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Preface

Relativistic quantum field theory was conceived in the late 1920s as a framework
unifying the two fundamental theories that revolutionized physics in the twentieth
century: Quantum Mechanics and the Special Theory of Relativity. Algebraic
Quantum Field Theory (AQFT) is relativistic quantum field theory regarded from a
certain perspective, emphasizing localization of observables in space and time. It
has its roots in the pioneering work of Rudolf Haag and Arthur Wightman from the
1950s and is a well-established branch of mathematical physics, distinguished by
clear conceptual foundations and mathematically sound arguments.

AQFT is also called Local Quantum Physics which is the title of a monograph
by Rudolf Haag1 that summarizes the results and insights achieved by many
researchers up to the mid-1990s. Since then a number of new developments have
taken place. In May 19–23, 2014 a workshop with the title “Algebraic quantum
field theory: Its status and its future” was held at the Erwin Schrödinger Institute for
Mathematical Physics (ESI) in Vienna. The present volume reflects many of the
themes discussed at this workshop but all contributions were written specially for
this volume. The first contribution, by Klaus Fredenhagen, is a general introduction
to the fundamentals of AQFT while other chapters focus on more specialized topics.
The chapter by Fredenhagen and Katarzyna Rejzner in particular, shows how
perturbative constructions of models with interactions fit elegantly into the for-
malism of AQFT.

One of the strengths of the algebraic approach is that it can be naturally applied
when the underlying space-time manifold is curved, thus allowing to take important
aspects of General Relativity into account. A large number of results on the
characterization of physically important states, general covariance, perturbation
theory, and renormalization, both on flat and curved space-times, have been
obtained in the past 20 years and several of the contributions deal with these topics.

The introductory chapter by Klaus Fredenhagen has a section on AQFT on
curved space times, the chapter by Marco Benini and Claudio Dappiaggi treats

1Rudolf Haag, Local Quantum Physics: Fields, Particles, Algebras, 2nd Ed., Springer 1996.
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models of free quantum fields on such space-times, and that of Igor Khavkine and
Valter Moretti is concerned with quasi-free Hadamard states. The contribution of
Christopher Fewster and Rainer Verch deals with locally covariant AQFT on
curved space-times employing the language of category theory, besides discussing
selection criteria for physical states in terms of various stability conditions. The
chapter by Thomas-Paul Hack and Nicola Pinamonti is concerned with applications
of AQFT to cosmology. Here also, semiclassical back reaction of quantum fields on
the metric of space-time is taken into account. The contribution by Dorothea Banhs,
Sergio Doplicher, Gerardeo Morsella, and Gherardo Piacitelli goes further into the
direction of quantum gravity by replacing classical space-time by a quantum
space-time where the coordinates form a noncommutative algebra.

Conformal quantum field theory, that has several important applications in
condensed matter physics, is a model example where algebraic structures and
inequivalent Hilbert space representations that go far beyond standard Lagrangian
field theory arise naturally. The chapter by Karl-Henning Rehren reviews this topic
from a modern perspective. Pieter Naaijkens treats in his contribution Kitaev’s
quantum double model from a local quantum physics point of view. This is a
further example where the algebraic and local way of thinking leads to important
insights in a situation that is not directly connected with relativistic quantum theory
but rather with condensed matter physics and quantum information theory.

The last chapter, by Gandalf Lechner, is concerned with new methods for
constructing models of relativistic quantum fields. Here, a basic tool is the
Tomita-Takesaki modular theory of von Neumann Algebras and the fact that the
modular group and reflection of an algebra generated by a relativistic quantum field
localized in a space-like wedge is explicitly known. Using these techniques, a large
class of models in two space-time dimensions, that are so far inaccessible by other
means, can be constructed. A further method described in this chapter is the use of
deformations of the wedge algebras of known models to obtain new models.

Trento, Italy Romeo Brunetti
Pavia, Italy Claudio Dappiaggi
Hamburg, Germany Klaus Fredenhagen
Vienna, Austria Jakob Yngvason
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Chapter 1
An Introduction to Algebraic Quantum
Field Theory

Klaus Fredenhagen

Abstract The algebraic approach to quantum field theory is reviewed, and its aims,
successes and limitations are discussed.

1.1 Introduction

The algebraic properties of quantum observables, as discovered by Heisenberg, Born
and Jordan and summarized in the canonical commutation relation between position
q and momentum p,

[q, p] = i�, (1.1)

are crucial for the structure of quantum theory. A further crucial structure is the
representability of observables as Hilbert space operators, as first discovered by
Schrödinger and related to the probability interpretation of quantum mechanics by
Born. It was later found that the existence of Hilbert space representations can be
guaranteed if the algebra A generated by observables is equipped with an involutive
structure A �→ A∗, characterizing the real elements, and a norm which satisfies the
C*-property

||A∗ A|| = ||A||2. (1.2)

This involves the restriction to bounded observables, but this is neither from the
point of view of physics (here it amounts to parametrize the possible results of a
measurement by numbers in a finite interval) nor from the point of view of mathe-
matics (there one exploits the spectral theorem for selfadjoint operators and considers
bounded functions of the operator in question) a loss of generality. It may, however,
lead to problems in calculations, since in concrete applications one often has to start
from a formula involving unbounded operators. For our general considerations we
may ignore these difficulties and consider the algebra of observables as a C*-algebra
with unit, i.e. as an involutive unital algebra equipped with a C*-norm, which is

K. Fredenhagen (B)
II. Institut für Theoretische Physik, 22761 Hamburg, Germany
e-mail: Klaus.Fredenhagen@desy.de
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2 K. Fredenhagen

complete as a normed space. Every such algebra arises as a norm closed algebra of
Hilbert space operators, but may have in addition many other inequivalent represen-
tations by Hilbert space operators. Then the mathematical question arises which of
the possible representations one should choose in order to describe a given physical
situation.

In quantum mechanics with finitely many degrees of freedom a partial answer
was given by von Neumann. He proved that the algebra generated by unitaries eiαq

and eiβp with α, β ∈ R and satisfying Weyl’s version of the canonical commutation
relation,

eiαqeiβp = e−iαβeiβpeiαq , (1.3)

has, up to unitary equivalence, only one regular irreducible representation, namely
the representation found by Schrödinger. Here regularmeans that themapsα �→ eiαq

and β �→ eiβp are strongly continuous.
In quantumfield theorywith its infinitelymanydegrees of freedom, the uniqueness

result of von Neumann is no longer valid. Nevertheless, it took some time before
the physical significance of this fact was realized. The crucial insight was due to
Haag who found that theories with translation invariant interactions cannot have a
ground state in the Hilbert space describing the vacuum of the free theory. It was
then understood that this problem is generic, e.g. thermodynamical equilibrium states
cannot be described in terms of density matrices in the vacuum Hilbert space.

Apart from these problems, there is a deeper reason why it is fortunate to separate
the construction of observables from the construction of states. This is the apparent
conflict between the principle of locality, which in particular governs classical field
theory, and the existence of nonclassical correlations (entanglement) in quantum
systems, often referred to as non-locality of quantum physics. As a matter of fact it
turns out that the algebra of observables is completely compatible with the locality
principle whereas the states typically exhibit nonlocal correlations. For this reason,
algebraic quantum field theory is also called local quantum physics [63].

The concepts of algebraic quantumfield theorywere first introduced in a contribu-
tion of Haag to the Lille conference 1957 [61]. The main motivation at this time was
an explanation why a quantum field theory yields a theory of interacting particles.
The Haag-Ruelle scattering theory [62, 85] was a first success of these concepts.

It was then made mathematically precise by using the theory of operator algebras,
mainly by Araki [5, 6]. The crucial step of considering the algebras of observables
independently of their action on an underlying Hilbert space was performed in a pro-
grammatic paper by Haag and Kastler [64]. They formulated the following axioms:

• To each open bounded regionO ofMinkowski spaceM there is associated a unital
C*-algebraA(O), interpreted as the algebra of observables which can bemeasured
within the spacetime region O.

• If O1 ⊂ O2, then there exists an embedding (unital injective *-homomorphism)

iO2O1 : A(O1) → A(O2). (1.4)
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• These embeddings satisfy the compatibility relation

iO3O2 ◦ iO2O1 = iO3O1 if O1 ⊂ O2 ⊂ O3. (1.5)

• The identity component of of the Poincaré group is represented by automorphisms
αL with the properties

αL ◦ A = A ◦ L ,

αL ◦ iO1O2 = iLO1LO2 ◦ αL ,

αL1 ◦ αL2 = αL1L2 .

• If O1 is spacelike separated from O2 and O ⊃ O1 ∪ O2, then

[iOO1(A), iOO2(B)] = 0 ∀A ∈ A(O1), B ∈ A(O2).

These axioms do not involve any choice of Hilbert space representations. The system
of algebras together with the embeddings and the Poincaré symmetries is called a
local net (or a Haag-Kastler net). It contains the minimal requirements one may
pose on observables localized in subregions of Minkowski space. Note, however,
that fermionic fields which anticommute at spacelike separation are excluded from
the local algebras. It was one of the main goals and finally successes of the algebraic
approach that the occurrence of fermionic fields could be derived from the structure
of local nets.

The axioms do not specify a dynamical law. The existence of a dynamical law,
however, can be implied by a further axiom, namely the time slice axiom :

• If O1 ⊂ O2 contains a Cauchy surface of O2 (i.e. a hypersurface which is met
exactly once by every non-extendible causal curve in O2), then the embedding
iO2O1 is an isomorphism.

The system of local algebras possesses an inductive limit, called the quasilocal alge-
bra A(M). It is the unique C*-algebra with embeddings iO : A(O) → A(M) such
that

iO2 ◦ iO2O1 = iO1 if O1 ⊂ O2,

which is generated by the local subalgebras iO(A(O)). Since all embeddings iO are
injective we identify in the following A(O) with its image under iO.

One might be worried by the task to specify algebras for all subregions of
Minkowski space. But is suffices to associate algebras to so-called diamonds (or
double cones). These regions are parametrized by a pair of points (x, y)with x in the
chronological future of y and consist of all points z which are in the chronological
past of x and the chronological future of y. We denote the set of double cones by
K. Algebras of other regions G are then defined as subalgebras of A(M) which are
generated by the algebras A(O) with G ⊃ O ∈ K.
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Once the local net is given, the space of states is obtained as a subset of the
dual of A(M) as a Banach space. Namely, states are just those linear functionals
ω : A(M) → C which satisfy the conditions

ω(1) = 1, (1.6)

ω(A∗ A) ≥ 0 ∀A ∈ A(M). (1.7)

The values of a state are interpreted as expectation values, and the whole probability
distribution μω,A of measured values a ∈ R of an observable A = A∗ is obtained
from its moments, namely the expectation values of powers of A,

∫
andμω,A(a) = ω(An) , n ∈ N. (1.8)

Every state induces by the so-called GNS construction a representation π of the
quasilocal algebra on some Hilbert spaceH together with a distinguished unit vector
Ω such that

ω(A) = 〈Ω,π(A)Ω〉,

and the set of vectors {π(A)Ω| A ∈ A(M)} is dense inH.
The density matrices ρ inH form a family of states,

ωρ(A) = Trρπ(A),

the so-called folium ofω. The crucial mathematical fact is that infinitely dimensional
C*-algebras in general have a huge number of disjoint folia. While this is welcome
from thephysics point of view inorder to be able to describemacroscopically different
situations, it makes the analysis of the structure of the state space difficult. Hence one
of the main objectives in algebraic quantum field theory is to select a suitable subset
of the state space which covers the situations of interest and admits a classification.

The most famous of these selection criteria is the DHR (for Doplicher, Haag and
Roberts) criterion which is supposed to select the states of interest for elementary
particle physics. These are states which differ from a distinguished state ω0 only
within some bounded region and its causal future and past.

The state ω0 is interpreted as the vacuum. It is assumed to be a pure state (i.e. it
cannot be decomposed into a convex combination of other states) and to be invariant
under the Poincaré transformations αL . Moreover, in its GNS-representation π0, the
associated unitary representation U of the identity component of the Poincaré group
given by

U (L)π0(A)Ω = π0(αL(A))Ω,

which implements the automorphisms αL ,

U (L)π0(A)U (L)−1 = π0(αL(A)),
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is strongly continuous and satisfies the relativistic spectrum condition

sp(U0) ⊂ V ∗+.

Here U0 is the restriction of U to the translation subgroup, V+ is the cone of future
directed timelike translations, V ∗+ the dual cone in momentum space and V ∗+ its clo-
sure.The representationU0 is generatedbymutually commuting selfadjoint operators
Pμ, μ = 0, . . . 3 (the momentum operators)

U0(x) = ei Px , Px ≡ Pμxμ, (1.9)

whose joint spectrum is by definition the spectrum of U0.
In the presence of superselected charges there exist other representations π which

are translation covariant, i.e. there exists a unitary strongly continuous representation
of the translation group, which implements the translation automorphisms and fulfills
the spectrum condition.

An important question is whether all observables can be expressed in terms of
observables in arbitrarily small regions, as one might expect in models which are
defined in terms of observable pointlike localized fields. A precise version of this
property is additivity : a representation π satisfies additivity if for every covering of
the open region O by double cones Oi one has

π(A(O)) ⊂ (
⋃

i

π(A(Oi )))
′′. (1.10)

Here R′ denotes the commutant of a set of operators R, i.e. the set of all bounded
operators commutingwithR. The bicommutant of a selfadjoint set (a set of operators
which is invariant under taking the adjoint) is a von Neumann algebra.1

The combination of the axiom of local commutativity with the spectrum condition
imposes strong restrictions on the theory. The most remarkable one is the Reeh-
Schlieder Theorem [63, 83].

Theorem 1.1.1 Let (π, U0) be a translation covariant representation satisfying
additivity and the spectrum condition. Let Φ ∈ Hπ be a cyclic vector for A(M),
i.e.

π(A(M))Φ is dense in Hπ ,

and let Ψ = U0(iβ)Φ with β ∈ V+. Let O be a nonempty double cone in Minkowski
space. Then the set π(A(O))Ψ is dense in Hπ , and Ψ is separating for π(A(O))′,
i.e. AΦ = 0 implies A = 0 for A ∈ π(A(O))′.
The interpretation of the Reeh-Schlieder Theorem induced an intense discussion in
philosophy of science (see e.g. [67]). The theorem does not mean that there is an

1AvonNeumann algebra is an algebra ofHilbert space operatorswhich is invariant under involution,
contains the unit operator and is closed with respect to the weak operator topology.
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instantaneous effect of a local operation. A local operation would correspond to the
application of a unitary U ∈ A(O), and the set of vectors {π(U )Φ|U ∈ A(O)} is
total, i.e. its finite linear combinations are dense inHπ , but the set itself is not dense
in the unit ball ofHπ . See [29] for a recent discussion.

An important generalization of the Reeh-Schlieder Theorem is the following the-
orem of Borchers [12]:

Theorem 1.1.2 Let (π, U0) as before and assume that the center of π(A(M)) is
trivial. Let O,O1 be double cones with O ⊂ O1. Then to every nonzero projection
E ∈ π(A(O))′′ there exists an isometry V ∈ π(A(O1))

′′ such that V V ∗ = E.

This theorem shows that local algebras contain no nonzero finite dimensional projec-
tions. This property of relativistic quantumfield theory is quite a surprise if confronted
with structures known from nonrelativistic quantum mechanics.

The theorem reminds on the characterization of vonNeumann algebras of type III.
Namely, von Neumann algebrasN with trivial centre (the so-called factors ) can be
classified in terms of the equivalence classes of their projections where 2 projections
E, F ∈ N are called equivalent if there exists some V ∈ N such that

E = V V ∗ and F = V ∗V . (1.11)

Type I factors are isomorphic to the algebra of all bounded operators on a Hilbert
spaceH. There the projections are equivalent if the subspaces EH and FH have the
same dimension. In quantum field theory type I factors occur as the von Neumann
algebras generated by π(A(M)) in an irreducible representation π . Type II factors
have projection classes which can be labeled by real numbers. They occur in physics
only in extreme situations, for instance for a gas of fermions at infinite temperature.
Type III factors are defined by the property that all nonzero projections are equivalent.

Borchers’ Theorem above is somewhat weaker than the statement that the von
Neumann algebras π(A(O))′′ are factors of type III. Actually, in many cases they
are known to be of type III (see, e.g. [47]), and there are general reasons to expect
that this is always the case [27].

Asmentioned before, one of the early successes of the algebraic approach (in fact,
the main motivation for its introduction) is the explanation of the particle structure
observed in experiments. Namely, let (H, π0,Ω) be the GNS triple associated to the
vacuum state ω0, We assume that the spectrum of the translation group contains an
isolated mass shell,

sp(U0) = {0} ∪ Hm ∪ H≥M , 0 < m < M,

with Hm = {p|p0 > 0, p2 = m2} and H≥M = {p|p0 > 0, p2 ≥ M2}. The subspace
H1 ⊂ H corresponding to Hm can be interpreted as 1-particle space. One then can
show that the vacuumHilbert spaceH contains also stateswhich can be interpreted as
multi-particle states at asymptotic times (Haag-Ruelle scattering theory). It is, how-
ever, an openquestion,whether all states in the vacuum representation admit a particle
interpretation (problem of asymptotic completeness) (See [49] for recent progress).
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One obvious obstruction to asymptotic completeness is that 1-particle states may
exist which are disjoint from the states of the vacuum representation. This is true in
particular for fermions, but also holds for bosonic particles which carry a superse-
lected charge, e.g. the W -bosons of the electroweak theory.

In models these states are obtained by enlarging the algebra of observables to a
so-called field algebra. In spite of the fact that the elements of the field algebra are
not necessarily observable, one postulates that they satisfy local commutation, or, for
fermionic fields, anticommutation relations. This allows to extend the construction of
multi-particle states to charged particles which then satisfy Bose or Fermi statistics,
respectively. A partial justification of this ansatz is the spin statistics theorem which
states, under the hypothesis that either Bose or Fermi statistics holds, that only the
observed connection between spin and statistics is possible. The ansatz is, however,
ad hoc and is in fact not sufficiently general to cover all situations of interest, in
particular in less than 4 dimensions when more general statistics are possible.

To incorporate these particles, Doplicher, Haag and Roberts formulated their
selection criterion for “states of interest for particle physics”. It incorporates the
property of charge carrying fields that they satisfy local commutation relations with
the observables but does not impose any commutation relations between the fields
themselves. In a series of 4 seminal papers [40–43] they analyzed the arising repre-
sentations and could show that

• The multi-particle structure previously seen in the vacuum sector extends to all
DHR states.

• The particles satisfy Bose or Fermi statistics and may have additional degrees of
freedom.

• Antiparticles exist and have the same mass and spin as the corresponding particle.

Moreover, Doplicher and Roberts succeeded in [46] to show that the internal degrees
of freedom can be understood in terms of representations of a uniquely determined
compact group. This led to an improved version of the Tannaka-Krein characteriza-
tion of the dual of a compact group.

Interestingly, the DHR analysis yields a different structure if applied to quantum
field theory in 2 spacetime dimensions [58]. Thiswas used in particular in the operator
algebraic approach to conformal field theory as explained in more detail in Rehren’s
contribution to this book.

The DHR criterion excludes states describing particles with an electric charge
because of the associated electric flux which distinguishes these states from the vac-
uum even at arbitrarily large spacelike separation. This is a generic feature of charged
particles in gauge theories [25]. If a particle is massive and if in its representation
the energy-momentum spectrum has an upper mass gap, Buchholz and the author
could show that the corresponding sector is related to a vacuum state such that the
interpolating fields can be localized in an infinitely extended spacelike cone [26].
In 4 dimension this localization allows to apply the DHR analysis, but in 3 dimen-
sions one observes a more general structure similar to the 2 dimensional situation
for DHR states.
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The massless situation which is relevant for quantum electrodynamics was
recently solved by Buchholz and Roberts [32], based on an older proposal of Buch-
holz [24].

Algebraic quantum field theory, as may be seen from this overview, was very
successful in analyzing the structure of quantum field theory, based on a few plau-
sible axioms. It turned out, however, to be extremely difficult to construct concrete
models which are physically interesting and satisfy these axioms. Actually, other
approaches to quantum field theory suffer from the same problem, and sometimes
these difficulties are taken as an indication for the need to go beyond quantum field
theory, or even to give up the requirement of mathematical consistency. It is one
aim of the present book to convince the reader that this is premature, and to indicate
possible directions for improving the situation.

Let us summarize the known models of algebraic quantum field theory (see also
[89] for an overview). There are first the models of free fields describing freely
moving particles characterized by irreducible representations of the (covering of)
the (connected component of) the Poincaré group. Traditionally these models are
constructed in terms of annihilation and creation operators on the Fock space over
the corresponding 1-particle space. The constructionworks formassive particleswith
spin s ∈ 1

2N0 and for massless particles with helicities h ∈ 1
2Z. An elegant direct

construction was performed in [20]. While physically of limited interest, they have
a rich mathematical structure, moreover, they constitute a basis for the interpretation
of scattering states, and they serve as a framework for the perturbative formulation of
interacting models. Closely related are the generalized free fields, where the single
particle space is replaced by a reducible representation of the Poincaré group. In
case of a discrete mass spectrum they arise as tensor products of free theories. In the
case of a continuous mass spectrum they are usually considered as unphysical, but
recently, they were proposed under the name of unparticles [59].

Another class of models are the superrenormalizable models in 2 dimensions, in
particular massive scalar fields with a polynomial interaction, and the Yukawamodel
[60, 87]. These models, unfortunately, seem to have no direct physical application.

A further class consists of conformally invariant theories in 2 dimensions (see the
contribution ofRehren to this book).Here a huge class ofmodels has been constructed
(see e.g. [75]), and the results from the algebraic approach can be compared to results
in other approaches, with mutual fertilization. These models are of high interest for
mathematics, but they also have applications to physics, e.g. in critical phenomena of
effectively low dimensional systems in condensed matter, and they appear naturally
within string theory.

Another class are integrable models in 2 dimensions whose S-matrix satisfies the
so-called factorization equations. In case the 2-particle scattering matrix is just mul-
tiplication by a pure phase depending on the incoming momenta, the corresponding
local nets have been constructed by Lechner [78]. Constructions ofmore complicated
cases have also been performed [1, 2]. In some cases, for example in the sinh-Gordon
model with field equation

�ϕ + λ sinh gϕ = 0,
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the algebraic construction can (and should) be compared with a direct construction.
It is, however, remarkable that the algebraic construction works also in cases where
no corresponding classical dynamics is known. See Chap.10 for more details.

Motivated by attempts to replace spacetime by a noncommutative space where
expected properties of quantum gravity are taken into account (see the contribution
of Bahns et al. to this book), one can also construct models by deformation of a
given net. This works even in higher dimension, but the models constructed so far
satisfy only a restricted version of local commutativity, namely one obtains alge-
bras associated to so-called wedges W , i.e. W = L{x ∈ M||x0| < x1} for some
Poincaré transformation L , and observables localized in spacelike separated wedges
commute. This allows to construct 2-particle states and to compute the S-matrix
for 2-particle scattering, but gives no hint whether a generalization to multi-particle
states is possible [31].

A completely new elegant method of construction was recently performed by
Barata, Jaekel andMund (see a forthcoming publication). It starts from the construc-
tion of a Haag Kastler net on de Sitter space in terms of Tomita-Takesaki theory. The
Minkowski space theory is then obtained by taking the limit of vanishing curvature
in the spirit of the scaling limit of Buchholz and Verch [33].

The last class of models I want to mention is obtained by adopting the methods
of renormalized perturbation theory to the algebraic framework. There one has to
give up the condition that the local algebras are C*-algebras. Instead they are unital
*-algebras, where the existence of Hilbert space representations is replaced by the
existence of a representation on a space of formal power series D[[g]] with a dense
subspace D of some Hilbert space where g is the coupling constant. Therefore all
numerical predictions of the theory are formal power series in g, and a comparison
with experiments requires a truncation of the series. As a matter of fact, in most cases
only a few terms of the series can be computed by present techniques, and one finds
in many cases an excellent agreement with measurements. Moreover, exploiting the
concept of the renormalization group, one obtains different series labeled by a scale
μ, and the series at different parameters μ1, μ2 are related by replacing the coupling
constant by the so-called running coupling constant which typically is a formal power
series in g and logμ2/μ1. Observations at a given scale can then be compared with
the truncated series at the same scale, where the running coupling constant is fitted
with the data. This improves the agreement with the measured data considerably,
and, moreover, confirms the predicted running of the coupling constant.

This weaker version of the Haag-Kastler axioms covers all models of quantum
field theory which are relevant for elementary particle physics. Compared to the
traditional way of treating perturbation theory, the algebraic approach allows a state
independent renormalization and a construction of the local net without any infrared
problems. Infrared problems can, in principle, reappear in the construction of states
or in the computation of scattering cross sections. But there, the difficulties might
have different reasons:

• The corresponding statemay not exist, as e.g. the vacuum state for amassless scalar
field in 2 dimensions, or a KMS-state of a scalar field with negative temperature.

http://dx.doi.org/10.1007/978-3-319-21353-8_10
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• The states may belong to different superselection sectors.
• The usual method for construction does not work. This holds e.g. for KMS states
of a massive scalar field, where Altherr [4] and Steinmann [88] observed infrared
divergences at higher loop order. As was recently shown [57, 79], the problem
disappears if the validity of the time slice axiom is exploited so that only the
observables localized within a fixed time slice have to be taken into account.

The formalism of AQFT is motivated by the expected interplay between observ-
ables in quantum theory and the concept of locality arising from special relativity. In
practical applications one often prefers to extend the framework by adding unobserv-
able degrees of freedom. One example is the introduction of anticommuting fields in
order to describe particles with Fermi statistics. As mentioned above, this extension
of the framework can be intrinsically derived from the Haag-Kastler net of observ-
ables by the DHR theory. More generally this holds for all global gauge symmetries,
where the compact group whose representations label the superselection sectors is
shown to be constructible from the Haag-Kastler net.

A very important question is whether a corresponding statement can also be made
for theories with local gauge symmetry, as QED or the standard model of elementary
particle physics. In spite of quite a number of works dedicated to this question an
answer is presently not known. Several strategies have been probed.

The most direct way is to mimick the traditional construction in terms of auxiliary
fields (ghosts etc.). Here one necessarily gives up the framework of C*-algebras, but
preserves locality.Oneobtains the algebra of observables as a resolution of a complex,
in the sense of homological algebra [55]. An interesting alternative to this procedure
is to enlarge the algebra of local observables by nonlocal quantities but to preserve
the representability on a Hilbert space. See [81] for progress in this direction. In case
of free abelian gauge theories as e.g. Maxwell’s theory without charges, one can give
a complete construction of the C*-algebraic Haag-Kastler net.

The most challenging open question is whether gravity can be included into the
formalism of AQFT. Since the very concept of a region of spacetime has no intrinsic
meaning in a generally covariant theory, a modification of the formalism would be
necessary. But gravity is, at presently accessible observations, much weaker than all
other known interactions, hence it is a good approximation to treat the spacetime
of general relativity as a background which is not influenced by the other quantum
fields. This is the motivation to study quantum field theory on generic spacetimes
with a metric with Lorentzian signature.

1.2 AQFT on Curved Spacetime

As was first observed by Dimock [36] and Kay [73], AQFT is ideally suited for the
treatment of QFT on curved backgrounds. The reason is that, contrary to the situation
on Minkowski space, no intrinsic concept of a vacuum state nor of particles exist.
The traditional approach to QFT therefore does not work, and attempts to use it lead
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to inconsistencies. As long as only free fields were discussed, a direct construction
can be given on any globally hyperbolic spacetime, and an appropriate version of
the Haag-Kastler axioms can be given. Even in free field theory, however, one is
interested not only in the field itself, but also in nonlinear expressions in the field as
e.g. the energy momentum tensor, in order to estimate the possible back reaction of
the quantumfields on the spacetimegeometry. Itwas observed that for free fields there
exist states, the so-called Hadamard states, which have similar singularities as the
vacuum state on Minkowski space. It was a major breakthrough when Radzikowski
[82] observed that the class of Hadamard states can be completely characterized
by the wave front set of the 2-point function. This allowed to extend the algebras
from the linear fields (or, in order to work in the C*-framework, the exponentials of
linear fields (Weyl operators)) to all local Wick polynomials [17]. Moreover, even
renormalization could be performed in this extended framework [16].

But there remained an obstruction: namely, due to the absence of nontrivial isome-
tries in generic spacetimes, the covariance axiom of Haag-Kastler is empty, in gen-
eral. This leads within renormalization theory to the undesirable situation that the
renormalization conditions at different points of spacetime cannot be compared with
each other. The intuitive feeling is that the removal of divergences should be done in
terms of prescriptions depending only on the local geometry. Actually, this idea was
already used in Kay’s treatment of the Casimir effect [74] and in Wald’s discussion
of the renormalization of the energy momentum tensor [92]. A precise version of
this idea was given in the system of axioms for locally covariant quantum field the-
ory [19] (see also [91] for a preliminary version with application to a spin statistics
theorem on curved spacetimes as well as related work of Dimock [37]):

• To each time oriented globally hyperbolic spacetime M there is associated a unital
C*-algebra A(M).

• To each isometric, time orientation and causality preserving embedding χ : M →
N there is associated an embedding Aχ : A(M) → A(N ).

• If χ : M → N and ψ : N → L are embeddings of spacetimes as above, then
Aψ ◦ χ = Aψ ◦ Aχ .

These axioms tell that quantum field theory is a functor A from the category of
spacetimes, with embeddings as above as morphisms, to the category of unital C*-
algebras, with injective unital *-homomorphisms as morphisms. One easily sees
that, by restricting the spacetimes to subregions of a fixed spacetime, one obtains
an associated Haag-Kastler net. The morphisms contain in particular the inclusions-
this yields the isotony of the Haag-Kastler net- and the isometries -this yields the
covariance of the Haag-Kastler net.

The remaining Haag-Kastler axioms (local commutativity and time slice axiom)
can be easily formulated as additional properties of the functor.

Based on the concept of local covariance, the idea of allowing only operations,
which are determined by the local geometry, can be made precise by requiring that
they are natural transformations between the functor A and other geometrically
defined functors on the category of spacetimes. The program of renormalization on
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generic spacetimeswas completed byHollands andWald [69, 70]. An important sim-
plification of their construction was recently obtained by Khavkine andMoretti [77].

The axioms above were formulated for a scalar field. For other fields, in particular
gauge fields, the relation to topological invariants of the spacetimes may become
nontrivial, hence the admissible embeddings in the category of spacetimes have to
preserve these structures. See e.g. [9] and references therein. More details on AQFT
on curved spacetimes may be found in Chap.4. See also the recent reviews by Benini
et al. [10], by Hollands and Wald [71] as well as another review by Rejzner and the
author [56].

One may even extend the given framework to the quantized gravitational field.
There one has to split the metric into a background which defines a curved spacetime
and a fluctuation which is treated as a quantum field. Since this split is arbitrary one
has to prove that the theory does not depend on it. But there remains another difficulty,
namely the absence of local observables due to the invariance of the theory under
diffeomorphisms. In principle, this can be dealt with by introducing coordinates
which are themselves dynamical fields. For a preliminary version of these ideas see
[18] (compare also [76] for related ideas in the classical case and the discussion of
relative observables within Loop Quantum Gravity [38, 84]).

1.3 Scattering Theory

Why do particles naturally occur in quantum field theory? After all, the theory is
formulated without ever using the concept of particles, and as discussed before, no
useful particle concept seems to exist for generic curved spacetime. Moreover, clas-
sical field theory typically does not admit, in general, an interpretation in terms of
particles, only solitons which appear in some special cases remind on particles. Actu-
ally, the derivation of the particle structure in quantum field theory on Minkowski
space proceeds in two quite different steps. The first is related to the phenomenon of
discrete spectra in quantum physics. Therefore, in a translation covariant represen-
tation satisfying the spectrum condition, the mass operator

M = √
Pμ Pμ (1.12)

may have isolated eigenvalues. It is an old conjecture that the formation of mass
eigenstates is related to an almost finite dimensionality of the state space corre-
sponding to a localization within a bounded region with, at the same time, restricted
total energy. This scarcity of the state space has been made precise in terms of com-
pactness [65] or nuclearity [30] conditions.While this led to interesting results as split
inclusion [39, 44] or the existence of KMS states [28], it was up to now not possible
to derive the existence of mass eigenstates from this assumption (for a partial result
in this direction see [50]). Therefore, one usually starts from the assumption that the
mass operator has an isolated eigenvalue m > 0. The corresponding eigenstates are
then interpreted as single particle states. We also assume here that the representation

http://dx.doi.org/10.1007/978-3-319-21353-8_4
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contains also a translationally invariant unit vector Ω , unique up to a phase, and call
it the vacuum vector. The more general case was treated in [26].

The basic idea is that particle states can be generated from the vacuum vector
by applying (almost) local operators, Ψ = A(t)Ω . Since particle states satisfy the
Klein Gordon equation

(�x + m2)U0(x)Ψ = 0, (1.13)

they describe freely moving particles, and the operators A(t) generating them may
be assumed to be essentially localized near to the actual position of the particle at
time t . But then multi-particle states can be generated by products of (almost) local
operators

Ψ1,...,n(t) = A1(t) . . . An(t)Ω. (1.14)

If the particles move with different velocities, the operators will, at large times, be
localized in far spacelike separated regions and hence will commute, and thus the
vector will depend only on the single particle vectors Ψ j , j = 1 . . . , n. This rough
idea does not work exactly, but approximately for large times, and one can show that
it becomes exact in the limits t → ±∞. Hence one obtains two in general different
multi-particle states corresponding to each collection of single particle states, the
outgoing (t → ∞) and the incoming (t → −∞) state. The operator mapping the
incoming state to the corresponding outgoing state is the scattering matrix, and it
can be shown that it is always a partial isometry.

The rigorous argument proceeds at follows: given a single particle state Ψ with
compact momentum support and a diamond O ∈ K, there is, by the Reeh-Schlieder
theorem, for every ε > 0 an operator A ∈ A(O) with ||Ψ − AΩ|| < ε. Let now f
be a Schwartz function whose Fourier transform f̃ has a compact support within the
forward lightcone, which intersects the energymomentum spectrumonly on themass
shell and is equal to 1 on themomentum support ofΨ . Then A( f ) = ∫

dxαx (A) f (x)

is almost local, in the sense that it can be fast approximated by local operators, and

||Ψ − A( f )Ω|| = || f̃ (P)(Ψ − AΩ)|| ≤ sup | f̃ |ε. (1.15)

We then consider the family of Schwartz functions ( ft )t∈R with Fourier transforms

f̃t (p) = eit (
√

p2−m) f̃ (p) (1.16)

and observe that the 1-particle vectors

Ψ (t) = A(t)Ω with A(t) = A( ft ) (1.17)

do not depend on t .
The crucial fact is now that the functions ft are essentially concentrated within

the region tV f , where V f is the set of 4-velocities p/
√

p2 with p ∈ supp f̃ . This
follows by applying the argument of the stationary phase to the oscillating integral
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ft (x) = (2π)−4
∫

d4 p f̃ (p)e(i t (
√

p2−m)−i px). (1.18)

We now can realize the heuristic idea for the construction of multi-particle states
by choosing single particle vectors Ψ1, . . . Ψn with disjoint momentum support, the
corresponding operators Ai ∈ A(O) and the Schwartz functions fi with Fourier
transforms with mutually disjoint velocity supports V fi . We then find the following
theorem:

Proposition 1.3.1 The limits

lim
t→±∞ A1(t) . . . An(t)Ω (1.19)

exist.

Proof The statement follows from the fact that the derivative with respect to t is
integrable. Namely, using Leibniz’ rule and the fact that the single particle vectors
Ai (t)Ω are time independent, we can bound the derivative by

|| d

dt
A1(t) . . . An(t)Ω|| ≤

∑
i< j

||[ d

dt
Ai (t), A j (t)]||

∏
k �=i, j

||Ak(t)||. (1.20)

Since the commutators decay fast, due to the localization of the Schwartz functions
fi,t , and the norms of the operators Ai (t) are polynomially bounded, the derivative
decays fast and hence is integrable.

Clearly, the multi-particle vectors depend only on the corresponding single particle
vectors, since the order of factors can be changed arbitrarily.Also their scalar products
can be computed in terms of scalar products of single particle vectors:

Proposition 1.3.2 Let Ai , fi , i = 1, . . . , n and B j , g j , j = 1, . . . k be operators
and Schwartz functions as above such that supp f̃i ∩suppg̃ j = ∅ for i �= j . Moreover,
assume that the momentum support of each test function is so small that the set of
differences p− p′, p, p′ elements of the supports of the Fourier transforms of the test
functions under consideration, intersects the energy momentum spectrum at most at
{0}. Then

lim
t→±∞〈A1(t) . . . An(t)Ω, B1(t) . . . Bk(t)Ω〉 = δnk

n∏
i=1

〈Ai (0)Ω, Bi (0)Ω〉 (1.21)

Proof Due to the pairwise disjoint supports of the Fourier transforms of the test
functions, the operators Ai (t)∗ commute with B j (t) for i �= j in the limits t → ±∞.
Hence the limit of the left hand side is equal to the limit of

〈
n∏

j=k+1

A j (t)Ω,

k∏
i=1

Ai (t)
∗Bi (t)Ω〉 (1.22)
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for n ≥ k. (For k ≥ n we just have to exchange the roles of B’s and A’s.) But by the
assumptions on the smallness of the momentum support of the test functions and on
the uniqueness of the vacuum vector Ω , we have

Ai (t)
∗Bi (t)Ω = Ω〈Ai (0)Ω, Bi (0)Ω〉. (1.23)

Since the momentum support of
∏n

j=k+1 A j (t)Ω is contained in the forward light
cone for n > k, the scalar product (1.22) vanishes in this case (as also in the case
n < k), and we arrive at the formula in the proposition. �

The construction of scattering states can now easily be completed. Namely, let HF

denote the symmetric Fock space over the single particle space. The construction
described above yields two densely defined isometries W± : HF → H with unique
extensions to everywhere defined isometries (denoted by the same symbol). The
images are the subspaces of incoming and outgoing scattering states, respectively,
and the S-matrix is the partial isometry given by S = W+W ∗−.

Unfortunately, the construction breaks down in the presence of massless parti-
cles. But there, a different method was developed by Buchholz [23] which yields
the scattering states of the massless particles. The question, however, about the par-
ticle structure for massive particles in the presence of massless particles is not yet
completely clarified. Some progress was obtained by Dybalski [48].

1.4 Superselection Sectors

By definition, a superselection sector is an equivalence class of irreducible represen-
tations of the quasilocal algebra. We want to characterize representations by their
relation to a distinguished representation π0, the vacuum representation. Let for a
double coneO ofMinkowski spaceA(O′) denote the C*-subalgebra ofA(M)which
is generated by the algebras A(O1) with double cones O1 ⊂ O′ where O′ denotes
the spacelike complement ofO. The charge carrying fields are then characterized as
partial intertwiners F between the vacuum representation π0 and a representation π

which contains charged states,

F : Hπ0 → Hπ , Fπ0(A) = π(A)F ∀ A ∈ A(O′). (1.24)

Representations π satisfying the DHR selection criterion are those whose par-
tial intertwiner spaces Fπ (O) for every double cone O generate the representation
space, i.e.

Fπ (O)Hπ0 is dense in Hπ , and Fπ (O)∗Hπ is dense in Hπ0 . (1.25)

This is equivalent to the statement that, after restriction toA(O′), the state spaces ofπ
and π0 coincide (π and π0 become quasiequivalent after restriction). The condition
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is usually motivated by the “particle behind the moon”-argument: the charge by
which π and π0 are distinguished might be compensated within an arbitrary region
O which is inaccessible to observations. Note that the condition is satisfied if the
charged states can be generated by local fields, but that it is violated if the charge
can be measured at spacelike distances, as e.g. the electric charge by Gauss’ law in
electrodynamics.

The space of partial intertwiners between π0 and π is a bimodule Fπ (O) over
A(O) with the left and right action

A · F · B := π(A)Fπ0(B). (1.26)

This fact can be used to define products of fields in terms of tensor products of
bimodules Fπ (O) and Fπ ′(O). The elements of this tensor product shall then be
interpreted as partial intertwiners between π0 and a new representation π × π ′ cor-
responding to the composed charges. This product is called fusion in the framework
of conformal field theory in 2 dimensions.

As a first step we observe that for F, G ∈ Fπ0(O), the operator F∗G commutes
with π0(A(O′)). One now adds a crucial maximality condition to the algebra of
bounded regions in the vacuum representation called Haag duality,

π0(A(O′))′ = π0(A(O))′′. (1.27)

Haag duality implies that the operators F∗G as above are elements of π0(A(O))′′.
In the DHR analysis one further assumes that the partial intertwiner spaces even
contain unitary elements, i.e. that the representations restricted to A(O′) are even
unitarily equivalent, whereas quasiequivalencemeans unitary equivalence of suitable
multiples. We want to go the first steps without this assumption and use instead that,
as a consequence of quasiequivalence and Haag duality, the localization regions of
the partial intertwiners can be changed by local observables (charge transporter),
namely if O1,O2 ⊂ O then Fπ (O2) ⊂ Fπ (O1)π0(A(O))′′.

In the following we identify for all double cones O the local algebras A(O)

with the von Neumann algebra π0(A(O))′′. Let A0 denote the algebra of all local
observables, A0 = ⋃

K A(O), and let Fπ = ⋃
K Fπ (O) denote the vector space of

all partial intertwiners between π0 and π . Then Fπ is a bimodule over A0, and Hπ

is a left module. Moreover, due to Haag duality,Fπ has anA0 valued scalar product,

〈F, G〉 := F∗G, (1.28)

andHπ is equal to the completion of the tensor productFπ ⊗A0 Hπ0 , equipped with
the scalar product

〈F ⊗ Φ, G ⊗ Ψ 〉 = 〈Φ, 〈F, G〉Ψ 〉. (1.29)

Also the tensor product of two DHR sectors, Fπ1 ⊗A0 Fπ2 carries an A0 valued
scalar product

〈F1 ⊗ F2, G1 ⊗ G2〉 := F∗
2 π2(F∗

1 G1)G2, (1.30)
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and a new Hilbert space representation π1 × π2 is obtained by equipping the left
module Fπ1 ⊗A0 Fπ2 ⊗A0 Hπ0 with the scalar product

〈F1 ⊗ F2 ⊗ Φ, G1 ⊗ G2 ⊗ Ψ 〉 = 〈Φ, 〈F1 ⊗ F2, G1 ⊗ G2〉Ψ 〉. (1.31)

Intertwiners between DHR representations π and π ′, i.e. operators T : Hπ →
Hπ ′ such that

T π(A) = π ′(A)T ∀A ∈ A0, (1.32)

induce homomorphisms between the corresponding bimodules (denoted by the same
symbol)

T : Fπ → Fπ ′, T : F �→ T F. (1.33)

The structure we obtain is that of a tensor (or monoidal) C*-category with the
DHR representations as objects and the intertwiners as morphisms where the tensor
product is constructed in terms of the tensor products of the associated bimodules.
This category has the following additional structures:

• It is additive, since direct sums of DHR representations are again DHR
representations.

• It has subobjects, since any subrepresentation is again a DHR representation.

It is not a strict category, since the tensor product of bimodules is not strict. As
usual we ignore this problem in the treatment of higher tensor products by using Mc
Lane’s coherence theorem which implies that different choices of brackets in tensor
products are uniquely related by a natural isomorphism.

We now want to investigate the commutation relations between spacelike sepa-
rated partial interwiners. Let O1,O2 ∈ K with O1 ⊂ O′

2, and let π1, π2 be DHR
representations. We define a right module homomorphism

ε(π1, π2) : Fπ1 ⊗A0 Fπ2 → Fπ2 ⊗A0 Fπ1 (1.34)

by
ε(π1, π2)F1 ⊗ F2 = F2 ⊗ F1 (1.35)

with Fi ∈ Fπi (Oi ), where we used that Fπ = Fπ (O)A0, O ∈ K for all DHR
representations π . ε is called the statistics operator. We first check that it is well
defined. Namely,

∑
i

F1,i ⊗ F2,i · Ai = 0 iff
∑

i j

A∗
i F∗

2,iπ2(F∗
1,i F1, j )F2, j A j = 0, (1.36)

with Fk,i ∈ Fπk (Ok) and Ai ∈ A0. But F∗
k,i Fk, j ∈ A(Ok), hence

F∗
2,i π2(F∗

1,i F1, j )F2, j = F∗
2,i F2, j F∗

1,i F1, j = F∗
1,i F1, j F∗

2,i F2, j = F∗
1,i π1(F∗

2,i F2, j )F1, j .

(1.37)
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We conclude that
∑

i F1,i ⊗ F2,i · Ai = 0 implies
∑

i F2,i ⊗ F1,i · Ai = 0. Moreover,
we see that ε is norm preserving and that the induced operator onHπ1×π2 is unitary.

The definition of ε depends on the choice of the double cones O1 and O2. But
clearly ε does not change if we replace the double cones by smaller ones Õi ⊂ Oi ,
i = 1, 2. We now may deform the pair of spacelike separated double cones in the
followingway:Let (On

1 ,On
2 )n=1,...,2N+1 be a sequence of pairs of spacelike separated

double cones such thatO2n±1
i ⊂ O2n

i , n = 1, . . . N , i = 1, 2. Then ε defined for the
pair (O1

1,O1
2) coincides with ε defined for the pair (O2N+1

1 ,O2N+1
2 ). We conclude

that in d dimensional Minkowski space with d > 2 the statistics operator is unique,
whereas in 2 dimensions there are two choices. The crucial properties of the statistics
operator are summarized in the following theorem:

Theorem 1.4.1 1. ε is a bimodule homomorphism.
2. In d > 2 dimensions we have

ε(π1, π2)ε(π2, π1) = 1. (1.38)

3. Let π1, π2, π3 be DHR representations. Then we have the identity

(ε(π2, π3) ⊗ 1)(1⊗ ε(π1, π3))(ε(π1, π2) ⊗ 1) = (1⊗ ε(π1, π2))(ε(π1, π3) ⊗ 1)(1⊗ ε(π2, π3)).

(1.39)

Proof 1. Let A ∈ A(O) for some O ∈ K. Choose O1,O2 ∈ K such that the three
double cones are pairwise spacelike separated. Let Fi ∈ Fπi (Oi ), i = 1, 2. Then

A · F1 ⊗ F2 = F1 ⊗ F2 · A and A · F2 ⊗ F1 = F2 ⊗ F1 · A, (1.40)

hence

ε(π1, π2)(A · F1 ⊗ F2) = ε(π1, π2)(F1 ⊗ F2 · A) =
F2 ⊗ F1 · A = A · F2 ⊗ F1 = A · ε(π1, π2)(F1 ⊗ F2).

2. This follows from the uniqueness of ε.
3. This relation can be easily checked by application to F1 ⊗ F2 ⊗ F3 with Fi ∈

Fπi (Oi ) with pairwise spacelike separated double cones Oi , i = 1, 2, 3. �

The statistics operators with the properties listed above equip the tensor category
with a braiding or even a symmetry in d > 2. Physically it means that we can derive
the commutation relations of fields and don’t have to rely on an a priori choice.

An important question is whether the category is rigid, i.e. whether every π has
a conjugate π , unique up to equivalence. A DHR representation π is conjugate to π

if there is an isometric intertwiner R such that

π × π(A)R = Rπ0(A) ∀A ∈ A0. (1.41)
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If π describes states of a particle we expect that its conjugate describes states of the
corresponding antiparticle. Actually, in case the mass spectrum in π has an isolated
eigenvalue, the existence of π could be proven [26, 52].

Theorem 1.4.2 Let π be a translation covariant irreducible DHR representation
of A0 which satisfies the spectrum condition and whose mass spectrum contains an
isolated eigenvalue. Then there exists a conjugate representation, which is irreducible
and translation covariant and has the same mass spectrum as π .

Actually, the theorem derived in [26, 52] is much stronger. In particular one does
not need to know in advance that the representation π satisfies the DHR criterion.
Instead one derives the existence of a vacuum representation π0 such that π satisfies
a weakened form of the DHR criterion where double cones have to be replaced by
so-called spacelike cones. These are sets of the form

S = x +
⋃
λ>0

λO (1.42)

with a double cone O whose closure is spacelike to the origin. If π0 satisfies Haag
duality for spacelike cones, one can redo the DHR analysis and one can directly
construct the conjugate representation. There is, however, an important difference
in the analysis of the statistics. Namely, due to the different localization one finds
symmetry only in dimension d > 3. This allows the existence of particles with braid
group statistics (plektons, anyons) in 3 dimensions.

We now restrict ourselves toDHR representationsπ with unitary partial intertwin-
ers V ∈ Fπ (O) for all O ∈ K, and we use the fact that the vacuum representation
satisfies the conditions of Borchers theorem. Hence products, finite direct sums and
subrepresentations also have unitary partial intertwiners. It is an interesting question
how far the analysis of superselection sectors can be carried through for the general
case. For progress in this direction see e.g. [86].

Let V ∈ Fπ (O) be unitary. Then one can replace π by a unitarily equivalent
representation ρ on the vacuum Hilbert space Hπ0 by

ρ(A) = V ∗π(A)V . (1.43)

ρ is actually an endomorphism of A0 by Haag duality, and it is localized inO in the
sense that it acts trivially on all algebras A(O1) with K � O1 ⊂ O′. Moreover, by
the assumed existence of unitary elements in the partial intertwiner spaces Fπ (O1)

for all O1 ∈ K one finds endomorphisms ρ1 localized in O1 which are equivalent
as representations. But, again by Haag duality, the unitary operator in Hπ0 which
implements the equivalence is an element of A(O2) forK � O2 ⊃ O∪O1, hence ρ

and ρ1 are conjugate by inner automorphisms of A0. Products of representations πi

now correspond to compositions of endomorphisms ρi in opposite order, π1 ×π2 �
ρ2 ◦ ρ1.

The partial intertwiners F ∈ Fρ(O) are identified with elements (ρ, F) of the
so-called field bundle where F ∈ B(Hπ0)) with ρ(A)F = F A for A ∈ A(O′). If
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U ∈ A0 such that AdU ◦ ρ is localized in O, then ρ(A)U∗ = U∗ A for A ∈ A(O′),
hence U F ∈ A(O′)′ = A(O) and F ∈ A0. The tensor product of the bimodules Fρi

is the field bundle product of [42],

(ρ1, F1) ⊗ (ρ2, F2) = (ρ2ρ1, ρ2(F1)F2). (1.44)

Homomorphisms of bimodules are now given by operators T ∈ B(Hπ0) which
satisfy the intertwiner relation

σ(A)T = Tρ(A), A ∈ A0, (1.45)

and where T ∈ A(O) if σ and ρ are localized in O. The statistics operator, in
particular, can now be expressed in terms of endomorphisms and unitaries which
move the localization regions of endomorphisms into spacelike separated regions.

Namely, let (ρi , Fi ) ∈ Fρi (Oi ), i = 1, 2 with spacelike separated double cone
O1,O2. Choose unitaries Ui ∈ A0 such that ρ′

i := Ad ◦ ρi is localized in Oi . Then
F ′

i := Ui Fi ∈ A(Oi ) and in (1.44) we obtain for the second entry on the right hand
side

ρ2(F1)F2 = ρ2(U
∗
1 F ′

1)U
∗
2 F ′

2 = ρ2(U
∗
1 )U∗

2 ρ′
2(F ′

1)F ′
2 = ρ2(U

∗
1 )U∗

2 F ′
1F ′

2 . (1.46)

Inserting this into the formula for the definition of the statistics operator we obtain

ε(ρ1, ρ2) = ρ1(U
∗
2 )U∗

1 U2ρ(U1). (1.47)

By passing from the representations to the endomorphisms we get a new category
where the objects are the DHR endomorphisms and the arrows are intertwiners
between these endomorphisms. This category is equivalent as a braided (and in d > 2
symmetric) tensor C*-category to the previous one (after adding the requirement of
the existence of unitary partial intertwiners). In contrast to the previous one it is
small (the objects form a set) and strict (the tensor product is now the composition
of endomorphisms and hence associative).

Let us return to the question of rigidity (the existence and uniqueness of con-
jugates). This question is closely related to the classification of statistics. In order
to characterize conjugates ρ of an DHR endomorphism ρ up to equivalence one
requires in addition to the existence of an isometric intertwiner R from the vacuum
id to the representation ρρ the existence of an isometry R from id to ρρ (this is
automatically fulfilled by setting R = ε(ρ, ρ)R) and the equations

R
∗
ρ(R) = R∗ρ(R) = λ1, λ �= 0. (1.48)

(In category theory, it is common to normalize the intertwiners such that λ = 1. This,
however, is in general not compatible with the required isometry.) We now compute
λ in terms of the statistics operators. We find

R
∗
ρ(R) = R∗ε(ρ, ρ)∗ρ(R)ε(id, ρ) = R∗ε(ρ, ρ)∗ε(ρρ, ρ)R = R∗ρ(ε(ρ, ρ))R,

(1.49)
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where we used ε(id, ρ) = 1, ρ(R)ε(id, ρ) = ε(ρρ, ρ)R and ε(ρρ, ρ) = ε(ρ, ρ)

ρ(ε(ρ, ρ)). The completely positive map

φ : A0 → A0, φ(A) = R∗ρ(A)R

is a left inverse of ρ. In the case of a symmetry, it can be used for analysing the
representation of the permutation group Sn generated by the operators ρk(ε(ρ, ρ)),
k = 0, . . . , n − 1 in terms of the statistics parameter λ = φ(ε(ρ, ρ)). One finds
that, by positivity, the allowed values of λ are λ ∈ {± 1

d |d ∈ N}. The natural num-
ber d is called the statistical dimension within the DHR theory. As discovered by
Longo [80], it coincides with the square root of the Jones index [72] of the inclusion
ρ(A(O)) ⊂ ρ(A(O′))′ which characterizes the degree of violation of Haag dual-
ity in the representation ρ (independently of the choice of O ∈ K). This relation
remains valid also in the case where the symmetry has to be replaced by braiding.
The statistical dimension coincides with the general notion of dimension of objects
in symmetric tensor categories.

In case of a braiding, as it is the generic situation in 2 dimensions, one can
approach a similar classification of the representation of the braid group Bn . This
was successful under additional conditions on the spectrum of the statistics operators
ε(ρ, ρ). If e.g. it contains only twopoints as in the symmetric case, the representations
can be classified in analogy to the representations of the symmetric group [58].

In the symmetric case, the DHR endomorphisms with finite statistical dimension
form a rigid symmetric tensor C*-category. It was proven by Doplicher and Roberts
that such a category is equivalent to a category of representations of a compact group
G with a distinguished element k of order 2, where the representation spaces are
graded by the eigenvalues of k and where the symmetry σ on the tensor product of
representations is chosen such that for eigenvectors v, w

σ v ⊗ w = ±w ⊗ v. (1.50)

Here the minus sign appears only when both vectors have eigenvalue -1. Both, G and
k are uniquely determined. The authors then exploit this equivalence and construct
a net of von Neumann algebras F on some Hilbert space H with the following
properties:

• F satisfies the condition of isotony.
• The group G (the gauge group) acts by automorphisms g �→ αg such that

αg(F(O)) = F(O) for all O.
• If O1 is spacelike to O2 and Fi ∈ F(Oi ) with αk(Fi ) = +Fi (bosonic) or −Fi

(fermionic), then F1F2 = ±F2F1, where the minus sign holds if both factors are
fermionic.

• There is an action of the covering of the connected component of the Poincaré
group L �→ αL by automorphisms of F, such that

αL(F(O)) = F(LO) and αLαg = αgαL ∀g ∈ G. (1.51)
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• The subalgebras of fixed points under the gauge group,

A(O) = {A ∈ F(O)|αg(A) = A ∀g ∈ G}, (1.52)

form a net, which is equivalent to the original Haag-Kastler net and where the
Poincaré symmetry of A derives from the action L �→ αL on F.

• Each irreducible DHR representation with finite statistics is equivalent to a sub-
representation of A on H.

• The net F acts irreducibly on H in the following strong sense: Let O be a double
cone. Then the only bounded operators which commute with F(O) and A(M) are
the multiples of the identity.

For more details see the original papers [45, 46] and for a nice review [68].
The analysis described above concerns the sector structure on Minkowski space.

In conformally invariant theories it is often useful to replace Minkowski space by
its conformal completion. In such a spacetime the partially ordered set of double
cones is no longer directed which leads to a modification of the DHR theory. More
generally, in globally hyperbolic spacetimes, new phenomena might occur due to
topological obstructions. See [21] and references therein for more information.

1.5 Structure of Local Algebras

The Haag-Kastler axioms, together with the existence of a vacuum representation,
yield already quite a number of informations on the structure of local algebras. It
was first observed on the example of the free scalar field that the local algebras are
factors of type III [5, 6]. At that time, type III algebras were not well understood and
were considered to be pathological. It was observed that the type III property is due
to the sharp localization within a spacetime region, and Borchers conjectured that
there exist intermediate type I factors between local algebras associated to regions
O1,O2 withO1 ⊂ O2, a property which later was named the split property. Actually,
Buchholz was able to prove this conjecture for the free scalar field [22].

A crucial progress in the structural analysis came with the advent of the Tomita-
Takesaki theory. Namely, given a von Neumann algebra N with a cyclic and separat-
ing vector ξ , a situation present for local algebras due to the Reeh-Schlieder theorem,
one can define an antilinear operator S with domain Nξ by

S Aξ = A∗ξ, A ∈ N . (1.53)

S is in general an unbounded operator. It is closable, and we denote the closure with
the same symbol. The big surprise is that its polar decomposition

S = JΔ1/2, Δ = S∗S (the modular operator) (1.54)
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has the following remarkable properties:

• J is an antiunitary involution (the modular involution) , and JΔ = Δ−1 J .
• J N J = N ′.
• The unitaries Δi t implement automorphisms of N (the modular automorphisms).
• The state induced by ξ satisfies the KMS condition with respect to the time evo-
lution given by the modular automorphisms, with inverse temperature −1.

An immediate question is whether one can determine the modular structure for local
algebras and their cyclic and separating vectors, in particular the vacuum, andwhether
these operations have a physical interpretation.

The first breakthrough was obtained by Bisognano and Wichmann [11]. They
showed that for a genericHaag-Kastler netwhich is generated byWightmanfields in a
specificway the problemcould be solved for the algebra associated to thewedgeW =
{x ∈ M||x0| < x1} and the vacuum. They proved that the modular automorphisms
coincide with Lorentz boosts in the x1-direction (hence the vacuum looks like a
thermal state for a uniformly accelerated observer, an observation which was made
independently at about the same timebyUnruh [90] as an analog toHawking radiation
of black holes, see [34] for a discussion of the physical interpretation), and they
showed that the modular involution coincides with the P1CT -transformation where
parity P is replaced by reflection P1 of the x1-coordinate only. As a consequence,
Haag duality holds for wedges, since P1T W = W ′, a property called essential Haag
duality, a concept introduced by Roberts.

There were also a few other cases where the modular structures could be uncov-
ered, but for the generic case not much is known. There is, however, a very remark-
able theorem of Borchers [13, 51] which can be seen as an abstract version of the
Bisognano-Wichmann-Theorem. Namely, let M be a von Neumann algebras with
a cyclic and separating vector Ω together with a strongly continuous 1-parameter
unitary group t �→ U (t) with the properties:

• The generator of U is positive.
• U (t)Ω = Ω .
• For t > 0, AdU (t) maps M into itself.

Then, for the modular operatorΔ and the modular involution J associated to the pair
(N ,Ω), the following relations hold:

Δi tU (s)Δ−i t = U (e−2π t s), (1.55)

JU (s)J = U (−s). (1.56)

These are the relations found by Bisognano andWichmann for the wedge algebra on
the vacuum where U describes the future directed lightlike translations within the
wedge.

There is also a partial converse of Borchers’ Theorem found byWiesbrock [7, 93].
Namely, let N , M be von Neumann algebras acting on the same Hilbert space with
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a joint cyclic and separating vector Ω such that N ⊂ M and that the modular
automorphisms associated to M map (for t > 0) the algebra N into itself,

AdΔi t
M (N ) ⊂ N , t > 0. (1.57)

(This was termed half sided modular inclusion.) Then there exists a uniquely deter-
mined unitary 1-parameter group a �→ U (a)with a positive generator which satisfies
the relations above, such that

AdU (1)(N ) = M. (1.58)

It was shown by Borchers, Wiesbrock et al. that by using these theorems one can
construct covariant Haag-Kastler nets from a finite family of half sided modular
inclusions where the necessary number depends on the dimension of spacetime.
Unfortunately, up to now, explicit examples of half sided modular inclusions have
been found only within Haag-Kastler nets, so this method has not yet led to new
examples of AQFT. See [14] for a very detailed overview which also contains many
more references. See also [35] for an attempt to interpret themodular automorphisms
as a state dependent intrinsic time evolution with applications to quantum gravity.

In spite of the fact that an explicit determination of the action of modular auto-
morphisms on the local algebras was possible only in special cases, some general
features could be established which finally led to the determination of the local von
Neumann algebras up to isomorphy under plausible conditions. To explain this we
first review the classification of type III algebras by Connes. Namely, Connes showed
that the intersection of the spectra of all modular operators of a factor of type III with
respect to its cyclic and separating vectors is one of the following possibilities:

• {0, 1} (type III0),
• {0, λn, n ∈ Z} for some 0 < λ < 1 (type IIIλ),
• R+ (type III1).

One finds that in all known examples the algebras A(O) are factors of type III1.
Moreover, under plausible assumptions, the type III1 property is generic for theo-
ries generated by Wightman fields with a well behaved short distance scaling limit
[53]. Again, this originally looked, from the mathematics perspective, as the least
understood possibility. It soon turned out, however, that these factors have very nice
properties. First of all, Haagerup [66] could show that there is up to isomorphy only
one hyperfinite factor of type III1, where hyperfinite means that the algebra is gener-
ated by an increasing sequence of full matrix algebras. It is exactly the factor already
found for local algebras of free field theories. Hyperfiniteness of the local algebras is
implied by the split propertymentioned in the introduction. The split property, finally,
can be derived from the so-called nuclearity condition [27, 30]. This condition may
be understood as the condition that the partition function in a finite spatial volume
is finite. Technically, it says that for each double cone O and each finite β > 0 the
map

TO,β : A(O) → H, A �→ e−βH AΩ (1.59)
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is nuclear. Here the algebra is represented on the vacuum Hilbert space H, H is the
Hamiltonian (the generator of time translations in a given Lorentz frame) and Ω is
the unit vector inducing the vacuum state. A linear map f between Banach spaces
X, Y is nuclear if it can be written in the form

f (x) =
∑

yn〈ln, x〉 (1.60)

with yn ∈ Y , ln ∈ X∗, the dual of X , and
∑

n ||yn|| · ||ln|| < ∞. The infimum ν( f )

over these sums for all such representations of f is called the nuclearity index. If
ν(TO,β) behaves in the way expected from a partition function,

ν(TO,β) < e(β0/β)n
, (1.61)

for some β0 > 0 (depending on O) and some n ∈ N (this was shown to be true for
the free scalar field), then one finds that the split property holds and that the theory
has KMS states for all β > 0 [28]. On the other hand, there are generalized free
fields which violate the nuclearity condition as well as the split property.

Besides implying hyperfiniteness, the split property has many other nice conse-
quences, which may be summarized in the universal localizing map [44]. Namely,
let

Λ = (A(O1) ⊂ A(O2)) (1.62)

be a split inclusion. Then there is a unit vector ΩΛ ∈ H which induces the product
state

ωΛ(AB ′) = ω0(A)ω0(B ′), A ∈ A(O1), B ′ ∈ A(O′
2). (1.63)

One then defines a unitary U : H → H ⊗ H by

U AB ′ΩΛ = AΩ ⊗ B ′Ω. (1.64)

The universal localizing map ΦΛ now maps B(H) into the algebra A(O2),

ΦΛ(A) = U∗(A ⊗ 1)U, (1.65)

in such a way that it acts trivially on A(O1). We conclude that all operators on the
Hilbert space are mapped by this procedure into the larger of the two local algebras.
In particular, global charges and momentum operators can be localized in such a way
that not only their action on the smaller algebra is preserved but also their spectrum.
This is quite a surprise, since an integral over a charge density with a suitable test
function would typically have a different spectrum than the global charge operator.

The split property allows to decouple the observables of the smaller region com-
pletely from the observables in the spacelike complement of the larger region, in the
sense that normal states2 exist (the product states) for which all correlations between

2states induced by density matrices.
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these observables vanish. On the contrary, the fact that the local algebras are of
type III implies that normal states always are correlated. They are even necessarily
entangled, i.e. they cannot be uniformly approximated by convex combinations of
product states. This mathematical fact is e.g. responsible for the Hawking effect; in
any Hadamard state the algebra of observables outside the horizon is of type III and
hence the state must be entangled with observables behind the horizon. (See [54] for
a field theoretical derivation of the Hawking effect and, as an alternative, the recently
postulated fire walls at the horizon which should deform the algebra into the type I
case [3].)

Actually, far from being pathological, the type III1-property of local algebras
has many nice aspects. In particular, one can move by the adjoint action of unitary
elements through the state space and finds almost transitivity, in the sense that each
orbit is norm dense in the space of normal states. This is exploited in the Buchholz-
Roberts analysis of superselection sectors for QED [32] and also in the discussion
of transition probabilities in [29]. See also [94] and references therein for further
information.

1.6 Conclusions

Algebraic Quantum Field Theory is an approach to quantum field theory which is in
its aims essentially equivalent to other approaches, as e.g. the path integral approach
or an approach based on canonical quantization of classical field theory. It offers some
conceptual advantages compared with other approaches, in particular the separate
discussion of observables and stateswhich allows to incorporate the locality principle
into the theory. Moreover, it is fully rigorous. In its formulation with C*- and von
Neumann algebras the rich mathematical structure can be exploited and leads to an
understanding of particle statistics and global gauge symmetries.Moreover, apparent
contradictions between nonrelativistic quantum mechanics and relativistic quantum
field theory find their natural explanation in the different structures of the occuring
algebras of observables. The operator algebraic formulation is, on the other hand,
rather rigid, which makes it difficult to deform a given model. Nevertheless, first
examples have been obtained which satisfy a weakened form of the axioms. It is,
however, also possible to relax the conditions on the operator algebras in order to
make contact with the way QFT is treated in other approaches. The concepts from
AQFT have turned out to be especially fruitful for the perturbative construction of
interacting quantum field theories on curved spacetimes, a problem which could not
been solved in other approaches.
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Chapter 2
Perturbative Construction of Models
of Algebraic Quantum Field Theory

Klaus Fredenhagen and Katarzyna Rejzner

Abstract The construction of models of algebraic quantum field theory by renor-
malized perturbation theory is reviewed.

2.1 Introduction

The axiomatic framework ofAQFTallows for a qualitative description of a large class
of phenomena occurring in particle physics and some parts of solid state physics. It
does not, however, yield quantitative predictions, and there is a widespread impres-
sion that one has to abandon the formalism ofAQFT if onewants tomake real contact
with experiments. Actually, as explained in Chap.1, up to now no single model of
an interacting AQFT in 4d Minkowski space has been constructed.

But what are the alternatives? Standard textbooks on QFT either start from canon-
ical quantization of free field theory on Fock space and try to construct the interacting
theory in the interaction picture, or they use the path integral formalism. The canon-
ical approach ends up in the Gell-Mann Low formula for the vacuum expectation
values of time ordered products of fields,

ω0(T ϕ(x1) . . . ϕ(xn)) = 〈Ω, T ϕ0(x1) . . . ϕ0(xn)e
i
�

∫ LI (x)d4xΩ〉
〈Ω, T e

i
�

∫ LI (x)d4xΩ〉
, (2.1)

where ϕ0 is the free field treated as an operator valued distribution on the Fock space,
LI is the interaction density treated as aWick polynomial of ϕ0 andΩ is the vacuum
vector of the free theory. The time ordering symbol T means that the products have
to be performed after ordering of the factors according to their time arguments.
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The path integral approach reinterprets the Gell-Mann Low formula as an integral
over all classical field configurations φ

ω0(T ϕ(x1) · · ·ϕ(xn)) = Z−1
∫

φ(x1) · · ·φ(xn)e
i
�

∫ L(x)d4x Dφ (2.2)

where now L is the full classical Lagrangian, Z is a normalization factor, and Dφ is
thought of as the Lebesgue integral over field space.

Both versions are only heuristic, and it required the hard and ingenious work of
several generations of physicists to turn these formal expressions into unambiguous
computations. The state of the art is that one can create a formal power series in �

where every term iswell defined, up to some remaining infrared problems originating
from the integral over Minkowski space in the exponent. The great success of QFT
relies on the fact that already the first few terms of this series yield a good and often
even excellent agreement with experimental data.

The path integral approach has the advantage that it is formally similar to probabil-
ity theory. Actually, by passing to imaginary time (Wick rotation), one can interpret
the vacuum expectation values of time ordered products of fields as correlation func-
tions of a probability distribution (euclidean QFT). In particular, counter-intuitive
properties of quantum physics as e.g., entanglement do not occur. Moreover, the
momentumspace integrals in the evaluation of Feynmandiagrams have better conver-
gence properties. Finally, due to the Osterwalder-Schrader theorem , a Wick rotation
back to real time is possible under very general conditions.

The disadvantage of the path integral approach is that the noncommutative product
of operators, which is crucial for the structure of quantum physics, appears only
indirectly in terms of different boundary values of analytic functions. In the canonical
approach, the operator product is given from the beginning, but there the definition
of the time ordered product is problematic. First of all, it is not well defined as a
product of operators, since, by the existence of a deterministic time evolution, fields
at a given time can be expressed in terms of fields at an earlier time, and thus the time
ordering prescription is ambiguous. One may instead define time ordered products
T A(t1) · · · A(tn) of an operator valued function of time t �→ A(t) as a symmetric
operator valued function of n time variables such that

T A(t1) · · · A(tn) = A(t1) · · · A(tn) if t1 ≥ · · · ≥ tn . (2.3)

This, however, does not work since the quantum fields are distributions, and the
time ordering prescription would amount to multiplying them with a discontinuous
function.

But there is a way out, as first observed by Stückelberg, further elaborated by
Bogoliubov and collaborators and finally worked out by Epstein and Glaser (causal
perturbation theory). Namely, one may define the time ordered product of n fields as
an operator valued distribution which is already known for non-coinciding points.
Due to the UV divergences of QFT, the extension to coinciding points is ambiguous,
but the crucial observation is that this ambiguity is the same ambiguity which occurs
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in the removal of infinities in approaches where the theory is regularized by the
introduction of a momentum cutoff, and where the theory without cutoff has to be
fixed by renormalization conditions.

Originally, the insertion of a test function g into the interactionLagrangian, instead
of integrating it over all spacetime, was considered to be an intermediate step, and
in the last step one aimed at the limit where g tends to 1 (adiabatic limit). In this
limit one then finds vacuum expectation values of operator products of time ordered
products of interacting fields, and using the Wightman reconstruction theorem , one
obtains interacting fields as operator valued distributions on some “Hilbert space”,
of course only in the sense of formal power series. But as first observed in [32] and
rediscovered in [8] the algebra of observables associated to some bounded region can
be already constructed if one chooses a test function g which is equal to 1 on some
slightly larger region. Actually, the full Haag-Kastler net of the interacting theory can
be obtained in this way. Thus causal perturbation theory provides a direct way for a
construction of the algebra of observables. Hence by replacing the condition that the
local algebras have to be unital C*-algebras by the condition that they are isomorphic
to unital *-algebras of formal power series of operators on a dense invariant subspace
of some Hilbert space, one obtains a huge class of models, in particular the models
used in elementary particle physics.

On this level, structural properties of the local net can be analyzed, but the powerful
structural results on C*- and von Neumann algebras are not available. Nevertheless,
one can derive interesting results, as e.g., the validity of the time-slice axiom [11],
the existence of operator expansions [27] and an algebraic version of the Callan-
Symanzik equation [9].

In order to reach numerical predictions, one needs in the next step a construction
of states. States are here defined as linear maps from the algebra to the formal power
series over C, and the positivity condition on states now means that the expectation
value of A∗A is the absolute square of another power series. The construction of states
can be done via the adiabatic limit as described above; this is theway the vacuum state
is constructed in [18]. As observed by Steinmann [43], this method does not work
for the construction of KMS states. The reason is that the analog of the Gell-Mann
Low formula does not hold at nonzero temperature, due to the different asymptotic
time behavior of free and interacting systems at nonzero temperature. But here a
structural result helps: namely, the time-slice axiom allows to treat only the theory
within a short time interval, and the asymptotic behavior in time does not matter
for the existence of states. What matters is the decay of correlations in spacelike
directions which is exponentially fast for massive theories.

Up to now we considered the so-called on shell formalism , due to the fact that we
constructed the operators on Fock space, thereby imposing the validity of the Klein
Gordon equation for the free field. It turned out, however, to bemore useful to replace
Fock space operators by functionals of classical field configurations which are not
restricted to thosewhich satisfy the field equation.On the space of functionals one can
then introduce several operations: the pointwise (classical) product, the involution
by complex conjugation, the Peierls bracket (as a covariant version of a Poisson
bracket on the space of functionals), the non-commutative, associative �-product in
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the sense of deformation quantization and the time ordered product. It is the latter
which is relevant for inducing the interaction and which requires renormalization.
The other operations can be directly defined. This is trivial for the pointwise product
and for the involution. The Peierls bracket is obtained by considering the linearized
Euler-Lagrange operator, which e.g., for the ϕ4-theory looks like

E ′(ϕ) = �+ m2 + λ

2
ϕ2 (2.4)

where the last term acts as a multiplication operator.We consider only theories where
the linearized Euler-Lagrange operator is normally hyperbolic and hence has unique
retarded and advanced propagators ΔR/A(ϕ). The Peierls bracket is then defined by

{F, G}(ϕ) =
〈
δF

δϕ
(ϕ),Δ(ϕ)

δG

δϕ
(ϕ)

〉
(2.5)

where Δ = ΔR −ΔA and δ
δϕ

is the functional derivative (defined as the directional
derivative). In free theories, E ′ and then also the propagators do not depend on ϕ.
One then can define the �-product (in the sense of formal power series in �) by

(F � G)(ϕ) = e
i�
2

〈
δ
δϕ

,Δ δ
δϕ′
〉
F(ϕ)G(ϕ′)|ϕ′=ϕ. (2.6)

The time-ordered product is defined by a similar formula

(F ·T G) = e
�

〈
δ
δϕ

,ΔD δ
δϕ′
〉
F(ϕ)G(ϕ′)|ϕ′=ϕ (2.7)

with the Dirac propagator ΔD = 1
2 (Δ

R +ΔA).
Note that there is a crucial difference between the time ordered product and the

other products. Namely, the ideal generated by the field equation with respect to
the pointwise product is also an ideal with respect to the Poisson bracket and the
�-product, but not with respect to the time ordered product. This is actually a nec-
essary condition which allows to use the time ordered product for introducing an
interaction. Let V be the interaction. We then define the interacting observables by

RV (F) = (eV
T )�−1 � (eV

T ·T F). (2.8)

Here eT means the exponential series where powers are computed via the time
ordered product. For an evaluation functional Φx (ϕ) = ϕ(x), the corresponding
interacting field x → RV (Φx ) satisfies the equation

E ′RV (Φx ) = E ′Φx + RV

(
δV

δϕ(x)

)
(2.9)
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which may be interpreted as the field equation with interaction V , when evaluated
on some ϕ which satisfies the free field equation.

The rough description of the formalism has to be made precise in the following
sense: One has to specify the functionals which are allowed, and one has to check
whether this class contains the relevant ones. As it stands we need functionals whose
functional derivatives are test functions in order that all operations are well defined.
But we will see that by changing the products to equivalent ones, which corresponds
to Wick ordering in the Fock space framework one can extend the Peierls bracket
and the �-product to a rather large class of functionals, which contains in particular
the local functionals that appear as terms in the Lagrangian, and is stable under these
operations. The definition of time ordered products is more involved and there are
different possibilities, corresponding to the choice of renormalization conditions.

The plan of the paper is as follows: we will first outline the functional analytic
tools which are needed for the operations. We then define the Peierls bracket and
the �-product on a class of functionals called microcausal. Thereafter we come to
the problem to define the time ordered products. Here we first develop the general
formalism and show that it leads to a construction of local nets. We review some
structural properties of these nets, in particular their behavior under renormalization
group transformations. Finally, we outline a possible construction of states.

2.2 Functional Derivatives, Wave Front Sets, and All That

Our approach to quantum field theory is based, in this respect similar to the path
integral approach, on functionals of classical field configurations. But there, at least in
its euclidean version, themeasure theoretic aspects of the space of field configurations
are of central importance; in our case, due to the frequent use of functional derivatives,
the properties of the space of field configurations as a differentialmanifold are crucial.

For definiteness we concentrate on the case of a scalar field and fix an oriented,
time-oriented globally hyperbolic spacetime M . There we consider the space of real
valued smooth functions as the space of field configurations,

E = C∞(M, R). (2.10)

We model it as a differentiable manifold over the space of compactly supported
smooth functions

D = C∞c (M, R) (2.11)

where charts are defined as maps

ϕ +D→ D, ϕ +−→ϕ �→ −→ϕ ,with ϕ ∈ E . (2.12)

Clearly, E has the structure of an affine manifold. A similar affine structure can be
introduced also for other fields, as e.g., gauge theories or gravity.
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We will model observables as functionals on E and we allow only functionals
which depend on the field configuration inside some compact region. This includes
in particular the polynomial functionals

F(ϕ) =
n∑

k=1

∫
ϕ(x1) · · ·ϕ(xk) fk(x1, . . . , xk) (2.13)

with symmetrical distributional densities fk with compact support. More generally,
we consider functionals, for which all functional derivatives F (n) exist and are con-
tinuous. We recall after [24] (see [37] for a review) that a functional derivative of a
functional is defined as

〈F (1)(ϕ),−→ϕ 〉 := d

dλ
F(ϕ + λ−→ϕ )

∣∣
λ=0 (2.14)

and a functional is differentiable if the derivative exists for allϕ ∈ E . It is continuously
differentiable if the map E ×D → C, (ϕ,−→ϕ ) �→ 〈F (1)(ϕ),−→ϕ 〉 is continuous. If E
is taken with its natural Fréchet topology, this implies that F (1)(ϕ) is a compactly
supported distributional density. Higher derivatives are obtained by iterating this
definition, i.e.

F (n)(ϕ)(−→ϕ 1, . . . ,
−→ϕ n) := d

dλ
F (n−1)(ϕ + λ−→ϕ n)(

−→ϕ 1, . . . ,
−→ϕ n−1)

∣∣
λ=0, (2.15)

andwe find that the F (n)(ϕ)’s are symmetric compactly supported distributional den-
sities with support contained in K n , for some compact set K ⊂ M . There remains,
however, the problem that the propagators have singularities, and therefore the con-
tractions with the distributional densities occurring as functional derivatives are not
always well defined. The restriction to functionals whose functional derivatives are
smooth densities, on the other side, would exclude almost all local functionals, i.e.,
functionals of the form

F(ϕ) =
∫

f ( jx (ϕ)), (2.16)

where jx (ϕ) = (x, ϕ(x), ∂ϕ(x), . . .) is the jet prolongation of ϕ and f is a density-
valued function on the jet bundle. For these functionals, the derivatives are supported
on the thin diagonal

Dn = {(x1, . . . , xn) ∈ Mn, x1 = · · · = xn} (2.17)

and thus smooth for n > 1 only when they vanish.
The singularities of distributions can be analyzed using the concept of the wave

front set. On the Minkowski spacetime, this concept arises in the study of the decay
properties of the Fourier transform of the given distribution multiplied by some test
function. A pair of a spacetime point x and a nonzero momentum k is an element of
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the wave front set of a given distribution t if, for any test function f with f (x) �= 0
and some open cone around k, the Fourier transform of f t does not decay fast (i.e.,
faster than any power) inside the cone. The notion of the WF set can be generalized
to an arbitrary smooth manifold M , and it is defined as a subset of T ∗M .

As the first example we will consider the Dirac δ distribution on R. Since
〈 f δ, eik•〉 = f (0), where eik•(x) = eikx , it follows that for any choice of f with
f (x) �= 0 the Fourier transform of f t does not decay fast in any direction and hence
the wave front set of δ is

WF(δ) = {(0, k), k �= 0}. (2.18)

Another important example, also on R, is the distribution f �→ limε↓0
∫ f (x)

x+iε dx .
Note that its Fourier transform is

lim
ε↓0

∫
f (x)

x + iε
eikx dx = −i

∫ ∞

k
f̂ (k′)dk′. (2.19)

and
∫∞

k f̂ (k′)dk′ decays strongly as k →∞, while for k →−∞ we obtain

lim
k→−∞

∫ ∞

k
f̂ (k′)dk′ = 2π f (0). (2.20)

We can now conclude that

WF(lim
ε↓0(x + iε)−1) = {(0, k), k < 0}. (2.21)

For more information on wave front sets see [26] or Chap.4 of [3]. UsingWF sets
we can formulate a sufficient condition for a pointwise product of distributions to be
well defined. Let t and s be distributions on M . The Whitney sum (i.e., pointwise
sum) of their wave front sets is defined by

WF(t)+WF(s) = {(x, k + k′)|(x, k) ∈WF(t), (x, k′) ∈WF(s)} (2.22)

If this set does not intersect the zero section of T ∗M, thenwe can define the pointwise
product ts as

〈ts, f g〉 = 1

(2π)n

∫
t̂ f (k)ŝg(−k)dk, (2.23)

where f, g ∈ D are chosen with sufficiently small support. To see that the integral
above converges, note that if k �= 0, then either t̂ f is fast-decaying in a conical
neighborhood around k or ŝg is fast-decaying in a conical neighborhood around−k,
while the other factor is polynomially bounded.

Beside the criterion for multiplying distributions, WF sets provide also a charac-
terization of the propagation of singularities. Let P be a partial differential operator
and σP its principal symbol. We can interpret σP as a function on the cotangent
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bundle T ∗M , which carries a structure of a symplectic manifold. With the use of
the canonical symplectic form, 1-forms on T ∗M can be canonically identified with
vector fields. Let X P be the vector field (called the Hamiltonian vector field) corre-
sponding to the 1-form dσP . In coordinates it is given by

X P =
n∑

i=1

∂σP

∂k j

∂

∂x j
− ∂σP

∂x j

∂

∂k j
.

Let (x j (t), k j (t)) be a curve that fulfills the system of equations (Hamilton’s equa-
tions):

dx j

dt
= ∂σP

∂k j
,

dk j

dt
= −∂σP

∂x j
.

We call a solution (x j (t), k j (t)) of the above equations an integral curve of X P

and the bicharacteristic flow is defined as the set of all such solutions. Along this
flow dσP

dt = X P (σP ) = 0, so σP is conserved under the bicharacteristic flow. We
are now ready to state the theorem on the propagation of singularities: the wave
front set of a solution u of the equation Pu = f with f smooth is a union of
orbits of the Hamiltonian flow X P on the set of characteristics charP = {(x, k) ∈
T ∗M |σ(P)(x, k) = 0} of P .

For hyperbolic differential operators on globally hyperbolic spacetimes, the char-
acteristics is the light cone, and the principal symbol is the metric on the cotangent
bundle. For such operators the wave front set of solutions is therefore a union of null
geodesics γ together with their cotangent vectors k = g(γ̇ , ·).

2.3 The Peierls Bracket and the �-product

As outlined in the Introduction, we start our construction of a pAQFT model from
the classical theory. To this end, we equip the space of functionals on the configura-
tion space with a Poisson structure provided with the so called Peierls bracket. This
bracket, introduced in [38], is the off-shell extension of the canonical bracket of clas-
sical mechanics, which is defined only on the space ES of solutions to the equations
of motion. To see how this works, we will start in a setting which resembles closely
classical mechanics and then show the relation with the Peierls method on a concrete
example.
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2.3.1 Canonical Formalism and the Approach of Peierls

Let us start with the free scalar field with the field equation

Pϕ = 0, (2.24)

where P = � + m2 is the Klein-Gordon operator . For this equation the retarded
and advanced Green’s functions exist. We also know that for every f ∈ E whose
support is past and future compact, Δ f is a solution to (2.24). Conversely, every
smooth solution of the Klein Gordon equation is of the form Δ f for some f ∈ E
with future and past compact support.

Without loss of generality, the spacetime can be assumed to be of the form M =
R×Σ with Cauchy surfaces {t} ×Σ , t ∈ R. The space of Cauchy data Σ � x �→
(ϕ(t, x), ϕ̇(t, x)) on the surface {t} ×Σ is

C = {(φ,ψ) ∈ E(Σ)× E(Σ)},

where E(Σ)
.= C∞(Σ, R). This space is isomorphic to ES , the space of smooth

solutions to (2.24).
As in classicalmechanics, equations ofmotion can be derived from the least action

principle. Elements of C play the role of generalized coordinates and generalized
velocities, while a smooth trajectory t �→ φ(t), t ∈ R is a function which assigns to
an instant of time t a function φ(t) ∈ E(Σ) such that trajectories φ are in one to one
correspondence with field configurations ϕ : (t, x) → φ(t)(x), i.e., elements of E .

The Lagrangian L associates to every compact region K ⊂ Σ a functional L K

on C, typically given in terms of a Lagrangian density L,

L K (φ,ψ) =
∫

K
L(φ(x),∇φ(x), ψ(x))dσ(x),

and the action is, for every compact K ⊂ Σ and every finite time interval I , a
function on the space of trajectories defined by

SI×K (φ) =
∫

I
L K (φ(t), φ̇(t))dt =

∫
I

(∫
K
L(ϕ(t, x),∇xϕ(t, x), ϕ̇(t, x))dσt (x)

)
dt.

(2.25)

Solutions are configurations for which, for all compact K and I , SI×K is stationary
under variations δφ with support in the interior of I × K . If e.g., L is the Lagrangian
density of the free scalar field, then the least action principle yields (2.24) as the
equation of motion.

Now let F, G be two functions on the space of trajectories which depend only
on the restriction of the trajectory to [t1, t2] × K for some compact K ⊂ Σ and
t1 < t2. Let ES be the space of solutions for an action S, and let rλG : ES → ES+λG

be the map which associates to a solution for S a solution for S+ λG such that both
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solutions coincide for t < t1 (rλG is called the retarded Møller map) . Following the
idea of Peierls, we consider the change of F under the change of the action and set,
for a solution φ ∈ ES ,

DG F(φ) = d

dλ
|λ=0F(rλG(φ)).

Similarly, we introduce the advanced Møller map aλF : ES → ES+λF where the
solutions coincide for t > t2, and set

DF G(φ) = d

dλ
|λ=0G(aλF (φ)).

The Peierls bracket of G and F is now defined by

{G, F}Pei .= DG F − DF G. (2.26)

The advantage of the Peierls bracket is the fact that it is defined covariantly, directly
in the Lagrangian formalism. As it stands, the Peierls bracket of two functionals is
only defined on solutions, and one has to prove that it depends only on the restriction
of the functionals to the space of solutions. In order to show that it satisfies the
Jacobi identity, one has to extend it to a neighborhood of the space of solutions. It is,
however, possible and also convenient to extend it to a Poisson bracket on functions
of arbitrary configurations E (not only of solutions ES). We will now derive another
formula for the Peierls bracket (formula (2.5) from the Introduction), which makes
use of retarded and advanced Green’s functions for normally hyperbolic operators.
Next we will show that, restricted to the solution space, (2.5) is equivalent to the
canonical bracket.

2.3.2 The Generalized Lagrangian Formalism

Before we continue, there is one small modification to the classical Lagrangian
formalism, which we have to perform in order to make the quantization simpler. In
formula (2.25), we have smeared the Lagrangian densityL(x, t)with a characteristic
function of a certain compact region. Such sharp cut-offs would introduce additional
divergences in the quantum theory, which we wish to avoid. Therefore, we replace
the characteristic function by a smooth function that is equal to 1 on a sufficiently
large region. Actually, it is convenient to consider all possible cutoffs and define the
generalized Lagrangian as a map L fromD to the space Floc of local functionals on
E . We require that

L( f + g + h) = L( f + g)− L(g)+ L(g + h),

for f, g, h ∈ D and supp f ∩ supp h = ∅. We also want
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supp (L( f )) ⊆ supp ( f ),

where the support of a smooth functional F ∈ C∞(E, C) is defined as

supp F
.= {x ∈ M |∀ neighborhoods U of x ∃ϕ,ψ ∈ E, supp ψ ⊂ U, (2.27)

such that F(ϕ + ψ) �= F(ϕ)}.

The action is an equivalence class of Lagrangians, where L1 ∼ L2 if

supp (L1 − L2)( f ) ⊂ supp d f. (2.28)

The Euler-Lagrange derivative is a map S′ : E → D′ defined as

〈S′(ϕ), h〉 = 〈L( f )(1)(ϕ), h〉, (2.29)

with f ≡ 1 on supp h. Note that S′ ∈ Γ (T ∗E). The field equation is now the
condition that

S′(ϕ) = 0, (2.30)

which coincides with the condition obtained from the variation of (2.25). We model
observables as multilocal functionals on E (i.e., products of local functionals). The
maps F , G considered in the previous section are examples of such functionals. The
space of multilocal functionals on the space of solutions to (2.30) is given by the
quotient F/F0, where F0 denotes the space of multilocal functionals that vanish
on ES .

The second variational derivative of the action is defined by

〈S′′(ϕ), h1 ⊗ h2〉 .= 〈L(2)( f )(ϕ), h1 ⊗ h2〉,

where f ≡ 1 on supp h1 and supp h2. S′′ defined in such a way is symmetric two
tensor on the affine manifold E (equipped with the smooth structure induced by
τW ) and, for each ϕ, it induces an operator from D to D′. Moreover, since L( f ) is
local, the second derivative has support on the diagonal, so S′′(ϕ) can be evaluated
on smooth functions h1, h2, where only one of them is required to be compactly
supported. This way we obtain an operator (the so called linearized Euler-Lagrange
operator) E ′[S](ϕ) : E → D′.

We want to show now that the original formula of Peierls (2.26) is equivalent
to (2.5), if E ′[S](ϕ) is a normally hyperbolic operator. Let G ∈ Floc be a local
functional. We are interested in the flow (Φλ) on E which deforms solutions of
the original field equation S′(ϕ) = 0 to those of the perturbed equation S′(ϕ) +
λG(1)(ϕ) = 0. Let Φ0(ϕ) = ϕ and

d

dλ

(
S′(Φλ(ϕ))+ G(1)(Φλ(ϕ))

)∣∣∣
λ=0 = 0. (2.31)
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The vector field ϕ �→ X (ϕ) = d
dλ

Φλ(ϕ)|λ=0 satisfies the equation

〈E ′[S](ϕ), X (ϕ)〉 + G(1)(ϕ) = 0. (2.32)

Let ΔR/A
S (ϕ) be the retarded/advanced Green’s function of the normally hyperbolic

operator E ′[S](ϕ) and let ΔS(ϕ) = ΔR
S (ϕ) − ΔA

S (ϕ) be the causal propagator. We
obtain now two distinguished solutions to the Eq. (2.32),

X R/A(ϕ) = 〈ΔR/A
S (ϕ), G(1)(ϕ)〉. (2.33)

Note that X R(ϕ) = (DGΦ)(ϕ), whereΦ is the evaluation functionalΦx (ϕ)
.= ϕ(x).

The difference X = X R − X A defines a vector field X ∈ Γ (TE) and it follows that

{G, F}Pei(ϕ)
.= DG F(ϕ)− DF G(ϕ) = 〈F (1)(ϕ),Δ

R/A
S (ϕ)G(1)(ϕ)〉.

Now we prove the equivalence between (2.5) and the canonical bracket. We fix a
Cauchy surface {t} ×Σ . Note that, given Cauchy data (φ,ψ) ∈ C, we can write the
unique solution ϕ corresponding to these Cauchy data as

ϕ(x) = β(φ,ψ)(x) ≡
∫

Σ

(
ΔS(x; t, y)ψ(y)− ∂

∂t
ΔS(x; t, y)φ(y)

)
dσt (y).

(2.34)
Canonical momenta are obtained as distributional densities by

〈π(φ,ψ), h〉 .= d

dλ
L K (φ,ψ + λh)|λ=0

We assume that for the Lagrangians of interest π is always smooth. The phase space
is then

P = E(Σ)× Ed(Σ), (2.35)

where Ed(Σ) is the space of smooth densities. The tangent space T(φ,ψ)P of P at
some point (φ,ψ) consists of the compactly supported elements ( f, g) ∈ P . The
phase space has the canonical symplectic form

σ(φ,ψ)(( f1, f2), (g1, g2)) =
∫

Σ

( f1g2 − f2g1).

Note that E(Σ) × Ed(Σ) ⊂ E(Σ) × D′(Σ) ∼= T ∗(E(Σ)), so (P, σ ) is indeed
the analog of the phase space in classical mechanics.

For simplicity we consider an action S induced by a Lagrangian L which depends
on φ̇ only through the kinetic term 1

2 φ̇
2, henceπ(y)

.= φ̇(y)dσt (y). Letα : (φ, π) �→
(φ, φ̇) and β̃

.= β ◦α : P → ES . We can now prove the equivalence of the canonical
and the Peierls bracket. Let F, G ∈ F . Using (2.34) we obtain
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{F ◦ β̃, G ◦ β̃}can =
∫
Σ

(〈
δF

δϕ
◦ β̃,

δβ̃

δφ(x)

〉〈
δG

δϕ
◦ β̃,

δβ̃

δπ(x)

〉
−
〈

δF

δϕ
◦ β̃,

δβ̃

δπ(x)

〉〈
δG

δϕ
◦ β̃,

δβ̃

δφ(x)

〉)

=
〈
Θ, F(1) ◦ β̃ ⊗ G(1) ◦ β̃

〉
,

where Θ is given by

Θ(z′, z) =
∫

Σ

(
Δ̇S(z′; t, x)ΔS(z; t, x)− Δ̇S(z; t, x)ΔS(z′; t, x)

)
dσ(x).

From general properties of the causal propagator ΔS (the generalization of (2.34) to
distributional Cauchy data) it follows that the convolution Θ above is equal to ΔS .
Hence, on the solution space ES ,

{F ◦ β̃, G ◦ β̃}can = {F, G}Pei ◦ β̃.

2.3.3 Example: The Poisson Bracket of the ϕ4 Interaction

In this section, following [21], we give another argument for the equivalence of the
Peierls and the canonical bracket on the example of the ϕ4 interaction. Consider the
generalized Lagrangian

L( f )(ϕ) =
∫

M

(
1

2
∇μϕ∇μϕ − m2

2
ϕ2 − λ

4!ϕ
4
)

f dμ,

where dμ is the invariant measure on M , induced by the metric. Then S′(ϕ) =
− ((�+ m2)ϕ + λ

3!ϕ
3
)
and E ′[S](ϕ) is the linear operator

−
(

�+ m2 + λ

2
ϕ2
)

(2.36)

(the last term is to be understood as a multiplication operator). The Peierls bracket is

{Φx , Φy}Pei = ΔS(Φ)(x, y), (2.37)

where Φx , Φy are evaluation functionals on E and x �→ ΔS(ϕ)(x, y) is a solution
(at ϕ) of the linearized equation of motion with the initial conditions

ΔS(ϕ)(y0, x; y0, y) = 0,
∂

∂x0
ΔS(ϕ)(y0, x; y) = δ(x, y). (2.38)

This coincides with the Poisson bracket in the canonical formalism. Namely, let
ϕ ∈ ES , then
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0 =
{
(�+ m2)Φx + λ

3!Φ
3
x , Φy

}
can
= (�+ m2 + λ

2
Φ2

x )
{
Φx , Φy

}
can

. (2.39)

In the first step we used the fact that ϕ is a solution of the equations of motion and
in the second step we used the fact that the canonical bracket is a derivation in both
arguments. We can see from the equation above that the canonical Poisson bracket
satisfies the linearized field equation with the same initial conditions as the Peierls
bracket. The uniqueness of solutions to these linearized equations implies that in fact
{Φx , Φy}can = {Φx , Φy}Pei, on ES . This clearly extends to general functionals since
{F, G}Pei =

〈{Φx , Φy}Pei, F (1) ⊗ G(1)
〉
, and similarly for {., .}can.

2.3.4 Geometrical Structures in Classical Theory

The Peierls bracket, from now on denoted by {., .}S , introduces a symplectic structure
on the space F/F0 of on-shell multilocal functionals on ES . We can find a nice
geometrical interpretation for this space using some basic notions of symplectic
geometry. Let us assume that S is quadratic, so the equations of motion are of the
form S′(ϕ) = Pϕ = 0 for some normally hyperbolic differential operator P . The
space of solutions ES is a vector space and hence an infinite dimensional manifold1

with a tangent space TES = ES × ES and cotangent space T ∗ES = ES × E ′S . If F, G
are multilocal functionals on ES , then their first functional derivatives are smooth, so

F (1)(ϕ), G(1)(ϕ) ∈ E ′S ∩ (D/{u ∈ D|〈u, ϕ〉 = 0,∀ϕ ∈ ES})

for allϕ ∈ ES , i.e.ϕ ∈ kerP . Since P is a normally hyperbolic operator, one can show
(see for example [21] for the proof in a more general setting) that {u ∈ D|〈u, ϕ〉 =
0,∀ϕ ∈ ES} ∼= PD, so functional derivatives of multilocal functionals are one forms
in Γ (ES ×D/PD) ⊂ Γ (T ∗ES).

The causal propagator ΔS induces a Poisson structure on F , which is also well
defined on the quotient F/F0, as F0 is a Poisson ideal with respect to this structure.
We can also useΔS to map one-forms inΓ (ES×D/PD) ⊂ Γ (T ∗ES) to one-vectors
in Γ (ES × ES,sc) ⊂ Γ (TES), where “sc” indicates spacelike-compact support. To
see how it works, note that ΔS induces an operator D → E and kerΔS = PD, so
ΔS is well defined on equivalence classes in D/PD. To show that ΔS is invertible
on this space, it remains to show that it is surjective. We recall here the standard
argument, which can also be found in [21]. Let f be a solution with a spacelike-
compact support,χ ∈ E , andΣ1,Σ2 beCauchy surfaces such thatΣ1∩ J+(Σ2) = ∅.

1There is another natural way to introduce a smooth manifold structure on ES . We define the atlas
where charts are given by maps ϕ+D→ ES,sc, ϕ+−→ϕ �→ ΔS

−→ϕ , with ϕ ∈ ES , where ES,sc is the
space of solutions with compactly supported Cauchy data. We have ΔS : D→ ES,sc and we equip
ES,sc with the final topology with respect to all curves of the form λ �→ ϕ + ΔS(−→ϕ (λ)), where
λ �→ −→ϕ (λ) is a smooth curve in D. This gives ES the structure of an affine manifold in the sense
of convenient calculus [35].
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Assume χ(x) = 0 for x ∈ J−(Σ1) and χ(x) = 1 for x ∈ J+(Σ2). Then Pχ f = 0
outside of the time slice bounded by Σ1 and Σ2 (χ = const. there) which implies
that Pχ f has compact support. Hence,

ΔS Pχ f = ΔR
S Pχ f +ΔA

S P(1− χ) f = f.

We can now assign to a form F (1), the vector 〈ΔS F (1), .〉. On ES,sc we have the
natural symplectic structure σ1:

σ1( f, g) =
∫

Σ

( f ∧ ∗dg − ∗d f ∧ g) =
∫

Σ

( f (∂ng)− (∂n f )g)dvolΣ,

where ∂n is the normal derivative on Σ (∂n f = nμ∂μ f , nμξμ = 0 for ξ ∈ T Σ ,
nμnμ = 1). Obviously, σ1 extends to a constant 2-form on ES . The relation between
the 2-form σ1 and the “bi-vector field”2 ΔS is given by (see for example [46] for a
proof based on the ideas of [12])

σ1(ΔS F (1), ξ) = 〈F (1), ξ 〉,

where ξ ∈ Γ (ES × ES,sc). In this sense we can think of ΔS as the “inverse” of the
symplectic structure σ1. Setting ξ = ΔSG(1) for G ∈ F , we obtain

σ1(ΔS F (1), ΔSG(1)) = 〈F (1), ΔSG(1)〉.

If S is not quadratic, the situation is more complicated, since S′ induces non-
linear equations of motion. It turns out that for many classes of physically interesting
systems solutions of S′(ϕ) = 0 develop singularities after a finite time, despite
starting from smooth Cauchy data. Therefore the space of globally smooth solutions
ES might be very small and it does not necessarily capture all the interesting features
of the theory.Moreover, in general it is not clear if ES can be equippedwith amanifold
structure in the sense of infinite dimensional differential geometry (see for example
[2] for the results on the space of solutions of Einstein’s equations). A more general
structure like a stratified space might be necessary.

For non-linear equations of motion it is therefore more convenient to replace the
space of functionals on the space of solutions with the quotient FS := F/{〈S′, X〉,
X ∈ V}, where V ⊂ Γ (TE) is the space of vector fields that are derivations ofF and
the duality denoted by 〈., .〉 is the contraction of a 1-form S′ ∈ Γ (T ∗E(M)) with a
vector field X . We say that we take the quotient of F by the ideal generated by the
equations of motion. If the equations of motion are linear and normally hyperbolic,
this ideal coincides with F0, so FS is exactly the space of multilocal functionals on
ES . In general, our point of view is more in line with the quantum theory and it avoids

2Since ΔS is a bi-distribution rather than a smooth function, the map ϕ �→ ΔS doesn’t induce an
actual bi-vector field on E , but belongs to a suitable completion of Γ (Λ2TE).
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complications related to characterization of the geometrical structure of ES . It is also
close in spirit to the way one studies varieties in algebraic geometry.

2.3.5 Deformation Quantization

Deformation quantization is a method to construct quantum theories from the clas-
sical ones by deforming the commutative product on the space F of functionals to a
non-commutative product � on F[[�]] (the space of formal power series in �.

F � G =
∞∑

n=0
�

n Bn(F, G), (2.40)

and we require that

B0(F, G) = F · G,

B1(F, G)− B1(G, F) = i�{F, G},

where (F · G)(ϕ) = F(ϕ)G(ϕ) is the pointwise product of functionals, {., .} is the
Peierls bracket and the second condition is a realization of the idea that in the quan-
tum theory one “replaces canonical brackets with commutators”. The existence of
higher order terms is necessary to avoid the Groenewald-van Hove no-go theorem.
This result, established first for finite dimensional phase spaces, states that a Dirac
type quantization prescription is not possible in the strict sense [23, 31]. More con-
cretely (see [45]), consider the Lie algebra h spanned by the canonical coordinate
and momenta functions q1, . . . , q N , p1, . . . , pN and 1, equipped with the canoni-
cal Poisson bracket {., .}can. This is a Lie subalgebra of g .= (Pol(T ∗RN ), {., .}can)
(polynomials on the phase space). The Groenewald-van Hove Theorem states that
there exists no faithful irreducible representation of h by operators on a dense domain
of some Hilbert space which can be extended to a representation of g, so there is no
quantization map Q from g to the space of operators on some Hilbert spaceH, such
that

[Q( f ), Q(g)] = i�Q({ f, g}).

Deformation quantization [4, 5] provides a way out since it weakens the above
condition to

[Q( f ), Q(g)] = Q([ f, g]�) = i�Q({ f, g})+O(�2).

In field theory, as we have seen in the previous section, the space of functions on
the N -dimensional phase space is replaced by F , the space of multilocal functionals
on E , which is now infinite dimensional. The Poisson structure is provided by the
Peierls bracket, definedwith the use of the causal propagatorΔS . In the simplest case,
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when S is quadratic, one can construct the �-product using a Moyal-type formula.
To avoid the functional analytic problems, for the moment we consider only regular
functionals Freg, i.e., those for which F (n)(ϕ) is a smooth compactly supported
section for all n ∈ N, ϕ ∈ E . On Freg[[�]] we can now define

(F � G)(ϕ)
.=
∞∑

n=0

�
n

n! 〈F
(n)(ϕ),

( i
2ΔS
)⊗n

G(n)(ϕ)〉, (2.41)

which can be formally written as e
i�
2

〈
ΔS , δ2

δϕδϕ′
〉
F(ϕ)G(ϕ′)|ϕ′=ϕ .

Let us consider the example of a free scalar field and regular functionals of the
form

F f (ϕ) =
∫
M

f (x)ϕ(x)dμ(x) ≡
∫

f ϕdμ, where f ∈ D.

We can now define W( f )
.= exp(i F f ) and check that

〈(W( f ))(1)(ϕ), h〉 = d

dλ
(W( f )(ϕ + λh)) |λ=0 = d

dλ
ei
∫

f (ϕ+λh)dμ
∣∣
λ=0

=
(

i
∫

f h dμg

)
W( f )(ϕ).

and thus

〈(W( f ))(n)(ϕ), h⊗n〉 =
(

i
∫

f h dμg

)n

W( f )(ϕ).

Inserting this into the �-product formula, we find,

W( f ) � W( f̃ ) =
∞∑

n=0

(
i�

2

)n (−1)n

n!
(∫

ΔS(x, y) f̃ (y) f (x)dμg(x)dμg(y)

)n
W( f + f̃ )

= e− i�
2 ΔS( f, f̃ )W( f + f̃ ), (2.42)

which reproduces the Weyl relations.
Having the interacting theory in mind, we will need to extend the star product

to functionals more singular than the elements of Freg, including, in particular, the
non-linear local functionals. To understand possible obstructions to this extension
we have to analyze the singularity structure ofΔS . Using the theorem of propagation
of singularities (see Sect. 2.2), we find that [39]

WF (ΔS) = {(x, k; x ′,−k′) ∈ Ṫ ∗M2|(x, k) ∼ (x ′, k′)},
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where Ṫ denotes the tangent bundle minus the zero section and (x, k) ∼ (x ′, k′)
means that there exists a lighlike geodesic connecting x and x ′, to which k is co-
tangent and k′ is a parallel transport of k. We observe that the WF set of ΔS is
composed of two parts: one with k ∈ (V+)x and another with k ∈ (V−)x , where
V± is (the dual of) the closed future/past lightcone This observation allows one
to decompose ΔS into two distributions with WF sets corresponding to these two
components. Such a decomposition is a local version of the decomposition according
to positive and negative energies [39]. definition of this space, let us give some
motivation first. Therefore we can split ΔS into

i
2ΔS = Δ+S − H,

where the WF set of Δ+S is

WF (Δ+S ) = {(x, k; x ′,−k′) ∈ Ṫ ∗M2|(x, k) ∼ (x ′, k′), k ∈ (V+)x }, (2.43)

and we also require that ΔS = 2Im(Δ+S ) and that Δ+S is a distributional bisolution
to the field equation and is of positive type (i.e. 〈Δ+S , f̄ ⊗ f 〉 ≥ 0). On Minkowski
space one could choose Δ+S as the Wightman 2-point-function. On general globally
hyperbolic spacetimes such a decomposition always exists but is not unique. If H
and H ′ correspond to two such choices of decomposition, then H − H ′ is a smooth
symmetric bisolution to the field equations.

We can now replace i
2ΔS with Δ+S in (2.41) and the new product, denoted by �H

can be extended fromFreg toFμc defined as the space of functionals with functional
derivatives satisfying

WF (F (n)(ϕ)) ⊂ Ξn, ∀n ∈ N, ∀ϕ ∈ E, (2.44)

where Ξn is an open cone defined as

Ξn
.= T ∗Mn \ {(x1, . . . , xn; k1, . . . , kn)|(k1, . . . , kn) ∈ (V

n
+ ∪ V

n
−)(x1,...,xn)},

(2.45)

where (V±)x is the closed future/past lightcone understood as a conic subset of T ∗x M.
On Freg the two star products � and �H are isomorphic structures and the inter-

twining map is given by

αH
.= e

�

2 〈H, δ2

δϕ2
〉
, (2.46)

so that
F �H G = αH

(
(α−1H F) � (α−1H G)

)
, F, G ∈ Freg. (2.47)

In the language of formal deformation quantization one says that products � and
�H are related by a gauge transformation, so they provide the same deformation
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quantization. In general a gauge transformation between star products is given by
F �→ F +∑

�≥1 �
n Dn( f ), where each Dn is a differential operator. In our case,

Dn = 1
n!
〈
1
2 (H − H ′), δ2

δϕ2

〉n
.

Physically, the transition between � and �H corresponds to normal ordering, so
introducing the �H -product is just an algebraic version of Wick’s theorem. As stated
before, the codomain of αH : Freg → Freg can be “completed” (with the use of
the Hörmander topology [15, 26]) to the larger space Fμc and we can also build
a corresponding (sequential) completion α−1H (Fμc) of the domain. This amounts
to extending Freg with all elements of the form limn→∞ α−1H (Fn), where (Fn) is a
convergent sequence in Fμc. The quantum algebra A of the free theory is defined
as the space of families FH , labeled by possible choices of H , where FH ∈ AH

.=
(Fμc[[�]], �H ) fulfill the relations

FH ′ = αH ′−H FH ,

and the product is
(F � G)H = FH �H G H .

We can summarize the relations between the algebraic structures we have introduced
so far by means of the following diagram:

(Freg, �)
αH−−−−→ (Freg, �H )

dense

⏐⏐�∩ dense

⏐⏐�∩
A

α−1H←−−−− (Fμc, �H )

A family of coherent states on A is obtained by the prescription

ωH,ϕ(F)
.= αH (F)(ϕ) = FH (ϕ),

where ϕ ∈ ES . This makes sense since FH is a functional in Fμc, so evaluation at a
field configuration ϕ is well defined.

As an example we can consider the free scalar field with the generalized
Lagrangian

L0( f )(ϕ) = 1

2

∫

M

(∂μϕ∂μϕ − m2ϕ2) f dμ. (2.48)

Let us define Ã as the subalgebra of A generated by the Weyl generators W( f )
.=

exp(i F f ). Since

〈
H,

δ2

δϕ2

〉 (
i
∫

f ϕdμ

)n

= − n!
(n − 2)!H( f, f )

(
i
∫

f ϕdμ

)n−2
,
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we conclude that 〈
H,

δ2

δϕ2

〉
(W( f )) = −H( f, f )W( f )

so
αH (W( f )) = e−

�

2 H( f, f )W( f ).

We can now consider a state obtained be evaluation at ϕ = 0. We see that

ωH,0 (W( f )) = e−
�

2 H( f, f ),

so H plays the role of the covariance of the state ωH,0.
Going on-shell corresponds to taking the quotient of Ã by the ideal Ã0 generated

by the elements
W((�+ m2) f )− 1, f ∈ D. (2.49)

Note that S′0(ϕ) = (� + m2)ϕ, and using partial integration, we can conclude that
F(�+m2) f (ϕ) = ∫ S′0(ϕ) f dμ = 〈S′0, f 〉, so taking the quotient by Ã0 implements

the free field dynamics.We denote Ã/Ã0 by ÃS0 , and we see thatωH,0 is well defined
on ÃS0 , as H is a bisolution for the operator P = �+ m2.

2.3.6 Interpretation in Terms of Kähler Geometry

There is an elegant geometrical interpretation of the structures introduced in the
previous section. Analogous to Kähler geometry, H plays the role of the Riemannian
metric on Y ≡ D/PD and the 2-point function Δ+S = i

2ΔS + H is a Hermitian
2-form on Y .

The pair (H,ΔS) induces an anti-involution J on Y (i.e. J 2 = −1) and if Δ+S
is a 2-point function of a quasi-free pure Hadamard state, the triple (H,ΔS, J ) is a
Kähler structure on Y . To see how this come about, let us recall some well known
results (see for example [1, 13] for proofs). Let YC denote the complexification of
Y . If ΔC

S and HC are canonical extensions of ΔS and H to YC, then the following
are equivalent:

1. HC + i
2Δ

C
S ≥ 0 on YC,

2. |〈 f1,ΔS f2〉| ≤ 2〈 f1, H f1〉1/2〈 f2, H f2〉1/2, f1, f2 ∈ Y .

We can complete Y with the product (., .)H
.= 〈., H.〉 to a real Hilbert space H and

the inequality 2 implies that ΔS is a bilinear form on H with norm less or equal 2.
Therefore, there exists an operator A ∈ B(H) with ||A|| ≤ 1 such that

〈 f1,ΔS f2〉 = 2( f1, A f2)H
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If A has a trivial kernel, then we can just construct the polar decomposition A =
−J |A| and J satisfies J 2 = −1, so we can use it to equip Y with an almost-complex
structure. More generally, following the proof of theorem 17.12 of [13], we can
define Ysg

.= ker A and Yreg
.= Y⊥sg. We set Areg

.= A �Yreg and construct the
polar decomposition Areg = −Jreg|Areg|. If the dimension of Ysg is even or infinite
(which is the case in the situation we are interested in), then there exist an orthogonal
anti-involution Jsg on Ysg and we set J = Jreg ⊕ Jsg.

Note that J induces also an almost complex structure on ES,sc if we set jΔS f
.=

ΔS J f , where f ∈ Y . We define the holomorphic and anti-holomorphic subspaces
of YC as

Z .= {( f − i J f )| f ∈ Y},
Z .= {( f + i J f )| f ∈ Y},

respectively. Projections onto these subspaces are given by 1Z = 1
2 (1 − i JC) and

1Z = 1
2 (1+ i JC)

The CCR algebra corresponding to (Y,ΔS) is just the algebra ÃS0 introduced at
the end of the previous section. Note that ωH,0 is a state on ÃS with covariance H .
This state is pure if and only if the triple (H,ΔS, J ) is a Kähler structure on Y , i.e.
all three structures are compatible and ΔS ◦ J = 2H . We can now decompose Δ+S
in the holomorphic basis. A straightforward computation shows that

〈1Z f1,Δ
+
S (1Z f2)〉 = 〈 f1,Δ

+
S f2〉,

where f1, f2 ∈ YC and remaining components vanish, so in the holomorphic basis
Δ+S is represented by (

0 0
Δ+S 0

)
,

so it acts only on the holomorphic part of the first argument and the anti-holomorphic
part of the second argument.

2.4 Time Ordered Products, and the Perturbative
Construction of Local Nets

In the previous section we were concerned only with the quantization of free theories
(quadratic actions). Given an arbitrary action S we first split S = S0 + SI , where S0
is quadratic. We already know how to quantize the classical model defined by S0, so
now is the time to introduce the interaction. We will do it in this section, following
the ideas of [6, 7, 18, 25, 41, 44], but before we start, we give a heuristic argument
justifying our construction. The idea is to use the analogy with the interaction picture
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of quantum mechanics. Let H0 be the Hamiltonian operator of the free theory and
let Ht,I = −

∫
K :LI (0, x): dσt be the interaction Hamiltonian, where : LI : is the

normal-orderedLagrangian density, constructed from the classical quantityLI and K
is some compact subset of Σ (as explained in Sect. 2.3.1). The rigorous “smoothed-
out” version of the Hamiltonian quantization will be given in Sect. 2.6.

We would like to use the Dyson formula and define the time evolution operator
as a time ordered exponential, i.e.

U (t, s) = eit H0e−i(t−s)(H0+HI )e−is H0

= 1+
∞∑

n=1

in

n!
∫

([s,t]×R3)n
T (:LI (x1): . . . :LI (xn):)d4n x,

where
x �→ LI (x) = ei H0x0 :LI (0, x): e−i H0x0

is an operator-valued function and T denotes time-ordering. Heuristically, one could
use the unitary map defined above to obtain interacting fields as

ϕI (x) = U (x0, s)−1ϕ(x)U (x0, s) = U (t, s)−1U (t, x0)ϕ(x)U (x0, s), (2.50)

where s < x0 < t .
There are, however, serious problems with this heuristic formula. Firstly, typical

Lagrangian densities, e.g. :LI (x): = :ϕ(x)4:, can not be restricted to Σ0 as operator
valued distributions. This is the source of the so called UV problem. Moreover, as
mentioned before, having the sharp cutoff function in the Lagrangian and Hamil-
tonian (like in (2.25)) leads to additional divergences (Stückelberg divergences).
Finally there is the adiabatic limit problem related to the fact that the integral over x
does not exist. Last but not least, the overall sum might not converge.

2.4.1 Causal Perturbation Theory

Some of these problems mentioned in the introduction can be easily dealt with by a
slight modification of the above ansatz. For example, we avoid the Stückelberg diver-
gences by replacing the sharp cutoffs with smooth test functions. The UV problem
is solved by using causal perturbation theory in the sense of Epstein and Glaser [18].
In this method one switches the interaction on only in a compact region of spacetime
and then takes the adiabatic limit (understood as a certain inductive limit) on the
level of interacting observable algebras. These modifications of the Dyson formula
ansatz lead to the definition of the formal S-matrix:
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S(g) = 1+
∞∑

n=1

in

n!
∫

g(x1) · · · g(xn)T (:LI (x1): . . . :LI (xn):),

where g is a test density. In order to make this formula well defined, we need to make
sense of the time-ordered products of :LI (xi ):. This will be done by Epstein-Glaser
renormalization. Finally, the formula (2.50) has to be reinterpreted as a definition of
a distribution, rather than a function. Hence, for a test density f we obtain

∫
f (x)ϕI (x) = S(g)−1

∞∑
n=0

in

n!
∫

f (x)g(x1) · · · g(xn)T ϕ(x)LI (x1) · · ·LI (xn)

= d

dλ
|λ=0S(g)−1S(g, λ f ),

where S(g, f ) is the formal S-matrix with the Lagrangian density gLI + f ϕ. This
is the so called Bogoliubov’s formula [7].

We are now left with the problem of defining the time-ordered products on Wick-
ordered quantities :LI (x):. We have already mentioned in Sect. 2.3.5 that the normal
ordering corresponds to passing between the star product �H onAH and � onA. Note
that elements of AH are functionals on ES , so we can identify classical quantities
in Floc with quantum ones by means of T H

1 : Floc → AH defined by T H
1 = id.

Composing with α−1H we obtain a map T1 : F → A, T1 .= α−1H ◦ T H
1 which maps

“classical” to “quantum”. This map is interpreted as the normal ordering and we can
now make an identification

:F : .= T1F, F ∈ Floc .

In the context of local covariance—see Chap.4, this choice of normal ordering is
not the most optimal one. This is because a family of Hadamard states cannot be
chosen in a covariant way (i.e. compatible with embedding of globally hyperbolic
spectimes), but a family of Hadamard parametrices can. The latter are bi-solutions
of the linearized equations of motion only up to smooth terms. It is, therefore, more
appropriate to define the normal ordering by a prescription where only the singular
part of H is subtracted from the correlation function of two fields, as opposed to the
prescription where one subtracts the full H . Concretely, we set T H

1 = αw so T1 =
α−1H−w, where w is the smooth part of the Hadamard 2-point function (see [21, 34] for
a recent review). More precisely, this has to be understood as limN→∞ α−1H−wN

F for
F ∈ Floc and this limit makes sense, because the series converges after finitely many
steps. The function wN appearing in this prescription is 2N + 1 times continuously
differentiable and it appears in the 2-point function as Δ+S = W sing

N + wN . The

singular part W sing
N is of the form “ u

σ
+ v ln σ”, with σ(x, y) denoting the square

of the length of the geodesic connecting x and y and with geometrical determined
smooth functions u and v. For a more precise definition of what is the Hadamard
form for of a 2-point function, see for example [34] or a recent review [21].

http://dx.doi.org/10.1007/978-3-319-21353-8_4
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More concretely, for a density of the form

Φ A,n( f )(ϕ)
.=
∫

f (x)
dn

dλn
A(x)(ϕ)

∣∣
λ=0d4x,

where A(x)(ϕ) = eλp(∇)ϕ(x) (here p is a polynomial in covariant derivatives) we
define

:Φ A,n :( f ) ≡ T1(Φ A,n( f ))
.= α−1H

∫
f

dn

dλn
AH
∣∣
λ=0d4x,

where
AH (x) = e

1
2 p(∇)⊗p(∇)wN (x,x) A(x),

Unfortunately, the modifications which we have done so far do not render the
time-ordered products well defined. Heuristically, we would like the time-ordered
product of two functionals to be (2.7), i.e.

(F ·T G) = e
�

〈
δ
δϕ

,ΔD
S0

δ
δϕ′
〉
F(ϕ)G(ϕ′)|ϕ′=ϕ,

where ΔD
S0

.= 1
2 (Δ

R
S0
+ΔA

S0
) is the Dirac propagator. This makes sense if both F and

G are regular functionals (i.e. elements of Freg). This indeed provides the correct
notion of time-ordering, since

F ·T G =
{

F � G if suppG ≺ supp F,

G � F if supp F ≺ suppG,
(2.51)

where the relation “≺” means “not later than” i.e. there exists a Cauchy surface
which separates suppG and supp F and in the first case supp F is in the future of
this surface and in the second case it’s in the past.

The time ordered product defined by (2.7) is associative, commutative and iso-
morphic to the point-wise product by means of

F ·T G = T
(
T −1F · T −1G

)
, (2.52)

where

T = e
i�〈ΔD

S0
, δ2

δϕ2
〉

(2.53)

or more precisely

(T F)(ϕ)
.=
∞∑

n=0

�
n

n!
〈
(iΔD

S0)
⊗n, F (2n)(ϕ)

〉
.
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The linear operatorT defined above is sometimes called the “time-ordering operator”
and it is interpreted as a map which goes from the “classical” to the “quantum”, i.e.

(Freg, ·)
classical

T−→ (Areg, �, ·T )

quantum
,

where Areg ⊂ A is the range of T . Note that on the quantum side we have two
products. Using the time-ordered product we can express the formal S-matrix S :
Freg[[�]] → Freg[[�]] as the time ordered exponential:

S(V )
.= eiV/�

T = T (eT −1iV/�
)
. (2.54)

According to our interpretation of T ,S is a map on the “quantum” algebraA to itself.
Interacting fields are obtained by means of the Bogoliubov formula, which reads

RV (F) = −i�
d

dλ

(S(V )�−1 � S(V + λF)
) ∣∣

λ=0

=
(

eiV/�
T

)�−1
�
(

eiV/�
T ·T F

)
. (2.55)

We interpret RV (F) as the interacting quantity corresponding to F . We can also
define the interacting star product as

F �V G
.= R−1V (RV F � RV G) .

The interacting theory is given in terms of the algebra (Freg, �V ) and RV acts as
the intertwining map between the free quantum theory and the interacting quantum
theory, i.e.

(Freg, ·)
classical

T−→ (Areg, �, ·T )

free
quantum

R−1V−−→ (Areg, �V )

interacting
quantum

. (2.56)

All these formulas make sense if we restrict ourselves to regular functionals. This
is, however, not satisfactory for our purposes, since typical interactions are local and
non-linear, hence not regular. In the first attempt we could try to pass to a different
star product, which amounts to replacing ΔS0 by Δ+S0 and ΔD

S0
by the Feynman

propagator ΔF
S0
= iΔD

S0
+ H , so our diagram gets modified to

(Freg, ·)
classical

T H−−→ (Areg, �H , ·T H )
α−1H−−→ (Areg, �, ·T )

free
quantum

R−1V−−→ (Areg, �V )

interacting
quantum

,

where T H .= e
i�〈ΔF

S0
, δ2

δψ2 〉, so T = α−1H ◦ T H . This modification of the formalism,
however, doesn’t solve the problem yet. To extend our formalism to arbitrary local
functionals, we need to perform the renormalization. The difficulty which we have
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to face is the fact that the WF set of ΔF
S0

at 0 is like the WF set of the Dirac delta

and therefore the tensor powers ofΔF
S0
cannot be contracted with derivatives of local

functionals.
However, there is a way to extend T H to local functionals. First we extent T H to

Floc by setting T H = T H
1 . We discuss here only the Minkowski spacetime situation,

so we can set T H
1 = id. The subspace T H (Floc) ⊂ A will be denoted by AH

loc. Let
us define the n-th order time-ordered product as

T H
n (F1, . . . , Fn)

.= F1·TH · · · ·TH Fn,

whenever it exists. It is well defined for F1, . . . , Fn ∈ Floc with pairwise disjoint
supports and we will denote this domain of definition by (Floc)

⊗n
pds. Moreover

T H
n (F1, . . . , Fn) = T H

k (F1, . . . , Fk)�HT H
n−k(Fk+1, . . . , Fn), (T1)

if the supports supp Fi , i = 1, . . . , k of the first k entries do not intersect the past
of the supports supp Fj , j = k + 1, . . . , n of the last n − k entries. This property is
called the causal factorisation property . We will take it as an axiom that we want
to impose while extending time-ordered products to arbitrary local arguments. The
other axioms include

(T 2) Starting element: T H
0 = 1, T H

1 = id,
(T 3) Symmetry: EachT H

n is symmetric (graded symmetric if Fermions are present).
(T 4) ϕ-Locality : T H

n (F1, . . . , Fn), as a functional on E , depends on ϕ only via the
functional derivatives of F1, . . . , Fn .

In the seminal paper [18], Epstein and Glaser have shown that such a family of maps
exists and non-uniqueness in defining T H

n ’s is fully absorbed into adding multilinear
maps Zn : A⊗n

loc → Aloc, i.e.

T̃ H
n(F1, . . . , Fn) = T H

n (F1, . . . , Fn)+ Zn(F1, . . . , Fn),

where {T H
n }n∈N and {T̃ H

n}n∈N are two choice of time-ordered products that coincide
up to order n − 1. The renormalized S-matrix is now defined by

S(V ) =
∞∑

n=0
1
n!Tn(V, . . . , V ) =

∞∑
n=0

1
n!α

−1
H ◦ T H

n (αH V, . . . , αHV ) .

The causal factorisation property for time ordered products implies that the S-matrix
satisfies Bogoliubov’s factorization relation

S(V1 + V2 + V3) = S(V1 + V2)S(V2)
−1S(V2 + V3) (2.57)

if the support of V1 does not intersect the past of the support of V3.
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We can also define the renormalizedmapT : F → A byT .=⊕n α−1H ◦T H
n ◦m−1,

where m−1 : F → S•F (0)
loc is the inverse of the multiplication, as defined in [20]

and F (0)
loc is the space of local functionals that vanish at 0. The renormalized time

ordered product ·T is now a binary operation defined on the domain DT
.= T (F).

Analogously to the diagram (2.56), we obtain now

(F , ·)
classical

T−→ (A, �, ·T )
free

quantum

R−1V−−→ (A, �V )
interacting
quantum

, (2.58)

with the caveat that ·T is well defined on DT ⊂ A.
We will now discuss in detail the ambiguity arising in defining Tn’s. In physics

this is known as the renormalization ambiguity. To understand it better and to relate it
with the notion of the renormalization group, we first define a map Z : Aloc[[�]] →
Aloc[[�]] by summing up all the Zn’s relating two chosen prescriptions to define the
time-ordered products. For any two choices of Tn’s the corresponding map Z has
the following properties:

(Z 1) Z(0) = 0,
(Z 2) Z(1)(0) = id,
(Z 3) Z = id+O(�),
(Z 4) Z(F + G + H) = Z(F + G)+ Z(G + H)− Z(G), if supp F ∩ supp G,
(Z 5) δZ

δϕ
= 0.

The group of formal diffeomorphisms of Aloc[[�]] that fulfill (Z 1)–(Z 5) is called
the Stückelberg-Petermann renormalization group R. There is a relation between the
formal S-matrices and elements of R provided by the main theorem of renormal-
ization [15, 16]. It states that for two S-matrices S and Ŝ, built from time ordered
products satisfying the axioms (T 1)–(T 3), there exists Z ∈ R such that

Ŝ = S ◦ Z, (2.59)

where Z ∈ R and conversely, if S is an S-matrix satisfying the axioms (T 1)–(T 4)
and Z ∈ R then also Ŝ fulfills the axioms.

2.4.2 Methods for Explicit Construction of Time-Ordered
Products

The proof of existence of time-ordered products with properties (T 1)–(T 4) given
in [18] is rather abstract and relies on an inductive argument. For practical purposes
an existence result is not sufficient and one would like to obtain some explicit for-
mulas for Tn’s. In this section we will review results which show that the problem
of constructing time-ordered products reduces to extending certain distributions.
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Subsequently, we will give some concrete computational prescriptions for construct-
ing such extensions.

We start with an example. Let F = 1
2

∫
ϕ2 f dμ, G = 1

2

∫
ϕ2gdμ, f, g ∈ D. If

supp g ∩ supp f = ∅, then the time ordered product ·T of F and G is given by

T2(F, G)(ϕ)

= (F ·T G)(ϕ) = F(ϕ)G(ϕ)+ i�
∫

ϕ(x)ϕ(y) f (x)g(y)ΔF
S0(x, y)dμ(x)dμ(y)

− �
2

2

∫
ΔF

S0(x, y)2 f (x)g(y)dμ(x)dμ(y).

In the least term of the expression abovewe have a pointwise product of a distribution
with itself. This could potentially cause problems. If x �= y, then if (x, k) and (y,−k′)
belong to the wave front set , then k,−k′ are cotangent to a null geodesics connecting
x and y. Moreover, k is future directed if x is in the future of y and past directed
otherwise, so the sum of two such covectors doesn’t vanish. Hence, the condition
on the multiplicability of distributions presented in Sect. 2.2 implies that (ΔF

S0
)2 as

a distribution is well defined on the complement of the diagonal {(x, x)|x ∈ M}.
Let us now consider what happens on the diagonal. There, the only restriction is
k = −k′, hence the sum of WF (ΔF

S0
) with itself contains the zero section of the

cotangent bundle at the diagonal. The problem of defining T H
2 (F, G) reduces now

to the problem of extension of ΔF
S0

to a distribution defined everywhere.
This generalizes, and the construction of T H

n ’s reduces to extending numerical
distributions defined everywhere outside certain subdiagonals in Mn . The construc-
tion proceeds recursively and, having constructed the time-ordered products of order
k < n, at order n one is left with the problem of extending a distribution defined
everywhere outside the thin diagonal of Mn . On Minkowski spacetime, exploiting
the translational symmetry of M, this reduces to extending a numerical distribution
defined everywhere outside 0. One way of constructing explicitly such distributional
extensions relies on the so called splitting method (see for example [40]). Here we
will take a different approach, based on the notion of Steinmann’s scaling degree
[41]. Here is the definition:

Definition 2.4.1 Let U ⊂ R
n be a scale invariant open subset (i.e. λU = U for

λ > 0), and let t ∈ D′(U ) be a distribution on U . Let tλ(x) = t (λx) be the scaled
distribution. The scaling degree sd of t is

sd t = inf{δ ∈ R| lim
λ→0

λδtλ = 0}. (2.60)

The degree of divergence, another important concept used often in the literature, is
defined as:

div(t)
.= sd(t)− n .
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The crucial result which allows us to construct time-ordered products is stated in the
following theorem:

Theorem 2.4.2 Let t ∈ D(Rn \ {0}) with scaling degree sd t < ∞. Then there
exists an extension of t to an everywhere defined distribution with the same scaling
degree. The extension is unique up to the addition of a derivative P(∂)δ of the delta
function, where P is a polynomial with degree bounded by div(t) (hence vanishes
for sd t < n).

In the example presented at the beginning of this subsection, the scaling degree of
(ΔF

S0
)2 in 4 dimensions is 4, so the extension exists and is unique up to the addition

of a multiple of the delta function.
The result above allows in principle to extend all the numerical distributions we

need for the construction of time-ordered products. However, the computations can
in general get very complicated, so it is convenient to formulate the combinatorics
underlying our construction in terms of Feynman graphs. In the pAQFT framework,
these are not fundamental objects, but instead they are derived (together with the
corresponding Feynman rules) from time-ordered products.

Time-ordered productsT H
n should bemaps fromF⊗n

loc toFμc[[�]] and, as indicated
in the previous section, they are obtained by extending non-renormalized expressions
that are originally defined only on (Floc)

⊗n
pds. Let us consider F ≡ F1 ⊗ · · · ⊗ Fn ∈

(Floc)
⊗n
pds with the corresponding Wick-ordered quantities are elements ofAloc given

by A1
.= T F1, . . . , An

.= T Fn ∈ Floc. Note that F induces a map from En to R

by F(ϕ1, ..., ϕ2) = F1(ϕ1) · · · Fn(ϕn). When we talk about functionals on E we will
denote the variable by ϕ and for functionals on En we take an n-tuple (ϕ1, ..., ϕn).

Let us denote Di j
.= i�〈ΔF

S0
, δ2

δϕi δϕ j
〉 and D

.= i�〈ΔF
S0

, δ2

δϕ2 〉. The Leibniz rule for
differentiation can be formulated as

δ

δϕ
◦ mn = mn ◦ (

n∑
i=1

δ

δϕi
), (2.61)

wheremn is the pointwisemultiplication of n arguments, or in otherwords, a pullback
through the diagonal map E → En , ϕ �→ (ϕ, . . . , ϕ). The Leibniz rule implies that
the non-renormalized expression for T H satisfies

T H ◦ mn = e
D
2 ◦ mn = mn ◦ e

∑
i< j Di j+∑i

1
2 Dii ,

Hence

F1 ·T H · · · ·T H Fn = e
D
2 ◦ mn(e

− 1
2 D11 F1, . . . , e−

1
2 Dnn Fn)

= mn ◦ e
∑

i< j Di j (F1, . . . Fn) ≡ mn ◦ Tn(F1, . . . Fn) .



60 K. Fredenhagen and K. Rejzner

We can now use an identity

e
∑

i< j Di j =
∏
i< j

∞∑
li j=0

D
li j
i j

li j ! (2.62)

to express time ordered products in terms of graphs. Let Gn be the set of all graphs
with vertex set V (Γ ) = {1, . . . n} and li j the number of lines e ∈ E(Γ ) connecting
the vertices i and j . We set li j = l j i for i > j and lii = 0. If e connects i and j we
set ∂e := {i, j}. Then

Tn =
∑

Γ ∈Gn

TΓ , (2.63)

where

TΓ = 1

Sym(Γ )
〈tΓ , δΓ 〉, (2.64)

with

δΓ = δ2 |E(Γ )|∏
i∈V (Γ )

∏
e:i∈∂e δϕi (xe,i )

and
tΓ =

∏
e∈E(Γ )

�ΔF (xe,i , i ∈ ∂e) (2.65)

The, so called, symmetry factor Sym is the number of possible permutations of
lines joining the same two vertices, Sym(Γ ) = ∏i< j li j !. Note that TΓ is a map

from (Floc)
⊗V
pds to C∞(E |V |, R)[[�]], where ⊗V means that the factors in the tensor

product are numbered by vertices and to a vertex v ∈ V (Γ )we assign the variable ϕv.
The renormalization problem is now the problem to extend Tn’s to maps on (Floc)

⊗n

and this can be achieved by extending all the maps TΓ and using formula (2.63).
First we note that functional derivatives of local functionals are of the form

F (l)(ϕ)(x1, . . . , xl) =
∫ N∑

j=1
g j [ϕ](y)p j (∂x1, . . . , ∂xl )

l∏
i=1

δ(y − xi )dμ(y),

(2.66)

where N ∈ N, p j ’s are polynomials in partial derivatives and g j [ϕ] are ϕ-dependent
test functions. The representation above is not unique, since some of the partial
derivatives ∂xi can be replaced with ∂y and applied to g j [ϕ]. Another representation
of F (l)(ϕ) is obtained by performing the integral above and using the centre of mass
and relative coordinates:

F (l)(ϕ)(x1, . . . , xl) =
∑
β

fβ [ϕ](z)∂βδ(x rel) (2.67)
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where β ∈ N
4(l−1)
0 , test functions fβ [ϕ](x) ∈ D are now ϕ-dependent functions of

the center of mass coordinate z = (x1+· · ·+ xk)/k and x rel = (x1− z, . . . , xk − z)
denotes the relative coordinates.

Using (2.66) we see that the functional differential operator δΓ applied to
F ∈ F⊗n

loc yields, at any n-tuple of field configurations (ϕ1, . . . , ϕn), a compactly
supported distribution in the variables xe,i , i ∈ ∂e, e ∈ E(Γ ) with support on the
partial diagonal ΔΓ = {xe,i = x f,i , i ∈ ∂e ∩ ∂ f, e, f ∈ E(Γ )} ⊂ M

2|E(Γ )| and
with a wavefront set perpendicular to T ΔΓ . Note that the partial diagonal ΔΓ can
be parametrized using the center of mass coordinates

zv
.= 1

valence(v)

∑
e|v∈∂e

xe,v,

assigned to each vertex. The remaining relative coordinates are x rele,v = xe,v − zv,
where v ∈ V (Γ ), e ∈ E(Γ ) and v ∈ ∂e. Obviously, we have

∑
e|v∈∂e x rele,v = 0 for

all v ∈ V (Γ ). In this parametrization δΓ F can be written as a finite sum

δΓ F =
∑
finite

f β∂βδrel,

where β ∈ N
4|V (Γ )|
0 , each f β(ϕ1, ..., ϕn) is a test function on ΔΓ and δrel is the

Dirac delta distribution in relative coordinates, i.e. δrel(g) = g(0, . . . , 0), where g is
a function of (x rele,v, v ∈ V (Γ ), e ∈ E(Γ )).

We can simplify our notation even further. Let YΓ denote the vector space spanned
by derivatives of the Dirac delta distributions ∂βδrel, where β ∈ N

4|V (Γ )|
0 . Obviously,

YΓ is graded by |β|. Let D(ΔΓ , YΓ ) denote the graded space of test functions on
ΔΓ with values in YΓ . With this notation we have δΓ F ∈ D(ΔΓ , YΓ ) and if F ∈
(Floc)

⊗n
pds, then δΓ F is supported on ΔΓ \DIAG, where DIAG is the large diagonal:

DIAG = {z ∈ ΔΓ | ∃v, w ∈ V (Γ ), v �= w : zv = zw} .

We can now write (2.64) in the form

1

Sym(Γ )
〈tΓ , δΓ 〉 =

∑
finite

〈 f β∂βδrel, tΓ 〉

where tΓ is now written in terms of centre of mass and relative coordinates. To see
that this expression iswell defined, note that we canmove all the partial derivatives ∂β

to tΓ by formal partial integration. Then the contraction with δrel is just the pullback
through the diagonal map map ρΓ : ΔΓ → M

2|E(Γ )| by

(ρΓ (z))e,v = zv if v ∈ ∂e .
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From the wavefront set properties of ΔF
S0
, we deduce that the pullback ρ∗Γ of each

tβΓ
.= ∂β tΓ is a well defined distribution on ΔΓ \DIAG, so (2.64) makes sense if

F ∈ (Floc)
⊗n
pds, as expected. We conclude that tΓ ∈ D′(ΔΓ \DIAG, YΓ ), where the

duality between tΓ and a test function f =∑finite f β∂βδ is given by

〈tΓ , f 〉 .=
∑
β

〈tβΓ , fβ〉 .

The renormalization problem now reduces to finding the extensions of tβΓ , so that

tβΓ gets extended to an element of D′(ΔΓ , YΓ ). The solution to this problem is
obtained by using the inductive procedure of Epstein and Glaser. The induction
step works as follows: if tΓ ′ is known for all graphs Γ ′ with fewer vertices than
Γ , then tΓ can be uniquely defined for all disconnected, all connected one particle
reducible and all one particle irreducible one vertex reducible graphs. Graphs which
are irreducible and donot contain any non-trivial irreducible subgraphs are calledEG-
primitive. For the remaining graphs , called EG-irreducible, tΓ is defined uniquely
on all f ∈ D(ΔΓ , YΓ ) of the form above where fβ vanishes together with all its
derivatives of order ≤ ωΓ + |β| on the thin diagonal of ΔΓ . Here

ωΓ = (d − 2)|E(Γ )| − d(|V (Γ )| − 1)

is the degree of divergence of the graphΓ .Wedenote this subspace byDωΓ (ΔΓ , YΓ ).
Graphswhich are irreducible and do not contain any non-trivial irreducible subgraphs
are called EG-primitive. Renormalization amounts to project a generic f to this
subspace by a translation invariant projection WΓ : D(ΔΓ , YΓ ) → DωΓ (ΔΓ , YΓ ).
Different renormalization schemes differ by different choices of the projections WΓ

(see [17] for details).
OnMinkowski spacetimewe have further simplifications. By exploiting the trans-

lation invariance we find that, at each step of the recursive construction of time-
ordered products, the renormalization problem reduces to the problem of extension
of some distribution defined everywhere outside the origin, so this is what we will
focus on now.

For concrete computations it is convenient to construct these extensions with the
use of regularization. Let us first define the notion of a regularization of a distribution.
Let t̃ ∈ D′(Rd \ {0}), d ∈ N, be a distribution with degree of divergence ω, and by
t̄ ∈ D′ω(Rd)we denote the unique extension of t̃ with the same degree of divergence.
A family of distributions {tζ }ζ∈Ω\{0}, tζ ∈ D′(Rd), with Ω ⊂ C a neighborhood of
the origin, is called a regularization of t̃ , if

∀g ∈ Dλ(R
d) : lim

ζ→0
〈tζ , g〉 = 〈t̄, g〉 . (2.68)
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We say that the regularization {tζ } is called analytic, if for all functions f ∈ D(Rn)

the map
Ω \ {0} � ζ �→ 〈tζ , f 〉 (2.69)

is analytic with a pole of finite order at the origin. The regularization {tζ } is called
finite, if the limit limζ→0〈tζ , f 〉 ∈ C exists ∀ f ∈ D(Rd).

For a finite regularization the limit limζ→0 tζ is, as expected, a solution t of the
extension (renormalization) problem. Given a regularization {tζ } of t , it follows from
(2.68) that for any projection W : D→ Dω

〈t̄, W f 〉 = lim
ζ→0

〈tζ , W f 〉 ∀ f ∈ D(Rn) . (2.70)

It was shown in [16] that any extension t ∈ D′(Rd) of t̃ with the same scaling degree
is of the form 〈t, f 〉 = 〈t̄, W f 〉 with some W -projection of the form

W f := f −
∑
|α|≤λ

f (α)(0) wα, (2.71)

where wα ∈ D(Rd) such that for all multiindices β ∈ N
d
0 with |β| ≤ ω we have

∂βwα(0) = δ
β
α , |α| ≤ ω Hence

〈t̄, W f 〉 = lim
ζ→0

⎡
⎣〈tζ , f 〉 −

∑
|α|≤sd(t)−n

〈tζ , wα〉 f (α)(0)

⎤
⎦ . (2.72)

In general, we cannot split the limit on the right hand side into twowell defined terms.
However, if the regularization {tζ , ζ ∈ Ω \ {0}} is analytic, then we can expand each
term into a Laurent series around ζ = 0, and because the overall limit is finite, the
principal parts (pp) of these two Laurent series must be the same. This means that the
principal part of any analytic regularization {tζ } of a distribution t ∈ D′(Rd \ {0}) is
a local distribution of order sd(t)− d. Following [17], we can now give a definition
of the minimal subtraction in the EG framework.

Definition 2.4.3 (Minimal Subtraction) The regular part (rp = 1− pp) of any ana-
lytic regularization {tζ } of a distribution t̃ ∈ D′(Rd \ {0}) defines by

〈tMS, f 〉 := lim
ζ→0

rp(〈tζ , f 〉) (2.73)

an extension of t̃ with the same scaling degree, sd(tMS) = sd(t̃). The extension tMS

defined by (2.73) is called the “minimal subtraction”.
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2.4.3 Interacting Theories

Let us now discuss the problem of constructing interacting nets of observables. We
start from a space Dn of functions f : M → R

n with compact support. We assume
that we have unitaries S( f ), f ∈ Dn with S(0) = 1, which generate a *-subalgebra
Ã of A and satisfy for f, g, h ∈ D Bogoliubov’s factorization relation

S( f + g + h) = S( f + g)S(g)−1S(g + h)

if the past J− of supp h does not intersect supp f (or, equivalently, if the future
J+ of supp f does not intersect supp h). We can obtain these as formal S-matrices
S( f )

.= S(V ( f )), discussed in the previous section (see property (2.57)), for a

generalized Lagrangian V ( f ) = αH

(∑n
j=1
∫

A j (x) f j (x)dμ(x)
)
, where f ∈ Dn

and each A j (x) is a local function ϕ ∈ E . Typically A′j are polynomial and they
represent Lagrangian densities of various interaction terms that one can add to the
free action S0.

We also assume that the translation group of Minkowski space acts by automor-
phisms αx on Ã such that

αx (S( f )) = S( fx ), fx (y) = f (y − x).

Obviously, this is also satisfied for the S-matrices discussed so far. Under these
general assumptions, we define local algebras A(O), O ⊂ M, as the *-subalgebras
ofA generated by S( f ), supp f ⊂ O and obtain a translation covariant Haag-Kastler
net on Minkowski space. To justify this claim, we will now check that all the axioms
are satisfied.

Isotony and Covariance are obvious, and Locality follows from the fact that for
functions f, g with spacelike separated supports

supp f ∩ J±(supp g) = ∅ (2.74)

and hence
S( f )S(g) = S( f + g) = S(g)S( f ). (2.75)

The crucial observation is now that the map f �→ S( f ) induces a large family
of objects that satisfy Bogoliubov’s factorisation relation, which are labeled by test
functions g ∈ Dn , namely the relative S-matrices

f �→ Sg( f ) = S(g)−1S(g + f ).

We can choose A0(x) = LI (x) to be the Lagrangian density of the interaction
term. Then, for g = (g0, 0, . . . , 0), we obtain V (g) = ∫ LI g0dμ ≡ L I (g0), where
g0 ∈ D. Note that S(g+λ f ) = S(αH (LI (g0)+λ

∑
j

∫
A j f j dμ)), so the derivative

of S with respect to λ is just the retarded field RLI (g0)(V ( f )). Let us now prove that
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the causal factorisation property indeed holds for Sg( f ). Let f, h ∈ Dn such that
supp f does not intersect J−(supp h). Let g, g′ ∈ Dn . Then

Sg( f + g′ + h) = S(g)−1S( f + (g + g′)+ h)

= S(g)−1S( f + (g + g′))S(g + g′)−1S((g + g′)+ h)

= Sg( f + g′)Sg(g′)−1 S(g)−1S(g)︸ ︷︷ ︸
=1

Sg(g′ + h). �

We consider Sg( f ) as the retarded observable S( f ) under the influence of
the interaction L I (g0). The Haag-Kastler net Ag of the interacting theory is then
defined by the local algebras Ag(O) which are generated by the relative S-matrices
Sg( f ), supp f ⊂ O. These can indeed be interpreted as retarded observables, as
Sg( f ) depends only on the behavior of g in the past of supp f . More precisely,
supp (g − g′) ∩ J−(supp f ) = ∅ implies

Sg( f ) = S(g)−1S((g − g′)+ g′ + f )

= S(g)−1S((g − g′)+ g′)S(g′)−1S(g′ + f ) = Sg′( f ).

The second observation is that Sg( f ) depends on the behavior of g outside of the
future of supp f via a (formal) unitary transformation which does not depend on f .
Namely, supp (g − g′) ∩ J+(supp f ) = ∅ implies

Sg( f ) = S(g)−1S( f + g′ + (g − g′))

= S(g)−1S( f + g′)S(g′)−1S(g′ + (g − g′))

= S(g)−1S(g′)S(g′)−1S( f + g′)Sg′(g − g′)

= AdSg′(g − g′)−1(Sg′( f )).

Hence the structure of local algebras depends only locally on the interaction. This
allows to perform the adiabatic limit directly on the level of local algebras.

In the next step we want to remove the restriction to interactions with compact
support. Let G : M → R

n be smooth and O be bounded. Set

[G]O = {g ∈ Dn|g ≡ G on a neighborhood of J+(O) ∩ J−(O)}.

We consider the Ã-valued maps

SG,O( f ) : [G]O � g �→ Sg( f ) ∈ Ã.

The local algebraAG(O) is defined tobe the algebra generatedby SG,O( f ), supp f ⊂
O. Note that the evaluation maps
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γgG : SG,O( f )→ Sg( f )

extend to isomorphisms of AG(O) and Ag(O) for every g ∈ [G]O.
The local net is now defined by the embeddings iO2O1 for O1 ⊂ O2

iO2O1 : SG,O1( f ) �→ SG,O2( f )

for f ∈ Dn with supp f ⊂ O1. Let AG be the inductive limit with embeddings

iO : AG(O)→ AG

and we set
SG( f ) = iO(SG,O( f )).

We are now ready to prove a crucial theorem about the net O �→ AG(O).

Theorem 2.4.4 Let G be translation invariant. Then the net becomes translation
covariant by setting

αG
x (SG( f )) = SG( fx ).

Proof Wehave to prove thatαG
x extends to an isomorphism fromAG(O)→ AG(O+

x). LetO1 ⊃ O∪O− x and g ∈ [G]O1 . Then g, gx ∈ [G]O and gx = g+hx++hx−
with supp hx± ∩ J∓(O) = ∅. By causal factorization

αG
x = γ−1gG ◦ AdUg(x) ◦ αx ◦ γgG

with Ug(x) = Sg(hx−). �

2.5 Time-Slice Axiom, Operator Product Expansions,
and the Renormalization Group

We have seen that, starting from a free QFT and a definition of a time ordered
product satisfying the axioms of Sect. 2.4.3 we can construct a local net (in the sense
of formal power series) satisfying the Haag-Kastler axioms of Isotony, Locality and
Covariance. In this section we want to analyze the net in more detail.

First we investigate whether the net satisfies the time-slice axiom . This can be
done for the case that the net is defined on a generic Lorentzian globally hyperbolic
spacetime M . It is known since a long time [22] that the free theory generated by
linear functionals, modulo the ideal of the free field equation, satisfies this axiom, and
by using the techniques ofmicrolocal analysis, this result can be extended to the netA
generated by elements of the form α−1H F , where F ∈ Fμc is a microcausal functional
[11, 29]. In Chilian and Fredenhagen [11] it was shown that this implies that also the
netAG introduced in the previous section satisfies the axiom. The argument relies on
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the fact that the algebra of the interacting theory associated to some bounded region
can be constructed as a subalgebra of the free theory for a slightly larger region, and
vice versa.

The problem is that these subalgebras are fixed only up to unitary equivalence, so
one has in addition to show that these unitary transformations can be appropriately
fixed. We use the fact that the relative S-matrices Sg( f ) are well defined also for
test functions g with non-compact support provided the support is past compact, i.e.
supp g ∩ J−(x) is compact for all x ∈ M .

Let Σ be a Cauchy surface of M and N a neighborhood of Σ . Let O ⊂ M be
relatively compact.We choose a Cauchy surfaceΣ− such thatO∪N ⊂ J+(Σ−) and
a smooth function χ with past compact support such that supp (1− χ) ⊂ J−(Σ−).
We want to prove that AGχ (O) ⊂ AGχ (N ).

By construction of the interacting theory we see immediately that AGχ (O) ⊂
A(M) holds. Due to the time slice property of the free theory, A(M) = A(N ′)
for each neighborhood N ′ of Σ . We now construct within the algebra AGχ (N ) an
algebra which is isomorphic toA(N ′) for a sufficiently small Σ ⊂ N ′ ⊂ N . For this
purpose we choose another smooth function χ ′ with support contained in J+(N ) and
with supp (1− χ ′) ⊂ J−(N ′). Let now supp f ⊂ N ′. Then the unitaries

SG(χ−χ ′)( f ) = SGχ (g′)−1SGχ (g′ + f ), with g′ ≡ Gχ ′ on J−(supp f ), supp g′ ⊂ N ,

(2.76)
generate an algebra isomorphic to A(N ′) within AGχ (N ). The map

α : S( f ) → SG(χ−χ ′)( f ) = Ad(S(g − g′))−1(S( f )) (2.77)

with g ≡ Gχ on J−(supp f ∪ supp g′) extends to an injective homomorphism from
A(M) into AGχ (N ). Since AGχ (N ) ⊂ A(M), α is an endomorphism of A(M). We
show that it is even an automorphism. For this purpose we construct the inverse of
α. By exploiting the time slice property of the free theory, we can restrict ourselves
to elements S( f ) with supp f ⊂ J−(Σ0). On these elements we have

α−1(S( f )) = Ad(S(g − g′))(S( f )) = S(g − g′ + f )S(g − g′)−1 (2.78)

where g − g′ ≡ G(χ − χ ′) on J+(supp f ). We conclude that AGχ (N ) = A(M).
This proves the claim.

Another general property of the interacting net is the existence of an operator
product expansion [27]. In the case of the product of two fields A and B it is an
expansion

A(x)B(y) ∼
∑

k

Ck
AB(x, y)ϕk(x) (2.79)

with distributions Ck
AB and a basis of local fields ϕk , ordered with respect to the

scaling dimension. This is an asymptotic expansion in the sense that after evaluation
in a state coming from a Hadamard state of the free field, the difference between the
right hand side of the relation and the left hand side, truncated at some k, tends to
zero as x → y, with an order depending on k.
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The third property we look at is the behavior of the theory at different scales. In the
standard formalism of QFT, one formulates this as a property of vacuum expectation
values of products or time ordered products of fields, or one uses the concept of
the so-called effective action. In this formulation one has to have control over the
existence and uniqueness of the vacuum state. In the algebraic approach one can
instead derive a relation between local nets. Namely given a local net O �→ A1(O)

one obtains another net by scaling the regions,

Aλ(O) = A1(λO). (2.80)

If the net depends on some parameters (m, g), one can compensate the scaling by
changing the parameters. One obtains the algebraic Callan-Symanzik equation [15]

A
m,g
λ

∼= A
m(λ),g(λ)
1 (2.81)

The “running” of the parameters is as usual determined by the renormalization group
equation which follows from the behavior of the time ordered product under scaling.

2.6 Hamiltonian Formalism for Quantum Field Theory,
and the Construction of States

Up to now we remained in the realm of algebras. There we could study several struc-
tural properties of the theory. In order to get more detailed predictions of the theory
one has to evaluate the algebra in specific states. A class of states on the local algebras
can be obtained in terms of the states of the free theory by embedding the interacting
theory into the free one, but this is highly ambiguous and gives no direct interpreta-
tion of the states. Conceptually, one does not need more, since the interpretation can
be done in terms of the expectation values of observables. In practice, however, one
would prefer to have states with an a priori interpretation as e.g. the vacuum state.
The standard way to compute it is the evaluation of the product or the time ordered
product of interacting fields with an interaction L I (g0) =

∫ LI (x)g0(x)dμ(x) in the
vacuum state of the free theory and performing the adiabatic limit g0 → 1. This limit
is well behaved in massive theories, but exists also for a suitable sequence (g0)n → 1
in certain massless theories such as massless ϕ4 or QED. In the case of time ordered
products one just reproduces the standard formulas in terms of Feynman such graphs;
in the case of operator products one has to use Steinmann’s sector graphs [42]. The
adiabatic limit in this form, however, does not always exist, in particular not for states
with nonzero temperature.

A more direct way of constructing states with specific properties could be imag-
ined in a Hamiltonian formalism, as well known from nonrelativistic quantum
mechanics. The difficulty is that the interaction Hamiltonian for a local QFT is very
singular so that perturbation theory for selfadjoint operators cannot be used. There
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are two independent reasons for the singular character of perturbations in QFT. The
first is translation symmetry. InMinkowski space this leads toHaag’s theorem, which
states that the ground state of the interacting theory cannot be represented by a vec-
tor in the Fock space of the free theory. If one takes this into account by restricting
the interaction to a finitely extended spatial region, one can indeed apply the per-
turbation theory of selfadjoint operators in certain superrenormalizable models in
2 dimensions. One can then construct ground states and consider their limit if the
cutoff is removed. In 4 dimensions, however, the local interaction densities are too
singular, so that also the spatially restricted interaction is not an operator.

The Hamiltonian formalism relies on a split of spacetime into the product of a
Cauchy surface and the time axis, and all the observables of the theory are constructed
in terms of their initial values on this surface, which are supposed to be independent
of the interaction. But from renormalization theory it is well known that in general
one has to expect modifications of the canonical structure; moreover, even for free
fields, the restriction to a Cauchy surface is singular for all nonlinear local fields.

Instead we use the fact that for generic perturbative QFT’s the time-slice axiom
holds. Moreover, as we saw from the discussion of the proof of this fact, the free and
the interacting algebra of a time slice can be identified. This suggests to compare
their time evolutions. Both are automorphism groups acting on the same algebra, and
they differ by a cocycle. In case of a spatial cutoff of the interaction, the cocycle is
implemented by a unitary cocycle within the algebra, whose generator is an integral
over an operator valued functionwhichmaybe interpreted as a regularized interaction
Hamiltonian density HI (x).

As in Sect. 2.4.3 we consider the space Dn of test functions and the algebra
generated by S( f ) = S(α−1H (

∑
i

∫
Ai f i dμ)). We also assume that A0 = LI is the

interaction Lagrangian density. The time slice property proven in Sect. 2.5 induces
isomorphisms between the free and the interacting algebras. Let χ be a smooth
function of time t with χ(t) = 1 for t > −ε and χ(t) = 0 for t ≤ −2ε. Then
supp ((t, x) �→ G(t, x)χ(t)) is past compact. We now define a map from AG to A
by

γχ(SG( f )) = SGχ ( f ), supp f ⊂ (−ε, ε)× R
3.

Due to the time slice property this map extends to an isomorphism. Moreover, it only
slightly changes the kinematical localization at t = 0. LetOr = {(t, x)||t |+|x| < r}.
Then

γχ(AG(Or )) ⊂ A(Or+4ε) ⊂ γχ(AG(Or+8ε)).

Let G be constant, let αG,χ
x = γχ ◦αG

x ◦γχ−1 be the translations of the interacting

theory mapped to the free theory, and consider the cocycle β
G,χ
x = α

G,χ
x ◦ α−x . We

find β
G,χ

(0,x) = id and, for f with supp f ⊂ Or and small t ,

β
G,χ

(t,0)(S( f )) = AdShχ (h(χt − χ))(S( f ))

where h is time independent, has compact spatial support and h ≡ G on Or+4ε.
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Proposition 2.6.1 The unitaries U hχ
t = Shχ (h(χt −χ)) fulfill the cocycle equation

U hχ
t+s = U hχ

t αt (U
hχ
s )

Proof For sufficiently large u (depending on s, t) we have

Shχ (h(χt − χ))αt (Shχ (h(χs − χ))

= Sh(χ−χu)(h(χt − χ))αt (Sh(χ−χu−t )(h(χs − χ))

= Sh(χ−χu)(h(χt − χ))Sh(χt−χu)(h(χt+s − χt ))

= S(h(χ − χu))−1S(h(χt − χu))S(h(χt − χu))−1S(h(χt+s − χu))

= Sh(χ−χu)(h(χt+s − χ)) = Shχ (h(χt+s − χ)). �

We conclude that the unitary cocycle U hχ
t describes the interacting time evolution

(with spatial cutoff h) in the interaction picture.Due to the finite speed of propagation,
it coincides with the full time evolution for small t .

We now consider a time translation covariant representation (H, π, U0) and
assume that the map D � f → π(S( f )) is strongly continuous. Then the cocy-
cle U hχ

t is strongly continuous, and

t �→ Uhχ (t) = U hχ
t U0(t) (2.82)

is a strongly continuous 1-parameter group with selfadjoint generater Hhχ which
describes the dynamics of the interacting system with spatial cutoff.

In caseπ is irreducible, onemay now determine the spectrum of Hhχ and interpret
it as the energy spectrumof the interacting theorywith spatial cutoff (up to an additive
constant). One may also look for a ground state and consider the limit of removal of
the cutoff.

If π is a representation induced by a KMS state, and Ω0 is the corresponding
cyclic vector in the representation space, one knows by Connes’ cocycle theorem
that there exists a weight whose modular automorphims are the time translations of

the interacting theory. If Ω0 is in the domain of e−
β
2 Hhχ , then this weight is bounded

and induced by the vector

Ωhχ = e−
β
2 Hhχ Ω0. (2.83)

If the cocycle is strongly differentiable on a dense domain, the interaction Hamil-
tonian can be defined as the generator of the cocycle. We obtain [19]

H hχ
I = �

d

idt
U hχ

t = � S(hχ)−1 d

idt
S(hχt ) = RV (hχ)(V (hχ̇)),

where in the last stepwe have usedBogoliubov’s formula (2.55) for interacting fields.
In the limit ε → 0, χ̇ tends to the δ-function and we obtain the usual interaction
picture.
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We illustrate the method on the example of an interaction with external sources.
We start with the CCR algebra ÃS0 of the free scalar field introduced at the end of
Sect. 2.3.5. The formal S-matrix is

S( f ) = S(F f ) = ei F f /�e−
i
2�
〈 f,ΔD f 〉,

where F f (ϕ) = ∫ ϕ f dμ. One can verify it by direct computation (using the forumlas
for time-ordered product given in Sect. 2.4.2) or, indirectly, by the verification of the
causal factorization property (T1). Namely, we have

S( f + g)−1S( f + g + h) (2.84)

= ei Fh/� exp
i

�
(〈 f + g,ΔD( f + g)〉−〈 f + g+h,ΔD( f + g+h)〉+〈 f + g,Δh〉)

= eiϕ(h) exp
i

2�
(−〈h,ΔDh〉 − 〈 f + g, (2ΔD −Δ︸ ︷︷ ︸

=ΔA

)h〉),

= S(g)−1S(g + h)e
i
2�
〈 f,ΔAh〉

hence if supp f ∩ J−(supp h) = ∅ then by the support property of the advanced
propagator

〈 f,ΔAh〉 = 0

and the factorization holds.
We find the interaction Hamiltonian (h time independent)

H hχ
I = −ϕ(hχ̇ )− const.

Due to the smearing in time, this operator remains meaningful also for a pointlike
source (h ∼ δ(x)).

In general, for the free theory we obtain the usual Fock space Hamiltonian H0,
and the Hamiltonian of the interacting theory with spatial cutoff is the sum of the
free Hamiltonian and the interaction term,

H = H0 +
∫

h(x)HI (x)d3x. (2.85)

In this framework, one can now apply the standard perturbative constructions of
ground states and KMS states. In [19, 36] it was shown that in massive theories
ground states and KMS states for positive temperatures exist. Some aspects of this
formalism involving thermal mass were further developped in [14] in conjunction
with the principle of perturbative agreement [30]. It is hoped that this regularized
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Hamiltonian picture will allow to close the conceptual gap between the standard
formalism in nonrelativistic quantum mechanics and quantum statistical mechanics
and the formalism of relativistic QFT.

2.7 Conclusions

We have seen that the concepts of AQFT can be used in renormalized perturbative
QFT and yield Haag-Kastler nets (in the sense of algebras of formal power series)
for generic models of QFT. Due to its axiomatic formulation all possible renormal-
ization methods are covered, and one has an a priori characterization of the class
of renormalized theories associated to a classical Lagrangian, independent of any
regularization scheme. For practical purposes, it is nevertheless often appropriate
to introduce a regularization, and in particular analytic regularization schemes such
as dimensional or analytic renormalization are useful, for computation but also for
specifying a theory in its class (e.g. by minimal subtraction), see [17]. One may also
incorporate the ideas of the renormalization flow equation in the sense of Polchinski
and made rigorous in [33] . This is exposed in [15]. In these notes we restricted
ourselves to scalar field theories. The generalization to other types of field theory
have been discussed in several papers; fermionic theories can be treated essentially
in the same way, and gauge theories can be treated after adding auxiliary fields
(ghosts etc.) and constructing the time ordered products such that BRST symmetry
is respected [15, 20, 27]. Even gravity can be included where however the concept
of local algebras of observables has to be properly adapted [10].
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Chapter 3
Models of Free Quantum Field Theories
on Curved Backgrounds

Marco Benini and Claudio Dappiaggi

Abstract Free quantumfield theories on curved backgrounds are discussed via three
explicit examples: the real scalar field, the Dirac field and the Proca field. The first
step consists of outlining the main properties of globally hyperbolic spacetimes, that
is the class of manifolds on which the classical dynamics of all physically relevant
free fields can bewritten in terms of aCauchy problem.The set of all smooth solutions
of the latter encompasses the dynamically allowed configurations which are used to
identify via a suitable pairing a collection of classical observables. As a last step we
use such collection to construct a ∗-algebra which encodes the information on the
dynamics and the canonical commutation or anti-commutation relations depending
on the Bosonic or Fermionic nature of the underlying field.

3.1 Geometric Data

Goal of this section is to introduce all geometric concepts and tools which are nec-
essary to discuss both the classical dynamics and the quantization of a free quantum
field on a curved background. We assume that the reader is familiar with the basic
notions of differential geometry and, to a minor extent, of general relativity. There-
fore we will only sketch a few concepts and formulas, which we will use throughout
this chapter; a reader interested to more details should refer to [6, 7, 52], yet paying
attention to the conventions used here, which differ from time to time from those in
the cited references.

Our starting point is M, a smooth manifold which is endowed with a (smooth)
Lorentzian metric g of signature (+,−, . . . ,−). Furthermore, although the standard
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generalizations to curved backgrounds of the field theories onMinkowski spacetime,
on which the current models of particle physics are based, entail that M ought
to be four dimensional, in this chapter we shall avoid this assumption. The only
exceptionwill be Sect. 3.3.2, wherewewill describeDirac spinors in four dimensions
only, for the sake of simplicity. Especially in order to make contact with the other
chapters of this book, we introduce a few auxiliary, notable tensors. We employ an
abstract index notation1 and we stress that our conventions might differ from those
of many textbooks, e.g., [52]. As a starting point, we introduce the Riemann tensor
Riem : TM⊗ TM → End(TM), defined using the abstract index notation by the
formula (∇a∇b − ∇b∇a)vd = R d

abc vc, where v is an arbitrary vector field and ∇
is the covariant derivative. The Ricci tensor is instead Ric : TM⊗2 → R and its
components are Rab = Rd

adb, while the scalar curvature is simply R
.= gab Rab.

For later convenience we impose a few additional technical constraints on the
structure of the admissible manifolds, which we recollect in the following definition:

Definition 3.1.1 For n ≥ 2, we call the pair (M, g) a Lorentzian manifold if M
is an n-dimensional, Hausdorff, second countable, connected, orientable, smooth
manifold M endowed with a Lorentzian metric g.

Notice that henceforth we shall always assume that an orientation o forM has been
chosen.We could allow in principlemore than one connected component, but, at least
in this chapter, it would lead to no further insight and, thus, we avoid it for the sake
of simplicity. The Lorentzian character of g plays a distinguished role since it entails
that all spacetimes come endowed with a causal structure, which lies at the heart of
several structural properties of a free quantum field theory. More precisely, let us
start from Minkowski spacetime, M ≡ R

4, endowed with the standard Cartesian
coordinates inwhich themetric tensor reads ημν = diag(1,−1,−1,−1). Let p ∈ R

4

be arbitrary. With respect to it, we can split the set of all other points of R4 in three
separate categories: We say that q ∈ R

4 is

• timelike separated from p if the connecting vector vpq is such that η(vpq , vpq) > 0.
• lightlike separated if η(vpq , vpq) = 0.
• spacelike separated if η(vpq , vpq) < 0.

If we add to this information the possibility of saying that a point p lies in the future
(resp. in the past) ofq if x0(p) > x0(q) (resp. x0(p) < x0(q)), x0 being theCartesian
time coordinate, we can introduce I +

R4(p) and I −
R4(p), the chronological future (+)

and past (−) of p, as the collection of all points which are timelike related to p and
lie in its future (+) or in its past (−). Similarly, we define J±

R4(p) as the causal future
(+) and past (−) of p adding also the points which are lightlike related to p. Notice
that, per convention, p itself is included in both J+

R4(p) and J−
R4(p). In a language

more commonly used in theoretical physics, J+
R4(p) and J−

R4(p) are the future and

1Notice that, in this chapter, we employ the following convention for the tensor components: Latin
indices, a, b, c, . . ., are used for abstract tensor indices, Greek ones, μ, ν, . . . for coordinates, while
i, j, k are used for spatial components or coordinates.



3 Models of Free Quantum Field Theories … 77

the past light cones stemming from p. By extension, if Ω is an open subregion of
R
4 we introduce J±

R4(Ω)
.= ⋃

p∈Ω J±
R4(p). Similarly we define I ±

R4(Ω).
On a generic background, the above structures cannot be transported slavishly.

First of all, contrary to R
4, a manifold M does not have to look like a Euclidean

space globally. In order to circumvent this obstruction, one can start from a generic
point p ∈ M and consider the tangent space TpM. Using the metric g, one can
label a tangent vector v ∈ TpM according to the value of g(v, v). Specifically v is
timelike if g(v, v) > 0, lightlike if g(v, v) = 0 and spacelike if g(v, v) < 0. Hence,
we can associate to the vector space TpM a two-folded light cone stemming from
0 ∈ TpM and we have the freedom to set one of the folds as the collection of future-
directed vectors. If such choice can be made consistently in a smooth way for all
points of the manifold, we say that M is time orientable. In a geometric language
this is tantamount to requiring the existence of a global vector field on M which is
timelike at each point. Henceforth we assume that this is indeed the case and that a
time orientation t has been fixed. Notice that, as a consequence, every background
we consider is completely specified by a quadruple:

Definition 3.1.2 A spacetime M is a quadruple (M, g, o, t),where (M, g) is a time-
orientable n-dimensional Lorentzian manifold (n ≥ 2), o is a choice of orientation
onM and t is a choice of time-orientation.

The next step in the definition of a causal structure for a Lorentzian manifold
consists of considering a piecewise smooth curve γ : I → M, I = [0, 1]. We say
that γ is timelike (resp. lightlike, spacelike) if such is the vector tangent to the curve
at each point. We say that γ is causal if the tangent vector is nowhere spacelike
and that it is future (past) directed if each tangent vector to the curve is future (or
past) directed. Taking into account these structures, we can define on an arbitrary
spacetime M the chronological future and past of a point p as I ±

M(p), the collection
of all points q ∈ M such that there exists a future- (past-)directed timelike curve
γ : I → M for which γ (0) = p and γ (1) = q. In complete analogy we can
define the causal future and past J±

M(p) as well as, for any open subset Ω ⊂ M,
J±

M(Ω) = ⋃
p∈Ω J±

M(p). Similarly we define I ±
M(Ω). We will also denote the union

of the causal future J+
M(Ω) and the causal past J−

M(Ω) of Ω with JM(Ω).
The identification of a causal structure is not only an interesting fingerprint of

a spacetime, but it has also far-reaching physical consequences, as it suggests us
that not all time-oriented spacetimes should be thought as admissible. As a matter
of fact one can incur in pathological situations such as closed timelike and causal
curves, which are often pictorially associated to evocative phenomena such as time
travel. There are plenty of examples available in the literature ranging from the
so-called Gödel Universe—see for example [43]—to the Anti-de Sitter spacetime
(AdS), which plays nowadays a prominent role in many applications to high energy
physics and string theory. Let us briefly sketch the structure of the latter in arbitrary
n-dimensions, n > 2—see [32]. AdSn is a maximally symmetric solution to the
Einstein’s equations with a negative cosmological constant Λ. In other words it is
a manifold of constant curvature R = 2n

n−2Λ with the topology S
1 × R

n−1. It can
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be realized in the (n + 1)-dimensional spacetime Rn+1, endowed with the Cartesian
coordinates xμ, μ = 0, . . . , n, and with the metric g̃ = diag(1, 1,−1, . . . ,−1) as
the hyperboloid

g̃(x, x) = R2

If we consider the locus xi = 0, i = 2, . . . , n we obtain the circle (x0)2+(x1)2 = R2

togetherwith the induced line element (dx0)2+(dx1)2. In otherwordswe have found
a closed curve in AdSn whose tangent vector is everywhere timelike.

Evenwithoutmaking any contact with field theory, it is clear that scenarios similar
to the one depicted are problematic as soon as one is concerned with the notion of
causality. Therefore it is often customary to restrict the attention to a class of space-
times which avoids such quandary, while being at the same time sufficiently large
to include almost all interesting cases. These are the so-called globally hyperbolic
spacetimes. We characterize them following [52, Chap.8]. As a starting point, we
consider a spacetime M and we introduce two additional notions:

1. A subset Σ ⊂ M is called achronal if each timelike curve in M intersects Σ at
most once;

2. For any subset Σ ⊂ M, we call future (+), respectively past (−) domain of
dependence D±

M(Σ), the collection of all points q ∈ M such that every past (+),
respectively future (−) inextensible causal curve passing through q intersectsΣ .
With DM(Σ)

.= D+
M(Σ)∪D−

M(Σ)we indicate simply thedomainof dependence.

We state the following:

Definition 3.1.3 We say that M is globally hyperbolic if and only if there exists a
Cauchy surface Σ , that is a closed achronal subset of M such that DM(Σ) = M.

Notice that, as a by-product of this definition, one can conclude, not only that no
closed causal curve exists in M, but also thatM is homeomorphic to R× Σ , while
Σ is a C0, (n − 1)-dimensional submanifold of M, cf. [7, Theorem 3.17] for the
case n = 4. It is worth mentioning two apparently unrelated points: (1) in the past,
it has been often assumed that the Cauchy surface could be taken as smooth and (2)
Definition 3.1.3 does not provide any concrete mean to verify in explicit examples
whether a spacetime M is globally hyperbolic or not. Alternative characterizations
of global hyperbolicity, such as that M is strongly causal and J+

M(p) ∩ J−
M(q) is

either empty or compact for all p, q ∈ M, did not help in this respect. A key step
forward was made a decade ago by the work of Bernal and Sanchez, see [12, 13].
Their main result is here stated following the formulation of [6, Sect. 1.3]:

Theorem 3.1.4 Let M be given. The following statements are equivalent:

1. M is globally hyperbolic.
2. There exists no closed causal curve in M and J+

M(p) ∩ J−
M(q) is either compact

or empty for all p, q ∈ M.
3. (M, g) is isometric to R × Σ endowed with the line element ds2 = βdt2 − ht ,

where t : R × Σ → R is the projection on the first factor, β is a smooth and
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strictly positive function on R × Σ and t �→ ht , t ∈ R, yields a smooth one-
parameter family of Riemannian metrics. Furthermore, for all t ∈ R, {t} × Σ is
an (n − 1)-dimensional, spacelike, smooth Cauchy surface in M.

The main advantage of this last theorem is to provide an easier criterion to verify
explicitly whether a given time-oriented spacetime is globally hyperbolic. In order
to convince the reader that this class of manifolds includes most of the physically
interesting examples, we list a collection of the globally hyperbolic spacetimeswhich
are often used in the framework of quantum field theory on curved backgrounds:

• We say that a spacetime M is ultrastatic if (M, g) is isometric to R × Σ with
line element ds2 = dt2 − π∗h, where π∗h is the pullback along the projection
π : R × Σ → Σ of a metric h on Σ . M is globally hyperbolic if and only if it
is geodesically complete, that is every maximal geodesic is defined on the whole
real line—see [27]. Minkowski spacetime falls in this category.

• All Friedmann-Robertson-Walker (FRW) spacetimes are four-dimensional homo-
geneous and isotropic manifolds diffeomorphic to R × Σ with

ds2 = dt2 − a2(t)

(
dr2

1 − kr2
+ r2dS2(θ, ϕ)

)
,

where dS2(θ, ϕ) is the standard line element of the unit 2-sphere, while a(t) is a
smooth and strictly positive function depending only on time. Furthermore k is a
constant which, up to a normalization, can be set to 0, 1, −1 and, depending on
this choice, Σ is a three-dimensional spacelike manifold whose model space is
eitherR3, the 3-sphere S3 or the three dimensional hyperboloidH3. The remaining
coordinate r has a domain of definition which runs over the whole positive real
line if k = 0,−1, while r ∈ (0, 1) if k = 1. On account of [7, Theorem 3.68],
we can conclude that every Friedmann-Robertson-Walker spacetime is globally
hyperbolic.2 Notice that, in many concrete physical applications, the coordinate t
runs only on an open interval of R, but, as proven in [7, Theorem 3.69], it does
not spoil the property of being globally hyperbolic. Following a similar argument
one can draw similar conclusions when working with time oriented, homogeneous
spacetimes, which are also referred to as Bianchi spacetimes.

• A noteworthy collection of solutions of the vacuum Einstein’s equations consists
of the Kerr family which describes a rotating, uncharged, axially symmetric, four-
dimensional black hole [50]. In the so-called Boyer-Linquist chart, the underlying
line element reads as

ds2 =Δ − a2 sin2 θ

Π
dt2 + 4Mar sin2 θ

Π
dtdϕ − Π

Δ
dr2

− Πdθ2 − (r2 + a2)2 − Δa2 sin2 θ

Π
dϕ2,

2We are grateful to Zhirayr Avetisyan for pointing us out Theorem 3.68 in [7].
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where Δ = r2 − 2Mr + a2 and Π = r2 + a2 cos2 θ , while M and J = Ma
are two real parameters which are interpreted respectively as the mass and total
angular momentum of the black hole. Notice that t runs along the whole real
line, θ, ϕ are the standard coordinates over the unit 2-sphere, while r plays the
role of a radial-like coordinate. A generic Kerr spacetime possesses coordinate
horizons at r± = M ± √

M2 − a2 provided that M2 ≥ a2 and the region for
which r ∈ (r+,∞), often also known as exterior region to the black hole, is
actually a globally hyperbolic spacetime. If we set a = 0, that is the black hole
does not rotate, we recover the spherically symmetric Schwarzschild spacetime
and, consistently, the static region outside the event horizon located at r = 2M is
itself globally hyperbolic.

• Another spacetime, which is often used as a working example in quantum field
theory on curved spacetime is de Sitter (dSn), the maximally symmetric solution
to the Einstein’s equations with a positive cosmological constant Λ and n > 2. In
R

n+1 endowed bothwith the standardCartesian coordinates xμ,μ = 0, . . . , n, and
with the metric g̃ = diag(1,−1, . . . ,−1), dSn can be realized as the hyperboloid
g̃(x, x) = −R2, where R2 = (n−1)(n−2)

2Λ . After the change of coordinates x0 =
R sinh(t/R) and xi = R cosh(t/R)ei , i = 1, . . . , n, where

∑n
i=1(e

i )2 = 1, the
line element of dSn reads

ds2 = dt2 − R2 cosh2(t/R) dS2(e1, . . . , en),

where dS2(e1, . . . , en) represents the standard line element of the unit (n − 1)-
sphere and t runs along the whole real line. Per direct inspection we see that dSn

is diffeomorphic to an n-dimensional version of a Friedmann-Robertson-Walker
spacetime with compact spatial sections and it is globally hyperbolic.

Since in the next section we will be interested in functions from a globally hyper-
bolic spacetime to a suitable target vector space and in their support properties, we
conclude the section with a useful definition:

Definition 3.1.5 Let M be a globally hyperbolic spacetime and V a finite dimen-
sional vector space. We call

(0) C∞
0 (M; V ) the space of smooth and compactly supported V -valued functions

on M,
(sc) C∞

sc (M; V ) the space of smooth and spacelike compact V -valued functions
onM, that is f ∈ C∞

sc (M; V ) if there exists a compact subset K ⊂ M such that
supp f ⊂ JM(K ),

( f c/pc) C∞
f c(M; V ) the space of smooth and future compact V -valued functions

on M, that is f ∈ C∞
f c(M; V ) if supp f ∩ J+

M(p) is compact for all p ∈ M.
Mutatismutandis, we shall also considerC∞

pc(M; V ), namely the space of smooth
and past compact V -valued functions on M,

(tc) C∞
tc (M; V )

.= C∞
f c(M; V ) ∩ C∞

pc(M; V ) the space of smooth and timelike
compact V -valued functions on M.
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3.2 On Green Hyperbolic Operators

Globally hyperbolic spacetimes play a pivotal role, not only because they do not
allow for pathological situations, such as closed causal curves, but also because they
are the natural playground for classical and quantum fields on curved backgrounds.
More precisely, the dynamics of most (if not all) models, we are interested in, is
either ruled by or closely related to wave-like equations. Also motivated by physics,
we want to construct the associated space of solutions by solving an initial value
problem. To this end we need to be able to select both an hypersurface on which to
assign initial data and to identify an evolution direction. In view of Theorem 3.1.4,
globally hyperbolic spacetimes appear to be indeed a natural choice. Goal of this
section will be to summarize the main definitions and the key properties of the class
of partial differential equations, useful to discuss the models that we shall introduce
in the next sections. Since this is an overkilled topic, we do not wish to make any
claim of being complete and we recommend to an interested reader to consult more
specialized books and papers for more details. We suggest for example [33–36], the
more recent [54] and also [6], on which most of this section is based; moreover,
notice that, several examples of Green hyperbolic operators can be found in [4, 5],
while a remarkable extension of their domain of definition, which we shall implicitly
assume, is available in [2].

As a starting point we introduce the building block of any classical and quantum
field theory:

Definition 3.2.1 A vector bundle of rank k < ∞ over an n-dimensional smooth
manifold M (base space) is specified by F ≡ F(M, π, V ), where F , (the total
space), is a smooth manifold of dimension n + k, V (the typical fiber) is a k-
dimensional vector space and π : F → M is a smooth surjective map. Furthermore
we require that:

1. There exists a vector space isomorphism between V and each fiber Fp
.= π−1(p),

p ∈ M,
2. For each p ∈ M there exists an openneighbourhoodU � p and adiffeomorphism

Ψ : π−1(U ) → U ×V such thatπ1◦Ψ = π onπ−1(U ), whereπ1 : U ×V → U
is the projection on the first factor of the Cartesian product;

3. The restriction of Ψ to each fiber is an isomorphism of vector spaces.

The pair (U, Ψ ) fulfilling these conditions is called a local trivialization of E .

Notice that throughout the text we shall use the word vector bundle atlas, meaning
a collection of local trivializations of F coveringM. We will not discuss the theory
of vector bundles and, for more details, refer to [37]. The only exceptions are the
following two definitions:

Definition 3.2.2 Let F = F(M, π, V ) be a vector bundle and let N be a submani-
fold ofM.We call restriction of F to N the vector bundle F |N ≡ F̃ = F̃(N , π ′, V ),
where F̃ = π−1(N ) and π ′ : F̃ → N is defined by π ′( f ) = π( f ) for all f ∈ F̃ .
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Definition 3.2.3 Let F = F(M, π, V ) be a vector bundle. We call dual bundle F∗
the vector bundle over M whose fiber over p ∈ M is (F∗)p = (Fp)

∗, the dual
vector space to Fp.

We say that a vector bundle F is (globally) trivial if there exists a fiber preserving
diffeomorphism from F to the Cartesian productM×V restricting to a vector space
isomorphism on each fiber. In practice, this corresponds to a trivialization of F which
is defined everywhere, to be compared with the notion of a local trivialization as per
Definition 3.2.1. Most of the examples we shall consider in this chapter come from
globally trivial vector bundles. Bear in mind, however, that one of the canonical
examples of a vector bundle, namely the tangent bundle TM to a manifold M,
is not trivial in general, e.g., when M = S

2. It is also noteworthy that, given any
two vector bundles F = F(M, π, V ) and F ′ = F ′(M, π ′, V ′), we can construct
naturally a third vector bundle, the bundle of homomorphisms Hom(F, F ′) over the
base spaceM. Its fiber over a base point p ∈ M is Hom(Fp, F ′

p), which is a vector
space isomorphic to the vector space Hom(V, V ′) of homomorphism from V to
V ′. If F ′ = F , then we shall write End(F) for Hom(F, F ′) and call it bundle of
endomorphisms, whose typical fiber is End(V ).

Another structure which plays a distinguished role is the following:

Definition 3.2.4 Given a vector bundle F , we call space of smooth sections Γ (F) =
{σ ∈ C∞(M; F) | π ◦ σ = idM}, where idM : M → M is the identity map. By
generalizing Definition 3.1.5, the subscripts 0, sc, f c/pc and tc shall refer to those
sections whose support is respectively compact, spacelike compact, future or past
compact and timelike compact.

Notice that Γ (F) is an infinite-dimensional vector space and, whenever F is
trivial, it is isomorphic to C∞(M; V ). The next structure, which we introduce, will
play an important role in the construction of an algebra of observables for a free
quantum field on a curved background:

Definition 3.2.5 Let F be a vector bundle on a manifoldM. Denote with F ×M F
the fibered product of bundles obtained taking the Cartesian product fiberwise. A
non-degenerate inner product on F is a smooth map · : F ×M F → R such that

1. the restriction of · to Fp × Fp is a bilinear form for each p ∈ M,
2. v ∈ Fp vanishes if v · w = 0 for all w ∈ Fp.

Furthermore, if · is symmetric on each fiber, we call it Bosonic, if it is antisymmetric,
we call it Fermionic.

Since we consider only spacetimes M = (M, g, o, t), the orientation of M is
fixed by o and therefore we can introduce the metric-induced volume form dvolM on
M. Then, any inner product as in Definition 3.2.5 induces a non-degenerate pairing
between smooth sections and compactly supported smooth sections of F :

(·, ·) : Γ0(F) × Γ (F) → R, (σ, τ ) �→ ∫
M(σ · τ) dvolM . (3.1)
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Since we will make use of it later in this chapter, notice that, (3.1) is still meaningful
if we consider τ, σ ∈ Γ (F) with supp (τ ) ∩ supp (σ ) compact.

We have all ingredients to start addressing the main point of this section, namely
partial differential equations. The building block is the following:

Definition 3.2.6 Let F = F(M, π, V ) and F ′ = F ′(M, π ′, V ′) be two vector
bundles of rank k and k′ respectively over the same manifold M. A linear partial
differential operator of order at most s ∈ N0 is a linear map L : Γ (F) → Γ (F ′)
such that, for all p ∈ M, there exist both a coordinate neighborhood (U, Φ) centered
at p, local trivializations (U, Ψ ) and (U, Ψ ′) respectively of F and of F ′, as well as
a collection of smooth maps Aα : U → Hom(V ; V ′) labeled by multi-indices for
which, given any σ ∈ Γ (F), on U one has

Lσ =
∑
|α|≤s

Aα ∂ασ.

Notice that herewe are implicitly using both the coordinate chartΦ and the trivializa-
tionsΨ andΨ ′; moreover, the sum runs over all multi-indices α = (α0, . . . , αn−1) ∈
N

n
0 such that |α| .= ∑n−1

μ=0 αμ ≤ s and ∂α = ∏n−1
μ=0 ∂

αμ
μ , where ∂0, . . . , ∂n−1 are the

partial derivatives with respect to the coordinates x0, . . . , xn−1 coming from the
chart (U, Φ). Furthermore, L is of order s ∈ N0 when it is of order at most s, but
not of order at most s − 1.

Notice that linear partial differential operators cannot enlarge the support of a
section, a property which will be often used in the rest of this chapter. Another
related and useful concept intertwines linear partial differential operators with the
pairing (3.1):

Definition 3.2.7 Consider a spacetime M = (M, g, o, t). Let F = E(M, π, V )

and let F ′ = F ′(M, π ′, V ′) be two vector bundles over the manifold M, both
endowed with a non-degenerate inner product. Denote the pairings defined in (3.1)
for F and for F ′ respectively with (·, ·)F and (·, ·)F ′ . Let L : Γ (F) → Γ (F ′) be
a linear partial differential operator. We call formal adjoint of L the linear partial
differential operator L∗ : Γ (F ′) → Γ (F) such that, for allσ ∈ Γ (F) and τ ∈ Γ (F ′)
with supports having compact overlap, the following identity holds:

(L∗τ, σ )F ′ = (τ, Lσ)F .

If F = F ′, we say that L is formally self-adjoint whenever L∗ coincides with L .

Existence of L∗ is a consequence of Stokes theorem and uniqueness is instead due
to the non-degeneracy of the pairing (·, ·)F ′ .

Definition 3.2.6 accounts for a large class of operators, most of which are not
typically used in the framework of field theory, especially because they cannot be
associated to an initial value problem. In order to select a relevant class for our
purposes, we introduce a useful concept—see also [6, 33]:
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Definition 3.2.8 Let F = F(M, π, V ) and F ′ = F ′(M, π ′, V ′) be two vector
bundles over the same manifoldM and let L : Γ (F) → Γ (F ′) be any linear partial
differential operator of order s as per Definition 3.2.6. We call principal symbol of
L the map σL : T ∗M → Hom(F, F ′) locally defined as follows: For p ∈ M,
mimicking Definition 3.2.6, consider a coordinate chart around p ∈ M and local
trivializations of F and of F ′ and, for all ζ ∈ T ∗

pM, set

σL(ζ ) =
∑
|α|=s

Aα(p)ζ α,

where ζ α = ∏n−1
μ=0 ζ

αμ
μ and ζμ are the components of ζ with respect to the chosen

chart. Furthermore, given aLorentzianmanifold (M, g),we call a secondorder linear
partial differential operator P : Γ (F) → Γ (F) normally hyperbolic if σP (ζ ) =
g(ζ, ζ ) idFp for all p ∈ M and all ζ ∈ T ∗

p M.

In order to better grasp the structure of a normally hyperbolic operator P , we
can write it in a local coordinate frame following both Definitions 3.2.6 and 3.2.8.
Let thus p be in M and (U, Φ) be a chart centered at p where the vector bundle F
is trivial. There exist both A and Aμ, μ = 0, . . . , n − 1, smooth maps from U to
End(V ) such that, for any σ ∈ Γ (F), on U one has

Pσ = gμν idV ∂μ∂νσ + Aμ ∂μσ + A σ,

where both the chart and the vector bundle trivializations are understood. One imme-
diately notices that locally this expression agrees up to terms of lower order in the
derivatives with the one for the d’Alembert operator acting on sections of F con-
structed out of a covariant derivative ∇ on F , that is the operator �∇ = gμν∇μ∇ν :
Γ (F) → Γ (F). Therefore, one realizes that normally hyperbolic operators provide
the natural generalization of the usual d’Alembert operator. Besides this remark,
Definition 3.2.8 becomes even more important if we assume, moreover, that the
underlying background is globally hyperbolic. In fact, in this case we can associate
to each normally hyperbolic operator P an initial value problem (also known as
Cauchy problem). As a matter of fact, in view both of Definition 3.1.3 and of The-
orem 3.1.4, initial data can be assigned on each Cauchy surface and the following
proposition shows the well-posedness of the construction:

Proposition 3.2.9 Let M = (M, g, o, t) be a globally hyperbolic spacetime and
Σ ⊂ M any of its spacelike, smooth Cauchy surfaces together with its future-
pointing unit normal vector field n. Consider any vector bundle F overM, a normally
hyperbolic operator P : Γ (F) → Γ (F), and a P-compatible3 covariant derivative
∇ on F. Let F |Σ be the restriction of F to Σ as per Definition 3.2.2. Then, for any
J ∈ Γ (F) and for any u0, u1 ∈ Γ (F |Σ), the following initial value problem admits
a unique solution u ∈ Γ (F):

3A covariant derivative ∇ on F is P-compatible if there exists a section A ∈ Γ (End(F)) such that
�∇ + A = P .
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Pu = J on M,

u = u0 on Σ,

∇nu = u1 on Σ.

(3.2)

Furthermore, if we set Ω = supp u0 ∪ supp u1 ∪ supp J , then supp u ⊂ JM(Ω).

The proof of this proposition has been given in different forms in several books,
e.g. [6, 26] and [3, Sect. 3.5.3]. Notice that the Cauchy problem (3.2) is not linear
since we allow for a non-vanishing source term. For pedagogical reasons, we shall
henceforth consider only the case J = 0 although the reader should keep in mind
that such constraint is not really needed and a treatment especially of quantization
in this scenario has been given in [11] and further refined in [24].

The characterization of all smooth solutions of the equation Pu = 0 represents
the first step in outlining a quantization scheme for a free field theory. To this end one
does not consider directly the Cauchy problem (3.2), but rather exploits a notable
property of normally hyperbolic operators, namely the fact that on any globally
hyperbolic spacetime they come together with Green operators. Here we introduce
them paying particular attention to the domain where they are defined. The reader
should keep in mind that our presentation slightly differs in comparison for example
to [6] and we make use of results which are presented in [2, 26, 48]:

Definition 3.2.10 Let M = (M, g, o, t) be a globally hyperbolic spacetime and
consider a vector bundle F overM. Furthermore, let L : Γ (F) → Γ (F) be a linear
partial differential operator.We call retarded (+) and advanced (−) Green operators
two linear maps

E+ : Γpc(F) → Γ (F), E− : Γ f c(F) → Γ (F), (3.3)

fulfilling the properties listed below:

1. For any f ∈ Γpc(F), it holds L E+ f = f = E+L f and supp (E+ f ) ⊂
J+

M(supp f ),
2. For any f ∈ Γ f c(F), it holds L E− f = f = E−L f and supp (E− f ) ⊂

J−
M(supp f ).

The operator E
.= E− − E+ : Γtc(F) → Γ (F) will be referred to as advanced-

minus-retarded operator. A linear partial differential operator admitting both E+
and E− will be called Green hyperbolic.

Notice that in the literature the symbols E± are often written as G±, while the
operator E is also called causal propagator. We avoid this nomenclature since, from
time to time, it is also used for completely different objects and we wish to avoid
a potential source of confusion for the reader. In view of the application of this
material to some specific field theoretical models, see Sect. 3.3, we introduce now
the canonical integral pairing 〈λ·, ·〉 between the sections of a vector bundle F and
those of its dual F∗. This is defined by integrating over the basemanifold the fiberwise
pairing between F∗ and F :
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〈 f ′, f 〉 .=
∫
M

f ′( f ) dvolM , (3.4)

where f ∈ Γ (F) and f ′ ∈ Γ (F∗) have supports with compact overlap. Notice that
the formula above provides non-degenerate bilinear pairings between Γ0(F∗) and
Γ (F) and between Γ (F∗) and Γ0(F). In turn, this pairing allows for the following
definition:

Definition 3.2.11 Let M = (M, g, o, t) be a globally hyperbolic spacetime and
consider a vector bundle F over M and its dual F∗. Furthermore, let L : Γ (F) →
Γ (F) be a partial differential operator. We call formal dual the linear partial differ-
ential operator L� : Γ (F∗) → Γ (F∗) defined through (3.4) via

〈L� f ′, f 〉 = 〈 f ′, L f 〉, (3.5)

where f ∈ Γ (F) and f ′ ∈ Γ (F∗) have supports with compact overlap.

Notice that, if F is endowed with a non-degenerate inner product as per Definition
3.2.5, then we can identify F with F∗. Via this identification (3.4) becomes (3.1).

Proposition 3.2.12 Let M = (M, g, o, t) be a globally hyperbolic spacetime
and consider a vector bundle F over M and its dual F∗. Furthermore, let both
L : Γ (F) → Γ (F) and its formal dual L� : Γ (F∗) → Γ (F∗) be Green hyper-
bolic operators, whose retarded and advanced Green operators are E± and E�±
respectively. Then, for all f ∈ Γ0(F) and f ′ ∈ Γ0(F∗), it holds that

〈E�∓ f ′, f 〉 = 〈 f ′, E± f 〉,

where 〈·, ·〉 is the pairing defined in (3.4).

Proof The statement is a consequence of the following chain of equalities, which
holds true for arbitrary f ′ ∈ Γ0(F�) and f ∈ Γ0(F):

〈E�∓ f ′, f 〉 = 〈E�∓ f ′, L E± f 〉 = 〈L�E�∓ f ′, E± f 〉 = 〈 f ′, E± f 〉.

From the definition, L admits left-inverses E+ and E− on sections with past
(respectively future) compact support. In other words L is injective thereon. As a
consequence, E+ and E− are uniquely specified by their support properties and
by the condition of being also right-inverses of L on Γpc(F) and respectively on
Γ f c(F).

Lemma 3.2.13 Let M = (M, g, o, t) be a globally hyperbolic spacetime. Consider
a vector bundle F over M endowed with a non-degenerate inner product as per
Definition 3.2.5. Furthermore, let both L : Γ (F) → Γ (F) and its formal adjoint
L∗ : Γ (F) → Γ (F) be Green hyperbolic operators. Then, calling E± and E∗±
their respective retarded and advanced Green operators, the identity

(E∗∓ f ′, f ) = ( f ′, E± f )

holds for all f ′ ∈ Γ0(F) and f ∈ Γ0(F).
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Proof Since F is endowed with a non-degenerate inner product, (3.4) reduces to
(3.1) upon identification of F∗ with F . Furthermore the formal dual of L coincides
with its formal adjoint under this identification, i.e. L� = L∗. Hence we are falling
in the hypotheses of Proposition 3.2.12, from which the sought result follows.

Notice that all normally hyperbolic operators are Green hyperbolic. This result
follows from [2, 6]. In the latter reference the retarded and advanced Green opera-
tors for a normally hyperbolic operator are shown to exist, although with a smaller
domain compared to the one we consider here, while in the first one the domains
are uniquely extended, thus fulfilling the requirement of our Definition 3.2.10. Let
us stress that there are physically interesting partial differential operators which are
Green hyperbolic, but not normally hyperbolic. The most notable example is the
Dirac operator which will be discussed in Sect. 3.3.2. The reader should also keep in
mind that some authors are calling Green hyperbolic an operator which fulfills the
hypotheses of Proposition 3.2.12 or of Lemma 3.2.13—see for example [2].

The usefulness of both retarded and advanced Green operators becomes manifest
as soon as one notices that, to every timelike compact section f of a vector bundle F
we can associate a solution of the linear equation Lu = 0 as u = E f = E− f −E+ f .
Yet, before concluding that we have given a characterization of all solutions, we need
a few additional data:

Lemma 3.2.14 Let M = (M, g, o, t) be a globally hyperbolic spacetime. Consider
a vector bundle F over M and a Green hyperbolic operator L : Γ (F) → Γ (F).
Let E± be the retarded and advanced Green operators for L and denote with E
the corresponding advanced-minus-retarded operator. Then f ∈ Γtc(F) is such that
E f = 0 if and only if f = Lh for some h ∈ Γtc(F). Furthermore, f ∈ Γtc(F) is
such that L f = 0 if and only if f = 0 and, moreover, for any f ∈ Γ (F) there exists
h ∈ Γ (F) such that Lh = f .

Proof On account of Definition 3.2.10, it holds that E Lh = 0 for all h ∈ Γtc(F),
thus we need only to show that, given f ∈ Γtc(F) such that E f = 0, then there exists
h ∈ Γtc(F) such that f = Lh. Taking any such f , E f = 0 implies that E− f =
E+ f . The support properties of the retarded and advanced Green operators entail
that supp (E− f ) ⊂ J+(supp f )∩ J−(supp f ). In other words h = E− f ∈ Γtc(F).
If we apply the operator L , it holds Lh = L E− f = f .

Suppose now that there exists f ∈ Γtc(F) such that L f = 0. By applying either
the retarded or the advanced Green operators we obtain, f = E±L f = 0.

To conclude the proof, consider f ∈ Γ (F). Taking a partition of unity {χ+, χ−}
on M such that χ± = 1 on a past/future compact region,4 one can introduce h =
E+(χ+ f ) + E−(χ− f ) ∈ Γ (F). Since χ+ + χ− = 1 everywhere, Lh = f as
claimed.

4A partition of unity such as the one described exists on account of Theorem 3.1.4. In fact, after
splitting the globally hyperbolic spacetime M in the Cartesian product of R and a spacelike Cauchy
surface Σ and for any choice of t± ∈ R with t− < t+, one can introduce a partition of unity
{χ+, χ−} on R such that χ±(t) = 1 for ±t ≥ ±t±. Pulling this partition of unity back to M along
the projection on the time factor t : M → R, one obtains a partition of unity on M of the sought
type.
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In view of this last result, we can finally characterize the space of solutions of
Lu = 0 via the advanced-minus-retarded operator—see also [53]:

Theorem 3.2.15 Let M = (M, g, o, t) be a globally hyperbolic spacetime. Con-
sider a vector bundle F over M and let L : Γ (F) → Γ (F) be a Green hyperbolic
operator. Let E± be the retarded and advanced Green operators for L and denote
with E the corresponding advanced-minus-retarded operator. The map presented
below is a vector space isomorphism between Sol, the vector space of smooth solu-
tions of the linear partial differential equation Lu = 0, u ∈ Γ (F), and the quotient
of Γtc(F) by the image of L acting on Γtc(F):

Γtc(F)

L(Γtc(F))
→ Sol, [ f ] �→ E f, (3.6)

where f ∈ Γtc(F) is any representative of the equivalence class [ f ] in the quotient.

Proof Let us notice that the advanced-minus-retarded operator E : Γtc(F) → Γ (F)

induces the soughtmap fromΓtc(F)/L(Γtc(F)) toSol. On account of Lemma 3.2.14
the image does not depend on the representative of [ f ] and u = E f is a solution of
Lu = 0. This map is injective since, given f, f ′ ∈ Γtc(E) such that E f = E f ′, per
linearity of E and applying Lemma 3.2.14, one finds h ∈ Γtc(E) such that Lh =
f − f ′. In other words f and f ′ are two representatives of the same equivalence class
in Γtc(F)/L(Γtc(F)), which entails injectivity. Only surjectivity is still to be proven.
Given u ∈ Sol and taking into account a partition of unity {χ+, χ−} onM such that
χ± = 1 in a past/future compact region, one finds L(χ+u + χ−u) = Lu = 0,
therefore h = L(χ−u) = −L(χ+u) is timelike compact. Exploiting the properties
of retarded and advanced Green operators, one concludes the proof:

Eh = E−L(χ−u) + E+L(χ+u) = χ−u + χ+u = u.

It might be useful to summarize the content of Lemma 3.2.14 and of Theorem
3.2.15 with the following exact sequence:

0 −→ Γtc(F)
L−→ Γtc(F)

E−→ Γ (F)
L−→ Γ (F) −→ 0.

We remind the reader that this is simply a symbolic way of stating that the kernel of
each of the arrows depicted above coincides with the image of the preceding one.

Although the last theorem provides a complete characterization of the solutions of
the partial differential equation associated to a Green hyperbolic operator, we need
to introduce and to study a vector subspace of Sol which will play a distinguished
role in the analysis of explicit models.

Proposition 3.2.16 Let M = (M, g, o, t) be a globally hyperbolic spacetime. Con-
sider a vector bundle F over M and let L : Γ (F) → Γ (F) be a Green hyperbolic
operator. Let E± be the retarded and advanced Green operators for L and denote
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with E the corresponding advanced-minus-retarded operator. Then the following
statements hold true:

1. If f ∈ Γ0(F) is such that L f = 0, then f = 0;
2. If f ∈ Γ0(F) is such that E f = 0, then there exists h ∈ Γ0(F) such that Lh = f ;
3. For each h ∈ Γsc(F) there exists f ∈ Γsc(F) such that L f = h.

Furthermore, let Solsc ⊂ Sol be the vector subspace whose elements are smooth
and spacelike compact solutions of Lu = 0. Then the map presented below is an
isomorphism between Solsc and the quotient of Γ0(F) by the image of L acting on
Γ0(F):

Γ0(F)

L(Γ0(F))
→ Solsc, [ f ] �→ E f, (3.7)

where f ∈ Γ0(F) is any representative of the equivalence class [ f ] in the quotient.

Proof The proof follows slavishly those of Lemma 3.2.14 and of Theorem 3.2.15
and therefore we shall not repeat it in details. One has only to keep in mind that E
maps sections with compact support to sections with spacelike compact support and
that the intersection between a spacelike compact region and a timelike compact one
is compact.

In terms of an exact sequence, this last proposition translates to

0 −→ Γ0(F)
L−→ Γ0(F)

E−→ Γsc(F)
L−→ Γsc(F) −→ 0. (3.8)

Spacelike compact solutions to a linear partial differential equation are also note-
worthy since, under certain additional assumptions, they can be naturally endowed
with an additional structure which plays a key role in the construction of the algebra
of observables for a Bosonic/Fermionic free quantum field theory—see also [6, 31,
40, 41, 53].

Proposition 3.2.17 Let M = (M, g, o, t) be a globally hyperbolic spacetime. Con-
sider a vector bundle F over M endowed with a non-degenerate inner product as
per Definition 3.2.5. Let L : Γ (F) → Γ (F) be a formally self-adjoint Green hyper-
bolic operator and denote with E± the corresponding retarded and advanced Green
operators and with E the associated advanced-minus-retarded operator. Then the
map presented below defines a non-degenerate bilinear form on Γ0(F):

τ : Γ0(F)

L(Γ0(F))
× Γ0(F)

L(Γ0(F))
→ R, ([ f ], [ f ′]) �→ ( f, E f ′) (3.9)

where (·, ·) is the pairing defined in (3.1), while f ∈ [ f ] and f ′ ∈ [ f ′] are two
arbitrary representatives. Furthermore, τ is a symplectic form in the Bosonic case,
namely when the inner product on F is symmetric, while it is a scalar product in the
Fermionic case, namely when the inner product on F is anti-symmetric.
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Proof Notice that the definition of the map τ is well-posed since it does not depend
on the choice of representatives. In fact, on the one hand, E Lh = 0 for all h ∈
Γ0(F) and, on the other hand, L is formally self-adjoint. From its definition, it
immediately follows that τ is bilinear. Let us show that it is also non-degenerate.
Suppose f ∈ Γ0(F) is such that τ([ f ], [ f ′]) = 0 for all f ′ ∈ Γ0(F). This means
that −(E f, f ′) = ( f, E f ′) = 0 for all f ′ ∈ Γ0(F). Here we exploited the fact that
L is formally self-adjoint, therefore Lemma 3.2.13 holds with L∗ = L . Since the
pairing (·, ·) between Γ (F) and Γ0(F) is non-degenerate, one deduces that E f = 0.
Recalling also (3.8), it follows that f lies in L(Γ0(F)), meaning that [ f ] = 0.
Similarly, one can show non-degeneracy in the other argument too. To conclude
the proof, suppose that we are in the Bosonic (Fermionic) case, namely we have
a · b = (−)b · a for all p ∈ M and all a, b ∈ Fp. Therefore, τM is anti-symmetric
(symmetric) as the following chain of identities shows:

−τ([ f ], [ f ′]) = −( f, E f ′) = (E f, f ′) = (−)( f ′, E f ) = (−)τ ([ f ′], [ f ]).
(3.10)

Note that we exploited the formal self-adjointness of L in the first place and then
also the symmetry (anti-symmetry) of ·.

Notice that, in the literature it is also customary to denote τ([ f ], [ f ′]) with
E( f, f ′).

3.3 Classical and Quantum Field Theory

In this section we shall construct the classical field theories and their quantum
counterparts for three models, namely the real scalar field, the Proca field and the
Dirac field. We shall consider an arbitrary, but fixed, globally hyperbolic spacetime
M = (M, g, o, t) as the background for the dynamical evolution of the fields under
analysis. For each model, we shall introduce a suitable class of sufficiently well-
behaved functionals defined on the space of classical field configurations. The goal
is to find functionals which can be thought of as classical observables in the sense
that one can extract any information about a given field configuration by means of
these functionals and, moreover, each of them provides some information which
cannot be detected by any other functional. Note that the approach we adopt allows
for extensions in several directions. In fact, it has been followed both in the context
of affine field theories [11] as well as for gauge field theories [8–10]. Even when a
space of classical observables complying with these requirements has been found,
a symplectic structure is still needed in order to have the full data describing our
classical field theory. This structure will be induced in a natural way by the partial
differential equation ruling the dynamics. The reasons for the need of a symplectic
structure aremanifold. Conceptually, the analogywith classical mechanics motivates
chiefly this requirement; at a practical level, instead, this is a bit of information which
is needed to step-up a quantization scheme for the models, we are interested in.
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3.3.1 The Real Scalar Field

As mentioned above, let us fix once and for all a globally hyperbolic spacetime M =
(M, g, o, t), which provides the background where to specify the field equation.

3.3.1.1 Classical Field Theory

For the real scalar case, the off-shell field configurations are real-valued smooth func-
tions onM. This means that, before imposing the field equation, the relevant space
of configurations is C∞(M). As a starting point, we introduce linear functionals on
C∞(M) as follows: Given f ∈ C∞

0 (M), we denote by F f : C∞(M,R) → R the
map defined below:

F f (φ) =
∫
M

f φ dvolM , (3.11)

where dvolM is the standard volume form on M = (M, g, o, t) defined out of its ori-
entation o and of its metric g. Notice that the above definition of a functional makes
use of the usual non-degenerate bilinear pairing between C∞

0 (M) and C∞(M). It
is a well-known result of functional analysis that this pairing is non-degenerate. This
has two important consequences: First, the map f ∈ C∞

0 (M) �→ F f implicitly
defined by (3.11) is injective, thus allowing us to identify the space of functionals
{F f : f ∈ C∞

0 (M)} with C∞
0 (M). Second, the class of functionals considered

so far is rich enough to separate off-shell configurations, namely, given two dif-
ferent configurations φ,ψ ∈ C∞(M), there exists always f ∈ C∞

0 (M) such that
F f (φ) �= F f (ψ). In fact, this is equivalent to the following statement, which follows
from the non-degeneracy of the bilinear pairing between C∞

0 (M) and C∞(M): If
φ ∈ C∞(M) is such that F f (φ) = 0 for all f ∈ C∞

0 (M), then φ = 0. Phrased
differently, we are saying that, off-shell functionals of the form F f , cf. (3.11), are
faithfully labeled by f ∈ C∞

0 (M). Later we shall restrict functionals to dynamically
allowed field configurations. This restriction will break the one-to-one correspon-
dence between functionals F f and f ∈ C∞

0 (M).
So far, we did not take into account the dynamics of the real scalar field. This is

specified by the following partial differential equation:

�Mφ + (m2 + ξ R)φ = 0, (3.12)

where ξ ∈ R, R stands for the scalar curvature built out of g, m2 is a real number
while �M = gab∇a∇b : C∞(M) → C∞(M) is the d’Alembert operator on M
defined out of the metric g via the associated Levi-Civita connection ∇. Notice
that in this chapter we are not imposing any constraint on the sign of the mass term
since it plays no role. Yet, in the other chapters, onemight force additional conditions
motivated especially by the physical interpretation of the model. When φ ∈ C∞(M)

is a solution of equation (3.12), we say that φ is an on-shell field configuration. For
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convenience, we introduce the differential operator P = �M + m2 + ξ R, so that
(3.12) reduces to Pφ = 0. We collect all on-shell field configurations in a vector
space:

Sol = {φ ∈ C∞(M) : Pφ = 0} ⊂ C∞(M).

It is important to mention that the second order linear differential operator P is
formally self-adjoint, cf. Definition 3.2.7, meaning that, for each φ,ψ ∈ C∞(M)

with supports having compact intersection, one has

∫
M

Pφ ψ dvolM =
∫
M

φ Pψ dvolM . (3.13)

This identity follows from a double integration by parts. Furthermore, P is normally
hyperbolic. This entails that P admits unique retarded and advanced Green operators
E+ and E−, see [2, 6, 54]. In particular, it is a Green hyperbolic operator as per
Definition 3.2.10.

Since the functionals F f are sufficiently many to separate points in C∞(M), this
is also the case for Sol, the latter being a subspace of C∞(M). We already achieved
our first requirement to define classical observables. In fact, the functionals F f can
detect any information about on-shell field configurations. Specifically, two on-shell
configurations φ,ψ ∈ Sol coincide if and only if the outcome of their evaluation is
the same on all functionals, namely F f (φ) = F f (ψ) for all f ∈ C∞

0 (M). Yet, it is
the case that some of the functionals considered give no information when evaluated
onSol in the sense that their evaluation on an on-shell configuration always vanishes.
Here is an explicit example.

Example 3.3.1 Consider f ∈ C∞
0 (M). Clearly P f is a smooth function with

compact support, therefore it makes sense to consider the linear functional FP f :
C∞(M) → R. Just reading out (3.13), one gets FP f (φ) = F f (Pφ) for all
φ ∈ C∞(M). In particular, it follows that FP f (φ) = 0 for all φ ∈ Sol, thus
FP f vanishes of Sol.

The example above shows that functionals of the form F f , after the restriction
to Sol, are no longer faithfully labeled by f ∈ C∞

0 (M). In fact, there are indeed
redundant functions inC∞

0 (M), which provide the same functional onSol, an exam-
ple being provided by 0 and P f , for any f ∈ C∞

0 (M). According to our second
requirement, to identify a suitable space of classical observables, one has to get rid
of such redundancies. Therefore, one identifies two functions f and h in C∞

0 (M)

if F f (φ) = Fh(φ) for all φ ∈ Sol, thus restoring a faithful labeling for functionals
on solutions. This result can be easily achieved as follows. First, one introduces the
subspace of those smooth functions with compact support providing functionals on
C∞(M) whose restriction to Sol vanishes:

N = { f ∈ C∞
0 (M) : F f (φ) = 0, ∀φ ∈ Sol} ⊂ C∞

0 (M). (3.14)
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Notice that, according to Example 3.3.1, P(C∞
0 (M)), the image of C∞

0 (M) via P ,
is a subspace of N .5 Therefore, we can take the quotient of C∞

0 (M) by N , resulting
in a new vector space:

E = C∞
0 (M)/N . (3.15)

An equivalence class [ f ] ∈ E yields a functional F[ f ] : Sol → R specified by
F[ f ](φ) = F f (φ) for any on-shell configuration φ ∈ Sol and for any choice of a
representative f of the class [ f ]. F[ f ] is well-defined on account of the definition
of N and of the fact that it is evaluated on solutions only. Furthermore, by construc-
tion, these functionals are in one-to-one correspondence with points in E , therefore
equivalence classes [ f ] ∈ E faithfully label functionals of the type F[ f ] : Sol → R.
Since the quotient by N does not affect the property of separating points in Sol, we
conclude that E has the properties required to be interpreted as a space of classical
observables, namely by evaluation it can distinguish different on-shell configurations
and, moreover, there are no redundancies since different points of E provide different
functionals onSol. This motivates the fact that we shall refer to [ f ] ∈ E as a classical
observable for the real scalar field.

Remark 3.3.2 Besides implementing non-redundancy (essentially by definition), the
quotient by N , corresponds to go on-shell at the level of functionals. Contrary to the
functionals in (3.11), which were defined not only on the subspace Sol of on-shell
configurations, but also on all of off-shell fields, an equivalence class [ f ] ∈ E
provides a functional F[ f ], which is well-defined only on Sol. In fact, for φ ∈
C∞(M) \ Sol, F f (φ) depends on the choice of the representative f ∈ [ f ]. Thus
E defines functionals on Sol ⊂ C∞(M) only. In this sense, the quotient by N
implements the on-shell condition at the level of functionals.

Remark 3.3.3 Before dealing with the problem of endowing E with a suitable sym-
plectic structure, we would like to point out that N = P(C∞

0 (M)). In fact, take
f ∈ C∞

0 (M) such that F f (φ) = 0 for allφ ∈ Sol. According to Theorem 3.2.15, the
advanced-minus-retarded operator E : C∞

tc (M) → C∞(M) associated to P maps
surjectively ontoSol. Therefore, we can rephrase our condition on f as F f (Eh) = 0
for all h ∈ C∞

tc (M). Exploiting (3.11) and recalling Lemma 3.2.13, one reads

F f (Eh) =
∫
M

f Eh dvolM = −
∫
M

E f h dvolM .

According to the hypothesis, the integral on the right-hand-side has to vanish for all
h ∈ C∞

tc (M), hence E f = 0. In fact, it would be enough to consider h ∈ C∞
0 (M) to

come to this conclusion. Recalling the properties of E again, one finds f ′ ∈ C∞
0 (M)

such that P f ′ = f , thus showing that f ∈ N implies f ∈ P(C∞
0 (M)). Since

the inclusion P(C∞
0 (M)) ⊂ N follows from Example 3.3.1, we conclude that

N = P(C∞
0 (M)) as claimed.

5In Remark 3.3.3, we shall show that, in the case of the real scalar field, N = P(C∞
0 (M)). More

generally, using the same argument, one can prove an analogous result for any field whose dynamics
is ruled by a Green hyperbolic operator.
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Up to now, a vector space E providing functionals on Sol has been determined
such that points in Sol can be distinguished by evaluation on these functionals and,
moreover, E does not contain redundancies, meaning that the map which assigns to
[ f ] ∈ E the functional F f : Sol → R is injective. Yet, to get the classical field theory
of the scalar field, a symplectic structure6 on E naturally induced by the field equation
is still needed. For the following construction we shall need the tools developed
in Sect. 3.2. Let E+ and E− denote the retarded and advanced Green operators
associated to P = �M + m2 + ξ R and consider the corresponding advanced-
minus-retarded operator E = E− − E+. On account of Remark 3.3.3, we have that
E = C∞

0 (M)/P(C∞
0 (M)). Therefore, applying Proposition 3.2.17, we obtain a

symplectic structure on E :

τ : E × E → R, ([ f ], [h]) �→ F f (Eh) =
∫

M
f Eh dvolM , (3.16)

where f and h are arbitrary representatives of the equivalence classes [ f ] and respec-
tively [h] in E . The pair (E, τ ) is the symplectic space of observables describing the
classical theory of the real scalar field on the globally hyperbolic spacetime M and
it is the starting point for the quantization scheme that we shall discuss in the next
section. As a preliminary step we discuss some relevant properties.

Theorem 3.3.1 Consider a globally hyperbolic spacetime M = (M, g, o, t) and
let (E, τ ) be the symplectic space of classical observables defined above for the real
scalar field. The following properties hold:

Causality The symplectic structure vanishes on pairs of observables localized
in causally disjoint regions. More precisely, let f, h ∈ C∞

0 (M) be such that
supp f ∩ JM(supp h) = ∅. Then τ([ f ], [h]) = 0.

Time-slice axiom Let O ⊂ M be a globally hyperbolic open neighborhood
of a spacelike Cauchy surface Σ for M, namely O is an open neighborhood
of Σ in M containing all causal curves for M whose endpoints lie in O. In
particular, the restriction of M to O provides a globally hyperbolic spacetime
O = (O, g|O, o|O, t|O). Denote with (EM , τM) and with (EO , τO) the symplec-
tic spaces of observables for the real scalar field respectively over M and over
O. Then the map L : EO → EM defined by L[ f ] = [ f ] for all f ∈ C∞

0 (O) is an
isomorphism of symplectic spaces.7

Proof Let us start from the causality property and take f, h ∈ C∞
0 (M) such that their

supports are causally disjoint. Recalling the definition of τ given in (3.16), one has
τ([ f ], [h]) = F f (Eh). Taking into account the support properties of the advanced-
minus-retarded operator E , one deduces that supp (Eh) is included in JM(supp h),

6Even though the term “symplectic structure” is mathematically correct, it would be more appropri-
ate to refer to this as a constant Poisson structure. Yet, we shall adhere to the common nomenclature
of quantum field theory on curved spacetimes.
7The function in the right-hand-side of the equation which defines L is the extension by zero to the
whole spacetime of the function appearing in the left-hand-side.
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which does not intersect the support of f per assumption. Since F f (Eh) is the integral
of the pointwise product of f with Eh, see (3.11), τ([ f ], [h]) = F f (Eh) = 0 as
claimed.

For the time-slice axiom, consider a globally hyperbolic open neighborhood
O ⊂ M of a spacelike Cauchy surface for M and consider the globally hyper-
bolic spacetime O = (O, g|O, o|O, t|O). The same construction applied to M and
to O provides the symplectic spaces (EM , τM) and respectively (EO , τO). The func-
tion f ∈ C∞

0 (O) can be extended by zero to the whole M and we denote it still
by f with a slight abuse of notation; moreover, for each h ∈ C∞

0 (O), the extension
of Ph = �Oh + m2h + ξ R is of the form Ph = �M h + m2h + ξ R, where now
h ∈ C∞

0 (M) denotes the extension of the original h ∈ C∞
0 (O). These observations

entail that the map L : EO → EM specified by L[ f ] = [ f ] for all f ∈ C∞
0 (O) is

well-defined. Note that L is linear and that it preserves the symplectic form. In fact,
given [ f ], [h] ∈ EO , one has

τM(L[ f ], L[h]) =
∫
M

f Eh dvolM =
∫
O

f Eh dvolO = τO([ f ], [h]),

where the restriction fromM toO in the domain of integration ismotivated by the fact
that, per construction, f = 0 outsideO. Being a symplectic map, L is automatically
injective. In fact, given [ f ] ∈ EO such that L[ f ] = 0, one has τO([ f ], [h]) =
τM(L[ f ], L[h]) = 0 for all [h] ∈ EO and the non-degeneracy of τO entails that
[ f ] = 0. It remains only to check that L is surjective. To this end, starting from any
f ∈ C∞

0 (M), we look for f ′ ∈ C∞
0 (M)with support insideO such that [ f ′] = [ f ]

in EM . Recalling that O is an open neighborhood of the spacelike Cauchy surface
Σ and exploiting the usual space-time decomposition of M, see Theorem 3.1.4, one
finds two spacelike Cauchy surfacesΣ+,Σ− for M included inO lying respectively
in the future and in the past of Σ . Let {χ+, χ−} be a partition of unity subordinate
to the open cover {I +

M(Σ−), I −
M(Σ+)} ofM. By construction the intersection of the

supports of χ+ and of χ− is a timelike compact region both of O and of M. Since
P E f = 0, χ+ +χ− = 1 onM and recalling the support properties of E , it follows
that f ′ = P(χ−E f ) = −P(χ+E f ) is a smooth function with compact support
inside O. Furthermore, recalling also the identity P E− f = f , one finds

f ′ − f = P(χ−E− f ) − P(χ−E+ f ) − P(χ+E− f ) − P(χ−E− f )

= P(−χ−E+ f − χ+E− f ).

The support properties of both the retarded and advanced Green operators E+, E−
entail that −χ−E+ f − χ+E− f is a smooth function with compact support onM.
In fact suppχ∓ ∩ supp (E± f ) is a closed subset of J∓

M(Σ±) ∩ J±
M(supp f ), which

is compact. This shows that f ′ − f ∈ P(C∞
0 (M)) ⊂ N , see also Example 3.3.1.

Therefore we found [ f ′|O] ∈ EO such that L[ f ′|O] = [ f ] showing that, besides
being injective, the symplectic map L is also surjective and hence an isomorphism
of symplectic spaces.



96 M. Benini and C. Dappiaggi

Remark 3.3.4 We comment briefly on the apparently different approach, which is
often presented in the literature. In fact, in place of the pair (E, τ ), it is quite common
to consider Solsc, the space of solutions with spacelike compact support, endowed
with the following symplectic structure:

σ : Solsc × Solsc → R, (φ, ψ) �→
∫
Σ

(φ∇nψ − ψ∇nφ) dΣ, (3.17)

where Σ is a spacelike Cauchy surface for the globally hyperbolic spacetime
M = (M, g, o, t), n is the future-pointing unit normal vector field on Σ , and dΣ
is the induced volume form on Σ .8 Notice that the integrand in (3.17) is implic-
itly meant to be restricted to Σ . Exploiting the fact that only solutions of the field
equation are considered, one can prove that σ does not depend on the choice of
the spacelike Cauchy surface Σ . The restriction to the subspace of solutions with
spacelike compact support guarantees that the argument of the integral in (3.17) is an
integrable function. We outline below an isomorphism of symplectic spaces between
(E, τ ) and (Solsc, σ ):

I : E → Solsc, [ f ] �→ E f, (3.18)

where f ∈ C∞
0 (M) is any representative of [ f ] ∈ E and E denotes the advanced-

minus-retarded operator associated to the differential operator P = �M +m2 + ξ R,
which rules the dynamics of the real scalar field. The map I is a by-product of
Proposition 3.2.16 as soon as we remind that in (3.15) N = P(C∞

0 (M)), as shown
in Remark 3.3.3. It remains only to check that σ(E f, Eh) = τ([ f ], [h]) for all
f, h ∈ C∞

0 (M). Recalling that φ = E f and ψ = Eh are both solutions of the field
equation, namely Pφ = 0 and Pψ = 0, by means of a double integration by parts,
one gets the following:

∫
M

f Eh dvolM =
∫

J+
M (Σ)

f ψ dvolM +
∫

J−
M (Σ)

f ψ dvolM

=
∫

J+
M (Σ)

(P E− f )ψ dvolM +
∫

J−
M (Σ)

(P E+ f )ψ dvolM

= −
∫
Σ

(∇n(E− f ))ψ dΣ +
∫
Σ

(E− f )∇nψ dΣ

+
∫
Σ

(∇n(E+ f ))ψ dΣ −
∫
Σ

(E+ f )∇nψ dΣ

=
∫
Σ

(φ∇nψ − ψ∇nφ) dΣ.

(3.19)

8The volume form dΣ onΣ is defined out of the structure induced onΣ itself as a submanifold of
the globally hyperbolic spacetime M. More explicitly, on Σ we take the Riemannian metric g|Σ
and the orientation specified by the orientation and time-orientation of M. Then dΣ is the natural
volume form defined out of these data.
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In the first step, we decomposed the integral by splitting the domain of integration
into two subsets whose intersection has zero measure. The second step consisted of
exploiting the properties of the retarded and advanced Green operators E+ and E−
for P . Using E∓ inside the integral over J±

M(Σ) allows us to integrate by parts twice.
For each integral, this operation produces two boundary terms and an integral which
vanishes since the integrand contains Pψ = 0. Adding together the four boundary
terms, one concludes that σ(I [ f ], I [h]) = τ([ f ], [h]) as expected.

3.3.1.2 Quantum Field Theory

The next step consists of constructing a quantum field theory for the real scalar field
out of the classical one, whose content is encoded in the symplectic space (E, τ ).
This result is obtained by means of a construction that can be traced back to [14,
29, 51], while the generalization to curved backgrounds has been discussed from an
axiomatic point of view first in [19]. The so-called algebraic approach can be seen
as a two-step quantization scheme: First, one identifies a suitable unital ∗-algebra
encoding the structural relations between the observables, such as causality and
locality; second, one selects a state, that is a positive, normalized, linear functional
on the algebra, which allows us to recover the standard probabilistic interpretation
of quantum theories via the GNS theorem. We will focus only on the first step for
three different models of free fields, while the second will be at the heart of Chap. 5.
We consider the unital ∗-algebra A generated over C by the symbols 11 and Φ([ f ])
for all [ f ] ∈ E and satisfying the following relations for all [ f ], [g] ∈ E and for all
a, b ∈ R:

Φ(a[ f ] + b[g]) = aΦ([ f ]) + bΦ([g]), (3.20)

Φ([ f ])∗ = Φ([ f ]), (3.21)

Φ([ f ]) · Φ([h]) − Φ([h]) · Φ([ f ]) = iτ([ f ], [h])11. (3.22)

More concretely, one can start introducing an algebra A consisting of the vector space⊕
k∈N0

E⊗k
C

obtained as the direct sumof all the tensor powers of the complexification

EC of the vector space E , where we have set E⊗0
C

= C. Therefore, elements of A

can be seen as sequences {vk ∈ E⊗k
C

}k∈N0 with only finitely many non-zero terms.
Each vk in the sequence is a finite linear combination with C-coefficients of terms
of the form [ f1] ⊗ · · · ⊗ [ fk] for [ f1], . . . , [ fk] ∈ E . A is endowed with the product
· : A × A → A specified by

{uk} · {vk} = {wk}, wk =
∑

i+ j=k

ui ⊗ v j . (3.23)

So far, A is an algebra whose generators satisfy (3.20). We specify an involution
∗ : A → A by setting

http://dx.doi.org/10.1007/978-3-319-21353-8_5
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{0, . . . , 0︸ ︷︷ ︸
k times

, [ f1] ⊗ [ f2] ⊗ · · · ⊗ [ fk ], 0, . . .}∗ = {0, . . . , 0︸ ︷︷ ︸
k times

, [ fk ] ⊗ [ fk−1] ⊗ · · · ⊗ [ f1], 0, . . .},

for all [ f1], . . . , [ fk] ∈ E , and extending it by antilinearity to the whole of A. There-
fore, A is now a ∗-algebra implementing the relation (3.21) too. It is straightforward
to realize that the identity of the ∗-algebra A is 11 = {1, 0, . . .}, hence A is also unital.
Note that an arbitrary element of A can be obtained as a finite C-linear combination
of 11 and of finite products of elements of the form {0, [ f ], 0, . . .} ∈ A, which are
in one-to-one correspondence with elements of E . To match the notation used in the
more abstract setting, let us introduce the map Φ : E → A, [ f ] �→ {0, [ f ], 0, . . .},
which embeds E into A. The ∗-algebra A already “knows” of the dynamics of the real
scalar field since this is already encoded in E , however, the canonical commutation
relations (CCR) (3.22) are still missing. Therefore, using the symplectic structure τ

on E , we introduce the two-sided ∗-ideal I of A generated by terms of the form

Φ([ f ]) · Φ([h]) − Φ([h]) · Φ([ f ]) − iτ([ f ], [h])11,

for all [ f ], [h] ∈ E . Taking the quotient of A by I , one obtains the unital ∗-algebra
A = A/I implementing the canonical commutation relations for the real scalar
field. Note that, with a slight abuse of notation, we shall denote withΦ([ f ]) also the
equivalence class in A of any generator Φ([ f ]) of A, thus completely matching the
notation used in the abstract definition of A as the unital ∗-algebra generated by E
over C implementing the relations (3.20)–(3.22). Note in particular that (3.22) is the
smeared version of the usual commutation relations. Thismotivates our interpretation
of A as the quantum field theory for the real scalar field on M.

Remark 3.3.5 Before proceeding with the analysis of the properties of the quantum
field theory for the real scalar field, we would like to emphasize that, under suitable
conditions, our quantization procedure perfectly agrees with the standard textbook
quantization involving creation and annihilation operators. In fact, assuming that M
is Minkowski spacetime, one can relate directly our algebraic approach to the one
more commonly used bymeans of an expansion in Fourier modes of the fundamental
quantum fields Φ([ f ]), which generate the algebra A. In particular, one recovers
the usual commutation relations between creation and annihilation operators out
of the canonical commutation relations specified in (3.22)—see for example [53].
This argument should convince the reader that the approach presented above is a
very effective extension to arbitrary globally hyperbolic spacetimes of the usual
quantization procedure for Minkowski spacetime.

The properties of the classical field theory presented in Theorem 3.3.1 have coun-
terparts at the quantum level as shown by the following theorem.

Theorem 3.3.2 Consider a globally hyperbolic spacetime M = (M, g, o, t) and
letA be the unital ∗-algebra of observables for the real scalar field introduced above.
The following properties hold:
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Causality Elements of the algebra A localized in causally disjoint regions com-
mute. More precisely, let f, h ∈ C∞

0 (M) be such that supp f ∩ JM(supp h) = ∅.
Then Φ([ f ]) · Φ([h]) = Φ([h]) · Φ([ f ]).

Time-slice axiom Let O ⊂ M be a globally hyperbolic open neighborhood
of a spacelike Cauchy surface Σ for M, namely O is an open neighborhood
of Σ in M containing all causal curves for M whose endpoints lie in O. In
particular, the restriction of M to O provides a globally hyperbolic spacetime
O = (O, g|O, o|O, t|O). Denote with AM and with AO the unital ∗-algebras
of observables for the real scalar field respectively over M and over O. Then
the unit-preserving ∗-homomorphism Φ(L) : AO → AM , Φ([ f ]) �→ Φ(L[ f ])
is an isomorphism of ∗-algebras, where L denotes the symplectic isomorphism
introduced in Theorem 3.3.1.

Proof The quantumversion of the causality property follows directly from the classi-
cal version and the canonical commutation relations. In fact, taking f, h ∈ C∞

0 (M)

with causally disjoint supports, one has τ([ f ], [h]) = 0 due to Theorem 3.3.1.
Recalling the canonical commutation relations (3.22), one has Φ([ f ]) · Φ([h]) −
Φ([h]) · Φ([ f ]) = iτ([ f ], [h])11 = 0 as claimed.

Also the time-slice axiom follows directly from its classical counterpart. In fact,
setting Φ(L)Φ([ f ]) = Φ(L[ f ]) for each generator Φ([ f ]) of the unital ∗-algebra
AO uniquely defines a unital ∗-homomorphism Φ(L) : AO → AM . Consider the
inverse of L , which exists since the classical time-slice axiom states that L is a
symplectic isomorphism, see Theorem 3.3.1. The same construction applied to L−1

provides the unital ∗-homomorphism Φ(L−1) : AM → AO . If Φ(L−1) inverts
Φ(L) on all generators Φ([ f ]) of A, then Φ(L−1) is the inverse of Φ(L) and thus
Φ(L) is a∗-isomorphism.Therefore, for all generatorsΦ([ f ]) ofA, we have to check
the identities Φ(L)Φ(L−1)Φ([ f ]) = Φ([ f ]) and Φ(L−1)Φ(L)Φ([ f ]) = Φ([ f ]).
But these are obvious consequences of the definitions of Φ(L) and of Φ(L−1).
Therefore Φ(L) is a ∗-isomorphism.

3.3.2 The Dirac Field

In this section we present the classical and quantum theory of the Dirac field on a
globally hyperbolic spacetime. In analogy with the scalar case, we shall discuss first
the classical model and later develop the corresponding quantum field theory imple-
menting canonical anti-commutation relations. Note that, unlike the scalar case, to
implement anti-commutation relations, we shall need a Hermitian structure in place
of a symplectic one. Contrary to the real scalar field, the geometry of the space
where the Dirac field takes its values requires much more attention. This will be
the first topic of our presentation, providing the framework to write down the Dirac
equation. Afterwards, we shall construct a suitable space of classical observables
for on-shell configurations of the Dirac field. As in the previous case, we look for
a space of sections that, by means of integration, provides functionals on on-shell
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configurations. Again, we will be guided by the requirement that the functionals
obtained must be able to detect any on-shell configuration (separability). A quotient
will remove all redundancies which might be present in the chosen space of sec-
tions. Separability and non-redundancy motivate our interpretation of this quotient
as providing a space of classical observables for the Dirac field. To complete the
classical part, we shall endow our space of observables with a Hermitian structure,
which will be used to quantize the classical model, eventually leading to an algebra
of observables implementing the usual anti-commutation relations for the Dirac field
on a globally hyperbolic spacetime. Some references discussing the quantum Dirac
field on globally hyperbolic spacetimes are [17, 20, 25, 47, 55].

3.3.2.1 Kinematics and Dynamics

Contrary to the case of the real scalar field, to specify the natural environment for
the Dirac field, it is not enough to consider a globally hyperbolic spacetime M =
(M, g, o, t). In fact, to introduce the kinematics of the Dirac field, one needs more
data, namely a spin structure on M.

Definition 3.3.3 Let M = (M, g, o, t) be an n-dimensional globally hyperbolic
spacetime. Denote with F M the principal SO0(1, n − 1)-bundle of oriented and
time-oriented frames on M, where SO0(1, n − 1) denotes the component connected
to the identity of the proper Lorentz groupSO(1, n−1) in n dimensions. Furthermore,
consider the spin group Spin(1, n −1), namely the double cover of SO(1, n −1) and
denote withΛ : Spin(1, n −1) → SO(1, n −1) the covering group homomorphism.
Let us also indicate the component connected to the identity of Spin(1, n − 1) with
Spin0(1, n − 1). A spin structure on M consists of a pair (SM, π), where the spin
bundle SM is a principal Spin0(1, n − 1)-bundle, and the spin frame projection
π : SM → F M is a bundle map covering the identity on the base and intertwining
the right group actions of Spin0(1, n−1) on SM and of SO0(1, n−1) on F M , namely
such that π(p S) = π(p)Λ(S) for all p ∈ SM and for all S ∈ Spin0(1, n − 1),
where the group actions are denoted by juxtaposition.

Unfortunately, a spin structure does not always exist on globally hyperbolic space-
times of arbitrary dimension and, even if it does, it might be non-unique. In fact, in
general, there are topological obstructions both to existence and to uniqueness [42,
Sect. 2.2]. Yet, four-dimensional globally hyperbolic spacetimes, the most relevant
case to physics, always admit a spin structure, even though this need not be unique.
First, all spin bundles over a four-dimensional globally hyperbolic spacetime are
trivial on account of [38, Sect. 3]. Second, all orientable three-manifolds are par-
allelizable, see [44]. Since any four-dimensional globally hyperbolic spacetime M
can be presented as the product of a real line (time) and an oriented 3-manifold
(spatial Cauchy surface), see Theorem 3.1.4, it follows that it is parallelizable. In
particular, there exists a global section ε of the principal bundle F M, which consists
of an ordered quadruple (εμ) of no-where vanishing orthonormal vector fields on
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M whose orientation is chosen in order to agree with the orientation and the time-
orientation of M. In particular, this entails that F M is trivial, a trivialization being
specified by the global frame ε itself. In fact, F M � M×SO0(1, 3) via the principal
bundle map (x, λ) ∈ M× SO0(1, 3) �→ (ε(x), λ) ∈ F M. Since both SM and F M
are trivial for all four-dimensional globally hyperbolic spacetimes M, it follows that
the freedom in the choice of the spin structure actually resides only in that of the
spin frame projection π : SM → F M, which, in turn, reduces to choosing a smooth
SO0(1, 3)-valued function overM. In fact, all possible spin projections between the
trivial principal bundles SM and F M are of the form

π : SM � M × Spin0(1, 3) → F M � M × SO0(1, 3),

(x, S) �→ (x, f (x)Λ(S)),

for some f ∈ C∞(M,SO0(1, 3)).
Once a spin structure (SM, π) has been chosen on the four-dimensional globally

hyperbolic spacetime M, at a kinematic level, a Dirac field is defined to be a section
of the vector (Dirac) bundle DM = SM ×T C

4 with typical fiber C4 associated to

the principal Spin0(1, 3)-bundle SM via the Dirac representation T = D
1
2 ,0 ⊕ D0, 12

of Spin0(1, 3) on C
4.9 Since SM is trivial, all its associated bundles are such, thus

motivating the more direct definition of the spinor and cospinor bundles given below.

Definition 3.3.4 Let M = (M, g, o, t) be a four-dimensional and globally hyper-
bolic spacetime.We define the spinor bundle DM as the trivial vector bundle M×C

4,
while the cospinor bundle D∗ M is its dual M × (C4)∗.

At this stage, one can talk about spinors and cospinors as sections of DM and
respectively of D∗ M. In fact, both bundles being trivial, spinors and cospinors are
just smooth functions on M taking values in either C4 or (C4)∗. Yet, to construct
physical quantities out of spinors, such as scalars or currents, and to write down the
Dirac equation, one still needs γ -matrices.

Definition 3.3.5 Consider the four-dimensional Minkowski space M
4 = (R4, η).

The Dirac algebra D is the unital algebra generated over R by an orthonormal basis
{�μ}μ=0,...,3 of M4 and satisfying the relation �μ �ν + �ν �μ = 2ημν11.

A choice of the γ -matrices amounts to fixing an irreducible complex representa-
tion of the Dirac algebraD on the algebraM(4,C) of four-by-four complexmatrices.
In fact, any choice of γ0, . . . , γ3 ∈ M(4,C) satisfying γμγν + γνγμ = 2ημν14 for
all μ, ν = 0, 1, 2, 3 induces an irreducible representation ρ : D → M(4,C) defined
by ρ(�μ) = γμ. Here 14 denotes the four-by-four identity matrix. Note that different
choices of the γ -matrices induce equivalent representations [45], hence the same
physical description. Yet, to be concrete, we shall consider a specific representation,
namely the chiral one. Therefore we consider the following family of γ -matrices:

9Note that the Dirac representation T is usually regarded as a unitary representation of SL(2,C)

on C
4, yet Spin(1, 3) is isomorphic to SL(2,C) as a Lie group.
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γ0 =
(
02 12
12 02

)
, γi =

(
02 σi

σi 02

)
, i = 1, 2, 3. (3.24)

where 02, 12 and {σi }i=1,2,3 respectively denote the zero matrix, the identity matrix
and the Pauli matrices in M(2,C). As one can directly check, the γ -matrices of our
choice satisfy the following relations:

γμγν + γνγμ = 2ημν14, μ, ν = 0, . . . , 3,

γ
†
0 = γ0, γ

†
i = −γi , i = 1, 2, 3,

γμ = −γ2γμγ
−1
2 γ0ρ(n) > 0,

(3.25)

n is any future pointing timelike vector in M
4, (·) denotes the complex conjugation

of each entry, (·)T is the transpose of a matrix and (·)† = (·)T . Since we defined the
spinor bundle DM as a trivial bundle over M with fiber C4, we can interpret the
γ -matrices as endomorphisms of this bundle:

γμ : DM → DM, (x, σ ) �→ (x, γμσ). (3.26)

Note that the action of the γ -matrices on cospinors is obtained by composing γμ :
DM → DM on the right. In fact, one can read the cospinors bundle D∗ M as a bundle
whose fibers are C-linear functionals on the corresponding fiber of DM. Therefore
it is natural to express the action of γμ on D∗ M as (x, ω) ∈ D∗ M �→ (x, ω) ◦ γμ =
(x, ω ◦ γμ) ∈ D∗ M. For simplicity, in the following the composition will be left
understood. Let us also mention that, the γ -matrices being invertible, see (3.25), the
induced vector bundle maps are actually isomorphisms. In particular, by means of
the γ -matrices, one can introduce complex anti-linear vector bundle isomorphisms
covering the identity which implement adjunction and charge conjugation:

A : DM → D∗ M, (x, σ ) �→ (x, σ †γ0), (3.27)

Cs : DM → DM, (x, σ ) �→ (x, γ2σ), (3.28)

Cc : D∗ M → D∗ M, (x, ω) �→ (x, ωγ2), (3.29)

From (3.25) one can show that A intertwinesCs andCc up to a sign, namely A◦Cs =
−Cc ◦ A.

Furthermore, let us fix an oriented, orthochronous, orthonormal co-frame e =
(eμ)μ=0,...,3 on M once and for all. The eμ’s are no-where vanishing one-forms on
M which allow to completely reconstruct the structure of the globally hyperbolic
spacetime M = (M, g, o, t): g = ημνeμ ⊗ eν , o = [e0 ∧ · · · ∧ e3] and t = [e0],
where the square brackets are used to indicate the (time-)orientation induced by the
enclosed form. Fixing e is completely equivalent to the choice of a frame ε = (εμ),
namely a section of the frame bundle F M. In fact, ε can be obtained from e setting
εμ = ημν(eν) and similarly e can be obtained from ε as eμ = ημνε

!
ν , where (·) and

(·)! are the canonical g-induced isomorphism which lower and raise the indices of
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tensors on M, while η denotes the metric of Minkowski space M4. Using the fixed
co-frame e of M, one can specify a one-form γ overM taking values in the bundle
of endomorphisms of the spinor bundle DM:

γ : TM → End(DM), v �→ eμ(v)γμ. (3.30)

Note that {eμ(v) ∈ R}μ=0,...,3 are the components of v ∈ Tx M with respect to the
frame ε obtained raising the indices of the fixed co-frame e, namely v = eμ(v)εμ.

To write down the Dirac equation, the last necessary ingredient is a suitable
covariant derivative on the spinor and cospinor bundles. Abstractly, one could
start from the Levi-Civita connection, which is a principal bundle connection on
the frame bundle F M. Exploiting the spin structure (SM, π ), one can pull-back
the Levi-Civita connection form along π and then lift it along the double cover
Λ : Spin0(1, 3) → SO0(1, 3) to obtain a 1-form on SM taking values in so(1, 3) the
Lie algebra of both SO0(1, 3) and Spin0(1, 3). This procedure actually provides a
principal bundle connection on SM. Thinking of the spinor bundle as a vector bundle
associated to SM, a covariant derivative is naturally induced from the connection on
SM. This covariant derivative is the one relevant to the Dirac field. Yet, motivated
by the fact that SM is trivial (and hence so is any associated bundle), we preferred
to define directly the spinor bundle as a suitable trivial vector bundle. Following
this approach, it seems more appropriate to define the covariant derivative on DM
explicitly:

∇ : Γ (TM) ⊗ Γ (DM) → Γ (DM), (X, σ ) �→ ∇Xσ = ∂Xσ + 1

4
XμΓ

ρ
μνγργ

νσ,

(3.31)

where σ is regarded as a smooth C
4-valued function on M, Xμ = eμ(X) are

the components of X in the fixed frame and Γ
ρ
μν = eρ(∇εμεν) are the Christoffel

symbols of the Levi-Civita connection with respect to the given frame. The covariant
derivative is naturally extended to cospinors by imposing the identity

∂X (ω(σ )) = (∇Xω)(σ ) + ω(∇Xσ),

for each vector field X ∈ Γ (TM), for each spinor field σ ∈ Γ (DM) and for each
cospinor ω ∈ Γ (D∗ M). We extend further ∇ to mixed spinor-tensor fields via the
Leibniz rule. As an example, we show that ∇γ = 0, the computation being carried
out using frame components:

∇εμγ = −Γ ρ
μνeν ⊗ γρ + 1

4
Γ σ
μνeρ ⊗ [γσ γ ν, γρ]

= −Γ ρ
μνeν ⊗ γρ + 1

4
Γ σ
μνeρ ⊗ (γσ {γ ν, γρ} − {γσ , γρ}γ ν)

= −1

2
Γ ρ
μνeν ⊗ γρ − 1

2
Γ σ
μτ ησνη

τρeν ⊗ γρ = 0.

(3.32)
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To conclude, we exploited the identity Γ σ
μνηρσ + Γ σ

μρηνσ = 0, which follows from
∇g = 0 written in frame components. Notice that [·, ·] and {·, ·} are used here to
denote respectively the commutator and the anti-commutator of matrices.

Using the covariant derivatives both for spinors and for cospinors, together with
our choice of the γ -matrices, we can introduce the first order linear differential
operators /∇s : Γ (DM) → Γ (DM) and /∇c : Γ (D∗ M) → Γ (D∗ M) defined
according to

/∇sσ = Tr g(γ ∇σ), ∀σ ∈ Γ (DM), (3.33)

/∇cω = Tr g(∇ω γ ), ∀ω ∈ Γ (D∗ M), (3.34)

where Tr g denotes the metric-contraction of the covariant two-tensor γ ∇σ taking
values in DM and similarly for∇ω γ ∈ Γ (T ∗M⊗ T ∗M⊗ D∗ M). With respect to
the fixed frame (εμ)μ=0,...,3 (3.33) reads /∇sσ = ημνγμ∇εν while, using the abstract
tensor notation, one has /∇sσ = gabγa∇bσ . Similar considerations apply to /∇c.

We can now write down the Dirac equation both for spinors and for cospinors in
the usual form:

i /∇sσ − mσ = 0, −i /∇cω − mω = 0. (3.35)

For convenience, we introduce the differential operators Ps = i /∇s − m idΓ (DM) for
spinors and Pc = −i /∇s − m idΓ (D∗ M) for cospinors. Exploiting the properties of
the γ -matrices listed in (3.25), and taking into account the action of the adjunction
(3.27) and of the charge conjugations (3.28) and (3.29) on sections, one can easily
prove that A ◦ Ps = Pc ◦ A, Cs ◦ Ps = Ps ◦ Cs and Cc ◦ Pc = Pc ◦ Cc.

To investigate the properties of theDirac equation,we introduce an integral pairing
between sections of the spinor bundle DM and sections of its dual D∗ M. For each
pair of sections ω ∈ Γ (D∗ M) and σ ∈ Γ (DM) such that suppω ∩ supp σ is
compact, we define

〈ω, σ 〉 =
∫
M

ω(σ) dvolM .

This pairing is per construction linear in both arguments. Since the adjunction A
maps spinors to cospinors, we can use it to form integral pairings between spinors
and between cospinors:

(σ, τ )s = 〈Aσ, τ 〉, (ω, ζ )c = 〈ζ, A−1ω〉, (3.36)

where σ, τ ∈ Γ (DM) are such that the intersection of their supports is compact and
ω, ζ ∈ Γ (D∗ M) satisfy the same condition. Notice that, due to the anti-linearity
of A, both pairings defined above are linear in the second argument and anti-linear
in the first. Furthermore, it is easy to check that (·, ·)s induces a Hermitian form
on Γ0(DM). In fact, given σ, τ ∈ Γ (DM) such that their supports have compact
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overlap, one has σ †(γ0τ) = τ T (γ T
0 σ), hence, using also the identity γ

†
0 = γ0, one

deduces that

(σ, τ )s =
∫
M

σ †(γ0τ) dvolM =
∫
M

τ †(γ0σ) dvolM = (τ, σ )s. (3.37)

Similarly, (·, ·)c induces a Hermitian form on Γ0(D∗ M).
Using the properties (3.25), one realizes that γ : Γ (DM) → Γ (DM) is for-

mally self-adjoint with respect to (·, ·)s. Similarly, γ : Γ (D∗ M) → Γ (D∗ M) has
the same property with respect to (·, ·)c. Furthermore, both /∇s and /∇c coincide
with their formal adjoints with respect to (·, ·)s and respectively to (·, ·)c up to the
sign and, moreover, still up to the sign, they are formal duals of each other with
respect to 〈·, ·〉. Specifically, consider any pair of spinors σ, τ ∈ Γ (DM), any pair
of cospinors ω, ζ ∈ Γ (D∗ M) and any pair formed by a spinor υ ∈ Γ (DM) and a
cospinor # ∈ Γ (D∗ M). Assume that the supports of the sections in each pair have
compact overlap. Then the following identities hold:

( /∇sσ, τ)s = −(σ, /∇sτ)s, ( /∇cω, ζ )c = −(ω, /∇cζ )c, 〈 /∇c#,υ〉 = −〈#, /∇sυ〉.
(3.38)

For the sake of clarity, below we prove the first identity. The proof of the others is
analogous.

( /∇sσ, τ)s + (σ, /∇sτ)s =
∫
M

Tr g

((
A(γ ∇σ)

)
(τ ) + (Aσ)(γ ∇τ)

)
dvolM

=
∫
M

Tr g

((∇(Aσ)
)
(γ τ) + (Aσ)

(∇(γ τ)
))

dvolM

=
∫
M

Tr g

(
∇(

(Aσ)(γ τ)
))

dvolM

=
∫
M

d ∗ (
(Aσ)(γ τ)

) = 0,

(3.39)
where we used (3.25), the Leibniz rule, the identity ∇γ = 0 proved in (3.32) and
Stokes’ theorem.We remind the reader that d is the exterior derivative for differential
forms over M, while ∗ denotes the Hodge star operator defined out of the metric
g and out of the orientation o of the globally hyperbolic spacetime M. From the
identities in (3.38) it follows that both Ps and Pc are formally self-adjoint differential
operators. Therefore, it is enough to exhibit retarded and advanced Green operators
for each of them to conclude that those are unique, see Lemma 3.2.13, and that Ps
and Pc are Green hyperbolic, see Definition 3.2.10. Furthermore, Proposition 3.2.12
entails that the retarded/advanced Green operator for Pc is the formal dual of the
advanced/retarded Green operator for Ps. To construct the Green operators we are
interested in, we observe that /∇2

s = /∇s ◦ /∇s and /∇2
c = /∇c ◦ /∇c are both normally

hyperbolic operators. Consider for example /∇2
s . For each σ ∈ Γ (DM), one has the

following:
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/∇2
sσ = γ μ∇εμ(γ

ν∇εν σ ) = γ μγ ν∇εμ∇εν σ

= −γ νγ μ∇εμ∇εν σ + 2ημν∇εμ∇εν σ

= −γ νγ μ(∇εν∇εμσ + ∇εμ∇εν σ − ∇εν∇εμσ ) + 2ημν∇εμ∇εν σ

= − /∇2
sσ + 2�∇σ + 1

2
Rσ.

(3.40)

Notice that the last computation has been performed with respect to the chosen
co-frame e = (eμ)μ=0,...,3. �∇ : Γ (DM) → Γ (DM) denotes the d’Alembert
operator constructed out of the connection ∇, while R is the scalar curvature. Let
us also mention that, for the last equality in the computation above, we used the
first Bianchi identity and the anti-commutation relations between the γ -matrices.
Therefore, one concludes that /∇2

s = �∇ + R/4, hence it is normally hyperbolic, cf.
Definition 3.2.8.

Proposition 3.3.6 Let M = (M, g, o, t) be a four-dimensional globally hyperbolic
spacetime together with a co-frame e = (eμ)μ=0,...,3. The first order linear differ-
ential operators Ps : Γ (DM) → Γ (DM) and Pc : Γ (D∗ M) → Γ (D∗ M), which
rule the dynamics of spinors and respectively of cospinors, are formally self-adjoint
with respect to (·, ·)s and respectively to (·, ·)c. Furthermore, they are both Green
hyperbolic. In particular, their retarded and advanced Green operators are given by

E±
s = PsF±

s , E±
c = PcF±, (3.41)

where F+
s and F−

s denote the retarded and advanced Green operators for the Green
hyperbolic operator P2

s = PsPs : Γ (DM) → Γ (DM), while F+ and F− denote
those corresponding to the Green hyperbolic operator P2

c = PcPc : Γ (D∗ M) →
Γ (D∗ M).

Proof Formal self-adjointness of Ps follows directly from (3.38). In fact, the minus
sign which appears while integrating by parts /∇s is reabsorbed by the imaginary
unit while passing from one argument of (·, ·)s to the other due to anti-linearity in
the first argument of the pairing. A similar argument shows that also Pc is formally
self-adjoint with respect to (·, ·)c.

It is enough to exhibit retarded and advancedGreen operators to conclude that both
Ps and Pc are Green hyperbolic, cf. Definition 3.2.10. Specifically, in the following
we shall prove that the operators introduced in (3.41) are actually the sought Green
operators. We focus on the case of spinors, the other being completely analogous.
First of all, we prove that the formally self-adjoint operator P2

s is Green hyperbolic as
claimed. In fact, on account of the identity /∇2

s = �∇ + R/4, which is a consequence
of (3.40), one concludes that P2

s = − /∇2
s − 2im /∇s + m2. Therefore, according to

Definition 3.2.8,−P2
s is normally hyperbolic, hence it admits retarded and advanced

Green operators, see [2] and [6, Chap. 3]. Reversing the sign, one gets retarded
and advanced Green operators F+

s and F−
s for P2

s , thus showing that P2
s is Green

hyperbolic. To conclude the proof, we show that E+
s = PsF+

s and E−
s = PsF−

s are
retarded and advanced Green operators for Ps. The support properties of retarded and
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advanced Green operators are satisfied since F+
s and F−

s are retarded and advanced
Green operators and, moreover, being a differential operator, Ps does not enlarge
supports. Indeed, for each σ ∈ Γpc/ f c(DM), one has PsE±

s σ = P2
s F±

s σ = σ . It
remains only to check that E±

s Psσ = σ . Let us take τ ∈ Γ0(DM) and consider
(E±

s Psσ, τ)s:

(E±
s Psσ, τ)s = (E±

s Psσ, PsE∓
s τ)s = (PsE±

s Psσ, E∓
s τ)s

= (Psσ, E∓
s τ)s = (σ, PsE∓

s τ)s = (σ, τ )s.

In the last chain of identities we exploited repeatedly the formal self-adjointness of
Ps and the identity E±

s Psυ = υ, which holds true for all υ ∈ Γpc/ f c(DM). Since
(·, ·)s provides a non-degenerate pairing between Γ (DM) and Γ0(DM), we deduce
that E±

s Psσ = σ , thus completing the proof.

Indeed, the fact that Ps and Pc are formally self-adjoint with respect to (·, ·)s
and to (·, ·)c has a counterpart involving the corresponding retarded and advanced
Green operators on account of Lemma 3.2.13. A similar argument applies to the fact
Pc is the formal dual of Ps with respect to 〈·, ·〉, see (3.38) and Proposition 3.2.12.
Summing up, one has the following identities for all σ, τ ∈ Γ0(DM) and for all
ω, ζ ∈ Γ0(D∗ M):

(E±
s σ, τ)s = (σ, E∓

s τ)s, (E±
c ω, ζ )c = (ω, E∓

c ζ )c, 〈E±
c ω, σ 〉 = 〈ω, E∓

s σ 〉.
(3.42)

Proposition 3.3.6 concludes our discussion about the dynamics of the Dirac field.
In fact, introducing the advanced-minus-retarded operators Es = E−

s − E+
s and

Ec = E−
c − E+

c corresponding to Ps and respectively to Pc, one can easily represent
all on-shell spinors and cospinors over the four-dimensional globally hyperbolic
spacetime M, see Theorem 3.2.15.

3.3.2.2 Classical Observables

From the previous section we know that the on-shell configurations of the Dirac field
are either spinors or cospinors, namely sections of either DM or D∗ M, satisfying
the Dirac equation (3.35). We shall consider now a class of functionals on these field
configurations. As further properties, we shall require that this class is large enough
to separate different on-shell configurations and that its elements are represented
faithfully by some vector space, to be endowed later with the Hermitian structure
canonically induced by the Dirac Lagrangian. Let us start with τ ∈ Γ0(DM) and
ζ ∈ Γ0(D∗ M) to introduce the functional Sτ for spinors and the functional Cω for
cospinors:

Sτ : Γ (DM) → C, σ �→ (τ, σ )s,

Cζ : Γ (D∗ M) → C, ω �→ (ζ, ω)c.
(3.43)
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Since both (·, ·)s and (·, ·)c induce non-degenerate bilinear pairings on Γ0(DM) ×
Γ (DM) and respectively onΓ0(D∗ M)×Γ (DM), one can identify the vector spaces
of functionals {Sτ : τ ∈ Γ0(DM)} and {Cζ : ζ ∈ Γ0(D∗ M)} with Γ0(DM) and
respectivelywithΓ0(D∗ M). These identifications are implementedvia the anti-linear
maps τ ∈ Γ0(DM) �→ Sτ and ζ ∈ Γ0(D∗ M) �→ Cζ . Let us stress one fact, which
follows from non-degeneracy of the pairings (·, ·)s and (·, ·)c. The functionals {Sτ :
τ ∈ Γ0(DM)} on spinors and the functionals {Cζ : ζ ∈ Γ0(D∗ M)} on cospinors are
sufficiently many to separate different off-shell field configurations, hence on-shell
ones in particular. Therefore, our separability requirement is already achieved.

The functionals introduced above do not take into account the dynamics for Dirac
fields. We can easily overcome this hurdle restricting the domains to on-shell config-
urations. Let us introduce the spaces of on-shell spinors and of on-shell cospinors:

Sols = {σ ∈ Γ (DM) : Psσ = 0}, Solc = {ω ∈ Γ (D∗ M) : Pcω = 0}. (3.44)

Given τ ∈ Γ0(DM) and ζ ∈ Γ0(D∗ M), with a slight abuse of notation,wedenote the
restrictions Sτ : Sols → C andCζ : Solc → C of the original functionals introduced
in (3.43) by the same symbols. This restriction causes some redundancies in the
spaces Γ0(DM) and Γ0(D∗ M), which do not faithfully represent the functionals
after the restriction to on-shell configurations. This fact is explicitly shown in the
next example.

Example 3.3.6 Let us consider τ ∈ Γ0(DM). Since Ps does not enlarge supports,
Psτ is still a compactly supported section of DM. Hence, we can consider the
functional SPsτ . We show that this functional vanishes when restricted to Sols. In
fact, according to Proposition 3.3.6, one deduces that Ps is formally self-adjoint
with respect to (·, ·)s, which entails that SPsτ (σ ) = Sτ (Psσ) = 0 for all σ ∈ Sols.
In full analogy, CPcζ vanishes on Solc for all ζ ∈ Γ0(D∗ M) since Pc is formally
self-adjoint with respect to (·, ·)c. Summing up, the elements of Ps(Γ0(DM)) and of
Pc(Γ0(D∗ M)) are redundant since they provide only trivial functionals respectively
on Sols and on Solc.

To implement our second requirement for classical observables, namely that the
space representing functionals should be free of redundancies (or, equivalently, func-
tionals should be represented faithfully by this space), we simply take a quotient by
the subspace of (co)spinors inducing functionals which vanish on-shell:

N s = {τ ∈ Γ0(DM) : Sτ (σ ) = 0, ∀σ ∈ Sols} (3.45)

N c = {ζ ∈ Γ0(D∗ M) : Cζ (ω) = 0, ∀ω ∈ Solc}. (3.46)

As anticipated, we introduce the quotient spaces

E s = Γ0(DM)/N s, Ec = Γ0(D∗ M)/N c. (3.47)

E s and Ec are regarded as the spaces of linear classical observables respectively for
spinors and for cospinors. In fact, these spaces faithfully represent the restrictions
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to on-shell configurations of the functionals defined in (3.43), which are sufficiently
many to distinguish between different on-shell configurations. For example, consider
the case of spinors. It is clear that the equivalence class [τ ] ∈ E s induces a unique
functional Sτ : Sols → C, independent of the choice of τ ∈ [τ ]. Indeed different
representatives induce different functionals onΓ (DM) (off-shell), but, per definition
of N s, all these functionals have the same restriction to Sols (on-shell). Therefore
one has an anti-linear map [τ ] ∈ E s �→ Sτ . Again per definition of N s, this map is
injective, thus providing a faithful way to represent by means of E s the restrictions
to on-shell configurations of the functionals in (3.43).

Remark 3.3.7 Using our knowledge about the dynamics of the Dirac field, cf.
Sect. 3.3.2.1, we can prove that

N s = Ps(Γ0(DM)), N c = Pc(Γ0(D∗ M)), (3.48)

meaning that all redundant functionals are of the form presented in Example 3.3.6.
As always, we focus our attention to the case of spinors only, the argument being
basically the same in the case of cospinors too. On account of Example 3.3.6, one
already has the inclusion PsΓ0(DM) ⊂ N s. For the converse inclusion, take τ ∈ N s

and notice that (τ, Esσ)s = Sτ (Esσ) = 0 for all σ ∈ Γ0(DM) since Es is the
advanced-minus-retarded operator for Ps. Ps is formally self-adjoint with respect to
(·, ·)s as shown in Proposition 3.3.6. Therefore, recalling the properties of retarded
and advanced Green operators, we have (Esτ, σ )s = −(τ, Esσ)s = 0 for all σ ∈
Γ0(DM), hence Esτ = 0 due to the non-degeneracy of (·, ·)s. Recalling (3.8), one
finds υ ∈ Γ0(DM) such that Psυ = τ , thus showing that N s ⊂ Ps(Γ0(DM)).

So far, we determined the spaces E s and Ec of classical observables for Dirac
spinors and cospinors. Yet, to formulate the corresponding quantum field theory, one
needs suitableHermitian structures in order towrite down the usual anti-commutation
relations for Dirac fields. This is the purpose of the next proposition.

Proposition 3.3.7 Consider a four-dimensional globally hyperbolic spacetime M =
(M, g, o, t) and take a co-frame e = (eμ)μ=0,...,3 on it. Let Ps and Pc denote the
differential operators ruling the dynamics of spinors and respectively of cospinors.
Introduce the corresponding advanced-minus-retarded operators Es and Ec. Those
defined below are non-degenerate Hermitian forms on E s and respectively on Ec:

hs : E s × E s → C, ([σ ], [τ ]) �→ −i(σ, Esτ)s,

hc : Ec × E s → C, ([ω], [ζ ]) �→ i(ω, Ecζ )c,
(3.49)

where the representatives σ ∈ [σ ], τ ∈ [τ ], ζ ∈ [ζ ] and ω ∈ [ω] are chosen
arbitrarily. Furthermore, following (3.27), the antilinear isomorphism

A : E s → Ec, [τ ] �→ [Aτ ] (3.50)

relates hs to hc, namely one has hc(A[σ ], A[τ ]) = hs([τ ], [σ ]).
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Proof We shall discuss explicitly the spinor case. The argument in the case of
cospinors is very similar. First of all, let us show that hs is a well-defined non-
degenerate Hermitian form. As a starting point, consider the map

(·, Es·)s : Γ0(DM) × Γ0(DM) → C. (3.51)

Since Es is linear, this map is sesquilinear as (·, ·)s is. Furthermore, Ps is formally
self-adjoint with respect to (·, ·)s and Ps ◦ Es = 0 = Es ◦ Ps on Γ0(DM). This
entails that (·, Es·)s vanishes whenever one of its arguments is of the form Psτ

for any τ ∈ Γ0(DM). It follows that the form defined in (3.51) descends to the
quotient Γ0(D∗ M)/Ps(Γ0(D∗ M)). On account of (3.47) and of (3.48), the space of
classical observables E s for spinors is exactly of this form, hence hs is a well-defined
sesquilinear form on E s, namely it is anti-linear in the first argument and linear in
the second.

The second part of the proof is devoted to showing that hs is Hermitian. This
follows from the fact that (·, ·)s provides a Hermitian form on Γ0(DM), cf. (3.37).
Specifically, given σ, τ ∈ Γ0(DM), the following holds:

hs([σ ], [τ ]) = −i(σ, Esτ)s = i(Esτ, σ )s = −i(τ, Esσ)s = hs([τ ], [σ ]). (3.52)

Notice that in the third equality we exploited the formal self-adjointness of Ps with
respect to (·, ·)s, which entails that (Esσ, τ)s = −(σ, Esτ)s for all σ, τ ∈ Γ0(DM).

We still have to prove that hs is non-degenerate. To this aim, consider [τ ] ∈ E s such
that hs([σ ], [τ ]) = 0 for all [σ ] ∈ E s. Our goal is to show that this condition implies
[τ ] = 0. In fact, one deduces that (σ, Esτ)s has to vanish for all σ ∈ Γ0(DM).
Therefore, by non-degeneracy of the pairing (·, ·)s between Γ0(DM) and Γ (DM),
it descends that Esτ = 0, hence there exists υ ∈ Γ0(DM) such that Psυ = τ . This
proves that [τ ] = 0.

The last part of the proof focuses on the relation between hs and hc. Since A◦ Ps =
Pc◦ A, it follows that A : E s → Ec is well-defined. Furthermore, this is an anti-linear
isomorphism of vector spaces since A : DM → D∗ M is an anti-linear vector bundle
isomorphism. For each σ, τ ∈ Γ0(DM), one has the following chain of equalities:

hc(A[σ ], A[τ ]) = i(Aσ, EcAτ)c = i(Aσ, AEsτ)c

= i(Esτ, σ )s = −i(τ, Esσ)s = hs([τ ], [σ ]).

For the second equality, we used the identity Ec ◦ A = A ◦ Es on Γ0(DM), which
follows from A ◦ Ps = Pc ◦ A on Γ (DM).

Remark 3.3.8 The general theory of Green hyperbolic operators provides an isomor-
phism between the space E s of classical observables for spinors and the space Solssc
of on-shell spinors with spacelike compact support, see Proposition 3.2.16. This iso-
morphism is realized by the advanced-minus-retarded operator Es for Ps, which is
the differential operator ruling the dynamics for Dirac spinors. Similarly, Ec, the



3 Models of Free Quantum Field Theories … 111

advanced-minus-retarded operator corresponding to Pc, provides an isomorphism
between Ec and Solcsc:

Is : E s → Solssc, [τ ] → Esτ,

Ic : Ec → Solcsc, [ζ ] → Ecζ.

I s and I c become isomorphisms of Hermitian spaces as soon as Solssc and Solcsc
are endowed with the usual Hermitian structures for Dirac fields written in terms of
the initial data on a spacelike Cauchy surface Σ for the four-dimensional globally
hyperbolic spacetime M = (M, g, o, t). Denoting with n the future-pointing unit
normal vector field onΣ and with dΣ the volume form naturally induced onΣ , one
introduces the following non-degenerate Hermitian forms on Solssc and on Solcsc:

Hs : Solssc × Solssc → C, Hs(σ, τ ) =
∫
Σ

(Aσ)(/nτ) dΣ, (3.53)

Hc : Solcsc × Solcsc → C, Hc(ω, ζ ) =
∫
Σ

ζ(/nA−1ω) dΣ, (3.54)

where /n = γ (n) denotes the section over Σ of End(DM) obtained evaluating
the End(DM)-valued one-form γ on the vector field n at each point of Σ . One can
prove that Is preserves the Hermitian structures by mimicking the strategy used in
(3.19) for the real scalar field and by relying on the calculation presented in (3.39).
More explicitly, given σ, τ ∈ Γ0(DM), one finds the following:

hs([σ ], [τ ]) = −i
∫

J−
M (Σ)

(
A(PsE+

s σ)
)
(Esτ) dvolM − i

∫

J+
M (Σ)

(
A(PsE−

s σ)
)
(Esτ) dvolM

= −
∫

J−
M (Σ)

d ∗
((

A(E+
s σ)

)(
γ (Esτ)

)) −
∫

J+
M (Σ)

d ∗
((

A(E−
s σ)

)(
γ (Esτ)

))

= −
∫
Σ

(
A(E+

s σ)
)(

/n(Esτ)
)

dΣ +
∫
Σ

(
A(E−

s σ)
)(

/n(Esτ)
)

dΣ

= Hs(Esσ, Esτ).

Notice that, after the integration by parts of the terms involving /∇s has been per-
formed, only boundary terms are left due to the fact that PsEsτ = 0. The case of
cospinors follows suit.

At this stage we have the Hermitian forms hs and hc defined on the spaces of
classical observables E s and Ec respectively for spinors and for cospinors. Therefore,
we can consider the Hermitian spaces (E s, hs) and (Ec, hc). Furthermore, according
to Proposition 3.3.7, A : E s → Ec establishes a strict relation between the two
Hermitian structures hs and hc. These Hermitian spaces and their relation are exactly
the data needed in order to pass from the classical Dirac field to the corresponding
quantum counterpart. However, before turning our attention to the quantum case,
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we would like to investigate some properties of the Hermitian spaces (E s, hs) and
(Ec, hc).

Theorem 3.3.8 Let M = (M, g, o, t) be a four-dimensional globally hyperbolic
spacetime and take a co-frame e = (eμ)μ=0,...,3 on it. Let (E s, hs) and (Ec, hc) be
the Hermitian spaces of classical observables defined above respectively for spinors
and for cospinors. The following properties hold:

Causality The Hermitian structures vanish on pairs of observables localized in
causally disjoint regions. More precisely, letσ, τ ∈ Γ0(DM)be such that supp σ∩
J (supp τ) = ∅. Then hs([σ ], [τ ]) = 0. Similarly, taking ω, ζ ∈ Γ0(D∗ M) such
that supp ω ∩ JM(supp ζ ) = ∅, one has hc([ω], [ζ ]) = 0.

Time-slice axiom Let O ⊂ M be a globally hyperbolic open neighborhood
of a spacelike Cauchy surface Σ for M, namely O is an open neighborhood
of Σ in M containing all causal curves for M whose endpoints lie in O. In
particular, the restriction of M to O provides a globally hyperbolic spacetime
O = (O, g|O, o|O, t|O). Furthermore, as a co-frame on O, we consider the
restriction of the co-frame e on M. Denote with (Es

M , hsM) and with (E s
O , hsO)

the Hermitian spaces of observables for spinors respectively over M and over O.
Similarly, let (Ec

M , hcM) and (Ec
O , hcO) denote the Hermitian spaces of observables

for cospinors respectively over M and over O. Then the maps Ls : E s
O → E s

M and
Lc : Ec

O → Ec
M , defined by Ls[τ ] = [τ ] for all τ ∈ Γ0(D O) and by Lc[ζ ] = [ζ ]

for all ζ ∈ Γ0(D∗ O), are isomorphisms of Hermitian spaces.10

Proof The proof of this theorem follows slavishly that of Theorem 3.3.1 for the real
scalar case. In fact, the only difference is that we are replacing symplectic structures
with Hermitian ones. Apart from that, the proof presented there holds in this case as
well. In fact, the argument relies only on the Green hyperbolicity of the differential
operators ruling the dynamics and indeed both Ps and Pc have this property according
to Proposition 3.3.6.

3.3.2.3 Quantum Field Theory

Given a four-dimensional globally hyperbolic spacetime M = (M, g, o, t) and
choosing a co-frame e = (eμ)μ=0,...,3 on it, in the previous section we were able
to construct all the kinematical and dynamical objects related to the classical the-
ory of the Dirac field. In particular, we obtained two Hermitian spaces of classical
observables for the Dirac field on M. The first one, (E s, hs), is used to test on-shell
spinors, while the second one, (Ec, hc), pertains to cospinors. Furthermore, the two
Hermitian spaces are related by an anti-linear isomorphism A : E s → Ec, which
satisfies hc(A[σ ], A[τ ]) = hs([τ ], [σ ]) for all [σ ], [τ ] ∈ E s. Let us stress that these
spaces faithfully represent a class of linear functionals defined on on-shell Dirac

10The sections on the right-hand-side in the definitions of Ls and of Lc are the extensions by zero
to the whole spacetime of the sections which appear on the left-hand-side.



3 Models of Free Quantum Field Theories … 113

fields, which is rich enough to distinguish between different field configurations.
These properties motivate our interpretation of E s and Ec as spaces of classical
observables for the Dirac field.

Now we want to switch from the classical field theoretical description to its quan-
tum counterpart. As for the scalar case, we shall only construct a suitable algebra of
observables, omitting any discussion concerning algebraic states, a topic which will
be addressed in Chap.5. This result is achieved by considering the unital ∗-algebra
A defined as follows. Starting from the unital ∗-algebra freely generated over C by
the symbols 11, Φ([τ ]) and Ψ ([ζ ]) for all [τ ] ∈ E s and for all [ζ ] ∈ Ec, we impose
the relations listed below, thus obtaining the sought unital ∗-algebra A:

Φ(a[σ ] + b[τ ]) = aΦ([σ ]) + bΦ([τ ]), (3.55)

Φ([σ ])∗ = Ψ (A[σ ]), (3.56)

Φ([σ ]) · Φ([τ ]) + Φ([τ ]) · Φ([σ ]) = 0, (3.57)

Ψ ([ω]) · Ψ ([ζ ]) + Ψ ([ζ ]) · Ψ ([ω]) = 0, (3.58)

Ψ ([ζ ]) · Φ([τ ]) + Φ([τ ]) · Ψ ([ζ ]) = hc(A[τ ], [ζ ])11. (3.59)

These relations must hold for all a, b ∈ C, for all [σ ], [τ ] ∈ Es and for all [ω], [ζ ] ∈
Ec. In view of (3.55) the map Φ : E s → A, [τ ] �→ Φ([τ ]) is linear. On account of
(3.56) and A : E s → Ec being anti-linear, the map Ψ : Ec → A, [ζ ] �→ Ψ ([ζ ]),
is linear too. To conclude, (3.57)–(3.59) provide the canonical anti-commutation
relations (CAR) for the Dirac field. A more concrete construction can be obtained
mimicking the one for the real scalar field, see Sect. 3.3.1.2 and [1]. Specifically,
we consider the vector space A = ⊕

k∈N0
(E s ⊕ Ec)⊗k .11 This is endowed with the

product specified · : A × A → A defined by

{uk} · {vk} = {wk}, wk =
∑

i+ j=k

ui ⊗ v j . (3.60)

Clearly, endowing A with · provides a unital algebra, whose unit is given by 11 =
{1, 0, . . . }. The generators of this algebra are

Φ([τ ]) =
{
0,

([τ ]
0

)
, 0, . . .

}
, Ψ ([ζ ]) =

{
0,

(
0

[ζ ]
)

, 0, . . .

}
, (3.61)

for all [τ ] ∈ E s and for all [ζ ] ∈ Ec. So far, the construction is almost identical to
the one for the real scalar field. The only difference is that we replaced the complex-
ification of the space of classical observables for the scalar field with the direct sum
of the spaces of classical observables for spinors and for cospinors. The involution
∗ : B → B is implemented by means of the anti-linear isomorphism A : E s → Ec:

11As usual, the component of the direct sum corresponding to the degree k = 0 is simply C.

http://dx.doi.org/10.1007/978-3-319-21353-8_5
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{
0, . . . , 0,

([τ1]
[ζ1]

)
⊗ · · · ⊗

([τk]
[ζk]

)
, 0, . . .

}∗

=
{
0, . . . , 0,

(
A−1[ζk]

A[τk]
)

⊗ · · · ⊗
(

A−1[ζ1]
A[τ1]

)
, 0, . . .

}
,

for all k ∈ N0, for all [τ1], . . . , [τk] ∈ E s and for all [ζ1], . . . , [ζk] ∈ Ec. As always, ∗
is extended to all elements of B byanti-linearity, thus turning B into a unital∗-algebra.
The canonical anti-commutation relations are implemented taking the quotient of B
by the two-sided ∗-ideal I of B generated by the elements listed below:

Φ([σ ]) · Φ([τ ]) + Φ([τ ]) · Φ([σ ]), (3.62)

Ψ ([ω]) · Ψ ([ζ ]) + Ψ ([ζ ]) · Ψ ([ω]), (3.63)

Ψ ([ζ ]) · Φ([τ ]) + Φ([τ ]) · Ψ ([ζ ]) − hc(A[τ ], [ζ ])11, (3.64)

for all [σ ], [τ ] ∈ Es and for all [ω], [ζ ] ∈ Ec. The unital ∗-algebraA = B/I resulting
from the quotient is a concrete realization of the one presented in the first part of the
present section.

Having established the algebraA describing the quantum theory of the free Dirac
field on the four-dimensional globally hyperbolic spacetime M, we would like to
investigate some of its properties, as well as its relation to the traditional presentation
of the quantum Dirac field.

Remark 3.3.9 Let us mention that, similarly to the scalar case, see Remark 3.3.5,
the Dirac quantum field theory presented above reduces to the one usually found
in any undergraduate textbook on quantum field theory as soon as M is Minkowski
spacetime. This can be seen bymeans of a suitable Fourier expansion of the solutions
to the field equations.

The properties of the classical theory of the Dirac field, which were investigated
in Theorem 3.3.8, have counterparts at the quantum level. We conclude this section
analyzing this aspect.

Theorem 3.3.9 Let M = (M, g, o, t) be a four-dimensional globally hyperbolic
spacetime and take a co-frame e = (eμ)μ=0,...,3 on it. Let A be the unital ∗-algebra
of quantum observables for the Dirac field on M. The following properties hold:

Causality The elements of A localized in causally disjoint regions anti-commute.
To wit, let ζ ∈ Γ0(D∗ M) and τ ∈ Γ0(DM) be such that supp ζ∩JM(supp τ) = ∅.
Then Ψ ([ζ ]) · Φ([τ ]) + Φ([τ ]) · Ψ ([ζ ]) = 0. In particular, the even subalgebra
Aeven of A, whose elements are finite linear combinations of products of an even
number of generators of A, fulfills the bosonic version of causality, namely the
elements of Aeven localized in causally disjoint regions commute.

Time-slice axiom Let O ⊂ M be a globally hyperbolic open neighborhood
of a spacelike Cauchy surface Σ for M, namely O is an open neighborhood
of Σ in M containing all causal curves for M whose endpoints lie in O. In
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particular, the restriction of M to O provides a globally hyperbolic spacetime
O = (O, g|O, o|O, t|O). Furthermore, as a co-frame on O, we consider the
restriction of the co-frame e on M. Denote with AM and with AO the unital ∗-
algebras of observables for the Dirac field respectively over M and over O. Then
the map I : AO → AM , defined on generators by I (Φ([τ ])) = Φ(Ls[τ ]) for all
[τ ] ∈ Es

O and by I (Ψ ([ζ ])) = Ψ (Lc[ζ ]) for all [ζ ] ∈ Ec
O , is an isomorphism of

unital ∗-algebras. Recall that the Hermitian isomorphisms Ls : E s
O → E s

M and
Lc : Ec

O → Ec
M were introduced in Theorem 3.3.8.

Proof Given ζ ∈ Γ0(D∗ M) and τ ∈ Γ0(DM) such that supp ζ ∩ J (supp τ) = ∅,
fromTheorem 3.3.8, one deduces that hc(A[τ ], [ζ ]) = 0. Therefore, recalling (3.59),
one concludes thatΨ ([ζ ]) ·Φ([τ ])+Φ([τ ]) ·Ψ ([ζ ]) = 0. Let us now consider three
generators G1, G2, G3 ofA (they can be either of the formΦ([τ ]) for [τ ] ∈ E s or of
the from Ψ ([ζ ]) for [ζ ] ∈ Ec). We assume that G1 and G2 are localized in a region
which is causally disjoint from the one where G3 is localized. On account of the
first part of this theorem, we deduce that Gi · G3 + G3 · Gi = 0 for i = 1, 2. The
following chain of equalities follows from the last identity:

(G1 · G2) · G3 − G3 · (G1 · G2) = G1 · G2 · G3 + G1 · G3 · G2

− G1 · G3 · G2 − G3 · G1 · G2 = 0.

This already entails that all elements of Aeven commute with all elements of A
provided that they are localized in causally disjoint regions. The claim follows as a
special case.

The quantum time-slice axiom follows directly from its classical counterpart. The
procedure is very similar to the scalar case, see Theorem 3.3.2. In fact, I : AO →
AM is a homomorphism of unital ∗-algebras by definition and, moreover, we can
introduce an inverse I −1 : AM → AO of I simply setting I −1Φ([τ ]) = Φ(L−1

s [τ ])
for all [τ ] ∈ Es and I −1Ψ ([ζ ]) = Ψ (L−1

c [ζ ]) for all [ζ ] ∈ Ec. It is straightforward
to check that I −1 ◦ I = idAO and I ◦ I −1 = idAM , so that I −1 is actually the inverse
of I and then I is an isomorphism of unital ∗-algebras as claimed.

3.3.3 The Proca Field

The last example we shall analyze is the Proca field over globally hyperbolic space-
times. We shall adopt the same approach used in the previous cases. Specifically,
we shall start investigating the properties of the differential operator which rules
the dynamics of the Proca field. After that, we shall introduce a suitable space of
classical observables. In particular, we want a space of sections which can be used to
define linear functionals on on-shell Proca fields. As usual, we shall require that the
functionals obtained are sufficiently many to distinguish between different on-shell
configurations. Furthermore, we want to get rid of the redundancies which might
be contained in the space of sections we use to build functionals. As soon as these
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requirements are achieved, we shall interpret the result as a space of classical observ-
ables for the Proca field. In fact, this space faithfully represents a class of functionals
defined on-shell, which is rich enough to detect any field configuration. Thenwe shall
endow this space with a symplectic structure, which will play a central role in the
prescription to quantize the classical Proca field. This topic will be addressed in the
last part of this section. Before starting our analysis, let us mention some references
where the Proca field has been studied using the language of algebraic quantum field
theory. These are [16, 23, 28].

3.3.3.1 Dynamics and Classical Observables

Let us consider an n-dimensional globally hyperbolic spacetime M = (M, g, o, t).
Unless stated otherwise, from now on, M shall be kept fixed. The off-shell configura-
tions for the Proca field are sections of the cotangent bundle T ∗M, namely one-forms
over M. Adopting a standard convention, we shall denote the space of k-forms by
Ωk(M). Let us remind the reader that differential forms constitute a graded algebra
with respect to the standard wedge product ∧ : Ωk(M) × Ωk′

(M) → Ωk+k′
(M).

To introduce the dynamics, we need two operations on forms, namely the differen-
tial d : Ωk(M) → Ωk+1(M) and the Hodge dual ∗ : Ωk(M) → Ωn−k(M). d is
defined out of the differentiable structure onM, see [15, Sect. 1.1], while ∗ depends
also on the metric g and the orientation o, see [39, Sect. 3.3]. For our purposes it is
enough to mention that d is a graded derivative with respect to the wedge product
∧, that dd = 0 and that ∗ is an isomorphism, hence ∗−1 is well-defined. For further
details on the theory of differential forms, see [15]. d and ∗ enable us to introduce
the codifferential:

δ : Ωk(M) → Ωk−1(M), δ = (−1)k ∗−1 d ∗ . (3.65)

Notice that δδ = 0 due to dd = 0. Introducing the symmetric pairing (·, ·) between
k-forms, defined by

(α, β) =
∫
M

α ∧ ∗β,

where α, β ∈ Ωk(M) have supports with compact intersection, one can prove that
δ is the formal adjoint of d with respect to (·, ·), meaning that (α, δβ) = (dα, β) for
all α ∈ Ωk(M) and β ∈ Ωk+1(M) such that suppα ∩ suppβ is compact. In fact,
applying Stokes’ theorem, one finds

(dα, β) − (α, δβ) =
∫
M

(dα ∧ ∗β − α ∧ ∗δβ)

=
∫
M

(dα ∧ ∗β + (−1)kα ∧ d ∗ β)

=
∫
M

d(α ∧ ∗β) = 0.
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After these preliminaries, we are ready to introduce the Proca equation over M
for a form A ∈ Ω1(M):

−δdA + m2A = 0

where m2 ∈ R \ {0}. As for the case of a real scalar field, all our results are valid
for all possible values of the mass. Yet, in other chapters of this book, it might be
necessary to put restrictions on the sign on the basis of a physical reasoning. Using
the abstract index notation, the Proca equation reads

∇a(∇a Ab − ∇b Aa) + m2Ab = 0.

For convenience, we introduce the second-order linear differential operator P =
−δd + m2idΩ1(M). With this definition, the Proca equation can be rewritten as
P A = 0. Since δ is the formal adjoint of d with respect to (·, ·), it follows that
P : Ω1(M) → Ω1(M) is formally self-adjoint:

(Pα, β) = −(dα, dβ) + m2(α, β) = (α, Pβ), (3.66)

for all α, β ∈ Ωk(M)whose supports have compact overlap. In the next proposition
we show that P is Green hyperbolic by exhibiting its retarded and advanced Green
operators, see Definition 3.2.10.

Proposition 3.3.10 Let M = (M, g, o, t) be an n-dimensional globally hyperbolic
spacetime and let Q = −m−2dδ+idΩ1(M) : Ω1(M) → Ω1(M). The second order
linear differential operator P : Ω1(M) → Ω1(M), which rules the dynamics of
the Proca field on M, is formally self-adjoint with respect to (·, ·). Furthermore it
is Green hyperbolic. In particular, its retarded and advanced Green operators are
given by E± = QF±, where F+ and F− denote the retarded and advanced Green
operators for the normally hyperbolic operator K = P Q : Ω1(M) → Ω1(M).

Proof In (3.66) we have shown that P is formally self-adjoint. Let us consider
K = P Q. Recalling that dd = 0, one finds that K = −δd − dδ + m2idΩ1(M).
Therefore K coincides with the Hodge-d’Alembert operator −δd− dδ, up to a term
of order zero in the derivatives. In particular, in local coordinates, the principal part of
K is of the form gμν∂μ∂ν , hence K is normally hyperbolic. On account of [2] and [6,
Chap. 3], K admits unique retarded and advanced Green operators F+ and F−. To
conclude the proof we have to show that E+ = QF+ and E− = QF− are retarded
and advanced Green operators for P . Since Q is a linear differential operator, it
cannot enlarge the support. Therefore, E± inherits the correct support property for a
retarded/advanced Green operator from F±. Furthermore, for all α ∈ Ω1

pc/ f c(M),
one has P E±α = K F±α = α. It remains only to check that E± Pα = α for all
α ∈ Ω1

pc/ f c(M). Exploiting the formal self-adjointness of P and keeping inmind the

first part of the proof, one gets the following chain of identities for all β ∈ Ω1
0 (M):
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(β, E± Pα) = (P E∓β, E± Pα) = (E∓β, P E± Pα)

= (E∓β, Pα) = (P E∓β, α) = (β, α).

Since (·, ·) provides a non-degenerate bilinear pairing betweenΩ1
0 (M) andΩ1(M),

we conclude that E± Pα = α for all α ∈ Ω1
pc/ f c(M), hence E+ and E− are retarded

and advanced Green operators for P , which is consequently Green hyperbolic.

Due to Proposition 3.3.10, we can apply the general theory of Green hyperbolic
operators presented in Sect. 3.2 to the operator P ruling the dynamics of the Proca
field. In particular we find that (E±α, β) = (α, E∓β) for all α, β ∈ Ω1

0 (M) and we
can introduce the advanced-minus-retarded operator E = E− − E+, which enables
us to represent any solution starting from a one-form with timelike compact support.

We have completed the analysis of the dynamics of the Proca field over the n-
dimensional globally hyperbolic spacetime M. In the following we shall focus on
the construction of a suitable space of classical observables. Exploiting the non-
degenerate bilinear pairing (·, ·) between Ω1

0 (M) and Ω1(M), we can introduce a
family of linear functionals on off-shell configurations. In fact, given α ∈ Ω1(M),
we consider

Fα : Ω1(M) → R, A �→ (α, A). (3.67)

The fact that (·, ·) is non-degenerate has two consequences. The first one is that
we can identify the vector space {Fα : α ∈ Ω1

0 (M)}, formed by the functionals
introduced in (3.67), with Ω1

0 (M). The second one is that the mentioned space of
functionals is sufficiently rich to distinguish between different off-shell configura-
tions. In particular, on-shell configurations can be separated as well, therefore our
first requirement for the space of classical observables is achieved by Ω1

0 (M). Yet,
as soon as we go on-shell, which corresponds to restricting the functionals defined
above to field configurations A ∈ Ω1(M) satisfying the equation ofmotion P A = 0,
some of the functionals become trivial. Before presenting explicit examples of this
kind of redundancy for certain elements of Ω1

0 (M), let us introduce:

Sol = {A ∈ Ω1(M) : P A = 0}.

Example 3.3.10 The situation here is basically the same as in Example 3.3.1 for the
scalar field. In fact, formal self-adjointness of P with respect to (·, ·) entails that
FPα(A) = Fα(P A) for all α ∈ Ω1

0 (M) and for all A ∈ Ω1(M). Therefore, we
have FPα(A) = 0 for A ∈ Sol, thus showing that one-forms in P(Ω1

0 (M))) are
redundant in the sense that they provide functionals which always vanish on-shell.

As shown by the example above, Ω1
0 (M) does not provide a faithful way to

represent the restrictions to on-shell configurations of the functionals defined in
(3.67). Therefore Ω1

0 (M) does not meet our second requirement to be identified
with the space of classical observables for the Proca field. In order to circumvent this
issue, we proceed as in the previous cases. Introducing the subspace
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N = {α ∈ Ω1
0 (M) : Fα(A) = 0, ∀A ∈ Sol} ⊂ Ω1

0 (M)

of those one-forms which produce functionals vanishing on-shell, we consider the
quotient space

E = Ω1
0 (M)/N .

Per construction E has no redundancy left and therefore it represents faithfully the
restrictions to Sol of the functionals in (3.67). Notice that this representation is
realized by sending each equivalence class [α] ∈ E to the functional Fα : Sol → R

defined by any representative α ∈ [α]. This assignment is well-defined because two
representatives of [α] differ by a one-form which produces a functional vanishing
on-shell. Since the original space Ω1

0 (M) is sufficient to separate solutions, this is
the case for E too. These features motivate our interpretation of E as the space of
classical observables for the Proca field on the globally hyperbolic spacetime M.

To complete our analysis of the classical theory of the Proca field, we still have
to endow E with a symplectic structure, which will eventually enable us to quantize
the model by means of canonical commutation relations. We shall prove first that
N = P(Ω1

0 (M)) and then Proposition 3.2.17 will provide the desired symplectic
structure on E . The situation is again basically the same as in the scalar case. In fact,
Example 3.3.10 provides the inclusion P(Ω1

0 (M)) ⊂ N and we are left with the
proof of the converse inclusion, which follows just from the Green hyperbolicity of
P . Given α ∈ N , Fα(Eβ) = 0 for all β ∈ Ω1

0 (M) due to Eβ being a solution.
Yet, this means that (Eα, β) = −(α, Eβ) = 0 for all β ∈ Ω1

0 (M), hence the non-
degeneracy of (·, ·) entails that Eα = 0. Exploiting (3.8), we find γ ∈ Ω1

0 (M) such
that Pγ = α, thus proving the desired inclusion N ⊂ P(Ω1

0 (M)). In particular, E
is the same as the quotient Ω1

0 (M)/P(Ω1
0 (M)). Therefore, recalling Proposition

3.2.17, we get a symplectic structure

τ : E × E → R, ([α], [β]) �→ (α, Eβ). (3.68)

In particular, we can regard (E, τ ) as a symplectic space of classical observables for
the Proca field over the globally hyperbolic spacetime M.

Remark 3.3.11 It is often customary to present the symplectic form as an inte-
gral over a spacelike Cauchy surface Σ of the globally hyperbolic spacetime
M = (M, g, o, t). The integrand is given in terms of those data on Σ which are
needed to set up an initial value problem for the field equation of interest. Similarly
to the scalar and Dirac cases, we show how to relate our approach to this one. Let
us consider α, β ∈ Ω1

0 (M) and note that Eβ is a solution. We shall split the inte-
gral which defines τ([α], [β]) in two parts and we shall exploit the properties of the
retarded and advanced Green operators to replace α with P E±α in such a way that
we are allowed to use Stokes’ theorem:
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τ([α], [β]) =
∫

J−
M(Σ)

(P E+α) ∧ ∗(Eβ) +
∫

J+
M(Σ)

(P E−α) ∧ ∗(Eβ)

= −
∫

J−
M(Σ)

d
(
(E+α) ∧ ∗d(Eβ) − (Eβ) ∧ ∗d(E+α)

)

−
∫

J+
M(Σ)

d
(
(E−α) ∧ ∗d(Eβ) − (Eβ) ∧ ∗d(E−α)

)

=
∫
Σ

(
(Eα) ∧ ∗d(Eβ) − (Eβ) ∧ ∗d(Eα)

)

=
∫
Σ

(
g
(
Eα, ınd(Eβ)

) − g
(
Eβ, ınd(Eα)

))
dΣ,

(3.69)

where dΣ is the naturally induced volume form onΣ , n denotes the future-pointing
unit normal vector field on Σ and ın is the operator which inserts the vector field
n in the form to which it is applied. Notice that the integration by parts only gives
boundary terms since P Eβ = 0. Due to (3.69), one can realize that our symplectic
space (E, τ ) is isomorphic to the symplectic space (Solsc, σ ) often considered in the
literature, where Solsc denotes the space of on-shell configurations of the Proca field
with spacelike compact support and σ : Solsc × Solsc → R is the symplectic form
defined for all A, B ∈ Solsc by

σ(A, B) =
∫
Σ

(
g(A, ındB) − g(B, ındA)

)
dΣ.

Before turning our attention to the quantum theory of the Proca field, we devote a
few lines to examine some of the properties of the symplectic space (E, τ ) of classical
observables for the Proca field over the globally hyperbolic spacetime M. Notice that
we shall not provide the details of the proof since this would be nothing more than
a slavish copy of the proof of Theorem 3.3.1.

Theorem 3.3.11 Let M = (M, g, o, t) be an n-dimensional globally hyperbolic
spacetime and let (E, τ ) be the symplectic space of classical observables introduced
above for the Proca field. The following properties hold:

Causality The symplectic structure vanishes on pairs of observables localized
in causally disjoint regions. More precisely, let α, β ∈ Ω1

0 (M) be such that
supp α ∩ JM(supp β) = ∅. Then τ([α], [β]) = 0.

Time-slice axiom Let O ⊂ M be a globally hyperbolic open neighborhood
of a spacelike Cauchy surface Σ for M, namely O is an open neighborhood
of Σ in M containing all causal curves for M whose endpoints lie in O. In
particular, the restriction of M to O provides a globally hyperbolic spacetime
O = (O, g|O, o|O, t|O). Denote with (EM , τM) and with (EO , τO) the symplec-
tic spaces of observables for the Proca field respectively over M and over O.
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Then the map L : EO → EM defined by L[α] = [α] for all α ∈ Ω1
0 (O) is an

isomorphism of symplectic spaces.12

3.3.3.2 Quantum Field Theory

Tocomplete our analysis of theProcafield,wepresent the quantization of the classical
field theory developed in the previous section, which consists of a symplectic space
(E, τ )of classical observables for theProcafield over a globally hyperbolic spacetime
M = (M, g, o, t). The quantization procedure is completely equivalent to the case
of the real scalar field. For this reason we shall skip most of the details, referring
the reader to Sect. 3.3.1.2. We introduce the quantum theory of the Proca field in
terms of the unital ∗-algebra A generated over C by the symbols 11 and Φ([α]) for
all classical observables [α] ∈ E and satisfying the relations listed below:

Φ(a[α] + b[β]) = aΦ([α]) + bΦ([β]), (3.70)

Φ([α])∗ = Φ([α]), (3.71)

Φ([α]) · Φ([β]) − Φ([β]) · Φ([α]) = iτ([α], [β])11, (3.72)

for all a, b ∈ C and for all [α], [β] ∈ E . As usual, the first relation expresses the lin-
earity of the quantum field, the second relation keeps track of the fact that classically
the Proca field is a real field, therefore quantum Proca fields should be Hermitian,
and finally the third relation implements the canonical commutation relations (CCR)
for Bosonic field theories. We interpretA as the algebra of quantum observables for
the Proca field over the globally hyperbolic spacetime M.

We conclude analyzing certain properties of the quantum theory of the Proca field.
Mimicking the proof of Theorem 3.3.2 for the real scalar field, and exploiting the
properties of the classical theory of the Proca field, which have been developed in
Theorem 3.3.11, one obtains the following result.

Theorem 3.3.12 Let M = (M, g, o, t) be an n-dimensional globally hyperbolic
spacetime and let A be the unital ∗-algebra of observables for the Proca field intro-
duced above. The following properties hold:

Causality Elements of the algebra A localized in causally disjoint regions com-
mute. More precisely, let α, β ∈ Ω1

0 (M) be such that supp α ∩ JM(supp β) = ∅.
Then Φ([α]) · Φ([β]) = Φ([β]) · Φ([α]).

Time-slice axiom Let O ⊂ M be a globally hyperbolic open neighborhood
of a spacelike Cauchy surface Σ for M, namely O is an open neighborhood
of Σ in M containing all causal curves for M whose endpoints lie in O. In
particular, the restriction of M to O provides a globally hyperbolic spacetime
O = (O, g|O, o|O, t|O). Denote with AM and with AO the unital ∗-algebras of

12The differential form on the right-hand-side of the equation which defines L is the extension by
zero to the whole spacetime of the differential form which appears on the left-hand-side.
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observables for the Proca field respectively over M and over O. Then the unit-
preserving ∗-homomorphism Φ(L) : AO → AM , Φ([α]) �→ Φ(L[α]) is an
isomorphism of ∗-algebras, where L is the symplectic isomorphism introduced in
Theorem 3.3.11.

To conclude the chapter wewould like to comment briefly on two aspects which have
not been discussed. On the one hand we have only treated fields of spin 0, 1/2 and 1,
the latter under the assumption of a non-vanishing mass. This choice was made only
for the sake of simplicity since all other cases would involve necessarily a discussion
of local gauge invariance, a topic which is still under study and which would require
a chapter on its own—for linear gauge theories refer to [31]. We mention a few
references for an interested reader: for electromagnetism [8, 10, 18, 21, 23, 46, 49],
for spin 3/2 fields [30, 31], while for massless spin 2 fields and linearized gravity
[9, 22]. Another important aspect, neglected in this chapter, concerns the discussion
about the existence of a relation between the algebra of observables for a free field
theory built on two globally hyperbolic spacetimes which can be related one to the
other via an isometric embedding. The analysis of such aspect leads to the formulation
of the so-called principle of general local covariance, one of themilestones ofmodern
axiomatic quantum field theory. This principle, together with its consequences, is
discussed in Chap. 4.
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Chapter 4
Algebraic Quantum Field Theory in Curved
Spacetimes

Christopher J. Fewster and Rainer Verch

4.1 Introduction

There are many approaches to quantum field theory, almost all of which rely heavily,
in one way or another, on concepts of symmetry. This refers, in particular, to the
behaviour of a quantum field theory with respect to the symmetries of the spacetime
(or space, for Euclidean formulations) on which it exists. For example, Poincaré
covariance is one of the defining properties for a relativistic quantum field theory on
Minkowski space, in conjunction with the concept of locality for observables [86,
143]. Any general account of quantum field theory on curved spacetimes faces the
problem that reliance on symmetries is of little assistance except in special cases.
For these reasons, most work in the area has, until recently, focussed on specific
(usually non-self-interacting) models in specific spacetimes. Our purpose in this
chapter is different: we will explore what can be said, in a model-independent way,
about quantum fields in general curved spacetimes. This is motivated from several
directions: (a) as a matter of general principle, one wishes to understand how far
the ideas and methods of quantum field theory can be extended; (b) it recognizes
that our knowledge of our own universe is limited in both scope and detail, and that
its actual geometry (even setting aside questions of quantum geometric structure)
is by no means that of a symmetric spacetime; (c) it allows for some macroscopic
features (e.g., a collapsing star, or an experimental apparatus) to be treated as ‘given’
and not obtained from the microscopic theory; (d) it provides a framework in which
controlled approximations of complex situations by simple ones can be discussed.
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Time has proved that the mathematical framework of operator algebras permits
a very clear and efficient way to precisely formulate the conceptual underpinnings
of quantum field theory—locality and covariance—and to analyse the consequences
[2, 6, 14, 86], hence the name “algebraic quantum field theory”. Our presentation
attempts to follow that line of thought for quantum field theory in curved spacetime.
In place of symmetry, the concept of covariance or, more precisely, of local general
covariance, is put at the centre of our approach, reflecting the considerable progress
that has been made since this concept was given a concise formulation in the early
years of this millennium [24, 156]. Early forms of the idea appear in work such as
[41, 104, 163].

We should make clear that the main purpose of this contribution is to set out the
conceptual and mathematical structure of algebraic quantum field theory in curved
spacetime, not its application to concrete situations, such as the Hawking effect [80,
84, 85, 87, 107, 116] or cosmology [36, 40, 157] or the Casimir effect [52, 63, 114].
It is intended to be read alongside the other chapters, which provide the context and
application for the structures discussed here. There are also a number of topics that
have not been discussed owing to constraints of time, space and energy. Some of
these will be listed below, after we indicate what is covered here.

We start by considering the quantized linear scalar Klein-Gordon field on globally
hyperbolic spacetimes as a motivating example from which some basic concepts of
locally covariant quantum field theory can be read off. Taking these as guidelines,
the general concept of locally covariant quantum field theory will be formulated in
terms of a functor between a category of spacetimes and a category of ∗-algebras.
Further assumptionswill be added and their consequences studied, so that the general
structure of the theory, in a model-independent algebraic framework, begins to take
shape. Central parts of that structure are played by Einstein causality, and the time-
slice axiom, which, by interplay with local covariance, induces the notion of relative
Cauchy evolution and provides the theory with a dynamical structure. Then the states
and their Hilbert-space representations are discussed, as well as the concept of a state
space for locally covariant quantum field theories. In that context, the microlocal
spectrum condition makes its appearance as the most promising, and at the same
time most general, selection criterion for a space of physical states.

A further step in developing the theory derives from the fact that globally hyper-
bolic spacetimes can be deformed to more symmetric spacetimes. Together with
the time-slice axiom and local covariance, this allows one to transfer properties that
hold on Minkowski spacetime to general spacetimes. This fact has been observed
and exploited in the literature [54, 82, 135, 150, 151, 156], however here we sys-
temize it as a “rigidity argument” for locally covariant quantum field theory, and
this is a new and original ingredient of this contribution. We will show that Einstein
causality, the Schlieder property and extended locality can all be extended to locally
covariant QFTs in this way, and also that the Reeh-Schlieder and the split properties
are consequences of closely related arguments.

We will then discuss the relation of several other selection criteria for state spaces
of physical states in locally covariant quantum field theories and their relation to
the microlocal spectrum condition, mainly quantum energy inequalities, and the
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existence of ground states (ormore generally, passive states) in ultrastatic spacetimes.
We go on to consider locally covariant quantum fields and present the spin and
statistics relation in that framework. Furthermore, we discuss embeddings of locally
covariant quantum field theories into each other, which leads to a locally covariant
concept of internal symmetries. That provides a setting in which one can consider
the question of what it means that quantum field theories on different spacetimes
can be regarded as representing “the same physics”. Another new feature of this
contribution is the observation that models such as the Klein–Gordon theory can be
given a “universal definition” at the functorial level, without direct reference to the
theory on particular spacetimes. Finally, we present an argument showing that there
is no locally covariant state under very general assumptions.

Asmentioned above, there are various topics that we have not been able to include,
and while the list of references is extensive, it is certainly not complete. Notable
absences include discussion of gauge fields and charge superselection theory in
curved spacetime [25, 26, 85, 131] as well as the perturbative construction of locally
covariant interacting quantum fields in curved spacetime [20, 21, 81, 94–96]. The
development of the latter has led to a formalization of operator product expansions
that may be seen as a particular approach towards algebraic quantum field theory
in curved spacetimes, mainly investigated by Hollands and Wald [93, 97] (besides
other results, this has led to a version of a PCT-theorem in curved spacetimes [92]).
We shall not discuss Haag duality [132] or situations of “geometric modular action”
[28, 84, 85], nor the relation between Euclidean and Lorentzian quantum field theory
for quantum fields in curved spacetimes [100, 101], nor any form of constructive
quantum field theory (beyond free fields) in curved spacetimes, on this, cf. [5] and
references cited there. A further omission concerns spacetimes that are not globally
hyperbolic or have boundaries [105, 106, 110, 111, 128, 165].

Aside from a familiarity with quantum field theory on Minkowski spacetime and
the standard terminology from general relativity e.g. at the level of [161], some basic
knowledge of category theory is assumed on part of the reader (as regards concepts
like category, functor, morphism, naturality, for which see e.g., [113]). Knowledge
of typical mathematical concepts of functional analysis in Hilbert spaces are taken
for granted, but we will summarize some of the relevant background on operator
algebras as far as it is needed.

The abstract structures and arguments will be illustrated by the example of the
free linear scalar field. This might give the impression that the theory only makes
statements about linear quantum fields. We emphasize that this is not so and that
locally covariant quantum field theories with self-interaction have been constructed
perturbatively, and that there are also such interacting quantum field theories obeying
the time-slice axiom [33, 94–96]; it is these assumptions on which our theoretical
arguments mainly rest. The long-standing problem of establishing the existence of
interacting quantum field theories beyond perturbation theory in physical spacetime
dimension remains; yet we hope that the principle of local covariance will provide a
new guideline in the attempts of their construction.
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4.2 A Motivating Example

We begin with the simplest model of QFT in curved spacetime, the linear Klein–
Gordon field with field equation PMφ := (�M + m2 + ξ RM)φ = 0 on spacetime
M,1 where the mass m ≥ 0 and coupling ξ ∈ R are fixed but arbitrary. Here,
anticipating later developments, we have put subscripts on the d’Alembertian and
scalar curvature, to indicate the spacetime under consideration. In each globally
hyperbolic spacetime M, the field algebraA (M) of this theory may be presented in
terms of generators ΦM( f ) labelled by complex-valued test functions f ∈ C∞0 (M)

and subject to relations

KG1 linearity of f �→ ΦM( f )
KG2 hermiticity, ΦM( f )∗ = ΦM( f )
KG3 the field equation, ΦM(PM f ) = 0
KG4 the canonical commutation relations, [ΦM( f ),ΦM(h)] = i EM( f, h)11A (M)

which hold for all f, h ∈ C∞0 (M) (see, e.g., Chap. 5 modulo slight differences).
Equivalently, one can define A (M) as the Borchers-Uhlmann algebra, i.e. the quo-
tient of the tensor algebra over the test-function space C∞0 (M) by the relations
described in KG1 to KG4 [15, 149]. Thus defined, A (M) does not admit the struc-
ture of aC∗-algebra. This is not always required, but in some situations, it is useful to
haveA (M) as a C∗-algebra. The canonical way of reaching a C∗-algebraic descrip-
tion of the quantized linear Klein-Gordon field on M proceeds as follows: Define
K(M) = C∞0 (M,R)/(PMC∞0 (M,R)), and write f∼ = f + PMC∞0 (M,R) for
f ∈ C∞0 (M,R). Then define A (M) to be the Weyl algebra of the linear Klein-
Gordon field on M, which is defined as the (unique [18]) C∗-algebra generated
by elements WM( f∼), f∼ ∈ K(M), and a unit element 11, subject to the rela-
tions WM( f∼)WM(h∼) = ei EM ( f,h)/2WM( f∼ + h∼), WM(− f∼) = WM( f∼)∗ and
WM(0) = 11.

The algebraic description of the theory on M is useful formany applications,when
supplemented by a suitable class of states such as the Hadamard class described in
Sect. 4.5 and Chap.5. A rather richer structure is revealed, however, when one relates
the algebras obtained on different, but suitably related, spacetimes.

Consider two spacetimes M and N and a smooth mapψ : M → N . Our first aim
is to understand what constraints M, N and ψ should satisfy in order that there can
be a meaningful relationship betweenA (M) andA (N). The sort of relationship we
intend here is one in which the generating smeared fields are related directly to one
another in the following way. Provided that ψ is smoothly invertible on its range, we
may push forward test functions from C∞0 (M) to C∞0 (N) according to

(ψ∗ f )(p) =
{

f (ψ−1(p)) p ∈ ψ(M)

0 otherwise.
(4.1)

1We adopt signature convention+−· · ·− for the metric and in general adopt the conventions used
in Chaps. 3, 5 and 6.

http://dx.doi.org/10.1007/978-3-319-21353-8_5
http://dx.doi.org/10.1007/978-3-319-21353-8_5
http://dx.doi.org/10.1007/978-3-319-21353-8_3
http://dx.doi.org/10.1007/978-3-319-21353-8_5
http://dx.doi.org/10.1007/978-3-319-21353-8_6
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It is natural to use the push-forward to map smeared fields in M to smeared fields in
N , writing

A (ψ)ΦM( f ) := ΦN(ψ∗ f ). (4.2)

(In the Weyl formulation, one uses A (ψ)WM( f∼) = WN ((ψ∗ f )∼) where the sub-
script∼ refers to M and N , respectively, and the following discussionwould proceed
completely analogously.) However, the assignment (4.2) is only well-defined if it is
compatible with the algebraic relations holding in A (M) and A (N); in particu-
lar, we must have ΦN (ψ∗PM f ) = 0 for all test functions f ∈ C∞0 (M). Further
conditions arise if we wish to extend A (ψ) from the generators to the full algebra.
Here, the simplest possibility is that A (ψ) should be a ∗-homomorphism that also
preserves units. In that case, the commutation relations, together with (4.2), give

[ΦN(ψ∗ f ),ΦN (ψ∗h)] = A (ψ)[ΦM( f ),ΦM(h)] = i EM( f, h)11A (N) (4.3)

and hence EN (ψ∗ f, ψ∗h) = EM( f, h) for all f, h ∈ C∞0 (M). We see that EM is the
pull-back, EM = (ψ × ψ)∗EN , of EN and its wave-front set [98] therefore obeys

WF (EM) ⊂ (ψ × ψ)∗WF (EN ).

Given the known structure of both sides, we deduce thatψ∗ must map null-covectors
on N to null covectors on M, and preserve time-orientation. This already restricts ψ
to be a conformal isometry, and in fact one may see that it must be an isometry unless
PM is conformally invariant. With an eye to other theories such as the pseudoscalar
or Maxwell fields, we might reasonably require ψ to preserve not only the time-
orientation, but also the spacetime orientation.

We have seen that the local structure of ψ is quite restricted if there is to be
any hope of implementing (4.2). In fact, the condition EM = (ψ × ψ)∗EN , of EN
also has global consequences: the image ψ(M) must be a causally convex subset
of N , which requires that every causal curve in N whose endpoints lie in ψ(M)

should be contained entirely in ψ(M). Examples showing the failure of this relation
in the absence of causal convexity are to be found in [4, 105]; more generally, the
conclusion follows from the fact that singularities propagate along null geodesics.

Our discussion has led us, with very little alternative, to a specification of those
maps of interest:ψ : M → N is a smooth, isometric embedding, preserving orienta-
tion and time-orientation, and with causally convex image. For suchψ , we now have
a unit-preserving ∗-homomorphismA (ψ) : A (M)→ A (N)which turns out to be
injective.2 We may observe something more: if we also consider a map ϕ : L → M
obeying these conditions, then the same is true of the composition ψ ◦ ϕ : L → N .
It is clear from (4.2) that

A (ψ◦ϕ)ΦL( f ) = ΦN ((ψ◦ϕ)∗ f ) = ΦN(ψ∗ϕ∗ f ) = A (ψ)(A (ϕ)ΦL( f )) (4.4)

2The algebra A (M) is simple (and not the zero algebra!), so A (ψ) either has trivial kernel or full
kernel; the latter case is excluded because A (ψ)11A (M) = 11A (N) �= 0.
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for all f ∈ C∞0 (L), and we extend from the generators to obtain

A (ψ ◦ ϕ) = A (ψ) ◦A (ϕ). (4.5)

In addition, it is clear that the identity map idM of M corresponds to A (idM) =
idA (M). These observations may all be summarised in the single statement that the
theory is described by a covariant functor A between two categories:

Loc the category whose objects are all globally hyperbolic spacetimes M =
(M, g, o, t) of fixed dimension n with finitely many connected components,
and whose morphisms are smooth isometric embeddings, preserving orien-
tation and time-orientation, having causally convex image. Here M is the
underlying manifold, with metric g, while the symbol o stands for a choice of
orientation, represented by one of the components of the set of nowhere-zero
smooth n-forms on M. Similarly, t denotes the time-orientation, represented
by one of the components of the set of nowhere-zero smooth g-timelike 1-forms
on M.

Alg the category of unital ∗-algebras excluding the zero algebra, with unit-
preserving injective ∗-homomorphisms as morphisms.

Here, we have anticipated future developments by allowing for disconnected space-
times when defining Loc. If M is disconnected, and ψ : M → N according to the
definition above, then causal convexity of ψ(M) forces its various components to
be causally disjoint—no causal curve can join one component to another. Of course,
one should be alive to the possibility that the example has features that might not
be shared by all theories. In particular, Loc admits spacetime embeddings in which
the components of the image have closures that are in causal contact, or allow for
self-touchings at their boundaries. While the Klein–Gordon theory has well-defined
morphisms corresponding to such embeddings, it is conceivable that there are rea-
sonable theories that do not, and that a more conservative starting point should be
found in due course. In the definition of Alg, we have excluded the zero unital alge-
bra (consisting of a single element which is both the zero and unit) to avoid some
pathologies and to ensure that Alg has an initial object, namely the algebra of com-
plex numbers.3 Accordingly, the unit is distinct from the zero element in every object
of Alg.

Although we have reached this structure by means of an example, it has a clear
physical interpretation and could be motivated in its own terms. Namely, the mor-
phisms ψ specify embeddings in which all causal relations between points in the
image ψ(M) (with respect to N) are already causal relations between the corre-
sponding points in M. Physics, by which we mean here degrees of freedom and
laws of motion (without yet specifying boundary or initial conditions), in the image
region would be expected to correspond to that in the domain spacetime: this is a
version of the principle of locality. In particular, we expect the physics on the smaller

3An initial object in a category C is an object I with the property that there is, to each object C of
C, exactly one morphism from I to C .
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spacetime to be faithfully represented within that of the larger, and that there should
be no distinction between physics in the embedded region ψ(M) and in the space-
time M. The functorial definition provides a consistency mechanism that protects
the ignorance of an experimenter within ψ(M) of the nature (or even existence) of
the spacetime beyond the region under her control. Further discussion of these ideas
can be found in [55].

Taking all of the above into account, wewill adopt the general assumption that any
theory that is both covariant and respects the principle of locality should be described
by a covariant functor from Loc (or another suitable category of spacetimes) to a
category of physical systems, in which morphisms represent embeddings of one
system as a subsystem of another and are required to be monic. This is a working
hypothesis for the development of a model-independent theory, but note that

1. the whole enterprise is questionable for spacetimes that are smaller in scale than
the physical systems they support (e.g., measured by a Compton wavelength)

2. as mentioned, Loc may admit too wide a variety of morphisms for some theories
3. for gauge theories in particular the requirement of injectivity is sometimes in

conflict with other desirable features of the theory, particularly in order to capture
topological aspects. See, e.g., the discussion following Theorem 4.6.3.

4.3 General Assumptions and First Consequences

We begin a more formal development of the structure, which rests on a number of
general assumptions. The first has already been motivated:

Assumption 4.3.1 (Local covariance) A locally covariant theory is a functor

A : Loc → Alg.

Depending on the application, one might wish to specify the target category more
stringently, e.g., requiring that A takes values in the subcategory C∗ -Alg of Alg,
consisting of unital C∗-algebras. One may also formulate locally covariant descrip-
tions for theories other than QFT by allowing a more general category Phys. Here,
however, we will remain in the algebraic description for the most part.

Given this starting point, we may define a net of local algebras in each spacetime
M = (M, g, o, t). Let O(M) be the set of all open causally convex subsets of M,
with at most finitely many connected components (which are necessarily causally
disjoint). Then, for each nonempty O ∈ O(M), we may define a new object M|O =
(O, g|O , o|O , t|O) of Loc, which is simply the set O equipped with the causal
structures induced from M and regarded as a spacetime in its own right. In addition,
the subset embedding of O in M is evidently a smooth embedding which is an
isometric (time)-orientation preserving map owing to the way we have defined M.
Thus it defines a morphism ιM;O : M|O → M in Loc. The functor A therefore
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assigns both an algebraA (M|O) and amorphismA (ιM;O) ofA (M|O) intoA (M).
The image of this morphism,

A kin(M; O) = A (ιM;O)(A (M O)), (4.6)

is called the kinematic algebra associatedwith region O , and gives a description of the
physics of the theory within O .4 The kinematic algebras have some immediate prop-
erties. First, suppose that O1 ⊂ O2. Then the factorisation ιM;O1 = ιM;O2 ◦ ιM|O2 ;O1

of the inclusion morphism implies that A (ιM;O1) = A (ιM;O2) ◦A (ιM|O2 ;O1) and
hence that

A kin(M; O1) ⊂ A kin(M; O2). (4.7)

In other words, the kinematic net is isotonous. Consequently, if O1, O2 ∈ O(M)

have a nonempty intersection O1 ∩ O2 (which is seen to be causally convex and
therefore an element of O(M)) then

A kin(M; O1 ∩ O2) ⊂ A kin(M; O1) ∩A kin(M; O2). (4.8)

(One does not expect equality here.) On the other hand, if O1, O2 ∈ O(M) are
nonempty and their union is causally convex thenA kin(M; O1 ∪ O2) contains both
A kin(M; Oi ) and therefore the algebra that they generate, so

A kin(M; O1) ∨A kin(M; O2) ⊂ A kin(M; O1 ∪ O2). (4.9)

In the C∗-algebraic setting, whereA : Loc → C∗ -Alg, we may sharpen this result
so that the left-hand side is the C∗-subalgebra of A kin(M; O1 ∪ O2) generated by
theA kin(M; Oi ).5 Both (4.8) and (4.9) extend to finitely many Oi in obvious ways;
if equality holds in (4.9), the theory A will be described as finitely additive.

Next, consider a morphism ψ : M → N . Then the spacetimes M|O and N|ψ(O)

are isomorphic via the map ψ̂O obtained as the restriction of ψ to O , obeying
ιN;ψ(O) ◦ ψ̂O = ψ ◦ ιM;O . Applying the functor A , and noting that A (ψ̂ |O) is an
isomorphism, we find

A kin(N;ψ(O)) = A (ψ)(A kin(M; O)). (4.10)

An important special case arises where ψ : M → M, i.e., ψ ∈ End(M), in which
A (ψ) defines an endomorphism of the kinematic net, or a net isomorphism in the
case where ψ is an isomorphism, ψ ∈ Aut(M). In particular, we see that there is a
homomorphism of monoids from End(M) to End(A (M)), that restricts to a group
homomorphism from Aut(M) to Aut(A (M)).

4Alternatively, and perhaps more in the spirit of a categorical description, one might say that the
morphism A (ιM;O ), regarded as defining a subobject of A (M), should be the focus here [69].
5In a general categorical setting, one would employ the categorical union of the A kin(M; Oi ).
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The properties (4.7), (4.8), (4.9) and (4.10) are direct generalisations of the prop-
erties of the nets of local algebras encountered in Minkowski space AQFT; see
[86] and Chap.1. It is remarkable that they all follow without further input from
the single assumption that the theory is described functorially. As an application of
(4.9) and (4.10), suppose that M has finitely many connected components Mi and
ψ : M → N . Then we have

∨
i

A kin(N;ψ(Mi )) ⊂ A kin(N;ψ(M)). (4.11)

IfA is finitely additive, then equality holds in (4.11); this need not be true in general.
Before proceeding to the other standard assumptions, two further definitions are

required. For a region O ⊂ M, we write O ′ := M \ JM(O) for its open causal
complement; in addition, a morphism ψ : M → N will be described as Cauchy if
ψ(M) contains a Cauchy surface for N (equivalently, if every inextendible timelike
curve in N intersects ψ(M)). The remaining assumptions are:

Assumption 4.3.2 (Einstein Causality) If O1, O2 ∈ O(M) are causally disjoint in
the sense that O1 ⊂ O ′2 := M \ JM(O2), then

[A kin(M; O1),A
kin(M; O2)] = {0}. (4.12)

Assumption 4.3.3 (Timeslice) If ψ : M → N is Cauchy thenA (ψ) is an isomor-
phism.

Unless otherwise specified, the term ‘locally covariant QFT’ will refer to a func-
tor obeying Assumptions 4.3.1–4.3.3. In Sect. 4.6.2 it will be seen that Assump-
tion 4.3.2 is partly redundant: it is enough that Einstein causality should hold for
one pair of spacelike separated regions in one spacetime for it to hold for suitable
spacelike separated regions in general spacetimes. Together with other assumptions,
Einstein causality leads to an additional monoidal structure on the theory—see [22]
and Sect. 4.6.2 for discussion. If the theory not only describes observables, but also
smeared fermionic fields, for example, then a suitable graded commutator should be
employed.

The timeslice assumption is one of the lynch-pins of the structure and encodes the
idea that the theory has a dynamical law, although what it is is left unspecified. It has
an immediate consequence: if O ∈ O(M) is nonempty, then O contains a Cauchy
surface of the Cauchy development DM(O)—the set of all points p in M with the
property that all inextendible piecewise-smooth causal curves through p intersect
O , which is open, causally convex and therefore a member of O(M).6 We already
know that ιM;O factors as ιM;O = ιM;DM (O) ◦ ιM|DM (O);O . Applying the functor, the

6Some authors, notably Penrose [123] and Geroch [83], define the Cauchy development with time-
like curves of various types. We follow [8, 90, 119, 161]. Many authors only define the Cauchy
development for achronal sets. The fact that DM (O) is open is most easily seen using limit curves
cf. [8, Prop. 3.31] or [90, Lem. 6.2.1].

http://dx.doi.org/10.1007/978-3-319-21353-8_1
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timeslice property entails that A (ιM|DM (O);O) is an isomorphism and so

A kin(M; O) = A kin(M; DM(O)). (4.13)

Hence we may immediately strengthen (4.8) to

A kin(M; DM(O1) ∩ DM(O2)) ⊂ A kin(M; O1) ∩A kin(M; O2). (4.14)

The timeslice property and its ramifications will be dominant themes in this chapter.
To conclude this section, we note that variousmodels obeying the general assump-

tions listed have been constructed. Theprototypical example is the freeKlein–Gordon
model described in Sect. 4.2. There, it was shown that the theory is given in terms
of a functor A : Loc → Alg, with algebras A (M) generated by ‘smeared fields’
ΦM( f ) ( f ∈ C∞0 (M)) and subject to relations KG1–4. It is easily seen that, for non-
empty O ∈ O(M), the kinematic algebra A kin(M; O) is the subalgebra of A (M)

generated by those ΦM( f ) with f ∈ C∞0 (O). Then (4.11) holds with equality and
Einstein causality holds because supp EM f ⊂ JM(supp f ). The timeslice property
can be shown by arguments used in Theorem 3 of Chap.3 (which establishes the
causality and timeslice properties at the level of symplectic spaces): if ψ : M → N
is a Cauchy morphism, let χ ∈ C∞(N) be chosen so that χ ≡ 0 to the future of
Σ+ and χ ≡ 1 to the past of Σ−, where Σ± are Cauchy surfaces in ψ(M). If
f ∈ C∞0 (N) then f ′ = PNχEN f may be shown to have compact support in ψ(M)

and to obey f − f ′ ∈ PNC∞0 (ψ(M)). Then

ΦN( f ) = ΦN( f ′) = ΦN(ψ∗ψ∗ f ′) = A (ψ)ΦM(ψ∗ f ′)

by KG3, the support properties of f ′ and the definition ofA (ψ). As every generator
of A (N) lies in the image of the injective map A (ψ), it is an isomorphism.

Similarly, models such as the Proca and (with modifications) Dirac fields also
fit into the framework [35, 135], as do the perturbatively constructed models of
pAQFT—we refer to Chaps. 3 and 2 for details.

As a further model of interest, let us return to the Klein–Gordon theory A . Each
algebra A (M) contains a unital ∗-subalgebra A ev(M) of elements that generated
by the unit together with bilinear elements ΦM( f )ΦM(h) ( f, h ∈ D(M)). It is
easily seen that, for ψ : M → N , the morphism A (ψ) restricts to a morphism
A ev(ψ) : A ev(M) → A ev(N), which defines a new locally covariant theory
A ev : Loc → Alg. Like A , this theory obeys Assumptions 4.3.1–4.3.3. However,
relation (4.9) cannot be strengthened to an equality for this theory: consider space-
like separated Oi ∈ O(M) and let fi ∈ C∞0 (Oi ) (i = 1, 2). Then the kinematic
algebra A ev,kin(M; O1 ∪ O2) contains an element ΦM( f1)ΦM( f2), which is not
contained inA ev,kin(M; O1)∨A ev,kin(M; O2); in other words,A ev is not finitely
additive.

http://dx.doi.org/10.1007/978-3-319-21353-8_3
http://dx.doi.org/10.1007/978-3-319-21353-8_3
http://dx.doi.org/10.1007/978-3-319-21353-8_2


4 Algebraic Quantum Field Theory in Curved Spacetimes 135

One should also bear in mind that the general assumptions so far also allow for
models that display unphysical properties. For example, define a theory by

B(M) =
{
A (M) if M has noncompact Cauchy surfaces

A (M)⊗A (M) if M has compact Cauchy surfaces
(4.15)

and, for ψ : M → N ,

B(ψ)A =

⎧⎪⎨
⎪⎩
A (ψ)A N has noncompact Cauchy surfaces

(A (ψ)⊗A (ψ)) A M has compact Cauchy surfaces

(A (ψ)) A ⊗ 11 otherwise

(4.16)

(by a general result in Lorentzian geometry, these cases are disjoint and the only case
that can arise under ‘otherwise’ is that of N having compact Cauchy surfaces and M
having noncompact Cauchy surfaces; see [69, Prop. A.1], which is based on results
in [32]).

The reader may verify that theory obeys Assumptions 4.3.1–4.3.3, while being
a theory of a single scalar field in some spacetimes, and of two independent scalar
fields in others. More examples in a similar vein can be found in [69]; indeed, one
could employ the same construction using any locally covariant theory as a starting
point. Therefore, the Assumptions 4.3.1–4.3.3 are not in themselves sufficient to
guarantee that a theory represents the same physics in all spacetimes, an issue that
will be studied further in Sect. 4.11.

4.4 Relative Cauchy Evolution

The locally covariant approach not only conveniently summarises many general
facts about QFT in curved spacetimes, but has also led to new developments in
the subject. One such is the idea of relative Cauchy evolution, introduced in [24]
and further developed in [69], which allows for the comparison of the dynamics
of a theory on different spacetimes, even when one cannot be embedded in the
other.

Let M = (M, g, o, t) be a globally hyperbolic spacetime. If h is a smooth com-
pactly supported rank-2 covariant tensor field that is ‘not too big’ then we can define
a deformed spacetime M[h] = (M, g + h, o, t[h]) which is still globally hyper-
bolic, where t[h] is the unique choice of time orientation agreeing with t outside the
support of h.7 The set of all such metric perturbations will be denoted H(M). The
idea is now to select regions to the past and future of the metric perturbation that
are common to M and M[h] and contain Cauchy surfaces thereof. This is achieved

7The orientation need not be changed when the metric changes; recall that o is a component of the
nonzero smooth n-forms, and not e.g., the volume form.
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Fig. 4.1 Spacetimes involved in the construction of the relative Cauchy evolution

by choosing Cauchy morphisms ı± : M± → M with images ı±(M±) contained in
M \ J∓M(supp h), i.e., so that supp h has trivial intersection with the causal future
of ı+(M+) and the causal past of ı−(M−). Given these choices, there are Cauchy
morphisms j± : M± → M[h] with the same underlying maps as ı±.

The arrangement of spacetimes is displayed pictorially Fig. 4.1 and can be por-
trayed diagrammatically as

where the diagram on the right is obtained by applying the functor corresponding
to a locally covariant theory A . The important point is that the timeslice property
ensures that all the morphisms in this second diagram are isomorphisms, and so can
be inverted. This permits us to traverse the right-hand diagram clockwise, starting
and ending at A (M), to obtain the relative Cauchy evolution

rceM [h] = A (ı−) ◦A ( j−)−1 ◦A ( j+) ◦A (ı+)−1,

which encodes the response of the theory to themetric variation h as an automorphism
of A (M). The relative Cauchy evolution is independent of the choices of Cauchy
morphisms made—there is also a canonical choice in which M± have underlying
manifolds M± =M \ J∓M(supp h) (see [69, §3.4]).

It is not hard to compute the relative Cauchy evolution for the real scalar field.
Fix any M ∈ Loc and any compactly supported metric perturbation h ∈ H(M).
As the relative Cauchy evolution is independent of the specific Cauchy morphisms
used, convenient choices can be made. Choose Cauchy surfaces Σ± of M so that
Σ± ⊂ I±M(Σ∓) and with supp h ⊂ I−M(Σ+) ∩ I+M(Σ−), i.e., h lies to the future of
Σ− and the past ofΣ+. Then letM± = I±M(Σ±) and define M± = M|M± , letting
ı± and j± be the inclusion morphisms of M± in M and M[h] respectively, which
are necessarily Cauchy. It is enough to evaluate the action of the relative Cauchy
evolution on the generatorsΦM( f ) ofA (M)—moreover, by the timeslice property
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(on M) it is sufficient to restrict to test functions f supported inM+, for which

A ( j+) ◦A (ı+)−1ΦM( f ) = ΦM[h]( f ).

Using the timeslice property on M[h] (cf. the discussion in Sect. 4.3) we may write
ΦM[h]( f ) = ΦM[h](PM[h]χEM[h] f ), where χ ∈ C∞(M) has been chosen to
vanish identically in J+M[h](Σ−), and to take the value 1 identically to the past of
some other Cauchy surface inM−. In particular, χ vanishes on the support of h and
also on M+. With these choices, PM[h]χEM[h] f is supported inM−, whereupon

rceM [h]ΦM( f ) = A (ı−) ◦A ( j−)−1ΦM[h](PM[h]χEM[h] f )

= ΦM(PM[h]χEM[h] f ).

This expression can be simplified so as to remove the dependence on χ . The support
properties of χ entail that χEM[h] f = χE−M[h] f , and so

PM[h]χEM[h] f = f − PM[h](1− χ)E−M[h] f

= f − (PM[h] − PM)(1− χ)E−M[h] f − PM(1− χ)E−M[h] f.

Moreover, PM[h] and PM differ only where χ = 0, and outside J+M[h](supp f ), so

(PM[h] − PM)(1− χ)E−M[h] f = (PM[h] − PM)E−M[h] f = (PM[h] − PM)EM[h] f

which gives PM[h]χEM[h] f = f − (PM[h] − PM)EM[h] f − PM(1 − χ)E−M[h] f .

Crucially, (1 − χ)E−M[h] f is compactly supported, and so the field equation axiom
KG3 gives

rceM [h]ΦM( f ) = ΦM( f )−ΦM((PM[h] − PM)EM[h] f ) (4.17)

at least for those f supported in M+. As previously mentioned, this suffices to fix
the action of rceM [h] on the whole of A (M).

Equation (4.17) clearly shows that the relative Cauchy evolution is trivial if f is
supported within the causal complement of supp h (at least for our class of f ). In fact,
it is true for any locally covariant theory that rceM [h] acts trivially on A kin(M; O)

for any region O ∈ O(M) with O ⊂ (supp h)⊥ := M \ supp h, which shows that
the relative Cauchy evolution is local with respect to the metric perturbation [69,
Prop. 3.5]. Moreover, it is also covariant (again, for any locally covariant theory):
given M → N and h ∈ H(M), it can be shown [69, Prop. 3.7] that ψ∗h ∈ H(N)

and
rceN [ψ∗h] ◦A (ψ) = A (ψ) ◦ rceM [h].

A particular case of interest is where N = M and ψ ∈ Aut(M) is a space-
time symmetry. Alternatively, if K ⊂ M is compact and contains the support of



138 C.J. Fewster and R. Verch

h ∈ H(M), then
rceM [ψ∗(h + g)− g] = rceM [h] (4.18)

for any diffeomorphism ψ that acts trivially outside K [24, Prop. 4.1].
The interpretation of the relative Cauchy evolution is best understood by means

of its functional derivatives, which turn out to be related to a stress-energy tensor. Let
s �→ h(s) be a smooth 1-parameter family of metric perturbations with h(0) = 0,
so that M[h(s)] is a globally hyperbolic spacetime for all sufficiently small |s|.
Assuming the relevant derivatives exist (in a suitable topology, which might, for
instance, be a weak topology induced by a state space—see Sect. 4.5) we may define
a derivation δ on A (M) by

δ(A) = −2i
d

ds
rceM [h(s)]A

∣∣∣∣
s=0

that depends linearly on f = ḣ(0). It is convenient to denote this by δ(·) =
[TM( f ), ·], without any implication that TM( f ) is an element of A (M). More-
over, the right-hand side can be written in functional derivative notation, leading to
the suggestive equation

[TM( f ), A] = 2

i

∫
M

fμν
δrceM

δgμν
(A).

Although TM( f ) (or rather, the derivation it represents) has only been defined
for symmetric test tensors f , we can extend it to arbitrary smearings by demanding
that it vanish on antisymmetric f . Then (4.18) has an interesting consequence [24].
Let Xa be a smooth compactly supported vector field, and define ψs = exp(s X) be
the 1-parameter family of diffeomorphisms it generates, which act trivially outside
a fixed compact set (for |s| < s∗, say). This induces a 1-parameter family of metric
perturbations h(s) = ψ(s)∗g − g, with

ḣ(0)ab = (£X g)ab = ∇a Xb +∇b Xa .

By (4.18), rceM [h(s)] = rceM [0] = idA (M) for all s, so

[TM(£X g), A] = −2i
d

ds
rceM [h(s)]A

∣∣∣∣
s=0

= 0,

which asserts that TM is conserved, when regarded as a symmetric derivation-valued
tensor field.8 If the derivation is inner, i.e., given by the commutator with elements
TM( f ) ∈ A (M), then we deduce that ∇ · TM belongs to the centre of A (M).

8It is natural to write TM (£X g) = −2(∇ · TM )(X), regarding the divergence in a weak sense.
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To investigate the interpretation further, we return to the example of the scalar
field. Starting from (4.17), it is clear that

d

ds
rceM [sh]ΦM( f )

∣∣∣∣
s=0

= ΦM(L M [h]EM f ) (4.19)

in any topology for which the derivative exists, where

L M [h]φ = − d

ds
PM[sh]

∣∣∣∣
s=0

φ = ∇a

(
hab∇bφ

)
− 1

2

(
∇ahb

b

)
∇aφ.

Equation (4.19) is derived for f supported in M+, but is actually valid for all
f ∈ D(M).9 The link with the stress-energy tensor is obtained as follows. Working
in ‘unsmeared notation’,

[ΦM(x)ΦM(x ′),ΦM( f )] = i(EM f )(x)ΦM(x ′)+ i(EM f )(x ′)ΦM(x)

and since renormalisation of the Wick square involves subtracting a C-number from
the point-split square and then taking the points back together,

[Φ2
M,ren(x),ΦM( f )] = 2i(EM f )(x)ΦM(x)

or, smearing against k ∈ C∞0 (M),

[Φ2
M,ren(k),ΦM( f )] = 2iΦM(k EM f ).

Similarly,

[((∇aΦ)(∇bΦ))M,ren(x),ΦM( f )] = 2(i∇(aΦM(x))(∇b)EM f |x )

or, smearing against a symmetric tensor h,

[((∇Φ)(∇Φ))M,ren(h),ΦM( f )] = −2iΦM(∇ahab∇b EM f ).

Applying these formulae to the stress-energy tensor,

Tab = (∇aφ)(∇bφ)− 1

2
gabgcd(∇cφ)(∇dφ)+ 1

2
m2gabφ

2,

quantized by point-splitting, a short calculation using Leibniz’ rule gives

[TM,ren(h),ΦM( f )] = −2iΦM(L M [h]EM f )+ iΦM(hc
c(�+ m2)EM f ),

9Decompose f = f0 + PM f1, where f0 is supported in the image of M+, and f1 ∈ D(M). As
ΦM ( f ) = ΦM ( f0), we may apply (4.19) to f0 and then use the fact that EM f0 = EM f .
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of which the last term vanishes. Comparison with (4.19) yields the important formula

d

ds
rceM [sh]ΦM( f )

∣∣∣∣
s=0

= − 1

2i
[TM,ren(h),ΦM( f )],

where TM,ren is the renormalised stress-energy tensor of the theory.10

Similar computations for other models [9, 46, 59, 64, 136] support the view
that, in general, the functional derivative of the relative Cauchy evolution may be
interpreted as a stress-energy tensor. One is therefore led to regard the relativeCauchy
evolution as a proxy for the action. This is quite remarkable, because we have not
assumed that locally covariant theories are specified in terms of classical actions. It
is a striking illustration of the power of the general framework.

4.5 States and State Spaces

4.5.1 States and Representations

While much of the structure of quantum field theory lies in the algebraic relations,
particularly the concepts of locality and causality and their relation to covariance,
an important role is played by the states (or, synonymously, expectation value func-
tionals). In particular, states permit the comparison of the mathematical framework
with experiment, and the interpretation of the formal framework in more concrete,
physical terms, leading to an understanding of the meaning of certain observables,
the charge structure, field content and the degrees of freedom of a quantum field
theory. Moreover, certain aspects which distinguish quantized fields from classical
fields, like entanglement, are best understood at the level of states.

Themathematical definition asserts only that a state on a ∗-algebraA is a positive,
normalized and (suitably) continuous functional ω : A→ C, interpreted as yielding
the expectation values ω(A) of any observable A (an element A ∈ A with A∗ = A).
Here, positivity means ω(A∗A) ≥ 0 for all A ∈ A, while normalization requires
ω(1) = 1 for the unit element of A (which, by default, is assumed to exist if A
is the algebra of observables of a physical system). Continuity may be an involved
issue. IfA is aC∗-algebra, however, norm continuity is already implied by positivity,
and furthermore, the existence of a large set of states is warranted from the outset.
This is one of the reasons why, from a mainly mathematical perspective, it is very
convenient to treat observable algebras as C∗-algebras.

However, it is known by several examples that this very general mathematical
description of a “state” allows for many which can hardly be interpreted as physi-
cally realistic configurations of a quantum field because their behaviour on certain

10This result differs by a sign from that in [24] (and repeated e.g., in [69, 70]). The source of the
difference arises on p. 61 of [24], where the action of an ‘advanced’ Green function is taken to have
support in the causal future of the source. The sign error does not affect the results of [69, 70].
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observables of interest (particularly those measuring local quantities of momentum
andenergy) is too singular [163]. Thus, suitable regularity propertiesmust be imposed
to select physically realistic states to which an interpretation of the observables can
be tied and on which an identification of the field content can be built. In quantum
field theory on Minkowski spacetime, Poincaré covariance is instrumental in speci-
fying the vacuum state, starting from which one can proceed with a characterization
(or at least selection) of physical states, but, in curved spacetimes, that is not at hand,
and one must devise other criteria. We will address that issue in a while, but first, it
is necessary to introduce some terminology.

We begin with the concept of a Hilbert space representation of a ∗-algebra A,
denoted by (H, π,D) and consisting of a Hilbert space H together with a dense
subspace D, and a representation π of A by closable operators defined on D. Fur-
thermore, it is required that π(A)D ⊂ D (A ∈ A) and that one has

π(AB) = π(A)π(B), π(αA + βB) = απ(A)+ βπ(B) and π(A)∗ = π(A∗)

holding on D for all α, β ∈ C, A, B ∈ A. A further requirement is the continuity
of A �→ π(A) at least weakly with respect to D in the topology of A. If A is a
C∗-algebra, the π(A) are necessarily bounded operators for A ∈ A and there is no
restriction to assumeD = H; hence we will simply write (H, π) for a Hilbert space
representation of a C∗-algebra.

The folium of a representation (H, π,D) of A, denoted by Fol(π), consists of
all states on A which can be written as finite convex sums of states of the form
ωξ (A) = (ξ, π(A)ξ) where ξ is any unit vector in D. If A is a C∗-algebra, we can
define the W ∗-folium FolW (π) of (H, π) as the weak closure of Fol(π). The set
of states FolW (π) is also called the set of normal states on A with respect to the
representation (H, π).

Any state ω on a ∗-algebra A, with suitable continuity properties, determines
a unique (up to unitary equivalence) Hilbert space representation of A, the GNS
representation, denoted (Hω, πω,Dω,Ωω). Here, (Hω, πω,Dω) is a Hilbert space
representation ofA andΩω is a unit vector inDω such thatω(A) = (Ωω, πω(A)Ωω)

for all A ∈ A and Dω = πω(A)Ωω, implying that Ωω is a cyclic vector for the
representation. IfA is aC∗-algebra, one takesDω = Hω as before, denoting theGNS
representation more simply by (Hω, πω,Ωω). Furthermore one can assign a folium
FolW (ω) := FolW (πω) to any state ω, i.e. the folium of its GNS representation.
Correspondingly, one calls any state in FolW (πω) a normal state with respect to ω,
or simply a state normal to ω.

Again for the case of a state ω on a C∗-algebra A, we define the induced von
Neumann algebra, Nω, in the GNS-representation (Hω, πω,Ωω) by

Nω = πω(A)′′,
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where the double prime denotes the bi-commutant and coincides with the weak
closure of πω(A) by von Neumann’s theorem.11 This definition is mostly useful
when applied to the local induced von Neumann algebras considered below.

Many quantum field theories are specified in terms of their fields and then, states
usually arise from (and are defined by) their n-point functions. In some examples, e.g.
if the algebras A (M) of observables assigned to a spacetime M are C∗-algebras, it
may occur that the quantumfield operatorsφ( f ) are not contained inA (M), but arise
as objects affiliated to the induced von Neumann algebra Nω(M) = πω(A (M))′′
in the GNS representations of physical states ω. Affiliation means that bounded
functions of the operators U and |φ( f )| occurring in the polar decomposition
φ( f ) = U |φ( f )| belong to the induced von Neumann algebra. As we wish to
avoid a discussion of precise domain properties for quantum field operators, we will
introduce n-point functions, or Wightman functions, in a manner that is quite close
to the original idea. So let us suppose that M is an object of Loc and that A (M)

is a ∗-algebra of observables assigned to spacetime M (it does not matter here if
A (M) is part of a theory functor A , or is a C∗-algebra). Then, we say that a state
ω on A (M) possesses affiliated n-point functions if there are (1) a C∞ complex
vector bundle VM having M as base manifold together with a fibre-wise complex
conjugation Γ on VM (2) a weakly dense (in the weak topology induced by the
GNS-representation of ω) ∗-subalgebra A0(M) and (3) a sequence wω

n (n ∈ N) of
distributions of positive type on C∞0 (Vn

M) (the compactly supported C∞ sections in

Vn
M ), such that for any A ∈ A0(M) there is a sequence F (n)

A ∈ C∞0 (Vn
M) obeying

∑
|n|≤N

wω|n|(F (n1)
A1

⊗ · · · ⊗ F (nk)
Ak

) −→
N→∞ ω(A1 · · · Ak)

for any finite collection of elements A1, . . . , Ak ∈ A0(M). Here, n = (n1, . . . , nk)

is amulti-index and |n| = n1+· · ·+nk ; the definition F (0) ∈ C andwω
0 (F (0)) = F (0)

is adopted, and the positive type condition means that

N∑
m,n=0

wω
n+m(F (n) ⊗ Γ F (m)) ≥ 0

holds for any finite selection of F (0), . . . , F (N ), understanding that Γ acts on each
of the m fibre factors, with Γ F (0) = F (0) (complex conjugation).

These definitions facilitate the introduction of conditions on the states ω via con-
ditions on the wavefront sets [98] WF (wω

n ) of their affiliated n-point functions wω
n .

A generalized concept of wavefront set for states ω may be given without using
affiliated n-point functions [155], but will not be pursued here.

11By default, all ∗-algebras here are unital, i.e. they have a unit element for the algebra product.
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4.5.2 States in Locally Covariant Theories

Let A be a locally covariant theory, i.e. a functor A : Loc → Alg. By an A -
state, we mean a family (ωM)M∈Loc indexed by the objects in Loc, where each
ωM is a state on A (M). This is a very general mathematical definition and does
not involve, as it stands, any regularity criteria selecting physically realistic states.
Furthermore, the definition does not relate the states ωM1 and ωM2 on spacetimes
M1 and M2, even if (parts of) M1 can be embedded into (parts of) M2 bymorphisms
in Loc.

Given a globally hyperbolic spacetime M admitting a non-trivial group Aut(M)

of spacetime isometries preserving orientation and time-orientation, it has been
remarked before that A induces a group representation of Aut(M) by elements
in Aut(A (M)). A state ωM on A (M) is called Aut(M)-invariant if

ωM ◦A (ψ) = ωM (4.20)

for all ψ ∈ Aut(M). To give a concrete example, suppose that M is Minkowski
spacetime, then Aut(M) is the proper orthochronous Poincaré group, and invariance
of a state ωM is one of the important properties singling out a vacuum state. More
generally, if a spacetime M is stationary, then there is a subgroup in Aut(A (M))

of time translations, and invariance of a state ωM under this subgroup—i.e. time-
translation invariance—is one of the required properties of a ground state or KMS
state. As states of this type are commonly regarded as physical states of a quantum
field, the invariance property of states is one of the features of states to look for. This
prompts the question of whether the concept of invariant state can be generalized to
the locally covariant setting. We refer to such a generalization as a natural state,
and the definition is this: A state (ωM)M∈Loc for a locally covariant theory A

is called natural if ωN ◦ A (ψ) = ωM whenever M
ψ−→ N is a morphism in

Loc.
While this seems natural in the sense of reflecting the natural duality between

algebras and states, it turns out to be asking too much: Under additional very mild
regularity properties, which are expected to be general features of large sets of states
in quantum field theories, and have been proved to hold in many examples and to be
consequences of, e.g., the general Wightman framework on Minkowski spacetime,
there are no natural states for locally covariant theories (Theorem 4.11.3).

The moral is that one should not expect physical states to be invariant under
arbitrary spacetime embeddings in locally covariant quantumfield theories.However,
there may be sets of states assigned to spacetimes which behave invariantly under
spacetime embeddings, and in fact, it is desirable to formulate selection criteria for
sets of physical states in a way that such an invariance property is fulfilled.
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4.5.3 State Spaces

Suppose that A is a ∗-algebra. Then we define a state space for A to be a set S of
states on A having the property that S is invariant under operations in A and under
forming finite convex sums, i.e., given any ω in S, then the states

ω′(A) =
N∑

i=1
λi

ω(B∗i ABi )

ω(B∗i Bi )

are also contained in S, for any choice of finitely many Bi ∈ A (with ω(B∗i Bi ) > 0)
and λi > 0 with

∑
i λi = 1 (i = 1, . . . , N , N ∈ N).

Note that the folium of anyHilbert space representation ofA is closed in the above
sense. Thus one can introduce a category Stsp of state spaces which is “dual” to the
category of algebras: The objects in Stsp are state spaces S of ∗-algebras A; more
precisely, they are pairs (S,A), whereA indicates the ∗-algebra for which S is a state
space. Then a morphism α∗ in Stsp is the dual of a suitable morphism α in Alg.
In more detail, if (S1,A1) and (S2,A2) are objects in Stsp, then any morphism

α : A1 → A2 in Alg such that α∗S2 ⊂ S1 defines a morphism (S2,A2)
α∗−→

(S1,A1) in Stsp. Here, the dual action of α on states is given by α∗ω2 = ω2 ◦ α
for ω2 ∈ S2. Thus (with some abuse of notation that is unlikely to give rise to
ambiguities)α∗(S2,A2) = (α∗(S2),A1). Themorphismcomposition rule is defined
as the composition rule of positive dual, convex maps between dual spaces of ∗-
algebras.

Now let A be a locally covariant theory. Then we define a state space for A
(henceforth,A -state space) to be a contravariant functorS between Loc and Stsp,
such thatS (M) is a state space forA (M) for any object M of Loc, and such that, if
ψ is a morphism in Loc, thenS (ψ) is induced byA (ψ)∗, the dual map ofA (ψ).12

The state space is said to obey the timeslice condition if S (M) = S (ψ)(S (N))

for every Cauchy morphism ψ : M → N .

4.5.4 Conditions on States

The definition of “state space” just given is very general, and to ensure that the states
contained in the state space of a locally covariant theory is formed by states which
can be given a reasonable and consistent physical interpretation, it needs to be sup-
plemented with further conditions. The conditions are expressed as conditions which
the states of a state space fulfil individually, or in relation to each other. Therefore we
shall list some of them; they correspond to regularity properties one expects physical
states to have for locally covariant theories and are motivated either by examples

12Note thatS , or its opposite covariant functorS op : Loc → Stspop, contains all the information
in A , and could be used by itself to specify the theory in full—this is done e.g., in [48, 54].
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featuring such properties (in curved or flat spacetime) or by structural arguments
in favour of such properties in general quantum field theory (in flat spacetime). We
refer in particular to [86] for discussion.

The ∗-algebra A (M) may, but need not, derive from a functor A from Loc
to Alg. However, we assume that A (M) is generated by a system of ∗-subalgebras
(C∗-subalgebras ifA (M) is aC∗-algebra)A (M; O), O ∈ O(M) fulfilling isotony.

Reeh-Schlieder property. Let ω be a state on A (M) and let O ∈ O(M). Then
one says that ω has the Reeh-Schlieder property with respect to O if, in the GNS-
representation (Hω, πω,Dω,Ωω) of any ω ∈ S(M), the set of vectors

πω(A (M; O))Ωω is dense in Hω .

Split property. This property is conveniently formulated under the assumption that
the A (M; O) are C∗-algebras, although a definition can also be given in more
general cases. Let O1 and O2 be two spacetime regions in O(M) so that O1 ⊂ O2.
A state ω on A (M) is said to fulfil the split property for the pair O1 and O2 of
regions if there is some type I factor von Neumann subalgebra N of B(Hω) so that

Nω(O1) ⊂ N ⊂ Nω(O2) .

Here,Nω(M; O) = πω(A (M; O))′′ are the local vonNeumann algebras induced in
theGNS representations.At this pointwe recall thatN is a factor ifN ∩N ′ = C1, i.e.
if only multiples of the identity operator are contained in bothN and its commutant.
A vonNeumann algebraN is of type I if there is a vonNeumann algebra isomorphism
γ : N → B(H̃) where H̃ is some (possibly inseparable) Hilbert space.

Intermediate factoriality. A stateω onA (M)will be defined as having the property
of intermediate factoriality if for any O ∈ O(M) there are some Õ ∈ O(M) and
some factor von Neumann subalgebra N of B(H) such that

Nω(O) ⊂ N ⊂ Nω(Õ) .

We note that, while this is technically reminiscent of the split property, the condition
here is different, and it has a different purpose—as a consequence of intermediate
factoriality, the GNS representations πω|A (M;O)

and πω|A (M;O) are quasiequivalent,
i.e. the have the same folia. (For a fuller discussion and proofs, see [24]).

Primarity. A state ω fulfils the condition of primarity with respect to some region
O ∈ O(M) if Nω(O) is a factor. An immediate consequence is this: If ω fulfils
primarity for a subset of regions O ∈ O(M) such that any relatively compact subset
of M is contained in some such O , then ω satisfies intermediate factoriality.

Duality. The condition of duality of ω with respect to some region O ∈ O(M)

requires that
Nω(O ′) = Nω(O)′
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where O ′ = M\JM(O) is the open causal complement of O in M andNω(O ′) is the
von Neumann algebra generated by all Nω(O×), for relatively compact O× ⊂ O ′.

Local quasiequivalence. This condition is best formulated under the assumption
that the A (M; O) are C∗-algebras. A set of states S0(M) is said to fulfil local
quasiequivalence if for any pair of states ω1, ω2 ∈ S0(M) the equality

Folw(πω1 |A (M;O)) = Folw(πω2 |A (M;O)) (4.21)

holds for all O ∈ O(M), i.e. if the GNS-representations of the states have the same
folia when restricted to local algebras A (M; O).

Note that local quasiequivalence given in this form is equivalent to the condition

Folw(πω1|A (M;O)) = Folw(πω2|A (M;O)) ,

stating that the folia of the GNS-representations of states restricted to the local
algebras coincide, once the states fulfil intermediate factoriality or theReeh-Schlieder
property. (Again, we refer to [24] for further discussion).

Triviality of local von Neumann algebras over points. Once more, this condition
assumes that the A (M; O) are C∗-algebras. We say that a state ω is point-trivial if

⋂
O�p

Nω(M; O) = C1

for any p ∈ M. This says that the induced local von Neumann algebras induced
by ω contain only multiples of the identity operator if their localization regions are
shrunk to any point in spacetime.

Scaling limits. For simplicity of notation, we will introduce this concept for n-point
functions wω

n of scalar type, i.e. VM ∼= C. The generalization to higher-dimensional
vector bundles is not difficult (see, e.g., [134]). With this assumption, let ω be a
state onA (M) with affiliated n-point functions wω

n , and let x be a point in M. With
the help of the exponential map expx at x , Tx M can be identified with Minkowski
spacetime (of suitable dimension). If f ∈ C∞0 (Tx M), we define

f [λ](expx (x
′)) = f (λ−1x ′) , λ > 0 ,

for x ′ in a neighbourhood of the origin in Tx M which is contained in the domain of
the exponential map. This way, the functions f [λ] are defined and C∞0 on an open
neighbourhood of x in M. Then one says that the state ω has a regular scaling limit
at x if (i) the state is point-trivial (at x) and (ii) if there is a monotonous function
ν(λ) > 0 of the scaling parameter λ > 0 such that the limits

w0
n( f1 ⊗ · · · ⊗ fn) = lim

λ→0
ν(λ)nwω

n ( f [λ]1 ⊗ · · · ⊗ f [λ]n )
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exist for all f j ∈ C∞0 (Tx M) and if the n-point distributions thus obtained satisfy the
Streater-Wightman axioms (in a nontrivial manner).

Wavefront set spectrum condition, or microlocal spectrum condition (µSC).
If a state ω has affiliated n-point functions wω

n , a microlocal spectrum condition,
abbreviated μSC, is a condition on the wavefront sets WF (wω

n ). We shall not pause
here to give the definition of the wavefront sets of distributions defined on C∞0
sections in vector bundles as this is well-explained elsewhere [134], nor shall we
record the precise form of the μSC which has been given in [21, 23]. The μSC
can be seen as a microlocal remnant of the spectrum condition imposed on n-point
functions in the Streater-Wightman approach to quantum field theory on Minkowski
spacetime [143]. One of the main features of theμSC is that it is manifestly covariant
(provided the vector bundle VM connects appropriately to the functorial structure of
Loc) and this is at the heart of the considerable advances which quantum field theory
in curved spacetimes has seen since the introduction of theμSC.A certain asymmetry
under exchange of the order of entries in WF (wω

n ) is characteristic of the μSC. At
the level of the 2-point function wω

2 of a state, the μSC requires

WF (wω
2 ) ⊂ {(x, ξ ; x ′, ξ ′) ∈ T ∗M × T ∗M : (x, ξ) ∼ (x ′,−ξ ′) , ξ � 0}

where (x, ξ) ∼ (x ′,−ξ ′)means that the manifold base-points x and x ′ are connected
by a lightlike geodesic and that ξ and−ξ ′ are co-parallel to that geodesic, and−ξ ′ is
the parallel transport of ξ along the connecting geodesic. The relation ξ � 0 means
that ξ is future-pointing with respect to the time-orientation on M.13

The conditions listed above are fulfilled in several models of quantum fields on
curved spacetimes which fulfil linear hyperbolic field equations, and are quantized
imposing canonical commutation relations (CCRs) in the case of integer spin fields,
or canonical anti-commutation relations (CARs) in the case of half-integer spin fields,
when choosing as set of states S0(M) the set of quasifreeHadamard states. Hadamard
states are specified by a particular form of the two-point function; on this matter, we
refer to Chap.5. The most complete investigation in this respect has been carried
out for the minimally coupled Klein-Gordon field. Even though the conditions are
partially inspired by the behaviour of linear quantum field models, many of them are
viewed as being valid also for interacting quantum fields and required for a consistent
interpretation of the theory. We collect results and references below.

As just mentioned, the Hadamard condition for linear quantum fields on curved
spacetimes, which requires that the two-point function wω

2 of a state ω takes the
Hadamard form where the singular part of wω

2 is determined by the spacetime metric
and the field equation [107, 159], implies the microlocal spectrum condition. In fact,
as was first shown in a seminal paper by Radzikowski for the quantized minimally
coupled Klein-Gordon field, for quasifree states the Hadamard condition and the

13Our convention on Fourier transforms of compactly supported distributions is (in Minkowski
space) û(k) = u(ek), where ek(x) = eikμxμ

; this is extended to manifolds using coordinate charts.

http://dx.doi.org/10.1007/978-3-319-21353-8_5
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microlocal spectrum condition μSC are equivalent [127]. This was also shown to
hold for other models of linear quantized fields on curved spacetimes [134].

When settling for some choice of sets of states S0(M) for any M in Loc for a
given locally covariant theory A , where S0(M) satisfies some, or even all, of the
above stated conditions, one can obtain anA -state spaceS in the following manner
[24]: First, one must check if the S0(M), M ∈ Loc, transform contravariantly under
the dualized morphisms of A , which means A (ψ)∗S0(N) ⊂ S0(M) whenever
ψ : M → N is a morphism in Loc, with equality holding in case that ψ(M) = N .
Next, one ought to check if the sets of states S0(M) fulfil the condition of local
quasiequivalence for all M ∈ Loc, as well as intermediate factoriality—to facilitate
the discussion, we will assume from now on that the A (M) are C∗ algebras. If that
is the case, one can augment the sets of states as

S(M) = {ω is state on A (M) : ω|A (M;O) ∈ FolW (πω0 |A (M;O)) } (4.22)

which is to hold for all O ∈ O(M) and any ω0 ∈ S0(M). Note that, in view of
the assumed local quasiequivalence and intermediate factoriality of the S0(M), the
definition of S(M) is independent of the choice of ω0 ∈ S0(M) in (4.22).

Then, setting S (M) = S(M) for objects M of Loc and S (ψ) = A (ψ)∗
for morphisms ψ of Loc yields a state space for A which inherits several of the
properties featuring in the S0(M). More precisely, one finds the following statement,
which, as mentioned, assumes that the S0(M) transform contravariantly under the
dualized morphisms of A .

Theorem 4.5.1 Suppose that for any object M of Loc, the set of states S0(M)

satisfies local quasiequivalence and intermediate factoriality. Then S is an A -state
space, thus any S (M) is closed under operations of A (M) and under forming
convex sums, and consists, locally, of a single folium (so locally, i.e. in restriction to
A (M; O) for any O ∈ O(M), all states in S (M) are normal to any/all states in
S0(M)). Moreover, if the states in S0(M) are also point-trivial, the same holds for
all the states in S (M), for any object M of Loc.

The proof of this statement (with slight variations) can be found in [24], where it
is referred to as principle of local definiteness, as put forward initially by Haag et al.
[87]. We mention that it is also important that locally, the state space coincides with
a single folium of states and therefore, is minimal, as this rules out the occurrence
of local superselection rules, akin to charges which may sit somewhere locally, but
cannot be moved around by any device. Thus, in this sense, the state space, at least
formally, captures the idea that a replacement for a vacuum state should be a set of
states which are in a formal sense vacuum-like, meaning that they have a low particle
density, temperature, and stress-energy density. Of course, these properties are, on
generic spacetimes, only approximately realized, and will in general only have a ‘rel-
ative’ meaning, e.g. compared to local curvature quantities. In the situation described
here, where theA -state space of a locally covariant quantum field theoryA consists
locally of a single folium, one has a situation very similar to quantum field theory
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on Minkowski spacetime where locally (in restriction to algebras A (M; O) with
O ∈ O(M)), the state space consists of states which are normal to the vacuum state.
This is the starting point for the theory of superselection charges, at least of local-
izable and transportable charges which are represented by (equivalence classes of)
states which are normal to the vacuum state on algebrasA (M; O ′) if the spacetime
region O ′ is the causal complement of a double cone (for Minkowski spacetime,
O ′ is not relatively compact), but are not normal to the vacuum state on the full
spacetime algebra A (M). See [6, 86] and literature cited there for an exposition
of superselection theory, and background material. To some extent, the theory of
localized, transportable superselection charges can be generalized to quantum field
theory in curved spacetime [85], and also to locally covariant quantum field theory
[25, 26, 131]. However, the case of non-localized superselection charges is more
complicated in curved spacetimes since the topology of the Cauchy-surface of the
spacetime under consideration may play an important role regarding the existence
or non-existence of certain types of charges. Problems of that nature occur already
when trying to obtain a locally covariant setting for free quantum electrodynamics
at the field algebra level. However, we shall not pursue this circle of problems any
further at this point, and instead refer to the literature [10, 64, 137].

There is an assertion about the type of the local von Neumann algebras Nω(O)

which is implied if the state ω has a regular scaling limit at a point in the spacelike
boundary of O (which means that O must have a non-trivial causal complement),
together with causality of the local algebras. The statement has been given in the
curved spacetime context in [6, 72, 153, 164]; it builds on a seminal paper by
Fredenhagen [79]. We rephrase it here as follows.

Theorem 4.5.2 Suppose that the state ω on A (M) possesses a regular scaling limit
at some point x lying in the spacelike boundary of O ∈ O(M), that O has a non-
trivial (open) spacelike complement O ′, and that Nω(O) and Nω(O ′) are pairwise
commuting von Neumann algebras. Then Nω(O) is of type III1.

We remark that this result holds also if O is not relatively compact, provided the
other conditions are met. The type III1 property ofNω(O)means, roughly speaking,
that Nω(O) contains no (non-zero) finite-dimensional projections. For the precise
mathematical statement, see [13]. Suffice it to mention that the type III1 property of
local algebras of von Neumann algebras is a typical feature of local (von Neumann)
algebras of observables in relativistic quantum field theory which does not appear
in quantum mechanics, or quantum statistical mechanics. There are some interest-
ing consequences—in particular, like the Reeh-Schlieder theorem to be discussed
below, the type III1 property of the local von Neumann algebras has as one of its
consequences the ubiquity of states which are entangled across acausally separated
spacetime regions. The reader is referred to the references [30, 89, 146, 158] for
further material related to that theme.

Next, we shall compile what is known about states of linear quantum field models
from the point of view of locally covariant quantum field theory, providing examples
for the properties of states listed above, and for Theorems 4.5.1 and 4.5.2.
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Proposition 4.5.3 Assume that A is the C∗-algebra version of locally covariant
quantum field theory of the quantized linear Klein-Gordon field with a general cur-
vature coupling, corresponding to the field equation (�M + ξ RM + m2)φ = 0,
where RM is the scalar curvature of the underlying spacetime M of Loc, and m2≥0
and ξ ≥ 0 are fixed constants (the same for all M). (That is, A (M) is the Weyl alge-
bra of the quantized Klein–Gordon field on each M ∈ Loc.) Then the following
hold:

(1) Any quasifree Hadamard state on A (M) fulfils point-triviality, intermediate
factoriality, existence of affiliated n-point functions, the μSC, and for a certain
class of spacetime regions: Split-property, primarity, and Haag-duality [154].

(2) Any two quasifree Hadamard states ω1 and ω2 on A (M) are locally quasi-
equivalent, i.e. the condition (4.21) holds for any O ∈ O(M) [152].

(3) A quasifree Hadamard stateω onA (M) fulfils the Reeh-Schlieder property with
respect to any spacetime region O ∈ O(M) if the two-point function wω

2 fulfils
the analytic microlocal spectrum condition [145]. Without assuming the analytic
microlocal spectrum condition, there are also spacetime regions O ∈ O(M)

and quasifree Hadamard states ω on A (M) such that ω has the Reeh-Schlieder
property with respect to O [135, 144, 150].

(4) Setting S0(M) to coincide with the set of all quasifree Hadamard states in
the case of the locally covariant quantized Klein-Gordon field, the assumptions
stated for Theorems 4.5.1 are fulfilled [24].

We remark that similar results have also been obtained for the quantizedDirac, Proca,
and (partially) electromagnetic fields, choosing in each case the set of quasifree
Hadamard states as the set S0(M) [34, 134].

4.6 Spacetime Deformation and the Rigidity Argument

Techniques based on deformations of globally hyperbolic spacetimes go back to the
work of Fulling et al. [82] in which the existence of Hadamard states on ultrastatic
spacetimes was used to deduce their existence on general globally hyperbolic space-
times. As first recognised in [156], the same idea can be used to great effect in locally
covariant QFT.

4.6.1 Spacetime Deformation

There are two basic components to the spacetime deformation construction: the exis-
tence of a standard form for globally hyperbolic spacetimes, and the actual deforma-
tion procedure.Consider anyobject M = (M, g, o, t)ofLoc.An important property
of globally hyperbolic spacetimes is that M admits foliations into smooth spacelike
Cauchy surfaces. Moreover, every spacelike Cauchy surface Σ of M ∈ Loc also
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carries an orientation w fixed by the requirement that t ∧w is the restriction of o to
Σ ,14 and all such oriented Cauchy surfaces are oriented-diffeomorphic (i.e., diffeo-
morphic via an orientation-preserving map). These facts may be used to prove the
following structure theorem for Loc (see [69, §2.1]).

Proposition 4.6.1 Supposing that M ∈ Loc, let Σ be a smooth spacelike Cauchy
surface of M with induced orientation w, and let t∗ ∈ R. Then there is a Loc-object
Mst = (R×Σ, g, t ∧w, t) and an isomorphism ρ : Mst → M in Loc such that

• the metric g is of split form

g = βdt ⊗ dt − ht , (4.23)

where t is the coordinate corresponding to the first factor of the Cartesian product
R×Σ , the function β ∈ C∞(R×Σ) is strictly positive and t �→ ht is a smooth
choice of (smooth) Riemannian metrics on Σ;

• each {t} × Σ is a smooth spacelike Cauchy surface, and ρ(t∗, ·) is the inclusion
of Σ in M;

• the vector ∂/∂t is future-directed according to t.

We refer to Mst as a standard form for M.

This statement is a slight elaboration of results due to Bernal and Sánchez (see
particularly, [12, Thm1.2] and [11, Thm2.4]), which were previously long-standing
folk-theorems. The main deformation result can now be stated (see [69, Prop. 2.4]):

Proposition 4.6.2 Spacetimes M, N in Loc have oriented-diffeomorphic Cauchy
surfaces if and only if there is a chain of Cauchy morphisms in Loc forming a
diagram

M
α←− P

β−→ I
γ←− F

δ−→ N. (4.24)

The importance of the deformation result is that a locally covariant theoryA obey-
ing the time-slice conditionmaps every Cauchymorphism ofLoc to an isomorphism
of Alg, so the chain of Cauchy morphisms in (4.24) induces an isomorphism

A (δ) ◦A (γ )−1 ◦A (β) ◦A (α)−1 : A (M)→ A (N). (4.25)

This isomorphism is not canonical, owing to the many choices used to construct
it. Nonetheless, we will see that it is possible to use results of this type to transfer
information and structures between the instantiations of the theory on M and N .

In the following, a fewmore definitions will be needed ([69, Def. 2.5]). A Cauchy
ball in a Cauchy surface Σ of M ∈ Loc is a subset B ⊂ Σ for which there is a
chart (U, φ) of Σ such that φ(B) a nonempty open ball in R

n−1 whose closure is
contained in φ(U ). A diamond in M is any open relatively compact subset of the

14Recall that t, o and w are all regarded as connected components of certain sets of nowhere zero
forms; by t∧wwe denote the set of all possible exterior products from within t and w.
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form DM(B), where B is a Cauchy ball. The diamond is said to have base B and be
based on any Cauchy surface in which B is a Cauchy ball. A multi-diamond D is
a union of finitely many causally disjoint diamonds; there exists a common Cauchy
surface on which each component is based, and the intersection of D with an open
causally convex neighbourhood of any such Cauchy surface is called a truncated
(multi)-diamond.

4.6.2 The Rigidity Argument and Some Applications

It is often the case that if a locally covariant QFT has a property in one spacetime,
then the same is true in all spacetimes, a phenomenon that we call rigidity. This
testifies to the strength of the hypotheses given in Sect. 4.3, particularly the timeslice
property. A simple example is provided by Einstein causality, which was originally
included as Assumption 4.3.2 for a locally covariant quantum field theory. However,
this assumption is largely redundant: Provided a theory is Einstein causal in one
spacetime (e.g., Minkowski), it must be so in all spacetimes.

Let A : Loc → Alg obey local covariance and the timeslice condition, but not
necessarily Einstein causality, and for each M ∈ Loc let O(2)(M) denote the set
of all ordered pairs 〈O1, O2〉 ∈ O(M)×O(M) such that the Oi are nonempty and
causally disjoint in the sense that O1 ⊂ O ′2. For any such pair 〈O1, O2〉 ∈ O(2)(M)

let PM(O1, O2) be the proposition that Einstein causality holds for O1 and O2,
i.e., that A kin(M; O1) and A kin(M; O2) commute. These propositions have some
simple properties:

R1 for all 〈O1, O2〉 ∈ O(2)(M),

PM(O1, O2) ⇐⇒ PM(DM(O1), DM(O2)).

R2 given ψ : M → N then, for all 〈O1, O2〉 ∈ O(2)(M),

PM(O1, O2) ⇐⇒ PN (ψ(O1), ψ(O2)).

R3 for all 〈O1, O2〉 ∈ O(2)(M) and all nonempty Õi ∈ O(M) with Õi ⊂ Oi

(i = 1, 2)
PM(O1, O2) =⇒ PM(Õ1, Õ2).

Here, R1 holds trivially because A (M; O) = A (M; DM(O)), while to prove R2
we recall from (4.10) that A kin(N;ψ(Oi )) = A (ψ)(A kin(M; Oi )), and use the
equality

[A (N;ψ(O1)),A (N;ψ(O2))] = A (ψ)([A (M; O1),A (M; O2)])

togetherwith injectivity ofA (ψ). R3 is also trivial asA kin(M; Õi ) ⊂ A kin(M; Oi ).
These facts allow us to prove the following.
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Theorem 4.6.3 Let the theory A :Loc → Alg obey local covariance and time-
slice (Assumptions 4.3.1 and 4.3.3) but not necessarily Einstein causality (Assump-
tion 4.3.2). Suppose that, in the theory A , Einstein causality holds for some pair
of nonempty causally disjoint regions O1, O2 ∈ O(M) in some spacetime M ∈
Loc. Then Einstein causality holds in theory A for every pair of nonempty causally
disjoint regions Õ1, Õ2 ∈ O(M̃) in every spacetime M̃ ∈ Loc for which either of
the following hold:

(a) the Cauchy surfaces of Õi are oriented diffeomorphic to those of Oi for i = 1, 2;
(b) each component of Õ1 ∪ Õ2 has Cauchy surface topology R

3 (e.g., if the Õi are
truncated multi-diamonds.)

Remark 4.6.4 The regions Oi in the hypotheses might be a finite spacelike distance
from one another. However, the regions Õi need not be separated in this way and
could touch at their boundaries, or even link around each other if they have nontrivial
topology. For example, consider a theory which obeys Einstein causality for a pair
of causally disjoint diamonds based on the t = 0 hyperplane of Minkowski space
M0. Within each diamond, choose a subregion DM0(Ti ), where Ti is an open subset
of the t = 0 hyperplane with topology R

n−2 × T (e.g., a thickened closed curve).
Einstein causality holds for these regions (by R3) and thus holds for every pair of
causally disjoint regions DM0(T̃i ), where the T̃i have topology R

n−2 × T, even if
they are linked through one another.

Proof (a) By Proposition 4.6.2 there is a chain of morphisms

M̃
ι̃←−− M̃|Õ1∪Õ2

ψ̃←−− L̃
ϕ̃−−→ I

ϕ←−− L
ψ−−→ M|O1∪O2

ι−−→ M

where ψ, ψ̃, ϕ, ϕ̃ are Cauchy morphisms and ι = ιM;O1∪O2 , ι̃ = ιM̃;Õ1∪Õ2
. The

spacetime M|O1∪O2 has two connected components, which are just the subsets O1
and O2 (recall that the underlying manifold of M|O1∪O2 is just O1 ∪ O2 as a set);
the same holds, mutatis mutandis, for M̃|Õ1∪Õ2

. Each of the spacetimes I, L, L̃ has
two connected components, which we label Ii , Li , L̃i respectively (i = 1, 2) so that

DM|O1∪O2
(ψ(Li )) = Oi , DM̃|Õ1∪Õ2

(ψ̃(L̃i )) = Õi ,

DI (ϕ(Li )) = Ii = DI (ϕ̃(L̃i ))

for i = 1, 2. Using properties R1 and R2 we may now argue

PM(O1, O2)
R2⇐==⇒
ι

PM|O1∪O2
(O1, O2)

R1⇐==⇒ PM|O1∪O2
(ψ(L1), ψ(L2))

R2⇐==⇒
ψ

PL(L1, L2)
R2⇐==⇒
ϕ

PI (ϕ(L1), ϕ(L2))
R1⇐==⇒ PI (I1, I2)

where we have indicated themorphism involved in each use of R2. By a similar chain
of reasoning, PM̃(Õ1, Õ2) ⇐⇒ PI (I1, I2). As PM(O1, O2) holds by hypothesis,
we deduce that PM̃(Õ1, Õ2) also holds.
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For (b), we observe first that for i = 1, 2, Oi certainly contains a truncated multi-
diamond Di with the same number of components as Õi . Then PM(D1, D2) holds
by R3 and so PM̃(Õ1, Õ2) also holds by part (a). �

Note that this argument makes no specific reference to Einstein causality at all: it
simply uses the rigidity hypotheses R1–3, and therefore allows a number of other
results to be proved in a similar fashion.

Corollary 4.6.5 Assume that, in addition to the hypotheses of Theorem 4.6.3, the
theory A is additive with respect to truncated multidiamonds, i.e., each A (M) is
generated by its subalgebras A kin(M; D) as D runs over the truncated multidia-
monds of M. Then A obeys Einstein causality in full.

Proof Let 〈Õ1, Õ2〉 ∈ O(2)(M̃) be chosen arbitrarily. It follows from the addi-
tional hypothesis that each A kin(M̃; Õi ) is generated by subalgebras of the form
A kin(M̃; D) where D runs over the truncated multidiamonds in Õi .15 Applying
Theorem 4.6.3(b), it follows that Einstein causality holds for Õ1 and Õ2. �

Remark 4.6.6 These results have an interesting consequence for free electromag-
netism in n = 4 dimensions. Consider two observables, one of which is the magnetic
flux Φ1 through a 2-surface S1 bounded by closed curve C1, while the other is the
electric flux Φ2 through 2-surface S2 bounded by C2; we assume that these curves
lie in the t = 0 hyperplane and have thickenings Ti that are causally disjoint.16

Each observable can be written as a (gauge-invariant) line integral of suitable 1-form
potentials around the relevant bounding curve and it would be natural to expect that
Φi ∈ A kin(M0;Ui ), where Ui = DM0(Ti ). But these two algebras commute, while
the commutator [Φ1, Φ2] is proportional to the linking number of C1 and C2 [129],
so at least one of these natural expectations is incorrect. Indeed, if the theory respects
electromagnetic duality as a local symmetry then neither Φ1 nor Φ2 can belong to
the local algebra of the relevant thickened curve.17 Provided thatA maps spacetime
embeddings to injective maps, the algebras A (M0|Ui ) of the nonsimply connected
spacetimes M0|Ui also fail to contain observables corresponding to the Φi .

Note that this conclusion required no discussion of how free electromagnetism
should be formulated in spacetimes other than Minkowski, beyond the requirements
of local covariance and the timeslice property. This explainswhy ‘topological observ-
ables’ are absent from quantizations of Maxwell theory obeying these properties
[59]. To restore them, one must relax the assumption of local covariance to permit
noninjective maps [7, 37, 59, 137].

As mentioned above, the rigidity argument can be used for other purposes. For
instance, the Schlieder property [139] relates to the algebraic independence of local
algebras of spacelike separated regions: specifically, it demands that the product of

15Here, we use the stability of (multi)-diamonds under Loc morphisms [25, Lem. 2.8].
16The same arguments could be applied to more general smearings of the field-strength.
17Of course, each Φi is contained in the local algebra for regions containing the 2-surfaces Si .
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elements taken from two such algebras can vanish only if at least one of the ele-
ments vanishes. In this case we will say that the Schlieder property holds for the
given regions. Another example is extended locality, which requires that local alge-
bras corresponding to spacelike separated regions intersect only in multiples of the
unit operator. In its original formulation [108, 140] extended locality was estab-
lished for the local von Neumann algebras of certain spacelike separated diamonds,
under standard hypotheses of AQFT plus an additional condition on the absence
of translationally invariant quasi-local observables; it is a necessary condition for
the C∗-independence of the corresponding subalgebras [147, Def. 2.4]. Here we
formulate extended locality in the category Alg.

Theorem 4.6.7 Let A :Loc → Alg obey local covariance and the timeslice con-
dition. Then the statement of Theorem 4.6.3 holds with ‘Einstein causality’ replaced
by (a) ‘the Schlieder property’, or (b) ‘extended locality’.

Proof Define PM(O1, O2) to be the proposition that the Schlieder property (in case
(a)) or extended locality (in case (b)) holds for the kinematic algebras associated with
〈O1, O2〉 ∈ O(2)(M). To apply the argument in the proof of Theorem 4.6.3 we need
only check that the rigidity hypotheses R1–R3 hold. In each case, R1 and R3 hold by
the reasoning used for Einstein causality. To see that R2 holds in case (a), consider
ψ : M → N and suppose Ai ∈ A kin(N;ψ(Oi )) obey A1A2 = 0. By (4.10), there
exist Bi ∈ A kin(M; Oi ) such that Ai = A (ψ)Bi for Bi ∈ A kin(M; Oi ), which
necessarily obey B1B2 = 0 because A (ψ) is an injective algebra homomorphism.
It follows that PM(O1, O2) =⇒ PN (ψ(O1), ψ(O2)). The converse is proved
similarly.

In the case (b), injectivity of A (ψ) and the covariance property (4.10) give

A kin(N;ψ(O1)) ∩A (N;ψ(O2)) = A (ψ)
(
A kin(M; O1) ∩A kin(M; O2)

)
(4.26)

and R2 is immediate. �

If Einstein causality and the Schlieder property both hold for 〈O1, O2〉 ∈ O(2)(M),
then there is an Alg-isomorphism

A kin(M; O1) A kin(M; O2) −→ A kin(M; O1) ∨A kin(M; O2)∑
i

Ai  Bi �−→
∑

i

Ai Bi (4.27)

as shown by Roos [130]. Here,  denotes the algebraic tensor product. If A is
finitely additive then the subalgebra on the right-hand side of (4.27) can be replaced
by A kin(M; O1 ∪ O2), which is isomorphic to A (M|O1∪O2). Now the spacetime
M O1∪O2 is Loc-isomorphic to (but distinct from) the disjoint union M|O1 ! M|O2 ,
so A (M|O1∪O2)

∼= A (M|O1 ! M|O2). The upshot is that there is an isomorphism

A (M|O1) A (M|O2)
∼= A (M|O1 ! M|O2). (4.28)
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This idea may be extended to show that A is a monoidal functor between Loc
(with ! as the monoidal product, and extended to include an empty spacetime as the
monoidal unit) andAlg (with the algebraic tensor product); see [22], which, however,
proceeds from different assumptions. Note that the monoidal property is not just a
restatement of Einstein causality; as shown above, it involves additional properties,
notably the Schlieder property (or, as in [22], a form of the split property).

In the C∗-algebraic setting, with A : Loc → C∗ -Alg, the statements of
Theorems 4.6.3 and 4.6.7 go through without change. However the isomorphism
(4.27) remains at the algebraic level, and further conditions are needed to determine
whether it can be extended to a C∗ -Alg-isomorphism between a C∗-tensor product
and the C∗-algebra generated by the local algebras. In this context, it is most natural
to employ the minimal C∗-tensor product—we refer to [22] for more discussion.

4.7 Analogues of the Reeh–Schlieder Theorem and Split
Property

In this section, we discuss the (partial) Reeh–Schlieder and split properties described
in Sect. 4.5 in greater detail. In particular, we show how spacetime deformation argu-
ments can be used to deduce the existence of states with (partial) Reeh–Schlieder and
split properties on a spacetime of interest, if such states exist on a spacetime to which
it can be linked by Cauchy morphisms. The arguments are based on those of [151]
(for split) and [150] (for Reeh–Schlieder) which applied to the Klein–Gordon theory.
A general treatment of Reeh–Schlieder results for locally covariant quantum field
theories was given by Sanders [135]. Our treatment follows [48], in which the geo-
metrical underpinnings of these arguments were placed into a common streamlined
form, yielding states that have both the split and (partial) Reeh–Schlieder properties,
in general locally covariant theories. The Reeh-Schlieder theorem implies the ubi-
quity of long-range correlations in quantum field theory, which, among other things,
lead generically to entanglement across acausally separated regions or spacetime
horizons [86, 158, 162]. The split property implies, on the contrary, that it is also
possible to fully isolate a local system in quantum field theory such that it has no
correlations with its environment and that the states by which this can be achieved
lie locally in the folium of physical states [86].

We will make use of some particular subsets of Cauchy surfaces.

Definition 4.7.1 Let M ∈ Loc. A regular Cauchy pair (S, T ) in M is an ordered
pair of subsets of M, that are nonempty open, relatively compact subsets of a common
smooth spacelike Cauchy surface in which T has nonempty complement, and so that
S ⊂ T . There is a preorder on regular Cauchy pairs so that (S1, T1) ≺ (S2, T2) if
and only if S2 ⊂ DM(S1) and T1 ⊂ DM(T2) (see Fig. 4.2).18

18The preorder is not a partial order, because (S1, T1) ≺ (S2, T2) ≺ (S1, T1) implies DM (S1) =
DM (S2) and DM (T1) = DM (T2), but not necessarily S1 = S2 and T1 = T2.
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S1 T1

T2S2

Fig. 4.2 Regular Cauchy pairs with (S1, T1) ≺ (S2, T2). Dotted (resp., dashed) lines indicate
relevant portions of DM (S1) (resp., DM (T2)).

These conditions ensure that DM(S) and DM(T ) are open and casually convex, and
hence elements of O(M). Moreover, if ψ : M → N is a Cauchy morphism, then a
pair of subsets (S, T ) of M is a regular Cauchy pair if and only if (ψ(S), ψ(T )) is a
regular Cauchy pair for N with ψ(T ) ⊂ ψ(M). The main property of the preorder
that will be used is:

Lemma 4.7.2 [48] Suppose that M takes standard form with underlying manifold
R×Σ , and that (S, T ) is a regular Cauchy pair in M, lying in the surface {t} ×Σ .
Then there exists an ε > 0 such that every Cauchy surface {t ′} ×Σ with |t ′ − t | < ε

contains a regular Cauchy pair preceding (S, T ) and also a regular Cauchy pair
preceded by (S, T ).

Clearly, ε may be chosen uniformly for any finite collection of regular Cauchy pairs
in the Cauchy surface {t} ×Σ .

In this section we consider a general locally covariant theory A : Loc →
C∗ -Alg, because the properties we describe are most naturally given in the C∗-
context. We assume throughout thatA has the timeslice property and obeys Einstein
causality.

Definition 4.7.3 Let M ∈ Loc and suppose that ω is a state of A (M) with GNS
representation (Hω, πω,Ωω). Then ω is said to have the Reeh–Schlieder property
for a regular Cauchy pair (S, T ) if the GNS vectorΩω is cyclic forRS and separating
for RT ,19 where RU = πω(A kin(M; DM(U )))′′ denotes the local von Neumann
algebra corresponding to U = S, T . For brevity, we will sometimes say that ω is
Reeh–Schlieder for (S, T ).

The state ω is said to have the split property for (S, T ) (or to be ‘split for’ (S, T ))
if there is a type-I factor N such that RS ⊂ N ⊂ RT .

Remark 4.7.4 If a vector is separating for an algebra, it is separating for any subalge-
bra thereof; if it is cyclic for an algebra, it is cyclic for any algebra of which it is a sub-
algebra. Thus, if ω has the Reeh–Schlieder property for (S, T ) then it does for every
(S̃, T̃ ) with (S̃, T̃ ) ≺ (S, T ). Similarly, if ω has the split property for (S, T ) then it
does for every (S̃, T̃ ) with (S, T ) ≺ (S̃, T̃ ), becauseRS̃ ⊂ RS ⊂ N ⊂ RT ⊂ RT̃ .

19That is, we require RSΩω to be dense in Hω and RT � A �→ AΩω ∈ Hω to be injective.
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The proof of Theorem 4.7.6 below relies on a careful geometric construction
together with the following result, which follows easily from the uniqueness of the
GNS representation [48]:

Lemma 4.7.5 Let (S, T ) be a regular Cauchy pair in M ∈ Loc and suppose ψ :
M → N is Cauchy. (a) A state ωN onA (N) is Reeh–Schlieder for a regular Cauchy
pair (ψ(S), ψ(T )) with ψ(T ) ⊂ ψ(M) if and only if A (ψ)∗ωN is Reeh–Schlieder
for (S, T ). As A (ψ) is an isomorphism, this implies that ωM is Reeh–Schlieder for
(S, T ) if and only if (A (ψ)−1)∗ωM is Reeh–Schlieder for (ψ(S), ψ(T )). (b) The
previous statement also holds if ‘Reeh–Schlieder’ is replaced by ‘split’.

The main result of this section is:

Theorem 4.7.6 Let M, N ∈Loc have oriented-diffeomorphic Cauchy surfaces and
suppose ωN is a state on A (N) that has the Reeh–Schlieder and split properties
for all regular Cauchy pairs. Given any regular Cauchy pair (SM , TM) in M, there
is a chain of Cauchy morphisms between M and N inducing an isomorphism ν :
A (M)→ A (N) such that ωM = ν∗ωN is Reeh–Schlieder and split for (SM , TM).

Proof (Sketch) Assume, without loss, that M is in standard form M = (R ×
Σ, gM , o, tM) so that SM and TM are contained in the Cauchy surface {tM}×Σ for
some tM ∈ R, and that N is also in standard form with N = (R×Σ, gN , o, tN ).

By Lemma 4.7.2 there exists t∗ > tM so that {t∗} × Σ contains regular Cauchy
pairs (∗S, ∗T ) and (S∗, T∗) with

(∗S, ∗T ) ≺M (SM , TM) ≺M (S∗, T∗), (4.29)

where≺M indicates the preorder given by the causal structure of M . As both (∗S, ∗T )

and (S∗, T∗) are regular Cauchy pairs in a common Cauchy surface of N , we may
also choose tN > t∗ so that {tN } × Σ contains regular Cauchy pairs (SN , TN ) and
(N S, N T ) obeying

(N S, N T ) ≺N (∗S, ∗T ), (S∗, T∗) ≺N (SN , TN ). (4.30)

Using the method of Proposition 4.6.2, an interpolating metric gI may now be con-
structed (see [48]) so that

• I = (R×Σ, gI , o, tI ) is a Loc-spacetime in standard form;
• there is a chain of Cauchy morphisms of the form (4.24) between M and N , via

I ;
• the orderings (4.29) and (4.30) hold with ≺M , ≺N replaced by ≺I .

The last item, together with transitivity of ≺I , entails

(N S, N T ) ≺I (SM , TM) ≺I (SN , TN ). (4.31)

Now ωN has the Reeh–Schlieder property for (SN , TN ) and is split for (N S, N T )

in N , and hence the same is true forA (δ)∗ωN in F and for (A (γ )−1)∗A (δ)∗ωN in
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I , using Lemma 4.7.5 twice. By (4.31) andRemark 4.7.4 the latter state is both Reeh–
Schlieder and split for (SM , TM), as a regular Cauchy pair in I . Using Lemma 4.7.5
twice again, the same is true for A (β)∗(A (γ )−1)∗A (δ)∗ωN in P and finally for
ν∗ωN in M, where ν = A (δ) ◦A (γ )−1 ◦A (β) ◦A (α)−1. �
Remark 4.7.7 See [48] for discussion, expanding on the following points:

1. The statement of Theorem 4.7.6 holds if modified so as to refer the split or Reeh–
Schlieder properties separately.

2. We have combined the cyclic and separating aspects of the Reeh–Schlieder results
for convenience. However, if the GNS vector of the stateωN is known to be cyclic
for every local von Neumann algebra corresponding to nonempty and relatively
compact O ∈ O(N)with nontrivial causal complement, then it is Reeh–Schlieder
for all regular Cauchy pairs in N and the conclusions of Theorem 4.7.6 apply.

3. The conclusions of Theorem 4.7.6 also apply to more general regions: if non-
empty O ∈ O(M) is nonempty relatively compact with nontrivial causal com-
plement then onemayfind a regularCauchy pair (SM , TM)with DM(SM) ⊂ O ⊂
DM(TM), whereupon Theorem 4.7.6 yields a state that is both cyclic and separat-
ing forπωM (A kin(M; O))′′. Similarly, if nonempty Oi ∈ O(M) can be separated
by a regular Cauchy pair (SM , TM), such that O1 ⊂ DM(SM), DM(TM) ⊂ O2,
the local von Neumann algebras corresponding to the Oi form a split inclusion
in the GNS representation induced by Theorem 4.7.6.

4. Suppose that ωN ∈ S (N), whereS is a state space forA obeying the timeslice
condition. Thenwe also haveωM ∈ S (M), because the isomorphism ν is formed
from a chain of Cauchy morphisms. In the case of the Klein–Gordon field, for
example, if ωN is Hadamard, then so is ωM . If the state space S also obeys
local quasiequivalence, then every state ofS (M) has the split property for every
regular Cauchy pair of M [48]. If, more strongly, eachS (M) is a complete local
quasiequivalence class, then there exists a full Reeh–Schlieder state in S (M),
i.e., its GNS vector is cyclic and separating for every local von Neumann algebra
of a relatively compact region with nontrivial causal complement [135].

Various applications of the partial Reeh–Schlieder result are discussed in [135].
The ability to assert both partial Reeh–Schlieder and split properties simultaneously
allows one to show that local von Neumann algebras (in suitable representations)
form standard split inclusions [43], leading to various consequences, including the
local implementation of gauge transformations and to the classification of the local
von Neumann algebras as the unique hyperfinite III1 factor (up to isomorphism, and
possibly tensored with an abelian centre) [48]. For the latter application, one must
additionally assume the existence of a scaling limit as described in Theorem 4.5.2.

Finally, Theorem 4.7.6 would be of little utility in the absence of spacetimes
N for which A (N) admits states that have the Reeh–Schlieder and split proper-
ties. Minkowski space provides the canonical example, but one may give reason-
able physical conditions that would guarantee the existence of such states in con-
nected ultrastatic spacetimes [48]. As every connected spacetime may be linked to a
connected ultrastatic spacetime by a chain of Cauchy morphisms, one expects that
Theorem 4.7.6 applies nontrivially at least in connected spacetimes M for most
physically reasonable locally covariant theories.
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4.8 Quantum Energy Inequalities, Passivity, µSC and All
That

As already mentioned, the microlocal spectrum condition appears to be the most
promising criterion for specifying physical states (and state spaces) in quantum field
theory in curved spacetime. While theμSC originated in the study of linear quantum
fields, it has the potential to be relevant for interacting quantum fields and has proved
instrumental in the perturbative construction of locally covariant interacting quantum
field theories [21, 94–96]. One of the central points is that the μSC permits the
definition of renormalizedWick-ordered and time-ordered operators of the quantized
linear Klein-Gordon field (and its derivatives) as operator-valued distributions, with
finite fluctuations [21]. A converse of that statement has also recently been proved for
ultrastatic spacetimes: In order that theWick-products of derivatives of the quantized
linear Klein-Gordon field have finite fluctuations, it is necessary that the Wick-
ordering is definedwith respect to a state obeying theμSC [72]. Thus, theμSC seems
inevitable as the basis for any perturbative construction of interacting quantum fields
on generic globally hyperbolic spacetimes.

In this section, we review various relations between theμSC and other conditions
on physical states which appear reasonable to demand in locally covariant quantum
field theory andwhich in someway express dynamical stability.Wewill alsomention
some other states which have been proposed for consideration as special states,
mainly for the quantized linear Klein-Gordon field.

4.8.1 Quantum Energy Inequalities

The locally covariant setting of quantum field theory is the theoretical basis for the
semiclassical Einstein equation,

G M(h) = 8πGω(TM [h]) . (4.32)

In this equation, G M(h) = ∫
M Gab(x)hab(x) dvolM(x) is the Einstein tensor cor-

responding to the spacetime M (as usual, considered as an object of Loc) smeared
with a C∞0 test-tensor field h. TM [h] is the stress-energy tensor of a locally covariant
theory obeying the time-slice property, so it arises from the relative Cauchy evolution
of the locally covariant theory as indicated in Sect. 4.4. (Actually, the relative Cauchy
evolution only specifies [TM [h], A], i.e. the commutator of TM [h] with elements A
inA (M), so fixing TM [h] at best up to scalar multiples of the unit operator depend-
ing linearly on h.20 Similarly, in models where ω(TM [h]) is defined by a process of
renormalization, there is a residual finite renormalization ambiguity. As there does

20In Hilbert-space representations, TM [h] is an unbounded operator, one also has to consider the
domain of algebra elements A for which the commutator can be formed, or in which precise
mathematical sense the commutator is to be understood.
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not seem to be a general, locally covariant way to fix these ambiguities, (4.32) needs
further input. We refer to [36, 157, 163] for further discussion.)

For linear quantum field models and states ω fulfilling the μSC, it holds that
ω(TM [h]) is actually given by a smooth, symmetric tensor field ω(TM(ab)(x)) (x ∈
M) on M so that ω(TM [h]) =

∫
M ω(TM(ab)(x))hab(x) dvolM(x). Then for any

smooth future-directed timelike curve γ in M parametrized by proper time τ ,

ρω,γ (τ ) = ω(TM(ab)(γ (τ )))γ̇
a(τ )γ̇ b(τ )

is the expectation value of the energy density along γ at γ (τ). It is known that

inf
ω

ρω,γ (τ ) = −∞

asω ranges over the set of states fulfilling theμSCwith γ and τ fixed. Thatmeans, at a
given spacetime point x , the expectation value of the energy density, for any observer,
is unbounded below as a functional of the (regular) states ω [51]. Consequently, the
weak energy condition usually assumed in the macroscopic description of matter in
general relativity fails to hold in general for the expectation value of the stress-energy
tensor of quantized fields. (There is an argument showing such a behaviour also for
stress-energy tensor expectation values of general Wightman-type quantum fields on
Minkowski spacetime [45]).

This violation of the weak energy condition for quantized fields is not uncon-
strained, however. At least for linear quantum fields, there are quantum energy
inequalities which provide restrictions on the magnitude and duration of the vio-
lation of the weak energy condition. Here, one says that a set of states Sqei (M) on
A (M) fulfils a quantum energy inequality (QEI) if for any smooth, future-directed
timelike curve γ , defined on some open proper time interval I , there is for any
f ∈ C∞0 (I,R) some constant cγ ( f ) > −∞ such that

inf
ω∈Sqei (M)

∫
I
ρω,γ (τ ) f 2(τ ) dτ ≥ cγ ( f ) . (4.33)

In other words, when averaging the energy density expectation values with a smooth
quadratic weight function along any timelike curve, one obtains a quantity which is
bounded below as long as the states range over the set of states Sqei (M).

Quantum energy inequalities were first discussed by Ford [76], initially motivated
on thermodynamic grounds, but then later derived in free models on Minkowski
space [57, 75, 77, 78] and some curved spacetimes, e.g., [66, 124]. They have been
established rigorously for the quantized (minimally coupled) Klein-Gordon [49],
Dirac [39, 67] and free electromagnetic fields [62], in all cases for all M of Loc, and
for Sqei (M) coinciding with the set of states fulfilling theμSC onA (M). The status
of QEIs for interacting quantum field theories remains to be clarified, but it is not
expected that they will hold in general without further modification [118]. Nonethe-
less, results are known for some interacting models in two spacetime dimensions
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[16, 58] and some model-independent results are known in Minkowski space [17].
One of the main applications of QEIs is to put restrictions on the occurrence of
spacetimes with unusual causal behaviour as solutions to the semiclassical Einstein
equations, e.g. spacetimes with closed timelike curves. We refer to the Ref. [50] and
literature cited there for considerable further discussion.

It has been shown (for the quantized, minimally coupled Klein-Gordon field) that
the lower bounds cM,γ ( f ) in (4.33) can be chosen such that they comply with local
covariance [52, 65], i.e., for any morphism ψ : M → N , they obey

cN,ψ◦γ ( f ) = cM,γ ( f ) . (4.34)

Conversely, one can use QEIs as the basis of a selection criterion for a locally
covariant state space. To be specific, suppose that for all objects M of Loc and
timelike curves γ : I → M (where I is an open interval), a map f �→ cM,γ ( f ) ∈ R

( f ∈ C∞0 (I,R)) has been selected such that the covariance condition (4.34) is
fulfilled. Let A be a locally covariant theory and define Sqei,c(M) to consist of all
the states ω onA (M) for which the expectation value of the stress-energy tensor is
defined and obeys

∫
I
ρω,γ (τ ) f 2(τ ) dτ ≥ cM,γ ( f ) , f ∈ C∞0 (I,R) . (4.35)

Evidently Sqei,c(M) is stable under formation of convex combinations; if it is also
stable under operations induced by elements inA (M) (and this is generally the case
for quantized linear fields), then one can define a state space S for A by setting
S (M) = Sqei,c(M). As mentioned before, this definition is consistent (up to some
details not spelled out here in full) with the microlocal spectrum condition as a
selection criterion for a state space for locally covariant linear quantum fields, upon
appropriate choice of the cM,γ ( f ). In fact, the two criteria result in the same state
space, as we will indicate next, with the help of yet another selection criterion.

4.8.2 Passivity

Another very natural selection criterion is that the physical states of a locally covariant
quantum field theory should be locally in the folia of ground states, or thermal
equilibrium states, in spacetimes which admit sufficient time-symmetry that such
states exist. This is the case for ultrastatic globally hyperbolic spacetimes, i.e., those
spacetimes in standard form M = (R × Σ, dt ⊗ dt − h, o, t) where we write
spacetime points as (t, x) with t ∈ R and x ∈ Σ , the metric h is a (t-independent)
complete Riemannian metric onΣ , and t is chosen so that dt is future-directed. Then
there is a global time-symmetry on that spacetime, i.e. a Killing-flow ϑt : (t0, x) �→
(t0 + t, x), t ∈ R. Given a locally covariant theory A , this leads to an induced
1-parametric group {αt }t∈R of unital ∗-automorphisms of A (M) for any ultrastatic
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M. An invariant state ω on A (M) (ω ◦ αt = ω) is called a ground state for {αt }t∈R

if there is a dense unital ∗-subalgebra A0(M) of A (M) such that

1

i

d

dt

∣∣∣∣
t=0

ω(Aαt (B)) ≥ 0 , A, B ∈ A0(M) .

An invariant state ω onA (M) is called passive for {αt }t∈R if there is a dense unital
∗-subalgebra A0(M) of A (M) with the property that

1

i

d

dt

∣∣∣∣
t=0

ω(U∗αt (U )) ≥ 0

holds for all unitary elements ofA0(M)which are continuously connected to the unit
element ofA0(M) (cf. [68, 126] for further details). Passive states are generalizations
of KMS-states (which can be regarded as thermal equilibrium states in the setting of
ultrastatic spacetimes); see [126] for further discussion on this point.

Ground states and KMS-states of the quantized linear scalar Klein-Gordon field
on ultrastatic spacetimes are Hadamard states, i.e. they fulfil the microlocal spectrum
condition, as was shown in [133]. The same holds for convexmixtures of KMS-states
at different temperatures which are the generic examples of passive states.21 As a
consequence, ground states and KMS-states also fulfil quantum energy inequalities.

For the quantized linear Klein-Gordon field on an ultrastatic spacetime, one can
show that the converse holds as well. This was established in [68] under certain
additional technical assumptions on which we suppress here, contenting ourselves
with a simplified statement which will now be outlined. The assumption is that the
algebraA (M) assigned to an ultrastatic spacetime M with underlying manifoldR×
Σ admits a set of states Sqei (M), closed under convex combinations and operations,
for which the stress-energy expectation values are well-defined, and obeying a QEI
of the form (4.33). The QEI then holds in particular for time-flow trajectories of the
ultrastatic spacetime i.e. for all γx(τ ) = (τ, x), t ∈ R, x ∈ Σ . It is then assumed that
in this case, the quantum energy inequality holds in the form

inf
ω∈Sqei (M)

∫
ρω(τ, x) f 2(τ ) dτ ≥ cM( f, x) , f ∈ C∞0 (R,R) ,

using the abbreviations ρω(τ, x) for ρω,γ x(τ ), and cM( f, x) for cM,γ x( f ). Making
the assumption that cM( f, x) is locally integrable and thatΣ is compact, it has been
shown in [68] that (i) there is a passive state onA (M), (ii) assuming a formof energy-
compactness, there is a passive statewhich lies in the foliumof some state in Sqei (M),

21In fact, the result on the Hadamard property of ground states and KMS-states on ultrastatic
spacetimes holds for more general types of quantized linear fields, and more generally also on static
(not necessarily ultrastatic) spacetimes.
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(iii) assuming clustering properties in time, there is a ground state in Sqei (M).22 This
shows that—apart from some further technical details—one can generally expect that
the imposition of quantum energy inequalities entails the existence of a ground (or
passive) state in the folium of those obeying the QEI.

4.8.3 And All that—Relations Between the Conditions
on States

Once a set of physical states has been specified on ultrastatic spacetimes, then, if
a locally covariant quantum field theory A satisfies the time-slice property, the
specification can be carried over to each spacetime M of Loc. For there certainly is
an ultrastatic spacetime N with Cauchy surfaces oriented-diffeomorphic to those of
M and therefore a chain of Cauchymorphisms linking M to N , by Proposition 4.6.2.
The set of physical states on N can then be pulled back along this chain to give a set of
states on M. This raises a question (not addressed in the literature) ofwhether the state
space on M obtained in this way depends on the details of the construction; evidently
a necessary condition is that the chosen physical states on ultrastatic spacetimes are
dynamically stable in the sense that rceN [h]∗S(N) = S(N), for arbitrary metric
perturbations with time-compact support.

Alternatively, one may have a specification of the state spaces in all spacetimes,
but without knowing whether any such states exist. Here, again, the deformation
argument can be used, if (a) existence can be established in ultrastatic spacetimes,
and (b) one has A (ψ)∗S (N) ⊂ S (M) and (A (ψ)−1)∗S (M) ⊂ S (N) for all
Cauchy morphismsψ : M → N . Indeed this was how Fulling, Narcowich andWald
originally proved existence ofHadamard states for the quantized linearKlein-Gordon
field on globally hyperbolic spacetimes: By proving that ground states on ultrasta-
tic spacetimes have the Hadamard property, and then making use of the fact that
the Hadamard property propagates throughout any globally hyperbolic spacetime
once it is known to hold in the neighbourhood of a Cauchy-surface [82]. Using the
equivalence of Hadamard property and microlocal spectrum condition, this propaga-
tion of the Hadamard property is equivalent to the propagation of the wavefront set
along bicharacteristics via the bicharacteristic flow [44]. Thus the requirements that
ground states and KMS-states for ultrastatic spacetimes should be counted among
the physical states, and that all physical states should be locally quasiequivalent, are
consistent with the demand that all physical states should be locally quasiequivalent
to the states fulfilling the microlocal spectrum condition. But relying on the results
of [68], one can even show more: The microlocal spectrum condition implies QEIs,
even with a locally covariant lower bound, and this guarantees for locally covariant
quantum field theories (up to some additional technical assumptions) that on ultra-

22While the results in [68] have only been established for compactΣ , the results could be extended
to noncompact Σ upon making suitable integrability assumptions on cM ( f, x) with respect to
x ∈ Σ .
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static spacetimes there will be ground states which are locally quasiequivalent to
the states which fulfil locally covariant QEIs. In other words, the following three
selection criteria:

• microlocal spectrum condition
• locally covariant quantum energy inequalities
• ground- or KMS-states on ultrastatic spacetimes

for the local folia of physical states are equivalent for the locally covariant theory
of the quantized linear (minimally coupled) Klein-Gordon field. This is interesting
since these selection criteria havedifferentmotivations and implications. In fact, these
results can be generalized at least to a larger class of locally covariant linear quantized
fields, and potentially also to certain perturbatively constructed quantum fields in a
suitable version—a key result in this context may be that some perturbatively con-
structed interacting quantum fields have been shown to satisfy the time-slice property
[33]. However, there are also examples of non-minimally coupled quantized linear
scalar fields which do not fulfil quantum energy inequalities [61], and arguments
for interacting models [118], indicating that quantum energy inequalities as we have
stated them are a less general property than, e.g. the μSC. Therefore, as mentioned
earlier, the status of quantum energy inequalities, especially in interacting quantum
field theories, remains yet to be fully understood.

4.8.4 Other Special States

For quantum fields in curved spacetime, particularly for the quantized linear Klein-
Gordon field, several other types of states have been proposed as physical states, or
states with special interpretation, from the very beginning of the development of the
theory. However, they are in some cases restricted to special spacetime geometries,
or are at variance with local covariance, or fail to be locally quasiequivalent to states
fulfilling the microlocal spectrum condition in general. We shall list some of them.

Adiabatic vacuum states. This class of states was originally introduced by Parker in
his seminal approach to particle creation in quantum fields on expanding cosmolog-
ical spacetimes [120, 121]. Adiabatic vacua for the quantized linear Klein-Gordon
field have been shown to define a single local quasiequivalence class of states on
Friedmann-Lemaître-Robertson-Walker spacetimes [112] and to be locally quasi-
equivalent to states fulfilling theμSC [103]; the latter reference extends the definition
from cosmological spacetimes to general globally hyperbolic spacetimes.

Instantaneous vacuum states. This class of states is essentially defined by picking a
Cauchy-surface in a globally hyperbolic spacetime and defining a two-point function
for the quantized field in terms of the Cauchy-data as that two-point function which
would correspond to the ultrastatic vacuum defined by the Riemannian geometry on
the Cauchy-surface obtained from the ambient spacetime metric [3]. However, these
states in general fail to be locally quasiequivalent to states satisfying the μSC unless



166 C.J. Fewster and R. Verch

the Cauchy-surface is actually part of an ultrastatic (or at least stationary) foliation
[102, 148].

States of low energy. This is a class of homogeneous, isotropic states on Friedmann-
Lemaître-Robertson-Walker spacetimeswhichminimize the averaged energy density
(4.33) for given averaging function f . These states fulfil the microlocal spectrum
condition [117] and have several interesting properties [40].

Local thermal equilibrium states. This is a class of states to which one can, approx-
imately, ascribe a temperature at each point in spacetime, where the temperature
together with the temperature rest frame is a function of the spacetime point. This
class of states was introduced in [29] and further investigated in [27]; some applica-
tions to quantum fields in curved spacetime appear in [138, 141, 142, 157].

BMS-invariant states at conformal lightlike infinity. For a class of asymptotically
flat spacetimes, conformal lightlike infinity is a boundarymanifold which is invariant
under theBondi-Metzner-Sachs (BMS)group.Certain types of quantumfields induce
quantum fields of “conformal characteristic data” on conformal lightlike infinity;
then specifying a BMS-invariant, positive energy state on the “conformal boundary”
quantum field determines a state of the quantum field on the original spacetime.
This state fulfils the μSC under very general assumptions [38, 115] and has been
instrumental in proving that there are solutions to the semiclassical Einstein equations
for cosmological spacetimes with the non-conformally coupled massive quantized
Klein-Gordon field [125].

SJ-states and FP-states. Recently, an interesting proposal for distinguished states
of the quantized linear Klein-Gordon field has been made in [1]. There, the two-
point function of such a state on A (M) is determined from EM , the propagator
of the Klein-Gordon operator on the globally hyperbolic hyperbolic spacetime M,
regarded as an operator on the L2 space of scalar functions on M induced by the
volume formof M . The two-point function arises from a polar decomposition of i EM
by taking the positive spectral part (1/2)(|i EM | + i EM) of i EM as its L2 kernel.
The resulting (quasifree) states were named SJ-states in [1]. This construction can
be shown to yield a well-defined pure state if there is a morphism ψ : M → N in
Loc such that ψ(M) is relatively compact in N [71]. A heuristic argument in [1]
(corroborated in [71]) shows that the SJ-state ofMinkowski spacetime agreeswith the
Minkowski vacuum state of the quantized linear Klein-Gordon field. This provided
motivation in [1] to regard the SJ-states as distinguished “vacuum states” for the
quantized linear Klein-Gordon field in any spacetime. However, explicit calculation
for the case of “ultrastatic slab” spacetimes shows that SJ-states in general fail to fulfil
the μSC, and even fail to be locally quasiequivalent to states fulfilling the μSC [71].
Furthermore, derivatives ofWick-ordered quantum fields in general fail to have finite
fluctuations in SJ-states [72]. Amodified construction of SJ-states, using a smoothing
procedure on EM and yielding states fulfilling the μSC (at least on ultrastatic slabs
and similar slabs of cosmological spacetimes) has been proposed in [19] for the
quantized linear Klein-Gordon field; this construction requires smoothing functions
which parametrize the states. For the case of the quantized Dirac field, there is a
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construction method for states which is conceptually related to SJ states, they are
calledFermionic projector (FP) states (and incidentally predate SJ states); see [60, 73,
74]. It has been shown in [60] that FP states also fail to fulfil the μSC in general, and
that a smoothing procedure again leads to a modified FP state construction rendering
states fulfilling the μSC.

4.9 Locally Covariant Fields

Conventional approaches to QFT, and the Wightman axiomatic framework, focus
on quantum fields as the primary object of study. In the algebraic approach, the
emphasis is rather on the local algebras of observables; quantum fields are regarded
as ways of parameterising those local algebras. In the locally covariant framework,
quantum fields take on a new aspect—they not only parameterise the local algebras
in one given spacetime, but do so in all spacetimes in a compatible way. This idea was
present in the literature on QFT in curved spacetimes for a long time in the context of
the stress-energy tensor (see, e.g., [104, 163]); its use in the locally covariant context
began with the treatment of the spin–statistics connection in curved spacetime [156]
and the treatment of perturbation theory [95]. It was one of the motivating ideas
behind [24], in which it took on a more functorial form.

4.9.1 General Considerations in Loc

The basic idea can be illustrated by the Klein–Gordon theory A : Loc → Alg. As
described in Sect. 4.2, each algebraA (M) is generated by elementsΦM( f ) carrying
the interpretation of smeared fields; under a morphism ψ : M → N the smeared
fields on M and N are related by equation (4.2), which can be rewritten as an equality
of functions from C∞0 (M) to A (M)

A (ψ) ◦ΦM = ΦN ◦ ψ∗. (4.36)

Indeed, as the discussion of Sect. 4.2makes clear,much of the general theory has been
structured on the basis of this observation, which can be given a more categorical
form as follows. First, the assignment of test function spaces to spacetimes may be
formalised as a functor

D : Loc → Set, D(M) = C∞0 (M), D(M
ψ→ N) = ψ∗, (4.37)

where Set is the category of sets and (not necessarily injective) functions. Second,
when we regardA (ψ) as a function, we are appealing to the existence of a forgetful
functor U : Alg → Set that maps each Alg object to its underlying set and each
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Alg-morphism to its underlying function. Then ‘A (ψ) regarded as a function’ can be
represented formally by U (A (ψ)) = (U ◦A )(ψ). Equation (4.36) now becomes
an equality of Set-morphisms:

(U ◦A )(ψ) ◦ΦM = ΦN ◦D(ψ) (4.38)

which is required to hold for every Loc-morphism ψ : M → N , and asserts
precisely that the functions ΦM form the components of a natural transformation

Φ : D ·→ U ◦A . The naturality condition can be represented diagrammatically as
the requirement that the diagram

(4.39)

commutes for every morphism ψ : M → N .

Definition 4.9.1 A locally covariant scalar field of theory A is a natural transfor-
mation Φ : D ·→ U ◦ A . The collection of all locally covariant scalar fields is
denoted Fld(D,A ).

This definition encompasses both linear and nonlinear fields—for example, in the
Weyl formulation of the Klein–Gordon theory, the map from test functions to gen-
erators f �→ WM( f∼) defines a nonlinear locally covariant field.

Unlike many structures in locally covariant QFT, individual locally covariant
fields are not stable under the evolution entailed by the timeslice property (in par-
ticular, relative Cauchy evolution). Fixing ΦM( f ) ∈ A (M), it is of course true that
ΦM( f ) ∈ A kin(M; S) for any subset S ∈ O(M) that contains a Cauchy surface of
M. In general, however, we cannot writeΦM( f ) in the formΦM(h) for h supported
in S; while this can be done for linear fields such as the Klein–Gordon model, the
evolution induced by the timeslice assumption becomes muchmore involved as soon
as Wick powers are included [33].

The description of fields at the functorial level, rather than that of individual
spacetimes, opens new ways of manipulating them as mathematical objects. As
shown in [52], Fld(D,A ) can be given the structure of a unital ∗-algebra: given
Φ,Ψ ∈ Fld(D,A ), and λ ∈ C, we may define new fields Φ + λΨ , ΦΨ , Φ∗ by

(Φ + λΨ )M( f ) = ΦM( f )+ λΨM( f ) (4.40)

(ΦΨ )M( f ) = ΦM( f )ΨM( f ), (4.41)

(Φ∗)M( f ) = ΦM( f )∗ (4.42)

and the unit field may be defined by 11M( f ) = 11F (M), for all f ∈ C∞0 (M). Further-
more, in the C∗-algebraic setting, one may even find a C∗-norm on a ∗-subalgebra
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of Fld(D,A ). The abstract algebra of fields has a number of interesting features:
for example, it carries an action of the global gauge group (see Sect. 4.10).

For many quantum fields of interest the maps ΦM are linear. Such linear fields
may be singled out as follows: regarding D now as a functor from Loc to Vec, the
category of complex vector spaces and (not necessarily injective) linear maps, and
writing V for the forgetful functor V : Alg → Vec, the linear fields of the theoryA
are natural transformationsΦ : D ·→ V ◦A , and form the collection Fldlin(D,A ).
While Fldlin(D,A ) can be given the structure of a vector space, by (4.40), it does not
in general admit a product structure, because (4.41) creates a field that is nonlinear
in its argument. Similarly the ∗-operation of (4.42) creates an antilinear field and
so cannot be defined as a map of Fldlin(D,A ) to itself. However, we can define an
antilinear involution � on Fldlin(D,A ) by

Φ�
M( f ) = ΦM( f )∗ ( f ∈ D(M)) (4.43)

and it is natural to do so in this context. For example, Φ is hermitian if Φ� = Φ.23

The definition of a locally covariant scalar field can be generalised in variousways,
bymodifying the functorD (as well as choosing whether to work inSet orVec). For
example, D could be the functor assigning compactly supported smooth sections of
tensor fields of some specified (but arbitrary) type; the corresponding linear fields can
be regarded as tensor fields of the dual type. Again, in some applications one might
allow certain subsets of compactly supported distributions (see, e.g., [52]). In all such
cases, we will use the notation Fld(D,A ) for the natural transformations from D
(in Set) toU ◦A and Fldlin(D,A ) for those fromD (in Vec) to V ◦A . Spinorial
fields require additional structure beyond those of Loc and will be discussed briefly
in Sect. 4.9.2.

We can also define multilocal fields, replacing D by D×k(M) = C∞0 (M)×k ,
D×k(ψ) = ψ×k∗ , or by D⊗k(M) = C∞0 (M)⊗k , D⊗k(ψ) = ψ⊗k∗ in the linear case.
Local fields can be combined to formmultilocal fields in obvious ways. For example,

given Φ,Ψ ∈ Fldlin(D,A ), we may define bilocal fields Φ
→⊗ Ψ and Φ

←⊗ Ψ , i.e.,
natural transformations from D⊗2 to V ◦A , by

(Φ
→⊗ Ψ )M( f ⊗ h) = ΦM( f )ΨM(h)

(Φ
←⊗ Ψ )M( f ⊗ h) = ΨM(h)ΦM( f ) (4.44)

for f, h ∈ D(M), M ∈ Loc. These structures will be useful in Sect. 4.10.4, where it
will be shown that the abstract viewpoint on fields allows the Klein–Gordon theory
to be specified directly at the functorial level in terms of its generating field.

23The reader might wonder why (4.43) is not adopted for Fld(D,A ) in place of (4.42). The reason
is that Φ∗Φ is a positive element of Fld(D,A ) in the sense that (Φ∗Φ)M ( f ) = ΦM ( f )∗ΦM ( f )
is a positive element in A (M) for every f ∈ D(M), while Φ�Φ need not be positive in this way.
Order structure and functional calculus for abstract fields is discussed in [52].
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4.9.2 The Inclusion of Spin

The inclusion of fields with spin requires amodification of the category of spacetimes
to incorporate spin structures. For definiteness, let us work in n = 4 spacetime
dimensions, inwhich there are some simplifications [99]. In particular, every globally
hyperbolic manifold M ∈ Loc admits a unique spin bundle (up to equivalence),
namely the trivial bundle SM := M×SL(2,C), regarded as a right principal bundle.
A spin structure in this context is a smooth double covering σ from SM to the bundle
F M of oriented and time-oriented orthonormal frames on M (also a right-principal
bundle with structure group given by the proper orthochronous Lorentz group L↑+),
such that σ ◦ RA = RΛ(A) ◦ σ , where Λ : SL(2,C) → L↑+ is the standard double
cover of groups and we use R for each right action.

There is always at least one spin structure in our current setting, and the distinct
possibilities are classified up to equivalence by the cohomology group H1(M;Z2).
We replace Loc by a new category SpinLoc, whose objects are pairs (M, σ )where
σ is a spin structure for M; a morphism between objects (M, σ ) and (M ′, σ ′) of
SpinLoc is a bundle morphism Ψ : SM → SM ′ such that

• Ψ (p, A) = (ψ(p),Ξ(p)A) for some Loc-morphism ψ : M → M ′ and smooth
function Ξ : M → SL(2,C);

• σ ′ ◦ Ψ = ψ∗ ◦ σ , where ψ∗ : F M → F M ′ is induced by the tangent map of ψ .

It is convenient to write Ψ = (ψ,Ξ) under these circumstances.
A locally covariant quantum field theory is now a functorA : SpinLoc → Alg

(or C∗ -Alg, or some other category as in [156]). Note that such a functor encodes
both geometric embeddings and spin rotations. The timeslice property can be defined
as before, regarding Ψ = (ψ,Ξ) as Cauchy in SpinLoc whenever ψ is Cauchy in
Loc.

It is now possible to introduce locally covariant fields of different spin, start-
ing with the construction of appropriate test function spaces. Let ρ be any (real or
complex) representation of SL(2,C) on vector space Vρ , and write K = R (resp.,
C) in the real (resp., complex) case. Given any object (M, σ ) of SpinLoc, let
Dρ(M, σ ) = C∞0 (M; Vρ) be the space of compactly supported functions on M
with values in Vρ ;24 given any SpinLoc morphism Ψ : (M, σ )→ (M ′, σ ′), define
Dρ(Ψ ) : Dρ(M, σ )→ Dρ(M ′, σ ′) by

Dρ(Ψ ) f = ψ∗ (ρ(Ξ) f ) ,

where Ψ = (ψ,Ξ) as above, and C∞0 (M; Vρ) � ρ(Ξ) f : p �→ ρ(Ξ(p)) f (p).
It is easily checked that Dρ is a functor from SpinLoc to the category of vector

24Somewhat more technically, Dρ(M, σ ) may be regarded as the space of compactly supported
sections of the bundle M �ρ Vρ associated to SM and ρ.
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spaces overK. TheK-linear locally covariant fields Fldlin(A ,Dρ) are now naturally
regarded as fields of ‘type ρ’.25

Particular interest attaches to the irreducible complex representations D(k,l) (k, l ∈
N0) of SL(2,C) on the vector space V (k,l) = ( s©k

C
2)⊗ ( s©l

C
2), where s© denotes

a symmetrised tensor product, and

D(k,l)(A) = A s©k ⊗ A s©l (A ∈ SL(2,C)),

with the bar denoting complex conjugation. These representations exhaust the finite-
dimensional complex irreducible representations of SL(2,C) up to equivalence, and
are familiar from the Minkowski space theory [143]. Irreducible real-linear repre-
sentations of interest are formed from D(k,l) ⊕ D(l,k) (k �= l) or D(l,l) restricted to
suitable subspaces. In an obvious way, we will call locally covariant K-linear fields
associated with these representations fields of type (k, l). An important distinction is
between the cases in which 1

2 (k + l) is integer or half-integer, which (assuming the
normal spin-statistics relation) correspond to bosonic or fermionic fields. We now
turn to a more detailed discussion of this point.

4.9.3 The Spin–statistics Connection

It is an observed fact that particles of integer spin display bosonic statistics and those
of half-integer spin obey fermionic statistics. One of the major early successes of
axiomatic QFT (see, e.g., the classic presentation in [143]) was to prove that these
observed facts are consequences of the basic axioms, and therefore true in a model-
independent fashion. Of course, these proofs are formulated for Minkowski space
QFT, and make full use of the Poincaré symmetry group, while the experimental
observations take place in a curved spacetime, so it is important to understand how
the spin-statistics theorem can be extended to general backgrounds.

While a number of authors had demonstrated the inconsistency of various free
models with incorrect statistics in curved spacetimes [122, 160],26 no model-
independent result was available until [156], which introduced a number of ideas
that now form the basis of locally covariant QFT. The framework employed in [156]
differs in two important respects from that of [24]: the category of spacetimes is
SpinLoc rather than Loc, and the target category is neither Alg nor C∗ -Alg, but
rather a category whose objects are nets of von Neumann algebras indexed over
relatively compact spacetime subsets. For these reasons (particularly the second) it
would be a departure from our development to describe the results of [156] in detail.

In broad terms, however, the spin–statistics connection proved in [156] is as
follows. We consider a theory on SpinLoc in which, on each spacetime, the net of
local vonNeumann algebras is generated by a fieldΦ of type (k, l). It is also assumed

25Terminology here is parallel to [156] but one could equally make a case for labelling the type by
the dual (also known as contragredient) representation ρ∗, which was our convention in Sect. 4.9.1.
26An interesting variant shows what happens if negative-normed states are allowed [91].
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that the instantiation of the theory in Minkowski space27 is a Wightman theory with
the corresponding component of Φ as a Wightman field. One supposes that there is
a spacetime (M, σ ) and a pair of causally disjoint and relatively compact regions
〈O1, O2〉 ∈ O(2)(M) so that Φ exhibits anomalous statistics

Φ(M,σ )( f1)Φ(M,σ )( f2)
∗ + (−1)k+lΦ(M,σ )( f2)

∗Φ(M,σ )( f1) = 0

for all fi ∈ C∞0 (Oi ; V (k,l)) (or that the same holds with the adjoint removed). By
a prototype of the rigidity arguments discussed in Sect. 4.6.2, it is proved that there
must be a violation of the spin–statistics connection in Minkowski space, which can
only happen if all smearings ofΦ are trivial in Minkowski space [143, Thms. 4–10].
Thus the local algebras inMinkowski space, generated byΦ, consist only ofmultiples
of the unit and it follows that the same is true of local algebras in all spacetimes.
As these algebras are generated byΦ, one may conclude that in every spacetime, all
smearings of Φ are multiples of the unit operator (vanishing in Minkowski space).

To close this section, we note a number of potential extensions. First, it is a slightly
unsatisfactory feature that the use of spin structures invokes unobservable geometric
structures from the start; similarly, the idea of spin is, to an extent, inserted by hand
at the start of the construction. It would be desirable to understand more clearly why
spin (which is tightly linked to rotations in Minkowski space) continues to be an
appropriate notion in general curved spacetimes, and how it can be incorporated in a
more operational way. Second, one would also like a spin–statistics connection that
is not based on algebras generated by a single field. An account addressing these
points is sketched in [56] and will appear in full shortly. The key idea is to base the
framework on a category of spacetimes with global coframes (i.e., a ‘rods and clocks’
account of spacetime measurements). The spin–statistics theorem that emerges from
this analysis is again proved by rigidity methods on the assumption that the theory
obeys standard statistics in Minkowski space.

4.10 Subtheory Embeddings and the Global Gauge Group

In category theory, it is often the morphisms between functors, i.e., natural trans-
formations, that are the main point of interest. Natural transformations appear in
locally covariant QFT with important physical interpretations: they are used in the
description of locally covariant fields and in order to compare theories.

The idea that equivalences of functors denote physically equivalent theories
was already present in [24]; the use of general natural transformations to indicate
subtheory embeddings was introduced in [69], while a systematic study of endomor-
phisms and automorphisms of locally covariant theories is given in [54], on which

27Here, the trivial spin structure σ0(A) = RΛ(A)e is intended, where e = (∂/∂xμ)μ=0,...,3 is the
orthonormal frame on Minkowski space associated with standard inertial coordinates xμ.
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our presentation is based. In this section we consider theories obeying Assumptions
4.3.1–4.3.3 throughout.

4.10.1 Subtheory Embeddings: Definition

Definition 4.10.1 Let A ,B : Loc → Alg be locally covariant theories. Any
natural transformation η : A ·→ B is said to embed A as a subtheory of B.

The requirement that η be natural means that there is a collection of morphisms
ηM : A (M)→ B(M) (M ∈ Loc) such that the following diagram commutes for
every morphism ψ : M → N of Loc:

(4.45)

That is, the transition between theories commutes with the transitions between
spacetimes. An example of a subtheory embedding is given by the even Klein–
Gordon theory A ev defined in Sect. 4.3. For each M, let ηM : A ev(M)→ A (M)

be the inclusion of the subalgebra. AsA ev(M) is generated by the unit and bilinear
expressions ΦM( f )ΦM(h) ( f, h ∈ D(M)) and A ev(ψ) is a restriction of A (ψ), it
is easily seen that ηN ◦A ev(ψ) = A (ψ) ◦ ηM for all ψ : M → N , and hence that
η : A ev ·→ A .

The physical interpretation of natural transformations as subtheory embeddings
is supported by the following observations.

Proposition 4.10.2 If η : A ·→ B, then (a)

ηMA kin(M; O) ⊂ Bkin(M; O) (4.46)

for all nonempty O ∈ O(M) and M ∈ Loc, with equality if η is a natural isomor-
phism (also called an equivalence); (b) if ψ ∈ End(M) then

ηM ◦A (ψ) = B(ψ) ◦ ηM; (4.47)

(c) for all h ∈ H(M),

ηM ◦ rce(A )
M [h] = rce(B)

M [h] ◦ ηM . (4.48)

Proof Part (b) is simply a special case of the definition. Similarly, applying the
definition to the embedding ιM;O we haveB(ιM;O) ◦ ηM|O = ηM ◦A (ιM;O) from
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which part (a) follows on taking images. Part (c) is proved in [69, Prop. 3.8] and is
again simply a matter of employing the basic definitions a number of times. �
Theabove result shows that subtheory embeddings act locally (part (a)) and intertwine
both geometric symmetries (part (b)) and the dynamics of the theory (c). In particular,
if the relative Cauchy evolution can be differentiated to yield a stress-energy tensor,
acting as a derivation, then (c) implies

[T (B)
M ( f ), ηM A] = ηM [T (A )

M ( f ), A] (4.49)

which shows clearly that ηM identifies degrees of freedom ofA with some of those
of B in a physically meaningful way.

An equivalence of a theory A with itself—an automorphism of the theory—has
a special significance. The automorphisms of any functor A form a group Aut(A )

under composition, and it is a pleasing aspect of locally covariant quantum field the-
ories that their automorphism groups can be interpreted as global gauge groups [54]:
as Proposition 4.10.2(a), (b) shows, any ζ ∈ Aut(A ) has components ζM that map
each local algebraA kin(M; O) isomorphically to itself and commute with the action
of spacetime symmetries. These are natural generalisations of conditions set down
by Doplicher et al. [42] for global gauge symmetries in Minkowski AQFT.28 In the
DHR analysis, nets of local algebras with nontrivial global gauge group are called
field algebras. By contrast, a local algebra of observables is the subalgebra of the
corresponding field algebra consisting of fixed elements under the action of the gauge
group. One may make a similar construction in the locally covariant context [54]:
defining Aobs(M) to be the subalgebra of A (M) fixed under the action of all ζM
(ζ ∈ Aut(A )), each ψ : M → N induces a Aobs(ψ) : Aobs(M) → Aobs(N) by
restriction of A (ψ), and overall yields a new locally covariant theory Aobs that can
be taken as the theory of observables’ relative to the ‘field functor’ A . This inter-
pretation is not entirely satisfactory (see [54, §3.3] for some cautionary remarks) but
works well in a number of examples.

4.10.2 Subtheory Embeddings: Classification

The introduction of natural transformations raises the question of whether they are
operationally meaningful, given the need to discuss relationships between theories
on all possible spacetimes. This question is answered by a rigidity argument similar
to those used in Sect. 4.6.2.

Theorem 4.10.3 Suppose η, ζ : A ·→ B, for theories A ,B, with A assumed
additive with respect to truncated multidiamonds. If, for some M ∈ Loc and non-

28DHR work in the Hilbert space representation of the Poincaré invariant vacuum state, and require
that global gauge transformations should leave the vacuum vector invariant. This also has an ana-
logue in the present setting [54].
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empty O ∈ O(M), ηM and ζM agree on the local kinematic algebra A kin(M; O),
then η = ζ .

Proof This is a straightforward generalization of [54, Thm. 2.6]. We remark that the
timeslice property of B is not used. �

This result shows that the local behaviour of a subtheory embedding in one space-
time is enough to fix it uniquely. In any individual spacetime, moreover, Proposi-
tion 4.10.2(c) gives strong constraints and facilitates the classification of subtheory
embeddings.

Two examples have been worked out in full detail. For the example of finitely
many independent minimally coupled Klein–Gordon fields, with νm denoting the
number of fields of mass m, the gauge group is a direct product of factors Gm over
the mass spectrum, with Gm = O(νm) for m > 0 and G0 = O(ν0) � R

ν0∗, where
R

k∗ denotes the additive group of k-dimensional real row vectors, and the semidirect
product is given by (R,  ) ·(R′,  ′

) = (
R R′,  R′0 +  ′

)
[54]. For example, the theory

A (ν) consisting of ν Klein–Gordon fieldsΦ( j) (1 ≤ j ≤ ν) of commonmassm > 0,
has automorphisms ζR labelled by R ∈ O(ν), acting so that

(ζR)MΦ
( j)
M ( f ) = R j

i Φ
(i)
M ( f ) (4.50)

(summing on i), while in the massless case, there are automorphisms ζ(R, ) labelled
by (R,  ) ∈ O(ν0) � R

ν0∗, so that

(ζ(R, ))MΦ
( j)
M ( f ) = R j

i Φ
(i)
M ( f )+

(∫
M

f dvolM

)
 j11A (ν)(M).

It is not hard to verify that these formulae define automorphisms of A (ν)(M) that
are components of natural transformations. What was shown in [54] was rather
more: every endomorphism η of A (ν), at least under the additional assumption of
regularity that every η∗M maps states with distributional k-point functions to states
with distributional k-point functions, is one of the automorphisms described above.

The second case studied was the Klein–Gordon theory with external sources [64],
which is formulated on a category of spacetimes with sources. Here, the gauge
group can be determined at the purely algebraic level, without additional regularity
conditions. As might be expected, the effect of the external sources is to break the
O(νm) symmetries for m ≥ 0, leaving only a R

ν0∗ symmetry for m = 0.
In both examples just mentioned, every endomorphism of the theory turns out

to be an automorphism; there is no way of properly embedding the theory as a
subtheory of itself. It is not hard to give examples of locally covariant theories
where this is not the case: for example, the theory of countably many independent
scalar fields A (ℵ0) of common mass and coupling constant has an endomorphism
η acting on the generating fields by ηMΦ

( j)
M ( f ) = Φ

( j+1)
M ( f ) for all f ∈ C∞0 (M),

M ∈ Loc. However, under a condition of energy compactness (weaker than either
of the nuclearity [31] or Haag–Swieca [88] criteria) it may be shown that proper
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endomorphisms are excluded and that all endomorphisms are automorphisms [54,
Thm. 4.6]. The additional assumptions required are that the instantiation of the locally
covariant theory in Minkowski space should comply with standard assumptions of
AQFT, and also that there are no ‘accidental symmetries’ of the Minkowski space
theory. The result also shows that, if the gauge group is given a natural topology
(which requires the introduction of a state space) then it is compact.

The gauge group provides a useful invariant of locally covariant theories, because
the automorphism groups of isomorphic functors are isomorphic. This allows one
to read off, for example, that the theories A ( j) described above are inequivalent
for distinct values of j , by virtue of their inequivalent gauge groups. In the same
vein, the computation of the gauge group in [64] was used to show that an earlier
quantization of the Klein–Gordon theory with sources was incorrect, because its
gauge group contained unexpected symmetries. Regarding subtheory embeddings,
if η : A ·→ B and ζ : B ·→ A , and (say) A obeys the hypotheses of [54, Thm.
4.6], then ζ ◦ η must be an automorphism ofA , so (as ζ is monic) η and ζ are both
isomorphisms [54, Cor. 4.7] (cf. the Cantor–Schröder–Bernstein theorem for sets).

A good example of inequivalent theories is given by Klein–Gordon theories A1
and A2 with distinct masses m1 and m2 [24] (we give a slightly different argu-
ment). Let ω2 be the Poincaré-invariant vacuum state on the Minkowski space the-
ory A2(M0), which means that A (ψ)∗ω2 = ω2 for every Poincaré transformation
ψ : M0 → M0. If there is an equivalence ζ : A1

·→ A2 then Proposition 4.10.2(b)
implies that ω = ζ ∗M0

ω2 satisfies

A1(ψ)∗ω = A1(ψ)∗ζ ∗M0
ω2 = ζ ∗M0

A2(ψ)∗ω2 = ζ ∗M0
ω2 = ω

for all Poincaré transformations ψ , so ω is a Poincaré-invariant state on A1(M0).
Indeed, the GNS representation ofA1(M0) induced by ω can be taken as (H2, π2 ◦
ζM0 ,D2,Ω2) where (H2, π2,D2,Ω2) is the GNS representation induced by ω2.
Crucially, the unitary implementationU2(ψ) of Poincaré transformations inH2 also
implements the Poincaré transformations on A1(M0): setting π = π2 ◦ ζM0 ,

U2(ψ)π(A)U2(ψ)−1 = U2(ψ)π2(ζM0 A)U2(ψ)−1 = π2(A2(ψ) ◦ ζM0 A)

= π2(ζM0 ◦A1(ψ)A) = π(A1(ψ)A).

Thereforeω is not only Poincaré-invariant but also obeys the spectrum condition, i.e.,
the momentum operators Pa corresponding to the unitary representation of the trans-
lations have joint spectrum in the forward lightcone. If ω has a distributional 2-point
function, onemay show Pa Paπ(Φ1( f ))Ω2 = π(−Φ1(� f ))Ω2 = m2

1π(Φ1( f ))Ω2
for all f ∈ C∞0 (M0) (cf. e.g., the proof of [54, Prop. 5.6]). Using the Reeh–Schlieder
property ofΩ2,we see that Pa Pa has an eigenvaluem2

1.But Pa Pa is themass-squared
operator for the vacuum representation of A2(M0) and so has discrete spectrum
{0,m2

2}, a contradiction. Accordingly, there is no equivalence ζ betweenA1 andA2
so that ζ ∗M0

ω2 has distributional 2-point function.
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In a similar way, but considering e.g., de Sitter spacetime instead of Minkowski
space, one can rule out the possibility of (sufficiently regular) equivalences between
Klein–Gordon theories with differing curvature couplings.

4.10.3 Action on Fields

As shown in Sect. 4.9, the locally covariant (linear) fields of a theory of a given type
form an abstract algebras (resp., vector spaces) Fld(D,A ) (resp., Fldlin(D,A )). The
gauge group acts on these algebras/spaces in a natural fashion: Given any η ∈ G,
and Φ ∈ Fld(D,A ), define the transformed field η ·Φ ∈ Fld(D,A ) by

(η ·Φ)M( f ) = ηMΦM( f ) ( f ∈ C∞0 (M), M ∈ Loc), (4.51)

which clearly obeys the naturality condition

A (ψ)(η ·Φ)M( f ) = A (ψ) ◦ ηM(ΦM( f )) = ηN ◦A (ψ)ΦM( f ) = ηNΦN(ψ∗ f )

= (η ·Φ)N (ψ∗ f ) (4.52)

for all ψ : M → N , f ∈ C∞0 (M). Moreover, it is easily seen that Φ �→ η · Φ is a
∗-automorphism of Fld(D,A ), so we have defined a group homomorphism G �→
Aut(Fld(D,A )). Restricting to linear fields, (4.51) defines a representation of G on
Fldlin(D,A ), which obeys η ·Φ� = (η ·Φ)�, and is thus a real linear representation.
These representations are continuous with respect to a natural topology on Aut(A ).

In either case, we may define a multiplet of fields as any subspace of Fld(D,A )

(or Fldlin(D,A )) transforming under an indecomposable representation of G. Every
field can then be associated with an equivalence class of G-representations. Let ρ, σ
be the equivalence classes corresponding to fields Φ, Ψ . Then Φ∗ transforms in the
complex conjugate representation ρ̄ to ρ, while any linear combination of Φ and Ψ

transforms in a subrepresentation of a quotient of ρ ⊕ σ . Here, the quotient allows
for algebraic relationships; for example, if Φ and Ψ belong to a common multiplet,
then their linear combinations belong to the same multiplet. Similarly,ΦΨ and ΨΦ

transform in (possibly different) subrepresentations of quotients of ρ ⊗ σ .
For example, consider a locally covariant theory A (3) consisting of three inde-

pendent massive scalar fields of common mass m > 0 (and, for simplicity, minimal
coupling), which has an O(3) of automorphisms described in (4.50). The scalar
fieldsΦ( j) ( j = 1, 2, 3) span a 3-dimensional multiplet associated with the defining
representation σ of O(3), while the nonlinear fields Ψ (S) defined by

Ψ
(S)
M ( f ) = Si jΦ

(i)
M ( f )Φ( j)

M ( f ),

where S is a complex symmetric 3 × 3 matrix, span a 6-dimensional subspace
of Fld(D,A (3)) (carrying a subrepresentation of σ ⊗ σ ) and decomposes into
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a 1-dimensional multiplet spanned by Ψ (I ), where I is the identity matrix, and a
5-dimensional multiplet spanned by the Ψ (S), where S is symmetric and traceless.

4.10.4 Universal Formulation of the Free Scalar Field

Our treatment of the scalar field so far has followed the traditional route of construct-
ing algebras in each individual spacetime and then specifying suitable morphisms
between them in order to obtain a functor. One might characterise this as a bottom-
up approach. We now describe an alternative top-down description, in which one
specifies the theory directly at the functorial level.

First, observe that the Klein–Gordon operators PMφ := (�M + m2 + ξ RM)φ

form the components of a natural transformation P : D ·→ D , where D : Loc →
Vec is as in (4.37) (but viewed as a functor to Vec). This follows directly from the
fact that ψ is an isometry, and consequently PNψ∗ f = ψ∗PM f for all f ∈ D(M).
We may also define a bilocal natural scalar E : D (2) ·→ C, whose component in
each M is precisely the advanced-minus-retarded bidistribution EM for PM . Here,
C : Loc → Vec is the constant functor giving C on all objects and idC on all
morphisms. We also define 11(A ) : C

·→ V ◦ A by 11(A )
M (z) = z11A (M) (z ∈ C),

where V : Alg → Vec is the forgetful functor.
Given these definitions, the Klein–Gordon theory may be given a universal form:

Definition 4.10.4 AKlein–Gordon theory is a pair (A , Φ), whereA : Loc → Alg
is a functor and Φ ∈ Fldlin(D,A ) is a linear field such that

• Φ� = Φ, i.e., Φ is hermitian
• Φ ◦ P = 0, the zero field

• Φ
→⊗ Φ −Φ

←⊗ Φ = i11(A ) ◦ E (see (4.44)),

and which is universal in the sense that, if (B, Ψ ) is any other pair with these
properties, then there is a unique subtheory embedding η : A ·→ B such that
Ψ = η ·Φ.

This definition specifies Klein–Gordon theories up to equivalence,29 so it is reason-
able to speak of the Klein–Gordon theory. The original construction of the theory is
needed to show that the theory exists, but beyond that, it ought to be possible to work
with Definition 4.10.4 alone. Other models of locally covariant QFT can be given
similar universal formulations.

29Suppose (A , Φ) and (B, Ψ ) both satisfy Definition 4.10.4. Then there are naturals η : A ·→ B

and ζ : B ·→ A such that Ψ = η · Φ and Φ = ζ · Ψ . Hence also Φ = (ζ ◦ η) · Φ. But by the

universal property yet again, the only natural ξ : A ·→ A such that Φ = ξ · Φ is the identity,
ξM = idA (M) for all M ∈ Loc. Hence ζ ◦ η = idA and by similar reasoning applied to (B, Ψ ),
we also have η ◦ ζ = idB. Hence η is an equivalence.
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We now prove that (A , Φ) has the universal property, where A is our standard
Klein–Gordon functor and Φ its standard associated locally covariant field. Sup-
pose (B, Ψ ) satisfies the other axioms. For each M ∈ Loc, we define a unital
∗-homomorphism ηM : A (M)→ B(M) by ηMΦM( f ) = ΨM( f ) ( f ∈ C∞0 (M)),
which is well-defined because theΦM( f ) generateA (M) and because bothΦM and
ΨM obey the relations itemized in Definition 4.10.4. Furthermore,A (M) is simple,
so ηM is either monic or the zero map, and the latter case is excluded because units
and zeros are distinct for objects ofAlg. Thus ηM : A (M)→ B(M) is well-defined
as an Alg-morphism. Suppose that ψ : M → N , then

ηNA (ψ)ΦM( f ) = ηNΦN(ψ∗ f ) = ΨN (ψ∗ f ) = B(ψ)ΨM( f )

= B(ψ)ηMΦM( f ) (4.53)

for all f ∈ C∞0 (M). As theΦM( f ) generateA (M), it follows that the components

ηM cohere to form a natural transformation η : A ·→ B. Uniqueness is clear from
the foregoing argument, because η was fixed completely by requiring η ·Φ = Ψ .

4.11 Dynamical Locality and SPASs

The last topic discussed in this chapter returns to the fundamental purpose of locally
covariant QFT, namely, the description of common ‘physical content’ in all (rea-
sonable) spacetimes. The functorial definition of a theory certainly gives a common
mathematical definition across different spacetimes, but under what circumstances
can this be said to represent the same physics?30 This question was addressed in [69]
and will be briefly summarised here.

We have already described how a pathological locally covariant theoryB may be
constructed from a basic theoryA (which can be as well-behaved as one likes)—see
equations (4.15) and (4.16). In spacetimes with compact Cauchy surfaces the theory
corresponds to two copies of A , while in those with noncompact Cauchy surfaces
we have a single copy. Suppose we accept that A represents the same physics in
all spacetimes (SPASs) according to some notion of what that might mean. Then
B surely cannot also represent SPASs according to the same notion as A—as their
physical content coincides in some, but not all, spacetimes.

This may be put into a more mathematical form as follows. For each M ∈ Loc,
define ζM : A (M)→ B(M) and ηM : B(M)→ A (M)⊗A (M) by

ζM A =
{

A if M has noncompact Cauchy surfaces

A ⊗ 11 if Mhas compact Cauchy surfaces
(4.54)

30In theories based on a classical Lagrangian one usually proceeds simply to use the ‘same’
Lagrangian (modulo some subtleties [53]) but this option is not open in a general AQFT context.
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ηM A =
{

A if M has compact Cauchy surfaces

A ⊗ 11 if M has noncompact Cauchy surfaces.
(4.55)

It is straightforward to check that these are well-defined morphisms and that, for
every ψ : M → N , the naturality conditions ζN ◦ A (ψ) = B(ψ) ◦ ζM and
ηN ◦B(ψ) = (A ⊗A )(ψ) ◦ ηM hold.31 Thus we have subtheory embeddings

A
·−−→
ζ

B
·−−→
η

A ⊗A , (4.56)

which are partial isomorphisms—meaning that there is at least one spacetime for
which the component of ζ is an isomorphism, and likewise for η. However, there are
also spacetimes for which the corresponding component is not an isomorphism, so
neither ζ nor η is an equivalence of theories.32 The situation just described gives a
formal expression to the idea thatB coincides withA in some spacetimes and with
A ⊗A in others.

To summarize the discussion so far, let T be a class of locally covariant quantum
field theories. We have argued that a necessary condition for T to represent theories
conforming to some particular notion of SPASs is that every partial isomorphism
between theories in T is an isomorphism. We refer to this necessary condition as the
SPASs property. Our example has shown immediately that the full class of locally
covariant theories does not have the SPASs property.

The local structure of the pathological theory B is instructive. Suppose M ∈
Loc and choose O ∈ O(M) so that M|O has noncompact Cauchy surfaces. Then
Bkin(M; O) ∼= B(M|O) = A (M|O) whether or not M has compact Cauchy
surfaces—the kinematic local algebras only ‘sense’ one copy ofA . However, another
way to sense the local degrees of freedom, based on dynamics,was introduced in [69].

LetC be a locally covariant QFT and K be a compact subset of M ∈ Loc. Define

C •(M; K ) := {C ∈ C (M) : rce(C )
M [h]C =C for all h ∈ H(M)with supp h ⊂ K⊥},

where K⊥ = M \ JM(K ) is the causal complement of K . Elements of C •(M; K )

are precisely those unaffected by any metric perturbation supported in the causal
complement of K . In Sect. 4.4 we observed that rce(C )

M [h] acts trivially on any
C kin(M; O) with O causally disjoint from the support of h—here, we turn this
around to give a newdefinition of the local content of the theory. For each O ∈ O(M),
we define dynamical algebra C dyn(M; O) to be subalgebra of C (M) generated by
theA •(M; K ) as K ranges over all compact subsets of O that have a multidiamond
neighbourhood with base in O—see [69, §5] for details.

31Recall that if M has compact Cauchy surfaces then so does N .
32This assumes that A is not isomorphic to A ⊗A . A convenient way of ruling out such isomor-
phisms is to check that A and A ⊗A have nonisomorphic gauge groups.
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In the case of our pathological theoryB, we see that rceBM [h] = rceAM [h] if M has
noncompact Cauchy surfaces and rceBM [h] = rceAM [h]⊗2 if they are compact. Corre-
spondingly, we see that Bdyn(M; O) = A dyn(M; O) in the noncompact case and
Bdyn(M; O) = A dyn(M; O)⊗2 in the compact case. Thus the dynamical definition
of locality senses degrees of freedom that are missed by the kinematical definition.
This suggests focussing on theories of the following type:

Definition 4.11.1 A locally covariant QFT C is dynamically local if

C kin(M; O) = C dyn(M; O)

for all nonempty O ∈ O(M) and M ∈ Loc.

Clearly the pathological theory B is not dynamically local. More significantly:

Proposition 4.11.2 [69, Thm. 6.10] The class of dynamically local and locally
covariant QFTs has the SPASs property.

Thus dynamical locality at least satisfies our necessary condition for providing a
notion of SPASs (and there is no other condition known that does so and incorporates
the standard free theories).

As an immediate application, we note the following. In Minkowski space AQFT
there are models with aminimal localization scale, i.e., the local algebras are nontriv-
ial only for sufficiently large regions (see, e.g., [109] for simple examples). Propo-
sition 4.11.2 excludes the possibility that such models can be defined as locally
covariant and dynamically local theories. For if there is a spacetime M ∈ Loc and
a nonempty O ∈ O(M) for which A kin(M; O) is trivial, then A (M|O) is trivial.
Now there is a trivial theory I : Loc → Alg so that I (N) = C (regarded as a
unital ∗-algebra) for all N ∈ Loc, and which maps every morphism to the identity
morphism. This theory is a dynamically local subtheory ofA in an obvious way, and
we have shown that the two theories coincide on M|O . Accordingly, ifA is dynam-
ically local it is isomorphic to the trivial theory and hence trivial for all subregions
of all spacetimes.

Every dynamically local theory A has a number of other nice properties: for
instance, extended locality of A is equivalent to A •(M; ∅) = C11A (M) for all
M ∈ Loc, i.e., the absence of nontrivial elements in A (M) that are fixed under
arbitrary relative Cauchy evolution [69, Thm. 6.5] and A is necessarily additive
with respect to truncated multidiamonds [69, Thm. 6.3]. As a final application we
return to one of our leit motifs: the nonexistence of natural states.

Theorem 4.11.3 [69, Thm. 6.13] Suppose A is a dynamically local quantum field
theory and has a natural state (ωM)M∈Loc. If there is a spacetime M with noncom-
pact Cauchy surfaces such that ωM induces a faithful GNS representation with the
(full) Reeh–Schlieder property [i.e., the GNS vector corresponding to ωM is cyclic
for the induced representation of A (M|O) for all relatively compact O ∈ O(M)],
then the relative Cauchy evolution is trivial in M, and A kin(M; O) = A (M) for
all nonempty O ∈ O(M). If, additionally, A obeys extended locality, then A is
equivalent to the trivial theory I .
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Proof By the natural state hypothesis, we have ωM ◦ rceM [h] = ωM for each M
and all h ∈ H(M), simply because the relative Cauchy evolution is a composition
of (inverses of) morphismsA (ψ) for Cauchyψ . Thus the relative Cauchy evolution
is unitarily implemented in the GNS representation πM induced by ωM :

πM(rceM [h]A) = UM [h]πM(A)UM [h]−1,

where UM [h] is defined by UM [h]πM(A)ΩM = πM(rceM [h]A)ΩM and leaves the
GNS vector ΩM invariant. Now let h ∈ H(M) and choose a nonempty relatively
compact connected O ∈ O(M) such that O ⊂ (supp h)⊥ (such an O exists because
the Cauchy surfaces are noncompact). As already mentioned, rceM [h] acts trivially
on A kin(M; O) [69, Prop. 3.7], so

UM [h]πM(A)ΩM = πM(A)ΩM

for all A ∈ A kin(M; O). Using the Reeh–Schlieder property of ωM we may deduce
thatUM [h] agrees with the identity operator on a dense set and henceUM [h] = 11HM

for all h ∈ H(M), so the relative Cauchy evolution is trivial onA (M) because πM
is faithful. Consequently, A •(M; K ) = A (M) for all compact sets K and hence
by dynamical locality A kin(M; O) = A dyn(M; O) = A (M) for each nonempty
O ∈ O(M). This proves the first part of the theorem.

For the second part, observe that there is a subtheory embedding η : I ·→ A of
the trivial theory I into A given by ηN z = z11A (N) for all N ∈ Loc, z ∈ C. Now
consider two causally disjoint nonempty O1, O2 ∈ O(M). By the above argument
together with extended locality,

A (M) = A kin(M; O1) ∩A kin(M; O2) = C11A (M),

so ηM is an isomorphism. AsI is obviously dynamically local, andA is by assump-
tion, Proposition 4.11.2 entails that η is a natural isomorphism. �

As mentioned, the property of dynamical locality has been checked for a number
of standard theories. Theories that satisfy dynamical locality include

• the Klein–Gordon scalar field in dimensions n ≥ 2, if at least one of the mass or
curvature coupling is nonzero [46, 70], and the corresponding extended algebra of
Wick polynomials for nonzeromass and eitherminimal or conformal coupling [46]
(one expects dynamical locality for general values of ξ );

• the freemassless current in dimensions n ≥ 2 (restricting to connected spacetimes)
or n ≥ 3 (allowing disconnected spacetimes) [70];

• the minimally coupled Klein–Gordon field with external sources for m ≥ 0,
n ≥ 2—in this case relative Cauchy evolution can be induced by perturbations
of both the metric and the external source and one modifies the definition of the
dynamical net accordingly [64];

• the free Dirac field with mass m ≥ 0 [47];
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• the free Maxwell field in dimension n = 4, in a ‘reduced formulation’ [59].

These theories also obey the other hypotheses of Theorem 4.11.3 and so do not admit
natural states. A more direct proof for the theory with sources appears in [55].

There are some cases known in which dynamical locality fails, which appears to
be always related to the presence of broken global gauge symmetries or topologically
stabilised charges: the free Klein–Gordon field with m = 0, ξ = 0 in dimensions
n ≥ 2, owing to the rigid gauge symmetry φ �→ φ + const [70]; the free massless
current in 2-dimensions allowing disconnected spacetimes [70]; and the freeMaxwell
field in dimension n = 4, in a ‘universal formulation’ [37, 59], owing to the presence
of topological electric and magnetic charges in spacetimes with nontrivial second de
Rham cohomology, which are eliminated in the reduced theory mentioned above. As
alreadymentioned inSect. 4.6.2 the existenceof topological charges is also associated
with a failure of injectivity (see [7, 137] for more discussion in related models). As
suggested in [59], it would be interesting to investigate theories that are dynamically
local modulo topological charges, with the aim of generalizing Proposition 4.11.2.

Acknowledgments We are grateful to Francis Wingham for comments on the text.
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Chapter 5
Algebraic QFT in Curved Spacetime
and Quasifree Hadamard States: An
Introduction

Igor Khavkine and Valter Moretti

Abstract Within this chapter we introduce the overall idea of the algebraic formal-
ism of QFT on a fixed globally hyperbolic spacetime in the framework of unital
∗-algebras. We point out some general features of CCR algebras, such as simplicity
and the construction of symmetry-induced homomorphisms. For simplicity, we deal
only with a real scalar quantum field. We discuss some known general results in
curved spacetime like the existence of quasifree states enjoying symmetries induced
from the background, pointing out the relevant original references. We introduce,
in particular, the notion of a Hadamard quasifree algebraic quantum state, both
in the geometric and microlocal formulation, and the associated notion of Wick
polynomials.

5.1 Algebraic Formalism

With this preliminary section we introduce some basic definitions and result about
algebraic formulation of quantum theory reviewing some basic definitions and results
about the algebraic machinery. Most literature devoted to the algebraic approach to
QFT is written usingC∗-algebras, in particularWeylC∗-algebras, when dealing with
free fields, nevertheless the “practical” literature mostly uses unbounded field opera-
tors which are encapsulated in the notion of ∗-algebra instead of C∗-algebra, whose
additional feature is a multiplicatively compatible norm. Actually, at the level of free
theories and quasifree (Gaussian) states the two approaches are technically equiva-
lent. Since we think more plausible that the non-expert reader acquainted with QFT
in Minkowski spacetime is, perhaps unconsciously, more familiar with ∗-algebras
than C∗-algebras, in the rest of the chapter we adopt the ∗-algebra framework.
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Definition 5.1.1 (Algebras) An algebra A is a complex vector space which is
equipped with an associative product

A×A � (a, b) �→ ab ∈ A

which is distributive with respect to the vector sum operation and satisfies

α(ab) = (αa)b = a(αb) if α ∈ C and a, b ∈ A .

A is a ∗-algebra if it admits an involution, namely an anti-linear map,A � a �→ a∗,
which is involutive, that is (a∗)∗ = a, and such that (ab)∗ = b∗a∗, for any a, b ∈ A.
A is unital if it contains a multiplicative unit 11 ∈ A, that is 11a = a11 = a for all
a ∈ A.

A set G ⊂ A is said to generate the algebra A, and the elements of G are said
generators of A, if each element of A is a finite complex linear combination of
products (with arbitrary number of factors) of elements of G.

The center, ZA, of the algebra A is the set of elements z ∈ A commuting with
all elements of A.

Regarding morphisms of algebras we shall adopt the following standard defini-
tions

Definition 5.1.2 (Algebra morphisms) Consider a map β : A1 → A2, where Ai

are algebras.
(a) β is an algebra homomorphism if it is a complex linear map, preserves the

product and, if the algebras are unital, preserves the unit elements.
(b) β is a ∗-algebra homomorphism ifAi are ∗-algebras, β is a algebra homo-

morphism and preserves the involution.
(c) β is an algebra isomorphism or a ∗-algebra isomorphism if it is an algebra

homomorphism or, respectively, a ∗-algebra homomorphism and it is bijective.
(d)β is analgebra automorphismor a∗-algebra automorphism if it is aalgebra

isomorphism or, respectively, a ∗-algebra isomorphism and A1 = A2.
Corresponding anti-linear morphisms are defined analogously replacing the lin-

earity condition with anti-linearity.

Remark 5.1.3
(1) The unit 11, if exists, turns out to be unique. In ∗-algebras it satisfies 11 = 11∗.
(2) Although we shall not deal with C∗-algebras, we recall the reader that a

∗-algebra A is a C∗-algebra if it is a Banach space with respect to a norm || ||
which satisfies ||ab|| ≤ ||a|| ||b|| and ||a∗a|| = ||a||2 if a, b ∈ A. It turns out that
||a∗|| = ||a|| and, if the C∗-algebra is unital, ||11|| = 1. A unital ∗-algebra admits at
most one norm making it a C∗-algebra.

Definition 5.1.4 (Two-sided ideals) A two-sided ideal of an algebra A is a linear
complex subspace I ⊂ A such that ab ∈ I and ba ∈ I if a ∈ A and b ∈ I.
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In a ∗-algebra, a two-sided ideal I is said to be a two-sided ∗-ideal if it is also
closed with respect to the involution: a∗ ∈ I if a ∈ I.

An algebra A is simple if it does not admit two-sided ideals different form {0}
and A itself.

Remark 5.1.5 It should be evident that the intersection of a class of two-sided ideals
(two-sided ∗-ideals) is a two-sided ideal (resp. two-sided ∗-ideal).

5.1.1 The General Algebraic Approach to Quantum Theories

In the algebraic formulation of a quantum theory [28], observables are viewed as
abstract self-adjoint objects instead of operators in a given Hilbert space. These
observable generate a ∗-algebra or a C∗-algebra depending on the context. The
algebra also includes a formal identity 11 and complex linear combinations of observ-
ables which, consequently cannot be interpreted as observables. Nevertheless the use
of complex algebras is mathematically convenient. The justification of a linear struc-
ture for the set of the observables is quite easy, the presence of an associative product
is instead much more difficult to justify [61]. However, a posteriori, this approach
reveals to be powerful and it is particularly convenient when the theory encompasses
many unitarily inequivalent representation of the algebra of observables, as it happens
in quantum field theory.

5.1.2 Defining ∗-algebras by Generators and Relations

In the algebraic approach, the ∗-algebra of observables cannot be defined simply as
some concrete set of (possibly unbounded) operators on some Hilbert space. Instead,
the ∗-algebra must be defined abstractly, using some more basic objects. Below we
recall an elementary algebraic construction thatwill be of use in Sect. 5.2.1 in defining
the CCR algebra of a scalar field.

We will construct a ∗-algebra from a presentation by generators and relations.
As we shall see in the Sect. 5.2.1, the CCR algebra is generated by abstract objects,
the smeared fields, φ( f ) and the unit 11. In other words, the elements of the algebra
are finite linear combinations of products of these objects. However there also are
relations among these objects, e.g. [φ( f ), φ(g)] = i E( f, g)11. We therefore need
an abstract procedure to define this sort of algebras, starting form generators and
imposing relations. We make each of these concepts precise in a general context.

Let us start with the notion of algebra, AG , generated by a set of generators G.
Intuitively, the algebra AG is the smallest algebra that contains the elements of the
generator set G (yet without any algebraic relations between these generators). The
following is an example of a definition by a universal property [45, Sect. I.11].
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Definition 5.1.6 (Free algebra) Given a set G of generators (not necessarily finite
or even countable), an algebraAG is said to be freely generated by G (or free on G)
if there is a map γ : G → AG such that, for any other algebraB andmap β : G → B,
there exists a unique algebra homomorphism b : AG → B such that β = b ◦ γ . We
use the same terminology for ∗- and unital algebras.

Remark 5.1.7
(1) Any two algebras freely generated by G, given by say γ : G → AG and

γ ′ : G → A′G , are naturally isomorphic. In this senseAG is uniquely determined by
G. By definition, there exist unique homomorphisms a : A′G → AG and a′ : AG →
A′G such that γ = a ◦ γ ′ and γ ′ = a′ ◦ γ . Their compositions satisfy the same
kind of identity as b in the above definition, namely γ = id ◦ γ = (a ◦ a′) ◦ γ and
γ ′ = id ◦ γ ′ = (a′ ◦ a) ◦ γ ′, where we use id to denote the identity homomorphism
on any algebra. Invoking once again uniqueness shows that a ◦ a′ = id = a′ ◦ a
and hence that AG and A′G are naturally isomorphic. So, any representative of this
isomorphism class could be called the algebra freely generated by G.

(2) To make the above definition useful we must prove that a pair (AG, γ ) exists
for every setG. Consider the complex vector space spanned by the basis {eS}, where S
runs through all finite ordered sequences of the elements of G, say S = (g1, . . . , gk),
with k > 0. Define multiplication on be basis elements by concatenation, eSeT =
eST , where (g1, . . . , gk)(g′1, . . . , g′l) = (g1, . . . , gk, g′1, . . . , g′l) and extend it to the
whole vector space by linearity. It is straight forward to see that we have defined an
algebra that satisfies the property of being freely generated by G. In the case of unital
∗-algebras, we use the same construction, except that the basis is augmented by the
element 11,with the extramultiplication rule 11eS = eS11 = eS , and S now runs through
finite ordered sequences of the elements of G �G∗, where G∗ is in bijection with G,
denoted by ∗: G → G∗ and its inverse also by also ∗: G∗ → G. The ∗-involution
is defined on the basis as 11∗ = 11 and e∗S = eS∗ , where S∗ = (∗gk, . . . , ∗g1) for
S = (g1, . . . , gk), and extended to the whole linear space by complex anti-linearity.

Let us pass to the discussion of how to impose some algebraic relations on the algebra
AG freely generated by G. To be concrete, think of an algebra AG freely generated
by G and assume that we want to impose the relation l stating that 11a − a11 = 0
for all a ∈ AG and for a preferred element 11 ∈ AG which will become the identity
element of a new algebra AG,l . We can define AG,l ∼= AG/Il , where Il ⊂ AG is
the two-sided ideal (resp. ∗-ideal, in the case of ∗-algebras) generated by l, the set of
finite linear combinations of products of (11a − a11) and any other elements of AG .
In case a set R of relations is imposed, one similarly takes the quotient with respect
to the intersection IR of the ideals (∗-ideals if working with ∗-algebras) generated
by each relation separately, AG,R ∼= AG/IR .

The constructed algebra AG,R satisfies the following abstract definition which
again relies on a universal property.

Definition 5.1.8 (Presentation by generators and relations) Given an algebra AG

free on G and a set R whose elements are called relations (again, not necessarily
finite or even countable), together with a map ρ : R → AG , an algebra AG,R is
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said to be presented by the generators G and relations R if there exists an alge-
bra homomorphism r : AG → AG,R such that, for any other algebra B and map
β : G → B such that the composition of the relations with the canonical homomor-
phism b : AG → B gives b ◦ ρ = 0, there exists a unique algebra homomorphism
bR : AG,R → B such that b = bR ◦ r . We use the same terminology for ∗- and unital
algebras.

Remark 5.1.9 Analogously to the case ofAG , this definition easily implies that any
two algebrasAG,R ,A′G,R presented by the generators G and relations R are naturally
isomorphic as the reader can immediately prove by using the universal property of
the definition. Intuitively, the algebraAG,R is therefore the algebra that is generated
by G satisfying only the relations ρ(R) = 0.

The presentation in terms of generators and relations works for a variety of algebraic
structures, like groups, rings, module, algebras, etc. In fact, the universal property
of objects defined in this way is most conveniently expressed using commutative
diagrams in the corresponding category [45, Sect. I.11]. The case of groups is exten-
sively discussed in [45, Sect. I.12]. Note that, though uniqueness of these objects
is guaranteed by abstract categorical reasoning, their existence is not automatic and
must be checked in each category of interest. For another example of definition by
universal property in this volume, see Sect. 4.10.4.

5.1.3 The GNS Construction

When adopting the algebraic formulation, the notion of (quantum) state must be
similarly generalized as follows.

Definition 5.1.10 (States) Given an unital ∗-algebra A, an (algebraic) state ω over
A is a C-linear map ω : A → C which is positive (i.e. ω(a∗a) ≥ 0 for all a ∈ A)
and normalized (i.e. ω(11) = 1).

The overall idea underlying this definition is that if, for a given observable a =
a∗ ∈ Awe know all moments ω(an), and thus all expectation values of polynomials
ω(p(a)), we also know the probability distribution associated to every value of
a when the state is ω. To give a precise meaning to this idea, we should represent
observables a as self-adjoint operators â in someHilbert spaceH, where the values of
a correspond to the point of spectrum σ(â) and thementioned probability distribution
is that generated by a vector Ψ state representing ω in H, and the spectral measure
of â. We therefore expect that, in this picture, ω(a) = 〈Ψ |âΨ 〉 for some normalized
vector Ψ ∈ H. This is, in fact, a consequence of the content of the celebrated
GNS re-construction procedure for unital C∗-algebras [28, 49, 60]. We will discuss
shortly the unital ∗-algebra version of that theorem. Note that the general problem
of reconstructing even a unique classical state (a probability distribution on phase
space) from the knowledge of all of its polynomial moments is much more difficult

http://dx.doi.org/10.1007/978-3-319-21353-8_4
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and is sometimes impossible (due to non-uniqueness). This kind of reconstruction
goes under the name of the Hamburger moment problem [54, Sect. X. 6, Ex. 4].
In this case, the successful reconstruction of a representation from a state succeeds
because of the special hypotheses that go into the GNS theorem, where we know not
only the expectation values of a (and the polynomial ∗-algebra generated by it) but
also those of all elements of the algebra of observables.

In the rest of the chapter L (V ) will denote the linear space of linear operators
T : V → V on the vector space V .

Definition 5.1.11 (∗-Representations) Let A be a complex algebra and D a dense
linear subspace of the Hilbert space H.

(a) A map π : A→ L (D) such that it is linear and product preserving is called
representationofAonHwithdomainD. IfA is furthermore unital, a representation
is also required to satisfy: π(11) = I .

(b) If finally A is a ∗-algebra, a ∗-representation of A on H with domain D is
a representation which satisfies (where † henceforth denotes the Hermitian adjoint
operation in H)

π(a)†�D= π(a∗) ∀a ∈ A .

As a general result we have the following elementary proposition

Proposition 5.1.12 (On faithful representations) IfA is a complex algebra is simple,
then every representation is either faithful—i.e., injective—or it is the zero represen-
tation.

Proof If π : A → L (D) is a ∗-representation, K er(π) is evidently a two-sided
ideal. Since A is simple there are only two possibilities either K er(π) = D so that
π is the zero representation, or K er(π) = {0} and thus π is injective. �

Theorem 5.1.13 (GNS construction) If A is a complex unital ∗-algebra and ω :
A→ C is a state, the following facts hold.
(a) There is a quadruple (Hω,Dω, πω, Ψω), where:

(i) Hω is a (complex) Hilbert space,
(ii) Dω ⊂ Hω is a dense subspace,

(iii) πω : A→ L (Dω) a ∗-representation of A on Hω with domain Dω,
(iv) πω(A)Ψω = Hω,
(v) ω(a) = 〈Ψω|πω(a)Ψω〉 for every a ∈ A.

(b) If (H′ω,D′ω, π ′ω, Ψ ′
ω) satisfies (i)–(v), then there is U : Hω → H′ω surjective and

isometric such that:

(i) UΨω = Ψ ′
ω,

(ii) UDω = D′ω,
(iii) Uπω(a)U−1 = π ′ω(a) if a ∈ A.
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Proof ConsiderA as complex vector space and define N = {a ∈ A|ω(a∗a) = 0}. N
is a subspace as easily follows from sesquilinearity of (a, b) �→ ω(a∗b) and from the
Cauchy-Schwartz inequality which holds because (a, b) �→ ω(a∗b) is non-negative.

DefineDω
def= A/N as a complex vector space and equip it with the Hermitian scalar

product 〈[a]|[b]〉 def= μ(a∗b), which turns out to be well-defined (because ω(a∗b) =
ω(b∗a) = 0 if a ∈ N again from Cauchy-Schwartz inequality) and positive. Hω is,
by definition, the completion of Dω with respect to the mentioned scalar product.
Now observe that N is also a left-ideal (ω((ba)∗ba) = ω((b∗(ba))∗a) = 0 if a ∈ N )

and consequently πω(a)[b] def= [ab] is well-defined ([ab] = [ac] if c ∈ [b]) and is a

unital algebra representation. Defining Ψω
def= [1], we have ω(a) = 〈Ψω|πω(a)Ψω〉.

Finally:

〈πω(c)Ψω|πω(a)πω(b)Ψω〉 = ω(c∗(a∗)∗b) = ω((a∗c)∗b) = 〈πω(a∗c)Ψω|πω(b)Ψω〉
= 〈πω(a∗)πω(c)Ψω|πω(b)Ψω〉

Summing up, we have:

〈πω(a)†πω(c)Ψω|πω(b)Ψω〉 = 〈πω(c)Ψω|πω(a)πω(b)Ψω〉
= 〈πω(a∗)πω(c)Ψω|πω(b)Ψω〉

Since c, b are arbitrary and both πω(b)Ψω and πω(b)Ψω range inDω which is dense,
we have found that π(a)†|Dω

= π(a∗). The proof of (b) is easy. As a matter of fact

the operator U is completely defined by Uπω(a)Ψω
def= π ′ω(a)Ψ ′

ω, we leave to the
reader the proof of the fact that it is well-defined and satisfies the required properties.
The proof is strictly analogous to the corresponding part of (b) in Proposition 5.1.17
below. �

There exists a stronger version of that theorem [8, 28, 49] regarding the case whereA
is a unital C∗-algebra. The quadruple (Hω,Dω, πω, Ψω) is called GNS triple (!) the
name is due to the fact that for C∗-algebrasDω = Hω. In that case the representation
πω is continuous (norm decreasing more precisely) with respect to the operator norm
|| || inB(Hω), since πω(a) ∈ B(Hω) if a ∈ A.

As a general fact, we have that a ∗-representations π of a unital C∗-algebraA on
a Hilbert spaceH assuming values inB(H) is automatically norm decreasing, with
respect to the operator norm || || inB(H). Moreover π is isometric if and only if it
is injective [8, 28].

Remark 5.1.14
(1) Since Dω is dense πω(a)† is always well defined and, in turn, densely

defined for (iii) in (a). Hence, πω(a) is always closable. Therefore, if a = a∗,
π(a) is at least symmetric. If π(a) is self-adjoint the probability distribution of
the observable a in the state ω mentioned in the comment after Definition5.1.10 is
B(R) � E �→ 〈Ψω|P(πω(a))

E Ψω〉, where B(R) is the class of Borel sets on R and
P(πω(a)) the projection-valued measure of πω(a). The precise technical conditions,
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and their physical significance, under which an operator π(a), with a = a∗, might
be essentially self-adjoint on Dω are poorly explored in the literature and deserve
further investigation.

(2) The weak commutant π ′w of a ∗-representation π ofA onH with domainD,
is defined as1

π ′w
def= {A ∈ B(H) | 〈ψ |Aπ(a)φ〉 = 〈π(a)†ψ |Aφ〉 ∀a ∈ A ,∀ψ, φ ∈ D} ,

whereB(H) denotes the C∗-algebra of all bounded operators onH. IfA is a unital
C∗-algebra, the weak commutant of π (with domain given by the whole Hilbert
space) coincides to the standard commutant. We say that a ∗-representation π of A
onH is weakly irreducible if its weak commutant is trivial, that is, it coincides with
the set of operators cI : H→ H for c ∈ C.

(3) The set of states over the unital ∗-algebraA is a convex body. In other words
convex combinations of states are states: ω = pω1 + (1− p)ω2 with p ∈ (0, 1) is a
state if ω1, ω2 are.

(4) A state ω is said to be extremal if ω = pω1 + (1 − p)ω2, with p ∈ (0, 1)
and ω1, ω2 are states, is possible only if ω1 = ω2(= ω). These states are also called
pure states. It is possible to prove the following [28, 60]:

Proposition 5.1.15 (Pure states and irreducible representations) Referring to the
hypotheses of Theorem 5.1.13, ω is pure if and only if πω is weakly irreducible.

(IfA is a unital C∗-algebra the same statement holds but “weakly” can be omitted.)
Therefore, even if ω is represented by a unit vector Ψω in Hω, it does not mean
that ω is pure. In standard quantum mechanics it happens because A is implicitly
assumed to coincide to the whole C∗-algebraB(H) of everywhere-defined bounded
operators over H and πω is the identity when ω corresponds to a vector state of H.

(5)WhenA is a unitalC∗-algebra, the convex body of states onA is hugely larger
that the states of the form

A � a �→ ωρ(a)
def= tr(ρπω(a))

for a fixed (algebraic) stateω and where ρ ∈ B(Hω) is a positive trace class operator
with unit trace. These trace-class operators states associated with an algebraic state
ω form the folium of ω and are called normal states inHω. IfA is not C∗, the trace
tr(ρπω(a)) is not defined in general, because πω(a) is not bounded and ρπω(a)may
not be well defined nor trace class in general. Even if A is just a unital ∗-algebra, a
unit vector Φ ∈ Dω defines however a state by means of

A � a �→ ωΦ(a)
def= 〈Φ|πω(a)Φ〉 ,

recovering the standard formulation of elementary quantum mechanics. These states
are pure when ω is pure. More strongly, in this situation (Hω,Dω, πω,Φ) is just a

1π ′w can equivalently be defined as {A ∈ B(H) | Aφ(a) = π(a∗)† A , ∀a ∈ A}.
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GNS triple of ωΦ , because πω(A)Φ is dense in Hω (this is because the orthogonal
projector onto πω(A)Φ cannot vanish and belongs to the weak commutant π ′ωw
which is trivial, because ω is pure). If ω is not pure, ωΦ may not be pure also if it is
represented by a unit vectors.

(6) There are unitarily non-equivalent GNS representations of the same unital ∗-
algebraA associated with states ω, ω′. In other words there is no surjective isometric
operator U : Hω → Hω′ such that Uπω(a) = πω′(a)U for all a ∈ A. (Notice that,
in the notion of unitary equivalence it is not required that UΨω = Ψω′ ). Appearance
of unitarily inequivalent representations is natural when A has a non-trivial center,
ZA, i.e., it contains something more than the elements c11 for c ∈ C. Pure states
ω,ω′ such that ω(z) �= ω′(z) for some z ∈ ZA give rise to unitarily inequivalent
GNS representations. This easily follows from the fact that πω(z) and πω′(z), by
irreducibility of the representations, must be operators of the form cz I and c′z I for
complex numbers cz, c′z in the respective Hilbert spaces Hω and Hω′ . It should be
noted that such representations remain inequivalent even if the unitarity of U is
relaxed. However, it can happen that some representations are unitarily inequivalent
even when the algebra has a trivial center. See Sect. 5.2.6 for a relevant example.

Remark 5.1.16 The positivity requirement on states is physically meaningful when
every self-adjoint element of the ∗-algebra is a physical observable. It is also a
crucial ingredient in the GNS reconstruction theorem. However, in the treatment of
gauge theories in the Gupta-Bleuler or BRST formalisms, in order to keep spacetime
covariance, one must enlarge the ∗-algebra to include unobservable or ghost fields.
Physically meaningful states are then allowed to fail the positivity requirement on
∗-algebra elements generated by ghost fields. The GNS reconstruction theorem is
then not applicable and, in any case, the ∗-algebra is expected to be represented on an
indefinite scalar product space (aKrein space) rather than aHilbert space. Fortunately,
several extensions of the GNS construction have been made, with the positivity
requirement replaced by a different one that, instead, guarantees the reconstructed
∗-representation to be on an indefinite scalar product space. Such generalizations
and their technical details are discussed in [33].

Another relevant result arising from the GNS theorem concerns symmetries repre-
sented by ∗-algebra (anti-linear) automorphisms.

Proposition 5.1.17 (Automorphisms induced by invariant states) LetA be an unital
∗-algebra, ω a state on it and consider its GNS representation. The following facts
hold.
(a) If β : A → A is a unital ∗-algebra automorphism (resp. anti-linear automor-
phism) which leaves fixed ω, i.e., ω ◦ β = ω, then there exist a unique bijective
bounded operator U (β) : Hω → Hω such that:

(i) U (β)Ψω = Ψω and U (β)(Dω) = Dω,
(ii) U (β)πω(a)U (β)−1x = πω (β(a)) x if a ∈ A and x ∈ Dω.

U (β) turns out to be unitary (resp. anti-unitary).
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(b) If, varying t ∈ R, βt : A→ A defines a one-parameter group of unital ∗-algebra
automorphisms2 which leaves fixed ω, the corresponding unitary operators U (β)

t as
in (a) define a one-parameter group of unitary operators in Hω.
(c) {U (β)

t }t∈R as in (b) is strongly continuous (and thus it admits a self-adjoint
generator) if and only if

lim
t→0

ω(a∗βt (a)) = ω(a∗a) for every a ∈ A.

Proof Let us start from (a) supposing that β is a ∗-automorphism. If an opera-
tor satisfying (i) and (ii) exists it also satisfies U (β)πω(a)Ψω = πω (β(a)) Ψω. Since
πω(A)Ψω is dense inHω, this identity determinesU (β) onDω. Therefore we are lead

to try to define U (β)
0 πω(a)Ψω

def= πω (β(a)) Ψω on Dω. From (v) in (a) of Theorem

5.1.13 it immediately arises that ||U (β)
0 πω(a)Ψω||2 = ||πω(a)Ψω||2. That identity

on the one hand proves that U (β) is well defined because if πω(b)Ψω = πω(b′)Ψω

thenU (β)πω(b)Ψω = U (β)πω(b′)Ψω, on the other hand it proves thatU (β) is isomet-

ric on Dω. If we analogously define the other isometric operator V (β)
0 πω(a)Ψω

def=
πω

(
β−1(a)

)
Ψω onDω, we see thatU (β)

0 V x = V U (β)
0 x for every x ∈ Dω. SinceDω

is dense inHω, these identities extend to analogous identities for the unique bounded
extensions ofU (β)

0 and V valid over the whole Hilbert space. In particular the former
operator extends into an isometric surjective operator (thus unitary) U (β) which, by
construction, satisfies (i) and (ii). Notice that V , defined onDω, is the inverse ofU (β)

0

so that, in particular U (β)(Dω) = U (β)
0 (Dω) = Dω. The followed procedure also

proves that U (β) is uniquely determined by (i) and (ii). The anti-linear case is proved

analogously. Anti-linearity of β implies that, in U (β)
0 πω(a)Ψω

def= πω (β(a)) Ψω,

U (β)
0 must be anti-linear and thus anti-unitary.
The proof of (b) immediately arises from (a). Regarding (c), we observe that, if

x = πω(a)Ψω one has for t → 0 by the GNS theorem,

〈x |U (β)
t x〉 = ω(a∗βt (a))→ ω(a∗a) = 〈x |x〉

Since the span of the vectors x is dense in Hω, U (β)
t is strongly continuous due to

Proposition 9.24 in [49]. �
Remark 5.1.18

(1) Evidently, the statements (b) and (c) can immediately be generalized to the
case of a representation of a generic group or, respectively, connected topological
group, G. Assume that G is represented in terms of automorphisms of unital ∗-
algebras βg : A → A for g ∈ G. With the same proof of (c), it turns out that, if ω

is invariant under this representation of G, the associated representation in the GNS
Hilbert space of ω, {U (β)

g }g∈G is strongly continuous if and only if

2There do not exist one-parameter group of unital ∗-algebra anti-linear automorphisms, this is
because βt = βt/2 ◦ βt/2 is linear both for βt/2 linear or anti-linear.
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lim
g→e

ω(a∗βg(a)) = ω(a∗a) for every a ∈ A,

where e ∈ G is the unit element.
(2) It could happen in physics that an algebraic symmetry, i.e., an automorphism

(or anti-automorphism) β : A→ A exists for a unital ∗-algebra with some physical
interpretation, but that this symmetry cannot be completely implemented unitarily
(resp. anti-unitarily) in the GNS representation of a state ω because, referring to the
condition in (a) of the proved theorem, either (i) or both (i) and (ii) of (a) do not hold.
In the first case the symmetry is broken because the cyclic vector is not invariant
under a unitary representation of the symmetry, which however exists in the GNS
representation of ω. Obviously, in this case, ω is not invariant under the algebraic
symmetry. This situation naturally arises when one starts from a pure invariant state
ω0 and the physically relevant state is notω0, but another stateω ∈ Dω0 . The second,
muchmore severe, situation iswhen there is no unitarymap in theGNS representation
ofωwhich fulfills (i) and (ii). In algebraic quantum theories, this second case is often
called spontaneous breaking of symmetry.

5.2 The ∗-algebra of a Quantum Field and Its Quasifree
States

This chapter mostly deals with the case of a real scalar field, we will denote by φ,
on a given always oriented and time oriented, globally hyperbolic spacetime M =
(M, g, o, t) of dimension n ≥ 2, where g is themetricwith signature (+,−, . . . ,−),
o the orientation and t the time orientation. Regarding geometrical notions, we adopt
throughout the definitions of Chap. 3. Minkowski spacetime will be denoted by M

and its metric by η.
The results we discuss can be extended to charged and higher spin fields. As is

well known a quantum field is a locally covariant notion, functorially defined in
all globally hyperbolic spacetimes simultaneously (see Chap.4). Nevertheless, since
this chapter is devoted to discussing algebraic states of a QFT in a given manifold
we can deal with a fixed spacetime. Moreover we shall not construct the ∗-algebras
as Borchers-Uhlmann-like algebras (Chap. 3) nor use the deformation approach (see
Chap.2) to define the algebra structure, in order to simplify the technical structure
and focus on the properties of the states.

5.2.1 The Algebra of Observables of a Real Scalar
Klein-Gordon Field

In order to deal with QFT in curved spacetime, a convenient framework is the alge-
braic one. This is due to various reasons. Especially because, in the absence of

http://dx.doi.org/10.1007/978-3-319-21353-8_3
http://dx.doi.org/10.1007/978-3-319-21353-8_4
http://dx.doi.org/10.1007/978-3-319-21353-8_3
http://dx.doi.org/10.1007/978-3-319-21353-8_2
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Poincaré symmetry, there is no preferred Hilbert space representation of the field
operators, but several unitarily inequivalent representations naturally show up. Fur-
thermore, the standard definition of the field operators based on the decomposition
of field solutions in positive and negative frequency part is not allowed here, because
there is no preferred notion of (Killing) time.

In the rest of the chapter C∞0 (M) denotes the real vector space of compactly-
supported and real-valued smooth function on the manifoldM.

The elementary algebraic object, i.e., a scalar quantum field φ over the globally
hyperbolic spacetime M is captured by a unital ∗-algebra A(M) called the CCR
algebra of the quantum field φ.

Definition 5.2.1 (CCR algebra) The CCR algebra of the quantum field φ over
M is the unital ∗-algebra presented by the following generators and relations
(cf. Sect. 5.1.2). The generators consist (smeared abstract) field operators, φ( f ),
labeled by functions f ∈ C∞0 (M) (the identity 11 is of course included in the con-
struction of the corresponding freely generated algebra). These generators satisfy the
following relations:

R-Linearity:φ(a f +bg)−aφ( f )−bφ(g) = 0 if f, g ∈ C∞0 (M) and a, b ∈ R.
Hermiticity: φ( f )∗ − φ( f ) = 0 for f ∈ C∞0 (M).
Klein-Gordon: φ

(
(�M + m2 + ξ R)g

) = 0 for g ∈ C∞0 (M).
Commutation relations: [φ( f ), φ(g)] − i E( f, g)11 = 0 for f ∈ C∞0 (M).

Above E denotes the advanced-minus-retarded fundamental solution, also called
the causal propagator, see Chap.3 and (1) in Remark 5.2.2 below. The Hermitian
elements ofA(M) are the elementary observables of the free field theory associated
with the Klein-Gordon field φ. The non-Hermitian elements play an auxiliary rôle. It
should however be evident thatA(M) is by no means sufficient to faithfully describe
physics involved with the quantum field φ. For instanceA(M) does not include any
element which can be identified with the stress energy tensor of φ. Also the local
interactions like φ4 cannot be described as elements of this algebra either. We shall
tackle this problem later.

According to the discussion in Sect. 5.1.2, the above abstract definition is sufficient
to uniquely define A(M) up to isomorphism. An alternative, more concrete and
explicit, constructionusing tensor products of spacesC∞0 (M) is presented inChap.3.
That construction yields a concrete representative of the isomorphism class ofA(M).

Remark 5.2.2
(1) LetSol indicate the real vector space of real smooth solutionsψ with compact

Cauchy data of the KG equation (�M + m2 + ξ R)ψ = 0 where �M
def= gab∇a∇b.

Let us, as usual, use the notation D(M)
def= C∞0 (M) ⊕ iC∞0 (M) for the space of

complex test functions andD′(M) is the dual space of distributions. Interpreting the
advanced-minus-retarded fundamental solution of the KG operator as a linear
map

E : C∞0 (M)→ Sol ,

http://dx.doi.org/10.1007/978-3-319-21353-8_3
http://dx.doi.org/10.1007/978-3-319-21353-8_3
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we can naturally extend it by C-linearity to the continuous linear map

E : D(M)→ D′(M) ,

which defines the bilinear functional

E( f1, f2)
def=

∫
M

f1(E f2) dvolM if f1, f2 ∈ C∞0 (M) , (5.1)

which is the one appearing in the commutation relations above. Of course, in agree-
ment with the commutation relations,

R � E( f, g) = −E(g, f ) if f, g ∈ C∞0 (M). (5.2)

As a map C∞0 (M) → Sol, E satisfies

K er(E) = {(�M + m2 + ξ R)h | h ∈ D(M)} . (5.3)

Everything is a consequence of the fact that M is globally hyperbolic (see Chap.3).
Since E( f, h) = 0 if the support of f does not intersect J+M(supph) ∪ J−M(supph),
we immediately have from the commutation relations requirement that the following
important fact holds, distinguishing observable fields (Bosons) form unobservable
ones (Fermions):

Proposition 5.2.3 (Causality) Referring to A(M), φ( f ) and φ(h) commute if the
supports of f and h are causally separated.

From standard properties of E (see Chap.3) one also finds, if Σ ⊂M is a smooth

space-like Cauchy surface f, h ∈ C∞0 (M) and ψ f
def= E f and ψh

def= Eh are
elements of Sol,

E( f, g) =
∫

Σ

(
ψ f∇nψh − ψh∇nψ f

)
dΣ , (5.4)

where dΣ is the standard measure induced by the metric g on Σ and n the future
directed normal unit vector field to Σ .

(2) As E : D(M)→ D′(M) is continuous, due to Schwartz kernel theorem [39],
it defines a distribution, indicated with the same symbol E ∈ D′(M×M), uniquely
determined by

E( f1, f2) = E( f1 ⊗ f2) f1, f2 ∈ D(M) ,

and this leads to an equivalent interpretation of the left-hand side of (5.1), which is
actually a bit more useful, because it permits to consider the action of E on non-
factorized test functions h ∈ D′(M×M).

(3) The condition indicated as Klein-Gordon is the requirement that φ distri-
butionally satisfies the equation of Klein-Gordon. Obviously �M appearing in it

http://dx.doi.org/10.1007/978-3-319-21353-8_3
http://dx.doi.org/10.1007/978-3-319-21353-8_3
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coincides with its formal transposed (or adjoint) operator which should appear in the
distributional version of KG equation.

(4) Everything we will say holds equally for m2 and ξ replaced by corresponding
smooth real functions, also in the case where m2 attains negative values. Also the
case m2 < 0 does not produce technically difficult problems.

Linearity and Commutation relations conditions together with (5.3) imply the ele-
mentary but important result which proves also the converse implication in the prop-
erty Klein-Gordon.

Proposition 5.2.4 Referring to A(M) the following facts hold.

φ( f ) = φ(g) if and only if f − g ∈ K er(E), (5.5)

so that, in particular,

φ( f ) = 0 if and only if f = (�M + m2 + ξ R)g for g ∈ C∞0 (M). (5.6)

Proof φ( f ) = φ(g) is equivalent to φ( f − g) = 0 and thus i E(h, ( f − g)) =
[φ(h), φ( f −g)] = 0 for all h ∈ D(M). From (5.1) one has, in turn, that E( f −g) =
0 that is f − g ∈ K er(E). Finally (5.3) implies the last statement. �

The smeared field φ( f ) can be thought of as localized within the support of its
argument f . However, φ( f ) really depends on f only up to addition of terms from
K er(E).We can use this freedom tomove and shrink the support of f to be arbitrarily
close to any Cauchy surface, which is a technically useful possibility.

Lemma 5.2.5 Let ψ ∈ Sol and let Σ be a smooth space-like Cauchy surface of
the globally hyperbolic spacetime M. For every open neighborhood O of Σ , it is
possible to pick out a function fψ ∈ C∞0 (M) whose support is contained in O, such
that ψ = E fψ .

The proof of this elementary, but important, fact can be found in Chap.3 and in [65]
(see also the proof of our Proposition 5.3.17). This result immediately implies the
validity of the so called Time-slice axiom for the CCR algebra (see Chap.3).

Proposition 5.2.6 (“Time-slice axiom”)Referring to the globally hyperbolic space-
time M and the algebra A(M), let O be any fixed neighborhood of a Cauchy surface
Σ . Then A(M) is generated by 11 and the elements φ( f ) with f ∈ C∞0 (M) and
supp f ⊂ O.

5.2.2 States and n-point Functions

Let us focus on states. We start form the observation that the generic element of
A(M) is always of the form

http://dx.doi.org/10.1007/978-3-319-21353-8_3
http://dx.doi.org/10.1007/978-3-319-21353-8_3
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a = c(0)11+
∑

i1

ci1
(1)φ( f (1)

i1
)+

∑
i1,i2

ci1i2
(2) φ( f (2)

i1
)φ( f (2)

i2
)

+ · · · +
∑

i1,...,in

ci1···in
(n) φ( f (n)

i1
) · · ·φ( f (n)

in
) , (5.7)

where n is arbitrarily large but finite, ci1···ik
(k) ∈ C and f ( j)

k ∈ C∞0 (M), with all sums
arbitrary but finite. Due to (5.7), if ω : A(M) → C is a state, its action on a generic
element ofA(M) is known as soon as the full class of the so-called n-point functions
of ω are known. We mean the maps:

C∞0 (M)×· · ·×C∞0 (M) � ( f1, . . . , fn) �→ ω(φ( f1) · · ·φ( fn))
def= ωn( f1, . . . , fn)

At this point, the multilinear functionals ωn( f1, . . . , fn) are not yet forced to satisfy
any continuity properties (in fact we have not even discussed any topologies on
A(M) and how the states should respect it). However, in the sequel we will only be
dealing with the cases where ωn is continuous in the usual test function topology on
C∞0 (M). Then, by the Schwartz kernel theorem [39], we can write, as it is anyway
customary, the n-point function in terms of its distributional kernel:

ωn( f1, . . . , fn) =
∫

Mn
ωn(x1, . . . , xn) f1(x1) · · · fn(xn) dvolMn .

It is worth stressing that a choice of a family of integral kernels ωn , n = 1, 2, . . .,

extends by linearity and the rule ω(11)
def= 1 to a normalized linear functional on all

ofA(M). However, this functional generally does not determine a state, because the
positivity requirement ω(a∗a) ≥ 0 may not be valid. However if two states have the
same set of n-point functions they necessarily coincide in view of (5.7).

Remark 5.2.7 As defined above, the n-point functions ωn( f1, . . . , fn) need not be
symmetric in their arguments. However, they do satisfy some relations upon per-
mutation of the arguments. The reason is that the products φ( f1) · · ·φ( fn) and
φ( fσ(1)) · · ·φ( fσ(n)), for any permutation σ , are not completely independent in
A(M). It is easy to see that the CCR ∗-algebra is filtered, namely that A(M) =⋃∞

n=0 An(M), where each linear subspace An(M) consists of linear combinations
of 11 and products of no more than n generators φ( f ), f ∈ C∞0 (M). The product
φ( f1) · · ·φ( fn) belongs toAn(M), as does φ( fσ(1)) · · ·φ( fσ(n)). The commutation
relation [φ( f ), φ(g)] = i E( f, g)11 then implies that the product φ( f1) · · ·φ( fn) and
the same product with any two fi ’s swapped, hence also φ( fσ(1)) · · ·φ( fσ(n)) for
any permutation σ , coincide “up to lower order terms,” or more precisely coincide
in the quotient An(M)/An−1(M). Thus, without loss of generality, the coefficients
ci1···in
(n) in (5.7) can be taken to be, for instance, fully symmetric in their indices. So, in
order to fully specify a state, it would be sufficient to specify only the fully symmetric
part of each n-point function ωn( f1, . . . , fn).
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Once a state ω is given, we can implement the GNS machinery obtaining a ∗-
representation πω : A(M) → L (Dω) over the Hilbert space Hω including the
dense invariant linear subspaceDω. The smeared field operators appear here as the
densely defined symmetric operators:

φ̂ω( f )
def= πω(φ( f )) : Dω → Hω , f ∈ C∞0 (M) .

We stress that in general φ̂ω( f ) is not self-adjoint nor essentially self-adjoint on Dω

(even if we are considering real smearing functions). That is why we introduce the
following definition:

Definition 5.2.8 (Regular states) A stateω onA(M) and its GNS representation are
said to be regular if φ̂ω( f ) is essentially self-adjoint onDω for every f ∈ C∞0 (M).

There are some further elementary technical properties of ω2 and E that we list
below.

Proposition 5.2.9 Consider a state ω : A(M)→ C and define P
def= �M + m2 +

ξ R. The two-point function, ω2, satisfies the following facts for f, g ∈ C∞0 (M):

ω2(P f, g) = ω2( f, Pg) = 0 , (5.8)

ω2( f, g)− ω2(g, f ) = i E( f, g) , (5.9)

I m(ω2( f, g)) = 1

2
E( f, g) , (5.10)

1

4
|E( f, g)|2 ≤ ω2( f, f )ω2(g, g) . (5.11)

Proof The first identity trivially arises from ω2(P f, g) = ω(φ(P f )φ(g)) = 0 and
ω2( f, Pg) = ω(φ( f )φ(Pg)) = 0 in view of the definition of φ(h). Next,

ω2( f, g)− ω2(g, f ) = ω([φ( f ), φ(g)]) = ω(i E( f, g)11) = i E( f, g)ω(11) = i E( f, g) .

The third identity then follows immediately since E( f, g) is real. Using its GNS
representation and the Cauchy-Schwartz inequality we find that

|ω2( f, g)| ≤ |〈φ̂ω( f )Ψω|φ̂ω( f )Ψω〉|1/2 |〈φ̂ω(g)Ψω|φ̂ω(g)Ψω〉|1/2

namely
|ω2( f, g)|2 ≤ ω2( f, f )ω2(g, g) .

So that, in particular

|I m(ω2( f, g))|2 ≤ ω2( f, f )ω2(g, g)

and thus, due to (5.10), we end up with (5.11). �



5 Algebraic QFT in Curved Spacetime and Quasifree Hadamard States … 207

5.2.3 Symplectic and Poisson Reformulation, Faithful
Representations, Induced Isomorphisms

We recall for the reader the following elementary definitions.

Definition 5.2.10 (Symplectic vector space) A (real) symplectic form over the real
vector space V is a bilinear, antisymmetric map τ : V × V → R. τ is said to be
weakly non-degenerate if τ(x, y) = 0 for all x ∈ V implies y = 0. In this case
(V, τ ) is said to be a (real) symplectic vector space.

Next, we would like to define a Poisson vector space. In the finite dimensional
case, it is simply a pair (V,Π), where V is a real vector space and Π ∈ Λ2V , which
is the same as being a bilinear, antisymmetric form on the (algebraic) linear dual
V ∗. However, in our cases of interest, V is infinite dimensional and Π belongs to
a larger space than Λ2V , that could be defined using linear duality. Constructions
involving linear duality necessarily bring into play the topological structure on V
(or lack thereof). We will not enter topological questions in detail, so we content
ourselves with a formal notion of duality, which will be sufficient for our purposes.

Definition 5.2.11 (Poisson vector space) Two real vector spaces V and W , together
with a bilinear pairing 〈·, ·〉 : W × V → R, are in formal duality when the bilinear
pairing is non-degenerate in either argument (〈x, y〉 = 0 implies x = 0 if it holds
for all y ∈ V , and it implies y = 0 if it holds for all x ∈ W ). Given such V
and W in formal duality, we call (V,Π, W, 〈·, ·〉) a (real) Poisson vector space if
Π : W ×W → R is a bilinear, antisymmetric map, called the Poisson bivector. Π
is said to be weakly non-degenerate if Π(x, y) = 0 for all x ∈ W implies y = 0.

At this level, there are only subtle differences between symplectic and Poisson
vector spaces. In fact, the two structures have often been confounded in the literature
on QFT on curved spacetime [1, 15, 17, 18, 25, 31]. The differences become more
pronounced when we consider symplectic differential forms and Poisson bivector
fields on manifolds locally modeled on the vector space V . A form is a section of
an antisymmetric power of the cotangent bundle, while a bivector field is a section
of an antisymmetric power of the tangent bundle. In infinite dimensional settings,
one has to choose a precise notion of tangent and cotangent bundle, among several
inequivalent possibilities. This ambiguity is reflected in our need to introduce formal
duality for the definition of a Poisson vector space.

The above abstract definitions are concretely realized in the Proposition that we
present below. Let us use the formula on the right-hand side of (5.4) to define a
bilinear, antisymmetric map τ : Sol× Sol → R by

τ(ψ, ξ) =
∫

Σ

(ψ∇nξ − ξ∇nψ) dΣ. (5.12)

Defining the space of equivalence classes E = C∞0 (M)/(�M +m2 + ξ R)C∞0 (M)

and recalling Eqs. (5.1) and (5.3), the advanced-minus-retarded fundamental solution
defines a bilinear, antisymmetric map E : E × E → R by
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E([ f ], [g]) = E( f, g). (5.13)

Furthermore, there is a well-defined bilinear pairing 〈·, ·〉 : E × Sol → R given by

〈[ f ], ψ〉 =
∫
M

f ψ dvolM . (5.14)

Given the above definitions for the Klein-Gordon real scalar field, we have the
following.

Proposition 5.2.12 The spaces Sol and E are in formal duality, with respect to the
pairing 〈·, ·〉. The pair (Sol, τ ) is a symplectic vector space, while (Sol, E, E, 〈·, ·〉)
is a Poisson vector space. Moreover, the bilinear forms τ and E respectively induce
linear maps

τ : Sol → E and E : E → Sol (5.15)

that are bijective, mutually inverse and such that τ(ψ, ξ) = 〈τψ, ξ 〉 and E([ f ], [g])
= 〈[ f ], E[g]〉.
Proof The content of this proposition is discussed in detail in [42, Sect. 5] or [43, Sect.
3], though a basic version can be found already in [65, Sect. 3.2]. We only indicate
a few salient points. The non-degeneracy of the pairing 〈·, ·〉 implies, provided there
exist linear operators τ and E such that E([ f ], [g]) = 〈[ f ], E[g]〉 and τ(ψ, ξ) =
〈τψ, ξ 〉, that they are unique. These operators can be exhibited rather concretely.
The linear map E : E → Sol is already defined by Remark 5.2.2(1), in view of
Eq. (5.3). The definition of τ in (5.12) is independent of the choice of Cauchy
surface Σ ⊂M. Let Σ+,Σ− ⊂M be Cauchy surfaces, respectively to the future
and to the past of the Cauchy surface Σ , and let χ ∈ C∞(M) be such that χ ≡ 0
to the past of Σ− and χ ≡ 1 to the future of Σ+. Then, we have the identity
τψ = [(�M + m2 + ξ R)(χψ)]. Finally, the non-degeneracy or bijectivity of 〈·, ·〉,
τ and E , considered either as bilinear forms or linear operators, strongly rely on the
hyperbolic character and well-posedness of the Klein-Gordon equation. �

Given the isomorphism between E and Sol and the close relationship between
E and τ , it is not surprising these two spaces and bilinear forms have often been
used interchangeably in the context of the QFT of the Klein-Gordon real scalar field.
However, this interchangeability may fail for more complicated field theories, as we
remark next. This is another reason why it is important to keep track of the difference
between the respective symplectic and Poisson vector spaces, (Sol, τ ) and (Sol, E)!

Remark 5.2.13 References [42, Sect. 5] and [43, Sect. 3] also address in detail the
question of whether similar statements hold for gauge theories (electrodynamics,
linearized gravity, etc.) or for theories with constraints (massive vector field, etc.).
Related questions were also studied in [31]. The answer turns out to be rather sub-
tle. The bilinear forms τ and E can essentially always be defined. A reasonable
choice of the spaces E and Sol also make sure that the linear maps τ : Sol → E and
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E : E → Sol are also well-defined and are mutually inverse. However, the pairing
〈·, ·〉 appearing in the formulas τ(ψ, ξ) = 〈τψ, ξ 〉 and E([ f ], [g]) = 〈[ f ], E[g]〉,
need no longer be non-degenerate. Hence, the bilinear forms τ and E may be degen-
erate themselves. The conditions under which these degeneracies do or do not occur
subtly depend on the geometry of the gauge transformations and the constraints of
the theory.

We now turn to applying the above symplectic and Poisson structures to the study
of the properties of the CCR algebra A(M) of a Klein-Gordon field.

Definition 5.2.14 (CCR algebra of a Poisson vector space) Let (V,Π, W, 〈·, ·〉) be a
Poisson vector space, defined with respect to a formal duality between V and another
space W . The correspondingCCR algebraA(V,Π, W, 〈·, ·〉) is defined as the unital
∗-algebra presented by the generators A(x), x ∈ W , subject to the relations A(ax +
by)− a A(x)− bA(y) = 0, A(x)∗ − A(x) = 0 and [A(x), A(y)] − iΠ(x, y)11 = 0,
for any a, b ∈ R and x, y ∈ W .

This generic definition allows us to state and prove the following useful result.

Proposition 5.2.15 (Simplicity and faithfulness) Given that the spaces V and
W are in formal duality and the Poisson bivector of the Poisson vector space
(V,Π, W, 〈·, ·〉) is weakly non-degenerate (as a bilinear form on W ), the corre-
sponding CCR algebra A(V,Π, W, 〈·, ·〉) is simple. Further, it admits only zero or
faithful representations.

Before giving the proof, we note its main consequence. It is not hard to see that the
definition of the CCR algebraA(M), as given in Definition 5.2.1, coincides with the

alternative definition A(M)
def= A(Sol, E), using the notation of Proposition 5.2.12

and referring to the formal duality between Sol and E . The explicit homomorphism
acts on the generators as φ( f ) �→ A([ f ]). Thus, given Proposition 5.2.12, we have
the immediate

Corollary 5.2.16 The CCR algebra A(M) of a real scalar quantum field is simple
and admits only either zero or faithful representations.

Remark 5.2.17 The result established in the Corollary above is not valid form more
complicated QFTs like electromagnetism [59] and linearized gravity [16]. The phys-
ical reason is the appearance of the gauge invariance. Mathematically it is related to
the fact that the Poisson bivector corresponding to our E is degenerate on the space
E of compactly supported observables, as discussed in [42, Sect. 5] and [43, Sect. 3].

The proof of Proposition 5.2.15 makes use of the following two lemmas.

Lemma 5.2.18 Let Π be a bilinear form (we need not even assume it to be antisym-
metric) on a vector space W . Further, let vi ∈ W , i = 1, . . . , N, be a set of linearly
independent vectors and ci1···ik a collection of scalars, not all zero, with each index
running through i j = 1, . . . , N. Then, if
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∑
i1,...,ik

ci1···ik Π(vi1, u1) · · ·Π(vik , uk) = 0 (5.16)

for each set of vectors ui ∈ W , i = 1, . . . , k. Then there exists a non-zero vector
w ∈ W such that Π(w, u) = 0 for any u ∈ W .

Proof The proof is by induction on k. Let k = 1, then the right-hand side of the
equation in the hypothesis is Π(w′, u1), where

w′ =
∑

i

ci vi . (5.17)

Since not all ci are zero and the vi , i = 1, . . . , N are linearly independent, we have
w′ �= 0. We can then set w = w′ and we are done, since u1 can be arbitrary.

Now, assume that the case k − 1 has already been established. Note that we can
write the right-hand side of the above equation as Π(w′, uk), where

w′ =
∑

i1,...,ik

ci1···ik Π(vi1, u1) · · ·Π(vik−1 , uk−1)vik . (5.18)

If w′ �= 0 for some choice of ui ∈ W , i = 1, . . . , k − 1, then we can set w = w′ and
we are done, since uk can be arbitrary.

Consider the case when w′ = 0 for all ui ∈ W , i = 1, . . . , k−1. Then, choose jk
such that ci1···ik−1 jk are not all zero. Since, by linear independence, the coefficients
of the vik in w′ must vanish independently, we have

∑
i1,...,ik−1

ci1···ik−1 jk Π(vi1 , u1) · · ·Π(vik−1, uk−1) = 0 (5.19)

for all ui ∈ W , i = 1, . . . , k − 1. In other words, by the inductive hypothesis, the
last equality implies the existence of the desired non-zero w ∈ W , which concludes
the proof. �

Abilinear formΠ on W naturally defines a bilinear formΠ⊗k on the k-fold tensor
product W⊗k . Let S : W⊗k → W⊗k denote the (idempotent) full symmetrization

operator and denote its image, the space of fully symmetric k-tensors, by Sk W
def=

S(W⊗k). Of course, Π⊗k also restricts to Sk W . If Π is antisymmetric, then Π⊗k is
symmetric when k is even and antisymmetric when k is odd.

Lemma 5.2.19 If the antisymmetric bilinear form Π is weakly non-degenerate on
W , then the antisymmetric bilinear form Π⊗k is weakly non-degenerate on Sk W .

Proof Assume the contrary, that Π⊗k is degenerate. By its (anti-)symmetry, we
need only consider the degeneracy in its first argument. That is, there exists a vector
v =∑

i1,...ik
di1···ik vi1 ⊗· · ·⊗ vik , where vi ∈ W , i = 1, . . . , N , constitute a linearly
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independent set and the di1···ik coefficients are not all zero and are symmetric under
index interchange, such that

Π⊗k(v, S(u1 ⊗ · · · ⊗ uk)) = 0. (5.20)

for any ui ∈ W , i = 1, . . . , k. But then, the above equality is precisely of the form
of the hypothesis of Lemma 5.2.18, with

ci1···ik = k! di1···ik , (5.21)

due to the symmetry ofdi1···ik under index interchanges. Therefore, byLemma5.2.18,
there must exist aw ∈ W such thatΠ(w, u) = 0 for all u ∈ W , which contradicts the
weak non-degeneracy of Π on W . Therefore, Π⊗k cannot be degenerate on Sk W ,
and hence is weakly non-degenerate. �

Proof (of Proposition 5.2.15) Suppose that A(V,Π, W, 〈·, ·〉) is not simple, and so
has a non-trivial two-sided ideal I. If we can deduce that 11 ∈ I, then any non-trivial
two-sided ideal must be all ofA(V,Π, W, 〈·, ·〉), implying that the algebra is simple.

Take any non-zero element a ∈ I and recall the idea behind Eq. (5.7). That is,
there exists integers k, N ≥ 0, linearly independent elements vi ∈ W , i = 1, . . . , N ,
and complex coefficients ci1···il

(l) , i j = 1, . . . , N and l = 0, . . . , k, such that

a = c(0)11+
∑

i1

ci1
(1) A(vi1)+

∑
i1,i2

ci1i2
(2) A(vi1)A(vi2)

+ · · · +
∑

i1,...,ik

ci1...ik
(k) A(vi1) · · · A(vik ), (5.22)

where not all of the components of ci1...ik
(k) are zero. If k = 0, the 11 ∈ I

and we are done. If k > 0, note that I also contains the iterated commutator
[· · · [a, A(u1)], . . . , A(uk)], for any ui ∈ W , i = 1, . . . , k. A straight forward cal-
culation shows that, up to (non-zero) numerical factors, the iterated commutator is
equal to

Π⊗k

⎛
⎝ ∑

i1,...,ik

ci1,...,ik
(k) S(vi1 ⊗ · · · ⊗ vik ), S(u1 ⊗ · · · ⊗ uk)

⎞
⎠ 11. (5.23)

By Lemma 5.2.19, since Π is weakly non-degenerate on W , Π⊗k is weakly non-
degenerate on Sk W . Since elements of the form S(u1 ⊗ · · · ⊗ uk) generate Sk W ,
there must exist at least one element of Sk W of that form such that the coefficient in
front of 11 in (5.23) is non-zero. Therefore, 11 ∈ I and we are done. �

Automorphisms of the CCR algebra A(M) are important because the compo-
sition of a state with an automorphism gives a way to define more states, once at
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least one is known. The identity A(M) ∼= A(Sol, E) allows us to construct lots of
automorphisms ofA(M), induced by transformations of Sol or E that, respectively,
leave τ or E invariant.

Proposition 5.2.20 (Induced homomorphism) Let A(V,Π, W, 〈·, ·〉) be as in Def-
inition 5.2.14 and let σ : W → W be a linear map such that

Π(σ x, σ y) = Π(x, y) (resp. Π(σ x, σ y) = −Π(x, y)), (5.24)

for all f, g ∈ W . Then, there exists a homomorphism (resp. anti-linear homo-
morphism) of unital ∗-algebras, α(σ) : A(V,Π, W, 〈·, ·〉) → A(V,Π, W, 〈·, ·〉)
uniquely defined by its values

α(σ)(A(x))
def= A(σ x), (5.25)

for each x ∈ W , on the generators of A(V,Π, W, 〈·, ·〉). Also, if σ is bijective, then
α(σ) is an automorphism.

Remark 5.2.21 In view of Proposition 5.2.12 and the isomorphism E ∼= Sol, in the
case of the CCR algebra A(M) ∼= A(Sol, E) of a real scalar quantum field, the
linear endomorphisms of E that preserve the Poisson bivector E can be equivalently
specified by linear endomorphisms of Sol that preserve the symplectic form τ .

Proof Recall the definition of an algebra presented by generators and relations by
its universal property, as discussed in Sect. 5.1.2, as well as such a presentation of
the algebra A(V,Π, W, 〈·, ·〉) given in Definition 5.2.14.

Let us denote byA(W ) the algebra freely generated by the elements of the vector
space W . Following our notation, the map embedding the generators in this alge-
bra can be denoted as A : W → A(W ). The composition A ◦ σ is another such
map. Therefore, by the universal property, there exists a unique homomorphism
β : A(W ) → A(W ) such that β(A(x)) = A(σ x), for all x ∈ W , and β(11) = 11.

We now need to check whether β leaves invariant the kernel of the projec-
tion A(W ) → A(V,Π, W, 〈·, ·〉). This kernel is the two-sided ideal generated
by the relations A(ax + by) − a A(x) − bA(y) = 0, A(x)∗ − A(x) = 0 and
[A(x), A(y)] − iΠ(x, y)11 = 0, for any a, b ∈ R and x, y ∈ W , so it is sufficient
to check the invariance of these relations. The first two are obviously invariant. The
last commutator identity is invariant upon invoking the hypothesis that σ preserves
Π , up to sign. We deal with the two cases separately.

In the case when σ preserves Π , we have

[A(σ x), A(σ y)] − iΠ(x, y)11 = [A(σ x), A(σ y)] − iΠ(σ x, σ y)11. (5.26)

Hence, the homomorphism β induces a uniquely defined homomorphism on the
quotiented algebra, which we call α(σ) : A(V,Π, W, 〈·, ·〉) → A(V,Π, W, 〈·, ·〉),
which given by α(σ)([a]) = [βa], and which has all the desired properties.
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In the case when σ changes the sign ofΠ , we need to change perspective slightly.
Recall that we defined A(M) as a complex algebra, which then automatically has
the structure of a real algebra. Equivalently, we could have also defined it directly as
a real algebra, by throwing in an extra generator i , satisfying the relations i2 = −11,
[i, 11] = [i, A(x)] = 0 and i∗ = −i . If the homomorphism β is extended to this
generator as β(i) = −i , then it preserves the new relations that need to be satisfied
by i and also the commutator identity, since

[A(σ x), A(σ y)] − (−i)Π(x, y)11 = [A(σ x), A(σ y)] − iΠ(σ x, σ y)11. (5.27)

Hence, the real algebra homomorphism β induces a uniquely defined homomor-
phism on the quotiented algebra, which also happens to be an anti-linear homomor-
phism in the sense of complex algebras, which we call α(σ) : A(V,Π, W, 〈·, ·〉) →
A(V,Π, W, 〈·, ·〉), and which has all the desired properties.

Finally, when σ is a bijection, we can use the universal property of A(V,Π,

W, 〈·, ·〉), as was done in Sect. 5.1.2, to show that α(σ−1) = (α(σ))−1. Therefore,
α(σ) is an isomorphism and hence an automorphism of the algebra. �

We end this section by noting that there is another structure that is induced on
the space E ∼= C∞0 (M)/K er(E) in the presence of a state ω on A(M), namely the
symmetrized part of the 2-point function

ωS
2 ( f, g)

def= 1

2
(ω2( f, g)+ ω2(g, f )), (5.28)

with f, g ∈ C∞0 (M) and ω2( f, g)
def= ω(φ( f )φ(g)). By hermiticity, the sym-

metrized 2-point function is always real and non-negative, which was essentially
already noted in (5.9) and (5.10) of Proposition 5.2.9. Also, by Proposition 5.2.4,
φ( f ) depends only on the equivalence class [ f ] ∈ E . Hence,ωS

2 : E×E → R defines
a real symmetric bilinear form. Finally, the inequality (5.11) from Proposition 5.2.9,
which we can rewrite as

1

4
|E([ f ], [g])|2 ≤ ωS

2 ([ f ], [ f ])ωS
2 ([g], [g]), (5.29)

shows that ωS
2 is non-degenerate on E , since it majorizes E , which is already known

to be non-degenerate by Proposition 5.2.12. Thus, a state ω on A(M) induces a
positive scalar product ωS

2 on E (and also on Sol by the isomorphism of Proposi-
tion 5.2.12). We will use this scalar product structure and the inequality (5.29) to
construct quasifree states in the next section.
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5.2.4 Quasifree States, Also Known as Gaussian States

There is a plethora of states on A(M), the first class we consider is that of the
quasifree or Gaussian states. They mimic the Fock representation of Minkowski
vacuum and they are completely determined from the two-point function by means
of a prescription generalizing the well knownWick procedure which also guarantees
essential self-adjointness of the field operators φ̂ω since they are regular (Definition
5.2.8).

Definition 5.2.22 (Quasifree states) An algebraic state ω : A(M) → C is said to
be quasifree or Gaussian if its n-point functions agree with the so-called Wick
procedure, in other words they satisfy the following pair of requirements for all
choices of fk ∈ C∞0 (M),

(a) ωn( f1, . . . , fn) = 0, for n = 1, 3, 5, . . .
(b) ωn( f1, . . . , fn) = ∑

partitions ω2( fi1 , fi2) · · ·ω2( fin−1 , fin ), for n =
2, 4, 6, . . .

For the case of n even, the partitions refers to the class of all possible decomposition
of set {1, 2, . . . , n} into n/2 pairwise disjoint subsets of 2 elements

{i1, i2}, {i3, i4} . . . {in−1, in}

with i2k−1 < i2k for k = 1, 2, . . . , n/2.

We will prove in the next section that quasifree states exist in a generic curved
spacetime for a massive scalar field and ξ = 0. Instead we intend to clarify here
the structure of the GNS representation of quasifree states, proving that it is a Fock
representation. The characterization theorem relies on the following intermediate
result.

Proposition 5.2.23 (One-particle structure) Consider the symplectic vector space
(Sol, τ ), cf. Proposition 5.2.12.
(a) If a real scalar product μ : Sol× Sol → R satisfies

1

4
|τ(x, y)|2 ≤ μ(x, x)μ(y, y) ∀x, y ∈ Sol (5.30)

then there exists a pair (K , H), called one-particle structure associated to
(Sol, τ, μ) where H is a complex Hilbert space and K : Sol → H is a map satisfying

(i) K is R linear and K (Sol)+ i K (Sol) is dense in H (though K (Sol), as a real
subspace of H, need not be dense by itself),

(ii) 〈K x |K y〉 = μ(x, y)+ i
2τ(x, y) for all x, y ∈ Sol.

(b) If (K ′, H ′) satisfies (i) in (a) and τ(x, y) = 2I m(〈K ′x |K ′y〉H ′), then the scalar
product μ on Sol obtained from (ii) in (a) also satisfies (5.30).
(c) A pair (H ′, K ′) satisfies (i) and (ii) in (a) if and only if there is an isometric
surjective operator V : H → H ′ with V K = K ′.
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Proof Barring different conventions on signs the proof is given in Proposition 3.1
in [41]. �
A characterization theorem for quasifree states can now be proved using the lemma
above with the following theorem that can be obtained by Lemma A.2, Proposition
3.1 and a comment on p. 77 in [41] (again modulo different conventions on signs)
where the approach based on Weyl C∗-algebras is pursued. For quasifree states
the approaches relying on CCR ∗-algebras and Weyl C∗-algebras are technically
equivalent. The fact that, on aFock space, an operator as the one in (5.33) is essentially
self-adjoint in the indicated domain [8] is well know and can be proved directly, for
instance, using analytic vectors.

Theorem 5.2.24 (Characterization of quasifree states) Consider the ∗-algebra
A(M) associated to a real scalar KG field. Suppose that μ is a real scalar product
on Sol which verifies (5.30). The following hold.
(a) There exists a quasifree state ω on A(M) such that

ω2( f, g) = μ(E f, Eg)+ i

2
E( f, g) , ∀ f, g ∈ C∞0 (M) . (5.31)

(b) The GNS triple (Hω,Dω, πω, Ψω) consists of the following:
(i) Hω is the bosonic (symmetrized) Fock space with the one-particle subspace

being H, of the one structure particle (K , H) in Proposition 5.2.23;
(ii) Ψω is the vacuum vector of the Fock space;
(iii) Dω is the dense subspace of the finite complex linear combinations of Ψω and

all of the vectors

a†(ψ1) · · · a†(ψn)Ψω for n = 1, 2, . . . and ψk ∈ Sol (5.32)

where a∗(ψ) is the standard creation operator3 corresponding to the solution ψ ∈
Sol.

(iv) πω is completely determined by a and a†, with a(ψ) being the annihilation
operator corresponding to the solution ψ ∈ Sol,

φ̂ω( f ) = πω(φ( f )) = a(E f )+ a†(E f ) ∀ f ∈ C∞0 (M) , (5.33)

and, in particular, ω is regular, meaning that φ̂ω( f ) is essentially self-adjoint on Dω.
(d) The quasifree state ω determined by μ is pure if and only if the image K (Sol) is
dense in the one-particle subspace H, thus strengthening (i) of Proposition 5.2.23.
This condition is equivalent to:

μ(ψ,ψ) = 1

4
sup
ξ �=0

|τ(ψ, ξ)|2
μ(ξ, ξ)

. (5.34)

3It holds that [a(ψ), a†(ξ)] = 〈Kψ |K ξ〉, [a(ψ), a(ξ)] = 0 = [a†(ψ), a†(ξ)] if ξ, ψ ∈ Sol, and
a(ξ), a(ψ) are defined on Dω, with a†(ψ) = a(ψ)†|Dω .
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Remark 5.2.25
(1) K is always injective because of (ii) in Proposition 5.2.23, since τ is non-

degenerate.
(2) The requirement (5.30) is equivalent to saying that there is a bounded operator

J everywhere defined in the real Hilbert space obtained by taking the completionR
of Sol with respect to the real scalar product induced by μ, such that 1

2τ(ψ, ξ) =
ω2(ψ, Jξ), for ψ, ξ ∈ Sol, and ||J || ≤ 1. It also holds that J † = −J . It is not so
difficult to prove that the corresponding state ω, as defined above, is pure if and only
if J J = −I , that is J is anti unitary. In this case (R, μ, 1

2τ, J ) defines an almost
Kähler structure on R.

5.2.5 Existence of Quasifree States in Globally Hyperbolic
Spacetimes

In four-dimensionalMinkowski spacetime M
def= M, a distinguished real scalar prod-

uct μ on Sol ∼= C∞0 (M)/K er(E)4 can easily be defined as follows in a Minkowski
reference frame with coordinates (t, x) ∈ R × R

3. Consider f ∈ C∞0 (M) and the

associated solution of KG equation ψ f
def= E f :

ψ f (t, x) =
∫
R3

φ f (k)eix·k−i t E(k) + φ f (k)e−(ix·k−i t E(k))

(2π)3/2
√
2E(k)

dk (5.35)

where E(k)
def= √k2 + m2 (we assume here m > 0) and φ f ∈ S(R3) (the Schwartz

test function space) is obtained by the smooth compactly supported Cauchy data of
ψ f on the Cauchy surface defined by t = 0. If defining

μM([ f ], [ f ′]) def= Re
∫
R3

φ f (k)φ f ′(k)dk (5.36)

we obtain a well defined real scalar product on Sol ∼= E which satisfies (5.29) as can
be proved by direct inspection with elementary computations. The arising quasifree
state ωM is nothing but the Minkowski vacuum and we find the standard QFT free
theory for a real scalar field in Minkowski spacetime. The integral kernel of ωM in
this case is a proper distribution of D′(R4 × R

4) and reads

ωM2(x, y) = w- lim
ε→0+

m2

(2π)2

K1

(
m

√
(|x − y|2 − (tx − ty − iε)2)

)

m
√
|x − y|2 − (tx − ty − iε)2

(5.37)

4Recall that this isomorphism was established in Proposition 5.2.12, based on the well-posedness
properties of the Klein-Gordon equation. From now one, we will be making use of this isomorphism
implicitly.
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where theweak limit is understood in the standard distributional sense and the branch
cut in the complex plane to uniquely define the analytic functions appearing in (5.37)
is assumed to stay along the negative real axis. Another equivalent expression for
ωM2 is given in terms of Fourier transformation of distributions,

ωM2(x, y) = 1

(2π)3

∫
R4

e−i p(x−y)θ(p0)δ(p2 + m2)d4 p . (5.38)

where px = p0x0−∑3
j=1 p j x j is theMinkowski scalar product. The above formula

is convenient for showing the following important property of ωM2.

Proposition 5.2.26 If f ∈ C∞0 (M), then ωM2(x, f ) and ωM2( f, y) are smooth.

Proof Let f̂ (p) = ∫
R4 eipy f (y) d4y. Since f ∈ C∞0 (M), f̂ must be a Schwartz

function. Then, since ωM2( f, y) = ωM2(y, f ), it is enough to consider

ωM2(x, f ) = 1

(2π)3

∫
R4

d4 p e−i pxθ(p0)δ(p2 + m2)

∫
R4

d4y f (y)eipy

= 1

(2π)3

∫
R3

dk e−i pkx f̂ (pk)√
k2 + m2

,

where pk =
(√

k2 + m2, k
)
. Since f̂ is Schwartz, so is the above integrand. It is

then easy to see from this integral representation that ωM2(x, f ) is smooth. �

In view of the definition of quasifree state Definition 5.2.22, all the n-point functions
of ωM are distributions of D′((R4)n). It turns out that the associated one-particle
structure (HM, KM) is

HM = L2(R3, dk) , KM : Sol � ψ f �→ φ f ∈ L2(R3, dk))

The condition in part (d) of Theorem 5.2.24 is true and thus Minkowski vacuum is
pure. In spite of the Poincaré non-invariant approach, the pictured procedure leads
to a Poincaré invariant structure as we shall see later.

More generally, a natural pure quasifree state ωζ exists as soon as the globally
hyperbolic spacetime admits a time-like Killing field ζ , i.e., in stationary spacetimes,
provided m > 0, ξ = 0 and it when holds g(ζ, ζ ) ≥ c > 0 uniformly on a
smooth space-like Cauchy surface, for some constant c [65, Sect. 4.3]. In that case,
a ζ -invariant Hermitian scalar product can be constructed out of a certain auxiliary
Hermitian scalar product (ψ f |ψg) induced by the stress energy tensor

Tab(ψ f , ψg)
def= 1

2

(∇aψ f∇bψg +∇bψ f∇aψg
)− 1

2
gab

(
∇cψ f∇cψg − m2ψ f ψg

)

evaluated on solutionsψ f , ψg ∈ Sol+ iSol def= SolC of KG equation and contracted
with ζ itself.
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(ψ f |ψg)
def=

∫
Σ

T ab(ψ f , ψg)naζb dΣ.

This positive Hermitian form does not depend on the Cauchy surface Σ and is ζ -
invariant in view of the Killing equation for ζ and ∇aTab(ψ f , ψg) = 0 which holds
as a consequence of KG equations for ψ f and ψg . This Hermitian scalar product
gives rise to a complexHilbert spaceH0 obtained by taking the completion ofSolC. It
turns out that the time evolution generated by ζ inSolC is implemented by a strongly
continuous unitary group onH0, with self-adjoint generator H . The spectrum of H
is bounded away from zero and thus E−1 exists as a bounded, everywhere defined,
operator on H0. Let H+0 be the positive spectral closed subspace of h and let P+ :
H0 → H+0 be the corresponding orthogonal projector. The distinguished scalar
product defining the quasifree pure (because (5.34) holds) state ωζ is finally defined
by means of the real scalar product

μζ (ψ,ψ ′) def= Re

(
P+ψ

∣∣∣∣12 H−1P+ψ ′
)

ψ,ψ ′ ∈ Sol . (5.39)

This procedure can be viewed as a rigorous version of the popular one based of
positive frequency mode decomposition with respect to the notion of time associated
to ζ in particular because it can easily be proved that

Hψ = iζ a∂aψ

when ψ ∈ SolC. Therefore P+ψ entering the right hand side of (5.39) contains
“positive frequencies” only, since P+ project on the positive part of the spectrum of
the energy H . The state ωζ coincides with the Minkowski vacuum in Minkowski
spacetime when ζ = ∂t with respect to any Minkowski coordinate system. This
result has a well-known [65] important consequence.

Theorem 5.2.27 (Existence of quasifree states) Consider a globally hyperbolic
spacetime M and assume that ξ = 0 and m > 0 in the definition of A(M). There
exist quasifree states on A(M).

Sketch of proof Take a smooth space-like Cauchy surface Σ ⊂ M. It is always
possible to smoothly deformM in the past ofΣ obtaining an overall globally hyper-
bolic spacetime still admitting Σ as a Cauchy surface and such that the open past of
Σ , M−, (in the deformed spacetime) has the following property. There is a second
Cauchy surface Σ1 in M− whose open past M−

1 includes a smooth time-like Killing
field ζ satisfying the sufficient requirements for defining and associate quasifree state
ωζ onA(M−

1 ). However, if M+ denotes the open future of Σ (in the original space-
time), Propositions 5.2.4 and 5.2.6 easily imply thatA(M+) = A(M−) = A(M−

1 ).
Therefore ωζ is a state onA(M+) = A(M). Again Propositions 5.2.4 and 5.2.6 and
the very definition of quasifree state easily prove that ωζ is quasifree on A(M) if it
is quasifree on A(M−

1 ). �
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5.2.6 Unitarily Inequivalent Quasifree States
Gravitationally Produced

Coming back to what already pronounced in (6) in Remark 5.1.14, we have the
following definition.

Definition 5.2.28 Two statesω1 andω2 onA(M) and the respective GNS represen-
tations are said to be unitarily equivalent5 if there is an isometric surjective operator
U : Hω1 → Hω2 such that U φ̂ω1( f )U−1 = φ̂ω2( f ) for every f ∈ C∞0 (M).

Remark 5.2.29 Notice that it is not necessary that UΨω1 = Ψω2 and it generally
does not happen. As a consequence Hω2 includes vector states different from the
Fock vacuum which are however quasifree.

The question if a pair of states are unitarily equivalent naturally arises in the following
situation. Consider a time-oriented globally hyperbolic spacetime M such that, in
the future of a Cauchy surface Σ+, the spacetime is stationary with respect to the
Killing vector field ξ+ and it is also stationary in the past of another Cauchy surface
Σ−, in the past of Σ+, referring to another Killing vector field ξ−. For instance
we can suppose that M coincides to (a portion of) Minkowski spacetime in the
two mentioned stationary regions and a gravitational curvature bump takes place
between them. This way, two preferred quasifree states ω+ and ω− turn out to be
defined on the whole algebraA(M), not only in the algebras of observables localized
in the two respective static regions. The natural question is whether or not the GNS
representations of ω+ and ω− are unitarily equivalent, so that, in particular, the state
ω− can be represented as a vector state UΨω− in the Hilbert space Hω+ of the state
ω+. Notice that, even in the case the isometric surjective operator U exists making
the representations unitarily equivalent,UΨω− �= Ψω+ in general, so thatUΨω− may
have non-vanishing projection in the subspace containing states with n particles in
Hω+ . This phenomenon is physically interpreted as creation of particles due to the
gravitational field and U has the natural interpretation of an S matrix.

The following crucial result holds for pure quasifree states [65]. A more general
result appears in [64] since it avoids the assumption that the states are pure and it
deals with the notion of quasiequivalence of quasifree states. Quasiequivalence is
weaker notion of equivalence, which essentially corresponds to unitary equivalence
“up tomultiplicity” [8, Sect. 2.4.4]. In particular, quasiequivalence reduces to unitary
equivalence for irreducible representations, as for instance those induced by pure
states.

Theorem 5.2.30 (Unitary equivalence of pure quasifree states) If M is a globally
hyperbolic spacetime, consider two pure quasifree states ω1 and ω2 onA(M) respec-
tively induced by the scalar product μ1 and μ2 on Sol(M) ∼= E and indicate by Rμ1

and Rμ2 the real Hilbert spaces obtained by respectively completing Sol.

5It should be evident that the given definition does not depend on the particular GNS representation
chosen for each state ωi .
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The pure states ω1 and ω2 may be unitarily equivalent only if they induce equiv-
alent norms on Sol, that is there are constants C, C ′ > 0 with

Cμ1(x, x) ≤ μ2(x, x) ≤ C ′μ1(x, x) ∀x ∈ Sol .

When the condition is satisfied there is a unique bounded operator Q : Rμ1 → Rμ1

such that
μ1(x, Qy) = μ2(x, y)− μ1(x, y) ∀x, y ∈ Sol .

In this case ω1 and ω2 are unitarily equivalent if and only if Q is Hilbert-Schmidt6

in Rμ1 .

In general, the said condition fails when ω1 and ω2 are stationary states associated
with two stationary regions (in the past and in the future) of a spacetime, as discussed
in the introduction of this section [65], [22, Chap. 7]. It happens in particular when the
Cauchy surfaces have infinite volume. In this case the states turn out to be unitarily
inequivalent. On the other hand there is no natural preferred choice between ω+ and
ω− and this fact suggests that the algebraic formulation is more useful in QFT in
curved spacetime than the, perhaps more familiar, formulation in a Hilbert space.

5.2.7 States Invariant Under the Action of Spacetime
Symmetries

The quasifree state ωζ on A(M) mentioned to exist above for stationary globally
hyperbolic spacetimes for massive scalar fields is invariant under the action of ζ

(which we assume to be complete for the sake of simplicity) in the following sense.
Just because ζ is a Killing field (and the subsequent construction does depend on
the fact that ζ is time-like), the action of the one-parameter group of isometries
{χ(ζ)

t }t∈R generated by ζ leaves Sol invariant. This is equivalent to saying that when
{χ(ζ)

t }t∈R acts on C∞0 (M) it preserves E (the commutation relations of quantum
fields are consequently preserved in particular). In view of Proposition 5.2.20, a one-
parameter group of ∗-algebra isomorphisms α

(ζ)
t : A(M) → A(M) arises this way,

completely defined by the requirement beyond the obvious αt (11) = 11 if t ∈ R and

α
(ζ)
t (φ( f ))

def= φ
(

f ◦ χ
(ζ)
−t

)
, t ∈ R , f ∈ C∞0 (M) .

6Note that this result is stated incorrectly in Theorem 4.4.1 of [65], where the condition on the
operator Q is incorrectly given as trace class instead of Hilbert-Schmidt. The correct condition is
actually given in Equation (4.4.21) of [65] as the Hilbert-Schmidt property of the operator E and
the mistake appears in identifying the corresponding property of Q. We thank Rainer Verch and
especially Ko Sanders for bringing this to our attention.
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It turns out that, if ωζ is constructed by the procedure above mentioned when ζ is
time-like, ωζ is ζ -invariant in the sense that:

ωζ ◦ α
(ζ)
t = ωζ ∀t ∈ R . (5.40)

When passing to the GNS representation, Proposition 5.1.17 implies that there is a
one-parameter group of unitary operators such that

(i) U (ζ )
t Ψωζ = Ψωζ , U (ζ )

t (Dωζ ) = Dωζ ,

(ii) U (ζ )
t πωζ (a)U (ζ )∗

t
def= πωζ

(
α

(ζ)
t (a)

)
for all t ∈ R and a ∈ A(M).

Moreover we know that {U (ζ )
t }t∈R is strongly continuous if and only if

lim
t→0

ωζ

(
a∗α(ζ)

t (a)
)
= ωζ (a

∗a) , ∀a ∈ A(M) .

In this case, Stone’s theorem entails that there is a unique self-adjoint operator H (ζ )

with e−i t H (ζ ) = U (ζ )
t for every t ∈ R and H (ζ )Ψωζ = 0. If σ(H (ζ )) ⊂ [0,+∞) and

Ψωζ is, up to factors, the unique eigenvector of H (ζ ) with eigenvalue 0, ωζ is said
to be a ground state (this definition generally applies to an invariant state under the
action of a time-like Killing symmetry, no matter if the state is quasifree).

Remark 5.2.31 The one-parameter group U (ζ )
t associated with the time-like-Killing

vector field ζ has the natural interpretation of time evolution with respect to the
notion of time associated with ζ and, in case the group is strongly continuous H (ζ )

is the natural Hamiltonian operator associated with that evolution. However, for a
generic time-oriented globally hyperbolic spacetime, no notion of Killing time is
suitable and consequently, no notion of (unitary) time evolution is possible. Time
evolution à la Schroedinger is not a good notion to be extended to QFT in curved
spacetime. Observables do not evolve, they are localized in bounded regions of
spacetime by means of the smearing procedure. Causal relations are encompassed
by the Time-slice axiom (see Chap.3) which is a theorem for free fields (Proposition
5.2.6).

Abandoning the case of time-like Killing symmetries, it is worth stressing that,
generally speaking, every isometry γ : M → M, not necessarily Killing and
not necessarily time-like if Killing, induces a corresponding automorphism of uni-
tal ∗-algebras, β(γ ) of A(M), via Proposition 5.2.20, completely defined by the

requirements β(γ )(φ( f ))
def= φ

(
f ◦ γ−1

)
. If a state ω is invariant under β(γ ), we

can apply Proposition 5.1.17, in order to unitarily implement this symmetry in the
GNS representation of ω. Some discrete symmetries can be represented in terms of
anti-linear automorphisms, like the time reversal in Minkowski spacetime. Again

β(γ )(φ( f ))
def= φ

(
f ◦ γ−1

)
completely determine the anti-linear automorphism via

Proposition 5.2.20. If a state ω is invariant under β(γ ), we can apply Proposition
5.1.17, in order to implement this symmetry anti-unitarily in the GNS representation
of ω.

http://dx.doi.org/10.1007/978-3-319-21353-8_3
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Remark 5.2.32
(1) It easy to prove that, if the state ω : A(M) → C is invariant under the

(anti-linear) automorphism β : A(M) → A(M) is quasifree, the spaces with fixed
number of particles of the GNS Fock representation of ω are separately invariant
under the action of the unitary (resp. anti-unitary) operator U (β) implementing β in
the Fock representation of ω in view of Proposition 5.2.20.

(2) A known result [40] establishes the following remarkable uniqueness result
(actually proved for Weyl algebras, but immediately adaptable to our CCR frame-
work).

Proposition 5.2.33 (Uniqueness of pure invariant quasifree states) Assume that a
quasifree state ω : A(M)→ C is pure and invariant under a one-parameter group of
automorphisms {βt }t∈R of A(M), giving rise to a strongly continuous unitary group
{Ut }t∈R implementing {βt }t∈R in the GNS representation of ω. The pure quasifree
state ω is uniquely determined by {βt }t∈R if the self-adjoint generator of {Ut }t∈R
restricted to the one-particle Hilbert space of ω is positive without zero eigenvalues.

Let us focus on the Minkowski vacuum, that is the quasifree state ωM on four dimen-
sional Minkowski spacetime M defined in Sect. 5.2.5 by the two-point function
(5.37). As a matter of fact, ωM turns out to be invariant under the natural action
of orthochronous proper Poincaré group and that the corresponding unitary rep-
resentation of this connected Lie (and thus topological) group is strongly continu-
ous. In particular the self-adjoint generator of time displacements (with respect to
every timelike direction), in the one-particle Hilbert space, satisfies the hypotheses
of Proposition 5.2.33. As ωM is pure, it is therefore the unique pure quasifree state
invariant under the orthochronous proper Poincaré group. ωM is a ground state with
respect to any Minkowski time evolution and, by direct inspection, one easily sees
that the state it is also invariant under the remaining discrete symmetries of Poincaré
group T , P and PT which are consequently (anti-)unitarily implementable in the
GNSHilbert space. Finally, it turns out that the one-particle space is irreducible under
the action of the orthochronous proper Poincaré group, thus determining an elemen-
tary particle in the sense of the Wigner classification, with mass m and zero spin.

5.3 Hadamard Quasifree States in Curved Spacetime

The algebra of observables generated by the field φ( f ) smeared with smooth func-
tions is too small to describe important observables in QFT in curved spacetime.
Maybe the most important is the stress energy tensor (obtained as a functional deriv-
ative of the action with respect to gab) that, for our Klein-Gordon field it reads, where
Gab is the standard Einstein tensor

Tab
def= (1− 2ξ)∇aφ∇bφ − 2ξφ∇a∇bφ − ξφ2Gμν

+ gab

{
2ξφ2 +

(
2ξ − 1

2

)
∇cφ∇cφ + 1

2
m2φ2

}
. (5.41)
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It concerns products of fields evaluated at the same point of spacetime, like φ2(x).
This observable, as usual smeared with a function f ∈ C∞0 (M), could be formally
interpreted as

φ2( f ) =
∫
M

φ(x)φ(y) f (x)δ(x, y) dvolM . (5.42)

However this object does not belong toA(M). Beyond the fact that Tab describe the
local content of energy, momentum and stress of the field, the stress-energy tensor
is of direct relevance for describing the back reaction on the quantum fields on the
spacetime geometry through the semi-classical Einstein equation

Gab(x) = 8πω(Tab(x)) (5.43)

or also, introducing a smearing procedure

∫
M

Gab(x) f (x) dvolM = 8π
∫
M

ω(Tab(x)) f (x) dvolM ,

where ω(Tab(x)) has the interpretation of the (integral kernel of the) expectation
value of the quantum observable Tab with respect to some quantum state ω. Barring
technicalities due to the appearance of derivatives, the overall problem is here to
provide (5.42) with a precise mathematical meaning, which in fact, is equivalent to
a suitable enlargement the algebra A(M).

5.3.1 Enlarging the Observable Algebra in Minkowski
Spacetime

In flat spacetime M = M, for free QFT, at the level of expectation values and
quadratic forms the above mentioned enlargement of the algebra is performed
exploiting a physically meaningful reference state, the unique Poincaré invariant
quasifree (pure) state introduced in Sect. 5.2.5 and discussed at the end of Sect. 5.2.7,
ωM. We call this state Minkowski vacuum.

Let us first focus on the elementary observableφ2.We shall indicate it with :φ2(x):
and we define it as a Hermitian quadratic form on DωM

.
We start by defining the operator on DωM

for f, g ∈ C∞0 (R4)

:φ̂( f )φ̂(g): def= φ̂( f )φ̂(g)− 〈ΨωM
|φ̂( f )φ̂(g)ΨωM

〉I (5.44)

(As usual φ̂( f )
def= φ̂ωM

( f ) throughout this section.) Next, for Ψ ∈ DωM
we analyze

its integral kernel, assuming that it exists, 〈Ψ | :φ̂(x)φ̂(y): Ψ 〉 which is symmetric
since the antisymmetric part of the right-hand side of (5.44) vanishes in view of the
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commutation relations of the field. The explicit form of the distributionωM2(x, y) =
〈ΨωM

|φ̂(x)φ̂(y)ΨωM
〉 appears in (5.37). We prove below that the mentioned formal

kernel 〈Ψ | :φ̂(x)φ̂(y) : Ψ 〉 not only exists but it also is a jointly smooth function.
Consequently we are allowed to define, for any Ψ ∈ DωM

,

〈Ψ | :φ̂2: ( f )Ψ 〉 def=
∫
M2
〈Ψ | :φ̂(x)φ̂(y): Ψ 〉 f (x)δ(x, y) dvolM2(x, y) . (5.45)

Finally, the polarization identity uniquely defines :φ̂2: ( f ) as a symmetric quadratic
form DωM

×DωM
.

〈Ψ ′| :φ2: ( f )Ψ 〉 def= 1

4

(
〈Ψ ′ + Ψ | :φ2: ( f )(Ψ ′ + Ψ )〉 − 〈Ψ ′ − Ψ | :φ2: ( f )(Ψ ′ − Ψ )〉

− i〈Ψ ′ + iΨ | :φ2: ( f )(Ψ ′ + iΨ )+ i〈Ψ ′ − iΨ | :φ2: ( f )(Ψ ′ − iΨ )〉
)

(5.46)

There is noguarantee that an operator :φ2: ( f ) really exists onDωM
satisfying (5.45),7

however if it exists, since DωM
is dense and (5.46) holds, it is uniquely determined

by the class of the expectation values 〈Ψ | :φ̂2 : ( f )Ψ 〉 on the states Ψ ∈ DωM
. As

promised, let us prove that the kernel defined in (5.45) is a smooth function. First of
all, notice that, as a general result arising from the GNS construction, every Ψ ∈ Dω

can be written as

Ψ =
∑

n≥0,i1,...,in≥1
C (n)

i1...in
φ̂( f (n)

i1
) · · · φ̂( f (n)

in
)ΨωM

(5.47)

where only a finite number of coefficients C (n)
i1...in

∈ C is non-vanishing and the term

in the sum corresponding to n = 0 is defined to have the form c0ΨωM
. We have

〈Ψ |φ̂(x)φ̂(y)Ψ 〉 =
∑

n≥0,i1,...,in≥1

∑
m≥0, j1,..., jn≥1

C(m)
j1... jn

C(n)
i1...in

〈
ΨωM

∣∣ φ̂( f (m)
jm

) · · · φ̂( f (m)
j1

)φ̂(x)φ̂(y)φ̂( f (n)
i1

) · · · φ̂( f (n)
in

)ΨωM

〉
. (5.48)

Taking advantage of the quasifree property of ωM, hence using the expansion of
n-point functions in terms of the 2-point function of Definition 5.2.22, we can
re-arrange the right hand side of (5.48) as (all the sums are over finite terms)

7By Riesz lemma, it exists if an only if the map DωM
� Ψ ′ �→ 〈Ψ ′| :φ2: ( f )Ψ 〉 is continuous for

every Ψ ∈ DωM
.
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〈Ψ |φ̂(x)φ̂(y)Ψ 〉 = C0
Ψ ωM2(x, y)

+
∑

m≥0, j≥1

∑
m′≥0, j ′≥1

C (m)(m′)
Ψ, j, j ′ ωM2( f (m)

j , x)ωM2( f (m′)
j ′ , y)

+
∑

m≥0, j≥1

∑
n≥0,i≥1

C (m)(n)
Ψ, j,i ωM2( f (m)

j , x)ωM2(y, f (n)
i )

+
∑

n′≥0,i ′≥1

∑
n≥0,i ′≥1

C (n′)(n)

Ψ,i ′,i ωM2(x, f (n′)
i ′ )ωM2(y, f (n)

i ) , (5.49)

with all sums finite and some CΨ -coefficients that depend on the state Ψ . We can
be more specific about the first coefficient, in fact, according to the formula from
Definition 5.2.22, we have C0

Ψ = 〈Ψ |Ψ 〉. Recall also, from Proposition 5.2.26, that
y �→ ωM2( f, y) and x �→ ωM2(x, f ) are smooth for any test function f ∈ C∞0 (M).
Hence, we can interpret Eq. (5.49) as saying that

〈Ψ | :φ̂(x)φ̂(y): Ψ 〉 = 〈Ψ |φ̂(x)φ̂(y)Ψ 〉 − 〈Ψ |Ψ 〉ωM(x, y) ∈ C∞(M×M) .

(5.50)
More complicated operators, i.e. Wick polynomials and corresponding differen-

tiatedWick polynomials, generated byWick monomials, :φ̂n: ( f ), of arbitrary order
n, can analogously be defined as quadratic forms, by means of a recursive procedure
of subtraction of divergences. The stress energy operator is a differentiated Wick
polynomial of order 2.

The procedure for defining :φ̂n: ( f ) as a quadratic form is as follows. First define
recursively, where the tilde just means that the indicated element has to be omitted,

:φ̂( f1): def= φ̂( f1)

:φ̂( f1) · · · φ̂( fn+1): def= :φ̂( f1) · · · φ̂( fn): φ̂( fn+1)

−
n∑

l=1
:φ̂( f1) · · · ˜̂

φ( fl) · · · φ̂( fn): ωM2( fl , fn+1) . (5.51)

These elements ofA(M) turn out to be symmetric under interchangeof f1, f2, . . . , fn

as it can be proved by induction.8 By induction, it is next possible to prove that, for
n ≥ 2 and Ψ ∈ DωM

, there is a jointly smooth kernel

〈Ψ | :φ̂(x1) · · · φ̂(xn): Ψ 〉

which produces 〈Ψ | : φ̂( f1) · · · φ̂( fn) : Ψ 〉 by integration. This result arises from
(5.51) as a consequence of the fact that

(a) ωM is quasifree so that Definition 5.2.22 can be used to compute the said
kernels,

(b) Ψ ∈ DωM
so that the expansion (5.47) can be used,

8Observe in particular that :φ̂( f )φ̂(g): − :φ̂(g)φ̂( f ): = i E( f, g)11− ωM2(i E( f, g)11)11 = 0.
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(c) the functions Fk : x �→ ωM2(x, fk) = ωM2( fk, x) are smooth when fk ∈
C∞0 (M) as was mentioned above.

Indeed, we have

〈Ψ | :φ̂(x1) · · · φ̂(xn): Ψ 〉 =
∑

n≥0,i1,...,in≥1

∑
m≥0, j1,..., jn≥1

C (m)
j1... jn

C (n)
i1...in

〈
ΨωM

∣∣ φ̂( f (m)
jm

) · · · φ̂( f (m)
j1

) :φ̂(x1) · · · φ̂(xn): φ̂( f (n)
i1

) · · · φ̂( f (n)
in

)ΨωM

〉
. (5.52)

after having expanded the normal product :φ̂(g1) · · · φ̂(gn): in the right-hand side,
one can evaluate the various n-point functions arising this way by applying Defi-
nition 5.2.22. It turns out that all terms ωM2(xi , x j ) always appear in a sum with
corresponding terms −ωM2(xi , x j ) arising by the definition (5.51) and thus give no
contribution. The remaining factors are of the form Fk(x j ) and thus are smooth.

We therefore are in a position to write the definition of 〈Ψ | : φ̂n : ( f )Ψ 〉 if
Ψ ∈ DωM

〈Ψ | :φ̂n: ( f )Ψ 〉 =
∫
Mn
〈Ψ | :φ̂(x1) · · · φ̂(xn): Ψ 〉 f (x1)δ(x1, . . . xn)dvolMn

(5.53)
Exactly as before, polarization extends the definition to a quadratic form on DωM

×
DωM

. There is no guarantee that operators fitting these quadratic forms really exist.

Remark 5.3.1 The definition (5.51) can be proved to be formally equivalent to the
formal definition

:φ̂(x1) · · · φ̂(xn): def= 1

in

δn

δ f (x1) · · · δ f (xn)

∣∣∣∣
f=0

ei φ̂( f )+ 1
2ωM2( f, f ) (5.54)

Though the exponential converges in the strong operator topology to a unitary oper-

ator, the Weyl generator, restricted to the dense domainDωM
, ei φ̂( f ) can be viewed

here as a formal series and this series can be truncated at finite, sufficiently large,
order in view of linearity of the exponent and f = 0.

5.3.2 Enlarging the Observable Algebra in Curved Spacetime

The discussed definition of Wick polynomials is equivalent in Minkowski space-
time to the more popular one based on the well known re-ordering procedure of
creation and annihilation operators as can be proved by induction. Nevertheless this
second approach is not natural in curved spacetime because, to be implemented, it
needs the existence of a physically preferred reference state as Minkowski vacuum
in flat spacetime, which in the general case it is not given. To develop a completely
covariant theory another approach has been adopted, which generalises to curved
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spacetime the previously outlined definition of Wick polynomials based on a “diver-
gence subtraction” instead of a re-ordering procedure. The idea is that, although it is
not possible to uniquely assign each spacetimewith a physically distinguishable state,
it is possible to select a type of divergence in common with all physically relevant
states is every spacetime. These preferred quasifree stateswith the same type of diver-
gence “resembling”Minkowski vacuum in a generic spacetime are called Hadamard
states. Minkowski vacuum belongs to this class and these states are remarkable also
in view of their microlocal features, which revealed to be of crucial importance for
the technical advancement of the theory, as we will describe later. Exploiting these
distinguished states, it is possible to generalize the outlined approach in order to
enlarge A(M), including other algebraic elements as the stress-energy tensor oper-
ator [37, 47]. Actually this is nothing but the first step to generalize the ultraviolet
renormalization procedure to curved spacetime [9, 10, 35, 36, 65]. The rest of the
chapter is devoted to discuss some elementary properties of Hadamard states.

Let us quickly remind some local features of (pseudo)Riemannian differential
geometry [50], necessary to introduce the notion ofHadamard states fromageometric
viewpoint. If (M, g) is a smooth Riemannian or Lorentzian manifold, an open set
C ⊂ M is said a normal convex neighborhood if there is a open set W ⊂ T M with
the form W = {(q, v) | q ∈ C, v ∈ Sq} where Sq ⊂ Tq M is a star-shaped open
neighborhood of the origin, such that

exp�W : (q, v) �→ expqv

is a diffeomorphism onto C × C . It is clear that C is connected and there is only
one geodesic segment joining any pair q, q ′ ∈ C if we require that it is completely
contained in C . It is [0, 1] � t �→ expq(t ((expq)−1q ′)). Moreover if q ∈ C and we
fix a basis {eα|q} ⊂ Tq M ,

t = tαeα|q �→ expq(tαeα|q) , t ∈ Sq

defines a set of coordinates on C centered in q which is called the normal Rie-
mannian coordinate system centered in q. In (M, g) as above, σ(x, y) indicates the
squared (signed) geodesic distance of x from y. With our signature (+,−, · · · ,−),
it is defined as

σ(x, y)
def= −gx (exp−1x y, exp−1x y) .

σ (x, y) turns out to be smoothly defined on C × C if C is a convex normal neigh-
borhood where we also have σ(x, y) = σ(y, x). The class of the convex normal
neighborhoods of a point p ∈ M is a fundamental system of neighborhoods of
p [3, 19].

In Euclidean manifolds σ defined as above is everywhere nonnegative with the
standard Euclidean choice of the signature.

In a convex neighborhood C of a spacetime M, taking in particular advantage
of several properties of σ , it is possible to define a local approximate solution of
KG equation, technically called a parametrix, which has essentially the same short-
distance singularity of the two point function ofMinkowski vacuum. Its construction
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uses only the local geometry and the parameters defining the equation of motion but
does not refers to particular states, which are global objects. The technical idea can
be traced back to Hadamard [32] (and extensively studied by Riesz [55]) and it is
therefore called Hadamard parametrix. In the rest of the chapter we only consider a
four dimensional spacetime, essentially following [30]. A quick technical discussion
on the general case (details and properties of the constructions strongly depend of
the dimension of the spacetime) also in relation with heath kernel expansion, can be
found in [47] (see also [2, 19, 24, 27] for more extended discussions also on different
types of parametrices and their use in field theory). In a convex neighborhood C of a
four dimensional spacetimes theHadamard parametrix of order N of the two-point
function has the form

H (N )
ε (x, y) = u(x, y)

(2π)2σε(x, y)
+

N∑
n=0

vnσ n log

(
σε(x, y)

λ2

)
(5.55)

where x, y ∈ C , T is any local time coordinate increasing towards the future, λ > 0
a length scale and

σε(x, y)
def= σ(x, y)+ 2iε(T (x)− T (y))+ ε2 , (5.56)

finally, the cut in the complex domain of the log function is assumed along the
negative axis in (5.55). Recursive differential equations (see the appendix A of [47]
and also [19, 22, 24, 29, 46, 55]) determine u = u(x, y) and all the Hadamard
coefficients vn = vn(x, y) in C as smooth functions, when assuming u(x, x) = 1
and n = 0, 1, 2, . . . . These recurrence relations have been obtained by requiring
that the sequence of the H (N )

0 (x, y) defines a local, y-parametrized, “approximate
solution” of the KG equation for σ(x, y) �= 0 (with some further details we can say
that the error with respect to a true solution is of order σ N for each N ). That solution
would be exact in the N →∞ limit of the sequence provided the limit exists. The
limit exists in the analytic case, but in the smooth general case the sequence diverges.
However, as proved in [19, Sect. 4.3], if χ : R → [0, 1] is a smooth function with
χ(r) = 1 for |r | ≤ 1/2 and χ(r) = 0 for |r | > 0 one can always find a sequence of
numbers 0 < c1 < c2 < · · · < cn →+∞ for that

v(x, y)
def=

∞∑
n=0

vn(x, y)σ (x, y)nχ(cnσ(x, y)) (5.57)

uniformly converges, with all derivatives, to a C∞ function on C ×C . A parametrix
Hε

Hε(x, y) = u(x, y)

(2π)2σε(x, y)
+ v(x, y) log

(
σε(x, y)

λ2

)
(5.58)

arises this way. This parametrix distributionally satisfies KG equation in both argu-
ments up to jointly smooth functions of x and y. In otherwords, there is a smooth func-
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tion s defined inC×C such that if f, g ∈ C∞0 (C) and defining P
def= �M+m2+ξ R,

lim
ε→0+

∫
C×C

Hε(x, y)(P f )(x)g(y)dvolM×M =
∫

C×C
s(x, y) f (x)g(y)dvolM×M .

(5.59)
The analog holds swapping the role of the test functions. We are in a position to state
our main definition.

Definition 5.3.2 With M four dimensional, we say that a (not necessarily quasifree)
state ω onA(M) and its two point function ω2 are Hadamard if ω2 ∈ D′(M×M)

and every point of M admits an open normal neighborhood C where

ω2(x, y)− H0+(x, y) = w(x, y) for some w ∈ C∞(C × C) . (5.60)

Here 0+ indicates the standard weak distributional limit as ε → 0+ (“first integrate
against test functions and next take the limit”).

Remark 5.3.3
(1) The given definition does not depend either on the choice of χ or the sequence

of the cn used in (5.57) since different choices simply change w as one may easily
prove. Similarly, the definition does not depend on the choice of the local time
function T used in the definition of σε. This fact is far from being obvious and
requires a more detailed analysis [41].

(2) Using the following result arising form recurrence relations determining the
Hadamard coefficients, one finds that the distribution

(
v(x, y)−

N∑
k=0

vn(x, y)σ (x, y)n

)
ln σ0+(x, y)

is a function in C N (O× O). Exploiting this result, it is not difficult to prove that the
requirement (5.60) is equivalent to the following requirement:

ω2(x, y)− H (N )

0+ (x, y) = wN (x, y) for each N ≥ 1, with wN ∈ C N (C × C) .

(5.61)
The equivalent definitionofHadamard state in [52]was, in fact, nothingbutDefinition
5.3.2 with (5.60) replaced by (5.61).

(3)Minkowski vacuumωM defined by the two point function (5.37) is Hadamard.
In particular, for m > 0, it holds9

ωM2(x, y) = 1

4π2

1

σ0+(x, y)
+ m2

2(2π)2

I1(m
√

σ(x, y))

m
√

σ(x, y)
ln

(
m2σ0+(x, y)

)
+w(x, y)

9The function z �→ I1(
√

z)/
√

z, initially defined for Re(z) > 0, admits a unique analytic extension
on the whole space C and the formula actually refers to this extension.
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wherew is smooth. The result holds also form = 0 and in that case, only the first term
in the right-hand side does not vanish in the expansion above. Similarly, quasifree
states invariant under the symmetries generated by a timelike Killing vector field
ζ as the states considered in Sect. 5.2.5 (with all the hypotheses specified therein)
are Hadamard [23, 65] if the spacetime admits spacelike Cauchy surfaces normal
to ζ , that is if the spacetime is static. This last condition is essential because there
are spacetimes admitting timelike Killing vectors but not spacelike Cauchy surfaces
normal to them which do not admit invariant Hadamard quasifree states, like Kerr
spacetime and Schwartzschild-de Sitter spacetime [41].

(4) Referring to the literature before the cornerstone results [52, 53] (we consider
in Sect. 5.3.4), Definition 5.3.2 properly refers to locally Hadamard states. This is
because there also exists a notion of global Hadamard state (Definition 3.4 in [52]),
discussed in [41] in a completely rigorous way for the first time. This apparently
more restrictive global condition essentially requires (see [41, 52] for the numerous
technical details), for a certain open neighborhood N of a Cauchy surface of M
such that σ(x, y) is always well defined if (x, y) ∈ N ×N (and this neighbourhood
can always be constructed independently from the Hadamard requirement), that
(5.61) is valid producing the known singularity for causally related arguments, and
there are no further singularities for arbitrarily far, spacelike separated, arguments
(x, y) ∈ N ×N . In this regard a technically important result, proved in the appendix
B of [41], is that, analogous to Proposition 5.2.26 in the case of Minkowski space,

M � x �→ ω(φ( f )φ(x)) = ω(φ(x)φ( f )) ∈ C∞(M) (5.62)

if f ∈ C∞0 (M) and ω is a quasifree globally Hadamard state on A(M). We shall
prove this fact later using the microlocal approach. This fact has an important conse-
quence we shall prove later using the microlocal approach: if ω and ω′ are (locally)
Hadamard states, then M ×M � (x, y) �→ ω2(x, y) − ω′2(x, y) is smooth. This
fact is far from obvious, since Definition 5.3.2 guarantees only that the difference is
smooth when x and y belong to the same sufficiently small neighborhood.

An important feature of the global Hadamard condition for a quasifree Hadamard
state is that it propagates [21, 65]: If it holds in a neighborhood of a Cauchy surface
it holds in a neighborhood of any other Cauchy surface. We shall come back later
to this property making use of the local notion only. This fact, together with the last
comment in (3) proves that quasifree Hadamard states for massive fields (and ξ = 0)
exist in globally hyperbolic spacetimes by means of a deformation argument similar
to the one exploited in Sect. 5.2.5.

We shall not insist on the distinction between the global and the local Hadamard
property because, in [53], it was established that a local Hadamard state onA(M) is
also a global one (the converse is automatic). It was done exploiting the microlocal
approach, which we shall discuss shortly.

(5) It is possible to prove that [65] if a globally hyperbolic spacetime has one (and
thus all) compact Cauchy surface, all pure quasifree Hadamard states for the massive
KG field (with ξ = 0) are unitarily equivalent. However it is not sufficient to deal
with folia of only pure quasifree Hadamard states as this excludes very significant
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examples. Consider the massive KG field (with ξ = 0) on an ultrastatic spacetime
with a compact Cauchy surface. Both the unique time-translation invariant pure state
and any thermal (KMS) state with temperature T > 0 are Hadamard, but they are not
unitarily equivalent, since the former is pure while the latter is not. There is, in fact,
a more general result [64] (actually stated in terms of Weyl algebras). Consider an
open region O which defines a globally hyperbolic spacetime O in its own right, in
a globally hyperbolic spacetime M, such that O is compact, and a pair of quasifree
Hadamard states ω1, ω2 for the massive KG field (ξ = 0) onA(M). It is possible to
prove that the restriction toA(O) ⊂ A(M) of any density matrix state associated to
the GNS construction of ω1 coincides with the restriction to A(O) of some density
matrix state associated to the GNS construction of ω2.

It is nowpossible to recast all the content of Sect. 5.3.1 in a generic globally hyperbolic
spacetime M enlarging the algebra of observables A(M), at the level of quadratic
forms, defining the expectation values of Wick monomials :φn : ( f ) with respect to
Hadamard states ω or vector states Ψ ∈ Dω with ω Hadamard. Remarkably, all of
that can be done simultaneously for all states in the said class without picking out any
reference state. This is the first step for a completely local and covariant definition.
First, define for smooth functions fk supported in a convex normal neighborhood C

:φ( f1) · · ·φ( fn):H def=
∫
Mn

:φ(x1) · · ·φ(xn):H f1(x1) . . . fn(xn) dvolMn (x1, . . . , xn) ,

(5.63)
where we have defined the completely symmetrized formal kernels,

:φ(x1) · · ·φ(xn):H def= 1

in

δn

δ f (x1) · · · δ f (xn)

∣∣∣∣
f=0

eiφ( f )+ 1
2 H0+ ( f, f ) . (5.64)

Notice that H0+ can be replaced with its symmetric part H S
0+ and that, in (5.63),

only the symmetric part of the product f1(x1) . . . fn(xn) produces a contribution
to the left-hand side. Equivalently, these monomials regularized with respect to the
Hadamard parametrix can be define recursively as

:φ( f1):H def= φ( f1)

:φ( f1) · · ·φ( fn+1):H def= :φ( f1) · · ·φ( fn):H φ( fn+1)

−
n∑

l=1
:φ( f1) · · · φ̃( fl) · · ·φ( fn):H H̃( fl , fn+1) ,

(5.65)

where H̃ = H S
0+ +

i

2
E,

in analogywith the relation between Eqs. (5.51) and (5.54). Now consider a quasifree
Hadamard state ω and indicate by ωΨ the generic state indexed by the normalized
vector Ψ ∈ Dω (so that ω = ωΨ when Ψ is the Fock vacuum). By induction, it is
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possible to prove that, for n ≥ 2, there is a jointly smooth kernel

ωΨ (:φ(x1) · · ·φ(xn):H )

which produces ωΨ (:φ( f1) · · ·φ( fn) :H ) by integration when the supports of the
functions fk belong to C .

Exactly as for theMinkowski vacuum representation, this result arises from (5.65)
as a consequence of the following list of facts:

(a)ω is quasifree so that Definition 5.2.22 can be used to compute the said kernels,
(b) Ψ ∈ Dω so that the expansion (5.47) can be used,
(c) the functions in (5.62) are smooth (see (4) in Remark 5.3.3 and Sect. 5.3.4),
(d) the local singularity of two-point functions of quasifree Hadamard states is

the same as the one of H0+ .
Consider a normalized Ψ ∈ Dω, given without loss of generality by

Ψ =
∑

n≥0,i1,...,in≥1
C (n)

i1...in
φ̂ω( f (n)

i1
) · · · φ̂ω( f (n)

in
)Ψω , (5.66)

where only a finite number of coefficientsC (n)
i1...in

∈ C is non-vanishing,which defines
the algebraic state ωΨ (·) = 〈Ψ |(·)Ψ 〉. Then, for instance, with the same argument
used to achieve (5.50) we have

ωΨ (:φ(x1)φ(x2):H )− ω(φ(x1)φ(x2))+ H̃(x1, x2) ∈ C∞(M×M) , (5.67)

where the smoothness is assured because the resulting expression consists of a linear
combination of products likeω(φ(x1)φ(g))ω(φ( f )φ(x2)), with some test functions
f and g. Note that the combination of the second and third terms in (5.67) can be
rewritten as

ω(φ(x1)φ(x2))− H̃(x1, x2) = ω(φ(x1)φ(x2))− H S
0+(x1, x2)− i

2
E(x1, x2)

= 1

2
ω(φ(x1)φ(x2))− H0+(x1, x2)

+ 1

2
ω(φ(x2)φ(x1))− H0+(x2, x1),

which is obviously smooth by the very definition of the Hadamard property of ω.
HenceωΨ (:φ(x1)φ(x2):H ) is also smooth.We are in a position to define the expecta-
tion values of theWick monomials for f ∈ C∞0 (M) such that its support is included
in C ,

ωΨ (:φn:H ( f )) =
∫
Mn

ωΨ (:φ(x1) · · ·φ(xn):H ) f (x1)δ(x1, . . . , xn)dvolMn

(5.68)
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Exactly as before, polarization extends the definition to a quadratic form onDω×Dω.
There is no guarantee that operators fitting these quadratic forms really exist. The
question of their existence as operators will be addressed later, in Sect. 5.3.5.

Remark 5.3.4
(1) The restriction on the support of f is not very severe. The restriction can be

removed making use of a partition of unity (see for example [37, 47] referring to
more generally differentiated Wick polynomials).

(2) The given definition of ω(:φn :H ( f )) is affected by several ambiguities due
to the effective construction of Hε. A complete classification of these ambiguities,
promoting Wick polynomials to properly defined elements of a ∗-algebra, can be
presented from a very general viewpoint, adopting a locally covariant framework
[35, 44], we shall not consider in this introductory review (see Chap.4). We only
say that these ambiguities are completely described by a class of scalar polynomials
in the mass and Riemann curvature tensor and their covariant derivatives. The finite
order of these polynomials is fixed by scaling properties of Wick polynomials. The
coefficients of the polynomials are smooth functions of the parameter ξ .We stress that
this classification is the first step of the ultraviolet renormalization program which,
in curved spacetime and differently from flat spacetime where all curvature vanish,
starts with classifying the finite renormalization counterterms of Wick polynomials
instead of only dealing with time-ordered Wick polynomials.

(3) Easily extending the said definition, using the fact that ωΨ (:φ(x1)φ(x2):H ) is
smooth and thus can be differentiated, one can define a notion of differentiated Wick
polynomials which include, in particular, the stress energy tensor as a Hermitian
quadratic form evaluated on Hadamard states or vector states in the dense subspace
Dω in the GNS Hilbert space of a Hadamard state ω. This would be enough to
implement the computation of the back reaction of the quantum matter in a given
state to the geometry of the spacetime through (5.43) especially in cosmological
scenario (see Chap.6). This program has actually been initiated much earlier than
the algebraic approach was adopted in QFT in curved spacetime [7] and the notion of
Hadamard statewas invented, through several steps, in this context. The requirements
a physically sensible object ω(:Tab :H (x)) should satisfy was clearly discussed by
several authors,Wald in particular (see [65] for a complete account and [30] for more
recent survey). Themost puzzling issue in this context perhaps concerns the interplay
of the conservation requirement ∇aω(:T ab :H (x)) = 0 and the appearance of the
trace anomaly. We shall come back to these issues later, at the end of Sect. 5.3.5.

5.3.3 The Notion of Wavefront Set and Its Elementary
Properties

Microlocal analysis permits us to completely reformulate the theory of Hadamard
states into a much more powerful formulation where, in particular, the Wick poly-
nomials can be defined as proper operators and not only Hermitian quadratic forms.

http://dx.doi.org/10.1007/978-3-319-21353-8_4
http://dx.doi.org/10.1007/978-3-319-21353-8_6
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Following [29, 62], let us start be introducing the notion of wavefront set. To
motivate it, let us recall that a smooth function on R

m with compact support has
a rapidly decreasing Fourier transform. If we take a distribution u in D′(Rm) and
multiply it by an f ∈ D(Rm)with f (x0) �= 0, then u f is an element of E ′(Rm), i.e., a
distribution with compact support. If f u were smooth, then its Fourier transform f̂ u
would be smooth and rapidly decreasing (with all its derivatives). The failure of f u
to be smooth in a neighbourhood of x0 can therefore be quantitatively described by
the set of directions in Fourier space10 where f̂ u is not rapidly decreasing. Of course
it could happen that we choose f badly and therefore ‘cut’ some of the singularities
of u at x0. To see the full singularity structure of u at x0, we therefore need to consider
all test functions which are non-vanishing at x0. With this in mind, one first defines
the wavefront set of distributions on (open subsets of) R

m and then extends it to
curved manifolds in a second step.

In the rest of the chapter D(M)
def= C∞0 (M, C) for every smooth manifold M.

An open neighbourhood G of k0 ∈ R
m is called conic if k ∈ G implies λk ∈ G for

all λ > 0.

Definition 5.3.5 (Wavefront set) Let u ∈ D′(U ), with open U ⊂ R
m . A point

(x0, k0) ∈ U×(Rm \{0}) is called a regular directed point of u if there is f ∈ D(U )

with f (x0) �= 0 such that, for every n ∈ N, there is a constant Cn ≥ 0 fulfilling

| f̂ u(k)| ≤ Cn(1+ |k|)−n

for all k in an open conic neighbourhood of k0. The wavefront set W F(u), of
u ∈ D′(U ) is the complement in U × (Rm \ {0}) of the set of all regular directed
points of u.

Remark 5.3.6 Obviously, if u, v ∈ D′(U ) the wavefront set is not additive and, in
general, one simply has W F(u + v) ⊂ W F(u) ∪W F(v).

As, an elementary example, let us consider the wavefront set of the distribution
δy(x) = δ(x − y) on R

n [62, p. 103]:

W F(δy) = {(y, ky) ∈ T ∗Rn | ky �= 0}. (5.69)

IfU ⊂ R
m is an open and non-empty subset, T ∗U is naturally identifiedwithU×R

m .

In the rest of the chapter T ∗U \ 0 def= {(x, p) ∈ T ∗U | p �= 0}.
IfU ⊂ R

m is an open non-empty set, Γ ⊂ T ∗U \0 is a cone when (x, λk) ∈ Γ if
(x, k) ∈ Γ and λ > 0. If the mentioned cone Γ is closed in the topology of T ∗U \ 0,
we define

D′Γ def= {u ∈ D′(U ) |W F(u) ⊂ Γ } .

10Our convention for the Fourier transform is so that f (x) = 1
(2π)m

∫
e−ikx f̂ (k) dmk. This con-

vention agrees with those of [29, 52, 53], but has the opposite sign in the exponential with respect
to [62]. This means that our wavefont sets need to be negated to be compared to those of [62].
Fortunately, in all cases where this is done, the wavefront sets happen to be negation symmetric.
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Remark 5.3.7 All these definitions can be restated for the case of U replaced with a
general smooth manifold and we shall exploit this opportunity shortly.

We are in a position to define a relevant notion of convergence [39].

Definition 5.3.8 (Convergence in Hörmander pseudotopology) If u j ∈ D′Γ (U ) is a
sequence and u ∈ D′Γ (U ), we write u j → u inD′Γ (U ) if both the conditions below
hold.

(i) u j → u weakly in D′(U ) as j →+∞,

(ii) sup j supV |p|N |̂φu j (p)| < ∞, N = 1, 2, . . ., if φ ∈ D(U ) and V ⊂ T ∗U is
any closed cone, whose projection on U is supp (φ), such that Γ ∩ V = ∅.

In this case, we say that u j converges to u in the Hörmander pseudotopology.

It turns out that test functions (whose wavefront set is always empty as said below)
are dense even with respect to that notion of convergence [39].

Proposition 5.3.9 If u ∈ D′Γ (U ), there is a sequence of smooth functions u j ∈
D(U ) such that u j → u in D′Γ (U ).

Let us immediately state a few elementary properties of wavefront sets [20, 38, 39,
62]. We remind the reader that x ∈ U is a regular point of a distribution u ∈ D′(U )

if there is an open neighborhood O ⊂ U of x such that 〈u, f 〉 = 〈hu, f 〉 for some
hu ∈ D(U ) and every f ∈ D(U ) supported in O . The closure of the complement of
the set of regular points is the singular support of u by definition.

Theorem 5.3.10 (Elementary properties of W F) Let u ∈ D′(U ), U ⊂ R
m open

and non-empty.
(a) u is smooth if and only if W F(u) is empty. More precisely, the singular support

of u is the projection of W F(u) on R
m.

(b) If P is a partial differential operator on U with smooth coefficients:

W F(Pu) ⊂ W F(u) .

(c) Let V ⊂ R
m be an open set and let χ : V → U be a diffeomorphism. The

pull-back χ∗u ∈ D′(V ) of u defined by χ∗u( f ) = u(χ∗ f ) for all f ∈ D(V ) fulfils

W F(χ∗u) = χ∗W F(u)
def=

{
(χ−1(x), χ∗k) | (x, k) ∈ W F(u)

}
,

where χ∗k denotes the pull-back of χ in the sense of cotangent vectors.
(d) Let V ⊂ R

n be an open set and v ∈ D′(V ), then W F(u ⊗ v) is included in

(W F(u)×W F(v)) ∪ (( supp u × {0})×W F(v)) ∪ (W F(u)× ( supp v× {0})) .

(e) Let V ⊂ R
n, K ∈ D′(U × V ) and f ∈ D(V ), then

W F(K f ) ⊂ {(x, p) ∈ T U \ 0 | (x, y, p, 0) ∈ W F(K ) for some y ∈ supp ( f )} ,
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Fig. 5.1 Wavefront set of
δ(x, y) on M×M, defined
in (5.70), consists of points
of the form (x, x, kx ,−kx ),
(x, kx ) ∈ T ∗M \ 0

where K : D(V ) �→ D′(U ) is the continuous linear map associated to K in view of
Schwartz kernel theorem.

The result (e), with a suitably improved statement, can be extended to the case of
f replaced by a distribution [39].
From (c) we conclude that the wavefront set transforms covariantly under diffeo-

morphisms as a subset of T ∗U , with U an open subset of R
m . Therefore we can

immediately extend the definition of W F to distributions on a manifold M simply
by patching together wavefront sets in different coordinate patches of M with the
help of a partition of unity. As a result, for u ∈ D′(M), W F(u) ⊂ T ∗M \ 0. Also
the notion of convergence in the Hörmander pseudotopology easily extends to man-
ifolds. All the statements of Theorem 5.3.10 extend to the case where U and V are
smooth manifolds.

Following up on (5.69), an elementary example of a distribution on a manifold is
δ(x, y) defined on M×M. Its wavefront set is (Fig. 5.1)

W F(δ) = {(x, x, kx ,−kx ) ∈ T ∗M2 \ 0 | (x, kx ) ∈ T ∗M \ 0} . (5.70)

The necessity of the sign reversal in the covector −kx corresponding to the second
copy of M can be seen from the formula δ(x, y) = δ(x − y) on R

n .
To conclude this very short survey, we wish to stress some remarkable results of

wavefront set technology respectively concerning (a) the theorem of propagation of
singularities, (b) the product of distributions, (c) composition of kernels.

Let us start with an elementary version of the celebrated theorem of propagation
of singularities formulated as in [62].

Remark 5.3.11
(1) Let us remind the reader that if, in local coordinates, P =∑

|α|≤m aα(x)∂α is a
differential operator of order m ≥ 1 (it is assumed that aα �= 0 for some α with |α| =
m) on a manifoldM, where a is a multi-index [39], and aα are smooth coefficients,
then the polynomial σP (x, p) =∑

|α|=m aα(x)(i p)α is called the principal symbol
of P . It is possible to prove that (x, ξ) �→ σP (x, p) determines a well defined
function on T ∗M which, in general is complex valued. The characteristic set of
P , indicated by char(P) ⊂ T ∗M \ 0, denotes the set of zeros of σP made of non-
vanishing covectors. The principal symbol σP can be used as a Hamiltonian function
on T ∗M and the maximal solutions of Hamilton equations define the local flow of
σP on T ∗M.
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(2) The principal symbol of the Klein-Gordon operator is −gab(x)pa pb. It is an
easy exercise [62] to prove that if M is a Lorentzian manifold and P is a normally
hyperbolic operator, i.e., the principal symbol is the same as the one of Klein-
Gordon operator, then the integral curves of the local flow of σP are nothing but the
lift to T ∗M of the geodesics of the metric g parametrized by an affine parameter.
Finally, char(P) = {(x, p) ∈ T ∗M \ 0 | gab(x)pa pb = 0}.
Theorem 5.3.12 (Microlocal regularity and propagation of singularities) Let P be
a differential operator on a manifold M whose principal symbol is real valued, if
u, f ∈ D′(M) are such that Pu = f then the following facts hold.

(a) W F(u) ⊂ char(P) ∪W F( f ),
(b) W F(u) \W f ( f ) is invariant under the local flow of σP on T ∗M \W F( f ).

Let us conclude with the famous Hörmander definition of product of distributions
[38, 39]. We need a preliminary definition. If Γ1, Γ2 ⊂ T ∗M \ 0 are closed cones,

Γ1 +Γ2
def= {

(x, k1 + k2) ⊂ T ∗M | (x, k1) ∈ Γ1, (x, k2) ∈ Γ2 for some x ∈M}
.

Theorem 5.3.13 (Product of distributions)Consider a pair of closed cones Γ1, Γ2 ⊂
T ∗M \ 0. If

Γ1 + Γ2 �� (x, 0) for all x ∈M,

then there is a unique bilinear map, the product of u1 and u2,

D′Γ1
×D′Γ2

� (u1, u2) �→ u1u2 ∈ D′(M),

such that
(i) it reduces to the standard pointwise product if u1, u2 ∈ D(M),
(ii) it is jointly sequentially continuous in the Hörmander pseudotopology: If

u(n)
j → u j in DΓ j (M) for j = 1, 2 then u(n)

1 u(n)
2 → u1u2 in DΓ (M), where Γ is

a closed cone in T ∗M \ 0 defined as Γ
def= Γ1 ∪ Γ2 ∪ (Γ1 ⊕ Γ2).

In particular the following bound always holds if the above product is defined:

W F(u1u2) ⊂ Γ1 ∪ Γ2 ∪ (Γ1 + Γ2) . (5.71)

From the examples (5.69) and (5.70) and the simple observation that

R
n \ {0} + R

n \ {0} = R
n � 0, (5.72)

it is clear that the multiplication of two δ-functions with overlapping supports, as is
to be expected, does not satisfy the above conditions.

Let us come to the last theorem concerning the composition of distributional
kernels. Let X, Y be smooth manifolds. If K ∈ D′(X × Y ), the continuous map
associated to K by the Schwartz kernel theorem will be denoted by K : D(Y ) →
D′(X). We shall also adopt the following standard notations:
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W F(K )X
def= {(x, p) | (x, y, p, 0) ∈ W F(K ) for some y ∈ Y } ,

W F(K )Y
def= {(y, q) | (x, y, 0, q) ∈ W F(K ) for some x ∈ X} ,

W F ′(K )
def= {(x, y, p, q) | (x, y, p,−q) ∈ W F(K )} ,

W F ′(K )Y
def= {(y, q) | (x, y, 0,−q) ∈ W F(K ) for some x ∈ X} .

Theorem 5.3.14 (Compositionof kernels)Consider three smooth manifolds X, Y, Z
and K1 ∈ D′(X × Y ), K2 ∈ D′(Y × Z). If W F ′(K1)Y ∩ W F(K2)Y = ∅ and the
projection

supp K2 � (y, z) �→ z ∈ Z

is proper (that is, the inverse of a compact set is compact), then the composition
K1◦K2 is well defined, giving rise to K ∈ D′(X, Z), and reduces to the standard one
when the kernel are smooth. It finally holds (the symbol ◦ denoting the composition
of relations)

W F ′(K ) ⊂ W F ′(K1) ◦W F ′(K2) ∪ (W F(K1)X × Z × {0})
∪ (X × {0} ×W F ′(K2)Z ) .

(5.73)

Comparing with (5.70), note that W F ′(δ) is the diagonal subset Δ ⊂ T ∗M ×
T ∗M. In the composition of relations,Δ acts as an identity, which is consistent with
the above theorem and the fact that δ(x, y) acts as an identity for the composition of
distributional kernels.

5.3.4 Microlocal Reformulation

Let us focus again on the two-point function of Minkowski quasifree vacuum state.
Form (5.37) we see that the singular support of ωM2(x, y) is the set of couples
(x, y) ∈ M × M such that x − y is light like. From (a) in Theorem 5.3.10, we
conclude that W F(ωM2) must project onto this set. On the other hand (5.38) can be
re-written as

ωM2(x, y) = 1

(2π)3

∫
R4

e−i(px+qy)θ(p0)δ(p2 + m2)δ(p + q)d4qd4 p ,(5.74)

where translational invariance is responsible for the appearance of δ(p + q) in (5.74).
From this couple of facts, also noticing the presence of θ(p0) in the integrand, one
guesses that the wavefront set of the Minkowski two-point function must be

W F(ωM2) =
{
(x, y, p,−p) ∈ T ∗M2 | p2 = 0, p || (x − y), p0 > 0

}
. (5.75)
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Identity (5.75) is, in fact, correct and holds true also for m = 0 [54]. The condition
p0 > 0 encodes the energy positivity of the Minkowski vacuum state. Notice that
the couples (x, y) ∈ M × M giving contribution to the wavefront set are always
connected by a light-like geodesic co-tangent to p. For x = y there are infinitely
many such geodesics, if we allow ourselves to consider zero length curves (consisting
of a single point) with a given tangent vector.

The structure (5.75) of the wavefront set of the two-point function of Minkowski
vacuum is a particular case of the general notion of a Hadamard state. We re-adapt
here the content of the cornerstone papers [52, 53] to our formulation. We note that
we do not make use of the global Hadamard condition (see (4) in Remark 5.3.3). The
following theorem collects various results of [52, 53].

Theorem 5.3.15 (“Radzikowski theorem”)For a4-dimensional globally hyperbolic
(time oriented) spacetime M and referring to the unital ∗-algebra of Klein-Gordon
quantum field A(M) with m2, ξ ∈ R arbitrarily fixed, let ω be a state on A(M), not
necessarily quasifree.
(a) The following statements are equivalent,

(i) ω is Hadamard in the sense of Definition5.3.2,
(ii) the wavefront set of the two-point function ω2 has the Hadamard form on M

or equivalently, it satisfies the microlocal spectrum condition on M:

W F(ω2) =
{
(x, y, kx ,−ky) ∈ T ∗M2 \ 0 | (x, kx ) ∼ (y, ky), kx � 0

}
def= H.

(5.76)
Here, (x, kx ) ∼ (y, ky) means that there exists a null geodesic γ connecting x to y
such that kx is coparallel and cotangent to γ at x and ky is the parallel transport
of kx from x to y along γ , Fig.5.2. kx � 0 means that kx does not vanish and is

Fig. 5.2 The null geodesic relation (x, kx ) ∼ (x, ky) defined in Theorem 5.3.15. The points x and
y must be linked by a null geodesic, the covectors kx and ky must be parallel transported images of
each other and both covectors must be coparallel, all with respect to the same null geodesic. Any
causal ordering between x and y is admissible. Also, kx , −kx and λkx (λ �= 0) are all considered
coparallel to the same geodesic. In the coincident case, x = y, we agree that there are infinitely
many (zero-length) null geodesics joining x to itself, corresponding to different non-vanishing null
covectors kx ∈ T ∗x M
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Fig. 5.3 The Hadamard form H of a wavefront set, as defined in Theorem 5.3.15. It consists of a
subset of points (x, y, kx ,−ky) ∈ T ∗M2, where (x, kx ) ∼ (y, ky) are linked but the null geodesic
relation (Fig. 5.2). The restriction is that kx � 0, meaning that kx (v) ≥ 0 for any future-directed
v ∈ TxM. We illustrate the two possible causal orderings x ∈ J−(y) and x ∈ J+(y)

future-directed (kx (v) ≥ 0 for all future-directed v ∈ TxM), Fig.5.3.
(b) If ω′ is another Hadamard state on A(M), then ω2 − ω′2 ∈ C∞(M×M, C).

Proof (a) Suppose that ω satisfies (i), then it is globally Hadamard in the sense11

of [52] due to Theorem 9.2 in [53]. Theorem 5.1 in [52] implies that (ii) holds.
Conversely, if (ii) is valid, Theorem 5.1 in [52] entails that ω is globally and thus
locally Hadamard so that (i) holds true. (b) immediately arises from Theorem 4.3 in
[53]. �

It is also helpful to have a characterization of the wavefront set of the retarded
and advanced fundamental solutions [52, 62].

Proposition 5.3.16 The retarded and advanced fundamental solutions of the Klein-
Gordon operator P = �M + m2 + ξ R on M, E+, E− ∈ D′(M×M) respectively,
have the following wavefront sets (Fig.5.4):

W F(E±) = W F(δ)

∪
{
(x, y, kx ,−ky) ∈ T ∗M2 \ 0 | (x, kx ) ∼ (y, ky), x ∈ J±(y)

}
def= F±,

(5.77)

where ∼ denotes the same relation as in Theorem 5.3.15.

With this result and themicrolocal technology previously introducedwe can prove
some remarkable properties of Hadamard states, especially in relation with what was
already discussed in (4) in Remark 5.3.3. The second statement, for n = 4, implies
that the singularity structure of Hadamard states propagates through the spacetime.

11Results in [52, 53] are stated for ξ = 0 in KG operator, however they are generally valid for m2

replaced by a given smooth function, as specified at the beginning of p. 533 in [52].
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Fig. 5.4 The wavefront sets of the retarded fundamental solution E+ of the Klein-Gordon oper-
ator, as defined in Proposition 5.3.16, consist of the union of W F(δ) (Fig. 5.1) and of the points
(x, kx , y,−ky) ∈ T ∗M2, where (x, kx ) ∼ (y, ky) are linked by the geodesic relation (Fig. 5.2),
with the causal precedence condition x ∈ J+(y). We illustrate the two cases when kx is coparallel
and anti-coparallel to the future-directed geodesic from y to x . The wavefront set of the advanced
fundamental solution E− is defined in the same way, with the exception that we require the causal
precedence condition x ∈ J−(y) instead

Proposition 5.3.17 Consider a state ω on A(M), with ω2 ∈ D′(M ×M), where
M is a (time oriented) globally hyperbolic spacetime with dimension n ≥ 2. The
following facts hold.

(a) If W F(ω2) has the Hadamard form, then M � x �→ ω2(x, f ) is smooth for
every f ∈ C∞0 (M).

(b) If W F(ω2�O×O) has the Hadamard form on O, where O is an open neighbor-
hood of a smooth spacelike Cauchy surface Σ of M, then W F(ω2) has the Hadamard
form on M.

Proof (a) From (e) in Theorem 5.3.10 and the Hadamard form of W F(ω2) we
conclude that W F(ω2(·, f )) = ∅. Next, (a) in Theorem 5.3.10 implies the thesis.

(b) The 2-point function ω2(x, y) is a bisolution of the Klein-Gordon operator
P = �M + m2 + ξ R, as in (5.8). So the value of ω2( f, g), for f, g ∈ C∞0 (M),
depends on the arguments only up to the addition of any term from P[C∞0 (M)]. In
fact, we can choose h, k ∈ C∞ such that supp ( f + P[h]) and supp (g+ P[k]) are
both contained in O . More precisely, we can define an S ∈ D′(O ×M) such that
the corresponding operator maps S : C∞0 (M) → C∞0 (O) and we have the identity
ω2 = S t ◦ ω2 ◦ S. Then, using the result of Theorem 5.3.14 on the composition of
kernels and the fact that ω2 has the Hadamard form on O , we can show that ω2 has
the Hadamard form on all ofM.

Consider a smooth partition of unity χ++χ− = 1 adapted to the Cauchy surface
Σ . That is, there exist two other Cauchy surfaces, Σ+ in the future of Σ and Σ− in
the past of Σ , such that supp χ+ ⊂ J+(Σ−) and supp χ− ⊂ J−(Σ+). Such an
adapted partition of unity always exists if O is globally hyperbolic in its own right
and, if not, since M is globally hyperbolic, any open neighborhood ofΣ will contain
a possibly smaller neighborhood of Σ that is also globally hyperbolic [5, 6].

Let S f = f − P[χ+E− f + χ−E+ f ], with the corresponding integral kernel
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S(x, y) = δ(x, y)− Px [χ+(x)E−(x, y)+ χ−(x)E+(x, y)], (5.78)

where the subscript on Px means that it is acting only on the x variable. A straight
forward calculation shows that S has the desired properties. Multiplication by a
smooth function and the application of a differential operator does not increase the
wavefront set, hence

W F(S) ⊂ W F(δ) ∪W F(E−) ∪W F(E+) (5.79)

as a subset of T ∗(O ×M). The δ-function has the wavefront set

W F(δ) = {(x, x, kx ,−kx ) ∈ T ∗M2 \ 0 | (x, kx ) ∈ T ∗M \ 0} . (5.80)

The wavefront sets F± = W F(E±) of the retarded and advanced fundamental
solutions was given in Proposition 5.3.16. The Hadamard form H of the wavefront
set was defined in Theorem 5.3.15. We can now appeal to Theorem 5.3.14 on the
wavefront set of the composition of kernels to how that W F(ω2) = W F(S t ◦ ω2 ◦
S) ⊂ H. The first thing to check is that W F(S)Mi , W F(ω2)Mi , i = 1, 2 denoting
respectively the first and the second factor in M ×M, are all empty, because they
contain no element of the form (x, y, kx , 0) or (x, y, 0, ky). Second, due to the
hypothesis W F ′(ω2)|O ⊂ H′O , the symmetry of the composition and the fact that
composition with δ(x, y) leaves any wavefront set invariant, it is sufficient to check
that the compositions of wavefront sets as relations satisfyH′O ◦ F ′± ⊂ H′M.

Consider any (x, y, kx , ky) ∈ H′O and (y, z, ky, kz) ∈ F ′±, so that (x, z, kx , kz) ∈
H′O ◦ F ′±. Then (x, kx ) ∼ (y, ky) and (y, ky) ∼ (z, kz) in M according to the
relation∼ defined in Theorem 5.3.15, so that (x, kx ) ∼ (z, kz) by transitivity of that
relation inM. The only question is about the allowed orientations of kx and ky . By
the Hadamard condition on O , we have kx � 0 and ky � 0. On the other hand, the
condition of being a point in F± induces the condition that either both ky � 0 and
kz � 0 or both ky � 0 and kz � 0. Combining the two conditions we find that kz � 0,
and hence that (x, z, kx , kz) ∈ H′M. This concludes the proof. �
Remark 5.3.18 With an elementary re-adaptation, statement (b) holds true weaken-
ing the hypotheses, only requiring that ω2 ∈ D′(M ×M) and that it satisfies KG
equation in both arguments up to smooth functions r, l ∈ C∞(M ×M, C), i.e.
Pxω2(x, y) = l(x, y), Pyω2(x, y) = r(x, y). In this form, it closes a gap12 present
in the proof of the main result of [52], Theorem 5.1 (the fact that 1 implies 3), and
proves the statement on p. 548 of [52] immediately after the proof of the mentioned
theorem. It should be mentioned that the same gap had been previously explicitly
identified and filled in the work of Sahlmann and Verch [56]. These authors merged
the partial proof of Radzikowski with the more restrictive result on the ‘propagation

12The gap is the content of the three lines immediately before th proof (ii) 3 ⇒ 2 on p. 547 of
[52]: The reasoning presented there cannot exclude elements of the form either (x1, x2, 0, p2) or
(x1, x2, p1, 0) from W F(ω2) outside N . The idea of our proof was suggested by N. Pinamonti to
the authors.
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of Hadamard form’ obtained previously in the works [21, 23, 41] without the meth-
ods of microlocal analysis. Somewhat later, the same gap was also filled in the thesis
of Sanders [57], who relied on purely microlocal but somewhat sophisticated meth-
ods developed earlier in [63]. On the other hand, our method, though sharing some
similarity in spirit with the ideas in [21, 23, 41], is both purely microlocal and rather
elementary. In fact, it only takes advantage of the microlocal analysis in the guise of
the theorem on the composition of wavefront sets.

The microlocal formulation gave rise to noticeable results also closing some long
standing problems. In particular it was proved that the so called Unruh state describ-
ing black hole radiation is Hadamard [14] and that the analogous state, describing
thermal radiation in equilibriumwith a black hole, the so calledHartle-Hawking state
is similarly Hadamard [58]. These results are physically important because they per-
mit one to compute the back reaction of the quantum radiation on the geometry,
since the averaged, renormalized stress-energy tensor ω(:Tab :) can be defined in
these states as previously discussed ((3) in Remark 5.3.4). Other recent applications
concerned the definition of relevant Hadamard states in asymptotically flat space-
times at null infinity [26, 48], and spacelike infinity [25]. Natural Hadamard states for
cosmological models have been discussed [12] also in relation with the problem of
the Dark Energy [13]. An improved semiclassical formulation where Einstein equa-
tions and the equation of evolution of the Hadamard quantum state and observables
are solved simultaneously has been proposed in [51]. See [4, 29] for recent reviews
also regarding fields with spin or helicity, in particular [15] for the vector potential
field.

5.3.5 Algebra of Wick Products

Let us come to the proof of existence of Wick monomials :φn : ( f ) as algebraic
objects, since we only have defined the expectation values ωΨ (:φn : ( f )) in (5.68).
We first introduce normalWick products defined with respect to a reference quasifree
Hadamard state ω [9, 10, 35]. Referring to the GNS triple for ω, (Hω,Dω, πω, Ψω)

Define the elements, symmetric under interchange of f1, . . . , fn ∈ D(M),

Ŵω,0
def= 11 , Ŵω,n( f1, . . . , fn)

def=:φ̂ω( f1) · · · φ̂ω( fn):ω ∈ A(M)

for n = 1, 2, . . . , where as before,

:φ̂ω(x1) · · · φ̂ω(xn):ω def= 1

in

δn

δ f (x1) · · · δ f (xn)

∣∣∣∣
f=0

ei φ̂( f )+ 1
2ω2( f, f ) (5.81)

The operators Ŵω,n( f1, . . . , fn) can be extended to (or directly defined on) [9, 35] an
invariant subspace ofHω, themicrolocal domain of smoothness [9, 35], Dω ⊃ Dω,
which is dense, invariant under the action of πω(A(M)) and the associated unitary
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Weyl operators, and containsΨω and all of unit vectors ofHω which induceHadamard
quasifree states on A(M). The map

f1 ⊗ · · · ⊗ fn �→ Ŵω,n( f1, . . . , fn)

uniquely extends by complexification and linearity to a map defined on

D(M)⊗ · · · ⊗D(M) .

Finally, if Ψ ∈ Dω, the map D(M)⊗ · · · ⊗D(M) � h �→ Ŵω,n(h)Ψ turns out to
be continuous with respect to the relevant topologies: The one of Hω in the image
and the one of D(Mn) in the domain. A vector-valued distribution D(Mn) � h �→
Ŵω,n(h), uniquely arises this way. Actually, since :φ̂ω( f1) · · · φ̂ω( fn):ω is symmetric
by construction, the above mentioned distribution is similarly symmetric and can be
defined on the subspace Dn(M) ⊂ D(Mn) of the symmetric test functions:

D(Mn) � h �→ Ŵω,n(h) .

By Lemma 2.2 in [9], if Ψ ∈ Dω the wavefront set W F
(

Ŵω,n(·)Ψ
)
of the vector-

valued distributions t �→ Ŵω,n(t)Ψ , is contained in the set

Fn(M)
def= {(x1, k1, . . . , xn, kn) ∈ (T ∗M)n \ {0}|ki ∈ V−xi

, i = 1, . . . , n}, (5.82)

with V+/−
x denoting the set of all nonzero time-like and light-like co-vectors at x

which are future/past directed. Theorem 5.3.13, which can be proved to hold in this
case too, implies thatwe are allowed to define the product between a distribution t and
a vector-valued distribution Ŵω,n(·)Ψ provided W F(t)+ Fn(M, g) �� {(x, 0) | x ∈
Mn}. To this end, with D′n(M) ⊂ D′(Mn) denoting the subspace of symmetric
distributions, define

E ′n(M)
def= {

t ∈ D′n(M) | supp t is compact, W F(t) ⊂ Gn(M)
}

where

Gn(M)
def= T ∗Mn \

( ⋃
x∈M

(V+x )n ∪
⋃

x∈M
(V−x )n

)
.

It holds W F(t)+Fn(M) �� {(x, 0) | x ∈Mn} for t ∈ E ′n(M). By consequence, the
product

t " Ŵω,n(·)Ψ

of the distributions t and Ŵω,n(·)Ψ can be defined for every Ψ ∈ Dω and it turns
out to be a well-defined vector-valued symmetric distribution, Dn(M) � f �→
t " Ŵω,n( f )Ψ , with values in Dω. Thus, we have also defined an operator valued
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symmetric distribution,Dn(M) � f �→ t" Ŵω,n( f ), defined on and leaving invari-
ant the domain Dω, acting as Ψ �→ t " Ŵω,n( f )Ψ . This fact permits us to smear
Ŵω,n with t ∈ E ′n(M), just defining

Ŵω,n(t)
def=

(
t " Ŵω,n

)
( f ) ,

where f ∈ Dn(M) is equal to 1 on supp t . It is simple to prove that the definition
does not depend on f and the new smearing operation reduces to the usual one for
t ∈ Dn(M) ⊂ E ′n(M, g). Finally, since f δn ∈ E ′n(M) for f ∈ D(M), where δn

is the Dirac delta supported on the diagonal of Mn = M × · · · ×M (n times),
the following operator-valued distribution is well-defined on Dω which, is then an
invariant subspace,

f �→:φ̂n:ω ( f )
def= Ŵω,n( f δn) ,

Definition 5.3.19 :φ̂n :ω ( f ) is the normal ordered product of n field operators
with respect to ω.Wω(M) is the ∗-algebra generated by 11 and the operators Ŵω,n(t)

for all n ∈ N and t ∈ E ′n(M, g) with involution given by Ŵω,n(t)∗ def= Ŵω,n(t)†�Dω

(= Ŵω,n(t)).

Remark 5.3.20
(1) As proved in [35], each product Ŵω,n(t)Ŵω,n′(t ′) can be decomposed as a

finite linear combination of terms Ŵω,m(s) extending the Wick theorem, and other
natural identities, in particular related with commutation relations, hold.

(2) πω(A(M)) turns out to be a sub ∗-algebra ofWω(M) since φ̂ω( f ) = :φ̂:ω ( f )

for f ∈ D(M).

If ω,ω′ are two quasifree Hadamard states, Wω(M) and Wω′(M) are isomorphic
(not unitarily in general) under a canonical ∗-isomorphism

αω′ω :Wω(M) →Wω′(M) ,

as shown in Lemma 2.1 in [35]. Explicitly, αω′ω is induced by linearity from the
requirements

αω′ω(11) = 11 , αω′ω(Wn,ω(t)) =
∑

k

Wn−2k,ω′(〈d⊗k, t〉) , (5.83)

where d(x1, x2)
def= ω(x1, x2) − ω′(x1, x2) (only the symmetric part matters here)

and

〈d⊗k, t〉(x1, . . . , xn−2k)
def= n!

(2k)!(n − 2k)!
∫
M2k

t (y1, . . . , y2k, x1, . . . , xn−2k)

×
k∏

i=1
d(y2i−1, y2i )dvolM(y2i−1)dvolM(y2i ) (5.84)
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for 2k ≤ n and 〈d⊗k, t〉 = 0 if 2k > n.
These ∗-isomorphisms also satisfy

αω′′ω′ ◦ αω′ω = αω′′ω

and
αω′ω(φ̂ω(t)) = φ̂ω′(t) .

The idea behind these isomorphisms is evident: Replace everywhere ω by ω′. For
instance

αω′ω(:φ̂2:ω ( f )) = :φ̂2:ω′ ( f )+
∫
M

(ω − ω′)(x, x) f (x)dvolM 11

where ω − ω′ is smooth for (b) in Theorem 5.3.15.
One can eventually define an abstract unital ∗-algebra W(M), generated by ele-

ments 11 and Wn(t) with t ∈ E ′n(M), isomorphic to each concrete unital ∗-algebra
Wω(M) by ∗-isomorphismsαω :W(M)→Wω(M) such that, ifω,ω′ are quasifree
Hadamard states, αω′ ◦ α−1ω = αω′ω.

As above A(M) is isomorphic to the ∗-algebra of W(M) generated by 11 and
W1( f ) = :φ̂: ( f ) = φ( f ) for f ∈ D(M).

Remark 5.3.21 It is not evident how (Hadamard) states initially defined on A(M)

(continuously) extend to states on W(M). This problem has been extensively dis-
cussed in [34] in terms of relevant topologies.

It is now possible to define a notion of local Wick monomial which does not depend
on a preferred Hadamard state. If t ∈ E ′n(M) has support sufficiently concen-
trated around the diagonal of Mn , realizing W(M) as Wω(M) for some quasifree
Hadamard state ω, we define a local covariant Wick polynomial as

Wn(t)H
def= α−1ω

(
αHω(Wn,ω(t))

)

where αHω is defined as in (5.84) replacing ω′ by the Hadamard parametrix H0+ .
One easily proves that this definition does not depend on the choice of the Hadamard
state ω. The fact that the support of t is supposed to be concentrated around of
the diagonal of Mn it is due to the fact that Hε(x, y) is defined only if x is suffi-
ciently close to y. This definition is completely consistent with (5.68), where now the
:φ( f1) · · ·φ( fn):H can be viewed as elements ofW(M) and not only ofA(M), and
it makes sense to write in particular,

:φ2:H ( f )
def= W2( f δ2)H =

∫
M2

:φ(x)φ(y):H δ(x, y) f (x)dvolM2(x, y) .



5 Algebraic QFT in Curved Spacetime and Quasifree Hadamard States … 247

Analogous monomials :φn:H ( f ) are defined similarly as elements of W(M). With
the said definition (5.68) holds true literally and not only in the sense of quadratic
forms.

Remark 5.3.22 The presented definition of locally covariantWickmonomials :φn:H
( f ), though satisfying general requirement of locality and covariance [11] (see also
Chap.4), remains however affected by several ambiguities. A full classification of
them is the first step of ultraviolet renormalization program [35, 44]. The algebra
W(M) also includes the so-called (locally covariant) time-ordered Wick polynomi-
als, necessary to completely perform the renormalization procedure [36].

The constructed formalismcanbe extended inorder to encompass differentiatedWick
polynomials and it has a great deal of effect concerning the definition of the stress
energy tensor operator [47]. It is defined as an element ofW(M) by subtracting the
universal Hadamard singularity from the two-point function of ω, before computing
the relevant derivatives.

:Tab:H ( f ) =
∫
M2

Dab(x, y) :φ(x)φ(y):H δ(x, y) f (x) dvolM2(x, y) (5.85)

Dab(x, y) is a certain symmetrized second order partial differential operator obtained
from (5.41) (cf. [47] Eq. (10), and [29] where some minor misprints have been cor-
rected and the signature (−+++) has been adopted),

Dab(x, y) := Dcan
ab (x, y)− 1

3
gab Px

Dcan
ab (x, y) := (1− 2ξ)gb′

b ∇a∇b′ − 2ξ∇a∇b − ξGab

+ gab

{
2ξ�x +

(
2ξ − 1

2

)
gc′

c ∇c∇c′ + 1

2
m2

}
.

Here, covariant derivatives with primed indices indicate covariant derivatives w.r.t.
y, gb′

b denotes the parallel transport of vectors along the unique geodesic connecting
x and y, the metric gab and the Einstein tensor Gab are considered to be evaluated at
x . The form of the “canonical” piece Dcan

ab follows from the definition of the classical
stress-energy tensor, while the last term− 1

3gab Px , giving rise to a final contribution
− gab

3 :φ(x)Pφ(x):H to the stress-energy operator, has been introduced in [47]. It
gives no contribution classically, just in view of the very Klein-Gordon equation
satisfied by the fields, however, in the quantum realm, its presence has a very impor-
tant reason. Because the Hadamard parametrix satisfies the Klein-Gordon equation
only up to smooth terms, the term with Px is non vanishing. Moreover, without this
additional term, the above definition of :Tab :H would not yield a conserved stress-
tensor expectation value (see [47] Theorem 2.1). On the other hand the added team
is responsible for the appearance of the famous trace anomaly [65]. An extended
discussion on conservation laws in this framework appears in [37].

http://dx.doi.org/10.1007/978-3-319-21353-8_4
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Chapter 6
Cosmological Applications of Algebraic
Quantum Field Theory

Thomas-Paul Hack and Nicola Pinamonti

Abstract Quantum field theory on curved spacetime is a generalisation of quan-
tum field theory in flat spacetime which is expected to be the proper fundamental
description of non–trivial physical phenomena in the presence of a spacetime cur-
vature which is large but below Planck scale. Two prominent physical situations
which fall under this characterisation are phenomena both in the vicinity of black
holes and in the early universe. Focusing on the latter, we review several applications
of algebraic quantum field theory on curved spacetimes to cosmology, as well as
foundational results and constructions on which these applications are based. On
the foundational side, we collect several proposals to construct Hadamard states on
cosmological spacetimes, as this class of states is believed to encompass all physi-
cally meaningful states in quantum field theory on curved spacetimes. Afterwards we
consider the solution theory of the semiclassical Einstein equation, quote a theorem
of existence and uniqueness of solutions to this equation and indicate directions to
go beyond the semiclassical Einstein equation. Then we highlight how the observed
cosmological expansion may be understood qualitatively and quantitatively in this
framework, before we discuss the quantization of perturbations in inflation in the
context of algebraic quantum field theory. In the latter subject, the starting point is
the assumption that the classical, rather than the semiclassical, Einstein equation is
satisfied. We close this chapter briefly discussing how one may generalise the analy-
sis of perturbations in inflation by allowing for spacetimes backgrounds which solve
the semiclassical Einstein equations.
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6.1 Introduction

During the last decades observational cosmology experienced a golden age in which
the amount and quality of available data made it possible to test theoretical models
with great accuracy. This lead to a great improvement in our understanding of the
physics of our universe. A particular highlight of the verymany observational sources
are the anisotropies of the cosmicmicrowave background which have beenmeasured
to a high accuracy by the Planck satellite. It is believed that these anisotropies are
sourced by primordial metric and matter perturbations which are of quantum nature.
During an early phase of rapid expansion of the universe called inflation these pertur-
bations are thought to become classical and hence visible. The assumption of rapid
expansion implies that the spacetime curvature in this cosmological phase was seiz-
able, and thus, from the theoretical side, these metric andmatter perturbations should
be described by quantum fields propagating over curved classical backgrounds.

The presence of a phase of rapid expansion is necessary in order to (at least partly)
explain many observations such as the flatness and isotropy of the spatial slices of the
universe. Moreover it is theoretically attractive because it is thought to “wash out”
the distinctive features of the state of the universe prior to the expansive phase and
thus it becomes possible to analyse the cosmological dynamics independently of the
physics prior to inflation. Whereas presently most models attribute the origin of this
accelerated expansion to the energy density of a classical scalar field, one of the first
models of inflation was the Starobinsky model, which was based on the analysis of
the backreaction of quantum fields propagating in curved spacetimes on the metric
[44]. Later the model was considerably simplified [45] and, barring a clash with the
much-debated BICEP2 data [3], it is still in perfect agreement with all observational
data [2].

Due to the complexity of a fundamental analysis, many aspects of theoretical cos-
mology are not dealt within quantum field theory on curved spacetimes by default,
but simplified frameworks are used based on the idea that in many circumstances the
influence of the spacetime curvature can be taken into account in effective approx-
imate ways. A proper legitimation of these approximations can however only be
given based on a more fundamental analysis of the aforementioned aspects within
quantum field theory on curved spacetimes, and it may happen that the corrections
to the effective picture resulting from such an analysis have observable effects even
if they are small.

For all these reasons, cosmology is increasingly becoming a field where various
aspects of quantum field theory on curved spacetime play an important role. Hence,
in this chapter, we shall specialise to cosmological spacetimes the general discussion
of algebraic quantumfield theory on curved spacetimes presented in the contributions
to this book by Fredenhagen—Chap.1, Fredenhagen and Rejzner—Chap.2, Benini
and Dappiaggi—Chap.3, Fewster and Verch—Chap.4 and Khavkine and Moretti—
Chap.5.

Let us recall that on large scales our universe appears isotropic. At the same time
we don’t have any convincing reason to assume that it contains preferred points.

http://dx.doi.org/10.1007/978-3-319-21353-8_1
http://dx.doi.org/10.1007/978-3-319-21353-8_2
http://dx.doi.org/10.1007/978-3-319-21353-8_3
http://dx.doi.org/10.1007/978-3-319-21353-8_4
http://dx.doi.org/10.1007/978-3-319-21353-8_5


6 Cosmological Applications of Algebraic Quantum Field Theory 255

Hence it should be described by a homogeneous and isotropic spacetime M =
(M, g, o, t). The two requirements imply that M is nothing but a warped product of
an oriented interval of time I and a spatial section Σ . More precisely,

M = I ×Σ

and, fixing the cosmological time t and an adapted coordinate system (r, θ, ϕ) on
Σ ,

g = dt ⊗ dt − a(t)2
[

1

1 − κr2
dr ⊗ dr + r2

(
dθ ⊗ dθ + sin θ2dϕ ⊗ dϕ

)]
.

The above metric is nothing but a Friedmann–Lemaître–Robertson–Walker (FLRW)
metric where a(t) is the scale factor, required to be strictly positive, and the constant
κ ∈ {−1, 0, 1} is the sign of the Gaussian curvature. In particular, κ distinguishes
between open, flat and closed universes.

Once the topology of the spatial section is fixed, the scale factor is the only
dynamical degree of freedom in the FLRWmetric. The dynamics of a(t) is governed
by the Einstein equations

Gab = −8πTab

where Gab is the Einstein tensor and Tab is the stress tensor which describes the
matter distribution. The homogeneity and isotropy of M constraint the form of Tab.
In fact, the admissible Tab are described by two scalar quantities: the energy density
ρ and the pressure P . More precisely

Tab = ρuaub + P(uaub − gab)

where the four velocity u is related to the cosmological time introduced above by
u = ∂

∂t .
The Einstein equations imply by consistency that the stress tensor is covariantly

conserved ∇aTab = 0, and thus the matter sourcing the dynamics of a cosmological
spacetime is described by a stress tensor which looks like the stress tensor of a perfect
fluid. However, no equation of state for this effective fluid is prescribed a priori.

We shall restrict our analysis to flat cosmological spacetimes for simplicity and
because spatial flatness is favoured by observations. In this case the spatial section
Σ is the manifold R

3 equipped with the standard Euclidean metric and thus M is
conformally flat. This feature can be exploited employing the conformal time which
is related to cosmological time by the following relation

τ(t) := τ0 +
∫ t

t0

1

a(t ′)
dt ′, (6.1)
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where τ0 and t0 are necessary to fix the initial time. With respect to (τ, x), where
x = (x1, x2, x3) are Cartesian coordinates on R

3, the metric g of M takes the form

g := a(τ ) (dτ ⊗ dτ − dx ⊗ dx) , (6.2)

where, with a small abuse of notation, we have indicated a(τ ) = a(t (τ )).
The set of flat cosmological spacetimes form a sub category of Loc introduced in

the contribution by Fewster andVerch. Furthermore, all these elements are connected
by a larger set of morphisms, namely, the orientation preserving conformal transfor-
mations. We indicate by CLoc the category where the objects are flat cosmological
spacetimes and the morphisms are the above-mentioned conformal transformations.
Up to an inessential redefinition of the origin of cosmological time t , elements of
CLoc are uniquely characterised by their scale factor a as a function of t . However,
since the relation (6.1) can be inverted by the assumption a > 0, wemay equivalently
consider a as a function of the conformal time τ .

Throughout this and the next sectionwe shall for simplicity consider neutral scalar
linear field theories coupled to gravity. The classical theory is described by

Pφ := �φ + ξ Rφ + m2φ = 0, (6.3)

where the real constant ξ quantifies the coupling to the Ricci scalar curvature and m
is the mass of the field. The case ξ = 1/6 is called conformally coupled case, and we
shall restrict attention to this case in the following section. The quantization of this
linear model may be characterised in a first step by constructing the algebra A (M)
generated by linear local fields, the commutation relations, the equations of motion
and the ∗− operation, cf. Sect. 3.3.1 in Benini’s and Dappiaggi’s contribution.

However, for our purposes we need also non–linear local fields such as φ2( f )
or Tab( f ). Such fields can be added to A (M) after a deformation of this alge-
bra. The resulting extended algebra contains observables which can be tested only
on states which are sufficiently regular. Hadamard states constructed and discussed
in Khavkine’s and Moretti’s contribution in Chap. 5 of this book provide a physi-
cally well-motivated class of admissible states. For our purposes it is important that
Tab( f ) has finite expectation value and correlations (fluctuations) in all Hadamard
states. Alternatively, one may construct an algebra containing non–linear local field
observables in a single step by considering arbitrary functionals on scalar field con-
figurations whose functional derivatives satisfy a certain wave front set condition
and endowing them with a �-product defined by contractions with a two–point func-
tion of a Hadamard state, see the contribution of Fredenhagen and Rejzner (Chap.2)
for details. We shall briefly review the treatment of non–linear observables when
discussing the backreaction of quantum fields on the background metric in the next
sections.

This chapter is organised as follows. In the next section we shall recall several
possible constructions of Hadamard states on cosmological spacetimes available in
the literature. The Sect. 6.3 contains a discussion of the semiclassical Einstein equa-
tions for cosmological spacetimes, in particular we review existence and uniqueness

http://dx.doi.org/10.1007/978-3-319-21353-8_3
http://dx.doi.org/10.1007/978-3-319-21353-8_5
http://dx.doi.org/10.1007/978-3-319-21353-8_2
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of its solutions as well its relevance for understanding the cosmological expansion in
quantitative terms. The analysis of metric and matter perturbations in inflation and
their quantization is presented in the Sect. 6.4. The chapter ends with a few closing
comments in the Sect. 6.5.

6.2 States on Cosmological Spacetimes

As argued in the introduction and inKhavkine’s andMoretti’s contribution inChap. 5,
Hadamard states constitute a large class of physically well motivated states in alge-
braic quantum field theory on curved spacetimes, in which all observables have finite
expectation values; in particular, local observables have finite fluctuations in these
states. Hadamard states on curved spacetimes may be thought of as being general-
isations of vacuum and thermal states in flat spacetimes as well as of finite energy
excitations thereof. However, in spite of the large spatial symmetry present in the
class of cosmological spacetimewe are considering, no preferred state can be selected
as vacuum or thermal state for our theory due to the time dependence of the back-
ground encoded in the functional form of a(τ ). In this section we shall collect a few
constructions of Hadamard states and less regular states available in the literature.

Since the algebra of observables A (M) we are considering is (a suitable topo-
logical extension of an algebra) generated by linear fields φ( f ), in order to fix an
algebraic state ω—a positive, normalised, linear functional on A (M)—up to phys-
ically inessential topological issues, it suffices to prescribe its n−point functions
Λn ∈ D ′(Mn)

ω(φ( f1) . . . φ( fn)) :=
∫
Mn

Λn(x1, . . . , xn) f1(x1) . . . fn(xn) dvolM(x1) · · · dvolM(xn)

In order to be as close as possible to vacuum states in flat spacetime, we shall focus
on quasi–free (Gaussian) states which are also pure, homogeneous and isotropic
in the following.

For quasi–free states all n−point functions with odd n vanish, while the n–point
functions with even n can be written as linear combinations of products of two–
point functions Λ = Λ2 ∈ D ′(M2). In particular, the “integral kernels” of these
distributions are such that

Λn(x1, . . . , xn) =
∑
π∈Pn

Λ(xπ(1), xπ(2)) . . . Λ(xπ(n−1), xπ(n))

where the sum is taken of all ordered partitions of n elements.
We recall that a Hadamard state is a state whose two–point function has a pre-

scribed singular structure in position space. In particular for x, y in a normal neigh-
bourhood it holds

http://dx.doi.org/10.1007/978-3-319-21353-8_5
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Λ(x, y) := lim
ε→0+

1

8π2

(
U (x, y)

σε(x, y)
+ V (x, y) log

σε(x, y)

λ2
+ W (x, y)

)
(6.4)

where U, V are smooth functions which depend only on the local metric and the
equations of motion. λ is a length-scale and W is a smooth function which charac-
terises the state. Finally, 2σε(x, y) is a suitable regularisation of the signed squared
geodesic distance between the points x and y. The Hadamard coefficient V may be
expanded in a formal series as V =∑∞

i=0 Viσ
i .

The position-space Hadamard singular behaviour is equivalent to a condition on
the wave front set of the distribution Λ, namely

W F(Λ) =
{
(x, y; kx , ky) ∈ T ∗M2 \ {0} , (x, kx ) ∼ (y,−ky) , kx 
 0

}
, (6.5)

where (x, kx ) ∼ (y,−ky) implies that there exists an affinely parametrized light-
like geodesic γ in M joining the points x and y such that g−1(kx ) = γ̇ (x) and
g−1(−ky) = γ̇ (y). Furthermore, kx 
 0 means that g−1(kx ) is future directed.
We refer to Khavkine’s and Moretti’s contribution in Chap. 5 for further details on
Hadamard states.

For explicit computations on cosmological spacetimes, it is advisable to use the
high symmetry of these spacetimes and of the states sharing this property in order
to expand all quantities in Fourier modes. As shown by Lüders and Roberts [32] the
most general two–point function of a quasi–free, pure, homogeneous and isotropic
sufficiently regular state on a flat FLRW spacetime can be written as

Λ(x1, x2) := lim
ε→0+

1

8π3a(t1)a(t2)

∫
R3
χk(t1)χk(t2)e

i k·(x1−x2)e−kεdk (6.6)

where the limit ε to 0 is considered in the weak sense and the the temporal modes χk

have to satisfy certain regularity and integrability conditions in k = |k|. Considering
these modes as functions of conformal time τ and indicating by f ′ the derivative of
f with respect to τ , the temporal modes must satisfy

χ ′′
k + (m2a2 + k2)χk + (6ξ − 1)

a′′

a
χk = 0, (6.7)

and
χk

′χk − χkχ
′
k = i . (6.8)

Hence, in thismode representation, a quasi–free, pure, homogeneous and isotropic
state is uniquely determined by assigning to each k a temporal mode χk satisfying
the two equations above. Hadamard states are loosely speaking characterised by a
particular behaviour of χk for large k, which can be rigorously formulated only in
special cases. However, if a set of Hadamardmodes χ̃k is already known, then precise
conditions for other modes to define a Hadamard state can always be formulated in
relation to χ̃k , see [36, 50] for details.

http://dx.doi.org/10.1007/978-3-319-21353-8_5
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Apart from the already mentioned vacuum and thermal states on Minkowski
spacetime aswell as finite energy excitations thereof, themost prominent examples of
Hadamard states in quantumfield theory on curved spacetimes are the Bunch–Davies
state (the unique maximally symmetric Hadamard state) on de Sitter spacetime,
conformal vacuum and conformal thermal states for conformally coupled massless
fields on flat FLRW spacetimes, whose two–point functions are just rescalings with
suitable powers of a(τ ) of the vacuum and thermal two–point functions of the same
field theory on Minkowski spacetime. Examples of states who fail to satisfy the
Hadamard condition are the so-called α–vacua on de Sitter spacetimes, cf. [7].

6.2.1 Adiabatic States

Before discussing further examples of Hadamard states on FLRW spacetimes in the
next subsections, we consider a class of in general less regular states. The concept of
adiabatic states was introduced by Parker [35] in order to construct states that are as
close as possible to local vacua. These are quasi–free, pure and homogeneous states
on cosmological spacetimes. Hence they are completely described by a two–point
function of the form (6.6). In particular, in the case of minimal coupling ξ = 0,
the considered modes χk(τ ) are constructed employing a WKB approximation. The
construction starts with the ansatz

χk(t) = 1√
2aΩk(t)

exp

(
i
∫ t

t0
Ωk(s)ds

)

where we employed modes depending on the cosmological time t . The functionΩk

must be positive and it has to satisfy

Ω2
k = k2

a2 + m2 − 3

4

(
ȧ

a

)2

− 3

2

ä

a
+ 3

4

(
Ω̇k

Ωk

)2

− 1

2

Ω̈k

Ωk

where ˙ here stands for a derivative with respect to the cosmological time t . The
previous equation is formally solved iteratively startingwithΩ0

k = ωk = k2/a2+m2

and computing (Ωn
k )

2 as the right side of the previous equation whereΩk is replaced
by Ωn−1

k .
The iteration is in general not well–defined, because at some point, typically for

small k,Ωn
k might become imaginary for specific times thus violating the normalisa-

tion condition (6.8). For this reason and for practical purposes the iteration is stopped
after a finite number n of steps. Due to this approximation, the obtained two–point
function does not define a meaningful state because it does not satisfy the equation
of motion. However, the related two–point function could be meaningful when con-
sidered only at a fixed time t . Starting from this observation Lüders and Roberts
[32] made precise the notion of adiabatic states of order n employing the Parker
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construction terminated after n steps to obtain the initial values at time t for the
modes χk which are exact solutions of (6.7). Contrary to Parker’s two–point func-
tion, the such constructed two–point function solves the equation of motion exactly
and defines a proper state, which is called an adiabatic state of order n.

The analysis of the singularity structure of these states was performed by Junker
and Schrohe [28]. They characterised the degree of regularity of adiabatic states
employing the notion of Sobolev wave front sets. They showed that, at least when
the spatial Cauchy surfaces Σ are compact, the two–point function of adiabatic
states of order n is of the Hadamard form up to functions in C f (n)(M2), where
f : N0 → N0 is a suitable monotonous function. In other words, Λ is of the form
(6.4) where now W ∈ C f (n)(M2). Only adiabatic states of infinite order satisfy the
Hadamard condition exactly. The results of Junker and Schrohe can be presumably
generalised to a larger class of Cauchy surfaces including the flat cosmological case
following the analysis of Gérard and Wrochna [20].

6.2.2 States of Low Energy

As seen in the previous subsection only adiabatic states of infinite order are neces-
sarily Hadamard states, and since adiabatic states are constructed by iterating over
the order, it is rather impractical to construct Hadamard states by means of the adi-
abatic procedure. An alternative idea which proved to be useful, was to construct
states which minimise the energy density smeared over a time interval with a smooth
function. These states of low energy have been introduced by Olbermann [34].

Starting from a generic mode function χk(t) which solves (6.7) and a smooth
smearing function f (t), Olbermann looked for modes

Tk = λχk + μχk

which satisfy the Wronsikian normalisation condition (6.8) and whose associated
pure, quasi–free, homogeneous and isotropic stateω constructed via (6.6) minimises
the energy density smeared in time with f (t). In the minimally coupled case, the
time-smeared energy density is

〈T00( f )〉ω = 1

2

∫
R

dt f (t)
∫
Σ

dk

(∣∣∣∣ d

dt

Tk

a

∣∣∣∣
2

+
(

k2

a2 + m2
) ∣∣∣∣Tk

a

∣∣∣∣
2
)

where T00 is the t–t–component of the stress tensor and we omit the necessary
regularisation of the k–integral above because it is irrelevant for the construction.
It turns out that μ and λ can be fixed uniquely up to an inessential global phase in
terms of two constants
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c1 = 1

2

∫
R

dt f (t)

(∣∣∣∣ d

dt

χk

a

∣∣∣∣
2

+
(

k2

a2 + m2
) ∣∣∣χk

a

∣∣∣2
)
,

c2 = 1

2

∫
R

dt f (t)

((
d

dt

χk

a

)2

+
(

k2

a2 + m2
)
χ2

k

a2

)

and, in particular,

λ = eiα

√√√√ c1

2
√

c21 − |c2|2
+ 1

2
, μ =

√√√√ c1

2
√

c21 − |c2|2
− 1

2
,

where α = − arg c2 + π .
Examples for states of low energy are the Minkowski vacuum and—in the case

of conformal coupling—the conformal vacuum in flat FLRW spacetimes. Both of
these are states of low energy independent of the smearing function f (t). Moreover,
Degner showed in his thesis [14] that on spacetimeswhich are asymptotically deSitter
towards τ → −∞ (see the next section for a definition), every state of low energy
converges to the Bunch–Davies state (the unique maximally symmetric Hadamard
state) upon sending the support of f (t (τ )) in τ to negative infinity. This is a rigorous
variant of the statement that every state on de Sitter spacetimes converges to the
Bunch–Davies state for positive asymptotic times. A generalisation of states of low
energy was given in [31], where almost equilibrium states have been constructed.
Whereas states of low energy may be thought of as generalised vacuum states, the
states constructed in [31] may be interpreted as generalised thermal states. States of
low energy on spacetimes with less symmetry have been constructed in [46].

6.2.3 Hadamard States on Spacetimes with Suitable
Asymptotic Properties

Hadamard states are characterised by having a prescribed singularity structure for
points which are lightlike related. Loosely speaking, for this reason it is difficult
to provide initial conditions on the temporal modes χk(τ ) at fixed τ = τ0 which
lead to a Hadamard state, because the τ0–Cauchy–surface of a FLRW spacetime is
spacelike. A method to overcome this problem has been developed in [11], where
the basic idea is that on spacetimes where the surfaces of fixed τ become lightlike
for asymptotic τ it should be possible to construct Hadamard states by prescribing
initial values for χk(τ ) on these asymptotic surfaces.

The particular example considered in [11] were spacetimes of asymptotic de
Sitter type, i.e. FLRW spacetimes with a scale factor

a(τ ) = − 1

Hτ
+ O

(
1

τ 2

)
,

da(τ )

dτ
= 1

Hτ 2
+ O

(
1

τ 3

)



262 T.-P. Hack and N. Pinamonti

where H is the constant Hubble parameter of an exact de Sitter spacetime and τ ∈
(−∞, 0). Further examples of spacetimes on which the construction of Hadamard
states we shall review in the following is also possible have been discussed in [10].

In the particular asymptotically de Sitter case, the spacetime has a past boundary
H (τ → −∞) which is a horizon.More precisely, this spacetime M can be smoothly
extended beyondH in the past.We can thusmeaningfully consider M ∪H as a subset
of a larger globally hyperbolic spacetime. In this extended spacetime, the following
conditions hold

• The vector field ∂τ , smoothly extended toH, is tangent toH and on H it is null.
• Since ∂τ is a conformal Killing vector field which is timelike in M and null inH,
H is a conformal Killing horizon.

• The induced metric onH is diagonal and depends only on the angular coordinates.
The spatial sections of this null surface are two-dimensional spheres with constant
radius.

One would now like to construct a Hadamard state for the algebra A (M) of the
scalar field on the original spacetime M by employing geometric properties of the
horizonH described above. For simplicity we shall here assume conformal coupling
ξ = 1/6. The formal construction makes use of the time slice axiom, which is
satisfied in the case at hand, to map the on–shell bulk algebra A (M) to an algebra
A (H) defined intrinsically on the horizonH

ι : A (M) �→ A (H)

and acting on the generators of A (M) in the following way

ι(φ( f )) = φH( E |H ( f ))

where, E |H ( f ) is the restriction onH of the advanced–minus–retarded propagator
E applied to an f ∈ C∞

0 (M) and φH(ψ) are the generators ofA (H) smeared with
ψ supported onH. The action of the restriction map preserves the ∗−operation and
the commutation relations

[φ( f ), φ(h)] = i E( f, h) = [φH( E |H ( f )), φH( E |H (h))].

Hence ι is a well defined ∗−homomorphism fromA (M) toA (H); in particular, the
pullback of a state onA (H) defines a state onA (M). OnA (H) we may introduce
a pure quasi–free state ωH which minimizes the energy computed with respect to
the conformal Killing field ∂τ . The construction of this state is very similar to the
one presented by Sewell [42] or by Kay and Wald [29]. The pullback of that state

ωM := ι∗(ωH)

defines a state on A (M). The obtained state is quasi–free, pure, homogeneous and
isotropic and thus its two–point function ΛM is of the form (6.6). Furthermore, it is
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possible to analyse the singular structure of ΛM by interpreting it as a composition
of distributions

ΛM = ( E |H ⊗ E |H) ◦ΛH .

It turns out that the state constructed in this way is of Hadamard form, in fact, the
wave front set condition (6.5) can be checked for ΛM using the propagation of
singularities theorem, see [12] for details.

The modes χk appearing in the two–point function ΛM of the Hadamard state
just constructed can be explicitly obtain by means of perturbation theory [12]. To
this avail we rewrite (6.7) as

χ ′′
k + (V0(k, τ )+ V (τ ))χk(τ ) = 0, (6.9)

where the unperturbed potential V0 and the perturbation are such that

V0(k, τ ) := k2 +
(

1

Hτ

)2 [
m2 + (6ξ − 1)2H

2
]
, V (τ ) = O(1/τ 3) .

The unperturbed equation coincides with the mode equation in an exact de Sitter
spacetime. We indicate by ρk the solution of the mode equation in this spacetime,
namely, the solutions of the unperturbed equation satisfying the following asymptotic
initial conditions

lim
τ→−∞ eikτ ρk(τ ) = 1√

2k
, lim

τ→−∞ eikτ ρ′
k(τ ) = i

√
k

2
.

Themodes χk can now be constructed bymeans of the retarded fundamental solution
of the free one–dimensional problem (6.9). To this end, let us introduce

rV ( f )(τ ) = i
∫ τ

−∞

(
ρk(τ )ρk(s)− ρk(s)ρk(τ )

)
V (s) f (s)ds

then the Dyson series ansatz for solving (6.9) reads

χk =
∞∑

n=0

rn
V (ρk) (6.10)

and one can show that this series converges at least on a time interval (−∞, τ0) ⊂
(−∞, 0). A similar construction has been employed by Anderson [5] to construct
vacuum–like states.

The Hadamard states constructed as above may be interpreted as asymptotic vac-
uum states towards τ → −∞. Generalising this, one may construct Hadamard states
which correspond to asymptotic thermal states as demonstrated in [10].
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6.2.4 Sorkin–Johnston States and Their Generalisations

Recently, a way of constructing states based on local properties of the spacetime was
proposed by Sorkin–Johnston, see [4] and reference therein. The basic idea is to con-
sider a spectral decomposition of the localised advanced–minus–retarded propagator
and restricting it to the positive part of the spectrum in order to obtain a vacuum–like
state. However, as argued in [18], the obtained states are not of Hadamard form and
do not behave well under a change of the localisation region.

To improve on this, Brum and Fredenhagen [6] showed that a smeared version
of the Sorkin–Johnston construction, which is loosely related to the construction of
states of low energy, yields as a result states that are of Hadamard form. In order to
illustrate this construction for cosmological spacetimes, let us recall that the integral
kernel of the advanced–minus–retarded propagator has the form

E(x1, x2) = lim
ε→0+

1

8π3a(t1)a(t2)

∫
R3

(
χk(t1)χk(t2)− χk(t1)χk(t2)

)
ei k·(x1−x2)e−kεdk

where the temporalmodesχk are arbitrary solutions of (6.7) and (6.8) since E(x1, x2)
does not depend on the particular choice of such χk . One now picks an f ∈ C∞

0 (M)

such that f is equal to 1 on N ⊂ M, where N = (N , g|N , o|N , t|N ), i.e. N
endowed with metric, orientation and time orientation induced from M, is required
to be a globally hyperbolic spacetime in its own right.

This function is then used to construct the operator

A := i f E f

which acts on the Hilbert space L2(N , dvolN ). One may show that this operator is
bounded and self-adjoint, hence, with standard functional calculus, it is possible to
construct its positive part

A+ := P+ A

where P+ is the spectral projection on the interval [0, |A|]. The Brum–Fredenhagen
generalisation of the Sorkin–Johnston state is then defined by the two–point function

Λ(h1, h2) := (h1, A+h2
)

for real–valued h1, h2 ∈ C∞
0 (N ) and one may show that the resulting state is

Hadamard.
The original Sorkin–Johnston construction corresponds to taking f to be the

characteristic function of N . The associated state constructed as above is not of
Hadamard form due to the failure of f to be regular at the future and past boundaries
of N .
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6.2.5 Further Comments

In all constructions of Hadamard states presented above, global aspects of spacetime
enter in an essential way either via smearing over finite intervals of time or by
demanding that the background spacetime has particular asymptotic properties. This
leads to potential complications in the analysis of the back–reaction of quantum
fields on the curved spacetime background via the semiclassical Einstein equation
(see the next section) because one would like to solve this equation in a local way.

Finally we would like to mention two further classes of Hadamard states on
cosmological spacetimes. A construction of Hadamard states via pseudodifferential
calculus, which is not restricted to, but applicable to FLRW spacetimes, was devel-
oped by Gerard and Wrochna [20]. Hadamard states which possess an approximate
local thermal interpretation have been constructed in [41], see [47] for a review.

6.3 Semiclassical Backreaction

In this section we shall discuss aspects of the semiclassical backreaction of matter
fields on the background metric in the case of cosmological spacetimes. To this end,
the equation we want to solve is the semiclassical Einstein equation

Gab = −8π〈Tab〉ω (6.11)

where 〈Tab〉ω is the expectation value of the stress tensor Tab of a quantum theoretical
model in some state ω. We shall accomplish this task considering only a very simple
model for matter, namely, a scalar field in a homogeneous and isotropic Hadamard
state. Note that the expectation values of the stress tensors of other kind of matter
like Dirac fields or electromagnetic fields behave qualitatively in a very similar way,
although their computation is more involved. We refer to [48] for the requirements
that the expectation value of Tab defined by means of a suitable renormalisation
prescription needs to satisfy in order to give rise to meaningful solutions of the
semiclassical Einstein equation.

In order to analyse and implement the backreaction, we need to study the expec-
tation values of the stress tensor in a sufficiently regular state ω. As reviewed in
the contribution of Fredenhagen and Rejzner in Chap.2, if we want to consider
local non–linear fields like Tab, the algebra generated by linear fields needs to be
deformed before being extended by these additional fields. In particular, the product
in the deformed algebra is

φ( f ) �H φ(g) = φ( f ) · φ(g)+ H( f, g).

Here · is the symmetric product in the classical theory and H must enjoy certain
properties:

http://dx.doi.org/10.1007/978-3-319-21353-8_2


266 T.-P. Hack and N. Pinamonti

• In order to preserve the commutation relations, its antisymmetric part must coin-
cide with the advanced–minus–retarded propagator E .

• In order to be able to extend �H to local non–linear fields, pointwise powers of
derivatives of H must be well–defined.

It is possible to satisfy the second condition by demanding thatH satisfies the wave
front set condition (6.5). Thanks to the work of Radzikowski [8, 39] we know that,
the two-requirements implies that the singular structure of H is of the form (6.4).

As the stateω is originally given on the undeformed algebra, we need to keep track
of its change under the discussed deformation by considering the pushforward of the
original state. Notice that, the pushforward of states under this deformation evaluated
on non–linear fields corresponds to point splitting regularisation (see also [48] for
the analysis of regularisation methods in connection with the semiclassical Einstein
equation). In particular we have that

〈φ(x) · φ(y)〉ω := Λ(x, y)− H(x, y)

and thus, with φ2(x) := limx→y φ(x) · φ(y),

〈φ2(x)〉ω := lim
x→y

(Λ(x, y)− H(x, y)) .

At this point it is important to stress that the previous two requirements do not
fix H completely. Having defined one H, it is always possible to obtain another
reasonable H adding a smooth, real–valued and symmetric function. The freedom
might be further restricted by requiring that H is constructed only based on local
properties of the spacetime so that the extended algebra of observables enjoys local
covariance [9, 24, 25]. This new requirement implies that the smooth part W in
H has to be constructed only out of local geometrical quantities. Even then there
is of course a residual freedom as we may change the value of λ in the logarithmic
singular contribution present inH, cf. (6.4), or more generally wemay add a smooth,
real–valued and symmetric function constructed out of local geometrical quantities.

Unfortunately local non–linear fields like the stress tensor are not invariant under
changes of this residual freedom, not even when further reasonable conditions are
added such as smooth/analytic dependence on ξ and m, conservation of the stress
tensor. See for instance [24] for a detailed discussion or this topic. This freedom in the
definition of non–linear fields is what is usually called renormalisation freedom.

Finally, it is important to stress that due to the requirement of local covariance,
H satisfies the equation of motion only up to smooth terms and it is in general not
possible to find a W inHwhich is local and rendersH aweak solution of the equation
of motion. In particular, choosing W = 0 inH as in (6.4), it holds that

8π2〈φPφ〉ω = 6[V1], 8π2〈(∇aφ)(Pφ)〉ω = 2∇a[V1]

where the fields are evaluated at the coinciding point, P is the differential operator
implementing the equation of motion (6.3) and [V1] is the coinciding point limit of
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the second coefficient in the Hadamard expansion of V in (6.4). This observation is
the source of the well–known trace anomaly present in the expectation values of the
stress tensor [49].

Taking into account the present discussion, the quantum stress tensor of the theory
may be explicitly constructed. For a detailed discussionwe refer to the original papers
of Moretti [33] and Hollands and Wald [26] and the contribution of Khavkine and
Moretti in Chap.5.

6.3.1 Analysis of the Components of T

We shall now discuss the various contributions to the expectation value of the
stress tensor in a Hadamard quantum state. Since we are assuming homogeneity
and isotropy, up to an initial condition, the Einstein equations (6.11) are equivalent
to their trace and the conservation of the stress energy tensor, namely,

R = 8π〈T 〉ω, ∇a〈Tab〉ω = 0.

The initial condition that needs to be fixed at τ = τ0 is 3H2(τ0) = 8π〈T00〉ω(τ0)−
3κ/a(τ0)2. We stress that this initial condition may not be freely chosen but is
uniquely determined by ω. Nonetheless, in many cases it is sufficient to consider
only the expectation value of the trace of the stress tensor. The various contributions
to this quantity may be classified as

〈T 〉ω = Tanomaly + Tren. f reedom + Tstate

where the individual terms are characterised as follows.

• The term Tanomaly quantifies the well–known trace anomaly [49]. In particular,
for a conformally coupled scalar field with mass m we have

Tanomaly = [V1]
4π2 = 1

2880π2

(
CabcdCabcd + Rab Rab − R2

3
+ �R

)
+ m4

4

where Cabcd is the Weyl tensor. Ignoring the �R–contribution, which we prefer
to subsume in Tren. f reedom , the stress tensor of this component is a perfect fluid
with an energy density and pressure given by

ρ = cH4 P = −c

(
4

3
Ḣ H2 + H4

)
c := 1

960π2 .

Notice that it is not possible to derive this anomalous term from a local effec-
tive action, see e.g. [40], moreover it cannot be written as a mixture of radiation,
dust and cosmological constant on cosmological spacetimes. If Ḣ > 0, then

http://dx.doi.org/10.1007/978-3-319-21353-8_5
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P/ρ < −1 and thus the anomalous contribution to the stress tensor behaves like
so-called “phantom energy”.

• The renormalisation freedom is of the form

Tren. f reedom = αm4 + βm2R + γ�R . (6.12)

This contribution can be obtained from an action defined by a Lagrangean of the
form

α′m4 + β ′m2R + γ ′
1R2 + γ ′

2Rab Rab .

Note that this implies that the anomalous contribution cannot be cancelled by the
renormalisation freedom. This freedom in the definition of Tab and thus T occurs
because there is no intrinsic way to define the “correct” Tab to serve as the right
hand side of the semiclassical Einstein equation within quantum field theory on
curved spacetimes as already outlined in the general discussion in the previous
subsection. This problem does not play a role for non–gravitational laboratory
experiments, where only differences of expectation values in two states are mea-
sured and thus this renormalisation freedom plays no role. However, gravity is
sensitive to the absolute value of 〈Tab〉ω and thus the four constants parametrising
Tren. f reedom can (only) be fixed by a sufficient amount of observational data. Note
that, by a suitable choice of γ ′

1 and γ ′
2 we can cancel from the trace the terms

depending on derivatives of the metric coefficients higher than the second. This
is necessary in order to control the solution of the semiclassical Einstein equation
with the same amount of initial values used to control the corresponding classical
problem, see e.g. [48] for an extensive discussion.

• Finally, the state–dependent part is

Tstate = m2〈φ2〉ω .

From (6.6) and (6.7) it becomes clear that Tstate is a complicated functional of the
scale factor a(τ ), thus it is non–trivial to control the state–dependent contribution
in general, which complicates the solution theory of the semiclassical Einstein
equation in the massive case.

6.3.2 Existence and Uniqueness of Solutions
of the Semiclassical Einstein Equation in Cosmology

In this subsection we shall briefly review results about exact solutions of the semi-
classical Einstein equation in cosmological spacetimes obtained in [38]. To this end,
we recall that, since the stress tensor we employ is covariantly conserved, up to an
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initial value constraint, it suffices to consider the equation

6(Ḣ + 2H2)− 4Λ = 8π〈T 〉ω. (6.13)

Furthermore, recalling the previous discussion, we fix the the renormalisation con-
stants α and β in (6.12) in such a way that the renormalisation of the Newton constant
and that of the cosmological constant vanish. Finally, we chose γ in such a way that
�R terms do not explicitly appear in the trace of the stress tensor. For completeness,
the chosen values of the three renormalisation constants are

α = 1

32π2 , β = 1

288π2 , γ = − 1

2880π2 .

Writing (6.13) in integral form we obtain a functional Volterra equation for the
function H(τ )

H = H0 +
∫ τ

τ0

a

H2
c − H2

(
H4 − 2H2

c H2 + 240π2(m2〈φ2〉ω + 4Λ̃
))

dη,

with H2
c := 1440π2/(8π) = 180π/G and Λ̃ := Λ/(8π). Moreover, we note that

both the scale factor a and the expectation value 〈φ2〉ω are functionals of H . For
completeness we recall the explicit form of the constraint

H2
0 = 8π

3
(ρ(τ0)+Λ) .

The previous integral equation can be rewritten abstractly as

H = F(H) with F(H)(τ ) := H0 +
∫ τ

τ0

f (H)(η) dη. (6.14)

This expression exhibits the structure of a Volterra integral equation, however, since
f is a functional of H and not an ordinary function, its integral kernel is an integro–
differential operator depending on the chosen state ω.

In order to carry on the analysis of this equation, we would like to chose a state
ω in every flat cosmological spacetime based only on the properties of the metric at
τ0. Unfortunately, recalling the discussion presented in Sect. 6.2, we can only obtain
states of adiabatic type from finitely many derivatives of the metric at τ0, and, if we
want to employ only derivatives of the metric up to the second order as initial values,
the obtained state will be an adiabatic state of order one. In the case of conformal
coupling, already adiabatic states of order zero are sufficiently regular to render the
expectation values of the stress tensor finite. Hence, for simplicity we shall employ
this class of states in the following.
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6.3.2.1 Local Solutions

In order to study the local existence and uniqueness of solutions of (6.14) we need to
control the state–dependent part 〈φ2〉ω in an adiabatic state of order zero by H(τ0)
and a(τ0). We recall that, up to an inessential renormalisation freedom,

〈φ2〉ω = 1

2π2a2

∫ ∞

0

[
χkχk − 1√

k2 + m2a2

]
k2dk (6.15)

where the χk are adiabatic modes of order zero in τ0 which can be constructed by
perturbation theory as in (6.10) perturbing the massless conformally invariant modes
(see [38] for a detailed analysis). Furthermore, perturbation theory permits to prove
that the expectation value 〈φ2〉ω computed as in (6.15) and hence f (H) in (6.14) are
continuously Gâteaux differentiable in the continuous function H ∈ C[τ0, τ1] for
arbitrary but fixed τ0, τ1 and a0 = a(τ0)

With this result at hand it is now easy to get the following theorem taken from [38],
whose proof is done constructing a contraction map out of the Gâteaux differentiable
f (H) and then to use the Banach fixed point theorem.

Theorem 6.3.1 Let (a0, H0), a0 > 0, |H0| < Hc, be some initial conditions fixed
at τ0 for the functional equation (6.14). There is a non-empty interval [τ0, τ1] and a
closed subset U ⊂ C[τ0, τ1] on which a unique solution to (6.14) exists.

This theorem guarantees the existence and uniqueness of local solutions of the semi-
classical Einstein equations on cosmological spacetimes.

6.3.2.2 Global Solutions

Having established local existence of solutions of (6.14) in a short interval of time
[τ0, τ1) we would like to show that in fact the obtained solution can always be
extended further provided no singularity is encountered at τ1. Again the perturbative
construction of the adiabatic modes χk permits to control the regularity of 〈φ2〉ω also
far away from τ0. In particular, again 〈φ2〉ω is continuously Gâteaux differentiable
for perturbations in every interval [τ1, τ2] in the future of τ0. We may recall a further
theorem taken from [38].

Theorem 6.3.2 Consider a solution H∗(τ ) in C[τ0, τ1] of the functional equation
(6.14). If the solution is regular in [τ0, τ1], namely, if neither a, H∗ nor H ′∗ are
singular at τ1, then it is possible to find a τ2 > τ1 such that the solution H∗ can be
extended uniquely to C[τ0, τ2) and that the solution is regular therein.

Since the solution may be extended we may thus consider the set of all possible
regular solutions S in the future of τ0 with fixed initial values in τ0. If we indicate
by HI the solution of (6.14) supported on the interval I , we may equip S with the a
partial order relation

HI ≤ HJ if I ⊂ J.



6 Cosmological Applications of Algebraic Quantum Field Theory 271

Hence, by Zorn’s lemma applied to the set of all solutions with the given initial values
we have that the maximal regular solution of (6.14) exists in S. Finally, uniqueness
of that solution can again be obtained by an application of Theorem 6.3.2.

Apart from this analytic approach to solving the semiclassical Einstein equation
there have been efforts to solve this equation numerically. Herewewould like to point
out early work by Anderson [5] and also the recent work of Eltzner and Gottschalk
[16] which have cast the coupled system of the Klein–Gordon equation for themodes
χk defining the state ω and the semiclassical Einstein equation into a form of a
dynamical system which is particularly suited for numerical integration.

6.3.3 Comparison with the ΛCDM–Model

In the standardmodel of cosmology—theΛCDM–model—one assumes that on large
scales the spacetime is a FLRW spacetime, which may be taken to have flat spatial
sections as this is preferred by observations. The dynamics of the spacetime, and thus
of the scale factor a, are determined by the Einstein equations, whereby it is assumed
that the matter–energy content can be macroscopically subsumed into a perfect fluid
stress tensor which contains various components with a particular equation of state.
As we expect that quantum field theory on curved spacetimes provides an accurate
fundamental microscopic description of all matter–energy in the universe, it should
be possible to derive the particular perfect fluid stress tensorwhich is taken as an input
for theΛCDM–model within quantum field theory on curved spacetimes. While this
approach may seem to be an unnecessary complication of the subject, it may provide
a bridge between foundational results of quantum field theory on curved spacetimes
and observations and could thus be a starting point for analysing potential quantum
effects on the expansion of the universe. In this section we would like to briefly
review results in this direction obtain in [21].

In the last chapter we have used the symmetry of FLRW spacetimes to replace
the semiclassical Einstein equation on these spacetimes by its trace, the conservation
of the stress tensor and an initial condition at an arbitrary but fixed conformal time
τ0. For the purpose of the following discussion it is more suitable to consider the
conservation of the stress tensor and the time–time–component of the (semiclassical)
Einstein equation as an equivalent formulation of the full equations. This component,
the so-called (first) Friedmann equations reads in the classical case

H2 = 8π

3
ρ .

According to theΛCDM–model, our universe containsmatter, radiation, and dark
energy,modelledmacroscopically as perfect fluidswith an equation of state P = wρ,
w = 0, 13 ,−1 for matter, radiation and Dark Energy (assuming that the latter is just
due to a cosmological constant) respectively. Consequently, the Friedmann equation
can be conveniently rewritten as
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H2

H2
0

= ρΛCDM

ρ0
= ΩΛ + Ωm

a3 + Ωr

a4 , ρ0 = 3H2
0

8π
, (6.16)

where H0 is the present Hubble rate—the Hubble constant—and the constants ΩΛ,
Ωm ,Ωr denote the present fractions of the energy density due to dark energy, matter
and radiation respectively. Observations indicate approximately

Ωm = 0.3, Ωr = 10−4, ΩΛ = 1 −Ωm −Ωr (6.17)

see [1] for the latest exact values from the Planck collaboration. In the context of
cosmology the terms “matter” and “radiation” subsume all matter-energy with the
respective macroscopic equation of state such that e.g. “radiation” does not encom-
pass only electromagnetic radiation, but also the three left-handed neutrinos present
in standard model of particle physics (SM) and possibly so-called dark radiation, and
“matter” subsumes both the baryonic matter which is in principle well-understood
in the SM and dark matter. Here, dark matter and dark radiation both quantify con-
tributions to the macroscopic matter and radiation energy densities which exceed the
ones expected from the knowledge of the SM and are believed to originate either
from fields not present in the SM or from other sources, i.e. modifications of classical
general relativity.

Reproducing (6.16) within quantum field theory on curved spacetimes amounts to
choosing an appropriate field theoretic model, presumably (an extension of) the stan-
dard model of particle physics, and a suitable homogeneous and isotropic Hadamard
state ω for this model such that the semiclassical Einstein equations are satisfied and
that the energy density 〈T00〉ω in this state is qualitatively and quantitatively of the
form (6.16) up small corrections. Clearly this is quite an ambitious task because com-
puting 〈T00〉ω for the full interacting standard model of particle physics is non–trivial
and, as we have seen in the previous section, it is indeed possible to construct analytic
solutions of the semiclassical Einstein equations, but these solutions are not easily
accessible for quantitative analyses. Thus, for a first analysis, we shall considerably
simplify the problem in various ways.

• We completely disregard the field interactions and consider only free fields. To
legitimate this, we introduce yet another time variable, the redshift

z := a0
a

− 1 (6.18)

where a0 = 1 is the scale factor of today and we note that z = 0 marks the present
and that z is a monotonically decreasing function of either t or τ if the Hubble rate
H is strictly positive which is compatible with observations and the regularity of
the FLRWmetric. Wemay now recall that it is commonly expected that field inter-
actions become negligible on cosmological scales for redshifts smaller than 109,
which is approximately the time when the primordial synthesis of light nuclei—
the so-called Big Bang Nucleosynthesis—has ended. In the ΛCDM–model this
assumption enters by demanding that the stress tensor of each perfect fluid is
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separately conserved. In the following we shall thus consider only the time inter-
val z ∈ [0, 109].

• We shall consider only scalar fields as a toy model for the matter content of the
universe. In order to model both matter and radiation, i.e. massive and massless
fields, we shall consider two scalar fields where one is massive, the second is
massless and both are conformally coupled.

• We solve the semiclassical Einstein equation in the following approximate sense.
We assume that the spacetime is determined by a scale factor which is an exact
solution of (6.16). On this spacetime we seek to find a pair of quantum states ωm

and ω0 for the massive and massless scalar field such that the sum of the energy
densities in this states satisfies

〈T00〉ω0 + 〈T00〉ωm

ρ0
= ΩΛ + Ωm

a3 + Ωr

a4 = ρΛCDM

ρ0
(6.19)

and (6.17) up to suitably small corrections in the time interval of interest z ∈[
0, 109

]
.

In order to pursue the strategy outlined above, we need to make a suitable ansatz
for the Hadamard states ωm and ω0. As the radiation component in the ΛCDM–
model is assumed to be of thermal nature and the same is often assumed for dark
matter, which is the major part of the matter component in the ΛCDM–model, we
seek to findωm andω0 among the quasi–free states defined by the two–point function

Λ(x1, x2) := lim
ε→0+

1

8π3a(t1)a(t2)
(6.20)

×
∫
R3

(
χk(t1)χk(t2)

1 − e−βk0
+ χk(t1)χk(t2)

eβk0 − 1

)
ei k·(x1−x2)e−kεdk

with k0 :=
√

k2 + m2a2
F for a fixed constant aF and where we assume that χk are

the modes defining a state of low energy. These states match the almost equilibrium
states introduced by Küskü [31] up to the form of k0 and their Hadamard property
follows from results of [36, 50]. In the massless case, these states are independent of
aF and satisfy the conformal KMS condition with respect to the conformal Killing
vector ∂τ . In the massive case, they may be considered to describe approximately the
quantum state of a field which has been in thermal equilibrium in the distant past,
and has “frozen out” of equilibrium at the time a = aF .

To discuss the energy density of the massless and massive conformally coupled
scalar fields in this class of states, we rewrite it as follows

〈T00〉ω0 + 〈T00〉ωm

ρ0
(6.21)
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= ρm
gvac + ρ0gvac + ρm

gth + ρ0gth
ρ0

+ γ H4

H4
0

+ΩΛ + δ H2

H2
0

+ ε J00
H4
0

,

where J00 is the time–time–component of a conserved geometric tensor Jab whose
trace is equal to �R.

The first terms in (6.21) denote the genuinely quantum state dependent contribu-
tions to the energy densities of the two quantum fields, whereas the last four terms
denote the contribution from the trace anomaly (γ ) and the renormalisation free-
dom (ΩΛ, δ, ε). We have split the state–dependent contributions into parts which
are already present for infinite inverse temperature parameter β in the generalised
thermal states (6.20), and thus could be considered as contributions due to the states
of low energy as generalised vacuum states (ρm

gvac, ρ
0
gvac), and into the remaining

terms, which may be interpreted as purely thermal contributions (ρm
gth, ρ

0
gth).

We start our quantitative discussion of (6.21) by considering the geometric terms
and take the point of view that δ, which effectively renormalises Newton’s constant,
is not a free parameter because Newton’s constant has been measured already. One
could also take amore conservative point of viewandconsider δ to be a free parameter,
in this case comparison with cosmological data, e.g. from big bang nucleosynthesis,
would presumably constrain δ to be very small. The trace anomaly contribution in
(6.21) proportional to γ is not present in the ΛCDM-model and is thus a genuine
quantum and state–independent contribution to the quantum energy momentum ten-
sor.Onehasγ � 10−122 for two scalar fields and, as, H < H0z2 in theΛCDM-model
for large redshifts, this term can be safely neglected for z < 109. The cosmological
constant contribution ΩΛ in (6.21) is part of the regularisation freedom and thus a
free parameter just like in the ΛCDM-model. Finally, the remaining regularisation
freedom contribution quantified by ε also constitutes an extension of the ΛCDM-
model by the new free parameter ε. In order to fulfil the goal of this section, one
may simply set ε = 0, but small non-zero values of ε are also compatible with
observations and may have interesting physical implications, see [21] for details.

Coming to the state–dependent contributions to (6.21), it has been shown in [21]
that, up to the freedom parametrised byΩΛ, δ and ε, ρ0gvac = 0 for arbitrary sampling
functions f defining the state of low energy–modes χk , whereas ρm

gth/ρΛCDM � 1
for small masses m � H0 and large masses m � H0 if the sampling function f has
sufficiently large support in time. This generalises results obtained by Degner on de
Sitter spacetime [14] and indicates that states of low energy with broad sampling
functions are reasonable generalised vacuum states on FLRW spacetimes.

As for the thermal contributions, one finds in the massless case

ρ0gth = Ωr

a4 with Ωr = π2

30β4
.

Up to degree of freedom factors, this gives the ΛCDM value Ωr � 10−4 if the
temperature parameter 1/β is in the range of the cosmic microwave background
temperature 1/β � 2.7K. In the massive case, one can take typical values of β, aF
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and m from Chap.5.2 in [30] computed by means of effective Boltzmann equations.
A popular candidate for darkmatter is a weakly interactingmassive particle (WIMP),
e.g. a heavy neutrino, for which [30] computes

xF = βaF m � 15 + 3 log(m/GeV) aF � 10−12(m/GeV)−1 .

Using this one finds for large m

ρm
gth � 1

(2π)3/2
m

β3a3 x
3
2
F e−xF ,

and thus Ωm � 0.3 for m � 100 GeV.

6.3.4 Beyond the Semiclassical Einstein Equation

In the next–to–last section we have discussed the existence of solutions of the semi-
classical equation

Gab = −8π〈Tab〉ω .

However, this equation equates a classical deterministic quantitywith the expectation
value of the quantum stress tensor in a suitable state. The possible realisations of
Tab in a state ω are distributed according to a certain probability distribution, whose
moments are described by 〈T n

ab〉ω. Hence, the semiclassical equation has a meaning
as an effective mean field equation only when the probability distribution is sharply
peaked around the mean value 〈Tab〉ω. A necessary condition for this to hold is that
the correlations 〈TabTab〉ω are negligible with respect to 〈Tab〉2ω. However, this is not
the case, because

lim
x→y

〈Tab(x)Tab(y)〉ω

diverges. If the variance of 〈Tab〉ω is not negligible, like in the case of Brownian
motion, the semiclassical Einstein equation could still make sense as a stochastic
equation. In other words it could be understood as an Einstein-Langevin equation
[27], namely an equation among probability distributions

Gab(x) = −8πTab(x) .

Hence, assuming this point of view, Gab(x) acquires the meaning of a stochastic
field and wemay try to study the passive influence of matter fluctuations on curvature
fluctuations. However, in spite of recent successful attempts for some special cases
[19], it is not easy to compute probability distribution for Tab in ω. Notwithstanding,
indicating

δGab = Gab − 〈Gab〉 , δTab = Tab − 〈Tab〉ω
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we can equate their moments

〈Gab(x)〉 = −8π〈Tab(x)〉ω
〈δGab(x1)δGcd(x2)〉 = (−8π)2〈δTab(x1)δTcd(x2)〉ω

. . .

〈δGn(x1, . . . , xn)〉 = (−8π)n〈δT n(x1, . . . , xn)〉ω.

In this way we notice that it is, at least in principle, possible to evaluate the passive
influence of matter fluctuations on metric perturbations and one may apply this to
the treatment of inflationary cosmology where quantized metric perturbations play
an important role see [37] for details. The advantage of this point of view over
the standard approach, which we review in the next section, is that the state for
matter perturbations, which induces a state for the curvature perturbations as well,
may not be selected freely but is strongly constrained by the semiclassical Einstein
equation. Furthermore, since the correlations of Tab(x) are more complicated than
in Wiener processes or Brownian motions, non–Gaussianities, which are of interest
in inflationary cosmology, naturally arise.

6.4 Analysis of Perturbations in Inflation

A prominent application of quantum field theory in curved spacetime is the analysis
of perturbations in inflation. In the simplest models of inflation, the characteristic
exponential expansion is driven by the energy density of a classical scalar field
ϕ. The perturbation φ of this field, combined in a gauge–invariant way with the
perturbationsγ of the classicalmetric g, are considered as quantumfields propagating
on the classical background Mϕ = (M, g, o, t, ϕ), where M = (M, g, o, t) is a
spatially flat FLRW spacetime and ϕ depends only on time in the homogeneous and
isotropic FLRW coordinates. Rephrased in more abstract terms, one may say that
the analysis of perturbations in inflation consists in quantizing the field theory of the
tuple G = (g, ϕ)t peturbatively around a background which satisfies the classical
Einstein equation and is of FLRW-type. This perturbative quantum field theory is
usually truncated at linear order.

The standard textbook treatment of the quantum theory of perturbations in infla-
tion, see e.g. [43], consists in using the FLRW-symmetry of the background Mϕ in
order to split the metric perturbation γ into components which transform as scalars,
vectors and tensors under the isometry group of FLRW-backgrounds, the Euclidean
group E

3. Subsequently, gauge–invariant linear combinations of these components
and the scalar field perturbation φ are identified and quantized in a canonical fashion.
As the above-mentioned splitting is non–local and depends heavily on the FLRW-
symmetry, it is a priori not clearwhether it captures all local observables of the theory.
A systematic analysis of this issue from the point of view of algebraic quantum field
theory has been performed in [22], in this section we shall review the main steps
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and results of this analysis. For simplicity we consider the special and commonly
assumed case where the scalar field is minimally coupled to the metric, the case of
general coupling is treated in [22].

6.4.1 Quantization of the Linearised Einstein–Klein–Gordon
System on Arbitrary On–Shell Backgrounds

Wefirst consider the quantization of the linearised Einstein–Klein–Gordon systemon
arbitrary backgrounds Mϕ = (M, g, o, t, ϕ), such thatM is four-dimensional, M =
(M, g, o, t) is globally hyperbolic, and G = (g, ϕ)t satisfies the coupled Einstein–
Klein–Gordon equations. Later we point our attention towards such backgrounds Mϕ

which are in addition of FLRW-type and compare the general quantization procedure
with the usual approach to the quantization of perturbations in inflation.

To this avail, we introduce the vector bundles overMV :=∨2 T ∗M⊕(M × R),
where

∨
denotes the symmetric tensor product, andW := TM. The space of smooth

sections of a vector bundle such as V will be denoted by Γ (V). Important subspaces
of Γ (V) are Γ0(V) and Γsc(V) the space of smooth sections of compact and space-
like compact support, respectively. Both the background fieldsG = (g, ϕ)t and their
perturbations Γ = (γ, φ)t are elements of Γ (V), whereas gauge-transformations
(linearised diffeomorphisms) will be parametrised by ς ∈ Γ (W). We introduce on
such sections symmetric and non–degenerate bilinear forms by

〈Γ1, Γ2〉V :=
∫

M

(
gabgcdγ1,acγ2,bd + φ1φ2

)
dvolM ,

〈ς1, ς2〉W :=
∫

M
gabς1,aς2,b dvolM .

These bilinear forms are well–defined for pairs of sections with compact overlapping
support.

The starting point of the analysis is the Einstein–Hilbert–Klein–Gordon action
for G = (g, ϕ)t ∈ Γ (V)

S(G) =
∫

M

(
R

16π
+ (∇aϕ)∇aϕ

2
− V (ϕ)

)
dvolM ,

where V (ϕ) is an arbitrary smooth potential. The Euler–Lagrange equations of S(G)
are the Einstein–Klein–Gordon–equations

Γ (V) � E L(G) =
( 1

16π (Gab + 8πTab)

�ϕ + ∂ϕV

)
= 0 .
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In order to obtain the linearised theory, we split G into a background G (which,
slightly abusing notation, we denote by the same symbol) and a perturbation Γ and
formally expand (omitting boundary terms)

S(G + Γ ) = S(G)− 〈E L(G), Γ 〉V − 1

2
〈Γ, PΓ 〉V + O(Γ 3).

Here P is a second order partial differential operator (see [22]) which is formally
self-adjoint w.r.t. 〈·, ·〉V .

S(G + Γ ) is invariant under diffeomorphisms of M, in particular under those
generated by an arbitrary but fixed compactly supported vector field ς ∈ Γ0(W).
Given such a diffeomorphism, G + Γ transforms as

G + Γ �→ G + Γ + LςG + LςΓ + O(ς2) ,

where Lς denotes the Lie derivative w.r.t. ς . To first order in ς and Γ , the
diffeomorphism-invariance of S(G + Γ ) reads

PLςG = Lς E L(G) ,

where the term on the right hand side arises from the LςΓ contribution of the
transformed G + Γ . These observations imply the following: we may consis-
tently truncate the diffeomorphism–invariant field theory for G + Γ at joint lin-
ear order in Γ and ς if and only if we assume that the background G is on–shell,
i.e. E L(G) = 0.1 In this case, onemay thinkof the linearisedEinstein–Klein–Gordon
theory as originating from the quadratic action

S(2)(Γ ) := −1

2
〈Γ, PΓ 〉V ,

which is for all ς ∈ Γ0(W) invariant under the affine transformation

Γ �→ Γ + LςG .

Defining K : Γ (W) → Γ (V) by Kς := LςG, we may express this gauge-
invariance as

P ◦ K = 0 .

This automatically implies that the equation of motion PΓ = 0 for the perturbations
does not have a well–posed Cauchy problem as non–trivial solutions with compact
support exist.

We would like to quantize the linearised Einstein–Klein–Gordon theory in a
gauge–invariant manner following the strategy of [13], which deals with the electro-

1Strictly speaking Lς E L(G) = 0 is satisfied even if �ϕ + ∂ϕV = c with c constant but non–zero.
However, one may absorb c by redefining V (ϕ).
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magnetic vector potential. This strategy has been further pursued in [17] to quantize
linearised gravity on cosmological vacuum spacetimes, and axiomatised in [23]. In
order to cast the linearised Einstein–Klein–Gordon theory into a form which satis-
fies the axioms of [23], such that the results of this work may be readily applied,
we introduce a field redefinition which generalises the trace–reversal well–known
from linearised gravity (the appearing numerical factors are introduced in order to
homogenise the normalisation of the γ –γ and φ–φ components of the principal
symbol of P).

�· : Γ (V) �→ Γ (V) Γ =
(
γab

φ

)
�→ �Γ =

⎛
⎝− 1

32π

(
γab − 1

2
gabγ

c
c

)

φ

⎞
⎠

Using this field redefinition, we may now define

�P := P ◦ �· −1 �K := �· ◦ K 〈·, ·〉�V := 〈�· −1, ·〉V Θ :=
(
θab

φ

)
:= �Γ .

These definitions are tailored in such a way that the second order action for Γ may
now be re-written as

S(2)(Γ ) = −1

2
〈Γ, PΓ 〉V = −1

2
〈Θ, �PΘ〉�V =: �S(2)(Θ) .

Moreover,�S(2)(Θ) is invariant under the affine transformationΘ �→ Θ+ �Kς for all
ς ∈ Γ0(W), 〈·, ·〉�V is symmetric and non-degenerate and �P is formally self-adjoint
w.r.t. the redefined bilinear form.

Summing up, wemay now consider the linearised Einstein–Klein–Gordon system
as a linear gauge theory defined by the tuple (Mϕ,V,W, �P, �K ), where Mϕ plays
the role of the background, the dynamical field Θ ∈ Γ (V) is a smooth section of
V which satisfies the equation of motion �PΘ = 0 with a formally selfadjoint �P
and the gauge-invariance of the theory is encoded in the relation �P ◦ �K = 0 which
implies that Γ (W), via �K , parametrises the gauge transformations of the model. As
shown in [22], (Mϕ,V,W, �P, �K ) enjoys three further structural properties which
are essential for the gauge–invariant quantization of this model:

1. There exists a “hyperbolic gauge fixing operator” T : Γ (W) → Γ (V) such that

P̃ := �P + T ◦ �K † = ∇a∇a + lower orders

is normally hyperbolic. Here, �K † is the adjoint of �K defined by 〈�K †Γ, ς〉W :=
〈Γ, �Kς〉�V for all Γ ∈ Γ (V), ς ∈ Γ (W) with compact overlapping support. T
is not unique but we shall see that the following constructions are independent
of T .

2. One may choose T above in such a way that �K † ◦ T is also normally hyperbolic,
e.g. T = 2�K . This entails that the “gauge-fixing condition” �K †Θ = 0 for
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solutions of P̃Θ = 0, which implies that such Θ satisfy in fact PΘ = 0, is
compatible with P̃-dynamics; in other words, it is satisfied on the full spacetime
once it holds on a Cauchy surface.

3. �K † ◦ �K is normally hyperbolic as well and thus the condition �K †Θ = 0 can
always be satisfied by means of a suitable gauge transformation.

The structural properties of the linearised Einstein–Klein–Gordon system dis-
cussed so far imply that this model satisfies all axioms of linear gauge theories
proposed in [23], and thus one may straightforwardly quantize this field theory in a
gauge–invariant manner on arbitrary on–shell backgrounds by means of the results
in [23]. The basic idea is the following. We consider the spaces

Sol := {Θ ∈ Γ (V) | �PΘ = 0} �G := �K [Γ (W)] .

The space of gauge-equivalence classes of solutions Sol/�G may be interpreted as the
space of pure states in the classical linearised Einstein–Klein–Gordon field theory.
The space of (regular) linear functionals on Sol/�G is parametrised by

�E := Ker0
(�K †

)/�P [Γ0(V)] Ker0
(�K †

)
:= {h ∈ Γ0(V) | �K †h = 0}.

Indeed, it is not difficult to check that the dual pairing

Sol/�G × �E � ([Θ], [ f ]) �→ 〈[Θ], [ f ]〉 := 〈Θ, f 〉�V

is independent of the representatives and thus well–defined. �E thus conveniently
parametrises linear and gauge–invariant local obervables in the classical field theory.
In order to endow �E with a pre–symplectic structure, we consider the advanced–
minus–retarded operator EP̃ of the normally hyperbolic gauge–fixed equation of
motion operator P̃ = �P + T ◦ �K † and define a bi-linear form�σ on �E by

�σ([ f1], [ f2]) := 〈 f1, EP̃ f2
〉
�V .

One may prove that the abstract properties of (Mϕ,V,W, �P, �K ) imply that�σ satis-
fies the following properties and thus indeed defines a pre–symplectic structure on
�E [23]:

• �σ is independent of the representatives and thus well–defined.
• �σ is antisymmetric.
• �σ is independent of the gauge-fixing operator T appearing in the definition of P̃ .

The last property follows essentially from the fact that the gauge-fixing term T ◦ �K †

in P̃ is “invisible” to [ f ] ∈ �E because �K † f = 0; thus �σ may be regarded as being
“gauge–invariant” in that sense. One may also understand this gauge-invariance
as follows. Analogously to the well-known fact that the advanced–minus–retarded
operator of a hyperbolic PDE constitutes a bijection between equivalence classes
of test–sections and spacelike-compact solutions, one can show that EP̃ induces a
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bijection between �E and suitable gauge-equivalence classes of spacelike-compact
solutions of �PΘ = 0. This by its own motivates to view EP̃ as an “effective”
advanced–minus–retarded operator of �P . By means of this bijection on may then
re–express �σ as an equivalent bilinear form on the aforementioned suitable gauge–
equivalence classes of spacelike–compact solutions, which is manifestly gauge–
invariant.

The field redefinition�· was helpful for uncovering important structural properties
of the linearised Einstein–Klein–Gordon system (Mϕ,V,W, �P, �K ), however it is
merely a computational trick and not of physical significance. To see this explicitly,
we consider the spaces related to the original system (Mϕ,V,W, P, K ):

Sol := {Γ ∈ Γ (V) | PΓ = 0} G := K [Γ (W)]

E := Ker0
(

K †
)/

P [Γ0(V)] Ker0
(

K †
)

:= {h ∈ Γ0(V) | K †h = 0}.

It is not difficult to see that �E = E and as before, we may now observe that E
parametrises linear functionals on Sol/G. Due to

〈Γ, h〉V = 〈�Γ , h〉�V

the physical interpretation of these linear functionals in terms of local observables is
manifestly independent of the field redefinition. Finally, it follows from the previous
discussion that

P̃ ◦�· = P + T ◦ K † ◦�·

is not normally hyperbolic, but possesses unique advanced and retarded Green oper-
ators. The advanced–minus–retarded operator of P̃ ◦�· is�· −1 ◦ EP̃ and the induced
bilinear form on E

σ([h1], [h2]) :=
〈
h1,
[
�· −1 ◦ EP̃

]
h2

〉
V

manifestly equals�σ .
Given the pre–symplectic space (E, σ ) = (�E,�σ) of gauge–invariant linear observ-

ables of the linearised Einstein–Klein–Gordon system, the corresponding gauge–
invariant algebra of observables may be obtained by construction either the poly-
nomial algebra or the Weyl-algebra corresponding to (E, σ ), as explained in the
contribution of Benini and Dappiaggi in Chap.3. Note that, in contrast to linear
theories without gauge–invariance, the resulting canonical commutation relations

[Γ (h1), Γ (h2)] = i
〈
h1,
[
�· −1 ◦ EP̃

]
h2

〉
V

do not make sense in “unsmeared form”.

http://dx.doi.org/10.1007/978-3-319-21353-8_3
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6.4.2 The Special Case of Perturbations in Inflation

After discussing the gauge–invariant quantisation of the linearised Einstein–Klein–
Gordon system on general on–shell backgrounds Mϕ = (M, g, o, t, ϕ), we consider
the special case of FLRW-type on–shell backgrounds with flat spatial sections, which
is the field–theoretic model of perturbations in inflation. We recall that these back-
grounds are characterised by

g = a(τ )2(dτ 2 − dx2) ϕ(τ, x) = ϕ(τ) .

Two reoccurring important quantities are

H := a′

a
= aH z := aϕ′

H
and we shall indicate spatial indices in the homogeneous and isotropic FLRW-
coordinates by Latin letters i, j, k, . . .. We shall use the convention that these indices
will be raised and lowered by means of the Euclidean metric δi j rather than by means
of the induced metric a(τ )2δi j .

In the following discussion, a special role is played by sections which vanish at
spatial infinity (with all derivatives).

Γ∞(V) := {Γ ∈ Γ (V) | ∂i1 · · · ∂inΓ (τ, x) vanishes for |x| → ∞ for all n ∈ N0}

Γ∞(W) := {ς ∈ Γ (W) | ∂i1 · · · ∂inς(τ, x) vanishes for |x| → ∞ for all n ∈ N0}

Namely, one can uniquely split Γ = (γab, φ)
t ∈ Γ∞(V) as

γab = a(τ )2
(

2A (∂i B − Vi )
t

∂i B − Vi −2
(
∂i∂ j C + δi j D + ∂(i W j) + Ti j

)
)

A, B,C, D ∈ C∞∞(M,R) , V,W ∈ C∞∞(M,R3) , ∂ i Vi = ∂ i Wi = 0

T ∈ C∞∞(M,
∨2

R
3) , T i

i = 0 , ∂ i Ti j = 0 .

The components B,C, D,Wi are solutions of certain Poisson equations, e.g.

ΔB = ∂ iγ0i

a2

and the uniqueness of the above splitting results from the unique solvability of such
equations under the assumption that the solutions vanish at infinity. For the same
reason, such a splitting for general Γ ∈ Γ (V) can only be unique up to harmonic
functions. In fact, this non-uniqueness is a non–trivial obstacle for proving that a
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splitting which is smooth in τ exists in general, though we presume that this is
the case. Notwithstanding, we shall only need the existence and uniqueness of the
splitting for Γ∞(V) in the following.

Owing to their transformation properties under the Euclidean group E
3, the com-

ponents A, B,C, D, φ of a section in Γ ∈ Γ∞(V) are called “scalar”, Vi ,W j are
called “vector” and Ti j are called “tensor” and similarly for the components of
ς ∈ Γ∞(W). Following this nomenclature, we say that Γ = (γab, φ)

t ∈ Γ (V)…
…is of scalar type if γab can be split as above with Vi = Wi = Ti j = 0.
…is of vector type if φ = 0 and γab can be split as above with A = B = C =
D = Ti j = 0.
…is of tensor type if φ = 0 and γab can be split as above with A = B = C =
D = Vi = Wi = 0.

Based on this we define the following section spaces.

Γ S/V/T (V) := {Γ ∈ Γ (V) |Γ is of scalar/vector/tensor type}

Γ
S/V/T
∞/0 (V) := Γ∞/0(V) ∩ Γ S/V/T (V)

The existence and uniqueness of the splitting of sections vanishing at spatial infinity
may be cast in the following form

Γ∞(V) = Γ S∞(V)⊕ Γ V∞(V)⊕ Γ T∞(V)

and one may check that the splitting is orthogonal w.r.t. 〈·, ·〉V and 〈·, ·〉W . However,
the splitting is non–local in space, and thus one has

Γ0
S(V)⊕ Γ0V (V)⊕ Γ0T (V) � Γ0(V) !

Similar splitting results hold for ς ∈ Γ∞(W) and we extend the above nomenclature
to this case in the obvious way.

By the existence and uniqueness of the splitting, the individual components induce
well–defined functionals on Γ∞(V) and Γ∞(W), e.g. A : Γ∞(V) → C∞∞(M,R).
This existence and uniqueness further implies that there exist projectors

P S/V/T
V : Γ∞(V) → Γ

S/V/T∞ (V) and P S/V
W : Γ∞(W) → Γ

S/V∞ (W)

which are formally selfadjoint w.r.t. 〈·, ·〉V and 〈·, ·〉W . It is not difficult to check
that the gauge transformation operator K and the equation of motion operator P
commute with these projectors, i.e.

P S/V
V ◦ K |Γ∞(W) = K ◦P S/V

W PT
V ◦ K |Γ∞(W) = 0 P S/V/T

V ◦ P|Γ∞(V) = P ◦P S/V/T
V .

Thus the equations ofmotions and gauge transformations decouple for sectionswhich
vanish at spatial infinity and we may consider subspaces
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SolS/V/T∞ ⊂ Sol∞ and GS/V∞ ⊂ G∞

which are defined in the obvious way.
The split equations of motion may be expressed in terms of gauge–invariant linear

combinations of the split components, i.e. in terms of functionals on Sol∞/G∞.

Ψ := A − (∂τ + H)(B + C ′) Φ := D − H(B + C ′)

χ := φ − ϕ′(B + E ′) μ := − z

a
Φ + χ

Xi := W ′
i − Vi Ti j

Ψ andΦ are the so-called Bardeen potentials whereas μ is the Mukhanov–Sasaki
variable and is of particular physical significance because it is related to the pertur-
bation of the scalar curvature of the spatial slices. In terms of these gauge–invariant
quantities, the equations of motion PΓ = 0 for Γ ∈ Γ∞(V) read (see [22] for
details):

• scalar:

Pμμ :=
(

∇c∇c + R

6
− z′′

za2

)
μ = 0

Φ,Ψ, χ = non–local functionals ofμ

• vector:
ΔXi = 0 (∂τ + 2H)Xi = 0

• tensor:

PT Ti j := 1

a2 ((∂τ + 2H)∂τ −Δ) Ti j = 0

We see that μ is a conformally coupled scalar field with a particular time–
dependent mass, whereas no non–trivial vector solutions vanishing at spatial infinity
exist. Moreover, the tensor components Ti j satisfy a normally hyperbolic equation.
The last statement may have been deduced directly from the discussion of the previ-
ous subsection by observing that the field redefinition�· acts trivially on Γ T∞(V) and
that Γ T∞(V) lies in the kernel of K †. Thus P restricted to Γ T∞(V) coincides with the
normally hyperbolic P̃ = P ◦�· −1 + T ◦ K †.

The standard treatment of the quantum theory of perturbations in inflation may
be rephrased in the present context as follows. One considers the symplectic spaces
(Eμ, σμ)

Eμ := C∞
0 (M,R)/Pμ

[
C∞
0 (M,R)

]

Eμ × Eμ � ([ f1], [ f2]) �→ σμ([ f1], [ f2]) := 〈 f1, Eμ f2〉
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Eμ advanced–minus–retarded operator of Pμ

and (ET T , σ T )

ET T := C∞
0 (M, T )/PT [C∞

0 (M, T )
]

C∞(M, T ) := {T ∈ C∞(M,
∨2

R
3) | T i

i = 0, ∂ i Ti j = 0}

ET T × ET T � ([ f1], [ f2]) �→ σ T ([ f1], [ f2]) := 〈 f1, ET f2〉T

ET advanced–minus–retarded operator of PT

C∞(M, T )2 � ( f1, f2) �→ 〈 f1, f2〉T :=
∫

M
δikδ jl f1,i j f2,kl dvolM .

Pμ and PT are both formally selfadjoint and one may show that 〈·, ·〉T is non-
degenerate on C∞(M, T ) [22]. Thus σμ and σ T are antisymmetric and non-
degenerate by standard results.

In the standard treatment of perturbations in inflation one effectively assumes that
all gauge–invariant (polynomial) local observables in the quantum theory are spanned
by the local observables obtained from the canonical quantization of (Eμ, σμ) and
(ET T , σ T ). On the other hand, one may take the point of view that the construc-
tion outlined in the previous subsection, i.e. the canonical quantization of the pre–
symplectic space (E, σ ) should yield all (polynomial) local gauge–invariant observ-
ables. In order to compare these two approaches, we define

Ker0
S/V/T

(
K †
)

:= Ker0
(

K †
)

∩Γ S/V/T (V)

E S/V/T := Ker0
S/V/T

(
K †
)/

P
[
Γ0

S/V/T (V)
]
.

One may then prove the following results [22].

Theorem 6.4.1 The following relations hold.

(a) E S/V/T ⊂ E .
(b) EV = {0}.
(c)

(E S, σ
)

and (Eμ, σμ) are equivalent.
(d)

(ET , σ
)

and
(ET T , σ T

)
are equivalent.

(e) E S ⊕ ET
� E .

(f) E S ⊕ ET is separating on Sol∞/G∞ = SolS∞/GS∞ ⊕ SolT∞/GT∞.
(g) σ is non–degenerate on E .

The proofs of most of these statements are unfortunately quite cumbersome, but
the results have a straightforward physical interpretation. The first statement implies
that there are local observables which may be meaningfully classified as “scalar”
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and “tensor”. This may seem surprising in view of the fact that the splitting of con-
figurations in scalar/vector/tensor components is a priori non–local. However the
second statement entails that there are indeed no non–trivial local “vector” observ-
ables. From the third and fourth statement one can infer that the standard treatment of
perturbations in inflation captures the same local scalar and tensor observables that
one obtains from the general gauge–invariant quantization of the linearised Einstein–
Klein–Gordon system. An interesting result found in [15] implies that the scalar field
μ is in fact the unique field with a second order hyperbolic PDE whose associated
symplectic space is equivalent to

(E S, σ
)
.

However, statement e) implies that not all local observables of the linearised
Einstein–Klein–Gordon system are spanned by local observables of scalar and ten-
sor type. In this sense, the standard approach to the quantization of perturbations
in inflation “misses” some local observables. However, the sixth statement entails
that the observables captured in the standard approach are still sufficient to measure
configurations of the perturbations which vanish at spatial infinity. These configu-
rations are considered to be “small” in a certain sense. Presumably this statement
can be generalised by proving that local observables of scalar and tensor type sep-
arate quantum states whose correlation functions vanish at spatial infinity in each
argument.

Finally, the last statement is somewhat independent of the others and may be
interpreted such as to say that the quantum theory of the linearised Einstein–Klein–
Gordon system on FLRW backgrounds does not contain classical observables.

6.5 Final Comments

In this chapter, we have recalled the analysis of quantum states for field theories on
cosmological spacetimes and collected examples present in the literature. We have
seen in Sect. 6.3 that these states may be chosen such as to solve the semiclassi-
cal Einstein equation and that the latter equation gives a strong constraint on such
states. In the Sect. 6.4 we have then recalled how matter and metric perturbations of
background solutions of the classical Einstein equation, which are of relevance in
inflationary cosmology, may be quantized in the framework of algebraic quantum
field theory in curved spacetimes. To this end, a quantum state for the matter and
metric perturbations needs to be chosen, which, in the standard approach, is only
restricted by comparison with observational data. On the other hand, we have seen
in Sect. 6.3.3 that, in a fundamental description, our universe is not a solution of the
classical Einstein equation, but of the semiclassical one. Thus one needs to gener-
alise the standard treatment of inflationary perturbations by taking the semiclassical,
rather than the classical, Einstein equations as a starting point. Apart from providing
amore holistic approach to the subject, this would have the advantage that the state of
matter and metric perturbations would be severely constrained by the semiclassical
Einstein equation. We have seen in Sect. 6.3.4 that, going beyond the semiclassical
Einstein equation, it is indeed possible to give meaning to perturbation theory around
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solutions of the latter. In order to obtain a complete treatment of quantizedmatter and
metric perturbations of solutions of the semiclassical Einstein equations, it remains
to work out the ansatz outlined in Sect. 6.3.4 in a way which is gauge–invariant and
encompassed all degrees of freedom of the matter and metric perturbations. We hope
to return to this subject in a future publication.
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Chapter 7
Quantum Spacetime and Algebraic
Quantum Field Theory

Dorothea Bahns, Sergio Doplicher, Gerardo Morsella
and Gherardo Piacitelli

Abstract We review the investigations on the quantum structure of spacetime, to be
found at the Planck scale if one takes into account the operational limitations to the
localization of events which result from the concurrence of QuantumMechanics and
General Relativity. We also discuss the different approaches to (perturbative) Quan-
tum Field Theory on Quantum Spacetime, and some of the possible cosmological
consequences.

7.1 Quantum Nature of Spacetime at the Planck Scale:
Why and How

According to Classical General Relativity, at large scales spacetime is a pseudo
Riemanniann manifold locally modelled on Minkowski space. But the concurrence
with the principles ofQuantumMechanics renders this picture untenable in the small.

Those theories are often reported as hardly reconcilable, but they do meet at
least in a single partial principle, the Principle of Gravitational Stability against
localization of events formulated in [17, 18]:
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The gravitational field generated by the concentration of energy required by the Heisenberg
Uncertainty Principle to localize an event in spacetime should not be so strong to hide the
event itself to any distant observer-distant compared to the Planck scale.

The effect of this principle is best seen considering first the effect of an observation
which locates an event, say, in a spherically symmetric way around the origin in
space with accuracy a; according to Heisenberg principle an uncontrollable energy
E of order 1/a has to be transferred, which will generate a gravitational field with
Schwarzschild radius R � E (in universal units where � = c = G = 1). Hence we
must have that a � R � 1/a; so that a � 1, i.e. in CGS units

a � λP � 1.6 × 10−33cm. (7.1)

This folklore argument is certainly very old, but its elaborations in two significant
directions are surprisingly recent.

First, if we consider generic uncertainties, the argument above suggests that they
ought to be limited by uncertainty relations.

Indeed, if we measure one of the space coordinates of our event with great preci-
sion a, but allow large uncertainties L in the knowledge of the other coordinates, the
energy 1/a may spread over a thin disk of radius L and thus generate a gravitational
potential that would vanish everywhere as L → ∞ (provided a, as small as we like
but non zero, remains constant).

This is shown by trivial computation of the Newtonian potential generated by
the corresponding mass distribution; whenever such a potential is nearly vanishing,
nobody would expect large General Relativistic or Quantum Gravitational correc-
tions; so we can rely on that estimate.

An equally elementary computation would show that the same conclusion holds
if two space coordinates are measured with small but fixed precision a and the third
one with an uncertainty L , and L → ∞.

Second, if we consider the energy content of a generic quantum state where the
location measurement is performed, the bounds on the uncertainties should depend
also upon that energy content [16, 20] .

To see this point, just suppose that our background state describes the spherically
symmetric distribution of the total energy E within a sphere of radius R, with E < R.
If we localize, in a spherically symmetric way, an event at the origin with space
accuracy a, due to the Heisenberg Principle the total energy will be of the order
1/a + E . We must then have

1

a
+ E < R,

otherwise our event will be hidden to an observer located far away, out of the sphere
of radius R around the origin. Thus, if R − E is much smaller than 1, the “minimal
distance” will be much larger than 1. But if a is anyway larger than R the condition
implies rather
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1

a
+ E < a.

Thus, if R − E is very small compared to 1 and R is much larger than 1, a cannot
be essentially smaller than R.

Now the causal relations between events should also break down at scales which
are so small that events cannot be localized that sharply; hence we have to expect
that scale to express the range of propagation of acausal effects.

This naive picture suggests that, due to the principle of Gravitational Stability,
initially all points of the Universe should have been causally connected.

Thus we can expect that Quantum Spacetime (QST) solves the horizon problem
(cf. [16] for hints in that direction, [20] or Sect. 7.4.3 below for an indication that
a Quantum Spacetime with a constant Planck length should generate dynamically a
range of propagation of acausal effects which solves the horizon problem).

We comeback to the general discussion. Ifwe aimat amerge ofQuantumMechan-
ics andGeneral Relativitywe should reason in terms of conceptswhich are physically
legitimate from the general relativistic point of view as well. One might doubt from
the start about concepts like local energy and coordinates to which the Heisenberg
Principle refers.

Concerning the use of coordinates, one should better talk of measurements con-
ditioned to the measurement of a finite number of auxiliary local quantities; in some
appropriate limit, in Minkowski space, that auxiliary measurement should become
the specification of a frame. Thus the use of coordinates should be legitimate at a
semiclassical level.

Another important reason to work with coordinates is that we are interested in
the tangent space at a point equipped with normal coordinates, describing a free
falling system in Einstein’s lift. Or a system in a constant gravitational field; for the
outside distribution of matter on the large scale, such as the structure of the Virgo
supercluster of galaxies to which we belong, ought to have no influence on a high
energy collision in the CERN collider; even if we were so clever to detect (quantum)
effects of the gravitational forces between the colliding particles.

Thus in a first stage it is legitimate, and physically reasonable, to study the small
scale structure of Minkowski space. The spacetime symmetries of our space ought
to be described by the classical Poincaré group: for the global motions of our space
should look the same in the large as they do in the small, and, in the large, they should
be precisely the classical symmetries.

One other remark in order here concerns the very nature of the coordinates. In
the Quantum Mechanics of systems with finitely many degrees of freedom, they are
observables describing the particle positions.

In Quantum Field Theory, the observables are local quantities associated each
with a finite region in spacetime. They can never describe exactly a property of one
particle or n—particle states, which are global (asymptotic) constructs. If that region
reduces to a point, we find only the multiples of the identity. We ought to consider
open regions. We might consider such a region as a neighbourhood of a spacetime
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point, defining it with some uncertainty, and the measurement of associated local
quantities as leading to information on that location.

Thus Spacetime appears as a space of parameters, which, in absence of grav-
itational forces, can be specified with arbitrarily high (but finite!) precision, with
higher and higher energy cost for higher and higher precision. The consideration of
the gravitational effects of that energy cost will cause, as we will see, that space of
parameters to become noncommutative.

The semiclassical level of a first analysis justifies also the use of concepts like
energy; but a more careful analysis shows, as briefly mentioned here in the sequel,
that in essence the conclusions remain true without any reference to the concept of
energy.

At a semiclassical level, the main consequence of the Principle stated above is
the validity of Spacetime Uncertainty Relations; furthermore, they have been shown
to be implemented by Commutation Relations between coordinates, thus turning
Spacetime into Quantum Spacetime [17, 18].

The word “Quantum” is very appropriate here, to stress that noncommutativ-
ity does not enter just as a formal generalization, but is strongly suggested by a
compelling physical reason, unlike the very first discussions of possible noncom-
mutativity of coordinates in the pre-renormalization era, by Heisenberg, Snyder and
Yang, where noncommutativity was regarded as a curious, in itself physically doubt-
ful, possible regularisation device, without any reference to General Relativity and
Gravitational forces; the qualitative fact that the quantum structure of gravitational
forces ought to have consequences on the nature of spacetime in the small was
anticipated by Bronstein [8], where, however, the focus was on the extension of the
Bohr-Rosenfeld argument to the Christoffel symbols, and on the proposal of a Quan-
tum Theory of linearized Gravity, without any mention of spacetime uncertainty
relations.

The analysis based on the Principle of Gravitational Stability against localization
of events leads to the following conclusions:

(i) There is no a priori lower limit on the precision in the measurement of any single
coordinate (it is worthwhile to stress once more that the apparently opposite
conclusions, still often reported in the literature in connection with the ACV
variant of the Heisenberg principle [1], are drawn under the implicit assumption
that all the space coordinates of the event are simultaneously sharply measured).
Every alerted reader will note that nobody knows an operational prescription to
measure, say, only one spacetime coordinate of the location of an event with
a terrific (ultra Planckian) precision. But of course we cannot say that such a
measurement is impossible just because we are not capable of inventing a device;
we could say that only ifwe could show that it is forbiddenby the presently known
physical principles. Which at present does not seem to be the case.

(ii) The uncertainties Δqμ in the measurement of the coordinates of an event in
Minkowski space should be at least bounded by the following Spacetime Uncer-
tainty Relations:
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Δq0 ·
3∑

j=1

Δq j � 1; (7.2a)

∑
1≤ j<k≤3

Δq jΔqk � 1. (7.2b)

Thus points become fuzzy and locality looses any precise meaning. We believe it
should be replaced at the Planck scale by an equally sharp and compelling prin-
ciple, which reduces to locality at larger distances. Such a principle is nowadays
totally unknown, and unaccessible by operational reasoning.

Some comments on the derivation of these relations are in order. In the analysis
of 1994–95, they were justified in special cases by their consistency with the exact
solutions of Einstein Equations (EE), as Schwarzschild and Kerr’s solutions. But in
general they were derived using the linearized approximation to EE.

Furthermore the concept of energy was central: in a semiclassical approach, the
expectation value in a state describing an ansatz for the outcome of a localization
experiment (a coherent state in a free field theory) of the energy-momentum tensor
for that field, was used as a source for the linearized EE.

Then, the requirement of non-formation of trapped surfaces hiding the observed
event was formulated as the condition of non negativity of the time-time component
of the metric tensor. The relations above follow as a weaker simplified necessary
condition.

Both the use of the linearized approximation and of the notion of energy are
doubtful.

But in recent works [30, 31] Tomassini and Viaggiu have shown that (a stronger
form of) the above relations do follow from an exact treatment, if one adopts the
Hoop Conjecture, which limits the energy content of a space volume in terms of
the area of the boundary, as a condition for the non-formation of bounded trapped
surfaces. Moreover, their analysis applies to a curved background as well.

The treatment is again semiclassical, and involves the notion of energy, but the
conflict about the use of the linearized approximations to derive bounds, and imposing
those bounds in situations close to singularities, disappears.

Eventually, in [20] the special case of spherically symmetric experiments, with
all spacetime uncertainties taking the same value, was treated with use of the exact
semiclassical EE, without any reference to the energy observables. The state describ-
ing the outcome of the localization experiment was taken not as a strictly localized
state, but as the state, with weaker localization properties, obtained acting on the
vacuum state with the field operators themselves, smeared with test functions hav-
ing the appropriate symmetry, in a theory of a single scalar massless field coupled
semiclassically to gravity. The solution of the Raychaudhuri equation yields to the
universal lower bound for the common value of the uncertainties, of the order of
Planck length (see also Sect. 7.4.2 below for more details). We stress that this result
gives a possibly weaker condition than the condition which could be derived by a
choice of better localized ansätze for the probe state.
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We can conclude that the above Spacetime Uncertainty Relations are reasonably
well grounded forMinkowski space; they are to be expected to hold in similar variant
in curved spacetimes, by the Tomassini-Viaggiu argument; a basic consequence of
those relations, when implemented by the Quantum Conditions we will now discuss,
namely that the Planck scale is a universal minimal length, is well grounded on the
basis of the most general assumptions, in the spherically symmetric case.

The SpacetimeUncertainty Relations strongly suggest that spacetime has aQuan-
tum Structure at small scales, expressed, in generic units, by

[qμ, qν] = iλ2P Qμν, (7.3)

where Q has to be chosen not as a random toy mathematical model, but in such a
way that (7.2) follows from (7.3).

To achieve this in the simplest way, it suffices to select the model where the Qμν

are central, and impose the “Quantum Conditions” on the two invariants

Qμν Qμν; (7.4)

[q0, . . . , q3] ≡ det

⎛
⎜⎝

q0 · · · q3
...

. . .
...

q0 · · · q3

⎞
⎟⎠

≡ εμνλρqμqνqλqρ =
= −(1/2)Qμν(∗Q)μν; (7.5)

whereby the first one must be zero and the square of the half of the second is I (in
Planck units; we must take the square since it is a pseudoscalar and not a scalar).

Oneobtains in thisway [17, 18] amodel ofQuantumSpacetimewhich implements
exactly our Spacetime Uncertainty Relations and is fully Poincaré covariant.

As anticipated, here the classical Poincaré group acts as symmetries; translations,
in particular, act adding to each qμ a real multiple of the identity.

Thus “coordinates” and “translation parameters”, classically described by the
sameobjects, hear split into different entities; but this happens already innon relativis-
tic Quantum Mechanics: rotations apart, the Galilei group acts by adding numerical
multiples of the identity to the non commuting position and momentum operators.

In view of the Gel’fand–Naimark Theorem, the classical Minkowski Space M
is described by the commutative C*-algebra of continuous functions vanishing at
infinity on M ; the classical coordinates can be viewed as commuting selfadjoint
operators affiliated to that C*-algebras.

Similarly a noncommutative C*-algebra E of Quantum Spacetime can be associ-
ated to the above relations. It was proposed in [17, 18] by a procedure which applies
to more general cases (see also Sects. 7.2.1 and 7.2.3).
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Assuming that the qλ, Qμν are selfadjoint operators and that the Qμν commute
strongly with one another and with the qλ, the relations above can be seen as a bundle
of Lie algebra relations based on the joint spectrum of the Qμν .

We are interested only in representations which are regular in the sense that in
their central decomposition only integrable representations of the corresponding Lie
algebras appear.

Such representations are described by representations of the group C*-algebra of
the unique simply connected Lie group associated to the corresponding Lie algebra.

Hence the C*-algebra of Quantum Spacetime E is the C*-algebra of a continuous
field of group C*-algebras based on the spectrum of a commutative C*-algebra.

In our case, that spectrum—the joint spectrum of the Qμν—is the manifold Σ of
the real valued antisymmetric 2-tensors fulfilling the same relations as the Qμν do:
a homogeneous space of the proper orthochronous Lorentz group, identified with
the coset space of SL(2, C) mod the subgroup of diagonal matrices. Each of those
tensors can be taken to its rest frame, where the electric andmagnetic part are parallel
unit vectors, by a boost specified by a third vector, orthogonal to those unit vectors;
thus Σ can be viewed as the tangent bundle to two copies of the unit sphere in
3-space—its base Σ1.

The fibers, with the condition that I is not an independent generator but is repre-
sented by I , are theC*-algebras of theHeisenberg relations in 2 degrees of freedom—
the algebra of all compact operators on a fixed infinite dimensional separable Hilbert
space.

The continuous field can be shown to be trivial, since it must contain a continuous
field of one dimensional projectors—those corresponding to the orthogonal projec-
tion on the one dimensional subspace of multiples of the ground state vector for the
harmonic oscillator (see [18]).

The states whose central decomposition is supported by the base Σ1, and for
each point of the base correspond to the ground state for the harmonic oscillator,
are precisely the states of optimal localization, where the sum of the four squared
uncertainties of the coordinates is minimal, and equal to 2 (see Sect. 7.2.2).

Thus the C*-algebra of QuantumSpacetime E is identifiedwith the tensor product
of the continuous functions vanishing at infinity on Σ and the algebra of compact
operators.

In the classical limit λP → 0 the second factor deforms to the commutative
C*-algebra of Minkowski space, but the first factor survives. When Quantum Space-
time is probed with optimally localized states its classical limit is M × Σ1, i.e. M
acquires compact extra dimensions.

Note that the mathematical generalization of points are pure states, but only opti-
mally localized pure states are physically appropriate.

But to explore more thoroughly the Quantum Geometry of Quantum Spacetime
we must consider independent events.

Quantum mechanically n independent events ought to be described by the n-fold
tensor product of E with itself; considering arbitrary values on n we are led to use
the direct sum over all n.
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If A is the C*-algebra with unit over C, obtained adding the unit to E , we will
view the (n +1) tensor powerΛn(A) of A over C as an A-bimodule with the product
in A, and the direct sum

Λ(A) =
∞⊕

n=0

Λn(A)

as the A-bimodule tensor algebra, where

(a1 ⊗a2 ⊗· · ·⊗an)(b1 ⊗ b2 ⊗· · ·⊗ bm) = a1 ⊗a2 ⊗· · ·⊗ (anb1)⊗ b2 ⊗· · ·⊗ bm .

This is the natural ambient for the universal differential calculus, where the differ-
ential is given by

d(a0 ⊗ · · · ⊗ an) =
n∑

k=0

(−1)ka0 ⊗ · · · ⊗ ak−1 ⊗ I ⊗ ak ⊗ · · · ⊗ an .

As usual d is a graded differential, i.e., if φ ∈ Λ(A), ψ ∈ Λn(A), we have

d2 = 0;
d(φ · ψ) = (dφ) · ψ + (−1)nφ · dψ.

Note that A = Λ0(A) ⊂ Λ(A), and the d-stable subalgebra Ω(A) of Λ(A) gener-
ated by A is the universal differential algebra. In other words, it is the subalgebra
generated by A and

da = I ⊗ a − a ⊗ I

as a varies in A.
In the case of n independent events one is led to describe the spacetime coordinates

of the j th event by q j = I ⊗ · · · I ⊗ ⊗q ⊗ I · · · ⊗ I (q in the j th place); in this
way, the commutator between the different spacetime components of the q j would
depend on j .

A better choice is to require that it does not; this is achieved as follows. The centre
Z of the multiplier algebra of E is the algebra of all bounded continuous functions
on Σ with values in the complex numbers; so that E , and hence A, is in an obvious
way a Z -bimodule.

Thereforewe can, andwill, replace, in the definition ofΛ(A), theC-tensor product
by the Z -bimodule-tensor product, so that

d Q = 0.

As a consequence, the q j and the 2−1/2(q j −qk), j different from k, and 2−1/2dq,
obey the same spacetime commutation relations, as does the normalised barycenter
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coordinates, n−1/2(q1 + q2 + · · · qn); and the latter commutes with the difference
coordinates.

These facts allow us to define a quantum diagonal map from Λn(A) to A, which
leaves the functions of the barycenter coordinates alone, and evaluates on functions of
the difference variables theuniversal optimally localized mapwhich,when composed
with a probability measure on Σ1, would give the generic optimally localized state
(see Sect. 7.2.4).

Replacing the classical diagonal evaluation of a function of n arguments on
Minkowski space by the quantum diagonal map allows us to define the Quantum
Wick Product [5].

But working in Ω(A) as a subspace of Λ(A) allows us to use two structures [7]:

• the tensor algebra structure described above, where both the A bimodule and the Z
bimodule structures enter, essential for our reduced universal differential calculus;

• the pre-C*-algebra structure ofΛ(A), which allows us to consider, for each element
a of Λn(A), its modulus (a∗a)1/2, its spectrum, and so on.

In particular we can study the geometric operators: separation between two indepen-
dent events, area, 3-volume, 4-volume, given by

dq,

dq ∧ dq,

dq ∧ dq ∧ dq,

dq ∧ dq ∧ dq ∧ dq,

where, for instance, the latter is given by

V = dq ∧ dq ∧ dq ∧ dq

= εμνρσ dqμdqνdqρdqσ .

Each of these forms has a number of spacetime components: e.g. 4 the first one
(a vector), 1 the last one (a pseudoscalar).

It is found that, for each of those forms, each component is a normal operator, and
that the sum of the square moduli of all spacetime components is bounded below by
a multiple of the identity of unit order of magnitude. Although that sum is (except
for the 4-volume!) not Lorentz invariant, the bound holds in any Lorentz frame (see
Sect. 7.2.5).

In particular, the Euclidean distance between two independent events can be
shown to have a lower bound of order one in Planck units. Two distinct points
can never merge to a point. However, of course, the state where the minimum is
achieved will depend upon the reference frame where the requirement is formulated.
(The structure of length, area and volume operators on QST has been studied in full
detail [7].)

Thus the existence of a minimal length is not at all in contradiction with the
Lorentz covariance of the model; note that models where the commutators of the
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coordinates are just numbers θ , which appear so often in the literature, arise as
irreducible representations of our model; such models, taken for a fixed choice of θ

rather than for its full Lorentz orbit, necessarily break Lorentz covariance. To restore
it as a twisted symmetry is essentially equivalent to going back to the model where
the commutators are operators. This point has been recently clarified in great depth
[26].

On the other side, a theory with a fixed, numerical commutator (a θ in the sky;
it could be hardly believed, but at least, in case, it ought to be thought in the CMB
reference system, with respect to which we fly at a speed of 600km/s) can hardly be
realistic.

The geometry of Quantum Spacetime and the free field theories on it are fully
Poincaré covariant. The various formulation of interaction between fields, all equiv-
alent on ordinary Minkowski space, provide inequivalent approaches on QST; but
all of them, sooner or later, meet problems with Lorentz covariance, apparently due
to the nontrivial action of the Lorentz group on the centre of the algebra of Quantum
Spacetime. On this point in our opinion a deeper understanding is needed.

One can however introduce interactions in differentways, all preserving spacetime
translation and space rotation covariance, that we discuss in Sect. 7.3; among these
it is just worth mentioning here one of them, where one takes into account, in the
very definition of Wick products, the fact that in our Quantum Spacetime n (larger
or equal to two) distinct points can never merge to a point. But we can use the
canonical quantum diagonal map mentioned above, which associates to functions of
n independent points a function of a single point, evaluating a conditional expectation
which on functions of the differences takes a numerical value, associated with the
minimum of the Euclidean distance (in a given Lorentz frame!).

The “Quantum Wick Product” obtained by this procedure leads to a perturbative
Gell-Mann and Low formula free of ultraviolet divergences at each term of the
perturbation expansion [5] . However, those terms have a meaning only after a sort
of adiabatic cutoff: the coupling constant should be changed to a function of time,
rapidly vanishing at infinity, say depending upon a cutoff time T . But the limit
T → ∞ is difficult problem, and there are indications it does not exist.

A major open problems is the following. Suppose we apply this construction
to the normalised Lagrangean of a theory which is renormalizable on the ordinary
Minkowski space, with the counter terms defined by that ordinary theory, and with
finite renormalization constants depending upon both the Planck length λP and the
cutoff time T . Can we find a natural dependence such that in the limit λP → 0
and T → ∞ we get back the ordinary renormalized Gell-Mann Low expansion on
Minkowski space? This should depend upon a suitable way of performing a joint
limit, which hopefully yields, for the physical value of λP , to a result which is
essentially independent of T within wide margins of variation, and can be taken as
source of predictions to be compared with observations.

The common feature of all approaches is that, due to the quantum nature of
spacetime at the Planck scale, locality is broken (even at the level of free fields, for
explicit estimates see [18]); in perturbation theory, its breakdown manifests itself in
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a non local kernel, which spreads the interaction vertices [4, 5, 18] ; this forces on
us the appropriate modifications of Feynman rules [25].

However, it is worth noting that in Quantum Field Theory on theMinkowski space
(and similarly on curved classical backgrounds) there are two aspects of locality.

First, the theory is defined by the assignment to bounded (nice) open regions in
spacetime of algebras generated by the observables which can be measured within
those regions.

Covariance is expressed by the fact that that assignment intertwines the actions
of the spacetime symmetries on the regions and on the observables.

Second, that assignment should reflect Einstein causality: observables that are
measured in regions between which no signal can be transmitted, ought to commute.

As we mentioned, the second assertion is bound to be lost if the gravitational
forces between the elementary particles are taken into account.

But the first assertion, at least partially, can well be maintained.
Indeed, if we describe Minkowski space by the algebra of continuous functions

vanishing at infinity, we can describe open sets through their characteristic functions,
which are special selfadjoint idempotents in the Borel completion.

Similarly, a “region” in Quantum Spacetime can be described by a selfadjoint
idempotent E in the Borel completion of the C*-algebra of Quantum Spacetime.

To associate algebras of observables to such projections assume first that we wish
to define on the basic model of Quantum Spacetime the ordinary free field φ over
Minkowski space.

The analogue of the von Neumann functional calculus on the qμ’s with functions
whose Fourier transform is L1 can be extended to operator valued distributions as
Wightman fields (cf. [18] and Sect. 7.2). This applies in particular to free fields.

The evaluation of φ on the non commuting operators q can be given by

φ(q) = 1

(2π)3/2

∫
(eiqμkμ ⊗ a(k) + e−iqμkμ ⊗ a(k)∗)dΩ+

m (k) (7.6)

where dΩ+
m (k) = d3k

2
√

k2+m2
is the usual invariant measure over the positive energy

hyperboloid of mass m:

Ω+
m = {k ∈ R

4 / kμkμ = m2 , k0 > 0}.

This is an unbounded operator affiliated to the C*-tensor product E ⊗ B(H),
where H is the Fock space.

Similarly, using the full Fourier transform of the field, any Wightman field on
Minkowski space could be evaluated on E .

The free field defines a map from states ω ∈ S(E ) to operators on H by

φ(ω) ≡ 〈ω ⊗ id, φ(q)〉 , ω ∈ S(E ).
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The von Neumann algebra generated by bounded functions of these operators, as
ω varies in the set of states supported by E , will be the local algebra A(E) associated
to E .

This map preserves inclusions and intertwines the actions of the Poincaré group,
since the free field is covariant. The same would apply to any covariant field.

However, the local commutativity is lost, as well as the notion “E is spacelike to
F”.

The local algebras A(E) might show many unexpected behaviours. In the case of
a free scalar neutral field, to a minimal E given by the product of the characteristic
function of a point in Σ1 with the spectral projection of the sum of squares of the
coordinates associate to the interval [0, 2], we would get a commutative algebra;
in the case of a free Dirac Field, a finite dimensional algebra. But spreading those
algebras with spacetime translations in any tiny neighbourhood would lead to an
irreducible algebra [15]. These results partly survive even for the scale invariant
model of Quantum Spacetime with λP = 0 [24].

Can we formulate an analogue of Locality as a sharp, physically compelling,
principle, which reduces to ordinary locality at large scales?

The only way we can figure out to address this question relates to the Principle of
local gauge invariance and of minimal form of the interactions.

In ordinary Field Theory these principles select local point interactions, and thus
can be viewed as the root of locality.

We could speculate on the extension of those principles to Quantum Field Theory
on Quantum Spacetime as the way to extend Locality.

But, unfortunately, already on Minkowski space those principle seem to have a
crystal clear form only in classical field theory, and to be not amenable to any formu-
lation in terms of local observables. And they seem to require anyway a formulation
in terms of non observable quantities.

Hence at the moment we cannot say more than the fact that locality must break
down on Quantum Spacetime.

But nonlocal effects should be visible only at Planck scales, and vanish fast for
larger separations. If Lorentz invariance can be maintained by interactions, a point
quite open at present, then we ought to expect that the analysis of the superselection
structure, the notion of Statistics, conjugate sectors, the emergence of a compact
group of global gauge symmetries, and even the Spin and Statistics Theorem, all
deduced on the basis of the Principle of Locality, ought to remain true [19].

That argumentmight, however, raise the objection that, in a theorywhich accounts
for gravitational interactions as well, there might be no reasonable scattering theory
at all, due to the well known paradox of loss of information, if black holes are created
in a scattering process, destroying the unitarity of the S matrix.

Of course, this is an open problem; but one might well take the attitude that a
final answer to it will come only from a complete theory, while at the moment we
are rather relying on semiclassical arguments. Which might be quite a reasonable
guide in order to get indications of local behaviours; but scattering theory involves
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the limit to infinite past/future times; and it might well be that interchanging these
limits with those in which the semiclassical approximations are valid, or with the
infinite volume limit in which the thermal behaviour of the vacuum for a uniformly
accelerated observer becomes an exact mathematical statement, is dangerous, if not
misleading. And whatever theory will account for Quantum Gravity, it should also
describe the world of Local Quantum Field Theory as an appropriate approximation.

One might expect that a complete theory ought to be covariant under general
coordinate transformations as well. This principle, however, is grounded on the con-
ceptual experiment of the falling lift, which, in the classical theory, can be thought
of as occupying an infinitesimal neighbourhood of a point. In a quantum theory the
size of a “laboratory” must be large compared with the Planck length, and this might
pose limitations on general covariance.

On the other side elementary particle theory deals with collisions which take place
in narrow space regions, studied irrespectively of the surrounding large scale mass
distributions, which we might well think of as described by the vacuum, and worry
only about the short scale effects of gravitational forces.

We are thus lead to consider Quantum Minkowski Space as a more realistic geo-
metric background for Elementary Particle Physics. But, as we briefly mentioned at
the beginning, the energy distribution in a generic quantum statewill affect the Space-
time Uncertainty Relations, suggesting that the commutator between the coordinates
ought to depend in turn on the metric field.

Thus the spacetime commutation relations would become part of the equations
of motion.

While in Classical General Relativity Geometry is part of the Dynamics, in this
scenario also Algebra would be part of the Dynamics.

This might well be the clue to restore Lorentz covariance in the theory of inter-
actions between fields on Quantum Spacetime.

On the other side, wementioned how heuristic arguments suggest that the distance
of acausal propagation of effects could increase near singularities.

This scenario could be related to the large scale thermal equilibrium of the cosmic
microwave background (horizon problem). Actually, taking into account only of
the Planck length as a universal lower bound for that distance of propagation, and
assuming the simple model of a scalar massless field semiclassically interacting with
the gravitational field (but treating EE exactly) shows that the effect of the divergence
of theminimal distance of acausal propagation shows up, solving the horizon problem
without any inflationary hypothesis.

Similarly one could wonder whether the non vanishing of the Cosmological Con-
stant is related to the dependence of the commutators of the coordinates upon the
metric [16]. And to the fact that noncommutativity at the Planck scale might manifest
itself as an effective repulsion; in which case it might well be an explanation of an
inflationary potential.
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7.2 The Basic Model: An Example of Quantum Geometry

7.2.1 The Basic Model and Its Covariant Representations

The basic model arises from the simplifying ansatz that the commutators Qμν =
−i[qμ, qν] are central, namely they strongly commute with the coordinates qμ. To
fix domain ambiguities and select reasonably regular representations, we understand
the formal definition of the antisymmetric 2-tensor Qμν as a reminder of the Weyl
relations

eihμqμ

eikνqν = e− i
2 hμ Qμνhνei(h+k)μqμ

, h, k ∈ R
3, (7.7)

where we took care of using the Lorentz metric to parametrise the 4-parameters
group k �→ eikq = eikμqμ

. In what follows, formal commutation rules will always
be understood as shorthands for the regular Weyl form.

As described in Sect. 7.1, covariant quantitative conditions on the commutators
amount to make a choice of the quantities a, b of the two independent “scalars”
which can be formed out of an antisymmetric tensor:

Qμν Qμν = aI,

(
1

4
Qμν(�Q)μν

)2

= bI.

The choice a = 0, b = 1—which in a sense is the most symmetric, see [18]—results
in Heisenberg-like uncertainty relations which have the same form as the desired
heuristically motivated relations (7.2).

A first, a priori only partial classification of the irreducible representations is
provided by the remark that, by the Schur lemma, the 2 tensor of the commutators
must be of the form iσμν for some constant real antisymmetric 2-tensor σ = (σμν).
It follows from the quantisation conditions that such a σ should fulfil

σμνσμν = 0,

(
1

4
σμν(�σ )μν

)2

= 1.

Let Σ be the manifold of all antisymmetric 2-tensors fulfilling the above conditions;
it is by construction a homogeneous space under the natural action σ �→ Λσ =
ΛσΛt = (Λμ

μ′σμ′ν′
Λν

ν′) of the full Lorentz group.
Therefore, in order to classify all irreducible representations, it is sufficient to

classify all the equivalence classes of irreducible regular representations with com-
mutators which are multiples of the identity.

We next observe that there is a natural choice for σ0: the standard symplectic
matrix
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σ0 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ ∈ Σ.

Upon renaming

(P1, P2, Q1, Q2) := (q0
σ0

, q1
σ0

, q2
σ0

, q3
σ0

),

the relations

[qμ
0 , qν

0 ] = iσμν
0

take the form of the Canonical Commutation Relations

[Pj , Qk] = −iδ jk, [Pj , Pk] = [Q j , Qk] = 0,

for two canonical pairs (P1, Q1) and (P2, Q2).
This fact—which of course must be regarded solely as a mathematical identi-

fication without any direct physical interpretation—is very lucky, as it completely
solves the classification problem for irreducible representations of our spacetime
relations, by reducing it to von Neumann uniqueness: there is only one irreducible
representation

q0 := qσ0 = (P1, P2, Q1, Q2) (7.8)

with commutators iσ0 I , up to equivalence; where Pj , Q j are canonical Schrödinger
operators.

According to the previous remark, it follows that for every σ ∈ Σ there is one
and one only regular irreducible representation qσ = Λσ q0 with commutators iσ =
iΛσ σ0Λ

t
σ , up to equivalence.

The manifold Σ may be identified with the quotient L /G0 of the full Lorentz
group by the stabiliser of σ0, which provides the possibility of building σ �→ Λσ as
a Borel section. Hence we have a complete classification of the representation theory
of the spacetime commutation relations.

Not only the occurrence of the standard symplectic matrix σ0 in Σ is lucky; it
also is fascinating, for two quantum models with quite distant underlying physical
motivations and interpretation—the non relativistic quantum mechanics of a mate-
rial point on the plane and the gravity-induced (semiclassical) quantisation of the
Minkowski spacetime—both rely on the very same basic building blocks: canoni-
cal pairs of Schrödinger operators. We also observe that the whole argument would
have failed if the dimension of spacetime were odd, precisely because the canonical
operators come in pairs.

Nextwe address the questionwhether there is a representation qμ which is Lorentz
covariant, in the precise sense that there is a strongly continuous unitary representa-
tion U of the Lorentz group on the representation Hilbert space Hq such that
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U (Λ)∗qμU (Λ) = Λμ
μ′qμ′

,

where the closure of the operator on the right is implicitly understood, or equivalently
we regard the above as a shorthand of the corresponding transformation of the Weyl
operators.

Correspondingly,

U (Λ)∗QμνU (Λ) = Λμ
μ′Λν

ν′ Qμ′ν′
,

which prevents the possibility for a covariant representation to be irreducible; on the
contrary it will have to be highly reducible.

For every representation q of the relations (7.7), the joint spectrum jSp(Q) of
the 16 operators Qμν may be regarded as a manifold of antisymmetric real tensors
σ = (σμν), namely a submanifold of Σ . If qμ is a covariant representation in the
sense of above, necessarily jSp(Q) is a homogeneous space under the Lorentz action;
hence it must coincide with the whole Σ :

qμ covariant ⇒ jSp(Q) = Σ.

As a consequence, a covariant representation must weakly contain at least one
representative qσ for every σ ∈ Σ .

To construct a covariant representation, it would be sufficient to use a quasi-
invariant regular positive measure. However, such a measure can be chosen to be
even invariant: we may use the projection map L �→ L /G0 = Σ and the Haar
measure on L . Hence we take the Hilbert space

Hq = L2(L ,H)

of square summable,H-valued functions ofL , whereH is theHilbert space onwhich
the Schrödinger operators P1, P2, Q1, Q2 act. Using the basic representation (7.8),
we may set

(qμΨ )(M) = Mμ
νqν

0Ψ (M), Ψ ∈ D(qμ), (7.9)

(U (Λ)Ψ )(M) = Ψ (Λ−1M), Ψ ∈ Hq . (7.10)

If we choose the Schrödinger representation Pj = −i∂/∂s j , Q j = s j · on H =
L2(R2, d2s), thenHq � L2(L ×R

2, dΛ d2s), and the operators qμ are essentially
selfadjoint e.g. on the smooth, compactly supported functions of L × R

2. Every
other covariant representation is quasi-equivalent to the above.

The problem of obtaining a Poincaré covariant representation is easily solved by
doubling the underlying Schrödinger pairs, see [18].
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7.2.2 Uncertainty Relations and Optimal Localization

It is convenient to identify the antisymmetric 4× 4 matrices with the pairs (e, m) of
their “electric” and “magnetic” parts of

⎛
⎜⎜⎝

0 e1 e2 e3
−e1 0 m3 −m2
−e2 −m3 0 m1
−e3 m2 −m1 0

⎞
⎟⎟⎠

One easily checks that, if σ = (σμν) = (e, m), then (σμν) = (−e, m) and (�σμν) =
(−m, e). Moreover,

σ = (e, m), τ = (f, n) =⇒ σμντμν = 2(m · n − e · f).

With these notations,

Σ = {(e, m) : e · m = ±1, ||| e ||| = ||| m |||},

where ||| · ||| is the Euclidean length; moreover,

(e, m) ∈ Σ ⇒ ||| e ||| � 1, ||| m ||| � 1;

this fact will be important in the derivation of the uncertainty relations. Note also
that the standard symplectic matrix corresponds to the second vector of the canonical
bases {n1, n2, n3} of R

3: σ0 = (n2,−n2).
If Λ = ( 1 0

0 R ) for R ∈ O(3, R), then Λ(e, m)Λt = (Re,±Rm) where ± det R =
1. The only subset of Σ which is invariant under orthogonal transformations is

Σ(1) = {(e,±e) : ||| e ||| = 1}

which has two connected components Σ
(1)
± , both evidently isomorphic to the 2-

sphere S2. It follows (cf introduction) that Σ itself has two connected components
Σ±, each of which is isomorphic with the tangent space of S2.

We may now sketch the argument by which the uncertainty relations (7.2) follow
from the quantisation conditions; it is sufficient to prove (7.2) for every irreducible
qσ , and for every vector state ω(·) = (ψ, ·ψ), ψ ∈ D(qσ )). With σ = (e, m) ∈ Σ ,
the (generalized) Heisenberg uncertainty theorem gives

Δω(q0
σ )Δω(q j

σ ) � 1

2
ω(|[q0

σ , q j
σ ]|) = 1

2
|e j |;

(7.2a) then follows from 1 � ||| e ||| =
(∑

j |e j |2
)1/2

�
∑

j |e j |. A similar argument

(using |m| � 1) gives (7.2b).
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The non-invariant quantity
∑

μ Δ(qμ)2 provides information about the local-
ization properties of a state according to a given observer. Given a state ω on an
irreducible representation qσ , we have

∑
μ

Δω(qμ
σ )2 �

√
2 + |e|2 + |m|2,

where σ = (e, m) ∈ Σ , and provided ω is in the domain of the involved operators
(see [18, Proposition 3.4] for more details).

Two questions arise:

1. given any σ ∈ Σ , do states ω on qσ exist, such that the above bound is attained?
2. the bound itself is minimal when σ ∈ Σ(1), in which case it becomes

∑
μ

Δω(qμ
σ )2 � 2, σ ∈ Σ(1);

do states ω on qσ for σ ∈ Σ(1) exist, such that the above bound is attained?

While the answer to the general question (1) is unknown, question (2) is easy to deal
with. If σ ∈ Σ(1), then σ = Λσ0Λ

t for some Λ = ( 1 0
0 R ), where R = (R jk) ∈

O(3, R). Then q j
σ = ∑3

k=1 R jkqk
0 and

∑
μ

qμ
σ
2 = q0

σ

2 +
3∑

j=1

q j
σ

2 =
∑
μ

qμ
0
2

= P2
1 + P2

2 + Q2
1 + Q2

2,

namely twice the Hamiltonian of the harmonic oscillator on the plane; the optimal
localization states are precisely the translates of the ground state of the harmonic
oscillator (the canonical coherent states) and

∑
μ Δ(qμ

σ )2 � 2.
If instead we work with a state ω on the fully covariant representation q, define

the probability measure μω on Σ by f �→ ω( f (Q)) = ∫
Σ

f (σ )dμω(σ), where
f (Q) is the joint bounded continuous functional calculus of the Qμν’s. If ω is in the
domain of all qμ, qμ2, then

∑
μ

Δω(qμ)2 �
∫

Σ

dμω(σ)
√
2 + |eσ |2 + |mσ |2,

where (eσ , mσ ) = σ . Hence the lower bound becomes

∑
μ

Δω(qμ)2 � 2
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which is attained if μω has support in Σ1 and ω acts as a superposition of canonical
coherent states on each qσ contained in q, with σ ∈ Σ1; we shall make this more
transparent in the next section.

7.2.3 The C*-Algebra of the Basic Model

It is intuitively clear that we face a trivial bundle structure over Σ : over each σ ∈ Σ

there is a CCR-Weyl algebra, so that the universal C*-algebra to which every regular
representation of the Weyl relations is affiliated is

E = C0(Σ,K) � C0(Σ) ⊗ K,

namely the trivial continuous field of C*-algebras over Σ with standard fibre K,
the compact operators over the separable, infinite dimensional Hilbert space H. The
multipliers C*-algebra M(E ) is easily identified with Cb(Σ, B(H).

While we refer to [18] for the details of the proof why that bundle is trivial, we
shall describe here how to work with this algebra.

We follow Weyl’s prescription for quantisation:

f (q) =
∫

dk f̂ (k)eikμqμ

, f ∈ L1(R4) ∩ L̂1(R4),

where f̂ (k) = (4π)−4
∫

dx f (x)eikμxμ
is the usual Fourier transform; in practice,

the idea is to replace the usual plane waves which build f up with their quantised
counterpart, the Weyl operators.

Since the commutators are not multiples of the identity, a product f (q)g(q) is
not of the form h(q); the Weyl-quantised functions do not close to an algebra of
operators.

To circumvent this, we enlarge the class of functions to be quantised. We consider
functions f (σ ; x) of bothσ, x as elements of C0(Σ, L1(R4)), the space of continuous
L1(R4) valued functions of Σ , vanishing at infinity. For each σ define f̂ (σ ; k) =
(4π)−4

∫
dx f (σ ; x)eikμxμ

.
Whenever both f, f̂ are in C0(Σ, L1(R4))—in which case we call f a symbol—

we may construct the operator f (Q; q), where the Q dependence is understood in
the sense of joint functional calculus, and the q dependence in the sense of Weyl
quantisation. In more detail, if Qμν = ∫

Σ
σμνd E(σ ) is the joint spectral resolution

of the Qμν’s,

f (Q, q) =
∫

Σ

d E(σ )

∫
R4

dk f̂ (σ, k)eikq ,

which is unambiguous, since theWeyl operators eikq and the joint spectral projections
of the Qμν’s commute.
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A short computation with the Weyl relations gives the generalized symbolic cal-
culus, defined as the pull-back of the operator product to symbols:

f (Q; q)g(Q; q) = ( f � g)(Q; q),

where the �-product

( f � g)(σ ; x) = 1

(2π)4

∫
da

∫
db f (σ ; a)g(σ ; b)e2i(a−x)μσμν(b−x)ν . (7.11)

may be regarded as a field of �σ -products over Σ :

( f � g)(σ ; ·) = f (σ, ·) �σ g(σ ; ·)

Moreover, f (Q, q)∗ = f̄ (Q; q). We thus equipped the space S (Σ) of symbols
with a product and an involution which make it a *-algebra, since they inherit all
the relevant properties (associativity, involutivity,…) from being the pull-back of the
operator product and involution; it may be turned into a Banach *-algebra taking
its completion under the norm ‖ f ‖ = supσ ‖ f̂ (σ, ·)‖L1 , with universal enveloping
C*-algebra E . The algebra S (Σ) of symbols may be regarded as an algebra of
continuous sections for E . Note that, if q is the fully covariant representation, f �→
f (Q; q) defines a faithful, covariant representation ofS (Σ):

U (a,Λ) f (Q; q)U (a,Λ) = f (Λ−1QΛ−1t
,Λ−1(q − aI )), (a,Λ) ∈ P,

which extends to a faithful covariant representation of (E , α), where the action α

of the Poincaré group is the normal extension of the natural action on symbols.
Hence we have an essentially unique covariant representation of the C*-dynamical
system (E , α). We thus feel free to understand f (Q; q) as indicating equivalently
an operator (a represented element of the algebra), a symbol, or an abstract element
of the algebra.

Let ω is a state on q with optimal localization and expectations ω(qμ) = aμ. If
μω is the associated measure on Σ—supported by Σ1—as described at the end of
Sect. 7.2.2, we have

ω( f (Q; q)) =
∫

Σ1

dμω(σ)(ηa f )(σ )

where for each localization centre a the localization map ηa : M(E ) → C(Σ1) is
defined by

(ηa f )(σ ) =
∫

R4

dk f̂ (σ ; k)eika−|k2|/2
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and normal extension. It may be convenient to define E1 = C(Σ1,K), Z1 = C(Σ1)

the centre of M(E1) and ηa,1 = ηa �Σ1 as the restriction of ηa to E1. Hence ηa,1 is a
morphism of Z1-modules, and ηa is a conditional expectation, in a natural way.

7.2.4 Many Events and the Diagonal Map

In order to develop a Quantum Geometry, we must identify the coordinates of multi-
events. Since we want them to be independent, the usual prescription is to take tensor
products: we regard each set

qμ
j = I ⊗( j−1) ⊗ qμ ⊗ I ⊗(n− j−1), μ = 0, . . . , 3, (7.12)

as the coordinates of the j th event.
Then a segment may be identified by its two independent endpoints q j , qk , or

even better with the separation operator q j − qk .
Since the theory is covariant under translations, we should expect the separations

q j − qk of two events to be statistically independent from the average position

q̄ = 1

n

n∑
j=1

q j

of all the n events. We immediately check that

[q̄μ, (q j − qk)
ν] = 1

n
(Qμν

j − Qμν
k ),

where Qμν
j = −i[qμ

j , qν
j ]; which does not vanish if ⊗ is understood as the tensor

product of complex spaces. This forces us to understand ⊗ as the tensor product
⊗Z of Z -modules, where Z � Cb(Σ) is the centre of the multiplier algebra M(E );
intuitively, this amounts to take the usual tensor product fibrewise on Σ . Since Q is
affiliated to Z , with this position

Q j = Q, j = 1, . . . , n,

and
[qμ

j , qν
k ] = i Qμν, (7.13)

[q̄μ, (q j − qk)
ν] = 0, j, k = 1, . . . , n. (7.14)

The coordinates qμ
j are then affiliated with the C*-algebra1

1Of course K⊗n � K, so that E (n) � E .
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E (n) = E ⊗Z · · · ⊗Z E︸ ︷︷ ︸
n factors

� C0(Σ,K ⊗ · · · ⊗ K︸ ︷︷ ︸
n factors

).

We now are in condition to construct a natural (non surjective) *-monomorphism
from M(E (n)) to M(E (n+1)).

By construction

Q̄μν := −i[q̄μ, q̄ν] = − i

n
Qμν;

namely the same commutation relations of the basic model, with the Planck length 1
replaced by

√
1/n (in natural unitswhereλP = 1). It follows that q̄ is an amplification

of q/
√

n. Moreover we have the identity

q j = q̄ + 1

n

∑
k

(qk − q j ).

The commutation relations (7.13) may be equivalently realised by taking

qμ
j = 1√

n
qμ ⊗Z I ⊗n + 1

n
I ⊗Z

∑
k

(qk − q j ),

so that

[qμ
j , qν

k ] = iδ jk Qμν

and we recognise that q̄ = 1√
n

q ⊗Z I ⊗n and q j − qk = I ⊗Z (q j − qk) live in
different tensor factors.

It follows that, with

f (Q; q1, . . . , qn) =
∫

dk1 · · · dkn f̂ (Q; k1, . . . , kn)ei(k1q1+···+knqn),

the map

β : f (Q;q1, . . . , qn) �→ f (Q; q1, . . . , qn)

=
∫

dk1 · · · dkn f̂ (Q; k1, . . . , kn)e
i√
n

∑
j k j q ⊗Z e

i
n

∑
jh k j (qh−q j )

extends to the announced *-monomorphism. This is interesting because it provides a
tensor separation between the average position of a family of n independent events,
and the algebra of the relative positions. This suggests to set the relative positions as
close to zero as possible, compatibly with positivity in the algebra, leaving a function
of the average position (and the centre) alone, to be understood as a noncommutative
analogue of the classical evaluation of a function f (x1, . . . , xn) at x1 = x2 =
· · · = x2.
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Now, let ωa be an optimally localized state with localization centre a and asso-
ciated measure μω on Σ1; the idea we have in mind is to compose the above *-
monomorphism with “id ⊗ ωa ⊗ · · · ⊗ ωa”, so to set the separations q j − qk to
their minima, while leaving a function of q̄ alone. However ωa is not a Z -module
map, hence such a tensor product is not well defined. Taking seriously that the centre
should be regarded as a point independent background, and recalling from the end of
Sect. 7.2.3 that ωa = ∫

dμω(σ) ◦ ηa and ηa,1 = ηa◦ �Σ1 , we may define the desired
quantum diagonal map E (n) as

Cb(Σ,K⊗n)
β→ Cb(Σ,K⊗(n+1))

�Σ1→ C(Σ1,K⊗(n+1))
Φ→ C(Σ1,K)

where

Φ = id ⊗Z1 ηa,1 ⊗Z1 · · · ⊗Z1 ηa,1︸ ︷︷ ︸
n factors

.

It is an obvious consequence of translation covariance that the resulting map does
not depend on the choice of a. We find

E (n) f (Q; q1, . . . , qn)

=
∫

da1 · · · dane− 1
2

∑
j |a j |2δ(4)

(1
n

∑
j

a j

)
f (Q; q̄ + a1, . . . , q̄ + an),

(7.15)

where q̄ now are the coordinates with characteristic length
√
1/n and affiliated to

C(Σ1,K), while |a|2 = ∑
μ(aμ)2.

The map so constructed is naturally covariant under orthogonal transformations,
but not under Lorentz boosts.

7.2.5 Planckian Bounds on Geometric Operators

The choice of the Z -module tensor product to form coordinates of many events,
discussed in the preceding section, was motivated by the necessity that [qμ, qν] ⊗Z

I − I ⊗Z [qμ′
, qν′ ] = 0 which, in the universal differential calculus, reads

d Q = 0.

With q j = I ⊗Z ( j−1) ⊗Z q ⊗ I ⊗Z (n− j−1) the coordinates of the j th of n events,

dq j = q j+1 − q j , j = 1, . . . , n − 1

is the separation between 2 of n events.
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The operator
∑

μ qμ2 may be regarded as the square Euclidean distance between
the event and the (classical) origin, and thus has no direct physical interpretation;
we already observed that it is bounded below by 2. More interesting is the Euclidean
distance

∑
μ dqμ2 between two events. We easily compute

[dqμ, dqν] = 2i Qμν,

namely the same commutation relations as the basic coordinates, with characteristic
length

√
2 (or

√
2λP , in generic units). It follows that the same bound on the square

Euclidean length of q—appropriately scaled—holds true for the square Euclidean
length of dq:

∑
μ

dqμ2 � 4.

While observers connected by a Lorentz boost will disagree in general about the
localization states where this bound can be attained, they agree on the bound itself,
which thus is a quantity with an invariant meaning and a physical interpretation, and
may be experimentally tested (at least in principle). This shows that a fully covariant
theory may well be characterised by two distinct physically meaningful invariant
quantities—the light speed and the Planck length—without any contradiction with
the Lorentz-Fitzgerald contraction. In a sense, Special Relativity already is “Doubly-
Special” in the sense of [12], without any modification (deformation) of the Lorentz
action.

This is already an interesting geometric bound, though very elementary; by the
way, it provides a clear example why a minimal length needs not being realised
as a limitation on the precision which can be attained when measuring a single
coordinate,2 nor by requiring a discrete spectrum (in this model—as well as in any
translation-invariant model—the spectrum of the coordinates is continuous).

In [7], the spectra of 2, 3 and 4-volume operators mentioned in Sect. 7.1 are
discussed in some detail, for the case of the coordinates of the basic model. Note
that, in the definition of such “quantum form-operators”, the order of products does
matter, so that they are not, and cannot be, (essentially) selfadjoint. The presence of a
non trivial polar decomposition may be regarded as a quantum generalization of the
classical notion of orientation. However—quite surprisingly—it is possible to show
that they all are normal, so that they have a well defined spectral theory.

The findings of [7] are

1. the square Euclidean length of the separation dq between two independent events
is bounded belowby 4; its square Lorentzian length has continuous spectrum, pure
Lebesgue, including the whole real line;

2Such a limitation could not be obtained in any case if coordinates have to be represented by
selfadjoint operators, unless the availability of (generalized) eigenstates is restricted.
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2. the sum of the squares of the components of both the space-time and space-space
area operators dq0 ∧dq j and dq j ∧dqk have spectral values with absolute value
bounded below by 1;

3. the 4-vector V μ = ∧
ν �=μ dqν whose components are the 3-volume operators has

Euclidean length bounded below by 8; its time component alone has spectrum C;
4. the 4-volume operator V has spectrum

σ(V ) = ±2 + √
5Z + iR,

whose distance from 0 is
√
5 − 2.

Apart the numeric factors, all bounds on n-volume operators (above expressed in
natural units where λP = 1) are of order λn

P , consistently with their physical dimen-
sions.

7.3 Quantum Field Theory on Quantum Spacetime:
The Various Approaches and Their Problems

The problem of a Quantum Field Theory of Gravitation, eighty years after the pio-
neering paper by M. P. Bronstein on the quantum linearized Einstein theory [8], is
still open.

It is therefore not entirely surprising if, twenty years after the publication of [18],
the study of the interactions between quantum fields on Quantum Spacetime remains
somewhat unsatisfactory. For, even if very simple forms of interactions are studied,
the underlying geometry keeps into account some quantum aspects of gravitation
near singular regimes.

While a large number of calculations have been performed and some concep-
tual issues have been raised, leading to a better insight, some fundamental issues
still remain unsolved, such as, typically, the apparently unavoidable break down of
Lorentz invariance as a result of the presence of nontrivial interactions. The expecta-
tion that ultraviolet (short distance) divergences would be removed or lessened, has
been partly and in some case fully fulfilled, but generally, the models investigated
exhibit a strange mixing of ultraviolet and infrared divergences. In the case when
UV divergences disappear completely, the prize to pay for this positive feature lies
in serious difficulties in taking an adiabatic limit in time.

7.3.1 Free Fields and “Local Algebras” on QST

In the approaches to QFT on Quantum Spacetime investigated by a number of the
present authors, the free field equation remains unchanged, and therefore, the free
massive bosonic quantumfield onQST can be understood as follows: after evaluation
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in a (suitable) state on QST, one obtains an operator on the ordinary Fock space H
by the assignment

φ(ω) := 1

(2π)3/2

∫
(ψω(k) a(k) + ψω(−k) a(k)∗)dΩ+

m (k) = ϕ(ψ̂ω) (7.16)

whereψω(k) = ω(eiqμkμ
) is the corresponding (inverse Fourier transformed)Wigner

function, and where ϕ is the quantum field on classical spacetime,̂denotes the
Fourier transform, and dΩ+

m (k) is the Lorentz-invariant measure on the positive
mass shell as usual. For definiteness, the set of states might be chosen to be such that
the resulting Wigner functions are Schwartz functions.3 Short-hand notation for the
above construction is the formula (7.6) for φ(q) found in the Introduction.

One obtains a fully Poincaré covariant field, which gives rise to a Poincaré covari-
ant net of local algebras, as a map

E �→ A(E) ⊂ B(H)

which assigns to selfadjoint idempotents E in the Borel completion of the C*-algebra
E of Quantum Spacetime the von Neumann algebra generated by the (bounded func-
tions of the appropriate self adjoint extensions of the real and imaginary parts of the)
field operators in (7.16), when ω has support in E , i.e. ω(E) = 1.

This map would be covariant: if P is the covering group of the Poincaré group,
and τ , α respectively denote its action on the C*-algebra of Quantum Spacetime E ,
extended by normality to the Borel completion, and on the C*-algebra F of field
operators, then

αLA(E) = A(τL(E)) (7.17)

But Locality breaks down: if ω is translated by a in a spacelike direction, even if ω

is optimally localized, the commutator between φ(ω) and φ(ωa) is never zero. But,
as explicitly computed for the typical case of free massless fields, it vanishes as a
Gaussian of Planckian width as a goes to spacelike infinity.

Therefore the fields are no longer local—which is perhaps to be expected on
QST—but only at Planckian separations, for the free fields. It is not clear, however,
if this results in a violation of causality at large scales in presence of interactions.

Moreover, as we do not know how to deal with interactions in a Lorentz covariant
way, we cannot be sure that a covariant net as in (7.17) can still be a picture of an
interacting theory.

But even if it were, the formalism would still miss an essential ingredient to be
significant: a clear cut algebraic property which replaces Locality and reduces to it
in the limit where the Planck length is neglected. As Locality does in the classical
Minkowski case [19], this axiom ought to imply most conceptual features of QFT
on Quantum Spacetime, independently of the specific form of the interactions.

3This set is nonempty, as the Gauss function is the Wigner function of the best localized states.
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An indication of how radically new ideas are needed here is given by the depen-
dence of the local algebras from our choices, already in the case of free fields.

If, as an example, we let E(λ) denote the spectral family of q2
0 + q2

1 + q2
2 + q2

3 ,
whose spectrum is the half line with minimum 2, and consider the local algebra
A(E(2)), there will be only one function k �→ ω(eiqk) for all states ω on E such
that ω(E(2)) = 1. This function is a Gaussian. Hence, in the case of a single scalar
and neutral field, the local algebra A(E(2)) will be generated by a single self adjoint
operator (with spectrum the real line, pure Lebesgue), and hence isomorphic to the
commutative von Neumann algebra of the Lebesgue L∞ complex functions on the
unit circle (on the other hand, in the case of finitely many generating fields, all of
Fermi type, it would be finite dimensional).

But if we generate a von Neumann algebra with the translates of that algebras over
any tiny neighbourhood of the origin in the translation group, we find all bounded
operators [15] (see also [24]).

7.3.2 Perturbation Theory

When putting a quantum field theoretic model on Quantum Spacetime, several
choices have to be made. In the absence of a good notion of locality, most publica-
tions have focused on perturbative approaches. Even so, the ordinary setup allows
for a number of different generalizations. While on Minkowski space a number of
approaches turn out to be equivalent (inductive construction of time-ordered prod-
ucts in the sense of Epstein and Glaser, Yang-Feldman approach, Dyson series, even
Feynman graphs calculated via theWick rotation), this ceases to be true on Quantum
Spacetime.

For one thing, only the Dyson series and the Yang-Feldman approach seem to
be even definable on Quantum Spacetime (where time does not commute with the
space coordinates). And it then seems that, even on the simplest model of Quantum
Spacetime, they yield theories which are inequivalent. Both approaches, however,
share the feature that that they were based on the introduction of a commutative time
parameter t—in the Hamiltonian approach this was caused by taking a partial trace
on the algebra,

HI (t) =
∫

q0=t
d3q H(q) (7.18)

to define the interactionHamiltonianHI (t), and in theYang-Feldman approach, such
a time t was introduced in order to define the incoming field and to even formulate the
initial value problem. Here, the interacting field is calculated recursively, as a formal
power series in the coupling constant, formallywritten (for themassiveKlein-Gordon
field), for the simplest choice of an interaction term,
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(� + m2)φ = −gφn−1, φ =
∞∑

k=0

gkφk .

Here, theKlein-Gordon operator is defined via ∂μ f (q) := d
dt f (q+teμ I )|t=0. Fixing

the initial condition by assuming that for t → −∞, the field φ(q + te0 I ) is the free
field, the power series starts with the free field φ0, while higher orders are calculated
as convolutions with the retarded propagator Gret of the ordinary Klein-Gordon
equation, e.g.,

φ1(q) =
∫

g(x)Gret (x)φn−1
0 (q + x I ) dx,

with an infrared cutoff given by an x-dependent coupling constant g. Of course,
the need for renormalization occurs here, since products of (even free) fields are ill-
defined. Different methods of defining the interaction term have been investigated in
e.g. [6, 14].

In the Hamiltonian formalism, on the other hand, it is important to note that in the
expression for HI (t) products of field operators appear which are spread in space
and in time with a non local kernel, which is produced by the quantum nature of
spacetime, see Sect. 7.3.3. Thus the time argument for the fields is not the parameter
inHI (t), but in the Dyson expansion for the S-matrix

S = T exp

[
iλ

∫ ∞

−∞
dt HI (t)

]
(7.19)

= I +
+∞∑
n=1

(iλ)n

n!
∫ +∞

−∞
dt1 · · ·

∫ +∞

−∞
dtn T [HI (t1) · · ·HI (tn)]

the time ordering T has to be performed in terms of the arguments of the factors
HI (t), and not in terms of the time arguments in the fields [18]. Otherwise an unjus-
tified violation of unitarity is introduced [4]. This prescription can be summarised in
modified Feynman rules [25].

7.3.3 Interaction Terms

The next choice, which turns out to be just as delicate, is the generalization of even
so simple an interaction term as φn . We do not comment on gauge theories here, see
however, e.g. [33] and the comments on covariant coordinates and gauge invariant
quantities in [7].

The first possibility that comes to mind is to use the product in the Quantum
Spacetime C*-algebra E to define φ(q)n . If this prescription is used, in the Dyson
series approach, to define the Hamiltonian density H(q) appearing in (7.18), it turns
out that the resulting HI (t) is still a function of the commutators Q.
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In terms of interpretation, this means that besides the localization, an experimen-
talist would also have to specify which measure on the spectrum Σ of the centre he
prepared. This problem would equally show up in the Yang-Feldman approach.

This cannot be solved by evaluating a Lorentz invariant state on the centre, for the
Lorenz group is not amenable. Already in [18] it was proposed to use a distinguished
state on the centre in order to lessen this problem. More specifically, if H(q, σ )

denotes the evaluation of the Hamiltonian density at the point σ ∈ Σ , and dμ the
rotation invariant regular probability measure on Σ carried by the base Σ1, in (7.19)
the following expression was used

HI (t) =
∫

dμ(σ)

∫
q0=t

d3q H(q, σ ), (7.20)

but of course the ad hoc choice of dμ breaks Lorentz invariance.
Note that, by power counting arguments, the resulting φ3 theory was shown to be

finite in this frame [3].
It must be mentioned that the twisting of the product of functions of q caused by

non commutativity suggested a very interesting approach initiated in [11, 21]. This
framework of so-called warped products still holds potential to be an effective tool
in the construction of two dimensional models, with non trivial S matrix; which can
even be preassigned as a phase function in two particles elastic scattering, solving
the inverse scattering problem in terms of wedge local algebras. In these approaches,
locality is replaced by the weaker notion of wedge locality.

Coming back to QFT onMinkowski QST, in order to specify the quantum Hamil-
tonian density H(q) in (7.18), apart from using the product of E , one sees that
products of fields on QST, which generalize the ordinary interaction term, can now
be defined in various ways, of which we mention two.

The first one, originally adopted in the above mentioned works, relies on the
interpretation that an interaction is produced by bringing fields close to each other—
in the end to bring them to coinciding points (at the cost, of course, of having to
renormalize the corresponding term). This is the classical Wick procedure. But on
QST it is not allowed to bring independent events at a coinciding point.

Thus, in our framework, it is natural to redefine this limit of coinciding points
using the quantum diagonal map introduced in Sect. 7.2.4.

A (classical) interaction term φn(x) is then replaced by

: φ(q̄)n :Q = E (n)
( : φ(q1)φ(q2) . . . φ(qn) : ),

with E (n) as in Eq. (7.15) and with the actual dependence on the quantum coordinate
q̄ of characteristic length 1/

√
n (the mean coordinate) already spelled out explicitly.

The interaction Hamiltonian on the Quantum Spacetime is then given by

HI (t) = λ

∫
q0=t

d3q̄ : φ(q̄)n :Q
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This expression is independent of the commutators Qμ,ν , hence no ad hoc inte-
gration on Σ is needed. But the definition of the quantum diagonal map chooses a
particular Lorentz frame, hence Lorentz covariance is broken ab initio.

The above choice leads to a unique prescription for the interaction Hamiltonian
on Quantum Spacetime. When used in the Dyson perturbative expansion for the S
matrix, this gives the same result as the effective non local Hamiltonian determined
by the kernel

exp

{
− 1

2

∑
j,μ

aμ
j
2
}
δ(4)

(
1

n

n∑
j=1

a j

)
.

The corresponding perturbative Gell-Mann and Low formula is then free of ultra-
violet divergences at each term of the perturbation expansion [5].

However those terms have a meaning only after a sort of adiabatic cutoff: the
coupling constant should be changed to a function of time λτ , rapidly vanishing at
infinity, say depending upon a cutoff time τ , i.e., the Gell-Mann and Low formula
for the time-ordered products of the interacting field of the effective non local theory
should read

T
(
φ(x1) . . . φ(xn) exp

[
i
∫ +∞
−∞ dt λτ (t)HI (t)

])
〈
T exp

[
i
∫ +∞
−∞ dt λτ (t)HI (t)

]〉
0

where the vacuum-vacuum contributions have to be divided out as usual, and where
T indicates the time ordering, of course with respect to the t-values in the expansion
of the exponential, not the time values in the arguments of the field operators, as
already remarked above.

Thus this prescription leads to an ultraviolet finite theory, thereby finally fulfilling
one of the original hopes of thewhole approach. However, it remains to be shown that
the adiabatic limit in time can be performed; otherwise, ultraviolet-infrared mixing
problems cannot be excluded. This is an open problem, and there are indications that
the limit might not exist.

Moreover, of course, a λP -dependent finite renormalization would be needed
anyhow, otherwise the results would not have any physical meaning, for they would
include meaningless large contribution, divergent in the limit of classical Minkowski
space.

From this perspective, a major open problem, anticipated in the Introduction, is
the following. Suppose we apply this construction to the renormalized Lagrangean
of a theory which is renormalizable on the ordinaryMinkowski space, with the coun-
terterms defined by that ordinary theory, and with finite renormalization constants
depending upon both the Planck length λP and the cutoff time τ . Can we find a
natural dependence such that in the limit λP → 0 and τ → ∞ we get back the
ordinary renormalized Gell-Mann and Low expansion on Minkowski space?
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This should depend upon a suitable way of performing a joint limit, which hope-
fully yields, for the physical value of λP , to a result which is essentially independent
of τ within wide margins of variation, and can be taken as source of predictions to
be compared with observations.

The other possibility for obtaining an interaction term is to consider auxiliary
variables xi ∈ R

4 to define fields at separate points q + xi I in Quantum Spacetime,
and to define the limit of coinciding points by letting xi → x , i.e., using this set
of commutative extra parameters. This was motivated mostly by the fact that, in
the Yang-Feldman approach, such commutative separations occur anyhow. Also, it
makes mathematically precise the idea that after evaluation in a state on QST, one
gets an ordinary operator valued tempered distribution, similar to what one has in the
Wightman formalism. In fact, after the choice of a localization state ω, one considers
as the n-fold tensor product of a quantum field on QST the tempered distribution

S(R4n) � g �→ φ⊗n(Ψω × g)

where × is the convolution, and Ψω(k1, . . . , kn) = ω(ei(
∑

j kμ
j )qμ). Formally, this

corresponds to considering products

φ(q + x1) · · · φ(q + xn)

The crucial point is that one can now give a precise notion of what a local countert-
erm should be. The resulting Wick products which are defined by subtracting only
such local counterterms were conjectured to be well-defined in the limit of coincid-
ing points—the proof which was sketched in [6] has been superseded by general
considerations on twisted products of tempered distributions, which are currently
being applied. But unfortunately this cannot be the end of the story. Some of the
unsubtracted terms, even if finite for non zero values of the Planck length, are bound
to diverge as that length is allowed to tend to zero. This means that they would con-
tribute with possibly very large unphysical values, which ought to be removed by a
finite renormalization.

Moreover, it turned out that this approach leads (in the Yang-Feldman approach)
to a strange dispersion relation (modified in the infrared), which cannot be absorbed
by local counterterms. Furthermore, it was shown later [2], that in the Hamiltonian
formalism at least, the approach also exhibits a mixing of ultraviolet and infrared
divergences.4

At the heart of these problems seems to be the fact thatwe cannot control the effects
of noncommutativity at large scales. In particular, we cannot control how would
those effects cumulate at higher and higher orders of the perturbation expansion,
and decide whether they would keep being sensible only at Planckian distances.

4Note however, that in a Euclidean realm at least, there is hope that an infrared-cutoff model, the
so-called Grosse-Wulkenhaar model might have a chance to be resummable and thus give way even
to a constructible theory.
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To understand these issues better, seems to be one of the essential points to better
understand quantum field theory in QST.

But, at a more fundamental level, the difficulties with Lorentz covariance posed
by the non triviality both of the centre of the algebra of QST and of the action on it
of the Lorentz group, might be a spy of the need of a more dynamical meaning of
the commutators. As mentioned in the Introduction (cf. also next section), Physics
suggest that those commutators should depend on the fields, hence they should be
acted upon by the Lorentz group in a more essential way. This might be the key
to solve the problems with the correct definition of covariant interacting theories;
however, in a scenario of which the only thing which is clear is that it would be
extremely difficult to treat.

7.4 Quantum Spacetime and Cosmology

7.4.1 Beyond Minkowski: A Dynamical Quantum Spacetime
Scenario

The model of Quantum Minkowski Spacetime presented in the previous sections
should be thought of as a geometric background for Quantum Field Theory, which is
more realistic than standard Minkowski Spacetime, as it implements in the noncom-
mutative nature of the underlying geometry some of the limitations to localizability
of events dictated by our present understanding of the basic principles of Quantum
Mechanics and General Relativity. As shown above, the development of Quantum
Field Theory on it allows us to avoid at least some of the problems and contradictions
which we are otherwise bound to meet on commutative Minkowski.

As already mentioned, such a model seems to be sufficient for describing the
typical regime of Particle Physics, in which the large scale spacetime structure is
expected to have essentially no effect on particle collisions in an accelerator, even at
very high energies.

On the other hand, it is widely believed that a quantum description of Gravity
becomes of relevance near classical gravitational singularities, e.g., at cosmological
times smaller than the Planck time tP � 10−43s, where it could provide a better
understanding of the initial state of the universe. Moreover, it can be foreseen that
gravitational effects that demand for such a quantum description can have observa-
tional consequences, for instance in the structure of the Cosmic Microwave Back-
ground. It seems therefore compelling to extend the analysis of the quantum structure
of spacetime to the curved case, also in view of the fact that it is conceivable that
Quantum Spacetime may serve as a more suitable background for Quantum Gravity
too.

If we turn then to the consideration of a generally curved (commutative) spacetime
and of quantum fields propagating on it, it is to be expected that the energy density of
the prevailing quantum state affects the Spacetime Uncertainty Relations, as shown,
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e.g., by the argument presented in Sect. 7.1. Since this energy density determines
the dynamics of spacetime itself, through Einstein’s Equations, we are led to the
conclusion that, on an arbitrary spacetime, the Spacetime Uncertainty Relations, and
therefore the commutator between the coordinates of a generic event, should depend
on the underlying metric tensor. This leads us to a scenario where the equations of
motion of the system should then become (in natural units) [16]:

[qμ, qν] = i Qμν(g), (7.21)

Rμν − 1

2
gμν R = 8πTμν(φ), (7.22)

F(φ) = 0, (7.23)

where φ denotes the collection of the quantum fields under consideration, which
should be thought as functions of the qμ’s, Tμν(φ) is their stress-energy tensor, and
the last equation is symbolic for the fields’ equations of motion (where the metric g
also appears via the covariant derivatives).

In order to turn this general picture into amodel apt to perform actual calculations,
it is of course necessary, among other things, to investigate more closely the possible
form of the right hand side of (7.21). This is obviously a hard problem.Whichmaybe
ought to be tackled without forgetting that keeping the familiar form of (7.22) all the
way down to the Planck scale is a terrific extrapolation: the experimental verification
of Newton’s law is not available for distances shorter than few millimetres.

Having said that, and lacking any clue on the possible modifications of Grav-
ity at small scales, the simplest thing to do in order to study the possible form of
the right hand side of (7.21) is to try to generalize the original derivation of the
Spacetime Uncertainty Relations in [18] to a generic curved spacetime treating the
gravitational field in the semiclassical approximation. This means that one should
estimate the backreaction of spacetime to the localization of the state of a quantum
field propagating on it, in order to detect the formation of trapped surfaces enclosing
the localization region. The first problem which arises is that the concept of energy,
which enters the argument of [18] through Heisenberg’s Uncertainty Principle, is in
general ill-defined on a curved background.Moreover it seems advisable to avoid also
the other sharp simplifications made there, as, e.g., the use of the linearized form
of the Einstein Equations to derive limitations which are relevant precisely in the
extremely relativistic regime, where the linear approximation cannot be expected to
be a good one. Or the use of a crude criterion, such as g00 > 0, for the non-formation
of trapped surfaces.

7.4.2 Localization on a Spherically Symmetric Spacetime

The problems pointed out above have been solved in [20] in the case of a spherically
symmetric background and a spherically symmetric localization region. The result,
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not surprisingly, is that in order to prevent the formation of trapped surfaces, the
spatial sphere of localization should have a radius whose proper length is bounded
below by a constant of the order of the Planck length.

More specifically, consider a globally hyperbolic spacetime M which is spheri-
cally symmetric. This means that M is diffeomorphic to I × R+ × S

2, with I ⊂ R

an open interval, and that the metric on M takes the form

ds2 = −A(u, s)du2 − 2ds du + r(u, s)2dS
2. (7.24)

The coordinates (u, s) ∈ I × R+ are the so called retarded coordinates, and they
have the following geometrical meaning. The coordinate u is the proper time along
the worldline γ spanned by the centre of the spherical symmetry, while s is the affine
parameter along the future pointing null geodesics which emanate from the point
γ (u), normalised in such a way that the scalar product between the tangent vector to
the considered geodesics and to γ is one. The collection of all the lightlike geodesics
emanating from γ (u) forms a cone in M which we will denote by Cu .

The surface of the spatial 2-sphere described by the points of M at fixed (u, s) ∈
I ×R+ is given by 4πr(u, s)2, and, as intuitively clear, a trapped surface occurs when
this quantity is decreasingwith increasing s at fixed u, as thismeans that the geodesics
spanningCu are focusing. Thus, in order to detect the emergence of trapped surfaces,
it is necessary to study the rate of change of this quantity. The latter is measured,
along a fixed cone Cu , by the expansion parameter of null geodesics s �→ θ(s),
whose evolution is governed by the Raychaudhuri equation (see, e.g., [32]), which,
under the present symmetry assumptions, reads

θ̇ = −θ2

2
− Rss, θ ∼ 2

s
for s → 0+. (7.25)

Here, Rss is the s-s component of the Ricci tensor, which, due to spherical symmetry,
is only dependent on (u, s).

Consider now a scalar, massless, conformally coupled quantum field φ propagat-
ing on M , a background metric g(0) of the form (7.24), and an initial Hadamard state
ω on the *-algebraA(M, g(0)) generated by theWickmonomials ofφ, in equilibrium
with such background, namely a triple (φ, ω, g(0)) satisfying the Klein-Gordon and
the semiclassical Einstein Equations coupled together:

�g(0)φ = 0, (7.26)

R(0)
μν − 1

2
g(0)
μν R(0) = 8πω(Tμν), (7.27)

being Tμν the stress-energy tensor of the field φ (we refer the reader to [9] and
references therein for a detailed discussion of a free scalar quantum field on a general
globally hyperbolic background from the algebraic point of view).We emphasise that
solutions to (7.27) exist at least for spacetimes of cosmological interest [27, 28].
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The field φ is used to model an experiment of spherically symmetric localization
of an event on the background spacetime (M, g(0)), and the state in which φ is
prepared to perform such an experiment will be represented by the following simple
perturbation of ω:

ω f (A) = ω(φ( f )Aφ( f ))

ω(φ( f )2)
, A ∈ A(M, g(0)), (7.28)

with f a spherically symmetric real smooth function whose support describes the
localization region of the event under consideration. Such a state is obviously not
strictly localized in supp f , and this entails that the limitations obtained on the size
of the localization region will be weaker that those deriving from a strictly localized
one, whose energy density, at fixed total energy, will be larger.

These limitations arise in principle by considering the backreaction of the under-
lying metric to the localization, i.e., the solution gμν to the semiclassical Einstein
Equations with source the stress-energy tensor of φ (on the fixed background g(0))
in the perturbed state ω f ,

Rμν − 1

2
gμν R = 8πω f (Tμν), (7.29)

and imposing that, in accordance to the Principle ofGravitational Stability, no trapped
surface appears preventing signals from supp f to reach a distant observer.

In practice, this is accomplished in [20] by first evaluating the change in the
expectation value of the stress-energy tensor 〈Tss〉 f,0 := ω f (Tss) − ω(Tss); then by
fixing a cone C0 containing supp f in its causal future and considering (7.25) on it,
where, in the right hand side,

Rss = 8πω f (Tss) = R(0)
ss + 〈Tss〉 f,0

(remember that gss = 0); and finally by requiring that its solution remains positive
for all s > 0. This, according to the above discussion, entails that no trapped sur-
face appears in the future of C0. We notice explicitly that in this procedure no use
of ill-defined concepts like energy is made, as the estimate of 〈Tss〉 f,0 is solely a
consequence of the free field properties, namely of the CCR.

The outcome of this discussion is summarised in the following theorem.

Theorem 7.4.1 ([20])Under the above hypotheses and notations, assume moreover
that:

(i) R(0)
ss ≥ 0 on C0;

(ii) there exists a constant C > 0 such that

|ω(φ( f )φ( f ))| ≤ C‖sψ f ‖L2(C0)
‖∂s(sψ f )‖L2(C0)

,
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Fig. 7.1 Past null shadow of
supp f

C0

supp f

s1

s2

where ψ f := Δ( f )|C0 is the restriction to C0 of the image of f under the
causal propagator Δ of Eq. (7.26);

(iii) defining s2 > 0 to be the value of the affine parameter such that the points
of C0 in the past causal shadow of supp f satisfy s < s2, there exists an
s1 < s2 < 3

2 s1 such that

‖∂sψ f ‖2L2(C0)
≤ 8π

∫ s2

s1
|∂sψ f |2 ds.

Then, for the expansion parameter θ to be positive on C0, it is necessary that s2 ≥
s̄ := 1/

√
12C.

We remark that assumption (i) is verified at least in all reasonable cosmologi-
cal spacetimes, and that assumption (ii) is satisfied (with C = 1) by the massless
Minkowski vacuum [20, Appendix], and that a similar property holds for a large class
of Hadamard states on curved backgrounds [13]. Finally, assumption (iii) appears to
be reasonable if s1, s2 are related to the past null shadow of supp f like in Fig. 7.1,
due to the fact that the dominant contribution to ‖∂sψ f ‖2L2(C0)

comes from the singu-
larities of the causal propagator Δ(x, y) for lightlike separations of the arguments.

Thus, for the localization experiment to be physically realisable, the size of the
localization sphere, as measured in terms of the affine parameter, has to be bounded
belowby some constant s̄ of order 1.Weobtain in thisway a generalization to a curved
spherically symmetric space-time of the particular case of the SpacetimeUncertainty
Relations in which all the uncertainties are of the same order of magnitude. In order
to get a full set of Spacetime Uncertainty Relations, it would be of course necessary
to treat the case in which supp f is not spherically symmetric.

The achieved result, anyway, means in particular that in a flat Friedmann-
Robertson-Walker (FRW) background (which is spherically symmetric with respect
to every point), with metric, in spatial spherical coordinates, ds2 = −dt2 +
a(t)2[dr2 + r2dS

2], the size of a localization region centred around an event at
cosmological time t , measured by the radial coordinate r , must be at least of order
1/a(t) (and therefore of order 1 in terms of proper length). Thus this gives further
support to the expectation that the Spacetime Uncertainty Relations are affected by
the background metric, and therefore to (7.21).
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7.4.3 Backreaction on Quantum Spacetime
and the Horizon Problem

The above derived behaviour of the effective Planck length on a flat FRW
spacetime suggests of course that the acausal effects induced by the quantum struc-
ture of spacetime should becomemore important near the Big Bang, when a(t) → 0,
in agreement with previous remarks. In particular, as seen also in Sect. 7.3, it can be
expected that this results in a high-energy modification of the product of quantum
fields at the same spacetime point, and in particular of the stress energy-tensor. In
the spirit of the scenario outlined in Sect. 7.4.1, this should entail, in turn, a modified
cosmological evolution.

In [20] this issue has been analysed in more detail in the simplified situation of
a universe only filled with radiation (modeled by a massless scalar field). In order
to circumvent the problem of not knowing the explicit form of the commutation
relations (7.21) implementing the Spacetime Uncertainty Relations on a generic
background, and therefore without a full-fledged QFT on the resulting Quantum
Spacetime algebra, the following strategywas adopted: first evaluate themodification
of the stress-energy tensor on ordinary Minkowski Quantum Spacetime, then use the
conformal isometry of (commutative) flat FRWwithMinkowski to propose an ansatz
for the stress-energy tensor on (the yet unknown) Quantum FRW Spacetime, and
finally solve the semiclassical Einstein Equationwith source given by the expectation
value of such modified stress-energy tensor in a thermal state, used as a simple
approximation of the initial hot state of the universe, whose relics we see today as
the Cosmic Microwave Background (CMB). The interesting result of this analysis
is that, although the Big Bang singularity is still present in this model, the scaling
behaviour of radiation density near the singularity in significantly modified, in a
way such that the resulting cosmological evolution avoids the horizon problem of
standard cosmology.

More in detail, given a freemassless scalar field φ onMinkowski Quantum Space-
time E , its energy density is defined by replacing the coinciding point limit with the
quantum diagonal map of Sect. 7.2.4:

: ρ :Q (q̄) := E (2)
(

: ∂0φ(q1)∂0φ(q2) : −1

2
ημν : ∂μφ(q1)∂

νφ(q2) :
)

.

Consequently, the expectation value of : ρ :Q in the unique KMS state ωβ at inverse
temperature β > 0 is easily calculated to be, in generic units,

ωβ(: ρ :Q (q̄)) = 1

2π2

∫ +∞

0
dk k3

e−λ2P k2

1 − eβk
, (7.30)

where the q̄ dependence disappears in the right hand side because of translation
invariance of ωβ . The result differs from the analogous quantity on commutative
Minkowski spacetime by the Gaussian damping at high energies in the integrand.
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Consider now a free, massless, conformally coupled field φ on flat FRW space-
time M . Introducing the conformal time τ = ∫ t

t0
dt ′

a(t ′) , the metric of M becomes

ds2 = a(τ )2[−dτ 2 + dx2] and therefore M is conformally isometric to a subset of
Minkowski spacetime. This entails that the state ωβ induces a state ωM

β on (the alge-
bra generated by the Wick powers of φ on) M , by simply replacing, in its two-point
function, β with βa(t). Accordingly, its physical interpretation (e.g., in the frame-
work of [10]) can be seen to be that of a state describing local thermal equilibrium
at inverse temperature β(t) = βa(t).

This fact, together with the observation, made at the end of Sect. 7.4.2, that the
effective Planck proper length is constant in time, i.e., it does not scale with a(t),
is at the basis of the following ansatz [20]: in passing from Quantum Minkowski
Spacetime to Quantum Spacetime modeled on flat FRW, the only effective change
on the expectation value of the energy density of φ is given by replacing β in (7.30)
with β(t) = βa(t).

The resulting expression for the energy density is therefore

ρβ(t) := ωt ⊗ ωM
β (: ρ :Q (q̄)) = 1

2π2

∫ +∞

0
dk k3

e−λ2P k2

1 − eβa(t)k
, (7.31)

where ωt is a state in which the cosmological time coordinate of M is sharply
localized, and the dependence on the other components of q̄ disappears again due to
the spatial translation invariance of ωM

β . It is easy to see that, while this expression
is a negligibly small correction of the standard one on commutative flat FRW for

λP
βa(t) → 0, its asymptotic behaviour for λP

βa(t) → +∞ is given by

ρβ(t) ∼ C

βa(t)λ3P
,

significantly different from the standard one ∼ 1/a4.
Thanks to the assumed symmetry of the metric, the semiclassical Einstein Equa-

tions reduce to the first Friedmann equation, which, for a(t) → 0 (i.e., near the Big
Bang), takes then the simple form

(
ȧ

a

)2

= c

a
,

and has therefore solutions, in terms of the conformal time τ , of the form a(τ ) =
(ατ + β)−2, from which one sees that the Big Bang occurs for conformal time
τ → −∞. This means that the singularity is the lightlike past boundary of the
conformally related Minkowski spacetime, and thus in this spacetime every couple
of points have been in causal contact at some time in the past after the Big Bang.
This is to be comparedwith the standard cosmological evolution driven by a radiation
field, where the Big Bang corresponds to some spacelike surface at finite conformal
time τ = τ0, which produces the horizon problem, illustrated by Fig. 7.2: on any
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Fig. 7.2 The horizon
problem

spacelike surface, there exists events which were never in causal contact since the
Big Bang, which conflicts with the high degree of homogeneity of the CMB over the
entire sky.

We recall that the commonly accepted solution to this problem, the inflationary
scenario (see, e.g., [23]), typically postulates the existence of an ad hoc field, the
inflaton, with a specific interaction, which has the role of driving a cosmological
evolution without the horizon problem, and then decouples. In the model presented
in [20], on the contrary, the field φ is just a free field, and the inflationary expansion
is produced by the high-energy modification of its energy density caused by the
quantum structure of spacetime, so that it can be expected that this is a generic feature,
occurring also in more realistic situations of Standard Model fields interacting with
a background “Quantum FRW Spacetime”.

Finally, we stress that these results give further support to the discussion in
Sect. 7.1 motivating the scenario (7.21)–(7.23), and also agree with the heuristic
argument [16] which suggests to modify the Planck length on a curved background
by, as a rough approximation, the factor g−1/2

00 . Such a rough argument points too
to an infinite extension of non local effects near a singularity, so that, near the Big
Bang, thermal equilibrium would have been established globally.

7.4.4 Further Possible Cosmological Applications

The findings reported above, although obtained in a semiclassical, oversimplified
version of the scenario presented in Sect. 7.4.1 resulting from extrapolations of
properties of QFT on commutative curved spacetime, provide a strong motivation
for its further analysis.

Among the issues to be considered in a more refined framework, a prominent
position is certainly taken by the analysis of the possible solutions given to the other
basic problems of standard cosmology (as, e.g., the flatness problem), usually solved
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by inflationary models. Moreover, a study of the structure of CMB anisotropies
induced by QFT on Quantum Spacetime promises to be a very stringent test, in view
of the many experimental data which have become available in recent times [29],
which already put rather severe constraints on inflation [22].

It is alsoworthmentioning that the apparent increase of the range of acausal effects
near classical curvature singularities, togetherwith the characteristic property ofQFT
onQuantumSpacetime ofmixing short and long range effects, could also be expected
to be at the root of the emergence of a non-zero Cosmological Constant, as a form
of effective repulsion at very short distances [16]. In another direction, the same
feature points to a minimal size for black holes, where Hawking evaporation would
stop. The minimal black holes would be stable, and fill the universe with a gas which
would contribute to the dark matter. Due to the spherical symmetry involved, some
indications on this issue could come from an adaptation of the arguments presented
in Sect. 7.4.2. The problem, however, would be displaced from the nature of dark
matter to that of the possible formation of such black holes.

In an equally speculative attitude, it is conceivable that a dynamical Quantum
Spacetime could solve the problem of maintaining Lorentz covariance in interacting
QFT on it, and also that it could serve as a suitable geometrical background for the
formulation of a consistent Quantum Gravity theory.

To conclude this section, we mention that a full set of Spacetime Uncertainty
Relations for aflat FRWbackgroundhas beenobtained in [31], starting fromanansatz
on the formation of trapped surfaces which generalizes exact results for spherically
symmetric or equipotential surfaces, but still using Heisenberg Principle to evaluate
the energy content of the localized quantum state. Moreover, an implementation
of these Spacetime Uncertainty Relations is proposed in terms of concrete Hilbert
space operators satisfying specific commutation relations. This could then be taken
as a starting point for the formulation of a symmetry-reduced, semiclassical version
of (7.21)–(7.23), inwhich someof the abovementionedproblems could be addressed.
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Chapter 8
Algebraic Conformal Quantum Field Theory
in Perspective

Karl-Henning Rehren

Abstract Conformal quantum field theory is reviewed in the perspective of Axiom-
atic, notably Algebraic QFT. This theory is particularly developed in two space-
time dimensions, where many rigorous constructions are possible, as well as some
complete classifications. The structural insights, analytical methods and constructive
tools are expected to be useful also for four-dimensional QFT.

8.1 Introduction

We give an overview of the methods and results of conformal quantum field the-
ory (CFT), accumulated in the last three decades, in the perspective of axiomatic
approaches. In particular, we advocate the point of view that a CFT is just a rela-
tivistic quantum field theory (QFT) which is invariant under the group of conformal
spacetime symmetries. Thus, there are no independent “CFT axioms”, but the usual
QFT axioms apply with an enlarged symmetry.

Starting from the Wightman axiomatic setting in Sect. 8.2, we emphasize the
crucial importance of inequivalent representations (superselection sectors) for several
aspects of QFT. This motivates the formulation in the Haag-Kastler axiomatic setting
(“algebraic quantum field theory”, AQFT), which is particularly powerful to address
superselection sectors. We give a brief review of this setting in Sect. 8.3, and turn to
its specific application to chiral CFT in Sect. 8.4.

TheSects. 8.5 and 8.6 give an overviewof various constructivemethods to produce
models of CFT (and QFT), and related classification results.
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8.2 CFT in the Context of Relativistic QFT

Since the conformal group contains the proper orthochronous Poincaré group, a
conformal QFT is in particular a relativistic QFT in the usual sense. The simplest
examples are the massless Klein-Gordon and Dirac fields and the Maxwell field in
four spacetime dimensions (4D). Their conformal symmetry arises as a consequence
of the massless field equations, and not because it was “postulated” as an extra
feature.

TheWightman axioms describe quantum fields φ as operator-valued distributions
on (a common invariant domain in) a Hilbert space H , subject to the principle of
Locality (EinsteinCausality= commutation at spacelike distance). TheHilbert space
carries a unitary representation U of the Poincaré group P↑

+ = SO(1, D − 1)0 �

R
1,D−1 in D dimensions, which extends to a representation of the conformal group

CD (see below). Conformally covariant fields transform with a transformation law

Ugφ(x)U∗
g = αg(φ(x)) = D(g, x)−1φ(gx), (8.1)

where the fields may be multiplets, and accordingly D(g, x) is a suitable matrix-
valued cocycle. Finally, the vacuum state is a unique vector Ω ∈ H which is a
zero-energy ground state for the Hamiltonian (the generator of the subgroup of time-
translations) in every Lorentz frame, which implies that it is invariant under Ug for
all g ∈ CD (in D > 2).

For Poincaré and scale transformations gλ : x �→ λx (λ ∈ R+), the cocycle
D(g, x) is independent of x and is just a matrix representation of (SO(1, D − 1)0 ×
R+) � R

1,D−1. For scale transformations, one has D(gλ)
−1 = λd where the para-

meter d ≥ 0 is the scaling dimension of the field φ.

8.2.1 Conformal Symmetry

We take the conformal groupCD to be the connected component of the group of trans-
formations of D-dimensional Minkowski spacetime that preserve the Minkowski
metric ds2 = ημνdxμdxν up to a positive factor ω2(x) that may depend on x . This
group is generated (in D > 2) by the translations

Ta : xμ �→ xμ + aμ (a ∈ R
1,D−1) (8.2)

and the involutive “conformal inversion”

I : xμ �→ xμ

(x · x)
, (8.3)

such that Sb = I ◦ Tb ◦ I are the special conformal transformations
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Sb : xμ �→ xμ − (x · x)bμ

1 − 2(x · b) + (x · x)(b · b)
(b ∈ R

1,D−1). (8.4)

Proper orthochronous Lorentz transformations x �→ Λx and scale transformations
x �→ λx , aswell as the inversion I are generatedby translations and special conformal
transformations.

The singularity of the conformal inversion and the special conformal transforma-
tions can be dealt with as follows (see, e.g., [13, 55]). One introduces the “Dirac
manifold” which is the projective null cone {ξ ∈ R

2,D : ξ · ξ = 0}/ξ=λξ,λ	=0 

(S1 × SD−1)/Z2 in an auxiliary space with metric (+,− . . . −,+) S1 is timelike,
SD−1 spacelike. The conformal group acts perfectly regular asCD ∼ SO(2, D)0/Z2
through the linear action of SO(2, D)0 on the cone.

Minkowski spacetime is just a (dense) chart with coordinates

xμ = ξμ

ξ D + ξ D+1 (μ = 0, . . . D − 1) (8.5)

of theDiracmanifold, so that the singularity of the inversion and the special conformal
transformations is just a coordinate effect. The Poincaré group is the subgroup of
CD preserving the auxiliary coordinate ξ D + ξ D+1; its generators are mμν and
pμ = 1

2 (m
μD +mμD+1) ∈ so(2, D) (μ, ν = 0, . . . D −1). Other Minkowski charts

are obtained by acting with CD on the Dirac manifold.
Denoting p0 the generator of the time translations in the Lie algebra of CD ,

and k0 = I p0 I the generator of the timelike special conformal transformations,
hconf := 1

2 (p0 + k0) is the generator of the compact subgroup ∼ SO(2) ⊂ CD in the
“time” plane (0-D + 1-plane) of the auxiliary space, in which I is the rotation by π .

Thus, quantum fields of a QFT with conformal symmetry must be defined
as operator-valued distributions on the Dirac manifold. Their restriction to any
Minkowski chart are Poincaré covariant Wightman fields in the usual sense.

The discrete spacetime symmetries (parity P and time reflection T ) are not part of
the axioms; instead, the CPT theorem applies, stating that while P and T may not be
separate symmetries, there is an antiunitary operatorΘ preserving the vacuum vector
and acting on the fields like the combination of P , T , and a charge conjugation C .

Conformal transformations may take pairs of points which are timelike separated
in a Minkowski chart to pairs of points at spacelike separation. In other words:
the distinction between “spacelike” and “timelike” is Poincaré invariant, but not
conformally invariant. As a consequence, causal commutativity of fields at spacelike
distance implies causal commutativity also at timelike distance, and the support of
the commutator is constrained to the null cone.

This conclusion is avoided if one admits projective representations of the con-
formal group, such as they occur, e.g., for the massless Klein-Gordon field in odd
spacetime dimensions D which has half-integer scaling dimension d = D−2

2 . In
these cases, fields are not defined on the Dirac manifold, but on a suitable covering
space thereof [55].
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8.2.2 Two Dimensions

Conformal QFT in two dimensions is in our focus of interest because it admits a mul-
titude of models which can be rigorously constructed. Most of these models possess
(finitely or infinitely) many positive-energy representations, which admit, e.g., case
studies of the general theory of superselection sectors as originally formulated for
Poincaré covariant QFT in four dimensions (generalizing the univalence superselec-
tion rule or the electromagnetic charge superselection rule). This theory in particular
defines the statistics (a representation of the permutation group) as an intrinsic fea-
ture of a positive-energy representation. In two dimensions, a new feature occurs,
due to the disconnectedness of the causal complement of a point in two-dimensional
Minkowski spacetime: the statistics in general is a representation of the braid group,
related (via the Spin-Statistics theorem) to a much wider range of helicities than the
Fermi-Bose alternative in D = 4.

In contrast to D > 2 dimensions, the conformal group in two spacetime dimen-
sions (2D) turns out to be infinite-dimensional. In fact, the Dirac manifold in two
dimensions can be identified with the product of two “chiral” circles S1 × S1 on
which the conformal group C2 acts as a product of two infinite-dimensional Lie
groups Diff+(S1) (the orientation-preserving diffeomorphisms).

Namely, one can parameterize the solutions to ξ · ξ = 0 for ξ ∈ R
2,D as ξ =

λ · (sin α, sin β, cosβ, cosα), so that [ξ ] ↔ (z+ = ei(α+β), z− = ei(α−β)) is a
bijection between the quotient manifold and the product S1 × S1 of two “chiral
circles”. Moreover, the chiral Minkowski coordinates are

x± ≡ x0 ± x1 = ξ0 ± ξ1

ξ2 + ξ3
= sin α ± sin β

cosβ + cosα
, (8.6)

such that

z± = 1 + i x±

1 − i x± . (8.7)

This is the Cayley transformR → S1 mapping the light ray into the circle (excepting
the point z = −1), whose inverse is the stereographic projection S1\{−1} → R.
Because the Minkowski metric factorizes as ds2 = dx+dx−, the independent dif-
feomorphisms of the chiral circles preserve the metric up to a factor.

As it turns out, nontrivial unitary positive-energy representations of the group
Diff+(S1) are necessarily projective representations, and a state invariant under Ug

for all diffeomorphisms g does not exist. As a consequence, the vacuum vector
of a conformal QFT in two dimensions is invariant only under the product of the
two Möbius groups SL(2, R)/Z2 ∼ SU(1, 1)/Z2 ⊂ Diff+(S1). This unbroken
subgroup of C2 = Diff+ × Diff+ coincides with the group SO(2, 2)0/Z2 (which is
the conformal group CD in D > 2 dimensions if one puts D = 2).
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An important feature of 2D conformal QFT (also related to the factorization of
the metric) is the presence of chiral observables, which depend only on x+, or on x−.
These fields are therefore defined on the circle S1, into which R is embedded via the
Cayley map. The Möbius group acts by fractional linear transformations PSL(2, R)

on R ∪ {∞} or by fractional linear transformations PSU(1, 1) on S1:

x �→ ax + b

cx + d
,

(
a b
c d

)
∈ SL(2, R), z �→ αz + β

βz + α
,

(
α β

β α

)
∈ SU(1, 1).

The presence of chiral fields is strongly connected with conservation laws.
Because a symmetric tensor field that transforms irreducibly under the conformal
group is traceless, it has only two independent tensor components T+···+ and T−···−
(where ± stands for Lorentz indices 0 ± 1). If a symmetric tensor current is con-
served, the continuity equation implies that these components are chiral fields, i.e.,
∂−T+···+ = 0 and ∂+T−···− = 0. (This simple argument fails for rank 1, because
the current conservation law ∂μ Jμ = 0 gives only one equation. But one notes by
inspection that the unique conformally covariant two-point function of a conserved
current is also dually conserved, hence by the Reeh-Schlieder theorem also the dual
current is conserved: ∂μ εμν Jν = 0. Then again, J+ and J− are chiral fields.) Notice
also that the conservation of the conformally invariant two-point function fixes the
scaling dimension d of a conserved tensor current, to coincide with the tensor rank r.

Conversely, every pair of chiral fields of equal dimension constitutes a conserved
traceless symmetric tensor current of rank r = d as a two-dimensional tensor field.
Thus, chiral fields naturally occur in 2D conformal QFTmodels whenever this theory
has local conservation laws or, by Noether’s theorem, continuous symmetries, and
they actually represent the local generators of these symmetries.

The most important conserved tensor current is the stress-energy tensor (SET;
dimension = rank = 2), which is (by definition) the local generator of the conformal
symmetry Diff+(S1) × Diff+(S1) itself. The Lüscher-Mack theorem [56] fixes the
self-commutator of its chiral components up to the “central charge” c, which can
be regarded as the coefficient of the unique central extension of the Lie algebra of
the diffeomorphism group of the circle. This quantity is a distinctive invariant of the
chiral CFT at hand (where a priori, unless the 2D theory is parity symmetric, the two
chiral central charges need not to coincide).

By local commutativity in the two-dimensional Minkowski spacetime, + and −
chiral fields (“left- and right-movers”) commute with each other, and chiral fields of
the same chirality commute at non-coinciding points, so that their commutators are
linear combinations of other fields multiplied with (derivatives of) δ-distributions in
the chiral variables x±.

Any algebraic relations among chiral fields, including their local commutators,
are strongly restricted by conformal covariance. Early attempts at classification of
chiral CFTs tried to find consistent commutation and operator product relations
(“W -algebras”); but in this approach it is in general not known how to assess the
existence of representations on a Hilbert space. The most prominent cases where
this is possible, are the quantizations of the central charge c below 1 [29], and
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of the “level” k of chiral current algebras [37], which arise precisely due to the
unitarity of the vacuum representation. Both these classification results are made
possible by the fact that local commutation relations of the stress-energy tensor and
of current algebras can be regarded as central extensions of infinite-dimensional
Lie algebras (the Virasoro algebra, and affine Kac-Moody algebras, respectively),
which are obtained by extending the fields as operator-valued distributions on S1 and
Fourier-decomposing the latter. Then, methods of highest-weight representations of
Lie algebras can be applied to obtain the mentioned results.

The most basic examples of chiral fields are free fields related to the 2D massless
Dirac and Klein-Gordon fields, which can be constructed in a standard way in terms
of creation and annihilation operators on a Fock space:

• The massless 2D Dirac Fermi field decouples into its two chiral components,
where “chiral” stands for the projections onto the eigenvalues of the Dirac matrix
γ 5 = γ 0γ 1 which fix the sign of the helicity relative to themomentumof themassless
particles states; by virtue of the massless Dirac equation, the chiral components
depend only on x+ or x−, respectively. (While this original meaning of the term
“chiral” refers to the helicity,we shall belowunderstand it in the sense of “dependence
on x+ or x− only”.)

• The canonical massless Klein-Gordon field is ill-defined as an operator-valued
distribution on all test functions in S(R2). It is, however, well-defined on test func-
tions that are derivatives of test functions—which is tantamount to considering the
“gradient of the Klein-Gordon field” as an operator-valued distribution on all test
functions; this gradient field is of course a conserved current. Its chiral components
are chiral fields of scaling dimension d = r = 1.

The stress-energy tensors of these free fields are not free fields themselves, but
can be written as Wick products of the free fields. The SET of a real chiral Fermi
field ψ has c = 1

2 , that of the chiral current j has c = 1. A remarkable feature arises
here, known as “fermionization”: The chiral current, which is a free Bose field, is
at the same time a neutral Wick product :ψ∗ψ : of a complex free Fermi field (=
two real free Fermi fields), acting as the local generator of its U (1) gauge symmetry
ψ(x) �→ eiα(x)ψ(x). Likewise, the SET of the Bose current T = π : j2: coincides
with the SET of the complex Fermi field, T = i

2 :ψ∗∂ψ − ∂ψ∗ψ :, so that the same
field has two representations in terms of free Bose or free Fermi fields.

(For the more remarkable converse, called “bosonization”, i.e., the representation
of fermionic fields in terms of bosonic fields, see Sect. 8.5.3.)

Writing “the same field” in the previous exposition means, that all vacuum cor-
relation functions coincide in both representations. But the vacuum Hilbert space
of the SET is just a subspace of the Fock space of the current, which is in turn a
subspace of the Fock space of the complex chiral Fermi field. Thus, the latter Fock
space carries reducible representations of the current and of the SET.

This simple example leads us to the issue of representations.
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8.2.3 Representations

The specific algebraic relations defining a QFT in general admit many inequivalent
Hilbert space representations. Covariant representations π of the field algebra come
with a (projective) unitary representation Uπ of CD whose adjoint action on the
covariant fields implements the transformation law:

Uπ (g)π(φ(x))Uπ(g)∗ = π(αg(φ(x))) = D(g, x)−1π(φ(gx)). (8.8)

A positive-energy representation is a covariant representation of the field algebra
in which the generator of the unitary one-parameter group of time translations (the
Hamiltonian) has positive spectrum: P0 ≥ 0. This implies that the commuting gen-
erators Pμ of the subgroup of translations have joint spectrum in the closed forward
lightcone (P · P ≥ 0, P0 ≥ 0). A vacuum representation has in addition a unique
ground state of zero energy, P0Ω = 0.

In conformal QFT, positivity of the Hamiltonian P0 is equivalent to positivity of
the generator K0 = U (I )P0U (I )∗ of the timelike special conformal transformations,
and of the “conformal Hamiltonian” Hconf = 1

2 (P0 + K0). In 2D, positivity of the
generators of chiral Möbius transformations P± = P0 ± P1, K ± = K0 ∓ K1 and
L±
0 = 1

2 (P± + K ±) follows. L±
0 are the generators of the “rotations” of S1.

In the free field example above, the Fock space of the complex Fermi field splits
into an infinite direct sum of charged positive-energy representations of the current
(the neutral representation being the vacuum representation); in turn, as a repre-
sentation of the SET, the vacuum representation of the current decomposes into an
infinite direct sum of representations of the c = 1 Virasoro algebra. The precise
decompositions can be read off the “chiral characters”: these are the power series
χ(t) = T r exp(−βL0) or χ(t, q) = T r exp(−βL0 − μQ) in the variables t = e−β

and q = e−μ, which yield the multiplicities of the (integer or half-integer) eigen-
values of the conformal Hamiltonian L0 and charge operator Q in the respective
representation spaces.

The classification of the positive-energy representations of the Virasoro alge-
bra and of affine Kac-Moody algebras [29, 37] is a breakthrough for QFT without
precedent, and without analog in D = 4: not only are the algebras generated by the
stress-energy tensor, resp. by currents of dimension 1, universally fixed by conformal
invariance (up to the central charge in the first case, and up to the structure constants
of a Lie algebra and the level in the latter case), but also all their positive-energy
representations are explicitly knownwithout a perturbative construction. Thesemod-
els stand at the beginning of many remarkable findings in the representation theory
of more general chiral CFTs, including modular tensor categories and the Verlinde
formula.

Many issues in QFT are of a basically representation theoretic nature; e.g., the
vacuum representation of an extension of a given QFT is in general a reducible repre-
sentation of the latter, and certain data pertaining to this representation can be used to
classify extensions. (An “extension” is, broadly speaking, a QFT containing a given
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QFTwith the same stress-energy tensor as generator of the covariance; see Sect. 8.6.2
for more details.) Another issue are QFTs with boundaries, whose boundary condi-
tions can be understood as different representations of a suitable quotient algebra [7],
see Sect. 8.6.5. These topics can be nicely addressed in two-dimensional CFT and
give rise to several nontrivial classifications, because the structure of superselection
sectors of chiral CFT is well understood.

In particular, a two-dimensional CFT is an extension of the tensor product of a
pair of chiral CFTs; but also many chiral CFTs can be constructed as extensions or
subtheories of other chiral CFTs (see Sect. 8.6.2).

8.2.4 Different Axiomatizations

Representation theoretic issues are best captured in the algebraic formulation of QFT
(AQFT), emphasizing QFT as a given algebraic structure that admits many inequiv-
alent Hilbert space representations. The Haag-Kastler axioms of AQFT therefore do
not presume the existence of a vacuum vector—its presence is rather a feature of the
representation considered.

Apart from this, the main difference to the Wightman axiomatics is that the same
physical principles are reformulated in termsof local observables rather than quantum
fields, thus offering a somewhat broader generality. We shall briefly review this
approach in Sect. 8.3, and be more detailed for chiral conformal QFT in Sect. 8.4,
where we also present its most important general results.

It follows from these general axioms that the structure of superselection sectors
(=positive-energy representations) of completely rational (see Sect. 8.4) models of
chiral CFT is captured by a modular C* tensor category. The latter is therefore the
basic tool to describe the algebraic structure of two-dimensional CFT models (as
extensions of chiral ones). There is a wealth of abstract mathematical results about
braided and modular tensor categories. We shall point out in Sects. 8.6.2 and 8.6.5
that many of these abstract results have natural algebraic and representation-theoretic
counterparts in the setting of chiral and two-dimensional CFT.

This nearly perfect match is the reason why certain popular axiomations of CFT
actually “start from the other end”, taking a modular tensor category as the initial
axiomatic data. This point of view is justified by the above line of argument, but
it tends to create the impression that conformal QFT, rather than a special case of
relativistic QFT, were a “world of its own”, with all its peculiar features—notably the
presence of a braided or modular tensor category—being not only admitted by the
general axiomatic frameworks, but being actually consequences of the usual axioms,
specialized to 2D and augmented by conformal symmetry.

Especially, modularity of the representation category should not be regarded as
an axiom reflecting some fundamental physical principle, since important models,
like the u(1) current algebra, do not share this property. As the characterization in
[42] shows, it follows from complete rationality which is rather a regularity property
than a fundamental feature.
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Yet different axiomatisations, e.g., Euclidean CFT or vertex operator algebras
(VOA), also capture essential features of rational CFT, without requiring all the
features of relativistic QFT. Notably, the Hilbert space axiom is not essential in some
approaches, which therefore admit even more classes of models. Euclidean CFT
has a direct physical interpretation independent of its possible correspondence to a
real-time relativistic CFT, as critical limits of classical lattice systems in two space
dimensions (even with experimental verification). The physical interpretation of “the
most general VOA” is not known, but with additional assumptions a close tie with
relativistic conformal QFT can be established [23].

8.3 Algebraic QFT

The algebraic approach to quantum field theory is formulated by the Haag-Kastler
axioms [35]. The localization of local observables is captured not by the use of
quantum fields, but rather by specifying “local subalgebras” of a suitable global
C* algebra. To each open spacetime region is associated a local algebra, whose
self-adjoint elements are supposed to represent the physical observables that can be
measured (or operations that can be performed) in that region:

O �→ A(O).

Unitary exponentials or spectral projections of self-adjoint smeared field opera-
tors would generate local algebras, but this kind of construction is not necessarily
assumed in the AQFT approach. It is a nontrivial challenge to find criteria to decide
whether local algebras come fromWightman fields, and to extract the latter from the
former [16].

The principles of covariance and causality are easily formulated: The group of
spacetime symmetries acts by automorphisms αg of the global algebra properly
transforming its local subalgebras into each other, and the local algebras associated
with two spacelike separated regions are mutually commuting subalgebras.

Appropriate spacetime regions inMinkowski spacetime are doublecones O (inter-
sections of past and future lightcones). With respect to the order relation among
doublecones by inclusion, the assignment O �→ A(O) is a “net” of local algebras.
(Since the set of doublecones in the Dirac manifold is only partially ordered, the
local algebras constitute only a pre-cosheaf of algebras.)

By postulating the local algebras to be C* algebras, and the “global” algebra to be
the C*-inductive limit of the local algebras on Minkowski spacetime (usually called
the quasilocal algebra), it is ensured that there exist Hilbert space representations.
Among all Hilbert space representations, one should select those which describe
states of physical interest. This accounts for the fact, that quantum field theory—
unlike quantum mechanics—admits in general many inequivalent representations,
among which positive-energy representations (distinguished by the implementation
of time translations by a unitary one-parameter group with positive generator) and
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thermal equilibrium representations (distinguished by the presence of a KMS state
ensuring the appropriate thermodynamic stability and passivity properties) are the
most important ones [16]. Our focus in the sequel will be only on positive-energy
representations.

We shall describe various ways of specifying local algebras in Sect. 8.5.
One may object that a “net of local algebras” is a structure too abstract for speci-

fying a particular model—in particular, it does not involve an explicit specification of
a Lagrangian. But recall that a model of Quantum Mechanics is fixed by specifying
the set of observables on the Hilbert space (typically all selfadjoint operators) and
the Hamiltonian, i.e., the time evolution automorphisms αt = AdU (t), U (t) = ei Ht .
The same is true in QFT: one has to specify the algebras of observables and the
relativistic covariance.

It is a crucial fact in this respect that scattering theory can be carried out (at
least in positive-energy representations with a mass gap), by constructing multi-
particle states and the scattering matrix, using only the net of local algebras and
its covariance. Thus, the local algebras “contain” all the information that is needed
to provide the interpretation of a model in terms of particles and their interactions.
This is in accord with the fact that, in collider experiments, one usually does not
measure a particular field strength but rather deposits of “something” in the detector
arrays, and the physical interpretation of this “something” as a particle of either
kind is imposed by the correlations of signals in different detector cells (naturally
interpreted as “particle tracks”). In Haag-Ruelle scattering theory, the asymptotic
dynamics of any local observable applied to the vacuum state (as long as it is not
orthogonal to the desired particle state) is sufficient to identify the asymptotic particle
states [35].

The specific dynamics of course enters through the specification of the time evo-
lution automorphisms as part of the covariance. Thus, the Lagrangian (if there is
any) is hidden as an “inverse scattering problem” in the scattering theory of the net
of local algebras.

There is a marked difference to the standard approach (quantization of a classical
Lagrangean theory): it is not a priori required that the generators of spacetime sym-
metries (in particular the Hamiltonian) are integrals over densities (components of
the stress-energy tensor) which are some local “functions” of the field observables.
In the classical theory, such relations would imply, through the canonical Poisson
brackets, the correct infinitesimal transformation laws on the fields. In quantum field
theory, on the other hand, canonical commutation relations cannot hold (in general)
in a strict sense. Retaining only the “correct infinitesimal transformation laws” is
therefore an appropriate substitute for the quantization of a classical Lagrangean
formulation. One should keep in mind that classical physics is only a limit of the
“true” quantum physics, and there is no reason to believe in a fundamental 1:1 cor-
respondence between the two realms.

The “lack of fields” in the AQFT framework is in fact another strength: while
different sets of quantum fields (relatively local w.r.t. each other) may generate the
same local algebras, and hence have the same scattering states and the same scatter-
ing matrix (thus they belong to the same “Borchers class”), the local algebras they
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generate are the same, and should be regarded as the invariant content of the theory.
The actual choice of fields may rather be regarded as an auxiliary device to describe
the algebras (analogous to the choice of coordinates for a manifold), which may be
very convenient but is not intrinsic to the physical interpretation.

In the application of the AQFT framework to conformal QFT in two dimen-
sions, nets of local algebras are not just assumed to be given (as often in axiomatic
approaches), but can be explicitly constructed by a large variety of methods. Some
of these models actually do use fields (e.g., free Fermi fields which are bounded
operators after smearing, or currents whose unitary Weyl operators are taken as the
generators of the local algebras), but manipulations on such elementary construc-
tions give rise to new nets that cannot always be easily described in the language of
fields. We shall contrast the usual “field-theoretical” construction methods with the
algebraic methods in Sect. 8.5.

Finally, it is a mathematical benefit that one may work with bounded operators,
with norm given by the C* structure, and has not to worry about domains of def-
inition. In this setup, it is easy to say what a “representation” is, and the issue of
superselection sectors as unitary equivalence classes of positive-energy representa-
tions can be addressed. Algebraic quantum field theory is therefore the ideal setup to
approach representation-theoretic issues.

Most of the seminal breakthroughachievements in conformal quantumfield theory
in two spacetime dimensions are of a representation theoretic nature (classification of
the central charge and of conformal dimensions at c < 1 [29], fusion rules [4], coset
models and branching rules [32], …). Indeed, AQFT provides a unifying framework
for these insights, that has proven one of the places where the AQFT formulation is
most powerful, by the general theory of superselection sectors initiated by Doplicher
et al. [26], see Sect. 8.4.2.

8.4 Algebraic CFT on the Circle

8.4.1 Axioms

We give here the AQFT axioms for a Möbius covariant chiral QFT (chiral CFT)
directly in its vacuum representation, as in [13].

As emphasized earlier, in order to be prepared for the study of more general
representations, one should rather axiomatize a pre-cosheaf of abstract local algebras
on which theMöbius group acts by automorphisms; but one may as well read off this
pre-cosheaf from its vacuum representation, by regarding the latter as the defining
representation.

A chiral CFT is thus given by a family of local algebras A(I ) on a Hilbert space
H where I runs over the proper open intervals of the circle S1 into which the real
axis R is embedded via the Cayley transform Eq. (8.7). One may take A(I ) to be von
Neumann algebras. The fundamental axioms are:
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(1) Isotony. If I1 ⊂ I2, then

A(I1) ⊂ A(I2). (8.9)

(2) Locality. If I1 ∩ I2 = ∅, then

[A(I1), A(I2)] = 0. (8.10)

(3) Möbius covariance. There is a unitary representation U of the Möbius group
PSU(1, 1) = PSL(2, R) on H such that for any interval I and g ∈ PSU(1, 1),

αg
(

A(I )
) := Ugπ0(A(I )

)
U∗

g = A(gI ). (8.11)

(4) Positive energy. The generator P of the one-parameter subgroup of transla-
tions in the representation U has positive spectrum.

(5) Vacuum. There is unique (up to a phase) unit vectorΩ ∈ H which is invariant
under the action of U , and cyclic for

∨
I A(I ).

As mentioned above, positivity of the chiral Hamiltonian P is equivalent to posi-
tivity of the generator L0 of the one-parameter subgroup of rotations (the conformal
Hamiltonian). By (4) and (5), the spectrum of L0 in the vacuum representation is a
subset of N0.

The axioms (1)–(5) imply the following properties [13]:
(6) Reeh-Schlieder property. The vector Ω is cyclic and separating for each

local algebra A(I ).
(7) Additivity. If I = ⋃

i Ii , then A(I ) = ∨
i A(Ii ).

(8) Haag duality on S1. For any proper interval I one has

A(I ) = A(I ′)′, (8.12)

where I ′ is the interior of the complement of I in S1.
(9) Bisognano-Wichmann property. The Tomita modular group [68] Δi t of

A(R+)with respect to the vectorΩ coincides withU (δ−2π t ), where δt ∈ PSL(2, R)

is the one-parameter group of dilations.
(Here and below we are freely using the Cayley identification of R as a subset of

S1, and PSU(1, 1) = PSL(2, R). By virtue of Möbius covariance, the analog of (9)
is true for every local algebra A(I ) and the associated subgroup of “dilations” of I .)

An interesting consequence of (9) is that the modular groups of the local algebras
of any three intervals generate the representation U of the Möbius group PSU(1, 1),
in particular, spacetime symmetries are of modular origin. Conversely, it was shown
in [34] that if Mi are three commuting von Neumann algebras with a joint cyclic and
separating vector Ω , and Mi ⊂ M ′

i+1 mod 3 are halfsided modular inclusions, then
the three modular groups generate a positive-energy representation U of PSU(1, 1).
From this, one can construct a conformal net in its vacuum representation satisfying
the axioms (1)–(5) (and strong additivity (12) below) by identifying Mi with the local
algebras of three intervals arising by subdividing the circle by removing three points,
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and their modular groups with the corresponding dilation subgroups of PSL(2, R),
and using the action of the resulting representation U to consistently define A(I ) for
general I .

(This seems to be an interestingway to construct new chiral CFTmodels, but ideas
to provide triples of commuting von Neumann algebras with the stated properties
are scarce if one does not start from a CFT.)

Beyond the basic axioms (1)–(5), one may require further properties that are
satisfied for many models.

The presence of a stress-energy tensor is axiomatized as a stronger version of (3):
(10) Diffeomorphism covariance. The representationU of PSU(1, 1) extends to

a projective unitary representation of Diff+(S1) such that for any interval I , one has

AdU (g) A(I ) = A(gI ), for g ∈ Diff+(S1), (8.13)

and

AdU (g)a = a, if a ∈ A(I ), supp g ⊂ I ′. (8.14)

By Haag duality (8), the latter property implies that U (g) ∈ A(I ) if supp g ⊂ I , and
the subnet generated by such U (g) is called a Virasoro net.

The next two properties express “maximal decoupling” of local observables in
intervals at a finite distance, and “maximal interaction” of local observables in touch-
ing intervals [54]:

(11) Split property. If I1 and I2 are two intervals with disjoint closure, then the
map a1 ⊗ a2 �→ a1a2 is an isomorphism of von Neumann algebras

A(I1) ⊗ A(I2) 
 A(I1) ∨ A(I2). (8.15)

An equivalent assertion is that states can be independently prepared on the sub-
algebras A(I1) and on A(I2), such that a joint state restricting to the given states on
A(Ii ) always exists. This feature depends on the energy level density, and is known
to be true [18] if e−βL0 is a trace-class operator (in the vacuum representation) for
every β > 0. (Such traces, regarded as power series in t = e−β whose coefficients
give the multiplicities of the spectrum of L0, are usually referred to as “characters”
and are a very useful tool for the decomposition of reducible representations.)

(12) Strong additivity. Whenever two intervals I1 and I2 are obtained by remov-
ing an interior point from a proper interval I , then

A(I ) = A(I1) ∨ A(I2). (8.16)

Thinking in terms of quantum fields, (12) may be regarded as a regularity property
to the effect that the smearing can be approximated by test functions that vanish at a
given point.
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In view of (8), strong additivity (12) is equivalent to Haag duality on R, namely
for any proper interval I ⊂ R one has

A(I ) = A(I c)′, (8.17)

where I c is the interior of the complement of I in R.
For the algebra of two intervals I, J ⊂ S1 with disjoint closure, Haag duality will

generally fail. The index of the inclusion (in the vacuum representation)

A(I ∪ J ) ≡ A(I ) ∨ A(J ) ⊂ A
(
(I ∪ J )′

)′ (8.18)

is called the μ-index (which may be infinite).
A chiral CFT is called “completely rational” [42, 49, 54] if it is split (11), strongly

additive (12), and has finite μ-index. A chiral CFT is called “rational” if it possesses
only finitely many irreducible superselection sectors, see Sect. 8.4.2. It was shown
in [54] that a split chiral CFT is completely rational if and only if it is rational;
in particular, rationality together with split implies strong additivity. Moreover, in a
completely rational chiralCFT the braiding is completely non-degenerate, turning the
C* category of superselection sectors (see Sect. 8.4.2) into a modular category [42].

It should be stressed, however, that complete rationality is by nomeans an obvious
feature. One of the most elementary models, the chiral u(1) current algebra, satisfies
the split property and strong additivity, but possesses a continuum of charged sectors,
and thereby fails to be rational, hence completely rational.

8.4.2 Superselection Sectors

A general theory of superselection sectors was originally developed by Doplicher
et al. [26] to describe sectors in massive QFT in four spacetime dimensions. With
minor modifications in the setup, but big differences in the outcome (see below), it
has proven to be applicable in two-dimensional and chiral CFT [27].

The crucial assumption on the representations π that can be treated by the DHR
theory of superselection sectors is that, upon restriction to the causal complement of
any doublecone region, π is indistinguishable from the vacuum representation up to
unitary equivalence:

π
∣∣

A(O ′) 
 π0
∣∣

A(O ′). (8.19)

The heuristics behind this criterion is the argument that a charge distinguishing two
representations can always sit inside the doublecone O , which is inaccessible to
measurements in its causal complement O ′.

Even for massive theories, this heuristic idea may fail for charges that can only
be localized in “topological strings” (narrow cones extending to spacelike infinity)
[15], requiring some mild adaptation of the theory. More dramatically, the criterium
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equation (8.19) excludes theories with long-range forces, notably QED, because an
electric charge can be detected by measurements in the causal complement due to
Gauß’ law. An adaptation of the theory to this case has recently been formulated by
Buchholz and Roberts [17].

In contrast, the chiral analogue of Eq. (8.19) is automatically satisfied in chiral
CFT [20].

Assuming the validity of the criterium equation (8.19), positive-energy represen-
tations π can be described in terms of DHR endomorphisms ρ of the quasi-local
algebra [26]. (In the case of CFT on S1, where the set of intervals is only partially
ordered, one may restrict the CFT to a net on R ⊂ S1. Otherwise, the definition of
DHR endomorphisms is slightly more involved, invoking the pre-cosheaf structure.)
Up to unitary equivalence, one has

π = π0 ◦ ρ, (8.20)

where π0 is the (defining) vacuum representation.
The DHR endomorphisms are “localized” in some region, meaning that their

action is trivial on the subalgebras of local observables at spacelike distance of that
region, and “transportable”, meaning that that region can be chosen arbitrarily. The
first property is consistent with the idea that ρ arises by conjugation with some
localized charged field operator. The second is (a consequence of) covariance, and is
consistent with the idea that the total charge does not depend on the localization of
the charged field operator. But it should be stressed that these properties are derived
without assuming the existence of such a field operator, and are entirely intrinsic in
terms of the observables.

Equivalence, direct sums and subrepresentations of positive-energy representa-
tions can be formulated directly for the corresponding DHR endomorphisms, in
terms of intertwiners, which are local observables satisfying the intertwiner relation
tρ1(a) = ρ2(a)t . The crucial insight of [26] is that locality, Haag duality and the
localization of DHR endomorphisms imply algebraic properties of the intertwiners,
which turn the representation theory into a C* tensor category (the “DHR category”).

The composition of DHR endomorphisms describes a product of representations
(“fusion”) with the vacuum representation (the identical endomorphism) as the “neu-
tral” element. The fusion product is commutative up to unitary equivalence, imple-
mented by distinguished unitary intertwiners (“statistics operators”) [26, 27]. The
statistics operators turn the DHR category into a braided tensor category. In partic-
ular, each irreducible sector can be assigned a “statistics phase” κρ and a “statistical
dimension” dim(ρ).

In four dimensions, the braiding is in fact a permutation symmetry. As a conse-
quence, κρ = ±1 and dim(ρ) ∈ N, and these quantum numbers are related to the
statistics (and hence the spin) of particles in the associated charge sector [26, II].
In chiral CFT, the conformal spin-statistics theorem [33] relates the statistics phase
with the conformal spin, namely the value of the unitary representative U (2π) of the
full rotation of S1, and hence the spectrum of the generator L0 (mod Z).
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In a large class of chiral CFTmodels (the completely rational ones, see Sect. 8.4.1),
the braiding is in fact maximally non-degenerate, so that the DHR category is even
a modular C* tensor category [42], and the sum

∑
ρ dim(ρ)2 over all irreducible

sectors equals the μ-index, see Sect. 8.4.1.
The latter is a very interesting result, quantitatively relating the existence of non-

trivial superselection sectors to a quantity that can be “measured” in the vacuum
representation.

The large variety of available models opens the door to model studies of general
concepts, exploring the range of possibilities admitted by the general principles of
local quantum field theory. Although these methods are presently limited to two
dimensional conformal QFT, viewing them in the context of general QFT may be
instructive for the construction of more realistic models in four-dimensional space-
time. We shall discuss some of these issues in Sect. 8.6.

8.5 Chiral Model Constructions

8.5.1 Free Fields

The most elementary constructions of chiral models are, as always, free fields. As
the conformal scaling dimension h specifies theMöbius invariant two-point function
∝ ( − i/(x − y − iε)

)−2h , and the two-point function completely determines a free
field, the only “choice” is a scaling dimension h which must be positive in order that
the two-point function is a positive-definite scalar product. The two-point function
is local iff h ∈ N, and it is anti-local iff h ∈ 1

2 + N0.
The case h = 1

2 is identical with the chiral component of a massless Majorana
resp. Dirac field, which are real resp. complex chiral Fermi fields. The case h = 1 is
identical with the “chiral derivative of the massless Klein-Gordon field”, called the
free current, see Sect. 8.2.2.

In the AQFT framework, one would rather define the chiral free Fermi field as
a CAR algebra over L2(S1) with the vacuum state ω

(
ψ( f )ψ(g)

) = ( f ,Π+g)

specified by the projection Π+ onto the positive-frequency part; and the chiral free
current can be defined by the CCR algebra over C(S1) with symplectic form ∼
i
∫
( f ′g − f g′) with the vacuum state given by a Gaussian ω(W ( f )) = e− 1

4 || f ||2C
with a suitable inner product of the complexified symplectic space to guarantee
positive energy. Local subalgebras are specified by specifying the support of the
functions f .

8.5.2 Wick Products and Fermionization

Quadratic Wick products of free fields are well-defined by standard quantum field
theory methods.
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In particular, the stress-energy tensor of the free Fermi field is T = i
2 :ψ∂ψ :, and

the stress-energy tensor of a free current is T = π : j2:, giving the central charge
c = 1

2 and c = 1, respectively.
“Fermionization” is the remarkable feature that the bosonic free current can be

represented as the neutral Wick product :ψ∗ψ : of a complex free Fermi field. The
bosonic current is therefore defined on the fermionic Fock space, which as a represen-
tation splits into an infinite direct sum of charged representations with integer charge.
The bosonic stress-energy tensor π : j2: coincides with the fermionic stress-energy
tensor i

2 :ψ∗∂ψ − ∂ψ∗ψ :.
By way of generalization, one obtains “nonabelian currents” associated with a

(semi-simple) Lie algebra g by the “quark model construction”: choosing an n-
dimensional real or complex matrix representation τ a = π(Xa) of the generators
Xa of g, one defines the currents as quadratic Wick products of n real or complex
free Fermi fields: ja ∼ τ a

i j :ψiψ j : resp. ja ∼ τ a
i j :ψ∗

i ψ j :.
Their commutation relations can be viewed as central extensions of the Lie algebra

Lg of the loop group LG, i.e., the g-valued functions on S1; the central term is
universal up to a factor, called the level k, and the level in the given construction is
a function of the Lie algebra g and its representation π .

The resulting currents ja( fa) act as infinitesimal generators of gauge transforma-
tions ψ(x) �→ e−i fa(x)Xa

ψ(x).
Given a nonabelian current algebra, its stress-energy tensor is given by the Sug-

awara construction, TS ∼ hab: ja jb: where hab is the invariant Killing metric, and
the normalization factor is determined by the Lie algebra g. It should be noted that
if the currents are obtained by the “quark model construction” on a fermionic Fock
space, the Sugawara stress-energy tensor for the currents will in general not coincide
with the fermionic stress-energy tensor (see Sect. 8.5.6).

This construction has an analogue in the AQFT framework [60, 72]. Let G be a
compact Lie group with a unitary representation π on C

N . One notes that the gauge
transformations αg : ψ(x) → π(g(x)−1)ψ(x) for G-valued functions g on S1, i.e.,
g ∈ LG, are automorphisms of the CAR algebra of N Fermi fields. The criterium for
implementability by unitary operators W (g) in the GNS-Hilbert space of the vacuum
state (i.e., the Fock space) can be verified to be fulfilled. It follows that the unitaries
W (g) define a projective representation of the loop group LG. The cohomology class
of the cocycle of this representation can be identified with the level, such that, up to
a coboundary, W (g) = exp i ja( fa) if g(x) = exp i fa(x)Xa .

Similarly, the orientation-preserving diffeomorphisms of S1 are automorphisms

of the CAR algebra via ψ( f ) �→ ψ(γ ′ 12 f ◦ γ ). Again, these are implemented
by unitaries V (γ ), giving rise to a projective representation of Diff+(S1) on the
Fock space. This representation is related to the fermionic stress-energy tensor by
V (γ ) = exp iTF (δ) (again, up to a cocycle) if δ is an infinitesimal diffeomorphism
and γ = exp(δ).

On the other hand, for γ ∈ Diff+(S1), the map g �→ g ◦ γ is an automorphism
αγ of the loop group LG. Hence, for any projective representation π of LG, one
obtains another projective representation π ◦ αγ . It turns out that this representation



348 K.-H. Rehren

is unitarily equivalent to π , i.e., αγ are unitarily implemented by operators V (γ )

giving rise to a projective representation of Diff+(S1) on the representation space of
π . This is the AQFT analogue of the Sugawara construction.

Onemight object that these theories are just subtheories of freeQFT. However, the
Sugawara stress-energy tensor of these theories is different from the free-field stress-
energy tensor, indicating that the dynamics is different. Accordingly, the current
algebras possess many positive-energy representations that do not arise by restriction
of free-field representations. The study of the representation theory of chiral CFT
models has been in the focus of interest for three decades, and has revealed a host of
fascinating connections, including modular invariance of characters [71] and A-D-E
classifications [21].

8.5.3 Bosonization

A much less-to-be-expected “converse” of fermionization is bosonization. It goes
back to Mandelstam’s vertex operator construction of free Fermi fields as the expo-
nential of the (non-existing)massless scalar field,where the latter is to bewritten as an
integral over the chiral current. Clearly, this integral makes the construction highly
nonlocal. Frenkel and Kac [28] rediscovered this (formal) construction in a clean
mathematical setup in terms of well-defined infinite normal ordered exponentials of
the Fourier modes of the current on S1 on the vacuum Fock space of the current,
times a quantum-mechanical factor for the zero mode. The latter factor requires to
extend the Hilbert space by a factor L2(S1) on which the total charge operator acts
like a rotation with discrete spectrum. The construction therefore selects a discrete
one-dimensional lattice from the continuum of charges (superselection sectors) of
the u(1) current.

By exponentiating several u(1) currents with coefficients that take values in an
even higher-dimensional lattice, one can construct new local fields in a similar way.
Some of these theories coincide with nonabelian current algebras, as in Sect. 8.5.2,
at level k = 1, where the original u(1) currents are the currents for the Cartan
subalgebra.

In the AQFT framework, the analogous construction is understood as a crossed
product of the Weyl algebra corresponding to the abelian current algebra by a lattice
subgroup of the continuous group of DHR automorphisms [20, 67]. This amounts
to an extension of the quasilocal algebra by charged intertwiners (“fields”) whose
charges take value in the lattice. The commutation relations of the fields are deter-
mined by the statistics operators of the DHR automorphisms, which turn out to be
just complex phases. The extension by the new fields is a local extension if and only
if all phases are =1, which is precisely the condition that the lattice is even.

A lattice extension corresponding to the “moonshine” vertex operator algebra has
been constructed using the 24-dimensional Leech lattice [41]. Its central charge is
c = 24, its μ-index is 1 (i.e., it has no nontrivial superselection sectors), its vacuum
character is the modular invariant J -function and its automorphism group is the
Monster group.
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8.5.4 Orbifold Constructions

One can always descend from a chiral CFT with a compact gauge group of inner
symmetries to the gauge-invariant subtheory. There are many examples with finite
gauge groups; but one may as well consider the global symmetry of the Lie group
G on a current algebra associated with its Lie algebra g. The fixed point subalgebra
contains the Sugawara stress-energy tensor, but is in general larger, with very few
exceptions.

The formulation as fixed points under the action of a gauge group by automor-
phisms of the net of local algebras is the same in the AQFT framework.

8.5.5 Simple Current Extensions

The positive-energy representations (sectors) do in general not form a group under
the fusion product; in particular, there is no inverse but only a conjugate such that
the product with the conjugate contains the trivial (=vacuum) sector. Sectors which
have an inverse (i.e., the fusion product is the trivial sector), are called simple sectors
(or “simple currents” in some communities). In the DHR theory, simple sectors are
given by DHR automorphisms, rather than endomorphisms.

Simple current extensions are extensions of a chiral CFT by local fields that carry
the charge of simple sectors. By the Spin-Statistics Theorem, such fields can only be
local if they carry integer spin, hence the statistics phases must be =1. In order to
define the extensions, one has to specify consistent algebraic relations between the
new fields and the old fields, and among the new fields. The problem can often be
reduced to a control of the representation category of the extended theory, in terms
of that of the original theory.

The simple sectors with trivial statistics phases form a group under the fusion
product. In theAQFT framework, simple current extensions can be defined as crossed
products of the original net by the action of this group, in much the same way as the
lattice extension of Weyl algebras in Sect. 8.5.3.

8.5.6 The Coset Construction

If a local QFT contains a sub-theory, the “coset QFT” is generated by all local fields
of the larger theory that commute with the sub-theory. Thinking of the latter as
generators of a symmetry (currents as generators of gauge transformations, the SET
as generator of diffeomorphisms), the coset fields are invariant under that symmetry.
Specifically, an inclusion h ⊂ g of Lie algebras induces an inclusion of the current
algebra chiral CFTs. Both these CFTs have their own Sugawara stress-energy tensor.
Both stress-energy tensors are generators of the same (universal) diffeomorphism
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transformations of the h-currents, which means that their difference commutes with
these currents. One obtains the “coset stress-energy tensor” Tg − Th with central
charge cg(k) − ch(k

′) [32].
Since the coset stress-energy tensor is different from the pair of given stress-

energy tensors, the coset theory has its own dynamics. In particular, in this way all
stress-energy tensors with central charge c < 1 have been constructed [32], thus
rounding off the classification of admissible values of c < 1 “by exclusion of the
continuum” [29] by an existence result for the remaining discrete set.

The coset construction allows to construct “new models from old models”, and is
by no means restricted to current algebras associated with Lie subalgebras h ⊂ g.

In the AQFT framework, the coset construction is given by a relative commutant
of local algebras, namely, if A(I ) ⊂ B(I ) are the local algebras of a chiral CFT and
a subtheory, then the local algebras of the coset theory are

C(I ) := A(I )′ ∩ B(I ). (8.21)

Some of the Virasoro algebra theories with c < 1 admit extensions by further
local fields, without increasing the central charge. A complete classification has
been obtained by AQFT methods (building on the earlier classification of modular
invariant matrices), see Sect. 8.6.2.

8.6 Algebraic Constructions (not only Conformal)

To construct a model in the AQFT framework, one has to specify the local algebras
along with the automorphic action of the spacetime symmetries, and one has to
provide a vacuum representation with the appropriate spectral properties.

Starting from a given model, one possibility is to extend it by enlarging the local
algebras. In order to exclude trivial “extensions by tensor products”, one would
require the extension to be irreducible, i.e., to have trivial relative commutant. The
extended model will in general require a larger Hilbert space.

Another possibility is to deform the local algebras on the sameHilbert space,while
preserving the local commutativity and covariance. For a more extensive review of
this approach, see Chap.10.

A third idea is “holographic” in the sense that the spacetime association of observ-
ables in a given net of local algebras is radically reorganized, such that, e.g., the
quantum observables of a chiral CFT are re-arranged to become the observables of
a two-dimensional model.

We shall present examples of these new construction ideas in the sequel.

http://dx.doi.org/10.1007/978-3-319-21353-8_10
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8.6.1 Superselection Sectors and Symmetry

Unbroken inner symmetries give rise to superselection sectors.
Let G be a compact global gauge group with an action by automorphisms γg (g ∈

G) on a local QFT B such that γg preserve the local algebras and commute with the
spacetime covariance. Let furthermore the vacuum state ωB of B be invariant under
γg , i.e., the vacuum does not break the symmetry, so that the gauge transformations
are implemented by a unitary representation of G on the vacuum Hilbert space HB .

The net of fixed-point subalgebras A(O) = B(O)G inherits the local structure and
the spacetime covariance, and HB carries a reducible positive-energy representation
of A. It decomposes into subspaces Hπ generated from thevacuumvector by elements
of B transforming in some representation π of G, and each subspace Hπ is invariant
under the invariants A. In particular, the cyclic subspace HA generated by A from
the vacuum vector is a proper subspace of HB .

One can reconstruct the full vacuum representation of B from the vacuum stateωA

of A, via the GNS construction of the state ωB = ωA ◦μ, where μ is the conditional
expectation from B onto A given by the Haar average over the group action.

A breakthrough result by [25], valid inQFT in four-dimensional spacetime, shows
that the scenario just described is the generic origin of superselection sectors. It
relies on the fact that in spacetime dimension >3 (and often also =3), the category
of DHR superselection sectors [26] is a permutation symmetric C* tensor category,
and such categories can be identified with the dual of a compact group. It proceeds
by reconstructing from the given local net A and its DHR category a (unique up to
isomorphism) universal “field algebra” B (which may be graded local) together with
an action of a compact gauge groupG such that A = BG is thefixed-point subalgebra,
and theDHRsectorsρ of A are in 1:1 correspondencewith the unitary representations
π of G with statistical dimension dim(ρ) = matrix dimension dim(π).

As a consequence of this result, every irreducible extension of A is the intermediate
algebra of invariants of B under a subgroup H ⊂ G.

It may appear natural to expect some inner symmetry also to be at the origin of
superselection sectors in low-dimensional spacetime.However, there are obstructions
due to the fact that the braiding is not a permutation symmetry in low dimensions
(which is in turn a consequence of the geometric property that the causal complement
of a finite connected region has two connected components). As a consequence, the
dimensions dim(ρ) fail to be integer in general, and a 1:1 association with finite-
dimensional representations π of some inner symmetry such that dim(ρ) = dim(π)

as before cannot be expected.
Yet, it is possible to associate a (non-unique) weak C* Hopf algebra [61] with the

DHR category of a local QFT A, where the non-integrality of dimensions enforces
the failure of the propertyΔ(1) = 1⊗1 of the coproduct. The “reduced field bundle”
F of [27, II] can be interpreted as a nonlocal sector-generating field algebra with an
action of a weak C* Hopf algebra such that the invariants are the observables A. An
undesired but unavoidable feature of this construction is that the embedding A ⊂ F
is not irreducible, and F contains elements which belong to each of its local algebras.
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8.6.2 Extensions by Q-Systems

An alternative approach was initiated in [50], by characterizing irreducible covariant
extensions A ⊂ B of a given local QFT A. It is assumed that B is relatively local w.r.t.
A, i.e., observables of B commute with observables of A at spacelike distance, and
that there is a conditional expectation μ : B → A taking B onto A and preserving
the vacuum state. One does not assume any specific symmetry concept (like group
or weak Hopf algebra), but retains only the conditional expectation as a substitute
for the Haar average over the action of the gauge group.

It is also assumed that the index of the local subfactors A(O) ⊂ B(O) (which is
independent of O) is finite, which is automatic if A is completely rational.

This scenario includes simple current extensions as well as orbifold construc-
tions (regarding the full algebra as an extension of the fixed points), and conformal
embeddings (local CFTs that share the same stress-energy tensor [64]) as well as
coset constructions (regarding B as an extension of A ⊗ C if C is the coset model
of A ⊂ B). But it is more general since it is not required that the extension B of A
is itself local.

The main result is that every such extension is characterized by a “Q-system” in
the DHR category (or “DHR triple”), and every Q-system allows to reconstruct the
extension B in terms of data pertaining solely to A and its DHR category.

A Q-system is a triple, consisting of a DHR endomorphism θ of A and a pair of
intertwiners w ∈ Hom(idA, θ), x ∈ Hom(θ, θ2) satisfying the relations

w∗w = x∗x = d · 1, w∗x = θ(w∗)x = 1, xx = θ(x)x, (8.22)

where d2 = dim(θ). In amore abstract category setting, a Q-system is the same thing
as a (standard) Frobenius algebra in a C* tensor category [8], where the category at
hand is the DHR category of superselection sectors.

From the data of the Q-system, the net B is reconstructed as an extension of A.
It comes equipped with a local structure A(O) ⊂ B(O) and covariance, and with
a conditional expectation μ respecting the local structure and commuting with the
covariance. The GNS representation of the state

ωB = ωA ◦ μ (8.23)

as in Sect. 8.6.1 gives the vacuum representation of B, which—as a representation of
A—is equivalent to the DHR representation θ . To every subsector ρ ≺ θ corresponds
a generator ψρ of B that interpolates the vacuum subspace to the subspace carrying
the representation ρ, and that implements ρ “in the average”, namely

ρ(a) = μ(ψρ a ψ∗
ρ ). (8.24)

The algebraic relations among the “charged fields”ψρ are encoded in the intertwiners
w and x that specify the Q-system.
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The extension is by construction relatively local w.r.t. A, and it is local if and
only if the intertwiner x satisfies the condition εθ,θ x = x , where εθ,θ is the statistics
operator.

Thus, exhibitingQ-systems by solving their defining algebraic relationswithin the
DHR category of the given subtheory, amounts to a construction of (relatively local
or local) extensions. This is a finite-dimensional problem in rational theories, since
for irreducible extensions, one can show that the multiplicity of every sector ρ ≺ θ is
bounded by its dimension; hence there are only finitelymany “a priori candidates” for
θ , and the intertwiner spaces, where w and x take values, are also finite-dimensional.
Thus, even lacking more inspired methods (see below), Q-systems in a given rational
C* tensor category can in principle be classified “by brute force”.

A very useful fact is that possibly nonlocal chiral extensions A ⊂ B induce
local two-dimensional extensions A ⊗ A ⊂ B2, that are “CFT realizations of mod-
ular matrices”. The original construction [62] uses “α-induction”, and was recently
recognized [6] to coincide, in terms of the corresponding Q-systems, with the “full
centre”, which is a most interesting concept in braided tensor categories [31, 44].

Complete classifications of local extensions have been achieved [39, 40] for the
chiral and two-dimensional Virasoro nets with c < 1. The authors have exploited the
fact that the Virasoro nets with c < 1 are completely rational, hence their DHR cat-
egories are modular (the braiding is non-degenerate). In this case, one can associate
a modular invariant matrix with every chiral Q-system [10, 11], and these matrices
have been classified before [21]. Since the DHR representation θ of the underlying
chiral Q-system can be read off the modular invariant matrix, the number of candi-
dates for θ is drastically reduced. The authors then show existence and uniqueness
of the Q-system for each θ (in the chiral case) by using more abstract existence and
uniqueness results of [43], and they classify the Q-systems for a given θ by a certain
second cohomology [36] in the two-dimensional case.

It turns out that all local chiral extensions are: an infinite series of Z2 simple
current extensions, and four exceptional extensions labelled (A10, E6), (E6, A12),
(A28, E8), and (E8, A30) according to the A-D-E classification [21] of their modular
invariants. Of these, three have been identified with coset extensions using current
algebras [9], except (A28, E8)which occurs at c = 144

145 . This one was later identified
with the “mirror” of a coset extension, where the mirror construction [73] is an
operation on Q-systems relating a Q-system in A to a Q-system in C if A and C are
each other’s relative commutants (coset models) within some common extension B.

8.6.3 Borchers Triples and Deformation Methods

A net of local algebras A(O) in any dimension can be constructed from a “Borchers
triple” (or “causal triple”). A Borchers triple consists of a von Neumann algebra
M ⊂ B(H) with a cyclic and separating vector Ω ∈ H , and a unitary positive-
energy representation U of the proper orthochronous Poincaré group P↑

+ on H for
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which Ω is the unique invariant ground state. It is required that

U (λ)MU (λ)∗ ⊂ M whenever λW0 ⊂ W0

U (λ)MU (λ)∗ ⊂ M ′ whenever λW0 ⊂ W ′
0, (8.25)

where λ stands for (a,Λ) ∈ P↑
+ , W0 = {x ∈ R

1,D−1 : x1 > |x0|} is the standard
wedge region of Minkowski spacetime, and W ′

0 = {x : x1 < −|x0|} its causal
complement.

Clearly, in every QFT, the algebra M = A(W0) of the standard wedge in the
vacuum representation gives a Borchers triple, by virtue of covariance and locality.

Conversely, every Borchers triple defines a net by a simple construction. The
construction proceeds by defining A(W0) := M and A(λW0) := U (λ)MU (λ)∗ for
λ ∈ P↑

+ . Then one defines

A(O) :=
⋂

W⊃O

A(W ), (8.26)

where the intersection runs over all Poincaré transforms W = λW0 of the standard
wedge which contain O . The assumptions Eq. (8.25) ensure that the algebras A(W )

are well-defined, and that the net A(O) is local and covariant. (Unfortunately, the
algebras A(O)may fail to satisfy the Reeh-Schlieder property (A(O)Ω dense in H ),
and may be as small as C · 1.)

For Borchers triples in two dimensions, the second condition of Eq. (8.25) is
obsolete (because there are no such λ ∈ P↑

+). Moreover, it is sufficient to have a
positive-energy representation of the translations only: one can then use Tomita’s
Modular Theory to reconstruct also the representation of the Lorentz group includ-
ing the CPT conjugation. Namely, Borchers [12] has discovered that the inclusions
U (a)MU (a)∗M ⊂ M for a ∈ W0 are half-sidedmodular, and themodular groupΔi t

and the modular conjugation J of (M,Ω) satisfy the same commutation relations
with the translations U (a) as the Lorentz group U (Λ−2π t ) and the CPT conjugation
U (Θ), so one can define U (Λt ) := Δ−i t/2π and U (Θ) := J , and the second of Eq.
(8.25) is automatic for λ involving the conjugation.

(In an effort to generalize this powerful result to D = 4, Kähler and Wiesbrock
[38] have given a characterisation of the “relative modular position” of several von
Neumann algebras with a joint cyclic and separating vector, such that their modular
groups generate the four-dimensional Poincaré group.)

Exhibiting Borchers triples amounts to the construction of a QFT, with any pre-
scribed particle content specified by the representation U .

The difficulty is, of course, to find algebras M satisfying the assumptions, and
to find criteria such that the intersections A(O) are large enough. This is easy for
free theories, where M is generated by the Weyl operators of the free field smeared
within W0. Using Modular Theory, one can also define the wedge algebras for free
fields associated with Wigner’s massless “infinite-spin” representation [14], but the
last step defining A(O) for doublecones fails [45, 48]: the intersections of algebras
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turn out to be trivial unless O contains an (arbitrarily narrow) infinite spacelike cone.
Indeed, “string-local” fields associatedwith the infinite-spin representation have been
constructed in [57].

The prevailing ideas for finding more examples proceed by deformations M̃ of
free-field (or any other given) algebras M = A(W0), so as to produce deformed nets
Ã(O). They are particularly successful in two dimensions:

Lechner [46] has constructed integrable massive models with factorizing scatter-
ingmatrix by deformations of the canonical commutation relations (Zamolodchikov-
Faddeev algebra). The input in this approach is a scattering function (in the rapidity
variable), subject to restrictive analyticity conditions. The question whether the local
algebras A(O) are sufficiently large can be answered by a regularity criterium on the
scattering function [46]. In the affirmative case, the scattering matrix of the resulting
deformed local quantum field theory factorizes into two-particle scattering matrices
given by the input scattering function.

Another deformationmethod uses “warped convolutions” [1, 2, 19]. These can be
regarded as “momentum dependent translations” of the elements of wedge algebras
where the spectrum of the momentum ensures that wedge-locality is preserved. This
deformation violates Lorentz invariance in more than two dimensions.

Chiral conformal QFT can be used as a starting point to construct both massive
and massless new two-dimensional QFT models through “Longo-Witten endomor-
phisms”, as follows.

If A is a chiral CFT net, then (M = A(R+),Ω, T = U |R) is a chiral Borchers
triple, namely, the translations T (a)with a > 0 satisfy T (a)MT (a)∗ ⊂ M for a > 0.
In order to get a two-dimensional Borchers triple, one has to extend T to a unitary
representation T2 of the two-dimensional translations R

2 with positive energy, such
that T (a)MT (a)∗ ⊂ M for a ⊂ W0.

A Longo-Witten endomorphism [53] is an endomorphism of M of the form AdV ,
where V is a unitary operator commuting with T and preservingΩ . Therefore, every
one-parameter semigroup of Longo-Witten endomorphisms V (b) = e−ib P̃ (b > 0)
with positive generator P̃ gives rise to a two-dimensional Borchers triple by putting
T2(t, x) = T (t + x)V (t − x).

For the net A generated by the free chiral current, semigroups of Longo-Witten
endomorphisms that arise by second quantization of a unitary semigroup V1(b) on the
one-particle subspace, have been classified [53], namelyV1(b) turn out to be “singular
symmetric inner functions” ϕb(P1) of the chiral one-particlemomentum operator P1.
(A symmetric inner function is the boundary limit of an analytic function on the upper
complex halfplane with |ϕ(p)| = 1 and ϕ(−p) = ϕ(p) for almost all p ∈ R. These
conditions precisely ensure that the unitary V = ϕ(P1) implements a Longo-Witten
endomorphismat the one-particle level. Symmetric inner functions are closely related
to the admissible scattering functions in Lechner’smassive deformations [46], but the
physical significance of this relation remains to be explored.) To get a one-parameter
semigroup, ϕb(p) = eib f (p) must be singular, i.e., it must not have zeros in C+.

The corresponding generator P̃1 = − f (P1) is positive iff f (p) = −m2 p−1 for
somem2 > 0. The resulting two-dimensional QFTwith chiral translations P1 and P̃1



356 K.-H. Rehren

is just the free massive scalar field (defined on the Hilbert space of the free bosonic
current), because P2

1 = P+
1 P−

1 = P1 P̃1 = m2 · 1. This is the converse of the well-
known fact that the restriction of the massive free field to a light ray is the conformal
free current.

The interesting challenge is to find other one-parameter semigroups of Longo-
Witten endomorphisms with positive generator that are not of this simple (second-
quantized) form.

Pursuing this idea, Tanimoto [69] constructed a large class two-dimensional
(massless) Borchers triples from a chiral Borchers triple (M = A(R+),Ω, T =
U |R). These constructions proceed by deformations of the two-dimensional tensor
product theory A⊗ A whose Borchers triple is (A(W0) = M ⊗ M ′,Ω ⊗Ω, T2)with
T2(a) = T (a+) ⊗ T (a−). The deformations act by conjugations on the subalgebras
M ⊗ 1 and 1 ⊗ M ′ with different unitary operators:

MV = V (M ⊗ 1)V ∗ ∨ V ∗(1 ⊗ M ′)V .

With suitable conditions on the unitary operator V , the triple (MV ,Ω ⊗ Ω, T2) is
a deformed two-dimensional Borchers triple, whose energy-momentum spectrum
is unchanged. With an appropriate adaptation of scattering theory to the massless
situation, the nontrivial scattering matrix of this deformed QFT coincides with the
square V 2 of the deformation unitary.

Depending on the choice of V as a function of the chiral momentum operators,
one obtains models that are equivalent, respectively [47, 69], to a massless version of
the integrable deformations by a scattering function as in [46], or to the deformations
by warped convolutions [19]. Yet different choices of V of the form eiκ Q⊗Q , where
Q is the generator of an inner symmetry of the chiral theory and κ a real deformation
parameter, give new classes of deformed models [5, 69].

Starting instead from a two-dimensional (massive) Borchers triple (M = A(W0),

Ω, T = U |R2), the tensor product (M ⊗ M,Ω ⊗ Ω, T (2)) with T (2)(a) = T (a) ⊗
T (a) is the Borchers triple of two uncoupled identical QFT models. A deformation
interaction is introduced by deforming the wedge algebra:

M (2)
V := V (M ⊗ 1)V ∗ ∨ V ∗(1 ⊗ M)V,

where V is again of the form eiκ Q⊗Q with a suitable self-adjoint generator Q.
Depending on this choice, the Reeh-Schlieder property of the local algebras can
be established [70].

8.6.4 Holographic Models

Let B be a chiral QFT net on the real line. For any pair of intervals K ⊂ L with
non-touching end points, let the intervals I and J be the two connected components
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of L\K = I ∪ J such that I > J (elementwise). Let

O = I × J := {(t, x) ∈ R
1,1 : t + x ∈ I, t − x ∈ J }. (8.27)

Then O is a doublecone contained in the Minkowski halfspace R
1,1
+ = {(t, x) ∈

R
1,1 : x > 0}.
Defining

B+(O) := B(K )′ ∩ B(L), (8.28)

one obtains a local net of local algebras on the halfspace, covariant under the diagonal
of the direct product of two diffeomorphism groups, acting on t + x ∈ R and t − x ∈
R, respectively.

This is the prototype of a “holographic” construction, since every local operator
of B (a one-dimensional net onR) is a local observable of B+ (a two-dimensional net
on R

1,1
+ ), but the localization assigned to it is very different. In the conformal case,

this is precisely the algebraic AdS-CFT correspondence [63], where R
1,1
+ appears as

a chart of the two-dimensional Anti-deSitter spacetime.
In order to ensure locality of B+, it is actually not necessary that B is local: it is

sufficient that B is relatively local w.r.t. a local subnet A on R. In this case, B+(O)

contains at least the subalgebra A+(O) := A(I ) ∨ A(J ), but already for B = A,
B+(O) is strictly larger than A+(O) whenever A possesses nontrivial DHR sectors.

E.g., if A is a Virasoro net, then the halfspace net with local algebras A+(O) =
A(I )∨A(J ) has the obvious physical interpretation as the algebra generated by a two-
dimensional stress-energy tensor localized in O , whose chiral components T+ = T−
are identified by the boundary condition T 01(t, x)|x=0 = 0. This condition is just
the conservation of energy at the boundary x = 0.

More generally speaking, the holographic halfspace models Eq. (8.28) are exten-
sions of chiral halfspace CFTs with local algebras A+(O), which arise by means of
a boundary condition on two-dimensional chiral fields; and every such extension is
of the form Eq. (8.28) (or intermediate between A+(O) and B+(O)) [51].

There also exist algebraic prescriptions to “remove the boundary” [52] and to “add
a boundary” [22], which allow to pass between extensions A+ ⊂ B+ on the halfspace
and extensions A2 ⊂ B2 of CFTs on two-dimensional Minkowski spacetime, where
A2(O) = A(I ) ⊗ A(J ) is the local algebra of a pair of independent (although
isomorphic) chiral algebras. Under the local isomorphism (in completely rational
models) A(I ) ∨ A(J ) ∼ A(I ) ⊗ A(J ), these pairs of extensions are locally (but of
course not globally) isomorphic.

As discussed in Sect. 8.6.2, we can think of A ⊂ B as a relatively local chi-
ral extension, described by a Q-system of A. Via the holographic construction, this
produces a local extension A+ ⊂ B+ on the halfspace, and by “removing the bound-
ary”, one arrives at a local two-dimensional extension A2 ⊂ B2. The Q-system for
A2 ⊂ B2 as a “functional” of the underlying chiral Q-system for A ⊂ B turns out to
be precisely the α-induction construction [62] which was discovered without know-
ing the steps just described. More recently [6], it was also identified with the “full
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centre” of the chiral Q-system, as defined in [31, 44] in the abstract tensor category
setting, providing yet a different line of construction for the same extension A2 ⊂ B2.

8.6.5 Phase Boundaries

In contrast to the “hard” boundaries as encountered in the previous subsection
(physics is defined only in a halfspace), phase boundaries may separate “differ-
ent physics” on both sides of the boundary. In two-dimensional conformal QFT,
imposing the conservation of energy and momentum at the boundary implies that
the two local QFTs on both sides share the same 2D stress-energy tensor, and further
boundary conditions may imply more common chiral observables.

The issue is thus to have two possibly different local quantumfield theories BL and
B R , each defined in halfspacesR

1,1
L ,R1,1

R , to be represented on the sameHilbert space
such that two requirements are respected: BL and B R share a common subtheory
A, defined on full Minkowski spacetime R

1,1, and all observables satisfy Einstein
causality, i.e., any two observables at spacelike distance commute.

Because the stress-energy tensor (contained in A) generates the full spacetime
covariance, it can be used to extend both halfspace nets to the full Minkowski space-
time (with their local operators “on the wrong side of the boundary” not being con-
sidered as observables). Thus, one has two full local QFTs with a common subtheory
defined on the same Hilbert space, where Einstein causality for the observables is
equivalent to BL being “left local” w.r.t. B R , i.e., a pair of observables of BL and
B R commutes if the former is localized at the spacelike left of the latter.

This algebraic situation has been analysed in [7], see also [8]. It is found that, if
the local extensions A ⊂ BL and A ⊂ B R are given by their Q-systems, there is a
universal extension A ⊂ C given by the “braided product” of the Q-systems. This
extensions contains both BL and B R as intermediate extensions, and BL is left local
w.r.t. B R . It is universal in the sense that every irreducible joint representation of BL

left local w.r.t. B R is a quotient of C . Thus, to classify such representations, one has
to compute the centre of the universal extension C .

As a linear space, the centre of the algebra C is generated by neutral products
Ψ L∗

ρ Ψ R
ρ of charged fields from BL and B R (where ρ = ρ1 ⊗ ρ2 is a DHR sector of

A ⊗ A common to both Q-systems). It is more ambitious to compute the centre as
an algebra, in order to determine its minimal projections. This can be achieved [7,
8] if the underlying chiral CFT is completely rational and both extensions are given
as full centres (α-induction construction from chiral Q-systems, see Sect. 8.6.2):
In this situation, the minimal central projections are in 1:1 correspondence with
the irreducible bimodules between the underlying chiral Q-systems. Each minimal
projection assigns numerical values to the operators Ψ L∗

ρ Ψ R
ρ , and thereby specifies

the boundary conditions valid among the charged fields. In some cases, but not
always, they become linear relations of the form Ψ L

ρ = ωΨ R
ρ with phase factors ω.

As an example, we give the classification for the two-dimensional Ising model,
which is originally defined as the continuum limit of a lattice model of two-
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dimensional Statistical Mechanics at the critical point, but can (via an Osterwalder-
Schrader “Wick rotation”) be regarded as a relativistic quantum field theory. Its chiral
net is given by the Virasoro net A with central charge c = 1

2 . The Ising model is then
the unique maximal local two-dimensional extension B ⊃ A ⊗ A, which has two
charged fields Ψσ⊗σ (the “order parameter”) and Ψτ⊗τ (the product of two chiral
Fermi fields).

One finds three bimodules, hence three boundary conditions, expressed in terms
of relations between the charged fields:

(i) Ψ L
τ⊗τ = Ψ R

τ⊗τ , Ψ L
σ⊗σ = Ψ R

σ⊗σ ;
(ii) Ψ L

τ⊗τ = Ψ R
τ⊗τ , Ψ L

σ⊗σ = −Ψ R
σ⊗σ ;

(iii) Ψ L
τ⊗τ = −Ψ R

τ⊗τ , Ψ L∗
σ⊗σ Ψ R

σ⊗σ = 0.

The first case is the trivial boundary, and the second is the “fermionic” boundary
where the field Ψσ⊗σ changes sign. The third is the “dual” boundary, which allows
the coexistence of the order and disorder parameter fields σ and μ (in the original
Statistical Mechanics terminology, see [30, 66]) on either side: these are the two
isomorphic but independent fields Ψ R

σ⊗σ and Ψ L
σ⊗σ .

8.7 Final Remarks

8.7.1 What is Special About CFT in Two Dimensions?

Quantum field theory in two dimensions offers a wealth of algebraic methods for
the construction of models, especially conformal models. Why are these methods so
efficient in two dimensions, and can one put them into perspective with QFT in four
dimensions?

1. The prominent reason is the kinematical simplicity of CFT in 2D, especially
the existence of chiral fields related to conserved tensors fields. Chiral fields live in
a “one-dimensional spacetime”, namely the light ray, which shares crucial features
of space and time: local commutativity and spectral positivity of the generator of
translations.

As a consequence, chiral commutators are ultralocal (δ functions), supported
only in coinciding points rather than in or on a lightcone). Based on this feature,
the Lüscher-Mack theorem provides an explicit form of the possible commutators of
the stress-energy tensor, with the central charge as the only free parameter. A sim-
ilar parametrization of the commutator in higher dimensions, or without conformal
symmetry, is not known.

Moreover, the algebra of the stress-energy tensor field (and also of chiral fields
of scaling dimension 1) is that of an infinite-dimensional Lie algebra, permitting
the application of highest-weight representation methods for the efficient study of
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its positive-energy representation theory. In contrast, Lie fields in 4D (whose com-
mutators are linear in the field) don’t exist [3]. (The argument, based on geometric
properties of lightcones and the spectrum condition, was worked out only for scalar
fields, but is presumably true more generally.)

2. Another consequence of the ultralocal commutation relations of chiral free
Fermi fields is the feature that chiral gauge transformations ψ(x) �→ eiα(x)ψ(x) are
automorphisms of the free Fermi (CAR) algebra. Hence, current fields are their infin-
itesimal generators, and can be constructed algebraically by exploiting this property.

In contrast, in D ≥ 2, the free Fermi algebra is not gauge invariant, and gauge
invariance requires the coupling to a gauge field. Currents are generators of gauge
transformations at a fixed time only. Notice, however, that in two dimensions the
massless freeDirac fieldψ is nothing but a pair of two chiral Fermi fieldsψ±(t±x) =
P±ψ(t, x), where P± = 1

2 (1 ± γ0γ1). While local gauge transformations of the
general form ψ(t, x) �→ ei(α(t,x)+β(t,x)γ0γ1ψ(t, x) do not preserve the equation of
motion, the chiral gauge transformations are of the more special form ψ(t, x) �→
ei(α+(x+)P++α−(x−)P−

ψ(t, x). The latter commute with γ 0γ μ∂μ = P+∂− + P−∂+,
hence preserve the free equation ofmotion and the commutation relations at all times.
In fact, they may be regarded as gauge transformations of the Cauchy data. Thus,
the chiral gauge transformations are the subgroup of the gauge group which is a
symmetry without the interaction with a gauge field.

3. For general conformal fields in two dimensions, the chiral factorization man-
ifests itself (in rational theories) in the form of the conformal block decomposition
of their correlation functions [4]. The analytic behaviour of conformal blocks under
field exchange can be formulated algebraically as an “exchange algebra” of chi-
ral components, which are in turn most naturally understood in terms of charged
intertwiners among the chiral sectors subject to braid group statistics [27, II].

It is worth a remark that also in four dimensions, conformal partial waves—which
are akin to but not exactly the same as conformal blocks—exhibit a factorization into
“chiral” factors [24]. This feature has been exploited for the study of Wightman pos-
itivity (positivity of the Hilbert space inner product defined by 2n-point correlation
functions) [58, 59]; but the algebraic counterpart of an underlying exchange algebra,
as suggested in [65], has not been identified.

4. Many classification results obtained in two-dimensional conformal QFT have
been obtained thanks to rationality (finitely many positive-energy representations),
or related properties (strong additivity, split property, finite μ-index) in the AQFT
framework. These results are then owing to the ensuing rigidity of the DHR category
with finitely many irreducible sectors.

QFTmodels with finitely many sectors exist also in four dimensions—e.g., when-
ever the global gauge group as in Sect. 8.6.1 is a finite group. The corresponding
classification results, also in the case of compact gauge groups, are all in terms
of groups and subgroups, and do not exhibit a comparably rich structure as in the
low-dimensional case with sectors with braid group statistics.

5. Recall that every local QFT can be encoded in a Borchers triple (M,Ω, U ),
see Sect. 8.6.3. The defining properties of Borchers triples include the proper adjoint
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action of the representation U of the Poincaré group on the von Neumann algebra
M . In four dimensions, these are quite difficult to satisfy, and compelling ideas how
to construct such triples (if one does not want to start from a QFT) are lacking. In
contrast, in two dimensions, only a positive-energy representation of the translation
group is required, and the representation of the Poincaré group can be constructed
from the former with Modular Theory (Borchers’ Theorem), and its required prop-
erties are automatic. Therefore, Borchers triples are much easier to obtain in two
dimensions, and their data can be subjected to algebraic deformations while pre-
serving their defining properties. This appears to be a promising non-perturbative
approach to obtain new QFT models by deformation of given ones. This idea does
not require conformal symmetry.

8.7.2 What can We Learn for QFT in Four Dimensions?

Algebraic QFT is a powerful approach that conceptually clarifies many features
known to be true in QFT models, or expected to be true in QFT in general. Its value
is not least that it allows to sharply exhibit the (in other approaches often tacit)
assumptions that are responsible for these features. At the same time, it allows to
investigate the consequences when some of these assumptions are not fulfilled—
be it systematically due to the structure of the two-dimensional spacetime and its
symmetry group, or model-dependently due to specific properties of the dynamics.

The “bifurcation” between four dimensions and two dimensions has particularly
strong consequences in the theory of superselection sectors, where the braided tensor
category is completely degenerate in four dimensions, andmaximally non-degenerate
(modular) in large classes of two-dimensional conformal QFT models. Yet, it is
rewarding to view either extreme in the light of the other, or in the context of the
general structure, as this opens the mind to the many options QFT has in store that
might be missed by model studies.

Once the underlying abstract structure has been identified (and separated from
the dynamical details of specific models), the road is open to classifications. Many
classifications have been obtained, mostly of representation theoretic nature.

Let us return to the kinematic simplicity of QFT in two dimensions, with the
Poincaré group being a subgroup of the product of two translation-dilation groups.
Representations of the translation-dilation group with positive generator of the trans-
lations can be constructed by Modular Theory [68]. This feature is exploited in new
algebraic deformation approaches. The passage to four dimensions is presently not
yet very satisfactory; e.g., the “warped convolutions” deformations [19] break parts
of the Lorentz symmetry. In contrast, the modular approach indicated in [38] seems
not very practical, but it points out a direction: The problem is to control the relations
between the many translation-dilation subgroups that generate the Poincaré group.
This is reminiscent of the classification of semisimple Lie algebras by controlling the
relations between themany su(2) subalgebras that generate them.Gaining experience
with two-dimensional models, one may expect progress also in four dimensions.
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Chapter 9
Kitaev’s Quantum Double Model
from a Local Quantum Physics
Point of View

Pieter Naaijkens

Abstract A prominent example of a topologically ordered system is Kitaev’s quan-
tum double model D(G) for finite groups G (which in particular includes G = Z2,
the toric code). We will look at these models from the point of view of local quantum
physics. In particular, wewill review how in the abelian case, one can do aDoplicher-
Haag-Roberts analysis to study the different superselection sectors of the model. In
this way one finds that the charges are in one-to-one correspondence with the repre-
sentations ofD(G), and that they are in fact anyons. Interchanging twoof such anyons
gives a non-trivial phase, not just a possible sign change. The case of non-abelian
groups G is more complicated. We outline how one could use amplimorphisms, that
is, morphismsA → Mn(A) to study the superselection structure in that case. Finally,
we give a brief overview of applications of topologically ordered systems to the field
of quantum computation.

9.1 Introduction

A fundamental result in local quantum physics is that in high enough dimensional
space-times (or, for well enough localized particles), charged particles are either
(para-)bosons or (para-)fermions [19]. This is no longer true in lower dimensional
space-times [23]. Instead of a representation of the symmetric group, representations
of the braid group may be obtained from interchanging identical particles. Even
though our world appears to have three spatial dimensions, many systems effectively
behave like two or one dimensional systems, opening the possibility that they may
be described by a low dimensional effective theory, with excitations with braided
statistics.

Interest in such systems has sparked in recent years, getting attention from the
theoretical and mathematical physics communities, condensed matter physicists,
quantum information theorists, and mathematicians. Part of the reason for this is
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the discovery of topological quantum computation (first proposed independently by
Kitaev [35] andFreedman [25]), a field at the intersection of quantum theory, quantum
computation and quantum topology [58]. One of the attracting features is that the
use of topological properties of the system can lead to much better fault-tolerance
with respect to (local) perturbations. An overview and candidates for systems that
can be used for topological quantum computation can be found in the review [48].

On the mathematical level the behaviour of the anyons, the quasi-particle exci-
tations with braided statistics, can be captured by the concept of a braided fusion
category. This category encodes all information on how two anyons can combine
(“fusion”), what happens if we interchange them (“braiding”), which types can exist
in the system, and so on. This structure is in fact very well known in local quan-
tum physics. One of the highlights of algebraic quantum field theory is the study of
superselection sectors initiated by Doplicher et al. [19, 20], see also this volume,
Chaps. 1 and 8. This leads in a natural way to a fusion category as above. Also in the
local quantum physics approach to conformal field theories, such category appear.
One can show that for rational conformal field theories on the circle, this category
is in fact modular [32], see also Chap.8. A modular tensor category is a special type
of fusion category that is highly non-degenerate. It is precisely such anyon models
that are of interest to topological quantum computing.

Many of the models that have such anyonic excitations are what is called topo-
logically ordered. Topological order is a new type of order that does not fall into
the Landau theory of spontaneous symmetry breaking, and there is no local order
parameter distinguishing different phases. The examples known are not relativistic
theories, and most of them are not described by a conformal field theory (at least,
not directly). For example, the model that we will study here, Kitaev’s quantum dou-
ble model, is a quantum spin model, defined on a lattice. Nevertheless, one could
try to apply the ideas of Doplicher, Haag and Roberts to these systems, to study
the superselection sectors and the properties of the anyons. This is indeed possible
[22, 43].

This approach gives a strongmathematical founding to the study of anyons in topo-
logically ordered systems. Not only it allows us to borrow techniques from local
quantum physics, it also opens up the way to the use of, for example, operator alge-
braicmethods (see [46] for such an application). A rigorousmathematical framework
may also be of use in this fast-moving field, where no consensus on the right defini-
tions for fundamental concepts is reached. A precise setting where operator algebraic
methods can be used may be the right setting to study important questions such as
about the stability of such systems: suppose that the Hamiltonian of the system is
perturbed by a suitable perturbation, howmuch of the structure remains?One expects
that the topological nature of the system will preserve the interesting properties (as
long as, for example, the Hamiltonian remains gapped), but this is something that
one wants to prove rigorously (however, see e.g. [11, 12] for results in this direction).

The remainder part of this contribution is outlined as follows. First, we discuss
the basic idea behind topological order, and introduce the quantum double model
in the setting of local quantum physics. Section9.3 discusses the technical property
of Haag duality in this context. We then come to the main part: an overview of the

http://dx.doi.org/10.1007/978-3-319-21353-8_1
http://dx.doi.org/10.1007/978-3-319-21353-8_8
http://dx.doi.org/10.1007/978-3-319-21353-8_8
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DHR-type analysis of the superselection sectors in the quantum double model. There
we also relate it to the theory of (modular) tensor categories. This construction only
works for the abelian quantum double models. Therefore, in the following section
(which contains new results)weoutline howone could use so-called amplimorphisms
to study the non-abelian case. Finally, in the last section we briefly comment on
applications to quantum computing.

9.2 Topological Order

Around the late ’80s, it was found that there are states of matter that do not fall
into the Landau theory of spontaneous symmetry breaking. One of the first papers
discussing this is [30]. Such states were called topologically ordered, because some
of their properties depend on the topology of the manifold on which the system is
defined [59]. As a particular example one can think of two dimensional systems
defined on a surface. For topologically ordered systems, the ground state degeneracy
typically depends on the genus of the surface.

Around the turn of the millennium, quantum information theorists started to take
an increased interest in topologically ordered systems. One of the main reasons is
that it was realised that the topological properties of such systems might be useful
for quantum computation. This was first suggested by Kitaev [35], who introduced a
simple quantum system, the toric code, that could act as a quantum memory, storing
a pair of qubits. A qubit is the quantum analogue of a bit in a classical computer.
Mathematically it is nothing but a copy of the Hilbert space C

2, whose basis is
usually denoted by |0〉 and |1〉. Although the basics of quantum computing are not
difficult to explain, we refer to the standard textbook [49] for more information. In
any case, the idea is to embed the two qubit Hilbert space C2 ⊗C

2 into the physical
Hilbert spaceH. We can then initialize our system in one of the states. The point of a
good quantum memory is then that after some time, we should be able to recover the
state (at least through the gathering of measurement statistics). In practice, however,
quantum systems are not completely isolated, and influences from the environment
might drive the system into a different state.

This is where topologically ordered systems come into play. A nice feature of
topologically ordered systems is that there is no local1 order parameter. Hence, local
observables cannot distinguish between different ground states, and on the other
hand local operations cannot put the system from one ground state into another.
Hence the idea is to encode information in the ground space, since this will be
robust, at least against local perturbations. Of course, nature does not make it easy
for us, and there are some more subtle points to being a good quantum memory. For
example, because the information is stored non-locally, accessing it or acting on it
also necessarily requires non-local operations, which may be difficult to implement.
In addition, although local perturbations of the system do not destroy the information,

1For finite systems, “local” means small compared to the system size.
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this requires the use of an error correcting protocol. One should be able to do this
fast enough, to prevent the errors from spreading out over the system to a non-local
error, which does corrupt the information in the memory. At least for a wide class of
2D systems, it turns out that these systems by themselves are not good memories, so
one indeed has to do some error correction [2, 13, 33, 36].

Another interesting aspect of topologically ordered systems is that they generally
have anyonic excitations. That is, excitations of such systems behave like quasi-
particles, with anyonic or braided statistics: the global state of the system changes
non-trivially (that is, differently from just a sign change) under the interchange of
two such quasi-particles. It is this property that we will focus on here. In particular,
we will outline how the Doplicher-Haag-Roberts analysis of superselection sectors
in algebraic quantum field theory can be translated to the setting of topologically
ordered systems, and how this can be used to recover the statistics of the anyons.
To illustrate how this works we consider Kitaev’s toric code, and more generally his
quantum double model [35], which is the prototypical example of a topologically
ordered system.

Since the toric code is relatively simple and nevertheless has many interesting
features, one can use it as a testbed to see if ideas from algebraic quantum field
theory can be applied to this class of models. This indeed turns out to work very
well, and allows one to explicitly realize many of the fundamental concepts in the
theory of superselection sectors. This shows that the concept can be transferred
from relativistic theories to non-relativistic condensed matter systems. Although the
explicit constructions we present here depend on the specific knowledge of the toric
code, these features are common to a range of topologically ordered systems, and
the theory can in principle be applied to them as well.

To make the connection between the toric code and the theory of superselection
sectors, it is convenient to depart from the usual setting of Kitaev’s model and define
it on an infinite 2D lattice, instead of on some compact surface of genus g. This
is most conveniently done in the operator algebraic framework, were one assigns
algebras of local observables to finite regions of space [9, 10]. In particular, there is
a clear distinction between local and global observables, just like in local quantum
physics. That is, one does not have to keep track of the system size. Concretely, we
consider the lattice Z

2, and write Γ for the set of edges or bonds between them.
We give each edge an orientation. For simplicity, all vertical edges are assumed to
point upwards, the horizontal edges will point to the right (see Fig. 9.1). Now let
G be a finite dimensional group. Then to each edge we assign a “G-spin”. This
means that there is a quantum system at each edge, with corresponding Hilbert space
He := C[G], where the right hand side is the group algebra of G, seen as a Hilbert
space in the natural way.

The local operators that act on an edge e are B(He) ∼= M|G|(C). If Λ ∈ P f (Γ ),
the set of finite subsets of Γ , then the local observables associated to Λ are defined
as A(Λ) := ⊗

e∈Λ. If Λ1 ⊂ Λ2 there is a natural inclusion of the corresponding
algebras, by tensoring with the identity operator at the sites of Λ2 that are not in
Λ1. Hence we are in the familiar setting of local quantum physics, where we have a
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net Λ �→ A(Λ) of observables associated to bounded regions (cf. Chap. 1). It is not
difficult to see that this net is local, that is, [A(Λ1),A(Λ2)] = {0} if Λ1 ∩ Λ2 = ∅.

We then proceed in the same way as for relativistic systems: the local operators
are defined as Aloc = ⋃

Λ∈P f (Γ ) A(Λ). Note that Aloc is a ∗-algebra in a natural
way, and that the standard operator norm on matrix algebras induces a C∗-norm on
Aloc. The quasilocal algebra A is the completion of Aloc with respect to this norm.
If Λ ⊂ Γ is an arbitrary subset (not necessarily finite), then we define

A(Λ) =
⋃

Λ f ∈P f (Γ ∩Λ f )

A(Λ f )
‖·‖

as the algebra of all observables that can be measured inside the region Λ.
Finally, note that there is a natural translation symmetry on the system, although

we do not need this for our purposes, except for picking out a translationally invari-
ant ground states. This touches upon one of the fundamental differences between
relativistic quantum field theory and discrete systems. For the discrete systems there
is no Lorentz group or Poincaré group, which play an important role in relativistic
theories. Nevertheless, one can mimic some of these concepts using the transla-
tion symmetries mentioned, together with locality estimates for local observables
evolved under the time evolution of the system [47]. For our purposes these aspects
play no role.

9.2.1 The Quantum Double Model

So far the description has been completely general. To consider a specific system one
has to specify the dynamics of the model. Note that because the model is infinite,
the corresponding Hamiltonian generally is unbounded, and hence not an element
of A. Fortunately, in practice there is a lot more structure, and the dynamics are
local in a suitable sense. More concretely, for eachΛ ∈ P f (Γ ) one can define a self-
adjoint HΛ, describing the interactions within that region. Heuristically, the dynamic
evolution of an observable A is then obtained as αt (A) := limΛ→∞ eit HΛ Ae−i t HΛ ,
where Λ → ∞ means that we take an increasing sequence of finite sets Λ that
exhaust Γ . If the strength of the interaction decays fast enough, this expression
converges and one obtains a strongly continuous one-parameter group t �→ αt of
automorphisms [10].

Once the dynamics are defined one can talk about ground states. The most conve-
nient way to do this is in terms of (generally unbounded) ∗-derivations δ, which are
obtained as the generator of an automorphism group t �→ αt . In the cases of interest
to us these are simply obtained as (the closure of) δ : Aloc → Aloc, with

δ(A) := i lim
Λ→∞[HΛ, A].

http://dx.doi.org/10.1007/978-3-319-21353-8_1
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Because the interactions are local and of finite range in the cases of interest, this
converges, and αt (A) = etδ(A). A state ω0 on A is then called a ground state if
−iω0(A∗δ(A)) ≥ 0 for all A ∈ D(δ). This (at first sight) perhaps strange looking
condition can be interpreted as a positivity of the energy condition. Such a state is
automatically invariant,ω0◦αt = ω0, so that in theGNS representation the dynamics
are implemented by a strongly continuous group of unitaries t �→ U (t). By Stone’s
theorem one obtains a Hamiltonian H , which can be shown to be positive using the
condition mentioned above [10].

There is some extra notation that has to be introduced to define the dynamics
in Kitaev’s quantum double model. A combination s = (v, f ) of a vertex v and a
choice of an adjacent face f is called a site. To each site we associate the following
operators. Let g ∈ G. Note that for a vertex v, there are four edges that start or end
in v. A basis for the Hilbert space of this four sites is given by |g1〉⊗ · · ·⊗ |g4〉, with
gi ∈ G. The operator Ag

s acts on this basis vector by multiplying gi from the left with
g if the corresponding edge points away from the vertex v, and gi gets sent to gi g−1

if the edge points inwards. If h ∈ G, a projection Bh
s is defined as follows. First, list

the edges around the face f in counter-clockwise order, starting in v. On the basis
labelled by group elements of the Hilbert space corresponding to these four edges,
Bh

s acts as the identity if σ(g1) · · · σ(g4) = h, and zero otherwise. Here σ(g) = g if
the corresponding edge is in the same direction as the counter-clockwise labelling,
and σ(g) = g−1 otherwise. Pictorially the operators can be depicted as follows:

Sometimes one says that Bh
s projects on the states with flux h through the face

f . Indeed, the structure is very similar to that of lattice gauge theory [51], and the
quantum double model can in fact also be interpreted in such terms [35].

The operators As and Bs are also called star and plaquette operators respectively,
and satisfy the following algebraic relations, which can easily be verified:

Ag
s Ah

s = Agh
s , Bg

s Bh
s = δg,h Bh

s , Ag
s Bh

s = Bghg−1

s Ag
s , (Ag

s )∗ = Ag−1

s . (9.1)

Star and plaquette operators acting on different sites s and s′ always commute. At this
point the name “quantum double” can be explained: the algebraic relations above are
exactly those of the quantum double D(G) of the Hopf algebra C[G] (see e.g. [31]
for an introduction). That is, at each site there is an action of the Hopf algebra which
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acts via the star and plaquette operators. The representation theory ofD(G) plays an
important role in the analysis of the superselection sectors, as we will see below.

We are now in a position to define the dynamics of the system. First, write As =
1

|G|
∑

g∈G Ag
s for the average of the star operators, and Bs := Be

s . Then [As, Bs] = 0.
The local Hamiltonians are then defined as

HΛ = −
∑
s∈Λ

As −
∑
s∈Λ

Bs, (9.2)

where in the first sum the summation is over all sites s = (v, f ), such that the
edges starting or ending at v are contained in Λ. Similarly, the second summation
is over all sites such that the edges of the face f are all contained in Λ. The case
G = Z2 is called the toric code. These local Hamiltonians generate a one-parameter
group of automorphisms αt as described above. It turns out that there is a unique
translationally invariant ground state [1, 44].2

Proposition 9.2.1 There is a unique translationally invariant ground state ω0. This
state is pure and is the unique state on A which satisfies ω0(As) = ω0(Bs) = 1 for
all star and plaquette operators As and Bs.

This ground state will be the starting point from the analysis: the different superse-
lection sectors will be realized, roughly speaking, by creating single excitations of
this ground state. The GNS representation corresponding to the ground state repre-
sentation from the proposition will be denoted by (π0,Ω,H0). Since A is a UHF
(and hence simple) algebra, π0 is automatically injective, and we will often identify
π0(A) with A.

To understand how this works it is necessary to understand what we mean by an
excitation, and how these can be obtained. From the proposition above it follows
that in the ground state representation, AsΩ = BsΩ = Ω . We can interpret this
as constraints, and violating some of these constraints carries an energy penalty,
according to the local Hamiltonians (9.2). We will interpret the violation of such
a constraint as a (quasi-)particle sitting at the site s (if the state is an eigenstate of
HΛ).3 So the excitations live at sites of the lattice.

The excitations can be obtained by acting with so-called ribbon operators on the
ground state. We only list their main properties here. A more complete treatment
and proofs can be found in [5]. A ribbon is, roughly speaking, a continuous path
of triangles (see Fig. 9.1 for an example). To each such ribbon ξ and pair g, h of
group elements one can assign a ribbon operator Fh,g

ξ . These operators act only on
the edges that are part of the ribbon (or cross any of the triangles). They satisfy the
following algebraic relations:

2Bruno Nachtergaele pointed out that the remark in [43] is in fact false, and there are additional
(non-translationally invariant) ground states. Indeed, the charged states constructed in [43] have
dynamics implemented by a positive Hamiltonian.
3Note that we disregard any momentum variables. The pairs of excitations form bound states, so the
excitations mentioned here are not quite the single-particle excitations one encounters in scattering
theory.
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Fig. 9.1 The lattice
describing the system,
together with a ribbon
between two sites. Note that
the ribbon has an orientation,
pointing from start to end

Fh1,g1
ξ Fh2,g2

ξ = δg1,g2 Fh1h2,g1
ξ , (Fh,g

ξ )∗ = Fh−1,g
ξ ,

∑
g∈G

Fe,g
ξ = I.

Note that the ribbons carry an orientation. This allows us to talk about the starting
and ending sites of the ribbon. Let us denote them by s1 and s2 for the moment.
An important property of the ribbon operators is that they commute with any star or
plaquette operator, except for those at the ending sites of the ribbon. There we have
the following commutation relations:

Ak
s1 Fh,g

ξ = Fkhk−1,kg
ξ Ak

s1 , Bk
s1 Fh,g

ξ = Fh,g
ξ Bkh

s1 . (9.3)

Similarly, for the ending site

Ak
s2 Fh,g

ξ = Fh,gk−1

ξ Ak
s2 , Bk

s1 Fh,g
ξ = Fh,g

ξ Bg−1h−1gk
s2 . (9.4)

From these commutation relations it follows that the vector state Fh,g
ξ Ω violates

some of the constraints the Hamiltonian gives for the ground state, namely precisely
those at the start- and ending sites. Hence this vector state can be thought of as
an excited state of the system. These excited states satisfy the following important
property, whose proof we will omit (see e.g. [5, 22] for the proof).

Lemma 9.2.2 Let ξ1 and ξ2 be two ribbons with the same starting and ending sites.
Then Fh,g

ξ1
Ω = Fh,g

ξ2
Ω .

In other words, the state does not depend on the ribbon itself, only on the endpoints.
This already shows the topological nature of the system.

Now suppose that ξ is a non-trivial ribbon. It can then be written as the concate-
nation of ribbons ξ1 and ξ2. The ribbon operator ξ is related to the smaller ribbons
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by means of the following recursion relation (which indeed can also be used to
recursively define the ribbon operators):

Fh,g
ξ =

∑
k∈G

Fh,k
ξ1

Fkhk,kg
ξ2

. (9.5)

This feature will be important later.
The basis Fh,g

ξ of ribbon operators is not always the most convenient one. Recall
that for each site s there is an action of D(G) on the Hilbert space. One can now
consider the vector space V = span{Fh,g

ξ Ω : h, g ∈ G} for a fixed ribbon ξ .
By Eq. (9.3) this space has a natural interpretation as a left D(G)-module, because
Ag

s Ω = Ω and Bh
s Ω = δh,eΩ . Similarly, Eq. (9.4) also give it the structure of a

D(G)-module, induced by the action of the star and plaquette operators at the ending
site.4 This suggests that it may be useful to decompose this space into irreducible
subspaces, and find a new basis of the ribbon operators accordingly. This indeed
turns out to be a good idea.

The representation theory of D(G) is well understood: constructions of all irre-
ducible representations can be found in [3, 17]. They are in one-to-one correspon-
dence with pairs (C, ρ), where C is a conjugacy class of G and ρ an irreducible
representation of ZG(c), where ZG(c) is the centralizer in G of a representative c
of the conjugacy class. It turns out to be convenient to label the elements of the
conjugacy class in a particular way (compare [5]). First of all, let C be a conjugacy
class of G. Choose a representative r ∈ C , and let ZG(r) be the centraliser of r
in G. We label the elements of C by c1, . . . , cn , where n = |C |. Then there are qi

such that ci = qirqi , where we used the notation g for the inverse of g, to improve
readability. The set {qi } is denoted by QC . Note that each g ∈ G can be uniquely
written as g = qi n for some qi ∈ QC and n ∈ ZG(r).

With this notation we can choose a new basis of the ribbon operators associated
to a ribbon ξ . Suppose that ρ is a unitary representation of ZG(r). We regard each
ρ(g) as a unitary matrix, and write ρ(g) j j ′ for the corresponding matrix elements in
the standard basis. Let i, i ′ = 1, . . . , n and j, j ′ = 1, . . . , dim(ρ). We then define

FCρ;i,i ′, j, j ′
ξ =

∑
g∈ZG (r)

ρ j j ′(g)F
ci ,qi gqi ′
ξ .

As C runs over all conjugacy classes of G, and ρ runs over the corresponding
irreducible representations of the centralisers, these operators form a basis of the
space spanned by Fh,g

ξ . We refer to [5] for a proof. In essence, the point is that the
space of operators is decomposed into subspaces transforming according to some
irreducible representation ofD(G). For convenience we sometimes drop the notation
for C and ρ when these are implied by the context, and write I = (i, j), J = (i ′, j ′)
for the pairs of indices: F I J

ξ .

4This is in fact the contragradient module of the representation at the starting site.
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If the group G is abelian the notation can be simplified, since each conjugacy class
consists of exactly one element, and clearly the centralizer ZG(r) is always equal to
G. Hence we can label the basis by a pair (ω, c), where ω is a character of G and
c ∈ G. It can be checked that in that case the corresponding ribbon operators Fω,c

ξ

are unitaries and that Fω,c
ξ Fχ,d

ξ = Fωχ,cd
ξ . There are many more useful relations,

describing for example the commutation relations between two ribbon operators
acting on crossing ribbons, these can be found in [5].

9.3 Haag Duality

Just as in the Doplicher-Haag-Roberts theory of superselection sectors, Haag dual-
ity plays a very useful role. Let us first recall what Haag duality actually is: it
is a commutation property of von Neumann algebras generated by algebras of
observables in the ground state representation. More precisely, let Λ be a cone-
like region.5 Then π(A(Λ))′′ is the von Neumann algebra generated by all (quasi-)
local observables localised in Λ. Note that, by locality, these observables commute
with any local observable localised outside the cone, that is, in Λc. In other words,
π0(A(Λ))′′ ⊂ π0(A(Λc)′, whereΛc is the complement ofΛ in Γ . Haag duality says
that these sets are actually equal. It means that we cannot add operators to the cone
algebra π0(A(Λ))′′ without violating locality. This property is fulfilled for Kitaev’s
model for abelian groups G:

Theorem 9.3.1 Let G be a finite abelian group and let Λ be a cone. Write π0 for
the translational invariant ground state representation of the quantum double model
for G. Then Haag duality holds:

π0(A(Λ))′′ = π0(A(Λc))′,

where the prime denotes the commutant in the set of all bounded operators.

This theorem was first proven in [45] for the case of G = Z2 (the toric code) and
later extended to all finite abelian groups in [22].

The proof of the theorem depends on a good knowledge of the pairs of excitations
and the operators that generate them. This makes it possible to find a convenient
description of the Hilbert space of the system, and the Hilbert space HΛ describing
pairs of excitations localised in a fixed cone Λ. With this description it is possible to
demonstrate that the self-adjoint parts of certain algebras (the restriction to HΛ of
the algebras of observables localised in Λ, and the algebra of observables localised
in Λc), when acting on the cyclic GNS vector generate a dense subset of HΛ. It is

5The precise shape is not so important, but see [22] for a precise definition. Heuristically, one can
take a point in the lattice, draw two semi-infinite lines from this point, and consider all edges that
either intersect these lines, or lie in the convex set bounded by the lines.



9 Kitaev’s Quantum Double Model in LQP … 375

known that this is related to commutation properties of algebras [54], and this allows
one to conclude Haag duality.

Much of the proof boils down to a good understanding of the representation theory
ofD(G), the quantum double of G, since the operators that create pairs of excitations
correspond to irreducible representations of the Hopf algebra. Their behaviour under
the interchange of two such operators (or on the representation theory side, the
braiding of the category of representations) also plays a role. These properties are
well-known and studied for a wider class of quantum doubles, particularly those
associated to Hopf-∗ algebras that are quasi-triangular (which means a braiding can
be defined). As Kitaev already remarked in his paper [35], the quantum double model
can also be defined for suchHopf algebras. The following conjecture therefore seems
very natural:

Conjecture 9.3.2 Consider a quasi-triangular Hopf-∗ algebra H . Then the corre-
sponding Kitaev model on the plane satisfies Haag duality for cones.

The main difficulty in proving this is that the combinatorics get much more involved.
In particular, in the case of abelian algebras all irreducible representations are one
dimensional. For non-abelian algebras one has to considermultiplets of operators that
create pairs of excitations, transforming according to some irreducible representation
of the Hopf algebraD(H). We will see some of the consequences later on, when we
discuss non-abelian theories.

It should be noted that many of the constructions we present below do not depend
on Haag duality. The only place where it is used is in going from a representation
that satisfies the selection criterion to a localised endomorphism. Representatives of
these endomorphisms (and intertwiners between them that change the localisation
region) can be constructed without an appeal to Haag duality. However, it is then not
possible to conclude that each representative of the equivalence class is indeed given
by a localised endomorphism.

9.4 Superselection Theory for Abelian Models

It is well-known that the superposition principle of quantummechanics does not hold
unrestrictedly. A familiar example is that of bosons and fermions [60]. Consider the
vector ψ = 1√

2
(ψ f + ψb), where ψ f is a single-particle fermionic state, while

ψ f is bosonic. Under a rotation of the system by 360◦, the fermionic state will
acquire a minus sign, while the bosonic part is unchanged. Physically, however, the
states are indistinguishable, and will lead to the same expectation values. In general,
one can argue that the physical Hilbert space can be decomposed into different
sectors corresponding to the different types of charges in the system. This is called
a superselection rule.

On a mathematical level, superselection sectors arise because there are inequiva-
lent representations of the observable algebraA. AC∗-algebra hasmany inequivalent
representations in general, hence one should somehow select the physically relevant
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representations. There are several conditions onemight impose. For example, in rela-
tivistic theories a natural condition is to look at representations that are covariant with
respect translations, such that the spectrum of the generators (that is, the momentum)
is contained in the forward light cone. Doplicher, Haag and Roberts proposed to look
at those representations that, roughly speaking, look like the vacuum representation
in the spacelike complement of a double cone, the intersection of a forward and back-
ward light-cone [19]. Although this certainly does not cover all physical systems of
interests (it excludes, for example, electromagnetic charges [14]), it is nevertheless
a useful criterion, and can for example also be applied to conformal theories on the
circle [27].

What Doplicher, Haag and Roberts (DHR) showed [19, 20] (see also Chaps. 1
and 8) is that these representations can be studied in a systematic way. In this way,
one can learn something about the statistics of the different charges (i.e., if they are
bosons or fermions in space-times of dimensions ≥2+1), or how they behave under
composition of two charges (so-called fusion rules). Mathematically, it amounts to
studying the structure of the equivalence classes satisfying the selection criterion as
a braided fusion category, which is a type of tensor category. Some of the essen-
tial steps will be outlined below, but a more thorough introduction can be found in,
e.g., [28, 29]. The study of tensor categories is a whole field on its own (an introduc-
tion can be found in [40]), but familiarity with the main terminology is not strictly
necessary for our purposes here.

In the remainder of this section G will be a finite abelian group. We will see
how one can construct different superselection sectors for Kitaev’s quantum double
model, and do a Doplicher-Haag-Roberts type of analysis to recover the properties
of the different charges. The results outlined here have been obtained in [22, 43], to
which the reader is referred for details. It is perhaps somewhat surprising to see that
this theory, which was originally developed for relativistic quantum systems, can be
applied so successfully to discrete lattice quantum spin systems, even though there
are fundamental technical differences.

9.4.1 Localized Representations

As mentioned, the different superselection sectors are identified as equivalence
classes of representations of the observable algebra, satisfying additional selection
criteria. Here we take the ground state representation π0, corresponding to the trans-
lationally invariant ground state, as a reference representation, and look at all repre-
sentations that look like π0 when considering observables outside a cone-like region
Λ. The reason for this will become clear later, but at this point we mention that this
is similar to the work of Buchholz and Fredenhagen, who show that in relativistic
theories, massive particles can be localised in spacelike cones [14, 15], leading to a
similar criterion. We will write L for the set of cones.

http://dx.doi.org/10.1007/978-3-319-21353-8_1
http://dx.doi.org/10.1007/978-3-319-21353-8_8
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Definition 9.4.1 A representation π of A is called localizable if for each Λ ∈ L we
have

π0 � A(Λc) ∼= π � A(Λc), (9.6)

where ∼= denotes unitary equivalence of representations and � means that we restrict
the representation to the subalgebra A(Λc).

An equivalence class of representations satisfying the criterion is called a (superse-
lection) sector or simply a charge.

To proceed in the analysis of these representations, we have to pass from represen-
tations to endomorphisms of the observable algebra. This can be done with the help
of Haag duality. Indeed, let Λ ∈ L. Then from Eq. (9.6) there is a unitary VΛ setting
up the equivalence with π0 for the subalgebra A(Λc). Define ρ(A) = VΛπ(A)V ∗

Λ

and letΛ2 ∈ L containΛ. Let A ∈ A(Λ2) and B ∈ A(Λc
2). Note that ρ(B) = π0(B).

Moreover, by locality,

ρ(AB) = ρ(A)π0(B) = ρ(B A) = π0(B)ρ(A),

hence by Haag duality ρ(A) ∈ π0(A(Λc
2))

′ = π0(A(Λ2))
′′. Since π0 is faithful, we

can identify A with π0(A) and regard ρ as an endomorphism of A.6 The endomor-
phism is called localized in Λ. It is also transportable: if Λ′ ∈ L, there is a unitary
V and endomorphism ρ′ (localized inΛ′) such that Vρ(A) = ρ′(A)V for all A ∈ A.
Such an operator V (not necessarily unitary) is called an intertwiner from ρ to ρ′. If
V is unitary we will also call it a charge transporter, since it moves a charge from
one cone to another. Using Haag duality one can show that in fact V ∈ A(Λ̂) for
suitable Λ̂ ∈ L (where Λ̂ should contain the localization regions of both ρ and ρ′).
There is in fact a 1-1 correspondence between superselection sectors and equivalence
classes of these localized and transportable endomorphisms. From now on we will
work with the latter.

9.4.2 Localized Sectors in the Quantum Double Model

Recall that the ribbon operators Fω,c
ξ create a pair of excitations (or charges). We

are however interested in the properties of a single charge. Since we are in an infinite
system, it is possible to create a pair of excitations, and move one of them to infinity.
Asmay already be anticipated from the discussion in Sect. 9.2.1, the different charges
are in 1-1 correspondence with pairs (ω, c) of a character ω and group element c.
The ribbon operator Fω,c

ξ then creates the corresponding charge at the beginning
of ξ , and a conjugate charge at the other end. On the level of the observables, this

6Strictly speaking, this is only true if A(Λ2)
′′ ⊂ A, which in general is not the case for unbounded

regions Λ2. One can however solve this by passing to a larger algebra AΛa ⊃ A and extend ρ to a
proper endomorphism of AΛa [14, Sect. 4].
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means that we map A �→ Fω,c
ξ A(Fω,c

ξ )∗.7 Hence to implement the idea of moving
one charge to infinity, one can choose a semi-infinite ribbon ξ , which for simplicity
we assume to be completely inside some Λ ∈ L, and write ξn for the (finite!) ribbon
consisting of the first n parts. Then we define

α(A) = lim
n→∞ Fω,c

ξn
A(Fω,c

ξn
)∗. (9.7)

Considering thedense set of local observables, andusing thedecomposition rule (9.5),
it is not so difficult to show that this expression converges, and defines an automor-
phism of A. It describes how the observables change in the presence of a single
charge (ω, c) in the background.

The map α defined above leads us to an example of a representation that satisfies
the selection criterion, by defining π = π0 ◦ α. Clearly, if Λ is any cone containing
the ribbon, α(A) = A for all A ∈ A(Λc) by locality, so α is localised. It is also
transportable. There is a neat way of seeing this: because the vector state Fω,c

ξn
Ω

depends only on the endpoints of the path, it follows that two for automorphisms
α1 and α2 defined in terms of the same charge, but different ribbons (with the same
fixed endpoints), the states ω0 ◦ α1 and ω0 ◦ α2 coincide. In addition, note that both
triples (π0 ◦ αi ,Ω,H0) are GNS triples for this state, so that by the uniqueness of
the GNS construction, π0 ◦α1 must be unitarily equivalent to π0 ◦α2. The argument
can be extended if the endpoints of the ribbon do not coincide, by conjugating with
a suitable ribbon operator. It follows that the automorphisms are transportable. The
corresponding intertwiners can be shown to be in π0(A(Λ))′′ for a suitable cone Λ

using Haag duality, but for the quantum double model an explicit construction of a
net converging in the weak operator topology to an intertwiner is also possible.

The construction above gives for each pair (ω, c) an equivalence class of localized
and transportable automorphisms, but it is not clear yet that these classes are distinct.
This does turn out to be the case. The key idea in showing this is by considering
an analogue of Wilson loops, which measure the charge in the region enclosed by
the loop. Such operators can be obtained by considering ribbons with the same start
and ending sites. In this way one can construct a charge measurement operator in
an arbitrarily large region, that have expectation value 1 in the state ω0 ◦ α, where α

has charge (ω, c), and zero expectation value in states obtained from a different pair
(ω′, c′). It follows that the corresponding representationsπ0◦α must be inequivalent.
The discussion can be summarized in the following theorem:

Theorem 9.4.2 Let G be an abelian group. For each pair (ω, c) of a character of G
and an element c ∈ G, there is an equivalence class of localised and transportable
automorphisms. If α1 and α2 are such automorphisms, then π0 ◦α1 ∼= π0 ◦α2 if and
only if they belong to the same charge class (ω, c).

7This actually corresponds to creating charges with (Fω,c
ξ )∗, which turns out to be slightly more

convenient.
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This result can also be understood as an instance of charge conservation. The
total charge of the state can be obtained by finding all excitations ω (resp. c) in the
state, and multiply all of them together. Note that this is possible because the dual
of an abelian group is a group again. The ribbon operators span a dense subset of
the quasilocal algebra A. Because the two distinct charges at the end of the ribbons
transform according to conjugate representations, it follows that one cannot change
the total charge of the system just by local operations. In particular, one cannot go
from a charged sector with a certain total charge to another sector with a different
total charge by acting with local operators, so that indeed we have inequivalent
representations of A.

9.4.3 Braiding and Fusion

So far we have constructed endomorphisms that describe single charges localized
in cones, and charge transporters or intertwiners that can move the charges around.
There is however much more structure, and this is where it becomes essential that
we have endomorphisms rather than representations: in contrast to representations,
endomorphisms can be composed. If ρ1 and ρ2 are two localized endomorphisms,
we define ρ1 ⊗ ρ2(A) = ρ1 ◦ ρ2(A). The interpretation is that we first create a
charge ρ2, and then add a charge ρ1 to the system. This operation is called fusion.
Note that ρ1 ◦ ρ2 is localized again, more particularly it is localized in any cone that
contains the localization regions of ρ1 and ρ2. It is also transportable again. This can
be seen by defining a product operation for intertwiners as well: if Sρ1(A) = ρ2(A)S
and T σ1(A) = σ2(A)T for all A ∈ A, we define S ⊗ T := Sρ1(T ). Then an easy
calculation shows that S ⊗ T intertwines ρ1 ⊗ σ1 and ρ2 ⊗ σ2. There is however
a slight technical issue. The intertwiners S are in general only elements of weak
closures of the form π0(A(Λ))′′ for some cone Λ (this follows from Haag duality),
while the endomorphisms are a priori only defined on A. It is however possible to
extend the endomorphisms to a slightly larger algebra AΛa , where Λa is some fixed
auxiliary cone, that does contain the intertwiners. Since this is a minor technical
point, we ignore the issue here, and refer to [14, 43] for technical details.

Even if ρ1 and ρ2 are irreducible, their composition need not be irreducible any
more. A natural question therefore is if it is possible to decompose the composition
into irreducibles again. The fusion rules give this decomposition. That is, if ρi and
ρ j are irreducible endomorphisms, there are integers N k

i j , where k runs over a set of
representatives of all irreducible localized and transportable endomorphisms, such
that

ρi ◦ ρ j ∼=
∑

k

N k
i jρk . (9.8)

The sum operation is a direct sum, which can be described in terms of intertwiners.
This is very similar to representation theory of finite (or compact) groups: the tensor
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product of two irreducible representations can be decomposed again as the direct sum
of finitely many irreducible representations.8 Note that the identical endomorphism
ι(A) = A acts as a unit for the fusion operation. Finally, a charge ρ has a dual
or conjugate ρ if there is such a localized and transportable ρ with N ι

ρρ = 1. The
existence of conjugates is not automatic, and has to be either proven or taken as an
assumption. Physically, it is related to the existence of (charge) anti-particles.

In algebraic quantum field theory, it is usually shown that such a decomposition
exists with the help of a technical property, Property B [8], that essentially allows
any projection in the local algebra to be written in the form P = W W ∗ for some
isometry W , localized in a slightly bigger region. In the present situation of spin
systems, one could go about by showing that direct sums can be constructed, and
by explicitly verifying the fusion rules (9.8) [43]. This is particularly easy in abelian
models, where there always is a unique fusion outcome. That is, N k

i j is equal to one
for exactly one value of k, and zero otherwise. Symbolically, for the abelian quantum
double model the fusion rules are

(ω1, c1) ⊗ (ω2, c2) = (ω1ω2, c1c2).

This can be seen by considering, without loss of generality, a single ribbon ξ , and
define the automorphisms α1 and α2 corresponding to the choices of charges. Using
the multiplication rule for two ribbon operators in abelian models, mentioned at the
end of Sect. 9.2.1, the result follows.

The final piece of structure that we discuss here is that of braiding. This is related
to the statistics of identical particles, that is, their behaviour under interchange. This
amounts to the study of the relation between ρ1 ⊗ ρ2 and ρ2 ⊗ ρ1 for general
localized endomorphisms ρ1 and ρ2. An intertwiner ερ1,ρ2 relating the two can be
constructed explicitly by, quite literally, moving ρ2 around (or, ρ1 of course, in
similar way). More precisely, one can choose a localization region Λ̂ that is disjoint
from the localization regions of both ρ1 and ρ2. By transportability there is a unitary
U and a endomorphism ρ̂ localized in Λ̂ such that Uρ2(A) = ρ̂(A)U . Because
ρ1 ⊗ ρ̂ = ρ̂ ⊗ρ1 since their localization regions are disjoint, it follows that ερ1,ρ2 :=
(U∗ ⊗ I )(I ⊗ U ) = U∗ρ1(U ) is an intertwiner from ρ1 ◦ ρ2 to ρ2 ◦ ρ1.

In three or more spatial dimensions, the definition of ερ1,ρ2 is completely inde-
pendent of the choices made, and one can show that ερ1,ρ2ερ2,ρ1 = I . Note that
this is the situation of ordinary bosons and fermions: moving one particle around
the other doesn’t change the system. One can show that the operators ερ,ρ indeed
induce a representation of the permutation group, which interchanges charged exci-
tations [19]. In lower dimensional space times, things get more interesting. It is no
longer true that there is a unique choice of ερ1,ρ2 [23, 24, 26]. The reason is that one
cannot continuously move the cone Λ̂ around, but instead has to choose between
either “left” or “right”. This can be defined unambiguously by choosing an auxiliary

8Indeed, if the theory contains only bosonic sectors, the localized and transportable endomorphisms
are in one-to-one correspondence with the representations of a compact global symmetry group
G [18].
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coneΛa as above. To get a consistent definition for the operators ερ1,ρ2 (for example,
to make sure that the different ways to go from (ρ ⊗ σ ⊗ τ to τ ⊗ ρ ⊗ σ coincide),
one has to choose one of the two alternatives, and stick to that. A consequence of
this ambiguity is that it is no longer true that ερ1,ρ2ερ2,ρ1 = I . In addition, one does
not obtain a representation of the permutation group any more, but rather one of
the braid group. Consequently, such charges are said to have braid statistics. If this
representation is abelian, one calls the charges (abelian) anyons (because they can
pick up “any” phase under interchange). If the representation is non-abelian, one
usually speaks of non-abelian anyons.9

The charges of the quantum double model are abelian anyons. This can be
verified directly, by calculating the operators ερ1,ρ2 and ερ2,ρ1 , together with the
explicit construction of charge intertwiners, mentioned above. In the end the cal-
culation boils down to commutation relations of the ribbon operators: Fω,c

ξ1
Fσ,d

ξ2
=

ω(d)σ (c)Fσ,d
ξ2

Fω,c
ξ1

for two crossing ribbons ξ1 and ξ2. In the end one finds that

ε(ω,c),(σ,d)ε(σ,d),(ω,c) = ω(d)σ (c),

showing that the charges are indeed abelian anyons.

9.4.4 The Category of Localized Endomorphisms

The set of localized endomorphisms has a very rich structure, of which we have given
some examples above.Mathematically, it has the structure of a braided unitary fusion
category.10 The theory of such categories is quite rich, and an active field of study, in
particular considering the classification of such categories. There are by now a few
texts that provide an accessible entry to the literature. We mention for example [29,
31, 40, 58], each of which has a different focus.

We will denote this category by Δ. Its objects are the cone localized and trans-
portable endomorphisms of A. The morphisms are intertwiners: T ∈ Hom(ρ, σ ) if
Tρ(A) = σ(A)T for all A ∈ A. Note that if T ∈ Hom(ρ, σ ), then T ∗ ∈ Hom(σ, ρ),
where T ∗ is the adjoint of T . The isomorphisms in this category are unitary opera-
tors, so that the we indeed obtain equivalence classes of localized and transportable
endomorphisms. An object is irreducible, by definition, if Hom(ρ, ρ) ∼= C. Note
that this is just another way of stating that the commutant of ρ(A) is trivial, hence
this coincides with the usual notion of an irreducible representation.

9In the local quantum physics literature the name plektons is used. This name does not seem to have
caught on outside of that community: the name non-abelian anyons prevails for example in the field
of topological quantum computing, and this is why we adhere to that name here.
10Strictly speaking, “fusion” implies that there are only finitely many equivalence classes of irre-
ducible objects. This is the case for the quantum double models, but need not be true in general.
Dropping that condition does not make a difference in many cases.
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In the previous section we defined a tensor product. This is actually a tensor
product in the category, where the trivial endomorphism is the tensor unit. It is in
fact a strict tensor category: associativity of the tensor product holds on the nose,
not only up to isomorphism as is often the case in category theory. For each pair of
objects ρ1 and ρ2, the definition of the braid operator ερ1,ρ2 gives an isomorphism
ερ1,ρ2 ∈ Hom(ρ1, ρ2). This assignment is in fact natural in both variables, and
satisfies the so-called “braid equations”, which give consistency conditions. This
makes Δ into a braided tensor category. It is symmetric if ε−1

ρ1,ρ2
= ερ2,ρ1 for all

objects ρ1, ρ2.
Direct sums can be described in the category theory language as well. If ρ1 and ρ2

are objects inΔ, an object ρ1 ⊕ρ2 is a direct sum if there are Vi ∈ Hom(ρi , ρ1 ⊕ρ2)

with
∑

i Vi V ∗
i = I andV ∗

i V j = δi, j I . In algebraic quantumfield theory the existence
of such direct sums follows from Property B discussed above. In the case of the
quantum double model we can explicitly construct the direct sums. Let Λ be a cone
and suppose that ρ1 and ρ2 are localized in Λ. Adapting the arguments of [34, 37],
it follows thatRΛ := π0(A(Λ))′′ is an infinite factor, and hence there are isometries
Vi ∈ RΛ such that

∑
i Vi V ∗

i = I and Vi V ∗
j = δi, j I . We can then define

ρ1 ⊕ ρ2(A) := V1ρ1(A)V ∗
1 + V2ρ2(A)V ∗

2 .

Because of locality it follows that ρ1 ⊕ ρ2 is localized in Λ, and a straightforward
calculation shows that this indeed is a direct sum in the categorical sense. Note that
the direct sum is only defined up to unitary equivalence. This also explains how the
summation in the fusion rules has to be understood, namely as a direct sum in this
category. Note that in the abelianmodels we consider here, there is only one non-zero
fusion coefficient, so the direct sum construction is not necessary.

Finally, there is the notion of duals. Physically, these can be interpreted as anti-
charges. If ρ is an irreducible object of Δ, a dual (or conjugate) is a ρ ∈ Δ such that
the trivial endomorphism ι of A appears exactly once in the direct sum composition
of ρ ⊗ ρ and of ρ ⊗ ρ. Note that this coincides with the notion of a conjugate in
terms of the fusion coefficients N k

i j mentioned before. This implies that there is an
isometry R ∈ Hom(ι, ρ ⊗ ρ). We assume all objects have conjugates. In this case,
it follows that all Hom-sets are finite-dimensional vector spaces (over C). It follows
from the fusion rules that for the abelian quantum double model, the conjugate of
(ω, c) is (ω, c−1).

So far we have constructed different superselection sectors of the abelian quan-
tum double model, and studied their properties. The question remains if there are
perhaps additional sectors, that we have so far overlooked. In other words, are there
perhaps representations that satisfy Definition 9.4.1, but are not equivalent to one of
the representations constructed so far? This question can be answered by adapting
techniques from rational conformal nets [32]. In particular, one can consider two
disjoint cones Λ1 and Λ2, and look at the von Neumann algebra π0(A(Λ1 ∪ Λ2))

′′.
While Haag duality holds for a single cone, for a pair of cones it generally does not
hold anymore. This means that π0(A(Λ1∪Λ2))

′′ ⊂ π0(A((Λ1∪Λ2)
c)′′ in general is
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a proper inclusion (it is an irreducible subfactor, in fact). Essentially, the bigger alge-
bra also contains the intertwiners or charge transporters that move a charge from one
cone to the other. Hence by studying how much bigger the algebra is, one can learn
something about the number of sectors in the theory. This relative size can be quan-
tified by the Jones-Kosaki-Longo index [π0(A((Λ1 ∪ Λ2)

c)′′ : π0(A(Λ1 ∪ Λ2))
′′],

which in turn gives an upper bound on the number of sectors [46]. For the toric code
this number is four, and hence it follows that we have indeed construct all sectors:
the ground state sector, and the ones corresponding to the pairs (ι, g), (σ, e), (σ, g),
where σ is the sign representation of Z2 and g is the only non-trivial element in the
group. This leads to the following conclusion:

Theorem 9.4.3 The category of localised and transportable endomorphisms of the
toric code is equivalent as a braided fusion category to category Rep f D(G) of finite
dimensional representations of the quantum double D(Z2).

It should be rather straightforward (but tedious) to extend this result to all abelian
quantum double models.

There is one aspect thatwe have notmentioned so far. The category of the quantum
double model is modular. Modular tensor categories are fusion categories with an
additional non-degeneracy property: it is called modular if it has trivial braided
centre. That is, suppose that ρ is irreducible, and ερ,σ εσ,ρ = I for all irreducible σ .
If this implies that ρ is the trivial object, then the category is modular [39, 53]. In
this sense, modular categories are “as far away” as possible from being symmetric,
where ερ,σ εσ,ρ is always the identity.

There is an equivalent condition that is related to Verlinde’s matrix S in conformal
field theory [57]. In the categorical setting it can be defined as follows. One can
show that the duality allows one to define a trace on morphisms in the category. A
matrix S is than defined by having entries Si j = tr(ερi ,ρ j ερ j ,ρi ), where ρi is a set
of representatives of the irreducible objects. A category is modular if and only if
this matrix S is invertible. It also allows us to explain the name modular: together
with a matrix T that can also be canonically defined, the matrices S and T induce a
projective representation of themodular group SL2(Z). Inmodular categories it turns
out that there is in fact a relation between the matrix S and the fusion coefficients,
given by the Verlinde rule [57]:

N k
i j =

∑
r

Si j S jr Skr

S2
1r

,

where the label 1 stands for the trivial object. This shows that the structure of a
modular tensor category is quite rigid, and not any given fusion rule can be realized
in some modular category.

Modular tensor categories can be realized as topological quantum field theories
(TQFTs), see for example [56]. One can therefore think, in a sense, of the type of
topologically ordered systems that we have considered here as systems that in the
low energy limit can be described by a TQFT. It should be noted than in general these



384 P. Naaijkens

are really effective theories, giving an effective description of oft-times very complex
and poorly understood condensed matter systems. They also play a fundamental role
in the field of topological quantum computing [58], on which we comment briefly
in the last section.

9.5 Extension to Non-abelian Models

So far we have only considered abelian models. A natural question is if the methods
can be extended to non-abelian quantum spinmodels.We again consider the quantum
double model, but now for a non-abelian (but still finite) group G. In that case, there
still is a unique translational invariant ground state ω0. Many of the proofs, however,
do not directly carry over from the abelian case. The reason for this will become
clear below, but the underlying difficulty is that the irreducible representations of
D(G) are no longer all one-dimensional. In particular, it is not clear how one could
construct endomorphisms describing these “non-abelian” charges.

A similar problemappeared in one-dimensional spin chains,with compactly local-
ized charges. There the problem is that the algebraA(Λ) of such a localization region
is finite dimensional, namely the tensor product of finitely many matrix algebras. All
endomorphisms of this algebras are in fact automorphisms, and one can show that
these cannot have non-abelian statistics. This problem can be circumvented by the
methods of Szlachányi and Vecsernyés [55], and Nill and Szlachányi [50]. Instead
of looking at endomorphisms, they look at amplimorphisms, that is, morphisms
χ : A → Mn(A) for some integer n. One can then do a study of these endomor-
phisms in the spirit of the DHR theory.

In the present case we are interested in two dimensional systems with localization
in cones. The cone algebras are certainly not finite dimensional, so the obstruc-
tion of the only endomorphisms being automorphisms does not play a role here.11

Nevertheless, as mentioned it is not easy to explicitly construct examples of the endo-
morphisms. This is where the amplimorphisms come in. The strategy is to mimic
the amplimorphism construction in [55] in the context of cone-localized charges, to
construct representatives of the different charge classes, and will then show how we
can go back to the usual setting of cone-localized endomorphisms. The amplimor-
phism description is much more explicit, making it possible to explicitly calculate
intertwiners, fusion rules, et cetera. Here we will mainly restrict to the construction
of the different sectors. Combining the techniques developed in the abelian case with
the amplimorphism results in [55] should enable one to completely solve the model.

The ribbon operators again play a fundamental role.Wewill use the same notation
as in Sect. 9.2.1, e.g. r will always be a fixed representative in a conjugacy class. Let ξ
be a fixed ribbon, and recall that one can choose a basis of the ribbon operators acting
on ξ in terms of the irreducible representations of D(G). For a fixed representation

11To be a bit more precise, one actually needs that π0(A(Λ))′′ is not a factor of Type I, that is, not
of the form B(H) for some Hilbert space H. For the quantum double models that is the case.
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there is a multiplet of ribbon operators F I J
ξ , where I = (i1, i2) and J = ( j1, j2).

The first indices run over the elements of the corresponding conjugacy class C ,
while the second runs over the dimension of the group. These multiplets satisfy
certain completeness relations, namely

∑
I

(F I J
ξ )∗F I K

ξ = δJ K I,
∑

J

F I J
ξ (F K J

ξ )∗ = δI K I, (9.9)

where the summations are over all pairs (i1, i2) and the I on the right hand side is the
unit ofA. These equations can be verified by a simple calculation using the definitions
and the algebraic relations for Fh,g

ξ . In [55] these F I J are called irreducible and
complete multiplets, with the difference that here we have not defined an action
γa of D(G) acting on these multiplets. Nevertheless, they do transform under an
irreducible representation of D(G), cf. equation (B69) of [5].

Recall that for the abelian model, a ribbon operator acting on a large ribbon is just
the product of two ribbon operators acting on smaller ribbons, but related to the same
irreducible representation. If the irreducible representation is not one-dimensional
any more, this is no longer true. Nevertheless, a suitable analogue of Eq. (9.5) still
holds:

Lemma 9.5.1 Choose a pair (C, ρ) of a conjugacy class and an irreducible repre-
sentation of the centralizer ZG(r), where r is as explained in Sect.9.2.1. Let ξ = ξ1ξ2
be a ribbon that is decomposed into two ribbons. The corresponding multiplets will
be denoted by F I J

ξ and F I J
ξi

respectively. Then we have the following relation

F I J
ξ =

∑
K

F I K
ξ1

F K J
ξ2

, (9.10)

where the sum is over all pairs K = (k1, k2)

Proof First write out the right hand side of Eq. (9.10) in terms of the elementary
ribbon operators Fh,g

ξi
, where we set I = (i1, i2), and similarly for J and K :

∑
g,h∈ZG (r)

|C|∑
k1=1

dim(ρ)∑
k2=1

ρi2k2(g)ρk2 j2(h)F
ci1 ,qi1 gqk1
ξ1

F
ck1 ,qk1hq j1
ξ2

.

Since ρ is a representation, the summation over k2 yields a term ρ(gh). After a
substitution h �→ gh we obtain

∑
g,h∈ZG (r)

|C|∑
k1=1

ρi2 j2(h)F
ci1 ,qi1 gqk1
ξ1

F
ck1 ,qk1 ghq j1
ξ2

.
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As remarked before, every element s ∈ G can be written uniquely in the form
s = nqi for some i and n ∈ ZG(r). Hence the summation over k1 and g can be
replaced by a summation over s ∈ G. More precisely, we set s = gqk1 . Note that
ck1 = qk1rqk1 = srs. With this observation the expression above reduces to

∑
h∈ZG (r)

∑
s∈G

ρi2 j2(h)F
ci1 ,qi1 s
ξ1

F
s rs,shq j1
ξ2

= F I J
ξ ,

where the equality follows after a substitution s �→ qi s andwith the help of Eq. (9.5).
This completes the proof.

Analogously to the automorphisms for the abelian models, we now define linear
maps χI J (A) of A. Choose again a semi-infinite ribbon ξ and let F I J

ξn
denote the

corresponding multiplets, where ξn is the first part of the ribbon, consisting of n
triangles. Then we set for any local observable A:

χI J (A) := lim
n→∞

∑
K

F I K
ξn

A
(

F J K
ξn

)∗
. (9.11)

Note that (assuming for the moment that the expression converges) this defines a
linear map defined on a dense subset of A. Since it is bounded, it can be extended
to A. This extension will also be denoted by χI J . So it remains to be shown that
the expression indeed converges (in norm, even). The main idea is similar as in the
abelian case, only here we have to use Lemma 9.5.1.

Lemma 9.5.2 Let χI J be as above. Then the limit on the right hand side of Eq. (9.11)
converges. We have the following properties:

1. for A ∈ Aloc, χI J (A) = ∑
K F I K

ξN
A

(
F J K

ξN

)∗
for N big enough;

2. χI J (I ) = δI J I ;
3. χI J (A) = δI J A if A is localised away from the ribbon;
4. χI J (AB) = ∑

K χI K (A)χK J (B);
5. χI J (A)∗ = χJ I (A∗).

Proof We show the first property. The others then follow straightforwardly using
orthogonality and completeness for the multiplets, as well as the definition of χI J .
Consider A ∈ Aloc. Let N be such that supp(A) ∩ (ξn \ ξN ) = ∅ for all n ≥ N . The
idea is to decompose the ribbon ξn as ξn = ξN ξ̂ , where ξ̂ = ξn \ξN . Let us nowwrite

χn
I J (A) for

∑
K F I K

ξn
A

(
F J K

ξn

)∗
, and set ξ1 = ξN , ξ2 = (ξn \ ξN ). By Lemma 9.5.1,

locality, and Eq. (9.9) we get

χn
I J (A) =

∑
K

∑
L

∑
M

F I L
ξ1

F L K
ξ2

A(F J M
ξ1

F M K
ξ2

)∗

=
∑

K

∑
L

∑
M

F I L
ξ1

A(F J M
ξ1

)∗F L K
ξ2

(F M K
ξ2

)∗
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=
∑

L

∑
M

F I L
ξ1

A(F J M
ξ1

)∗δL M

= χ N
I J (A).

From this it is clear that the limit in Eq. (9.11) converges for operators A ∈ Aloc. As
mentioned the other properties are easy to verify.

Note that the properties stated in the Lemma are precisely those that one needs
to define an amplimorphism. Note that there are n = |C | dim(ρ) pairs I = (i, j).
We then define a map χ : A → Mn(A) by setting [χ(A)]I J = χI J (A). It follows
that χ is an amplimorphism. In addition, it is localized in any cone Λ that contains
the ribbon ξ used in the definition of χI J , in the sense that χ(A) is the matrix with
entries A on the diagonal and otherwise zeros, if A ∈ A(Λc). It remains to show
that the amplimorphisms are transportable. Here we show that the charges can be
transported over a finite region.

Lemma 9.5.3 The amplimorphisms χ constructed above are transportable over
finite distances.

Proof Fix a semi-infinite ribbon ξ . We demonstrate how we can move the charge at
the endpoint of the ribbon around. That is, let ξ̂ be a ribbon, such that ξ̂ ξ is again
a semi-infinite ribbon. Define V ∈ Mn(B(H)), where n = |C | dim(ρ), by having
entries VI J = F I J

ξ̂
. From Eq. (9.9) it follows that V is unitary. The claim is that

V χ(A)V ∗ = χ̂ (A), where the amplimorphism in the right hand side is defined with
respect to the ribbon ξ̂ . This can be verified for local operators A, by carrying out
the matrix multiplication, and using Lemma 9.5.1 together with 1. of Lemma 9.5.2.

The case of cone transportability is more complicated. Because of the lemma it is
enough to consider two semi-infinite ribbons ξ1 and ξ2 starting at the same site. Let
ξi,n denote the ribbon consisting of the first n triangles. For each n, choose a ribbon
ξ̂n that goes from the endpoint of ξ2,n to the endpoint of ξ1,n in such a way that as n
goes to infinity, so does the distance of the ribbon to the endpoint of ξ1. Now define
a unitary operator Vn = Vξ2,n ξ̂n

V ∗
ξ1,n

, where Vξi,n is the unitary obtained from the

multiplet F I J
ξi,n

. Now if A is local, it follows that Vnχ1(A) = χ2(A)Vn for all n large
enough. This can be seen by the argument in the proof of the above lemma.

This gives a uniformly bounded sequence of operators, since each of them is
unitary. By the compactness of the unit ball in the weak operator topology, there
is a subnet that converges to some operator V . Since multiplication on the right
with a fixed χ(A) is weakly continuous, it follows that V intertwines χ(A) and
χ̂(A). The problem remains to show that V is unitary. There are different ways that
one might achieve this. For example, one could first try to show that χ and χ̂ are
irreducible, so that Hom(χ, χ̂) must be either zero or one-dimensional. If V is non-
zero, it then follows that one can choose V to be unitary. The other option is to realize
both representations as the GNS representation of the same state. The vector state
with an Ω in the first component (and otherwise zero) is a good candidate. By the
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independence of the ribbon operators on the exact choice of ribbon, this leads to the
same state in both representations. If one can show that this vector is in fact cyclic,
the proof is complete. We will leave this issue open for now.

It is natural to look at the amplimorphisms in the ground state representation, that
is, look at (π0 ⊗ id) ◦χ . This amounts to applying the ground state representation to
each matrix element. In fact, that is what we have been doing implicitly above. Note
that by localization of the amplimorphisms, for observables outside the localization
region, this representation looks like n copies of the ground state representation.
Hence it is natural to adapt the selection criterion (9.6) a bit to allow for this case.
It turns out that in the end this does not really matter, and one can go back from the
amplimorphism picture to cone-localized endomorphisms (or representations). This
is the content of the next theorem.

Theorem 9.5.4 Suppose that π0 satisfies Haag duality for cones. Let π be a repre-
sentation of A and n be a positive integer such that for some cone Λ, we have

n · π0 � A(Λc) ∼= π � A(Λc), (9.12)

where n · π0 is the direct sum of n copies of the representation. Then the following
hold:

1. There is an amplimorphism χ : A → Mn(AΛa ), localised in Λ, such that we
have (π0 ⊗ id) ◦ χ ∼= π .

2. There is a morphism ρ : A → AΛa such that π0 ◦ ρ ∼= π when restricted to A.

Note that the unitary equivalence in the second point can be used to map intertwiners
between amplimorphisms to intertwiners between morphisms. In particular, if χ

is transportable, so is the corresponding morphism, and ρ can be extended to an
endomorphism of AΛa .

Proof 1. Let U : Hπ → ⊕n
i=1H0 be the unitary setting up the equivalence and

suppose that A ∈ A(Λ). For A ∈ A, define χ(A) := Uπ(A)U∗. Note that χ(A) ∈
B(

⊕n
i=1H0) ∼= Mn(B(H0)), so that the matrix elements χi j (A) ∈ B(H0). Now

let B ∈ A(Λc) and A ∈ A(Λ). Note that from Eq. (9.12) it follows that χ(B) =
diag(π0(B), . . . , π0(B)).

Remark that A and B commute by locality, so that χ(A)χ(B) = χ(AB) =
χ(B)χ(A). Writing out the definitions and comparing matrices element wise, it fol-
lows thatπ0(B)χi j (A) = χi j (A)π0(B).Henceχi j (A) ∈ π0(A(Λc))′ = π0(A(Λ))′′,
by Haag duality. Since the algebra on the right hand side is contained in the auxiliary
algebra AΛa , and χ acts trivially on A(Λc), it follows that χ : A → Mn

(
AΛa

)
is an

amplimorphism.
2. Since π0(A(Λ))′′ is an infinite factor, one can find isometries Vi , i = 1, . . . , n

generating aCuntz algebra [16]. That is, they satisfy V ∗
i V j = δi j I and

∑n
i=1 Vi V ∗

i =
I . Write χ for the amplimorphism obtained in part (1), and χi j (A) for its matrix
elements when evaluated in A. Define a map ρ : A → AΛa by
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ρ(A) =
n∑

i, j=1

Viχi j (A)V ∗
j .

Suppose that A, B ∈ A. A straightforward calculation then shows

ρ(A)ρ(B) =
∑

i, j,k,l

Viχi j (A)V ∗
j Vkχkl(B)V ∗

l

=
∑
i, j,l

Viχi j (A)χ jl(B)V ∗
l

= ρ(AB).

Moreover, ρ(A∗) = ρ(A)∗ since χi j (A∗) = χ j i (A)∗. If B ∈ A(Λc), then χi j (B) =
δi j B and B ∈ A(Λ)′, hence ρ(B) = B and ρ is localised in Λ.

Next we show that π0 ◦ ρ is unitarily equivalent to π0 ⊗ χ . To this end, identify
H0 ⊗ C

n withH = ⊕n
i=1H0. Define a map U : H → H0 by setting

U (ψ1 ⊕ · · · ⊕ ψn) =
n∑

i=1

Viψi .

Using the properties of the Vi it is easy to check that U preserves the inner product
(and hence is an isometry and well-defined). Since

∑n
i=1 Vi V ∗

i = I it also has dense
range, hence U is unitary.

A few remarks are in order at this point. First of all, the condition of Haag duality
is only used to obtain an amplimorphism from a representation satisfying Eq. (9.12).
Without Haag duality, one can still obtain an morphism ρ such that π0 ◦ρ and π0⊗χ

are unitarily equivalent. However, we then have little control over the range of the
morphism, and we cannot extend it to an endomorphism of the auxiliary algebra
without any additional information.

The theorem shows that in principle one can restrict to the study of localised
and transportable endomorphisms. Nevertheless, it can be very helpful to look at
amplimorphisms as well. One reason is that it may be easier to construct such
amplimorphisms explicitly in concrete models, as we have done above. They also
provide more information on the symmetries of the model. In particular, the vector
space Cn in H0 ⊗ C

n carries a representation of the symmetry algebra, through the
symmetry transformations of the multiplets F I J

ξ . This plays an important role in the
analysis of the superselection sectors in [50, 55]. We expect that the methods used
there to study the category of amplimorphisms (and hence, by the theorem above, the
category of localized endomorphisms). In particular, to define fusion and braiding.
This leads to the following conjecture:

Conjecture 9.5.5 Let G be a finite group. Then the category Δ of localized and
transportable endomorphisms of the quantum double model is equivalent to the rep-
resentation category Rep f D(G) of the quantum double D(G).
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In [44] we obtained through computer algebra the fusion rules of D(S3) by tak-
ing the composition of certain positive maps. These results are consistent with the
approach here, since the positive maps there are the traces of the amplimorphisms
we have defined here. The composition of these positive maps yields the trace of the
amplimorphism χ1 ⊗ χ2, where the tensor product is defined as in [55].

To study this conjecture it would be helpful to go from endomorphisms to
amplimorphisms. An important question is also if there is a “canonical”way to obtain
an amplimorphism from an endomorphism. Of course, there is always the “trivial”
way, since and endomorphism ρ gives rise to an amplimorphism ρ̂ : A → A ⊗ C.
In general, let T1, . . . , Tn ∈ B(H) be such that T ∗

i Tj = δi, j I and
∑n

k=1 Tk T ∗
k = I .

Then it is easy to check that [χ(A)]i j := T ∗
i ρ(A)Tj defines an amplimorphism.

Hence to have a meaningful equivalence between the category of amplimorphisms
and of localised morphisms, we would have to impose some additional conditions on
the amplimorphisms. One of them is that they transform in the right way, as explained
above. Tofind this symmetry one could look for an analogue of theDoplicher-Roberts
theorem [18], which gives a group symmetry for bosonic/fermion sectors. In general,
one could only expect a so-called weak Hopf-algebra symmetry [52].

We have outlined here how one could proceed with an analysis of the superselec-
tion structure of the non-abelian quantum double model. Although the analysis is not
complete, we hope that it is a helpful starting point. It should be remarked that here
we have provided an explicit model whose ground space representation should lead
to non-abelian charges. This should be contrasted with [50, 55], where the existence
of such a representation is taken as an assumption.

9.6 An Application: Topological Quantum Computing

There are different reasonswhy there has been a huge interest in topologically ordered
systems in recent years. One of the reasons is that they provide examples of new
phases of matter, that go beyond the Landau paradigm of symmetry breaking. This
is not just of theoretical interest—these phases really exist in nature. There is also
experimental evidence for the existence of quasi-particle excitations with anyonic
excitations, see for example [38]. A good theoretical understanding is therefore very
welcome.

Here we focus on another aspect that has sparked the interest of the quantum
computation community. One of the goals of quantum computation is to use the full
power of quantum mechanics to solve computationally hard problems, for which a
computation on a usual, classical computer is infeasible. To illustrate this one can
think of a simple spin-1/2 quantum system, with Hilbert spaceC2. The dimension of
n copies of such a system scales as 2n , so if one wants to simulate the whole Hilbert
space of a n-particle system, one quickly runs out of memory in a classical computer.
The idea behind quantum computing, which goes back to Feynman [21], is to use
the laws of quantummechanics to solve computationally complex problems, or even
simulate other quantum systems.
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This is not the place for a full-fledged introduction to quantum computing (for this
Nielsen and Chuang’s [49] is a good start), but let us summarise the main points. The
“quantummemory” of a quantum computer is modelled by a (generally finite dimen-
sional) Hilbert space, ususally of the form H = (C2)⊗n for some n. A computation
then consists of three steps:

1. Initialise the system in a known state;
2. Perform a unitary operation on the system to implement the algorithm;
3. Measure the result (and if necessary, repeat to get statistics).

This encompasses classical computing. To see this, we can reformulate each com-
putational problem in the calculation of a function f : {0, 1}n → {0, 1}n , where for
simplicity we take f to be injective. Now let |0〉 , |1〉 be a basis of C2. Then we can
identify each (xi ) ∈ {0, 1}n with a basis vector |x〉 := |x1〉⊗ · · ·⊗ |xn〉. We can then
define a map U f by U f |x〉 = U f | f (x)〉, which is unitary because f is injective.
Hence we can initialize the system in a known state |x〉, apply U f , and measure to
learn something about | f (x)〉. This is where quantum mechanics comes in: it allows
us to act with U f on a superposition, say of the form 1√

2n

∑
x |x〉, so that we can

learn something about all values f (x) in a single operation. This is not possible on
a classical computer.

Although themain idea is quite simple, it turns out to be very difficult to implement
this in physical systems in a reliable and scalable way. This is were topological
quantumcomputing comes in [35, 48].Wehave already briefly discussed the problem
of storing quantum information over an extended period of time. Here we focus on
the computation part, that is, processing this quantum information to implement an
algorithm.Asmentioned above, this amounts to actingwith a certain unitary operator
on the system. In practice this could work, for example, by coupling the system to
some external magnetic field for a period of time, and let it evolve. The problem is
that it generally is very difficult to exactly perform the unitary that you want, and
not something slightly different (because the magnetic field is left on too long, for
example). The idea is therefore to use “topological” operations to implement the
necessary unitary. A small disturbance should not change the topological property,
and hence have no effect on the computation. The braiding operation of two anyons
for example is independent of the path that the anyons take (as long as the paths
don’t cross).

To use this idea, the quantum information on which we want to operate has to be
encoded using anyons. Let us consider a non-abelian anyon ρ, which for the sake of
simplicity we assume to be self-dual: ρ = ρ. We can then take n copies of it, that is,
consider ρ⊗n . The idea is to create these by pulling pairs of them from the vacuum,
which is possible because ρ is its own anti-charge. Because the anyon is non-abelian,
this can actually be done in different ways. More precisely, the possible states are
described by Hom(ι, ρ⊗n), where ι is again the trivial charge. This vector space
can be given the structure of a Hilbert space. It is this space that we use to encode
the qubits in. It should be noted that in general Hom(ι, ρ⊗) does not have a nice
decomposition as the tensor product of n copies of some Hilbert space. Nevertheless,
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one can embed the state space of a number of qubits into this space. The dimension
of Hom(ι, ρ⊗n) grows exponentially in n.

Step 1 in the quantum computation scheme can now be accomplished by pulling
charges from the vacuum in a suitable way. To implement unitary operations on
the qubits, we note that there is a natural representation of the braid group Bn on
Hom(ι, ρ⊗n): if T ∈ Hom(ι, ρ⊗n), we can consider

π(bi )T := (I ⊗ · · · ⊗ ερ,ρ ⊗ · · · ⊗ I ) ◦ T,

where bi is the generator of the braid group that swaps the i-th and (i + 1)-th strand,
while on the right hand side, the ερ,ρ term acts on the i-th and (i +1)-th tensor factors.
Note that the result is again in Hom(ι, ρ⊗n), hence this gives a unitary rotation on the
encoded qubits, and hence allows us to implement (a part of) a quantum computation.

This is not the end of the story, because it is not clear if every unitary on the
encoded qubits can be obtained in this way. It is enough for π(Bn) to generate a
dense subset of the unitaries. If this is the case for a certain anyon model, it is said
to be universal, because it means that each quantum algorithm can in principle be
implemented on it. Kitaev’s quantum double model is universal for a wide range of
non-abelian groups [41, 42], but in general this is a rather special feature of a model.
If a model is not universal, one can supplement the braiding operations with other,
non-topological operations to be able to implement each unitary operation. Even
if the model is universal, one still has to find out which combination of braidings
one has to do to obtain a certain unitary. Luckily, this can be found efficiently using
the Solovay-Kitaev theorem [49]. This is worked out explicitly for a simple anyon
model, the so called Fibonacci model, in [7].

Finally, after the appropriate braidings have performed, it is time to measure the
outcome. That is, we have to find out which state in Hom(ι, ρ⊗n) the system is in.
This is done by fusing some of the anyons again. Recall that the fusion rules are of
the form ρ ⊗ ρ = ∑

k N k
ρρρk . The integers N k

ρρ essentially says in how many ways
the fusion of two ρ-anyons can lead to an anyon ρk . It are precisely these different
ways to fuse n anyons to the vacuum that label the states. Hence, by fusion some
anyons and observing the outcome (which amounts to doing a charge measurement),
we can obtain statistics on which state the system was in. The charge measurement
is where it becomes important to have modularity of the category: this allows us to
distinguish the charges by pulling pairs of charges from the vacuum, move one of
the anyons around the region for which we want to determine the charge, and fuse
to the vacuum again and observe if there is anything left or not.

It should be noted that while topological quantum computing has advantages with
respect to the stability of the operations, there are also drawbacks. For example, in
practice it may not be so easy to physically move the anyons around, especially
over larger distances. This may be circumvented by measurement based quantum
computation. There, the braiding operations are mimicked by doing a series of mea-
surements [6]. One could also restrict to more local operations, although this will
mean that the anyon models are no longer universal [4].



9 Kitaev’s Quantum Double Model in LQP … 393

To conclude, we have seen that there is a rich class of so-called topologically
ordered states, for which methods of local quantum physics provide useful tools to
study such systems. Besides the possible applications to quantum computing that we
have mentioned, there are also very interesting condensed matter and mathematical
aspect related to such phases. Finally, also on the experimental side the field is very
active. It would be good to see if the tools of local quantum physics can be further
employed to advance progress in this multi-disciplinary field.
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Chapter 10
Algebraic Constructive Quantum
Field Theory: Integrable Models
and Deformation Techniques

Gandalf Lechner

Abstract Several related operator-algebraic constructions for quantum field theory
models on Minkowski spacetime are reviewed. The common theme of these con-
structions is that of a Borchers triple, capturing the structure of observables localized
in a Rindler wedge. After reviewing the abstract setting, we discuss in this framework
(i) the construction of free field theories from standard pairs, (ii) the inverse scatter-
ing construction of integrable QFT models on two-dimensional Minkowski space,
and (iii) the warped convolution deformation of QFT models in arbitrary dimension,
inspired from non-commutative Minkowski space.

10.1 Algebraic Constructions of Quantum Field Theories

Models in quantum field theory (QFT) are usually constructed with the help of
a classical analogue: One starts from a classical relativistic field theory, and then
uses some quantization procedure (typically involving renormalization) to arrive at
a corresponding QFT model. Such constructions have led to theoretical predictions
that in some cases match experimental data to a remarkable degree of accuracy.

This success must however be contrasted with the difficulties of rigorously defin-
ing any interacting QFT model. Although at the level of perturbation theory, many
QFT models are nowadays well understood (see Chap.2 for discussions of this sub-
ject), one typically has no control over the convergence of the perturbation series,
and no control over the error made by truncating it.

Constructive QFT, on the other hand, aims at non-perturbative constructions of
models of interacting quantum fields. This program was very successful in two and
three spacetime dimensions, where a large family of interacting QFTs with polyno-
mial self-interaction (“P(φ)2 models” and the “φ4

3 model”) was constructed, chiefly
by Glimm and Jaffe [76]. We refer to the recent review [133] for a detailed account
of these constructions and the relevant literature. In four dimensions, however, no
comparable results are known.
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The models obtained in constructive QFT were shown to fit [76] into both, the
operator-algebraic Haag-Kastler framework [84] as well as the field-theoreticWight-
man setting [130]. The tools used in their construction, in particular the Euclidean
formulation, are however more closely linked to the field-theoretic picture.

This review article focuses on a different approach to the rigorous construction
of interacting models, namely on those which are constructed by operator-algebraic
methods. In comparison to “constructiveQFT”, this “algebraic constructiveQFT”1 is
a muchmore recent topic. Due to page constraints, this review is far from exhaustive.
However, several of the topics not treated here are the subject of other chapters
in this book: For example, we will not discuss the recent progress in perturbative
algebraic QFT [65] (see Chap. 2), or conformal algebraic QFT [91] (see Chap.8), or
the recent algebraic construction of models on two-dimensional de Sitter space by
Barata et al. [13].

To motivate the discussion of the topics that are treated in this review, we first
mention that from a philosophical point of view, there is no good reason to construct
quantumfield theories on the basis of classical field theories (that is, by quantization).
Since quantum theories are supposed to provide the more fundamental description
of reality, classical theories should rather appear only as a limiting case. One would
like to take the quantum theories as the fundamental data, and consider their classical
limits only for comparison with classical notions.

Desirable as it is, a purely quantumdescription of relativistic physics poses several
major challenges. The first question is what the relevant mathematical structures are
that one tries to construct. As we will focus on the algebraic setting of QFT [84] here,
the data comprising amodel theory in our case are a family of operator algebrasA(O),
labeled by localization regions O in spacetime, subject to a number of conditions
(Chap. 1).

In model-independent investigations of QFT, the algebras of observables local-
ized in certain spacelike wedge-shaped regions of Minkowski space (wedges), play
a prominent role, a point emphasized in particular by D. Buchholz. We will recall
their definition and relevant properties in Sect. 10.2.1. By the results of Bisognano
and Wichmann [21, 22], and later Borchers [23], algebras localized in wedges pro-
vide a link between the geometric properties of Minkowski space, encoded in its
Poincaré symmetry, and certain algebraic properties of the net, encoded in itsmodular
data.2 Via the idea of modular localization (see Sect. 10.2.3), this link also connects
Wigner’s classification of elementary particles by positive energy representations of
the Poincaré group to the modular structure of wedge algebras.

Moreover, because wedges are unbounded regions, observables localized in them
can havemuchmildermomentum space properties than point-like localized quantum
fields, which typically fluctuate enormously in energy and momentum. As argued

1A term coined by S.J. Summers, see also his online article http://people.clas.ufl.edu/sjs/
constructive-quantum-field-theory/ for a review.
2For large parts of this review, we will rely on Tomita-Takesaki modular theory, see for example
[35] for an introduction and [24] for an overview of applications to QFT.

http://dx.doi.org/10.1007/978-3-319-21353-8_2
http://dx.doi.org/10.1007/978-3-319-21353-8_8
http://dx.doi.org/10.1007/978-3-319-21353-8_1
http://people.clas.ufl.edu/sjs/constructive-quantum-field-theory/
http://people.clas.ufl.edu/sjs/constructive-quantum-field-theory/
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by B. Schroer, one can in particular consider wedge-localized observables that are
free of vacuum polarization, i.e. just create single particle states from the vacuum,
also in interacting theories [126]. Such polarization-free generators do not exist for
smaller localization regions in general, but can be used to generate algebras localized
in wedges, and are directly related to the two-particle S-matrix [26, 115].

Finally, the family of wedges onMinkowski space forms a causally separating set
(see Sect. 10.2.1), so that it is possible to construct a complete net of local algebras
in terms of a single algebra and a suitable representation of the Poincaré group.
Making use of this observation, the construction of a QFT model is reduced to the
construction of a so-called Borchers triple [53], consisting of an algebra localized in
a wedge, together with a suitable representation of the Poincaré group and a vacuum
vector. This general construction scheme is reviewed in the Sects. 10.2.2–10.2.4.

While model-independent investigations did lead to the idea of constructing local
nets from wedge algebras, they did not (yet) shed much light onto the question how
this single algebra, on which the whole construction rests, should be realized. This
question is closely related to the question of how tomodel interactionwithoutmaking
use of classical concepts, and as of now, has found no general answer.

Thinking of quantum descriptions of interactions, the S-matrix is an object of
central importance. Unfortunately, in theories with particle production, the S-matrix
is also of such a complicated form that it is not a manageable quantity for describing
interactions. There is, however, an exception to this rule: For certain integrable
models on two-dimensionalMinkowski space, the S-matrix is of a simple factorizing
form, and in particular does not allow for production processes. In that setting, it is
therefore possible to use it as suitable description of the quantum dynamics, and
generate wedge algebras based on such an S-matrix.

This approachwas initiated by Schroer [125], who introduced certainwedge-local
fields in this context (see Sect. 10.3.2). This idea was then thoroughly investigated
and generalized, in particular with regard to the analysis of local observables, by
several authors. We will in Sect. 10.3 review the construction of integrable models
on two-dimensional Minkowski space by these methods, which led to the solution
of the corresponding inverse scattering problem [97].

To complement the concrete construction of integrable models on the basis of a
factorizing S-matrix, we will also review a different construction scheme. As in the
case of integrable models, the central object is that of a Borchers triple. However,
here the input does not consist of an S-matrix, but rather amounts to a deformation
procedure: Starting from the Borchers triple of some arbitrary QFT (in arbitrary
dimension), one modifies/deforms it to a new, inequivalent one. The method to be
used here is inspired [78] from non-commutative Minkowski space (cf. Chap. 7),
and now goes under the name of warped convolution [46, 53]. We review this defor-
mation procedure in Sect. 10.4, where it is also compared to the approach taken
in Sect. 10.3.

http://dx.doi.org/10.1007/978-3-319-21353-8_7
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10.2 Operator-Algebraic Constructions Based
on Wedge Algebras

Most operator-algebraic approaches to constructing quantum field theory models on
Minkowski space split the construction problem into two steps: First one constructs
a single von Neumann algebra M and a representation of the Poincaré group with
specificproperties, and then these data are used to generate a full local net. The algebra
M considered in the first step contains all observables localized in a special wedge-
shaped region of Minkowski space, wedge for short. Before going into the quantum
field theoretic constructions, we define these regions and discuss their geometric
properties.

10.2.1 Wedges

In this section we will be working in Minkowski spacetime R
d of general dimension

d ≥ 2, equipped with proper coordinates x = (x0, x1, . . . , xd−1), with x0 being the
time coordinate.3 The following regions will play a special role.

Definition 10.2.1 (Wedges) The right wedge is the set

WR := {x ∈ R
d : x1 > |x0|} , (10.1)

Any set W ⊂ R
d which is a proper Poincaré transform of WR , i.e. W = ΛWR + x

for some Λ ∈ L+, x ∈ R
d , is called a wedge. The set of all wedges is denoted W .

Wedges can equivalently be defined as regions that are bounded by two non-
parallel characteristic hyperplanes [135], thereby avoiding reference to the particular
wedge WR . However, for our purposes the above definition will be convenient.

One might wonder why wedge regions deserve particular attention, and as a first
answer to this question, we note that wedges have the special property that their
causal complements are of the same form. In fact, one directly checks that the causal
complement of WR is W ′

R = −WR , that is, a proper Poincaré image of WR . Thus
W ′

R ∈ W; it is customary to call W ′
R the left wedge and denote it by WL . By

covariance, one then finds that for any wedge W , also W ′ is a wedge. In the later

3Although we will mostly be working with Minkowski space here, it should be noted that similar
families of regions can also be defined in other situations: On the one-dimensional line, the half
lines (a,∞) and (−∞, a), a ∈ R, have the same properties as the wedges in Minkowski space
(see also the discussion in Sect. 10.3.5). Also the family of all intervals on a circle, of prominent
importance in chiral conformal field theory (Chap.8), shares many properties with the family of
wedges on Minkowski space, as it is the orbit of a reference region (e.g., the upper semi circle)
under a symmetry group (the Möbius group PSL(2, R)), see for example [108].

Furthermore, on certain curved spacetimes, such as de Sitter space [25, 36], anti de Sitter space
[45, 93], andmore general curved spacetimes [51, 58], families of regionswith properties analogous
to Minkowski space wedges exist.

http://dx.doi.org/10.1007/978-3-319-21353-8_8
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Fig. 10.1 The right and left
wedge in two-dimensional
Minkowski space. Both
regions extend to (right,
respectively left) spacelike
infinity

constructions, this symmetry between wedges and their causal complements will be
parallel to that of von Neumann (wedge) algebras and their commutants (Fig. 10.1).

As a consequence of W ′
R = −WR , we also have W ′′

R = (−WR)′ = −W ′
R = WR ,

so WR is causally complete.4 By covariance, this implies W ′′ = W for anywedge W .
In the quantum field theory setting, wewill be interested inmappings fromW into

the family of all von Neumann algebras on a fixed Hilbert space, complying with the
usual assumptions of isotony, locality, and covariance (cf. Chap. 1). As a preparation
for this, we here consider the inclusion, causal separation, and covariance properties
of wedges.

Beginning with inclusions, let (x,Λ) ∈ P+ denote a proper Poincaré transfor-
mation. It is clear that if ΛWR = WR and x ∈ WR , then ΛWR + x ⊂ WR (observe
that wedges are in particular convex cones). In fact, also the converse is true, namely
ΛWR + x ⊂ WR implies ΛWR = WR and x ∈ WR [135].

We thus see that there are only relatively few pairs of wedges W1, W2 that form
inclusions. Namely, W1 ⊂ W2 if and only if W1 = W2 + x with x ∈ W2. Since
causal complements of wedges are alsowedges, the same applies to pairs of spacelike
separated wedges: W1 ⊂ W ′

2 if and only if W1 = W ′
2 + x ′ with x ′ ∈ W ′

2. This simple
structure of the family of causal configurations of wedges is used in constructions
based on wedge algebras in a crucial manner.

Finally, we point out that the setW is causally separating in the following sense:
Given any two bounded, convex, causally complete sets O1, O2 ⊂ R

d (such as
double cones), that are spacelike separated, O1 ⊂ O ′

2, there exists W ∈ W such that
O1 ⊂ W ⊂ O ′

2 [135, Proposition 3.7] (see Fig. 10.2).
We collect these properties in a proposition.

Proposition 10.2.2 Any wedge W ∈ W is an open, convex, unbounded, causally
complete set. The set W of all wedges in Minkowski space R

d is causally separating,
and invariant under the action of the Poincaré group and causal complementation.

4This implies that WR is globally hyperbolic, and can be regarded as a spacetime in its own right.

http://dx.doi.org/10.1007/978-3-319-21353-8_1
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Fig. 10.2 Left figure An
inclusion of two right
wedges WR + a ⊂ WR .
Right figure An illustration
of the causal separation
property of W: The two
spacelike regions O1, O2 are
separated by the wedge W ,
i.e. O1 ⊂ W ⊂ O ′

2

Furthermore, given W1, W2 ∈ W such that W1 ⊂ W2, then W1 = W2 + x for some
x ∈ W2.

By Definition 10.2.1, arbitrary Poincaré transformations leave W invariant as a
set. For any given wedge W ∈ W , there also exist specific Lorentz transformations
which preserve W or map it to its causal complement, respectively. Consider the
proper Lorentz transformations, t ∈ R,

jWR (x) := (−x0, −x1, x2, . . . , xd−1) , (10.2)

ΛWR (t)x := (cosh(2π t)x0 + sinh(2π t)x1, sinh(2π t)x0 + cosh(2π t)x1, x2, . . . , xd−1) .

The map jWR in the first line is the reflection about the (d − 2)-dimensional edge
E(WR) := {x : x0 = x1 = 0} of WR , and maps WR onto −WR = W ′

R . The second
line defines the one parameter group of Lorentz boosts ΛWR (t) in the x1-direction.
By computing the eigenvectors and eigenvalues of ΛWR (t), t ∈ R, one finds that
these belong to the group of all Lorentz transformations that leave WR invariant as
a set.

More generally, to any wedge W = ΛWR + x we can assign its edge E(W ) :=
ΛE(WR) + x , the reflection jW := (x,Λ) jWR (x,Λ)−1 about E(W ), satisfying
jW (W ) = W ′, and a one-parameter group of boosts, ΛW (t) := (x,Λ)ΛWR (t)
(x,Λ)−1, which preserve W .

Wedges in d = 2 dimensions. While so far the spacetime dimension d ≥ 2 was
arbitrary, we now specialize to the two-dimensional situation, where wedges have a
number of additional properties.

To begin with, the causal complement of any one point set {x} in R
2 consists

precisely of the disjoint union of the two wedges WR + x and WL + x (cf. Fig. 10.1).
These are in fact all wedges in this setting: In d = 2 dimensions, the proper Lorentz
group is generated by the one parameter group {ΛWR (t)}t∈R and the spacetime
reflection jWR (x) = −x (which maps WR onto WL , as just observed). Thus in this
case,

W = {WR + x, WL + x : x ∈ R
2} (d = 2) . (10.3)

In two dimensions, wedges can also be most easily visualized.
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Fig. 10.3 Left figure The
double cone Ox,y as the
wedge intersection
(WR + x) ∩ (WL + y).
Right figure The double cone
Ox,y and the associated
inclusion of right wedges
WR + y ⊂ WR + x

Double cones, typically the most important localization regions in quantum field
theory, are defined as intersections of forward and backward light cones (Chap.1).
However, in two dimensions, this is the same as taking intersections of left and right
wedges,

Ox,y := (WR + x) ∩ (WL + y) = (WR + x) ∩ (WR + y)′ ; (10.4)

and this set is nonempty if and only if (y − x) ∈ WR . Any double cone arises in this
way, and from the second equality in (10.4), we see that the double cone Ox,y is the
relative causal complement of the inclusion WR + y ⊂ WR + x (see Fig. 10.3).

In d > 2 dimensions, nonempty intersections of two wedges are unbounded
regions, here one needs an intersection of several wedges to arrive at a bounded
region. In particular, double cones are not given as relative causal complements of
inclusions of wedges in d > 2. Quite generally, inclusions are easier to analyze than
intersections. This is true on the geometric level of wedges,5 but even more on the
level of von Neumann algebras, and provides one of the many reasons why certain
construction procedures are easier in d = 2.

10.2.2 Wedge Algebras and Borchers Triples

Having clarified the geometrical preliminaries, we now turn to studying algebras of
observables localized in wedges. This discussion will take place in the setting of a
vacuum representation of a quantum field theory on Minkowski space R

d , d ≥ 2
(Chap.1). We therefore consider a Hilbert space H, carrying a strongly continuous
(anti-)unitary positive energy representation U of the proper Poincaré group with
a U -invariant unit vector Ω , implementing the vacuum state. The observables of a
quantum field theory are represented as operators on H: Associated with any local-
ization region O ⊂ R

d , we have the C∗-algebra A(O) ⊂ B(H) of all observables
localized in O , and the usual assumptions of isotony, locality and covariance under
U are assumed to hold for the net O 	→ A(O). As we are in a vacuum representation,

5Note, for example, that for any n ∈ N, there exists a family of n wedges W1, . . . , Wn ⊂ R
4 such

that Wi ∩ W j = ∅ for i �= j [135].

http://dx.doi.org/10.1007/978-3-319-21353-8_1
http://dx.doi.org/10.1007/978-3-319-21353-8_1
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we also assume that Ω is cyclic and separating for A(O)′′, for each double cone O
(Reeh-Schlieder property, Theorem 1.1.1).

In this setting, we introduce the vonNeumann algebraM associatedwith the right
wedge WR as the smallest von Neumann algebra containing all A(O), O ⊂ WR ,

M :=
∨

O⊂WR

A(O)′′ . (10.5)

This algebra has a number of properties which reflect the geometric properties of
WR , and which follow directly from the definition of M and the properties of the
net O 	→ A(O): For any Poincaré transformation g with gWR ⊂ WR , we have
U (g)MU (g)−1 ⊂ M, and for any Poincaré transformation g̃ with g̃WR ⊂ W ′

R ,
we have U (g̃)MU (g̃)−1 ⊂ M′. Furthermore, the vacuum vector Ω is cyclic for
M (because WR contains a double cone) and separating for M (because W ′

R also
contains a double cone).

As these properties will be essential in the following, we isolate them in a def-
inition.6 The term “Borchers triple”, in honor of H.-J. Borchers who studied such
systems (see, e.g., [23]), was suggested in [53].

Definition 10.2.3 A d-dimensional Borchers triple (M, U,Ω) relative to W ∈ W
consists of

(a) a strongly continuous (anti-)unitary positive energy representation U of the
proper Poincaré group P+ of R

d on some Hilbert space H,
(b) a unit vector Ω ∈ H that is invariant under U , and
(c) a von Neumann algebra M ⊂ B(H) which has Ω as a cyclic and separating

vector and which satisfies

U (g)MU (g)−1 ⊂ M for all g ∈ P+ with gW ⊂ W , (10.6)

U (g)MU (g)−1 ⊂ M′ for all g ∈ P+ with gW ⊂ W ′ . (10.7)

A von Neumann algebraM in a Borchers triple relative to W describes quantum
observables that are localized (in the specified sense) in the wedge W , and will also
be referred to as wedge algebra when U and Ω are fixed and clear from the context.
For the sake of concise formulations, we agree to drop the specification “relative to
W” for Borchers triples relative to our standard reference wedge W = WR , or if W
is clear from the context.

In comparison to a full quantum field theory, described by an infinite collection
of algebras in specific relative positions, the data (M, U,Ω) of a Borchers triple are
much simpler. However—and this observation is central for all that follows—one can
reconstruct a full net of local algebras from a Borchers triple, essentially by Poincaré
symmetry (cf. in particular [21–23], [14, Sect. 7.3.6]), as shall be explained below.

6Note that we deviate here slightly from the definition in [53, Definition 4.1], where the term “causal
Borchers triple” has been used. Also note that in [82], there is a related but different definition of
the term “Borchers triple”. We will always stick to the definition given here.

http://dx.doi.org/10.1007/978-3-319-21353-8_1
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Setting ourselves the task to define a local net O 	→ A(O) of von Neumann
algebras corresponding to a given Borchers triple (M, U,Ω), we have to give defi-
nitions of the algebras A(O), O ⊂ R

d . Assuming for the sake of concreteness that
the Borchers triple is relative to the right wedge WR , one first sets

A(ΛWR + x) := U (x,Λ)MU (x,Λ)−1 , (x,Λ) ∈ P+ . (10.8)

This defines for any wedge W ∈ W a von Neumann algebra A(W ) ⊂ B(H) (Note
that (10.8) is well-defined because of (10.6)). Making use of the properties of the
Borchers triple, one checks that (10.8) yields a map W  W 	→ A(W ) ⊂ B(H)

fromwedges onR
d to vonNeumann algebras inB(H) that (a) is inclusion preserving

(isotony), (b) maps spacelike separated wedges to commuting algebras (locality),
and (c) transforms covariantly under the adjoint action of U by its very definition.
Moreover, Ω is cyclic and separating for any A(W ), W ∈ W .

To proceed from the algebras A(W ) to algebras associated with smaller regions,
we first consider double cones. Any double cone O is an intersection of wedges,
O = ⋂

i Wi , where i runs over some index set and Wi ∈ W . We associate with it
the von Neumann algebra

A(
⋂

i

Wi ) :=
⋂

i

A(Wi ) . (10.9)

Making use of the properties listed in Proposition 10.2.2, one can show that this yields
a map from double cones to von Neumann algebras which inherits the isotony, local-
ity, and covariance properties from the wedge netW  W 	→ A(W ) ⊂ B(H) [21].

Finally, given an arbitrary bounded region O , we defineA(O) as the smallest von
Neumann algebra containing all A(D), where D ⊂ O is a double cone. Also this
step preserves isotony, locality, and covariance. We therefore note:

Proposition 10.2.4 Any d-dimensional Borchers triple (M, U,Ω) defines a local
net O 	→ A(O) of von Neumann algebras on R

d such that

(a) O 	→ A(O) is isotonous and local, and transforms covariantly under U.
(b) A(WR) = M is the algebra associated with the right wedge WR.
(c) For any W̃ ∈ W , the vacuum vector Ω is cyclic and separating for A(W̃ ).

In viewof this observation, the constructionof local nets of vonNeumannalgebras,
i.e.models of quantumfield theories, is closely related to the construction ofBorchers
triples (M, U,Ω). We will see below (p. 407) that in d = 2 dimensions, a slight
variation of this construction is available.

The representation U (and the vector Ω) describe the Poincaré symmetry of
the model theory constructed from (M, U,Ω). By decomposition into irreducible
components, U yields a list of all species of stable particles in this theory, and can
thus be thought of as data implementing kinematic properties. From the point of
view of constructing examples, the representation U and vacuum vector Ω pose no
problems—In fact, it follows from Haag-Ruelle scattering theory (cf. Sect. 1.3) that

http://dx.doi.org/10.1007/978-3-319-21353-8_1
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in any theory, onemay use a standard Fock space construction for realizing these data
in terms of a single particle representation U1 of the Poincaré group, cf. Sect. 10.2.3.

The dynamics and interaction of the model corresponding to (M, U,Ω) is
encoded in an indirect manner in the choice of von Neumann algebra M, com-
pleting U,Ω to a Borchers triple. In the present general context, where in particular
no link to a classical Lagrangian or equation of motion is made, there is currently
no general principle known to select M in such a way that the model constructed
along the lines described above exhibits features of a particular type of interaction.
As we will see later in Sect. 10.3, it is however well possible to realize M in terms
of a two-particle S-matrix in the setting of integrable models on two-dimensional
Minkowski space, or to modify a givenM to a new one by a deformation procedure
(Sect. 10.4).

Independent of concrete construction ideas for M, it should be noted that the
conditions in Definition 10.2.3 impose strong restrictions on M in general. This is
illustrated by a theorem of Longo [107, Theorem 3] (see also Driessler [64]), which
in the context of Borchers triples reads as follows.

Theorem 10.2.5 Let (M, U,Ω) be a Borchers triple. If M �= C, then M is a
factor of type III1.

Since the hyperfinite type III1 factor is known to be unique [85], this implies that
the internal algebraic structure of M is almost uniquely fixed by Definition 10.2.3.

A result of a similar nature is a famous theorem of Borchers, stating that there
exist also strong restrictions on the modular data of a wedge algebra [23]. SinceΩ is
cyclic and separating for the wedge algebraM of a Borchers triple (M, U,Ω), we
can consider the corresponding modular data7 JW ,ΔW (see Sect. 1.5). In the present
setting, Borchers’ result can be formulated in the following way. (See [23] for the
original work, [72] for a simplified proof, and [53] for a discussion in the context of
Borchers triples.)

Theorem 10.2.6 Let (M, U,Ω) be a d-dimensional Borchers triple. Then the mod-
ular conjugation JW and modular unitaries Δi t

W act on the translations U (x) :=
U (x, 1) according to, t ∈ R, x ∈ R

d ,

Δi t
W U (x)Δ−i t

W = U (ΛW (t)x) , (10.10)

JW U (x)JW = U ( jW x) , (10.11)

where jW , ΛW (t) denote the Lorentz transformations associated with W (10.2).

According to this theorem, the modular data can not be distinguished from the
represented reflections U ( jW ) and boosts U (ΛW (t)) via their action on the trans-
lations. This is in line with theorems of Bisognano and Wichmann [21, 22], who

7Here and in many places in the following text, we will make use of the Tomita-Takesaki mod-
ular theory of von Neumann algebras with cyclic separating vector, see for example [35] for an
introduction.

http://dx.doi.org/10.1007/978-3-319-21353-8_1
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showed that for wedge algebras generated by Wightman fields [130], one has8

Δi t
W = U (ΛW (t)) , JW = U ( jW ) (Bisognano-Wichmann property).

(10.12)

In comparison to these strong results on the inner structure of wedge algebras, and
on their modular data, very little is known about the double cone algebras A(O),
which are given rather indirectly as intersections of wedge algebras (10.9). In the
general situation described here, it is in particular not known whether the vacuum
vector Ω is cyclic for the double cone algebras, and not even if these algebras are
non-trivial in the sense that A(O) �= C · 1.

Physically interestingmodels complyingwith the principle of causality havemany
local observables. One therefore has to add extra conditions on a Borchers triple,
implying a sufficiently rich local structure, and in particular non-triviality of the
intersections (10.9). This question will be discussed in Sect. 10.2.4.

Constructing local nets from Borchers triples in d = 2. Borchers’ theorem also
applies in situations where there is no Lorentz symmetry present a priori. Namely,
if (M, T,Ω) is a Borchers triple with only translational symmetry—that is, T is a
positive energy representation of the translation group R

d instead of the Poincaré
group,Eq. (10.6) inDefinition 10.2.3(c) is required to hold only for translations x with
W + x ⊂ W , and condition (10.7) drops out because there is no translation mapping
a wedge W into its causal complement W ′—the conclusion of Theorem 10.2.6 still
holds. In d = 2 dimensions, this circumstance can then be used to extend T to a
representation U of the proper Poincaré group by taking (10.12) as the definition of
U (ΛW (t)), U ( jW ). Since Δi tMΔ−i t = M, t ∈ R, and JMJ = M′ by Tomita’s
Theorem, it then follows that (M, U,Ω) is a Borchers triple in the usual sense.

This observation also brings us to the previouslymentioned variation of construct-
ing a local net from a Borchers triple in d = 2. Here it can be advantageous to start
fromaBorchers triple (M, T,Ω)with only translational symmetry, as just described,
and define the net O 	→ A(O) via M and the Poincaré representation U generated
by T and the modular data Δi t , J of (M,Ω). In that case, one observes that the
definition of the wedge algebras (10.8) is Haag-dual, i.e. satisfies A(W ′) = A(W )′
for all W ∈ W , and the definition of the double cone algebras (10.9) amounts to

A(Ox,y) = M(x) ∩ M′(y) , (10.13)

where M(x) = U (x)MU (x)−1, M′(y) = U (y)M′U (y)−1, (y − x) ∈ WR . This
intersection is the relative commutant of the inclusion M(y) ⊂ M(x), and closely
resembles the geometric situation, where the double cone Ox,y coincides with the
relative causal complement of the inclusion WR + y ⊂ WR + x (10.4). In our

8This statement is stronger than the one of Theorem 10.2.6, which does not yield equality of the
modular data JW ,Δi t

W with the Lorentz transformationsU ( jW ),U (ΛW (t)). However, in the context
of a local net satisfying further assumptions, including asymptotic completeness, Mund proved that
the Bisognano-Wichmann property does follow from Borchers’ theorem [114].
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subsequent analysis, this will be of advantage in comparison to the general construc-
tion, where A(Ox,y) is only a subalgebra of the relative causal complement.

10.2.3 Standard Pairs and Free Field Theories

The simplest quantum field theories are those describing particles without any inter-
action (“free” theories). Such models are very thoroughly studied, and can be pre-
sented in many different ways. Whereas the usual approach is to present them as
quantized versions of free field theories (cf. Chap. 3), we would like to stress here
that free field theories can be constructed without any reference to their classical
counterparts, and perfectly fit into the setting of Borchers triples. The construction
of such “free” Borchers triples will not only give us first examples of Borchers triples
and the construction procedure based on them, but it will also serve as the starting
point for the construction of interacting theories, considered later.

As one might expect in a free theory, the only required input is a description of
the single particle spectrum. Such single particle data can, together with a suitable
notion of localization, be described conveniently in terms of a so-called standard pair.
Recall for the following definition that a real-linear subspaceK1 ⊂ H1 of a complex
Hilbert space H1 is called standard if it is cyclic in the sense that K1 + i K1 ⊂ H1
is dense, and separating in the sense that K1 ∩ i K1 = {0} [108].
Definition 10.2.7 (Standard pairs) A d-dimensional standard pair (K1, U1) (with
Poincaré symmetry) relative to a wedge W ∈ W consists of a closed real standard
subspace K1 ⊂ H1 of some complex Hilbert space H1, which carries a unitary
strongly continuous positive energy representation U1 of P+ such that

U1(g)K1 ⊂ K1 for all g ∈ P+ with gW ⊂ W , (10.14)

U1(g)K1 ⊂ K′
1 for all g ∈ P+ with gW ⊂ W ′ , (10.15)

where K′
1 = {ψ ∈ H1 : Im〈ψ, ξ 〉 = 0 for all ξ ∈ K1} is the symplectic comple-

ment of K1 inH1 w.r.t. the symplectic form Im〈 · , · 〉.
We added the term “with Poincaré symmetry” here because standard pairs are often
consideredwith translational symmetry only [19, 100, 109]. In this text, wewill how-
ever always consider standard pairs with Poincaré symmetry, and therefore suppress
this term from now on. Just as for Borchers triples, we will also drop the specification
“relative to W” in case the reference region is the right wedge WR , or clear from the
context.

The relation between standard pairs and Borchers triples is two-fold. We first
consider the step from a Borchers triple to a standard pair.

Lemma 10.2.8 Let (M, U,Ω) be a Borchers triple on a Hilbert space H, and

K := {AΩ : A = A∗ ∈ M}‖·‖ . (10.16)

http://dx.doi.org/10.1007/978-3-319-21353-8_3
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Let furthermore Q ∈ B(H) be an orthogonal projection which commutes with the
representation U. Then (QK, U |QH) is a standard pair on QH.

The proof of this lemma uses the modular theory of standard subspaces, where to
any real standard subspaceK1 one associates a Tomita operator SK1 : K1 + i K1 	→
K1 + i K1, SK1(k + i	) := k − i	, which in turn defines K1 by K1 = ker(1− SK1).
These objects satisfy properties closely analogous to the von Neumann algebra case,
see [108] for more details and an account of the literature. In the situation of the
above lemma, with Q = 1, the modular data J,Δ of (M,Ω) coincide with those
of the standard subspace, J = JK1 , Δ = ΔK1 . Since JK1 is known to map K1 onto
its symplectic complement K′

1 by the subspace version of Tomita’s Theorem, the
conclusion follows in this case. The generalization to Q �= 1 is straightforward; one
uses that Q commutes with the modular data by virtue of Theorem 10.2.6.

Lemma 10.2.8 can be applied to extract single particle information from Borchers
triples. To illustrate this, consider the case that in the representationU of the Borchers
triple, there exists an isolated eigenvalue m > 0 of the mass operator, and take the
projection Q := E{m} as the corresponding spectral projection. Then H1 := QH
describes single particle vectors of mass m, and K1 the “single particle vectors
localized in W”. In this projection process, a lot of information is lost,9 and only
single particle data remain. Hence many QFTs give rise to the same standard pairs
by projecting their Borchers triples to the single particle level.

However, for each standard pair one can without further input construct a specific
Borchers triple, representing an interaction-free theory. This brings us to the link in
the other direction, namely from a standard pair to a Borchers triple. This step can
be carried out by second quantization. In this context, we denote by Γ (H1) the Bose
Fock space over a Hilbert space H1, and by V (ξ), ξ ∈ H1, the Weyl operators on

Γ (H1), characterized by the familiar Weyl relation V (ξ)V (ψ) = e− i
2 Im〈ξ,ψ〉 V (ξ +

ψ) and V (ξ)Ω = e− 1
4 ‖ξ‖2 eξ

⊗, with eξ
⊗ = ⊕∞

n=0 ξ⊗n/
√

n!, and Ω the Fock vacuum
(cf. Sect. 4.2).

Proposition 10.2.9 Let (K1, U1) be a standard pair on a Hilbert space H1. On the
Fock space Γ (H1), consider the second quantization Γ (U1) of U1, the Fock vacuum
Ω , and the von Neumann algebra

M := {V (ξ) : ξ ∈ K1}′′ . (10.17)

Then (M, U,Ω) is a Borchers triple, and projecting it with Q = P1 (the projection
onto H1) returns the standard pair (K1, U1).

This relation between real standard spaces and the algebras of a free field are
known from the work of Araki [6, 7]. Their modular data were shown to be of
second quantized form by Eckmann and Osterwalder [68], see also [105].

Whereas the version presented here is suitable for Bosonic systems with com-
muting fields at spacelike separation, there is also a version adapted to the Fermionic

9This is even the case for the projection Q = 1.

http://dx.doi.org/10.1007/978-3-319-21353-8_4
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case, where fields anticommute [16, 73]. This formulation makes use of so-called
“twisted duality” [61], and requires only minor modifications. We will not discuss it
any further here.

In view of these relations between standard pairs and Borchers triples, all that
is required for the construction of a free (second quantization) Borchers triple is a
corresponding (single particle) standard pair. This requires in particular a (single
particle) representation U1 of the proper Poincaré group and a standard subspace
K1, which, as mentioned above, is determined by its modular data according to
K1 = ker(1 − JK1Δ

1/2
K1

).
For a concrete construction of this space, one can therefore anticipate the Biso-

gnano-Wichmann relation (10.12) between geometric data and modular data, and
use it as a definition for the modular data, and hence the standard subspace. This idea
is known as modular localization [36, 70, 116], see also [15].

Inmore detail, Brunetti et al. consider a (anti-)unitary strongly continuous positive
energy representationU1 of the proper Poincaré group on a Hilbert spaceH1, and the
one parameter groupsΛW (t) and reflections jW , W ∈ W , in this representation [36].
By Stone’s theorem, there exists a selfadjoint generator RW such that U1(ΛW (t)) =
eit RW , and one defines for the right wedge W = WR

Δ1 := e−π RWR , J1 := U ( jWR ) , S1 := J1Δ
1/2
1 . (10.18)

By comparison with (10.12), we see that this assignment mimics the Bisognano-
Wichmann relation, and one defines further

K1 := {ψ ∈ domΔ
1/2
1 : S1ψ = ψ} . (10.19)

Theorem 10.2.10 ([36]) (K1, U1) is a standard pair, with Tomita operator
SK1 = S1.

The main point of this theorem is to demonstrate the inclusion property (10.14),
which is linked to the positive energy condition of U1. For the proof of this, and
further results, see [36].

In view of this theorem, we have, for any considered representation U1 of
P+, an associated standard pair and thus also an associated second quantization
Borchers triple. These triples can now be used in the general construction outlined in
Sect. 10.2.2 to generate local nets of von Neumann algebras, corresponding to free
QFT models.

At the end of Sect. 10.2.2, we mentioned the problem that the algebras corre-
sponding to smaller regions, defined as intersections of wedge algebras (10.4), are
not guaranteed to be non-trivial in the setting of a general Borchers triple. In the
present context of free field constructions, this problem can however be resolved.
To begin with, Brunetti et al. have shown that for any of the representations U1
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considered here, the von Neumann algebras corresponding to spacelike cones have
the Fock vacuum as a cyclic vector10 [36].

Moreover, in the case of “usual” representations U1, i.e. direct sums of mass
m ≥ 0 finite spin s representations, also cyclicity of the Fock vacuum for algebras
associated with double cones is known. In fact, the net resulting from the Borchers
triple by application of the procedure in Sect. 10.2.2 (or its twisted version in the
Fermionic case) is then a known free field net, which in particular has Ω as a cyclic
vector for each double cone algebra.

As an aside, we mention that there also exist “continuous spin” representations
of the Poincaré group, for which Wightman fields do not exist [138]. The algebraic
construction presented here applies also to such representations, and in fact there
exist models of free quantum fields which are localizable only in spacelike cones
[116]. The double cone algebras in such models are currently under investigation,
and it seems that they might be trivial in such models [92].

10.2.4 Relative Commutants of Wedge Algebras

After this excursion to free field models and modular localization, we return to the
setting of a general Borchers triple (M, U,Ω), and the question how to ensure large
double cone algebras in the construction in Sect. 10.2.2. As mentioned earlier, there
are no efficient tools available for analyzing intersections of general families of von
Neumann algebras, and therefore we focus on the more particular situation of a
relative commutant M′

1 ∩ M2 of an inclusion M1 ⊂ M2. Since double cones are
relative causal complements of wedges in two dimensions (10.4), such an analysis
directly applies to double cone algebras in d = 2. In higher dimensions d > 2,
relative commutants of wedge algebras correspond to cylinder like regions which
are unbounded in (d − 2) perpendicular directions.

The best studied type of inclusions of von Neumann algebras are so-called split
inclusions [59], and, as we shall see, they will also play a prominent role in our
present context. We first recall the definition of split inclusions and some of their
most important properties before we discuss applications of these concepts to relative
commutants of wedge algebras.

Definition 10.2.11 Let M1 ⊂ M2 ⊂ B(H) be an inclusion of von Neumann
algebras on some Hilbert space H.

(a) M1 ⊂ M2 is called split if there exists a type I factor11 N such that

M1 ⊂ N ⊂ M2 . (10.20)

10In case U1 does not contain the trivial representation, as is adequate for a single particle repre-
sentation, the algebras corresponding to spacelike cones are also known to be factors of type III1
[36, 71].
11That is, a von Neumann algebra isomorphic to B(H̃) for some Hilbert space H̃.
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(b) M1 ⊂ M2 is called standard if there exists a vector which is cyclic and sepa-
rating forM1,M2, and the relative commutant M′

1 ∩ M2.

In the standard case, split inclusions can be characterized as follows [56, 59].

Lemma 10.2.12 Let M1 ⊂ M2 be a standard inclusion of von Neumann algebras
on the Hilbert space H. Then M1 ⊂ M2 is split if and only if there exists a unitary
V : H → H ⊗ H such that

V A1A′
2V ∗ = A1 ⊗ A′

2, A1 ∈ M1, A′
2 ∈ M′

2 . (10.21)

Remark: Note that if the assumptions of this lemma are satisfied, the inclusion under
consideration has a large relative commutant, namely M1 ∩ M′

2
∼= M1⊗M′

2.
In view of Lemma 10.2.12, the split property of an inclusion M1 ⊂ M2 can be

understood as a formof statistical independencebetween the subsystemsdescribedby
the commuting algebrasM1 andM′

2 of the larger system identified withM1 ∨M′
2

(see the review [132] for a detailed discussion of these matters, and references to the
original literature). Namely, it implies that for any pair of normal states ϕ1 on M1
and ϕ2 on M′

2, there exists a normal state ϕ on M1 ∨ M′
2 such that ϕ|M1 = ϕ1,

ϕ|M′
2

= ϕ2, expressing the fact that states in the subsystems M1 and M′
2 can be

prepared independently of each other. Moreover, ϕ can be chosen in such a way that
there are no correlations between “measurements” inM1 andM′

2, i.e. as a product
state

ϕ(A1A′
2) = ϕ1(A1) · ϕ2(A′

2) , A1 ∈ M1 , A′
2 ∈ M′

2 .

TakingM1 = A(O1) andM′
2 = A(O2) as the observable algebras of two spacelike

separated regions O1 ⊂ O ′
2 in a quantum field theory given by a netA, some form of

statistical independence betweenM1 andM′
2 can be expected on physical grounds.

For themassive free field, the existence of normal product states for such pairs of local
algebras was shown by Buchholz [37]. A corresponding analysis for algebras of free
Fermi fields, and for theYukawa2+P(ϕ)2 model has been carried by Summers [131].

Examples of theories violating the split property can be obtained by considering
models with a non-compact global symmetry group, or certain models with infinitely
many different species of particles [59]. Such theories have an immense number of
local degrees of freedom, and according to the analysis of Buchholz and Wichmann
[48], it is precisely this feature which is responsible for the breakdown of the split
property.

One can therefore expect that the split property (for proper inclusions of double
cones) holds in theories which do not exhibit pathologically large numbers of local
degrees of freedom. Such theories, in turn, can be expected to have a reasonable
thermodynamical behavior. In the literature, there exist several “nuclearity” con-
ditions [44, 48, 50, 52], reminiscent of the trace class condition Tr(e−βH ) < ∞
for Gibbs states in quantum mechanics, which are related to the split property and
thermodynamical properties.
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For applications to relative commutants of wedge algebras, the relevant condition
is the so-called “modular nuclearity condition” [49, 50]. Given a Borchers triple
(M, U,Ω), one considers the inclusions

M(x) := U (x, 1)MU (x, 1)−1 ⊂ M , x ∈ WR, (10.22)

and defines the maps

Ξ(x) : M → H , Ξ(x)A := Δ1/4U (x)AΩ . (10.23)

Here Δ is the modular operator of (M,Ω). Using elementary properties of modular
theory, it is easy to see that Ξ(x) is a bounded operator between the Banach spaces
M (equipped with the operator norm of B(H)) and H.

If Ξ(x) is even compact, and more particularly, nuclear (i.e. Ξ(x) can be written
as a norm convergent sum of rank one operators), then one has the following result.

Theorem 10.2.13 ([50]) Let (M, U,Ω) be a Borchers triple and assume that for
some x ∈ WR, the map Ξ(x) (10.23) is nuclear. Then the inclusion M(x) ⊂ M is
split. Conversely, if M(x) ⊂ M is split, then Ξ(x) is compact.

This theorem provides a sufficient condition for an inclusion to be split. However,
it must be noticed that the split property is a very strong condition. It is a reasonable
assumption for inclusions of local algebras in theories which satisfy some rough
bound on the number of their local degrees of freedom, but some care is needed when
dealingwith unbounded regions likewedges, even in such theories. In fact, there is an
argument by Araki [37, p. 292] to the effect that inclusions of wedge algebras cannot
be split if the spacetime dimension is larger than two. Araki’s argument exploits
the translation invariance of wedges along their edges and does not apply in two
dimensions, where these edges are zero-dimensional points.

In two dimensions, the split property for wedges is known to hold in the theory
of a free, scalar, massive field [43, 113]. It is, however, not fulfilled for arbitrary
mass spectra. For example, the split property for wedges does not hold in massless
theories, and is also violated in the model of a generalized free field with continuous
mass spectrum [59]. But for models describing finitely many species of massive
particles, there is no a priori reason for the split property for wedges not to hold. We
can therefore take it as a tentative assumption (to be verified in concrete models),
and now discuss its consequences.

Proposition 10.2.14 [43] Let (M, U,Ω) be a two-dimensional Borchers triple,
and x ∈ WR. If the inclusion M(x) ⊂ M is split, then M, M(x) and the relative
commutant M(x)′ ∩M are all isomorphic to the unique hyperfinite type III1 factor.
In particular, the relative commutant has cyclic vectors, andM(x) ⊂ M is standard.

In the light of this result, we can view the split property as a sufficient condition
for non-trivial relative commutants of inclusions of wedge algebras. Whereas non-
triviality of local algebras is a minimal requirement in a local theory, also the Reeh-
Schlieder property (Theorem 1.1.1), i.e. cyclicity of the vacuum vector for algebras

http://dx.doi.org/10.1007/978-3-319-21353-8_1
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of observables localized in arbitrarily small regions, is of importance in quantum
field theory.

To arrive at such a statement from the split property, we first recall that on the basis
of Lemma 10.2.12 one can easily show that a standard split inclusion is normal, i.e.
(M′

1 ∩ M2)
′ ∩ M2 = M1 [59]. By similar arguments in the setting of a Borchers

triple (M, U,Ω) for whichM(x) ⊂ M is split for some x ∈ W , it follows thatM is
locally generated, i.e. it coincides with the smallest von Neumann algebra containing
all relative commutants M ∩ M′(x), x ∈ W [97]. In combination with a result of
Müger [113], stating that algebras corresponding to double cones of different sizes
are closely related, this provides sufficient information for application of the usual
Reeh-Schlieder arguments, making use of positivity of the energy. One arrives at the
following statement [97].

Proposition 10.2.15 Let (M, U,Ω) be a Borchers triple, and x ∈ WR. If the inclu-
sion M(x) ⊂ M is split, then Ω is cyclic for the relative commutant M ∩ M′(x).

Thus the modular nuclearity and split conditions yield nets satisfying all the basic
assumptions of algebraic quantum field theory (see Chap.1). Below we summarize
these and additional results in a theorem, which strengthens Proposition 10.2.4 under
the assumption of the split property for wedges. In its formulation, we make use of
the diameter of a two-dimensional double cone Ox,y = (WR + x) ∩ (WL + y),
defined as d(Ox,y) := √−(x − y)2 ≥ 0.

Theorem 10.2.16 Let (M, U,Ω) be a two-dimensional Borchers triple, such that
the inclusion M(x) ⊂ M is split for some x ∈ WR (this is in particular the case
if the map Ξ(x) is nuclear). Let s := √−x2 > 0 be the “splitting distance”.
Then the net A constructed from (M, U,Ω) has (in addition to what is stated in
Proposition 10.2.4) the following properties: For any double cone O with d(O) > s,

(a) A(O) is isomorphic to the hyperfinite type III1 factor.
(b) The vacuum vector Ω is cyclic and separating for A(O).
(c) Haag duality holds, i.e. A(O)′ = A(O ′).
(d) Weak additivity holds, i.e.

∨
x∈R2

A(O + x) = B(H) . (10.24)

(e). The time slice property (in its von Neumann version) holds above the splitting
distance: If t0, t1 ∈ R with t1 − t0 > s, then the algebra A(S(t0, t1)) associated
to the time slice S = {x ∈ R

2 : t0 < x0 < t1} is A(S(t0, t1)) = B(H).

In this Theorem, (a), (b) follow fromPropositions 10.2.14 and 10.2.15. For (c) and
(d), see [97], and for (e), [113]. Note that the above theorem gives slightly generalized
statements over the ones found in, say, [97, 113]: In these works, the split property
was assumed to hold for arbitrarily small splitting distances s > 0. However, the
corresponding results for finite splitting distance are straightforward to obtain by the

http://dx.doi.org/10.1007/978-3-319-21353-8_1
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same arguments. Also see the work of Müger for further implications of the split
property for wedges, in particular with regard to superselection theory [113].

Although it is possible to construct models of algebraic quantum field theory in
which there exists a minimal length in the sense that A(O) = C · 1 for double
cones below a minimal diameter [100], this is not an expected feature in typical QFT
models. We mostly stated the theorem in the above form because in certain models,
discussed in Sect. 10.3, the modular nuclearity condition can so far only be proven
for large enough splitting distance. Of course, Theorem 10.2.16 also applies to the
case where the split property holds for all the inclusionsM(x) ⊂ M, x ∈ WR , and
then gives the usual unrestricted forms of cyclicity, additivity, duality, and the time
slice property.

Theorem10.2.16 canbe seen as the abstract formof a general construction scheme,
which we can summarize as “first construct a Borchers triple, then check modular
nuclearity for its wedge inclusions”. It provides physically reasonable properties of
the emerging net under assumptions which are both natural (for massive theories,
in d = 2) and manageable in concrete models. Its main drawback is that it does
not apply to more than two spacetime dimensions. Finding conditions that suitably
weaken the split property for wedges and apply to dimension d > 2 is currently an
open question and subject of ongoing research.

10.3 Integrable Models and Inverse Scattering Theory

In this section we discuss a concrete implementation of the general construction
scheme of QFT models via Borchers triples, presented in Theorem 10.2.16. As we
saw in Sect. 10.2.3, free theories can be completely described in terms of their (stable)
single particle content, formalized as a specific representation U1 of the Poincaré
group and its associated net W 	→ K1(W ) of real standard subspaces of the single
particle space H1. Here we will describe how to proceed in a similar manner for
certain interacting theories in two dimensions.

From a mathematical perspective, we will start from a specific single particle
representation U1 of P+ as before, and then “deform” the second quantization step
(cf. Proposition 10.2.9) from the subspace net W 	→ K1(W ) to the net of von
Neumann algebras W 	→ A(W ). The “deformation parameter” will take the form of
a unitary S onH1 ⊗H1 with specific properties, which enters into both, the definition
of the multi particle Hilbert space, and the definition of the wedge algebras.

Physically speaking, S describes the two-particle S-matrix, and we are consider-
ing theories in which this two-particle scattering operator completely fixes the full
(multi particle) S-matrix. These are theories in which no particle production occurs
in collision processes of arbitrary energy. Examples of such models are well known
as integrable quantum field theories, referring to the existence of an infinite number
of conversation laws which constrain the dynamics in such a way that each colli-
sion process factorizes into two-particle processes (“factorizing S-matrix”, see [87]).
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Specific examples are field theories like the Sinh-Gordon model, the Ising model,
the Sine-Gordon model, the Thirring model, and many more [1, 127].

Since we are starting our construction from the (two particle) S-matrix S, we
consider the inverse scattering problem, in contrast to the canonical approach, where
the interaction is specified in terms of a classical Lagrangian or Hamiltonian density,
which is then quantized. In fact, in the case of integrable models, the S-matrix is
typically much simpler than the Lagrangian (which is not of polynomial form), and
therefore S suggests itself as a suitable quantity for characterizing the interaction.

This inverse scattering point of view also lies at the heart of the form factor
program, see the monograph [127] and review article [9]. In that approach, one
characterizes local fields/observables by their expectation values in scattering states
(“form factors”), which are severely restricted by factorizability and analyticity of the
S-matrix. In many cases, it is possible to obtain explicit expressions for form factors,
see [11, 12, 74, 128] for just some sample articles. After the determination of the
form factors, the next step in the form factor program is to compute Wightman n-
point functions, which are given by series of integrals over form factors. Controlling
these complicated series, as required for a complete construction of a model, has so
far only been possible in very few examples [10].

In comparison, the algebraic approach presented here circumvents the explicit
construction of local field operators (see however the end of Sect. 10.3.4 for results
in that direction), and analyzes the local observable content via themodular nuclearity
property from Tomita-Takesaki theory.

In Sect. 10.3.1, we introduce the class of S-matrices we consider, and then use
them to construct Borchers triples in Sect. 10.3.2. The known results pertaining to
the modular nuclearity condition are reviewed in Sect. 10.3.3. In Sect. 10.3.4, it is
then shown that this construction solves the inverse scattering problem and yields
asymptotically complete theories. Finally, in Sect. 10.3.5 we discuss certain massless
versions of these models, and compare to related constructions in the literature.

10.3.1 Factorizing S-Matrices

Just as in Sect. 10.2.3, the construction of the models we are interested in begins with
the specification a single particle representation of the proper Poincaré group, fixing
the single particle spectrum. Recall that in two dimensions, to any mass m > 0, there
exists a unique (up to unitary equivalence) irreducible, unitary, strongly continuous,
positive energy representationU1,m of the proper orthochronous Poincaré groupP↑

+.
It can be realized on the representation space H1,m := L2(R, dθ) as

(U1,m(x, λ)ψ)(θ) := eipm (θ)·x · ψ(θ − λ) , (10.25)

where (x, λ) ∈ P↑
+ denotes the Poincaré transformation consisting of a boost with

rapidity λ ∈ R and a subsequent space-time translation by x ∈ R
2. The variable θ is

the rapidity, which is connected to the on-shell momentum and mass via
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pm(θ) := m

(
cosh θ

sinh θ

)
. (10.26)

We will allow for several species of particles, and therefore consider a direct sum of
several representations U1,m with different masses.

We can also include the single particle charges in our description, identified with
equivalence classes q of unitary irreducible representations of a compact Lie group G
(the global gauge group) as usual. As charges carried by single particles, we consider
a set Q of finitely many charges, and to account for antiparticles, we assume that
with each class q ∈ Q, also the conjugate class q is contained inQ. We are interested
in constructing massive stable quantum field theories and must therefore guarantee
that in each sector, the masses are positive isolated eigenvalues of the mass operator.
This will in particular be the case when to each charge q, there corresponds a single
mass m(q) > 0 (with m(q) = m(q)), and for simplicity, we restrict ourselves to this
setting.

The single particle Hilbert space then has the form

H1 =
⊕
q∈Q

H1,q =
⊕
q∈Q

L2(R, dθ)⊗Vq = L2(R, dθ)⊗V , (10.27)

where V = ⊕
q∈Q Vq is a finite-dimensional Hilbert space, D := dim V . Picking

unitary irreducible representations V1,q of G in the class q ∈ Q, the representations

of the Poincaré group P↑
+ and the gauge group G on H1 are

U1 :=
⊕
q∈Q

(
U1,m(q) ⊗ idVq

)
, V1 :=

⊕
q∈Q

(
idL2(R,dθ) ⊗ V1,q

)
. (10.28)

In the following, we will always tacitly refer to a fixed particle spectrum given by the
data G,Q, {V1,q}q∈Q, {mq}q∈Q and complying with the above assumptions. It will
be convenient to use a particular orthonormal basis for V (10.27): For each subspace
Vq of fixed charge, we choose an orthonormal basis, and denote their direct sum by
{eα : α = 1, . . . , D}. We can thus associate with each index α a definite charge
q[α] and mass m[α] := m(q[α]). The corresponding components of vectors Ψ1 ∈ H1
will be denoted by θ 	→ Ψ α

1 (θ). Using standard multi index notation, this notation
is extended to tensor products: We write ξα , α = (α1, . . . , αn), for the components
of vectors ξ ∈ V ⊗ n , T α

β , α = (α1, . . . , αn), β = (β1, . . . , βn), for the components

of tensors T ∈ B(V ⊗ n), and R
n  θ 	→ Ψ α

n (θ) for the component functions of
Ψn ∈ H⊗n

1 , n ∈ N.
To proceed as in Sect. 10.2.3, we need a representation of the proper Poincaré

group, i.e. we still need to define a single particle TCP operator J1, implementing
the spacetime reflection j (x) := −x . In view of our above assumption regarding
conjugate charges q, q ∈ Q, there exists such an operator on H1 (see for example
[41, 62, 81, 114]). It is the product of a charge conjugation operator exchanging
the representation spaces Vq and Vq , and a space-time reflection, acting by complex
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conjugation on L2(R, dθ). When working in the basis chosen above, this simply
means that we have an involution α 	→ α of {1, . . . , D} (that is, a permutation of D
elements with α = α) such that m[α] = m[α] and q[α] = q[α], and the TCP operator
reads

(J1Ψ1)
α(θ) := Ψ α

1 (θ) . (10.29)

By straightforward calculation, one checks that J1 is an antiunitary involution which
commutes with V1 and extends the representation U1 to the proper Poincaré group
P+ via U1( j) := J1.

As in (10.18), we introduce the “geometric modular group” Δi t
1 := U1(0,−2π t)

and the real standard subspace (10.19)

K1 := ker(1 − J1Δ
1/2
1 ) ⊂ H1 . (10.30)

For later reference, we recall thatK1+i K1 coincides with the (vector-valued) Hardy
space H

2(−π, 0)⊗V ⊂ H1, consisting of all Ψ1 ∈ H1 such that θ 	→ Ψ α
1 (θ) is the

boundary value of a function analytic in S(−π, 0) := {ζ ∈ C : −π < Imζ < 0}
with

sup
−π<λ<0

∑
α

∫
R

dθ |Ψ α
1 (θ + iλ)|2 < ∞,

and the real standard subspace is

K1 = {Ψ1 ∈ H
2(−π, 0)⊗V : Ψ α

1 (θ + iπ) = Ψ α
1 (θ) for all θ, α}, (10.31)

see, for example, [100].
We now come to specifying the two-particle S-matrix of the models to be con-

structed. This S-matrix can be formulated as a unitary S on H1 ⊗H1 which has to
satisfy a number of compatibility conditions with the single particle data U1, V1, and
additional properties. This unitary will have the form

(SΨ2)
α1α2(θ1, θ2) = Sα1α2

β1β2
(θ1 − θ2)Ψ

β1β2
2 (θ1, θ2)

(here and in the following, we use Einstein’s summation convention) with some
function S : R → U(V ⊗V), expressing the Poincaré invariance of S. The properties
of S can therefore be most explicitly formulated in terms of the function S, as we
shall do below. For a manifestly basis-independent formulation in terms of S, see
[18, 20]. All the listed properties are standard in the context of integrable models,
and for example discussed in [1, 63, 117].
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Definition 10.3.1 A (two-particle) S-matrix is a continuous bounded function12 S :
S(0, π) → B(V ⊗V) which is analytic in the interior of this strip and satisfies for
arbitrary θ, θ ′ ∈ R,

(a) Unitarity:

S(θ)∗ = S(θ)−1 (10.32)

(b) Hermitian analyticity:

S(θ)−1 = S(−θ) (10.33)

(c) Yang-Baxter equation:

(S(θ)⊗ 11)(11 ⊗ S(θ + θ ′))(S(θ ′)⊗ 11) (10.34)

= (11 ⊗ S(θ ′))(S(θ + θ ′)⊗ 11)(11 ⊗ S(θ))

(d) Poincaré symmetry:

Sαβ
γ δ (θ) = 0 if m[α] �= m[δ] or m[β] �= m[γ ] , (10.35)

Sαβ
γ δ (θ) = Sδγ

βα
(θ) . (10.36)

(e) Gauge invariance:

[S(θ), V1(g)⊗ V1(g)] = 0 , g ∈ G . (10.37)

(f) Crossing symmetry: For all α, β, γ, δ ∈ {1, . . . , D},

Sαβ
γ δ (iπ − θ) = Sγα

δβ
(θ) (10.38)

The family of all S-matrices will be denoted S.
Many examples of such S-matrices are known. In the scalar case, pertaining to

the irreducible representation U1 = U1,m with V = C, a complete characterization
of S can be given [96]. Some typical examples are listed in Table10.1.

In the tensor case, where D = dim V > 1, the general solution to the constraints
summarized in Definition 10.3.1 is not known, mostly because of the complicated
Yang-Baxter equation (c). However, special S-matrices are known, for example the
S-matrix of the O(N ) Sigma models. In this case, D = N > 2, G = O(N ), and Q
consists of the defining representation of O(N ) on CN , with S-matrix

S(θ)
α1α2
β1β2

:= σ1(θ)δα1α2δβ1β2 + σ2(θ)δα1β2δα2β1 + σ3(θ)δα1β1δα2β2 . (10.39)

12The continuity assumption can be relaxed, cf. [104].
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Table 10.1 Examples of scalar S-matrices

S(θ) Name of associated QFT model References

+1 Free field theory

−1 Ising model [17, 95]
sinh θ−i sin b(g)
sinh θ+i sin b(g)

Sinh-Gordon model with coupling constant g, and

b(g) = πg2

4π+g2

[1, 8]

eiκm2 sinh θ S-matrix of non-commutative Minkowski space with
noncommutativity parameter κ > 0

[78]

Hereσ1, σ2, σ3 are specific combinations of rational functions andGamma functions,
see [1, Chap. 8.3.2] for details.

The assumption that S is analytic in the physical strip is not satisfied for all
integrable models. In general S is only expected to be meromorphic in that strip, with
poles signifying the presence of bound states [1]. The known results are strongest
for S-matrices without such bound state poles, and we will therefore restrict to this
case in this review. However, some steps of the construction program to follow have
also been accomplished in the meromorphic case by Cadamuro and Tanimoto [55];
we will comment on this point later.

10.3.2 Construction of Borchers Triples from
Two-Particle S-Matrices

Given a single particle spectrum (with representations U1, V1), and a two-particle
S-matrix S ∈ S, we now set out to construct a corresponding Borchers triple
(MS, US,ΩS). We first introduce a convenient Hilbert representation space HS ,
the S-symmetric Fock space13 over our single particle space H1. In a different con-
text, the construction ofHS was first carried out by Liguori andMintchev [106], then
for the S-matrix case in [94, 102]. For a more abstract formulation, emphasizing the
functorial properties of the construction, see [20].

Starting from the single particle space (10.27), we consider the n-fold tensor prod-
ucts H⊗ n

1 = L2(Rn, dnθ)⊗V ⊗ n , and the subspace HS,n ⊂ H⊗n
1 of S-symmetric

wave functions, i.e. those Ψn ∈ H⊗n
1 which satisfy

S(θk+1 − θk)k,k+1Ψn(θ1, . . . , θk+1, θk, . . . , θn) = Ψn(θ1, . . . , θk, θk+1, . . . , θn) ,

(10.40)

for all θ1, . . . , θn ∈ R, k ∈ {1, . . . , n − 1}. Here the subscript k, k + 1 on S signifies
that this tensor acts on the tensor factors k and k + 1 of V⊗n .

13Picking this particular Hilbert space is a matter of choice, see [3, 98] for other possibilities.
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For the constant “flip” S-matrix S(θ) = ±F (with F(v ⊗ w) = w ⊗ v, v, w ∈ V),
the space HS,n then coincides with the totally symmetric (+) respectively totally
antisymmetric (−) n-fold tensor product of H1 with itself. For general S ∈ S, one
can describeHS,n as the invariant subspace ofH⊗n

1 of an S-dependent representation
of the permutation group [102, 106].

We now define the S-symmetric Fock space as the direct sum of these “n-particle
Hilbert spaces”,

HS :=
∞⊕

n=0

HS,n , (10.41)

where we understand HS,1 := H1 and HS,0 := C. The n-particle component of
a vector Ψ ∈ HS will be denoted Ψn ∈ HS,n . Occasionally we will also use the
“particle number operator” (NΨ )n := nΨn , and the dense subspace DS ⊂ HS

of “finite particle number”. For the time being, these are just names for certain
subspaces, their physical interpretation in terms of particle states will be justified
later in scattering theory.

Each HS , S ∈ S, is a closed subspace of the “Boltzmann Fock space” Ĥ :=⊕∞
n=0 H⊗n

1 , and we denote by PS : Ĥ → HS the corresponding orthogonal projec-
tion. The Fock vacuum ΩS ∈ HS , given by (ΩS)0 = 1, (ΩS)n = 0 for n ≥ 1, will
be the vacuum vector of the Borchers triple to be constructed.

The second ingredient of the Borchers triple, the representation of the Poincaré
group, is given by a variant of the standard second quantization procedure.

Lemma 10.3.2 (a) For (x, λ) ∈ P↑
+, let

US(x, λ) := PS

∞⊕
n=0

(
U1(x, λ)⊗n ⊗ idV⊗n

)
PS . (10.42)

Then US is a strongly continuous, unitary, positive energy representation of P↑
+

on HS, with (unique) invariant vector ΩS.
(b) Let J : HS → HS be defined as

(JΨ )αn (θ) := Ψ
αn ...α1
n (θn, . . . , θ1) . (10.43)

Then J is an antiunitary involution satisfying JUS(x, λ)J = US(−x, λ).
(c) For g ∈ G, let

VS(g) := PS

∞⊕
n=0

(
idL2(Rn) ⊗ V1(g)⊗ n) PS . (10.44)

Then VS is a unitary representation of the gauge group G on HS, commuting
with US and J .
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The proof of this lemma essentially amounts to showing that the various operators
considered here respect the S-symmetry, i.e. restrict from Ĥ to the subspaceHS . This
is the case because of property (d) and (e) of S in Definition 10.3.1. Explicitly, we
have

[U (x, λ)Ψ ]αn (θ) := exp(i
n∑

l=1

pαl (θl) · x) Ψ α
n (θ1 − λ, . . . , θn − λ) , (10.45)

where pαl is shorthand for pm[αl ] . Following our earlier convention also on the multi

particle level, we write Δi t := U (0,−2π t) for the rescaled boosts.
Having fixed the representation US and its vacuum vector ΩS , we now turn to

the construction of the most important ingredient, the von Neumann algebraMS of
wedge-local observables, completing US,ΩS to a Borchers triple. As a prerequisite
for this, we first introduce creation and annihilation operators on the S-symmetric
Fock space H.

On Ĥ, we have the usual unsymmetrized operators a(ϕ), a†(ϕ), ϕ ∈ H1. They
are defined by linear and continuous extension from

a†(ϕ)ψ1 ⊗ · · · ⊗ ψn := √
n + 1ϕ ⊗ ψ1 ⊗ · · · ⊗ ψn , ψ1, . . . , ψn ∈ H1 ,

(10.46)

a(ϕ)ψ1 ⊗ · · · ⊗ ψn := √
n 〈ϕ,ψ1〉ψ2 ⊗ · · · ⊗ ψn , a(ϕ)Ω̂ := 0 , (10.47)

to H⊗n
1 , and then to the subspace of finite particle number. We introduce their pro-

jections onto HS as

z†S(ϕ) := PS a†(ϕ)PS , zS(ϕ) := PS a(ϕ)PS , ϕ ∈ H1, (10.48)

and the distributional kernels z#S,α(θ) of these operators by

z†S(ϕ) =
∑
α

∫
dθ ϕα(θ)z†S,α(θ) , zS(ϕ) =

∑
α

∫
dθ ϕα(θ)zS,α(θ) . (10.49)

Their essential properties are listed next.

Proposition 10.3.3 Let ϕ ∈ H1 and Ψ ∈ DS be arbitrary.

(a) The operators (10.48) are in general unbounded, but well-defined on DS.
(b) We have

zS(ϕ)∗ ⊃ z†S(ϕ) . (10.50)

(c) For (x, λ) ∈ P↑
+ and g ∈ G, we have

US(x, λ)z#S(ϕ)US(x, λ)−1 = z#S(U1(x, λ)ϕ) ,
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VS(g)z#S(ϕ)VS(g)−1 = z#S(V1(g)ϕ) ,

where z#S stands for either zS or z†S.
(d) With respect to the particle number operator N, there hold the bounds

‖zS(ϕ)Ψ ‖ ≤ ‖ϕ‖‖N 1/2Ψ ‖, ‖z†S(ϕ)Ψ ‖ ≤ ‖ϕ‖‖(N + 1)1/2Ψ ‖ . (10.51)

(e) zS, z†S form a representation of the Zamolodchikov-Faddeev algebra with
S-matrix S: The distributional kernels z#S,α(θ) satisfy

zS,α(θ)zS,β(θ ′) − Sβα
δγ (θ − θ ′)zS,γ (θ ′)zS,δ(θ) = 0, (10.52)

z†S,α(θ)z†S,β(θ ′) − Sγ δ
αβ (θ − θ ′)z†S,γ (θ ′)z†S,δ(θ) = 0, (10.53)

zS,α(θ)z†S,β(θ ′) − Sαγ
βδ (θ ′ − θ)z†S,γ (θ ′)zS,δ(θ) = δαβδ(θ − θ ′) · 1 . (10.54)

The algebraic relations in item (e) are known as the Zamolodchikov–Faddeev
algebra [69, 139], and are frequently used in the context of integrable quantum field
theories (see for example [10, 127], and references cited therein). Note in particular
that for the constant S-matrices Sαβ

γ δ (θ) = ±δα
δ δ

β
γ , they coincide with the familiar

CCR/CAR relations.
The exchange relations in Proposition 10.3.3(e) were proposed by the Zamolod-

chikov brothers [139]. Their heuristic basis is that a product z†S,α1
(θ1) · · · z†S,αn

(θn)

of n creation operators (acting on a vacuum vector) represents a configuration of n
particles with rapidities θ j , such that the order of factors in the product corresponds
to the ordering of the particles on the line (from left to right). An exchange of two
particles should correspond to a two-particle scattering process and thus produce an S
factor. Faddeev completed this structure [69] by adding a corresponding annihilation
operator and the exchange relation between zS and z†S .

In our subsequent analysis, we will not rely on this motivation. Rather, we take
the operators z#S as a tool for defining (generators of) a wedge algebra, and will
then derive the intuitive picture drawn by the Zamolodchikov’s from Haag-Ruelle
scattering theory (Sect. 10.3.4).

In the CCR situation S = F (tensor flip), we can form the usual free field as the
(selfadjoint closure of) the sum of a creation and an annihilation operator, and use
the unitaries exp(i(z†F (ξ) + zF (ξ)), ξ ∈ K1, to generate the wedge algebra MF as
in (10.17). In this case, the same field operator can be used to generate the observables
in left and right wedges, because the covariance statement in Proposition 10.3.3(c)
also holds for the TCP operator J .

For other S-matrices S, however, this is not the case: Proposition 10.3.3(c) does
not hold if U (x, λ) is replaced by J , and different generators are needed for left and
right wedges. We therefore introduce

z†S(ϕ)′ := J z†S(Jϕ)J , zS(ϕ)′ := J zS(Jϕ)J . (10.55)
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Taking into account Lemma 10.3.2(b), it becomes apparent that items (b)–(d) of
Proposition 10.3.3 apply to the z#S(ϕ)′ without any changes.

The TCP-reflected creation/annihilation operators satisfy commutation relations
analogous to the ones listed in Proposition 10.3.3(e) with the only difference that
Sαβ
γ δ (θ) has to be replaced by Sβα

δγ (−θ). For controlling commutators between observ-
ables in left and right wedges, it will be important to know the relative commutation
relations of the z#S(ϕ) and z#S(ϕ)′. They are stated next, see also [119] for a related
analysis.

Proposition 10.3.4 ([102]) Let ϕ,ψ ∈ H1. Then, on the domain DS,

[zS(ϕ)′, zS(ψ)] = 0, (10.56)

[z†S(ϕ)′, z†S(ψ)] = 0, (10.57)

[zS(ϕ)′, z†S(ψ)] = KS(ϕ, ψ), (10.58)

[z†S(ϕ)′, zS(ψ)] = L S(ϕ, ψ), (10.59)

where KS(ϕ, ψ) and L S(ϕ, ψ) are bounded operators onHS which commute with N.
If ϕ ∈ K1 and ψ ′ ∈ K′

1, then

L S(ϕ, ψ ′) = −KS(ϕ, ψ ′) . (10.60)

The proof of the first part of this proposition follows by explicit calculation of
the commutators, which also gives the explicit form of the operators KS(ϕ, ψ) and
L S(ϕ, ψ) as multiplication operators with certain tensor-valued bounded functions
KS,n(ϕ, ψ), L S,n(ϕ, ψ) on each n-particle spaceHS,n . These functions are given by
integrating the components of ϕ and ψ against a kernel which consists of a product
of S-factors. To establish (10.60), one relies on the analyticity properties of both,
ϕ, Jψ ′ ∈ K1 (10.31) and S, as well as their boundary conditions JΔ1/2ϕ = ϕ,
JΔ−1/2ψ ′ = ψ ′ and the crossing symmetry in Definition10.3.1(f). These features
allow for a contour shift in the integrals defining KS, L S , and lead to (10.60).

When S has first order poles in the physical strip, (10.60) fails, which is the reason
why we restrict ourselves to analytic S. However, for certain S-matrices with poles,
Cadamuro and Tanimoto found a way to modify the generators ΦS (see below)
to cancel these residue contributions. This modification, and the emerging subtle
domain questions, are explained in [55].

Sticking to the case of analytic S and following Schroer [126], we now define

ΦS(ξ) := z†S(ξ)′ + zS(JΔ1/2ξ)′ , (10.61)

Φ ′
S(ξ) := z†S(ξ) + zS(JΔ−1/2ξ) . (10.62)

The counter intuitive placement of the primes is chosen here to have ΦS generate
MS (instead of M′

S), but also be consistent with the literature.
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The above defined operators depend complex-linearly on their arguments, and it is
clear that ΦS(ξ) is a well-defined operator onDS for ξ ∈ domΔ

1/2
1 , whereas Φ ′

S(ξ)

is well-defined for ξ ∈ domΔ
−1/2
1 . It also follows quickly from the definitions that

JΦS(ξ)J = Φ ′
S(Jξ) , ξ ∈ domΔ1/2 . (10.63)

Proposition 10.3.5 Let ξ ∈ domΔ1/2.

(a) ΦS(ξ)∗ ⊃ ΦS(JΔ1/2ξ).
(b) All vectors in DS are entire analytic for ΦS(ξ). For ξ ∈ K1, the field operator

ΦS(ξ) is essentially selfadjoint.
(c) ΦS transforms covariantly under the proper orthochronous Poincaré group P↑

+
and the gauge group G, i.e. on DS, there holds

US(x, λ)ΦS(ξ)US(x, λ)−1 = ΦS(U1(x, λ)ξ) , (x, λ) ∈ P↑
+ , (10.64)

VS(g)ΦS(ξ)VS(g)−1 = ΦS(V1(g)ξ) , g ∈ G . (10.65)

(d) The vacuum vector ΩS is cyclic for ΦS, i.e. the subspace

C-span{ΦS(ξ1) · · · ΦS(ξn)ΩS : ξ1, . . . , ξn ∈ K1, n ∈ N0}

is dense in HS.

All these statements also hold if ΦS is exchanged with Φ ′
S, and K1 with K′

1.

All these properties follow from straightforward calculations, except part (b)
which uses the bound from Proposition 10.3.3(d) and an application of Nelson’s
Theorem.

Part (a) of this proposition explains the factors JΔ±1/2 appearing in the definition
of ΦS and Φ ′

S , anticipating the Bisognano-Wichmann property of a wedge algebra
MS generated by ΦS(ξ). In fact, we have, ξ ∈ domΔ1/2,

JΔ1/2ΦS(ξ)ΩS = JΔ1/2ξ = ΦS(JΔ1/2ξ)ΩS = ΦS(ξ)∗ΩS ,

and JΔ−1/2Φ ′
S(ξ ′)ΩS = Φ ′

S(ξ ′)∗ΩS for ξ ′ ∈ domΔ−1/2. This is consistent with
ΦS(ξ), ξ ∈ domΔ1/2, being affiliated to a von Neumann algebra which has ΩS as a
cyclic separating vector, and modular data J,Δ, as well as Φ ′

S(ξ ′), ξ ′ ∈ domΔ−1/2,
being affiliated with the commutant of that algebra.

We therefore define the von Neumann algebra

MS := {eiΦS(ξ) : ξ ∈ K1}′′ , (10.66)

and want to convince ourselves that (MS, US,ΩS) is a Borchers triple. To this
end, we first note that in view of U1(x, λ)K1 ⊂ K1 for x ∈ WR , λ ∈ R, and
Proposition 10.3.5(c), we have U (x, λ)MSU (x, λ)−1 ⊂ MS for x ∈ WR , λ ∈ R.
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Next, by using Proposition 10.3.5(d) and standard techniques, one can show that ΩS

is cyclic for MS .
The crucial point is to show thatΩS is also separating, which amounts to showing

thatMS has a large commutant in B(HS). At this point, the second field Φ ′
S comes

into play: For ϕ ∈ K1, ψ ′ ∈ K′
1, we find the following equality on DS :

[ΦS(ϕ),Φ ′
S(ψ ′)] = [z†S(ϕ)′ + zS(ϕ)′, z†S(ψ ′) + zS(ψ ′)] = L S(ϕ, ψ ′) + KS(ϕ, ψ ′) = 0 .

Here we have first used that JΔ1/2ϕ = ϕ, JΔ−1/2ψ ′ = ψ ′, and then the commu-
tation relations of Proposition 10.3.4. By linearity, it then follows that ΦS(ϕ) and
Φ ′

S(ψ
′) commute on DS for any ϕ ∈ domΔ

1/2
1 , ψ ′ ∈ domΔ

−1/2
1 , so that bounded

functions ofΦ ′
S(ψ

′) are good candidates for operators commuting withMS . Indeed,
by a calculation on analytic vectors [4, 98], one finds

[
eiΦS(ϕ), eiΦ ′

S(ψ ′)
]

= 0 , ϕ ∈ K1, ψ ′ ∈ K′
1 . (10.67)

This implies that the von Neumann algebra

M̃S := {eiΦ ′
S(ξ ′) : ξ ′ ∈ K′

1}′′ , (10.68)

commutes withMS . As ΩS is cyclic for M̃S by the same arguments as forMS , we
arrive at the following result.

Theorem 10.3.6 Let S ∈ S. Then the triple (MS, US,ΩS) is a Borchers triple.

This result was proven in [94] for the scalar case, and in [102] for the general tensor
case. It completes the first step in the construction program presented in Sect. 10.2,
and we therefore obtain a local covariant net O 	→ AS(O) of von Neumann algebras
onHS for each S-matrix S ∈ S.

As discussed in Sect. 10.2.4, the next step is to analyze the relative commutants of
the inclusions MS(x) ⊂ MS , x ∈ WR , by means of the split property and modular
nuclearity. In this context, it is important to know the modular data of (MS,ΩS).

Theorem 10.3.7 Let S ∈ S.

(a) The Bisognano-Wichmann property holds, i.e. the modular data J̃ , Δ̃ of (MS,

ΩS) are given by

Δ̃ = Δ, J̃ = J . (10.69)

(b) The commutant of MS in B(HS) is MS
′ = M̃S.

This theorem was proven in the scalar case in [43], and in the tensor case in [4].
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10.3.3 Regular S-matrices and the Modular
Nuclearity Condition

As discussed in the abstract setting in Sect. 10.2, the operator-algebraic construction
program of a QFT model proceeds in two main steps. The first step is to find a
suitable Borchers triple, and has been accomplished in Theorem 10.3.6 for any S-
matrix S ∈ S. The second step consists of analyzing the local observable content
which is (indirectly) defined by the Borchers triple. In this section, we will follow
the general strategy explained in Sect. 10.2.4, and summarize the known results on
modular nuclearity and the split property in the model theories with Borchers triple
(MS, US,ΩS), S ∈ S.

We first recall that for split distance s > 0, the map in question is (10.23)

ΞS(s) : MS → HS , ΞS(s)A := Δ1/4US(s)AΩS , (10.70)

where US(s) is shorthand for the purely spatial translation by (0, s) ∈ WR . Making
use of the explicit form (10.45) of the representation US , one finds

(ΞS(s)A)αn (θ) =
n∏

k=1

e−mαs cosh θk · (AΩ)αn (θ + iλ0), λ0 := (−π
2 , . . . ,−π

2

)
.

(10.71)

Here the complex argument θ + iλ0 has to be understood in terms of analytic contin-
uation, and suggests that for understanding nuclearity properties of the map ΞS(s),
complex analysis will be essential.

For general S, one can not expect ΞS(s) to be nuclear. We therefore make the
following definition of “regular” S [97], demanding stronger analyticity of S than
can be expected from first principles [110].

Definition 10.3.8 An S-matrix S ∈ S is called regular if there exists ε > 0 such that
θ 	→ S(θ) extends to a bounded analytic function on the enlarged strip S(−ε, π + ε).
The family of all regular S-matrices will be denoted S0 ⊂ S.

This condition demands in particular that all singularities of S lie a minimal
distance ε > 0 off the physical strip. Poles in S(−π, 0) are usually interpreted as
evidence for unstable particles with a finite lifetime [137], with lifetime of such a
resonance becoming arbitrarily long if the corresponding pole lies sufficiently close
to the real axis. The regularity condition rules out S-matriceswith infinitelymany res-
onances with arbitrarily long lifetimes and “masses” such that the thermodynamical
partition function diverges, a situation in which we cannot expect modular nuclearity
to hold [42, 49]. The additional condition of a bounded analytic extension of S to
S(−ε, π + ε), ε > 0, is a condition on the phase shift that can also be found in
other approaches [89]. In both the scalar and tensor case, there exist many regular
S-matrices.
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The detailed analysis of the nuclearity properties of the map (10.71) requires the
discussion of many technical points and will not be presented here. Rather, we will
give an outline of the strategy which was so far used for proving thatΞS(s) is nuclear
for regular S. It consists of the following three steps.

Step (1) Show that for A ∈ MS , the functions (AΩ)n : R
n → V⊗n have an analytic

continuation to a tube Tn = R
n + iBn ⊂ Cn which contains the point λ0 in the

interior of its base Bn ⊂ R
n .

For a heuristic argument why such analyticity can be expected, take A to be a poly-
nomial in the generators ΦS(ξ1), . . . , ΦS(ξN ), ξ1, . . . , ξN ∈ K1. (This unbounded
operator is not an element ofMS , but affiliated with this algebra.) Considering only
the term with only creation operators for concreteness, Ã = z†S(ξ1) · · · z†S(ξn), we
find the n-particle wave functions

( ÃΩ)n(θ) = 1

n!
∑

π∈Sn

Sπ (θ)
(
ξ1(θπ(1))⊗ · · · ⊗ ξn(θπ(n))

)
, (10.72)

where the Sπ (θ) ∈ B(V⊗n) are tensors consisting of several S-factors, depending
on differences θk − θl of rapidities. As each ξk is analytic in S(−π, 0) (cf. (10.31)),
we see that ( ÃΩ)n is analytic in a tube containing an open neighborhood of λ0 in its
base, provided S is regular.

For general observables A ∈ MS , such analyticity properties were shown to hold
for regular S in [97] in the scalar case, and by S. Alazzawi in the general tensor
case [4]. A generalization of the detailed analytic structure of these wave functions
has later also proven to be important in the work of Bostelmann and Cadamuro on
characterizations of local observables [30].

Step (2) Show that there exists 0 < Cn(2s) < ∞ such that for all A ∈ M

sup
λ∈Bn

(∫
Rn

dnθ ‖(US(s)AΩ)n(θ + iλ)‖2
)1/2

≤ Cn(2s) · ‖A‖ . (10.73)

Such Hardy type bounds were established in [4, 97].
It then follows that the linear map Σn(s) : MS → H

2(Tn), Σn(s)A :=
(U ( s

2 )AΩ)n , from the wedge algebra MS into the (vector-valued) Hardy space
H

2(Tn) on the tube Tn , is bounded with ‖Σn(s)‖ ≤ Cn(s) < ∞.
To formulate the last step, we first note that by employing tools from complex

analysis, one can show that the map En(s) : H
2(Tn) → L2(Rn, dnθ) given by

En(s)(F)(θ) := ∏n
k=1 eism sinh θk F(θ + iλ0) is nuclear.14 As ΞS(s) = ∑

n En(s) ◦
ΣS(s), this gives the nuclearity bound

‖ΞS(s)‖1 ≤
∞∑

n=0

‖En(s)Σn(s)‖1 ≤
∞∑

n=0

Cn(s)‖En(s)‖1 . (10.74)

14It is in fact p-nuclear for any p > 0, i.e. its singular values decay faster than any inverse power.
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To prove nuclearity of ΞS(s), one has to estimate the norm bound Cn(s) and nuclear
norm ‖En(s)‖1 sharp enough to have this series converging. This is only possible
if one properly takes into account the statistics (S-symmetry). Therefore the last
step is:

Step (3) Exploit the S-symmetry to obtain bounds Cn(s) and ‖En(s)‖1 sharp enough
such that

∑∞
n=0 Cn(s)‖En(s)‖1 < ∞, at least for sufficiently large split distance

s > 0.
In the scalar case, Step 3 has been accomplished in case S(0) = −1, where an

effective Pauli principle becomes available15 [97].

Theorem 10.3.9 Let S ∈ S0 be a scalar S-matrix with S(0) = −1. Then there exists
a splitting distance s0 > 0 such that ΞS(s) is nuclear at least for s > s0.

In the tensor case, a similar situation occurs when demanding S to be regular and
S(0) = −F (with F the flip on V ⊗V as before), these assumptions are in particular
met by the S-matrices of the O(N ) sigma models. There is good evidence that this
will give rise to a proof of modular nuclearity, as in the scalar case [4].

The additional assumption S(0) = −1 (only the two possibilities S(0) = ±1
exist for regular scalar S) amounts to a kind of “hard core” condition, and is satisfied
in most of the interacting models known from Lagrangian formulations.

10.3.4 Discussion of the Constructed Models

Having constructed a large class of QFTmodels, one would next like to analyze their
properties, a minimum requirement being that these actually do describe non-trivial
interaction.16

In the case at hand, where an S-matrix is the input into the construction, it is most
natural to consider scattering theory. Whenever there exist non-trivial observables
interpolating between the vacuum and single particle states and localized in some
double cone (of arbitrary size), one is in the position to apply Haag-Ruelle scattering
theory (Sect. 1.3). In the models at hand, such observables exist, but are given only
indirectly as elements of intersections of wedge algebras. However, it turns out that
explicit knowledge of local operators is not necessary, one can express all collision
states in terms of the explicit wedge-local fields by making use of the adaptation
of Haag-Ruelle theory to the case of wedge-local observables [26]. The following
result holds.

Theorem 10.3.10 Let S ∈ S be a two-particle S-matrix such that the vacuum vector
is cyclic for some double cone (This is in particular the case for S satisfying the

15Note that the stronger results claimed in [97] contain an incorrect estimate [99], spotted by
S. Alazzawi. At the time of writing, the result stated here is the strongest one with a complete proof.
16That this is a non-trivial issue can be seen (in the setting of Wightman QFT) at the example of a
family of complicated Wightman functions [121] which were only later realized to be equivalent to
generalized free fields [122].

http://dx.doi.org/10.1007/978-3-319-21353-8_1
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assumptions of Theorem 10.3.9). Then the collision operator of the QFT model
generated from the Borchers triple (MS, US,ΩS) is the factorizing S-matrix with
two-particle S-matrix S. Furthermore, this theory is then asymptotically complete.

This result shows that the presented construction provides a solution to the inverse
scattering problem for two-particle S-matrix S ∈ S. Under the assumption that ΩS

is cyclic for some double cone (of arbitrary size), one can also explicitly compute
incoming and outgoing n-particle scattering states. Restricting to the scalar case
for simplicity, one finds the (improper) asymptotic collision states of n particles of
rapidities θ1, . . . , θn ∈ R, n ∈ N0,

|θ1, . . . , θn〉S,out = z†S(θ1) · · · z†S(θn)ΩS , if θ1 < · · · < θn , (10.75)

|θ1, . . . , θn〉S,in = z†S(θ1) · · · z†S(θn)ΩS , if θ1 > · · · > θn . (10.76)

These identifications can be proven with the tools of Haag-Hepp-Ruelle scattering
theory [83, 86, 124]. They are in perfect agreement with the intuition behind the
Zamolodchikov-Faddeev algebra, identifying products of n creation operators in
order of increasing (decreasing) rapidities as creating outgoing (incoming) collision
states, and rearrangements of these operators as two-particle scattering processes,
producing S-factors [69, 139].

We conclude this section with a comparison with other approaches to solving
the inverse scattering problem for integrable QFTs, notably the form factor program
[10, 127]. In that approach, one aims at constructing a Wightman QFT [88, 130]
by specifying the n-point functions of local field operators. These are not the field
operatorsΦS appearing in the approach presented here, which can also be formulated
as operator-valued distributions over Minkowski space, but are localized only in
wedges WR/L + x rather than points {x} [102]. The role of the wedge-local fieldsΦS

is to serve as generators of Borchers triples. It might well happen that the emerging
net of von Neumann algebras can equivalently be generated by certain point-local
Wightman fields, see [27, 28] for the right tools for analyzing the local observable
content. However, there is no straightforward connection between the wedge-local
fields and point like fields.

Hence the approach presented here is complementary to the form factor program,
and also to conventional constructive QFT [76]: It does give a rigorous solution of
the inverse scattering problem by operator-algebraic methods, but does not provide
explicit formulae for strictly local quantities like Wightman n-point functions. Com-
parison with the conventional approach to constructive QFT is therefore indirect:
Only if a Lagrangian model is conjectured to have a certain S-matrix (such as the
Sinh-Gordon model, the O(N )-Sigma models, etc.) then the approach starting from
the Lagrangian can be compared to the one starting from the S-matrix. For most
of the S-matrices S ∈ S, however, no corresponding Lagrangian is known, and the
classical counterparts of these theories are therefore unknown.

The problem of characterizing the local observables A ∈ AS(O) more explicitly
has been taken up by Bostelmann and Cadamuro. Generalizing the well-known fact
that on the totally symmetricBose Fock space, any bounded operator can be expanded
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into a series of normal ordered creation and annihilation (CCR) operators [6], they
showed that for any quadratic form A on HS , where S ∈ S is a scalar S-matrix and
A is subject to certain regularity assumptions, one has [29]

A =
∞∑

m,n=0

∫
dθ dη

m!n! f [A]
m,n(θ, η) z†S(θ1) · · · z†S(θm) zS(η1) · · · zS(ηn) . (10.77)

The expansion coefficients f [A]
m,n are sums of contracted matrix elements of A. It

is interesting to note that such distributions also appear in the context of proving
the modular nuclearity condition [97] (for wedge-local bounded A). The expansion
(10.77) is essentially the form factor expansion. We refer to [29] for details, also
regarding the convergence properties of this series.

The expansion (10.77) holds for any (sufficiently regular) A, independent of its
localization properties. If the expanded operator A is an element of a local algebra,
one has more information on the expansion coefficients17—for example, compact
localization in spacetime leads to strong analyticity properties of the f [A]

m,n . In [30],
Bostelmann and Cadamuro give complete, necessary and sufficient, conditions on
the coefficients f [A]

n,m for A to be localized in a double cone Or of radius r > 0 around
the origin. These conditions are rather involved, and solutions are currently known
only for the constant scalar S-matrices S = 1 (the free field) and S = −1 (the Ising
model) [54]. The Ising model S-matrix S = −1, although looking almost trivial as
an S-matrix, already gives rise to rather complicated local operators, see also [17]
for a related analysis in the form factor program.

This state of affairs is typical for the comparison of the algebraic approach and
the form factor program: Whereas the operator-algebraic tools are more efficient
for questions like proving existence of local observables, the form factor methods
(and also the expansion (10.77)) give more explicit information about these local
quantities, see for example [31, 34] for applications to quantum energy inequalities
and energy densities in the models considered here.

10.3.5 Massless Models

Up to this point we have considered theories with purely massive particle spectrum.
While many integrable models are of this type, and scattering theory is best under-
stood in themassive case,18 there are also good reasons to consider massless theories.
On the one hand, for an analysis of phenomena like confinement or asymptotic free-
dom, one has to consider short distance (scaling) limits, in which the masses go to
zero (see [32, 47, 57] for discussions within the algebraic framework). Since certain

17However, boundedness of A is not directly reflected in its coefficients f [A]
n,m because the expansion

(10.77) involves the unbounded operators z#S .
18See, however, [38, 40, 66] for results on scattering involving massless particles.
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integrable QFTs are believed to be asymptotically free (see, for example, [1]), this
point of view is also relevant here. On the other hand, massless integrable models
often exhibit conformal symmetry, providing a link to conformal QFT (Chap. 8) with
all its specialized tools, which can give additional insight into their structure. In this
section, we therefore consider various massless versions of the constructions pre-
sented so far. Due to page constraints, we will be rather brief, and often refer to the
literature for details.

As for massive models, we first consider the interaction-free case, and recall
the Borchers triple of the free massless current. Since the definition of the rapidity
(10.26) depends on the mass, we work here instead in the momentum picture, and
consider the Hilbert space H1 = H+

1 ⊕ H−
1 , with H±

1 := L2(R±, dp/|p|) and the
mass zero Poincaré representation U1 = U+

1 ⊕ U−
1 , given by (U±

1 (x, λ)ψ)(p) =
ei(±x0−x1)p ψ(e∓λ p). The massless free current decomposes into a direct sum of
chiral operators j±, each depending only on one of the light cone coordinates x0 ± x1.
Since the right wedge WR is in these coordinates the set x0 + x1 > 0, x0 − x1 < 0,
one considers the von Neumann algebras M± = {exp(i j±( f )) : f ∈ C∞

c,R(R±)}′′
on the Bose Fock spaces H± over H±

1 . Denoting the respective Fock vacua by
Ω± ∈ H±, one obtains on H := H+ ⊗H− the Borchers triple

(M+
0 ⊗M−

0 , U+ ⊗ U−,Ω+ ⊗ Ω−) . (10.78)

This construction is equivalent to the one presented in the preceding sections, with
the trivial scalar S-matrix S = 1, and the modification that instead of the field ΦS ,
one has to consider its directional derivatives (current) in order to avoid the infrared
singularity of the measure dp/|p|.

Since all data decompose into light cone coordinates, one extends in this setting
the definition of wedges, Borchers triples and standard pairs to the case of dimension
d = 1. The space R

1 is thought of as a light ray, the affine group of R (“ax + b
group”) plays the role of the Poincaré group, and “positive energy representation”
means that the generator of the translation subgroup is positive. Replacing the right
wedge by the right half lineR+, and double cones by intervals I ⊂ R, the framework
presented in Sects. 10.2.1 and 10.2.2 also applies to the one-dimensional case.

To motivate the following construction, we first recall a result by Longo and
Witten on endomorphisms of standard pairs [109]. In the setting of a one-dimensional
standard pair (K, U ) on a Hilbert space H, they defined an endomorphism to be a
unitary V ∈ B(H) such that VK ⊂ K and [V, U (x)] = 0 for all translations x ∈ R.
In their result, they make use of symmetric inner functions on the upper half plane,
that is, analytic bounded functions ϕ on the upper half plane such that

ϕ(p) = ϕ(p)−1 = ϕ(−p) for almost all p ∈ R . (10.79)

Theorem 10.3.11 ([109]) Let (K, U ) be a one-dimensional standard pair with U
non-degenerate and irreducible. Then a unitary V is an endomorphism of (K, U ) if

http://dx.doi.org/10.1007/978-3-319-21353-8_8
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and only if V = ϕ(P), where P > 0 is the generator of the translations, and ϕ is a
symmetric inner function on the upper half plane.

For generalizations of this theorem, see [100].
The Eq. (10.79) appearing in the definition of a symmetric inner function are

reminiscent of the constraints imposed on a (scalar) S-matrix. In fact, when changing
variables from p to θ = log p, the upper half plane is transformed to the strip
S(0, π) appearing in Definition 10.3.1, and (10.79) translates to ψ(θ) = ψ(θ)−1 =
ψ(θ + iπ), θ ∈ R. In this form, the similarities to scalar S-matrices are most striking,
and reveal a remarkable match between the properties of endomorphisms of standard
pairs, and the completely independently defined S-matrices. At the time of writing,
no deep reason for thismatchwas known, andwe refer to [100] for further discussions
of this point.

In the context of deformations of Borchers triples, the result by Longo andWitten
provides the background to a construction by Tanimoto [134], which amounts to
twisting one tensor factor in the chiral Borchers triple (10.78). He defines

M0,ϕ := (M+
0 ⊗ 1) ∨ Sϕ(1⊗M−

0 )S∗
ϕ , (10.80)

where Sϕ ∈ B(H+ ⊗H−) is a suitably chosen unitary depending on a symmetric
inner function ϕ, namely

[SϕΨ ]n,n′ (p1, . . . , pn; q1, . . . , qn′ ) :=
∏

l=1,...,n
l′=1,...,n′

ϕ(−plql ′ ) · Ψn,n′ (p1, . . . , pn; q1, . . . , qn′ ) .

(10.81)

Here the indices n, n′ refer to the Fock structure ofΨ ∈ H+ ⊗H−, and themomenta
to the spectra of the second quantized generators of translations in the light like
directions, see [134].

Theorem 10.3.12 ([134]) Let ϕ be a symmetric inner function on the upper half
plane, and Sϕ defined as (10.81). Then the triple (M0,ϕ, U+ ⊗ U−,Ω+ ⊗ Ω−) is
a two-dimensional Borchers triple.

The physical significance of the operator Sϕ appearing here is that of a “wave
S-matrix” [39], as has been shown by Dybalski and Tanimoto [67]. In the sense of
scattering of waves, one even has asymptotic completeness in this situation, and can
recover the Borchers triple from its S-matrix and an asymptotic algebra [67, 134].

Tanimoto’s deformation formula (10.80) is a result of the chiral (tensor product)
structure present in the massless case, and has no direct analogue in the massive
situation. Nonetheless, the twisted chiral triple is equivalent to a massless version of
the inverse scattering construction discussed in the preceding sections. We refrain
from giving the details of the massless version, which can be found in [33]. The
equivalence proof is contained in [104].

The twist (10.80) is not the only possibility to obtain deformations by symmetric
inner functions in themassless case. In fact, since themass shell decomposes into two
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half light rays which are both invariant under Lorentz boosts, one can use three such
functions ϕ, ϕ+, ϕ− [20, 104]. Here ϕ corresponds to a twist “between the two light
rays”whichmixes the two tensor factors as in (10.80), with the interpretation of wave
scattering. The functions ϕ±, on the other hand, are used to perform a construction
of a “deformed field theory” on a line in close analogy to the (scalar) construction
presented in Sect. 10.3.2 [33]. This amounts to deformations of the individual half
line algebras M±

0 � (M±
0 )ϕ± , leaving the tensor product structure between them

unchanged.
A combination of these effects appears in the short distance scaling limits of

the massive two-dimensional integrable models. As argued in [33], if for a regular,
scalar S-matrix S the limits limθ→±∞ S(θ) exist, then the integrablemodelwithmass
m > 0 and S-matrix S has a well-defined short distance scaling limit (performed at
the level of the generating fields ΦS , Φ ′

S). The resulting limit theory has zero mass
and decomposes into a (possibly twisted) chiral tensor product, which differs from
the free current triple (10.78) by the deformations M±

0 � (M±
0 )ϕ± , with ϕ± = S,

and a constant twist ϕ = ±1 (this sign depends on the limit of S). At the time
of writing, these limit theories were completely analyzed only in the simple cases
S = ±1 [33]. The main challenge is to analyze the relative commutants of the half
line inclusions (M±

0 )ϕ±(x±) ⊂ (M±
0 )ϕ± , x± > 0, which, in contrast to the massive

two-dimensional case, are not split.
A common feature of all the constructions discussed in this chapter is the fact that

they are based on data which respect the particle number: Factorizing S-matrices
correspond to scattering processes without particle production, and the deformations
based on Longo-Witten endomorphisms of standard pairs have a structure akin to
second quantization. From this point of view, it is not surprising that the constructed
models have the typical features of integrable models, and their higher-dimensional
generalizations [98] exhibit non-local features (see also the following section for
such effects).

Extensions of this construction program to interactions with particle productions,
as they are typical for relativistic quantum field theories in more than two dimensions
[2], require new ideas. In this context, it is promising to note that in [19], Bischoff and
Tanimoto already found a wave S-matrix which does not preserve the Fock structure
of its representation space.Although this can not be seen as particle creation due to the
considered theory being massless, it is an indication that substantial generalizations
of the program presented here might well be possible.

10.4 Deformations of Quantum Field Theories
by Warped Convolution

This section is devoted to another class of examples of operator-algebraic construc-
tions of QFT models. As before, we follow the general approach of Sect. 10.2 and
proceed by identifying certain Borchers triples. However, in contrast to the inverse
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scattering approach in Sect. 10.3, the dimension d ≥ 2 of Minkowski space is arbi-
trary here, and the input into the construction does not consist of an S-matrix, but
rather of a representation of the translation group.

The point of view taken here is that of deformation theory, i.e. we will start with
a given (arbitrary) Borchers triple (M, U,Ω), and then construct new triples by
“deforming” the algebra19 M. In the situations we consider, U and Ω will be held
fixed.20 Recently, several related deformation methods have been investigated (see,
for example, [3, 98, 120]), of which the approach considered here is a particularly
general and representative example.

Themathematicalmethod to be used for this deformation, thewarped convolution,
has its roots in non-commutative geometry, and will be reviewed in Sect. 10.4.1. The
application to Borchers triples is then presented in Sect. 10.4.2.

10.4.1 Warped Convolutions and Rieffel deformations

In this section we concentrate on the mathematical backbone of the deformation
procedure, and begin by recalling Rieffel’s deformations of C∗-algebras (see [123]
for Rieffel’s original work, and [90, 103] for generalizations in several different
directions).

The setting is aC∗-algebraAwith a strongly continuous automorphicR
d -actionα.

One chooses a non-degenerate inner product on R
d which is normalized to deter-

minant ±1 and will be denoted px for p, x ∈ R
d . As a deformation parameter, we

pick a real matrix Q ∈ R
d×d− which is skew-symmetric w.r.t. this inner product. In

this setting, one wants to deform A by introducing a new product, while keeping the
linear structure and ∗-involution unchanged. Motivated by the desire to formulate an
abstract, C∗-algebraic version of quantization, one considers the integral expression

A ×Q B = (2π)−d
∫

Rd

∫
Rd

dp dx e−i px αQp(A)αx (B) , (10.82)

which is strongly reminiscent of the Weyl-Moyal star product of deformation quan-
tization.21 For A, B in the dense subalgebra A∞ ⊂ A of all elements for which
x 	→ αx (A) is smooth, the above integral exists in a precise oscillatory sense, defined

19Aswe saw in Theorem 10.2.5, wedge algebras are always type III1 factors, and are in fact expected
tobe isomorphic to the uniquehyperfinite type III1 factor in generic cases.Thus “deformingM”does
not mean deforming the (fixed) internal algebraic structure ofM, as in other algebraic deformation
procedures [75]. Rather, “deforming M” means deforming/changing the position of M inside
B(H), i.e. deforming the subfactor M ⊂ B(H).
20However, it is entirely possible to “deform” Borchers triples by keeping the wedge algebra fixed
while changing U and Ω .
21The Weyl-Moyal product (see, for example [77]) features prominently in deformation
quantization [136], where it describes the transition from classical mechanics to quantum
mechanics. In that setting, one considers suitable number-valued functions f, g on the sim-
ple classical phase space R

d (d even) and equips them with the non-commutative product
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as a limit of removing a smooth cutoff. This limit exists in the (Fréchet) topology of
A∞, i.e. in particular A ×Q B ∈ A∞. Furthermore, the new product ×Q is compat-
ible with the star involution and identity element (if it exists) of A, and there exists
a C∗-norm ‖ · ‖Q on (A∞,×Q), completing in which yields the Rieffel-deformed
C∗-algebra (AQ,×Q). In this procedure, Q plays the role of a deformation parame-
ter: Setting Q = 0 results in the old “undeformed” product A ×0 B = AB, and the
C∗-algebras AQ depend on Q in a continuous manner (see [123] for details).

The warped convolution was introduced in [46] as a generalization of a defor-
mation procedure in [78]. It was then thoroughly studied in [53], and we refer to
this article for proofs of all the claims made in this section. Because of its origin in
quantum field theory on non-commutative, “quantized” Minkowski spacetime [78],
it is closely related to the abstract quantization procedure of Rieffel.22

For defining the warped convolution, one uses a concrete setting instead of an
abstract C∗-algebra, namely a Hilbert space H with a unitary strongly continuous
representation U of the translation group R

d , d ≥ 2. As in the Rieffel setting, one
fixes a non-degenerate inner product on R

d (in the applications to QFT, typically the
Minkowski inner product), and a skew-symmetric real matrix Q ∈ R

d×d− .
It is then the aim to deform operators A on H to new operators AQ on the same

Hilbert space. That is, the action of A, Ψ → AΨ on vectors Ψ ∈ H is changed to
A, Ψ → AQΨ , but the product of operators is unchanged. As in the Rieffel setting,
this is accomplished by an integral formula, namely

AQΨ := (2π)−d
∫

Rd
dp

∫
Rd

dx e−i px U (Qp)AU (Qp)−1U (x)Ψ . (10.83)

If A is smooth in the sense that x 	→ U (x)AU (x)−1 is smooth in norm (that is,
A ∈ C∞, where C ⊂ B(H) denotes the C∗-algebra on which the adjoint action of U
acts strongly continuously), andΨ is smooth in the sense that x 	→ U (x)Ψ is smooth
(Ψ ∈ H∞), then this integral exists in an oscillatory sense, and defines a smooth
vector AQΨ ∈ H∞. Thus (10.83) yields a densely defined (smooth) operator AQ . It
is easy to see that setting Q = 0 results in the old operator, A0 = A, so that one can
think of the mapping A 	→ AQ as a deformation of operators.

The mathematical status of these operators is settled in the following theorem.

Theorem 10.4.1 Let A ∈ C∞. Then the map H∞  Ψ 	→ AQΨ (10.83) extends to
bounded (smooth) operator AQ ∈ C∞. More precisely, the map A 	→ AQ is a linear
bijection of C∞ onto itself, such that, A ∈ C∞,

‖AQ‖ = ‖A‖Q < ∞ , (10.84)

(Footnote 21 continued)

( f � g)(y) = (2π)−d
∫

Rd
dp

∫
Rd

dx e−i px f (y + �θp)g(y + x),

where the antisymmetric matrix θ is given by the Poisson bracket.
22See also [118] for another recent closely related approach, drawing from [90].
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where ‖A‖Q denotes the norm of the Rieffel-deformed C∗-algebraCQ, corresponding
to the undeformed C∗-algebra C and action αx (A) = U (x)AU (x)−1.

Definition 10.4.2 Let A ∈ C∞ and Q ∈ R
d×d− . The warped convolution of A is the

operator AQ ∈ C∞ defined by extending (10.83) to all of H.

Having defined the warped convolution (or “warping”, for short), we now sum-
marize its properties. We begin with the algebraic aspects.

Theorem 10.4.3 The warped convolution extends to a representation of the Rieffel-
deformed C∗-algebra CQ. In particular,

(a) Warping carries the operator product into the Rieffel product,

AQ BQ = (A ×Q B)Q , A, B ∈ C∞ , (10.85)

(b) Warping commutes with taking adjoints,

AQ
∗ = A∗

Q , A ∈ C∞ . (10.86)

(c) Furthermore, any U-invariant operator A = U (x)AU (x)−1 is invariant under
warping, AQ = A. In particular,

1Q = 1 . (10.87)

In the light of these results, the warped convolution seems very similar to Rief-
fel deformations, and in fact, it can be viewed as a module version of the Rieffel
deformation [103]. But despite these similarities, warping has some advantages over
the abstract Rieffel setting in application to QFT, in particular when it comes to
comparing different deformation parameters Q1, Q2, or when spectral data of the
translation representation are needed.

The following proposition, listing covariance properties of the warped convolu-
tion, shows that in typical QFT situations (in contrast to the situation in deformation
quantization), several different deformation parameters must appear.

Proposition 10.4.4 Let A ∈ C∞ be smooth and Q ∈ R
d×d− .

(a) The warping procedure is U-covariant,

U (x)AQU (x)−1 =
(

U (x)AU (x)−1
)

Q
. (10.88)

(b) If Ω ∈ H is a U-invariant vector, then

AQΩ = AΩ . (10.89)
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(c) If V is a unitary or antiunitary operator on H such that V U (x)V −1 = U (Mx)

for some invertible matrix M ∈ GL(d, R), then

V AQ V −1 =
(

V AV −1
)

±M QMT
, (10.90)

where MT is the transpose of M w.r.t. the inner product used in the oscillatory
factor in (10.83), and the sign is “+” for unitary V , and “−” for antiunitary V .

The last statement of this proposition applies in particular to the situationwherewe
have a representation of the Poincaré group, and carry out the warped convolution
with the representation of the translation subgroup. In that case, one sees that by
introducing a warping w.r.t. some matrix Q, and insisting on Lorentz symmetry, one
automatically ends up with all Lorentz transformed matrices ΛQΛT , Λ ∈ L↑

+ as
well.

It will therefore be important to also consider situations where (at least) two dif-
ferent deformation parameters Q1, Q2 ∈ R

d×d− enter. We first mention the following
simple lemma.

Lemma 10.4.5 Let A ∈ C∞ and Q1, Q2 ∈ R
d×d− . Then

(AQ1)Q2 = AQ1+Q2 . (10.91)

In particular, the inverse of the warping map A 	→ AQ is given by the negative
parameter, i.e. A 	→ A−Q.

In the context of a Borchers triple (M, U,Ω), we will consider operators A ∈ M
and generate a newwedge algebraMQ by the warped convolutions AQ . Thinking of
locality and commutators between observables in spacelike separated wedges (see
Definition10.2.3(c)), it is clear that also commutators [AQ1, BQ2 ] between operators
with different warping parameters will be relevant.

In general, commuting operators [A, B] = 0 donot give rise to commutingwarped
convolutions, i.e. in general [AQ1 , BQ2 ] �= 0. This holds in particular for Q1 = Q2,
as is clear from the origin of warping in quantization, where a commutative algebra is
deformed into a non-commutative one. However, there does exist an interesting com-
mutation theorem for warped convolutions with opposite deformation parameters Q
and −Q. In this theorem, due to Buchholz and Summers [46], a spectral condition
enters. To understand the relevance of this spectral information, let us first mention
that the warped convolution can also be expressed as

AQ =
∫

d E(x) αQx (A) =
∫

αQx (A)d E(x) , (10.92)

where E is the joint spectral measure of the generators P0, . . . , Pd−1 of the trans-
lations U (x) = exp i Pμxμ (with support the joint spectrum, denoted SpU ), and
αx (A) = U (x)AU (x)−1 as before. Both the above integrals can be defined as strong
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limits of suitably cut off expressions, and then coincide with each other and the
warped convolution AQ .

Whereas in most calculations, the oscillatory form (10.83) is more convenient
to work with, the spectral integral form (10.92) is better suited for establishing the
following compatibility result on the warped convolution A 	→ AQ and its inverse
A 	→ A−Q .

Proposition 10.4.6 Let A, B ∈ C∞ be operators such that [αQp(A), α−Qq(B)] = 0
for all p, q ∈ SpU. Then

[AQ, B−Q] = 0 . (10.93)

This result completes the list of properties of the warped convolution that we will
need in the next subsection, where application to deformations of Borchers triples
are discussed. Besides that application, warped convolutions have by now also been
used in a variety of other situations, such as Wightman QFT [79], QFT on curved
spacetimes [111], Wick rotation on non-commutative spacetime [80], deformations
of quantum mechanical Hamiltonians [112], and quantum measurement theory [5].

10.4.2 Borchers Triples and Warped Convolutions

We now apply the warped convolution to deformations of Borchers triples. We there-
fore start with a fixed but arbitrary d-dimensional Borchers triple (M, U,Ω), d ≥ 2,
according to Definition 10.2.3. The warped convolution will always be carried out
w.r.t. the translations U (x, 1), x ∈ R

d , from the representation U of the triple, the
inner product in the oscillatory integrals will be the Minkowski inner product, and
the deformation parameter Q skew-symmetric w.r.t. this inner product.

The basic idea for deforming (M, U,Ω) is to keep U and Ω unchanged (as
in Sect. 10.3), and replace M by an algebra containing “all AQ , A ∈ M”. Some
remarks are in order here: First, one checks that as a consequence of its half-sided
translational invariance, the wedge algebraM contains a strongly dense subalgebra
M∞ = M ∩ C∞ of smooth elements. Thus the warped convolutions AQ are well-
defined for sufficiently many A ∈ M. However, products of such operators are
typically not of the form CQ for some C ∈ M. This is so because AQ BQ =
(A ×Q B)Q (Theorem 10.4.3(a)), and A ×Q B involves integration over translations
in all directions (10.82). Thus the set {AQ : A ∈ M∞} is typically not an algebra.
One therefore passes to the algebra generated, and writes (with a slight abuse of
notation)

MQ := {AQ : A ∈ M∞}′′ . (10.94)

Note that in view of Theorem 10.4.3(b), MQ is a von Neumann algebra, and using
Proposition 10.4.4(b), one can show that it has Ω as a cyclic vector.
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In order for the so defined triple (MQ, U,Ω) to be a Borchers triple, the deforma-
tion parameter Q has to be chosen in a suitable manner, essentially by adapting it to
the geometry of the right wedge WR . Looking at Definition 10.2.3, it is clear that we
only have to check the conditions in part (c). Since (orthochronous) Poincaré transfor-
mationsU (x,Λ) act on warped convolutions according to (cf. Proposition 10.4.4(c))

U (x,Λ)AQU (x,Λ)−1 =
(

U (x,Λ)AU (x,Λ)−1
)

ΛQΛ−1
, (10.95)

and this is required to be an element of MQ for ΛWR + x ⊂ WR , we should
choose Q in such a way that ΛQΛ−1 = Q for any Lorentz transformation Λ with
ΛWR = WR . Furthermore, since the only commutativity result we have for warped
convolutions is Proposition 10.4.6, we ought to choose Q in such a way that also
ΛQΛ−1 = −Q for any Lorentz transformationΛmapping WR onto its causal com-
plement,ΛWR = −WR . Finally, we have to take into account the energy momentum
spectrum, lying in the forward light cone, which appears in Proposition 10.4.6. These
considerations suggest to consider only admissible matrices Q, defined by the fol-
lowing three conditions:

(i) ΛQΛ−1 = Q for any Λ ∈ L↑
+ such that ΛWR = WR ,

(ii) ΛQΛ−1 = −Q for anyΛ ∈ L↑
+ such thatΛWR = −WR , and j Q j = Q (with

j the reflection at the edge of WR),
(iii) QV + ⊂ WR .

These conditions drastically constrain the form of Q. In fact, Q is admissible if and
only if [78]

Q =

⎛
⎜⎜⎜⎜⎜⎝

0 κ 0 · · · 0
κ 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

(10.96)

for some κ ≥ 0, in case the spacetime dimension is d �= 4. In the physically most
interesting case d = 4, there is a little more freedom23 for choosing Q. In this case,
Q is admissible if and only if

Q =

⎛
⎜⎜⎝
0 κ 0 0
κ 0 0 0
0 0 0 κ ′
0 0 −κ ′ 0

⎞
⎟⎟⎠ ,

with parameters κ ≥ 0, κ ′ ∈ R.

23This is related to the fact that Q is skew-symmetric and for d > 4, the edge of WR is fixed by the
subgroup SO(d − 2) of rotations in the edge.
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The condition (iii) on admissible Q’s implies that for A ∈ M (localized in WR)
and B ∈ M′ (localized in −WR), one does not only have [A, B] = 0, but even
[αQp(A), α−Qq(B)] = 0 for all p, q ∈ V +. Since the energy-momentum spectrum
is contained in V +, we are in the situation to apply Proposition 10.4.6, which is the
key to the following result.

Theorem 10.4.7 Let (M, U,Ω) be a d-dimensional Borchers triple, d ≥ 2, and
let Q be admissible (see above).

(a) The warped triple (MQ, U,Ω) is again a d-dimensional Borchers triple.
(b) The modular data ΔQ, JQ of (MQ,Ω) coincide with those of the original triple,

i.e.

ΔQ = Δ, JQ = J . (10.97)

(c) The commutant of the deformed wedge algebra is the inverse deformation of the
original commutant,

MQ
′ = M′−Q .

In view of this theorem, warping yields a one-parameter family (two-parameter
family in dimension d = 4) of “new” Borchers triples, which can again be taken
to generate QFT models. In particular, when applying this method to a Borchers
triple which is explicitly known (such as that of a free field theory, or of any other
completely constructed QFT), it yields new QFT models in which Q plays the role
of a coupling constant.

In comparison to the construction in Sect. 10.3,wherewe started fromanS-matrix,
the input into the construction by warped convolution is of a more abstract nature.
It is therefore necessary to investigate the physical properties of these models. To
begin with, there is the question how much the theory given by the deformed triple
(MQ, U,Ω) depends on Q. Since the algebras MQ are generically expected to be
isomorphic to each other (generically being isomorphic to the unique hyperfinite
type III1 factor), any argument for showing that the Borchers triples (M, U,Ω) and
(MQ, U,Ω), Q �= 0, are not equivalent, must also take into account the represen-
tation U . Indirect arguments to this effect exist.

On the one hand, one can consider massive theories, in which scattering states
can be constructed. Then, using methods developed in [26], one can show that the S-
matrix elements of collision processes with two incoming and two outgoing particles
depend on Q via a factor eipQq (with p, q the momenta of the incoming particles)
[46, 78]. Hence at least in this case, one does have a true dependence on Q, and
inequivalence of the models with different values of Q. In particular, one sees in
the scattering data that the warping procedure changes the interaction of the model
under consideration.24

24There is also a sharp difference between the undeformed and deformed case in the thermal equi-
librium states. In the deformed (Q �= 0) situation, the thermal representation leads to a decoupling
of the noncommutativity parameters ΛQΛ−1 related to different wedges [101].
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For comparison with the approach taken in Sect. 10.3, it is also instructive to
consider the two-dimensional case. In this case, the deformation parameter must be
of the form

Q =
(
0 κ

κ 0

)
, κ ≥ 0 .

In the case of the representationU = Um given by the second quantization of the irre-
ducible U1,m with fixed mass m > 0 (10.25), and using the rapidity parametrization
(10.26), one notes that

eipm (θ ′)Qpm (θ) = eiκm2 sinh(θ−θ ′) =: S(θ − θ ′) (10.98)

is a (scalar) S-matrix in the sense of Definition 10.3.1. In fact, one can show that
for the Borchers triple (M, U,Ω) of the massive scalar field in two dimensions, its
deformation (MQ, U,Ω) gives rise to a QFT which is unitarily equivalent to the
integrable model constructed in Sect. 10.3, with the S-matrix (10.98) [78].

Note, however, that this S-matrix is not regular in the sense of Definition 10.3.8,
because it is unbounded on any strip S(−ε, π + ε), ε > 0. Hence the modular
nuclearity results of Sect. 10.3.3 do not apply, so that we cannot conclude existence
of local observables for this model.

The models obtained by warped convolution have certain non-local features in
general, which can also be seen by other arguments: In application toWightmanQFT,
one observes that warping modifies the n-point functions in a non-local manner [79,
129]. In the general case, one can show (in dimension d ≥ 3, and under a mild
assumption on the energy-momentum spectrum, see [53]) that if one starts from a
QFT which has the vacuum Ω as a cyclic vector for its double cone algebras, thenΩ

will not be cyclic for the double cone algebras of the QFT generated by the deformed
Borchers triple (MQ, U,Ω), Q �= 0.

These non-local aspects of the warped models show that the deformation proce-
dure employed here is still too simple to yield realistic quantum field theory models
in physical spacetime. To find deformation methods which are also compatible with
strict localization in four dimensions is the subject of ongoing research.

In conclusion, we also mention how the inherent non-locality can be understood
by considering the origin of the warped convolution in quantum field theory on
noncommutativeMinkowski space [78]: The initialmotivation to consider thewarped
convolutionwas to define quantumfield operators on a space inwhich the coordinates
X0, . . . , Xd−1 do not commute, but rather satisfy a relation of the form

[Xμ, Xν] = i Qμν , [Qμν, Xκ ] = 0 , (10.99)

where Q is either a (non-zero) matrix times an identity element in the algebra gen-
erated by the Xμ, or an operator with spectrum consisting of a Lorentz orbit of such
matrices [60] (Chap.7). On a space with non-commuting coordinates, localization in
bounded regions is impossible. This fact is reflected in the weaker than usual local-
ization properties of the algebras constructed by warped convolution, and shows that

http://dx.doi.org/10.1007/978-3-319-21353-8_7
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more refined deformation methods are needed to obtain strictly local quantum field
theories in higher dimensions.
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quantum product, 297
rotation, 32

Y
Yang-Feldman approach, 315
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