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Abstract. Identity based encryption is a relative new method of encryp-
tion in which the public key is calculated using an identity. Cocks pro-
posed such a scheme, but his scheme doesn’t provide anonymity. In this
paper is proposed an extended version of the Cocks IBE scheme that
provides anonymity. The ciphertext expansion and the computational
time of the scheme proposed here is very close to that of the Cocks
IBE scheme, and like the Ateniese-Gasti scheme, it provides universal
anonymity.
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1 Introduction

Until 1976, all known cryptographic algorithms were symmetric, the key used
for encryption was the same as the key used for decryption. Whitfield Diffie
and Martin Hellman laid the foundations of public key cryptography by their
key exchange protocol, even if, in 1997, the British Government revealed that a
similar scheme was created, in secret and independently, a few years earlier by
James H. Ellis, Clifford Cocks and Malcolm J. Williamson.

The first who mentioned about an asymmetric scheme in which the public key
can be calculated using the identity of the intended recipient was Adi Shamir, in
1984 [7], although he was unable to develop such a system. The problem remained
opened until 2001, when Boneh and Franklin developed an IBE scheme based
on elliptic curves [2]. Soon after, Cocks managed to develop another IBE scheme
based on quadratic residuosity problem [8].

The scheme proposed by Cocks encrypts the plaintext bit by bit, every bit
being mapped into a pair of two big integers, so it’s very bandwidth consuming.
However, as mentioned in [8] by Cocks, his scheme can be used in practice to
encrypt short session keys.

We say that a cryptographic scheme is anonymous if nobody can say who is the
recipient only by having the ciphertext and the public key. If anyone can anonymize
the ciphertext using only the public key, the scheme is universally anonymous [12].
Galbraith showed that the Cocks IBE scheme is not anonymous, so the question
that came was if the Cocks IBE scheme can be extended to provide anonymity
but to not be much more expensive than the original scheme. Di Crescenzo and
c© Springer International Publishing Switzerland 2015
B. Ors and B. Preneel (Eds.): BalkanCryptSec 2014, LNCS 9024, pp. 194–202, 2015.
DOI: 10.1007/978-3-319-21356-9 13



On the Anonymization of Cocks IBE Scheme 195

Saraswat were the first who extended the Cocks IBE scheme to support anonymity.
However, their scheme is impractical to use when large data must be encrypted
because it requires a large number of keys [6]. In 2009, Ateniese and Gasti pro-
posed another scheme that extends Cocks IBE scheme and provides anonymity.
More, only the public key is used to anonymize the ciphertext so their scheme is
universally anonymous. However, every bit of plaintext is mapped into two lists of
big integers [1], so the ciphertext expansion is very big.

In this paper I propose a more efficient scheme that extends the Cocks IBE
scheme to provide anonymity. The ciphertext expansion of the scheme proposed
here is very close to that of the Cocks IBE scheme, sending for a bit, besides
the two big integers required by Cocks IBE scheme, only two small integers
who usually can be represented on 8 bits. Also, the computational time of the
scheme proposed in this paper is close to that of the original scheme, reducing
the time to (de)anonymize the ciphertext with more than half of the amount of
time required by Ateniese-Gasti scheme to realise these operations.

2 Cocks IBE Scheme

The Cocks IBE scheme requires a big integer n, which is the product of two
primes numbers p and q, each of them congruent to 3 modulo 4. Also, it requires
a hash function H : {0, 1}∗ �→ Zn. n is the public parameter, and (p, q) represents
the master key.

Key Generation: The public key for an identity ID is a = H(ID), with the
Jacobi symbol ( a

n ) = 1. The private key corresponding to the public key a is
calculated as

r = a(φ(n)+4)/8 mod n.

Encryption: A bit b is first encoded in x = (−1)b. Two independent values
t, v ∈ Z

∗
n are chosen at random such that ( t

n ) = ( v
n ) = x, and the ciphertext is

computed as
(s1, s2) = (t +

a

t
mod n, v − a

v
mod n).

Decryption: To decrypt the pair (s1, s2) the recipient must decide which of the
two choices he needs to decrypt, choosing s1 if r2 ≡ a mod n and s2 if r2 ≡ −a
mod n. The decrypted text is

x = (
si + 2r

n
), i ∈ {1, 2}.
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3 Cocks IBE Anonymization

3.1 Galbraith’s Test

Galbraith showed that Cocks IBE does not provide anonymity. Let a ∈ Zn be
the private key and Ma[n] = {(t+ a

t ) mod n|t ∈ Z
∗
n ∧ (t/n) = (−1)b} be the set

of all ciphertext values sampled using the public key a ∈ Z
∗
n. He proposed the

following test:

GT (a, c, n) = (
c2 − 4a

n
), c ∈ Zn

If c is sampled from Ma[n], the test will return 1 always, because c2 − 4a is a
square in Zn. If c is not sampled from Ma[n] the test will return 1 with probability
negligibly close to 1/2 [1]. This holds because Perron showed that for a prime
p, the difference between the squares and non squares from Zp is just 1 if p ≡ 3
mod 4.

For two public keys a, b ∈ Z
∗
n and c ∈ Zn a value of the ciphertext sampled

using one of the two keys, the Galbraith’s test over the public key a can be
summarized as

GT (a, c, n) =

{
+1 =⇒ Prob[c ∈ Ma[n]] = 1/2
−1 =⇒ c �∈ M(a,n).

An adversary can apply Galbraith’s test for multiple ciphertext values to
determine whether the given ciphertext is intended for a or b [1].

In [1], Ateniese and Gasti proved that is no better test against anonymity
over an encrypted bit, so the scheme proposed in this paper, like that of Ateniese
and Gasti, is based on the Galbraith’s test.

3.2 Ateniese-Gasti Scheme

The scheme proposed by Ateniese and Gasti in [1] extends Cocks IBE to provide
anonymity. Also, their scheme is the first universally anonymous IBE, so anyone
can anonymize the ciphertext using only the public key of the recipient.

Anoymization: Let (s1, s2) be the corresponding ciphertext of a bit b encrypted
with the public key a ∈ Z

∗
n. To anonymize a component si, i ∈ {1, 2} of the pair

(s1, s2) one must proceed as follows:

1. choose k from the geometric distribution over the set {1, 2, 3, ...} with the
probability parameter 1

2 ;
2. choose T random and set Z = T + si mod n;
3. compute the mask as

(Z, T1, T2, ..., Tk−1,T , Tk+1, ..., Tm),

GT (ai, Z − Tj , n) = −1, 1 ≤ j < k

GT (ai, Z − Tj , n) = ±1, k < j ≤ m,

i ∈ {1, 2}, a1 = a, a2 = −a.
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The pair ((Z1, T11 , T12 , ..., T1k , ..., T1m), (Z2, T21 , T22 , ..., T2k , ..., T2m)) represents
the anonymized ciphertext.

Deanonymization: Given the anonymized ciphertext

((Z1, T11 , T12 , ..., T1k , ..., T1m), (Z2, T21 , T22 , ..., T2k , ..., T2m)),

the recipient must first discard one of the two tuples based on whether a or −a
is a square in Zn, and find the smallest index 1 ≤ j ≤ m such that GT (ai, Zi −
Tij , n) = 1, i ∈ {1, 2}. The initial value of ciphertext is Zi − Tij .

Security: Ateniese and Gasti showed that their scheme does not reveal any
information about the plaintext and an adversary cannot determine which public
key was used to encrypt the plaintext, even thought the adversary selects the
public keys and the plaintext.

4 A New Method of Anonymization

Like the scheme proposed by Ateniese and Gasti, the scheme proposed bellow
is based on the Cocks IBE scheme and is universally anonymous. Also, the
ciphertext expansion and the computational time of this scheme is very close to
that of the Cocks IBE scheme.

Anonymization: To anonymize a component si, i ∈ {1, 2} of the pair (s1, s2)
with the public key a ∈ Z

∗
n, one must proceed as follows:

1. choose a bit d random;
2. if d is 1 then:

(a) choose k from the geometric distribution over the set {1, 2, 3, ...} with the
probability parameter 1

2 ;
(b) plusi ← 1, j ← 0, sanoni

← si;
(c) sanoni

= sanoni
+ 1 mod n;

(d) if GT (ai, sanoni
, n) = 1, then plusi ← plusi + 1, else j ← j + 1;

(e) if j = k, then output (sanoni
, plusi), else jump to (c);

3. else, sanoni
← si, choose plusi random from the geometric distribution over

the set {1, 2, 3, ...} with the probability parameter 1
2 and output (sanoni

, plusi).

The pair ((sanon1 , plus1), (sanon2 , plus2)) represents the ciphertext anonymized.

Deanonymization: Given the anonymized ciphertext

((sanon1 , plus1), (sanon2 , plus2)),

the recipient must first choose the valid component based on whether a or −a is
a square in Zn. After that, the recipient must test if GT (a, sanoni

, n) equals −1
or 1. If GT (a, sanoni

, n) = 1, then the component was not anonymized, so he can
jump to decryption. Else, the component was anonymized so he must substract
1 from sanoni

until he reaches the plusi-th element such that GT (ai, sanoni
−

1 − ..., n) = 1. That value represents the initial ciphertext.
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4.1 Security

At the base of the security of this scheme is the fact that the probability to
anonymize a component is 1

2 . Let a, b ∈ Z
∗
n be two public keys, and sanon ∈

Ma[n] be a component of the anonymized ciphertext. The probability that
GT (a, sanon, n) = 1 is 1

2 . The probability that GT (b, sanon, n) = 1 is also 1
2

because of the distribution of the Jacobi symbols in Zn. So an adversary cannot
say what public key was used to encrypt the plaintext because for him each of
the public keys has the same probability to be used. An adversary can be in one
of the following four cases:

Case 1: {
GT (a, sanon, n) = 1
GT (b, sanon, n) = 1

The adversary cannot say what public key was used to encrypt the plaintext.
For each of the two public keys, the ciphertext seems to not be anonymized. The
adversary can suppose that the plaintext was encrypted with the public key a and
not anonymized(the probability to be so is 1

2 ) and GT (b, sanon, n) is 1 because
of the distribution of the Jacobi symbols in Zn. Also, the adversary can suppose
that the plaintext was encrypted with the public key b and not anonymized(the
probability to be so is 1

2 ) and GT (a, sanon, n) is 1 because of the distribution of
the Jacobi symbols in Zn. It can be easily seen that the adversary cannot say
with probability greater than 1/2 which case is the good one.

Case 2: {
GT (a, sanon, n) = −1
GT (b, sanon, n) = 1

The adversary can suppose that the plaintext was encrypted with the public key
a and anonymized(the probability to be so is 1

2 ) and GT (b, sanon, n) is 1 because
of the distribution of the Jacobi symbols in Zn. Also, the adversary can suppose
that the plaintext was encrypted with the public key b and not anonymized(the
probability to be so is 1

2 ) and GT (a, sanon, n) is −1 because of the distribution of
the Jacobi symbols in Zn. Therefore, the adversary cannot say with probability
greater than 1/2 which case is the good one.

Case 3: {
GT (a, sanon, n) = 1
GT (b, sanon, n) = −1

Similar with the Case 2.
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Case 4: {
GT (a, sanon, n) = −1
GT (b, sanon, n) = −1

For each of the two public keys, the ciphertext seems to be anonymized. The
adversary can suppose that the plaintext was encrypted with the public key a
and anonymized(the probability to be so is 1

2 ) and GT (b, sanon, n) is −1 because
of the distribution of the Jacobi symbols in Zn. Also, the adversary can suppose
that the plaintext was encrypted with the public key b and anonymized(the
probability to be so is 1

2 ) and GT (a, sanon, n) is −1 because of the distribution
of the Jacobi symbols in Zn. Therefore, the adversary cannot say with probability
greater than 1/2 which case is the good one.

Anonymization Method: The method to anonymize a component should not
reveal any informations about the used public key, so an adversary must find a
valid deanonymized ciphertext for every public key pk ∈ Z

∗
n and to not make

distinction between these ciphertexts.
It is easy to prove that the method used to anonymize the ciphertext doesn’t

reveal informations about the used public key. If an adversary has two public keys
a, b ∈ Z

∗
n and an anonymized(for both keys) component (sanon, plusi), he can

subtract 1 from sanon until he reach the k-th element with GT (a, sanon−1−..., n)
= 1 or until he reach the k-th elemenet with GT (b, sanon − 1 − ..., n) = 1. With
both public keys he can determine a valid value. When a component is not
anonymized, it is chosen plusi from the geometric distribution with the proba-
bility parameter 1

2 . This is because the Jacobi symbols are uniformly distributed
in Zn, so we can consider that until we reach at the k-th element for that the
value of Galbraith’s test is −1(when the component is anonymized), we pass
over same number of elements for that the value of Galbraith’s test is 1. So the
method used to anonymize a component does not reveal any information about
the pubic key used to encrypt the plaintext.

Choosen Plaintext Attack: An IBE scheme is ANON-IND-ID-CPA-secure
if is IND-ID-CPA-secure and an adversary cannot determine the key used for
encryption even if he selects the plaintext and the identities and receives the
plaintext encrypted with the public key corresponding to one of the chosen
identities [13,14].

The scheme presented is IND-ID-CPA-secure because extends Cocks IBE
scheme, which is IND-ID-CPA-secure, and the anonymization is done using only
the public key and the ciphertext.

It remains to prove that an adversary cannot determine the key used for
encryption when he selects the keys and the plaintext. In [13] is presented an
experiment for this. The adversary has access to a random oracle H and to an
oracle KeyDer that returns the private key corresponding to any identity ID,
but cannot request the private keys [1,13]:



200 G.A. Schipor

Experiment Expibe−ano−cpa
IBE,A (n):

pick random oracle H;
(ID0, ID1,msg, state) ← AKeyExtr(.),H(find, PKGpub);
b ← {0, 1};
W ← {0, 1}|msg|;
c ← EncH(IDb,W, PKGpub);
b′ ← AKeyExtr(.),H(guess, c, state);
if b′ = b return 1, else return 0.

The advantage of A is defined as

Advibe−ano−cpa
IBE,A (n) =

Prob[Expibe−ano−cpa−1
IBE,A (n) = 1] − Prob[Expibe−ano−cpa−0

IBE,A (n) = 1].

We say that a scheme is IBE-ANO-CPA-secure if Advibe−ano−cpa
IBE,A (n) is a

negligible function in n for all polynomial-time adversaries A [13].
In the proposed scheme every component from the pair corresponding to

an encrypted bit is anonymized independently and even if both components
encrypts the same value, since the Cocks IBE scheme is IND-ID-CPA-secure,
the advantage of an adversary to win the experiment is only negligibly, even
if he choose the plaintext and the keys. An adversary will be in one of the
four cases presented, so he cannot find the key used for encryption because the
components are anonymized independently and for every key he can find a valid
value of ciphertext. To summarize,

Advibe−ano−cpa
new−ibe−cocks,A(n) =

1
2

+ negl(n)

for every adversary A, where new-ibe-cocks is the scheme presented.
Because is IBE-ANO-CPA-secure and IND-ID-CPA-secure, new-ibe-cocks is

ANON-IND-ID-CPA-secure.

4.2 Practical Aspects

If Cocks IBE scheme is used to encrypt a 128 bits session key, the ciphertext
length is only 128∗2∗1024 bits, but the ciphertext is not anonymized. Using the
Ateniese-Gasti scheme, the ciphertext length is 128 ∗ 2 ∗m ∗ 1024 bits. However,
using the scheme presented in this paper, the ciphertext length is only 128 ∗ 2 ∗
(1024 + l) bits, where l is the number of bits required to represent the second
component from an anonymized component. The plusi component is chosen
from the geometric distribution over the set {1, 2, 3, ...} with the probability
parameter 1

2 , so l can be usually 8. It can be seen that the ciphertext expansion
of this scheme is much smaller than the ciphertext expansion of the Ateniese-
Gasti scheme, being closer to the Cocks IBE scheme.
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Implementation: I implemented all three schemes and compared the results.
The implementation was done using the C programming language and the big
numbers library GMP. In all three implementations, I used 512 bits numbers
for p and q. Every essential step of the schemes was executed 1000 times. The
operating system under I tested the schemes is Elementary OS, Linux Kernel 3.2
and the machine consists of 4GB RAM memory and an Intel Core i5 processor.
The results are summarized in the Table 1.

Table 1. Average execution times

Setup Extraction Encryption Decryption

Cocks 26.77 ms 3.58 ms 18.7 ms 7.45 ms

Ateniese-Gasti 26.77 ms 3.58 ms 33.46 ms 24.46 ms

Proposed scheme 26.77 ms 3.58 ms 23.19 ms 14.38 ms

As you can see, the scheme proposed in this paper is more efficient than the
scheme proposed by Ateniese and Gasti, reducing the (de)anonymization time
with more than half of the time needed by their scheme. Also, like their scheme,
this scheme is universally anonymous because only the public key is used to
anonymize the ciphertext, so one could write an algorithm that has as input the
ciphertext and the public key and outputs the anonymized ciphertext.

Overall, I propose a universally anonymous IBE scheme that is almost as
efficient as Cocks IBE scheme.
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