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Preface

The tenth edition of the series of biennial international workshops on Automated
Deduction in Geometry (ADG) took place at the University of Coimbra (Portugal)
during July 9–11, 2014. ADG is a well-reputed conference where researchers and
software developers working on geometry and automated deduction meet and discuss
topics and applications related to automated reasoning in geometry. We acknowledge
the support for ADG 2014 provided by the Centre for Mathematics of the University of
Porto, the Center for Informatics and Systems, Center for Mathematics and the Science
Museum of the University of Coimbra, the Portuguese Foundation for Science and
Technology Portugal, and the City Hall of Coimbra.

The ADG 2014 workshop was a fruitful meeting, where four invited talks and 13
ordinary communications were given. The guest speakers were James Davenport,
University of Bath, UK, António Leal Duarte, University of Coimbra, Portugal,
Deepak Kapur, University of New Mexico, USA, and Tomás Recio, University of
Cantabria, Spain.

From the beginning of the ADG meetings, it has been customary to launch an open
call for papers inviting workshop participants and other involved people in the ADG
community to participate in a proceedings volume in the LNAI series of LNCS. After a
detailed peer-review process, we selected 11 articles, which show the trend set of
current research in automated reasoning in geometry.

This volume includes a paper by Md. Ashraful Alam and Ileana Streinu describing
an initial study of geodesic star unfoldings, a generalization of shortest-path star un-
foldings of 3D convex polyhedra with a very simple characterization. In their contri-
bution, Ciprian Borcea and Ileana Streinu study several properties of deformation
spaces, including singularities, for families of volume frameworks associated with
polygons. James H. Davenport and Matthew England discuss the recent major
advances in Collins method for the real quantifier elimination, first proposed by Tarski
in the 1930s. In the context of the new version 5 of GeoGebra, Zoltán Kovács presents
the Relation Tool, an intuitive graphical user interface between various geometry
automatic theorem provers and GeoGebra. In the paper by Vesna Marinković, Predrag
Janičić, and Pascal Schreck, the authors present a formal logical framework describing
the traditional four-phase process of geometric construction solving, leading to auto-
mated production of constructions with corresponding human readable correctness
proofs. Shuichi Moritsugu describes computations of the relations between the cir-
cumradius R and area S of cyclic polygons given by the lengths of the sides, succeeding
in computing integrated formulae of the circumradius and the area for cyclic pentagons
and hexagons. The paper by Pavel Pech is on the extension of the well-known Simson–
Wallace theorem on skew quadrilaterals in E3, investigating the locus of a point
P whose orthogonal projections K, L,M, N onto the sides of a skew quadrilateral form a
tetrahedron of a constant volume s. Pedro Quaresma and Nuno Baeta report the current
status of the I2GATP format and its accompanying components. Meera Sitharam and



Joel Willoughby consider a generalization of the concept of d-flattenability of graphs,
introduced for the l2 norm by Belk and Connelly, to general lp norms, with integer p,
1 ≤ p < ∞. Dan Song, Dongming Wang, and Xiaoyu Chen describe how they adopted
techniques of Hough transform and randomized detection algorithms to detect geo-
metric objects from scanned and photographed images, then use methods of image
matching to recognize labels for the detected geometric objects, and finally employ
numerical-computation-based methods to mine geometric relations among the objects.
Finally, the paper by Menghan Wang and Meera Sitharam extends the combinatorial
characterization of pinned subspace-incidence systems (H, X) that are minimally rigid
to general pinned subspace-incidence systems, with H being a non-uniform hypergraph
and pins in X being subspaces with arbitrary dimension.

We would like to thank the reviewers, both from the Program Committee and
outside, for their reviews and revisions. We would also like to acknowledge the interest
and help from Springer’s LNAI editorial team.

July 2015 Francisco Botana
Pedro Quaresma

VI Preface
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Star-Unfolding Polygons

Md. Ashraful Alam1 and Ileana Streinu1,2(B)

1 Computer Science Department, University of Massachusetts Amherst,
Amherst, MA 01003, USA
streinu@cs.umass.edu

2 Computer Science Department, Smith College, Northampton, MA 01063, USA

Abstract. In this paper we initiate the study of geodesic star unfoldings.
They are a generalization of shortest-path star unfoldings of 3D convex
polyhedra and have a very simple characterization. We also address sev-
eral problems concerning the existence of shortest-path star unfoldings
on specified source point sets, and of reconstructing shortest-path star
unfoldings with given ridge tree combinatorics.

1 Introduction

Let us consider the surface of a 3D convex polyhedron P , on which we draw
a tree T whose edges are non-crossing geodesic arcs and whose leaves are the
vertices of the polyhedron (Fig. 1(a)).

Polyhedral unfolding. By cutting the polyhedral surface along the tree edges
we obtain a disk-like, intrinsically flat surface D with a polygonal boundary B.
An unfolding of the polyhedron P is obtained by immersing the surface D into
the 2D plane such that it is locally non-overlapping. Globally, the surface may
self-overlap: its boundary is a planar polygon B, which, in general, may not be
simple, i.e. may self-intersect in the 2D immersion. The tree T is called the cut
tree of the unfolding.

Star unfolding. In this paper we restrict our attention to unfoldings where
the cut tree is a star. A special case, called star-unfolding, is well known in
the literature [2,4,9]: we fix a point s (the source vertex ) on the surface of
the polyhedron P and cut along the shortest paths [8] from s to all vertices
v1, v2, · · · , vn of P (Fig. 1). The resulting unfolding is called a star-unfolding
polygon, and is known to be non-overlapping.

Our results. In this paper, we initiate the study of more general types of star-
unfoldings, where the cut edges of the star-tree are non-crossing geodesics (i.e.
not necessarily the shortest geodesics) from a given source vertex (Fig. 2). We
refer to this more general setting as geodesic star unfolding (shortly, star unfold-
ing when there is no risk of confusion) and use shortest-paths star unfolding
(shortly, sp-star unfolding) for the special case previously studied in the litera-
ture, when all the cuts are along the shortest geodesics to all vertices.

We show that these more general unfoldings arising from (geodesic) star-trees
have a very simple characterization as a family of planar, not necessarily simple
c© Springer International Publishing Switzerland 2015
F. Botana and P. Quaresma (Eds.): ADG 2014, LNCS 9201, pp. 1–20, 2015.
DOI: 10.1007/978-3-319-21362-0 1



2 Md.A. Alam and I. Streinu

(a) (b)

Fig. 1. (a) A tetrahedron and the tree of shortest paths (thick lines) from a source
vertex placed on a face. (b) The corresponding sp-star unfolding polygon, with source
and polyhedral vertices colored in white, resp. black (Color figure online).

polygons which we call su-polygons (“su”, naturally, has been chosen to indicate
that they come from star-unfoldings). But only a subfamily of the su-polygons
arise as shortest-path star unfoldings. Our first result is to prove that certain
known necessary conditions (already present in the literature on shortest-paths
star unfoldings) are also sufficient to distinguish them in the general class of
(geodesic) star unfoldings.

We then study the problem of constructing polyhedra via star unfolding poly-
gons, and address two questions: (a) given an ordered point set S in the plane,
is there a (shortest path) su-polygon whose source vertices coincide with S? and
(b) are all combinatorial types of topologically embedded trees represented by
the ridge trees of convex polyhedra from some source vertex?

The precise statements of the results require technical definitions which, along
with further background on unfolding problems, are given in the next Sect. 2.

(a) (b)

Fig. 2. (a) One of the shortest paths on the tetrahedron from Fig. 1(a) is replaced by
a geodesic (dashed line). (b) The corresponding star unfolding polygon.
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2 Definitions and Overview of Results

Different types of unfoldings are known in the litarature, and they are distin-
guished by the choice of the cut tree. The example in Fig. 3 is an edge unfolding,
where the cut tree is a spanning tree of the 1-skeleton1 of the polyhedral sur-
face, and the uncut edges of the polyhedron appear as diagonals of the unfolding
polygon.

(a) (b)

Fig. 3. A classical example of an edge unfolding (a), obtained by cutting the cube
(b) along a spanning tree of its 1-skeleton.

Polyhedral edges are, in particular, shortest paths (on the polyhedral surface
and in 3D) between their endpoint vertices, but general cut trees may have edges
which are not globally shortest. In this paper we work with geodesic unfoldings
where the tree edges are arbitrary geodesics. They are not, in general, along the
polyhedral edges and may not even be along the shortest geodesics between their
endpoints.

It is known that both self-overlapping and non-overlapping edge unfoldings
exist. It is not known if each convex polyhedral surface admits a non-overlapping
edge unfolding (see [5]). In general, understanding which cut trees induce non-
overlapping unfoldings remains an elusive, long standing open question. However,
the shortest path star unfoldings have the remarkable property of always being
non-overlapping.

Basic properties of star unfoldings. The star-unfolding polygon Ss from a
source point s is not guaranteed, a priori, to be non-overlapping. If the polyhe-
dron P has n vertices (also referred to as corners), then Ss is a planar polygon
with 2n vertices, if the source is not placed at one of the corners of the polyhe-
dron, and 2(n − 1) otherwise. To streamline the presentation we work under the
assumption that the first case holds. Along the boundary of the unfolding, the
n vertices corresponding to the polyhedral corners appear in alternation with n
vertices which are copies of the source vertex. The latter are known as source
images, and are often, but not always in convex position. To fix the notation, we
1 The 1-skeleton is the graph of polyhedral edges.
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label the source images as (si)i=1,..,n and color them in white and the polyhedral
vertices as (vi)i=1,..,n, and color them in black. See Figs. 1 and 2. The sum of all
the angles, interior to the polygon, at the source images is exactly 2π under our
assumption that the source is not placed at a vertex of the polyhedron. Another
immediate property is that, in the unfolding, each polyhedral vertex vi is placed
on the perpendicular bisector of its adjacent two source images si and si+1.

Fig. 4. An su-polygon. The white points are the s-vertices, with the v-vertices placed
on the perpendicular bisectors (dashed lines) of consecutive s-vertices.

Su-polygons. By definition, an su-polygon (short for abstract star-unfolding
polygon2) is the boundary of a flat disk-like polyhedral surface immersed in the
plane, satisfying the abstract version of the previously stated properties: (a) it
has 2n vertices, alternately labeled as si and vi and referred to as s-, resp. v-
vertices. The angle (interior to the surface) at an s-vertex is referred to as an
s-angle; (b) the sum of all the s-angles is 2π, and (c) the v-vertices are placed
on the perpendicular bisectors of the two neighboring s-vertices. In particular,
this last property implies that the two edges incident to a v-vertex have equal
lengths. Intuitively, the s-vertices, v-vertices and s-angles are analogous to source
images, polyhedral vertices and source angles for star-unfolding polygons.
Since the boundary edges of sp-star-unfolding polygons must be shortest paths
on the corresponding polyhedral surface, not all su-polygons arise as sp-star-
unfoldings. However, we argue now that all su-polygons arise as (geodesic) star
unfoldings of convex polyhedra, since they are convex polyhedral metrics. We
remark that the definition allows for the self-overlap of the unfolded surface, i.e.
the su-polygon is not necessarily a simple polygon.

Polyhedral metrics. A convex polyhedral metric is a presentation of the surface
of a convex polyhedron as a collection of (one or more) planar polygonal pieces
together with rules for glueing them, along pieces of their boundaries, into a
2 The modifier “abstract” is used to emphasize that, a priori, such polygons are not
guaranteed to arise from star unfoldings of 3D convex polyhedra.
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surface that is topologically a sphere. The glueing may result in a finite set of
points of non-zero Gaussian curvature, called the vertices of the surface. The
metric is convex if the sum of the surface angles at each vertex is at most 2π,
i.e. if the curvature is positive. Alexandrov’s Theorem [3] guarantees that any
convex polyhedral metric has an isometric realization as a convex polyhedron. As
a side note we remark that the edges of the polygonal pieces need not be related
in any way to the edges of the convex polyhedral realization. Su-polygons are
special cases of polyhedral metrics, under the rule that the two equal sized edges
incident to a v-vertex are glued together.

Geodesic and shortest paths star-unfoldings. Our goal is to characterize
the polygons which arise as (geodesic or sp-) star-unfoldings of convex polyhedra.
If furthermore the characterization leads to good algorithms, then we could in
principle generate convex polyhedral metrics without going through their 3D
polyhedral realizations. As an immediate consequence of the definition, of the
discussion in the previous paragraph and of Alexandrov’s theorem, we obtain:

Theorem 1. Any su-polygon is a (geodesic) star unfolding of some convex
polyhedron.

This naturally leads to the following:

Problem 1. Identify intrinsic properties of sp-star unfoldings that distinguish
them in the general class of (geodesic) star unfoldings.

We proceed now to identify such properties.

Ridge tree. Given a convex polyhedron P and a source vertex s, a ridge point
is a point on the surface of P connected to s by multiple shortest paths. The
collection of all such points is a tree Ts, known as the ridge tree from s. In an sp-
star unfolding of P on the plane, this ridge tree becomes the part of the Voronoi
diagram of the source images contained inside the sp-star unfolding polygon,
which is, in this case, non-overlapping (see [4,9] for details of these properties).
Our first result is:

Theorem 2. A simple su-polygon is an sp-star unfolding polygon if and only
if (a) the perpendicular bisectors of the pairs of consecutive s-vertices are all
present in the Voronoi diagram of all the s-vertices; and (b) any v-vertex lies
precisely on the Voronoi edge corresponding to its two s-vertex neighbors.

The relationship between the ridge tree and the Voronoi diagram of the
source vertices has been identified and used in [4,9], in the context of sp-star
unfoldings. Our contribution is to identify the larger class of (geodesic) star-
unfoldings and prove that these conditions are sufficient to characterize the class
of sp-star unfoldings within this larger class. The fact that (in our formulation)
they are also necessary is implicit in [4]. We show that if either one of the (a) or
(b) conditions is violated in an su-polygon S, then S is not an sp-star unfolding.

Point sets supporting sp-star unfolding. We want to use Theorem 2 to con-
struct examples of su-polygons which are, or are not, sp-star unfolding polygons.
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We say that a cyclically ordered point set supports an su-polygon, resp. an sp-
star unfolding if there exists an su-polygon, resp. an sp-star unfolding polygon
using these points as s-vertices. We are asking:

Problem 2. Given a cyclically ordered point set (not necessarily in convex posi-
tion) with the property that the perpendicular bisectors of the pairs of consecu-
tive vertices are all present in its Voronoi diagram. Does it support an sp-star
unfolding?

In other words, we want to know whether it is always possible to place v-
vertices on the corresponding Voronoi edges to satisfy the source angle sum
property of a su-polygon. We present an algorithm to decide the question.

Theorem 3. There exist cyclically ordered point sets which do not support sp-
star unfoldings, and others that do. For a given point set, the corresponding
decision problem can be answered in O(n log n) time.

Source vertices in convex position. A special situation appears when all the
s-vertices of an su-polygon are in convex position. Equivalently, this means that
the source images of a geodesic star-unfolding of some convex polyhedron lie
in convex position. In this case, condition (a) in Theorem 2 always holds. The
Voronoi diagram is combinatorially a tree, and its leaf edges are infinite rays
separating the Voronoi regions of the s-vertices. We are now asking:

Problem 3. If a given point set in convex position supports an su-polygon, does
it support an sp-star unfolding?

In other words, is it true that a geodesic star-unfolding whose source image
vertices are in convex position is in fact a shortest path star-unfolding? We will
answer this problem in the negative. The decision problem can be answered by
an algorithm whose structure is similar to the one for general position, but whose
individual components are computationally faster.

Theorem 4. There exist cyclically ordered point sets in convex position which
do not support sp-star unfoldings, and others that do. For a given convex point
set, the corresponding decision problem can be answered in O(n) time.

Motivated by the important role played by ridge trees in understanding and
characterizing star-unfoldings, we turn now to questions of realizability of their
combinatorial types.

Combinatorics of ridge trees. For source vertices in convex position, the
Voronoi diagram is a tree. The ridge tree inherits this combinatorics, captured by
what we call a topologically embedded tree: a tree together with circular rotations
of the edges incident to each interior node. We would like to know whether all
the combinatorial types of such trees are represented among sp-star ridge trees.
We prove the following geometric reconstruction theorem for combinatorial types
of ridge trees.
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Theorem 5. Any combinatorial type of a topologically embedded tree can be
realized by the ridge tree of a convex polyhedron together with a source vertex.
Moreover, this can be arranged so that the sp-star unfolding of the polyhedron
has all the source vertices in convex position.

Outline. The rest of the paper is organized as follows. Theorem 2 is proven
in Sect. 3. Section 4 treats the problem of deciding whether a given point set
supports an sp-star unfolding and contains the proofs of Theorems 3 and 4.
Section 5 deals with source points in convex position and contains the proof of
Theorem 5.

3 Geodesic and Sp-Star Unfoldings

In this section we prove Theorem 2. One direction is already implicit in [4]. We
only need to prove the other direction:

(a) (b)

Fig. 5. The two cases appearing in the proof of Theorem 2.

Theorem 6. Let S be a simple su-polygon satisfying two conditions: (a) the
perpendicular bisectors of the pairs of consecutive s-vertices are all present in
the Voronoi diagram of all the s-vertices; and (b) any v-vertex lies precisely
on the Voronoi edge corresponding to its two s-vertex neighbors. Then S is an
sp-star unfolding polygon.

Proof. By Theorem 1, there exists a convex polyhedron P and a source vertex s
such that S is a (geodesic) star-unfolding polygon for P . The proof now proceeds
by contradiction. Let vi be a v-vertex with two adjacent s-vertices si−1 and si.
We assume that the segment visi (and its glueing mate of equal length visi−1)
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does not correspond to the shortest geodesic on the polyhedral surface P . Then,
on the polyhedral surface, the shortest path is located (in the cut-star rotation
around the source point s) between some pair of cut edges from the source to vj

and vj+1. In the su-polygon S, the shortest path induces a line segment starting
from the s-vertex sj and going towards the interior of the su-polygon.

Two scenarios are possible (Fig. 5): (a) Either the shortest path lies fully inside
the su-polygon and it is a straight line joining vi and sj , or (b) the shortest path
is broken and represented by a series of k line segments that exit the su-polygon
through an edge and re-enters it again through its corresponding gluing edge.

In case (a) the proof is straightforward. Since vi is on the Voronoi edge of
si−1 and si, then vi is closer to si or si−1 than any other s-vertices on the plane.
Thus visj cannot be the shortest path. See Fig. 5(a) for an example illustrating
this case.

In case (b), we use the fact that if vksk is an edge of the su-polygon, then
any point on this edge lies in the Voronoi region of sk. Let the first segment of
the broken shortest path be viy1, where y1 is the point through which it exits
the polygon; similarly, let the last segment be ynsj . We know that yn is on
the polygonal edge vksk, for k �= i. But then we must have sk �= sj , because
otherwise ynsj will make zero angle with the polygonal edge vksk (each line
segment of the shortest path makes a non-zero angle when it exits and enters
the polygon). Since yn is on the edge of vksk, it is on the Voronoi region of sk,
hence |ynsk| < |ynsj |. Therefore, there exists another s-vertex sk which has a
shorter length path from vi. Thus the path from vi to sj is not the shortest. See
Fig. 5(b) for an example illustrating this case.

The derived contradictions conclude the proof that each polygonal edge of the
su-polygon comes from the shortest path unfolding of some convex polyhedron
with respect to some source vertex. ��

We turn now to applications for this characterization of sp-star unfolding
polygons.

4 Points Supporting Star-Unfoldings

In this section we assume that a cyclically ordered point set has been given.
We want to decide if it supports an sp-star unfolding polygon and, if so, to
construct one.

Flap polygon. This technical concept, needed to formulate and prove the results
in this section, is obtained by relaxing the third condition defining an su-polygon:
we no longer ask for the s-angle sum to be at most 2π (it can be anything).

4.1 Source Points in Convex Position

We start with the simpler situation when the s-vertices lie in convex position.
In this case, their Voronoi diagram is a tree, and the leaf edges are infinite rays
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separating consecutive s-vertices si and si+1. The conditions in Theorem 2 are
violated only when some v-vertex is placed on the extension of a Voronoi ray
and not on the ray itself.

To prove Theorem 4 we will construct a flap polygon with s-vertices in convex
position and show that there is no readjustment of its v-vertices, keeping them
on the Voronoi rays, so that the s-angle sum condition is satisfied. We need the
following simple lemma:

Lemma 7. Given a flap polygon, if a v-vertex moves towards the open end of
the Voronoi ray, the sum of the s-angles increases and if it moves towards the
closed end, the sum decreases.

(a) (b)

Fig. 6. Dashed lines indicate the increase/decrease behavior of the two source angles
incident to a v-vertex vi, when displaced from its position: (Left) increase, when the
displacement is towards the open end of the infinite Voronoi edge, and (Right) decrease,
when moved towards the closed end.

Proof. Straightforward, and illustrated in Fig. 6. ��
When the s-vertices of a flap polygon are in convex position, the bisector of
any consecutive s-vertices is an infinite edge (a ray) of the Voronoi diagram of
the s-vertices. The v-vertices are placed on these rays. An extreme flap polygon
arises when the v-vertices are placed on the Voronoi vertices at the closed end of
the corresponding Voronoi rays. Note that an extreme flap polygon always has
at least two pairs of adjacent overlapping edges, as in Fig. 7. This can be seen
on the dual Delaunay triangulation, which is in this case a maximal outerplanar
graph; thus, it has at least two vertices of degree two. One such vertex gives rise
to overlapping adjacent edges in the extreme flap polygon.

The following is a straightforward consequence of Lemma 7:

Corollary 8. For a given set of s-points in convex position and variable v-
vertices placed on the Voronoi rays, the sum of the source angles is minimized
when the corresponding flap polygon is extreme.
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(a) (b)

Fig. 7. An extreme flap polygon (a) together with the Voronoi diagram of the s-vertices
(dashed) (b)

Lemma 9. If the sum of the s-angles of an extreme flap polygon with s-vertices
in convex position is larger than 2π, then there are no valid placements for the
v-vertices that would result in an su-polygon supporting an sp-star unfolding.

Proof. A flap polygon does not support a sp-star unfolding if the sum of its
s-angles is larger than 2π or if the v-vertices are not placed on the Voronoi
rays. But in an extreme flap polygon, the sum of the s-angles cannot be reduced
(Corollary 8) without moving the v-vertices further inward, thus violating the
condition that they must lie on the Voronoi rays. ��
Proof of Theorem 4. Using Lemma 9, we only need to find a set of points in
convex position whose extreme flap polygon has total s-angle sum larger than
2π. This is not unique, and not rare either. An example where the sum of the
s-angles is larger than 2π is illustrated in Fig. 7.

Algorithm. Given a set of points in convex position, the following simple algo-
rithm decides if they support an sp-star unfolding. We first compute the Voronoi
diagram, then we generate the extreme flap polygon by placing the v-vertices at
the corresponding Voronoi vertices on the infinite rays. If the sum of the s-angles
exceeds 2π, the given point set does not support an sp-star unfolding; otherwise,
it does.

Computing the Voronoi diagram of n points in convex position can be done
in O(n) time using the algorithm in [1]. Constructing the extreme flap polygon
takes linear time. The whole algorithm is therefore linear. ��

4.2 Source Points in Arbitrary Position

Not all sp-star unfolding polygons have s-vertices in convex position. An example
is given in Fig. 8(a). We assume now that we are given a circularly ordered point
set in non-convex position. The polygon induced by the ordering need not be
simple. Such a point set may not even support a flap polygon, but when the
perpendicular bisectors of consecutive pairs of points are present in the Voronoi
diagram of the point set, there always exists at least one, namely the extreme
flap polygon.
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(a) (b)

Fig. 8. (a) An sp-star unfolding polygon (thick) together with the Voronoi diagram of
its s-vertices (dashed). The s-vertices are in non-convex position. (b) The corresponding
extreme flap polygon on the s-vertices.

The definition of an extreme flap polygon can be extended naturally from the
convex case: instead of requiring that the v-vertices be on the closed end of a
Voronoi ray, we ask that it be placed on the endpoint of the Voronoi edge that
is towards the interior of the flap polygon. Figure 8(b) illustrates an extreme
flap polygon on s-vertices in non-convex position. Lemmas 7 and 8 above can be
extended in a straightforward manner to the non-convex case.

Fig. 9. An example of an su-polygon which violates condition (a): the bisector of
{s4, s1} is not in the Voronoi diagram.

The example illustrated in Fig. 9 has the property that not all of the consec-
utive perpendicular bisectors of the s-vertices are part of the Voronoi diagram.
This proves that:

Lemma 10. There exist circularly given point sets in non-convex position that do
not support sp-star unfolding polygons by violating condition (a) of Theorem 6.

For the example in Fig. 10, the consecutive perpendicular bisectors are present
in the Voronoi diagram of the s-vertices, but the extreme flap polygon does not
satisfy the s-angle condition: its s-angle sum is 3800 > 2π. This proves:
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(a) (b)

Fig. 10. (a) An extreme flap polygon with sum of the s-angles greater than 2π.
(b) The polygon together with the Voronoi diagram of the s-vertices.

Lemma 11. There exist circularly given point sets in non-convex position that
satisfy condition (a) but violate condition (b) of Theorem 6: they do not support
sp-star unfolding polygons.

We complete the proof of Theorem 3 by giving an algorithm to decide whether
a cyclically ordered point set in non-convex position supports an sp-star unfold-
ing polygon. This is a straightforward extension of the one previously presented
for the convex case.

Algorithm. Given a cyclically ordered point set (si)i=1,..,n, construct its
Voronoi diagram in O(n log n) time and verify, in linear time, whether the per-
pendicular bisectors of consecutive pairs of points appear in the Voronoi diagram.
If not, stop and return False. Otherwise, construct (in linear time) the extreme
flap polygon and compute the sum of the s-angles. If they exceed 2π, return
False, otherwise return True. The entire calculation takes O(n log n) time. ��

5 Realizations of Combinatorial Ridge Trees

In this section, we turn to realizations of sp-star unfolding polygons with pre-
scribed combinatorics for their ridge trees, and prove Theorem 5. The techniques
described in the previous sections reduce it to the following reformulation.

Theorem 12. Any combinatorial tree T arises as the Voronoi diagram of a
point set in convex position whose extreme flap polygon can be relaxed to an
su-polygon that supports an sp-star unfolding.

Proof overview. We first consider the maximal outerplanar graph which is the
graph dual of the given tree. We realize this graph as the Delaunay triangulation
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DT using Dillencourt’s algorithm [6]. The dual of this Delaunay triangulation
DT gives the realization of the tree as the Voronoi diagram VD. The vertices
of DT are the sites of VD. Since the sites of VD are in convex position, there is
an infinite Voronoi segment in between two consecutive sites. We place one new
vertex on the Voronoi vertex located on the closed end of each of these infinite
segments. If we alternately join the sites and new vertices, we obtain an extreme
flap polygon. We show that this flap polygon supports an sp-star unfolding. For
this, we establish a relationship between the s-angles of this extreme flap polygon
and the angles of the Delaunay triangulation. We then use this relationship to
prove that the sum of s-angles of this extreme flap polygon is always smaller
than 2π.

The proof details occupy the rest of this Section.

5.1 Source Angles and the Angles of the Delaunay Triangulation

We start by establishing a relationship between the sum of the source angles
of an extreme flap polygon and the angles of the Delaunay triangulation of its
s-vertices.

(a) (b) (c)

Fig. 11. An extreme flap polygon (a) together with the Voronoi diagram of the s-
vertices (dashed) (b) and the Delaunay triangulation of the s-vertices (thin) (c).

Let DT be the Delaunay triangulation of the s-vertices and let SA be the
sum of the s-angles of the extreme flap polygon. If VD is the Voronoi diagram
of the s-vertices, its internal edges are duals of the diagonals of DT .

Each s-angle in a extreme flap polygon is spanned by one or more internal
edges of the Voronoi diagram. Therefore, the sum of the s-angles SA is actually
the sum of the angles spanned by each internal edge of the Voronoi diagram. We
establish the relationship between s-angles and the diagonals of the DT , which
are dual of the internal edges of VD. See Fig. 11.
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Given a Delaunay realization DT of a maximal outerplanar graph, we can
classify the angles of DT into two sets. One is the set of angles opposite to all
diagonals, known as internal angles and the other is the set of angles opposite
to the boundary edges of DT , known as boundary angles. Let α and β denote
the sum of each of these two sets of angles respectively. Since these two sets of
angles comprise all the angles of the convex polygon formed by the boundary
edges of DT , α + β = (n − 2)π.

Lemma 13. Let DT be the Delaunay triangulation of n s-vertices and let SAn

be the sum of the s-angles of its extreme flap polygon. Then:

SAn = (n − 3)2π − 2αn

where αn is the sum of the angles opposite to the diagonals of DT .

Proof. By induction on the number n of s-vertices.
Base case, n = 4: In this case we have one diagonal in DT and one internal
edge in VD. Out of four s-angles, two of them are zero and the remaining two
are spanned by the internal edge of VD. We have to show that:

SA4 = 2π − 2α4

We use the notation from Fig. 12: the four s-vertices are A,B,C and D and XY
is the Voronoi edge dual to the diagonal BD; the source angles at A and B are
both zero, the other two are not. We show that ∠XBY +∠XDY = 2π−2(A+C),
using equality of angles, such as ∠BAX = ∠ABX, resulting from points (such
as X) being on the perpendicular bisector of others (such as A and B). The three
main cases are illustrated in Fig. 12: (a) ∠XBY is contained in, (b) is partially
contained in, and (c) is outside of ∠ABC.

(a)

A

B

C

D
X

Y

(b)

A

B

C

D

X

Y

(c)

Fig. 12. The base case analysis for the inductive proof of Lemma 13. Shown is an
extreme flap polygon for four convex points A, B, C and D. The triangles �ABD and
�BCD are Delaunay.



Star-Unfolding Polygons 15

Case 1: Using the angle sum of the quadrilateral ABCD (which is 2π) and
decomposing the angles ∠ABC and ∠CDA we obtain:
∠ABX+∠XBY +∠Y BC+∠CDY +∠XDY +∠ADX = 2π−(∠DAB+∠BCD)
The bisector properties in the isosceles triangles �AXB and �BY C and simple
manipulation imply the desired equality: ∠XBY + ∠XDY = 2π − 2(∠DAB +
∠BCD).
Cases 2 and 3: They are similarly treated, using ∠ABC = ∠ABX +∠XBY −
∠Y BC, bisector properties and simple manipulation to obtain the desired equal-
ity ∠XBY +∠XDY = 2π−2(∠DAB+∠BCD). Since A and C are the opposite
angles of the diagonal, we obtain:

SA4 = 2π − 2α4

Inductive step. The induction hypothesis for n − 1 s-vertices is that:

SAn−1 = (n − 4)2π − 2αn−1

(a) (b)

Fig. 13. The inductive step in the proof of Lemma 13. (a) An extreme flap polygon
with 5 s-vertices. (b) A new s-vertex is added.

We now add a new s-vertex in convex position. As a result, a new triangle will
be formed and one of the boundary edges will become a diagonal. Let e be this
new diagonal. One of the two opposite angles of e was a boundary angle which
has now become an internal angle. The other opposite angle is a newly formed
internal angle of DT . Let us denote these angles by ae and be. All other internal
angles of DT remain the same.

The addition of the new s-vertex leads to a new diagonal or a new internal
Voronoi edge. The sum of s-angles increases by SA′, the sum of angles spanned
by the new Voronoi edge. See Fig. 13. Using a similar argument as in the base
case, we obtain:

SA′ = 2π − 2(ae + be)
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The final SAn is:

SAn = SAn−1 + SA′

= (n − 3)2π − 2αn,
(1)

where αn = αn−1 + ae + be

Corollary 14. SA = 2β − 2π, where β is the sum of boundary angles of the
Delaunay triangulation of DT .

Proof. In a Delaunay triangulation we have α + β = (n − 2)π. From Lemma 13
we infer that SA = (n − 3)2π − 2α. Substituting α = (n − 2)π − β gives the
result.

5.2 Realization of a Delaunay Triangulation

The set (ai)i of all the angles in all the triangles in a Delaunay realization of an
outerplanar graph satisfies a set of constraints [6]. Viewing each such angle as a
variable ai, the constraints on these variables are:

1. Positive: All angles are positive : ∀i, ai ≥ 0.
2. Face angles: The three angles ai, aj , ak of a triangle add up to π:

ai + aj + ak = π

3. Convex: All the points are in convex position, hence the sum of the angles
(aij )1≤j≤k at a vertex does not exceed π:

k∑

j=1

aij ≤ π

4. Locally Delaunay: an edge shared by two triangles is locally Delaunay, i.e.
the sum of the two angles opposite to the edge does not exceed π. If ai and
aj are two angles opposite of an edge e, then ai + aj ≤ π.

These constraints can be turned into a linear programming system on variables
ai. If the system has a feasible solution, it gives a set of angles from which
the Delaunay triangulation can be realized. Dillencourt [6] showed that, for any
maximal outerplanar graph, the linear programming system always has a feasible
solution. However, a maximal outerplanar graph may have multiple Delaunay
triangulation realizations, but not all of them yield valid sp-star unfoldings.
We now show that in fact Dillencourt’s algorithm always yields a valid sp-star
unfolding. Before proceeding with the proof we outline the algorithm.

Dillencourt’s Algorithm. A variable s is assigned to the whole triangulation
T and a variable bi to each angle of the triangulation, such that the following
conditions are satisfied:
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1. Each bi ≥ 1.
2. For each triangle, the sum of its angles is s: bi + bj + bk = s.
3. For each vertex, the sum of all angles incident on it is less than or equal to

s :
∑k

j=1 bij ≤ s.
4. If bi and bj are two opposite angles of an internal edge ij, then : bi+bj ≤ s−1.

By setting each ai = π.bi
s , these conditions become equivalent to the angle con-

straints. An inductive argument now shows that such an assignment always
exists.

Lemma 15. Dillencourt’s algorithm yields a valid sp-star unfolding, with ver-
tices in convex position.

Proof. If a triangulation T has only one triangle, then we assign 1 to each angle
and set s = 3. This assignment satisfies all of the four conditions. We now proceed
inductively, visiting new triangles adjacent with the already visited ones. Each
time a new triangle is visited, we assign values to its angles and update s. Then we
traverse again the already visited triangles and modify their angles to reinstate
the above conditions. For example, if we have assigned values to the angles of the
triangle ijk, we may be moving to one of its adjacent triangle ijl whose angles
will have to be initialized (see Fig. 14(a)). Let x, y and z be, respectively, the
angles at the vertices i, j, k of �ijk. Then we assign angle values of z + 1, z + 1
and s− z −1 to the vertices i, j, and l of �ijl. Then we update the value of s by
setting s := s+z+1. Since this new value of s causes the second condition to fail
(where sum of angles of a triangle is equal to s), we traverse each of the visited
triangles from our current �ijl. When we enter a visited triangle by crossing an
internal edge (i.e. a diagonal of the outerplanar graph), we increase the angle
opposite to the internal edge by z + 1. For example, when we move from the
triangle ijl to ijk, we cross the edge ij and increase the value of the angle at the
vertex k by z + 1 (see Fig. 14(b)). We continue in this fashion until we re-visit

(a) (b)

Fig. 14. Illustration of the steps in Dillencourt’s algorithm: (a) First visit of a triangle;
(b) Revisiting previously visited triangles and readjusting the variables.
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all the previously visited triangles. This whole process is repeated each time we
visit and initialize the angles of a new triangle.
These assignments guarantee that all four conditions are satisfied. Indeed, all
assignments are ≥ 1. Every time we assign angles to a new triangle, s is increased
by z + 1. We increase exactly one angle of each visited triangle by z + 1 and
second condition is satisfied. When we update the angles of all visited triangles,
the sum of the angles at each vertex is increased by z + 1 and at the same time
s is also increased by z + 1. So, the inequality of condition 3 still holds. Finally,
when we visit a new triangle, one of its angle is opposite to a diagonal (like angle
at vertex l of triangle ijl). This angle is assigned s− z −1 and its opposite angle
in the just visited triangle (like angle at vertex k of triangle ijk) is assigned
z+(z+1) = 2z+1. So, their sum s+z ≤ (s+z+1)−1. After these assignments
and modifications of these two triangles, we increase the angles of each visited
triangle and this inequality remains valid. ��

We retain for further use the following properties of this algorithm:

1. Each time a new triangle is visited, the value of s is increased by z + 1.
2. After each iteration, one boundary angle (the one opposite to a boundary

edge) becomes an internal angle (i.e. opposite to a diagonal), and two new
boundary angles are introduced.

3. During the update phase, only internal angles are updated. Boundary angles
remain unchanged.

4. The time complexity of this algorithm is O(n) [7]

5.3 Proof of Theorem 12

In this section, we show that if a maximal outerplanar graph is realized as a
Delaunay triangulation using Dillencourt’s algorithm, then the sum of the s-
angles in the extreme flap polygon is less than 2π.

Let DT , SA and β denote the resulting Delaunay triangulation using Dil-
lencourt’s algorithm, the sum of the s-angles in the extreme flap polygon and
the sum of the boundary angles (whose opposite edges are the boundary edges
of the Delaunay triangulation) respectively. We know from Corollary 14 that,
SA = 2β − 2π. If β is larger than π but smaller than 2π, then the resulting
extreme flap polygon will support an sp-star unfolding.
Let us assume that Dillencourt’s algorithm assigns a total integer value a to the
boundary angles of DT . Let β = a.π

s . We remind the reader that s is the sum of
integer values assigned to any triangle.

Lemma 16. Let an be the sum of the integer values assigned to the boundary
angles and sn be the sum of the integer values assigned to the angles of any
triangle, where n is the number of the triangles in DT . Then, sn < an < 2sn.

Proof. By induction on the number of triangles of DT .
Base case. The conditions are satisfied when n = 2, since s2 = 5 and a2 = 6.
Induction Step. We assume as induction hypothesis that sn−1 < an−1 <
2sn−1. Whenever we add a new triangle, one boundary angle becomes internal
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(a) (b)

Fig. 15. Illustration of the inductive step in the proof of Lemma 16. (a) In this tri-
angulation, b is a boundary angle. (b) At the next iteration, a new triangle AED is
added and b becomes an internal angle; a and d are new boundary angles.

(whose opposite edge is a diagonal shared by the new triangle) and two new
boundary angles are added to the triangulation. See Fig. 15. Each of the two
new boundary angles is assigned (z + 1) where z was the value of the now-
converted internal angle. New value of sn is obtained by adding (z + 1) to sn−1.
All other boundary angles remain unchanged. Therefore:

an = an−1 − z + 2(z + 1) = an−1 + z + 2

Similarly, sn = sn−1+z+1. Using the induction hypothesis that sn−1 < an−1 <
2sn−1 and replacing sn−1 and an−1 in the above equation, we obtain:

sn − z − 1 < an − z − 2 < 2sn − 2z − 2
sn + 1 < an < 2sn − z

sn < an < 2sn

This completes the proof. ��
Algorithm. The s-angles obtained from the Dillencourt’s algorithm sum up to
less than 2π. In a valid sp-star unfolding, the sum of these angles will have to
be exactly 2π. In this section, we show how we can increase the angles such that
they add up to 2π.

We define the slack angle sa as the difference between 2π and the sum of
the s-angles SA obtained from Dillencourt’s algorithm, i.e., sa = 2π − SA. All
the v-vertices V are placed on the Voronoi vertices when we apply Dillencourt’s
algorithm. Now we move each v-vertex v ∈ V along the infinite edge of the
Voronoi diagram away from the corresponding Voronoi vertex (towards the open
end). When we move v, each of the two s-angles at its neighboring s-vertices
increases equally. Therefore, we move each v-vertex v such that each of the
s-angles at its two neighboring s-vertices is increased by exactly sa

2n .
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The construction of the Delaunay triangulation from a maximal outerplanar
graph takes O(n) time [7]. The time complexity of moving the v-vertices to make
the sum of the s-angles equal to 2π is also O(n). Therefore, the whole algorithm
runs in O(n) time.

6 Conclusion

We have presented several results on geodesic star-unfolding, differentiating them
from the special case when the geodesics are all shortest paths. We studied sp-
star unfoldings with source vertices in convex position and showed that not all
convex point sets support an sp-star unfolding. We gave a reconstruction theo-
rem, showing that any maximal outerplanar graph arises as the dual of the ridge
tree of a sp-star unfolding. Finally, we presented algorithms to check whether
a given set of convex points can be realized as the source images of an sp-star
unfolding and to realize any given outerplanar graph as a Delaunay triangula-
tion whose vertices are the source images of a sp-star unfolding. Characterizing
the pointsets which cannot be realized as source images of an sp-star unfolding
remains an open problem.
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Abstract. A volume framework is a (d + 1)-uniform hypergraph with
real numbers associated to its hyperedges. A realization is given by plac-
ing the vertices as points in R

d in such a way that the volumes of the
simplices induced by the hyperdges have the assigned values. A frame-
work realization is rigid if its underlying point set is determined locally
up to a volume-preserving transformation, otherwise it is flexible and
has a non-trivial deformation space. The study of deformation spaces is
a challenging problem requiring techniques from real algebraic geometry.
Complementing a previous paper on Realizations of volume frameworks,
we study several properties of deformation spaces, including singularities,
for families of volume frameworks associated to polygons.
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1 Introduction

In this paper we investigate deformation varieties (or configuration spaces) for
volume frameworks associated to polygons.

Volume Frameworks. A bar-and-joint framework in R
d may be conceived as

a configuration of n labeled points respecting a system of distance constraints:
certain pairs of points have a prescribed distance. Similarly, a volume framework
in R

d may be conceived as a configuration of n points respecting a system of
volume constraints: certain ordered (d+1) subsets of the configuration span sim-
plices of prescribed (signed) volume. In the first case, the system of constraints
is given abstractly as a weighted simple graph on n vertices and equivalence of
configurations is up to distance-preserving transformations of R

d. In the second
case, the system of constraints is given as a weighted (d+1)-uniform hypergraph
on n vertices and equivalence of configurations is up to affine volume-preserving
transformation.

Rigid and Flexible Structures. Classical questions in rigidity theory concern
the characterization of minimally rigid structures [28], computing their number
of distinct realizations [6,7], or, for flexible structures, obtaining descriptions of
c© Springer International Publishing Switzerland 2015
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their space of deformations. These are notoriously challenging problems even for
the well studied bar-and-joint case, where a full characterization is known only
in dimension two [28,29]. Generalizing finite frameworks to a periodic setting
[8–10] has led to many advances in understanding bar-and-joint frameworks. In
a similar spirit, we have initiated in [7] the study of rigidity theoretic properties
of volume frameworks, where the generalization goes from graphs with fixed edge
lengths to hypergraphs with fixed hyperedge volumes.

Deformation Spaces of Polygons. Deformation spaces of bar-and-joint struc-
tures have been characterized only in special cases [23,30]. Particularly stud-
ied, and in different geometries, is the polygonal case [5,24–27]. In this paper
we initiate the study of deformation varieties or configuration spaces for vol-
ume frameworks associated to polygons. More precisely, for given d ≥ 2 and
n ≥ d+3, we examine volume frameworks corresponding to hypergraphs on ver-
tices 1, ..., n with n (cyclically marked) hyperedges: 12...(d + 1), 23...(d + 2), ...,
n12...d. Such cyclic volume frameworks provide interesting deformation spaces,
especially when considered from the complex projective point of view.

Related Work. In [7] we considered minimally rigid volume frameworks and
obtained bounds on the number of non-equivalent realizations. We also showed
that sparsity conditions on the hypergraph are not sufficient for characterizing
minimal rigidity for d ≥ 2, just as Maxwell’s sparsity conditions [29] for bar-and-
joint frameworks are not sufficient for characterizing minimal rigidity for d ≥ 3.

Here, we give particular attention to the planar case not only for compar-
ison and contrast purposes with other instances of area constraint problems
[15,17,18,20], but mostly for the explicit and geometrically revealing character
of singular configurations.

Our Contribution. In this paper we show that, when comparing deformation
varieties of polygonal bar-and-joint and volume frameworks, there are significant
similarities, but also noticeable distinctions, already in dimension two. While
singular configurations for bar-and-joint frameworks remain singular under pro-
jective transformations, this is not the case for singular configurations of area
frameworks. This disproves an expectation formulated by Whiteley in [2].

Nevertheless, singular configurations of cyclic area frameworks are remarkable
in their own right and are best understood in relation to classical theorems of
Desargues and Brianchon. The more general phenomenon of singular configura-
tions on cyclic volume frameworks is related to points on rational normal curves.

The planar family may be compared to bar-and-joint polygon spaces
described in [5], since both scenarios lead to complex deformation spaces of
a distinctive type: elliptic curves, K3 surfaces and higher dimensional varieties
related to Calabi-Yau manifolds. Varieties of this type play a key role in Mirror
Symmetry [12].

Our investigation advances the theory of volume frameworks in the context of
a more general but natural theory of frameworks associated to various classical
groups [31]. Volume frameworks correspond to special linear groups in the same
way that bar-and-joint frameworks correspond to orthogonal groups.
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2 Preliminaries

We review some basic definitions and formulations involving Grassmanians. See
also [7].

Let H = (V, E) be a (d + 1)-uniform hypergraph with vertex set V and
hyperedge set E made of certain ordered subsets I of cardinality (d+1). Actually,
we may take V = {1, 2, ..., n}, and refer to hyperedges I ∈ E as multi-indices
I = (i0, ..., id),, with distinct ik ∈ V , k = 0, ..., d < n.

A placement p : V → R
d of the vertices in R

d allows the interpretation of the
hyperedges I ∈ E as (possibly degenerated) marked oriented simplices in R

d and
retaining their signed volume provides weights for E . Assuming that at least one
of the volumes is non-zero, the pair (H, p) gives a volume framework in R

d.

Other placements p̃ : V → R
d which induce the same weights as (H, p) will be

called realizations of the framework (H, p). Two realizations which differ by an
affine volume-preserving transformation of R

d are considered equivalent. Equiv-
alence classes of realizations define the configuration space of the framework. The
realization space can be envisaged as a real algebraic variety and has thereby
a topological structure. The configuration space is considered with the quotient
topology. The connected component of the configuration represented by (H, p)
is called the deformation space of the framework (H, p).

Since placements are assumed to have at least one full dimensional marked
simplex, equivalence under affine volume-preserving transformations can be fac-
tored out by pinning one such simplex, that is, the configuration space can be
represented by all realizations maintaining the initial placement for the chosen
simplex. This shows that the configuration space of a volume framework can be
represented as (the real points) of an affine real algebraic variety.

Another approach, used in [7] and adopted in the present paper, factors out
equivalence by resorting to Grassmann manifolds and Plücker embeddings [16].
We denote by G(k,m) the Grassmannian consisting of all k-dimensional vector
subspaces in a vector space of dimension m. The ground field will be R or C,
according to context.

Let p1, ..., pn ∈ R
d denote the placements of the vertices by p. With pi as

column vectors, we consider the (d + 1) × n matrix:
(

1 1 ... 1
p1 p2 ... pn

)
(1)

The (d + 1) rows of this matrix are independent and define a (d + 1)-
dimensional vector subspace in R

n and thereby a point of the Grassmannian
G(d + 1, n). The Plücker (projective) coordinates of this point are given by all
(d + 1) × (d + 1) minors:

VI(p) = det

(
1 1 ... 1
pi0 pi1 ... pid

)
= det

(
pi1 − pi0 ... pid − pi0

)
(2)
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for I = (i0, ..., id), 1 ≤ i0 < ... < id ≤ n. It folows immediately from (1) and
(2) that replacing pi, i = 1, ..., n by their images under an affine transformation
does not change the corresponding point of the Grassmannian.

With obvious adaptation of signs, we may assume the hyperedges given as
increasing subsets of (d+1) indices, hence the volume constraints take the ratio
form:

VI(p)
δI

=
VJ(p)

δJ
(3)

that is:
δJVI(p) = δIVJ(p), for I, J ∈ E

where δI is the prescribed signed volume for hyperedge I. Note that the scal-
ing aspect is resolved through the use of the projective setting. The essential
parameters are the prescribed volumes up to proportionality.
Operating as above in G(d+1, n) makes immediate the correspondence between
prescribed volumes and marked Plücker coordinates. However, since the matrix
(1) contains the row (11...1) the points under consideration can be identified
with the points of the Grassmannian G(d, n − 1), in the quotient vector space
R

n/R(11...1).
Thus, for E of cardinality m and δ = (δ1 : δ2 : ... : δm) ∈ Pm−1, an inde-

pendent system of volume constraints (3) gives a projective linear section of the
Grassmannian G(d, n − 1) of codimension m − 1.

Since the dimension of G(d, n−1) is d(n−d−1), a necessary sparsity condition
for minimally rigid volume frameworks is that m = d(n − d − 1) + 1 and on any
subset of n′ > d vertices there are at most d(n′ − d − 1) + 1 hyperedges.

3 Area Frameworks on Five Vertices

We start with some elementary examples and identify their singular configura-
tions.

For three or four vertices there is, up to relabeling, a unique minimally rigid
area framework hypergraph. With simplified notation, E is made of 123, for three
vertices and 123, 234, 341 for four vertices. The latter is obtained from the former
by an elementary operation of ‘vertex addition’. This can be defined in arbitrary
dimension d and consists in adding a vertex and marking d new simplices which
have the new point as a vertex. Clearly, vertex addition takes minimally rigid
graphs to minimally rigid graphs.

Proposition 1. Up to relabeling, a minimally rigid area framework on five ver-
tices 1,...,5 is one of the following:

(1) 512, 523, 534, 541, 524
(2) 541, 542, 543, 531, 421
(3) 345, 145, 245, 125, 123
(4) 512, 523, 534, 541, 123
(5) 123, 234, 345, 451, 512
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Proof: It is more convenient to mark a triangle by the pair of vertices (edge) it
does not contain. Sparsity permits at most three edges from any vertex. Since
five edges on five vertices must form at least one cycle, cases (1), (2) and (3)
result from a triangular cycle, (4) from a quadrangular cycle and (5) from a full
pentagonal cycle. ��

Remark: (1) to (4) can be obtained from a triangle by vertex additions and
have, generically, unique realizations. Thus (5), which can be obtained from a
minimally rigid graph on four vertices by a vertex splitting operation [7] is the
more interesting case.

We determine here the infinitesimally flexible configurations for area frame-
works on five vertices indexed 1,...,5, with marked triangles 123, 234,..., 512. There
is no loss of generality if we ‘pin’ the triangle 123 with vertex 2 at the origin and
vertices 1 and 3 at (1, 0), respectively (0, 1). Then 4 and 5 have coordinates at
(β, y), respectively (x, α), with α and β fixed by the areas of 512 and 234.

The two remaining areas 345 and 451 impose conditions of the form:

det

⎛

⎝
1 1 1
0 β x
1 y α

⎞

⎠ = αβ − β − xy + x = b

det

⎛

⎝
1 1 1
β x 1
y α 0

⎞

⎠ = αβ − α − xy + y = a

This gives:
y = x + c with c = (a + α) − (b + β)

x2 + (c − 1)x + (b + β − αβ) = 0

Infinitesimal flexibility means a double root in the last equation, which
results in:

x =
1 − c

2
, y =

1 + c

2
i.e. x + y = 1

Geometrically, this means that the parallel to edge (1, 2) through vertex 4
meets the parallel to edge (23) through vertex 5 on the line (13). We’ll mark this
point as 2’.

Since infinitesimal flexibility is not affected by cyclic permutations of the
indices, the above considerations yield the following:

Condition (�5): For all indices i ∈ Z5, taken mod 5, the parallel to edge (i, i+1)
through vertex i + 3 meets the parallel to edge (i + 1, i + 2) through vertex i + 4
on the line (i, i + 2). We denote this point as (i + 1)′.

Infinitesimally Flexible Configurations: The pentagon 1′2′3′4′5′ has edges
parallel to the corresponding edges of the pentagon 12345 and is mutually
inscribed with the pentagon 13524. Together, the vertices and edges of the pen-
tagons 1′2′3′4′5′ and 13524 determine a configuration of type 103, with each point
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on three lines and each line passing through three points [13,21,22]. In fact, as
shown in Fig. 1, it is a Desargues configuration. Two triangles in perspective are
41′5′ and 3′54′, with center of perspective at 2 and pairs of corresponding edges
meeting at the three collinear points 2’, 3 and 1.

Fig. 1. Infinitesimal flexibility of a pentagon leads to a Desargues configuration. The
lines supporting the pentagon edges are tangent to a parabola.

Remark: Since arbitrary projective transformations won’t preserve this special
class of affine polygons 12345, we see that the property of infinitesimal flexibil-
ity of volume frameworks is not invariant under projective transformations, in
contrast to the bar-and-joint case. This aspect is emphasized in the following
equivalent formulation:

Proposition 2. A cyclic area framework on five vertices, with marked triangles
(i − 1, i, i + 1), i ∈ Z5, is infinitesimally flexible if and only if all edges (i, i + 1)
are tangent to a parabola.

Proof: Infinitesimal flexibility amounts to condition (�5) identified above,
namely: the parallel to edge (i, i + 1) through vertex i + 3 meets the parallel
to edge (i + 1, i + 2) through vertex i + 4 on the line (i, i + 2), for all i ∈ Z5. We
have to prove its equivalence with the fact that the pentagon has edges tangent
to a parabola. For one implication, we may observe that an affine parabola may
be treated as a projective conic with a distinguished tangent �∞ (that tangent
being the line at infinity). Suppose our pentagon has edges tangent to the conic
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Fig. 2. Singular configuration of a pentagon. The line at infinity �∞ passes through
points 2′′ and 3′′.

as illustrated in Fig. 2 and we want to establish condition (�5) for i = 1. We
mark the following intersections of lines:

(1, 2) ∩ �∞ = 2′′, (2, 3) ∩ �∞ = 3′′

Then, 15433′′2′′ is a hexagon with edges tangent to the conic. Thus, by Brian-
chon’s theorem [21], the diagonals (1, 3), (5, 3′′), (4, 2′′) are concurrent. Affinely,
this is condition (�5).

The other implication amounts to using Brianchon’s converse. ��

4 Cyclic volume frameworks

In this section we outline a relation between configuration spaces for certain
volume frameworks and varieties expected to allow natural desingularizations to
Calabi-Yau manifolds. It is analogous to the relation established in [5] between
polygon spaces and Darboux varieties (which have natural resolutions to Calabi-
Yau manifolds).

Definition. A (d + 1)-uniform hypergraph will be called cyclic when defined on
n ≥ d + 3 vertices 1,...,n by marking (cyclically) the n hyperedges: 12...(d + 1),
23...(d + 2), ..., n12...d.
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Fig. 3. The (d, n)-plane with hyperbolas d(n − d − 1) − (n − 1) = D depicted for
D = 1, 2, 3. There is an affine involution (d, n) �→ (n−d−1, n) preserving all hyperbolas
in this pencil.

The presentation will be streamlined if we adopt directly a projective set-up.
Since the scale factor is determined by any non-zero volume, we may consider
the equivalence of point configurations up to affine transformations and impose
the volume constraints as ratios of two volumes. Thus, as seen above, point
configurations modulo affine equivalence correspond to G(d, n − 1) ⊂ P(n−1

d )−1

and constraints become hyperplane sections.
For cyclic frameworks we have n − 1 (ratio) prescriptions resulting in a codi-

mension (n−1) linear section of the Grassmannian. While generic linear sections
of this codimension do yield, over the complex field, smooth submanifolds with
trivial canonical class i.e. Calabi-Yau manifolds, we have yet to determine par-
ticular properties of the sections dictated by framework constraints.

For n vertices in dimension d the space of parameters (the chosen volume
ratios) is Pn−1 and the complex configuration spaces have dimension: D(d, n) =
d(n − d − 1) − (n − 1) = (d − 1)(n − 1) − d2.

Recalling that d ≥ 2 and n ≥ d + 3, one may notice in Fig. 3 the symmetry
of this array of dimensions under the involution (d, n) 
→ (n − d − 1, n) which
exchanges the two border lines d = 2 and n = d + 3:

D(d, n) = d(n − d − 1) − (n − 1) = D(n − d − 1, n) (4)

4.1 Association

Formula (4) is an indication that association is implicated in this pairing. The
notion of association goes back to Castelnuovo and Coble [11]. It expresses the
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fact that the projective invariants of configurations of (n + 1) ordered points in
Pd can be identified with the projective invariants of associated configurations
of (n + 1) points in Pn−d−1. See also [4,14].

We note first that a cyclic volume configuration of type (d, n) is completely
described by the affine hyperplanes [12...d], [23...(d + 1)], ..., [n1...(d − 1)]. This
gives a projective configuration of (n+1) hyperplanes when we retain the hyper-
plane at infinity as the last element of this ordered list. Thus, we have (n + 1)
points in the dual projective space P

∗
d. For general configurations, association

provides, up to projective equivalence, corresponding configurations of (n + 1)
points in P

∗
n−d−1, which give (n+1) hyperplanes in Pn−d−1. With the last hyper-

plane interpreted as the hyperplane at infinity, we have a configuration of n affine
hyperplanes in Cn−d−1, up to affine equivalence i.e. a cyclic volume configuration
of type (n − d − 1, n).

4.2 Cyclic Area Frameworks

Here the emphasis will be on d = 2 i.e. cyclic area frameworks. We are going to
use the following abbreviations:

Δijk = det

(
1 1 1
pi pj pk

)
, Δ(i−1)i(i+1) = Δi

With indices considered mod n, the equations defining the (projective) configu-
ration space of a cyclic area framework on n vertices are:

Δ1

δ1
=

Δ2

δ2
= ... =

Δn

δn
(5)

that is:
δiΔj = δjΔi, 1 ≤ i < j ≤ n, δ = (δ1 : ... : δn) ∈ Pn−1

Solutions with Δ1 = ... = Δn = 0 will be called degenerate solutions. For any
δi �= 0, the hyperplane section Δi = 0 consists of precisely these ‘degenerate’
solutions. As a divisor, or divisor class, it will be called the degeneracy divisor
or the divisor at infinity.

If we look back at the source of our set-up, we have

G(2, n − 1) ⊂ G(3, n) ⊂ P((n3))−1 · · → Pn−1

where the last map is rational, with indeterminacy locus Δ1 = ... = Δn = 0.
Thus, our degeneracy locus is where this indeterminacy locus meets the config-
uration space.

If we denote by P(n−1
2 )−n(δ) the codimension (n−1) projective space defined

by equations (5) in the linear span of the Grassmannian G(2, n−1), the projective
configuration space of a cyclic area framework on n vertices is the linear section:

Xn−5 = Xn−5(δ) = G(2, n − 1) ∩ P(n−1
2 )−n(δ) ⊂ P(n−1

2 )−n (6)



30 C.S. Borcea and I. Streinu

4.3 Other Birational Models

The projective configuration space (6) obtained above involves no particular
choice, but one may consider birationally equivalent realizations by ‘pinning’
a certain triangle. Suppose (up to rescaling and relabeling if necessary) that
δ1 = 1/2 and pin triangle (n12) with vertex 1 at the origin, and the two edges
from it corresponding to the standard basis. This eliminates the action of affine
transformations and the remaining vertices from 3 to n− 1 can be parametrized
by (P2)n−3. If we label the hyperplane classes in each factor by hi, according to
the corresponding vertex, the remaining n − 1 area prescriptions yield divisors
of the following type (pull-back classes being represented by the same symbols):

h3, h3+h4, h3+h4+h5, h4+h5+h6, ..., hn−3+hn−2+hn−1, hn−2+hn−1, hn−1

Note that the sum of these divisors on (P2)n−3 is precisely the canonical divisor
3
∑n−1

3 hi, endorsing the expectation of Calabi-Yau birational models for our
configuration spaces.

Remark: Triangles formed at the vertices of a polygon have been considered in
some other contexts. We mention [17] and [18]. We briefly review here another
realization of the configuration space, based on a simple extension of the app-
roach used in [18] for equal areas.

Let si = pi+1−pi, i ∈ Zn be the edge vectors. Equations (5) can be written as:

1
δi

si−1 × si =
1

δi+1
si × si+1

which require the existence of scalars xi such that:

si−1 +
δi

δi+1
si+1 + xisi = 0, i ∈ Zn (7)

With μi = δi/δi+1, we define the (n + 1) × n matrix:

Xµ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 ... 1 1
x1 μ1 0 ... 0 1
1 x2 μ2 ... 0 0
0 1 x3 ... 0 0
. . . ... . .
0 0 0 ... xn−1 μn−1

μn 0 0 ... 1 xn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

The first row with all entries 1 will take account of the fact that the edge vectors
of the polygon have zero sum. If we denote by S the n × 2 matrix with rows si,
equations (7) take the matrix form:

XµS = 0 (8)

Thus, a non-degenerate configuration gives a rank two S and therefore a rank
≤ (n − 2) matrix Xµ. Conversely, when Xµ has rank ≤ (n − 2), the choice
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of two independent vectors in its kernel provide a solution for (7). Generically,
with rank (n − 2), all solutions are affinely equivalent, hence the affine algebraic
variety defined in the n-space with coordinates xi by the condition:

rank(Xµ) ≤ n − 2 (9)

gives another birational model of the configuration space of the area framework.
There are some advantages from the point of view of elimination, but the pro-
jective completion offered by this realization seems entangled.

4.4 Hexagons and Elliptic Curves

We have seen above that, for generic area prescriptions, the cyclic area framework
on five vertices i.e. the case of a generic pentagon, has a configuration space
consisting of two points, corresponding to the degree two of the Grassmann-
Plücker quadric G(2, 4) ⊂ P5.

For a cyclic area framework on a hexagon, we shall determine first the divisor
at infinity. In all cases, the degenerate configurations have only three distinct ver-
tices and are completely described by the corresponding coalescence of vertices.
They are:

(12, 34, 56), (23, 45, 61), (1, 4, 2356), (2, 5, 3461), (3, 6, 4512)

Note that they must be simple points on our curve since deg(G(2, 5)) = 5.
For the affine part Δ1 �= 0 and we may consider the triangle 612 as ‘pinned’.
Then 3 runs on a parallel (3) to line (12) at a distance prescribed by the ratio
δ2/δ1. Then we put m = m(3) = (61) ∩ (23) and with vertices 1m456 we are in
the pentagonal case. Thus, our curve is presented as a ramified double covering
of P1 represented by the completed affine line (3).

Expecting generically a smooth curve, it must be elliptic, since with trivial
canonical class. Thus, we should have four ramification points.

Smoothness at affine points can be verified as follows: assume δ1 = 1 and
pin triangle 612 with 6 = e2, 1 = 0, 2 = e1. Then 3 and 5 must run on lines
(3) = δ2e2 +ae1, respectively (5) = δ6 + be2. The locus of 4 = x is then obtained
by eliminating a and b from:

Δk = δk, k = 3, 4, 5

This process gives:

a = 1 +
1
x2

(δ3 − δ2 + δ2x1), b = 1 +
1
x1

(δ5 − δ6 + δ6x2)

and results in the affine cubic:

x2
1x2 + x1x

2
2 − δ2x

2
1 − δ6x

2
2 − (1 + δ2 + δ6 − δ3 − δ4 − δ5)x1x2+

+[δ2(δ6 − δ5) + (δ2 − δ3)]x1 + [δ6(δ2 − δ3) + (δ6 − δ5)]x2 − (δ2 − δ3)(δ6 − δ5) = 0

The non-singular example δ2 = δ6 = 0, δ3 = δ5 = 1, δ4 = −1 shows that the
cubic is smooth in the generic case. On the other hand, an example of singularity
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at (0, 0) is obtained for δ2 − δ3 = δ6δ5 = 0. For δ2 = ... = δ6 = 0 the cubic is
made of the three supporting lines of the triangle 612.

Remark: An examination of the pencil of projective cubics corresponding to
δ2 = δ6 = 0, δ3 = δ5 = 1, illustrates the possibility of one or two loops for the
curve of real points, when smooth. The pencil has the transposition symmetry
(x1 x2) and takes the form:

x1x2(x1 + x2) − x2
0(x1 + x2) − x3

0 + λx0x1x2 = 0

For λ = 0 the cubic is smooth and the real points form a single loop. For
λ = 1 the cubic decomposes into a line and a conic:

(x0 + x1 + x2)(x1x2 − x2
0) = 0

The real points avoid the singularities and give two loops. The actual topo-
logical transition happens when passing through the nodal case corresponding
to the real solution (between 0 and 1) of the equation:

3λ3 + 4λ2 + 54λ − 33 = 0

Returning to the map defined above between the configuration curve X =
X(δ) ⊂ G(2, 5) and the projective completion of the affine cubic C1 = C1(δ) ⊂ P2,
one finds that the points ‘at infinity’ on C1 correspond with the degenerations:
(12, 34, 56), (23, 45, 61) and (1, 4, 2356). More precisely, with (x0 : x1 : x2) as
homogeneous coordinates on P2, the correspondence is:

(0 : 1 : 0) = (12, 34, 56), (0 : 0 : 1) = (23, 45, 61), (0 : 1 : −1) = (1, 4, 2356)

Furthermore, by letting 3 go to infinity on line (3), that is a → ∞, and
similarly for 6, we find that:

(1 : δ6 − δ5 : 0) = (2, 5, 3461), (1 : 0 : δ2 − δ3) = (3, 6, 4512)

This explains the singularity observed above for δ2 − δ3 = δ6 − δ5 = 0 at
(1 : 0 : 0) as a self-intersection produced by the map X → C1.

As point 3 moves on line (3), the parallels to line (23) (on which point
4 must lie) run through another intersection of the cubic with x2 = 0, namely
p12 = (δ2 : δ2−δ3 : 0). This implies that the involution of X defined by projecting
on (3) can be interpreted on the cubic as the exchange of the two points of
residual intersection of the cubic with a line running through (δ2 : δ2 − δ3 : 0).

One can be more precise about singular configurations and observe that a
singularity of the configuration curve must be a ramification point for all maps
X → X/σ = P1 associated to double coverings (and corresponding involutions
σ) as described above for the case where P1 was the completed line (3). In fact,
being a ramification point for two such maps will be enough. Looking back at
the case of the pentagon, the condition for singularity amounts to the following
geometric feature:

Condition (�6): the parallel to edge (i + 1, i + 2) through vertex i + 5 of the
hexagon must meet the parallel to edge (i + 3, i + 4) through vertex i + 6 on the
diagonal (i + 1, i + 4), i ∈ Z6.
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In agreement with Proposition 2 this condition is equivalent with the follow-
ing characterization:

Proposition 3. An affine planar configuration representing p ∈ X(δ) is a sin-
gular point of the curve if and only if all six lines (i, i + 1) defined by the edges
of the hexagon are tangent to a parabola.

Remark: Again, the strictly affine character of this condition for singularity is
in contrast with the projective invariance of singular configurations for bar-and-
joint frameworks. Even so, our discussion will be cast in projective language.

Proof: An affine parabola is a projective conic with a distinguished tangent �∞
(that tangent being the line at infinity). Suppose our hexagon has edges tangent
to the conic, as illustrated in Fig. 4. We want to establish condition (�6) for
i = 0. We mark the following intersections of lines:

(1, 2) ∩ �∞ = 2′′, (3, 4) ∩ �∞ = 3′′

Then, 12′′3′′456 is also a hexagon with edges tangent to the conic. Thus, by
Brianchon’s theorem, the diagonals (1, 4), (2′′, 5), (3′′, 6) are concurrent. Affinely,
this is condition (�6). Brianchon’s converse yields the other implication. ��

Fig. 4. Singular configuration of a hexagon. The line at infinity �∞ passes through
points 2′′ and 3′′.
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4.5 Heptagons and K3 Surfaces

The configuration space for a cyclic area framework on seven vertices will be
a codimension six linear section of the Grassmannian G(2, 6) ⊂ P14, hence a
surface Y = Y (δ) ⊂ G(2, 6). The parameter space for δ is P6.

The divisor at infinity can be described first by tabulating the degenerations
of the heptagon which make all triples of vertices (i−1, i, i+1), i ∈ Z7, collinear.
Degenerations must be triangles and we have two types:

ai ≡ [i, (i + 1, i + 2), (i + 5, i + 6)](i + 3, i + 4)

bi ≡ i[(i + 1, i + 2, i + 5, i + 6), i + 3, i + 4]

where vertices between parentheses (...) coincide, and vertices between brackets
[...] are collinear.

Thus, there are fourteen curves of degenerations and they must be all lines
since the degree of the Grassmannian G(2, 6) is precisely fourteen. We shall
retain the notation ai, bi, i ∈ Z7 for the lines themselves, or for the algebraic
cycles they define on the surface Y .

Their pattern of intersection may be summarized as follows:

aibi = 1, aiai−2 = aiai+2 = 1, bibi−3 = bibi+3 = 1

and all remaining pairs of lines are disjoint.

5 Conclusion

In this paper we considered deformation varieties for volume frameworks in R
d

associated to cyclic hypergraphs on n labeled vertices. Natural parametrizations
were obtained as linear sections of Grassmannians. The resulting (d, n) indexed
family is invariant under association. Particular attention was given to the planar
case d = 2, with geometric characterizations of singular configurations. The
affine nature of these singularities contrasts with the projective invariance of
infinitesimal rigidity and infinitesimal flexes for bar-and-joint frameworks.
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Abstract. In the 1930s Tarski showed that real quantifier elimination
was possible, and in 1975 Collins gave a remotely practicable method,
albeit with doubly-exponential complexity, which was later shown to
be inherent. We discuss some of the recent major advances in Collins
method: such as an alternative approach based on passing via the com-
plexes, and advances which come closer to “solving the question asked”
rather than “solving all problems to do with these polynomials”.

1 Introduction

Although methods with better asymptotic complexity are known in theory (e.g.
[GV88]), the workhorse of implemented algorithms for real geometric reason-
ing is Cylindrical Algebraic Decomposition. This was introduced in [Col75]
to produce a remotely practicable (complexity “merely” doubly exponential
in the number of variables) alternative to Tarski’s original method from 1930
[Tar51], whose complexity could not be bounded by any tower of exponen-
tials. Tarski in fact set out to solve the quantifier elimination problem for real
algebraic geometry (Sect. 4): given Qk+1xk+1Qk+2xk+2 . . . Φ(x1, . . . , xn), where
Qi ∈ {∀,∃} and Φ is a Boolean combination of relations involving polynomials
pi(x1, . . . , xn), find an equivalent Ψ(x1, . . . , xk), where Ψ is a Boolean combina-
tion of relations involving polynomials qi(x1, . . . , xk). In fact, we cannot solve
this in the language of algebraic geometry: we need semi-algebraic geometry,
allowing > as well1 as =. The necessity of > follows from the fact of the exam-
ple ∃y : x = y2 ⇔ (x > 0) ∨ (x = 0); its sufficiency is the point of Tarski’s work.

2 Cylindrical Algebraic Decomposition by Projection
and Lifting

[Col75] constructs a sampled2 Cylindrical Algebraic Decomposition (CAD) of Rn

which is sign-invariant for the pi, where these words are defined as follows.
1 Strictly speaking > is sufficient, but implementations always allow ≥ and �=. In fact,

�= is intrinsic to the regular chains approach discussed in Sect. 3.
2 The “sampled” nature is implicit in [Col75, and its successors], but the authors find

it helpful to be explicit about this.
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Definition 1. (CAD terminology). Note that throughout we are ordering our
coordinates/variables, so that xn is the “last coordinate”.

decomposition: a partition of Rn into cells Ci indexed by n-tuples of natural
numbers (so Rn =

⋃
i Ci and i �= j ⇒ Ci ∩ Cj = ∅);

(semi-)algebraic: every Ci is defined by a finite set of equalities and inequalities
of polynomials in the xi, including expressions of the form

RootOf2(f1(x1, y)) < x2 < RootOf3(f2(x1, y)) (1)

(where RootOf2 means “the second real root, counting from −∞”);
cylindrical: for all k < n, if πk is the projection onto the first k coordinates,

then, for all i, j, πk(Ci) and πk(Cj) are either equal or disjoint;
sampled: for each cell Ci there is an explicit point si ∈ Ci;
sign-invariant: for the polynomials in Φ on each cell, every pi is identically

zero, or everywhere positive, or everywhere negative.

Collins constructed such a decomposition by a process now known (at least by
our colleagues) as CAD by Projection and Lifting (for more details see [Dav15]).
The key property in this approach is the following.

Definition 2. A polynomial p(x1, . . . , xm) is delineable3 over a region C ⊂
Rm−1 if:

1. the portion of the real variety of p that lies in the cylinder C × R over C
consists of the union of the graphs (called sections) of some k ≥ 0 continuous
functions θ1 < · · · < θk from C to R and;

2. there exist integers m1, . . . , mk ≥ 1 such that, for every point (a1, . . . , am−1)
in C, the multiplicity of the root θi(a1, . . . , am−1) of p(a1, . . . , am−1, xm), con-
sidered as a function of xm alone, is mi (and in particular is constant).

A set of polynomials is delineable over C if each is delineable and if the sections
are either identical or disjoint. This is actually equivalent to saying that the
product is delineable.

Intuitively, if the {pi} are delineable over C, their graphs neither fold nor cross.
Let Pn be the set of polynomials in Φ, with coefficients from some effective4

field K ⊂ R. Then Collins algorithm proceeds as follows:

3 There are various, subtly different, definitions in the literature. This one is from
[McC99].

4 The literature often stipulates Q or the algebraic numbers A. The real requirement
is that we can perform all the polynomial algebra we need over K, and that, given
expressions a, b ∈ K, we can decide the trichotomy a < b or a = b or a > b. Once we
start adding transcendental functions to our language, the effectivity of K becomes
a major problem, as we run across the usual indecidability results. This is addressed
in different ways in [AMW08] and [Vor89,Vor92].
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Projection: Given some Pk ⊂ K[x1, . . . , xk] construct a set Pk−1 ⊂ K[x1, . . . ,
xk−1] such that, over each cell of a CAD sign-invariant for Pk−1, the polyno-
mials of Pk are delineable. Though the details depend on the algorithm, the
key ingredients are leading coefficients (where these vanish some θi tends to
infinity), discriminants (where these vanish some θi ceases to have constant
multiplicity) and resultants (where these vanish, the θi from different poly-
nomials intersect).
Repeat until we have the set of univariate polynomials P1.

Base case: Given P1, isolate the N1 real roots of these polynomials in R1,
and construct a CAD consisting of the N1 roots, and the N1 + 1 intervals
between them (or to the left/right of them all). The sample points for the
0-dimensional cells are the roots themselves: for the 1-dimensional intervals
we choose any convenient point, generally rational and with denominator
the smallest power of 2 we can find.

Lifting: Given a CAD Dk−1 of Rk−1, sign-invariant for Pk−1, construct a CAD
Dk of Rk, sign-invariant for Pk. For each cell Ci, this is done by substituting
the sample point si into Pk, and doing the equivalent of the base case for
the resulting univariate system (valid across the whole of Ci if the projection
operator provides delineable projection polynomials).
Repeat until we have the CAD Dn of Rn.

If we suppose that Pn contains m polynomials, of degree (in each variable)
bounded by d, and coefficient length bounded by l (coefficients bounded by 2l),
then the time complexity is bounded [Col75, Theorem 16] by

O
(
m2n+6

(2d)2
2n+8

l3
)

. (2)

This analysis is very sensitive to the details of the sub-algorithms involved, and
a more refined analysis of the base case [Dav85] reduces the complexity (though
not the actual running time) to

O

(
m2n+/64

(2d)2
2n+/86

l3
)

.

This improvement might seem trivial, but in fact implies taking the fourth root
of the m, d part of the complexity.

A less sensitive property (and one that reflects the cost of using such a
decomposition) is the number of cells: for the Collins method this is bounded,
by an analysis similar to [BDE+14], by

O
(
m2n(2d)2·3n

)
. (3)

As is often the case in mathematics, we get more insight if we solve an apparently
harder problem. [McC84] did this, demanding that the decompositions Dk, k < n
be, not just sign-invariant, but

Order-invariant for the polynomials in Φ, i.e. on each cell, every pi is identically
zero, and vanishes to the same order throughout the cell, or everywhere
positive, or everywhere negative.
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This actually lets his Pk be much simpler than Collins’, with the cost that
the lifting procedure might fail if some element p of Pk nullifies (is identically
zero) over some cell in Dk−1. In this case, McCallum says that Pk was not
well-oriented, and has to either:

1. proceed by working around the problem or concluding it not relevant. This is
only possible in certain cases (e.g. the cell is dimension 0) [Bro05]. Otherwise;

2. revert to Collins’ projection (or a variant due to [Hon90]); or,
3. add the partial derivatives of p to Pk and resume the projection process

from there — an operation that to the best of the authors’ knowledge has
never been implemented, doubtless because of the complicated backtracking
involved, and the fact that, whereas we only ought to add this polynomial
in the nullifying region, the design of Collins’ algorithm and its successors
assume a global set of polynomials at each level.

“Randomly”, well-orientedness ought to occur with probability 1, but we have
a family of “real-world” examples (simplification/branch cuts, see [BBDP07])
where it often fails. The analogy of (3) is given by [McC85, Theorem 6.1.5] as

O
(
m2n(2d)n·2n

)
, (4)

and a recent improved analysis in [BDE+14, (12)] reduces this to

O
(
22

n−1
m(m + 1)2

n−2d2
n−1

)
. (5)

3 CAD by Regular Chains

This alternative to the traditional computation scheme of projection and lifting
was introduced in [CMXY09], then improved in [CM14a]. The method can be
described as “going via the complexes”, since the authors first construct a cylin-
drical decomposition of Cn, and then infer a CAD of Rn. They make use of the
well developed body of theory around regular systems [Wan00] for the work over
the complexes, and the algorithms are all implemented in the RegularChains
Library5 for Maple, hence our designation: CAD by Regular Chains.

We first need the following analogue of Definition 2 (not precisely analogous,
as Definition 2 allows for non-square-free polynomials and this does not).

Definition 3. Let K ⊂ C be an effective field. Let C be a subset of Cn−1 and
P ⊂ K[x1, . . . , xn−1, xn] be a finite set of polynomials whose main variable really
is xn. We say that P separates above C if for each α ∈ C:

1. for each p ∈ P , the polynomial lcxn
(p) does not vanish at α;

2. the polynomials p(α, xn) ∈ C[xn], for all p ∈ P , are squarefree and coprime.

Note that the empty set is trivially separable.

5 http://www.regularchains.org.

http://www.regularchains.org
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We then need an analogue of Definition 1 for the case of complex space. We follow
[CM14a] and describe these (complex) cylindrical decompositions in terms of the
tree data structure they are stored as.

Definition 4. We define a cylindrical decomposition of Cn, and its associated
tree, by induction on n.

Base Either: There is one set D1, the whole of C and D = {D1};
Base Or: there are r non-constant square-free relatively prime polynomials pi

such that Di is the set of zeros of pi, and Dr+1 is the complement: {x :
p1(x)p2(x) · · · pr(x) �= 0}: D = {D1, . . . , Dr,Dr+1}.

Base Tree: The root and all the Di as leaves of it.
Induction: Let D′ be a cylindrical decomposition of Cn−1. For each Di ∈ D′, let

ri be a non-negative integer, and Pi = {pi,1, . . . , pi,ri} be a set of polynomials
which separates over Di.

Induction Either: r = 0 and we set Di,1 = Di × C;
Induction Or: we set Di,j = {(α, x) : α ∈ Di ∧ pi,j(α, x) = 0};

Di,r+1 =

⎧
⎨

⎩(α, x) : α ∈ Di ∧
∏

j

pi,j(α, x) �= 0

⎫
⎬

⎭ ;

Then: a cylindrical decomposition of Cn is given by

D = {Di,j : 1 ≤ i ≤ |D′|; 1 ≤ j ≤ ri + 1}.

Induction Tree: If T ′ is the tree associated to D′ then the tree associated to D
is obtained by adding to each leaf Di ∈ T ′ as children all the Di,j such that
1 ≤ j ≤ ri + 1.

Unlike Definition 1, the different roots of a given polynomial are not separated.
Each cell is the zero set of a system of polynomial equations and inequations,
where the main variables are all distinct: a triangular system [ALM99].

Definition 5. Let F be a set of polynomials in k = K[x1, . . . , xn]. A cylindrical
decomposition D is F -invariant if, for each cell D ∈ D and each fi ∈ F , either
f vanishes at all points of D or f vanishes at no point of D.

The trivial decomposition, obtained by taking the “either” branch each time,
with one cell, is ∅-invariant. Given a cylindrical decomposition D which is F -
invariant, and supposing F̂ = F ∪ {f}, [CM14a] shows how to refine D to a
cylindrical decomposition D̂ which is F̂ -invariant, hence the “incremental” in
the title of their paper. The key ingredients in this process are again leading
coefficients, resultants and discriminants. The paper [CMXY09] shows, assuming
that K ⊂ R, how to construct from D a cylindrical algebraic decomposition of
Rn which is sign-invariant for F .
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The construction of the cylindrical decomposition can be seen, as pointed
out in [CM14a], as an analogue of the projection phase of projection and lifting.
Indeed, if n is small, it is often the case that the polynomials at level i in the tree
corresponding to D are those in Pn−i. The fundamental difference is that the Pi

are global structures: over the whole cylindrical algebraic decomposition of Rk

we need to isolate all the branches of all of Pk+1, whereas there is a tree structure
underpinning D and the cylindrical algebraic decomposition, which means that
“polynomials are not considered when they are blatantly not relevant”.

Example: Consider the parabola p := ax2 + bx + c and assume the variable
ordering x � c � b � a. Suppose we were to use projection and lifting. Then the
first projection identifies the coefficients a, b, c and the discriminant with respect
to x: b2 − 4ac. Subsequent projection do not identify any further projection
polynomials for this example. Lifting produces CADs sign-invariant for these 4
projection polynomials, as well as p itself.

The regular chains approach would start by building the following tree, rep-
resenting a cylindrical decomposition of Cn:

a = 0

b = 0

c = 0 c �= 0

b �= 0

p = 0 p �= 0

a �= 0

b2 − 4ac = 0

p = 0 p �= 0

b2 − 4ac �= 0

p = 0 p �= 0

This decomposition was produced to be sign-invariant for p. However, it
does not insist on sign-invariance for the all the other projection polynomials.
In particular, it is not sign-invariant for b. The polynomial b is included in the
projection set because its vanishing can determine delineability, but only when
the coefficient of the higher degree terms vanish. So, when a = 0 it is important
to ensure b is sign-invariant, but not otherwise. Hence the tree above is doing
only what is necessary to make the final conclusion about p.

The next step is to apply real root isolation, extending this tree to one rep-
resenting a CAD. At the top level the case a �= 0 must split into the two pos-
sibilities: a < 0 and a > 0. For brevity we display only the branch for a < 0
below (where r1 and r2 represent the two real roots of p in the case where the
leading coefficient is negative and the discriminant positive). The full tree has
27 leaves, thus representing a CAD with 27 cells. This compares with a minimal
CAD of 115 cells produced by projection and lifting to be sign invariant for all
projection polynomials.
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a < 0

c = b2

4a

x < − b
2a x = − b

2a x > − b
2a

c > b2

4a

x < r1 x = r1 x ∈ (r1, r2) x = r2 x > r2

c < b2

4a

Are there significant savings in general? We refer the reader to [BDE+14,
Table 1]. Here PL-CAD refers to our implementation of McCallum’s algorithm of
Sect. 2; RC-INC-CAD refers to the algorithm of [CM14a] (Sect. 3); and Qepcad
[Bro03] is another, highly optimised, implementation of McCallum’s algorithm.
Where both terminate, Qepcad and PL-CAD often, though not always, have the
same cell count. RC-INC-CAD does sometimes have the same count, but on other
examples such as BC-Phisanbut-4, needs only 2007 cells, while both implemen-
tations of McCallum’s algorithm need 51,763.

4 Quantifier Elimination

The original motivation for [Col75] was the following problem.

Problem 1. (Quantifier Elimination). Let Qi ∈ {∃,∀}, and LRCF be the language
of Boolean-connected equalities and inequalities concerning polynomials in K[x1,
. . . , xn], where K is an effective field with Q ⊆ K ⊂ R . Given a statement
(known as a Tarski statement, or a Tarski sentence if k = 0)

Φ := Qk+1xk+1 . . . Qnxnφ(x1, . . . , xn) : φ ∈ LRCF, (6)

the Quantifier Elimination problem is that of producing an equivalent

Ψ := ψ(x1, . . . , xk) : ψ ∈ LRCF. (7)

In particular, k = 0 is a decision problem: is Φ true?

If we have a CAD D(n) of Rn (noting that the xi must be ordered in the same
way in Definition 1 and formula (6)) sign-invariant for the polynomials of Φ,
then constructing Ψ is conceptually easy.

1. The truth of φ in a cell Di of D(n) is that of φ at the sample point si.
2. D(n) projects to a CAD D(k) of Rk.
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3. The truth of Φ in a cell D̂j ∈ D(k) is then the appropriate (
∨

for ∃ etc.)
Boolean combination of the truth of φ in the cells of D that project to D̂j.

4. Ψ is then the disjunction of the defining formulae for all the D̂j for which Φ
is true.

There is a problem in practice with the last step, first pointed out in [Bro99]. In
the lifting stage, we produce branches θi of polynomials, with descriptions such as
“that branch of p(x1, . . . , xl) which, above the sample point s = (α1, . . . , αl−1),
has the (unique) root in (β, γ)”, and this is not a statement of LRCF. We could
equally describe it as “the third real branch of p(x1, . . . , xl) above s”, but again
this statement is not in LRCF. Now by Thom’s Lemma [CR88], we can describe
this branch in terms of the signs of p and its derivatives, but, whereas these
derivatives are in the Collins projection, they are not in the McCallum projec-
tion, or in the tree constructed by the method of Sect. 3. However, when it comes
to describing D̂j, we can just add these (as described in [Bro99] for projection
and lifting and in [CM14b] for regular chains CAD construction). The additional
cost is negligible, in particular, we do not need them for projection (Sect. 2), or
for tree construction (Sect. 3).

Though it may depend non-linearly on polynomial degree etc., this process
is linear in the number of cells in D(n), and produces a disjunction of at most as
many clauses as there are cells in D(k).

5 Lower Bounds

This last remark is the basis of the complexity lower bounds in [DH88,BD07].
Both constructions use the fact that

∃zm∀xm−1∀ym−1

⎛

⎝
(ym−1 = ym ∧ xm−1 = zm)

∨ (ym−1 = zm ∧ xm−1 = xm)
⇒ ym−1 = Fm−1(xm−1)

⎞

⎠ (8)

encodes ym = Fm−1(Fm−1(xm)). Hence applying this construct m − 1 times to
y1 = F1(x1) gives

ym = F1(F1(· · · F1(︸ ︷︷ ︸
2m−1times

(xn)) · · · ).

This can then be used to produce expressions with n quantifiers and having
22

O(n)
isolated point solutions, hence needing 22

O(n)
cells to describe them (the

O(n) terms are n/3 + O(1) in [BD07] and n/5 + O(1) in [DH88]). An example
which needs 22

O(n)
cells for all possible variable orders is also produced in [BD07],

along with another which needs 22
O(n)

cells in one order, but a constant number
in another. Hence the great interest in variable order selection methods for CAD
[DSS04,EBDW14,HEW+14] to name a few.

The construction in (8) uses both ∃ and ∀ in a way that cannot be unnested.
In fact, it is possible [Gri88] to decide Tarski sentences (i.e. no free variables) with
a cost that is singly-exponential in n, but doubly-exponential in a, the number of
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alternations of ∃ and ∀ in (6). These methods, or any methods singly-exponential
in n, have, in general, not been implemented, though there has been work on
the purely existential case (for example [Hun08]).

6 Equational Constraints

The methods described in the previous sections produce decompositions which
are sign- (or order-)invariant for a set of polynomials. In particular, we can apply
steps 1–4 of Sect. 4 to the same CAD to solve (6) for any other φ involving the
same polynomials. Indeed, as long as the xi stayed in the same order, we could
change the Qi as well. [Col98] suggested that we could do better if φ was of the
form p1 = 0 ∧ φ′, as we would not be interested in the behaviour of polynomials
in φ′ except when p1 = 0. This was implemented in [McC99], who produced a
CAD which was sign-invariant for p1, and when p1 = 0, sign-invariant for the
polynomials in φ′. The main effect of this is to reduce the double exponent n
of m in (5) by 1, i.e. to take the square root of this term, as shown recently in
[BDE+14] (14).

It is worth seeing how this works. Consider

φ := (f1 = 0) ∧ ((f2 > 0) ∨ (f3 > 0)) . (9)

Then a [McC84]-style projection ignoring the fact that there is an equation
constraint would contain6 three disc(fi) and three res(fi, fj). However, [McC99]
observes that we are not interested in f2, f3 except when f1 = 0, and hence we
need only consider disc(f1) and res(f1, f2), res(f1, f3), half as many polynomials.

Consider now

φ1 := ((g1 = 0) ∧ (g2 > 0)) ∨ ((g3 > 0) ∧ (g4 = 0)) . (10)

A [McC84]-style projection ignoring the fact that there is an equation constraint
would contain four discriminants and six resultants. Although (10) does not
contain an overt equational constraint, φ1 ⇒ (g1 = 0) ∨ (g4 = 0), which is
φ1 ⇒ (g1g4 = 0), and so the equational constraint g1g4 = 0 is implicit. If we
study g1g4 = 0 ∧ φ1 in the style of (9), and drop trivial resultants, we consider
disc(g1g4), res(g1g4, g2) and res(g1g4, g3). Using the multiplicative properties of
resultants and discriminants (which we would certainly do in practice!), this is
disc(g1), disc(g4) and all the resultants except res(g2, g3), i.e. two discriminants
and five resultants.

Intuitively res(g1, g3) and res(g2, g4) are redundant, but how do we achieve
this in general? This was solved in [BDE+13], where, rather than producing a
sign-invariant CAD, we compute truth table invariant (a TTICAD) for the two
propositions (g1 = 0)∧ (g2 > 0) and (g3 > 0)∧ (g4 = 0), i.e. on each cell, each of
these two propositions is either identically true, or identically false. This process
does indeed remove these two resultants, so we have two discriminants and three
resultants.
6 It would also have some leading coefficients etc., but these are not the main drivers

of the complexity in McCallum’s projection.
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Fig. 1. The left is a sign-invariant CAD, and the right a TTICAD, for (10) with the
polynomials from the Example.

Example: Consider (10) with

g1 := x2 + y2 − 4, g2 := (x − 3)2 − (y + 3),

and
g3 := (x − 3)2 + (y − 2), g4 := (x − 6)2 + y2 − 4.

Fig. 1 shows the two dimensional cells produced for both a sign-invariant CAD
and a truth-table invariant CAD, built under ordering x ≺ y. The sign-invariant
CAD has 231 cells (72 full-dimensional but the splitting of the final cylinder is
out of view) and the TTICAD 67 (22 full-dimensional).

By comparing the figures we see two types of differences. First, the CAD of
the real line is split into fewer cells (there are not as many cylinders in R2). This
is the effect of the reduction in projection polynomials identified, (less univariate
polynomials with real roots to isolate). The second difference is that the full-
dimensional cylinders are no longer split over the dashed lines. This came from an
improvement in the lifting phase (discussed in detail in [BDE+14]). It leveraged
the projection theory to conclude that we usually only need to lift with respect
to equational constraints themselves.

More recently [BDE+14] truth-table invariance has been achieved even when
there is no implicit equational constraint, as with an example of the form

((h1 = 0) ∧ (h2 > 0)) ∨ (h3 > 0). (11)

The savings that can be achieved depend on the number of equational constraints
involved in sub-clauses of the parent formula.

It is also possible to apply equational constraints in the regular chains tech-
nology view of CAD [CM14a], again even when there is no global equational
constraint, as in (11) [BCD+14].

7 How Reliable Is This?

Cylindrical algebraic decomposition can be used as tool in program verification,
as in the MetiTarski tool [Pau12]. This leads to the question: who will verify the
CAD, or at least the inferences we draw from it? We note that a positive answer
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to a purely existential question (equally, a negative answer to a purely universal
question) is easily verified since we have a witness. The converse questions are
essentially questions of refutation, see [JdM12]. Questions involving a mixture
of quantifiers are much harder.

Almost all current implementations of CAD are based on computer algebra
systems, which are generally unverified. We can at least compare, on a fairly
level playing field, the implementations in Maple of four algorithms: see Table 1.
The classification of the amount of mathematics involved is subjective, but we
note that [McC84], and hence [BDEW13], relies on [Zar65,Zar75] to justify the
smaller projection set compared with [Col75]. [CM14a] and [BCD+14] rely on,
inter alia, [ALM99].

Table 1. Comparison of algorithms

Algorithm Implementation Code Lines Specialist

(above Maple) Mathematics

[Col75] [EWBD14] 2600 some

[McC84] [EWBD14] 2500 a lot

[CM14a] [CM14a] 5000 medium

[BDEW13] [EWBD14] 3000 a lot

[BCD+14] [BCD+14] 5500 medium

There are two challenges involved in verifying a CAD algorithm.

1. There is a “program verification” question of ensuring that the algorithms
produce the result that they say they will, i.e. that resultants, discriminants,
real roots etc. are computed correctly. This is non-trivial, to say the least,
sitting on top of an unverified computer algebra system, but should be
feasible for an implementation based on a sound kernel, such as Coq or
Isabelle.

2. There is a “mathematics verification” question whether the resulting decom-
position is truly sign-/order-/truth table-invariant for the inputs. This is
where the column labelled “Mathematics” in Table 1 comes in. The only
attempt to produce verified CADs known to the authors, [CM12, in Coq], is
based, not on [Col75] and its successors, but rather on [BPR06, chapter 2],
itself essentially that of [Tar51].

2a. There is an interesting tension here between “precomputed” and ad hoc
verification. An implementation based in [McC84] would essentially have to
verify the relevant theorems from [Zar65,Zar75], but these could be imported
as pre-verified lemmas. An implementation based on [CM14a] would verify
that in this case we had an appropriate cylindrical decomposition of Cn

which in this case translated to an appropriate cylindrical algebraic decom-
position of Rn.
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8 Final Thoughts

The topics we focussed on in this paper are implemented in Maple:

– CAD by Regular Chains is implemented in the RegularChains Library. A
version of this ships with the core Maple distribution while the latest version
is freely available from http://www.regularchains.org/.

– The authors’ own work (equational constraints, truth-table invariance, sub-
decompositions) is freely available in a Maple package ProjectionCAD.
The latest version is available from: http://opus.bath.ac.uk/43911/.

Other implementations of cylindrical algebraic decomposition include:

– Mathematica [Str06]; The commands CylindricalDecomposition and
Reduce can make use of an underlying CAD implementation. These commands
can be exceptionally fast but it can be hard to judge the CAD components
individually as they are just one of several underlying methods available and
the output is in the form of formulae rather than cells.

– Qepcad [Bro03]; a dedicated interactive command-line program available
from http://www.usna.edu/CS/qepcadweb/B/QEPCAD.html. One notable
feature is the SLFQ program which can simplify large quantifier free formulae
giving more readable output. Sage now has a Qepcad interface.

– Redlog [SS03]; this Reduce package implements CAD along with other
quantifier elimination methods such as virtual substitution.

– SyNRAC [IYAY13]; a Maple package notable for its symbolic-numeric app-
roach. An older version is available for free download from: http://jp.fujitsu.
com/group/labs/en/techinfo/freeware/synrac/ with more recent advances
part of the wider Todai Robot project.

The only reported experiments to cover all of these implementations were
detailed in Sect. 4 of [BCD+14].

Of course, this paper surveyed only a few of the recent advances in cylindrical
algebraic decomposition. Others include (but are not limited to):

– The use of certified numerics in the lifting phase to minimise the amount of
symbolic computation required [Str06,IYAY13].

– Local projection schemes [Str14], generic projection schemes [SS03] and single
CAD cells [Bro13,JdM12].

– Problem formulation for CAD [DSS04,BDEW13,WEDB14] (projection and
lifting) [EBDW14,EBC+14] (regular chains). These all develop heuristics to
help with choices, while [HEW+14] applies machine learning in the form of
support vector machines to pick a heuristic.

– Work on cylindrical algebraic sub-decompositions, which return only a subset
of the cells in a full CAD [Sei06]. In [WBDE14] algorithms are given to return
cells that lie on a prescribed variety, or have a designated dimension, while in
[WDEB13] these techniques are combined to solve a motion planning problem.
Note that if restricting to cells of full dimension then sample points can always
be chosen to be rational, greatly reducing running time.

http://www.regularchains.org/
http://opus.bath.ac.uk/43911/
http://www.usna.edu/CS/qepcadweb/B/QEPCAD.html
http://jp.fujitsu.com/group/labs/en/techinfo/freeware/synrac/
http://jp.fujitsu.com/group/labs/en/techinfo/freeware/synrac/
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There are numerous unsolved problems, both theoretical and practical. Three
that stand out to the authors are the following.

1. There is no complexity analysis of the Regular Chains method (though clearly
it is subject to the lower bounds in Sect. 5).

2. There has been much progress in the last forty years, but implementations (at
least for systems with alternations of quantifiers) are still doubly-exponential
in the number of variables while the theory suggests we can do better.

3. Cylindricity is needed in step 3 of quantifier elimination, as ∃ translates into∨
and ∀ into

∧
. However, in fact we only need this at the points where ∃ and

∀ alternate, so we can weaken the definition of cylindricity from being true
for all πk to merely being true for those k where xk and xk+1 are governed by
different quantifiers (or where xk is unquantified but xk+1 is quantified, a con-
cept we can call block-cylindrical. Unfortunately, we currently know of no way
of computing a block-cylindrical algebraic decomposition without computing
the full cylindrical algebraic decomposition first.
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Abstract. GeoGebra is open source mathematics education software
being used in thousands of schools worldwide. Its new version 5 supports
automatic geometry theorem proving by using various methods which are
already well known, but not widely used in education software. GeoGe-
bra’s new embedded prover system chooses one of the available methods
and translates the problem specified by the end user as the input for the
selected method, similarly to portfolio solvers. The available methods
include Wu’s method, the Buchberger-Kapur method, the Area method
and Recio’s exact check method, some of them as embedded algorithms,
others as outsourced computations. These methods can also be hidden
from end users who are provided with an intuitive graphical user inter-
face, the Relation Tool. Since GeoGebra maintains the development in
an open-sourced way by collaborating with the OpenGeoProver, Singu-
lar and Giac projects, further enhancements can be expected by a larger
community, including implementing other methods, too.

Keywords: GeoGebra · Portfolio solver · Computer algebra · Computer
aided mathematics education · Automated theorem proving

1 Introduction

GeoGebra [1] is educational mathematics software, with millions of users world-
wide. Its founder, Markus Hohenwarter broadened its software development into
an open source project in 2005. GeoGebra has many features (including dynamic
geometry, computer algebra, spreadsheets and function investigation), but it pri-
marily focuses on facilitating student experiments in Euclidean geometry, and
not on formal reasoning. Including automated deduction tools in GeoGebra could
bring a whole new range of teaching and learning scenarios. Since automated the-
orem proving (ATP) in geometry has reached a rather mature stage, some ATP
experts agreed on starting a project of incorporating and testing a number of
different automated provers for geometry in GeoGebra. This collaboration was
initiated by Tomás Recio in 2010.

In this paper a general overview is given about the technical details of
this joint work, highlighting its latest achievements including the new Relation
Tool in GeoGebra. Section 2 presents related work and gives a brief historical
overview. In Sect. 3, arguments for the structural decisions of the collaboration
c© Springer International Publishing Switzerland 2015
F. Botana and P. Quaresma (Eds.): ADG 2014, LNCS 9201, pp. 53–71, 2015.
DOI: 10.1007/978-3-319-21362-0 4
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are shown. In Sect. 4, the design of the portfolio prover is demonstrated. Section 5
shows some examples how the implemented system works. Section 6 depicts the
new Relation Tool. Section 7 discusses the possible ways of a future enhancement
of the joint work.

2 Related Work

It must be emphasized that a number of software systems, which focus on com-
puter aided proving and dynamic geometry, have existed for several years. The
most well known include GeoProof 1 by Julien Narboux [2,3], GDI-Discovery [4]
by José Valcarce and Francisco Botana, the Geometry Expert2 [5] by Shang-
Ching Chou, Xiao-Shan Gao and Zheng Ye, and GEOTHER [6] by Dongming
Wang. These (and some other) dynamic geometry systems (DGS) with ATP
features can efficiently prove many complex geometry theorems, but these ATP
features are not primarily designed for applications in education3. They are, in
many aspects, still in the prototype phase, not yet well distributed, maintained
or not fully operative.

Without any doubts a remarkable amount of work has already been con-
tributed to publicly available algorithms and their implementations. Also open-
sourced ATP systems and test databases were introduced, including Open-
GeoProver (OGP) [7,8] and GeoThms [9], started and maintained by Predrag
Janičić, Pedro Quaresma and their colleagues. Collaborative work seemed to be
a very important step in widening the availability of ATP algorithms to be used
in education. We found that a primary problem is that scientific contributions to
DGS and ATP are isolated, and in an open-sourced system the existing efforts
could be gathered and continued.

In 2011 Narboux, Yves Bertot and his PhD student Tuan Minh Pham started
to change GeoProof’s user interface to GeoGebra [10], but they still used Coq
[11] as the external formal prover. However, a part of the GeoGebra Team, lead
by the author of this paper, advised by Hohenwarter, Recio and Botana, and
supported by Janičić, started to work on a different approach at the beginning
of 2012—their solution was to use both an embedded system in GeoGebra and
also outsourced computations [12–16].

One of the most advanced pieces of software being available for free down-
load is the Java Geometry Expert (JGEX [17,18]) developed by Chou, Gao and
Ye, but built upon the work of several other experts of the modern Chinese
computational mathematics. JGEX’s prover system contains multiple methods
to compute proofs of the input being constructed graphically or by a custom
programming language. The available methods are the Gröbner basis method
(developed by Buchberger, Kapur [19] and others), Wu’s method [20], the Area
method [21] and the geometry deductive database (GDD) method [22].
1 http://home.gna.org/geoproof/.
2 http://www.mmrc.iss.ac.cn/gex/.
3 One example of a system planned for teaching proofs interactively is Jacques

Gressier’s Géométrix, available at http://geometrix.free.fr.

http://home.gna.org/geoproof/
http://www.mmrc.iss.ac.cn/gex/
http://geometrix.free.fr
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JGEX gives the opportunity for the user to select from the existing methods
since in some circumstances any of them can fail: each has its strengths and
weaknesses. In GeoGebra’s portfolio prover (GPP) we followed the same app-
roach, but an automated selection will be used to minimize user interaction: we
assume that the user is a secondary school student who knows nothing about
ATP. That is, GPP will work with default values which can be overridden by
only expert users via command line arguments4.

Unfortunately, the source code for JGEX is not available for free download-
ing, and also the GDD method (which probably has the most remarkable repu-
tation on educational use) is a kind of black box. GeoGebra’s long term success
in the classroom is not only that it is freely available for end users, but it is also
possible to be enhanced and bug-fixed—the open source development model is
a requirement for that.

3 Open Source Collaboration

We also wanted to leave the opportunity for other DGS to use the implemented
methods in other applications than GeoGebra as well. For such a warranty we
agreed to start joint work with Janičić’s research team on the OGP system. In
its first version, OGP was capable only for computing geometry proofs by using
Wu’s method, but later we managed to get support from the Google Summer of
Code for a university student, Damien Desfontaines, who implemented the Area
method in OGP in 2012 [23]. The OGP project was considered as a fruitful way
for collaboration of other experts as well: the Mass point method and the Full
angle method were worked on (an introductory report on the latter was already
published by Quaresma and Baeta in 2013 [24]).

Meanwhile, we also started to work on internal implementations of other
methods. The first internally implemented method was a new approach sug-
gested by Recio, to use exact coordinates and arbitrary integer arithmetics on
testing geometry statements for checking validity for a set of elementary the-
orems. His algorithm [13], which sets up a bounded number of test cases of
the geometry statement with carefully chosen coordinates, was implemented by
Simon Weitzhofer in 2012 and published in his master thesis [25] in 2013. A
more traditional approach, namely the Buchberger-Kapur method (based on
Gröbner basis computation), was also implemented by the author of this paper,
by using external computations for solving equation systems. This method was
later extended to use the Recio-Vélez algorithm [26] to obtain degeneracy con-
ditions, and the algorithm was later enhanced for better educational use.

The outsourced computations were achieved by using Singular [27] as an
external web service, running on a dedicated virtual server. This technology was
discussed by Botana and the author in the planning stage of GeoGebra’s ATP
capabilities. For this reason the method used in GeoGebra is called “Botana’s
method” [12].
4 http://wiki.geogebra.org/en/Release Notes GeoGebra 5.0#New Command Line

Arguments.

http://wiki.geogebra.org/en/Release_Notes_GeoGebra_5.0#New_Command_Line_Arguments
http://wiki.geogebra.org/en/Release_Notes_GeoGebra_5.0#New_Command_Line_Arguments
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In GeoGebra we already managed to make the prototype implementation
work, many schools and students started to move from the desktop application to
a different technology: they preferred to use tablets and smartphones instead of
desktop PCs and laptops. Unfortunately, the Java technology and the outsourced
computations are not always applicable in the changed way of using computers
in the education. That is why we had to find even new technologies to support
the HTML5/JavaScript approach of application development, including offline
HTML5 applications as well [28]. Fortunately, the GeoGebra Team managed to
change the internal computer algebra system from Reduce [29] to Giac [30] which
was a step forward to support faster Gröbner basis computations, also available
in a web browser in offline mode on a tablet or a smartphone [31,32].

Now GPP is no longer a prototype. It is also fully documented not only in
its source code and the Developers’ Howto5 but on GeoGebra’s Wiki pages6,
and a set of demonstrational examples is available on GeoGebraTube7. It is an
extensible system in both GeoGebra and OGP.

We would like to highlight that the success of GPP is based definitely on
its open-sourced roots. Without the existing knowledge in the implementations
of several modern algorithms in the used systems—especially in Singular and
Giac—GeoGebra would not have the chance to offer competitive ATP features
for the mathematics education. These systems have several years of program-
mers’ experience and millions of lines of program code which could not have
been reimplemented from scratch within a reasonable time.

4 The Design of GPP

The design of GPP is shown in Fig. 1. At the top of the figure GeoGebra’s user
interface is shown: the higher the action is drawn, the easier communication for
the user is assumed. Also in former versions of GeoGebra the highest level action
is to use the Relation Tool which purely numerically decides if two geometrical
objects have a relation like parallelism, perpendicularity, equal length etc. Prior
to GeoGebra 5, the Relation Tool was using floating point (FP) arithmetics
to decide if a certain relation holds between the input objects. In some cases,
however, FP returns an inaccurate or wrong answer, thus the output for Relation
Tool is incorrect in some cases.

Always there may be a need to increase the “verification level” of the investi-
gation which means we collect more or more trustworthy information about the
statement to decide (see the top of Fig. 1, moving from left to the right). GeoGe-
bra’s new command Prove gives an ATP answer instead of FP arithmetics with
the possible outputs “yes”, “no” or “undefined” (the last kind of output means
that no trustworthy answer was found). What is more, the new ProveDetails

5 See http://dev.geogebra.org/trac/wiki/TheoremProving for more details. This doc-
umentation includes detailed description of the applied methods and the supported
constructions and statements for them.

6 For an example, see http://wiki.geogebra.org/en/ProveDetails Command.
7 See http://www.geogebratube.org/student/b104296 for an example.

http://dev.geogebra.org/trac/wiki/TheoremProving
http://wiki.geogebra.org/en/ProveDetails_Command
http://www.geogebratube.org/student/b104296
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Fig. 1. The design of GeoGebra’s portfolio prover. Here W, A, F, M and G describe
different computation methods in OpenGeoProver like Wu’s method, the Area method,
the Full angle method, the Mass point method and the Gröbner basis method

command can give more details on degeneracy conditions, that is, it can refine
the statement by adding a sufficient condition if needed. For the moment, the
ShowProof command is not yet implemented just planned: when a “readable
enough” proof will be found by the ATP subsystem, the proof could be shown
to the student for ensuring complete certainty.

In the middle of Fig. 1 GeoGebra’s internal computations are shown. GPP
optionally analyzes the shape of the statement and tries to select the most fitting
method to work with: for example, for problems which do not contain circles but
lines only and contain at most 3 free points, Recio’s method should be used. If



58 Z. Kovács

no analysis is used (that is, in AUTO mode), then a simple priority list of the
methods is taken: at the moment for the Prove command this is

Recio < Botana < Wu (OGP) < Area (OGP),

and for the ProveDetails command8:

Botana < Wu (OGP).

Recio’s method (R-Prover) is a quick method for proving statements concerning
points and lines in a triangle. Since it cannot be applied for constructions con-
taining conics, and for more than 3 free points it may be too slow (i.e., the com-
putation may take several seconds), GeoGebra will consider Botana’s method
(B-Prover) as a fallback in such cases. At the moment, some sorts of construc-
tions (including angle bisectors) are not yet implemented in the B-Prover, thus
in such cases GeoGebra will go ahead by using OGP’s Wu’s method to obtain
an answer. If Wu’s method fails, GeoGebra resends the statement to OGP by
requesting the computation via the Area method—for example, to prove Ceva’s
theorem this will be the only working way at the moment (see Sect. 5.3).

R-Prover uses arbitrary integer arithmetics internally, but B-Prover requires
computing solutions of a polynomial equation system for the Prove command
and elimination of some variables from a polynomial equation system for the
ProveDetails command. (In general, B-Prover requires Gröbner basis compu-
tations.) Detailed investigation showed that it would be too time consuming to
implement an internal algorithm in GeoGebra to efficiently compute polynomial
based calculations, thus we use the Singular computer algebra system (CAS)
instead. After changing internal CAS of GeoGebra from Reduce to Giac we
found that Giac computed Gröbner bases surprisingly efficiently, and its speed
was comparable with Singular in many cases. Also Giac can easily be used in a
web browser as well since it is written in C++ and by utilizing the emscripten
[33] C++ to Javascript compiler (or Google’s NaCl C++ to Native Client com-
piler) the Gröbner basis computations are still acceptably fast.9

In the bottom of Fig. 1 the externally used systems are shown. At the
moment, these external systems cannot be used in HTML5 mode (including
online and offline modes)—we used the symbol “@” to mark those subsystems in
GPP which are transparent for the technology change. Our future plans include
compile both Singular and OGP to be technology transparent, i.e. we plan to
make them available also on the web platform.
8 Degeneracy conditions can be obtained only by two methods at the moment.
9 See http://test.geogebra.org/∼kovzol/data/Prove-20150219b/ for a recent report

on benchmarking various theorems with the R-Prover based on computa-
tions with Singular and Giac, and compared with OGP’s Wu’s method.
The full source code of GPP and its benchmarking system are freely
available at https://dev.geogebra.org/trac/browser/trunk/geogebra in folders
common/src/main/java/org/geogebra/common/kernel/prover/ and test/, respec-
tively.

http://test.geogebra.org/~kovzol/data/Prove-20150219b/
https://dev.geogebra.org/trac/browser/trunk/geogebra
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As already mentioned in Sect. 3, OGP currently supports Wu’s method (W)
and the Area method (A), and is subject to be enhanced by additional ATP
methods including the Full angle method (F), the Mass point method (M) and
the Gröbner basis method (G)—the last is definitely the same as the internal
B-Prover in GeoGebra.

At the top of Fig. 1 the Relation Tool is shown as the easiest way to start
GPP. For users having advanced skills, GPP is also available via GeoGebra
commands.

5 GPP Examples

In this section four theorems are provided as constructed in GeoGebra 5. Most of
them can be introduced in many secondary schools and thus they are examples
of possible classroom uses of GPP. The first three examples run in the desktop
version, and the final example is shown in a web browser.

Despite the interesting part of the log messages being shown after these
examples, they are not intended to be displayed neither for the students, nor
the teachers. Here they are printed for the researcher’s interest. Students and
teachers should be informed via GeoGebra’s user interface only in the Algebra
View, or by using the symbolical feature of the Relation Tool.

That is, the output of the Prove command in this section is shown on the left
hand side of the GeoGebra window (by default) among the Boolean Value entries
(see the top-left corner of Figs. 2, 3 and 4). The output of the ProveDetails
command is shown among the List entries (see the bottom-left corner of Fig. 5).

5.1 Altitudes of a Triangle are Concurrent

Figure 2 was created by using GeoGebra 510 by drawing a triangle with its
altitudes d, e and f and then the command Prove[AreConcurrent[d,e,f ]] was
entered in the Input Bar (at the bottom). Here GPP selects R-prover to compute(
3+2
2

)
tests for a trustworthy answer if the altitudes are always concurrent (not

considering some degenerate cases). The computation took 8 ms on a typical
PC11:

12:32:26.218 DEBUG: geogebra.m.o$a.run[-1]: Using AUTO
12:32:26.218 DEBUG: geogebra.common.p.y.a[-1]: Using RECIOS_PROVER
12:32:26.219 DEBUG: geogebra.common.l.q.a.a[-1]: nr of tests: 10
12:32:26.224 DEBUG: geogebra.common.l.q.i.<init>[-1]: Benchmarking: 8 ms
12:32:26.224 DEBUG: geogebra.common.l.q.i.<init>[-1]: Statement is TRUE

10 GeoGebra 5 can be downloaded from its official web site http://www.geogebra.org/
download.

11 Java method names in the log are obfuscated to ensure faster results and a smaller
software package.

http://www.geogebra.org/download
http://www.geogebra.org/download
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Fig. 2. Altitudes of a triangle are concurrent

Fig. 3. Varignon’s theorem
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5.2 Varignon’s Theorem

Figure 3 shows an arbitrary quadrilateral with the midpoints of its sides (E, F,
G and H). Now when considering the quadrilateral EFGH we can find that
it is a parallelogram. To verify this we need the command Prove[e==g],
for example. Since R-Prover cannot deal with Euclidean distances, B-Prover
is selected by GPP. The computation took 47 milliseconds on a typical PC
(which already contains the HTTP request to the external server and also its
background computation—here the uninteresting parts of the log messages have
been omitted and substituted by [...]):
12:56:23.790 DEBUG: geogebra.m.o$a.run[-1]: Using AUTO
12:56:23.790 DEBUG: geogebra.common.p.y.a[-1]: Using RECIOS_PROVER
12:56:23.791 DEBUG: geogebra.common.p.y.a[-1]: Using BOTANAS_PROVER
[...]
12:56:23.806 DEBUG: geogebra.common.p.y.b[-1]: Thesis reductio ad absurdum (denied statement):
12:56:23.806 DEBUG: geogebra.common.p.y.b[-1]: 9. -1+-1*v17*v16^2+-1*v17*v15^2+2*v17*v16*v14+
-1*v17*v14^2+2*v17*v15*v13+-1*v17*v13^2+v17*v12^2+v17*v11^2+-2*v17*v12*v10+v17*v10^2+
-2*v17*v11*v9+v17*v9^2

12:56:23.807 DEBUG: geogebra.common.l.q.n.a[-1]: ring r=(0,v1,v2,v3,v4,v5,v6,v7,v8),
(v9,v10,v11,v12,v13,v14,v15,v17,v16),dp;ideal i=2*v9+-1*v3+-1*v1,2*v10+-1*v4+-1*v2,
2*v11+-1*v5+-1*v3,2*v12+-1*v6+-1*v4,2*v13+-1*v7+-1*v5,2*v14+-1*v8+-1*v6,2*v15+-1*v7+-1*v1,
2*v16+-1*v8+-1*v2,-1+-1*v17*v16^2+-1*v17*v15^2+2*v17*v16*v14+-1*v17*v14^2+2*v17*v15*v13+
-1*v17*v13^2+v17*v12^2+v17*v11^2+-2*v17*v12*v10+v17*v10^2+-2*v17*v11*v9+v17*v9^2;
i=subst(i,v1,0,v2,0,v3,0,v4,1);groebner(i)!=1; -> singular

12:56:23.835 DEBUG: geogebra.common.l.q.n.a[-1]: singular -> 0
12:56:23.836 DEBUG: geogebra.common.l.q.i.<init>[-1]: Benchmarking: 47 ms
12:56:23.836 DEBUG: geogebra.common.l.q.i.<init>[-1]: Statement is TRUE

Fig. 4. Ceva’s theorem
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5.3 Ceva’s Theorem

Triangle ABC and its arbitrary internal point D was constructed in Fig. 4. Now
intersection points of lines AD, BD, CD and the appropriate sides are E, F ,
G, respectively. Now let us define g = AG, h = GB, i = BE, j = EC, k = CF ,
l = FA, then g/h · i/j · k/l = 1. Here OGP’s Area method is the only possible
way to get a useful ATP answer to decide the statement. To start GPP we
enter Prove[g/h i/j k/l==1]. The result is computed in 4 ms in OGP’s area
subsystem, but since other methods were also attempted to use, the total time
is 95 ms spent in GPP (see Appendix for the full output).

As seen, (after taking 1 ms in the R-Prover and realizing that it is not helpful)
B-Prover cannot process the construction since measuring segments are not yet
implemented for it. OGP’s Wu’s method is also unable to read the information
provided by GeoGebra, thus finally OGP’s Area method converts the statement
into an internal object, and then successfully processes it.

Fig. 5. Thales’ circle theorem

5.4 Thales’ Circle Theorem

Thales’ (circle) theorem states that in a given circle with center A, circum-
point B and diameter DE, lines BD and BE are perpendicular. In Fig. 5 we
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use free points A, B and C (which is a technical point to define D and E as
intersection points of line AC and the circle). Let us denote BD by b and BE
by d. Now GeoGebra command ProveDetails[b⊥d] returns the output list
{true,{“AreEqual[A,C]”}} which has the following meaning:

– the statement “b⊥d” holds in general,
– if A�= C then the statement surely holds.

Clearly, if A = C, points D and E are undefined, thus the statement has no
meaning. We emphasize here that Fig. 5 is created by running GeoGebra in a
web browser. Thus here the only possible method is B-Prover, and only with
the embedded CAS, Giac. In this example the construction is loaded from an
external file, thus the Javascript version of Giac (giac.js) must be preloaded
before any concrete computations in GPP. This is the technical reason why we
can see that GPP ran multiple times (first it reported “undefined” result in 18 ms,
then another “undefined” in 3 ms, and the final computation took 2091 ms—
“undefined” here is displayed as “Statement is null”). (See Appendix for the
full output.)

In the log we can see that Giac returns the elimination ideal for the Recio-
Vélez algorithm in the same way as Singular does.

6 The Relation Tool

From the educational point of view, the direct classroom use of the Prove and
ProveDetails commands cannot always be considered to be an adequate app-
roach. First of all, the output of both commands looks static: they are not natural
extensions of the traditional “visual” way of dynamic geometry systems. This
means that for a given conjecture both commands will compute some results,
but after dynamically changing the construction by dragging the free points, the
outputs of Prove and ProveDetails will remain the same. This is, although,
mathematically correct and transmits some kind of “theoretical stability”, it
may not reflect the importance of the result that we actually proved something
for infinitely many cases. The fast computation (i.e. that the result is shown
almost immediately on the screen) gives the feeling that something easy is in
the background, so in sum using these new commands can yield an opposite
effect to the teacher’s plans. Finally, these commands cannot be reached from
the GeoGebra toolbar: the keyboard is required to enter them. On the other
hand, the output of the ProveDetails command can still be inconvenient for
many students since it is given in a list type object (which is again not visual
enough).

The Relation Tool addresses these problems. In GeoGebra 5 its original
numerical version has been extended to use symbolical checks as well. To not
confuse experienced users who already assume that a numerical check will be
done we ensured backward compatibility, that is, the symbolical check will be
executed only on demand when the user presses an extra button.

The following algorithm describes how the Relation Tool in GeoGebra 5
works:
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1. Use the Relation Tool like former GeoGebra versions do (i.e., a numerical
check is still computed), but add an extra button “More. . .” on the right to
the output statement if the statement was found to be true numerically. (If
the statement is not true numerically, then this extra button is not shown.)

2. If the student clicks this button, GeoGebra computes the result for the state-
ment by using the Prove command internally. Now the answer can be “gen-
erally true” (true), “not generally true” (false) or GeoGebra “cannot decide”
(undefined):
(a) In the “generically true” and “cannot decide” cases GeoGebra will com-

pute the result for the statement by using the ProveDetails command
as a second step. Its output will be converted to a more user friendly
format:
i. If there are no non-degeneracy conditions, the Relation Tool appends

“always true” to the statement.
ii. If there is a list of readable conjunctions found as non-degeneracy

conditions, then the list is displayed on the computer screen as a
sufficient condition for the statement.

iii. If non-degeneracy conditions were found which are not “human read-
able”, then the statement is appended with the message “under cer-
tain conditions”. (Here “human readable” means such conditions
which are easy to formulate in the classroom as well, for example
perpendicularity, parallelism or equality.)

iv. If the ProveDetails command returned undefined,
A. but Prove returned true then the statement is proven to be “gen-

erally true”;
B. otherwise GeoGebra appends the text “possibly generally true”.

v. If the ProveDetails command returns {false} then GeoGebra real-
izes that an internal error occured since the result of the Prove
and ProveDetails commands are contradictory. This case should
not happen.

(b) In the “not generically true” case the Relation Tool appends “but not
generally true” to the statement.

This decision process is shown as a flowchart diagram in Fig. 6.
We highlight that we make a difference between cases (a) iii. and iv. A. In

the first case the student is informed that there should be conditions given, but
they are difficult to explain. In the second case it is not sure that there are
any conditions, that is the statement can be always true as well, but GeoGebra
cannot compute the detailed answer. Here the teacher may need to explain this
situation.

Also an intentional decision is the wording for case (a) iv. B. For the ‘too
difficult’ conjectures both the Prove and ProveDetails commands return unde-
fined which may mean that

1. one or more steps cannot be formulated, algebraized or processed by GeoGe-
bra, or
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Fig. 6. The decision process in the Relation Tool. Dashed lines show the “otherwise”
cases

2. the computation was too difficult (more memory or CPU time would have
been needed).

Since the numerical computation about the truth of the statement returned
positive, it seems plausible that a symbolical computation with more resources
could certify the numerical computation as well. This is why we use the word
“possibly” here. Of course this does not tell any certainty about the truth of the
statement.

In our opinion, using the Relation Tool is convenient: the student does not
require to use GeoGebra’s Input Bar to enter anything—only mouse clicks are
sufficient for the investigation.

Let us see an example for case 2. (a) ii. which is the most general case.
In Fig. 7 the nine point circle theorem is shown. Given the ABC triangle, we
construct feet points of altitudes d, e and f as points D, E and F , respectively.
Intersection point of d and e is G. Midpoints of AG, BG and CG are H, I and J ,
respectively. Finally, midpoints of sides a, b and c are K, L and M , respectively.
The statement is that points D, E, F , H, I, J , K, L and M lie on the same
circle.
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Fig. 7. The nine point circle theorem is to be checked by the Relation Tool

This statement can be formulated by various ways, for example one for-
mulization is to create circle g which is defined by circumference points F , I and
M . Now if we are about to check if point L is lying on g, we need to select the
Relation Tool from the Toolbar (as shown in Fig. 7), and compare objects L and
g by clicking on them. Then GeoGebra initiates a numerical check first (Fig. 8),
and since it is positive, an extra symbolical check can be started by pressing
the “More. . .” button. The result, after a short computation12, can be found in
Fig. 9.

Fig. 8. A numerical check is performed by the Relation Tool

12 To obtain exactly the same result, the user needs to force using SingularWS which
is deactivated by default in GeoGebra 5. Enabling SingularWS can be performed by
using the command line geogebra --singularws=enable:true e.g. on Linux. When
SingularWS is disabled, Giac is used to compute the results: here case 2. (a) (iv.)
B. (i.e., “possibly generally true”) will be selected.
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Fig. 9. A symbolical check is performed by the Relation Tool on demand

The Relation Tool in GeoGebra 5 is ready for starting usability tests on stu-
dents, and when the tests are positive, it may become a tool to help in the teach-
ing of proofs. However, additional enhancements are still possible. In GeoGebra
between two objects there may be more kind of relationships: for example, two
segments can have same length and/or parallel independently. Now the Rela-
tion Tool reports numerical checks for all possible relationships in its output
window. This idea could be further improved to collect relationships among a
wider set of objects than two, and investigate all possible combinations of these
objects to collect the relations. For example, the student could draw a triangle
and its medians and select some (or eventually all) objects in the figure. In this
case GeoGebra could give a list of all relationships among the selected objects,
including the concurrency of the medians. Such a list can be, however, quite
long. Thus it would be important to make it possible to filter out some trivial
relations, or at least to show first those which seem to be interesting enough.

7 Conclusion and Future Work

The DGS features of GeoGebra are already well known in schools, but also ATP
functionality is included in version 5 only since September 2014. Its careful design
of the user interface and the applied methods using open source technology
ensure, in our opinion, a good start to offer useful new ways to teach and learn
Euclidean geometry.

There is, however, still lot of work to do. Other methods could be imple-
mented either in GeoGebra or OGP (or even in both), the current methods
could be parallelized and further improved. Also the outsourced computations
could be included in GeoGebra by using the newest compilers.

A completely open question is how readable proofs should be shown in
GeoGebra without confusing the students. The JGEX application has already
many promising ways which should be further discussed not only by ATP experts
but teachers as well, especially those who teach in secondary schools. After such
a consensus we would like to start to implement the ShowProof command in
GeoGebra.
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We believe that GeoGebra (and also OGP) could be a common platform for
other ATP experts to join and since the source code is completely open to the
public, there is no technological obstacle to integrate the knowledge base into a
single application. A long term collaboration with experts from various countries
would be fruitful in each classroom since GeoGebra helps each student in his or
her native language to understand mathematics even more.
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was the leader of the HTML5 based experiments in the GeoGebra Team. Michael
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Appendix

Log Output for Ceva’s Theorem

13:22:01.959 DEBUG: geogebra.m.o$a.run[-1]: Using AUTO
13:22:01.959 DEBUG: geogebra.common.p.y.a[-1]: Using RECIOS_PROVER
13:22:01.960 DEBUG: geogebra.common.p.y.a[-1]: Using BOTANAS_PROVER
[...] not fully implemented
13:22:01.966 DEBUG: geogebra.common.p.y.a[-1]: Using OPENGEOPROVER_WU
[...]
13:22:01.987 INFO: a.b.a.a.a[-1]: Reading input geometry problem...
[...]
13:22:02.022 DEBUG: geogebra.common.p.y.b[-1]: success: false
13:22:02.022 DEBUG: geogebra.common.p.y.b[-1]: failureMessage: Failed in reading input
[...]
13:22:02.024 DEBUG: geogebra.common.p.y.a[-1]: Using OPENGEOPROVER_AREA
[...]
13:22:02.026 INFO: a.b.a.a.a[-1]: Reading input geometry problem...
13:22:02.037 INFO: a.b.a.a.d.e[-1]: Converting equal statement. Arguments :
13:22:02.037 INFO: a.b.a.a.d.e[-1]: ((Segment[A, G] / Segment[G, B] Segment[B, E] /
Segment[E, C]) Segment[C, F] / Segment[F, A])

13:22:02.037 INFO: a.b.a.a.d.e[-1]: 1
[...]
13:22:02.053 DEBUG: geogebra.common.p.y.b[-1]: success: true
[...]
13:22:02.053 DEBUG: geogebra.common.p.y.b[-1]: time: 0.004
[...]
13:22:02.054 DEBUG: geogebra.common.l.q.i.<init>[-1]: Benchmarking: 95 ms
13:22:02.055 DEBUG: geogebra.common.l.q.i.<init>[-1]: Statement is TRUE

Log Output for Thales’s Circle Theorem

14:31:25.918 DEBUG: ?: Using AUTO

http://ggb1.idm.jku.at/~kovzol/talks/risc2014-2/
http://ggb1.idm.jku.at/~kovzol/talks/risc2014-2/
http://ggb1.idm.jku.at/~kovzol/talks/adg2014/
http://ggb1.idm.jku.at/~kovzol/talks/adg2014/
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14:31:25.918 DEBUG: ?: Using BOTANAS_PROVER
14:31:25.919 DEBUG: ?: Testing local CAS connection
14:31:25.928 DEBUG: ?: starting CAS
[...]
14:31:25.935 DEBUG: ?: Benchmarking: 18 ms
14:31:25.936 DEBUG: ?: Statement is null
14:31:25.967 DEBUG: ?: Using AUTO
14:31:25.967 DEBUG: ?: Using BOTANAS_PROVER
14:31:25.968 DEBUG: ?: Testing local CAS connection
[...]
14:31:25.971 DEBUG: ?: Benchmarking: 3 ms
14:31:25.971 DEBUG: ?: Statement is null
14:31:26.704 DEBUG: ?: giac.js loading success
14:31:27.273 DEBUG: ?: Using AUTO
14:31:27.274 DEBUG: ?: Using BOTANAS_PROVER
14:31:27.275 DEBUG: ?: Testing local CAS connection
[...]
14:31:27.719 DEBUG: ?: Thesis reductio ad absurdum (denied statement):
14:31:27.720 DEBUG: ?: 6. -1+-1*v12*v10*v8+-1*v12*v9*v7+v12*v10*v4+v12*v8*v4+
-1*v12*v4^2+v12*v9*v3+v12*v7*v3+-1*v12*v3^2

14:31:27.727 DEBUG: ?: Eliminating system in 10 variables (6 dependent)
[...]
14:31:27.817 INFO: ?: [eliminateFactorized] input to cas: [[containsvars(poly,varlist):=
{local ii; for (ii:=0; ii<size(varlist); ii++) { if (degree(poly,varlist[ii])>0)
{ return true } } return false}],[myeliminate(polylist,varlist):={local ii,jj,kk;
kk:=[]; jj:=gbasis(polylist,varlist,revlex); for (ii:=0; ii<size(jj); ii++) { if
(!containsvars(jj[ii],varlist)) { kk:=append(kk,jj[ii]) } } return kk }],[ff:=""],
[aa:=myeliminate([-1*v7*v6+v8*v5,-1*v8^2+-1*v7^2+v4^2+v3^2,-1*v9*v6+v10*v5,
-1*v10^2+-1*v9^2+v4^2+v3^2,-1+v11*v10^2+v11*v9^2+-2*v11*v10*v8+v11*v8^2+
-2*v11*v9*v7+v11*v7^2,-1+-1*v12*v10*v8+-1*v12*v9*v7+v12*v10*v4+v12*v8*v4+-1*v12*v4^2
+v12*v9*v3+v12*v7*v3+-1*v12*v3^2],[v7,v8,v9,v10,v11,v12])],[bb:=size(aa)],[for ii
from 0 to bb-1 do ff+=("["+(ii+1)+"]: [1]: _[1]=1");cc:=factors(aa[ii]);dd:=size(cc);
for jj from 0 to dd-1 by 2 do ff+=(" _["+(jj/2+2)+"]="+cc[jj]); od; ff+=(" [2]: "+
cc[1]);for kk from 1 to dd-1 by 2 do ff+=(","+cc[kk]);od;od],ff][6]

[...]
14:31:29.316 DEBUG: ?: giac output:"[1]: [1]: _[1]=1 _[2]=v5 [2]: 1,1[2]: [1]: _[1]=1
_[2]=v6 [2]: 1,1

14:31:29.318 INFO: ?: [eliminateFactorized] output from cas: [1]: [1]: [...]
14:31:29.324 DEBUG: ?: Considering NDG 1...
14:31:29.329 DEBUG: ?: Trying to detect polynomial v5
14:31:29.349 DEBUG: ?: v5 means x-equality for [v1, v5]
14:31:29.350 DEBUG: ?: Not better than previous NDG score (Infinity), this is Infinity
14:31:29.350 DEBUG: ?: Considering NDG 2...
14:31:29.351 DEBUG: ?: Trying to detect polynomial v6
14:31:29.363 DEBUG: ?: v6 means y-equality for [v2, v6]
14:31:29.364 DEBUG: ?: Found a better NDG score (0.5) than Infinity
14:31:29.365 DEBUG: ?: Benchmarking: 2091 ms
14:31:29.365 DEBUG: ?: Statement is true
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Abstract. Over the last sixty years, a number of methods for automated
theorem proving in geometry, especially Euclidean geometry, have been
developed. Almost all of them focus on universally quantified theorems.
On the other hand, there are only few studies about logical approaches
to geometric constructions. Consequently, automated proving of ∀∃ the-
orems, that correspond to geometric construction problems, have sel-
dom been studied. In this paper, we present a formal logical framework
describing the traditional four phases process of geometric construction
solving. It leads to automated production of constructions with corre-
sponding human readable correctness proofs. To our knowledge, this
is the first study in that direction. In this paper we also discuss alge-
braic approaches for solving ruler-and-compass construction problems.
There are famous problems showing that it is often difficult to prove
non-existence of constructible solutions for some tasks. We show how to
put into practice well-known algebra-based methods and, in particular,
field theory, to prove RC-constructibility in the case of problems from
Wernick’s list.

1 Introduction

In spite of a long tradition of straightedge and compass constructions,1 automa-
tion and mechanization of solving geometric construction problems has been
barely touched in computer science. As far as we know, except for works described
in [5,14,21,24,26], for a geometric treatment, and in [6,10], for an algebraic point
of view, results the closest to this subject are about geometric constraint solving
in CAD [1,4,8,23] (see [16] for a recent survey), but there the challenges are
quite different [25,26]. Moreover, most of the existing methods for solving con-
struction problems do not consider proving correctness of solutions. For instance,
the method designed by Gulwani [14] is derived from general methods for test-
ing and synthesizing pieces of software. It finds a formal construction by using
a probabilistic approach of having a particular solution which serves to guide a
1 The English word ruler designates a tool with measurement in opposition to straight-
edge. In this paper, however, we will conform to the habits and use the terms
ruler-and-compass constructibility or resolvability, in short RC-constructibility or
RC-resolvability, for straightedge and compass constructibility or resolvability.

c© Springer International Publishing Switzerland 2015
F. Botana and P. Quaresma (Eds.): ADG 2014, LNCS 9201, pp. 72–93, 2015.
DOI: 10.1007/978-3-319-21362-0 5
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search in a big space of formal functional terms. For such a method, a proof of
correctness is really needed.

Some studies about the foundations of geometry also consider geometric con-
structions in order to define constructive geometry through the elimination of
quantifiers and the use of functional symbols (see [30,31] for instance). But the
contexts are very different: we here consider RC-constructions within the classi-
cal Euclidean plane, while in constructive geometry the aim is to define a logical
framework where all considered objects correspond to ground functional terms
(or in other words, the ground set of its initial model is the set of points RC-
constructible from {O, I}) where O is point with coordinates (0, 0) and I, (1, 0).

This limited interest is even more surprising given that solving geometric
construction problems links two important fields of computer science applied to
geometry:

– automated theorem proving, with geometry as one of the most successful
domains since the seminal work by Gelernter [11];

– dynamic geometry software, which provoked huge changes in educational prac-
tices in geometry by effective visualizations and rewarding experimentations.

Both these fields have deep connections with construction problems. A lot
of methods for automated theorem proving in geometry rely on basic geometric
constructions, and constructions performed within dynamic geometry tools typ-
ically correspond to RC-constructions. Still, links between automated solving of
construction problems with automated theorem proving or dynamic geometry
software have been hardly explored.

From the logical point of view, solving a geometric construction problem
requires proving a theorem of the form ∀X∃Y.Ψ(X;Y ) in an intuitionistic way.
The witness for Y that is found during such proof represents a construction of a
solution and must involve only points that are RC-constructible from the set X.
In other words, the task is, given a declarative specification of the required figure
Ψ(X;Y ), to provide a corresponding – possibly equivalent – procedural specifi-
cation based on available construction steps. Both directions of this equivalence
have to be proved as we will discuss in more details in this paper.

This transformation of a declarative statement into a procedural specification
within a formal framework relies on formalization of the tools allowed to perform
the construction. Usually, ruler and compass are considered and operations like
intersection of lines and circles can be used. However, the folklore of geometric
constructions also considers many variations, for instance, by forbidding either
ruler or compass, by restricting operations by some tools (for example, collapsi-
ble compass or blocked compass), or by allowing new tools like tool for tracing
the MacLaurin trisectrix or Origami folds. Some of these sets of tools are equiv-
alent to ruler and compass, while MacLaurin trisectrix and Origami folds are
more powerful. In this paper, we restrict ourselves to RC-constructibility which
definition is recalled here:

Definition 1. Given a finite set of points B = {B0, . . . , Bm} in the Euclidean
plane, a point P is RC-constructible from the set B if there is a finite set of
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points {P0, . . . , Pn} such that P = Pn, P0 ∈ B and every point Pi (1 ≤ i ≤ n) is
either a point from B or is obtained as the intersection of two lines, or of a line
and a circle, or of two circles, themselves obtained as follows:

– any considered circle has its center in the set {P0, . . . , Pi−1} and its radius is
equal to the distance PjPk for some j < i and k < i;

– any considered line passes through two points from the set {P0, . . . , Pi−1}.
For problems involving parameters, the solution is in fact a way to construct

all solutions. Already in the early 40s, Lebesgue was calling this a program of
construction [18].

It is important to note that sometimes there is no solution for a given con-
struction problem. The absence of solutions does not necessarily mean that there
is no solutions in the Euclidean plane, but no solution of the problem can be con-
structed using only ruler and compass. Examples are famous classical problems
like the circle quadrature problem. It is often difficult to prove such impossibility
theorems. Let us note that it suffices to find a counter-example to prove that a
problem is RC-unconstructible.

In this paper, we will focus on triangle construction problems and one par-
ticular corpus of such problems – Wernick’s list [29]. This corpus consists of
triangle construction problems with located points, and for each, the task is,
given some points X to construct a triangle ABC such that the points X meet
the condition Ψ(X;A,B,C). We first discuss a geometrical approach for solving
construction problems, with classical “four-phases solutions” and then algebraic
approach, both for proving constructibility and unconstructibility. Within the
geometry part, we will comment on our wider project: automation of the solving
process, accompanied by machine verifiable proofs.

2 Geometrical Approach

In this section we give a rigorous, first-order logic description of classical form
of solutions of construction problems. To our knowledge, surprisingly, this is
the first such description, despite the fact that construction problems have been
around for two and a half millennia. Our rigorous description serves as a basis for
a semi-automatic methodology for solving construction problems and generat-
ing their solutions, supported by automated theorem provers and formal proofs
within proof assistants. To our knowledge, automated and formal proving in the
context of automated solving of construction problems were never treated so far.

2.1 Main Conjecture in a Problem Solution

As said above, for a construction problem, roughly said, the task is to prove
constructively a theorem of the following form (where X and Y denote vectors
of objects – points, lines, rays, etc.):

∀X∃Y.Ψ(X;Y ) (1)
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The above subsumes two claims: that the problem is solvable and that a partic-
ular construction (that witnesses ∃Y.Ψ(X;Y )) is correct.

Within the problem description, there could be given some constraints imposed
on the given objects X. Some construction problems do not have solutions and
some construction problems have solutions only under some additional conditions,
not known in advance. So, instead of (1), one typically has to discover Φ(X) (for
the given Ψ(X;Y )) and to prove:

∀X.(Φ(X) ⇒ ∃Y.Ψ(X;Y )) (2)

The above claims that solution exists under some conditions. But one may claim
even more:

∀X.(Φ(X) ⇒ ∃Y.Ψ(X;Y ) ∧ ¬Φ(X) ⇒ ¬∃Y.Ψ(X;Y )) (3)

The above gives a complete characterization of resolvability: it states that solu-
tion exists under some conditions Φ and solution does not exist otherwise. The
problem is that conditions for resolvability often cannot be expressed only in
terms of the given objects X, but have to involve some auxiliary objects (used
within the construction).

In solving specific classes of construction problems, some goal conditions may
be assumed. For instance, in solving triangle construction problems, an implicit
goal condition is that the constructed points A, B, and C are not collinear.

2.2 Constructible Cases and Four-Phases Solutions

Before going to theory, let us bring our esteemed readers back to school and
remind them that traditionally, finding a solution of a construction problem
passes through the following four phases [7]:

Analysis: One starts from the assumption that certain geometrical objects satisfy
the conditions of the problem Ψ(X;Y ) (see Sect. 2.1) and proves properties
Plans(X;Y ) that enable construction (geometric loci and theorems are used
for producing candidates for solutions).

Construction: A construction is based on the analysis, that is, on the procedural
(ruler-and-compass) counterpart Plans(X;Y ) to the specification Ψ(X;Y ).

Proof: It has to be proved that, the constructed figure meets the conditions
Ψ(X;Y ) (possibly under some preconditions).

Discussion: The discussion should state sufficient and necessary conditions for
solutions to exist, and should also consider how many possible solutions to
the problem there exist. Ideally, the number of solutions should be expressed
effectively in the function of mutual relations of the given elements, but
sometimes it is sufficient to express it implicitly in the function of the relation
of the figures obtained during the construction.

In previous works on geometric construction or geometric constraint solving,
the first two phases are often set in the foreground, while the last two are hardly
mentioned (while they are seldom easy to achieve).
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In the following text, we will give an account of all solution phases while,
for illustrating them (in Examples 1–4), we will use one running example (the
problem 4 from Wernick’s list): Given points A, B, and G, construct a trian-
gle ABC, such that G is the centroid of ABC. For this problem, Ψ(X;Y ) is
¬collinear(A,B,C) ∧ centroid(G,A,B,C), i.e., the task is to prove:

∀A,B,G.(? ⇔ ∃C.(¬collinear(A,B,C) ∧ centroid(G,A,B,C)))

where centroid(G,A,B,C) states that G is the centroid of the triangle ABC
and ? is a condition, not known in advance that characterizes resolvability of the
problem.

Analysis. The purpose of analysis is to detect knowledge sufficient for a proce-
dural specification Plans(X;Y ′) for a given declarative specification Ψ(X;Y ).
More precisely, analysis consists of a sequence of proofs of statements of the
following form, for k = 1, . . . , n:2

∀X,Y ′.(Φa(X) ∧ Ψ(X;Y ) ∧ Def(X;Y ′ \ Y ) ∧
k−1∧

i=1

Reli(X;Y ′
i ) ⇒ Relk(X;Y ′

k))

(4)

where:

– Y ′ is the sequence of variables y1, . . . , yn such that Y ⊆ Y ′ (informally, Y ′ \Y
are auxiliary points to be constructed and used in the construction, along the
objects from Y );

– Y ′
k is the sequence of variables y1, . . . , yk;

– yn belongs to Y ;
– Φa(X) represents some constraints on the given objects (possibly 
, if there

are no constraints);
– Def(X;Y ′ \ Y ) introduces properties of Y ′ \ Y ;
– Relk(X;Y ′

k) is a formula that corresponds to an effective way for constructing
yk by ruler and compass using X and Y ′

k−1.
3

Let us denote
∧n

i=1 Reli(X;Y ′
i ) by Cons(X;Y ′). From the above sequence of

theorems, the following theorem follows:

∀X,Y ′.(Φa(X) ∧ Ψ(X;Y ) ∧ Def(X;Y ′ \ Y ) ⇒ Cons(X;Y ′)) (5)

In order to enable a construction as an effective procedure, it is needed to turn
implicit relationship Reli(X;Y ′

i ) (for i = 1 to n) into the form
∨Ki

k=1 yi =
RCi,k(X;Y ′

i ) [9,25], which expresses the way(s) in which yi can be obtained

2 In later stages of the solution, the given condition Φa(X) may be extended to some
condition Φ for which (3) holds.

3 This formula may involve disjunctions corresponding to different “cases” for X and
Y . For instance, (A �= B ∧ midpoint(C, A, B)) ∨ (A = B ∧ C = A).
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from X and Y ′
i using ruler and compass.4 Here, Ki denotes a number of differ-

ent ways in which yi can be constructed. This number has to be finite, although
some ways may allow infinite choices. For example, it may be the case that yi is
the intersection point of two lines p and q or an arbitrary point on the line r. It
must hold:

∀X,Y ′.(Reli(X;Y ′
i ) ⇔

Ki∨

k=1

yi = RCi,k(X;Y ′
i )) (6)

Since Cons(X;Y ′) denotes
∧n

i=1 Reli(X;Y ′
i ), it also holds:

∀X,Y ′.(Cons(X;Y ′) ⇔
n∧

i=1

Ki∨

k=1

yi = RCi,k(X;Y ′
i )) (7)

If we denote by Planj(X;Y ′) the conjunction
∧n

i=1 yi = RCi,ki
(X;Y ′

i ), for
some k ∈ {1, . . . , Ki} for each i = 1, . . . , n then, by distributivity, we obtain
some J disjuncts as individual construction plans:

∀X,Y ′.(Cons(X;Y ′) ⇔
J∨

j=1

Planj(X;Y ′)) (8)

If we denote
∨J

j=1 Planj(X;Y ′) by Plans(X;Y ′), from the above formula
and (5), we have:

∀X,Y ′.(Φa(X) ∧ Ψ(X;Y ) ∧ Def(X;Y ′ \ Y ) ⇒ Plans(X;Y ′)) (9)

Since we are interested in effective constructions of solutions expressed by
Plans(X;Y ′), and if we are careful to introduce only needed auxiliary objects in
Y ′\Y , then it is necessary that they can be defined for every solution. Expressing
this obligation for Def, we have the following requirement:

∀X,Y.(Φa(X) ∧ Ψ(X;Y ) ⇒ ∃Y ′ \ Y.Def(X;Y ′ \ Y )) (10)

There is a subtle issue with Plans(X;Y ′) – it has to be precise enough to
enable the construction, but also it has to be strong enough to prove that the
constructed figure indeed meets the specification.

Because of the specific goal, the analysis is more a search process than a
proving process. It can be implemented as a search process, while at the end, it
can produce a required formula.
4 Strictly speaking, functions RCi,k may involve more than only ruler and compass.

For instance, it may be the case that only one intersection point of two circles can be
picked (e.g. “that is different from the point. . . ”, “that is not on the same side. . . ”,
etc.). Also, some of RCi,k may be non-deterministic, for instance “pick a point on
the line . . . ”.
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A

B

G

Mb

C

Fig. 1. Illustration for the solution for the running example

Example 1. Let sratio(P,Q,R, S,m, n) denote that the ratio of parallel vectors−−→
PQ and

−→
RS is equal to the rational number m/n, meaning:

−−→
PQ/

−→
RS = m/n. Let

midpoint(P,Q,R) denote that P is the midpoint of the segment QR. The first
derivation step for our running example is (Fig. 1):

∀A,B,G,Mb, C.

(¬collinear(A,B,C) ∧ centroid(G,A,B,C) ∧ midpoint(Mb, A,C)
⇒ sratio(B,Mb, B,G, 3, 2))

and the second derivation step is:

∀A,B,G,Mb, C.

(¬collinear(A,B,C) ∧ centroid(G,A,B,C) ∧ midpoint(Mb, A,C)
∧ sratio(B,Mb, B,G, 3, 2)
⇒ sratio(A,C,A,Mb, 2, 1))

These two steps combined give:

∀A,B,G,Mb, C.

(¬collinear(A,B,C) ∧ centroid(G,A,B,C) ∧ midpoint(Mb, A,C)
⇒ sratio(B,Mb, B,G, 3, 2) ∧ sratio(A,C,A,Mb, 2, 1))

Here, Φa(A,B,G) is (there may be some preconditions added within the proof
phase) 
 (meaning that there are no constraints on A,B,G), Def(A,B,C;Mb)
is midpoint(Mb, A,C), and Cons(A,B,G;Mb, C) is sratio(B,Mb, B,G, 3, 2) ∧
sratio(A,C,A,Mb, 2, 1).

Let sratioF be a partial function such that Q = sratioF (P,R, S,m, n)
if

−−→
PQ/

−→
RS = m/n. In our running example, there are no different ways for
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construction, so each Ki equals 1. Then the following holds:

∀A,B,G,Mb, C.

(sratio(B,Mb, B,G, 3, 2) ∧ sratio(A,C,A,Mb, 2, 1))
⇒ (Mb = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,Mb, 2, 1))

and the direct consequence of the previous two formulae is:

∀A,B,G,Mb, C.

(¬collinear(A,B,C) ∧ centroid(G,A,B,C) ∧ midpoint(Mb, A,C) (11)
⇒ Mb = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,Mb, 2, 1))

Following the formula (10), we get the following conjecture that is proved
easily:

∀A,B,C,G.

(¬collinear(A,B,C) ∧ centroid(G,A,B,C)) (12)
⇒ ∃Mb.(midpoint(Mb, A,C))

Construction. The analysis yields the formula enabling effective constructions.
For each j ∈ {1, . . . , J}, Planj(X;Y ′) yields one construction plan of the form:

– Objects X are given (as free objects);
– For i = 1 to n construct yi as yi = RCi,k(X;Y ′

i ) (for some k ∈ {1, . . . , Ki}).

Compound construction steps can also be used (say, construction of the mid-
point) so it should be proved that each of RCi,k is expressible using ruler and
compass.

Example 2. The construction, derived from the formula sratio(B,Mb, B,G, 3, 2)
∧ sratio(A,C,A,Mb, 2, 1) is as follows:

– The points A, B, G are given (as free points);
– Mb = sratioF (B,B,G, 3, 2);
– C = sratioF (A,A,Mb, 2, 1).

Proof. Within the proof phase, we have to prove correctness for each construc-
tion plan Planj(X;Y ′). We have to prove:

∀X.Y ′.(Φa(X)∧? ∧ Planj(X;Y ′) ⇒ Ψ(X;Y )) (13)

where ? is some condition still to be discovered.
Automated theorem provers for geometry typically handle procedural rep-

resentations of a geometric construction and can deal with conjectures of the
above form. We first try to prove the conjecture:

∀X.Y ′.(Φa(X) ∧ Planj(X;Y ′) ⇒ Ψ(X;Y )) (14)
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If the conjecture is proved by the prover, the prover may return also some non-
degeneracy (NDG) conditions NDG(X;Y ′) – conditions under which the con-
jecture holds (note that in general case these conditions are not necessarily the
weakest conditions under which the conjecture holds) so only a weaker statement
is proved:

∀X,Y ′.(Φa(X) ∧ NDG(X;Y ′) ∧ Planj(X;Y ′) ⇒ Ψ(X;Y )) (15)

Example 3. We want to prove:

∀A,B,G,Mb, C.

(? ∧ Mb = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,Mb, 2, 1)
⇒ centroid(G,A,B,C) ∧ ¬collinear(A,B,C))

where ? denotes some set of conditions expressed only in terms of points A, B
and G, still to be discovered.

Let us first focus on the centroid(G,A,B,C) part. Let us suppose that our
theorem provers support sratioF , but does not support centroid and that we
have the following definition of centroid:

∀A,B,C,Ma,Mb.

(Ma = sratioF (B,B,C, 1, 2) ∧ Mb = sratioF (C,C,A, 1, 2)∧
G = intersec(AMa, BMb) ⇒ centroid(G,A,B,C))

We can pass the following conjecture to an automatic (e.g., algebraic) prover:

∀A,B,G,Mb, C,M ′
a,M

′
b, G

′.
(Mb = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,Mb, 2, 1)∧
M ′

a = sratioF (B,B,C, 1, 2) ∧ M ′
b = sratioF (C,C,A, 1, 2)∧

G′ = intersec(AM ′
a, BM ′

b) ⇒ G = G′)

For instance, the above theorem is proved by the prover based on Wu’s
method, implemented within OpenGeoProver [20]. The prover proves the above
conjecture, but returns NDG conditions “line AM ′

a is not parallel with line BM ′
b,

and points A and M ′
a are not identical” (¬parallel(AM ′

a, BM ′
b) ∧ A �= M ′

a), so
we actually proved:

∀A,B,G,Mb,M
′
a,M

′
b, C.

¬parallel(AM ′
a, BM ′

b) ∧ A �= M ′
a∧

Mb = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,Mb, 2, 1)∧
M ′

a = sratioF (B,B,C, 1, 2) ∧ M ′
b = sratioF (C,C,A, 1, 2)

⇒ centroid(G,A,B,C)
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We also need to prove that points A, B and C are not collinear (under some
conditions). It is easily proved (by the ArgoCLP prover [28]) that:

∀A,B,C,G,Mb.

(collinear(A,B,C) ∧ Mb = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,Mb, 2, 1)
⇒ collinear(A,B,G))

and its contraposition gives:

∀A,B,C,G,Mb.

(¬collinear(A,B,G) ∧ Mb=sratioF (B,B,G, 3, 2) ∧ C =sratioF (A,A,Mb, 2, 1)
⇒ ¬collinear(A,B,C))

The formula collinear(A,B,G) was discovered by trying finite number of
predicates over the given points A,B, and G.

From the previous theorems, we have:

∀A,B,G,Mb,M
′
a,M

′
b, C.

(¬parallel(AM ′
a, BM ′

b) ∧ A �= M ′
a ∧ ¬collinear(A,B,G)∧

Mb = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,Mb, 2, 1)∧
M ′

a = sratioF (B,B,C, 1, 2) ∧ M ′
b = sratioF (C,C,A, 1, 2) (16)

⇒ centroid(G,A,B,C) ∧ ¬collinear(A,B,C))

Discussion. Recall that, in general, we want to state sufficient and necessary
conditions for a solution to exist (and to count the number of solutions). Ideally,
within discussion we should prove a statement of the form (3). For simplicity, we
will assume that Plans(X;Y ′) has only one disjunct (i.e., only one construction
plan), but the following consideration can be easily generalized for cases with
more than one disjunct.

From the analysis we have:

∀X,Y ′.(Φa(X) ∧ Ψ(X;Y ) ∧ Def(X;Y ′ \ Y ) ⇒ Plans(X;Y ′)) (17)

but also:

∀X.(∃Y ′.(Φa(X) ∧ Ψ(X;Y ) ∧ Def(X;Y ′ \ Y )) ⇒ ∃Y ′.P lans(X;Y ′)) (18)

From the above formula and from (10) we get:

∀X.(∃Y.(Φa(X) ∧ Ψ(X;Y )) ⇒ ∃Y ′.P lans(X;Y ′)) (19)

and

∀X.(Φa(X) ⇒ (∃Y.Ψ(X;Y ) ⇒ ∃Y ′.P lans(X;Y ′))) (20)

On the other hand, from the proof we have:

∀X,Y ′.(Φa(X) ∧ NDG(X;Y ′) ∧ Plans(X;Y ′) ⇒ Ψ(X;Y )) (21)
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and hence:

∀X.(∃Y ′.(Φa(X) ∧ NDG(X;Y ′) ∧ Plans(X;Y ′)) ⇒ ∃Y.Ψ(X;Y )) (22)

and also:

∀X.(Φa(X) ⇒ (∃Y ′.(NDG(X;Y ′) ∧ Plans(X;Y ′)) ⇒ ∃Y.Ψ(X;Y ))) (23)

Therefore, we have necessary (20) and sufficient (23) conditions for ∃Y.Ψ(X;Y )
(under the preconditions Φa(X)). However, they are not equal, so we still don’t
have a complete characterization of solvability. We can try do discover5 a formula
Φd(X) such that

∀X.(Φa(X) ⇒ (Φd(X) ⇒ ∃Y ′(NDG(X;Y ′) ∧ Plans(X;Y ′))) (24)

If it holds that

∀X.(Φa(X) ⇒ (∃Y.Ψ(X;Y ) ⇒ Φd(X))) (25)

then Φa(X) ∧ Φd(X) is the required formula Φ(X), and we finally have the
theorem (3).

Note that in some cases we can discharge some of conjuncts ndg(X;Y ′) of
NDG(X;Y ′). For instance, one conjunct may imply an other one, so the latter
can be omitted. Also, if:

∀X,Y ′.(Plans(X;Y ′) ⇒ ndg(X;Y ′)) (26)

then we can eliminate ndg(X;Y ′) from NDG(X;Y ′) in (21). In some cases, this
way we can eliminate all of NDG(X), and then Φ(X) can be equal 
.

In some cases, Φd involves also some Y ′, but here we consider only a simple
case. In addition, as history teaches us, in some cases this cannot be done using
only means of synthetic geometry. (For some unsolvable problems, synthetic
approach can be used using reduction, as discussed in Sect. 2.3).

The above gives a characterization of solvability. Concerning the number of
solutions, in solvable case the number of solutions is the product of n numbers
of possible choices for each of yi (see Analysis).

Example 4. From the formula (11) from the analysis we have:

∀A,B,G,Mb, C.

(¬collinear(A,B,C) ∧ centroid(G,A,B,C) ∧ midpoint(Mb, A,C)
⇒ Mb = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,Mb, 2, 1))

and therefore it follows:

∀A,B,G.

∃Mb, C.(¬collinear(A,B,C) ∧ centroid(G,A,B,C) ∧ midpoint(Mb, A,C))
⇒ ∃Mb, C.(Mb = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,Mb, 2, 1)
∧ ¬collinear(A,B,C))

5 One can try a finite number of predicates over X.
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and, thanks to (12):

∀A,B,G.

∃C.(¬collinear(A,B,C) ∧ centroid(G,A,B,C))
⇒ ∃Mb, C.(Mb = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,Mb, 2, 1) (27)
∧ ¬collinear(A,B,C))

One can easily prove the lemma:

∀A,B,G,Mb, C.

(Mb = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,Mb, 2, 1) (28)
∧ ¬collinear(A,B,C))
⇒ ¬collinear(A,B,G))

For the choice Φd(A,B,G) = ¬collinear(A,B,G), using formulae (27) and (28)
we can prove the following formula:

∀A,B,G.

∃C.(¬collinear(A,B,C) ∧ centroid(G,A,B,C)) ⇒ ¬collinear(A,B,G) (29)

On the other hand, from the formula (16) from the proof, using the following
lemma:

∀A,B,C,G,M ′
a,M

′
b.

(¬collinear(A,B,C) ∧ M ′
a=sratioF (B,B,C, 1, 2) ∧ M ′

b=sratioF (C,C,A, 1, 2)
⇒ ¬parallel(AM ′

a, BM ′
b) ∧ A �= M ′

a)

and the lemma:

∀A,B,G,Mb, C.

(¬collinear(A,B,G) ∧ Mb=sratioF (B,B,G, 3, 2) ∧ C =sratioF (A,A,Mb, 2, 1)
⇒ ¬collinear(A,B,C))

we obtain:

∀A,B,G,Mb, C.

(Mb=sratioF (B,B,G, 3, 2) ∧ C =sratioF (A,A,Mb, 2, 1) ∧ ¬collinear(A,B,G)
⇒ ¬collinear(A,B,C) ∧ centroid(G,A,B,C))

and also:

∀A,B,G.

∃Mb, C.(Mb = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,Mb, 2, 1)∧
¬collinear(A,B,G))
⇒ ∃C.(¬collinear(A,B,C) ∧ centroid(G,A,B,C))



84 V. Marinković et al.

From the above theorem, and the theorem:

∀A,B,G,Mb, C.

¬collinear(A,B,G)
⇒ ∃Mb, C.(Mb = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,Mb, 2, 1))

we obtain:

∀A,B,G.

¬collinear(A,B,G) ⇒ ∃C.(¬collinear(A,B,C) ∧ centroid(G,A,B,C)) (30)

which is the second direction of the statement we want to prove.
Therefore, from (29) and (30) we have proved:

∀A,B,G.

¬collinear(A,B,G) ⇔ ∃C.(¬collinear(A,B,C) ∧ centroid(G,A,B,C))

All proofs from the above example have been fully formalized within the
proof assistant Isabelle. The full proof document, consisting of all needed geom-
etry statements used as lemmas (corresponding to simple theorems in Euclidean
geometry) and all proofs, has around 1200 lines.6 We expect that significant
portions of such developments would be shared among correctness proofs for
different construction problems.

2.3 Unconstructible Cases and Reduction

Using geometrical means, it can be proved that a figure is RC-unconstructible
(i) if the specification is inconsistent (so there is no required figure in Euclidean
plane, no matter how it can be produced); (ii) if the problem can be reduced to
another problem (typically, some canonical RC-unconstructible problem), known
to be unsolvable using ruler and compass. Here is a simple example of the latter
approach, based on one Archimedes’s construction.

Example 5. Given three non-collinear points A, B and O, construct points X
and Y such that (see Fig. 2):

– OX ∼= OB,
– XY ∼= OB,
– points B, X and Y are collinear, and
– points A, O and Y are collinear.

Using elementary geometry it can be proved that the angle α = ∠AOB is
three times angle β = ∠AY B. Thus, if this problem is RC-solvable, so is the
trisection of an angle. But it is well known that in general one cannot divide an
angle in three using only straightedge an compass.

6 All proofs can be found here: http://www.matf.bg.ac.rs/∼vesnap/adg2014 wernick6.
thy.

http://www.matf.bg.ac.rs/~vesnap/adg2014_wernick6.thy
http://www.matf.bg.ac.rs/~vesnap/adg2014_wernick6.thy
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A O

B

Y

X

βα

Fig. 2. Example of a RC-unconstructible problem

2.4 Mechanization

Mechanization of the solving process described in Sect. 2.2 is the subject of our
current work. Our ultimate goal is producing machine verifiable (within the proof
assistant Isabelle [22]) solutions for construction problems from Wernick’s list.
This complex task requires synergy of a tool for solving construction problems,
algebraic automated theorem provers, synthetic automated theorem provers, and
proof assistants, aided by some human’s guidance (and dynamic geometry tools
for visualization). In this section we report on the current state.

Analysis. The analysis is performed by our ArgoTriCS tool for solving con-
struction problems [21]. Based on a small number of definitions, lemmas and
construction steps, it can solve almost all solvable problems from Wernick’s list
(66 out of 72). In addition, it can detect if the problem is redundant or locus
dependent, and in these cases a point belonging to the geometric loci of points
is chosen arbitrarily and construction continues. Also, the problem is tested for
symmetry to some of the previous problems according to the available definitions
and lemmas. A solution trace from ArgoTriCS (which also contains a subset of
definitions, lemmas and construction steps needed) is translated into a sequence
of theorems (4) and the theorem (5). These conjectures (along with relevant
axioms/lemmas) are fed to our coherent-logic based automated theorem prover
ArgoCLP that is capable of producing machine verifiable proofs [28]. At the
moment, ArgoTriCS can automatically produce input files for ArgoCLP (con-
sisting of the set of relevant axioms, the set of relevant lemmas and the theorem
to be proved) only for a subset of all considered construction problems and this
is the subject of the current work. Since ArgoCLP does not support functional
symbols, the formula (6) and subsequent formulae have to be proved manually
in Isabelle, and this is also the subject of current work. Also, it should be proved
that each of used construction steps is expressible using ruler and compass but
at the moment we use them all as primitive steps.

Construction. The formal description of the construction in GCLC language
[15] is automatically exported from ArgoTriCS to our dynamic geometry tool
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GCLC where it can be visualized and stored in a number of formats, inluding
LATEX, EPS, SVG. This part of our framework is completed.

Proof. ArgoTriCS automatically exports proof specification which can be passed
to two different automated theorem provers – OpenGeoProver [20] and the
provers integrated into GCLC tool. These tools return as an output a proof
object, and the set of NDG conditions. For a huge part of the construction prob-
lems from Wernick’s list the central theorem (of the form (14)) is successfully
proved by one of these provers.

Discussion. NDG conditions obtained from the provers may involve some aux-
iliary objects. Statements needed for translating these conditions into ones that
involve only given objects are proved using ArgoCLP. Simple consequences that
do not belong to coherent logic are proved within Isabelle manually (as they
cannot be proved by ArgoCLP). For attempts at discovering a sufficient and
necessary conditions for solution to exist (¬colin(A,B,G) in the running exam-
ple), we test a finite number of predicates over the set of given points. Also, we
check if some conjunct of NDG implies some other one. Finally, the final proof
is glued together within Isabelle by simple steps (still to be automated, currently
they are performed manually).

Overall, in our formalized solutions of construction problems, there are two
important gaps. One of them is the link to external algebraic provers. Conjectures
proved within the proof phase are proved using algebraic provers, but there is
no trusted link between them and Isabelle. Therefore, the conjectures proved by
external algebraic provers are used as axioms. Currently, there are some limited
formalizations of algebraic provers for geometry within proof assistants [12,13],
but not for Isabelle. For theorems proved by ArgoCLP we have formal Isabelle
proofs. The second gap is between our proofs and the typical geometrical axioms
(e.g., Tarski’s or Hilbert’s axioms). In our proofs we use high-level geometry
lemmas as axioms.7 They can be proved from basic axioms (e.g., Tarski’s or
Hilbert’s axiom) but it is extremely complex task and beyond the scope of this
paper. Only recent advances provide (in Coq) formally proved high-level lemmas
from the basic axioms [2,3].

3 Algebraic Approach

Mathematical progress in algebra in the beginnings of the nineteenth century
enabled solving of many geometric construction problems that were open since
the ancient Greeks. When considering construction problems, two aspects have
to be distinguished: constructibility and construction. In both cases algebraic
methods can have significant role, but algebraic tools are famous for their success
7 The ArgoTriCS tool, along with the list of lemmas used, is available on: http://argo.

matf.bg.ac.rs/?content=downloads.

http://argo.matf.bg.ac.rs/?content=downloads
http://argo.matf.bg.ac.rs/?content=downloads
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in proving RC-unconstructibility. Actually, it is theoretically possible to extract
a geometric RC-construction from a proof of RC-constructibility but it is often
impractical mainly for two reasons. First, the equations to solve can have a high
degree (4, 8, 16,. . .) and formal methods provide huge formulae expressing the
solutions and, second, even with equations with degree 2, the direct translation
from algebra to geometry leads to constructions with hundreds of elementary
operations. Moreover, it is often pedagogically useless because it would only
mimic algebraic computations (See Fig. 3).

3.1 Classical Results

In the introduction, we recall the definition of the constructibility of points,
lines and circle from a set of points B also called base points which correspond
more or less to the notion of free points in dynamic geometry. We define now
RC-constructibility of numbers: a number is said to be RC-constructible from
the set B if it is a coordinate of a RC-constructible point. Set B has to contain
at least two points, usually, point O with coordinates (0, 0) and point I with
coordinates (1, 0). Without additional information, it is said that a point or a
number is RC-constructible when B = {O, I}. In terms of algebra, that means
that we consider polynomials with coefficients in Q. For instance, any rational
number is RC-constructible. But, often, parameters are added to B. This is the
case with the classical problem of the impossibility of angle trisection: given
cos(α) for some number α, cos(α/3) is RC-unconstructible in general.

A fundamental example is given by the classical operations – addition, sub-
traction, multiplication, division and square radical extraction – which can all
be translated in terms of RC-construction. The converse is true: a number is
RC-constructible from the points of set B if and only if it is expressible with the
five operations operating on the coordinates of points in B. This fact is closely
related to field theory which, in turn, gave a theoretical decision procedure for
RC-constructibility problems [18].

Field theory allows to link numbers and polynomials: an algebraic number
over a field, usually Q, is a solution of a polynomial equation. A fundamental
result is that to any algebraic number over K α is associated a monic irreducible
polynomial P ∈ K[X], called the minimal polynomial of P and K(α) ∼ K[X]/P .
The degree of P is the degree of the extension [K(α) : K] which is also called
the degree of α (over K). Then, the main tool for proving RC-unconstructibility
lies in Wantzel’s result:

Theorem 1 (Wantzel 1837). Each RC-constructible number is algebraic over
Q and its degree is equal to 2k for some k ∈ N.

This theorem can be used to prove that 3
√

2 is not RC-constructible since polyno-
mial X3−2 is irreducible over Q. But also to prove that problem 90 of Wernick’s
list is not RC-constructible as, for some choice for the coordinates, it is equiva-
lent to solving the irreducible polynomial equation (obtained by using resultants
and factorization within Maxima):

2x5
A + 45x4

A + 372x3
A + 1368x2

A + 2160xA + 972 = 0
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Note that the reciprocal of Wantzel’s theorem is false: for instance the roots
of the irreducible polynomial X4 + 2X − 2 are not RC-constructible. There are
several theorems of algebra which fully determine RC-constructibility:

Theorem 2 (Galois). Let α be an algebraic number over Q or an extension
of Q and P be its minimal polynomial; α is RC-constructible if and only if the
degree of splitting field of P is a power of 2.

This theorem has a more practical formulation:

Theorem 3. A number α is RC-constructible if and only if there is some alge-
braic number r1, . . . , rn = α such that [Q(r1) : Q] = 2, [Q(ri+1) : Q(ri)] = 2 for
every i = 1, . . . , n − 1.

The method proposed by Gao and Chou exploit this latter one [10].
As far as we know, there are two automatic implemented methods for deciding

RC-constructibility (but, in the mathematic literature there are several papers
dealing with resolution by radicals of polynomial equations, see for instance [17]).
The first one comes from a book of H. Lebesgue about geometric construction
problems [18] and it has been implemented by G. Chen in 1992 [6]. The second
one is described in papers presented in the second ADG workshop and published
in Journal of CAD [10].8 For the sake of completeness, we show in the next section
how algebraic method can be used to prove RC-unconstructibility of a problem.

We present two examples coming from famous Wernick’s list [29], and we
solve them by a classical method: thanks to a Computer Algebra System (CAS),
Maple9 in this occasion, we obtain one or more triangular systems, if possible
irreducible. There are various methods to triangularize a polynomial system:
one can either using successive resultants, or computing Gröbner bases with a
lexicographic order, or computing the Ritt’s characteristic sets. Here, we use the
Maple package RegularChains [19] and particularly the Triangularize function.
Then, we study the polynomial equations as polynomials with a single variable
using Wantzel’s theorem or Gao and Chou’s method.

3.2 Unconstructible Case

Problem 122 from Wernick’s list. In this problem, points G, Ta and Tb are
given, and the task is to construct a triangle T = (A,B,C) such that points
G, Ta and Tb are respectively the centroid, the foot of the inner-bisector from
A and the inner-bisector from B of T . To our knowledge, the status (con-
structible/unconstructible) or this problem is still unknown (one of 15 unsolved
Wernick’s problems).

Without loss of generality, we choose a reference system in order to fix the
coordinates: let Tb have coordinates (0, 0) and let Ta have coordinates (4, 0). On

8 The technical report can be found here: http://www.mmrc.iss.ac.cn/pub/mm15.pdf/
gao.pdf.

9 http://www.maplesoft.com/.

http://www.mmrc.iss.ac.cn/pub/mm15.pdf/gao.pdf
http://www.mmrc.iss.ac.cn/pub/mm15.pdf/gao.pdf
http://www.maplesoft.com/
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one hand, if we want to prove RC-constructibility, or even to produce a construc-
tion, the coordinates of G must be parameters. On the other hand, if we only
want to check RC-unconstructibility, we can choose arbitrary coordinates for G.
Here, we choose the coordinates (2, 1) for G. If we are unlucky, it could happen
that even if the problem is not RC-constructible in general, in this particular
case it is. Let us see what happen here.

First, we classically translate the geometric problem in an algebraic formula-
tion consisting in a polynomial system S. There is, of course, some issues like, for
instance, the fact that we represent both internal and external bisectors when
using algebraic formulation, but we do not discuss these points here (see [27]).
Then, we have to triangularize S: to this end, we use regular chains method
that is implemented in Maple. For the triangulation of the polynomial system
corresponding to the statement, we choose the ordering xC , yC , xB, yB, xA,
yA for the variables. We find two irreducible systems which corresponds to non-
degenerate cases, say S1 and S2: this means that under the non-degeneracy con-
ditions S ⇔ S1 ∨S2 it is enough to show that none of these systems corresponds
to a RC-constructible problem (if one of these systems was RC-constructible,
then we could construct some solutions of the problem).

In the first one, we have the irreducible polynomial equation:

4y4
A − 12y3

A − 51y2
A + 192yA − 144 = 0

and for the second one:
7295401y6

A − 30894038y5
A + 107596129y4

A − 127795968y3
A − 3722832y2

A +
24966144yA + 4064256 = 0

The two polynomials are irreducible and Wantzel theorem ensures that the
second one is not RC-solvable. But there is more work to do for the first equation
as it is of degree 22. Using the formula of Gao and Chou [10], we have to see if
the polynomial:

8g34h2g
2 + (2h1h38h0)gh0h

2
3 + 4h0h2h

2
1 = 0

has rational solutions, where x4 + h3x
3 + h2x

2 + h1x + h0 is the minimal monic
irreducible polynomial we want to test: here, we have h3 = −12/4, h2 = −51/4,
h1 = 192/4 and h0 = 144/4 and we get the polynomial:

8g3 + 51g2 − 144

Then, using the factor command, we prove that this polynomial is irreducible
and thus that the problem is RC-unconstructible. Notice that this method can
also be used to find a construction when the problem is RC-constructible, but
usually the construction is impractical and not in the spirit of classical RC-
constructions.

3.3 Constructible Case

Problem 116 from Wernick’s list. In this problem, points G, Ha and H are given
and the task is to construct a triangle T = (A,B,C) such that points G, Ha



90 V. Marinković et al.

and H are respectively the centroid, the feet of the altitude from point A and
the orthocenter of triangle T .

It is easy to construct the line BC, Ma and A and O using the fact that G is
the center of the homothety with ratio −1/2 transforming O into H. We leave
the construction to the reader.

Let us consider the algebraic version. Let the given points have the following
coordinates: H(0, 0), Ha(1, 0), G(a, b), where a and b are some real numbers. We
have then to solve the system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xA(xB − xC) + yA(yB − yC) = 0
xB(xC − xA) + yB(yC − yA) = 0
(xA − 1)(xC − 1) + yAyC = 0
(1 − xB)(yC − yB) − yB(xB − xC) = 0
3a − xA − xB − xC = 0
3b − yA − yB − yC = 0

H Ha a

b1

bc G

v3

J

d1

e

a3

f

A A2

g

h

b1

ij

b2

k

n1

a1

bx31

bx3e1

Ma

j1
9

l

B2

9H

d2

q

C1 F

r

I

s

K

d

L

yBx2

yB
t

B

C

c2
a2

b2

f1

N

Fig. 3. Performing algebraic computations with geometry (details where the attentive
reader can see, for instance, the extraction of a square root d2 → d)
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After triangularization, we have only one non-degenerate system:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xC − 1 = 0
yC + yB − 3b = 0
−1 + xB = 0
y2
B − 3b.yB + 3a − 3 = 0

2 − 3a + xA = 0
yA = 0

which yields two, one or zero solutions depending on the discriminant of the
fourth equations. The two solutions correspond to each other by permuting B
and C. This problem is then obviously constructible since we are able to perform
all the operations with straightedge and compass. Such a construction is depicted
in Fig. 3 made with GeoGebra, where parameters a and b correspond to free
points constrained to be on the x-axis and y-axis respectively. But that solution
is usually not the solution that the teacher wanted. However, it is not difficult
to algebraically verify that the solutions provided by the triangular system are
solutions to the problem. Of course, you have to be confident in your CAS.

4 Conclusions and Future Work

We presented a geometrical and an algebraic perspective on solving construction
problems using ruler and compass. We showed that many steps of this process
can be automated and supported by proofs which can be formalized within proof
assistants.

For our future work, we are planning to complete, as much as possible,
automation of solving for problems from Wernick’s corpus, but also for other
classes of construction problems. We are planning to integrate this automated
process into dynamic geometry systems, having in mind applications in educa-
tion. We are also planning to implement proving unconstructibility by reduction.
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92 V. Marinković et al.
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Abstract. This paper describes computations of the relations between
the circumradius R and area S of cyclic polygons given by the lengths
of the sides. The classic results of Heron and Brahmagupta clearly show
that the product of R and S is expressed by the lengths of the sides for
triangles and cyclic quadrilaterals. However, the formulae of circumradius
and area for cyclic pentagons and hexagons have been studied separately,
and the relation between them has seldom been discussed. In this study,
based on the results derived by Robbins (1994), Pech (2006), and the
author (2011), we succeeded in computing integrated formulae of the
circumradius and the area for cyclic pentagons and hexagons. They are
found to be a polynomial equation in (4SR)2 with degree 7 for pentagons,
and the product of two polynomials each with degree 7 for hexagons.
We confirmed that these three polynomials with degree 7 are uniformly
expressed using the notion of crossing parity, the structure of which is
analogous to those of the area formulae and circumradius formulae for
n = 5, 6. Moreover, we derived a polynomial equation in (4SR) itself
with degree 7 for cyclic pentagons, and showed that this type of formula
exists only for n-gons, where n is an odd number.

Keywords: Cyclic polygons · Circumradius formula · Area formula

1 Introduction

In this study, we consider a classic problem in Euclidean geometry for cyclic
polygons; that is, n-gons inscribed in a circle, given by the lengths of sides
a1, a2, . . . , an. In particular, we focus on the relation between the circumradius
R and the area S of cyclic pentagons and hexagons.

Firstly, for a triangle with side lengths a1, a2, and a3, the classic formula
derived by Heron gives its circumradius and area as follows:

⎧
⎨

⎩

R = a1a2a3√
(a1+a2+a3)(−a1+a2+a3)(a1−a2+a3)(a1+a2−a3)

S =
√

(a1+a2+a3)(−a1+a2+a3)(a1−a2+a3)(a1+a2−a3)

4 .
(1)
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a2

a3

a4

a5
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d
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S

Fig. 1. A cyclic pentagon with area S

It is straightforward to combine these equations, and we obtain the relation

4SR = a1a2a3. (2)

Secondly, Brahmagupta’s formula gives the circumradius and area of a cyclic
quadrilateral as

⎧
⎨

⎩
R =

√
(a1a2+a3a4)(a1a3+a2a4)(a1a4+a2a3)

(−a1+a2+a3+a4)(a1−a2+a3+a4)(a1+a2−a3+a4)(a1+a2+a3−a4)

S =
√

(−a1+a2+a3+a4)(a1−a2+a3+a4)(a1+a2−a3+a4)(a1+a2+a3−a4)

4 .
(3)

It is again straightforward to integrate Eq. (3) into

(4SR)2 = (a1a2 + a3a4)(a1a3 + a2a4)(a1a4 + a2a3). (4)

We should note that Eq. (3) represents the case of convex quadrilaterals, whereas
the other case of non-convex, crossing figures is given by

⎧
⎨

⎩
R =

√
−(a1a2−a3a4)(a1a3−a2a4)(a1a4−a2a3)

(a1+a2+a3+a4)(a1+a2−a3−a4)(a1−a2−a3+a4)(−a1+a2−a3+a4)

S =
√

(a1+a2+a3+a4)(a1+a2−a3−a4)(a1−a2−a3+a4)(−a1+a2−a3+a4)

4 .
(5)

Hence, the latter case is expressed by the relation

(4SR)2 = −(a1a2 − a3a4)(a1a3 − a2a4)(a1a4 − a2a3). (6)
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If we let Z = (4SR)2, the above results for triangles and cyclic quadrilaterals
are summarized as follows:

⎧
⎨

⎩

Z − a2
1a

2
2a

2
3 = 0,

(Z − (a1a2 + a3a4)(a1a3 + a2a4)(a1a4 + a2a3))
× (Z + (a1a2 − a3a4)(a1a3 − a2a4)(a1a4 − a2a3)) = 0.

(7)

The goal of the present study was to find integrated formulae for cyclic pentagons
and hexagons analogous to Eq. (7). Since Robbins [6] discovered the area formula
for cyclic pentagons in 1994, the following facts for cyclic n-gons have been
confirmed by several authors [1–3,5]:

– The pentagon area formula is a polynomial in (4S)2 with degree 7.
– The hexagon area formula is the product of two polynomials in (4S)2, each

with degree 7.
– The pentagon circumradius formula is a polynomial in R2 with degree 7.
– The hexagon circumradius formula is the product of two polynomials in R2,

each with degree 7.

Therefore, we can speculate that the relations between S and R for cyclic pen-
tagons and hexagons are also expressed by the polynomials in Z = (4SR)2 with
degree 7 and their product, analogously to Eq. (7). As a result of this study,
we succeeded in computing such formulae explicitly as speculated. Only the
result for pentagons has been published up to now as a short paper [4], while the
present paper describes the detailed formulae for cyclic pentagons and hexagons,
elucidating their relations.

It might sound strange that the relation between the area and circumradius
has seldom been discussed, and Pech [5] noted that “it is still missing” for cyclic
pentagons. We have found that Svrtan et al. [7] show a likely formula with degree
7, but their result seems to contain typographical or other errors and their proof
is too abbreviated to follow.

In contrast, we show two ways of computation for cyclic pentagons and con-
firm the correctness of both results in Sects. 2 and 3 of this paper. Hence, we
believe that our result gives the correction and extension to that of Svrtan et
al. [7]. In Sect. 4, we show a numerical example of the usage of the integrated
formula to distinguish a convex cyclic pentagon from other, non-convex cases.

In Sect. 5, the integrated formula for cyclic hexagons is discussed. The compu-
tation is far from efficient, but it seems that the results have not been published
before. Hence, we believe that we have succeeded in specifying the structure of
integrated formulae for cyclic n-gons (n = 5, 6) in detail.

2 Brute Force Algorithm

2.1 Expression by Elementary Symmetric Functions

Since the coefficients in the area and circumradius formulae are symmetric with
those of a2

i , such expressions as Eq. (7) can be reduced if the coefficients are
expressed by elementary symmetric functions.
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The conversion is processed by the following algorithm. First, we consider
the polynomial ideal with elementary symmetric functions of n-th order:

I =
{

s
(n)
1 − (a2

1 + · · · + a2
n), . . . , s(n)n − (a2

1 · · · a2
n)

}
. (8)

Hereafter, we abbreviate s
(n)
i simply as si, if n is obvious in the context. Com-

puting its Gröbner basis with a group ordering (“lexdeg” in the Maple computer
algebra system), we obtain

G := Basis(I, {a1, . . . , an} � {s1, . . . , sn}). (9)

Next, computing p := NormalForm(f,G) for a symmetric function f , we get
the expression p by elementary symmetric functions. For example, converting
Eq. (7), we obtain the formulae for n = 3, 4 described below.

Theorem 1. The defining polynomials of Z = (4SR)2 for triangles and cyclic
quadrilaterals are respectively given as

{
Z − s3 = 0,
Z2 − 2s3Z +

(
s23 − s21s4

)
=

(
Z − s3 + s1

√
s4

) (
Z − s3 − s1

√
s4

)
= 0.

(10)

We should note that a good insight into the structure of the formulae is provided
by the introduction of an auxiliary expression

√
sn = a1 · · · an, as well as the

notion of crossing parity ε [2,6], where ε is 0 for a triangle, 1 for a convex
quadrilateral, and -1 for a non-convex quadrilateral. Under these notations, the
area formula in x = (4S)2 for n = 3, 4 is written as

x − (−s21 + 4s2 + ε · 8
√

s4) = 0. (11)

Similarly, the radius formula in y = R2 for n = 3, 4 is written as

(−s21 + 4s2 + ε · 8
√

s4)y − (s3 + ε · s1
√

s4) = 0. (12)

Eventually, we have a simpler expression also for Z = xy.

Corollary 1. The integrated formula (10) in Z = (4SR)2 is rewritten as

Z − (s3 + ε · s1
√

s4) = 0. (13)

Since we have s
(3)
3 = s

(4)
3 |a4=0 and so on, the notations are intentionally com-

bined for the cases ε = 0,±1.
We should note that, in our formulation, the area of the triangle between

→
OA= [x1, y1] and

→
OB= [x2, y2] is defined as the determinant

S =
1
2

∣∣∣∣
x1 y1
x2 y2

∣∣∣∣ , (14)

whose sign depends on the direction of the angle between these two vectors.
Hence, discarding the sign of area S of polygons, the formula for triangles given
by Eq. (2) is rewritten as shown below.
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Corollary 2. For any triangle, we have another integrated formula:

|z| − √
s3 = 0 (z = 4SR = ±

√
Z,

√
s3 = a1a2a3). (15)

This expression is equivalent to the first expression in Eq. (10). However, the
case n = 4 does not have such a polynomial equation in z, and the existence of
this type of formula seems limited to cases where n is an odd number.

2.2 Integrated Formula for Cyclic Pentagons

We assume that, according to [3,5,6], we have already computed the circumra-
dius formula with 2,922 terms for cyclic pentagons:

ΦR(y) = B7y
7 + B6y

6 + B5y
5 + B4y

4 + B3y
3 + B2y

2 + B1y + B0

= 0
(
y = R2, Bi ∈ Z[a2

1, . . . , a
2
5]

)
.

(16)

Using the elementary symmetric functions s1 = a2
1 + · · · + a2

5, . . ., s5 = a2
1 · · · a2

5,
we rewrite Eq. (16) into a simpler form:

Φ̃R(y) = B̃7y
7 + B̃6y

6 + · · · + B̃1y + B̃0 = 0 (81 terms), (17)

where B̃i ∈ Z [s1, . . . , s5].
On the other hand, the area formula derived by Robbins [2,6] is originally

given using elementary symmetric functions:

Φ̃S(x) = x7 + C̃6x
6 + · · · + C̃1x + C̃0 = 0 (153 terms),(

x = (4S)2, C̃i ∈ Z[s1, . . . , s5]
)

.
(18)

If each coefficient C̃i is expanded, this polynomial equation has 6,672 terms
over the coefficient Ci ∈ Z[a2

1, . . . , a
2
5] [5].

In these equations, the leading coefficients and the constant terms have the
following structures:

⎧
⎪⎨

⎪⎩

B̃7 =
(
(s21 − 4s2)2 − 64s4

)2 − 2048s5(s31 − 4s1s2 + 8s3),
B̃0 = s35,

C̃0 = B̃7 · (s31 − 4s1s2 + 8s3)2.
(19)

We let the roots of Φ̃R(y) be y1, . . . , y7, and the roots of Φ̃S(x) be x1, . . . , x7.
Then the polynomial whose roots are Zi = xiyi should have the form described
below. Since we have

7∏

i=1

Zi = (x1y1) · · · (x7y7) = (y1 · · · y7)(x1 · · · x7)

= −(B̃0/B̃7) · (−C̃0) = s35(s
3
1 − 4s1s2 + 8s3)2,

(20)

the quantities Z1, . . . , Z7 should be the roots of

1·Z7 + u6Z
6 + · · · + u1Z − s35(s

3
1 − 4s1s2 + 8s3)2 = 0, (21)
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where u6, . . . , u1 are as yet unknown.
In order to combine Φ̃R(y) and Φ̃S(x) in Eqs. (17) and (18), first we substitute

y = Z/x into the radius formula, and obtain

Φ̃′
R(x,Z) = x7Φ̃R(Z/x) = B̃7Z

7 + B̃6Z
6x + · · · + B̃1Zx6 + B̃0x

7. (22)

Next, eliminating x by the resultant of Φ̃′
R(x,Z) and Φ̃S(x), we obtain its

primitive part as

Ψ̃(Z) = Resx(Φ̃′
R(x,Z), Φ̃S(x))

= Ã49Z
49 + · · · + Ã0

(
Ãi ∈ Z[s1, . . . , s5]

)
(2,093,279 terms).

(23)
This computation required about 15 min of CPU time in the following environ-
ment: Maple 14 on Win64, Xeon (2.93 GHz)×2, 192 GB RAM.

Finally, we factorize this polynomial with degree 49. Together with the other
factor of degree 42, we obtain the polynomial in Z with degree 7. This factor-
ization required almost 80 hours of CPU time.

Theorem 2. The defining polynomial in Z = (4SR)2 for cyclic pentagons has
the following form:

ψ5(Z)= Z7 − 4s3Z
6 +

(−28s1s5 − 2s21s4 + 6s23
)
Z5

+
(
(−s41 − 10s21s2 − 8s22 + 52s1s3 − 32s4)s5 + 4s3(s21s4 − s23)

)
Z4

+
(
4(37s21 − 48s2)s25 + (−2s41s3 + 12s31s4 + 64s3s4 + 4s21s2s3 + 16s22s3

−20s1s
2
3 − 64s1s2s4)s5 + (s21s4 − s23)

2
)
Z3

+
(−576s35 + (64s1s4 − 80s1s

2
2 + 28s31s2 − 8s21s3 + 128s2s3 − 2s51)s

2
5

+(2s41s2s4 − 12s31s3s4 − 8s21s
2
2s4 − s41s

2
3 − 4s1s

3
3 − 32s21s

2
4 − 32s23s4

+64s1s2s3s4 − 8s22s
2
3 + 6s21s2s

2
3)s5

)
Z2

+
(−48(s31 − 4s1s2 + 8s3)s35

(−8s21s
3
2 + 256s24 + s41s

2
2 − 64s1s3s4 − 128s22s4 + 64s2s

2
3 + 16s42

+96s21s2s4 − 12s21s
2
3 − 48s1s

2
2s3 − 2s51s3 − 16s41s4 + 20s31s2s3)s

2
5

)
Z

−s35(s
3
1 − 4s1s2 + 8s3)2 = 0 (63 terms).

(24)

If we consider the equilateral case, by putting ∀ai := 1, Eq. (24) is reduced to

(Z2 − 35Z + 25)(Z − 1)5 = 0, (25)

each factor of which respectively corresponds to the cases of a regular penta-
gon/pentagram and a (five degenerated) regular triangle. Therefore, we believe
that Eq. (24) is the integrated formula for cyclic pentagons, as the extension of
Eq. (13) for n = 3, 4.

Remark 1. The notion of the formula in Z = (4SR)2 was already proposed by
Svrtan et al. [7], and their Eq.(35) is supposed to correspond to Eq. (24) above.
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Unfortunately, their result does not coincide with ours, and theirs is not factored
when we let ∀ai := 1. Therefore, their result seems to contain typographical or
other errors, which might have been caused in the process of conversion into the
expression by elementary symmetric functions.

3 Stepwise Algorithm

In this algorithm, we construct the formulae from scratch, without using Φ̃R(y)
and Φ̃S(x). We start by dividing a cyclic pentagon with side lengths {a1, . . . , a5}
by a diagonal of length d, into a triangle of sides {a1, a2, d} and a quadrilateral
of sides {a3, a4, a5, d}, as shown in Fig. 1. Next, using the common circumradius
R, we consider the sum of the areas of the triangle and the quadrilateral.

Firstly, the circumradius formula of Heron gives the defining polynomial in
y = R2 as follows:

H3(a1, a2, d; y) := (a1+a2+d)(−a1+a2+d)(a1−a2+d)(a1+a2−d)y+a2
1a

2
2d

2.
(26)

Similarly, the formula of Brahmagupta gives the following polynomials for the
convex and non-convex cases, respectively:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

H
(+)
4 (a3, a4, a5, d; y) =

(−a3 + a4 + a5 + d)(a3 − a4 + a5 + d)(a3 + a4 − a5 + d)(a3 + a4 + a5 − d)y
−(a3a4 + a5d)(a3a5 + a4d)(a3d + a4a5),

H
(−)
4 (a3, a4, a5, d; y) =

(a3 + a4 + a5 + d)(a3 − a4 − a5 + d)(a3 − a4 + a5 − d)(a3 + a4 − a5 − d)y
−(a3a4 − a5d)(a3a5 − a4d)(a3d − a4a5).

(27)
Since the circumradius R is common to this triangle and quadrilateral, we elim-
inate y using the resultant and obtain the defining polynomials in the diagonal
d with degree 7:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F (+)(d) := Resy(H
(+)
4 (a3, a4, a5, d; y),H3(a1, a2, d; y))

= a3a4a5d
7 + (a2

3a
2
4 + a2

3a
2
5 + a2

4a
2
5 − a2

1a
2
2)d

6 + · · · ,

F (−)(d) := Resy(H
(−)
4 (a3, a4, a5, d; y),H3(a1, a2, d; y))

= a3a4a5d
7 − (a2

3a
2
4 + a2

3a
2
5 + a2

4a
2
5 − a2

1a
2
2)d

6 + · · · .

(28)

We should note that we have F (−)(d) = −F (+)(−d), which means that the roots
of both polynomials are equivalent up to their signs.

Secondly, we let S3, S4, and S5 be the area of the triangle, cyclic quadrilateral,
and cyclic pentagon, respectively, given above. Since we have S5 = S3 + S4,
we get 4S4R = 4S5R − 4S3R, where R is the common circumradius. For the
triangle, we have 4S3R = a1a2d from Eq. (2). If we let z = 4S5R and substitute
4S4R = z − a1a2d into Eqs. (4) and (6), we obtain the following polynomial
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equations in z and d, for the cases of convex and non-convex quadrilaterals,
respectively:

{
f (+)(z, d) := (z − a1a2d)2 − (a3a4 + a5d)(a3a5 + a4d)(a3d + a4a5) = 0,

f (−)(z, d) := (z − a1a2d)2 + (a3a4 − a5d)(a3a5 − a4d)(a3d − a4a5) = 0.

(29)
Finally, we eliminate the diagonal d from F (+)(d) and f (+)(z, d) by comput-

ing the resultant:

P (+)(z) := Resd(F (+)(d), f (+)(z, d))
=

(
z7 + · · · ) (

a3a4a5z
7 + · · · ) .

(30)

This computation required about 2.5 minutes of CPU time in total, which is a
dramatic reduction from that required for the brute force algorithm described
in the preceding section. Since the latter factor in Eq. (30) is asymmetric with
those of ai, we adopt the former factor as the defining polynomial in z = 4SR
for cyclic pentagons. Converting it into the requisite expression by elementary
symmetric functions, with

√
s5 = a1a2a3a4a5, we obtain the final result:

ϕ
(+)
5 (z) = z7 − 2s3z

5 − (s21 + 4s2)
√

s5z
4 + (s23 − s21s4 − 14s1s5)z3

−(s21s3 + 8s1s4 − 4s2s3 + 24s5)
√

s5z
2

−(s21s2 − 4s22 + 2s1s3 + 16s4)s5z
−(s31 − 4s1s2 + 8s3)s5

√
s5 = 0 (18 terms).

(31)

If we consider the equilateral case, by putting ∀ai := 1, Eq. (31) is reduced to

(z2 − 5z − 5)(z + 1)5 = 0, (32)

each factor of which respectively corresponds to the cases of a regular penta-
gon/pentagram and a (five degenerated) regular triangle, similarly to Eq. (25).

For the case of a non-convex quadrilateral, we compute the resultant of
another pair of F (−)(d) and f (−)(z, d), and obtain a similar result ϕ(−)(z), where
we have ϕ(−)(z) = −ϕ(+)(−z). If we put ∀ai := 1, the equation ϕ(−)(z) = 0 is
reduced to

(z2 + 5z − 5)(z − 1)5 = 0, (33)

which means that we can regard the roots of ϕ(+)(z) = 0 and ϕ(−)(z) = 0 as
equivalent up to the signs of the area S5. Therefore, combining the two polyno-
mials ϕ(+)(z) and ϕ(−)(z), we obtain another formula in z = 4SR, as described
below.

Theorem 3. The defining polynomial in z = 4SR for cyclic pentagons is
given by

ϕ5(z) = |z|7 − 2s3|z|5 − (s21 + 4s2)
√

s5|z|4 + (s23 − s21s4 − 14s1s5)|z|3
−(s21s3 + 8s1s4 − 4s2s3 + 24s5)

√
s5|z|2

−(s21s2 − 4s22 + 2s1s3 + 16s4)s5|z|
−(s31 − 4s1s2 + 8s3)s5

√
s5 = 0 (18 terms).

(34)
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This equation corresponds to the extension of Eq. (15) for n = 3.
It is straightforward to rewrite Eq. (34) as a polynomial equation in Z = z2 =

(4SR)2. We separate the equation ϕ5(z) = 0 into the terms with even degrees
and odd degrees:

|z| (z6 − 2s3z
4 + · · · ) = (s21+4s2)

√
s5z

4+ · · ·+(s31−4s1s2+8s3)s5
√

s5. (35)

Squaring both sides and substituting z2 = Z, we obtain the same result as
Eq. (24), which is a polynomial in Z = (4SR)2 with degree 7. Hence, we believe
that the correctness of the two algorithms proposed here is confirmed by these
results.
Remark 2. The paper by Svrtan et al. [7] is also based on a similar approach,
but it does not specify the final step of the computation of the resultant, which
should correspond to Eq. (30), nor does it refer to the existence of the defining
polynomial in z = 4SR. Therefore, we consider that our computation of ψ5(Z)
makes corrections to theirs, and our result ϕ5(z) is an original discovery, which
has been unknown so far.

4 A Numerical Example

We consider the problem where the lengths of the sides are given as a1 = 5,
a2 = 6, a3 = 7, a4 = 8, a5 = 9. The formula for the area (x = 16S2) and the
circumradius (y = R2) lead to the following equations:

{
x7 − 145377x6 + · · · − 1360512306447018480615234375 = 0,

5810802381759375y7 − · · · − 11948427342082473984000000 = 0.
(36)

These equations are easily solved using a conventional numerical computation
library, and we obtain five real roots of each equation. However, the correspon-
dence between the area and circumradius is not clear, and we cannot even deter-
mine which root is a case of a convex or non-convex pentagon.

On the other hand, applying the set {5, 6, 7, 8, 9} to the integrated formula
(34), we obtain the equation in z, which also yields five real roots:

z7 − 2356490z5 − · · · − 1672586387136000000 = 0. (37)

Since we have |z| =
√

xy = 4|S|R, we check all 125(= 53) combinations of
roots {xi, yj , zk}, and pick those that satisfy the condition

∣∣∣∣|Si| · Rj − |zk|
4

∣∣∣∣ < 10−6. (38)

As a result, the following pairs are selected:

[|Si|, Rj ] = [10.47633365, 6.035515309],
[16.78535280, 4.505907128],
[23.09053708, 4.602116876],
[30.69973405, 4.802909240],
[82.47639518, 6.019756631],

(39)

in which the last pair indicates the case where the pentagon is convex.
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5 Formulae for Cyclic Hexagons

The degrees of defining polynomials in terms of area and circumradius are given
by the theorem of Robbins [6]. Let

km :=
2m + 1

2

(
2m

m

)
− 22m−1 =

m−1∑

j=0

(m − j)

(
2m + 1

j

)
; (40)

that is, let ki := 1, 7, 38, 187, 874, . . . (i = 1, 2, 3, 4, . . .). Then, we have

– The degrees in x (= 16S2) and y (= R2) for (2m + 1)-gon are km.
– The degrees in x and y for (2m + 2)-gon are 2km, where polynomials are

factored into the product of two polynomials each with degree km.

It is conjectured that the integrated formula has the same degree km or 2km as
Z = (4SR)2 in Z

[
a2
1, . . . , a

2
n

]
[Z]. Our next goal is the case of cyclic hexagons;

that is, m = 2, k2 = 7, and 2k2 = 14. On the analogy of the formulae for quadri-
laterals in Eq. (10), the integrated formula in Z = (4SR)2 for cyclic hexagons
should have the following structure:

Z14 + · · · (Z [s1, . . . , s5, s6] [Z])
= (Z7 + · · · )(Z7 + · · · ) (Z

[
s1, . . . , s5,

√
s6

]
[Z]),

(41)

where s1 = a2
1 + · · · + a2

6, . . . ,
√

s6 = a1a2a3a4a5a6. The latter two factors
with degree 7 are transformed into each other by replacing

√
s6 with −√

s6.

5.1 Brute Force Algorithm

The circumradius formula is factored over the coefficients of ai [3]:

ΦR(a1, . . . , a6; y)
:= B14y

14 + · · · + B1y + B0 (497,417 terms) (Bi ∈ Z[a2
1, . . . , a

2
6])

= Φ
(+)
R (ai; y) · Φ

(−)
R (ai; y) (each has degree 7 and 19,449 terms).

(42)

This is rewritten into the following expression by the elementary symmetric
functions:

Φ̃
(+)
R (s1, . . . , s5,

√
s6; y) = B̃7y

7 + B̃6y
6 + · · · + B̃1y + B̃0 (224 terms). (43)

We discard the non-convex cases, because they are easily obtained by

Φ̃
(−)
R (s1, . . . , s5,

√
s6; y) = Φ̃

(+)
R (s1, . . . , s5,−√

s6; y). (44)

On the other hand, the area formula is straightforwardly given by Robbins
[6]. Convex cases are represented by elementary symmetric functions as

Φ̃
(+)
S (s1, . . . , s5,

√
s6; x) = x7 + C̃6x

6 + · · · + C̃1x + C̃0 (282 terms), (45)

and non-convex cases are given by replacing
√

s6 with −√
s6.
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Computing the resultant from Φ̃
(+)
S (x) and Φ̃

(+)
R (y) through Z = xy, we have

obtained a polynomial of degree 49 in Z with 52, 490, 772 terms (almost 3.0 GB),
which corresponds to Eq. (23). This polynomial should be factored again into
two polynomials of degrees 42 and 7, respectively, in Z, but it is impractical to
actually execute this operation.

5.2 Stepwise Algorithm

Firstly, we should note that in this approach, computations proceed in the coef-
ficient Z [a1, . . . , a6], and we cannot take advantage of a simpler expression using
elementary symmetric functions.

By trial and error, we found that the given cyclic hexagon with side lengths
{a1, . . . , a6} should be divided by a diagonal of length d, into two quadrilaterals
of sides {a1, a2, a3, d} and {a4, a5, a6, d}. This approach gives a resultant with
degree 14 in Z = (4SR)2. On the contrary, if we divide the cyclic hexagon into
a pentagon {a1, a2, a3, a4, d} and a triangle {a5, a6, d}, the resultant should be
that with degree 49 in Z, which seems hardly feasible.

Similarly to Eq. (27), we have Brahmagupta’s formulae H
(+)
4 (a1, a2, a3, d; y),

H
(−)
4 (a1, a2, a3, d; y), H

(+)
4 (a4, a5, a6, d; y), and H

(−)
4 (a4, a5, a6, d; y) for quadri-

laterals with sides {a1, a2, a3, d} and {a4, a5, a6, d} and the common radius
y = R2.

Next, we eliminate y using the resultant and obtain two types of defining
polynomials in the diagonal d with degree 7:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F (+)(d) := Resy(H
(+)
4 (a1, a2, a3, d; y),H(+)

4 (a4, a5, a6, d; y))
= (a1a2a3 − a4a5a6)d7 + · · · ,

F (−)(d) := Resy(H
(+)
4 (a1, a2, a3, d; y),H(−)

4 (a4, a5, a6, d; y))
= (a1a2a3 + a4a5a6)d7 + · · · .

(46)

We should note that other combinations of polynomial H
(±)
4 eventually result

in one of the above.
Let the relation of the areas of the hexagon and two quadrilaterals be S6 =

S41 + S42. Using the common circumradius R, we let Z6 = (4S6R)2, Z41 =
(4S41R)2, and Z42 = (4S42R)2. Here, we have convex and non-convex cases for
each quadrilateral according to Eqs. (4) and (6):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z
(+)
41 = (a1a2 + a3d)(a2a3 + a1d)(a1a3 + a2d),

Z
(−)
41 = (a1a2 − a3d)(a2a3 − a1d)(a1a3 − a2d),

Z
(+)
42 = (a4a5 + a6d)(a5a6 + a4d)(a4a6 + a5d),

Z
(−)
42 = (a4a5 − a6d)(a5a6 − a4d)(a4a6 − a5d).

(47)

The relations among Z6, Z41, and Z42 are given by the following computation:

Z6 = 16S2
6R2 = 16(S41 + S42)2R2

= 16S2
41R

2 + 16S42R
2 + 32S41S42R

2

= Z41 + Z42 + 2(4S41R)(4S42R).
(48)
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Moving the terms in Z41 and Z42, and squaring both sides, we obtain

(Z6 − (Z41 + Z42))
2 = 4(4S41R)2(4S42R)2 = 4Z41Z42, (49)

which gives the defining polynomial of Z6 as

Z2
6 − 2(Z41 + Z42)Z6 + (Z41 − Z42)2 = 0. (50)

Even though we have four patterns of combinations between Z
(±)
41 and Z

(±)
42 , we

have found that only the following two combinations give independent definitions
of Z6:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G(+)(Z6, d) := Z2
6 − 2(Z(+)

41 + Z
(+)
42 )Z6 + (Z(+)

41 − Z
(+)
42 )2

= (a1a2a3 − a4a5a6)2d6 + · · · ,

G(−)(Z6, d) := Z2
6 − 2(Z(+)

41 + Z
(−)
42 )Z6 + (Z(+)

41 − Z
(−)
42 )2

= (a1a2a3 + a4a5a6)2d6 + · · · .

(51)

Finally, we eliminate the diagonal d from F (+)(d) and G(+)(Z6, d) by com-
puting the resultant, and obtain the polynomial equation of Z6 as

P (+)(Z6) := Resd(F (+)(d), G(+)(Z6, d))
=

(
Z7
6 + · · · ) (

(a1a2a3 − a4a5a6)3Z7
6 + · · · ) .

(52)

The polynomial P (+)(Z6) itself has 4, 276, 908 terms, and this factorization step
required about 11 days of CPU time (8 days of elapsed time) in our computa-
tional environment. Discarding the second factor, which is not symmetric, we
convert the first factor (44,926 terms) into the requisite expression by elemen-
tary symmetric functions and obtain the results described below. Hereafter, we
rewrite Z6 as Z to unify the notation.

Theorem 4. One of the defining polynomials of Z = (4SR)2 for cyclic hexagons
has the following form:

ψ
(+)
6 (Z) = Z7 − (4s3 + 28

√
s6)Z6 + (· · · )Z5 + · · · + (· · · )Z

−(s31 − 4s1s2 + 8s3 − 16
√

s6)2

×(s35 − 4
√

s6
5 + (s31 − 4s1s2 + 4s3)

√
s6

4

+(−s21s4 + 2s1s5 + 4s2s4 − s23)
√

s6
3 + (s1s3s5 − 4s4s5)

√
s6

2

−s2s
2
5

√
s6) (327 terms).

(53)

Corollary 3. If we replace
√

s6 by −√
s6 in ψ

(+)
6 (Z), we obtain the other poly-

nomial ψ
(−)
6 (Z), which should be deduced from Resd(F (−)(d), G(−)(Z, d)).

Corollary 4. If we substitute
√

s6 by 0 in ψ
(+)
6 (Z) and ψ

(−)
6 (Z), we obtain

the pentagon formula ψ5(Z) in Eq. (24). Therefore, these three polynomials are
represented uniformly through the crossing parity ε.



106 S. Moritsugu

If we consider the equilateral case, by putting ∀ai := 1, equation ψ
(+)
6 (Z) = 0 is

reduced to
Z6(Z − 108) = 0, (54)

each factor of which respectively corresponds to the degenerated case with S = 0
(6-fold) and the case of a regular hexagon. If we put ∀ai := 1 in the equation
ψ
(−)
6 (Z) = 0, we obtain

(Z − 4)(Z − 8)6 = 0, (55)

each factor of which respectively corresponds to a regular triangle and a regular
square (6-fold). Therefore, we conclude that these polynomials ϕ5(z), ψ5(Z),
ψ
(+)
6 (Z), and ψ

(−)
6 (Z) are the integrated formulae for cyclic pentagons and

hexagons.

6 Concluding Remarks

We have conducted a detailed investigation into the relations among several
geometric quantities of cyclic pentagons and hexagons, and succeeded in com-
puting integrated formulae of the area and circumradius. Theorems 2 and 4 give
polynomial equations in Z = (4SR)2 for n = 5, 6, with the structure

Z7 − (4s3 − 28 ε
√

s6)Z6 + · · · = 0, (56)

which is an extension of Eq. (13) for n = 3, 4. A polynomial in (4SR)2 for
pentagons such as Eq. (24) was previously described by Svrtan et al. [7], but
their result seems to contain errors somehow. Hence, we consider that our result
for cyclic pentagons represents a correction to theirs. In particular, we believe
that the hexagon formula shown above has not been shown elsewhere.

Furthermore, we have also derived a pentagon formula in z = 4SR, as The-
orem 3 (Eq. (34)):

|z|7 − 2s3|z|5 − (s21 + 4s2)
√

s5|z|4 + · · · = 0,

which is a straightforward extension of case n = 3, Eq. (15). To the best of our
knowledge, there exist no other reports that discuss the defining polynomial in
z = 4SR for cyclic n-gons with odd number n.

Even though we have obtained the specific formulae above, which have been
unknown so far, the algorithm is rather näıve and requires too much CPU
time for computing the resultant and factorization. Elimination by resultants
inevitably yields extraneous factors, and removing them is often a heavy task. If
we can analyze the geometric meaning of Eq. (56), we may consider a construc-
tive and efficient algorithm such as that reported by Maley et al. [2] for area
formulae. This should be clarified in a future study.

If we extend our results to the cases n = 7, 8, polynomial equations with
degree 38 in x = (4S)2, y = R2, and Z = xy will appear. For the case of
heptagons (n = 7), a polynomial equation in z = 4SR with degree 38 will also
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exist. The present status of computations is as follows. The area formulae with
elementary symmetric functions are computed according to Maley et al. [2]:

Φ̃
(7)
S (x) = x38 + C̃37x

37 + · · · + C̃1x + C̃0 (955,641 terms),

= 0
(
x = (4S)2, C̃i ∈ Z[s1, . . . , s7]

)
,

Φ̃
(8+)
S (x) = x38 + D̃37x

37 + · · · + D̃1x + D̃0 (3,248,266 terms),

= 0
(
x = (4S)2, D̃i ∈ Z[s1, . . . , s7,

√
s8]

)
.

(57)

If we replace
√

s8 by −√
s8 in Φ̃

(8+)
S (x), we obtain Φ̃

(8−)
S (x). We note also that

substituting
√

s8 by 0 in Φ̃
(8+)
S (x) and Φ̃

(8−)
S (x) gives Φ̃

(7)
S (x).

The circumradius formula for cyclic heptagons has been computed by the
author [3] with the coefficients in a2

i :

Φ
(7)
R (y) = B38y

38 + · · · + B1y + B0 (337,550,051 terms),
= 0

(
y = R2, Bi ∈ Z[a2

1, . . . , a
2
7]

)
.

(58)

Since each coefficient is too large, it seems almost impossible to convert it into
the requisite expression by elementary symmetric functions. The size of the cir-
cumradius formulae for cyclic octagons Φ

(8+)
R (y) and Φ

(8−)
R (y) should be larger

than Φ
(7)
R (y), and they seem much harder to compute.

Therefore, direct computation of the integrated formula in Z = (4SR)2 for
n = 7, 8 seems impossible for the moment, because of the exploding size of these
polynomials. Hence, the existence of polynomial equations in Z and z with degree
38 for cyclic heptagons and octagons is still a conjecture.
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Abstract. The paper deals with the extension of the well-known
Simson–Wallace theorem on skew quadrilaterals in E3. We investigate
locus of a point P whose orthogonal projections K,L,M,N onto the
sides of a skew quadrilateral form a tetrahedron of a constant volume s.
It is shown that the locus is a cubic surface G.

Further, some special cases of the locus for s = 0 are described, where
the cubic surface is decomposed into a plane and a one-sheet hyperboloid
or into three planes. The conjecture is stated that these cases are the only
cases of reducibility of G.

Keywords: Simson–Wallace locus · Skew quadrilaterals · Elimination ·
Reducibility of a cubic surface

1 Introduction

The well-known Simson–Wallace theorem reads [3], Fig. 1:

Let K,L,M be orthogonal projections of a point P onto the sides of a triangle
ABC. Then the locus of P such that K,L,M are collinear, is the circumcircle
of ABC.

This theorem has several generalizations [4–10]. A generalization of the Simson–
Wallace theorem which is by [2] ascribed to J. D. Gergonne is as follows, Fig. 2:

Let K,L,M be orthogonal projections of a point P onto the sides of a triangle
ABC. Then the locus of P such that the area of the triangle KLM is constant,
is the circle through P which is concentric with the circumcircle of ABC.

If we consider a tetrahedron ABCD instead of a triangle ABC then we can
investigate the locus of points P ∈ E3 whose orthogonal projections onto the
faces of ABCD are coplanar or form a tetrahedron of a constant volume. This
was studied in [6–10].

In this paper we extend the Gergonne’s generalization of SW theorem on
skew quadrilaterals in Euclidean space E3. We search for the locus of a point P

c© Springer International Publishing Switzerland 2015
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Fig. 1. Simson–Wallace theorem — points K,L,M are collinear

whose orthogonal projections K,L,M,N onto the sides on a skew quadrilateral
ABCD form a tetrahedron of a constant volume s. See [6,7], where the case
s = 0 was investigated and a necessary condition for the points K,L,M,N to
be coplanar was stated. We’ll find that the locus is a cubic surface G (2). It
is shown that P ∈ G is a necessary and sufficient condition for a tetrahedron
KLMN to be of the constant volume.

Further the reducibility of the locus for the volume s = 0 is studied with
respect to a given skew quadrilateral. We conjecture that the only cases when
the cubic surface G is reducible occur if two pairs of sides of a quadrilateral
ABCD (either adjacent or opposite) are of equal lengths.

Special attention is paid to the choice of a coordinate system so that we can
show that the surface is really decomposable.

By searching for the locus and its properties we apply computer aided coordi-
nate method based on Groebner bases computation and Wu–Ritt method using
the software CoCoA [1] and the Epsilon library [11–13].

2 Extension on Skew Quadrilaterals

Consider a skew quadrilateral ABCD in E3 and let K,L,M,N be orthogonal
projections of a point P onto the sides of ABCD. We search for the locus of
P such that the tetrahedron KLMN has a constant volume. We’ll prove the
theorem:

Theorem 1. Let K,L,M,N be orthogonal projections of a point P onto the
sides AB, BC, CD, AD of a skew quadrilateral ABCD respectively. Then the
locus of P such that the tetrahedron KLMN has a constant volume s is the cubic
surface G (2).
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Fig. 2. Gergonne’s generalization of SW theorem — �KLM has a constant area

Proof. Place a skew quadrilateral ABCD into a rectangular coordinate system
in the following way A = (−a, 0, 0), B = (b, c, d), C = (a, 0, 0), D = (e, f, d) and
P = (p, q, r), Fig. 3.

Note that both diagonals AC and BD are parallel to the xy coordinate plane.
This choice of the coordinate system enables to execute the decomposition of
the locus into a plane and hyperboloid or into three planes without the use of
radicals.

Further denote K = (k1, k2, k3), L = (l1, l2, l3), M = (m1,m2,m3), N =
(n1, n2, n3) and P = (p, q, r). Suppose that ad(c−f) �= 0 since otherwise ABCD
is planar. Then:

Fig. 3. SW extension on a skew quadrilateral ABCD — K,L,M,N are coplanar
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K ∈ AB ⇔ h1 := dk2 − ck3 = 0, h2 := d(k1 + a) − (a + b)k3 = 0,
h3 := c(k1 + a) − (a + b)k2 = 0,
PK ⊥ AB ⇔ h4 := (p − k1)(a + b) + (q − k2)c + (r − k3)d = 0,
L ∈ BC ⇔ h5 := dl2 − cl3 = 0 h6 := d(l1 − a) − (b − a)l3 = 0,
h7 := c(l1 − a) − (b − a)l2 = 0,
PL ⊥ BC ⇔ h8 := (p − l1)(b − a) + (q − l2)c + (r − l3)d = 0,
M ∈ CD ⇔ h9 := fm2 − cm3 = 0, h10 := f(m1 − a) − (e − a)m3 = 0,
h11 := c(m1 − a) − (e − a)m2 = 0,
PM ⊥ BD ⇔ h12 := (p − m1)(e − a) + (q − m2)c + (r − m3)f = 0,

N ∈ AD ⇔ h13 := fn2 − cn3 = 0, h14 := f(n1 + a) − (e + a)n3 = 0,
h15 := c(n1 + a) − (e + a)n2 = 0,

PN ⊥ AD ⇔ h16 := (p − n1)(e + a) + (q − n2)c + (r − n3)f = 0.

Volume of KLMN = s ⇔

h17 :=

∣∣∣∣∣∣∣∣

k1 k2 k3, 1
l1 l2 l3 1
m1 m2 m3 1
n1 n2 n3 1

∣∣∣∣∣∣∣∣
− 6s = 0. (1)

First suppose that the locus point P fulfills the conditions h1 = 0, h2 = 0, . . . ,
h17 = 0. We will find the locus equation.

Solving the system h1 = 0, h2 = 0, h3 = 0 and h4 = 0 we get

k1 = (p(a + b)2 + qc(a + b) + rd(a + b) − a(c2 + d2))/((a + b)2 + c2 + d2),
k2 = (pc(a + b) + qc2 + rcd + ac(a + b))/((a + b)2 + c2 + d2),
k3 = (pd(a + b) + qcd + rd2 + ad(a + b))/((a + b)2 + c2 + d2).

Similarly,
l1 = (p(a − b)2 − qc(a − b) − rd(a − b) + a(c2 + d2))/((a − b)2 + c2 + d2),
l2 = (−pc(a − b) + qc2 + rcd + ac(a − b))/((a − b)2 + c2 + d2),
l3 = (−pd(a − b) + qcd + rd2 + ad(a − b))/((a − b)2 + c2 + d2),
m1 = (p(a − e)2 − qf(a − e) − rd(a − e) + a(d2 + f2))/((a − e)2 + d2 + f2),
m2 = (−pf(a − e) + qf2 + rdf + af(a − e))/((a − e)2 + d2 + f2),
m3 = (−pd(a − e) + qdf + rd2 + ad(a − e))/((a − e)2 + d2 + f2),
n1 = (p(a + e)2 + qf(a + e) + rd(a + e) − a(d2 + f2))/((a + e)2 + d2 + f2),
n2 = (pf(a + e) + qf2 + rdf + af(a + e))/((a + e)2 + d2 + f2),
n3 = (pd(a + e) + qdf + rd2 + ad(a + e))/((a + e)2 + d2 + f2).

Substitution of k1, k2, . . . , n3 into (1) gives the equation of a cubic surface

G := a2d(f − c)H + sQ = 0, (2)

where

H = p3(c2(e2−a2)−d2(b2−e2)+f2(a2−b2))+2p2q(ef(c2+d2)−bc(d2+f2))+
2p2rd(e(c2+d2)−b(d2+f2))+pq2(f2(a2−b2+d2)−c2(a2+d2−e2))+2pqrd(f(a2−
b2 + c2 + d2)− c(a2 + d2 − e2 + f2))− pr2d2(b2 − c2 − e2 + f2)+2q3cf(ce− bf)+
2q2rd(ce(c + 2f) − bf(2c + f)) + 2qr2d2(e(2c + f) − b(c + 2f)) + 2r3d3(e − b) +
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p2(e(c2+d2)(a2−d2−e2−f2)−b(d2+f2)(a2−b2−c2−d2))+pq(f(a2−d2−e2−
f2)(a2−b2+c2+d2)−c(a2+d2−e2+f2)(a2−b2−c2−d2))+2prd(c2(a2−e2)+
d2(b2−e2)−f2(a2−b2))+q2(c(ce−2bf)(a2−d2−e2−f2)+f(2ce−bf)(a2−b2−
c2−d2))+2qrd((ce−bf +ef)(a2−b2−c2−d2)−(bc+bf −ce)(a2−d2−e2−f2))+
r2d2((e− 2b)(a2 − d2 − e2 − f2)+ (2e− b)(a2 − b2 − c2 − d2))+ pa2(c2(a2 − e2)+
d2(b2−e2)−f2(a2−b2))+q(2a2(bc(d2+f2)−ef(c2+d2))+(ce−bf)(a2−d2−e2−
f2)(a2−b2−c2−d2))+rd((e−b)(a2−d2−e2−f2)(a2−b2−c2−d2)+2a2(b(d2+
f2)−e(c2+d2)))+a2(b(d2+f2)(a2−b2−c2−d2)−e(c2+d2)(a2−d2−e2−f2))

and

Q = 3
2 ((a−e)2+d2+f2)((a+e)2+d2+f2)((a+b)2+c2+d2)((a−b)2+c2+d2).

Remark 1. Note that Q in (2) is a constant which does not depend on p, q, r.

Remark 2. Realize that if s = 0 then the points K,L,M,N are coplanar and
the locus is the surface H = 0.

Now we will prove the opposite implication. We want to show that if P ∈ G
then the volume of the tetrahedron KLMN equals s.

The following proof is based on the well-known remainder formula (3) for
successive pseudo-divisions of the conclusion polynomial g with respect to a
triangular form f1, f2, . . . , fr:

Is11 Is22 · · · Isrr g = Q1f1 + Q2f2 + . . . + Qrfr + R, (3)

where R is the pseudo-remainder, and Ik are the leading coefficients of fk in xk

[2,14].
Denote

P := {h1, h2, . . . , h16},
X := [f, e, d, c, b, a, r, q, p, s, k1, k2, k3, l1, l2, l3,m1,m2,m3, n1, n2, n3].

In Epsilon we first compute the characteristic set of P ∪ {G} with variable
ordering X

with(charsets);
E:=charset(P union {G}),X)

Then we express the pseudo-remainder R of h17 and get R = 0. Searching
for initial polynomials by iniset(E,X) gives the set

I1 = a + b,
I1 = a − b,
I3 = a + e,
I4 = a − e,
I5 = (a + b)2 + c2 + d2,
I6 = (a − b)2 + c2 + d2,
I7 = (a − e)2 + d2 + f2,
I8 = (a + e)2 + d2 + f2.
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To prove the theorem we have to show that all initial polynomials I1, I2, . . . I8
are non-zero. Whereas the polynomials I5, I6, I7, I8 are obviously non-zero, the
polynomials I1, I2, I3, I4 seem to be redundant. For instance, to get rid of I1 =
a + b we add it to the set of polynomials P ∪ {G} and repeat the procedure. We
get R = 0 with initial polynomials {c, f, c2 + d2, d2 + f2, d2 + c2 + 4b2, d2 + f2 +
e2 + 2be + b2, d2 + f2 − 2be + e2 + b2}.

Next we add c to the set of polynomials as above and get

{d, f, d2 + 4b2, d2 + f2, d2 + f2 + e2 + 2be + b2, d2 + f2 − 2be + e2 + b2},

and in the end after adding f to the set of polynomials we obtain the set

{d, d2 + 4b2, d2 + e2 − 2be + b2, d2 + e2 + 2be + b2}

which consists of non-zero polynomials. Now we have to add f to the set {G, a+b}
etc. with the same result. Similarly we proceed with other polynomials I2, . . . , I8.
The theorem is proved. �

Remark 3. Notice the ordering of variables f, e, d, c, b, a, r, q, p, s, .... which was
selected in this way to avoid more complicated subsidiary conditions.

3 Special Cases of the Locus

First let us look at some examples.

Example 1. For a = 2, b = 0, c = 2, d = 2, e = 0, f = −2, s = 1 we get a cubic
surface Fig. 4.

16pqr − 16pq + 81 = 0,

Fig. 4. Cubic surface 16pqr − 16pq + 81 = 0 with s = 1
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Example 2. For a skew quadrilateral ABCD with a = 1, b = 1, c = 1, d = 1,
e = −1, f = −1 and s = 0 we get a cubic surface

2p2r + 2pqr − q2r + r3 − 2p2 − 2pq + q2 − 3r2 + 2 = 0

which decomposes into a plane and a one–sheet hyperboloid, Fig. 5

(r − 1)(2p2 + 2pq − q2 + r2 − 2r − 2) = 0.

Fig. 5. Cubic surface is decomposed into a plane and one–sheet hyperboloid

Note that two pairs of opposite sides AB,CD and BC,AD are of equal
lengths.

Example 3. For a skew quadrilateral ABCD with a = 1, b = 0, c = 1, d = 1,
e = 0, f = −1 and s = 0 we get a cubic surface

pq(r − 1
2
) = 0

which decomposes into three planes, Fig. 6. Note that all four sides of the quadri-
lateral ABCD are of equal length.

Now we investigate properties which are related to the examples above. Sup-
pose that s = 0. First we’ll be concerned with the case when a cubic surface
decomposes into a plane and a hyperboloid. We’ll prove the theorem:

Theorem 2. Let ABCD be a skew quadrilateral with two pairs of adjacent sides
of equal lengths m and n, m �= n. Then the locus H (2) decomposes into a plane
which bisects ABCD and a one-sheet hyperboloid.
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Fig. 6. Cubic surface is decomposed into three mutually orthogonal planes

Proof. Let |AB| = |BC| and |CD| = |AD|. Then for the vertices A = (−a, 0, 0),
B = (b, c, d), C = (a, 0, 0) and D = (e, f, d) the relations

b = 0 and e = 0

hold. Substitute these two values into H = 0 in (2)

Use R::=Q[a,b,c,d,e,f,p,q,r];
Subst(P,[[b,0],[e,0]]);

We get
p · S = 0, (4)

where

S := p2a2(c+ f)+ q2(c+ f)(a2 + d2)− r2d2(c+ f)+2qrd(a2 + d2 − cf)+ q(a4 −
a2(c + f)2 − (d2 + f2)(c2 + d2)) − 2a2rd(c + f) − a4(c + f).

We see that (4) is the equation of a cubic surface which decomposes into a plane
p = 0 which bisects ABCD, and a quadric S = 0. Let us explore the properties
of the quadric S = 0. The discriminant Δ of S equals

Δ =
1
4
a2(c + f)2d2(a2 + c2 + d2)2(a2 + d2 + f2)2

and the chief minor δ

δ = −a2(c + f)d2(a2 + c2 + d2)(a2 + d2 + f2).

Suppose that c + f �= 0. Then S is a regular central quadric with three non zero
eigenvalues λ1, λ2 and λ3 which do not have the same sign. Actually

λ1 = a2(c + f)
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and λ2 and λ3 are solutions of

λ2 − λa2(c + f) − d2(a2 + c2 + d2)(a2 + d2 + f2) = 0.

By the formulas of Viète λ2 · λ3 < 0, hence λ2 and λ3 have opposite signs.
Taking into account that λ1 and Δ/δ have opposite signs, the quadric S must
be a one–sheet hyperboloid. The theorem is proved. �

In the Theorem 2 we considered c + f �= 0. Suppose now that c + f = 0 and
b = 0, e = 0. Then

|AB| = |BC| = |CD| = |AD|,
i.e., the skew quadrilateral ABCD is equilateral and vice versa. For equilateral
skew quadrilaterals the following theorem holds:

Theorem 3. If a skew quadrilateral ABCD is equilateral then the locus H (2)
decomposes into three mutually orthogonal planes.

Proof. Substitution b = 0, e = 0 and f = −c into H = 0 in (2) gives

pq(a2 − c2 − d2 + 2dr) = 0. (5)

The cubic H = 0 decomposes by (5) into three planes p = 0, q = 0 and
a2 − c2 − d2 + 2dr = 0 which are mutually orthogonal. �

Remark 4. This theorem can also be proved classically using the following
consideration. A point P of the plane which bisects ABCD (e.g. the plane
through BD which is orthogonal to AC) obeys the condition that its projec-
tions K,L,M,N to the sides of ABCD are coplanar since the segments KL and
MN are parallel to AC and thus lie in a plane. The plane through AC which
is orthogonal to BD has the same property. As the resulting surface is a cubic
then the third plane remains.

The following theorem describes the case when two pairs of opposite sides of
a skew quadrilateral are of equal lengths.

Theorem 4. Let ABCD be a skew quadrilateral with two pairs of opposite sides
of equal lengths m and n, m �= n. Then the locus H (2) decomposes into a plane
and a one-sheet hyperboloid.

Suppose that two pairs of opposite sides of ABCD are of equal lengths, i.e.
|AB| = |CD| and |BC| = |DA|. Then

b + e = 0 and c2 − f2 = 0.

It is obvious that c − f = 0 leads to a planar ABCD and we can rule it out.
Substitution of e = −b and f = −c into H = 0 (2) gives

(a2 − b2 − c2 − d2 + 2dr) · T = 0, (6)
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where

T = p2b(c2 + d2) − bc2q2 + bd2r2 + pqc(a2 − b2 + c2 + d2) + rbd(a2 − b2 − c2 −
d2) − a2b(c2 + d2).

Thus the cubic surface H decomposes by (6) into a plane a2−b2−c2−d2+2dr = 0
and a quadric T = 0. The determinant Δ of T equals

Δ =
1
16

b2c2d2((a + b)2 + c2 + d2)2((a − b)2 + c2 + d2)2

and the chief minor δ

δ = −1
4
bc2d2((a − b)2 + c2 + d2)((a + b)2 + c2 + d2).

If b �= 0, c �= 0, d �= 0 then T is a regular central quadric with three non zero
eigenvalues λ1, λ2 and λ3 which do not have the same sign. Actually

λ1 = bd2

and λ2 and λ3 are solutions of

4λ2 − 4bd2λ − c2((a − b)2 + c2 + d2)((a + b)2 + c2 + d2) = 0.

By the formulas of Viète λ2 · λ3 < 0 hence sgnλ2 �= sgnλ3. Taking into account
that λ1 and Δ/δ have opposite signs, the quadric T must be a one–sheet hyper-
boloid. The theorem is proved. �

Remark 5. The coordinate system which was used in the proof of the Theorems
2, 3, 4 is very specific. In this coordinate system the diagonal AC is in the x-axis
and the second diagonal BD is parallel to coordinate plane xy. This enables to
execute the decomposition of a cubic into a plane and a hyperboloid or into three
planes. In general such decomposition is quite difficult because of the appearance
of radicals.

Remark 6. It seems that the cases above are the only cases when the cubic
surface H decomposes either into a plane and one–sheet hyperboloid or into
three planes.

On the basis of this remark we can state a conjecture:

Conjecture 1. The Simson–Wallace locus which is a cubic surface H (2) is decom-
posable iff two pairs of sides of a skew quadrilateral ABCD are of equal lengths.

Concluding Remarks

For the construction of the generalization above it is not essential that the four
edges form a skew quadrilateral. One could treat the case of four skew given lines



118 P. Pech

a, b, c, d and ask for the pedal points K,L,M,N of a point P to be coplanar.
It would be interesting to know if it makes a difference whether the given lines
are generators of a regulus or not. An open question is whether the cases from
the Theorems 2, 3 and 4 are all the cases when we get a reducible cubic or not?
Finally, the extension of the Simson–Wallace theorem on skew closed (n+1)-gons
in En appears to be feasible.

Acknowledgements. The author wish to thank the referees for their valuable and
helpful suggestions.
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Abstract. The I2GATP format is an extension of the I2G (Intergeo)
common format aimed to support conjectures and proofs produced by
geometric automatic theorem provers. The goal in building such a format
is to provide a communication channel between different tools from the
field of geometry, allowing linking such tools, as well as allowing the use
of geometric knowledge kept in different repositories.

In this article we report the current status of the I2GATP format and
its accompanying components: the XSD files with the specification of the
format; the C++ library to create the container with all the information
regarding a geometric problem or to break it into its components; the
filters to convert from/to geometric tools formats to/from I2GATP; the
integration with repositories of geometric knowledge.

1 Introduction

The I2GATP format is an extension of the I2G (Intergeo) common format [14]
aimed to support conjectures and proofs produced by geometric automatic the-
orem provers (GATP). As such, it is to be used by tools from the field of geom-
etry, allowing its linking: in geometric knowledge repositories like TGTP [11]
and GeoThms [4] as a common format; in a learning environment for geome-
try like the Web Geometry Laboratory (WGL) [13,15,16] connecting geometric
tools, allowing the formal validation of the geometric constructions and even the
introduction of formals proofs in a learning environment.

In this article we report the current status of the I2GATP format, i.e., the
XSD1 files, the programs to build the container and break it into its compo-
nents; the filters between the format and the different geometric tools; inte-
gration within repositories of geometric knowledge, learning environments for
geometry and other “clients” of geometric knowledge.

The XSD files contain the specification of the format: information.xsd with
the meta-information about a given geometric problem; intergeo.xsd no more
than the XSD for the I2G format; conjecture.xsd with the specification of the
conjectures and proofInfo.xsd with the meta-information about the proof(s).
1 An XML Schema (XSD) file describes the structure of an XML document.

c© Springer International Publishing Switzerland 2015
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All the XML files containing the information about a geometric problem and
also other auxiliary files, are packaged in the I2GATP container, an extension of
the I2G container. The packaging and also the opposite operation of breaking-
off the container into its components is a part of the auxiliary library built to
support the I2GATP format.

To allow the linking of geometric tools, filters from/to the I2GATP need
to be implemented. We begin by considering the filters needed to convert
from/to languages of the GATPs contained in the TGTP repository to/from
the I2GATP format.

Having made the previous steps, one last step is the integration of all this
in repositories of geometric knowledge such as TGTP [11] and GeoThms [4].
It will allow the use of the common format to store all the information regarding
one given geometric problem and then break it into components, e.g., to feed a
conjecture to a given GATP. In the opposite direction, we can build the I2GATP
container for any problem contained in the TGTP repository.

From the previous report about this project [12], the XSD and the container
specifications have been improved; the open source library was built and pro-
vides now some of the filters needed alongside with the programs to manage the
container file; and the integration with the TGTP system is underway.

Related Work. The geometry description language (GDL) propose by Chen [1]
aims to convert a natural (mathematical) language description of geometric prob-
lems, as found in the literature, to an equivalente in a formal language that can
be automatically processed and convert to system-native representations. The
interconections between this work and ours has to be explored.

Paper Overview. In Sect. 2 the overall structure and the status of the format
are described. In Sect. 3 questions about the container are described. In Sect. 4
the implementation of the library and its integration with repositories of geo-
metric problems and other systems are described. Finally in Sect. 5 some final
conclusions are drawn and future work is discussed.

2 The I2GATP Format

The Intergeo (I2G) file format is a specification based on the markup language
XML designed to describe constructions created with a DGS. It is one of the
main results of the intergeo project, an eContentplus European project dedicated
to the sharing of interactive geometry constructions across boundaries. For more
information about the project, visit the site http://i2geo.net and look into the
documentation available there, as well as to [6,7].

An intergeo file takes the form of a compress file package. The main file is
intergeo.xml, which provides a textual description of the construction in three
parts, the elements part describing a (static) initial instance of the configuration,
the constraints part where the geometric relationships are expressed and the
display part where the details regarding the rendering of the construction are
placed. For more details on the file format see [14].

http://i2geo.net
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Fig. 1. Structure of the I2GATP File Format

The I2GATP Format is thought as an extension of the I2G common format
aimed to support conjectures and proofs produced by GATPs and to be used
in repositories of geometric knowledge. Using the information already contained
in the TGTP database as a template, the I2GATP format is a combination of
four XSD files (see Fig. 1): information.xsd; intergeo.xsd; conjecture.xsd
and proofInfo.xsd.

Information. The XSD file information.xsd (see Listing 1.1) contains all the
information regarding the conjecture. This XSD format mirrors the infor-
mation contained in the TGTP database.
For the statement tag the MathML XSD format is used. For the bibrefs tag,
a list of bibliographic references, the file bibtexml.xsd2 from the
project is used. Conversion tools from and to the correspond-
ing XML file are to be used, for example, tex4ht3 and project
converters respectively.

Listing 1.1. Fragment of information.xsd

< !−− information −−>
<xs : e l ement name=” in fo rmat ion ”>
<xs:complexType>
<x s : a l l>
<xs : e l ement r e f=” c on j e c t u r e i d ”/>
<xs : e l ement r e f=” conjecture name ” minOccurs=”0” maxOccurs=”1”/>
<xs : e l ement r e f=” submis s ion date ” minOccurs=”0” maxOccurs=”1”/>
<xs : e l ement r e f=” l e v e l ” minOccurs=”0” maxOccurs=”1”/>
<xs : e l ement r e f=” d e s c r i p t i o n ” minOccurs=”0” maxOccurs=”1”/>
<xs : e l ement r e f=” statement ” minOccurs=”0” maxOccurs=”1” />
<xs : e l ement r e f=” b i b r e f s ” minOccurs=”0” maxOccurs=”1”/>
<xs : e l ement r e f=”keywords” minOccurs=”0” maxOccurs=”1” />

</ x s : a l l>
</xs:complexType>

</ xs : e l ement>

2 http://bibtexml.sourceforge.net/.
3 http://tug.org/applications/tex4ht/.

http://bibtexml.sourceforge.net/
http://tug.org/applications/tex4ht/
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Construction. This is the intergeo.xsd file format from the Intergeo I2G
format.
As we will explain below (see Sect. 4) one of the I2GATP project’s goals
is to provide filters from/to the DGS/GATP (at least the ones presented in
TGTP) languages to/from this format.4

Conjecture. The XSD file conjecture.xsd is a work-in-progress (see List-
ing 1.2). For now, it is a GCLC Area Method related format file, i.e. it is the
translation of conjecture tag of the dtd file geocons.dtd from the XML
suite incorporated in that GATP to the XSD format [2–4,10].

Listing 1.2. Fragment of conjecture.xsd

< !−− conjecture −−>
<xs : e l ement name=” con j e c tu r e ”>

<xs:complexType>
<xs : s equence>

<xs : e l ement r e f=”prove ” minOccurs=”0”/>
</ xs : s equence>
<x s : a t t r i b u t e r e f=”conjName” use=” requ i r ed ”/>

</xs:complexType>
</ xs : e l ement>

<xs : e l ement name=’ prove ’>
<xs:complexType>
<xs : s equence>
<xs : e l ement r e f=’ x s : e q u a l i t y ’ />

</ xs : s equence>
<x s : a t t r i b u t e name=’ p r o o f l im i t ’ type=’ s t r i n g ’ use=’ r equ i r ed ’ />
<x s : a t t r i b u t e name=’ p r o o f l e v e l ’ type=’ s t r i n g ’ use=’ r equ i r ed ’ />

</xs:complexType>
</ xs : e l ement>

<xs : e l ement name=’ equa l i t y ’>
<xs:complexType>
<xs : s equence>
<xs : e l ement r e f=’ x s : e xp r e s s i o n ’ />
<xs : e l ement r e f=’ x s : e xp r e s s i o n ’ />

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>

<xs : e l ement name=’ expr e s s i on ’>
<xs:complexType>
<x s : c h o i c e>
<xs : e l ement r e f=’ xs:number ’ />
<xs : e l ement r e f=’ x s : c on s t an t ’ />
<xs : e l ement r e f=’ xs:sum ’ />
<xs : e l ement r e f=’ xs :mult ’ />
<xs : e l ement r e f=’ x s : f r a c t i o n ’ />
<xs : e l ement r e f=’ x s : s e gmen t r a t i o ’ />
<xs : e l ement r e f=’ x s : s i g n ed a r e a 3 ’ />
<xs : e l ement r e f=’ x s : p y t h a g o r a s d i f f e r e n c e 3 ’ />
<xs : e l ement r e f=’ x s : i d e n t i c a l p o i n t s ’ />
<xs : e l ement r e f=’ x s : c o l l i n e a r ’ />

</ x s : c h o i c e>
</xs:complexType>

</ xs : e l ement>

4 Given the fact that we are more concern in the specification of a geometric con-
struction and less in its rendering, the focus of the filters is in the construction’s
specification.
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ProofInfo The XSD file proofInfo.xsd (see Listing 1.3) contains the meta-
information regarding the proof generated by a given GATP on a given
computing platform.
For the proofs themselves we are not considering a unique format. Given
the fact that the GATPs using the area method or the full-angle method,
the ones using coherent logic, or the ones using algebraic methods, all have
very different proof formats, we do not see as possible to have some sort of
confluence of those formats into a common format. Having that in mind the
proof, if present, is included in the I2GATP container file, in the GATP
own proof output format (see Sect. 3).

Listing 1.3. Fragment of proofInfo.xsd

< !−−
proofInfo − a l l the information about the proof , the gatp used
(name & method) i s mandatory a l l the other information i s opt iona l .

−−>
<xs : e l ement name=” p r o o f i n f o ”>
<xs:complexType>
<xs : s equence>
<xs : e l ement r e f=”gatp”/>
<xs : e l ement r e f=” s ta tu s ” minOccurs=”0” maxOccurs=”1”/>
<xs : e l ement r e f=” l im i t s ” minOccurs=”0” maxOccurs=”1”/>
<xs : e l ement r e f=”measures ” minOccurs=”0” maxOccurs=”1”/>
<xs : e l ement r e f=” plat form ” minOccurs=”0” maxOccurs=”1”/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>

3 The I2GATP Container

The I2GATP container is an extension of the I2G container. In addition to the
information in the I2G container, all the information regarding the geometric
conjecture and all the proofs attempts are kept in the I2GATP container (see
Table 1).

The public methods for the construction/deconstruction of the container are
already implemented in the I2GATP library (see Sect. 4). The public meth-
ods allow deconstructing the container in its components and, in the opposite
direction, building the container, having its components. The public method
addProofInfo allow adding a new proof to an existing container (see Fig. 2).

4 Implementation

The I2GATP library is an open source project,5 implemented in C++, to sup-
port the I2GATP common format. The C++ classes are: I2GATP, to support
the management of the I2GATP container; FilterDGS/GATPtoI2GATP each
implementing a filter for a given DGS/GATP ; TGTPtoI2GATP containing the

5 http://itogatplibrary.sourceforge.net.

http://itogatplibrary.sourceforge.net


124 P. Quaresma and N. Baeta

Table 1. The I2GATP container

information/ mandatory

information/information.xml optional

construction/ mandatory

(. . . )

conjecture/ mandatory

conjecture/conjecture.xml optional

proofs/ mandatory

proofs/proof<GATP><Version><Method>/ optional

proofs/proof<GATP><Version><Method>/proofInfo.xml optional

proofs/proof<GATP><Version><Method>/proof.xml optional

proofs/proof<GATP><Version><Method>/(. . . ) optional

metadata/ optional

(. . . )

resources/ optional

resources/<image files> optional

resources/dgs<DGS><Version>/ optional

resources/dgs<DGS><Version>/<dgscode> optional

resources/gatp<GATP><Version><Method>/ optional

resources/gatp<GATP><Version><Method>/<gatpcode> optional

resources/(. . . ) optional

private/ optional

(. . . )

methods to deal with the integration of the I2GATP format in the TGTP
repository.

The I2GATP class aggregate all the filter classes. The TGTPtoI2GATP inherits
from the I2GATP class, expanding this last one with the methods necessary to
link TGTP and the I2GATP format (see Fig. 2).

The I2GATP library depends on the following libraries: libzip,6 a library to
deal with zip archives, placing a list of files in a zip and in the opposite direction
to open the zip archive; boost system and boost filesystem, libraries7 to deal
with files and directories. Given the fact that TGTP uses a MySQL database
management system, the TGTPtoI2GATP class depends from the mysqlcppconn
library8 to make the connection with the MySQL database.

All the code is assembled in a dynamic library libi2gatp.so. Apart from
the library, the program callMakeI2GATP is also created. It is used by the TGTP
repository to build the I2GATP container for a given geometric conjecture and,

6 http://www.nih.at/libzip/.
7 http://www.boost.org/doc/libs/1 57 0/libs/filesystem/doc/index.htm.
8 http://dev.mysql.com/downloads/connector/cpp/.

http://www.nih.at/libzip/
http://www.boost.org/doc/libs/1_57_0/libs/filesystem/doc/index.htm
http://dev.mysql.com/downloads/connector/cpp/
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Fig. 2. UML Diagram for the I2GATP Library

in this way, to provide the TGTP’s user all the info about that conjecture, packed
in a unique file.

4.1 I2GATP Filters

As a first step we aim to support the I2GATP format in TGTP [11],
GeoThms [4] and WGL [13,15,16]. For that purpose we need filters from/to
GCLC,9 CoqAM10 [2,3,8] and also GeoGebra.11 The class I2GATP (see Fig. 2)
will use the filter’s classes, e.g., FilterGCLCtoI2GATP, in order to convert
from/to the DGS/GATP code to/from the I2GATP format. As said previously,
we are more concern with the specification of the construction than with its
rendering. Because of that the filters are built aiming to fully support the con-
structions’ specification, disregarding, eventually, some of the rendering features.

The FilterGCLtoI2GATP and FilterCoqAMtoI2GATP are essentially wrap-
pers for the filters built using lexical analyser and parser tools, e.g., flex12

and bison.13 The integration of other filters, eventually built with other tools,
should follow the same guidelines, a function with one input string, with the
DGS/GATP’s code, and three output strings, corresponding to intergeo.xml,

9 http://poincare.matf.bg.ac.rs/∼janicic/gclc/.
10 GeoProof: http://home.gna.org/geoproof/.
11 http://www.geogebra.org/.
12 http://flex.sourceforge.net/.
13 http://www.gnu.org/software/bison/.

http://poincare.matf.bg.ac.rs/~janicic/gclc/
http://home.gna.org/geoproof/
http://www.geogebra.org/
http://flex.sourceforge.net/
http://www.gnu.org/software/bison/
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Fig. 3. Conversions From/To I2GATP To/From Geometric Tools

conjecture.xml and the report of the filter’s execution (log string). The class
Filters defines a set of error types common to all the filters and an identification
number to identify, if needed, each of the filters.

4.2 Integration Issues

The integration of this library into other programs is already being done (see
Fig. 3). The class TGTPtoI2GATP provides the public methods (see Fig. 2) to build
a container for a given problem or to do it for all the problems in TGTP.

The full integration will happen when the TGTP database will keep all the
information using the I2GATP format. Then, using the filters and the methods
already described, it will be possible to link the geometric information with the
DGSs and GATPs.

The integration with GeoThms will be similar and will be done as soon as
the integration with TGTP is completed.

A different set of goals are present when we consider the integration with a
system like the Web Geometry Laboratory. This is a collaborative and adaptive
blended-learning Web platform [13,15,16]. It is intended to allow verifying the
geometric constructions deductively [5] and, because of that, the I2GATP for-
mat will be useful. In this case only the connection between the DGSs and the
GATPs will be needed.

In Fig. 3 we can see the current status (“fat” arrows) and the planned work.
The dashed arrows refer to a previous XML suite [10] which is integrated in
GCLC.

5 Conclusions and Future Work

A format like I2GATP, allowing the connection between geometric tools, is
important to open the geometric knowledge contained in repositories to all the
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community. It is important to be able to connect different tools in geometric
environments, namely learning environments.

The main tasks ahead are:

– the (re)definition of the conjecture specification. We are planning to define a
common format for this.
Stojanović et al. propose in “A Vernacular for Coherent Logic” [17], a sim-
ple yet expressive proof representation from which proofs for different proof
assistants can easily be generated. This format is designed for conjectures
in Coherent Logic and for forward chaining proofs (often used in common
mathematical practice).
Von Plato writes in The axioms of constructive geometry [9], that the general
form of a geometric problem can be stated as: for a given data x of type A,
find y such that condition C(x, y) is fulfilled, with the type of y dependent of
x, denoted B(x).
We are considering rewriting the XSD file in such a way that we can state the
geometric problems in a more general form, following the ideas in [9,17], but
allowing specific XML tags, for different theories introduced by the different
GATPs.
Also the work of Chen [1] has to be considered in terms of exploting his
geometric description language, and the transformation mechanisms provided,
to allow complex changes in representations, e.g., as said in [1], to exchange
from a predicate form to a constructive form.

– the definition of an application programming interface (API), fully docu-
mented, to support an easy integration of the I2GATP format in different
platforms. This should be complemented by an Web interface to exemplify
how to extend/apply the I2GATP library. We will use our experience with
the TGTP integration to achieve this goal;

– the construction of filters to/from other geometric tools. Having set up the
I2GATP library as a sourceforge14 open source project we hope that other
developers of geometric software can contribute writing their own filters and
incorporating them in the library.

Having already done some work, much more is still in need to be done.
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Abstract. We consider a generalization of the concept of d-flattenability
of graphs - introduced for the l2 norm by Belk and Connelly - to gen-
eral lp norms, with integer P , 1 ≤ p < ∞, though many of our results
work for l∞ as well. The following results are shown for graphs G, using
notions of genericity, rigidity, and generic d-dimensional rigidity matroid
introduced by Kitson for frameworks in general lp norms, as well as the
cones of vectors of pairwise lpp distances of a finite point configuration
in d-dimensional, lp space: (i) d-flattenability of a graph G is equivalent
to the convexity of d-dimensional, inherent Cayley configurations spaces
for G, a concept introduced by the first author; (ii) d-flattenability and
convexity of Cayley configuration spaces over specified non-edges of a
d-dimensional framework are not generic properties of frameworks (in
arbitrary dimension); (iii) d-flattenability of G is equivalent to all of G’s
generic frameworks being d-flattenable; (iv) existence of one generic d-
flattenable framework for G is equivalent to the independence of the
edges of G, a generic property of frameworks; (v) the rank of G equals
the dimension of the projection of the d-dimensional stratum of the lpp
distance cone. We give stronger results for specific norms for d = 2: we
show that (vi) 2-flattenable graphs for the l1-norm (and l∞-norm) are
a larger class than 2-flattenable graphs for Euclidean l2-norm case and
finally (vii) prove further results towards characterizing 2-flattenability
in the l1-norm. A number of conjectures and open problems are posed.

1 Introduction, Preliminaries, Contributions

A realization or framework of a graph G = (V,E) under norm || · || is an assign-
ment r : V → Rm of points in the corresponding normed vector space Rm. A
linkage (G, δG) is a graph G = (V,E) together with an assignment δG : E → R of
positive real assignments of lengths to the edges of G. A realization of a linkage
(G, δG) in d dimensional ||.||-normed space is an assignment r : V → Rd, such
that ∀(v, w) ∈ E, ||r(v) − r(w)|| = δGvw. A realization under norm ||.|| is a real-
ization in d dimensional ||.||-normed space, for some dimension d. In this paper,
we are concerned with standard lp norms. By general lp norms, we mean norms
with integer p, 1 ≤ p < ∞. However, many results of this paper hold for l∞ as
well. While under the l2 norm a realization r of intrinsic dimension d - i.e., whose
points lie on a d-dimensional subspace of some higher d′-dimensional space - is
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linearly isometric to a d-dimensional realization, this is not the case for other lp
norms unless the subspace is axis parallel, i.e., a coordinate subspace or a trans-
lated (affine) subspace. Hence the dimension of such a realization r under general
norms is considered to be d′ rather than d. A graph G is d-flattenable if for every
realization r of G under norm ||.||, the linkage (G, δG) where δGvw := ||r(v)−r(w)||
This an illustration of a 2-flattenable graph that does not refer to realizations
of intrinsic dimension 2 in some higher dimensional space. also has a realiza-
tion in the d-dimensional ||.||-normed space. This definition does not imply that
there is a continuous path of realizations starting from a realization of (G, δG)
in some higher dimension to the realization in d-dimensions, nor does it refer
to realizations of intrinsic dimension d in some higher dimensional space. For
a clarification of the latter, see the example in the Proof of Theorem 11 where
we give a realization of a graph on a 2-dimensional subspace of R3, this does
not imply that the graph is 2-flattenable. This particular graph turns out to be
2-flattenable as every l1 realizable linkage of it can be realized in R2.

This concept was first introduced in [9] for the Euclidean or l2 norm. However
they called it “d-realizability,” which can be confused with the realizability of
a given linkage in d-dimensions. This is one of reasons we introduced the term:
flattenability.

The term flattening has also been used by Matousek [18] in the context of non-
isometric embeddings (with low distortion via Johnson-Lindenstrauss lemma in
l2 [19], impossibility of low distortion in l1 [10], etc.). Our paper admits arbitrary
distortions of non-edge lengths, but forces edge lengths to remain undistorted.

A minor of G is any graph G′ that can be obtained from G from a series of
edge-contractions or edge-deletions. If a property of G remains consistent under
the operation of taking minors, that property is minor-closed. A useful result due
to [25] is that if a property is minor-closed, then there is a finite set of forbidden
minor F such that if G has any element of F as a minor, then G does not have
that property.

Immediately by definition, d-flattenability is a minor-closed property under
any norm. A full characterization for 3-flattenable graphs was given for the
Euclidean or l2 norm by [9].

This paper gives basic results illustrating how d-flattenability for general
norms is a natural link between combinatorial rigidity and configuration spaces
of frameworks on the one hand, and coordinate shadows (projections) of the
faces of the cone – consisting of vectors of pairwise lpp- distances of n-point
configurations (see Fig. 1) – on the other hand (see Fig. 2). We define the l∞∞ cone
to be the limit of the lpp cones as p → ∞. This definition permits some of our
results to hold for the l∞ norm as well. Thus, via d-flattenability, graph minors
and topological embeddings, as well as combinatorial rigidity tools can now be
used to understand the structure of these cone faces that play a crucial role in
convex and semidefinite programming, spectral graph theory and metric space
embedding [7].The latter techniques are used widely in approximation of optimal
solutions to NP-hard combinatorial problems and in complexity theory, where
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in particular, non-Euclidean norms such as l1 and l∞ play a crucial role [20,32].
Thus d-flattenability is a nexus connecting diverse techniques and applications.

Fig. 1. Example of a linkage. The corresponding pairwise distance vector for this graph
is given by: δ = (1, 1, 1, 1, ||a−d||, ||b−c||)T . The Cayley configuration space on the non-
edge ad can take any distance in the range [0, 2]. The ordering of pairs as coordinate
positions in the vector is arbitrary, but fixed by convention.

In the remainder of this section we give preliminary definitions, state the paper’s
contributions and organization, and provide a brief listing of related work on the
above topics in Sect. 1.1.

In [27] one of the authors introduced an alternative perspective on the
configuration or realization space for a given linkage (G, δG), defining the d-
dimensional Cayley configuration space over some set of non-edges, F , of G
under the l22 norm. This Cayley configuration space is denoted Φd

F,l2
(G, δG), and

is the set of vectors δF of Euclidean lengths attained by the non-edges F over
all the realizations of the linkage (G, δG). This same space is also sometimes
referred to as the Cayley configuration space of any realization or framework
(G, r) whose edge lengths are δG. The definition readily extends to arbitrary
norms. In [27], it was shown that for the l2 norm, d-flattenability of a graph G
implies G has a d-dimensional, inherent convex Cayley configuration space, i.e.,
for all partitions of G = H ∪ F , and all length vectors δH for the edges of H,
Φd
F,l2

(H, δH) is a convex set (see Fig. 3). This property was then used towards
highly efficient atlasing of molecular configuration spaces [28], compared and
hybridized with standard monte carlo methods in [22,23], with multiple appli-
cations demonstrated in [28,34]. Our first result in Sect. 2 shows the converse of
the above result and generalizes both directions to general lp norms, leading to
our first main result:

– For lp norms, G is d-flattenable if and only if G has a d-dimensional, inherent
convex Cayley configuration space. As a direct corollary, it follows that both
properties are minor-closed for general lp norms.

For the next set of results given in Sect. 3, we refer the reader to combinatorial
rigidity preliminaries in [17], defined for the Euclidean or l2 normed space. The
d-dimensional rigidity matrix of a graph G = (V,E), denoted R(G), is a matrix
of indeterminates r1(v), r2(v), . . . rd(v) for v ∈ V . These represent the coordinate
position r(v) ∈ Rd of the point corresponding to a vertex v ∈ V in an arbitrary
realization or framework r of G. The matrix has one row for each edge each
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vertex v ∈ V . The row corresponding to e = (u, v) ∈ E represents the bar
from r(u) to r(v) and has d non-zero entries r(u) − r(v) (resp. r(v) − r(u)),
in the d columns corresponding to u (resp. v). An instantiation of R(G) to a
particular framework is called the rigidity matrix of that framework. A regular
or generic framework (G, r) (with respect to infinitesimal rigidity), is one whose
corresponding instantiation of R(G) has maximal rank over all instantiations.

A subset of edges of a graph G is said to be independent if the corresponding
set of rows of R(G) are generically independent. The maximal independent set
yields the rank of G in the d-dimensional rigidity matroid (independent sets
of edges of the complete graph). The graph (resp. generic framework) is (resp.
infinitesimally) rigid if the number of generically independent rows or the rank
of R(G) is maximal, i.e., d|V | − (

d+1
2

)
, where

(
d+1
2

)
is the number of Euclidean

isometries in Rd [17].
For frameworks in polyhedral norms (including the lp norms), Kitson [21]

has defined properties such as well-positioned, regular analogous to the above,
which have been used to show (infinitesimal) rigidity to be a generic property of
frameworks.

We refer the reader to Kitson’s paper for a precise definition. Intuitively,
a well-positioned d−dimensional framework under norm ||.|| is one in whose
d-dimensional neighborhood in ||.||-normed space the pairwise distances between
points can be expressed in polynomial form.

– For general lp frameworks in arbitrary dimension, d-flattenability of a graph
G is equivalent to all generic frameworks of G being d-flattenable.

– However, already for the Euclidean or l2 case, d-flattenability is not a generic
property of frameworks (in arbitrary dimension), and neither is the convexity
of Cayley configuration spaces over specified non-edges of a d-dimensional
framework. The latter uses minimal, 1-dof Henneberg-I frameworks for d = 2
constructed in [29,30].

– The existence of a generic d-flattenable framework (in arbitrary dimension) is
equivalent to independence of the rows of the generic d-dimensional rigidity
matrix of its graph - we use the genericity concepts developed by Kitson [21]
for lp norms.

The next result, also in Sect. 3 concerns the cone Φn,lp consisting of vectors
δr of pairwise lpp-distances of n-point configurations r. (A proof that this set is
a cone can be found in [5], which also applies to infinite dimensional settings).

The d-dimensional stratum of this cone consists of pairwise distance vectors
of d-dimensional point configurations and is denoted Φd

n,lp
. The projection or

shadow of this cone (resp. stratum) on a subset of coordinates i.e., pairs corre-
sponding to the edges of a graph G is denoted ΦG,lp (resp. Φd

G,lp
). This projection

is the set of realizable edge-length vectors δG of linkages (G, δG) in lpp (resp. in
d-dimensions) (See Fig. 2).

Notice that Φn,lp is the same as ΦKn,lp , where Kn is the complete graph on
n vertices. The lp-flattening dimension of a graph G (resp. class C of graphs)
is the minimum dimension d for which G (resp. all graphs in C) are flattenable
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Fig. 2. Visualizing operations common to our proofs. On the left we have the cone of
realizable distance vectors under lp. It is shown here as a polytope, but in general that is
not the case; these are not rigorous figures – their purpose is intuitive visualization. The
cone lives in

(
n
2

)
-dimensional space where each dimension is a pairwise distance among

n points. In the middle is a projection onto the edges of some graph. This will yield a
lower dimensional object (unless G is complete). On the right, a d-dimensional stratum
is highlighted and lines show the projection onto coordinates representing edges of a
graph. In general this stratum is not just a single face. Note that this projection is
equal to the projection as the whole cone (middle) iff G is d-flattenable.

in lp. Let np be the flattening dimension of Kn. It is not hard to show [12]
that in fact np ≤ R(n2) (using this finite dimensionality, a slight simplification
of Ball’s proof of convexity of Φn,lp is presented for completeness in Sect. 2).
For the Euclidean or l2 case, a further result of Barvinok [8] shows that the
flattening dimension of any graph G = (V,E) (although he did not use this ter-
minology), is at most O(

√
(|E|)). Notice additionally that Φd

F,lp
(G, δG), namely

the d-dimensional Cayley configuration space of a linkage (G, δG) in lp is the
coordinate shadow of the (G, δG)-fiber of Φd

G∪F,lp
, i.e. all linkages (G ∪ F, δG∪F )

that have δG assigned to the edges of G, on the coordinate set F (see Fig. 3). In
this paper, we show the following:

– Consider the coordinate shadow (or projection) of any neighborhood in the
stratum Φd

n,lp
onto the edges of an n-vertex graph G. The dimension of this

coordinate shadow equals the rank of G (size of maximal independent set) in
the generic d-dimensional rigidity matroid [21] in lp.

In Sect. 4, we give stronger results for specific norms for d = 2:

– The class of 2-flattenable graphs for the l1-norm (and l∞-norm) strictly con-
tains the class of 2-flattenable graphs for the Euclidean l2-norm case, (the
latter being the partial 2-tree graphs that avoid the K4 minor). In particular,
K4 is 2-flattenable in l1. Graphs with Banana graphs as minors, however, are
not 2-flattenable. We also consider other graphs such as the 4-wheel and the
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Fig. 3. This is an example of Φd
G∪F,lp that is not convex. The linkage (G, δG) and its

fiber in Φd
G∪F,lp are shown on the left. Note that the fiber is not convex. In the middle,

this fiber is then projected onto the remaining edges of G ∪ F to form Φd
F,lp(G, δG).

Note that it is not convex either. On the right, Φd
n,lp is projected onto the edges of

some d-flattenable G (note that this is the same as projection of Φn,lp). The inherent
Cayley configuration space corresponding to some subgraph G \ H of G is then shown
projected onto the edges of G \ H. This projection is convex.

doublet and K3,3 towards obtaining a forbidden-minor characterization of
2-flattenability in the l1-norm.

Finally, in Sect. 5, a number of conjectures and open problems are posed.

1.1 Related Results

The structure of the cone Φn,lp , its strata and faces are well-studied. The fact
that the object is a cone even in the infinite dimensional case is a useful observa-
tion by Ball [5]. For l2 this is called the Euclidean distance matrix (EDM) cone
[11,13,31], which is a simple, linear transformation of the cone of positive semi-
definite matrices, a fact first observed by Schoenberg [26]. Consequently under-
standing its structure is important in semidefinite programming relaxations and
the so-called sums of squares method with numerous applications [6,16,24]. Con-
nections between combinatorial rigidity and the structure of the EDM have been
investigated extensively by Alfakih [1,2]. The reader is additionally referred to
[12] for a comprehensive survey of key results about the EDM cone, including
observations about the face structure and dimensional strata of the EDM cone.
The l1-cone is often called the cut cone, whose extreme rays correspond to 1-
dimensional realizations and characteristic vectors of cuts in a complete graph.
The cone has been studied by [4,12,33] and plays an important role in met-
ric space embeddings used in the study of (non-)approximability in polynomial
time, of NP-hard optimization problems, including ramifications of the unique
games conjecture [18,20]. Kitson’s recent work [21] has shown that many of the
results in combinatorial rigidity for the Euclidean or l2 norm case have parallels
in the case of general polyhedral norms, including the lp norms.
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2 lp: Flattenability and Inherent Convex Cayley
Configuration Space

In this section, we improve in the work done in [27] in relating d-flattenability
to convex inherent Cayley configuration spaces of a given graph. The results of
this section hold for p = ∞ as well, appealing to the definition of l∞∞ cone as the
limit of the lpp cones as p → ∞. Our main result of this section follows.

Theorem 1. For any lp norm, a graph G is d-flattenable if and only if G admits
convex inherent d-dimensional Cayley configuration spaces for each of its sub-
graphs.

This “only if” direction of this statement was shown in [27] for the l2 norm.
The argument only required the fact that the cone of squared distance vectors
is convex. Hence, we can use the same proof if we can show Φn,lp is convex. The
proof of the “if” direction requires that the cone is the convex hull of lpp distance
vectors in any dimension d.

Proposition 1. Φn,lp for general lp is contained in the convex hull of the lpp
distance vectors of the 1-dimensional n-point configurations in R.

Proof. Take some δ ∈ Φn,lp . Let r(1), ...r(n) denote some realization of the
complete linkage (Kn, δ). We refer to this as a realization of δ. So, r(i) ∈ Rk

for some k. It was shown in [5] that for any lp-norm, the flattening dimension
np ≤ (

n
2

)
, so there is a realization in some finite dimension. We have

δij = ‖r(i) − r(j)‖pp =
k∑

l=1

|rl(i) − rl(j)|p

where rl(i) denotes the lth coordinate of the ith point. Then, if we construct
the matrix δl such that δlij = ‖rl(i) − rl(j)‖pp, then δl is a valid lpp distance
matrix with an n-point configuration in R. This point configuration simply being
rl(1), ..., rl(n). Also, for any α > 0, αδl is a valid lpp distance matrix with realiza-
tion α

1
p rl(1), ...α

1
p rl(n). Finally, δ =

∑
l
1
k [kδl], which is a convex combination

of n-point configurations in R. 	

A well-known result shows that Φn,lp is convex.

Observation 2. Φn,lp for general lp is convex

Proof. The proof for this result (see [5]) is well known even for the infinite dimen-
sional case. Here we give a simplified proof for finite dimensions for completeness.

Let r and s be two n-point configurations with corresponding distance vectors
δr, δs ∈ Φn,lp . Assume r and s are realized in some dimension k. Let 0 ≤ λ ≤ 1
and consider the convex combination δ = λδr + (1 − λ)δs. We will construct an
n-point configuration in 2k dimensions with δ as its distance matrix. Note that
δij = ‖r(i) − r(j)‖pp + ‖s(i) − s(j)‖pp =

∑k
l |rl(i) − rl(j)|p +

∑k
l |sl(i) − sl(j)|p.
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Then a realization for t can be found by simply concatenating the coordinates
of r and s and scaling them appropriately:

t = (λ
1
p r, (1 − λ)

1
p s)

It is easy to verify that t is a realization of δ. 	

Proposition 1 and Observation 2 lead to the following, which is useful to us

in proving Theorem 1.

Proposition 2. Φn,lp , 1 ≤ p ≤ ∞ is the convex hull of the lpp distance vectors
of the 1-dimensional, n-point configuration vectors in R.

Proof. Follows from Proposition 1 and Observation 2 and the fact that in Propo-
sition 1, the points making up the convex hull are in Φn,lp . 	


Since from the 1-dimensional vectors, we can construct - as convex combi-
nations - vectors realizable in any arbitrary d-dimensions, we get the following
Corollary:

Corollary 1. Φn,lp is the convex hull of the vectors in Φd
n,lp

for any d for
general lp.

The following observation is useful in characterizing d-flattenability.

Observation 3. If G is d-flattenable, then the projection of Φd
n,lp

onto the edges
of G is exactly the projection Φn,lp onto the edges of G.

Using these results, we can now prove the “if” part of Theorem 1.

Proof. [of Theorem 1] Suppose G is d-flattenable under some lp-norm. Then,
because Φ|V |,lp is convex, ΦG,lp is convex. From Observation 3, Φd

G,lp
is convex.

Given a subgraph F of G, if we break G into H and F and fix the values of E
corresponding to a linkage (H, δH), we are taking a section of Φd

H∪F,lp
, which is

again convex. This is also exactly the Cayley configuration space Φd
F,lp

(H, δH).
Note that this holds for any partition H and F , so G always admits a convex
d-dimensional Cayley configuration space for each of its subgraphs.

For the other direction, suppose for a linkage (G, δG), all d-dimensional
Cayley configurations corresponding to subgraphs of G, Φd

F,lp
(G \ F , δG\F ) are

convex. Certainly this holds for the empty subgraph as well. We note that
Φd
G,lp

(∅, δ∅) is just Φd
G,lp

and because it is convex, Φd
G,lp

is its own convex hull.
We also know that the convex hull of Φd

G,lp
is the projection of the convex hull

of Φd
|V |,lp . By Proposition 2 and its Corollary, we know this to be the entire cone

Φ|V |,lp . Thus, Φd
G,lp

= ΦG,lp . Hence, G is d-flattenable. 	

This result provides a nice link between d-flattenability and convex Cayley

configuration spaces. It leads to the following tools.
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Corollary 2. Having a d-dimensional convex Cayley configuration space on all
subgraphs is a minor-closed property.

Another immediate result is that d-flattenability and convex Cayley configu-
ration spaces have the same forbidden minor characterizations for given d under
the same lp-norm. This gives us a nice tool when trying to find forbidden minors
for other lp norms:

Observation 4. If for some assignment of distances l to some edges E of of G
leads to a non-convex Φd

F,lp
(G, l), then G is not d-flattenable.

We use this to show that the “banana” graph in 5 vertices is not 2-flattenable
for l1 (and l∞) in Theorem 12. The banana is a K5 graph with one edge removed.

3 l2: Flattenability, Genericity, Independence in Rigidity
Matroid

In this section we show relationships between d-flattenability and combinatorial
rigidity concepts via the cone Φn,lp .

The definition of d-flattenability of a graph G in lp requires every lp frame-
work of the graph G – in an arbitrary dimension – to be d-flattenable.

To accommodate the arbitrary dimension of the original framework, we first
give a suitable definition of generic frameworks for d-flattenability.

Definition 1. Given an lp framework (G, r), with n vertices, in arbitrary
dimension, consider its pairwise length vector, δr, in the cone Φn,lp (this was
used in Sect. 2). A framework (G, r) of n vertices is generic with respect to d-
flattenability if the following hold: (i) there is an open neighborhood Ω of δr in the
(interior of the) cone Φn,lp , (recalling that np is the flattening dimension of the
complete graph Kn, Ω corresponds to an open neighborhood of np-dimensional
point-configurations of r); and (ii) (G, r) is d-flattenable if and only if all the
frameworks in Ω are.

Item (i) implies that there is a “full measure”or np-dimensional neighbor-
hood of (G, r) that corresponds to a neighborhood of distance vectors in the
interior of the cone. Item (ii) asserts that all frameworks in this neighborhood are
d-flattenable iff (G, r) is.

Theorem 5. Every generic framework of G is d-flattenable if and only if G is
d-flattenable.

Proof. The “if” direction follows immediately from the definition of d-
flattenability. For the “only if” direction, notice that a non-generic, (bounded)
framework (G, r) is a limit of a sequence Q of generic, bounded frameworks
{(G, ri)}i, with a corresponding sequence of pairwise distance vectors in ΦG,lp ,
and further a corresponding sequence of projections onto the edges of G, i.e., a
sequence Q′ of bounded linkages of G. Because each (G, ri) is d-flattenable, each
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linkage in Q′ must be realizable as some generic bounded framework (G, r′
i) in

d-dimensions, i.e., each linkage is the projection of the pairwise distance vector
of some d-dimensional bounded framework (G, r′), i.e., a pairwise distance vec-
tor in the d-dimensional stratum of the cone ΦG,lp . The projection of the limit
framework (G, r) of the sequence Q is the limit linkage of the projected sequence
Q′ of linkages with bounded edge lengths, whose corresponding sequence of real-
izations as d-dimensional bounded frameworks has a limit (G, r′). The latter
limit follows from the fact that the realization map that takes a linkage to its
d-dimensional bounded framework realizations (for any given bound) is a closed
map. This completes the proof. 	


A similar argument can be used to show that the projection of Φd
n,lp

onto the
edges of any graph G, denoted Φd

G,lp
is closed. This result was shown for l2 in

[31].
Although d-flattenability is equivalent to the presence of an inherent convex

Cayley configuration space for G, (as shown in Sect. 2), we now move beyond
inherent convex Cayley configuration spaces to Cayley configuration spaces over
specified non-edges F . These could be convex even if G itself is not d-flattenable
(simple examples can be found for d = 2, 3 for l2 in [27]). A complete characteri-
zation of such G,F is shown in [27], in the case of l2 norm for d = 2, conjectured
for d = 3, and completely open for d > 3. In Sect. 5, we extend the conjecture
for general d.

An analogous theorem to Theorem 5 can be proven for the property of a d-
dimensional framework (G, r) having a convex Cayley configuration space over
specified non-edge set F . However, since this framework is d-dimensional rather
than of arbitrary dimension, the definition of genericity has to be modified from
Definition 1.

Definition 2. Let δr be as in Definition 1. A framework (G, r) of n vertices in
d-dimensions is generic with respect to the property of convexity of Φd

F,lp
(G, δG)

if (i) there is an open neighborhood Ω of δr in the stratum Φd
n,lp

, (this corre-
sponds to an open neighborhood of d-dimensional point-configurations of r); and
(ii) (G, r) has convex Cayley configuration space over F if and only if all the
frameworks in Ω do.

Theorem 6. Every generic d-dimensional framework (G, r) has a convex Cay-
ley configuration space over F if and only if for all δG, the linkage (G, δG) has
a d-dimensional, convex Cayley configuration space over F .

Proof. The “if” direction follows immediately from the definitions. Moreover,
it is sufficient to prove the “only if” direction for edge length vectors δG that
are attained by some (potentially non-generic) d-dimensional framework (G, r),
because otherwise the d-dimensional Cayley configuration space of the linkage
(G, δG) is empty and hence trivially convex. Now as in Theorem 5, every non-
generic d-dimensional framework (G, r) with edge length vector δG is a limit
of a sequence {(G, ri)}i of generic frameworks with edge length vectors δG,i.
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Since convexity of the Cayley configuration space Φd
F,lp

G, δG,i is preserved over
a open neighborhoods of (G, ri), it follows that the limit of the sequence of
spaces {Φd

F,lp
(G, δG,i)}i exists, is convex, and is the Cayley configuration space

of (G, r). Since (G, r) was chosen to have the edge length vector δG, this space
is in fact Φd

F,lp
(G, δG), the Cayley configuration space of the linkage (G, δG). 	


A property of frameworks is said to be generic if the existence of a generic
framework with the property implies that the property holds for all generic
frameworks. Next we show that neither of the properties discussed above is a
generic property of frameworks even for l2.

Theorem 7. d-flattenability and convexity of Cayley configuration spaces over
specific non-edges F are not a generic property of frameworks (G, r).

Proof. For d-flattenability: since the flattening dimension n2 of Kn in l2 is
n − 1, we show the counterexample of a 5-vertex graph G for which one generic
4-dimensional framework (G, r) and its neighborhood is 2-flattenable in l2,
while another such neighborhood is not. See Fig. 4. For convexity of Cayley
configuration spaces: there are minimal, so-called Henneberg-I graphs [30] G,
constructed on a base or initial edge f with the following property: for some
2-dimensional frameworks (and neighborhoods) (G, r) with edge length vector
δG, the 1-dimensional Cayley configuration space Φ2

f,l2
(G \ f, δG\f ) (i.e., the

attainable lengths for f) is a single interval, while for other such frameworks
(and neighborhoods) it is 2 intervals. Please see Appendix in [30]. 	


Fig. 4. 2 realizations of the same graph. In the first figure (left), we have edge lengths
for (a, e) and (d, e) that do not allow G to be flattened. The second graph is realized
in 3-dimensions, but by “unfolding it” as shown, we can flatten it into 2-dimensions

Next, we consider the implication of the existence of a generic d-flattenable
framework. Specifically, we prove two theorems connecting the d-flattenability
with independence in the rigidity matroid: we use the notion of rigidity matrix,
and consequently regular frameworks and generic rigidity matroid developed by
Kitson [21], as well as the equivalence of finite and infinitesimal rigidity using the
notion of well-positioned frameworks, which intuitively means that the lp balls
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of size given by the corresponding edge-lengths centered at the points intersect
properly (i.e., the intersection of k (d − 1)-dimensional ball boundaries is of
dimension d − k).

The “if” direction of this next theorem is a restatement of Proposition 2 in
Asimow and Roth [3]. We extend their result here and show the other direction
as well.

Theorem 8. For general lp norms, there exists a generic d-flattenable frame-
work of G if and only if G is independent in the d-dimensional generic rigidity
matroid.

Fig. 5. On the left we have 2 neighborhoods Ωr and Ωr′ of 2 distance vectors δr and
δr′ in the cone. We then project Ωr and Ωr′ onto the edges of G to obtain Ωl and Ωl′ ,
which are essentially the neighborhoods of (G, δGr ) and (G, δGr′). On the right, we then
take the fiber of Ωl and Ωl′ on Φd

n,lp . The fiber of Ωl is completely contained in the
stratum while that of Ωl′ misses (does not intersect) the stratum.

Proof. For the forward direction, we note that existence of a generic d-flattenable
framework (G, r) is equivalent to the statement that the pairwise distance vec-
tor δr has an open neighborhood Ωr in the interior of the cone Φn,lp , and the d-
flattenings (G, s) form an open neighborhood Ωs of pairwise distance vector δs in
the relative interior of the stratum Φd

n,lp
. This is also equivalent to saying there is

a corresponding open neighborhood of d-flattenable linkages (G, δGs = δGr ). Now
Ωs (resp. Ωr) must contain an open neighborhood of pairwise distance vectors
δs (resp. δr) that correspond to well-positioned and regular frameworks (G, s),
(resp. (G, r)), hence without loss of generality, we can take that neighborhood
to be Ωs (resp. Ωr), consisting of d-dimensional, well-positioned, regular frame-
works (G, s) (resp. (G, r)) that are realizations of an open neighborhood of ΩG

of linkages (G, δGs = δGr ). These linkages correspond to a coordinate shadow or
projection of Ωr and Ωs onto (the edges in) G.
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Now observe that the generic rigidity matrix of G is the Jacobian of the
distance map from the d-dimensional point-configuration s to the edge-length
vector δGs at the point s. For l2 and integral p > 1, this map is clearly specified
by polynomials. For l1 and l∞, we use the notion of well-positioned frameworks
from [21]. If the frameworks of Ωr are well-positioned, then it follows that the
distance map is locally specified by linear polynomials corresponding to a rele-
vant facet of the l1 or l∞ ball. Because Ωr has dimension equal to the number of
edges in G, these polynomials are algebraically independent. Hence, their Jaco-
bian has rank equal to the number of edges in G. Therefore, the existence of
well-positioned, regular realizations s to an entire neighborhood of edge-length
vectors δGs implies the statement that the rows of the generic rigidity matrix –
that correspond to the edges of G – are independent.

The converse follows from Proposition 2 of Asimow-Roth [3] observing that
at well-positioned and regular points, for all 1 ≤ p ≤ ∞ the lp distance map
from point configurations to pairwise distance vectors is a smooth map. 	


The following corollary is immediate from the forward direction of the above
proof.

Corollary 3. For general lp norms, a graph G is d-flattenable only if G is inde-
pendent in the d-dimensional rigidity matroid.

The following theorem and corollary utilize the dimension of the projection
of the d-dimensional stratum on the edges of G from the above proof. Note that
in the above proof, if G is an n-vertex graph, the neighborhood Ωr has dimension
np, i.e., the flattening dimension of Kn; Ωs has dimension equal to that of the
stratum Φd

n,lp
, and ΩG has dimension equal to the number of edges of G (see

Fig. 6).
The first item of the following Theorem is a restatement of Theorem 8 and

as such, the “only if” direction appears in [3].

Theorem 9. For general lp norms, a graph G is

I. independent in the generic d-dimensional rigidity matroid (i.e., the rigidity
matrix of a well-positioned and regular framework has independent rows), if
and only if coordinate projection of the stratum Φd

n,lp
onto G has dimension

equal to the number of edges of G;
II. maximal independent (minimally rigid) if and only if projection of the stra-

tum Φd
n,lp

onto G is maximal (i.e., projection preserves dimension) and is
equal to the number of edges of G;

III. rigid in d-dimensions if and only if projection of the stratum Φd
n,lp

onto G
preserves its dimension;

IV. not independent and not rigid in the generic d-dimensional rigidity matroid
if and only if the projection of Φd

n,lp
onto G is strictly smaller than the

minimum of: the dimension of the stratum and the number of edges in G.

Proof. The proof of this theorem follows from the proof of the previous result:
Theorem 8. Each case is illustrated in Fig. 6. 	
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Fig. 6. These are visualizations of when frameworks are isostatic and independent. In
all of these cases dim(Ωr) ≥ max{dim(Ωs, dim(Ωl))}. We only show 2 and 3 dimensions
here, but in general the dimensions will be much higher. See Fig. 5 for explanation of
what each is. In the following, when we use equality or inequality, we are referring to
dimension. On the left, Ωs = Ωl < Φd

n,lp meaning δr is independent but not isostatic.

Middle left: Ωs = Ωl = Φd
n,lp , so δr is maximal independent or isostatic. Middle

right: Ωs = Φd
n,lp < Ωl meaning δr is rigid but not independent. Right: Ωs < Ωl and

Ωs < Φd
n,lp meaning δr is neither independent nor rigid.

We note that the “only if” direction of item 9 of Theorem 9 is the same result
that appears as Proposition 2 (in a different form) in [3]. However, to the best
of our knowledge, the “if” direction and the rest of Theorem 9 and the proof of
Theorem 8 are new results. We obtain the following useful corollary.

Corollary 4. For lp norms, the rank of a graph G in the d-dimensional rigid-
ity matroid is equal to the dimension of the projection Φd

G,lp
on G of the

d-dimensional stratum Φd
n,lp

.

4 l1: 2-Flattenability

We now turn our attention to the l1 norm in 2-dimensions. We note that the
l1 and l∞ norms in 2-dimensions are equivalent by simply applying a rotation
to our axes (for argument, see [12]). Specifically, we would like to characterize
the class of graphs that are 2-flattenable under the l1 norm. A result from [33]
shows that K4 is 2-flattenable. We note that K4 is the only forbidden minor for
2-flattenability under the l2 norm. It immediately follows that the 2-flattenable
l2 graphs are a strict subset of the 2-flattenable l1 graphs. In the remainder of
this section, we narrow down the possible candidates for forbidden minors.

Observation 10. All partial 2-trees are 2-flattenable.

This follows from the fact that partial 2-trees are exactly graphs without a
K4 minor. We define 2-trees recursively. A triangle is a 2-tree. Given any 2-tree,
attaching another triangle onto a single edge is also a 2-tree. A partial 2-tree is
any subgraph of a 2-tree. Because the 2-flattenable graphs for l2 are exactly the
partial 2-trees, it follows partial 2-trees are 2-flattenable for l1.
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In order to generalize our results, we introduce the following Theorem which
involves a 2-sum operation. A 2-sum of graph G1 and G2 is a a new graph G
made by gluing an edge of G1 to one of G2, i.e. we identify an edge of G1 with
an edge of G2.

Theorem 11. A 2-sum of 2-flattenable graphs is 2-flattenable if and only if at
most one graph has a K4 minor.

v1

p2p1

v2

v1

v2

I1

I2

Fig. 7. On the left is a partial realization of G2 if we assume a vertical orientation for
(v1, v2). On the right is the same for (v1, v2) at an angle of 45 degrees

Proof. Suppose G1 and G2 are 2-flattenable and only G1 has a K4 minor. Then,
G2 is a partial 2-tree. Thus the 2-sum of G1 and G2 can be built by taking a
realization of G1, identifying the 2-sum, and then adding the vertices of G2 one
at a time. Let r and s be the 2 vertices we are attaching some new vertex v to. No
matter the orientation of r and s, as long as the triangle formed by r, s, and v
obeys the triangle inequality, the l1-balls surrounding r and s with distances
corresponding to their distance to v will always intersect in 2-dimensions. This
can be verified by placing r at the origin, moving s along the l1 ball of r in the
first quadrant and observing the balls surrounding r and s as s moves. Hence,
the triangle r, s, v can be realized in 2-dimensions.

Suppose G1 and G2 both have a K4 minor. We give a counter-example to
show that the 2-sum is not 2-flattenable. Let G1 be the equidistant K4 with
each edge having distance 3. Let G2 have every edge with distance 2 except for
(v1, v2), which has distance 3. G1 has only one realization modulo rearranging
vertices: all points at the corners of the distance 3 l1-ball. The edges of G1 are
all either vertical/horizontal or at an angle of 45 degrees. We claim G2 has no
realization with (v1, v2) at those angles.

If we assume that (v1, v2) is vertical, looking at Fig. 7, we see that the remain-
ing 2 vertices can only lie at p1 and p2. The possible distances they can obtain
are 0 and 1, which means G2 cannot be completed. Looking at the 45 degree
case on the right of Fig. 7, we see that the other 2 vertices can only lie in I1
and I2. This leads to possible distances of [0, 1] and 4. Thus G2 still cannot be
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completed. Note that the horizontal and other 45 degree orientations are just
flips of these two cases.

Hence, G2 has no realization with (v1, v2) at any of the angles of G1’s
edges. So, the 2-sum of G1 and G2 is not 2-realizable. We note that this 2-sum
does have a realization in 3-dimensions: v1 = (0, 0, 0), v2 = (1.5, 1.5, 0), v3 =
(0.5, 1, 0.5), v4 = (1, 0.5,−0.5) give a realization for G2 with (v1, v2) at a 45
degree angle, so G1 2-sum G2 is not 2-flattenable. 	


Note that the realization given at the end of the above proof has a K4 lying
on a 2-dimensional subspace of R3. This is still a 3-dimensional realization as
the spanned 2-dimensional subspace is not equipped with an 2-dimensional l1
norm. However, it is equipped with an l1 norm in 3-dimensions. The K4 has a
realization in R2, we only need it in 3-dimensions in the proof to 2-sum it to the
other K4.

Another result from [5] shows that K5 is not 2-flattenable. Hence, we search
the subgraphs of K5 and check them for 2-flattenability. This leads to the follow-
ing example of a non-2-flattenable graph, which we prove using the techniques
developed in this paper.

Theorem 12. The so called “banana” graph or K5 minus one edge is not
2-flattenable under the l1 norm.

I1

I2

Fig. 8. On the left is an illustration of an equidistant K4 with the possible intervals of
Case 1. On the right is the same for Case 2

Proof. We will invoke Observation 4 to show this.
Consider a distance vector for the banana with unit distances for all except

one edge, f . This has a realization in 3-dimensions as K5 is 3-flattenable for
the l1 norm (see [5]). Then, we have an equidistant K4 as a subgraph. The only
realization for such a K4 in 2-dimensions is to have all 4 points arranged as the
vertices of the unit ball centered at the origin. The 2 remaining unit edges then
connect a new vertex to 2 of these points. Here we have 2 cases: the 2 vertices
border the same quadrant or they lie across one of the axes from each other.
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Case 1: Without loss of generality, we assume the 2 vertices are the upper
right of the K4. In Fig. 8, it can be seen that the new vertex can lie anywhere
in I1 or I2. If it lies in I1, the remaining edge of the banana can take lengths in
the range [0, 1]. If it lies in I2, the only length it can be is 2.

Case 2: Without loss of generality, assume the 2 vertices are the top-most
and bottom-most. Again from Fig. 8, the new vertex only has 2 positions it can
be in, each leading to a length of 1 for the remaining edge.

Hence, Φ2
F,l1

(G \ F , δG\F ) = [0, 1]∪{2}, where G is the banana and F = {f}.
This is not convex and thus by Theorem 1, the banana is not 2-flattenable. 	

Observation 13. K5 minus 2 edges incident to a single vertex is 2-flattenable.

Proof. This follows directly from Theorem 11. 	

Observation 14. Connected graphs on 5 vertices with 7 edges are 2-flattenable

Proof. The only 2 such graphs are a subgraph of the Observation 13 and the
complete 2-tree on 5 vertices. Both of these we know to be 2-flattenable. 	


The only remaining 5 vertex graph we have not looked at yet is the wheel
graph. So far we have shown that for 5 vertices, graphs with the wheel as a minor
are not 2-flattenable and graphs without are 2-flattenable. Thus, if we can show
that the wheel is not 2-flattenable, then it becomes the only forbidden minor
for l1 2-flattenability. We discuss this more in Sect. 5 and conjecture that in fact
the wheel is the only forbidden minor for 2-flattenability under the l1 (and l∞)
norm.

5 Conjectures and Open Problems

5.1 Combinatorial Rigidity and Structure of Φn,lp

In Theorem 8 and Theorem 9, we have shown that combinatorial rigidity prop-
erties of a graph in d-dimensions is tied to the dimension of the projection of
some “face” of d-dimensional stratum of Φn,p. These properties are not generic
when viewed as properties of frameworks Ωr in the flattening dimension of Kn,
i.e., when viewed as distance vectors δr in the interior of the cone Φn,p. However,
since we know that these properties are generic in d-dimensions (via combinato-
rial rigidity techniques), this means it must be that that the projection of every
face of the d-dimensional stratum of Φn,p onto G has the same dimension. Thus
combinatorial rigidity and Cayley configuration spaces can help understand the
structure of the cone. However, it would be good to have an independent proof
of these properties directly via the cone geometry. More formally:

Conjecture 1. G is d-independent if and only if the projection of every face of
Φd
G,lp

has dimension equal to the number of edges of G.

It would be useful to show a stronger property about the continuous mapping
used in the proof of Theorem 5. Doing so would require deeper understanding
of the d-flattening process itself. Formally:
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Question 1. Given a realization (G, r) of a d-flattenable linkage (G, δG) in some
high dimension, is there always a continuous path from (G, r) to (G, r′) in
d-dimensions for general lp norms?

It would be useful to even show a weaker version of Question 1: Does a con-
tinuous path of high dimensional frameworks of a d-flattenable graph G always
correspond to a path in d-dimensional frameworks?

In the case of the Euclidean or l2 norm many questions remain concerning
core results and applications of convex Cayley configuration spaces.

The question of convexity of Cayley configuration spaces of graphs G over
specified edge sets F is fully understood, and the proof [27] uses the existence of
a specific type of homeomorphism to produce forbidden minors. The property
is relatively close to that of 2-flattenability which is equivalent to convexity of
inherent 2-dimensional Cayley configuration spaces. In fact the class of graphs
(partial 2-trees) have convex Cayley configuration spaces in any dimension (fol-
lows immediately from the close relationship to 2-flattenability). Thus, as in
Sect. 5.1, we expect that fully understanding the structure of convex Cayley
configuration spaces of partial 2-trees in 2-dimensions (which relies on combi-
natorial rigidity and forbidden minor properties) will help in understanding the
structure of 2-dimensional stratum of the cone.

We believe the study of Cayley configuration spaces of partial 2-trees can
simplify results related to the so-called Walker conjecture about the topology of
Cartesian configuration spaces for a very simple class of partial 2-trees, namely
polygonal graphs [14,15], as well as to extend them to general, partial 2-trees. In
fact, we believe that the Cayley configuration space of partial 2-trees can help
to understand entire structure of Φn,l2 .

While convex Cayley configuration spaces over specified non-edges F in
2-dimensions are fully characterized, very little is known (beyond the forbidden
minors for 3-flattenability) in higher dimensions. In particular, there are graphs
G that are themselves not 3-flattenable, but their Cayley configuration spaces
are convex over certain non-edges F . Several natural conjectures in [27] relate
to the specific type of homeomorphism used to produce the forbidden minor
characterizations in the 2D case. These still remain open for higher dimensions.

5.2 2-Flattenability Under l1

In Sect. 2, we showed a number of techniques to prove (non)-2-flattenability
of certain graphs under the l1 norm. Mostly these dealt with a constructive
argument like the partial 2 tree case to prove flattenability and showing non-
convexity of inherent Cayley configuration space for non-flattenability.

It is still an open question as to what the forbidden minor characterization
of 2-flattenability under l1 is. Our results show that the only 5 vertex graph to
classify is the wheel. Due to the fact that the wheel is a minor to all of the other
non-2-flattenable graphs on 5 vertices, we raise the following conjecture.

Conjecture 2. The forbidden minor characterization for 2-flattenability under
the l1 and l∞ norms consists of only the wheel on 5 vertices.
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Showing this requires only that we show that the wheel is not 2-flattenable.
If this result is proven to be negative, then it will be necessary to look at 6 vertex
graphs such as K3,3, the doublet, and K2,2,2.

5.3 Other Metrics

We would like to extend the results of this paper to other polyhedral norms
faces. Some of the major obstacles have been outlined in [21]. In particular
the nonexistence of well-positioned and regular frameworks, all of whose sub-
frameworks are also regular. Some work was done in this paper on this paper for
the specific case of l1.

Extending the results of this paper to other metrics would increase its applica-
bility in combinatorial optimization settings. Doing this will require us to first
choose an appropriate notion of dimension for metric topologies, be it the dou-
bling dimension or some other classical notion of dimension.

Acknowledgement. We thank Bob Connelly, Steven Gortler and Derek Kitson for
interesting conversations related to this paper.
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Abstract. This paper extends our work on automated discovery of geo-
metric theorems from diagrams by taking scanned and photographed
images instead of images produced with dynamic geometry software.
We first adopt techniques of Hough transform and randomized detection
algorithms to detect geometric objects from scanned and photographed
images, then use methods of image matching to recognize labels for the
detected geometric objects, and finally employ numerical-computation-
based methods to mine geometric relations among the objects. Exper-
iments with a preliminary implementation of the techniques and
methods demonstrate the effectiveness and efficiency of geometric infor-
mation retrieval from scanned and photographed images for the purpose
of discovering geometric theorems automatically.

Keywords: Shape recognition · Pattern matching · Theorem
discovery · Geometric knowledge management

1 Introduction

The authors have proposed an approach for discovering geometric theorems auto-
matically from images of diagrams in [5], where the images are produced from
diagrams drawn by using dynamic geometry software (DGS). This paper extends
our previous work by taking images scanned or photographed from diagrams on
paper in classic textbooks.

Diagrams are widely used to illustrate given geometric theorems. A natural
question is how to find those theorems which a given diagram may illustrate
or imply. Answers to this question may lead to methods to search for geo-
metric theorems from images of diagrams, to create geometric theorem bases
semi-automatically, and to discover possibly new geometric theorems. We have
given an answer to the above question with an efficient approach for images of
DGS-produced diagrams. The basic idea is to first recognize geometric objects
and their labels and mine geometric relations from the images, then formu-
late propositions as candidate geometric theorems (or called conjectures), and
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finally confirm some of the propositions as theorems by provers based on alge-
braic methods. In this paper, we extend the approach to deal with scanned and
photographed images of diagrams in which the implied geometric relations are
less exact. In this case, the retrieval of geometric information becomes more
difficult and requires some special techniques from image matching and pattern
recognition.

The rest of the paper is organized as follows. In Sect. 2, our general app-
roach for automated discovery of geometric theorems from images of diagrams is
reviewed. Special techniques for retrieving geometric information from scanned
and photographed images are presented in Sect. 3, followed by discussions on
implementation issues with experimental results given in Sect. 4. The paper is
concluded with some remarks in Sect. 5.

The work described in [5] and this paper demonstrates the feasibility of dis-
covering geometric theorems from different types of images of diagrams and has
potential applications in geometric knowledge management and education1 [1].
For example, geometric knowledge bases can be expanded by adding theorems
discovered from images of diagrams automatically or semi-automatically; for-
malized representation of discovered theorems may facilitate the processing and
management of such theorems and their automation. Moreover, we expect that
students will be able to see statements of geometric theorems in natural lan-
guages generated automatically by drawing diagrams on the screen. We are
encouraged to further our study on the subject, in particular developing soft-
ware tools to help generate geometric theorems from images of diagrams taken
from the Internet or hand-sketched on mobile devices. It is also expected that
our approach and the underlying ideas can be extended to deal with digitalized
mathematical literature (e.g., recognizing images and figuring out what they
illustrate).

2 Discovering of Geometric Theorems from Images
of Diagrams: A General Approach

In this section, we provide a short review of the general approach for auto-
mated discovering of geometric theorems from images of diagrams described
in [5]. The approach can be used to discover, from any given image of diagram
in plane Euclidean geometry, one or several geometric theorems which the dia-
gram implies. It has a high probability of success when the diagram may be
used to illustrate some theorem and is drawn precisely enough. The approach
works by making use of techniques of pattern recognition to retrieve geometric
information, introducing strategies to mine candidate theorems, and employing

1 In [1] it is explained how to translate mathematical problems stated in natural lan-
guages to propositions formulated in Zermelo–Fraenkel axiomatic set theory. Com-
bination of the method of natural language processing discussed therein with our
approach of theorem discovering from images of diagrams may help increase the
degree of automation for mathematical problem solving in education.
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automated provers to validate theorems. Three key concepts used in our app-
roach are recalled below.

– A point P in an image of diagram is a point of attraction if P is an endpoint
of a segment, or the starting point of a half line, or . . . (see [5] for details).

– A point P of attraction is a characteristic point if it is used in the expressions
of properties or the specifications of propositions implied in the diagram.

– A geometric relation is a branch relation if it can be derived from other geomet-
ric relations by simple deduction in some specific cases, for example, ||AB =
||EF || is a branch relation when ||AB|| = ||CD|| and ||CD|| = ||EF || hold.

The general approach consists of four main steps presented briefly as follows.

1. Specifying basic objects and relations. Identify a set O of basic geometric
objects and a set R of basic geometric relations and represent the objects,
their labels, and their relations formally using a formal language (such as
Geometry Description Language presented in [4]). Let an image I of a diagram
for some geometric theorem involving the elements of O and R be given.

2. Retrieving geometric information. First use shape recognition techniques to
detect geometric objects from I, then use techniques of image cutting and
matching to recognize labels of the detected objects, and finally use numerical
computation to mine geometric relations among the detected objects.

3. Generating candidate propositions. From the mined geometric relations,
remove irrelevant ones by dropping points which are not characteristic and by
discarding branch relations. Then use derived geometric relations to replace
some of the remaining basic ones and generate candidate propositions from
the resulting geometric relations.

4. Mining theorems. Validate candidate propositions to obtain geometric the-
orems by proving them using a theorem prover (such as GEOTHER [12])
based on algebraic methods and output the proved theorems.

In step 2 above, different techniques may be required when the images of
diagrams are produced in different ways. In the next section, we will focus our
study on special techniques for the recognition of geometric objects and their
labels and for the mining of geometric relations from scanned and photographed
images of diagrams.

Remark 1. By discovering, we mean generating geometric theorems from images
of diagrams rather than finding theorems new in geometry.

3 Retrieval of Geometric Information from Scanned
and Photographed Images

We restrict our study to images of diagrams which may occur in textbooks
of plane Euclidean geometry. The retrieval of geometric information from such
images includes the recognition of basic geometric objects and their labels and
the mining of basic geometric relations. In this section, we explain how to perform
these tasks and discuss how to formally represent the retrieved information.
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3.1 Recognizing Basic Geometric Objects

We consider the following three kinds of basic geometric objects which are used
to form most diagrams in plane Euclidean geometry.

– Point. A point is represented by a pair of coordinates (x, y) in the coordinate
system determined by the image of diagram.

– Line. A straight line (with no endpoint) is represented by line(P1, P2), where
P1 and P2 are two distinct points on the line. Similarly, a half line is repre-
sented by halfline(O,P ), where O is the initial point and P is another point
distinct from O on the halfline; a segment is represented by segment(E1, E2),
where E1 and E2 are the endpoints of the segment.

– Circle. A circle may be represented by circle(O, r), where O is the center
and r (> 0) is the radius of the circle, or circle(A,B,C), where A,B,C are
three different points incident to the circle.

Any basic geometric object O introduced above has the form f(O1, . . . , On),
where f is the name of the object and O1, . . . , On are other geometric objects
which determine O. The recognition of O consists in determining O1, . . . , On.
For example, recognition of a circle means determining the coordinates of the
center and the radius of the circle.

In order to use previously retrieved information, recognition tasks should be
arranged in the order of circles, lines, and points. In what follows, we present
the main algorithmic steps for recognizing basic geometric objects. Most of them
are refined from their corresponding steps described in [5].

1. Circle recognition. Let C be the set of the detected circles.
(a). Preprocessing. For any given scanned (or photographed) image of dia-

gram I, perform resizing, image enhancement, contrast adjustment, gray-
ing, binarization, and thinning2 operations on I to obtain I1.

(b). Detection. Detect circles from I1 by using the following randomized
detection algorithm derived from the algorithms proposed in [2,3].
i. Set N := 0 and C := ∅, where N is a counter.
ii. Randomly generate two different horizontal lines l1 and l2. Set P1 :=

∅, P2 := ∅. For each black point P ∈ I1, if P is incident to l1, then
set P1 := P1 ∪ {P}; if P is incident to l2, then set P2 := P2 ∪ {P}.
Set F := 0, where F is a flag.

iii. For each set {P1, P2 ∈ P1, P3, P4 ∈ P2 | P1 �= P2, P3 �= P4} of four
points, if P4 is incident to3 the candidate circle C := circle(O, r)4

determined by {P1, P2, P3} and furthermore the condition nCount/
(2πr) ≥ cRate

5 is satisfied, where nCount denotes the number of black
points incident to C in I1 and cRate ∈ [0, 1] is a prespecified tolerance

2 For example, using Zhang’s technique of parallel thinning [11].
3 |‖OP4‖ − r| ≤ τpc, where τpc is a prespecified tolerance.
4 The radius of C is measured by the number r of pixel points.
5 On the one hand, this condition allows a certain degree of numerical errors; on the

other hand, it is applicable for both large and small radii of circles.
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(e.g., cRate = 0.5), then set C := C∪{C}, N := 0, F := 1; otherwise,
proceed to the next set of four points.

iv. If F = 0, then set N := N + 1.
v. If N ≥ T , where T is a predetermined maximum number of failure

times (e.g., T = 50), then the algorithm terminates and output the
set C. Otherwise, go to step ii.

2. Line recognition.
(a) Preprocessing. Perform binarization and thinning operations on I to

obtain I2.
(b) Detection. Apply the improved progressive probabilistic Hough trans-

form (see [6,7]) on I2 to acquire a set L of segments.
(c) Postprocessing. Merge those short segments which are recognized from

longer ones, determine the endpoints of each segment more accurately,
identify the actual line types of the obtained segments, drop nonexisting
lines,6 and finally obtain a set L of lines.

3. Collecting points of interest.
Collect as points of interest the centers of circles in C, the endpoints of lines in
L, and all the intersection points (if such points exist) of two basic geometric
objects in C ∪ L.

It is necessary to assign a unique label to each of the recognized basic geo-
metric objects, such that geometric relations among the objects can be expressed
clearly. Labels for important geometric objects (such as points) are usually con-
tained in diagrams. We shall present a method to extract information on label
assignment from images of diagrams in the next subsection.

Remark 2. Step 1(a) is adopted to preprocess the image I for later steps. Here
“resizing” is for improving the efficiency of image processing, “image enhance-
ment” and “contrast adjustment” are for making the background and foreground
of the image easily distinguishable, and “thinning” is for improving the accuracy
of geometric object recognition. Moreover, because of inexactness of images of
diagrams which we deal with, the algorithm used by us for circle recognition
here is different from the one used in [5].

3.2 Recognizing Labels of Geometric Objects

In this paper, we only deal with the relatively easy case when labels have no
overlap with geometric objects. In this case, which happens actually for most
diagrams in textbooks, labels in an image of diagram may be recognized by
checking whether each of them matches a character template according to the
following steps.

1. Preparing character templates. Cut all the labels in the images for testing
automatically and then screen out character templates from them by data
analysis (i.e., analyzing SIFT features [8]) and then add the representative
one for each letter to a set T of binary images of letters.

6 Due to numerical errors of line detection, some arcs may be recognized as line seg-
ments, in particular when the radius of the circle is large.
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2. Preprocessing. Redraw the basic geometric objects recognized in Subsect. 3.1
with white (background) color. Set L := [ ] and P := [ ].

3. Cutting out blocks with labels.
(a). For a black (foreground) point P (x, y), initialize a small rectangular

window W (t, d, l, r) containing P , where t, d, l, r denotes top, down, left
and right bounds respectively, with t := y − 1, d := y + 1, l := x − 1, r :=
x + 1.

(b). Gradually expand t, d, l, r of W towards outside until there are no black
points on the four boundaries of W . Then W (t, d, l, r) determines an
image block B.

4. Matching character templates. For each image block B with corresponding
window W (t, d, l, r), find the character template T of letter L such that the
distance7 dT,B is equal to dT,B := min{dTp,B | Tp ∈ T}; if dT,B is less than
a specified threshold, then append L to the list L. Compute the center ((l +
r)/2, (t + b)/2) of the cutting window and append it to the list P. Note that
the center of the ith label in L corresponds to the ith point in P.

After these steps, we assign the recognized labels to the corresponding geo-
metric objects. For any geometric object not labeled in the image, a unique
label is automatically generated by our program to refer to the object. Taking
the scanned image of diagram (Fig. 1) as an example, we show the geometric
objects obtained and the labels recognized or generated automatically.

Fig. 1. A scanned image of diagram

– The set P of points of interest:

C := (724, 1424), A := (165, 427), D := (295, 186), B := (360, 819),
E := (543, 480), F := (66, 228).

7 dT,B is computed by the SIFT algorithm [8], where T ∈ T and B is an image block
obtained in step 3(b).
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– The set L of lines:

a := segment(A,C), b := segment(D,C), c := segment(B,C),
d := segment(F,B), e := segment(A,E), f := segment(A,D).

– The set C of circle: g := circle(E, 383).

The features of diagrams are depicted mainly via geometric relations among
the involved objects. Based on the retrieved information of geometric objects,
we shall present a method to mine geometric relations in the next subsection.

Remark 3. For step 4, an alternative is to use a general-purpose engine of Optical
Character Recognition (OCR [9]). There are many such engines available, for
example, Tesseract [14], an OCR engine sponsored by Google since 2006 and
considered as one of the most accurate open-source OCR engines currently. We
have also written a routine for step 4 using Tesseract. However, this routine is less
efficient than the one based on the method described in step 4, while it can deal
with a set of labels in different fonts for which the latter works unsatisfactorily.

3.3 Mining Basic Geometric Relations

As an example, we take the relations listed in Table 1 as basic geometric rela-
tions. These relations can be used to describe most of the features about sizes
and positions of geometric objects and from them many other relations can be
derived.

To mine basic geometric relations, we check whether there exists a geometric
relation among some of the recognized geometric objects which is close to one of
the basic geometric relations in Table 1. Here closeness is measured algebraically
by a function | · | which depends on the basic geometric relation in question. If
the closeness is less than a prespecified threshold value, then the basic relation
is taken.

Table 1. Basic geometric relations

Representation Meaning

incident(A, l) point A lies on line l

pointOnC(A, o) point A is on circle o

parallel(l1, l2) l1 is parallel to l2

perpendicular(l1, l2) l1 is perpendicular to l2

equal(distance(A, B), distance(C, D))
or ‖AB‖ = ‖CD‖

the distance between A and B is equal to
the distance between C and D

equal(size(angle(A, B, C)),
size(angle(D, E, F ))) or
∠ABC = ∠DEF

the size of ∠ABC is equal to the size of
∠DEF
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Let P be the set of points, L be the set of lines, and C be the set of circles
recognized from an image I. The process of mining basic geometric relations
from P,L,C works by considering all the relations in Table 1 as follows.

Let R := ∅ and τ1, . . . , τ6 be small positive real numbers to be used as
threshold values.

1. For each A ∈ P and each l ∈ L, check whether ‖Al‖ < τ1, where ‖Al‖ denotes
the distance from A to l; if so, then add incident(A, l) to R.

2. For each A ∈ P and each o ∈ C, check whether |‖AO‖ − r| < τ2, where O is
the center and r is the radius of o; if so, then add pointOnC(A, o) to R.

3. For each pair of l1, l2 ∈ L, check whether |size(αl1l2) − 0| < τ3, where αl1l2

denotes the included angle of l1 and l2; if so, then add parallel(l1, l2) to R.
4. For each pair of l1, l2 ∈ L, check whether |size(αl1l2) − π

2 | < τ4; if so, then
add perpendicular(l1, l2) to R.

5. For each set of points A,B,C,D ∈ P, where A and B are connected by a line,
and so are C and D, check whether |‖AB‖ − ‖CD‖| < τ5; if so, then add
equal(distance(A, B), distance(C,D)) to R.

6. For each set of points A,B,C,D,E, F ∈ P, where A and B are connected by
a line, as are B and C, as are D and E, and as are E and F , check whether
|size(∠ABC)−size(∠DEF )| < τ6; if so, then add equal(size(angle(A,B,
C)), size(angle(D,E, F ))) to R.

7. Return the set R of basic geometric relations.

For example, following the above steps, one may obtain 12 basic geometric
relations for Fig. 1:

incident(A, d), incident(E, c), pointOnC(C, g), pointOnC(A, g),
pointOnC(D, g), pointOnC(B, g), perpendicular(a, d), parallel(c, f),
equal(distance(C,D), distance(A,B)),
equal(distance(C,E), distance(B,E)),
equal(distance(C,E), distance(A,E)),
equal(distance(B,E), distance(A,E)).

From these relations, five candidate propositions are formulated according to
step 3 in Sect. 2 (see also Sect. 3 in [5] and No. 5 in Table 3).

Proposition1([equal(distance(D,C), distance(A,B)), equal(distance(E,B),
distance(A,E)), E := midpoint(B,C), incident(D, circle

(B,C,A)), parallel(segment(B,C), segment(A,D))],
[perpendicular(segment(A,C), segment(A,B))]).

Proposition2([equal(distance(D,C), distance(A,B)), equal(distance(E,B),
distance(A,E)), E := midpoint(B,C), incident(D, circle

(B,C,A)), perpendicular(segment(A,C), segment(A,B))],
[parallel(segment(B,C), segment(A,D))]).



Discovering Geometric Theorems from Scanned and Photographed Images 157

Proposition3([equal(distance(D,C), distance(A,B)), equal(distance(E,B),
distance(A,E)), E := midpoint(B,C), parallel(segment(B,C),
segment(A,D)), perpendicular(segment(A,C), segment(A,B))],

[incident(D, circle(B,C,A))]).

Proposition4([equal(distance(D,C), distance(A,B)), E := midpoint(B,C),
incident(D, circle(B,C,A)), parallel(segment(B,C), segment

(A,D)), perpendicular(segment(A,C), segment(A,B))],
[equal(distance(E,B), distance(A,E))]).

Proposition5([equal(distance(E,B), distance(A,E)), E := midpoint(B,C),
incident(D, circle(B,C,A)), parallel(segment(B,C), segment

(A,D)), perpendicular(segment(A,C), segment(A,B))],
[equal(distance(D,C), distance(A,B))]).

Each candidate proposition is presented in the form Propositionindex([R1, . . .,
Rm], [Rc]), where index is a unique integer generated for the proposition,
R1, . . . , Rm form the hypothesis, and Rc is the conclusion of the proposition.
The five candidate propositions listed above have all been proved to be true by
using the theorem prover GEOTHER [12].

Remark 4. When geometric objects and relations among the objects are
detected, it is relatively easy to draw diagrams satisfying the relations. In fact,
automated generation of diagrams is a problem of geometric constraint solving
which has been studied extensively. For example, the second author has shown
in [10] how to generate dynamic diagrams for geometric theorems automatically.

4 Implementation and Experiments

The techniques of geometric information retrieval described in Sect. 3 have been
implemented in C++ using OpenCV [13]. The formulation and validation of
candidate propositions (see steps 3 and 4 in Sect. 2) have been implemented in
Java using the Maple package GEOTHER [12]. Images of diagrams used for
our experiments were scanned from a Chinese version of Euclid’s Elements8 and
photographed from the same classic using a mobile phone Sony LT26i.

8 Currently, carefully photographed images of diagrams can be successfully processed.
The problem of processing images of diagrams carelessly photographed is still under
investigation.
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Table 2. Test results for scanned or photographed images

No. Image Time Size Source Candidates Theorems

1 0.228 506×500 Scan 2 0

2 0.299 572×500 Scan 3 1

3 0.258 517×500 Scan 11 11

4 0.300 508×500 Scan 8 1

5 0.474 917×500 Scan 8 4

6 0.428 790×500 Scan 21 16

7 0.458 897×500 Scan 4 4

8 0.639 500×544 Scan 16 11
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No. Image Time Size Type Candidates Theorems

9 0.288 534×500 Photo 18 17

10 0.360 816×500 Photo 8 1

11 0.293 506×500 Photo 11 7

12 0.373 500×737 Photo 6 5

13 0.201 502×500 Photo 4 3

14 0.275 742×500 Photo 10 5

15 0.295 752×500 Photo 1 0

16 0.390 627×500 Photo 20 6
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Table 3. Test results for scanned images in comparison with photographed images

No. Image Time Size Source Candidates Theorems

1 0.276 736×500 Scan 3 3

2 0.227 623×500 Photo 3 3

3 0.693 1083×500 Scan 14 0

4 0.448 873×500 Photo 18 0

5 0.259 519×500 Scan 5 5

6 0.235 521×500 Photo 5 5

7 0.273 517×500 Scan 21 20

8 0.283 594×500 Photo 21 20

9 0.263 542×500 Scan 4 2
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No. Image Time Size Type Candidates Theorems

10 0.221 571×500 Photo 6 5

11 0.234 507×500 Scan 5 5

12 0.285 625×500 Photo 1 0

13 0.298 631×500 Scan 6 5

14 0.218 596×500 Photo 6 5

15 0.308 694×500 Scan 6 5

16 0.374 746×500 Photo 6 5

17 0.288 762×500 Scan 8 8

18 0.429 769×500 Photo 6 4
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19 0.386 514×500 Scan 8 1

20 0.337 572×500 Photo 9 4

21 0.354 500×519 Scan 9 8

22 0.277 539×500 Photo 7 4

No. Image Time Size Type Candidates Theorems

23 0.419 854×500 Scan 13 1

24 0.370 791×500 Photo 21 7

We have made some preliminary experiments with a number of selected
images of diagrams, for which geometric information retrieval was carried out
on a PC with 2.83 GHz CPU and 3.00 GB of memory. We present some of the
experimental results in Tables 2 and 3,9 where “Time” is recorded in seconds
for information retrieval from the image; “Size” denotes the image size in pix-
els; “Type” is used to indicate the means by which the image was obtained,
“Scan” is for scanned image, and “Photo” is for photographed image; “Candi-
dates” denotes the number of generated candidate propositions; and “Theorems”
denotes the number of proved theorems.

9 The objects recognized and the theorems discovered automatically from images of
diagrams are presented on the website http://geo.cc4cm.org/data/recognizer/.

http://geo.cc4cm.org/data/recognizer/
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Some of the generated candidate propositions may be wrong. For example,
the two candidate propositions

Proposition1([incident(C, circle(B,A,D)), perpendicular(segment(B,D),
segment(A,D)), B := foot(A, segment(E,F )), G := midpoint

(B,A), equal(distance(G,B), distance(D,G))],
[midpoint(B, segment(E,F ))]);

Proposition3([incident(C, circle(B,A,D)), perpendicular(segment(B,D),
segment(A,D)), G := midpoint(B,A), midpoint(B, segment

(E,F )), equal(distance(G,B), distance(D,G))],
[B := foot(A, segment(E,F ))])

generated for No. 9 in Table 3 are wrong, as confirmed by GEOTHER. Tables 2
and 3 contain no candidate propositions which are known theorems but cannot
be proved automatically. Of course, there are such propositions, for instance, the
candidate propositions formulated for the image of diagram of Morley’s theorem
(see No. 10 in Table 6 of [5], page 23), which could not be proved by GEOTHER.

For our test results, the correctness rate for label recognition is about 92%
statistically. Due to inaccuracy of geometric information retrieval with large
threshold values, some undesired distance relations may be produced, bringing
more candidate propositions (see10 Nos. 3 and 4 in Table 3). Furthermore, for
a scanned and a photographed image of the same diagram (see Table 3), such
large threshold values may lead to different sets of undesired distance relations,
and thus lead to different numbers of candidates propositions formulated and
different numbers of theorems discovered. Appropriate trade-off in the choice
of threshold values for different images can help improve the accuracy of geo-
metric information retrieval. In our implementation, the threshold values are
determined by making experiments on a set of test images with fixed size, e.g.,
400×400. For each given image I of a diagram, the threshold values are adjusted
automatically according to the size of I.

Some of the discovered geometric theorems which an image of diagram illus-
trates are trivial, while most of the theorems discovered from the image are
nontrivial and can be found in standard textbooks. Whether the trivial theo-
rems can be ruled out depends on how candidate propositions are formulated.

Remark 5. There may be a notable difference between the number of candidate
propositions formulated and the number of theorems proved. This may happen
in particular when threshold values are not properly initialized — in this case,
undesired false geometric relations may be retrieved, leading to self-contradictory
candidate propositions. For example, the reader may note that for No. 16 in
Table 2 and Nos. 23 and 24 in Table 3 most of the candidate propositions are not

10 There is a theorem about the equality of the areas of the parallelograms ABCD
and EBCH implied by the image. The theorem could not be mined because area
relations are not among our chosen basic geometric relations.



164 D. Song et al.

proved to be theorems, because the threshold value chosen for τ5 (see step 5 in
Sect. 3.3) is too big.

5 Concluding Remarks

We have presented different techniques for geometric information retrieval,
including recognition of geometric objects and their labels and mining of geomet-
ric relations from scanned and photographed images of diagrams. These tech-
niques have been used to extend our general approach for automated discovering
of geometric theorems from images, which has potential applications in geometric
knowledge base creation and knowledge management.

We are still improving the correctness rate of geometric object and label
recognition and the overall efficiency of our approach. We expect to further
extend our work to deal with such images as photographed images of hand-
drawn diagrams, which are hardly accurate. Moreover, we plan to develop a
software tool to help collect geometric theorems discovered automatically from
images of diagrams which are taken from the Internet by means of search.

Acknowledgements. The authors wish to thank the referees for their constructive
comments which have helped improve the paper significantly. This work has been
supported by the project SKLSDE-2015ZX-18.
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Abstract. Given a hypergraph H with m hyperedges and a set X of
m pins, i.e. globally fixed subspaces in Euclidean space Rd, a pinned
subspace-incidence system is the pair (H,X), with the constraint that
each pin in X lies on the subspace spanned by the point realizations in
Rd of vertices of the corresponding hyperedge of H. Pinned subspace-
incidence systems arise in modeling dictionary learning problems as well
as biomaterials such as cell wall microfibrils. We are interested in combi-
natorial characterization of pinned subspace-incidence systems that are
minimally rigid, i.e. those systems that are guaranteed to generically
yield a locally unique realization. As is customary, this is accompanied
by a characterization of generic independence as well as rigidity. Previ-
ously, such a combinatorial rigidity characterization is only known for
a more restricted version of pinned subpsace-incidence systems, with H
being a uniform hypergraph and pins in X being 1-dimension subspaces.
In this paper, we extend the combinatorial characterization to general
pinned subspace-incidence systems, with H being a non-uniform hyper-
graph and pins in X being subspaces with arbitrary dimension. As there
are generally many data points per subspace in a dictionary learning
problem, which can only be modeled with pins of dimension larger than
1, such an extension enables application to a much larger class of dictio-
nary learning problems.

1 Introduction

A pinned subspace-incidence system (H,X) is an incidence constraint system
specified as a hypergraph H together with a set X of subspaces or pins in Rd

in one-to-one correspondence with the hyperedges of H. A realization of (H,X)
assigns points in Rd to the vertices of H, thereby subspaces to the hyperedges of
H. The subspace in Rd corresponding to a hyperedge of H contains the associated
pin from X. We are interested in characterization of pinned subspace-incidence
systems that are minimally rigid, i.e. those systems that are guaranteed to gener-
ically yield a locally unique realization.

In a previous paper [19], we used pinned subspace-incidence systems towards
solving fitted dictionary learning problems, i.e. dictionary learning with specified
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underlying hypergraphs. Dictionary learning (aka sparse coding) is the problem
of obtaining a set dictionary vectors that sparsely represent a set of given data
points in Rd. Geometrically, such a sparse representation can be viewed as a
subspace arrangement spanned by the dictionary vectors that contains all the
data points. In fitted dictionary learning, the underlying hypergraph H of the
subspace arrangement is specified, and the problem becomes a pinned subspace-
incidence systems with the pins corresponding to the span of data points on each
subspace.

Moreover in a recent paper [3], we have used pinned subspace-incidence
systems in modeling biomaterials such as cross-linking cellulose and collagen
microfibrils in cell walls [4,5,20]. In such materials, each fibril is attached to
some fixed larger organelle/membrane at one site, and cross-linked at two loca-
tions with other fibrils. Consequently, they can be modeled using a pinned line-
incidence system with H being a graph, where each fibril is modeled as an edge of
H with the two cross-linkings as its two vertices, and the attachment is modeled
as the corresponding pin.

We gave in [19] a combinatorial characterization of minimal rigidity for
a restricted version of pinned subspace-incidence system, with the underlying
hypergraph H being a uniform hypergraph and pins in X being 1-dimension
subspaces of Rd (treated as points in Pd−1(R) – see Sect. 2 for details).

1.1 Contributions

In this paper, we extend the combinatorial characterization of minimal rigid-
ity to general pinned subspace-incidence systems, where H is any non-uniform
hypergraph and each pin in X is a subspace with arbitrary dimension. Such an
extension enables application to a much larger class of fitted dictionary learning
problems, since there are generally many data points per subspace in a dictio-
nary learning problem, which can only be modeled with pins of dimension larger
than 1.

As in our previous paper [19], we apply the classic method of White and
Whiteley [24] to combinatorially characterize the rigidity of general pinned
subspace-incidence systems. The primary technique is using the Laplace decom-
position of the rigidity matrix, which corresponds to a map-decomposition [21] of
the underlying hypergraph. The polynomial resulting from the Laplace decom-
position is called the pure condition, which characterizes the conditions that the
framework has to avoid for the combinatorial characterization to hold.

1.2 Related Works

Previous works on related types of geometric constraint frameworks include pin-
collinear body-pin frameworks [14], direction networks [26], slider-pinning rigid-
ity [22], body-cad constraint system [10], k-frames [24,25], and affine rigidity [8].
However, we are not aware of any previous results on systems that are similar
to pinned subspace-incidence systems.
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2 Preliminaries

In this section, we introduce the formal definition of pinned subspace-incidence
systems and basic concepts in combinatorial rigidity.

A hypergraph H = (V,E) is a set V of vertices and a set E of hyperedges,
where each hyperedge is a subset of V . The rank r(H) of a hypergraph H is the
maximum cardinality of any edge in E, i.e. r(H) = maxek∈E |ek|. A hypergraph
is s-uniform if all edges in E have the same cardinality s. A configuration or
realization of a hypergraph H = (V,E) in Rd is a mapping from the vertices
of H to the points in Rd, i.e. p : V → Rd. When there is no ambiguity, we
simply use pi to denote the point p(vi), and p(ek) to denote the set of points
{p(vi)|vi ∈ ek}.

An example of a rank-3 hypergraph is given in Fig. 1a.
In the following, we use 〈S〉 to denote the subspace spanned by a set S of

points in Rd.

Definition 1 (Pinned Subspace-Incidence System). A pinned subspace-
incidence system in Rd is a pair (H,X), where H = (V,E,m) is a weighted
hypergraph of rank r(H) < d, and X = {x1, x2, . . . , x|E|} is a set of pins (sub-
spaces of Rd) in one-to-one correspondence with the hyperedges of H. Here the
weight assignment is a function m : E → Z+, where m(e) denotes the dimension
of the pin associated with the hyperedge e. Often we ignore the weight m and just
refer to the hypergraph (V,E) as H.

A pinned subspace-incidence framework realizing the pinned subspace-
incidence system (H,X) is a triple (H,X, p), where p is a realization of H,
such that for all pins xk ∈ X, xk is contained in 〈p(ek)〉, the subspace spanned
by the set of points realizing the vertices of the hyperedge ei corresponding to xk.

We may write m(xk) or simply mk in substitute of m(ek), where xk is the
pin associated with the hyperedge ek.

Since we only care about incidence relations, we projectivize the Euclidean
space Rd to treat the pinned subspace-incidence system in the real projective
space Pd−1(R), and use the same notation for the pins and hypergraph realization
when the meaning is clear from the context.

Note: as the pins in X are treated as globally fixed subspaces, the trivial motion
space of a pinned subspace-incidence system (H,X) reduces to the identity.

Fig. 1b gives an example of a pinned subspace-incidence framework in the
projective space Pd−1(R) with d = 4, where each pin is the subspace spanned by
the set of cross-denoted points on the corresponding hyperedge.

Definition 2. A pinned subspace-incidence system (H,X) is independent if
none of the algebraic constraints is in the ideal generated by others, which generi-
cally implies the existence of a realization. It is rigid if there exist at most finitely
many realizations. It is minimally rigid if it is both rigid and independent. It is
globally rigid if there exits at most one realization.
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v1 v2 v3
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e1
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e3 e4
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(a)

v1

v2
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v4

v5
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e2

e3 e4

e5

(b)

Fig. 1. (a) A rank-3 non-uniform hypergraph with 6 vertices and 5 edges, where |e1| =
|e2| = 3, |e3| = |e4| = 2, |e5| = 1. (b) A pinned subspace-incidence framework in d = 4
(projectivized in P3(R)) on the hypergraph from (a), with m1 = m3 = 2, m2 = 3,
m4 = m5 = 1, where the crosses on each hyperedge represent points spanning the
associated pin.

3 Algebraic Representation and Linearization

In the following, we use A[R,C] to denote a submatrix of a matrix A, where
R and C are respectively index sets of the rows and columns contained in the
submatrix. In addition, A[R, · ] represents the submatrix containing row set R
and all columns, and A[ · , C] represents the submatrix containing column set C
and all rows.

3.1 Algebraic Representation

A pin xk associated with a hyperedge ek = {vk
1 , vk

2 , . . . , vk
|ek|} is constrained to be

contained in the subspace 〈p(ek)〉 spanned by the point set {pk
1 , p

k
2 , . . . , p

k
|ek|}. As

xk is a subspace of dimension mk − 1 in Pd−1(R), we can pick a set of mk points
{xk

1 , x
k
2 , . . . , x

k
mk

} spanning xk. Now the constraint is equivalent to requiring
〈p(e)〉 to contain each point xk

l , for 1 ≤ l ≤ mk. We call each such point xk
l a

atomic pin as it acts like a pin with m(xk
l ) = 1.

Using homogeneous coordinates pk
i = [pk

i,1 pk
i,2 . . . pk

i,d−1 ] and xk
l =

[xk
l,1 xk

l,2 . . . xk
l,d−1 ], we write this incidence constraint for each point xl by let-

ting all the |ek| × |ek| minors of the |ek| × (d − 1) matrix

Ek
l =

⎡

⎢⎢⎢⎣

pk
1 − xk

l

pk
2 − xk

l
...

pk
|ek| − xk

l

⎤

⎥⎥⎥⎦
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be zero. There are
(
d−1
|ek|

)
minors, giving

(
d−1
|ek|

)
equations. Note that any d − |ek|

of these
(
d−1
|ek|

)
equations are independent and span the rest. So we can write the

incidence constraint as (d − |ek|) independent equations:

det
(
Ek

l [ · , C(t)]
)

= 0, 1 ≤ t ≤ d − |ek| (1)

where C(t) denote the following index sets of columns in E:

C(t) = {1, 2, . . . |ek| − 1} ∪ {|ek| − 1 + t}, 1 ≤ t ≤ d − |ek|

In other words, C(t) contains the first |ek| − 1 columns together with column
|ek| − 1 + t.

Now the incidence constraint for the pin xk is represented as mk(d − |ek|)
equations for all the mk atomic pins {xk

1 , x
k
2 , . . . x

k
mk

}. Consequently, the pinned
subspace-incidence problem reduces to solving a system of

∑|E|
k=1 mk(d − |ek|)

equations, each of form (1). We denote this algebraic system by (H,X)(p) = 0.

3.2 Genericity

We are interested in characterizing minimal rigidity of pinned subspace-incidence
systems. However, checking independence relative to the ideal generated by the
variety is computationally hard and best known algorithms, such as computing
Gröbner basis, are exponential in time and space [17]. However, the algebraic
system can be linearized at generic or regular (non-singular) points, whereby
the independence and rigidity of the algebraic system (H,X)(p) = 0 reduces to
linear independence and maximal rank at generic frameworks.

In algebraic geometry, a property being generic intuitively means that the
property holds on the open dense complement of an (real) algebraic variety.
Formally,

Definition 3. A pinned subspace-incidence system (H,X) is generic w.r.t. a
property Q if and only if there exists a neighborhood N(X) such that for all
systems (H,X ′) with X ′ ∈ N(X), (H,X ′) satisfies Q if and only if (H,X)
satisfies Q.

Similarly, a framework (H,X, p) is generic w.r.t. a property Q if and only
if there exists a neighborhood N(p) such that for all frameworks (H,X, q) with
q ∈ N(p), (H,X, q) satisfies Q if and only if (H,X, p) satisfies Q.

Furthermore we can define generic properties in terms of the underlying
weighted hypergraph.

Definition 4. A property Q of pinned subspace-incidence systems is generic
(i.e., becomes a property of the underlying weighted hypergraph alone) if for any
weighted hypergraph H = (V,E,m), either all generic (w.r.t. Q) systems (H,X)
satisfies Q, or all generic (w.r.t. Q) systems (H,X) do not satisfy Q.
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Once an appropriate notion of genericity is defined, we can treat Q as a prop-
erty of a hypergraph. The primary activity of the area of combinatorial rigidity
is to give purely combinatorial characterizations of such generic properties Q.
In the process of drawing such combinatorial characterizations, the notion of
genericity may have to be further restricted by so-called pure conditions that
are necessary for the combinatorial characterization to go through (we will see
this in the proof of Theorem 1).

3.3 Linearization as Rigidity Matrix

Next we follow the approach taken by traditional combinatorial rigidity theory
[2,9] to show that rigidity and independence (based on nonlinear polynomials) of
pinned subspace-incidence systems are generically properties of the underlying
weighted hypergraph H, and can furthermore be captured by linear conditions in
an infinitesimal setting. Specifically, we give a lemma showing that rigidity of a
pinned subspace-incidence system is equivalent to existence of a full rank rigidity
matrix, obtained by taking the Jacobian of the algebraic system (H,X)(p) at a
regular point.

A rigidity matrix of a framework (H,X, p) is a matrix whose kernel is the
infinitesimal motions (flexes) of (H,X, p). A framework is infinitesimally rigid if
the space of infinitesimal motions is trivial, i.e. the rigidity matrix has full rank.
To define a rigidity matrix for a pinned subspace-incidence framework (H,X, p),
we take the Jacobian of the algebraic system (H,X)(p) = 0 by taking partial
derivatives with respect to the coordinates of pi’s. In the Jacobian, each vertex
vi has d − 1 corresponding columns, and each pin xk associated with the hyper-
edge ek = {vk

1 , vk
2 , . . . , vk

|ek|} has mk(d − |ek|) corresponding rows, where each
equation det

(
Ek

l [ · , C(t)]
)

= 0 (1), i.e. equation t of the atomic pin xk
l , gives

the following row (the columns corresponding to vertices not in ek are all zero):

[
0, . . . , 0,

∂ det Ek
l [ · , C(t)]

∂pk
1,1

,
∂ det Ek

l [ · , C(t)]
∂pk

1,2

, . . . ,
∂ det Ek

l [ · , C(t)]
∂pk

1,d−1

, 0, . . .

. . . , 0,
∂ det Ek

l [ · , C(t)]
∂pk

2,1

,
∂ det Ek

l [ · , C(t)]
∂pk

2,2

, . . . ,
∂ det Ek

l [ · , C(t)]
∂pk

2,d−1

, 0, . . .

. . . . . .

. . . , 0,
∂ det Ek

l [ · , C(t)]
∂pk

|ek|,1
,
∂ det Ek

l [ · , C(t)]
∂pk

|ek|,2
, . . . ,

∂ det Ek
l [ · , C(t)]

∂pk
|ek|,d−1

, 0, . . . , 0
]

(2)

Let V k be the matrix whose rows are coordinates of pk
1 , p

k
2 , . . . , p

k
|ek|:

⎡

⎢⎢⎢⎣

p1,1 p1,2 . . . p1,d−1

p2,1 p2,2 . . . p2,d−1

...
...

. . .
...

p|ek|,1 p|ek|,2 . . . p|ek|,d−1

⎤

⎥⎥⎥⎦
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Let V k
t be the V k[ · , C(t)], i.e. the |ek| × |ek| submatrix of V k containing only

columns in C(t). Let V k
t,j be the matrix obtained from V k

t by replacing the
column corresponding to coordinate j with the all-ones vector (1, 1, . . . , 1) for
j ∈ C(t), and the zero matrix for j /∈ C(t). Let Dk

t,j be the determinant of V k
t,j .

Let xl =
∑|ek|

i=1 bk,l
i pk

i (note that
∑|ek|

i=1 bk,l
i = 1). Now (2) can be rewritten in the

following simplified form:

rk
t,l =

[
0, . . . , 0, 0, Dk

t,1b
k,l
1 , Dk

t,2b
k,l
1 , . . . , Dk

t,d−1b
k,l
1 , 0, 0,

. . . , 0, 0, Dk
t,1b

k,l
2 , Dk

t,2b
k,l
2 , . . . , Dk

t,d−1b
k,l
2 , 0, 0, . . .

. . . . . .

. . . , 0, 0, Dk
t,1b

k,l
|ek|, Dk

t,2b
k,l
|ek|, . . . , Dk

t,d−1b
k,l
|ek|, 0, 0, . . . , 0

]
(3)

Each vertex vk
i has the entries Dk

t,jb
k,l
i , 1 ≤ j ≤ d − 1 in its d − 1 columns,

among which exactly |ek| entries with j ∈ C(t), i.e. the first |ek| − 1 columns
together with column |ek| − 1 + t, are generically non-zero. Note that the terms
Dk

t,|ek|−1+t are equal for all t, so we may just use Dk to denote it.
For each 1 ≤ t ≤ d − |ek|, there are mk rows as (3), where each atomic pin

xk
l corresponds to the row rk

t,l for 1 ≤ l ≤ mk. These mk rows have exactly the
same row pattern except for different bk,l

i ’s:

v1,1 v1,2 . . . v1,d−1 v|ek|,1 v|ek|,2 . . . v|ek|,d−1⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

. . . Dk
t,1b

k,1
1 Dk

t,2b
k,1
1 . . . Dk

t,d−1b
k,1
1 . . . . . . Dk

t,1b
k,1
|ek| Dk

t,2b
k,1
|ek| . . . Dk

t,d−1b
k,1
|ek| . . .

. . . Dk
t,1b

k,2
1 Dk

t,2b
k,2
1 . . . Dk

t,d−1b
k,2
1 . . . . . . Dk

t,1b
k,2
|ek| Dk

t,2b
k,2
|ek| . . . Dk

t,d−1b
k,2
|ek| . . .

. . .

. . . Dk
t,1b

k,mk
1 Dk

t,2b
k,mk
1 . . . Dk

t,d−1b
k,mk
1 . . . . . . Dk

t,1b
k,mk
|ek| Dk

t,2b
k,mk
|ek| . . . Dk

t,d−1b
k,mk
|ek| . . .

Example 1. For d = 4, consider a pin x with m(x) = 2 associated with the
hyperedge e = {v1, v2}. The pin has the following m(x) · (d − |e|) = 4 rows in
the simplified Jacobian (the index k is omitted):

v1,1 v1,2 v1,3 v2,1 v2,2 v2,3
⎡

⎢
⎣

⎤

⎥
⎦

t = 1, l = 1 . . . D1,1b
1
1 Db11 0 . . . D1,1b

1
2 Db12 0 . . .

t = 1, l = 2 . . . D1,1b
2
1 Db21 0 . . . D1,1b

2
2 Db22 0 . . .

t = 2, l = 1 . . . D2,1b
1
1 0 Db11 . . . D2,1b

1
2 0 Db12 . . .

t = 2, l = 2 . . . D2,1b
2
1 0 Db21 . . . D2,1b

2
2 0 Db22 . . .

We define the rigidity matrix M(H,X, p) or simply M(p) for a pinned
subspace-incidence framework (H,X, p) to be the simplified Jacobian matrix
obtained above, where each row has form (3). It is a matrix of size

∑
k mk(d−|ek|)

by n(d − 1).

Definition 5. A pinned subspace-incidence framework (H,X, p) and the corre-
sponding system (H,X) is generic if p and X are regular/non-singular points
with respect to the algebraic system (H,X)(p) = 0.
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We use M(H) or simply M to denote the generic rigidity matrix for a weighted
hypergraph H. Note that the rank of M cannot be less than the rank of M(p)
for any specific realization p.

Lemma 1. Generic infinitesimal rigidity of a pinned subspace-incidence frame-
work (H,X, p) is equivalent to generic rigidity of the system (H,X).

Proof. The proof of Lemma 1 follows the approach taken by traditional combi-
natorial rigidity [2].

First we show that if a framework (H,X, p) is regular, infinitesimal rigidity
implies rigidity. Consider the polynomial system (H,X)(p) of equations. The
Implicit Function Theorem states that there exists a function g, such that p =
g(X) on some open interval, if and only if the rigidity matrix M has full rank.
Therefore, if the framework is infinitesimally rigid, the solutions to the algebraic
system are isolated points (otherwise g could not be explicit). Since the algebraic
system contains finitely many components, there are only finitely many such
solution and each solution is a 0 dimensional point. This implies that the total
number of solutions is finite, which is the definition of rigidity.

To show that generic rigidity implies generic infinitesimal rigidity, we take
the contrapositive: if a generic framework is not infinitesimally rigid, we show
that there is a finite flex. If (H,X, p) is not infinitesimally rigid, then the rank
r of the rigidity matrix M is less than (d − 1)|V |. Let E∗ be a set of edges in
H such that |E∗| = r and the corresponding rows in M are all independent.
In M [E∗, · ], we can find r independent columns. Let p∗ be the components
of p corresponding to those r independent columns and p∗⊥ be the remaining
components. The r-by-r submatrix M [E∗, p∗], made up of the corresponding
independent rows and columns, is invertible. Then, by the Implicit Function
Theorem, in a neighborhood of p there exists a continuous and differentiable
function g such that p∗ = g(p∗⊥). This identifies p′, whose components are p∗

and the level set of g corresponding to p∗, such that (H,X)(p′) = 0. The level
set defines the finite flexing of the framework. Therefore the system is not rigid.

4 Combinatorial Rigidity Characterization

4.1 Required Hypergraph Properties

This section introduces pure hypergraph properties and definitions that will be
used in stating and proving our main theorem.

Definition 6. A hypergraph H = (V,E) is (k, 0)-sparse if for any V ′ ⊂ V ,
the induced subgraph H ′ = (V ′, E′) satisfies |E′| ≤ k|V ′|. A hypergraph H is
(k, 0)-tight if H is (k, 0)-sparse and |E| = k|V |.

This is a special case of the (k, l)-sparsity condition that was formally studied
widely in the geometric constraint solving and combinatorial rigidity literature
before it was given a name in [16]. A relevant concept from graph matroids is
map-graph, defined as follows.
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Definition 7. An orientation of a hypergraph is given by identifying as the tail
of each edge one of its endpoints. The out-degree of a vertex is the number of
edges which identify it as the tail and connect v to V − v. A map-graph is a
hypergraph that admits an orientation such that the out degree of every vertex is
exactly one.

The following lemma from [21] follows Tutte-Nash Williams [18,23] to give a
useful characterization of (k, 0)-tight graphs in terms of maps.

Lemma 2. A hypergraph H is composed of k edge-disjoint map-graphs if and
only if H is (k, 0)-tight.

Our characterization of rigidity of a weighted hypergraph H is based on
map-decomposition of a multi-hypergraph Ĥ obtained from H.

Definition 8. Given a weighted hypergraph H = (V,E,m), the associated
multi-hypergraph Ĥ = (V, Ê) is obtained by replacing each hyperedge ek in E
with a set Ek of mk(d − |ek|) copies of multi-hyperedges.

A labeling of a multi-hypergraph Ĥ gives a one-to-one correspondence
between Ek and the set Rk of mk(d − |ek|) rows for the hyperedge ek in the
rigidity matrix M , where the multi-hyperedge corresponding to the row rk

t,l is
labeled ek

t,l.

Note: an alternative representation commonly adopted in geometric constraint
solving [1,7,11] is to represent H as a bipartite graph B(H), with d − 1 copies
of each vertex in V as one of its vertex set, and mk(d − |ek|) copies of each
hyperedge in E as the other vertex set. A combinatorial rigidity characteriza-
tion can be equivalently stated using either flow based conditions on B(H) or
hypergraph sparsity conditions on Ĥ [12,13,15]. However, such an equivalence
of the two combinatorial properties has no bearing on the proof of equivalence of
either combinatorial property to generic rigidity, an algebraic property. Showing
that the combinatorial property generically implies the algebraic property is the
substance of the proof of the theorem. This is generally called the “Laman direc-
tion” and it is in fact where the hardness of every combinatorial characterization
of rigidity lies.

4.2 Characterizing Rigidity

In this section, we apply [24] to give combinatorial characterization for minimal
rigidity of pinned subspace-incidence systems.

Theorem 1 (main theorem). A pinned subspace-incidence system is gener-
ically minimally rigid if and only if:

(1) The underlying weighted hypergraph H = (V,E,m) satisfies
∑|E|

k=1 mk(d −
|ek|) = (d − 1)|V |, and

∑
ek∈E′ mk(d − |ek|) ≤ (d − 1)|V ′| for every ver-

tex induced subgraph H ′ = (V ′, E′). In other words, the associated multi-
hypergraph Ĥ = (V, Ê) has a decomposition into (d − 1) maps.
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(2) There exists a labeling of Ĥ compatible with the map-decomposition (defined
later) such that in each set Ek of multi-hyperedges,
(2a) two multi-hyperedges ek

t1,l1
and ek

t2,l2
with l1 = l2 are not contained in

the same map in the map-decomposition,
(2b) two multi-hyperedges ek

t1,l1
and ek

t2,l2
with t1 = t2 do not have the same

vertex as tail in the map-decomposition.

To prove Theorem 1, we apply Laplace expansion to the determinant of
the rigidity matrix M , which corresponds to decomposing the (d − 1, 0)-tight
multi-hypergraph Ĥ as a union of d − 1 maps. We then prove det(M) is not
identically zero by showing that the minors corresponding to each map are not
identically zero, as long as a certain polynomial called pure condition is avoided
by the framework. The pure condition characterizes the non-genericity that the
framework has to avoid in order for the combinatorial characterization to go
through: see Example 4.

A Laplace expansion rewrites the determinant of the rigidity matrix M as a
sum of products of determinants (brackets) representing each of the coordinates
taken separately. In order to see the relationship between the Laplace expansion
and the map-decomposition, we first group the columns of M into d − 1 column
groups Cj according to the coordinates, where columns for the first coordinate
of each vertex belong to C1, columns for the second coordinate of each vertex
belong to C2, etc.

Example 2 For d = 4, consider a pin x with m(x) = 2 associated with the
hyperedge e = v1, v2. The regrouped rigidity matrix has d − 1 = 3 column
groups, where the pin x has the following 4 rows (the index k is omitted):

v1,1 v2,1 v1,2 v2,2 v1,3 v2,3⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

t = 1, l = 1 . . . D1,1b11 . . . D1,1b12 . . . . . . Db11 . . . Db12 . . .

t = 1, l = 2 . . . D1,1b21 . . . D1,1b22 . . . . . . Db21 . . . Db22 . . .

t = 2, l = 1 . . . D2,1b11 . . . D2,1b12 . . . . . . Db11 . . . Db12 . . .

t = 2, l = 2 . . . D2,1b21 . . . D2,1b22 . . . . . . Db21 . . . Db22 . . .

We have the following observation on the pattern of the regrouped rigidity
matrix.

Observation 1. In the rigidity matrix M with columns grouped into column
groups, a hyperedge ek has mk(d − |ek|) rows, each associated with a multi-
hyperedge of ek in Ĥ. In a column group j where j ≤ |ek|−1, each row associated
with ek contains |ek| nonzero entries at the columns corresponding to vertices of
ek. In a column group j where j = |ek| − 1 + t ≥ |ek|, a row associated with a
multi-hyperedge ek

r,l of ek is all zero if r 
= t; the remaining mk rows contains
|ek| nonzero entries at the columns corresponding to vertices of ek.

A labeling of Ĥ compatible with a given map-decomposition can be obtained
as following. We start from the last column group of M and associate each
column group j with a map in the map-decomposition. For each multi-hyperedge
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of the map that is a copy of the hyperedge ek, we pick a row rk
t,j that is not

all zero in column groups j and label the multi-hyperedge as ek
t,j . By the above

observation, this is always possible if each map contains at most mk multi-
hyperedges of the same hyperedge ek, which must be true if there exists any
labeling of Ĥ satisfying Theorem 1(2a).

In the Laplace expansion

det(M) =
∑

σ

⎛

⎝±
∏

j

det M [Rσ
j , Cj ]

⎞

⎠ (4)

the sum is taken over all partitions σ of the rows into d − 1 subsets Rσ
1 , Rσ

2 ,
. . . , Rσ

j , . . . , Rσ
d−1, each of size |V |. In other words, each summation term of (4)

contains |V | rows Rσ
j from each column group Cj . Observe that for any submatrix

M [Rσ
j , Cj ], each row has a common coefficient Dk

t,j , so

det(M [Rσ
j , Cj ]) =

⎛

⎝
∏

rk
t,j∈Rσ

j

Dk
t,j

⎞

⎠ det(M ′[Rσ
j , Cj ])

where each row of M ′[Rσ
j , Cj ] is either all zero, or of the pattern

[0, . . . , 0, bk,l
1 , bk,l

2 , 0, . . . , bk,l
|ek|, 0, . . . , 0] (5)

with non-zero entries only at the |ek| indices corresponding to vk
i ∈ ek.

For a fixed σ, we refer to a submatrix M [Rσ
j , Cj ] simply as Mj .

Example 3. Figure. 2a shows a pinned subspace-incidence system in d = 3 with
4 vertices and 5 hyperedges, where e1 = {v1}, e2 = {v2}, e3 = {v1, v3}, e4 =
{v2, v4}, e5 = {v3, v4}, and mk = 1 for all 1 ≤ k ≤ 5 except that m5 = 2.
Figure 2b gives a map-decomposition of the multi-hypergraph Ĥ of (a). The
labeling of multi-hyperedges is given in the regrouped rigidity matrix (6),
where the shaded rows inside the column groups constitute the submatrices
Mσ

j in the summation term of the Laplace decomposition corresponding to
the map-decomposition. The system is generically minimally rigid, as the map-
decomposition and labeling of Ĥ satisfies the conditions of Theorem 1.

v1,1 v2,1 v3,1 v4,1 v1,2 v2,2 v3,2 v4,2
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e11,1 D1b1

e12,1 D1b1

e21,1 D2b2

e22,1 D2b2

e31,1 D3
1b

3
1 D3

1b
3
2 D3b31 D3b32

e41,1 D4
1b

4
1 D4

1b
4
2 D4b41 D4b4

2

e51,1 D5
1b

5,1
1 D5

1b
5,1
2 D5

2b
5,1
1 D5

2b
5,1
2

e51,2 D5
1b

5,2
1 D5

1b
5,2
2 D5

2b
5,2
1 D5

2b
5,2
2

(6)
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v1 v2

v3 v4

e1 e2

e3
e4

e5

(a)

v1
v2

v3 v4

E1
E2

E3 E4

E5

(b)

Fig. 2. (a) A minimally rigid pinned subspace-incidence system in d = 3. (b) A map-
decomposition of the multi-hypergraph of the system in (a), where multi-hyperedges
with different patterns are in different maps, and the tail vertex of each multi-hyperedge
is pointed to by an arrow.

Proof (main theorem). First we show the only if direction. For a generically
minimally rigid pinned subspace-incidence framework, the rigidity matrix M is
generically full rank, so there exists at least one summation term σ in (4) where
each submatrix Mj is generically full rank. As the submatrices don’t have any
overlapping rows with each other, we can perform row elimination on M to obtain
a matrix N with the same rank, where all submatrices Mj are simultaneously
converted to a permuted reduced row echelon form Nj , where each row in Nj

has exactly one non-zero entry βj
i at a unique column i, In other words, all Nj ’s

can be converted simultaneously to reduced row echelon form by multiplying a
permutation matrix on the left of N . Now we can obtain a map-decomposition
of Ĥ by letting each map j contain multi-hyperedges corresponding to rows of
the submatrix Nj , and assigning each multi-hyperedge in map j the vertex i

corresponding to the non-zero entry βj
i in the associated row in Nj as tail. In

addition, such a map-decomposition must satisfy the conditions of Theorem 1(2):
Condition (2a): assume two multi-hyperedges ek

t1,l and ek
t2,l are in the same

map j, i.e. the rows corresponding to these two edges are included in the same
submatrix Mj . If j > s − 1, one of these rows must be all-zero in Mj by Obser-
vation 1, contradicting the condition that Mj is full rank. If j ≤ s − 1, both of
these rows in Mj will be a multiple of the same row vector (5), contradicting the
condition that Mj is full rank.

Condition (2b): note that the rows in M corresponding to multi-hyperedges
ek
t,l1

and ek
t,l2

have the exactly the same pattern except for different values of
b’s. If ek

t,l1
has vertex i as tail, after the row elimination, the column containing

bk,l1
i will become the only non-zero entry of column i for Nj1 , while the column

containing bk,l2
i will become zero in all column groups, thus i cannot be assigned

as tail for ek
t,l2

.
Next we show the if direction, that the conditions of Theorem 1 imply infin-

itesimal rigidity.
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Given labeled multi-hypergraph Ĥ with a map-decomposition satisfying the
conditions of Theorem 1, we can obtain summation term σ in the Laplace decom-
position (4) according to the labeling of Ĥ, where each submatrix Mj contain
all rows corresponding to the map associated with column group j.

We first show that each submatrix Mj is generically full rank. According to
the definition of a map-graph, the function τ : Ê → V assigning a tail vertex to
each multi-hyperedge is a one-to-one correspondence. We perform symbolic row
elimination of the matrix M to simultaneously convert each Mj to its permuted
reduced row echelon form Nj , where for each row of Nj , all entries are zero except
for the entry βk

t,l corresponding to the vertex τ(ek
t,l), which is a polynomial in

bk,l
i ’s in the submatrix Mj . Since Mj cannot contain two rows with the same

k and l by (2a), the bk,l
i ’s in different rows of a same map are independent of

each other, βk
t,l 
= 0 under a generic specialization of bk,l

i . Since each row of Nj

has exactly one nonzero entry and the nonzero entries from different rows are
on different columns, the |V |× |V | matrix Nj is clearly full rank. Thus Mj must
also be generically full rank.

We conclude that

det(M) =
∑

σ

⎛

⎝±
∏

j

(( ∏

rk
t,j∈Rσ

j

Dk
t,j

)
det M ′[Rσ

j , Cj ]

)⎞

⎠ (7)

where the sum is taken over all σ corresponding to a map-decomposition of
Ĥ. Generically, the summation terms of the sum (7) do not cancel with each
other, since det(M ′[Rσ

j , Cj ]) are independent of the multi-linear coefficients∏
rk

t,j∈Rσ
j

Dk
t,j , and any two rows of M are independent by (2b). This implies

that M̂ is generically full rank.
The polynomial (7) gives the pure condition for genericity. In particular,

when there is a subgraph (V ′, E′) with |V ′| < d and
∑

ek∈E′ mk > |V ′|, the pure
condition vanishes and the system won’t be minimally rigid: see Example 4.

Pure Condition. The pure condition (7) obtained in the proof of Theorem 1
characterizes the badly behaved cases that break the combinatorial character-
ization of infinitesimal rigidity. However, the geometric meaning of the pure
condition is not completely clear. One particular condition not captured by The-
orem 1 but enforced by the pure condition is that there cannot exists a subgraph
(V ′, E′) of H with |V ′| < d such that

∑
ek∈E′ mk > |V ′|, otherwise simple coun-

terexamples can be constructed to the characterization of the main theorem. An
immediately consequence is that for any hyperedge ek, the dimension mk of its
associated pin must be less than or equal to its cardinality |ek|.
Example 4. Figure. 3a shows a pinned subspace-incidence system in d = 4 with
4 vertices and 5 hyperedges, where mk is 2 for k = 5 and is 1 otherwise. A map-
decomposition of the multi-hypergraph Ĥ of the system is given in Fig. 3b, and
we can easily find a labeling of Ĥ satisfying conditions in Theorem 1. However,
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the system is not minimally rigid, as generically the pin x1 will not fall on the
plane spanned by pins x4 and x5. Note that the sub-hypergraph (V ′, E′) spanned
by vertices v1, v2, v4 violates the pure condition as

∑
ek∈E′ mk = m1+m4+m5 =

4 > |V ′| = 3.

v1 v2

v3
v4

e1

e2

e3

e4 e5

(a)

v1 v2

v3v4

E1

E2

E3

E4
E5

(b)

Fig. 3. (a) A pinned subspace-incidence system in d = 4. (b) A map-decomposition
of the multi-hypergraph of the system in (a), where multi-hyperedges with different
patterns are in different maps, and the tail vertex of each multi-hyperedge is pointed
to by an arrow.

5 Conclusion

In this paper, we studied the rigidity of pinned subspace-incidence systems.
We extend our results in [19] and obtain a combinatorial characterization of
minimal rigidity for general pinned subspace-incidence systems with non-uniform
underlying hypergraphs and pins being subspaces with arbitrary dimensions.

As future work, we plan to extend the underlying group of the pinned
subspace-constraint system, i.e. consider two frameworks to be congruent if the
point realization and pin set of one can be obtained from the other under the
action of a certain group, for example the projective group. Another possible
direction is to apply Cayley factorization [6] to find geometric interpretations of
some of the pure conditions.
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tion. In: Brüderlin, B., Roller, D. (eds.) Geometric Constraint Solving and Appli-
cations, pp. 170–195. Springer, Heidelberg (1998)

14. Jackson, B., Jordán, T.: Pin-collinear body-and-pin frameworks and the molecular
conjecture. Discrete Comput. Geom. 40(2), 258–278 (2008)

15. Jacobs, D.J., Hendrickson, B.: An algorithm for two-dimensional rigidity percola-
tion: the pebble game. J. Comput. Phys. 137(2), 346–365 (1997)

16. Lee, A., Streinu, I., Theran, L.: Graded sparse graphs and matroids. J. UCS 13(11),
1671–1679 (2007)
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