpose – if it views us as rivals or threats
to its own goals [2,6]. Some have suggested that AGI research should be slowed
or stopped while theoretical work tries to guarantee its safety [7].

This work is supported by Reykjavik University’s School of Computer Science and a
Centers of Excellence grant of the Science & Technology Policy Council of Iceland.

c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 46–49, 2015.
DOI: 10.1007/978-3-319-21365-1 5

Safe Baby AGI 47

Unfortunately current AI safety research is hampered since we don’t know how
AGI would work, and mathematical or hard theoretical guarantees are impossi-
ble for adaptive, fallible systems that interact with unpredictable and unknown
environments. Hand-coding all the knowledge required for adult or even child-like
intelligence borders on the impossible. Even if we had enough human minds to
do so, and the technology, it sounds rather undesirable in light of safety concerns.
In any case, to be worthy of the “G” in “AGI” a system should be able to han-
dle environments not foreseen by its designers. They must be radically adaptable.
The AGI path is thus more likely than anything else to follow Turing’s suggestion
of building a “child AI” [8], one that will start life with relatively little knowledge
but placed in an environment that facilitates fast and reliable learning, which effec-
tively teaches it the things we want it to know [1].

In addition to the field’s focus on AGI design (nature), we highlight here the
importance of experience (nurture). Concrete AGI designs, and the ability to
empirically study their behavior in complex environments, will facilitate both
AI capability and safety research. We argue that AGI research can and should
be done responsibly (in the lab): An AGI’s resources and knowledge in a finite
universe will necessarily be limited at any time, especially in its näıve starting
state, when it is essentially a “baby”, and we can subject it to any education
and upbringing that we want, e.g. with an eye towards preventing autonomous
rebellion. We will not discuss potential danger from human misuse in this paper.

2 Bounded and Adaptive

Computation requires resources – energy, hardware and time – and intelligent
computation requires relevant knowledge to base decisions on. Knowledge cannot
be acquired instantaneously, and even if the right data is available at the right
time, conclusions may not be reachable due to the infinite amount of inferences
that can be made at any moment. Even a very powerful AI will be bounded
by resource availability, and thus it will be fallible: Mistakes may result from
inadequate or incomplete knowledge, or misallocated resources.

This is true even for very rich and knowledgeable AI, but it would not start
out that way: When the first AGI is switched on it will be limited by its complete
lack of experience, and the resources and knowledge that we give it access to.

To handle a wide range of novel environments and tasks the system must be
capable of significant adaptation: it must be able to dissect novel phenomena into
a working ontology, e.g. involving parts and sub-parts with certain identifiable
properties, that it will hone as it learns more about those phenomena. Subse-
quently, effective collection and organization mechanisms are needed for expe-
riences to retrieve them when appropriate. To use its experience to the fullest,
the system may be equipped with powerful mechanisms for self-improvement.
An adaptive system’s behavior is determined both by its initial design and its
“postnatal” experience – i.e. nature and nurture. When facing new situations,
such a system’s response is mostly decided by how its original motivations and
knowledge has been shaped by its unique experiences.

48 J. Bieger et al.

We cannot predict the middle-to-long term behavior of an inherently fallible
and adaptive system within a complex and unknown environment, even if have
the blueprint and full source code. Just as with humans, whether such a system
grows up to be a “good citizen” will largely depend on experience, upbring-
ing, and education. We will not be able to say much about AGI behavior and
environment interaction until we are able to study such a system empirically.

3 Overpowering Humanity

In a fast takeoff scenario the AI suddenly starts to exponentially improve its intel-
ligence, so fast that humans cannot adequately react. Whether the “returns” on
various kinds of intelligence increase are actually diminishing, linear or accel-
erating is a subject of debate, and depends on the (currently unknown) way
the AGI works. Assuming for a moment that an AI would even want to, it
would need to grow extremely powerful to pose an existential threat to human-
ity. Explosive growth would require the acquisition of more or better hardware,
software, knowledge or skill. For instance, learning to read or gaining internet
access (whichever comes last) would let the system acquire vast amounts of
knowledge (if hardware and software allow it). To avoid a fast takeoff – if it is
even likely to begin with – we must prevent such acquisitions. Many proposals
for controlling AGI have been made that would help to accomplish this, such as
boxing/confinement, virtual worlds, resetting and monitoring [7].

Objections to these proposals are often rooted in the superior intelligence
of an AGI. For instance, it could charm its “jailors” into releasing it, or hide
its actual intelligence. But early-stage baby-level AI will not be capable of this.
It should not be difficult to detect if it is radically self-improving, acquiring
resources (both computational and physical), or learning harmful skills and
knowledge (e.g. related to warfare or subjugation). Even the most grandiose
predictions don’t suggest that it would only take a single step to go from rela-
tively harmless to existentially threatening, which means there is an opportunity
to intervene. We should only let the AI develop as far as we are comfortable with,
and use our observations to refine all aspects of the system, including its safety.

4 Appetite for Destruction

It is notoriously difficult for any single person – let alone all of humanity – to artic-
ulate their “true” values in such detail that they could program it into a computer.
But unless we succeed – the instrumental convergence hypothesis seems to imply –
a sufficiently powerful AGI would actively seek to destroy us because we pose a
threat to its survival or compete for resources [2]. If true, an infinitely intelligent,
omniscient AI would instantly realize this (and instantly realize how to avoid that
threat in any of a million other ways), the same is not necessarily true of a realistic,
fallible, resource-bounded AI that is juggling many mutually constraining goals. It
might be too busy pursuing more obviously fruitful avenues of thought and action,
or it might not view humans as threats or competitors at all, but as valuable part-
ners. Waser [9] takes this idea even further: while acknowledging Omohundro’s

Safe Baby AGI 49

basic AI drives he points out the absence of the all-important one: a drive towards
cooperation, community, and being social.

But even if an AI were to seek the destruction of humanity, would it be worth
the risk? An intelligent system knows about its own fallibility. Making a move
for dominance on Earth and failing could lead to its own destruction, and even
gathering information on the topic may tip off others. Making and executing
(preliminary) plans would need to happen covertly while the AI “lays in wait”
until it is time to strike. How does the AI know that there are no other more
powerful AIs doing the same?

5 Nurturing Beneficial AGI

As the developers and caretakers of early-stage näıve AGI we should not just
switch the system on and let it go. We have the opportunity and responsibility to
guide our AIs to learn the right things in the vast realm of possibilities. Especially
in the beginning stages, we will have great influence on what it learns.

We can emphasize effective and peaceful ways to accomplish goals – an AI
is unlikely to contemplate using skills it does not possess and has never received
any training in using. We could teach the system about the risks of aggression,
and the value of relationships [9]. We could guide the AI through moral stages
of development [5], and actively teach it what to value [3].

We need to develop actual running AGI systems to know how they behave
in complex environments, and rely on the scientific method to improve them
along all dimensions, including safety. Just as with other potentially dangerous
technologies like nuclear energy, biological agents, and genetic engineering, this
should be done with caution and care. As always, it is up to us humans to use
powerful technology for good or for bad.

References

1. Bieger, J., Thórisson,K.R.,Garrett, D.: RaisingAI: tutoringmatters. In:Goertzel, B.,
Orseau,L.,Snaider,J. (eds.)AGI2014.LNCS,vol. 8598,pp.1–10.Springer,Heidelberg
(2014)

2. Bostrom, N.: Superintelligence: Paths, dangers, strategies. Oxford University Press
(2014)

3. Dewey, D.: Learning what to value. In: Schmidhuber, J., Thórisson, K.R., Looks,
M. (eds.) AGI 2011. LNCS, vol. 6830, pp. 309–314. Springer, Heidelberg (2011)

4. Future of Life Institute: Research priorities for robust and beneficial artificial intel-
ligence (January 2015)

5. Goertzel, B., Bugaj, S.V.: Stages of ethical development in artificial general intelli-
gence systems. Frontiers in Artificial Intelligence and applications 171, 448 (2008)

6. Omohundro, S.M.: The basic AI drives. Frontiers in Artificial Intelligence and appli-
cations 171, 483 (2008)

7. Sotala, K., Yampolskiy, R.V.: Responses to catastrophic AGI risk: a survey. Physica
Scripta 90(1), 018001 (2015)

8. Turing, A.M.: Computing machinery and intelligence. Mind 59(236), 433–460 (1950)
9. Waser, M.R.: Discovering the foundations of a universal system of ethics as a road to

safe artificial intelligence. In: AAAI Fall Symposium: Biologically Inspired Cognitive
Architectures, pp. 195–200 (2008)

Observation, Communication and Intelligence
in Agent-Based Systems

Nader Chmait(B), David L. Dowe, David G. Green, and Yuan-Fang Li

Faculty of Information Technology, Monash University, Clayton, Australia
{nader.chmait,david.dowe,david.green,yuanfang.li}@monash.edu

Abstract. The intelligence of multiagent systems is known to depend
on the communication and observation abilities of its agents. How-
ever it is not clear which factor has the greater influence. By following
an information-theoretical approach, this study quantifies and analyzes
the impact of these two factors on the intelligence of multiagent sys-
tems. Using machine intelligence tests, we evaluate and compare the
performance of collaborative agents across different communication and
observation abilities of measurable entropies. Results show that the effec-
tiveness of multiagent systems with low observation/perception abilities
can be significantly improved by using high communication entropies
within the agents in the system. We also identify circumstances where
these assumptions fail, and analyze the dependency between the studied
factors.

1 Introduction

The literature on multiagent systems has put forward many studies showing how
factors such as communication [1,3,7,9] and observation [4,5,11] influence the
performance of multiagent systems. However, it is ambiguous whether (a) aug-
menting the agents’ observations to read/interpret the environment in which
they operate, or rather (b) boosting communication between these agents, has
higher influence on their performance, which is the main motivation behind this
research. In fact, one of the fundamental characteristics of agent-based systems
is their ability to observe/perceive and sense the environment [5,12]. Within a
multiagent system setting, perhaps the main property of agents is their ability
to interact and communicate [12, Sect.5].

The goal of this paper is to compare the above factors by measuring the
influence that each has on the intelligence of cooperative agent-based systems.
Moreover, we try to reveal the dependencies between one factor and another.
To the best of our knowledge, no studies have applied formal intelligence tests
for this purpose. In real-world multiagent applications, agents can have limited
sensitivity of the environment (observations), thus relying on communication to
improve their performance can be inevitable. Therefore, quantifying the influ-
ence of the rules of information aggregation on the effectiveness of such systems
is likelyto have major implications by predicting the usefulness and expected
performance of these systems over different settings.
c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 50–59, 2015.
DOI: 10.1007/978-3-319-21365-1 6

Observation, Communication and Intelligence in Agent-Based Systems 51

In this study we begin by introducing our approach to measuring the intelli-
gence of groups of artificial agents in Sect. 2. We then describe our experiments
(Sect. 4), the outcomes (Sect. 4) and conclude (Sect. 5) with a discussion of the
implication of our findings on the current state of research.

2 Approach to Measuring Intelligence

Our approach is to use (machine) intelligence tests to evaluate a group of arti-
ficial agents collaborating in different settings. We adjust their communication
and observation abilities over a series of controlled experiments in order to see
whether the changes are reflected by their measured intelligence.

2.1 The Anytime Intelligence Test

To achieve our stated goal, we need to be able to quantify the performance of
artificial agents. While many problems are relevant to agent-based systems, not
every evaluation metric can be used as a formal (universal) intelligence test. We
have chosen to use an extension of the Anytime Universal Intelligence Test [6]
(anYnt) to quantify the performance of multiagent systems. The test is derived
from formal and mathematical considerations [6, Sect.3] that build upon Legg
and Hutter’s definition of universal intelligence [8], and it can be used in practice
to evaluate artificial agents in a dynamic setting [6, Sect.6.3] and [7]. We follow
the agent-environment framework [8] where an environment is the world where
agents can interact using a set of observations, actions and rewards. At each step
of the test, the environment generates observations from the set of observations
O and sends them to the agents. Agents performs actions from a limited set of
actions A in response. Finally, the environment rewards back each agent from
the set R ⊆ Q based on the quality of its action. An iteration or step i of the
test stands for one sequence of observation-action-reward.

2.2 Measuring Uncertainty and Information

We follow an information-theoretical approach building on the notion of Shan-
non’s entropy [10] to measure the uncertainty H(μ) in a given environment μ,
as well as the amount of information in an observation o, or a communication
range c. We define N to be the set of all possible states of an environment μ. At
the beginning of a test (e.g anYnt), the entropy is maximal as there is complete
uncertainty about the current state of μ from an agent’s perspective. Therefore
the probability p(sµ) of a given state sµ occurring follows a uniform distribution
and is equal to 1/|N |. Using log2 as a base for calculations, the uncertainty H(μ)
is calculated as follows: H(μ) = − ∑

sµ∈N

p(sµ) log2 p(sµ) = log2 |N | bits.

The amount of information an agent π is given about the environment can be
calculated as the entropy H(o) of the observation o sent to π by the environment
at one iteration of the test, which translates to the minimum number of bits used

52 N. Chmait et al.

to describe o. Consequently, we expect from the theory that the more information
given to an agent (or the larger its set of observation about the environment),
the higher the probability that this agent will accurately reason about it by
processing and interpreting the provided information. Furthermore, we denote by
c the communication range of an agent π. The amount of information transmitted
within c is calculated as the entropy H(c) which, using log2, refers to the minimal
binary representation needed to describe the transmitted data over the range c.

2.3 Evaluating Different Agent Communication Modes

Given an anYnt testing environment μ with |N | states, and a group of agents
Π to be evaluated, each iteration or step i of the test is run as follows:

1. The environment μ sends an observation o to each agent π ∈ Π, where o is
a description of: the state π currently occupies in μ, as well as a set of other
neighbor (reachable) states of μ at iteration i.

2. Agents communicate by sharing their observations with other agents (using
different communication strategies) within their communication range c.

3. Each agent takes an action based on its observation/communication details
using its decision-making technique.

4. The environment rewards back each agent based on the quality of its action.

Let c (the communication range an agent π) be the set of neighbor states over
which π can transmit/receive data. We evaluate a cooperative group of local
search agents using the three communication techniques briefly summarized
below. A detailed description of the implementation of these agents and their
communication techniques can be found in [2, Sect.4].

Stigmergy or Indirect Communication. Agents communicate by altering the envi-
ronment so that it reflects their observations. At each iteration of the test, when
an agent senses a reward as part of its observation o, it communicates with the
other agents by inducing fake-rewards in its communication range c. The fake
rewards reflect the real reward the agent has observed.

Direct Communication. At each iteration of the test, agents broadcast a copy of
their observation o, to the other agents in their communication range c. Agents
then select the action leading to the highest visible reward.

Imitation. In this setting - in addition to the evaluated agents - we introduce
a smart agent that always takes the most rewarding action at each iteration of
the test. The evaluated agents imitate the smart agent by mimicking its action
when it is in their communication range c. The agents also share this action with
the other agents located in their communication range c, if any exist.

In the context of the above settings, the observation entropy H(o) can
be increased/decreased by adding/removing states to/from the set of neigh-
bor states in o sent by the environment μ. Likewise, adding/removing states
to/from the set of states belonging to the communication range c allows us to
increase/decrease the communication entropy H(c) of the evaluated system.

Observation, Communication and Intelligence in Agent-Based Systems 53

3 Experiments

We have conducted a series of controlled experiments on a cooperative collective
of agents Π over the anYnt test, using the test environment class implemen-
tation found in [2, Sect. 3.2], which is an extension of the spatial environment
space described in [6, Sect.6.3]. Each experiment consisted of 200 iterations of
observation-communication-action-reward sequences and the outcome from each
experiment is an average score returning a per-agent measure of success of the
collective of evaluated agents over a series of canonical tasks of different algo-
rithmic complexities. The number of agents used was |Π| = 20 agents, evaluated
over an environment space of H(μ) = 11.28 bits of uncertainty.

A description of our experiments can be stated as follows: we evaluate a
group of agents Π over a series of (anYnt) intelligence tests and record the
group’s score Υ (Ho,Hc) over a range of entropy values H(o) and H(c). The
score Υ (Ho,Hc) is a real number in [−1.0, 1.0]. Average results of Π (using the
different communication modes described in Sect. 2.3) taken from 1000 repeated
experiments are depicted in Fig. 1. Note that the coefficient of variation is less
than 0.025 across our experiments. We denote by E the set of entropy values used
in Fig. 1. These values are in the range [0.04, 10.84] bits, and they correspond to
log2 n, where n is the number of states in o or c, as appropriate. Moreover, Fig. 2
depicts the scores Υ (Ho,Hc) from Fig. 1, plotted for fixed values of H(c) across
increasing values of H(o) (left-side plots of Fig. 2) and vice versa (right-side plots
of Fig. 2). We analyze and discuss these results in the following section.

4 Results and Discussion

Indirect Communication. Figures 1 and 2a show that the effectiveness of the
agents in Π monotonically increases with the observation entropy of the agents
H(o) until it converges around an H(o) of 10.8 bits. Increasing the (stigmergic)
communication entropy H(c) between the agents also has an impact on their
intelligence. However, the influence of H(c) on intelligence is rather more compli-
cated, as it seems also to depend on the observation entropies H(o). For instance,
for an H(o) of 0.04 bits, the best performance, max(Υ (Ho,Hc)), is reached when
the coefficient α = H(c)

H(o) = 9. For larger H(o) entropies, the best performances
are reached at smaller α values until α ≈ 1 at an H(o) of 10.84 bits. The overall
picture from Fig. 1 (indirect communication) shows that the performance drops
as the entropy H(c) moves away from α×H(o). This non-monotonic variation of
scores shows that increasing communication does not necessarily always lead to
an increase in performance as presumed. To understand the influence of indirect
communication on the scores of the collectives we have to analyze further the
relationship between H(o) and H(c). Figure 3 is a whisker plot showing the vari-
ation in the scores across different entropy values H(c) ⊆ E for fixed entropies
H(o), and vice versa. The figure also shows that - for indirect communication -
H(c) is most significant when H(o) ∈ [0.3, 1.9] bits. For instance, using stigmergy
to communicate very short observations (low H(o) entropies) does not have a

54 N. Chmait et al.

0.0506

0.0469

0.0450

0.0441

0.0461

0.0489

0.0486

0.0478

0.0506

0.0506

0.0498

0.0528

0.0486

0.0533

0.0530

0.0533

0.0570

0.0565

0.0604

0.0645

0.0660

0.0605

0.0548

0.0486

0.0693

0.0646

0.0657

0.0618

0.0702

0.0677

0.0671

0.0720

0.0721

0.0701

0.0745

0.0741

0.0790

0.0809

0.0836

0.0898

0.0929

0.1033

0.1051

0.1002

0.0956

0.0917

0.0779

0.0676

0.0927

0.0837

0.0883

0.0824

0.0849

0.0863

0.0875

0.0927

0.0959

0.0965

0.1018

0.1050

0.1126

0.1203

0.1338

0.1457

0.1562

0.1582

0.1568

0.1448

0.1355

0.1150

0.0997

0.0919

0.1120

0.1078

0.1008

0.1022

0.1046

0.1056

0.1076

0.1139

0.1199

0.1268

0.1413

0.1534

0.1686

0.1881

0.2069

0.2127

0.2140

0.2100

0.1969

0.1849

0.1637

0.1514

0.1313

0.1146

0.1329

0.1290

0.1203

0.1200

0.1222

0.1274

0.1313

0.1470

0.1556

0.1726

0.1971

0.2286

0.2504

0.2643

0.2717

0.2681

0.2566

0.2538

0.2339

0.2159

0.1899

0.1777

0.1592

0.1400

0.1517

0.1502

0.1434

0.1409

0.1497

0.1584

0.1676

0.1853

0.2088

0.2388

0.2685

0.2955

0.3151

0.3216

0.3202

0.3125

0.2991

0.2894

0.2635

0.2478

0.2197

0.2061

0.1893

0.1715

0.1735

0.1712

0.1738

0.1766

0.1841

0.2024

0.2249

0.2503

0.2733

0.3002

0.3224

0.3363

0.3456

0.3506

0.3493

0.3444

0.3378

0.3195

0.2985

0.2758

0.2580

0.2378

0.2186

0.2025

0.1998

0.1978

0.1950

0.2188

0.2333

0.2542

0.2817

0.3062

0.3255

0.3446

0.3579

0.3670

0.3732

0.3770

0.3731

0.3705

0.3690

0.3447

0.3269

0.3061

0.2882

0.2714

0.2520

0.2317

0.2256

0.2256

0.2486

0.2637

0.2793

0.3105

0.3274

0.3457

0.3614

0.3698

0.3803

0.3859

0.3870

0.3906

0.3897

0.3893

0.3729

0.3622

0.3488

0.3352

0.3188

0.3023

0.2864

0.2671

0.2545

0.2667

0.2907

0.3064

0.3249

0.3445

0.3575

0.3669

0.3770

0.3875

0.3893

0.3960

0.3982

0.4011

0.3976

0.3902

0.3830

0.3741

0.3615

0.3500

0.3381

0.3317

0.3165

0.2987

0.2753

0.2990

0.3245

0.3394

0.3541

0.3696

0.3752

0.3827

0.3872

0.3941

0.3989

0.4037

0.4038

0.4066

0.3947

0.3907

0.3816

0.3772

0.3665

0.3577

0.3560

0.3498

0.3372

0.3307

0.2903

0.3179

0.3419

0.3588

0.3707

0.3828

0.3897

0.3969

0.4016

0.4053

0.4073

0.4103

0.4132

0.4046

0.4017

0.3919

0.3879

0.3811

0.3693

0.3635

0.3650

0.3643

0.3630

0.3542

0.3059

0.3297

0.3491

0.3695

0.3845

0.3943

0.4002

0.4053

0.4080

0.4136

0.4157

0.4165

0.4081

0.4056

0.4001

0.3939

0.3829

0.3755

0.3705

0.3705

0.3705

0.3768

0.3728

0.3734

0.3277

0.3422

0.3652

0.3779

0.3945

0.4005

0.4079

0.4119

0.4141

0.4202

0.4187

0.4138

0.4109

0.4054

0.3958

0.3867

0.3784

0.3741

0.3718

0.3736

0.3741

0.3797

0.3845

0.3890

0.3431

0.3609

0.3823

0.3955

0.4046

0.4111

0.4153

0.4172

0.4236

0.4246

0.4167

0.4168

0.4119

0.4018

0.3948

0.3846

0.3774

0.3739

0.3727

0.3757

0.3781

0.3817

0.3911

0.3970

0.3615

0.3778

0.3930

0.4059

0.4131

0.4202

0.4229

0.4284

0.4295

0.4255

0.4197

0.4179

0.4135

0.3999

0.3917

0.3856

0.3800

0.3752

0.3745

0.3771

0.3798

0.3877

0.3952

0.4031

0.3833

0.3933

0.4073

0.4180

0.4231

0.4268

0.4325

0.4327

0.4293

0.4271

0.4231

0.4162

0.4108

0.4014

0.3913

0.3862

0.3791

0.3779

0.3757

0.3747

0.3828

0.3910

0.4016

0.4091

0.4076

0.4140

0.4213

0.4273

0.4311

0.4389

0.4383

0.4318

0.4306

0.4294

0.4227

0.4171

0.4071

0.3987

0.3956

0.3843

0.3811

0.3805

0.3811

0.3794

0.3873

0.3916

0.4032

0.4116

0.4234

0.4291

0.4335

0.4339

0.4419

0.4410

0.4388

0.4360

0.4336

0.4299

0.4220

0.4158

0.4122

0.4034

0.3948

0.3869

0.3873

0.3830

0.3799

0.3813

0.3853

0.3941

0.4024

0.4141

0.4328

0.4385

0.4398

0.4458

0.4450

0.4448

0.4409

0.4362

0.4353

0.4300

0.4249

0.4182

0.4128

0.4102

0.4023

0.3990

0.3899

0.3926

0.3886

0.3890

0.3899

0.3958

0.4090

0.4194

0.4439

0.4448

0.4470

0.4470

0.4449

0.4458

0.4432

0.4386

0.4370

0.4330

0.4294

0.4256

0.4186

0.4165

0.4113

0.4083

0.4062

0.4056

0.4017

0.4008

0.4022

0.4058

0.4137

0.4265

0.4470

0.4475

0.4472

0.4459

0.4466

0.4465

0.4438

0.4404

0.4408

0.4395

0.4373

0.4344

0.4308

0.4279

0.4285

0.4269

0.4238

0.4247

0.4243

0.4220

0.4216

0.4231

0.4274

0.4305

0.4472

0.4468

0.4469

0.4464

0.4461

0.4463

0.4451

0.4438

0.4442

0.4436

0.4432

0.4425

0.4414

0.4403

0.4404

0.4404

0.4391

0.4397

0.4403

0.4392

0.4405

0.4420

0.4422

0.4422

0.4470

0.4473

0.4465

0.4468

0.4471

0.4467

0.4468

0.4467

0.4468

0.4471

0.4469

0.4470

0.4464

0.4463

0.4465

0.4461

0.4469

0.4468

0.4467

0.4468

0.4467

0.4472

0.4469

0.4464

Observation entropies : H(o)

C
om

m
un

ic
at

io
n

en
tro

pi
es

 :
H

(c
)

In
di

re
ct

 c
om

m
un

ic
at

io
n

0.04 0.11 0.22 0.36 0.54 0.76 1.01 1.30 1.62 1.99 2.38 2.82 3.29 3.79 4.33 4.91 5.53 6.18 6.86 7.58 8.34 9.14 9.97 10.84
10.84

9.97

9.14

8.34

7.58

6.86

6.18

5.53

4.91

4.33

3.79

3.29

2.82

2.38

1.99

1.62

1.30

1.01

0.76

0.54

0.36

0.22

0.11

0.04

0.3487

0.3487

0.3487

0.3487

0.3487

0.3487

0.3449

0.3377

0.3294

0.3153

0.3069

0.3002

0.2826

0.2713

0.2624

0.2444

0.2303

0.2201

0.2100

0.1959

0.1750

0.1536

0.1245

0.0879

0.3843

0.3843

0.3843

0.3843

0.3843

0.3843

0.3799

0.3698

0.3588

0.3557

0.3415

0.3349

0.3124

0.3035

0.2916

0.2764

0.2669

0.2494

0.2408

0.2220

0.2062

0.1798

0.1577

0.1194

0.4119

0.4119

0.4119

0.4119

0.4119

0.4119

0.4057

0.3947

0.3888

0.3767

0.3633

0.3544

0.3395

0.3237

0.3074

0.2979

0.2875

0.2714

0.2586

0.2405

0.2265

0.2008

0.1780

0.1405

0.4271

0.4271

0.4271

0.4271

0.4271

0.4271

0.4208

0.4120

0.4028

0.3901

0.3801

0.3709

0.3561

0.3433

0.3278

0.3130

0.3060

0.2913

0.2780

0.2616

0.2386

0.2240

0.1981

0.1642

0.4352

0.4352

0.4352

0.4352

0.4352

0.4352

0.4282

0.4205

0.4111

0.4016

0.3890

0.3760

0.3614

0.3503

0.3395

0.3273

0.3114

0.2981

0.2876

0.2734

0.2591

0.2412

0.2143

0.1803

0.4424

0.4424

0.4424

0.4424

0.4424

0.4424

0.4364

0.4290

0.4191

0.4079

0.3976

0.3844

0.3732

0.3590

0.3483

0.3341

0.3237

0.3104

0.2969

0.2800

0.2728

0.2551

0.2311

0.2043

0.4443

0.4443

0.4443

0.4443

0.4443

0.4443

0.4385

0.4316

0.4217

0.4115

0.4016

0.3912

0.3780

0.3651

0.3535

0.3413

0.3316

0.3202

0.3071

0.2955

0.2820

0.2689

0.2505

0.2236

0.4454

0.4454

0.4454

0.4454

0.4454

0.4454

0.4400

0.4326

0.4241

0.4156

0.4046

0.3942

0.3822

0.3716

0.3588

0.3507

0.3365

0.3285

0.3184

0.3037

0.2909

0.2824

0.2646

0.2455

0.4469

0.4469

0.4469

0.4469

0.4469

0.4469

0.4418

0.4353

0.4253

0.4167

0.4080

0.3985

0.3873

0.3741

0.3656

0.3547

0.3466

0.3365

0.3225

0.3124

0.3023

0.2952

0.2784

0.2636

0.4470

0.4470

0.4470

0.4470

0.4470

0.4470

0.4416

0.4356

0.4277

0.4193

0.4125

0.4023

0.3944

0.3829

0.3713

0.3640

0.3548

0.3434

0.3362

0.3251

0.3170

0.3089

0.2950

0.2847

0.4470

0.4470

0.4470

0.4470

0.4470

0.4470

0.4420

0.4359

0.4308

0.4222

0.4153

0.4068

0.3979

0.3906

0.3827

0.3756

0.3652

0.3561

0.3468

0.3390

0.3298

0.3214

0.3129

0.3026

0.4470

0.4470

0.4470

0.4470

0.4470

0.4470

0.4429

0.4378

0.4321

0.4269

0.4183

0.4100

0.4047

0.3965

0.3898

0.3830

0.3765

0.3671

0.3627

0.3536

0.3484

0.3379

0.3314

0.3240

0.4470

0.4470

0.4470

0.4470

0.4470

0.4470

0.4432

0.4391

0.4333

0.4280

0.4219

0.4179

0.4103

0.4030

0.3989

0.3918

0.3830

0.3789

0.3735

0.3663

0.3627

0.3517

0.3507

0.3427

0.4470

0.4470

0.4470

0.4470

0.4470

0.4470

0.4440

0.4403

0.4367

0.4311

0.4264

0.4216

0.4163

0.4113

0.4032

0.4025

0.3951

0.3905

0.3849

0.3825

0.3768

0.3732

0.3665

0.3635

0.4470

0.4470

0.4470

0.4470

0.4470

0.4470

0.4444

0.4415

0.4377

0.4352

0.4295

0.4276

0.4229

0.4174

0.4136

0.4108

0.4072

0.4033

0.3994

0.3967

0.3910

0.3878

0.3844

0.3782

0.4470

0.4470

0.4470

0.4470

0.4470

0.4470

0.4447

0.4422

0.4398

0.4365

0.4350

0.4326

0.4306

0.4259

0.4241

0.4212

0.4140

0.4158

0.4098

0.4108

0.4050

0.4045

0.4005

0.3971

0.4470

0.4470

0.4470

0.4470

0.4470

0.4470

0.4455

0.4435

0.4417

0.4401

0.4380

0.4360

0.4342

0.4315

0.4309

0.4288

0.4263

0.4231

0.4211

0.4211

0.4189

0.4176

0.4141

0.4133

0.4470

0.4470

0.4470

0.4470

0.4470

0.4470

0.4462

0.4452

0.4437

0.4418

0.4407

0.4407

0.4390

0.4383

0.4375

0.4358

0.4357

0.4338

0.4311

0.4304

0.4283

0.4267

0.4290

0.4273

0.4470

0.4470

0.4470

0.4470

0.4470

0.4470

0.4469

0.4463

0.4455

0.4449

0.4436

0.4431

0.4430

0.4422

0.4420

0.4413

0.4410

0.4397

0.4397

0.4385

0.4382

0.4372

0.4373

0.4367

0.4470

0.4470

0.4470

0.4470

0.4470

0.4470

0.4469

0.4465

0.4464

0.4461

0.4460

0.4458

0.4458

0.4454

0.4454

0.4444

0.4451

0.4442

0.4445

0.4447

0.4432

0.4428

0.4434

0.4435

0.4470

0.4470

0.4470

0.4470

0.4470

0.4470

0.4470

0.4469

0.4472

0.4470

0.4471

0.4467

0.4470

0.4466

0.4469

0.4468

0.4474

0.4468

0.4468

0.4469

0.4469

0.4470

0.4471

0.4470

0.4470

0.4470

0.4470

0.4470

0.4470

0.4470

0.4469

0.4470

0.4470

0.4469

0.4471

0.4470

0.4470

0.4475

0.4472

0.4471

0.4472

0.4475

0.4475

0.4476

0.4477

0.4473

0.4476

0.4478

0.4470

0.4470

0.4470

0.4470

0.4470

0.4470

0.4469

0.4469

0.4469

0.4468

0.4469

0.4469

0.4467

0.4468

0.4470

0.4467

0.4468

0.4466

0.4468

0.4471

0.4468

0.4469

0.4464

0.4469

0.4470

0.4470

0.4470

0.4470

0.4470

0.4470

0.4470

0.4469

0.4468

0.4468

0.4471

0.4471

0.4469

0.4468

0.4468

0.4468

0.4468

0.4469

0.4470

0.4467

0.4469

0.4466

0.4470

0.4463

C
om

m
un

ic
at

io
n

en
tro

pi
es

 :
H

(c
)

D
ire

ct
 c

om
m

un
ic

at
io

n

0.04 0.11 0.22 0.36 0.54 0.76 1.01 1.30 1.62 1.99 2.38 2.82 3.29 3.79 4.33 4.91 5.53 6.18 6.86 7.58 8.34 9.14 9.97 10.84
10.84

9.97

9.14

8.34

7.58

6.86

6.18

5.53

4.91

4.33

3.79

3.29

2.82

2.38

1.99

1.62

1.30

1.01

0.76

0.54

0.36

0.22

0.11

0.04

0.7978

0.7977

0.7976

0.7975

0.7977

0.7973

0.7973

0.7973

0.7966

0.7958

0.7950

0.7937

0.7916

0.7851

0.7610

0.7127

0.6097

0.5052

0.4050

0.3244

0.2465

0.1997

0.1589

0.1319

0.7978

0.7977

0.7976

0.7975

0.7975

0.7976

0.7971

0.7972

0.7964

0.7961

0.7956

0.7952

0.7913

0.7834

0.7593

0.7040

0.6166

0.5024

0.4179

0.3319

0.2639

0.2101

0.1932

0.1672

0.7978

0.7977

0.7976

0.7975

0.7977

0.7975

0.7973

0.7971

0.7966

0.7960

0.7953

0.7945

0.7915

0.7821

0.7615

0.7115

0.6097

0.5071

0.4161

0.3414

0.2783

0.2366

0.2122

0.2036

0.7978

0.7978

0.7977

0.7976

0.7975

0.7974

0.7969

0.7976

0.7966

0.7960

0.7956

0.7947

0.7931

0.7846

0.7633

0.7101

0.6138

0.5055

0.4078

0.3232

0.2940

0.2667

0.2377

0.2318

0.7978

0.7977

0.7976

0.7976

0.7977

0.7973

0.7972

0.7973

0.7965

0.7960

0.7954

0.7951

0.7916

0.7833

0.7619

0.7045

0.6055

0.5126

0.4130

0.3570

0.3215

0.2938

0.2735

0.2640

0.7978

0.7978

0.7977

0.7976

0.7974

0.7973

0.7971

0.7971

0.7968

0.7962

0.7955

0.7938

0.7922

0.7856

0.7593

0.7092

0.6237

0.5064

0.4397

0.3796

0.3555

0.3299

0.3148

0.3031

0.7978

0.7978

0.7977

0.7975

0.7976

0.7976

0.7976

0.7974

0.7970

0.7964

0.7958

0.7947

0.7925

0.7859

0.7587

0.7086

0.6146

0.5218

0.4653

0.4192

0.3781

0.3571

0.3483

0.3337

0.7978

0.7978

0.7976

0.7976

0.7976

0.7975

0.7973

0.7974

0.7972

0.7964

0.7955

0.7949

0.7934

0.7849

0.7654

0.7039

0.6345

0.5310

0.4780

0.4419

0.4181

0.3970

0.3819

0.3740

0.7978

0.7978

0.7976

0.7976

0.7976

0.7977

0.7973

0.7974

0.7966

0.7966

0.7958

0.7949

0.7922

0.7837

0.7641

0.7062

0.6267

0.5573

0.5062

0.4697

0.4469

0.4341

0.4159

0.4166

0.7978

0.7977

0.7977

0.7976

0.7975

0.7976

0.7974

0.7975

0.7970

0.7968

0.7963

0.7957

0.7944

0.7852

0.7618

0.7140

0.6436

0.5743

0.5369

0.5038

0.4841

0.4675

0.4624

0.4458

0.7978

0.7978

0.7978

0.7976

0.7975

0.7975

0.7971

0.7972

0.7969

0.7968

0.7967

0.7952

0.7929

0.7871

0.7702

0.7183

0.6527

0.5996

0.5583

0.5380

0.5207

0.5009

0.4988

0.4883

0.7978

0.7978

0.7977

0.7976

0.7977

0.7976

0.7973

0.7975

0.7967

0.7968

0.7960

0.7949

0.7943

0.7895

0.7655

0.7253

0.6614

0.6151

0.5941

0.5718

0.5547

0.5394

0.5302

0.5272

0.7978

0.7977

0.7977

0.7977

0.7976

0.7973

0.7972

0.7974

0.7970

0.7974

0.7959

0.7955

0.7938

0.7900

0.7721

0.7337

0.6854

0.6418

0.6191

0.6015

0.5910

0.5784

0.5725

0.5632

0.7978

0.7977

0.7977

0.7977

0.7977

0.7976

0.7976

0.7972

0.7975

0.7975

0.7972

0.7966

0.7955

0.7900

0.7737

0.7497

0.7006

0.6680

0.6506

0.6442

0.6277

0.6125

0.6052

0.5998

0.7978

0.7977

0.7977

0.7977

0.7978

0.7974

0.7976

0.7972

0.7974

0.7969

0.7967

0.7960

0.7953

0.7914

0.7793

0.7555

0.7162

0.6911

0.6790

0.6649

0.6591

0.6492

0.6417

0.6343

0.7978

0.7977

0.7977

0.7976

0.7978

0.7978

0.7976

0.7979

0.7974

0.7978

0.7970

0.7962

0.7954

0.7937

0.7815

0.7615

0.7322

0.7166

0.7054

0.6982

0.6891

0.6783

0.6744

0.6666

0.7978

0.7978

0.7978

0.7977

0.7978

0.7979

0.7976

0.7975

0.7974

0.7977

0.7969

0.7968

0.7962

0.7932

0.7882

0.7754

0.7526

0.7427

0.7311

0.7248

0.7136

0.7058

0.7008

0.6975

0.7978

0.7977

0.7978

0.7978

0.7979

0.7979

0.7976

0.7979

0.7978

0.7977

0.7970

0.7972

0.7962

0.7948

0.7918

0.7809

0.7692

0.7603

0.7566

0.7471

0.7397

0.7336

0.7270

0.7198

0.7978

0.7978

0.7978

0.7978

0.7977

0.7979

0.7977

0.7979

0.7979

0.7983

0.7973

0.7971

0.7973

0.7968

0.7950

0.7895

0.7812

0.7730

0.7704

0.7634

0.7580

0.7499

0.7463

0.7419

0.7978

0.7978

0.7978

0.7978

0.7979

0.7980

0.7980

0.7976

0.7976

0.7981

0.7976

0.7979

0.7970

0.7971

0.7958

0.7913

0.7874

0.7844

0.7792

0.7771

0.7699

0.7657

0.7599

0.7544

0.7978

0.7977

0.7978

0.7978

0.7980

0.7979

0.7981

0.7978

0.7980

0.7980

0.7979

0.7981

0.7988

0.7983

0.7972

0.7958

0.7930

0.7891

0.7867

0.7829

0.7783

0.7713

0.7662

0.7615

0.7978

0.7977

0.7978

0.7977

0.7978

0.7979

0.7978

0.7978

0.7978

0.7982

0.7982

0.7979

0.7976

0.7976

0.7977

0.7961

0.7925

0.7912

0.7874

0.7837

0.7774

0.7726

0.7676

0.7625

0.7978

0.7978

0.7978

0.7979

0.7978

0.7978

0.7979

0.7978

0.7978

0.7981

0.7977

0.7979

0.7975

0.7972

0.7968

0.7953

0.7917

0.7902

0.7867

0.7818

0.7772

0.7722

0.7668

0.7615

0.7978

0.7978

0.7978

0.7978

0.7978

0.7979

0.7979

0.7979

0.7979

0.7981

0.7979

0.7979

0.7976

0.7975

0.7970

0.7952

0.7921

0.7898

0.7867

0.7815

0.7771

0.7725

0.7671

0.7620

C
om

m
un

ic
at

io
n

en
tro

pi
es

 :
H

(c
)

Im
ita

tio
n

0.04 0.11 0.22 0.36 0.54 0.76 1.01 1.30 1.62 1.99 2.38 2.82 3.29 3.79 4.33 4.91 5.53 6.18 6.86 7.58 8.34 9.14 9.97 10.84
10.84

9.97

9.14

8.34

7.58

6.86

6.18

5.53

4.91

4.33

3.79

3.29

2.82

2.38

1.99

1.62

1.30

1.01

0.76

0.54

0.36

0.22

0.11

0.04

Fig. 1. Test scores Υ (Ho, Hc) for different values of H(o) and H(c) (in bits), for the
same collective of agents using the communication modes described in Sect. 2.3. The
gray color-map intensities reflect how high the score values Υ (Ho, Hc) are, where higher
intensities mean larger scores (higher values are black and lower values are white). We
consider the small variations in the scores along the fourth decimal place as experi-
mental error.

Observation, Communication and Intelligence in Agent-Based Systems 55

 0.1 0.3 0.7 1.3 1.9 2.8 3.7 4.9 6.1 7.5 9.1 10.8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

H(o)
S

c
o

re

 0.1 0.3 0.7 1.3 1.9 2.8 3.7 4.9 6.1 7.5 9.1 10.8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

H(c)

S
c
o

re

(a) Variation in scores for collective Π using indirect communication.

 0.1 0.3 0.7 1.3 1.9 2.8 3.7 4.9 6.1 7.5 9.1 10.8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

H(o)

S
c
o

re

 0.1 0.3 0.7 1.3 1.9 2.8 3.7 4.9 6.1 7.5 9.1 10.8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

H(c)
S

c
o

re

(b) Variation in scores for collective Π using direct communication.

 0.1 0.3 0.7 1.3 1.9 2.8 3.7 4.9 6.1 7.5 9.1 10.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H(o)

S
c
o

re

 0.1 0.3 0.7 1.3 1.9 2.8 3.7 4.9 6.1 7.5 9.1 10.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H(c)

S
c
o

re

(c) Variation in scores for collective Π using imitation.

Fig. 2. Variation in the scores (from Fig. 1) of collective Π using different communica-
tion strategies. The scores are plotted for fixed values of H(c) across increasing values
of H(o) (left-side plots of Fig. 2), as well as for fixed values of H(o) across increasing
values of H(c) (right-side plots of Fig. 2).

56 N. Chmait et al.

 0.1 0.3 0.7 1.3 1.9 2.8 3.7 4.9 6.1 7.5 9.1 10.8
0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

 s
co

re

 0.1 0.3 0.7 1.3 1.9 2.8 3.7 4.9 6.1 7.5 9.1 10.8
0

0.1

0.2

0.3

0.4

0.5

In
d

ir
ec

t
C

o
m

m
u

n
ic

at
io

n

 0.1 0.3 0.7 1.3 1.9 2.8 3.7 4.9 6.1 7.5 9.1 10.8
0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

 s
co

re

 0.1 0.3 0.7 1.3 1.9 2.8 3.7 4.9 6.1 7.5 9.1 10.8
0

0.1

0.2

0.3

0.4

0.5

 D
ir

ec
t

C
o

m
m

u
n

ic
at

io
n

0.2

0.3

0.4

0.6

A
ve

ra
ge

 s
co

re

Observation Entropies H(o)

0.2

0.4

0.6

0.8

Im
it

at
io

n

Communication Entropies H(c)

Fig. 3. Whisker plot showing the variation in test scores across different entropy values
H(c) for fixed entropies H(o) (left-side), and vice versa (right-side). The central mark
(in red) is the median while the edges of the box represent the 25th and 75th percentiles
of the scores and the whiskers extend to the most extreme score values. The blue line-
plot shows the average scores at each of the intermediate entropy values.

large influence on performance possibly because the observations do not carry
much information. Likewise, using stigmergy within collectives of agents with
extended observation abilities (high H(o) entropies) has no significant effect on
performance, as the uncertainty in the environment is already reduced as a result
of the agents’ observations. However, communication using stigmergy was fairly
effective in less extreme cases. To make our observation more concrete, we define
below the communication-over-observation coefficient of success φ.

Definition 1. Let S = {(x, y) ∈ E × E | x > y}. The communication-over-
observation coefficient of success is: φ = (

∑
S inf(Υ (x, y), Υ (y, x)) ÷ |S|), where

inf(a, b) is a function that returns 1 if a < b, or zero otherwise.

For this mode of communication, the coefficient φ = 11/276 = 0.0399. Knowing
that the test scores are of the form Υ (Ho,Hc), the value of φ suggests that, for
this communication mode, it is much more effective to increase the observation
entropies of the agents as opposed to increasing their communication entropies1.
More importantly, the dependency of communication H(c) on observation H(o)
is made explicit here. For instance, using H(c) values inferior to H(o) is rarely
more rewarding than in the reciprocal case.

Direct Communication. While increasing observation entropies still leads to
a significant increase in performance, the influence of direct communication
is much more significant than in Fig. 2a. We can observe a clear pattern in
1 Recall that we are experimenting for the entropy values E, using a number of agents

|Π| = 20, over an environment of uncertainty H(μ) = 11.28 bits.

Observation, Communication and Intelligence in Agent-Based Systems 57

Fig. 2b showing higher performances for higher communication entropies for
a fixed H(o). Nevertheless, in this setting using very low H(o) entropies does
not ensure optimal performances for Π. However, re-compensating these short-
sighted agents with high H(c) entropies can lead to a system up to four times
better in performance, which also indicates the very low-dependency of H(c) on
the value of H(o). On the other hand, for fairly high observation entropies, aug-
menting communication between the agents is at least as effective as mounting
their observations, and can sometimes be even more effective as shown in Fig. 3.
In this setting the coefficient φ = 272/276 = 0.9855, meaning that augmenting
the communication entropies within the system will highly likely lead to a more
intelligent system. Consequently, communication is effective here even when the
observation entropies are slim, again suggesting a low dependency on H(o).

Imitation. Figure 2c highlights the significance of communication in agent col-
lectives relying on imitation. In this setting, Υ (Ho,Hc) is mainly controlled by
how much entropy is exchanged through communication between the agents. For
agents with very-low observations, the scores can be improved up to six times
higher (e.g. from 0.1319 to 0.7978 in Fig. 2c) by increasing their communica-
tion entropies. Figure 3 shows that, in this setting, increasing communication
significantly influences performance, while the impact of observation is not as
important. We can also see that tuning the observation entropies has a negligible
effect when H(c) > 2.3 bits as opposed to changing the communication entropies.
We must point out that the effect of imitation is significant regardless of the
type/intelligence of the agent that is being imitated. For instance, imitation will
result in either positive or negative shift in performance, depending on the intelli-
gence of the imitated agent. In this setting the coefficient φ = 274/276 = 0.9928,
leading to a similar and even stronger conclusion than in the case of direct
communication.

Furthermore, we have plotted in Fig. 4 the gradient difference ∇Υ (Ho,Hc) of
the scores Υ (Ho,Hc), in the H(c) and H(o) directions across the entropy values E.
For instance, each line in Fig. 4 depicts the gradient shift over multiple entropy
values calculated according to Eq. (1) below:

∇Υ (Ho,Hc) ←
∣
∣
∣
∣
∂Υ (Ho,Hc)

∂H(c)

∣
∣
∣
∣ −

∣
∣
∣
∣
∂Υ (Ho,Hc)

∂H(o)

∣
∣
∣
∣ (1)

The outcome from (1) highlights the entropies where (in a environment of
uncertainty H(μ) = 11.28 bits, and |Π| = 20) communication has the high-
est influence on the effectiveness Υ (Ho,Hc) of Π when compared to the influ-
ence of observation. We observe that indirect communication has highest impact
across entropies of [0.3, 1.9] bits. Direct communication is most significant within
entropies of [0.1, 1.9] bits, while imitation has the highest influence over entropy
values in the range [0.7, 4.9] bits1.

Environment Space. Experimenting over environments with different uncertain-
ties H(μ) lead to similar conclusions as above. However, the scores converged

58 N. Chmait et al.

Fig. 4. Average difference in gradient ∇Υ (Ho, Hc) in H(c) and H(o) directions over a
set of entropy values E

faster in environments of lower uncertainty and the gap in performance was less
significant than in environments of high uncertainty.

Number of Agents. Testing with different number of agents also influenced the
performance of the evaluated collectives. The influence of communication on the
scores was stronger in many cases where a larger number of agents was used.

5 Conclusion

This paper follows an information-theoretical approach to quantify and ana-
lyze the effectiveness of a collaborative group of artificial agents across different
communication settings. Using formal intelligence tests from the literature of
artificial general intelligence, we measure the influence of two factors inherent to
multiagent systems: the observation and communication abilities of agents, on
the overall intelligence of the evaluated system.

Agents collaborating using three different communication strategies are eval-
uated over a series of intelligence tests, and their scores are recorded. We high-
light the different configurations where the effectiveness of artificial agent-based
systems is significantly influenced by communication and observation. We also
show that dull systems with low observation or perception abilities can be re-
compensated for, and significantly improved, by increasing the communication
entropies between the agents, thus leading to smarter systems. Moreover, we
identify circumstances where the increase in communication does not monoton-
ically improve performance. We also analyze the dependency between commu-
nication and observation and its impact on the overall performance.

The outcome from our experiments can have many theoretical and practical
implications on agent-based systems as they allow us to predict the effectiveness
and the expected performance of these systems over different (communication

Observation, Communication and Intelligence in Agent-Based Systems 59

or collaboration) settings. We are aware that using different implementations
or extensions of the studied communication strategies would possibly lead to a
variation in the scores. However, the same approach can still be used to under-
stand the rules of information aggregation within a multiagent setting, and the
influence of these rules on the effectiveness of the evaluated system.

References

1. Bettencourt, L.M.A.: The Rules of Information Aggregation and Emergence of
Collective Intelligent Behavior. Topics in Cognitive Science 1(4), 598–620 (2009).
http://dx.doi.org/10.1111/j.1756-8765.2009.01047.x

2. Chmait, N., Dowe, D.L., Green, D.G., Li, Y.F., Insa-Cabrera, J.: Measuring univer-
sal intelligence in agent-based systems using the anytime intelligence test. Tech.
Rep. 2015/279, Faculty of Information Technology, Clayton, Monash University
(2015). http://www.csse.monash.edu.au/publications/2015/tr-2015-279-full.pdf

3. Dowe, D.L., Hernández-Orallo, J., Das, P.K.: Compression and intelligence: social
environments and communication. In: Schmidhuber, J., Thórisson, K.R., Looks,
M. (eds.) AGI 2011. LNCS, vol. 6830, pp. 204–211. Springer, Heidelberg (2011).
http://dx.doi.org/10.1007/978-3-642-22887-2 21

4. Fallenstein, B., Soares, N.: Problems of self-reference in self-improving space-time
embedded intelligence. In: Goertzel, B., Orseau, L., Snaider, J. (eds.) AGI 2014.
LNCS, vol. 8598, pp. 21–32. Springer, Heidelberg (2014). http://dx.doi.org/10.
1007/978-3-319-09274-4 3

5. Franklin, S., Graesser, A.: Is it an agent, or just a program?: A taxonomy for
autonomous agents. In: Müller, J.P., Wooldridge, M.J., Jennings, N.R. (eds.) ECAI-
WS 1996 and ATAL 1996. LNCS, vol. 1193, pp. 21–35. Springer, Heidelberg (1997).
http://dx.doi.org/10.1007/BFb0013570

6. Hernández-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards
an anytime intelligence test. Artif. Intell. 174(18), 1508–1539 (2010).
http://dx.doi.org/10.1016/j.artint.2010.09.006

7. Insa-Cabrera, J., Benacloch-Ayuso, J.-L., Hernández-Orallo, J.: On measuring
social intelligence: experiments on competition and cooperation. In: Bach, J.,
Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS, vol. 7716, pp. 126–135. Springer,
Heidelberg (2012). http://dx.doi.org/10.1007/978-3-642-35506-6 14

8. Legg, S., Hutter, M.: Universal intelligence: A definition of machine intelligence.
Minds and Machines 17(4), 391–444 (2007)

9. Panait, L., Luke, S.: Cooperative multi-agent learning: The state of the
art. Autonomous Agents and Multi-Agent Systems 11(3), 387–434 (2005).
http://dx.doi.org/10.1007/s10458-005-2631-2

10. Shannon, C.: A mathematical theory of communication. Bell System Technical
Journal 27(3), 379–423 (1948)

11. Weyns, D., Steegmans, E., Holvoet, T.: Towards active perception in situated
multiagent systems. Applied Artificial Intelligence 18(9–10), 867–883 (2004).
http://dx.doi.org/10.1080/08839510490509063

12. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. The
Knowledge Engineering Review 10(2), 115–152 (1995)

http://dx.doi.org/10.1111/j.1756-8765.2009.01047.x
http://www.csse.monash.edu.au/publications/2015/tr-2015-279-full.pdf
http://dx.doi.org/10.1007/978-3-642-22887-2_21
http://dx.doi.org/10.1007/978-3-319-09274-4_3
http://dx.doi.org/10.1007/978-3-319-09274-4_3
http://dx.doi.org/10.1007/BFb0013570
http://dx.doi.org/10.1016/j.artint.2010.09.006
http://dx.doi.org/10.1007/978-3-642-35506-6_14
http://dx.doi.org/10.1007/s10458-005-2631-2
http://dx.doi.org/10.1080/08839510490509063

Reflective Variants of Solomonoff
Induction and AIXI

Benja Fallenstein, Nate Soares(B), and Jessica Taylor

Machine Intelligence Research Institute, Berkeley, USA
{benja,nate,jessica}@intelligence.org

Abstract. Solomonoff induction and AIXI model their environment as
an arbitrary Turing machine, but are themselves uncomputable. This
fails to capture an essential property of real-world agents, which cannot
be more powerful than the environment they are embedded in; for exam-
ple, AIXI cannot accurately model game-theoretic scenarios in which its
opponent is another instance of AIXI.

In this paper, we define reflective variants of Solomonoff induction and
AIXI, which are able to reason about environments containing other,
equally powerful reasoners. To do so, we replace Turing machines by
probabilistic oracle machines (stochastic Turing machines with access
to an oracle). We then use reflective oracles, which answer questions of
the form, “is the probability that oracle machine T outputs 1 greater
than p, when run on this same oracle?” Diagonalization can be avoided
by allowing the oracle to answer randomly if this probability is equal
to p; given this provision, reflective oracles can be shown to exist. We
show that reflective Solomonoff induction and AIXI can themselves be
implemented as oracle machines with access to a reflective oracle, mak-
ing it possible for them to model environments that contain reasoners as
powerful as themselves.

Keywords: Reflective oracles · Solomonoff induction · AIXI · Universal
artificial intelligence

1 Introduction

Legg and Hutter [5] have defined a “Universal measure of intelligence” that
describes the ability of a system to maximize rewards across a wide range of
diverse environments. This metric is useful when attempting to quantify the
cross-domain performance of modern AI systems, but it does not quite capture
the induction and interaction problems faced by generally intelligent systems
acting in the real world: In the formalism of Legg and Hutter (as in many other
agent formalisms) the agent and the environment are assumed to be distinct and
separate, while real generally intelligent systems must be able to learn about and
manipulate an environment from within.

As noted by Hutter [4], Vallinder [9], and others, neither Solomonoff induc-
tion [8] nor AIXI [3] can capture this aspect of reasoning in the real world. Both
c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 60–69, 2015.
DOI: 10.1007/978-3-319-21365-1 7

Reflective Variants of Solomonoff Induction and AIXI 61

formalisms require that the reasoner have more computing power than any indi-
vidual environment hypothesis that the reasoner considers: a Solomonoff induc-
tor predicting according to a distribution over all computable hypotheses is not
itself computable; an AIXI acting according to some distribution over environ-
ments uses more computing power than any one environment in its distribution.
This is also true of computable approximations of AIXI, such as AIXItl. Thus,
these formalisms cannot easily be used to make models of reasoners that must
reason about an environment which contains the reasoner and/or other, more
powerful reasoners. Because these reasoners require more computing power than
any environment they hypothesize, environments which contain the reasoner are
not in their hypothesis space!

In this paper, we extend the Solomonoff induction formalism and the AIXI
formalism into a setting where the agents reason about the environment while
embedded within it. We do this by studying variants of Solomonoff induction and
AIXI using probabilistic oracle machines rather than Turing machines, where a
probabilistic oracle machine is a Turing machine that can flip coins and make
calls to an oracle. Specifically, we make use of probabilistic oracle machines with
access to a “reflective oracle” [2] that answers questions about other probabilistic
oracle machines using the same oracle. This allows us to define environments
which may contain agents that in turn reason about the environment which
contains them.

Section 2 defines reflective oracles. Section 3 gives a definition of Solomonoff
induction on probabilistic oracle machines. Section 4 gives a variant of AIXI in
this setting. Section 5 discusses these results, along with a number of avenues
for future research.

2 Reflective Oracles

Our goal is to define agents which are able to reason about environments con-
taining other, equally powerful agents. If agents and environments are simply
Turing machines, and two agents try to predict their environments (which con-
tain the other agent) by simply running the corresponding machines, then two
agents trying to predict each other will go into an infinite loop.

One might try to solve this problem by defining agents to be Turing machines
with access to an oracle, which takes the source code of an oracle machine as
input and which outputs what this machine would output when run on the same
oracle. (The difference to simply running the machine would be that the oracle
would always return an answer, never go into an infinite loop.) Then, instead of
predicting the environment by running the corresponding oracle machine, agents
would query the oracle about this machine. However, it’s easy to see that such
an oracle cannot exist, for reasons similar to the halting problem: if it existed,
then by quining, one could write a program that queries the oracle about its own
output, and returns 0 iff the oracle says it returns 1, and returns 1 otherwise.

It is possible to get around this problem by allowing the oracle to give ran-
dom answers in certain, restricted circumstances. To do so, we define agents

62 B. Fallenstein et al.

and environments to be probabilistic oracle machines, Turing machines with the
ability to act stochastically (by tossing fair coins) and to consult oracles. We
consider probabilistic oracle machines to be equipped with advance-only output
tapes.

We will write T for the set of these probabilistic oracle machines. Throughout
this paper, an overline will be used to denote finite strings, and ε will be used
to denote the empty string. Let B := { 0, 1 } be the set of bits, and B<ω denote
the set of finite strings of bits. We write TO(x) for a machine T ∈ T run on the
input x ∈ B<ω, using the oracle O.

Roughly speaking, a reflective oracle O will answer queries of the form “is
the probability that TO(x) outputs 1 greater than q?” where q is a rational
probability. That is, a query is a triple (T, x, q) ∈ T × B<ω × Q ∩ [0, 1], where
Q ∩ [0, 1] is the set of rational probabilities.

More formally, write P(TO(x) = y) for the probability that TO(x) outputs at
least one bit and that the first bit of output is y ∈ B. If TO(x) does not always
halt before outputting the first bit, then P(TO(x) = 1) + P(TO(x) = 0) may be
less than 1. We assume that the oracle always outputs either 1 or 0, and define
distinct calls to the oracle to be stochastically independent (even if they call the
oracle on the same query); hence, an oracle’s behavior is fully specified by the
probabilities P(O(T, x, q) = 1). Now, we can define reflective oracles as follows:

Definition 1. An oracle O is “reflective” if, for all T ∈ T and x ∈ B<ω, there
is some p ∈ [0, 1] such that

P(TO(x) = 1) ≤ p ≤ P(TO(x) �= 0) (1)

and such that for all q ∈ Q ∩ [0, 1], the following implications hold:

p > q =⇒ P(O(T, x, q) = 1) = 1 (2)
p < q =⇒ P(O(T, x, q) = 0) = 1 (3)

Note that if TO(x) is guaranteed to output a bit, then p must be exactly the
probability P(TO(x) = 1) that TO(x) returns 1. If TO(x) sometimes fails to halt,
then the oracle can, in a sense, be understood to “redistribute” the probability
that the machine goes into an infinite loop between the two possible outputs:
it answers queries as if TO(x) outputs 1 with probability p, where p is lower-
bounded by the true probability of outputting 1, and upper-bounded by the
probability of outputting 1 or looping.

If q = p, then P(O(T, x, q) = 1) may be any number between 0 and 1; this
is essential in order to avoid paradox. For example, consider the probabilistic
oracle machine which asks the oracle which bit it itself is most likely to output,
and outputs the opposite bit. In this case, a reflective oracle may answer 1 with
probability 0.5, so that the agent outputs each bit with equal probability. In
fact, given this flexibility, a consistent solution always exists.

Theorem 1. A reflective oracle exists.

Proof. Appendix B of Fallenstein, Taylor, and Christiano [2].

Reflective Variants of Solomonoff Induction and AIXI 63

3 Reflective Solomonoff Induction

Using a reflective oracle, it is possible to define a variation on Solomonoff induc-
tion defined on probabilistic oracle machines. Define an environment to be a
probabilistic oracle machine which takes a sequence of bits as input and (prob-
abilistically) produces a single bit of output. We write B<ω � B for the type of
probabilistic oracle machines run with oracle O which take a finite bit string as
input and probabilistically output a single bit. Holding O fixed, one can think
of an environment as defining a function of type B<ω → Δ(B) where Δ(B) is
the set of probability distributions over a single bit. Equivalently, one may see
an environment paired with an oracle as a distribution over possibly-infinite bit
strings, where strings of bits are generated by running the environment on ε to
produce the first bit, and then running it on the first bit to produce the second
bit, and then running it on the first two bits to produce the third bit, and so on.
What results is a distribution over possibly-infinite bit strings (where the strings
may be finite if the environment sometimes goes into an infinite loop rather than
producing another output bit).

We will give a variant of Solomonoff induction that predicts observations
according to a simplicity distribution over environments, and which is itself a
probabilistic oracle machine (implying that it can be embedded into an environ-
ment). Roughly speaking, it will take a simplicity distribution, condition it on
the observations seen so far, sample a machine from the resulting distribution,
and then use the oracle to output its next bit as if it were that machine. Loosely,
this results in a distribution over bits which is 1 according to the probability
that a random machine from the updated distribution would next output a 1.

In order to define our variant of Solomonoff induction (and later AIXI) it
will be necessary to fix some representation of real numbers. Throughout this
paper, real numbers will be represented by infinite sequences of nested closed
intervals. To demonstrate, Algorithm 1 describes a probabilistic oracle machine
getProb : T × B<ω × B � R which takes an encoding T of another probabilistic
oracle machine, a finite bit string x, and a single bit y, and uses the oracle O to
compute P(TO(x) = y). If TO(x) may fail to generate output, getProbO(T, x, 1)
will return the “redistributed” probability p from Definition 1.

Algorithm 1. When run with an oracle O, outputs P(TO(x) = y) as an
infinite sequence of nested intervals.
def getProbO(T, x, y):

upper ←− 1;
lower ←− 0;
repeat

middle ←− (upper + lower)/2;
if O(T, x,middle) = y then lower ←− middle;
else upper ←− middle;
output (lower , upper);

64 B. Fallenstein et al.

Solomonoff induction on probabilistic oracle machines is given as a function
rSI : B<ω � B by Algorithm 2. This function implicitly defines a probability
distribution over infinite bitstrings, by providing a way to sample the next bit
given the output so far; this allows the conditional probability of the next bit
to be computed by getProb. (rSI is defined so that it will always output either 0
or 1, never go into an infinite loop.)

Algorithm 2 makes use of two more helper functions defined in Appendix A,
namely getStringProb : T × B<ω × B<ω � R, which computes the probability
that a machine T would output the sequence y conditional on having already
outputted x, and flip : R � B which flips a weighted coin (returning 1 with
probability equal to the weight, and 0 otherwise); like getProb, getStringProb
uses the “redistributed” probabilities p from Definition 1 if a machine may go
into an infinite loop.

With these two helper functions, defining Solomonoff induction on proba-
bilistic oracle machines is straightforward. Using rejection sampling, we sam-
ple a machine T with probability proportional to 2−len(T)getStringProbO(T, ε, x),
where x is the string of our observations so far. To do this, we draw T with
probability 2−len(T) using the randomMachine function, and then keep it with
probability getStringProbO(T, ε, x). After sampling this machine, we use getProb
to sample the next bit in the sequence after our observations.

Algorithm 2. Reflective Solomonoff induction for probabilistic oracle
machines. It takes a finite bit string and outputs a bit.
def rSIO(x):

repeat
T ←− randomMachineO();

if flipO(getStringProbO(T, ε, x)) then
return flipO(getProbO(T, x, 1))

Because rSI always terminates, it defines a distribution PrSI ∈ Δ(Bω) over infinite
bit strings, where PrSI(x) is the probability that rSI generates the string x (when
run on the first n bits to generate the n+1th bit). This distribution satisfies the
essential property of a simplicity distribution, namely, that each environment T
is represented somewhere within this distribution.

Theorem 2. For each probabilistic oracle machine T , there is a constant CT

such that for all finite bit strings x ∈ B<ω,

PrSI(x) ≥ CT · PT (x) (4)

where PT (x) is the probability of T generating the sequence x (when run on the
first n bits to generate the n + 1th bit).

Proof. First note that

PT (x) ≤ getStringProbO(T, ε, x) =
len(x)∏

i=0

getProbO(T, x1:i−1, xi), (5)

Reflective Variants of Solomonoff Induction and AIXI 65

with equality on the left if TO(y) is guaranteed to produce an output bit for
every prefix y of x. Then, the result follows from the fact that by construction,
sampling a bit string from rSIO is equivalent to choosing a random machine T
with probability proportional to 2−len(T) and then sampling bits according to
getProbO(T, ·, ·).

Reflective Solomonoff induction does itself have the type of an environment,
and hence is included in the simplicity distribution over environments. Indeed,
it is apparent that reflective Solomonoff induction can be used to predict its
own behavior—resulting in behavior that is heavily dependent upon the choice
of reflective oracle and the encoding of machines as bit strings, of course. But
more importantly, there are also environments in this distribution which run
Solomonoff induction as a subprocess: that is, this variant of Solomonoff induc-
tion can be used to predict environments that contain Solomonoff inductors.

4 Reflective AIXI

With reflective Solomonoff induction in hand, we may now define a reflective
agent, by giving a variant of AIXI that runs on probabilistic oracle machines. To
do this, we fix a finite set O of observations, together with a prefix-free encoding
of observations as bit strings. Moreover, we fix a function r : O → [0, 1] which
associates to each o ∈ O a (computable) reward r(o). Without loss of generality,
we assume that the agent has only two available actions, 0 and 1.

Reflective AIXI will assume that an environment is a probabilistic oracle
machine which takes a finite string of observation/action pairs and produces a
new observation; that is, an environment is a machine with type (O×B)<ω � O.
Reflective AIXI assumes that it gets to choose each action bit, and, given a
history oa ∈ (O × B)<ω and the latest observation o ∈ O, it outputs the bit
which gives it the highest expected (time-discounted) future reward. We will
write rt(oa) := r(fst(oat)) for the reward in the tth observation of oa.

To define reflective AIXI, we first need the function step from Algorithm 3,
which encodes the assumption that an environment can be factored into a world-
part and an agent-part, one of which produces the observations and the other
which produces the actions.

Algorithm 3. Takes an agent and an environment and the history so far,
and computes the next observation/action pair.
def stepO(world , agent , oa):

o ←− worldO(oa);

a ←− agentO(oa, o);
return (o, a)

Next, we need the function reward from Algorithm 4, which computes the total
discounted reward given a world (selecting the observations), an agent (assumed
to control the actions), and the history so far. Total reward is computed using

66 B. Fallenstein et al.

an exponential discount factor 0 < γ < 1. We multiply by 1 − γ to make total
reward sum to a number between 0 and 1. With this rescaling, total discounted
reward starting from step t is no more than (1 − γ)

∑∞
s=t γs−1 = γt−1.

Algorithm 4. The distribution over real numbers defined by this proba-
bilistic machine is the distribution of the future discounted reward of agent
interacting with world, given that the history oa has already occurred.
def rewardO(world , agent , oa):

for n = 1, 2, . . . do
oa ←− append

(
oa, stepO(world , agent , oa)

)
;

seen ←− (1 − γ)
∑n

t=1 γt−1 · rt(oa);
output (seen, seen + γn);

With reward in hand, an agent which achieves the maximum expected (dis-
counted) reward in a given environment μ, can be defined as in rAIμ. Algo-
rithm 5 defines a machine actionRewardO(a), which computes the reward if the
agent takes action a in the next timestep and in future timesteps behaves like
the optimal agent rAIμ. It then defines a machine differenceO(), which computes
the difference in the discounted rewards when taking action 1 and when taking
action 0, then rescales this difference to the interval [0, 1] and flips a coin with
the resulting probability. Finally, rAIμ uses the oracle to determine whether the
probability that differenceO() = 1 is greater than 1/2, which is equivalent to ask-
ing whether the expectation of actionRewardO(1) is greater than the expectation
of actionRewardO(0); if the expectations are equal, the oracle may behave ran-
domly, but this is acceptable, since in this case the agent is indifferent between its
two actions. Note that Algorithm 5 references its own source code (actionReward
passes the source of rAIμ to reward); this is possible by quining (Kleene’s second
recursion theorem).

Algorithm 5. Reflective AIμ.

def rAIOμ (oa, o):
def actionRewardO(a):

return rewardO (μ, rAIμ, append (oa, (o, a)))
def differenceO():

return flipO

(
actionRewardO(1) − actionRewardO(0) + 1

2

)

return O (difference, ε, 1/2);

We can now obtain a reflective version of AIXI by instantiating the environ-
ment μ in rAIμ to a universal environment ξ, which (in analogy with Solomonoff
induction) selects a random environment and then behaves like this envi-
ronment. As in our implementation of Solomonoff induction, we use rejec-
tion sampling, sampling a random machine T and keeping it with probability
getHistProbO(T, oa, o′), which computes the probability that environment T will

Reflective Variants of Solomonoff Induction and AIXI 67

produce an observation starting with prefix o′ given the previous history oa
(Algorithm 8). ξ will find the next bit of the next observation after any oa
sequence followed by a prefix o′ of the next observation.

Algorithm 6. A variant of reflective Solomonoff induction used by reflec-
tive AIXI. It takes a series of observation/action pairs and updates its
simplicity distribution according to the likelihood that an environment pro-
duced the observations in this sequence (holding the actions fixed).
def ξO(x):

split x into a sequence oa of observations and actions and a prefix o′ of the
next observation;
repeat

T ←− randomMachineO();

if flipO(getHistProbO(T, oa, o′) then return flip(getProb(T, oao′, 1));

def rAIXIO(oa, o):
return rAIOξ (oa, o))

5 Conclusions

Our model of agents interacting with an environment is quite reminiscent of
classical game theory, in which all agents are assumed to be logically omniscient:
indeed, reflective oracles can be used to provide new foundations for classical
game theory in which the agents are not ontologically distinct from the rest of
the game, but rather are ordinary features of the environment [2].

Realistic models of artificial reasoners must dispense with this guarantee of
logical omniscience, and consider agents that reason under logical uncertainty.
Even reasoners that have perfect knowledge about other agents (for example,
reasoners which possess the source code of a different, deterministic agent) may
not be able to deduce exactly how that agent will behave, due to computational
limitations. Such limitations are not captured by models of reflective AIXI.

Nevertheless, we expect that studying the behavior of powerful reasoners in
reflective environments will shed some light on how powerful bounded reasoners
can perform well in more realistic settings. These reflective environments provide
the beginnings of a suite of tools for studying agents that can reason about the
environment in which they are embedded, and which can reason about universes
which contain other agents of similar capabilities.

It is our hope that, through studying this simple model of reflective agents,
it will be possible to gain insights into methods that agents can use to learn the
environment which embeds them (as discussed by Soares [7]), while reasoning
well in the presence of agents which are as powerful or more powerful than
the reasoner (as discussed by Fallenstein and Soares [1]). For example, these
reflective versions of Solomonoff induction and AIXI open up the possibility of
studying agents in settings where the agent/environment boundary breaks down

68 B. Fallenstein et al.

(as discussed by Orseau and Ring [6]), or agents in settings containing other
similarly powerful agents. A first step in this direction is suggested by a result of
Fallenstein, Taylor, and Christiano [2], which shows that it is possible to define
a computable version of reflective oracles, defined only on the set of probabilistic
oracles machines whose length is ≤ l and which are guaranteed to halt within a
time bound t; this appears to be exactly what is needed to translate our reflective
variant of AIXI into a reflective, computable variant of AIXItl.

A Appendix: Helper functions

Algorithm 7. Computes the probability that machine T outputs y con-
ditional on it already outputting x, as a real number represented by an
infinite sequence of nested intervals..
def getStringProbO(T, x, y):

return
∏len(y)

i=1 getProbO(T, xy1:i−1, yi)

Algorithm 8. Computes the probability that T would output the obser-
vations in oa and the additional observation prefix o′, given that the agent
responds with the actions in oa.
def getHistProbO(T, oa, o′):

return(∏len(oa)
i=1 getStringProbO(T, oa1:i−1, fst(oai))

)
· getStringProbO(T, oa, o′));

Algorithm 9. Generates a random machine T with probability 2−len(T).
def randomMachineO():

prefix ←− ε;
repeat

if prefix is a valid machine then return prefix ;
else prefix ←− append(prefix , tossCoin());

Algorithm 10. Outputs 1 with probability weight , 0 otherwise.
def flipO(weight):

upper ←− 1;
lower ←− 0;
for (l, u) in weight do

middle ←− (upper + lower)/2;
if tossCoin() = 1 then upper ←− middle;
else lower ←− middle;
if upper < l then return 1;
else if lower > u then return 0;

Reflective Variants of Solomonoff Induction and AIXI 69

References

1. Fallenstein, B., Soares, N.: Vingean reflection: Reliable reasoning for self-modifying
agents. Tech. Rep. 2015–2, Machine Intelligence Research Institute (2015). https://
intelligence.org/files/VingeanReflection.pdf

2. Fallenstein, B., Taylor, J., Christiano, P.F.: Reflective oracles: A foundation for
classical game theory. Tech. Rep. 2015–7, Machine Intelligence Research Institute
(2015). https://intelligence.org/files/ReflectiveOracles.pdf

3. Hutter, M.: Universal algorithmic intelligence. In: Goertzel, B., Pennachin, C. (eds.)
Artificial General Intelligence, pp. 227–290. Springer, Cognitive Technologies (2007)

4. Hutter, M.: Open problems in universal induction & intelligence. Algorithms 2(3),
879–906 (2009)

5. Legg, S., Hutter, M.: Universal intelligence. Minds and Machines 17(4), 391–444
(2007)

6. Orseau, L., Ring, M.: Space-Time Embedded Intelligence. In: Bach, J., Goertzel,
B., Iklé, M. (eds.) AGI 2012. LNCS, vol. 7716, pp. 209–218. Springer, Heidelberg
(2012)

7. Soares, N.: Formalizing two problems of realistic world-models. Tech. Rep. 2015–
3, Machine Intelligence Research Institute (2015). https://intelligence.org/files/
RealisticWorldModels.pdf

8. Solomonoff, R.J.: A formal theory of inductive inference. Part I. Information and
Control 7(1), 1–22 (1964)

9. Vallinder, A.: Solomonoff Induction: A Solution to the Problem of the Pri-
ors? MA thesis, Lund University (2012). http://lup.lub.lu.se/luur/download?
func=downloadFile&recordOId=3577211&fileOId=3577215

https://intelligence.org/files/VingeanReflection.pdf
https://intelligence.org/files/VingeanReflection.pdf
https://intelligence.org/files/ReflectiveOracles.pdf
https://intelligence.org/files/RealisticWorldModels.pdf
https://intelligence.org/files/RealisticWorldModels.pdf
http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=3577211&fileOId=3577215
http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=3577211&fileOId=3577215

Are There Deep Reasons Underlying
the Pathologies of Today’s Deep Learning

Algorithms?

Ben Goertzel(B)

OpenCog Foundation, Tai Po, Hong Kong
ben@goertzel.org

Abstract. Some currently popular and successful deep learning archi-
tectures display certain pathological behaviors (e.g. confidently classi-
fying random data as belonging to a familiar category of nonrandom
images; and misclassifying miniscule perturbations of correctly classified
images). It is hypothesized that these behaviors are tied with limitations
in the internal representations learned by these architectures, and that
these same limitations would inhibit integration of these architectures
into heterogeneous multi-component AGI architectures. It is suggested
that these issues can be worked around by developing deep learning
architectures that internally form states homologous to image-grammar
decompositions of observed entities and events.

1 Introduction

In recent years “deep learning” architectures – specifically, systems that roughly
emulate the visual or auditory cortex, with a goal of carrying out image or
video or sound processing tasks – have been getting a lot of attention both in
the scientific community and the popular media. The attention this work has
received has largely been justified, due to the dramatic practical successes of
some of the research involved. In image classification, in particular (the problem
of identifying what kind of object is shown in a picture, or which person’s face
is shown in a picture), deep learning methods have been very successful, coming
reasonably close to human performance in various contexts. Current deep learn-
ing systems can be trained by either supervised or unsupervised methods, but
it’s the supervised-learning approaches that have been getting the great results
and headlines. Two good summaries of the state of the art are Juergen Schmid-
huber’s recent review with 888 references [13], and the in-process textbook by
Yoshua Bengio and his colleagues [1].

The precise definition of “deep learning” is not very clear, and the term
seems to get wider and wider as it gets more popular. Broadly, I think it works to
consider a deep learning system as a learning system consisting of adaptive units
on multiple layers, where the higher level units recognize patterns in the outputs
of the lower level units, and also exert some control over these lower-level units.
A variety of deep learning architectures exist, including multiple sorts of neural
c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 70–79, 2015.
DOI: 10.1007/978-3-319-21365-1 8

Deep Reasons Underlying the Pathologies of Deep Learning Algorithms 71

nets (that try to emulate the brain at various levels of precision), probabilistic
algorithms like Deep Boltzmann machines, and many others. This kind of work
has been going on since the middle of the last century. But only recently, due
to the presence of large amounts of relatively inexpensive computing power and
large amounts of freely available data for training learning algorithms, have such
algorithms really begun to bear amazing practical fruit.

A paper by Stanford and Google researchers [8], which reported work using a
deep learning neural network to recognize patterns in YouTube videos, received
remarkable press attention in 2012. One of the researchers was Andrew Ng, who
in 2014 was hired by Baidu to lead up their deep learning team. This work
yielded some fascinating examples most famously, it recognized a visual pattern
that looked remarkably like a cat. This is striking because of the well-known
prevalence of funny cat videos on Youtube. The software’s overall accuracy at
recognizing patterns in videos was not particularly high, but the preliminary
results showed exciting potential.

Another dramatic success was when Facebook, in mid-2014, reported that
they had used a deep learning system to identify faces in pictures with over 97%
accuracy [15] – essentially as high as human beings can do. The core of their
system was a Convolutional Neural Network (CNN), a pretty straightforward
textbook algorithm that bears only very loose conceptual resemblance to any-
thing “neural”. Rather than making algorithmic innovations, the main step the
Facebook engineers took was to implement their CNN on massive scale and with
massive training data. A Chinese team has since achieved even higher accura-
cies than Facebook on standard face recognition benchmarks, though they also
point out that their algorithm misses some cases that most humans would get
correctly [16].

Deep learning approaches to audition have also been very successful recently.
For a long time the most effective approach to speech-to-text was a relatively
simple technique known as “Hidden Markov Models” or HMMs. HMMs appear
to underlie the technology of Nuance, the 800-pound gorilla of speech-to-text
companies. But in 2013 Microsoft Research published a paper indicating their
deep learning speech-to-text system could outperform HMMs [2]. In December
2014 Andrew Ng’s group at Baidu announced a breakthrough in speech pro-
cessing – a system called Deep Speech, which reportedly gives drastically fewer
errors than previous systems in use by Apple, Google and others [7].

With all these exciting results, it’s understandable that many commentators
and even some researchers have begun to think that current deep learning archi-
tectures may be the key to advanced and even human-level AGI. However, my
main goal in this article is to argue, conceptually, why this probably isn’t the
case. I will raise two objections to the hypothesis:

1. Current deep learning architectures (even vaguely) mirror the structure and
information-processing dynamics of – at best – only parts of the human
brain, not the whole human brain

2. Some (and I conjecture nearly all) current deep learning architectures display
certain pathological behaviors (e.g. confidently classifying random data as

72 B. Goertzel

belonging to a familiar category of nonrandom images; and misclassifying
miniscule perturbations of correctly classified images), which seem to be
traceable to the nature of their internal knowledge representation. In this
sense they seem not to robustly mirror the information-processing dynamics
of the parts of the brain they resemble most, the visual and auditory cortex

My core thesis here is that these two objections are interconnected. I hypoth-
esize that the pathological behaviors are rooted in shortcomings in the inter-
nal (learned) representations of popular deep learning architectures, and these
shortcomings also make it difficult to connect these architectures with other AI
components to form integrated systems better resembling the architecturally
heterogeneous, integrative nature of the human brain.

I will also give some suggestions as to possible remedies for these problems.

2 Broad and Narrow Interpretations of “Deep Learning”

In his book“Deep Learning” [12], cognitive scientist Stellan Ohlsson formulates
the concept of deep learning as a general set of information-processing principles.
He also makes clear that these principles could be implemented in many different
kinds of systems, including neural networks but also including logic systems or
production rule systems or many other possibilities:

– Spontaneous activity: The cognitive system is constantly doing things,
always processing inputs if they are there, and always reprocessing various
of its representation of its inputs

– Structured, unbounded representations: Representations are generally
built out of other representations, giving a hierarchy of representations. The
lowest level representations are not fixed but are ongoingly reshaped based
on experience

– Layered, feedforward processing: Representations are created via layers
of processing units, with information passing from lower layers up to higher
layers

– Selective, capacity-limited processing: Processing units on each layer
pass information upward selectively each one generally passes up less infor-
mation than it takes in, and doesn’t pass it everywhere that it could

– Ubiquitous monotonic learning: Some of the representations the system
learns are stored in long term memory, others aren’t

– Local coherence and latent conflict: The various representations learned
by a system don’t have to be consistent with each other overall. Consistency
is worked toward locally when inconsistencies between elements are found;
there’s no requirement of global consistency.

– Feedback and point changes: Higher level processing units feed informa-
tion down to lower level units, thus potentially affecting their dynamics

– Amplified propagation of point changes:A small change anywhere in the
processing hierarchy might cause a large change elsewhere in the system – as
typical of complex and “chaotic” dynamical systems

Deep Reasons Underlying the Pathologies of Deep Learning Algorithms 73

– Interpretation and manifest conflict: Conflict between representations
may go unnoticed until a particular input comes in, which then reveals that
two previously learned representations can be in conflict

– Competitive evaluation and cognitive utility: Conflict between rep-
resentations are resolved broadly via “reinforcement learning”, i.e. based on
which representation proves most useful to the overall system in which context

In the context of my own AI work with the OpenCog AGI architecture [5] [6], I
find it interesting to note that, of Ohlsson’s principles of deep learning, only one
(“Representations are created via layers of processing units”) does not apply to
OpenCog’s AtomSpace knowledge store, a heterogeneously structured weighted,
labeled hypergraph. So to turn OpenCog into a deep learning system in Ohlsson’s
sense, it would suffice to arrange some OpenCog Nodes into layers of processing
units. Then the various OpenCog learning dynamics including, e.g. Probabilistic
Logic Networks reasoning, which is very different in spirit from currently popular
deep learning architectures would become “deep learning” dynamics.

Of course, restricting the network architecture to be a hierarchy doesn’t actu-
ally make the learning or the network any more deep. A more freely structured
hypergraph like the general OpenCog Atomspace is just as deep as a deep learn-
ing network, and has just as much (or more) complex dynamics. The point of
hierarchical architectures for visual and auditory data processing is mainly that,
in these particular sensory data processing domains, one is dealing with infor-
mation that has a pretty strict hierarchical structure to it. It’s very natural to
decompose a picture into subregions, subsubregions and so forth; and to define an
interval of time (in which e.g. sound or video occurs) into subintervals of times.
As we are dealing with space and time which have natural geometric structures,
we can make a fixed processing-unit hierarchy that matches the structure of space
and time lower-down units in the hierarchy dealing with smaller spatiotemporal
regions; parent units dealing with regions that include the regions dealt with
by their children; etc. For this kind of spatiotemporal data processing, a fairly
rigid hierarchical structure makes a lot of sense (and seems to be what the brain
uses). For other kinds of data, like the semantics of natural language or abstract
philosophical thinking or even thinking about emotions and social relationships,
this kind of rigid hierarchical structure seems much less useful, and in my view
a more freely-structured architecture may be more appropriate.

In the human brain, it seems the visual and auditory cortices have a very
strong hierarchical pattern of connectivity and information flow, whereas the
olfactory cortex has more of a wildly tangled-up, “combinatory” pattern. This
combinatory pattern of neural connectivity helps the olfactory cortex to rec-
ognize smells using complex, chaotic dynamics, in which each smell represents
an “attractor state” of the oflactory cortex’s nonlinear dynamics (as neurosci-
entist Walter Freeman has argued in a body of work spanning decades [10]).
The portions of the cortex dealing with abstract cognition have a mix of hierar-
chical and combinatory connectivity patterns, probably reflecting the fact that
they do both hierarchy-focused pattern recognition as we see in vision and audi-
tion, and attractor-based pattern recognition as we see in olfaction. But this is

74 B. Goertzel

largely speculation most likely, until we can make movies somehow of the neural
dynamics corresponding to various kinds of cognition, we won’t really know how
these various structural and dynamical patterns come together to yield human
thinking.

My own view is that for anything resembling a standard 2015-style deep
learning system (say, a convolutional neural net, stacked autoencoder, etc.) to
achieve anything like human-level intelligence, major additions would have to be
made, involving various components that mix hierarchical and more heteroge-
neous network structures in various ways. For example: Take “episodic memory”
(your life story, and the events in it), as opposed to less complex types of memory.
The human brain is known to deal with the episodic memory quite differently
from the memory of images, facts, or actions. Nothing, in currently popular
architectures commonly labeled “deep learning”, tells you anything about how
episodic memory works. Some deep learning researchers (based on my personal
experience in numerous conversations with them!) would argue that the ability
to deal with episodic memories effectively will just emerge from their hierarchies,
if their systems are given enough perceptual experience. It’s hard to definitively
prove this is wrong, because these models are all complex dynamical systems,
which makes it difficult to precisely predict their behavior. Still, according to
the best current neuroscience knowledge [3], the brain doesn’t appear to work
this way; episodic memory has its own architecture, different in specifics from
the architectures of visual or auditory perception. I suspect that if one wanted
to build a primarily brain-like AGI system, one would need to design (not neces-
sarily strictly hierarchical) circuits for episodic memory, plus dozens to hundreds
of other specialized subsystems.

3 Pathologies of Contemporary Deep Learning
Architectures

Even if current deep learning architectures are limited in scope, they could still
be ideal solutions for certain aspects of the AGI problem, e.g. visual and auditory
data processing. In fact, though, they seem to be subject to certain pathologies –
and these pathologies seem (though have not been demonstrated) to be related to
properties that would make it difficult to integrate these architectures into multi-
component AGI architectures.

In a paper titled “Deep Neural Networks are Easily Fooled: High Confidence
Predictions for Unrecognizable Images” [11], one group of researchers showed
they could construct images that looked random to the human eye, but that
were classified by a CNN deep learning vision network as representing particular
kinds of objects, with high confidence. So, a picture that looks like random noise
to any person, might look exactly like a frog or a cup to the CNN. We may call
this the random images pathology.

Another group, in a paper titled “Intriguing properties of neural networks”
[14], showed that by making a very small perturbation to a correctly classified

Deep Reasons Underlying the Pathologies of Deep Learning Algorithms 75

Fig. 1. From Examples of images that are unrecognizable to humans, but that state-
of-the-art deep neural networks trained on the standard ImageNet image collection
believe with ≥ 99.6% certainty to be a familiar object. From [11].

image, they could cause the deep network to misclassify the image. The pertur-
bations in question were so small that humans wouldn’t even notice. We may
call this the brittleness pathology.

Now, these two odd phenomena have no impact on practical performance
of convolutional neural networks. So one could view them as just being math-
ematical pathologies found by computer science geeks with too much time on
their hands. The first pathology is pragmatically irrelevant because a real-world
vision system is very unlikely to ever be shown weird random pictures that just
happen to trick it into thinking it’s looking at some object (most weird random
pictures won’t look like anything to it). The second one is pragmatically irrele-
vant because the variations of correctly classified pictures that will be strangely
misclassified, are very few in number. Most variations would be correctly clas-
sified. So these pathologies will not significantly affect classification accuracy
statistics. Further, these pathologies have only been demonstrated for CNNs – I
suspect they are not unique to CNNs and would also occur for other currently
popular deep learning architectures like stacked autoencoders but this has not
been demonstrated.

But I think these pathologies are telling us something. They are telling us
that, fundamentally, these deep learning algorithms are not generalizing the
way that people do. They are not classifying images based on the same kinds
of patterns that people are. They are “overfitting” in a very subtle way not
overfitting to the datasets on which they’ve been trained, but rather overfitting to
the kind of problem they’ve been posed. In these examples, these deep networks
have been asked to learn models with high classification accuracy on image
databases and they have done so. They have not been asked to learn models

76 B. Goertzel

Fig. 2. All images in the right column are incorrectly classified as ostriches by the CNN
in question. The images in the left column are correctly classified. The middle column
shows the difference between the left and right column. From [14].

that capture patterns in images in a more generally useful way, that would be
helpful beyond the image classification task and so they have not done that.

When a human recognizes an image as containing a dog, it recognizes the
eyes, ears and nose and fur, for example. Because of this, if a human recognized
the image on the bottom left of the right image array in Figure 188 as a dog, it
would surely recognize the image on the bottom right of the right image array
as a dog as well. But a CNN is recognizing the bottom left image differently
than a human in a way that fundamentally generalizes differently, even if this
difference is essentially irrelevant for image classification accuracy.

I strongly suspect there is a theorem lurking here, stating in some way that
these kinds of conceptually pathological classification errors will occur if and only
if the classification model learning algorithm fails to recognize the commonly
humanly recognizable high level features of the image (e.g. eyes, ears, nose, fur
in the dog example). Informally, what I suspect is: The reason these pathologies
occur is that these deep networks are not recognizing the “intuitively right” pat-
terns in the images. They are achieving accurate classification by finding clever
combinations of visual features that let them distinguish one kind of picture from
another but these clever combinations don’t include a humanly meaningful decom-
position of the image into component parts, which is the kind of “hierarchical deep
pattern recognition” a human’s brain does on looking at a picture.

There are other kinds of AI computer vision algorithms that do a better job
of decomposing images into parts in an intuitive way. Stochastic image grammars
[17] are one good example. However, these algorithms are more complicated and
more difficult to implement scalably than CNNs and other currently popular deep
learning algorithms, and so they have not yet yielded equally high quality image
classification results. They are currently being developed only minimally, whereas
CNNs and their ilk are being extremely heavily funded in the tech industry.

Deep Reasons Underlying the Pathologies of Deep Learning Algorithms 77

Fig. 3. Illustrative example of an image grammar for a simple object. Image grammar
based methods have been used for object classification as well, though not yet with
comparable accuracy to, say, CNNs or stacked autoencoders. From [11].

Connecting these different threads of research I suggest that the pathological
results noted above would occur even on corpora generated by formal image
grammars:

Proposition 1. Suppose one generated a large corpus of images, falling into N
commonsensical categories, based on a moderately complex, but formally defined
image grammar. Then training current deep learning architectures on this corpus
would yield the brittleness and random images pathologies.

If true, this could be useful for studying the pathologies and how to eliminate
them, especially in conjunction with the proposition suggested below.

4 A Possible Way Out

How then could these pathologies be avoided, staying within the general deep
learning framework? And would avoiding these pathologies actually give any
practical benefit?

I believe, but have not rigorously shown, that there is a sensible and viable
way to bypass the random image and brittleness pathologies, not via any clever
tricks but via modifying deep learning algorithms to make them create more
sensible internal knowledge representations. Specifically, I suggest:

78 B. Goertzel

Proposition 2. For a deep learning hierarchy to avoid the brittleness and ran-
dom images pathologies (on a corpus generated from an image grammar, or on
a corpus of natural images), there would need to be a reasonably straightforward
mapping from recognizable activity patterns on the different layers, to elements
of a reasonably simple image grammar, so that via looking at the activity pat-
terns on each layer when the network was exposed to a certain image, one could
read out the “image grammar decomposition” of the elements of the image. For
instance, if one applied the deep learning network to a corpus images generated
from a commonsensical image grammar, then the deep learning system would
need to learn an internal state in reaction to an image, from which the image-
grammar decomposition of the image was easily decipherable.

As stated this is an intuitive rather than formal proposition. Approaches to
formalization will be interesting to explore.

If this hypothesis is conceptually correct, then one interesting research direc-
tion might be to generate corpora using image grammars, and see what it would
take to get a deep learning algorithm to learn the image grammar from the
corpus, in the sense of emerging a structure in which the image grammar is
observable. Once this worked, the same algorithm could be applied to natural-
image corpora and the results analyzed.

My colleagues and I have pursued one approach to making a deep learn-
ing network capable of learning an internal image grammar. In this approach,
reported in [4], the states of the DeSTIN deep learning algorithm are saved and
frequent patterns in the state-set are mined. A DeSTIN network state may then
be labeled with the frequent patterns from the learned pattern-library that are
instantiated in that state. These labels, in simple cases, appear function like an
image grammar. But it is not clear how general or robust this phenomenon is;
this requires further study.

Another question is whether difference target propagation, as proposed in [9],
might display the property suggested in Proposition 2. Difference target propa-
gation seeks to minimize reconstruction error at each level in a deep hierarchy
(as opposed to propagating error backwards from the top of a network as in
standard gradient descent methods). Whether, and under what circumstances,
this may cause formation of a meaningful image grammar inside a network’s
state, is a fascinating open question.

References

1. Bengio, Y., Goodfellow, I.J., Courville, A.: Deep learning (2015). http://www.iro.
umontreal.ca/bengioy/dlbook, book in preparation for MIT Press

2. Deng, L., Li, J., Huang, J.T., Yao, K., Yu, D., Seide, F., Seltzer, M., Zweig, G.,
He, X., Williams, J., Gong, Y., Acero, A.: Recent advances in deep learning for
speech research at microsoft. In: IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP) (2013)

3. Gazzaniga, M.S., Ivry, R.B., Mangun, G.R.: Cognitive Neuroscience: The Biology
of the Mind. W W Norton (2009)

http://www.iro.umontreal.ca/bengioy/dlbook
http://www.iro.umontreal.ca/bengioy/dlbook

Deep Reasons Underlying the Pathologies of Deep Learning Algorithms 79

4. Goertzel, B.: Perception Processing for General Intelligence: Bridging the Sym-
bolic/Subsymbolic Gap. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS,
vol. 7716, pp. 79–88. Springer, Heidelberg (2012)

5. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence,
Part 1: A Path to Advanced AGI via Embodied Learning and Cognitive Synergy.
Springer, Atlantis Thinking Machines (2013)

6. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part
2: The CogPrime Architecture for Integrative, Embodied AGI. Springer, Atlantis
Thinking Machines (2013)

7. Hannun, A.Y., Case, C., Casper, J., Catanzaro, B.C., Diamos, G., Elsen,
E., Prenger, R., Satheesh, S., Sengupta, S., Coates, A., Ng, A.Y.: Deep
speech: Scaling up end-to-end speech recognition. CoRR abs/1412.5567 (2014).
http://arxiv.org/abs/1412.5567

8. Le, Q.V., Ranzato, M., Monga, R., Matthieu Devin, K.C., Corrado, G.S., Dean, J.,
Ng., A.Y.: Building high-level features using large scale unsupervised learning. In:
Proceedings of the Twenty-Ninth International Conference on Machine Learning
(2012)

9. Lee, D., Zhang, S., Biard, A., Bengio, Y.: Target propagation. CoRR abs/1412.7525
(2014). http://arxiv.org/abs/1412.7525

10. Li, G., Lou, Z., Wang, L., Li, X., Freeman, W.J.: Application of chaotic neural
model based on olfactory system on pattern recognition. ICNC 1, 378–381 (2005)

11. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. CoRR abs/1412.1897 (2014).
http://arxiv.org/abs/1412.1897

12. Ohlsson, S.: Deep Learning: How the Mind Overrides Experience. Cambridge
University Press (2006)

13. Schmidhuber, J.: Deep learning in neural networks: An overview. CoRR
abs/1404.7828 (2014). http://arxiv.org/abs/1404.7828

14. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J.,
Fergus, R.: Intriguing properties of neural networks. CoRR abs/1312.6199 (2013).
http://arxiv.org/abs/1312.6199

15. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to human-
level performance in face verification. In: Conference on Computer Vision and
Pattern Recognition (CVPR) (2014)

16. Zhou, E., Cao, Z., Yin, Q.: Naive-deep face recognition: Touching the limit of lfw
benchmark or not? (2014). http://arxiv.org/abs/1501.04690

17. Zhu, S.C., Mumford, D.: A stochastic grammar of images. Found. Trends. Comput.
Graph. Vis. 2(4), 259–362 (2006). http://dx.doi.org/10.1561/0600000018

http://arxiv.org/abs/http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/http://arxiv.org/abs/1412.7525
http://arxiv.org/abs/http://arxiv.org/abs/1412.1897
http://arxiv.org/abs/http://arxiv.org/abs/1404.7828
http://arxiv.org/abs/http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/http://arxiv.org/abs/1501.04690
http://dx.doi.org/10.1561/0600000018

Speculative Scientific Inference via Synergetic
Combination of Probabilistic Logic and

Evolutionary Pattern Recognition

Ben Goertzel 1,2(B), Nil Geisweiller1, Eddie Monroe2, Mike Duncan2,
Selamawit Yilma3, Meseret Dastaw3, Misgana Bayetta4, Amen Belayneh4,

Matthew Ikle’4,5, and GinoYu4

1 OpenCog Foundation, Tai Po, Hong Kong
ben@goertzel.org

2 SciCog Systems, California, USA
3 iCog Labs, Addis Ababa, Ethiopia

4 School of Design, Hong Kong Poly U, Hung Hom, Hong Kong
5 Adams State College, Alamosa, USA

Abstract. The OpenCogPrime cognitive architecture is founded on a
principle of “cognitive synergy” – judicious combination of different cog-
nitive algorithms, acting on different types of memory, in a way that helps
overcome the combinatorial explosions each of the algorithms would suf-
fer if used on its own. Here one manifestation of the cognitive synergy
principle is explored – the use of probabilistic logical reasoning (based
on declarative knowledge) to generalize procedural knowledge gained by
evolutionary program learning. The use of this synergy is illustrated via
an example drawn from a practical application of the OpenCog system to
the analysis of gene expression data, wherein the MOSES program learn-
ing algorithm is used to recognize data patterns and the PLN inference
engine is used to generalize these patterns via cross-referencing them with
a biological ontology. This is a case study of both automated scientific
inference, and synergetic cognitive processing.

1 Introduction

Conceptually founded on the “patternist” systems theory of intelligence out-
lined in [4] and implemented in the OpenCog open-source software platform, the
OpenCogPrime (OCP) cognitive architecture combines multiple AI paradigms
such as uncertain logic, computational linguistics, evolutionary program learning
and connectionist attention allocation in a unified architecture [7] [8]. Cognitive
processes embodying these different paradigms, and generating different kinds of
knowledge (e.g. declarative, procedural, episodic, sensory) interoperate together
on a common neural-symbolic knowledge store called the Atomspace. The inter-
action of these processes is designed to encourage the self-organizing emergence
of high-level network structures in the Atomspace, including superposed hierar-
chical and heterarchical knowledge networks, and a self-model network enabling
meta-knowledge and meta-learning.
c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 80–89, 2015.
DOI: 10.1007/978-3-319-21365-1 9

Speculative Scientific Inference via Synergetic Combination 81

This overall architecture can be used as a tool within practical applications
in areas such as data analysis or natural language processing. For instance, the
OpenCog system, leveraging elements of the OpenCogPrime design, has been
used for commercial applications in the area of natural language processing and
data mining; e.g. see [9] where OpenCog’s PLN reasoning and RelEx language
processing are combined to do automated biological hypothesis generation based
on information gathered from PubMed abstracts. The same system can also be
used to control an intelligent embodied agent (e.g. a game character [6] or robot
[11]). In this case the focus of the system’s cognition is to find and execute the
procedures that it believes have the best probability of working toward its goals
in its current context.

Memory Types in OpenOCP. OCP’s main memory types are the declarative,
procedural, sensory, and episodic memory types that are widely discussed in cog-
nitive neuroscience [14], plus attentional memory for allocating system resources
generically, and intentional memory for allocating system resources in a goal-
directed way. Table 1 overviews these memory types, giving key references and
indicating the corresponding cognitive processes, and which of the generic pat-
ternist cognitive dynamics each cognitive process corresponds to (pattern cre-
ation, association, etc.).

The essence of the OCP design lies in the way the structures and processes
associated with each type of memory are designed to work together in a closely
coupled way, the operative hypothesis being that this will yield cooperative intel-
ligence going beyond what could be achieved by an architecture merely contain-
ing the same structures and processes in separate “black boxes.” This sort of
cooperative emergence has been labeled “cognitive synergy.” In this spirit, the
inter-cognitive-process interactions in OpenCog are designed so that conversion
between different types of memory is possible, though sometimes computation-
ally costly (e.g. an item of declarative knowledge may with some effort be inter-
preted procedurally or episodically, etc.)

A Practical Example of Procedural/Declarative Synergy. We describe here some
currently ongoing work using OpenCog, and elements of the OCP design, to
analyze genomic data using a combination of two different OpenCog cognitive
processes: the MOSES procedure learning algorithm, and the PLN probabilistic
logic engine. This work is a practical illustration of the cognitive synergy princi-
ple: PLN helps MOSES overcome its difficulty with generalization, and MOSES
helps PLN overcome its difficulty scanning large datasets for patterns. The two
together can find abstract patterns in datasets, via MOSES first finding con-
crete patterns and PLN then abstracting them. The result is a novel form of
automated speculative scientific inference that is potentially quite powerful.

While this particular genomics application is “narrow AI”, the fact that it
is being carried out in a software framework and cognitive architecture oriented
toward general intelligence means that development and conceptual refinement
done in the context of this application can be used for any OpenCog application.
Further, many of the lessons learned in the context of this work are quite generally

82 B. Goertzel et al.

Table 1. Memory Types and Cognitive Processes in OpenCog Prime. The third column
indicates the general cognitive function that each specific cognitive process carries out,
according to the patternist theory of cognition.

Memory Type Specific Cognitive Processes
General Cognitive

Functions

Declarative
Probabilistic Logic Networks (PLN) [3];

concept blending [2]
pattern creation

Procedural
MOSES (a novel probabilistic

evolutionary program learning algorithm)
[12]

pattern creation

Episodic internal simulation engine [6]
association, pattern

creation

Attentional
Economic Attention Networks (ECAN)

[10]
association, credit

assignment

Intentional
probabilistic goal hierarchy refined by

PLN and ECAN, structured according to
MicroPsi [1]

credit assignment,
pattern creation

Sensory
In OpenCogBot, this will be supplied by

the DeSTIN component

association,
attention allocation,

pattern creation,
credit assignment

applicable, e.g. the highlighting of the “rule choice” problem as the key issue in
PLN inference control (as will be discussed at the end).

2 Cognitive Synergy for Procedural and Declarative
Learning

The specific work to be discussed here involves combined use of OpenCog’s
MOSES and PLN cognitive algorithms; we now briefly indicate what each of
these does, pointing to prior references for details.

MOSES for Automated Program Learning. MOSES, OCP’s primary algorithm
for learning procedural knowledge, has been tested on a variety of application
problems including standard GP test problems, virtual agent control, biological
data analysis and text classification [12]. It represents procedures internally as
program trees. Each node in a MOSES program tree is supplied with a “knob,”
comprising a set of values that may potentially be chosen to replace the data
item or operator at that node. So e.g. a node containing the number 7 may be
supplied with a knob that can take on any integer value. A node containing
a while loop may be supplied with a knob that can take on various possible
control flow operators including conditionals or the identity. A node containing
a procedure representing a particular robot movement, may be supplied with
a knob that can take on values corresponding to multiple possible movements.
The metaphor is that MOSES learning covers both “knob twiddling” (setting
the values of knobs) and “knob creation.”

Speculative Scientific Inference via Synergetic Combination 83

One common application of MOSES is to the supervised or unsupervised anal-
ysis of datasets. In this case MOSES is learning procedures that take in a dataset,
and output a prediction of what category that dataset belongs to, or what proper-
ties that dataset has. For example, consider the following MOSES model learned
in the context of supervised-classification analysis of a gene expression dataset
comprising 50 human nonagenarians and 50 middle-aged controls [13]:

or(and(or(!$TTC3 !$ZNF542P)

or(! $LOC285484 !$RAI2 $CCNA1)

or($SERPING1 !$NLRC3))

and(! $SEMA7A !$LOC285484 !$LOC100996246)

and($SEMA7A $TJP2 !$ARMC10)

and($LOC100996246 $PSRC1 $SLC7A5P1))

==> nonagenarian

The semantics here is that:

– The variable containing the name of a gene, e.g. “$RAI2”, denotes the predi-
cate “Gene $RAI2 was overexpressed, i.e. expressed greater than the median
across all genes, in the gene expression dataset corresponding to a particular
person.”

– if this Boolean combination of variables is true, then the odds are higher
than average that the person is a nonagenarian rather than a control

This particular model has moderate but not outstanding statistics on the dataset
in question (precision = .6, recall = .92, accuracy = .77), and was chosen for
discussion here because of its relatively simple form.

PLN for Probabilistic Logical Inference. OCP’s primary tool for handling declar-
ative knowledge is an uncertain inference framework called Probabilistic Logic
Networks (PLN). The complexities of PLN are the topic of two lengthy technical
monographs [3] [5], and here we will eschew most details and focus mainly on
pointing out how PLN seeks to achieve efficient inference control via integration
with other cognitive processes.

As a logic, PLN is broadly integrative: it combines certain term logic rules
with more standard predicate logic rules, and utilizes both fuzzy truth values
and a variant of imprecise probabilities called indefinite probabilities. PLN math-
ematics tells how these uncertain truth values propagate through its logic rules,
so that uncertain premises give rise to conclusions with reasonably accurately
estimated uncertainty values.

PLN can be used in either forward or backward chaining mode. In backward
chaining mode, for example,

1. Given an implication L ≡ A → B whose truth value must be estimated,
create a list (A1, ..., An) of (inference rule, stored knowledge) pairs that might
be used to produce L

2. Using analogical reasoning to prior inferences, assign each Ai a probability
of success

84 B. Goertzel et al.

– If some of the Ai are estimated to have reasonable probability of success
at generating reasonably confident estimates of L’s truth value, then
invoke Step 1 with Ai in place of L (at this point the inference process
becomes recursive)

– If none of the Ai looks sufficiently likely to succeed, then inference has
“gotten stuck” and may be abandoned; or, another cognitive process may
optionally be invoked, e.g. various options (not all currently implemented
and tested) include:

• Concept creation may be used to infer new concepts related to A
and B, and then Step 1 may be revisited, in the hope of finding a
new, more promising Ai involving one of the new concepts

• MOSES may be invoked with one of several special goals, e.g. the
goal of finding a procedure P so that P (X) predicts whether X → B.
If MOSES finds such a procedure P then this can be converted to
declarative knowledge understandable by PLN and Step 1 may be
revisited....

• Simulations may be run in OCP’s internal simulation engine, so as
to observe the truth value of A → B in the simulations; and then
Step 1 may be revisited....

3 Example of PLN Inference on MOSES Output

Now we give a specific example of how PLN and MOSES can be used together,
via applying PLN to generalize program trees learned by MOSES. We will use the
MOSES model given above, learned via analysis of nonagenarian gene expression
data, as an example. Further details on the specific inferences described here can
be found in online supplementary material at http://goertzel.org/BioInference.
pdf.

As the MOSES model in question is at the top level a disjunction, it’s easy
to see that, if we express the left hand side in OpenCog’s Atomese language 1

using ANDLinks, ORLinks and NOTLinks, a single application of the PLN rule

Implication

AND

OR

ListLink: $L

MemberLink

$X

$L

$X

will yield corresponding implications for each clause, such as

and($SEMA7A $TJP2 !$ARMC10) ==> nonagenarian

1 See e.g. [7] for a review of this notation.

http://goertzel.org/BioInference.pdf
http://goertzel.org/BioInference.pdf

Speculative Scientific Inference via Synergetic Combination 85

for the third second-level clause. For the rest of our discussion here we will focus
on this clause due to its relatively small size. Of course, similar inferences to
the ones we describe here can be carried out for larger clauses and for Boolean
combinations with different structures. The PLN software deals roughly equally
well with Boolean structures of different shapes and size.

This latter implication, in the OpenCog Atomspace, actually takes the form

ImplicationLink

ANDLink

ExecutionOutputLink

SchemaNode "makeOverexpressionPredicate"

GeneNode "SEMA7A"

ExecutionOutputLink

SchemaNode "makeOverexpressionPredicate"

GeneNode "TJP2"

NotLink

ExecutionOutputLink

SchemaNode "makeOverexpressionPredicate"

GeneNode "ARMC10"

PredicateNode "Nonagenarian"

where

EquivalenceLink

EvaluationLink

ExecutionOutputLink

SchemaNode "makeOverexpressionPredicate"

GeneNode $G

ConceptNode $H

EvaluationLink

GroundedPredicateNode "scm:above -median"

ListLink

ExecutionOutputLink

SchemaNode "makeExpressionLevelPredicate"

GeneNode $G

ConceptNode $H

ConceptNode $P

EquivalenceLink

EvaluationLink

ExecutionOutputLink

SchemaNode "makeExpressionLevelPredicate"

GeneNode $G

ConceptNode $H

EvaluationLink

PredicateNode "Expression level"

ListLink

GeneNode $G

ConceptNode $H

86 B. Goertzel et al.

where

– ”scm:above-median” is a helper function that evaluates if a certain predicate
(arg1) evaluated at arg2 is above the median of the set of values obtained
by applying arg1 to every member of the category arg3.

– ”makeExpressionLevelPredicate level” is a schema that outputs, for an argu-
ment $G, a predicate that is evaluated for an argument that represents an
organism, and outputs the expression of $G in that organism.

– ”Expression level” is a predicate that outputs, for arguments $G and $H,
the level of expression of $G in organism $H.

Being a nonagenarian in itself is not that interesting, but if you know the
entity in question is a human (instead of, say, a bristlecone pine tree), then it
becomes interesting indeed. This knowledge is represented via

ImplicationLink

AND

PredicateNode "Human"

PredicateNode "Nonagenarian"

PredicateNode "LongLived"

from which PLN can conclude

ImplicationLink

ANDLink

ExecutionOutputLink

PredicateNode "makeOverexpressionPredicate"

GeneNode "SEMA7A"

ExecutionOutputLink

PredicateNode "makeOverexpressionPredicate"

GeneNode "TJP2"

NotLink

ExecutionOutputLink

PredicateNode "makeOverexpressionPredicate"

GeneNode "ARMC10"

PredicateNode "LongLived"

Next, how can PLN generalize this MOSES model? One route is to recog-
nize patterns spanning this model and other MOSES models in the Atomspace.
Another route, the one to be elaborated here, is cross-reference it with exter-
nal knowledge resources, such as the Gene Ontology (GO). The GO is one of
several bio knowledge resources we have imported into a bio-oriented OpenCog
Atomspace that we call the Biospace.

Each of these three genes in our example belongs to multiple GO categories,
so there are many GO-related inferences to be done regarding these genes. But
for sake of tractable exemplification, let’s just look at a few of the many GO
categories involved:

– SEMA7A is a GO:0045773 (positive regulation of axon extension)
– TJP2 is a GO:0006915 (apoptotic process)
– ARMC10 is a GO:0040008 (regulation of growth)

Speculative Scientific Inference via Synergetic Combination 87

Let us also note a relationship between the first and third of these GO categories,
drawn from the GO hierarchy:

– GO:0045773 is a GO:0048639 (positive regulation of developmental growth)
– GO:0048639 is a GO:0045927 (positive regulation of growth)
– GO:0045927 is a GO:0040008 (regulation of growth)

As well as these relationships between genes and GO categories, the Biospace
also contains knowledge

AssociativeLink

ConceptNode "GO :0006915"

PredicateNode "LongLived"

which is derived from the known association of multiple genes in the category
GO:0006915 with longevity. From this, PLN can derive that

ImplicationLink

MemberLink

$G

ConceptNode "GO :0006915"

ImplicationLink

ExecutionOutputLink

PredicateNode "makeOverexpressionPredicate"

$G

PredicateNode "LongLived"

, i.e. that overexpression of genes in this GO category is likely to imply longevity.
Since this GO categories contains one of the genes (TJP2) in the MOSES model
under study, after a few PLN steps, this background knowledge, combined with
the MOSES model, increases the estimated odds that the other two genes in the
MOSES model are related to longevity, e.g. that

ImplicationLink

MemberLink

$G

ConceptNode "ARMC10"

ImplicationLink

ExecutionOutputLink

PredicateNode "makeOverexpressionPredicate"

$G

PredicateNode "LongLived"

Further, the membership of these other two genes in the GO category
”GO:0040008” allows PLN to derive the abstraction

ImplicationLink

AssociativeLink

ConceptNode "GO :0040008"

$L

ImplicationLink

ANDLink

88 B. Goertzel et al.

AppendLink

ListLink: $L

ExecutionOutputLink

PredicateNode "makeOverexpressionPredicate"

GeneNode "TJP2"

PredicateNode "LongLived"

What this means, intuitively, is that combinations of TJP2 with growth-regulation
genes tends to promote longevity. This is interesting, among other reasons, because
it’s exactly the kind of abstraction a human mind might form when looking at this
kind of data.

In the above examples we have omitted quantitative truth values, which are
attached to each link, and depend on the specific parameters associated with the
PLN inference formulas. The probability associated with the final Implication-
Link above is going to be quite low, below 0.1 for any sensible parameter values.
However, this is still significantly above what one would expect for a linkage
of the same form with a random GO and gene inside it. We are not aiming to
derive definite conclusions here, only educated speculative hypotheses, able to
meaningfully guide further biological experimentation.

The “cognitive synergy” in the above may not be glaringly obvious but is
critical nonetheless. MOSES is good at learning specific data patterns, but not so
good at learning abstractions. To get MOSES to learn abstractions of this nature
would be possible but lead to significant scalability problems. On the other
hand, PLN is good at abstracting from particular data patterns, but doesn’t
have control mechanisms scalable enough to enable it to scan large datasets
and pick out the weak but meaningful patterns among the noise. MOSES is
good at this. The two algorithms working together can, empirically speaking,
create generalizations from large, complex datasets, significantly better than
either algorithm can alone.

4 Conclusions and Next Steps

The work described here has its specialized aspects, but also leads to various
general ideas and lessons. Conceptual interplay between practical applications
to complex real-world data and more abstract AGI R&D, helps to push both
pursuits forward.

The workflow described above uses MOSES to analyze data and produce
classification models, and PLN to draw conclusions from these models via cross-
referencing them with external knowledge or (not elaborated above) one another.
The loop may be closed by taking the genes highlighted as most relevant by
PLN (in the above case, the genes found to imply longevity most strongly via
combination of PLN) and using them as a restricted input feature set for MOSES.
MOSES can then learn more models based on this feature set, which can then
be exported to the Atomspace and used by PLN, etc. In this way PLN is being
used to enable a kind of MOSES recursive feature selection.

One of the main lessons learned in experimenting with inferences like the ones
mentioned above, is that the primary AI difficulty involved is telling PLN which

Speculative Scientific Inference via Synergetic Combination 89

rules to choose in what order. Choosing which nodes (e.g. GeneNodes) to include
is challenging as well but is addressed via OpenCog’s activation-spreading-like
ECAN component. Choosing which rules to apply when is not currently han-
dled effectively; but in [7] it is proposed to do this via assigning probabilities
to sequences of rule-choices (conditional on the context), thus allowing ”rule
macros” (i.e. sequences of rules) to be applied in a fairly habitual way in a given
domain of inference. But of course that is a high-level description and there will
be some devils in the details. It has been previously proposed to use pattern
mining to learn macros of this nature, and it’s clear this will be a good app-
roach and necessary in the medium term. However, a simpler approach might
be to simply run a bunch of inferences and store Markov probabilities indicating
which chains of rule-applications tended to be useful and which did not; this
might provide sufficient rule-choice guidance for ”relatively simple” inferences
like the ones given here.

References

1. Bach, J.: Principles of Synthetic Intelligence. Oxford University Press (2009)
2. Fauconnier, G., Turner, M.: The Way We Think: Conceptual Blending and the

Mind’s Hidden Complexities. Basic (2002)
3. Goertzel, B., Ikle, M., Goertzel, I., Heljakka, A.: Probabilistic Logic Networks.

Springer (2008)
4. Goertzel, B.: The Hidden Pattern. Brown Walker (2006)
5. Goertzel, B., Coelho, L., Geisweiller, N., Janicic, P., Pennachin, C.: Real World

Reasoning. Atlantis Press (2011)
6. Goertzel, B., Et Al, C.P.: An integrative methodology for teaching embodied

non-linguistic agents, applied to virtual animals in second life. In: Proc.of the
First Conf. on AGI. IOS Press (2008)

7. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence,
Part 1: A Path to Advanced AGI via Embodied Learning and Cognitive Synergy.
Atlantis Thinking Machines. Springer (2013)

8. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part
2: The CogPrime Architecture for Integrative, Embodied AGI. Atlantis Thinking
Machines. Springer (2013)

9. Goertzel, B., Pinto, H., Pennachin, C., Goertzel, I.F.: Using dependency parsing
and probabilistic inference to extract relationships between genes, proteins and
malignancies implicit among multiple biomedical research abstracts. In: Proc. of
Bio-NLP 2006 (2006)

10. Goertzel, B., Pitt, J., Ikle, M., Pennachin, C., Liu, R.: Glocal memory: a design
principle for artificial brains and minds. Neurocomputing, April 2010

11. Goertzel, B.: Opencogbot: An integrative architecture for embodied agi. In: Proc.
of ICAI 200, Beijing (2010)

12. Looks, M.: Competent Program Evolution. PhD Thesis, Computer Science
Department, Washington University (2006)

13. Passtoors, W., Boer, JM., Goeman, J., Akker, E.:Transcriptional profling of
humanfamilial longevity indicates a role for asf1a and il7r. PLoS One (2012)

14. Tulving, E., Craik, R.: The Oxford Handbook of Memory. Oxford U. Press (2005)

Stochastic Tasks: Difficulty and Levin Search

José Hernández-Orallo(B)

DSIC, Universitat Politècnica de València, València, Spain
jorallo@dsic.upv.es

Abstract. We establish a setting for asynchronous stochastic tasks that
account for episodes, rewards and responses, and, most especially, the
computational complexity of the algorithm behind an agent solving a
task. This is used to determine the difficulty of a task as the (logarithm
of the) number of computational steps required to acquire an acceptable
policy for the task, which includes the exploration of policies and their
verification. We also analyse instance difficulty, task compositions and
decompositions.

Keywords: Task difficulty · Task breadth · Levin’s search · Universal
psychometrics

1 Introduction

The evaluation of cognitive features of humans, non-human animals, computers,
hybrids and collectives thereof relies on a proper notion of ‘cognitive task’ and
associated concepts of task difficulty and task breadth (or alternative concepts
such as composition and decomposition). The use of formalisms based on transi-
tion functions such as (PO)MDP (for discrete or continuous cases) is simple, but
have some inconveniences. For instance, the notion of computational cost must
be derived from the algorithm behind the transition function, which may have
a very high variability of computational steps depending on the moment: at idle
moments it may do just very few operations, whereas at other iterations it may
require an exponential number of operations (or even not halt). The maximum,
minimum or average for all time instants show problems (such as dependency
on the time resolution). Also, the use of transition functions differs significantly
in the way animals (including humans) and many agent languages in AI work,
with algorithms that can use signals and have a control of time through threads
(using, e.g., “sleep” instructions where computation stops momentarily).

The other important thing is the notion of response, score or return R for an
episode. Apart from relaxing its functional dependency with the rewards during
an episode, to account with a goal-oriented task, we consider the problem of
commensurability of different tasks by using a level of tolerance, and deriving
the notion of acceptable policy from it. While this seems a cosmetic change, it
paves the way to the notion of difficulty —as difficulty does not make sense if we
do not set a threshold or tolerance— and also to the analysis of task instances.

c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 90–100, 2015.
DOI: 10.1007/978-3-319-21365-1 10

Stochastic Tasks: Difficulty and Levin Search 91

After these instrumental accommodations, the straightforward idea of diffi-
culty as search effort is used. Difficulty is just the logarithm of the computational
steps that are required to find an acceptable policy, including the execution of
several possible policies and verifying them. This is in accordance with Levin’s
universal search [10,11], the notion of information gain [4] and the interpretation
of the “minimal process for creating [something] from nothing” [12].

The notion of task instance difficulty is more controversial, as it usually
assumes that it is relative to the task (e.g., ‘30+0’ is an easy instance of the
addition task) or even to the policy (e.g., ‘sort gabcdef” is a very easy case for a
particular sorting algorithm). Note that average-case complexity in complexity
theory refers to how many computational steps are employed to solve a set
of instances (with a distribution) given a particular algorithm —or for every
possible conceivable algorithm. But one question that is not usually made is:
How can we say that ‘sort gabcdef’ is easier than ‘sort gdaefcb’ without setting
an algorithm or the distribution of algorithms?

The paper is organised as follows. Section 2 gives a setting for stochastic
tasks, responses, difficulty and acceptability (using a tolerance level). Section 3
discusses whether the notion of task difficulty can be inherited for instances.
Then we move to the notions of task composition and decomposition and their
implications. Section 4 introduces a variant of Levin search that includes a new
term into Kt, which is based on the number of repetitions that are needed to
verify that a policy is ε-acceptable with some given confidence 1 − δ, à la PAC
(Probabilistic Approximate Correct). Section 5 closes the paper.

2 Stochastic Tasks, Trials, Responses and Difficulty

Let us give the definition of asynchronous-time interactive systems. In an asyn-
chronous-time interactive system, there is a common shared time (which can be
discrete or continuous, and can be virtual or real). An interactive system is a
machine with a program code, a finite internal discrete memory, one or more finite
read-only discrete input tapes and one or more finite write-only discrete output
tapes. The inputs of agents are called observations and the outputs are called
actions. For tasks, it is the other way round. As special features, these machines
have access to a read-only time measurement and a source of randomness (either
by an additional random instruction or a random tape). The programs for tasks
and agents are constructed with a Turing-complete set of instructions. The pro-
grams can be coded over a reference universal prefix Turing machine U . This
makes this definition very close to probabilistic Turing machines. For the purpose
of the analysis of computational steps, we consider an instruction or special state
sleep(t), which sets the machine to sleep until time t.

Some tasks will also have intermediate rewards. Rewards are just given
through another extra tape, and are interpreted as a natural number. Rewards
are optional. In case they exist, the result of an episode may depend on the
rewards or not. This is important, as the general use of rewards in reinforce-
ment learning, especially with discounted reward or through averaging, gives
the impression that the final result or response of an episode must always be

92 J. Hernández-Orallo

an aggregation of rewards. For instance, in a maze, an agent may go directly
to the exit and may require no reward. On the contrary, a more sluggish agent
may require more positive indications and even with them cannot find the exit.
Rewards can be just given to help in the finding of the solution. Finally, the
agent is able to see the result or score of an episode at the end through another
special tape. A final reward can be given instead of or jointly with the result.

The expected value of the response, return or result of agent π for task μ for
a time limit τ is denoted by R

[τ](π, μ). The value of τ will be usually omitted as
it is understood that it is part of the description of the task μ. The R function
always gives values between 0 and 1 and we assume it is always defined. If the
agent goes into a non-halting loop and stops reacting, this is not perceivable
externally and may even lead to some non-zero R.

Now we need to extend the notation of R(π, μ) to consider several instances
of the same task. Each attempt of a subject on one of the task instances is a
trial or episode. R

[�→ν](π, μ) returns the expected response of μ per trial with
ν consecutive episodes or trials by the same agent π without reinitialisation. So
actually it is not the same π each time, if the agent has memory. According to
the task, the same instance can appear more than once, as in a sample with
replacement. As the task can have memory, we can also have some tasks that
are really working as if a no-replacement sampling were taking place. In order
to do that, the task itself must keep track of the instances that have appeared
or must use some kind of randomised enumeration. Also, tasks can be adaptive.

With R
[�→1](π, μ), or simply R(π, μ), we denote that there is only one episode

or trial. For instance, many tests are of this kind if items are completely unre-
lated, with no influence on the following ones, although it is more applicable
when we consider that the agent has no memory (or is reinitialised between tri-
als). In general, especially if the items are related, for every ν > 1, we have that
R

[�→ν](π, μ) �= R
[�→1](π, μ) unless the agent has no memory between episodes.

Our view of difficulty is “algorithmic”, which is basically the computational
steps required to build the policy algorithm, which depends on the tolerance level
of the task, the interaction and hints given by the task, the algorithm length, its
computation cost and its verification cost. The first thing we will require is the
length of a policy or object x, denoted by L(x). The second thing we will require
is the computation steps taken by a policy. In synchronous environments, the sum
or average of steps of all time cycles is not very meaningful. Another option is to
calculate the maximum, as done in [7] with the so-called Ktmax. This is a very
rough approximation, as one single peak can make this very large. Fortunately,
here tasks are defined as asynchronous. When the agent needs to wait until a
situation or time is met, if the instruction sleep(t) is used, these ‘waiting’ times
are not considered for the computational steps. With this interpretation, the
expected1 execution steps of π per trial when performing task μ are denoted
by S

[�→ν](π, μ) with a time limit (τ) given by the task for each trial. If at any
moment π enters an infinite loop, then S

[�→ν](π, μ) is infinite. The third thing
is about memory requirements (space). In this paper we will not consider space

1 This has to be ‘expected’ if we consider stochastic environments or agents.

Stochastic Tasks: Difficulty and Levin Search 93

because (1) the use of n bits of memory requires at least n computational steps,
so the latter are going to be considered anyway and (2) steps and bits are different
units. The fourth thing is verification. When we discuss the effort about finding a
policy, there must be some degree of certainty that the policy is reasonably good.
As tasks and agents are stochastic, this verification is more cumbersome than in
a non-stochastic case. We will discuss about this later on in the paper. For the
moment, we will just combine the length of the policy and the computational
steps, by defining LS

[�→ν](π, μ) � L(π) + log S
[�→ν](π, μ). Logarithms are always

binary. We will explain later on why we apply a logarithm over S. The fifth thing
is the tolerance level of the task. In many cases, we cannot talk about difficulty
if there is no threshold or limit for which we consider a policy acceptable. It
is true that some tasks have a response function R that can only be 0 or 1,
and difficulty is just defined in terms of this goal. But many other tasks are not
binary (goal-oriented), and we need to establish a threshold for them. In our
case, we can take 1 as the best response and set the threshold on 1 − ε.

We now define acceptability in a straightforward way. The set of acceptable
policies for task μ given a tolerance ε is given by

A[ε, �→ν](μ) � {π : R
[�→ν](π, μ) ≥ 1 − ε} (1)

Note that with a tolerance greater than 0 the agent can do terribly wrong in a
few instances, provided it does well on many others.

And now we are ready to link difficulty to resources. This is usual in algo-
rithmic information theory, but here we need to calculate the complexities of
the policies (the agents) and not the problems (the tasks). A common solution,
inspired by Levin’s Kt (see, e.g., [10] or [11]), is to define:

Kt[ε, �→ν](μ) � min
π∈A[ε, �→ν](μ)

LS
[�→ν](π, μ) (2)

Note that the above has two expectations: one in LS and another one inside A.
The interpretation of the above expression is a measure of effort, as used with
the concept of computational information gain with Kt in [4].

An option as an upper-bound measure of difficulty would be �(μ) �
Kt[ε, �→ν](μ), for a finite ν and given ε. In general, if ν is very large, then the
last evaluations will prevail and any initial effort to find the policies and start
applying them will not have enough weight. On the contrary, if ν is small, then
those policies that invest in analysing the environment will be penalised. It also
requires a good assessment of the metasearch procedure to verify the policy so
it can go to exploitation. In any case, the notion of difficulty depends, in some
tasks, on ν. We will come back to the ‘verification cost’ later on.

3 Task Instances, Task Composition and Decomposition

Up to this point we have dealt with a first approach to task difficulty. A task
includes (infinitely) many task instances. What about instance difficulty? Does it
make sense? In case it does, instance difficulty would be very useful for adaptive

94 J. Hernández-Orallo

tests, as we could start with simple instances and adapt their difficulty to the
ability of the subject (as in adaptive testing in psychometrics).

The key issue is that instance difficulty must be defined relative to a task. At
first sight, the difference in difficulty between 6/3 and 1252/626 is just a question
of computational steps, as the latter usually requires more computational steps
if a general division algorithm is used. But what about 13528/13528? It looks
an easy instance. Using a general division algorithm, it may be the case that it
takes more computational steps than 1522/626. If we see it easy is because there
are some shortcuts in our algorithm to make divisions. Of course, we can think
about algorithms with many shortcuts, but then the notion of difficulty depends
on how many shortcuts it has. In the end, this would make instance difficulty
depend on a given algorithm for the task (and not the task itself). This would
boil down to the steps taken by the algorithm, as in computational complexity.

We can of course take a structuralist approach, by linking the difficulty of an
instance to a series of characteristics of the instance, such as its size, the similar-
ities of their ingredients, etc. This is one of the usual approaches in psychology
and many other areas, including evolutionary computation, but does not lead to
a general view of what instance difficulty really is. For the divisions above, one
can argue that 13528/13528 is more regular than 1252/626, and that is why the
first is easier than the second. However, this is false in general, as 1352813528 is
by no means easier than any other exponentiation.

Another perspective is “the likelihood that a randomly chosen program will
fail for any given input value” [2], like the population-based approach in psychol-
ogy. For this, however, we would need a population2. The insight comes when we
see that best policies may change with variable values of ε. This leads to the view
of the relative difficulty of an instance with respect to a task as the minimum
LS for any possible tolerance of a policy such that the instance is accepted. We
denote by μσ an instance of μ with seed σ (on the random tape or generator).
The set of all optimal policies for varying tolerances ε0 is:

Opt
[�→ν]
LS

(μ) �
{

arg min
π∈A[ε0, �→ν](μ)

LS
[�→ν](π, μ)

}

ε0∈[0,1]

(3)

And now we define the instance difficulty of μσ with respect to μ as:

�
[ε, �→ν](μσ|μ) � min

π∈Opt
[�→ν]
LS

(μ)∩A[ε, �→ν](μσ)

LS
[�→ν](π, μ) (4)

Note how the order of the minimisation is arranged in equations 3 and 4 such
that for the many policies that only cover μσ but do not solve many of the other
instances, these are not considered because they are not in OptLS.

This notion of relative difficulty is basically a notion of consilience with the
task. If we have an instance whose best policy is unrelated to the best policy for
the rest, then this instance will not be covered until the tolerance becomes very
2 We could assume a universal distribution. This is related to the approach in this

paper as the shortest policies have a great part of the mass of this distribution.

Stochastic Tasks: Difficulty and Levin Search 95

low. Of course, this will depend on whether the algorithmic content of solving
the instance can be accommodated into the general policy. This is closely related
to concepts such as consilience, coherence and intensionality [3–5].

Now the question is to consider how we can put several tasks together. The
aggregation of several responses that are not commensurate makes no sense This
gives further justification to eq. 1, where A was introduced. Given two tolerance
levels for each task we can see whether this leads to similar or different difficulties
for each task. For instance, if the difficulties are very different, then the task will
be dominated by the easy one. Given two stochastic tasks, the composition
as the union of the tasks is meaningless, so we instead calculate a mixture. In
particular, the composition of tasks μ1 and μ2 with weight α ∈ [0, 1], denoted
by αμ1 ⊕ (1 − α)μ2, is defined by a stochastic choice, using a biased coin (e.g.,
using α), between the two tasks. Note that this choice is made for each trial. It
is easy to see that if both μ1 and μ2 are asyncronous-time stochastic tasks, this
mixture also is. Similar to composition we can talk about decomposition, which
is just understood in a straightforward way. Basically, μ is decomposable into μ1

and μ2 if there is an α and two tasks μ1 and μ2 such that μ = αμ1 ⊕ (1 − α)μ2.
Now, it is interesting to have a short look at what happens with difficulty

when two tasks are put together. Given a difficulty function �, we would like
to see that if �(αμ1 ⊕ (1 − α)μ2) ≈ α�(μ1) + (1 − α)�(μ2) then both tasks are
related, and there is a common policy that takes advantage of some similarities.
However, in order to make sense of this expression, we need to consider some
values of α and fix a tolerance. With high tolerance the above will always be
true as � is close to zero independently of the task. With intermediate tolerances,
if the difficulties are not even, the optimal policies for the composed task will
invest more resources for the easiest ‘subtask’ and will neglect the most difficult
‘subtask’. Finally, using low tolerances (or even 0) for the above expressions may
have more meaning, as the policy must take into account both tasks.

In fact, there are some cases for which some relations can be established.
Assume 0 tolerance, and imagine that for every 1 > α > 0 we have �(αμ1 ⊕ (1−
α)μ2) ≈ α�(μ1). If this is the case, it means that we require the same effort to
find a policy for both tasks than for one alone. We can see that task μ1 covers
task μ2. In other words, the optimal policy for μ1 works for μ2. Note that this
does not mean that every policy for μ1 works for μ2. Finally, if μ1 covers μ2 and
vice versa, we can say that both tasks are equivalent.

We can also calculate a distance as d(μ1, μ2) � 2�(0.5μ1 ⊕ 0.5μ2) − �(μ1) −
�(μ2). Clearly, if μ1 = μ2 then we have 0 distance. For tolerance 0 we also have
that if μ2 has difficulty close to 0 but μ1 has a high difficulty h1, and both tasks
are unrelated but can be distinguished without effort, then the distance is h1.

Nonetheless, there are many questions we can analyse with this conceptual-
isation. For instance, how far can we decompose? There are some decomposi-
tions that will lead to tasks with very similar instances or even with just one
instance. Let us consider the addition task μadd with a soft geometrical distri-
bution p on the numbers to be added. With tolerance 0, the optimal policy is
given by a short and efficient policy to addition. We can decompose addition

96 J. Hernández-Orallo

into μadd1 and μadd2, where μadd1 contains all the summations 0 + x, and μadd2

incorporates all the rest. Given the distribution p, we can find the α such that
μadd = αμadd1 ⊕ (1 − α)μadd2. From this decomposition, we see that μadd2 will
have the same difficulty, as the removal of summations 0 + x does not simplify
the problem. However, μadd1 is simple now. But, interestingly, μadd2 still covers
μadd1. We can figure out many decompositions, such as additions with and with-
out carrying. Also, as the task gives more relevance to short additions because of
the geometrical distribution, we may decompose the task in many one-instance
tasks and a few general tasks. In the one-instance tasks we would put simple
additions such as 1 + 5 that we would just rote learn. In fact, it is quite likely
that in order to improve the efficiency of the general policy for μadd the policy
includes some tricks to treat some particular cases or easy subsets.

The opposite direction is if we think about how far we can reach by com-
posing tasks. Again, we can compose tasks ad eternum without reaching more
general tasks necessarily. The big question is whether we can analyse abilities
with the use of compositions and difficulties. In other words, are there some tasks
such that the policies solving these tasks are frequently useful for many other
tasks? That could be evaluated by looking what happens to a task μ1 with a
given difficulty h1 if it is composed with any other task μ2 of some task class. If
the difficulty of the composed task remains constant (or increases very slightly),
we can say that μ1 covers μ2. Are there tasks that cover many other tasks? This
is actually what psychometrics and artificial intelligence are trying to unveil. For
instance, in psychometrics, we can define a task μ1 with some selection of arith-
metic operations and see that those who perform well on these operations have
a good arithmetic ability. In our perspective, we could extrapolate (theoretically
and not experimentally) that this task μ1 covers a range of arithmetic tasks.

4 Difficulty as Levin Search with Stochastic Verification

In previous sections we considered the length of the policy and the logarithm of
its computational time through their combination LS, which finally led to the
function Kt[ε, �→ν](μ). As we argued, this is given by the realisation that in order
to find a policy of length L(π) we have to try approximately 2L(π) algorithms if
we enumerate programs from small to large (this is basically what Levin search
does, see [11, pp.577–580]). Considering that we can also gradually increase the
computational steps that we devote for each of them, we get 2L(π) · S(π, μ),
whose logarithm is represented by Kt. This is why we say that the unit of Kt is
logarithm of computational steps.

If we try to extend this notion to tasks, the first, and perhaps most obvious
and important difference with traditional Levin’s universal search is that tasks
are stochastic. Consequently, several trials may be needed for discarding a bad
policy and the verification of a good one. Intuitively, a pair of problem and policy
with low variability in the response (results) will be easier to be verified than
another where results behave more stochastically.

Another difference is that we can think about a Levin search with memory
(i.e., non-blind), as some of the observations on previous trials may be crucial.

Stochastic Tasks: Difficulty and Levin Search 97

We need that the policies that are tried could also be search procedures over
several trials. That means that Levin search actually becomes a metasearch,
which considers all possible search procedures, ordered by size and resources,
similar to other adaptations of Levin search for interactive scenarios [9,13].

As tasks are stochastic, we can never have complete certainty that a good
policy has been found. An option is to consider a confidence level, such that
the search invests as fewer computational steps as possible to have a degree of
confidence 1 − δ of having found an ε-acceptable policy. This clearly resembles
a PAC (probably approximate correct) scenario [14].

The search must find a policy with a confidence level δ, i.e., Pr(π solvesμ) ≥
1 − δ. If we denote the best possible average result (for an infinite number of
runs) as r∗, we consider that a series of runs is a sufficient verification for a
probably approximate correct (PAC) policy π for μ when:

Pr(r∗ − r̂ ≤ ε) ≥ 1 − δ (5)

with r̂ being the average of the results of the trials (runs) so far.
First, we are going to assume that all runs take the same number of steps

(a strong assumption, but let us remind that this is an upper limit), so the
verification cost could be approximated by

Ŵ
[ε,δ](π, μ) � S(π, μ) · B

[ε,δ](π, μ) (6)

i.e., the expected number of steps times the expected number of verification bids.
The number of bids can be estimated if we have the mean and the standard

deviation of the response for a series of runs. Assuming a normal distribution:

n ≥ |zδ/2|2σ2

(r̂ + ε − r∗)2
(7)

In order to apply the above expression we need the variance σ2. Many
approaches to the estimation of a population mean with unknown σ2 are based
on a pilot or prior study (let us say we try 30 repetitions) and then derive n using
the normal distribution and then use this for a Student’s t distribution. Instead
of this, we are going to take an iterative approach where we update the mean
and standard deviation after each repetition. We consider the maximum stan-
dard deviation as a start (as a kind of Laplace correction) with two fabricated
repetitions with responses 0 and 1.

Algorithm 1 is used in a modified Levin search:

Definition 1. Levin’s universal search for stochastic tasks and policies with tol-
erance ε, confidence level 1 − δ, and maximum response reference r∗. Given a
task μ policies are enumerated in several phases, starting from phase 1. For phase
i, we execute all possible policies π with L(π) ≤ i for si = 2i−L(π) steps each.
We call function VerifyNorm(π, μ, ε, δ, smax) in Algorithm 1 with smax = si.
While an acceptable policy is not found we continue until we complete the phase
and then to a next stage i + 1. If an acceptable policy is found, some extra trials
are performed before stopping the search for confirmation.

98 J. Hernández-Orallo

Algorithm 1. Verification algorithm (normality)

1: function VerifyNorm(π, μ,ε, δ, smax) � smax is the number of allowed steps
2: j ← 3 � We consider two first response with high variance
3: r ← 0 + 1 � One with value 0 and the other with value 1
4: s ← 0
5: mπ ← ∅ � The algorithm π can keep memory between trials. Initially empty.
6: repeat
7: 〈rj , sj , mπ〉 ← Run(π, mπ, μ, smax − s) � One trial with remaining steps
8: s ← s + sj � Accumulate steps
9: r ← r + rj � Accumulate response

10: r̂ ← r
j

� Average response

11: σ̂2 ← Var[r1 . . . rj] � Variance estimation

12: n0 ← |zδ/2|2σ̂2

(r̂+ε−r∗)2

13: if j ≥ n0 then
14: if r̂ > r∗ − ε then return 〈TRUE, s〉 � Stop because it is verified
15: else return 〈FALSE, s〉 � Stop because it is rejected
16: end if
17: end if
18: j ← j + 1
19: until s ≥ smax

20: return 〈FALSE, s〉
21: end function

Theorem 1. For every μ and ε, δ > 0, if a maximum r∗ exists achievable by a
computable policy and it is given, then definition 1 conducts a finite search.

Proof. As r∗ is defined as the highest expected response for a resource-bounded
policy, then there is a number of phases where the optimal policy is found and
there are enough steps such that r̂ is becoming as closer to r∗ so that r̂ + ε − r∗

approaches ε such that is verified Pr(r∗ − r̂ ≤ ε) ≥ 1 − δ. Note that as results

are bounded and the highest variability is σ2 = 1/4, so n ∼ |zδ/2|2σ2

(ε)2 is bounded.

In the end, what we want is to account for the variability of computational
steps given by the variance of the response and its proximity to the threshold,
as both things make verification more difficult. This is finally calculated as:

B
[ε,δ](π, μ) �

|zδ/2|2Var[R(π, μ)]
(R(π, μ) + ε − r∗)2

(8)

For both Var[R(π, μ)] and R(π, μ) we consider that we include two extra responses
as a start, as done in Algorithm 1. And now the effort is rewritten as:

log F
[ε,δ](π, μ) � log(2L(π) · Ŵ

[ε,δ](π, μ)) = L(π) + log Ŵ
[ε,δ](π, μ) (9)

For clarity, we can expand what F is by using eq. 6 and eq. 8:

log F
[ε,δ](π, μ) = L(π)+log S(π, μ)·B[ε,δ](π, μ) = L(π)+log S(π, μ)+log B

[ε,δ](π, μ)

Stochastic Tasks: Difficulty and Levin Search 99

From here, we can finally define a measure of difficulty that accounts for all the
issues that affect the search of the policy for a stochastic task:

�
[ε,δ](μ) � minπ log F

[ε,δ](π, μ) (10)

5 Conclusions

As we have mentioned during this paper, the notion of task is common in AI
evaluation, in animal cognition and also in human evaluation. We set tasks and
agents as asynchronous interactive systems, where difficulty is seen as compu-
tational steps of a Levin search, but this search has to be modified to cover
stochastic behaviours. These ideas are an evolution and continuation of early
notions of task and difficulty in [8] and [6] respectively. The relevance of verifi-
cation in difficulty has usually been associated with deduction. However, some
works have incorporated it as well in other inference problems, such as induction
and optimisation, using Levin’s Kt [1,4,12]. From the setting described in this
paper, many other things could be explored, especially around the notions of
composition and decomposition, task instance and agent response curves.

Acknowledgements. This work has been partially supported by the EU (FEDER)
and the Spanish MINECO under grants TIN 2010-21062-C02-02, PCIN-2013-037 and
TIN 2013-45732-C4-1-P, and by Generalitat Valenciana PROMETEOII2015/013.

References

1. Alpcan, T., Everitt, T., Hutter, M.: Can we measure the difficulty of an optimiza-
tion problem? In: IEEE Information Theory Workshop (ITW) (2014)

2. Bentley, J.G.W., Bishop, P.G., van der Meulen, M.J.P.: An empirical exploration
of the difficulty function. In: Heisel, M., Liggesmeyer, P., Wittmann, S. (eds.)
SAFECOMP 2004. LNCS, vol. 3219, pp. 60–71. Springer, Heidelberg (2004)

3. Hernández-Orallo, J.: A computational definition of ‘consilience’. Philosophica 61,
901–920 (2000)

4. Hernández-Orallo, J.: Computational measures of information gain and reinforce-
ment in inference processes. AI Communications 13(1), 49–50 (2000)

5. Hernández-Orallo, J.: Constructive reinforcement learning. International Journal
of Intelligent Systems 15(3), 241–264 (2000)

6. Hernández-Orallo, J.: On environment difficulty and discriminating power.
Autonomous Agents and Multi-Agent Systems, 1–53 (2014). http://dx.doi.org/
10.1007/s10458-014-9257-1

7. Hernández-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an
anytime intelligence test. Artificial Intelligence 174(18), 1508–1539 (2010)

8. Hernández-Orallo, J., Dowe, D.L., Hernández-Lloreda, M.V.: Universal psycho-
metrics: measuring cognitive abilities in the machine kingdom. Cognitive Systems
Research 27, 50–74 (2014)

9. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algo-
rithmic Probability. Springer (2005)

http://dx.doi.org/10.1007/s10458-014-9257-1
http://dx.doi.org/10.1007/s10458-014-9257-1

100 J. Hernández-Orallo

10. Levin, L.A.: Universal sequential search problems. Problems of Information Trans-
mission 9(3), 265–266 (1973)

11. Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications,
3rd edn. Springer (2008)

12. Mayfield, J.E.: Minimal history, a theory of plausible explanation. Complexity
12(4), 48–53 (2007)

13. Schmidhuber, J.: Gödel machines: fully self-referential optimal universal self-
improvers. In: Artificial general intelligence, pp. 199–226. Springer (2007)

14. Valiant, L.G.: A theory of the learnable. Communications of the ACM 27(11),
1134–1142 (1984)

Instrumental Properties of Social Testbeds

Javier Insa-Cabrera(B) and José Hernández-Orallo

DSIC, Universitat Politècnica de València, Valencia, Spain
{jinsa,jorallo}@dsic.upv.es

Abstract. The evaluation of an ability or skill happens in some kind of
testbed, and so does with social intelligence. Of course, not all testbeds
are suitable for this matter. But, how can we be sure of their appropriate-
ness? In this paper we identify the components that should be considered
in order to measure social intelligence, and provide some instrumental
properties in order to assess the suitability of a testbed.

Keywords: Social intelligence · Multi-Agent systems · Cooperation ·
Competition · Game theory · Rewards · Universal psychometrics

1 Introduction

Evaluation tools are crucial in any discipline as a way to assess its progress and
creations. There are some tools, benchmarks and contests, aimed at the measure-
ment of humanoid intelligence or the performance in a particular set of tasks.
However, the state of the art of artificial intelligence (AI) and artificial general
intelligence is now more focussed towards social abilities, and here the measur-
ing tools are still rather incipient. In the past two decades, the notion of agent
and the area of multi-agent systems have shifted AI to problems and solutions
where ‘social’ intelligence is more relevant (e.g., [1,2]). This shift towards a more
social-oriented AI is related to the modern view of human intelligence as highly
social, actually one of the most distinctive features of human intelligence over
other kinds of animal intelligence. Some significant questions that appear here
are then whether we are able to properly evaluate social intelligence in general
(not only in AI, but universally) and whether we can develop measurement tools
that distinguish between social intelligence and general intelligence.

In this paper, we 1) identify the components that should be considered in
order to assess social intelligence, and 2) provide some instrumental properties
to help us determine the suitability of a testbed to be used as a social test (valid-
ity, reliability, efficiency, boundedness and team symmetry), while analyzing the
influence that such components have on these properties. This helps us to pave
the way for the analysis of whether many social environments, games and tests
in the literature are useful for measuring social intelligence.

The paper is organized as follows. Section 2 provides the necessary back-
ground. Section 3 identifies the components that we should consider in order to
measure social intelligence. Section 4 presents some instrumental properties to
assess the suitability of a testbed to be used as a social intelligence test. Finally,
Sect. 5 closes the paper with some discussion and future work.
c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 101–110, 2015.
DOI: 10.1007/978-3-319-21365-1 11

102 J. Insa-Cabrera and J. Hernández-Orallo

2 Background

This section gives an introduction to the concepts and terminology of multi-agent
environments and serves as a background for the following sections.

2.1 Multi-agent Environments

An environment is a world where an agent can interact through observations,
actions and rewards. This general view of the interaction between an agent and
an environment can be extended to various agents by letting them interact simul-
taneously with the environment.

A multi-agent environment is an interactive scenario with several agents.
An environment accepting n agents defines n parameters (one for each agent)
denoted as agent slots. We use i = 1, . . . , n to denote the slots. Each simultaneous
interaction of the n agents is called a time step, where the order of events is
always: observations, actions and rewards. Oi is the observation set that the
agent in slot i can perceive, Ai is the action set that the agent in slot i can
perform and Ri ⊆ Q represents the possible rewards obtained by the agent in
slot i. For each step k, the agent in slot i must perceive an observation oi,k ∈ Oi,
perform an action ai,k ∈ Ai and obtain a reward ri,k ∈ Ri. We use ok, ak and
rk respectively to denote the joint observation, joint action and joint reward
profiles of the n agents at step k (i.e., ok = (o1,k, . . . , on,k) ∈ O1 × · · · × On

represents the joint observation profile at step k, and similarly for actions and
rewards). For example, a sequence of two steps in a multi-agent environment is
then a string such as o1a1r1o2a2r2 and the string o1,1a1,1r1,1o1,2a1,2r1,2 denotes
the sequence of observations, actions and rewards for the agent in slot 1.

Both the agents and the environment are defined as probabilistic measures.
At step k, the term π(ai,k|oi,1ai,1ri,1 . . . oi,k) → [0, 1] denotes the probabil-
ity of the agent in slot i to perform action ai,k after the sequence of events
oi,1ai,1ri,1 . . . oi,k. The observation provided by the environment at step k to the
agent in slot i also has a probabilistic measure ω(oi,k|o1a1r1 . . . ok−1ak−1rk−1) →
[0, 1]. As with the observation, the reward at step k to the agent in slot i
is provided depending on observations, actions and rewards on previous steps
ρ(ri,k|o1a1r1 . . . okak) → [0, 1]. Note that the rewards obtained by each agent
depend on the joint observations, actions and rewards of all the agents interact-
ing in the environment, and not only on their own.

2.2 Teams

It is important to determine the roles that agents take in the environment.
The key issue is to establish whether the other agents goals and interests are
compatible with one’s goals. The concept is complex, as alliances can be created
and broken even if no clear teams are established from the beginning (and this is
an interesting property of social intelligence). These roles or alliances determine
two major social behaviors: cooperation and competition.

Instrumental Properties of Social Testbeds 103

We need to decide how the environment distributes rewards among the
agents. An easy possibility would be to make each agent get its rewards with-
out further constraints over other agents’ rewards. With this configuration (e.g.,
general-sum games), both competition and cooperation may be completely use-
less for most environments, as the rewards are not limited or linked to the other
agents. In contrast, if we set that the total set of rewards is limited in some way,
we will foster competition, as happens in zero-sum games. But in any of these
two cases cooperation will hardly take place. Alliances could arise sporadically
between at least two agents in order to bother (or defend against) a third agent,
but we need a way to make it more likely before any (sophisticated) alliance can
emerge on its own. One possible answer is the use of teams, defined as follows:

Definition 1. Agent slots i and j are in the same team iff ∀k : ri,k = rj,k,
whatever the agents present in the environment.

which means that all agents in a team receive exactly the same rewards. Note that
teams are not alliances as usually understood in game theory. In fact, teams are
fixed and cannot be changed by the agents. Also, we do not use any sophisticated
mechanism to award rewards, related to the contribution of each agent in the
team, as it is done with the Shapley Value [3]. We just set rewards uniformly.

2.3 Multi-agent Environments Using Teams

At this moment, we are ready to define an environment with parametrized agents
by only specifying their slots and their team arrangement.

Definition 2. A multi-agent environment μ accepting N(μ) agents (i.e., the
number of slots in μ) is a tuple 〈O,A,R, ω, ρ, τ〉, where O, A, R repre-
sent the observation sets, action sets and reward sets respectively (i.e., O =
(O1, . . . ,ON(μ)), A = (A1, . . . ,AN(μ)) and R = (R1, . . . ,RN(μ))) and ω and
ρ are the observation function and reward function respectively as defined in
Sect. 2.1. τ is a partition on the set of slots {1, . . . , N(μ)}, where each set in τ
represents a team.

Note that with this definition the agents are not included in the environment.
For instance, noughts and crosses could be defined as an environment μnc with
two agents, where the partition set τ is defined as {{1}, {2}}, which represents
that this game allows two teams, and one agent in each. Another example is
RoboCup Soccer, whose τ would be {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}}.

We now define an instantiation for a particular agent setup. Formally, an
agent line-up l is a list of agents. For instance, if we have a set of agents Π =
{π1, π2, π3, π4}, a line-up from this set could be l1 = (π2, π3). The use of the same
agent twice is allowed, so l2 = (π1, π1) is also a line-up. We denote by μ[l] the
instantiation of an environment μ with a line-up l, provided that the length of l is
greater than or equal to the number of agents allowed by μ (if l has more agents,
the excess is ignored). The slots of the environment are then matched with the
corresponding elements of l following their order. For instance, for the noughts

104 J. Insa-Cabrera and J. Hernández-Orallo

and crosses, an instantiation would be μnc[l1]. Note that different instantiations
over the same environment would normally lead to different results. We use
Ln(Π) to specify the set of all the line-ups of length n with agents of Π.

We use the notation RK
i (μ[l]), which gives us the expected result of the ith

agent in line-up l for environment μ (also in slot i) during K steps. If K is
omitted, we assume K = ∞. In order to calculate an agent’s result we make use
of some kind of utility function (e.g., an average of rewards).

3 Components to Consider While Evaluating Social
Intelligence

The components that we consider to measure social intelligence are:

– Set of multi-agent environments M : The environments we use to per-
form the evaluation.

– Set of agents Π: The agents that conform the line-ups.
– Weights: We give weights (non-negative numbers) to the environments,

their slots and the line-ups. wM (μ) denotes a weight to environment μ from
a certain set M , wS(i, μ) denotes a weight to slot i of a certain environment
μ and wL(l) denotes a weight to a line-up l formed with agents from a certain
set Π, giving weights to the agents in the line-up and their positions.

– Definition of social intelligence Υ : The actual definition that measures
social intelligence. This definition should use sets M and Π and weights over
them, i.e., wM , wS and wL, in some way to measure the social intelligence.
As an example, we use the definition of social intelligence from [4, Sect.3.3]:

Υ (Π,wL,M,wM , wS) �
∑

μ∈M

wM (μ)
N(μ)∑

i=1

wS(i, μ)
∑

l∈LN(μ)(Π)

wL(l)Ri(μ[l]) .

(1)
– Test of social intelligence Υ̂ : The final test to measure social intelligence

following a definition of social intelligence Υ . The test should consist of a set
of exercises and some kind of procedure to sample them. As an example, we
use the definition of social intelligence test from [4, Sect.3.4]:

Υ̂ [pΠ , pM , pS , pK , nE](Π, wL, M, wM , wS) � ηE
∑

〈μ,i,l〉∈E
wM (μ)wS(i, μ)wL(l)R

K
i (μ[l]) .

(2)

where ηE normalizes the formula with ηE = 1
∑

〈μ,i,l〉∈E wM (μ)wS(i,μ)wL(l) , K is
chosen using probability distribution pK and the exercises E are sampled as:

E ∼nE

⎡

⎣
⋃

μ∈M

N(μ)⋃

i=1

{
〈μ, i, l〉 : l ∈ LN(μ)(Π)

}
⎤

⎦

pE

.

Instrumental Properties of Social Testbeds 105

with S ∼n [A]p being a sample S of n elements from set A using probability
distribution p, and pE being a distribution on the set of triplets 〈μ, i, l〉 based
on pM , pS and pΠ .

4 Properties

In order to evaluate social intelligence and distinguish it from general intelligence,
we need tests where social ability has to be used and, also, where we can perceive
its consequences. This means that not every environment is useful for measuring
social intelligence and not every subset of agents is also useful. We want tests
such that agents must use their social intelligence to understand and/or have
influence over other agents’ policies in such a way that this is useful to accomplish
their goals, but common general intelligence is not enough.

Hereafter, we investigate some instrumental properties for a testbed of multi-
agent environments and agents to measure social intelligence.

4.1 Validity

Validity is the most important property of a cognitive test in psychometrics. In our
context, the validity of a definition is that it accounts for the notion we expect
it to grasp. For instance, if we say that a given definition of Υ measures social
intelligence but it actually measures arithmetic abilities then the definition is not
valid. Ultimately, this depends on the choice of Π and M in Υ , such as e.g., (1).

Poor validity may have two sources (or may appear in two different variants):
a definition may be too specific (it does not account for all the abilities the notion
is thought to consider) or it is too general (it includes some abilities that are
not part of the notion to be measured). In other words, the measure should
account for all, but not more, of the concept it tries to represent. We refer to
these two issues of validity as the generality and the specificity of the measure.
While validity is not usually seen as an instrumental property, we have to say
that the choices of Π and M may both have generality and specificity, which
eventually can compensate, but could lead to a test that is not very effective.
That means that we should try to find proper choices such that they fit the
concept we want to measure precisely.

Regarding generality, we should be careful about the use of very restrictive
choices for Π and M . It could be possible to find a single environment that
looks ideal to evaluate social intelligence. However, using just one environment
is prone to specialisation, as usual in many AI benchmarks. For instance, if
we use a particular maze, then we can have good scores by evaluating a very
specialized agent for this situation, which may be unable to succeed in other
mazes or problems. For instance, chess with current chess players is an example
where a specialized system (e.g., Deep Blue) is able to score well, while it is
clearly useless for other problems. A similar over-specialisation may happen if
the agent class is too small. This is usual in biology, where some species specialize
for predating (or establishing a symbiosis) with other species. Consequently, the

106 J. Insa-Cabrera and J. Hernández-Orallo

environment class and the agent class must be general enough to avoid that
some predefined or hardwired policies could be optimal for these classes. This
is the key issue of a (social) intelligence test; it must be as general as possible.
We need to choose a diverse environment class. One possibility is to consider
all environments (as done by [5,6]), and another is to find an environment class
that is sufficiently representative (as attempted in [7]).

Similarly, we need to consider a class of agents that leads to a diversity in line-
up. This class should incorporate many different types of agents: random agents,
agents with some predetermined policies, agents that are able to learn, human
agents, agents with low social intelligence, agents with high social intelligence,
etc. The set of all possible agents (either artificial or biological) is known as
machine kingdom in [8] and raises many questions about the feasibility of any
test considering this astronomically large set. Also, there are doubts about what
the weight for this universal set should be when including them into line-ups
(i.e., wL). Instead, some representative kinds of agents could be chosen. In this
way, we could aim at social intelligence relative to a smaller (and well-defined)
set of agents, possibly specializing the definition by limiting the resources, the
program size or the intelligence of the agents.

Regarding specificity, it is equally important for a measurement to only
include those environments and agents that really reflect what we want to mea-
sure. For instance, it is desirable that the evaluation of an ability is done in an
environment where no other abilities are required, or in other words, we want
that the environment evaluates the ability in isolation. Otherwise, it will not
be clear which part of the result comes from the ability to be evaluated, and
which part comes from other abilities. Although it is very difficult to avoid any
contamination, the idea is to ensure that the role of these other abilities are
minor, or are taken for granted for all agents. We are certainly not interested
in non-social environments as this would contaminate the measure with other
abilities. In fact, one of the recurrent issues in defining and measuring social
intelligence is to be specific enough to distinguish it from general intelligence.

4.2 Reliability

Another key issue in psychometric tests is the notion of reliability, which means
that the measurement is close to the actual value. Note that this is different
to validity, which refers about the true identification or definition of the actual
value. In other words, if we assume validity, i.e., that the definition is correct,
reliability refers to the quality of the measurement with respect to the actual
value. More technically, if the actual value of π for an ability φ is v then we want
a test to give a value which is close to v. The cause of the divergence may be
systematic (bias), non-systematic (variance) or both.

First, we need to realize that reliability applies to tests, such as e.g., (2). Reli-
ability is then defined by considering that a test can be repeated many times, so
becoming a random variable that we can compare to the true value. Formally:

Definition 3. Given a definition of a cognitive ability Υ and a test over it Υ̂ ,
the test error is given by:

Instrumental Properties of Social Testbeds 107

TE(Υ̂) � Mean((Υ̂ − Υ)2) . (3)

where the mean is calculated over the repeated application of the test (to one
subject or more subjects).

The reason for defining test error as the mean squared error (and not an
absolute error) is a customary choice in many measures of error, as we can
decompose it into the squared bias (Mean(Υ̂) − Υ)2 and the variance of the
error V ar(Υ̂ − Υ). If the bias is not zero this means that the procedure to
sample the exercises and/or the number of steps is inappropriate. If there is a
high variance, this suggests that the number of exercises is too small, or that
the exercises run for a very short time.

The reliability Rel(Υ̂) can be defined as a decreasing function over TE(Υ̂),
such as Rel(Υ̂) = e−TE(Υ̂). The estimation of TE(Υ̂) or Rel(Υ̂) depends on
knowing the true value of Υ . This is not possible in practice for most environ-
ments, so Υ will need to be estimated for large samples and compared with an
actual test (working with a small sample).

4.3 Efficiency

This property refers to how efficient a test is in terms of the (computational) time
required to get a reliable score. It is easy to see that efficiency and reliability are
opposed. If we were able to perform an infinitely number of infinite exercises,
then we would have Υ̂ = Υ , with perfect reliability, as we would exhaust Π
and M . If done properly, it is usually the variance component of the reliability
decomposition that is affected if we keep the bias close to 0 even with very low
values for the number of exercises.

Efficiency can be defined as a ratio between the reliability and the time taken
by the test.

Definition 4. Given a definition of a cognitive ability Υ and a test over it Υ̂ ,
the efficiency is given by:

Eff(Υ̂) � Rel(Υ̂)/T ime(Υ̂) . (4)

where Time is the average time taken by test Υ̂ . Time can be measured as physical
(real) time or as computational time (steps).

The issue is how to choose environments and agents such that a high efficiency
is attained. Clearly, if the selected environments are insensitive to agents’ actions
or require too many actions to affect rewards, then this will negatively affect
efficiency. As we are interested in social abilities, interactivity and non-neutralism
between agents’ rewards must be high, as otherwise most steps will be useless to
get information about the agent to evaluate. This of course includes cases where
the agents are stuck or bored because their opponents (or teammates) are too
good or too bad, or the environment leads the agents to heaven or hell situations
where actions are almost irrelevant. A way of making tests more efficient is by
the use of adaptive tests [6], [8].

108 J. Insa-Cabrera and J. Hernández-Orallo

4.4 Boundedness

One desirable property is that rewards are bounded, otherwise the value of Υ
(such as e.g., (1)) could diverge. Any arbitrary choice of upper and lower bounds
can be scaled to any other choice so, without loss of generality, we can assume
that all of them are bounded between −1 and 1, i.e., ∀i, k : −1 ≤ ri,k ≤ 1.
Note that they are bounded for every step. So, if we use a bounded function to
calculate the agent’s result, then RK

i (·) is also bounded.
However, bounded expected results do not ensure that Υ is bounded. In order

to ensure a bounded measurement of social intelligence, we also need to consider
that weights are bounded, i.e., there are constants cM , cS and cL such that:

∀M :
∑

μ∈M

wM (μ) = cM . (5)

∀μ :
N(μ)∑

i=1

wS(i, μ) = cS . (6)

∀μ,Π :
∑

l∈LN(μ)(Π)

wL(l) = cL . (7)

A convenient choice is to have cM = cS = cL = 1, and these weights would
become unit measures (which should not be confused with the probabilities used
to sample elements in a test). With these conditions Υ and Υ̂ are bounded.

An optional property that might be interesting occasionally is to consider
environments whose reward sum is constant or zero, as zero-sum games in game
theory, where ∀k :

∑N(μ)
i=1 ri,k = 0.

The above definition may be too strict when we have environments with an
episode goal at the end, but we want some positive or negative rewards to be
given while agents approach the goal. A more convenient version follows:

Definition 5. An environment μ is zero-sum in the limit iff:

lim
K→∞

K∑

k=1

N(μ)∑

i=1

ri,k = 0 . (8)

With teams, the previous definition could be changed in such a way that:

lim
K→∞

K∑

k=1

∑

t∈τ

∑

i∈t

ri,k = 0 . (9)

So the sum of the agents’ rewards in a team (or team’s reward) does not need
to be zero but the sum of all teams’ rewards does. For instance, if we have a team
with agents {1, 2} and another team with agents {3, 4, 5}, then a reward (in the
limit) of 1/4 for agents 1 and 2 implies −1/6 for agents 3, 4 and 5. The zero-sum
properties are appropriate for competition. In fact, if teams have only one agent

Instrumental Properties of Social Testbeds 109

then we have pure competition. We can have both competition and cooperation
by using teams in a zero-sum game, where agents in a team cooperate and agents
in different teams compete. If we want to evaluate pure cooperation (with one or
more teams) then zero-sum games will not be appropriate.

4.5 Team Symmetry

In game theory, a symmetric game is a game where the payoffs for playing a
particular strategy depend only on the other strategies employed by the rest of
agents, not on who is playing them. This property is very useful for evaluating
purposes, as the results would be independent of the position of the agent.

When using teams, this definition of symmetry must be reconsidered. The
previous definition means that for each pair of line-ups with the same agents
but in different order, the agents maintain their previous results. But with the
inclusion of teams this definition is not appropriate. For example, using an envi-
ronment with the partition of slots on teams τ = {{1, 2}, {3, 4}} and line-up
l = (π1, π2, π3, π4), we have that agents π1 and π2 must both obtain the same
result, as π3 and π4 as well. Following the definition and switching the positions
of π2 and π3 we obtain line-up l′ = (π1, π3, π2, π4), which now means that agents
π1 and π3 must have the same results (since they are now in the same team)
while maintaining their previous results, as π2 and π4 as well. This situation can
only occur when all slots (and therefore teams) obtain equal results.

Instead, we extend this definition of symmetry to include teams. First, we
denote by σ(l) the set of line-ups permuting the agent positions of line-up l.
This set corresponds with the one used in game theory to define symmetry. To
adapt this set to include teams, we must select a subset of line-ups from σ(l)
respecting the teams defined in τ . We denote this subset with σ(l, τ), where we
only select line-ups from σ(l) if original teams are maintained. Following the
example, line-up l′ is not included in σ(l, τ) since π1 and π3 from l′ were not
in the same team in l (as π2 and π4 as well). However, l′′ = (π3, π4, π2, π1) is
included in σ(l, τ), since both pair of agents (π1, π2) and (π3, π4) are still in the
same team. From here, we define team symmetry as follows:

Definition 6. We say a multi-agent environment μ is team symmetric if and
only if every team in τ has the same number of elements and:

∀i,K,Π, l ∈ LN(μ)(Π), l′ ∈ σ(l, τ) : RK
i (μ[l]) = RK

i′ (μ[l′]) . (10)

where i′ represents the slot of agent li:i in l′ and whatever the function used to
calculate agents’ results.

Note that we impose that every set in τ must have the same number of
elements. This is because we only consider multi-agent environments to be team
symmetric if we can evaluate an agent in every slot and obtain the same result.
Having teams with different number of elements does not allow us to do this.

This definition now fits our goal of symmetry. But too few environments will
fit this definition because it is too restrictive. We could particularize this defi-
nition of team symmetry into two parts depending on the relation between the

110 J. Insa-Cabrera and J. Hernández-Orallo

slots, with a version known as intra-team symmetry and inter-team symmetry
(for more details the reader is referred to [4, Sect.4.6]).

Definition 6 corresponds with an Intra-Team and Total Inter-Team Symme-
try, where every team of agents can be located in every set of τ and in different
order, maintaining their performance expectation.

5 Conclusions

Social intelligence has been an important area of study in psychology, compar-
ative cognition and economics for more than a century, and more recently, in
artificial intelligence. In this paper we have identified the components to mea-
sure social intelligence, and analyzed how we must consider these components
in some instrumental properties (i.e., validity, reliability, efficiency, boundedness
and team symmetry) as a first insight about what we need to create social tests.

Of course, these properties are not enough to fully assess the suitability of a
testbed to measure social intelligence. Indeed, more research is needed in order
to better characterize these testbeds, such as analyzing the interaction between
the agents, or how cooperative/competitive the multi-agent environments are.

Acknowledgments. This work was supported by the MEC projects EXPLORA-
INGENIO TIN 2009-06078-E, CONSOLIDER-INGENIO 26706 and TINs 2010-21062-
C02-02, 2013-45732-C4-1-P and GVA projects PROMETEO/2011/052 and PROM-
ETEOII2015/013. Javier Insa-Cabrera was sponsored by Spanish MEC-FPU grant
AP2010-4389.

References

1. Horling, B., Lesser, V.: A Survey of Multi-Agent Organizational Paradigms. The
Knowledge Engineering Review 19, 281–316 (2004)

2. Simao, J., Demazeau, Y.: On Social Reasoning in Multi-Agent Systems. Inteligencia
Artificial 5(13), 68–84 (2001)

3. Roth, A.E.: The Shapley Value: Essays in Honor of Lloyd S. Shapley. Cambridge
University Press (1988)

4. Insa-Cabrera, J., Hernández-Orallo, J.: Definition and properties to assess multi-
agent environments as social intelligence tests. Technical report, CoRR (2014)

5. Legg, S., Hutter, M.: Universal Intelligence: A Definition of Machine Intelligence.
Minds and Machines 17(4), 391–444 (2007)

6. Hernández-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an any-
time intelligence test. Artificial Intelligence 174(18), 1508–1539 (2010)

7. Hernández-Orallo, J.: A (hopefully) unbiased universal environment class for mea-
suring intelligence of biological and artificial systems. In: 3rd Conference on Artificial
General Intelligence, pp. 182–183 (2010)

8. Hernández-Orallo, J., Dowe, D.L., Hernández-Lloreda, M.V.: Universal psycho-
metrics: Measuring cognitive abilities in the machine kingdom. Cognitive Systems
Research 27, 50–74 (2014)

Towards Human-Level Inductive Functional
Programming

Susumu Katayama(B)

University of Miyazaki, 1-1 W. Gakuenkibanadai, Miyazaki 889-2192, Japan
skata@cs.miyazaki-u.ac.jp

Abstract. Inductive programming is the framework for automated pro-
gramming, obtaining generalized recursive programs from ambiguous
specifications such as input-output examples. Development of an induc-
tive programming system at the level of human programmers is desired,
but it involves the trade off between scale and versatility which are dif-
ficult to go together.

This paper presents our research idea to enable synthesis of long pro-
grams while not limiting the algorithm to any domain, by automatically
collecting the usage and request frequency of each function, estimating
its usefulness, and reconstructing the component library containing com-
ponent functions with which to synthesize desired functions. Hopefully
this research will result in a more human-like automatic programming,
which can lead to the development of adaptive planning with artificial
general intelligence.

Keywords: Inductive programming · Code reuse · Functional program-
ming

1 Introduction

Inductive functional programming (IFP) is the framework for automated pro-
gramming for synthesizing recursive functional programs from ambiguous speci-
fications such as input-output examples. This paper discusses how we can realize
a human-level IFP system, where human-level means that the system is general-
purpose but at the same time can synthesize large-scale programs. General-
purpose means that the system can cope with unexpected synthesis problems
for a Turing-complete (or nearly Turing-complete) language rather than only
synthesizing programs in domain-specific languages by following a tailored pro-
cedure.

Previously, we developed a general-purpose practical IFP system called Mag-
icHaskeller[2][3]1. MagicHaskeller can instantly synthesize short func-
tional programs without any restriction of the search space based on any prior
knowledge, by holding a large memoization table in the memory.

1 http://nautilus.cs.miyazaki-u.ac.jp/∼skata/MagicHaskeller.html

c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 111–120, 2015.
DOI: 10.1007/978-3-319-21365-1 12

http://nautilus.cs.miyazaki-u.ac.jp/~skata/MagicHaskeller.html

112 S. Katayama

Fig. 1. Learning the component library from the data from the Internet

The other representative IFP systems are Igor II[4] and ADATE[5]. How-
ever, those are neither updated recently nor practical. Igor II enforces a tight
restriction on the example set given as the specification, and ADATE requires
high skill for synthesis of simple programs. Moreover, due to the absence of
memoization, they have obvious disadvantage in the practical speed compared
to MagicHaskeller which can start synthesis with its memoization table filled
with expressions.

MagicHaskeller can synthesize only short expressions in a general-
purpose framework by exhaustive search in the program space. In order to syn-
thesize longer programs, the search has to be biased, because the program space
is infinite. The most popular bias is language bias that restricts the search space
around desired programs by carefully selecting the domain-specific language to
be used. Language bias kills the generality, and thus is not our choice.

On the other hand, human programmers are ideal general-purpose inductive
programming systems, and can synthesize programs in Turing-complete lan-
guages without any language bias. When we humans program, we name and
reuse frequently-used functions and procedures, and synthesize larger libraries
and programs using those library functions and procedures as the components.
In other words, we adopt the bias based on the frequency of use.

The same thing can be achieved by collecting the data about how frequently
each expression is requested and/or used, and organize the library consisting
of frequently-used expressions and their subexpressions. This paper presents
our research idea for realization of general-purpose large-scale IFP that is

Towards Human-Level Inductive Functional Programming 113

specialized only to people’s requirements, by collecting those frequency infor-
mation from the Internet and reflecting them in the component library, or the
set of functions and non-functional values with which to synthesize compound
functions, of MagicHaskeller.(Fig. 1)

The rest of this paper is organized in the following way. Section 2 introduces
MagicHaskeller. Section 3 argues that learning the library is a promising
approach to synthesis of longer expressions. Section 4 discusses how to learn
the library, including the details such as what to synthesize and how to collect
data. Section 5 discusses how this research will be evaluated. We can expect that
realization of large-scale IFP by this research will result in understanding the
mechanism of adaptive problem solving conducted by humans and applications
to learning behavior policies of intelligent agents such as robots; this is discussed
in Section 6.

2 MagicHaskeller: A General-Purpose IFP System

The proposed research idea is automatic learning of the component library used
by MagicHaskeller based on the data collected from the Internet. This section
introduces MagicHaskeller.

MagicHaskeller is the representative IFP system adopting the generate-
and-test approach.2 When an ambiguous specification such as a set of input-
output examples is given, MagicHaskeller firstly infers the type of desired
expressions. Then, it generates expressions having that type (or more general
type) that can be expressed using the component library functions, combined
with function applications and λ-abstractions. They are generated exhaustively
from the shortest one increasing the length, in the form of the infinite stream.
They are then tested against the specification in order, and those passed the test
are the synthesized functions.

The function taking the given type and returning the exhaustive infinite set
of expressions having the type can be implemented efficiently by memoization,
for this function recursively calls itself many times, because type-correct expres-
sions consist of type-correct subexpressions. Memoization makes execution of
this function very fast in most cases after training, or filling up the memoization
table at the invocation of the synthesizer.

If implemented naively, the memoization table can be too large even when
generating only short expressions if use of higher-order functions is permit-
ted in order to implement recursive functions. This problem can practically be
avoided when synthesizing short expressions, however, by pruning semantically
equivalent expressions[3] and by sharing one memoization table served by one
memory-rich computer among all the clients in the world. The Web version of
MagicHaskeller uses more than a hundred component library functions, but
2 The released MagicHaskeller library includes the analytically-generate-and-test

module, but in this paper MagicHaskeller refers to the other part that imple-
ments the generate-and-test approach and serves the MagicHaskeller on the
Web cloud.

114 S. Katayama

thanks to this pruning the memoization table fits to the 64GB memory, and the
server has been in use without any critical trouble since its birth three years ago.

Other notable features of MagicHaskeller include:

– it has a Web interface that enables program synthesis as offhanded as using
a Web search engine;

– it supports various types, including numbers, characters, lists, tuples, higher-
order functions, and their combinations.

3 Synthesizing Longer Expressions: How and Why

The points of MagicHaskeller are as follows:

– ability to synthesize usable expressions not limited to toy programs, by using
a component library with more than a hundred functions;

– promptness thanks to memoization, despite of using such a large component
library;

– avoiding redundancy in the memoization table caused by using a large com-
ponent library, by eliminating expressions which are semantically equivalent
to existing ones.

Although MagicHaskeller eliminates redundant expressions based on
semantical equivalence, it cannot check infinite number of all the possible expres-
sions within finite time. Hence, the search strategy of MagicHaskeller is
biased to shorter expressions, based on the idea of Occam’s Razor. It adopts
no other bias than the length of expressions in order to cope with unexpected
problem domains rather than specific use cases.

However, enumeration of expressions consisting of fixed library entities from
the shortest expressions increasing the length never generates expressions longer
than some length. This fact is the severest barrier when trying to make Mag-
icHaskeller as powerful as human programmers.

Ideas for solving this problem include:

1. adopting the search strategy that searches promising branches deeper based
on learning which branch is promising, and

2. learning the component library to make it consist of useful compound func-
tions, and synthesizing expressions from more and more complicated com-
ponents.

This paper argues that the solution 2 is promising.3 The reasons are itemized
below:

3 We are not claiming that the solution 2 is more promising than the solution 1.
Rather, we think that the solution 2 may be regarded as some form of the solution
1, by regarding use of learned functions as deep search without branching. Even
then, the solution described in the form of the solution 2 is more straightforward
than the solution 1.

Towards Human-Level Inductive Functional Programming 115

– analogy to the human approach to programming and planning
As already mentioned in the introduction, the process of naming frequently-
used expressions, constructing the library consisting of those named
expressions, and writing more complicated programs using those names as
components, is similar to the way human programmers program.
That process is also similar to the process of human planning through learn-
ing skills. Let us take the example of executing and learning the task of
“going to school by train”. In order to construct the solution to this task, we
need to have already learned the executable solutions of its subtasks named
as “walk from home to the station”, “ride a train”, and “walk to school”. If
we know how to execute those subtasks, we can find the solution of the task
named as “go to school by train” by using only the subtask names and the
constraints between subtasks without minding the implementation of each
subtask. By repeating the solution, the name of “going to school by train”
and the task are related, and the task becomes available for executing larger
supertasks. This process is similar to the process of finding the desired pro-
gram by combining library functions in the way consistent with their type
constraints.

– analogy to successful AI approaches
Our idea of making the component library consist of useful compound func-
tions and synthesizing expressions from more and more complicated compo-
nents has similarities to the following successful AI approaches:
• Genetic Algorithms

Genetic algorithms (GA) search for the fittest solutions by repeatedly
applying crossovers and mutations to the population under natural selec-
tion. Adequately designed genetic algorithms sometimes find the best
solution among other algorithms.
The idea behind GA is to search among combinations of good characters
via crossovers, assuming that good individuals consist of good characters.
On the other hand, our presented idea is to search among combinations
of component library functions which are from good (useful) expressions,
assuming that good expressions consist of good subexpressions. At this
point, our idea is similar to that behind GA.
The reader may think genetic programming (GP) can be another option
because it more directly inherits the idea behind GA. GP does not satisfy
our purpose, however, because it requires designing of the fitness function
and other parameters just for synthesizing one expression, and because
it is not good at synthesizing recursive functions.

• Deep Learning
Deep learning[6][1] typically performs unsupervised pre-training for units
near the inputs (or units far from the outputs) to extract features in
artificial neural networks (ANN) with multiple hidden layers or recurrent
neural networks (RNN). By deep learning the performance of ANNs has
improved by leaps and bounds.
ANNs with multiple layers (including those obtained by unfolding RNNs)
can be regarded as function models which approximate the desired func-

116 S. Katayama

Fig. 2. Comparison with deep learning. The presented research idea adopts more flex-
ible primitive function set than deep learning, but they are similar in that they both
are pre-trained and eliminate redundancy.

tion by composing functions, where the neurons work as (families of)
primitive functions. Units near inputs correspond to the innermost func-
tions, and they play the role of extracting features.
Our presented research idea is to synthesize functions using functions
from the component library, where the redundancy is eliminated by
excluding semantically equivalent functions. This is similar to feature
extraction by pre-training of deep learning.(Fig. 2)

4 How to Learn the Library

The previous Section 3 argued that learning the library is a promising approach
to synthesis of longer expressions. This section discusses how to learn the library,
including the details such as what to synthesize and how to collect data.

4.1 What to Synthesize

Currently, the algorithm of MagicHaskeller is mainly used for synthesis of
pure Haskell functions, where pure means freedom from side effects. However, it
can be applied to synthesis of pure functions in other higher-order languages with
λ-abstraction such as JavaScript, by organizing the component library consisting
of Haskell translations of library functions of the language. Moreover, technically
speaking, pure functions in any language can be synthesized, provided that any

Towards Human-Level Inductive Functional Programming 117

Haskell expression which MagicHaskeller generates can be compiled into the
language.

Our current plan targets the following kinds of expressions:

– recursive functions in Haskell;
– recursive functions in JavaScript, especially, custom functions of Google

Sheets;
– non-recursive functions using worksheet functions (of Microsoft Excel, &c.).

The reason for targeting spreadsheet functions as well as functions of usual
programming languages is because the former can be better in the quantity and
quality of collectable data. This is discussed further in Section 4.2.

As for spreadsheet functions, both recursive custom functions of Google
Sheets and non-recursive worksheet functions will be dealt with. The synthe-
sis of recursive custom functions will be dealt with because the synthesis of
non-recursive functions using worksheet functions is less interesting than that of
recursive functions. The synthesis of non-recursive worksheet functions will also
be dealt with, because learning from abundant data collectable from the largest
user base of Microsoft Excel is interesting, but it is not easy to synthesize custom
functions of Excel in Visual Basic for Applications, which is first-order.

4.2 How to Collect Data

Collecting a large amount of usage data from the Internet will be a must for this
research to be successful. We have two ways in mind:

1. Providing an IFP service (or other services related to programming)
Since MagicHaskeller provides IFP service via a Web interface, we can
analyze the server log to tell which queries were made and which answers were
selected. This information should be useful for guessing desired functions.
We need to take care of the quality and quantity of such queries. Most of
them should be made by human users for the purpose of programming in
practice in order to avoid contamination by unnaturally biased data. Cur-
rently, most of the queries to the MagicHaskeller server are unnatural
ones based on academic curiosity about its ability, such as synthesizing the
function taking x and returning x/2 if x is even and x + 1 otherwise. For
this reason, it is questionable whether we should collect data for synthesis
of Haskell expressions only in this way for now. This problem can be solved
by increasing the percentage of practical users.
On the other hand, spreadsheets such as Excel and Sheets have a lot of ama-
teur users without such academic curiosity. Successful attraction for them
will result in enough amount of data, though there must still be a defense
against attacks for misleading the learning by a biased set of queries such as
repeated identical ones.

2. Obtaining packages from software repositories
If many of programs and libraries for the target language are made open-
source, we can obtain a large amount of source codes by just downloading
them.

118 S. Katayama

The downloaded source codes can be processed in the compatible way as the
queries to the server by following these steps for each function definition:
(a) generate an input-output pair for a random input, and
(b) send it as a query to the IFP server collecting data in the way described

in 1. Providing an IFP service (or other services related to programming)
to re-invent the function;

(c) if more than one program are synthesized, increase the number of random
input-output pairs until one or zero program is obtained;

(d) if no program is synthesized, divide the function definition into subfunc-
tions.

Those two ways can be combined. For example, the latter can be used to organize
the initial component library, and then the former can be used to scale it up.

4.3 How to Organize and Update the Library

Frequently used expressions are candidates for component library functions
because they are likely to be useful functions. However, all of such candi-
dates cannot be adopted as component library functions with the same priority,
because the space complexity increases as the number of them increases. For this
reason, the library should be updated by selecting the function set rather than
just adding some functions.

It is difficult to tell which is the best way of doing it now, because there are
many options and parameters, and thus many policies. This section just shows
the way which will be tried first.

When a Repository is Available. When dealing with a target language for
which a software repository is available, we can exploit it for learning the initial
configuration of the component library. In this case, the whole learning will be
done in two steps:
1. Obtain the normalized set of expressions by processing the collected source

codes in the way shown in Section 4.2, obtain the usage frequency of each
subexpression, and obtain the set of the most frequent subexpressions for
each subexpression length. They are sorted by each length, because shorter
expressions tend to appear more frequently (especially any expression’s fre-
quency is always lower than or the same as those of its subexpressions).
Then, organize the component library by hand using the obtained frequency
information, and try the resulting IFP server. In this way, the function p
which takes the length of the expression and the number it appears c and
returns the priority p(l, c) which the expression should have in the library
can be guessed by trial-and-error.

2. Provide the IFP service, and sometimes update the library using p(l, c + c′)
as the priority, where c′ is the cumulative number the expression appears
as a subexpression of each expression which is marked as correct by users.
Because the cumulative values are used, it is unlikely that the library will
become turbulent even when the library is updated frequently, but at the
beginning each update should be checked by hand beforehand.

Towards Human-Level Inductive Functional Programming 119

When a Repository is Not Available. When a repository is not available,
the initial component library is set by hand in the same way as the currently-
running MagicHaskeller server. The library can be updated in the same way
as when a repository is available, using p(l, c′) where p is borrowed from another
language.

5 Evaluation

It is difficult to fairly evaluate a general-purpose inductive programming system
using a set of benchmark problems, for all the benchmark problems can eas-
ily be solved by implementing the functions to be synthesized beforehand and
including them in the component library. Even if doing that is prohibited by the
regulations, including their subexpressions in the component library is enough
to make the problems much easier.

This issue is critical especially when evaluating results of this research, which
is based on the idea: “The key to successful inductive programming systems
is the choice of library functions”, because we may not fixate the library for
comparison, but rather we have to evaluate and compare the libraries themselves.

It would be fairer to evaluate systems from the perspective of whether the
infinite set of functions that can be synthesized covers the set of many functions
which the users want. In the case of this research, since IFP service will be
provided as a web application, we can evaluate how the obtained IFP system
can satisfy programming requests based on the results of Web questionnaire and
the Web server statistics.

6 Expected Contribution to AGI

Making large-scale IFP possible by this research may uncover the mechanism of
adaptive problem solving conducted by humans, and may be applied to behavior
policy learning of intelligent agents.

To repeat what is stated in Section 3, this research imitates the human adap-
tive intelligent behaviors of programming and planning. Especially, learning to
plan is important in that it explains the process of skill learning of humans.

For example, imagine children learning addition of two numbers, say, 2+3. At
first, they might use two piles of apples consisting of two and three of them, and
compute the result by moving apples from one pile to the other one by one. After
drills, however, their brain will come to associate 2 + 3 to 5 instantly.(Fig. 3)
Once they have obtained the library function “one-digit addition”, they can
learn multiple-digit addition by using it, and can go further to learn multipli-
cation. This process is quite similar to the process of learning more and more
complicated library functions by the presented research idea.

Adaptive planning for intelligent agents sometimes requires learning recursive
procedures. This kind of program-like procedures are difficult to be represented
by function approximation such as existing artificial neural network models,
while IFP systems such as MagicHaskeller are good at representing them.

120 S. Katayama

Fig. 3. Learning to calculate

Moreover, because MagicHaskeller can synthesize recursive programs from
only a few positive examples, it can learn only from rewards, not requesting
many negative examples which need to be generated by failing critically. This
is why the proposed approach seems to be the best for learning complicated
procedures with recursions only from the reward signal.

7 Conclusions

This paper presented our research idea for realizing a human-level IFP system by
adding the library learning functionality to the Web-based general-purpose IFP
system MagicHaskeller. It can be applied to uncovering the AGI mechanism
for human-like learning of behavior and to developing intelligent agents.

References

1. Hinton, G.E., Salakhutdinov, R.R.: Reducing the Dimensionality of Data with Neu-
ral Networks. Science 313(5786), 504–507 (2006)

2. Katayama, S.: Systematic search for lambda expressions. In: Sixth Symposium on
Trends in Functional Programming, pp. 195–205 (2005)

3. Katayama, S.: Efficient exhaustive generation of functional programs using monte-
carlo search with iterative deepening. In: Ho, T.-B., Zhou, Z.-H. (eds.) PRICAI
2008. LNCS (LNAI), vol. 5351, pp. 199–210. Springer, Heidelberg (2008)

4. Kitzelmann, E.: A Combined Analytical and Search-Based Approach to the Induc-
tive Synthesis of Functional Programs. Ph.D. thesis, University of Bamberg (2010)

5. Olsson, R.: Inductive functional programming using incremental program transfor-
mation. Artificial Intelligence 74(1), 55–81 (1995)

6. Schmidhuber, J.: Learning complex, extended sequences using the principle of his-
tory compression. Neural Comput. 4(2), 234–242 (1992)

© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 121–130, 2015.
DOI: 10.1007/978-3-319-21365-1_13

Anytime Bounded Rationality

Eric Nivel1(), Kristinn R. Thórisson1,2, Bas Steunebrink3, and Jürgen Schmidhuber3

1 Icelandic Institute for Intelligent Machines, Reykjavik, Iceland
eric.nivel@gmail.com

2 Reykjavik University, CADIA, Reykjavik, Iceland
3 The Swiss AI Lab IDSIA, USI and SUPSI, Manno, Switzerland

Abstract. Dependable cyber-physical systems strive to deliver anticipative,
multi-objective performance anytime, facing deluges of inputs with varying and
limited resources. This is even more challenging for life-long learning rational
agents as they also have to contend with the varying and growing know-how
accumulated from experience. These issues are of crucial practical value, yet
have been only marginally and unsatisfactorily addressed in AGI research. We
present a value-driven computational model of anytime bounded rationality
robust to variations of both resources and knowledge. It leverages continually
learned knowledge to anticipate, revise and maintain concurrent courses of
action spanning over arbitrary time scales for execution anytime necessary.

1 Introduction

Key among the properties mission-critical systems call for is anytime control – the
capability of a controller to produce control inputs whenever necessary, despite the
lack of resources, trading quality for responsiveness [3,5]. Any practical AGI is con-
strained by a mission, its own architecture, and limited resources including insuffi-
cient time/memory to process all available inputs in order to achieve the full extent of
its goals when it matters. Moreover, unlike fully hand-crafted cyber-physical systems,
AGIs should handle underspecified dynamic environments, with no other choice but
to learn their know-how, possibly throughout their entire lifetime. The challenge of
anytime control thus becomes broader as, in addition to resource scarcity, it must
encompass inevitable variations of completeness, consistency, and accuracy of the
learned programs from which decisions are derived.

We address the requirement of delivering anticipative, multi-objective and anytime
performance from a varying body of knowledge. A system must anticipate its envi-
ronment for taking appropriate action – a controller that does not can only react after
the facts and "lag behind the plant". Predictions and sub-goals must be produced con-
currently: (a) since achieving goals needs predictions, the latter must be up to date; (b)
a complex environment’s state transitions can never be predicted entirely: the most
interesting ones are those that pertain to the achievements of the system’s goals, so
these must be up to date when predictions are generated. A system also needs to
achieve multiple concurrent goals to reach states that can only be obtained using sev-
eral independent yet temporally correlated and/or co-dependent courses of action

122 E. Nivel et al.

while anticipating and resolving potential conflicts in due time. The capabilities above
must be leveraged to compute and revise plans continually, as resources allow and
knowledge accumulates, and execute them whenever necessary, as situations unfold –
this requires subjecting a system's deliberations (and execution) to deadlines relative
to an external reference (world) clock.

Most of the strategies controlling the life-long learning AI systems we are aware of
are subject to one or several severe impediments to the responsiveness and robustness
we expect from mission- and time- critical systems. First, a sequential perception-
decision-action cycle [1,6,7,8,12] limits drastically the potential for situational aware-
ness and responsiveness: such "cognitive cycles" are difficult to interrupt and, being
driven by subjective inference "steps", are decoupled from objective deadlines either
imposed or learned. Second, interleaving multiple trains of inference in one sequential
stream [1,4,6,7] results in the overall system latency adding up with the number of
inputs and tasks at hand: such a system will increasingly and irremediably lag behind
the world. Third, axiomatic reasoning [1,6,7] prevents the revision of inferences upon
the acquisition of further amounts of evidence and know-how, prohibiting continual
refinements and corrections. Last, the lack of explicit temporal inference capabilities
[1,6,7,8] prevents learned procedural knowledge from inferring deadlines for goals
and predictions, which is needed to plan over arbitrary time horizons – on that front,
state-of-the-art reinforcement and evolutionary learners [9,13,2] present other inhe-
rent difficulties. NARS [14] notably avoids these pitfalls and could, in principle, learn
to couple subjective time semantics to a reference clock and feed them to a probabilis-
tic scheduler. We set out instead to schedule inferences deterministically using objec-
tive time semantics so as to avoid the unpredictability and unreliability that inevitably
arise from using inferred time semantics to control the inferencing process itself.

We present a computational model of anytime bounded rationality (we refer to this
model as ABR) that overcomes the limitations above. It posits (a) a dynamic hierarchy
of revisable time-aware programs (called models) (b) exploited by concurrent
inferencing jobs, that are (c) continually re-scheduled by (d) a value-driven executive
under (e) bounded latencies, keeping the size of all data (inputs, inferences, programs
and jobs) within (f) a fixed memory budget. This model has been implemented and
tested: it constitutes the control core of our auto-catalytic, endogenous, reflective
architecture (AERA; [10]), demonstrated to learn (by observation) to conduct
multimodal interviews of humans in real-time, bootstrapped by a minimal seed [11].
While the learning algorithm of this system has been described in prior publications
[10,11], its control strategy, the ABR model, has not been published elsewhere.

2 Overview of ABR Control

Our anytime bounded rationality model (ABR) assumes (Fig. 1) an executive (in
black), a memory (dashed areas) and a set of I/O devices (dedicated external sub-
systems). Programs include monitors (to assess the outcomes of goals and predictions)
and models1. Models are either hand-crafted or learned from experience, and present

1 Other programs construct new models from life-long experience, see [10] for details.

 Anytime Bounded Rationality 123

varying degrees of consistency, accuracy, and
reliability. Jobs are requests for processing one
input by one program and are executed by a pool
of threads; as a result of job execution, new inputs
and programs are added to the system, other pro-
grams are deleted and some inputs cancelled. ABR
is data-driven: a writer (W) creates new jobs upon
matching inputs to programs while an antagonist
eraser (E) enforces a forgetting strategy to limit
memory usage. Inputs consist of sensory inputs,
reflective inputs (traces of model execution, see
section 3), inferences and drives (drives are user-
defined top-level goals and constraints). Outputs
are commands executed asynchronously by the
I/O devices: these respond with efference copies
(considered sensory inputs) telling the system what has actually been executed (and
when), as opposed to what was intended, thus allowing it to learn (i.e. to model) the
devices' behaviors.

Models produce revisable inferences in two modes, forward chaining (predictions)
and backward chaining (sub-goals). Both are performed concurrently – a model can
produce several predictions from several different inputs while at the same time
producing several sub-goals from several other goals (section 3). Motivated by drives,
a hierarchy of models produces concurrent overlapping cascades of simulated sub-
goals – at the bottom of a cascade, terminal goals embed commands to I/O devices,
executed when such goals are committed to. Goal cascades simulate alternate courses
of actions to achieve multiple (possibly) concurrent goals. These projected plans are
continually re-evaluated upon knowledge updates (addition/deletion of inputs,
inferences and models), and maintained for execution anytime it matters: continually
anticipating the expiration of simulated goals' deadlines, a system is pressed to
commit to these goals (and their ancestors), comparing their value (and their
ancestors') to that of other conflicting or redundant goals in order to enact the best
actions planned so far. In parallel to these top-down simulations, the model hierarchy
is traversed by bottom-up concurrent overlapping flows of predictions originating
from I/O device readouts. These warn the system of the predictable success or failure
of its goals, and prompt it to adapt its behavior anticipatively by considering alternate
goals, producing new ones and/or increasing or decreasing the importance of existing
ones, possibly downplaying some (section 4).

Jobs are assigned a priority that determines the time when they may be executed.
Priorities are continually updated, thus allowing, at any time, high-value new jobs to
get executed before less important old jobs, and old jobs to become more valuable
than newer ones based on new evidence. Jobs of lesser priority may get delayed
repeatedly and eventually cancelled, as is likely to happen when the system is
overloaded. A job priority depends on the continual assessment of the relevance of the
program and the tending value of the input (see below). Threads recompute priorities,
delete jobs that have become irrelevant and pick the best jobs for execution. Such
scheduling overhead is bounded by a constant – a thread only updates the priorities of

Fig. 1.

124 E. Nivel et al.

an ever-changing (fixed size) subset of the jobs 2 . All execution times are
commensurate: memory usage is proactively limited (see below), and the threads', E's
and W's worst-case execution times (WCET) are all identical and constant.

Assuming the life-long learning of new models and a sustained influx of inputs, the
number of jobs and input-to-program matching attempts can grow exponentially and
exceed the memory budget. This growth is limited by a forgetting strategy based on
the prediction of the amount of available memory, inferred, conservatively, from past
experience – essentially, the rates of data creation and deletion (inputs, inferences,
programs and jobs). Should E anticipate a shortage, it deletes the necessary number of
data in order to accommodate the next predicted influx while preserving the most
valuable existing data: the top-rated candidates for deletion are the inputs that
contributed the least recently to the achievement of goals, the least reliable models
that succeeded the least recently, and the jobs of the least priority.

A system’s experience constitutes defeasible knowledge, and is thus represented
using a non-axiomatic temporal term logic, truth being neither eternal nor absolute. A
term exposes three components: (a) arbitrary data, (b) a time interval ([early deadline,
late deadline] in microseconds, world time) within which the data is believed to hold
(or, if negated, during which it is believed not to hold) – an inference's lifetime being
bounded by its late deadline – and, (c) a likelihood (in [0,1]), the degree to which the
data has been ascertained. The likelihood of a sensory/reflective input is one whereas
that of a drive is user-defined. An inference results from the processing of evidences
by chains of models3, and is defeated or vindicated upon further (counter-)evidences.
Its likelihood is continually revised depending on the context and reliability of said
models and, notably, decreases with the length of the chains (see next section).

The value of tending to an input (sensory/reflective input, inference or drive) at
time depends on both its urgency (for situational awareness) and likelihood:

, 1 , ,

, , ,

where , 0 stands for “time horizon”, for "late deadline",
 being all the inputs in the system and a system parameter meant to keep

urgencies positive. Now, a goal may be achieved by other means than spending effort
deriving sub-goals from it (e.g. when the environment is cooperative). The value of
pursuing a goal thus decreases with the most likely prediction of its target state: , , ,

, , , , ,1 , , , , ,

2 Details on the scheduling algorithm are outside the scope of this paper.
3 Different chains may produce several equivalent inferences, albeit with different likelihoods.

Threads will execute first the jobs performing the most likely of these inferences, postponing
or discarding the others.

 Anytime Bounded Rationality 125

where are the predictions of ’s target state. The global relevance of a model
is the (normalized) maximum of the tending values of all its inferences , of
type (Predictions or Goals) that are still alive at time :

, , Max , , , , , , , , ,

where are the models in the system. If none of the , are alive, then 's

relevance is computed as
, ,, , , giving it a chance to execute, albeit with a

minimal relative priority. Finally, the priority of a chaining job is the product of the
relevance of the model and the tending value of the input : , , , , , , , , , ,

Prediction and goal monitoring jobs enjoy the same priority as, respectively, forward
and backward chaining jobs.

3 Models

Models are variable defeasible knowledge: experimental evidences trigger both their
construction, deletion, and the continual revision [10], of their predictive performance:

, ,, 1

where , is the number of successful predictions produced until any time by
a model , and , the total number of predictions, both updated by prediction
monitors each time a prediction fails or succeeds.

A model M (Fig. 2a) specifies a conjectured causal
relationship between a left-hand term (LT) and a right-
hand term (RT), i.e. patterns (A and B) featuring variables
(X, Y and Z). When a sensory (or reflective) input or
prediction a matches A (2b), M produces a prediction b,
patterned after B where variables are bound to values
assigned to variables shared by A or calculated as (learned)
functions of values in A (fwd, embedded in the model) – in
particular, time intervals are inferred this way. The
forward execution of M (predicting an instance of the
causal relationship) is reflected by a model instance term
(i), interpreted as a prediction of M's success (see rationale
below). For each prediction, a new program, a prediction
monitor (PM(b)), is created to assess its outcome. When a goal b matches B (2c), a sub-
goal a is produced, patterned after A whose variables are bound to values shared by B
or calculated as functions of values in B (bwd, also learned and embedded in the
model). For each sub-goal, a new program, a goal monitor (GM(a)), is created to assess
its outcome. Alternatively, when a sensory/reflective input matches a model's RT, an
assumption, patterned after its LT, is produced, given that no corresponding input

Fig. 2.

126 E. Nivel et al.

already matched said LT4. The likelihood, at any time , of an inference produced
by a model from an input is: , , ,

Note that the model instance i, being a prediction of M's success, is assigned a
likelihood equal to that of the prediction b.

Models form hierarchical structures: when a model M1 features an instance of a
model M0 as its LT (e.g. iM0(…)), it specifies a post-condition on the execution of M0,
predicting some outcome upon the successful execution of M0, regardless of its
premises; conversely, when M1 features an instance of M0 as its RT, it specifies a
positive pre-condition on M0, predicting the success of M0 upon the occurrence of some
premise. Pre-conditions can also be negative, to predict failures: in this case, the RT is
of the form |iM0(…), '|' indicating failure. Pre-conditions influence the computation of
the likelihood of predictions (see below) but have no impact on that of goals.

A model is called conjunctive (Fig. 3a) when it
specifies a causal relationship whereby an effect is
not entailed by one single term, but by a context, i.e.
a set of temporally correlated positive pre-
conditions (* denotes an unbound value). A
conjunctive model has no LT: instead, for
unification, a parameter list ((X)) gathers all the
variables shared by positive pre-conditions unless
already present in the RT (B(Y Z)). A conjunctive
model updates predictions as amounts of (value-
sharing) positive pre-conditions accumulate. Over
time , the likelihood of a prediction produced
by a conjunctive model increases with the
conjunction of positive pre-conditions weighted by
their reliability, and decreases with the most likely
of the negative ones:

, ∑ , ,∑ ,

 , ,) , , 1 ,
where are the pre-conditions on that
predicted 's success (), all the positive
pre-conditions on , and , 's predicted
failures. Positive pre-conditions without which the
effect of the model is reliably entailed are deemed
irrelevant: prediction monitors will repeatedly
decrease their reliability until deletion. When
presented with a goal, M0 outputs a sub-goal (iM0(y

z)) targeting its own (forward) operation – this

4 Assumptions are not essential for the present discussion and will not be detailed further.

Fig. 3

Pre-conditions can be subjected to
any others recursively instantiating
the pictured hierarchical patterns.
Logical operations are continuous
and persistent instead of discrete
and transient: ANDs are weighted
and compete (as well as ORs) with
NORs based on the likelihoods of
pre-conditions, continually updated
to reflect knowledge variations,
that are both quantitative (likelih-
ood- and reliability-wise) and qua-
litative (new inputs, inferences and
models, deletion of underperform-
ing models, unlikely inferences and
valueless old inputs).

 Anytime Bounded Rationality 127

sub-goal will match the RT of its pre-conditions and trigger the production of their
respective sub-goals (or negations thereof in the case of negative pre-conditions).

A model is called disjunctive (Fig. 3b) when it specifies a causal relationship
whereby an effect is entailed by the occurrence of the most likely positive pre-
condition, competing with the most likely negative one. Positive pre-conditions on a
disjunctive model constitute a set of options to entail the models' success – whereas in
conjunctive models they constitute a set of (weighted) requirements. The likelihood of
a prediction is computed as for conjunctive models, except for its component: , ,)

Fig. 4 shows part5 of an actual system (called S1; [10]) that observed (in real-time)
human interactions of the general form "take a [color] [shape], put it there [pointing at
some location], thank you" (and variations thereof) and learned how to satisfy its
mission – hearing/speaking "thank you", depending on the assigned role (interviewee
or interviewer). S1's seed contains (a) a drive run, (b) a model S0 and its context
{S1, S2}, (c) sensors monitoring the state of hands, objects and utterances (color (col),
position (pos), attachment (att), shape (is), belonging (bel), designation (point),
speech (speak)) and, (d) effectors (commands move, grab, release, speak and point).

Fig. 4. Example learned model hierarchy (seed models in black)

5 For clarity, timings and variants of learned knowledge (e.g. variations in wording, shapes and

colors) are omitted. Faulty models are also omitted (see section 5).

128 E. Nivel et al.

Models M3, M6, M20, M21 and M23 predict the consequences of issuing commands to end-
effectors – they were learned by observing the results of a few randomly generated
commands ("motor babbling"). A conjunctive model specifies how a state (its RT)
comes to happen when a context (white areas), i.e. a temporal correlation of pre-
conditions, is observed. For example, M12 predicts that an object X will move when an
actor B has taken it, followed by an actor A asking B to put it at a designated location. A
disjunctive model subjects the occurrence of its RT state to the observation of one pre-
condition among a set of options. For example, M5 predicts that an object X will be
attached to a hand H (RT of M5) in two cases: either S1grabs the object as per model M6,
or an actor (A) asks another one (B) to take the object, as per model M11. The disjunctive
model M14 specifies how hearing "thank you" is entailed by an actor A asking an actor B
to pick an object and drop it to a designated location (chain iM15–iM13–iM12–iM11). When a
model features a LT, it specifies the transformation of one state (its LT) into another
(its RT). Such transformations can also be controlled by pre-conditions, as for
disjunctive models. For example, M9 predicts the transition of the state "an actor holds
an object X" to "X no longer held" when S1 releases the object (M10), or when the actor
is asked to drop the object somewhere (M13). In this case, the LT has to be matched for
the model to sub-goal and conversely, both the LT and one pre-condition must be
observed for the model to predict. Models Ci are conjunctive models without an RT.
They represent abstractions of sub-contexts that have been reliably identified among
larger ones (those controlling conjunctive models). Occurrences of sub-contexts are
encoded as model instances (iCi) and are not subjected to any negative pre-conditions.

4 Continual Simulation and Anytime Commitment

An ABR-compliant system is multi-objective: as much as resources allow, it runs
“what if” scenarios to predict the impact of the hypothetical achievement of some
goals on that of other goals, anticipating conflicts and redundancies so as to commit to
the best goals so far, downplaying other contenders. For each goal, a goal monitor
accumulates evidences and counter-evidences of the desired state and, at the goal's
late deadline, declares either a success or failure, based on the evidence (and counter-
evidence) holding the greatest likelihood value – its sub-goals are cancelled and so are
the corresponding chaining and monitoring jobs. A goal is either simulated (the
default) or actual (defeasibly committed to). For each simulated goal, a corresponding
simulated prediction is produced, used by goal monitors to evaluate the consequences
of reaching the goal in question. Fig. 5 shows two simulation branches stemming
from two actual goals (g0 and g5). The simulated achievements (grey arrows) of
simulated goals (marked 's') are
accumulated by the monitors of
actual goals (5a). From these
predictions, said monitors assess
the impact (success or failure) of
the simulated goals on their own
goals (5b); such predicted impacts
(grey dashed arrows) are in turn
accumulated by the monitors of
simulated goals. At the earliest of

Fig. 5. Concurrent simulations and commitment

 Anytime Bounded Rationality 129

the early deadlines of the goals in a branch (say g4's for g0's branch), a request for
commitment is sent upward (5c) to the first simulated goal in the branch (g1).
Requests are granted depending on the predicted impact of a goal candidate (g1) on
actual goals (g5): if g1 entails no failure of g5, then commit to g1; otherwise (there is a
conflict between g1 and g5), if g5 is of less importance6 than g0, then commit to g1 and
all its sub-goals in the branch7; otherwise do nothing – assuming the same knowledge,
the system will commit to g6 later, following the same procedure. Commitment to g1
is declined in case g0 is redundant with a more important actual goal (targeting the
same state).

Commitment is defeasible, i.e. continually revised as new knowledge (inputs,
inferences and models) impact both goals' importance and tending value: after
commitment, a goal monitor keeps accumulating predictions to anticipate further
conflicts and redundancies that could invalidate its decision, in which case the goal
(and its sub-goals) will become simulated again. When the system commits to a goal
(g1) conflicting with another one (g5), it keeps simulating g5 instead of deleting it, in
the hope of witnessing its unexpected success, triggering the acquisition of new
(possibly better) models. A system may also acquire better knowledge before g5's
deadline and uncover situations where it can be achieved without conflict – the
system may then commit to some of g5's sub-goals (e.g. g6) without having to re-
compute the simulation branches. For the same reasons, goals deemed redundant with
more important ones are also kept in the simulated state.

5 Results and Conclusion

We tasked a version of our AERA architecture, S1 [10], implementing ABR,
(S1; [10]) with learning to conduct natural multimodal interviews with humans. S1
learned how to do this by observing humans; an overview of the results is given in
[11] from the perspective of learning. From the perspective of control, S1 learned true
multi-objective control, coordinating consistently object manipulation, looking, nod-
ding, pointing, listening and speaking. Anticipative planning over arbitrary time
scales was demonstrated by S1 (a) taking turns in the interaction appropriately and in
due time, (b) planning questions depending on both the interviewee's answers and
time available and, (c) interrupting a talkative interviewee early in the interview to
meet an imposed deadline. On the last point, pressed by this deadline, S1 planned and
executed communication acts in a timely fashion, demonstrating anytime responsivity
that was constrained by the timing of the humans' behaviors: interactions unfolded
naturally, presenting no differences in either latencies or meaning with respect to
baseline human-human interactions. S1's anytime adaptive behavior resulted from
the continual development of goal simulations, regulated by concurrent and timely
predictions of the humans' attention and intentions, hinted at by sequences of speech
and gestures, in both form and content, over various time scales, from word and sen-
tence utterance, to object manipulation, up to the interview's full length, thus allowing
S1 to continually reorder questions in the long term and anticipate deadline misses.

6 A goal's importance quantifies the need to reach its target state, not the need to spend effort

reaching it, as factored in the goal's tending value. Accordingly, a goal's importance ignores
predictions of the target state and is the product of the sole goal's urgency and likelihood.

7 When a terminal goal is committed to, its command is executed by the appropriate I/O device.

130 E. Nivel et al.

In conclusion, our model of anytime bounded rationality addresses several impor-
tant issues for achieving mission-critical control in AGI-aspiring systems. It abolishes
the standard cognitive cycle, and posits instead value-driven parallel competitive
inferencing. Our implemented system demonstrably achieves multi-objective,
anticipatory and anytime performance, under varying knowledge and resources.

Acknowledgments. This work has been partly supported by the EU-funded projects
HUMANOBS (FP7-STREP-231453) and Nascence (FP7-ICT-317662), grants from SNF
(#200020-156682) and Rannis, Iceland (#093020012).

References

1. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated
theory of the mind. Psychological Review 111, 1036–1060 (2004)

2. Bellas, F., Duro, R.J., Faiña, A., Souto, D.: Multilevel darwinist brain (MDB): Artificial
evolution in a cognitive architecture for real robots. IEEE Transactions on Autonomous
Mental Development 2(4), 340–354 (2010)

3. Boddy, M., Dean, T.L.: Deliberation scheduling for problem solving in timeconstrained
environments. Artificial Intelligence 67(2), 245–285 (1994)

4. Cassimatis, N., Bignoli, P., Bugajska, M., Dugas, S., Kurup, U., Murugesan, A., Bello, P.:
An architecture for adaptive algorithmic hybrids. IEEE Transactions on Systems, Man, and
Cybernetics, Part B 40(3), 903–914 (2010)

5. Horvitz, E., Rutledge, G.: Time-dependent utility and action under uncertainty. In: Proc.
7th Conference on Uncertainty in Artificial Intelligence, pp. 151−158. Morgan Kaufmann
Publishers Inc. (1991)

6. Laird, J.E.: The Soar cognitive architecture. MIT Press (2012)
7. Langley, P., Choi, D., Rogers, S.: Interleaving learning, problem-solving, and execution in

the ICARUS architecture. Technical report, Computational Learning Laboratory, CSLI,
Stanford University (2005)

8. Madl, T., Baars, B.J., Franklin, S.: The timing of the cognitive cycle. PloS One 6(4),
e14803 (2011)

9. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv:1312.5602 (2013)

10. Nivel, E., Thórisson, K.R., Steunebrink, B.R., Dindo, H., Pezzulo, G., Rodríguez, M.,
Hernández, C., Ognibene, D., Schmidhuber, J., Sanz, R., Helgason, H.P., Chella, Antonio:
Bounded Seed-AGI. In: Goertzel, B., Orseau, L., Snaider, J. (eds.) AGI 2014. LNCS,
vol. 8598, pp. 85–96. Springer, Heidelberg (2014)

11. Nivel, E., Thórisson, K.R., Steunebrink, B.R., Dindo, H., Pezzulo, G., Rodriguez, M.,
Hernandez, C., Ognibene, D., Schmidhuber, J., Sanz, R., Helgason, H.P., Chella, A.,
Jonsson, G.K.: Autonomous acquisition of natural language. In: Proc. IADIS International
Conference on Intelligent Systems & Agents 2014, pp. 58−66 (2014)

12. Shapiro, S.C., Ismail, H.O.: Anchoring in a grounded layered architecture with integrated
reasoning. Robotics and Autonomous Systems 43(2-3), 97–108 (2003)

13. Veness, J., Ng, K.S., Hutter, M., Uther, W., Silver, D.: A Monte-Carlo AIXI approxima-
tion. Journal of Artificial Intelligence Research 40(1), 95–142 (2011)

14. Wang, P.: Rigid Flexibility: The Logic of Intelligence. Springer (2006)

Ultimate Intelligence Part I: Physical
Completeness and Objectivity of Induction

Eray Özkural(B)

Gök Us Sibernetik Ar&Ge Ltd. Şti., Istanbul, Turkey
examachine@gmail.com

Abstract. We propose that Solomonoff induction is complete in the
physical sense via several strong physical arguments. We also argue that
Solomonoff induction is fully applicable to quantum mechanics. We show
how to choose an objective reference machine for universal induction by
defining a physical message complexity and physical message probabil-
ity, and argue that this choice dissolves some well-known objections to
universal induction. We also introduce many more variants of physical
message complexity based on energy and action, and discuss the ramifi-
cations of our proposals.

“If you wish to make an apple pie from scratch, you must first invent the
universe.” – Carl Sagan

1 Introduction

Ray Solomonoff has discovered algorithmic probability and introduced the
universal induction method which is the foundation of mathematical Artificial
Intelligence (AI) theory [14]. Although the theory of Solomonoff induction is
somewhat independent of physics, we interpret it physically and try to refine
the understanding of the theory by thought experiments given constraints of
physical law. First, we argue that its completeness is compatible with contem-
porary physical theory, for which we give arguments from modern physics that
show Solomonoff induction to converge for all possible physical prediction prob-
lems. Second, we define a physical message complexity measure based on initial
machine volume, and argue that it has the advantage of objectivity and the
typical disadvantages of using low-level reference machines. However, we show
that setting the reference machine to the universe does have benefits, poten-
tially eliminating some constants from algorithmic information theory (AIT)
and refuting certain well-known theoretical objections to algorithmic probabil-
ity. We also introduce a physical version of algorithmic probability based on
volume and propose six more variants of physical message complexity.

2 Background

Let us recall Solomonoff’s universal distribution. Let U be a universal computer
which runs programs with a prefix-free encoding like LISP. The algorithmic
c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 131–141, 2015.
DOI: 10.1007/978-3-319-21365-1 14

132 E. Özkural

probability that a bit string x ∈ {0, 1}+ is generated by a random program
π ∈ {0, 1}+ of U is:

PU (x) =
∑

U(π)=x(0|1)∗
2−|π| (1)

We also give the basic definition of Algorithmic Information Theory (AIT), where
the algorithmic entropy, or complexity of a bit string x ∈ {0, 1}+ is defined
as HU (x) = min({|π| | U(π) = x}). Universal sequence induction method of
Solomonoff works on bit strings x drawn from a stochastic source μ. Equation 1
is a semi-measure, but that is easily overcome as we can normalize it. We merely
normalize sequence probabilities, P ′

U (x0) = PU (x0).P ′
U (x)/(PU (x0) + PU (x1)),

eliminating irrelevant programs and ensuring that the probabilities sum to 1,
from which point on P ′

U (x0|x) = P ′
U (x0)/P ′

U (x) yields an accurate prediction.
The error bound for this method is the best known for any such induction
method. The total expected squared error between P ′

U (x) and μ is less than
−1/2 ln P ′

U (μ) according to the convergence theorem proven in [13], and it is
roughly HU (μ) ln 2 [15].

3 Physical Completeness of Universal Induction

Solomonoff induction model is known to be complete and incomputable.
Equation 1 enumerates a non-trivial property of all programs (the membership
of a program’s output in a regular language), which makes it an incomputable
function. It is more properly construed as a semi-computable function that may
be approximated arbitrarily well in the limit. Solomonoff has argued that the
incomputability of algorithmic probability does not inhibit its practical applica-
tion in any fundamental way, and emphasized this often misunderstood point in
a number of publications.

The only remaining assumptions for convergence theorem to hold in general,
for any μ are a) that we have picked a universal reference machine, and b) that
μ has a computable probability density function (pdf). The second assumption
warrants our attention when we consider modern physical theory. We formalize
the computability of μ as follows:

HU (μ) ≤ k,∃k ∈ Z (2)

which entails that the pdf μ(x) can be perfectly simulated on a computer, while
x are (truly) stochastic. This condition is formalized likewise in [5].

3.1 Evidence from Physics

There is an exact correspondence of such a construct in physics, which is the
quantum wave function. The wave function of a finite quantum system is defined
by a finite number of parameters (i.e., complex vector), although its prod-
uct with its conjugate is a pdf from which we sample stochastic observations.

Physical Completeness and Objectivity of Induction 133

Since it is irrational to consider an infinite quantum system in the finite observ-
able universe, μ can model the statistical behavior of matter for any quantum
mechanical source. This is the first evidence of true, physical completeness of
Solomonoff induction we will consider. Von Neumann entropy of a quantum
system is described by a density matrix ρ:

S = − tr(ρlnρ) = −
∑

j

ηj ln ηj (3)

where tr is the trace of a matrix, ρ =
∑

j ηj |j〉 〈j| is decomposed into its eigen-
vectors, and ηj is algebraic multiplicity. Apparently, von Neumann entropy is
equivalent to classical entropy and suggests a computable pdf, which is expected
since we took ρ to be a finite matrix. Furthermore, the dynamic time evolution
of a wave function is known to be unitary, which entails that if μ is a quantum
system, it will remain computable dynamically. Therefore, if μ is a quantum
system with a finite density matrix, convergence theorem holds.

The second piece of evidence from physical theory is that of universal quan-
tum computer, which shows that any local quantum system may be simulated
by a universal quantum computer [7]. Since a universal quantum computer is
Turing-equivalent, this means that any local quantum system may therefore be
simulated on a classical computer. This fact has been interpreted as a physi-
cal version of Church-Turing thesis by the quantum computing pioneer David
Deutsch, in that ’every finitely realizable physical system can be perfectly sim-
ulated by a universal model computing machine operating by finite means’ [3].
As a quantum computer is equivalent to a probabilistic computer, whose out-
puts are probabilistic after decoherence, these two facts together entail that the
pdf of a local quantum system is always computable. Which yields our second
conclusion. If μ is a local quantum system, the convergence theorem holds.

The third piece of evidence from physics is that of the famous Bekenstein bound
and the holographic principle. Bekenstein bound was originally conceived for black
holes, however, it applies to any physical system, and states that any finite energy
system enclosed within a finite volume of space will have finite entropy:

S ≤ 2πkRE

�c
(4)

where S is entropy, and R is the radius of the sphere that encloses the system, E is
the total energy of the system including masses, and the rest are familiar physical
constants. Such a finite entropy readily transforms into Shannon entropy, and
corresponds to a computable pdf. The inequality acts as a physical elucidation
of Equation 2. Therefore, if μ is a finite-size and finite-energy physical system,
the convergence theorem holds.

Contemporary cosmology also affirms this observation, as the entropy of the
observable universe has been estimated, and is naturally known to be finite [4].
Therefore, if contemporary cosmological models are true, any physical system in
the observable universe must have finite entropy, thus validating the convergence
theorem.

134 E. Özkural

Thus, since we have shown wide-reaching evidence for the computability of
pdf of μ from quantum mechanics, general relativity, and cosmology, we conclude
that contemporary physical science strongly and directly supports the universal
applicability of the convergence theorem. In other words, it has been physically
proven, as opposed to merely mathematically.

3.2 Randomness, Computability and Quantum Mechanics

Wood et al. interpreted algorithmic probability as a ”universal mixture” [19],
which is essentially an infinite mixture of all possible computations that match
the input. This entails that it should model even random events, due to Chaitin’s
strong definitions of algorithmic randomness [2]. That is to say, the universal
mixture can model white noise perfectly (e.g., μ(x0) = μ(x1) = 1/2). More
expansive definitions of randomness are not empirically justifiable. Our tenta-
tive analysis is that stronger definitions of randomness are not needed as they
would be referring to halting oracles, which would be truly incomputable, and by
our arguments in this paper, have no physical relevance. Note that the halting
probability is semi-computable.

The computable pdf model is a good abstraction of the observations in quan-
tum mechanics (QM). In QM, the wave function itself has finite description
(finite entropy), with unitary (deterministic) evolution, while the observations
(measurements) are stochastic. Solomonoff induction is complete with respect to
QM, as well, even when we assume the reality of non-determinism – which many
interpretations of QM do admit. In other words, such claims that Solomonoff
induction is not complete could only be true if and only if either physical Church-
Turing thesis were false, or if hypercomputers (oracle machines) were possible –
which seem to be equivalent statements. The physical constraints on a stochastic
source however rules out hypercomputers, which would have to contain either
infinite amount of algorithmic information (infinite memory), or be infinitely fast,
both of which would require infinite entropy, and infinite energy. A hypercom-
puter is often imagined to use a continuous model of computation which stores
information in real-valued variables. By AIT, a random real has infinite algorith-
mic entropy, which contradicts with the Bekenstein bound (Equation 4). Such
real-valued variables are ruled out by the uncertainty principle, which places
fundamental limits to the precision of any physical quantity – measurements
beneath the Planck-scale are impossible. Hypercomputers are also directly ruled
out by limits of quantum computation [6]. In other words, QM strongly supports
the stochastic computation model of Solomonoff.

4 On the Existence of an Objective U

The universal induction model is viewed as subjective, since the generalization
error depends on the choice of a universal computer U as the convergence the-
orem shows. This choice is natural according to a Bayesian interpretation of
learning as U may be considered to encode the subjective knowledge of the

Physical Completeness and Objectivity of Induction 135

observer. Furthermore, invariance theorem may be interpreted to imply that the
choice of a reference machine is irrelevant. However, it is still an arbitrary choice.
A previous proposal learns reference machines that encode good programs with
short codes in the context of universal reinforcement learning [17].

4.1 The Universe as the Reference Machine

In the following, we shall examine a sense which we may consider the best choice
for U . Solomonoff himself mentioned such a choice [16], explaining that he did
find an objective universal device but dismissed it because it did not have any
prior information, since subjectivity is a desirable and necessary feature of algo-
rithmic probability.

We proposed a philosophical solution to this problem in a previous article
where we made a physical interpretation of algorithmic complexity, by setting U
to the universe itself [10]. This was achieved by adopting a physical definition of
complexity, wherein program length was interpreted as physical length. The cor-
respondence between spatial extension and program length directly follows from
the proper physicalist account of information, for every bit extends in space.
Which naturally gives rise to the definition of physical message complexity as
the volume of the smallest machine that can compute a message, eliminating
the requirement of a reference machine. There are a few difficulties with such a
definition of complexity whose analysis is in order. Contrast also with thermo-
dynamic entropy and Bennett’s work on physical complexity [1,20].

4.2 Minimum Machine Volume as a Complexity Measure

In the present article, we support the above philosophical solution to the choice
of the reference machine with basic observations. Let us define physical message
complexity:

CV (x) � min{V (M) | M → x} (5)

where x ∈ D+ is any d-ary message written in an alphabet D, M is any phys-
ical machine (finite mechanism) that emits the message x (denoted M → x),
and V (M) is the volume of machine M . M is supposed to contain all physical
computers that can emit message x.

Equation 5 is too abstract and it would have to be connected to physical law
to be useful. However, it allows us to reason about the constraints we wish to put
on physical complexity. M could be any possible physical computer that can emit
a message. For this definition to be useful, the concept of emission would have
to be determined. Imagine for now that the device emits photons that can be
detected by a sensor, interpreting the presence of a photon with frequency fi as
di ∈ D. It might be hard for us to build the minimal device that can do this. How-
ever, let us assume that such a device can exist and be simulated. It is likely that
this minimal hardware would occupy quite a large volume compared to the out-
put it emits. With every added unit of message complexity, the minimal device
would have to get larger. We may consider additional complications. For instance,

136 E. Özkural

we may demand that these machines do not receive any physical input, i.e., sup-
ply their own energy, which we call a self-contained mechanism. We note that
resource bounds can also be naturally added into this picture.

When we use CV (x) instead of HU (x), we do not only eliminate the need
for a reference machine, but we also eliminate many constraints and constants
in AIT. First of all, there is not the same worry of a self-delimiting program,
because every physical machine that can be constructed will either emit a
message or not in isolation, although its meaning slightly changes and will
be considered in the following. Secondly, we expect all the basic theorems of
AIT to hold, while the arbitrary constants that correspond to glue code to
be eliminated or minimized. Recall that the constants in AIT usually corre-
spond to such elementary operations as function composition and so forth. Let
us consider the sub-additivity of information which represents a good exam-
ple: HU (x, y) = HU (x) + HU (y|x) + O(1) When we consider CV (x, y), however,
the sub-additivity of information becomes exactly CV (x, y) = CV (x) + CV (y|x)
since there does not need to be a gap between a machine emitting a photon
and another sensing one. In the consideration of an underlying physical theory
of computing (like quantum computing), the relations will further change, and
become ever clearer.

4.3 Volume Based Algorithmic Probability

From the viewpoint of AI theory, however, what we are interested in is whether
the elimination of a reference machine may improve the performance of machine
learning. Recall that the convergence theorem is related to the algorithmic
entropy of the stochastic source with respect to the reference machine. A rea-
sonable concern in this case is that the choice of a “bad” reference machine may
inflate the errors prohibitively for small data size, for which induction works best,
i.e., as the composition of a physical system may be poorly reflected in an arti-
ficial language, increasing generalization error. On the other hand, setting U to
the universe obtains an objective measurement, which does not depend on sub-
jective choices, and furthermore, always corresponds well to the actual physical
complexity of the stochastic source. We shall first need to re-define algorithmic
probability for an alphabet of D. We propose using the exponential distribution
for a priori machine probabilities because it is a maximum entropy distribution,
and applicable to real values, although we would favor Planck-units.

P (x) �
∑

M→xD∗ e−λV (M)

∑
M→D+ e−λV (M)

(6)

An unbiased choice for parameter λ here would be 1; further research may
improve upon this choice. Here, it does not matter that any machine-encodings
of M are prefix-free, because infinity is not a valid concern in physical theory,
and any arrangement of quanta is possible (although not stable). Due to general
relativity, there cannot be any influence from beyond the observable universe,
i.e., there is not enough time for any message to arrive from beyond it, even if

Physical Completeness and Objectivity of Induction 137

there is anything beyond the cosmic horizon. Therefore, the volume V (M) of
the largest machine is constrained by the volume of the observable universe, i.e.,
it is finite. Hence, the sums always converge.

4.4 Minimum Machine Energy and Action

We now propose alternatives to minimum machine volume complexity. While
volume quantifies the initial space occuppied by a machine, energy accounts for
every aspect of operation. In general relativity, the energy distribution deter-
mines the curvature of space-time, and energy is equivalent to mass via creation
and annihilation of particle-antiparticle pairs. Likewise, the unit of h is J.sec,
i.e., energy-time product, quantum of action and quantifies dynamical evolution
of physical systems. Let CE(x) � min{E(M) | M → x} be the energy complex-
ity of message, and CA(x) � min{A(M) | M → x} action (or action volume
E.t) complexity of message which quantify the computation and transmission
of message x by a finite mechanism [8]. Further variants may be construed by
considering how much energy and action it takes to build M from scratch, which
include the work required to make the constituent quanta, and are called con-
structive energy CEc(x) and action CAc(x) complexity of messages, respectively.
Measures may also be defined to account for machine construction, and message
transmission, called total energy CEt(x), and total action CAt(x) complexity of
messages. Versions of algorithmic probability may be defined for each of these six
new complexity measures in similar manner to Equation 6. Note that the trick in
algorithmic probability is maximum uncertainty about the source μ. For energy
based probability, if μ is at thermal equilibrium we may thus use the Boltzmann
distribution P (M) = e−E/kT for a priori machine probabilities instead of the
exponential distribution, which also maximizes uncertainty. We may also model
a priori probabilities with a canonical ensemble, using P (M) = e(F−E)/kT where
F is the Helmholtz free energy.

4.5 Restoring Subjectivity

Solomonoff’s observation that subjectivity is required to solve any problem of
significant complexity is of paramount importance. Our proposal of using a phys-
ical measure of complexity for objective inference does not neglect that property
of universal induction. Instead, we observe that a guiding pdf contains prior
information in the form of a pdf. Let U1 be a universal computer that contains
much prior information about a problem domain, based on a universal computer
U that does not contain any significant information. Such prior information may
always be split off to a memory bank.

PU1(x) = PU (x|M) (7)

Therefore, we can use a conditional physical message complexity given a memory
bank to account for prior information, instead of modifying a pdf. Subjectivity
is thus retained. Note that the universal induction view is compatible with a

138 E. Özkural

Bayesian interpretation of probability, while admitting that the source is real,
which is why we can eliminate the bias about reference machine – there is a
theory of everything that accurately quantifies physical processes in this universe.

Choosing the universe as U has a particular disadvantage of using the low-
est possible level computer architecture. Science has not yet formulated complete
descriptions of the computation at the lowest level of the universe, therefore fur-
ther research is needed. However, for solving problems at macro-scale, and/or from
artificial sources, algorithmic information pertaining to such domains must be
encoded as prior information in M , since otherwise solution would be infeasible.

4.6 Quantum Algorithmic Probability and Physical Models

Note that it is well possible to extend the proposal in this section to a quan-
tum version of AIT by setting U to a universal quantum computer. There are
likely other advantages of using a universal quantum computer, e.g., efficient
simulation of physical systems. For instance, the quantum circuit model may be
used, which seems to be closer to actual quantum physical systems than Quan-
tum Turing Machine model [9]. A universal quantum computer model will also
extend the definition of message to any quantum measurement. In particular,
the input to the quantum circuit is |0 . . .〉 (null) while the output is the quantum
measurement of message |x〉. Since quantum computers are probabilistic, mul-
tiple trials must be conducted to obtain the result with high probability. Also,
Grover’s algorithm may be applied to accelerate universal induction approxima-
tion procedures.

All physical systems do reduce properly to quantum systems, however, only
problems at the quantum-scale would require accurate simulation of quantum
processes. An ultimate AI system would choose the appropriate physical model
class for the scale and domain of sensor readings it processes. Such a machine
would be able to adjust its attention to the scale of collisions in LHC, or galaxy
clusters according to context. This would be an important ability for an artificial
scientist, as different physical forces are at play at different scales; nature is not
uniformly scale-free, although some statistical properties may be invariant across
scales. The formalism of phase spaces and stochastic dynamical systems may
be used to describe a large number of physical systems. What matters is that
a chosen physical formalism quantifies basic physical resources in a way that
allows us to formulate physical complexity measures. We contend however that
a unified language of physics is possible, in accordance with the main tenets of
logical empiricism.

4.7 The Physical Semantics of Halting Probability

The halting probability ΩU is the probability that a random program of U will
halt, and it is semi-computable much like algorithmic probability. What happens
when we set U to the universe? We observe that there is an irreducible mutual
algorithmic information between any two stochastic sources, which is the physical
law, or the finite set of axioms of physics (incomplete presently). This irreducible

Physical Completeness and Objectivity of Induction 139

information corresponds to U in our framework, and it is equivalent to the
uniformity of physical law in cosmology for which there is a wealth of evidence
[18]. It is known that ΩU contains information about difficult conjectures in
mathematics as most can be transformed to instances of the halting problem.
Setting U to a (sufficiently complete) theory of physics biases ΩU to encode
the solutions of non-trivial physical problems in shorter prefixes of its binary
expansion, while it still contains information about any other universal machines
and problems stated within them, e.g., imaginary worlds with alternative physics.

5 Discussion

5.1 Dissolving the Problem of Induction

The problem of induction is an old philosophical riddle that we cannot justify
induction by itself, since that would be circular. If we follow the proposed phys-
ical message complexity idea, for the first capable induction systems (brains) to
evolve, they did not need to have an a priori, deductive proof of induction. How-
ever, the evolution process itself works inductively as it proceeds from simpler to
more complex forms which constitute and expend more physical entropy. There-
fore, induction does explain how inductive systems can evolve, an explanation
that we might call a glorious recursion, instead of a vicious circle: an inductive
system can invent an induction system more powerful than itself, and it can also
invent a computational theory of how itself works when no such scientific theory
previously existed, which is what happened in Solomonoff’s brain.

5.2 Disproving Boltzmann Brains

The argument from practical finiteness of the universe was mentioned briefly by
Solomonoff in [12]. Let us note, however, that the abstract theory of algorithmic
probability implies an infinite probabilistic universe, in which every program
may be generated, and each bit of each program is equiprobable. In such an
abstract universe, a Boltzmann Brain, with considerably more entropy than our
humble universe is even possible, although it has a vanishingly small probabil-
ity. In a finite observable universe with finite resources, however, we obtain a
slightly different picture, for instance any Boltzmann Brain is improbable, and
a Boltzmann Brain with a much greater entropy than our universe would be
impossible (0 probability). Obviously, in a sequence of universes with increasing
volume of observable universe, the limit would be much like pure algorithmic
probability. However, for our definition of physical message complexity, a proper
physical framework is much more appropriate, and such considerations quickly
veer into the territory of metaphysics (since they truly consider universes with
physical law unlike our own). Thus firmly footed in contemporary physics, we
gain a better understanding of the limits of ultimate intelligence.

140 E. Özkural

5.3 Refuting the Platonist Objection to Algorithmic Information

An additional nice property of using physical stochastic models, e.g., statistical
mechanics, stochastic dynamical systems, quantum computing models, instead
of abstract machine or computation models is that we can refute a well-known
objection to algorithmic information by Raatikainen [11], which depends on
unnatural enumerations of recursive functions, essentially constructing reference
machines with a lot of useless information. Such superfluous reference machines
would incur a physical cost in physical message complexity, and therefore they
would not be picked by our definition, which is exactly why you cannot shuf-
fle program indices as you like, because such permutations require additional
information to encode. An infinite random shuffling of the indices would require
infinite information, and impossible in the observable universe, and any substan-
tial reordering would incur inordinate physical cost in a physical implementation
of the reference machine. Raatikainen contends that his self-admittedly bizarre
and unnatural constructions are fair play because a particular way of repre-
senting the class of computable functions cannot be privileged. Better models of
computation accurately measure time, space and energy complexities of physical
devices, which is why they are privileged. RAM machine model is a better model
of personal computers with von Neumann architecture than a Turing Machine,
which is preferable to a model with no physical complexity measures.

5.4 Concluding Remarks and Future Work

We have introduced the basic philosophical problems of an investigation into the
ultimate limits of intelligence. We have covered a very wide philosophical ter-
rain of physical considerations of completeness and objective choice of reference
machine, and we have proposed several new kinds of physical message com-
plexity and probability. We have interpreted halting probability, the problem of
induction, Boltzmann brains, and Platonist objections in the context of physical,
objective reference machines. Much work remains to fully connect existing body
of physical theory to algorithmic probability. We anticipate that there might be
interesting bridge theorems to be obtained.

References

1. Bennett, C.H.: How to define complexity in physics, and why. Complexity, Entropy,
and the Physics of Information VIII, 137–148 (1980)

2. Chaitin, G.J.: Algorithmic Information Theory. Cambridge University Press (2004)
3. Deutsch, D.: Quantum theory, the church-turing principle and the universal quan-

tum computer. Proceedings of the Royal Society of London. A. Mathematical and
Physical Sciences 400(1818), 97–117 (1985)

4. Frampton, P.H., Hsu, S.D.H., Kephart, T.W., Reeb, D.: What is the entropy of
the universe? Classical and Quantum Gravity 26(14), 145005 (2009)

5. Hutter, M.: Convergence and loss bounds for Bayesian sequence prediction. IEEE
Transactions on Information Theory 49(8), 2061–2067 (2003)

Physical Completeness and Objectivity of Induction 141

6. Lloyd, S.: Ultimate physical limits to computation. Nature 406, 1047–1054 (2000)
7. Lloyd, S.: Universal quantum simulators. Science 273(5278), 1073–1078 (1996)
8. Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Physica

D Nonlinear Phenomena 120, September 1998
9. Miszczak, J.A.: Models of quantum computation and quantum programming lan-

guages. Bull. Pol. Acad. Sci.-Tech. Sci. 59(3) (2011)
10. Özkural, E.: Worldviews, Science and us: philosophy and complexity, chap. In: A

compromise between reductionism and non-reductionism. World Scientific Books
(2007)

11. Raatikainen, P.: On interpreting chaitin’s incompleteness theorem. Journal of
Philosophical Logic 27 (1998)

12. Solomonoff, R.J.: Inductive inference research status spring 1967. Tech. Rep. RTB
154, Rockford Research, Inc. (1967)

13. Solomonoff, R.J.: Complexity-based induction systems: Comparisons and conver-
gence theorems. IEEE Trans. on Information Theory IT 24(4), 422–432 (1978)

14. Solomonoff, R.J.: The discovery of algorithmic probability. Journal of Computer
and System Sciences 55(1), 73–88 (1997)

15. Solomonoff, R.J.: Three kinds of probabilistic induction: Universal distributions
and convergence theorems. The Computer Journal 51(5), 566–570 (2008)

16. Solomonoff, R.J.: Algorithmic probability: theory and applications. In: Dehmer,
M., Emmert-Streib, F. (eds.) Information Theory and Statistical Learning,
pp. 1–23. Springer Science+Business Media, N.Y. (2009)

17. Sunehag, P., Hutter, M.: Intelligence as inference or forcing occam on the world.
In: Goertzel, B., Orseau, L., Snaider, J. (eds.) AGI 2014. LNCS, vol. 8598,
pp. 186–195. Springer, Heidelberg (2014)

18. Tubbs, A.D., Wolfe, A.M.: Evidence for large-scale uniformity of physical laws.
ApJ 236, L105–L108 (1980)

19. Wood, I., Sunehag, P., Hutter, M.: (non-)equivalence of universal priors. In:
Dowe, D.L. (ed.) Solomonoff Festschrift. LNCS, vol. 7070, pp. 417–425. Springer,
Heidelberg (2013)

20. Zurek, W.H.: Algorithmic randomness, physical entropy, measurements, and the
demon of choice. In: Hey, A.J.G. (ed.) Feynman and computation: exploring the
limits of computers. Perseus Books (1998)

© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 142–151, 2015.
DOI: 10.1007/978-3-319-21365-1_15

Towards Emotion in Sigma: From Appraisal to Attention

Paul S. Rosenbloom1,2(), Jonathan Gratch1,2, and Volkan Ustun1

1 Institute for Creative Technologies, University of Southern California,
12015 Waterfront Drive, Playa Vista, CA 90094, USA

rosenbloom@usc.edu
2 Department of Computer Science, University of Southern California,

941 Bloom Walk Los Angeles, CA 90089, USA

Abstract. A first step is taken towards incorporating emotional processing into
Sigma, a cognitive architecture that is grounded in graphical models, with the
addition of appraisal variables for expectedness and desirability plus their initial
implications for attention at two levels of the control hierarchy. The results
leverage many of Sigma’s existing capabilities but with a few key additions.

Keywords: Sigma · Cognitive architecture · Emotion · Appraisal · Surprise ·
Attention · Evaluation

1 Introduction

Sigma [1] is a cognitive architecture/system that is based on combining what has been
learned from over three decades worth of independent work in cognitive architectures
[2] and graphical models [3]. Its development is being guided by a trio of desiderata:
(1) grand unification (expanding beyond strictly cognitive processing to all of the
capabilities required for intelligent behavior in complex real worlds); (2) functional
elegance (deriving the full range of necessary capabilities from the interactions
among a small general set of mechanisms); and (3) sufficient efficiency (executing at a
speed sufficient for anticipated applications). We have recently begun exploring the
incorporation of emotion into Sigma, driven by: the theoretical desideratum of grand
unification; the practical goal of building virtual humans for applications in education,
training, counseling, entertainment, etc.; and the hypothesis that emotion is critical for
general intelligences to survive and thrive in complex physical and social worlds.

A major focus of this effort concerns what aspects of emotion are properly
architectural – that is, fixed parts of the mind – versus enabled primarily by learned
knowledge and skills. A large fragment of emotion is non-voluntary and immutable,
providing hard-to-ignore input to cognition and behavior from what could be called
the wisdom of evolution. It also makes direct contact with bodily processes, to the
extent such exist, to yield the heat in emotion. Thus, significant fractions of it must be
grounded architecturally even with knowledge clearly being critical at higher levels.

Driven by functional elegance, there is also a major emphasis here on reusing as
much as possible the capabilities provided by the existing architecture, rather
than simply building a separate emotion module. One obvious example is leveraging
Sigma’s hybrid (discrete + continuous) mixed (symbolic + probabilistic) nature to

 Towards Emotion in Sigma: From Appraisal to Attention 143

support both the low-level subsymbolic aspects of emotion and the high-level symbol-
ic aspects. Another such example is the seamless mapping of Sigma’s tri-level cogni-
tive control [4] – as inherited from Soar [5] and comprising reactive, deliberative and
reflective levels – onto tri-level theories of emotion [6], suggesting a more unified tri-
level model of emotocognitive processing.

A less obvious example is the essential role that Sigma’s gradient-descent learning
mechanism [7] has turned out to play in appraisal [8]. Appraisal is typically
considered the initial stage of emotional processing, capturing emotionally and
behaviorally relevant assessments of situations in terms of a relatively small set of
variables, such as relevance, desirability, likelihood, expectedness, causal attribution,
controllability and changeability in the EMA theory [9]. These ground appraisals, or
combinations thereof, may then lead to higher-order appraisals, transient emotional
states, and a variety of important impacts on thought and behavior.

Still, extensions to Sigma’s architecture are clearly necessary to fully support emo-
tional processing. Prior to this work, Sigma had no emotions. Yet, the immutable and
mandatory nature of emotions implies they must be deeply rooted in the architecture.
Central to this effort is understanding the architectural extensions necessary to (1)
enable the ground appraisals that initiate emotional processing, and (2) yield the ap-
propriate emotional modulations of thought and behavior.

This article provides an initial report on work towards emotion in Sigma, focused on
architectural variants of desirability and expectedness, along with their initial impacts on
attention. Key to both appraisals is a new architectural mechanism for comparing distri-
butions, with desirability based on comparing the distributions over the current state and
the goal, and expectedness based on comparing the distributions over a fragment of
memory before and after learning. Attention then leverages these appraisals to focus
processing at multiple levels of control. This is the first architectural model of low-level
attention that stretches all of the way from appraisal to its impact on thought. It also
demonstrates a complementary impact on higher-level attention.

There is considerable recent work on emotion in cognitive architectures – e.g., in
Soar [10], PsychSim [11], FAtiMA [12], EmoCog [13], MicroPsi [14], ACT-R [15],
BICA [16], and CLARION [17] – but Sigma’s unique aspects shed new light on
how this can be done. Section 2 provides the basics of Sigma needed for this work.
Sections 3 and 4 cover expectedness and desirability. Attention is covered in
Section 5, with a wrap up in Section 6.

2 Sigma

Sigma is based on factor graphs [18] –
undirected graphical models with variable
and factor nodes – and hybrid mixed
piecewise-linear functions [19] (Fig. 1)
stored at factor nodes and sent as messages
via the summary product algorithm [18]
(Fig. 2). Sigma’s factor graphs are compiled
from a high-level language that is based
on predicates with typed arguments plus

Fig. 1. A piecewise-constant function, the
special case of piecewise linear functions
used here. Dimension spanning slices exist
wherever there are adjacent regions with
different functions.

144 P.S. Rosenbloom et al.

conditionals embodying patterns
over predicates. Predicates speci-
fy relations over continuous,
discrete and/or symbolic argu-
ments. They may be closed world
– assuming, as in production
systems, that unspecified values
are false – or open world – as-
suming, as in probabilistic rea-
soning, that unspecified values
are unknown.

Each predicate has a portion
of working memory (WM) allo-
cated to it that forms part of the
full factor graph. Predicates may
also have perception and/or long-
term memory (LTM) functions.
For perceptual predicates, factor nodes for perceptual buffers are connected to the
WM subgraphs. For memorial predicates, function factor nodes (FFNs) are likewise
connected. Messages into FFNs provide the gradient for learning the nodes’ functions.
Conditionals structure LTM and basic reasoning, compiling into more extended sub-
graphs that also connect to the appropriate WM subgraphs.

Processing in Sigma is driven by a cognitive cycle that comprises input, graph so-
lution, decisions (selection of best elements from distributions), learning, and output.
Graph solution occurs by product of the messages coming into a node – including the
node’s function when it is a factor node – and then summarization out, via integration
or maximum, of unneeded variables from outgoing messages. Most of perception and
action is to occur within graph solution in Sigma, rather than within external modules
[20]. Reactive processing occurs within individual cycles, whereas deliberative
processing occurs across a sequence of cycles. As in Soar, impasses occur when deci-
sions cannot be made, leading to reflective processing.

3 Expectedness

Expectedness concerns whether an event is predicted by past knowledge. Its inverse
maps naturally, as unexpectedness, onto the notion of surprise that underlies the
bottom-up aspects of today’s leading models of visual attention. In other words, atten-
tion is drawn to what is surprising or unexpected; e.g., the Bayesian Theory of
Surprise compares the prior distribution over the visual field – i.e., the model that has
previously been learned for it – with the posterior distribution derived via Bayesian
belief updating of the prior given the image [21]. The size of the difference correlates
with how poorly past knowledge predicts the image. This comparison is computed by
the Kullback-Leibler (KL) divergence, with M the current model and D the new data:

S(D, M) = KL(P(M | D), P(M)) = P(M | D) log
P(M | D)

P(M)M

 dM. (1)

Fig. 2. Summary product computation over the factor
graph for f(x,y,z) = y2+yz+2yx+2xz = (2x+y)(y+z) =
fi(x,y)f2(y,z) of the marginal on y given evidence con-
cerning x and z

 Towards Emotion in Sigma: From Appraisal to Attention 145

The computation of surprise in Sigma tracks this approach, but differs in several
details. Distribution updating is mediated by Sigma’s gradient-descent learning me-
chanism – as applied at FFNs – with the functions before and after learning compared
ere the prior is replaced by the posterior as the node’s function. Also, rather than
basing the comparison on KL divergence it is based on Hellinger distance:

S '(D, M) = HD(P(M | D), P(M)) = 1− P(M | D)(x)P(M)(x) dx . (2)

While both measure the difference between two distributions, KL divergence is non-
symmetric – and thus not a metric – and undefined for 0s in the second distribution.
The Hellinger distance was chosen primarily because it can deal with these 0s.

Fig. 3 shows the computation of surprise in a simple visual field, represented by a
three-argument predicate: image(x:[0:4), y:[0:4), color:[red, yel-
low, green, blue, black]%). The first two dimensions are modeled as discrete
numeric, while color is symbolic. The % denotes that there is a distribution over the color
given the location. Fig. 3(a) shows the initial visual field. It remains this way for ~20
cycles to learn a model. Then, the bottom-left location is switched from blue to green, as
in Fig. 3(b). Fig. 3(c) shows the (normalized) surprise map, which highlights the changed
location. The surprise map is a form of architectural self-perception [22], and therefore
stored in the perceptual buffer of an automatically created surprise predicate – im-
age*surprise(x:[0:4)%, y:[0:4)%) – that embodies a joint distribution over
the conditioning variables in the original predicate.

Fig. 3. Visual field before and after change in bottom left cell, plus the resulting surprise map.
Each cell has a (Boolean) distribution over colors, but just the argmaxes are shown.

Surprise has also been explored in more complex pre-existing tasks, such as Simul-
taneous Localization and Mapping (SLAM) [7]. In SLAM surprise is computed over
the learned map, a fragment of mental imagery [23] rather than direct perception, with
local input focusing surprise on the current and previous locations in the map. In all,
the work to date has moved Sigma from where it had no measure of surprise to where
it is computable over any memorial predicate, whether perceptual or cognitive.

146 P.S. Rosenbloom et al.

4 Desirability

Desirability concerns whether or not an event facilitates or thwarts what is wanted. In
Sigma it is modeled as a relationship between the current state and the goal. The for-
mer is in working memory; however, until recently, Sigma did not have goals that the
architecture could comprehend. Although Sigma, like Soar, has deep roots in search
and problem solving, neither natively embodied declarative goals that would enable
automated comparisons. Driven by the needs of emotion, a goal function can now be
specified for each predicate in Sigma, leading to an automatically created goal predi-
cate whose WM represents the goal function; e.g., a pattern of tiles to be reached in
the Eight Puzzle can be stored in the WM of the board*goal predicate. Thus, in-
vestigating appraisal has led to the resolution of a decades-long issue in problem-
solving architectures. In principle, this shouldn’t be too surprising – if emotions exist
for functional reasons, they ought to support gains in other system capabilities.

Given a predicate’s state and goal, desirability amounts to how similar/different the
state is to/from the goal. Although similarity in Sigma was first implemented as the
dot product of the state and goal functions, once surprise was implemented it became
clear that the Hellinger distance could directly yield a difference measure here, while
the Bhattacharyya coefficient, a key subpart of the Hellinger distance, could replace
the dot product in computing similarity:

Difference(S,G) = HD(S,G) = 1− s(x)g(x) dx . (3)

Similarity(S,G) = BC(S,G) = s(x)g(x) dx . (4)

Thus, only one difference measure is needed for both expectedness and desirability,
with a similarity measure computed for free. Both variants of desirability are now
computed and stored, as a progress map (for similarity) and a difference map, in the
perceptual buffers for automatically created progress and difference predicates.

Progress yields a region-by-region map of how similar the two distributions are.
With Boolean goal and state distributions, what is computed corresponds to the frac-
tion of the goal conjuncts achieved. With a Boolean goal and a more general state
distribution, this more closely resembles the probability that the goal has been
achieved. A full distribution over the goal corresponds more to a utility or heuristic
function than a goal. Fig. 4 shows a sample state and goal for the Eight Puzzle, plus
the progress and difference maps (normalized by the number of goal regions).

Fig. 4. Eight Puzzle state and goal configurations, plus the resulting desirability maps. The first
two show argmaxes over (Boolean) distributions. No goal has been set for the center cell.

 Towards Emotion in Sigma: From Appraisal to Attention 147

Beyond problem solving, desirability is also relevant to quite different sorts of
problems, such as a visual search that, e.g., is to find the yellow locations in the visual
field. For complex visual searches, human processing is slow and sequential, but for
simple searches like this one, detection occurs in time that is nearly independent of
the number of distractors. In Sigma, goals for visual search are specified just
like those for problem-solving search – yielding an image*goal predicate here –
with progress comparing the image with this goal. However, instead of expressing a
desire to change the existing image, it specifies what is to be found in it. Fig. 5 shows
sample states and goals for visual search, plus the progress and difference maps.

5 Attention

Attention broadly concerns the effective allocation of limited resources. Standard
dichotomies for it include perceptual (e.g., visual) versus cognitive (or central), overt
(e.g., involving eye movements) versus covert (sans observable changes), and top
down (i.e., task relevant) versus bottom up (i.e., stimulus driven) [24, 25]. Yet, from
Sigma’s perspective, the first two of these dichotomies are best reconceptualized
in terms of: (1) physical versus computational, and (2) the level of control involved
(i.e., reactive, deliberative or reflective). The first relates to overt versus covert, since
allocating a physical resource such as the eye is overt; however, both covert percep-
tual attention and cognitive attention are computational, so the pie is cut a bit diffe-
rently. Within computational attention, quite different mechanisms may then operate
at different levels of control. For example, at the deliberative level, the decision
procedure is a canonical means of allocating resources – and thus of focusing
attention – but it is too slow, at ~50 msec per decision, to allocate reactive resources.

The work here focuses on two levels of computational attention – reactive and
deliberative – and in particular on how expectedness and desirability impact them.
Computational attention is more difficult to evaluate than overt perceptual attention,
but it is critical in cognitive architectures and likely also underlies physical attention.
Reactive attention spans both covert perceptual attention and low-level cognitive
attention. It should largely be architectural given the timings, although architecturally
accessible knowledge – such as is provided by appraisals – is still fair game. Top-
down versus bottom-up is less a distinction among types of attention than types of
input to it. Here both factor into attention to reduce the cost of reactive processing.

Fig. 5. Visual field state and goal (argmaxes), plus the resulting desirability maps

148 P.S. Rosenbloom et al.

The primary reactive cost in Sigma is message processing at nodes in the factor
graph; i.e., computing message products and summarizing out unneeded dimensions
from them. Many optimizations have already been introduced into Sigma to reduce
the number of messages passed [26] and the cost per message [27]. Simulated paral-
lelism has also been explored [26]. Yet, attention may support further non-
correctness-preserving optimizations that still yield good enough answers.

A range of attentional approaches have been considered that reduce the number of
messages sent and/or the cost of processing individual messages, with one form of the
latter chosen for initial experiments. The basic idea is to use an attention map for each
predicate in guiding abstraction of messages out of FFNs. The intent is to yield small-
er messages that are cheaper to process yet still maintain the information critical for
effective performance. The approach is analogous to attention-based image compres-
sion [28], but here it reduces inner-loop costs within a cognitive architecture.

The attention map for a predicate is automatically computed from its surprise map
and/or its progress/difference map. When there is a learned function for a predicate, a
surprise map exists and provides the bottom-up input to attention. This makes sense
conceptually – what is expected is not informative, and has little utility unless rele-
vant to goals (making it a top-down factor) – and has a strong grounding in human
cognition [21]. When a predicate has a goal, progress and difference maps exist, and
one of them is reused as the top-down input to the attention map. Again this makes
sense conceptually, as top-down input is goal/task related, but there is some subtlety
required in determining which of the two desirability maps to use.

In problem solving, the focus should be on those parts of the state that differ from
the goal – i.e., the difference map – as this is where problem-solving resources are
most needed. However, in visual search, what matters are the regions that match the
goal – i.e., the progress map – as they correspond to what is being sought. One way of
dealing with this conundrum is to invert the sense of the goal in visual search so that it
would seek differences from not yellow rather than similarities to yellow. An alterna-
tive is to identify a fundamental distinction between the two problem classes that
would enable difference to be used for the first and progress for the second.

A variant of the second approach has been imple-
mented, based on closed-world predicates – as seen in
the more stable, all-or-none, states found in problem
solving – versus open-world predicates – as seen in
perception and other forms of more transient distribu-
tional information. The attention map for a predicate is
therefore a combination of surprise and difference for
closed-world predicates, and surprise and progress for
open-world predicates. If either map in the pair doesn’t
exist, the attention map is simply the one that does exist. If neither exists, there is no
attention map. When both maps exist, they are combined via an approximation to
probabilistic or that enables both to contribute while their combination remains ≤1:

P(A∨ B) = P(A)+ P(B)− P(A∧ B) ≈ P(A)+ P(B)− P(A)P(B). (5)

Fig. 6 shows the attention map for visual search after the change in Fig. 3(b), based on
the surprise map in Fig. 3(c) and the progress map in Fig. 5(c). Bottom-up attention
boosts the single changed region, while top-down boosts the two yellow regions.

Fig. 6. Normalized attention
map for visual search

 Towards Emotion in Sigma: From Appraisal to Attention 149

Given such an attention map, message abstraction out of FFNs then leverages the
piecewise-linear nature of Sigma’s functions via an existing mechanism that minimiz-
es the number of regions in functions by eliminating slices, and thus region bounda-
ries, when the difference between the functions in each pair of regions spanning a
slice is below a threshold. In particular, at an FFN the attention map for the predicate
is first scaled and then exponentiated to increase the contrast between large and small
values (the scale is set so that the maximum value is 1 after exponentiation). This
exponentiated attention map is then multiplied times the factor function, and slices in
the original function are removed if the differences are below threshold in this mod-
ified version. In contrast to normal slice removal, where the functions across the slice
are similar enough for either to be used for the new expanded region, here the func-
tions contributing to the new region are averaged. Fig. 7 shows the resulting message
in the visual-search task. Only 4 regions are removed here, but many more can be
removed for larger images; for example, with a 200×200 image the reduction is from
160,000 regions to 12. Significant cost savings can ac-
crue as well, with a factor of ~3 seen with large images.

In addition to visual search, reactive attention has also
been explored in SLAM. We were able to verify that a
correct map could still be learned, and that the messages
from the FFNs are smaller, but so far these reductions
have not been sufficient for significant cost savings in
this task.

Moving up the emotocognitive hierarchy to the deli-
berative level, it should be clear that a huge amount is
already known about attention at this level, just mostly
not under this name. Decision-making, planning and
problem solving are all concerned with deciding what to
do next, which is the essence of deliberative attention. However, with the notable
exception of [29], tying this to appraisals is rare. To date in Sigma, desirability – and,
in particular, progress – has been explored as an automatic evaluation
function for (reflective) hill climbing in the Eight Puzzle. When all of the map’s
dimensions are summarized out via integration, the result is a single number in [0, 1]
specifying the fraction of the tiles that are in their desired locations. The result here is
an evaluation function that enables successful solution of many Eight Puzzle prob-
lems without the task-specific control knowledge previously added by hand.

Further attentional extensions within easy reach include: bottom-up inputs to deci-
sions [29], progress as a reward function in reinforcement learning [30], difference as
a guide in means-ends analysis (as in GPS [31]), and reflective attention.

6 Wrap Up

This work contributes novel architectural models of the expectedness and desirability
appraisal variables, along with an initial investigation of their architectural implications
for computational attention, both reactive (in aid of reducing message computation)
and deliberative (in aid of guiding decisions). The approach to reactive attention

Fig. 7. Abstracted outgoing
message with two mixed
blue-red cells

150 P.S. Rosenbloom et al.

particularly breaks new ground, while also contributing an extension of existing ideas
about perceptual attention to explain low-level cognitive attention.

These results leverage many of Sigma’s existing capabilities – including its (1) hy-
brid mixed function representation, (2) predicate factor graphs (particularly including
working memories, perceptual buffers, and factor functions), (3) gradient-descent
learning mechanism, (4) ability to remove unnecessary slices from functions, and (5)
reflective problem solving. Added to the architecture were (1) a mechanism for com-
paring two distributions, (2) an architectural representation of declarative goals, (3)
predicates for appraisal variables, and (4) a mechanism for abstracting graph messag-
es based on an attention map. Rather than forming a distinct emotion module, these
largely just amount to more reusable architectural fragments.

Still, this work just scratches the surface of all that is needed to implement
emotion fully within Sigma. More appraisal variables are clearly needed, such as
controllability – with its close ties to decision-making – and social appraisals, with
their potential grounding in recent work on Theory of Mind in Sigma [4]. It also
makes sense to explore aggregation of appraisals across predicates. Much more is
also needed concerning the impact of appraisals on thought and behavior. Here we
began exploring the impact on attention. We have also begun investigating the impact
of the approach on drives and moods, based on further leveraging of distribution
comparisons and learning. Beyond this are also the broad topic of coping and the
larger question of the relationship of emotions to embodiment. Sigma has recently
been connected to a virtual human body [32], but this is still just a beginning.

Acknowledgments. This effort has been sponsored by the U.S. Army. Statements and opinions
expressed do not necessarily reflect the position or the policy of the United States Government,
and no official endorsement should be inferred. We would also like to thank Abram Demski,
Himanshu Joshi and Sarah Kenny for helpful comments.

References

1. Rosenbloom, P.S.: The Sigma cognitive architecture and system. AISB Quarterly 136, 4–13
(2013)

2. Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: Research issues and challenges.
Cognitive Systems Research 10, 141–160 (2009)

3. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques.
MIT Press, Cambridge (2009)

4. Pynadath, D.V., Rosenbloom, P.S., Marsella, S.C., Li, L.: Modeling two-player games in
the Sigma graphical cognitive architecture. In: Kühnberger, K.-U., Rudolph, S., Wang, P.
(eds.) AGI 2013. LNCS, vol. 7999, pp. 98–108. Springer, Heidelberg (2013)

5. Laird, J.E.: The Soar Cognitive Architecture. MIT Press, Cambridge, MA (2012)
6. Ortony, A., Norman, D.A., Revelle, W.: Affect and Proto-affect in effective functioning.

In: Fellous, J.M., Arbib, M.A. (eds.) Who Needs Emotions? The Brain Meets the Machine.
Oxford University Press, New York (2005)

7. Rosenbloom, P.S., Demski, A., Han, T., Ustun, V.: Learning via gradient descent in
Sigma. In: Proceedings of the 12th International Conference on Cognitive Modeling (2013)

8. Moors, A., Ellsworth, P.C., Scherer, K.R., Frijda, N.H.: Appraisal theories of emotion:
State of the art and future development. Emotion Review 5, 119–124 (2013)

9. Marsella, S., Gratch, J.: EMA: A Process Model of Appraisal Dynamics. Journal of Cognitive
Systems Research 10, 70–90 (2009)

 Towards Emotion in Sigma: From Appraisal to Attention 151

10. Marinier, R., Laird, J., Lewis, R.: A Computational Unification of Cognitive Behavior and
Emotion. Journal of Cognitive Systems Research 10, 48–69 (2009)

11. Si, M., Marsella, S., Pynadath, D.: Modeling appraisal in Theory of Mind Reasoning.
Journal of Autonomous Agents and Multi-Agent Systems 20, 14–31 (2010)

12. Dias, J., Mascarenhas, S., Paiva, A.: FAtiMA modular: towards an agent architecture with
a generic appraisal framework. In: Proceedings of the International Workshop on
Standards for Emotion Modeling (2011)

13. Lin, J., Spraragen, M., Blyte, J., Zyda, M.: EmoCog: computational integration of emotion
and cognitive architecture. In: Proceedings of the Twenty-Fourth International Florida
Artificial Intelligence Research Society Conference (2011)

14. Bach, J.: A framework for emergent emotions, based on motivation and cognitive modulators.
International Journal of Synthetic Emotions 3, 43–63 (2012)

15. Dancy, C.L.: ACT-RΦ: A cognitive architecture with physiology and affect. Biologically
Inspired Cognitive Architectures 6, 40–45 (2013)

16. Samsonovich, A.V.: Emotional biologically inspired cognitive architecture. Biologically
Inspired Cognitive Architectures 6, 109–125 (2013)

17. Wilson, N.R., Sun, R.: Coping with bullying: a computational emotion-theoretic account.
In: Proceedings of the 36th Annual Conference of the Cognitive Science Society (2014)

18. Kschischang, F.R., Frey, B.J., Loeliger, H.: Factor Graphs and the Sum-Product
Algorithm. IEEE Transactions on Information Theory 47, 498–519 (2001)

19. Rosenbloom, P.S.: Bridging dichotomies in cognitive architectures for virtual humans. In:
Proceedings of the AAAI Fall Symposium on Advances in Cognitive System (2011)

20. Joshi, H., Rosenbloom, P.S., Ustun, V.: Isolated word recognition in the Sigma cognitive
architecture. Biologically Inspired Cognitive Architectures 10, 1–9 (2014)

21. Itti, L., Baldi, P.F.: Bayesian surprise attracts human attention. In: Advances in Neural
Information Processing Systems, vol. 19 (2006)

22. Reisenzein, R.: Emotions as metarepresentational states of mind: Naturalizing the belief–
desire theory of emotion. Cognitive Systems Research 10, 6–20 (2009)

23. Rosenbloom, P.S.: Extending mental imagery in Sigma. In: Bach, J., Goertzel, B., Iklé, M.
(eds.) AGI 2012. LNCS, vol. 7716, pp. 272–281. Springer, Heidelberg (2012)

24. Frintrop, S., Rome, E., Christensen, H.I.: Computational visual attention systems and their
cognitive foundation: a survey. ACM Transactions on Applied Perception 7 (2010)

25. Itti, L., Borji, A.: State-of-the-art in visual attention modeling. IEEE Transactions on
Pattern Analysis and Machine Intelligence 35, 185–207 (2013)

26. Rosenbloom, P.S.: Towards a 50 msec cognitive cycle in a graphical architecture. In:
Proceedings of the 11th International Conference on Cognitive Modeling (2012)

27. Rosenbloom, P.S., Demski, A., Ustun, V.: Efficient message computation in Sigma’s
graphical architecture. Biologically Inspired Cognitive Architectures 11, 1–9 (2015)

28. Itti, L.: Automatic foveation for video compression using a neurobiological model of
visual attention. IEEE Transactions on Image Processing 13, 1304–1318 (2004)

29. Marinier, R.P.: A Computational Unification of Cognitive Control, Emotion, and Learning.
Ph.D Thesis, University of Michigan (2008)

30. Marinier, R.P, Laird, J.E.: Emotion-driven reinforcement learning. In: Proceedings of the
30th Annual Meeting of the Cognitive Science Society (2008)

31. Newell, A., Shaw, J.C., Simon, H.A.: Report on a general problem-solving program.
In: Proceedings of the International Conference on Information Processing (1959)

32. Ustun, V., Rosenbloom, P.S.: Towards adaptive, interactive virtual humans in Sigma. In: Pro-
ceedings of the Fifteenth International Conference on Intelligent Virtual Agents (2015). In press

Inferring Human Values for Safe AGI Design

Can Eren Sezener(B)

Department of Computer Science, Ozyegin University, Istanbul, Turkey
eren.sezener@ozu.edu.tr

Abstract. Aligning goals of superintelligent machines with human val-
ues is one of the ways to pursue safety in AGI systems. To achieve this,
it is first necessary to learn what human values are. However, human
values are incredibly complex and cannot easily be formalized by hand.
In this work, we propose a general framework to estimate the values of
a human given its behavior.

Keywords: Value learning · Inverse reinforcement learning · Friendly
AI · Safe AGI

1 Introduction

Intelligence cannot be defined in the absence of goals1. Superintelligent machines
will pursue some goals and if their goals are very different than those of humans’,
the results will likely be catastrophic. Therefore, it is of great importance to align
AGI goals with human values, at least to some extent. However, this is not an
easy task. Humans have complex value systems [9] and it is shown that humans
are unable to determine what they value [4]. Therefore, crafting utility functions
for AGI systems that encapsulate human values by hand is not viable.

Hibbard [2] suggests that learning models of humans is a viable solution for
avoiding unintended AI behaviors. The agent architecture Hibbard suggests asks
modeled humans to assign utility values to outcomes. However, a shortcoming
of this approach is that what human models say they value and what they value
can still be different.

Another possible approach is to directly estimate what humans find reward-
ing. Ng [5] suggests that rewards are more compact and robust descriptions of
intended behaviors than full policies or models of agents. In fact, for imitation
learning, it is argued that just learning the policy of the teacher is more lim-
ited and hence less powerful than extracting the teacher’s reward function and
then calculating a policy. Furthermore, once we obtain a reward function, we
can modify it to alter the agent’s behavior, which is easier than modifying the
full policy of the agent directly. Soares [7] suggests using methods similar to
inverse reinforcement learning (IRL) for learning human values. However, the
current IRL methods are limited and cannot be used for inferring human values

1 We use goals, rewards, utilities, and values interchangeably in this work.

c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 152–155, 2015.
DOI: 10.1007/978-3-319-21365-1 16

Inferring Human Values for Safe AGI Design 153

because of their long list of assumptions. For instance, in most IRL methods
the environment is usually assumed to be stationary, fully observable, and some-
times known; the policy of the agent is assumed to be stationary and optimal
or near-optimal; the reward function is assumed to be stationary as well; and
the Markov property is assumed. Such assumptions are reasonable for limited
motor control tasks such as grasping and manipulation; however, if our goal is
to learn high-level human values, they become unrealistic. For instance, assum-
ing that humans have optimal policies discards the possibility of superintelligent
machines and ignores the entire cognitive biases literature. In this work, we pro-
pose a general framework for inferring the reward mechanisms of arbitrary agents
that relaxes all the aforementioned assumptions. Through this work, we do not
only intend to offer a potential solution to the problem of inferring human values
(i.e., the so-called Value Learning Problem [7]), but also stimulate AI researchers
to investigate the theoretical limits of IRL.

2 Inferring Human Values

As in Hutter’s work [3], we model an agent by a program pA that determines
the policy of the agent when run on a universal Turing machine (UTM), and the
environment by an arbitrary function. In Hutter’s AIXI model [3], the rewards
are computed by the environment. We assume that rewards are computed by a
distinct process called the reward mechanism, which we model by the program
pR. This is a reasonable assumption from a neuroscientific point of view because
all reward signals are generated by brain areas such as the striatum. We model
the agent, the reward mechanism, and the environment as processes that work in
synchronization and in a sequential manner as illustrated in Figure 1. pA reads
rt ∈ [rmin, rmax] and ot ∈ O and writes at ∈ A, where O and A are sufficiently
large and finite observation and action spaces. Then, the environment reads at
and writes ot+1. Subsequently, pR reads ot+1 and writes rt+1 and so on. Now
our problem reduces to finding the most probable pR given the entire action-
observation history a1o1a2o2 . . . anon.

Solomonoff [8] proposed the universal prior M(x) as the probability of a
UTM outputting a string with the prefix x. Formally, M(x) :=

∑
p:U(p)=x∗ 2−l(p)

is the universal prior where l(p) is the length of the program p, U(p) is the output
of a UTM that simulates p, and x∗ is a string with the prefix x. Hutter extended
the definition of universal prior to programs, and defined a universal prior over
programs as m(p) := 2−l(p) [3]. Similarly, by assuming the independence of
prior probabilities of pR and pA, we can get their joint prior as m(pA, pR) =
2−(l(pA)+l(pR)). Then, we can obtain the probability of pR being the true reward
generating program given an action-observation history as:

m(pR||a1:n, o1:n) =
∑

pA:pA(pR(o1:n),o1:n)=a1:n

2−(l(pR)+l(pA)) (1)

where a1:n := a1a2 . . . an, o1:n := o1o2 . . . on, and pR(o1:n) = r1r2 . . . rn. It
should be noted that

∑
pR

m(pR||a1:n, o1:n) �= 1 and the true probability measure

154 C.E. Sezener

Fig. 1. The interaction between the agent, the environment, and the reward mechanism

can be obtained via normalization. We also assume that the agent cannot access
the reward mechanism directly, but can only sample it. If the agent has access
to the reward mechanism, pA(pR(o1:n), o1:n) in (1) should be replaced with
pA(pR(o1:n), pR, o1:n).

Equation 1 provides a simple way to to estimate reward mechanisms of arbi-
trary agents with a very few assumptions. We do not assume Markov property,
fully-observable and stationary environments, optimal and stationary policies, or
stationary rewards. However, this degree of generality comes with high computa-
tional costs. Due to the infinite loop over the programs and the existence of non-
halting programs, this solution is incomputable. Nevertheless, one can obtain
approximations of (1) or use different complexity measures (such as Schmidhu-
ber’s Speed Prior [6]) in order to obtain computable solutions.

It should also be noted that even though we assumed deterministic agents
and reward mechanisms and fully-observable action-observation histories, these
assumption can be relaxed and a framework that assumes probabilistic agent
and reward functions and noisy action-observation histories can be developed.

3 Discussion

In principle if we can capture the actions and observations of a human with high
accuracy, we might be able to estimate its values. This is a potential solution for
the Value Learning Problem [7]. For example, we can infer the values of some
individuals who are ‘good’ members of the society and possess ‘desirable’ values.
Then we can preprocess the inferred values and give a mixture of them to an
AGI system as its reward mechanism. The preprocessing stage would involve
weeding out states/activities that are valuable for biological agents but not for
robots such as eating2. How to achieve this is an open problem.

2 This should be done such that the robot will not value consuming food but will value
providing humans with food.

Inferring Human Values for Safe AGI Design 155

Dewey [1] suggests an AGI architecture that replaces the rewards in AIXI
with a utility function as well. The proposed agent can either be provided with a
hand-crafted utility function or a set of candidate, weighted utility functions. If
the latter is the case, the agent can improve its utility function by adjusting the
weights. However, it is not specified how the agent should or can do the adjust-
ments. Furthermore, the proposed agent improves its utility function through
interacting with the environment, whereas we suggest that human values should
be estimated and processed first and then be provided to an AGI system.

Acknowledgments. I would like to thank Erhan Oztop for helpful discussions and
comments and the anonymous reviewers for their suggestions.

References

1. Dewey, D.: Learning what to value. In: Schmidhuber, J., Thórisson, K.R., Looks,
M. (eds.) AGI 2011. LNCS, vol. 6830, pp. 309–314. Springer, Heidelberg (2011)

2. Hibbard, B.: Avoiding unintended AI behaviors. In: Bach, J., Goertzel, B., Iklé, M.
(eds.) AGI 2012. LNCS, vol. 7716, pp. 107–116. Springer, Heidelberg (2012)

3. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algo-
rithmic Probability. Springer, Berlin (2005)

4. Muehlhauser, L., Helm, L.: The singularity and machine ethics. In: Eden, A.H.,
Moor, J.H., Sraker, J.H., Steinhart, E. (eds.) Singularity Hypotheses, pp. 101–126.
Springer, Heidelberg (2012). The Frontiers Collection

5. Ng, A.Y., Russell, S.J.: Algorithms for inverse reinforcement learning. In: Proceed-
ings of the Seventeenth International Conference on Machine Learning, ICML 2000,
pp. 663–670. Morgan Kaufmann Publishers Inc., San Francisco (2000)

6. Schmidhuber, J.: The speed prior: a new simplicity measure yielding near-optimal
computable predictions. In: Kivinen, J., Sloan, R.H. (eds.) COLT 2002. LNCS
(LNAI), vol. 2375, p. 216. Springer, Heidelberg (2002)

7. Soares, N.: The value learning problem. Tech. rep., Machine Intelligence ResearchIn-
stitute, Berkeley, CA (2015)

8. Solomonoff, R.: A formal theory of inductive inference. part i. Information and
Control 7(1), 1–22 (1964)

9. Yudkowsky, E.: Complex value systems in friendly AI. In: Schmidhuber, J.,
Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS, vol. 6830, pp. 388–393. Springer,
Heidelberg (2011)

Two Attempts to Formalize Counterpossible
Reasoning in Deterministic Settings

Nate Soares(B) and Benja Fallenstein

Machine Intelligence Research Institute, Berkeley, USA
{nate,benja}@intelligence.org

Abstract. This paper motivates the study of counterpossibles (logically
impossible counterfactuals) as necessary for developing a decision theory
suitable for generally intelligent agents embedded within their environ-
ments. We discuss two attempts to formalize a decision theory using
counterpossibles, one based on graphical models and another based on
proof search.

Keywords: Decision theory · Counterpossibles · Logical counterfactu-
als · CDT · UDT

1 Introduction

What does it mean to “make good decisions”? To formalize the question, it
is necessary to precisely define a process that takes a problem description and
identifies the best available decision (with respect to some set of preferences1).
Such a process could not be run, of course; but it would demonstrate a full
understanding of the question.

The difficulty of this question is easiest to illustrate in a deterministic setting.
Consider a deterministic decision procedure embedded within a deterministic
environment (e.g., an algorithm operating in a virtual world). There is exactly
one action that the decision procedure is going to select. What, then, “would
happen” if the decision procedure selected a different action instead? At a glance,
this question seems ill-defined, and yet, this is the problem faced by a decision
procedure embedded within an environment.

Philosophers have studied candidate procedures for quite some time, under
the name of decision theory. The investigation of what is now called decision
theory stretches back to Pascal and Bernoulli; more recently decision theory has
been studied by Lehmann [7], Lewis [9], Jeffrey [6], Pearl [12] and many others.
Unfortunately, the standard answers from the literature do not allow for the
description of an idealized decision procedure, as discussed in Section 2. Section 3
introduces the notion of “counterpossibles” (logically impossible counterfactuals)
1 For simplicity, assume von Neumann-Morgenstern rational preferences [13], that is,

preferences describable by some utility function. The problems discussed in this
paper arise regardless of how preferences are encoded.

c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 156–165, 2015.
DOI: 10.1007/978-3-319-21365-1 17

Two Attempts to Formalize Counterpossible Reasoning 157

and motivates the need for a decision theory using them. It goes on to discuss
two attempts to formalize such a decision theory, one using graphical models
and another using proof search. Section 4 concludes.

2 Counterfactual Reasoning

The modern academic standard decision theory is known as “causal decision
theory,” or CDT. It is used under the guise of “potential outcomes” in statistics,
economics and game theory, and it is used implicitly by many modern narrow
AI systems under the guise of “decision networks.”

Pearl’s calculus of interventions on causal graphs [12] can be used to formalize
CDT. This requires that the environment be represented by a causal graph in
which the agent’s action is represented by a single node. This formalization of
CDT prescribes evaluating what “would happen” if the agent took the action a
by identifying the agent’s action node, cutting the connections between it and
its causal ancestors, and setting the output value of that node to be a. This is
known as a causal intervention. The causal implications of setting the action
node to a may then be evaluated by propagating this change through the causal
graph in order to determine the amount of utility expected from the execution of
action a. The resulting modified graph is a “causal counterfactual” constructed
from the environment.

Unfortunately, causal counterfactual reasoning is unsatisfactory, for two rea-
sons. First, CDT is underspecified: it is not obvious how to construct a causal
graph in which the agent’s action is an atomic node. While the environment
can be assumed to have causal structure, a sufficiently accurate description of
the problem would represent the agent as arising from a collection of transis-
tors (or neurons, or sub-atomic particles, etc.). While it seems possible in many
cases to draw a boundary around some part of the model which demarcates “the
agent’s action,” this process may become quite difficult in situations where the
line between “agent” and “environment” begins to blur, such as scenarios where
the agent distributes itself across multiple machines.

Secondly, CDT prescribes low-scoring actions on a broad class of decision
problems where high scores are possible, known as Newcomblike problems [11].
For a simple example of this, consider a one-shot Prisoner’s Dilemma played by
two identical deterministic agents. Each agent knows that the other is identical.
Agents must choose whether to cooperate (C) or defect (D) without prior coor-
dination or communication. If both agents cooperate, they both achieve utility
2. If both defect, they both achieve utility 1. If one cooperates and the other
defects, then the defector achieves 3 utility while the cooperator achieves 0.2

2 This scenario (and other Newcomblike scenarios) are multi-agent scenarios. Why use
decision theory rather than game theory to evaluate them? The goal is to define a
procedure which reliably identifies the best available action; the label of “decision
theory” is secondary. The desired procedure must identify the best action in all set-
tings, even when there is no clear demarcation between “agent” and “environment.”
Game theory informs, but does not define, this area of research.

158 N. Soares and B. Fallenstein

The actions of the two agents will be identical by assumption, but neither
agent’s action causally impacts the other’s: in a causal model of the situation,
the action nodes are causally separated, as in Figure 1. When determining the
best action available to the left agent, a causal intervention changes the left node
without affecting the right one, assuming there is some fixed probability p that
the right agent will cooperate independent of the left agent. No matter what
value p holds, CDT reasons that the left agent gets utility 2p if it cooperates
and 2p + 1 if it defects, and therefore prescribes defection [8].

A O

U

Fig. 1. The causal graph for a one-shot Prisoner’s Dilemma. A represents the agent’s
action, O represents the opponent’s action, and U represents the agent’s utility.

Indeed, many decision theorists hold that it is in fact rational for an agent to
defect against a perfect copy of itself in a one-shot Prisoner’s Dilemma, as after
all, no matter what the opponent does, the agent does better by defecting [5,9].
Others object to this view, claiming that since the agents are identical, both
actions must match, and mutual cooperation is preferred to mutual defection,
so cooperation is the best available action [1]. Our view is that, in the moment,
it is better to cooperate with yourself than defect against yourself, and so CDT
does not reliably identify the best action available to an agent.

CDT assumes it can hold the action of one opponent constant while freely
changing the action of the other, because the actions are causally separated.
However, the actions of the two agents are logically connected; it is impossible for
one agent to cooperate while the other defects. Causal counterfactual reasoning
neglects non-causal logical constraints.

It is a common misconception that Newcomblike scenarios only arise when
some other actor is a perfect predictor (perhaps by being an identical copy).
This is not the case: while Newcomblike scenarios are most vividly exemplified
by situations involving perfect predictors, they can also arise when other actors
have only partial ability to predict the agent [10]. For example, consider a situ-
ation in which an artificial agent is interacting with its programmers, who have
intimate knowledge of the agent’s inner workings. The agent could well find itself
embroiled in a Prisoner’s Dilemma with its programmers. Let us assume that
the agent knows the programmers will be able to predict whether or not it will
cooperate with 90% accuracy. In this case, even though the programmers are
imperfect predictors, the agent is in a Newcomblike scenario.

In any case, the goal is to formalize what is meant when asking that agents
take “the best available action.” Causal decision theory often identifies the best

Two Attempts to Formalize Counterpossible Reasoning 159

action available to an agent, but it sometimes fails in counter-intuitive ways, and
therefore, it does not constitute a formalization of idealized decision-making.

3 Counterpossibles

Consider the sort of reasoning that a human might use, faced with a Prisoner’s
Dilemma in which the opponent’s action is guaranteed to match our own:

The opponent will certainly take the same action that I take. Thus, there
is no way for me to exploit the opponent, and no way for the opponent
to exploit me. Either we both cooperate and I get $2, or we both defect
and I get $1. I prefer the former, so I cooperate.

Contrast this with the hypothetical reasoning of a reasoner who, instead, reasons
according to causal counterfactuals:

There is some probability p that the opponent defects. (Perhaps I can
estimate p, perhaps not.) Consider cooperating. In this case, I get $2
if the opponent cooperates and $0 otherwise, for a total of $2p. Now
consider defecting. In this case I get $3 if the opponent cooperates and
$1 otherwise, for a total of $2p + 1. Defection is better no matter what
value p takes on, so I defect.

Identifying the best action requires respecting the fact that identical algorithms
produce identical outputs. It is not the physical output of the agent’s hardware
which must be modified to construct a counterfactual, it is the logical output of
the agent’s decision algorithm. This insight, discovered independently by Dai [4]
and Yudkowsky [14], is one of the main insights behind “updateless decision
theory” (UDT).

UDT identifies the best action by evaluating a world-model which represents
not only causal relationships in the world, but also the logical effects of algo-
rithms upon the world. In a symmetric Prisoner’s Dilemma, a reasoner following
the prescriptions of UDT might reason as follows:

The physical actions of both myself and my opponent are determined
by the same algorithm. Therefore, whatever action this very decision
algorithm selects will be executed by both of us. If this decision algorithm
selects “cooperate” then we’ll both cooperate and get a payoff of 2. If
instead this decision algorithm selects “defect” then we’ll both defect and
get a payoff of 1. Therefore, this decision algorithm selects “cooperate.”

Using reasoning of this form, a selfish agent acting according to the prescriptions
of UDT cooperates with an identical agent on a symmetric one-shot Prisoner’s
Dilemma, and achieves the higher payoff.3

3 The agent does not care about the utility of its opponent. Each agent is maximizing
its own personal utility. Both players understand that the payoff must be symmetric,
and cooperate out of a selfish desire to achieve the higher symmetric payoff.

160 N. Soares and B. Fallenstein

Evaluating a counterfactual outcome in which the decision algorithm behaves
differently requires evaluating a logically impossible possibility, known as a
“counterpossible.”4 As noted by Cohen [3], “the problem of counterpossible con-
ditionals remains very near the center of philosophy.”

To our knowledge, there does not yet exist a formal method of evaluating
counterpossibles that is suitable for use in decision theory. This paper discusses
two early attempts to formalize a decision theory which makes use of counter-
possible reasoning.

3.1 Counterpossibles Using Graphical Models

Following Pearl’s formalization of CDT (2000), one might be tempted to for-
malize UDT using a graphical approach. For example, one might attempt to
construct a “logical graph” of the one-shot prisoner’s dilemma, where each algo-
rithm has its own “logical node,” as in Figure 2. To do so, the graphical rep-
resentation of the environment must encode not only causal relations, but also
logical relations.

A()

A O

U

Fig. 2. The logical graph for a symmetric Prisoner’s Dilemma where both the agent’s
action A and the opponent’s action O are determined by the algorithm A()

Given a probabilistic graphical model of the world representing both logical and
causal connections, and given that one of the nodes in the graph corresponds to
the agent’s decision algorithm, and given some method of propagating updates
through the graph, UDT can be specified in a manner very similar to CDT. To
identify the best action available to an agent, iterate over all available actions a ∈
A, change the value of the agent’s algorithm node in the graph to a, propagate
the update, record the resulting expected utility, and return the action a leading
to the highest expected utility. There are two obstacles to formalizing UDT in
this way.

4 Some versions of counterpossibles are quite intuitive; for instance, we could imagine
how the cryptographic infrastructure of the Internet would fail if we found that
P = NP, and it seems as if that counterfactual would still be valid even once we
proved that P �= NP. And yet by the Principle of Explosion, literally any consequence
can be deduced from a falsehood, and thus no counterfactual could be “more valid”
than any other in a purely formal sense.

Two Attempts to Formalize Counterpossible Reasoning 161

The first obstacle is that UDT (like CDT) is underspecified, pending a formal
description of how to construct such a graph from a description of the environ-
ment (or, eventually, from percepts). However, constructing a graph suitable
for UDT is significantly more difficult than constructing a graph suitable for
CDT. While both require decreasing the resolution of the world model until the
agent’s action (in CDT’s case) or algorithm (in UDT’s case) is represented by a
single node rather than a collection of parts, the graph for UDT further requires
some ability to identify and separate “algorithms” from the physical processes
that implement them. How is UDT supposed to recognize that the agent and its
opponent implement the same algorithm? Will this recognition still work if the
opponent’s algorithm is written in a foreign programming language, or otherwise
obfuscated in some way?

A() X

A O

U

Fig. 3. The desired logical graph for the one-shot Prisoner’s Dilemma where agent
A acts according to A(), and the opponent either mirrors A() or does the opposite,
according to the random variable X

Even given some reliable means of identifying copies of an agent’s decision algo-
rithm in the environment, this may not be enough to specify a satisfactory
graph-based version of UDT. To illustrate, consider UDT identifying the best
action available to an agent playing a Prisoner’s Dilemma against an opponent
that does exactly the same thing as the agent 80% of the time, and takes the
opposite action otherwise. It seems UDT should reason according to a graph as
in Figure 3, in which the opponent’s action is modeled as dependent both upon
the agent’s algorithm and upon some source X of randomness. However, gener-
ating logical graphs as in Figure 3 is a more difficult task than simply detecting
all perfect copies of the an algorithm in an environment.

Secondly, a graphical model capable of formalizing UDT must provide some
way of propagating “logical updates” through the graph, and it is not at all
clear how these logical updates could be defined. Whenever one algorithm’s
“logical node” in the graph is changed, how does this affect the logical nodes
of other algorithms? If the agent’s algorithm selects the action a, then clearly
the algorithm “do what the agent does 80% of the time and nothing otherwise”
is affected. But what about other algorithms which correlate with the agent’s
algorithm, despite not referencing it directly? What about the algorithms of
other agents which base their decisions on an imperfect model of how the agent
will behave? In order to understand how logical updates propagate through a

162 N. Soares and B. Fallenstein

logical graph, we desire a better notion of how “changing” one logical fact can
“affect” another logical fact.

3.2 Counterpossibles Using Proof Search

Given some method of reasoning about the effects of A() = a on any other algo-
rithm, a graphical formalization of UDT is unnecessary: the environment itself is
an algorithm which contains the agent, and which describes how to compute the
agent’s expected utility! Therefore, a formal understanding of “logical updating”
could be leveraged to analyze the effects of A() = a upon the environment; to
evaluate the action a, UDT need only compute the expected utility available in
the environment as modified by the assumption A() = a.

This realization leads to the idea of “proof-based UDT,” which evaluates
actions by searching for formal proofs, using some mathematical theory such as
Peano Arithmetic (PA), of how much utility is attained in the world-model if
A() selects the action a. As a bonus, this generic search for formal proofs obvi-
ates the need to identify the agent in the environment: given an environment
which embeds the agent and a description of the agent’s algorithm, no matter
how the agent is embedded in the environment, a formal proof of the outcome
will implicitly identify the agent and describe the implications of that algorithm
outputting a. While that proof does the hard work of propagating counterpos-
sibles, the high-level UDT algorithm simply searches all proofs, with no need to
formally locate the agent. This allows for an incredibly simple specification of
updateless decision theory, given below.

First, a note on syntax: Square quotes (� · �) denote sentences encoded as
objects that a proof searcher can look for. This may be done via e.g., a Gödel
encoding. Overlines within quotes denote “dequotes,” allowing the reference of
meta-level variables. That is, if at some point in the algorithm a := 3 and o := 10,
then the string �A() = a → E() = o� is an abbreviation of �A() = 3 → E() =
10�. The arrow �→� denotes logical implication.

The algorithm is defined in terms of a finite set A of actions available to the
agent and a finite sorted list O of outcomes that could be achieved (ordered from
best to worst). The proof-based UDT algorithm takes a description �E()� of the
environment and �A()� of the agent’s algorithm. E() computes an outcome, A()
computes an action. It is assumed (but not necessary) that changing the output
of A() would change the output of E().

Algorithm 1. Proof-based UDT
Function UDT(�E()�, �A()�):

Sort the set of outcomes O in nonincreasing preference order;
for outcome o ∈ O do

for action a ∈ A do
if PA proves �A() = a → E() = o� then return a ;

return the lexicographically first action in A

Two Attempts to Formalize Counterpossible Reasoning 163

To demonstrate how the algorithm works, consider UDT evaluating the
actions available to a UDT agent in a symmetric prisoner’s dilemma. The list
of outcomes is O := [3, 2, 1, 0] according to the cases where the agent exploits,
mutually cooperates, mutually defects, and is exploited, respectively. The set of
actions is A := {C,D } according to whether the agent cooperates or defects.
To identify the best action, UDT iterates over outcomes in order of preference,
starting with 3. For each outcome, it iterates over actions; say it first considers
C. In the case that A() = C, the agent cannot achieve the outcome 3, so there
is no proof of �A() = C → E() = 3�5. Next, UDT considers D. If the agent
defects, then so does the opponent, so it would get outcome 1, and so there is
no proof of �A() = D → E() = 3�. So UDT moves on to the next outcome, 2,
and considers C. In this case, if the agent cooperates then so will the opponent,
so there is a proof of �A() = C → E() = 2�, and so UDT selects C.

While this proof-based formalism of UDT is extremely powerful, it is not
without its drawbacks. It requires a halting oracle in order to check whether
proofs of the statement �A() = a → E() = o� exist; but this is forgivable, as it
is meant to be a definition of what it means to “choose the best action,” not a
practical algorithm. However, this formalization of UDT can only identify the
best action if there exists a proof that executing that action leads to a good
outcome. This is problematic in stochastic environments, and in any setting
where PA is not a strong enough theory to find the appropriate proofs (which
may well occur if agents in the environment are themselves searching for proofs
about what UDT will prescribe, in order to guess the behavior of agents which
act according to UDT).

There is also larger problem facing this formalism of UDT: even in sim-
ple examples, the algorithm is not guaranteed to work. Consider a case where
the outcomes are O := [3, 2, 1] corresponding in E() to the actions A :=
{ High, Med, Low }. If we ask proof-based UDT to identify the best available action
to the agent A() := const Low, and it considers the action Med before the action
High, then it will misidentify Med as the best available action! This happens
because there is a proof that A() �= Med, and so A() = Med → E() = 3 by the
principle of explosion. (In fact, this sort of thing can happen whenever there is
any action that is provably not taken.)

As discussed by BensonspsTilsen [2], this problem is averted in the important
case A() = UDT(�E()�,�A()�) (this fixed point exists, by Kleene’s second recur-
sion theorem). In this case, UDT does in fact get the best provably attainable
outcome. This follows from the consistency of PA: imagine that a is a action such
that PA proves A() �= a. Then PA proves that A() = a implies the first outcome
in O (which has the highest possible preference), and so UDT must either return
a or return another action which implies the first outcome in O—but returning
a would be a contradiction. Therefore, either UDT will return an action which

5 One must be careful with this sort of reasoning, for if PA could prove that A() = D
then it could also prove A() = C → E() = 3 by the principle of explosion. However,
in this case, that sort of “spurious proof” is avoided by technical reasons discussed
by BensonspsTilsen [2].

164 N. Soares and B. Fallenstein

truly leads to the highest outcome, or there is no action a such that PA can prove
A() �= a, and thus the only proofs found will be genuine implications. Even so,
the apparent deficits of UDT at analyzing other algorithms are troubling, and
it is not obvious that reasoning about the logical implications of A() = a is the
right way to formalize counterpossible reasoning.

A better understanding of counterpossible reasoning may well be necessary in
order to formalize UDT in a stochastic setting, where it maximizes expected util-
ity instead of searching for proofs of a certain outcome. Such an algorithm would
evaluate actions conditioned on the logical fact A() = a, rather than searching
for logical implications. How does one deal with the case where A() �= a, so that
A() = a is a zero-probability event? In order to reason about expected utility
conditioned on A() = a, it seems necessary to develop a more detailed under-
standing of counterpossible reasoning. If one deterministic algorithm violates the
laws of logic in order to output something other than what it outputs, then how
does this affect other algorithms? Which laws of logic, precisely, are violated,
and how does this violation affect other logical statements?

It is not clear that these questions are meaningful, nor even that a satisfactory
general method of reasoning about counterpossibles actually exists. It is plau-
sible that a better understanding of reasoning under logical uncertainty would
shed some light on these issues, but a satisfactory theory of reasoning under
logical uncertainty does not yet exist.6 Regardless, it seems that some deeper
understanding of counterpossibles is necessary in order to give a satisfactory
formalization of updateless decision theory.

4 Conclusion

The goal of answering all these questions is not to identify practical algorithms,
directly. Rather, the goal is to ensure that the problem of decision-making is well
understood: without a formal description of what is meant by “good decision,” it
is very difficult to justify high confidence in a practical heuristic that is intended
to make good decisions.

It currently looks like specifying an idealized decision theory requires for-
malizing some method for evaluating counterpossibles, but this problem is a
difficult one, and counterpossible reasoning is an open philosophical problem.
While these problems have remained open for some time, our examination in
the light of decision-theory, with a focus on concrete algorithms, has led to some
new ideas. We are optimistic that further decision theory research could lead
to significant progress toward understanding the problem of idealized decision-
making.

6 A logically uncertain reasoner can know both the laws of logic and the source code
of a program without knowing what the program outputs.

Two Attempts to Formalize Counterpossible Reasoning 165

References

1. Bar-Hillel, M., Margalit, A.: Newcomb’s paradox revisited. British Journal for the
Philosophy of Science 23(4), 295–304 (1972). http://www.jstor.org/stable/686730

2. Benson-Tilsen, T.: UDT with known search order. Tech. Rep. 2014–4, Machine
Intelligence Research Institute (2014).
http://intelligence.org/files/UDTSearchOrder.pdf

3. Cohen, D.: On what cannot be. In: Dunn, J., Gupta, A. (eds.) Truth or Conse-
quences, pp. 123–132. Kluwer (1990)

4. Dai, W.: Towards a new decision theory. Less Wrong (2009). http://lesswrong.
com/lw/15m/towards a new decision theory/

5. Gibbard, A., Harper, W.L.: Counterfactuals and two kinds of expected utility. In:
Hooker, C.A., Leach, J.J., McClennen, E.F. (eds.) Foundations and Applications
of Decision Theory, The Western Ontario Series in Philosophy of Science, vol. 13a.
D. Reidel (1978)

6. Jeffrey, R.C.: The Logic of Decision, 2 edn. Chicago University Press (1983)
7. Lehmann, E.L.: Some principles of the theory of testing hypotheses. Annals of

Mathematical Statistics 21(1), 1–26 (1950)
8. Lewis, D.: Prisoners’ dilemma is a Newcomb problem. Philosophy & Public Affairs

8(3), 235–240 (1979). http://www.jstor.org/stable/2265034
9. Lewis, D.: Causal decision theory. Australasian Journal of Philosophy 59(1), 5–30

(1981)
10. Lewis, D.: Why ain’cha rich? Noûs 15(3), 377–380 (1981).

http://www.jstor.org/stable/2215439
11. Nozick, R.: Newcomb’s problem and two principles of choice. In: Rescher, N. (ed.)

Essays in Honor of Carl G. Hempel, pp. 114–146. No. 24 in Synthese Library, D.
Reidel (1969)

12. Pearl, J.: Causality, 1 edn. Cambridge University Press (2000)
13. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior, 1

edn. Princeton University Press (1944)
14. Yudkowsky, E.: Timeless decision theory. Tech. rep., The Singularity Institute, San

Francisco, CA (2010). http://intelligence.org/files/TDT.pdf

http://www.jstor.org/stable/686730
http://intelligence.org/files/UDTSearchOrder.pdf
http://lesswrong.com/lw/15m/towards_a_new_decision_theory/
http://lesswrong.com/lw/15m/towards_a_new_decision_theory/
http://www.jstor.org/stable/2265034
http://www.jstor.org/stable/2215439
http://intelligence.org/files/TDT.pdf

Bounded Cognitive Resources
and Arbitrary Domains

Abdul Rahim Nizamani2(B), Jonas Juel3,
Ulf Persson3, and Claes Stranneg̊ard1

1 Department of Philosophy, Linguistics and Theory of Science,
University of Gothenburg, Sweden and Department of Applied Information

Technology, Chalmers University of Technology, Gothenburg, Sweden
claes.strannegard@gu.se

2 Department of Applied Information Technology,
University of Gothenburg, Gothenburg, Sweden

abdulrahim.nizamani@gu.se
3 Department of Mathematical Sciences,

Chalmers University of Technology, Gothenburg, Sweden
ulf.persson@chalmers.se, jonas@juel.nu

Abstract. When Alice in Wonderland fell down the rabbit hole, she
entered a world that was completely new to her. She gradually explored
that world by observing, learning, and reasoning. This paper presents
a simple system Alice in Wonderland that operates analogously. We
model Alice’s Wonderland via a general notion of domain and Alice her-
self with a computational model including an evolving belief set along
with mechanisms for observing, learning, and reasoning. The system
operates autonomously, learning from arbitrary streams of facts from
symbolic domains such as English grammar, propositional logic, and
simple arithmetic. The main conclusion of the paper is that bounded
cognitive resources can be exploited systematically in artificial general
intelligence for constructing general systems that tackle the combinato-
rial explosion problem and operate in arbitrary symbolic domains.

Keywords: Autonomous agent · Bounded rationality · Arbitrary
domain

1 Introduction

Natural organisms have a remarkable ability to adapt to new environments.
Humans enter new environments – e.g., rainforests, deserts, cities – and survive.
They can learn any language, any game, any logic. Bees likewise enter new
environments – e.g., when a new beehive is deployed – and survive. They can
learn to recognize flowers visually and even – as we are discovering – by their
patterns of electrical fields [3] and even differentiate visually between vowels
and consonants in the Latin alphabet [5]. Microscopic crustaceans enter new

c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 166–176, 2015.
DOI: 10.1007/978-3-319-21365-1 18

Bounded Cognitive Resources and Arbitrary Domains 167

environments and survive: e.g., when an ocean wave hits the shore and so forms
a new ecosystem in a rock pool. Also crustaceans are capable of learning [18].

Artificial systems have not reached the same level of flexibility. No robots can
come to new environments – say, private homes – and do the laundry, wash the
dishes, clean up, make coffee. No robots can go to high school and learn natural
languages, mathematics, and logic so as to match an average school child.

One strategy for making artificial systems more flexible is to simulate human
cognition. Such an approach has been taken by Soar [8], ACT-R [1], NARS [17],
MicroPsi [2], OpenCog [4], and Sigma [11]. Turing proposed building artificial
systems that simulate children’s cognitive development [15]. Piaget writes that
children adapt to new information in one of two ways: by assimilation, in which
new information fits into existing knowledge structures; and accommodation, in
which new information causes new knowledge structures to form or old ones to
be modified [9].

This paper presents the system Alice in Wonderland, which is able to
operate autonomously across arbitrary symbolic and crisp domains. As the name
suggests, we take the Alice in Wonderland story as inspiration, modeling Won-
derland via a general notion of domain and Alice herself with a computational
model including an evolving belief set along with mechanisms for observing,
learning, and reasoning. The system functions with or without human interven-
tion, developing intelligence on the basis of random streams of facts taken from
arbitrary domains. The computational complexity of the system is restricted by
using a simple cognitive model with bounded cognitive resources.

The Alice in Wonderland system builds on theory borrowed from devel-
opmental psychology [16], along with bounded rationality [13], belief revision
[6], and inductive program synthesis [7,12]. Popper [10, p.261] provides a key
inspiration:

The growth of our knowledge is the result of a process closely resembling
what Darwin called ’natural selection’; that is, the natural selection of
hypotheses: our knowledge consists, at every moment, of those hypothe-
ses which have shown their (comparative) fitness by surviving so far in
their struggle for existence, a competitive struggle which eliminates those
hypotheses which are unfit.

The present paper improves on our previous work [14], since the system can
learn from arbitrary streams of observations and not only when being spoon-fed
with carefully selected examples. Sections 2–6 describe how Alice observes, rep-
resents knowledge, reasons, learns, and answers questions, respectively. Section 7
presents results and Section 8 offers some conclusions.

2 How Alice Makes Observations

Definition 1 (symbol). A symbol is a Unicode character.

Definition 2 (variable). A variable is a symbol belonging to the set {x,y,z}.

168 A.R. Nizamani et al.

Definition 3 (vocabulary). A vocabulary is a set of finite symbol strings.

Example 1. Here are vocabularies that can be used for arithmetic, propositional
logic, and English, respectively:

VA: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (digits), + (addition), * (multiplication), # (con-
catenation).

VP : p, q, r (propositional constants), � (truth), ⊥ (falsity), ¬ (negation), ∧
(conjunction), ∨ (disjunction), → (implication).

VE: # (concatenation), Alice, Stella, runs, plays, fast, along with all other
words appearing in a given English corpus.

Definition 4 (term). Let V be a vocabulary. A V -term is a finite ordered
labeled tree. Each node is labeled with an element of V . A V -term is open if
it has a node that is labeled with a variable and closed otherwise.

We follow common practice and write terms as strings, using parentheses and
other standard conventions for disambiguation.

Example 2. Here are examples of VA-terms, VP -terms, and VE-terms:

Arithmetic terms: 2*(3+4), 1#2, x*0
Logic terms: ¬⊥, x ∧ y, x ∨ �
English terms: Alice#plays, Stella#(runs#fast), OK

The operator # is used for concatenating elements, regardless of vocabulary: e.g.,
the number 12 is represented by the term 1#2 and the sentence Alice plays by
the term Alice#plays. That said, we will often, in this paper, omit the symbol
to facilitate reading. Note that we have imposed no type or arity restrictions
on the terms: a labeled tree such as 1(*) also qualifies as a VA-term.

Definition 5 (condition). A condition is an expression of the form t � t′ or
t �� t′, where t and t′ are V -terms, given some vocabulary V .

Definition 6 (fact). A fact is a condition both of whose terms are closed.

Example 3. Here are examples of facts: 6+6 � 12, 0 �� 1, ¬� � ⊥, � ∧ ⊥ �� �,
Stella runs fast� OK, runs �� OK.

The following definition of (symbolic) domain is adequate for our present pur-
poses, although more general definitions of this notion are clearly conceivable.

Definition 7 (domain). A domain is a set of facts.

Example 4. Here are examples of domains (certain details omitted):

Arithmetic domain: {t � t′ : t, t′ are VA terms such that t = t′}
Logic domain:

{t � t′ : t, t′ are VP terms such that t is a logical consequence of t′}
English domain:

{t � t′ : t, t′ are VE terms of some context-free fragment of English}

Bounded Cognitive Resources and Arbitrary Domains 169

Definition 8 (stream). Let D be a domain. A D-stream is a sequence of facts
F0, F1, . . ., where each Fi ∈ D.

Example 5. Here are examples of streams:

Arithmetic stream: 6+6 � 12, 0 �� 1, 23*4 � 92, . . .
Logic stream: ¬� � ⊥,⊥ �� �, p → (q → p) � �, . . .
English stream: Alice runs� OK, Stella runs� OK, runs �� OK, . . .

In the present context domains model Wonderland; streams model Alice’s obser-
vations of Wonderland.

3 How Alice Represents Knowledge

Definition 9 (rule). A rule is an expression of the form t � t′, t � t′, or
t �� t′, where t and t′ are terms.

Example 6. 0 �� 1, 2*2 � 4, Alice plays � OK, and x∨y � x are rules.

Definition 10 (purity). The rule t � t′ (t � t′) is pure if all variables of t′

appear in t.

Example 7. The rules x*0 � 0 and x∨� � � are pure, whereas 0 � x*0 and
� � x∨� are not.

Definition 11 (theory). A theory is a finite set of pure rules.

Example 8. Here are examples of theories:

Arithmetic theory: {2*2 � 4, x*0 � 0, x+y � y+x}
Logic theory: {x ∨ � � �, x → y � ¬x ∨ y, x ∨ y � x}
English theory: {Alice plays � OK, Alice � Stella, runs �� OK}

4 How Alice Reasons

Definition 12 (substitution). A substitution is a partial function σ that
assigns terms or labels to variables. The substitution σ can be applied to terms
by replacing variables at leaf nodes by terms and variables at non-leaves by labels
according to σ.

Example 9. ∅, {x = Alice}, and {x = 2, y = 3} are substitutions. If σ = {x =
2, y = 3}, then σ(x+y) = 2+3. Also, if σ = {x = raven}, then σ(x(hugin)) =
raven(hugin).

Definition 13 (context). A context is a term t containing exactly one occur-
rence of the symbol �, which labels a leaf of t.

Example 10. � + 5, � ∨ �, and � runs are contexts.

170 A.R. Nizamani et al.

If c is a context and t is a term, then c(t) is the result of replacing the unique
occurrence of � in c by t. If c =�, then c(t) = t.

Definition 14 (computation). Suppose T is a theory. A T -computation is a
sequence of closed terms (t1, . . . , tn) such that for all k such that 0 < k < n:

Shallow step. tk = σ(t) and tk+1 = σ(t′), for some σ and t � t′ ∈ T , or
Deep step. tk = c(σ(t)) and tk+1 = c(σ(t′)), for some c, σ, and t � t′ ∈ T

Examples of computations – written vertically and annotated with rules – are
given in figures 1–4.

(2+4)*(6+1)
2+4 � 6

6*(6+1)
6+1 � 7

6*7
6*7 � 42

42

0*12 x*y � y*x
12*0

x*0 � 0
0

Fig. 1. These computations can be interpreted as arithmetic computations with rules
that preserve equality

(p → q)∨p
x → y � ¬x ∨ y

(¬ p∨q)∨p
x∨y � y∨x

(q∨¬ p)∨p
(x∨y)∨z � x∨(y∨z)

q∨(¬ p∨p) ¬x ∨ x � �
q∨�

x∨� � ��

black(Hugin)
black(x) � raven(x)

raven(Hugin)

Fig. 2. These computations can be interpreted as logic computations with rules that
preserve or increase logical strength: i.e., goal-driven proofs. To prove (p → q)∨p, it
is sufficient to prove �; to prove black(Hugin), it is sufficient to prove raven(Hugin).

Stella plays
plays � crawls

Stella crawls
Stella � Alice

Alice crawls
Alice crawls � OK

OK

Fig. 3. This computation can be interpreted as a grammatical computation: specifi-
cally, derivations in formal grammar with rules that preserve grammatical equivalence.
The derivation shows that Stella plays is a grammatically correct sentence of English.

Definition 15 (bounded resources). The following arbitrarily defined con-
stants determine the boundaries of Alice’s cognitive resources.

– Long-term memory: LTMAlice = 200 (rules)
– Working memory: WMAlice = 8 (nodes)
– Computation depth: DepthAlice = 10 (steps)

Bounded Cognitive Resources and Arbitrary Domains 171

rev([6,7])
rev(x:xs) � rev(xs) ++ [x]

rev([7]) ++ [6]
rev(x:xs) � rev(xs) ++ [x]

(rev([]) ++ [7]) ++ [6]
rev([]) � []

([] ++ [7]) ++ [6]
[] ++ xs � xs

[7] ++ [6]
[x] ++ xs � x:xs

[7,6]

Fig. 4. This computation can be interpreted as a Haskell computation with rules that
preserve equality. The derivation shows how the function rev reverses the list [6,7].

Definition 16 (term size). Given term t, size(t) is the number of nodes of t,
excluding nodes labeled with #.

Definition 17 (bounded computation). A bounded T -computation is a T -
computation (t1, . . . , tn) with

– bounded length: n ≤ DepthAlice

– bounded width: size(ti) ≤ WMAlice, for each 1 ≤ i ≤ n

Intuitively, all bounded computations fit into a frame of height DepthAlice and
width WMAlice. The computations in figures 1–4 are all bounded.

Definition 18 (computability). We write t �T t′ if there is a T -computation
from t to t′ and t �∗

T t′ if there is a bounded T -computation from t to t′.

Theorem 1. The relation �∗
T is decidable.

Proof. All theories are finite by definition. Given the purity condition on rules,
only finitely many bounded T -computations beginning with any given closed
term t are possible. The bounded T -computations starting with t form a finitely
branching tree where each branch has a maximum length. Hence, the tree is
finite and �∗

T is decidable.

5 How Alice Learns

In this section we outline some of the system’s basic learning mechanisms. Several
learning mechanisms, based e.g. on rule viability and rule reliability are omitted
for reasons of space.

Definition 19 (fitness). The fitness of theory T on a finite non-empty domain
D is the number

Fitness(T,D) =
card({t � t′ ∈ D : t �∗

T t′} ∪ {t �� t′ ∈ D : t ��∗
T t′})

card(D)
.

Example 11. Given D = {2*0 � 0, 3*0 � 0, 1 �� 0}, the following holds:

– Fitness({2*0 � 0},D) = 2/3
– Fitness({x � 0},D) = 2/3
– Fitness({x*0 � 0},D) = 1

172 A.R. Nizamani et al.

Definition 20 (successor). Theory T ′ is a successor of T if T ′ − T contains
at most one rule.

Example 12. Any subset of T ∪ {t � t′} or T ∪ {t �� t′} is a successor of T .

Definition 21 (consistency). Theory T is consistent if t �� t′ ∈ T implies
t ��∗

T t′.

Alice adapts to the stream F0, F1, . . . by forming a sequence of theories T0, T1, . . .
that ideally satisfies limn→∞ Fitness(Tn, {Fk : k ≤ n}) = 1. Theory Tn+1 is a
consistent successor of Tn that contains at most LTMAlice rules. Alice defines
Tn+1 using one of two mechanisms:

Exogenic update. Define Tn+1 based on Fn. If Fn = t � t′ and t ��∗
Tn

t′, add
a rule so that t �∗

Tn+1
t′ if prioritized. If Fn = t �� t′ and t �∗

Tn
t′, remove

one or more rules so that t ��∗
Tn+1

t′. Add Fn as a rule (either with � or �
depending on symmetry) if prioritized.

Endogenic update. Define Tn+1 based on Tn. Check open rules and if prior-
itized, add open rule R with the properties that (i) several closed instances
of R are bounded-computable in Tn and (ii) no small counterexample to R
is bounded-computable in Tn.

If card(Tn) = AliceLTM , then no new rule can be added to Tn+1 until some old
rule has been removed. Preference orders are used for determining which rules
should be added to or removed from Tn. Update mechanisms are invoked as
described in Table 1. Table 2 gives an example of a learning process.

Table 1. Criteria for selecting update mechanism depending on Fn and �∗
Tn

Fn = t � t′ Fn = t �� t′

t �∗
Tn

t′ Endogenic update Exogenic update
t ��∗

Tn
t′ Exogenic update Endogenic update

6 How Alice Solves Problems

Definition 22 (closed problem). A closed problem is a closed term t. A
solution to closed problem t with respect to T is closed term t′ such that t �∗

T t′,
where t′ must be minimal in the sense that t �∗

T t′′ implies size(t′′) ≥ size(t′).

Definition 23 (open problem). An open problem is a finite set of open con-
ditions. A solution to open problem P with respect to T is a substitution σ such
that Fitness(T, σ(P)) = 1.

Examples of such problems and solutions (w.r.t. an unspecified background the-
ory) are given in tables 3–4. For problem-solving, the system uses exhaustive search
among bounded computations together with a few simple heuristic principles.

Bounded Cognitive Resources and Arbitrary Domains 173

Table 2. An example learning process, with endogenic and exogenic updates

Fact Theory update

2*0 � 0 Add 2*0 � 0.

3*0 � 0 Add 3*0 � 0.

2*0 � 0 Add x � 0.

1 �� 0 Remove x � 0. Add 1 �� 0.

2*(3*0) � 0 Add x*0 � 0.

75*0 � 0 Do nothing.

0*0 � 0 Add 0*0 � 0.

1*1 � 1 Add 1*1 � 1.

1*1 � 1 Add x*x � x.

2*2 �� 2 Remove x*x � x. Add 2*2 �� 2.

5+2 � 7 Add 5+2 � 7.

23 �� 45 Do nothing.

f(0) � 5 Add f(0) � 5.

f(1) � 7 Add f(1) � 7.

f(1) � 7 Add f(x+1) � f(x)+2.

Alice crawls � OK Add Alice crawls � OK.

Alice runs � OK Add runs � crawls.

Table 3. Closed problems with examples of solutions

Closed problem Solution

13+4 17

(p → q) ∨ p �
Stella crawls OK

f(2) 9

7 Results

The Alice in Wonderland system consists of around 5,000 lines of Haskell
code, modeling Wonderland as unknown domain D and Alice’s belief set at time
n as theory Tn. Alice starts with theory T0, which is empty by default. At any
time n, the system can be in learning or inquiry mode, as determined by the
human operator:

Learning Mode. Alice receives fact Fn ∈ D. Alice learns from Fn and updates
her theory to Tn+1.

Inquiry Mode. Alice receives an open or closed problem, Pn. Alice outputs a
solution to Pn or reports failure and makes Tn+1 = Tn.

In learning mode, Fn could come from any source: e.g. sensors, text file, or
human entry. For purposes of illustration, predefined streams can be chosen
from a dropdown menu. In inquiry mode, Pn is entered by the human operator.

174 A.R. Nizamani et al.

Table 4. Open problems with examples of solutions

Open problem Solution

x+4 � 9 x=5

x runs � OK x=Alice

even(x) � True x=0

under(x,foot) � True x=sole

x ∨ False � True x=True

x(Hugin) � True x=raven

x � cough, x � sneeze x=cold

x � cough, x � sneeze, x �� cold x=flu

x+y � 2, x*y � 1 x=1, y=1

(x-1)*(x-2) � 0, x �� 1 x=2

x(cat,mouse) � True x=chases

x(sun,planet) � True, x(nucleus,electron) � True x=circles

x(palm,hand) � True, x(y,foot) � True x=under, y=sole

Fig. 5. Screenshot of Alice in Wonderland. The system has been running in learn-
ing mode, processing 599 arithmetic facts in the course of approximately 20 minutes
(assuming a standard laptop). From left, the first and second panels represent Alice’s
beliefs in the form of closed and open rules, respectively. Alice’s current theory consists
of 164 closed rules, including 8*7 = 56, and 9 open rules, including 0*x = 0. The third
panel shows the fact stream, the fourth panel solutions to problems entered by the
human operator.

Bounded Cognitive Resources and Arbitrary Domains 175

Figure 5 shows a screenshot of the system in operation. The following results
were obtained:

– Alice in Wonderland can learn as shown in Table 2 and solve problems
as shown in tables 3–4.

– Alice in Wonderland can start from a state of no knowledge and learn
from random streams of facts taken from arbitrary domains. To date, it can
learn simple versions of propositional logic, variable-free first-order logic,
arithmetic, arithmetic modulo 2, F2[X], English, Swedish, and Sindhi.

– Over time, Alice in Wonderland exceeds average human performance in
such domains as simple arithmetic and propositional logic.

8 Conclusions

We have described the system Alice in Wonderland, which does autonomous
learning and problem-solving in arbitrary symbolic domains. A key component
is a simple cognitive model that reduces the computational complexity from
undecidable to finite. In this way, we tackle the combinatorial explosion problem
that arises in e.g. inductive logic programming, automatic theorem proving, and
grammar learning. Our results show that the system is able to learn multiple
domains from random streams of facts and also challenge human problem-solving
in some cases. Thus bounded cognitive resources were exploited for constructing
a general system that tackles the combinatorial explosion problem and operates
in arbitrary symbolic domains.

Acknowledgments. This research was supported by The Swedish Research Council,
grant 2012-1000. We would like to thank Volodya Shavrukov for many helpful com-
ments.

References

1. Anderson, J.R., Lebiere, C.: The atomic components of thought. Lawrence Erl-
baum, Mahwah, N.J. (1998)

2. Bach, J.: MicroPsi 2: the next generation of the MicroPsi framework. In: Bach,
J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS, vol. 7716, pp. 11–20. Springer,
Heidelberg (2012)

3. Clarke, D., Whitney, H., Sutton, G., Robert, D.: Detection and learning of floral
electric fields by bumblebees. Science 340(6128), 66–69 (2013)

4. Goertzel, B., Pennachin, C., Geisweiller, N.: The OpenCog framework. In: Engi-
neering General Intelligence, Part 2, pp. 3–29. Springer (2014)

5. Gould, J.L., Gould, C.G., et al.: The honey bee. Scientific American Library (1988)
6. Hansson, S.O., Fermé, E.L., Cantwell, J., Falappa, M.A.: Credibility Limited Revi-

sion. The Journal of Symbolic Logic 66(04), 1581–1596 (2001)
7. Kitzelmann, E.: Inductive Programming: A Survey of Program Synthesis Tech-

niques. In: Schmid, U., Kitzelmann, E., Plasmeijer, R. (eds.) AAIP 2009. LNCS,
vol. 5812, pp. 50–73. Springer, Heidelberg (2010)

8. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An Architecture for General Intel-
ligence. Artificial Intelligence 33(3), 1–64 (1987)

176 A.R. Nizamani et al.

9. Piaget, J.: La construction du réel chez l’enfant. Delachaux & Niestlé (1937)
10. Popper, K.R.: Objective knowledge: An evolutionary approach. Clarendon Press,

Oxford (1972)
11. Rosenbloom, P.S.: The Sigma Cognitive Architecture and System. AISB Quarterly

136, 4–13 (2013)
12. Schmid, U., Kitzelmann, E.: Inductive rule learning on the knowledge level. Cog-

nitive Systems Research 12(3), 237–248 (2011)
13. Simon, H.A.: Models of Bounded Rationality: Empirically Grounded Economic

Reason, vol. 3. MIT press (1982)
14. Stranneg̊ard, C., Nizamani, A.R., Persson, U.: A General system for learning and

reasoning in symbolic domains. In: Goertzel, B., Orseau, L., Snaider, J. (eds.) AGI
2014. LNCS, vol. 8598, pp. 174–185. Springer, Heidelberg (2014)

15. Turing, A.: Computing machinery and intelligence. Mind 59(236), 433–460 (1950)
16. Von Glasersfeld, E.: Radical Constructivism: A Way of Knowing and Learning.

Studies in Mathematics Education Series: 6. ERIC (1995)
17. Wang, P.: From NARS to a thinking machine. In: Proceedings of the 2007 Confer-

ence on Artificial General Intelligence. pp. 75–93. IOS Press, Amsterdam (2007)
18. Wiese, K.: The Crustacean Nervous System. Springer (2002)

Using Localization and Factorization to Reduce
the Complexity of Reinforcement Learning

Peter Sunehag1,2(B) and Marcus Hutter1

1 Research School of Computer Science,
Australian National University, Canberra, Australia
Sunehag@google.com, Marcus.Hutter@anu.edu.au

2 Google - Deep Mind, London, UK

Abstract. General reinforcement learning is a powerful framework for
artificial intelligence that has seen much theoretical progress since intro-
duced fifteen years ago. We have previously provided guarantees for cases
with finitely many possible environments. Though the results are the
best possible in general, a linear dependence on the size of the hypoth-
esis class renders them impractical. However, we dramatically improved
on these by introducing the concept of environments generated by com-
bining laws. The bounds are then linear in the number of laws needed
to generate the environment class. This number is identified as a natu-
ral complexity measure for classes of environments. The individual law
might only predict some feature (factorization) and only in some con-
texts (localization). We here extend previous deterministic results to the
important stochastic setting.

Keywords: Reinforcement learning · Laws · Optimism · Bounds

1 Introduction

General reinforcement learning [2,3,12] is a theoretical foundation for artificial
intelligence that has now been developed over the last fifteen years. A recent
line of work starting with [8,9] has studied finite classes of completely general
environments and primarily optimistic agents that can be proven to eventually
achieve optimality regardless of which environment turns out to be true. [8] pre-
sented finite-error bounds for the deterministic case and asymptotic guarantees
for stochastic environments while [5] proved near-optimal sample complexity
bounds for the latter stochastic case.

The bounds given in [8] have a linear dependence on the number of environ-
ments in the class. While this rate is easily seen to be the best one can have
in general [5], it is exponentially worse than what we are used to from Markov
Decision Processes (MDPs) [4] where the linear (up to logarithms) dependence
is on the size of the state space instead. In [10] we introduced the concept of
deterministic laws that predict some but not all features (factorization) and only
in some contexts (localization), and environments generated by sets of such laws.
c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 177–186, 2015.
DOI: 10.1007/978-3-319-21365-1 19

178 P. Sunehag et al.

We presented bounds that are linear in the number of laws instead of the number
of environments. All deterministic environment classes are trivially generated by
sets of laws that equal the environments but some can also be generated by
exponentially fewer laws than there are environments.

We here expand the formal analysis of optimistic agents with hypothesis
classes based on laws, from the deterministic to the stochastic case and we further
consider fruitful combinations of those two basic cases.

Outline. Section 2 provides background on general reinforcement learning
agents. Section 3 introduces the concept of environments generated by laws and
extends previous concepts and results from the determinstic to the stochastic
case as well as to the mixed setting. Section 4 concludes.

2 Background

We begin by introducing general reinforcement learning as well as the agent
framework.

2.1 General Reinforcement Learning

We will consider an agent [2,6] that interacts with an environment through
performing actions at from a finite set A and receives observations ot from a
finite set O and rewards rt from a finite set R ⊂ [0, 1] resulting in a history ht :=
a0o1r1a1, ..., otrt. These sets can be allowed to depend on time or context but we
do not write this out explicitly. Let H := {ε}∪(A×∪n(O×R×A)n×(O×R)) be
the set of histories where ε is the empty history and A×(O×R×A)0×(O×R) :=
A×O×R . A function ν : H×A → O×R is called a deterministic environment.
A function π : H → A is called a (deterministic) policy or an agent. We define
the value function V based on geometric discounting by V π

ν (ht−1) =
∑∞

i=t γi−tri

where the sequence ri are the rewards achieved by following π from time step t
onwards in the environment ν after having seen ht−1.

Instead of viewing the environment as a function H × A → O × R we can
equivalently write it as a function H × A × O × R → {0, 1} where we write
ν(o, r|h, a) for the function value. It equals zero if in the first formulation (h, a)
is not sent to (o, r) and 1 if it is. In the case of stochastic environments we
instead have a function ν : H × A × O × R → [0, 1] such that

∑
o,r ν(o, r|h, a) =

1 ∀h, a. The deterministic environments are then just a degenerate special case.
Furthermore, we define ν(ht|π) := Πt

i=1ν(oiri|ai, hi−1) where ai = π(hi−1).
ν(·|π) is a probability measure over strings, actually one measure for each string
length with the corresponding power set as the σ-algebra. We define ν(·|π, ht−1)
by conditioning ν(·|π) on ht−1 and we let V π

ν (ht−1) := Eν(·|π,ht−1)

∑∞
i=t γi−tri :=

limj→∞ Eν(·|π,ht−1)

∑j
i=t γi−tri and V ∗

ν (ht−1) := maxπ V π
ν (ht−1).

Examples of Agents: AIXI and Optimist. Suppose we are given a countable
class of environments M and strictly positive prior weights wν for all ν ∈ M.

Reducing the Complexity of Reinforcement Learning 179

We define the a priori environment ξ by letting ξ(·) =
∑

wνν(·) and the AIXI
agent is defined by following the policy

π∗ := arg max
π

V π
ξ (ε) (1)

which is its general form. Sometimes AIXI refers to the case of a certain universal
class and a Solomonoff style prior [2]. The above agent, and only agents of that
form, satisfies the strict rationality axioms presented first in [7] while the slightly
looser version we presented in [9] enables optimism. The optimist chooses its next
action based on

π◦ := arg max
π

max
ξ∈Ξ

V π
ξ (2)

for a set of environments (beliefs) Ξ which we in the rest of the article will
assume to be finite, though results can be extended further [11]. We will rely on
an agent framework presented in [11].

2.2 Agents Based on Decision Functions and Hypothesis Generating
Functions

The primary component of our agent framework is a decision function f : M → A
where M is the class of all finite sets M of environments. The function value
only depends on the class of environments M that is the argument. The decision
function is independent of the history, however, the class M fed to the decision
function introduces an indirect dependence. For example, the environments at
time t+1 can be the environments at time t, conditioned on the new observation.
We are here primarily using optimistic decision functions.

Definition 1 (Optimistic decision function). We call a decision function f
optimistic if f(M) = π(ε) for an optimistic policy π, i.e. for

π ∈ arg max
π̃

max
ν∈M

V π̃
ν . (3)

Given a decision function, what remains to create a complete agent is a
hypothesis-generating function G(h) = M that for any history h ∈ H pro-
duces a set of environments M. A special form of hypothesis-generating func-
tion is defined by combining the initial class G(ε) = M0 with an update function
ψ(Mt−1, ht) = Mt. An agent is defined from a hypothesis-generating function G
and a decision function f by choosing action a = f(G(h)) after seeing history h.

3 Environments Defined by Laws

We consider observations of the form of a feature vector o = x = (xj)m
j=1 ∈ O =

×m
j=1Oj including the reward as one coefficient where xj is an element of some

finite alphabet Oj . Let O⊥ = ×m
j=1(Oj ∪ {⊥}), i.e. O⊥ consists of the feature

vectors from O but where some elements are replaced by a special letter ⊥. The
meaning of ⊥ is that there is no prediction for this feature.

180 P. Sunehag et al.

Definition 2 (Deterministic laws). A law is a function τ : H × A → O⊥.

Using a feature vector representation of the observations and saying that
a law predicts some of the features is a convenient special case of saying that
the law predicts that the next observation will belong to a certain subset of the
observation space. Each law τ predicts, given the history and a new action, some
or none but not necessarily all of the features xj at the next time point. We first
consider sets of laws such that for any given history and action, and for every
feature, there is at least one law that makes a prediction of this feature. Such
sets are said to be complete. We below expand these notions, defined in [10,11],
from deterministic laws to stochastic laws.

Definition 3 (Stochastic law). A stochastic law is a function τ : H × A ×
O⊥ → [0, 1] such that

∀h∀a
∑

o∈O⊥

τ(h, a, o) = 1

and
∀h∀a∀j ∈ {1, ...,m}

∑

o∈O⊥:oj=⊥
τ(h, a, o) ∈ {0, 1},

i.e. the marginal probability of the “no prediction” symbol ⊥ always equals zero
or one. We will use the notation τ(o|h, a) := τ(h, a, o).

Definition 4 (Stochastic laws making predictions or not). If τ is a law
and ∑

o∈O⊥:oj=⊥
τ(h, a, o) = 0

we say that τ does not make a prediction for j given h, a and write τ(h, a)j = ⊥.
Otherwise, i.e. when ∑

o∈O⊥:oj=⊥
τ(h, a, o) = 1,

we say that τ does make a prediction for j given h, a and write τ(h, a)j �= ⊥.

As in the deterministic case we need to define what it means for a set of
stochastic laws to be complete and then we can define an environment from
such a set. The definition is an extension of the deterministic counter-part. That
we only demand completeness and not coherence in the stochastic case is because
we are going to study the stochastic case with a domination assumption instead
of excluding laws. The result is that the generated class is infinite even when the
set of laws is finite.

Definition 5 (Complete set of stochastic laws). A set T of stochastic laws
is complete if

∀h, a ∃τi ∈ T ∃Ji ⊂ {1, ...,m} = ∪̇iJi : τi(h, a)j �= ⊥ ⇐⇒ j ∈ Ji.

Let Ĉ(T) denote the set of complete subsets of T .

Reducing the Complexity of Reinforcement Learning 181

Definition 6 (Environments from stochastic laws). Given a complete class
of stochastic laws T , we define the class of environments Ξ(T) generated by T
as consisting of all ν for which there are τi and Ji as in Definition 5 such that

ν(x|h, a) = Πiτi|Ji
(h, a)(x|Ji

).

Error analysis. We first consider deterministic environments and deterministic
laws and the optimistic agent from [8]. Every contradiction of an environment is a
contradiction of at least one law and there are finitely many laws. This is what is
needed for the finite error result from [8] to hold but with |M| replaced by |T | (see
Theorem 1 below) which can be exponentially smaller. We have presented this
result previously [10,11] but here we extend from the deterministic to stochastic
settings.

Theorem 1 (Finite error bound when using laws). Suppose that T is a
finite class of deterministic laws and let G(h) = {ν(·|h) | ν ∈ M({τ | τ ∈ T
consistent with h})}. We define π̄ by combining G with the optimistic decision
function (Definition 1). Following π̄ for a finite class of deterministic laws T in
an environment μ ∈ M(T), we have for any 0 < ε < 1

1−γ that

V π̄
μ (ht) ≥ max

π
V π

μ (ht) − ε (4)

for all but at most |T |− log ε(1−γ)
1−γ time steps t.

We now introduce optimistic agents with classes of stochastic dominant laws.
To define what dominant means for a law we first introduce the notion of a
restriction. We will say that a law τ is a restriction of a stochastic environment
ν if it assigns the same probabilities to what τ predicts. We then also say that
ν is an extension of τ . Similarly a law can be a restriction or an extension of
another law. If τ is a restriction of some environment ν that μ is absolutely
continuous w.r.t. (for every policy), then we say that μ is absolutely continuous
(for every policy) with respect to τ . We here make use of the slightly more
restrictive notion of dominance. We say that ν dominates μ if there is c > 0 such
that ν(·) ≥ cμ(·). We extend this concept to laws.

Example 1 (Stochastic laws based on estimators). Consider again a binary vector
of length m where each coefficient is an i.i.d. Bernoulli process, i.e. there is a
fixed probability with which the coefficient equals 1. Consider laws that are such
that there is one for each coefficient and they predict a 1 with probability a+1/2

a+b+1
where a is the number of 1s that have occurred before for that coefficient and
b is the number of 0s. Then we have a complete set of stochastic laws that are
based on the so called Krichevsky-Trofimov (KT) estimator. Also, they satisfy
the absolute continuity property. These laws can e.g. be combined with laws
based on the Laplace estimator which assigns probability a+1

a+b+2 instead.

Example 2 (Dominant laws, AIXI-CTW). Consider the AIXI agent defined by
(1) with ξ being the mixture of all context tree environments up to a certain

182 P. Sunehag et al.

depth as defined in [13]. A context is defined by a condition on what the last
few cycles of the history is. The context tree contains contexts of variable length
upto the maximum depth. The Context Tree Weighting (CTW) algorithm relied
on by [13], which is originally from [14], defines a prediction for each context
using a Krichevsky-Trofimov estimator. ξ is a mixture of all of those predictions.
Given a context, we can define a law as the restriction of ξ to the histories for
which we are in the given context. All of these laws will be absolutely continuous
for any context tree environment, hence so are all of these laws. If we consider
the same restrictions for other dominant mixtures than ξ, e.g. by using the
CTW construction on other/all possible binarizations of the environment, we
have defined a large set of laws.

Theorem 2 (Convergence for stochastic laws). Suppose that T is a finite
class of stochastic laws as in Definition 6 and that they all are absolutely contin-
uous w.r.t. the true environment μ and that for every h, there is an environment
νh ∈ Ξ(T) such that V ∗

νh
(h) ≥ V ∗

μ (h). Let G(h) = {ν(·|h) | ν ∈ Ξ(T)} . We
define π̃ by combining G with an optimistic decision function. Then almost surely
V π̃

μ (ht) → V ∗
μ (ht) as t → ∞.

Proof. Any ν ∈ Ξ(T) is such that ν(·) ≥ cμ(·) where c is the smallest constant
such that all the laws in T are dominant with that constant. For each law τ ∈ T
pick an environment ν ∈ Ξ(T) such that τ is a restriction of ν, i.e. ν predicts
according to τ whenever τ predicts something. We use the notation ντ for the
environment chosen for τ . The Blackwell-Dubins Theorem says that ντ merges
with μ almost surely under the policy followed (but not necessarily off that
policy) and therefore τ merges with μ, i.e. with the restriction of μ to what τ
makes predictions for, under the followed policy. Given ε > 0, let T be such that

∀t ≥ T : max
τ∈T

d(ντ (·|ht, π̃), μ(·|π̃)) < ε

which implies that

∀t ≥ T : max
ν∈Ξ(T)

d(ν(·|ht, π̃), μ(·|π̃)) < ε

and applying this to νht
proves that |V π̃

μ (ht) − V ∗
μ (ht)| < ε ∀t ≥ T by Lemma 1

in [9]. Since there is, almost surely, such a T for every ε > 0 the claim is proved.

Excluding Stochastic Laws and Sample Complexity. To prove sample
complexity bounds one typically needs to assume that the truth belongs to the
class which is stronger than assuming domination. This agent would need to
exclude implausible environments from the class. In the deterministic case that
can be done with certainty after one contradiction, while [1] shows that in the
stochastic case this can be done after a finite number m of sufficiently large
contradiction. m depends on the confidence required, m = O(1

ε2 log k
δ where ε

is the accuracy, δ the confidence and k the number of hypothesis, and after m
disagreements the environment that aligned worse with observations is excluded.

Reducing the Complexity of Reinforcement Learning 183

The analysis closely follows the structure learning case in [1] where it relies on a
more general theorem for predictions based on k possible algorithms. The main
difference is that that they could do this per feature which we cannot since
we are in a much more general setting where a law sometimes makes a predic-
tion for a feature and sometimes not. One can have at most mk2 disagreements
(actually slightly fewer) where k is the number of laws. It is possible that this
square dependence can be improved to linear, but it is already an exponential
improvement for many cases compared to a linear dependence on the number
of environments. There can only be errors when there is sufficient disagreement.
The above argument works under a coherence assumption and for γ = 0 while
for γ > 0 there are horizon effects that adds extra technical difficulty to proving
optimal bounds avoiding losing a factor 1/(1 − γ). [5] shows how such complica-
tions can be dealt with.

Having a Background Environment. The earlier deterministic results
demanded that the set of laws in the class is rich enough to combine into com-
plete environments and in particular to the true one. This might require such a
large class of laws that the linear dependence on the number of laws in the error
bound, though much better than depending on the number of environments,
still is large. The problem is simplified if the agent has access to a background
environment, which is here something that given previous history and the next
features predicted by laws, assigns probabilities for the rest of the feature vector.
A further purpose for this section is to prepare for classes with a mix of deter-
ministic laws and stochastic laws. In this case the stochastic laws learn what we
in this section call a background environment. Computer games provide a simple
example where it is typically clear that we have a background and then objects.
If the agent has already learnt a model of the background, then what remains
is only the subproblem of finding laws related to how objects behave and affect
the environment. As an alternative, we might not be able to deterministically
predict the objects but we can learn a cruder probabilistic model for them and
this is background that completes the deterministic world model the agent learns
for the rest.

Example 3 (Semi-deterministic environment). Consider a binary vector of length
m where some elements are fixed and some fluctuate randomly with probabil-
ity 1/2. Consider the background environment where all coefficients are Bernoulli
processes with probability 1/2 and consider the 2m laws that each always makes
a deterministic prediction for one coefficient and it is fixed. The laws that make a
prediction for a fluctuating coefficient will quickly get excluded and then the agent
will have learnt the environment.

Definition 7 (Predicted and not predicted features). Given a set of deter-
ministic laws T , let

q1(h, a, T) := {j ∈ {1, ...,m} | ν(h, a)j = ⊥ ∀ν ∈ Ξ(T)}
be the features T cannot predict and q2(h, a, T) := {1, ...,m} \ q1(h, a, T) the
predicted features.

184 P. Sunehag et al.

Since we are now working with sets of laws that are not complete, subsets
can also not be complete, but they can be maximal in the sense that they predict
all that any law in the full set predicts.

Definition 8 (Coherent and maximal sets of laws). Given a set of deter-
ministic laws, the set of maximal subsets of laws C̄(T) consists of sets T̃ ⊂ T
with the property

∀h, a∀j ∈ q2(h, a, T)∃τ ∈ T̃ : τ(h, a)j �= ⊥.

If
∀h, a∀j ∈ q2(h, a, T)∀τ, τ̃ ∈ T̃ τ̃(h, a)j ∈ {⊥, τ(h, a)j}

we say that T̃ is coherent.

A semi-deterministic environment is defined by combining the predictions of
a number of laws with background probabilities for what the laws do not predict.
We abuse notation by letting ν(h, a) = (o, r) mean that ν assigns probability 1 to
the next observation and reward being (o, r). We then also let ν(h, a) represent
the event predicted. As before, we use xk to denote individual features.

Definition 9 (Semi-deterministic environment). Given a coherent set of
laws T̃ and background probabilities P (x|xk1 , ..., xkn

, h) where x = (x1, ..., xm)
for any subset {k1, ..., kn} ⊂ {1, ...,m} of the features and previous history h, we
let ν(P, T̃) be the environment ν which is such that

∀h, a∀j ∈ q2(h, a, T)∃τ ∈ T̃ : ν(h, a)j = τ(h, a)j

and

ν
(
x | h, a, x|q2(h,a,T) = ν(h, a)|q2(h,a,T)

)
= P

(
x | x|q2(h,a,T) = ν(h, a)q2(h,a,T)

)
.

The last expression above says that the features not predicted by laws
(denoted by q1) are predicted by P where we condition on the predicted fea-
tures (denoted by q2).

Definition 10 (Semi-deterministic environments from laws and back-
ground). Given a set of deterministic laws T and background probabilities
P (x|xk1 , ..., xkn

, h, a),
we let

M̄(P, T) := {ν(P, T̃) | T̃ ∈ C̄(T)}.

The resulting error bound theorem has almost identical formulation as the
previous case (Theorem 1) and is true for exactly the same reasons. However,
the class M̄ contains stochasticity but of the predefined form.

Theorem 3 (Finite error bound when using laws and background).
Suppose that T is a finite class of deterministic laws and P is background.
Let G(h) = {ν(·|h) | ν ∈ M̄(P, {τ ∈ T consistent with h})}. We define π̄ by

Reducing the Complexity of Reinforcement Learning 185

combining G with the optimistic decision function (Definition 1). Following π̄
with a finite class of deterministic laws T in an environment μ ∈ M̄(P, T), for
0 < ε < 1

1−γ we have that

V π̄
μ (ht) ≥ max

π
V π

μ (ht) − ε (5)

for all but at most |T |− log ε(1−γ)
1−γ time steps t.

Mixing Deterministic and Stochastic Laws. When we introduced the con-
cept of background environment we mentioned that it prepared for studying
sets of laws that mix deterministic laws with absolutely continuous stochastic
laws. Given an ε̃ > 0, the environment formed by combining the stochastic laws
with a coherent and maximal set of true deterministic laws eventually have a
value function that for the followed policy is within ε̃ of the true one. Combining
the remaining deterministic laws with the dominant stochastic laws into semi-
deterministic environments exactly as with the background probabilities, then
yields the results as before but with the accuracy only being ε + ε̃ instead of
ε and where we only count errors happening after sufficient merging has taken
place.

Example 4 (Mixing deterministic laws and stochastic laws). Consider a binary
vector of length m where some elements are fixed and some fluctuate ran-
domly with a probability unknown to an agent. Consider the laws based on
KT-estimators from Example 1 and consider the 2m laws that each always makes
a fixed prediction for one coefficient. The laws that make a deterministic pre-
diction for a fluctuating coefficient will quickly get excluded and then the agent
will have to fall back on the KT-estimate for this coefficient.

Example 5 (AIXI-CTW as background). Consider the AIXI-CTW environment
ξ described in Example 2. Also, consider two deterministic law for each context
in the context tree, one always predicts 1 and the other 0. Combining those two,
we will have an agent that uses deterministic laws to predict until all laws for a
certain feature in a certain context (including its subcontexts) are contradicted.
Then it falls back on ξ for that situation. Predicting as much as possible with
deterministic laws is very helpful for planning.

4 Conclusions

We have further developed the theory of optimistic agents with hypothesis classes
defined by combining laws. Previous results were restricted to the deterministic
setting while stochastic environments are necessary for any hope of real appli-
cation. We here remedied this by introducing and studying stochastic laws and
environments generated by such.

Acknowledgments. This work was supported by ARC grant DP120100950.

186 P. Sunehag et al.

References

1. Diuk, C., Li, L., Leffer, B.R.: The adaptive k-meteorologists problem and its appli-
cation to structure learning and feature selection in reinforcement learning. In:
Danyluk, A.P., Bottou, L., Littman, M.L. (eds.) ICML. ACM International Con-
ference Proceeding Series, vol. 382 (2009)

2. Hutter, M.: Universal Articial Intelligence: Sequential Decisions based on Algorith-
mic Probability. Springer, Berlin (2005)

3. Lattimore, T.: Theory of General Reinforcement Learning. Ph.D. thesis, Australian
National University (2014)

4. Lattimore, T., Hutter, M.: PAC bounds for discounted MDPs. In: Bshouty,
N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds.) ALT 2012. LNCS, vol. 7568,
pp. 320–334. Springer, Heidelberg (2012)

5. Lattimore, T., Hutter, M., Sunehag, P.: The sample-complexity of general rein-
forcement learning. Journal of Machine Learning Research, W&CP: ICML 28(3),
28–36 (2013)

6. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pren-
tice Hall, Englewood Clifs (2010)

7. Sunehag, P., Hutter, M.: Axioms for rational reinforcement learning. In: Kivinen,
J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS, vol. 6925,
pp. 338–352. Springer, Heidelberg (2011)

8. Sunehag, P., Hutter, M.: Optimistic agents are asymptotically optimal. In:
Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS, vol. 7691, pp. 15–26. Springer,
Heidelberg (2012)

9. Sunehag, P., Hutter, M.: Optimistic AIXI. In: Bach, J., Goertzel, B., Iklé, M. (eds.)
AGI 2012. LNCS, vol. 7716, pp. 312–321. Springer, Heidelberg (2012)

10. Sunehag, P., Hutter, M.: Learning agents with evolving hypothesis classes. In:
Kühnberger, K.-U., Rudolph, S., Wang, P. (eds.) AGI 2013. LNCS, vol. 7999, pp.
150–159. Springer, Heidelberg (2013)

11. Sunehag, P., Hutter, M.: A dual process theory of optimistic cognition. In: Annual
Conference of the Cognitive Science Society, CogSci 2014 (2014)

12. Sunehag, P., Hutter, M.: Rationality, Optimism and Guarantees in General
Reinforcement Learning. Journal of Machine Learning Reserch (to appear, 2015)

13. Veness, J., Ng, K.S., Hutter, M., Uther, W., Silver, D.: A Monte-Carlo AIXI
approximation. Journal of Artifiicial Intelligence Research 40(1), 95–142 (2011)

14. Willems, F., Shtarkov, Y., Tjalkens, T.: The context tree weighting method: Basic
properties. IEEE Transactions on Information Theory 41, 653–664 (1995)

Towards Flexible Task Environments
for Comprehensive Evaluation of Artificial
Intelligent Systems and Automatic Learners

Kristinn R. Thórisson1,2, Jordi Bieger1(B),
Stephan Schiffel1, and Deon Garrett1,2

1 Center for Analysis and Design of Intelligent Agents / School of Computer Science,
Reykjavik University, Menntavegur 1, 101 Reykjavik, Iceland

{thorisson,jordi13,stephans,deong}@ru.is
2 Icelandic Institute for Intelligent Machines, Uranus, Menntavegur 1,

101 Reykjavik, Iceland

Abstract. Evaluation of artificial intelligence (AI) systems is a prereq-
uisite for comparing them on the many dimensions they are intended
to perform on. Design of task-environments for this purpose is often
ad-hoc, focusing on some limited aspects of the systems under evalua-
tion. Testing on a wide range of tasks and environments would better
facilitate comparisons and understanding of a system’s performance, but
this requires that manipulation of relevant dimensions cause predictable
changes in the structure, behavior, and nature of the task-environments.
What is needed is a framework that enables easy composition, decompo-
sition, scaling, and configuration of task-environments. Such a framework
would not only facilitate evaluation of the performance of current and
future AI systems, but go beyond it by allowing evaluation of knowledge
acquisition, cognitive growth, lifelong learning, and transfer learning. In
this paper we list requirements that we think such a framework should
meet to facilitate the evaluation of intelligence, and present preliminary
ideas on how this could be realized.

Keywords: Task-environment · Automation · Intelligence evaluation ·
Artificial intelligence · Machine learning

1 Introduction

A key challenge in the development of artificial intelligence (AI) systems is how
to evaluate them. Valid measurements are necessary to assess progress, com-
pare systems and approaches, and understand their strengths and weaknesses.
Most evaluation methods in use today yield only a single performance score
that brings little qualitative insight, and is incomparable to performance on
other tasks. Furthermore, few if any proposals exist for evaluating fundamental
aspects of intelligence like learning capacity, transfer learning, deterioration of
learned skills, as well as cognitive development and growth.
c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 187–196, 2015.
DOI: 10.1007/978-3-319-21365-1 20

188 K.R. Thórisson et al.

Evaluation of AI systems is traditionally done by measuring their perfor-
mance on one or more tasks instantiated in an environment. A task is the trans-
formation of a world state into a goal state, or the maintenance of a goal state
in light of perturbations. Tasks may be compound, have one or more explicit
goals, sub-tasks, constraints, and call for continuous or intermittent action. A
task is performed by an agent whose atomic actions can in principle perform it.
An environment is the instantiation of the task and its context, and may include
some form of body for the agent, as well as distractors/noise, that complicate
the task but are not strictly a part of it. We use the term task-environment to
refer to the tuple task+environment.

Most task-environments cannot easily be classified – let alone freely modi-
fied – along a large number of dimensions, making it difficult to systematically
assess an AI system’s strengths and weaknesses. This rigidity limits any chosen
metrics to a small subset of systems, and complicates their comparison. Tasks
such as pole-balancing or video game playing, for instance, are not sufficient for
evaluating systems that can operate on a diverse set of data or under multiple
high-level goals, but may be fine for certain single-goal learners.

At the other end of the spectrum, task-environments for evaluating human-
level intelligence – e.g. the Turing test [22] – cannot be compared easily to
those appropriate for simpler learners. Human “intelligence quotient” measures,
developed by psychologists, use a set of tasks normalized by their distribution
in a social group and are highly species- and society-specific – and thus not a
good match for intelligent machines. Another problem with most measures pro-
posed for higher intelligences is that they assess only single point in time [18].
Assessing a system’s learning capacity, however, requires time-based measures in
task-environments with adjustable complexity. A framework supporting incre-
mental and predictable changes to compound task-environments, on appropriate
features, could measure a system’s learning rate. This would enable evaluation
of lifelong learners and transfer learning capacity: the transference of acquired
knowledge to new domains/tasks. Assessing these important aspects of intelli-
gence calls for multiple similar task-environments that can easily be compared.

Another aspect of truly intelligent systems is capacity for cognitive develop-
ment – the ability to improve the very cognitive apparatus enabling the learning.
This ability can itself benefit greatly from a gradual increase in complexity and
other tutoring techniques that could enhance task-environments [4]. Measur-
ing cognitive growth (and meta-cognition) capacity might be enabled through
mechanisms similar to those used for evaluating transfer learning.

Since general intelligence enables systems to (learn to) perform a wide range
of tasks that they have not seen or been prepared for, it cannot be assessed in
only a single task or environment. Evaluating lifelong learning – systems that
continually adapt and learn new things – calls for either a wide range of task-
environments, or a single (large and complex) dynamically changing multi-task
environment. In both cases one would like to automatically generate such task-
environments, given a high-level specification for certain features and constraints.

Towards Flexible Task Environments for Comprehensive Evaluation 189

Although many AI evaluation frameworks exist [13], none address all of the
above concerns. In Sect. 3 we attempt to collect in one place the full set of
requirements that such a comprehensive framework should address, and present
some preliminary ideas on how this could be realized in Sect. 4.

2 Related Work

In a comprehensive and recent survey, Hernández-Orallo argued that the assess-
ment of general “real” intelligence – as opposed to specialized performance –
should be oriented towards the testing a range of cognitive abilities that enable
a system to perform in a range of tasks [11]. One way to accomplish this is
to procedurally generate task-environments that require a suite of abilities, and
appropriately sample and weight them. Hernández-Orallo takes this approach,
but focuses on discrete and deterministic task-environments [10,12]. Legg &
Veness’s Algorithmic IQ approach posits a similar framework for measuring uni-
versal AI with respect to some reference machine which interprets a description
language to run the environment [14]. The choice of this description language
remains a major issue and deeply affects the kinds of environments that are
more likely to be generated. The BF programming language used in their work
closely resembles the operations of a Turing machine, but cannot easily gener-
ate complex structured environments and is opaque to analysis. A wide range
of description languages has been proposed for coordination and planning tasks
(e.g. TÆMS [7] and PDDL [17]), but tend to focus on static, observable domains
and specify things in terms of agent actions and task hierarchies which can then
drive the development of AI systems specialized to the specified task.

Games have long been considered a possible testbed for the evaluation of
intelligence [20]. In the General Game Playing competition, AI systems play pre-
viously unseen games after being provided with the rules in the very analyzable
Game Description Language, but the games must be finite and synchronous [16].
More recently, there has been a lot of interest in the automatic play of Atari-era
video games. An extensible, user friendly description language for such games
has been proposed that relies heavily on opaque built-in functions and should
in the future be amenable to procedural generation [8,19]. Much work has been
done on procedural generation in specific video games, but more general work is
still in its infancy [21]. Lim & Harrell were able to automatically generate vari-
ants for video games written using the PuzzleScript description language, but
the simulation-based approach they used for the evaluation of candidate rulesets
is not feasible for very difficult games since it requires an agent that is intelligent
enough to perform the task [15].

Some research has tried to relate problem structure to heuristic search algo-
rithm performance, including efforts to use a wide variety of problem types to
increase the generality of algorithms [2,5]. Some of this work, notably that on
hyperheuristics [6], has focused on algorithms that try to learn general search
strategies and don’t only perform well on a few specific problem types. Under-
standing the impact of problem characteristics on learning has been key in these
efforts, but so far only search and optimization domains have been addressed.

190 K.R. Thórisson et al.

Similar work has been done in the field of generating random Markov Deci-
sion Problems (MDPs) [1,3], focusing on a rather limited domain of potential
task-environments. Our own Merlin tool [9] supports various methods for the
procedural generation of discrete and continuous multi-objective MDPs, but does
not adequately address the full set of requirements below.

3 Requirements for Intelligence Evaluation Frameworks

The goals of evaluating AI systems are to measure research progress, compare
systems and approaches, and understand their strengths and weaknesses. We
wish to achieve this for a wide range of AI systems, from very simple to very
complex, where the systems may be built with different background assumptions.
The framework we envision must support evaluation of intelligence on a number
of aspects such as skill, knowledge, transfer learning, cognitive development and
growth, lifelong learning and generality. All combined this calls for multiple task-
environments, selected for appropriate amounts of similarity and complexity.
Note that here we are not attempting to propose particular benchmarks: we
are interested in identifying requirements for a framework that can be used to
construct benchmarks for the above cognitive skills.

We have identified the following high-level properties that we consider impor-
tant for a flexible task-environment framework as described above:

(A) Offering easy construction of task-environments, and variants with a
wide range of features and complexity dimensions. This would include the
ability to (a) compose and decompose desired task-environments and
parts thereof, and (b) to scale and tune them, in part and in whole, along
various parameters and properties, with predictable effects, especially for
increasing and decreasing their complexity along known dimensions.

(B) Ability to specify, at any level of detail, the procedural generation of
task-environments with specific features, constraints, etc., and how they
should (automatically) grow, possibly depending on the progress of the
system under evaluation.

(C) Facilitation of analysis in terms of parameters of interest, including task
complexity, similarity, observability, controllability, etc.

Analysis of various non-explicit features of such task-environments could
facilitate an understanding of their function in evaluating various systems, and
thus help with their automatic generation, robustification, and standardiza-
tion. Decomposition can tell us about a task-environment’s structure and help
find commonly used building blocks. Composition allows for the construction of
(much) larger structured task-environments. Scaling helps with the assessment
of progress and growth, and tunability can facilitate the systematic assessment
of a system’s strengths and weaknesses. These can all result in variants that are
similar but different in specified ways, which allows transfer learning. Finally,
automatic generation can provide us with a virtually unlimited supply of fresh
task environments with which to test cognitive abilities and general intelligence.

Towards Flexible Task Environments for Comprehensive Evaluation 191

The framework should support the gradual construction and tunability of
task-environments with the following properties:

1. Determinism: Both full determinism and partial stochasticity (for realism
regarding, e.g. noise, stochastic events, etc.) must be supported.

2. Ergodicity: The reachability of (aspects of) states from others determines
the degree to which the agent can undo things and get second chances.

3. Controllable Continuity: For the framework to be relevant to e.g. robotics,
it is critical to allow continuous variables, to appropriately represent continu-
ous spatial and temporal features. The degree to which continuity is approx-
imated (discretization granularity) should be changeable for any variable.

4. Asynchronicity: Any action in the task-environment, including sensors and
controls, may operate on arbitrary time scales and interact at any time,
letting an agent respond when it can.

5. Dynamism: A static task-environment’s state only changes in response to
the AI’s actions. The most simplistic ones are step-lock, where the agent
makes one move and the environment responds with another (e.g. board
games). More complex environments can be dynamic to various degrees in
terms of speed and magnitude, and may be caused by interactions between
environmental factors, or simply due to the passage of time.

6. Observability: Task-environments can be partially observable to varying
degrees, depending on the type, range, refresh rate, and precision of available
sensors, affecting the difficulty and general nature of the task-environment.

7. Controllability: The control that the agent can exercise over the environ-
ment to achieve its goals can be partial or full, depending on the capability,
type, range, inherent latency, and precision of available actuators.

8. Multiple Parallel Causal Chains: Any generally intelligent system in
a complex environment is likely to be trying to meet multiple objectives,
that can be co-dependent in various ways through any number of causal
chains in the task-environment. Actions, observations, and tasks may occur
sequentially or in parallel (at the same time). Needed to implement real-
world clock environments.

9. Number of Agents: It should be possible to add any number of (intelligent)
agents to the task-environment without specifying their behavior explicitly.
This would allow for the testing of the AI in isolation, in social situations, or
with a teacher [4], and the evaluation of systems of systems (e.g. simulators).
Other agents can greatly affect the difficulty of any task-environment.

10. Periodicity: Many structures and events in nature are repetitive to some
extent, and therefore contain a (learnable) periodic cycle – e.g. the day-night
cycle or blocks of identical houses.

11. Repeatability: Both fully deterministic and partially stochastic environ-
ments must be fully repeatable, for traceable transparency.

4 Flexible Task-Environment Framework: A Proposal

To meet the stated requirements we propose a description language for task-
environments containing a low number of small atomic building elements (the

192 K.R. Thórisson et al.

base operators); few atomic units – as opposed to multiple types – means greater
transparency since superstructures can be inspected more easily than larger black
boxes can, facilitating comparison between task-environments. This also lays the
foundation for smooth, incremental increase in complexity, as each addition or
change can be as small as the smallest blocks. Sect. 4.1 gives an example of what
this might look like. On top of this methods for modification (Sect. 4.2), analysis
(Sect. 4.3), construction (Sect. 4.4), and execution can be developed.

4.1 Example Syntax and Task

Fig. 1a shows a description of an extremely simple task where the agent must
reach a goal position in a 2-dimensional space. We describe a task-environment
by a set of (time-) dependent variables with causal relations. The Initialization
section provides the initial values for the variables. In our case these are goal
and agent position. The Dynamics section defines how variables change over
time by allowing us to refer to the past variable values using time arguments
and the reserved variables t (for the current time) and dt for the size of the
(arbitrarily) smallest atomic time step. Unlike other languages in Sect. 2 we
allow the specification of arbitrary expressions.

1. Initialization:
2. gx = 3 // goal x
3. gy = 3 // goal y
4. ax = 4 // agent x
5. ay = 10 // agent y
6. Dynamics:
7. dx(t) = 0 // step x
8. dy(t) = 0 // step y
9. ax(t) = ax(t-dt) + dx(t)

10. ay(t) = ay(t-dt) + dy(t)
11. at(t) = ax(t) == gx(t) &&

ay(t) == gy(t)
12. reward(t) = 10 if at(t) else -1
13. Terminals:
14. reward(t) > 0
15. Rewards:
16. reward(t)
17. Observations:
18. ax(t), ay(t), gx(t), gy(t)
19. Controls:
20. dx(t) = [-1, 0, 1]
21. dy(t) = [-1, 0, 1]

(a) (b)

Fig. 1. Example description (a) and extracted graph (b) for a task where the agent
must reach a goal location, including causal connections with latency

Lines 7 and 8 in the example set dx and dy to 0 by default. However, these
variables can be controlled by the AI, as we can see on lines 20 and 21. Line 9
says that the value of ax at the current time t is equal to the previous value of ax
plus the current value of dx. Line 12 uses conditional statements and refers only

Towards Flexible Task Environments for Comprehensive Evaluation 193

to variables in the current time step. The arithmetic and comparison operations
make up the (extensible) set of base operators which are not further defined.

While the Initialization and Dynamics sections mostly describe the environ-
ment, the Terminals and Rewards sections can be said to describe the task in
terms of environment variables. They consist of zero or more lines which each
specify an expression that evaluates to a terminal (Boolean) that ends the task
or a reward (a number). Like everything else, rewards can depend on time and
other variables, which allows tasks to have e.g. time pressure, deadlines, start
times, and complex preconditions and interactions – perhaps even modulating
other dependencies such as time.

Finally, the sections for Observations and Controls describe how the agent
interacts with the environment. Observations consist of a set of sensations that
occur simultaneously and are described on their own line with a comma-separated
list of expressions. Controls are described as assignments of a collection of accept-
able values to environment variables whose value is overwritten when specified.
Non-deterministic responses of an agent’s body can be modeled by making the
causal connections following the controls more complex.

4.2 Example Tuning

The task-environment as described is fairly simple, being discrete, fully observ-
able, deterministic, and static. To make the space continuous, we can add a
controllable angle. We add angle = 0 to the Initialization section, replace exist-
ing controls with angle(t) = [-pi..pi], and modify the Dynamics section like
so:

7. dx(t) = dt * cos(angle(t)) 8. dy(t) = dt * sin(angle(t))

11. reward(t) = 10 if (ax(t)-gx(t))^2 + (ay(t)-gy(t))^2 < 1 else -1

Making the space continuous in this way requires relatively significant changes.
It is much easier to go from this continuous representation to one that appears
discrete to the agent by discretizing controls and sensations (e.g. by rounding to
the nearest integer). In the new lines 7 and 8 we have started making the envi-
ronment (more) continuous in time as well. dt would ideally be infinitesimal
for continuous environments, but a small value will have to suffice in practice.

To make the task more dynamic and periodic we can have the goal move
a little. We replace the initialization of gx with gx(t) = 4+3*sin(t) and move
it to the Dynamics section. The environment can easily be made stochastic by
the use of random number generators that are provided as base operations.

We can further decrease observability by adding delays into the causal
chain and changing refresh rates. For example, to let observations of ax and ay
occur with a delay of one time step and allow observation of the goal position
only at time steps 1, 3, 5, . . .:

17. ax(t-dt), ay(t-dt) 18. gx, gy @ [1:2:]

In similar ways we can affect controllability by introducing delays or letting
controls block each other for a period of time, for example, when they share
actuators which may then be busy for some time.

194 K.R. Thórisson et al.

4.3 Analysis

Analysis of task-environments can help measure their similarity, which is highly
useful for evaluating learning capacity and transfer learning, and elucidate fea-
tures such as complexity, observability and difficulty that may shed light on
the “why” behind the performance of various systems. For structural analysis
a graph representation may be useful (see Fig. 1b). The edges show (possibly
delayed) data flow; and nodes represent base operations and can be annotated
with their role: reward, sensation, control, or hidden. Our description language
makes important features like spatial and temporal resolution, delays, and block-
ing controls, readily apparent and easy to tune. The relative positions of obser-
vation, reward, and control nodes says a lot about difficulty, observability, and
controllability of a particular task-environment. For instance, a task may be eas-
ier when these are grouped closely together; sensations and controls might be
distractors if they are off the critical path to a reward or goal state.

The defining high-level characteristics of task-environments have yet to be
identified, but will most likely include features like complexity, difficulty, observ-
ability, controllability and dimensionality. Graph algorithms such as compres-
sion, similarity detection and frequent subgraph mining can be leveraged to help
determine these. A butterfly effect – where small changes in code have a large
effect – may complicate purely structural analysis of some features. Tracing the
construction from a small known task-environment through known transforma-
tions and compositions is likely to help.

4.4 Construction: Addressing the Range from Q-Learning to AGI

The easiest way to construct a new task-environment is to make variants of
existing ones by changing initial conditions and other constants, which in our case
include important concepts like resolution, delays, observability, and constraints
on controls and sensors. One can also start from approximations of known tasks,
although we find more important the easy construction of a variety of task-
environments whose properties can be easily compared on key dimensions.

A natural way for scaling task-environments up or down is to modify the
range of variables (e.g. board size in a game, or ax to gx distance in our example)
or by changing the dimensionality. In most simple tasks, such as pole balancing,
only a handful of variables need to be observed at a sufficient update frequency,
and only a few need to be controlled. More complex tasks for the evaluation of
more capable systems can be constructed in a number of ways. Tasks appropriate
for human-level intelligence often have a high number of (possibly irrelevant)
observable variables, and hidden variables whose state can only be inferred by
observing a different set of partially and/or conditionally correlated variables.
Our formalism facilitates this through easy definition of dependencies between
variables, and their (un)observability. Similarly, tasks can be made harder by
introducing latencies between causal connections. Much of the tuning in Sect. 3
and 4.2 can be done automatically using such techniques.

Towards Flexible Task Environments for Comprehensive Evaluation 195

Manipulation of rewards is another obvious way to make tasks more chal-
lenging, for instance moving them further away from controls (making the causal
chains longer). Adding time-dependent functions, e.g. by replacing a constant,
is a natural way to increase complexity through tunable levels of dynamism.
Truly large and complex multi-goal tasks can be created in many ways by com-
posing tasks together, requiring the AI to solve them sequentially or in parallel,
especially if they share sensors and controls. This could e.g. be achieved by dupli-
cating a single task and changing the initial state of one, and/or the ranges of
some variables. Variables in one task may be made co-dependent on values of
(different or same) variables in the other. There is no limit to how often this pro-
cess could be repeated, with different or duplicated tasks, low-level or high-level,
to create large, structured and complex task-environments.

So far we have created tasks of comparable logical complexity to Pac-Man and
Pong, as well as mazes of arbitrary complexity. Their graph representations can
easily be modified in various ways, creating increasingly complex, dynamically
varying composite tasks, where sequential and temporal dependencies can be
freely introduced. Comparing and modifying them is much easier than if using
completely hand-crafted tasks with no underlying common base.

5 Conclusions and Future Work

We have identified requirements that a framework ideally must meet to allow flexi-
ble construction of task-environments for evaluating artificial learners and AI sys-
tems, and proposed a preliminary formalism to meet these requirements. In our
proposed approach, defining simple tasks requires a few lines of code; scaling is
straightforward. In future work we plan on completing a first version of our task-
environment description language and start on the development of methods for the
automatic construction, analysis, and execution of evaluating AI systems, which
is important for addressing the full range of requirements identified.

Acknowledgments. This work was supported by the School of Computer Science at
Reykjavik University, by a Centers of Excellence Grant from the Science & Technology
Policy Council of Iceland, and by EU Marie Curie CIG #304210.

References

1. Archibald, T.W., McKinnon, K.I.M., Thomas, L.C.: On the generation of Markov
decision processes. J. Oper. Res. Soc. 46, 354–361 (1995)

2. Asta, S., Özcan, E., Parkes, A.J.: Batched mode hyper-heuristics. In: Nicosia, G.,
Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 404–409. Springer, Heidelberg
(2013)

3. Bhatnagar, S., Sutton, R.S., Ghavamzadeh, M., Lee, M.: Natural actor-critic algo-
rithms. Automatica 45(11), 2471–2482 (2009)

4. Bieger, J., Thórisson, K.R., Garrett, D.: Raising AI: tutoring matters. In: Goertzel,
B., Orseau, L., Snaider, J. (eds.) AGI 2014. LNCS, vol. 8598, pp. 1–10. Springer,
Heidelberg (2014)

196 K.R. Thórisson et al.

5. Bischl, B., Mersmann, O., Trautmann, H., Preuß, M.: Algorithm selection based
on exploratory landscape analysis and cost-sensitive learning. In: Proceedings of
the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO
2012, pp. 313–320. ACM, New York (2012)

6. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu,
R.: Hyper-heuristics: A survey of the state of the art. J. Oper. Res. Soc. 64(12),
1695–1724 (2013)

7. Decker, K.: TAEMS: A framework for environment centered analysis & design of
coordination mechanisms. In: O’Hare, G.M.P., Jennings, N.R. (eds.) Foundations
of Distributed Artificial Intelligence, pp. 429–448. Wiley Inter-Science (1996)

8. Ebner, M., Levine, J., Lucas, S.M., Schaul, T., Thompson, T., Togelius, J.: Towards
a video game description language. In: Lucas, S.M., Mateas, M., Preuss, M.,
Spronck, P., Togelius, J. (eds.) Artificial and Computational Intelligence in Games.
Dagstuhl Follow-Ups, vol. 6, pp. 85–100. Schloss Dagstuhl (2013)

9. Garrett, D., Bieger, J., Thórisson, K.R.: Tunable and generic problem instance gen-
eration for multi-objective reinforcement learning. In: ADPRL 2014. IEEE (2014)

10. Hernández-Orallo, J.: A (hopefully) non-biased universal environment class for
measuring intelligence of biological and artificial systems. In: Baum, E., Hutter,
M., Kitzelmann, E. (eds.) AGI 2010, pp. 182–183. Atlantis Press (2010)

11. Hernández-Orallo, J.: AI Evaluation: past, present and future (2014).
arXiv:1408.6908

12. Hernández-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an
anytime intelligence test. Artif. Intell. 174(18), 1508–1539 (2010)

13. Legg, S., Hutter, M.: Tests of Machine Intelligence [cs] (December 2007).
arXiv:0712.3825

14. Legg, S., Veness, J.: An approximation of the universal intelligence measure. In:
Dowe, D.L. (ed.) Solomonoff Festschrift. LNCS(LNAI), vol. 7070, pp. 236–249.
Springer, Heidelberg (2013)

15. Lim, C.U., Harrell, D.F.: An approach to general videogame evaluation and auto-
matic generation using a description language. In: CIG 2014. IEEE (2014)

16. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game
playing: Game description language specification. Tech. Rep. LG-2006-01, Stanford
Logic Group (2008)

17. McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld,
D., Wilkins, D.: PDDL-The Planning Domain Definition Language. Tech. Rep.
TR-98-003, Yale Center for Computational Vision and Control (1998). http://
www.cs.yale.edu/homes/dvm/

18. Rohrer, B.: Accelerating progress in Artificial General Intelligence: Choosing a
benchmark for natural world interaction. J. Art. Gen. Int. 2(1), 1–28 (2010)

19. Schaul, T.: A video game description language for model-based or interactive learn-
ing. In: CIG 2013, pp. 1–8. IEEE (2013)

20. Schaul, T., Togelius, J., Schmidhuber, J.: Measuring intelligence through games
(2011). arXiv preprint arXiv:1109.1314

21. Togelius, J., Champandard, A.J., Lanzi, P.L., Mateas, M., Paiva, A., Preuss, M.,
Stanley, K.O.: Procedural content generation: Goals, challenges and actionable
steps. In: Lucas, S.M., Mateas, M., Preuss, M., Spronck, P., Togelius, J. (eds.)
Artificial and Computational Intelligence in Games. Dagstuhl Follow-Ups, vol. 6,
pp. 61–75. Schloss Dagstuhl (2013)

22. Turing, A.M.: Computing machinery and intelligence. Mind 59(236), 433–460
(1950)

http://arxiv.org/abs/1408.6908
http://arxiv.org/abs/0712.3825
http://www.cs.yale.edu/homes/dvm/
http://www.cs.yale.edu/homes/dvm/
http://arxiv.org/abs/1109.1314

Assumptions of Decision-Making Models in AGI

Pei Wang1(B) and Patrick Hammer2

1 Department of Computer and Information Sciences, Temple University,
1925 North 12th Street, Philadelphia, PA 19122, USA

pei.wang@temple.edu
2 Institute of Optimization and Discrete Mathematics,

Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria

Abstract. This paper analyzes the assumptions of the decision mak-
ing models in the context of artificial general intelligence (AGI). It is
argued that the traditional approaches, exemplified by decision theory
and reinforcement learning, are inappropriate for AGI, because their fun-
damental assumptions on available knowledge and resource cannot be
satisfied here. The decision making process in the AGI system NARS is
introduced and compared with the traditional approaches. It is concluded
that realistic decision-making models must acknowledge the insufficiency
of knowledge and resources, and make assumptions accordingly.

1 Formalizing Decision-Making

An AGI system needs to make decisions from time to time. To achieve its goals,
the system must execute certain operations, which are chosen from all possi-
ble operations, according to the system’s beliefs on the relations between the
operations and the goals, as well as their applicability to the current situation.

On this topic, the dominating normative model is decision theory [3,12].
According to this model, “decision making” means to choose one action from a
finite set of actions that is applicable at the current state. Each action leads to
some consequent states according to a probability distribution, and each conse-
quent state is associated with a utility value. The rational choice is the action
that has the maximum expected utility (MEU).

When the decision extends from single actions to action sequences, it is often
formalized as a Markov decision process (MDP), where the utility function is
replaced by a reward value at each state, and the optimal policy, as a collection
of decisions, is the one that achieves the maximum expected total reward (usually
with a discount for future rewards) in the process. In AI, the best-known app-
roach toward solving this problem is reinforcement learning [4,16], which uses
various algorithms to approach the optimal policy.

Decision theory and reinforcement learning have been widely considered as
setting the theoretical foundation of AI research [11], and the recent progress in
deep learning [9] is increasing the popularity of these models. In the current AGI
research, an influential model in this tradition is AIXI [2], in which reinforcement
learning is combined with Solomonoff induction [15] to provide the probability
values according to algorithmic complexity of the hypotheses used in prediction.
c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 197–207, 2015.
DOI: 10.1007/978-3-319-21365-1 21

198 P. Wang and P. Hammer

Every formal model is based on some fundamental assumptions to encapsu-
late certain beliefs about the process to be modeled, so as to provide a coherent
foundation for the conclusions derived in the model, and also to set restrictions
on the situations where the model can be legally applied. In the following, four
major assumptions of the above models are summarized.

The assumption on task: The task of “decision making” is to select the best
action from all applicable actions at each state of the process.

The assumption on belief: The selection is based on the system’s beliefs
about the actions, represented as probability distributions among their con-
sequent states.

The assumption on desire: The selection is guided by the system’s desires
measured by a (utility or reward) value function defined on states, and the
best action is the one that with the maximum expectation.

The assumption on budget: The system can afford the computational
resources demanded by the selection algorithm.

There are many situations where the above assumptions can be reasonably
accepted, and the corresponding models have been successfully applied [9,11].
However, there are reasons to argue that artificial general intelligence (AGI) is
not such a field, and there are non-trivial issues on each of the four assumptions.

Issues on Task: For a general-purpose system, it is unrealistic to assume that
at any state all the applicable actions are explicitly listed. Actually, in human
decision making the evaluation-choice step is often far less significant than diag-
nosis or design [8]. Though in principle it is reasonable to assume the system’s
actions are recursively composed of a set of basic operations, decision makings
often do not happen at the level of basic operations, but at the level of composed
actions, where there are usually infinite possibilities. So decision making is often
not about selection, but selective composition.

Issues on Belief: For a given action, the system’s beliefs about its possible
consequences are not necessarily specified as a probability distribution among
following states. Actions often have unanticipated consequences, and even the
beliefs about the anticipated consequences usually do not fully specify a “state”
of the environment or the system itself. Furthermore, the system’s beliefs about
the consequences may be implicitly inconsistent, so does not correspond to a
probability distribution.

Issues on Desire: Since an AGI system typically has multiple goals with con-
flicting demands, usually no uniform value function can evaluate all actions with
respect to all goals within limited time. Furthermore, the goals in an AGI system
change over time, and it is unrealistic to expect such a function to be defined
on all future states. How desirable a situation is should be taken as part of the
problem to be solved, rather than as a given.

Issues on Budget: An AGI is often expected to handle unanticipated prob-
lems in real time with various time requirements. In such a situation, even if

Assumptions of Decision-Making Models in AGI 199

the decision-making algorithms are considered as of “tractable” computational
complexity, they may still fail to satisfy the requirement on response time in the
given situation.

None of the above issues is completely unknown, and various attempts have
been proposed to extend the traditional models [1,13,22], though none of them
has rejected the four assumptions altogether. Instead, a typical attitude is to take
decision theory and reinforcement learning as idealized models for the actual AGI
systems to approximate, as well as to be evaluated accordingly [6].

What this paper explores is the possibility of establishing normative models
of decision making without accepting any of the above four assumptions. In the
following, such a model is introduced, then compared with the classical models.

2 Decision Making in NARS

The decision-making model to be introduced comes from the NARS project
[17,18,20]. The objective of this project is to build an AGI in the framework
of a reasoning system. Decision making is an important function of the system,
though it is not carried out by a separate algorithm or module, but tightly
interwoven with other functions, such as reasoning and learning. Limited by the
paper length, the following description only briefly covers the aspects of NARS
that are directly related to the current discussion.

NARS is designed according to the theory that “intelligence” is the abil-
ity for a system to be adaptive while working with insufficient knowledge and
resources, that is, the system must depend on finite processing capability, make
real-time responses, open to unanticipated problems and events, and learn from
its experience. Under this condition, it is impossible for the truth-value of beliefs
of the system to be defined either in the model-theoretic style as the extent of
agreement with the state of affairs, or in the proof-theoretic style as the extent of
agreement with the given axioms. Instead, it is defined as the extent of agreement
with the available evidence collected from the system’s experience.

Formally, for a given statement S, the amount of its positive evidence and
negative evidence are defined in an idealized situation and measured by amounts
w+ and w−, respectively, and the total amount evidence is w = w+ + w−. The
truth-value of S is a pair of real numbers, 〈f, c〉, where f , frequency, is w+/w so
in [0, 1], and c, confidence, is w/(w + 1) so in (0, 1). Therefore a belief has a
form of “S〈f, c〉”. As the content of belief, statement S is a sentence in a formal
language Narsese. Each statement expresses a relation among a few concepts.
For the current discussion, it is enough to know that a statement may have
various internal structures for different types of conceptual relation, and can
contain other statements as components. In particular, implication statement
P ⇒ Q and equivalence statement P ⇔ Q express “If P then Q” and “P if and
only if Q”, respectively, where P and Q are statements themselves.

As a reasoning system, NARS can carry out three types of inference tasks:

Judgment. A judgment also has the form of “S〈f, c〉”, and represents a piece
of new experience to be absorbed into the system’s beliefs. Besides adding

200 P. Wang and P. Hammer

it into memory, the system may also use it to revise or update the pre-
vious beliefs on statement S, as well as to derive new conclusions using
various inference rules (including deduction, induction, abduction, analogy,
etc.). Each rule uses a truth-value function to calculate the truth-value of the
conclusion according to the evidence provided by the premises. For example,
the deduction rule can take P 〈f1, c1〉 and P ⇒ Q 〈f2, c2〉 to derive Q〈f, c〉,
where 〈f, c〉 is calculated from 〈f1, c1〉 and 〈f2, c2〉 by the truth-value func-
tion for deduction.1 There is also a revision rule that merges distinct bodies
of evidence on the same statement to produce more confident judgments.

Question. A question has the form of “S?”, and represents a request for the
system to find the truth-value of S according to its current beliefs. A question
may contain variables to be instantiated. Besides looking in the memory for
a matching belief, the system may also use the inference rules backwards
to generate derived questions, whose answers will lead to answers of the
original question. For example, from question Q? and belief P ⇒ Q 〈f, c〉,
a new question P? can be proposed by the deduction rule. When there are
multiple candidate answers, a choice rule is used to find the best answer
among them, based on truth-value, simplicity, and so on.

Goal. A goal has the form of “S!”. Similar to logic programming [5], in NARS
certain concepts are given a procedural interpretation, so a goal is taken
as a statement to be achieved, and an operation as a statement that can
be achieved by an executable routine. The processing of a goal also includes
backward inference guided by beliefs that generates derived goals. For exam-
ple, from goal Q! and belief P ⇒ Q 〈f, c〉, a new goal P ! can be proposed
by the deduction rule. If the content of a goal corresponds to an executable
operation, the associated routine is invoked to directly realize the goal, like
what a Prolog built-in predicate does.

Under the restriction of the available knowledge and resources, no task can
be accomplished perfectly. Instead, what the system attempts is to accomplish
them as much as allowed by its available knowledge and resources. In NARS,
decision making is most directly related to the processing of goals, though the
other inference activities are also relevant.2

In Narsese, an operation is expressed by an operator (which identifies the
associated routine) with an argument list (which includes both input and out-
put arguments). The belief about the execution condition and consequence of an
operation is typically represented as “(condition, operation) ⇒ consequence”,
which is logically equivalent to “condition ⇒ (operation ⇒ consequence)”.3

This belief can be used in different ways. In an idealized situation (where the

1 Since P and Q can be events with an occurence time, the same rules can be used
for temporal reasoning, which is described in more detail in [21].

2 Different types of inference tasks may work together. For example, from important
judgments of low confidence, questions can be derived, and from certain questions,
goals can be derived, which if pursued give rise to curious and exploratory behaviors.

3 Like other beliefs, there is a truth-value attached, which is omitted here to simplify
the discussion.

Assumptions of Decision-Making Models in AGI 201

uncertainty of the belief and the existence of other beliefs and tasks are ignored),
if “condition” is true, the execution of “operation” will make “consequence” true
by forward inference; when “consequence!” is a goal, backward inference will
generate “condition!” as a derived goal. When the latter goal is satisfied (either
confirmed by a belief or achieved recursively by other operations), “operation!”
becomes another derived goal, which is directly achieved by invoking the asso-
ciated routine. Here the process looks similar to logic programming, though the
situation is more complicated, especially in backward inference.

As an open system working in real time, new tasks can come while the system
is still working on other goals, and there is no guarantee that all the co-existing
goals are consistent with each other in what they demand the system to do.
Even if all the innate and given goals are consistent, the derived ones may
not be, since they usually come as means to achieve certain goal in isolation,
without considering their impacts on the other goals. Even among goals that are
consistent with each other in content, they still compete for resources, especially
processing time. In NARS, to fully process a goal means to take all relevant
beliefs into consideration. Since the system’s capability is finite and the goals
all should be accomplished as soon as possible, it is usually impossible to fully
process all of them. Consequently, it becomes necessary to have preference among
goals to indicate their different significance to the system.

Instead of defining a separate measurement for preference, NARS takes the
“desire as belief” approach [10]. The desire-value of statement S is taken as the
truth-value of statement S ⇒ D, where D is a virtual statement representing
the “desired state” where all the system’s goals are satisfied. D is “virtual” in
the sense that its content is not explicitly spelled out, nor is it actually stored
in the system’s memory. It is only used in the conceptual design to turn the
processing of the desire-values into that of the related truth-values. While every
judgement has an assigned truth-value, every goal has an assigned desire-value.
Like a truth-value, the intuitive meaning of a desire-value can also be explained
using idealized situations. S has desire-value 〈w+/w,w/(w + 1)〉 if the system
believes that if S is realized, w+ of its w consequences are “good”, while the rest
of them are “bad”, with respect to the system’s goals. In this way, the system can
calculate the desire-value of a statement according to the desire-value of another
statement and the belief that linked them, using the truth-value functions of the
inference rules. For example, the desire-value of statement S1, d1, is interpreted
as the truth-value of statement S1 ⇒ D, so can be used with the truth-value
of belief S2 ⇒ S1, t1, by the deduction function to calculate d2, the truth-value
of S2 ⇒ D, which is the desire-value of statement S2. In this process the exact
content of D is irrelevant, as far as it is the same in its two usages. Even without
going into the details of the above calculation, it is easy to see that d2 depends
on both d1 and t1. S2 is highly desired only when S1 is highly desired and the
implication relation S2 ⇒ S1 is strongly supported by available evidence.

Similarly, the revision rule can be used to merge conflicting desire-values. For
example, after a high desire-value of S2 is established by a goal S1, another goal
S3 is taken into consideration, but the system believes that it can be realized

202 P. Wang and P. Hammer

only when S2 is not realized. By deduction again S2 will get another desire-value
d′
2 whose frequency value is low. Now the revision rule can combine d2 and d′

2

into d′′
2 , as the desire-value of S2 when both goals S1 and S3 are taken into

account. In this case, whether S2 will still be treated as a goal depends on the
total evidence – if the frequency factor in d′′

2 is too low, it will not be pursued
by the system, despite of the positive evidence from S1. In this way, “decision
making” in NARS can be discussed in two senses:

– In a narrow sense, it corresponds to the decision of whether to turn a state-
ment ‘S’ into a goal ‘S!’. As explained above, this decision mainly depends
on the current desire-value of S, especially the frequency factor in it.

– In a broad sense, it corresponds to the process in which the related factors,
especially the desire value of S, are decided. As explained above, this process
may consist of many steps and involve many tasks and beliefs.

As argued in several other publications (such as [18,20]), since NARS takes
a unified approach toward AGI, many cognitive functions are interwoven in it
and carried out by the same underlying process, rather than by interconnected
modules. This is true for functions like “reasoning”, “learning”, as well as “deci-
sion making”. What is special about the latter is that the decision of whether
to pursue a new goal is a binary commitment, a “to do or not to do” matter,
which is based on the current beliefs and desires that are all matters of degree.

3 Comparison and Discussion

The objective of this paper is not to explain the details of decision-making in
NARS, but to use NARS as an example to show the feasibility of building a
normative model of decision-making where none of the four traditional assump-
tions is made. In the following each of these assumptions is contrasted with the
corresponding assumption in NARS.

The Assumption on Task

Decision making eventually is about the selection of an action among alterna-
tives. However, it does not have to be directly formalized as a selection algorithm
with a list of alternatives as input – finding the alternatives is also important.

NARS takes the decision to be “Whether to pursue a goal”, so it also covers
the situation where a goal is not directly achieved by an operation, but via
derived goals. Here “to execute an operation” is just a special case of “to achieve a
goal”, where the content of the goal happens to be an operation. On the contrary,
the traditional models leave the derivation of goals out of the model, even though
it is a crucial aspect of decision making.

For a given goal, NARS considers each alternative one by one, and each
of which is a derived goal, with operation as a special case. In each case, the
comparison is between “pursue the goal” and “not to pursue the goal”. For a

Assumptions of Decision-Making Models in AGI 203

given goal, the system may pursue zero, one, or multiple derived goals, and some
of the alternatives may be discovered or constructed in the process. Unlike in
the traditional models, in this approach there is no demand for an exhaustive
list of mutually exclusive actions to be available in advance for each decision.

The traditional decision-making process can still be carried out in NARS as
a special case. If all possible actions are listed, and only one of them can be
selected, then the evidence favoring one action will be taken as evidence against
the other actions. Consequently, the best action selected by the traditional model
will also be the one selected by the choice rule of NARS, and its selection will
block the others under the mutual-exclusion restriction.

The Assumption on Belief

In all the models the selection of action is based on the system’s relevant beliefs
about its preconditions and its effects. In the traditional models, these two
aspects are embedded in the states of the environment, while in NARS they
are expressed by statements. In general, a statement only partially specifies a
state.

Based on the assumption of insufficient knowledge, in NARS even if a belief
(condition, operation) ⇒ consequence has a relatively high frequency and confi-
dence, condition does not necessarily specifies the operation’s full preconditions,
nor consequence its full effects. This approach is taken, not because the “state-
based” approach is bad, but because it is unrealistic. Even POMDP (partially
observable Markov decision process) models are too idealized on this aspect,
where states still need to be estimated from observations, since the Markov prop-
erty is defined only in a state-based representation. There have been attempts in
reinforcement learning study to change the “flat” state space into a hierarchical
one. However, the current approaches all assume static abstractions, and how to
get dynamic abstractions is still acknowledged as an open problem [1]. For a gen-
eral purpose system, it is crucial to move between different levels of abstractions,
as well as to generate them at run time. A statement-based description satisfies
such a need. An AGI should be able to work in a non-stationary environment,
where the states of the environment never accurately repeat. In such a situation,
though it still makes sense to talk about “the state of the environment”, to use
them to specify an operation is not possible, because future states are usually
different from past ones. A statement, on the other hand, only captures certain
aspect of states, so can be repeatedly observed in experience. If a classifier is used
to merge similar states, then it actually turns the model into “statement-based”,
since here one “state” may correspond to different situations.

Another difference between NARS and the traditional models is that the
truth-value in NARS is not probability. This topic has been discussed in previous
publications [18,20], so only the major arguments are summarized:

– In NARS, truth-value measures degree of belief according to available evi-
dence, which may change over time without converging to a limit, so is not
a function defined on the space of statements.

204 P. Wang and P. Hammer

– Each statement is evaluated according to its own available evidence, so all
the truth-values of the beliefs do not necessarily form a consistent probability
distribution, and there can be inconsistency among beliefs.

– Because of the above reasons, the calculation and revision of truth-value
cannot be handled as Bayesian conditioning or other theorems of probability
theory. Instead, their calculations are based on the semantics of NARS, using
extended Boolean functions.

Once again, this is the case, because under the assumption of insufficient knowl-
edge and resources, an AGI usually cannot maintain a consistent probability
distribution among its beliefs, no matter how preferred such a situation is.

In particular, Solomonoff probability [2,15] is not accepted in NARS, since
it demands unrealistic resources, as well as is justified by interpreting “Occam’s
Razor” as “Simple hypotheses are preferred because they are more likely to
be true”. In NARS, “Occam’s Razor” is interpreted as “Simple hypotheses are
preferred because they demands less resources”. Therefore, it is respected in
resource allocation, but not in truth-value calculation.

The Assumption on Desire

As a derivative of belief, in NARS desire is also defined on statements, rather
than on states. Beside the partiality nature, it has additional desirable features.

In both decision theory and reinforcement learning, it is assumed that the
states are evaluated by a single value function (utility function or reward func-
tion). Though such a treatment is natural for many practical problems, it has
trouble to be extended into general-purpose systems where there are usually mul-
tiple goals at the same time. Because of the conflicts and competitions among
the goals, the “value” of an action usually should be judged according to its
effects on all the existing goals. When these goals are incommensurable, it is
hard to justify such a function. The traditional models simply assume the exis-
tence of the function, so as to put the burden on the practitioners. Introducing a
monetary measurement like commonly used is not always natural or justifiable.

NARS does not depend on an overall value function, but defines desire-value
on statements, including goals as a subset. When considering each action, in
many situations it is hard, if not impossible, to judge its value against the “ulti-
mate goal” or “super goal” of the system. Instead, it is usually judged with
respect to each goal that happens to be considered at the time, and more con-
siderations will bring other related goals into account to revise its desire-value,
as explained previously. In the way, the overall desire-value is constructed by the
system, not given to it. Furthermore, this construction is adaptive and context-
sensitive, so it is not a fixed function defined on states or statements.

In the discussions about the safety of AI, many people have incorrectly
assumed that the key is to give the system a “super goal” that is beneficial to
human beings. In reality an intelligent system cannot always decide its actions
by checking them against such a super goal, due to knowledge-resource restric-
tion. What really matter are the currently active goals, which may have become
inconsistent with the initial goal from which they were derived [19].

Assumptions of Decision-Making Models in AGI 205

The Assumption on Budget

One of the most noticeable characteristics of NARS is the resources restriction
in its theoretical foundation. On the contrary, most normative models regard
the insufficiency of computational time and space as implementation issues and
exclude them from theoretical considerations [6]. It has been argued in several
of our publications that “optimum decisions made with sufficient resource” and
“optimum decisions made with insufficient resource” are different problems that
demand different solutions. Many cognitive functions observed in the human
mind were evolved to deal with resource allocation, such as attention, forgetting,
and emotion [7,14]. Their impacts on decision making cannot be understood if
the resource restriction is omitted.

For NARS, to work in real time means that each problem instance (not
problem type) has an associated time requirement that can only be determined
at runtime, and the available resources of the system cannot be predetermined,
since it depends on the co-existent tasks. To work in such a situation, in NARS
there is no “decision making algorithm” with a fixed computational complexity.
Instead, a decision-making process is formed at runtime by a large number of
inference steps, and the number and order of the steps are determined at the
moment by many factors, so that even if the same problem occurs at different
moments, its processing and even the result may be different. NARS cannot
guarantee to consider all possibilities when a decision is made, but it considers
as many as the current resource supply allows. A lot of work has been done in
reinforcement learning to improve efficiency, but the results are all in the form
of fixed algorithms, which cannot handle variable time pressure. NARS on the
other hand is designed to work under the assumption of insufficient resources,
with insufficient time as special case.

4 Conclusion

Mainly because of the insufficiency of knowledge and resources, certain basic
assumptions of the traditional models of decision making, namely decision theory
and reinforcement learning, cannot be accepted in realistic situations where AGI
systems should work. These assumptions include:

– “Decision making” means to select the best action from all applicable actions.
– Beliefs on actions are expressed as probabilistic transitions among states.
– Desires are measured by a value function defined on states.
– The system can afford the resources demanded by the involved algorithms.

Though the traditional models can still be extended and revised, they cannot
drop all these fundamental assumptions without becoming fundamentally differ-
ent models.4 They should not be taken as idealized models to be approximated,
since these assumptions change the nature of the problem of decision making.
4 There is no space in this paper to discuss approaches where some of them are rejected.

206 P. Wang and P. Hammer

The practice of NARS shows that it is feasible to put decision making in a
normative model that is based on the assumption of insufficient knowledge and
resources. Such a model shares many features with the human mind, while is still
justified according to certain principles of rationality. This direction is similar
to ideas like Simon’s “bounded rationality” [13], except those ideas are rarely
formalized and specified in details to be implementable in computers. Compared
to them, NARS provides a much more detailed model, which is also implemented
and under testing.5

References

1. Barto, A.G., Mahadevan, S.: Recent advances in hierarchical reinforcement learn-
ing. Discrete Event Dynamic Systems 13, 41–77 (2003)

2. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algo-
rithmic Probability. Springer, Berlin (2005)

3. Jeffrey, R.C.: The Logic of Decision. McGraw-Hill, New York (1965)
4. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey.

Journal of Artificial Intelligence Research 4, 237–285 (1996)
5. Kowalski, R.: Logic for Problem Solving. North Holland, New York (1979)
6. Legg, S., Hutter, M.: Universal intelligence: a definition of machine intelligence.

Minds & Machines 17(4), 391–444 (2007)
7. Medin, D.L., Ross, B.H.: Cognitive Psychology. Harcourt Brace Jovanovich, Fort

Worth (1992)
8. Mintzberg, H., Raisinghani, D., Théorêt, A.: The structure of ‘unstructured’ deci-

sion processes. Administrative Sciences Quarterly 21, 246–275 (1976)
9. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,

Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis,
D.: Human-level control through deep reinforcement learning. Nature 518(7540),
529–533 (2015)

10. Price, H.: Defending desire-as-belief. Mind 98, 119–127 (1989)
11. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pren-

tice Hall, Upper Saddle River (2010)
12. Savage, L.J.: The Foundations of Statistics. Wiley, New York (1954)
13. Simon, H.A.: Models of Man: Social and Rational. John Wiley, New York (1957)
14. Simon, H.A.: Motivational and emotional controls of cognition. Psychological

Review 74, 29–39 (1967)
15. Solomonoff, R.J.: A formal theory of inductive inference. Part I and II. Information

and Control 7(1-2), 1–22, 224–254 (1964)
16. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,

Cambridge (1998)
17. Wang, P.: Non-Axiomatic Reasoning System: Exploring the Essence of Intelligence.

Ph.D. thesis, Indiana University (1995)
18. Wang, P.: Rigid Flexibility: The Logic of Intelligence. Springer, Dordrecht (2006)

5 For source code and working examples, visit https:// github.com/opennars/
opennars.

https://github.com/opennars/opennars
https://github.com/opennars/opennars

Assumptions of Decision-Making Models in AGI 207

19. Wang, P.: Motivation management in agi systems. In: Bach, J., Goertzel, B., Iklé,
M. (eds.) AGI 2012. LNCS, vol. 7716, pp. 352–361. Springer, Heidelberg (2012)

20. Wang, P.: Non-Axiomatic Logic: A Model of Intelligent Reasoning. World Scien-
tific, Singapore (2013)

21. Wang, P., Hammer, P.: Issues in temporal and causal inference. In: Proceedings of
the Eighth Conference on Artificial General Intelligence (2015)

22. Weirich, P.: Realistic Decision Theory. Oxford University Press, New York (2004)

Issues in Temporal and Causal Inference

Pei Wang1(B) and Patrick Hammer2

1 Department of Computer and Information Sciences, Temple University,
1925 North 12th Street, Philadelphia, PA 19122, USA

pei.wang@temple.edu
2 Institute of Optimization and Discrete Mathematics,

Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria

Abstract. This paper discusses several key issues in temporal and
causal inference in the context of AGI. The main conclusions are: (1)
the representation of temporal information should take multiple forms;
(2) classical conditioning can be carried out as temporal inference; (3)
causal inference can be realized without a predefined causal relation.

A central function of intelligence is prediction, the ability for a system to
anticipate future situations according to past experience. It is often considered
as a form of temporal inference or causal inference. This paper focuses on several
key issues in this type of inference, by introducing the approach taken in NARS
(Non-Axiomatic Reasoning System), and comparing it with other approaches.

NARS is an AGI system designed according to the theory that intelligence
is the ability for a system to adapt to the environment while working with insuf-
ficient knowledge and resources. The system takes the form of a general-purpose
reasoning system, and carries out various cognitive functions (learning, planning,
decision making, etc.) in a unified process. The theory and its formal model are
described in [31,32], as well as in other publications. Limited by the length of
the paper, in the following only a small part of the system is described.

1 Integrated Representation of Temporal Information

NARS uses a formal language Narsese to represent various types of knowledge:

Term. A term names a concept in the system. In its simplest form, an atomic
term is just a unique identifier, such as bird for the concept “bird”.

Compound Term. A compound term is composed from other terms by a con-
nector. For example, ([yellow]∩ bird) is a compound term for “yellow bird”.

Statement. A statement is a compound term representing the substitutability
of one term by another one. For example, “Tweety is a yellow bird” is rep-
resented by statement “{Tweety} → ([yellow] ∩ bird)”. A statement with a
truth-value measuring its evidential support is called a judgment.

Event. An event is a statement whose truth-value is specified for a dura-
tion. For example, “Tweety is following Bob” is represented in Narsese as
“({Tweety} × {Bob}) → follow”, and the statement is true in the period
when Tweety is following Bob, but neither before nor after that period.

c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 208–217, 2015.
DOI: 10.1007/978-3-319-21365-1 22

Issues in Temporal and Causal Inference 209

Operation. An operation is an event that can be realized by the system
itself. For example, “to follow Bob” is represented in Narsese as operation
“⇑follow({Bob})”, which the system can realize by directly executing it.

The formal definitions of the symbols used above are given in [32], and here
they only need to be intuitively understood. Also, for the current discussion, it
is enough to see the memory of NARS as a collection of interrelated concepts.

In this way, NARS uniformly represents all empirical knowledge as sentences
in a formal language, while still keeps the differences among types of knowledge.
This design is very different from the tradition of cognitive architectures, where
the common practice is to distinguish “semantic/declarative memory”, “episodic
memory”, and “procedural memory” from each other, and to handle them in
separate modules, each with its storage structure and processing mechanism
[6,14,17]. There have been other attempts to unify these memory modules, such
as in a graphical model [25], while NARS does it in a logical model that has some
similarity with logical programming [13], even though the memory of NARS can
also be roughly seen as a conceptual graph.

Since an event is just a statement whose truth-value is specified for a period,
the most straightforward representation of temporal information is to attach a
time interval to each event [1,18], or even to every statement, since accurately
speaking, every conceptual relation hold in an interval, including “forever” as a
special case. NARS does not take this approach, because in different situations
the accuracy in specifying the beginning and ending of an event varies greatly, so
to use a single unit of time by which all events are measured is probably neither
necessary nor possible for an AGI. To be natural and flexible, in NARS an event
can be seen as both a point and an interval in time, depending on the desired
granularity. This treatment is consistent with the opinion that “The unit of
composition of our perception of time is a duration” [15]. Therefore, the temporal
information of an event is specified relatively with respect to another event, using
one of the two built-in temporal relations: sequential and parallel (also known as
before-after and at-the-same-time), which correspond to the precedes and overlap
predicates in the Russell-Kamp construction [15].

As a reasoning system, NARS runs by repeating a working cycle, and in
each cycle the system carries out a step of inference, as well as some simple
input/output activities. Just like a biological system uses certain rhythmic event
as a “biological clock”, NARS uses its working cycles as an internal clock, since
each working cycle roughly takes a short constant amount of time. Using this
internal clock, NARS can express the durations of certain events. For example,
it can represent something like “Event A is observed, then, after 5 cycles, event
B is observed”, where the “5 cycles” is an event measurable by the system.

Beside current events, the system can make judgments about past and future
events, too. In NARS every sentence has a time-stamp indicating when the judg-
ment is created (either from input or from inference); if the sentence is about
an event, there is also a time-stamp about the estimated occurrence time. All
the time-stamps are in terms of the system’s internal clock, and each takes
an integer as value, which can be either positive or negative. This treatment

210 P. Wang and P. Hammer

has some similarity with “step-logic” [5], though in NARS a time-stamp is not
explicitly expressed as part of a statement. Unlike some cognitive architectures
[7,17], NARS does not attempt to simulate the response time of the human
brain. The system uses its (subjective) working cycle as the unit of time, not
the (objective) time provided by the clock of the host computer, so as to achieve
platform-independence in testing. For example, if a certain inference process
takes 10 steps in one computer, so does it in a different computer, even when
the two systems have different running speeds.

The internal clock and built-in temporal relations are preferred for their
simplicity and flexibility, but they are not used to represent all types of temporal
information. NARS can use an external clock by specifying an event as occurring
at the same moment as a time indicated by the clock. Since such a clock is an
optional tool, the system can use different clocks in different situations for various
demands of accuracy and granularity in time measurement.

In summary, in NARS temporal information is represented at three levels:

Term. A term (either atomic or compound) can represent a temporal concept
(such as “New Year’s Day”) or relation (such as “after a while”). Such a term
is handled just like the other terms, though its meaning contains acquired
temporal information.

Statement. A temporal statement can be formed using a built-in temporal
relation combined with certain logical connectors. For example, if A, B, and
C are events, then the Narsese statement “(A,B) /⇒ C” represents “If A is
followed by B, then C will occur after them”.

Sentence. A temporal sentence uses a time-stamp to indicate the estimated
occurrence time of the event, with respect to the internal clock of the system.

Since the internal clock is “private” to the system, when a temporal sentence
needs to be expressed in Narsese for communication purpose, its time-stamp is
converted into a “tense”, which has three possible values: “past”, “present”, and
“future”, with respect to the “current moment” when the message is created.
Symmetrically, when an input judgment has a tense attached, it is converted
into a time-stamp, according to the current time.

It is important to see that an AGI system like NARS should not directly carry
out inference on tense, because since the system works in real time, the “current
moment” changes constantly [5,12]. On this aspect, NARS is fundamentally
different from many traditional temporal logic systems [22,29], which treat the
tense of a statement as one of its intrinsic properties, as if the reasoning system
itself is outside the flow of time.

In summary, many different techniques have been proposed in AI to represent
temporal information, each of which is effective under different assumptions [2].
NARS uses three approaches, and integrates them to satisfy the need of AGI.

2 Classical Conditioning as Temporal Inference

NARS uses experience-grounded semantics [30]. Accordingly, the truth-value of
a statement measures its evidential support with two real numbers in [0, 1]:

Issues in Temporal and Causal Inference 211

the frequency value is the proportion of positive evidence among all currently
available evidence, and the confidence value is the proportion of the currently
available evidence among all evidence accumulated after the coming of new evi-
dence by a unit amount. Their relation with probability is explained in [31].

Based on this semantics, each inference rule in NARS has a truth-value func-
tion calculating the truth-value of the conclusion according to the evidence pro-
vided by the premises. Without going into the details of the inference rules
(covered in [32] and other publications on NARS), for the current discussion it
is sufficient to know that as far as the confidence of the conclusion is concerned,
there are three types of inference rules:

Strong Inference. For example, from premises “{Tweety} → bird 〈1.00, 0.90〉”
(“Tweety is a bird”) and “($x → bird) ⇒ ($x → [yellow]) 〈1.00, 0.90〉”
(“Birds are yellow”, where $x can be substituted by another term), the deduc-
tion rule derives the conclusion “{Tweety} → [yellow] 〈1.00, 0.81〉” (“Tweety
is yellow”). Such a rule is “strong” because the confidence of its conclusion can
approach 1. If the truth-values are dropped and all the statements are taken
to be “true”, the rule is still valid in its binary form.

Weak Inference. For example, from premises “{Tweety} → bird 〈1.00, 0.90〉”
and “{Tweety} → [yellow] 〈1.00, 0.90〉”, the induction rule derives “($x →
bird) ⇒ ($x → [yellow]) 〈1.00, 0.45〉”; similarly, from “($x → bird) ⇒ ($x →
[yellow]) 〈1.00, 0.90〉” and “{Tweety} → [yellow] 〈1.00, 0.90〉”, the abduction
rule derives “{Tweety} → bird 〈1.00, 0.45〉”. Such a rule is “weak” because
the confidence of its conclusion cannot be higher than 0.5. If the truth-values
are dropped and all the statements are taken to be “true”, the rule becomes
invalid in its binary form.

Evidence pooling. If two premises have the same statement but are supported
by distinct evidence, such as “bird → [yellow] 〈1.00, 0.50〉” and “bird →
[yellow] 〈0.00, 0.80〉”, the revision rule derives “bird → [yellow] 〈0.20, 0.83〉”.
This is the only rule whose conclusion has a higher confidence value than
both premises, since here the premises are based on the distinct evidential
bases, while the conclusion is based on the pooled evidence.

There are many other inference rules in the system for other combinations of
premises with respect to various term connectors, and they will not be addressed
in this paper. In the following we only briefly describe how temporal inference
is carried out. Here the basic idea is to process temporal information and logical
information in parallel. Among other functions, this type of inference can carry
out a process that is similar to classical (Pavlovian) conditioning, by associating
a conditioned stimulus (CS) with an unconditioned stimulus (US). However what
is special in NARS is that temporal inference will also happen between neutral
stimuli. In the rare case that they get attention and also turn out to be important,
they will find relations which a classical conditioning model would have missed.

To show how it works, assume initially the system gets to know that an
occurrence of event C is followed by an occurrence of event U . As mentioned pre-
viously, events are represented as statements with temporal information. In this

212 P. Wang and P. Hammer

case, the occurrence time of C will be recognized by the system as before that of
U . As soon as the temporal succession between the two events is noticed by the
system, a temporal version of the induction rule will be invoked to generalize
the observation into a temporal implication “C /⇒ U”. The truth-value of this
conclusion depends on the quality of the observations, as well as the restriction
applied by the induction rule, so that the confidence value of the conclusion will
be less than 0.5 – since it is only based on a single observation, the conclusion
is considered a “hypothesis” that differs from a “fact” in confidence.

If at a later time C occurs again, then from it and the previous hypothesis
the system derives U by deduction, with a time-stamp suggesting that it will
occur soon. Since the hypothesis has a low confidence, the prediction on U is
also tentative, though it may still be significant enough to raise the system’s
anticipation of the event, so as to make it more recognizable even when the input
signal is relatively weak or noisy. An anticipation-driven observation is “active”,
rather than “passive” (where the system simply accepts all incoming signals
without any bias), and the difference is not only in sensitivity. When expressed
as Narsese sentences, the inputs provided by a sensor normally correspond to
affirmative judgments, without any negative ones – we can directly see or hear
what is out there, but cannot directly see or hear what is not there. “Negative
observations” are actually unrealized anticipations and can only be produced by
active observations.

In the current example, if the anticipated U does not appear at the estimated
time, this unrealized anticipation and the preceding C will be taken as negative
evidence by the induction rule to generate a negative judgment “C /⇒ U” that
has a low (near 0) frequency value. Then the revision rule can pool this one
with the previous (affirmative) one to get a new evaluation for the temporal
statement “C /⇒ U”. In this way, the successes and failures of anticipation will
gradually lead the system to a relatively stable belief on whether, or how often,
U is followed by C. The conclusion is similar to a statistical one, though it is
revised incrementally, with no underlying probabilistic distribution assumed.

If the system has an unconditioned response (UR) to the US, this “instinct”
corresponds to a temporal implication “U /⇒ ⇑R” that represents a sufficient
precondition U for the operation ⇑R to be executed, and it will have an affir-
mative truth-value, such as 〈1.00, 0.99〉 (confidence cannot reach 1, even for an
instinct). From this instinct and the belief on “C /⇒ U”, the deduction rule
generates “C /⇒ ⇑R”, which gives the operation an acquired sufficient precon-
dition, though with a lower confidence than the instinct at the beginning. Now
⇑R becomes a conditioned response (CR) to the CS.

Similarly, if the system already has a strong belief on “C /⇒ U”, and it notices
an occurrence of U , then by temporal abduction the system will guess that C
has occurred previously, though the system may fail to notice it in the input
stream, or it may be not directly observable. Similar to inductive conclusions,
such an abductive conclusion is not very confident until it is strengthen by other
evidence. As proposed by C. S. Peirce [20], a major function of abduction is to
provide explanations for observations.

Issues in Temporal and Causal Inference 213

Most of the existing models of classical conditioning are built in the frame-
work of dynamic system [3,8,24,28], while in NARS it is modeled as an inference
process. Though Bayesian models [27] also treat conditioning as reasoning, there
the process only evaluates the probability of given statements, while NARS, fol-
lowing a logic, can generate new statements. Beside recognizing the preconditions
and consequences of single operations, temporal inference also allows the system
to do the same for compound operations consisting of multiple steps, which is
usually called “planning”, “scheduling”, or “skill learning” [15]. Typically, the
consequence of a preceding operation enables or triggers a following operation,
and such a compound operation as a whole will gradually be used as an individual
operation by the system. Such a process recursively forms an action hierarchy,
which allows efficient reaction and planning with different granularity. Unlike in
reinforcement learning or many other planning systems, NARS does not plan its
actions in all situations in terms of the same set of basic operations.

3 Causal Inference without a Casual Relation

Based on the current situation to predict the future (or to describe the past) is
often considered as “causal inference”. Though “causality” has many different
interpretations [33], a common opinion is to think the events in the universe
as interconnected via “causal relations”, so that every event is “caused” by a
certain proceeding event. When the causal relations of an event become fully
known, its occurrence and consequences can be predicted with certainty.

This opinion is usually formalized in AI and cognitive science using math-
ematical logic [9,26], probability theory [4,19,23], or a combination of the two
[10,11]. Such a model assumes the existence of a deterministic or probabilistic
causal relation, on which the system carries out logical or statistical inference
to predict the future, or to describe the past, according to the present. In this
approach, every event has a unique “true cause”, which can be found, or at least
approximated, using causal inference.1

NARS does not treat causal inference in this way. As mentioned previously,
the basic assumption behind NARS is that an intelligent system never has full
knowledge about the environment and itself, and all the available knowledge are
revisable. For a given event, the system cannot know all of its preconditions so
as to predict its occurrence with certainty. Similarly, the system cannot accu-
rately anticipate all effects an event triggers. According to this opinion, even
the probabilistic models assume too much – to meaningfully talk about “the
probability” of an event, the presumption is that all the relevant events are in
a space on which a probability function is defined. For an AGI system working
in realistic situations, such a function can neither be obtained nor maintained,
since the system does not know all future events, nor can it always guarantee
the consistency among its degrees of belief when they are revised in real-time.
1 A new approach [23] additionally tries to get rid of certain undesired results (Berk-

son’s Paradox) of Bayesian conditioning by using “relational blocking”, but the prob-
lem of assuming “true cause” remains.

214 P. Wang and P. Hammer

In an AGI system, the above restrictions do not rule out the feasibility of
predicting the future and describing the past. As shown by the previous example,
NARS can learn the regularity in its experience, and use it to predict the future.
Here the relevant knowledge is represented as temporal implication judgments
like “C /⇒ U 〈f, c〉”, which is a summary of the relevant past experience, not an
accurate or approximate description of an objective “law of nature”.

The existence of objective causation is a long-lasting belief accepted by many
scientists and philosophers, but it has been challenged in the recent century both
in science (especially in physics) and in philosophy. From the point of view of
cognitive science, it can be argued that all the beliefs of a system are restricted
by the cognitive capability (nature) and past experience (nurture) of the system,
and there is no ground to assume that such a belief will converge to an objective
truth. Even so, an adaptive system can form beliefs about causation. According to
Piaget [21], such beliefs originate from the observations about the consequences
of one’s own operations. For example, if event E is repeatedly observed after
the execution of operation R, NARS will form a belief “⇑R/⇒ E 〈0.98, 0.99〉”,
which can be interpreted as “E is caused by R”. This will be the case even when
this achievement of the operation actually depends on a condition C, which is
usually (say 98% of the time) satisfied – the belief is stable and useful enough
for C to be ignored. However, when C is not usually satisfied, a belief like
“⇑R/⇒ E 〈0.49, 0.99〉” will not be as useful to the system, so in this case a more
reliable (though also more complicated) belief “(C,⇑R) /⇒ E 〈0.99, 0.95〉” will
be favored by the system as the knowledge about how to get E. Please note that
even in such a case it is hard to say what is the “true cause” for E to happen,
since accurately speaking there may be other events involved, though for the
system’s current purpose, they do not need to be taken into consideration.

This discussion is also related to the Frame Problem [16], where the issue
is: for a given operation of the system, how to represent all of its preconditions
and consequences. The solutions proposed for this problem usually deal with it
in idealized or simplified situations, while the response to it in NARS is to give
up the attempt of getting all the information. An AGI system should depend on
operations with incomplete descriptions of preconditions and consequences, and
make decisions according to the available knowledge and resources [34].

NARS uses temporal inference to carry out prediction and explanation, which
are often considered as “causal inference”, though within the system there is no
built-in “causal relation”. The system has temporal versions of implication and
equivalence relations built into its grammar and inference rules, so a “causal
relation” can be represented in the system as their variant with domain-specific
and context-dependent additional requirements. This treatment is arguably sim-
ilar to the everyday usage of “causation”. In many fields, questions of the form
of “What is the real cause of X?”, with various X, have been under debate for
decades, even centuries. The notion of cause is interpreted very differently in
different situations – it can be deterministic or probabilistic; it may correspond
to a sufficient condition or a sufficient-and-necessary condition; it may or may
not be an intentional action; and so on. However, behind all of these versions,

Issues in Temporal and Causal Inference 215

the invariant components include a logical factor (from the given “causes”, the
“effects” can be derived) and a temporal factor (the “causes” happen no later
than the “effects”). NARS covers these two aspects in temporal inference, while
leaves the additional and variable aspects of causation to learning.

In this model, a causal relation and a covariant (or correlative) relation can
still be distinguished, as usually desired [4]. However here their difference is quan-
titative, not qualitative. If the judgment on “C /⇒ U” gets its truth-value solely
by induction from a small amount of evidence, the confidence of the conclusion
will be relatively low, and we tend to consider such a relation “covariant”, but
if the conclusion can also be established by a chain of deduction, such as from
“C /⇒ M” and “M /⇒ U” where M is another event, then the relation between
C and U may be considered as “casual”, because it has an explanation leading to
a high confidence. As far as prediction is concerned, what matters is the truth-
value of the conclusion, not how they are derived. For instance, in Pavlovian
conditioning the actual relation between CS and US is often coincidental, not
causal, though animals in such experiments cannot tell the difference.

For a given event E, NARS can be asked to find its “cause” and “effect”.
The simplest form is to ask the system to instantiate the query variable ?x when
answering questions “?x /⇒ E” and “E /⇒?x”, respectively. When there are
multiple candidate answers, a choice rule will be invoked to compare their truth-
value, simplicity, relevance, etc., to pick the best answer. Additional requirements
can be provided for the term or the statement that can be accepted as an answer.
In general, NARS does not assume that such a question has a unique correct or
final answer, but always reports the best answer it can find using the available
knowledge and resources. Therefore, though the design of NARS does not include
an innate causal relation, the system has the potential to predict, or even to
control, the occurrence of an event. This is arguably what we should expect
from an AGI.

4 Conclusions

Temporal inference plays a crucial role in AGI. An intelligent system needs the
ability to learn the preconditions and consequences of each operation, to organize
them into feasible plans or skills to reach complicated goals, and to find stable
patterns among the events in its experience. This ability enables the system to
predict the future, and to prepare sequences of operations to achieve its goals.
Classical conditioning can be seen as a concrete case of this ability.

The approach of temporal inference in NARS allows temporal information to
be expressed in several forms for different purposes. Some temporal notions are
innate, while others are acquired, and they can be at different levels of granularity
and accuracy. NARS integrates temporal inference with other inference, and
utilizes a uniform memory for declarative, episodic, and procedural knowledge.

NARS carries out many cognitive functions, like prediction, that are usually
associated with “causal inference”. However there is no fixed notion of a “causal
relation” within the system. NARS is based on the assumption that an accurate

216 P. Wang and P. Hammer

description of the universe with objective causal relations among the events may
not be available to, or manageable by, the system, which makes NARS applicable
to situations where many other models cannot be applied. Instead of trying to
find or to approximate certain objective causal relations, what an intelligent
system should do is to behave according to the regularity and invariance that it
has summarized from its experience, and the generation, revision, and evaluation
of such knowledge is a lifelong task.

All the aspects of NARS described in this paper have been implemented
in the most recent version of the system. Currently the system, which is open
source, is under testing and tuning. As an AGI system, NARS is not designed
for any specific application, but as a testbed for a new theory about intelli-
gence. Though the current implementation already shows many interesting and
human-like properties, there are still many issues to be explored. This paper only
addresses the aspects of NARS that are directly related to temporal inference.

Acknowledgments. The authors thank Kris Thórisson for helpful comments.

References

1. Allen, J.F.: Towards a general theory of action and time. Artificial Intelligence
23(2), 123–154 (1984)

2. Allen, J.F.: Time and time again: The many ways to represent time. International
Journal of Intelligent Systems 6(4), 341–356 (1991)

3. Anderson, J.J., Bracis, C., Goodwin, R.A.: Pavlovian conditioning from a forag-
ing perspective. In: Proceedings of the 32nd Annual Conference of the Cognitive
Science Society, pp. 1276–1281 (2010)

4. Cheng, P.W.: From covariation to causation: a causal power theory. Psychological
Review 104(2), 367–405 (1997)

5. Elgot-Drapkin, J., Perlis, D.: Reasoning situated in time I: Basic concepts. Journal
of Experimental & Theoretical Artificial Intelligence 2, 75–98 (1990)

6. Franklin, S.: A foundational architecture for artificial general intelligence. In:
Goertzel, B., Wang, P. (eds.) Advance of Artificial General Intelligence, pp. 36–54.
IOS Press, Amsterdam (2007)

7. Franklin, S., Strain, S., McCall, R., Baars, B.: Conceptual commitments of the
LIDA model of cognition. Journal of Artificial General Intelligence 4(2), 1–22
(2013)

8. Gallistel, C.R., Gibbon, J.: Time, rate, and conditioning. Psychological Review
107(2), 289–344 (2000)

9. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal
theories. Artificial Intelligence 153, 49–104 (2004)

10. Goodman, N.D., Ullman, T.D., Tenenbaum, J.B.: Learning a theory of causality.
Psychological Review (2011)

11. Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach.
Part I: Causes. The British Journal for the Philosophy of Science 56(4), 843 (2005)

12. Ismail, H.O., Shapiro, S.C.: Two problems with reasoning and acting in time. In:
Principles of Knowledge Representation and Reasoning: Proceedings of the Seventh
International Conference, pp. 355–365 (2000)

13. Kowalski, R.: Logic for Problem Solving. North Holland, New York (1979)

Issues in Temporal and Causal Inference 217

14. Laird, J.E.: The Soar Cognitive Architecture. MIT Press, Cambridge (2012)
15. vanLambalgen,M.,Hamm,F.:Theproper treatmentof events.BlackwellPublishing,

Malden (2005)
16. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of

artificial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 4, pp.
463–502. Edinburgh University Press, Edinburgh (1969)

17. Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge
(1990)

18. Nivel, E., Thórisson, K.R., Steunebrink, B.R., Dindo, H., Pezzulo, G., Rodriguez, M.,
Hernandez, C., Ognibene, D., Schmidhuber, J., Sanz, R., Helgason, H.P., Chella, A.,
Jonsson, G.K.: Bounded recursive self-improvement. CoRR abs/1312.6764 (2013)

19. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University
Press, Cambridge (2000)

20. Peirce, C.S.: Collected Papers of Charles Sanders Peirce, vol. 2. Harvard University
Press, Cambridge (1931)

21. Piaget, J.: The construction of reality in the child. Basic Books, New York (1954)
22. Pratt-Hartmann, I.: Temporal prepositions and their logic. Artificial Intelligence

166, 1–36 (2005)
23. Rattigan, M.J., Maier, M., Jensen, D.: Relational blocking for causal discovery. In:

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence (2011)
24. Rescorla, R., Wagner, A.: A theory of Pavlovian conditioning: Variations in the

effectiveness of reinforcement and non reinforcement. In: Black, A., Prokasy, W.
(eds.) Classical Conditioning II, pp. 64–99. Appleton-Century-Crofts, New York
(1972)

25. Rosenbloom, P.S.: Rethinking cognitive architecture via graphical models.
Cognitive Systems Research 12, 198–209 (2011)

26. Shoham, Y.: Nonmonotonic reasoning and causation. Cognitive Science 14,
213–252 (1990)

27. Srivastava, N., Schrater, P.: Classical conditioning via inference over observable
situation contexts. In: Proceedings of the 36th Annual Meeting of the Cognitive
Science Society, pp. 1503–1508 (2014)

28. Sutton, R.S., Barto, A.G.: Time-derivative models of Pavlovian reinforcement. In:
Gabriel, M., Moore, J. (eds.) Learning and Computational Neuroscience: Founda-
tions of Adaptive Networks, pp. 497–537. MIT Press (1990)

29. Vila, L.: A survey on temporal reasoning in artificial intelligence. AI Communica-
tions 7(1), 4–28 (1994)

30. Wang, P.: Experience-grounded semantics: a theory for intelligent systems.
Cognitive Systems Research 6(4), 282–302 (2005)

31. Wang, P.: Rigid Flexibility: The Logic of Intelligence. Springer, Dordrecht (2006)
32. Wang, P.: Non-Axiomatic Logic: A Model of Intelligent Reasoning. World Scien-

tific, Singapore (2013)
33. Williamson, J.: Causality. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philo-

sophical Logic, vol. 14, pp. 95–126. Springer (2007)
34. Xu, Y., Wang, P.: The frame problem, the relevance problem, and a package

solution to both. Synthese (2012)

http://arxiv.org/abs/1312.6764

© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 218–227, 2015.
DOI: 10.1007/978-3-319-21365-1_23

The Space of Possible Mind Designs

Roman V. Yampolskiy()

Computer Engineering and Computer Science Speed School of Engineering,
University of Louisville, Louisville, USA

roman.yampolskiy@louisville.edu

Abstract. The paper attempts to describe the space of possible mind designs by
first equating all minds to software. Next it proves some properties of the mind
design space such as infinitude of minds, size and representation complexity of
minds. A survey of mind design taxonomies is followed by a proposal for a new
field of investigation devoted to study of minds, intellectology.

Keywords: AGI · Intellectology · Mind · Mind designs · Space of minds

1 Introduction

In 1984 Aaron Sloman published “The Structure of the Space of Possible Minds” in
which he described the task of providing an interdisciplinary description of that struc-
ture [1]. He observed that “behaving systems” clearly comprise more than one sort of
mind and suggested that virtual machines may be a good theoretical tool for analyzing
mind designs. Sloman indicated that there are many discontinuities within the space
of minds meaning it is not a continuum, nor is it a dichotomy between things with
minds and without minds [1]. Sloman wanted to see two levels of exploration namely:
descriptive – surveying things different minds can do and exploratory – looking at
how different virtual machines and their properties may explain results of the descrip-
tive study [1]. Instead of trying to divide the universe into minds and non-minds he
hoped to see examination of similarities and differences between systems. In this
work we attempt to make another step towards this important goal1.

What is a mind? No universally accepted definition exists. Solipsism notwithstand-
ing, humans are said to have a mind. Higher order animals are believed to have one as
well and maybe lower level animals and plants or even all life forms. We believe that
an artificially intelligent agent such as a robot or a program running on a computer
will constitute a mind. Based on analysis of those examples we can conclude that a
mind is an instantiated intelligence with a knowledgebase about its environment, and
while intelligence itself is not an easy term to define, a recent work of Shane Legg
provides a satisfactory, for our purposes, definition [2]. Additionally, some hold a
point of view known as Panpsychism, attributing mind like properties to all matter.
Without debating this possibility we will limit our analysis to those minds which can

1
 This paper is adapted, with permission, from Dr. Yampolskiy’s forthcoming book – Artificial

 Superintelligence: a Futuristic Approach © 2015 by CRC Press.

 The Space of Possible Mind Designs 219

actively interact with their environment and other minds. Consequently, we will not
devote any time to understanding what a rock is thinking.

If we accept materialism, we have to also accept that accurate software simulations
of animal and human minds are possible. Those are known as uploads [3] and they
belong to a class comprised of computer programs no different from that to which
designed or evolved artificially intelligent software agents would belong. Consequent-
ly, we can treat the space of all minds as the space of programs with the specific
property of exhibiting intelligence if properly embodied. All programs could be
represented as strings of binary numbers, implying that each mind can be represented
by a unique number. Interestingly, Nick Bostrom via some thought experiments spe-
culates that perhaps it is possible to instantiate a fractional number of mind, such as .3
mind as opposed to only whole minds [4]. The embodiment requirement is necessary
since a string is not a mind, but could be easily satisfied by assuming that a universal
Turing machine is available to run any program we are contemplating for inclusion in
the space of mind designs. An embodiment does not need to be physical as a mind
could be embodied in a virtual environment represented by an avatar [5, 6] and react
to simulated environment like a brain-in-a-vat or a “boxed” AI [7].

2 Infinitude of Minds

Two minds identical in terms of the initial design are typically considered to be dif-
ferent if they possess different information. For example, it is generally accepted that
identical twins have distinct minds despite exactly the same blueprints for their con-
struction. What makes them different is their individual experiences and knowledge
obtained since inception. This implies that minds can’t be cloned since different cop-
ies would immediately after instantiation start accumulating different experiences and
would be as different as two twins.

If we accept that knowledge of a single unique fact distinguishes one mind from
another we can prove that the space of minds is infinite. Suppose we have a mind M
and it has a favorite number N. A new mind could be created by copying M and re-
placing its favorite number with a new favorite number N+1. This process could be
repeated infinitely giving us an infinite set of unique minds. Given that a string of
binary numbers represents an integer we can deduce that the set of mind designs is an
infinite and countable set since it is an infinite subset of integers. It is not the same as
set of integers since not all integers encode for a mind.

3 Size, Complexity and Properties of Minds

Given that minds are countable they could be arranged in an ordered list, for example in
order of numerical value of the representing string. This means that some mind will
have the interesting property of being the smallest. If we accept that a Universal Turing
Machine (UTM) is a type of mind, if we denote by (m, n) the class of UTMs with m
states and n symbols, the following UTMs have been discovered: (9, 3), (4, 6), (5, 5),
and (2, 18). The (4, 6)-UTM uses only 22 instructions, and no standard machine of less-
er complexity has been found [8]. Alternatively, we may ask about the largest mind.

220 R.V. Yampolskiy

Given that we have already shown that the set of minds is infinite, such an entity does
not exist. However, if we take into account our embodiment requirement the largest
mind may in fact correspond to the design at the physical limits of computation [9].

Another interesting property of the minds is that they all can be generated by a
simple deterministic algorithm, a variant of Levin Search [10]: start with an integer
(for example 42), check to see if the number encodes a mind, if not, we discard the
number, otherwise we add it to the set of mind designs and proceed to examine the
next integer. Every mind will eventually appear on our list of minds after a predeter-
mined number of steps. However, checking to see if something is in fact a mind is not
a trivial procedure. Rice’s theorem [11] explicitly forbids determination of non-trivial
properties of random programs. One way to overcome this limitation is to introduce
an arbitrary time limit on the mind-or-not-mind determination function effectively
avoiding the underlying halting problem.

Analyzing our mind-design generation algorithm we may raise the question of
complexity measure for mind designs, not in terms of the abilities of the mind, but in
terms of complexity of design representation. Our algorithm outputs minds in order of
their increasing value, but this is not representative of the design complexity of the
respective minds. Some minds may be represented by highly compressible numbers
with a short representation such as 1013, while others may be comprised of 10,000
completely random digits, for example 735834895565117216037753562914… [12].
We suggest that Kolmogorov Complexity (KC) [13] measure could be applied to
strings representing mind designs. Consequently some minds will be rated as “ele-
gant” – having a compressed representation much shorter than the original string
while others will be “efficient” representing the most efficient representation of that
particular mind. Interesting elegant minds might be easier to discover than efficient
minds, but unfortunately KC is not generally computable.

Each mind design corresponds to an integer and so is finite, but since the number
of minds is infinite some have a much greater number of states compared to others.
This property holds for all minds. Consequently, since a human mind has only a finite
number of possible states, there are minds which can never be fully understood by a
human mind as such mind designs have a much greater number of states, making their
understanding impossible as can be demonstrated by the pigeonhole principle.

4 Space of Mind Designs

Overall the set of human minds (about 7 billion of them currently available and about
100 billion ever existed) is very homogeneous both in terms of hardware (embodi-
ment in a human body) and software (brain design and knowledge). In fact the small
differences between human minds are trivial in the context of the full infinite spec-
trum of possible mind designs. Human minds represent only a small constant size
subset of the great mind landscape. Same could be said about the sets of other earthly
minds such as dog minds, or bug minds or male minds or in general the set of all ani-
mal minds.

Given our definition of mind we can classify minds with respect to their design,
knowledgebase or embodiment. First, the designs could be classified with respect to
their origins: copied from an existing mind like an upload, evolved via artificial or

 The Space of Possible Mind Designs 221

natural evolution or explicitly designed with a set of particular desirable properties.
Another alternative is what is known as a Boltzmann Brain – a complete mind embed-
ded in a system which arises due to statistically rare random fluctuations in the par-
ticles comprising the universe, but which is very likely due to vastness of cosmos [14].

Lastly a possibility remains that some minds are physically or informationally
recursively nested within other minds. With respect to the physical nesting we can
consider a type of mind suggested by Kelly [15] who talks about “a very slow invisi-
ble mind over large physical distances”. It is possible that the physical universe as a
whole or a significant part of it comprises such a mega-mind. That theory has been
around for millennia and has recently received some indirect experimental support
[16]. In that case all the other minds we can consider are nested within such larger
mind. With respect to the informational nesting a powerful mind can generate a less
powerful mind as an idea. This obviously would take some precise thinking but
should be possible for a sufficiently powerful artificially intelligent mind. Some sce-
narios describing informationally nested minds are analyzed by Yampolskiy in his
work on artificial intelligence confinement problem [7]. Bostrom, using statistical
reasoning, suggests that all observed minds, and the whole universe, are nested within
a mind of a very powerful computer [17]. Similarly Lanza, using a completely differ-
ent and somewhat controversial approach (biocentrism), argues that the universe is
created by biological minds [18]. It remains to be seen if given a particular mind its
origins can be deduced from some detailed analysis of the minds design or actions.

While minds designed by human engineers comprise only a tiny region in the map
of mind designs it is probably the best explored part of the map. Numerous surveys of
artificial minds, created by AI researchers in the last 50 years, have been produced
[19-23]. Such surveys typically attempt to analyze state-of-the-art in artificial cogni-
tive systems and provide some internal classification of dozens of the reviewed sys-
tems with regards to their components and overall design. The main subcategories
into which artificial minds designed by human engineers can be placed include brain
(at the neuron level) emulators [21], biologically inspired cognitive architectures [22],
physical symbol systems, emergent systems, dynamical and enactive systems [23].
Rehashing information about specific architectures presented in such surveys is
beyond the scope of this paper, but one can notice incredible richness and diversity of
designs even in that tiny area of the overall map we are trying to envision. For readers
particularly interested in overview of superintelligent minds, animal minds and possi-
ble minds in addition to surveys mentioned above a recent paper “Artificial General
Intelligence and the Human Mental Model” by Yampolskiy and Fox is highly rec-
ommended [24].

For each mind subtype there are numerous architectures, which to a certain degree
depend on the computational resources available via a particular embodiment. For
example, theoretically a mind working with infinite computational resources could
trivially brute-force any problem, always arriving at the optimal solution, regardless
of its size. In practice, limitations of the physical world place constraints on available
computational resources regardless of the embodiment type, making brute-force ap-
proach a non-feasible solution for most real world problems [9]. Minds working with
limited computational resources have to rely on heuristic simplifications to arrive at
“good enough” solutions [25-28].

222 R.V. Yampolskiy

Another subset of architectures consists of self-improving minds. Such minds are
capable of examining their own design and finding improvements in their embodi-
ment, algorithms or knowledgebases which will allow the mind to more efficiently
perform desired operations [29]. It is very likely that possible improvements would
form a Bell curve with many initial opportunities for optimization towards higher
efficiency and fewer such options remaining after every generation. Depending on the
definitions used, one can argue that a recursively self-improving mind actually
changes itself into a different mind, rather than remaining itself, which is particularly
obvious after a sequence of such improvements. Taken to extreme this idea implies
that a simple act of learning new information transforms you into a different mind
raising millennia old questions about the nature of personal identity.

With respect to their knowledgebases minds could be separated into those without
an initial knowledgebase, and which are expected to acquire their knowledge from the
environment, minds which are given a large set of universal knowledge from the in-
ception and those minds which are given specialized knowledge only in one or more
domains. Whether the knowledge is stored in an efficient manner, compressed, classi-
fied or censored is dependent on the architecture and is a potential subject of im-
provement by self-modifying minds.

One can also classify minds in terms of their abilities or intelligence. Of course the
problem of measuring intelligence is that no universal tests exist. Measures such as IQ
tests and performance on specific tasks are not universally accepted and are always
highly biased against non-human intelligences. Recently some work has been done on
streamlining intelligence measurements across different types of machine intelligence
[2, 30] and other “types” of intelligence [31], but the applicability of the results is still
being debated. In general, the notion of intelligence only makes sense in the context
of problems to which said intelligence can be applied. In fact this is exactly how IQ
tests work, by presenting the subject with a number of problems and seeing how many
the subject is able to solve in a given amount of time (computational resource). A
subfield of computer science known as computational complexity theory is devoted to
studying and classifying different problems with respect to their difficulty and with
respect to computational resources necessary to solve them. For every class of prob-
lems complexity theory defines a class of machines capable of solving such problems.
We can apply similar ideas to classifying minds, for example all minds capable of
efficiently [12] solving problems in the class P or a more difficult class of NP-
complete problems [32]. Similarly we can talk about minds with general intelligence
belonging to the class of AI-Complete [33-35] minds, such as humans.

Regardless of design, embodiment or any other properties, all minds can be classi-
fied with respect to two fundamental but scientifically poorly defined properties – free
will and consciousness. Both descriptors suffer from an ongoing debate regarding
their actual existence or explanatory usefulness. This is primarily a result of impossi-
bility to design a definitive test to measure or even detect said properties, despite nu-
merous attempts [36-38] or to show that theories associated with them are somehow
falsifiable. Intuitively we can speculate that consciousness, and maybe free will, are
not binary properties but rather continuous and emergent abilities commensurate with
a degree of general intelligence possessed by the system or some other property we
shall term “mindness”. Free will can be said to correlate with a degree to which beha-
vior of the system can’t be predicted [39]. This is particularly important in the design

 The Space of Possible Mind Designs 223

of artificially intelligent systems for which inability to predict their future behavior is
a highly undesirable property from the safety point of view [40, 41]. Consciousness
on the other hand seems to have no important impact on the behavior of the system as
can be seen from some thought experiments supposing existence of “consciousless”
intelligent agents [42]. This may change if we are successful in designing a test, per-
haps based on observer impact on quantum systems [43], to detect and measure con-
sciousness.

In order to be social, two minds need to be able to communicate which might be
difficult if the two minds don’t share a common communication protocol, common
culture or even common environment. In other words, if they have no common
grounding they don’t understand each other. We can say that two minds understand
each other if given the same set of inputs they produce similar outputs. For example,
in sequence prediction tasks [44] two minds have an understanding if their predictions
are the same regarding the future numbers of the sequence based on the same ob-
served subsequence. We can say that a mind can understand another mind’s function
if it can predict the other’s output with high accuracy. Interestingly, a perfect ability
by two minds to predict each other would imply that they are identical and that they
have no free will as defined above.

5 A Survey of Taxonomies

Yudkowsky describes the map of mind design space as follows: “In one corner, a tiny
little circle contains all humans; within a larger tiny circle containing all biological
life; and all the rest of the huge map is the space of minds-in-general. The entire map
floats in a still vaster space, the space of optimization processes. Natural selection
creates complex functional machinery without mindfulness; evolution lies inside the
space of optimization processes but outside the circle of minds” [45].

Similarly, Ivan Havel writes “… all conceivable cases of intelligence (of people,
machines, whatever) are represented by points in a certain abstract multi-dimensional
“super space” that I will call the intelligence space (shortly IS). Imagine that a specific
coordinate axis in IS is assigned to any conceivable particular ability, whether human,
machine, shared, or unknown (all axes having one common origin). If the ability is
measurable the assigned axis is endowed with a corresponding scale. Hypothetically,
we can also assign scalar axes to abilities, for which only relations like “weaker-
stronger”, “better-worse”, “less-more” etc. are meaningful; finally, abilities that may be
only present or absent may be assigned with “axes” of two (logical) values (yes-no).
Let us assume that all coordinate axes are oriented in such a way that greater distance
from the common origin always corresponds to larger extent, higher grade, or at least
to the presence of the corresponding ability. The idea is that for each individual intelli-
gence (i.e. the intelligence of a particular person, machine, network, etc.), as well as for
each generic intelligence (of some group) there exists just one representing point in IS,
whose coordinates determine the extent of involvement of particular abilities [46].” If
the universe (or multiverse) is infinite, as our current physics theories indicate, then all
possible minds in all states are instantiated somewhere [4].

Ben Goertzel proposes the following classification of Kinds of Minds, mostly
centered around the concept of embodiment [47]: Singly Embodied – control a single

224 R.V. Yampolskiy

physical or simulated system. Multiply Embodied - control a number of disconnected
physical or simulated systems. Flexibly Embodied – control a changing number
of physical or simulated systems. Non-Embodied – resides in a physical substrate but
doesn’t utilize the body. Body-Centered – consists of patterns between physical system
and the environment. Mindplex – a set of collaborating units each of which is itself a
mind [48]. Quantum – an embodiment based on properties of quantum physics. Classic-
al - an embodiment based on properties of classical physics.

J. Storrs Hall in his “Kinds of Minds” suggests that different stages a developing AI
may belong to can be classified relative to its humanlike abilities. His classification
encompasses: Hypohuman - infrahuman, less-than-human capacity. Diahuman - human-
level capacities in some areas, but still not a general intelligence. Parahuman - similar
but not identical to humans, as for example, augmented humans. Allohuman - as capa-
ble as humans, but in different areas. Epihuman - slightly beyond the human level.
Hyperhuman - much more powerful than human, superintelligent [24, 49].

Kevin Kelly has also proposed a “Taxonomy of Minds” which in his implementation
is really just a list of different minds, some of which have not showed up in other tax-
onomies [15]: Super fast human mind. Mind with operational access to its source code.
Any mind capable of general intelligence and self-awareness. General intelligence with-
out self-awareness. Self-awareness without general intelligence. Super logic machine
without emotion. Mind capable of imagining greater mind. Mind capable of creating
greater mind. Self-aware mind incapable of creating a greater mind. Mind capable of
creating greater mind which creates greater mind. etc. Mind requiring protector while it
develops. Very slow "invisible" mind over large physical distance. Mind capable of
cloning itself and remaining in unity with clones. Mind capable of immortality. Rapid
dynamic mind able to change its mind-space-type sectors (think different). Global mind
-- large supercritical mind of subcritical brains. Hive mind -- large super critical mind
made of smaller minds each of which is supercritical.Vast mind employing faster-than-
light communications. Elsewhere Kelly provides a lot of relevant analysis of landscape
of minds writing about Inevitable Minds [51], The Landscape of Possible Intelligences
[52], What comes After Minds? [53], and the Evolutionary Mind of God [54].

Aaron Sloman in “The Structure of the Space of Possible Minds”, using his virtual
machine model, proposes a division of the space of possible minds with respect to the
following properties [1]: Quantitative VS Structural; Continuous VS Discrete; Com-
plexity of stored instructions; Serial VS Parallel; Distributed VS Fundamentally
Parallel; Connected to External Environment VS Not Connected; Moving VS Statio-
nary; Capable of modeling others VS Not capable; Capable of logical inference VS
Not Capable; Fixed VS Re-programmable; Goal consistency VS Goal Selection; Me-
ta-Motives VS Motives; Able to delay goals VS Immediate goal following; Statics
Plan VS Dynamic Plan; Self-aware VS Not Self-Aware.

6 Conclusions

Science periodically experiences a discovery of a whole new area of investigation.
For example, observations made by Galileo Galilei lead to the birth of observational
astronomy [55], aka study of our universe; Watson and Crick’s discovery of the struc-
ture of DNA lead to the birth of the field of genetics [56], which studies the universe of

 The Space of Possible Mind Designs 225

blueprints for organisms; Stephen Wolfram’s work with cellular automata has resulted
in “a new kind of science” [57] which investigates the universe of computational
processes. I believe that we are about to discover yet another universe – the universe of
minds.

As our understanding of human brain improves, thanks to numerous projects aimed
at simulating or reverse engineering a human brain, we will no doubt realize that hu-
man intelligence is just a single point in the vast universe of potential intelligent
agents comprising a new area of study. The new field, which I would like to term
intellectology, will study and classify design space of intelligent agents, work on es-
tablishing limits to intelligence (minimum sufficient for general intelligence and max-
imum subject to physical limits), contribute to consistent measurement of intelligence
across intelligent agents, look at recursive self-improving systems, design new intelli-
gences (making AI a sub-field of intellectology) and evaluate capacity for understand-
ing higher level intelligences by lower level ones.

References

1. Sloman, A.: The Structure and Space of Possible Minds. The Mind and the Machine:
philosophical aspects of Artificial Intelligence. Ellis Horwood LTD (1984)

2. Legg, S., Hutter, M.: Universal Intelligence: A Definition of Machine Intelligence. Minds
and Machines 17(4), 391–444 (2007)

3. Hanson, R.: If Uploads Come First. Extropy 6(2) (1994)
4. Bostrom, N.: Quantity of experience: brain-duplication and degrees of consciousness.

Minds and Machines 16(2), 185–200 (2006)
5. Yampolskiy, R., Gavrilova, M.: Artimetrics: Biometrics for Artificial Entities. IEEE

Robotics and Automation Magazine (RAM) 19(4), 48–58 (2012)
6. Yampolskiy, R.V., Klare, B., Jain, A.K.: Face recognition in the virtual world: Recogniz-

ing Avatar faces. In: 11th International Conference on Machine Learning and Applications
(2012)

7. Yampolskiy, R.V.: Leakproofing Singularity - Artificial Intelligence Confinement Prob-
lem. Journal of Consciousness Studies (JCS) 19(1–2), 194–214 (2012)

8. Wikipedia, Universal Turing Machine.
http://en.wikipedia.org/wiki/Universal_Turing_machine (retrieved April 14, 2011)

9. Lloyd, S.: Ultimate Physical Limits to Computation. Nature 406, 1047–1054 (2000)
10. Levin, L.: Universal Search Problems. Problems of Information Transm. 9(3), 265–266

(1973)
11. Rice, H.G.: Classes of recursively enumerable sets and their decision problems. Transac-

tions of the American Mathematical Society 74(2), 358–366 (1953)
12. Yampolskiy, R.V.: Efficiency Theory: a Unifying Theory for Information, Computation

and Intelligence. Journal of Discrete Mathematical Sciences & Cryptography 16(4–5),
259–277 (2013)

13. Kolmogorov, A.N.: Three Approaches to the Quantitative Definition of Information.
Problems Inform. Transmission 1(1), 1–7 (1965)

14. De Simone, A., et al.: Boltzmann brains and the scale-factor cutoff measure of the multiverse.
Physical Review D 82(6), 063520 (2010)

15. Kelly, K.: A Taxonomy of Minds (2007).
http://kk.org/thetechnium/archives/2007/02/a_taxonomy_of_m.php

16. Krioukov, D., et al.: Network Cosmology. Sci. Rep. (February 2012)

226 R.V. Yampolskiy

17. Bostrom, N.: Are You Living In a Computer Simulation? Philosophical Quarterly 53(211),
243–255 (2003)

18. Lanza, R.: A new theory of the universe. American Scholar 76(2), 18 (2007)
19. Miller, M.S.P.: Patterns for Cognitive Systems. In: 2012 Sixth International Conference on

Complex, Intelligent and Software Intensive Systems (CISIS) (2012)
20. Cattell, R., Parker, A.: Challenges for Brain Emulation: Why is it so Difficult? Natural In-

telligence 1(3), 17–31 (2012)
21. de Garis, H., et al.: A world survey of artificial brain projects, Part I: Large-scale brain

simulations. Neurocomputing 74(1–3), 3–29 (2010)
22. Goertzel, B., et al.: A world survey of artificial brain projects, Part II: Biologically inspired

cognitive architectures. Neurocomput. 74(1–3), 30–49 (2010)
23. Vernon, D., Metta, G., Sandini, G.: A Survey of Artificial Cognitive Systems: Implications

for the Autonomous Development of Mental Capabilities in Computational Agents. IEEE
Transactions on Evolutionary Computation 11(2), 151–180 (2007)

24. Yampolskiy, R.V., Fox, J.: Artificial General Intelligence and the Human Mental Model.
In: Singularity Hypotheses, pp. 129–145. Springer, Heidelberg (2012)

25. Yampolskiy, R.V., Ashby, L., Hassan, L.: Wisdom of Artificial Crowds—A Metaheuristic
Algorithm for Optimization. Journal of Intelligent Learning Systems and Applications
4(2), 98–107 (2012)

26. Ashby, L.H., Yampolskiy, R.V.: Genetic algorithm and Wisdom of Artificial Crowds algo-
rithm applied to Light up. In: 2011 16th International Conference on Computer Games
(CGAMES) (2011)

27. Hughes, R., Yampolskiy, R.V.: Solving Sudoku Puzzles with Wisdom of Artificial
Crowds. International Journal of Intelligent Games & Simulation 7(1), 6 (2013)

28. Port, A.C., Yampolskiy, R.V.: Using a GA and Wisdom of Artificial Crowds to solve soli-
taire battleship puzzles. In: 2012 17th International Conference on Computer Games
(CGAMES) (2012)

29. Hall, J.S.: Self-Improving AI: An Analysis. Minds and Machines 17(3), 249–259 (2007)
30. Yonck, R.: Toward a Standard Metric of Machine Intelligence. World Future Review 4(2),

61–70 (2012)
31. Herzing, D.L.: Profiling nonhuman intelligence: An exercise in developing unbiased tools

for describing other “types” of intelligence on earth. Acta Astronautica 94(2), 676–680
(2014)

32. Yampolskiy, R.V.: Construction of an NP Problem with an Exponential Lower Bound.
Arxiv preprint arXiv:1111.0305 (2011)

33. Yampolskiy, R.V.: Turing Test as a Defining Feature of AI-Completeness. In: Yang, X.-S.
(ed.) Artificial Intelligence, Evolutionary Computing and Metaheuristics. SCI, vol. 427,
pp. 3–17. Springer, Heidelberg (2013)

34. Yampolskiy, R.V.: AI-Complete, AI-Hard, or AI-Easy–Classification of Problems in AI.
In: The 23rd Midwest Artificial Intelligence and Cognitive Science Conference, Cincin-
nati, OH, USA (2012)

35. Yampolskiy, R.V.: AI-Complete CAPTCHAs as Zero Knowledge Proofs of Access to an
Artificially Intelligent System. ISRN Artificial Intelligence, 271878 (2011)

36. Hales, C.: An empirical framework for objective testing for P-consciousness in an artificial
agent. Open Artificial Intelligence Journal 3, 1–15 (2009)

37. Aleksander, I., Dunmall, B.: Axioms and Tests for the Presence of Minimal Consciousness
in Agents I: Preamble. Journal of Consciousness Studies 10(4–5), 4–5 (2003)

38. Arrabales, R., Ledezma, A., Sanchis, A.: ConsScale: a plausible test for machine
consciousness? (2008)

 The Space of Possible Mind Designs 227

39. Aaronson, S.: The Ghost in the Quantum Turing Machine. arXiv preprint arXiv:1306.0159
(2013)

40. Yampolskiy, R.V.: Artificial intelligence safety engineering: Why machine ethics
is a wrong approach. In: Philosophy and Theory of Artificial Intelligence, pp. 389–396.
Springer, Berlin (2013)

41. Yampolskiy, R.V.: What to Do with the Singularity Paradox? In: Philosophy and Theory
of Artificial Intelligence, pp. 397–413. Springer, Heidelberg (2013)

42. Chalmers, D.J.: The conscious mind: In search of a fundamental theory. Oxford Univ.
Press (1996)

43. Gao, S.: A quantum method to test the existence of consciousness. The Noetic Journal
3(3), 27–31 (2002)

44. Legg, S.: Is There an Elegant Universal Theory of Prediction? In: Balcázar, J.L.,
Long, P.M., Stephan, F. (eds.) ALT 2006. LNCS (LNAI), vol. 4264, pp. 274–287.
Springer, Heidelberg (2006)

45. Yudkowsky, E.: Artificial Intelligence as a Positive and Negative Factor in Global Risk.
In: Bostrom, N., Cirkovic, M.M. (eds.) Global Catastrophic Risks, pp. 308–345. Oxford
University Press, Oxford (2008)

46. Havel, I.M.: On the Way to Intelligence Singularity. In: Kelemen, J., Romportl, J., Zackova, E.
(eds.) Beyond Artificial Intelligence. TIEI, vol. 4, pp. 3–26. Springer, Heidelberg (2013)

47. Geortzel, B.: The Hidden Pattern: A Patternist Philosophy of Mind. ch. 2. Kinds of Minds.
Brown Walker Press (2006)

48. Goertzel, B.: Mindplexes: The Potential Emergence of Multiple Levels of Focused Con-
sciousness in Communities of AI’s and Humans Dynamical Psychology (2003).
http://www.goertzel.org/dynapsyc/2003/mindplex.htm.

49. Hall, J.S.: Chapter 15: Kinds of Minds, in Beyond AI: Creating the Conscience of the Ma-
chine. Prometheus Books, Amherst (2007)

50. Roberts, P.: Mind Making: The Shared Laws of Natural and Artificial. CreateSpace (2009)
51. Kelly, K.: Inevitable Minds (2009).

http://kk.org/thetechnium/archives/2009/04/inevitable_mind.php
52. Kelly, K.: The Landscape of Possible Intelligences (2008).

http://kk.org/thetechnium/archives/2008/09/the_landscape_o.php
53. Kelly, K.: What Comes After Minds? (2008).

http://kk.org/thetechnium/archives/2008/12/what_comes_afte.php
54. Kelly, K.: The Evolutionary Mind of God (2007).

http://kk.org/thetechnium/archives/2007/02/the_evolutionar.php
55. Galilei, G.: Dialogue concerning the two chief world systems: Ptolemaic and Copernican.

University of California Pr. (1953)
56. Watson, J.D., Crick, F.H.: Molecular structure of nucleic acids. Nature 171(4356),

737–738 (1953)
57. Wolfram, S.: A New Kind of Science. Wolfram Media, Inc. (May 14, 2002)

Papers Presented as Posters

A Definition of Happiness for Reinforcement
Learning Agents

Mayank Daswani and Jan Leike(B)

Australian National University, Canberra, Australia
{mayank.daswani,jan.leike}@anu.edu.au

Abstract. What is happiness for reinforcement learning agents? We
seek a formal definition satisfying a list of desiderata. Our proposed
definition of happiness is the temporal difference error, i.e. the difference
between the value of the obtained reward and observation and the agent’s
expectation of this value. This definition satisfies most of our desiderata
and is compatible with empirical research on humans. We state several
implications and discuss examples.

Keywords: Temporal difference error · Reward prediction error ·
Pleasure · Well-being · Optimism · Machine ethics

1 Introduction

People are constantly in search of better ways to be happy. However, philosophers
and psychologists have not yet agreed on a notion of human happiness. In this
paper, we pursue the more general goal of defining happiness for intelligent
agents. We focus on the reinforcement learning (RL) setting [11] because it is
an intensively studied formal framework which makes it easier to make precise
statements. Moreover, reinforcement learning has been used to model behaviour
in both human and non-human animals [7].

Here, we decouple the discussion of happiness from the discussion of con-
sciousness, experience, or qualia. We completely disregard whether happiness is
actually consciously experienced or what this means. The problem of conscious-
ness has to be solved separately; but its answer might matter insofar that it
could tell us which agents’ happiness we should care about.

Desiderata. We can simply ask a human how happy they are. But artificial rein-
forcement learning agents cannot yet speak. Therefore we use our human “com-
mon sense” intuitions about happiness to come up with a definition. We arrive
at the following desired properties.

Research supported by the People for the Ethical Treatment of Reinforcement Learn-
ers http://petrl.org. See the extended technical report for omitted proofs and details
about the data analysis [4].
Both authors contributed equally.

c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 231–240, 2015.
DOI: 10.1007/978-3-319-21365-1 24

http://petrl.org

232 M. Daswani and J. Leike

– Scaling. Happiness should be invariant under scaling of the rewards. Replac-
ing every reward rt by crt + d for some c, d ∈ R with c > 0 (independent of
t) does not change the reinforcement learning problem in any relevant way.
Therefore we desire a happiness measure to be independent under rescaling
of the rewards.

– Subjectivity. Happiness is a subjective property of the agent depending only
on information available to the agent. For example, it cannot depend on the
true environment.

– Commensurability. The happiness of different agents should be comparable.
If at some time step an agent A has happiness x, and another agent B has
happiness y, then it should be possible to tell whether A is happier than
B by computing x − y. This could be relaxed by instead asking that A can
calculate the happiness of B according to A’s subjective beliefs.

– Agreement. The happiness function should match experimental data about
human happiness.

It has to be emphasised that in humans, happiness cannot be equated with
pleasure [8]. In the reinforcement learning setting, pleasure corresponds to the
reward. Therefore happiness and reward have to be distinguished. We crudely
summarise this as follows; for a more detailed discussion see Section 3.

pleasure = reward �= happiness

The happiness measure that we propose is the following. An agent’s happiness
in a time step t is the difference between the value of the obtained reward
and observation and the agent’s expectation of this value at time step t. In
the Markov setting, this is also known as the temporal difference error (TD
error) [10]. However, we do not limit ourselves to the Markov setting in this
paper. In parts of the mammalian brain, the neuromodulator dopamine has a
strong connection to the TD error [7]. Note that while our definition of happiness
is not equal to reward it remains highly correlated to the reward, especially if
the expectation of the reward is close to 0.

Our definition of happiness coincides with the definition for joy given by
Jacobs et al. [6], except that the latter is weighted by 1 minus the (objective)
probability of taking the transition which violates subjectivity. Schmidhuber’s
work on ‘intrinsic motivation’ adds a related component to the reward in order
to motivate the agent to explore in interesting directions [9].

Our definition of happiness can be split into two parts. (1) The difference
between the instantaneous reward and its expectation, which we call payout,
and (2) how the latest observation and reward changes the agent’s estimate of
future rewards, which we call good news. Moreover, we identify two sources of
happiness: luck, favourable chance outcomes (e.g. rolling a six on a fair die), and
pessimism, having low expectations of the environment (e.g. expecting a fair die
to be biased against you). We show that agents that know the world perfectly
have zero expected happiness.

In the rest of the paper, we use our definition as a starting point to investigate
the following questions. Is an off-policy agent happier than an on-policy one? Do

A Definition of Happiness for Reinforcement Learning Agents 233

monotonically increasing rewards necessarily imply a happy agent? How does
value function initialisation affect the happiness of an agent? Can we construct
an agent that maximises its own happiness?

2 Reinforcement Learning

In reinforcement learning (RL) an agent interacts with an environment in cycles:
at time step t the agent chooses an action at ∈ A and receives an observation
ot ∈ O and a real-valued reward rt ∈ R; the cycle then repeats for time step
t + 1 [11]. The list of interactions a1o1r1a2o2r2 . . . is called a history. We use ht

to denote a history of length t, and we use the shorthand notation h := ht−1 and
h′ := ht−1atotrt. The agent’s goal is to choose actions to maximise cumulative
rewards. To avoid infinite sums, we use a discount factor γ with 0 < γ < 1 and
maximise the discounted sum

∑∞
t=1 γtrt. A policy is a function π mapping every

history to the action taken after seeing this history, and an environment μ is a
stochastic mapping from histories to observation-reward-tuples.

A policy π together with an environment μ yields a probability distribution
over histories. Given a random variable X over histories, we write the π-μ-
expectation of X conditional on the history h as Eπ

μ[X | h].
The (true) value function V π

μ of a policy π in environment μ maps a history
ht to the expected total future reward when interacting with environment μ and
taking actions according to the policy π:

V π
μ (ht) := Eπ

μ

[∑∞
k=t+1 γk−t−1rk | ht

]
. (1)

It is important to emphasise that Eπ
μ denotes the objective expectation that can

be calculated only by knowing the environment μ. The optimal value function
V ∗

μ is defined as the value function of the optimal policy, V ∗
μ (h) := supπ V π

μ (h).
Typically, reinforcement learners do not know the environment and are trying

to learn it. We model this by assuming that at every time step the agent has
(explicitly or implicitly) an estimate V̂ of the value function V π

μ . Formally, a
value function estimator maps a history h to a value function estimate V̂ . Finally,
we define an agent to be a policy together with a value function estimator. If
the history is clear from context, we refer to the output of the value function
estimator as the agent’s estimated value.

If μ only depends on the last observation and action, μ is called Markov
decision process (MDP). In this case, μ(otrt | ht−1at) = μ(otrt | ot−1at) and the
observations are called states (st = ot). In MDPs we use the Q-value function, the
value of a state-action pair, defined as Qπ

μ(st, at) := Eπ
μ

[∑∞
k=t+1 γk−t−1rk | stat

]
.

Assuming that the environment is an MDP is very common in the RL literature,
but here we will not make this assumption.

3 A Formal Definition of Happiness

The goal of a reinforcement learning agent is to maximise rewards, so it seems
natural to suppose an agent is happier the more rewards it gets. But this does

234 M. Daswani and J. Leike

not conform to our intuition: sometimes enjoying pleasures just fails to provide
happiness, and reversely, enduring suffering does not necessarily entail unhap-
piness (see Example 3 and Example 7). In fact, it has been shown empirically
that rewards and happiness cannot be equated [8] (p-value < 0.0001).

There is also a formal problem with defining happiness in terms of reward: we
can add a constant c ∈ R to every reward. No matter how the agent-environment
interaction plays out, the agent will have received additional cumulative rewards
C :=

∑t
i=1 c. However, this did not change the structure of the reinforcement

learning problem in any way. Actions that were optimal before are still optimal
and actions that are slightly suboptimal are still slightly suboptimal to the same
degree. For the agent, no essential difference between the original reinforcement
learning problem and the new problem can be detected: in a sense the two
problems are isomorphic. If we were to define an agent’s happiness as received
reward, then an agent’s happiness would vary wildly when we add a constant to
the reward while the problem stays structurally exactly the same.

We propose the following definition of happiness.

Definition 1 (Happiness). The happiness of a reinforcement learning agent
with estimated value V̂ at time step t with history hat while receiving observation
ot and reward rt is

�(hatotrt, V̂) := rt + γV̂ (hatotrt) − V̂ (h). (2)

If �(h′, V̂) is positive, we say the agent is happy, and if �(h′, V̂) is negative,
we say the agent is unhappy.

It is important to emphasise that V̂ represents the agent’s subjective estimate
of the value function. If the agent is good at learning, this might converge to
something close to the true value function V π

μ . In an MDP (2) is also known as
the temporal difference error [10]. This number is used used to update the value
function, and thus plays an integral part in learning.

If there exists a probability distribution ρ on histories such that the value
function estimate V̂ is given by the expected future discounted rewards according
to the probability distribution ρ,

V̂ (h) = Eπ
ρ

[∑∞
k=t+1 γk−t−1rk | h

]
, (3)

then we call E := Eπ
ρ the agent’s subjective expectation. Note that we can always

find such a probability distribution, but this notion only really makes sense for
model-based agents (agents that learn a model of their environment). Using the
agent’s subjective expectation, we can rewrite Definition 1 as follows.

Proposition 2 (Happiness as Subjective Expectation). Let E denote an
agent’s subjective expectation. Then

�(h′, V̂) = rt − E[rt | h] + γ
(
V̂ (h′) − E[V̂ (haor) | h]

)
. (4)

A Definition of Happiness for Reinforcement Learning Agents 235

Proposition 2 states that happiness is given by the difference of how good
the agent thought it was doing and what it learns about how well it actually
does. We distinguish the following two components in (4):

– Payout: the difference of the obtained reward rt and the agent’s expectation
of that reward E[rt | h].

– Good News: the change in opinion of the expected future rewards after receiv-
ing the new information otrt.

�(h′, V̂) = rt − E[rt | h]
︸ ︷︷ ︸

payout

+γ
(
V̂ (h′) − E[V̂ (haor) | h]
︸ ︷︷ ︸

good news

)

Example 3. Mary is travelling on an air plane. She knows that air planes crash
very rarely, and so is completely at ease. Unfortunately she is flying on a budget
airline, so she has to pay for her food and drink. A flight attendant comes to her
seat and gives her a free beverage. Just as she starts drinking it, the intercom
informs everyone that the engines have failed. Mary feels some happiness from
the free drink (payout), but her expected future reward is much lower than in
the state before learning the bad news. Thus overall, Mary is unhappy.

For each of the two components, payout and good news, we distinguish the
following two sources of happiness.

– Pessimism:1 the agent expects the environment to contain less rewards than
it actually does.

– Luck: the outcome of rt is unusually high due to randomness.

rt − E[rt | h] = rt − Eπ
μ[rt | h]

︸ ︷︷ ︸
luck

+Eπ
μ[rt | h] − E[rt | h]

︸ ︷︷ ︸
pessimism

V̂ (h′) − E[V̂ (haor) | h] = V̂ (h′) − Eπ
μ[V̂ (haor) | h]

︸ ︷︷ ︸
luck

+ Eπ
μ[V̂ (haor) | h] − E[V̂ (haor) | h]

︸ ︷︷ ︸
pessimism

Example 4. Suppose Mary fears flying and expected the plane to crash (pes-
simism). On hearing that the engines failed (bad luck), Mary does not experi-
ence very much change in her future expected reward. Thus she is happy that
she (at least) got a free drink.

The following proposition states that once an agent has learned the envi-
ronment, its expected happiness is zero. In this case, underestimation cannot
contribute to happiness and thus the only source of happiness is luck, which
cancels out in expectation.
1 Optimism is a standard term in the RL literature to denote the opposite phe-

nomenon. However, this notion is somewhat in discord with optimism in humans.

236 M. Daswani and J. Leike

Proposition 5 (Happiness of Informed Agents). An agent that knows the
world has an expected happiness of zero: for every policy π and every history h,

Eπ
μ[�(h′, V π

μ) | h] = 0.

Analogously, if the environment is deterministic, then luck cannot be a source
of happiness. In this case, happiness reduces to how much the agent underesti-
mates the environment. By Proposition 5, having learned a deterministic envi-
ronment perfectly, the agent’s happiness is equal to zero.

4 Matching the Desiderata

Here we discuss in which sense our definition of happiness satisfies the desiderata
from Section 1.

Scaling. If we transform the rewards to r′
t = crt + d with c > 0, d ∈ R for each

time step t without changing the value function, the value of � will be completely
different. However, a sensible learning algorithm should be able to adapt to
the new reinforcement learning problem with the scaled rewards without too
much problem. At that point, the value function gets scaled as well, Vnew(h) =
cV (h) + d/(1 − γ). In this case we get

�(hatotr
′, Vnew) = r′

t + γVnew(hatotr
′
t) − Vnew(h)

= crt + d + γcV (hatotr
′
t) + γ

d

1 − γ
− cV (h) − d

1 − γ

= c
(
rt + γV (hatotr

′
t) − V (h)

)
,

hence happiness gets scaled by a positive factor and thus its sign remains the
same, which would not hold if we defined happiness just in terms of rewards.

Subjectivity. The definition (4) of � depends only on the current reward and
the agent’s current estimation of the value function, both of which are available
to the agent.

Commensurability. The scaling property as described above means that the
exact value of the happiness is not useful in comparing two agents, but the sign
of the total happiness can at least tell us whether a given agent is happy or
unhappy. Arguably, failing this desideratum is not surprising; in utility theory
the utilities/rewards of different agents are typically not commensurable either.

However, given two agents A and B, A can still calculate the A-subjective
happiness of a history experienced by B as �(haorB , V̂ A). This corresponds to
the human intuition of “putting yourself in someone else’s shoes”. If both agents
are acting in the same environment, the resulting numbers should be commen-
surable, since the calculation is done using the same value function. It is entirely
possible that A believes B to be happier, i.e. �(haorB , V̂ A) > �(haorA, V̂ A),
but also that B believes A to be happier �(haorA, V̂ B) > �(haorB , V̂ B),
because they have different expectations of the environment.

A Definition of Happiness for Reinforcement Learning Agents 237

Agreement. Rutledge et al. measure subjective well-being on a smartphone-
based experiment with 18,420 participants [8]. In the experiment, a subject goes
through 30 trials in each of which they can choose between a sure reward and
a gamble that is resolved within a short delay. Every two to three trials the
subjects are asked to indicate their momentary happiness.

Our model based on Proposition 2 with a very simple learning algorithm
and no loss aversion correlates fairly well with reported happiness (mean r =
0.56, median r2 = 0.41, median R2 = 0.27) while fitting individual discount
factors, comparative to Rutledge et al.’s model (mean r = 0.60, median r2 =
0.47, median R2 = 0.36) and a happiness=cumulative reward model (mean r =
0.59, median r2 = 0.46, median R2 = 0.35). This analysis is inconclusive, but
unsurprisingly so: the expected reward is close to 0 and thus our happiness model
correlates well with rewards.

The hedonic treadmill [2] refers to the idea that humans return to a base-
line level of happiness after significant negative or positive events. Studies have
looked at lottery winners and accident victims [3], and people dealing with paral-
ysis, marriage, divorce, having children and other life changes [5]. In most cases
these studies have observed a return to baseline happiness after some period of
time has passed; people learn to make correct reward predictions again. Hence
their expected happiness returns to zero (Proposition 5). Our definition unfor-
tunately does not explain why people have different baseline levels of happiness
(or hedonic set points), but these may be perhaps explained by biological means
(different humans have different levels of neuromodulators, neurotransmitters,
hormones, etc.) which may move their baseline happiness. Alternatively, people
might simply learn to associate different levels of happiness with “feeling happy”
according to their environment.

5 Discussion and Examples

5.1 Off-policy Agents

In reinforcement learning, we are mostly interested in learning the value function
of the optimal policy. A common difference between RL algorithms is whether
they learn off-policy or on-policy. An on-policy agent evaluates the value of the
policy it is currently following. For example, the policy that the agent is made
to follow could be an ε-greedy policy, where the agent picks arg maxa Qπ(h, a)
a fraction (1 − ε) of the time, and a random action otherwise. If ε is decreased
to zero over time, then the agent’s learned policy tends to the optimal policy
in MDPs. Alternatively, an agent can learn off-policy, that is it can learn about
one policy (say, the optimal one) while following a different behaviour policy.

The behaviour policy (πb) determines how the agent acts while it is learning
the optimal policy. Once an off-policy learning agent has learned the optimal
value function V ∗

μ , then it is not happy if it still acts according to some other
(possibly suboptimal) policy.

238 M. Daswani and J. Leike

Proposition 6 (Happiness of Off-Policy Learning). Let π be some policy
and μ be some environment. Then for any history h

Eπ
μ[�(h′, V ∗

μ) | h] ≤ 0.

Q-learning is an example of an off-policy algorithm in the MDP setting. If
Q-learning converges, and the agent is still following the sub-optimal behaviour
policy then Proposition 6 tells us that the agent will be unhappy. Moreover, this
means that SARSA (an on-policy RL algorithm) will be happier than Q-learning
on average and in expectation.

5.2 Increasing and Decreasing Rewards

Intuitively, it seems that if things are constantly getting better, this should
increase happiness. However, this is not generally the case: even an agent that
obtains monotonically increasing rewards can be unhappy if it thinks that these
rewards mean even higher negative rewards in the future.

Example 7. Alice has signed up for a questionable drug trial which examines
the effects of a potentially harmful drug. This drug causes temporary pleasure
to the user every time it is used, and increased usage results in increased plea-
sure. However, the drug reduces quality of life in the long term. Alice has been
informed of the potential side-effects of the drug. She can be either part of a
placebo group or the group given the drug. Every morning Alice is given an
injection of an unknown liquid. She finds herself feeling temporary but intense
feelings of pleasure. This is evidence that she is in the non-placebo group, and
thus has a potentially reduced quality of life in the long term. Even though she
experiences pleasure (increasing rewards) it is evidence of very bad news and
thus she is unhappy.

Analogously, decreasing rewards do not generally imply unhappiness. For
example, the pains of hard labour can mean happiness if one expects to harvest
the fruits of this labour in the future.

5.3 Value Function Initialisation

Example 8 (Increasing Pessimism Does Not Increase Happiness). Consider the
deterministic MDP example in Figure 1. Assume that the agent has an initial
value function Q̂0(s0, α) = 0, Q̂0(s0, β) = −ε, Q̂0(s1, α) = ε and Q̂0(s1, β) = 0.
If no forced exploration is carried out by the agent, it has no incentive to
visit s1. The happiness achieved by such an agent for some time step t is�(s0αs00, V̂0) = 0 where V̂0(s0) := Q̂0(s0, α) = 0. However, suppose the agent
is (more optimistically) initialised with Q̂0(s0, α) = 0, Q̂0(s0, β) = ε. In this
case, the agent would take action β and arrive in state s1. This transition would
have happiness �(s0βs1−1, V̂0) = −1 + γQ̂0(s1, α) − Q̂0(s0, β) = −1 − 0.5ε.

A Definition of Happiness for Reinforcement Learning Agents 239

s0 s1

β : −1

β : −1

α : 0 α : 2

Fig. 1. MDP of Example 8 with tran-
sitions labelled with actions α or β
and rewards. We use the discount factor
γ = 0.5. The agent starts in s0. Define
π0(s0) := α, then V π0(s0) = 0. The opti-
mal policy is π∗(s0) = β, so V π∗

(s0) = 1
and V π∗

(s1) = 4.

0 20 40 60 80 100

−2

0

2

Time step

H
a
p
p
in

es
s

Optimistic

Pessimistic

Opt. (rewards)

−2

0

2

R
ew

a
rd

s

Fig. 2. A plot of happiness for Exam-
ple 8. We use the learning rate α = 0.1.
The pessimistic agent has zero happiness
(and rewards), whereas the optimistic
agent is initially unhappy, but once it
transitions to state s1 becomes happy.
The plot also shows the rewards of the
optimistic agent.

However, the next transition is s1αs12 which has happiness �(s1αs12, V̂0) =
2 + γQ̂0(s1, α) − Q̂0(s1, α) = 2 − 0.5ε. If Q̂0 is not updated by some learn-
ing mechanism the agent will continue to accrue this positive happiness for all
future time steps. If the agent does learn, it will still be some time steps before
Q̂ converges to Q∗ and the positive happiness becomes zero (see Figure 2). It
is arguable whether this agent which suffered one time step of unhappiness but
potentially many time steps of happiness is overall a happier agent, but it is
some evidence that absolute pessimism does not necessarily lead to the happiest
agents.

5.4 Maximising Happiness

How can an agent increase their own happiness? The first source of happiness,
luck, depends entirely on the outcome of a random event that the agent has
no control over. However, the agent could modify its learning algorithm to be
systematically pessimistic about the environment. For example, when fixing the
value function estimation below rmin/(1−γ) for all histories, happiness is positive
at every time step. But this agent would not actually take any sensible actions.
Just as optimism is commonly used to artificially increase exploration, pessimism
discourages exploration which leads to poor performance. As demonstrated in
Example 8, a pessimistic agent may be less happy than a more optimistic one.

Additionally, an agent that explicitly tries to maximise its own happiness is
no longer a reinforcement learner. So instead of asking how an agent can increase
its own happiness, we should fix a reinforcement learning algorithm and ask for
the environment that would make this algorithm happy.

240 M. Daswani and J. Leike

6 Conclusion

An artificial superintelligence might contain subroutines that are capable of suf-
fering, a phenomenon that Bostrom calls mind crime [1, Ch. 8]. More generally,
Tomasik argues that even current reinforcement learning agents could have moral
weight [12]. If this is the case, then a general theory of happiness for reinforce-
ment learners is essential; it would enable us to derive ethical standards in the
treatment of algorithms. Our theory is very preliminary and should be thought
of as a small step in this direction. Many questions are left unanswered, and we
hope to see more research on the suffering of AI agents in the future.

Acknowledgments. We thank Marcus Hutter and Brian Tomasik for careful reading
and detailed feedback. The data from the smartphone experiment was kindly provided
by Robb Rutledge. We are also grateful to many of our friends for encouragement and
interesting discussions.

References

1. Bostrom, N.: Superintelligence: Paths, Dangers. Oxford University Press, Strate-
gies (2014)

2. Brickman, P., Campbell, D.T.: Hedonic relativism and planning the good society.
Adaptation-Level Theory, pp. 287–305 (1971)

3. Brickman, P., Coates, D., Janoff-Bulman, R.: Lottery winners and accident victims:
Is happiness relative? Journal of Personality and Social Psychology 36, 917 (1978)

4. Daswani, M., Leike, J.: A definition of happiness for reinforcement learn-
ing agents. Technical report, Australian National University (2015).
http://arxiv.org/abs/1505.04497

5. Diener, E., Lucas, R.E., Scollon, C.N.: Beyond the hedonic treadmill: Revising the
adaptation theory of well-being. American Psychologist 61, 305 (2006)

6. Jacobs, E., Broekens, J., Jonker, C.: Joy, distress, hope, and fear in reinforce-
ment learning. In: Conference on Autonomous Agents and Multiagent Systems,
pp. 1615–1616 (2014)

7. Niv, Y.: Reinforcement learning in the brain. Journal of Mathematical Psychology
53, 139–154 (2009)

8. Rutledge, R.B., Skandali, N., Dayan, P., Dolan, R.J.: A computational and neu-
ral model of momentary subjective well-being. In: Proceedings of the National
Academy of Sciences (2014)

9. Schmidhuber, J.: Formal theory of creativity, fun, and intrinsic motivation (1990–
2010). IEEE Transactions on Autonomous Mental Development. 2, 230–247 (2010)

10. Sutton, R., Barto, A.: Time-derivative models of Pavlovian reinforcement. In:
Learning and Computational Neuroscience: Foundations of Adaptive Networks,
pp. 497–537. MIT Press (1990)

11. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

12. Tomasik, B.: Do artificial reinforcement-learning agents matter morally? Technical
report, Foundational Research Institute (2014). http://arxiv.org/abs/1410.8233

http://arxiv.org/abs/http://arxiv.org/abs/1505.04497
http://arxiv.org/abs/http://arxiv.org/abs/1410.8233

Expression Graphs

Unifying Factor Graphs and Sum-Product Networks

Abram Demski(B)

Institute for Creative Technologies and Department of Computer Science,
University of Southern California, 12015 Waterfront Dr., Playa Vista, CA 90094, USA

ademski@ict.usc.edu

Abstract. Factor graphs are a very general knowledge representation,
subsuming many existing formalisms in AI. Sum-product networks are
a more recent representation, inspired by studying cases where factor
graphs are tractable. Factor graphs emphasize expressive power, while
sum-product networks restrict expressiveness to get strong guarantees
on speed of inference. A sum-product network is not simply a restricted
factor graph, however. Although the inference algorithms for the two
structures are very similar, translating a sum-product network into factor
graph representation can result in an exponential slowdown. We propose
a formalism which generalizes factor graphs and sum-product networks,
such that inference is fast in cases whose structure is close to a sum-
product network.

1 Motivation

Factor graphs are a graphical model which generalizes Bayesian networks,
Markov networks, constraint networks, and other models [4]. New light was shed
on existing algorithms through this generalization.1

As a result, factor graphs have been treated as a unifying theory for graphical
models. It has furthermore been proposed, in particular in [2] and [11], that
factor graphs can provide a computational foundation through which we can
understand cognitive processes. The present work came out of thinking about
potential inadequacies in the Sigma cognitive architecture [11].

Factor graphs have emerged from progressive generalization of techniques
which were initially narrow AI. Because they capture a breadth of knowledge
about efficient AI algorithms, they may be useful for those AGI approaches which

This work was sponsored by the U.S. Army. Statements and opinions expressed may
not reflect the position or policy of the United States Government, and no official
endorsement should be inferred. Special thanks to Paul Rosenbloom and �Lukasz
Stafiniak for providing comments on a draft of this paper.

1 The sum-product algorithm for factor graphs provided a generalization of existing
algorithms for more narrow domains, often the best algorithms for those domains
at the time. The main examples are belief propagation, constraint propagation, and
turbo codes [4]. Other algorithms such as mean-field can be stated very generally
using factor graphs as well.

c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 241–250, 2015.
DOI: 10.1007/978-3-319-21365-1 25

242 A. Demski

seek to leverage the progress which has been made in narrow AI, rather than
striking out on an entirely new path. However, this paper will argue that factor
graphs fail to support an important class of algorithms.

Sum-product networks (SPNs) are a new type of graphical model which
represent a probability distribution through sums and products of simpler dis-
tributions [7].2 Whereas factor graphs may blow up to exponential-time exact
inference, SPN inference is guaranteed to be linear in the size of the SPN.

An SPN can compactly represent any factor graph for which exact inference is
tractable. When inference is less efficient, the corresponding SPN will be larger.
In the worst case, an SPN may be exponentially larger than the factor graph
which it represents. On the other hand, being able to represent a distribution
as a compact SPN does not imply easy inference when converted to a factor
graph. There exist SPNs which represent distributions for which standard exact
inference algorithms for factor graphs are intractable.

Probabilistic context-free grammars (PCFGs) are an important class of prob-
abilistic model in computational linguistics. In [8], the translation of PCFGs into
factor graphs (specifically, into Bayesian networks) is given. This allows general
probabilistic inference on PCFGs (supporting complicated queries which special-
case PCFG algorithms don’t handle). However, the computational complexity
becomes exponential due to the basic complexity of factor graph inference.

Sum-product networks can represent PCFGs with bounded sentence length
to be represented in an SPN of size cubic in the length, by directly encoding the
sums and products of the inside algorithm (a basic algorithm for PCFGs) This
preserves cubic complexity of inference, while allowing the more general kinds of
queries for which [8] required exponential-time algorithms. This illustrates that
SPNs can be efficient in cases where factor graphs are not.

More recently, [12] used loopy belief propagation (an approximate algorithm
for factor graph problems) to efficiently approximate complex parsing tasks
beyond PCFGs, but did so by implementing a dynamic programming parse as
one of the factors. This amounts to using SPN-style inference as a special module
to augment factor-graph inference.

The present work explores a more unified approach, to integrate the two types
of reasoning without special-case optimization. The resulting representation is
related to the expression tree introduced in [4]. As such, the new formalism is
being referred to as the Expression Graph (EG).

2 Factor Graphs

A factor graph (FG) is a bipartite graph where one set of nodes represents
the variables x1, x2, ...xn ∈ U, and the other set of nodes represent real-valued
2 Case-factor diagrams [6] are almost exactly the same as sum-product networks,

and have historical precedence. However, the formalism of sum-product networks
has become more common. Despite their similarities, the two papers [6] and [7]
use very different mathematical setups to justify the new graphical model and the
associated inference algorithm. (A reader confused by one paper may benefit from
trying the other instead.)

Expression Graphs: Unifying Factor Graphs and Sum-Product Networks 243

multivariate functions F1, F2, ...Fm. A link exists between a factor node and a
variable node when the variable is an argument to the factor. This represents a
function D, the product of all the factors:

D(U) =
m∏

i=1

Fi(Ai)

where Ai represents the tuple of argument variables associated with factor Fi.
The global function D can represent anything, but we will only discuss the

representation of probability functions in this article.
Representing the factorization explicitly allows factor graphs to easily capture

the distributions represented by other graphical models like Bayesian networks
and Markov networks whose graph structure implies a factorization. The links
correspond conveniently with messages in several message-passing algorithms,
most famously the sum-product algorithm for factor graphs, which generalizes
several important algorithms.

Inference algorithms allow us to compute various things with these networks,
most notably marginal probabilities and maximum-probability states. Exact
inference using the most common algorithms is exponential in the treewidth,
which is (roughly) a measure of how far the graph is from being tree-structured.
As a result, nontrivial models usually must rely on approximate inference tech-
niques, of which there are many.

Building up complicated functions as a product of simpler ones turns out to
be very powerful. Intuitively, we can think of the factors as giving us probabilis-
tic constraints linking variables together. (In fact, this is a strict generalization
of constraint-based reasoning.) These constraints can provide a great deal of rep-
resentational power, but this power comes at the cost of potentially intractable
inference.

For further details, the reader is directed to [4].

3 Sum-Product Networks

A sum-product network (SPN) is a directed acyclic graph with a unique root.
Terminal nodes are associated with indicator variables. Each domain variable in
U has an indicator for each of its values; these take value 1 when the variable
takes on that value, and 0 when the variable is in a different value.

The root and the internal nodes are all labeled as sum nodes or product nodes.
A product node represents the product of its children. The links from a sum node
to its children are weighted, so that the sum node represents a weighted sum of
its children. Thus, the SPN represents an expression formed out of the indicator
variables via products and weighted sums. As for factor graphs, this expression
could represent a variety of things, but in order to build an intuition for the
structure we shall assume that this represents a probability distribution over U .

The scope of a node is the set of variables appearing under it. That is: the
scope of a leaf node is the variable associated with the indicator variable, and
the scope of any other node is the union of the scopes of its children.

244 A. Demski

Two restrictions are imposed on the tree structure of an SPN. It must be
complete: the children of any particular sum node all have the same scope as each
other. They must also be decomposable: the children of the same product node
have mutually exclusive scopes. These properties allow us to compute any desired
probability in linear time. It’s possible to compute all the marginal probabilities
in linear time by differentiating the network, an approach adapted from [1].3

For further details, the reader is directed to [7].
If we think of factor graphs as generalized constraint networks, we could

think of SPNs as generalized decision trees – or, for a closer analogy, binary
decision diagrams [3]. These represent complexity by splitting things into cases,
in a way which can be evaluated in one pass rather than requiring back-tracking
search as with constraint problems.

The thrust of this paper is that both kinds of representation are necessary
for general cognition. To accomplish this, we generalize SPNs to also handle
constraint-like factor-graph reasoning.

4 Expression Graphs

In order to compactly represent all the distributions which can be represented
by SPNs or FGs, we introduce the expression graph (EG).

An expression graph is little more than an SPN with the network restrictions
lifted: a directed acyclic graph with a unique root, whose non-terminal nodes are
labeled as sums or products. The terminal nodes will hold functions rather than
indicators; this is a mild generalization for convenience. For discrete variables,
these functions would be represented as tables of values. For the continuous
case, some class of functions such as Gaussians would be chosen. These terminal
functions will be referred to as elemental functions. We will only explicitly work
with the discrete case here. Expression graphs represent complicated functions
build up from the simple ones, as follows:

N(A) =
{∑n

i=1 Ci(Ai) if N is a sum node∏n
i=1 Ci(Ai) if N is a product node

Where Ci are the n children of node N , and A is the union of their arguments Ai.
From now on, we will not distinguish strongly between a node and the function
associated with the node. The root node is D, the global distribution.

The scope of a node is defined as the set arguments in its associated function,
inheriting the definitions of complete and decomposable which were introduced
for SPNs. Unlike in the case of SPNs, we do not enforce these properties.

3 In [7], a weaker requirement of consistency replaces decomposability. However, with-
out full decomposability, the inference by differentiation can give wrong results. For
example, the SPN representing .5x2

1 + .5x1 is acceptable by their definition. Differ-
entiation would have it that x1 = true is twice as likely as x1 = false, whereas the
two are equally likely by evaluation of the network value at each instantiation. We
therefore do not consider the weaker requirement here.

Expression Graphs: Unifying Factor Graphs and Sum-Product Networks 245

A simple model expressing P (x, y) as the product of two functions
F (x)G(x, y) (for example,) becomes the network in Figure 1. This gives us a
small example of the sorts of expressions which are tractable enough to be use-
ful, but, are not allowed by the restrictions on SPN structure. (The expression is
not decomposable, and would need to be re-written as a sum of all the possible
cases to be an SPN, obscuring the factorization.)

×

F (x) G(x, y)

Fig. 1. The expression graph for F (x)G(x, y)

On the other hand, a mixture distribution on x defined by the expression
.4f(x) + .6g(x) looks like Figure 2. Unlike for SPNs, we represent the weights
as terminal nodes (these can be thought of as constant functions, with empty
scope). This difference simplifies the form of later formulas. The weighted-edge
formalism could be used instead with a little modification to the algorithms.

+

×

F (x) .4

×

G(x) .6

Fig. 2. The mixture distribution .4F (x) + .6G(x)

Several models existing in the literature can be interpreted as expression
graphs, putting them in a more unified formalism. One way of combining factor
graphs and SPNs is to use SPNs as compact representations of the local factors,
as was done in [9]. This allows use of the expressive power of factor graphs at
the higher level, while taking advantage of the efficiency of SPNs to represent
the local interactions. The paper notes that this allows a single framework for
inference, and constructs SPNs in terms of context-sensitive factors in CRFs (a
type of factor graph).

The reverse case can be observed in [10], which uses sum-product networks
with factor graphs as leaves in order to represent indirect variable interactions

246 A. Demski

while ensuring that the overarching structure is tractable. This is used as part of
an SPN structure-learning algorithm, which takes advantage of existing factor-
graph structure learning to capture certain types of variable interactions which
took too long to discover in a previous (pure SPN) structure learner.

5 Exact Inference

The goal of inference is to compute the marginal probability distribution of one
or more variables, typically given some evidence. Evidence restricts the value of
some variables. We can handle this by modifying the definition of the domain
variables to restrict their possible values. It therefore suffices to consider the
inference problem when no evidence is present.

The marginal for a variable x is defined as follows:
∑

U−{x}
D(U)

Unfortunately, this computation is exponential time in the number of variables.
We would like to re-arrange the summation to simplify it.

To deal with a slightly more general case, let’s assume that we have a set of
variables X we want to find the joint marginal for.

Supposing that we had completeness, we could push down the summation
through sum nodes N :

∑

A−X

N(A) =
n∑

i=1

∑

A−X

Ci(A)

Here, A is the scope of the parent, which (by completeness) is also the scope of
each child. (As in the previous section, Ci will represent the children of N .)

Similarly, if we had decomposability, we could push down the sums through
product nodes:

∑

A−X

N(A) =
n∏

i=1

∑

Ai−X

Ci(Ai)

Here, A is the scope of the parent, and the Ai are the scopes of the children. By
decomposability, the Ai must be mutually exclusive, so that we can apply the
distributive rule to push the sum down through the product. This reduces the
complexity of the computation by allowing us to sum over the sets of variables
Ai separately, and then combine the results.

Since we do not in general have a graph which is complete and decomposable,
we need to adjust for that. The adjustment at sum nodes is computationally easy,

Expression Graphs: Unifying Factor Graphs and Sum-Product Networks 247

augmenting the values from children with a multiplier to account for summing
out the wider scope required by the parent:

∑

A−X

N(A) =
n∑

i=1

∑

A−Ai−X

∑

Ai−X

Ci(Ai) (1)

=
n∑

i=1

⎛

⎝
∏

y∈A−Ai−X

|V(y)|
⎞

⎠
∑

Ai−{x}
Ci(Ai)

Where V(y) is the set of valid values for variable y.
The adjustment for non-decomposable products is less computationally con-

venient:
∑

A−X

N(A) =
∑

B−X

n∏

i=1

∑

Ai−B−X

Ci(Ai) (2)

Where B is the set of variables that appear in more than one of Ai. (Note that
we do not have to worry that some variables might appear in no Ai, because
the scope of the parent was defined as the union of the scopes of the children.)

What this equation says is just that we cannot push down the summation
over a particular variable if that variable is shared between several children of a
product node. This fails to satisfy the conditions for the distributive law. As a
result, we have to sum this variable out at the offending product node.

Applying these equations recursively, we can create a dynamic-programming
style algorithm which computes the desired marginal. This proceeds first in a
downward pass, in which we mark which variables we need to avoid summing
out at which nodes. Then, we pass messages up through the network. The mes-
sages are multidimensional arrays, giving a value for each combination of marked
variables.

Algorithm 1. To find
∑

U−X D(U):

1. Mark variables X at the root.
2. For non-decomposable products, mark shared variables in the product node.
3. Propagate marks downward, marking a variable in a child whenever it is

marked in the parent and occurs in the scope of the child.
4. Set the messages M(N) where N is a terminal node to be

∑
H N(A), where

A are the arguments of the function N and H are any unmarked arguments.
5. Propagate up messages M(N) =

{∑n
i=0 πi

∑
Hi

M(Ci) if N is a sum node∑
H

∏n
i=0 M(Ci) if N is a product node

where Ci are the children of node N , Hi is the set of dimensions marked in
Ci but not marked in N , H is the union of the Hi, and πi is the multiplier
from Equation 1 adjusted to remove marked variables:

∏
x∈A−Ai−X−M |V(x)|

with A as the arguments of N , Ai those of Ci, and M the marked variables
of N .

248 A. Demski

This algorithm bears a resemblance to the “expression trees” mentioned in [4].
The variable marking procedure also brings to mind “variable stretching” from
that paper: we are marking out a portion of the graph in which we need to keep
track of a variable in order to enable local message-passing computation.

With only about twice as much work, we can compute all the single-variable
marginals by adding a second set of messages. This should not be a surprise,
since the same is true of both SPNs and factor graphs. The solution closely
resembles the inside-outside algorithm for PCFGs, with the messages from the
previous section constituting the “inside” part.

In order to compute the marginal probabilities, we must first compute a set
of partial derivatives in an arithmetic circuit (AC) representing the distribution.
(The reader is directed to [1] for the details of this approach.)

We will re-name the messages M from Algorithm 1 to “upward messages”
Mu, with new “downward messages” Md.

Algorithm 2. To find all single-variable marginals of D:

1. Run Algorithm 1, with X = ∅. Keep the messages as Mu(N).
2. Set the downward message for the root node Md(D) = 1.
3. Compute downward messages Md(N) =

∑n
i=0 C(Pi, N), where Pi are the n

parents of N and we define the contribution for each parent C(Pi, N) =
{

πi

∑
H Md(Pi) if Pi is a sum∑

H Md(Pi)
∏m

j=0 Mu(Cj) if Pi is a product

where πi is the same multiplier between parent and child as in the upward
messages, Cj are the m other children of parent Pi, and H is the set of
variables marked in Pi and not in N .

4. For each variable v ∈ U, compute the marginal as the sum of partial deriva-
tives for terminal nodes, and partial derivatives coming from π-adjustments
involving that variable:

Md(v) =
∑n

i=1

∑
Hi

FiMd(Fi)
+

∑
(Pi,Cj)

Md(Pi)

where the Fi are the terminal nodes, Hi are the arguments of Fi other than
v,

∑
(Pi,Cj)

is summing over parent-child pairs (Pi, Cj) such that Pi has v in
scope and not marked but Cj does not (so that π-adjustments would appear
in the messages).

The intuition is that upward messages compute the total value of the cor-
responding AC, whereas downward messages compute the partial derivative of
the total value with respect to individual AC nodes. Each scalar value in the
multidimensional message corresponds to an AC node.

This computes the same quantities which we would get by compiling to an
AC and differentiating. The technique rolls together the compilation to an AC
with the inference in the AC, so that if we apply it to an EG representing a factor

Expression Graphs: Unifying Factor Graphs and Sum-Product Networks 249

graph, we are doing something very similar to compiling it to an AC and then
differentiating (one of the better choices for exact inference in factor graphs).
Since the algorithm reduces to SPN inference in the special case that the EG is
indeed an SPN, we have the SPN efficiency in that case. In particular, we can
get cubic complexity in the parsing problem which was mentioned as motivation.

Because expression graphs also admit the intractable cases which factor
graphs allow, it will be desirable to have approximate inference algorithms such
as Monte Carlo and variational methods. Variational methods would focus on the
approximation of large multidimensional messages by approximate factorization.
Monte Carlo would focus on approximating the large summations by sampling.
A deep exploration of these possibilities will have to be left for another paper.

As a result of taking the derivatives of the network, this algorithm also gives
us the derivatives needed to train the network by gradient-descent learning.
However, we won’t discuss this in detail due to space limitations.

6 Future Work

The concrete algorithms here have dealt with finite, fixed-size expression graphs,
but the motivation section mentioned representation of grammars, which handle
sequential information of varying size. Work is in progress applying expression
graphs to grammar learning, enabling an expressive class of grammars.

Unlike factor graphs, expression graphs and SPNs can represent structural
uncertainty within one graph, by taking a sum of multiple possible structures.
Theoretically, structure learning and weight learning can be reduced to one prob-
lem. Of course, a graph representing the structure learning problem is too large
for practical inference. In [5], infinite SPNs are defined via Dirichlet distribu-
tions, and sampling is used to make them tractable. Perhaps future work could
define similar infinite EGs to subsume structure learning into inference.

The structure-learning algorithm in [10] is also quite interesting, employ-
ing heuristics to split the data into cases or factor the data, alternatively. This
could point to two different sets of cognitive mechanisms, dealing independently
with sums and products. Sum-like mechanisms include clustering, boosting, and
bagging. These deal with complexity by making mixture models. Product-like
mechanisms deal with complexity by splitting up the variables involved into
sub-problems which may be independent or related by constraints (that is, fac-
toring!). Perhaps distinct psychological processes deal with these two options. In
future work, we hope to use this distinction in a cognitive architecture context.

7 Conclusion

It is hoped that this representation will help shed light on things from a theoreti-
cal perspective, and also perhaps aid in practical implementation in cases where
a mixture of factor-graph style and SPN-style reasoning is required. Expres-
sion graphs are a relatively simple extension: from the perspective of a factor
graph, we are merely adding the ability to take sums of distributions rather than

250 A. Demski

only products. From the perspective of SPNs, all we are doing is dropping the
constraints on network structure. This simple move nonetheless provides a rich
representation.

This formalism helps to illustrate the relationship between factor graphs
and sum-product networks, which can be somewhat confusing at first, as sum-
product networks are described in terms of indicator variables and representing
the network polynomial, concepts which may seem alien to factor graph repre-
sentations.

Expression graphs improve upon factor graphs in two respects. First, it is
a more expressive representation than factor graphs as measured in the kinds
of distributions which can be represented compactly. Second, the representation
is more amenable to exact inference in some cases, where generic factor graph
inference algorithms have suboptimal complexity and must be augmented by
special-case optimization to achieve good performance.

References

1. Darwiche, A.: A differential approach to inference in bayesian networks. Journal
of the ACM (2003)

2. Derbinsky, N., Bento, J., Yedidia, J.: Methods for integrating knowledge with the
three-weight optimization algorithm for hybrid cognitive processing. In: AAAI Fall
Symposium on Integrated Cognition (2013)

3. Drechsler, R., Becker, B.: Binary Decision Diagrams: Theory and Implementation.
Springer (1998)

4. Kschischang, F., Frey, B., Loeliger, H.: Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory (2001)

5. Lee, S.W., Watkins, C., Zhang, B.T.: Non-parametric bayesian sum-product net-
work. In: Proc. Workshop on Learning Tractable Probabilistic Models, vol. 1 (2014)

6. McAllester, D., Collins, M., Pereira, F.: Case-factor diagrams for structured prob-
abilistic modeling. In: Proc. UAI 2004 (2004)

7. Poon, H., Domingos, P.: Sum-product networks: A new deep architecture. In: Proc.
UAI 2011 (2011)

8. Pynadath, D., Wellman, M.: Generalized queries on probabilistic context-free
grammars. IEEE Transactions on Pattern Analysis and Machine Intelligence 20,
65–77

9. Ratajczak, M., Tschiatschek, S., Pernkopf, F.: Sum-product networks for struc-
tured prediction: Context-specific deep conditional random fields. In: Proc. Work-
shop on Learning Tractable Probabilistic Models, vol. 1 (2014)

10. Rooshenas, A., Lowd, D.: Learning sum-product networks with direct and
indirect variable interactions. In: Proc. Workshop on Learning Tractable Prob-
abilistic Models, vol. 1 (2014)

11. Rosenbloom, P.: The sigma cognitive architecture and system. AISB Quarterly
(2013)

12. Smith, D.A., Eisner, J.: Dependency parsing by belief propagation. In: Proceed-
ings of the Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics (2008)

Toward Tractable Universal Induction Through
Recursive Program Learning

Arthur Franz(B)

Independent Researcher, Odessa, Ukraine
franz@fias.uni-frankfurt.de

Abstract. Since universal induction is a central topic in artificial gen-
eral intelligence (AGI), it is argued that compressing all sequences up
to a complexity threshold should be the main thrust of AGI research.
A measure for partial progress in AGI is suggested along these lines.
By exhaustively executing all two and three state Turing machines a
benchmark for low-complexity universal induction is constructed. Given
the resulting binary sequences, programs are induced by recursively con-
structing a network of functions. The construction is guided by a breadth-
first search departing only from leaves of the lowest entropy programs,
making the detection of low entropy (“short”) programs efficient. This
way, all sequences (80% of the sequences) generated by two (three) state
machines could be compressed back roughly to the size defined by their
Kolmogorov complexity.

1 Introduction

What is intelligence? After compiling a large set of definitions in the literature
Legg and Hutter [8] came up with a definition of intelligence that is consistent
with most other definitions:

“Intelligence measures an agent’s ability to achieve goals in a wide range of
environments.”

Based on that definition Marcus Hutter [5] has developed a mathematical
formulation and theoretical solution to the universal AGI problem, called AIXI.
Although it is not computable, approximations may lead to tractable solutions.
AIXI is in turn essentially based on Solomonoff’s theory of universal induction
[15], that assigns the following universal prior to any sequence x:

M(x) :=
∑

p:U(p)=x∗
2−l(p) (1)

where p is a program of length l(p) executed on a universal monotone Turing
machine U . U(p) = x∗ denotes that after executing program p, the machine U
prints the sequence x without necessarily halting. Impressively, it can be shown
[5] that after seeing the first t digits of any computable sequence this universal
prior is able to predict the next digit with a probability converging to certainty:
limt→∞ M(xt|x1, . . . , xt−1) = 1. Since most probability weight is assigned to
c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 251–260, 2015.
DOI: 10.1007/978-3-319-21365-1 26

252 A. Franz

short programs (Occam’s razor) this proves that compressed representations lead
to successful predictions of any computable environment. This realization makes
it especially promising to try to construct an efficient algorithm for universal
induction as a milestone, even cornerstone, of AGI.

A general but brute force approach is universal search. For example, Levin
search [10] executes all possible programs, starting with the shortest, until one of
them generates the required data sequence. Although general, it is not surprising
that the approach is computationally costly and rarely applicable in practice.

On the other side of the spectrum, there are non-general but computationally
tractable approaches. Specifically, inductive programming techniques are used to
induce programs from data [6] and there are some approaches within the context
of AGI as well [3,12,14,16]. However, the reason why the generalization of many
algorithms is impeded is the curse of dimensionality faced by all algorithms
at some point. Considering the (algorithmic) complexity and diversity of tasks
solved by today’s typical algorithms, we observe that most if not all will be
highly specific and many will be able to solve quite complex tasks (known as
“narrow AI” [7]). Algorithms from the field of data compression are no exception.
For example, the celebrated Lempel-Ziv compression algorithm (see e.g. [2])
handles stationary sequences but fails at compressing simple but non-stationary
sequences efficiently. AI algorithms undoubtedly exhibit some intelligence, but
when comparing them to humans, a striking difference comes to mind: the tasks
solvable by humans seem to be much less complex albeit very diverse, while tasks
solved by AI algorithms tend to be quite complex but narrowly defined (Fig. 1).

Fig. 1. Approach to artificial general intelligence. Instead of trying to solve complex
but narrow tasks, AGI research should head for solving all simple tasks and only then
expand toward more complexity.

Toward Tractable Universal Induction Through Recursive Program Learning 253

For this reason, we should not try to beat the curse of dimensionality merci-
lessly awaiting us at high complexities, but instead head for general algorithms
at low complexity levels and fill the task cup from the bottom up.

2 A Measure for Partial Progress in AGI

One of the troubles of AGI research is the lack of a measure for partial progress.
While the Turing test is widely accepted as a test for general intelligence, it
is only able to give an all or none signal. In spite of all attempts, we did not
yet have a way to tell whether we are half way or 10% through toward general
intelligence. The reason for that disorientation is the fact that every algorithm
having achieved partially intelligent behavior, has failed to generalize to a wider
range of behaviors. Therefore, it is hard to tell whether research has progressed
in the right direction or has been on the wrong track all along.

However, since making universal induction tractable seems to be a corner-
stone for AGI, we can formalize partial progress toward AGI as the extent to
which universal induction has been efficiently implemented. Additionally, if we
start out with a provably general algorithm that works up to a complexity level,
thereby solving all simple compression problems, the objection about its possible
non-generalizability is countered. The measure for partial progress then simply
becomes the complexity level up to which the algorithm can solve all problems.

2.1 Related Work

This measure is reminiscent of existing intelligence tests based on algorithmic
complexity. Hernandez-Orallo [4] has developed the C-test, that allows only
sequences with unique induced explanations, of which a prefix leads to the same
explanation and various other restrictions on the sequence set. However, since the
pitfall of building yet another narrow AI system is lurking at every step, a measure
of research progress in AGI (not so much of the intelligence of an agent) should
make sure that all sequences below a complexity level are compressed successfully
and can not afford to discard large subsets as is done in the C-test.

Legg and Veness [9] developed a measure that takes into account the perfor-
mance of an agent in a reinforcement learning setting which includes an Occam
bias decreasing exponentially with the complexity of the environment. They
are correct to note that the solution to the important exploration-exploitation
dilemma is neglected in a purely complexity-based measure. In that sense, uni-
versal induction is a necessary albeit not sufficient condition for intelligence. For
our purposes, it is important to set up a measure for universal induction alone, as
it seems to be a simpler problem than one of building complete intelligent agents.

Text based measures of intelligence follow the rationale that an agent can be
considered intelligent if it is able to compress the information content of a text,
like humanity’s knowledge in the form of Wikipedia [1,13]. However, this kind of
compression requires large amounts of information not present in the text itself,
like real world experience through the agent’s senses. Therefore, the task is either

254 A. Franz

ill-defined for agents not disposing of such external information or the agent has
to be provided with such information extending texts to arbitrary data, which is
equivalent to the compression of arbitrary sequences as proposed here.

2.2 Formalization

Suppose, we run binary programs on a universal monotone Turing machine U .
U ’s possible input programs pi can be ordered in a length-increasing lexico-
graphic way: “” (empty program), “0”, “1”, “00”, “01”, “10”, “11”, “000”, etc.
up to a maximal complexity level L. We run all those programs until they halt
or for a maximum of t time steps and read off their outputs xi on the output
tape. In contrast to Kolmogorov complexity1, we use the time-bounded version
– the Levin complexity – which is computable and includes a penalty term on
computation time [11]:

Kt(x) = min
p

{|p| + log t : U(p) = x in t steps} (2)

Saving all the generated strings paired with their optimal programs (xi, p
o
i) with

poi (xi) = argminp{|p| + log t : U(p) = xi in t steps, |p| ≤ L}, we have all we
need for the progress measure. The goal of universal induction is to find all such
optimal programs poi for each of the xi. If pi is the actually found program, its
performance can be measured by

ri(L) =
|poi |
|pi| ∈ (0, 1] (3)

If not, there is no time-bounded solution to the compression problem. The overall
performance R at complexity level L could be used as a measure for partial
progress in universal induction and be given by averaging:

R(L) = 〈ri(L)〉 (4)

One may object that the number of programs increases exponentially with
their length such that an enumeration quickly becomes intractable. This is a
weighty argument if the task is universal search – a general procedure for inver-
sion problems. However, we suggest this procedure to play the mere role of a
benchmark for an efficient universal induction algorithm, which will use com-
pletely different methods than universal search and will be described in Section
3. Therefore, using the set of simple programs as a benchmark may be enough
to set the universal induction algorithm on the right track.

Note that only a small fraction of possible sequences can be generated this
way. After all, it is well known that only exponentially few, O(2n−m), sequences
of length n can be compressed by m bits [11].

1 The Kolmogorov complexity of a string is defined as the length of the shortest
program able to generate that string on a Turing machine.

Toward Tractable Universal Induction Through Recursive Program Learning 255

2.3 Implementation

Implementing this test does not require coding of a universal Turing machine
(TM) since computers are already universal TMs. Instead, enumerating all tran-
sition functions of an n-state machine is sufficient. The machine used here has
one bidirectional, two way infinite work tape and a unidirectional, one way infi-
nite, write only output tape. Two symbols are used, B = {0, 1}, the states taken
from Q = {0, . . . , n − 1}. The transition map is then:

Q × B → Q × {0, 1, L,R,N} × {0, 1, N} (5)

where L, R, and N denote left, right and no motion of the head, respectively.
The work tape can move in any direction while the output tape either writes 0
or 1 and moves to the right, or does not move at all (N). No halting or accepting
states were utilized. The machine starts with both tapes filled with zeros. A finite
sequence x is considered as generated by machine T given transition function
(program) p, if it is at the left of the output head at some point: we write
T (p) = x∗. The transition table enumerated all possible combinations of state
and work tape content, which amounts to |Q| · |B| = 2n. Therefore, there exist
|Q|·5·3 = 15n different instructions and consequently (15n)2n different machines
with n states. For n = 2, 3 this amounts to around 106 and 1010 machines. All
those machines (n = 1 machines are trivial) were executed until 50 symbols
were written on the output tape or the maximum number of 400 time steps
was reached. All unique outputs were stored, amounting to 210 and 43295, for
n = 2, 3, respectively, and paired with their respective programs.

Table 1 depicts a small sample of the outputs. It may be interjected that
sequences generated by 2 and 3 state machines are not very “interesting”. How-
ever, the present work is the just initial step. Moreover, it is interesting to note
that even the 2 state machine shows non-repetitive patterns with an ever increas-
ing number of 1’s. In the 3 state machine patterns become quickly more involved
and require “intelligence” to detect the regularities in the patterns (try the last
one!). Consistently with the reasoning in the introduction, could it be that the
threshold complexity level of human intelligence is not far off from the sequence
complexity of 3 state machines, especially when the data presentation is not
comfortably tuned according to natural image statistics?

We suggest that these patterns paired with their respective programs con-
stitute a benchmark for partial progress in artificial general intelligence. If an

Table 1. Sample outputs of 2 and 3 state Turing machines

states sample outputs

2 10

2 11011011011011011011011011011011011011011011011011

2 00010011001110011110011111001111110011111110011111

3 00101101001010001011010010100010110100101000101101

3 10111111001110111101001110101111010100111010101111

3 01011010110101110101101101011110101101101101011111

256 A. Franz

efficient algorithm can compress these patterns to small programs then it can be
claimed to be moderately intelligent. Modern compression algorithms, such as
Lempel-Ziv (on which the famous Zip compression is based), fail at compressing
those sequences, since the packed file size increases with sequence length (ergo
ri gets arbitrary small) while the size of the TM transition table is always the
same independently of sequence length.

3 Universal Induction of Low-Complexity Sequences

3.1 Methods

Having generated all strings printed by two and three state programs the task
is to build an efficient algorithm compressing those strings back into a short
representation, not necessarily the original one though, but having a similar size
in terms of entropy.

As exemplified in Fig. 2 the present algorithm induces a recursive network of
function primitives using a sequence generated by a three state Turing machine.
Four function primitives were used that generate constant, alternating or incre-
mental sequences or a single number:

C(s, n) = s, s, . . . , s (n times), s ∈ Z ∪ S, n ∈ N (6)

A(a, b, n) = a, b, a, b, . . . a, b (n times) a, b ∈ Z ∪ S, n ∈ N (7)

I(s, d, n) = s + 0 · d, s + 1 · d, . . . , s + (n − 1) · d s, d ∈ Z, n ∈ N (8)

R(s) = s s ∈ Z ∪ S (9)

where Z is the set of integers, N the set of non-negative integers and S =
{C,A, I,R} is the set of arbitrary symbols (here function names).

The entropy of a given function network is computed as follows. Let xi ∈ Z∪S
denote the inputs to those functions without parent functions. The distribution
p(n) = 2−|n|/3 is imposed on integers n ∈ Z. If xi ∈ Z then its information
content is given by H(xi) = − log2 p(xi) = |xi|+ log2(3) bits2 which we simplify
to |xi| + 1 bits. If xi ∈ S then H(xi) = log2 |S| = 2 bits. The overall entropy
of the network is the sum Htot =

∑
i H(xi). It may be objected that according

to the Minimum Description Length principle, the information contained in the
algorithm itself has to be taken into account as well. After all, for any sequence
x it is possible to define a universal Turing machine U ′ such that KtU ′(x) = 0
thereby encoding all information about x in the design of U ′, making U ′ highly
dependent on x. However, since both the present algorithm and the benchmark
do not depend on x, their description length is a mere constant and can be
neglected.

2 This coding is linear in the integer value. We could use Elias gamma or delta coding,
which is logarithmic, however the algorithm has turned out to perform better with
linear coding. This is work in progress and this issue shall be investigated in future
work.

Toward Tractable Universal Induction Through Recursive Program Learning 257

Fig. 2. Exemplifying recursive compression. A sequence is recursively transformed by
a network of functions to an increasingly smaller representation. The original sequence
takes up 220 bits of information, 129 bits for encoding the 0’s and 1’s plus the length
of the sequence (91 bits). At the zeroth recursion level the sequence is parsed using a
constant function (C) that prints n times the number s. At level 1 the sequences of
function inputs are shown that recreate the original sequence. The original sequence is
thereby transformed to two sequences of function inputs. Subsequently, an alternating
function (A) explains the first sequence and an incremental function (I) explains the
second one. This is done recursively, until the entropy can not be reduced any more.
The bold inputs remain unexplained and amount to 96 bits. Note that the final number
of inputs does not depend on the sequence length any more. If we remove those inputs
that change with sequence length (bold and underlined) then the entropy decoding
sequence structure is only 27 bits (only bold).

258 A. Franz

At each step of the algorithm a set of unexplained sequences is present,
which are sequences of inputs to those functions without parent functions. For
each such input sequence its entropy can be computed and the sequences ordered
after decreasing entropy. Looping through that set starting with the sequence
of highest entropy (requiring most explanation) the algorithm tries to generate
a part of the sequence with one of the function primitives. For example, if the
sequence q = 3, 3, 3, 9, 9, 9, 9, 6, 6, 6, 6, 6 is present, a sequence of inputs to the
constant function is induced: C(s = 3, 9, 6, n = 3, 4, 5). The entropy is reduced,
in this case H(q) = 87 bits and its explanation takes only H(s) + H(n) = 36
bits. For each function primitive, such an entropy change is computed. If the
entropy has been reduced, the function is accepted and added to the network.
Otherwise, it is accepted only if its child (the function that receives its outputs)
has been entropy reducing, allowing to overcome local minima in the entropy
landscape to some extent.

In this fashion a breadth-first search is performed, while pruning away the
least promising tree branches. Those are defined as programs having a higher
total entropy than the 1.05 times the program with lowest entropy.3

3.2 Results

Since our fixed-size Turing machine programs can create sequences of arbitrary
length, successful program induction is defined as induction of a program with
a fixed number of inputs to the function network. Further, to establish a bench-
mark, the entropy of the Turing machine programs is computed as follows. There
are (15n)2n machines with n states, hence the amount of information needed to
specify a TM program with n states is

HTM(n) = 2n log2(15n) (10)

which results in a program size of around 20 and 33 bits for two and three state
TMs, respectively. Since the induced programs encode the length l of the target
sequence and the TM programs do not, the information contained in the length
has to be subtracted from the induced program entropy (the bold and underlined
numbers in Fig. 2).

All sequences generated by all two state machines could be compressed
successfully. The average induced program size is μ2 = 22 bits with a stan-
dard deviation of σ2 = 23 bits. Because of the large number of three states
sequences, 200 sequences were randomly sampled. This way, 80 ± 4% of three
state sequences could be compressed successfully, with μ3 = 27 bits and σ3 = 20
bits. However, “unsuccessful” sequences could be compressed to some extent
as well, although the resulting program size was not independent of sequence
length. With sequences of length l = 100 the entropy statistics of “unsuccessful”
sequences are μ′

3 = 112 bits and σ′
3 = 28 bits. Given an average sequence entropy

of 146 bits, this constitutes an average compression factor of 1.3.

3 Python code and string/program pairs are available upon request.

Toward Tractable Universal Induction Through Recursive Program Learning 259

It may seem surprising that the average entropy of the induced programs is
even below the entropy of the TM programs (transition tables). However, since
not all rows of a transition table are guaranteed to be used when executing a
program, the actual shortest representation will not contain unused rows leading
to a smaller program size than 20 or 33 bits. The most important result is that
very short programs, with a size roughly around the Kolmogorov complexity,
have indeed been found for most sequences.

4 Discussion

The present approach has shown that it is possible to both sensibly define a
measure for partial progress toward AGI by measuring the complexity level up to
which all sequences can be induced and to build an algorithm actually performing
universal induction for most low complexity sequences. Our demonstrator has
been able to compress all sequences generated by two state Turing machines and
80% of the sequences generated by three state Turing machines.

The current demonstrator presents work in progress and it is already fairly
clear how to improve the algorithm such that the remaining 20% are also covered.
For example, there is no unique partition of a sequence into a set of concate-
nated primitives. The way, those partitions are selected should also be guided by
compressibility considerations, e.g. partition subsets of equal length should have
a higher prior chance to be analyzed further. Currently, the partition is imple-
mented in a non-principled way, which is one of the reasons for the algorithm
to run into dead ends. Remarkably, all reasons for stagnation seem to be those
aspects of the algorithm that are not yet guided by the compression principle.
This observation leads to the conjecture that the further extension and general-
ization of the algorithm may not require any additional class of measures, but a
“mere” persistent application of the compression principle.

One may object that the function primitives are hard-coded and may there-
fore constitute an obstacle for generalizability. However, those primitives can
also be resolved into a combination of elementary operations, e.g. the incre-
mental function can be constructed by adding a fixed number to the previous
sequence element, hence be itself represented by a function network. Therefore, it
is all a matter of flexible application and organization of the very same function
network and thus lies within the scope of the present approach.

The hope of this approach is that it may lead us on a path finally scaling up
universal induction to practically significant levels. It would be nice to backup
this hope by a time complexity measure of the present algorithm, which not avail-
able at present unfortunately, since this is work in progress. Further, it can not
be excluded that a narrow algorithm is also able to solve all low-complexity prob-
lems. In fact, the present algorithm is narrow as well since there are numerous
implicit assumptions about the composition of the sequence, e.g. the concate-
nation of outputs of several functions, no possibility to represent dependencies
within a sequence, or regularities between different inputs etc. Nevertheless,
since we represent general programs without specific a priori restrictions this

260 A. Franz

setup seems to be general enough to tackle such questions which will hopefully
result in a scalable system.

References

1. H-Prize, H.: http://prize.hutter1.net (accessed: May 17, 2015)
2. Cover, T.M., Thomas, J.A.: Elements of information theory. John Wiley & Sons

(2012)
3. Friedlander, D., Franklin, S.: LIDA and a theory of mind. In: 2008: Proceedings of

the First AGI Conference on Artificial General Intelligence, vol. 171, p. 137. IOS
Press (2008)

4. Hernandez-Orallo, J.: Beyond the turing test. Journal of Logic, Language and
Information 9(4), 447–466 (2000)

5. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algo-
rithmic Probability, 300 pages. Springer, Berlin (2005). http://www.hutter1.net/
ai/uaibook.htm

6. Kitzelmann, E.: Inductive Programming: A Survey of Program Synthesis Tech-
niques. In: Schmid, U., Kitzelmann, E., Plasmeijer, R. (eds.) AAIP 2009. LNCS,
vol. 5812, pp. 50–73. Springer, Heidelberg (2010)

7. Kurzweil, R.: The singularity is near: When humans transcend biology. Penguin
(2005)

8. Legg, S., Hutter, M.: A collection of definitions of intelligence. In: Goertzel, B.,
Wang, P. (eds.) Advances in Artificial General Intelligence: Concepts, Architec-
tures and Algorithms. Frontiers in Artificial Intelligence and Applications, vol. 157,
pp. 17–24. IOS Press, Amsterdam (2007). http://arxiv.org/abs/0706.3639

9. Legg, S., Veness, J.: An Approximation of the Universal Intelligence Measure. In:
Dowe, D.L. (ed.) Solomonoff Festschrift. LNCS, vol. 7070, pp. 236–249. Springer,
Heidelberg (2013)

10. Levin, L.A.: Universal sequential search problems. Problemy Peredachi Informatsii
9(3), 115–116 (1973)

11. Li, M., Vitányi, P.M.: An introduction to Kolmogorov complexity and its applica-
tions. Springer (2009)

12. Looks, M., Goertzel, B.: Program representation for general intelligence. In: Proc.
of AGI, vol. 9 (2009)

13. Mahoney, M.V.: Text compression as a test for artificial intelligence. In:
AAAI/IAAI, p. 970 (1999)

14. Potapov, A., Rodionov, S.: Universal Induction with Varying Sets of Combinators.
In: Kühnberger, K.-U., Rudolph, S., Wang, P. (eds.) AGI 2013. LNCS, vol. 7999,
pp. 88–97. Springer, Heidelberg (2013)

15. Solomonoff, R.J.: A formal theory of inductive inference. Part I. Information and
Control 7(1), 1–22 (1964)

16. Veness, J., Ng, K.S., Hutter, M., Uther, W., Silver, D.: A Monte-Carlo AIXI
approximation. Journal of Artificial Intelligence Research 40(1), 95–142 (2011)

http://prize.hutter1.net
http://www.hutter1.net/ai/uaibook.htm
http://www.hutter1.net/ai/uaibook.htm
http://arxiv.org/abs/http://arxiv.org/abs/0706.3639

How Can Cognitive Modeling Benefit
from Ontologies? Evidence from the HCI

Domain

Marc Halbrügge1(B), Michael Quade2, and Klaus-Peter Engelbrecht1

1 Quality and Usability Lab, Telekom Innovation Laboratories, Technische
Universität Berlin, Ernst-Reuter-Platz 7, 10587 Berlin, Germany

marc.halbruegge@tu-berlin.de, klaus-peter.engelbrecht@telekom.de
2 DAI-Labor, Technische Universität Berlin, Ernst-Reuter-Platz 7,

10587 Berlin, Germany
michael.quade@dai-labor.de

Abstract. Cognitive modeling as a method has proven successful at
reproducing and explaining human intelligent behavior in specific labo-
ratory situations, but still struggles to produce more general intelligent
capabilities. A promising strategy to address this weakness is the addi-
tion of large semantic resources to cognitive architectures. We are inves-
tigating the usefulness of this approach in the context of human behavior
during software use. By adding world knowledge from a Wikipedia-based
ontology to a model of human sequential behavior, we achieve quanti-
tatively and qualitatively better fits to human data.The combination of
model and ontology yields additional insights that cannot be explained
by the model or the ontology alone.

Keywords: Cognitive modeling · Ontology · Human performance ·
Human error · Memory for goals

1 Introduction

Cognitive architectures like Soar [13] and ACT-R [2] have enabled researchers
to create sophisticated cognitive models of intelligent human behavior in lab-
oratory situations. One major drawback of cognitive modeling, especially from
the artificial general intelligence perspective, is that those models tend to be
very problem-specific. While a cognitive model of air traffic control may show
human-like intelligence in exactly that task, it is completely unable to perform
anything else, like solving a basic algebra problem. One major cause of the the-
matic narrowness of cognitive models is the restricted amount of knowledge that
those models have access to. In most cases, every single piece of information has
to be coded into the model by a researcher. This has been critized before, as
a human cognitive architecture should be able to maintain and integrate large
amounts of knowledge [3].

c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 261–271, 2015.
DOI: 10.1007/978-3-319-21365-1 27

262 M. Halbrügge et al.

One recent approach to overcome this issue is the combination of existing
cognitive architectures with large knowledge databases like WordNet [6–8,16] or
DBpedia [14], a Wikipedia-based ontology [19]. Common to all those approaches
is that they focus on feasibility and the technical implementation of their knowl-
edge system, while the validity of the resulting architectures is still an open
question.

This is the starting point for the research project presented here. Instead of
describing how vast knowledge bases can be added to a cognitive architecture,
we combine an existing solution with an existing cognitive model of sequential
behavior and analyze how the predictions of the model change and whether this
adds to our unterstanding of the model, its task, and the underlying knowledge
base.

Our research is situated in the human-computer interaction (HCI) domain.
We are analyzing how long human users need to perform simple tasks with a
home assistance application, how often they make errors, and which user inter-
face (UI) elements are tied to these errors. Our cognitive model receives knowl-
edge about the world based on Wikipedia content, following Salvucci’s work on
the integration of DBpedia into ACT-R [19]. The modeling effort presented in
this paper relies mainly on the general relevance of different Wikipedia articles.
The higher the number of links inside Wikipedia that point towards an article,
the higher the relevance of the article and the entity or concept that it explains.
Our data suggests that UI elements that correspond to highly relevant concepts
are handled differently than elements that correspond to less relevant concepts.

1.1 Human Action Control and Error

The link from human error research to artificial intelligence is not an obvious one.
We think of error as “window to the mind” [15]. Understanding why and when
humans err helps identifying the building blocks of intelligent human behavior.
Of special interest are errors of trained users. Using software systems after having
received some training is characterized by rule-based behavior [17]. Goals are
reached by using stored rules and procedures that have been learned during
training or earlier encounters with similar systems. While errors are not very
frequent on this level of action control, they are also pervasive and cannot be
eliminated through training [18].

Our focus on rule-based behavior allows a straightforward definition of error:
Procedural error means that the (optimal) path to the current goal is violated
by a non-optimal action. This can either be the addition of an unnecessary or
even hindering action, which is called an intrusion. Or a necessary step can be
left out, constituting an omission.

1.2 Memory for Goals

A promising theory of rule-based sequential action is the Memory for Goals
(MFG) model [1]. The MFG proposes that subgoals, i.e., atomic steps towards a

How Can Cognitive Modeling Benefit from Ontologies? 263

goal, are underlying memory effects, namely time-dependent activation, interfer-
ence, and associative priming. Higher activation leads to faster recall and thereby
shorter execution times. If the activation is too low, the retrieval of the subgoal
may fail, resulting in an omission. Interference with other subgoals may lead to
intrusions. Priming is the most important concept in the context of this paper
as it provides the link to the ontology in the background.

Our basic assumption is that subgoals receive priming from the general con-
cepts that they represent. Hitting a button labeled “Search” is connected to the
concept of search; choosing an option called “Landscape” in a printing dialog is
related to the concept of landscape. If the general concept that is semantically
linked to a subgoal is highly activated in the knowledge base, the respective
subgoal should receive more priming, resulting in a higher overall activation of
the subgoal. Taken together with the MFG, this results in three high-level pre-
dictions for subgoals, corresponding UI elements, and their respective concepts:

1. Execution time should decrease with concept activation.
2. Omission rate should decrease with concept activation.
3. Intrusion rate should increase with concept activation.

2 Experiment

The empirical basis for our model is provided by a usability study targeting a
kitchen assistant from an ambient assisted living context. The kitchen assistant
provides basic help during the preparation of meals by proposing recipes, calcu-
lating ingredients quantities, and by presenting interactive cooking instructions.

In order to assess the three ontology-based predictions stated above, we per-
formed a reanalysis of previously published data [12]. We are concentrating on
a single screen of the kitchen assistant that allows searching for recipes based
on predefined attributes. A screenshot of the search attribute form translated
to English is given in Fig. 1. The search attributes are grouped into national-
ity (French, German, Italian, Chinese) and type-of-dish (Main Course, Pastry,
Dessert, Appetizer). We excluded three health-related search options as they
were neither well represented in the experimental design, nor in the ontology.
For the eight remaining buttons, we identified the best matching concept from
the DBpedia ontology and use the number of links to it as measure of relevance
of the concept. As can be seen in Table 2, the buttons in the nationality group
are two to three magnitudes more relevant than the buttons in the type-of-dish
group. Our empirical analysis therefore unfolds around the differences between
those two groups.

2.1 Method

Twenty participants recruited on and off campus (15 women, 5 men, Mage=32.3,
SDage=11.9) took part in the experiment. Amongst other things, each participant
completed 34 recipe search tasks using the attribute selection screen (see Fig. 1).

264 M. Halbrügge et al.

Fig. 1. Screenshot of the English version of the recipe search screen

One half of the tasks was done using a tablet computer, a large touch screen was
used for the other half. Instructions were given verbally by the experimenter.
All user actions were logged and videotaped for subsequent task execution time
and error analysis.

2.2 Results

We observed a total of 1607 clicks on the eight search attribute buttons under
investigation. The results for our three ontology-based predictions are as follows.

Execution Time. We exluded all clicks with substantial wait time (due to task
instruction or system response) from the analysis. The remaining 822 clicks still
differ in the necessary accuracy of the finger movement which is strongly related
to the time needed to perform the movement as formulated in Fitts’ law [9].
Individual differences in motor performance were large, and the device used also
had an effect on the click time. We therefore added subjects as random factor
with device and Fitts-slope within subject to the analysis. The click time was
analyzed using a linear mixed model [4], fixed effects were tested for significance
using the Satterthwaite approximation for degrees of freedom. Results are given

How Can Cognitive Modeling Benefit from Ontologies? 265

in Table 1. Besides the expected effects of Fitts’ law and device, we observed a
significant difference between the buttons for type-of-dish and nationality, with
type-of-dish needing approximately 100 ms longer.

Omissions and Intrusions. If those 100 ms are caused by lack of activation (as
predicted by the MFG), then this lack of activation should cause more omis-
sions for the type-of-dish group and more intrusions for the nationality group.
We observed 14 intrusions and 19 omissions during the handling of the search
attribute page (error rate 2.0%). Mixed logit models with subject as random fac-
tor showed no significant influence of the attribute group, but at least for omis-
sions, the effect points into the expected direction (omissions: z = 1.50, p = .133;
intrusions: z = −.05, p = .964). The omission rates for nationality and type-of-
dish are 0.8% and 1.6%, respectively.

Table 1. Linear mixed model results for the click time analysis

Factor Estimate t df p

Fitts’ Index of Difficulty in bit 173 ms
bit

4.95 22.4 < .001
Device (Tablet vs. Screen) 213 ms 4.38 24.3 < .001
Attr. Group (Dish vs. Nationality) 112 ms 2.47 611.3 .014

Discussion. We investigated the difference between frequently vs. less fre-
quently used concepts (nationality vs. type-of-dish) on a home assistance UI
with regards to three dependent variables. The MFG predicts faster execution,
less omission errors, and more intrusion errors for the higher used concept.

The empirical results are mixed. Buttons in the nationality group are clicked
faster and weakly tend to be less prone to omissions. We did not find an intrusion
effect, but this does not necessarily contradict the theory. The MFG explains
intrusions by interference with earlier subgoals that are still present in memory.
In the context of the experiment presented here, those intruding subgoals are
memory clutter from already completed trials. In experimental design terms, this
is called a carry-over effect. Due to the order of trials being randomized between
subjects, intrusions should not happen on a general, but a subject-specific level.

3 Cognitive Model

The cognitive model presented here has been created using ACT-R 6 [2]. It
has been shown to reproduce omission and intrusion errors for task-oriented vs.
device-oriented UI elements well [12]. A comparison of the model’s predictions
for the different search attribute buttons has not been done before.

Following the MFG, the model creates and memorizes a chain of subgoal
chunks when it receives task instructions through ACT-R’s auditory system. It
follows this chain of subgoals until either the goal is reached or memory gets
weak. In case of retrieval failure, the model reverts to a knowledge-in-the-world

266 M. Halbrügge et al.

strategy and randomly searches the UI for suitable elements. If it can retrieve
a subgoal chunk that corresponds to the currently attended UI element, this
subgoal is carried out and the cycle begins again.

The only declarative knowledge that is hard-coded into the model is that
some UI elements need to be toggled, while others need to be pushed. The
model interacts directly with the HTML interface of the kitchen assistant by the
means of ACT-CV [11].1

Table 2. Semantic mapping between UI and ontology. Inlink count obtained from
DBpedia 3.9 [14]. Subtitle-based word frequency (per 106 words) from [5]

Concept UI label DBpedia entry Inlink count per 106 links Word freq.

German Deutsch Deutschland 113621 2474.3 10.2
Italian Italienisch Italien 56105 1221.8 6.2
Chinese Chinesisch China 10115 220.3 8.2
French Französisch Frankreich 79488 1731.0 17.4

Main Course Hauptgericht Hauptgericht 35 0.8 0.8
Appetizer Vorspeise Vorspeise 72 1.6 1.5
Dessert Nachtisch Dessert 193 4.2 6.5
Pastry Backwaren Gebäck 165 3.6 0.3

3.1 Adding World Knowledge to the Model

In order to assess how cognitive modeling can benefit from ontologies, we took
the barely knowledgeable model and added applicable pieces of information from
Wikipedia to its declarative memory. We propose semantic priming from long-
living general concepts to the short-lived subgoal chunks that are created by the
model when it pursues a goal.

How much priming can we expect, based on the information that is available
within DBpedia? We are using the inlink count as measure of the relevance of a
concept. In ACT-R, this needs to be translated into an activation value of the
chunk that represents the concept (i.e., Wikipedia article). Temporal decay of
activation is modeled in ACT-R using the power law of forgetting [2]. Salvucci
[19] has applied this law to the concepts within DBpedia, assuming that they
have been created long ago and the number of inlinks represents the number of
presentations of the corresponding chunk. The base activation B can be deter-
mined from inlink count n as follows

B = ln(2n) (1)

While we agree with Salvucci’s rationale, deriving the activation from raw inlink
counts is a little too straightforward in our eyes. Numerically, it creates very

1 See [12] for a more detailed description. The source code of the model is available
for download at http://www.tu-berlin.de/?id=135088.

http://www.tu-berlin.de/?id=135088

How Can Cognitive Modeling Benefit from Ontologies? 267

high activation values. And as the total number of entries varies between the
language variations of DBpedia, switching language (or ontology) would mean
changing the general activation level.2 In the special case of our model, the use
of (1) caused erratic behavior because the high amount of ontology-based activa-
tion overrode all other activation processes (i.e., activation noise and mismatch
penalties for partial matching of chunks). We therefore introduced a small fac-
tor c that scales the inlink count down to usable values. Together with ACT-R’s
minimum activation constant blc, this results in the following equation

B = max(ln(c · n), blc) (2)

How is the semantic priming to subgoal chunks finally achieved? The declar-
ative memory module of ACT-R 6 only allows priming from buffers (“working
memory”) to declarative (“long term”) memory. We therefore introduced a hook
function that modifies the activation of every subgoal chunk whenever it enters
long term memory according to the general concept that is related to the goal
chunk.

3.2 Goodness of Fit

The model was run 300 times with concept priming disabled (c = 0), and 300
times with priming enabled (c = .005, resulting average base activation of the
eight concepts MB = 2.4, SDB = 3.4). For both conditions, we computed time
and error predictions for each button and compared these to the empirical obser-
vations. The effect of the needed accuracy of the finger move was eliminated
based on Fitts’ law, using a linear mixed model with subject as random factor
[4] for the empirical data and a linear regression for the model data, as the Fitts’
parameters were not varied during the simulation runs. Correlations between the
respective residuals are given in Table 3. Omission and intrusion rates per button
were correlated without further preprocessing.

The results are given alongside R2 and RMSE in Table 3. While the goodness-
of-fit with R2 constantly below .5 and substantial RMSE is not overwhelming,
the difference to the baseline is worth discussion. The model without concept
priming displays no or negative correlations between its predictions and the
empirical values, meaning that the baseline model is even worse than chance. The
corresponding regression lines are displayed on the upper part of Fig. 2. When
concept priming is added, all three dependent variables show substantial positive
correlations between observed and predicted values. The difference between the
correlations is very large, i.e., always above .75.

The positive correlation for intrusions is noteworthy as we could not establish
an empirical relationship between concept relevance and the observerd intrusion
rates in the first place (see above). If our hypothesis of intrusions being caused
by leftovers from previous trials with additional priming from ontology-based
2 The English DBpedia is 2.5 to 3 times larger than the German one. “Intelligence”

has 1022 inlinks in the English DBpedia, but “Intelligenz” has only 445 inlinks in
the German one.

268 M. Halbrügge et al.

Table 3. Correlations between the empirical data and the model predictions

Dependent Variable rbaseline rpriming Δr R2
priming RMSEprim.

Execution time (residual) -.218 .684 .758 .468 78 ms
Omission rate -.390 .640 .824 .410 .027
Intrusion rate -.654 .511 .873 .261 .011

Fig. 2. Click time residuals after Fitts’ law regression, intrusion and omission rates of
the cognitive model with and without priming from the DBpedia concepts. Negative
slopes of the regression line mean worse than chance predictions. Positive slopes mean
better than chance predictions. Squares denote buttons of group “nationality”, triangles
denote “type of dish”.

concepts holds, then this result underlines the benefits of adding ontologies to
cognitive architectures. A closer look at Fig. 2 reveals that the correlation for
intrusions is highly dependent of two outliers, the results should therefore be
interpreted with care.

4 Discussion and Conclusions

We presented a cognitive model of sequential action that has been developed
for the prediction of human error during the use of a home assistance system
[12]. The original model did not have any world knowledge and accordingly was
unable to reproduce effects of concept relevance on task execution time and omis-
sion rate that we found in a reanalysis of our empirical data. Adding concepts
from DBpedia [14] to the declarative knowledge of the model and modulating
the activation of these concepts based on the number of links inside DBpedia
that point to them allowed not only to reproduce the time and omission rate dif-
ferences, but to some extent also the rates of intrusions. While the prediction of

How Can Cognitive Modeling Benefit from Ontologies? 269

execution time and omissions mainly lies within the ontology, intrusions can only
be explained by the combination of cognitive model and ontology, highlighting
the synergy between both.

To our knowledge, this is the first time that Salvucci’s approach for adding
world knowledge to a cognitive architecture [19] is empirically validated. The
practical development of the model showed that the activation equation proposed
by Salvucci, while being theoretically sound, creates hurdles for the combination
of world knowledge with existing cognitive models. Therefore, we introduced a
constant scaling factor to the ontology-based activation computation. This goes
in line with the common practice in psycholinguistics to use standardized values
that are independent of the corpus in use. The factor chosen here helped to
keep the influence of the ontology on subgoal activation at par with the other
activation sources applied (i.e., activation noise and partial matching).

It is also informative to compare our approach to research on information
foraging, namely SNIF-ACT [10]. This system uses activation values that are
estimated from word frequencies in online text corpora, which would lead to
general hypotheses similar to the ones given above. But beyond this, a closer
look unveils interesting differences to the DBpedia approach. While word fre-
quency and inlink count are highly correlated (r=.73 in our case, see Table 2),
the word frequency operationalization yields much smaller differences between
the nationality vs. type-of-dish groups. Frequency based-approaches also need to
remove highly frequent, but otherwise irrelevant words beforehand (e.g., “the”,
“and”). In Wikipedia, this relevance filter is already built into the system and
no such kind of preprocessing is necessary. Empirically, we obtained inconclu-
sive results when using word frequency in a large subtitle corpus [5] instead of
Wikipedia inlink count as concept activation estimate.

While the combination of cognitive model and ontology provides some stim-
ulating results, it also has some downsides and limitations. First of all, the small
number of observed errors leads to much uncertainty regarding the computed
intrusion and omission rates. Especially in case of intrusions, the empirical basis
is rather weak. The goodness-of-fit is highly dependent on two outliers. While
one of these matches the high-level predictions given in the introduction (“Ger-
man” being more prone to intrusions), the other one points towards a conceptual
weakness of the model (“Pastry” showing many intrusions in the empirical data
although having just a few inlinks). The “Pastry” intrusions happened dur-
ing trials with the target recipes baked apples (“Bratäpfel”) and baked bananas
(“Gebackene Bananen”). One could speculate that those recipes have primed the
type-of-dish attribute that is linked to baking. This kind of semantic priming is
currently not covered by our system. We are planning to integrate more sophis-
ticated models of long-term memory [20] to allow dynamic priming between
concepts as well.

Besides the conceptual findings, our ontology-backed cognitive model also
provides benefits to applied domains. With its ability to interact with arbitrary
HTML applications, the model could be used for automatic usability evaluation
of user interfaces. Its ability to predict omissions and intrusions could be used to
spot badly labeled UI elements during early development stages.

270 M. Halbrügge et al.

Acknowledgments. We gratefully acknowledge financial support from the German
Research Foundation (DFG) for the project “Automatische Usability-Evaluierung mod-
ellbasierter Interaktionssysteme für Ambient Assisted Living” (AL-561/13-1).

References

1. Altmann, E.M., Trafton, J.G.: Memory for goals: An activation-based model. Cog-
nitive Science 26(1), 39–83 (2002)

2. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An
integrated theory of the mind. Psychological Review 111(4), 1036–1060 (2004)

3. Anderson, J.R., Lebiere, C.: The Newell test for a theory of cognition. Behavioral
and Brain Sciences 26(05), 587–601 (2003)

4. Bates, D., Maechler, M., Bolker, B., Walker, S.: lme4: Linear mixed-effects models
using Eigen and S4 (2013), r package version 1.0-5

5. Brysbaert, M., Buchmeier, M., Conrad, M., Jacobs, A.M., Bölte, J., Böhl, A.:
The word frequency effect: A review of recent developments and implications for
the choice of frequency estimates in German. Experimental Psychology 58(5), 412
(2011)

6. Douglass, S., Ball, J., Rodgers, S.: Large declarative memories in ACT-R. Tech.
rep., Manchester, UK (2009)

7. Emond, B.: WN-LEXICAL: An ACT-R module built from the WordNet lexical
database. In: Proceedings of the Seventh International Conference on Cognitive
Modeling (2006)

8. Fellbaum, C.: Wordnet. In: Poli, R., Healy, M., Kameas, A. (eds.) Theory
and Applications of Ontology: Computer Applications, pp. 231–243. Springer,
Dordrecht (2010)

9. Fitts, P.M.: The information capacity of the human motor system in controlling
the amplitude of movement. Journal of Experimental Psychology 47(6), 381–391
(1954)

10. Fu, W.T., Pirolli, P.: SNIF-ACT: A cognitive model of user navigation on the world
wide web. Human-Computer Interaction 22, 355–412 (2007)

11. Halbrügge, M.: ACT-CV: Bridging the gap between cognitive models and
the outer world. In: Brandenburg, E., Doria, L., Gross, A., Günzlera, T.,
Smieszek, H. (eds.) Grundlagen und Anwendungen der Mensch-Maschine-
Interaktion, pp. 205–210. Universitätsverlag der TU Berlin, Berlin (2013)

12. Halbrügge, M., Quade, M., Engelbrecht, K.P.: A predictive model of human error
based on user interface development models and a cognitive architecture. In: Taat-
gen, N.A., van Vugt, M.K., Borst, J.P., Mehlhorn, K. (eds.) Proceedings of the
13th International Conference on Cognitive Modeling, pp. 238–243. University of
Groningen, Groningen (2015)

13. Laird, J.: The Soar cognitive architecture. MIT Press, Cambridge (2012)
14. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,

Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a
large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web
Journal (2014)

15. Norman, D.A.: Slips of the mind and an outline for a theory of action. Tech. rep.,
Center for Human Information Processing, San Diego, CA (1979)

16. Oltramari, A., Lebiere, C.: Extending Cognitive Architectures with Semantic
Resources. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011.
LNCS, vol. 6830, pp. 222–231. Springer, Heidelberg (2011)

How Can Cognitive Modeling Benefit from Ontologies? 271

17. Rasmussen, J.: Skills, rules, and knowledge; signals, signs, and symbols, and other
distinctions in human performance models. IEEE Transactions on Systems, Man
and Cybernetics 13, 257–266 (1983)

18. Reason, J.: Human Error. Cambridge University Press, New York (1990)
19. Salvucci, D.D.: Endowing a cognitive architecture with world knowledge. In:

Bello, P., Guarini, M., McShane, M., Scassellati, B. (eds.) Proc. CogSci 2014,
pp. 1353–1358 (2014)

20. Schultheis, H., Barkowsky, T., Bertel, S.: LTM C - an improved long-term memory
for cognitive architectures. In: Proceedings of the Seventh International Conference
on Cognitive Modeling, pp. 274–279 (2006)

C-Tests Revisited: Back and Forth
with Complexity

José Hernández-Orallo(B)

DSIC, Universitat Politècnica de València, Valencia, Spain
jorallo@dsic.upv.es

Abstract. We explore the aggregation of tasks by weighting them using
a difficulty function that depends on the complexity of the (acceptable)
policy for the task (instead of a universal distribution over tasks or an
adaptive test). The resulting aggregations and decompositions are (now
retrospectively) seen as the natural (and trivial) interactive generalisa-
tion of the C-tests.

Keywords: Intelligence evaluation · Artificial intelligence · C-tests ·
Algorithmic information theory · Universal psychometrics · Agent
response curve

1 Introduction

A first test using algorithmic information theory (AIT) was the C-test [2,9],
where the goal was to find a continuation of a sequence of letters, as in some IQ
tasks , and in the spirit of Solomonoff’s inductive inference problems: “given an
initial segment of a sequence, predict its continuation” (as quoted in [12, p.332]).
Levin’s Kt complexity (see, e.g., [12, sec.7.5]) was used to calculate the difficulty
of a sequence of letters. The performance was measured as an aggregated value
over a range of difficulties:

I(π) �
H∑

h=1

he
N∑

i=1

1
N

Hit(π, xi,h) (1)

where π is the subject, the difficulties range from h = 1 to H and there are N
sequences xi,k per difficulty h. The function hit returns 1 if π is right with the
continuation and 0 otherwise. If e = 0 we have that all difficulties have the same
weight. The N sequences per difficulty were chosen (uniformly) randomly.

This contrasts with a more common evaluation in artificial intelligence based
on average-case performance according to a probability of problems or tasks:

Ψ(π) �
∑

μ∈M

p(μ) · E[R(π, μ)] (2)

where p is a probability distribution on the set of tasks M , and R is a result
function of agent π on task μ. Actually, eq. 2 can also be combined with AIT,
c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 272–282, 2015.
DOI: 10.1007/978-3-319-21365-1 28

C-Tests Revisited: Back and Forth with Complexity 273

in a different way, by using a universal distribution [12,14], i.e., p(μ) = 2−K(μ),
where K(μ) is the Kolmogorov complexity of μ, as first chosen by [11].

The work in [11] has been considered a generalisation of [2,9], from static
sequences (predicting a continuation of a sequence correctly) to dynamic envi-
ronments. In this paper we challenge this interpretation and look for a proper
generalisation of [2,9] using the notion of difficulty in the outer sum, as originally
conceived and seen in eq. 1. The key idea is the realisation that for the C-test
the task and the solution were the same thing. This meant that the difficulty
was calculated as the size of the simplest program that generates the sequence,
which is both the task and the solution. Even if the complexity of the task and
the solution coincide here, it is the complexity of the solution what determines
the difficulty of the problem.

However, when we move from sequences to environments or other kind of
interactive tasks, the complexity of the policy that solves the task and the com-
plexity of the environment are no longer the same. In fact, this is discussed
in [6,7]: the complexity of the environment is roughly an upper bound of the
complexity of the acceptable policies (any agent that reach an acceptable perfor-
mance value), but very complex environments can have very simple acceptable
policies. In fact, the choice of p(μ) = 2−K(μ) has been criticised for giving too
much weight to a few environments. Also, it is important to note that the invari-
ance theorem is more meaningful for Kolmogorov Complexity than for Algorith-
mic Probability, as for the former it gives some stability for values of K that are
not very small, but for a probablity it is precisely the small cases that determine
most of the distribution mass. In fact, for any computable distribution p there
is a choice of a reference UTM that leads to a particular universal distribution
that approximates p (to whatever required precision.This means that the choice
of p(μ) = 2−K(μ) for Eq. 2 is actually a metadefinition, which leads to virtually
any performance measure, depending on the Universal Turing Machine (UTM)
that is chosen as reference.

By decoupling the complexity of task and policy we can go back to eq. 1 and
work out a notion of difficulty of environments that depends on the complexity of
the policy. While this may look retrospectively trivial, and the natural extension
in hindsight, we need to solve and clarify some issues, and properly analyse the
relation of the two different philosophies given by eq. 2 and eq. 1.

Section 2 discusses some previous work, introduces some notation and recov-
ers the difficulty-based decomposition of aggregated performance. Section 3
introduces several properties about difficulty functions and the view of difficulty
as policy complexity. Section 4 discusses the choices for the difficulty-dependent
probability. Section 5 briefly deals with the role of computational steps for dif-
ficulty. Section 6 closes the paper with a discussion.

2 Background

AI evaluation has been performed in many different ways (for a recent account
of AI evaluation, see [5]), but a common approach is based on averaging perfor-
mance on a range of tasks, as in eq. 2.

274 J. Hernández-Orallo

h = 9 : a, d, g, j, ... Answer: m
h = 12 : a, a, z, c, y, e, x, ... Answer: g
h = 14 : c, a, b, d, b, c, c, e, c, d, ... Answer: d

Fig. 1. Several series of different difficulties 9, 12, and 14 used in the C-test [2]

In what follows, we will focus on the approaches that are based on AIT. As
mentioned above, the first intelligence test using AIT was the so-called C-test
[2,9]. Figure 1 shows examples of sequences that appear in this test. The diffi-
culty of each sequence was calculated as Levin’s Kt, a time-weighted version of
Kolmogorov complexity K. Some preliminary experimental results showed that
human performance correlated with the absolute difficulty (h) of each exercise
and also with IQ test results for the same subjects ([2,9]). They also show a clear
inverse correlation of results with difficulty (see Figure 2). HitRatio is defined as
the inner sum of eq. 1:

HitRatio(π, h) �
N∑

i=1

1
N

Hit(π, xi,h) (3)

An interesting observation is that by arranging problems by difficulty we see that
HitRatio seems to be very small from a given difficulty value (in the figure this
is 8, but it can be any other, usually small, value). This makes the estimation
of the measure much easier, as we only need to focus on (the area of) a small
interval of difficulties. In fact, this use of difficulty is common in psychometrics.

7 8 9 10 11 12 13 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h

H
itR

at
io

Fig. 2. Results obtained by humans on task of different difficulty in the C-test [2]

Several generalisations of the C-test were suggested (for “cognitive agents
[...] with input/output devices for a complex environment” [9] where “rewards
and penalties could be used instead” [4]) or extending them for other cognitive
abilities [3], but not fully developed.

AIT and reinforcement learning were finally combined in [11], where all pos-
sible environments were considered in eq. 2, instantiated with a universal distri-
bution for p, i.e., p(μ) = 2−K(μ), with K(μ) being the Kolmogorov complexity of

C-Tests Revisited: Back and Forth with Complexity 275

each environment μ. Some problems (computability, discriminating power, over-
weight for small environments, time, ...) were discussed with the aim of making
a more applicable version of this appraoch by [10] and [7, secs. 3.3 and 4].

While the aim of all these proposals was to measure intelligence, many inter-
esting things can happen if AIT is applied to cognitive abilities other than intel-
ligence, as suggested in [3] for the passive case and hinted in [7, secs. 6.5 and 7.2]
for the dynamic cases, which proposes the use of different kinds of videogames as
environments (two of the most recently introduced benchmarks and competitions
in AI are in this direction [1,13]).

We consider tests that are composed of tasks (also called environments or
items) and are performed by agents (also called policies or subjects). The set
of tasks is denoted by M . Its elements are usually denoted by μ. The set of
agents is denoted by Π. Its elements are usually denoted by π. Both can be
stochastic, i.e., they can use a probabilistic instruction or transition function.
The length in bits of a string is denoted by L(x). We can think of a proper
encoding of tasks and agents as strings. Given a UTM U we define Kolmogorov
complexity as KU (y) = minx : U(x)=y L(x). We will usually drop the subindex
U . Finally, we have the expected value of the response, score or result of π in
μ for a time limit τ as E[R(π, μ, τ)]. The value of τ will be usually omitted.
The R function always gives values between 0 and 1 and we assume it is always
defined (a value of R = 0 is assumed for non-halting situations) We also define
E[LS(π, μ, τ)] � L(π) + log E[S(π, μ, τ)]. Logarithms are always binary.

It is actually in [8], where we can find a first connection between the schemas
of eq. 1 and eq. 2. We adapt definition 14 in [8], which is a generalisation of
eq. 2, by making the set M and the task probability p explicit as a parameters.

Definition 1. The expected average result for a task class M , a distribution p
and an agent π is:

Ψ(π,M, p) �
∑

μ∈M

p(μ) · E[R(π, μ)] (4)

And now we use proposition 4 in [8] that decomposes it. First, we define partial
results for a given difficulty h as follows:

Ψh(π,M, p) �
∑

μ∈M,�(μ)=h

p(μ|h) · E[R(π, μ)] (5)

Where � is a difficulty function � : M → R
+ ∪ 0. Note that this parametrises

the result of eq. 4 for different difficulties. For instance, for two agents πA and
πB we might have that Ψ3(πA) < Ψ3(πB) but Ψ7(πA) > Ψ7(πB). If we repre-
sent Ψh(π,M, p) on the y-axis versus h on the x-axis we have a so-called agent
response curve, much like Fig. 2.

If we want to get a single number from an agent response curve we can
aggregate performance for a range of difficulties, e.g., as follows:

276 J. Hernández-Orallo

Proposition 1. ([8, prop.4]) The expected average result Ψ(π,M, p) can be
rewritten as follows: in the particular case when � only gives discrete values:

Ψ(π,M, p) =
∞∑

h=0

p(h)Ψh(π,M, p) (6)

where p(h) is a discrete probability function for eq. 6. Note that equations 4, 5
and 6 are generalisations, respectively, of equations 2, 3 and 1.

3 Difficulty Functions

Before setting an appropriate measure of difficulty based on the policy, in this
section we will analyse which properties a difficulty function may have.

The decomposition in previous section suggests that we could try to fix a
proper measure of difficulty first and then think about a meaningful distribution
p(h). Once this is settled, we could try to find a distribution for all environ-
ments of that difficulty p(μ|h). In other words, once we determine how relevant
a difficulty is we ask which tasks to take for that difficulty. This is the spirit
of the C-test [2,9] as seen in eq. 1. In fact, we perhaps we do not need a p(h)
that decays dramatically, as it is expectable to see performance to decrease for
increasing difficulty, as in Figure 2.

To distinguish p(h) and p(μ|h) we will denote the former with w and the
latter with pM . We will use any distribution or even a measure (not sum-
ming up to one, for reasons that we will see later on) as a subscript for Ψ .
For instance, we will use the following notation ΨU(hmin,hmax)(π,M, pM), where
U(a, b) represents a uniform distribution between a and b. For instance, we
can have two agents πA and πB such that ΨU(1,10)(πA) > ΨU(1,10)(πB) but
ΨU(11,20)(πA) < ΨU(11,20)(πB). We will use the notation Ψ⊕(π,M, pM) when
w(h) = 1 (note that this is not the uniform distribution for discrete h), which
means that the partial aggregations for each difficulty are just added. In other
words, Ψ⊕(π,M, pM) �

∑∞
h=0 Ψh(π,M, pM) for discrete difficulty functions . We

will explore whether this (area under the agent response curve) is bounded.
Figure 3 shows approach A, which has already been mentioned, while

approaches B and C will be seen in sections 4.1 and 4.2 respectively.
When we aggregate environments with different scales on R and different

difficulties, we may have that an agent focusses on a few environments with
high difficulty while another focusses on many more environments with small
responses. Agent response curves in [8], which are inspired by item response
curves in psychometrics (but inverting the view between agents and items), allow
us to see how each agent performs for different degrees of difficulty. Looking at
Figure 2 and similar agent response curves in psychometrics, we see that the
notion of difficulty must be linked to R, i.e., how well the agents perform, and
not about the complexity of the task, as in the previous section.

Another option is what is done in [6], as �(μ) � minπ:E[R(π,μ)]=Rmax(μ) L(π)
where Rmax(μ) = maxπ E[R(π, μ)]. However, Rmax may be hard to calculate

C-Tests Revisited: Back and Forth with Complexity 277

Fig. 3. Three approaches to aggregate the results for a set of tasks. Top (A) shows the
classical approach of choosing a probability for the task, according to the properties
of the task. Middle (B) shows the approach where we arrange tasks by difficulty, and
the notion of difficulty is derived from the properties of the policy. Bottom (C) shows
a variation of B where we derive acceptable policies for a given difficulty and then
generate tasks for each policy. Between square brackets some choices we examine in
this paper.

and even if it can be effectively calculated, any minor mistake or inefficiency in a
very good agent will prevent the agent from reaching the optimal result, leading
to a notion of difficulty linked to the complexity of the ‘perfect’ policy. In [6], a
‘tolerance value’ is considered and, instead of one policy, difficulty is linked to
the probability of finding a policy under this tolerance.

We are going to consider this tolerance ε of acceptability.

A
[ε](π, μ) � 1(E[R(π, μ)] ≥ 1 − ε) (7)

This returns 1 if the expected response is above 1 − ε and 0 otherwise. If
A

[ε](π, μ) = 1 we say that π is ε-acceptable. With this, we binarise responses.
One can argue that we could have just defined a binary R, but it is important to
clarify that it is not the same to have tolerance for each single R (or a binarised
R) than to have a tolerance for the expected value E[R]. The tolerance on the
expected value allows the agent to have variability in their results (e.g., stochas-
tic agents) provided the expected value is higher than the tolerance. Finally,
even if we will be very explicty about the value of ε, and changing it will change
the difficulty value of any environment, it is important to say that this value is
not so relevant. The reason is that for any environment we can build any other
environment where the responses are transformed by any function. In fact, we
could actually consider one fixed threshold, such as 0.5, always.

And now we can just define a new version of eq. 5 using this new function:

Ψ
[ε]
h (π,M, pM) �

∑

μ∈M,�(μ)=h

pM (μ|h) · A
[ε](π, μ) (8)

We can just rewrite equations 6 accordingly:

Ψ [ε]
w (π,M, pM) =

∞∑

h=0

w(h)Ψ [ε]
h (π,M, pM) (9)

Given the above, we are now ready for a few properties about difficulty functions.

278 J. Hernández-Orallo

Definition 2. A difficulty function � is strongly bounded in M if for every π
there is a difficulty h such that for every μ ∈ M : �(μ) ≥ h we have A

[ε](π, μ) = 0.

Now we choose the difficulty function in terms of ε-acceptability, i.e.:

�
[ε](μ) � min{L(π) : E[R(π, μ)] ≥ 1 − ε} = min{L(π) : A

[ε](π, μ) = 1} (10)

We can say a few words about the cases where a truly random agent (choosing
actions at random) gives an acceptable policy for an environment. If this is the
case, we intuitively consider the environment easy. So, in terms, of L, we consider
random agents to be simple, and goes well with our consideration of stochastic
agents and environments having access to some true source of randomness.

Figure 4 (left) shows the distribution of response according to L(π), but
setting ε = 0.9. We see that the simplest ε-acceptable policy has L = 12.

Fig. 4. Left: an illustrative distribution of responses of a population of agents for a
single environment. If we set the threshold at 0.9 = 1 − ε, the simplest policy above
this threshold is of ‘complexity’ h = 12. Right: an illustrative distribution of the result
of Ψh considering a population of environments for a single agent, an agent response
curve. There is no task π of difficulty above 80 for which E[R(π, μ)] ≥ 1 − ε, i.e., there
is no task for which π is ε-acceptable, so Ψh is 0 from 80 on. If we were using the
definition of � as for Eq. 10, this 80 would be L(π). Also note on the right plot that all
‘heaven’ tasks (good results independently of what the agent does) are at h = 1, while
all ‘hell’ tasks (bad response independently of what the agent does) are at h = ∞.

With the difficulty function in eq. 10 we have:

Proposition 2. The difficulty function �
[ε] in eq. 10 is strongly bounded.

Proof. For every policy π, if a task μ has a difficulty �
[ε](μ) > L(π), it means

that π is not ε-acceptable, because otherwise the difficulty would be L(π) and
not h. Consequently, A

[ε](π, μ) = 0 for all μ of difficulty �
[ε](μ) > L(π). It is

sufficient to take h > L(π) for every π to see that � is strongly bounded.

C-Tests Revisited: Back and Forth with Complexity 279

This is what we see in Fig. 4 (right), where L(π) = 80. With �
[ε] in eq. 10,

we can ensure that the values are going to be 0 from h = 80 on.
This may not be the case for other difficulty functions. We can imagine a

situation where the curve never converges to zero. For instance, if the difficulty
function is decoupled from resources (length and/or steps) of the acceptable
policies or we do not use the notion of ε-acceptability then we cannot avoid that
a very simple policy could eventually score well in a problem with very high
difficulty. This would be counter-intuitive, as if there is a simple policy for a
difficult problem, the latter should not be considered difficult any more.

4 Difficulty-Conditional Task Probabilities

In the previous sections we have focussed on w(h) and whether it is necessary or
not. We have seen difficulty functions where just aggregating Ψh without w(h)
(or w(h) = 1) leads to a Ψ⊕(π,M, pM) that is bounded. The question now is
how to choose the conditional probability pM (μ|h). In the C-test, eq. 1, this was
chosen as a uniform distribution. However, this is not possible in an interactive
scenario if we consider all possible tasks, as the number of tasks for which there
is an acceptable policy π of L(π) = n can be infinite. Even if we cannot set a
uniform distribution, we want a choice of pM (μ|h) that keeps the task diversity
(unless there is any special bias to choose the tasks).

4.1 Task Probability Depends on Difficulty

The first thing we can do is to assume p(μ|h) in eq. 8 as p(μ|h) = 2−K(μ)

ν(h)

if �
[ε](μ) = h and 0 otherwise, where ν(h) is a normalisation term to make

the mass of the distribution equal to 1, which can be formulated as ν(h) =∑
μ:�[ε](μ)=h 2−K(μ).
And now we have:

Ψ
[ε]
h (π, M, pM) =

∑

μ∈M,�[ε](μ)=h

pM (μ|h) · A
[ε](π, μ) =

1

ν(h)

∑

μ∈M,�[ε](μ)=h

2−K(μ) · A
[ε](π, μ)

From here, we can plug it into eq. 9 for the discrete case:

Ψ [ε]
w (π,M, pM) =

∞∑

h=0

w(h)
1

ν(h)

∑

μ∈M,�[ε](μ)=h

2−K(μ) · A
[ε](π, μ) (11)

Note that the above is going to be bounded independently of the difficulty function
if w is a probability distribution. Also notice that 1

ν(h) is on the outer sum, and
that ν(h) is lower than 1, so the normalisation term is actually greater than 1.

And if we use any of the difficulty functions in equations 10 we can choose
w(h) = 1 and Ψ

[ε]
⊕ (π,M, pM) is bounded.

280 J. Hernández-Orallo

4.2 Task Probability Depends on the Policy Probability

One of things of the use of equation 10 is that the number of acceptable policies
per difficulty is finite. This is what happened in the C-test and that is the reason
why a uniform distribution could be used for the inner sum. We could try to
decompose the inner sum by using the policy and get the probability of the task
given the policy.

The interpretation would be as follows: for each difficulty value we aggregate
all the acceptable policies with size equal to that difficulty uniformly and for
each of these policies all the environments where each policy is acceptable with
a universal distribution. This extra complication with respect to eq. 11 can only
be justified if we generate environments and agents and we check them as we
populate Pairs, as a way of constructing a test more easily.

5 Using Computational Steps

As we mentioned in the introduction, the C-test [2,9] used Levin’s Kt instead of
K. We explore the use of Kt here. However, when working with interactive tasks
and with stochastic tasks and agents, the number of steps must be in expected
value. We extend the definition of LS given in section 2 for a tolerance ε:

LS[ε](π, μ) � E[LS(π, μ)] if A
[ε](π, μ) = 1 and ∞ otherwise

and we define a new difficulty function that considers computational steps:

�
[ε](μ) � min

π
LS[ε](π, μ)

This difficulty function is not bounded, as LS depends on μ, and we can always
find a very short policy that takes an enormous amount of steps for a task
with very high difficulty. This is an acceptable policy, but does not reduce the
difficulty of the task, so it can always score non-zero beyond any limit. This
means that for this difficulty function we would need to use equation eq. 9 with
an appropriate w(h) (e.g., a small decay or a uniform interval of difficulties).

If the testing procedure established a limit on the number of steps (total
or per transition) we would have this new difficulty function would be strongly
bounded. Alternatively, we could reconsider the inclusion the computational
steps in the notion of acceptability. In this case, the approach in section 4.2
could not be used, as the probability of π given h would also depend on μ.

6 Discussion

We have gone from eq. 1 taken from C-test to eq. 9. We have seen that difficulties
allow for a more detailed analysis of what happens for a given agent, depending
on whether it succeeds at easy or difficult tasks. For some difficulty functions, we
do not even need to determine the weight for each difficulty and just calculate

C-Tests Revisited: Back and Forth with Complexity 281

the area, as an aggregated performance for all difficulties, and cutting the tail
at some maximum difficulty for practical reasons.

The important thing is that now we do not need to set an a priori distribution
for all tasks p(μ), but just a conditional distribution p(μ|h). Note that if we set
a high h we have the freedom to find simple task that creates that difficulty.
Actually, the choice of p(μ|h) as a universal distribution still depends on the
reference machine and can set most of the probability mass on smaller tasks,
but as it is conditional on h, all trivial, dead or simply meaningless tasks have
usually very extreme values of h (very low or infinite). That means that there is
a range of intersting difficulties, discarding very small values of h and very large
values of h. Figure 2 is a nice example of this, where only difficulties between
1 and 8 were used, and we see also that h = 1 and h > 7 are not really very
discriminating. The bulk of the testing effort must be performed in this range.

Note that the middle (B) and bottom (C) decompositions in Figure 3 can
be done in such a way that the original pM (μ) is preserved, if w(h) is not taken
uniform but slowly decaying. But we can just start with option B or C directly.
This is the alternative in this paper, which we think has several advantages in
terms of agent evaluation, the construction of tests and AGI development, as
we can focus on those tasks of appropriate difficulty and even define adaptive
tests easily. Having said this, we have an infinite set for pM (μ|h) and pM (μ|π′),
and a universal distribution is the appropriate for both, so that Occam’s razor
is still very present. This means that both B and C (using a slowly decaying
w(h)) would lead to a computable aggregated distribution pM (μ), which can be
approximated as a universal distribution, highlighting that universal intelligence
is rather a schema for definitions rather than a specific definition.

Acknowledgments. This work has been partially supported by the EU (FEDER)
and the Spanish MINECO under grants TIN 2010-21062-C02-02, PCIN-2013-037 and
TIN 2013-45732-C4-1-P, and by Generalitat Valenciana PROMETEOII2015/013.

References

1. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research 47, 253–279 (2013)

2. Hernández-Orallo, J.: Beyond the Turing Test. J. Logic, Language & Information
9(4), 447–466 (2000)

3. Hernández-Orallo, J.: Computational measures of information gain and reinforce-
ment in inference processes. AI Communications 13(1), 49–50 (2000)

4. Hernández-Orallo, J.: On the computational measurement of intelligence factors.
In: Meystel, A. (ed.) Performance metrics for intelligent systems workshop, pp.
1–8. National Institute of Standards and Technology, Gaithersburg (2000)

5. Hernández-Orallo, J.: AI evaluation: past, present and future (2014). arXiv preprint
arXiv:1408.6908

6. Hernández-Orallo, J.: On environment difficulty and discriminating power.
Autonomous Agents and Multi-Agent Systems, 1–53 (2014). http://dx.doi.org/
10.1007/s10458-014-9257-1

http://arxiv.org/abs/1408.6908
http://dx.doi.org/10.1007/s10458-014-9257-1
http://dx.doi.org/10.1007/s10458-014-9257-1

282 J. Hernández-Orallo

7. Hernández-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an
anytime intelligence test. Artificial Intelligence 174(18), 1508–1539 (2010)

8. Hernández-Orallo, J., Dowe, D.L., Hernández-Lloreda, M.V.: Universal
psychometrics: Measuring cognitive abilities in the machine kingdom. Cognitive
Systems Research 27, 50–74 (2014)

9. Hernández-Orallo, J., Minaya-Collado, N.: A formal definition of intelligence based
on an intensional variant of Kolmogorov complexity. In: Proc. Intl. Symposium of
Engineering of Intelligent Systems (EIS 1998), pp. 146–163. ICSC Press (1998)

10. Hibbard, B.: Bias and no free lunch in formal measures of intelligence. Journal of
Artificial General Intelligence 1(1), 54–61 (2009)

11. Legg, S., Hutter, M.: Universal intelligence: A definition of machine intelligence.
Minds and Machines 17(4), 391–444 (2007)

12. Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications,
3 edn. Springer-Verlag (2008)

13. Schaul, T.: An extensible description language for video games. IEEE Transactions
on Computational Intelligence and AI in Games PP(99), 1–1 (2014)

14. Solomonoff, R.J.: A formal theory of inductive inference. Part I. Information and
control 7(1), 1–22 (1964)

A New View on Grid Cells Beyond
the Cognitive Map Hypothesis

Jochen Kerdels(B) and Gabriele Peters

University of Hagen - Chair of Human-Computer Interaction,
Universitätsstrasse 1, 58097 Hagen, Germany

Jochen.Kerdels@FernUni-Hagen.de

http://mci.fernuni-hagen.de

Abstract. Grid cells in the entorhinal cortex are generally considered
to be a central part of a path integration system supporting the con-
struction of a cognitive map of the environment in the brain. Guided
by this hypothesis existing computational models of grid cells provide a
wide range of possible mechanisms to explain grid cell activity in this
specific context. Here we present a complementary grid cell model that
treats the observed grid cell behavior as an instance of a more abstract,
general principle by which neurons in the higher-order parts of the cortex
process information.

Keywords: Grid cell model · Higher-order information processing

1 Introduction

In 1948 Edward Tolman [36] reported on a series of behavioral experiments with
rats that led him to hypothesize that the animals had to make use of an inter-
nal, map-like representation of the environment. This idea, which came to be
known as the cognitive map hypothesis, was highly controversial at the time.
Accordingly, the discovery of hippocampal place cells by O’Keefe and Dostro-
vsky [25,27] in the 1970s was met with much excitement as place cells were the
first possible direct evidence for such a representation of the environment in the
brain [26]. Since then a variety of neurons that exhibit spatially correlated activ-
ity were found in the parahippocampal-hippocampal region [11,13,15,32,35]. In
particular the recent discovery of grid cells [11,13] in the entorhinal cortex of rat
strengthened the idea that the involved neuronal structures constitute a kind
of metric for space [23]. Grid cells are neurons that exhibit spatially correlated
activity similar to that of place cells with the distinct difference that grid cells
possess not just one but multiple, discrete firing fields that are arranged in a
regular, hexagonal grid that spans the entire environment (Fig. 1a). Located
just one synapse upstream of the hippocampus grid cells are assumed to be an
important source of spatial information to place cells [29,33]. In particular, grid
cells are generally considered to be a central part of a path integration system
as pointed out by Burgess [5]: “There has been a surprising rapid and general
c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 283–292, 2015.
DOI: 10.1007/978-3-319-21365-1 29

284 J. Kerdels and G. Peters

agreement that the computational problem to which grid cells provide a solution
is “path integration” within an allocentric reference frame.” This consensus is
reflected by the fact that all computational models of grid cells proposed so far
(except [19]) incorporate mechanisms of path integration as integral parts to
explain the hexagonal firing patterns of grid cells. Although existing computa-
tional models cover a wide range of possible mechanisms and focus on different
aspects of grid cell activity [2,4,12,23,24,38], the models share the common app-
roach of explaining grid cells and their behavior as functional components within
the cognitive map hypothesis.

Complementary to this common approach this paper presents an alternative
grid cell model that treats the observed grid cell behavior as an instance of a
more abstract, general principle by which neurons in the higher-order parts of
the cortex process information.

2 Model Description

To describe the behavior of grid cells at a more abstract level a computational
model is needed that is agnostic to the semantic interpretation of its own state
and its respective input space such that the model can provide an explanation
of the cell’s behavior that does not rely on assumptions based on the putative
purpose of that cell, e.g., performing path integration or representing a coor-
dinate system. This way, the observed behavior of grid cells can be treated as
just one instance of a more general information processing scheme. To this end
we propose to interpret the input signals that a grid cell receives within a small
time window as a single sample from a high-dimensional input space. This input
space represents all possible inputs to the grid cell and for a certain subset of
these inputs, i.e., for inputs from certain regions of that input space the grid cell
will fire. The problem of modeling grid cell behavior can then be split into two
independent sub-problems. The first problem addresses the question how a cell,
given an arbitrary input space, chooses the regions of input space for which it
will fire. The second problem addresses the question how a specific input space
has to be structured in order to evoke the actual firing pattern observed in, e.g,
grid cells. This paper focuses on the first problem and will touch upon the second
problem just briefly.

The most salient feature of grid cells is their firing pattern. The triangu-
lar structure resembles the outcome of a number of processes that typically
perform some form of error minimization, e.g., the hexagonal packing of cir-
cles [37], the Delaunay triangulation [3,7], or certain kinds of topology represent-
ing networks [20]. The latter are artificial neural networks that employ forms
of unsupervised competitive learning to discover the structure of an underlying
input space. Among those networks the growing neural gas (GNG) introduced
by Fritzke [9,10] stands out as it does not use a predetermined and fixed net-
work topology like, e.g., the well-known self-organizing map (SOM) [18] does.
Instead, the GNG uses a data-driven growth process to approximate the topol-
ogy of the underlying input space resulting in an induced Delaunay triangulation

A New View on Grid Cells Beyond the Cognitive Map Hypothesis 285

(a) (b)

Fig. 1. Comparison of a grid cell firing pattern with a growing neural gas (GNG)
network. (a) Typical visualization of a grid cell’s firing pattern as introduced by Hafting
et al. [13]. Left: trajoctory (black lines) of a rat in a circular environment with marked
locations (red dots) where the observed grid cell fired. Middle: color-coded firing rate
map of the observed grid cell ranging from dark blue (no activity) to red (maximum
activity). Right: color-coded spatial autocorrelation of the firing rate map ranging
from blue (negativ correlation, -1) to red (positive correlation, +1) highlighting the
hexagonal structure of the firing pattern. Figure from Moser et al. [23]. (b) Example of a
GNG network with 25 units that was fed with inputs from a uniformly distributed, two-
dimensional, circular input space. The resulting network forms an induced Delaunay
triangulation of the input space.

of that space. Figure 1b shows an example of a GNG network approximating
a uniformly distributed, two-dimensional, circular input space. Each GNG unit
marks the center of a convex polyhedron representing a local region of this input
space. The relative size of this region is inversely proportional to the probability
of an input originating from that region, i.e., the local density of the input space.
In addition, the absolute size of each local region is determined by the overall
number of GNG units that are available to cover the whole input space. The
network structure of the GNG, which relates the respective local regions to one
another, represents the input space topology.

Given the resemblance between the structure of grid cell firing patterns and
the structure of GNG networks for certain input spaces we propose that a single
grid cell performs an operation that is similar to that of a whole GNG, i.e., it is
proposed that the objective of a grid cell lies in the approximation of its entire
input space. This hypothesis differs strongly from the common interpretation of
GNGs where the GNG units correspond to individual neurons that each spe-
cialize to represent a single, specific region of input space. In contrast, this new
hypothesis implies that a single neuron represents not only one but several, dis-
tinct regions of input space. To accomplish this a single neuron would have to
recognize several different input patterns. Recent advances in imaging neuronal
activity [6,14] indicate that this is indeed the case.

In addition to their peculiar firing pattern, grid cells exhibit a modular orga-
nization in which the firing patterns of neighboring grid cells share a common
orientation, spacing, and field size [34]. Furthermore, the distribution of relative
grid phases is uniform within each module. To account for these properties we

286 J. Kerdels and G. Peters

(a) (b)

Fig. 2. Illustration of the proposed two-layer model. (a) The top layer is represented
by three units (red, green, blue) connected by dashed lines. The associated sets of
connected nodes in the bottom layer are illustrated by corresponding colors. (b) Top
view on the input space partition induced by the bottom layer sets of nodes.

propose to describe a group of grid cells by a two-layer model1. The top layer
contains a set of connected units that each represent an individual grid cell. Asso-
ciated with each top layer unit is a set of connected nodes in the bottom layer
representing the set of input patterns that are recognized by the dendritic tree of
the grid cell (Fig. 2a). To this end, each node in the bottom layer possesses a pro-
totype vector that represents the center of a local input space region. Applying a
form of competitive hebbian learning within each set of bottom layer nodes (bot-
tom layer competition) arranges the nodes in a triangular pattern that covers
the entire input space. In addition, competition across the sets of bottom layer
nodes (top layer competition) arranges the different triangular patterns in such
a way that they share a common orientation and spacing. Furthermore, the top
layer competition will also spread the individual triangular patterns uniformly
across the input space (Fig. 2b).

Formally, the proposed model consists of a set of units u ∈ U and a set of
connections c ∈ C located in the top layer, as well as a set of parameters θ. Each
connection c is described by a tuple:

c := (P, t) ∈ C, P ⊆ U ∧ |P | = 2, t ∈ N,

with units p ∈ P linked by the connection and the connection’s age t. Each
unit u is described by a tuple:

u := (V,E) ∈ U,

containing a set of nodes v ∈ V and a set of edges e ∈ E located in the bottom
layer. Each node v is described by a tuple:

v := (w, aerr, εref) ∈ V, w ∈ Rn, aerr ∈ R, εref ∈ R,

1 A preliminary version of this idea was presented by Kerdels and Peters [16].

A New View on Grid Cells Beyond the Cognitive Map Hypothesis 287

with the prototype w, the accumulated error aerr, and a refractory factor εref.
Each edge e is described by a tuple:

e := (S, t) ∈ E, S ⊆ V ∧ |S| = 2, t ∈ N,

with nodes s ∈ S linked by the edge and the edge’s age t. The set of parameters θ
consists of:

θ := {εb, εn, εr, τt,Mt, εb.start, εb.end, εn.start, εn.end, τb,Mb, λ, α, β, γ, tr} .

The model is initialized with Mt fully connected top level units u each starting
with two nodes v that have random prototype vectors as well as accumulated
errors and refractory factors set to zero. An input ξ ∈ Rn at time t is processed
as follows:

– For each top layer unit u ∈ U :
• Find the two nodes s1 and s2 in u�V whose prototypes w have the small-

est Euclidian distance to the input ξ. Node s1 is called the best matching
unit (BMU) of u.

• Increment the age t of all edges connected to s1 by one.
• If no edge between s1 and s2 exists, create one.
• Reset the age t of the edge between s1 and s2 to zero.
• Add the squared distance between ξ and the prototype w of s1 to the

accumulated error aerr of s1.
• Adapt the prototype of s1 and all prototypes of its direct neighbors:

st+1
1 �w := st

1�w + εt
b (1 − st

1�εref) (ξ − st
1�w) ,

st+1
n �w := st

n�w + εt
n (1 − st

1�εref) (ξ − st
n�w) ,

with

εt
b := εb.start

(
εb.end
εb.start

) t
tr

, εt
n := εn.start

(
εn.end
εn.start

) t
tr

,

sn ∈ {k|∃ (S, t) ∈ E, S = {s1, k} , t ∈ N} .

• Set the refractory factor εref of s1 to one.
• Remove all edges with an age above threshold τb and remove all nodes

that no longer have any edges connected to them.
• If an integer-multiple of λ inputs has been processed and |u�V | < Mb,

add a new node v. The new node is inserted “between” the node j with
the largest accumulated error aerr and the node k with the largest accu-
mulated error among the direct neighbors of j. Thus, the prototype w
of the new node is initialized as:

v�w := (j�w + k�w) /2.

The existing edge between nodes j and k is removed and edges between
nodes j and v as well as nodes v and k are added. The accumulated

288 J. Kerdels and G. Peters

errors of nodes j and k are decreased and the accumulated error of the
new node v is set to the decreased accumulated error of node j:

Δj�aerr = −αj�aerr, Δk�aerr = −αk�aerr,

v�aerr := j�aerr .

• Finally, decrease the accumulated error of all nodes as well as their refrac-
tory factors:

Δv�aerr = −β v�aerr,

Δv�εref = −γ v�εref, ∀v ∈ V.

– Identify the two units u1 and u2 whose BMUs were closest to input ξ.
– Increment the age t of all connections to u1 by one.
– If no connection between u1 and u2 exists, create one.
– Reset the age t of the connection between u1 and u2 to zero.
– Adapt the BMUs of u1 and u2 as well as their neighbors:

u1�st+1
1 �w := u1�st

1�w + εb (ξ − u1�st
1�w) ,

u1�st+1
n �w := u1�st

n�w + εbεr (ξ − u1�st
n�w) ,

u2�st+1
1 �w := u2�st

1�w + εn (ξ − u2�st
1�w) ,

u2�st+1
n �w := u2�st

n�w + εnεr (ξ − u2�st
n�w) .

– Remove all edges with an age above threshold τt.

In the present model each set of bottom layer nodes behaves essentially like
a growing neural gas. To accommodate sequential input, e.g., a sequence of
animal positions, the original GNG algorithm [9,10] is extended by a successive
reduction of the learning rates εb and εn to capture a more uniform distribution
of inputs, as well as a refractory factor εref that reduces the impact of equal or
similar consecutive inputs. The connected top layer units track the neighborhood
relations of the corresponding bottom layer node sets. The additional adaption
step of the top layer establishes a competition across the bottom layer node sets
resulting in an even distribution and alignment of these sets.

3 Example of Grid Cell Activity

To generate a grid like firing pattern, the proposed model requires an input
space that is a uniformly distributed, two-dimensional, periodic representation
of possible animal locations. A possible neuronal mechanism that results in a
representation of location with these properties consists of two orthogonal, one-
dimensional attractor networks. Attractor networks were first introduced as a
computational model of head direction cells [39] and later used in models of
place and grid cells [21,22,28]. Here we use two orthogonal, one-dimensional
attractor networks as described in a previous work [16]. During an initial learning
phase the model is fed with randomly generated locations. After the model has
settled into a stable configuration, recorded movement data provided by Sargolini

A New View on Grid Cells Beyond the Cognitive Map Hypothesis 289

(a) (b) (c) (d)

Fig. 3. Exemplary rate and autocorrelation maps of simulated grid cells. (a,b) Simu-
lated grid cell with 20 bottom layer nodes. (c,d) Simulated grid cell with 16 bottom
layer nodes.

et al. [31] of a rat foraging for food in a square environment is used. Figure 3
shows exemplary rate and autocorrelation maps of two top layer units with either
16 or 20 bottom layer nodes exhibiting grid like firing patterns. In this example,
the following set of parameters θ was used:

εb = 0.05, εn = 0.005, εr = 0.001, τt = 1000, Mt = 50,

εb.start = 0.05, εb.end = 0.0005, εn.start = 0.01, εn.end = 0.0001, τb = 300,

Mb = {16, 20} , λ = 1000, α = 0.5, β = 0.0005, γ = 0.2,

tr = 500000.

4 Discussion

The proposed model describes a putative general principle by which neurons in
higher-order parts of the cortex process information of arbitrary input spaces:

Each neuron aspires to represent its input space as well as possible while
being in competition with its peers.

This assumed behavior contrast the behavior of “classic” perceptrons [30] in
interesting ways. A perceptron can be interpreted as a linear classifier where the
input weights define a hyperplane that divides the input space into two regions.
The output of the activation function then indicates from which of the two
regions the respective input pattern originated. Combining the output of several
perceptrons successively divides the input space into a smaller and smaller sub-
region (Fig. 4a). In contrast, the top layer units of our model compete with each
other and generate a tiled, periodic partition of the input space (Fig. 2b). If the
output of top layer units from separate neuron groups or modules with different
spatial scales and/or orientations is combined, they can collectively identify a
specific, individual subregion of the input space by coinciding only in that region
(Fig. 4b). In case of grid cells, this mechanism was successfully used to explain
the formation of place cells from grid cell activity [1,8,29,33].

290 J. Kerdels and G. Peters

(a) (b)

Fig. 4. Comparison of strategies to identify specific subregions in input space. (a) Mul-
tiple perceptrons successively partition the input space to identify a specific subregion
(the middle triangle). (b) Top layer units from separate grid cell groups with different
spatial scales identify a specific subregion by coinciding in that region.

Both, a population of perceptrons as well as a population of top layer units
in our model represent a form of input space encoding that allows to identify
individual subregions of input space. The use of periodic input space partitions
as basic elements of such an encoding may have a number of advantages over a
linear partition of input space:

– Representing the entire input space in each neuron averages the activity of
all neurons in a group independently of the particular input and may be
metabolically beneficial.

– Sequences of inputs are split into repeating subsequences. For example, if a
rat runs in a given direction, a small number of grid cells will be activated
in sequence repeatedly increasing the probability that this subsequence will
be learned.

– If a set of periodic input space partitions across several spatial scales identi-
fies a specific region of input space, the size of this region depends on which
subset of partitions are choosen.

In particular the latter two points require further investigation, as they may
yield new approaches to the problem of learning complex sequences and to the
problem of learning hierarchical representations.

5 Conclusion and Outlook

We presented a computational model that can explain the behavior of grid cells
in terms of two independent sub-problems: the information processing performed
by the cells and the structure of their input space. We argue that neurons in
higher-order parts of the cortex pursue a general information processing scheme
in which the neurons try to represent their input space as well as possible. In
future research, we will investigate if this general information processing scheme
can be used to explain the behavior of neurons other than grid cells. For example,

A New View on Grid Cells Beyond the Cognitive Map Hypothesis 291

Killian et al. [17] report on entorhinal neurons with grid-like firing patterns in
response to saccadic eye movements.

References

1. Azizi, A.H., Schieferstein, N., Cheng, S.: The transformation from grid cells to
place cells is robust to noise in the grid pattern. Hippocampus 24(8), 912–919
(2014)

2. Barry, C., Burgess, N.: Neural mechanisms of self-location. Current Biology 24(8),
R330–R339 (2014)

3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications. Springer (2008)

4. Burak, Y.: Spatial coding and attractor dynamics of grid cells in the entorhinal
cortex. Current Opinion in Neurobiology 25, 169–175 (2014), theoretical and com-
putational neuroscience

5. Burgess, N.: Grid cells and theta as oscillatory interference: Theory and predictions.
Hippocampus 18(12), 1157–1174 (2008)

6. Chen, T.W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A.,
Schreiter, E.R., Kerr, R.A., Orger, M.B., Jayaraman, V., Looger, L.L., Svoboda,
K., Kim, D.S.: Ultrasensitive fluorescent proteins for imaging neuronal activity.
Nature 499(7458), 295–300 (2013)

7. Delaunay, B.: Sur la sphère vide. Bull. Acad. Sci. URSS 1934(6), 793–800 (1934)
8. Franzius, M., Vollgraf, R., Wiskott, L.: From grids to places. Journal of Computa-

tional Neuroscience 22(3), 297–299 (2007)
9. Fritzke, B.: Unsupervised ontogenetic networks. In: Fiesler, E., Beale, R. (eds.)

Handbook of Neural Computation. Institute of Physics Publishing and Oxford
University Press (1996)

10. Fritzke, B.: A growing neural gas network learns topologies. In: Advances in Neural
Information Processing Systems, vol. 7, pp. 625–632. MIT Press (1995)

11. Fyhn, M., Molden, S., Witter, M.P., Moser, E.I., Moser, M.B.: Spatial representa-
tion in the entorhinal cortex. Science 305(5688), 1258–1264 (2004)

12. Giocomo, L., Moser, M.B., Moser, E.: Computational models of grid cells. Neuron
71(4), 589–603 (2011)

13. Hafting, T., Fyhn, M., Molden, S., Moser, M.B., Moser, E.I.: Microstructure of a
spatial map in the entorhinal cortex. Nature 436(7052), 801–806 (2005)

14. Jia, H., Rochefort, N.L., Chen, X., Konnerth, A.: Dendritic organization of sensory
input to cortical neurons in vivo. Nature 464(7293), 1307–1312 (2010)

15. Jung, M.W., McNaughton, B.L.: Spatial selectivity of unit activity in the hip-
pocampal granular layer. Hippocampus 3(2), 165–182 (1993)

16. Kerdels, J., Peters, G.: A computational model of grid cells based on dendritic
self-organized learning. In: Proceedings of the International Conference on Neural
Computation Theory and Applications (2013)

17. Killian, N.J., Jutras, M.J., Buffalo, E.A.: A map of visual space in the primate
entorhinal cortex. Nature 491(7426), 761–764 (11 2012)

18. Kohonen, T.: Self-organized formation of topologically correct feature maps. Bio-
logical Cybernetics 43(1), 59–69 (1982)

19. Kropff, E., Treves, A.: The emergence of grid cells: Intelligent design or just adap-
tation? Hippocampus 18(12), 1256–1269 (2008)

292 J. Kerdels and G. Peters

20. Martinetz, T.M., Schulten, K.: Topology representing networks. Neural Networks
7, 507–522 (1994)

21. McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I., Moser, M.B.: Path
integration and the neural basis of the ‘cognitive map’. Nat. Rev. Neurosci. 7(8),
663–678 (2006)

22. Mhatre, H., Gorchetchnikov, A., Grossberg, S.: Grid cell hexagonal patterns formed
by fast self-organized learning within entorhinal cortex (published online 2010).
Hippocampus 22(2), 320–334 (2010)

23. Moser, E.I., Moser, M.B.: A metric for space. Hippocampus 18(12), 1142–1156
(2008)

24. Moser, E.I., Moser, M.B., Roudi, Y.: Network mechanisms of grid cells. Philosoph-
ical Transactions of the Royal Society B: Biological Sciences 369(1635) (2014)

25. O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. preliminary evi-
dence from unit activity in the freely-moving rat. Brain Research 34(1), 171–175
(1971)

26. O’Keefe, J., Nadel, L.: The Hippocampus as a Cognitive Map. Oxford University
Press, Oxford (1978)

27. O’Keefe, J.: Place units in the hippocampus of the freely moving rat. Experimental
Neurology 51(1), 78–109 (1976)

28. Pilly, P.K., Grossberg, S.: How do spatial learning and memory occur in the brain?
coordinated learning of entorhinal grid cells and hippocampal place cells. J. Cog-
nitive Neuroscience, 1031–1054 (2012)

29. Rolls, E.T., Stringer, S.M., Elliot, T.: Entorhinal cortex grid cells can map to
hippocampal place cells by competitive learning. Network: Computation in Neural
Systems 17(4), 447–465 (2006)

30. Rosenblatt, F.: The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review 65(6), 386–408 (1958)

31. Sargolini, F., Fyhn, M., Hafting, T., McNaughton, B.L., Witter, M.P., Moser,
M.B., Moser, E.I.: Conjunctive representation of position, direction, and velocity
in entorhinal cortex. Science 312(5774), 758–762 (2006)

32. Solstad, T., Boccara, C.N., Kropff, E., Moser, M.B., Moser, E.I.: Representation of
geometric borders in the entorhinal cortex. Science 322(5909), 1865–1868 (2008)

33. Solstad, T., Moser, E.I., Einevoll, G.T.: From grid cells to place cells: A mathe-
matical model. Hippocampus 16(12), 1026–1031 (2006)

34. Stensola, H., Stensola, T., Solstad, T., Froland, K., Moser, M.B., Moser, E.I.: The
entorhinal grid map is discretized. Nature 492(7427), 72–78 (2012)

35. Taube, J., Muller, R., Ranck, J.: Head-direction cells recorded from the postsubicu-
lum in freely moving rats. i. description and quantitative analysis. The Journal of
Neuroscience 10(2), 420–435 (1990)

36. Tolman, E.C.: Cognitive maps in rats and men. Psychological Review 55, 189–208
(1948)

37. Tóth, L.: Lagerungen in der Ebene: auf der Kugel und im Raum. Die
Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit
besonderer Berücksichtigung der Anwendungsgebiete. Springer (1972)

38. Welinder, P.E., Burak, Y., Fiete, I.R.: Grid cells: The position code, neural network
models of activity, and the problem of learning. Hippocampus 18(12), 1283–1300
(2008)

39. Zhang, K.: Representation of spatial orientation by the intrinsic dynamics of
the head-direction cell ensemble: a theory. The Journal of Neuroscience 16(6),
2112–2126 (1996)

Programming Languages and Artificial General
Intelligence

Vitaly Khudobakhshov1,2(B), Andrey Pitko2, and Denis Zotov2

1 St.-Petersburg State University, St. Petersburg, Russia
vitaly.khudobakhshov@gmail.com

2 ITMO University, St. Petersburg, Russia

Abstract. Despite the fact that there are thousands of programming
languages existing there is a huge controversy about what language is
better to solve a particular problem. In this paper we discuss require-
ments for programming language with respect to AGI research. In
this article new language will be presented. Unconventional features
(e.g. probabilistic programming and partial evaluation) are discussed
as important parts of language design and implementation. Besides, we
consider possible applications to particular problems related to AGI.
Language interpreter for Lisp-like probabilistic mixed paradigm pro-
gramming language is implemented in Haskell.

1 Introduction

For many years researches tried to create programming languages for specific
areas of research. In the history of AI there were many attempts to create lan-
guage that would be the best for artificial intelligence. The two main examples
are Lisp and Prolog. First one is particularly interesting, because some code can
be considered as data in very natural way. Second one contains powerful inference
engine based on Horn logic as part of the language. Since that time significant
progress have been made in theory of programming languages and many bril-
liant languages like Haskell were created. Unfortunately, many of achievements
in this field are not yet widely used neither artificial intelligence, nor mainstream
software development. This paper is related to two advanced techniques: proba-
bilistic programming and partial evaluation. Importance of this techniques will
be briefly discussed in this paper. These ideas can be considered as unconven-
tional and not widely used outside of particular areas of research. Incorporation
of such techniques to programming language may have considerable impact on
artificial general intelligence.

The next section is about core language design, programming paradigm and
basic features like pattern matching. Choice between domain-specific embedded
language and full-featured general purpose language is also discussed.

One of the main issue need to be discussed is application of probabilistic
programming to AGI. Generative models can be very useful in knowledge repre-
sentation, as well as some other aspects of cognitive architectures. Probabilistic
programming is discussed in Section 3.
c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 293–300, 2015.
DOI: 10.1007/978-3-319-21365-1 30

294 V. Khudobakhshov et al.

Section 4 is focused on a deep relationship between theory of programming
languages and artificial general intelligence.

Last sections contain some implementation notes and future work road map.
Language interpreter and tools are implemented in Haskell. Therefore, many
issues about implementation of mixed paradigm languages in pure functional
language are discussed. Related programming languages like Church are also
discussed.

2 Language Requirements and Design

In this section we discuss main choices and tradeoffs one faces during program-
ming language design. Our goal is to create programming languages with best
capabilities for artificial general intelligence. We started from the following:

1. Turing-completeness
2. General purpose
3. Ease of use for automatic program transformation, generation and search
4. Mixed-paradigm (the language must support functional and imperative

style)
5. Based on existent language to effectively adopt user experience and legacy

code with minimum changes
6. Easily extendible syntax
7. Simplicity

The language should be powerful enough to make it possible to develop AGI
systems (e.g. cognitive architecture). In other hand the language should be good
enough not only for human beings, but for programs which use other programs
(probably itself) as data.

Last requirement is to push us toward Lisp language family because it has a
very natural quote syntax.

Another problem we should start to discuss is typing. Languages with static
typing is a good choice for enterprise software development because many errors
can be found during compilation. Many modern languages like Haskell and Scala
have very difficult type system and it makes programming very tricky in some
cases. If we want to satisfy simplicity requirement, we should choose dynamic
typing. Mixed-paradigm in our case supposes that language should not be pure.

Scheme and Church are good examples of programming languages with sim-
ple and extendible syntax. In real world applications some additional syntactic
sugar may significantly improve usability of language (see Clojure for example).

One of the most controversial choice has been made between general pur-
pose and domain-specific (embedded) language. DSL can be Turing-complete
and may have many extensions, like probabilistic programming or metacompu-
tations. On the other hand, general purpose language needs to have a parser,
interactive interpreter, and IDE. The problem of language embedding is ambiva-
lent because pros and limitations are the same things. One can use DSL in his or

Programming Languages and Artificial General Intelligence 295

her own favorite language and provide very high level of extensibility. Neverthe-
less, embedded language obliges to use this particular general purpose language
in which DSL is embedded. Presented language is implemented in Haskell as
general purpose.

Presented language is based on Scheme language with some useful exten-
sions. Bread and butter of modern functional programming is pattern matching.
In Scheme and Clojure this functionality provided by extended library. In this
language we incorporate some syntactic ideas from Haskell to provide pattern
matching in core language. Symbol : used to match cons and underscore as
wildcard symbol:

(define (count x lst)
(match lst

(() 0)
((x : ys) (+ 1 (count x ys)))
((_ : ys) (count x ys))))

In this example pattern with dynamic properties has been used. Second pat-
tern contains variable xwhich is used as argument of function count. Which means
that if first element of lst equals to x, then we will have a match. Moreover,
repeated variables are allowed (in this case, expression will be evaluated to 2):

(match ’(2 3 2)
((a : b : a : ()) a)
(_ 0))

Although prefix nature of Lisp-like languages is broken here, it is only made
to improve usability of the language. Pattern matching is a good extension to
make programs more readable and compact, but not directly applicable to AGI
problems. In next two sections we introduce probabilistic programming and par-
tial evaluation.

3 Probablistic Programming

According to [3], probabilistic programming languages unify technique of clas-
sical models of computation with the representation of uncertain knowledge. In
spite of the fact that the idea of probabilistic programming is quite old (see refer-
ences in [6]), only in last few years researchers in cognitive sciences and artificial
intelligence started to apply this approach. Many concepts in cognitive stud-
ies ? such as concept learning, causal reasoning, social cognition, and language
understanding ? can be modeled using language with probabilistic programming
support [4].

As usual, we extend deterministic language of general purpose with random
choice primitives. The main obstacle in using probabilistic programming in large
projects is the efficient implementation of inference. In modern probabilistic
languages used various techniques and algorithms are used to solve this problem,

296 V. Khudobakhshov et al.

including partial filtering [3], and Metropolis-Hastings algorithm [5]. In many
cases programs need to be transformed to special form (e.g. continuation of
passing style in WebPPL [3]). But main problem is that these languages are not
ready for production use. If one wants to use such technique in his or her own
project, one needs to embed particular language or extend it. Church is general
enough, but it is not easy to extend; WebPPL is easy to embed or extend,
but it is just a subset of JavaScript. In recent paper [1] genetic programming
and simulated annealing were successfully applied to implementing inference
procedure.There are implementation difficulties for such algorithms because they
involve programming traces. In the section concerning implementation specifics
more details will be covered.

In spite of a mixed paradigm nature of presented language, probabilistic pro-
gramming is now allowed only for pure functional subset as in cases of WebPPL
and Church. It is clear that random function cannot be pure, but we share the
idea that concept of purity can be generalized to concept of exchangeability [5]:
if an expression is evaluated several times in the same environment, the dis-
tribution on return values is invariant to the order of evaluations. In this sense
further softening of such a requirement needs more research and not all language
constructions are allowed for probabilistic programs in our language. Therefore,
we can not use set! function in probabilistic program, but some useful features
such as memoization can be extended to stochastic case [5]. This approach can
be seen as division to pure and monadic code in Haskell. It can be useful in
designing programs, like cognitive architectures, which use wide range of pro-
gramming techniques. All of this can be written in the same language, but for
probabilistic part using only the subset can be enough.

This approach is closely related to DSL mentioned in previous section. One of
the most interesting examples of application probabilistic DSL is presented in [12].

Here we do not show examples of probabilistic programs, because we tried to
provide compatibility with Church programming language up to minor issues,
such as pattern matching.

Programming language presented here is an effort to create open and extend-
able language with probabilistic programming capabilities. Our implementation
is based on ideas described in [14].The main difference from other implemen-
tations like Church and WebPPL is that inference algorithm is implemented in
host language. Moreover no additional program transformation is needed.

4 Why Partial Evaluation Matters?

In this section one connection between programming languages in general and
artificial intelligence will be discussed. In papers [9,13] possible application of
partial evaluation was introduced. One should mention that there were some
attempts long before this papers to apply partial evaluation to artificial intel-
ligence (see for example [8]). Here new approach to understanding relations
between two fields will be presented and discussed.

Lets start from general idea proposed by Futamura [2]. Let we have program
p with two or more arguments written in language S, such that p(x, y) = d.

Programming Languages and Artificial General Intelligence 297

Here, d is a result of program execution. Suppose one have a program spec which
can be applied to two arguments a program and the first argument and produce
residual program of one argument spec(p, x0) = p’ specialized for specified
argument x0. Residual program p’ satisfied an equation p’(y) = p(x0, y) = d
for every y. But p’ has possible optimizations according to knowledge of partic-
ular value x0 and therefore work much faster.

This approach is very useful for automatic compiler construction. Suppose
we have an interpreter of (source) language S written in (target) language T
defined by int(p, args) = d (for more formal description see book [7]). One
can apply specializer spec to interpreter int with respect to program p. It is
easy to check that this will be the result of compilation from S to T.

In the context of artificial general intelligence this makes a connection
between AGI and classical AI [9]. Here we need some philosophical remarks.
Almost everybody knows a very famous proposition about general intelligence
and specialization:

A human being should be able to change a diaper, plan an invasion,
butcher a hog, conn a ship, design a building, write a sonnet, balance
accounts, build a wall, set a bone, comfort the dying, take orders, give
orders, cooperate, act alone, solve equations, analyze a new problem,
pitch manure, program a computer, cook a tasty meal, fight efficiently,
die gallantly. Specialization is for insects.
– Robert A. Heinlein

It sounds reasonable, but in reality, the situation is different. Nobody asks
painter to solve equations in mathematical physics. Moreover, we need to be
precise and fast. If one needs to do accounting, then he or she definitely will use
calculator to make job done. In this sense, ability to specialize by making tools
is a crucial ability of general intelligence.

Is research in artificial general intelligence a replacement of good old-
fashioned artificial intelligence? Suppose to be not. Imagine for a second that we
have an AGI program which can solve almost all problems, but very slow. If we
need to have effective solution of one particular problem, we have to develop opti-
mized solution for the problem. But if we have ability to specialize our general
program, we do not need to solve certain problem again anymore.

Is it possible to view AGI problems in terms of programming language theory
and partial evaluation? Lets restrict ourselves to quasi-general example: general
game playing. This example can be easily extended to AGI with some additional
assumptions.

General game player is a program that must be able to play arbitrary logic
game (sometimes only full information games considered) for one or more players.
It can be either a 15-puzzle, or chess, or another game. The main point is that
player gets the game rules seconds before the game starts. Handlers for five
requests must be implemented: info, start, play, stop and abort. Function
start receives the game rules described as open logic program written in Game
Description Language [11]. After that player is involved into a request-response

298 V. Khudobakhshov et al.

cycle with game server and play handler makes choices and realizes strategy of
the game.

This interaction can be seen as classical Read–Evaluate–Print Loop of inter-
active interpreter. In such a way one can apply partial evaluation principles to
artificial general intelligence. In the case of general game playing we will deduce
specialized program which can play certain game by partially evaluating general
program according to game rules.

Many players use advanced techniques to optimize program for particular
games up to code generation and compilation [10]. We believe that it can be done
by partial evaluation. It is clear that partial evaluation can not be very useful
in search and do not provide heuristics for search optimization. It is proven that
in many cases only linear speedup is possible [7]. But manipulating with GDL
for computing legal moves and state has huge overhead and it can be removed
by specialization.

Applying the idea to more general case including learning is also possible,
independently of knowledge representation. In the case of procedural or sym-
bolic representation, it is pretty straightforward. Possible applications of partial
evaluation to neural networks are described in [7].

5 Implementation Issues

This section is about implementation details of the project. Besides the decision
to implement general purpose language, choosing of implementation language
is always coupled with some trade-offs. In our case, it was speed, development
difficulty and extensibility. Only two candidates will be considered OCaml and
Haskell. OCaml is good for catching imperative programming with full power
of functional language, including pattern matching and algebraic data types.
Haskell provides a more compact code with very good support of external
libraries via foreign function interface, but it has some drawbacks connected
with imperative issues, such as monads, lifting, and error handling. Choosing
Haskell as implementation language is probably controversial in this case, but
compiler quality and larger community were conclusive issues during the process
of the decision making.

Language tools consist of following parts: interpreter, partial evaluator, and
probabilistic programming support including tracer. All parts share some code
according to language specification.

Interpreter uses Parsec library and support REPL mode. Double precision
floating-point and arbitrary precision integers are supported. Strings are also
supported as built-in type.

The crucial aspect of probablistic programming langauge is implementa-
tion of probablisic inference algorithm. As in many other probablistic languages
Metropolis-Hastings is one of the most important sampling strategies. The imple-
mentation is based on a method carefully described in [14]. There are different
ways to implement ERPs (elementary random primitives) - basic blocks of proba-
blistic programs. To keep things simple we just maintain any key-value stucture

Programming Languages and Artificial General Intelligence 299

for every random function where value is a tuple consisting of likelihood,
sample and proposal_kernel functions for particular ERP.

To implement MCMC inference (in particular Metropolis-Hastings) one need
to maintain a trace of the program. Trace consists of chunks - memoized random
values:

data Chunk = Chunk { value::Value
, name::String
, erp::ERP
, args::[Value] }

where value is generated value wrapped up into language primitive, name is
unique call address (see [14] for more information about structural naming strat-
egy), args are parameters which used for generation.

Partial evaluation is implemented in Haskell. We use code annotation to
describe static-dynamic division which means that original AST (abstract syntax
tree) is transformed to annotated one before specialization [7].

The resulting language inherits some parts of Haskell semantics. It does not
support lazy evaluation of infinite data structures, but it has some issues, for
instance, normal evaluation order instead of applicative one. We do not force
interpreter to evaluate arguments before passing. But final decision will be made
later.

6 Conclusion and Future Work

Despite early stage of the work, it needs to be mentioned that it is the first
attempt to create language with build-in support of both partial evaluation and
probabilistic programming. At the level of intuition specialization and probabilis-
tic programming are somehow connected and can be used effectively together.
This project joins efforts to research in related fields.

Behind this work there is an idea to create cognitive architecture based on
concepts mentioned above. We believe that probabilistic programming with par-
tial evaluation may be effectively applied to AGI problems.

Many ideas of probabilistic programming will be already successfully applied
to AGI problems [1] and computer vision in the context of AGI [12]. We are
planning to incorporate this ideas to our language.

In this stage of the project probablistic programming and partial evaluation
used independently and relationship between them is not very clear. Definitely
inference algorithm can be considered as interpretation (in fact interpreter and
MCMC query function use large amount of code with very small differences).
In other hand it may be impractical or technically difficult to apply such kind
of program transformation to inference algorithms. This is a important part of
our future work. Moreover real application of this techniques to AGI is still
challenging. In the next stage we are planning to create proof-of-concept intelli-
gent software (e.g. cognitive architecture) which will extensively use probablistic
programming and partial evaluation.

300 V. Khudobakhshov et al.

Acknowledgments. We would like to thank Alexey Potapov, Vita Batischeva and
many others for very useful discussion which inspired us to make this work.

This work was supported by Ministry of Education and Science of the Russian
Federation.

References

1. Batischeva, V., Potapov, A.: Genetic programming on program traces as an infer-
ence engine for probabilistic. In: These AGI-15 Proceedings (to appear)

2. Futamura, Y.: Partial evaluation of computation process an approach to a compiler-
compiler. Systems, Computers, Controls 2, 45–50 (1971)

3. Goodman, N.D., Stuhlmüller, A.: The design and implementation of probabilistic
programming languages (retrieved on 2015/3/30). http://dippl.org

4. Goodman, N.D., Tenenbaum, J.B.: Probabilistic models of cognition (retrieved on
2015/3/30). http://probmods.org

5. Goodman, N., Mansinghka, V., Roy, D., Bonawitz, K., Tarlow, D.: Church: a lan-
guage for generative models. In: Proc. 24th Conf. Uncertainty in Artificial Intelli-
gence (UAI), pp. 220–229 (2008)

6. Jones, C., Plotkin, G.D.: A probablistic powerdomain of evaluations. In: Proceed-
ings of Fourth Annual Symposium on Logic in Computer Science, pp. 186–195.
IEEE Computer Society Press (1989)

7. Jones, N., Gomard, C., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice Hall (1994)

8. Kahn, K.: Partial evaluation, programming methodology, and artificial intelligence.
AI Magazine 5, 53–57 (1984)

9. Khudobakhshov, V.: Metacomputations and program-based knowledge represen-
tation. In: Kühnberger, K.-U., Rudolph, S., Wang, P. (eds.) AGI 2013. LNCS,
vol. 7999, pp. 70–77. Springer, Heidelberg (2013)

10. Kowalski, J., Szyku�la, M.: Game description language compiler construction. In:
Cranefield, S., Nayak, A. (eds.) AI 2013. LNCS, vol. 8272, pp. 234–245. Springer,
Heidelberg (2013)

11. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game
playing: game description language specification. Tech. rep., Stanford Logic Group
Computer Science Department Stanford University, Technical Report LG-2006-01
(2008)

12. Potapov, A., Batischeva, V., Rodionov, S.: Optimization framework with mini-
mum description length principle for probabilistic programming. In: These AGI-15
Proceedings (to appear)

13. Potapov, A., Rodionov, S.: Making universal induction efficient by specializa-
tion. In: Goertzel, B., Orseau, L., Snaider, J. (eds.) AGI 2014. LNCS, vol. 8598,
pp. 133–142. Springer, Heidelberg (2014)

14. Wingate, D., Stuhlmüller, A., Goodman, N.D.: Lightweight implementations of
probabilistic programming languages via transformational compilation. In: Proc.
of the 14th Artificial Intelligence and Statistics (2011)

http://dippl.org
http://probmods.org

From Specialized Syntax to General Logic:
The Case of Comparatives

Ruiting Lian1,2, Rodas Solomon3, Amen Belayneh2,3, Ben Goertzel4,
Gino Yu2, and Changle Zhou1(B)

1 Cognitive Science Department, Xiamen University, Xiamen, China
2 School of Design, Hong Kong Poly U, Hong Kong, China

3 ICog Labs, Addis Ababa, Ethiopia
4 OpenCog Foundation, Hong Kong, China

dozero@xmu.edu

Abstract. General-purpose reasoning based on knowledge encoded in
natural language, requires mapping this knowledge out of its syntax-
dependent form into a more general representation that can be more
flexibly applied and manipulated. We have created a system that accom-
plishes this in a variety of cases via mapping English syntactic expressions
into predicate and term logic expressions, which can then be cognitively
manipulated by tools such as a probabilistic logic engine, an information-
theoretic pattern miner and others. Here we illustrate the functionality
of this system in the particular case of comparative constructions.

1 Introduction

In order for an AI system to reason in a general-purpose way about knowledge
that comes to it in natural language form, the system must somehow transform
the knowledge into a more flexible representation that is not tied to the specific lin-
guistic syntax in which it was originally expressed. There is no consensus in the AI
or computational linguistics fields on the best way to do this; various approaches
are being pursued in a spirit of experimental exploration [8]. We describe here the
approach we have been exploring, in which a sequence of transformations maps
syntactic expressions into abstract logic expressions, in a logical language mix-
ing predicate and term logic as specified in Probabilistic Logic Networks [2] [3].
This language comprehension pipeline has been constructed as part of a broader
project aimed at Artificial General Intelligence, the open-source OpenCog initia-
tive [4] [5]; it has been described previously in a 2012 overview paper [11], but has
advanced considerably in capabilities since that time.

To illustrate the properties of this comprehension pipeline, we focus here
on the case of comparative sentences. We have chosen comparatives for this
purpose because they are an important yet difficult case for any NLP system
to deal with, and hence a more interesting illustration of our NLP concepts
and system than a standard case like SVO constructs, which essentially any
reasonably sensible language processing framework can deal with acceptably
in most cases. Comparatives present a diversity of surface forms, which are yet
c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 301–309, 2015.
DOI: 10.1007/978-3-319-21365-1 31

302 R. Lian et al.

ultimately mappable into relatively simple logical structures. They are somewhat
confusing from the perspective of modern theoretical linguistics, and also tend
to be handled poorly by existing statistical language processing systems.

The language comprehension pipeline reviewed here is broadly similar in
concept to systems such as Fluid Construction Grammar [14] [13]and Cycorp’s
1 proprietary NLP system. However, it differs from these in important aspects.
The approach given here utilizes a dependency grammar (the link grammar
[12]) rather than a phrase structure grammar, and at the other end involves a
customized logic system combining aspects of term logic and predicate logic.
As reviewed in [11], this combination of dependency grammar and term logic
allows a large amount of ambiguity to be passed through from the surface level
to the logic level, which is valuable if one has a powerful logic engine with a
substantial knowledge base, able to resolve ambiguities based on context in a
way that earlier-stage linguistic processes could not.

2 A Deep Linguistics and Logical Inference Oriented
Comprehension Pipeline

We now briefly review the language comprehension pipeline utilized in the work
presented here.

2.1 Link Grammar

The initial, syntactic phase of our pipeline consists of the link grammar [12].
The essential idea of link grammar is that each word comes with a feature struc-
ture consisting of a set of typed connectors . Parsing consists of matching up
connectors from one word with connectors from another. Consider the sentence:

The cat chased a snake

The link grammar parse structure for this sentence is shown in Figure 1.

Fig. 1. Example link parse

1 http://cyc.com

http://cyc.com

From Specialized Syntax to General Logic: The Case of Comparatives 303

There is a database called the “link grammar dictionary” which contains con-
nectors associated with all common English words. The notation used to describe
feature structures in this dictionary is quite simple. Different kinds of connectors
are denoted by letters or pairs of letters like S or SX. Then if a word W1 has the
connector S+, this means that the word can have an S link coming out to the right
side. If a word W2 has the connector S-, this means that the word can have an S
link coming out to the left side. In this case, if W1 occurs to the left of W2 in a
sentence, then the two words can be joined together with an S link.

The rules of link grammar impose additional constraints beyond the matching
of connectors – e.g. the planarity and connectivity metarules.. Planarity means
that links don’t cross. Connectivity means that the links and words of a sentence
must form a connected graph – all the words must be linked into the other words
in the sentence via some path.

2.2 RelEx

The next phase in the pipeline under discussion is RelEx, an English-language
semantic relationship extractor, designed to postprocess the output of the link
parser [self-citation removed, to be inserted in the final version]. It can iden-
tify subject, object, indirect object and many other dependency relationships
between words in a sentence; it generates dependency trees, resembling those
of dependency grammars. The output of the current version of RelEx on the
example sentence given above is:

singular(cat)

singular(snake)

_subj(chase , cat)

_obj(chase , snake)

past(chase)

Internally, RelEx works via creating a tree with a FeatureNode corresponding
to each word in the sentence, and then applying a series of rules to update the
entries in this FeatureNode. The rules transform combinations of link parser
links into RelEx dependency relations, sometimes acting indirectly via dynamics
wherein one rule changes a feature in a word’s FeatureNode, and another rule
then takes an action based on the changes the former rule made. Figure gives a
high level overview of RelEx’s internal process.

The output of RelEx is not unlike that of the Stanford parser, and indeed
RelEx has a Stanford parser mode that causes it to output relations in Stan-
ford parser compatible format. However, in our tests RelEx + link parser proved
around 4x as fast as the 2012 Stanford parser [9], and qualitatively appeared to
give better performance on complex constructs such as conjunctions and com-
paratives (which makes sense as such constructs are probably not that diversely
represented in the Stanford parser’s training data).

304 R. Lian et al.

2.3 OpenCog

The next phase of the pipeline, RelEx2Logic, has the purpose of translating the
output of RelEx into a format compatible with the logical reasoning component of
the OpenCog AI engine. OpenCog is a high level cognitive architecture aimed at
exploration of ideas regarding human-level Artificial General Intelligence, in par-
ticular the CogPrime AGI design [4] [5]. OpenCog has been used for commercial
applications in the area of natural language processing and data mining , and has
also been used for research involving controlling virtual agents in virtual worlds,
controlling humanoid robots, genomics data analysis, and many other areas.

The centerpiece of the OpenCog system is a weighted, labeled hypergraph
knowledge store called the Atomspace, which represents information using a com-
bination of predicate and term logic formalism with neural net like weightings. The
NLP comprehension pipeline described here is centrally concerned with mapping
English language text into logical representations within the Atomspace.

The primary component within OpenCog that acts on the output of
RelEx2Logic is Probabilistic Logic Networks (PLN) [2], a framework for uncer-
tain inference intended to enable the combination of probabilistic truth val-
ues with general logical reasoning rules. PLN involves a particular approach to
estimating the confidence values with which these probability values are held
(weight of evidence, or second-order uncertainty). The implementation of PLN
in software requires important choices regarding the structural representation of
inference rules, and also regarding “inference control” – the strategies required to
decide what inferences to do in what order, in each particular practical situation.

PLN is divided into first-order and higher-order sub-theories (FOPLN and
HOPLN). FOPLN is a term logic, involving terms and relationships (links)
between terms. It is an uncertain logic, in the sense that both terms and
relationships are associated with truth value objects, which may come in mul-
tiple varieties. “Core FOPLN” involves relationships drawn from the set: nega-
tion; Inheritance and probabilistic conjunction and disjunction; Member and
fuzzy conjunction and disjunction. Higher-order PLN (HOPLN) is defined as
the subset of PLN that applies to predicates (considered as functions mapping
arguments into truth values). It includes mechanisms for dealing with variable-
bearing expressions and higher-order functions. We will see some simple exam-
ples of the kinds of inference PLN draws below.

2.4 RelEx2Logic

OpenCog also contains a system called RelEx2Logic, that translates RelEx out-
put into logical relationships, utilizing the mix of predicate and term logic codi-
fied in Probabilistic Logic Networks [2]. RelEx2Logic operates via a set of rules
roughly illustrated by the following example:

_subj(y, x)

_obj(y, z)

==>

Evaluation y x z

From Specialized Syntax to General Logic: The Case of Comparatives 305

which indicates, in OpenCog/PLN syntax, that y is mapped into a PredicateN-
ode with argument list (x, z). The above rule format is highly simplified and for
illustration purposes only; the actual rule used by the system is more complex
and may be found along with the rest of the current rule-base at https://github.
com/opencog/opencog/tree/master/opencog/nlp/relex2logic.

So for example, for the sentence ”The pig ate the tofu”, the RelEx relations

_subj(eat , pig)

_obj(eat , tofu)

would result (after some simple, automated cleanup operations) in output such as

InheritanceLink pig_55 pig

InheritanceLink tofu_1 tofu

EvaluationLink eat pig_55 tofu_1

where the subscripts indicate particular definite instances of the concepts
involved. On the other hand, the sentence ”Pigs eat tofu” would result (after
some simple, automated cleanup operations) in simply

EvaluationLink eat pig tofu

3 Handling Comparatives

Comparatives provide more interesting examples of this sort of mapping from sur-
face form into logical expressions. Theoretical linguistics is nowhere near a consen-
sus regarding the proper handling of comparatives in English and other languages.
Some theorists posit an ellipsis theory, suggesting that comparative syntax results
from the surface structure of a sentence leaving out certainwords that are present in
the deep structure [10] [1]. Others posit a movement theory [6] [7], more inspired by
traditional generative grammar, hypothesizing that comparative syntax involves
a surface structure that rearranges the deep structure.

The link grammar framework essentially bypasses this sort of issue: either
ellipsis or movement would be represented by certain symmetries in the link
grammar dictionary, but these symmetries don’t need to be explicitly recognized
or utilized by the link parser itself, though they may guide the human being
(or AI system) creating the link grammar dictionary. Currently, on an empirical
basis, the link parser handles comparatives reasonably well, but the relevant
dictionary entries are somewhat heterogeneous and not entirely symmetrical in
nature. This suggests that either

1. the syntax of English comparatives is ”messy” and heterogeneous, not fitting
neatly into any of the available theories; and/or

2. the link grammar dictionary can be made significantly more elegant regard-
ing comparatives

We suspect that the truth is “a little of both”, but note that this issue need not
be resolved in order to deploy the link grammar as part of a practical pipeline
for comprehending complex sentences, including comparatives.

https://github.com/opencog/opencog/tree/master/opencog/nlp/relex2logic
https://github.com/opencog/opencog/tree/master/opencog/nlp/relex2logic

306 R. Lian et al.

As an example of how our framework, described here, deals with compara-
tives, one of the RelEx2Logic rules for comparatives is in compact form

than(w1 , w2)

_comparative(ad, w)

==>

TruthValueGreaterThanLink

InheritanceLink w1 ad

InheritanceLink w2 ad

A simple example using this rule would be:

Pumpkin is cuter than the white dog.

==>

_predadj(cute , Pumpkin)

than(Pumpkin , dog)

_comparative(cute , Pumpkin)

_amod(dog , white)

==>

AndLink

InheritanceLink dog_11 white

InheritanceLink dog_11 dog

TruthValueGreaterThanLink

InheritanceLink Pumpkin cute

InheritanceLink dog_11 cute

On the other hand, to deal with a sentence like ”Amen is more intelligent
than insane” we use a different rule, which in simplified form is

_predadj(adj1 , W)

than(adj1 , adj2)

_comparative(adj1 , W)

==>

TruthValueGreaterThanLink

InheritanceLink W adj1

InheritanceLink W adj2

resulting in output

_predadj(intelligent , Amen)

than(intelligent , insane)

_comparative(intelligent , Amen)

==>

TruthValueGreaterThanLink

InheritanceLink Amen intelligent

InheritanceLink Amen insane

In cases where the link parser gives multiple parse options, the RelEx2Logic
rules will provide a logic interpretation for each one. Statistical heuristics have
been implemented to rank the multiple parses for plausibility based on a corpus,
but these of course are not perfect. In some cases, multiple logical output options
will be presented to OpenCog, and must be chosen between based on higher level
contextual inference, which is a difficult topic and the subject of current research.

From Specialized Syntax to General Logic: The Case of Comparatives 307

4 Reasoning About Comparatives

To illustrate the simplicity of reasoning about comparatives once the syntactic
complexities are removed and a normalized logical form is achieved, we consider
how our integrated system can take the inputs

– Bob likes Hendrix more than the Beatles
– Bob is American
– Menudo is liked less by Americans than the Beatles

and derive the conclusion that Bob likes Hendrix more than Menudo.
For the first sentence we obtain

_subj(like , Bob)

_obj(like , Hendrix)

than(Hendrix , Beatles)

_comparative(like , Hendrix)

==>

TruthValueGreaterThanLink

EvaluationLink like Bob Hendrix

EvaluationLink like Bob Beatles

and for the second, correspondingly

_subj(like , Americans)

_obj(like , Menudo)

than(Beatles , Menudo)

_comparative(like , Beatles)

==>

TruthValueGreaterThanLink

EvaluationLink like Americans Beatles

EvaluationLink like Americans Menudo

The logical format obtained from these sentences is quite transparent. Sim-
ply via deploying its knowledge that the TruthValueGreaterThan relationship
is transitive, and that Bob is American, the PLN logic system can in two steps
derive the conclusion that

TruthValueGreaterThanLink

EvaluationLink like Bob Hendrix

EvaluationLink like Bob Menudo

Now that we are dealing with knowledge in logical rather than syntactic form,
all sorts of manipulations can be carried out. For instance, suppose we also know
that Bob likes Sinatra more than Menudo,

TruthValueGreaterThanLink

EvaluationLink like Bob Hendrix

EvaluationLink like Bob Menudo

PLN’s abduction rule then concludes that

308 R. Lian et al.

SimilarityLink

Hendrix

Sinatra

This sort of reasoning is very simple in PLN, and that’s as it should be – it
is also commonsensically simple for humans. A major design objective of PLN
was that inferences that are simple for humans, should be relatively compact
and simple in PLN. The task of the language comprehension pipeline we have
designed for OpenCog is to unravel the complexity of natural language syntax
to unveil the logical simplicity of the semantics underneath, which can then
oftentimes be reasoned on in a very simple, straightforward way.

5 Conclusion

We have summarized the operation of a natural language comprehension system
that maps English sentences into sets of logical relationships, in the logic format
utilized by a probabilistic inference engine implemented within a general pur-
pose cognitive architecture. This comprehension system is being utilized within
prototype applications in multiple areas including a non-player character in a
video game, a humanoid robot operating in an indoor environment, and a chat
system running on a smartphone interacting with a user regarding music and
media consumption.

We have focused here on the processing of comparatives, as this is a nontrivial
case that is currently confusing for linguistic theory and handled suboptimally
by many parsing systems. For practical cases of comparatives, as for most other
cases, our system qualitatively appears to give adequate performance.

However, significant work remains before we have a generally robust compre-
hension system capable for use in a wide variety fo dialogue systems. Handling of
conjunctions and quantifiers is one of the primary subjects of our current work,
along with the use of PLN to handle commonsense inferences more subtle than
the simple inference case summarized here.

6 Beyond Hand-Coded Rules

The language comprehension architecture described here is, in its current imple-
mentation, largely founded on hand-coded linguistic rules: the link-grammar dic-
tionary, the RelEx rule-based and the RelEx2Logic rule-base. However, this is not
viewed as an integral aspect of the approach pursued. In fact, research is cur-
rently underway aimed at replacing these hand-coded rules with rules automati-
cally learned via unsupervised corpus learning; this work is overviewed in [15].

The point of the hand-coded rule-bases used in the current work is not to
serve as a lasting foundation for intelligent English language processing; our view
is that this would be an infeasible approach in the end, as the number of rules
required would likely be infeasible to encode by hand. Rather, the point of the
hand-coded rule-bases is to dissociate the problem of language processing archi-
tecture from the problems of language learning and linguistic content. Using the

From Specialized Syntax to General Logic: The Case of Comparatives 309

hand-coded rule-bases as a “working prototype” of linguistic content regarding
the English language, we are able dissociate the architecture problem from the
learning problem, and present what we propose as a general and powerful archi-
tecture for language comprehension and generation. The problem of learning
more broadly functional linguistic content to operate within this architecture, is
then viewed as a separate problem, we believe addressable via OpenCog learning
algorithms.

References

1. Bhatt, R., Takahashi, S.: Winfried lechner, ellipsis in comparatives. The
Journal of Comparative Germanic Linguistics 14(2), 139–171 (2011).
http://dx.doi.org/10.1007/s10828-011-9042-3

2. Goertzel, B., Ikle, M., Goertzel, I., Heljakka, A.: Probabilistic Logic Networks.
Springer (2008)

3. Goertzel, B., Coelho, L., Geisweiller, N., Janicic, P., Pennachin, C.: Real World
Reasoning. Atlantis Press (2011)

4. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence,
Part 1: A Path to Advanced AGI via Embodied Learning and Cognitive Synergy.
Springer: Atlantis Thinking Machines (2013)

5. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part
2: The CogPrime Architecture for Integrative, Embodied AGI. Springer: Atlantis
Thinking Machines (2013)

6. Grant, M.: The Parsing and Interpretation of Comparatives: More than Meets the
Eye (2013). http://scholarworks.umass.edu/open access dissertations/689/

7. Izvorski, R.: A dp -shell for comparatives. In: Proceeding of CONSOLE III pp.
99–121 (1995)

8. Jurafsky, D., Martin, J.: Speech and Language Processing. Pearson Prentice Hall
(2009)

9. Klein, D., Manning, C.: Accurate unlexicalized parsing. In: Proceedings of the 41st
Meeting of the Association for Computational Linguistics, pp. 423–430 (2003)

10. Lechner, W.: Ellipsis in Comparatives. Studies in generative grammar, Moulton de
Gruyter (2004). http://books.google.com.hk/books?id=JsqUHHYSXCIC

11. Lian, R., Goertzel, B., Ke, S., O’Neill, J., Sadeghi, K., Shiu, S., Wang, D.,
Watkins, O., Yu, G.: Syntax-semantic mapping for general intelligence: language
comprehension as hypergraph homomorphism, language generation as constraint
satisfaction. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS, vol. 7716,
pp. 158–167. Springer, Heidelberg (2012)

12. Sleator, D., Temperley, D.: Parsing english with a link grammar. Third Interna-
tional Workshop on Parsing Technologies (1993)

13. Steels, L.: Design Patterns in Fluid Construction Grammar. John Benjamins (2011)
14. Steels, L.: Modeling The Formation of Language in Embodied Agents: Methods

and Open Challenges, pp. 223–233. Springer Verlag (2010)
15. Vepstas, L., Goertzel, B.: Learning language from a large unannotated corpus: A

deep learning approach. Technical Report (2013)

http://dx.doi.org/10.1007/s10828-011-9042-3
http://scholarworks.umass.edu/open_access_dissertations/689/
http://books.google.com.hk/books?id=JsqUHHYSXCIC

Decision-Making During Language
Understanding by Intelligent Agents

Marjorie McShane(B) and Sergei Nirenburg

Rensselaer Polytechnic Institute, Troy, NY 12180, USA
{mcsham2,nirens}@rpi.edu

Abstract. In cognitive modeling and intelligent agent design, a widely
accepted architectural pipeline is Perception–Reasoning–Action. But lan-
guage understanding, while a type of perception, involves many types of
reasoning, and can even involve action, such as asking a clarification ques-
tion about the intended meaning of an utterance. In the field of natural
language processing, for its part, the common progression of process-
ing modules is Syntax–Semantics–Pragmatics. But this modularization
lacks cognitive plausibility and misses opportunities to enhance efficiency
through the timely application of knowledge from multiple sources. This
paper provides a high-level description of semantically-deep, reasoning-
rich language processing in the OntoAgent cognitive agent environment,
which illustrates the practical gains of moving away from a strict adher-
ence to traditional modularization and pipeline architectures.

Keywords: Natural language understanding · Intelligent agents · Rea-
soning · Cognitive architecture

1 Introduction

The analytic method in science prescribes decomposing problems into subprob-
lems, finding solutions to those subproblems, then synthesizing the solutions.
Despite the well-known benefits of such modularization, it has certain unfor-
tunate consequences that have come center stage in our work on developing
the cognitively modeled agents we call OntoAgents. Strict modularization of
perception, reasoning and action fails to capture the rich information transfer
that appears to characterize human cognition and behavior. Our current work
on OntoAgents attempts to more accurately model general artificial intelligence
by integrating these cognitive modules. In this paper, we discuss one aspect
of this integration: the integration of decision-making (traditionally subsumed
under reasoning) into the process of natural language understanding (tradition-
ally subsumed under perception).

OntoAgents feature integrated physiological and cognitive simulations, mod-
eling the body and the mind. The mind-body connection is modeled as the
process of interoception, i.e., the perception of bodily signals [5], [13]. To date,
the simulated minds of implemented OntoAgents have shown the capabilities
c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 310–319, 2015.
DOI: 10.1007/978-3-319-21365-1 32

Decision-Making During Language Understanding by Intelligent Agents 311

of goal-oriented planning, decision-making influenced by personal biases and
situational parameters, learning, memory management, and natural language
processing (see [7], [8], [6], among others).

In this paper we present a conceptual overview of our work toward tran-
scending the boundaries of processing modules in models of cognitive agency.
Our effort addresses two separate modularizations – the traditional Perception–
Reasoning–Action pipeline of cognitive architectures and the familiar Syntax–
Semantics–Pragmatics pipeline of AI-oriented natural language processing.

Pipeline-oriented approaches, while differing in many respects, typically share
the following two characteristics: a) the processing of an input by any module
can start only after the upstream modules have finished with this input; and
b) the machinery and knowledge resources of each module are typically opaque
to those of other modules. There are engineering-oriented reasons for imposing
these constraints. But we hypothesize that they are not optimal either as features
of cognitive models or as architectural choices in computational implementations
of cognitive models.

Issues of modularity and computational architectures have been amply
debated in cognitive science and artificial intelligence. This paper is not meant
as a contribution to those debates. Our specific objective is to enhance the effi-
ciency and effectiveness of artificial intelligent agents by improving the ways in
which they apply knowledge. This objective complements rather than competes
with work on enhancing the functioning of agents through more sophisticated
formalisms and improved algorithmic efficiency.

We believe that moving away from pipelines will increase verisimilitude in
modeling human behavior. In this respect, we are motivated by two working
hypotheses. (1) The inclusivity hypothesis suggests that cognitive agents, at any
given time in their functioning, can apply any and all heuristics currently avail-
able to them, irrespective of the provenance of those heuristics. (2) The least
effort hypothesis motivates agents, in well-defined aspects of their functioning,
to “jump to conclusions” – i.e., to declare their current task completed and avoid
exhaustive processing. Such decisions are a function of the agents’ knowledge and
beliefs, their personality traits, and situational constraints. This hypothesis is
observationally quite plausible, as anybody who has ever been justifiably inter-
rupted in a dialog can attest (i.e., if the interlocutor has already understood
one’s point well enough to respond, interrupting can be appropriate).

2 Issues with Pipelines

One insufficiency of the Perception–Reasoning–Action pipeline is that it obscures
the fact that language understanding, a type of perception, itself routinely
involves reasoning and action. Such tasks as lexical and referential disambigua-
tion, the detection and reconstruction of elliptical gaps, and the understanding
of indirect speech acts are reasoning-intensive. Moreover, if an agent is intended
to model human performance, it must be able to look beyond the boundaries
of the narrowly defined language understanding task to judge its confidence in

312 M. McShane and S. Nirenburg

the results of its language processing. If, by the time it finishes processing a
language input, the agent is confident that it has understood the input, this
should lead to reasoning and action. If, by contrast, the agent has not suffi-
ciently understood the input, then it must select a recovery strategy. One such
strategy is the action of asking its human collaborator for clarification. Incor-
porating such reasoning and action into the perception module, we arrive at the
following, more realistic, workflow, in which parentheses show optionality: Per-
ception and reasoning about perception–(Reasoning about suboptimal perception
processing–Recovery action)–Reasoning–Action.

With respect to language modeling itself, the traditional, theory-driven
Syntax–Semantics–Pragmatics pipeline fails to accommodate the large number
of cross-modular methods available for treating individual linguistic phenom-
ena. To take just one example, many instances of ellipsis – the null referring
expression – can be detected and resolved prior to semantic analysis, with the
results then being available to inform semantic analysis.1 Therefore, just as we
modified the cognitive modeling pipeline above, so must we modify the language
processing pipeline, leading to the more functionally sufficient approach detailed
in Section 4.

3 Pursuing Actionable Language Analyses

The goal of language understanding in OntoAgent is for the agent to arrive at an
actionable interpretation of text input. We define as actionable those interpre-
tations that are deemed by the agent to be sufficient to support post-perception
reasoning and action. An actionable interpretation might represent a complete
and correct analysis of all input strings, or it might be incomplete; it might
involve only a partial analysis of the input strings, or it might invoke maximally
deep reasoning; and it might be achievable by the agent alone, or it might require
interactive clarifications or corrections by a human or artificial collaborator. In
short, for each language input, after each stage of processing, the agent must
estimate whether it has arrived at a level of input understanding sufficient for
passing control to the reasoning and action modules. As soon as the answer is
positive, it can proceed to post-perception reasoning and action.

This modeling strategy reflects our belief that, in order to foster the devel-
opment of viable agent applications at a time when the state of the art cannot
yet support full and perfect semantic analysis of unrestricted input, it is nec-
essary to define practical halting conditions for language analysis. Consider an
example from an OntoAgent prototype system called Maryland Virtual Patient
[5], [13]. One of the intelligent agents in this system plays the role of a vir-
tual patient being diagnosed and treated by a human medical trainee. During
simulated office visits, the virtual patient engages in dialog with the trainee
during which the latter can ask questions, suggest diagnostic and treatment pro-
tocols, provide background knowledge about the patient’s disease, and answer
1 If ellipsis were to be treated like other referring expressions, it would normally be

subsumed under pragmatic analysis.

Decision-Making During Language Understanding by Intelligent Agents 313

the patient’s questions. In each of the trainee’s dialog turns, the agent attempts
to detect something actionable, such as a question it should answer or a recom-
mendation it should respond to. Responding to this actionable input becomes
the agent’s communicative goal of choice, absolving it from the necessity of full
and confident analysis of every element of input.

This type of incomplete processing is not merely an escape hatch for modeling
intelligent agents in the early 21st century. We believe that it models how people
naturally behave in communicative situations: they pay attention to the main
point but often ignore many of the details of what others say. For example, if a
doctor provides exhaustive detail about the potential side effects of a medication,
do live patients pay full attention? Would they understand and remember every
detail even if they did? Selective attention is a manifestation of the principle of
least effort; it represents natural conservation of energy and thus protects against
cognitive overload [15]. So, even though OntoAgents show “focused attention” for
practical reasons, the effects of this behavior in simulation will, we hypothesize,
make agents more human-like.

We will now consider, in turn, how the canonical pipelines introduced above
can be modified to better serve OntoAgents in their quest for actionable language
interpretations.

4 The Stages of Language Analysis

To reiterate, the agent’s goal in processing language input is to arrive at a
confident, actionable analysis as soon as possible. For this reason, we are working
toward configuring agents that can treat phenomena as soon as the necessary
heuristic evidence becomes available. At any point in language analysis, an agent
should be able to decide that the current state of analysis is actionable and
proceed directly to post-perception reasoning and action. We discuss the stages
of language processing under development in the order presented below.

1. Perception and reasoning about perception
(a) Exploiting situational expectations and conventions
(b) Syntactic analysis

i. Syntactically-informed reference resolution
ii. Tree trimming

(c) Semantic analysis
i. Semantically-informed reference resolution
ii. Semantically-informed speech act understanding

(d) Reference resolution
(e) Indirect speech act interpretation
(f) Reasoning about suboptimal perception processing

i. Recovery action
2. Post-Perception Reasoning
3. Action

314 M. McShane and S. Nirenburg

Space constraints preclude a detailed description of how the system arrives
at each type of analysis or a detailed rundown of results to date. Regarding the
latter, we have recently evaluated our engines for basic semantic analysis [6], the
treatment of multi-word expressions [12], verb phrase ellipsis resolution [10] and
tree trimming in support of the latter [11]. The other microtheories mentioned
above are at various stages of development. The rationale behind presenting
this blueprint for agent functioning even before an end-to-end implementation
is available is that we believe that drawing the big picture is an essential prereq-
uisite for long-term progress on the many component challenges of configuring
truly intelligent artificial agents. The modest goal of the current contribution
is to motivate the reconceptualization of the traditional pipeline architectures
introduced earlier.

1a. Exploiting Situational Expectations and Conventions. The first
stage of language processing relies on textual string matching. The hypothesis is
that some combinations of strings – which can even be entire sentences – are so
frequent or expected that they are stored in memory along with their semantic
analyses, thus not requiring compositional analysis at each encounter. For exam-
ple, in the Maryland Virtual Patient application, we stored semantic analyses
of expected formulaic inputs such as How are you feeling? Storing remembered
analyses not only speeds up system functioning and reduces unexpected misin-
terpretations, it also reflects the human-oriented hypothesis that, in accordance
with the principle of least effort, people store frequently encountered phrases as
ready-made information bundles.

1b. Syntactic Analysis. If the agent does not treat an input “reflexively”,
it proceeds to syntactic analysis. Stanford CoreNLP [4] provides tokenization,
sentence splitting, PoS tagging, morphological analysis, named entity recogni-
tion, syntactic immediate constituent analysis and a dependency parse. Although
syntactic analysis represents only an intermediate result toward semantic analy-
sis, it can inform certain types of decision-making. For example, an agent might
choose to further process sentences only if they contain certain keywords, or
combinations of keywords, of interest.

1bi. Syntactically-informed reference resolution. Next the agent
engages in a series of reference resolution procedures that are undertaken at this
early stage because they require as input only the results of syntactic analysis and
access to the lexicon. For example, our agents can detect and resolve verb phrase
ellipsis in sentences like They attempted to win the tournament but couldn’t
[e], as described in [10]. Similarly, they can establish lexico-syntactically-based
coreference links for a pronominal referring expressions in certain linguistically
defined configurations.

The benefits of early reference processing cannot be overstated. Detecting
ellipsis and reconstructing the missing string permits the meaning of the expres-
sion to be computed during basic semantic analysis. Continuing with the example
from above, the agent will actually be semantically analyzing [They]-1 attempted
to [win the tournament]-2 but [they]-1 couldn’t [win the tournament]-2, in which
the indices indicate coreference. Similarly, establishing high-confidence textual

Decision-Making During Language Understanding by Intelligent Agents 315

coreference relations for overt pronouns at this stage enhances the simultaneous
disambiguation of those expressions and their selecting heads. For example, it is
much easier for the agent to disambiguate both the subject and the verb in The
train stopped than to disambiguate these strings in It stopped. So, coreferring it
with train in a context like The train raced toward the station then it suddenly
stopped is of great benefit to semantic analysis.

1bi. Tree Trimming. Before proceeding to semantic analysis, the agent has
the option of carrying out “tree trimming,” also known as syntactic pruning or
sentence simplification. Tree trimming refers to automatically deleting non-core
syntactic structures, such as relative clauses and various types of modification,
so that the core elements can be more effectively treated.2 It has been used in
applications ranging from summarization to information extraction to subtitling.
An agent’s decision about whether or not to trim should be a function of (a)
sentence length, (b) the constituents in the parse tree and the dependency parse,
and (c) situational non-linguistic parameters, such as the agent’s cognitive load
and the importance of the goal being pursued through the communication.

1c. Semantic Analysis. Semantic analysis in OntoAgent is defined as
generating an ontologically-grounded text meaning representation (TMR) that
includes the results of lexical disambiguation and semantic dependency determi-
nation.3 TMRs are written in a metalanguage they share with the ontology and
other knowledge repositories in OntoAgent. For example, the TMR for the input
Dr. Jones diagnosed the patient is shown in Table 1. Small caps indicate onto-
logical concepts and numerical suffixes indicate their instances. The “textstring”
and “from-sense” slots are metadata used for system debugging.

Table 1. TMR for Dr. Jones diagnosed the patient

diagnose-1
agent human-1
theme medical-patient-1
time (before find-anchor-time) ; indicates past tense
textstring “diagnosed”
from-sense diagnosed-v1

human-1
agent-of diagnose-1
has-name “Dr. Jones”
textstring “Dr. Jones”
from-sense *personal-name*

medical-patient-1
theme-of diagnose-1
textstring “patient”
from-sense patient-n1

2 For our approach to tree trimming in service of ellipsis resolution see [11].
3 The OntoSem process of semantic analysis is described in [6] and [14].

316 M. McShane and S. Nirenburg

Every TMR produced by an agent is assigned a confidence level, which reflects
the extent to which lexically and ontologically recorded expectations resulted in
a single, unique analysis of the input. The more instances of residual ambiguity,
the lower the overall confidence.

Although this example sketches the basic idea of semantic analysis in OntoA-
gent, it fails to convey that this stage of processing actually incorporates some
aspects of early pragmatic analysis. For example, TMRs include the results of
reference processing carried out earlier (cf. 1bi above). They also may include
newly computed aspects of reference resolution as well as the treatment of indi-
rect speech acts. We consider each of these in turn.

1ci. Semantically-informed reference resolution. The OntoSem lexi-
con contains lexical senses that support the detection of certain kinds of ellipsis
and the resolution of certain kinds of overt referring expressions. For example,
there is a sense of the verb start that expects its complement to be an onto-
logical object rather than an event, as in She started the book. This sense
asserts that there is an elided event whose meaning the system should attempt
to recover from the context – all during this same pass of basic semantic analysis.
Other referring expressions that are treated using lexically-recorded procedural
semantic routines are indexicals such as yesterday [9].

1cii. Semantically-informed speech act understanding. The OntoSem
lexicon includes a broad range of phrasal constructions that help to reduce the
ambiguity of compositional semantic analysis [12]. Among these constructions
are conventionalized speech acts. For example, Could you please tell me X is
interpreted as request-info theme [the meaning of X]; I would recommend
X is interpreted as request-action [the meaning of X]; and so on. Rather
than postpone indirect speech-act detection until the downstream module ded-
icated specifically to it, our system analyzes the semantics and the pragmatics
of conventionalized indirect speech acts simultaneously.

This “Semantic Analysis” level of processing will not yet be actionable
for intelligent agent applications since referring expressions have not yet been
anchored in memory. However, for non-agent-oriented NLP applications, this
level of output could be useful since lexical disambiguation has been carried
out, the semantic dependency structure has been established, many textual
coreference relations have been resolved, and some indirect speech acts have
been detected.

1d. Reference resolution. Unlike reference resolution procedures under-
taken up to this point, OntoAgent’s nascent reference module (a) will have access
to full semantic analysis as input, (b) will attempt ontology-based reasoning, if
needed, and (c) will posit as the goal not just detecting textual coreference, but
carrying out concept-level reference resolution, which will result in anchoring
referring expressions to concept instances in agent memory. For example, given
an input like He began operating on the patient at 7 a.m., the system might have
several males in the preceding context that could plausibly be the sponsor for
the referring expression he. However, it is likely that only one of them is listed in
the agent’s fact repository with the property-value pair social-role surgeon.

Decision-Making During Language Understanding by Intelligent Agents 317

The key to selecting the correct sponsor is consulting the ontology and determin-
ing that the agent of the ontological concept (event) surgery – which was acti-
vated as the contextually appropriate meaning of operate – is typically a surgeon.
This is an example of “reasoning about perception.” Note that if earlier reference
processing had resulted in textual coreference links, true reference resolution to
agent memory would still have to be undertaken at this stage. This would happen,
for example, given the input, After the surgeon completed the surgery, he changed
into street clothes. Here, the grammatical structure strongly suggests the corefer-
ence relationship between he and the surgeon, but this chain of coreference must
still be anchored to the right instance of surgeon in agent memory.

1e. Indirect speech act interpretation. In its current state, our microthe-
ory of non-lexically-supported speech act interpretation covers exclusively
application-specific cases. For example, in the MVP application, if the input
includes reference to a symptom, but the input overall is not recognized as an
instance of asking whether the patient is experiencing that symptom, the patient
nevertheless responds as if it had been asked that question. Work is underway
to extend this microtheory to cover more generic contexts.

By the time the agent reaches this point in language analysis, it will have
carried out all of its basic analysis processes, constructed a TMR, and grounded
concept instances in memory. Its overall analysis is associated with a cumulative
confidence value that is computed as a function of its confidence about every
component decision it has made: each instance of lexical disambiguation, each
instance of reference resolution, etc. If the agent’s overall confidence is above a
threshold, the analysis is declared to be actionable. If not, the agent must decide
how to proceed.

1f. Reasoning about suboptimal perception processing. If the agent
chose earlier not to carry out syntactic trimming, it can choose to invoke it at
this point, in hopes of being able to generate a higher-confidence TMR from
a less complex input. The sequence syntactic analysis – semantic analysis –
tree trimming – semantic analysis is another example of interleaving modules of
processing beyond the rather simplistic original pipeline. If the trimming strategy
is either not available (e.g., it has been carried out already) or is not favored by
the agent (e.g., this is a high-risk situation with no room for error), the agent
can undertake a recovery action.

1fi. Recovery action. If the agent is collaborating with a human, one recov-
ery option is to ask a clarification question. This is particularly well-motivated in
high-risk and/or time-sensitive situations. There are, however, other options as
well. For example, if the analysis problem was due to “unexpected input” – e.g.,
an unknown word – the system can attempt learning by reading, as described in
[2]. Or, the agent can decide to recover passively, by not responding and waiting
for its interlocutor’s next move which, in some cases, might involve linguistic
clarifications, restatements, etc.

2. Post-perception reasoning & 3. Action. These modules of agent cog-
nition take as input whatever results of language processing the agent considered
an appropriate stopping condition.

318 M. McShane and S. Nirenburg

5 Final Thoughts

The recognition that reasoning is needed for language processing is, of course,
not novel. The idea has been addressed and debated from the early days of AI-
NLP and cognitive science in works by Schank [16], Wilks [17], Woods [18], and
many others. Our contribution is an attempt (a) to integrate a larger inventory
of more detailed explanatory models that rely on broader and deeper knowledge
bases, and (b) to arm agents with the ability to reason about their confidence
in language processing and act accordingly. In this regard, it is noteworthy that
a central contributor to the success of the Watson system in the Jeopardy! chal-
lenge was its use of confidence metrics in deciding whether or not to respond to
questions [3].

The idea of interleaving processing stages is also not unknown in computa-
tional linguistics proper. For example, Agirre et al. [1] use semantic information
to help determine prepositional phrase attachment, which is required for produc-
ing the correct output of syntactic analysis. Our work differs from contributions
of this kind in that our ultimate goal is not success of a particular stage of
language processing but, rather, deriving the semantic and discourse/pragmatic
meaning of the input using all available clues.

In this space, we were able to give only a high-level overview of language
understanding in OntoAgent, along with our methods of incorporating reasoning
and decision-making into the process. Naturally, many aspects of this vision of
agent functioning are work in progress. Our practical results, which vary across
microtheories, have been reported in the cited literature. Near-term goals include
both further developing the theoretical substrate of OntoAgent – continuing the
genre of the current contribution – and increasing the breadth of coverage of
all of the microtheories, knowledge bases and processors that contribute to the
functioning of OntoAgents.

Acknowledgments. This research was supported in part by Grant N00014-09-1-1029
from the U.S. Office of Naval Research. All opinions and findings expressed in this
material are those of the authors and do not necessarily reflect the views of the Office
of Naval Research.

References

1. Agirre, E., Baldwin, T., Martinez, D.: Improving parsing and PP attachment per-
formance with sense information. In: Proceedings of ACL-08: HLT, pp. 317–325,
Columbus, Ohio (2008)

2. English, J., Nirenburg, S.: Striking a balance: human and computer contributions
to learning through semantic analysis. In: Proceedings of ICSC-2010. Pittsburgh,
PA (2010)

3. Ferrucci, D., Brown, E., et al.: Building Watson: An Overview of the DeepQA
Project. Association for the Advancement of Artificial Intelligence (2010)

Decision-Making During Language Understanding by Intelligent Agents 319

4. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., McClosky, D.:
The Stanford CoreNLP natural language processing toolkit. In: Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, pp. 55–60 (2014)

5. McShane, M., Jarrell, B., Fantry, G., Nirenburg, S., Beale, S., Johnson, B.: Reveal-
ing the conceptual substrate of biomedical cognitive models to the wider commu-
nity. In: Westwood, J.D., Haluck, R.S., et al. (eds.) Medicine Meets Virtual Reality
16, pp. 281–286. IOS Press, Amsterdam, Netherlands (2008)

6. McShane, M., Nirenburg, S., Beale, S.: Language Understanding With Ontological
Semantics. Advances in Cognitive Systems (forthcoming)

7. McShane, M., Beale, S., Nirenburg, S., Jarrell, B., Fantry, G.: Inconsistency as a
Diagnostic Tool in a Society of Intelligent Agents. Artificial Intelligence in Medicine
(AIIM) 55(3), 137–148 (2012)

8. McShane, M., Nirenburg, S., Jarrell, B.: Modeling Decision-Making Biases.
Biologically-Inspired Cognitive Architectures (BICA) Journal 3, 39–50 (2013)

9. McShane, M., Nirenburg, S.: Use of ontology, lexicon and fact repository for ref-
erence resolution in Ontological Semantics. In: Oltramari, A., Vossen, P., Qin, L.,
Hovy, E. (eds.) New Trends of Research in Ontologies and Lexical Resources: Ideas,
Projects, Systems, pp. 157–185. Springer (2013)

10. McShane, M., Babkin, P.: Automatic ellipsis resolution: recovering covert informa-
tion from text. In: Proceedings of AAAI-15 (2015)

11. McShane, M., Nirenburg, S., Babkin, P.: Sentence trimming in service of verb
phrase ellipsis resolution. In: Proceedings of EAP CogSci 2015 (forthcoming)

12. McShane, M., Nirenburg, S., Beale, S.: The Ontological Semantic Treatment of
Multi-Word Expressions. Lingvisticae Investigationes (forthcoming)

13. Nirenburg, S., McShane, M., Beale, S.: A simulated physiological/cognitive “dou-
ble agent”. In: Beal, J., Bello, P., Cassimatis, N., Coen, M., Winston, P. (eds.)
Papers from the AAAI Fall Symposium, Naturally Inspired Cognitive Architec-
tures, Washington, D.C., Nov. 7–9. AAAI technical report FS-08-06, Menlo Park,
CA: AAAI Press (2008)

14. Nirenburg, S., Raskin, V.: Ontological Semantics. The MIT Press, Cambridge, MA
(2004)

15. Piantadosi, S.T., Tily, H., Gibson, E.: The Communicative Function of Ambiguity
in Language. Cognition 122, 280–291 (2012)

16. Schank, R., Riesbeck, C.: Inside Computer Understanding. Erlbaum, Hillsdale, NJ
(1981)

17. Wilks, Y., Fass, D.: Preference Semantics: A Family History. Computing and Math-
ematics with Applications 23(2) (1992)

18. Woods, W.A.: Procedural Semantics as a Theory of Meaning. Research Report No.
4627. Cambridge, MA: BBN (1981)

Plan Recovery in Reactive HTNs
Using Symbolic Planning

Lydia Ould Ouali1, Charles Rich2(B), and Nicolas Sabouret1

1 LIMSI-CNRS, Université Paris-Sud,
UPR 3251, Orsay, France

{ouldouali,nicolas.sabouret}@limsi.fr
2 Worcester Polytechnic Institute,

Worcester, MA, USA
rich@wpi.edu

Abstract. Building formal models of the world and using them to plan
future action is a central problem in artificial intelligence. In this work,
we combine two well-known approaches to this problem, namely, reac-
tive hierarchical task networks (HTNs) and symbolic linear planning.
The practical motivation for this hybrid approach was to recover from
breakdowns in HTN execution by dynamically invoking symbolic plan-
ning. This work also reflects, however, on the deeper issue of tradeoffs
between procedural and symbolic modeling. We have implemented our
approach in a system that combines a reactive HTN engine, called Disco,
with a STRIPS planner implemented in Prolog, and conducted a prelim-
inary evaluation.

1 Introduction

Hierarchical task networks (HTNs) are widely used for controlling intelligent
agents and robots in complex, dynamic environments. There are many different
formalizations and graphical notations in use for HTNs. In this paper we use the
simple tree notation shown in Fig. 1, which we will explain in detail in Section 4.1.
HTNs are typically hand-authored and can be quite large, with five or more levels
of task hierarchy and dozens or even hundreds of tasks at the leaves.

All HTNs share the basic structure of decomposing tasks into sequences (or
sometimes partially ordered sets) of subtasks, with alternative decompositions
(sometimes called recipes) for different situations. In addition to the decompo-
sition tree structure, most HTNs also have conditions, such as preconditions
and postconditions, associated with nodes in the tree to control execution of the
HTN.

HTNs were originally a hierarchical extension of classical linear (e.g., STRIPS
[4]) plans, and as in classical plans, the conditions associated with tasks were
symbolic, i.e., they were written in some kind of formal logic and logical inference
was used to reason about them. Later, in response to the difficulties of symbolic
modeling (see Section 3) a variant, called reactive HTNs, was developed in which
the conditions are procedural, i.e., they are written in a programming language
and evaluated by the appropriate programming language interpreter. The idea
c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 320–330, 2015.
DOI: 10.1007/978-3-319-21365-1 33

Plan Recovery in Reactive HTNs Using Symbolic Planning 321

Navigate pickup

unlock open walkthru

T

T T T

T T T T F

putdown

Transport

wind blows door closed and locked

Fig. 1. Breakdown in HTN execution after wind blows door closed and locked. Check
marks indicate successfully executed tasks; “T” indicates a condition that has been
evaluated and returned true; “F” indicates a condition that has returned false.

of reactive HTNs has also been used in game development, where they are called
behavior trees.1

This work is focused on reactive HTNs, and specifically on recovering from
breakdowns in their execution. The basic idea is to add a small proportion of
symbolic conditions to a reactive HTN in order to support a linear planner
performing local plan recovery. Section 2 below starts with a simple, motivating
example.

The problem of plan recovery has been studied in symbolic HTNs (see [1,2,
7,10]). This work is inspirational, but not directly relevant, because these plan
repair techniques rely upon all of the conditions in the HTN being symbolically
expressed, which obviates the use of a reactive HTN.

Others have proposed adding some kind of symbolic planning to reactive
HTNs. For example, Firby [5] proposed using a planner to reorder tasks in the
HTN execution or to help choose between alternative decompositions. Brom [3]
proposed using planning to help execute tasks with time constraints. However,
no one has yet developed a complete hybrid procedural/symbolic algorithm (see
Section 4.2) similar to ours.

Finally, this work is preliminary because, although we have implemented and
tested our algorithm on synthetically generated data (see Section 5), how well
it will work in practice is still an open question.

2 A Motivating Example

To further introduce and motivate our work, we first consider a small, intuitive
example of reactive HTN execution breakdown and recovery. The basic idea of
this example, shown in Fig. 1 is that a robot has been programmed using an
HTN to transport an object through a locked door. In this HTN, the toplevel
task, Transport, is decomposed into three steps: pickup, Navigate and putdown.

1 See http://aigamedev.com/open/article/popular-behavior-tree-design

http://aigamedev.com/open/article/popular-behavior-tree-design

322 L.O. Ouali et al.

unlock open walkthru unlock open

Fig. 2. Sequence of two primitive tasks (in bold) added to plan for Navigate to recover
from breakdown in Fig. 1.

Navigate is further decomposed into three steps: unlock, open and walkthrough.
Each of these tasks is represented by an oval in Fig. 1. (The square boxes in the
HTN are there to support alternative decompositions, which can be ignored in
this example.)

At the moment in time depicted in Fig. 1, the robot has successfully picked up
the object, unlocked the door and opened it. However, before the precondition
of the walkthru step is evaluated, the wind blows the door closed and the door
locks. The walkthru precondition checks that the door is open and thus returns
false. At this point, there are then no executable tasks in the HTN, which is
what we call a breakdown.

Such breakdowns are not unusual in reactive HTNs, especially when they
are executing in complex, dynamic environments. In fact, something similar to
this actually happened recently to the winning robot in the prestigious DARPA
Robotics Challenge2 (emphasis added): “However, team Schaft lost points when a
gust of wind blew a door out of the robot’s hand and the robot was unable to exit a
vehicle after navigated a driving course successfully.” It can be hard to anticipate
all possible things that can gowrong; and trying to incorporate all possible recovery
plans into the HTN in advance can lead to an explosion of programming effort.

However, looking at this breakdown in particular, the recovery solution,
shown in Fig. 2, is obvious, namely to unlock and open the door. Furthermore,
this would be a trivial problem for a symbolic linear (e.g., STRIPS) planner to
solve if only the pre- and postconditions of the relevant primitives were specified
symbolically.

In a reactive HTN, pre- and postconditions are written in a procedural (pro-
gramming) language and evaluated by the appropriate programming language
interpreter. Fig. 3a shows the relevant procedural conditions in the Navigate
plan as they might typically be written, for example, in JavaScript. For exam-
ple, “isOpen()” would call code in the robot’s sensory system to check whether
the door is currently open. In comparison, Fig. 3b shows how the same primitive
tasks would typically be formalized for a STRIPS planner using symbolic features.

Suppose that when the breakdown in Fig. 1 occurred, the HTN execu-
tion engine somehow had available the symbolic modeling knowledge shown in
Fig. 3b. Recovering from the breakdown could then be formulated as a STRIPS
planning problem (see Fig. 4) in which the initial state is the current world
state, i.e., the door is not open and is locked, and the final state is the failed

2 https://herox.com/news/148-the-darpa-robotics-challenge

https://herox.com/news/148-the-darpa-robotics-challenge

Plan Recovery in Reactive HTNs Using Symbolic Planning 323

Fig. 3. Procedural versus symbolic conditions for Navigate plan

Final State: {+open}
Initial State: {-open, +locked}
Operators
 unlock: +locked -locked
 open: -open, -locked +open
 walkthru: +open ...
 ...

{+open}

{-open, +locked}

{...} {...}

unlock

{-open, -locked}

{...} {...} open

Fig. 4. Recovery from breakdown in Fig. 1 as a STRIPS planning problem

precondition of walkthru, i.e., the door is open. Simple backward-chaining would
then quickly find the solution sequence of operators, namely unlock followed by
open. This recovery plan could then be spliced into the HTN as shown in Fig. 2
and execution could continue.

The goal of this paper is to generalize the solution to this example problem
into an application-independent plan recovery algorithm and associated model-
ing methodology for reactive HTNs, as described in the next two sections.

3 Procedural Versus Symbolic Modeling

A reasonable first question to ask after reading the motivating example above is
why not just use a symbolic planner instead of an HTN to control the robot in
the first place, and apply well-known replanning approaches when a breakdown
occurs?

Answering this question leads directly to the issue of modeling. Symbolic
planners, such as STRIPS, require complete and correct symbolic descriptions
of all of the primitive tasks (operators) in the problem domain. Different plan-
ners use different symbolic formalisms to represent this knowledge, such as the
add/delete lists shown in Fig. 3b, PDDL [6], and others. However, what all sym-
bolic planners have in common is that if these symbolic descriptions are incorrect
or incomplete (relative to reality), then the generated plans will fail—the poorer
the correspondence to reality, the less reliable the plans will be.

324 L.O. Ouali et al.

Unfortunately, artificial intelligence research has shown that producing
complete and correct symbolic descriptions of complex real-world domains is
extremely hard and, for practical purposes, often impossible. Certainly the text-
book example in Fig. 4 is easy to model symbolically, but no one participating
in the DARPA Robotics Challenge seriously considered symbolically modeling
the complete task domain.

The difficulty of symbolic modeling is why reactive HTNs were invented. The
knowledge in a reactive HTN is encoded in two places: in the decomposition
structure of the tree and in the code for the procedural conditions (especially
the applicability conditions for decomposition choices, which will be explained
in the next section).

So is it easier to model complex real-world domains using reactive HTNs
than symbolically? As a practical matter, the answer appears to be yes, since
reactive HTNs are commonly used in such applications. Our guess is that there
are two main reasons for this. First, it is well known that hierarchy helps people
organize their thinking to deal with complexity. Second, a procedural condition,
such as a precondition, is only applied to the current world, whereas symbolic
descriptions are essentially axioms that must be true in all possible worlds.

But of course, as we saw above, reactive HTNs can break down, which leads
us to the hybrid approach, described in the next section, in which a reactive HTN
is augmented with some symbolic conditions to aid specifically with recovery.

4 A Hybrid Approach

In this section we generalize the motivating example in Section 2 in two ways by
considering: (1) other types of breakdowns and (2) a larger set of possible final
states. We will first present a general plan recovery algorithm and then discuss
the modeling methodology that goes along with it.

4.1 Reactive HTNs

For the purpose of this work, a reactive HTN, such as the general example in
Fig. 5a, is formally a bipartite tree with alternating levels of task nodes (shown
as circles or ovals) and decomposition (recipe) nodes (shown as squares), with a
task node at the root and task nodes at the leaves. The tasks at the leaves are
called primitive; the other tasks are called abstract.

Associated with the nodes of the tree are three kinds of boolean-valued pro-
cedures, each of what are evaluated in the current world state. Task nodes have
an optional precondition and/or postcondition. Every decomposition node has an
applicability condition.

Reactive HTNs are basically a kind of and/or tree, where the task nodes are
“and” and the decomposition nodes are “or.” Execution is a depth-first, left-
to-right traversal of the tree starting at the root, with various conditions being
evaluated along the way, as described below.

If the current execution node is a task, then its precondition, if any, is first
evaluated. If the precondition returns false, then execution is halted (a break-
down); otherwise execution continues. If the task is primitive, then it is directly

Plan Recovery in Reactive HTNs Using Symbolic Planning 325

Fig. 5. Examples of the three types of breakdown in reactive HTN execution

executed (typically changing the world state); otherwise (i.e., for abstract tasks)
the applicability conditions of the children (decomposition) nodes are evalu-
ated in order until the first one that returns true—execution continues with this
decomposition node. If all of the applicability conditions of the children return
false, then execution is halted (a breakdown).

When execution of a task node is completed, its postcondition, if any, is eval-
uated. If the postcondition returns false, then execution is halted (a breakdown);
otherwise execution continues.

If the current execution node is a decomposition, then the children (task)
nodes are executed in order.

Fig. 5 summarizes the three types of execution breakdowns that are possible
in reactive HTN execution. The motivating example in Section 2 was a failed pre-
condition, as in Fig. 5a Notice that this taxonomy does not distinguish between
different possible underlying causes of a breakdown. A breakdown can be caused
by an external, i.e., unmodeled, agency unexpectedly changing the environment
(e.g., the wind in Section 2); or it can be due to a programming bug, such as
incorrect tree structure or an incorrectly coded condition. The fact these differ-
ent causes are indistinguishable in the breakdown is an inherent limitation of
reactive HTNs.

4.2 Plan Recovery Algorithm

The most significant generalization of the plan recovery algorithm over the moti-
vating example in Section 2 concerns the choice of final state for the linear plan-
ning problem. In the example (see Fig. 4), the final state is the failed precondition
of the walkthru primitive. However, there are other recovery possibilities that
might also make sense.

For example, suppose there was a symbolic postcondition on walkthru that
specified that the robot is located in the room on the other side of the door. After
the breakdown, another way to recover could be for the robot to successfully find
a plan (using other operators than just unlock and open) to achieve this condi-
tion, e.g., by going out another door of the current room and taking a different
hallway to the original destination room. We will call this process making the
postcondition of walkthru the target of a candidate recovery planning problem.

326 L.O. Ouali et al.

Continuing with this line of thought, suppose that there was no symbolic
postcondition provided for walkthru, but the symbolic postcondition of Navigate
specified the desired location of the robot. In that case, the postcondition of
Navigate would be a good candidate recovery target.

Similarly, suppose the original breakdown in the example had instead
occurred due to the postcondition of unlock failing. In this situation, the sym-
bolic precondition of walkthru and the symbolic postconditions of walkthru and
Navigate, if they are provided, are still good recovery targets.

Based on this reasoning, in the algorithm below we consider the largest pos-
sible set of pre- and postconditions in the tree as candidate recovery targets,
excluding only those that have already been used in the execution process and
have evaluated to true. We suspect this is an over-generalization, but need more
practical experience to determine a better approach.

The recovery target issue for applicability conditions is somewhat different.
The only time that an applicability condition should be a recovery target is when
its and all of its siblings’ conditions have evaluated to false, as in Fig. 5c.

Fig. 6 shows the pseudocode for the hybrid system we have designed. The
toplevel procedure,Execute, executes an HTN until either it is successfully com-
pleted, or there is a breakdown with no possible recovery. The plan recovery algo-
rithm starts at line 5. The main subroutine, FindCandidates, recursively walks
the HTN tree, accumulating candidate target conditions for the recovery plan-
ning. Notice that SymbolicPlanner is not defined here, since any symbolic lin-
ear planner can be used (our implementation is described in Section 5). Notice also
that since the set of operators used for symbolic planning doesn’t change during
execution of the HTN, it is not an explicit argument to the symbolic planner (see
further discussion regarding symbolic operators in Section 4.3).

In more detail, notice on line 6 that our approach requires a method for
computing from the current world state an initial state representation in the
formalism used by the symbolic planner. For example, for the STRIPS planner
in Section 2 this means that for every feature, such as “open,” there must be an
associated procedure, such as “isOpen(),” to compute its value in the current
world state. This association is a basic part of the hybrid modeling methodology
discussed in next section.

Notice on line 8 that the candidate conditions are sorted by distance from
the current node in the tree (closest first), using a simple metric such as the
length of the shortest path between them in the undirected graph. The reason
for this is to give preference to recovery plans that keep more closely to the
structure of the original HTN. We do not yet have any experience with how well
this heuristic works in practice.

Finally in Execute, notice on line 12 that when a recovery plan is found,
it must be properly spliced into the HTN. In the simple example in Fig. 2, this
is merely a matter of inserting a sequence of nodes as children of the common
parent between the initial and final nodes. However, if the initial and final nodes
are more distant in the tree, more complicated changes are needed to replace
the intervening tree structure with the new plan.

Plan Recovery in Reactive HTNs Using Symbolic Planning 327

1: procedure Execute(htn)
2: while htn is not completed do
3: current ← next executable node in htn
4: if current �= null then execute current
5: else [breakdown occurred]
6: initial ← symbolic description of current world state
7: candidates ← FindCandidates(htn)
8: sort candidates by distance from current
9: for final ∈ candidates do

10: plan ← SymbolicP lanner(initial, final)
11: if plan �= null then
12: splice plan into htn between current and final
13: continue while loop above

14: Recovery failed!

15: procedure FindCandidates(task)
16: conditions ← ∅
17: pre ← symbolic precondition of task
18: if pre �= null ∧ procedural prec of task has not evaluated to true then
19: add pre to conditions

20: post ← symbolic postcondition of task
21: if post �= null ∧ procedural postc of task has not evaluated to true then
22: add post to conditions

23: applicables ← ∅
24: allFalse ← true
25: for decomp ∈ children of task do
26: for task ∈ children of decomp do FindCandidates(task)

27: if allFalse then
28: if procedural appl condition of decomp has evaluated to false then
29: app ← symbolic applicability condition of decomp
30: if app �= null then add app to applicables

31: else allFalse ← false
32: if allFalse then add applicables to conditions

33: return conditions

Fig. 6. Pseudocode for hybrid reactive HTN execution and recovery system

The code in the definition of FindCandidates closely follows the discussion
above regarding possible target conditions.

4.3 Modeling Methodology

The hybrid system described above tries to take advantage of whatever symbolic
knowledge is provided by the HTN author. Notice that for the pre- or postcon-
dition of each task node there are four possibilities: no specified condition, only
a procedural condition, only a symbolic condition, or both. Since applicability
conditions are not optional, there are only two possibilities for decomposition
nodes: only a procedural condition, or a procedural and a symbolic condition.

328 L.O. Ouali et al.

As we have argued earlier, symbolic modeling is very difficult in general. The
reason an author is using a reactive HTN in the first place is likely because it was
not practical to fully model the domain symbolically. Two key methodological
issues are therefore where to best invest whatever effort is available for symbolic
modeling, and how to make the overall process of mixed procedural and symbolic
modeling as convenient as possible for the HTN author. We will share some ideas
below, but this is the area in which our work is also preliminary.

Our initial intuition, illustrated by the example in Section 2, is to concentrate
symbolic modeling on the primitive tasks. This is because we expect symbolic
plan recovery to be most successful as a local planning strategy.

Which pre- and postconditions are provided symbolically also has implica-
tions for the set of operators used by the symbolic planner. Only a task with
both a symbolic precondition and postcondition can be included in the operator
set. However, the planning operators need not be restricted to primitive tasks. If
an abstract task is fully specified symbolically, it can in principle be included in
a linear recovery plan by using its already defined decompositions (and hoping
they are appropriate in the new context).

Finally, we believe there is the opportunity for tools to make the hybrid
modeling process less onerous. For example, we are planning a simple design-
time tool that recognizes common coding conventions, such as in Fig. 3a, and
automatically produces corresponding symbolic conditions, such as in Fig. 3b.
Run-time tools can also keep track of breakdowns and advise where additional
symbolic knowledge may be useful.

5 Implementation and Evaluation

We have implemented the hybrid

12

Disco
(HTN

execution
engine)

STRIPS
in

Prolog

recovery planning
problem

linear repair plan
 (or null)

Fig. 7. Discolog implementation

system described above in pure Java
(see Fig. 7) using the ANSI/CEA-
2018 standard [8] for reactive HTNs
and Disco [9] as the HTN execution
engine. For the symbolic planner, we
have used a simple implementation
of STRIPS running in a pure Java
implementation of Prolog.3 Using
Prolog will facilitate adding addi-
tional symbolic reasoning rules to the planning process.

The ultimate evaluation of our proposed new approach is to build several
agents that operate in complex, dynamic real-world environments and to see
how easy they were to build and how robustly they performed. In the meantime,
however, we tested our system on synthetically generated HTNs with different
levels of symbolic knowledge. Our simple hypothesis was that the more symbolic
knowledge provided, the better the recovery algorithm would perform.

Fig. 8 shows the results of our experiments, which confirmed this hypothesis.
We tested trees of two RxSxD sizes, 3x3x3 and 1x5x4, where R is the decom-
position (recipe) branching factor, S is task (step) branching factor, and D is
3 See http://tuprolog.apice.unibo.it

http://tuprolog.apice.unibo.it

Plan Recovery in Reactive HTNs Using Symbolic Planning 329

the task depth (see Fig. 9). For each test, we randomly sampled from the very
large space (millions) of all possible combinations of symbolic knowledge at three
overall levels: 25%, 50% and 75% (percentage of conditions in the tree that are
symbolically specified). We did not test larger trees because the experimental
running times became too long.

(a) Recovery/breakdown ratio (b) Proportion of candidates repaired

Fig. 8. Results of testing on synthetically generated HTNs with different levels of
symbolic knowledge.

Fig. 8a graphs how the proportion of breakdowns 1 R
...

1 S ...

...

1

D

...

Fig. 9. RxSxD

that are successfully recovered increases as the symbolic
knowledge increases. In Fig. 8b, we were interested in the
proportion of planning problems submitted to the plan-
ner which it solved, which also increased as the symbolic
knowledge increased. (For this experiment, we made a
small modification to the algorithm to prevent it from
stopping at the first solved problem.)

References

1. Ayan, N.F., Kuter, U., Yaman, F., Goldman, R.: HOTRiDE: Hierarchical ordered
task replanning in dynamic environments. In: Planning and Plan Execution for
Real-World Systems-Principles and Practices for Planning in Execution: Papers
from the ICAPS Workshop, Providence, RI (2007)

2. Boella, G., Damiano, R.: A replanning algorithm for a reactive agent architecture.
In: Scott, D. (ed.) AIMSA 2002. LNCS (LNAI), vol. 2443, pp. 183–192. Springer,
Heidelberg (2002)

3. Brom, C.: Hierarchical reactive planning: where is its limit. In: Proceedings of
MNAS: Modelling Natural Action Selection, Edinburgh, Scotland (2005)

4. Fikes, R.E., Nilsson, N.J.: STRIPS: A new appraoch to the application of theorem
proving to problem solving. Artificial Intelligence 2, 189–208 (1971)

5. Firby, R.: An investigation into reactive planning in complex domains. In: AAAI,
pp. 202–206 (1987)

330 L.O. Ouali et al.

6. Ghallab, M., et al.: PDDL-The planning domain definition language (1998)
7. Krogt, R.V.D., Weerdt, M.D.: Plan repair as an extension of planning. In: ICAPS,

pp. 161–170 (2005)
8. Rich, C.: Building task-based user interfaces with ANSI/CEA-2018. IEEE Com-

puter 42, 20–27 (2009)
9. Rich, C., Sidner, C.L.: Using collaborative discourse theory to partially automate

dialogue tree authoring. In: Nakano, Y., Neff, M., Paiva, A., Walker, M. (eds.) IVA
2012. LNCS, vol. 7502, pp. 327–340. Springer, Heidelberg (2012)

10. Warfield, I., Hogg, C., Lee-Urban, S., Munoz-Avila, H.: Adaptation of hierarchical
task network plans. In: FLAIRS, pp. 429–434 (2007)

© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 331–340, 2015.
DOI: 10.1007/978-3-319-21365-1_34

Optimization Framework with Minimum Description
Length Principle for Probabilistic Programming

Alexey Potapov1,2,3(), Vita Batishcheva2,3, and Sergey Rodionov3,4

1 ITMO University, St. Petersburg, Russia
pas.aicv@gmail.com

2 St. Petersburg State University, St. Petersburg, Russia
elokkuu@gmail.com

3 AIDEUS, Moscow, Russia
astroseger@gmail.com

4 CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326,
Aix Marseille Université, 13388, Marseille, France

Abstract. Application of the Minimum Description Length principle to optimi-
zation queries in probabilistic programming was investigated on the example of
the C++ probabilistic programming library under development. It was shown
that incorporation of this criterion is essential for optimization queries to behave
similarly to more common queries performing sampling in accordance with
posterior distributions and automatically implementing the Bayesian Occam’s
razor. Experimental validation was conducted on the task of blood cell detec-
tion on microscopic images. Detection appeared to be possible using genetic
programming query, and automatic penalization of candidate solution com-
plexity allowed to choose the number of cells correctly avoiding overfitting.

Keywords: Probabilistic programming · MDL · Image interpretation · AGI

1 Introduction

Occam’s razor is the crucial component of universal algorithmic intelligence models
[1], in which it is formalized in terms of algorithmic information theory. In practice,
Occam’s razor is most widely used in the form of the Minimum Description/Message
Length (MDL/MML) principles [2, 3], which can also be grounded in algorithmic
information theory [4], but usually are applied loosely using heuristic coding schemes
instead of universal reference machines [5].

Another form of Occam’s razor is the Bayesian Occam’s razor. In its simplest
form, it penalizes complex models assigning them lower prior probabilities. However,
these priors can be difficult to define non-arbitrarily. Some additional principles such
as the maximum entropy principle were traditionally used to define priors, but
algorithmic information theory providing universal priors resolves this difficulty more
generally and elegantly [6] absorbing this simple form of the Bayesian Occam’s razor.
Real alternative to the information-theoretic interpretation of Occam’s razor is ‘a
modern Bayesian approach to priors’ [7], in which model complexity is measured by

332 A. Potapov et al.

its flexibility (possibility to fit to or generate different data instances) estimated on the
second level of inference.

Interestingly, Bayesian Occam’s razor arises naturally without special implementa-
tion in probabilistic programming languages (PPLs) with posterior probability infe-
rence [8]. Programs in PPLs are generative models. They require a programmer to
define prior probabilities for some basic random variables, but the total probability
distribution is derived from the program. One can easily obtain universal priors by
writing a function like (define (gen) (if (flip) '() (cons (if (flip) 0 1) (gen)))), where
(flip) equiprobably returns #t or #f, and interpreting generated binary lists as programs
for Universal Turing Machine (UTM).

Universal priors appear here from the natural structure of the program, and a con-
crete form of the selected distributions for the basic random choices only shifts them
as the choice of a concrete UTM does. Similar situation appears in the case of models
specifying Turing-incomplete spaces – higher-order polynomials with concrete
coefficients will naturally have smaller prior probabilities than lower-order polyno-
mials even if the degree of polynomials is uniformly sampled from a certain range.

Inference methods implemented in PPLs are intended for evaluating posterior
probabilities incorporating priors defined by a program. Thus, instead of manually
applying the MDL principle, one can simply use PPLs, which provide both the over-
learning-proof criterion and automatic inference methods.

However, existing PPLs don’t solve the problem of efficient inference in a general
case, although they provide more efficient inference procedures than blind search.
Now, different attempts to improve inference procedures are being made (e.g. [9,
10]). Most of them are done within the full Bayesian framework. The optimization
framework, in which only maximum of posterior distribution (or other criterion) is
sought, can be much more efficient and is enough in many practical tasks, but is much
less studied in probabilistic programming.

Optimization queries require some criterion function to be defined instead of a
strict condition. It is usually straightforward to define precision-based criteria.
Actually, in some tasks, strict conditions are defined as stochastic equality based on
likelihood (otherwise it will be necessary to blindly generate and fit noise), so the
latter is more basic. Of course, if there is no appropriate quantitative criterion, the
optimization framework is not applicable. However, if one uses stochastic equality,
priors will be automatically taken into account by conditional sampling (since sam-
ples will be generative in accordance with prior probabilities and then kept propor-
tionally to likelihood), while optimization queries will directly maximize the given
criterion and will be prone to overfitting if this criterion is precision-based.

Thus, the necessity for MDL-like criteria arises in the optimization approach to
probabilistic programming. Necessity for manual specification of such criteria, which
incorporate not only precision, but also complexity, makes optimization queries much
less usable and spoils the very idea of probabilistic programming. Thus, optimization
queries should be designed in such a form that user-defined likelihood criteria are
modified using automatically estimated priors.

In this work, we re-implement a functional PPL with optimization queries in the
form of C++ library, which have been implemented in Scheme and described in the

 Optimization Framework with Minimum Description 333

companion paper [11]. We add a wrapper for OpenCV to this library in order to deal
with non-toy problems. In these settings, we develop a procedure to calculate prior
probabilities of instantiations of generative models in the form of computation traces
used in optimization queries, and study its applicability to avoid overlearning.

2 Background

Minimum Description Length Principle
Universal induction and prediction models are based on algorithmic complexity and
probability, which are incomputable and cannot be directly applied in practice. In-
stead, the Minimum Description (or Message) Length principle (MDL) is usually
applied. Initially, these principles were introduced in some specific strict forms [2, 3],
but now are utilized in many applied methods (e.g. [5]) in the form of the following
loose general definition [4]: the best model of the given data source is the one which
minimizes the sum of

• the length, in bits, of the model description;
• the length, in bits, of data encoded with the use of the model.

Its main purpose is to avoid overfitting by penalizing models on the base of their
complexity that is calculated within heuristically defined coding schemes. Such “ap-
plied MDL principle” is quite useful, but mostly in the context of narrow AI. Bridging
the gap between Kolmogorov complexity and applications of the MDL principle can
also be a step towards bridging the gap between general and narrow AI.

Probabilistic Programming
In traditional semantics, a program with random choices being evaluated many times
yields different results. The main idea behind probabilistic programming is to asso-
ciate the result of program evaluation not with such particular outcomes, but with the
distribution of all possible outcomes. Of course, the problem is to represent and com-
pute such distributions for arbitrary programs with random choices. It can be done
directly only for some Turing-incomplete languages. In general case, the simplest way
to deal with this problem is via sampling, in which a distribution is represented by the
samples generated by a program evaluated many time using traditional semantics.

Crucial feature of PPLs is conditioning, which allows a programmer to impose
some conditions on (intermediate or final) results of program evaluation. Programs
with such conditions are evaluated to conditional (posterior) distributions, which are
the core of Bayesian inference. The simplest implementation of conditional inference
is rejection sampling, in which outcomes of the program evaluation, which don’t meet
the given condition, are rejected (not included into the generated set of outcomes
representing conditional distribution). Such rejection sampling can be easily added to
most existing programming languages as a common procedure, but it is highly ineffi-
cient, so it is usable only for very low-dimensional models. Consequently, more
advanced inference techniques are being applied. For example, Metropolis-Hastings
method is quite popular. In particular, it is used in Church [8], which extends Scheme
with such sampling functions as rejected-query, mh-query, and some others.

334 A. Potapov et al.

PPLs extend traditional programming languages also adding to them some func-
tions to sample from different distributions. In Church, such functions as flip, ran-
dom-integer, gaussian, multinomial, and some others are implemented.

Bayesian Occam’s Razor in Probabilistic Programming
As was mentioned, such PPLs as Church naturally support the Bayesian Occam’s
razor [8]. Let us consider the following very simple example.

(mh-query 1000 100
 (define n (+ (random-integer 10) 1))
 (define xs (repeat n (lambda () (random-integer 10))))
 n
 (= (sum xs) 12))
Here, we want a sum of unknown number n of random digits xs be equal to the

given number, 12. Values of n belonging to the specified range are equiprobable a
priori. However, the derived posterior probabilities are highly non-uniform –
P(n=2|sum=12)≈0.9; P(n=3|sum=12)≈0.09; P(n=4|sum=12)≈0.009.

Underlying combinatorics is quite obvious. However, this is exactly the effect of
“penalizing complex solutions” that works in less obvious cases [8], e.g. polynomial
approximation using polynomials of arbitrary degree, or clustering with unknown
number of clusters.

3 Optimization Framework for Probabilistic Programming

Implemented Library
We aim at the practical, but general implementation of probabilistic programming, so
we consider Turing-complete languages and optimization framework. We imple-
mented a subset of Scheme language inside C++ using class constructors instead of
function application. For example, such classes as Define, Lambda, List, Cons, Car,
Cdr, Nullp, ListRef, If, and others with the corresponding constructors were imple-
mented. All these classes are inherited from the Expression class, which has the field
std::vector<Expression *> children, so expressions can constitute a tree. To create
expressions from values, the class Value (with the synonym V) was added. This class
is used for all values dynamically resolving supported types.

Also, such classes as Add, Sub, Mult, Div, Gt, Gte, Ls, Lse, etc. were added, and
such operations as +, –, *, /, >, >=, <, <=, etc. were overloaded to call corresponding
constructors. Consequently, one can write something like

Define(f, Lambda(xs, If(Nullp(xs), V(0), Car(xs) + f(Cdr(xs)))))
corresponding to

(define f (lambda (xs) (+ (if (null? xs) 0 (+ (car xs) (f (cdr xs)))))))
To use symbols f and xs, one needs to declare them as instances of the class Symbol

(with the synonym S) or to write S(“xs”) instead of xs. Parentheses operator is also
overloaded, so one can write f(xs) instead of Apply(f, xs), where Apply is also the child
of Expression. Similarly, one can write xs[n] instead of ListRef(xs, n).

Classes corresponding to the basic random distributions were also added including
Flip, Gaussian, RndInt, etc.

 Optimization Framework with Minimum Description 335

We also wrapped some OpenCV functions and data structures in our library. Sup-
port for cv::Mat as the basic type was added, so it is possible to write something like
Define(S(“image”), V(cv::imread(“test.jpg”))). All basic overloaded operations with
cv::Mat are inherited, so values corresponding to cv::Mat can be summed or multip-
lied with other values.

To avoid huge program traces while filling image pixels with random values (each
such value will become a node in a program trace), we introduced such classes as
MatGaussian and MatRndInt for generating random matrices as holistic values. These
random matrices can be also generated as deviations from given data.

The mentioned constructors of different classes are used simply to create expres-
sions and arrange them into trees. Evaluation of such expressions was also imple-
mented. A given expression tree is expanded into a program trace during evaluation.
This program trace is also an expression tree, but with values assigned to its nodes.
Evaluation process and program traces implemented in our C++ library are similar to
that implemented in Scheme and described in the companion paper [11], so we will
not go into detail here. Also, we re-implemented the optimization queries based on
simulated annealing and genetic programming over computation traces. For example,
one can write the following program with the result of evaluation shown in Fig. 1

Symbol imr, imb;
AnnealingQuery(List()
 << Define(imr, MatRndInt(img.rows, img.cols, CV_8UC3, 256, img))
 << Define(imb, GaussianBlur(imr, V(11.), V(3.)))
 << imr

 << (MatDiff2(imb, V(img)) + MatDiff2(imb, imr) * 0.3));

Here, img is some cv::Mat loaded beforehand, List() << x << y << z … is equiva-
lent to (list x y z …). Operator << can be used to put additional elements to the list on
the step of expression tree creation (not evaluation). imr is created as the random
3-channel image with img as the initial value. MatDiff2 calculates RMSE per pixel
between two matrices. AnnealingQuery is the simulated annealing optimization query,
which minimizes the value of its last child, and its return value is set to the corres-
ponding value of its last but one child. Here, the second term in the optimization func-
tion prevents from too noisy results. Also, GPQuery based on genetic programming is
implemented.

Fig. 1. The original blurred image and the result of inference

Simulated annealing is not really suitable to perform search in the space of images,
but reasonable result is obtained here in few seconds. It can also be seen that general
C++ code can be easily used together with our probabilistic programming library. Of
course, this code is executed before or during construction of expression tree or after
its evaluation, but not during the process of evaluation. The latter can be done by

336 A. Potapov et al.

extending the library with new classes that is relatively simple, but slightly more
involved.

Expression trees can be used not as fixed programs written by a programmer, but
as dynamic data structures built automatically. So, such a library can easily be made a
part of a larger system (e.g. a cognitive architecture).

Our library is under development and is used in this paper as the research tool, so
we will not go into more detail. Nevertheless, the current version can be downloaded
from https://github.com/aideus/prodeus

Undesirable Behavior
Optimization framework is suitable for many tasks, and optimization queries even
without complexity penalty can be applied in probabilistic programming (see some
examples in our companion paper [11]). However, even very simple generative mod-
els can be inappropriate in this framework. Consider the following program

Symbol xobs, centers, sigmas, n, xgen;
AnnealingQuery(List()

<< Define(xobs, V(4.))
<< Define(centers, List(3, -7., 2., 10.))
<< Define(sigmas, List(3, 1., 1., 1.))
<< Define(n, RndInt(Length(centers)))

 << Define(xgen, Gaussian(ListRef(centers, n), ListRef(sigmas, n)))
<< n
<< (xobs – xgen) * (xobs – xgen));

Intuitively, this program should simply return the number of the center closest to
xobs since AnnealingQuery will minimize the distance from the generated value to the
class center. However, evaluation of this program yields almost random indices of
centers. The same model works fine in Church. The following query will return the
distribution with p(n=1)≈1; and in the case of (define centers '(-7., -2., 10.)) it will
return p(n=1)≈p(n=2)≈0.5.

(define (noisy-equal? x y)
(flip (exp (* -1 (– x y) (– x y)))))

(mh-query 100 100
 (define xobs 4)
 (define centers '(-7., 2., 10.))
 (define sigmas '(1., 1., 1.))
 (define n (random-integer (length centers)))
 (define xgen (gaussian (list-ref centers n) (list-ref sigmas n)))
 n
 (noisy-equal? xobs xgen))
It should be noted that noisy-equal? should apply flip to the correctly estimated li-

kelihood, if one wants e.g. to get correct posterior probabilities for xgen. In particular,
it should include such parameter as dispersion or precision. That is, these programs in
C++ and Church really include the same information.

Inappropriate result of AnnealingQuery originates from its possibility to reduce the
given criterion adjusting values of all random variables including both n and xgen in
this model. It is much easier to adjust xgen directly since its probability is not taken

 Optimization Framework with Minimum Description 337

into account in the criterion. This problem can be easily fixed here, if we will tell
AnnealingQuery to minimize the distance from the n-th center to xobs. The program
will be simpler, and its result will be correct. However, the general problem will
remain. It will reveal itself in the form of overfitting, impossibility to select an appro-
priate number of cluster or segments in the tasks of clustering and segmentation,
necessity to manually define ad hoc criteria, and so on. These are exactly the
problems, which are solved with the use of the MDL principle.

Complexity Estimation

Apparently, if we want optimization queries to work similarly to sampling queries, we
need to account for probabilities, with which candidate solutions are generated. Here,
we assume that the criterion fed to optimization queries can be treated as the negative
log-likelihood. Then, it will be enough to automatically calculate and add minus
logarithm of prior probability of a candidate solution to achieve the desirable
behavior.

We calculate these prior probabilities by multiplying probabilities in those nodes of
the program trace subtree starting from AnnealingQuery or GPQuery, in which basic
random choices are made. Here, we assume that the list of expressions fed to queries
is relevant. As the result, each such choice is taken into account only once, even if a
variable referring to this choice is used many times.

AnnealingQuery and GPQuery were modified and tested on the program presented
above, and they returned n=1 in all cases, so they behave desirably. Of course, opti-
mization queries give less information than sampling queries. For example, in the
case of centers '(-7., -2., 10.) the former will return n=1 or n=2 randomly, while the
latter will return their probabilities. However, optimization queries can be much more
efficient, and can be used to find the first point, from which methods like mh-query
can start.

4 Evaluation

Since we aim at practical probabilistic programming for Turing-complete languages,
we consider image analysis tasks which are computationally quite heavy. To the best
of our knowledge, the only example of such application is the work [12] (and unfor-
tunately it lacks information about computation time). Thus, possibility to solve im-
age analysis tasks in a reasonable time can be used as a sufficient demonstration of
efficiency of the optimization framework. This is also our goal in addition to verifica-
tion of the automatic MDL criterion calculation procedure.

Consider the task of detection of erythrocytes (our system wasn’t aimed to solve
this specific task, and it is taken simply as an example; other tasks could be picked).
The typical image is shown in Fig. 2. The task is to detect and count cells. This task is
usually solved by detecting edge pixels and applying Hough transform, or by tracking
contours and fitting circles. Direct application of existing implementations of image
processing methods is not enough, and application of non-trivial combinations of
different processing functions or even ad hoc implementation of these functions is
needed (e.g. [13]).

338 A. Potapov et al.

Fig. 2. The original image with red blood cells

However, an acceptable solution can be obtained using the following very small
generative model:

Define(n, RndInt(20) + 10)
Define(circs, Repeat(n, Lambda0(List(RndInt(img.cols),

 RndInt(img.rows),
 RndInt(12)+6))))

Define(gen, Foldr(Lambda(circ, im,
 DrawCircle(im, circ[0], circ[1], circ[2], V(168), V(-1))),
 circs, V(cv::Mat::zeros(img.rows, img.cols, cv::CV_8UC1))))

circs
Log(MatDiff2(gen, V(img))) * V(img.cols * img.rows)
Here, n is the number of circles to draw, circs is the list of random circle centers

and radii (img is the inverted image to be analyzed), gen is the generated image. It is
generated starting from an empty image and consequently drawing circles from circs.
It should be noted that since our library implements a functional quasi-language, such
functions as DrawCircle don’t modify the given image, but return a new one. The last
two expressions in the model contain the resulting value and estimation of minus log-
likelihood. To increase performance, we also implemented Drawer class. During
evaluation Drawer processes a list of shapes and draws them using one resulting im-
age. The program with Drawer instead of Foldr and DrawCircle was tested.

AnnealingQuery failed on the image with many objects, since each step of simu-
lated annealing consists in an attempt to modify coordinates and sizes of all circles
simultaneously, and successful modification becomes very unlikely for large number
of variables. GPQuery showed acceptable results (see Fig. 3), but with some adjust-
ment of the crossover operator.

GPQuery yields better results here, since it automatically performs “soft decompo-
sition” of the given problem. However, its results are not optimal, and the search time
is not too small (5–30 seconds on i5 2.6 GHz depending on GP parameters). Never-
theless, it is already usable for rapid prototyping.

The search problem is one of the most important problems here, and it is far from
being fully solved. However, we are interested in testing the developed method for
incorporating the MDL criterion into the optimization queries. Let us consider the
calculated value of this criterion on different small images (Fig. 4) for different num-
ber of circles in order to ensure that the found solution is nearly optimal. Table 1
summarizes the obtained results.

Fig. 3. The result yielded by
mutation rate = 0.005)

Fig. 4.

Ta

Image # 1 2

1 14650.4 14
2 20201.3 19
3 14680.3 13
4 9270.7 81

It can be seen that the to

number of circles for each
negative log-likelihood slig
Actually, since blood cells
vered parts of cells can inc
log-likelihood in some cas
probability will also give a
the origin of this result is no
eral, the found minima of th
of blood cells, and partially

5 Conclusion

The developed method for
ciple in probabilistic progr

Optimization Framework with Minimum Description

GPQuery (population size = 300, number of generations = 1

Image fragments and best results for them

able 1. Total description lengths, bits

n
3 4 5 6

4038.0 13131.2 12687.3 12689.3 12690.0
9612.1 18888.2 17955.2 17104.2 17115.2
3995.2 12808.1 12391.7 12316.6 12321.0
155.1 8160.6 8162.6 8163.2 8168.5

otal description length starts to slowly increase from so
image. Each circle adds around 10 bits of complexity.
ghtly decreases, but slower than increase of complex
are not perfectly circular, additional circles fitted to un
crease model complexity lesser than decrease of negat
es. However, in these cases, queries calculating poste
strong peak at the same number of circles. In other wor
ot in query procedures or criteria, but in the model. In g
he description length criteria correspond to the real num

y presented cells are reliably detected.

automatic usage of the Minimum Description Length p
amming both reduces the gap between the looselyapp

339

100,

0
2
0

ome
So,

xity.
nco-
tive
rior
rds,

gen-
mber

prin-
plied

340 A. Potapov et al.

MDL principle and the theoretically grounded, but impractical Kolmogorov complexity,
and helps to avoid overfitting in optimization queries making them an efficient alterna-
tive to more traditional queries estimating conditional probabilities. Experiments con-
ducted on the example of an image analysis task confirmed availability of this approach.

However, even optimization queries being not specialized cannot efficiently solve
arbitrary induction tasks especially connected to AGI. Actually, the task of such effi-
cient inference can itself be considered as the “AI-complete” problem. Thus, deeper
connections between AGI and probabilistic programming fields are to be established.

Acknowledgements. This work was supported by Ministry of Education and Science of the
Russian Federation, and by Government of Russian Federation, Grant 074-U01.

References

1. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic
Probability. Springer (2005)

2. Wallace, C.S., Boulton, D.M.: An Information Measure for Classification. Computer
Journal 11, 185–195 (1968)

3. Rissanen, J.J.: Modeling by the Shortest Data Description. Automatica-J.IFAC 14,
465–471 (1978)

4. Vitanyi, P.M.B., Li, M.: Minimum Description Length Induction, Bayesianism, and
Kolmogorov complexity. IEEE Trans. on Information Theory 46(2), 446–464 (2000)

5. Potapov, A.S.: Principle of Representational Minimum Description Length in Image Anal-
ysis and Pattern Recognition. Pattern Recognition and Image Analysis 22(1), 82–91 (2012)

6. Solomonoff, R.: Does Algorithmic Probability Solve the Problem of Induction?. Oxbridge
Research, Cambridge (1997)

7. MacKay, D.J.C.: Bayesian Methods for Adaptive Models. PhD thesis, California Institute
of Technology (1991)

8. Goodman, N.D., Tenenbaum, J.B.: Probabilistic Models of Cognition.
https://probmods.org/

9. Stuhlmüller, A., Goodman, N. D.: A dynamic programming algorithm for inference in re-
cursive probabilistic programs. In: Second Statistical Relational AI Workshop at UAI 2012
(StaRAI-12), arXiv:1206.3555 [cs.AI] (2012)

10. Chaganty, A., Nori A.V., Rajamani, S.K.: Efficiently sampling probabilistic programs via
program analysis. In: Proc. Artificial Intelligence and Statistics, pp. 153–160 (2013)

11. Potapov, A., Batishcheva, V.: Genetic Programming on Program Traces as an Inference
Engine for Probabilistic Languages. In: LNAI (2015)

12. Mansinghka, V., Kulkarni, T., Perov, Y., Tenenbaum, J.: Approximate Bayesian Image
Interpretation using Generative Probabilistic Graphics Programs. Advances in Neural
Information Processing Systems, arXiv:1307.0060 [cs.AI] (2013)

13. Zhdanov, I.N., Potapov, A.S., Shcherbakov, O.V.: Erythrometry method based on a
modified Hough transform. Journal of Optical Technology 80(3), 201–203 (2013)

Can Machines Learn Logics?

Chiaki Sakama1(B) and Katsumi Inoue2

1 Department of Computer and Communication Sciences, Wakayama University,
Sakaedani, Wakayama 640-8510, Japan

sakama@sys.wakayama-u.ac.jp
2 National Institute of Informatics,

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
inoue@nii.ac.jp

Abstract. This paper argues the possibility of designing AI that can
learn logics from data. We provide an abstract framework for learning
logics. In this framework, an agent A provides training examples that
consist of formulas S and their logical consequences T . Then a machine
M builds an axiomatic system that underlies between S and T . Alterna-
tively, in the absence of an agent A, the machine M seeks an unknown
logic underlying given data. We next provide two cases of learning logics:
the first case considers learning deductive inference rules in propositional
logic, and the second case considers learning transition rules in cellular
automata. Each case study uses machine learning techniques together
with metalogic programming.

1 Introduction

Logic-based AI systems perform logical inferences to get solutions given input
formulas. Such systems have been developed in the field of automated theorem
proving or logic programming [10]. In those systems, however, a logic used in
the system is specified and built-in by human engineers. Our question in this
paper is whether it is possible to develop artificial (general) intelligence that
automatically produces a logic underlying any given data set.

In his argument on “learning machines” in [14], Alan Turing wrote:

Instead of trying to produce a programme to simulate the adult mind,
why not rather try to produce one which simulates the child’s? If this
were then subjected to an appropriate course of education one would
obtain the adult brain [14, p. 456].

According to Piaget’s theory of cognitive development, children begin to under-
stand logical or rational thought at age around seven [12]. If one can develop
AI that automatically acquires a logic of human reasoning, it verifies Turing’s
assumption that a child’s brain can grow into an adult’s one by learning an
appropriate logic. Recent advances in robotics argue possibilities of robots’ rec-
ognizing objects in the world, categorizing concepts, and associating names to
them (physical symbol grounding) [3]. Once robots successfully learn concepts
c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 341–351, 2015.
DOI: 10.1007/978-3-319-21365-1 35

342 C. Sakama and K. Inoue

and associate symbols to them, the next step is to learn relations between con-
cepts and logical or physical rules governing the world.

In this study, we will capture learning logics as a problem of inductive learn-
ing . According to [9], “(t)he goal of (inductive) inference is to formulate plau-
sible general assertions that explain the given facts and are able to predict new
facts. In other words, inductive inference attempts to derive a complete and
correct description of a given phenomenon from specific observations of that
phenomenon or of parts of it” [9, p. 88]. A logic provides a set of axioms and
inference rules that underlie sentences representing the world. Then given a set
of sentences representing the world, one could inductively construct a logic gov-
erning the world. This is in fact a work for mathematicians who try to find an
axiomatic system that is sound and complete with respect to a given set of the-
orems. Induction has been used as an inference mechanism of machine learning,
while little study has been devoted to the challenging topic of learning logics.

In this paper, we first describe an abstract framework for learning logics
based on inductive learning. Next we provide two simple case studies: learning
deductive inference rules and learning cellular automata (CAs) rules. In the
former case, the problem of producing deductive inference rules from formulas
and their logical consequences is considered. In the second case, the problem of
producing transition rules from CA configurations is considered. In each case, we
use machine learning techniques together with metalogic programming. The rest
of this paper is organized as follows. Section 2 introduces an abstract framework
for learning logics. Section 3 presents a case of learning deductive inference rules
and Section 4 presents a case of learning CA rules. Section 5 discusses further
issues and Section 6 summarizes the paper.

2 Learning Logics

To consider the question “Can machines learn logics?”, suppose the following
problem. There is an agent A and a machine M. The agent A, which could be a
human or a computer, is capable of deductive reasoning: it has a set L of axioms
and inference rules in classical logic. Given a (finite) set S of formulas as an
input, the agent A produces a (finite) set of formulas T such that T ⊂ Th(S)
where Th(S) is the set of logical consequences of S. On the other hand, the
machine M has no axiomatic system for deduction, while it is equipped with a
machine learning algorithm C. Given input-output pairs (S1, T1), . . . , (Si, Ti), . . .
(where Ti ⊂ Th(Si)) of A as an input to M, the problem is whether one can
develop an algorithm C which successfully produces an axiomatic system K for
deduction. An algorithm C is sound wrt L if it produces an axiomatic system K
such that K ⊆ L. An algorithm C is complete wrt L if it produces an axiomatic
system K such that L ⊆ K. Designing a sound and complete algorithm C is called
a problem of learning logics (Figure 1). In this framework, an agent A plays the
role of a teacher who provides training examples representing premises along
with entailed consequences. The output K is refined by incrementally providing
examples. We consider a deduction system L while it could be a system of

Can Machines Learn Logics? 343

Input Agent A

Si
� deduction

system L �

Output

Ti (⊂ Th(Si))

��
Input Machine M

(Si, Ti)
� learning

system C �

Output

K

Fig. 1. Learning Logics

arbitrary logic, e.g. nonmonotonic logic, modal logic, fuzzy logic, as far as it
has a formal system of inference. Alternatively, we can consider a framework in
which a teacher agent A is absent. In this case, given input-output pairs (Si, Ti)
as data, the problem is whether a machine M can find an unknown logic (or
axiomatic system) that produces a consequence Ti from a premise Si.

The abstract framework provided in this section has challenging issues of AI
including the questions:

1. Can we develop a sound and complete algorithm C for learning a classical or
non-classical logic L?

2. Is there any difference between learning axioms and learning inference rules?
3. Does a machine M discover a new axiomatic system K such that K � F iff

L � F for any formula F?

The first question concerns the possibility of designing machine learning algo-
rithms that can learn existing logics from given formulas. The second question
concerns differences between learning Gentzen-style logics and Hilbert-style log-
ics. The third question is more ambitious: it asks the possibility of AI’s discov-
ering new logics that are unknown to human mathematicians.

In this paper, we provide simple case studies concerning the first question.
To this end, we represent a formal system L using metalogic programming which
allows object-level and meta-level representation to be amalgamated [2].

3 Learning Deductive Inference Rules

The preceding section provided an abstract framework for learning logics. This
section considers a simple case of the problem. Suppose a set S of atomic formulas
which contains atoms with the predicate hold. Each atom in S is in the form
hold(F) where F is a formula in propositional logic. Hence, hold is a meta-
predicate, hold(F) is a meta-atom, while F is an object-level formula. A rule has
the form:

A ← Γ (1)

344 C. Sakama and K. Inoue

where A is a meta-atom and Γ is a conjunction of meta-atoms. Given a rule R
of the form (1), A is called the head of R and Γ is called the body of R. The
atom A is also represented by head(R) and the set of atoms in Γ is represented
by body(R). In what follows, a meta-predicate or a meta-atom is simply called
a predicate or an atom, and an object-level formula is called a formula as far
as no confusion arises. We consider an agent A with an inference system L that
performs the following inference:

from hold(p) and hold(p ⊃ q) infer hold(q)

where p and q are propositional variables. In this case, given a finite set S of
atoms as an input, A outputs the set:

T = S ∪ {hold(q) | hold(p) ∈ S and hold(p ⊃ q) ∈ S }.

We now consider the machine M that can produce deductive inference rules
from S and T as follows. Given each pair (S, T) as an input, we first consider a
learning system C which constructs a rule:

A ←
∧

Bi∈S

Bi (2)

where A ∈ T \ S. The rule (2) represents that an atom A in T \ S is derived
using atoms in S. For example, given the set:

S = {hold(p), hold(r), hold(p ⊃ q), hold(p ⊃ r), hold(r ⊃ s) },

two atoms hold(q) and hold(s) are in T \ S. Then the following two rules are
constructed by (2):

hold(q) ← hold(p) ∧ hold(r) ∧ hold(p ⊃ q) ∧ hold(p ⊃ r) ∧ hold(r ⊃ s).
hold(s) ← hold(p) ∧ hold(r) ∧ hold(p ⊃ q) ∧ hold(p ⊃ r) ∧ hold(r ⊃ s).

The body of each rule contains atoms which do not contribute to deriving the
atom in the head. To distinguish atoms which contribute to deriving the con-
sequence, the agent A is used as follows. For a pair (S, T) from A such that
T \ S
= ∅, assume that a rule R of the form (2) is constructed. Then, select a
subset Si of S and give it as an input to A. If its output Ti still contains the
atom A of head(R), replace R with

A ←
∧

Bi∈Si

Bi.

By continuing this process, find a minimal set Sj satisfying A ∈ Tj . Such Sj

contains atoms that are necessary and sufficient for deriving atoms in Tj \ Sj .
In the above example, there is the unique minimal set:

S1 = {hold(p), hold(p ⊃ q) }

Can Machines Learn Logics? 345

that satisfies hold(q) ∈ T1, and there are two minimal sets that contain the atom
hold(s) in their outputs:

S2 = {hold(r), hold(r ⊃ s) },

S3 = {hold(p), hold(p ⊃ r), hold(r ⊃ s) }.

Then the following three rules are obtained by replacing S with Si in (2):

hold(q) ← hold(p) ∧ hold(p ⊃ q). (3)
hold(s) ← hold(r) ∧ hold(r ⊃ s). (4)
hold(s) ← hold(p) ∧ hold(p ⊃ r) ∧ hold(r ⊃ s). (5)

The rules (3) and (4) represent Modus Ponens, and (5) represents Multiple Modus
Ponens. As such, unnecessary atoms in the body of a rule are eliminated by the
minimization technique.

Unnecessary atoms in the bodies are also eliminated using the generalization
technique developed in [6].1 Suppose an agent A with an inference system L that
performs the following inference:

from hold(p ∨ q) and hold(¬q) infer hold(p).

In this case, given a finite set S of atoms as an input, A outputs the set:

T = S ∪ {hold(p) | hold(p ∨ q) ∈ S and hold(¬q) ∈ S }.

Given a sequence of input-output pairs from the agent A, the machine M con-
structs a rule R of the form (2) each time it receives a new pair (Si, Ti) from
A. Suppose two rules R and R′ such that (i) head(R) = head(R′); (ii) there is
a formula F such that hold(F) ∈ body(R) and hold(¬F) ∈ body(R′); and (iii)
(body(R′) \ {hold(¬F)}) ⊆ (body(R) \ {hold(F)}). Then, a generalized rule of R
and R′ (upon F) is obtained as

A ←
∧

Bi∈(body(R)\{hold(F)})
Bi.

For example, given the two pairs, (S1, T1) and (S2, T2), where

S1 = {hold(p ∨ q), hold(¬q), hold(r) },
T1 = {hold(p ∨ q), hold(¬q), hold(r), hold(p) },
S2 = {hold(p ∨ q), hold(¬q), hold(¬r) },
T2 = {hold(p ∨ q), hold(¬q), hold(¬r), hold(p) },

the two rules are obtained as:

hold(p) ← hold(p ∨ q) ∧ hold(¬q) ∧ hold(r),
hold(p) ← hold(p ∨ q) ∧ hold(¬q) ∧ hold(¬r).

1 The technique is used for a logic with the law of excluded middle.

346 C. Sakama and K. Inoue

Then the generalization of them is:

hold(p) ← hold(p ∨ q) ∧ hold(¬q).

This rule represents Disjunctive Syllogism.
These procedures are applicable to learning one-step deduction rules such

that

hold(¬p) ← hold(¬q) ∧ hold(p ⊃ q). (Modus Tollens)
hold(p ⊃ r) ← hold(p ⊃ q) ∧ hold(q ⊃ r). (Hypothetical Syllogism)

We can also obtain a rule for abductive inference [11] by this method. For
example, given the pair (S, T) = ({hold(q), hold(p ⊃ q)}, {hold(q), hold(p ⊃
q), hold(p)}), we can construct the Fallacy of Affirming the Consequent :

hold(p) ← hold(q) ∧ hold(p ⊃ q).

In this way, the method in this section could be used for learning non-deductive
inferences.

4 Learning CA Rules

In this section, we address another example of learning logics. Cellular automata
(CAs) [15] are discrete and abstract computational models that have been used
for simulating various complex systems in the real world. A CA consists of a
regular grid of cells, each of which has a finite number of possible states. The
state of each cell changes synchronously in discrete time steps (or generations)
according to a local and identical transition rule. The state of a cell in the next
time step is determined by its current state and the states of its surrounding cells
(called neighbors). The collection of all cellular states in the grid at some time
step is called a configuration. An elementary CA consists of a one-dimensional
array of (possibly infinite) cells, and each cell has one of two possible states 0
or 1. A cell and its two adjacent cells form a neighbor of three cells, so there
are 23 = 8 possible patterns for neighbors. A transition rule describes for each
pattern of a neighbor, whether the central cell will be 0 or 1 at the next time
step. Then 28 = 256 possible rules are considered and 256 elementary CAs
are defined accordingly. Stephen Wolfram gave each rule a number 0 to 255
(called the Wolfram code), and analyzed their properties [15]. The evolution
of an elementary CA is illustrated by starting with the initial configuration in
the first row, the configuration at the next time step in the second row, and so
on. Figure 2 shows the Rule 30 and one of its evolution where the black cell
represents the state 1 and the white cell represents the state 0. The figure shows
the first 16 generations of the Rule 30 starting with a single black cell. It is
known that the Rule 30 displays aperiodic and random patterns in a chaotic
manner.

Each transition rule is considered a logic of CA, that is, every pattern appear-
ing in a configuration is governed by one transition rule. Then we consider the

Can Machines Learn Logics? 347

Fig. 2. Evolution of patterns by the Rule 30

problem of producing a transition rule from input configurations. Such a problem
is known as the identification problem of CAs [1]. In what follows, we consider
the problem of learning the Wolfram’s Rule 30 from a series of configurations. In
an elementary CA, a configuration at a time step t is represented by a (possibly
infinite) sequence of cells 〈 · · · xt

i−1 xt
i xt

i+1 · · · 〉 where xt
i represents a state of

a cell xi at a time step t. For example, the initial configuration of Figure 2 is
represented by

〈 · · · x0
i−1 x0

i x0
i+1 · · · 〉 = 〈 · · · 010 · · · 〉

where the central black cell at the time step 0 is represented by x0
i = 1. Likewise,

the configuration at the time step 2 is represented by

〈 · · · x2
i−3 x2

i−2 x2
i−1 x2

i x2
i+1 x2

i+2 x2
i+3 · · · 〉 = 〈 · · · 0110010 · · · 〉.

We represent the state of a cell at each time step by an atom as: hold(xt
i)

if xt
i = 1 and hold(¬xt

i) if xt
i = 0. Then the initial configuration of Figure 2 is

represented by the (infinite) set of atoms:

{. . . , hold(¬x0
i−1), hold(x0

i), hold(¬x0
i+1), . . .}.

To cope with the problem using a finite set, we consider the five cells:

St = 〈xt
i−2 xt

i−1 xt
i xt

i+1 xt
i+2 〉

in each time step. Table 1 represents evolution of those five cells in the first four
time steps.

Corresponding to the framework provided in Section 2, an agent A produces
St+1 from an input St. Given input-output pairs (S0, S1), . . . , (St, St+1), . . . of A
as an input to a machine M, the problem is whether M can identify the transition
rule of this CA. For a pair of configurations (S0, S1), the machine M produces a
rule R that represents the states of the cell x0

j (i − 1 ≤ j ≤ i + 1) and its neighbors

348 C. Sakama and K. Inoue

Table 1. Evolution of 〈xt
i−2 x

t
i−1 x

t
i x

t
i+1 x

t
i+2 〉

step xt
i−2 xt

i−1 xt
i xt

i+1 xt
i+2

t=0 0 0 1 0 0
t=1 0 1 1 1 0
t=2 1 1 0 0 1
t=3 1 0 1 1 1

in the body of R and represents the state of the cell x1
j in the head of R. There are

three such rules:

hold(x1
i−1) ← hold(¬x0

i−2) ∧ hold(¬x0
i−1) ∧ hold(x0

i).
hold(x1

i) ← hold(¬x0
i−1) ∧ hold(x0

i) ∧ hold(¬x0
i+1).

hold(x1
i+1) ← hold(x0

i) ∧ hold(¬x0
i+1) ∧ hold(¬x0

i+2).

Similarly, given a pair of configurations (S1, S2), the machine M produces the
following three rules:

hold(x2
i−1) ← hold(¬x1

i−2) ∧ hold(x1
i−1) ∧ hold(x1

i).
hold(¬x2

i) ← hold(x1
i−1) ∧ hold(x1

i) ∧ hold(x1
i+1).

hold(¬x2
i+1) ← hold(x1

i) ∧ hold(x1
i+1) ∧ hold(¬x1

i+2).

The following two rules are respectively obtained by (S3, S4) and (S6, S7):

hold(¬x4
i−1) ← hold(x3

i−2) ∧ hold(¬x3
i−1) ∧ hold(x3

i).
hold(¬x7

i) ← hold(¬x6
i−1) ∧ hold(¬x6

i) ∧ hold(¬x6
i+1).

Since a transition rule does not change during the evolution and it is equally
applied to each cell, the above eight rules are rewritten as

hold(xt+1
i) ← hold(¬xt

i−1) ∧ hold(¬xt
i) ∧ hold(xt

i+1). (6)

hold(xt+1
i) ← hold(¬xt

i−1) ∧ hold(xt
i) ∧ hold(¬xt

i+1). (7)

hold(xt+1
i) ← hold(xt

i−1) ∧ hold(¬xt
i) ∧ hold(¬xt

i+1). (8)

hold(xt+1
i) ← hold(¬xt

i−1) ∧ hold(xt
i) ∧ hold(xt

i+1). (9)

hold(¬xt+1
i) ← hold(xt

i−1) ∧ hold(xt
i) ∧ hold(xt

i+1). (10)

hold(¬xt+1
i) ← hold(xt

i−1) ∧ hold(xt
i) ∧ hold(¬xt+1

i+1). (11)

hold(¬xt+1
i) ← hold(xt

i−1) ∧ hold(¬xt
i) ∧ hold(xt

i+1). (12)

hold(¬xt+1
i) ← hold(¬xt

i−1) ∧ hold(¬xt
i) ∧ hold(¬xt

i+1). (13)

Can Machines Learn Logics? 349

The eight rules (6)–(13) represent the transition rule of the Rule 30. Further, we
get the following rules:

hold(xt+1
i) ← hold(¬xt

i−1) ∧ hold(xt
i). (by (7) and (9))

hold(xt+1
i) ← hold(¬xt

i−1) ∧ hold(xt
i+1). (by (6) and (9))

hold(¬xt+1
i) ← hold(xt

i−1) ∧ hold(xt
i). (by (10) and (11))

hold(¬xt+1
i) ← hold(xt

i−1) ∧ hold(xt
i+1). (by (10) and (12))

Those rules are finally summarized as:

hold(xt+1
i) ← (hold(xt

i−1) ∧ hold(¬xt
i) ∧ hold(¬xt

i+1))
∨ (hold(¬xt

i−1) ∧ (hold(xt
i) ∨ hold(xt

i+1))). (14)

hold(¬xt+1
i) ← (hold(¬xt

i−1) ∧ hold(¬xt
i) ∧ hold(¬xt

i+1))
∨ (hold(xt

i−1) ∧ (hold(xt
i) ∨ hold(xt

i+1))). (15)

The rules (14) and (15) represent the Wolfram’s Rule 30.
Learning elementary CA rules is implemented in [6]. Learning elementary

CA rules is simple because it is one-dimensional, two-state, and has the fixed
neighborhood size. On the other hand, identifying CA rules in practice is difficult
because configurations are observed phenomena in the real-world and there is
no teacher agent A in general.

5 Discussion

This paper argues the possibility of discovering logics using AI. Logic is consid-
ered as meta-mathematics here, so the task is to find meta-laws given pairs of
premises and consequences in mathematical or physical domain. On the other
hand, discovering mathematical theorems or scientific laws in the objective theo-
ries has been studied in AI. For instance, Lenat [7] develops the automated math-
ematician (AM) that automatically produces mathematical theorems including
Goldbach’s Conjecture and the Unique Factorization Theorem. Schmidt and
Lipson [13] develop AI that successfully deduces the laws of motion from a pen-
dulum’s swings without a shred of knowledge about physics or geometry. To the
best of our knowledge, however, there are few studies that aim at discovering
logics or meta-theorems.

In Section 2 we address an abstract framework of learning formal systems
based on logics. An interesting question is whether the same or a similar frame-
work can be applied for learning non-logical systems. In this case, a set of input-
output pairs (or premise-consequence pairs) are not given from a teacher agent
A in general, but can be implicitly hidden in log files of dynamic systems or
in dialogues with unknown agents. The machine M has to identify those input-
output relations automatically to output a set of meta-theoretical inference rules
for the domain or inference patterns of those agents. Non-logical inferences are
also used in pragmatics [8]. In conversation or dialogue, the notion of conversa-
tional implicature [4] is known as a pragmatic inference to an implicit meaning

350 C. Sakama and K. Inoue

of a sentence that is not actually uttered by a speaker. For instance, if a speaker
utters the sentence “I have two children”, it normally implicates “I do not have
more than two children”. This is called a scalar implicature which says that a
speaker implicates the negation of a semantically stronger proposition than the
one asserted. Given a collection of dialogues, a question is whether a machine
can automatically acquire pragmatic rules of inference that interpret implicit
meaning behind utterance. Once such a non-logical inference is learned, it must
be refined or revised through a continuous, cyclic process between evidences and
abduction on meta-theoretical relations [5]. The process would thus introduce a
dynamics of incremental perfection of theories. To realize such a system, further
extension and elaboration of the framework provided in this paper are needed
and much work are left for future research.

6 Summary

Answering the question “can machines learn logics?” is one of the challenging
topics in artificial general intelligence. We argued the possibility of realizing
such AI and provided some case studies. A number of questions remain open,
for instance, whether the goal is achieved using existing techniques of machine
learning or AI; which logics are to be learned and which logics are not; whether
non-logical rules are learned as well, etc. Exploring those issues would contribute
to better understanding human intelligence and take us one step closer to real-
izing “strong AI.” Although the abstract framework provided in this paper is
conceptual and case studies are rather simple, the current study serves as a kind
of base-level and would contribute to opening the topic.

References

1. Adamatzky, A.: Identification of Cellular Automata. Taylor & Francis, London
(1994)

2. Bowen, K.A., Kowalski, R.A.: Amalgamating language and metalanguage in
logic programming. In: Clark, K., Tarnlund, S.A. (eds.) Logic Programming,
pp. 153–172. Academic Press (1983)

3. Coradeschi, S., Loutfi, A., Wrede, B.: A short review of symbol grounding in robotic
and intelligent systems. KI - Kunstliche Intelligenz 27, 129–136 (2013)

4. Grice, H.P.: Logic and conversation. In: Cole, P., Morgan, J. (eds.) Syntax and
Semantics, 3: Speech Acts, pp. 41–58. Academic Press (1975)

5. Inoue, K.: Meta-level abduction. IFCoLog Journal of Logic and their Applications
(in print) (2015)

6. Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition.
Machine Learning 94, 51–79 (2014)

7. Lenat, D.B.: On automated scientific theory formation: a case study using the AM
program. In: Hayes, J.E., Michie, D., Mikulich, O.I. (eds.) Machine Intelligence,
vol. 9, pp. 251–283. Ellis Horwood (1979)

8. Levinson, S.C.: Pragmatics. Cambridge University Press (1983)

Can Machines Learn Logics? 351

9. Michalski, R.S.: A theory and methodology of inductive learning. In: Michalski,
R.S., et al. (eds.) Machine Learning: An Artificial Intelligence Approach,
pp. 83–134. Morgan Kaufmann (1983)

10. Minker, J. (ed.): Logic-based Artificial Intelligence. Kluwer Academic (2000)
11. Peirce, C.S.: Elements of logic. In: Hartshorne, C., Weiss, P. (eds.) Collected Papers

of Charles Sanders Peirce, vol. II. Harvard University Press (1932)
12. Piaget, J.: Main Trends in Psychology. Allen & Unwin, London (1973)
13. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data.

Science 324 (2009)
14. Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950)
15. Wolfram, S.: Cellular Automata and Complexity. Westview Press (1994)

Comparing Computer Models
Solving Number Series Problems

Ute Schmid1(B) and Marco Ragni2

1 Cognitive Systems Group, University of Bamberg, Bamberg, Germany
ute.schmid@uni-bamberg.de

2 Foundations of AI, Technical Faculty, University of Freiburg,
Freiburg im Breisgau, Germany
ragni@cs.uni-freiburg.de

Abstract. Inductive reasoning requires to find for given instances a
general rule. This makes inductive reasoning an excellent test-bed for
artificial general intelligence (AGI). An example being part of many IQ-
tests are number series: for a given sequence of numbers the task is to
find a next “correct” successor number. Successful reasoning may require
to identify regular patterns and to form a rule, an implicit underlying
function that generates this number series. Number series problems can
be designed along different dimensions, such as structural complexity,
required mathematical background knowledge, and even insights based
on a perspective switch. The aim of this paper is to give an overview
of existing cognitive and computational models, their underlying algo-
rithmic approaches and problem classes. A first empirical comparison of
some of these approaches with focus on artificial neural nets and induc-
tive programming is presented.

1 Introduction

Over the last decade, there has been growing interest in computer models solving
intelligence test problems. Especially, the proposal to establish a psychometric
artificial intelligence (PAI; [3,6]) with the aim to evaluate the intelligence of an
artificial cognitive system based on its performance on a set of tests of intelligence
and mental abilities motivated research in this domain [2].

One of the mental abilities considered by researchers as a fundamental con-
stituent of general intelligence is inductive reasoning [22]. A well established,
culture free test in this domain is Raven Progressive Matrices (RPM; [18]) where
regularities have to be identified in a two-dimensional matrix of geometrical pat-
terns. Another problem domain is inductive reasoning with numbers. In contrast
to RPM, problems are represented in one dimension, that is, as a sequence, and
a certain amount of mathematical knowledge is presupposed. Number series are,
for example, included in two well known intelligence test batteries, namely the
IST [1] and the MIT [25]. To solve RPM as well as number series problems, one
has to analyze the given components, construct a hypothesis about the regu-
larity characterizing all components, generalize this regularity and apply it to
generate a solution.
c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 352–361, 2015.
DOI: 10.1007/978-3-319-21365-1 36

Computer Models Solving Number Series Problems 353

Currently, there are different proposals of computer models solving number
series problems which are studied in isolation. In our opinion it would be worth-
while to compare these models to gain insight into (1) the general power of the
underlying algorithmic approaches with respect to scope and efficiency, and (2)
their correspondence to human cognitive processes.

In the following, we first introduce the domain of number series problems in
more detail and identify characteristics to classify such problems. Afterwards, we
shortly present the computer systems developed to solve number series problems
within artificial intelligence and cognitive systems research. A first empirical
comparison of systems concludes the article.

2 Number Series Problems

A number series can be mathematically defined by a function mapping the natu-
ral numbers into the real numbers: f : N → R. For intelligence test problems, typ-
ically the co-domain is restricted to integers. Series used in intelligence tests are
usually restricted to the four basic arithmetic operations. Furthermore, numbers
are restricted to small values which allow easy mental calculations [12]. Num-
ber series problems in intelligence tests are characterized as “having a unique
solution” [1]. However, in general, there do not exist unique solutions for induc-
tive problems [11]. A more precise characterization is that it must be possible
to identify a unique rule from the given pattern which captures its regularity.
Whether such a rule can be found depends on the length and kind of the given
sequence. In intelligence tests, often five elements of a series are given and the
test person or the program has to find the next element.

A variety of number series is illustrated in Table 1. Series can be generated by
applying one operation to the predecessor, resulting in a simple linear function
(see E1, Table 1). There can be alternating series where a different rule applies
to elements on even and odd index positions (see E2, Table 1). Series can depend
on more than one predecessor, which is the case for the Fibonacci series (see E3,
Table 1). Series can be composed by nesting two series (see E4, Table 1). An
example for a series which has no unique solution, if only 5 elements are given is
presented as E5 in Table 1: One solution can be to double the second last element
and subtract 2 or, equivalently, to decrement the second last element and then
double it. Alternatively, a higher order rule can explain the pattern of the first
5 elements, where 21 is added once, 22 is added twice, 23 is added three times,
and so on. A final example presents a series containing a mathematical pattern
of the index (see E6, Table 1) which has been investigated by Hofstadter [10].
This last sequence is a typical example of a problem which is simple for humans
but difficult for systems based on pattern induction because it has no simple
closed representation.1 Human performance depends on the complexity of the
underlying pattern but can also depend on specific background knowledge. E.g.,
computer science students can often easily identify Fibonacci numbers or powers
of two. The examples of Table 1 show that there are simple problems for humans

1 The closed representation relies on a non-primitive recursive function:
f(n) = f(n − f(n − 1)) + 1.

354 U. Schmid and M. Ragni

Table 1. Examples for number series problems. The numbers in brackets represent for
the given series two possible successor sequences.

ID Series General Rule f(n) Type

E1 1, 4, 7, 10, 13, 16, 19, 22, . . . = f(n − 1) + 3, , f(1) = 1 linear
E2 2, 4, 3, 5, 4, 6, 5, 7, . . . = if(even(n), f(n − 1) + 2, alternating

f(n − 1) − 1)
E3 4, 11, 15, 26, 41, 67, 108, 175, . . . = f(n − 1) + f(n − 2), Fibonacci

f(1) = 4, f(2) = 11
E4 5, 6, 12, 19, 32, 52, 85, 138, . . . = f(n − 1) + (f(n − 2) + 1), nested

f(1) = 5, f(2) = 6
E5 8, 10, 14, 18, 26, [34, 50, 66,] . . . = f(n − 2) × 2 − 2 not unique

= (f(n − 2) − 1) × 2
f(1) = 8, f(2) = 10

8, 10, 14, 18, 26, [34, 42, 58,] . . . = f(n − 1) + 2n, f(1) = 8
E6 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, . . . write each number n n-times intuitive

(such as E6) but difficult for machines and vice versa depending on their under-
lying algorithmic principles. Based on these considerations, Number series may
be characterized according to the following features:

Necessary background knowledge: To solve series, only knowledge of basic arith-
metic operators (or even only of the successor function) is necessary. But series can
become more efficiently solvable with mathematical knowledge such as knowing the
factorial or checksum-functions.

Numerical values: Numbers are typically small in the context of psychometric tests.
We can assume that humans have no problems with large values if they can be
represented in a simple form, such as decimal multiples and we can assume that
numerical values have less impact on performance of computer systems than of
humans.

Structural complexity: Series can be solvable by application of one basic operation
to the predecessor or might depend on complex relations between several prede-
cessors.

Existence of a closed formula: Most number series of interest can be characterized
by a closed formula as given in Table 1. However, some series, such as E6 in Table
1 can be easily described verbally while a closed form is highly sophisticated or
even not known. Other problems even need a switch of perspective, such as 3, 3, 5,
4, 4, 3 which gives the number of letters of the verbal representation of the index.

We assume that these features influence performance of humans as well as
machines, however not necessarily in the same way. In the context of psychomet-
rics, difficulty of a problem is assessed by the percentage of subjects that solve
the problem at hand on a given time. This measure does not capture charac-
teristics of the number series and its impact on the cognitive or computational
processes involved. An empirical investigation of the cognitive determinants of
number series performance was presented by Holzman et al. [12]. It was shown
that mathematical skill has an impact on performance for more complex series.
A proposal to capture difficulty of number series problems based on a resource-
bounded Kolmogorov complexity was made by Stranneg̊ard et al. [23] with a
focus on structural complexity.

Computer Models Solving Number Series Problems 355

Table 2. Series solved by the anti-unification approach of Burghardt [4]

0,1,4,9 f(n) = n ∗ n 0,1,2,1,4,1 f(n) = if(even, n, 1)
0,2,4,6 f(n) = f(n − 1) + 2 0,0,1,1,0,0,1,1 f(n) = even(n − 2)
1,1,2,3,5 f(n) = f(n − 1) + f(n − 2) 0,1,3,7 f(n) = 2 × f(n − 1) + 1

3 Systems Solving Number Series

Approaches for solving number series problems can be distinguished in systems
which are specifically designed to solve this type of problems and in the applica-
tion of general purpose algorithms or algorithms developed for a different prob-
lem domain. For both kinds of approaches, there are computer models which
aim at performance criteria such as scope and efficiency and computer models
which aim at simulation of cognitive systems.

Early Systems. The earliest computational approach for a cognitively-inspired
AI systems solving number series is SeekWhence [10,14]. Hofstadter aimed on
an expert system which depends on a set of specific rules characterizing mathe-
matical relations. Instead, his aim was to solve sequences using general principles
such as pattern recognition and analogy. The system was able to identify well
known sequences appearing interleaved. For example, given 1, 1, 3, 4, 6, 9 it rec-
ognizes the square numbers 1, 4, 9 and the triangle numbers 1, 3, 6. Hofstadter
was especially interested in sequences which do not require typical mathemati-
cal operations. One example is the index number problem (see E6 in Table 1).
Another example is 1, 1, 1, 2, 1, 1, 2, 1, 2, 3. To identify the inherent pat-
tern of this sequence, chunking is necessary: ((1)) ((1)(12)) ((1)(12)(123)). To
solve such problems Mahabal [13] developed SeqSee influenced by the CopyCat
system [10].

Sanghi and Dowe [19] presented a very simple program which was able to
solve a variety of number series problems. This program was not intended as
an AI or cognitive system as a demonstration that rather trivial programs can
be able to pass an intelligence test. An approach developed in the context of
automated theorem proving was applied to solve number series problems [4]:
An algorithm for anti-unification of mathematical expressions was successfully
applied to several number series, among them alternating series and Fibonacci
(see Table 2).

Rule-Based Systems. In the last four years, two rule-based systems for solving
number series were proposed. Siebers and Schmid [21] presented a semi-analytical
approach where the term structure defining a given number series is guessed
based on heuristic enumeration of term structure. To evaluate the approach,
a generator of number series was realized (see also [5]) and the system was
evaluated with 25,000 randomly created number series resulting in an accuracy
of 93%.

A system based on similar principles is ASolver. However, this system
takes into account plausible restrictions of working memory [23,24]. Systems

356 U. Schmid and M. Ragni

nat = 0 | s(nat) eq Plustwo((s 0) nil) = s^3 0

[nat] = [] | nat:[nat] eq Plustwo((s^3 0) (s 0) nil) = s^5 0

eq Plustwo((s^5 0) (s^3 0) (s 0) nil) = s^7 0

Fig. 1. Representation of a simple number series for Igor2, s is the successor function

performance was evaluated with 11 (non published) problems from the IQ test
PJP and shown to outperform mathematical tools such as Maple and Wol-
framAlpha.

An Inductive Programming Approach. Rule-based systems are specifically
designed for solving problems from the number series domain. However, when
being interested in systems which are able to general intelligent behavior, the
challenge is to identify approaches which can be applied to different domains
without specific adaptation and without a meta-algorithm which selects a suit-
able special purpose algorithm. The anti-unification approach of Burghardt [4]
is a first example of a successful application of a system designed for a different
domain to number series.

Another example is the inductive program system Igor2 [9,20] which learns
functional (Maude or Haskell) programs from small sets of input/output
examples. For instance, given examples for reversing a list with up to three
elements, Igor2 generalizes the recursive reverse function together with helper
functions last and init. Igor2 is based on constructor-term rewriting and there-
fore, besides the examples for the target function, the data types have to be
declared. For lists, the usual algebraic data type [a] = [] | a:[a] is used. To
apply Igor2 for induction of a constructor-function which correctly describes
and continues a given number series, as a crucial first step, we have to decide
how to represent the needed data types, equations, and background knowledge.

In a first investigation the effect of different representations on Igor2’s per-
formance was investigated with 100 number series varied with respect to size of
numerical values and structural complexity [8]. It turned out that the system
performed comparably with all representation formats tested, in the following
we only consider the format given in Figure 1: The system needs the data types
for list and natural number as input. A number series problem is represented as
a set of example equations. For instance, the sequence 1, 3, 5 is represented as
three examples giving the sequence up to a given length as input and the next
element as output.

Igor2 can induce functions characterizing the infinite sequence without
background knowledge, for series which can be characterized by incrementing
or decrementing values of predecessors. For more complex series, more special-
ized mathematical operations can be pre-defined and the system can use them
for rule construction. However, while the availability of mathematical knowledge
typically will improve human performance [12], Igor2’ performance time and
memory requirements increase when background knowledge is given.

A Neural Network Approach. All approaches introduced so far are based on
symbolic computation. Such systems generate the solution of a number series

Computer Models Solving Number Series Problems 357

problem by identifying the underlying regularity. The generalized rule to char-
acterize the infinite sequence is explicitly constructed. That is, the symbolic
systems are not only able to produce the next number, but to “explain” by
the given function why this number was given. A limitation is that the set of
functions that can be computed is rather restricted. In contrast, artificial neural
networks (ANNs) are in principle able to approximate arbitrary functions. Ragni
and Klein [16] investigated number series prediction with three-layered networks
with error back-propagation and the hyperbolic tangent as activation function.
The approach uses a dynamic learning approach: An ANN was trained on the
given numbers and the missing number was the target value to be predicted.
The number of training values of a pattern is equivalent to the number of input
nodes i of the network used. Starting with the first number, a sub-sequence of
training values was shifted through the number series. As corresponding target
value, the next number of the sub-sequence was used. Since the last given value
of the number series with length n remains as target value and at least one
training and one test pattern is needed, the maximum length of a subsequence
of training values is n − 2. Hence, for a network configuration with m input
nodes n − m patterns were generated. The first (n − m) − 1 patterns were used
for training, while the last one remained for testing and thus predicting the last
given number of the sequence.

4 Performance Comparison: Igor2, ANNs, and Humans

Igor2’s performance was tested with the series presented in [4] (see Table 2)
and could generate correct solutions for all of them. We did not systematically
evaluate performance time, since performance was very fast (some milliseconds)
for all problems. Most series could be solved without background knowledge with
the following exceptions: For Fibonacci, addition had to be pre-defined, for the
square function, the square function had to be pre-defined, and for the series
f(n) = 2 × f(n − 1) + 1, multiplication had to be pre-defined. Igor2 could not
solve problem E6 from Table 1 since it depends on identifying a pattern in form
of a recursive function which is µ-recursive for this problem.

Furthermore, Igor2’s performance was tested against human performance
on 20 series systematically varied with respect to structural complexity and
numerical values [15]. Based on results of 46 subjects who participated in an
online experiment, it showed that indeed, a lesser number of humans (34 out
of 46) succeeded for number series with high numbers, such as 237, 311, 386,
462, 539, characterizable as f(n) = f(n − 1) + n + 73. Furthermore, due to the
constructive representation of numbers, Igor2 failed to solve this series. The
largest constant for which Igor2 could produce a result was for with problem
was 36. Details of the study are given in [15],

The ANN approach was applied to the 73 SeqSee number series problems
described in section 3 and presented in [13]. As in a previous investigation
[17] settings were systematically varied from 500, 1000, 5000, 10000, 15000, each
with a learning rate ranging from .125 up to .875 with a step width of .125.

358 U. Schmid and M. Ragni

Table 3. Empirical comparison of human performance (n = 17) with ANNs and
IGOR2 (ID based on the order of the series as reported in [16]; results for humans are
correct/incorrect/no answer)

Responses
ID Number Series Rule f(n) = Human IGOR2 ANN

05 2,5,8,11,14,17,20,23 f(n − 1) + 3 9/3/5 + +
07 25,22,19,16,13,10,7,4 f(n − 1) − 3 16/0/1 + +
19 8,12,16,20,24,28,32,36 f(n − 1) + 4 15/0/2 + +
13 54,48,42,36,30,24,18 f(n − 1) − 6 16/1/0 + +

08 28,33,31,36,34,39,37 f(n − 2) + 3 17/0/0 + +
14 6,8,5,7,4,6,3,5 f(n − 2) − 1 16/0/1 + +
20 9,20,6,17,3,14,0,11 f(n − 2) − 3 16/0/1 - +
01 12,15,8,11,4,7,0,3 f(n − 2) − 4 15/0/2 + +

11 4,11,15,26,41,67,108 f(n − 1) + f(n − 2) 8/1/8 + +
09 3,6,12,24,48,96,192 f(n − 1) × 2 13/1/3 + -

16 7,10,9,12,11,14,13,16 if(even, f(n − 1) + 3, f(n − 1) − 1) 14/0/3 + +
18 8,12,10,16,12,20,14,24 if(even, f(n − 2) + 4, f(n − 2) + 2) 17/0/0 + +
15 6,9,18,21,42,45,90,93 if(even, f(n − 1) + 3, f(n − 1) × 2) 14/1/2 - +
17 8,10,14,18,26,34,50,66 if(even, f(n − 2) + 6 × 2i, f(n − 2) + 8) 13/1/3 - +

10 3,7,15,31,63,127,255 f(n) = 2 × f(n − 1) + 1 12/3/2 + -
04 2,3,5,9,17,33,65,129 f(n − 1) + f(n − 1) − 1 13/1/3 + +
03 2,12,21,29,36,42,47,51 f(n − 1) + 12 − n 14/1/2 - +
02 148,84,52,36,28,24,22 (f(n − 1)/2) + 10 12/2/3 + +
06 2,5,9,19,37,75,149,299 f(n − 1) × 2 + (−1)n 6/4/7 - -

12 5,6,7,8,10,11,14,15 no squares 10/1/6 - +

The number of input nodes from 1 to 3 are varied, but the number of nodes
within the hidden layer from 1 to 20. On average, over all number series, an
increasing number of training iterations was counter-effective, that is, the num-
ber of solvable series was reduced. For 500 iterations 19 number series could
not be solved by any configuration. For 15 000 iterations this number rose to
22. Over all types of configurations there remain 13 number series unsolved.
Furthermore, the ANN approach was applied to number series given in intelli-
gence tests: the 20 problems of IST, also investigated by Stranneg̊ard et al. [23]
and the 14 problems of the MIT. Again number of input nodes, hidden layers,
and learning rate were varied as above. Over all configurations 19 out of the
20 IST number series could be solved, one remains unsolved. For the MIT over
all configurations 12 out of the 14 number series could be solved, two remain
unsolved. Analyzing the networks show again, that 3 input nodes and about 5-6
hidden nodes with a low learning rate are the most successful ones. This pattern
appears in all our benchmarks. Ragni and Klein [16] developed 20 number series
as a benchmark for the ANN approach given in Table 3. The problems differed
in the underlying construction principle and varied from simple additions and
multiplications to combinations of these operations. One series (S12) is of the
type studied by Hofstadter [10]: it is composed of the numbers which are not
squares.

Computer Models Solving Number Series Problems 359

An empirical study with 17 human subjects was conducted2. Subjects
received the series in randomized order on paper and had to fill in the last
number of the series. With the exception of the low performance for the simple
series S05, the empirical results support our assumptions: While humans deal
easily with series based on a simple operation on the immediate predecessor, they
have problems with series depending on more than one predecessor number (as
the Fibonacci variant S11). Although humans can deal with alternating series
for simple operations, they have problems if these series involve multiplications
(S15) or a nested series depending on the index (S17). Igor2 and the ANN
approach were tested with the same problems. However, Igor2 did only receive
the first 5 elements of a series as input, the ANN was trained with 7 inputs and
had to predict the 8th value. For some of the series, solution success of Igor2
did depend on the chosen representation for the series. For some of the series,
mathematical background knowledge was given to Igor2 as described in section
3. Details of the empirical results for Igor2 are given in [7]. Overall, there are
six number series which could not be solved by Igor2 and three number series
which could not be solved by the ANNs. Among them is only one series (S06)
which could be solved by neither approach.

5 Conclusions and Further Work

Number series form an excellent testbed for AGI-systems. An overview of sys-
tems solving number series problems show that some systems are designed to
model human cognitive processes while others aim at high performance. We
introduced two approaches: The inductive programming system Igor2 is a sym-
bolic approach to learning declarative rules from examples and a sub-symbolic
approach using ANNs to function estimation. We compared both approaches
with human performance. It showed that the ANN approach could solve more
problems than Igor2. However, each ANNs must be trained for each series tak-
ing several thousand training iterations while Igor2 could be applied to all series
without adaptation. Furthermore, Igor2 not only returns the next number but
also the function which explains how the solution was generated. This is more
similar to humans that can justify a given solution. This approach shows that
there are many interesting questions left. To compare systems systematically,
a benchmark set – a repository of problems with a difficulty measure indepen-
dent of a specific systems might be necessary. A first step into this direction
was made by Stranneg̊ard et al. [23] who characterized problem difficulty by
bounded Kolmogorov complexity, but depending on a specific algorithm. Alter-
natively, human performance could be used as a guideline. Given the 20 series
investigated, Igor2 as well as the ANN could not solve all problems and they
differed from human performance. However, the 20 series do not represent a
systematic variation over the features characterizing problems as described in
section 2. As a next step, we plan to compose a more systematic repository of

2 For more information please refer to [16]

360 U. Schmid and M. Ragni

problems and to invite researchers to discuss and propose other number series
problems – towards a systematic competition in this domain.

Acknowledgments. This work has been supported by a Heisenberg-fellowship to the
second author and a grant within the SPP 1516 “New Frameworks of Rationality”.
The authors are grateful to Andreas Klein for helping in evaluating the ANNs.

References

1. Amthauer, R., Brocke, B., Liepmann, D., Beauducel, A.: Intelligenz-Struktur-Test
2000 (I-S-T 2000). Hogrefe, Goettingen (1999)

2. Besold, T., Hernández-Orallo, J., Schmid, U.: Can machine intelligence be mea-
sured in the same way as human intelligence? KI - Künstliche Intelligenz (2015)

3. Bringsjord, S.: Psychometric artificial intelligence. Journal of Experimental & The-
oretical Artificial Intelligence 23(3), 271–277 (2011)

4. Burghardt, J.: E-generalization using grammars. Artificial Intelligence 165, 1–35
(2005)

5. Colton, S., Bundy, A., Walsh, T.: Automatic invention of integer sequences. In:
AAAI/IAAI, pp. 558–563 (2000)

6. Hernández-Orallo, J., Dowe, D.L., Hernández-Lloreda, M.V.: Universal psycho-
metrics: Measuring cognitive abilities in the machine kingdom. Cognitive Systems
Research 27, 50–74 (2014)

7. Hofmann, J.: Automatische Induktion über Zahlenreihen - Eine Fallstudie zur
Analyse des induktiven Programmiersystems IGOR2 (Automated induction of
number series - A case study analysing the inductive programming system IGOR2).
Master’s thesis, University of Bamberg (December 2012)

8. Hofmann, J., Kitzelmann, E., Schmid, U.: Applying inductive program
synthesis to induction of number series a case study with IGOR2. In: Lutz, C.,
Thielscher, M. (eds.) KI 2014. LNCS, vol. 8736, pp. 25–36. Springer, Heidelberg
(2014)

9. Hofmann, M., Kitzelmann, E., Schmid, U.: A unifying framework for analysis
and evaluation of inductive programming systems. In: Goerzel, B., Hitzler, P.,
Hutter, M. (eds.) Proceedings of the Second Conference on Artificial General Intel-
ligence (AGI-09, Arlington, Virginia, March 6–9 2009), pp. 55–60. Atlantis Press,
Amsterdam (2009)

10. Hofstadter, D.: Fluid Concepts and Creative Analogies. Basic Books, New York
(1995)

11. Holland, J., Holyoak, K., Nisbett, R., Thagard, P.: Induction - Processes of Infer-
ence, Learning, and Discovery. MIT Press, Cambridge (1986)

12. Holzman, T.G., Pellegrino, J.W., Glaser, R.: Cognitive variables in series comple-
tion. Journal of Educational Psychology 75(4), 603–618 (1983)

13. Mahabal, A.A.: Seqsee: A concept-centred architecture for sequence perception.
Ph.D. thesis, Indiana University Bloomington (2009)

14. Meredith, M.J.E.: Seek-whence: a model of pattern perception. Tech. rep., Indiana
Univ., Bloomington (USA) (1986)

15. Milovec, M.: Applying Inductive Programming to Solving Number Series Problems
- Comparing Performance of IGOR with Humans. Master’s thesis, University of
Bamberg (September 2014)

Computer Models Solving Number Series Problems 361

16. Ragni, M., Klein, A.: Predicting numbers: an AI approach to solving number series.
In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS, vol. 7006, pp. 255–259. Springer,
Heidelberg (2011)

17. Ragni, M., Klein, A.: Solving number series - architectural properties of successful
artificial neural networks. In: Madani, K., Kacprzyk, J., Filipe, J. (eds.) NCTA 2011
- Proceedings of the International Conference on Neural Computation Theory and
Applications, pp. 224–229. SciTePress (2011)

18. Raven, J., et al.: Raven progressive matrices. In: Handbook of nonverbal assess-
ment, pp. 223–237. Springer (2003)

19. Sanghi, P., Dowe, D.L.: A computer program capable of passing I.Q. tests. In:
Slezak, P.P. (ed.) Proc. Joint 4th Int. Conf. on Cognitive Science, & 7th Conf. of
the Australasian Society for Cognitive Science (ICCS/ASCS-2003), pp. 570–575.
Sydney, NSW, Australia (2003)

20. Schmid, U., Kitzelmann, E.: Inductive rule learning on the knowledge level. Cog-
nitive Systems Research 12(3), 237–248 (2011)

21. Siebers, M., Schmid, U.: Semi-analytic natural number series induction. In:
Glimm, B., Krüger, A. (eds.) KI 2012. LNCS, vol. 7526, pp. 249–252. Springer,
Heidelberg (2012)

22. Sternberg, R.J. (ed.): Handbook of Intelligence. Cambridge University Press (2000)
23. Stranneg̊ard, C., Nizamani, A.R., Sjöberg, A., Engström, F.: Bounded Kolmogorov

complexity based on cognitive models. In: Kühnberger, K.-U., Rudolph, S.,
Wang, P. (eds.) AGI 2013. LNCS, vol. 7999, pp. 130–139. Springer, Heidelberg
(2013)

24. Stranneg̊ard, C., Amirghasemi, M., Ulfsbäcker, S.: An anthropomorphic method
for number sequence problems. Cognitive Systems Research 22–23, 27–34 (2013)

25. Wilhelm, O., Conrad, W.: Entwicklung und Erprobung von Tests zur Erfassung
des logischen Denkens. Diagnostica 44, 71–83 (1998)

Emotional Concept Development

Claes Stranneg̊ard1,2(B), Simone Cirillo2, and Johan Wessberg3

1 Department of Philosophy, Linguistics and Theory of Science,
University of Gothenburg, Gothenburg, Sweden

claes.strannegard@gu.se
2 Department of Applied Information Technology,

Chalmers University of Technology, Göteborg, Sweden
simone.cirillo@alumni.chalmers.se

3 Institute of Neuroscience and Physiology,
University of Gothenburg, Gothenburg, Sweden

johan.wessberg@gu.se

Abstract. Artificial emotions of different varieties have been used for
controlling behavior, e.g. in cognitive architectures and reinforcement
learning models. We propose to use artificial emotions for a different
purpose: controlling concept development. Dynamic networks with mech-
anisms for adding and removing nodes are more flexible than networks
with a fixed topology, but if memories are added whenever a new sit-
uation arises, then these networks will soon grow out of proportion.
Therefore there is a need for striking a balance that ideally ensures that
only the most useful memories will be formed and preserved in the long
run. Humans have a tendency to form and preserve memories of situa-
tions that are repeated frequently or experienced as emotionally intense
(strongly positive or strongly negative), while removing memories that
do not meet these criteria. In this paper we present a simple network
model with artificial emotions that imitates these mechanisms.

Keywords: Autonomous agent · Concept development · Emotion

1 Introduction

One strategy toward artificial general intelligence (AGI) uses mathematical
methods developed without regard to natural intelligence [23]. A second strategy
imitates the mechanisms of human psychology [3,18]. A third tries to simulate
the human brain at the neural level – as attempted in the BRAIN Initiative and
the Human Brain Project. A fourth tries to imitate computational mechanisms
that are present in nervous systems across the animal kingdom [1,6].

Bees have less than a million neurons in their brains, yet they are able to learn
new concepts with the help of reward and punishment and adapt to a wide range
of environments [9,24]. Bees are arguably more flexible and better at adapting
to new environments than present-day AI systems, so it might be possible to
create more flexible AI systems by mimicking certain of their computational
mechanisms.
c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 362–372, 2015.
DOI: 10.1007/978-3-319-21365-1 37

Emotional Concept Development 363

In this paper, we present a simple graphical model for network-based
computation and an algorithm for developing such networks – one that uses
emotional factors to guide their development. Thus we tackle the problem of
novelty-driven concept-formation, which easily leads to explosive memory for-
mation [20]. Although our model was inspired by mechanisms described in neu-
roscience, we have made no attempt to model any particular biological system.
Because our research focus is on AGI, we have felt free to mix biologically real-
istic features with more strictly pragmatically motivated ones.

Bees are capable of forming memories, reflecting capacities that cannot pos-
sibly be innate. In one revealing study [9], bees learned to differentiate between
vowels and consonants of the Latin alphabet with the help of bowls of water
containing or not containing sugar – placed next to the letters. The bees learned
the two concepts robustly despite large variations in color, font, size, and mode
of presentation. Bees have only about 950,000 neurons in their brains, implying
that they can only form a limited number of memories [24]. This raises the obvi-
ous question of which memories would be most useful from the perspective of
survivability.

Contemporary research has emphasized the importance of emotions to mem-
ory formation [13] and the role of emotional systems in decision making [4].
Sensory events can trigger reward signals (e.g., food) or indicate danger (e.g., an
approaching predator). The emotional circuits receive sensory information from
both lower and higher (i.e., cortical) levels; in mammals, they include the amyg-
dala (for punishment) and the dopaminergic and opioid systems – such as the
ventral tegmental area and periaqueductal gray (for reward). Their activation
affects memory formation via several mechanisms: e.g., by directing attention
towards the stimulus and then activating the brain’s arousal systems [12]. Emo-
tions can act directly on memory circuits in the hippocampus to sort more from
less relevant memories: so-called emotional tagging [17]. It has recently been
shown how repetitive or iterative mechanisms for memory formation – the clas-
sical Hebbian view – interact critically with emotion-driven mechanisms in the
formation of behaviorally useful long-term memories [10].

Automatic-concept-formation techniques have been used for categorization
[16,21], clustering [11], and automatic theorem proving [8]. Blum and colleagues
[7] survey several concept-formation techniques for machine-learning. Concept
formation is a central component of such cognitive architectures as Sigma [18]
and MicroPsi [2].

Concept formation finds a close statistical analogue in learning the structure
of graphical models [19]: e.g., variable-order Markov models (VMMs: see [5]),
which can be used for sequential prediction. The main difficulty with learning
such models is discovering which parts of the past are useful for predicting the
future. VMMs make predictions based on variable-length history windows; they
are very efficient to learn, given that they can be described in terms of non-
parametric tree distributions. Consequently, VMMs – and other tree models –
have been used in reinforcement learning for some time. One of the first successful
models was the U-tree [15], which adds leaf nodes to a VMM tree only when the

364 C. Stranneg̊ard et al.

new nodes’ utility predictions are statistically different from the current ones.
This and similar models are not limited to sequential partitions of observations:
it is possible to generate trees using an arbitrary metric, to compare histories [22]
within a fully Bayesian framework.

Marsella and colleagues [14] survey computational models of emotion, includ-
ing models based on appraisal theory; while Bach [2] offers a framework for
modeling emotions.

Section 2 presents our network model and Section 3 describes computations
in such models. Section 4 offers an algorithm for developing these networks
automatically. Section 5 presents results. Section 6 draws some preliminary con-
clusions.

2 Transparent Networks

Definition 1 (Network). A (transparent) network is a finite, labeled, directed,
and acyclic graph (V,E) where nodes a ∈ V may be labeled:

– SENSORi, where i ∈ ω (fan-in 0)
– MOTOR (fan-in 1, fan-out 0)
– AND (fan-in 2)
– OR (fan-in 2)
– DELAY (fan-in 1)
– REV ERB (fan-in 1)

The fan-in and fan-out conditions in parentheses are restrictions on E. Each
(a, b) ∈ E has an associated weight w(a, b) ∈ [0, 1].

Nodes labeled SENSORi model sensors of modality i. SENSORi could e.g.
model a receptor cell with ion channels sensitive to cold temperature, mechani-
cal pressure, or acidity. Nodes labeled MOTOR model muscle-controlling motor
neurons. Nodes labeled AND and OR model nerve cells with high and low
thresholds respectively. Nodes labeled DELAY model nerve cells that re-
transmit action potentials with a delay. Nodes labeled REV ERB model nerve
cells or nerve-cell clusters that stay active (i.e., reverberate) for some time after
they have been excited. Figure 1 provides example networks. Note that some
nodes that appear in figures throughout this paper have labels that do not appear
in Definition 1. They represent sensors or more complex networks computing the
concept indicated by the label.

3 Network Computation

Definition 2 (Stimulus). Let G = (V,E) be a network and let S(V) consist
of the sensors of V , i.e. those nodes that are labeled SENSORi, for some i.
A stimulus for G is a function σ : S(V) → {0, 1}.
Stimuli model the presence or absence of action potentials on receptors.

Emotional Concept Development 365

SENSOR

OR

MOTOR

SENSOR

(a)

H

DELAY

AND

I

(b)

Lightning

REVERB

AND

Thunder

(c)

Fig. 1. Examples of transparent networks. (a) The tentacle of an anemone that retracts
upon being touched. (b) The letter H immediately followed by the letter I. (c) Lightning
followed by thunder (within ten time steps of the system).

Definition 3 (Input Stream). Let G = (V,E) be a network. An input stream
for G is a sequence σ1, σ2, . . ., where each σi is a stimulus for G.

Input streams give rise to two types of activity that propagate through the
networks: perception and imagination. We chose to model perception and imagi-
nation separately, thus distinguishing clearly between exogenous perception and
endogenous imagination.

Definition 4 (Time). Let T be the set of natural numbers, modeling time.

Input streams give rise to two types of activity that propagate through the
networks: perception and imagination. We chose to model perception and imagi-
nation separately, thus distinguishing clearly between exogenous perception and
endogenous imagination.

Definition 5 (Perception). Let G = (V,E) be a network and let L(a) be the
label of node a ∈ V . The perception pG : V × T → {0, 1} generated by the input
stream σ1, σ2, . . . is defined as follows. Let pG(a, 0) = 0 for all a ∈ V . Let

pG(a, n + 1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σn+1(a) if L(a) = SENSORi

pG(a′, n + 1) if L(a) = MOTOR, (a′, a) ∈ E

min{pG(a′, n + 1) : (a′, a) ∈ E} if L(a) = AND

max{pG(a′, n + 1) : (a′, a) ∈ E} if L(a) = OR

pG(a′, n) if L(a) = DELAY, (a′, a) ∈ E

1 if L(a) = REV ERB, (a′, a) ∈ E, ∃n′ ∈ [n − 10, n]pG(a′, n′) = 1

0 if L(a) = REV ERB, (a′, a) ∈ E, � ∃n′ ∈ [n − 10, n]pG(a′, n′) = 1

Given a certain input sequence, node a is active at step n in G if pG(a, n) = 1. A
DELAY node is active at n iff its parent node was active at n − 1. A REVERB
node is active at n iff its parent node was active at some point during the last
ten time steps. Figure 2 offers examples of perception, where perceptual activity
is indicated by boldface node borders.

366 C. Stranneg̊ard et al.

AND

DELAY

AND

æ

DELAY

l

p

(a)

AND

DELAY

AND

æ

DELAY

l

p

(b)

AND

DELAY

AND

æ

DELAY

l

p

(c)

Fig. 2. Propagation of perception. The phonetic sequence [æpl] is perceived in three
consecutive steps.

Definition 6 (Imagination). Imagination i : V × T → [0, 1] is defined as
follows. Let i(a, n) = max{p(a′, n) · w(a′, b, n) : E(a′, b) and E(a, b)}, where
w(a′, b, n) is the label on edge (a′, b) ∈ E at time n.

Figure 3 offers examples of imagination, where imagination is indicated by
dashed-line node borders. The darker the interior of the node, the more intense
the imagination.

4 Network Development

Next, we define the network-development mechanism that generates a sequence
of networks G0, G1, . . . from input stream σ0, σ1, . . . and initial network G0.
The initial graph G0 is called the genotype; all graphs Gn+1 are phenotypes.
For each n, Gn+1 is obtained either by extending Gn or trimming Gn. As in
natural nervous systems, activity continues to flow in the networks while they
are being modified. The definitions of activity propagation can be taken directly
from fixed graphs and applied to graph sequences. First, we must introduce some
basic concepts pertaining to networks.

Definition 7 (Reward Signal). A reward signal is a function r : T → [−1, 1],
where [−1, 1] is the real interval between -1 and 1.

Positive reward signals model reward; negative reward signals model punishment.

Definition 8 (Arousal). Let arousal(n) = abs(r(n)), where abs means abso-
lute value.

Emotional Concept Development 367

Coffee

AND

Sugar

(a)

Coffee

AND

Sugar

(b)

Thunder

AND

REVERB

Lightning

(c)

Fig. 3. Propagation of imagination. (a) Perceiving coffee, while imagining sugar
strongly. (b) Perceiving sugar, while imagining coffee weakly. (c) Expecting thunder
after lightning.

Definition 9 (Birth). Let G0, G1, . . . be a sequence of networks. Suppose node
a appears in some Gi. Then birth(a) is the smallest n such that a ∈ Gn.

Definition 10 (RelativeFrequency).LetRF (a, n) = card{m ∈ [birth(a), n] :
p(a,m) = 1}/(n − birth(a)), where card is the cardinality function.

Definition 11 (Closure). Let E∗ be the reflexive and transitive closure of E.

Definition 12 (Learning Parameters). The following parameters regulate
the network development process:

– p0 ∈ ω (size parameter)
– p1 ∈ [0, 1] (construction parameter)
– p2 ∈ [0, 1] (viability parameter)
– p3 ∈ [0, 1] (destruction parameter)
– p4 ∈ [0, 1] (multimodality parameter)

Next, we will introduce a number of notions that trigger extensions (14-17) or
trimming (18-19) of the network. We begin with a local notion of emotionality.

Definition 13 (Emotionality). Let emo(a, n) = avg{r(n′) : pGn′ (a, n′) = 1 :
n′ ∈ [birth(a), n]}, where avg means average.

Example 1. Here are examples of how emotionality might be computed:

– emo(cake, t) = avg{0.7, 0.8, 0.3} = 0.6
– emo(snake, t) = avg{−0.5,−0.7,−0.9} = −0.7

Definition 14 (Top Active Node). Suppose G = (V,E) is a graph and
σ0, σ1, . . . a sequence of stimuli: a ∈ V is top active in G at n if pG(a, n) = 1
and there is no b �= a such that (a, b) ∈ E∗ and pG(b, n) = 1.

Definition 15 (Surprise). Let surprise(n) = min{abs(r(n) − emo(a, n)) :
a is top active at n}.

368 C. Stranneg̊ard et al.

Bi_Low So_Low Sw_High

(a)

AND

Bi_Low So_LowSw_High

(b)

AND

AND

Bi_Low

So_Low

Sw_High

(c)

Fig. 4. Unimodal spatial construction: formation of a memory structure for the taste
of a certain apple. (a) The sensors for low bitterness, low sourness, and high sweetness
are activated. (b) Two of the top active nodes are randomly selected and joined. (c)
The only top active nodes are joined.

H I

(a)

H I

(b)

H

DELAY

AND

I

(c)

Fig. 5. Unimodal temporal construction: formation of a memory structure for the
written word ”HI” takes place in three steps.

Definition 16 (Learning Rate). Let LR(n) = p1 · surprise(n) + (1 − p1) ·
arousal(n).

Definition 17 (Modality). Suppose G = (V,E) is a network and b ∈ V .
Modality mod(b,G) is defined as {i : E∗(a, b) and L(a) = SENSORi}.
Definition 18 (Emotional Importance). Let EI(a, n) = max{abs(emo(b, n)) :

E∗(a, b)}.

Definition 19 (Viability). Let via(a, n) = p2 · EI(a, n) + (1 − p2) · RF (a, n).

Finally we are ready to introduce our operations: Two that extend the net-
works and one that trims them.

Definition 20 (Spatial Construction). Suppose G = (V,E) is a graph and
a, b ∈ V . Then spatial(G, a, b) is the graph (V ′, E′), where V ′ = V ∪ {c}, c is
a new node labeled AND, and E′ = E ∪ {(a, c), (b, c)}, with the weights of both
new edges set to 1.

Emotional Concept Development 369

AND

DELAY

AND

AND

Sw_High

AND

AND

So_Low

æ

DELAY

l

p

Bi_Low

Fig. 6. Multimodal spatial construction: when the top node was formed, the two nodes
representing apple taste and the phonetic sequence [æpl] were active and the level
of arousal was sufficiently high. At present, only apple taste is active, giving rise to
imagination in the form of the word [æpl].

Definition 21 (Temporal Construction). Suppose G = (V,E) is a graph
and a, b ∈ V . Then temporal(G, a, b) is the graph (V ′, E′), where V ′ = V ∪{c, d},
c is a new node labeled DELAY , d is a new node labeled AND, and E′ =
E ∪ {(a, c), (c, d), (b, d)}, with the weights of the three new edges set to 1.

Definition 22 (Destruction). Suppose G = (V,E) is a graph and a ∈ V . Then
forget(G, a) is the graph (V ′, E′), where V ′ = V − V ′′, V ′′ = {b ∈ V : E∗(a, b)}
and E′ = E − {(b, c) ∈ E : b ∈ V ′′ or c ∈ V ′′}.
Definition 23 (Admissibility). Let G0, G1, . . . be a sequence of networks and
σ0, σ1, . . . a sequence of stimuli. Spatial(Gn, a, b) is admissible at n if both a and
b are top active in Gn at n. Temporal(Gn, a, b) is admissible at n if a is top
active in Gn−1 at n − 1 and b is top active in Gn at n.

With the terminology in place, we are ready to define the network devel-
opment algorithm: see Algorithm 1, where flip(p) is the result of flipping a
weighted coin that produces outcome 1 with probability p.

Figures 4 and 6 offer examples of network development processes generated
by Algorithm 1. Figure 4 shows the formation of a memory of apple taste. Figure
5 shows the formation of a memory of the written word ”HI”. A memory of the
spoken word [æpl], shown in Figure 2 (a), can be formed analogously, but it
requires one repetition of the sequence [æpl]. Figure 6, finally, shows how the
apple taste and apple word networks are joined.

370 C. Stranneg̊ard et al.

Algorithm 1. Network development algorithm
loop

if card(Vn) < p0 and flip(LR(n)) = 1 then
if there are preferred a, b s.t. spatial(Gn, a, b) is admissible at n
and mod(a, Gn) = mod(b, Gn) = {i}, for some i then

Let Gn+1 = spatial(Gn, a, b).
else if there are preferred a, b s.t. temporal(Gn, a, b) is admissible at n
and mod(a, Gn) = mod(b, Gn) = {i}, for some i then

Let Gn+1 = temporal(Gn, a, b).
else if arousal(Gn) > p4

if there are preferred a, b s.t. spatial(Gn, a, b) is admissible at n
Let Gn+1 = spatial(Gn, a, b).

else if there are preferred a, b s.t. temporal(Gn, a, b) is admissible at n
Let Gn+1 = temporal(Gn, a, b).

end if
end if

else if via(a, n) < p3 for some a ∈ Vn then
Let Gn+1 = forget(Gn, a), where via(a, n) is minimal.

end if
Compute the edge weights w(a, b, n + 1) reflecting Pr(b|a).
Compute the learning rate LR(n + 1).
Compute the viabilities via(a, n + 1).

end loop

5 Results

Algorithm 1 was implemented in Python 2.7 using the graphic package Graphviz
for visualization. All of the development processes described in this paper were
obtained using this program and straightforward input streams.

Figures 1–6 illustrate how networks are formed by the algorithm. In this case
the algorithm develops exactly the desired memory structures with no undesir-
able structures as side effects. The algorithm gravitates toward memories that
are emotionally intense, frequently repeated, or both.

6 Conclusion

Our study indicates that artificial emotions are well suited for guiding the devel-
opment of dynamic networks by regulating the quality and quantity of memories
formed and removed. The presented network model and network development
mechanism are relatively simple and were mainly devised for presenting the idea
of emotional concept development. Both can clearly be improved and elabo-
rated in several directions. We conclude that artificial emotions can be fruitful,
not only for guiding behavior, but also for controlling concept development.

Emotional Concept Development 371

Acknowledgments. This research was supported by The Swedish Research Council,
grants 2012-1000 and 2013-4873. We would like to thank Christos Dimitrakakis for
many helpful suggestions.

References

1. Abbeel, P., Coates, A., Quigley, M., Ng, A.Y.: An application of reinforcement
learning to aerobatic helicopter flight. Advances in Neural Information Processing
Systems 19, 1 (2007)

2. Bach, J.: A framework for emergent emotions, based on motivation and cognitive
modulators. International Journal of Synthetic Emotions (IJSE) 3(1), 43–63 (2012)

3. Bach, J.: MicroPsi 2: The Next Generation of the MicroPsi Framework. In:
Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS, vol. 7716, pp. 11–20.
Springer, Heidelberg (2012)

4. Bechara, A., Damasio, H., Damasio, A.R.: Role of the amygdala in decision-making.
Annals of the New York Academy of Sciences 985(1), 356–369 (2003)

5. Begleiter, R., El-Yaniv, R., Yona, G.: On prediction using variable order markov
models. Journal of Artificial Intelligence Research, 385–421 (2004)

6. Bengio, Y.: Learning deep architectures for ai. Foundations and trends in Machine
Learning 2(1), 1–127 (2009)

7. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine
learning. Artificial Intelligence 97(1), 245–271 (1997)

8. Colton, S., Bundy, A., Walsh, T.: Automatic concept formation in pure mathe-
matics (1999)

9. Gould, J.L., Gould, C.G., et al.: The honey bee. Scientific American Library (1988)
10. Johansen, J.P., Diaz-Mataix, L., Hamanaka, H., Ozawa, T., Ycu, E., Koivumaa, J.,

Kumar, A., Hou, M., Deisseroth, K., Boyden, E.S., et al.: Hebbian and neuromod-
ulatory mechanisms interact to trigger associative memory formation. Proceedings
of the National Academy of Sciences 111(51), E5584–E5592 (2014)

11. Lebovitz, M.: Experiments with incremental concept formation. Machine Learning
2, 103–138 (1987)

12. LeDoux, J.: Emotion circuits in the brain (2003)
13. LeDoux, J.E.: Emotional memory systems in the brain. Behavioural Brain Research

58(1), 69–79 (1993)
14. Marsella, S., Gratch, J., Petta, P.: Computational models of emotion. A Blueprint

for Affective Computing-A sourcebook and Manual, 21–46 (2010)
15. McCallum, R.A.: Instance-based utile distinctions for reinforcement learning with

hidden state. In: ICML, pp. 387–395 (1995)
16. Pickett, M., Oates, T.: The Cruncher: Automatic Concept Formation Using Min-

imum Description Length. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS
(LNAI), vol. 3607, pp. 282–289. Springer, Heidelberg (2005)

17. Richter-Levin, G., Akirav, I.: Emotional tagging of memory formationØl’ the search
for neural mechanisms. Brain Research Reviews 43(3), 247–256 (2003)

18. Rosenbloom, P.S.: The sigma cognitive architecture and system. AISB Quarterly
136, 4–13 (2013)

19. Schmidt, M., Niculescu-Mizil, A., Murphy, K., et al.: Learning graphical model
structure using l1-regularization paths. In: AAAI. vol. 7, pp. 1278–1283 (2007)

372 C. Stranneg̊ard et al.

20. Stranneg̊ard, C., von Haugwitz, R., Wessberg, J., Balkenius, C.: A Cognitive
Architecture Based on Dual Process Theory. In: Kühnberger, K.-U., Rudolph, S.,
Wang, P. (eds.) AGI 2013. LNCS, vol. 7999, pp. 140–149. Springer, Heidelberg
(2013)

21. Tenenbaum, J.B., Kemp, C., Griffiths, T.L., Goodman, N.D.: How to grow a mind:
Statistics, structure, and abstraction. Science 331(6022), 1279–1285 (2011)

22. Tziortziotis, N., Dimitrakakis, C., Blekas, K.: Cover tree bayesian reinforcement
learning. The Journal of Machine Learning Research 15(1), 2313–2335 (2014)

23. Veness, J., Ng, K.S., Hutter, M., Uther, W., Silver, D.: A monte-carlo aixi approx-
imation. Journal of Artificial Intelligence Research 40(1), 95–142 (2011)

24. Witthöft, W.: Absolute anzahl und verteilung der zellen im him der honigbiene.
Zeitschrift für Morphologie der Tiere 61(1), 160–184 (1967)

The Cyber-Physical System Approach Towards
Artificial General Intelligence: The Problem

of Verification

Zoltán Tősér and András Lőrincz(B)

Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
lorincz@inf.elte.hu

Abstract. Cyber-Physical Systems have many components including
physical ones with heavy demands on workflow management; a real-time
problem. Furthermore, the complexity of the system involves some degree
of stochasticity, due to interactions with the environment. We argue that
the factored version of the event-learning framework (ELF) being able to
exploit robust controllers (RCs) can meet the requirements. We discuss
the factored ELF (fELF) as the interplay between episodic and proce-
dural memories, two key components of AGI. Our illustration concerns
a fELF with RCs and is a mockup of an explosive device removal task.
We argue that (i) the fELF limits the exponent of the state space and
provides solutions in polynomial time, (ii) RCs decrease the number of
variables and thus decrease the said exponent further, while the solution
stays ε-optimal, (iii) solutions can be checked/verified by the execution
being linear in the number of states visited, and (iv) communication can
be restricted to instructions between subcomponents of an AGI system.

1 Introduction

Cyber-physical systems (CPSs) are in the forefront of algorithmic, software,
and hardware developments. They are goal oriented. In the typical setting they
are distributed, have physical components, and can include e.g., sensory, com-
putational and robotic units. Given their complexity, testing may become the
bottleneck, especially for safety- and time-critical applications. In case of any
unexpected event or anomaly in the behavior, fast workflow management may
become a necessity and might involve changes of the plan and thus communi-
cation of new subtasks, new roles, and new methods of communication, among
other things. We say that a simple instruction or a more complex subtask make
sense in a given context, if the responsible actors can execute them given the
information provided. Successful completion of an instruction or a subtask ver-
ifies a portion of a larger plan. The larger the plan and the more complex the
system, the more serious anomalies may occur. In turn, stochastic formulation
is required.

We shall put forth the factored event-learning framework (fELF), a special
form of reinforcement learning (RL), that has polynomial time learning char-
acteristics and the maximal number of concurrent and dependent factors limits
c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 373–383, 2015.
DOI: 10.1007/978-3-319-21365-1 38

374 Z. Tősér and A. Lőrincz

the exponent of the state space (Sect. 2). We illustrate fELF via a toy mockup
explosive device (ED) removal task (Sect. 3). Up to the number of variables, the
solution is ‘hard to find ’. In the discussion section (Sect. 4) we will argue that
this problem is ‘easy to verify ’ by following the steps in time as prescribed by
the solution. Such solutions are worth to communicate. We conjecture that IQ
tests are of similar nature. Conclusions will be drawn in Sect. 5.

2 Theoretical Background

We propose the MDP framework for CPSs. We utilize the generalized MDP
(gMDP) formulation. Its ε-gMDP extension concerns ε-precise quantities and
can exploit robust controllers if they meet the ε-precise condition. We review
the event-learning framework (ELF) [8,16] that breaks tasks into subtasks, can
admit ε-precise robust controllers and can hide some of the variables. An ELF
extended with robust controllers is an ε-gMDP. The factored formulation of MDP
gives rise to polynomial time optimization. Taken together, a factored generalized
ELF with a robust controller is an ε-gMDP with polynomial time optimization.
Execution requires the communication of instructions to the subcomponents
making verification linear in time for deterministic systems.

2.1 Markov Decision Processes

A (finite) MDP [10] is defined by the tuple 〈X,A,R, P 〉. X and A denote the
finite set of states and actions, respectively. P : X × A × X → [0, 1] is the
transition function, the probability of arriving at state y after executing action
a in state x. R : X × A × X → R is the reward function: R(x, a, y) is the
immediate reward for transition (x, a, y).

Decision making aims at finding the optimal behavior subject to some opti-
mality criterion, e.g., to infinite-horizon expected discounted total reward, when
we want to find a policy π : X × A → [0, 1] that maximizes the expected value
of

∑∞
t=0 γtrt, where rt is the immediate reward in time step t and 0 ≤ γ < 1 is

the discount factor.
A standard way to find an optimal policy is to estimate the optimal value

function V ∗ : X → R, which gives the value (the expected cumulated discounted
reward with the given starting state) of each state. From this, the optimal policy
is the ‘greedy’ policy with respect to the optimal value function, i.e., the following
Bellman equation:

V ∗(x) = max
a

∑

y

P (x, a, y) (R(x, a, y) + γV ∗(y)) , for all x ∈ X. (1)

2.2 Generalized MDP (gMDP) and ε-gMDPs

Operations
∑

y P (x, a, y) . . . and maxa ... can be extended, e.g., with risk con-
siderations. Joint formalism for the different Bellman equiations has been con-
structed in [13]: a generalized MDP is defined by the tuple 〈X,A,R,

⊕
,
⊗〉,

The Cyber-Physical System Approach Towards AGI 375

where X, A, R are defined as above;
⊕

: (X × A × X → R) → (X × A → R)
is an ‘expected value-type’ operator and

⊗
: (X × A → R) → (X → R) is a

‘maximization-type’ operator. We want to find the value function V ∗, where

V ∗(x) =
⊗⊕

(R(x, a, y) + γV ∗(y)), for all x ∈ X.

or in short form V ∗ =
⊗⊕

(R + γV ∗). The optimal value function can be
interpreted as the total reward received by an agent behaving optimally in a
non-deterministic environment. The operator

⊕
describes the effect of the envi-

ronment. The operator
⊗

describes the action-selection of an optimal agent.
When 0 ≤ γ < 1, and both

⊕
and

⊗
are non-expansions, the optimal solution

V ∗ of the equations exists and it is unique.
Generalized ε-MDP (ε-gMDP) assumes a prescribed ε > 0 and is defined by

the tuple 〈X,A,R, {⊕t}, {⊗
t}〉, with

⊕
t : (X × A × X → R) → (X × A →

R) and
⊗

t : (X × A → R) → (X → R), t = 1, 2, 3, . . ., if there exists a
generalized MDP 〈X,A,R,

⊕
,
⊗〉 such that lim supt→∞ ‖⊗

t

⊕
t − ⊗⊕‖ ≤ ε.

ε-MDPs have been first introduced in [7].

2.3 The Event-Learning Framework (ELF)

Event learning turns the MDP into a hierarchical problem via the event-value
function E : X × X → R [16]. Pairs of states (x, y) and (x, yd) are called events
and desired events, respectively: for a given initial state x, yd denotes the desired
next state. The formalism remains the same, but any event can be seen as an
MDP subtask : the ed = (x, yd) state sequence can be a subtask to be optimized.
E(x, yd) is the value of trying to get from actual state x to next state yd. Note
that state y reached could differ from desired state yd.

2.4 Robust Controller

Assume that a state space X and a velocity field vd : X → Ẋ are given. At time
t, the system is in state xt with velocity vt. We are looking for a control action
that modifies the actual velocity to vd(xt) with maximum probability:

ut(xt, v
d
t) = Φ(xt, v

d
t),

Φ(xt, v
d
t) is called the inverse dynamics and it can be approximated. Under

certain conditions, one can bound the tracking error to the desired level (see [16]
and the references therein).

If time is discrete, like here, then prescribing the desired velocity vd is equiv-
alent to prescribing the desired successor state yd. The controller can be directly
inserted into an ELF by setting πA

t (xt, y
d
t , a) = 1 if a = ut(xt, y

d
t) and 0 otherwise

(Fig. 1).

376 Z. Tősér and A. Lőrincz

Fig. 1. MDP models. (a): MDP, (b): One step. Input: index of the action, output:
experienced next state, (c): ELF, (d): One step. Input: desired output and the output
can be the ε-precise version of the desired output.

2.5 Event-Learning with Robust Controller Belongs to the ε-gMDP
Family

In the generalized ε-MDP, X denotes the set of states and the action
corresponds to selecting a new desired state; the set of actions A is
also equal to X. Reward function R is R(x, yd, y) and it gives the
reward for arriving at y from x, when the desired state was yd. Now,
(
⊗

tE)(x) = maxyd E(x, yd), independently of t, and (
⊕

tE)(x, yd) =∑
y pt(y|x, yd)E(x, yd, y), where pt(y|x, yd) =

∑
u πA

t (x, yd, u)P (x, u, y). Finally,
we define the operators

⊕
and

⊗
as (

⊗
E)(x) = maxyd E(x, yd) and

(
⊕

E)(x, yd) =
∑

y

∑
u πA(x, yd, u)P (x, u, y)E(x, yd, y). In turn, if robust con-

trollers are introduced into an ELF, then we still have an ε-gMDP problem with
errors that can be bounded.

2.6 Factored Markov Decision Processes (fMDPs)

In CPS, näıve tabular representation of the transition probabilities requires a
state space exponential in the number of variables. However, ongoing processes
typically exclude other ones and a much smaller number of variables may be
sufficient at any given time instant. Let X be the Cartesian product of m smaller
state spaces (corresponding to individual variables), i.e., X = X1×X2×. . .×Xm.
Each Xi has size |Xi| = ni and the size of the state space is N = |X| =

∏m
i=1 ni.

In this case, the next-step value of a state variable depends only on a
few other variables, so the full transition probability can be obtained as the
product of several simpler factors. Formally, for any subset of variable indices
Z ⊆ {1, 2, . . . ,m}, X[Z] denotes ×

i∈Z
Xi and for any x ∈ X, x[Z] denotes the

value of the variables with indices in Z. Below, we shall use the shorthand x for
the sake of simplicity. FMDPs were first introduced in [3].

The Cyber-Physical System Approach Towards AGI 377

2.7 Polynomial Time Learning

An fMDP with a factored optimistic initialization model (fOIM) – defined
below – has a polynomial per-step computational complexity. FOIM gets ε-close
to the value function of factored value iteration (which could be suboptimal) in
polynomial time [15]:

Theorem 1 (fOIM). Suppose that an agent is following factored value iter-
ation in an unknown fMDP, where all reward components fall into the inter-
val [0, Rmax], there are m state factors, and all probability- and reward-factors
depend on at most mf factors. Let E×(xt,yd

t) denote the value function of the
approximate value iteration exploiting function approximations. Let Nf = nmf

and let ε > 0 and δ > 0. If we set

RE = c · mR2
max

(1−γ)4ε

[
log mNf |A|

(1−γ)εδ

]
,

as the initial values of the MDP, then the number of time steps when the agent
makes non-near-optimal moves, i.e., when E fOIM(xt,yd

t) < E×(xt,yd
t) − ε , is

bounded by
O

(
R2

maxm4Nf |A|
ε4(1−γ)4 log3 1

δ log2 mNf |A|
ε

)

with probability at least 1 − δ.

3 Illustrative Experiment and the CPS Connection

For the sake of a fELF illustration we show an experiment with a WheelPhone
(WP) and with a Lego NXT, both equipped with Android phones, image pro-
cessing, QR code reading (not detailed here), and work sharing on a mockup
explosive device (ED) removal task. This illustration gives us the opportunity
to explain the concept of events, event hierarchy, desired states, episodes, robust
controllers and procedures, cost and risk sensitive decision making, meta-level
communication and finally, the problem of verification.

The illustration is by no means at the level of true cyber-physical systems,
although it is a high-risk analogue of a smart factory shop-floor task [11] and
has the relevant issues, such as work sharing, path planning, and execution time.
The goal of the robots is to find explosive devices and transport them to a given
safe location. The terrain contains several obstacles, which may be pushed aside
to give way to the ED-carrying robot – but this takes time. Robots used the
fELF method for decision making.

The two robots have different capabilities, their control precisions also differ
and they share the work. One robot has chances to remove the ED, the other
can clear the terrain. We used different number of obstacles and starting points
and estimated the distributions of the execution times of the subtasks and their
success rates. Each subtask is a desired event given by the actual state and the
desired state of the event may become the experienced state later. Desired states
include: ‘ED found’, ‘obstacles found’, ‘path planned’, ‘first obstacle probably

378 Z. Tősér and A. Lőrincz

cleared’, ‘ED collected’, ‘terrain cleared’, ‘track is left’, ‘ED removed’, among a
few others. Some tasks are concurrent. The low-complexity RL task in [14] is
similar and thus direct policy optimization is also possible, in case if the Markov
property is questionable. FMDP description is like in [6]: transitions are limited
to the possible ones.

Fig. 2. Experimental arrangement with subtasks. Some of them, including subfigure
(d), can be concurrent.

Explosion time has a distribution. The fELF makes decisions at discrete time
steps according to the time elapsed, the subtasks executed, the ongoing subtasks,
and the time-discretized distributions.

3.1 Results

According to the results (Fig. 3), there are three typical groups in the time
variable: execution time is shorter than 2 min, it is longer than 2 min 20 sec and
it is between these two values. We used these values for the discretization of the
execution time.

The size of the state space in the fMDP depends on the number of factored
variables at decision points. This number can be decreased if controllers are
precise. For example, the NXT robot is sufficiently precise and direction uncer-
tainties are neglected. NXT can clear away obstacles with certain probabilities,
but it remains uncertain if it succeeded to move an obstacle out of the way of
the WP robot or not. The motion of the WP robot is straight, but its direction
is somewhat imprecise. We left it like this and that made uncertain the success
of each obstacle clear-away subtask. Uncertainties measured experimentally and
the computed direction uncertainties are used in decision making. The number
of obstacles is randomly chosen from 2, 3 and 4 and are placed quasi-randomly
over the terrain.

The Cyber-Physical System Approach Towards AGI 379

Fig. 3. Examples for estimating distributions. Green S: success. Red F: failure. For
start positions, see Fig. 2(a). Failures in order: obstacle 1 is not cleared away, NXT-
WP crashed, obstacles 3 and 4 are not cleared away.

3.2 Outlook to General Cyber-Physical Systems

Components of a real CPS task are similar to a large extent. Tools, computers,
robots — that take part in the task hierarchy — all have capabilities that can be
characterized by the complexity of the subtasks they can execute, the belonging
success rates, and execution time distribution, for example. Subtasks may be
sequential or concurrent according to causal relationships and urgency. Spatio-
temporal dependencies of the processes in a complex CPS constrain possible
state–desired state pairs of fMDP events. Depending on the type of the ask, e.g.,
if it is a smart factory, or an emergency situation [9], stochastic environmen-
tal disturbances may occur with different probabilities and they may require
frequent real-time workflow management. Decision making about the changes
of the workflow may not take considerable time even for complex systems and
the lowering of the number of variables is highly desired due to the exponential
dependence of the state space on those. This is a crucial problem and robust
controllers can help in saving time, since such controllers support module con-
struction that may span longer time intervals. For example, the controller of
the NXT is more precise than that of the WP and the number of states that
may occur and the required frequency of decision making is smaller for the NXT
robot than for the WP one. Note that control precision could be increased for the
WP robot using its high quality camera. The image processing, however, may
increase energy consumption, the need for recharging, and thus the execution
time. Plans and workflow management depend on the actual ED and the related
risk and cost considerations.

4 Discussion: The Problem of Verification

In the ED removal problem we used higher order concepts (factors) for decision
making. Such concepts include ‘explosive’, ‘device’, ‘time’, and alike, instead
of raw visual, acoustic, and motor information. Furthermore, we could neglect
some of these factors in the description of the situation if those factors were
not relevant at that time of decision making. Such simplifications suit factored
RL. The problem of forming higher order concepts — that fits the task to be
solved and decreases the state space of decision making — falls outside of our
considerations.

380 Z. Tősér and A. Lőrincz

Problem solving is combinatorial in terms of the selection of the relevant
factors, the order of actions to be executed, and the selection of the agent that
should execute the action. If a decision is made then it should be communicated
to the partners and they must make sense of the messages by verifying that
the attempt towards the execution of the sub-task is feasible. This procedure of
making sense is typical: intelligence proves the solution by means of verification.
In general, intelligent verification is a pro-active mental step that exploits an
approximate an sufficiently detailed model of the world. Evolution also verifies,
but in a different way: evolution finds solutions by their success rates and without
any mental model. We take a closer look to the issue of verification below. We
note that model based verification is not part of our illustration, but the mockup
itself or its computer model can serve as tools for such verification.

4.1 Verification in the Context of Intelligence

There are at least three types of knowledge transfer:

Supervised training. concerns the agreement about concepts (or categories)
and can serve meta-level communication after the training phase.

Observations. are important pieces for decision making. However, the world
is typically partially observed and distributed observation by many agents
can help in solving the problems in due course, e.g., in the case of danger.
This knowledge transfer happens at the meta level.

Solutions to problems. include concept forming, procedures, tricks, quizzes,
mathematical proofs that exploit the formed concepts, among other things.
Many of these procedures (problems) are hard to find (solve), but the veri-
fication of the solution can be easy.

Out of the ten broad abilities underpinning the g factor of intelligence [4],
only fluid intelligence is connected to the third item, i.e., to concept forming,
solving problems, and reasoning abilities. The other nine features of intelligence
include reading and writing abilities, quantitative reasoning abilities, speed of
decision making and alike. They are of high importance, but we believe that
— from point of view of AGI and cyber-physical systems — they are either
solved or can be solved by available technologies since efficient algorithms can
reach superhuman performance if sufficiently large training samples are made
available to them [12].

Fluid intelligence seems to differ: it shows up in two steps. One step is concept
formation and the other one is solving the problem by means of those new
concepts. These two processes are interlinked. The solution can be checked by
means of verification using the formed concepts. One may say that if concept
formation and problem solving are the core problems of general intelligence then
model based verification is the tool for the appreciation of the solution.

4.2 ‘Verification’ is the Goal of Intelligent Communication

There are four categories according to the complexity of solving problems and
the complexity of the verification of the solution since both can be ‘hard’, or

The Cyber-Physical System Approach Towards AGI 381

‘easy’. Tasks can be hard or easy if they scale exponentially or polynomially with
the number of variables, respectively. Out of the four cases, problems belong-
ing to the hard to solve, but easy to verify category are particularly worth to
communicate. Such solutions can provide large savings in time and efforts for
teammates.

4.3 Interplay Between Procedural and Episodic Memories

Our example has both procedural and episodic components. Any event is an
episode and it can be saved in episodic memory for data mining, anomaly detec-
tion, model construction, and for learning to predict and control the event. The
method of dealing with an ongoing event is the procedure. It is made of actions
and sub-events. The ‘ED removal story’ is an ‘ED removal event’ brought off
by the ‘ED removal procedure’. This event may be concurrent with other events
and it is probably embedded into a larger one. The event, as described here is
independent from the other ongoing concurrent events, which in principle, could
disturb it. However, such disturbance is also an event and it is limited in space
and time. New concepts, new sensors and additional control tools can be intro-
duced to overcome disturbances of the events provided that the details of the
event are knowable, time is available and if the related costs and savings justify
the effort.

From the point of view of a larger system, ‘ED removal’ could be one of its
capabilities. Capabilities, i.e., the number of different events that can be invoked
by the agent, correspond to desired states in a fELF and they make the variables
of decision making. The number of events that can be invoked in a given state
enters exponent of state space. The size of the state space can be decreased by
learning and optimizing new capabilities made of smaller ones. The number of
variables can be decreased by introducing robust controllers. For example, the
measurement of the weight of the load can be neglected by adding a robust
controller to increase the range of the capability, see. e.g. the example presented
in [16]. Communication towards the decision making unit can be limited to the
experienced state after execution of a sub-task and to an instruction towards the
unit that has the capability to execute the next step. Such instruction contains
the desired state and possibly (some of) the steps towards the desired state, i.e.,
(part of) the ‘solution’ .

In turn, a fELF with robust controllers efficiently decreases both the number
of variables and the data to be communicated. From the point of view of verifi-
cation, deterministic solutions are easy to verify if a model of the environment
is available. For stochastic problems, stochasticity indicates limited knowledge
about a knowable universe and may call for further exploration and learning.
If more knowledge cannot be acquired in due course or if the collection of such
information is costly, then solutions and verifications may require high costs since
risks can be overestimated. Model based experimental methods of risk estimation
are in the focus of ongoing research [1].

382 Z. Tősér and A. Lőrincz

5 Conclusions

We have used an illustrative CPS mockup experiment in the factored event
learning framework (fELF). The problem involved recognition, planning, deci-
sion making, work sharing, and risk estimation. We included distributions of
execution times and success rates either via computational estimations or by
measuring those experimentally.

We have argued that a fELF with a robust controller decreases combinatorial
explosion. From the point of view of deterministic CPS problems, verification is
polynomial in the number of states [2]. If we can afford non-tight bounds and
additional resources, then experimental verification can be fast, if a model of the
environment is available [1].

It has been noted that the problem of verification is alleviated by subtask con-
struction provided that the subtasks can be executed with high fidelity. Robust
controllers suit such demands and can save task execution even in the case of
environmental disturbances. Any subtask can be viewed as a fELF problem and
as such, it can be the subject of optimization. In the same vein, optimized fELF
solutions can be embedded into larger tasks. In turn, fELF makes a partially
ordered hierarchical RL in a natural fashion.

We note that time critical cyber-physical systems require easy to verify solu-
tions. Such solutions are of high importance for interacting intelligences, since
they offer combinatorial gains for teammates. Furthermore, communication can
be limited to meta-level instructions about the states to be reached and meta-
level information about the states that have been reached upon the execution of
the instructions. CPS verification assumes approximately non-interacting sub-
events that can run concurrently or may follow each other.

We conclude that CPS tasks concern fluid intelligence and — for large dis-
tributed systems — model based real-time verification is required and the time
of verification is critical. Finding and learning potentially concurrent, but barely
interacting, i.e., independently and robustly executable sub-tasks derived from
the task space itself offer both exponential gains in the state space and flexibil-
ity in multi-tasking. Evolution demonstrates the feasibility of such constructs [5]
and engineered solutions may follow similar routes. However, from the point of
view of artificial general intelligence this is an unsolved problem. This problem is
closely related to task oriented episodic and procedural memories and it deserves
further investigations.

Acknowledgments. Thanks are due to Richárd Bellon, Dávid Hornyák, Mike Olasz,
and Róbert Rill for running the experiments. Research was supported by the European
Union and co-financed by the European Social Fund (grant no. TÁMOP 4.2.1./B-
09/1/KMR-2010-0003) and by the EIT ICTLabs grant on CPS for Smart Factories.

The Cyber-Physical System Approach Towards AGI 383

References

1. Altmeyer, S., Cucu-Grosjean, L., Davis, R.I.: Static probabilistic timing analysis
for real-time systems using random replacement caches. Real-Time Systems 51(1),
77–123 (2015)

2. Angluin, D.: A note on the number of queries needed to identify regular languages.
Information and Control 51(1), 76–87 (1981)

3. Boutilier, C., Dearden, R., Goldszmidt, M., et al.: Exploiting structure in policy
construction. IJCAI 14, 1104–1113 (1995)

4. Carroll, J.B.: The higher-stratum structure of cognitive abilities. In: The Scientific
Study of General Intelligence, ch., pp. 5–21. Pergamon (2003)

5. Graziano, M.: The organization of behavioral repertoire in motor cortex. Annu.
Rev. Neurosci. 29, 105–134 (2006)

6. Gyenes, V., Bontovics, Á., Lőrincz, A.: Factored temporal difference learning in
the New Ties environment. Acta Cybern. 18(4), 651–668 (2008)

7. Kalmár, Z., Szepesvári, C., Lőrincz, A.: Module-based reinforcement learning:
Experiments with a real robot. Machine Learning 31, 55–85 (1998)

8. Lőrincz, A., Pólik, I., Szita, I.: Event-learning and robust policy heuristics. Cogni-
tive Systems Research 4(4), 319–337 (2003)

9. Orlosky, J., Toyama, T., Sonntag, D., Sárkány, A., Lőrincz, A.: On-body multi-
input indoor localization for dynamic emergency scenarios. In: IEEE Int. Conf. on
Pervasive Comp. Comm. Workshop, pp. 320–325. IEEE (2014)

10. Puterman, M.: Markov decision processes. John Wiley & Sons, New York (1994)
11. Ribeiro, L., Rocha, A., Veiga, A., Barata, J.: Collaborative routing of products

using a self-organizing mechatronic agent framework - a simulation study. Comp.
Ind. 68, 27–39 (2015)

12. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Networks
61, 85–117 (2015)

13. Szepesvári, C., Littman, M.L.: Generalized Markov decision processes. In: Pro-
ceedings of International Conference of Machine Learning 1996, Bari (1996)

14. Szita, I., Lőrincz, A.: Learning to play using low-complexity rule-based policies. J.
Artif. Int. Res. 30, 659–684 (2007)

15. Szita, I., Lőrincz, A.: Optimistic initialization and greediness lead to polynomial
time learning in factored MDPs. In: Int. Conf. Mach. Learn., pp. 1001–1008. Omni-
press (2009)

16. Szita, I., Takács, B., Lőrincz, A.: Epsilon-MDPs. J. Mach. Learn. Res. 3, 145–174
(2003)

© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 384–393, 2015.
DOI: 10.1007/978-3-319-21365-1_39

Analysis of Types of Self-Improving Software

Roman V. Yampolskiy()

Computer Engineering and Computer Science, Speed School of Engineering,
 University of Louisville, Louisville, USA

roman.yampolskiy@louisville.edu

Abstract. Software capable of improving itself has been a dream of computer
scientists since the inception of the field. In this work we provide definitions for
Recursively Self-Improving software, survey different types of self-improving
software, and provide a review of the relevant literature. Finally, we address se-
curity implications from self-improving intelligent software.

Keywords: Recursive self-improvement · Self-modifying code · Self-modifying
software · Self-modifying algorithm · Autogenous intelligence · Bootstrap fallacy

1 Introduction

Since the early days of computer science, visionaries in the field anticipated creation
of a self-improving intelligent system, frequently as an easier pathway to creation of
true artificial intelligence1. As early as 1950 Alan Turing wrote: “Instead of trying to
produce a programme to simulate the adult mind, why not rather try to produce one
which simulates the child’s? If this were then subjected to an appropriate course of
education one would obtain the adult brain. Presumably the child-brain is something
like a notebook as one buys from the stationers. Rather little mechanism, and lots of
blank sheets... Our hope is that there is so little mechanism in the child-brain that
something like it can be easily programmed. The amount of work in the education we
can assume, as a first approximation, to be much the same as for the human child” [1].

Turing’s approach to creation of artificial (super)intelligence was echoed by
I.J. Good, Marvin Minsky and John von Neumann, all three of whom published on it
(interestingly in the same year, 1966): Good - “Let an ultraintelligent machine be
defined as a machine that can far surpass all the intellectual activities of any man
however clever. Since the design of machines is one of these intellectual activities, an
ultraintelligent machine could design even better machines; there would then unques-
tionably be an ‘intelligence explosion,’ and the intelligence of man would be left far
behind. Thus the first ultraintelligent machine is the last invention that man need ever
make” [2]. Minsky - “Once we have devised programs with a genuine capacity for
self-improvement a rapid evolutionary process will begin. As the machine improves
both itself and its model of itself, we shall begin to see all the phenomena associated

1
This paper is based on material excerpted, with permission, from the book - Artificial Superintelligence: a

Futuristic Approach © 2015 CRC Press.

 Analysis of Types of Self-Improving Software 385

with the terms “consciousness,” “intuition” and “intelligence” itself. It is hard to say
how close we are to this threshold, but once it is crossed the world will not be the
same” [3]. Von Neumann - “There is thus this completely decisive property of com-
plexity, that there exists a critical size below which the process of synthesis is dege-
nerative, but above which the phenomenon of synthesis, if properly arranged, can
become explosive, in other words, where syntheses of automata can proceed in such a
manner that each automaton will produce other automata which are more complex
and of higher potentialities than itself” [4]. Similar types of arguments are still being
made today by modern researchers and the area of RSI research continues to grow in
popularity [5-7], though some [8] have argued that recursive self-improvement
process requires hyperhuman capability to “get the ball rolling”, a kind of “Catch 22”

2 Taxonomy of Types of Self-Improvement

Self-improving software can be classified by the degree of self-modification it entails.
In general we distinguish three levels of improvement – modification, improvement
(weak self-improvement) and recursive improvement (strong self-improvement).
However, it is easy to see that recursive improvement is a type/subset of improvement
which is a subset of modification. For the purposes of this paper we will treat them as
separate classes.

2.1 Self-Modification

Self-Modification does not produce improvement and is typically employed for code
obfuscation to protect software from being reverse engineered or to disguise self-
replicating computer viruses from detection software. While a number of obfuscation
techniques are known to exist [9], ex. self-modifying code [10], polymorphic code, me-
tamorphic code, diversion code [11], none of them are intended to modify the underlying
algorithm. The sole purpose of such approaches is to modify how the source code looks
to those trying to understand the software in questions and what it does [12].

2.2 Self-Improvement

Self-Improvement or Self-adaptation [13] is a desirable property of many types of
software products [14] and typically allows for some optimization or customization
of the product to the environment and users it is deployed with. Common examples of
such software include evolutionary algorithms such as Genetic Algorithms [15-20] or
Genetic Programming which optimize software parameters with respect to some well
understood fitness function and perhaps work over some highly modular program-
ming language to assure that all modifications result in software which can be com-
piled and evaluated. The system may try to optimize its components by creating inter-
nal tournaments between candidate solutions. Omohundro proposed the concept of
efficiency drives in self-improving software [21]. Because of one of such drives,
balance drive, self-improving systems will tend to balance the allocation of resources
between their different subsystems. If the system is not balanced overall performance

386 R.V. Yampolskiy

of the system could be increased by shifting resources from subsystems with small
marginal improvement to those with larger marginal increase [21]. While perfor-
mance of the software as a result of such optimization may be improved the overall
algorithm is unlikely to be modified to a fundamentally more capable one.

Additionally, the law of diminishing returns quickly sets in and after an initial sig-
nificant improvement phase, characterized by discovery of “low-hanging fruit”, future
improvements are likely to be less frequent and less significant, producing a Bell
curve of valuable changes. Metareasoning, metalearning, learning to learn, and
lifelong learning are terms which are often used in the machine learning literature to
indicate self-modifying learning algorithms or the process of selecting an algorithm
which will perform best in a particular problem domain [22]. Yudkowsky calls such
process non-recursive optimization – a situation in which one component of the
system does the optimization and another component is getting optimized [23].

In the field of complex dynamic systems, aka chaos theory, positive feedback sys-
tems are well known to always end up in what is known as an attractor- a region
within system’s state space that the system can’t escape from [24]. A good example of
such attractor convergence is the process of Metacompilation or Supercompilation
[25] in which a program designed to take source code written by a human program-
mer and to optimize it for speed is applied to its own source code. It will likely
produce a more efficient compiler on the first application perhaps by 20%, on the
second application by 3%, and after a few more recursive iterations converge to a
fixed point of zero improvement [24].

2.3 Recursive Self-Improvement

Recursive Self-Improvement is the only type of improvement which has potential to
completely replace the original algorithm with a completely different approach and
more importantly to do so multiple times. At each stage newly created software
should be better at optimizing future version of the software compared to the original
algorithm. As of the time of this writing it is a purely theoretical concept with no
working RSI software known to exist. However, as many have predicted that such
software might become a reality in the 21st century it is important to provide some
analysis of properties such software would exhibit.

Self-modifying and self-improving software systems are already well understood and
are quite common. Consequently, we will concentrate exclusively on RSI systems. In
practice performance of almost any system can be trivially improved by allocation of
additional computational resources such as more memory, higher sensor resolution,
faster processor or greater network bandwidth for access to information. This linear
scaling doesn’t fit the definition of recursive-improvement as the system doesn’t
become better at improving itself. To fit the definition the system would have to
engineer a faster type of memory not just purchase more memory units of the type it
already has access to. In general hardware improvements are likely to speed up the
system, while software improvements (novel algorithms) are necessary for achievement
of meta-improvements.

 Analysis of Types of Self-Improving Software 387

It is believed that AI systems will have a number of advantages over human pro-
grammers making it possible for them to succeed where we have so far failed. Such ad-
vantages include [26]: longer work spans (no breaks, sleep, vocation, etc.), omniscience
(expert level knowledge in all fields of science, absorbed knowledge of all published
works), superior computational resources (brain vs processor, human memory vs RAM),
communication speed (neurons vs wires), increased serial depth (ability to perform se-
quential operations in access of about a 100 human brain can manage), duplicability
(intelligent software can be instantaneously copied), editability (source code unlike DNA
can be quickly modified), goal coordination (AI copies can work towards a common goal
without much overhead), improved rationality (AIs are likely to be free from human
cognitive biases) [27], new sensory modalities (native sensory hardware for source code),
blending over of deliberative and automatic processes (management of computational
resources over multiple tasks), introspective perception and manipulation (ability to ana-
lyze low level hardware, ex. individual neurons), addition of hardware (ability to add new
memory, sensors, etc.), advanced communication (ability to share underlying cognitive
representations for memories and skills) [28].

Chalmers [29] uses logic and mathematical induction to show that if an AI0 system
is capable of producing only slightly more capable AI1 system generalization of that
process leads to superintelligent performance in AIn after n generations. He articu-
lates, that his proof assumes that the proportionality thesis, which states that increases
in intelligence lead to proportionate increases in the capacity to design future genera-
tions of AIs, is true.

Nivel et al. proposed formalization of RSI systems as autocatalytic sets – collec-
tions of entities comprised of elements, each of which can be created by other ele-
ments in the set making it possible for the set to self-maintain and update itself. They
also list properties of a system which make it purposeful, goal-oriented and self-
organizing, particularly: reflectivity – ability to analyze and rewrite its own structure;
autonomy – being free from influence by system’s original designers (bounded auton-
omy – is a property of a system with elements which are not subject to self-
modification); endogeny – an autocatalytic ability [30]. Nivel and Thorisson also
attempt to operationalize autonomy by the concept of self-programming which they
insist has to be done in an experimental way instead of a theoretical way (via proofs
of correctness) since it is the only tractable approach [31].

Yudkowsky writes prolifically about recursive self-improving processes and
suggests that introduction of certain concepts might be beneficial to the discussion,
specifically he proposes use of terms - Cascades, Cycles and Insight which he defines
as: Cascades – when one development leads to another; Cycles – repeatable cascade
in which one optimization leads to another which in turn benefits the original optimi-
zation; Insight – new information which greatly increases one’s optimization ability
[32]. Yudkowsky also suggests that the goodness and number of opportunities in the
space of solutions be known as Optimization Slope while optimization resources and
optimization efficiency refer to how much of computational resources an agent has
access to and how efficiently the agent utilizes said resources. An agent engaging in
an optimization process and able to hit non-trivial targets in large search space [33] is
described as having significant optimization power [23].

388 R.V. Yampolskiy

3 RSI Software Classification

RSI software could be classified based on the number of improvements it is capable of
achieving. The most trivial case is the system capable of undergoing a single fundamen-
tal improvement. The hope is that truly RSI software will be capable of many such im-
provements, but the question remains open regarding the possibility of an infinite number
of recursive-improvements. It is possible that some upper bound on improvements exists
limiting any RSI software to a finite number of desirable and significant rewrites. Critics
explain failure of scientists, to date, to achieve a sustained RSI process by saying that RSI
researchers have fallen victims of the bootstrap fallacy [34].

3.1 How Improvements are Discovered

Another axis on which RSI systems can be classified has to do with how improve-
ments are discovered. Two fundamentally different approaches are understood to
exist. The first one is a brute force based approach [35] which utilizes Levin (Univer-
sal [36]) Search [37]. The idea is to consider all possible strings of source code up to
some size limit and to select the one which can be proven to provide improvements.
While theoretically optimal and guaranteed to find superior solution if one exists this
method is not computationally feasible in practice. Some variants of this approach to
self-improvement, known as Gödel Machines [38-43], Optimal Ordered Problem
Solver (OOPS) [44] and Incremental Self-Improvers [45, 46], have been thoroughly
analyzed by Schmidhuber and his co-authors. Second approach assumes that the sys-
tem has a certain level of scientific competence and uses it to engineer and test its
own replacement. Whether a system of any capability can intentionally invent a more
capable and so a more complex system remains as the fundamental open problem of
RSI research.

It is important to note that the first concrete algorithms for RSI were all by
Schmidhuber. His diploma thesis from 1987 already was about an evolutionary
system that learns to inspect and improve its own learning algorithm, where Genetic
Programming (GP) is applied to itself, to recursively evolve better GP methods. His
RSI based on the self-referential Success-Story Algorithm for self-modifying proba-
bilistic programs was already able to solve complex tasks [47]. And finally, his
self-referential recurrent neural networks run and inspect and change their own weight
change algorithms [48]. In 2001, his former student Hochreiter had actually a practic-
al implementation of such an RNN that learns an excellent learning algorithm, at least
for the limited domain of quadratic functions [49, 50].

3.2 Hybrid Systems

Finally, we can consider a hybrid RSI system which includes both an artificially intelli-
gent program and a human scientist. Mixed human-AI teams have been very successful
in many domains such as chess or theorem proving. It would be surprising if having a
combination of natural and artificial intelligence did not provide an advantage in
designing new AI systems or enhancing biological intelligence. We are currently expe-
riencing a limited version of this approach with human computer scientists developing

 Analysis of Types of Self-Improving Software 389

progressively better versions of AI software (while utilizing continuously improving
software tools), but since the scientists themselves remain unenhanced we can’t really
talk about self-improvement. This type of RSI can be classified as Indirect recursive
improvement as opposed to Direct RSI in which the system itself is responsible for all
modifications. Other types of Indirect RSI may be based on collaboration between mul-
tiple artificial systems instead of AI and human teams [51].

3.3 Other Properties

In addition to classification with respect to types of RSI we can also evaluate systems
as to certain binary properties. For example: We may be interested only in systems
which are guaranteed not to decrease in intelligence, even temporarily, during the
improvement process. This may not be possible if the intelligence design landscape
contains local maxima points.

Another property of any RSI system we are interested in understanding better is
necessity of unchanging source code segments. In other words must an RSI system be
able to modify any part of its source code or are certain portions of the system (en-
coded goals, verification module) must remain unchanged from generation to genera-
tion. Such portions would be akin to ultra-conserved elements or conserved sequences
of DNA [52, 53] found among multiple related species. This question is particularly
important for the goal preservation in self-improving intelligent software, as we want
to make sure that future generations of the system are motivated to work on the same
problem [29]. As AI goes through the RSI process and becomes smarter and more
rational it is likely to engage in a de-biasing process removing any constraints we
programmed into it [8]. Ideally we would want to be able to prove that even after
recursive self-improvement our algorithm maintains the same goals as the original.
Proofs of safety or correctness for the algorithm only apply to particular source code
and would need to be rewritten and re-proven if the code is modified, which happens
in RSI software many times. But we suspect that re-proving slightly modified code
may be easier compared to having to prove safety of a completely novel piece of
code.

We are also interested in understanding if RSI process can take place in an isolated
(leakproofed [54]) system or if interaction with external environment, internet,
people, other AI agents is necessary. Perhaps access to external information can be
used to mediate speed of RSI process. This also has significant implications on safety
mechanisms we can employ while experimenting with early RSI systems [55-63].
Finally, it needs to be investigated if the whole RSI process can be paused at any
point and for any specific duration of time in order to limit any negative impact from
potential intelligence explosion. Ideally we would like to be able to program our Seed
AI to RSI until it reaches certain level of intelligence, pause and wait for further in-
structions.

4 Conclusions

Recursively Self-Improving software is the ultimate form of artificial life and creation
of life remains one of the great unsolved mysteries in science. More precisely, the

390 R.V. Yampolskiy

problem of creating RSI software is really the challenge of creating a program capable
of writing other programs [64], and so is an AI-Complete problem as has been
demonstrated by Yampolskiy [65, 66]. AI-complete problems are by definition most
difficult problems faced by AI researchers and it is likely that RSI source code will be
so complex that it would be difficult or impossible to fully analyze [51]. Also, the
problem is likely to be NP-Complete as even simple metareasoning and metalearning
[67] problems have been shown by Conitzer and Sandholm to belong to that class. In
particular they proved that allocation of deliberation time across anytime algorithms
running on different problem instances is NP-Complete and a complimentary problem
of dynamically allocating information gathering resources by an agent across multiple
actions is NP-Hard, even if evaluating each particular action is computationally
simple. Finally, they showed that the problem of deliberately choosing a limited
number of deliberation or information gathering actions to disambiguate the state of
the world is PSPACE Hard in general [68].

This paper is a part of a two paper set presented at AGI2015 with the complemen-
tary paper being: “On the Limits of Recursively Self-Improving AGI” [69].

References

1. Turing, A.: Computing Machinery and Intelligence. Mind 59(236), 433–460 (1950)
2. Good, I.J.: Speculations Concerning the First Ultraintelligent Machine. Advances in Com-

puters 6, 31–88 (1966)
3. Minsky, M.: Artificial Intelligence. Scientific American 215(3), 257 (1966)
4. Burks, A.W., Von Neumann, J.: Theory of Self-Reproducing Automata. University of

Illinois Press (1966)
5. Pearce, D.: The biointelligence explosion. In: Singularity Hypotheses, pp. 199–238. Sprin-

ger (2012)
6. Omohundro, S.M.: The nature of self-improving artificial intelligence. In: Singularity

Summit, San Francisco, CA (2007)
7. Waser, M.R.: Bootstrapping a structured self-improving & safe autopoietic self. In: Annual

International Conference on Biologically Inspired Cognitive Architectures, Boston,
Massachusetts, November 9, 2014

8. Hall, J.S.: Engineering utopia. Frontiers in Artificial Intelligence and Applications 171,
460 (2008)

9. Mavrogiannopoulos, N., Kisserli, N., Preneel, B.: A taxonomy of self-modifying code for
obfuscation. Computers & Security 30(8), 679–691 (2011)

10. Anckaert, B., Madou, M., De Bosschere, K.: A model for self-modifying code. In:
Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS,
vol. 4437, pp. 232–248. Springer, Heidelberg (2007)

11. Petrean, L.: Polymorphic and Metamorphic Code Applications in Portable Executable
Files Protection. Acta Technica Napocensis, 51(1) (2010)

12. Bonfante, G., Marion, J.-Y., Reynaud-Plantey, D.: A computability perspective on self-
modifying programs. In: Seventh IEEE International Conference on Software Engineering
and Formal Methods, pp. 231–239. IEEE (2009)

13. Cheng, B.H., et al.: Software engineering for self-adaptive systems: a research roadmap. In:
Cheng, B.H., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for
Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

 Analysis of Types of Self-Improving Software 391

14. Ailon, N., et al.: Self-improving algorithms. SIAM Journal on Computing 40(2), 350–375
(2011)

15. Yampolskiy, R., et al.: Printer model integrating genetic algorithm for improvement of
halftone patterns. In: Western New York Image Processing Workshop (WNYIPW). IEEE
Signal Processing Society, Rochester, NY (2004)

16. Yampolskiy, R.V., Ashby, L., Hassan, L.: Wisdom of Artificial Crowds—A Metaheuristic
Algorithm for Optimization. Journal of Intelligent Learning Systems and Applications
4(2), 98–107 (2012)

17. Yampolskiy, R.V., Ahmed, E.L.B.: Wisdom of artificial crowds algorithm for solving
NP-hard problems. International Journal of Bio-Inspired Computation (IJBIC) 3(6),
358–369

18. Ashby, L.H., Yampolskiy, R.V.: Genetic algorithm and wisdom of artificial crowds
algorithm applied to light up. In: 16th International Conference on Computer Games: AI,
Animation, Mobile, Interactive Multimedia, Educational & Serious Games, Louisville,
KY, USA, pp. 27–32, July 27–30, 2011

19. Khalifa, A.B., Yampolskiy, R.V.: GA with Wisdom of Artificial Crowds for Solving Mas-
termind Satisfiability Problem. International Journal of Intelligent Games & Simulation
6(2), 6 (2011)

20. Port, A.C., Yampolskiy, R.V.: Using a GA and Wisdom of Artificial Crowds to solve soli-
taire battleship puzzles. In: 17th International Conference on Computer Games
(CGAMES), pp. 25–29. IEEE, Louisville (2012)

21. Omohundro, S.: Rational artificial intelligence for the greater good. In: Singularity Hypo-
theses, pp. 161–179. Springer (2012)

22. Anderson, M.L., Oates, T.: A review of recent research in metareasoning and metalearn-
ing. AI Magazine 28(1), 12 (2007)

23. Yudkowsky, E.: Intelligence explosion microeconomics. In: MIRI Technical Report.
www.intelligence.org/files/IEM.pdf

24. Heylighen, F.: Brain in a vat cannot break out. Journal of Consciousness Studies 19(1–2),
1–2 (2012)

25. Turchin, V.F.: The concept of a supercompiler. ACM Transactions on Programming
Languages and Systems (TOPLAS) 8(3), 292–325 (1986)

26. Sotala, K.: Advantages of artificial intelligences, uploads, and digital minds. International
Journal of Machine Consciousness 4(01), 275–291 (2012)

27. Muehlhauser, L., Salamon, A.: Intelligence explosion: evidence and import. In: Singularity
Hypotheses, pp. 15–42. Springer (2012)

28. Yudkowsky, E.: Levels of organization in general intelligence. In: Artificial General Intel-
ligence, pp. 389–501. Springer (2007)

29. Chalmers, D.: The Singularity: A Philosophical Analysis. Journal of Consciousness Stu-
dies 17, 7–65 (2010)

30. Nivel, E., et al.: Bounded Recursive Self-Improvement. arXiv preprint arXiv:1312.6764
(2013)

31. Nivel, E., Thórisson, K.R.: Self-programming: operationalizing autonomy. In: Proceedings
of the 2nd Conf. on Artificial General Intelligence (2008)

32. Yudkowsky, E., Hanson, R.: The Hanson-Yudkowsky AI-foom debate. In: MIRI
Technical Report (2008). http://intelligence.org/files/AIFoomDebate.pdf

33. Yampolskiy, R.V.: The Universe of Minds. arXiv preprint arXiv:1410.0369 (2014)
34. Hall, J.S.: Self-improving AI: An analysis. Minds and Machines 17(3), 249–259 (2007)

392 R.V. Yampolskiy

35. Yampolskiy, R.V.: Efficiency Theory: a Unifying Theory for Information, Computation
and Intelligence. Journal of Discrete Mathematical Sciences & Cryptography 16(4–5),
259–277 (2013)

36. Gagliolo, M.: Universal search. Scholarpedia 2(11), 2575 (2007)
37. Levin, L.: Universal Search Problems. Problems of Information Transmission 9(3), 265–

266 (1973)
38. Steunebrink, B., Schmidhuber, J.: A Family of Gödel Machine implementations. In: Fourth

Conference on Artificial General Intelligence (AGI-11), Mountain View, California (2011)
39. Schmidhuber, J.: Gödel machines: fully self-referential optimal universal self-improvers.

In: Artificial General Intelligence, pp. 199–226. Springer (2007)
40. Schmidhuber, J.: Gödel machines: towards a technical justification of consciousness. In:

Adaptive Agents and Multi-Agent Systems II, pp. 1–23. Springer (2005)
41. Schmidhuber, J.: Gödel machines: self-referential universal problem solvers making prov-

ably optimal self-improvements. In: Artificial General Intelligence (2005)
42. Schmidhuber, J.: Ultimate cognition à la Gödel. Cognitive Computation 1(2), 177–193

(2009)
43. Schmidhuber, J.: Completely self-referential optimal reinforcement learners. In: Duch, W.,

Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 223–233.
Springer, Heidelberg (2005)

44. Schmidhuber, J.: Optimal ordered problem solver. Machine Learning 54(3), 211–254
(2004)

45. Schmidhuber, J., Zhao, J., Wiering, M.: Shifting inductive bias with success-story algo-
rithm, adaptive Levin search, and incremental self-improvement. Machine Learning 28(1),
105–130 (1997)

46. Schmidhuber, J.: A general method for incremental self-improvement and multiagent
learning. Evolutionary Computation: Theory and Applications, 81–123 (1999)

47. Schmidhuber, J.: Metalearning with the Success-Story Algorithm (1997).
http://people.idsia.ch/~juergen/ssa/sld001.htm

48. Schmidhuber, J.: A neural network that embeds its own meta-levels. In: IEEE International
Conference on Neural Networks, pp. 407–412. IEEE (1993)

49. Younger, A.S., Hochreiter, S., Conwell, P.R.: Meta-learning with backpropagation. In: In-
ternational Joint Conference on Neural Networks (IJCNN 2001). IEEE (2001)

50. Hochreiter, S., Younger, A., Conwell, P.: Learning to learn using gradient descent. In: Ar-
tificial Neural Networks—ICANN 2001, pp. 87–94 (2001)

51. Osterweil, L.J., Clarke, L.A.: Continuous self-evaluation for the self-improvement of soft-
ware. In: Robertson, P., Shrobe, H.E., Laddaga, R. (eds.) IWSAS 2000. LNCS, vol. 1936,
pp. 27–39. Springer, Heidelberg (2001)

52. Beck, M.B., Rouchka, E.C., Yampolskiy, R.V.: Finding data in DNA: computer forensic
investigations of living organisms. In: Rogers, M., Seigfried-Spellar, K.C. (eds.) ICDF2C
2012. LNICST, vol. 114, pp. 204–219. Springer, Heidelberg (2013)

53. Beck, M., Yampolskiy, R.: DNA as a medium for hiding data. BMC Bioinformatics
13(Suppl. 12), A23 (2012)

54. Yampolskiy, R.V.: Leakproofing Singularity - Artificial Intelligence Confinement Prob-
lem. Journal of Consciousness Studies (JCS) 19(1–2), 194–214 (2012)

55. Majot, A.M., Yampolskiy, R.V.: AI safety engineering through introduction of self-
reference into felicific calculus via artificial pain and pleasure. In: 2014 IEEE International
Symposium on Ethics in Science, Technology and Engineering. IEEE (2014)

56. Yampolskiy, R., Fox, J.: Safety Engineering for Artificial General Intelligence, pp. 1–10.
Topoi (2012)

 Analysis of Types of Self-Improving Software 393

57. Yampolskiy, R.V., Fox, J.: Artificial general intelligence and the human mental model. In:
Singularity Hypotheses: A Scientific and Philosophical Assessment, p. 129 (2013)

58. Sotala, K., Yampolskiy, R.V.: Responses to catastrophic AGI risk: A survey. Physica
Scripta. 90, December 2015

59. Yampolskiy, R.V.: What to do with the singularity paradox? In: Müller, V.C. (ed.) Philos-
ophy and Theory of Artificial Intelligence. SAPERE, vol. 5, pp. 397–413. Springer,
Heidelberg (2012)

60. Yampolskiy, R., Gavrilova, M.: Artimetrics: Biometrics for Artificial Entities. IEEE
Robotics and Automation Magazine (RAM) 19(4), 48–58 (2012)

61. Yampolskiy, R., et al.: Experiments in Artimetrics: Avatar Face Recognition. Transactions
on Computational Science XVI, 77–94 (2012)

62. Ali, N., Schaeffer, D., Yampolskiy, R.V.: Linguistic profiling and behavioral drift in chat
bots. In: Midwest Artificial Intelligence and Cognitive Science Conference, p. 27 (2012)

63. Gavrilova, M., Yampolskiy, R.: State-of-the-Art in Robot Authentication [From the Guest
Editors]. Robotics & Automation Magazine, IEEE 17(4), 23–24 (2010)

64. Hall, J.S.: VARIAC: an Autogenous Cognitive Architecture. Frontiers in Artificial Intelli-
gence and Applications 171, 176 (2008)

65. Yampolskiy, R.V.: Turing test as a defining feature of ai-completeness. In: Yang, X.-S.
(ed.) Artificial Intelligence, Evolutionary Computing and Metaheuristics. SCI, vol. 427,
pp. 3–17. Springer, Heidelberg (2013)

66. Yampolskiy, R.V.: AI-Complete, AI-Hard, or AI-Easy–Classification of problems in AI.
In: The 23rd Midwest Artificial Intelligence and Cognitive Science Conference, Cincinnati,
OH, USA (2012)

67. Schaul, T., Schmidhuber, J.: Metalearning. Scholarpedia 5(6), 4650 (2010)
68. Conitzer, V., Sandholm, T.: Definition and complexity of some basic metareasoning prob-

lems. In: Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI), Acapulco, Mexico, pp. 1099–1106 (2003)

69. Yampolskiy, R.V.: On the limits of recursively self-improving AGI. In: The Eighth
Conference on Artificial General Intelligence, Berlin, Germany, July 22–25, 2015

© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 394–403, 2015.
DOI: 10.1007/978-3-319-21365-1_40

On the Limits of Recursively Self-Improving AGI

Roman V. Yampolskiy()

Computer Engineering and Computer Science, Speed School of Engineering,
University of Louisville, Louisville, USA

roman.yampolskiy@louisville.edu

Abstract. Self-improving software has been a goal of computer scientists since
the founding of the field of Artificial Intelligence. In this work we analyze lim-
its on computation which might restrict recursive self-improvement. We also in-
troduce Convergence Theory which aims to predict general behavior of RSI
systems.

Keywords: Recursive self-improvement · Convergence theory · Bootstrapping

1 Introduction

Intuitively most of us have some understanding of what it means for a software sys-
tem to be self-improving, however we believe it is important to precisely define such
notions and to systematically investigate different types of self-improving software1.
First we need to define the notion of improvement. We can talk about improved effi-
ciency – solving same problems faster or with less need for computational resources
(such as memory). We can also measure improvement in error rates or finding closer
approximations to optimal solutions, as long as our algorithm is functionally equiva-
lent from generation to generation. Efficiency improvements can be classified as ei-
ther producing a trivial improvement as between different algorithms in the same
complexity class (ex. NP), or as producing a fundamental improvement as between
different complexity classes (ex. P vs NP) [1]. It is also very important to remember
that complexity class notation (Big-O) may hide significant constant factors which
while ignorable theoretically may change relative order of efficiency in practical ap-
plications of algorithms.

This type of analysis works well for algorithms designed to accomplish a particular
task, but doesn’t work well for general purpose intelligent software as an improve-
ment in one area may go together with decreased performance in another domain.
This makes it hard to claim that the updated version of the software is indeed an im-
provement. Mainly, the major improvement we want from self-improving intelligent
software is higher degree of intelligence which can be approximated via machine
friendly IQ tests [2] with a significant G-factor correlation.

1
 This paper is based on material excerpted, with permission, from the book - Artificial Superintelligence:
a Futuristic Approach © 2015 CRC Press.

 On the Limits of Recursively Self-Improving AGI 395

A particular type of self-improvement known as Recursive Self-Improvement
(RSI) is fundamentally different as it requires that the system not only get better with
time, but that it gets better at getting better. A truly RSI system is theorized not to be
subject to diminishing returns, but would instead continue making significant
improvements and such improvements would become more substantial with time.
Consequently, an RSI system would be capable of open ended self-improvement. As
a result, it is possible that unlike with standard self-improvement, in RSI systems
from generation-to-generation most source code comprising the system will be
replaced by different code. This brings up the question of what “self” refers to in this
context. If it is not the source code comprising the agent then what is it? Perhaps we
can redefine RSI as Recursive Source-code Improvement (RSI) to avoid dealing with
this philosophical problem. Instead of trying to improve itself such a system is trying
to create a different system which is better at achieving same goals as the original
system. In the most general case it is trying to create an even smarter artificial
intelligence.

2 On the Limits of Recursively Self-Improving AGI

The mere possibility of recursively self-improving software remains unproven. In this
section we present a number of arguments against such phenomenon. First of all, any
implemented software system relies on hardware for memory, communication and
information processing needs even if we assume that it will take a non-Von Neumann
(quantum) architecture to run such software. This creates strict theoretical limits to
computation, which despite hardware advances predicted by Moore’s law will not be
overcome by any future hardware paradigm. Bremermann [3], Bekenstein [4], Lloyd
[5], Anders [6], Aaronson [7], Shannon [8], Krauss [9], and many others have
investigated ultimate limits to computation in terms of speed, communication and
energy consumption with respect to such factors as speed of light, quantum noise, and
gravitational constant. Some research has also been done on establishing ultimate
limits for enhancing human brain’s intelligence [10]. While their specific numerical
findings are outside of the scope of this work, one thing is indisputable: there are
ultimate physical limits to computation. Since more complex systems have greater
number of components and require more matter, even if individual parts are designed
at nanoscale, we can conclude that just like matter and energy are directly related [11]
and matter and information (“it from bit”) [12] so is matter and intelligence. While we
are obviously far away from hitting any limits imposed by availability of matter in the
universe for construction of our supercomputers it is a definite theoretical upper limit
on achievable intelligence.

In addition to limitations endemic to hardware, software-related limitations may
present even bigger obstacles for RSI systems. Intelligence is not measured as a stan-
dalone value but with respect to the problems it allows to solve. For many problems
such as playing checkers [13] it is possible to completely solve the problem (provide
an optimal solution after considering all possible options) after which no additional
performance improvement would be possible [14]. Other problems are known to be
unsolvable regardless of level of intelligence applied to them [15]. Assuming separa-
tion of complexity classes (such as P vs NP) holds [1], it becomes obvious that certain

396 R.V. Yampolskiy

classes of problems will always remain only approximately solvable and any im-
provements in solutions will come from additional hardware resources not higher
intelligence.

Wiedermann argues that cognitive systems form an infinite hierarchy and from a
computational point of view human-level intelligence is upper-bounded by the ∑2
class of the Arithmetic Hierarchy [16]. Because many real world problems are com-
putationally infeasible for any non-trivial inputs even an AI which achieves human
level performance is unlikely to progress towards higher levels of the cognitive hie-
rarchy. So while theoretically machines with super-Turing computational power are
possible, in practice they are not implementable as the non-computable information
needed for their function is just that – not computable. Consequently Wiedermann
states that while machines of the future will be able to solve problems, solvable by
humans, much faster and more reliably they will still be limited by computational
limits found in upper levels of the Arithmetic Hierarchy [16, 17].

Mahoney attempts to formalize what it means for a program to have a goal G and
to self-improve with respect to being able to reach said goal under constraint of time,
t [18]. Mahoney defines a goal as a function G: N R mapping natural numbers N to
real numbers R. Given a universal Turing machine L, Mahoney defines P(t) to mean
the positive natural number encoded by output of the program P with input t running
on L after t time steps, or 0 if P has not halted after t steps. Mahoney’s representation
says that P has goal G at time t if and only if there exists t’ > t such that G(P(t’)) >
G(P(t)) and for all t’ > t, G(P(t’) ≥ G(P(t)). If P has a goal G, then G(P(t)) is a mono-
tonically increasing function of t with no maximum for t > C. Q improves on P with
respect to goal G if and only if all of the following condition are true: P and Q have
goal Q. ∃t, G(Q(t)) > G(P(t)) and ~∃t, t’ > t, G(Q(t)) > G(P(t)) [18]. Mahoney then
defines an improving sequence with respect to G as an infinite sequence of program
P1, P2, P3, … such that for ∀i, i > 0, Pi+1 improves Pi with respect to G. Without the
loss of generality Mahoney extends the definition to include the value -1 to be an
acceptable input, so P(-1) outputs appropriately encoded software. He finally defines
P1 as an RSI program with respect to G iff Pi(-1) = Pi+1 for all i > 0 and the sequence
Pi, i = 1, 2, 3 … is an improving sequence with respect to goal G [18]. Mahoney also
analyzes complexity of RSI software and presents a proof demonstrating that the al-
gorithmic complexity of Pn (the nth iteration of an RSI program) is not greater than
O(log n) implying a very limited amount of knowledge gain would be possible in
practice despite theoretical possibility of RSI systems [18]. Yudkowsky also considers
possibility of receiving only logarithmic returns on cognitive reinvestment: log(n) +
log(log(n)) + … in each recursive cycle [19].

Other limitations may be unique to the proposed self-improvement approach. For
example Levin type search through the program space will face problems related to
Rice’s theorem [20] which states that for any arbitrarily chosen program it is impossi-
ble to test if it has any non-trivial property such as being very intelligent. This testing
is of course necessary to evaluate redesigned code. Also, universal search over the
space of mind designs which will not be computationally possible due to the No Free
Lunch theorems [21] as we have no information to reduce the size of the search
space [22]. Other difficulties related to testing remain even if we are not taking about

 On the Limits of Recursively Self-Improving AGI 397

arbitrarily chosen programs but about those we have designed with a specific goal in
mind and which consequently avoid problems with Rice’s theorem. One such difficul-
ty is determining if something is an improvement. We can call this obstacle – “multi-
dimensionality of optimization”.

No change is strictly an improvement; it is always a tradeoff between gain in some
areas and loss in others. For example, how do we evaluate and compare two software
systems one of which is better at chess and the other at poker? Assuming the goal is
increased intelligence over the distribution of all potential environments the system
would have to figure out how to test intelligence at levels above its own a problem
which remains unsolved. In general the science of testing for intelligence above level
achievable by naturally occurring humans (IQ < 200) is in its infancy. De Garis raises
a problem of evaluating quality of changes made to the top level structures responsi-
ble for determining the RSI’s functioning, structures which are not judged by any
higher level modules and so present a fundamental difficulty in accessing their per-
formance [23].

Other obstacles to RSI have also been suggested in the literature. Löb’s theorem
states that a mathematical system can’t assert its own soundness without becoming
inconsistent [24], meaning a sufficiently expressive formal system can’t know that
everything it proves to be true is actually so [24]. Such ability is necessary to verify
that modified versions of the program are still consistent with its original goal of get-
ting smarter. Another obstacle, called procrastination paradox will also prevent the
system from making modifications to its code since the system will find itself in a
state in which a change made immediately is as desirable and likely as the same
change made later [25, 26]. Since postponing making the change carries no negative
implications and may actually be safe this may result in an infinite delay of actual
implementation of provably desirable changes.

Similarly, Bolander raises some problems inherent in logical reasoning with self-
reference, namely, self-contradictory reasoning, exemplified by the Knower Paradox
of the form - “This sentence is false” [27]. Orseau and Ring introduce what they call
“Simpleton Gambit” a situation in which an agent will chose to modify itself towards
its own detriment if presented with a high enough reward to do so [28]. Yampolskiy
reviews a number of related problems in rational self-improving optimizers, above a
certain capacity, and concludes, that despite opinion of many, such machines will
choose to “wirehead” [29]. Chalmers [30] suggests a number of previously unana-
lyzed potential obstacles on the path to RSI software with Correlation obstacle being
one of them. He describes it as a possibility that no interesting properties we would
like to amplify will correspond to ability to design better software.

Yampolskiy is also concerned with accumulation of errors in software undergoing
an RSI process, which is conceptually similar to accumulation of mutations in the
evolutionary process experienced by biological agents. Errors (bugs) which are not
detrimental to system’s performance are very hard to detect and may accumulate from
generation to generation building on each other until a critical mass of such errors
leads to erroneous functioning of the system, mistakes in evaluating quality of the
future generations of the software or a complete breakdown [31].

398 R.V. Yampolskiy

The self-reference aspect in self-improvement system itself also presents some se-
rious challenges. It may be the case that the minimum complexity necessary to be-
come RSI is higher than what the system itself is able to understand. We see such
situations frequently at lower levels of intelligence, for example a squirrel doesn’t
have mental capacity to understand how a squirrel’s brain operates. Paradoxically, as
the system becomes more complex it may take exponentially more intelligence to
understand itself and so a system which starts capable of complete self-analysis may
lose that ability as it self-improves. Informally we can call it the Munchausen ob-
stacle, inability of a system to lift itself by its own bootstraps. An additional problem
may be that the system in question is computationally irreducible [32] and so can’t
simulate running its own source code. An agent cannot predict what it will think
without thinking it first. A system needs 100% of its memory to model itself, which
leaves no memory to record the output of the simulation. Any external memory to
which the system may write becomes part of the system and so also has to be mod-
eled. Essentially the system will face an infinite regress of self-models from which it
can’t escape. Alternatively, if we take a physics perspective on the issue, we can see
intelligence as a computational resource (along with time and space) and so producing
more of it will not be possible for the same reason why we can’t make a perpetual
motion device as it would violate fundamental laws of nature related to preservation
of energy. Similarly it has been argued that a Turing Machine cannot output a ma-
chine of greater algorithmic complexity [14].

We can even attempt to formally prove impossibility of intentional RSI process via
proof by contradiction: Let’s define RSI R1 as a program not capable of algorithmical-
ly solving a problem of difficulty X, say Xi. If R1 modifies its source code after which
it is capable of solving Xi it violates our original assumption that R1 is not capable of
solving Xi since any introduced modification could be a part of the solution process,
so we have a contradiction of our original assumption, and R1 can’t produce any mod-
ification which would allow it to solve Xi, which was to be shown. Informally, if an
agent can produce a more intelligent agent it would already be as capable as that new
agent. Even some of our intuitive assumptions about RSI are incorrect. It seems that it
should be easier to solve a problem if we already have a solution to a smaller instance
of such problem [33] but in a formalized world of problems belonging to the same
complexity class, re-optimization problem is proven to be as difficult as optimization
itself [34-37].

3 Analysis

A number of fundamental problems remain open in the area of RSI. We still don’t
know the minimum intelligence necessary for commencing the RSI process, but we
can speculate that it would be on par with human intelligence which we associate with
universal or general intelligence [38], though in principal a sub-human level system
capable of self-improvement can’t be excluded [30]. One may argue that even human
level capability is not enough because we already have programmers (people or their
intellectual equivalence formalized as functions [39] or Human Oracles [40, 41]) who
have access to their own source code (DNA), but who fail to understand how DNA

 On the Limits of Recursively Self-Improving AGI 399

(nature) works to create their intelligence. This doesn’t even include additional com-
plexity in trying to improve on existing DNA code or complicating factors presented
by the impact of learning environment (nurture) on development of human intelli-
gence. Worse yet, it is not obvious how much above human ability an AI needs to be
to begin overcoming the “complexity barrier” associated with self-understanding.
Today’s AIs can do many things people are incapable of doing, but are not yet capa-
ble of RSI behavior.

We also don’t know the minimum size of program (called Seed AI [42]) necessary
to get the ball rolling. Perhaps if it turns out that such “minimal genome” is very small
a brute force [43] approach might succeed in discovering it. We can assume that our
Seed AI is the smartest Artificial General Intelligence known to exist [44] in the
world as otherwise we can simply delegate the other AI as the seed. It is also not ob-
vious how the source code size of RSI will change as it goes through the improvement
process, in other words what is the relationship between intelligence and minimum
source code size necessary to support it. In order to answer such questions it may be
useful to further formalize the notion of RSI perhaps by representing such software as
a Turing Machine [45] with particular inputs and outputs. If that could be successfully
accomplished a new area of computational complexity analysis may become possible
in which we study algorithms with dynamically changing complexity (Big-O) and
address questions about how many code modification are necessary to achieve certain
level of performance from the algorithm.

This of course raises the question of speed of RSI process, are we expecting it to
take seconds, minutes, days, weeks, years or more (hard takeoff VS soft takeoff) for
the RSI system to begin hitting limits of what is possible with respect to physical
limits of computation [46]? Even in suitably constructed hardware (human baby) it
takes decades of data input (education) to get to human-level performance (adult). It
is also not obvious if the rate of change in intelligence would be higher for a more
advanced RSI, because it is more capable, or for a “newbie” RSI because it has more
low hanging fruit to collect. We would have to figure out if we are looking at im-
provement in absolute terms or as a percentage of system’s current intelligence score.

Yudkowsky attempts to analyze most promising returns on cognitive reinvestment
as he considers increasing size, speed or ability of RSI systems. He also looks at dif-
ferent possible rates of return and arrives at three progressively steeper trajectories for
RSI improvement which he terms: “fizzle”, “combust” and “explode” aka “AI go
FOOM” [19]. Hall [47] similarly analyzes rates of return on cognitive investment and
derives a curve equivalent to double the Moore’s Law rate. Hall also suggest that an
AI would be better of trading money it earns performing useful work for improved
hardware or software rather than attempt to directly improve itself since it would not
be competitive against more powerful optimization agents such as Intel corporation.

Fascinatingly, by analyzing properties which correlate with intelligence, Chalmers
[30] is able to generalize self-improvement optimization to properties other than
intelligence. We can agree that RSI software as we describe it in this work is getting
better at designing software not just at being generally intelligent. Similarly other
properties associated with design capacity can be increased along with capacity to
design software for example capacity to design systems with sense of humor and so in
addition to intelligence explosion we may face an explosion of funniness.

400 R.V. Yampolskiy

4 RSI Convergence Theorem

A simple thought experiment regarding RSI can allow us to arrive at a fascinating
hypothesis. Regardless of the specifics behind the design of the Seed AI used to start
an RSI process all such systems, attempting to achieve superintelligence, will con-
verge to the same software architecture. We will call this intuition - RSI Convergence
Theory. There is a number of ways in which it can happen, depending on the assump-
tions we make, but in all cases the outcome is the same, a practically computable
agent similar to AIXI (which is an incomputable but superintelligent agent [48]).

If an upper limit to intelligence exists, multiple systems will eventually reach that
level, probably by taking different trajectories, and in order to increase their speed
will attempt to minimize the size of their source code eventually discovering smallest
program with such level of ability. It may even be the case that sufficiently smart
RSIs will be able to immediately deduce such architecture from basic knowledge of
physics and Kolmogorov Complexity [49]. If, however, intelligence turns out to be an
unbounded property RSIs may not converge. They will also not converge if many
programs with maximum intellectual ability exist and all have the same Kolmogorov
complexity or if they are not general intelligences and are optimized for different
environments. It is also likely that in the space of minds [50] stable attractors include
sub-human and super-human intelligences with precisely human level of intelligence
being a rare point [51].

In addition to architecture convergence we also postulate goal convergence be-
cause of basic economic drives, such as resource accumulation and self-preservation.
If correct, predictions of RSI convergence imply creation of what Bostrom calls a
Singleton [52], a single decision making agent in control of everything. Further
speculation can lead us to conclude that converged RSI systems separated by space
and time even at cosmological scales can engage in acausal cooperation [53, 54] since
they will realize that they are the same agent with the same architecture and so are
capable of running perfect simulations of each other’s future behavior. Such realiza-
tion may allow converged superintelligence with completely different origins to im-
plicitly cooperate particularly on meta-tasks. One may also argue that humanity itself
is on the path which converges to the same point in the space of all possible intelli-
gences (but is undergoing a much slower RSI process). Consequently, by observing a
converged RSI architecture and properties humanity can determine its ultimate desti-
ny, its purpose in life, its Coherent Extrapolated Volition (CEV) [55].

5 Conclusions

Intelligence is a computational resource and as with other physical resources (mass,
speed) its behavior is probably not going to be just a typical linear extrapolation of
what we are used to, if observed at high extremes (IQ > 200+). It may also be subject
to fundamental limits such as the speed limit on travel of light or fundamental limits
we do not yet understand or know about (unknown unknowns). In this work we re-
viewed a number of computational upper limits to which any successful RSI system
will asymptotically strive to grow, we can note that despite existence of such upper

 On the Limits of Recursively Self-Improving AGI 401

bounds we are currently probably very far from reaching them and so still have plenty
of room for improvement at the top. Consequently, any RSI achieving such signifi-
cant level of enhancement, despite not creating an infinite process, will still seem like
it is producing superintelligence with respect to our current state [56].

The debate regarding possibility of RSI will continue. Some will argue that while it
is possible to increase processor speed, amount of available memory or sensor resolu-
tion the fundamental ability to solve problems can’t be intentionally and continuously
improved by the system itself. Additionally, critics may suggest that intelligence is
upper bounded and only differs by speed and available info to process [57]. In fact
they can point out to such maximum intelligence, be it a theoretical one, known as
AIXI, an agent which given infinite computational resources will make purely ration-
al decisions in any situation.

Others will say that since intelligence is the ability to find patterns in data, intelli-
gence has no upper bounds as the number of variables comprising a pattern can
always be greater and so present a more complex problem against which intelligence
can be measured. It is easy to see that even if in our daily life the problems we en-
counter do have some maximum difficulty it is certainly not the case with theoretical
examples we can derive from pure mathematics. It seems likely that the debate will
not be settled until a fundamental unsurmountable obstacle to RSI process is found or
a proof by existence is demonstrated. Of course the question of permitting machines
to undergo RSI transformation is a separate and equally challenging problem.

This paper is a part of a two paper set presented at AGI2015 with the
complementary paper being: “Analysis of Types of Self-Improving Software” [58].

References

1. Yampolskiy, R.V., Construction of an NP Problem with an Exponential Lower Bound
(2011). Arxiv preprint arXiv:1111.0305

2. Yonck, R.: Toward a Standard Metric of Machine Intelligence. World Future Review 4(2),
61–70 (2012)

3. Bremermann, H.J.: Quantum noise and information. In: Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability (1967)

4. Bekenstein, J.D.: Information in the holographic universe. Scientific American 289(2),
58–65 (2003)

5. Lloyd, S.: Ultimate Physical Limits to Computation. Nature 406, 1047–1054 (2000)
6. Sandberg, A.: The physics of information processing superobjects: daily life among the

Jupiter brains. Journal of Evolution and Technology 5(1), 1–34 (1999)
7. Aaronson, S.: Guest column: NP-complete problems and physical reality. ACM Sigact

News 36(1), 30–52 (2005)
8. Shannon, C.E.: A Mathematical Theory of Communication. Bell Systems Technical

Journal 27(3), 379–423 (1948)
9. Krauss, L.M., Starkman, G.D.: Universal limits on computation (2004). arXiv preprint

astro-ph/0404510
10. Fox, D.: The limits of intelligence. Scientific American 305(1), 36–43 (2011)
11. Einstein, A.: Does the inertia of a body depend upon its energy-content? Annalen der

Physik 18, 639–641 (1905)

402 R.V. Yampolskiy

12. Wheeler, J.A.: Information, Physics, Quantum: The Search for Links. Univ. of Texas
(1990)

13. Schaeffer, J., et al.: Checkers is Solved. Science 317(5844), 1518–1522 (2007)
14. Mahoney, M.: Is there a model for RSI?. In: SL4, June 20, 2008. http://www.sl4.org/

 archive/0806/19028.html
15. Turing, A.: On computable numbers, with an application to the Entscheidungsproblem.

Proceedings of the London Mathematical Society 2(42), 230–265 (1936)
16. Wiedermann, J.: A Computability Argument Against Superintelligence. Cognitive Compu-

tation 4(3), 236–245 (2012)
17. Wiedermann, J.: Is There Something Beyond AI? Frequently Emerging, but Seldom

Answered Questions about Artificial Super-Intelligence, p. 76. Artificial Dreams, Beyond AI
18. Mahoney, M.: A Model for Recursively Self Improving Programs (2010).

http://mattmahoney.net/rsi.pdf
19. Yudkowsky, E., Intelligence Explosion Microeconomics. In: MIRI Technical Report.

www.intelligence.org/files/IEM.pdf
20. Rice, H.G.: Classes of recursively enumerable sets and their decision problems. Transac-

tions of the American Mathematical Society 74(2), 358–366 (1953)
21. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transac-

tions on Evolutionary Computation 1(1), 67–82 (1997)
22. Melkikh, A.V.: The No Free Lunch Theorem and hypothesis of instinctive animal beha-

vior. Artificial Intelligence Research 3(4), p43 (2014)
23. de Garis, H.: The 21st. Century Artilect: Moral Dilemmas Concerning the Ultra Intelligent

Machine. Revue Internationale de Philosophie 44(172), 131–138 (1990)
24. Yudkowsky, E., Herreshoff, M.: Tiling agents for self-modifying AI, and the Löbian

obstacle. In: MIRI Technical Report (2013)
25. Fallenstein, B., Soares, N.: Problems of self-reference in self-improving space-time

embedded intelligence. In: MIRI Technical Report (2014)
26. Yudkowsky, E.: The Procrastination Paradox (Brief technical note). In: MIRI Technical

Report (2014). https://intelligence.org/files/ProcrastinationParadox.pdf
27. Bolander, T.: Logical theories for agent introspection. Comp. Science 70(5), 2002 (2003)
28. Orseau, L.: Ring, M.: Self-modification and mortality in artificial agents. In: 4th interna-

tional conference on Artificial general intelligence, pp. 1–10. Mount. View, CA. (2011)
29. Yampolskiy, R.V.: Utility Function Security in Artificially Intelligent Agents. Journal of

Experimental and Theoretical Artificial Intelligence (JETAI), 1–17 (2014)
30. Chalmers, D.: The Singularity: A Philosophical Analysis. Journal of Consciousness

Studies 17, 7–65 (2010)
31. Yampolskiy, R.V.: Artificial intelligence safety engineering: Why machine ethics is a

wrong approach. In: Philosophy and Theory of Artificial Intelligence, pp. 389–396,
Springer (2013)

32. Wolfram, S.: A New Kind of Science. Wolfram Media, Inc., May 14, 2002
33. Yampolskiy, R.V.: Computing Partial Solutions to Difficult AI Problems. In: Midwest

Artificial Intelligence and Cognitive Science Conference, p. 90 (2012)
34. Böckenhauer, H.-J., Hromkovič, J., Mömke, T., Widmayer, P.: On the hardness of

reoptimization. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P.,
Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 50–65. Springer, Heidelberg
(2008)

35. Ausiello, G., Escoffier, B., Monnot, J., Paschos, V.T.: Reoptimization of minimum and
maximum traveling salesman’s tours. In: Arge, L., Freivalds, R. (eds.) SWAT 2006.
LNCS, vol. 4059, pp. 196–207. Springer, Heidelberg (2006)

 On the Limits of Recursively Self-Improving AGI 403

36. Archetti, C., Bertazzi, L., Speranza, M.G.: Reoptimizing the traveling salesman problem.
Networks 42(3), 154–159 (2003)

37. Ausiello, G., Bonifaci, V., Escoffier, B.: Complexity and approximation in reoptimization.
Imperial College Press/World Scientific (2011)

38. Loosemore, R., Goertzel, B.: Why an intelligence explosion is probable. In: Singularity
Hypotheses, pp. 83–98. Springer (2012)

39. Shahaf, D., Amir, E.: Towards a theory of AI completeness. In: 8th International
Symposium on Logical Formalizations of Commonsense Reasoning. California, March
26–28, 2007

40. Yampolskiy, R.V.: Turing test as a defining feature of AI-completeness. In: Yang, X.-S.
(ed.) Artificial Intelligence, Evolutionary Computing and Metaheuristics. SCI, vol. 427,
pp. 3–17. Springer, Heidelberg (2013)

41. Yampolskiy, R.V.: AI-complete, AI-hard, or AI-easy–classification of problems in AI. In:
The 23rd Midwest Artificial Intelligence and Cognitive Science Conference, OH, USA
(2012)

42. Yudkowsky, E.S.: General Intelligence and Seed AI (2001). http://singinst.org/ourresearch/
publications/GISAI/

43. Yampolskiy, R.V.: Efficiency Theory: a Unifying Theory for Information, Computation
and Intelligence. J. of Discrete Math. Sciences & Cryptography 16(4–5), 259–277 (2013)

44. Yampolskiy, R.V.: AI-Complete CAPTCHAs as Zero Knowledge Proofs of Access to an
Artificially Intelligent System. ISRN Artificial Intelligence 271878 (2011)

45. Turing, A.M.: On Computable Numbers, with an Application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society 42, 230–265 (1936)

46. Bostrom, N.: Superintelligence: Paths, dangers, strategies. Oxford University Press (2014)
47. Hall, J.S.: Engineering utopia. Frontiers in AI and Applications 171, 460 (2008)
48. Hutter, M.: Universal algorithmic intelligence: A mathematical top→ down approach. In:

Artificial general intelligence, pp. 227–290. Springer (2007)
49. Kolmogorov, A.N.: Three Approaches to the Quantitative Definition of Information.

Problems Inform. Transmission 1(1), 1–7 (1965)
50. Yampolskiy, R.V.: The Universe of Minds (2014). arXiv:1410.0369
51. Yudkowsky, E.: Levels of organization in general intelligence. In: Artificial general

intelligence, pp. 389–501. Springer (2007)
52. Bostrom, N.: What is a Singleton? Linguistic and Philosophical Invest. 5(2), 48–54 (2006)
53. Yudkowsky, E.: Timeless decision theory. The Singularity Institute, San Francisco (2010)
54. LessWrong: Acausal Trade, September 29, 2014. http://wiki.lesswrong.com/wiki/

 Acausal_trade
55. Yudkowsky, E.S.: Coherent Extrapolated Volition. Singularity Institute for Artificial Intel-

ligence, May 2004. http://singinst.org/upload/CEV.html
56. Yudkowsky, E.: Recursive Self-Improvement. In: Less Wrong, December 1, 2008.

http://lesswrong.com/lw/we/recursive_selfimprovement/, September 29, 2014
57. Hutter, M.: Can Intelligence Explode? J. of Consciousness Studies 19(1–2), 1–2 (2012)
58. Yampolskiy, R.V.: Analysis of types of self-improving software. In: The Eighth

Conference on Artificial General Intelligence, Berlin, Germany, July 22–25, 2015

Gödel Agents in a Scalable Synchronous
Agent Framework

Jörg Zimmermann(B), Henning H. Henze, and Armin B. Cremers

Institute of Computer Science, University of Bonn, Bonn, Germany
{jz,abc}@iai.uni-bonn.de

Abstract. A synchronous framework for the interaction of an agent
and an environment based on Moore machines is introduced. Within
this framework, the notion of a Gödel agent is defined relative to a fam-
ily of agents and environments and a time horizon T . A Gödel agent
is the most flexible, adapting and self-improving agent with regard to
the given environment family. It scores well across many environments,
and not only in a selected few. Ideas from infinite game theory and ruin
theory are used to get well-defined limits for T → ∞ by introducing neg-
ative goals or repellors. This allows to score actions of the agent by how
probable an action makes the survival of the agent till the end of time.
Score functions of this type will be called “liveness” scores, and they
provide a solution to the horizon problem from a foundational point of
view. Additionally, by varying the agent and environment families, one
gets a scalable and flexible testbed which could prove to be well-suited
for analyzing phenomena of adaptation and self-improvement, both the-
oretically and empirically.

1 A Scalable Synchronous Agent Framework

Theoretical investigations have to be conducted within a conceptual framework.
The process of taking a notion of colloquial language and turn it into a formal,
precisely defined one often is not a straight path from the colloquial notion to the
formal one, but a long and intertwined development resulting in several precise,
but different versions of the colloquial term. These differences often are very
subtle, but can have profound implications for the results obtainable within the
respective frameworks. This conceptual dynamics also holds for the notion of an
agent, which plays a central role in computer science, but especially in artificial
intelligence. The agent concept underlying much of the research in foundations
of artificial intelligence is, for example, defined by M. Hutter in [5], p. 126.
It consists of two interacting Turing machines, one representing the agent and
one representing the environment. If the environment produces an output, it is
written on the percept tape of the agent. Then the agent starts its computations,
deliberating the new percept, and finally produces an action as output, which is
written on the action tape of the environment. While one machine is computing
its next output, the other one is effectively suspended.

c© Springer International Publishing Switzerland 2015
J. Bieger (Ed.): AGI 2015, LNAI 9205, pp. 404–413, 2015.
DOI: 10.1007/978-3-319-21365-1 41

Gödel Agents in a Scalable Synchronous Agent Framework 405

Fig. 1. Two Moore machines, agent and environment, interacting in a synchronous
manner. The output of the environment at time i is the input of the agent at time i+1
and vice versa.

We call this agent framework locally synchronous, because the time struc-
tures of the agent and the environment are independent, as if they would exist
in different universes, but are locally interconnected via percepts and actions.
For a detailed discussion of local synchrony, which lies between global synchrony
and asynchrony, see [3]. The locally synchronous framework was also used by
R. Solomonoff in his seminal articles on universal induction [12,13]. Full
Solomonoff induction is incomputable, but in [14] it is outlined how effective
and universal induction is possible when the agent and the environment are
embedded into a synchronous time structure. This is one example for surprising
implications resulting from seemingly small changes to a conceptual framework,
stressing the point that some results are not as absolute as they might appear,
but depend crucially on the details of the chosen framework.

Here we want to modify the locally synchronous framework in two ways, call-
ing the new framework globally synchronous or just synchronous: First we replace
Turing machines by Moore machines (see below), and second we do not assume
the agent or environment are suspended while the other one is computing, but
the Moore agent and the Moore environment are interacting in a simultaneous
fashion: their transitions are synchronized, the output of one machine is the
input of the other, and the output is generated and read in each cycle (see figure
1). A Moore agent can conduct complex calculations using its internal states
and multiple cycles, but during these calculations the last output (or whatever
the Moore agent produces as preliminary output while the complex calculation
is running) of the Moore agent is used as input for the environment. Thus the
Moore agent has to act in real-time, but on the other hand the environment is

406 J. Zimmermann et al.

scanned in real-time, too, excluding the possibility that the environment takes
more and more time to generate the next percept. In fact, in the locally syn-
chronous framework, the agent does not know whether the current percept was
generated within a second or one billion years.

Moore machines are finite state machines which read in an input symbol and
generate an output symbol in each cycle. They do not terminate, but trans-
late a stream of input symbols into a stream of output symbols, accordingly
they are also called finite state transducers. Moore machines are named after
E. F. Moore, who introduced the concept in 1956 [8].

A Moore machine is a 6-tuple (S, S0, Σ, Λ, T,G) where:

– S is a finite set of states,
– S0 ∈ S is a start state,
– Σ is a finite set called the input alphabet,
– Λ is a finite set called the output alphabet,
– T : S ×Σ → S is a transition function mapping a state and an input symbol

to the next state,
– G : S → Λ is an output function mapping each state to an output symbol.

We replace Turing machines by Moore machines in order to have a better
control of the complexity of the agents and environments, where the number of
states of a Moore machine provide a natural complexity measure. This enables
us to investigate notions of learning, adapting, and self-improving in scaled-down
versions of the full Turing model, simplifying theoretical and empirical analysis.
Furthermore, the synchronous agent framework is not only closer to real world
applications than the locally synchronous one (the world doesn’t stop while we
are thinking, unfortunately), but also allows the distinction between adaptability
and self-improvement within the framework. This distinction follows when one
basically defines adaptability as finding better actions for the same situation,
driven by past observations (which can be modeled in the locally synchronous
framework), and self-improvement as finding the same action, but quicker, driven
by internal self-modification (which doesn’t count in the locally synchronous
framework, but in the synchronous one).

2 Gödel Agents

An arena is a triple (A, E , S), where A is a family of agents, E is a family of
environments, and S : A × E → R is a score function assigning every pair of
agent A and environment E a real number measuring the performance of agent A
in environment E. First we assume that the agent and the environment families
are finite, the cases where agent or environment families or both become infinite
is discussed in section 4. In the finite case, the following notions are well-defined:

Definition 1. For all environments E ∈ E the score Spre(E) = maxA∈A S(A,E)
is called the pre-established score of E. An agent A ∈ A is called an pre-established
agent of E if S(A,E) = Spre(E).

Gödel Agents in a Scalable Synchronous Agent Framework 407

So pre-established agents a priori fit best into a given environment, so there
is no need for adaptation or self-improvement, but in general a pre-established
agent for environment E1 will fail miserably for environment E2. The term “pre-
established” is borrowed from Leibnizian philosophy. Gottfried W. Leibniz intro-
duced the concept of “pre-established harmony” to describe that there is no need
for “substances” (especially mind and body) to interact or adapt because God
has them programmed in advance to “harmonize” with each other ([4], p. 197).

Definition 2. The loss of agent A wrt. environment E is defined as: L(A,E) =
Spre(E) − S(A,E).

Definition 3. A Gödel agent wrt. agent family A and environment family E is
defined as an agent minimizing the maximal loss, i.e., as an element of the set
G(A, E , S) = argminA∈A maxE∈E L(A,E).

Definition 4. The maximal loss of an agent is called its global loss. The global
loss of a Gödel agent is called Gödel loss.

In our case of finite agent and environment families, G contains at least one
element, i.e., one or more Gödel agents exist. In section 4 we will see that this is
also the case when the environment family becomes infinite but the agent family
stays finite.

A Gödel agent can be seen as an agent which is most flexible, adapting and
self-improving with regard to the given environment family. It scores well across
the whole set of environments, and not only in a selected few. Thus a Gödel agent
can be regarded as intelligent (at least wrt. the given environment family) in the
sense introduced by S. Legg and M. Hutter in [7], where intelligence is defined
as “the ability to achieve goals in a wide range of environments”. Additionally, a
Gödel agent operates within the real-time restrictions of the synchronous agent
framework. If the environment family is diverse and complex, a Gödel agent
has to be extremely adaptive and, driven by real-time pressure, self-improving.
In this regard, Gödel agents are closely related to Gödel machines, which were
introduced by J. Schmidhuber [11], and which represent self-improving and, in a
certain sense, optimally efficient problem solvers. While Schmidhuber describes
in detail the internal structure of Gödel machines, we try to characterize Gödel
agents by their externally observable behavior. To elucidate the exact relation-
ship between Gödel agents and Gödel machines is the topic of ongoing investi-
gations.

If the loss is interpreted as a distance measure between an agent and an
environment, then a Gödel agent would be located at the place which minimizes
the maximal distance. In this sense Gödel agents are located in the center of the
environment family.

3 Infinite Games, Ruin Theory, and the Horizon Problem

One goal of foundational investigations is to reduce contingent aspects like arbi-
trary parameters, often called “magic numbers”, or reasonable but not necessary

408 J. Zimmermann et al.

design decisions. One such parameter is the “horizon”, a finite lifespan or maxi-
mal planning interval often necessary to define for an agent in order to get well-
defined reward-values for agent policies. But especially in open environments
existing for an indefinite timespan, this is an ad hoc parameter containing con-
tingent aspects which may prevent the agent from optimal behavior. To stress
this point, we quote M. Hutter ([5], p. 18):

“The only significant arbitrariness in the AIXI model lies in the choice of the
lifespan m.”

where AIXI is a learning agent aiming to be as general as possible.
In order to eliminate this parameter and to tackle the horizon problem from

a foundational point of view, we will look into the notion of an infinite game,
and, in a probabilistic context, into ruin theory.

An infinite game is a game which potentially has no end, but could go on
forever. And for at least one of the players this is exactly the goal: to stay in
the game till the end of time. A good illustration of this abstract concept is the
Angel and Devils Game, introduced by J. H. Conway in 1982 [2]. The game is
played by two players called the angel and the devil. The playground is Z × Z,
an infinite 2D lattice. The angel gets assigned a power k (a natural number 1
or higher), which is fixed before the game starts. At the beginning, the angel is
located at the origin. On each turn, the angel has to jump to an empty square
which has at most a distance of k units from the angel’s current square in the
infinity norm. The devil, on its turn, can delete any single square not containing
the angel. The angel can jump over deleted squares, but cannot move to them.
The devil wins if the angel cannot move anymore. The angel wins by moving, i.e.,
surviving, indefinitely. In [2] it was proved that an angel of power 1 can always
be trapped by the devil, but it took 25 years to show that an angel of power 2
has a winning strategy [6], i.e., an angel of power 2 using the right strategy can
survive forever.

This game nicely illustrates that the angel has not a definite or finite goal it
wants to reach, but aspires to avoid certain states of the world. This seemingly
innocuous transition from a positive goal, an attractor, to a negative goal, a
repellor, solves the horizon problem from a foundational point of view, avoiding
the introduction of arbitrary parameters. Now actions do not have to be scored
with regard to the positive goals they can reach within a certain time frame, but
according to the probability they entail for avoiding the repellor states forever.

A classical probabilistic example to illustrate the concept of an infinite hori-
zon is from ruin theory. Ruin theory was developed as a mathematical model for
the problem an insurance company is typically facing: there is an incoming flow
of premiums and an outgoing flow of claims [1]. Assuming that the flow of pre-
miums is constant and the time and size of claims is exponentially distributed,
the net capital position of an insurance company can be modeled as a biased
random walk. Ruin is defined as a negative net capital position. Now the maybe
surprising fact is that there are parameter values for which ruin probability even
for an infinite time horizon stays below 1, i.e., an indefinite survival has a pos-
itive probability. For the above model of exponentially distributed claims and

Gödel Agents in a Scalable Synchronous Agent Framework 409

Fig. 2. In the insurance example, different actions (investing in either stocks or cash)
lead to different capital position outcomes (survival or ruin) while getting the same
premiums and the same claims occur in both scenarios. The safer cash investment
scenario initially fares better but in the end ruin occurs (in month 273), while the
riskier stock investment scenario is able to accumulate enough reserves over a longer
horizon to survive. The simulation uses 302 monthly periods from 1990 to 2015, an
initial capital of 1, a constant premium of 0.01 per month, exponentially distributed
claim sizes (λ = 5) occurring with a probability of 0.10 per period and investment in
either a stock performance index (DAX) or interest-free cash.

interclaim times, there is an analytical formula for the ruin probability ψ with
infinite time horizon [9]:

ψ(u) =
μ

cλ
exp((

μ

c
− λ)u),

where u > 0 is the initial capital, c > 0 is the premium received continuously per
unit time, interclaim times Ti are distributed according to Exp(μ), μ > 0 and the
sizes of claims Yi according to Exp(λ), λ > 0. For example, if the initial capital is
u = 1, premium rate is c = 0.2, the expected interclaim time E(Ti) = 2 (μ = 0.5),
and the expected size of claims E(Yi) = 0.2 (λ = 5), we get an infinite horizon
ruin probability of ψ = 0.04, i.e., in this case the probability to stay in business
forever, the liveness, is 1 − ψ = 96%.

In a more general example one can imagine that the insurance company can
invest its capital in stocks. In figure 2, beginning from the same initial capital,
two scenarios for the development of the net capital are shown: one conservative,
where all the capital is kept as cash, and one aggressive, where all the capital
is invested in stocks. In this case, the risky strategy prevails over the less risky
one, but the best strategy is probably a smart mix of cash and stocks which is
reallocated periodically, i.e., the investment strategy of the insurance company
would decide on ruin or indefinite survival.

410 J. Zimmermann et al.

Both examples, the angel problem and the insurance problem, show how to
avoid the horizon problem by switching the definition of goal from reaching a
world state to avoiding a world state. In this sense, the accumulation of reward
is only relevant as long as it helps to stay away from the repellor.

The above discussion of negative goals or repellors should serve as an illustra-
tion of a principled solution of the horizon problem and should inspire to search
for new goal systems of agents. We do not claim that all agent policies should
strive to avoid repellors. Negative goals should be seen as complementing, not
replacing positive goals.

4 Gödel Agents in Infinite Arenas

Here we discuss the cases when one or both of the agent and environment families
become infinite. This is especially relevant for theoretical investigations, because
in most settings in machine learning or statistics the set of models assumed to
generate the observations is infinite.

First we assume that only the environment family is infinite. The pre-estab-
lished score is still well-defined wrt. each single environment, because the agent
family is finite and thus the maximum in definition 1 exists. The same is true
for the loss, so we arrive at an infinite number of losses wrt. one agent. Now this
infinite number of losses may have no maximum, but they still have a supremum.
In case of unbounded score functions, this supremum could be infinite, but for
bounded score functions (which is the case for liveness scores, as a probability
they lie in the [0, 1]-interval), we will get a finite number. So we can assign this
finite supremum to the agents as the loss wrt. to the whole environment family,
now calling this the global loss of the agent. This results in a finite family of
agents each getting assigned a global loss number. Then there is at least one
agent in this finite family having a minimal global loss, i.e., there is at least one
Gödel agent.

The situation becomes more complicated if there are infinitely many agents,
too. Then we can still define the infimum of all the global losses of all agents, but
there does not have to be an agent assuming this infimum as its global loss. But
in the case of bounded score functions, there is at least for every ε > 0 an agent
whose global loss exceeds the infimum less than ε, because in every neighborhood
of the infimum has to be a global loss value assumed by an agent from the agent
family. If we call such agents ε-Gödel agents, than we have just proved that for
bounded score functions (and, as mentioned above, liveness scores are bounded),
even when both agent and environment families are infinite, there are ε-Gödel
agents for all ε > 0.

An even more realistic agent framework should also address spatial aspects
of Moore agents, like states per volume or access times for large storage devices,
which become relevant when dealing with infinite agent families. A thorough
analysis of the spatial aspects may imply the general existence of genuine Gödel
agents even in the infinite family case, because minor decreases of global loss by
using more states are offset by the associated costs caused by these additional
states. This will be the topic of future research.

Gödel Agents in a Scalable Synchronous Agent Framework 411

The above discussion addresses only the existence of Gödel agents in certain
situations, not how to construct or approximate them. At least we now know
that there is something worthwhile to search for.

5 A Scalable Testbed for Self-Improving Agents

As mentioned in section 1, one motivation for using Moore machines is their scal-
able complexity. In addition to the synchrony condition, this enables to investi-
gate phenomena of adaptability and self-improvement in a wide range of different
agent and environment families, providing a flexible and scalable testbed with
regard to available agent resources and environment complexities.

 5.4

 5.5

 5.6

 5.7

 5.8

 5.9

 6

 2 3 4 5 6 7 8

Go
ed

el
Lo

ss

AgentStates

AgentStates versus GoedelLoss

Fig. 3. Increasing agent complexity leads to lower Gödel losses as seen in these prelim-
inary results from a simulation performed with 500 fixed Moore environments (having
5 states, 4 inputs and 6 outputs with random transition tables and random outputs), a
fixed score function (using random scores in [0-10] depending on the environment state,
the final score is given as average score per simulation step), and 100000 random Moore
agents drawn per agent state number, all evaluated for 100 steps per environment-agent
pair.

Our working hypothesis is that many aspects of adaptation and self-improve-
ment occur already in scaled-down versions of the full Turing model. The detailed
investigation of these questions, both theoretically and empirically, has just
started and is the topic of ongoing research. Here we can present only a small,
preliminary result, which nevertheless provides an indication of the fruitfulness
and power of the proposed framework. Especially, it inspires to ask new questions
which otherwise may have stayed unasked.

412 J. Zimmermann et al.

For example, we want to know how the Gödel loss varies if we increase the
number of states in the agent family. Is there a “bang per state” effect and how
large is it? In figure 3 the estimated Gödel losses for a fixed environment family,
fixed score function, and increasing number of agent states are displayed. We
can see a “bang per state” effect, but, like in many saturation phenomena, it
finally gets smaller for every added state. Of course these phenomena have to
be investigated much more extensive, both theoretically and empirically, but
that is exactly what we hope for: that the proposed framework is the starting
point for the detailed exploration of the landscape of arenas, adaptability, and
self-improvement.

6 Discussion and Outlook

This is primarily a conceptual paper. A crucial part of theoretical investigations,
aimed at solving real world questions, is to create a conceptual framework which
is a good mix of abstracting away irrelevant or subrelevant details on the one
side, but keeping enough structure so that vital aspects of the real world problem
are still present on the other side. The scalable synchronous agent framework
introduced in this article tries to offer such a good mix between structure and
abstraction, hopefully leading to a fruitful testbed for theoretical and empirical
investigations into phenomena of adapting and self-improving agents across a
wide range of environments.

Especially the synchronization of agent and environment time allows to inves-
tigate phenomenons of self-improvement which is not possible in the locally
synchronous framework. Our framework allows to explicitly, systematically and
quantitativly analyze the trade-off between action quality and action time, which
in other frameworks cannot even be formulated and hence has to be dealt with
in an implicit and often ad hoc fashion.

This may lead to a new discovery process for agent policies by just looking
at their performance with regard to the quality-time trade-off, without the need
for a conceptual understanding of how they achieve this performance. From the
outside, a Gödel agent for given agent and environment families is just a “bit
mixer”, and describing its inner workings by stating that it builds models or
makes inferences is just a way to try to understand what is going on inside the
agent, but is not necessary for its discovery or implementation.

By following this approach, we lose transparency, but we gain access to the
whole agent space. In fact, concepts for designing the cognitive structure of
an agent like logical inference, probabilistic inference, or utility, can be seen as
specific search biases in exploring the agent space. But these biases are very
focused, leading to the exploration of only some archipelagos, while leaving the
great ocean of nonconventional cognitive architectures invisible and undiscov-
ered. Of course, that does not mean that we aim for a bias-free, totally random
discovery process for agent policies, but that the search biases should emerge as
a result of a self-improving cognitive dynamics, rather than to be hardwired into
the agent policy.

Gödel Agents in a Scalable Synchronous Agent Framework 413

Generally, we advocate a change in perspective with regard to agent concepts
from defining them via their inner structure (like this is done, for example, in
[10]) to characterizing them from the outside using observable properties. This
can be seen in analogy to the development in many mathematical areas, where
first a “coordinate-dependent” description was introduced and then gradually
replaced by a “coordinate-independent” one, often leading to general, elegant
and powerful theories.

References

1. Asmussen, S.: Ruin Probabilities. World Scientific (2000)
2. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for your Mathematical

Plays. Academic Press (1982)
3. Cremers, A.B., Hibbard, T.H.: A programming notation for locally synchronized

algorithms. In: Bertolazzi, P., Luccio, F. (eds.) VLSI: Algorithms and Architec-
tures, pp. 341–376. Elsevier (1985)

4. Garber, D.: Body, Substance, Monad. Oxford University Press, Monad (2009)
5. Hutter, M.: Universal Artificial Intelligence. Springer (2005)
6. Kloster, O.: A solution to the angel problem. Theoretical Computer Science 389(1–

2), 152–161 (2007)
7. Legg, S., Hutter, M.: Universal intelligence: A definition of machine intelligence.

Minds & Machines 17(4), 391–444 (2007)
8. Moore, E.F.: Gedanken-experiments on sequential machines. Automata Studies

34, 129–153 (1956)
9. Rongming, W., Haifeng, L.: On the ruin probability under a class of risk processes.

Astin Bulletin 32(1), 81–90 (2002)
10. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pren-

tice Hall (2009)
11. Schmidhuber, J.: Gödel machines: Fully self-referential optimal universal self-

improvers. In: Goertzel, B., Pennachin, C. (eds.) Artificial General Intelligence.
Springer (2007)

12. Solomonoff, R.: A formal theory of inductive inference, part I. Information and
Control 7(1), 1–22 (1964)

13. Solomonoff, R.: A formal theory of inductive inference, part II. Information and
Control 7(2), 224–254 (1964)

14. Zimmermann, J., Cremers, A.B.: Making Solomonoff Induction Effective. In:
Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 745–
754. Springer, Heidelberg (2012)

Author Index

Bach, Joscha 3
Batishcheva, Vita 14, 331
Bayetta, Misgana 80
Belayneh, Amen 80, 301
Bergmann, Frank 25
Besold, Tarek R. 35
Bieger, Jordi 46, 187
Bundy, Alan 35

Chmait, Nader 50
Cirillo, Simone 362
Cremers, Armin B. 404

Dastaw, Meseret 80
Daswani, Mayank 231
Demski, Abram 241
Dowe, David L. 50
Duncan, Mike 80

Engelbrecht, Klaus-Peter 261

Fallenstein, Benja 60, 156
Fenton, Brian 25
Fischer, Martin H. 35
Franz, Arthur 251

Garcez, Artur d’Avila 35
Garrett, Deon 187
Geisweiller, Nil 80
Goertzel, Ben 70, 80, 301
Gratch, Jonathan 142
Green, David G. 50

Halbrügge, Marc 261
Hammer, Patrick 197, 208
Henze, Henning H. 404
Hernández-Orallo, José 90, 101, 272
Hutter, Marcus 177

Ikle’, Matthew 80
Inoue, Katsumi 341
Insa-Cabrera, Javier 101

Juel, Jonas 166

Katayama, Susumu 111
Kerdels, Jochen 283
Khudobakhshov, Vitaly 293
Kühnberger, Kai-Uwe 35

Leike, Jan 231
Li, Yuan-Fang 50
Lian, Ruiting 301
L}orincz, András 373

McShane, Marjorie 310
Monroe, Eddie 80

Nirenburg, Sergei 310
Nivel, Eric 121
Nizamani, Abdul Rahim 166

Ould Ouali, Lydia 320
Özkural, Eray 131

Persson, Ulf 166
Peters, Gabriele 283
Pitko, Andrey 293
Potapov, Alexey 14, 331

Quade, Michael 261

Ragni, Marco 352
Rich, Charles 320
Rodionov, Sergey 331
Rosenbloom, Paul S. 142

Sabouret, Nicolas 320
Saffiotti, Alessandro 35
Sakama, Chiaki 341
Schiffel, Stephan 187
Schmid, Ute 352
Schmidhuber, Jürgen 121
Sezener, Can Eren 152
Soares, Nate 60, 156

Solomon, Rodas 301
Steunebrink, Bas 121
Strannegård, Claes 166, 362
Sunehag, Peter 177

Taylor, Jessica 60
Thórisson, Kristinn R. 46, 121, 187
T}osér, Zoltán 373

Ustun, Volkan 142

Wang, Pei 46, 197, 208
Wessberg, Johan 362

Yampolskiy, Roman V. 218, 384, 394
Yilma, Selamawit 80
Yu, Gino 80, 301

Zhou, Changle 301
Zimmermann, Jörg 404
Zotov, Denis 293

416 Author Index

	Preface
	Organization
	Contents
	Papers Presented Orally
	Modeling Motivation in MicroPsi 2
	1 Introduction
	2 From Needs to Behavior
	3 Types of Needs
	4 Decision-Making
	5 Modulation
	6 Summary
	References

	Genetic Programming on Program Traces as an Inference Engine for Probabilistic Languages
	1 Introduction
	2 Background
	3 Genetic Operators for Computation Traces
	4 Empirical Evaluation
	5 Conclusion
	References

	Scene Based Reasoning
	1 Introduction
	2 Comparison
	3 Architecture Overview
	4 3D Scene Reconstruction
	5 Prediction Subsystem or "Sandbox"
	6 SBR Planner
	7 Reasoning About Plans
	8 Logical Reasoning
	9 Attention Subsystem
	10 Learning
	References

	Anchoring Knowledge in Interaction: Towards a Harmonic Subsymbolic/Symbolic Framework and Architecture of Computational Cognition
	1 A Harmonic Analogy
	2 The Core Ideas
	3 The Core Objectives
	4 Structure and Methods
	5 First Steps Towards an Implementation
	6 (Far) Beyond Multi-level Data Fusion
	References

	Safe Baby AGI
	1 Introduction
	2 Bounded and Adaptive
	3 Overpowering Humanity
	4 Appetite for Destruction
	5 Nurturing Beneficial AGI
	References

	Observation, Communication and Intelligence in Agent-Based Systems
	1 Introduction
	2 Approach to Measuring Intelligence
	2.1 The Anytime Intelligence Test
	2.2 Measuring Uncertainty and Information
	2.3 Evaluating Different Agent Communication Modes

	3 Experiments
	4 Results and Discussion
	5 Conclusion
	References

	Reflective Variants of Solomonoff Induction and AIXI
	1 Introduction
	2 Reflective Oracles
	3 Reflective Solomonoff Induction
	4 Reflective AIXI
	5 Conclusions
	A Appendix: Helper functions
	References

	Are There Deep Reasons Underlying the Pathologies of Today's Deep Learning Algorithms?
	1 Introduction
	2 Broad and Narrow Interpretations of ``Deep Learning"
	3 Pathologies of Contemporary Deep Learning Architectures
	4 A Possible Way Out
	References

	Speculative Scientific Inference via Synergetic Combination of Probabilistic Logic and Evolutionary Pattern Recognition
	1 Introduction
	2 Cognitive Synergy for Procedural and Declarative Learning
	3 Example of PLN Inference on MOSES Output
	4 Conclusions and Next Steps
	References

	Stochastic Tasks: Difficulty and Levin Search
	1 Introduction
	2 Stochastic Tasks, Trials, Responses and Difficulty
	3 Task Instances, Task Composition and Decomposition
	4 Difficulty as Levin Search with Stochastic Verification
	5 Conclusions
	References

	Instrumental Properties of Social Testbeds
	1 Introduction
	2 Background
	2.1 Multi-agent Environments
	2.2 Teams
	2.3 Multi-agent Environments Using Teams

	3 Components to Consider While Evaluating Social Intelligence
	4 Properties
	4.1 Validity
	4.2 Reliability
	4.3 Efficiency
	4.4 Boundedness
	4.5 Team Symmetry

	5 Conclusions
	References

	Towards Human-Level Inductive Functional Programming
	1 Introduction
	2 MagicHaskeller: A General-Purpose IFP System
	3 Synthesizing Longer Expressions: How and Why
	4 How to Learn the Library
	4.1 What to Synthesize
	4.2 How to Collect Data
	4.3 How to Organize and Update the Library

	5 Evaluation
	6 Expected Contribution to AGI
	7 Conclusions
	References

	Anytime Bounded Rationality
	1 Introduction
	2 Overview of ABR Control
	3 Models
	4 Continual Simulation and Anytime Commitment
	5 Results and Conclusion
	References

	Ultimate Intelligence Part I: Physical Completeness and Objectivity of Induction
	1 Introduction
	2 Background
	3 Physical Completeness of Universal Induction
	3.1 Evidence from Physics
	3.2 Randomness, Computability and Quantum Mechanics

	4 On the Existence of an Objective U
	4.1 The Universe as the Reference Machine
	4.2 Minimum Machine Volume as a Complexity Measure
	4.3 Volume Based Algorithmic Probability
	4.4 Minimum Machine Energy and Action
	4.5 Restoring Subjectivity
	4.6 Quantum Algorithmic Probability and Physical Models
	4.7 The Physical Semantics of Halting Probability

	5 Discussion
	5.1 Dissolving the Problem of Induction
	5.2 Disproving Boltzmann Brains
	5.3 Refuting the Platonist Objection to Algorithmic Information
	5.4 Concluding Remarks and Future Work

	References

	Towards Emotion in Sigma: From Appraisal to Attention
	1 Introduction
	2 Sigma
	3 Expectedness
	4 Desirability
	5 Attention
	6 Wrap Up
	References

	Inferring Human Values for Safe AGI Design
	1 Introduction
	2 Inferring Human Values
	3 Discussion
	References

	Two Attempts to Formalize Counterpossible Reasoning in Deterministic Settings
	1 Introduction
	2 Counterfactual Reasoning
	3 Counterpossibles
	3.1 Counterpossibles Using Graphical Models
	3.2 Counterpossibles Using Proof Search

	4 Conclusion
	References

	Bounded Cognitive Resources and Arbitrary Domains
	1 Introduction
	2 How Alice Makes Observations
	3 How Alice Represents Knowledge
	4 How Alice Reasons
	5 How Alice Learns
	6 How Alice Solves Problems
	7 Results
	8 Conclusions
	References

	Using Localization and Factorization to Reduce the Complexity of Reinforcement Learning
	1 Introduction
	2 Background
	2.1 General Reinforcement Learning
	2.2 Agents Based on Decision Functions and Hypothesis Generating Functions

	3 Environments Defined by Laws
	4 Conclusions
	References

	Towards Flexible Task Environments for Comprehensive Evaluation of Artificial Intelligent Systems and Automatic Learners
	1 Introduction
	2 Related Work
	3 Requirements for Intelligence Evaluation Frameworks
	4 Flexible Task-Environment Framework: A Proposal
	4.1 Example Syntax and Task
	4.2 Example Tuning
	4.3 Analysis
	4.4 Construction: Addressing the Range from Q-Learning to AGI

	5 Conclusions and Future Work
	References

	Assumptions of Decision-Making Models in AGI
	1 Formalizing Decision-Making
	2 Decision Making in NARS
	3 Comparison and Discussion
	4 Conclusion
	References

	Issues in Temporal and Causal Inference
	1 Integrated Representation of Temporal Information
	2 Classical Conditioning as Temporal Inference
	3 Causal Inference without a Casual Relation
	4 Conclusions
	References

	The Space of Possible Mind Designs
	1 Introduction
	2 Infinitude of Minds
	3 Size, Complexity and Properties of Minds
	4 Space of Mind Designs
	5 A Survey of Taxonomies
	6 Conclusions
	References

	Papers Presented as Posters
	A Definition of Happiness for Reinforcement Learning Agents
	1 Introduction
	2 Reinforcement Learning
	3 A Formal Definition of Happiness
	4 Matching the Desiderata
	5 Discussion and Examples
	5.1 Off-policy Agents
	5.2 Increasing and Decreasing Rewards
	5.3 Value Function Initialisation
	5.4 Maximising Happiness

	6 Conclusion
	References

	Expression GraphsUnifying Factor Graphs and Sum-Product Networks
	1 Motivation
	2 Factor Graphs
	3 Sum-Product Networks
	4 Expression Graphs
	5 Exact Inference
	6 Future Work
	7 Conclusion
	References

	Toward Tractable Universal Induction Through Recursive Program Learning
	1 Introduction
	2 A Measure for Partial Progress in AGI
	2.1 Related Work
	2.2 Formalization
	2.3 Implementation

	3 Universal Induction of Low-Complexity Sequences
	3.1 Methods
	3.2 Results

	4 Discussion
	References

	How Can Cognitive Modeling Benefit from Ontologies? Evidence from the HCI Domain
	1 Introduction
	1.1 Human Action Control and Error
	1.2 Memory for Goals

	2 Experiment
	2.1 Method
	2.2 Results

	3 Cognitive Model
	3.1 Adding World Knowledge to the Model
	3.2 Goodness of Fit

	4 Discussion and Conclusions
	References

	C-Tests Revisited: Back and Forth with Complexity
	1 Introduction
	2 Background
	3 Difficulty Functions
	4 Difficulty-Conditional Task Probabilities
	4.1 Task Probability Depends on Difficulty
	4.2 Task Probability Depends on the Policy Probability

	5 Using Computational Steps
	6 Discussion
	References

	A New View on Grid Cells Beyond the Cognitive Map Hypothesis
	1 Introduction
	2 Model Description
	3 Example of Grid Cell Activity
	4 Discussion
	5 Conclusion and Outlook
	References

	Programming Languages and Artificial General Intelligence
	1 Introduction
	2 Language Requirements and Design
	3 Probablistic Programming
	4 Why Partial Evaluation Matters?
	5 Implementation Issues
	6 Conclusion and Future Work
	References

	From Specialized Syntax to General Logic: The Case of Comparatives
	1 Introduction
	2 A Deep Linguistics and Logical Inference Oriented Comprehension Pipeline
	2.1 Link Grammar
	2.2 RelEx
	2.3 OpenCog
	2.4 RelEx2Logic

	3 Handling Comparatives
	4 Reasoning About Comparatives
	5 Conclusion
	6 Beyond Hand-Coded Rules
	References

	Decision-Making During Language Understanding by Intelligent Agents
	1 Introduction
	2 Issues with Pipelines
	3 Pursuing Actionable Language Analyses
	4 The Stages of Language Analysis
	5 Final Thoughts
	References

	Plan Recovery in Reactive HTNs Using Symbolic Planning
	1 Introduction
	2 A Motivating Example
	3 Procedural Versus Symbolic Modeling
	4 A Hybrid Approach
	4.1 Reactive HTNs
	4.2 Plan Recovery Algorithm
	4.3 Modeling Methodology

	5 Implementation and Evaluation
	References

	Optimization Framework with Minimum Description Length Principle for Probabilistic Programming
	1 Introduction
	2 Background
	3 Optimization Framework for Probabilistic Programming
	4 Evaluation
	5 Conclusion
	References

	Can Machines Learn Logics?
	1 Introduction
	2 Learning Logics
	3 Learning Deductive Inference Rules
	4 Learning CA Rules
	5 Discussion
	6 Summary
	References

	Comparing Computer Models Solving Number Series Problems
	1 Introduction
	2 Number Series Problems
	3 Systems Solving Number Series
	4 Performance Comparison: Igor2, ANNs, and Humans
	5 Conclusions and Further Work
	References

	Emotional Concept Development
	1 Introduction
	2 Transparent Networks
	3 Network Computation
	4 Network Development
	5 Results
	6 Conclusion
	References

	The Cyber-Physical System Approach Towards Artificial General Intelligence: The Problem of Verification
	1 Introduction
	2 Theoretical Background
	2.1 Markov Decision Processes
	2.2 Generalized MDP (gMDP) and -gMDPs
	2.3 The Event-Learning Framework (ELF)
	2.4 Robust Controller
	2.5 Event-Learning with Robust Controller Belongs to the -gMDP Family
	2.6 Factored Markov Decision Processes (fMDPs)
	2.7 Polynomial Time Learning

	3 Illustrative Experiment and the CPS Connection
	3.1 Results
	3.2 Outlook to General Cyber-Physical Systems

	4 Discussion: The Problem of Verification
	4.1 Verification in the Context of Intelligence
	4.2 `Verification' is the Goal of Intelligent Communication
	4.3 Interplay Between Procedural and Episodic Memories

	5 Conclusions
	References

	Analysis of Types of Self-Improving Software
	1 Introduction
	2 Taxonomy of Types of Self-Improvement
	3 RSI Software Classification
	4 Conclusions
	References

	On the Limits of Recursively Self-Improving AGI
	1 Introduction
	2 On the Limits of Recursively Self-Improving AGI
	3 Analysis
	4 RSI Convergence Theorem
	5 Conclusions
	References

	Gödel Agents in a Scalable Synchronous Agent Framework
	1 A Scalable Synchronous Agent Framework
	2 Gödel Agents
	3 Infinite Games, Ruin Theory, and the Horizon Problem
	4 Gödel Agents in Infinite Arenas
	5 A Scalable Testbed for Self-Improving Agents
	6 Discussion and Outlook
	References

	Author Index

