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Foreword

The term Hybrid Machine Translation suggests the existence of pure forms of
machine translation, often associated with “statistical” and “rule-based” approaches.
However, there is risk that the contrast between the “statistical” and the “rule
based” is taken literally and could be interpreted as a mere mismatch between two
paradigms: the old and the new. However, I personally think that any clash between
the two paradigms has come about merely due to historical reasons. Therefore, this
book on hybrid MT should be taken as an effort at combining the obvious merits of
both approaches, directly aiming for improved MT performance.

The paradigmatic shift from linguistic theorizing to data-driven methods, which
took place two decades ago in computational linguistics, cannot be taken as a license
to dismiss the linguistic view on language data. At its core, the data-driven approach
(usually called statistical) concentrates on the problem of modeling the expected
similarities between training data and future test data. This allows the data-driven
approach to target performance phenomena usually shoved aside in traditional
linguistic approaches. Examples of such phenomena are ambiguity resolution, the
graded scale of idiomatic language use, and the shifting translation distributions
depending on the domain of language use (as opposed to so-called broad-coverage
systems).

Yet, the mere focus of the data-driven approach on the expected similarities
between training and test data carries with it major risks. First and foremost, there
is the temptation to forget the nature of language data and consider it as mere
streams of bits and bytes. Obviously, caring for the frequent has the risk of forgetting
the long tail of low-frequency phenomena. It has often been observed that human
language processing exhibits effects pertaining to latent structure, often collectively
put in linguistics under recursive and graphical structures. If the data is viewed
correctly, it could be that low-frequency phenomena actually belong together with
other phenomena and, hence, are not of low frequency after all. Despite major
efforts spent on developing hierarchical models, the data-driven approach has yet to
prove that it can deal with phenomena, such as the interaction between morphology
and syntaco-semantic roles, usually expressed at the surface as word order or
morphological markers including agreement.
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vi Foreword

All along, since the early days of statistical MT, there have been efforts
of exploiting statistics over linguistic structures, including syntax, morphology,
semantic roles, word senses, and so on. Unfortunately, these efforts have been
rewarded with limited measurable success over the linguistically agnostic approach.
Admittedly this is not only due to the fact that the measures of success (MT
evaluation) themselves are likely too coarse to be meaningful in various scenarios.
For example, linguistic syntactic structures could be useful for translating what may
be viewed as the “compositional” part of the data. But syntax-driven translation
has failed to explain human translators’ choices, which is (more often than
not) “non-compositional” relative to constituency syntax. Crucially, the aspect of
“compositionality” itself depends completely on the choice of structures and the
accompanying composition operators. Hence, when syntax is used to enrich (rather
than constrain) the statistical approach, it could often give major improvements
in translation quality. In other words, within the data-driven approach, linguistic
structure is as useful as it can be incorporated to model the similarities between
training and test data.

This book on hybrid approaches to MT presents a number of direct efforts
at striking a certain balance between existing MT systems of both paradigms.
It is undoubtedly driven by an engineering motivation to obtain improved per-
formance over systems that do not combine aspects from both paradigms. The
hybrid approach, as it is called these days, symbolizes the drive at obtaining
improved systems which are useful for the translation industry, which attaches
major importance to more effective translation tools. The research avenue leading
to linguistically inspired, data-driven MT has rather similar goals but might take
a different perspective. In any case, my personal view is that there is truly
no contradiction whatsoever between using linguistic structure and the goals of
statistical, data-driven modeling. To put it in popularized terminology: Statistics
can be pursued as mere counting. Yet, counting must start out from an explicit
model which transfers the data from mere bits and bytes to a suitable linguistic space
where new regularities are exposed, so that counting becomes more meaningful for
language translation.

Chair of Computational Linguistics Khalil Sima’an
Institute for Logic, Language and Computation (ILLC)
University of Amsterdam (UvA)
Amsterdam
The Netherlands



Preface

Nowadays, most important developments in Machine Translation (MT) are achieved
via combining data-driven and rule-based techniques. These combinations typically
involve hybridization of different traditional paradigms, such as the introduction of
linguistic knowledge into statistical MT paradigms, the incorporation of data-driven
components into rule-based paradigms, or statistical and rule-based pre- and post-
processing for both types of MT architectures. This volume aims at giving (in an
introductory chapter) an overview of the field as well as publishing the latest relevant
research conducted by linguists and practitioners from different multidisciplinary
areas working on hybrid MT.

The work on hybrid MT is typically scattered over conference proceedings and
mixed with other publications about research on MT or text analysis. Therefore, it
is difficult for the reader interested in hybrid approaches to get a condensed topic-
driven overview on current research in this field. Inspired by the workshop series
on Hybrid Approaches to Translation (HyTra), this volume contains some of the
most suitable publications from the first three editions, with the aim of providing an
overview on some of the most relevant research topics in the area.

In the introductory chapter, the book provides an overview and classification
of the different types of hybrid architectures. The other chapters are classified
accordingly, so that the reader, e.g., who is interested in the latest research on a
specific architectural variant, can quickly find the respective section by following
the structure of the book. The book is meant to address the needs of readers who are
interested in introductory overviews on a number of topics as well as of readers who
would like to be informed about some of the latest research in the respective areas.
Thus the book tries to serve two purposes, and it is unique in this respect.

The book will be of interest primarily for specialists in MT, but is also relevant
to researchers in computational linguistic, machine learning, and data mining, to
translators and managers of translation companies, and to professionals who are
interested in recent progress on tools for automating the translation process. The
book is organized as follows: the first chapter gives an introduction to hybrid MT,
presenting an overview on the history, the state-of-the-art, and the prospects. Then,
the remainder of the book is divided into three parts:

vii



viii Preface

• Part I covers approaches that add linguistic knowledge into statistical systems.
The chapters in this part include: imbuing statistical MT with linguistic knowl-
edge, hybrid language models, hybrid word alignment, and introducing syntax in
statistical MT.

• Part II overviews how adding machine learning can help MT. The chapters
are about supplementing rule-based MT using machine learning and about
performing language-independent hybrid MT.

• Part III reports on hybrid Natural Language Processing (NLP) tools that have
been shown useful for MT. Three chapters explain how to use MT in the
following tools: dependency parsers, transductions grammars, and word sense
disambiguation.

We would like to thank all contributors to this book, the reviewers, the partici-
pants, and the invited speakers of the first three editions of the HyTra workshop.
Many thanks also to the publisher, the series editors, and the typesetting and
production team. In particular, we would like to highlight the excellent and more
than pleasant cooperation with Federica Corradi dell’Acqua and Ed Hovy.

Barcelona, Spain Marta R. Costa-jussà

Marseille, France Reinhard Rapp

Barcelona, Spain Patrik Lambert

Heidelberg, Germany Kurt Eberle

Singapore, Singapore Rafael E. Banchs

Leeds, UK Bogdan Babych

March 2016



Contents

Hybrid Machine Translation Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Cristina España-Bonet and Marta R. Costa-jussà

Part I Adding Linguistics into SMT

Controlled Ascent: Imbuing Statistical MT with Linguistic
Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
William D. Lewis, Chris Quirk, and Qin Gao

Hybrid Word Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Santanu Pal and Sudip Kumar Naskar

Syntax-Based Pre-reordering for Chinese-to-Japanese
Statistical Machine Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Dan Han, Pascual Martínez-Gómez, and Yusuke Miyao

Part II Using Machine Learning in MT

Machine Learning Applied to Rule-Based Machine Translation . . . . . . . . . . . 111
Annette Rios and Anne Göhring

Language-Independent Hybrid MT: Comparative Evaluation
of Translation Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
George Tambouratzis, Marina Vassiliou,
and Sokratis Sofianopoulos

Part III Hybrid NLP Tools Useful for MT

Creating Hybrid Dependency Parsers for Syntax-Based MT . . . . . . . . . . . . . . . 161
Nathan David Green and Zdeněk Žabokrtský
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Hybrid Machine Translation Overview

Cristina España-Bonet and Marta R. Costa-jussà

Abstract This survey chapter provides an overview of the recent research in
hybrid Machine Translation (MT). The main MT paradigms are sketched and
their integration at different levels of depth is described starting with system
combination techniques and followed by integration strategies led by rule-based and
statistical systems. System combination does not involve any hybrid architecture
since it combines translation outputs. It can be done with different granularities
that include sentence, sub-sentential and graph-levels. When considering a deeper
integration, architectures guided by the rule-based approach introduce statistics to
enrich resources, modules or the backbone of the system. Architectures guided by
the statistical approach include rules in pre-/post-processing or at a inner level which
means including rules or dictionaries in the core system. This chapter overviewing
hybrid MT puts in context, introduces, and motivates the subsequent chapters that
constitute this book.

1 Introduction

Machine translation (MT) has been a very active research field specially in the last
15 years. The rise of Statistical MT (SMT) helped in the spreading and diffusion of
MT by generating systems that, given availability of parallel corpora, can translate
any text with an acceptable quality at least for a basic understanding. But SMT
seems to have reached a plateau and, in parallel with its growth, several approaches
have been developed to join the best of the different MT paradigms under the label
of Hybrid MT (HMT).
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Department of Computer Science, TALP Research Center, Universitat Politècnica de
Catalunya – Barcelona Tech, Jordi Girona 1-3, 08034 Barcelona, Spain
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2 C. España-Bonet and M.R. Costa-jussà

Fig. 1 Number of works appearing in the machine translation archive published since 2000 on
different MT paradigms. See text for a wider description

The number of papers published on every topic can be a qualitative measure of
the aforementioned. Figure 1 shows the number of works that appear in the Machine
Translation Archive1 related to MT and HMT. The plot begins when the number of
HMT articles starts to emerge, back in the 90s there are almost no contributions.
The measure is only qualitative for several reasons: (1) although most of conference
papers are in the list, not all of the journal articles appear; (2) additional works such
as tutorials or invited talks are considered; and (3) there is overlap among lists. The
trends seen in the plot are clear. Most of the production in MT is currently due to
SMT, the number of works is an order of magnitude higher than for the other MT
paradigms. The other leading approach, Rule-based MT (RBMT), is in general more
complex, that is, its development is costly and time-consuming. Although these
systems are previous to the empirical ones, most of the systems were commercial
at the beginning and the production in terms of papers has been smaller. Finally,
another empirical approach, Example-based MT (EBMT), was dominant around
the turn of the century and up to 2002 the number of works on EBMT was higher
than on SMT. Since then, the success of SMT has affected EBMT and its production
is currently minor.

1http://mt-archive.info

http://mt-archive.info


Hybrid Machine Translation Overview 3

During the last decade also hundreds of papers on HMT have been published.
The system types in the Archive (those shown in the plot) distinguish among HMT,
Multi-Engine systems (ME) and System Combination (SC). The main difference is
that for the latter the final output is created by combination of the individual outputs,
that is, there is no real integration of the individual engines. If the combination
is done in parallel one can talk of ME systems; SC is more general and would
also include cases where the combination is done sequentially as a pre/post-edition.
In the subsequent state of the art, SC also includes works on ME translation. On
the contrary, HMT generally implies an integration of the system architectures.
However, limits are fuzzy and some works can be classified within the three groups.

In this survey we discriminate between SC and HMT according the degree of
mixture between the individual system architectures. System Combination per se
was consolidated with the creation of several editions of devoted tasks into the
MT evaluation campaigns. The NIST Open Machine Translation Evaluation2 of
2009 and 2012 had a System Combination Task and so was also the case of the
Workshop on Statistical Machine Translation3 between 2009 and 2012. In 2011, in
the Workshop on Applying Machine Learning Techniques to Optimise the Division
of Labour in Hybrid Machine Translation,4 the organisers defined a shared task
where participants were asked to combine the output of several systems of different
types.

At the same time, in 2011, the International Workshop on Using Linguistic
Information for Hybrid Machine Translation5 took place. This workshop was
specific for HMT and covered both HMT systems themselves and their evaluation.
Another series of workshops is the trilogy of Hybrid Approaches to Machine
Translation (HyTra) in 2012,6 20137 and 2014.8 Finally, in 2015, an Special Issue
on Hybrid Machine Translation: Integration of Linguistics and Statistics, will be
published in the Computer Speech and Language Journal. The present volume is
an outcome of the HyTra workshops with selected contributions from the authors
describing systems and tools.

Before going into these works, the following sections of this chapter present
some of the previous approaches to HMT. First, Sect. 2 describes the main charac-
teristics of RBMT and SMT paradigms that will serve to understand how hybrid
systems can be build on them. Then, Sect. 3 summarises recent work on SC at three
different levels: sentence, subsentencial and search graph levels. Sections 4 and 5
summarise a compilation of hybrid systems lead by an SMT and RBMT engine
respectively. Most of the contributions of this volume can be included within this

2http://www.nist.gov/itl/iad/mig/openmt.cfm
3http://www.statmt.org/
4http://www.dfki.de/ml4hmt, http://www.eamt.org/news/news_cfp_ml4hmt.php
5http://ixa2.si.ehu.es/lihmt2011/
6http://www-lium.univ-lemans.fr/esirmt-hytra/hytra.php
7http://hytra.barcelonamedia.org/hytra2013/
8http://parles.upf.edu/llocs/plambert/hytra/hytra2014/

http://www.nist.gov/itl/iad/mig/openmt.cfm
http://www.statmt.org/
http://www.dfki.de/ml4hmt
http://www.eamt.org/news/news_cfp_ml4hmt.php
http://ixa2.si.ehu.es/lihmt2011/
http://www-lium.univ-lemans.fr/esirmt-hytra/hytra.php
http://hytra.barcelonamedia.org/hytra2013/
http://parles.upf.edu/llocs/plambert/hytra/hytra2014/


4 C. España-Bonet and M.R. Costa-jussà

category. At the end of every of these three sections there is a recap table with the
references of the most relevant works. Finally, an overview of the book and future
research directions are given in Sect. 6.

2 Machine Translation Paradigms

Fully automated MT systems can be classified according to their main paradigm as
seen in Fig. 2 in rule-based and empirical systems. The distinctive characteristic is
the resources they use. Rule-based systems mainly use grammars and dictionaries
to do the translation. They need a group of human experts to establish the set of
rules. This is usually slow, expensive and not portable, but one obtains high quality
syntactics for the translated output. Within empirical systems two main approaches
can be pointed out, both of them relying on parallel data: example-based MT and
statistical MT. For EBMT new translations are formed on the basis of the previously
compiled translations, for SMT also a probabilistic model is considered. These
systems are specially good with lexical selection and fluency but are worse than the
RBMT ones grammatically because long dependencies are not taken into account.

Nowadays, this is a naïve classification since most of the systems use both data
and rules at some point. Think for example of how simple rules can be applied to
deal with dates in statistical systems or lexicons extracted from parallel corpora can
be used in rule-based systems. Those systems that explicitly merge the approaches
in a thorougher way can be included within a third family with the denomination of
hybrid systems.

In the following subsections we describe the RBMT and SMT paradigms paying
special attention to the points that can be complemented with other approaches.

Fully Automated Machine Translation Systems

Rule-based systems

Direct Transfer Interlingua

Hybrid systems Empirical systems

Example-based
Translation

Statistical Machine
Translation

Neural MT

Phrase-based
Hierarchical

Phrase-based
Syntax-based

Fig. 2 Taxonomy of fully automated machine translation systems. Hybrid systems combine
features from the other architectures. Neural MT is a new MT technology (e.g. Kalchbrenner and
Blunsom 2013; Bahdanau et al. 2014). Its discussion goes beyond the scope of this book
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2.1 Rule-Based Machine Translation

The amount and the linguistic techniques used in a translation system distinguishes
in direct, transfer and interlingua the (RB)MT approaches as was first depicted in
the Vauquois triangle (Vauquois 1968) (Fig. 3). The direct method shown at the
base of the triangle does a straightforward translation word-by-word. In transfer
systems there is a syntactic analysis of the sentences of the source language (SL)
which results in an abstract representation of the sentences. This representation
is transferred to the abstract representation of the target language (TL), and the
output is generated from it. For the interlingua approach, the abstract representation
is assumed to be the same for all languages and there is no need for the transfer step.

2.1.1 Transfer Systems

Most of the general-domain RBMT systems are transfer systems; interlingual
systems, when built, are more suitable for specific domains or even controlled
languages [see for instance Ranta (2011) and Kauers et al. (2002)]. Not all
transfer systems analyse the source sentence at the same depth. Shallow transfer
systems consider morphology and at most a shallow parsing (syntactic transfer).
Deep transfer systems use a complete parse tree and possibly semantics (semantic
transfer). In both cases, the sequence analysis-transfer-generation is respected.

During the analysis step, one needs processors in the SL to parse the input, a
grammar and a lexicon. Afterwards, a grammar is used for the structural transfer
and a bilingual lexicon for the lexical transfer. Finally, a generation grammar and
possibly a lexicon in the TL generate the final translation. All these rules and
dictionaries that are, in principle, hand-crafted can also be learned from data. In
a same way as statistical parsers can be used for the analysis of the source sentence,
monolingual or bilingual corpus can be used to obtain bilingual lexicons or learn
the transfer rules. It is on this point that techniques used in SMT systems can be

Fig. 3 Schematic Vauquois
triangle (Vauquois 1968).
(RB)MT systems are divided
according to the amount of
linguistic analysis applied on
the source language (SL).
With the deepest analysis, the
SL is converted into an
abstract interlingual
representation (IL) before the
generation of the target
language (TL)

SL TL

Direct

IL

-a
na

ly
si

s+

+generation-

Transfer
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Grammar rules

Lexicons

RBMT

Constituents

Corpus

SMT

Statistical
Phrases

Extraction

Generation

Enrichment

Fig. 4 Shallow loans and exchanges between the resources of RBMT and SMT paradigms (above)
and their side products (below). Some hybrid systems are build by taking advantage of these
relations

very useful (Fig. 4). Statistical systems can also be used as a pre-processing or post-
processing step in order to help in disambiguation and choose among the different
translation options, but, as we will see in the following section, it is more common
the other way around and rules are sometimes used as a pre-process in SMT systems
to reorder the input sentence or as a post-process to choose grammatically correct
sentences.

2.2 Statistical Machine Translation

SMT systems estimate probabilistic models (language and translation models) by
frequency counts in corpora. For a language model, monolingual data in the target
language is needed; translation probabilities are extracted from relations in both
the target and the source language and therefore parallel data are used to build
the translation model. At the end, the best translation in a statistical system is that
maximising the product of models.

Differences in SMT systems mainly arise from the definition of the minimal unit
for translation (word vs. phrase vs. constituent). Dictionaries and/or constituents
obtained with RBMT systems can help in the translation as a complement to the
parallel corpus, and rules can be used for reordering the input or the output as a
pre-process or post-process respectively (Fig. 4).

2.2.1 Phrase-Based Systems

Phrase-based translation (PBSMT) (Koehn et al. 2003) is the natural evolution of
word-to-word translation. When considering a phrase instead of a word, the (small)
context and the local reordering of every word is taken into account. A phrase here
is just a sequence of words but it is not necessarily a linguistic element consistent
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with a word alignment between the source and the target (Koehn 2010: 131). This is
positive because the number of phrases that can be extracted from a corpus is larger
than the number of syntactic elements and it allows more freedom in the translation.
But on the other hand, the extraction of noisy phrases leads to non-grammatical
translations.

2.2.2 Syntax-Based Systems

Syntax-based systems (SSMT) (Wu 1997; Quirk et al. 2005) implement the opposite
approach and translate syntactic elements. The basic idea is to use synchronous
grammars which are able to generate the source and the target simultaneously.
Synchronous grammars are learned from parallel corpus and that makes the
approach very slow in comparison to the PBSMT systems.

2.2.3 Hierarchical Phrase-Based Systems

Hierarchical phrase-based systems (HPBSMT) (Chiang 2005) strike a balance
between pure lexical PBSMT and SSMT. A hierarchical phrase consists of words
and subphrases and this hierarchy is intended to capture reorderings among phrases.
The hierarchical phrase pairs are obtained from a synchronous context-free grammar
(CFG) learned from parallel corpora without syntactic information. As the authors
explain, the system is formally syntax-based as it uses synchronous CFG, but not
linguistically syntax-based, because the parallel data does not include syntactic
information.

3 System Combination

A popular research direction for bringing together different paradigms in MT is
system combination, which consists in selecting the highest quality output among
various options from multiple MT engines. Therefore, this type of combination does
not aim at integrating system architectures, but only the translation outputs from
systems as the ones described in the previous section.

System combination in the field of MT has originally been inspired by previous
successful works in the area of speech recognition (Fiscus 1997). Basically, MT
outputs may be combined at three different levels: sentence, subsentencial, or search
graphs. The combination for the sentence and subsentencial levels takes either the
best output sentence of each available system or a list of n-best outputs. In the
following, we make an overview of each category and collect references from all
categories in Table 1.
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Table 1 System
combination summary

Granularity References

Sentence-level Callison-Burch and Flournoy
(2001), Nomoto (2004), Akiba
et al. (2002), Costa-jussà et al.
(2007), Formiga et al. (2013)

Subsentencial-level Frederking and Nirenburg (1994),
Bangalore et al. (2001), Jayaraman
and Lavie (2005), Matusov et al.
(2006), Sim et al. (2007), Rosti
et al. (2008), He et al. (2008),
Mellebeek and van Genabith
(2006)

Graph-level Li et al. (2009), DeNero et al.
(2010), Duan et al. (2011), Okita
and van Genabith (2012)

3.1 Sentence-Level Combination

This is the level with the lowest granularity. At this level, system combination has
been widely influenced by the use of the information provided by n-gram language
modelling (Callison-Burch and Flournoy 2001; Nomoto 2004), which assume that
the best translation comes from the most fluent translation. Akiba et al. (2002)
take a step forward and propose two different methods that use a combination
of language and translation models to choose the best translation. The authors in
Costa-jussà et al. (2007) combine the outputs of an n-gram-based and a PBSMT
system by using the scoring of both systems. These scores include language and
translation models as in the previous works, but also the other features of standard
SMT systems. Recent approaches such as that in Formiga et al. (2013) use SVMs
and random forests together with several confidence measures to re-rank an n-best
list of translation outputs.

3.2 Subsentencial-Level Combination

One step further in obtaining the best translation output is done by merging
hypothesis at the level of words or phrases. One of the first works in this direction
can be found in Frederking and Nirenburg (1994), which combines three MT
engines from different nature into a chart data structure. This work is even previous
to the first references on sentence-level combination systems, and to obtain the
best translations they use several heuristics to estimate the quality of each chunk.
Some years later, Bangalore et al. (2001) used a monotonic alignment to construct
a confusion network from several translation hypotheses. Alignments are crucial in
the combination and, soon after, Jayaraman and Lavie (2005) and Matusov et al.
(2006) propose a non-monotonic alignment. In the latter, the context of the whole
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document is taken into account. Then, Sim et al. (2007) extracts alignments with the
Translation Error Rate (TER) measure (Snover et al. 2006). Rosti et al. (2008) uses
confidence scores derived from generalised linear models and He et al. (2008) uses
indirect HMM alignments.

Within another line of subsentencial combination, Mellebeek and van Genabith
(2006) do not rely on word alignments of output hypotheses, but prepare the
input sentence for multi-engine processing. They do this by using a recursive
decomposition algorithm that produces simple chunks as input to the MT engines. A
consensus translation is produced by combining the best chunk translations, selected
through majority voting, a trigram language model score and a confidence score
assigned to each MT engine.

3.3 Search Graph-Level Combination

At the top level of granularity, there is the proposal of integrating consensus
translations at decoding time. This is the most recent approach within system
combination and also the one that is closer to HMT. In Li et al. (2009) both
partial and full hypotheses are re-ranked during the decoding phase directly using
consensus between translations from different systems. According to the authors,
this is different from system combination since decoders collaborate by exchanging
partial translation results and not final n-best lists, but this is the case for several
systems presented in this section. Also the authors in DeNero et al. (2010) define
their system as a forest-based technique that unifies consensus decoding and
system combination. The approach is able to deal with systems with heterogeneous
structures, the only request is that every system to be combined can output a
forest or lattice of translations. In both cases, collaborative decoding (Li et al.
2009) and model combination (DeNero et al. 2010), the systems outperform their
corresponding baseline in terms of the BLEU score (Papineni 2002).

Work by Duan et al. (2011) presents hypothesis mixture decoding, a new decod-
ing scheme that performs translation reconstruction using hypotheses generated by
multiple component systems. This decoding involves two decoding stages: first,
each component system decodes the source sentence independently; second, a new
search space is constructed by composing existing hypotheses produced by all
systems using a set of rules, and a new set of features is used to seek the final
best translation within this new constructed search space. Finally, we mention a
system combination strategy that uses Minimum Bayes Risk (MBR) decoding.
Under certain hypotheses, the authors in Okita and van Genabith (2012) develop
a new MBR decoding strategy that exploits a larger hypothesis space compared
with previous works. The final system improves from 1 to 10 % on the BLEU score
depending on the language pair.
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4 Hybridisation Lead by an SMT System

A second way of combining more than one translation engine is by a hybridisation
between approaches. This hybridisation is useful to compensate the weak points of
an approach with the strong points of another one. Statistical systems can be built
whenever there are parallel corpora available and the quality of the translation is
affected by the amount of data. Since lexical selection is modelled from these data,
a good lexical choice and fluency are the strong points of SMT systems when data on
the specific domain is available. On the bad side, syntax and long distance structures
are more difficult to catch even with lots of data [see Costa-jussà et al. (2012) for a
review].

This section shows how statistical systems try to improve their global syntax
and grammaticality. To do so, SMT has integrated features from RBMT systems
at different stages including at a superficial level such as using rules at pre/post-
processing or at a deep level such as augmenting the phrase table with RBMT
entries. See Table 2 for a summary of this classification.

4.1 Pre/Post-processing Integration

There are popular approaches that use pre-processing rules to reorder source
sentences to better match target sentences. These approaches include human written
rules for different languages (Xia and McCord 2004; Collins et al. 2005; Wang et al.
2007; Patel 2013; Hatakoshi et al. 2014) or automatically extracted rules with non-
linguistic knowledge (Costa-jussà and Fonollosa 2006) or with syntactic knowledge
(Khalilov and Fonollosa 2011). In the former studies, specific rules are designed for
English–French (Xia and McCord 2004), German–English (Collins et al. 2005),
Chinese–English (Wang et al. 2007), English–Hindi (Patel 2013) and Japanese–
English (Hatakoshi et al. 2014). In the latter cases, when extracting automatic rules,
one cannot really say that the system is integrating RBMT knowledge.

A different type of pre-processing rules are those considering normalisation
issues in order to deal, for example, with data noise, chat or informal languages

Table 2 Hybrid systems lead by SMT: summary

Integration level References

Pre/post processing Xia and McCord (2004), Collins et al. (2005), Wang et al. (2007), Patel
(2013), Hatakoshi et al. (2014), Costa-jussà and Fonollosa (2006),
Khalilov and Fonollosa (2011), Formiga et al. (2012), Lewis et al.
(2013), Rudolf (2014), Farrús et al. (2011)

Core system Nießen and Ney (2004), Vogel and Monson (2004), Okuma (2008),
Eisele et al. (2008), Sánchez-Cartagena et al. (2016), Chen and Eisele
(2010), Ahsan et al. (2010), Li et al. (2011)
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(Lewis et al. 2013). Normally, this type of pre-processing is done in most of the
SMT systems and it may not be considered as a hybrid technique, unless it is quite
complete and sophisticated.

There are some approaches that use post-processing rules in standard SMT
system to solve morphology generation problems, that is, not being able to
generate all morphological variations from the target language. In these cases, the
authors have proposed a combination of machine learning and the introduction of
dictionaries (Formiga et al. 2012) to generate morphological forms that have not
been observed in the training corpus. In the literature, one can find a previous study
(Toutanova et al. 2008) in a similar direction, the main differences are the language
pairs used, the morphology generalisation and the way of recovering the inflection
information. However, the latter study does not use dictionaries and, again, it may
not be considered hybrid.

From another perspective, Rudolf (2014) implements an automatic rule-based
tool capable of post-editing SMT outputs. This tool, named Depfix, integrates
several NLP tools to obtain analyses of the input sentences, and it uses a set of rules
to correct common or serious errors in MT outputs. Depfix is currently implemented
only for English-to-Czech translation direction.

Finally, Farrús et al. (2011) have compiled a set of both pre-processing and
post-processing rules to solve normalisation problems typical from noisy corpora.
This compilation is ad-hoc for Spanish–Catalan. Grammatical categories are used to
formulate rules for solving problems with apostrophes, clitics, capital letters at the
beginning of sentences, the relative pronoun cuyo and polysemy disambiguation.

4.2 Core Integration

SMT systems have also used rules at a deeper level. An early work from 2004
by Nießen and Ney proposes the construction of hierarchical lexicon models on
the basis of equivalence classes of words. Both Vogel and Monson (2004) and
Okuma (2008) have introduced dictionaries into phrase tables to reduce unknown
words. The former augments the dictionary with morphological forms and assigns
probabilities in a Chinese-to-English translation system. The latter focuses on the
challenge of learning a context for words in dictionaries by using high-frequency
words and replacing contexts.

Eisele et al. (2008) increase the standard phrase table with entries obtained
from translating the data with several RBMT systems. The resulting phrase table
combines statistical phrase pairs with phrase pairs generated by linguistic rules.
The work is extended in Chen and Eisele (2010) by integrating a commercial
RBMT system with a hierarchical SMT system and extracting rules from RBMT
translations. The hybrid system uses the lexicons from both systems as well as
local syntactic constructions defined in the RBMT system. Translation quality is
improved on out-of-domain tests according to BLEU (�1.5 points). A similar
study is conducted by Sánchez-Cartagena et al. (2016) using a shallow-transfer
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RBMT system. In this case, both automatic and manual evaluations showed a clear
improvement of translation quality when only small corpora are available and when
the domain to translate was generic.

In 2010, Ahsan et al. focused on integrating local and long reorderings as well
as the generation module from a RBMT system into the core translation model
of a standard statistical system. These are key aspects in English–Hindi MT and
with the hybridisation they achieved significant improvements in terms of automatic
evaluation metrics (BLEU) and subjective metrics [SSER (Nießen 2000)]. A bit
later, Li et al. (2011) integrates manual rules into a hierarchical SMT system (Chiang
2007) in the context of patent translation. The key idea is to propose a feedback
selecting algorithm for manually acquired rules in patent translation using automatic
evaluation, which picks out manually acquired rules that benefit MT quality.

5 Hybridisation Lead by a RBMT System

The last group of hybrid translation systems corresponds to those where the heart
of the engine is rule-based. These systems are costly in time and human effort
since, traditionally, dictionaries and rules were hand-made. However, with a correct
parsing of the source and good generation rules, RBMT systems produce better
translations from a syntactic point of view than pure data-based systems, and
besides, they are able to deal with long distance dependencies, agreement and
constituent reordering. On the other hand, the nature of data-driven systems makes
them better at lexical selection and fluency [see Costa-jussà et al. (2012) for a
review].

In order to improve the weak points just mentioned, pure RBMT systems use
more every day components based on corpora. The essence of the components
depends on the characteristics and needs of every system and range from automa-
tising the acquisition of dictionaries or rules to generate translations that keep the
syntactic structure but introduce new chunk translations or correct the existing ones.
Although there is no standard classification among this kind of systems we have
divided the following summary in three classes that take into account the degree
of mixture between systems. As in the previous sections, we conclude with the
summary (Table 3).

5.1 Enriching Rule-Based Resources

A first approach consists on enriching the basic resources of a RBMT with data
gathered from corpora. Traditionally, these systems have been developed in order
to improve a specific component of an already operative rule-based system, that is,
either the dictionary or the transfer rules. The mixture between systems in this case
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Table 3 Hybrids led by
RBMT summary

Approach References

Enrich resources Eisele et al. (2008), Alegria et al.
(2008), Dugast et al. (2009),
Enache et al. (2012), Sánchez-
Martínez and Forcada (2009)

Data-based modules Habash et al. (2009), Wolf et al.
(2011), Federmann and Hunsicker
(2011), Tyers et al. (2012)

RB as backbone Federmann et al. (2010), Fed-
ermann et al. (2011), Sánchez-
Martínez et al. (2009), Labaka et al.
(2014)

is low. Automatic techniques are used to generate the resources saving in human
effort and mostly do not interfere with the engine.

In 2008, Eisele et al. (2008) described an implementation of a hybrid system that
enlarged a RBMT lexicon by using bilingual phrases coming from an SMT system.
The parallel corpus was annotated with part of speech and lemma and that allowed
the authors to filter out non-syntactic phrases. This work was a joint project between
the DFKI and the European Patent Office (EPO), and the evaluations within EPO
itself showed an increase in lexical coverage when translating patents.

Also the Matxin system (Alegria et al. 2007) was adapted to a concrete domain
by using Elexbi (Gurrutxaga Hernaiz et al. 2006) for a semiautomatic extraction
of terminology from translation memories, and a parallel corpus to tackle lexical
selection. The resulting system is analysed in a wider work that uses this domain-
adapted version of Matxin for system combination (Alegria et al. 2008).

Similarly, SYSTRAN,9 a pure rule-based system at that time, enlarged its dictio-
nary with noun, verb, adjective and adverb phrases filtered from a phrase table also
obtained with a PBSMT (Dugast et al. 2009). In this case, enriching the dictionary
with phrases extracted from the Europarl corpus increased the BLEU score in 3
points on an in-domain test set.

In Enache et al. (2012), the authors present a hybrid translation system specif-
ically designed to deal with patents. A grammar-based translator is developed to
assure grammatically correct translations and a parallel corpus and SMT alignments
are used to build the parallel lexicon of the RBMT translator on the fly for each
sentence. In their system, the hybridisation is not only for enriching the dictionary,
but an SMT system is on top of the RBMT one to translate those phrases not covered
by the grammar. Under this point of view the paper could also fit in Sect. 4. As for
the evaluation, both manual and automatic evaluations showed a slight preference
for the hybrid system against the individual systems.

These systems have in common the fact that not all SMT phrases are incorporated
within a RBMT engine, only linguistic phrases fulfil the requirements of a RBMT

9http://www.systransoft.com

http://www.systransoft.com
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system. As a result, not all the lexical richness given by a SMT system is transferred
to the hybrid system, but the coverage improves. Lexical metrics, however, are
usually not able to capture the quality improvements that become apparent with
a manual evaluation of the translation quality.

Contrary to the previous works, the authors in Sánchez-Martínez and Forcada
(2009) try to use corpora for collecting the transfer rules of the RBMT system
instead of building the dictionary. As the authors say “manually building a bilingual
dictionary for a language pair is usually much easier than developing shallow
structural transfer rules for it”. So, they develop a method to automatically infer
shallow-transfer rules from parallel corpora that is based on the alignment template
approach (Och 2002). These rules are used by the Apertium MT10 engine and
include syntactic and lexical changes. Their evaluation shows that the automatically
inferred rules perform better than the SMT system.

5.2 Including Data-Based Modules

In some cases there is the need of introducing modules within the standard
RBMT process to integrate statistical information. For instance, the RBMT system
Generation-heavy machine translation (GHMT) (Habash 2003), defined by the
authors as a primarily symbolic system, was extended with statistical components.
The original GHMT system already uses a language model for the target language,
but the work done in Habash et al. (2009) extends the use of probabilities to bilingual
components. A PBSMT is used to generate translation tables, and those phrases that
correspond to linguistically correct subtrees are used as multi-word dictionaries in
GHMT. A deep evaluation of the results showed that the hybrid system was not
able to outperform the pure PBSMT one when quantified with standard automatic
metrics [BLEU, NIST (Doddington 2002) and METEOR (Banerjee and Lavie
2005)]. However, the grammaticality of the translations was improved if one
understands grammaticality as correct verb-argument realizations and long-distance
dependency translations, two of the strong points of RBMT systems.

More recently, Wolf et al. (2011) described a hybrid system based on Com-
prendium (Alonso and Thurmair 2003) (Lucy’s precursor11). The authors move from
a hybrid system that uses phrase tables together with lexicons and grammars during
transfer, to a final hybrid system that also makes use the RBMT components for
linguistic filtering and statistical term extraction. The first system achieved, for
instance, a better lexical selection than the pure RBMT one but the number of
phrases used was small. With the final hybrid they claim to obtain a better F-score.
Although the BLEU and NIST metrics are not able to capture the improvements, a

10http://www.apertium.org
11http://www.lucysoftware.com/

http://www.apertium.org
http://www.lucysoftware.com/
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manual evaluation showed around 40–50 % of better translations against a 10–20 %
of worse.

A different approach was taken by Federmann and Hunsicker (2011) who
modified the analysis phase of the RBMT system by adding a module to compare
the output of the phase, a forest of several analysis parse trees, with the tree output
of robust probabilistic parser. The Tree Selector Module uses a tree edit distance to
estimate the quality of the trees from the analysis forest and the best one is sent to the
transfer phase. The statistical tool for terminology extraction described in Wolf et al.
(2011) is used later in the generation phase. This system was the best-scoring one
according to the manual evaluation at the WMT 2011 shared translation task,12 but
the new modules were counterproductive when evaluating with automatic metrics.

Following the work being done to improve the Apertium MT engine, Tyers
et al. (2012) describes a new lexical-selection module that consists of rules in the
form of constraints. These rules are learnt from a parallel corpus and applied to
ambiguous input sentences after the lexical and before the structural transfer steps.
The hybrid system achieves a statistically significant improvement in translation
quality according to a paired bootstrap resampling test.

5.3 Using Rule-Based Translations as a Backbone

This last group corresponds to the systems where the mixture between individual
systems is the largest, but, still, the rule-based one dominates. In these cases,
the border between system combination and hybridisation is sometimes fuzzy.
Federmann et al. (2010) extended a previous system combination work to build a
system that, after a first RBMT translation, substitutes some selected noun phrases
by their SMT counterparts. The evaluation is done in terms of BLEU, and the
final system although improves the translation quality of the RBMT is in general
worse than the pure SMT translator. In later work, Federmann et al. (2011) based
the substitution of tokens on several decision factors, such as part-of-speech, local
left and right contexts, and language model probabilities to accommodate different
translation outputs to a fixed syntactic structure given by the RBMT translation
template.

Following the approaches of the previous subsections, Sánchez-Martínez et al.
(2009) included bilingual chunks obtained from a parallel corpus within Apertium
platform. The main difference here is the fact that instead of including them in the
dictionary, the system is modified so that the engine can choose, after a translation,
among the pure Apertium option or the corpus-extracted one for all of the chunks.
The choice is made according to the language model probability. The evaluation of
the new system is given also in terms of BLEU and results show a small but not
statistically significant improvement.

12http://www.statmt.org/wmt11/

http://www.statmt.org/wmt11/
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Finally, the authors in España-Bonet et al. (2011) and Labaka et al. (2014) present
a system where, before the transfer step, partial SMT translations are used to enrich
the RBMT tree-based representation with more translation alternatives. The final
translation is constructed by choosing the most probable combination among the
available fragments using monotone statistical decoding. The monotone decoding
allows to respect the order given by the RBMT generation parse tree. This hybrid
system outperformed the individual translation systems with several lexical metrics,
however, a manual evaluation of the translations contradicted this conclusion for
out-of-domain test sets.

6 Overview of the Book and Future Research Directions

This introductory chapter has overviewed hybridisation MT strategies by making a
classification that could cover most of the studies done in this research direction.
This classification should help the reader of the volume understand the context of
the subsequent chapters which present studies on hybrid MT from the linguistic
and statistical perspectives. To sum up, hybrid MT systems have been approached
either from a more rule-based or corpus-based perspective depending on the guiding
system used. When hybrid systems have been guided by SMT systems, integration
of rules has been made from the pre/post-processing stage up into the core system.
When hybrid systems have been guided by RBMT systems, integration of statistics
has been used to enrich resources, data-based modules or the backbone of the
rule-based system. A much lower level of hybridisation is the system combination,
which combines the translation outputs of systems generally from different nature.
System combination has been done at the sentence, subsentencial or graph-level.
The following subsections report a more detailed overview of the book chapters and
outlines possible future research directions in hybrid MT.

6.1 Overview of the Book

As mentioned in Sect. 1, this book is divided in three parts with a total of seven
chapters (without counting the present chapter). As follows we are going to give
more details on each chapter.

6.1.1 Part I: Adding Linguistic Knowledge in SMT

The three chapters in this part report a core integration of rules into SMT systems.
First, Lewis et al. (2014) describe some of the statistical and non-statistical
attempts to incorporate linguistic insights into MT systems in the work at Microsoft
Research. One of their biggest achievement, as they mention, has been introducing
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syntax in SMT. Following this line, the paper experiments with both their treelet
and phrase-based SMT systems. Second, Pal and Naskar (2014) propose a hybrid
word alignment model that combines two unsupervised word alignments, namely
GIZA++ and Berkeley aligner, and a rule-based word alignment technique. High
improvements are shown when pre-processing Named Entities in the parallel
corpus. And, finally, Han et al. (2014) describe two approaches to deal with the
translation of language pairs that have different word orders: one is by exploiting
regularities in the differences of phrase head locations and formalising rules that
reorder branches of constituency trees; the other, by devising rules that reorder word
blocks from dependency trees. Experiments show that the latter achieves significant
improvements.

6.1.2 Part II: Using Machine Learning in MT

The two chapters in this part show the benefits of using machine learning in MT.
Rios and Göhring (2014) improve a RBMT translation system for Spanish-to-
Quechua with a module that uses a classifier to predict an ambiguous verb form
in case the rules alone cannot disambiguate it. Although the whole translator is not
evaluated, the accuracy in the translation of these verbs increases more than a 15 %
by the introduction of the hybrid component. Tambouratzis et al. (2014) presents the
development of a hybrid MT methodology, which is based on using large quantities
of monolingual corpora, very limited use of parallel corpora and a bilingual lemma
dictionary.

6.1.3 Part III: Hybrid NLP Tools Useful for MT

Finally, the two chapters in this part present hybrid tools for parsing and Word Sense
Disambiguation (WSD). Green (2014) modifies the dependency parser of a syntax-
based engine. The authors use a classifier to build the final parsing tree from several
inputs and that is used for translation. The engine is based on TectoMT (Zabokrtsky
et al. 2008), an already hybrid system that combines statistical techniques and
linguistic knowledge. Besides the hybridisation in the engine itself, the hybridisation
in this case is among dependency parsers. The authors show that the parser accuracy
correlates with automatic MT evaluation metrics. Vintar and Fišer (2014) use
WordNet-based unsupervised WSD to solve the ambiguity in MT. Since the fine
granularity of WordNet is often reported as problematic, the authors compare the
performance of UKB (a software for performing graph-based WSD) when using all
WordNet senses and when using sense clusters.
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6.2 Future Research Directions

All mentioned hybrid strategies in this introductory chapter and book help improv-
ing the quality of MT taking advantage of multiple sources of information and
paradigms, and most of them agree that research in hybrid MT has still more room
from improvement.

Future directions may be led by either rules, statistics or system combination.
All of them focus on enhancing the power given by large amount of data with
linguistic knowledge. Based on the most recent works in hybridisation, there are
several architectures that can be already envisaged as shown in Costa-jussà (2015).
For example, for system combination, novel combination strategies may involve
deep learning techniques, which are giving impressive results in NLP (Collobert
et al. 2011).

When SMT is the core system, as mentioned in the Lewis et al.’s chapter (Lewis
et al. 2014), a better integration of morphological features can have a bigger impact
and deeper models of semantics can better represent the meaning. Han et al. (2014)
suggest that the improvement in parsers could help towards hybridisation of syntax
in SMT, which may improve at the same time the hybridisation of dependency
parsers done in Green’s chapter (Green 2014). Pal and Naskar (2014) foresee
integrating knowledge of multi-word expressions into the word alignment step
of an SMT system. Novel research, broadly speaking, may lead to non-pipelined
approaches by fully integrating hand-written rules, morphology and novel semantic
representations in the statistical decoding.

When RBMT is the core system, Rios and Göhring (2014) suggest improving
the accuracy of the classifier which decides the verb form by using more advanced
techniques. Further generic research lines may involve scoring transfer-rules or
adding language models both based on the already mentioned deep learning
techniques.

Finally, for none-of-the-previous core systems, future work proposed in Vintar
et al.’s chapter (Vintar and Fišer 2014) includes integrating their WSD technique in
a standard MT system. According to Tambouratzis et al. (2014), the extension of
hybrid MT systems may come from more accurately matching sentence structures,
combining sub-sentential parts or augmenting the language models by combination
of different techniques.

In any case, given the large potential of hybrid MT, either the approaches
envisaged here or new ones will manage to surprise us and will be decisive to give
a step forward in MT.
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Controlled Ascent: Imbuing Statistical MT
with Linguistic Knowledge

William D. Lewis, Chris Quirk, and Qin Gao

Abstract We explore the intersection of rule-based and statistical approaches
in machine translation, with a particular focus on past and current work at
Microsoft Research. Until about 10 years ago, the only machine translation systems
worth using were rule-based and linguistically-informed. Along came statisti-
cal approaches, which use large corpora to directly guide translations toward
expressions people would actually say. Rather than making local decisions when
writing and conditioning rules, goodness of translation was modeled numerically
and free parameters were selected to optimize that goodness. This led to huge
improvements in translation quality as more and more data was consumed. By
necessity, the pendulum is swinging back towards the inclusion of linguistic features
in MT systems. We describe some of our statistical and non-statistical attempts to
incorporate linguistic insights into machine translation systems, showing what is
currently working well, and what isn’t. We also look at trade-offs in using linguistic
knowledge (“rules”) in pre- or post-processing by language pair, with a particular
eye on the return on investment as training data increases in size.

1 Introduction

Machine translation has undergone several paradigm shifts since its original con-
ception. Early work considered the problem as cryptography, imagining that a word
replacement cipher could find the word correspondences between two languages.
Clearly Weaver was decades ahead of his time in terms of both computational power
and availability of data: only now is this approach gaining some traction (Knight
2013).1 In his time, however, this direction did not appear promising, and work
turned toward rule-based approaches.

1 For the original 1949 Translation memorandum by Weaver see Weaver (1955).
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Effective translation needs to handle a broad range of phenomena. Word
substitution ciphers may address lexical selection, but there are many additional
complexities: morphological normalization in the source language, morphological
inflection in the target language, word order differences, and sentence structure
differences, to name a few. Many of these could be captured, at least to a first
degree of approximation, by rule-based approaches. A single rule might capture
the fact that English word order is predominantly SVO and Japanese word order
is predominantly SOV. While many exceptions exist, such rules handle many
of the largest differences between languages rather effectively. Therefore, rule-
based systems that did a reasonable job of addressing morphological and syntactic
differences between source and target dominated the marketplace for decades.

With the broader usage of computers, greater amounts of electronic data became
available. Example-based machine translation systems, which learn corpus-specific
translations based on data, began to show substantial improvements in the core
problem of lexical selection. This task was always quite difficult for rule-based
approaches: finding the correct translation in context requires a large amount of
knowledge. In practice, nearby words are effective disambiguators once a large
amount of data has been captured.

Phrase-based statistical machine translation systems formalized many of the
intuitions in example-based machine translation approaches, replacing heuristic
selection functions with robust statistical estimators. Effective search techniques
developed originally for speech recognition were strong starting influences in the
complicated realm of MT decoding. Finally, large quantities of parallel data and
even larger quantities of monolingual data allowed such phrasal methods to shine
even in broad domain translation.

Translations were still far from perfect, though. Phrasal systems capture local
context and local reordering well, but struggle with global reordering. Over the
past decade, statistical machine translation has begun to be influenced by linguistic
information once again. Syntactic models have shown some of the most compelling
gains. Many systems leverage the syntactic structure of either the source or the target
sentences to make better decisions about reordering and lexical selection.

Our machine translation group has been an active participant in many of these
latest developments. The first MSR MT system used deep linguistic features, often
with great positive effect. Inspired by the successes and failures of this system, we
invested heavily in syntax-based SMT. However, our current statistical systems are
still linguistically impoverished in comparison.

This paper attempts to document important lessons learned, highlight current
best practices, and identify promising future directions for improving machine
translation. A brief review of our earlier generation of machine translation tech-
nology sets the stage; this older system remains relevant given renewed interest in
semantics (e.g., http://amr.isi.edu/). Next we describe some of our statistical and
non-statistical attempts to incorporate linguistic insights into machine translation
systems, showing what is currently working well, and what is not. We also look
at trade-offs in using linguistic knowledge (“rules”) in pre- or post-processing
by language pair, with a particular eye on the return on investment as training

http://amr.isi.edu/
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data increases in size. Systems built on different architectures, particularly those
incorporating some linguistic information, may have different learning curves on
data. The advent of social media and big data presents new challenges; we review
some effective research in this area. We conclude by exploring promising directions
for improving translation quality, especially focusing on areas that stand to benefit
from linguistic information.

2 Logical Form Translation

Machine translation research at Microsoft Research began in 1999. Analysis
components had been developed to parse surface sentences into deep logical
forms: predicate-argument structures that normalized away many morphological
and syntactic differences. This deep representation was originally intended for
information mining and question answering, allowing facts to reinforce one another,
and simplifying question and answer matching. These same normalizations helped
make information more consistent across languages: machine translation was a
clear potential application. Consider the deep representations of the sentence pairs
in Fig. 1: many of the surface differences, such as word order and morphological
inflection, are normalized away, potentially easing the translation process.

The linguistic theory behind the system was related to other approaches at the
time, and is built in the tradition of generative grammar. This separation of syntactic
structure and semantic structure bears a strong resemblance to Lexical Functional
Grammar (Dalrymple 2001), where the syntactic tree plays a role similar to c-
structure, and the logical form is similar to f-structure, for instance. Jensen et al.
(1992) documents the early theory and practice of this system.

Substantial differences remained, however. Many words and phrases have non-
compositional contextually-influenced translations. Commercial systems of the time
relied on complex, hand-curated dictionaries to make this mapping. Yet example-
based and statistical systems had already begun to show promise, especially in
the case of domain-specific translations. Microsoft in particular had large inter-
nal demand for “technical” translations. With increasing language coverage and
continuing updates to product documentation and support articles came increasing
translation costs. Producing translations tailored to this domain would have been an
expensive task for a rule-based system; a corpus-based approach was pursed.

This was truly a hybrid system. Source and target language surface sentences
were parsed into deep logical forms using rule-based analyzers.2 Likewise a rule-
based target language generation component could find a surface realization of

2 These parsers were developed with a strong focus on corpora, though. George Heidorn, Karen
Jensen, and the NLP research group developed a tool chain for quickly parsing a large bank of test
sentences and comparing against the last best result. The improvements and regressions resulting
from a change to the grammar could be manually evaluated, and the changes refined until the end
result. The end result was a data driven but not statistical approach to parser development.
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Fig. 1 This figure demonstrates how sentences with very different surface forms may have
(nearly) identical logical form representations. After each of the three sentences in black,
the automatically produced logical form is displayed. This graph with labeled, directed edges
represents the sentence content; the nodes shown in red (e.g. ‘be’, ‘difficult’, ‘please’, ‘reviewer’,
and the zero pronoun ‘X’), and the edge labels shown in blue (here ‘Tobj’ represents the typical
object relation, Tsub is the typical subject, and Tind is the indirect object). Despite substantial
differences in surface order and syntactic structure, the resulting graphs are isomorphic; for
instance, in every case, ‘reviewer’ is the indirect object of ‘please’. In addition, each node has a set
of binary attributes (or ‘bits’, here shown in gray) that capture syntactic and surface information:
‘+Pres’ indicates that the verb is present tense, ‘+Plur’ indicates that a noun is plural, etc. These
binary attributes were very useful in the translation process

a deep logical form. However, the mapping from source language logical form
fragments to target language logical form fragments was learned from parallel data.

2.1 Details of the LF-Based System

Training started with a parallel corpus. First, the source and target language
sentences were parsed. Then the logical forms of the source and target were aligned
(Menezes and Richardson 2001). These aligned logical forms were partitioned into
minimal non-compositional units, each consisting of some non-empty subset of
the source and target language nodes and relations. Much like in example-based
or phrasal systems, both minimal and composed versions of these units were then
stored as possible translations. A schematic of the this data flow is presented in
Fig. 2.

At runtime, an input sentence was first parsed into a logical form. Units whose
source sides matched the logical form were gathered. A heuristic search found a set
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Fig. 2 The process of learning translation information from parallel data in the LF system

Fig. 3 The process of translating a new sentence in the LF system

of fragments that: (a) covered every input node at least once, and (b) were consistent
in their translation selections. If some node or relation was not uncovered, it was
copied from source to target. The resulting target language logical form was then fed
into a generation component, which produced the final string. A schematic diagram
is presented in Fig. 3.
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This overview sweeps many fine details under the rug. Many morphological
and syntactic distinctions were represented as binary features (“bits”) in the LF;
mapping bits was difficult. The logical form was a graph rather than a tree—in
“John ate and drank”, John is the DSUB (deep subject) of both eat and drink—
which led to complications in transferring structure. Many such complications were
often handled through rules; these rules grew more complex over time. Corpus-
based approaches efficiently learned many non-compositional and domain specific
issues.

2.2 Results and Lessons Learned

The system was quite successful at the time. MSR used human evaluation heavily,
performing both absolute and relative quality evaluations. In the absolute case,
human judges gave each translation a score between 1 (terrible translation) and 4
(perfect). For relative evaluations, judges were presented with two translations in
randomized order, and were asked whether they preferred system A, system B, or
neither. In its training domain, the LF-based system was able to show substantial
improvements over rule-based systems that dominated the market at the time.

Much of these gains were due to domain- and context-sensitivity of the system.
Consider the Spanish verb “activar”. A fair gloss into English is “activate”, but the
most appropriate translation in context varies (“signal”, “flag”, etc.). The example-
based approach was able to capture those contexts very effectively, leading to
automatic domain customization given only translation memories. This was a huge
improvement over rule-based systems of the time.

During this same era, however, statistical approaches (Och and Ney 2004) were
showing great promise. Therefore, we ran a comparison between the LF-based
system and a statistical system without linguistic information. Both systems were
trained and tuned on the same data, and translated the same unseen test set. The
linguistic system had the additional knowledge sources at its disposal: morphologi-
cal, lexical, syntactic, and semantic information. Regardless, the systems performed
nearly equally well on average. Each had distinct strengths and weaknesses, though.

Often the success or failure of the LF-system was tied to the accuracy of its deep
analysis. When these representations were accurate, they could lead to effective
generalizations and better translations of rare phenomena. Since surface words were
lemmatized and syntactic differences normalized, unseen surface forms could still
be translated as long as their lemma was known (see Fig. 4a). Yet mistakes in
identifying the correct logical form could lead to major translation errors, as in
Fig. 4b. Evaluation of LF accuracy was somewhat difficult as the formalism was
substantially different than other resources (e.g. the Penn Treebank). One attempt
to compare syntactic structure (Ringger et al. 2004) found that parsing accuracy
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(a) Effecitve LF translation. Note how the LF system is able to translate “se lleveban a cabo” even though that particular
surface form was not present in the training data.

SRC: La tabla muestra además dónde se llevaban a cabo esas tareas en Windows NT versión 4.0.
REF: The table also shows where these tasks were performed in Windows NT version 4.0.

LF: The table shows where, in addition, those tasks were conducted on Windows NT version 4.0.
STAT: The table also shows where llevaban to Windows NT version 4.0.

(b) Parsing errors may degrade translation quality; the parser interprted ‘/’ as coordination.

SRC: La sintaxis del operador / tiene las siguientes partes:
REF: The / operator syntax has these parts:

LF: The operator syntax it has the parts:
STAT: The / operator syntax has these parts:

(c) Graph-like structures for situations such as coordination are difficult to transfer (see the parenthesized group in particular);
selecting the correct form at generation time is difficult in the absence of a target language model.

SRC: Debe ser una consulta de selección (no una consulta de tabla de referencias cruzadas ni una consulta de acción).
REF: Must be a select query (not a crosstab query or action query).

LF: You must not be a select query neither not a query in table in cross-references nor not an action query.
STAT: Must be a select query (not a crosstab query or an action query).

Fig. 4 Example source Spanish sentences, English reference translations of those sentences,
translations from the LF system, and translations from a statistical translation system without
linguistic features

was close to start of the art statistical parsers of the time. However, no databases
of semantic representations existed for comparison at the time, so only syntactic
parsing was compared.

Likewise the lack of statistics in the components could cause problems. Statistical
approaches found great benefits from the target language model. Using a rule-based
generation component made it difficult to leverage a target language model. Often,
even if a particular translation was presented tens, hundreds, or thousands of times in
the data, the LF-based system could not produce it because the rule-based generation
component would not propose the common surface form, as in Fig. 4c.

We drew several lessons from this system when developing our next generation
of machine translation systems. It was clear to us that syntactic representations
can help translation, especially in reordering and lexical selection: appropriate
representations allows better generalization. However, over-generalization can lead
to translation error, as can parsing errors.

3 The Next Generation MSR MT Systems

Research in machine translation at Microsoft has been strongly influenced by this
prior experience with the LF system. First we must notice that there is a huge
space of possible translations. Consider human reference translations: unless tied
to a specific domain or area, they seldom agree completely on lexical selection and
word order. If our system is to produce reasonable output, it should consider a broad
range of translation options, preferring outputs most similar to language used by
humans. Why do we say “order of magnitude” rather than “magnitude order”, or
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“master of ceremonies” rather than “ceremonies master”? Many choices in language
are fundamentally arbitrary, but we need to conform to those arbitrary decisions if
we are to produce fluent and understandable output. Second, while there is leverage
to be gained from deep features, seldom do we have a component that identifies
these features with perfect accuracy. In practice it seems that the error rate increases
as the depth of component analysis increases. Finally, we need a representation of
“good translations” that is understandable by a computer. When forced to choose
between two translations, the system needs to make a choice: an ordering.

Therefore, our data-driven systems crucially rely on several components. First,
we must efficiently search a broad range of translations. Second, we must rank
according to both our linguistic intuitions and the patterns that emerge from data.

We use a number of different systems based on the availability of linguistic
resources. So-called phrasal statistic machine translation systems, which model
translations using no more than sequences of contiguous words, perform surpris-
ingly well and require nothing but tokenization in both languages. In language pairs
for which we have a source language parser, a parse of the input sentence is used
to guide reordering and help select relevant non-contiguous units; this is the Treelet
system (Quirk and Menezes 2006). Regardless of which system we use, however,
target language models score the fluency of the output, and have a huge positive
impact on translation quality.

We are interested in means of incorporating linguistic intuition deeper into such
a system. As in the case of the Treelet system, this may define the broad structure of
the system. However, there are also more accessible ways of influencing existing
systems. For instance, linguists may author features that identify promising or
problematic translations. We describe one such attempt in the following system.

3.1 Like and DontLike

Even in our linguistically-informed Treelet system (Quirk and Menezes 2006),
which uses syntax in its translation system, many of the individual mappings are
clearly bad, at least to a human. When working with linguistic experts, one gut
response is to write rules that inspect the translation mappings and discard those
translation mappings that appear dangerous. Perhaps they seem to delete a verb,
perhaps they use a speculative reordering rule—something makes them look bad
to a linguist. However, even if we are successful in removing a poor translation
choice, the remaining possibilities may be even worse—or perhaps no translation
whatsoever remains.

Instead, we can soften this notion. Imagine that a linguist is able to say that
this mapping is not preferred because of some property. Likewise, a skilled linguist
might be able to identify mappings that look particularly promising, and prefer those
mappings to others; see Fig. 5 for an example.

This begs the question: how much should we weight such influence? Our answer
is a corpus driven one. Each of these linguistic preferences should be noted, and
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/* DISPREFER LOST VERBS */
// if this mapping contains verbs not marked as auxiliaries...
if (forany(NodeList(rMapping),[Cat=="Verb" & ˆAux(SynNode(InputNode))])) {

// find the list of mappings where that verb is mapped into punctuation or a coordination
// (something that does not contain content).
list {segrec} bad_target=sublist(keeplist,

[forall(NodeList,[pure_punk(Lemma) | coord_conjunction(foreign_language,Lemma)])]);
// if there are mappings like this...
if (bad_target) {

segrec rec;
// then for each such mapping, mark the mapping that effectively deletes the verb as DontLike

foreach (rec; bad_target) {
+DontLike(rec);

}
}

}

Fig. 5 An example rule for marking mappings as “DontLike”. In this case, the rule searches for
source verbs that are not auxiliaries and that are translated into lemmas or punctuation. Such
translations are marked as DontLike

Fig. 6 A plot of the weights for +Like mapping count and +DontLike mapping count. Each point
represents a single language pair. Although the weights differ substantially across language pairs,
Like is generally assigned a positive weight (sometimes quite positive), and DontLike is assigned
a negative weight. In our system, weights are L1 normalized (the sum of the absolute values of the
weights is equal to one), so feature weights greater than 0.1 are very influential. This demonstrates
that preferences encoded by a linguist can be weighted using automatic methods such as MERT,
allowing the system to balance linguistic preferences with statistical models

the weight of these preferences should be tuned with all others to optimize the
goodness of translation. Already our statistical system has a number of signals
that attempt to gauge translation quality: the translation models attempt to capture
fidelity of translation; language models focus on fluency; etc. We use techniques
such as MERT (Och 2003) and PRO (Hopkins and May 2011) to tune the relative
weight of these signals. Why not tune indicators from linguists in the same manner?

When our linguists mark a mapping as +Like or +DontLike, we track that
throughout the search. Each final translation incorporates a count of Like mappings
and a count of DontLike mappings, just as it accumulates a language model score,
translation model scores, word penalties, and so on. These weights are tuned to
optimize some approximate evaluation metric. In Fig. 6, the weight of Like and
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DontLike is shown for a number of systems, demonstrating how optimization
may be used to tune the effect of hand-written rules. Removing these features
degrades the performance of an MT system by at least 0.5 BLEU points, though
the degradations are often even more visible to humans.

This mechanism has been used to capture a number of effects in translation
commonly missed by statistical methods. It is crucial yet challenging to maintain
negation during translation, especially in language pairs where negation is expressed
differently: some languages use a free morpheme (Chinese tends to have a separate
word), others use a bound morpheme (English may use prefixes), others require
two separated morphemes (French has negation agreement); getting any of these
wrong can lead to poor translations. Rules that look at potentially distant words
can help screen away negation errors. Likewise rules can help ensure that meaning
is preserved, by preventing main verbs mapping to punctuation, or screening out
mappings that seem unlikely, especially when those mappings involve unusual
tokens.

These two features are a rather coarse means of introducing linguistic feedback.
As our parameter estimation techniques scale to larger features more effectively,
we are considering using finer-grained feedback from linguists to say not only that
they like or don’t like a particular mapping, but why. The relative impact of each
type of feedback can be weighted: perhaps it is critical to preserve verbs, but not
so important to handle definiteness. Given recent successes in scaling parameter
estimation to larger and larger values, this area shows great promise.

3.2 Linguistic Component Accuracy

Another crucial issue is the quality of the linguistic components. We would
certainly hope that better quality of linguistic analysis should lead to better quality
translations. Indeed, in certain circumstances it appears that this correlation holds.

In the case of the Treelet system, we hope to derive benefit from linguistic
features via a dependency tree. To investigate the impact of the parse quality, we
can degrade a Treebank-trained parser by limiting the amount of training data made
available. As this decreases, the parser quality should degrade. If we hold all other
information in the MT system fixed (parallel and monolingual training data, training
regimen, etc.), then all differences should be due to the changes in parse quality.
Table 1 presents the results of an experiment of this form (Quirk and Corston-Oliver
2006). As the amount of training data increase, we see a substantial increase in parse
quality.

Another way to mitigate parser error is to maintain syntactic ambiguity through
the translation process. For syntax directed translation systems, this can be achieved
by translating forests rather than single trees, ideally including the score of parse as
part of the translation derivation. In unpublished results, we found that this made
a substantial improvement in translation quality; the effect was corroborated in
other syntax directed translation systems (Mi et al. 2008). Alternatively, allowing
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Table 1 Comparison of
BLEU scores as linguistic
information is varied

English- English-

System German Japanese

Phrasal 31.7 32.9

Right branching 31.4 28.0

250 instances 32.8 34.1

2500 instances 33.0 34.6

25,000 instances 33.7 35.7

39,082 instances 33.8 36.0

A phrasal system provides a baseline free
of linguistic information. Next we con-
sider a Treelet system with a very weak
baseline: a right branching tree is always
proposed. This baseline is much worse
than a simple phrasal system. The final
four rows evaluate the impact of a parser
trained on increasing amounts of sen-
tences from the English Penn Treebank.
Even with a tiny amount of training data,
the system gets some benefit from syntac-
tic information, and the returns appear to
increase with more training data

a neighborhood of trees similar to some predicted tree can handle ambiguity even
when the original parser does not maintain a forest. This also allows translation to
handle phenomena that are systematically mis-parsed, as well as cases where the
parser specification is not ideal for the translation task. Recent work in this area has
show substantial improvements (Zhang et al. 2011).

4 Evaluation

4.1 Fact or Fiction: BLEU is Biased Against Rule-Based
or Linguistically-Informed Systems?

It has generally been accepted as common wisdom that BLEU favors statistical
MT systems and disfavors those that are linguistically informed or rule-based. Sur-
prisingly, the literature on the topic is rather sparse, with some notable exceptions
(Riezler and Maxwell 2005; Farrús et al. 2012; Carpuat and Simard 2012). We
too have made this assumption, and had a few years ago coined the term Treelet
penalty to indicate the degree by which BLEU favored our phrasal systems over our
Treelet systems. We had noted on a few occasions that Treelet systems had lower
BLEU scores than our phrasal systems over the same data (the “penalty”), but when
compared against one another in human evaluation, there was little difference, or
often, Treelet was favored. A notable case was on German-English, where we noted
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a three-point difference in BLEU between equivalent Treelet and phrasal systems
(favoring phrasal), and a ship/no-ship decision was dependent on the resulting
human eval. The general consensus of the team was that the phrasal system was
markedly better, based on the BLEU result, and the Treelet system should be pulled.
However, after a human eval was conducted, we discovered that the Treelet system
was significantly better than the phrasal. From that point forward, we talked about
the Treelet penalty for German being three points, a “fact” that has lived in the lore
of our team ever since.

What was really missing, however, was systematic experimental evidence show-
ing the differences between Treelet and phrasal systems. We talked about the Treelet
penalty as a given, but there was slow rumble of counter evidence suggesting that
maybe the assumptions behind the “penalty” were actually unfounded, or minimally,
misinformed.

One piece of evidence was from experiments done by Xiaodong He and an intern
that showed an interaction in quality differences between Treelet and phrasal gated
by the length of the sentence. Xiaodong He was able to show that phrasal systems
tended to do better on longer sentences and Treelet on shorter: for Spanish-English,
he showed a difference in BLEU of 1.29 on “short” content on a general domain test
set, and 1.77 for short content on newswire content (the NIST08 test set). The BLEU
difference diminished as the length of the content increased, until there was very
little difference (less than 1/2 point) for longer content.3 An interaction between
decoder type and sentence length means that there might also be an interaction
between decoder type and test set, especially if particular test sets contain a lot of
long-ish sentences, e.g., WMT and Europarl). To the contrary, most IT text, which
is quite common in Microsoft-specific localization content, tends to be shorter.

The other was based on general impressions between Treelet and phrasal
systems. Because Treelet systems are informed by dependency parses built over the
source sentences—a parse can help constrain a search space of possible translations,
and prune undesirable mappings e.g., constrain to nominal types when the source
is a noun—and, as noted earlier, because the parses allow linguists to pre- or post-
process content based on observations in the parse, we have tended to see more
“fluent” output in Treelet than phrasal. However, as the sizes of data have grown
steadily over the years, the quality of translations in our phrasal systems have
grown proportionally with the increase in data. The question arose: is there also
an interaction between the size of our training data and decoder type? In effect,
does the quality of phrasal systems catch-up to the quality of Treelet systems when
trained over very large sets of data?

3These results were not published, but were provided to the authors in a personal conversation
with Xiaodong He. In a related paper (He et al. 2008), He and colleagues showed significant
improvements in BLEU on a system combination system, but no diffs in human eval. Upon
analysis, the researchers were able to show that the biggest benefit to BLEU was in short content,
but the same preference was not exhibited on the same content by the human evaluators. In other
words, the improvements observed in the short content that BLEU favored had little impact on the
overall impressions of the human evaluators.
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4.2 Treelet Penalty Experiments

We ran a set of experiments to measure the differences between Treelet and phrasal
systems over varying sizes of data, in order to measure the size of the Treelet
penalty and its interaction with training data size. Our assumption was that such
a penalty existed, and that the penalty decreased as training data size increased,
perhaps converging on zero for very large systems.

We chose two languages to run these experiments on, Spanish and German,
which we ran in both directions, that is, English-to-target (EX) and target-to-
English (XE). We chose Spanish and German for several reasons, first among them
being that we have high-quality parsers for both languages, as we do for English.
Further, we have done significant development work on pre- and post-processing
for both languages over the past several years. Both of these facts combined meant
that the Treelet systems stood a real chance of being strong contenders in the
experiments against the equivalent phrasal systems. Further, although the languages
are typologically close neighbors of English, the word order differences and high
distortion rates of English to or from German might favor a parser-based approach.

We had four baseline systems that were built over very large sets of data. For
Spanish � English, the baseline systems were trained on over 22M sentence pairs;
for German � English, the baseline systems were trained on over 36M sentence
pairs.4 We then created five samples of the baseline data for each language pair,
consisting of 100K, 500K, 1M, 2M, and 5M sentence pairs (the same samples were
used for both EX and XE for the respective languages). We then trained both Treelet
and phrasal systems in both directions (EX and XE) over each sample of data.
Language models were trained on all systems over the target-side data.

For dev data, we used development data from the 2010 WMT competition
(Callison-Burch et al. 2010), and we used MERT (Och 2003) to tune each system.
We tested each system against three different test sets: two were from the WMT
competitions of 2009 and 2010, and the other was one locally constructed from
5000 sentences of content translated by users of our production service (http://
bing.com/translator), which we subsequently had manually translated into the target
languages. The former two test sets are somewhat news focused; the latter is a
random sample of miscellaneous translations, and is more generally focused.

The results of the experiments are shown in Tables 2 and 3, with the relevant
graphs in Figs. 7, 8, 9, and 10. The reader will note that in all cases—Spanish and
German, EX and XE—the Treelet systems scored higher than the related phrasal
systems. This result surprised us, since we thought that Treelet systems would score
less than phrasal systems, especially at lower data sizes. That said, in the Spanish
systems, there is a clear convergence as data sizes increased: on the WMT09 test set
for English-Spanish, for instance, the difference starts at 1.46 BLEU (Treelet minus

4 A sizable portion of the data for each were scraped from the Web, but there were other sources
used as well, such as Europarl, data from TAUS, MS internal localization data, UN content, WMT
news content, etc.

http://bing.com/translator
http://bing.com/translator
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Fig. 7 English-Spanish
BLEU graph across different
data sizes, Treelet vs. Phrasal

Fig. 8 Spanish-English
BLEU graph across different
data sizes, Treelet vs. Phrasal

Fig. 9 English-German
BLEU graph across different
data sizes, Treelet vs. Phrasal
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Fig. 10 German-English
BLEU graph across different
data sizes, Treelet vs. Phrasal

phrasal) for the 100K sentence system, with a steady convergence to near zero (0.12)
for the full-data baseline. The other test sets show the same steady convergence,
although they do not approach zero quite as closely. (One might ask whether they
would converge to zero with more training data.) The other direction is even more
dramatic: on all test sets the diffs converge on negative values, indicating that phrasal
systems surpass the quality of the associated Treelet systems at the largest data
points. This is a nice result since it shows, at least in the case of Spanish, that there
is an interaction between decoder type and the amount of data: Treelet clearly does
better at lower data amounts, but phrasal catches up with, and can even pass, the
quality of equivalent Treelet given sufficient data. With larger data, phrasal may, in
fact, be favored over Treelet.

The German systems do not tell quite as nice a story. While it is still true that
Treelet has higher BLEU scores than phrasal throughout, and that systems trained
using both decoders improve in quality as more data is added (and the trajectory
is similar), there is no observable convergence as data size increases. For German,
then, we can only say that more data helps either decoder, but we cannot say that
phrasal benefits from larger data more than Treelet. Why the difference between
Spanish and German? We suspect there may be an interaction with the parsers, in
that two separate teams developed them. Thus, it could be the fact that the strength
of the respective parsers affected how “linguistically informed” particular systems
are. There could also be an interaction with the number of word types vs. tokens
in the German data—given German’s rampant compounding—which increases data
sparsity, dampening effects until much larger amounts of data are used.

Since human evaluation is the gold standard we seek to achieve with our quality
measures, and since BLEU is only weakly correlated with human eval (Coughlin
2003), we ran human evals against both the English-Spanish and English-German
output. Performing human evaluation gives us two additional perspectives on the
data: (1) do humans perceive a qualitative difference between Treelet and phrasal,
as we see with BLEU, and (2), if the difference is perceptible, what is its magnitude
relative to BLEU. If the magnitude of the difference is much larger than that of
BLEU, and especially does not show convergence in the Spanish cases, then we still
have a strong case for the Treelet penalty. In fact, if human evaluators perceive a



44 W.D. Lewis et al.

Fig. 11 Scatterplot showing Treelet vs Phrasal systems across different data sizes, plotting BLEU
(Y) against Human Eval scores (X)

difference in the Spanish cases on the full data systems, the case where we show
convergence, then the resulting differences could be described as the penalty value.

Unfortunately, our human evaluation data on the Treelet penalty effect was
inconclusive. Our evaluations show a strong correlation between BLEU and human
evaluation, something that is attested to in the literature [e.g., the first paper
on BLEU (Papineni et al. 2002), and a deeper exploration in Coughlin (2003)].
However, the effect we were looking for—that is, a difference between human
evaluations across decoders—was not evident. In fact, the human evaluations
followed the differences we saw in BLEU between the two decoders very closely.
Figure 11 shows data points for each data size for each decoder, plotting BLEU
against human evaluation. When we fit a regression line against the data points for
each decoder, we see complete overlap.5

In summary, we show a strong effect of Treelet systems performing better than
phrasal systems trained on small data sizes. That difference, however, generally
diminishes as data sizes increase, and in the case of Spanish (both directions), there
is a convergence in very large data sizes. These results are not completely surprising,
but still are a nice systematic confirmation that linguistically informed systems
really do better in lower-data environments. Without enough data, statistical systems
cannot learn the generalizations that might otherwise be provided by a parse, or
codified in rules. What we failed to show, at least with Spanish and German, is
a confirmation of the existence of the Treelet penalty. Given the small number of
samples, a larger study which includes many more language pairs and data sizes,
may once and for all confirm the Penalty. Thus far, human evaluations do not
show qualitative differences between the two decoders—at least, not divergent from
BLEU. However, we did additional analyses over noisy data and data of varying

5 Clearly, the sample is very small, so the regression line should be taken with a grain of salt. We
would need a lot more data to be able to draw any strong conclusions.
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lengths, in order to explore other interactions between the two decoder types. These
are discussed in the next two sections (Sects. 4.3 and 4.4).

4.3 Interaction Between Decoder Type and Sentence Length

When comparing the differences between decoders, another area to pay special
attention to is systematic differences in behavior as input content is varied. For
example, we may expect a phrasal decoder to do better on noisier, less grammatical
data than a parser-informed decoder, since in the latter case the parser may fail to
parse; the failure could ripple through subsequent processes, and thus lessen the
quality of the output. Likewise, a parser-informed decoder may do better on content
that is short and easy to parse. If we were to do a coarse-grained separation of
data into length buckets, making the very gross assumption that short equals easy-
to-parse and long not, then we may see some qualitative differences between the
decoders across these buckets.

To see length-based effects across decoder types, we designed a set of experi-
ments on German and Spanish in both directions, where we separated the WMT
2010 test data into length-based word-count buckets: 0–10, 10–20, 20–30, 30–40,
and 40+ words. We then calculated the BLEU scores on each of these buckets, the
results for which are shown in Fig. 12.

Treelet does better than phrasal in almost all conditions (except one). That is not
surprising, given the results we observed in Sect. 4.2. What is interesting is to see
how much stronger Treelet performs on short content than phrasal: Treelet does the
best on the shortest content, with quality dropping off anywhere between 10 and 30
words.

One conclusion that can be drawn from these data is that Treelet performs best
on short content precisely because the parser can easily parse the content, as we
hypothesized earlier, and the parse is effective in informing subsequent processes.
The most sustained benefit is observable in English-German, with a bump up at 10–
20, and a slow tapering off thereafter. Processing the structural divergence between
the two languages, especially when it comes to word order, may benefit more from

Fig. 12 Treelet-Phrasal
BLEU differences by bucket
across language pair
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a parse. In other words, the parser can help inform alignment where there are
long-distance distortion effects; a phrasal system’s view is too local to catch them.
However, at longer sentence sizes, the absence of good parses lessen the Treelet
advantage. In fact, in English-German (and in Spanish-English) at 40+, there is no
observable benefit of Treelet over phrasal.6

4.4 Treelet Penalty and Noisy Data

The “domain” of data used in training and/or testing also may interact with decoder
type, and may give us further insight into the existence of the Treelet penalty. As
noted in Sect. 4.2, a crucial component of the Treelet decoder is the parser, since
each parse it produces provides generalizations about the language that otherwise
would have to be learned from large amounts of data. But if the parser is less
successful at parsing the data, Treelet’s primary advantage over the phrasal decoder
is lost.

In this section, we extend our experiments to output from the speech translation
domain, where the input to the decoder is the output from a automatic speech
recognition (ASR) engine. In this domain, linguistic knowledge (i.e., from the
parser) is less helpful because spontaneous speech contains significant numbers of
speech artifacts and speech recognition errors. The source language we chose for our
test set is English, where we recorded 291 utterances, consisting of 454 sentences
and 3000 words. Some examples are shown in Fig. 13. We human translated the
English test data into Chinese, Spanish, German, French and Italian to generate
reference sentences.

We then evaluated Treelet and phrasal systems trained on the same data against
the test sets. The results are shown in Table 4.7 As we can observe, the phrasal
systems perform consistently better as measured by BLEU than the Treelet systems.
However, when we look at the human evaluation we see a different picture: we
see no significant difference in the human evaluation when the BLEU difference

what would you think of a food would you go back?
so, what kind of desserts they have.
i heard that the happening place where most people go out.
it is in clinton bell, which is, i am just north of the ohio state university campus.
what did you get there like a can of soda?

Fig. 13 Examples of ASR output. These are then passed to the MT decoders directly. Translations
are evaluated against human translated references

6 The bump up at 40+ on English-Spanish and German-English is inexplicable, but may be
attributable to the difficulty that either decoder has in processing such long content. There is also
likely an interaction with statistical noise cause by such small sample sizes.
7 Note: The English-Spanish and English-German systems shown in Table 4 are trained on the
same data for the “full” systems discussed in Sect. 4.2.
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Table 4 BLEU score and Human score of speech translation task in four languages

Treelet Phrasal Diffs Diffs Significant

Langauge BLEU Human score BLEU Human score BLEU Human score preference

Chinese 29:56 2.19 24:96 2.01 4.60 0:18 Phrasal

German 9:96 2.13 9:48 2.22 0.48 �0:09 Treelet

Spanish 24:94 2.41 21:18 2.36 3.76 0:04 Phrasal

French 22:86 1.95 21:04 1.93 1.82 0:01 Equal

Italian 14:35 1.79 12:88 1.80 1.47 0:00 Equal

Source language is English in all cases. The Diffs columns shows the difference between Treelet
and phrasal systems for Human or BLEU scores, and the “Significant Preference” column shows
the system that are significantly better than the other based on human evaluation

is just below 2 points (e.g., French and Italian), significance in favor of phrasal
when the BLEU gap is much greater than 3 points (e.g., Spanish and Chinese), and
significance in favor of Treelet when the BLEU score difference is around 1/2 point
(e.g., German).8

Results from these experiments against these test sets not only show evidence for
a Treelet penalty, but also show the penalty to be somewhere in the neighborhood of
two to three points. More experiments would be needed to truly isolate the penalty
value(s) (at least for this domain).

Summarizing the results in Sect. 4, we do see some evidence for a Treelet penalty.
In Sect. 4.2, although we could not explicitly identify a penalty, it is clear that
data size interacts with the relative quality of the two decoder types. With large
sets of data, phrasal systems are more effectively able to learn knowledge through
rote memorization and catch up with the advantage that linguistic knowledge gives
Treelet. Likewise, in Sect. 4.3 we showed an interaction between decoder type and
sentence length. Here we show evidence that longer sentences are translated better
by the phrasal decoder, since the Treelet parser likely has difficulty parsing such long
input, thus favoring phrasal. When we move to noisy ASR output in Sect. 4.4, we
see the strongest evidence for a Treelet penalty, more pronounced in a domain where
much of the data may be difficult to parse. In total, the Treelet penalty appears to be
fact rather than fiction, but the interaction of multiple factors influence its impact.

5 The Data Gap

All Statistical Machine Translation work relies on data, and the manipulation of
the data as a pre-process can often have significant effects downstream. “Data
munging”, as we like to call it, is every team’s “secret sauce”, something that can
often lead to multi-point differences in BLEU. For most teams, the heuristics that are

8 The word error rate of the test set is 17.09.
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applied are fairly ad hoc, and highly dependent on the kind of data being consumed.
Since data sources are often quite noisy, e.g., the Web, noise reduction is a key
component of many of the heuristics. Here is a list of common heuristics applied to
data. Some of these are drawn from our own pre-processing, some are mentioned
explicitly in other literature, in particular, Denkowski et al. (2012).

• Remove lines containing escape characters, invalid Unicode, and other non-
linguistic noise.

• Remove content where the ratio of certain content passes some threshold, e.g.,
alphabetic/numeric ratio, script ratio (percentage of characters in wrong form
passes some threshold, triggering removal).

• Normalize space, hyphens, quotes, etc. to standard forms.
• Normalize Unicode characters to canonical forms, e.g., Form C, Form KC.
• In parallel data, measure the degree of ratio of length imbalance (e.g., character

or word count) between source and target, as a test for misalignments. Remove
sentence pairs that pass some threshold.

• Remove content where character count for any token, or token count across a
sentence, exceeds some threshold (the assumption being that really long content
is of little benefit due to complications it causes in downstream processing).

The point of data cleaning heuristics is to increase the value of training data.
Each data point that is noisy increases the chance of learning something that could
be distracting or harmful. Likewise, each data point that is cleaned reduces the
level of data sparsity (e.g., through normalizations or substitutions) and improves
the chances that the models will be more robust. Although it has been shown that
increasing the amount of training data for SMT improves results (Brants et al. 2007),
not all data is beneficial, and clean data is best of all.

Crucially, most data munging is done through heuristics, or rules, although
thresholds or constraints can be tuned by data. A more sophisticated example of data
cleaning is described in Denkowski et al. (2012) where the authors used machine
learning methods for measuring quality estimation to select the “best” portions
of a corpus. So, rather than training their SMT on an entire corpus, they trained
an estimator that selected the best portions, and used only those. In their entry in
the 2012 WMT competition, they used only 60 % of the English-French Gigaword
corpus9 and came in first in the shared translation task for the pair.

Another important aspect of data as it relates to SMT is task-dependence: what
domain or genre of data will an SMT engine be applied to? For instance, will an
SMT engine be used to translate IT content, news content, subtitles, or Europarl
proceedings? If the engine itself is trained on data that is dissimilar to the desired
goal, then results may be less than satisfying. This is a common problem in the field,
and a cottage industry has been built around customization and domain-adaptation,
e.g., Moore and Lewis (2010), Axelrod et al. (2011), Wang et al. (2012). In general,

9 The English-French Gigaword corpus is described in Callison-Burch et al. (2009).
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the solution is to adapt an SMT engine to the desired domain using a set of seed data
in that domain.

A more difficult problem is when there is very little parallel data in the desired
domain, which is a problem we will look at in the next section.

5.1 No Parallel Data, No Problem!!

A couple of years ago, Facebook activated a translation feature in their service,
which directly calls Bing Translator. This feature has allowed users to translate
pages or posts not in their native language with a See Translation option. An
example is shown in Fig. 14.

The real problem with translating “FB-speak” (“Facebook speak”), or content
from virtually any kind of social media, is the paucity of parallel data in the domain.
This flies in the face of the usual way problems are tackled in SMT, that is, locate
(lots of) relevant parallel data, and then train up an engine. Outside of a few slang
dictionaries, there is almost no FB-like parallel content available.

Given the relatively formal nature of the text that most of our engines are trained
on, the mismatch between FB content and translation models often led to very poor
translations. Yet, given the absence of in-domain parallel data, it was not possible for
us to train-up FB-specific SMT engines. Table 5 shows sample translations passed
through our engines from native FB content, and the same after being “repaired” to
more standard English. In the first column, the reader will note that the translations
are quite poor, and nearly unintelligible. The repaired translations, on the other hand,
are quite interpretable.

Fig. 14 Two Facebook posts: the first translated, the second showing the See Translation option
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Table 5 One English FB sentence with and without normalizations, translated to various lan-
guages

Language Unrepaired Repaired

Original English i’l do cuz ma parnts r ma lyf I’ll do because my parents are my
life

To Italian i’l fare cuz ma parnts r ma lyf lo far perch i miei genitori sono la
mia vita

To German i’l tun Cuz Ma Parnts R Ma lyf Ich werde tun, weil meine Eltern
mein Leben sind

To Spanish traer hacer cuz ma parnts r ma lyf voy a hacer porque mis padres son
mi vida

One approach for dealing with domain- or style-shifted content is to adapt tools
to the new domain or style. Examples of this can be seen in Ritter et al. (2012),
who describe an event-extraction and categorization system for Twitter, relying on
tools specifically tailored to “Twitter-speak”. Also relevant is recent work by Gimpel
et al. (2011), who describe a custom-built POS tagger for Twitter content. For MT,
however, we are still left with the paucity of relevant parallel training data. One
could conceivably train language models over monolingual social media content,
which could then score output from an SMT engine. However, the absence of
relevant candidates in the n-best output generated by the engine’s translation models
would significantly degrade the resulting output.

Another option is to make the new style or domain look like conventional data,
in other words, perform repairs like those shown in Table 5. If we transform social
media input into conventional language, and then translate this content, we may
provide much better results. Effectively, then, we’d be treating “FB-speak” as a
dialect of the source language, and alter vocabulary as necessary to produce good
source language candidates. This approach has significant merit. Although it is true
that social media introduces new vocabulary and new expressions, many show up as
altered forms of standard expressions, and much of the introduced vocabulary has
direct correlates in the standard dialect of the language. This fact can work to our
advantage in a transformational, or “repair”-driven, approach.

Table 6 gives some examples of FB content on the left, and the more conventional
representation of the same on the right. The reader will note some systematic
characteristics of the FB content as compared to the conventional content, e.g.,
vowel or consonant lengthening for emphasis, shortened expressions for easy
of typing, sound-alike and other phonetic substitutions, abbreviated multi-word
expressions treated as stand-alone words, or combinations of all of the above (see
also Hassan and Menezes 2013).

Given that most of these altered forms correspond directly to English words,
a very simple approach would be to apply string or regex (regular expression)
substitutions directly to the FB input, and then use the resulting text as a “repaired
source” for translation. A very simple set of regex repairs are shown in Table 7.



Controlled Ascent: Imbuing Statistical MT with Linguistic Knowledge 51

Table 6 FB speak with English references

FB speak English translation Comment

goooood morniiing good morning Extended characters for emphasis
or dramatic effect

wuz up bro What’s up brother “Phonetic” spelling to reflect local
dialect or usage

cm to c my luv Come to see my love Remove vowels in common words,
sound-alike sequences

4get, 2morrow Forget, tomorrow Sound-alike number substitution

r u 4 real? Are you for real? Sound-alike letter and number sub-
stitutions

LMS Like my status Single ‘word’ abbreviations for
multi-word expressionsIDK I don’t know

ROFL Rolling on the floor laughing

Table 7 Some example
regexes to “fix” FaceBook
content

Regex Output

frnd[sz] Friends

plz+ Please

yess* Yes

be?c[uo][sz] Because

nuff Enough

wo?u?lda Would have

srr+y Sorry

Our first pass at the problem was to try such a rule-based approach. To determine
the extent to which such “rules” could repair FB content, we tokenized the FB logs
(logs of actual Facebook translation requests), then sorted the resulting word table
by frequency. For the 1000 most frequent expressions, we concocted string and
regex substitutions, and then applied these to a held-out test set of FB content. A
target set of the same content had been transformed manually to standard English
as a reference. Precision for this rule-based approach was very high, at 97.07 %.
Recall, however, was dismally low, at 15.02 %. Clearly, this content had a very long
tail, more than we could capture even with a large ranked frequency list. Further, we
also noted regressions in the output that were undesirable, the most notable being
the substitution of u to you. U is a very common expression in English social media
content, and thus a repair is highly desirable. However, u is also ambiguous, and
blanket replacement has ill-effects, e.g., transforming U.S.A. to You.S.A.. Although
one could counter this problem with bigram substitutions, e.g., u r going to you
are, or u followed by any punctuation not being transformed, etc., the set of bigrams
with u is quite large. Finally, a rule-based solution such as this does not scale to
additional languages and scenarios.

To address these deficiencies, we sought a more data-driven approach. But we
had to be creative since, as noted, our standard “hammer” of parallel data did not
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Table 8 Comparison
between Rule-based and ML
approaches to repairing FB
content

Method Prec. Recall F-scr

Regex rules 97.07 15.02 52.03

TextCorrector 96.51 57.90 72.38

exist. Our intuition was that there were distributional regularities in the FB content
that could help automatically discover a mapping for a given target word, e.g., the
distribution of plzzz in the FB content might be similar to please in our non-FB
content. To that end, Hany Hassan developed a TextCorrector tool that is, as he
put it, “based on constructing a lattice from possible normalization candidates and
finding the best normalization sequence according to an n-gram language model
using a Viterbi decoder”, where he developed an “unsupervised approach to learn
the normalization candidates from unlabeled text data” (Hassan and Menezes 2013).
He then used a Random Walk strategy to walk a contextual similarity graph. There
are two principal benefits of this approach. First, it did not require parallel training
data. Two large monolingual corpora are required, one for the “noisy” data (i.e.,
FB content) and one for the clean data (i.e., our large supply of language model
training data), but they do not need to be parallel. Secondly it did not require labeled
data (i.e., , the algorithm is unsupervised). After several iterations over very large
corpora (tens of millions of sentences in both styles) he arrived at a solution that had
comparable precision to the regex method but had much higher recall: at the time
of this writing, the best iteration achieved 96.51 % precision and 72.38 % recall. A
comparison between the best TextCorrector approach and the regex approach are
shown in Table 8. Crucially, as the size of the data increases, the TextCorrector
continues to show improvement.10

The end result was a much better User Experience for FB users. Rather than
badly mangled translations, or worse, no translations at all, users get translations
generated by our standard, very large statistical engines (for English source, notably,
our Treelet engines).

6 Conclusions and Future Directions

A crucial lesson from the work on the FB corrections described in Sect. 5.1 is its
analog to Machine Learning as a whole: rule-based approaches often achieve very
high precision, but often at the sacrifice of recall. The same is true in Machine
Translation: rule-based MT is often more accurate when it was accurate, resulting
in more precise and grammatical translations. However, it tends to be somewhat
brittle and does not do as well on cases not explicitly coded for. SMT, on the other

10 For a complete description of TextCorrector, please see Hassan and Menezes (2013). Also,
TextCorrector is directly available through our API. See the following for more details: http://
www.microsoft.com/en-us/translator/developers.aspx.

http://www.microsoft.com/en-us/translator/developers.aspx
http://www.microsoft.com/en-us/translator/developers.aspx
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hand, tends to be more malleable and adaptable, but often less precise. Tapping
rule-based approaches in a statistical framework can really give us the best of both
worlds, giving us higher precision and higher recall.

Finding an appropriate mix is difficult, though. As in the case of parsing, we
can see how errors can substantially degrade translation quality, especially if we
only consider the single best analysis. By making our analysis components as
robust as possible, quantifying our degree of certainty with scoring mechanisms, and
preserving ambiguity of the analysis, we can achieve a better return on investment.
Making this linguistic information be included softly as features is a powerful way
of surfacing linguistic generalizations to the system while not forcing its hand.

Some of the greatest successes in mixing linguistic and statistical methods have
been in syntax. There is much ground to cover still. Morphology is integrated
weakly into current SMT systems, mostly as broad features (Jeong et al. 2010)
though sometimes with more sophistication (Chahuneau et al. 2013). Better inte-
gration of morphological features could have great effect, especially in agglutinative
languages such as Finnish and Turkish.

Deeper models of semantics present a rich challenge to the field. As we
proceed into deeper models, picking the correct representation is a significant issue.
Humans can generally agree on words, mostly on morphology, and somewhat on
syntax. But semantics touches on issues of meaning representation: how should
we best represent semantic information? Should we attempt to faithfully represent
all the information in the source language, or gather only a simple model that
suffices to disambiguate information? Others are focusing on lexical semantics
using continuous space representations (Mikolov et al. 2013), a softer means of
representing meaning.

Regardless of the details, one point is very clear: future work in MT will require
dealing with data. Systems, whether statistical or rule-based, will need to work
with and learn from the increasing volumes of information available to computers.
Effective hybrid systems will be no exception—tempering the keen insights of
experts with the noisy wisdom of big data from the crowd holds great promise.
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Hybrid Word Alignment

Santanu Pal and Sudip Kumar Naskar

Abstract This paper proposes a hybrid word alignment model for Phrase-Based
Statistical Machine Translation (PB-SMT). The proposed hybrid word alignment
model provides most informative alignment links, which are offered by both
unsupervised and semi-supervised word alignment models. Two unsupervised word
alignment models, namely GIZACC and Berkeley aligner, and a rule based word
alignment technique are combined together. The unsupervised alignment models
are trained on the surface form as well as the root form of the training data
and provide alignment tables for the corresponding training data. The rule-based
aligner is aimed towards aligning named entities (NEs) and syntactically motivated
chunks. NEs are aligned through transliteration using a joint source-channel model.
Chunks are aligned employing a bootstrapping approach by translating the source
chunks into the target language using a baseline PB-SMT model and subsequently
validating the chunk hypotheses using a fuzzy matching technique against the target
corpus. Experiments are carried out after single-tokenizing the multiword NEs. The
effectiveness of the proposed hybrid alignment model was extrinsically evaluated
on the MT quality by using well-known automatic MT evaluation metrics, such
as BLUE and NIST. Our best system provided significant improvements over the
baseline as measured by BLEU.

1 Introduction

Word alignment is the backbone of PB-SMT systems or any data driven approaches
to Machine Translation (MT) and it has received a lot of attention in the area of
statistical machine translation (SMT) (Brown et al. 1993; Och et al. 2003; Koehn
et al. 2003) as the success of SMT or any other data driven approaches to MT is
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essentially reliant on the quality of word alignment. Word alignment is not an end
task in itself and is usually used as an intermediate step in SMT. Word alignment is
the task of detecting correspondences between words that are translations of each
other from parallel sentences. Existing statistical word alignment algorithms do
not cope well with many-to-many word links and SMT Models suffer from this
shortcoming of alignment algorithms to process such links.

Existing unsupervised word alignment models are based on IBM models 1–5
(Brown et al. 1993) and the HMM model (Vogel et al. 1996; Och et al. 2003). IBM
Models 3, 4 and 5 are based on fertility-based models, which are asymmetric. To
improve word alignment quality, the Berkeley Aligner uses the symmetric property
by intersecting alignments induced in each translation direction.

In addition, in any language, Multiword Expressions (MWEs) cause major
problems and they pose big challenge in statistical machine translation. MWE
can be roughly defined as idiosyncratic interpretations that cross word boundaries
(Sag et al. 2002). The meaning of MWEs cannot be always derived from their
component words; each of which have their own separate meanings when they occur
independently.

Named Entity is considered as MWEs, because it contains more than one words
and used as a single semantic unit in a sentence. Named entities (NE), particularly
multiword NEs, on the source and the target sides of the parallel corpus should
be aligned and translated as a whole. This is also true for multiword expressions
(MWE) and complex predicates in general (Pal et al. 2011). However, in the state-
of-the-art PB-SMT systems, the constituents of such multiword expressions are
often marked and aligned as part of consecutive phrases since PB-SMT (or any
other approaches to SMT) does not generally treat multiword expressions as special
tokens. This motivated us to consider NEs for special treatment in this work by
converting them into single tokens that makes sure that PB-SMT also treats them as
a whole.

Word alignment is one of the most difficult as well as critical tasks in SMT.
Sometimes some source words, appearing in both the input as well as the training
set, do not correctly get translated into the SMT output because of their mapping to
NULL token or erroneous mapping during word alignment. Verb phrase translation
has proven itself to be a larger challenge in SMT. The words inside verb phrases
are generally not aligned one-to-one; the alignments of the words inside source
and target verb phrases are mostly many-to-many, particularly so for the English—
Bengali language pair.

In the present work, we propose improvement of word alignment quality by com-
bining several word alignment models and tables: (1) surface-to-surface GIZACC
alignment, (2) surface-to-surface Berkeley alignment, (3) root-to-root GIZACC
alignment, (4) root-to-root Berkeley alignment and (5) rule based alignment.

The first objective of the present work is to see how single tokenization and
prior alignment of NEs affect the overall MT quality. The second objective is to see
whether a hybrid word alignment model combining both unsupervised and semi-
supervised techniques can enhance the quality of translation in SMT.
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We carried out the experiments on an English—Bengali translation task. Bengali
shows high morphological richness at lexical level. Language resources in Bengali
are also very scarce.

The hybrid word alignment method combines three different kinds of word
alignments—GizaCC word Alignment with grow-diag-final-and (GDFA) heuristic
(Koehn et al. 2003), Berkeley aligner and rule-based aligner. We have followed two
different strategies to combine the three different word alignment tables: union and
add additional alignment algorithm. We implemented a rule based alignment model
by considering several types of chunks, which are automatically identified on the
source side. Each individual source chunk is translated using a baseline PB-SMT
system and validated with the target chunks on the target side. The validated source-
target chunks are added in the rule based alignment table. Work has been carried out
into three directions: (1) several alignment tables are combined together by taking
their union; (2) extra alignment pairs are added into the alignment table which is a
well-known practice in domain adaptation in SMT (Eck et al. 2004; Wu et al. 2008)
and (3) the alignment table is updated through semi-supervised alignment technique.
The rule based alignment table is also improved using the updated hybrid word
alignment model and then we further improve the entire model during the second
pass of the experiment.

The correctness of the alignments is verified by manually checking the perfor-
mance of the various alignment systems. We start with the combined alignment table
which is produced by the add additional alignment algorithm which is described
in Sect. 3.4. Initially, we take a subset of the alignments by manually inspecting
from the combined alignment table. Then we train the Berkeley supervised aligner
with this labeled data. A subset of the unlabeled data from the combined alignment
table is aligned with the supervised model. The output is then added as additional
labeled training data for the supervised training method for the next iteration. Using
this bootstrapping approach, the amount of labeled training data for the supervised
aligner is gradually increased. The process is continued until there are no more
unlabeled training data. In this way we establish word alignments for the entire
parallel corpus. The process is carried out in a semi-supervised manner.

We carried out evaluation of the proposed model using automatic evaluation
metrics and observed significant improvements over the baseline models.

The remainder of the paper is organized as follows. Section 2 discusses related
work. The proposed hybrid word alignment model is described in Sect. 3. Section 4
presents the tools and resources used for the various experiments. Section 5 includes
the results obtained, together with some analysis. Section 6 concludes and provides
avenues for further work.

2 Related Works

A multilingual filtering algorithm that generates bilingual chunk alignments from
Chinese-English parallel corpus was proposed in (Zhu 2005). The algorithm has
three steps. First, the most frequent bilingual chunks are extracted from the parallel
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corpus. Secondly, the participating chunks for alignments are combined into a
cluster and finally one English chunk is generated corresponding to a Chinese chunk
by analyzing the highest co-occurrences of English chunks. Bilingual knowledge
can be extracted using chunk alignment (Zhu 2005). Another method of chunk
alignment with bootstrapping approach described in (Pal and Bandyopadhyay
2012); they used an SMT based model for chunk translation and then aligned the
source-target chunk pairs after validating the translated chunk.

To automatically extract bilingual MWEs, a log likelihood ratio based hierarchi-
cal reducing algorithm was proposed in (Ren et al. 2009). The usefulness of these
bilingual MWEs in SMT is examined by integrating bilingual MWEs into the Moses
decoder (Koehn et al. 2007). They also observed the highest improvement with an
additional feature that identifies whether or not a bilingual phrase contains bilingual
MWEs. While in (Ma et al. 2007), the authors simplified the task of automatic word
alignment as several consecutive words together correspond to a single word in
the opposite language by using the word aligner itself, i.e., by bootstrapping on
its output. Extracting bilingual multiword expressions and using them in statistical
machine translation was first proposed by (Lambert et al. 2005). They applied their
MWE extraction technique on the Verbmobil corpus and found that the integration
of these bilingual MWEs into the statistical alignment improves word alignment
quality as well as translation accuracy. The term: pseudo-word, a kind of multiword
expression, was introduced in (Duan et al. 2010). Pseudo-word is defined as a
minimal sequence of consecutive words in terms of translation. They considered
these pseudo-words as a translational unit and then fed into the Chinese-to-English
PB-SMT Model. The model significantly outperformed the baseline PB-SMT model
in both travel domain and news domain. Bilingual lexicon construction of MWES
from a French—English parallel corpus using a hybrid approach was presented in
(Bouamor et al. 2012). They integrated this bilingual MWE lexicon into PB-SMT
and reported improvement in translation quality. However, their algorithm works
only for many to many alignments and deals with highly and weakly correlated
MWES in a given sentence pair. A Maximum Entropy model based approach for
English—Chinese NE alignment that significantly outperforms IBM Model4 and
HMM was proposed by (Feng et al. 2004). They considered 4 features: translation
score, transliteration score, source NE and target NE’s co-occurrence score and the
distortion score for distinguishing identical NEs in the same sentence. Capitalization
cues have also been used for identifying NEs on the English side. Statistical
techniques are applied to decide which portion of the target language corresponds to
the specified English NE, for simultaneous NE identification and translation (Moore
and Robert 2003).

To improve the learning process of unlabeled data using labeled data (Chapelle
et al. 2006), semi-supervised learning method is a very useful learning technique.
Researchers have begun to explore semi-supervised word alignment models that
use both labeled and unlabeled data. A semi-supervised training algorithm was
described in (Fraser et al. 2006), where the weighting parameters are learned from
discriminative error training on labeled data, and the parameters are estimated by
maximum-likelihood EM training on unlabeled data. They also used a log-linear
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model, which is trained on the available labeled data to improve performance.
Interpolating human alignments with automatic alignments has been proposed by
(Callison-Burch et al. 2004), where the alignments of higher quality gained much
higher weight than the lower quality alignments. Two separate models of standard
EM algorithm, which learn separately from both labeled and unlabeled data, were
developed by (Wu et al. 2006). These two models are then interpolated as a
learner in the semi-supervised Ada-Boost algorithm to improve word alignment. To
identify highly uncertain or most informative alignment links, active learning query
strategies were applied under an unsupervised word alignment model in (Ambati
et al. 2010).

Intuitively, multiword NEs on the source and the target sides should be both
aligned in the parallel corpus and translated as a whole. However, in the state-of-
the-art PB-SMT systems, the constituents of multiword NE are marked and aligned
as parts of consecutive phrases, since PB-SMT (or any other approaches to SMT)
does not generally treat multiword NEs as special tokens. This is the motivation
behind considering NEs for special treatment in this work by converting them into
single tokens that makes sure that PB-SMT also treats them as a whole.

Another problem with SMT systems is the erroneous word alignment. Sometimes
some words are not translated in the SMT output sentence because of the mapping to
NULL token or erroneous mapping during word alignment. It can often be observed
that verb phrase translation poses a major challenge in SMT, particularly so for
English to Indic languages. The alignments between the words inside source and
target verb phrases for such language pairs are mostly found to be many-to-many.

3 Hybrid Word Alignment Model

The hybrid word alignment model is described as the combination of three word
alignment models as follows:

3.1 Word Alignment Using GIZACC

GIZACC (Och et al. 2003) is a statistical word alignment tool, which incorporates
all the IBM 1-5 models. GIZACC facilitates fast development of statistical machine
translation (SMT) systems. In case of low-resource language pairs the quality of
word alignments is typically quite low and it also deviates from the independence
assumptions made by the generative models. Although huge amount of parallel
data enables the model parameters to acquire better estimation, a large number of
language pairs still lack from the unavailability of sizeable amount of parallel data.
GIZACC has some drawbacks. It allows at most one source word to be aligned with
each foreign word. To resolve this issue, some techniques have already been applied,
such as the following one. The parallel corpus is aligned bidrectionally; then the two
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alignment tables are reconciled using different heuristics, e.g., intersection, union,
and most recently grow-diagonal-final and grow-diagonal-final-and heuristics have
been applied. In spite of these heuristics, the word alignment quality for low-
resource language pairs still remain low and calls for further improvement. We
describe our approach of improving word alignment quality in the following three
subsections.

3.2 Word Alignment Using Berkley Aligner

A recent advancement in word alignment is implemented in Berkeley Aligner
(Liang et al. 2006) which allows both unsupervised and supervised approach to
align word from parallel corpus. We initially train the model using unsupervised
technique. We make a few manual corrections to the alignment table produced
by the unsupervised aligner. Then we apply this corrected alignment table as
gold standard training data for the supervised aligner. The Berkeley aligner is an
extension of the Cross Expectation Maximization word aligner. Berkeley aligner is
a very useful word aligner because it allows for supervised training, enabling us to
derive knowledge from an already aligned parallel corpus or we can use the same
corpus by updating the alignments using some rule based methods. Our approach
deals with the latter case. The supervised technique of Berkeley aligner helps us to
align those words, which could not be aligned by our rule-based word aligner.

3.3 Rule Based Word Alignment

The proposed rule based aligner aligns named entities and chunks. Figure 1 shows
the architecture of the rule-based system. For NE alignment, we first identify NEs
from the source side (i.e. English) using Stanford NER. The NEs on the target side

Fig. 1 System architecture
of rule based aligner
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(i.e. Bengali) are identified using a method described in (Ekbal and Bandyopadhyay
2009). The accuracy of the Bengali named entity recognizers (NER) is much poorer
than that of English NER due to several reasons: (1) there is no capitalization
cue for NEs in Bengali; (2) most of the common nouns in Bengali are frequently
used as proper nouns; (3) suffixes (case markers, plural markers, emphasizers,
specifiers) get attached to proper names in Bengali. Bengali shallow parser has
been used to improve the performance of NE identification by considering proper
names as NE. Therefore, NER and shallow parser are jointly employed to detect
NEs from the Bengali sentences. The source NEs are then transliterated using a
modified joint source-channel model (Ekbal et al. 2006) and aligned to their target
side equivalents following the approach of (Pal et al. 2010). Since Bengali NEs
differ in their choice of ‘matras’ (vowel modifiers), both the NEs found in the
Bengali sentence as well the transliterated (i.e., Bengali) NEs are transformed into a
canonical form after omitting their matras. The transliterated NEs are then matched
with the corresponding parallel target NEs and finally we align the NEs if a match
is found.

After identification of multiword NEs on both sides, we pre-processed the
corpus by replacing space with the underscore character (‘_’), this ensures that the
multiword NEs are single tokenized and considered as a single unit. We have used
underscore (‘_’) instead of hyphen (‘-’) since there already exists some hyphenated
words in the corpus. The use of the underscore (‘_’) character also facilitates to
detokenize the single-tokenized NEs after decoding.

3.3.1 Automatic Alignments of NEs Through Transliteration

We extract the source and target (single token) NEs from the NE-tagged parallel
translations in which both sides contain at least one NE. Then we first create an NE
parallel corpus. In the example mentioned below, we extract the NE translation pairs
given in (2) from the sentence pair shown in (1), where the NEs are shown in italics.

(1a) Kirti_Mandir, where Mahatma_Gandhi was born, today houses a photo
exhibition on the life and times of the Mahatma, a library, a prayer hall and
other memorabilia.

(1b)

(2a) Kirti_Mandir Mahatma_Gandhi Mahatma
(2b)

Next, we try to align the extracted source and target NEs, as illustrated in (2).
If both sides contain only one NE then the alignment is trivial, and we add such
NE pairs to seed another parallel NE corpus that contains examples having only one
token in both side. Otherwise, we establish alignments between the source and target
NEs using transliteration. We use the joint source-channel model of transliteration
(Ekbal et al. 2006) for this purpose.
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If both the source and target side contains n number of NEs, and the alignments of
n-1 NEs can be established through transliteration or by means of already existing
alignments, then the nth alignment is trivial. Similarly, for multiword NEs, intra-
NE word alignments are established through transliteration or by means of already
existing alignments. For a multiword source NE, if we can align all the words inside
the NE with words inside a target NE, then we assume they are translations of each
other.

Since the source side NER is much more reliable than the target side NER, we
transliterate the English NEs, and try to align them with the Bengali NEs. We take
the 5 best transliterations produced by the transliteration system for an English
word, and compare them against the Bengali words. Here, we first normalize both
Bengali words: target NEs and the transliterated ones, because Bengali NEs often
differ in their choice of matras (vowel modifiers). Thus we transform Bengali
NE word into a canonical form by dropping the matras, and then compare the
results; if they match, then we align the English NE word with the Bengali NE
word.

(3)

The example in (3) illustrates the procedure. Assume we are trying to align
“Niraj” with . The transliteration system produces from the English
word “Niraj” and we compare with . Since the consonant sequences
match in both words, is considered a spelling variation of , and the
English word “Niraj” is aligned to the Bengali word .

In this way, we achieve word-level alignments, as well as NE-level alignments.
(4) shows the alignments established from (1). The word-level alignments help to
establish new word/NE alignments. Word and NE alignments obtained in this way
are added to the parallel corpus as additional training data.

(4a) Kirti-Mandir—
(4b) Kirti—
(4c) Mandir—
(4d) Mahatma-Gandhi—
(4e) Mahatma—
(4f) Gandhi—
(4g) Mahatma—

3.3.2 Automatic Chunk Alignment

For chunk alignment, the source sentences of the parallel corpus are parsed
using Stanford POS tagger. The chunks of the sentences are extracted using CRF
chunker. The chunker detects the boundaries of noun, verb, adjective, adverb and
prepositional chunks from the sentences. In case of prepositional phrase chunks, we
have taken a special attention: we have expanded the prepositional phrase chunk
by examining a single noun chunk followed by a preposition or a series of noun
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chunks separated by conjunctions such as ‘comma’, ‘and’ etc. For each individual
chunk, the head word is identified. Similarly, target side sentences are parsed using
a shallow parser. The individual target side Bengali chunks are extracted from the
parsed sentences. The head words for all individual chunks on the target side are also
marked. If the translated head word of a source chunk matches with the headword
of a target chunk then we hypothesize that these two chunks are translations of each
other.

The extracted source chunks are translated using a baseline SMT model trained
on the same corpus. The translated chunks are validated against the target chunks
found in the corresponding target sentence. During the validation process, if any
match is found between the translated chunk and a target chunk then the source
chunk is directly aligned with the original target chunk. Otherwise, the source chunk
is ignored in the current iteration for any possible alignment and is considered in the
next iterations.

The extracted chunks on the source side may not have a one to one correspon-
dence with the target side chunks. The alignment validation process is focused on the
proper identification of the head words and not between the translated source chunk
and target chunk. The matching process has been carried out using a fuzzy matching
technique. If both sides contain only one chunk after aligning the remaining chunks
then the alignment is trivial. After aligning the individual chunks, we also establish
word alignments between the matching words in those aligned chunks. Thus we get
a sentence level source-target word alignment table.

Figure 2 shows how word alignments are established between a source-target
sentence pair using the rule based method. Figure 2a shows the alignments obtained
through rule-based method. The solid links are established through transliteration
(for NEs) and translation. The dotted arrows are also probable candidates for intra-

Fig. 2 Establishing
alignments through rule
based methods. (a) Rule
based alignments. (b) Gold
standard alignments
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chunk word alignments; however they are not considered in the present work.
Figure 2b shows the gold standard alignments for this sentence pair.

3.4 Hybrid Word Alignments Model

The hybrid word alignment method combines word alignments produced by
three different kinds of word aligners—GizaCC with grow-diag-final-and (GDFA)
heuristic, Berkeley aligner and rule based aligner. We have followed two different
strategies to combine the three different word alignment tables.

3.4.1 Union

In the union method all the alignment tables are united together and duplicate entries
are removed. Taking union of the alignments should improve the recall of the word
alignment.

3.4.2 ADD Additional Alignments

In this method, we consider either of the alignments generated by GIZACC (A1) or
Berkeley aligner (A2) as the standard alignment as the rule-based aligner (A3) fails
to align many words in the parallel sentences. For any set of alignments fA1, A2,
: : : Ang, we propose an alignment combination method as described in Algorithm 1.

Algorithm 1

Step 1: Choose a Standard alignment table (As) from the set of alignment tables
fA1, A2 : : : Ang with the exception that any rule based alignment cannot be
assigned to As.

Step 2: Correct the alignments in As using the remaining (n-1) alignment tables.
Take intersection of the other n-1 alignment tables. E.g., for three alignment
tables A1, A2 and A3, if A2 is assigned to As then find additional alignments
from A1 and A3 using A1\A3 and add these additional entries to As.

3.5 Berkeley Semi-Supervised Alignment

The correctness of the alignments is verified by manually checking the performance
of the various alignment systems. We start with the combined alignment table, which
is produced by Algorithm 1. Initially, we take a subset of the alignments, a set of
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500 alignments from the combined alignment table, which was manually inspected
and corrected. Then we train the Berkeley supervised aligner with this labeled
data. A subset of the unlabeled data, i.e., alignments collected from the combined
alignment table, is aligned with this supervised model. The output is then added
as additional labeled training data for the supervised training method for the next
iteration. Using this bootstrapping approach, the amount of labeled training data for
the supervised aligner is gradually increased. The process is continued until there
are no more unlabeled training data left. In this way we refine the whole alignment
table for the entire parallel corpus. The process is carried out in a semi-supervised
manner.

The manual correction process involves correction of one-to-one, one-to-many,
many-to-one and many-to-many alignments. To optimize the manual effort involved
we focus only on one-to-one alignment correction, other types of correction are
automatically taken care of by the system during the iterative process. We manually
inspected 500 alignments and observed that the quality of the one-to-one alignments
is better than the other kinds of alignments. Table 1 shows statistics over the 500
manually inspected alignments.

Since the one-to-one alignment list has better accuracy, the one-to-one align-
ments are considered initially for correction in the 1st Iteration. In the 1st iteration
of the statistical model, the manually checked 500 alignments are used with the large
set of alignment. At the end of Iteration 1, it was found that the accuracy of both the
one-to-one and one-to-many mapped word alignments increases as more and more
words are now correctly aligned. After an in depth study of the one-to-one aligned
pairs for a few word, it was found that the number of incorrectly aligned entries
before the 1st iteration were more than the correctly aligned entries. A detailed
analysis of the word alignment quality after 1st iteration exposed that not only
this process improves the accuracy of one-to-one world alignments, the accuracy
of other kinds of word alignments also improves. The example given below depicts
the improvement the in word alignment.

English sentence: This variety is replicated in the food, architecture, music and
culture of Brazil.

Bengali Sentence (English gloss): Brajilera khadya, parikat.hamo, sangita,
sans.kr

˚
tite ei baicitra pratiphalita haya.

The example in Table 2 shows that, before the first iteration the word
“replicated” is aligned to 3 Bengali words in the target side while the word
“culture” remains unaligned. After the first iteration, the word “culture” is correctly

Table 1 Word alignment
accuracy

Alignment Accuracy (%)

1:1 83.2
1:2 67.4
1:3 49.1
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Table 2 Word alignment
improvement with iterations

Alignment
Word Iteration 1 Iteration 2

NULL 7 7
This 9 9
variety 10 10
is NA 12
replicated 8 11 12 11
in NA NA
the NA NA
food 2 2
, NA NA
architecture 4 4
, 5 5
music NA NA
and NA NA
culture NA 8
of NA NA
Brazil 1 1
. 13 13

mapped to the target word “sangaskritite”, as these one-to-one mapped words
are manually corrected in the training alignment set, the system identifies the
correct alignment pairs during the successive iterations. In iteration 2, the system
correctly aligns “culture” with “sangaskritite”, “is” with “hay” and “replicated” with
“pratiPalita”.

For the successive iterations the correction of one-to-one mapped word align-
ments are preferred again. During successive iterations, the correction effort is
gradually less and the accuracy of the one-to-many as well as other types of word
alignment increases.

The hybrid word alignment model has been incorporated into the SMT workflow
as shown in Fig. 3.

4 Tools and Resources Used

A sentence-aligned English-Bengali parallel corpus containing 23,492 parallel
sentences from the travel and tourism domain has been used in the present work.
The corpus has been collected from the consortium-mode project “Development of
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Fig. 3 Translation model
using hybrid word alignment

Table 3 Corpus statistics Corpus # Sentence # Words

Training English 22,492 561,881
Bengali 22,492 478,568

Development English 500 10,945
Bengali 500 9881

Monolingual Bengali 33,597 506,859
Test English 500 11,328

Bengali 500 9894

English to Indian Languages Machine Translation (EILMT) System—Phase II” .1

Table 3 presents the statistics about the dataset.

1The EILMT project is funded by the Department of Electronics and Information Technology
(DEITY), Ministry of Communications and Information Technology (MCIT), Government of
India.
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The Stanford Parser2 and CRF chunker3 have been used for identifying chunks
and Stanford NER has been used to identify named entities in the source side of the
parallel corpus.

The target side (Bengali) sentences are parsed by using the tools obtained from
the consortium mode project “Development of Indian Language to Indian Language
Machine Translation (IL-ILMT) System - Phase II4”.

NEs in Bengali are identified using the NER system of (Ekbal and Bandyopad-
hyay 2009). We use the Stanford Parser, Stanford NER and the NER for Bengali
along with the default model files provided, i.e., with no additional training.

The effectiveness of the present work has been tested by using the standard
log-linear PB-SMT model as our baseline system: phrase-extraction heuristics
described in (Koehn et al. 2003), MERT (minimum-error-rate training) (Och and
Franz 2003) on a held-out development set, target language model trained using
SRILM toolkit (Stolcke 2002) with Kneser-Ney smoothing (Kneser and Ney 1995)
and the Moses decoder (Koehn et al. 2007) have been used in the present study.
Statistical significance tests were carried out using bootstrap resampling method
(Koehn 2004) considering p D 0.05.

5 Experiments and Results

We randomly selected 500 sentences each for the development set and the test set
from the initial parallel corpus. The rest are considered as the training corpus. The
training corpus was filtered with the maximum allowable sentence length of 100
words and sentence length ratio of 1:2 (either way). Finally the training corpus
contained 22,492 sentences. In addition to the target side of the parallel corpus,
a monolingual Bengali corpus containing 506,895 words from the tourism domain
was used for building the target language model. We experimented with different n-
gram settings for the language model and the maximum phrase length and found that
a 4-gram language model and a maximum phrase length of 7 produced the optimum
baseline result. We carried out the rest of the experiments using these settings.

We experimented with the system over various combinations of word alignment
models. Our hypothesis focuses mainly on the theme that improvement in word
alignment will result in improvement of the system performance in terms of
translation quality, particularly so for language pairs having only small amount of
training data.

2http://nlp.stanford.edu/software/lex-parser.shtml
3http://crfchunker.sourceforge.net/
4The IL-ILMT project is funded by the Department of Electronics and Information Technology
(DEITY), Ministry of Communications and Information Technology (MCIT), Government of
India.

http://nlp.stanford.edu/software/lex-parser.shtml
http://crfchunker.sourceforge.net/
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Table 4 Evaluation results for different experimental setups

Experiment Exp. no. BLEU NIST

Baseline system using GIZACC with GDFA 1 10.92 4.13
PB-SMT system using Berkeley Aligner 2 11.42 4.16
Experiment 1 C root-root GIZACC alignment 3 11.08 4.14
Experiment 2 C root-root Berkeley alignment 4 11.61 4.18
Union of all alignments 5 11.22 4.15
PB-SMT system with hybrid alignment by considering
(a) GIZACC as the standard alignment (b) Berkeley
alignment as the standard alignment

6aa 15.77 4.34

6ba 16.42 4.42
Single-tokenized NE C Experiment 3 7 11.84 4.18
Single-tokenized NE C Experiment 4 8 12.02 4.20
Single-tokenized NE C (a) Experiment 6a (b)
Experiment 6b

9aa 16.98 4.47

9ba 17.72 4.53
PB-SMT system with semi-supervised Berkeley
Aligner C Single-tokenized NE

10a 21.17 4.74

aSystems produce statistically significant improvements on BLEU over the baseline system

141,821 chunks were identified from the source corpus, of which 96,438 (68 %)
chunks were aligned by the system. 39,931 and 28,107 NEs were identified from
the source and target sides of the parallel corpus respectively, of which 22,273 NEs
are unique in English and 22,010 NEs in Bengali. A total of 14,023 NEs have been
aligned through transliteration.

The experiments were carried out with various experimental settings: (1) single
tokenization of NEs on both sides of the parallel corpus, (2) using Berkeley
Aligner with unsupervised training, (3) union of the several alignment models: rule
based, GIZACC and Berkeley Alignment, root-to-root GIZACC alignment, root-
to-root Berkeley alignment, (4) hybridization of the three alignment models, and (5)
supervised Berkeley Aligner. Extrinsic evaluation was carried out on the MT quality
using BLEU (Papineni et al. 2002) and NIST (Doddington 2002).

In Table 4, the baseline system (experiment 1) is the state-of-art PB-SMT system
where GIZACC with grow-diag-final-and is used as the word alignment model.
Experiment 2 provides better results than experiment 1 which signifies that Berkeley
Aligner performs better than GIZACC for the English-Bengali word alignment
task. Experiments 3 and 4 are carried out with root-to-root alignment; i.e. both the
source and the target words are stripped to their roots and alignments are established
between source and target roots, as opposed to words as is done traditionally. Root-
to-root alignment helps alleviate the data sparseness problem to certain extent. It is
to be noted, however, that root-to-root alignments established at the sentence level
are preserved back to the word-to-word alignments. The experiments with root-to-
root alignment (i.e., experiment 3 and 4) also show the same trend, i.e., Berkeley
Aligner performs better than GIZACC on root-to-root alignment. The union of all
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alignments (Experiment 5) provides better scores than the baseline PB-SMT with
GIZACC; however it cannot beat the results obtained with the Berkeley Aligner
alone. Union of all three alignments results in improved word alignment recall;
however it also introduces some noisy alignments yielding lower precision in word
alignment.

In the rule based alignment table, each tuple or row provides a subset of word
alignment such as NE alignment and chunk alignments in a parallel sentence. These
alignments are directly incorporated into the hybrid word alignment model using
Algorithm 1 (discussed in Sect. 3.4). Hybrid word alignment model with GIZACC
using root form of the source-target sentence aligned training corpus as the standard
alignment (experiment 6a) and other alignments are incorporated using Algorithm 1.
It produces statistically significant improvements over the baseline. Similarly, the
use of Berkeley Aligner as the standard alignment of the same training data for
Hybrid alignment model (experiment 6b) also results in statistically significant
improvements over experiment 2 and 4. These two experiments (experiment 6a and
6b) demonstrate the effectiveness of the hybrid alignment model. It is to be noticed
that the hybrid alignment model works better with the Berkeley Aligner than with
GIZACC.

Single-tokenization of the NEs (experiment 7, 8, 9a and 9b) improves the system
performance to some extent over the corresponding experiments without single-
tokenization (experiment 3, 4, 6a and 6b); however, these improvements are not
statistically significant. The Berkeley semi-supervised alignment method using a
bootstrapping approach together with single-tokenization of NEs (experiment 10)
provided the overall best performance in terms of both BLEU and NIST and the
corresponding improvement is statistically significant on BLEU over the rest of the
experiments.

6 Conclusions and Future Work

The paper proposes a hybrid word alignment model for PB-SMT. The paper
also shows how effective pre-processing of NEs in the parallel corpus and direct
incorporation of their alignment in the word alignment model can improve SMT
system performance. In data driven approaches to MT, specifically for scarce
resource language pairs, this approach can help to upgrade the state-of-the-art
machine translation quality as well as the word alignment quality. The hybrid
model with the use of the semi-supervised technique of the Berkeley word aligner
in a bootstrapping manner, together with single tokenization of NEs, provides
substantial improvements (10.25 BLEU points absolute, 93.86 % relative) over the
baseline. On manual inspection of the output we found that our best system provides
more accurate lexical choice as well as better word ordering than the baseline
system.

As future work we would like to explore how to get the best out of multiple word
alignments. We will explore other combination schemes such as majority voting
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for this purpose and the concept will be tested on different sizes of training data
as well as for other language pairs. Furthermore, integrating the knowledge about
multiword expressions into the word alignment models is another important future
direction for this work.
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Syntax-Based Pre-reordering
for Chinese-to-Japanese Statistical Machine
Translation

Dan Han, Pascual Martínez-Gómez, and Yusuke Miyao

Abstract There are additional difficulties associated with the translation of lan-
guage pairs that have different word orders. In this chapter, we introduce some
of these difficulties and describe two syntax-based approaches to addressing these
problems. First, we describe an approach that exploits regularities in the differences
of phrase head locations between Chinese and Japanese and formalize rules that
reorder branches of constituency trees. Second, we propose an approach that
compensates the differences in typical locations of the Subject (S), the Verb (V),
and the Object (O) between Chinese (SVO) and Japanese (SOV), and devise rules
that reorder word blocks from dependency trees. These approaches are implemented
in the form of pre-reordering methods, and we evaluate their impact on a phrase-
based machine translation system in terms of translation quality in news and
patent domains. These approaches rely on syntactic structures that are automatically
extracted by means of parsers, and as such, they are sensitive to parse errors. We
analyze the effect of these parse errors, and obtain upper bounds in translation
performance that can be achieved with these syntax-based pre-reordering methods.

1 Introduction

Despite the political and economic importance of the relationship between China
and Japan, translation between Chinese and Japanese has not received much
attention within the machine translation community. There have been remark-
able advances in machine translation in the past 20 years, but a straightforward
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application of these advances to this language pair provides an unsatisfactory
translation performance.

Although Chinese and Japanese languages share many lexical similarities, their
sentence structure is very different. Their having different sentence structures often
leads to non-monotonic word alignments, which are more difficult to estimate
correctly using automatic alignment methods (Brown et al. 1990) when compared
to languages with similar sentence structures. Inaccurate word alignments affect
both training and decoding stages in machine translation. During the training
stage, poorly estimated word alignments are likely to produce illegitimate bilingual
phrases, that is, phrase tables in which source phrases are not in good correspon-
dence with target phrases. Moreover, wrong word alignments may also degrade
the quality of lexicalized reordering models. Consequently, in the decoding stage,
the machine will have fewer chances to select appropriate target phrases that are
translations of their source phrases, and the order of the target phrases within the
target sentence may also be inappropriate. Finally, the quality of machine translation
between Chinese and Japanese also benefits from decoders that consider large
distortion limits,1 but computational performance is severely affected in exchange.

In Sect. 2.2, we describe several approaches that have been proposed to tackle the
problem of translation between languages with different sentence structures. In this
chapter, we focus on pre-reordering, which consists of changing the order of words
in the source sentences to resemble the word order of the target sentences. Pre-
reordering of words is typically performed using either automatically inferred rules,
or by following linguistic intuitions. In this chapter, we introduce two mutually
exclusive sets of linguistically motivated pre-reordering rules, inspired by two
linguistic observations.

The first observation is that Chinese is a head-initial language (Gao 2008),
whereas Japanese is a head-final language (Fukui 1992). That is, the head of Chinese
phrases usually appears at the beginning of the phrase, whereas phrase heads usually
appear at the end of the phrase in Japanese. For this reason, by moving phrase heads
of Chinese sentences to the end of their constituents, we may obtain word orders of
Chinese sentences that resemble the word orders of Japanese sentences.

The second observation is that Chinese is a Subject-Verb-Object (SVO)
language (Gao 2008), whereas Japanese is a Subject-Object-Verb (SOV)
language (Fukui 1992). That is, the object-argument of the verbs usually follows
the verbal phrase in Chinese, but object-arguments usually precede verbal phrases
in Japanese. Thus, by moving the verbal phrases (“V”) of Chinese sentences to
the right of their object-arguments (“O”), we may obtain word orders of Chinese
sentences that resemble the word order of Japanese sentences.

Our contribution is the design of pre-reordering methods that implement these
two linguistic observations in the form of well-defined pre-reordering rules. We test
these methods in terms of several evaluation metrics that assess translation quality in
two different domains when translating from Chinese to Japanese and compare their

1They produce target phrases that correspond to source phrases at a very different relative position.
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performances with each other and to a phrase-based system with no pre-reordering
stage.

The remainder of the present chapter is organized as follows. In Sect. 2, we
introduce recent advances in constituent and dependency parsing for Chinese, which
are essential tools to extract the structure of Chinese sentences, and then describe
research related to reordering, and more specifically, to pre-reordering strategies.
In Sect. 3, we present in detail pre-reordering rules inspired by the differences in
head positions between Chinese and Japanese. In Sect. 4, we describe pre-reordering
rules that are inspired by the differences in SVO and SOV structures between
both languages. Section 5 contains a description of the experimental framework
and comparison results in translation performance between the two pre-reordering
strategies and a baseline phrase-based system. Experiments are followed by a
discussion of the results, and we conclude the chapter with a section summarizing
our findings.

2 Background

2.1 Chinese Parsing

Linguistically motivated pre-reordering models obtain syntactic information from
source sentences using language parsers. In theoretical linguistics, parsing can be
distinguished into several types in terms of the formal grammar, such as phrase
structure grammars and dependency grammars.

In the first pre-reordering strategy, we adapt to Chinese an existing pre-reordering
technique called head finalization (HF) (Isozaki et al. 2010b), which was originally
designed to pre-reorder words in English sentences (head-initial) to resemble the
word order of Japanese sentences (head-final). HF receives as input a constituency
tree obtained using Enju2 (Miyao and Tsujii 2008), a parser based on head-driven
phrase structure grammars (HPSG) (Pollard and Sag 1994). For application to
Chinese-to-Japanese translation, we use a Chinese HPSG parser called Chinese
Enju (Yu et al. 2011). In Sect. 3, we describe the details of the adaptation of HF to
reorder words in Chinese sentences based on the constituency parse trees obtained
using Chinese Enju.

Figure 1 shows an example of the XML output of Chinese Enju for the sentence:
“我(wo3, I) 去(qu4, go to) 了(le0, -ed) 东京(dong1jing1, Tokyo) 和(he2, and)

京都(jing1du1, Kyoto).”3

2http://www.nactem.ac.uk/enju.
3In the text, we represent Chinese characters in Pinyin together with a tone number and its English
translation in parentheses, e.g., 我(wo3, I). In total, there are 5 tones (i.e., 0, 1, 2, 3, and 4) in
Chinese.

http://www.nactem.ac.uk/enju
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Fig. 1 XML format output of Chinese Enju for a Chinese sentence. For clarity, we only present
information related to the phrase structure and heads

Labels <cons> and <tok> represent non-terminal and terminal nodes, respec-
tively. Each node is identified by a unique “id” and may have several attributes.
Among them, the attribute “head” indicates the identity of its syntactic head
(within its subtree). As an example, the first line in Fig. 1 defines a non-terminal
node, having the “c1” as its id and node “t0” as its syntactic head. Based on the
binary tree structure and head information produced by the parser, a swapping tree
operation can reorder a head-initial language such as Chinese to follow a head-final-
word-order language such as Japanese.

In the second pre-reordering strategy, we use an unlabeled dependency parser
for Chinese, Corbit4 (Hatori et al. 2011) which is based on a dependency grammar.
Compared to phrase structure grammars, dependency grammars have flatter struc-
tures because they are solely determined by the relation between a word and its
dependents. Figure 2 presents an example of an unlabeled dependency parse tree.

4http://triplet.cc/software/corbit.

http://triplet.cc/software/corbit
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Fig. 2 Example of an
unlabeled dependency parse
tree of a Chinese sentence
with words aligned to their
Japanese counterparts.
Arrows point from heads to
their dependents

2.2 Related Research

Linguistically motivated pre-reordering methods usually rely on parsers that provide
syntactic information of either the source or the target language, or both. This
method has proved to be an effective auxiliary technique for traditional phrase-based
statistical machine translation (SMT) systems to improve translation quality. It is
especially effective when the source and target languages are structurally different,
such as English-Arabic (Badr et al. 2009), English-Hindi (Ramanathan et al. 2009),
English-Japanese (Isozaki et al. 2010b; Lee et al. 2010), and English to other SOV
or VSO languages (Xu et al. 2009). As for Chinese-to-Japanese translation, research
has been limited except in using pivot languages (Wu and Wang 2007; Tsunakawa
et al. 2009), which involves a two-step translation, where each step may introduce
inaccuracies. Linguistically, although Chinese and English are classified into the
same group according to their sentence structure, language-specific characteristics
of Chinese and English cause reordering issues when simply applying an existing
English pre-reordering method to Chinese.

There are two main strategies to extract reordering rules from automatically
generated parse trees. The first is to create handcrafted reordering rules based on
linguistic analysis (Collins et al. 2005; Wang et al. 2007; Lee et al. 2010), and the
other is to learn reordering rules from the data (Xia and McCord 2004; Li et al.
2007; Genzel 2010; Visweswariah et al. 2010; Wu et al. 2011).

The pre-reordering methods introduced in this chapter follow the first research
approach, which consists of manually developing reordering rules for Chinese based
on a detailed analysis of the order differences between Chinese and Japanese.
This contrasts with the work on German and English in Collins et al. (2005) or
English and Japanese in Lee et al. (2010). Wang et al. (2007) proposed several
reordering rules to reorder Chinese sentences when translating into English, which is
a relatively easier task than translating Chinese into Japanese, due to the similarities
in sentence structure between Chinese and English.

Regarding the second line of research, Xia and McCord (2004) presented a
method to automatically learn rewriting patterns from the combination of aligned
phrases and their parse tree pairs. Therefore, their method requires both source
and target side parse trees, which limits the application to other language pairs
that do not count on parsers for the target language. In previous studies (Li et al.
2007; Visweswariah et al. 2010), reordering patterns were learned from constituent
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trees. Li et al. (2007) used tree operations to generate an N-best list of reordered
candidates from which to produce the optimal translation, and Visweswariah et al.
(2010) used maximum likelihood estimation to learn the probability of a reordering
operation, and experimented on several language pairs. However, these methods
have to contend with the problem of data sparseness when tree nodes have several
children. Moreover, since the constituent tree structure is excessively restrictive,
certain types of reorderings cannot be captured. In Genzel (2010), reorderings were
carried out from shallow constituent trees, which were converted from dependency
parse trees, and reordering rules were automatically extracted from aligned bitext.
The authors used window heuristics to deal with data sparseness, which led to
filtering out long-distance reordering patterns. Unlike in previous studies, Wu et al.
(2011) automatically extracted reordering rules from predicate-argument structures.
However, this method could only reorder words that were involved in a predicate-
argument structure.

In the first pre-reordering method introduced in this chapter, we concentrate on
the manual design of rules inspired by the HF pre-reordering method described
in Isozaki et al. (2010b), which is one of the simplest methods that signifi-
cantly improves word alignment and leads to better quality English-to-Japanese
translations. A plausible explanation is the close match of the syntactic concept
“head” in such language pairs. However, for the Chinese-to-Japanese language
pair, differences in the definition of “head” lead to unexpected reordering problems
while implementing HF. Moreover, we believe that such differences are also likely
to be observed in other language pairs.

The refined application of the HF method (HFC) to reorder Chinese sentences
showed gains in reordering quality, but it is impractical to increase the numbers
of handcrafted rules to cover new reordering issues. Hence, we introduce a pre-
reordering framework for Chinese that relies on unlabeled dependency parsing
(DPC). A method similar to DPC was introduced in Xu et al. (2009), where the
authors used an English dependency parser to formulate handcrafted reordering
rules in the form of triplets that are composed of dependency labels, part-of-speech
(POS) tags, and weights. The rules were operated recursively in a sentence during
the reordering. The DPC approach introduced herein also uses dependency tree
structures and POS tags,5 but information on dependency labels is discarded because
we did not find it informative to guide our reordering strategies in preliminary
experiments, partly due to Chinese exhibiting fewer dependencies and a larger label
variability (Chang et al. 2009).

Other approaches in pre-reordering include the development of reordering rules
without using parsers (Costa-Jussà and Fonollosa 2006; Rottmann and Vogel 2007;
Tromble and Eisner 2009; Visweswariah et al. 2011; Neubig et al. 2012). In Costa-
Jussà and Fonollosa (2006), the task of reordering the source language was treated as
a translation task in which statistical word classes were used. In Rottmann and Vogel

5We follow the POS tag guideline of the Penn Chinese Treebank v3.0 (Xia 2000). Table 6 in
Appendix lists all POS tag definitions.
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(2007), reordering rules were learned from POS tags instead of parse trees. Tromble
and Eisner (2009) and Visweswariah et al. (2011) proposed methods based on binary
classifications. Moreover, Neubig et al. (2012) presented context-free-grammar
models for learning a discriminative parser which optimizes reordering accuracy
as an extrinsic objective function.

Although the majority of efforts were dedicated to pre-reordering, other
authors (Sudoh et al. 2011; Goto et al. 2012) examined the possibility of post-
reordering on a Japanese-to-English translation task. The authors first translated
Japanese to Japanese-ordered English, and then reordered this Japanese-ordered
English to normal English using an existing reordering method. Compared to
pre-reordering, post-reordering requires two types of reorderings: (1) reordering
of common English to Japanese-ordered English for training and (2) reordering
of Japanese-ordered English to common English for decoding. Thus, reordering
errors may propagate in the translation pipeline, which may decrease the reordering
accuracy and translation quality.

3 Head Finalization for Chinese (HFC)

Both Chinese and English are known to be head-initial languages.6 Ideally, HF
would reorder Chinese sentences to resemble their Japanese counterparts in word
order, in the same fashion as it was conceived for English-to-Japanese machine
translation. The essence of HF is to move syntactic heads to the right-hand side
of their dependents by swapping child nodes in a binary phrase structure tree when
the head child appears on the left of the dependent child. However, HF treats the
coordination structure as an exception. See Fig. 3 for an example with its parse tree.
In this example, although the syntactic heads are on the left-hand side branches

Fig. 3 English example of
coordination structure

6However, it is still open for debate whether Chinese is a head-initial or a head-final language due
to its flexible word order (Gao 2008). Nevertheless, the written form of Chinese behaves primarily
as a head-initial language.
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(i.e., “Tokyo” and “and” are the syntactic heads), HF will not swap them with their
siblings and the phrase “Tokyo and Kyoto” will preserve the original word order.
While applying HF to Chinese, we retained such an exception rule, because the
coordination structure behaves similarly in Chinese as it does in English. From the
XML output of Chinese Enju, the attributes of cat and schema are used to detect
this case. Specifically, the attribute values schema="coord-left/right" and
cat="COOD" signal a coordination structure.

HF does not prevent the swapping operation from crossing punctuation. How-
ever, the authors in Isozaki et al. (2010b) separated English sentences not only
by periods, but also by colons and semicolons, which reduced the occurrence of
reordering errors involving punctuation, at the expense of limitations in performing
some long-distance reorderings. Unlike the English HPSG parser, the Chinese
HPSG parser includes in the tree the periods that signal the end of sentences (see the
example of a tree in Fig. 4a). Since the period branch is customarily not the syntactic
head, we introduce (in HF and HFC) a punctuation exception rule that prevents all
reorderings that involve any punctuation. Similarly to as done for the coordination
exception rule, we monitor the attribute cat="PU" because it signals a punctuation
node.

In order to motivate possible refinements in HF reordering, we first consider
the straightforward application of HF to reorder words in Chinese sentences.
Figure 4 displays the working mechanism of HF with the corresponding HPSG
parse tree of the Chinese sentence in Fig. 1. The stars (�) indicate the syntactic
head branches. Figure 4a is the parse tree graph corresponding to the XML
output in Fig. 1, whereas Fig. 4b is the reordered parse tree graph. As shown in
Fig. 4a, nodes c2, c3, c4, c7, and c9 are candidates for performing a swapping
operation on their children, because their head children are on the left-hand side
of their dependents. However, since the attributes of nodes c7, c9, and c12 are
schema="coord-left/right",cat="COOD", and cat="PU" (see Fig. 1),
the child nodes of c2, c7, and c9 will not be swapped in consideration of the
exception rules. In this example, as the result of applying HF, only child nodes
of c3 and c4 are swapped (see Fig. 4b). Consequently, the verb “去(qu4, go to)” and
aspect particle “了(le0, -ed)” have correctly been moved to the end of the sentence
following the same word order as the Japanese translation. However, “去(qu4, go
to)” and “了(le0, -ed)” were incorrectly swapped, producing a local misalignment.

Our best explanation for this unexpected local misalignment is that there are
discrepancies in syntactic head definitions between Chinese and Japanese. In
linguistics, a syntactic head of a phrase is the word that determines the syntactic
category of the phrase, and its modifiers (also known as dependents) are the rest
of the words within the phrase (Miller and Miller 2011). Based on the idea that
head-dependent relation is consistent between English and Japanese, while the word
orders are different, HF works well for reordering English to resemble Japanese
in terms of word order. However, in Chinese, there has been significant debate
on the definition of what constitutes a syntactic head, possibly because Chinese
has fewer surface syntactic features than other languages like English or Japanese.
This causes discrepancies between the definitions of syntactic head in Chinese
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Fig. 4 Corresponding parse
tree of the Chinese example
in Fig. 1 illustrating the head
finalization (HF) reordering
method. In both figures,
Chinese words are aligned
with their Japanese
translations. Asterisk
indicates the syntactic head
branch given by Chinese
Enju. (a) Original HPSG tree.
(b) Reordered HPSG tree
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and Japanese, which leads to undesirable reorderings of Chinese sentences. In
preliminary experiments, we observed several reordering problems that are caused
by differences in syntactic head definitions:

Aspect Particle Since there is no tense marker in Chinese, three aspect particles
express tense semantically by directly following the verbs they modify. These parti-
cles are “着(zhe0, -ing)”, “了(le0, -ed)”, and “过(guo4, -ed)”. The last expresses the
present perfect tense and appears in Figs. 1, 2, and 4. In Fig. 4, the Chinese parser
treats the verb “去(qu4, go to)” as a phrase head, whereas the last word “た(-ed)”
is the phrase head in Japanese and aligns to “了(le0, -ed)”. Thus, HF produces an
incorrect reordering (as indicated by the red box). In the refined model, an exception
rule prevents this reordering from wrongly occurring.

Adverbial Modifier “不不不(bu4, not)” Chinese adverbial modifiers and their
Japanese counterparts are usually in pre-verbal positions, and no reordering is
necessary. However, there is an exceptional adverb in Chinese “不不不(bu4, not)” that
translates into Japanese as “ななないいい(not)”. This Chinese adverb precedes the verb, but
its Japanese translation follows the verb. Figure 5a shows a tree that illustrates this
case. According to HF, the reordered sentence is “我我我(wo3, I)电视(dian4shi4, TV)
不(bu4, don’t)看(kan4, watch) .” However, the ideal reordered sentence should be
“我(wo3, I) 电视(dian4shi4, TV) 看(kan4, watch) 不(bu4, don’t) .” We introduce
an exception rule that considers this case.

Sentence-Final Particle Sentence-final particles are used to express a speaker’s
attitude in languages, such as “嗯(en0, uh)” and “啊(a0, ah)”. Figure 5b shows an
example of a sentence-final particle “啊(a0, ah)”. Although it appears at the end
of the sentence both in Chinese and Japanese, it is identified as the dependent in
Chinese, whereas it is the head in Japanese due to differences of head definition.
The Chinese sentence reordered by HF is “啊(a0, ah) 天气(tian1qi4, weather) 真
好(zhen1hao3, good) 是(shi4, is) .” However, a more monotonic alignment could
be produced by HFC if “啊(a0, ah)” is kept at the end of the reordered Chinese
sentence.

Et Cetera In Chinese, there are two expressions that mean “and other things” or
“and so forth”: “等(deng3, etc.)” and “等等(deng3deng3, etc.)”. Both are identified
as dependents of nouns or noun phrases. In contrast, in Japanese, their translation
“など(etc.)” is always the head because it appears as the right-most word of a noun
phrase. Figure 5c shows an example. We handle this case as we did aspect particles.

Based on the previous observations, we propose a method by which to improve
HF, referred to herein as HFC. The concept behind HFC is simple. We predefine
a list of POS tags (see Table 1) and prevent HF reordering in a node if one of the
child node’s POS tags belongs to the list. Due to its particular nature, the adverbial
modifier “不(bu4, not)” is taken as an exception. Note that rules for PU and CC are
equivalent to the exception rules in Isozaki et al. (2012).

Unfortunately, there are more reordering problems that are difficult to solve by
designing more exception rules. Examples include serial verb constructions, verbal
nominalizations, nounal verbalizations, and complementizers. A more concrete
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Fig. 5 Three examples
demonstrating discrepancies
in syntactic head definition
between Chinese and
Japanese. (a) Adverbial
Modifier bu4 (not). (b)
Sentence-final particle. (c) Et
cetera
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Table 1 List of POS tags for
exception reordering rules

AS Aspect particle

SP Sentence-final particle

ETC Et cetera

IJ Interjection

PU Punctuation

CC Coordinating conjunction

instance corresponds to the example shown in Fig. 5b. The ideal reordered Chinese
sentence for the example is “真好(zhen1hao3, good) 天气(tian1qi4, weather)
是(shi4, is) 啊(a0, ah) .” However, neither HF nor HFC can obtain the word order
“真好(zhen1hao3, good) 天气(tian1qi4, weather) 是(shi4, is)” by any possible
combination of node swaps in the tree. This limitation does not arise from the lack of
coverage of the rules, but rather from the hard constraints that binary tree structures
impose on the possible word orders that can be reached. Moreover, HPSG parsers
are currently not available for most languages, and the Chinese HPSG parser has
lower accuracy than dependency parsers. It is also challenging to fix or compensate
for parse errors during reordering. Parse errors, binary tree structure constraints,
and low extensibility of reordering rules were our reasons for developing a new pre-
reordering method for Chinese based on an unlabeled dependency parser in order to
further improve the translation quality of Chinese-to-Japanese SMT.

4 Unlabeled Dependency Parsing Based Pre-reordering
for Chinese (DPC)

Chinese and Japanese have different sentence structures. Reordering methods are
effective but are sensitive to parse errors and require reliable parsers in order
to extract the syntactic structure of the source sentences. However, Chinese has
a loose word order, and Chinese parsers that extract the phrase structure do
not perform well. Therefore, in this section we introduce a block-based pre-
reordering framework where only POS tags and unlabeled dependency parse trees
are necessary.

Linguistic knowledge of structural differences can be encoded in the form of
reordering rules. As an SVO language, V (predicate) usually appears between
its subject and its objects in Chinese sentences. In contrast, the location of V is
switched with its objects in Japanese, since the language follows the SOV order.
Thus, the reordering objective will be to move the V (predicate) to the right-hand
side of its objects in Chinese sentences. There are two challenges associated with
this reordering objective, namely determining the relevant words that need to be
reordered and detecting the proper positions to which the words should be relocated.
Evidently, in most sentences, V (predicate) consists not only of verbs, but also
surrounding words (i.e., particles, adverbs, verbs in coordination structure, etc.).
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Accordingly, there are mainly three stages in this reordering strategy. The first
stage is to correctly identify reordering candidates (verbs and their accompanying
words). We refer to candidates as verbal blocks (Vb), because they will be treated
as a unit while reordering. The second stage is to determine the precise position to
which Vb should be reordered. In a dependency relation, objects such as nouns and
pronouns are dependents of their Vb and encode the potential reordering destination.
Specifically, we are interested in finding the right-most dependent (RM-D). The
third stage is to relocate reordering candidates, by moving Vb to the right-hand side
of its RM-D (if it exists) and to reorder other particles if necessary.

Figure 6 demonstrates the reordering procedure. The original dependency tree is
given in Fig. 2 for this example. In Fig. 6a, the rectangular box marks the Vb that
needs to be reordered. The dependency tree shows that “京都(jing1du1, Kyoto)”
is the right-most dependent of the Vb, and thus the Vb will be reordered to its
right-hand side, as shown in Fig. 6b. The alignment between the reordered Chinese
sentence and its Japanese reference becomes monotonic, and both follow SOV word
order. In what follows, we describe in detail how to determine verbal blocks, in order
to identify right-most dependents, and to perform reordering.

Identifying Verbal Block (Vb) A verbal block (Vb) is a reordering candidate
and is composed of a head (Vb-H) and possibly accompanying dependents (Vb-
D). In order to form a Vb, a Vb-H has to be confirmed first. According to our
linguistic findings, prepositions behave in a manner similar to verbs in Chinese-
to-Japanese translation, and are both potential Vb-Hs. The POS tags of verbs and

Fig. 6 A simple example of
how to detect and reorder a
verbal block (Vb) in a
sentence. Figure 2 shows the
dependency parse tree. In (a),
the rectangular box marks the
Vb. (b) presents the reordered
Chinese sentence and the
chunk-to-chunk alignment
with its Japanese reference.
(a) Vb in a rectangular box.
(b) Reordered Vb
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Table 2 List of Chinese POS
tags for identifying words as
different candidates

Category POS tag

Vb-H VV VE VC VA P

Vb-D AD AS SP MSP CC VV VE VC VA

BEI LB SB

RM-D NN NR NT PN OD CD M FW CC

ETC LC DEV DT JJ SP IJ ON

Oth-D LB SB CS

The definition of each POS tag can be found in
Table 6

prepositions are listed in the Vb-H entry of Table 2 and are used to identify Vb-H
candidates. Syntactically, objects are dependents of their verb, and a Vb-H appears
as the dependency head in a dependency tree. As an example, in Fig. 2, “去(qu4, go
to)” is the main verb and its object is a noun coordination phrase “东京(dong1jing1,
Tokyo) 和(he2, and) 京都(jing1du1, Kyoto)”. According to the alignment to the
Japanese reference, the verb “去(qu4, go to)” should be reordered to the right-
hand side of the right-most word of its object (its dependent), i.e., “京都(jing1du1,
Kyoto)”.

In Chinese, there is a special sentence structure called bei-construction, which
consists of a passive verb and one of the particles for which the POS tag is listed in
the BEI entry of Table 2. The particle, which is the dependent of the verb, is used
to compensate for the lack of verb inflection to produce a passive voice. Although
the majority of Chinese sentences are SVO, similar to their Japanese counterparts,
passive sentences that include a bei-construction in Chinese follow SOV word order.
Therefore, a Vb-H candidate that involves a bei-construction should be excluded
and not reordered. As an illustration, a bei-construction sentence is given in Fig. 7.
In the example, the verb “割破(ge1po4, lacerate)” and its object “脚(jiao3, foot)”
follow the same word order as the Japanese sentence, and thus there is no reordering
required. Instead, the particle “被(bei4, passive voice)” should be relocated to the
right-hand side of its verb to align to its Japanese counterpart.

In summary, there are three necessary conditions for a word to be a Vb-H:

1. the POS tag of the word must be in the Vb-H entry of Table 2;
2. the word must be a dependency head; and
3. the word must have no dependent for which the POS tag is in the BEI entry of

Table 2.

Chinese does not have any inflection, conjugation, or case markers (Li and
Thompson 1989). Particles (i.e., aspect particles, sentence-final particles, etc.) and
adverbs are used to add aspectual value or signal modality or to indicate grammatical
tense to verbs. For instance, in Fig. 2, the aspect particle “了(le0, -ed)” adds the past
tense to the verb “去(qu4, go to)” by following it. Since Japanese verbs are inflected
to express tense, the Chinese aspect particle should be reordered together with its
verb, as shown in Fig. 6a, b. We refer to these tokens as Vb-Ds, because they are
also dependents of the Vb-H.



Syntax-Based Pre-reordering for Chinese-to-Japanese Statistical Machine Translation 91

Fig. 7 Example of
bei-construction

There are also three conditions for a word to be considered a Vb-D:

1. the POS tag of the word must be in the Vb-D entry in Table 2;
2. the word must be a dependent of a token that is already in the Vb; and
3. the word must be next to its dependency head or be separated by only a

coordination conjunction.

After the Vb-H is found, we search for Vb-Ds from its surrounding dependents
to form a block Vb. A more complex Vb example is given in Fig. 8. Based on the
dependency parse tree (see Fig. 8a), in accordance with the conditions of being a Vb-
H, both “记录(ji4lu4, record)” and “发表(fa1biao3, publish)” are Vb-Hs, and thus
two Vb will be initialized simultaneously. By examining the adjacent dependents of
these two Vb-Hs with the Vb-D conditions, two Vbs are formed. Note that one Vb
is embedded into the other, as shown in Fig. 8b. Nested Vbs will be merged as one
and reordered together to the right-hand side of the right-most dependent of the Vb
(see Fig. 8c).

Identifying the Right-Most Dependent (RM-D) After obtaining the reordering
candidates, namely Vbs, another challenge is to find the precise location at which
the Vb must be placed. Our objective is to reorder V to the right-hand side of O for
an SVO sentence in order to follow the SOV word order. However, it is not trivial to
recognize the object O in a sentence, due to the variety of words that may conform
it, such as single words (e.g., noun, pronoun), noun phrases, or noun clauses. Since
our main interest is finding the right-most boundary of the O, we simplify the task
to identifying the right-most dependent (RM-D) of a Vb. We define an RM-D as a
token that

1. has a POS tag that belongs to the RM-D entry of Table 2;
2. has its dependency head in the Vb; and
3. is located as the right-most object among all objects of the Vb.
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Fig. 8 Example of how to
detect and reorder nested Vbs
in a sentence. (a) Original
dependency tree. (b) Vbs in
rectangular boxes. (c)
Merged and reordered Vb

Consequently, in Figs. 6a and 8b, “京都(jing1du1, Kyoto)” and “文章(wen2zhang1,
article)” are the RM-Ds of their respective Vbs.

Figure 9 shows two complex examples of determining the RM-D. The alignment
lines between original Chinese sentences and reordered sentences indicate the
reordering traces. The resulting monotonic alignment is evidenced by comparing the
reordered sentences and the Japanese references. In Fig. 9a, two Vbs, “拿(na2, hold)
着(zhe0, -ing)” and “走进(zou3jin4, walk into)”, are in a coordination structure,
and their RM-Ds are different, namely “作业( zuo4ye4, homework)” and “教
室(jiao4shi4, classroom)”. Thus, these two Vbs are reordered separately to the right-
hand side of their own RM-Ds. In Fig. 9b, a subordinate clause is the object of the
main clause. In such a case, the Vb of the subordinate “发表(fa1biao3, voice)” is
reordered to the right-hand side of its RM-D “意见(yi4jian4, opinion)”, and the Vb
of the main clause “鼓励(gu3li4, encourage)” is reordered to the end of the sentence.
Such a sentence structure often appears in the news domain in the form of reported
speech.

Identifying Other Dependent (Oth-D) There are other tokens that may need to
be reordered apart from the Vb, such as the particle “被(bei4, passive voice)” in a



Syntax-Based Pre-reordering for Chinese-to-Japanese Statistical Machine Translation 93

Fig. 9 Examples of complex
RM-Ds. (a) Predicate
consisting of a coordination
of verb phrases. English
Translation: The teacher
walks into the classroom with
homework. (b) Object
consisting of a subordinate
clause. English Translation:
Teachers encourage students
to voice their opinions

bei-construction (see the example in Fig. 7). These particles appear on the left-hand
side of their dependency heads in Chinese, but on the right-hand side in Japanese.
Therefore, we reorder them as follows:

1. find dependents of a Vb-H for which the POS tags are in the Oth-D entry of
Table 2;

2. move such particles to the right-hand side of their (possibly reordered) heads;
and

3. if there are several of these particles, keep the relative order between them during
the reordering.
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Reordering Procedure Based on the definitions given above, the unlabeled depen-
dency parsing based pre-reordering framework proceeds as follows:

1. Obtain POS tags and an unlabeled dependency tree of the Chinese sentence.
2. Obtain reordering candidates: Vbs.
3. Obtain the right-most token in the object (RM-D) of each Vb.
4. Reorder each Vb in two exclusive cases by following the order:

(a) If RM-D exists, reorder Vb to be the right-hand side of its RM-D.
(b) If Vb-H is ROOT and its RM-D does not exist, reorder Vb to the end of the

sentence.
(c) If neither of the above two conditions is met, no reordering occurs.

5. Reorder grammatical particles (Oth-Ds) to the right-hand side of their corre-
sponding Vbs.

To illustrate this method, a more complex Chinese sentence example is given in
Fig. 10. Given the dependency tree, the first step is to build up reordering candidates:
Vbs. Based on the POS tag and dependencies, there are six tokens that qualify as
Vb-Hs, namely, “报道(bao4dao4, report)”, “随着(sui2zhe0, with)”, “进入(jin4ru4,
enter)”, “成为(cheng2wei2, become)”, “加强(jia1qiang2, strengthen)”, and “力
促(li4cu4, urge)”. Vb-Ds are determined by examining these Vb-Hs’ surrounding
dependents. For instance, “逐渐(zhu2jian4, gradually)” and “了(le0, -ed)” are Vb-
Ds of the Vb-H “进入(jin4ru4, enter)”. Since the Vb-H “力促(li4cu4, urge)” is a
qualified Vb-D of “加强(jia1qiang2, strengthen)”, this nested Vb is merged with
the larger one. Consequently, five Vbs are formed (marked with rectangular boxes).
After finding Vbs, the next step is to identify RM-Ds for each Vb, if any. By
checking all conditions, four Vbs, i.e., “随着(sui2zhe0, with)”, “逐渐(zhu2jian4,
gradually) 进入(jin4ru4, enter) 了(le0, -ed)”, “成为(cheng2wei2, become)”, and
“加强(jia1qiang2, strengthen) 力促(li4cu4, urge)”, have a corresponding RM-
D: “发展(fa1zhan3, development)”, “中国(zhong1guo2, China)”, “节日(jie2ri4,
festival)”, and “节日(jie2ri4, festival)”, respectively. During the reordering, we
will relocate all Vbs to the right-hand side of their RM-Ds. Since the dependency
root “报道(bao4dao4, report)” does not have an RM-D, it has been reordered to

Fig. 10 Example of reordering a complex Chinese sentence by DPC
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the end of the sentence. Finally, because there is no special particle (Oth-D) that
must be reordered, the reordering procedure terminates. The resulting word-to-word
alignment between the reordered Chinese sentence and the Japanese reference is
almost monotonic.

Unlike HFC and other reordering methods for distant language pairs (Xu et al.
2009; Isozaki et al. 2010b), this method does not prevent chunks from crossing
punctuation or coordination structures. However, in order to compare DPC with the
original HF and HFC reordering methods, we insert artificial particles following
the method as introduced in Isozaki et al. (2010b). The insertion of such artificial
particles requires information (identity of the arguments) from an HPSG parser (i.e.,
Chinese Enju). Therefore, we cannot entirely disclaim the use of an HPSG parser
at the present stage in DPC. However, we believe that dependency parsers can also
provide sufficient information for inserting artificial particles, but this is beyond the
scope of the present study.

5 Evaluation

5.1 Experimental Conditions

We used two corpora from the news domain and two corpora from the patent
domain to evaluate the performance of both pre-reordering methods for Chinese-
to-Japanese machine translation. For the news domain, we collected an in-house
Chinese-Japanese parallel corpus of news articles that we refer to herein as “News”
and used this corpus as a training set (Training 1). Then, we merged this corpus
with the training corpus that was provided by the 7th China Workshop on Machine
Translation (CWMT2011)7 (Zhao et al. 2011) and used it as an extended training
set (Training 2). For the patent domain, the corpora were extracted from patent
applications filed from 2007 to 2010. The document alignment was based on the
priority claims and the sentence alignment was performed using the Champollion
Tool Kit (CTK)8 (Ma 2006). We extracted sentence pairs for which the alignment
score was higher than 0:95 and 0:9 in order to build Training 1 and Training 2,
respectively. Therefore, Training 1 is a subset of Training 2. Finally, for every
domain, we obtained a disjoint set of sentences for development and testing.
Statistics on these corpora can be found in Table 3. Out-of-vocabulary words were
computed with respect to Training 1 and Training 2, respectively.

7http://mt.xmu.edu.cn/cwmt2011/document/papers/e00.pdf.
8http://champollion.sourceforge.net/.

http://mt.xmu.edu.cn/cwmt2011/document/papers/e00.pdf
http://champollion.sourceforge.net/
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Table 3 Statistical characteristics of corpora

News Patent

Chinese Japanese Chinese Japanese

Training 1 Sentences 342;050 2;559;581

Running words 7;414;749 9;361;867 64;028;414 78;624;671

Avg. sent. len. 21:68 27:37 25:02 30:72

Vocabulary 145;133 73;909 351;345 91;778

Training 2 Sentences 621;610 4;894;415

Running words 9;822;535 12;499;112 132;206;053 164;452;302

Avg. sent. len. 15:80 20:11 27:01 33:60

Vocabulary 214;085 98;333 526;545 124;512

Development Sentences 1000 1144

Running words 46;042 56;748 31:57 39:71

Avg. sent. len. 46:04 56:75 36;114 46;570

Out of vocab. 301 and 262 67 and 57 112 and 73 26 and 20

Test Sentences 2000 1144

Running words 51;534 65;721 37;145 47;750

Avg. sent. len. 25:77 32:86 32:47 40:74

Out of vocab. 594 and 546 310 and 278 100 and 53 23 and 9

Prior to carrying out pre-reordering, we pre-processed these parallel
corpora using the following methods. For Japanese segmentation, we used the
MeCab9 (Kudo and Matsumoto 2000), while for Chinese segmentation, we used the
Stanford Chinese segmenter10 (Chang et al. 2008). Since both the Chinese HPSG
parser Chinese Enju and the dependency parser Corbit require POS tag information,
we extracted the information from the output of the Berkeley parser11 (Petrov et al.
2006).

Our baseline system is the standard Moses12 (Koehn et al. 2007). For comparison,
we included the original HF system as well. Word-to-word alignments between
paired Chinese sentences and their Japanese counterparts were estimated using
MGIZA++13 (Och and Ney 2003; Gao and Vogel 2008), and the scaling factors of
the log-linear combination of models were tuned by applying minimum error rate
training (MERT) (Och 2003).

9http://mecab.googlecode.com/svn/trunk/mecab/doc/index.html.
10http://nlp.stanford.edu/software/segmenter.shtml.
11http://nlp.cs.berkeley.edu/Software.shtml.
12http://www.statmt.org/moses.
13http://www.kyloo.net/software/doku.php/mgiza:overview.

http://mecab.googlecode.com/svn/trunk/mecab/doc/index.html
http://nlp.stanford.edu/software/segmenter.shtml
http://nlp.cs.berkeley.edu/Software.shtml
http://www.statmt.org/moses
http://www.kyloo.net/software/doku.php/mgiza:overview
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For the purpose of generality, we used several evaluation metrics to assess the
performance of the pre-reordering methods, namely BLEU (Papineni et al. 2002),
Rank-based Intuitive Bilingual Evaluation Score (RIBES)14 (Isozaki et al. 2010a),
WER, PER (Tillmann et al. 1997), and TER15 (Snover et al. 2006). BLEU and RIBES
are precision metrics, and higher scores suggest higher performance. In contrast,
WER, PER, and TER are error metrics, which means that lower scores are better.

5.2 Results

In phrase-based machine translation, the distortion limit is a parameter that governs
the maximum distance at which a phrase can be translated. In SMT between
language pairs having different sentence structures, large distortion limits might be
appropriate in order to enable the translation of phrases that align at the beginning
and at the end of Chinese and Japanese sentences, respectively.

In Tables 4 and 5, we present the results obtained using training data sets of
different sizes for both news and patent corpora, respectively, and the results for the
optimal distortion limit are shown in bold. In general, the patent domain requires
larger distortion limits than the news domain, which might be due to sentences in
the patent domain being longer (on average) than sentences in the news domain.

The DPC pre-reordering method exhibits consistently superior performance in
terms of BLEU and RIBES (precision metrics), and WER, PER, and TER (error
metrics), for all distortion limits in both domains. The proposed DPC achieves the
best performance using distortion limits that range between 6 and 12 in the news
domain and in the range between 9 and 12 in the patent domain.

Considering only the results of the methods for their optimal distortion limit,
we find small or inconsistent differences in performance between the baseline, HF,
and HFC methods in terms of the evaluation metrics. In the news domain, DPC
provides small improvements in BLEU and RIBES over the second-best performing
system, but slightly larger improvements in terms of WER, PER, and TER. In the
patent domain, however, DPC obtains, on average (across all distortion limits), large
improvements with respect to HFC in terms of BLEU (2:9 and 3:6 points in Training
1 and Training 2), RIBES (2:2 and 2:3 points), WER (5:3 and 5:5 points), PER (4:4

and 4:3 points), and TER (3:8 and 3:8 points).

14http://www.kecl.ntt.co.jp/icl/lirg/ribes.
15http://www.cs.umd.edu/~snover/tercom.

http://www.kecl.ntt.co.jp/icl/lirg/ribes
http://www.cs.umd.edu/~snover/tercom
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Table 4 Evaluation of translation quality for the news domain

dl 0 1 2 3 4 5 6 7 9 12

Training 1

BLEU Baseline 38:29 38:58 38:55 38:72 38:91 39:11 39:16 39:21 39:47 39:44

HF 39:09� 39:05� 39:22� 39:20� 39:34� 39:59� 39:53 39:57 39:30 39:54

HFC 39:55� 39:48� 39:00� 39:62� 39:70� 39:49 39:66� 39:79� 39:66 39:66

DPC 39:59� 39:66� 39:62� 39:77� 39:68� 39:43 39:94� 39:87� 40:14� 39:85�

RIBES Baseline 84:55 84:59 84:59 84:60 84:87 84:80 85:07 84:95 84:91 84:87

HF 84:77 84:79 84:77 84:85 84:66 84:92 84:90 84:90 84:95 84:89

HFC 84:86� 84:94� 84:91� 85:01� 84:98 84:77 85:08 84:99 85:09 85:04

DPC 85:07� 85:12� 85:13� 85:22� 85:11 85:18� 85:30 85:25� 85:29� 85:29�

WER Baseline 51:93 51:68 51:83 51:38 51:08 50:84 50:68 50:53 50:61 51:15

HF 50:48 50:67 50:50 50:31 50:44 50:01 50:27 50:16 50:38 50:74

HFC 50:00 50:03 50:20 49:91 49:79 50:23 49:72 49:68 49:70 49:92

DPC 49:28 49:26 49:24 49:07 49:22 49:39 48:74 48:85 48:86 48:83

PER Baseline 31:52 31:27 31:23 31:38 31:11 31:04 31:14 31:10 30:88 30:81

HF 30:82 30:81 30:71 30:68 30:54 30:58 30:61 30:68 30:73 30:34

HFC 30:65 30:65 31:00 30:52 30:46 30:92 30:51 30:66 30:54 30:59

DPC 30:52 30:50 30:47 30:48 30:46 30:57 30:39 30:36 30:25 30:58

TER Baseline 48:11 47:79 47:80 47:56 47:09 46:89 46:90 46:81 46:65 46:89

HF 46:44 46:59 46:43 46:21 46:37 45:93 46:16 46:12 46:14 46:16

HFC 45:99 46:02 46:16 45:89 45:67 46:21 45:71 45:75 45:62 45:73

DPC 45:87 45:82 45:81 45:65 45:81 45:79 45:41 45:49 45:34 45:58

Training 2

BLEU Baseline 38:35 38:20 38:32 38:63 38:81 39:21 39:20 39:43 39:41 39:20

HF 39:15� 39:48� 36:86 39:66� 39:41� 39:70� 39:55 36:29 40:00� 39:85�

HFC 39:54� 39:44� 39:61� 39:48� 37:39 39:65� 39:69� 39:79 39:91� 39:94�

DPC 39:62� 39:44� 39:56� 39:70� 39:66� 39:75� 39:82� 40:01� 39:95� 39:81�

RIBES Baseline 84:53 84:60 84:64 84:66 84:65 85:00 85:10 85:10 85:12 84:83

HF 84:84� 84:78 84:06 84:85 84:80 84:96 84:80 82:62 85:02 84:71

HFC 84:92� 84:77 84:99� 84:79 84:42 84:92 84:91 84:88 85:10 84:94

DPC 85:17� 84:94� 85:19� 85:14� 85:23� 85:25� 85:26 85:18 85:21 85:27�

WER Baseline 52:07 52:15 52:02 51:59 51:39 50:85 50:75 50:42 50:35 51:00

HF 50:59 50:46 52:62 50:18 50:19 50:04 50:10 53:93 49:84 51:02

HFC 50:10 50:25 49:99 50:18 51:55 50:03 50:03 49:99 49:64 49:96

DPC 49:18 49:66 49:17 49:32 49:00 49:15 48:94 48:99 48:99 48:95

PER Baseline 31:39 31:48 31:40 31:00 31:31 30:85 30:87 30:83 30:80 30:91

HF 30:59 30:48 31:31 30:45 30:47 30:45 30:45 30:73 30:24 30:37

HFC 30:52 30:62 30:36 30:62 31:43 30:48 30:51 30:34 30:34 30:40

DPC 30:50 30:55 30:51 30:35 30:30 30:46 30:31 30:21 30:07 30:28

TER Baseline 48:09 48:12 47:97 47:40 47:60 46:94 46:84 46:74 46:53 46:73

HF 46:42 46:35 48:22 46:09 46:00 45:92 45:94 49:10 45:69 46:24

HFC 46:00 46:20 45:88 46:14 47:27 45:85 45:94 45:80 45:63 45:78

DPC 45:83 46:29 45:80 45:92 45:56 45:88 45:61 45:70 45:54 45:47

Results are presented in terms of BLEU, RIBES, WER, PER, and TER for the baseline, HF, HFC,
and DPC along with different values of the distortion limit (dl). Results significantly larger than
the baseline with a confidence of over 95 % are indicated by an asterisk
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Table 5 Evaluation of translation quality for the patent domain

Training 1

dl 0 1 2 3 4 5 6 7 9 12

BLEU Baseline 45:51 45:69 45:64 45:95 46:50 46:79 47:02 47:68 48:01 48:03

HF 44:97 45:44 45:51 46:61 46:80 47:59� 48:00� 48:52� 49:11� 48:25

HFC 45:06 45:04 45:27 45:45 45:45 47:20 48:20� 48:49� 48:22 48:84�

DPC 48:06� 48:06� 48:23� 48:88� 49:23� 50:11� 50:20� 50:89� 51:31� 51:44�

RIBES Baseline 84:32 84:55 84:37 84:38 84:82 84:73 84:88 85:11 85:41 84:93

HF 84:19 84:33 84:29 84:81 84:81 85:06 85:15 85:30 85:51 85:09

HFC 84:16 84:17 84:21 84:19 84:19 84:82 85:18 85:38 85:18 85:20

DPC 86:49� 86:46� 86:59� 86:65� 86:89� 86:92� 87:14� 87:14� 87:29� 87:32�

WER Baseline 49:03 48:80 49:01 48:58 47:92 47:87 47:90 47:36 47:32 48:85

HF 50:70 50:04 50:41 48:93 49:17 48:36 47:88 47:42 47:24 49:42

HFC 50:40 50:52 50:36 50:17 50:17 48:58 47:33 47:09 47:85 48:37

DPC 44:79 44:98 44:66 44:20 43:83 43:31 43:22 42:84 42:83 43:30

PER Baseline 26:41 26:37 26:30 26:02 25:74 25:37 25:06 24:93 24:61 24:36

HF 27:97 27:39 27:89 26:71 26:99 26:67 26:26 25:61 25:61 26:63

HFC 28:16 28:11 28:06 28:24 28:24 26:57 25:68 25:29 25:87 25:83

DPC 22:88 23:36 22:95 22:97 22:99 22:52 22:35 22:16 21:93 21:57

TER Baseline 41:67 41:72 41:68 41:09 40:57 40:10 40:11 39:65 39:40 40:08

HF 42:34 41:82 42:19 40:93 40:93 40:18 39:68 39:07 38:84 40:18

HFC 42:36 42:37 42:21 42:08 42:08 40:35 39:34 38:97 39:51 39:57

DPC 38:15 38:49 37:95 37:83 37:44 36:66 36:53 36:12 36:04 35:79

Training 2

BLEU Baseline 50:83 50:59 51:30 51:60 51:74 52:34 52:92 53:40 54:00 54:51

HF 51:53 51:81� 51:74 52:38� 53:70� 54:05� 54:17� 54:82� 55:28� 55:22

HFC 51:77� 51:27 51:73 51:93 52:93� 53:75� 53:83� 54:05 55:03� 56:13�

DPC 54:76� 54:80� 54:93� 55:72� 56:48� 57:31� 57:91� 58:30� 59:01� 59:18�

RIBES Baseline 85:87 85:78 86:03 86:06 86:08 86:31 86:66 86:96 87:18 87:16

HF 85:79 85:95 85:86 86:18 86:48 86:57 86:68 86:76 86:88 86:92

HFC 86:03 85:85 86:04 85:91 86:30 86:55 86:62 86:55 86:98 87:34

DPC 88:16� 88:21� 88:22� 88:34� 88:75� 88:88� 88:97� 88:93� 89:25� 89:23�

WER Baseline 45:37 45:26 44:68 44:51 44:39 43:49 43:03 42:49 42:40 42:29

HF 45:59 45:09 45:45 44:76 43:67 43:40 43:46 42:95 42:73 43:58

HFC 45:06 45:59 45:09 45:05 44:17 43:49 43:63 43:25 42:50 41:63

DPC 40:17 40:14 39:90 39:32 38:43 38:01 37:46 37:46 36:66 37:24

PER Baseline 23:71 24:00 23:54 23:24 23:17 22:91 22:77 22:43 21:96 21:74

HF 24:78 24:38 24:82 24:71 23:51 23:66 23:94 23:44 23:23 23:31

HFC 24:36 24:92 24:26 24:39 23:76 23:53 23:57 23:99 23:07 21:52

DPC 20:11 20:01 20:06 19:98 19:94 19:18 18:98 18:90 18:55 18:51

TER Baseline 37:74 37:67 37:32 37:03 36:86 36:20 35:93 35:45 35:04 34:60

HF 37:58 37:23 37:50 37:13 35:72 35:53 35:55 35:06 34:73 35:08

HFC 37:15 37:62 37:17 37:09 36:11 35:44 35:53 35:52 34:55 33:31

DPC 33:57 33:49 33:47 33:10 32:32 31:78 31:18 31:31 30:56 30:65

The results are presented in terms of BLEU, RIBES, WER, PER, and TER for the baseline, HF,
HFC, and DPC along with different values of the distortion limit (dl). Results significantly larger
than the baseline with a confidence of over 95 % are indicated by an asterisk
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5.3 Effects of Parse Errors

The pre-reordering methods that were introduced in this chapter require information
on the structure of source sentences. This structure is extracted using automatic
parsers, and, as such, is subject to parse errors. Thus, it is worthwhile to analyze
the effects of parse errors on the pre-reordering methods. Such an analysis will
assess the influence of parse errors on the performance of different reordering
methods, and we also examine the upper bounds of the pre-reordering methods in
the absence of parse errors. To this end, we first carried out pre-reordering using both
erroneous and error-free parse trees, which were generated by parsers (automatic)
and human annotations (gold), respectively, as indicated by the prefixes Auto- and
Gold- (i.e., Auto-HFC/DPC, Gold-HFC/DPC). Then, we compared the resulting
reordered Chinese sentences with two benchmarks in order to obtain the upper
bounds of the pre-reordering methods.

Ideally, the benchmarks should consist of manually reordered Chinese sentences.
However, building such manual benchmarks is time consuming and labor intensive.
Therefore, we created a small data set of manually reordered Chinese sentences and
a slightly larger data set of automatically reordered Chinese sentences derived from
their Japanese references. For this purpose, we randomly selected 2643 human parse
annotations from Chinese Penn Treebank ver. 7:0 (CTB-7)16, and converted these
annotations to both constituent trees and dependency trees. The parse trees of these
sentences are the error-free input for HFC and DPC, which are used to produce
Gold-HFC and Gold-DPC, respectively. We obtained the Japanese translations of
these sentences from professional human translators. Then, a bilingual speaker
of Chinese and Japanese manually reordered the first 517 Chinese sentences
to resemble Japanese in word order according to the Japanese references. This
small data set of manually reordered Chinese sentences is used in scenario-1 of
the analysis. We also constructed a slightly larger data set of reordered Chinese
sentences, by automatically aligning the 2643 Chinese sentences to their Japanese
counterparts, by means of MGIZA++. Then, words from Chinese sentences were
reordered to resemble Japanese in word order, given the output of MGIZA++. This
second data set is used in scenario-2 of the analysis. However, due to parsing failures
of the automatic parsers on some sentences, there were only 491 sentences available
for scenario-1 and 2164 sentences available for scenario-2.

We calculated Kendall’s tau (�) rank correlation coefficient (Kendall 1938) to
estimate the word-order similarity between benchmarks and automatically reordered
Chinese sentences (i.e., Gold-HFC/DPC, Auto-HFC/DPC). Figures 11 and 12
present the distribution graphs of Kendall’s tau values in the two scenarios.
Baseline results correspond to the Kendall’s tau distribution of word-order similarity
between the original Chinese sentences and the benchmarks. In the figures, both
Gold-HFC/DPC and Auto-HFC/DPC show higher average � values as compared

16http://www.cis.upenn.edu/~chinese/.

http://www.cis.upenn.edu/~chinese/
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Fig. 11 Scenario-1.
Distribution of Kendall’s tau
values for 491 sentences pairs
of automatically reordered
sentences from the baseline,
Auto-HFC, Gold-HFC,
Auto-DPC, and Gold-DPC
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Fig. 12 Scenario-2.
Distribution of Kendall’s tau
values for 2164 bilingual
sentences (Chinese-Japanese)
of automatically reordered
sentences from the baseline,
Auto-HFC, Gold-HFC,
Auto-DPC, and Gold-DPC
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to the baseline system, which implies that both HFC and DPC have positively
reordered the Chinese sentences and improved the word alignment. Moreover,
Gold-HFC/DPC reduced the percentage of low � sentences when compared to Auto-
HFC/DPC, and revealed the upper bounds of these two pre-reordering methods in
the absence of parse errors. Furthermore, Gold-DPC provides a higher percentage
of sentences with higher values of Kendall’s tau as compared to Gold-HFC, which
suggests that DPC could potentially produce better reorderings as the performance
of parsers improves.

Although the above preliminary analysis experiments provided a general idea of
the effects of parse errors on pre-reordering performance, they do not reveal the
most influential parse error types. More detailed analysis and description of the data
selection and evaluation metrics can be found in the work of Han et al. (2013a).

6 Discussion and Future Research

Syntax-based reordering methods in a preprocessing stage have been developed
and have been proved to be useful for extracting bilingual phrases and decoding.
For Chinese-to-Japanese SMT, we carried out a detailed linguistic analysis on
word-order differences of this language pair to improve the word alignment. We
developed two linguistically motivated pre-reordering methods for Chinese to
resemble Japanese in word order, and our experimental results revealed a significant
improvement in translation quality.

1. Specifically, we first adapted an existing pre-reordering method called head
finalization (HF) (Isozaki et al. 2010b) for Chinese (HFC) (Han et al. 2012) in
order to improve the Chinese-to-Japanese translation quality of SMT systems.
HF was originally designed to reorder English sentences for English-to-Japanese
SMT and exhibited satisfactory performance. However, preliminary experi-
mental results revealed disadvantages in reordering Chinese sentences due to
the particular characteristic differences of the language pair. Thus, based on
extensive linguistic research, we refined HF to obtain HFC. In order to obtain the
required syntactic information, we used an HPSG parser for Chinese. However,
an error analysis revealed that there are issues remaining that complicate the
further refinement of HFC, such as constraints imposed by the binary structure
of HPSG parse trees and inconsistencies in head definition for certain words.

2. We then introduced DPC (Han et al. 2013b), a new pre-reordering framework
that uses unlabeled dependency parse trees and that achieved additional improve-
ments in reordering Chinese sentences to resemble Japanese in word order.
This method was inspired by the observation that Chinese is an SVO language,
whereas Japanese is an SOV language. Thus, in order to achieve a monotonic
alignment, we first needed to identify the word block that corresponds to the
predicate V. Then, we showed how to identify the right-most boundary of the
object-argument of the predicate V, which was useful for discovering the new
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position to which it was necessary to move the word block V. Unlike other
reordering systems, the boundaries of verbal blocks and their right-most object
in DPC are defined only by the dependency tree and POS tags. In addition, not
preventing reordering from occurring across punctuation was another benefit for
the reordering of reported speech, a frequent phenomenon in the news domain.
Experiments revealed the advantages of DPC over the SMT baseline (Moses) and
the HFC systems. The important advantages of this method are the capability
of transferring several reordering rules to other SVO and SOV language pairs,
as well as the availability of dependency parsers and POS-taggers for many
languages.

The pre-reordering methods introduced in this chapter are linguistically moti-
vated and rely heavily on the output of HPSG or dependency parsers. As such, they
are sensitive to parse errors. Therefore, a possible area for future study would be
to design pre-reordering methods that are robust against parse errors. One possible
solution to this problem would be to use N-best parse trees instead of 1-best parse
trees, in order to compensate for parse errors. Moreover, while designing new pre-
reordering methods, it would be meaningful to keep in mind the most frequently
recurring parse errors and their potential impact.

Moreover, generalizing these linguistically motivated pre-reordering methods
to other distant language pairs would be useful. Currently, the DPC model uses
POS tags to categorize tokens, which poses some limitations for re-implementation
with different POS tag sets. Thus, POS tag mappings and linguistic studies on
source languages for new language pairs appear to be unavoidable. Therefore,
in order to improve the extensibility of the DPC model, it would be useful to
investigate methods of automatically learning reordering rules based on POS tags
and dependencies from data.

7 Conclusion

In the present chapter, we described two hybrid state-of-the-art pre-reordering
methods for Chinese-to-Japanese statistical machine translation. The first method
relies on HPSG parsing and consists of swapping the head of phrases when certain
conditions are met. The second method uses a dependency parser and a set of
reordering rules. Both methods use parsing information to guide reordering deci-
sions, and they are both sensitive to parse errors to different extents. We compared
the performance of the two reordering methods for the same corpora with a baseline
in terms of several metrics that account for different aspects of translation quality.
The experimental results revealed that DPC provided significant improvements in
translation quality and could potentially provide further improvements as parsing
accuracy increases.
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Appendix: Summary of Part-of-Speech Tag Set in Penn
Chinese Treebank

See Table 6.

Table 6 POS tags defined in Penn Chinese Treebank v3.0 (Xia 2000)

POS tag Category Instance

AD Adverb 还(yet)

AS Aspect marker 了(-ed)

BA ba3(把) in ba-construction 把(have sth. done)

CC Coordinating conjunction 和(and)

CD Cardinal number 一百(a hundred)

CS Subordinating conjunction 虽然(although)

DEC de0(的) in a relative-clause 的(as a complementizer

or a nominalizer)

DEG Associative de0(的) 的(as a genitive marker

and an associative marker)

DER de0(得) in V-de construction and V-de-R 得(resultative)

DEV de0(地) before VP 地(manner)

DT Determiner 这(the)

ETC For words deng3(等), deng3deng3(等等) 等(et cetera)

FW Foreign words ISO

IJ Interjection 啊(ah)

JJ Other noun-modifier 共同(collective)

LB bei4(被) in long bei-construction 被(passive voice)

LC Localizer 里(inside)

M Measure word 个(piece)

MSP Other particle 所(that which)

NN Common noun 书(book)

NR Proper noun 美国(The United States)

NT Temporal noun 今天(today)

OD Ordinal number 第一(first)

ON Onomatopoeia 哈哈(ahh)

P Preposition excl.被and把 从(from)

PN Pronoun 他(he)

PU Punctuation 。(.)

SB bei4(被) in short bei-construction 被(passive voice)

SP Sentence-final particle 吗(ma)

VA Predicative adjective 红(red)

VC shi4(是) 是(be)

VE you3(有) as the main verb 有(have)

VV Other verb 走(walk)
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Using Machine Learning in MT



Machine Learning Applied to Rule-Based
Machine Translation

Annette Rios and Anne Göhring

Abstract Lexical and morphological ambiguities present a serious challenge in
rule-based machine translation (RBMT). This chapter describes an approach to
resolve morphologically ambiguous verb forms if a rule-based decision is not
possible due to parsing or tagging errors. The rule-based core system has a set of
rules to decide, based on context information, which verb form should be generated
in the target language. However, if the parse tree is not correct, part of the context
information might be missing and the rules cannot make a safe decision. In this
case, we use a classifier to assign a verb form. We tested the classifier on a set of
four texts, increasing the correct verb forms in the translation from 78.68 %, with
the purely rule-based disambiguation, to 95.11 % with the hybrid approach.

1 Introduction

The term hybrid machine translation refers to any combination of statistical MT
with rule-based MT (España-Bonet et al. 2011) or example-based MT (Smith and
Clark 2009), or a mixture of all three approaches (Alegria et al. 2008).

A statistical translation system may be improved by rule-based pre-editing, such
as reordering, or by the addition of linguistic features, for instance through a
morphological analysis of the words in the source sentence. Furthermore, statistical
methods may enhance a rule-based system on different levels: A common type
of hybrid systems uses statistical ranking of translation alternatives of one rule-
based system (Oepen et al. 2007) or of several rule-based systems (Eisele et al.
2008). Sawaf (2010) outlines yet another hybrid approach for the ‘translation’ of
different Arabic dialect into the normalized Modern Standard Arabic: A rule-based
system handles rare word combinations or phrasal structures, whereas statistical
methods are used in situations where word combinations and phrasal structures
occur frequently enough to estimate reliable statistics.
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The hybrid architecture that we describe in this chapter consists of a rule-based
core system that uses statistical modules for certain disambiguation tasks. As for the
language pair in question, Spanish-Quechua, the amount of parallel text is too small
to train a statistical MT system, we use a rule-based approach that relies on linguistic
information and transfer rules. Nevertheless, certain ambiguities are extremely
difficult to handle in a purely rule-based setting. For instance, if a word has more
than one translation in the dictionary, a device for lexical selection is necessary in
order to output the correct translation in the given context. This procedure presents a
great challenge for a rule-based architecture, as it is not feasible to cover all possible
contexts with rules. A possible solution can be to use a statistical MT system to fill
in the template of the target sentence generated by the rule-based system (España-
Bonet et al. 2011; Hunsicker et al. 2012). If no MT system is available, another
option is to use a machine learning approach, e.g. sequence labeling (Rudnick and
Gasser 2013) or to generate all possible translations and use a statistical language
model to score the alternatives (Melero et al. 2007).

Words may not only have different lexical translations, there can also be
morphological ambiguities: a word may have more than one translation with the
same lemma, but different morphology. A set of rules that match the context of the
verb decides which verb form should be generated in the target language. However,
due to parsing or tagging errors, these rules might not be applicable in all cases.
In this chapter, we will present an approach to disambiguate such morphological
ambiguities with machine learning.

2 SQUOIA Spanish to Quechua MT System

As part of our research project SQUOIA,1 we have implemented a mostly rule-based
machine translation system that translates text from Spanish to Quechua. The system
uses a classical transfer approach, where several modules are joined in a processing
chain: each module relies on the output of the previous module for further
processing, see Fig. 1 for an overview. One of the most difficult parts during the
translation is the disambiguation of subordinated Spanish verbs in order to generate
the correct Quechua forms, as the grammatical features encoded in verbs differ
considerably between these two languages. To a certain extent, subordinated verb
forms can easily be disambiguated with a set of rules, but this strategy is not practical
in all cases. In this chapter, we will present an approach that uses machine learning
to resolve verb forms in contexts that cannot be safely disambiguated by rules.

There are two kinds of subordinated clauses that we need to disambiguate:
clauses with a verbal head (complement clauses, final clauses, etc.) and clauses
with a nominal head (relative clauses). In both cases, we use a set of rules to
determine which Quechua verb form should be generated in the given context.

1http://tiny.uzh.ch/xc.

http://tiny.uzh.ch/xc
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Fig. 1 SQUOIA translation
pipeline Spanish-Quechua

Analysis Spanish Source Text
statistical: PoS tagging, NER, dependency parsing

Verb Disambiguation
hybrid: rule-based and SVM

Lexical Transfer
insert word translations from bilingual dictionary

Lexical Disambiguation
rule-based

Morphological Disambiguation
rule-based

Syntactic Transfer and Generation
rule-based

Morphological Generation
finite state transducer

Language Model
statistical: rank translation options

For relative clauses, we have to rely on semantic information about the head and the
subcategorization frames of the verb, whereas for other subordinated clauses, we
need the conjunction and the semantics of the main verb to determine the correct
Quechua verb form. In a real application scenario however, we might not have
access to all the information we need to make a rule-based decision, due to tagging
or parsing errors.

In the case of relative clauses, it is important to note that the syntactic structure
alone does not always allow for a safe decision, as Spanish relative clauses can
be highly ambiguous. In this case, the rule-based module guesses the correct form
based on semantic information.

In a previous experiment, we extracted context information about subordinated
clauses with verbal heads from two treebanks and trained different classifiers on this
data (Rios and Göhring 2013). In this first setup, we used the lemmas of the main and
the subordinated verb as attributes. However, as the decision relies on lemmas, we
might have a problem with sparse data, as the classifier has only information about
the lemmas seen in training. Therefore, we will present an alternative approach in
this chapter that relies on semantic information about verbs2 and verb frames.3 In

2Extracted from the Spanish part of Multilingual Central Repository 3.0 (Gonzalez-Agirre et al.
2012).
3Extracted from the AnCora verb lexicon (Taulé et al. 2008).



114 A. Rios and A. Göhring

the previous setting, Naïve Bayes achieved the best results, with 81 % in tenfold
cross-validation and 84 % on a separate test set. With the new set of features, the
independence assumption may not always be true anymore. As a consequence,
Naïve Bayes is no longer an option, and so we decided to use libsvm (Chang and
Lin 2011) instead. We were able to increase the accuracy with this new approach to
92 % in cross-validation and 86 % on the same test set.

3 Subordinated Quechua Verb Forms

Subordinated clauses in Quechua are often non-finite, nominal forms. There are
several nominalizing suffixes that are used for different clause types that will be
illustrated in more detail in this section.

3.1 Switch-Reference

A common type of subordination in Quechua is the so-called switch-reference:
the subordinated, non-finite verb bears a suffix that indicates whether its subject
is the same as in the main clause or not. If the subject in the subordinated clause
is different, the non-finite verb bears a possessive suffix that indicates the subject
person. Consider the following examples4:

(1) Same subject: Mikhuspa hamuni.

Mikhu

eat

-spa

-SS

hamu

come

-ni.

-1.Sg

“When I finished eating, I’ll come.”
(lit. “My eating, I come.”)

4Abbreviations used:

Acc: accusative Add: additive (‘too,also’)
Ag: agentive Ben: benefactive (‘for’)
Con: connective (‘and’) Dir: directional
DirE: direct evidentiality DS: different subject
Gen: genitive Imp: imperative
Inch: inchoative Loc: locative
Neg: negation Obl: obligative
Perf: perfect Poss: possessive
Prog: progressive Pst: past
Rflx: reflexive Sg: singular
SS: same subject Top: topic
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(2) Different subject: Mikhuchkaptiy pasakura.

Mikhu

eat

-chka

-Prog

-pti

-DS

-y

-1.Sg.Poss

pasa

leave

-ku

-Rflx

-ra

-Pst

-ø.

-3.Sg

“While I was eating, he left.”
(lit. “my being-eating, he left.”)

(Dedenbach-Salazar Sáenz et al. 2002, p. 168)

In the source language, Spanish, subordinated verbs are usually finite. An overt
subject is not necessary, as personal pronouns are used only for emphasis (“pro-
drop”). In order to generate the correct verb form, we need to find the subject of
the subordinated verb and compare it to the main verb. For this reason, we included
a module that performs coreference resolution on subjects. So far, the procedure
is based on the simple assumption that an elided subject is coreferential with the
previous explicit subject, if this subject agrees in number and person with the current
verb. However, some exceptions have to be considered, e.g. the subject of a verb in
direct speech is not a good antecedent.

3.2 Other Types of Subordination

Generally, the relation of the subordinated clause to the main clause is expressed
through different conjunctions in Spanish. In Quechua, on the other hand, a specific
verb form in combination with a case suffix indicates the type of subordination.
For instance, Spanish para que - “in order to” has to be translated with a nominal
verb form with the suffix -na (‘obligative’) and the case suffix -paq (usually called
benefactive, “for”):

(3)
Ventanata kichay wayraq haykurimunanpaq.

Ventana

window

-ta

-Acc

kicha

open

-y

-2.Sg.Imp

wayra

wind

-q

-Gen

hayku

enter

-ri

-Inch

-mu

-Dir

-na

-Obl

-n

-3.Sg.Poss

-paq.

-Ben

“Open the window, so the air comes in.”
(lit. “Open the window for his entering of the wind”)

(Cusihuamán 2001, p. 210)

Finite verb forms are also possible in subordinated clauses; in this case, the
relation of the subordinated and the main clause is indicated through a “linker”.
A linker often consists of a demonstrative pronoun combined with case suffixes
or so-called independent suffixes; these are special suffixes that can be attached
to any word class and their position is usually at the end of the suffix sequence.
The functions of the independent suffixes include data source, polar question
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marking and topic or contrast, amongst others (Adelaar and Muysken 2004, p.
209). In combination with demonstrative pronouns, the independent suffixes are
used for linking clauses, similar to Spanish or English conjunctions. For instance,
the combination of demonstrative chay - “this” with the topic marker -qa, chayqa,
is used in the sense of “if, in case that”:

(4) Munanki chayqa, Arekipatapis rinki makinapi.

Muna

want

-nki

-2.Sg

chay

this

-qa,

-Top

Arekipa

Arequipa

-ta

-Acc

-pis

-Add

ri

go

-nki

-2.Sg

makina

machine

-pi.

-Loc

“If you like, you can also go to Arequipa by train (machine).”
(Cusihuamán 2001, p. 264)

Indirect speech in the Spanish source text is a special case, as the Quechua
equivalence of indirect speech is direct speech. The conversion from indirect to
direct speech is not trivial, because coreference resolution for the subject is required:
if the subject of the main verb is the same as the subject of the indirect speech
clause, the verb has to be generated as first person form in direct speech. Consider
this English example:

(5) “John said he wanted to go fishing.”

a. if John D he: “I want to go fishing”, John said.

b. if John ¤ he: “He wants to go fishing”, John said.

In this case, we naively consider both subjects as being equal and mark the direct
speech Quechua verb as a first person form, as the current rule-based approach is
not good enough to distinguish these two cases. However, we plan to integrate a
statistical means for coreference resolution in order to make better decisions as to
which form should be generated.

Furthermore, the form of the subordinated verb may also depend on the semantics
of the main verb, e.g. complement clauses of control verbs usually require -na
(‘obligative’), whereas with other verbs, the nominalizer -sqa (‘nominal perfect’)
is used5:

(6) a. Ri

go

-na

-Obl

-yki

-2.Sg.Poss

-ta

-Acc

muna

want

-ni.

-1.Sg

“I want you to leave.”
(lit. “I want your going.”)

5Double marking of negation in (6.b): ama: negation particle in imperative clauses (‘don’t’), -chu:
negation suffix, attached to the constituent in focus.
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b. Ama

don’t

-n

-DirE

chay

this

yacha

know

-sqa

-Perf

-yki

-2.Sg.Poss

-ta

-Acc

qunqa

forget

-nki

-2.Sg

-chu.

-Neg

“Don’t forget what you learned.”
(lit. “Don’t forget those your learned-ones.”)

(Cusihuamán 2001, p. 125)

For all of these cases, the translation system has a set of rules to match the given
context, so that the correct form can be assigned to each verb.

4 Verb Form Disambiguation with Machine Learning

4.1 Training Data

In order to generate the correct Quechua verb form in a subordinated clause, we
need to extract the following information from the Spanish source sentence:

• semantics of the main verb
• the conjunction
• tense and mood of the subordinated verb (in some cases needed to distinguish

between ‘obligative’ -na and ‘perfect’ -sqa)

Based on these features, the rule-based verb disambiguation module of the
translation system assigns the Quechua verb form. Given a correct dependency tree,
this rule-based approach achieves a high precision, but it is bound to fail if the parse
tree is erroneous. In order to obtain instances of main and subordinated clauses
for training a classifier, we pre-translated two manually annotated dependency
treebanks: the Spanish AnCora dependency treebank6 (Taulé et al. 2008) and
the IULA Spanish LSP Treebank7 (Marimon et al. 2012). As these are correctly
annotated, the rule-based module can disambiguate the subordinated verbs with
great reliability, and we can extract these clauses as instances for training. With
this approach, we collected 8579 instances from AnCora and 5704 from IULA,8

which results in a total of 14,283 instances for training.

4.2 Features

Instead of lemmas we use the semantic categories from the Spanish wordnet
(Gonzalez-Agirre et al. 2012) and the AnCora verb frames (Taulé et al. 2008) to
describe the main verb. For the subordinated verb, only tense and mood are relevant

6http://clic.ub.edu/corpus/en/ancora.
7http://www.iula.upf.edu/recurs01_tbk_uk.htm.
8Note that, although IULA contains more than twice as many sentences as AnCora, the sentences
in IULA are mostly short, simple sentences, without subordinated clauses.

http://clic.ub.edu/corpus/en/ancora
http://www.iula.upf.edu/recurs01_tbk_uk.htm
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Table 1 Evaluationa

libsvm Naïve Bayes

C-SVC, RBF, c=32,
g=0.0078125

with semantic/
syntactic feat

Naïve Bayes

with lemmas
Features 10� cv Test set 10� cv Test set 10� cv Test set

Main verb, sub. verb,
conjunction

92:08 86 81:47 75 84:28 78

Sub. verb, conjunction 87:97 81 85:07 75 74:02 72

aC-support vector classification (C-SVC) with RBF kernel parameters c (cost) and g (gamma)
obtained through search grid on tenfold cross-validation (10� cv)

(extracted from the PoS tag in the treebank). For the conjunctions, we use the lexical
forms, as there is no good way to describe them semantically. All features are
binarized for training.

In our previous pipeline (Rios and Göhring 2013) we relied on the lemmas
of main and subordinated verb instead of semantic and syntactic features. In this
setting, Naïve Bayes achieved the best results, yet as with the new set of features,
the independence assumption might not always be given, we switched to support
vector machines.

4.3 Classification

We decided to use libsvm for the classification, as it provides a simple way of
optimizing the parameters c (cost) and g (gamma) via grid search. Table 1 shows
the accuracy of libsvm in tenfold cross validation and on a manually annotated test
set of 100 instances. This is the same test set that we used before with Naïve Bayes
(Rios and Göhring 2013). For comparison, Table 1 also contains the results obtained
with Naïve Bayes, once trained on the exactly same data set as libsvm, and once
trained on the same data, but with verb lemmas instead of semantic and syntactic
features. The results in Table 1 indicate that libsvm achieves the best accuracy, with
92.07 % in cross-validation and 86 % on the test set.9

The classification is slightly worse if only the conjunction and the subordinated
verb are set, but the main verb is unknown (second line in Table 1). The third option,
that the classifier has only information about the main and the subordinated verb
while the conjunction is unknown, is not relevant: In case no conjunction has been
found, the module assumes that the verb form in question must be either a main
verb, a relative clause or a coordination. All of these options are set by rules, not by
the SVM classifier.

9In our previous setting with Naïve Bayes, we achieved only 81 % accuracy, but we had a smaller
training set of only �7300 instances.



Machine Learning Applied to Rule-Based Machine Translation 119

4.4 RBMT System with SVM Verb Disambiguation

Figure 2 illustrates how the SVM module is integrated into the translation pipeline:
The rule-based verb disambiguation module tries to assign a Quechua form to all

SL Analysis: PoS Tagging and Dependency Parsing

Coreference Resolution on Subjects
Relative Clause Disambiguation (rule-based)

main verb and conj?

Verb Disambiguation
(rule-based)

found

Verb Disambiguation
additional module

not found

is main verb or
relative clause?

finite/relative

yes

found conjunction?

no

SVM

yes

found main verb?

no

same
form

as head

yes

guess
’finite’

no

Lexical Transfer

Syntactic Transfer

Syntactic Gener-
ation (reordering)

Morphological Gen-
eration (finite state)

Fig. 2 SVM module in MT pipeline
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verbs in the Spanish tree. If the main verb or the conjunction is not found during
this rule-based disambiguation, the verb form is marked as ambiguous and passed
to the additional module for further disambiguation. This additional module checks
in a first step if a given ambiguous verb form could be the actual main verb of
the sentence or a relative clause that the parser attached to a non-nominal head. If
this is the case, it assigns the verb form finite or rel for main or relative clauses
respectively, and the disambiguation is done. Otherwise, it checks if there is a
conjunction, if so, it looks for the main verb in the linear sequence of the tokens,10

and then invokes the SVM model to assign a verb form. If there was no conjunction,
the module assumes that this must be a coordination and assigns the same verb form
as the preceding verb. If there is no preceding verb, this might be a tagging error, in
this case the module assigns the verb form finite, as this is the most common form.

4.5 Evaluation

4.5.1 Whole Verb Disambiguation Pipeline

We used the same four texts for the evaluation as in the previous setup (Rios and
Göhring 2013):

• La catarata de la sirena—‘the waterfall of the siren’ (Andean story)
• first two chapters of ‘The Little Prince’
• article from the Peruvian newspaper ‘El Diario’
• Spanish Wikipedia article about Peru

Since our previous publication (Rios and Göhring 2013), we have improved our
tagger, and therefore the number of recognized verbs is slightly higher than in
the version from 2013. The rule-based module disambiguates only 78.67 % of all
verb forms correctly, as it marks many verbs as ambiguous. In the next step, the
additional disambiguation module with the SVM classifier assigns a verb form to
all the ambiguous forms and thus increases the proportion of correct verb forms to
95.11 %. The previous module, with Naïve Bayes, achieved only 89 % accuracy on
these texts, see Table 2.

4.5.2 Additional Verb Disambiguation Module

Furthermore, we used three larger texts to test the performance of the rule-based and
the SVM part of the additional verb disambiguation module. As shown in Fig. 2, the
additional module relies on a set of rules to decide if the ‘subordinated’ verb in

10The first verb to the left or right that is not an auxiliary and with no conjunction or relative
pronoun between them.
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Table 2 Evaluation of the complete disambiguation pipeline

Correct Incorrect

Rule based: 186 177 9

78.67 % 4 %

With additional module (includes SVM) : 39 37 2

Total “verb” chunks: 225 214 11

95.11 % 4.89 %

Old version, with Naïve Bayes: 89 % 11 %

Table 3 Evaluation of the additional verb disambiguation module

Rule-based decision

(main verb, relative clause
or coordination) SVM Total

Total ambiguous verb forms 73 19 92

Total correct 64 15 79

85.87 %

Total wrong 9 4 13

14.13 %

Total tagging errors (no verbs) 4 1 5

Total disambiguated (actual verbs) 69 18 87

Correct 64 15 79

90.8 %

Wrong 5 3 8

9.2 %

question is the actual main verb, a relative clause or a coordinated clause. If this is
not the case, but the clause is clearly subordinated (indicated through a conjunction),
the verb form is determined via SVM.

The texts that we used for this evaluation are:

• Festschrift 40th anniversary of the Peruvian-German chamber of commerce and
industry (322 sentences)11

• Memoria 2009, Peruvian-German chamber of commerce and industry (314
sentences)12

• La papa y el cambio climático—‘potatoes and climate change’, inforesources
2008 (development aid, 456 sentences)13

11http://www.camara-alemana.org.pe/Publicaciones/MIGEdiciones/2010MEMORIA2009.pdf.
12http://www.camara-alemana.org.pe/Publicaciones/MIGEdiciones/2010MEMORIA-JAHRESBE
RICHT2009x.pdf.
13http://www.inforesources.ch/pdf/focus08_1_s.pdf.

http://www.camara-alemana.org.pe/Publicaciones/MIGEdiciones/2010MEMORIA2009.pdf
http://www.camara-alemana.org.pe/Publicaciones/MIGEdiciones/2010MEMORIA-JAHRESBERICHT2009x.pdf
http://www.camara-alemana.org.pe/Publicaciones/MIGEdiciones/2010MEMORIA-JAHRESBERICHT2009x.pdf
http://www.inforesources.ch/pdf/focus08_1_s.pdf
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Table 3 illustrates the performance of the additional verb disambiguation module.
Most of the potential ambiguous verbs (73 out of 92) are either main verbs, relative
clauses or coordinations that had been attached to the wrong head and could
therefore not be disambiguated by the rule-based module, but by the rule-based
decision part of the additional verb disambiguation module. Not all ambiguous
verb form candidates are actual verbs: the middle part of Table 3 shows five cases
where nouns have been erroneously tagged as verbs. In total, the additional module
assigned 79 out of 87 actual verb forms correctly, which results in 90.8 % accuracy.

5 Relative Clauses

5.1 Quechua Relativization

Relative clauses in Quechua are nominal forms that are either agentive or non-
agentive. For non-agentive relative clauses, there are two nominalizing suffixes
available: -sqa (‘perfect’) is used for actions that have been completed, whereas
-na (‘obligative’) occurs in contexts where the action has not been completed or
indicates an intention, obligation or purpose. Consider the following examples:

(7) a. agentive:
Wasi ruwaq runa hamuchkan.
Wasi
house

ruwa
make

-q
-Ag

runa
man

hamu
come

-chka
-Prog

-n.
-3.Sg

‘The man who builds houses is coming.’
(lit. ‘the house-making man is coming’)

b. non-agentive:
yachasqayki llaqta
yacha
live

-sqa
-Perf

-yki
-2.Sg.Poss

llaqta
village

‘the village where you live’
(Dedenbach-Salazar Sáenz et al. 2002, p. 141)

c. non-agentive:
Qantaq, Gregorio, montanay caballoyta hap’iy!
Qan
you

-taq,
-Con

Gregorio,
Gregorio

monta
ride

-na
-Obl

-y
-1.Sg.Poss

caballo
horse

-y
-1.Sg.Poss

-ta
-Acc

hap’i
grab

-y!
-2.Imp

‘And you, Gregorio, grab my riding horse!’
(lit. ‘grab the horse that I will ride/intend to ride’)

(Valderrama Fernández and Escalante Gutiérrez 1982)



Machine Learning Applied to Rule-Based Machine Translation 123

In order to generate the correct verb form for a Quechua relative clause, it
is necessary to automatically distinguish between relativization on subjects and
relativization on obliques. The latter are always translated with the non-agentive
forms, but relative clauses where the head noun is the subject need to be further
disambiguated: If the subject is a semantic agent, the verb in the relative clause has
to be rendered in the agentive form (-q), if the subject is not agentive, either -sqa or
-na is the correct form.

Relative clauses in the source language Spanish can be very ambiguous, consider
the following examples:

(8) a. agentive:
la
the

mujer
woman

que
REL

comió
ate

la
the

manzana
apple

‘the woman who ate the apple’

b. non-agentive:
la
the

manzana
apple

que
REL

comió
ate

la
the

mujer
woman

‘the apple that the woman ate’

The only difference between sentence (8a) and (8b) is the semantic class of the
head noun: The verb comer - ‘to eat’ requires an animate, agentive subject like
mujer. An inanimate noun like manzana can therefore not be the subject of comer.
The correct translation of example (8a) uses the verb form with -q, whereas the verb
in (8b) should be translated with -sqa:

(9) a. agentive:
mansana
apple

mikhu
eat

-q
-Ag

warmi
woman

‘the woman who eats/ate the apple’

b. non-agentive:
warmi
woman

-p
-Gen

mikhu
eat

-sqa
-Perf

-n
-3.Sg.Poss

mansana
apple

‘the apple that the woman eats/ate’

Not every Spanish relative clause is as ambiguous as the examples in (8a) and
(8b). In the following cases, the head noun cannot be the subject of the relative
clause, and therefore the agentive form can be discarded for the translation:

1. if the relative pronoun is preceded by a preposition (el hombre a quien vió),
2. if the relative pronoun is something other than que, quien or cual
3. if the verb in the relative clause is not congruent with the head noun
4. if the relative clause contains a subject noun or pronoun
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Note that case 4 is not a reliable feature in the translation process, as the parser
frequently labels subjects as objects and vice versa, therefore, even if the parser
detected a subject in the relative clause, the following disambiguation steps will still
be applied. The rule-based module uses a lexicon of Spanish verb frames (Taulé
et al. 2008): If the verb has only one frame, and the frame is intransitive, the head
noun must be the subject. The semantic role indicated in the lexicon (agent, patient,
impersonal, causer etc.) is the key to the correct translation: the Quechua verb should
be rendered with the -q form, if the semantic role is agentive. In all other cases, the
verb form in Quechua should be generated with either -sqa or -na. Whether to use
the obligative or the perfect form has to be decided based on tense, aspect and mood
of the Spanish verb.

If the frame retrieved from the semantic lexicon is transitive or ditransitive, the
head noun is either the subject or object, but never the indirect object, as in this case
the relative pronoun is preceded by the preposition a:

(10) indirect object as head of a relative clause:
el
the

vecino
neighbor

a
to

quien
REL

la
the

mujer
woman

muestra
shows

el
the

libro
book

‘the neighbor, to whom the woman shows the book’

If the verb frame is transitive or ditransitive with an agentive subject, we cannot
know whether the head noun is the subject or the object (see examples (8a) and
(8b)). In case the verb lexicon contains more than one possible frame for a given
verb, the module tries to delete all inapplicable frames with some additional context
checks. If the frames cannot be reduced to one semantic role for the subject, the
module takes a guess based on the semantics of the head noun. In this case, the
disambiguation module retrieves the semantic information of the head noun from a
semantic noun lexicon (Marimon et al. 2007): if the head noun is a likely agent (e.g.
animate, human, a social group, an instrument), it assumes the agentive form, but if
the head noun is an unlikely agent (e.g. an inanimate or an abstract noun, a plant) it
assigns one of the non-agentive verb forms.

The basic assumption is that only nouns of certain semantic groups are plausible
agents, while others are not (e.g. plants, abstract nouns, inanimates). This premise
is of course not always correct, therefore we tested a machine learning approach to
disambiguate relative clauses.

5.2 Relative Clause Disambiguation with Machine Learning

The disambiguation of relative clauses with machine learning differs substantially
from the disambiguation of other subordinated verb forms. Section 4 illustrates how
the MT system relies on a classifier to determine the Quechua verb form in cases
where the analysis of the Spanish source sentence went wrong. In the experiments
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with relative clauses, on the other hand, we try to use a classifier to assign the
correct form instead of guessing the form based on semantic information in highly
ambiguous cases.

5.3 Training Data

The training material consists of automatically annotated relative clauses from the
AnCora and IULA treebanks. Most relative clauses are not ambiguous: As AnCora
and IULA are manually annotated, the annotation of subjects in relative clauses is
reliable, as opposed to automatically parsed texts. Therefore, relative clauses that
contain a subject in the treebanks are always non-agentive. Furthermore, if the verb
has only intransitive frames with either agentive or non-agentive subjects, we need
no further disambiguation, as we can fully rely on the semantic role of the subject
given in the verb frame lexicon. The ambiguous cases in AnCora and IULA that the
module had to guess were manually checked and corrected.

Note that not all relative clauses are interesting for training, as we want to use the
classifier only on ambiguous forms that cannot be determined by considering only
the syntactic context. With this approach, we extracted 5018 instances from AnCora
and 3201 instances from IULA to train the classifier.

5.4 Features

In addition to the verb frames (Taulé et al. 2008) and the semantic noun classes
(Marimon et al. 2007) used by the rule-based module, we integrated semantic
information about the verb and the head noun from the Spanish wordnet (Gonzalez-
Agirre et al. 2012) to the classification with libsvm. The semantic noun classes
of the Spanish Resource Grammar include e.g. human, body part, plant, abstract
noun, etc. The classes from the Spanish wordnet overlap with these in part, but are
more fine-grained for abstract nouns, they include e.g. feeling, event, phenomenon,
motive, process and some more.

Furthermore, we included some syntactic information, or more specifically
whether the relative clause contains:

• the reflexive se14

• an indirect object
• a prepositional object
• an adjunct
• the demoted subject of a passive clause
• a predicative element (in equational clauses)

14The Spanish reflexive se is a device to render a transitive verb intransitive.
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Note that we did not include the presence of a subject or direct object in the
relative clause as features, as we cannot safely rely on the parser for this distinction.

Furthermore, we included an additional binary feature that indicates whether the
lemma of the verb in Quechua is the copula ka-. The reason behind this feature is
that relative clauses with ka- use the agentive form, although the head noun is not a
semantic agent. Relative clauses with the copula thus do not follow the general rule,
see Example (11).

(11) urqu
mountain

-kuna
-Pl

-pi
-Loc

ka
be

-q
-Ag

ayllu
village

-kuna
-Pl

‘mountain villages’
(lit. the villages that are in the mountains)

5.5 Evaluation

The test set consists of 106 ambiguous relative clauses extracted from Spanish
Wikipedia articles about three authors: Gabriel García Márquez, Mario Vargas Llosa
and Pablo Neruda.15

The baseline in Table 4 is the performance of the rule-based module that guesses
the form based on semantic information about the head. This simple guess was
correct in 88 out of 106 cases, which results in 83.02 % accuracy. As Table 4 shows,
the SVM classifier does not achieve the accuracy of the rule-based method: Even in
the best setting, with all features, the classifier assigns the correct form only in 83
out of 106 cases. This results in an accuracy of 78.3 %, which is slightly worse than
the performance of the rule-based module.

Table 4 Evaluation of the SVM classifier on relative clauses

10� cv Test set

libsvm: (C-SVC, RBF, c=8, g=0.03125)

All features 77:81 78:30

No wordnet 75:46 75:47

No verb frames 72:89 64:15

No resource grammar noun classes 77:17 77:36

No syntactic features 76:10 75:47

Baseline (rule-based) – 83:02

15http://es.wikipedia.org/wiki/ retrieved 11.01.2014.

http://es.wikipedia.org/wiki/


Machine Learning Applied to Rule-Based Machine Translation 127

A possible explanation is the relatively small number of training instances:
although we exploited two treebanks, the training set consists of only 8219
instances, as opposed to the 14,283 instances used to train the classifier for the
subordinated verbs. Furthermore, the training material is probably not as clean as
the instances used for the disambiguation of the subordinated verbs: Only the highly
ambiguous (guessed) cases were manually checked, but there might as well be a
number of errors in the remaining relative clauses.

6 Conclusions

We enhanced a purely rule-based machine translation system for the language pair
Spanish-Quechua with an SVM module that predicts the form of subordinated verbs
in the target language Quechua, based on information collected from the Spanish
input text. The MT system has rules to match the context of the subordinated
verb and assign a Quechua verb form for generation. Due to parsing and tagging
errors, the information needed for this rule-based disambiguation cannot always be
retrieved. In order to disambiguate these forms, we use a classifier that predicts the
verb form even if all of the context information is not accessible.

We use two Spanish dependency treebanks to generate the training instances for
the classifier: We let the rule-based part of the MT system assign a verb form to the
subordinated clauses in the treebanks, and then extract these clauses for training. As
the trees in the treebanks are annotated correctly, the rules assign the correct verb
form reliably.

In a previous version of the verb disambiguation module, we used Naïve Bayes to
decide the ambiguous cases, based on the lemmas of the main and the subordinated
verb, as well as the conjunction. With this approach, the decision relies on lemmas,
and we might have a problem with sparse data, as the classifier has only information
about the lemmas seen in training.

In order to avoid this problem, we decided to use the semantic classes from
the Spanish wordnet (Gonzalez-Agirre et al. 2012) and the verb frames from the
AnCora Verbframe Lexicon (Taulé et al. 2008) instead of lemmas. Due to the
introduction of semantic classes and verb frames as features instead of lexical forms,
the independence assumption may no longer be true, and therefore, we decided to
use libsvm instead. Additionally, we enlarged the training set by exploiting not only
AnCora (Taulé et al. 2008), but also IULA (Marimon et al. 2012).

Previously, Naïve Bayes achieved 81 % in tenfold cross-validation and 84 % on
a separate test set. We were able to increase the accuracy with the new feature
set and libsvm to 92 % in cross-validation and 86 % on the same test set. As for
now, only verb forms marked as ambiguous by the preceding rule-based module
are disambiguated by the SVM module. Nevertheless, quite a large proportion of
these verbs were identified as the actual main verb of the sentence. This implies that
the verb that appears as head of the sentence in the parse tree should actually be
a subordinated verb. In the future, we will use the SVM classifier to reassign the
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correct verb form to these verbs and thus increase the number of correct forms in
the translation.

Furthermore, we tested if a similar approach would be suitable for the dis-
ambiguation of relative clauses, as opposed to a rule-based approach where, in
ambiguous cases, the module guesses the form of the verb based on semantic
information. As with the subordinated verbs, we used the rule-based module
to assign a form to the relative clauses in both AnCora and IULA, and then
extracted these relative clauses as instances for training, after manually checking the
ambiguous forms. However, the rule-based approach still outperforms the classifier
with 83.02 % to 78.3 %, respectively. A possible reason for the poor performance
might be the relatively small number of training instances: we extracted only 8219
relative clauses from the treebanks, as opposed to 14,283 instances of subordinated
verbs.
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Language-Independent Hybrid MT:
Comparative Evaluation of Translation Quality

George Tambouratzis, Marina Vassiliou, and Sokratis Sofianopoulos

Abstract The present chapter reviews the development of a hybrid Machine
Translation (MT) methodology, which is readily portable to new language pairs.
This MT methodology (which has been developed within the PRESEMT project)
is based on sampling mainly monolingual corpora, with very limited use of
parallel corpora, thus supporting portability to new language pairs. In designing this
methodology, no assumptions are made regarding the availability of extensive and
expensive-to-create linguistic resources. In addition, the general-purpose NLP tools
used can be chosen interchangeably. Thus PRESEMT circumvents the requirement
for specialised resources and tools so as to further support the creation of MT
systems for diverse language pairs.

In the current chapter, the proposed hybrid MT methodology is compared to
established MT systems, both in terms of design concept and in terms of output
quality. More specifically, the translation performance of the proposed method-
ology is evaluated against that of existing MT systems. The chapter summarises
implementation decisions, using the Greek-to-English language pair as a test
case. In addition, the detailed comparison of PRESEMT to other established MT
systems provides insight on their relative advantages and disadvantages, focusing
on specific translation tasks and addressing both translation quality as well as
translation consistency and stability. Finally, directions are discussed for improving
the performance of PRESEMT. This will allow PRESEMT to move beyond the
original requirements for an MT system for gisting, towards a high-performing
general-purpose MT system.

1 Introduction

Rule-based machine translation (RBMT) is one of the oldest MT paradigms and still
has a substantial influence over modern MT systems. An RBMT system relies on
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creating a comprehensive set of rules at various levels e.g. in syntax, semantics etc.
for translating between two languages.

RBMT systems have been developed for over 50 years and still remain one of
the most popular paradigms because of their superior translation quality. However,
the main disadvantage of this paradigm is that in most cases it is impossible to use
directly the rules and expertise of an existing RBMT system to create a translation
system for new language pairs. In addition, progress in RBMT is hindered mainly
by inadequate grammar resources for most languages and absence of appropriate
lexical resources and methods that would enable correct disambiguation and lexical
choice.

The alternative approach is the development of Corpus-based (CBMT)
approaches for MT. The advantage of corpus-based approaches lies in the hypothesis
that language-specific information can be induced rather than being hand-written
explicitly as was done in RBMT. In CBMT linguistic rules denoting the syntactic
and semantic preferences of words, as well as word order, constitute a large part of
the implicit information provided by the corpus. As a result, much of the linguistic
knowledge is retrieved directly from the corpora, while rules are minimised. The two
major approaches within CBMT are Example-Based MT (EBMT) and Statistical
MT (SMT).

In terms of research activity, the most important representative of CBMT is
the SMT paradigm. SMT has been introduced by Brown et al. (1993), while the
most recent developments are summarised in Koehn (2010). A main benefit of
SMT is that it is directly amenable to new language pairs using the same set
of algorithms. However, an SMT system requires appropriate training data in the
form of parallel corpora for extracting the relevant translation models. Thus, to
develop an SMT system from a source language (SL) to a target language (TL),
SL-TL parallel corpora of the order of millions of tokens are required to allow the
extraction of meaningful models for translation. Such corpora are hard to obtain,
particularly for less resourced languages and are frequently restricted to a specific
domain (or a narrow range of domains), and thus are not suitable for creating
general-purpose MT systems that focus on other domains. For this reason, in SMT,
researchers are increasingly using syntax-based models as well as investigating the
extraction of information from monolingual corpora, including lexical translation
probabilities (Klementiev et al. 2012) and topic-specific information (Su et al.
2012).

The third MT paradigm is EBMT (Gough and Way 2004; Hutchins 2005), which
is based on having a set of known pairs of input sentence (in SL) and corresponding
translation (in TL) and translations are generated by analogy, by appropriately
utilising the information within this set.

In a bid to achieve higher translation quality, researchers have studied the
combination of principles from more than one MT paradigm, leading to what is
termed as Hybrid MT (HMT). Examples of HMT include the systems by Eisele et al.
(2008) and Quirk and Menezes (2006). The general convergence of MT systems
towards the combination of the most promising characteristics of each paradigm
has been documented by Wu (2005, 2009), having started from pure MT systems
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belonging to one of the main paradigms (RBMT, SMT, EBMT) and increasingly
progressing towards systems that combine characteristics from multiple paradigms.
A comprehensive survey of the latest HMT activity is provided by Costa-Jussa et al.
(2013).

Alternative techniques have been studied for creating MT systems requiring
resources which may be less informative but are also less expensive to collect or to
create from scratch. The approach adopted has been to eliminate the parallel corpus
needed in SMT (or drastically reduce its size), employing instead monolingual
corpora. Monolingual resources can be readily assembled for any language, for
instance by harvesting the web with relatively low effort. Methods following this
approach had been proposed by Carbonell et al. (2006), Dologlou et al. (2003),
Carl et al. (2008) and Markantonatou et al. (2009). Though these methods do not
provide a translation quality as high as SMT, their ability to develop MT systems
with a very limited amount of specialised resources represents an important starting
point.

It is on the basis of the aforementioned works that the PRESEMT methodology
(Tambouratzis et al. 2013) has been established. In PRESEMT, the design decision
is to use a large monolingual corpus, supplemented by a small parallel corpus
(whose size is only a few hundred sentences) to provide information on the
mapping of sentence structures from SL to TL. The design brief for PRESEMT has
been to create a language-independent methodology that -with limited resources-
can translate unconstrained texts giving a quality suitable for gisting purposes.
According to the preceding review of MT systems, PRESEMT can be classified
within Hybrid MT, based on the argumentation of Quirk and Menezes (2006) and
Wu (2005) for cross-fertilisation between SMT and EBMT.

The reader may visit the project’s website1 to either download the PRESEMT
package and some limited resources for the German-to-English and Greek-to-
English language pairs or run the fully functional online system that currently
supports 13 language pairs. The website also provides detailed technical documen-
tation and links to the standalone versions of the major PRESEMT modules hosted
at Google Code.

2 Description of the PRESEMT Methodology

The MT methodology has been developed within the PRESEMT (Pattern
REcognition-based Statistically Enhanced MT) project, funded by the European
Commission. The MT methodology encompasses three stages:

Stage 1: Pre-processing of the input sentence. This involves tagging, lemmatis-
ing and grouping the tokens into phrases, in preparation for the actual transformation
from SL to TL.

1www.presemt.eu

http://www.presemt.eu/
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Stage 2: Main translation, where the actual translation output is generated. The
main translation process can in turn be divided into two phases, namely:

Phase A: the establishment of the translation structure in terms of phrase order
Phase B: the definition of word order and resolution of lexical ambiguities at

an intra-phrase level

Stage 3: Post-processing. The tokens in TL are generated from lemmas.
In terms of resources, PRESEMT employs the following:

• A bilingual lemma dictionary providing SL—TL lexical correspondences
• An extensive TL monolingual corpus, compiled via web crawling, to generate a

language model
• A very small bilingual corpus

The bilingual corpus only numbers a few hundred sentences, which provide
samples of the structural transformation when moving from SL to TL. The use of
a small corpus reduces substantially the need for locating parallel corpora, whose
procurement or development can be extremely expensive. Instead, in PRESEMT
due to its small size the parallel corpus can be assembled with limited recourse to
costly human resources. More specifically, in the present chapter such corpora are
assembled from available parallel corpora which are extracted from multilingual
websites. These corpora are only processed by replacing free translations with more
literal ones, to allow the accurate extraction of structural modifications. According
to the specifications of the methodology, the parallel corpus coverage is not studied
prior to integration in PRESEMT.

3 Processing the Parallel Corpus

The present section describes how the parallel corpus is analysed, to extract
information supporting the MT process. Initially, the bilingual corpus is annotated
with lemma and Part-of-Speech (PoS) information and other language-specific
morphological features (e.g. case, number, tense etc.). Furthermore, the TL side
is chunked into phrases. As the PRESEMT methodology has been developed to
maximise the use of publicly-available software, the user is free to select any desired
parser for the TL language. For the implementation reported here, TreeTagger
(Schmid 1994) has been used for the English (TL) text processing and the FBT
PoS tagger (Prokopidis et al. 2011) has been employed for the processing of the
Greek (SL) text.
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3.1 Aligning the SL and TL Tokens

To determine the optimal transfer of phrases from SL to TL, it is essential to have
the sentences of the parallel corpus split into corresponding phrases in both SL
and TL. Development work in earlier systems revealed that the establishment of
equivalent phrasing schemes for SL and TL is very time-consuming, and thus cannot
form the basis for an MT methodology which is readily portable to new language
pairs with minimal effort. To avoid either (a) having to locate an additional SL side
parser or (b) resolving (most likely by hand-written rules) the inconsistencies of two
separate parsers in different languages, in PRESEMT the Phrase aligner module
(PAM) (Tambouratzis et al. 2011) is implemented. This module is dedicated to
transferring to the SL side the TL side parsing scheme, which encompasses lemma,
tag and parsing information. The information being transferred encompasses phrase
boundaries and phrase type, where the TL-phrase type is used to characterise the SL
phrase.

PAM establishes the SL-side phrasing automatically, based on the TL phrasing,
by (a) identifying SL-to-TL token alignments and (b) extracting probabilistic
information of SL-tag to TL-tag correspondences. In this process the types of
allowed alignment from SL-to-TL are n-to-m (where n � 1 and m � 1).

The information used to perform the alignments includes lexical information as
well as statistical data on PoS tag correspondences extracted from the lexicon. More
specifically, PAM follows a 3-step process, where in each subsequent step tokens
that remain unaligned are processed. Each step has a lower likelihood of producing
the correct alignment, as it uses more general information to achieve alignment.
In the first step alignments are performed on the basis of the bilingual lexicon
entries. In the second step, existing alignments are discovered based on similarity
of grammatical features between adjoining tokens and PoS tag correspondences.
Finally, in the third step, alignments are performed based on the established
alignments of their neighbouring words. This process is described in more detail
in Tambouratzis et al. (2012).

Following this step, phases in SL are established, by grouping together all tokens
from SL that correspond to the same single TL phrase. In the case of split phrases,
the constituents are merged into a single phrase.

3.2 Phrasing the Input Text

Following the transfer of the phrasing scheme to SL, training examples have been
prepared which describe the appropriate phrasing of SL texts according to the
TL parser. Now, the aim is to construct a linguistic tool (termed Phrasing model
generator) that can accurately segment arbitrary input text into phrases which are
compatible with the TL phrasing scheme. If this is achieved, the aligned parallel
corpus can be used to transform the structure from SL to TL.
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When initiating the work on the Phrasing model generator (PMG), a survey of the
literature was undertaken for appropriate methods. It was established that among the
statistical-based models used, Conditional Random Fields (CRF) provides the most
promising avenue, due to the considerable representation capabilities of this model
(Lafferty et al. 2001). CRF is a statistical modelling method that takes context into
account to predict labels for sequences of input samples. Within PRESEMT, the
open-source implementation of CRF has been employed. In addition, comparative
experiments have shown that it provides a performance superior to that of other
approaches, both statistical (based on Hidden Markov models) and rule-based
ones.

A recent development has involved the implementation of an alternative phras-
ing methodology (termed PMG-simple) based on template-matching principles.
PMG-simple is trained with the parallel corpus, similarly to CRF. However, the
PMG-simple learning method is different. The wide acceptance of CRF is based
on its use of complex mathematical models, which require a wealth of training
data. Since the small PRESEMT parallel corpus is the sole source for training
data, it is likely that the data available for CRF to learn the phrasing scheme is
limited.

PMG-simple locates phrases that match exactly what it has seen before, based on
a simple template-matching algorithm (Duda et al. 2001). In contrast to CRF, which
constructs an elaborate mathematical model, PMG-simple implements a greedy
search (Black 2005) without backtracking. In PMG-simple, initially all phrases from
the SL side of the parallel corpus are recorded and are then inserted into a list,
ordered according to their likelihood of being accurately detected. The aim is then
to determine the most likely phrases to which the sentence can be split, starting with
no phrases being defined in the sentence to be segmented. At each turn, the phrase
with the highest likelihood is chosen, and for this phrase PMG-simple examines
if the corresponding sequence of tokens occurs at any point in the input sentence
(taking into account word tag and case information). If it does and none of the
constituent words in the sentence form part of an already established phrase, the
constituent words are marked as parts of this phrase and are no longer considered
in the phrase-matching process. On the other hand, if the phrase sequence does not
exist, or if at least one of the required constituent tokens is already allocated to
another phrase, no match is attained. In this case, the next phrase from the ordered
list is considered, until either the ordered phrase list is exhausted, or all sentence
tokens are assigned into phrases. In order to improve the performance of PMG-
simple, a generalisation step is added to the PMG-simple mechanism (for more
details cf. Tambouratzis 2014), which provides equivalence information between
PoS types, to enrich the variety of phrasal templates that may be established from
the parallel corpus. Comparative results for CRF and PMG-simple are reported in
the evaluation section (Sect. 7.2).
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4 Main Translation Engine

Local and long distance reordering is one of the most challenging aspects of any
machine translation system. In phrase-based SMT, numerous approaches have used
pre-processing techniques that perform word reordering in the source side based
on the syntactic properties of the target side (Rottmann and Vogel 2007; Popovic
and Ney 2006; Collins et al. 2005) in order to overcome the long distance word
reordering problem. Short range reorderings are captured by the phrase table and
the target side language model. Of course, in order for the statistical approaches to
be effective, a sizeable amount of parallel training data needs to be available.

In PRESEMT, translation is performed in two steps, each step challenging
different aspects of the translation process making use of syntactic knowledge. The
first step performs structural transformation of the source side in accordance with the
syntactic phrases of the target side, trying to capture long range reordering, while
the second step makes lexical choices and performs local word reordering within
each phrase. Because of the modular nature of PRESEMT each one of the steps
is performed by a separate module: structural transformations are executed by the
structure selection module (SSM), while local word reordering and disambiguation
by the translation equivalent selection module (TES).

5 Structure Selection Module (SSM)

The objective of the Structure selection module is to transform the structure of the
input text using the limited bilingual corpus as a structural knowledge base, closely
resembling the “translation by analogy” aspect of EBMT systems. Using available
structural information, namely the type of syntactic phrases, the part-of-speech tag
of the head token of each phrase and the case of the head token (if available) we
retrieve the most similar source side sentence from the parallel corpus. Using the
stored alignment information from the corpus between the source and target side,
we then perform all necessary actions in order to transform the structure of the input
sentence to the structure of the target side of the corpus sentence pair.

Figure 1 depicts the functionality of the structure selection module. The input is
a source sentence that has been annotated with PoS-tag and lemma information and
segmented in clauses and chunks by the Phrasing model generator; the output is the
same sentence with a target language structure.

For the retrieval of the most similar source side sentence, we selected an
algorithm from the dynamic programming paradigm, treating the structure selection
process as a sequence alignment, aligning the input sentence to a source side
sentence from the aligned parallel corpus and assigning a similarity score. The
implemented algorithm is based on the Smith-Waterman algorithm (Smith and
Waterman 1981), initially proposed for performing local sequence alignment for
determining similar regions between two protein or DNA sequences, structural
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Fig. 1 Data flow in the structure selection module

alignment and RNA structure prediction. The algorithm is guaranteed to find the
optimal local alignment between the two input sequences at clause level.

The similarity of two clauses is calculated using intra-clause information by
taking into account the edit operations (replacement, insertion or removal) needed to
be performed to the input sentence in order to transform it to a source side sentence
from the corpus. Each of these operations has an associated cost, considered as a
system parameter. The aligned corpus sentence that achieves the highest similarity
score is the most similar one to the input source sentence.

5.1 Calculating Similarity Using a Dynamic Programming
Algorithm

The source sentence is parsed in accordance to the phrasing model extracted from
the Phrasing model generator (PMG). The first step of the algorithm is to compare
each input source sentence (ISS) of the SL text to all the source side sentences
of the parallel corpus in terms of structure. A two-dimensional table is built with
each of the ISS phrases occupying one column (the corresponding phrases being
shown at the top of the table) and the candidate corpus sentence (CCS) phrases each
occupying one row (the corresponding CCS phrases being shown along the left side
of the table). A cell (i, j) represents the similarity of the subsequence of elements up
to the mapping of elements Ei of CCS and E’j of ISS. Elements refer to syntactic
phrases, represented by their type and the Part-of-speech (PoS) tag and case (where
available) of each phrase head word.

The value of cell (i, j) is filled by taking into account the cells directly to the
left (i, j � 1), directly above (i � 1, j) and directly above-left (i � 1, j � 1), these
containing values V1, V2 and V3 respectively, and is calculated as the maximum
of the three numbers fV1, V2, V3 C ElementSimilarity(Ei, E’j)g. While calculating
the value of each cell, the algorithm also keeps tracking information so as to allow
the construction of the actual alignment vector.

The similarity of two phrases (PhrSim) is calculated as the weighted sum of the
phrase type similarity (PhrTypSim), the phrase head PoS tag similarity (denoted as
PhrHPosSim), the phrase head case similarity (PhrHCasSim) and the functional
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phrase head PoS tag similarity (PhrfHPosSim):

PhrSim
�
Ei; E’j

�

D WphraseType � PhrTypSim
�
Ei; E’j

�C WheadPoS � PhrHPosSim
�
Ei; E’j

�

C WheadCase � PhrHCasSim
�
Ei; E’j

�C WfheadPoS � PhrfHPosSim
�
Ei; E’j

�

In the current implementation of the algorithm, the weights have been given the
following initial values, yet the optimal values are to be determined during an
optimisation phase:

• WphraseType D 0.6
• WheadPoS D 0.1
• WfheadPoS D 0.1
• WheadCase D 0.2

For normalisation purposes, the sum of the four aforementioned weights is equal
to 1.

The similarity score range is from 100 to 0, denoting exact match and total
dissimilarity between two elements Ei and E’j respectively. In case of a zero
similarity score, a penalty weight (�50) is employed, to further discourage selection
of such correspondences.

When the algorithm has reached the jth element of the ISS, the similarity score
between the two SL clauses is calculated as the value of the maximum-scoring jth

cell. The CCS that achieves the highest similarity score is the one closest to the input
SL clause in terms of phrase structure information.

Apart from the final similarity score, the comparison table of the algorithm
is used for finding the actual alignment of phrases between the two SL clauses.
By combining the SL clause alignment from the algorithm with the alignment
information between the CCS and the attached TL sentence, the ISS phrases are
reordered according to the TL structure. The algorithm has been extended to tackle
the subject pronoun drop phenomenon in languages like Greek, using the same
alignment information. In the parallel corpus when a subject is dropped from either
side of a given corpus sentence, then the phrase containing the subject on the other
side will be mapped to an “empty phrase”. This allows the algorithm to exploit
this information during translation in order to add or remove the subject phrase
accordingly in TL.

If more than one CCS achieve the same similarity score, and they lead to different
structural transformations, then the module returns both results as equivalent TL
structures. Moreover, if the highest similarity score is lower than a threshold, the
input sentence structure is maintained, to prevent transformation towards an ill-
fitting prototype. For most of our experiments an indicative threshold value is
between 85 and 90 %. For a better understanding of this approach an example is
provided next with Greek as the source language and English as the target.



140 G. Tambouratzis et al.

5.2 Structural Similarity Example

The input source sentence is the following:

M© £o� Ko¡o M˜¦’�š› K̃ M©£ K’®¡’¢˜ ’�’®©¡Ko�’¢£© ¢© �š’ ’¤£o�’£o oš˜�K©�˜

•š’•š›’¢Kš’.
Exact translation: with the term Machine Translation refer (1st pl) to an automated

procedure
Correct translation: The term Machine Translation denotes an automated procedure

The ISS phrase structure representation, after applying the parsing scheme using
the Phrase aligner module, is the following:

One of the retrieved candidate sentence pairs from the aligned bilingual corpus
is the following:

(Greek) Oš š¢£o¡š›K©− ¡Kš—©− £˜− E¤¡¨ ’Rš› K̃− ´E�¨¢˜− ’� K’”o�£’š ¢£o �© K¤£©¡o
…’”›Ko¢�šo …Koœ©�o .

(Lexicon-based translation) the historical roots thegen Europeangen Uniongen lie
(3rd pl ) in-the Second World War

(English) “The historical roots of the European Union lie in the Second World War”

Its structural information being:

pp(no_nm) pp(no_ge) vg(vb) pp(no_ac)

After calculating the similarity scores for each phrase pair of the above sentences
(the input sentence ISS and the SL-side sentence from the bilingual corpus,
hereafter denoted as Aligned Corpus Sentence—ACS) the dynamic programming
table (depicted in Fig. 2) is filled out (the arrows denoting the longest aligned
subsequence):

When an arrow moves diagonally from cell A to cell B, this denotes that the
phrases mapped at cell A are aligned. When an arrow moves horizontally, the ISS
phrase is aligned with a space, and when an arrow moves vertically the ACS phrase
is aligned with a space.

Figure 2 forms then the base for calculating the transformation cost (being 340
in this case), on the basis of which the ISS is modified in accordance to the attached
TL structure.
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Input source sentence (ISS) 
pp(as, np_ac) pp(-, no_ac) vg(-, vb) pp(-, no_ac)

0 0 0 0 0
A

lig
ne
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co
rp

us
 

se
nt

en
ce

 (A
C

S)
pp(-, no_nm) 0 60 80 -20 60

pp(-, no_ge) 0 60 140 40 40

vg(vb) 0 -50 10 240 140

pp(as, no_ac) 0 100 30 -40 340

Fig. 2 Example of a dynamic programming table

6 Translation Equivalent Selection Module (TES)

The second step of the PRESEMT translation process is the translation equivalent
selection module, which performs word translation disambiguation, local word
reordering within each syntactic phrase as well as addition and/or deletion of
auxiliary verbs, articles and prepositions. In the default settings of PRESEMT,
all of the above are performed by only using a syntactic phrase model extracted
from a large TL monolingual corpus. The final translation is produced by the token
generation component, since all processing during the translation process is lemma-
based.

The module input is the output of the structure selection module, augmented
with the TL lemmata of the source words provided by the bilingual lexicon. Each
sentence contained within the text to be translated is processed separately, so there is
no exploitation of inter-sentential information. The first task is to select the correct
TL translation of each word. In the PRESEMT methodology, alternative methods
for the word translation disambiguation have also been integrated and can be used
instead of the default. These include Self-Organising Maps, n-gram vector space
models or SRI n-gram models extracted from the TL monolingual corpus, though
none of these is used in the PRESEMT configuration reported here. The second task
involves establishing the correct word order within each phrase. With the default
settings of the PRESEMT system this step is performed simultaneously with the
translation disambiguation step, using the same TL phrase model. In the case of
selecting one of the alternative methods for disambiguation, the phrase model is
used only for local word reordering, within the boundaries of the phrases. During
word reordering the algorithm also resolves issues regarding the insertion or deletion
of words such as articles and other auxiliary tokens. Finally, token generation is
applied to the lemmas of the translated sentence together with their morphological
features. In that way, the final tokens are generated.

The token generator used constitutes a simple mapping from lemmas and
morphological features to tokens. This mapping has been extracted from morpho-
logical and lemma information contained in the monolingual corpus. Due to data
sparseness, such a mapping will always contain gaps particularly in the case of
rather infrequent words. A more sophisticated approach would therefore try to close
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Fig. 3 Data flow in the translation equivalent selection module

the gaps in the inflectional paradigms of the lemmas. This could for instance be done
by inferring inflectional paradigms of infrequent words from those of more frequent
words.

Figure 3 provides an overview of the translation equivalent selection module,
which receives as input the output of the first phase of the main translation engine,
i.e. a source sentence with its constituent phrases reordered in accordance to the
target language. The output is the final translation generated by the system.

It should be noted that the two instances of the TL monolingual corpus depicted
in the diagram are actually two different TL models: the first instance refers to the
indexed model of TL phrases (see Sect. 6.1), whereas the second one refers to a
table of lemma-token pairs, which is also extracted from the TL corpus.

6.1 Description of the Phrase Model

The phrase model used in the translation equivalent selection module is in essence a
language model, but instead of n-grams of words such as used in most SMT systems,
the words here are grouped together based on the syntactic phrases extracted from
the chunked TL monolingual corpus. The extracted phrases are then organised in a
hash map, using as a key the following 3 criteria: (1) type of the syntactic phrase
(i.e. whether it is a noun phrase or a verb phrase), (2) lemma of the phrase head
word and (3) PoS tag of the phrase head word. For each TL phrase we store its
frequency of occurrence in the corpus. However, it is likely that a slightly different
modelling scheme may prove more effective. For instance, the environment of the
phrase may also be required to be used (i.e. the type of the previous and next phrases
within the sentence may be of use in the translation equivalent selection, and in this
case the phrase organisation may be modified) either in the current model or in a
complimentary model for the structural context.
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Finally, each map is serialized and stored in a separate file in the file system, with
an appropriate name for easy retrieval. For example, for the English monolingual
corpus, all verb phrases with the lemma of the head token being “read” (verb) and
the PoS tag “VV”, are stored in a file named “read_VV”.

For example, let us assume a very small TL-side monolingual corpus consisting
only of the following sentence: “A typical scheme would have eight electrodes
penetrating human brain tissue; wireless electrodes would be much more practical
and could be conformal to several different areas of the brain.” The syntactic phrases
extracted from this small corpus are shown in Table 1, while the files created for the
model are shown in Fig. 4. Because all phrases only appear once in the corpus, the
frequencies are omitted in the specific example.

It should be noted that, with respect to large corpora, in order to reduce the
number of files created, if a sub-group file remains very small (based on the
definition of a small threshold value), it is not stored independently but is grouped
with all other phrases from very small files. This allows (1) the reduction in the
number of files, in order to prevent the creation of an excessive number of groups
but also (2) allows the system to process phrases with heads for which no groups
have been created from the monolingual corpus. Another step towards reducing the
number of produced files is to altogether skip the creation of files for phrases that
only contain a single word, as these would not be of use for word reordering.

One issue that has been studied during the implementation of the translation
equivalent selection is the sheer size of the monolingual corpus, which necessitates
special techniques to organise and process it, so that during run-time the required
intermediate results are readily available, to minimise the computational load. To
obtain a more precise understanding of the task, it is essential to have a quantitative
view of the corpora involved. The monolingual corpora for two of the PRESEMT
target languages, namely English and German, are summarised in Table 2.

Table 1 Syntactic phrases extracted from the TL monolingual corpus

Phrase id. Phrase type Phrase content Phrase head lemma/PoS

1 PC A typical scheme Scheme/NN
2 VC Would have Have/VH
3 PC Eight electrodes Electrode/NN
4 VC Penetrating Penetrate/VV
5 PC Human brain tissue Tissue/NN
6 PC Wireless electrodes Electrode/NN
7 VC Would be Is/VB
8 PC Much more practical Practical/JJ
9 VC Could be Is/VB
10 PC Conformal Conformal/JJ
11 PC To several different areas Area/NN
12 PC Of the brain Brain/NN
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File 1 VC/Have_VH

2 Would have 

File 2 VC/Is_VB

7 Would be 

9 Could be 

File 3 VC/penetrate_VV

2 penetrating 

File 4 PC/scheme_NN

1 A typical scheme 

File 5 PC/electrode_NN

3 Eight electrodes 

6 Wireless electrodes 

File 6 PC/Tissue_NN

5 Human brain tissue 

File 7 PC/Practical_JJ

8 Much more practical 

File 8 PC/conformal_JJ

10 conformal 

File 9 PC/areas_NN

11 To several different areas 

File 10 PC/brain_NN

12 Of the brain 

Fig. 4 Example of monolingual corpus phrases split into files

Table 2 Characteristics of monolingual corpora

English German

Size in tokens 3,658,726,327 3,076,812,674
Number of raw text files (each containing
a block of ca. 1 Mbyte)

87,000 96,000

Number of sentencesa 1.0 � 108 9.5 � 107

Number of phrasesa 8.0 � 108 6.0 � 108

Number of extracted phrase files 380,000 478,000
aIndicates the inclusion of an estimate rather than an exact value

6.2 Applying the Phrase Model to the Tasks of the Translation
Equivalent Selection Module

When initiating the translation equivalent selection module, a matching algorithm
accesses the TL phrase model to retrieve similar phrases and select the most
similar one through a comparison process with the aim of performing word sense
disambiguation and establishing the correct word order within each phrase. The
comparison process is viewed as an assignment problem that can be solved by using
either exact algorithms guaranteeing the identification of the optimal solution or
algorithms which yield sub-optimal solutions. In the current implementation we
have opted for the Gale-Shapley algorithm (Gale and Shapley 1962 and Mairson
1992), a non-exact algorithm, over the Kuhn-Munkres algorithm (Kuhn 1955 and
Munkres 1957) that computes an exact solution of the assignment problem. This
has been decided upon after experimentation with the Kuhn-Munkres algorithm in
the METIS-2 project Markantonatou et al. (2009), where it has been found that the
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exact solution of the assignment problem was responsible for a large fraction of the
required computation effort.

On the contrary, the Gale-Shapley algorithm solves the assignment problem by
separating the items into two distinct sets with different properties. In this approach,
the two sets are termed (1) suitors and (2) reviewers. In the present MT application,
the aim is to create assignments between tokens of the SL (which are assigned the
role of suitors) and tokens of the TL (which undertake the roles of reviewers). In
the Gale-Shapley algorithm, the two groups have different roles. More specifically,
the suitors have the responsibility of defining their order of preference of being
assigned to a specific reviewer, giving an ordered list of their preferences. Based
on these lists, the reviewers can select one of the suitors by evaluating them based
on their ordered lists of preference, in subsequent steps revising their selection so
that the resulting assignment is optimised. As a consequence, this process provides
a solution which is suitor-optimal but potentially non-optimal from the reviewers’
viewpoint. However, the complexity of the algorithm is substantially lower to that of
Kuhn-Munkres and thus it is used in the translation equivalent selection process as
the algorithm of choice, so as to reduce the computation time required. Any errors
due to using this sub-optimal approach are limited to the reordering of phrases on
the TL-side, with no lexical selection changes (since these are decided upon by
sampling the files of phrases).

The main issue at this stage is to be able to reorder appropriately any items within
each phrase, while at the same time selecting the most appropriate translation for
each word that the bilingual lexicon has provided. This entails that tokens from (a) a
given phrase of the input sentence, call it ISP (Input Sentence Phrase), and from (b) a
TL phrase extracted from the TL phrase model and denoted as MCP (Monolingual
Corpus Phrase), are close to each other in terms of number of tokens and type.
More specifically, the number and identity of items in a given MCP being used as a
template is at least equal to (or larger than) the number of elements in ISP (since it
is required to be in a position to handle all tokens of ISP, it is safer to delete existing
MCP elements from their existing locations rather than introduce new ones). In
principle, the number of ISP tokens should be equal to or very close to that of MCP.
This means that a search needs to be performed, which is algorithmically described
by the following steps:

Step 1: For each phrase (ISP) a decoder creates a vector containing all translation
equivalents using the bilingual lexicon. The number of vectors created is the same
as the number of translation equivalents of the phrase head words. The word order
does not change.

Step 2: Iteratively process each vector; retrieve for each one the corresponding
set of phrases of MCP from the phrase model, based on the phrase type, the lemma
and PoS tag of the phrase head token.

Step 3: For each ISP in the vector apply the Gale-Shapley algorithm for aligning
the tokens of the ISP to those of the retrieved MCPs. The word alignment provides
a guideline for reordering the ISP according to the MCP word order and also
provides a similarity score through a comparison formula applied to each one of
the aligned word pairs (see the equation below). The similarity score is calculated



146 G. Tambouratzis et al.

as the weighted sum of the comparison scores of four types of information, namely
(a) phrase types (PTypeCmp), (b) phrase head word lemma (LemCmp), (c) phrase
head word PoS tag (TgCmp) and (d) phrase case (CsCmp), if this latter information
is available.

Score D wptype � PTypeCmp C wlem � LemCmp C wtag � TgCmp C wcase � CsCmp

where all weights are real positive-valued parameters that sum up to one.
Step 4: After performing all comparisons the best matching ISP-MCP pair is

selected taking into account the similarity score as well as the MCP frequency of
occurrence in the TL corpus. Similarity scores are not compared as absolute values
but as a ratio, so as to allow the insertion and/or deletion of words such as articles
and other functional words. If the similarity scores of two or more MCPs are close
according to the ratio score, then we compare their frequencies in order to select one,
and only if the frequencies are also close, we use the absolute comparison values to
select the most appropriate ISP-MCP.

Step 5: By selecting the most appropriate ISP-MCP pair, the algorithm performs
lexical disambiguation by rejecting all other equivalent ISPs in the vector. Words are
also reordered based on the MCP using the word alignment produced by the Gale-
Shapley algorithm. After applying the previous steps for all phrases in the input
sentence, the final sentence translation is produced. It should be noted that the order
of phrases has already been established in the structure selection module.

Step 6: A token generator component is applied to the lemmas of the TL
sentence together with their morphological features. In that way, the final tokens
are generated and the final translation is produced.

6.3 Example of Translation Equivalent Selection

To illustrate the Translation equivalent selection, the handling of the final phrase
from the example sentence of Sect. 5.2 is discussed here. This specific phrase
comprises four tokens as shown in Table 3, where for reasons of simplicity
abbreviated SL tags are used, including PoS tag and case only:

Table 3 Phrase tokens and their tags in SL and TL respectively

Token id. SL token (lemma) SL PoS tag
Lemmas from
bilingual lexicon TL PoS tag

1 ¢©(¢©) AsPpSp [at, in, into, on, to, upon] IN
2 �š’ (K©�’−) At_Ac [1, a, an, one] CD
3 ’¤£o�’£o oš˜�K©�˜

(’¤£o�’£o oš˜�K©�o−)
VbPv_Ac [automate, automated] VVN

4 •š’•š›’¢Kš’ (•š’•š›’¢Kš’) No_Ac [procedure, process] NN
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Table 4 Candidates of phrase translation retrieved from TL model

Candidates
Sequence of tokens
(lemmatised) Originating indexed file

TL corpus
frequency

Matching
score (%)

1 To a store procedure PC/procedure_NN 3 92.5
2 To an automate procedure PC/procedure_NN 1 92.5
3 In an ongoing process PC/process_NN 12 92.5

In this phrase, the fourth token (“•š’•š›’¢Kš’”) is the phrase head. Thus,
when searching for the best phrase translation, the indexed files for each of the
two candidate translations (“procedure” and “process”) are searched using as
an additional constraint the phrase type (in this case “PC”) and the head PoS
type (here “NN”). Hence, following the annotation introduced in Sect. 6.1, files
“PC/procedure_NN” and “PC/process_NN”, which contain 21,939 and 35,402
distinct entries, respectively, are searched for matching phrase occurrences. Since
all four tokens have multiple translations suggested by the lexicon, a number of
possible combinations (6 � 4 � 2 � 2 D 96) of lemma sequences need to be matched
to the phrase instances contained in the two indexed files. The best-matching
phrase instances retrieved from the indexed files are shown in Table 4 in order of
retrieval.

As can be seen, the first two entries are retrieved from the file containing PC-type
phrases with “procedure” as their head while the third one from the file containing
PC phrases with head “process”. An exhaustive search of the two indexed files has
shown that no exact matches to the input phrase exist. The highest matching score
is 92.5 %, as for all three examined phrases the lemma of the third token is not
matched. Still, the 92.5 % score is sufficiently high to form a sound basis for the
translation (on the contrary if it was below a user-defined threshold typically chosen
from the range of 75 to 90 %, this translation would be rejected and the SL order of
tokens in the phrase would be adopted). In addition, the frequencies of candidates 2
and 3 are comparable, differing by less than an order of magnitude. As all retrieved
phrases have equal matching scores, the winning phrase is selected to be the one
with the highest frequency of occurrence in the TL monolingual corpus. In this
specific example, based on the contents of the 4th column, the chosen phrase is
the third phrase of Table 4. This phrase is then used as the basis for translating
the respective SL-side phrase, by replacing the token “ongoing” (which is not an
appropriate translation, based on the bilingual lexicon) with the token “automated”
that is suggested by the lexicon. The sequence obtained with this replacement
(namely “in an automated process”) represents the translation of this phrase, which
forms part of the final sentence translation.
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7 Evaluation of the PRESEMT MT System

The current section provides an account of the evaluation conducted in order to
assess the performance of PRESEMT both individually and against other MT
systems with respect to the Greek-to-English language pair.

MT systems are normally evaluated via automatic metrics, which compare the
MT system output to one (or more) human-produced reference translation(s) and
calculate their similarity. Such metrics, pretty much established and widely used in
the field, include BLEU, NIST, Meteor and TER.

BLEU (Papineni et al. 2002) and NIST (NIST 2002) measure the common
n-grams between the system output and the reference translation. The BLEU score
may range between [0, 1], with 1 denoting a perfect match, i.e. a perfect translation,
while the NIST score range is [0, /), where a higher score signifies a better
translation quality. Meteor (Denkowski and Lavie 2011) calculates similarity against
each reference translation and produces in the end the highest score. Its score range
is [0, 1], with 1 signifying a perfect translation. Finally TER (Snover et al. 2006)
resembles the philosophy of the Levenshtein distance (Levenshtein 1966), in that it
calculates the minimum number of edits needed to change a candidate translation so
that it exactly matches one of the reference translations, normalised by the average
length of the references (Snover et al. 2006, p. 3).

The translation output of MT systems can also be evaluated by humans, usually
in terms of adequacy, referring to how much information of the source language
text has been retained in the translation, and fluency, which measures the degree to
which the translation is grammatically well-formed according to the grammar of the
target language.

For PRESEMT both types of evaluation were employed. The present section
describes the results of the automatic evaluation only for the Greek to English
language pair. The interested reader is referred to the project deliverable D9.2,2

which additionally reports on the human evaluation process and contains the results
of the evaluation for the other language pairs that PRESEMT handles.

7.1 Dataset

The test dataset, which was used for the evaluation, was collected over the web in
accordance to appropriately defined specifications. More specifically, the web was
crawled over for retrieving a corpus of 1000 sentences, the length of which ranged
between 7 and 40 tokens. Subsequently, 200 sentences were randomly chosen out
of the given corpus, these sentences constituting the test dataset. Since the specific
dataset was intended to be used for development, its size was purposely kept small.

2http://www.presemt.eu/files/Dels/PRESEMT_D9.2_supplement.pdf

http://www.presemt.eu/files/Dels/PRESEMT_D9.2_supplement.pdf
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Table 5 Description of the
test dataset

Source language Greek

Target language English
Sentence size 7–40 tokens
Number of tokens 2758
Test dataset size for automatic evaluation 200 sentences
Number of reference translations 1

Then, these sentences were manually translated by native speakers of Greek into
English. The correctness of the translations, which would serve as reference ones,
was next checked by target language-native speakers, who were independent to the
ones that originally created the data. Table 5 illustrates the profile of the test dataset.

7.2 Evaluation Results

Our goal during evaluation was not only to evaluate the translation output of
PRESEMT but also to examine how it performs in comparison to other MT systems.
Therefore, the test dataset was translated by three other MT systems as well: Google
Translate, Bing Translator and WorldLingo.

Our experiments (cf. results in Table 6) span two different time periods, namely
mid-2012 (as reported in Sofianopoulos et al. (2012)) and beginning of 2014, thus
allowing the reader to form a view of how those MT systems evolve over time.
Especially as far as PRESEMT is concerned, two sets of results are provided,
reflecting the utilisation of a different module for the segmentation of the SL input
in phrases (based on CRF and PMG-simple respectively, as discussed in Sect. 3.2).
For each system, the scores obtained in 2012 and 2014 are provided, together with
a measure of the improvement in each metric, expressed as a percentage. Since
PMG-simple is a recent enhancement to the PRESEMT system, the improvement in
performance is reported over the 2012 PRESEMT system employing CRF.

From the evaluation results it is evident that PRESEMT has exhibited a remark-
able improvement, which is the outcome of various factors such as the modifications
in the Structure selection algorithm, the fine-tuning of the Phrase aligner and the
PMG, the enhancement of the token generation module through the expansion of the
TL monolingual corpus, lexicon corrections, and the improved handling of syntactic
phenomena.

PRESEMT is outperformed by 215 % and by 162 % by Google and Bing
respectively in the first period (for the BLEU metric), indicating a very large
difference in translation quality, this difference being markedly reduced (to 51 %
and to 43 %) in the second period. This indicates a substantial improvement in the
quality of the translation generated by PRESEMT. In addition, the improvement
in PRESEMT is quite high (always being in absolute values more than 15 %),
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Table 6 Evaluation results
for PRESEMT and other MT
systems for Greek-to-English

PRESEMT
CRF PMG-simple Google Bing WL

BLEU
2012 0.1756 – 0.5544 0.4600 0.2659
2014 0.3060 0.3462 0.5259 0.4974 –

C74 % C97 % �5 % C8 % –

NIST
2012 5.7907 – 8.8051 7.9409 5.9978
2014 6.6915 6.9736 8.5377 8.2791 –

C16 % C20 % �3 % C4 % –

Meteor
2012 0.3364 – 0.4665 0.4281 0.3666
2014 0.3776 0.3947 0.4609 0.4524 –

C12 % C17 % �1 % C6 % –

TER
2012 61.862 – 29.791 37.631 50.627
2014 54.564 51.045 42.230 34.181 –

�12 % �18 % C42 % �9 % –

WorldLingo translations are not included for 2014, since
they could not be obtained via the corresponding website
(www.worldlingo.com)

while the corresponding improvement in Bing is much smaller (typically less than
10 %). Finally, though Google Translate still remains the system with the highest
scores, its actual performance over time seems to be deteriorating as measured by
the metrics. Therefore, as PRESEMT is maturing, its performance can be seen to
be improving substantially in terms of translation accuracy. On the other hand,
PRESEMT expectedly sacrifices the top-end of translation quality due to a number
of design factors including (1) the easy portability to new language pairs and (2) the
use of publicly-available linguistic tools, without enhancements and adaptation to
the specific MT methodology.

One final point concerns the margin over which Google Translate and Bing
Translator exceed the PRESEMT performance. This is quite sizeable, as evidenced
by Table 6. However, it is widely accepted that automatic metrics such as BLEU
and NIST tend to favour statistical MT approaches. Thus, it is plausible that the
performance advantages of Google and Bing are not as sizeable as suggested by
Table 6. The human evaluation did confirm the higher performance of Bing/Google
over the PRESEMT version which was current in December 2012, and thus it would
be useful to perform a new human evaluation comparing the more recent versions
of the MT systems.

As a further indication of the proposed methodology characteristics, results of
building an MT system for the Greek-to-German language pair are summarised in
Table 7, for lemmatised output. For comparison purposes, the metric values obtained
for Bing Translator and Google Translate are also included in this table. PRESEMT

http://www.worldlingo.com/
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Table 7 Evaluation results
for PRESEMT and other MT
systems for Greek-to-German

PRESEMT
CRF PMG-simple Google Bing WL

BLEU
2014 0.0853 0.0804 0.3135 0.2764 –
NIST
2014 4.1542 4.1306 6.4894 6.1931 –
Meteor
2014 0.2214 0.2250 0.2994 0.2872 –
TER
2014 82.568 83.321 54.575 56.934 –

WorldLingo translations are not available for 2014, since
they could not be obtained via the corresponding website
(www.worldlingo.com)

is clearly outperformed by both Bing and Google. The reason for this is that the
Greek-to-German system has been much less extensively developed, which has
resulted in substantial improvements in the metric scores being achieved with a
limited number of actions. Several areas still exist for improvements in the MT
translation. For instance, the bilingual dictionary adopted for reasons of availability
is quite fragmentary and has been developed by scanning a printed version, without
any editing of entries by a native speaker. In addition, even chunking for the
TL-side (German) corpora has been performed using the TreeTagger package for
German, which however has not been as accurate as the English-language version
of TreeTagger, and which does not currently generate adverbial or adjectival chunks
(ADVC and ADJC respectively). This indicates one of the weaknesses of the
proposed method, namely that by adopting resources and tools from third parties
there is a risk that these are not fully compatible or have inconsistencies which can
affect the translation accuracy. At present, efforts are continuing towards improving
this language pair. In addition, due to the highly-inflectional nature of German, and
its more complex syntax, further work is needed to bring the performance to levels
comparable to those of Greek-to-English. A final note that should be made is that
for this language pair, the CRF-based variant is more effective than PMG-simple.
However, as more work is needed for this specific language pair, these results need
to be revisited for more reliable conclusions to be drawn. These developments are
to be reported in future publications.

7.3 Comparison to Other MT Systems

Leaving aside the numerical results it is worth looking at individual cases, to gain an
insight on the behaviour of the different MT systems. In the following examples we
take a look at the translation output provided by PRESEMT, Bing and Google at the
two evaluation periods, which show that PRESEMT, although still outperformed,

http://www.worldlingo.com/
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exhibits a consistent performance against that of the other systems in certain cases.
The following examples are not intended to degrade the good translation quality
achieved by either Bing or Google but they are rather an attempt to highlight the
fact that the mere alignment of SL-TL segments without any information about
the syntactic structure fails to handle grammatical phenomena successfully. In each
example the SL sentence is initially provided together with its translation in English
(placed in brackets). Then, the translations of the 3 systems are listed in tabular
form. Missing tokens in the translation are indicated by the symbol ‘¿’.

Examples 1 and 2 illustrate that Bing or Google sometimes omit the translations
of some source words. In Example 1, this concerns the adverb ‘mainly’, while in
Example 2, it is the possessive clitic ‘her’ that is missing. Furthermore, Example 3
shows that the handling of gender is not always successful.

Of course, PRESEMT does not produce perfect translations (cf. the placement
of the possessive clitic in the second example or the choice of the adjective
‘mysterious’ for translating ‘¢›o£©š� Ko’ in the third example). The argument placed
here is that since PRESEMT is aware of grammatical features, then it is expected to
have a consistent behaviour when translating.

Example 1 SL sentence: …¡ K̈ £o�, ’¤£ K̃ ©Kš�’š �š’ ›¤¡Kš¨−  oœš£š› K̃  ¡Ko›œ˜¢˜.
[D Firstly, this is a mainly political challenge]

2012 2014

PRESEMT First, she are an especially civil
challenge

First, this is an especially political
challenge

Bing Firstly, this is a ¿ political challenge Firstly, this is primarily a political
challenge

Google First, this is primarily a political
challenge

First, this is primarily a political
challenge

Example 2 SL sentence: O  ’£K©¡’− £˜−  ¡o¢ ’™©Kš � K’£’š’ �’ £˜ �©£’ ©Kš¢©š.
[D Her father tries in vain to dissuade her]

2012 2014

PRESEMT Her father tries vain to her coax Her father tries in vain to her dissuade
Bing Her father tries in vain to dissuade ¿ Her father tries in vain to dissuade ¿
Google Her father tries in vain to convince the

¿
Her father tries in vain to persuade her

Example 3 SL sentence: ´E¦¨ — K̃¢©š �’ ’¤£ K̃� ¢’ K©�’ ¢›o£©š� Ko, ›¡ K¤o ›’š ¤”¡Ko
•¨� K’£šo. [D I have lived with her in a dark, cold and damp room]
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2012 2014

PRESEMT Have lived in she in mysterious , wet
and room cold

Have lived to her in a dark, cold and
wet room

Bing I have experienced it in a dark, cold
and wet room.

I’ve lived with it in a dark, cold and
wet room.

Google I’ve lived with it in a dark, cold and
damp room.

I’ve lived with it in a dark, cold and
wet room .

Other grammatical features such as subject-verb agreement (example 4) or verb
(non-)finiteness (example 5) can also be mishandled by Bing and Google.

Example 4 SL sentence: A� •š’“ K’¢o¤�© š¢£o¡Kš’ ™’ ›’£’œ K’“o¤�© ”š’£Kš •©�

K©¦©š ”Kš�©š E™�š›Ko K£˜�’£oœKo”šo. [DIf we read history we will understand why
there has been no National Cadastre.]

2012 2014

PRESEMT If the book read history because not
will understand has become the ethnic
register land

If we read history we will understand
because has not been national land
register

Bing If you read history you will understand
why there has been no National
Register

If you read history you will understand
why he has not become a national
cadastre

Google If we read history ¿ will understand
why there has been no National

If you read history you will understand
why he has become National Cadastre

Example 5 SL sentence: T˜� ©› ’Kš•©¤¢˜ K©¦o¤� ’�’œ K’“©š oš © š¦©š¡ K̃¢©š−.
[D Companies have undertaken the training]

2012 2014

PRESEMT Operations have undertaken education The teaching have undertaken the
companies

Bing Education ¿ responsible businesses The training ¿ undertaken by
businesses

Google The training ¿ undertaken by
companies

The training ¿ undertaken by
businesses
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8 Future Extensions and Potential Improvements
on PRESEMT

Within the work reviewed in the present chapter, a number of potential directions
for further improving the PRESEMT system have been identified. These have
been based on the experiments performed and the corresponding observations, as
summarised above.

An obvious avenue for improvements concerns revising the two translation
phases. Experimentation with the PRESEMT prototype has indicated scope for
improving in particular the structure selection algorithm. More elaborate metrics
and methods for measuring the matching of sentence structures may be introduced.
In addition, a more elaborate process for combining sub-sentential parts from
different clauses can be employed to define the structure of the entire sentence.

Regarding the Translation equivalent selection step, improvements in the target
language model may also be achieved. To that end, the indexing scheme employed
in PRESEMT for phrases will be expanded to include—apart from frequency of
occurrence—information regarding the context in which the phrase appears. Such
information will support the search for a more appropriate match, conforming to the
environment of each phrase.

In a similar vein, it is possible to augment the language model, to include
a combination of models. Currently, the PRESEMT TL model relies on phrases
indexed on the basis of head lemma and phrase type information. Experiments have
shown that errors in the resulting translations can in some cases be corrected by
resorting to simple n-gram information. Even a sequential application of the n-
gram information for correction purposes leads to improvements in the translation
accuracy. The issue then becomes to optimally combine the two language models
by applying them concurrently, so as to achieve the best possible translation
performance. This would allow the more appropriate treatment of cases where less
than accurate matches in terms of sentence structure are achieved (for instance when
very long sentences need to be translated). This approach can notably address errors
at the phrasal boundaries (i.e. between the last tokens of a phrase and the first tokens
of the following phrase).

All aforementioned improvements relate to the existing resources, and thus
should not affect the portability of PRESEMT to new language pairs. One of the
shortcomings of the system has been the establishment of an effective disambigua-
tion module. At present, both the disambiguation and intra-phrase token sequencing
tasks are established by a single search in the language model of indexed phrases.
However, this arrangement potentially results in interference between the two tasks,
as a single solution is chosen in one step. If a reliable disambiguation module can be
established, which samples the same corpus as the indexed phrases, this may lead
to more consistency in the translations, by decoupling the disambiguation between
multiple translations and the token order within each phrase.

It should be noted that all disambiguation modules could be constructed with
monolingual data (using solely TL-side corpora), or with bilingual data. In the latter
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case, the requirement for more corpora to develop a new language pair becomes
evident. On the other hand, the benefits of combining SL and TL corpora can be
much greater in terms of translation quality.

A further addition could be the introduction of linguistic knowledge in the
translation process. For instance, PRESEMT is agnostic regarding the role of
subject and object, leading to less than optimal translations. The introduction of
such knowledge is expected to improve the structure selection performance, though
in part this contradicts the requirement for minimal specialised linguistic tools.
Nonetheless, it appears that, short of providing a much larger parallel corpus, this
is the main way to a much more natural translation. This is one of the main issues
being researched by the PRESEMT research group, in pursuit of a breakthrough in
translation quality.

Closing Note
Please visit the project’s website (www.presemt.eu) to download and experiment
with the PRESEMT package or just play around with the fully functional online
system. Detailed technical documentation for even creating a new language pair is
provided.
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Creating Hybrid Dependency Parsers
for Syntax-Based MT

Nathan David Green and Zdeněk Žabokrtský

Abstract Dependency parsers are almost ubiquitously evaluated on their accuracy
scores, these scores say nothing of the complexity and usefulness of the resulting
structures. As dependency parses are basic structures in which other systems are
built upon, it would seem more reasonable to judge these parsers down the NLP
pipeline. In this chapter, we will discuss how different forms and different hybrid
combinations of dependency parses effect the overall output of Syntax-Based
machine translation both through automatic and manual evaluation. We show results
from a variety of individual parsers, including dependency and constituent parsers,
and describe multiple ensemble parsing techniques with their overall effect on the
Machine Translation system. We show that parsers’ UAS scores are more correlated
to the NIST evaluation metric than to the BLEU Metric, however we see increases
in both metrics. To truly see the effect of hybrid dependency parsers on machine
translation, we will describe and evaluate a combined resource we have released,
that contains gold standard dependency trees along with gold standard translations.

1 Introduction

Dependency parsing is an integral part of Natural Language Processing (NLP)
research for many languages. However, research in dependency parsing has mainly
dealt with improving accuracy for a limited number of languages. Current depen-
dency parsing algorithms have developed mainly for languages with an ample
amount of training data. Most of this data has been collected from shared tasks
at conferences and are available mainly for European and resource-rich languages.
New researchers into the area may not know which algorithm and techniques work
best with a new, untested, language.
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To address this issue, we will look at hybrid ensemble approaches to dependency
parsing. More specifically, we look at three methods. First, stacking parsers’ outputs
into a weighted graph and extracting a tree structure using simple voting. Second,
analyzing each parsers’ errors distribution and using that as an input into the
weighted graph through fuzzy clustering methods. Third, using a meta-classifier
to choose the best parser for each and every word in our input. The parsers in each
situation may come from a variety of techniques such as graph-based, transition-
based, and constituent conversion. Using a variety of parsers allows us to study the
errors associated with the parsers and choose the best combination or individual
parser for each situation.

Even though many tools exist for these European and resource-rich languages,
dependency parsing techniques are most commonly tested using accuracy scores,
both unlabeled (UAS) and labeled (LAS). If a new technique is developed for
a high accuracy languages such as English or Japanese, the results are often
equivalent to existing techniques or sometimes worse. Due to this, research is often
only concerned with a very specific linguistic construction, domain, or localized
feature. This often leads to a scenario, where one size does not fit all, particularly
for under-resourced languages. To make sure our techniques are useful for most
languages, we analyzed them on large and small language data sets from a variety of
language families. Whether under-resourced or resource-rich, we feel that limiting
the analysis to accuracy scores does not fully determine whether a technique is
useful or not. To test our techniques down a typical NLP pipeline, we turn to
machine translation.

Machine translation is often the first task people want solved for their language
but often the last step in the process. Many components go into a successful system.
These systems come in a variety of forms, whether rule-based or statistically based.
One concern for machine translation is whether the early components of the pipeline
are accurate. A 2 % error in part-of-speech tagging may lead to a much higher
percentage of parsing errors which in turn ends up in a double figure error rate
in the final translation. Reducing the errors in early pipeline components is a prime
concern so that researchers in machine translation can focus on the actual translation
and not generalize earlier errors.

We take a hybrid approach to machine translation by using our hybrid parsers
for source text analysis. Each technique described within this chapter is statistically
based and can be recreated regardless of language of component making up the
hybrid source analysis. To examine the effects of dependency parsing down the NLP
pipeline, our hybrid dependency models will be evaluated using the Treex system
and TectoMT translation system. This system, as opposed to other popular machine
translation systems, makes direct use of the dependency structure during the
conversion from source to target languages via a tectogrammatical tree translation
approach. We will compare UAS accuracy to corresponding NIST and BLEU score
from the start to finish of the machine translation pipeline. BLEU and NIST are
automated metrics for machine translation that do not need human evaluation.

Unfortunately any current approach to test dependency parsing’s effect on
machine translation is going to run into one major road block. There is no gold data
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for English dependency trees that has a corresponding gold standard translation. For
the vast majority of English dependency parsers, the status quo is to train with data
automatically converted from constituent trees. This leads to a final parse with at
least an 8 % error rate in UAS. This is too high of a rate to truly test the dependency’s
effect on the final output of the NLP pipeline. To address this issue we have hand
annotated dependency trees for the WMT 2012 data set, commonly used to judge
machine translation systems.

Within this chapter, we aim to show both improvements to dependency parsing
using hybrid methods for a variety of languages including under-resourced and
resource-rich and show how these new dependency parsers effect the overall result
in a machine translation pipeline. In addition to these results, we have developed
new gold standard dependency trees for the purpose of machine translation.

2 Background and Related Work

2.1 Dependency Parsing

Dependency parsing has been shown to be an important part of many NLP
applications. Dependency techniques, however, vary greatly. In Kübler et al. (2009),
the authors confirm that two parsers, MSTParser and MaltParser, give similar
accuracy results but with very different errors. MSTParser, a maximum spanning
tree graph-based algorithm, has evenly distributed errors in terms of sentence length
while MaltParser, a transition based parser, has errors on mainly longer sentences.
This result comes from the approaches themselves. MSTParser is globally trained so
the best mean solution should be found, this is why errors on the longer sentences are
about the same as the shorter sentences. MaltParser on the other hand uses a greedy
algorithm with a classifier that chooses a particular transition at each vertex. This
leads to the possibility of the propagation of errors further in a sentence (McDonald
and Nivre 2007).

2.1.1 Parsers

For all our experiments we will be working with a hybrid or ensemble of the
following three types of parsers:

• Graph-Based: A dependency tree is a special case of a weighted edge graph that
spawns from an artificial root and is acyclic. Because of this we can look at a
large history of work in graph theory to address finding the best spanning tree
for each dependency graph. In this section we use MST Parser (McDonald et al.
2005a) as an input to our ensemble parser.

• Transition-Based: Transition-based parsing creates a dependency structure that
is parametrized over the transitions used to create a dependency tree. This is
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closely related to shift-reduce constituency parsing algorithms. The benefit of
transition-based parsing is the use of greedy algorithms which have a linear time
complexity. However, due to the greedy algorithms, longer arc parses can cause
error propagation across each transition (Kübler et al. 2009). We make use of
Malt Parser (Nivre et al. 2007), which in the shared tasks was often tied with
the best performing systems. Additionally we use Zpar (Zhang and Clark 2011)
which is based on Malt Parser but with a different set of non-local features.

• Constituent Transformation: While not a true dependency parser, one tech-
nique often applied is to take a state-of-the-art constituent parser and transform
its phrase based output into dependency relations. This has been shown to
also be state-of-the-art in accuracy for dependency parsing in English. In this
section we transformed the constituency structure into dependencies using the
Penn Converter conversion tool (Johansson and Nugues 2007). A version of this
converter was used in the CoNLL shared task to create dependency treebanks as
well. For the following ensemble experiments we make use of both (Charniak and
Johnson 2005) and Stanford’s (Klein and Manning 2003) constituent parsers.

We also address parsing with two smaller language sets, Tamil and Indonesian.

Tamil Parsing In later experiments, we will make use of two different treebanks
for dependency parsing, Tamil and Indonesian. Previous parsing experiments in
Tamil were done using a rule based approach which utilized morphological tagging
and identification of clause boundaries to parse the sentences (Ramasamy and
Žabokrtský 2011). The results were also reported for MaltParser and MSTParser.
When the morphological tags were available during both training and testing, the
rule based approach performed better than Malt and MST parsers. We will be
examining the combination of both MST and Malt parsers.

Indonesian Parsing There was research done on developing a rule based Indone-
sian constituency parser applying syntactic structure to Indonesian sentences. It uses
a rule based approach by defining the grammar using PC-PATR (Joice 2002). There
was also research that applied the above constituency parser to create a probabilistic
parser (Gusmita and Manurung 2008). To the best of our knowledge, no dependency
parser has been created and publicly released for Indonesian.

2.2 Hybrid Dependency Parsing

Ensemble learning (Dietterich 2000) has been used for a variety of machine learning
tasks and recently has been applied to dependency parsing in various ways and with
different levels of success. Surdeanu and Manning (2010) and Haffari et al. (2011)
showed a successful combination of parse trees through a combination of trees with
various weighting formulations. To keep their tree constraint, they applied Eisner’s
algorithm for reparsing (Eisner 1996).
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Parser combination with dependency trees have been examined in terms of
accuracy (Sagae and Lavie 2006; Sagae and Tsujii 2007; Zeman and Žabokrtský
2005). However, the various techniques have generally examined similar parsers or
parsers which have generated various different models. Our experiments look deeper
and compare the accuracy and part-of-speech error distribution when combining
constituent and dependency parsers of many different techniques together.

Other methods of parse combinations have shown to be successful such using
one parser to generate features for another parser. This was shown in Nivre and
McDonald (2008), in which MaltParser was used as a feature to MSTParser. The
result was a successful combination of a transition-based and graph-based parser,
but did not address adding other types of parsers into the framework. While this
chapter focuses on statistical approaches to parsing, rule based parsing has been
successfully used to correct parsers trained via machine learning, creating a hybrid
approach (Bick 2007).

2.2.1 Parsing Data Sets

CoNLL Data

Throughout this document we use the English CoNLL data. This data comes from
the Wall Street Journal (WSJ) section of the Penn treebank (Marcus et al. 1993).
All parsers are trained on sections 02–21 of the WSJ except for the Stanford
parser which uses sections 01–21. Charniak, Stanford and Zpar use pre-trained
models ec50spfinal, wsjPCFG.ser.gz, english.tar.gz respectively. Additionally we
make use of Italian and Japanese from the CoNLL datasets as well for our ensemble
experiments. They were chosen due to their high baseline and different language
families.

2.2.2 Parsing Metrics

There are two standard metrics for comparing dependency parsing systems. Labeled
attachment score (LAS) and unlabeled attachment score (UAS). We mainly use
UAS to study the structure of a dependency tree and assess whether the output has
the correct head and dependency arcs (Buchholz and Marsi 2006).

2.3 Deep Transfer Syntax-Based MT

Deep transfer machine translation is similar to the notion of translating to an
interlingua language. The idea being if you can translate to an intermediate language
that has very detailed information, you can then translate that language into your
target language. This idea developed into using tectogrammatics as an abstraction
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of a language peculiarities as it generalizes certain aspects of a language while keep
very detailed information about dependencies as well. For our study we use the
TectoMT (Popel et al. 2010) system as it directly uses tectogrammatics as well as
an analytical layer in which we can directly manipulate the dependency trees.

TectoMT is a machine translation framework based on Praguian tectogrammatics
(Sgall 1967) which represents four main layers: word layer, morphological layer,
analytical layer, and tectogrammatical layer (Popel et al. 2010). This framework is
primarily focused on the translation from English into Czech.

2.3.1 MT Data Sets

For our experiments we will be using data released for the Workshop in Machine
Translation (WMT). In particular we used the WMT shared task data for English to
Czech for the years 2010, 2011, and 2012.

2.3.2 MT Metrics

The BLEU (BiLingual Evaluation Understudy) (Papineni et al. 2002) and NIST,
from the National Institute of Standards and Technology, to determine the strength
of our machine translation and compare the result with our parsing UAS.

3 Hybrid Dependency Parsers

Ensemble methods are often used when we want models trained on different data.
We will look at ways to combine models trained on the same or similar data.
When looking at similar or identical data, we hope that the different models give
complimentary views of the same data. Ideally you do not want the models to be
“good” at the same things. To get started with ensemble parsing, we have created an
ensemble class in Treex that collects all analytical trees present and combines their
structure into an edge matrix. An edge matrix is a simple structure to store a directed
graph. Each edge is assigned some “weight”. In the end, we have to generate a parse
tree out of this matrix.

To generate a single ensemble parse tree, our system takes Nparse trees as input.
The inputs are from a variety of parsers as described in Sect. 2.1. We will call these
parsers our Base Parsers. All edges in these parse trees are combined into a graph
structure. This graph structure accepts weighted edges via Graph Edge Weighting
Algorithms. So if more than one parse tree contains the same tree edge, the graph
will be weighted appropriately according to a chosen weighting algorithm. One
could imagine many ways of combining edges through additive and multiplicative
methods but our specific weighting algorithms used in our experiments are described
in Sect. 3.1.
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Fig. 1 General flow to create
an Ensemble parse tree

Once the system has a weighted graph, the system then uses an algorithm to find
a corresponding tree structure by a selected Tree Algorithm so there are no cycles.
In our set of experiments, we constructed a tree by finding the minimum spanning
tree using ChuLiu/Edmonds’ optimization algorithm, which is a standard choice for
MST tasks. The result should be our final Ensemble Parse. Figure 1 graphically
shows the decisions one needs to make in this framework to create an ensemble
parse.

3.1 Minimum Spanning Tree Combination

To start with, we will apply a minimum spanning tree algorithm, ChuLiu/Edmonds’
algorithm. For a combination of two supervised parses, this may return an “average”
parse. This does not suit our concept of hybrid systems well. Since these algorithms
work best with many inputs we can use many “baseline” parsers as well as the same
parsers retrained with different data sets. The theory being, the more parsers and the
more different types of parsers used, the better chance we have to get an accurate
ensemble parse.

3.1.1 Parsers

For English, we use 5 of the most commonly used parsers which enables us to have
a wide scope for ensemble learning. They range from graph-based approaches to
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transition-based approaches to constituent parsers. Constituency output is converted
to dependency structures using PennConverter (Johansson and Nugues 2007). All
parsers are integrated in the Treex framework (Žabokrtský et al. 2008; Popel et al.
2011) using the publicly released parsers from the respective authors but with Perl
wrappers to allow them to work on a common tree structure. For testing we use
section 23 of the WSJ for comparability reasons with other papers. This test data
contains 56,684 tokens. For tuning we use section 22.

In addition to the UAS score of the enumerated parsers, we also report the
accuracy of an Oracle Parser. This parser is simply the best possible parse composed
only of edges offered by the individual dependency parsers. If the reference, gold
standard, tree has an edge that any of the parsers contain, we include that edge in
the Oracle parse. Initially all nodes of the tree are connected to an artificial root.
Since only edges that exist in a reference tree are added, the Oracle Parser maintains
the acyclic constraint. For English we ran 25 model combinations but only report on
combinations of three or more models.

3.1.2 Weighting Schemes for Parsing Combination

For this experiment we are applying four weighting algorithms to the graph
structure. All three of these are simple weighting techniques but even in their
simplicity we can see the benefit of this type of combination.

• Uniform Weights: an edge in the graph gets incremented +1 weight for each
matching edge in each parser. If an edge occurs in four parsers, the weight is 4.

• UAS Weighted: Each edge in the graph gets incremented by the value of its
parsers individual accuracy. So based on the UAS baseline parsing results from
Table 2, an edge in Charniak’s tree gets 0.92 added while MST gets 0.86 added
to every edge they share with the resulting graph. This weighting should allow
us to add poor parsers with very little harm to the overall score.

• Plural Voting Weights: In Plural Voting, the parsers are rated and each gets a
“vote” based on their quality. With Nparsers the best parser gets Nvotes while
the last place parser gets one vote. In this experiment, Charniak received five
votes, Stanford received four votes, MSTParser received three votes, MaltParser
received two votes, and Zpar received one vote. Votes in this case are added to
each edge as a weight.

• UAS10: For this weighting scheme we took each UAS value to the 10th power.
This gave us the desired effect of making the differences in accuracy more
apparent and giving more distance from the best to worst parser. This exponent
was empirically found and the results are shown in Table 3.
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Table 1 Our baseline parsers
and corresponding UAS used
in our ensemble experiments

Parser UAS

Charniak 92:08

Stanford 87:88

MST 86:49

Malt 84:51

Zpar 76:06

3.1.3 Results

Table 2 contains the results of different parser combinations of the five parsers
in Table 1. The results seem to indicate that using two parsers will give you an
“average” score. Ensemble learning seems to start to have a benefit around three
parsers with a few combinations having a better UAS score than any of the baseline
parsers, these cases are in bold throughout the table. When we add a 4th parser to
the mix almost all configurations lead to an improved score when the edges are not
weighted uniformly. The only case in which this does not occur is when Stanford’s
Parser is not used. When all five parsers are used together with Plural Voting,
the ensemble parser improves over the highest individual parser’s UAS score. For
UAS10voting, the five parser combination gives the second highest accuracy score.
The top overall score is when we use UAS10weighting with the four top individual
parsers. For parser combinations that do not feature Charniak’s parser, we also find
an increase in overall accuracy score compared to each individual parser, although
never beating Charniak’s individual score.

To see the maximum accuracy an ensemble system can achieve, we include an
Oracle Ensemble Parser in Table 2. As we can see in Table 2, the ceiling of ensemble
learning is 97.41 % accuracy. Because of this high value, ensemble learning should
be a very prosperous area for dependency parsing research.

To discover the best exponential value in UASX we looked at our combining all
parsers at different exponential values. We empirically test different values on our
tuning data. UAS10 is the top scoring weight for English. The results are in Table 3.
We only discover this weight using the “all” parser setting and only on English. If
this setup was used in production it would be wise to relearn this exponential value
through new tuning data for the model combination choice and particular language
each time.

3.1.4 Dependency Errors Per POS Tag

We looked at the error distribution for all five parsers along with our best ensemble
parser configuration. Much like the previous work we expect different types of
errors, given that our parsers are from three different parsing techniques. To examine
if the ensemble parser is substantially changing the parse tree or is just taking the
best parse tree and substituting a few edges, we examine the part-of-speech errors
in Table 4.
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Table 2 Initial Results of the minimum spanning tree algorithm on a combined edge graph

Uniform UAS Plural UAS10 Oracle

System weighting weighted voting weighted UAS

Charniak-Stanford 89:84 92:08 92:08 92:08 94:85

Charniak-Mst 89:14 92:08 92:08 92:08 95:33

Charniak-Malt 88:15 92:08 92:08 92:08 95:4

Charniak-Zpar 84:10 92:08 92:08 92:08 94:49

Stanford-Mst 86:92 86:49 87:88 86:49 94:29

Stanford-Malt 86:05 87:88 87:88 87:88 94:09

Stanford-Zpar 81:86 87:88 87:88 87:88 93:02

Mst-Malt 85:54 86:49 86:49 86:49 90:38

Mst-Zpar 81:19 86:49 86:49 86:49 92:03

Malt-Zpar 80:07 84:51 84:51 84:51 91:46

Charniak-Stanford-Mst 91:86 92:27 92:28 92:25 96:48

Charniak-Stanford-Malt 91:77 92:28 92:3 92:08 96:49

Charniak-Stanford-Zpar 91:22 91:99 92:02 92:08 95:94

Charniak-Mst-Malt 88:80 89:55 90:77 92:08 96:3

Charniak-Mst-Zpar 90:44 91:59 92:08 92:08 96:16

Charniak-Malt-Zpar 88:61 91:3 92:08 92:08 96:21

Stanford-Mst-Malt 87:84 88:28 88:26 88:28 95:62

Stanford-Mst-Zpar 89:12 89:88 88:84 89:91 95:57

Stanford-Malt-Zpar 88:61 89:57 87:88 87:88 95:47

Mst-Malt-Zpar 86:99 87:34 86:82 86:49 93:79

Charniak-Stanford-Mst-Malt 90:45 92:09 92:34 92:56 97:09

Charniak-Stanford-Mst-Zpar 91:57 92:24 92:27 92:26 96:97

Charniak-Stanford-Malt-Zpar 91:31 92:14 92:4 92:42 97:03

Charniak-Mst-Malt-Zpar 89:60 89:48 91:71 92:08 96:79

Stanford-Mst-Malt-Zpar 88:76 88:45 88:95 88:44 96:36

All 91:43 91:77 92:44 92:58 97:41

Scores are in bold when the ensemble system increased the UAS score over all individual systems

As we can see the range of POS errors varies dramatically depending on which
parser we examine. For instance for CC, Charniak has 83 % while MST is only
71 % accurate. There are also POS errors that are almost always universally bad
such as the left parenthesis (. Given the large difference in POS errors, weighting
an ensemble system by POS is a logical choice, which we will address further in
Sect. 3.2. The varying POS accuracies indicate that the parsing techniques we have
incorporated into our ensemble parser, are significantly different. In almost every
case in Table 4, our ensemble parser achieves the best dependency accuracy for
each POS, while reducing the average relative error rate by 8.64 %.
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Table 3 UAS scores of our
ensemble parser with all
parsers included at different
exponential values (UASx)

X UASX

0.5 91:77

2 91:84

4 91:98

6 92:44

8 92:47

9 92:52

10 92:58
11 92:57

12 92:57

16 92:43

The bold value indicates
the highest empirically
found result

Table 4 Dependency errors per POS tag for each of our systems that are used in the ensemble
system

Best Relative error

POS Charniak Stanford MST Malt Zpar ensemble reduction

PDT 88:890 77:78 83:33 88:89 77:78 88:89 0:00

CC 83:540 74:73 71:16 65:84 20:39 84:63 6:64

NNP 94:590 92:16 88:04 87:17 73:67 95:02 7:81

, 84:450 78:02 63:13 60:12 65:64 85:08 3:99

WP$ 90:480 71:43 85:71 90:48 0:00 90:48 0:00

VBN 91:720 89:81 90:35 89:17 88:26 93:81 25:27

WP 83:780 80:18 80:18 82:88 2:70 81:08 �16:67

RBR 77:680 62:50 75:00 76:79 68:75 78:57 4:00

CD 94:910 92:67 85:19 84:46 82:64 94:96 1:02

RP 96:150 95:05 97:25 95:60 94:51 97:80 42:86

JJ 95:410 92:99 94:47 93:90 89:45 95:85 0:00

PRP 97:820 96:21 96:68 95:64 95:45 98:39 26:09

TO 94:520 89:44 91:29 90:73 88:63 94:35 �2:94

EX 96:490 98:25 100:00 100:00 96:49 98:25 50:00

WRB 63:910 60:90 68:42 73:68 4:51 63:91 0:00

RB 86:260 79:88 81:49 81:44 80:61 87:19 6:74

FW 55:000 45:00 60:00 25:00 35:00 55:00 0:00

WDT 97:140 95:36 96:43 95:00 9:29 97:50 12:50

VBP 91:400 83:29 80:92 75:81 50:87 91:27 �1:45

JJR 88:380 80:81 74:75 70:20 68:18 87:37 �8:70

VBZ 91:970 87:35 83:86 80:78 57:91 92:46 6:06

NNPS 97:620 95:24 100:00 95:24 69:05 100:00 100:00

( 73:610 75:00 54:17 58:33 15:28 73:61 0:00

(continued)
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Table 4 (continued)

Best Relative error

POS Charniak Stanford MST Malt Zpar ensemble reduction

UH 87:500 62:50 75:00 37:50 37:50 87:50 0:00

POS 98:180 96:54 98:54 98:72 0:18 98:36 10:00

$ 82:930 80:00 67:47 66:40 52:27 84:27 7:81

“ 83:990 79:66 76:08 58:95 74:01 84:37 2:35

: 77:160 72:53 45:99 44:44 53:70 79:63 10:81

JJS 96:060 90:55 88:19 86:61 82:68 93:70 �60:00

LS 75:000 50:00 100:00 75:00 75:00 75:00 0:00

. 96:060 93:48 91:07 84:89 87:56 97:08 25:81

VB 93:040 88:48 91:33 90:95 84:37 94:24 17:27

MD 89:550 82:02 83:05 78:77 51:54 89:90 3:28

NNS 93:100 89:51 90:68 88:65 78:93 93:67 8:26

NN 93:620 90:29 88:45 86:98 83:84 94:00 6:00

VBD 93:250 87:20 86:27 82:73 64:32 93:52 4:03

DT 97:610 96:47 97:30 97:01 92:19 97:97 14:78

# 100:000 80:00 0:00 0:00 0:00 100:00 0:00

’ 88:280 83:79 81:84 69:92 79:88 90:04 15:00

RBS 90:000 76:67 93:33 93:33 86:67 90:00 0:00

IN 87:800 78:66 83:45 80:78 73:08 87:48 �2:66

SYM 100:000 100:00 100:00 0:00 0:00 100:00 0:00

PRP$ 97:640 96:07 47:22 96:86 93:12 97:45 �8:33

) 70:830 77:78 96:46 55:56 12:50 72:22 4:76

VBG 85:190 82:13 82:74 82:25 81:27 89:35 28:10

Average 7:79

We also our best ensemble system which is the combination of all parsers using UAS10. All POS
errors are calculated using the testing data provided by section 23 of the WST. The ensemble
system that generated these errors was parametrized on tuning data, section 22 of the WSJ. Scores
are in bold when the ensemble system increased the UAS score over all individual systems for that
given POS

The current weighting systems don’t simply default to the best parser or to an
average of all errors. In the majority of cases our ensemble parser obtains the top
accuracy. The ability of the ensemble system to use maximum spanning tree on an
edge graph allows the ensemble parser to connect previously unconnected nodes for
an overall gain, which is preferable to techniques which only select the best model
for a particular tree. In all cases, our ensemble parser is never the worst parser. In
cases where the POS is less frequent, our ensemble parser seems to average out the
error distribution.

We demonstrated that using parsers of different techniques, especially including
transformed constituent parsers, can lead to the best accuracy within this ensemble
framework. The improvements in accuracy are not simply due to a few edge
changes but can be seen to improve the accuracy of the majority of POS tags over
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all individual systems. We also show a theoretical maximum oracle parser which
indicates that much more work in this field can take place to improve dependency
parsing accuracy toward the oracle score of 97.41 %.

To amplify the effect of POS error reduction further, we will look to learn the
ensemble weights though our POS error distribution. To do this we will cluster the
POS accuracies of our parsers and combine in a similar fashion. These experiments
are detailed in Sect. 3.2.

3.2 Fuzzy Clustering

Each technique above achieves this success via different error distribution. To
minimize these errors and to increase state-of-the-art parsing accuracy, we now
examine ensemble techniques that weight graph edges based on part-of-speech
errors. To do this, we cluster all dependency parsing models on part-of-speech error
counts. This leads us to have a different weighting scheme between dependency
parsers for each individual part-of-speech.

3.2.1 Weighting Schemes for Clustering

We apply three weighting algorithms to the graph structure. First we give each
parser uniform weight. Second we weight each particular edge by a combination
of models weights determined by the part-of-speech error distribution. Finally we
apply exponential scaling to the POS weights (POS10) to amplify the differences
between models.

• Uniform: This is the same as our previous fixed weight experiments with each
edge in the graph getting incremented +1 weight for each matching edge in each
parser.

• POS: Each edge of the graph is weighted by a combination of weighting schemes
determined by the particular part-of-speech. This is described in more detail in
Sect. 3.2.2.

• POS10: For this weighting scheme, we took each POS model score from the
previous weighting scheme and raised it to the 10th power at run time which
was empirically chosen. This was once again an opportunity to exaggerate the
differences in each parser when it came to each part-of-speech.

3.2.2 Determining Part-of-Speech Clustering Weights

To automatically learn the weights of our models, we turn to part-of-speech error
analysis. We obtain a dependency error distribution by POS from our tuning data.
Using fuzzy clustering with the cosine distance metric over 20 iterations we find



174 N.D. Green and Z. Žabokrtský

Weightedge =
N

i=1
ci

M

j=1
w jΣ Σ

Fig. 2 Equation for calculating the weight of one edge across N POS clusters each with their own
weight c and M models each with their own weight w, where each M predicts the edge

Table 5 Cluster weights for
each model when averaged
based across centroids for our
English models

Models Cluster 1 (%) Cluster 2 (%) Cluster 3 (%)

Charniak 21:48 26:46 31:68

Stanford 20:47 24:91 27:62

Mst 20:29 24:25 21:57

Malt 19:38 20:47 10:43

Zpar 18:38 3:91 8:70

three clusters. For a particular part-of-speech we get a weight corresponding to each
cluster that sum to 1. In N clusters, we have M weights corresponding to each
M models. So for a particular edge, we get its weight by summing each cluster
multiplied by all model weights as seen in Fig. 2. If a part-of-speech did not occur
in the tuning data, the weights are equally split across all clusters.

Our clustering algorithm is based on Fuzzy-Cmeans algorithm. This algorithm
allows for a “data point” to exist partially in many clusters. The cluster centroid is
iteratively calculated. For our data points we will use a count of correctly predicted
dependencies based on POS’s tags for each parser so for one entry we would have
NOUN)Parser1)10, Parser2)20 Parser3)5, Parser4)6. The clusters will then
specify the centroids of different clusters of these data points. We use three clusters
which gives use three combinations of model weights.

• Determine clusters for a POS
• Multiply each corresponding cluster weight against each model that predicts the

edge
• Sum the result
• Repeat for each cluster
• Sum results from all cluster

For instance for Tables 5 and 6 we will look at a node which has the POS
VBZ. Let us assume that the edge we are looking at is only predicted by ZPar and
Charniak. Step one we see that Cluster 1 has a weight of 0.971. We would then sum
the weights of the models with the predicted edge .21:48�0:971/C.18:38�0:971/ D
38:7. We then repeat this for Cluster 2 (.26:46 � 0:025/ C .3:91 � 0:025/ D 0:75 )
and Cluster 3 (.31:68 � 0:0036/ C .8:70 � 0:0036/ D 0:14). For the final weight we
combine these weights 38:7 C 0:75 C 0:14 D 39:59. As you can see Cluster 2 and
Cluster 3 provide little weight to the final result. This is because Zpar did relatively
well on this POS compared to its poor results on others. Cluster 1 gives a higher
score to ZPar in this situation.
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Table 6 The weights of each
cluster for selected POS tags

POS Cluster 1 Cluster 2 Cluster 3

( 0:007 0:9928 0:0007

) 0:043 0:9508 0:0067

CC 0:008 0:9904 0:0019

JJ 1:000 0:0001 0

MD 0:804 0:182 0:0136

NN 1:000 0 0

NNP 1:000 0:0001 0

NNPS 0:007 0:9917 0:0013

PDT 0:210 0:7277 0:0618

PRP 1:000 0:0001 0:0001

VB 1:000 0 0

VBD 0:981 0:0153 0:0036

VBZ 0:971 0:025 0:0041

WDT 0:003 0:9963 0:0005

3.2.3 Fuzzy Clustering Results

This weighting system models the POS tag in a fashion similar to the dependency
error per POS distribution. For instance the POS tag “CC” has high weights for
Cluster 1. Cluster 1 gives very little weight to Zpar. If we examine the POS errors
in Table 4, Zpar did very poorly on these tags. Overall, it does appear that the
clusters tend towards a more balanced weighting scheme while only pointing out
true outliers.

Table 7 shows the results of the run on our testing data in which the fuzzy clusters
were determined on our tuning data. The accuracies are higher but comparable
to what is seen with a basic uniform weighting scheme. The weights were a
combination of the fuzzy clustering weights based on POS errors shown in Table 6.
This score, 92.54 %, which occurred when all parsers were used, is the best accuracy
of all our ensemble techniques and model combinations with English.

3.2.4 POS Error Reduction

Next in Table 8 we look at the relative POS error reduction rate and its average
across all parts-of-speech. The table indicates that while the POS clustering
ensemble system did reduce error on an edge by edge level in terms of POS error.
This indicates that locally the system makes better decisions but the overall structure
of the parse tree may be incorrect. To correct this we must look at combining POS
clustering with an ensemble method that will favor an overall structure. To see if
can get a better overall structure, we now look at a more describe ensemble system
in which only one parser determines the edge.
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Table 7 UAS scores of our ensemble parser using POS fuzzy clustering weights for English

Parser Uniform POS POS10 Oracle

Charniak-Stanford-Mst 91:86 92:27 92:08 96:48

Charniak-Stanford-Malt 91:77 92:28 92:08 96:49

Charniak-Stanford-Zpar 91:22 92:00 92:08 95:94

Charniak-Mst-Malt 88:80 89:55 92:08 96:3

Charniak-Mst-Zpar 90:44 91:59 92:08 96:16

Charnial-Malt-Zpar 88:61 91:30 92:08 96:21

Stanford-Mst-Malt 87:84 87:94 87:88 95:62

Stanford-Mst-Zpar 89:12 89:89 87:88 95:57

Stanford-Malt-Zpar 88:61 89:60 89:58 95:47

Mst-Malt-Zpar 86:99 87:34 86:49 93:79

Charniak-Stanford-Mst-Malt 90:45 92:09 92:45 97:09

Charniak-Stanford-Mst-Zpar 91:57 92:24 92:49 96:97

Charniak-Stanford-Malt-Zpar 91:31 92:15 92:08 97:03

Charniak-Mst-Malt-Zpar 89:60 89:53 92:08 96:79

Stanford-Mst-Malt-Zpar 88:76 88:40 87:88 96:36

All 91:43 91:84 92:54 97:41

Values are bolded wherever the result is greater than any individual model within the ensemble
system

3.3 Model Classification

Here we will use a meta-classifier to select which model will choose each node’s
parent. A dependency tree in this situation may be made up of many different
parsers but each node will only be determined by one parser each. This is contrary to
the previous section where each node took input and weights from each individual
parser.

Morphologically rich languages are often short on training data or require much
higher amounts of training data due to the increased size of their lexicon. This
section examines a new approach for addressing morphologically rich languages
with little training data to start.

Using Tamil and Indonesian as our test languages, we create nine dependency
parse models with a limited amount of training data. Using these models we train
an SVM classifier using only the model agreements as features. We use this SVM
classifier on an edge by edge decision to form an ensemble parse tree. Using only
model agreements as features allows this method to remain language independent
and applicable to a wide range of morphologically rich languages.
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Table 8 POS errors for each of our systems that are used in the ensemble system for English

Best Relative error

POS Charniak Stanford MST Malt Zpar ensemble reduction

PDT 88:890 77:78 83:33 88:89 77:78 88:89 0:00

CC 83:540 74:73 71:16 65:84 20:39 84:63 6:64

NNP 94:590 92:16 88:04 87:17 73:67 95:02 7:81

VBN 91:720 89:81 90:35 89:17 88:26 93:81 25:27

JJ 95:410 92:99 94:47 93:90 89:45 95:85 0:00

PRP 97:820 96:21 96:68 95:64 95:45 98:39 26:09

TO 94:520 89:44 91:29 90:73 88:63 94:35 �2:94

RB 86:260 79:88 81:49 81:44 80:61 87:19 6:74

FW 55:000 45:00 60:00 25:00 35:00 55:00 0:00

WDT 97:140 95:36 96:43 95:00 9:29 97:50 12:50

VB 93:040 88:48 91:33 90:95 84:37 94:24 17:27

MD 89:550 82:02 83:05 78:77 51:54 89:90 3:28

NNS 93:100 89:51 90:68 88:65 78:93 93:67 8:26

NN 93:620 90:29 88:45 86:98 83:84 94:00 6:00

DT 97:610 96:47 97:30 97:01 92:19 97:97 14:78

Average 7:79

We also include the POS error distribution for our best ensemble system. All POS errors are
calculated using the testing data, section 23 of the WST. The ensemble system that generated
these errors was parametrized on tuning data, section 22 of the WSJ. We only display a reduced
set of POS tags for space but the Average is over all POS tags including those not shown. Scores
are in bold when the best ensemble system increased the UAS score over all individual systems
for that given POS

3.3.1 Process Flow

When dealing with small data sizes, it is often not enough to show a simple accuracy
increase. This increase can be very reliant on the training/tuning/testing data splits
as well as the sampling of those sets. For this reason our experiments are conducted
over eight training/tuning/testing data split configurations. For each configuration
we randomly sample without replacement the training/tuning/testing data and rerun
the experiment 100 times. These 800 runs, each on different samples, allow us to
better show the overall effect on the accuracy metric as well as the statistically
significant changes as described in Sect. 3.3.4. Figure 3 shows this process flow
for one run of these experiments.

3.3.2 Parsers

For this section, we generate two models using MSTParser (McDonald et al. 2005a),
one projective and one non-projective to use in our ensemble system. Additionally
we generate many transition-based parsers. We make use of MaltParser (Nivre et al.
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Fig. 3 Process Flow for one
run of our SVM ensemble
system. This Process in its
entirety was run 100 times for
each of the eight data set
splits

2007), which in the CoNLL shared tasks was often tied with the best performing
systems. For this parser, we generate seven different models using different training
parameters and use them as input into our ensemble system along with the two
graph-based models described above.

3.3.3 Ensemble SVM System

We train our SVM classifier using only model agreement features. Using our tuning

set, for each predicted dependency edge, we create

 
N

2

!

features where N is the

number of parsing models. We do this for each model which predicted the correct
edge in the tuning data. So for N D 3 the first feature would be a 1 if model 1 and
model 2 agreed, feature 2 would be a 1 if model 1 and model 3 agreed, and so on.
This feature set is novel and widely applicable to many languages since it does not
use any additional linguistic tools.
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Table 9 Node predictions
for SVM based
meta-classifier

Model Head prediction

1 Node 3

2 Node 4

3 Node 2

4 Node 3

5 Node 2

Table 10 SVM agreement matrix

Model 1 Model 2 Model 3 Model 4 Model 5

Model 1 1 0 0 1 0

Model 2 0 1 0 0 0

Model 3 0 0 1 0 1

Model 4 1 0 0 1 0

Model 5 0 0 1 0 1

In Table 9, we can see an example of five models/parsers and their prediction for
a head of a node. Let us say in this example that Model 2 is correct and the correct
head is Node 4. We would create a feature sets based on Table 10 in which our
features would describe a few scenarios. First (10010) would say that when Model
1 and Model 4 agree, Model 2 is correct. Second (01000) when Model 2 disagrees
with everyone, Model 2 is correct. Third (00101) when Model 3 and Model 5 agree,
Model 2 is correct. These are all feature sets that are used in our SVM. For each
edge in the ensemble graph, we use our classifier to predict which model should
be correct, by first creating the model agreement feature set for the current edge of
the unknown test data. The SVM predicts which model should be correct and this
model then decides to which head the current node is attached. At the end of all the
tokens in a sentence, the graph may not be connected and will likely have cycles.
Using a Perl implementation of minimum spanning tree in which each edge has a
uniform weight, we obtain a minimum spanning forest, where each subgraph is then
connected and cycles are eliminated in order to achieve a well formed dependency
structure. Figure 4 gives a graphical representation of how the SVM decision and
maximum spanning tree algorithm create a final ensemble parse tree which is similar
to the construction used in Hall et al. (2007) and Green and Žabokrtský (2012a).

3.3.4 Evaluation

To test statistical significant, we use Wilcoxon paired signed-rank test. For each data
split we have 100 iterations each with different sampling. Each model is compared
against the same samples so a paired test is appropriate in this case. We report
statistical significance values for p < 0:01 and p < 0:05.
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Fig. 4 General flow to create
an Ensemble parse tree for a
discrete SVM selection

Table 11 Average increases
and decreases in UAS score
for different
Training-Tuning-Test samples

Data Average % Increase % Increase

split SVM UAS (%) over avg (%) over best (%)

70-20-10 76.50 5.13 0:52

60-20-20 76.36 5.68 0:72

60-30-10 75.42 5.44 0:52

60-10-30 75.66 4.83 0:10

85-5-10 75.33 3.10 �1:21

90-5-5 75.42 3.19 �1:10

80-10-10 76.44 4.84 0:48

The average was calculated over all nine models while the best
was selected for each data split

3.3.5 Results and Discussion

For each of the data splits, Table 11 shows the percent increase in our SVM
system over both the average of the nine individual models and over the best
individual model. As Table 11 shows, our approach seems to decrease in value
along with the decrease in tuning data. In both cases when we only used 5 %
tuning data we did not get any improvement in our average UAS scores. Examining
Table 12, shows that the decrease in the 90-5-5 split is not statistically significant
however the decrease in 85-5-10 is a statistically significant drop. However, the
increases in all data splits are statistically significant except for the 60-20-20 data
split.

It appears that the size of the tuning and training data matter more than the size
of the test data. Given that the TamilTB is relatively small when compared to other
CoNLL treebanks, we expect that this ratio may shift more when additional data is
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Table 12 Statistical significance table for different training-tuning-test samples in Tamil

Model 70-20-10 60-20-20 60-30-10 60-10-30 85-5-10 90-5-5 80-10-10

2planar * * * * * * **

mstnonproj * * * * * * **

mstproj * * * * * * **

nivreeager * * * * ** x *

nivrestandard * * ** x * * *

planar * * * * * * **

stackeager * * * x * ** *

stacklazy * * * x * ** *

stackproj ** * * x ** ** **

Each experiment was sampled 100 times and Wilcoxon Statistical Significance was calculated for
our SVM model’s increase/decrease over each individual model.
� p < 0:01 , � � p D< 0:05, x D p � 0:05

supplied since the amount of out of vocabulary, OOV, words will decrease as well.
As OOV words decrease, we expect the use of additional test data to have less of an
effect.

The traditional approach of using as much data as possible for the training does
not seem to be as effective as partitioning more data for tuning an SVM. For
instance, the high test training percentage we use is 90 % applied to training with
5 % for tuning and testing each. In this case the best individual model had a UAS
score 76.25 % and the SVM had a UAS of 75.42 %. One might think using 90 %
of the data would achieve a higher overall UAS score than using less training data.
On the contrary, we achieve a better UAS score on average using only 60 %, 70 %,
80 %, and 85 % of the data towards training. This additional data spent for tuning
appears to be worth the cost.

To further examine the tuning/training data trade off, we turn to a new language
to see if the results are replicated. For this we will look at Indonesian.

For each of the data splits, Table 13 shows the percent increase in our SVM
system over both the average of the seven individual models and over the best
individual model. As Table 13 shows, we obtain above average UAS scores in every
data split. The increase is statistical significant in all data splits except one, the
90-5-5 split. This seems to be logical since this data split has the least difference in
training data between systems, with only 5 % tuning data. Our highest average UAS
score was with the 70-20-10 split with a UAS of 62.48 %. The use of 20 % tuning
data is of interest since it was significantly better than models with 10–25 % more
training data as seen in Fig. 5. This additional data spent for tuning appears to be
worth the cost.

The selection of the test data seems to have caused a difference in our results.
While all our ensemble SVM parsing systems have better UAS scores, it is a lower
increase when we only use 5 % for testing. Which in our treebank means we are
only using five sentences randomly selected per experiment. This does not seem to
be enough to judge the improvement.
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Table 13 Average increases and decreases in Indonesian UAS score for different Training-
Tuning-Test samples

Data Average % Increase % Increase Statistical

split SVM UAS (%) over average ( %) over best ( %) significant

50-40-10 60:01 10:65 4.34 Y

60-30-10 60:28 10:35 4.41 Y

70-20-10 62:25 10:10 3.70 Y

80-10-10 60:88 8:42 1.94 Y

50-30-20 61:37 9:73 4.58 Y

60-20-20 62:39 9:62 3.55 Y

70-10-20 62:48 7:50 1.90 Y

50-20-30 61:71 9:48 4.22 Y

60-10-30 62:57 7:89 2.47 Y

90-5-5 60:85 0:56 0.56 N

85-10-5 61:15 0:56 0.56 Y

80-15-5 59:23 0:54 0.54 Y

75-20-5 60:32 0:54 0.54 Y

70-25-5 59:54 0:54 0.54 Y

65-30-5 59:76 0:54 0.54 Y

60-35-5 59:31 0:53 0.53 Y

55-40-5 57:27 0:50 0.50 Y

50-45-5 57:72 0:51 0.51 Y

The average was calculated over all seven models while the best was selected for each data split.
Each experiment was sampled 100 times and Wilcoxon Statistical Significance was calculated for
our SVM model’s increase/decrease over each individual model. Y D p < 0:01 and N D p � 0:01

for all models in the data split

Fig. 5 Surface plot of the Indonesian UAS score for the tuning and training data split
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We have shown a new SVM based ensemble parser that uses only dependency
model agreement features. The ability to use only model agreements allows us
to keep this approach language independent and applicable to a wide range
of morphologically rich languages. We show a statistically significant 5.44 %
improvement over the average dependency model and a statistically significant
0.52 % improvement over the best individual system for Tamil. We reproduced the
results on a smaller Indonesian corpus with an improvement on individual accuracy
of 4.92 % on average.

4 MT with a Hybrid Parsing Approach

Evaluating ensemble parsing systems on UAS alone is not enough. We further
studied their effect in machine translation using the Treex system. We evaluated our
three approaches in ensemble parsing against each baser parser. All tests are done
in English and Czech. We evaluated 3 years of data WMT 2010–2012. Doing so,
we find a strong correlation between our parsing scores and our machine translation
scores. We now want to look at two things. One, how our ensemble structures effect
machine translation and two, how a gold standard parse will effect the translation
result.

To find the maximum effect that dependency parsing can have on the NLP
pipeline, we annotated English dependency trees to form a gold standard. Anno-
tation was done with two annotators using a tree editor, TrEd (Pajas and Fabian
2011), on data that was preprocessed using MSTParser. For the annotation of
our gold data, we used the standard annotation standards described in the Prague
Dependency Treebank (PDT) (Hajič 1998). PDT is annotated on three levels,
morphological, analytical, and tectogrammatical. For our gold data, we do not
touch the morphological layer, we only correct the analytical layer (i.e. labeled
dependency trees). For machine translation experiments later in the chapter, we
allow the system to automatically generate a new tectogrammatical layer based
on our new analytical layer annotation. Because the Treex machine translation
system uses a tectogrammatical layer, when in doubt, ambiguity was left to the
tectogrammatical layer to handle.

4.1 Data Sets

4.1.1 Evaluation Set

For the annotation experiments, we use text provided by the 2012 Workshop
for Machine Translation (WMT2012). The data consists of 3003 sentences. We
automatically tokenized, tagged, and parsed these sentences. This data set was
also chosen since it is disjoint from the usual dependency training data, allowing
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researchers to use it as a out-of-domain testing set. The parser used is an imple-
mentation of MSTParser. We then hand corrected the analytical trees to have a
“Gold” standard dependency structure. Analytical trees were annotated on the PDT
standard. Most manual corrections involved coordination construction along with
prepositional phrase attachment.

Having only two annotators has limited us to evaluating our annotation only
through spot checking and through comparison with other baselines. Annotation
happened sequentially one after another. Possible errors were additionally detected
through a set of automatic tests. As a comparison we will evaluate our gold data set
versus other parsers in respect to their performance on previous data sets, namely
the Wall Street Journal (WSJ) section 23.

4.1.2 Training Set

All the parsers were trained on sections 02–21 of the WSJ converted to dependencies
using the PennConverter, except the Stanford parser which also uses section 01. We
retrained MST and Malt parsers and used pre-trained models for the other parsers.
Machine translation data was used from WMT 2010, 2011, and 2012. Using our
gold standard we are able to evaluate the effectiveness of different parser types from
graph-base, transition-based, constituent conversion to ensemble approaches on the
2012 data while finding data trends using previous years data.

4.2 Translation Components

Our dependency models are evaluated using the TectoMT translation system (Popel
et al. 2010). This system, as opposed to other popular machine translation systems,
makes direct use of the dependency structure during the conversion from source to
target languages via a tectogrammatical tree translation approach.

We use the different parsers in separate translation runs each time in the same
Treex parsing block. So each translation scenario only differs in the parser used and
nothing else. The parsers used are as follows:

• MST: Implementation of Ryan McDonald’s Minimum spanning tree parser
(McDonald et al. 2005b)

• MST with chunking: Same implementation as above but we parse the sentences
based on chunks and not full sentences. For instance this could mean separating
parentheticals or separating appositions (Popel et al. 2011)

• Malt: Implementation of Nivre’s MaltParser trained on the Penn Treebank (Nivre
2003)

• Malt with chunking: Same implementation as above but with chunked parsing
• ZPar: Yue Zhang’s statistical parser. We used the pretrained English model

(english.tar.gz) available on the ZPar website for all tests (Zhang and Clark 2011)
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• Charniak: A constituent based parser (ec50spfinal model) in which we transform
the results using the PennConverter (Johansson and Nugues 2007)

• Stanford: Another constituent based parser (Klein and Manning 2003) whose
output is converted using PennConverter as well (wsjPCFG.ser.gz model)

• Fixed Weight Ensemble: Our stacked ensemble system combining five of the
parsers above (MST, Malt, ZPar, Charniak, Stanford). The weights for each tree
are assigned based on UAS score (Green and Žabokrtský 2012a)

• Fuzzy Cluster: Our stacked ensemble system as well but weights are determined
by a cluster analysis of POS errors (Green and Žabokrtský 2012b)

• SVM: Our hybrid system in which each individual edge is picked by a meta
classifier from the same five parsers as the other ensemble systems (Green et al.
2012a,b).

4.3 Evaluation

For machine translation, we report two automatic evaluation scores, BLEU and
NIST. We examine parser accuracy using UAS. We compare a machine translation
system, integrating 10 different parsing systems, against each other using these
metrics. We report UAS scores for each parser on section 23 of the WST and BLEU
and NIST scores for the WMT test set in Table 14.

Table 14 Scores for each machine translation run for each dataset (WMT 2010, 2011 and 2012
results are given in both columns)

Parser UAS NIST(10/11/12) BLEU(10/11/12)

MST 86:49 5.4038/5.5898/5.1956 12.99/13.58/11.54

MST w chunking 86:57 5.4364/5.6346/5.2364 13.43/14.00/11.96

Malt 84:51 5.3747/5.5702/5.1484 12.90/13.48/11.27

Malt w chunking 87:01 5.4110/5.6025/5.1904 13.39/13.80/11.73

ZPar 76:06 5.2676/5.4635/5.0846 11.91/12.48/10.53

Charniak 92:08 5.4750/5.6561/5.2816 13.49/13.95/12.26
Stanford 87:88 5.4000/5.5970/5.1892 13.23/13.63/11.74

Fixed weight 92:58 5.4911/5.6831/5.2902 13.53/14.04/12.23

Fuzzy cluster 92:54 5.4730/5.6820/5.2672 13.47/14.06/12.06

SVM 92:60 5.4846/5.6837/5.2891 13.45/14.11/12.22

Scores in bold indicate the best result for each given dataset
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4.4 Results and Discussion

4.4.1 Type of Changes in WMT Annotation

Since our gold annotated data was preprocessed with MSTParser, our baseline
system at the time, we started with a decent baseline and only had to change 9 % of
the dependency arcs in the data. These 9 % of changes roughly increases the BLEU
score by 7 %.

4.4.2 Parsers vs Our Gold Standard

On average, our gold data differed in head agreement from our base parser 14.77 %
of the time. When our base parsers were tested on the WSJ section 23 data they had
an average error rate of 12.17 % which is roughly comparable to the difference with
our gold data set which indicates overall our annotations are close to the accepted
standard from the community. The slight difference in percentage fits into what is
expect in annotator error and in the errors in the conversion process of the WSJ by
PennConverter.

4.5 MT Results in WMT Using Hybrid Parsing Approaches

• WMT 2010: As seen in Table 14, the highest resulting BLEU score for the
2010 data set is from the fixed weight ensemble system. The other two ensemble
systems are beaten by one component system, Charniak. However, this changes
when comparing NIST scores. Two of the ensemble method have higher NIST
scores than Charniak, similar to their UAS scores.

• WMT 2011: The 2011 data corresponded the best with UAS scores. While the
BLEU score increases for all the ensemble systems, the order of systems by UAS
scores corresponds exactly to the systems ordered by NIST score and correlates
strongly (Table 15). Unlike the 2010 data, the MSTParser was the highest base
parser.

• WMT 2012: The ensemble increases are statistically significant for both the
SVM and the Fixed Weight system over the MSTParser with 99 % confidence,
our previous baseline and best scoring base system from 2011. We examine our
data versus MST instead of Charniak since we have preprocessed our gold data
set with MST, allowing us a direct comparison in improvements. The fuzzy
cluster system achieves a higher BLEU evaluation score than MST, but is not
significant. In pairwise tests, it wins approximately 78 % of the time. This is the
first dataset we have looked at where the BLEU score is higher for a component
parser and not an ensemble system, although the NIST score is still higher for
the ensemble systems.
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Table 15 Pearson
correlation coefficients for
each year and each metric
when measured against UAS

NIST BLEU

2010 0:98 0:93

2011 0:98 0:94

2012 0:95 0:97

Overall NIST has a stronger cor-
relation to UAS scores, however
both show a strong relationship

Table 16 Pairwise
agreement between
annotators for our SVM and
baseline systems

+ = �
+ 12 12 0

= 3 7

� 7

(�,�) all annotators agreed the
baseline was better, (+,+) SVM
was better, (+,�) annotators dis-
agreed

4.5.1 Human Manual Evaluation: SVM vs the Baseline System

We selected 200 sentences at random from our annotations and they were given to
seven native Czech speakers. Seventy seven times the reviewers preferred the SVM
system, 48 times they preferred the MST system, and 57 times they said there was no
difference between the quality of the sentences. On average each reviewer looked at
26 sentences with a median of 30 sentences. Reviewers were allowed three options:
sentence 1 is better, sentence 2 is better, both sentences are of equal quality.

Table 16 indicates that the SVM system was widely preferred. When removing
annotations marked as equal, we see that the SVM system was preferred 24 times
to the Baseline’s 14.

Although a small sample, this shows that using the ensemble parser will at worse
give you equal results and at best a much improved result.

4.5.2 MT Results with Gold Data

In the perfect situation of having gold standard dependency trees, we obtained a
NIST of 5.3003 and a BLEU of 12.39. For our gold standard system run, the parsing
component was removed and replaced with our hand annotated data. These are the
highest NIST and BLEU scores we have obtained including using all base parsers
or any combinations of parsers.



188 N.D. Green and Z. Žabokrtský

5 Conclusion

In this chapter we have taken the idea of hybrid approaches to machine translation
and examined three unique hybrid dependency techniques as a form of source
side analysis. We have shown that ensemble parsing techniques have an influence
on syntax-based machine translation both in manual and automatic evaluation.
Furthermore we have shown a stronger correlation between parser accuracy and
NIST rather than the more commonly used BLEU metric. We have also introduce a
gold set of English dependency trees based on the WMT 2012 machine translation
task data, which shows a larger increase in both BLEU and NIST. While on some
datasets it is inconclusive whether using an ensemble parser with better accuracy
has a large enough effect, we do show that practically you will not do worse using
one and in many cases do much better. In an NLP world with increasing amounts
of tools and techniques, hybridity plays an important part in combining efforts and
developing a more sophisticated analysis of text. We have shown just one example
here with dependency parsing but other source side procedures might additionally
benefit from a similar analysis.
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Using WordNet-Based Word Sense
Disambiguation to Improve MT Performance

Špela Vintar and Darja Fišer

Abstract We report on a series of experiments aimed at improving the machine
translation of ambiguous lexical items by using WordNet-based unsupervised Word
Sense Disambiguation (WSD) and comparing its results to three MT systems. Our
experiments are performed for the English-Slovene language pair using UKB, a
freely available graph-based word sense disambiguation system. Since the fine gran-
ularity of WordNet is often reported as problematic, we compare the performance
of UKB using all WordNet senses with using sense clusters. Results are evaluated
in three ways: a manual evaluation of WSD performance from MT perspective, an
analysis of agreement between the WSD-proposed equivalent and those suggested
by the three systems, and finally by computing BLEU, NIST and METEOR scores
for all translation versions. Our results show that WSD performs with a MT-relevant
precision of 71 % and that 21 % of sense-related MT errors could be prevented by
using unsupervised WSD. We also show that sense clusters improve MT-relevant
precision.

1 Introduction

Ambiguity continues to be a tough nut to crack in Machine Translation. In most
known languages certain lexical items can refer to more than a single concept,
meaning that MT systems need to choose between several translation equivalents
representing different senses of the source word. Wrong choices often result in grave
translation errors, as words often refer to several completely unrelated concepts.
The adjective striking can mean beautiful, surprising; delivering a hard blow or
indicating a certain time, and the noun course can be something we give, take, teach
or eat.

In traditional statistical machine translation (SMT) systems lexical choice is
governed largely by the target language model, giving preference to phrases with a
higher probability in the target language. Several problems arise from the so-called
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static phrase model; firstly, distant dependencies are not taken into account, sec-
ondly, the context used to choose the translation equivalent is limited to a few words
only, and thirdly, the source context which is most relevant for disambiguation is
not taken into account in current SMT systems (Haque et al. 2011). Approaches to
integrate WSD into traditional SMT initially yielded limited success, but since 2007
several authors have reported significant improvements using context-dependent or
dynamic lexicons (Chan et al. 2007; Gimenez and Marquez 2007; Carpuat and Wu
2007).

In rule-based systems lexical selection is performed in a number of ways,
but most RBMT systems rely either on hand-crafted rules, semantic lexica or
probabilistic models acquired from corpora, and some systems employ no explicit
WSD at all. Because ambiguous words may have a number of equivalents with
unrelated meanings but similar syntactic behavior, some sentences are extremely
difficult to disambiguate without looking at a broader context; e.g. Let us wait for
the next course might refer to taking classes or eating a meal.

The experiments we describe below were performed for the English-Slovene
language pair, whereby Slovene can be considered a less-resourced language at
least concerning MT and semantically annotated corpora. Our aim was to assess
the performance of three MT systems and to see whether WordNet-based Word
Sense Disambiguation (WSD) could improve performance and assist in avoiding
grave sense-related translation errors. We test one statistical system (Google1), one
“linguistically informed” hybrid system (Bing,2 although the amount and nature of
language resources employed for Slovene remain questionable) and one rule-based
system (Presis3), whereby we envisage the implementation of our method as a post-
processing step rather than its integration into the translation engine.

For WSD we use UKB (Agirre and Soroa 2009), a graph-based algorithm that
uses WordNet (Fellbaum 1998) and computes the probability of each sense of
a polysemous word by taking into account the senses of context words. In our
experiment we use Orwell’s notorious novel 1984 as the source and its translation
into Slovene as the reference translation. We then disambiguate the English source
with UKB, assign each disambiguated English word a Slovene equivalent from
sloWNet (Fišer 2009) and compare these with the equivalents proposed by Google,
Bing and Presis.

Because many authors report that the WordNet sense inventory is too fine-grained
for many NLP tasks (Mihalcea and Moldovan 2001), we performed the experiment
with two settings, using the full sense inventory and using automatically induced
coarser-grained sense clusters that were based on the mapping to a manually crafted
dictionary encoding sense hierarchies, namely the Oxford Dictionary of English
(Navigli 2006).

1http://translate.google.com
2http://www.bing.com/translator
3http://presis.amebis.si/prevajanje/?jezik=en

http://translate.google.com/
http://www.bing.com/translator
http://presis.amebis.si/prevajanje/?jezik=en
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Evaluation is performed in three ways. First, WSD performance is evaluated
manually from MT perspective and both settings are compared. Then we analyse
the agreement between each of the MT systems and the UKB/WordNet-derived
translation, whereby we also give an estimate of the cases where MT performance
could effectively be improved by our method. Finally we generate our own raw
translation using the equivalents proposed by WSD and compare BLEU, NIST and
METEOR scores achieved with each translation version.

Our results show that the ad hoc WSD strategies used by the evaluated MT
systems can definitely be improved by a proper WSD algorithm, and that WordNet-
based WSD could be useful as a post-processing step. Evaluation with metrics
however does not show any significant improvement.

The remainder of this paper is structured as follows: in Sect. 2 we give an
overview of approaches to WSD in the context of MT, focusing in particular on
unsupervised and knowledge-based methods. Section 3 describes the experimental
setup and presents all the resources and tools we use. Section 4 lists the results of
all experiments and of all evaluation procedures, and we conclude with a thorough
discussion in Sect. 5.

2 Word Sense Disambiguation and Machine Translation

WSD for Machine Translation purposes slightly differs from traditional WSD,
because distinct source language senses which share the same translation equivalent
need not be differentiated in MT (Vickrey et al. 2005). This phenomenon is known
as parallel ambiguities and is particularly common among related languages (Resnik
and Yarowsky 2000). Still, lack of explicit WSD in MT can lead to grave translation
errors such as the one made by Google in our experiment when translating the first
sentence of Orwell’s 1984 from English into Slovene (It was a bright cold day in
April, and the clocks were striking thirteen. Bilo je svetlo mrzel dan v aprilu, in ure
so bile trinajst presenetljiv.), where striking was translated as surprising.

Reviewing approaches to WSD in traditional Machine Translation, we find that
a distinction is usually made between interlingual systems and transfer systems
(Resnik 2007, p. 313). Interlingual systems require explicit WSD in order to identify
the correct meaning representation for a concept expressed in the source language.
This monolingual analysis task produces an interlingual representation which in
turn maps to a surface realization in the target language. Transfer-based systems
similarly face the need to determine which sense of the source word to use for
mapping to the target language, however they have an opportunity to avoid explicit
WSD and map directly from words to words, in effect treating the set of target-
language translations of a word as if it is the word’s sense inventory (Resnik 2007,
p. 314).

In statistical MT, the issue of selecting the right sense of a word is usually
subsumed under lexical choice governed by the translation model and the target
language model employed by the SMT engine. The move from words in the early
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SMT models to phrases (Koehn et al. 2003) was motivated in part by the observation
that local context in the source language provides strong cues for lexical selection,
and as a consequence phrase-to-phrase mappings produce less sense-related errors.
Nevertheless, many researchers continued to explore the potential of integrating
“true” WSD into SMT. Early experiments by Carpuat and Wu (2005) failed to
provide convincing proof; their attempt to integrate WSD using an external sense
inventory into an IBM-style SMT system resulted in worse BLEU scores. However,
in later experiments Carpuat and Wu (2007) train their WSD system on the same
corpora as the SMT system and incorporate WSD into the lexical choice task faced
by the multi-word phrasal translation engine, and in this setting performance was
consistently improved according to all common evaluation metrics. Similar results
were reported independently by Cabezas and Resnik (2005) and Chan et al. (2007),
and in the following years different authors have proposed alternative methods of
integrating WSD into statistical or hybrid MT (Gimenez and Marquez 2007; Ali
et al. 2009; Meyer and Popescu-Belis 2012).

WordNet-based approaches to improving MT have been employed by numerous
authors, on the one hand using WordNet as a semantic resource to help resolve
ambiguity, and on the other hand as a rich source of domain-specific translation
equivalents. As early as 1993 (Knight 1993), WordNet was used as the lower
ontology within the PANGLOSS MT system. Yuseop et al. (2002) have employed
LSA and the semantic similarity of WordNet literals to translate collocations, while
Salam et al. (2009) used WordNet for disambiguation and the choice of the correct
translation equivalent in an English to Bengali SMT system.

Still, using WordNet as the source of sense inventories has been criticized not
just in the context of MT (Apidianaki 2009) where unsupervised approaches seem
to yield better results (Soltani and Faili 2012), but also within other language
processing tasks. The most notorious arguments against WordNet are its high
granularity and—as a consequence—high similarity between some senses, but its
global availability and universality seem to be advantages that prevail in many cases
(Edmonds and Kilgarriff 2002).

Our experiments lie somewhat in between; on the one hand we demonstrate the
potential of WSD in MT, especially for cases where different MT systems disagree,
and on the other hand we attribute most WSD errors to the inadequacy of the sense
splitting in WordNet (see Sect. 5).

3 Experimental Setup

3.1 Corpus and MT Systems

Our corpus consists of George Orwell’s novel 1984, first published in English in
1949, and its translation into Slovene by Alenka Puhar, first published in 1967.
While it may seem unusual to be using a work of fiction for the assessment of MT
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systems, literary language is usually richer in ambiguity and thus provides a more
complex semantic space than non-fiction.

We translated the entire novel into Slovene with Google Translate, Bing and
Presis, the first two belonging to the family of statistical systems and the latter being
a rule-based MT system developed by the Slovenian company Amebis.

For Google and Bing lexical choice is governed by a combination of the target
language model containing the probabilities of phrases and the translation model
proposing various equivalents (Cabezas and Resnik 2005). In Presis, on the other
hand, the choice of words in a given context is ruled by verb templates encoding
all possible combinations of verbs and their objects together with their semantic
properties (animate/inanimate). The semantic lexicon additionally contains common
Adjective C Noun patterns, prepositional phrases, and in cases of coordination
resolves ambiguity by looking for a common hypernym (e.g. ošpice in koze
[measles and smallpox]—> disease vs. ovce in koze [sheep and goats]—> domestic
animals).

For the purposes of further analysis and comparison with our disambiguated
corpus all texts—original and translations—have been PoS-tagged and lemmatized
using the JOS web service (Erjavec et al. 2010) for Slovene and ToTaLe (Erjavec
et al. 2005) for English. Because we can only disambiguate content words, we
retained only nouns, verbs, adjectives and adverbs and discarded the rest. After all
these preprocessing steps our texts end up looking as follows (Fig. 1).

Fig. 1 Corpus preprocessing
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Table 1 Corpus size and
number of ambiguous words

Corpus size in tokens 103,769
Corpus size in types 10,982
Ambiguous tokens 48,632
Ambiguous types 7627
Synsets with no equivalent in sloWNet 3192
Contexts with no equivalent in sloWNet 8073
Contexts with no cluster assignment 25,810

As can be seen in Table 1, almost half of all the tokens in the corpus are
considered to be ambiguous according to the English WordNet. Since the Slovene
WordNet is considerably smaller than the English one, almost half of the different
ambiguous words occurring in our corpus have no equivalent in sloWNet. This could
affect the results of our experiment, because we cannot evaluate the potential benefit
of WSD if we cannot compare the translation equivalent from sloWNet with the
solutions proposed by different MT systems. We therefore restricted the research to
the words and sentences for which an equivalent exists in sloWNet.

3.2 Disambiguation with UKB and WordNet

The aim of semantic annotation and disambiguation is to identify polysemous
lexical items in the English text and assign them the correct sense based on their
context. Once the sense of the word has been determined, we can exploit the
cross-lingual links between WordNets of different languages and propose a Slovene
translation equivalent from the Slovene WordNet.

We disambiguated the English corpus with UKB, which utilizes the relations
between synsets and constructs semantic graphs for each candidate sense of the
word. The algorithm then computes the probability of each graph based on the
number and weight of edges between the nodes representing semantic concepts.
Disambiguation is performed in a monolingual context for single- and multiword
nouns, verbs, adjectives and adverbs, provided they are included in the English
WordNet.

Figure 2 shows the result of the disambiguation algorithm for the word face,
which has as many as 13 possible senses in WordNet. We are given the probability
of each sense in the given context (e.g. 0.173463) and the ID of the synset (e.g. eng-
30-05600637-n), and for the purposes of clarity we also added the literals (words)
associated with this particular synset ID in the English (face, human face) and
Slovene (fris, obraz, faca) WordNet respectively.
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Fig. 2 Disambiguation result for the word face with probabilities for each of the 13 senses

3.3 Disambiguation with Sense Clusters

As can be seen from this example, WordNet is—in most cases—a very fine-
grained sense inventory, and looking at the Slovene equivalents clearly shows
that many of these senses may partly or entirely overlap, at least in the context
of translation. For this reason we performed a second round of disambiguation
using sense clusters (Agirre and Lacalle 2003). In this setting, each of the possible
senses of an ambiguous lexical item is assigned a cluster, with the aim of grouping
similar meanings into the same cluster. We can now join the translation equivalents
belonging to the same cluster and re-evaluate WSD performance in a translation-
relevant context. Sense clustering can only be applied to about one half of all
ambiguous tokens (see Table 1).
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If we look at the sentence below containing the ambiguous word place:

People were leaping up and down in their places and shouting at the tops of their voices in
an effort to drown the maddening bleating voice that came from the screen.

Out of 16 possible senses of place in WordNet, UKB will select the sense
labeled eng-30-08664443-n with the definition a point located with respect to
surface features of some region and listing the literals topographic point, place,
spot. Because this sense is assigned the cluster labeled life10, we add to the original
4 Slovene equivalents kraj, mesto, prostor, točka additional 10 equivalents belonging
to the same cluster: dom, bivališče, posest, stanovanje, domovanje, sedež, trg,
posestvo, položaj, sedišče.

4 Evaluation

The aim of our experiments was to see whether explicit WSD could improve
Machine Translation, whereby we wished to compare the three English-Slovene MT
systems and to evaluate the role of sense clusters in unsupervised WordNet-based
WSD. The task in itself is not trivial because the number of meanings a word can
have, the degree of translation equivalence or the quality of the target text are all
extremely disputable and vague notions. For this reason we wished to evaluate our
results from as many angles as possible, both manually and automatically.

4.1 Manual Evaluation of WSD Precision in the Context
of MT

Firstly, we were interested in the performance of the UKB disambiguation tool in
the context of MT. Since UKB uses WordNet as a sense inventory, the algorithm
assigns a probability to each sense of a lexical item according to its context in
an unsupervised way. The precision of UKB for unsupervised WSD is reported at
around 58 % for all words and around 72 % for nouns, but of course these figures
measure the number of cases where the algorithm selected the correct WordNet
synset from a relatively fine-grained network of possible senses (Agirre and Soroa
2009).

In manual evaluation we use the notion of translation-based Mirrors method
(Dyvik 2005; Lyse 2011), which means that we are concerned only with sense
distinctions of the source word that call for a different translation in the target
language. For example, the English word breast has four senses in WordNet: (1) the
upper frontal part of a human chest, (2) one of the two soft milk-secreting glands of
a woman, (3) meat carved from the breast of a fowl and (4) the upper front part of an
animal corresponding to the human chest. For the English sentence Winston nuzzled
his chin into his “breast” : : : UKB suggested the second sense, which is clearly
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Table 2 Manual evaluation of WSD performance for MT with and without sense clusters

Correct (%) Incorrect (%) Borderline (%)

No sense clusters 345 (69) 126 (25) 29 (6)
With sense clusters 420 (82) 55 (11) 35 (7)

wrong, but since the ambiguity is preserved in Slovene and the word prsi can be used
for all of the four meanings, we consider this a case of successful disambiguation
for the purposes of MT.

Manual evaluation was performed with a single evaluator (a translator) who was
presented with 500 randomly selected examples of disambiguated words and their
context. The evaluator examined the source word in context and then evaluated the
Slovene equivalents offered for the sense that had been chosen by UKB without
sense clusters. The results of this manual evaluation show the precision of WSD to
be 69 %, with 6 % borderline cases (see Table 2). The latter include cases where the
equivalent is semantically correct but had been assigned the wrong part of speech
by the POS-tagger (eg. glass door -> *steklo instead of steklen).

In a similar manner we manually evaluated 500 randomly selected words and
their contexts using sense clusters. In this second setting we expected a higher
number of correct cases because, on average, clusters considerably broaden the
range of possible equivalents, but on the other hand they are only available for about
one half of all the ambiguous contexts. The random selection of examples therefore
included only those for which a sense cluster had been assigned. The improvement
is nevertheless significant because we now achieve 82 % WSD precision, meaning
that in 82 % of the cases at least one of the Slovene equivalents suggested by the
WordNet-based WSD and sense clustering was correct for the given context.

It must be noted here that evaluation examples included a number of potentially
highly ambiguous words in English which in fact need no disambiguation in their
current syntactic role. We refer mostly to auxiliary verbs and copula (be, can, have,
do) where the sense inventory for them used as lexical verbs may be very broad, but
to disambiguate them when occurring in a purely functional role makes no sense at
all. We therefore disregarded such cases in our manual evaluation.

4.2 Agreement Between Each of the MT Systems and
the Disambiguated Equivalent

It is interesting to compare the equivalents we propose through our WordNet-based
WSD procedure with those suggested by the three MT systems: Presis, Google and
Bing. For this comparison we considered it a positive case if any of the Slovene
words proposed by our WSD procedure matched the word used by the MT system
and by the reference translation respectively.
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Table 3 Comparison of WSD/WordNet-based equivalent and the translations proposed by Presis,
Google, Bing and the reference translation, not using and using sense clusters

No sense clusters Using sense clusters

Total no. of disambiguated tokens 40,560 42,157
Synsets with no sloWNet equivalent 8073 6476
WSD D reference 18,544 20,277
WSD D Presis 19,858 21,866
WSD D Google 20,522 22,471
WSD D Bing 20,112 21,963
WSD D ref D Presis D Google D Bing 12,815 14,126
WSD D ref ¤ Presis ¤ Google ¤ Bing 1041 1061

Of the over 48k ambiguous tokens we obviously considered only those which
had an equivalent in sloWNet, otherwise comparison with the MT systems would
have been impossible. If we use clusters, around 1500 additional contexts can be
considered because the previously empty Slovene synset now receives Slovene
equivalents from similar synsets belonging to the same cluster (Table 3). The
WSD/WordNet-based equivalents most often agree with the Google translation, and
in just under one third of the cases all systems agree with each other and with the
reference translation.

If we also look at the number of cases where our WSD-WordNet-based equiv-
alent is the only one to agree with the reference translation, it is safe to assume
that these are the cases where WSD could clearly improve MT. There are over one
thousand such cases in our corpus, and slightly more if we use sense clusters (1041
and 1061).

4.3 Evaluation with Metrics

One method of evaluating the performance of WSD in the context of Machine Trans-
lation is through metrics for automatic evaluation (BLEU, NIST, METEOR etc.).
We thus generated our own translation version similar to the one in Fig. 1 consisting
only of content words in their lemmatized form. We translated the disambiguated
words with WordNet, exploiting the cross-language universality of the synset ID.
If the Slovene synset contained several possible translations we selected the first
one. However, since we can only propose translation equivalents for the words
which are included in WordNet, we had to come up with a translation solution for
those which were not. Such words include proper names (Winston, Smith, London,
Oceania), hyphenated compounds (pig-iron, lift-shaft, gorilla-faced) and Orwellian
neologisms (Minipax, Newspeak, thoughtcrime). We translated these words with
three alternative methods:

• Using a general bilingual dictionary,
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• Using the English-Slovene Wikipedia and Wiktionary,
• Using the automatically constructed bilingual lexicon from the English-Slovene

parallel Orwell corpus.

The fourth option was to leave them untranslated and simply add them to the
generated Slovene version.

Finally, we wanted to see how the WSD/WordNet-based translation com-
pares with the three MT systems using the BLEU, NIST and METEOR scores.
For the purposes of this comparison we pre-processed all five versions of our
corpus—original, reference translation, Presis, Google and Bing translation—by
lemmatization, removal of all function words, removal of sentences where the
alignment was not 1:1, and finally by removal of the sentences which contained
lexical items for which there was no equivalent in sloWNet.

We then generated the so-called WSD version by translating all ambiguous words
with sloWNet (see Sect. 3), and for the words not included in the English WordNet
we used four alternative translation strategies; a general bilingual dictionary (dict),
wiktionary (wikt), a word-alignment lexicon (align) and amending untranslated
words to the target language version (amend).

Table 4 shows the results of automatic evaluation; the corpus consisted of 2428
segments. We can see that our generated version using disambiguated equivalents
does not outperform any of the MT systems on any metric, except when the WSD-
align version outperforms Presis on the NIST score and comes fairly close to the
Bing score.

It is possible that the improvement we are trying to achieve is difficult to measure
with these metrics because our method operates on the level of single words,
while the metrics typically evaluate entire sentences and corpora. We are using
a stripped version of the corpus, i.e. only content words which can potentially
be ambiguous, whereas the metrics are normally used to calculate the similarity
between two versions of running text. Whenever the Slovene WordNet proposed
several equivalents for the selected sense we had chosen the first for our generated
translation. This means—and indeed we had seen such examples in our data—
that the WSD equivalent might have been synonymous to the reference translation
but would not be recognized by the metrics. Finally, the corpus we are using for
automatic evaluation is very small.

Table 4 Evaluation with
metrics

BLEU (n D 1) NIST METEOR

Bing 0.506 3.594 0.455
Google 0.579 4.230 0.481
Presis 0.485 3.333 0.453
WSD 0.440 3.258 0.429
WSD-amend 0.410 3.308 0.430
WSD-dict 0.405 3.250 0.427
WSD-align 0.448 3.588 0.434
WSD-wikt 0.442 3.326 0.429
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Because this evaluation method yielded no obvious improvement, we did not
proceed to test it with sense clusters because it seems that metrics are not an ideal
way of measuring what we are trying to measure.

5 Discussion

Although employing unsupervised WSD and comparing WordNet-based translation
equivalents to those proposed by the MT systems scored no significant improvement
with standard MT evaluation metrics, we remain convinced that the other two
evaluation methods show the potential of using WSD, particularly with homonyms
and coarse-grained sense distinctions rather than those where sense distinctions
are slight or vague. A manual inspection of the examples where MT systems
disagreed and our WSD-based equivalent was the only one to agree with the
reference translation shows that these are indeed examples of grave MT errors.
For example, the word hand in the sentence The clock’s “hands” said six meaning
eighteen can only be translated correctly with a proper WSD strategy and was indeed
mistranslated as roka (body part) by all three systems. If a relatively simplistic and
unsupervised technique such as the one we propose can prevent as many as 20 % of
these mistakes, it is certainly worth employing at least as a post-processing step.

The fact that we explore the impact of WSD on a work of fiction rather than
domain-specific texts may also play a role in the results we obtained, although it is
not entirely clear in what way. We believe that in general there is more ambiguity
in literary texts meaning that a single word will appear in a wider range of senses
in a work of fiction than it would in a domain-specific corpus. This might mean that
WSD for literary texts is more difficult, however our own experiments so far show
no significant difference in WSD performance.

A look at the cases where WSD goes wrong shows that these are typically
words with a high number of senses which are difficult to differentiate even for
a human. To return to the example from Sect. 2, the first sentence of Orwel’s novel
(It was a bright cold day in April and the clocks were striking thirteen.) caused a
grave translation blunder in both Google and Bing, since striking was interpreted in
its more expressive sense and translated into Slovene as presenetljiv [surprising].
However, UKB also got it wrong and chose the sense defined as deliver a sharp
blow, as with the hand, fist, or weapon instead of indicate a certain time by striking.
While these meanings may seem quite easy to tell apart, especially if the preceding
word in a sentence is clock, strike as a verb has as many as 20 senses in Princeton
WordNet, and many of these seem very similar. In this case, the Slovene translation
our method proposed is “less wrong” than the surprising solution offered by Google
or Bing, because udarjati may actually be used in the clock sense as well.

Using sense clusters does bring some relief from the notorious high granularity of
WordNet, and our evaluation results show a moderate improvement in performance
using clusters. A manual inspection of some clustering results however shows
that the effect of joining related senses may also be exaggerated, which is to be
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expected from automatic clustering; thus the sense cluster labeled lecture3 for the
word speech resulted in Slovene equivalents as distinct as jezik [language], ustna
komunikacija [oral communication] and pridiga [sermon]. This brings us to the
important issue of lexical selection which our experiment does not address; if the
number of proposed equivalents is high and their meanings are fairly distinct it is
not trivial to choose between them.

We might also assume that statistical MT systems will perform worse on fiction;
results in Table 4 show that both statistical systems outperform the rule-based Presis.
Then again, Orwell’s 1984 has been freely available as a parallel corpus for a very
long time and it is therefore possible that both Google and Bing have used it as
training data for their SMT model.

6 Conclusion

We described an experiment in which we explore the potential of WSD to improve
the machine translation of ambiguous words for the English-Slovene language pair.
We utilized the output of UKB, a graph-based WSD tool using WordNet, to select
the appropriate equivalent from sloWNet. Manual evaluation showed that the correct
equivalent was proposed in 69 % of the cases, and using sense clusters we managed
to achieve 82 % precision. We then compared these equivalents with the output of
three MT systems. While the benefit of WSD could not be proven with the standard
MT evaluation metrics, the correspondence of the WSD/WordNet-based equivalent
with the reference translation was high. Furthermore it appears that in cases where
MT systems disagree WSD can help choose the correct equivalent.

As future work we plan to redesign the experiment so as to directly use WSD
as a post-processing step to machine translation instead of generating our own
translation version. This would provide better comparison grounds. In order to
improve WSD precision we intend to combine two different algorithms and use
it only in cases where both agree. Also, we intend to experiment with different text
types and context lengths to be able to evaluate WSD performance in the context of
MT on a larger scale.
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