
Recent Advances in Real Geometric Reasoning

James H. Davenport1 and Matthew England2(B)

1 Departments of Computer Science and Mathematical Sciences,
University of Bath, Bath, UK
J.H.Davenport@bath.ac.uk

2 Department of Computing, Coventry University, Coventry, UK
Matthew.England@coventry.ac.uk

Abstract. In the 1930s Tarski showed that real quantifier elimination
was possible, and in 1975 Collins gave a remotely practicable method,
albeit with doubly-exponential complexity, which was later shown to
be inherent. We discuss some of the recent major advances in Collins
method: such as an alternative approach based on passing via the com-
plexes, and advances which come closer to “solving the question asked”
rather than “solving all problems to do with these polynomials”.

1 Introduction

Although methods with better asymptotic complexity are known in theory (e.g.
[GV88]), the workhorse of implemented algorithms for real geometric reason-
ing is Cylindrical Algebraic Decomposition. This was introduced in [Col75]
to produce a remotely practicable (complexity “merely” doubly exponential
in the number of variables) alternative to Tarski’s original method from 1930
[Tar51], whose complexity could not be bounded by any tower of exponen-
tials. Tarski in fact set out to solve the quantifier elimination problem for real
algebraic geometry (Sect. 4): given Qk+1xk+1Qk+2xk+2 . . . Φ(x1, . . . , xn), where
Qi ∈ {∀,∃} and Φ is a Boolean combination of relations involving polynomials
pi(x1, . . . , xn), find an equivalent Ψ(x1, . . . , xk), where Ψ is a Boolean combina-
tion of relations involving polynomials qi(x1, . . . , xk). In fact, we cannot solve
this in the language of algebraic geometry: we need semi-algebraic geometry,
allowing > as well1 as =. The necessity of > follows from the fact of the exam-
ple ∃y : x = y2 ⇔ (x > 0) ∨ (x = 0); its sufficiency is the point of Tarski’s work.

2 Cylindrical Algebraic Decomposition by Projection
and Lifting

[Col75] constructs a sampled2 Cylindrical Algebraic Decomposition (CAD) of Rn

which is sign-invariant for the pi, where these words are defined as follows.
1 Strictly speaking > is sufficient, but implementations always allow ≥ and �=. In fact,

�= is intrinsic to the regular chains approach discussed in Sect. 3.
2 The “sampled” nature is implicit in [Col75, and its successors], but the authors find

it helpful to be explicit about this.

c© Springer International Publishing Switzerland 2015
F. Botana and P. Quaresma (Eds.): ADG 2014, LNCS 9201, pp. 37–52, 2015.
DOI: 10.1007/978-3-319-21362-0 3

38 J.H. Davenport and M. England

Definition 1. (CAD terminology). Note that throughout we are ordering our
coordinates/variables, so that xn is the “last coordinate”.

decomposition: a partition of Rn into cells Ci indexed by n-tuples of natural
numbers (so Rn =

⋃
i Ci and i �= j ⇒ Ci ∩ Cj = ∅);

(semi-)algebraic: every Ci is defined by a finite set of equalities and inequalities
of polynomials in the xi, including expressions of the form

RootOf2(f1(x1, y)) < x2 < RootOf3(f2(x1, y)) (1)

(where RootOf2 means “the second real root, counting from −∞”);
cylindrical: for all k < n, if πk is the projection onto the first k coordinates,

then, for all i, j, πk(Ci) and πk(Cj) are either equal or disjoint;
sampled: for each cell Ci there is an explicit point si ∈ Ci;
sign-invariant: for the polynomials in Φ on each cell, every pi is identically

zero, or everywhere positive, or everywhere negative.

Collins constructed such a decomposition by a process now known (at least by
our colleagues) as CAD by Projection and Lifting (for more details see [Dav15]).
The key property in this approach is the following.

Definition 2. A polynomial p(x1, . . . , xm) is delineable3 over a region C ⊂
Rm−1 if:

1. the portion of the real variety of p that lies in the cylinder C × R over C
consists of the union of the graphs (called sections) of some k ≥ 0 continuous
functions θ1 < · · · < θk from C to R and;

2. there exist integers m1, . . . ,mk ≥ 1 such that, for every point (a1, . . . , am−1)
in C, the multiplicity of the root θi(a1, . . . , am−1) of p(a1, . . . , am−1, xm), con-
sidered as a function of xm alone, is mi (and in particular is constant).

A set of polynomials is delineable over C if each is delineable and if the sections
are either identical or disjoint. This is actually equivalent to saying that the
product is delineable.

Intuitively, if the {pi} are delineable over C, their graphs neither fold nor cross.
Let Pn be the set of polynomials in Φ, with coefficients from some effective4

field K ⊂ R. Then Collins algorithm proceeds as follows:

3 There are various, subtly different, definitions in the literature. This one is from
[McC99].

4 The literature often stipulates Q or the algebraic numbers A. The real requirement
is that we can perform all the polynomial algebra we need over K, and that, given
expressions a, b ∈ K, we can decide the trichotomy a < b or a = b or a > b. Once we
start adding transcendental functions to our language, the effectivity of K becomes
a major problem, as we run across the usual indecidability results. This is addressed
in different ways in [AMW08] and [Vor89,Vor92].

Recent Advances in Real Geometric Reasoning 39

Projection: Given some Pk ⊂ K[x1, . . . , xk] construct a set Pk−1 ⊂ K[x1, . . . ,
xk−1] such that, over each cell of a CAD sign-invariant for Pk−1, the polyno-
mials of Pk are delineable. Though the details depend on the algorithm, the
key ingredients are leading coefficients (where these vanish some θi tends to
infinity), discriminants (where these vanish some θi ceases to have constant
multiplicity) and resultants (where these vanish, the θi from different poly-
nomials intersect).
Repeat until we have the set of univariate polynomials P1.

Base case: Given P1, isolate the N1 real roots of these polynomials in R1,
and construct a CAD consisting of the N1 roots, and the N1 + 1 intervals
between them (or to the left/right of them all). The sample points for the
0-dimensional cells are the roots themselves: for the 1-dimensional intervals
we choose any convenient point, generally rational and with denominator
the smallest power of 2 we can find.

Lifting: Given a CAD Dk−1 of Rk−1, sign-invariant for Pk−1, construct a CAD
Dk of Rk, sign-invariant for Pk. For each cell Ci, this is done by substituting
the sample point si into Pk, and doing the equivalent of the base case for
the resulting univariate system (valid across the whole of Ci if the projection
operator provides delineable projection polynomials).
Repeat until we have the CAD Dn of Rn.

If we suppose that Pn contains m polynomials, of degree (in each variable)
bounded by d, and coefficient length bounded by l (coefficients bounded by 2l),
then the time complexity is bounded [Col75, Theorem 16] by

O
(
m2n+6

(2d)2
2n+8

l3
)

. (2)

This analysis is very sensitive to the details of the sub-algorithms involved, and
a more refined analysis of the base case [Dav85] reduces the complexity (though
not the actual running time) to

O

(

m2n+/64
(2d)2

2n+/86
l3

)

.

This improvement might seem trivial, but in fact implies taking the fourth root
of the m, d part of the complexity.

A less sensitive property (and one that reflects the cost of using such a
decomposition) is the number of cells: for the Collins method this is bounded,
by an analysis similar to [BDE+14], by

O
(
m2n(2d)2·3n

)
. (3)

As is often the case in mathematics, we get more insight if we solve an apparently
harder problem. [McC84] did this, demanding that the decompositions Dk, k < n
be, not just sign-invariant, but

Order-invariant for the polynomials in Φ, i.e. on each cell, every pi is identically
zero, and vanishes to the same order throughout the cell, or everywhere
positive, or everywhere negative.

40 J.H. Davenport and M. England

This actually lets his Pk be much simpler than Collins’, with the cost that
the lifting procedure might fail if some element p of Pk nullifies (is identically
zero) over some cell in Dk−1. In this case, McCallum says that Pk was not
well-oriented, and has to either:

1. proceed by working around the problem or concluding it not relevant. This is
only possible in certain cases (e.g. the cell is dimension 0) [Bro05]. Otherwise;

2. revert to Collins’ projection (or a variant due to [Hon90]); or,
3. add the partial derivatives of p to Pk and resume the projection process

from there — an operation that to the best of the authors’ knowledge has
never been implemented, doubtless because of the complicated backtracking
involved, and the fact that, whereas we only ought to add this polynomial
in the nullifying region, the design of Collins’ algorithm and its successors
assume a global set of polynomials at each level.

“Randomly”, well-orientedness ought to occur with probability 1, but we have
a family of “real-world” examples (simplification/branch cuts, see [BBDP07])
where it often fails. The analogy of (3) is given by [McC85, Theorem 6.1.5] as

O
(
m2n(2d)n·2n

)
, (4)

and a recent improved analysis in [BDE+14, (12)] reduces this to

O
(
22

n−1
m(m + 1)2

n−2d2
n−1

)
. (5)

3 CAD by Regular Chains

This alternative to the traditional computation scheme of projection and lifting
was introduced in [CMXY09], then improved in [CM14a]. The method can be
described as “going via the complexes”, since the authors first construct a cylin-
drical decomposition of Cn, and then infer a CAD of Rn. They make use of the
well developed body of theory around regular systems [Wan00] for the work over
the complexes, and the algorithms are all implemented in the RegularChains
Library5 for Maple, hence our designation: CAD by Regular Chains.

We first need the following analogue of Definition 2 (not precisely analogous,
as Definition 2 allows for non-square-free polynomials and this does not).

Definition 3. Let K ⊂ C be an effective field. Let C be a subset of Cn−1 and
P ⊂ K[x1, . . . , xn−1, xn] be a finite set of polynomials whose main variable really
is xn. We say that P separates above C if for each α ∈ C:

1. for each p ∈ P , the polynomial lcxn
(p) does not vanish at α;

2. the polynomials p(α, xn) ∈ C[xn], for all p ∈ P , are squarefree and coprime.

Note that the empty set is trivially separable.

5 http://www.regularchains.org.

http://www.regularchains.org

Recent Advances in Real Geometric Reasoning 41

We then need an analogue of Definition 1 for the case of complex space. We follow
[CM14a] and describe these (complex) cylindrical decompositions in terms of the
tree data structure they are stored as.

Definition 4. We define a cylindrical decomposition of Cn, and its associated
tree, by induction on n.

Base Either: There is one set D1, the whole of C and D = {D1};
Base Or: there are r non-constant square-free relatively prime polynomials pi

such that Di is the set of zeros of pi, and Dr+1 is the complement: {x :
p1(x)p2(x) · · · pr(x) �= 0}: D = {D1, . . . , Dr,Dr+1}.

Base Tree: The root and all the Di as leaves of it.
Induction: Let D′ be a cylindrical decomposition of Cn−1. For each Di ∈ D′, let

ri be a non-negative integer, and Pi = {pi,1, . . . , pi,ri} be a set of polynomials
which separates over Di.

Induction Either: r = 0 and we set Di,1 = Di × C;
Induction Or: we set Di,j = {(α, x) : α ∈ Di ∧ pi,j(α, x) = 0};

Di,r+1 =

⎧
⎨

⎩
(α, x) : α ∈ Di ∧

∏

j

pi,j(α, x) �= 0

⎫
⎬

⎭
;

Then: a cylindrical decomposition of Cn is given by

D = {Di,j : 1 ≤ i ≤ |D′|; 1 ≤ j ≤ ri + 1}.

Induction Tree: If T ′ is the tree associated to D′ then the tree associated to D
is obtained by adding to each leaf Di ∈ T ′ as children all the Di,j such that
1 ≤ j ≤ ri + 1.

Unlike Definition 1, the different roots of a given polynomial are not separated.
Each cell is the zero set of a system of polynomial equations and inequations,
where the main variables are all distinct: a triangular system [ALM99].

Definition 5. Let F be a set of polynomials in k = K[x1, . . . , xn]. A cylindrical
decomposition D is F -invariant if, for each cell D ∈ D and each fi ∈ F , either
f vanishes at all points of D or f vanishes at no point of D.

The trivial decomposition, obtained by taking the “either” branch each time,
with one cell, is ∅-invariant. Given a cylindrical decomposition D which is F -
invariant, and supposing F̂ = F ∪ {f}, [CM14a] shows how to refine D to a
cylindrical decomposition D̂ which is F̂ -invariant, hence the “incremental” in
the title of their paper. The key ingredients in this process are again leading
coefficients, resultants and discriminants. The paper [CMXY09] shows, assuming
that K ⊂ R, how to construct from D a cylindrical algebraic decomposition of
Rn which is sign-invariant for F .

42 J.H. Davenport and M. England

The construction of the cylindrical decomposition can be seen, as pointed
out in [CM14a], as an analogue of the projection phase of projection and lifting.
Indeed, if n is small, it is often the case that the polynomials at level i in the tree
corresponding to D are those in Pn−i. The fundamental difference is that the Pi

are global structures: over the whole cylindrical algebraic decomposition of Rk

we need to isolate all the branches of all of Pk+1, whereas there is a tree structure
underpinning D and the cylindrical algebraic decomposition, which means that
“polynomials are not considered when they are blatantly not relevant”.

Example: Consider the parabola p := ax2 + bx + c and assume the variable
ordering x � c � b � a. Suppose we were to use projection and lifting. Then the
first projection identifies the coefficients a, b, c and the discriminant with respect
to x: b2 − 4ac. Subsequent projection do not identify any further projection
polynomials for this example. Lifting produces CADs sign-invariant for these 4
projection polynomials, as well as p itself.

The regular chains approach would start by building the following tree, rep-
resenting a cylindrical decomposition of Cn:

a = 0

b = 0

c = 0 c �= 0

b �= 0

p = 0 p �= 0

a �= 0

b2 − 4ac = 0

p = 0 p �= 0

b2 − 4ac �= 0

p = 0 p �= 0

This decomposition was produced to be sign-invariant for p. However, it
does not insist on sign-invariance for the all the other projection polynomials.
In particular, it is not sign-invariant for b. The polynomial b is included in the
projection set because its vanishing can determine delineability, but only when
the coefficient of the higher degree terms vanish. So, when a = 0 it is important
to ensure b is sign-invariant, but not otherwise. Hence the tree above is doing
only what is necessary to make the final conclusion about p.

The next step is to apply real root isolation, extending this tree to one rep-
resenting a CAD. At the top level the case a �= 0 must split into the two pos-
sibilities: a < 0 and a > 0. For brevity we display only the branch for a < 0
below (where r1 and r2 represent the two real roots of p in the case where the
leading coefficient is negative and the discriminant positive). The full tree has
27 leaves, thus representing a CAD with 27 cells. This compares with a minimal
CAD of 115 cells produced by projection and lifting to be sign invariant for all
projection polynomials.

Recent Advances in Real Geometric Reasoning 43

a < 0

c = b2

4a

x < − b
2a x = − b

2a x > − b
2a

c > b2

4a

x < r1 x = r1 x ∈ (r1, r2) x = r2 x > r2

c < b2

4a

Are there significant savings in general? We refer the reader to [BDE+14,
Table 1]. Here PL-CAD refers to our implementation of McCallum’s algorithm of
Sect. 2; RC-INC-CAD refers to the algorithm of [CM14a] (Sect. 3); and Qepcad
[Bro03] is another, highly optimised, implementation of McCallum’s algorithm.
Where both terminate, Qepcad and PL-CAD often, though not always, have the
same cell count. RC-INC-CAD does sometimes have the same count, but on other
examples such as BC-Phisanbut-4, needs only 2007 cells, while both implemen-
tations of McCallum’s algorithm need 51,763.

4 Quantifier Elimination

The original motivation for [Col75] was the following problem.

Problem 1. (Quantifier Elimination). Let Qi ∈ {∃,∀}, and LRCF be the language
of Boolean-connected equalities and inequalities concerning polynomials in K[x1,
. . . , xn], where K is an effective field with Q ⊆ K ⊂ R . Given a statement
(known as a Tarski statement, or a Tarski sentence if k = 0)

Φ := Qk+1xk+1 . . . Qnxnφ(x1, . . . , xn) : φ ∈ LRCF, (6)

the Quantifier Elimination problem is that of producing an equivalent

Ψ := ψ(x1, . . . , xk) : ψ ∈ LRCF. (7)

In particular, k = 0 is a decision problem: is Φ true?

If we have a CAD D(n) of Rn (noting that the xi must be ordered in the same
way in Definition 1 and formula (6)) sign-invariant for the polynomials of Φ,
then constructing Ψ is conceptually easy.

1. The truth of φ in a cell Di of D(n) is that of φ at the sample point si.
2. D(n) projects to a CAD D(k) of Rk.

44 J.H. Davenport and M. England

3. The truth of Φ in a cell D̂j ∈ D(k) is then the appropriate (
∨

for ∃ etc.)
Boolean combination of the truth of φ in the cells of D that project to D̂j.

4. Ψ is then the disjunction of the defining formulae for all the D̂j for which Φ
is true.

There is a problem in practice with the last step, first pointed out in [Bro99]. In
the lifting stage, we produce branches θi of polynomials, with descriptions such as
“that branch of p(x1, . . . , xl) which, above the sample point s = (α1, . . . , αl−1),
has the (unique) root in (β, γ)”, and this is not a statement of LRCF. We could
equally describe it as “the third real branch of p(x1, . . . , xl) above s”, but again
this statement is not in LRCF. Now by Thom’s Lemma [CR88], we can describe
this branch in terms of the signs of p and its derivatives, but, whereas these
derivatives are in the Collins projection, they are not in the McCallum projec-
tion, or in the tree constructed by the method of Sect. 3. However, when it comes
to describing D̂j, we can just add these (as described in [Bro99] for projection
and lifting and in [CM14b] for regular chains CAD construction). The additional
cost is negligible, in particular, we do not need them for projection (Sect. 2), or
for tree construction (Sect. 3).

Though it may depend non-linearly on polynomial degree etc., this process
is linear in the number of cells in D(n), and produces a disjunction of at most as
many clauses as there are cells in D(k).

5 Lower Bounds

This last remark is the basis of the complexity lower bounds in [DH88,BD07].
Both constructions use the fact that

∃zm∀xm−1∀ym−1

⎛

⎝
(ym−1 = ym ∧ xm−1 = zm)

∨ (ym−1 = zm ∧ xm−1 = xm)
⇒ ym−1 = Fm−1(xm−1)

⎞

⎠ (8)

encodes ym = Fm−1(Fm−1(xm)). Hence applying this construct m − 1 times to
y1 = F1(x1) gives

ym = F1(F1(· · · F1(
︸ ︷︷ ︸

2m−1times

(xn)) · · ·).

This can then be used to produce expressions with n quantifiers and having
22

O(n)
isolated point solutions, hence needing 22

O(n)
cells to describe them (the

O(n) terms are n/3 + O(1) in [BD07] and n/5 + O(1) in [DH88]). An example
which needs 22

O(n)
cells for all possible variable orders is also produced in [BD07],

along with another which needs 22
O(n)

cells in one order, but a constant number
in another. Hence the great interest in variable order selection methods for CAD
[DSS04,EBDW14,HEW+14] to name a few.

The construction in (8) uses both ∃ and ∀ in a way that cannot be unnested.
In fact, it is possible [Gri88] to decide Tarski sentences (i.e. no free variables) with
a cost that is singly-exponential in n, but doubly-exponential in a, the number of

Recent Advances in Real Geometric Reasoning 45

alternations of ∃ and ∀ in (6). These methods, or any methods singly-exponential
in n, have, in general, not been implemented, though there has been work on
the purely existential case (for example [Hun08]).

6 Equational Constraints

The methods described in the previous sections produce decompositions which
are sign- (or order-)invariant for a set of polynomials. In particular, we can apply
steps 1–4 of Sect. 4 to the same CAD to solve (6) for any other φ involving the
same polynomials. Indeed, as long as the xi stayed in the same order, we could
change the Qi as well. [Col98] suggested that we could do better if φ was of the
form p1 = 0 ∧ φ′, as we would not be interested in the behaviour of polynomials
in φ′ except when p1 = 0. This was implemented in [McC99], who produced a
CAD which was sign-invariant for p1, and when p1 = 0, sign-invariant for the
polynomials in φ′. The main effect of this is to reduce the double exponent n
of m in (5) by 1, i.e. to take the square root of this term, as shown recently in
[BDE+14] (14).

It is worth seeing how this works. Consider

φ := (f1 = 0) ∧ ((f2 > 0) ∨ (f3 > 0)) . (9)

Then a [McC84]-style projection ignoring the fact that there is an equation
constraint would contain6 three disc(fi) and three res(fi, fj). However, [McC99]
observes that we are not interested in f2, f3 except when f1 = 0, and hence we
need only consider disc(f1) and res(f1, f2), res(f1, f3), half as many polynomials.

Consider now

φ1 := ((g1 = 0) ∧ (g2 > 0)) ∨ ((g3 > 0) ∧ (g4 = 0)) . (10)

A [McC84]-style projection ignoring the fact that there is an equation constraint
would contain four discriminants and six resultants. Although (10) does not
contain an overt equational constraint, φ1 ⇒ (g1 = 0) ∨ (g4 = 0), which is
φ1 ⇒ (g1g4 = 0), and so the equational constraint g1g4 = 0 is implicit. If we
study g1g4 = 0 ∧ φ1 in the style of (9), and drop trivial resultants, we consider
disc(g1g4), res(g1g4, g2) and res(g1g4, g3). Using the multiplicative properties of
resultants and discriminants (which we would certainly do in practice!), this is
disc(g1), disc(g4) and all the resultants except res(g2, g3), i.e. two discriminants
and five resultants.

Intuitively res(g1, g3) and res(g2, g4) are redundant, but how do we achieve
this in general? This was solved in [BDE+13], where, rather than producing a
sign-invariant CAD, we compute truth table invariant (a TTICAD) for the two
propositions (g1 = 0)∧ (g2 > 0) and (g3 > 0)∧ (g4 = 0), i.e. on each cell, each of
these two propositions is either identically true, or identically false. This process
does indeed remove these two resultants, so we have two discriminants and three
resultants.
6 It would also have some leading coefficients etc., but these are not the main drivers

of the complexity in McCallum’s projection.

46 J.H. Davenport and M. England

Fig. 1. The left is a sign-invariant CAD, and the right a TTICAD, for (10) with the
polynomials from the Example.

Example: Consider (10) with

g1 := x2 + y2 − 4, g2 := (x − 3)2 − (y + 3),

and
g3 := (x − 3)2 + (y − 2), g4 := (x − 6)2 + y2 − 4.

Fig. 1 shows the two dimensional cells produced for both a sign-invariant CAD
and a truth-table invariant CAD, built under ordering x ≺ y. The sign-invariant
CAD has 231 cells (72 full-dimensional but the splitting of the final cylinder is
out of view) and the TTICAD 67 (22 full-dimensional).

By comparing the figures we see two types of differences. First, the CAD of
the real line is split into fewer cells (there are not as many cylinders in R2). This
is the effect of the reduction in projection polynomials identified, (less univariate
polynomials with real roots to isolate). The second difference is that the full-
dimensional cylinders are no longer split over the dashed lines. This came from an
improvement in the lifting phase (discussed in detail in [BDE+14]). It leveraged
the projection theory to conclude that we usually only need to lift with respect
to equational constraints themselves.

More recently [BDE+14] truth-table invariance has been achieved even when
there is no implicit equational constraint, as with an example of the form

((h1 = 0) ∧ (h2 > 0)) ∨ (h3 > 0). (11)

The savings that can be achieved depend on the number of equational constraints
involved in sub-clauses of the parent formula.

It is also possible to apply equational constraints in the regular chains tech-
nology view of CAD [CM14a], again even when there is no global equational
constraint, as in (11) [BCD+14].

7 How Reliable Is This?

Cylindrical algebraic decomposition can be used as tool in program verification,
as in the MetiTarski tool [Pau12]. This leads to the question: who will verify the
CAD, or at least the inferences we draw from it? We note that a positive answer

Recent Advances in Real Geometric Reasoning 47

to a purely existential question (equally, a negative answer to a purely universal
question) is easily verified since we have a witness. The converse questions are
essentially questions of refutation, see [JdM12]. Questions involving a mixture
of quantifiers are much harder.

Almost all current implementations of CAD are based on computer algebra
systems, which are generally unverified. We can at least compare, on a fairly
level playing field, the implementations in Maple of four algorithms: see Table 1.
The classification of the amount of mathematics involved is subjective, but we
note that [McC84], and hence [BDEW13], relies on [Zar65,Zar75] to justify the
smaller projection set compared with [Col75]. [CM14a] and [BCD+14] rely on,
inter alia, [ALM99].

Table 1. Comparison of algorithms

Algorithm Implementation Code Lines Specialist

(above Maple) Mathematics

[Col75] [EWBD14] 2600 some

[McC84] [EWBD14] 2500 a lot

[CM14a] [CM14a] 5000 medium

[BDEW13] [EWBD14] 3000 a lot

[BCD+14] [BCD+14] 5500 medium

There are two challenges involved in verifying a CAD algorithm.

1. There is a “program verification” question of ensuring that the algorithms
produce the result that they say they will, i.e. that resultants, discriminants,
real roots etc. are computed correctly. This is non-trivial, to say the least,
sitting on top of an unverified computer algebra system, but should be
feasible for an implementation based on a sound kernel, such as Coq or
Isabelle.

2. There is a “mathematics verification” question whether the resulting decom-
position is truly sign-/order-/truth table-invariant for the inputs. This is
where the column labelled “Mathematics” in Table 1 comes in. The only
attempt to produce verified CADs known to the authors, [CM12, in Coq], is
based, not on [Col75] and its successors, but rather on [BPR06, chapter 2],
itself essentially that of [Tar51].

2a. There is an interesting tension here between “precomputed” and ad hoc
verification. An implementation based in [McC84] would essentially have to
verify the relevant theorems from [Zar65,Zar75], but these could be imported
as pre-verified lemmas. An implementation based on [CM14a] would verify
that in this case we had an appropriate cylindrical decomposition of Cn

which in this case translated to an appropriate cylindrical algebraic decom-
position of Rn.

48 J.H. Davenport and M. England

8 Final Thoughts

The topics we focussed on in this paper are implemented in Maple:

– CAD by Regular Chains is implemented in the RegularChains Library. A
version of this ships with the core Maple distribution while the latest version
is freely available from http://www.regularchains.org/.

– The authors’ own work (equational constraints, truth-table invariance, sub-
decompositions) is freely available in a Maple package ProjectionCAD.
The latest version is available from: http://opus.bath.ac.uk/43911/.

Other implementations of cylindrical algebraic decomposition include:

– Mathematica [Str06]; The commands CylindricalDecomposition and
Reduce can make use of an underlying CAD implementation. These commands
can be exceptionally fast but it can be hard to judge the CAD components
individually as they are just one of several underlying methods available and
the output is in the form of formulae rather than cells.

– Qepcad [Bro03]; a dedicated interactive command-line program available
from http://www.usna.edu/CS/qepcadweb/B/QEPCAD.html. One notable
feature is the SLFQ program which can simplify large quantifier free formulae
giving more readable output. Sage now has a Qepcad interface.

– Redlog [SS03]; this Reduce package implements CAD along with other
quantifier elimination methods such as virtual substitution.

– SyNRAC [IYAY13]; a Maple package notable for its symbolic-numeric app-
roach. An older version is available for free download from: http://jp.fujitsu.
com/group/labs/en/techinfo/freeware/synrac/ with more recent advances
part of the wider Todai Robot project.

The only reported experiments to cover all of these implementations were
detailed in Sect. 4 of [BCD+14].

Of course, this paper surveyed only a few of the recent advances in cylindrical
algebraic decomposition. Others include (but are not limited to):

– The use of certified numerics in the lifting phase to minimise the amount of
symbolic computation required [Str06,IYAY13].

– Local projection schemes [Str14], generic projection schemes [SS03] and single
CAD cells [Bro13,JdM12].

– Problem formulation for CAD [DSS04,BDEW13,WEDB14] (projection and
lifting) [EBDW14,EBC+14] (regular chains). These all develop heuristics to
help with choices, while [HEW+14] applies machine learning in the form of
support vector machines to pick a heuristic.

– Work on cylindrical algebraic sub-decompositions, which return only a subset
of the cells in a full CAD [Sei06]. In [WBDE14] algorithms are given to return
cells that lie on a prescribed variety, or have a designated dimension, while in
[WDEB13] these techniques are combined to solve a motion planning problem.
Note that if restricting to cells of full dimension then sample points can always
be chosen to be rational, greatly reducing running time.

http://www.regularchains.org/
http://opus.bath.ac.uk/43911/
http://www.usna.edu/CS/qepcadweb/B/QEPCAD.html
http://jp.fujitsu.com/group/labs/en/techinfo/freeware/synrac/
http://jp.fujitsu.com/group/labs/en/techinfo/freeware/synrac/

Recent Advances in Real Geometric Reasoning 49

There are numerous unsolved problems, both theoretical and practical. Three
that stand out to the authors are the following.

1. There is no complexity analysis of the Regular Chains method (though clearly
it is subject to the lower bounds in Sect. 5).

2. There has been much progress in the last forty years, but implementations (at
least for systems with alternations of quantifiers) are still doubly-exponential
in the number of variables while the theory suggests we can do better.

3. Cylindricity is needed in step 3 of quantifier elimination, as ∃ translates into∨
and ∀ into

∧
. However, in fact we only need this at the points where ∃ and

∀ alternate, so we can weaken the definition of cylindricity from being true
for all πk to merely being true for those k where xk and xk+1 are governed by
different quantifiers (or where xk is unquantified but xk+1 is quantified, a con-
cept we can call block-cylindrical. Unfortunately, we currently know of no way
of computing a block-cylindrical algebraic decomposition without computing
the full cylindrical algebraic decomposition first.

Acknowledgements. This work was supported by the EPSRC (grant number
EP/J003247/1).

The authors thank Russell Bradford, Nicolai Vorobjov, David Wilson (University
of Bath), Changbo Chen (Chinese Academy of Sciences, Chongqing), Zongyan Huang
(University of Cambridge), Scott McCallum (Macquarie University) and Marc Moreno
Maza (Western University).

References

ALM99. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets.
J. Symbolic Comp. 28, 105–124 (1999)

AMW08. Achatz, M., McCallum, S., Weispfenning, V.: Deciding polynomial-
exponential problems. In: Jeffrey, D.J. (ed.) Proceedings ISSAC 2008, pp.
215–222 (2008)

BBDP07. Beaumont, J.C., Bradford, R.J., Davenport, J.H., Phisanbut, N.: Testing
elementary function identities using CAD. AAECC 18, 513–543 (2007)

BCD+14. Bradford, R., Chen, C., Davenport, J.H., England, M., Moreno Maza, M.,
Wilson, D.: Truth table invariant cylindrical algebraic decomposition by
regular chains. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V.
(eds.) CASC 2014. LNCS, vol. 8660, pp. 44–58. Springer, Heidelberg (2014)

BD07. Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination
and cylindrical algebraic decomposition. In: Brown, C.W. (ed.) Proceedings
of ISSAC 2007, pp. 54–60 (2007)

BDE+13. Bradford, R.J., Davenport, J.H., England, M., McCallum, S., Wilson, D.J.:
Cylindrical algebraic decompositions for boolean combinations. In: Pro-
ceedings of ISSAC 2013, pp. 125–132 (2013)

BDE+14. Bradford, R.J., Davenport, J.H., England, M., McCallum, S., Wilson,
D.J.: Truth Table Invariant Cylindrical Algebraic Decomposition (2014).
http://arxiv.org/abs/1401.0645

http://arxiv.org/abs/1401.0645

50 J.H. Davenport and M. England

BDEW13. Bradford, R., Davenport, J.H., England, M., Wilson, D.: Optimising prob-
lem formulation for cylindrical algebraic decomposition. In: Carette, J.,
Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013.
LNCS, vol. 7961, pp. 19–34. Springer, Heidelberg (2013)

BPR06. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry,
2nd edn. Springer, Heidelberg (2006)

Bro99. Brown, C.W.: Guaranteed Solution Formula Construction. In: Dooley, S.
(ed.) Proceedings of ISSAC 1999, pp. 137–144 (1999)

Bro03. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic
sets using CADs. ACM SIGSAM Bull. 4(37), 97–108 (2003)

Bro05. Brown, C.W.: The McCallum projection, lifting, and order-invariance.
Technical report, U.S. Naval Academy, Computer Science Department
(2005)

Bro13. Brown, C.W.: Constructing a single open cell in a cylindrical algebraic
decomposition. In: Proceedings of ISSAC 2013, pp. 133–140. ACM (2013)

CM12. Cohen, C., Mahboubi, A.: Formal proofs in real algebraic geometry: from
ordered fields to quantifier elimination. Logical Methods Comput. Sci. 8,
1–40 (2012)

CM14a. Chen, C., Moreno Maza, M.: An Incremental Algorithm for Computing
Cylindrical Algebraic Decompositions. In: Feng, R., Sato, W.-S., Sato, Y.
(eds.) Computer Mathematics, pp. 199–221. Springer, Heidelberg (2014)

CM14b. Chen, C., Moreno Maza, M.: Quantifier Elimination by Cylindrical Alge-
braic Decomposition Based on Regular Chains. In: Proceedings of ISSAC
2014, pp. 91–98 (2014)

CMXY09. Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing Cylindrical
Algebraic Decomposition via Triangular Decomposition. In: May, J. (ed.)
Proceedings of ISSAC 2009, pp. 95–102 (2009)

Col75. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical alge-
braic decomposition. In: Proceedings 2nd GI Conference Automata Theory
& Formal Languages, pp. 134–183 (1975)

Col98. Collins, G.E.: Quantifier elimination by cylindrical algebraic decomposition
– twenty years of progess. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier
Elimination and Cylindrical Algebraic Decomposition, pp. 8–23. Springer,
Vienna (1998)

CR88. Coste, M., Roy, M.-F.: Thom’s lemma, the coding of real algebraic numbers
and the computation of the topology of semi-algebraic sets. J. Symbolic
Comp. 5, 121–129 (1988)

Dav85. Davenport, J.H.: Computer algebra for cylindrical algebraic decomposition.
Technical report TRITA-NA-8511 NADA KTH Stockholm (Reissued as
Bath Computer Science Technical report 88–10) (1985)

Dav15. Davenport, J.H.: Solving Computational Problems in Real Alge-
bra/Geometry. Annales Mathematicae et Informaticae 44, 35–36 (2015)
http://opus.bath.ac.uk/42826/

DH88. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponen-
tial. J. Symbolic Comp. 5, 29–35 (1988)

DSS04. Dolzmann, A., Seidl, A., Sturm, T.: Efficient Projection Orders for CAD.
In: Gutierrez, J. (ed.) Proceedings of ISSAC 2004, pp. 111–118 (2004)

http://opus.bath.ac.uk/42826/

Recent Advances in Real Geometric Reasoning 51

EBC+14. England, M., Bradford, R., Chen, C., Davenport, J.H., Maza, M.M.,
Wilson, D.: Problem formulation for truth-table invariant cylindrical alge-
braic decomposition by incremental triangular decomposition. In: Watt,
S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM
2014. LNCS, vol. 8543, pp. 45–60. Springer, Heidelberg (2014)

EBDW14. England, M., Bradford, R., Davenport, J.H., Wilson, D.: Choosing a vari-
able ordering for truth-table invariant cylindrical algebraic decomposition
by incremental triangular decomposition. In: Hong, H., Yap, C. (eds.) ICMS
2014. LNCS, vol. 8592, pp. 450–457. Springer, Heidelberg (2014)

EWBD14. England, M., Wilson, D., Bradford, R., Davenport, J.H.: Using the regular
chains library to build cylindrical algebraic decompositions by projecting
and lifting. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp.
458–465. Springer, Heidelberg (2014)

Gri88. Grigoriev, D.Y.: Complexity of deciding Tarski algebra. J. Symbolic Comp.
5, 65–108 (1988)

GV88. Grigoriev, D.Y., Vorobjov Jr., N.N.: Solving systems of polynomial inequal-
ities in subexponential time. J. Symbolic Comp. 5, 37–64 (1988)

HEW+14. Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L.C.,
Bridge, J.: Applying machine learning to the problem of choosing a heuris-
tic to select the variable ordering for cylindrical algebraic decomposition.
In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.)
CICM 2014. LNCS, vol. 8543, pp. 92–107. Springer, Heidelberg (2014)

Hon90. H. Hong. An improvement of the projection operator in cylindrical algebraic
decomposition. In: Watanabe, S., Nagata, M. (eds.) Proceedings of ISSAC
1990, pp. 261–264 (1990)

Hun08. Huntington, G.B.: Towards an efficient decision procedure for the existential
theory of the reals. PhD thesis, University of California at Berkeley (2008)

IYAY13. Iwane, H., Yanami, H., Anai, H., Yokoyama, K.: An effective implementa-
tion of symbolic-numeric cylindrical algebraic decomposition for quantifier
elimination. Theor. Comput. Sci. 479, 43–69 (2013)

JdM12. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich,
B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354.
Springer, Heidelberg (2012)

McC84. McCallum, S.: An Improved projection operation for cylindrical algebraic
decomposition. PhD thesis, University of Wisconsin-Madison Computer
Science (1984)

McC85. McCallum, S.: An improved projection operation for cylindrical algebraic
decomposition. Technical report 548 Computer Science University Wiscon-
sin at Madison (1985)

McC99. McCallum, S.: On projection in cad-based quantifier elimination with equa-
tional constraints. In: Dooley, S. (ed.) Proceedings of ISSAC 1999, pp. 145–
149 (1999)

Pau12. Paulson, L.C.: MetiTarski: past and future. In: Beringer, L., Felty, A. (eds.)
ITP 2012. LNCS, vol. 7406, pp. 1–10. Springer, Heidelberg (2012)

Sei06. Seidl, A.: Cylindrical decomposition under application-oriented paradigms.
PhD thesis University of Passau, Germany (2006)

SS03. Seidl, A., Sturm, T.: A generic projection operator for partial cylindri-
cal algebraic decomposition. In: Proceedings of ISSAC 2003, pp. 240–247
(2003)

Str06. Strzeboński, A.: Cylindrical algebraic decomposition using validated
numerics. J. Symbolic Comput. 41(9), 1021–1038 (2006)

52 J.H. Davenport and M. England

Str14. Strzeboński, A.: Cylindrical algebraic decomposition using local projec-
tions. In: Proceedings of ISSAC 2014, pp. 389–396. ACM (2014)

Tar51. Tarski, A.: A decision method for elementary algebra and geometry. In:
Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical
Algebraic Decomposition, pp. 24–84. Springer, Vienna (1998)

Vor89. Vorobjov, Jr., N.N.: Deciding consistency of systems of polynomial in expo-
nent inequalities in subexponential time. In: Notes of Science Seminars of
Leningrad Department of Mathematical Steklov Institute, p. 176 (1989)

Vor92. Vorobjov Jr., N.N.: The complexity of deciding consistency of systems of
polynomial in exponent inequalities. J. Symbolic Comp. 13, 139–173 (1992)

Wan00. Wang, D.: Computing triangular systems and regular systems. J. Symbolic
Comp. 30(2), 221–236 (2000)

WBDE14. Wilson, D., Bradford, R., Davenport, J.H., England, M.: Cylindrical alge-
braic sub-decompositions. Math. Comput. Sci. 8, 263–288 (2014)

WDEB13. Wilson, D., Davenport, J.H., England, M., Bradford, R.: A “piano movers”
problem reformulated. In: Proceedings SYNASC 2013, pp. 53–60. IEEE
(2013)

WEDB14. Wilson, D., England, M., Davenport, J.H., Bradford, R.: Using the distri-
bution of cells by dimension in a cylindrical algebraic decomposition. In:
Proceedings SYNASC 2014. pp. 53–60. IEEE (2013)

Zar65. Zariski, O.: Studies in equisingularity II. Amer. J. Math. 87, 972–1006
(1965)

Zar75. Zariski, O.: On equimultiple subvarieties of algebroid hypersurfaces. Proc.
Nat. Acad. Sci. USA 72, 1425–1426 (1975)

	Recent Advances in Real Geometric Reasoning
	1 Introduction
	2 Cylindrical Algebraic Decomposition by Projection and Lifting
	3 CAD by Regular Chains
	4 Quantifier Elimination
	5 Lower Bounds
	6 Equational Constraints
	7 How Reliable Is This?
	8 Final Thoughts
	References

