
Chapter 1
An Introduction to Algebraic Quantum
Field Theory

Klaus Fredenhagen

Abstract The algebraic approach to quantum field theory is reviewed, and its aims,
successes and limitations are discussed.

1.1 Introduction

The algebraic properties of quantum observables, as discovered by Heisenberg, Born
and Jordan and summarized in the canonical commutation relation between position
q and momentum p,

[q, p] = i�, (1.1)

are crucial for the structure of quantum theory. A further crucial structure is the
representability of observables as Hilbert space operators, as first discovered by
Schrödinger and related to the probability interpretation of quantum mechanics by
Born. It was later found that the existence of Hilbert space representations can be
guaranteed if the algebra A generated by observables is equipped with an involutive
structure A �→ A∗, characterizing the real elements, and a norm which satisfies the
C*-property

||A∗ A|| = ||A||2. (1.2)

This involves the restriction to bounded observables, but this is neither from the
point of view of physics (here it amounts to parametrize the possible results of a
measurement by numbers in a finite interval) nor from the point of view of mathe-
matics (there one exploits the spectral theorem for selfadjoint operators and considers
bounded functions of the operator in question) a loss of generality. It may, however,
lead to problems in calculations, since in concrete applications one often has to start
from a formula involving unbounded operators. For our general considerations we
may ignore these difficulties and consider the algebra of observables as a C*-algebra
with unit, i.e. as an involutive unital algebra equipped with a C*-norm, which is
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complete as a normed space. Every such algebra arises as a norm closed algebra of
Hilbert space operators, but may have in addition many other inequivalent represen-
tations by Hilbert space operators. Then the mathematical question arises which of
the possible representations one should choose in order to describe a given physical
situation.

In quantum mechanics with finitely many degrees of freedom a partial answer
was given by von Neumann. He proved that the algebra generated by unitaries eiαq

and eiβp with α, β ∈ R and satisfying Weyl’s version of the canonical commutation
relation,

eiαqeiβp = e−iαβeiβpeiαq , (1.3)

has, up to unitary equivalence, only one regular irreducible representation, namely
the representation found by Schrödinger. Here regularmeans that themapsα �→ eiαq

and β �→ eiβp are strongly continuous.
In quantumfield theorywith its infinitelymanydegrees of freedom, the uniqueness

result of von Neumann is no longer valid. Nevertheless, it took some time before
the physical significance of this fact was realized. The crucial insight was due to
Haag who found that theories with translation invariant interactions cannot have a
ground state in the Hilbert space describing the vacuum of the free theory. It was
then understood that this problem is generic, e.g. thermodynamical equilibrium states
cannot be described in terms of density matrices in the vacuum Hilbert space.

Apart from these problems, there is a deeper reason why it is fortunate to separate
the construction of observables from the construction of states. This is the apparent
conflict between the principle of locality, which in particular governs classical field
theory, and the existence of nonclassical correlations (entanglement) in quantum
systems, often referred to as non-locality of quantum physics. As a matter of fact it
turns out that the algebra of observables is completely compatible with the locality
principle whereas the states typically exhibit nonlocal correlations. For this reason,
algebraic quantum field theory is also called local quantum physics [63].

The concepts of algebraic quantumfield theorywere first introduced in a contribu-
tion of Haag to the Lille conference 1957 [61]. The main motivation at this time was
an explanation why a quantum field theory yields a theory of interacting particles.
The Haag-Ruelle scattering theory [62, 85] was a first success of these concepts.

It was then made mathematically precise by using the theory of operator algebras,
mainly by Araki [5, 6]. The crucial step of considering the algebras of observables
independently of their action on an underlying Hilbert space was performed in a pro-
grammatic paper by Haag and Kastler [64]. They formulated the following axioms:

• To each open bounded regionO ofMinkowski spaceM there is associated a unital
C*-algebraA(O), interpreted as the algebra of observables which can bemeasured
within the spacetime region O.

• If O1 ⊂ O2, then there exists an embedding (unital injective *-homomorphism)

iO2O1 : A(O1) → A(O2). (1.4)
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• These embeddings satisfy the compatibility relation

iO3O2 ◦ iO2O1 = iO3O1 if O1 ⊂ O2 ⊂ O3. (1.5)

• The identity component of of the Poincaré group is represented by automorphisms
αL with the properties

αL ◦ A = A ◦ L ,

αL ◦ iO1O2 = iLO1LO2 ◦ αL ,

αL1 ◦ αL2 = αL1L2 .

• If O1 is spacelike separated from O2 and O ⊃ O1 ∪ O2, then

[iOO1(A), iOO2(B)] = 0 ∀A ∈ A(O1), B ∈ A(O2).

These axioms do not involve any choice of Hilbert space representations. The system
of algebras together with the embeddings and the Poincaré symmetries is called a
local net (or a Haag-Kastler net). It contains the minimal requirements one may
pose on observables localized in subregions of Minkowski space. Note, however,
that fermionic fields which anticommute at spacelike separation are excluded from
the local algebras. It was one of the main goals and finally successes of the algebraic
approach that the occurrence of fermionic fields could be derived from the structure
of local nets.

The axioms do not specify a dynamical law. The existence of a dynamical law,
however, can be implied by a further axiom, namely the time slice axiom :

• If O1 ⊂ O2 contains a Cauchy surface of O2 (i.e. a hypersurface which is met
exactly once by every non-extendible causal curve in O2), then the embedding
iO2O1 is an isomorphism.

The system of local algebras possesses an inductive limit, called the quasilocal alge-
bra A(M). It is the unique C*-algebra with embeddings iO : A(O) → A(M) such
that

iO2 ◦ iO2O1 = iO1 if O1 ⊂ O2,

which is generated by the local subalgebras iO(A(O)). Since all embeddings iO are
injective we identify in the following A(O) with its image under iO.

One might be worried by the task to specify algebras for all subregions of
Minkowski space. But is suffices to associate algebras to so-called diamonds (or
double cones). These regions are parametrized by a pair of points (x, y)with x in the
chronological future of y and consist of all points z which are in the chronological
past of x and the chronological future of y. We denote the set of double cones by
K. Algebras of other regions G are then defined as subalgebras of A(M) which are
generated by the algebras A(O) with G ⊃ O ∈ K.
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Once the local net is given, the space of states is obtained as a subset of the
dual of A(M) as a Banach space. Namely, states are just those linear functionals
ω : A(M) → C which satisfy the conditions

ω(1) = 1, (1.6)

ω(A∗ A) ≥ 0 ∀A ∈ A(M). (1.7)

The values of a state are interpreted as expectation values, and the whole probability
distribution μω,A of measured values a ∈ R of an observable A = A∗ is obtained
from its moments, namely the expectation values of powers of A,

∫
andμω,A(a) = ω(An) , n ∈ N. (1.8)

Every state induces by the so-called GNS construction a representation π of the
quasilocal algebra on some Hilbert spaceH together with a distinguished unit vector
Ω such that

ω(A) = 〈Ω,π(A)Ω〉,

and the set of vectors {π(A)Ω| A ∈ A(M)} is dense inH.
The density matrices ρ inH form a family of states,

ωρ(A) = Trρπ(A),

the so-called folium ofω. The crucial mathematical fact is that infinitely dimensional
C*-algebras in general have a huge number of disjoint folia. While this is welcome
from thephysics point of view inorder to be able to describemacroscopically different
situations, it makes the analysis of the structure of the state space difficult. Hence one
of the main objectives in algebraic quantum field theory is to select a suitable subset
of the state space which covers the situations of interest and admits a classification.

The most famous of these selection criteria is the DHR (for Doplicher, Haag and
Roberts) criterion which is supposed to select the states of interest for elementary
particle physics. These are states which differ from a distinguished state ω0 only
within some bounded region and its causal future and past.

The state ω0 is interpreted as the vacuum. It is assumed to be a pure state (i.e. it
cannot be decomposed into a convex combination of other states) and to be invariant
under the Poincaré transformations αL . Moreover, in its GNS-representation π0, the
associated unitary representation U of the identity component of the Poincaré group
given by

U (L)π0(A)Ω = π0(αL(A))Ω,

which implements the automorphisms αL ,

U (L)π0(A)U (L)−1 = π0(αL(A)),
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is strongly continuous and satisfies the relativistic spectrum condition

sp(U0) ⊂ V ∗+.

Here U0 is the restriction of U to the translation subgroup, V+ is the cone of future
directed timelike translations, V ∗+ the dual cone in momentum space and V ∗+ its clo-
sure.The representationU0 is generatedbymutually commuting selfadjoint operators
Pμ, μ = 0, . . . 3 (the momentum operators)

U0(x) = ei Px , Px ≡ Pμxμ, (1.9)

whose joint spectrum is by definition the spectrum of U0.
In the presence of superselected charges there exist other representations π which

are translation covariant, i.e. there exists a unitary strongly continuous representation
of the translation group, which implements the translation automorphisms and fulfills
the spectrum condition.

An important question is whether all observables can be expressed in terms of
observables in arbitrarily small regions, as one might expect in models which are
defined in terms of observable pointlike localized fields. A precise version of this
property is additivity : a representation π satisfies additivity if for every covering of
the open region O by double cones Oi one has

π(A(O)) ⊂ (
⋃

i

π(A(Oi )))
′′. (1.10)

Here R′ denotes the commutant of a set of operators R, i.e. the set of all bounded
operators commutingwithR. The bicommutant of a selfadjoint set (a set of operators
which is invariant under taking the adjoint) is a von Neumann algebra.1

The combination of the axiom of local commutativity with the spectrum condition
imposes strong restrictions on the theory. The most remarkable one is the Reeh-
Schlieder Theorem [63, 83].

Theorem 1.1.1 Let (π, U0) be a translation covariant representation satisfying
additivity and the spectrum condition. Let Φ ∈ Hπ be a cyclic vector for A(M),
i.e.

π(A(M))Φ is dense in Hπ ,

and let Ψ = U0(iβ)Φ with β ∈ V+. Let O be a nonempty double cone in Minkowski
space. Then the set π(A(O))Ψ is dense in Hπ , and Ψ is separating for π(A(O))′,
i.e. AΦ = 0 implies A = 0 for A ∈ π(A(O))′.
The interpretation of the Reeh-Schlieder Theorem induced an intense discussion in
philosophy of science (see e.g. [67]). The theorem does not mean that there is an

1AvonNeumann algebra is an algebra ofHilbert space operatorswhich is invariant under involution,
contains the unit operator and is closed with respect to the weak operator topology.
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instantaneous effect of a local operation. A local operation would correspond to the
application of a unitary U ∈ A(O), and the set of vectors {π(U )Φ|U ∈ A(O)} is
total, i.e. its finite linear combinations are dense inHπ , but the set itself is not dense
in the unit ball ofHπ . See [29] for a recent discussion.

An important generalization of the Reeh-Schlieder Theorem is the following the-
orem of Borchers [12]:

Theorem 1.1.2 Let (π, U0) as before and assume that the center of π(A(M)) is
trivial. Let O,O1 be double cones with O ⊂ O1. Then to every nonzero projection
E ∈ π(A(O))′′ there exists an isometry V ∈ π(A(O1))

′′ such that V V ∗ = E.

This theorem shows that local algebras contain no nonzero finite dimensional projec-
tions. This property of relativistic quantumfield theory is quite a surprise if confronted
with structures known from nonrelativistic quantum mechanics.

The theorem reminds on the characterization of vonNeumann algebras of type III.
Namely, von Neumann algebrasN with trivial centre (the so-called factors ) can be
classified in terms of the equivalence classes of their projections where 2 projections
E, F ∈ N are called equivalent if there exists some V ∈ N such that

E = V V ∗ and F = V ∗V . (1.11)

Type I factors are isomorphic to the algebra of all bounded operators on a Hilbert
spaceH. There the projections are equivalent if the subspaces EH and FH have the
same dimension. In quantum field theory type I factors occur as the von Neumann
algebras generated by π(A(M)) in an irreducible representation π . Type II factors
have projection classes which can be labeled by real numbers. They occur in physics
only in extreme situations, for instance for a gas of fermions at infinite temperature.
Type III factors are defined by the property that all nonzero projections are equivalent.

Borchers’ Theorem above is somewhat weaker than the statement that the von
Neumann algebras π(A(O))′′ are factors of type III. Actually, in many cases they
are known to be of type III (see, e.g. [47]), and there are general reasons to expect
that this is always the case [27].

Asmentioned before, one of the early successes of the algebraic approach (in fact,
the main motivation for its introduction) is the explanation of the particle structure
observed in experiments. Namely, let (H, π0,Ω) be the GNS triple associated to the
vacuum state ω0, We assume that the spectrum of the translation group contains an
isolated mass shell,

sp(U0) = {0} ∪ Hm ∪ H≥M , 0 < m < M,

with Hm = {p|p0 > 0, p2 = m2} and H≥M = {p|p0 > 0, p2 ≥ M2}. The subspace
H1 ⊂ H corresponding to Hm can be interpreted as 1-particle space. One then can
show that the vacuumHilbert spaceH contains also stateswhich can be interpreted as
multi-particle states at asymptotic times (Haag-Ruelle scattering theory). It is, how-
ever, an openquestion,whether all states in the vacuum representation admit a particle
interpretation (problem of asymptotic completeness) (See [49] for recent progress).
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One obvious obstruction to asymptotic completeness is that 1-particle states may
exist which are disjoint from the states of the vacuum representation. This is true in
particular for fermions, but also holds for bosonic particles which carry a superse-
lected charge, e.g. the W -bosons of the electroweak theory.

In models these states are obtained by enlarging the algebra of observables to a
so-called field algebra. In spite of the fact that the elements of the field algebra are
not necessarily observable, one postulates that they satisfy local commutation, or, for
fermionic fields, anticommutation relations. This allows to extend the construction of
multi-particle states to charged particles which then satisfy Bose or Fermi statistics,
respectively. A partial justification of this ansatz is the spin statistics theorem which
states, under the hypothesis that either Bose or Fermi statistics holds, that only the
observed connection between spin and statistics is possible. The ansatz is, however,
ad hoc and is in fact not sufficiently general to cover all situations of interest, in
particular in less than 4 dimensions when more general statistics are possible.

To incorporate these particles, Doplicher, Haag and Roberts formulated their
selection criterion for “states of interest for particle physics”. It incorporates the
property of charge carrying fields that they satisfy local commutation relations with
the observables but does not impose any commutation relations between the fields
themselves. In a series of 4 seminal papers [40–43] they analyzed the arising repre-
sentations and could show that

• The multi-particle structure previously seen in the vacuum sector extends to all
DHR states.

• The particles satisfy Bose or Fermi statistics and may have additional degrees of
freedom.

• Antiparticles exist and have the same mass and spin as the corresponding particle.

Moreover, Doplicher and Roberts succeeded in [46] to show that the internal degrees
of freedom can be understood in terms of representations of a uniquely determined
compact group. This led to an improved version of the Tannaka-Krein characteriza-
tion of the dual of a compact group.

Interestingly, the DHR analysis yields a different structure if applied to quantum
field theory in 2 spacetime dimensions [58]. Thiswas used in particular in the operator
algebraic approach to conformal field theory as explained in more detail in Rehren’s
contribution to this book.

The DHR criterion excludes states describing particles with an electric charge
because of the associated electric flux which distinguishes these states from the vac-
uum even at arbitrarily large spacelike separation. This is a generic feature of charged
particles in gauge theories [25]. If a particle is massive and if in its representation
the energy-momentum spectrum has an upper mass gap, Buchholz and the author
could show that the corresponding sector is related to a vacuum state such that the
interpolating fields can be localized in an infinitely extended spacelike cone [26].
In 4 dimension this localization allows to apply the DHR analysis, but in 3 dimen-
sions one observes a more general structure similar to the 2 dimensional situation
for DHR states.
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The massless situation which is relevant for quantum electrodynamics was
recently solved by Buchholz and Roberts [32], based on an older proposal of Buch-
holz [24].

Algebraic quantum field theory, as may be seen from this overview, was very
successful in analyzing the structure of quantum field theory, based on a few plau-
sible axioms. It turned out, however, to be extremely difficult to construct concrete
models which are physically interesting and satisfy these axioms. Actually, other
approaches to quantum field theory suffer from the same problem, and sometimes
these difficulties are taken as an indication for the need to go beyond quantum field
theory, or even to give up the requirement of mathematical consistency. It is one
aim of the present book to convince the reader that this is premature, and to indicate
possible directions for improving the situation.

Let us summarize the known models of algebraic quantum field theory (see also
[89] for an overview). There are first the models of free fields describing freely
moving particles characterized by irreducible representations of the (covering of)
the (connected component of) the Poincaré group. Traditionally these models are
constructed in terms of annihilation and creation operators on the Fock space over
the corresponding 1-particle space. The constructionworks formassive particleswith
spin s ∈ 1

2N0 and for massless particles with helicities h ∈ 1
2Z. An elegant direct

construction was performed in [20]. While physically of limited interest, they have
a rich mathematical structure, moreover, they constitute a basis for the interpretation
of scattering states, and they serve as a framework for the perturbative formulation of
interacting models. Closely related are the generalized free fields, where the single
particle space is replaced by a reducible representation of the Poincaré group. In
case of a discrete mass spectrum they arise as tensor products of free theories. In the
case of a continuous mass spectrum they are usually considered as unphysical, but
recently, they were proposed under the name of unparticles [59].

Another class of models are the superrenormalizable models in 2 dimensions, in
particular massive scalar fields with a polynomial interaction, and the Yukawamodel
[60, 87]. These models, unfortunately, seem to have no direct physical application.

A further class consists of conformally invariant theories in 2 dimensions (see the
contribution ofRehren to this book).Here a huge class ofmodels has been constructed
(see e.g. [75]), and the results from the algebraic approach can be compared to results
in other approaches, with mutual fertilization. These models are of high interest for
mathematics, but they also have applications to physics, e.g. in critical phenomena of
effectively low dimensional systems in condensed matter, and they appear naturally
within string theory.

Another class are integrable models in 2 dimensions whose S-matrix satisfies the
so-called factorization equations. In case the 2-particle scattering matrix is just mul-
tiplication by a pure phase depending on the incoming momenta, the corresponding
local nets have been constructed by Lechner [78]. Constructions ofmore complicated
cases have also been performed [1, 2]. In some cases, for example in the sinh-Gordon
model with field equation

�ϕ + λ sinh gϕ = 0,
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the algebraic construction can (and should) be compared with a direct construction.
It is, however, remarkable that the algebraic construction works also in cases where
no corresponding classical dynamics is known. See Chap.10 for more details.

Motivated by attempts to replace spacetime by a noncommutative space where
expected properties of quantum gravity are taken into account (see the contribution
of Bahns et al. to this book), one can also construct models by deformation of a
given net. This works even in higher dimension, but the models constructed so far
satisfy only a restricted version of local commutativity, namely one obtains alge-
bras associated to so-called wedges W , i.e. W = L{x ∈ M||x0| < x1} for some
Poincaré transformation L , and observables localized in spacelike separated wedges
commute. This allows to construct 2-particle states and to compute the S-matrix
for 2-particle scattering, but gives no hint whether a generalization to multi-particle
states is possible [31].

A completely new elegant method of construction was recently performed by
Barata, Jaekel andMund (see a forthcoming publication). It starts from the construc-
tion of a Haag Kastler net on de Sitter space in terms of Tomita-Takesaki theory. The
Minkowski space theory is then obtained by taking the limit of vanishing curvature
in the spirit of the scaling limit of Buchholz and Verch [33].

The last class of models I want to mention is obtained by adopting the methods
of renormalized perturbation theory to the algebraic framework. There one has to
give up the condition that the local algebras are C*-algebras. Instead they are unital
*-algebras, where the existence of Hilbert space representations is replaced by the
existence of a representation on a space of formal power series D[[g]] with a dense
subspace D of some Hilbert space where g is the coupling constant. Therefore all
numerical predictions of the theory are formal power series in g, and a comparison
with experiments requires a truncation of the series. As a matter of fact, in most cases
only a few terms of the series can be computed by present techniques, and one finds
in many cases an excellent agreement with measurements. Moreover, exploiting the
concept of the renormalization group, one obtains different series labeled by a scale
μ, and the series at different parameters μ1, μ2 are related by replacing the coupling
constant by the so-called running coupling constant which typically is a formal power
series in g and logμ2/μ1. Observations at a given scale can then be compared with
the truncated series at the same scale, where the running coupling constant is fitted
with the data. This improves the agreement with the measured data considerably,
and, moreover, confirms the predicted running of the coupling constant.

This weaker version of the Haag-Kastler axioms covers all models of quantum
field theory which are relevant for elementary particle physics. Compared to the
traditional way of treating perturbation theory, the algebraic approach allows a state
independent renormalization and a construction of the local net without any infrared
problems. Infrared problems can, in principle, reappear in the construction of states
or in the computation of scattering cross sections. But there, the difficulties might
have different reasons:

• The corresponding statemay not exist, as e.g. the vacuum state for amassless scalar
field in 2 dimensions, or a KMS-state of a scalar field with negative temperature.

http://dx.doi.org/10.1007/978-3-319-21353-8_10
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• The states may belong to different superselection sectors.
• The usual method for construction does not work. This holds e.g. for KMS states
of a massive scalar field, where Altherr [4] and Steinmann [88] observed infrared
divergences at higher loop order. As was recently shown [57, 79], the problem
disappears if the validity of the time slice axiom is exploited so that only the
observables localized within a fixed time slice have to be taken into account.

The formalism of AQFT is motivated by the expected interplay between observ-
ables in quantum theory and the concept of locality arising from special relativity. In
practical applications one often prefers to extend the framework by adding unobserv-
able degrees of freedom. One example is the introduction of anticommuting fields in
order to describe particles with Fermi statistics. As mentioned above, this extension
of the framework can be intrinsically derived from the Haag-Kastler net of observ-
ables by the DHR theory. More generally this holds for all global gauge symmetries,
where the compact group whose representations label the superselection sectors is
shown to be constructible from the Haag-Kastler net.

A very important question is whether a corresponding statement can also be made
for theories with local gauge symmetry, as QED or the standard model of elementary
particle physics. In spite of quite a number of works dedicated to this question an
answer is presently not known. Several strategies have been probed.

The most direct way is to mimick the traditional construction in terms of auxiliary
fields (ghosts etc.). Here one necessarily gives up the framework of C*-algebras, but
preserves locality.Oneobtains the algebra of observables as a resolution of a complex,
in the sense of homological algebra [55]. An interesting alternative to this procedure
is to enlarge the algebra of local observables by nonlocal quantities but to preserve
the representability on a Hilbert space. See [81] for progress in this direction. In case
of free abelian gauge theories as e.g. Maxwell’s theory without charges, one can give
a complete construction of the C*-algebraic Haag-Kastler net.

The most challenging open question is whether gravity can be included into the
formalism of AQFT. Since the very concept of a region of spacetime has no intrinsic
meaning in a generally covariant theory, a modification of the formalism would be
necessary. But gravity is, at presently accessible observations, much weaker than all
other known interactions, hence it is a good approximation to treat the spacetime
of general relativity as a background which is not influenced by the other quantum
fields. This is the motivation to study quantum field theory on generic spacetimes
with a metric with Lorentzian signature.

1.2 AQFT on Curved Spacetime

As was first observed by Dimock [36] and Kay [73], AQFT is ideally suited for the
treatment of QFT on curved backgrounds. The reason is that, contrary to the situation
on Minkowski space, no intrinsic concept of a vacuum state nor of particles exist.
The traditional approach to QFT therefore does not work, and attempts to use it lead



1 An Introduction to Algebraic Quantum Field Theory 11

to inconsistencies. As long as only free fields were discussed, a direct construction
can be given on any globally hyperbolic spacetime, and an appropriate version of
the Haag-Kastler axioms can be given. Even in free field theory, however, one is
interested not only in the field itself, but also in nonlinear expressions in the field as
e.g. the energy momentum tensor, in order to estimate the possible back reaction of
the quantumfields on the spacetimegeometry. Itwas observed that for free fields there
exist states, the so-called Hadamard states, which have similar singularities as the
vacuum state on Minkowski space. It was a major breakthrough when Radzikowski
[82] observed that the class of Hadamard states can be completely characterized
by the wave front set of the 2-point function. This allowed to extend the algebras
from the linear fields (or, in order to work in the C*-framework, the exponentials of
linear fields (Weyl operators)) to all local Wick polynomials [17]. Moreover, even
renormalization could be performed in this extended framework [16].

But there remained an obstruction: namely, due to the absence of nontrivial isome-
tries in generic spacetimes, the covariance axiom of Haag-Kastler is empty, in gen-
eral. This leads within renormalization theory to the undesirable situation that the
renormalization conditions at different points of spacetime cannot be compared with
each other. The intuitive feeling is that the removal of divergences should be done in
terms of prescriptions depending only on the local geometry. Actually, this idea was
already used in Kay’s treatment of the Casimir effect [74] and in Wald’s discussion
of the renormalization of the energy momentum tensor [92]. A precise version of
this idea was given in the system of axioms for locally covariant quantum field the-
ory [19] (see also [91] for a preliminary version with application to a spin statistics
theorem on curved spacetimes as well as related work of Dimock [37]):

• To each time oriented globally hyperbolic spacetime M there is associated a unital
C*-algebra A(M).

• To each isometric, time orientation and causality preserving embedding χ : M →
N there is associated an embedding Aχ : A(M) → A(N ).

• If χ : M → N and ψ : N → L are embeddings of spacetimes as above, then
Aψ ◦ χ = Aψ ◦ Aχ .

These axioms tell that quantum field theory is a functor A from the category of
spacetimes, with embeddings as above as morphisms, to the category of unital C*-
algebras, with injective unital *-homomorphisms as morphisms. One easily sees
that, by restricting the spacetimes to subregions of a fixed spacetime, one obtains
an associated Haag-Kastler net. The morphisms contain in particular the inclusions-
this yields the isotony of the Haag-Kastler net- and the isometries -this yields the
covariance of the Haag-Kastler net.

The remaining Haag-Kastler axioms (local commutativity and time slice axiom)
can be easily formulated as additional properties of the functor.

Based on the concept of local covariance, the idea of allowing only operations,
which are determined by the local geometry, can be made precise by requiring that
they are natural transformations between the functor A and other geometrically
defined functors on the category of spacetimes. The program of renormalization on
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generic spacetimeswas completed byHollands andWald [69, 70]. An important sim-
plification of their construction was recently obtained by Khavkine andMoretti [77].

The axioms above were formulated for a scalar field. For other fields, in particular
gauge fields, the relation to topological invariants of the spacetimes may become
nontrivial, hence the admissible embeddings in the category of spacetimes have to
preserve these structures. See e.g. [9] and references therein. More details on AQFT
on curved spacetimes may be found in Chap.4. See also the recent reviews by Benini
et al. [10], by Hollands and Wald [71] as well as another review by Rejzner and the
author [56].

One may even extend the given framework to the quantized gravitational field.
There one has to split the metric into a background which defines a curved spacetime
and a fluctuation which is treated as a quantum field. Since this split is arbitrary one
has to prove that the theory does not depend on it. But there remains another difficulty,
namely the absence of local observables due to the invariance of the theory under
diffeomorphisms. In principle, this can be dealt with by introducing coordinates
which are themselves dynamical fields. For a preliminary version of these ideas see
[18] (compare also [76] for related ideas in the classical case and the discussion of
relative observables within Loop Quantum Gravity [38, 84]).

1.3 Scattering Theory

Why do particles naturally occur in quantum field theory? After all, the theory is
formulated without ever using the concept of particles, and as discussed before, no
useful particle concept seems to exist for generic curved spacetime. Moreover, clas-
sical field theory typically does not admit, in general, an interpretation in terms of
particles, only solitons which appear in some special cases remind on particles. Actu-
ally, the derivation of the particle structure in quantum field theory on Minkowski
space proceeds in two quite different steps. The first is related to the phenomenon of
discrete spectra in quantum physics. Therefore, in a translation covariant represen-
tation satisfying the spectrum condition, the mass operator

M = √
Pμ Pμ (1.12)

may have isolated eigenvalues. It is an old conjecture that the formation of mass
eigenstates is related to an almost finite dimensionality of the state space corre-
sponding to a localization within a bounded region with, at the same time, restricted
total energy. This scarcity of the state space has been made precise in terms of com-
pactness [65] or nuclearity [30] conditions.While this led to interesting results as split
inclusion [39, 44] or the existence of KMS states [28], it was up to now not possible
to derive the existence of mass eigenstates from this assumption (for a partial result
in this direction see [50]). Therefore, one usually starts from the assumption that the
mass operator has an isolated eigenvalue m > 0. The corresponding eigenstates are
then interpreted as single particle states. We also assume here that the representation

http://dx.doi.org/10.1007/978-3-319-21353-8_4
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contains also a translationally invariant unit vector Ω , unique up to a phase, and call
it the vacuum vector. The more general case was treated in [26].

The basic idea is that particle states can be generated from the vacuum vector
by applying (almost) local operators, Ψ = A(t)Ω . Since particle states satisfy the
Klein Gordon equation

(�x + m2)U0(x)Ψ = 0, (1.13)

they describe freely moving particles, and the operators A(t) generating them may
be assumed to be essentially localized near to the actual position of the particle at
time t . But then multi-particle states can be generated by products of (almost) local
operators

Ψ1,...,n(t) = A1(t) . . . An(t)Ω. (1.14)

If the particles move with different velocities, the operators will, at large times, be
localized in far spacelike separated regions and hence will commute, and thus the
vector will depend only on the single particle vectors Ψ j , j = 1 . . . , n. This rough
idea does not work exactly, but approximately for large times, and one can show that
it becomes exact in the limits t → ±∞. Hence one obtains two in general different
multi-particle states corresponding to each collection of single particle states, the
outgoing (t → ∞) and the incoming (t → −∞) state. The operator mapping the
incoming state to the corresponding outgoing state is the scattering matrix, and it
can be shown that it is always a partial isometry.

The rigorous argument proceeds at follows: given a single particle state Ψ with
compact momentum support and a diamond O ∈ K, there is, by the Reeh-Schlieder
theorem, for every ε > 0 an operator A ∈ A(O) with ||Ψ − AΩ|| < ε. Let now f
be a Schwartz function whose Fourier transform f̃ has a compact support within the
forward lightcone, which intersects the energymomentum spectrumonly on themass
shell and is equal to 1 on themomentum support ofΨ . Then A( f ) = ∫

dxαx (A) f (x)

is almost local, in the sense that it can be fast approximated by local operators, and

||Ψ − A( f )Ω|| = || f̃ (P)(Ψ − AΩ)|| ≤ sup | f̃ |ε. (1.15)

We then consider the family of Schwartz functions ( ft )t∈R with Fourier transforms

f̃t (p) = eit (
√

p2−m) f̃ (p) (1.16)

and observe that the 1-particle vectors

Ψ (t) = A(t)Ω with A(t) = A( ft ) (1.17)

do not depend on t .
The crucial fact is now that the functions ft are essentially concentrated within

the region tV f , where V f is the set of 4-velocities p/
√

p2 with p ∈ supp f̃ . This
follows by applying the argument of the stationary phase to the oscillating integral
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ft (x) = (2π)−4
∫

d4 p f̃ (p)e(i t (
√

p2−m)−i px). (1.18)

We now can realize the heuristic idea for the construction of multi-particle states
by choosing single particle vectors Ψ1, . . . Ψn with disjoint momentum support, the
corresponding operators Ai ∈ A(O) and the Schwartz functions fi with Fourier
transforms with mutually disjoint velocity supports V fi . We then find the following
theorem:

Proposition 1.3.1 The limits

lim
t→±∞ A1(t) . . . An(t)Ω (1.19)

exist.

Proof The statement follows from the fact that the derivative with respect to t is
integrable. Namely, using Leibniz’ rule and the fact that the single particle vectors
Ai (t)Ω are time independent, we can bound the derivative by

|| d

dt
A1(t) . . . An(t)Ω|| ≤

∑
i< j

||[ d

dt
Ai (t), A j (t)]||

∏
k �=i, j

||Ak(t)||. (1.20)

Since the commutators decay fast, due to the localization of the Schwartz functions
fi,t , and the norms of the operators Ai (t) are polynomially bounded, the derivative
decays fast and hence is integrable.

Clearly, the multi-particle vectors depend only on the corresponding single particle
vectors, since the order of factors can be changed arbitrarily.Also their scalar products
can be computed in terms of scalar products of single particle vectors:

Proposition 1.3.2 Let Ai , fi , i = 1, . . . , n and B j , g j , j = 1, . . . k be operators
and Schwartz functions as above such that supp f̃i ∩suppg̃ j = ∅ for i �= j . Moreover,
assume that the momentum support of each test function is so small that the set of
differences p− p′, p, p′ elements of the supports of the Fourier transforms of the test
functions under consideration, intersects the energy momentum spectrum at most at
{0}. Then

lim
t→±∞〈A1(t) . . . An(t)Ω, B1(t) . . . Bk(t)Ω〉 = δnk

n∏
i=1

〈Ai (0)Ω, Bi (0)Ω〉 (1.21)

Proof Due to the pairwise disjoint supports of the Fourier transforms of the test
functions, the operators Ai (t)∗ commute with B j (t) for i �= j in the limits t → ±∞.
Hence the limit of the left hand side is equal to the limit of

〈
n∏

j=k+1

A j (t)Ω,

k∏
i=1

Ai (t)
∗Bi (t)Ω〉 (1.22)
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for n ≥ k. (For k ≥ n we just have to exchange the roles of B’s and A’s.) But by the
assumptions on the smallness of the momentum support of the test functions and on
the uniqueness of the vacuum vector Ω , we have

Ai (t)
∗Bi (t)Ω = Ω〈Ai (0)Ω, Bi (0)Ω〉. (1.23)

Since the momentum support of
∏n

j=k+1 A j (t)Ω is contained in the forward light
cone for n > k, the scalar product (1.22) vanishes in this case (as also in the case
n < k), and we arrive at the formula in the proposition. �

The construction of scattering states can now easily be completed. Namely, let HF

denote the symmetric Fock space over the single particle space. The construction
described above yields two densely defined isometries W± : HF → H with unique
extensions to everywhere defined isometries (denoted by the same symbol). The
images are the subspaces of incoming and outgoing scattering states, respectively,
and the S-matrix is the partial isometry given by S = W+W ∗−.

Unfortunately, the construction breaks down in the presence of massless parti-
cles. But there, a different method was developed by Buchholz [23] which yields
the scattering states of the massless particles. The question, however, about the par-
ticle structure for massive particles in the presence of massless particles is not yet
completely clarified. Some progress was obtained by Dybalski [48].

1.4 Superselection Sectors

By definition, a superselection sector is an equivalence class of irreducible represen-
tations of the quasilocal algebra. We want to characterize representations by their
relation to a distinguished representation π0, the vacuum representation. Let for a
double coneO ofMinkowski spaceA(O′) denote the C*-subalgebra ofA(M)which
is generated by the algebras A(O1) with double cones O1 ⊂ O′ where O′ denotes
the spacelike complement ofO. The charge carrying fields are then characterized as
partial intertwiners F between the vacuum representation π0 and a representation π

which contains charged states,

F : Hπ0 → Hπ , Fπ0(A) = π(A)F ∀ A ∈ A(O′). (1.24)

Representations π satisfying the DHR selection criterion are those whose par-
tial intertwiner spaces Fπ (O) for every double cone O generate the representation
space, i.e.

Fπ (O)Hπ0 is dense in Hπ , and Fπ (O)∗Hπ is dense in Hπ0 . (1.25)

This is equivalent to the statement that, after restriction toA(O′), the state spaces ofπ
and π0 coincide (π and π0 become quasiequivalent after restriction). The condition
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is usually motivated by the “particle behind the moon”-argument: the charge by
which π and π0 are distinguished might be compensated within an arbitrary region
O which is inaccessible to observations. Note that the condition is satisfied if the
charged states can be generated by local fields, but that it is violated if the charge
can be measured at spacelike distances, as e.g. the electric charge by Gauss’ law in
electrodynamics.

The space of partial intertwiners between π0 and π is a bimodule Fπ (O) over
A(O) with the left and right action

A · F · B := π(A)Fπ0(B). (1.26)

This fact can be used to define products of fields in terms of tensor products of
bimodules Fπ (O) and Fπ ′(O). The elements of this tensor product shall then be
interpreted as partial intertwiners between π0 and a new representation π × π ′ cor-
responding to the composed charges. This product is called fusion in the framework
of conformal field theory in 2 dimensions.

As a first step we observe that for F, G ∈ Fπ0(O), the operator F∗G commutes
with π0(A(O′)). One now adds a crucial maximality condition to the algebra of
bounded regions in the vacuum representation called Haag duality,

π0(A(O′))′ = π0(A(O))′′. (1.27)

Haag duality implies that the operators F∗G as above are elements of π0(A(O))′′.
In the DHR analysis one further assumes that the partial intertwiner spaces even
contain unitary elements, i.e. that the representations restricted to A(O′) are even
unitarily equivalent, whereas quasiequivalencemeans unitary equivalence of suitable
multiples. We want to go the first steps without this assumption and use instead that,
as a consequence of quasiequivalence and Haag duality, the localization regions of
the partial intertwiners can be changed by local observables (charge transporter),
namely if O1,O2 ⊂ O then Fπ (O2) ⊂ Fπ (O1)π0(A(O))′′.

In the following we identify for all double cones O the local algebras A(O)

with the von Neumann algebra π0(A(O))′′. Let A0 denote the algebra of all local
observables, A0 = ⋃

K A(O), and let Fπ = ⋃
K Fπ (O) denote the vector space of

all partial intertwiners between π0 and π . Then Fπ is a bimodule over A0, and Hπ

is a left module. Moreover, due to Haag duality,Fπ has anA0 valued scalar product,

〈F, G〉 := F∗G, (1.28)

andHπ is equal to the completion of the tensor productFπ ⊗A0 Hπ0 , equipped with
the scalar product

〈F ⊗ Φ, G ⊗ Ψ 〉 = 〈Φ, 〈F, G〉Ψ 〉. (1.29)

Also the tensor product of two DHR sectors, Fπ1 ⊗A0 Fπ2 carries an A0 valued
scalar product

〈F1 ⊗ F2, G1 ⊗ G2〉 := F∗
2 π2(F∗

1 G1)G2, (1.30)
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and a new Hilbert space representation π1 × π2 is obtained by equipping the left
module Fπ1 ⊗A0 Fπ2 ⊗A0 Hπ0 with the scalar product

〈F1 ⊗ F2 ⊗ Φ, G1 ⊗ G2 ⊗ Ψ 〉 = 〈Φ, 〈F1 ⊗ F2, G1 ⊗ G2〉Ψ 〉. (1.31)

Intertwiners between DHR representations π and π ′, i.e. operators T : Hπ →
Hπ ′ such that

T π(A) = π ′(A)T ∀A ∈ A0, (1.32)

induce homomorphisms between the corresponding bimodules (denoted by the same
symbol)

T : Fπ → Fπ ′, T : F �→ T F. (1.33)

The structure we obtain is that of a tensor (or monoidal) C*-category with the
DHR representations as objects and the intertwiners as morphisms where the tensor
product is constructed in terms of the tensor products of the associated bimodules.
This category has the following additional structures:

• It is additive, since direct sums of DHR representations are again DHR
representations.

• It has subobjects, since any subrepresentation is again a DHR representation.

It is not a strict category, since the tensor product of bimodules is not strict. As
usual we ignore this problem in the treatment of higher tensor products by using Mc
Lane’s coherence theorem which implies that different choices of brackets in tensor
products are uniquely related by a natural isomorphism.

We now want to investigate the commutation relations between spacelike sepa-
rated partial interwiners. Let O1,O2 ∈ K with O1 ⊂ O′

2, and let π1, π2 be DHR
representations. We define a right module homomorphism

ε(π1, π2) : Fπ1 ⊗A0 Fπ2 → Fπ2 ⊗A0 Fπ1 (1.34)

by
ε(π1, π2)F1 ⊗ F2 = F2 ⊗ F1 (1.35)

with Fi ∈ Fπi (Oi ), where we used that Fπ = Fπ (O)A0, O ∈ K for all DHR
representations π . ε is called the statistics operator. We first check that it is well
defined. Namely,

∑
i

F1,i ⊗ F2,i · Ai = 0 iff
∑

i j

A∗
i F∗

2,iπ2(F∗
1,i F1, j )F2, j A j = 0, (1.36)

with Fk,i ∈ Fπk (Ok) and Ai ∈ A0. But F∗
k,i Fk, j ∈ A(Ok), hence

F∗
2,i π2(F∗

1,i F1, j )F2, j = F∗
2,i F2, j F∗

1,i F1, j = F∗
1,i F1, j F∗

2,i F2, j = F∗
1,i π1(F∗

2,i F2, j )F1, j .

(1.37)
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We conclude that
∑

i F1,i ⊗ F2,i · Ai = 0 implies
∑

i F2,i ⊗ F1,i · Ai = 0. Moreover,
we see that ε is norm preserving and that the induced operator onHπ1×π2 is unitary.

The definition of ε depends on the choice of the double cones O1 and O2. But
clearly ε does not change if we replace the double cones by smaller ones Õi ⊂ Oi ,
i = 1, 2. We now may deform the pair of spacelike separated double cones in the
followingway:Let (On

1 ,On
2 )n=1,...,2N+1 be a sequence of pairs of spacelike separated

double cones such thatO2n±1
i ⊂ O2n

i , n = 1, . . . N , i = 1, 2. Then ε defined for the
pair (O1

1,O1
2) coincides with ε defined for the pair (O2N+1

1 ,O2N+1
2 ). We conclude

that in d dimensional Minkowski space with d > 2 the statistics operator is unique,
whereas in 2 dimensions there are two choices. The crucial properties of the statistics
operator are summarized in the following theorem:

Theorem 1.4.1 1. ε is a bimodule homomorphism.
2. In d > 2 dimensions we have

ε(π1, π2)ε(π2, π1) = 1. (1.38)

3. Let π1, π2, π3 be DHR representations. Then we have the identity

(ε(π2, π3) ⊗ 1)(1⊗ ε(π1, π3))(ε(π1, π2) ⊗ 1) = (1⊗ ε(π1, π2))(ε(π1, π3) ⊗ 1)(1⊗ ε(π2, π3)).

(1.39)

Proof 1. Let A ∈ A(O) for some O ∈ K. Choose O1,O2 ∈ K such that the three
double cones are pairwise spacelike separated. Let Fi ∈ Fπi (Oi ), i = 1, 2. Then

A · F1 ⊗ F2 = F1 ⊗ F2 · A and A · F2 ⊗ F1 = F2 ⊗ F1 · A, (1.40)

hence

ε(π1, π2)(A · F1 ⊗ F2) = ε(π1, π2)(F1 ⊗ F2 · A) =
F2 ⊗ F1 · A = A · F2 ⊗ F1 = A · ε(π1, π2)(F1 ⊗ F2).

2. This follows from the uniqueness of ε.
3. This relation can be easily checked by application to F1 ⊗ F2 ⊗ F3 with Fi ∈

Fπi (Oi ) with pairwise spacelike separated double cones Oi , i = 1, 2, 3. �

The statistics operators with the properties listed above equip the tensor category
with a braiding or even a symmetry in d > 2. Physically it means that we can derive
the commutation relations of fields and don’t have to rely on an a priori choice.

An important question is whether the category is rigid, i.e. whether every π has
a conjugate π , unique up to equivalence. A DHR representation π is conjugate to π

if there is an isometric intertwiner R such that

π × π(A)R = Rπ0(A) ∀A ∈ A0. (1.41)
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If π describes states of a particle we expect that its conjugate describes states of the
corresponding antiparticle. Actually, in case the mass spectrum in π has an isolated
eigenvalue, the existence of π could be proven [26, 52].

Theorem 1.4.2 Let π be a translation covariant irreducible DHR representation
of A0 which satisfies the spectrum condition and whose mass spectrum contains an
isolated eigenvalue. Then there exists a conjugate representation, which is irreducible
and translation covariant and has the same mass spectrum as π .

Actually, the theorem derived in [26, 52] is much stronger. In particular one does
not need to know in advance that the representation π satisfies the DHR criterion.
Instead one derives the existence of a vacuum representation π0 such that π satisfies
a weakened form of the DHR criterion where double cones have to be replaced by
so-called spacelike cones. These are sets of the form

S = x +
⋃
λ>0

λO (1.42)

with a double cone O whose closure is spacelike to the origin. If π0 satisfies Haag
duality for spacelike cones, one can redo the DHR analysis and one can directly
construct the conjugate representation. There is, however, an important difference
in the analysis of the statistics. Namely, due to the different localization one finds
symmetry only in dimension d > 3. This allows the existence of particles with braid
group statistics (plektons, anyons) in 3 dimensions.

We now restrict ourselves toDHR representationsπ with unitary partial intertwin-
ers V ∈ Fπ (O) for all O ∈ K, and we use the fact that the vacuum representation
satisfies the conditions of Borchers theorem. Hence products, finite direct sums and
subrepresentations also have unitary partial intertwiners. It is an interesting question
how far the analysis of superselection sectors can be carried through for the general
case. For progress in this direction see e.g. [86].

Let V ∈ Fπ (O) be unitary. Then one can replace π by a unitarily equivalent
representation ρ on the vacuum Hilbert space Hπ0 by

ρ(A) = V ∗π(A)V . (1.43)

ρ is actually an endomorphism of A0 by Haag duality, and it is localized inO in the
sense that it acts trivially on all algebras A(O1) with K � O1 ⊂ O′. Moreover, by
the assumed existence of unitary elements in the partial intertwiner spaces Fπ (O1)

for all O1 ∈ K one finds endomorphisms ρ1 localized in O1 which are equivalent
as representations. But, again by Haag duality, the unitary operator in Hπ0 which
implements the equivalence is an element of A(O2) forK � O2 ⊃ O∪O1, hence ρ

and ρ1 are conjugate by inner automorphisms of A0. Products of representations πi

now correspond to compositions of endomorphisms ρi in opposite order, π1 ×π2 �
ρ2 ◦ ρ1.

The partial intertwiners F ∈ Fρ(O) are identified with elements (ρ, F) of the
so-called field bundle where F ∈ B(Hπ0)) with ρ(A)F = F A for A ∈ A(O′). If
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U ∈ A0 such that AdU ◦ ρ is localized in O, then ρ(A)U∗ = U∗ A for A ∈ A(O′),
hence U F ∈ A(O′)′ = A(O) and F ∈ A0. The tensor product of the bimodules Fρi

is the field bundle product of [42],

(ρ1, F1) ⊗ (ρ2, F2) = (ρ2ρ1, ρ2(F1)F2). (1.44)

Homomorphisms of bimodules are now given by operators T ∈ B(Hπ0) which
satisfy the intertwiner relation

σ(A)T = Tρ(A), A ∈ A0, (1.45)

and where T ∈ A(O) if σ and ρ are localized in O. The statistics operator, in
particular, can now be expressed in terms of endomorphisms and unitaries which
move the localization regions of endomorphisms into spacelike separated regions.

Namely, let (ρi , Fi ) ∈ Fρi (Oi ), i = 1, 2 with spacelike separated double cone
O1,O2. Choose unitaries Ui ∈ A0 such that ρ′

i := Ad ◦ ρi is localized in Oi . Then
F ′

i := Ui Fi ∈ A(Oi ) and in (1.44) we obtain for the second entry on the right hand
side

ρ2(F1)F2 = ρ2(U
∗
1 F ′

1)U
∗
2 F ′

2 = ρ2(U
∗
1 )U∗

2 ρ′
2(F ′

1)F ′
2 = ρ2(U

∗
1 )U∗

2 F ′
1F ′

2 . (1.46)

Inserting this into the formula for the definition of the statistics operator we obtain

ε(ρ1, ρ2) = ρ1(U
∗
2 )U∗

1 U2ρ(U1). (1.47)

By passing from the representations to the endomorphisms we get a new category
where the objects are the DHR endomorphisms and the arrows are intertwiners
between these endomorphisms. This category is equivalent as a braided (and in d > 2
symmetric) tensor C*-category to the previous one (after adding the requirement of
the existence of unitary partial intertwiners). In contrast to the previous one it is
small (the objects form a set) and strict (the tensor product is now the composition
of endomorphisms and hence associative).

Let us return to the question of rigidity (the existence and uniqueness of con-
jugates). This question is closely related to the classification of statistics. In order
to characterize conjugates ρ of an DHR endomorphism ρ up to equivalence one
requires in addition to the existence of an isometric intertwiner R from the vacuum
id to the representation ρρ the existence of an isometry R from id to ρρ (this is
automatically fulfilled by setting R = ε(ρ, ρ)R) and the equations

R
∗
ρ(R) = R∗ρ(R) = λ1, λ �= 0. (1.48)

(In category theory, it is common to normalize the intertwiners such that λ = 1. This,
however, is in general not compatible with the required isometry.) We now compute
λ in terms of the statistics operators. We find

R
∗
ρ(R) = R∗ε(ρ, ρ)∗ρ(R)ε(id, ρ) = R∗ε(ρ, ρ)∗ε(ρρ, ρ)R = R∗ρ(ε(ρ, ρ))R,

(1.49)
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where we used ε(id, ρ) = 1, ρ(R)ε(id, ρ) = ε(ρρ, ρ)R and ε(ρρ, ρ) = ε(ρ, ρ)

ρ(ε(ρ, ρ)). The completely positive map

φ : A0 → A0, φ(A) = R∗ρ(A)R

is a left inverse of ρ. In the case of a symmetry, it can be used for analysing the
representation of the permutation group Sn generated by the operators ρk(ε(ρ, ρ)),
k = 0, . . . , n − 1 in terms of the statistics parameter λ = φ(ε(ρ, ρ)). One finds
that, by positivity, the allowed values of λ are λ ∈ {± 1

d |d ∈ N}. The natural num-
ber d is called the statistical dimension within the DHR theory. As discovered by
Longo [80], it coincides with the square root of the Jones index [72] of the inclusion
ρ(A(O)) ⊂ ρ(A(O′))′ which characterizes the degree of violation of Haag dual-
ity in the representation ρ (independently of the choice of O ∈ K). This relation
remains valid also in the case where the symmetry has to be replaced by braiding.
The statistical dimension coincides with the general notion of dimension of objects
in symmetric tensor categories.

In case of a braiding, as it is the generic situation in 2 dimensions, one can
approach a similar classification of the representation of the braid group Bn . This
was successful under additional conditions on the spectrum of the statistics operators
ε(ρ, ρ). If e.g. it contains only twopoints as in the symmetric case, the representations
can be classified in analogy to the representations of the symmetric group [58].

In the symmetric case, the DHR endomorphisms with finite statistical dimension
form a rigid symmetric tensor C*-category. It was proven by Doplicher and Roberts
that such a category is equivalent to a category of representations of a compact group
G with a distinguished element k of order 2, where the representation spaces are
graded by the eigenvalues of k and where the symmetry σ on the tensor product of
representations is chosen such that for eigenvectors v, w

σ v ⊗ w = ±w ⊗ v. (1.50)

Here the minus sign appears only when both vectors have eigenvalue -1. Both, G and
k are uniquely determined. The authors then exploit this equivalence and construct
a net of von Neumann algebras F on some Hilbert space H with the following
properties:

• F satisfies the condition of isotony.
• The group G (the gauge group) acts by automorphisms g �→ αg such that

αg(F(O)) = F(O) for all O.
• If O1 is spacelike to O2 and Fi ∈ F(Oi ) with αk(Fi ) = +Fi (bosonic) or −Fi

(fermionic), then F1F2 = ±F2F1, where the minus sign holds if both factors are
fermionic.

• There is an action of the covering of the connected component of the Poincaré
group L �→ αL by automorphisms of F, such that

αL(F(O)) = F(LO) and αLαg = αgαL ∀g ∈ G. (1.51)
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• The subalgebras of fixed points under the gauge group,

A(O) = {A ∈ F(O)|αg(A) = A ∀g ∈ G}, (1.52)

form a net, which is equivalent to the original Haag-Kastler net and where the
Poincaré symmetry of A derives from the action L �→ αL on F.

• Each irreducible DHR representation with finite statistics is equivalent to a sub-
representation of A on H.

• The net F acts irreducibly on H in the following strong sense: Let O be a double
cone. Then the only bounded operators which commute with F(O) and A(M) are
the multiples of the identity.

For more details see the original papers [45, 46] and for a nice review [68].
The analysis described above concerns the sector structure on Minkowski space.

In conformally invariant theories it is often useful to replace Minkowski space by
its conformal completion. In such a spacetime the partially ordered set of double
cones is no longer directed which leads to a modification of the DHR theory. More
generally, in globally hyperbolic spacetimes, new phenomena might occur due to
topological obstructions. See [21] and references therein for more information.

1.5 Structure of Local Algebras

The Haag-Kastler axioms, together with the existence of a vacuum representation,
yield already quite a number of informations on the structure of local algebras. It
was first observed on the example of the free scalar field that the local algebras are
factors of type III [5, 6]. At that time, type III algebras were not well understood and
were considered to be pathological. It was observed that the type III property is due
to the sharp localization within a spacetime region, and Borchers conjectured that
there exist intermediate type I factors between local algebras associated to regions
O1,O2 withO1 ⊂ O2, a property which later was named the split property. Actually,
Buchholz was able to prove this conjecture for the free scalar field [22].

A crucial progress in the structural analysis came with the advent of the Tomita-
Takesaki theory. Namely, given a von Neumann algebra N with a cyclic and separat-
ing vector ξ , a situation present for local algebras due to the Reeh-Schlieder theorem,
one can define an antilinear operator S with domain Nξ by

S Aξ = A∗ξ, A ∈ N . (1.53)

S is in general an unbounded operator. It is closable, and we denote the closure with
the same symbol. The big surprise is that its polar decomposition

S = JΔ1/2, Δ = S∗S (the modular operator) (1.54)
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has the following remarkable properties:

• J is an antiunitary involution (the modular involution) , and JΔ = Δ−1 J .
• J N J = N ′.
• The unitaries Δi t implement automorphisms of N (the modular automorphisms).
• The state induced by ξ satisfies the KMS condition with respect to the time evo-
lution given by the modular automorphisms, with inverse temperature −1.

An immediate question is whether one can determine the modular structure for local
algebras and their cyclic and separating vectors, in particular the vacuum, andwhether
these operations have a physical interpretation.

The first breakthrough was obtained by Bisognano and Wichmann [11]. They
showed that for a genericHaag-Kastler netwhich is generated byWightmanfields in a
specificway the problemcould be solved for the algebra associated to thewedgeW =
{x ∈ M||x0| < x1} and the vacuum. They proved that the modular automorphisms
coincide with Lorentz boosts in the x1-direction (hence the vacuum looks like a
thermal state for a uniformly accelerated observer, an observation which was made
independently at about the same timebyUnruh [90] as an analog toHawking radiation
of black holes, see [34] for a discussion of the physical interpretation), and they
showed that the modular involution coincides with the P1CT -transformation where
parity P is replaced by reflection P1 of the x1-coordinate only. As a consequence,
Haag duality holds for wedges, since P1T W = W ′, a property called essential Haag
duality, a concept introduced by Roberts.

There were also a few other cases where the modular structures could be uncov-
ered, but for the generic case not much is known. There is, however, a very remark-
able theorem of Borchers [13, 51] which can be seen as an abstract version of the
Bisognano-Wichmann-Theorem. Namely, let M be a von Neumann algebras with
a cyclic and separating vector Ω together with a strongly continuous 1-parameter
unitary group t �→ U (t) with the properties:

• The generator of U is positive.
• U (t)Ω = Ω .
• For t > 0, AdU (t) maps M into itself.

Then, for the modular operatorΔ and the modular involution J associated to the pair
(N ,Ω), the following relations hold:

Δi tU (s)Δ−i t = U (e−2π t s), (1.55)

JU (s)J = U (−s). (1.56)

These are the relations found by Bisognano andWichmann for the wedge algebra on
the vacuum where U describes the future directed lightlike translations within the
wedge.

There is also a partial converse of Borchers’ Theorem found byWiesbrock [7, 93].
Namely, let N , M be von Neumann algebras acting on the same Hilbert space with
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a joint cyclic and separating vector Ω such that N ⊂ M and that the modular
automorphisms associated to M map (for t > 0) the algebra N into itself,

AdΔi t
M (N ) ⊂ N , t > 0. (1.57)

(This was termed half sided modular inclusion.) Then there exists a uniquely deter-
mined unitary 1-parameter group a �→ U (a)with a positive generator which satisfies
the relations above, such that

AdU (1)(N ) = M. (1.58)

It was shown by Borchers, Wiesbrock et al. that by using these theorems one can
construct covariant Haag-Kastler nets from a finite family of half sided modular
inclusions where the necessary number depends on the dimension of spacetime.
Unfortunately, up to now, explicit examples of half sided modular inclusions have
been found only within Haag-Kastler nets, so this method has not yet led to new
examples of AQFT. See [14] for a very detailed overview which also contains many
more references. See also [35] for an attempt to interpret themodular automorphisms
as a state dependent intrinsic time evolution with applications to quantum gravity.

In spite of the fact that an explicit determination of the action of modular auto-
morphisms on the local algebras was possible only in special cases, some general
features could be established which finally led to the determination of the local von
Neumann algebras up to isomorphy under plausible conditions. To explain this we
first review the classification of type III algebras by Connes. Namely, Connes showed
that the intersection of the spectra of all modular operators of a factor of type III with
respect to its cyclic and separating vectors is one of the following possibilities:

• {0, 1} (type III0),
• {0, λn, n ∈ Z} for some 0 < λ < 1 (type IIIλ),
• R+ (type III1).

One finds that in all known examples the algebras A(O) are factors of type III1.
Moreover, under plausible assumptions, the type III1 property is generic for theo-
ries generated by Wightman fields with a well behaved short distance scaling limit
[53]. Again, this originally looked, from the mathematics perspective, as the least
understood possibility. It soon turned out, however, that these factors have very nice
properties. First of all, Haagerup [66] could show that there is up to isomorphy only
one hyperfinite factor of type III1, where hyperfinite means that the algebra is gener-
ated by an increasing sequence of full matrix algebras. It is exactly the factor already
found for local algebras of free field theories. Hyperfiniteness of the local algebras is
implied by the split propertymentioned in the introduction. The split property, finally,
can be derived from the so-called nuclearity condition [27, 30]. This condition may
be understood as the condition that the partition function in a finite spatial volume
is finite. Technically, it says that for each double cone O and each finite β > 0 the
map

TO,β : A(O) → H, A �→ e−βH AΩ (1.59)
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is nuclear. Here the algebra is represented on the vacuum Hilbert space H, H is the
Hamiltonian (the generator of time translations in a given Lorentz frame) and Ω is
the unit vector inducing the vacuum state. A linear map f between Banach spaces
X, Y is nuclear if it can be written in the form

f (x) =
∑

yn〈ln, x〉 (1.60)

with yn ∈ Y , ln ∈ X∗, the dual of X , and
∑

n ||yn|| · ||ln|| < ∞. The infimum ν( f )

over these sums for all such representations of f is called the nuclearity index. If
ν(TO,β) behaves in the way expected from a partition function,

ν(TO,β) < e(β0/β)n
, (1.61)

for some β0 > 0 (depending on O) and some n ∈ N (this was shown to be true for
the free scalar field), then one finds that the split property holds and that the theory
has KMS states for all β > 0 [28]. On the other hand, there are generalized free
fields which violate the nuclearity condition as well as the split property.

Besides implying hyperfiniteness, the split property has many other nice conse-
quences, which may be summarized in the universal localizing map [44]. Namely,
let

Λ = (A(O1) ⊂ A(O2)) (1.62)

be a split inclusion. Then there is a unit vector ΩΛ ∈ H which induces the product
state

ωΛ(AB ′) = ω0(A)ω0(B ′), A ∈ A(O1), B ′ ∈ A(O′
2). (1.63)

One then defines a unitary U : H → H ⊗ H by

U AB ′ΩΛ = AΩ ⊗ B ′Ω. (1.64)

The universal localizing map ΦΛ now maps B(H) into the algebra A(O2),

ΦΛ(A) = U∗(A ⊗ 1)U, (1.65)

in such a way that it acts trivially on A(O1). We conclude that all operators on the
Hilbert space are mapped by this procedure into the larger of the two local algebras.
In particular, global charges and momentum operators can be localized in such a way
that not only their action on the smaller algebra is preserved but also their spectrum.
This is quite a surprise, since an integral over a charge density with a suitable test
function would typically have a different spectrum than the global charge operator.

The split property allows to decouple the observables of the smaller region com-
pletely from the observables in the spacelike complement of the larger region, in the
sense that normal states2 exist (the product states) for which all correlations between

2states induced by density matrices.
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these observables vanish. On the contrary, the fact that the local algebras are of
type III implies that normal states always are correlated. They are even necessarily
entangled, i.e. they cannot be uniformly approximated by convex combinations of
product states. This mathematical fact is e.g. responsible for the Hawking effect; in
any Hadamard state the algebra of observables outside the horizon is of type III and
hence the state must be entangled with observables behind the horizon. (See [54] for
a field theoretical derivation of the Hawking effect and, as an alternative, the recently
postulated fire walls at the horizon which should deform the algebra into the type I
case [3].)

Actually, far from being pathological, the type III1-property of local algebras
has many nice aspects. In particular, one can move by the adjoint action of unitary
elements through the state space and finds almost transitivity, in the sense that each
orbit is norm dense in the space of normal states. This is exploited in the Buchholz-
Roberts analysis of superselection sectors for QED [32] and also in the discussion
of transition probabilities in [29]. See also [94] and references therein for further
information.

1.6 Conclusions

Algebraic Quantum Field Theory is an approach to quantum field theory which is in
its aims essentially equivalent to other approaches, as e.g. the path integral approach
or an approach based on canonical quantization of classical field theory. It offers some
conceptual advantages compared with other approaches, in particular the separate
discussion of observables and stateswhich allows to incorporate the locality principle
into the theory. Moreover, it is fully rigorous. In its formulation with C*- and von
Neumann algebras the rich mathematical structure can be exploited and leads to an
understanding of particle statistics and global gauge symmetries.Moreover, apparent
contradictions between nonrelativistic quantum mechanics and relativistic quantum
field theory find their natural explanation in the different structures of the occuring
algebras of observables. The operator algebraic formulation is, on the other hand,
rather rigid, which makes it difficult to deform a given model. Nevertheless, first
examples have been obtained which satisfy a weakened form of the axioms. It is,
however, also possible to relax the conditions on the operator algebras in order to
make contact with the way QFT is treated in other approaches. The concepts from
AQFT have turned out to be especially fruitful for the perturbative construction of
interacting quantum field theories on curved spacetimes, a problem which could not
been solved in other approaches.
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