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Preface

The term ‘networked control system’ (NCS) encompasses a relatively large number
of situations and problems. The feature that distinguishes a NCS from a classical
control system is the presence of a communication network affecting or inside the
loop. New challenges arise as a consequence. In this sense, asynchronous control
and, particularly, event-based control, have received an important impulse in the
last decade due to its benefits when applied to NCSs, specially on energy-aware
devices. Instead of taking periodic actions as in classical control approaches,
asynchronous control bases its decisions on the state of the system and, in general,
reduces the amount of communication.

The book presents novel results on asynchronous control of NCSs in a concise
and clear style that are supported by simulation or experimental examples and it
also provides examples of application. The manuscript is written with material
collected from articles written by the authors, technical reports, and lectures given
to graduate students, in which the ideas have been originally presented together
with the formal proofs. Emphasis is laid on the presentation of the main results and
the illustration of these results by examples.

The book is mainly aimed at graduate students, Ph.D. students, and researchers
in control and communication, as well as practitioners, both from the control
engineering community, although it can be followed by a wide range of readers, as
only basic knowledge of control theory and sampled data systems is required.

The first chapter gives an introduction to asynchronous control and NCSs,
including the main research trends and introducing concepts that have been used
through the book. Then, the volume has been structured in two parts. The first part
accounts for centralized control schemes, whereas the second block is focused on
distributed estimation and control. A summary of each chapter is given next.
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Part I Asynchronous Control for Single-Loop Schemes.
Centralized Solutions

Chapter 2 focuses on the study of the limit cycles that appear in a control scheme
based on a PI controller with an event-based send-on-delta sampling. The processes
investigated are integrator processes plus time delay and first- and second-order
processes plus time delay, which are of interest because of their frequent use as
models in many industrial processes. An algorithm to calculate the limit cycles
properties is presented, and then the results obtained in simulations are compared
with experiments performed on real plants, such as a distributed solar collector field
at the Solar Platform of Almería (PSA, Spain).

Chapter 3 considers a scenario in which the sensor and controller are connected
by a bidirectional network. Whenever a fresh measurement is received from the
plant, the following sampling instant is decided on the controller following a
self-trigger strategy. To do so, the controller includes a model of the plant to
generate predictions of the evolution of the states. In order to compute the sampling
times, a set of quadratic optimization problems must be solved online.

Chapter 4 presents the analysis and the design of remote controllers for
packet-based NCS, following the paradigm of anticipative controllers. The remote
controller uses a model of the plant and a basis controller to compute a sequence of
future control actions to compensate the effect of delays and packet dropouts.
Event-based transmission rules are proposed to save network bandwidth. Different
extensions such as disturbance estimators, output measurement, and LTI anticipa-
tive controllers are discussed. Finally, the design is evaluated over experimental
plants characterized by response-times closed to the network delays.

Chapter 5 is concerned with the design of mixed H2=H1 controllers for net-
worked control systems through the Lyapunov–Krasovskii approach. The main
contribution of the method does not lie in the use of novel Lyapunov–Krasovskii
functionals or bounding techniques, but in the optimization method that can be used
for different functionals and a variety of different constraints on the delay.
Furthermore, the chapter investigates an asynchronous sampling approach based on
events that allow a reduction of the bandwidth usage and the energy consumption.
The relation between the boundedness of the stability region and the threshold that
triggers the events is studied. The robustness and performance of the proposed
technique is showed by numerical simulations.

Chapter 6 presents a practical algorithm to design networked control systems
able to cope with high data dropout rates. The algorithm is intended for application
in packet-based networks protocols (Ethernet-like) where data packets typically
content large data fields. The key concept is using such packets to transmit not only
the current control signal, but predictions on a finite horizon without significantly
increasing traffic load. Thus, predictive control is used together with buffered
actuators and a state estimator to compensate for eventual packet dropouts.
Additionally, some ideas are proposed to decrease traffic load, limiting packet size
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and media access frequency. Simulation results on the control of a three-tank
system are given to illustrate the effectiveness of the method.

Part II Asynchronous Control and Estimation for Large-Scale
Plants. Distributed Solutions

Chapter 7 discusses different control strategies of distributed event-based control for
linear interconnected systems. From the analytical point of view, two aspects are
considered to compare the different existing approaches: Convergence to the
equilibria and inter-event times. Later on the chapter, two extensions are presented.
The first extension is based on the fact that the frequency of actuation may be high
in distributed control schemes if the neighborhood of the subsystem is large, even if
each agent is not transmitting so often. To deal with this problem, an error function
is defined for the control input and a second set of trigger functions is proposed to
deal with this problem, updating the control law when a condition is violated. The
second improvement relies on the existence of smart actuators, so that
continuous-time signals can be applied instead of constant piecewise signals
(ZOH). A model-based control design is proposed in which each agent has
knowledge of the dynamics of its neighborhood.

Chapter 8 presents a generalized framework for distributed estimation in sensor
networks. A distributed event-based estimation technique based on the stabilizing
properties of the predesigned observers is proposed and analyzed, showing the
reduction of both energy expenditure and network traffic load due to unnecessary
transmissions. The observers’s structure is based on both, local Luenberger
observers and consensus strategies, which take into account the information that is
received from neighboring nodes. Using the same structure, actuation capabilities in
the nodes are included, yielding to a control scheme based on state estimation.

Chapter 9 contributed the field of distributed estimation and control with a novel
method that allows to design both the controllers and the observers at one common
step. The objective is to synthesize stabilizing suboptimal controllers, in the sense
that the upper bound of a given cost function is minimized. The reduction of the
bandwidth usage is attained exploiting an event-based communication policy
between agents. The results have been applied to an experimental plant consisting
of a four coupled tank system. The efficiency of the proposed method, in terms of
reduction of the traffic and tuning capabilities, is shown.

Chapter 10 extends the results of Chap. 7 for non-reliable networks. Even
though event-based control has been shown adequate to reduce the communication
to face the problem of reduced bandwidth, network delays and packet losses cannot
be avoided. Hence, the consequences of a non-reliable channel are analyzed, and
upper bounds on the delay and the number of consecutive packet losses are derived.
The design of network protocols is also presented, and simulation examples are
given to illustrate the theory.
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Chapter 11 is an extension of Chap. 8, and focuses on the following network
related issues: delays, packet dropouts and communication policy (time and
event-driven). The design problem is solved via linear matrix inequalities and
stability proofs are provided. The technique is of application for sensor networks
and large-scale systems where centralized estimation schemes are not advisable and
energy-aware implementations are of interest. Simulation examples are provided to
show the performance of the proposed methodologies.

Chapter 12 deals with the formation control of networked mobile robots as an
example of multi-agent systems in which the group of robots achieves a common
objective (the formation) by means of distributed control laws and event-based
communications. An interactive simulator to emulate this kind of setups has been
developed. The distributed event-based control algorithms have also been imple-
mented in a testbed of mobile robots, and the results are presented. A study of the
energy consumption and the performance is given.

Madrid María Guinaldo Losada
Seville Francisco Rodríguez Rubio
Madrid Sebastián Dormido Bencomo
May 2015
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Notation

The symbols are chosen according to the following conventions. Matrices are
represented by capital letters, and vector and scalars by lower-case letters. The
elements of a vector x or a matrix A are x1; . . .; xn and a11; a12; . . .; anm, respectively.
For a block matrix E, Eij denotes the ði; jÞ block. Calligraphic letters are generally
reserved to sets, like V or G.

Matrix A ¼ diagða1; . . .; anÞ is a diagonal matrix with diagonal entries a1; . . .; an.
Eigenvalues of a square matrix A are denoted by λ, where λmaxðAÞ and λminðAÞ are
the maximum and minimum eigenvalues, respectively.

The absolute value is denoted by jaj. The notations jjxjj and jjAjj represent the
vector or matrix norm. By default, jj � jj is the 2-norm computed as

jjxjj2 ¼
Xn
i¼1

x2i

 !1=2

jjAjj2 ¼ sup
x 6¼0

jjAxjj2
jjxjj2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmaxðA�AÞ

p
;

where A� is the conjugate transpose of A. We also use the supremum and 1-norms:

jjxjj1 ¼ max
i¼1;...;n

jxij jjAjj1 ¼ max
i¼1;...;n

Xm
j¼1

jaijj

jjxjj1 ¼
Xn
i¼1

jxij jjAjj1 ¼ max
j¼1;...;n

Xm
i¼1

jaijj:

Finally, a positive definite matrix is denoted by P[ 0 or P � 0.
The rest of the symbols can be found in the subsequence.
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Indices

ð�Þ� Conjugate transpose of a matrix

ð�Þ�1 Inverse of a matrix

ð�ÞT Transpose of a vector or matrix
ð�Þ0 Initial value
ð�Þb Broadcasted signal
ð�Þc Referring to the controller (Signal or matrix)
ð�Þm Referring to a model
ð�Þi
�ð�Þi Referring to a subsystem i

ð�Þij
.
ð�Þij Referring to transmission from a subsystem i to j

Scalars

n Dimension of the state vector
m Dimension of the input vector
r Dimension of the output vector
k Discrete instant
‘ Counter
t Continuous time
τ Delay
Ts Sampling time
TW Waiting time
δ Event constant threshold
tk Event time
‘k Event time (discrete time)
τmax Delay bound
τsc Delay from sensor to controller
τca Delay from controller to actuator
np Maximum number of consecutive packet losses
p Packet losses rate
κðAÞ Condition number of A (κðAÞ ¼ kAkkA�1k)
Na Number of agents
Nu Length of control sequence

Vectors

x State vector
u Input vector

xx Notation



w Disturbance vector
y Output vector
v Noise vector
x̂ Observed state
e Observer error
ε Event-based control error
ysp Set-point
ξ Augmented state vector
r Desired inter-vehicle relative position vector
�1 Column vector whose components are ones
U Augmented control vector

Matrices

A System matrix
B Input matrix
C Output matrix
D Feedforward matrix
K Feedback gain
AK System matrix of a closed-loop system (AK ¼ Aþ BK)
M Observer gain
Nij Consensus gains
Uk Control sequence
0 Null matrix of appropriate size
In n� n identity matrix

Other

G Graph
V Set of vertices and set of edges
E Edges
Ni Neighborhood of the i-th node
O Order of complexity
V Lyapunov function
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Chapter 1
Introduction

María Guinaldo, Francisco R. Rubio, Sebastián Dormido,
Pablo Millán, Carlos Vivas and Luis Orihuela

1.1 Historical Perspective: From Digital Control
to Networked Control Systems

The idea of using digital computers for control purposes started to emerge in the
1950s. In those times, however, computers were slow and unreliable, very limited
in memory and computation capabilities, and were generally restricted for use as
data loggers or performing computations for managing information. As reliability
improved, computers were gradually integrated, first in supervisory control opera-
tions, then as controllers themselves. In 1962, a radical breakthrough was introduced
by Imperial Chemical Industries (ICI) Ltd. in the UK, installing a Ferranti Argus
Computer at Burnaze Works to measure 224 variables and manipulate 129 valves
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directly. This is considered as the first time a computer was directly interfaced to
and controlled a particular system, and the beginning of the era of direct digital
control (DDC).

The growth of DDC was explosive since then, helped by lower costs, increasing
performance, and reliability of digital technology. While the first implementations
of DDC were restricted to dedicated links between controller and actuators/sensors,
user needs and technological advances in communications paved way for the intro-
duction of digital multiplexing in serial communication in the early 1970s and the
first decentralized computer control systems (DCCS) in the middle and late 1970s.
At this period of time, research interests shifted somehow to the new paradigm, as
it is evident from the fact that IEEE and IEE conferences on distributed processing
and distributed computer control systems were started.

Decentralized control systems were soon thereafter applied in integrated manu-
facturing and industrial applications in general. The first works treating the use of
decentralized control in machinery also appeared at this time, see [63]. Excellent
work dealing with some of the fundamentals of decentralized control systems was
produced in the early days of decentralized processing. For example, elements for a
global clock as a fundamental base for decentralized applications was put forward by
[136], together with the use of datagrams for real-time applications instead of con-
ventional positive acknowledgment and retransmission protocols. In an early work
on decentralized processing by [118], the partitioning and allocation phases were
also discussed. In [67, 117], the levels and degrees of decentralization were clarified.
These ideas gave rise to a whole new branch of control theory whose most prominent
applications came in the form of the field bus technology (e.g., FIP and PROFIBUS)
and automotive buses (e.g., CAN), successfully employed for decades in the process
and automation industry.

The astonishing growth of communication technologies over the past decades—
reflected by available protocols, coding, and modulation algorithms and the switch-
ing/routing technologies for packet-based networks—rapidly attracted the interest
of the control community. The use of a multipurpose shared network to connect
decentralized control elements promised improvements in terms of more flexible
architectures, reduced installation and maintenance costs, and higher reliability than
traditional bus-based communication technologies. The problems associated to such
a change of paradigm also proved to be challenging [188].

Networked control systems (NCSs) are decentralized systems in which the com-
munication of the different elements of the control loop (sensors, actuators, and
controllers) employs a shared digital communication network. NCSs is thus an inter-
disciplinary field, lying at the intersection of control and communication theories.
Favored by the large number of applications and difficulties involved, in the last few
years NCS has become a common issue for many control research groups all around
theworld (see the expert panel report onFuture Directions in Control, Dynamics, and
Systems1). Indeed, at least two of the technical areas of the International Federation
of Automatic Control (IFAC) are devoted to this field, a new IEEE Transactions on

1http://www.cds.caltech.edu/murray/cdspanel.

http://www.cds.caltech.edu/murray/cdspanel
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the topic (TCNS)was launched in 2014, and there also exists an increasing number of
specialized conferences and workshops, such as the IFAC Workshop on Distributed
Estimation and Control in Networked Systems (NecSys) or the SICE International
Symposium on Control Systems.

1.2 Overview of Networked Control Systems
and Asynchronous Systems

1.2.1 Emergence and Advantages of Networked
Control Systems

Typically, a control system is composed of the following elements: system or plant
to be controlled; sensors measuring plant outputs, and transmitting them; automatic
controllers receiving plant outputs and making decisions on the control signals to
be applied to the plant; and actuators receiving the inputs sent by the controller
and applying these inputs to the plant. Point-to-point communication links between
the different devices make it possible to implicitly consider the perfect communi-
cation channel approach: absence of transmission delays, information integrity and
unlimited bandwidth (Fig. 1.1).

Needless to mention, the feature that distinguishes an NCS from a classical con-
trol system is the presence of a communication network affecting inside the loop
(Fig. 1.2). The perfect communication channel assumption does not hold when a net-
workmediates the connection among the different elements, at least generally speak-
ing. Even when dedicated, standard communication networks are usually designed
to preserve data integrity and do not suit the stringent real-time requirements of
closed-loop control. These problems become particularly apparent when wireless
or non-dedicated networks are used. A large number of systems may be using the
communication channel concurrently sharing the available bandwidth.

Hence, the following questions arise:Why is it better to use this type of technology
for control purposes? In which situations are these solutions more suitable?

On the one hand, there are a number of generic advantages when using digital
communication networks. Namely,

Plant C 
+ 

- 

Fig. 1.1 Classic control scheme with the assumption of perfect communication channel
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Plant C Network 

Fig. 1.2 Networked control scheme

• Low cost Using a point-to-point communication in large-scale systems or geo-
graphically distributed plants is generally a costly and impractical solution. Wire-
less or even wired networks, however, reduce the connections and the wire length.
Concomitantly, the deployment and maintenance costs are shortened.

• Reliability In addition to the acknowledgment-retransmission mechanism of con-
ventional communication protocols, a meshed network topology intrinsically
improves reliability as dynamic routing allows to find alternative routes in the
case that broken links are present. Additionally, fault detection algorithms can be
easily implemented.

• Maintenance The reduction of wiring complexity facilitates the diagnosis and
maintenance of the system.

• Flexibility Network structured systems offer flexible architectures, making easier
the reconfiguration of the system parts and allowing a simpler addition of new
devices.

• Accessibility Traditional centralized point-to-point control systems are no longer
suitable to meet new requirements, such as modularity, control decentralization,
or integrated diagnostics.

On the other hand, in a large number of practical situations the application or
process advises engineers to use communication networks for control:

• Space and weight limitation Stringent limitations of this type need to be accom-
plished, for instance, in avionics (commercial aircrafts, unmanned aerial vehicles)
or embedded systems in the automotive industry.

• Coverage of considerable distances chemical plants, large-scale factories, and
automation systems.

• Control applications where wiring is not possible fleet of autonomous vehicles,
safe driving control systems involving inter-vehicle communications, teleoperated
systems, etc.

1.2.2 Communication Drawbacks

Communication through a shared network is imperfect and may be affected by some
of the following problems (see Fig. 1.3):
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Fig. 1.3 The various
problems affecting
information i(t) transmitted
through a network sampling 

delay 

dropouts 

quantization 

i(t)

i(tk)

i(t− τ)

×
Q[i(t)]

• Sampling In most digital networks, data are transmitted in atomic units called
packets. These packets are sent at a finite rate, therefore continuous models must
be discretized with an adequate sampling time. Since the available bandwidth is
limited, sampling appears as a problem of the channel. In some network protocols,
such asWiFi or Ethernet, this sampling time is not constant, as it strongly depends
on the network traffic and congestion. A correct choice of the sampling periods
will help to maximize the available bandwidth in those cases.

• Delay The overall delay between sampling and decoding at the receiver can be
highly variable because both the network access delays (i.e., the time it takes for
a shared network to accept data) and the transmission delays (i.e., the time during
which data are in transit inside the network) depend on highly variable network
conditions such as congestion and channel quality. Consequently, packets traveling
through a network are received belatedly. For example, it is certainly common to
receive one packet before another released earlier. Some protocols, such as TCP/IP,
implement mechanisms accounting for this, but at the cost of increasing the delay.
Even so, the reordering might be useless in control applications.

• Packet dropouts Some packets may also be lost, mainly because of the capacity
of the reception buffer. If an element is receiving packets at a higher rate than it
can process them, the buffer could overflow at any instant. Even, errors in physical
links may cause the loss of information, as the packet must be discarded. Though
some protocols guarantee data integrity through retransmission mechanisms, this
is often useless in real-time control as old data packets cannot be used for control
purposes. Indeed, many networked control algorithm discard and treat as losses
those packets received with excessive delays.

• Quantization A quantizer is a function that maps a real-valued function into a
piecewise constant function taking on a finite set of values. This mapping typically
introduce inaccuracies inversely proportional to the cardinality of the representa-
tion alphabet. One of the basic choices in quantization is the number of discrete
quantization levels to use. The fundamental tradeoff in this choice is the resulting
signal quality versus the amount of data needed to represent each sample.
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1.2.3 Research Trends

In the late 1990s, researchers began to identify the key distinctive issues of NCSs,
driving the main research topics of the next decade.

• Delays and packet dropouts The control-induced delay, that is, the delay caused
by the control scheme adopted, was first studied in the 1970s, when digital con-
trollers were introduced to replace analog controllers. It was noticed that this kind
of delay may induce by itself system instability, as was shown in a simple example
in [271]. Digital controller design taking into account the computational delay has
also been extensively studied, generally as extensions or applications of results
developed for time-delay systems (TDSs) [13].
Another source of delay is however present in NCSs, and it is caused by the trans-
mission of the information through the network to the different components of the
system. This kind of control-induced delay is commonly known in the literature as
network-induced delay [242]. Network-induced delays, because of their discrete
and distributed nature, are quite different from the plant delays and computational
delays that have been studied in the past. However, in some cases, it is possible
to use tools for linear sampled-data systems for the analysis and design of certain
classes of linear NCSs [193]. Some problems also admit dealing with networked-
induced delays in a similar way as traditional TDSs. This is the approach in some
recent studies of time-delayed-system analysis and design [40, 122, 155, 168,
222, 280], which though not specific to NCSs, provide results that are applicable
to NCSs.
From a historical perspective, first results in the topic of network-induced delays
in control systems were developed for the assessment of systems performance and
design of improved communication protocols [95, 244]. Network time delays have
since then been tackled in a variety of forms. In general, there are two methods to
handle the networked-induced delays. One method is to design control algorithms
considering the delays, such as in [159, 270]; the other is to reduce the delays by
sharing a common network resource. Recently, part of the research [121, 144] on
NCSs has focused on how to schedule network resources to make the network-
induced delays as small as possible. These research results have also shown that
network scheduling plays a subordinate, but very important role in NCSs. Other
approaches tackle the problem from a robust control perspective, guaranteeing
stability and performance in spite of the presence of delays. In many of these
designs, the so-called maximum allowable delay bound (MADB) is established.
The MADB can be defined as the maximum allowable interval from the instant
when the sensor nodes sense the data from a plant, to the instant when actuators
apply to the plant the corresponding control actions. For guaranteeing an NCS
being stable, the sampling periods must be less than the corresponding maximum
allowable delay bounds (MADBs) [38, 83, 145, 173, 268, 275, 277].
Another significant difference between NCSs and standard digital control is the
possibility that data packets may be lost while in transit through the network. For
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a given sampling frequency, implementing estimation methods in an NCS would
reduce the network traffic increasing the effective bandwidth of the system [25].

• Band-Limited Channels Any communication network can only carry a finite
amount of information per unit of time. In many applications, this limitation poses
significant constraints on the operation of NCSs. First incursions in the topic
came from well-established results of information theory. A significant research
effort has been devoted to the problem of determining the minimum bit rate that
is needed to stabilize a linear system through feedback [26, 65, 105]. Recently,
some progress has also been made in solving the finite-capacity stabilization prob-
lem for nonlinear systems [150, 191], derivation of stability conditions based on
anytime information [223], or the study of performance limitations of feedback
over finite capacity memoryless channels [161], with Bode-like extension limits
of performance.

• Stability of NCS Unlike regular control systems, in NCSs the synchronization
between different sensors, actuators, and control units is not guaranteed. Fur-
thermore, there is no guarantee for zero delay or even constant delay in sending
information from sensors to the control units and control units to the actuators. In
real-time systems, particularly control systems, delays or dropped packets may be
catastrophic and may cause instability in the process. Moreover, the time-varying
nature of delays in NCSs may induce instability for time-varying delays in a
bounded set; even when the NCS with any constant delay taken from this set is
asymptotically stable [264].
Stability under such circumstances has been investigated by a number of
researchers. First results were obtained from the application of classical tools,
as in [125] where a frequency-domain stability criterion, based on the small gain
theorem, is proposed to investigate the stability of SISO NCS plants. A different
modeling approach is used in [189, 274], where a continuous-time description,
with a zero-order-hold controller, is proposed. Other relevant results regarding
stability of NCSs can be found in [45, 102, 146, 151, 253, 273, 282, 283].

• Energy aware In all fields of engineering, energy-efficiency is becoming very
important due to economical and environmental concerns. In networked control
systems—especially if battery-powered devices are employed over wireless—
energy-saving is key to increasing the lifespan of the system and, indirectly, reduc-
ing costs. Moreover, in some applications, the network devices can be deployed
over hazardous or unreachable locations, and replacing the batteriesmay be expen-
sive or impractical. This motivates current interests in developing energy-aware
NCSmethodologies, in particular, on protocols to reduce the averagemedia access
rate, as it is well known that wireless devices consumemost energy when the radio
is on.

• Wireless Sensor Networks A technological factor that has definitely amplified
the impact of NCSs, both in industry applications and interest from academia, has
been the rapid developments of wireless technologies in the past decade. Recent
achievements in miniaturization, such as MEMS- and nano-technologies, have
enabled the development of low-power, reduced-cost wireless devices with the
capacity of establishingmeshed networks in the so-calledwireless sensor networks
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(WSN). It is widely believed that this type of pervasive networking technology
will be transparent to the user, but at the same time will allow monitoring and
automation to an unprecedented scale.

• Distributed systemsThe challenge to the field is to go from the traditional view of
control systems as a single process with a single controller, to recognizing control
systems as a heterogeneous collection of physical and information systems with
intricate interconnections and interactions. In addition to inexpensive andpervasive
computation, communication, and sensing—and the corresponding increased role
of information-based systems—an important trend in control is the move from
low-level control to higher levels of decision making.

New possibilities and challenges arise in this context, and issues as distributed
estimation and control overWSN, energy-aware NCS control, or multi-agent control
are hot topics nowadays. Particularly, distributed estimation has been devised as a
potentially useful strategy since the early 1990s [87], though it has found a renewed
interest in the past few years with the development ofWSNs. Distribution estimation
techniques has been developed under different levels of imperfect channel assump-
tions in [128, 266, 281], and more recent unified control and estimation approaches
can be found in [171, 206].

As we look forward, the opportunities for new applications that will build on
advances in control expand dramatically. The advent of ubiquitous, distributed com-
putation, communication, and sensing systems has begun to create an environment
in which we have access to enormous amounts of data and the ability to process and
communicate that data in ways that were unimagined 20 years ago. This will have
a profound effect on military, commercial, and scientific applications, especially as
software systems begin to interact with physical systems inmore andmore integrated
ways.

1.2.4 Asynchronous Control

Traditionally, the information between sensors, actuators, and controllers is exchan-
ged at constant rates. The sampling frequency has to guarantee the stability of the
system under all possible scenarios, and this can sometimes yield a conservative
choice of the sampling period. Moreover, all tasks are executed periodically and
independently of the state of the plant.

In recent years, the idea of taking into account the plant state to decide when to
execute the control and sampling tasks has received renewed interest. In general, in
this non-conventional sampling paradigm, information is exchanged in the control
loop when a certain condition depending on the state is violated. Hence, there is an
adaptation to the needs of the process at any time.

However, there is no uniform terminology when referring to this concept. One
can find in the literature the terms event-based control, event-triggered control, send-
on-delta control, level-crossing control, self-triggered control, minimum attention
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control, anytime attention control, and many more. All of them have basically the
same idea, but vary in implementation. We will refer to asynchronous control or
asynchronous sampling to cover all these approaches.

Despite its recent popularization, asynchronous sampling is not actually a new
concept, and its origins date back to the late 1950s when it was argued that the most
appropriate sampling method is to transmit data when there is a significant change
in the signal [66]. Later, in the 1960s and 1970s, a heuristic method called adaptive
sampling [60] was popularized. The objective was to reduce the number of samplings
without degrading the system performance, evaluating in each interval the sampling
period.

More recently, an event-based PID controller was implemented in [12] showing
that the number of control updateswas reducedwithout degrading the performance of
the system. In [98], level-crossing control was applied to control the angular position
of a motor with a low-resolution sensor.

The first analytical results were for first-order linear stochastic systems in [214],
showing that under certain conditions the event-based control outperforms the peri-
odic control. But the real impulse to the asynchronous control came out a few years
laterwhenmany researchers realized the benefits of applying this theory to networked
control systems. Section1.4.2will present a literature reviewof asynchronous control
applied to NCSs as well as the main concepts used in this formalism.

1.3 Applications and Industrial Technology Over Network

Networked control systems have been finding application in a broad range of areas.
Because of the attractive benefits detailed in Sect. 1.2.1, many industrial companies
and institutes have shown interest in applying networks for remote industrial control
purposes and factory automation [242]. The fact thatmany infrastructures and service
systems of present-day society can naturally be described as networks of a huge
number of simple interacting units increases the areas where NCSs can be applied.

For these reasons, these systems have a lot of potential applications, including
environmental and pollution monitoring [113], control of water distribution net-
works [113], surveillance [16, 43], remote surgery [167], distributed power systems
and smart grids [5, 24], mobile sensor networks [111, 198], formation control of
autonomous vehicles [86, 229], haptics collaboration over the Internet [106], intelli-
gent transportation systems [178], unmanned aerial vehicles [116] and chemical and
petrochemical plants [267], just to name a few. Next, some of these NCS applications
are detailed.

Wireless Sensor Networks

Built on nodes, are gaining a role of importance taking part of embedded systems.
Embedded systems, by definition, interact with the physical world as sensors, actua-
tors, and controllers that are programmed to perform specified actions. As the range
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of applications grows, the demand to perform incrementally complex tasks on the
nodes also increases.

In general, each node has four main parts: I/O ports connected with sensors and
actuators, a radio transceiver to transmit the information, a microcontroller, and an
energy source, usually a battery. Each node can monitor physical or environmental
conditions such as humidity, temperature, lighting, and so on.

The advantage of WSNs with respect to traditional technologies is enormous, as
deploying and maintaining a geographically distributed wired network of thousands
of nodes is impractical considering the distances among nodes. WSNs themselves
have several applications such as surveillance, health care, air pollution,water quality,
or industrial monitoring, some of which will be commented later on. WSNs are
characterized by the mobility of nodes, power consumption constraints, or node
failures, all of them challenges the control design has to deal with.

Biological Systems

Renewable energy-based systems and mitigation of the greenhouse effect are two
of the main concerns in the present century. Large efforts are being done around
the world trying to look for clean resources and new technologies to face these
issues [243]. Also, the problem of quality and quantity of water resources is a global
challenge for the upcoming years. Both, an adequate amount and quality of water
are essential for public health and hygiene [113].

Bioprocesses technology or biotechnology is one of the emerging areas that can
highly contribute to the challenging aspects mentioned above as well as to produce
high-value products. Bioprocess operations make use of microbial, animal, and plant
cells and components of cells, such as enzymes, tomanufacture newbiotechnological
products (food industry, pharmaceutical products, biofuel), destroy harmful wastes
(CO2 mitigation) [59], or obtain large quantities of water with good quality.

For example, finding suitable biofuel crops so that the oil production could replace
fossil fuel usage is a trendy line of research. In this regard, microalgae are seen as
the bioprocess with great potential for biofuel production in the future. Microalgal
biomass can reach up to 80% of dry weight under certain stress conditions; they can
be cultivated in high area yields compared to other crops; they have high oil content
in some strains, low-water consumption is required, and it is possible to produce
them on arid lands [20, 196].

As far as water scarcity is concerned, water treatment and desalination plants
seem a solution to provide the possibility to use water everywhere. Recycled water
is most commonly used for non-potable purposes, such as agriculture, landscape,
public parks, and industrial applications, among others (Fig. 1.4).

The development of new technologies has made possible the monitoring and con-
trol of such biological processes. The integration of specific sensors and actuators in
motes and the adaptation of the network function to the specific requirements that this
type of application impose are identified as key features. They allow the distributed
monitoring and control that improve the efficiency, productivity, and optimization of
these large-scale systems.
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Fig. 1.4 NCS applications to agriculture

Remote Surgery

This enables the surgeon to remotely operate on the patient with the help of a medical
telerobot. Theoretically, it frees the surgeon from the operation room, protects the
surgeon from radiation, and provides rescue for patients in areas of difficult access
[167]. Hence, the new developed technology will help to remove distance barriers
from surgery.

This ability can benefit patients who would otherwise go untreated, improve the
quality of care since expert surgeons can proliferate their skills more effectively, and
reduce costs by avoiding unnecessary patient and surgeon journeys [27]. Yet, other
obstacles such as licensing, reimbursement, liability, etc., cannot be ignored.

The first telesurgery prototypes were through wired connections [27, 167], but
there are also some recent results on wireless remote surgery [158].

Smart Grids and Distributed Power Systems

We define a smart microgrid as a portion of the electrical power distribution network
that connects to the transmission grid in one point and that is managed autonomously
from the rest of the network [24]. The objective of transforming the current power
grid into a smart grid is to provide reliable, high quality electric power in an environ-
mentally friendly and sustainable way. To achieve this, a combination of existing and
emerging technologies for energy efficiency, renewable energy integration, demand
response, wide-area monitoring, and control is required (Fig. 1.5).

For instance, the so-called flexible AC transmission systems (FACTS) technology
would allow to find the most efficient paths and better power production mixes and
schedules. Additionally, the massive use of deployed sensors would make possible
the measurement of the consumption of the end users at any time, weather data,
or equipment condition. Monitoring, optimization, and control applications would



12 M. Guinaldo et al.

Fig. 1.5 Smart grids
function diagram

increase the energy delivery efficiency and security by means of the dynamical com-
putation of ratings and balance load and resources [227].

Intelligent Transportation Systems (ITS)

These are defined as those that utilize synergistic technologies and system engi-
neering concepts to develop and improve transportation systems of all kinds. They
provide innovative services related to different means of transport and traffic man-
agement. This will definitely achieve a smarter use of transport networks, making
them safer and more coordinated.

Intelligent transportation technologies are based on wireless communications.
The current trend is to develop new embedded system platforms that allow for
more sophisticated software applications to be implemented, including model-based
process control, artificial intelligence, and ubiquitous computing.

Applications of ITS are, for example, emergency vehicle notification systems,
variable speed limits to control the traffic flow [263], travel time predictions [199,
221], collision avoidance systems, or dynamic traffic light sequence.

Formation Control

In many applications, a group of autonomous vehicles are required to follow a prede-
fined trajectory while maintaining a desired spatial pattern [42]. Formation control
has many applications. For example, in small satellite clustering, formation helps to
reduce the fuel consumption and expand sensing capabilities. In military missions,
a group of autonomous vehicles keeps a formation for exploratory purposes. Other
examples include search and rescue missions, automated highway systems, detect,
locate, andneutralize underseamines byunderwater vehicles, ormobile robotics [73].

Such autonomous vehicles can be coupled physically or through the control task
to accomplish the specific task. Information is usually shared through a network
to achieve the mission, and vehicles have only access to partial information when
making decisions. Hence, new challenges arise in the control problem. For instance,
communication is really weak in some scenarios, such as for underwater vehicles,
where delays, reliability, and data rate constraints are very demanding (Fig. 1.6).



1 Introduction 13

Fig. 1.6 Submarines in
Formation

1.4 Networked Schemes: From Centralized
to Distributed Techniques

Networked control systems are characterized by the transmission of sensor and/or
control data through a shared network. Due to the finite bandwidth of the network,
the flow of information is at discrete instances of time. This discontinuous flow is
represented by dashed lines, whereas solid lines correspond to continuous signals.
The flexibility that NCSs offer yields multiple possible architectures. In this book,
we focus on the three most common configurations: centralized, decentralized, and
distributed models.

1.4.1 Centralized and Decentralized Schemes

Since their inception, practically all the existing control and estimation techniques
have been devised and developed for centralized schemes. In these schemes, every
sensor or actuator of the plant is connected to a central agent that gathers all the data.

The advantages of centralized implementations have been widely exploited by
systems engineers for decades. When a central agent collects all the available infor-
mation of a system, monitoring and control tasks can potentially achieve high per-
formances. In addition, there is a wide body of knowledge and a huge variety of
techniques developed for centralized implementation, which means that the exper-
imented practitioner can select the one that fits the system needs over a number of
different possibilities.

In a centralized scheme (Fig. 1.7), the central unit receives the measurements
{yi (t)} taken by the sensors in the plant and sends the control actions {ui (t)} back to
the system.
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Fig. 1.7 Centralized architecture

In centralized NCS, there are different configurations depending on how the sen-
sors (S), the actuators (A), and the controller (C) are located with respect to the
network (see Fig. 1.8). Thus, the controller can be co-located with the sensor nodes
(Fig. 1.8a), co-located with the actuators (Fig. 1.8b), or work as a remote controller
(Fig. 1.8c):

• Co-located with sensors This architecture offers the advantage of providing the
unaltered outputs instantaneously to, if necessary, reconstruct the state of the sys-
tem. Thus, the synchronization of the controller with the sensors is a fair assump-
tion in this case. The controller computes the control inputs that are transmitted
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Fig. 1.8 Centralized models in NCSs
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through the network at discrete instances of time (equidistant from each other or
not) to the actuators, which might not have clocks’ synchronization with other
nodes.

• Co-located with actuators Information about the state of the system is transmitted
from the sensor nodes to the controller through the imperfect channel. The con-
troller will gather this information to calculate the control signals that are delivered
to the actuators immediately.

• Remote controller This is the most general framework and the network is on both
sides of the controller, which in general will not be synchronized with the other
nodes in the network. Transmission of both sensormeasurement and control inputs
will suffer from the network imperfections.

In general, the control law is given as

u(t) = k(y(t)),

where u(t) = (u1(t) . . . um(t))T and y(t) = (y1(t) . . . yr (t))T .
Centralized architectures require to connect every device to a central node. This

can be unsuitable in some applications, especially in the context of large-scale sys-
tems as, for instance, some of the applications detailed in Sect. 1.3. The implemen-
tation of centralized architectures in these kinds of systems may be challenging as
important problems usually arise: technical difficulties to transmit all the system sig-
nals in real time, security issues, robustness against connection failures, high wiring
costs, or excessive computational burden in the central controller.

In contrast, in decentralized schemes (Fig. 1.9), the tasks over the system are per-
formed by a set of independent controllers suitably deployed [15, 213]. This way,
each controller has access to local data and manages specific input/output chan-
nels. In decentralized architectures the computations can be carried out in parallel
and the wiring costs are minimized, which also means reduced danger of break-
ing cables, less hassle with connectors, etc. Nonetheless, an important disadvantage
of this approach is that the absence of communication between agents limits the
achievable performance.
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Fig. 1.9 Decentralized architecture
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Each control unit Ci computes the control input ui (t) based on the local measure-
ment yi (t). In general, the control law is

ui (t) = ki (yi (t)).

1.4.2 The Middle Ground: Distributed Systems

Distributed systems are the middle ground that lies between decentralized and
centralized solutions. As in decentralized architectures, in distributed systems the
agents have access to local plant data. Thus, distributed architectures (Fig. 1.10)
require lower levels of connectivity and less computational burden than centralized
approaches.

However, as opposed to decentralized schemes, in this framework the controller
nodes are endowed with communication capabilities and they can share information
with a limited set of neighboring controllers (agents), which allows this approach
to improve the performance. Therefore, distributed control systems (DCSs) are net-
worked control systems where it is possible to trade-off between communication
burden and control performance.

Distributed control and estimation techniques are becoming more and more pop-
ular with the development of wireless sensor networks, which has made easier the
implementation of distributed control systems and has simplified deployment, migra-
tion, and decommissioning of networks, among other elements, see [225], or [2].

Nowadays, most vendors offer wireless-enabled product lines with different tech-
nologies (WSAN from ABB or OneWireless Network from Honeywell, to give a
couple of examples). Although further efforts must be made to improve interoper-
ability, computation capabilities, and connectivity of present devices, the scenario
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u3(t)

Fig. 1.10 Distributed architecture
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where off-the-shelf components with the attributes required to implement sophis-
ticated collaborative control/estimation schemes are available, is not so far in the
future.

In contrast, compatibility, standardization, and integration of DCSs with other
aspects of process control (human–machine interface, alarm systems, historical
records, etc.) are still important issues to be resolved for a wider implementation
of these systems. Besides, due to various design considerations, such as small size
battery, bandwidth and cost, from the control design point of view, two types of inter-
connections between subsystems that compose the overall plant are distinguished.
The first one is the physical interconnection, i.e., the state of a subsystem i directly
drives the dynamics of another subsystem j . This fact can be used in the control
design of the subsystem j to compensate this interconnection if the state of the sub-
system i is available at j . The second type of interconnection is when the need for
communication between the controllers comes from the fact that the system tries to
achieve a common objective, such as for example, consensus. This leads to cooper-
ative control. The usual terminology to refer to these systems in which the gathering
of information from individual parts is used to control the global behavior of the
networked system is multi-agent systems.

A scheme of a distributed NCS is depicted in Fig. 1.11. Each node i has a local
controller Ci , which receives the local information yi (t) and also some but not all
other information y j (t) from other subsystems (also called agents) measured at dif-
ferent instances of time. The agents that transmit information to i are known as its
neighborhood (denoted by Ni ) and correspond to the ones that are interconnected
with agent i . Hence, the control input ui (t) of the i th subsystem is

ui (t) = ki (yi (t), {y j (t), j ∈ Ni }).

This scheme can be extended to more general frameworks. For instance, agents can
exchange state estimations, different representation of sets, or other parameters.

… 

… 
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u1(t)
y1(t)

y j1 (t)

uNp (t) yNp (t)
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Fig. 1.11 Distributed NCS
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1.5 Communication Through a Non-reliable Network

The main limitations imposed by an imperfect communication channel have been
introduced in Sect. 1.2. To illustrate these concepts, let us consider the situation
depicted in Fig. 1.12. There are two nodes in the network: the sender and the receiver.
The first one wants to transmit some data to the other. The sender can be a controller,
a sensor, or a subsystem of a distributed network, and the receiver can be an actuator,
a controller, or another subsystem.

Thefirst issue thatmakes different a networked system froma conventional control
system is that the components are, in general, spatially distributed. As a consequence,
the synchronization of the clocks of these components cannot be assumed normally,
that is, measures of time are not equal. This phenomenon is illustrated in Fig. 1.13.
On the left, sender and receiver have synchronized clocks. On the right, the measures
of time differ from a valueΔ, which is unknown by the nodes and is hard to compute.
This makes difficult, for example, the measurement of delays.

The limited bandwidth that characterizes the network imposes that the amount of
information transmitted per unit of timemust be finite. Thus, on the one hand, analog
signals must be transformed to be transmitted in a finite number of bits, which yields
to quantization. The maximum amount of information that can be sent at once is
given by the size of the packet, which depends on the network protocol. For instance,
a packet can be divided into the control information, which provides the network
needs to deliver the packet, and the user data, also known as payload. The size of
the payload goes from 1500 bytes in Ethernet to 8 bytes in some Radio Frequency
protocols used to communicate small devices.

Network Sender Receiver 

Fig. 1.12 Two nodes connected through the network

Sender 

Receiver t

t

t

t

Δ

Fig. 1.13 Synchronization
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Fig. 1.14 Periodic and event-based sampling

On the other hand, the values of these signals can only be transmitted at discrete
time instants. In this regard, there exist two alternatives as shown in Fig. 1.14. On the
left, the measurements of the signal y(t) in the sender node are sent to the receiver
at equidistant instances of time given by a period Ts . Hence, the data received is
y(kTs), k ∈ N. For example, if we think that y(t) is the output measured by a sensor,
this technique corresponds to periodic or time-driven sampling, in the sense that the
actions are taken based on the passing of time.

By contrast, when the transmission of data are not equidistant in time, and it
is the value of the signal that matters in the decision of when to send the sam-
ples, we talk about event-driven or event-triggered sampling. Note that, for instance
t1 − t0 �= t2 − t1 on the right-hand side of Fig. 1.14. For a general value k ∈ N, the
difference between tk+1 − tk is called inter-event time and is denoted by Tk . Other
authors also refer to this magnitude as broadcasting period [259].

The last concepts we want to illustrate are the network delays and the data
dropouts. The reasons why these problems occur in a networked system have been
discussed in Sect. 1.2. As stated there, some network protocols implement mecha-
nisms to control the flow of packets. For instance, one common approach is to use
acknowledgment (ACK), that is, the transmission of a small packet to confirm the
reception of data. If ACK is not received after some waiting time (TW ), the sender
deduces that the packet must have got lost and will try to retransmit the packet.

Let us illustrate these concepts with an example. For simplicity, assume that
the sender and the receiver have synchronized clocks and periodic transmission of
information as in Fig. 1.15. First, some data are sent at t = 0, which is received after
some time τ1 due to some delay in the transmission. Secondly, at t = Ts new data
are transmitted and dropped, for example, for some error in physical links. Data are
retransmitted according to the protocol described above at the next sampling time.
This causes the information to be finally received after some time τ2. Hence, data
dropouts and delays are related. In general, if n p denotes the number of consecutive
data dropouts and τ is the transmission delay, the effective delay is n pTs + τ . For
instance, if a control input u(t) is computed by some controller node (sender), sent
to an actuator node (receiver), and directly applied when received, the dynamics of
the plant are in the continuous time
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Fig. 1.15 Example of delays
and data dropouts
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ẋ(t) = f (x(t), u(t − (n pTs + τ))),

or in the discrete time

x(k + 1) = f (x(k), u(k − (n pTs + τ))).

There usually exists an upper bound on the effective delay over which the system
is unstable. Time-delay systems are by themselves an extensive research area in
control theory. In this book, different strategies are proposed to deal with these kinds
of problems and to compute bounds on the effective delay.

1.6 Asynchronous Control in NCSs

1.6.1 Event-Based Control Approaches in the Literature

In most implementations, an event is triggered when some error function exceeds a
tolerable bound. How this error function and this bound are defined distinguishes the
different approaches in the literature that are discussed next.

Deadband Control

If the error is defined as the difference between the state of the last event occurrence
and the current state, and the bound is defined as a constant, an event is triggered
whenever

‖ε(t)‖ = ‖x(t) − x(tk)‖ ≤ δ,

becomes positive, where tk refers to the instant of the last event and t is the current
instant of time. The value of δ determines, on one hand, the performance of the system
and the ultimate set in which the state of the plant is confined around the equilibrium,
and on the other hand, the average frequency of communication. Figure1.16a, b
depict two examples of deadband control for a first-order and a second-order system,
respectively. Some works related to deadband control are [99, 226].
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Fig. 1.16 Examples of triggering rules

Lyapunov Approaches to Asynchronous Control

Deadband control does not generally yield asymptotic stability. And so, some
researchers have investigated triggering rules to fulfill this. One example is presented
in [239] where the error is bounded by the state at the current time

‖ε(t)‖ = ‖x(t) − x(tk)‖ ≤ σ‖x(t)‖.

This approach yields the asymptotic stability of the system but the inter-event
times become shorter when the system reaches equilibrium. In [239] it is shown that
a minimal inter-event time is guaranteed to exist only under suitable assumptions.

Other authors have exploited the idea of using Lyapunov methods to define the
triggering rule [163]. An event is triggered when the value of the Lyapunov function
of the closed-loop system for the last broadcast state reaches a certain threshold of
performance S(x, t) (see Fig. 1.16c):

V (x, t) ≤ S(x, t).

This condition also guarantees that equilibrium is reached asymptotically.

Time-Dependent Event-Triggering

Recently, time-dependent triggering rules have been proposed to reach the equilib-
rium point asymptotically. In [89, 232], the trigger functions for linear interconnected
systems and multi-agent systems, respectively, bound the error as

‖ε(t)‖ ≤ δe−βt , δ, β > 0,

which has the aforementioned property, guaranteeing a lower bound for the inter-
execution times. Note that this bound approaches to zero when t → ∞, but still the
Zeno behavior is avoided even in non-ideal network conditions.

Self-triggering

Sensor networks are a special case of networked control systems in which the energy
consumption plays a crucial role. Thus, event-triggering approaches are convenient in
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sensor networks since the number of transmissions can be decreased. However, it has
been discussed [8, 10, 165] that most of the energy consumed in a sensor node comes
from the task ofmonitoring themeasured variable(s) rather than the transmission. The
asynchronous control strategies discussed above require the continuous monitoring
of the state. For this reason, a new approach known as self-triggered control has
emerged in the recent years.

Self-triggering policies determine the next execution time tk+1 by a function of
the last measurement of the state xk . The sensor nodes do not monitor the process
until they are woken up at time tk+1, they take the measurement and transmit it,
and the next execution time is computed again. The concept of self-triggering was
first suggested by [251]. Self-triggered control can be regarded as a software-based
emulation of event-triggered control. It has been studied for linear systems [164,
256], nonlinear systems [8, 241], and applied to sensor and actuator networks in [9,
28, 165, 240].

A general problem of this scheme is the consideration of unknown effects, such
as model uncertainties or unknown exogenous disturbances. To cope with all these
effects conservative results have to be derived to guarantee the stability of the self-
triggered control loop which may lead to relatively short sampling intervals in prac-
tice [258].

Minimum Attention Control (MAC) and Anytime Attention Control (AAC)

Minimum attention control maximizes the time interval between executions of the
control task, while guaranteeing a certain level of closed-loop performance [7, 58].
It is similar to self-triggered control in the sense that the objective is to have as few
control task executions as possible but it is typically not designed using emulation-
based approaches. In [58] an approach based on extended control Lyapunov functions
allows to solve the problem online alleviating the computational burden as experi-
enced in [7]. However, MAC is by far less robust against delays or disturbances than
event-based control. Similar problems present the so-called ‘anytime control’ meth-
ods, which are an alternative way to handle limited computation and communication
resources [84, 93, 94]. The AAC proposed in [7] assumes that after each execution
of the control task, the control input cannot be recomputed for a certain amount of
time that is specified by a scheduler, and finds a control input that maximizes the
performance of the closed-loop system.

Periodic Event-Triggered Control

Periodic event-triggered control strikes a balance between periodic control and event-
based control.As self-triggered control, it avoids continuousmonitoringof the system
outputs while preserving the reduction in resource utilization. So, instead of checking
the trigger condition continuously, this is only evaluated at instances of time defined
by a period Ts .

The design methods that have been proposed [97] use Lyapunov-based trigger
functions and provide the tools to check stability and performance for a given control
gain and a sampling period. One additional advantage is that it guarantees aminimum
inter-event time of (at least) the sampling interval of the event-triggering condition.
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Model-Based Event-Triggered Control

All the approaches described above consider zero-order hold at the actuator, i.e., the
control input computed at event times is held constant till the next event occurrence.
Although this consideration of doing nothing between events simplifies the analysis,
it has been shown that if a precise model of the plant is available, a control input
generator can emulate the continuous-time state feedback loop and under certain
constraints get a better performance than a zero-order hold [154]. The idea of taking
advantage of amodel inNCS andworking in open loop is not new andwas introduced
in [181, 183], though the updates from the system are periodic, not event-triggered.
However, emulation approaches such as [154] require synchronization of all the
elements in the control loop, and this constraint is difficult to meet in the case of
remote controllers or in distributed paradigms.

Asynchronous Control and Output Measurement

The triggering rules presented previously are all based on full state measurement,
although in practice the full state is not often available. If the same setups are tried to
be used for output feedback controllers, the Zeno behavior might occur, as pointed
out in [57].

To solve this problem, the existing approaches to output-based asynchronous
controllers can be categorized as observer-based or not. To the first category belong
[141, 143]. The measured state is replaced in the trigger function by the estimated
state provided by the observer [141] or the filter [143]. The second direction is to use a
different structure in the controller. A dynamical output-based controller is proposed
in [56]. Using mixed event-triggering mechanisms, the ultimate boundedness can be
guaranteed while excluding the Zeno behavior. A level crossing sampling solution
with quantization in the control signal is presented in [135], where anLTI continuous-
time controller is emulated.

1.6.2 Event Definitions

Wehave just introduced the idea of event-based or event-triggered sampling (control).
Let us formulate it in a formal way.

For simplicity, let us state full state measurement. If x(t) is the state of the system
and xb(t) accounts for the information available at the controller k, the error can be
defined as

ε(t) = xb(t) − x(t).

Then, the system is described as

ẋ(t) = f (x(t), u(t))

u(t) = k(x(t) + ε(t))
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To formulate a general setup we assume that the triggering condition is given by
some function Fe(x(t), ε(t), t), which is jointly continuous in x and ε.

The sequence of event or broadcasting times tk is determined recursively by the
trigger function Fe as

tk+1 = inf{t : t > tk, Fe(x, ε, t) > 0}.

Most of the triggering conditions set a bound on the error function and, hence,
the trigger function can be written as

Fe(x(t), ε(t), t) = ||ε(t)|| − δ(x(t), t).

Of course, this includes the case of δ being a constant.
We say that the triggering scheme induces Zeno behavior, if for a given initial

condition x0 the event times tk converge to a finite t∗. This means that Tk = tk+1 −
tk tends to zero. This is, of course, an undesirable behavior since it requires the
detection of events and transmission of data infinitely fast. Hence, the design of
trigger functions Fe has to guarantee the existence of a lower bound for the inter-
event time Tk .

Equivalent definitions can be given for discrete time systems. In this case, the
event times are a multiple of the sampling period and, therefore, the Zeno behavior
is excluded by construction.

This formalism is based on the continuous monitoring of the state x(t), which
requires waste of computational resources and, as a consequence, of energy. A self-
triggered implementation is given by a map Fh : R

n → R determining the next
sampling time tk+1 as a function of the state x(tk) at the time tk , i.e.,

tk+1 = tk + Fh(x(tk)).

The most common implementation of Fh consists of predicting future states of
the plant based on a model of the system:

ẋm(t) = f (xm(t), u(t)), xm(tk) = x(tk)

u(t) = k(x(tk)), tk < t < tk+1.

Then, the Lyapunov function at the current event time tk , V (x(tk)), and at the future
times t , V (xm(t)), are evaluated. The next event time tk+1 will be the first value of t
such that

ΔV (xm(t), x(tk)) = V (xm((t)) − V (x(tk))γ (t, tk) ≥ 0.

The function γ (t, tk) can take the value 1 and, therefore, the next sampling time
will be when the computed Lyapunov function V (x(t)) exceeds the current value
V (x(tk)). An alternative that ensures the exponential decrease of the Lyapunov func-
tion is γ (t, tk) = e−α(t−tk ), α > 0.
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1.7 Stability and Performance Measurements

As in conventional systems, guaranteeing the stability of a networked system is
essential. The two main approaches for verifying stability found in this book are
spectral theory for linear systems and Lyapunov functions for both linear and non-
linear systems. Additionally, in order to address delays, extensions of the Lyapunov
function concept in the sense of Krasovskii or Razumikhin can be used. In general,
the Lyapunov–Krasovskii theory yields less conservative results, and this will be the
preferred approach in this monograph.

We next introduce some concepts that will be used throughout the book.

Definition 1.1 The state of the system x(t) is asymptotically stable if

lim
t→∞ ||x(t)|| = 0.

where || · || denotes an arbitrary matrix or vector norm.

Definition 1.2 A square matrix A is said to be Hurwitz if every eigenvalue of A has
strictly negative real part, that is,

IRe[λi (A)] < 0,

for each eigenvalue λi .
It is also called the stability matrix, because then the differential equation ẋ(t) =

Ax(t) is asymptotically stable.

Analogous definitions can be given for a discrete-time system x(k +1) = Ax(k).
In that case, the condition over the eigenvalues is to lie inside the unit circle.

t

a

x1
x2

x(0)

x(t)

t

Fig. 1.17 Ultimate boundedness
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For some triggering conditions in event-based control (deadband control), the
asymptotic stability of the system cannot be guaranteed. Amore appropriate stability
definition is given by ultimate boundedness which is illustrated in Fig. 1.17 and is
defined next.

Definition 1.3 The solution x(t) of a continuous-time system ẋ(t) = f (x(t), u(t))
is globally uniformly ultimately bounded (GUUB) if for every x(0) ∈ R

n there exists
a positive constant a and a time t� such that the following holds:

x(t) ∈ Ωt � {x : ||x || < a},∀t ≥ t∗.

An interesting phenomenon that has been observed in some event-based control
systems is the occurrence of oscillatory behaviors around the equilibrium point, and
more specifically, of limit cycles. A limit cycle is defined as an isolated closed curve.

The stability of limit cycles can be defined in similar terms as for equilibrium
points. For instance, if Γ is the closed orbit (limit cycle), we say that Γ is globally
asymptotically stable if for any x(0)

lim
t→∞ inf

y∈Γ
||x(t) − y|| = 0.

Proving global asymptotic stability is hard and most of the existing results are
only for local stability [35, 82].

Limit cycles are inherent properties of nonlinear systems, and the fact that event-
based control/sampled systems are nonlinear even though thedynamics of the original
system is linear, is the reasonwhy this phenomenon occurs in some types of deadband
controllers. This will be studied in Chap.2.
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Chapter 2
Send-on-Delta PI Control

Jesús Chacón, José Sánchez and Antonio Visioli

2.1 Introduction

The work described in this chapter is focused on event-triggered sampling, and in
particular on the level crossing or send-on-delta (SOD) sampling [12]. Send-on-
delta control and deadband control are similar schemes, and they are normally used
as synonyms, since both consist in taking a new sample when a change greater than a
predefined threshold δ is detected in the signal. However, in send-on-delta sampling,
it is the signal itself and not the error function ε(t) (defined as the difference between
the last measurement taken and the current value of the signal) what is used to trigger
an event. In practice, this scheme is equivalent to introduce a nonlinearity that can
be characterized as a quantization of Nl levels with hysteresis.

The behavior of a control scheme based on level crossing sampling is studied
considering two possible structures, the first one is when the sampler is located
after the process output (Fig. 2.1a), and the second one after the controller output
(Fig. 2.1b). Each case represents a configurationof a control schemebasedonwireless
transmissions, and has different properties. The first case corresponds to a plant with
a wireless sensor which takes measures of the process variable and sends them to the
controller, physically separated from the sensor but connected to the actuator. The
second case is the opposite, where the controller is directly connected to the sensor
and the actuator is in other place.
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Fig. 2.1 Event-based control schemes. The block diagrams correspond to the two proposed con-
figurations, a the event-based sampler at the process output and b at the controller output

The interest is to characterize with a systematic approach the behavior of the two
event-based control structures with a set of processes such as integrator processes
plus time delay process (IPTD), first-order processes plus time delay (FOPTD), and
second-order processes plus time delay (SOPTD). The analysis is focused on the
conditions for the existence of limit cycles, their period and amplitude, the effect of
external disturbances, and the windup phenomena in the process due to the saturation
of the actuators.

There are other works in the literature concerned to the study of limit cycles in
event-based systems. In [216], authors analyze the existence, properties, and stability
of limit cycles in relay systems. Related results can also be found in [33], where an
event-based control scheme with a simple threshold detector is investigated, first in a
double integrator and afterwards in the general case. Another approach can be found
in [140], where the proposed structure is a model-based event-triggered PI in which
the events are generated by the difference between the plant and the model imple-
mented in the controller/sensor. The effect of actuator saturation is also investigated.
In [81], a new method to perform the global stability analysis in piecewise linear
systems (PLS) is proposed. The method is based on the use of quadratics Lyapunov
functions in the switching surfaces. Finally, in [21, 22], authors analyze symmet-
ric limit cycles in send-on-delta PI controllers, focusing on the stability of FOPTD
processes and proposing tuning rules for this kind of controllers.

The main contributions of this chapter are the proposition of two general event-
based schemes, and a new method for the analysis of the limit cycles that appear
in the two presented schemes when they are applied to linear time-invariant (LTI)
systems with time delay. The method has been applied to study a set of the most
common industrial processes, obtaining results that have been confirmed in practice.
In particular, a set of experiments carried out in the Distributed Collector Solar Field
at the Solar Platform of Almería (PSA) showed the expected behavior.

2.2 The LTI and SOD Sampler Blocks

In the event-based control structure used in this work, three elements are present:
the multilevel nonlinearity with hysteresis represented by the SOD sampler, the
process (IPTD, FOPTD, or SOPTD), and the PI controller. In order to redefine the
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Fig. 2.2 Two cases of send-on-delta sampling with a different offset

event-based system as a PLS, first it is necessary to group the dynamics of the two
linear elements in one block, that is, process and controller. Once this is done, the
redefinition of the system as a PLS is simple since feedbacking the new linear block
with the nonlinearity is equivalent to introduce a rule to switch between the Nl

systems obtained by the combination of the dynamics of the linear block and the Nl

output levels of the sampler.
Figure2.2a shows the nonlinearity corresponding to the non-centered level cross-

ing with saturation, and Fig. 2.2b represents a centered sampling with saturation. The
dotted lines in both plots mean that the sampler has a saturation, but in general, the
levels can be extended in both directions.

2.2.1 The Nonlinear Block: The SOD Sampler

The event-triggered control systems analyzed in this work use a level crossing sam-
pling strategy, where, depending on the sampler location, the sensor sends informa-
tion to the controller only when the sampled signal crosses certain predefined levels,
or the controller sends the new values of the control action to the actuator when
there is a significative change with respect to the previous value. The level crossing
is considered the event that triggers the capture and the sending of a new sample.

Formally, a SOD sampler can be thought of as a block which has a continuous
signal u(t) as input and generates a sampled signal unl(t) as output, which is a
piecewise constant signal with unl(t) = u(tk), ∀t ∈ [tk, tk+1). Each tk is denoted
as event time, and it holds tk+1 = inf{t | t > tk ∧ |u(t) − u(tk)| ≥ δ}, where δ is
the sampling threshold, i.e., the minimum change that triggers the taking of a new
sample. The previous condition holds for all tk , except for t0, which is assumed to
be the time instant when the block is initialized as unl(t0) = u(t0).
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In addition, this signal can be saturated due to the limitations in the sensors or
in the actuators. As said before, the pattern resulting from sampling a signal with a
SOD sampler can be described as a nonlinearity of Nl levels with hysteresis. It can
be characterized as

if unl(t−) = (i + α)δ,

unl(t) =
⎧
⎨

⎩

(i + α + 1)δ if u(t) ≥ (i + α + 1)δ
(i + α)δ if u(t) ∈ ((i + α − 1)δ, (i + α + 1)δ)
(i + α − 1)δ if u(t) ≤ (i + α − 1)δ

,
(2.1)

where α ∈ [0, 1) is the offset with respect to the origin, i ∈ Z if the sampler is
without saturation, and i ∈ [imin, imax] when the sampler is with saturation.

Depending on the initial value, the nonlinearity introduced could have an offset
with respect to the origin, α = u(t0) − iδ, where i = �u(t0)/δ�. The level crossing
sampling with offset is formally defined in the following paragraphs.

Definition 2.1 Let T = {
t0, . . . , tNl

}
, with tk ∈ R and tk−1 < tk , be a set of

sampling times, and u = {u(t0), . . . , u(tNl )} a set of samples. Thus, u is a level
crossing sampling of u(t) if, and only if, |u(tk) − u(tk−1)| = δ, k = 0, 1, . . . , Nl .

Note that every sample can be expressed as ys(tk) = (ik + α)δ, where ik ∈ Z is
the crossed level by the input signal y(t), and α ∈ [0, 1) ⊂ R is the sampling offset
which depends on the initial sample, y(t0).

Definition 2.2 The order of a nonlinearity with hysteresis is defined by subtracting
1 to the number of crossing levels.

For example, a two-level nonlinearity with hysteresis and zero offset owns three
crossing levels, that is, −δ, 0, and δ. It must be noticed that if the nonlinearity had
zero offset, the number of levels would be always even, and odd in the opposite case.

2.2.2 The Linear Blocks: The Process and the Controller

As Fig. 2.3 shows, the linear dynamics of the process and the PI controller can be
joined in two different ways by placing the nonlinear block at the process output
(Fig. 2.3a) or at the controller output (Fig. 2.3b). Depending on the combination, two
different linear blocks Gps and Gcs are obtained and, once the loop is closed with the
sampler, two PLS are produced with different limit cycles features. The dynamics of
the Gps and Gcs blocks will be represented by the augmented state matrices obtained
by combining process and controller.
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Fig. 2.3 Event-based control schemes. The block diagrams on the left correspond to the two
proposed configurations, a the event-based sampler at the process output and b at the controller
output. On the right, the continuous dynamics have been grouped in one block to simplify the
analysis. Solid lines represent a continuous data flow, while dotted lines mean a discontinuous data
flow

2.2.2.1 State-Space Representation of the Controller

Although there are different implementations of the PID algorithm in literature, all of
them are essentially equivalent. In this work, the parallel form of the PID algorithm
is considered (see Fig. 2.4). It can be represented by the transfer function:

u(s) =
(

kp + ki

s
+ kds

)

esp(s), (2.2)

where esp = ysp − y is the control error.

Fig. 2.4 Block diagram of
the PID controller in the
parallel form

+1
s

s

esp(s) u(s)

kp

ki

kd
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The PID transfer function has a high gain for high frequencies, due to the deriv-
ative term. To avoid problems with noisy signals, in practical implementations, it is
common to filter the derivative with a first-order filter. With this consideration, the
resulting transfer function is

u(s) =
(

kp + ki

s
+ kds

1 + kd
k N s

)

esp(s). (2.3)

Let us start obtaining the matrices corresponding to the continuous case, that
is, without considering the SOD sampler. No delays are considered now. Assume
that the process P(s) and the controller C(s) are described by the time-invariant
state-space systems:

P(s) ∼
{

ẋ p(t) = Apx p(t) + Bp(u(t) + w(t))
y(t) = C px p(t)

C(s) ∼
{

ẋc(t) = Acxc(t) + Bcesp(t)
u(t) = Ccxc(t) + Dcesp(t),

(2.4)

where x p ∈ R
n is the state of the process, xc ∈ R

q is the state of the controller, and
Ap is non-singular.

Combining the two parts of (2.4), the whole system is

(
ẋ p(t)
ẋc(t)

)

=
(

Ap − Bp DcC p BpCc

−BcC p Ac

) (
x p(t)
xc(t)

)

+
(

Bp Dc Bp

Bc 0

)(
ysp

w

)

(
y(t)
u(t)

)

=
(

C p 0
−DcC p Cc

) (
x p(t)
xc(t)

)

+
(

0 0
Dc 0

) (
ysp

w

)

.

(2.5)

2.2.2.2 Sampling the Process Variable: The Gps Block

The introduction of the SOD sampler in the PID control loopmodifies the expressions
presented in the previous section. Depending on where the sampler is placed, either
the controller or the process input only changes at certain times.

To include the effect of the SOD sampler in (2.4), a new variable is introduced:
unl, the nonlinear output of the sampler. At the sampling instants tk , unl := y(tk)
if the sampler is at the process variable, and unl := u(tk) in the opposite case. The
expressions corresponding to the control loop with the SOD sampler are obtained
introducing unl in (2.4), which yields

(
ẋ p

ẋc

)

=
(

Ap BpCc

0 Ac

)(
x p

xc

)

+
(−Bp Dc Bp Dc Bp

−Bc Bc 0

)
⎛

⎝
unl

ysp

w

⎞

⎠
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(
y
u

)

=
(

C p 0
0 Cc

) (
x p

xc

)

+
(

0 0 0
−Dc Dc 0

)
⎛

⎝
unl

ysp

w

⎞

⎠ . (2.6)

2.2.2.3 Sampling the Control Variable: The Gcs Block

The procedure to obtain the augmented state matrices of the Gcs block is similar to
the previous case but taking into account that now the input to the controller u(t) is
the process output y(t), and the input to the process is the signal resulting of adding
the disturbance w(t) to an input named us(t). The resulting system Gcs(s) is

(
ẋ p

ẋc

)

=
(

Ap 0
−BcC p Ac

) (
x p

xc

)

+
(

Bp 0 Bp

0 Bc 0

)
⎛

⎝
unl

ysp

w

⎞

⎠

(
y
u

)

=
(

C p 0
−DcC p Cc

)(
x p

xc

)

+
(
0 0 0
0 Dc 0

)
⎛

⎝
unl

ysp

w

⎞

⎠ . (2.7)

To simplify the analysis of the previous expressions, from now on, the set-point is
assumed to be null, i.e., ysp = 0. This is done without loss of generality, as shown
in the following Proposition.

Proposition 2.1 Consider the systems

Gps(s) ∼
{

ẋps = Apsxps + Bpsups

yps = Cpsxps + Dpsups,
(2.8)

where

Aps =
(

Ap BpCc

0 Ac

)

Bps =
(−Bp Dc Bp

−Bc 0

)

Cps =
(

C p 0
0 Cc

)

Dps =
(

0 0
−Dc 0

)

, (2.9)

and

Gcs(s) ∼
{

ẋcs = Acsxcs + Bcsucs

ycs = Ccsxcs,
(2.10)

where

Acs =
(

Ap 0
−BcC p Ac

)

Bcs =
(

Bp Bp

0 0

)

Ccs =
(

C p 0
−DcC p Cc

)

.
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These systems are equivalent to (2.6) and (2.7). Therefore, the set-point can be
assumed to be null without loss of generality.

Proof Consider that the sampler is placed at the process output. Note that defin-
ing (x̄ p, x̄c, ū, ȳ, ūnl, w̄) := (x p, xc, u, y, unl − ysp, w), the system can be equiva-
lently written as (2.6). Now, consider that the sampler is placed at the controller

output. Defining (x̃ p, x̃c, ũ, ỹ, ũnl, w̃) := (x p − CT
p

‖C p‖2 ysp, xc, u, y − ysp, unl −
BT

p ApCT
p

‖Bp‖2‖C p‖2 ysp, w), the system can be written equivalently as (2.7). In both cases,

the introduced variables only differ from the original by a constant value. Therefore,
it can be assumed without loss of generality that ysp = 0. To make the notation more
clear, from now on, the variables are written without the symbols ˜ and ¯ .

2.2.3 The P, I, PI, PD, and PID Controllers

In this section, the expressions (2.6) and (2.7) are particularized to themost frequently
forms of the PID controller. Although the PI is considered in most of the examples,
because it is the most extended controller, the propositions and algorithms presented
in this chapter are in general form, so they can be applied to any of the enumerated
cases by choosing the appropriate matrices.

2.2.3.1 Proportional Controller (P)

The proportional or P controller is a controller with a feedback based only in the
current error of the process. Its associated state-space matrices are Ac = Bc = Cc =
0, and Dc = kp. Thus,

Aps =
(

Ap 0
0 0

)

Bps =
(−kp Bp Bp

0 0

)

Cps =
(

C p 0
0 0

)

Dps =
(

0 0
−kp 0

)

,

(2.11)

and

Acs =
(

Ap 0
0 0

)

Bcs =
(

Bp Bp

0 0

)

Ccs =
(

C p 0
−kpC p 0

)

.

(2.12)
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2.2.3.2 Integral Controller (I)

The transfer function of the integrator or I controller is C(s) = ki
s esp(s), therefore

one of its possible representations in the state space is given by Ac = 0, Bc = 1,
Cc = ki , and Dc = 0. Thus,

Aps =
(

Ap ki Bp

0 0

)

Bps =
(

0 Bp

−1 0

)

Cps =
(

C p 0
0 ki

)

,

(2.13)

and

Acs =
(

Ap 0
−C p 0

)

Bcs =
(

Bp Bp

0 0

)

Ccs =
(

C p 0
0 ki

)

.

(2.14)

2.2.3.3 Proportional-Integral Controller (PI)

The PI controller state-space matrices are Ac = 0, Bc = 1, Cc = ki , and Dc = kp.
Thus,

Aps =
(

Ap ki Bp

0 0

)

Bps =
(−kp Bp Bp

−1 0

)

Cps =
(

C p 0
0 ki

)

Dps =
(

0 0
−kp 0

)

,

(2.15)

and, when the sampler is at the control variable,

Acs =
(

Ap 0
−C p 0

)

Bcs =
(

Bp Bp

0 0

)

Ccs =
(

C p 0
−kpC p ki

)

.

(2.16)

2.2.3.4 Proportional-Derivative Controller (PD)

The PD controller is Ac = −N
kp
kd
, Bc = N

kp
kd
, Cc = kd , and Dc = (1+ N )kp. Thus,

Aps =
(

Ap kd Bp

0 −N
kp
kd

)

Bps =
(−(1 + N )kp Bp Bp

−N
kp
kd

0

)

Cps =
(

C p 0
0 kd

)

Dps =
(

0 0
−(1 + N )kp 0

)

,

(2.17)
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and, when the sampler is at the control variable, the expressions are

Acs =
(

Ap 0

−N
kp
kd

C p Ac

)

Bcs =
(

Bp Bp

0 0

)

Ccs =
(

C p 0
−(1 + N )kpC p kd

)

.

(2.18)

2.2.3.5 PID with Derivative Filter

The PID controller with derivative filter has Ac =
(
0 0

0 −N
kp
kd

)

, Bc =
(

1

N
kp
kd

)

,

Cc = (
ki kd

)
, and Dc = (1 + N )kp. Thus,

Aps =
⎛

⎝

Ap Bpki Bpkd

0 0 0

0 0 −N
kp
kd

⎞

⎠ Bps =
⎛

⎝

−Bp(1 + N )kp Bp

−1 0

−N
kp
kd

0

⎞

⎠

Cps =
(

C p 0 0
0 ki kd

)

Dps =
(

0 0
−(1 + N )kp 0

)

,

(2.19)

where Ap ∈ R
n×n , Aps ∈ R

ns×ns , Bps ∈ R
ns×2, Cps ∈ R

2×ns , and Bps ∈ R
2×2,

with ns = n + 2.
When the sampler is at the control variable, the expressions are

Acs =
⎛

⎝

Ap 0 0
−C p 0 0

−N
kp
kd

C p 0 −N
kp
kd

⎞

⎠ Bcs =
(

Bp Bp

0 0

)

Ccs =
(

C p 0 0
−(1 + N )kpC p ki kd

)

.

(2.20)

where Acs ∈ R
ns×ns , Bcs ∈ R

ns×2, and Ccs ∈ R
2×ns .

2.3 Defining an Event-Based System as a PLS

The results obtained in this section do not depend on where the sampler is placed.
Therefore, the subindexes representing the position of the sampler, ps and cs, have
been dropped to simplify the notation. For example, A is equivalent to Aps, if the
process variable is being sample, or to Acs in the other case.

Let us consider that the input to G(s) is delayed in time by τ and the loop is closed
by adding the nonlinearity represented by the SOD sampler. Then,



2 Send-on-Delta PI Control 39

G(s) ∼
{

ẋ(t) = Ax(t) + Bu(t − τ)

y(t) = Cx(t) + Du(t − τ).
(2.21)

Now, the resulting system is an infinite-dimensional system because of the time
delay. However, it can be simplified because closing the loop with the nonlinearity
makes the input signal piecewise constant. So, in the matrix u, the input unl(t) is
redefined as

unlk = ( jk + α)δ,

where jk ∈ Z is the crossed level by the input signal unl(t), and α ∈ [0, 1) ∈ R is
the sampling offset which depends on the initial sample, unl(t0). Let us define the
switching times as follows:

Definition 2.3 Consider a limit cycle composed of Nl switchings, and assume T =
{t0, . . . , tNl } are the sampling times, as in Definition2.1. Then the switching times
are defined as t∗i = ti − ti−i (see Fig. 2.5).

And the order of the limit cycle is defined as follows:

Definition 2.4 Consider a limit cycle in a symmetric nonlinearity of order Nl (Nl +1
crossing levels, as inDefinition2.2). Then, the number of switchings of the limit cycle
is 2Nl .

Then, if limit cycles of period T with switching times, t∗i > τ where T =
t∗1 + t∗2 + · · · + t∗2Nl

, are only considered, the input
{
unl(t), t∗i − τ < t ≤ t∗i

}
is

0 t∗1 t∗2 t∗3 t∗4 t∗5

− 3δ
2

− δ
2

0

δ
2

3δ
2

Cx∗
0

Cx∗
1

Cx∗
2

Cx∗
3 = −Cx∗

0

Cx∗
4 = −Cx∗

1

Cx∗
5 = −Cx∗

2

u

y

Fig. 2.5 Trajectory of a solution of a PLS system corresponding to a limit cycle in a system with a
symmetric send-on-delta sampling scheme, with sampling threshold δ, and sampling offset α = 0.5.
The solid line represents the process output, and the dashed line the control input. The process output
y crosses the sampling levels at times ti , generating new updates. Each time interval is denoted by
t∗i = ti − ti−1. In this particular case, the control input u is constant between consecutive crossings,
|Cx∗

i+1 − Cx∗
i | = δ, and each x∗

i is the system state at ti
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constant and its value is given by the feedback. In this case, the state of the system
at the sampling times t1, t2, . . . , t2Nl is uniquely given by x(ti ). Taking into account
this consideration, the system can be considered as a PLS defined by

ẋ(t) = Ax(t) + Bi

y(t) = Cx(t) + Di , (2.22)

where Bi = B
(
unli w

)T , Di = D
(
unli w

)T , and unli = ( ji + α)δ, for i =
{0,±1, . . . ,±Nl}.

In this PLS, the rule to switch between the linear systems is included in the
definitions of the nonlinearities. Itmust be noted that the switching rules havememory
and the decision of which LTI to use may not depend only on the actual values of the
state, but also on their past values. In the state-space system, the points in which a
rule provokes the switching from the system i to the system j define a surface which
is known as switching surface (see Fig. 2.6). These surfaces consist of hyperplanes
of dimension n − 1, being n the order of the system, i.e., x ∈ R

n ,

Si = {x
∣
∣Cx − unli = 0 } for i = {0,±1, . . . ,±Nl} .

It is interesting to characterize the limit cycles that can appear in the system due
to the effect of the nonlinearities introduced with the event-based sampling scheme.

S0 = S2Nl

S1

S2
S3

SNl−1

SNl = S−0

S−1

S−2S−3

S−Nl+1 = S2Nl−1

Cx∗
0

Cx∗
1

Cx∗
2

Cx∗
3

−Cx∗
0

−Cx∗
1

−Cx∗
2−Cx∗

3

−Cx∗
Nl−1

Cx∗
Nl−1

System 1

System 2

System 3

System Nl

Fig. 2.6 Trajectory of a solution of a PLS system. In each region, the dynamics of the system is
determined by a different LTI system defined by (2.22). The lines represent the switching surfaces
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The study of these limit cycles can be interesting for several reasons. There is a wide
range of processes that will almost surely present limit cycles with the studied control
schemes, while for other processes, they can be prevented by carefully choosing the
controller parameters. In any case, limit cycles mean oscillations, which, depending
on the process, may be more or less problematic. For example, a high frequency of
oscillation may wear out the actuators. Also, the study of limit cycles can be used
for identification purposes. For example, the relay autotuning method [1] is based on
the properties of the limit cycle that appears in a process subject to relay feedback
(which can be considered as a particular case of the studied event-based scheme). In
addition, for the cases when the limit cycles cannot be prevented, it may be important
to know about the stability of these limit cycles.

In order to calculate the period and amplitude, first it is assumed that the limit
cycle contains Nl + 1 levels, and thus it is composed of 2Nl switchings, where the
first Nl correspond to the positive level crossings, and the rest Nl are the negative
ones. Next, it is presented the set of equations that allows us to find the switching
times and the values of the states at these switching times. The result stated in the
following proposition is a generalization to Nl levels of the approaches in [33, 81,
216].

Proposition 2.2 Consider the PLS in (2.22), with a nonlinearity defined by the
switching surfaces Si = {x | Cx − ( ji + α)δ = 0}, where α ∈ [0, 1), ji ∈ Z, i ∈
{0,±1,±Nl}, and 0 < δ ∈ R. Assume that there exists a symmetric periodic solution
γ with2n switching surfaces per period T = t∗1+t∗2+· · ·+t∗2Nl

, where t∗1 , t∗2 , . . . , t∗2Nl
are the switching times when the switching surfaces S1, . . . , SNl , S−1, . . . , S−Nl are
crossed, respectively (Fig.2.6). Define

fk(t
∗
1 , . . . , t∗2Nl

) = C(I + eAT )−1

[
2Nl−1∑

i=1
Φ2Nl−1 · · · Φi+1 (Φi − I )Λi

]

− Ek,

(2.23)

where Φi = Φ(ti ) = eAti , and Λi = A−1Bi . Then the following conditions hold

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1(t∗1 , t∗2 , . . . , t∗2Nl
) = 0

f2(t∗1 , t∗2 , . . . , t∗2Nl
) = 0

...

f2Nl (t
∗
1 , t∗2 , . . . , t∗2Nl

) = 0,

(2.24)

and
⎧
⎨

⎩

Ei ≤ y(t) = Cxi (t) < Ei+1 for 0 ≤ t < t∗i i = 1 . . . Nl − 1
y(t) = CxNl (t) ≥ ENl+1 for 0 ≤ t < t∗Nl

Ei ≥ y(t) = Cxi (t) > Ei+1 for 0 ≤ t < t∗i i = Nl + 1 . . . 2Nl ,

(2.25)

where
Ei = ( ji + α)δ, and xi (t) = eAt x∗

i−1 − A−1(eAt − I )Bi .
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Furthermore, the limit cycle can be obtained with the initial condition

x∗
0 = (I + eAT )−1

[
2Nl−1∑

i=1
Φ2Nl−1 · · · Φi+1 (Φi − I )Λi

]

. (2.26)

Proof Assuming that ti > τ , where ti is the time elapsed between the crossing of
two consecutive switching surfaces, for example i and i +1, then the state is obtained
by integrating (2.22) from t = 0 to t = ti . It gives

xi+1 = Φ(ti )xi + Γ1(ti )ui−1 + Γ0(ti )ui , (2.27)

where Φ(t) = eAt is the state transition matrix, Γ0(t) = ∫ t−τ

0 Φ(s)ds accounts for
the effect of the input, and Γ1(t) = ∫ t

t−τ
Φ(s)ds is a term which represents the effect

of the input because of the time delay of the system.
Then, for a limit cycle involving Nl switching times,we have a systemof equations

described by

Φ(t1)x1 + Γ1(t1)uNl + Γ0(t1)u1 − x2 = 0

. . .

Φ(tNl−1)xNl−1 + Γ1(tNl−1)uNl−2 + Γ0(tNl−1)uNl−1 − xNl = 0

Φ(tNl )xNl + Γ1(tNl )uNl−1 + Γ0(tNl )uNl − x1 = 0.

(2.28)

Substituting recursively, we get the following expression:

[I − Φ(tNl ) . . . Φ(t1)]xn = Φ(tNl ) . . . Φ(t2)(Γ1(t1)uNl + Γ0(t1)u1)

+ Φ(tNl ) . . . Φ(t3)(Γ1(t2)u1 + Γ0(t2)u2) + · · ·
+ Φ(tNl )(Γ1(tNl−1)uNl−2 + Γ0(tNl−1)uNl−1)

+ Γ1(tNl )uNl−1 + Γ0(tNl )uNl .

(2.29)

The previous expression can be written in compact form as

[I − ΦNl . . . Φ1]xNl =
2Nl−1∑

i=1

Φ2Nl−1 . . . Φi+1[Γ1(ti )ui−1 + Γ0(ti )ui ], (2.30)

and

xNl = [I − ΦNl . . . Φ1]−1
2Nl−1∑

i=1

⎛

⎝
2Nl−1−i∏

j=1

Φ2Nl− j

⎞

⎠ [Γ1(ti )ui−1 + Γ0(ti )ui ].
(2.31)

If we assume that the system matrix A is non-singular, then the integrals Γ1 and Γ0
can be explicitly computed and the state xNl can be solved, yielding the expression
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of the initial state (2.26). Since we know that at the switching times the state must be
at the switching surface, we can combine the previous expression with the switching
conditions to get the set of equations given by (2.24). Finally, the conditions (2.25)
hold because the state does not cross the switching surface in the interval between
two switchings.

However, if the system matrix is assumed to be singular, neither the state nor the
integralsΓ0 andΓ1 can be computed explicitly. In this case, the system of equations is
obtained in the sameway, but the computations are more involved. First the functions
in (2.24) are redefined as

fi (x∗
i , t∗1 , . . . , t∗2Nl

) = [I − Φ2Nl . . . Φ1]x∗
i −

2Nl−1∑

i=1

Φ2Nl−1 . . . Φi+1[Γ1(t
∗
i )ui−1 + Γ0(t

∗
i )ui ],
(2.32)

where, in contrast to the previous case, x∗
i appear as unknowns.

Note that the system of equations given by the functions fi is composed of N 2
l

scalar equations and N 2
l + Nl unknowns. Thus, in order to solve it, the system must

be completed with Nl additional equations. These equations are obtained from the
switching conditions in the sampler, which fix the values of either the process output
or the control input at the event times, depending on where the sampling is placed.
Then, the complete set of equations that must be solved to obtain the features of the
limit cycle is ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x∗
1 , t∗1 , . . . , t∗2Nl

) = 0

...

f2Nl (x∗
2Nl

, t∗1 , . . . , t∗2Nl
) = 0

Cx∗
1 − d1 = 0

...

Cx∗
2Nl

− d2Nl = 0.

(2.33)

How to use this result to analyze the limit cycles is demonstrated with examples in
Sects. 2.4 and 2.5.

2.3.1 Local Stability

The local stability of the limit cycles described in the previous paragraphs can be
analyzed by observing the system at the switching times. The following result, which
is a generalization of the approaches in [33, 81, 216], can be applied to study the
behavior of the trajectories of the system in the proximities of the limit cycles.

Proposition 2.3 Assume that there exists a limit cycle γ with k states in the system
(2.22). The limit cycle is locally stable if and only if W = Wk Wk−1 . . . W1 has all
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its eigenvalues inside the unit circle, where Wi = (I − Vi Ci
Ci Vi

)eAt∗i , Vi = Ax∗
i + Bi ,

t∗i are the switching times, and x∗
i the state at the switching times.

Proof Consider a trajectory with initial condition x(0) = x∗
0 . In the time inter-

val before the first switching, this trajectory is defined as x(t) = Φ(t)x∗
0 +

Γ1(t)unlNl −1 + Γ0(t)unlNl
. When x reaches the switching surface at time t∗1 + δ1t∗1 ,

we have

x(t∗1 + δ1t∗1 ) = Φ(t∗1 + δ1t∗1 )(x∗
0 + δ1x∗

0 ) + Γ1(t
∗
1 + δ1t∗1 )unlNl −1 + Γ0(t

∗
1 + δ1t∗1 )unlNl

.

The series expansion in δ1t∗1 and δ1x∗
0 is

x(t∗1 + δ1t∗1 ) = x∗
1 + v1δ1t∗1 + Φ(t∗1 )δ1x∗

0 + O(δ21),

where v1 = Ax∗
1 + B1 = A[Φ(t∗1 )x∗

0 + Γ1(t∗1 )unlNl −1 + Γ0(t∗1 )unlNl
] + BunlNl

.
Since the solution is on the switching surface at t∗1 + δ1t∗1 , we have

C1x(t∗1 + δ1t∗1 ) + d1 = C1x∗
1 + C1v1δ1t∗1 + C1Φ(t∗1 )δ1x∗

0 + d1 = 0,

and, therefore, the following equality holds:

δ1t∗1 = −C1Φ(t∗1 )

C1v1
δ1x∗

0 .

The rest of the proof follows as in [81]. The state after the first switch is

x(t∗1 + δ1t∗1 ) = x∗
1 +

(

I − v1C1

C1v1

)

Φ(t∗1 )δ1x0 + O(δ21) = x∗
1 + W1δ1x∗

0 + O(δ21).

(2.34)

Taking as initial condition x∗
1 + δ2x∗

1 and neglecting the O(δ2) term, we have
x(t∗2 + δ2t∗2 ) = x∗

2 + W2δ2x∗
1 . Combining with (2.34) yields δ2x∗

1 = W1δ1x∗
0 .

Replacing in the previous expression and applying successively for k eventually lead
to

x(t∗k + δk t∗k ) = x∗
0 + Wk Wk−1 . . . W1δ1x∗

0 + O(δ21). (2.35)

Neglecting the O(δ21) term, the dynamics of Eq. (2.35), is stable if and only if the
eigenvalues of W = Wk Wk−1 . . . W1 are inside the unit circle. This proves the
proposition.

2.4 Analysis of the Limit Cycles

In the following sections, the expressions which take into account the effects of the
event-based sampling at the output of the process and controller are presented. The
method used is based on the grouping of all the continuous dynamics into one block
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to obtain the state-space matrix (as shown in Fig. 2.3), and then to study the effect of
the nonlinear feedback introduced by the sampling block.

To easily distinguish between the different types of controller and sampling, the
following naming convention is used: controller-SODn-process, when the sampler
is after the controller output, and controller-process-SODn if the sampler is placed
after the process output, where process corresponds to the type of process considered
(IPTD, SOPDT,…) and controller refers to the type of controller (PI, PD, PID,…)
The index n refers to the number of hysteresis bands presented in the sampler. For
example, PI-SOD1-IPTD denotes the system composed by an IPTD process con-
trolled by a PI controller with the sampler placed after the controller output, and a
limit cycle with one hysteresis band (i.e., a system with relay feedback).

There are two directions in which the complexity of the analysis can be increased.
The first one is to consider that the order of the process is increasing, i.e., a simple
integrator, a double integrator, etc., and the second one is to consider an increase in
the number of hysteresis bands of the sampler.

To simplify the analysis, it is worth noting that the solutions of (2.33) are linear
on δ, thus the state and control signal can be normalized dividing by δ (note that
δ > 0).

2.4.1 Equilibrium Points

Consider the system (2.22). The set of equilibriumpoints is defined asX = {x∗|ẋ∗ =
0}. An equilibrium point is one in which the derivatives of the states are null, i.e.,
x∗|ẋ∗ = 0. Since the derivatives are null, all the trajectories which enter into it at t0
will stay for t > t0. An immediate necessary condition to have an equilibrium point
is that the linear system Ax + Bi = 0 has at least one solution. Note that, except for
the P and PD controller, it is easy to see that det(A) = 0, due to the integrator added
by the controller, thus being possible to have a system of equations which is either
indetermined or incompatible. The system does not have any solution if rg(A) <

rg(A|Bi ), so an equilibrium point can exist only if ∃i ∈ R | rg(A) = rg(A|Bi ).
Now assume that the output is within the k band of hysteresis, i.e., x ∈ Ωk =

{x |δk ≤ y(t) = Cx(t) < δk+1} for some time interval tk ≤ t < tk+1.

Proposition 2.4 A necessary condition for the system to be ultimately bounded to
Ωk is that either C[Ax + Bk] = 0 or C[Ax + Bk+1] = 0.

Proof Assume that Cx(t) enters into Ωk at t0. After a time t > τ, the derivative of
the system is Cẋ(t) = C[Ax(t)+ Bi ], for i ∈ {k, k +1}. Thus, if C[Ax(t)+ Bi ] �= 0
for both i = k and i = k +1, the process output will eventually cross the boundaries
of Ωk for some t .

Computing the equilibrium points of the PI control with SOD sampling at the
process output (the set-point is assumed to be null) yields
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(
ẋ p

ẋc

)

=
(

Ap ki Bp

0 0

) (
x p

xc

)

+
(−kp Bp Bp

−1 0

) (
δi

w

)

= 0. (2.36)

Thus, a necessary condition for the existence of an equilibrium point, from (2.36),
is ∃i ∈ Z|δi = 0, because otherwise the integrator derivative is a non-null constant.
Note that, if the set-point is not assumed to be null, the condition still holds with a
slight modification: ∃i ∈ Z|δi = ysp, i.e., the set-point must be an exact multiple of δ.
Furthermore, since Ap is a non-singular matrix, the computation of the equilibrium
point is straightforward: xc = −w

ki
, x p = 0 ∈ R

n .
If the sampler affects to the controller output, then the equilibrium equation is

(
ẋ p

ẋc

)

=
(

Ap 0
−C p 0

)(
x p

xc

)

+
(

Bp Bp

−1 0

) (
δi

w

)

= 0, (2.37)

and the necessary condition to have an equilibrium point is ∃i ∈ Z|δi = (1 −
C p A−1

p Bp)
−1w. If this expression holds, then the equilibrium point can be computed

as x p = CT
p

‖C p‖δi , xc = (1 + kp)δi .
The rest of this section presents an algorithm to compute the period and amplitude

of a limit cycle in a generic process, and then shows examples of application to several
common processes.

2.4.2 Algorithm

In this section, an algorithm to obtain computationally the period of a limit cycle
and the intermediate switching times is outlined. Assume that α = 0.5 and
that the system presents a limit cycle in which the condition y(t) = Cx(t) ∈
((α − Nl)δ, (α + Nl − 1)δ) holds. The limit cycle is assumed to have only two
changes in the sign of the derivative: one at the beginning of the first semiperiod
and the other at the beginning of the second semiperiod. Thus, the limit cycle must
have 4Nl − 2 switchings. Because of the symmetry, the behavior of the limit cycle
can be inferred by studying only the first semiperiod, thus reducing the complexity
to 2Nl − 1 levels. The algorithm, which can be implemented either in a symbolic or
in a numerical computation tool, is as follows:

• Initialization:

1. Set Nl as the number of levels crossed within the limit cycle.
2. Fix the values of kp, ki , α, δ, w, τ , and the matrices A and B.
3. Calculate Φ(t) = eAt , Γ0(t) = ∫ t−τ

0 eAsds, and Γ1(t) = ∫ t
t−τ

eAsds.

• To calculate the period:

1. For i from 1 to 2Nl repeat steps 2–3.
2. If i ∈ (1, Nl), set ji = i − � Nl

2 �, else ji = � Nl
2 � + Nl − i .
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3. Set unli := ( ji + α)δ, and,

– xci = − unli +kp x pi
ki

, if sampling the controller output, or,
– x pi = unli , if sampling the process output.

4. Set eqi := −xi+1 + Φ(ti )xi + Γ1(ti )u j + Γ0(ti )ui = 0.
5. Solve the system of equations given by eqi , with the unknowns ti , and x pi or

xci .
6. T = ∑2Nl

i=1 ti .

• To calculate the amplitude:

1. Set jmax = j |(x j > xi ,∀i �= j) and jmin = j |(x j < xi ,∀i �= j).
2. Find tmin = min(τ, t |Cẋ jmin(t) = 0), and tmax = min(τ, t |Cẋ jmax(t) = 0),

corresponding to the minimum and maximum values of the output.
3. Compute the amplitude of the process output, Δp = C p[x(tmax)− x(tmin)], and

the control input, Δc = Cc[x(tmax) − x(tmin)].

2.4.3 Examples of Analysis

To illustrate the application of Proposition2.2 and the use of the algorithm of
Sect. 2.4.2, the analysis of several systems (IPTD, SOPTD, FOPTD, and SOPTD) is
detailed in the following lines. The results are summarized in Table2.1, at the end
of the section.

2.4.3.1 IPTD Process

Let us consider an IPTD process P(s) = k
s e

−τ s , which can be described by its
state-space model in the canonical observable form as

ẋ(t) = −ku(t − τ) + kw(t)

y(t) = x(t) = x p(t), (2.38)

where k is the process gain, x is the state, u is the process input, and y is the process
output. First it is presented the approach for the PI-IPTD-SODn structure, and then
for the PI-SODn-IPTD.

Process variable sampling (PI-IPTD-SOD1)According to (2.6), the state feedback
matrix corresponding to the system controlled by a PI with SOD sampling at the
process output is

(
ẋ p(t)
ẋc(t)

)

=
(
0 kki

0 0

)(
x p(t)
xc(t)

)

+
(

kkp k
1 0

) (
unlk
w

)

y(t) = (
1 0

)
(

x p(t)
xc(t)

)

. (2.39)



48 J. Chacón et al.

Assuming there exists a stable limit cycle with two states, then the equations that
allow us to obtain the amplitude and period of the oscillations are

Φ(t1)x1 + Γ1(t1)u2 + Γ0(t1)u1 − x2 = 0
Φ(t2)x2 + Γ1(t2)u1 + Γ0(t2)u2 − x1 = 0

x p1 = −unl1 = αδ

x p2 = −unl2 = (α − 1)δ,

(2.40)

where xi = [x pi xci ]T , and ui = [unli w]T , are the state and input, respectively.
The matrices Φ, Γ0, and Γ1 can be calculated as

Φ(t) =
(
1 kki t
0 1

)

(2.41)

Γ0(t) =
(

kkpt − kkpτ + 1
2kki t2 − kki tτ + 1

2kkiτ
2 k(t − τ)

t − τ 0

)

Γ1(t) =
(

kkpτ + kki tτ − 1
2kkiτ

2 kτ

τ 0

)

. (2.42)

Introducing (2.41) in (2.40), and solving the resulting equations, the period of the
limit cycle can be obtained (see Table2.1). Looking at the expression of the period,
it can be seen that the symmetry of the limit cycle, i.e., the difference between the
two semiperiods t1 and t2, depends on the offset of the sampler α. In particular, for
α = 0.5, the two semiperiods have the same value. When α = 0, t2 vanishes, which
can be interpreted as this limit cycle cannot exist. In this case, either the system will
reach a steady-state or enter into a limit cycle with higher number of levels. With
respect to the disturbance rejection, it can be seen that w does not affect the period.
This is because it is rejected by the integrator, which changes its mean value to absorb
the disturbance.

With the switching times t1 and t2, the amplitudes of the oscillations can be
computed. It is necessary to find the maximum and minimum of the output, which
correspond to the times when its first derivative is null, i.e., ẋ p(t) = kki xc(t) +
kkpunlk + kw = 0. By solving the previous expression, the value of xc and the times
when the peaks are reached can be obtained, and so for this case it can be found an
analytic expression for the amplitude of the process output, Apo, and of the control
input, Aci (see Table2.1).

Controller variable sampling (PI-SOD1-IPTD) When the sampler is placed at the
controller output, the description of the system in the state-space model is given by
expressions (2.7). Thus, for this process, it is obtained

(
ẋ p(t)
ẋc(t)

)

=
(
0 1
0 0

)(
x p(t)
xc(t)

)

+
(
0 0
k k

) (
unlk
w

)

y(t) = (
kp ki

)
(

x p(t)
xc(t)

)

. (2.43)
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Assuming there exists a stable limit cycle with two states, then the equations that
allow to obtain the amplitude and period of the oscillations are

Φ(t1)x1 + Γ1(t1)u2 + Γ0(t1)u1 − x2 = 0
Φ(t2)x2 + Γ1(t2)u1 + Γ0(t2)u2 − x1 = 0

kpx p1 + ki xc1 = unl1 = αδ

kpx p2 + ki xc2 = unl2 = (α − 1)δ.

(2.44)

Here, the amplitude of the limit cycle can be computed directly, since the control
input is piecewise constant and the switching times and values are known. The period
of the limit cycle can be obtained by solving the system of Eqs. (2.44) (see Table2.1).

As opposed to the process sampling, here the disturbance appears in the expression
of the semiperiods, thus affecting to the symmetry of the limit cycle. It is possible to
have oscillations where the process is changing slowly nearly all the time and then to
have an abrupt change. Since in one semiperiod the control action is more aggressive,
this decreases the margin of delay that can be added to the system without reaching
the next sampling level.

To obtain the expression corresponding to the amplitude, and since the maximum
and minimum values of the process output are reached at times t1 + τ and t2 + τ ,
integrating (2.43) yields the desired result (see Table2.1).

2.4.3.2 DIPTD Process

It is well known in classic control theory that the double integrator process can-
not be stabilized with a continuous PI controller, due to the 90Â phase lag of each
integrator. It becomes then necessary to introduce the derivative action (PD con-
troller) to compensate this lag. In the same way, either with the PI-SODn-DIPTD
or PI-SODn-DIPTD, the system will oscillate with unbounded growing amplitudes.
Although it is not in the scope of this work, it should be possible to stabilize this kind
of process by a SOD-PD controller. In practice, the implementation of the derivative
action must be carefully studied, because it can be problematic specially when the
sampler is placed after the process output, since the estimation of the derivative may
be poor.

2.4.3.3 FOPTD Process

The process considered in this section is a FOPTD process P(s) = k
T s+1e

−τ s , which
is described in the state-space system by the following expressions:

ẋ(t) = − 1

T
x(t) + k

T
u(t − τ) + w(t)

y(t) = x(t) = x p(t), (2.45)
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where k is the process gain, x is the state, u is the process input, y is the process
output, and w is an external disturbance.

Process variable sampling (PI-FOPTD-SOD1) The expressions corresponding to
the PI-FOPTD-SOD1 are as follows:

(
ẋ p(t)
ẋc(t)

)

=
(

1
T

kki
T

0 0

) (
x p(t)
xc(t)

)

+
( kkp

T
k
T

1 0

)(
unlk
w

)

y(t) = (
kp ki

)
(

x p(t)
xc(t)

)

. (2.46)

From (2.46), the matrices Φ, Γ0, and Γ1 can be obtained as

Φ(t) =
(
e

t
T kki (e

t
T − 1)

0 1

)

Γ0(t) =
(−k(kp + ki T )(e

t−τ
T − 1) + kki (t − τ) T (e

t−τ
T − 1)

t − τ 0

)

Γ1(t) =
(

k(kp + ki T )(e
t−τ

T − e
t
T ) − kkiτ −T (e

t−τ
T − e

t
T )

τ 0

)

. (2.47)

As it can be seen in the previous expressions, since the system of equations
obtained for the FOPTD contains terms involving exponentials, it is not possible
to find analytical solutions, as opposed to the case of IPTD processes. Instead of
this, the solutions have to be found numerically. However, the algorithm proposed
in Sect. 2.4.2 can be applied.

Controller variable sampling (PI-SOD1-FOPTD) The expressions corresponding
to the PI-SOD1-FOPTD are the following:

(
ẋ p(t)
ẋc(t)

)

=
(− 1

T 0
1 0

) (
x p(t)
xc(t)

)

+
(

k
T

k
T

1 0

) (
unlk
w

)

u(t) = (
kp ki

)
(

x p(t)
xc(t)

)

(2.48)

y(t) = (
1 0

)
(

x p(t)
xc(t)

)

. (2.49)

As in the previous case, the solutions of the equations must be found by means
of numerical tools.

2.4.3.4 SOPTD Process

The process considered in this section is a SOPTD P(s) = k
(τ1s+1)(τ2s+1)e

−τ s , which
is described in the state-space system by the following expressions:
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ẍ(t) = − 1

τ1τ2
x − τ1 + τ2

τ1τ2
ẋ + k

τ1τ2
u(t − τ) + w(t)

y(t) = x(t) = x p(t), (2.50)

where k is the process gain, τ1 and τ2 are the time constants, x is the state, u is the
process input, y is the process output, and w is an external disturbance.

Process variable sampling (PI-SOPTD-SODn) The expressions corresponding to
the PI-SOPTD-SODn are the following ones:

⎛

⎝
ẋ p(t)
ẍ p(t)
ẋc(t)

⎞

⎠ =
⎛

⎝
0 1 0

− 1
τ1τ2

− τ1+τ2
τ1τ2

kki
τ1τ2

0 0 0

⎞

⎠

⎛

⎝
x p(t)
ẋ p(t)
xc(t)

⎞

⎠ +
⎛

⎝

0 0
kkp
τ1τ2

k
τ1τ2

1 0

⎞

⎠

(
unlk
w

)

y(t) =
(
1 0 0

kp 0 ki

)
⎛

⎝
x p(t)
ẋ p(t)
xc(t)

⎞

⎠ . (2.51)

As in the FOPTD case, for this system, it is not possible to find analytical solutions
due to the exponentials that appear in the equations. Therefore, numerical methods
must be used to find the solutions.

Controller variable sampling (PI-SODn-SOPTD) The expressions corresponding
to the PI-SODn-SOPTD are the following:

⎛

⎝
ẋ p(t)
ẍ p(t)
ẋc(t)

⎞

⎠ =
⎛

⎝
0 1 0

− 1
τ1τ2

− τ1+τ2
τ1τ2

0
1 0 0

⎞

⎠

⎛

⎝
x p(t)
ẋ p(t)
xc(t)

⎞

⎠ +
⎛

⎝
0 0
k

τ1τ2

k
τ1τ2

1 0

⎞

⎠

(
unlk
w

)

y(t) =
(
1 0 0

kp 0 ki

)
⎛

⎝
x p(t)
ẋ p(t)
xc(t)

⎞

⎠ . (2.52)

As in the previous case, the solutions of the equations must be found by means of
numerical tools.

2.4.4 Implementation in MATLAB�

The algorithm to obtain the periods and amplitudes of the simulation examples and
the models identified from experimental data has been implemented in MATLAB.
The code is shown inListing2.1. First, the systemmatrices are defined, corresponding
to the PI controller with sampling at the process output (lines 7–11), and with the
sampling at the controller output (lines 12–16). Then, the type, order, and parameters
of the sampler are stored in the variables sampling, delta, and alpha (lines
17–22). Finally, the set of equations is defined and solved in lines 33–38.
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Table 2.1 Summary table with the limit cycle periods and amplitudes

P(s) PI-process-SOD1 PI-SOD1-process

k
s e

−τ s T = 1
2

kki τ
2−2kkpτ−2

k(kp−ki τ)(α−1)α
t1 = (1 − α)T, t2 = αT

Δpo = δ
2

kki τ
2−2kkpτ−2
kp−ki τ

Δco = k2p+ki

k Δpo

T = 1
2

kki τ
2−2kkpτ−2

k(kp−ki τ)(α−1+ w
δ
)(α+ w

δ
)

t1 = (1 − α − w
δ
)T,

t2 = (α + w
δ
)T

Δpo = δ
2

kki τ
2−2kkpτ−2
kp−ki τ

Δco = δ
k
s2
e−τ s Limit cycle does not exist

e−τ s

τ1s+1 T , Δpo, and Δco can be obtained using numerical methods

e−τ s

(τ1s+1)(τ2s+1)

Δpo denotes the amplitude of the process output, and Δco is the amplitude of the controller output

Listing 2.1 Limit Cycle Finder algorithm
1 %% Implementation of the Limit Cycle Finder Algorithm
2 clear all; clc;
3 numberOfProcessStates = size(Ap, 1);
4 numberOfProcessInputs = size(Bp, 1);
5 numberOfProcessOutputs = size(Cp, 1);
6 I = eye(numberOfProcessStates +1);
7 % Process Sampling
8 Aps = [Ap ki*Bp; zeros(1, numberOfProcessStates +1)];
9 Bps = [kp*Bp Bp; 1 0];
10 Cps = [Cp zeros(numberOfProcessOutputs , 1);];
11 Dps = [zeros(numberOfProcessOutputs , numberOfProcessInputs +1);

-kp zeros(1, numberOfProcessInputs)];
12 % Controller Sampling
13 Acs = [Ap ki*Bp; zeros(1, numberOfProcessStates +1)];
14 Bcs = [kp*Bp Bp; 1 0];
15 Ccs = [Cp zeros(numberOfProcessOutputs , 1);];
16 Dcs = [zeros(numberOfProcessOutputs , numberOfProcessInputs +1);

-kp zeros(1, numberOfProcessInputs)];
17 % Type of sampling (’process ’, ’controller ’)
18 sampling = ’process ’;
19 delta = 1.0;
20 alpha = 0.5;
21 % Hysteresis bands
22 n = 1;
23 % Switchings
24 if (alpha == 0.0)
25 m = 2*n-2;
26 u = [(alpha -n+1):(alpha+n-2); ones(1,m)*disturbance ];
27 elseif (alpha == 0.5)
28 m = 2*n-1;
29 u = [(alpha -n+1):(alpha+n-1); ones(1,m)*disturbance ];
30 end
31

32 tic ,
33 for tau = 0:0.1:1
34 f = @(t) slc(t, u, Aps , Bps , Cps , tau);
35 Tguess = 5;
36 k = Tguess*rand(1, m);
37 [sol , val] = fsolve(f, k);
38 end
39 elapsedTime = toc;
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2.5 Simulation Results

This section shows simulations which illustrate the behavior of the different combi-
nations of control schemes and processes commented in the previous sections.

2.5.1 PI-IPTD-SODn and PI-SODn-IPTD

Let us consider an IPTD process controlled by a PI controller with event-based
sampling, and let the values of the plant parameters be k = 1.0, τ = 0.2. The
controller gains kp = 1.2, ki = 1.0 have been chosen to produce a limit cycle
with two states, and the sampler α = 0.5, δ = 0.1. The system is described by the
following expressions:

(
ẋ p(tk)
ẋc(tk)

)

=
(

0 0
1.0 0

) (
x p(tk)
xc(tk)

)

+
(

1 0
1.2 1

) (
unlk
w

)

. (2.53)

There exists a symmetric limit cycle with two states (see Fig. 2.7a), with period
T = 5.6093 and amplitude Δpo = 0.2095, which have been computed with the
algorithm presented in Sect. 2.4.2. With the chosen gains, the system converges to
the limit cycle after introducing a step change in the set-point.

When the sampler is placed at the controller output, the limit cycle that appears (see
Fig. 2.7c) has the same period T = 5.6093 but a different amplitude Δpo = 0.1402.
While in the first case an external disturbance does not vary the properties of the
limit cycle, in the second case it does as it is shown in Fig. 2.8.

Varying the parameters of the controller, it is possible to obtain limit cycles with
higher number of levels. For example, increasing the integral gain of the controller
to ki = 2.0, and also the order of the sampler to Nl = 2, the system with the sampler
at the process output presents the response shown in Fig. 2.7b and with the sampler
at the controller output, it has the response of Fig. 2.7d. The period and amplitude of
the oscillation computed are T = 4.9745 and Δpo = 0.3584, which correspond to
the results obtained in the simulation.

The simulations show that the system, with the chosen parameters, converges to
a limit cycle even in the presence of constant disturbances. The local stability of the
limit cycles can also be proven by applying Proposition2.3. As an example, for the
two-level limit cycle, looking at the eigenvalues of the matrix W = W2W1, where

Wi =
(

1 − unli 0
−x pi + 1.2(unli + w) + t∗i 1

)

.
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Fig. 2.7 Limit cycles in an IPTD process controlled by a PI with event-based sampling at the
process output with one hysteresis band (a) and two (b), and with sampling at the controller output
with one hysteresis band (c) and two (d). The dotted lines show the sampling levels of the process
variable in (a), (c) and of the control variable in (b), (d), and the value at the switching times of the
control variable in (a), (c) and of the process variable in (b), (d)

after straightforward computations, it can be shown that the eigenvalues of W are
λ1 = 1, λ2 = (1 − α)α < 1, and therefore the limit cycle is locally stable. If limit
cycleswith 2n switchings are considered, then the eigenvalues ofW areλ1 = 1, λ2 =
∏2Nl−1

i=0 (1−α− Nl + i). It is easy to verify that |λ2| ≤ 1 for every α when Nl = 1, 2,
i.e., the corresponding limit cycles are locally stable. However, for Nl > 2, the local
stability of the limit cycles depends on the particular value of α.
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Fig. 2.8 Limit cycles in an IPTD process controlled by a PI with event-based sampling at the
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w = 0.03 (dashed-dotted line). b Detail of the limit cycles

2.5.2 PI-SOPTD-SODn

Now, consider a SOPTD with parameters k = 1.0 (gain), τ1 = 1.0, τ2 = 0.5 (time
constants), and τ = 0.2 (time delay), which is controlled by a PI with event-based
sampling placed at the process output, with α = 0.5 and δ = 0.1. Setting the
controller gains to kp = 1.2 and ki = 1.0, the matrices A and B of the system are

A =
⎛

⎝
0 0 0
0 0 1
2 −2 −3

⎞

⎠ , B =
⎛

⎝
1 0
0 0
2.4 2

⎞

⎠ . (2.54)

Solving the system of equations corresponding to the limit cycle with one band of
hysteresis, the values of the switching times and levels are

t1 ≈ 3.0772, t2 ≈ 3.0772,

ẋ p1 ≈ −0.0517, ẋ p2 ≈ 0.0517,

ẋc1 ≈ −0.0669, ẋc2 ≈ 0.0669.

Finally, the period is T = t1 + t2 ≈ 6.1545 and the amplitude of the process output
is A ≈ 0.1338. This limit cycle, and another composed of two hysteresis bands, is
plotted in Fig. 2.9.

It is interesting to note that, when the sampler is placed at the process output, the
limit cycle does not vary when a constant disturbance affects the system, because it
is rejected by the controller.
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Fig. 2.9 Limit cycles in an SOPTD process controlled by a PI with event-based sampling at the
controller output, involving a one, and b two hysteresis bands

The local stability of the limit cycle can be studied by looking at the eigenvalues
of the matrix W :

W = W2W1 =
⎛

⎝
0 0 0

−0.0787 − 2.5953w 0.0042 0.0021
0.0699 + 2.4253w −0.0042 −0.0021

⎞

⎠ . (2.55)

Since the eigenvalues of W are inside the unit circle (λ1 ≈ 0.0021, λ2 ≈ 0.0000,
λ3 ≈ 0.0000), the limit cycle is locally stable.

2.6 Experimental Results

This section shows experimental results which clearly evidence the existence of the
results derived in the previous sections in a real system. Therefore, the experiences
carried out were focused on finding limit cycles in the Acurex system to compare
them with that predicted by the theory and simulations. As shown in the following
paragraphs, it is worth noting that even when the model used is a simplification of
the process which ignores many of the complex dynamics existent in the system,
the results are very close to those predicted in theory. Below, the Acurex system
and the model identified from experimental data are presented, commenting some
implementation issues of the controller and, finally, the obtained results are shown
and interpreted.
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Fig. 2.10 Acurex distributed collector system at the PSA, Spain

2.6.1 The Acurex System

The experiments have been done with an equipment, known as Acurex, built in 1981
at the PSA, Spain [228]. In this plant (Fig. 2.10), two types of collecting systems
were considered, a central receiver system (CRS) and a distributed collector system
(DCS) using parabolic troughs. Parabolic trough systems concentrate sunlight onto
a receiver pipe which contains a heat transfer fluid (HTF) that is heated as it flows
along the receiver pipe. Then, the HTF is used to produce steam that may be used
for example to feed an industrial process. A survey of basic and advanced control
approaches for distributed solar collector fields can be found in [29, 30]. For more
information on control of solar plants see [31].

2.6.2 The Model

The plant was identified as a FOTPD, where the process input is the oil flow (l/s) in
the pipes and the process output is the temperature of the oil at the collector field outlet
(◦C). There are unmodeled dynamics that are considered as external disturbances,
such as the oil temperature at the input or the solar irradiance. However, because
of the time scale of the tests performed, which is smaller than the rate of variation
of these variables (under clear day conditions without clouds), the model obtained
seems to be a valid representation of the process for our purposes.



58 J. Chacón et al.

The transfer function was identified from experimental data obtained from the
plant in a set of step tests. The procedure followed in each test is to drive the temper-
ature manually to the working point, and when the process has reached it to introduce
a step change in the input, registering the data measured from the sensors until the
process stabilizes again. The FOPTD model, obtained by applying a least-squares
procedure, is

P(s) = − 6.0715

103.2723s + 1
e−67.5021s, (2.56)

where the time constant τ1 and time delay τ are given in seconds, and the gain k in
◦Cs/l. The tests were carried out with an input around 8.5 l/s, being the range of
the pump from 2 to 12 l/s. Also, the time constants and delays obtained make sense
from the previous published works in this field. Notice the minus sign in (2.56),
which represents the inverse response of the plant, i.e., a positive change in the flow
produces a negative change in the temperature.

2.6.3 Implementation

The Acurex system has a SCADA software developed in LabVIEW
TM
. This software

provides the user with an interface to execute its own controller implementation in
MATLABcode. Thus, onemustwrite aMATLABcallback functionwhich is invoked
with a configurable sampling period (it was fixed to Ts = 15s). This function receives
the measures from the sensors, updates the controller state and, finally, sends the new
control action to the actuators.

The controller implementation can be configured to work in three modes, namely,

• manual the control input is set manually,
• SOD-PI the sampler is at the process output, and
• PI-SOD the sampler is at the controller output.

An excerpt of the code of the controller is shown in Listings2.2 and 2.3.

Listing 2.2 Code of the controller with the sampler at the process output
1 % Sampling at the process output
2 e = setpoint - output;
3 if(~(( u_prev >= umax && e > 0) || (u_prev <= umin && e < 0))

)
4 I = I + e_prev*Ts;
5 end
6

7 % event detection
8 if (abs(e - e_prev) > delta)
9 levels = floor(abs(e - e_prev) / delta);
10 e_prev = e_prev + sign(e - e_prev)*delta*levels;
11 u_prev = sat(Kp*e_prev + Ki*I, umin , umax);
12 I = (u_prev - Kp *e_prev) / Ki;
13 end
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Listing 2.3 Code of the controller with the sampler at the controller output
1 % Sampling at the controller output
2 e = - output;
3

4 % anti -windup
5 if(~(( u_prev >= umax && e > 0) || (u_prev <= umin && e <

0)))
6 I = I + e*Ts;
7 u = Kp*e + Ki*I;
8 else
9 u = u_prev;
10 end
11

12 % event detection
13 if (abs(u - u_prev) > delta)
14 levels = floor(abs(u - u_prev) / delta);
15 u_prev = sat(u_prev + sign(u - u_prev)*delta , umin ,

umax);
16 end

2.6.3.1 Controller Sampling

The first set of tests presented was carried out with the controller in PI-SOD mode,
with the purpose of reproducing the two-level limit cycles obtained in simulation
(with α = 0.5) and the three-level limit cycles (with α = 0.0). The procedure fol-
lowed is the same for each test, first the system temperature is moved to an operating
point, and next when the process reaches a steady state, a set-point step change is
introduced into the controller.

The response is shown in Fig. 2.11, where the oil temperature, the flow, and the
solar irradiance during the test are plotted. It can be seen that the system goes into
a limit cycle composed of two levels, which is similar to the results obtained in
simulation with the FOPTD model.

Figure2.12a, b shows the comparison of the limit cycles obtained in simulation
with the model and the results obtained with the Acurex system. The results are
similar both qualitatively (limit cycles with two states) and quantitatively (the period
and amplitude are approximately equal).

2.6.3.2 Process Sampling

The second set of tests was carried out with the sampler placed at the process output.
After verifying that, as in the previous section, the system enters into a limit cycle of
two levels (Fig. 2.13), the existence of more complex limit cycles was investigated.
Increasing the proportional gain, a limit cycle with eight different levels was found,
which is shown in Fig. 2.14. It is remarkable that even in this case, the comparison
between the experimental data and the simulated process shows that there are no
significative differences in the behavior.
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2.7 Conclusions

The behavior of a control system based on the use of a level crossing sampling either
in the process output or in the control output has been studied. Limit cycles are of
particular interest since they are associated to oscillations in processes, and therefore
it is worth gaining knowledge about them in order to avoid them when possible or
to assure that they are not problematic.

When trying to find properties about the limit cycles, it is common to have systems
of equations involving transcendent functions and thus it is not possible, in general,
to find closed-form solutions. Moreover, due to the combinatorial explosion, it can
be computationally expensive to find these solutions, and it becomes harder when
higher order process models are considered.

Therefore, an algorithm to analyze the properties of the limit cycles has been
proposed; it allows us to introduce some knowledge in the hypothesis of the problem,
so that the complexity can be reduced.

A set of simulation results illustrates the behavior of the controllers with some
models frequently used in industrial context, which are the IPTD, the FOPTD, and
the SOPTD. Also, this behavior has been tested and verified in the Acurex Field of
the Solar Platform of Almería, Spain. The experiments performed confirm that the
simulation results can be extrapolated to real cases, obviously with the divergences
due to unmodeled dynamics of the process, disturbances, etc.



Chapter 3
Self-triggered Sampling Selection Based
on Quadratic Programming

Luis Orihuela, Pablo Millán and David Muñoz de la Peña

3.1 Introduction

Event-based and self-triggered techniques are aimed to reduce the communication
requirements of a control system by using variable sampling rates. Event-based
approaches are based on triggering signal transmissions according to some condi-
tions on the plant state or outputs [12, 46, 107, 154, 239], which requires a continuous
monitoring of these signals. Self-triggered approaches try to emulate event-based
ideas [6, 8, 46], but avoiding a continuous monitoring of the signals. Self-triggered
methods require a model of the system and a bound on the uncertainties to decide
when to trigger a signal transmission, which may result in some conservativeness in
choice of the inter-sampling times. However, among other advantages, these tech-
niques allow the communication devices to save battery by going to sleep mode
during the inter-sampling periods [6, 8, 46].

Under the framework of asynchronous control for single-loop schemes, this
chapter studies the problem of reducing the use of a bandwidth-limited sensor-to-
controller channel in a single control loop using a self-triggered approach. The system
to be controlled is modeled using a linear time invariant plant subject to bounded
additive disturbances. Assuming that a stabilizing feedback controller and its corre-
sponding Lyapunov function are available, a model-based controller is proposed in
which the controller operates in open loop between two consecutive samples. The
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following sampling time is decided by the controller, in such a way that practical
stability is guaranteed while minimizing the number of access to the shared net-
work, that is, while maximizing the time between consecutive samples. In order to
decide the following sampling time the controller must solve several on-line quadratic
optimization problems (QP). This Lyapunov-based sampling policy results in a self-
triggered sampling strategy as in [163]. The main difference with that work is the
use of a model to minimize the access to the shared network. The problem is pre-
sented in discrete time, but the extension for continuous systems with sampled state
measurements is included.

The following section presents a description of the system, controller and net-
work. Section 3.3 describes the Lyapunov-based sampling policy. The extension for
continuous plants is given in Sect. 3.4. A simulation example is shown in Sect. 3.5.
Conclusions and future research proposals are summarized in Sect. 3.6.

3.2 Problem Formulation

The first part of this section presents the model for the system under consideration.
Then, the model-based controller proposed in this chapter is introduced.

3.2.1 Plant Description

Consider the following discrete-time linear system given by:

x(k + 1) = Ax(k) + Bu(k) + w(k), (3.1)

where x(k) ∈ R
n, and u(k) ∈ R

m are the state vector and control input vector,
respectively. The process disturbance is w(k) ∈ R

n, and satisfies w(k) ⊆ W , where

W = {w ∈ R
n : ‖w(k)‖∞ ≤ γ, γ > 0}. (3.2)

It is assumed that a feedback local controller K , associated with a discrete Lya-
punov function V(x) = xT Px, has been designed for system (3.1) so that the control
law u(k) = Kx(k) ensures practical stability of the closed-loop system.

3.2.2 Model-Based Controller

Consider system (3.1) being controlled through a shared network used by several
independent control loops. The network connects the sensor and the model-based
controller, while the actuator is considered to have direct connection to the plant.
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The inclusion of a shared network induces collisions and packet dropouts, which
may affect the dynamic behavior of the closed-loop system. This problem becomes
more important as the number of devices connected to the network and the sampling
frequency of such devices grow. In order to control the system while minimizing the
network traffic load, we resort to a model-based controller given by the following
equations:

xm(k + 1) = Axm(k) + Bu(k), (3.3)

xm(ks) = x(ks), s = 0, 1, 2, . . . (3.4)

u(k) = Kxm(k), (3.5)

where ks are the discrete-time instants at which the sensors measure the state of the
plant and send it to the controller. Figure 3.1 shows an scheme of the proposed control
system. The model state is updated whenever a new sample arrives. Then, the model
evolves in open loop until another measurement reaches the controller. The main
difference between this approach and the one of [181] is that, in the proposed control
scheme, the following sampling time is decided on-line by the controller, while
periodic sampling times were considered in [181]. As Fig. 3.1 shows, the controller
is close to the plant, and hence, there are no communication dynamics in the feedback
link.

A communication protocol between the sensors and the controller is assumed to
be operating, in such a way that it is possible for the controller to decide the sampling
instants. This could be performed, for instance, if the controller sends a packet to the
sensors that contains the following sampling time.

Under these considerations, the closed-loop system is modeled by the following
equations:

x(k + 1) = Ax(k) + BKxm(k) + w(k), (3.6)

xm(k + 1) = (A + BK)xm(k), ∀k ∈ [ks, ks+1), (3.7)

xm(ks) = x(ks), s = 1, 2, . . . (3.8)

ks+1 = f (x(ks)), (3.9)
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where time ks, with s = 1, 2, . . ., are the time instants in which the controller receives
the measurements form the sensor. The sampling instants ks are computed by the
controller based on the state measurements received.

In the next section, we present a method to decide the next sampling instant ks+1
based on the system model, the controller gain K , the Lyapunov function V , and the
latest state measurement x(ks) in order to minimize the access to the network while
guaranteeing closed-loop practical stability.

3.3 Lyapunov-Based Sampling Procedure

3.3.1 Main Idea and Stability Analysis

This section describes the proposed procedure to minimize the access to the network
while preserving closed-loop practical stability.

In view of Eqs. (3.1), (3.3)–(3.5), the model error δ(k) can be defined as:

δ(k) � x(k) − xm(k), (3.10)

where δ(ks) = 0, ∀ks. A possible evolution of the state of the system x(k), the
controller xm(k), and the error δ(k) is drawn in Fig. 3.2.

The dynamics of the controller state and the model error between two consecutive
sampling times can be written as follows:

xm(ks+j)= (A + BK)jx(ks), ∀j ∈ N : {ks + j < ks+1} (3.11)

δ(ks+j)=
j∑

i=1

Ai−1w(ks+ j − i), ∀j ∈ N : {ks + j < ks+1}. (3.12)

Fig. 3.2 Possible evolution
of the state and the model
error

(    )  

(    )  
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From Eqs. (3.2) and (3.12), the following upper bound on the error is obtained:

‖δ(ks + j)‖∞ < γ

j∑

i=1

‖Ai−1‖∞, (3.13)

for all w(ks + i), with i = 0, . . . , j − 1. The forward difference of the Lyapunov
function for k ∈ [ks, ks+1) yields

ΔV(ks, ks + j) = V(x(ks + j)) − V(x(ks)) (3.14)

= xT (ks + j)Px(ks + j) − xT (ks)Px(ks), j : {ks + j < ks+1}.
(3.15)

Now, substituting x(k) from Eq. (3.10), we obtain the following equality:

ΔV(ks, ks + j) = δT (ks + j)Pδ(ks + j) + 2xT
m(ks + j)Pδ(ks + j)

+xT
m(ks + j)Pxm(ks + j) − xT

m(ks)Pxm(ks). (3.16)

The controller’s goal is to maximize the next sampling instant ks+1 while guaran-
teeing that the forward difference is negative for all possible disturbances in order to
ensure practical stability. To this end, the controller solves the following optimization
problem:

max ks+1 (3.17)

subject to:

ΔV(ks, ks + j) ≤ 0, ∀j ∈ N : {ks + j < ks+1}
∀w(ks + i), i = 0, . . . , j − 1.

The reader can see that the optimization problem looks for the maximum sam-
pling time that satisfies that the Lyapunov function decreases in spite of the worst
disturbances possible.

3.3.2 Algorithm to Select the Following Sampling Time

The optimization problem (3.17) is non-convex and in general is hard to solve. We
present next an iterative algorithm that provides a conservative feasible solution
based on solving a sequence of optimization problems.
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Algorithm 3.1

1. Set j = 1.

2. Solve the problem

max
δ

ΔV(ks, ks + j) (3.18)

subject to:

‖δ‖∞ < γ

j∑

i=1

‖Ai−1‖∞.

3. If ΔV(ks, ks + j) ≤ 0, increase j = j + 1 and go to Step 2. Otherwise, choose ks+1 = ks + j.

Algorithm 1 increases ks+1 iteratively while a worst case bound on the difference
between the value of the Lyapunov function of the current state and the state corre-
sponding to the next sampling time is negative. Once this constraint does not hold,
the algorithm stops. This implies that the P-norm of V(x(ks)) is decreasing, with
a lower bound given by the size of the uncertainty, and hence that the closed-loop
system is practically stable.

3.3.3 Quadratic Programming Problem

Next, we will prove that this optimization problem can be stated as a QP problem.
First of all, the standard QP problem is introduced, see [195].

Quadratic programming problem Assume ξ belongs toRp space. The p×p matrix
H is symmetric, and f is any f × 1 vector. The QP problem is stated as

min
ξ

g(ξ) = 1

2
ξT Hξ + f T ξ + c, (3.19)

subject to

Dξ ≤ b (inequality constraint). (3.20)

Proposition 3.1 Problem (3.18) can be formulated as a QP if the elements of
Eqs. (3.19)–(3.20) are chosen as

ξ = δ,

H = −2P,

f T = −2
[
(A + BK)jxm(ks)

]T
P,

c = −
[
(A + BK)jxm(ks)

]T
P

[
(A + BK)jxm(ks)

]
+ xT

m(ks)Pxm(ks),

(3.21)
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and for the inequality constraint

D =
[

In

−In

]

, b = γ

j∑

i=1

‖Ai−1‖∞
[

1̄n

−1̄n

]

. (3.22)

Where 1̄n is a column vector of dimension n whose components are ones and In is
the identity matrix with dimension n.

Proof The proof is straightforward from Eqs. (3.16), (3.19)–(3.20). �

In view of Proposition 3.1, the controller needs to solve several QP problems in
Algorithm 1 to find the next sampling time.

Remark 3.1 The minimum sampling time that can be chosen in Algorithm 1 is one.
It is not possible to ensure that the Lyapunov function decreases for all k because of
the presence of bounded disturbances w(k), which can make ΔV(k, k + 1) strictly
positive in a neighborhood of the origin. However, it is worth reminding that, by
assumption, the system practical stability is guaranteed for the controller K with
sampling time equal to one.

It is important to remark that the QP problem that needs to be solved in order
to solve (3.18) is a multi-parametric QP problem (mpQP), for which the explicit
solution can be obtained, see [19]. In particular, the parameter θ ∈ Rn+1 of the
mpQP problem is

θ(ks, j) =
[

xm(ks + j)
∑j

i=1 ‖Ai−1‖∞

]

.

This allows implementing the proposed variable sample control scheme efficiently.

3.4 Extension to Continuous Systems

The control scheme presented in the previous section can be readily extended to
continuous-time systems under the following assumptions. Consider the following
continuous-time linear system subject to bounded disturbances.

ẋ(t) = Ax(t) + Bu(t) + w(t), (3.23)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control input vector and
w(t) ∈ W ⊂ R

n is the process disturbance where

W = {w ∈ R
n : ‖w(t)‖∞ ≤ γ, γ > 0}. (3.24)
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We assume that there exists a linear controller u(t) = Kx(t) that asymptotically
stabilizes the nominal system (system (3.23) with w(t) = 0) with a corresponding
Lyapunov function V(x) = xT Px.

System (3.23) is controlled through a network with the same structure as that
in Fig. 3.1, which implements the following model-based controller (which is the
continuous-time version of (3.3)–(3.5)):

ẋc(t) = Axm(t) + Bu(t), ∀t ∈ [tk, tk+1) (3.25)

u(t) = Kxm(t), (3.26)

xm(tk) = x(tk), k = 0, 1, 2, . . . (3.27)

where tk is the sampling time (equivalent to ks) in which the sensors send new
information to the controller. A Lyapunov-based control design procedure can now
be followed similarly to that in Sect. 3.3. We define the model error variable δ(t) as

δ(t) � x(t) − xm(t). (3.28)

The dynamic of the error equation now becomes

δ̇(t) = ẋ(t) − ẋc(t)

= Ax(t) + Bu(t) + w(t) − Axm(t) − Bu(t),

= Aδ(t) + w(t), ∀t ∈ [tk, tk+1). (3.29)

Thus, the dynamics of the controller state and the model error between two con-
secutive sampling times evolves as

xm(t) = e(A+BK)(t−tk)xm(tk), ∀t ∈ [tk, tk+1) (3.30)

δ(t) = eA(t−tk)δ(tk) +
∫ t

tk
eA(t−s)w(s)ds

=
∫ t

tk
eA(t−s)w(s)ds, ∀t ∈ [tk, tk+1). (3.31)

The following proposition is needed for further developments.

Proposition 3.2 If the dynamics of the error variable is given by (3.31), the error
can be bounded as follows:

‖δ(t)‖∞ ≤ γφ(t, tk) (3.32)

where φ(t, tk) = 1
‖A‖∞ (e‖A‖∞(t−tk) − 1) and ‖A‖∞ is the infinite norm of A.
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Proof Taking into account Eq. (3.31), the norm of the error can be bounded as
follows:

‖δ(t)‖∞ =
∥
∥
∥
∥

∫ t

tk
eA(t−s)w(s)ds

∥
∥
∥
∥

∞
≤

∫ t

tk

∥
∥
∥eA(t−s)

∥
∥
∥∞ ‖w(s)‖∞ds

≤ γ

∫ t

tk
e‖A‖∞(t−s)ds = γ

1

‖A‖∞
(e‖A‖∞(t−tk) − 1). �

In what follows, the extension of the sampling procedure to continuous systems is
developed. Again, the controller’s goal is to maximize the next sampling instant tk+1,
guaranteeing in this case that the derivative of the Lyapunov function is negative for
all possible disturbances. Taking the time derivative of the Lyapunov function for
t ∈ [tk, tk+1) yields

d

dt
V(t) = xT (t)Pẋ(t) + ẋT (t)Px(t) = 2xT (t)Pẋ(t). (3.33)

Now, substituting x(t) from Eq. (3.28),

V̇(x(t)) = 2(δT (t) + xT
c (t))P(δ̇(t) + ẋc(t))

= 2(δT (t) + xT
c (t))P(Aδ(t) + w(t) + Axm(t) + Bu(t))

= δT (t)(PA + AT P)δ(t) + 2δT (t)Pw(t) + 2xT
c (t)Pw(t)

+ 2δT (t)(PA + AT P + PBK)xm(t)

+ xT
m(t)

(
P(A + BK)+(A + BK)TP

)
xm(t), ∀t ∈ [tk, tk+1).

(3.34)

In the following algorithm, we will ensure the negative definiteness of an upper
bound on the time derivative of the Lyapunov function (3.34) at time t for all possible
uncertainty trajectories.

The goal of the sampling method can be written as

max tk+1 (3.35)

subject to (3.23)−(3.27) and:
d

dt
V(x(t)) ≤ 0, ∀t ∈ [tk, tk+1)

This optimization problem is very difficult to solve. The parameter to be optimize,
i.e., tk+1, is involved in a nonlinear equation and there are an infinite number of
constraints, because they must be satisfied for all t ∈ [tk, tk+1). In order to obtain the
next sampling time, we propose to define tk+1 = Tmin + nΔ and find the maximum
n such that the time derivative of the Lyapunov function is negative at those time
instants for all possible disturbances.
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We present next an iterative algorithm that under mild assumptions provide an
approximate solution to (3.35).

Algorithm 3.2

1. Set tk+1 = tk + Tmin, where Tmin is lower bound for the following sampling time.

2. Solve the problem

min
δ(tk+1),w(tk+1)

− d

dt
V(x(tk+1)) (3.36)

subject to:

‖w(tk+1)‖∞ ≤ γ

‖δ(tk+1)‖∞ ≤ γφ(tk+1, tk)

3. If V̇(x(tk+1)) ≤ 0, increase tk+1 = tk+1 + Δ and go to Step 2. Otherwise, choose tk+1.

Next proposition shows that problem (3.36) can be stated as a QP.

Proposition 3.3 Problem (3.36) can be formulated as a QP if the elements of
Eqs. (3.19)–(3.20) are chosen as

ξ =
[

δ(t)
w(t)

]

,

H = −2

[
PA + AT P P

P 0

]

,

f T = −2xT
m(tk+1)

[
PA + AT P + KT BT P P

]
,

c = −xT
m(tk+1)

(
P(A + BK) + (A + BK)T P

)
xm(tk+1),

and for the inequality constraint

D =

⎡

⎢
⎢
⎣

In 0
−In 0

0 In

0 −In

⎤

⎥
⎥
⎦ , b =

⎡

⎢
⎢
⎣

γφ(tk+1, tk)1̄n

γφ(tk+1, tk)1̄n

γ 1̄n

γ 1̄n

⎤

⎥
⎥
⎦ , (3.37)

where 1̄n is a column vector of dimension n whose components are ones and In is the
identity matrix with dimension n.

Proof The proof is straightforward from Eqs. (3.34), (3.19)–(3.20). �

The value of Δ must be chosen small enough in a way such that the dynamics
of the controller state, and hence of the Lyapunov function, are smooth between
two consecutive sampling, avoiding unexpected sign changes of the derivative of
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the Lyapunov function from tk to tk+1. In general Tmin is chosen according with the
minimum sampling time of the sensors.

As in the discrete-time case, the resulting QP problem is a mpQP, and hence, an
explicit solution can be obtained. In this case the parameter of the QP problem is

θ(tk, j) =
[

xm(tk + jΔ)

φ(tk + jΔ, tk)

]

.

Assuming that the sign of the time derivative of the Lyapunov function does not
change between two consecutive times, Algorithm 1 provides a suboptimal solution
to problem (3.35). Note that this assumption will be satisfied for a sufficiently smallΔ.

The constraint on the upper bound of the time derivative of the Lyapunov function
is more restrictive than the constraint on the difference of the Lyapunov function
imposed in the discrete-time controller studied in the previous section. Note that, in
continuous time, a constraint on the difference of the Lyapunov function does not
yield a QP problem and hence is more difficult to implement in real time.

3.5 Simulation Results

In this section, we apply the previous result to a discrete and continuous unstable
plants in order to show how the controller manages to reduce the traffic load main-
taining the practical stability of the system.

3.5.1 Discrete System

Consider the following discrete-time LTI system:

x(k + 1) =
[

2.72 2.70
0 2.69

]

x(k) +
[

1
1.7

]

u(k) + w(k).

The initial condition for the system and the controller is x(0)T = [
100 −20

]
.

The following stabilizing controller has been designed for the discrete system:

K = [−1.1868 −2.0415
]
.

The Lyapunov function is defined by the following positive definite matrix:

P = 106
[

1.67 0.67
0.67 0.60

]

.

Suppose that this system is controlled using a shared network so it is interesting
to reduce the number of access to the shared medium.
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Fig. 3.3 Evolution of the
system’s states
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Assuming that the disturbances are bounded ‖w(k)‖∞ ≤ 1, the evolution of the
system is illustrated in Fig. 3.3, where the sampling instants are indicated with circles.

In Fig. 3.4 the sampling instants obtained using the proposed method are shown.
One can see that when the system is far of the equilibrium point it is possible to
enlarge the sampling period still assuring asymptotic stability.

Finally, the evolution of the Lyapunov function is drawn in Fig. 3.5.

Fig. 3.4 Evolution of the
sampling intervals
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Fig. 3.5 Evolution of the
Lyapunov function
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3.5.2 Continuous System

Consider the following continuous LTI system:

ẋ(t) =
[

1 0.99
0 1

]

x(t) +
[

0
1

]

u(t) + w(t),

where the disturbances w(t) are supposed to verify ‖w(t)‖∞ ≤ 0.01. The initial
condition for the system and the controller is x(0)T = [10 − 5].

Choosing a sampling rate Tmin = 1 s (which ensures the asymptotic stability of the
system without disturbances), the following stabilizing controller has been designed:

K = [−4.5263 −4.4110
]
.

The Lyapunov function is:

V(t) = xT (t)

[
0.2161 0.1156
0.1156 0.1083

]

x(t).

Assuming that the disturbances are zero, the evolution of the system x(t) and the
error δ(t) are shown in Fig. 3.6. As before, the asynchronous sampling times are
indicated with a tiny circle. Only the first three sampling times are bigger than 1 s,
since the error is quite small without disturbances.

Assume now that the disturbances are not zero. Figure 3.7 shows the response of
the system with uniform disturbances. Again, the sampling rates are bigger than the
basic rate only when the system is far form the equilibrium.
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Fig. 3.6 Evolution without disturbances. Solid and dashed lines for different components
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Fig. 3.7 Evolution with uniform disturbances
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Fig. 3.8 Evolution with non-uniform disturbances

Finally, we test the method with the following description of the disturbances. At
the beginning, uniform disturbances are applied. Next, the system evolves affected
with large disturbances that get it out of the equilibrium. At the end, uniform distur-
bances are considered again. The asynchronous sampling periods for this case are
shown in Fig. 3.8.
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3.6 Conclusions

We have presented a novel model-based controller for networked systems, aimed
at reducing the number of accesses to a shared network. It has been shown that,
using predictions based on a nominal model of the system, adequate asynchronous
sampling times can be found by solving several QP problems which take explicitly
into account the disturbances of the model. We have considered both discrete and
continuous-time controllers. The results have been demonstrated through simulation.



Chapter 4
Event-Triggered Anticipative Control
over Packet-Based Networks

José Sánchez, María Guinaldo and Sebastián Dormido

4.1 Introduction

While conventional control loops are designed to work with circuit-switching
networks, where dedicated communication channels provide almost constant bit rate
and delay, networks such as the Internet are based on packets, carrying larger amount
of information at less predictable rates.

One aspect that inherits to packet-based networks is transmission overhead. Pack-
ets can be split into the header and the payload, which may be filled with useless
information to reach the minimum packet size. As a consequence, transmitting a few
bits per packet has essentially the same bandwidth cost as transmitting hundreds of
them. Thus, rather than sending individual values, finite-length signal predictions
can be transmitted. This is the motivation of the so-called packet-based control [80,
284] or receding horizon control [210].

To achieve this, a common approach is to use model-based control to predict
future states of the plant, and therefore predictions for the control signal. The idea
of combining packet-based control and model predictive control (MPC) was first
introduced in [18] in the context of teleoperation. Since then, other authors have
exploited the principle of MPC in packet-based NCS [115, 132, 169, 210, 249].
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The influence of the model uncertainty in model-based NCSwas studied in [182].
In [36], the constraints imposed by communication protocols on state measurement
access are addressed. This work is extended to nonlinear systems in [85].

Among the alternatives studied to prevent the computational effort required by
MPC, the anticipative controller estimates the future state of the system based on a
model that considers delays [190], but there is no optimization of any cost function.
Anticipative controllers and the use of actuator buffers have been proposed for packet-
based NCS in [68, 92] for different network architectures.

Whereas these approaches result in a more efficient usage of the network band-
width and possible enlargement of transmission intervals, few publications have
combined receding horizon control and event triggering. In [68], a transmission pro-
tocol named as input difference transmission scheme (IDTS) calculates a new control
sequence at every time step but only transmits to the actuator when the difference
between the new sequence and that in the buffer has exceeded a threshold. In [92] the
sensor sends measurements to the controller if the difference between the predicted
state by a model, which is sent with the predictions of the control signal, and the
measured state crosses a given level. More recently, a model-based periodic event-
triggered control is exploited to reduce the number of transmissions [100], where two
frameworks are proposed, perturbed linear and piecewise linear systems, to achieve
global exponential stability and �2 gain performance.

The proposed design in this chapter (Sect. 4.2) is not only aware of amore efficient
usage of the bandwidth but also of facing delays and packet losses without assum-
ing clock synchronization of the elements in the control loop, in contrast to other
works in the literature such as [100, 190, 210, 211, 284]. Moreover, the model-based
controller alleviates the additional delays caused by the computational time required
by MPC, and so the proposed approach seems especially adequate in processes with
fast dynamics. Also, the theoretical analysis ensures the stability of the system if the
network delay is upper bounded, as proved in Sect. 4.3.

Though the estimation of disturbances in NCSs where the controller is co-located
with the actuator has been proposed in [154], Sect. 4.4 extends it to the remote
controller architecture. Another contribution of this chapter is the design of event
triggering for output measurements presented in Sect. 4.5. It combines the two exist-
ing approaches in the literature: estimation of the state by an observer or a filter, and
the use of a different controller to full state feedback. The goal is to overcome the
limited computation of the sensor and the actuator and the lack of synchronization
between the controller and the process. LTI controllers and a Luenberger observer
are combined to preserve the stability of the system when full measurement cannot
be assumed.

Finally, Sect. 4.6 describes the experimental framework that is used to validate
the analytical results as well as different experiments performed.
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4.2 Event-Based Anticipative Control Design

4.2.1 Problem Statement

Let us consider the NCS scheme in which the controller node is neither co-located
with the sensor nor with the actuator, i.e., the remote controller configuration (see
Fig. 4.1). In this situation, clock synchronization between the controller and the plant
is difficult to achieve in practice. Moreover, there may exist delays and data dropouts
in the way from the sensor to the controller and from the controller to the actuator.

The plant dynamics is given by the discrete-time model

x(k + 1) = Ax(k) + Bu(k) + w(k), (4.1)

y(k) = Cx(k) + v(k), (4.2)

where x(k) ∈ R
n is the state, u(k) ∈ R

m is the control signal, w(k) ∈ R
n is the

disturbance, and v(k) ∈ R
r is the measurement noise, both of which are bounded.

The matrices A, B, and C are of the appropriate dimensions. We assume that the
pairs (A, B) and (A, C) are controllable and observable, respectively. A discrete-time
model implies that the measurements of time are given by multiple of a sampling
period Ts, including delays, occurrence of events, etc. That is, for any instance of
time tk , there exists k ∈ N such that tk = kTs.

Example 4.1 A simple chronogram is shown in Fig. 4.2 to illustrate the phenomenon
of delays and packet losses in a remote controller scheme. The system is sampled
at discrete-time instances k, k + 1, . . .. The transmission of measurements from the
sensor to the controller can be delayed by a quantity denoted as τsc. Information sent
from the controller to the actuator can also suffer from delay τca. The round-trip time
(RTT) denotes the number of sampling times that takes data to go from the process
to the controller and back to the process, i.e.,

RTT = min{l : l ∈ N, τsc + τca < lTs}.

Fig. 4.1 Remote controller
configuration. The sensor
sends the state to the
controller through the
network, and the control
signal is also transmitted to
the actuator through the
communication channel

SPlant 

C 

Network 

A
u(t) x(t)

x(t)u(t)
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Fig. 4.2 Examples of delays
and data dropouts
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RTT (k)

Data can alsobedropped as depicted inFig. 4.2 at k+1.As a consequence, the actuator
does not receive updated control inputs in the interval marked in blue. Because the
controller is not synchronized with the sensor and the actuator, the values of τsc and
τca cannot be measured. However, the communication of the closed-loop system can
be characterized by the RTT that can be measured from the plant side.

The idea of the anticipative controller consists of estimating future states of the
plant based on a model to deal with delays and packet losses. The model can also
be used to generate predictions of the control signal. Perfect modeling is difficult to
achieve in practice. Thus, we consider that the model of the plant is given by

xm(k) = Amxm(k) + Bmu(k) + wm(k) (4.3)

ym = Cmxk,

where xm(k), wm(k) ∈ R
n are the estimated state and disturbances, respectively. We

denote the model uncertainty as Ā = Am − A, B̄ = Bm − B, and for simplicity
C = Cm. Thus, instead of sending a single control value, the controller computes a
sequence of control signals U .

The anticipative controller works asynchronously, that is, it remains idle until it
receives a newmeasurement. The sensor only transmits a state packet containing the
measured state if an event is detected. The following trigger function is considered

Fe(ε(k)) = ‖ε(k)‖ − δ, (4.4)

where the error function is

ε(k) = xm(k) − x(k). (4.5)

The sequence of event times is determined recursively as

k�+1 = inf{k : k > k�, Fe(ε) ≥ 0}, � ∈ N.
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To sum up, the solution presented in the next section has the following features:

• It reduces the bandwidth usage thanks to the event-triggered transmission from
the sensor to the controller. Since the controller works asynchronously, this causes
a reduction in the backward channel too.

• It takes advantage of packet-based networks to send sequences instead of single
values. These sequences are generated by the controller that uses a model of the
plant (4.3), which might not match perfectly with the real dynamics of the plant
(4.1) and (4.2).

• This information is sent to the plant, where it can be stored and used as convenience
to apply the control input in the actuator.

• Delays and number of consecutive packet losses cannot be measured due to the
lack of synchronization between the controller and the plant, but the RTT provides
information about the quality of the channel, and this information can be used by
the controller to estimate the state of the plant.

Wefirst assume full statemeasurements, feedback control laws, and the non-existence
of disturbancesw(k). Later on, in this chapter, wewill deal with the problemof output
measurements and disturbances, and how they can be estimated.

4.2.2 Control and Architecture Design

The proposed solution is depicted in Fig. 4.3 and has the following new components:

SPlant 

C 

Network 

A

Model ... ...

Event 
detector

Control 
selector

x(k)u(k)

x(k )k k

xm(k)

Fig. 4.3 Scheme of the proposed solution
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The model-based controller performs several tasks. First, it processes the incoming
packets, which include the following information:

• The measured state x(k�).
• The plant local time k�.
• A time stamp TSu of the controller local time. TSu allows to identify the control
sequence Uk�−h , h ∈ N and h ≥ 1, which was being applied at the time of the
measurement of x(k�).

• An index iu. If the computed control sequences have a size of Nu elements, iu is
the number of element of the sequenceUk�−h which was being applied at the time
of the measurement of x(k�).

• An update value of the minimum value of the RTT denoted by τmin. τmin ∈ N gives
the fastest transmission from the controller to the plant and the other way back:

τmin = min{RTT(k),∀k ∈ N}.

With this information and themodel (4.3), the first action is to estimate the state of the
plant at time k� +τmin, xm(k� +τmin)which is taken as the initial state to compute the
next control sequence. Moreover, according to the definition of the trigger function
(4.4), the predictions of themodelmust be available at each sampling time at the plant
side. Since this information is computed by the controller, it has to be transmitted
through the network and included in the control packets.

Definition 4.1 The control sequenceUk�
is a set of Nu future control values that are

calculated based on the system model (4.3) for the state packet containing x(k�) and
received by the controller after the transmission through the network from the sensor
to the controller.

Definition 4.2 The predicted states sequence Xk�
is a set of Nu future plant states

predicted by the model (4.3). The jth element of Xk�
corresponds to the state given

by the model (4.3) after applying the jth element of the control sequence Uk�
.

Once xm(k� + τmin) is estimated based on the information received, the control input
for this state is computed. For a state feedback control law with feedback gain K , it
follows that

u(k� + τmin) = Kxm(k� + τmin)

is the first element of the control sequence. Thus, the state estimation for the next
sampling time is

xm(k� + τmin + 1) = Amxm(k� + τmin) + Bmu(k� + τmin) = (Am + BmK)xm(k� + τmin).

The model and the basis controller interact Nu − 1 times to generate the control
sequence Uk�

of size Nu. In general, the j + 1 element of Uk�
can be written as

Uk�
(j + 1) = u(k� + τmin + j) = K(Am + BmK)jxm(k� + τmin), 0 ≤ j ≤ Nu − 1,
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and the jth element ofXk�
is

Xk�
(j) = (Am + BmK)jxm(k� + τmin).

The control selector The packets received from the controller between two consecu-
tive sampling times are enqueued (a priori, more than one packet can arrive). As they
can arrive out of order, they are time-stamped to distinguish which control sequence
was calculated last. The latest computed control and predicted states sequences are
buffered, and the rest of the packets are discarded because they contain obsolete
values calculated with prior states of the plant.

The previous section pointed out that the first element of the control sequence for
the sampling time k� is calculated based on an estimated state xm(k�+τmin). However,
the time between the measurement of the state x(k�) and the reception of the control
sequence Uk�

will generally be greater than τmin. Let us denote this elapsed time as
τ(k�). The value of τ(k�) is measured by subtracting k� from the value of the local
clock and it is compared to τmin. The difference reveals how many sampling times
have passed, or how many elements of Uk�

should be discarded because they are
obsolete values. This value is denoted as i0 (i0 = τ(k�)− τmin). The first i0 elements
of Uk�

are then discarded, and the i0 + 1 element is the first element to apply. For
the same reason the first i0 elements of Xk�

are also discarded.

The event detector The code executed by this component is shown inAlgorithm 4.1.
The control and state predictions sequences are received as inputs as well as the
computed index i0. The error and the trigger function are initialized to default values
(lines 2–3). The state of the plant is measured at each sampling time, and the error
and trigger functions are computed (lines 7–9). The event condition is checked at
each sampling time (line 10). In case an en event is triggered, the module delivers
x(k�) and the index value as outputs.

Algorithm 4.1 Event-detection algorithm.

Input: Uk�
,Xk�

, i0 with k� < k
Output: x(k�+1), i0 + j
1: j := 0
2: ε(k) := 0
3: Fe(ε(k)) := −1
4: while i0 + j < N̄u and Fe(ε(k)) < 0 do
5: j := j + 1
6: Apply Uk�

(i0 + j)
7: Measure x(k)

8: xm(k) := Xk�
(i0 + j)

9: ε(k) := xm(k) − x(k)

10: Compute Fe(ε(k))

11: end while
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Note that an event is detected when either Fe(ε(k)) crosses zero or i0 + j equals
N̄u, where N̄u is N̄u = Nu−τmax , and τmax is the upper bound on the RTTwhose value
will be derived in the stability analysis. This constraint is imposed to prevent that
the last element of the control sequence is reached without receiving a new control
packet.

4.3 Stability Analysis

The event-based policy (4.4) allows to reduce the communication in the control loop,
but the price to pay is that asymptotic stability is no guaranteed, but the GUUB of
the state can be proved. If disturbances are equal to zero and full state measurements
are available, it follows that

x(k + 1) = Ax(k) + BKxm(k), (4.6)

since the anticipative control defines the control law as the feedback of the predicted
state for any sampling time k. Equation (4.6) can be rewritten in terms of the error
(4.5) as

x(k + 1) = (A + BK)x(k) + BKε(k). (4.7)

Note that an event is triggeredwhenever ‖ε(k)‖ ≥ δ. However, the error will increase
until a new control sequence is received. The next assumption establishes a bound
on the maximum elapsed time between the detection of an event and the reception
of a more recent control packet (RTT).

Assumption 4.1 The elapsed time between the event detection and, therefore, the
transmission of a state packet to the controller, and the reception of a more recent
control packet (RTT) is bounded by an upper bound denoted by τmax . Moreover, this
upper bound is always smaller than the minimum inter-event time:

τmax < k�+1 − k�,∀� ∈ N.

In the elapsed time between the occurrence of an event and the reception of a new
control sequence, packets can be dropped or experience delay. Hence, a flow control
protocol (e.g., acknowledgments) to detect packet losses and transmission of a new
measurement may be required in the event-based approach. For simplicity, let us
denote the cited interval as τ(k�) or simply as τ .

Assumption 4.1 constrains the model uncertainty and/or the maximum allowable
number of sampling periods the system (4.2) can run in open loop (without receiving
newcontrol sequences from the remote controller). Thederivationof these constraints
will be given later in the section. First, the following result to bound the error at any
time k is given as a consequence of Assumption 4.1.
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Proposition 4.1 If Assumption 4.1 holds, the error defined as (4.5) is bounded by

‖ε(k)‖ ≤ 2δ. (4.8)

Proof From Assumption 4.1 it follows that

‖ε(k� + τ) − ε(k�)‖ < δ,∀τ ≤ τmax,

since no event is detected in this interval.
When the sampling is fast enough, the error at the event detection is ‖ε(k�)‖ ≈ δ.

Thus, assuming that this approximation is exact

‖ε(k� + τ)‖ ≤ ‖ε(k�)‖ + ‖ε(k� + τ) − ε(k�)‖ ≤ 2δ,

which concludes the proof.

Let us denote AK = A + BK to simplify the notation. Because AK is assumed to
be Hurwitz, there exists a P = PT > 0 such that

AT
K PAK − P = −Q, (4.9)

where Q = QT > 0. And let us define the following Lyapunov function:

V(x) = xT Px. (4.10)

The main result of the section is presented next. The error ε(k) can be interpreted
as an external perturbation due to the mismatch between the real dynamics of the
process and the model, and the network imperfections.

Theorem 4.1 If Assumption 4.1 holds, the state of the system (4.7) when the remote
controller runs according to the model (4.3) and the event detector is defined by
(4.4), is GUUB with bound

‖x‖ ≤
√

λmax(P)

λmin(P)
(σ‖AK‖ + ‖BK‖)2δ, (4.11)

where

σ = ‖KT BT PAK‖ + √‖KT BT PAK‖2 + λmin(Q)‖KT BT PBK‖
λmin(Q)

, (4.12)

λmin(P) and λmax(P) are the minimum and maximum eigenvalues of P, respectively,
and λmin(Q) the minimum eigenvalue of Q.
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Proof The forward difference of the Lyapunov function (4.10) for (4.7) is

ΔV(k) = xT (k + 1)Px(k + 1) − xT (k)Px(k)

= (
AK x(k) + BKε(k)

)T
P
(
AK x(k) + BKε(k)

) − xT (k)Px(k)

= −xT (k)Qx(k) + 2εT (k)(BK)T PAK x(k) + εT (k)(BK)T PBKε(k),

which is upper bounded by

ΔV(k) ≤ − λmin(Q)‖x(k)‖2 + 2‖(BK)T PAK‖‖ε(k)‖‖x(k)‖
+ ‖(BK)T PBK‖‖ε(k)‖2. (4.13)

The right hand side of (4.13) is an algebraic second-order equation in ‖x(k)‖ such
that the Lyapunov function decreases whenever

‖x(k)‖ ≥ σ‖ε(k)‖,

where σ is given in (4.12).
According to Proposition 4.1, the error at any time k is bounded by 2δ. Hence,

ΔV < 0 in the region ‖x(k)‖ > 2δσ . Thus, the state decreases until it reaches this
region. If we denote by k∗ the time instant at which the state enters this region and
according to (4.7), it follows that

‖x(k∗ + 1)‖ ≤ (σ‖AK‖ + ‖BK‖)2δ.

Then the state can leave the region so the Lyapunov function decreases again, and the
space enclosed by the maximum of the Lyapunov function in k∗ + 1 is an ultimate
bound for the state. If the inequalities λmin(P)‖x‖2 ≤ xT Px ≤ λmax(P)‖x‖2 are
used, it is derived that the state x(k) remains bounded by (4.11) ∀k ≥ k∗, and this
concludes the proof.

4.3.1 Analysis of the Maximum RTT and the Model
Uncertainties

Assumption 4.1 has made possible to establish a bound on the error of the system and
therefore the presented stability results. However, it also imposes some constraints
on the maximum RTT for the network and/or the model uncertainty of the remote
controller.

Assume that the last event occurred at time k�. The error at the next sampling
time is

ε(k� + 1) = xm(k� + 1) − x(k� + 1) = (Am + BmK)xm(k�) − (
Ax(k�) + BKxm(k�)

)

= (Ā + B̄K)x(k�) + (Am + B̄K)ε(k�), (4.14)



4 Event-Triggered Anticipative Control over Packet-Based Networks 89

where Ā = Am − A, B̄ = Bm − B represent the model uncertainty. Let us also define
AmK = Am + BmK .

In general, if a new control sequence is not received in τ sampling periods, the
actuator continues applying control values from the same control sequence. Thus,

x(k� + τ) = Aτ x(k�) +
⎛

⎝
τ∑

j=1

Aτ−jBKAj
mK

⎞

⎠ xm(k�)

=
⎛

⎝Aτ +
τ∑

j=1

Aτ−jBKAj
mK

⎞

⎠ x(k�) +
⎛

⎝
τ∑

j=1

Aτ−jBKAj
mK

⎞

⎠ ε(k�). (4.15)

The error at k + τ is ε(k� + τ) = xm(k� + τ) − x(k� + τ), thus

ε(k� + τ) = Aτ
mK xm(k�) − x(k� + τ) = Aτ

mKε(k�) + Aτ
mK x(k�) − x(k� + τ),

where x(k� + τ) is given in (4.15).
The maximum RTT can be derived imposing that

‖ε(k� + τmax) − ε(k�)‖ < δ,

which yields to a complicated expression which depends not only on the system and
model dynamics but also on the state at the last event x(k�). It is not possible to derive
an analytical solution for it, but the feasibility of the solution requires a bound for
x(k�) ∀k�. Its existence is guaranteed from the results in Theorem 4.1.

However, it is possible to derive an analytical solutionwhen themodel uncertainty
can be approximated to zero so that Ā ≈ 0, B̄ ≈ 0. In this case, the evolution of ε(k)

in (4.14) is approximated by ε(k� + 1) ≈ Amε(k�). Thus, after τ sampling periods it
is given by

ε(k� + τ) ≈ Aτ
mε(k�) ≈ Aτ ε(k�). (4.16)

Thus, according to Proposition 4.1, it holds that

‖ε(k� + τmax) − ε(k�)‖ = ‖(Aτmax − I)ε(k�)‖ < δ.

Since ‖ε(k�)‖ ≈ δ, an upper bound for the maximum allowable RTT will be the
solution of

‖Aτmax − I‖ < 1, τmax ∈ N, (4.17)

which is independent of the value of δ.

Example 4.2 Assume that the scalar system

ẋ(t) = ax(t) + bu(t), a, b ∈ R, (4.18)
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Fig. 4.4 Surface defined by
(4.19)
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is sampled with a sampling period Ts. An anticipative controller based on events is
designed for this system, in which the event detector detects an event whenever the
error crosses a threshold δ. Assume that there is no model uncertainty in the anticipa-
tive controller. Let us compute the maximum allowable RTT for the system (4.18).

It holds that A = eaTs . Thus, according to (4.17), it holds that

|eaTsτmax − 1| < 1.

Since a ∈ R, this is equivalent to eaTsτmax < 2. Thus,

τmax <
log(2)

aTs
. (4.19)

Note that τmax is feasible only if a > 0, because stable processes remain stable when
there are not model uncertainties and no disturbances.

For example if a = 1 and Ts = 50ms, log(2)
aTs

= 13.86 and the maximum RTT is
τmax = 13 sampling periods. In Fig. 4.4 the surface that bounds the region defined
by (4.19) is depicted to illustrate the feasible range of τmax as a function of a and Ts,
where a ∈ [0.1, 5] and Ts ∈ [10, 100]ms.

4.3.2 Analysis of the Error Bounds

The analysis has shown that the system is GUUB when Assumption 4.1 holds, and
consequently, the error is upper bounded by 2δ (see Proposition 4.1). However, one
question that can be raised is what is the minimum value of the error that can be
achieved with the prediction of the state at time k + τmin.

Under ideal network conditions, i.e., the network is reliable and the transmission
delays between sensor-controller and controller-actuator are zero, the error ε(k) =
xm(k) − x(k) is reset to zero after the occurrence of an event.
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Also, if the delay τ can be measured because the architecture has a different
configuration (e.g., Fig. 1.9a), the state of the plant at the time instance k + τ can be
estimated, and the error is reset to zero if the model is perfect.

However, the fact that only statistics of the RTT can be known and the elements
in the control loop are not synchronized makes it difficult to achieve this situation.
In fact, if the RTT equals τmin the error will reach its minimum value and its closure
to zero will depend on the model uncertainty and the value of τmin.

Thus, assume that the last event occurred at k = k�. According to (4.15), the state
at k� + τmin is

x(k� + τmin) =
⎛

⎝Aτmin +
τmin∑

j=1

Aτmin−jBKAj
mK

⎞

⎠ x(k�)

+
⎛

⎝
τmin∑

j=1

Aτmin−jBKAj
mK

⎞

⎠ ε(k�).

While the prediction that the model gives is

xm(k� + τmin) =
⎛

⎝Aτmin
m +

τmin∑

j=1

Aτmin−j
m BmK (AmK )j

⎞

⎠ x(k�)

+
⎛

⎝
τmin∑

j=1

Aτmin−j
m BmKAj

mK

⎞

⎠ ε(k�).

Then, it follows that the error is

ε(k� + τmin) =
⎛

⎝Aτmin
m − Aτmin +

τmin∑

j=1

(Aτmin−j
m Bm − Aτmin−jB)K (AmK )j

⎞

⎠ x(k�)

+
⎛

⎝
τmin∑

j=1

(Aτmin−j
m Bm − Aτmin−jB)KAj

mK

⎞

⎠ ε(k�). (4.20)

Note that the right hand side of (4.20) is zero if A = Am and B = Bm, and different
from zero otherwise. Moreover, it depends on the state x(k�).

4.4 Disturbance Estimator

According to (4.1), the system is affected by disturbances w(k) ∈ R
n. However,

until now this fact has not been taken into account to predict future states of the plant
according to (4.3). Disturbances can be estimated using the information given by the

http://dx.doi.org/10.1007/978-3-319-21299-9_1
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measurement error to improve the behavior of the anticipative control and reduce the
number of events.

In [154], disturbances are estimated at event times assuming that they are constant
between events in the proposed emulation approach, which mimics the continuous
state feedback control. One constraint of the design is that the state matrix A of
the continuous-time model must be invertible, which excludes integrators from the
dynamics of the system. In this section we present a disturbance estimator for the
remote anticipative controller which does not require the previous constraint, and
considers model mismatch. The following assumptions hold henceforth:

• The system dynamics is given by (4.1) and (4.2).
• The model estimates future states of the plant according to

xm(k + 1) = Amxm(k) + Bmu(k) + wm(k), (4.21)

where wm is the estimated disturbance at time k.
• The state x(k) is measurable.
• When a state packet is received with a measurement taken at time k�, the dis-
turbance is estimated before computing the next control sequence Uk�

, and held
constant in the next steps.

Hence, the disturbance estimator is a new element to include in the controller side.
According to (4.1) and (4.21), the error dynamics is given by

ε(k + 1) = xm(k + 1) − x(k + 1) = Amxm(k) − Ax(k)

+ (Bm − B)u(k) + (wm(k) − w(k)), (4.22)

The disturbance w(k) could be calculated if the rest of the terms of (4.22) were
known. However, the model mismatch is unknown. Therefore, if the approximation
Ā ≈ 0, B̄ ≈ 0 is taken, the value of w(k) can be computed at the next sampling time
k + 1 (after measuring x(k + 1)) as

wm(k + 1) = Am(xm(k) − x(k)) + wm(k) − ε(k + 1)

= wm(k) + Amε(k) − ε(k + 1). (4.23)

Let us denote h the number of sampling periods between the reception of the last
control sequence and the detection of an event. In absence of disturbances, the error
at k +h can be approximated to ε(k +h) ≈ Ah

mε(k) (see (4.16)). This approximation
turns into

ε(k + h) = Ah
mε(k) +

h−1∑

j=0

Aj
m(wm(k + j) − w(k + j))

when disturbances are included in the model.
Because wm(k) is assumed to be held constant in this interval, the disturbance can

be estimated at time k + h as
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wm(k + h) = wm(k) +
⎛

⎝
h−1∑

j=0

Aj
m

⎞

⎠

−1

(Ah
mε(k) − ε(k + h)). (4.24)

Note that ε(k) in (4.24), which denotes the error between the estimated state and
the measured state at the time of the reception of the control sequence is in general
non-zero. This information as well as the error at the time of the detection of the event
must be known. This implies that both values have to be transmitted from the plant
to the controller. Thus, the state packets must include the following information:

• The measurement which triggered the event x(k�).
• A time stamp TSu of the controller local time. TSu allows to identify the control
sequence Uk�−h , h ≥ 1, which was being applied at the time of the measurement
of x(k�).

• The index iu which is the number of element of the sequence Uk�−h which was
being applied at the time of the measurement of x(k�).

• The error between the predicted state by the model (4.21) and the measured state
after receiving Uk�−h . If the number of sampling periods between this instant of
time and the detection of the event at time k� is n�, hence this value is ε(k� − n�).

• The error ε(k�) when the event is detected.
• The number of sampling periods n�.

According to this, the code executed by the controller is illustrated in Algorithm 4.2.
Note that once wm(k�) is estimated, it is used in the estimation of xm(k� + τmin) and
the computation of Uk�

,Xk�
. The function getFromLookUpTable that receives as

inputs TSu, iu, and τmin enables to identify the control inputs that are being applied
in the plant.

Algorithm 4.2 Code executed by the controller for disturbance estimation.

Input: x(k�), TSu, iu, ε(k� − n�), ε(k�), n�

Output: Uk�
,Xk�

1: wm(k� − n�) := getFromLookupTable(TSu)

2: wm(k�) := wm(k� − n�) + (
∑n�−1

j=0 Aj
m)−1(An�

m ε(k� − n�) − ε(k�))

3: [u(k�) . . . u(k� + τmin)] := getFromLookupTable(TSu, iu, τmin)

4: xm(k) := x(k�)

5: for j = 1 → τmin do
6: xm(k + 1) := Amxm(k) + Bmu(k� + j − 1) + wm(k�)

7: xm(k) := xm(k + 1)
8: end for
9: xm(k� + τmin) := xm(k)

10: Uk�
(1) = Kxm(k� + τmin)

11: Xk�
(1) = (Am + BmK)xm(k� + τmin) + wm(k�)

12: for j = 2 → Nu do
13: Uk�

(j) = KXk�
(j − 1)

14: Xk�
(j) = (Am + BmK)Xk�

(j − 1) + wm(k�)

15: end for
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4.4.1 Stability Analysis

Stability results can be derived when disturbances affect the system in a similar way
as Theorem 4.1 if bounded disturbances are assumed:

‖w(k)‖ ≤ wmax.

In this case, it is proven that the Lyapunov function (4.10) satisfying (4.9) decreases
to reach a region whose size depends on the bound of the error ‖ε(k)‖ and the
disturbances ‖w(k)‖.

Before stating the main result of this section, let us rewrite (4.1) in terms of ε(k)

as
x(k + 1) = AK x(k) + BKε(k) + w(k). (4.25)

Theorem 4.2 If Assumption 4.1 holds and the disturbances are bounded by
‖w(k)‖ ≤ wmax, the state of the system (4.25) when the remote controller runs
according to the model (4.21) and the event detector is defined by (4.4), is GUUB
with bound

‖x‖ ≤
√

λmax(P)

λmin(P)

(‖AK‖σw + ‖BK‖2δ + wmax
)
, (4.26)

where

σw =
σb +

√

σ 2
b + 4σaσc

2σa
(4.27)

σa = λmin(Q) (4.28)

σb = ‖(BK)T PAK‖2δ + ‖PAK‖wmax (4.29)

σc = ‖(BK)T PBK‖4δ2 + 4‖PBK‖wmaxδ + λmax(P)w2
max. (4.30)

Proof The proof can be found in Appendix A.

Example 4.3 In this example a system modeled as a double integrator is considered,
and sampled with Ts = 5ms:

xm(k + 1) =
(
1 0.005
0 1

)

xm(k) +
(−0.0001

−0.0380

)

u(k).

The trigger function is defined with δ = 0.05. The model uncertainty is known to be
‖Ā‖ < 0.2‖A‖, ‖B̄‖ < 0.2‖B‖. Disturbances affecting the system are bounded by
0.01, and change the value every second to a new random value in [−0.01, 0.01].

Figure4.5 shows the state of the system (solid line), the prediction given by the
model (dashed line), the normof the error, the control input, and the real and estimated
disturbances. Note that the major number of the events occur for small values of time
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Fig. 4.5 Disturbances estimation. The estimated values are represented by the dotted line, and the
actual values by the solid line

(when the state of the system is far from the equilibrium), and when the value of the
disturbance changes. The difference between the real and the estimated states is not
well appreciated due to the scale and the small value of δ.

4.5 Output-Based Event-Triggered Control

This section presents a method to apply anticipative control when the state x(k)

cannot be measured and the only available information at each sampling time is the
output y(k). The extension of event-triggered control to output measurement is not
trivial [101]. One may think that an intuitive solution is to redefine the error as

εy(k) = ym(k) − y(k), (4.31)

define a trigger function such that ‖εy(k�)‖ ≈ δ, and extend the analysis to derive
‖εy(k)‖ ≤ 2δ. However, the boundedness of εy(k) does not imply the boundedness
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of xm(k)− x(k), which is required to proof the stability of the system when the basis
controller is state feedback.

There are two directions to solve the problem in the literature. One direction is to
process the measurements by an observer or a filter. For instance, in [141] an state
observer is proposed. The error function is replaced by xm(k) − x̂(k), where x̂(k) is
the observed state. The analysis shows that the property of GUUB is preserved. In
[143], a Kalman filter approach is presented.

The second direction is to use a different structure in the controller. A dynam-
ical output-based controller is proposed in [56]. Using a mixed event-triggering
mechanisms, the ultimate boundedness can be guaranteed while excluding the Zeno
behavior. A level crossing sampling solution with quantization in the control signal
is presented in [135], where a LTI continuous-time controller is emulated.

The first direction would make easier to extend the design of Sect. 4.2 and the
stability results of Sect. 4.3. However, a computational cost is required in the process
side to observe the state, and it has been assumed that its computational capacity is
very limited.

The design proposed in this section is a mixed solution of the two directions
aforementioned. On the one hand, an observer is required to recover the state of the
system in order to estimate future control values by the iteration of the plant model
and the basis controller. However, since the observer needs to be implemented in the
controller side, this does not allow to use the observation in the trigger functions.
Thus, the error is defined as (4.31), and the trigger function for output measurement
is

Fe(εy(k)) = ‖εy(k)‖ − δy. (4.32)

On the other hand, since only boundedness of the output error can be guaranteed, let
us consider the following LTI discrete-time controller

xc(k + 1) = Acxc(k) + Bcym(k) (4.33)

u(k) = Ccxc(k) + Dcym(k), (4.34)

for the basis controller. xc(k) is the state of the controller, and Ac, Bc, Cc, and Dc are
matrices of the appropriate dimensions. We assume that the controller is designed to
render the system asymptotically stable when ym(k) is replaced by y(k). We further
assume that the pair (A, C) is observable and that a model is available and it is given
by (Am, Bm), and Cm = C. Finally, disturbances affecting the system (4.2) are not
considered for simplicity. However, the measurement noise v(k) might not zero but
bounded by vmax .

All the above said, some of the components described in Sect. 4.2.2 have to be
adapted to the output measurement scenario, as depicted in Fig. 4.6.

• The control selector will provide the estimated output ym(k) to the event detector,
instead of xm(k), for each sampling time k.

• The event detector uses the trigger function (4.32) instead of (4.4). Moreover, it
collects the so-called output vector −→y , which is the measured outputs y(k) at each
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Fig. 4.6 Scheme of the proposed solution

sampling time k between the reception of a control packet and the detection of a
new event. This information will be used in the controller.

• The model-based controller The new basis controller is given by (4.33) and
(4.34). Hence, it receives from the model the predicted output of the plant ym(k), it
computes its next internal state according to (4.33) and the control input as (4.34).
Themodel needs to compute an estimation of the state of the plant xm(k) according
to (4.3), but only ym(k) = Cxm(k) is used to compute u(k). Moreover, a sequence
of predicted outputs is generated as Yk�

= CXk�
, where Xk�

is generated as in
the case of full state measurement. However, since x(k�) is no longer available,
it is estimated by a state observer using the information in −→y , generating future
states of the plant after that. We next describe this more in detail.

A state observer A Luenberger observer of the form

x̂(k + 1) = (Am − MC)x̂(k) + Bmu(k) + My(k), x̂(0) = x̂0
ŷ(k) = Cx̂(k)

is used to obtain the state x(k), being (Am − MC) Hurwitz. Anytime a new state
packet is received at the controller side, the code of Algorithm 4.3 is executed. The
length of −→y is calculated first, that is, the number of sampling times between the
reception of the last control sequence at the process side and the detection of the last
event. Based on this information, and on TSu and iu (received with the state packet as
well), we can determine the control inputs applied at the actuator during this period
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Algorithm 4.3 Luenberger observer state estimation.

Input: −→y , TSu, iu
Output: x̂(k�)

1: ny := dim(−→y )

2: [u(k� − n� − 1) . . . u(k�)] := getFromLookupTable(TSu, iu, ny)

3: for j = 1 → ny do
4: y(k� − ny + j − 1) := −→y (j)
5: x̂(k� − ny + j) := (Am − MC)x̂(k� − ny + j − 1) + Bmu(k� − ny + j − 1) + My(k� − ny +

j − 1)
6: x̂(k� − ny + j − 1) := x̂(k� − ny + j)
7: end for

by checking them in a look-up table. Then, the Luenberger observer estimates the
plant state x(k�) corresponding to the last output measurement y(k�), which is the
last element of the output vector −→y .

Thus, in an output-based scenario, the state x(k�) is replaced by x̂(k�) to estimate
xm(k� + τmin) first, and after that, to generate the control sequence Uk�

.

4.5.1 Stability Analysis

To formulate the analysis, let us gather the equations that describe the dynamics of
both the system and the controller

x(k + 1) = Ax(k) + Bu(k) (4.35)

y(k) = Cx(k) + v(k) (4.36)

xc(k + 1) = Acxc(k) + Bcym(k) (4.37)

u(k) = Ccxc(k) + Dcym(k), (4.38)

with the error defined as (4.31) and the trigger function (4.32). This can be rewritten
as (

x(k + 1)
xc(k + 1)

)

=
(

A + BDcC BCc

BcC Ac

) (
x(k)

xc(k)

)

+
(

BDc

Bc

)
(
εy(k) + v(k)

)
.

Let us define the augmented state vector of the system by combining process and
controller ξT (k) = (

xT (k) xT
c (k)

)
, and the matrices

ACL =
(

A + BDcC BCc

BcC Ac

)

, (4.39)

F =
(

BDc

Bc

)

. (4.40)
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Thus, the closed-loop system-controller dynamics is

ξ(k + 1) = ACLξ(k) + Fεy(k) + Fv(k). (4.41)

Equation (4.41) compacts the dynamics of the system and the controller. It can be
seen as a perturbed version of ξ(k + 1) = ACLξ(k). Hence, if we assume that the
controller is designed so that ACL (see (4.39)) is Hurwitz, there exists a P = PT such
that

AT
CLPACL − P = −Q, Q = QT .

We define the Lyapunov function

V(ξ) = ξT (k)Pξ(k). (4.42)

The unperturbed system ξ(k + 1) = ACLξ(k) converges asymptotically to the ori-
gin. Nevertheless, when event triggering (4.32) is considered and measurements are
affected by noise, only GUUB of ξ(k) can be achieved.

Let us consider that Assumption 4.1 holds. The result of Proposition 4.1 can be
extended to the error εy(k) straightforward, so that

‖εy(k)‖ ≤ 2δy, ∀k.

The following theorem is equivalent to Theorem 4.1 but for output measurement
and the proposed controller design. The error εy(k) and the measurement noise v(k)

perturb the system. The error εy(k) is a contribution of both the model uncertainties
and the network imperfections, whereas v(k) is inherited from the measurement
itself.

Theorem 4.3 If Assumption 4.1 holds, the augmented state ξ(k) of the system-
controller (4.41), when the event detector is defined by (4.32), and the measurement
noise is bounded ‖v(k)‖ ≤ vmax, is GUUB with bound

‖ξ‖ ≤
√

λmax(P)

λmin(P)
(σξ‖ACL‖ + ‖F‖)(2δy + vmax), (4.43)

where

σξ = ‖FT PACL‖ + √‖FT PACL‖2 + λmin(Q)‖FT PF‖
λmin(Q)

. (4.44)

Proof The proof can be found in Appendix A.
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4.5.2 PI Anticipative Control Design

The proportional-integral-derivative (PID) controller has been and is currently
applied to solve many control problems. Even though many controller choices are
available nowadays, PID controllers are still by far the most widely used form of
feedback control. In process industry it is known that more than 90% of the control
loops are regulated by PID controllers [215]. Most of such controllers are Propor-
tional Integral (PI), since the derivative part is generally not used in practice [215].
For this reason, we particularize the previous results for output measurement and LTI
controllers to the PI controller, and we include the set-point tracking. The tracking
error esp(k) is defined as esp(k) = ysp − y(k), where ysp is this reference signal.

The state-space representation of a PI controller is given in Chap. 2. In discrete

time,Ac = 1, Bc = − kpTs
Ti

, Cc = 1, andDc = −kp, where kp is the proportional gain,
Ti is the integral time, and Ts the sampling period. This allows to derive (4.41) when
the basis LTI controller is PI and for set-point tracking ysp (weighted by a factor b)
as

ξ(k + 1) =
(

A − kpBC B

− kpTs
Ti

C 1

)

ξ(k) +
(−kpB

− kpTs
Ti

)
(
εy(k) + v(k)

) +
(

kpbB
kpTs
Ti

)

ysp. (4.45)

The output is
y(k) = (

C 0
)
ξ(k) + v(k),

and the control input

u(k) = ( − kpC 1
)
ξ(k) + kp

(
ysp − εy(k) − v(k)

)
.

4.5.2.1 Control and Predicted States Sequences Computation

The control and the predicted output sequences have not been explicitly computed
in this section. We derive them next for the PI controller to include the set-point
tracking, but the results also hold for any ACL and F of the form (4.39) and (4.40).

A model version of (4.45) can be defined to deduce the control and the predicted
output sequences. Thus,

ξ̂ (k + 1) = Am,CLξm(k) + Fm,bysp, (4.46)

where

Am,CL =
(

Am − kpBmC Bm

− kpTs
Ti

C 1

)

Fm,b =
(

kpbBm
kpTs
Ti

)

. (4.47)

Note that xm,C = xC , but the compact form of (4.46) simplifies the expressions. After
estimating xm(k� + τmin) and therefore, ξm(k� + τmin), the j element of the predicted

http://dx.doi.org/10.1007/978-3-319-21299-9_2
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output sequence Yk�
, i.e.,

(
C 0

)
ξm(k� + τmin + j), is

Yk�
(j) = (

C 0
)

⎡

⎣Aj
m,CLξm(k� + τmin) +

j−1∑

l=0

Al
m,CLFm,bysp

⎤

⎦ , (4.48)

assuming that the set-point value remains constant. And the j + 1 element of the
control sequence Uk�

, i.e.,
( − kpC 1

)
ξm(k� + τmin + j) + kpbysp, is

Uk�
(j + 1) =( − kpC 1

)

⎡

⎣Aj
m,CLξm(k� + τmin) +

j−1∑

l=0

Al
m,CLFm,bysp

⎤

⎦ + kpbysp.

(4.49)

4.6 Experimental Results

4.6.1 Experimental Framework

In order to evaluate the proposed design, we have made use of the infrastructure of
remote laboratories located in theAutomaticControl Laboratory ofUNED inMadrid.
These laboratories are used by students to conduct their experiments remotely thanks
to the web-based environment developed [247], which is based on a client–server
architecture [133].

Traditionally, in the client–server architecture, controller and process are at the
server-side (the real-time control loop) and the user gets remotely the state of the
plant, modifies the parameters of the controller, and observes how the plant reacts to
them (the asynchronous supervision loop) [248].

Hence, the implementation changes to adapt this environment to work using the
remote anticipative controller. An scheme of the experimental framework is shown in
Fig. 4.7. The event detector and control selector are hosted at the server side, which is
connected to the Internet. The remote controller is at the client side, which also pro-
vide an interface for the user. The communication with the process side can be wired
orwireless.Wewere particularly interested in testing the performance of the anticipa-
tive controller in processes with fast and/or unstable dynamics since they introduce
a more challenging environment. On the one hand, small-time constant processes
(10–100ms) need lower sampling periods than the average of the measured RTT. If
the system has not fast dynamics, the presence of the network could be overlooked,
since the characteristic times of those processes are several orders higher than the
network delay. On the other hand, the control of unstable processes has to meet hard
requirements. Delays and data dropouts can easily unstabilize the control loop.
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Fig. 4.7 Scheme of the experimental framework

4.6.2 Performance of Event-Triggered Control

The plant to test the event-triggered control is the flexible link shown in Fig. 4.8. The
control objective is to respond to angular position commands with minimal amount
of vibration and overshoot of the link. To get a complete model of a flexible link is
beyond the scope of this framework. In controlling the extreme end of the link, it is
sufficient to use a simplified model that will adequately describe the motion of the
endpoint, that results in

⎛
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ẋ2
ẋ3
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⎞
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⎟
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where x1 = θ, x2 = θ̇ , x3 = α, x4 = α̇, θ is the angle of the gear, and α is the arm
deflection.

Torque 

Spring Torque:  

θ

θ +α
Jsti f f α

(a) (b)

Fig. 4.8 The flexible link: a View of the module and b model
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A feedback gain K is design to control the system:

K = (17.3205 − 24.7388 1.7164 0.5007), (4.51)

that sets the poles at {−48.13,−35.34,−8.43+11.50i,−8.43−11.50i}. An antici-
pative controller based on the model (4.50) and the feedback gain (4.51) is designed
for the flexible link. The system is sampled with h = 10ms, and the driver pro-
vided by Quanser is used to emulate full state measurement because the sensors only
provides measurements of θ and α.

First, we afford the study of the influence of the parameter δ of the trigger function
(4.4). The response to an angular position step command is shown in Fig. 4.9. Three
values are considered: δ = 0.05 (blue), δ = 0.1 (red), and δ = 0.2 (green). The
angle of the gear x1, the arm deflection x2, the control input, and the events execution
are depicted.
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Fig. 4.9 Step response for the event-based controller with δ = 0.05 (blue), δ = 0.1 (red), and
δ = 0.2 (green)
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Note that the performance in the three situations is similar, and the main differ-
ences are in the number of triggered events. If δ = 0.05, the frequency of generation
of events is high when the system reaches the final set around the equilibrium. These
events are possibly caused by the noise in the measurements. Thus, this fact should
be taken into account when designing the trigger function.

Another interesting phenomenon can be observed, for instance, in the second
design (δ = 0.1). In the interval of time (1.5, 3) s, the detection of an event usually
involves an additional transmission very close to the previous one. This occurs when
the RTT is larger than the sampling period. Since a new control packet has not been
received, another state packet is transmitted asking for control actions. Thus, the pre-
vious transmission is considered as lost. Note that the packets are not acknowledged
in the proposed protocol. Alternatively, acknowledgment of packets can be set up
with a convenient waiting time.

Finally, it can be noticed that when the system reaches the final set around the set
point, the frequency of transmission is almost constant with a transmission period
around 100–140ms, since an event is also enforcedwhen the number of the remaining
elements in the actuator buffers is below the parameter N̄u (see Algorithm 4.1).

Figure4.10 shows the system response for three different frameworks:

1. Classical control scheme The conventional state feedback controller is located
at the process side (classical control scheme).
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Fig. 4.10 Performance comparative of the local controller (blue), the remote controller withNu = 1
(green), and the remote controller with Nu = 20 (red)
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Table 4.1 Performance parameters of the three frameworks depicted in Fig. 4.10

Framework Rise time (s) Settling time (s) Overshoot (%) IAE Events

1 0.13 0.91 40.01 0.063 300

2 0.29 0.43 0.00 0.114 182

3 0.17 0.71 46.64 0.086 65

2. Remote state feedback The state feedback controller receives measurements
and sends control actions through the network without using a model and/or
compensation of network effects with event-triggered sampling and δ = 0.1.

3. Remote state feedback controller with anticipative strategy The anticipative
controller proposed with the state feedback basis controller with sequence length
Nu = 20 (length of control and prediction sequences), and the trigger function
with δ = 0.1.

The three previous frameworks have the same controller tuning and what change is
only the control architecture. The performance of the three frameworks is summed
up in Table4.1. It can be noticed that in the second case (green) the response exhibits
a slower response because the actuator does not receive in time a control action
and applies zero, whereas the settling time and the overshoot for the state feedback
controller (blue) and the proposed design (red) are similar. If the number of events
from the second and third frameworks are compared, it leads to a reduction of 64%
in the number of transmissions.

The Integral Absolute Error (IAE) is computed for the three frameworks and for
the first component of the output vector as

IAE =
∫ tf

t0
|esp(t)|dt,

where esp(t) = ysp − y(t). The IAE is increased with event-triggered due to the
existence of a stationary error that varies with δ. Nevertheless, the IAE is reduced
with the anticipative strategy (framework 3) respect to the second framework.

4.6.3 Response to Disturbances

The disturbance estimator is evaluated when the system is in the equilibrium and it is
perturbed in the output, by pushing the flexible link in one direction first, and next to
the opposite direction. Figure4.11 shows the system response in two situations:When
disturbances are estimated, and when they are not. Note that the controller exhibits
much better behavior when the disturbance is estimated. Such estimation is shown in
Fig. 4.12. Each plot corresponds to a component of the estimated disturbance vector
wm(k). Note that the signals are piecewise constant and each update corresponds to
the reception of a new state packet, i.e., the occurrence of an event.
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The number of events is reduced even more and accounts for almost the half of
the events without disturbances estimation.

In order to avoid the noise influence on the disturbance computation, a threshold
is defined so that wm(k) is set to zero if the estimation is below this threshold. If this
strategy is not taken, additional and undesired events may be generated.

4.6.4 PI Anticipative Control

To test the design for LTI anticipative controllers, a PI controller is designed for the
SRV-02 gear, which is the module coupled to the flexible link described above.When
used separately, one can experiment with angular position, as it has a decoder which
determines the angle of the gear. The plant is modeled as a first order system with
an integrator as follows

G(s) = −46.7

s2 + 33.3s
. (4.52)

In the state-space representation, the state vector is xT = (x1 x2), y = x1 = θ ,
x2 = θ̇ , being θ the angle of the gear. A PI controller has been design to control the
angle. The parameters of this controller are

kp = −2.5, Ti = 1. (4.53)

The rising time, settling time, and overshoot are 0.36 s, 2.78 s, and 16.10%, respec-
tively, with these parameters for a step command.

This controller is taken as the basis controller of the model-based approach. The
performance of the PI anticipative controller over the SRV-02 gear is analyzed in two
different situations:

1. The controller is anticipative with a length of predictions Nu = 50, but with
periodic transmission from the sensor to the controller.

2. Such transmission is event-triggered (4.32) with δy = 0.1 rad, and the rest of the
parameters are the same.

The results for a particular experience are shown in Fig. 4.13. On the left hand side,
the output is displayed when the reference is a square wave. The results highlight the
benefits of the event-based communication. If the parameter δy is selected properly,
the system response is similar to the time-based case, but the exchange of data plant-
controller through the network is considerably reduced. Note, however, that there is
a stationary error not compensated, defined by δy.

On the right hand side of Fig. 4.13 the parameter denoted Index usage is depicted.
This parameter represents the number of times that the element index, index =
1, . . . , Nu of any control sequence {Uk, k ∈ N} has been applied by the actuator.
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Fig. 4.13 Comparison of time-based (blue) and event-based (red) PI anticipative controllers

We remind that the first i0 elements are discarded according to the current mea-
surement of the RTT, and the subsequent elements are applied until a most recent
computation is received.

If the time-based event-based transmission policies are compared, amore efficient
usage of the received control sequences in the event-triggered approach is appreci-
ated.

Note that the indices at which the peak values are reached are basically the same,
but the index usage of the subsequent elements rapidly decreases in the periodic
transmission, since they are only used in case the delay is large enough so that new
data has not been received yet. However, new control packets are not requested
until the error exceeds the threshold δy or the index reaches the bound N̄u in event
triggering.

4.6.5 Network: Delays and Packet Losses

An interesting property to study is the RTT that characterize this framework. In
particular, when the remote controller connects to a wireless network the reliability
decreases. Three samples of data taken at different times of the day for the wireless
network are depicted in Fig. 4.14. It can be observed that the minimum value remains
almost constant around 8ms in the three situations. There is not a predictable profile
and, apparently, there are random peaks. These sudden increments may be due to
increase of network traffic or the server providing other services. The maximum
values correspond to the dotted lines.

The network-induced delay and the packet dropouts are intrinsic properties to the
communication channel and cannot be predetermined. Hence, studying the system
under different network conditions is a difficult task a priori. However, artificial
delays or packet losses can be induced from the user application.

The effect of both phenomena over the system performance is discussed next.



4 Event-Triggered Anticipative Control over Packet-Based Networks 109

0 5 10 15 20 25 30 35 40
0

50

100

150

t (min)

R
T

T
 (

m
s)

Fig. 4.14 Measured RTT in three experiments: 10 AM (red), 3 PM (green), 8 PM (blue)

4.6.5.1 Study of the Delay Impact

If the theoretical upper bound is computed according to (4.17) for the SRV-02 gear
model, it follows that ‖Aτ − I‖ < 1 is satisfied if τ < 23 sampling periods, that
is, 230ms when the sampling period is 10ms. This result holds assuming that the
model is perfect, obtaining a more conservative upper bound if model uncertainties
are considered.

An experiment to set the value of the average RTT to 20, 50, 100, and 230ms
has been designed by introducing artificial delays. The rise time, settling time, and
overshoot have been computed for the five cases described above. The results are
summarized in Table4.2. The settling time increases with the RTT, whereas the rise
time is preserved in adequate values except in the last case.

4.6.5.2 Study of the Packets Dropouts Impact

As a delay, a packet loss cannot be predetermined in the Internet, but, as in the
previous case, it can be caused artificially. This allows testing the robustness of the
designed approach for a set of values of probability of data dropouts.

Table 4.2 Performance parameters for different values of average RTT

RTT (ms) Rise time (s) Settling time (s) Overshoot

0 0.38 0.45 0.00

20 0.32 0.63 0.00

50 0.28 1.25 2.34

100 0.37 1.20 4.67

230 1.16 2.87 2.09
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Table 4.3 Performance parameters for different values of p

p Rise time (s) Settling time (s) Overshoot

0.0 0.35 0.40 0.00

0.2 0.34 0.42 0.00

0.4 0.34 0.45 0.00

0.6 0.32 0.55 15.92

0.8 0.59 0.92 18.10

The chance of not losing a packet has been modeled by a Bernoulli discrete
distribution with a probability of success q, so that the probability of losing a packet
is p = 1− q. As an example, Table4.3 shows the parameters of the system response
for different values of p. For example, a value of p = 0.4 means that 40% of the
packets will be lost in average. The system exhibits good behavior if p ≤ 0.6 as the
rise and settling times are almost the same in this interval, and the degradation of
performance is evident if only one of each five packets are delivered. Note that a
high value of p causes an increase in the overshoot, whereas this phenomenon is not
so appreciated with large RTTs.

4.7 Conclusions

An anticipative controller for packet-based NCS has been presented. A model of the
plant predicts future states of the plant and, with this information, generates future
control actions, and the frequency of communication is reduced thanks to the event-
based sampling. The proposed design is improvedwith a disturbance estimatorwhich
allows reducing the differences between the measured and the predicted state.

The design has been extended to output measurements and LTI controllers. Also,
a Luenberger observer is used to estimate the state of the plant in the inter-event time
so that future states of the plant can be predicted and, hence, future control actions
can be derived.

The proposed architecture has been implemented and evaluated in a framework
in which the remote controller communicates with the process through the Internet.
The remote controller has been tested over two devices, a DC motor and a flexible
link, and state-feedback, and PI controllers have been taken as basis controllers. The
experimental results have analyzed the influence of the architecture, the design of
the trigger function, or the impact of network delays and packet dropouts. The event-
based anticipative controller has been shown to be efficient against delays and packet
dropouts, while reducing the need of communication.



Chapter 5
H2/H∞ Control for Networked Control
Systems with Asynchronous Communication

Luis Orihuela and Carlos Vivas

5.1 Introduction

Due to the limited transmission capacity of the network and inherent delays in com-
munications, data transmitted in practical NCSs cannot be guaranteed to reach the
control loop devices synchronously and periodically. Therefore, to ensure closed-
loop stability and achieve better performance of the considered systems, these effects
should be taken into consideration.

In Chap. 4, the problem is studied resorting to model-based anticipative controllers
that generate a finite-horizon sequence of future control actions. The sequence is thus
stored into the actuator buffer and applied synchronously at each sampling time. A
complementary approach, that is tackled in this chapter, is to attenuate the effects
caused by delay disturbances designing the controller in such a way that can cope
with delays and eventual packet losses to a certain extent. This is the so-called robust
design approach for NCS.

The problem has been thoroughly studied in the literature ([119, 129, 184, 275]
to name a few). Available design techniques typically are overly conservative, and
this is the reason why many works focus in reducing conservatism for a given char-
acterization of the communication channel. For network-induced delays, a common
measurement of conservativeness is the maximum allowed delay bound (MADB),
that states the maximum time span allowed for the actuator to be open-loop (without
receiving control information from the controller) before the system goes unstable,
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see [120, 129, 275] for some examples of the use and computation of the MADB in
the NCS context.

Nonetheless, the maximization of the MADB per se is not generally useful for
practical NCS applications, as in addition to stability, closed-loop performance
requirements are usually imposed on the system. The H∞ control problem is able
to address the issue of disturbance rejection and model uncertainty. It was first for-
mulated [238, 279] in the early 1980s where the L2-gain disturbance attenuation
problem played a key role. The effectiveness of the controller in attenuating dis-
turbances according to the H∞ norm has been reported and studied for NCSs in a
variety of works [37, 120, 224, 254, 259, 275].

The aforementioned results mostly solve the L2-gain disturbance rejection prob-
lem for state-feedback controllers in NCSs. This chapter, in addition to disturbance
attenuation will introduce performance control in an optimal control context for NCS.
The joint optimal control and disturbance attenuation is usually referred to in the lit-
erature as the H2/H∞ control problem, as the H2 part accounts for the optimization
of a performance index, with an L2-gain disturbance rejection constraint in the H∞
component.

Some works in the literature address the mixed H2/H∞ problem for related frame-
works, as time-delay systems [130], descriptor delayed system [276], or neutral sys-
tems with delays [38]. All these works formulate the minimization of the H2 cost
index with a given H∞ disturbance rejection level. More precisely, to minimize the
H2 index, a more or less conservative upper bound for a cost function J is obtained,
which generally depends on the initial conditions.

The method proposed in this chapter, based on the works in [170, 174], deals
with the design of controllers for linear NCSs subject to L2 bounded disturbances,
where signals are influenced by time-varying delays and packet dropouts. Given a
cost function J and a controlled output z(t), the proposed problem can be informally
stated as designing a linear controller such that:

• Stabilizes the unperturbed system (ω(t) ≡ 0), as the cost function J is minimized.
• The controlled output satisfies ‖z(t)‖2 ≤ γ ‖ω(t)‖2 for any non-zero disturbance

ω(t).

It is worth mentioning that the optimization of the H2 part is conducted in this
description in a different way to other similar approaches, as no knowledge of the
initial condition is needed.

Once the background for the mixed H2/H∞ problem in NCS is introduced, the
second part of the chapter is devoted to present an event-based communication policy
between the sensor and the controller, in pursue of a further efficient use of the
available bandwidth and energy consumption reduction.

The key feature of asynchronous schemes is its communication efficiency and
energy awareness, see [8, 239]. In the case of event-based control this efficiency
materializes, roughly speaking, by transmitting information only when it is significant
for control purposes. The specific advantages of these strategies in system efficiency
depend on the control application. For instance, in large-scale plants it is common the
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use of, frequently unaccessible, wireless sensors. In such situations, increasing the
battery lifetime through asynchronous communication strategies becomes crucial.
Moreover, in wired networks, the communication channel is often shared by a large
number of different devices and control loops. By communicating only relevant
control information rather than periodically transmitting measurements or control
actions, the bandwidth requirement of these control loops is reduced, which has a
great impact on the network performance, reducing collisions, packet losses, and
time-delays.

Asynchronous communications are introduced by appropriately selecting a LKF
and remodeling the system’s dynamics to account for asynchronous communica-
tions. The chapter investigates the trade-off between the frequency of communication
events and control performance, obtaining an expression that relates the threshold
for the sampling events with the size of the ultimate region in which the state of the
system is eventually confined. As a consequence of this study, it is demonstrated for
that a discrete TDS admitting a LKF remains practically stable in the presence of
bounded additive disturbances.

The problem described in this chapter is precisely outlined in Sect. 5.2, with a
description of the network assumptions, the system model considered and the prob-
lem to be solved. Section 5.3 provides a suboptimal solution of a mixed H2/H∞
control problem for a certain class of time-delayed systems with quadratic perfor-
mance index. The solution is later particularized to NCS in Sect. 5.4 where an specific
Lyapunov–Krasovskii functional is proposed which allows to cast the problems in
the form of a set of LMIs. An event-based approach is then considered in Sect. 5.5
providing conditions for the practical stability of delayed asynchronous systems.
The performance of these methods is assessed with some simulation examples in
Sect. 5.6.

5.2 System Description

The system considered in this chapter is linear, but affected by external disturbances.
As shown in Fig. 5.1, this system is controlled by a remote agent. The communication
between plant and controlled is made through a communication network.

The dynamics of the system is given by:

x(k + 1) = Ax(k) + Bu(k) + Bww(k), (5.1)

where x(k) ∈ R
n is the state, u(k) ∈ R

m the control signal and w(k) ∈ R
nw external

disturbances. A, B, Bw are known matrices with adequate dimensions. The initial
condition for the plant is x(k) = φ(k), where φ(k) is a vector-valued function
defined in k ∈ [−τmax , 0], being τmax the upper bound of the communication delay,
which will be presented in the following subsection.

This section will show that, under some assumptions concerning network con-
ditions, a control loop closed through a communication network can be modeled
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Fig. 5.1 Scheme of the
networked control system PlantA S

Network

Controller

τca

τsc

according to a piecewise discrete time-delay system. This method has been used in
companion works for continuous systems, see [172, 174]. The idea underneath is
called the input-delay approach, which was firstly proposed in [75].

5.2.1 Network Conditions

As Fig. 5.1 suggests, plant and controller are physically distributed and linked through
a communication network that induces transmission delays in both, sensor to con-
troller path (τsc) and controller-to-actuator path (τca). The sensor samples plant states
periodically at instants ji , and sends this information through the network. Packets
are affected by time-varying delay (τsc), and some packets may be eventually lost.
To account for packet dropouts, it is assumed that ji (i = 1, 2, 3, ...) are integers
such that { j1, j2, j3, ...} ⊆ {1, 2, 3, ...} and ji < ji+1. In other words, dropouts are
modeled as extended delays between two or more consecutive packets.

On the other side (see Fig. 5.1), the controller computes a new control signal
whenever a new delayed state is received. Then, this control signal is released to the
actuator through the controller-to-actuator path, being affected by delay (τca) and,
possibly, packet dropouts.

As described for the controller side, the actuator applies the control action as it
is received. The actuator consists of a simple zero-order holder, as it maintains the
value of the control action until a new packet arrives. A packet numbering protocol
is assumed so the relative order of packets can be inferred at the actuator’s end.
Out-of-order packets are thus rejected by the actuator.

Let us define k ∈ [ki , ki+1 − 1] as the time interval where the control input
applied to the system is constant, where ki is the instant when the control action,
corresponding to the plant state at ji , is applied to the plant. Figure 5.2 illustrates a
possible time scheduling, where all these elements, delays and packet dropouts, are
sketched.

The state feedback control law can therefore be written as

u(k) = K x(ki − τsc( ji ) − τca( ji )), k ∈ [ki , ki+1 − 1], (5.2)
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Fig. 5.2 Delays and packet
dropouts affecting the
communication between
plant and controller

sensor

controller

actuator

ji ji+1

τsc

kiτca ki+1

where τsc( ji ) and τca( ji ) are the network-induced delays of the packet corresponding
to the measured plant state at ji , from sensor to controller and from controller-to-
actuator, respectively. The round-trip delay τsa( ji ) can also be defined as τsa( ji ) �
τsc( ji ) + τca( ji ).

Thus the system (5.1) under the control law (5.2) can be rewritten as

x(k + 1) = Ax(k) + BKx(k − τ(k)) + Bww(k), k ∈ [ki , ki+1 − 1], (5.3)

where τ(k) � k − ki + τsa( ji ) is an artificial delay that includes the effect of both
network-induced delays and dropouts. It turns out that τ(k) is piecewise linear for
k ∈ [ki , ki+1 − 1], as it represents the difference between the i th sampling time, ji ,
and current instant k.

The following assumption characterizes the network conditions with respect to
induced delays and packet dropouts. It imposes fairly standard and realistic con-
straints in the NCS framework.

Assumption 5.1 Three constants τ sa, τ sa, n p ≥ 0 exist such that:

• The network-induced delay from sensor to actuator τsa(k) satisfies τ sa ≤ τsa(k) ≤
τ sa,∀k.

• The maximum number of consecutive packet dropouts from sensor to actuator is
bounded by n p.

The following proposition, whose proof is straightforward, gives the numerical
bounds of the artificial delay τ(k).

Proposition 5.1 Taking into account Assumption5.1, two constants τmax > τmin ≥
0 exist such that

τ(k) ≥ τmin � τ sa, (5.4)

τ(k) ≤ τmax � n p + τ sa . (5.5)

Hence, at this point, the considered NCS has been modeled as a piecewise discrete
linear system affected by time-varying, but bounded delays.
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5.2.2 Problem Statement

For the system (5.3) consider the following two outputs:

z2(k) = C2x(k) + D2u(k), (5.6)

z∞(k) = C∞x(k) + D∞u(k). (5.7)

Based on the first output z2, a cost functional is defined to evaluate the control
system performance:

J2 =
∞∑

j=k0

zT
2 ( j)z2( j). (5.8)

Then, the problem to be solved in this chapter can be formally presented.

Definition 5.1 (Suboptimal mixed H2/H∞ control problem in discrete time)
Consider the system described by (5.3). Given:

• A desired level of disturbance attenuation γ , and
• A quadratic cost function J2 in the form (5.8),

the suboptimal mixed H2/H∞ control problem in discrete time consists in finding a
linear controller K such that:

1. The closed-loop system is asymptotically stable for w(k) ≡ 0,
2. The controller minimizes the upper bound of the cost function J2 for w(k) ≡ 0,
3. Under the assumption of zero initial conditions, the output z∞(k) satisfy

‖z∞(k)‖2 ≤ γ ‖w(k)‖2 for any non-zero disturbance w(k) ∈ L2[0,∞).

Loosely speaking, the objective of the mixed H2/H∞ control problem will be to
synthesize a linear state feedback controller such that the performance index H2 is
minimized and the closed-loop system has an H∞ norm less or equal than γ .

Once the controller has been properly found, the chapter will show the imple-
mentation of this scheme under an asynchronous paradigm. Event-based strategies
will be used to reduce the communication between controller and plant preserving
the stability.

5.3 General Solution for the Suboptimal Mixed H2/H∞
Control Problem

In this section, a general solution for the suboptimal mixed H2/H∞ problem will
be presented. The stability properties of the solution are based on the Lyapunov–
Krasovskii theory. Next, some assumptions concerning the Lyapunov–Krasovskii
functional (LKF) are introduced.
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Assumption 5.2 The discrete quadratic Lyapunov–Krasovskii functional can be
written as

V (k) = ζ T (k)Ψ ζ(k), (5.9)

where ζ(k) = [
xT (k) xT (k − 1) xT (k − 2) . . . xT (k − τmax )

]T ∈ R
nζ and Ψ ∈

R
nζ ×nζ is a positive definite matrix. Additionally, the forward difference ΔV (k) �

V (k + 1) − V (k) can be bounded by:

ΔV (k) ≤
⎧
⎨

⎩

ξ T (k)Ξ(K )ξ(k), w ≡ 0
[

ξ(k)

w(k)

]T

Ω(K , γ )

[
ξ(k)

w(k)

]

− zT∞(k)z∞(k) + γ 2wT (k)w(k), w 
= 0

(5.10)
being ξ(k) ∈ R

nξ an augmented state vector which depends, among others, on

the state of the system and Ω(K , γ ) =
[

Ξ(K ) + C̄z(K ) B̄w(K )

∗ −γ 2 I + D̄w(K )

]

. The

symmetric matrices Ξ(K ), C̄z(K ) ∈ R
nξ ×nξ , D̄w(K ) ∈ R

nw×nw and the matrix
B̄w(K ) ∈ R

nξ ×nw might depend, among others, on the controller K .

Assumption 5.3 The cost functional J2 can be written in the following way:

J2 =
∞∑

j=k0

ξ T ( j)Φ(K )ξ( j), (5.11)

where Φ(K ) is a positive semidefinite matrix that might depend on the controller K .
Although a priori, these assumptions might seem difficult to satisfy, reviewing the

functionals commonly used in the literature, as [39, 76, 131, 156], one can see that
Assumptions 2.2 and 2.3 are easily fulfilled.

The following lemma proposes a general solution to the problem defined above.
For a generic functional satisfying the assumptions, the H2/H∞ controller can be
found by means of an optimization problem.

Lemma 5.1 Let V (k) be a functional satisfying Assumption2.2 and J2 a cost func-
tional which can be written as detailed in Assumption5.3 Then, the suboptimal mixed
H2/H∞ control problem can be solved by finding a controller K such that:

min
K

λmax (Ψ ), (5.12)

subject to Ξ(K ) < −Φ(K ), (5.13)

Θ(K , γ ) < 0. (5.14)

Proof It will be shown that a controller that solves the optimization problem (5.12)
subject to (5.13) and (5.14) also satisfies all the issues of Definition 5.1.

http://dx.doi.org/10.1007/978-3-319-21299-9_2
http://dx.doi.org/10.1007/978-3-319-21299-9_2
http://dx.doi.org/10.1007/978-3-319-21299-9_2
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1. For w(k) ≡ 0, considering (5.10), it holds that ΔV (k) ≤ ξ T (k)Ξ(K )ξ(k).
From (5.13), one can easily see that Ξ is negative definite, and therefore V (k)

decreases, this ensuring the asymptotic stability of system.
2. For w(k) ≡ 0, considering (5.10), it holds that ΔV (k) ≤ ξ T (k)Ξ(K )ξ(k). From

(5.13), it turns out

ΔV (k) ≤ ξ T (k)Ξ(K )ξ(k) < −ξ T (k)Φ(K )ξ(k). (5.15)

Calculating the summation of both sides of (5.15) from k0 to k, it yields

k∑

j=k0

ΔV ( j) < −
k∑

j=k0

ξ T ( j)Φ(K )ξ( j).

Observe that
∑k

j=k0
ΔV ( j) = ∑k

j=k0
(V ( j + 1) − V ( j)) = V (k + 1) − V (k0).

When k → ∞, the asymptotic stability of the system implies that V (k) → 0, so
that,

−V (k0) ≤ − 1

α

∞∑

j=k0

ξ T ( j)Φ(K )ξ( j).

The right-hand side of the previous equation is exactly −J2, as Assumption 5.3
claims. Hence,

−V (k0) ≤ −J2 =⇒ J2 ≤ V (k0)

The value of V (k0) depends on the initial condition φ(k). In particular, and
regarding to (5.9), it turns out

V (k0) = φT (k)Ψ φ(k) ≤ λmax (Ψ )‖φ(k)‖2

Therefore, minimizing λmax (Ψ ) the upper bound of the cost function J2 is min-
imized regardless of the initial conditions.

3. For w 
= 0, taking into account Eq. (5.10) in Assumption 5.2 and condition (5.14),

the term

[
ξ(k)

w(k)

]T

Θ(K , γ )

[
ξ(k)

w(k)

]

is negative definite. Then, under zero initial

conditions,

ΔV (k) ≤ −zT∞(k)z∞(k) + γ 2wT (k)w(k). (5.16)

Computing again the summation of both sides of (5.16) one can see that

V (k + 1) − V (k0) ≤ −
k∑

j=k0

zT∞( j)z∞( j) +
k∑

j=k0

γ 2wT ( j)w( j).
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Then, letting k → ∞ and taking into account that under zero initial condition
V (k0) = 0 and the positive definitiveness of the functional, it can be shown that

0 ≤ −
∞∑

j=k0

zT∞( j)z∞( j) +
∞∑

j=k0

γ 2wT ( j)w( j),

thus ‖z∞(k)‖2 ≤ γ ‖w(k)‖2.

Lemma 5.1 differs from other approaches available in the literature in some
aspects. First of all, it presents a general result that can be applied to many sorts
of Lyapunov–Krasovskii functionals. Additionally, the minimization of the upper
bound of the cost index J2 is made independent of the value initial condition φ(k).
Finally, and although we will apply it to find controllers for NCS, it can also be used
for time-delay systems, as it has been shown in [207].

5.4 Application to Networked Control Systems

Section 5.2 shown that the dynamics of the closed-loop NCS can be described as a
piecewise discrete time-delay system. The evolution given in Eq. (5.3) was only valid
for the period in which the control signal remains constant, that is, k ∈ [ki , ki+1 −1].
However, the optimization problem proposed in Lemma 5.1 can be also applied to a
NCS. The underlying idea is simple. Through Lemma 5.1, it will be assured that the
forward difference of the Lyapunov–Krasovskii functional is negative for the period
[ki , ki+1 − 1]. As the functional is the same for every interval, we will prove that the
forward difference is negative ∀k. The same arguments are also valid for the other
issues in Definition 5.1.

5.4.1 Lyapunov–Krasovskii Functional

For the stability of the NCS, the chapter proposes the following Lyapunov–Krasovskii
functional:

V (k) = xT (k)Px(k) +
k−1∑

i=k−τmax

xT (i)Z1x(i) +
k−1∑

i=k−τmin

xT (i)Z2x(i)

+ τmax

0∑

j=−τmax +1

k−1∑

i=k+ j−1

ΔxT (i)Z3Δx(i)

+ (τmax − τmin)

−τmin∑

j=−τmax +1

k−1∑

i=k+ j−1

ΔxT (i)Z4Δx(i), (5.17)
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where Δx(i) = x(i + 1) − x(i) and matrices P, Z1, Z2, Z3, Z4 are all positive
definite.

It is easy to find in the literature more complex functionals to deal with time-
varying delays, as in [76, 77, 96], that produce less conservative results. However,
the objective of this chapter is not the reduction of the conservatism by using a novel
functional or tricky mathematical manipulations, but to give a general method to
design H2/H∞ controllers for NCS.

Proposition 5.2 The Lyapunov–Krasovskii functional (5.17) satisfies all the condi-
tions presented in Assumption5.2. On the one hand, it can be written as in (5.9) by
choosing

Ψ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P 0 . . . 0 0 . . . 0
0 Z1 + Z2 . . . 0 0 . . . 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . Z1 + Z2 0 . . . 0
0 0 . . . 0 Z1 . . . 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . 0 0 . . . Z1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ τmax

τmax∑

i=0

⎡

⎢
⎢
⎢
⎣

Z3 −Z3 . . . 0
−Z3 2Z3 . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . Z3

⎤

⎥
⎥
⎥
⎦

k
k − 1

.

.

.

k − τmax

+ (τmax − τmin)

τmax∑

i=τmin

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 . . . 0 0 . . . 0
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

0 . . . Z4 −Z4 . . . 0
0 . . . −Z4 2Z4 . . . 0
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

0 . . . 0 0 . . . Z4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

k
.
.
.

k − τmin

k − τmin − 1
.
.
.

k − τmax

On the other hand, the augmented state vector is

ξ(k) = [
xT (k) xT (k − τ(k)) xT (k − τmin) xT (k − τmax )

]T

and the matrices in (5.10) are given by:

Ξ(K ) = M + ÃT P Ã + ( Ã − Ĩ )T N ( Ã − Ĩ ),

Ω(K , γ ) =
[

M + C̃T∞C̃∞ 0
0 −γ 2 I

]

+
[

ÃT

BT
w

]

P
[

Ã Bw
] +

[
( Ã − Ĩ )T

BT
w

]

N
[
( Ã − Ĩ ) Bw

]
,

where

N = τ 2
max Z3 + (τmax − τmin)2 Z4,

M =

⎡

⎢
⎢
⎣

−P + Z1 + Z2 − Z3 Z3 0 0
∗ −2Z3 − 2Z4 Z4 Z3 + Z4
∗ ∗ −Z2 − Z4 0
∗ ∗ ∗ −Z1 − Z3 − Z4

⎤

⎥
⎥
⎦ ,
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Ã = [
A BK 0 0

]
,

Ĩ = [
I 0 0 0

]
,

C̃∞ = [
C∞ D∞K 0 0

]
.

The details of the proof are found in Appendix A.

5.4.2 Design Method

Using the previous Lyapunov–Krasovskii functional and Lemma 5.1, this section
presents the main result of this chapter. The following theorem states the synthesis
of a stabilizing controller as an optimization problem subject to nonlinear constraints.
Later, two methods will be presented to sort with those nonlinear terms, in such a
way that they can be replaced by a set of linear matrix inequalities.

Theorem 5.1 Given τmax , τmin, γ > 0, if matrices X, Y1, Y2, Y3, Y4 > 0 and
matrix W of appropriate dimensions solve the following optimization problem:

min
X,Y1,Y2,Y3,Y4,W

λmax (Ψ ), subject to:

⎡

⎣
Υ1 Υ2 C̄T

2∗ −Υ3 0
∗ ∗ I

⎤

⎦ < 0, (5.18)

⎡

⎢
⎢
⎣

Υ1 0 Υ2 C̄T∞
∗ −γ 2 I B̄ 0
∗ ∗ −Υ3 0
∗ ∗ ∗ −I

⎤

⎥
⎥
⎦ < 0, (5.19)

where

Υ1 =

⎡

⎢
⎢
⎣

−X + Y1 + Y2 − Y3 Y3 0 0
∗ −2Y3 − 2Y4 Y4 Y3 + Y4
∗ ∗ −Y2 − Y4 0
∗ ∗ ∗ −Y1 − Y3 − Y4

⎤

⎥
⎥
⎦

Υ2 = [
Ā τmax ( Ā − X̄) (τmax − τmin)( Ā − X̄)

]

Υ3 = diag{X, XY −1
3 X, XY −1

4 X}
B̄ = [

X BT
w τmax X BT

w (τmax − τmin)X BT
w

]

Ā = [
AX BW 0 0

]T

X̄ = [
X 0 0 0

]T

C̄2 = [
C2 X D2W 0 0

]

C̄∞ = [
C∞ X D∞W 0 0

]
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then the suboptimal mixed H2/H∞ controller for the system (5.3) is given by K =
W X−1.

Proof The proposed Lyapunov–Krasovskii functional verifies all the issues in
Assumption 5.2. Furthermore, it is straightforward to satisfy also Assumption 5.3
defining Φ(K ) = C̃T

2 C̃2, with C̃2 = [C2 D2 K 0 0].
Now, Lemma 5.1 is used to design the mixed H2/H∞ controller. From Eq. (5.13)

we can obtain (5.18) applying Schur complement and pre- and post-multiplying the
inequality by diag{P−1, P−1, P−1, P−1, I, I, I }. To obtain (5.19) from condition
(5.14) we repeat the mathematical manipulation and pre- and post-multiplying the
diag{P−1, P−1, P−1, P−1, I, I, I, I }.

Finally, introducing the definitions X � P−1, Yi � X Zi X (i = 1, ..., 4), W �
K X , Theorem 5.1 is proved.

Note that conditions (5.18) and (5.19) are not linear because of the terms XY −1
3 X

and XY −1
4 X in Υ3. In order to find a solution for the optimization problem, one can

use one of the following methods to deal with those nonlinearities:

Direct constraint on XY−1
i X A direct method to deal with this nonlinearity consists

in introducing two additional constraints to the optimization problem:

−XY −1
3 X < − 1

μ3
X, −XY −1

4 X < − 1

μ4
X.

Note that previous conditions are equivalent to Yi < μi X, i = 3, 4, which
are linear. This method introduces extra conservatism, but it is computationally
easy to implement. Comparing with a similar solution in [275], in which it was
imposed that Yi = μi X , the one proposed here covers a much wider range of
possible solutions in the space of positive definite matrices.

Cone complementary algorithm Similarly to [184], the cone complementary algo-
rithm can be used to address the nonlinear matrix inequalities (5.18) and (5.19)
by introducing some new matrix variables and constraints. The algorithm can be
found in [64].
This method requires to solve a second optimization problem with linear con-
straints. Therefore, it requires much more computation capabilities. However, it
does not introduce any additional conservatism in the solution.

The interested reader can find much more information of both methods in
Appendix B.
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5.5 Event-Based Control Implementation

This section tackles an asynchronous, event-based implementation of the controller
developed in the sections above. It will be theoretically demonstrated that an asymp-
totically stable system affected with time-delays that admits an LKF, remains globally
uniformly ultimately bounded (GUUB) in the presence of bounded disturbances.
This result, together with an adequate remodeling of the system dynamics, will
allow to demonstrate the stability of the H2/H∞ controller under an asynchronous,
event-based implementation. Besides, an expression relating the size of the ulti-
mate invariant region and the threshold triggering the communication events will be
derived, which illustrates the trade-off between control performance and communi-
cation savings.

For the sake of conciseness, some simplifications will be done in this section. First,
packet dropouts will not be explicitly considered, so the analysis will be carried out
considering only time delays. Additionally, the analysis will be performed in the
absence of exogenous disturbances w(k).

5.5.1 Proposed Approach

The event-based control approach is a means to reduce the information exchange
rates between the components in the network by triggering the communication only
after an event has indicated that a certain relevant variable exceeds a tolerable pre-
defined threshold. In particular, this chapter uses the deadband control approach
explained in Sect. 1.6.1. From a modeling point of view, the main difference between
a periodic transmission scheme and the event-driven paradigm described here is the
non-uniform pattern of transmission of information.

Let �s(k) denotes the time instant when the sensor sent the more recent packet
at current time instant k, and �a(k) the time instant when the sensor sent the more
recent packet whose corresponding control action is available for the actuator at cur-
rent time instant k.

Triggering condition Given a threshold δ, at instant k the sensor transmits the plant
state to the controller if

‖x(�s(k)) − x(k)‖∞ ≥ δ, for k > �s(k). (5.20)

Figure 5.3 illustrates the modification. As it can be seen, the sensor decides when
to transmit the information. Its decision is based on the difference between the actual
measurement x(k) and the last measurement that it was sent x(�s(k)). Observe that
the sensor ignores �a(k), as the delays are time varying. The dynamics of the closed
loop is now given by:

http://dx.doi.org/10.1007/978-3-319-21299-9_1
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Fig. 5.3 Scheme of the
asynchronous networked
control system

PlantA S

Network

Controller

τca

τsc

x(k + 1) = Ax(k) + BK x(�a(k)), (5.21)

where no external disturbances have been considered.

5.5.2 Remodeling the Node Dynamics

This section introduces the modifications needed to remodel the system dynamic
equations according to the approach introduced above. Consider the round-trip com-
munication, that is, the communication of the plant measurements from the sensor
to the controller and the communication of the corresponding control signal from
the controller to actuator. As Fig. 5.4 suggests, there are two possible situations with
respect to the information received by the actuator:

• Case 1 The last packet received by the actuator was sent by the sensor before
k − τmax , so �a(k) < k − τmax . Taking into account that the maximum delay is
equal to τmax , it is not possible that �s(k) ∈ {�a + 1, k − τmax }, because in that
case the packet would be available at the actuator side at current time instant k.
Recall that packets cannot be dropped or lost.

• Case 2 The last packet received by the actuator was sent after k −τmax , so �a(k) ≥
k − τmax .

CASE 1 CASE 2

a(k) a(k)

k τmaxk τmax kk

jj

i
i

Fig. 5.4 Different cases regarding the transmission of information from node j to i
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Taking into account these cases, the plant dynamics can be rewritten as

x(k + 1) = Ax(k) + BK x(k − μ(k)) + BKη(k), (5.22)

where η(k) = x(�a(k)) − x(k − μ(k)) and μ(k) is defined as follows:

μ(k) =
{

τmax , �a(k) < k − τmax ,

k − �a(k), �a(k) ≥ k − τmax .

In the absence of external disturbances w(k), the closed-loop dynamics in (5.22)
is equivalent to the dynamics of the periodic communication case (5.3), with μ(k)

playing the role of τ(k).1 The only difference lies in the term η(k), which can be
interpreted as an external perturbation due to the discontinuous flow of information.
This disturbance is reset to zero when the actuator applies to the plant a control input
based on feedback belonging to the interval {k − τmax , k}.

Moreover, it is easy to see that ‖η(k)‖∞ < δ in both cases. In the Case 2, η(k) = 0.
In the Case 1, η(k) = x(�a(k)) − x(k − τmax ), with �a(k) < k − τmax . Since no
packet was transmitted by the sensor in {�a + 1, k − τmax } (because, otherwise, this
packet had been available in the actuator at current instant k), the triggering threshold
has not been exceed before k − τmax , and thus ‖x(�a(k)) − x(k − τmax )‖∞ < δ.
Therefore, ‖η(k)‖∞ < δ holds for both cases.

5.5.3 Practical Stability for Delayed Asynchronous Systems

Next, the main result of this section is introduced. Given an H2/H∞ controller
designed for the NCS (5.3) according to Theorem 5.1, the following result proves
that, by implementing the event-based sampling policy described above, the state of
the plant x(k) can be ultimately bounded into an arbitrary small region that depends
on the triggering threshold δ. The proof makes use of the quadratic structure of the
LKF (5.17), that allows to write it as presented in Proposition 5.2.

The following theorem is developed particularizing for the LKF (5.17), although
it is of general application.

Theorem 5.2 Consider an H2/H∞ controller designed for the plant (5.3) by means
of Theorem5.1. Then, using an event-based communication with triggering condition
(5.20), the state of the plant is GUUB with an ultimate bound given by

‖x(k)‖∞ ≤ δ

√
λΨ

max

λP
min

[(‖A‖∞ + ‖BK‖∞) D1 + ‖BK‖∞] ,

1It is straightforward to check that τmin ≤ μ(k) ≤ τmax for Cases 1 and 2.
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where

D1 = ‖Φ‖∞ +
√

‖Φ‖2∞ + λ
Q
min‖Π‖∞

λ
Q
min

,

Γ = [
K T BT PA K T BT PBK 0 0

]
,

Π = K T BT PBK,

being Q any positive definite matrix such that −Q > Ξ , with Ξ defined in Propo-
sition5.2.

Proof Consider the Lyapunov–Krasovskii functional (5.17). Including the distur-
bances due to the asynchronous flow of information, the forward difference takes the
form:

ΔV (k) ≤ ξ T (k)Ξ ξ(k) + 2ηT (k)Γ ξ(k) + ηT (k)Πη(k).

From Theorem 5.1, matrix Ξ is negative definite, so there exists a positive matrix
Q such that Ξ < −Q. Taking norms

ΔV (k) ≤ −λ
Q
min ‖ξ(k)‖2∞ + 2 ‖Γ ‖∞ ‖η(k)‖∞ ‖ξ(k)‖∞ + ‖Π‖∞ ‖η(k)‖2∞ ,

and taking into account the triggering condition (9.22), it yields

ΔV (k) ≤ −λ
Q
min ‖ξ(k)‖2∞ + 2 ‖Γ ‖∞ δ ‖ξ(k)‖∞ + ‖Π‖∞δ2.

Therefore, solving the second-order equation it can be ensured that ΔV (k) ≤ 0

for ‖ξ(k)‖∞ > δD1, with D1 = ‖Γ ‖∞+
√

‖Γ ‖2∞+λ
Q
min‖Π‖∞

λ
Q
min

.

For a generic vector σ and a positive scalar D, let Bσ
D denote the region of the

space defined by {σ : ‖σ‖∞ ≤ D}. Given that V (k) is positive and decreasing for
ξ(k) /∈ Bξ

δD1
, there exists a time instant k∗ when ξ(k∗) enters into the region Bξ

δD1
.

Since we are considering infinite norms and x(k) is included in the augmented vector
ξ(k), it turns out that x(k∗) ∈ Bx

δD1
.

As ξ(k∗) ∈ Bξ
δD1

for any realization of μ(k) ∈ [τmin, τmax ], it also holds that

ζ(k∗) ∈ Bζ
δD1

. Once ξ(k∗) belongs to this region, the Lyapunov function is not
necessarily decreasing and the augmented state may jump outside. In that case,
ξ(k∗ + 1) /∈ Bξ

δD1
. Using the dynamics of the plant given in Eq. (5.22), it is possible

to bound the plant state at instant k∗ + 1 by

‖x(k∗ + 1)‖∞ ≤ ‖A‖∞‖x(k∗)‖∞ + ‖BK‖∞‖x(k∗ − μ(k∗))‖∞ + ‖BK‖∞‖η(k∗)‖∞
≤ [(‖A‖∞ + ‖BK‖∞)D1 + ‖BK‖∞] δ.

http://dx.doi.org/10.1007/978-3-319-21299-9_9
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trajectory final region

max (Ψ norm)2

Bx
δD1

Bx
D2

Fig. 5.5 Trajectory of plant state in a two-dimensional space

Then x(k∗ + 1) ∈ Bx
D2

, where D2 = [(‖A‖∞ + ‖BK‖∞)D1 + ‖BK‖∞] δ.
Figure 5.5 illustrates a possible evolution of the observation error and the different
regions.

In this way, ξ(k∗ + 1) and ζ(k∗ + 1) may leave the regions Bξ
δD1

and Bζ
δD1

,
respectively. Then, the Lyapunov–Krasovskii functional must be decreasing again,
implying that V (k) ≤ max V (k∗ + 1) = max{ζ T (k∗ + 1)Ψ ζ(k∗ + 1)}. Therefore,
V (k) ≤ λΨ

max max ‖ζ(k∗ + 1)‖2∞ ≤ λΨ
max D2

2, ∀k > k∗ + 1.
Finally, to get the final bound on x(k) for k > k∗ +1, note that all the terms of the

Lyapunov functional involve positive definite matrices, so x(k)T Px(k) ≤ V (k),∀k.
Using fairy extended properties, it holds λP

min ‖x(k)‖2∞ ≤ x(k)T Px(k). Then, it

yields ‖x(k)‖∞ ≤
√

λΨ
max

λP
min

D2. This ends the proof.

Note that the final bound on x(k) depends on the threshold δ that triggers the
sampling. With δ = 0, the event-based sampling becomes a periodic one and the
asymptotic convergence will be accomplished. Furthermore, it is possible to use the
theorem to find the suitable δ in order to achieve a prescribed final bound on the plant
state and a trade-off between control performance and communication reduction.

Finally, it is worth mentioning that the optimization problem proposed to design
the controller minimizes the maximum eigenvalue of Ψ . In other words, the optimal
controller found contributes in the reduction of the final bound for the state.

5.6 Simulation Results

5.6.1 Example A

Consider the nominal discrete time system introduced in [39], in which we have
included disturbances:
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Fig. 5.6 Evolution of the
state for τk ∈ [1, 2]
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Fig. 5.7 Evolution of the
state for τk ∈ [1, 4]
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x(k + 1) =
[

1.01 0
0 1.2

]

x(k) +
[−0.25 0.1

0 0.1

]

x(k − τ(k)) +
[

0
1

]

u(k) +
[

0
0.1

]

w(k),

z2(k) = z∞(k) = x(k).

Let’s analyze the effect of the delay in the evolution of the system. Choosing γ < 1
two controllers have been designed with Theorem 5.1 for different delay bounds:

(a) τ(k) ∈ [1, 2]: The controller is K = [−0.1497 −1.0353
]
.

(b) τ(k) ∈ [1, 4]: The controller is K = [−0.0120 −0.9411
]
.

Figures 5.6 and 5.7 show the system’s response for both cases when the disturbances
have been taken as:
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w(k) =
⎧
⎨

⎩

w(k) = 1 ∀k ∈ [20, 30].
w(k) = −3 ∀k ∈ [50, 55].
w(k) = 0 otherwise.

It can be observed how the controller satisfactorily drives the system to the equi-
librium point, despite delays and disturbances. As expected, performance slightly
degrades when the delays are bigger.

5.6.2 Example B

Consider the networked control system introduced in [265]:

x(k + 1) =
[

1.0 0.01
0.5 0.7

]

x(k) +
[

0.1
0.1

]

K x(k − τ(k)) +
[

0.01
0.01

]

w(k),

z2(k) =
⎡

⎣
0.1 0
0 0.1
0 0

⎤

⎦ x(k) +
⎡

⎣
0
0

0.1

⎤

⎦ K x(k − τ(k)),

z∞(k) = [
0.1 0.1

]
x(k).

It is assumed that the network-induced delay are given by τ sa = 1 and τ sa = 3.
The maximum number of consecutive data losses is bounded by n p = 3.

Choosing γ < 1, Theorem 5.1 designs the controller K = [−0.8457 −0.0360
]
.

Next, we introduce the event-based communication policy between sensor and con-
troller. For the same controller designed above and assuming n p = 0, Fig. 5.8 shows
the evolution of the system and the events for the threshold δ = 0.2. Note that most
of the events have been triggered in the transient. When the system is evolving near
the equilibrium point, the amount of events decreases.

Fig. 5.8 Up Evolution of the
state. Down Events triggered
(δ = 0.2): Each event is
marked with an ◦
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Fig. 5.9 Up Evolution of the
state. Down Events triggered
(δ = 0.02): Each event is
marked with an ◦
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Fig. 5.10 Percentage of
packets transmitted with
respect to the periodic case
for different thresholds δ
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Assume that the following exogenous disturbances are included:

• Constant disturbances for k ∈ [50, 100].
• Random disturbances for k ∈ [150, 200].

Figure 5.9 illustrates this situation. In this case the threshold has been chosen as
δ = 0.02. As expected, the presence of disturbances triggers more events than in the
unperturbed situation.

Finally, Fig. 5.10 develops a comparison between different choices of δ and the
corresponding transmission rate. In case of δ = 0, a 100 % of packets must be send
from the sensor. Choosing δ = 0.05 only a 10 % of packets must be sent through the
network.
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5.7 Conclusions

This chapter is devoted to the design of H2/H∞ controllers for discrete networked
control systems. Lemma 5.1 proposes a general design method which can be used
with different choices of the Lyapunov–Krasovskii functional.

Furthermore, it has been considered the implementation of an asynchronous com-
munication policy, aiming at reducing the number of packets transmitted through the
network and the energy expenditure. It has been shown that the practical stability of
the system is preserved using the event-based sampling policy. Finally, Theorem 5.2
relates the size of the final region for the state and the threshold that triggers the
events.



Chapter 6
Asynchronous Packetized Model
Predictive Control

Isabel Jurado and Pablo Millán

6.1 Introduction

Although some of the most extended communication protocols use retransmissions
to preserve the information integrity, it is well known that this is not very useful for
NCSs, where the need of rigorous bounds for time delays to guarantee stability leads
into the practical decision of discarding all the information that arrives later than
a certain delay. This is the reason why, in protocols like Ethernet, packet dropouts
must be considered.

One solution to this problem is to include more information in the packet, which
leads into a lesser rate of packets sent through the network, see [217, 252, 261, 269].
The information included in these bigger packets can be a set of predictions on future
control signals.With these values in a buffered actuator, the system can tolerate larger
sampling times and more dropouts without compromising its stability. This idea is
used, for instance, in [32, 210], using model predictive control (MPC) to compute
the predicted control signals.

This chapter, based on the conference contribution [208], uses these ideas in order
to improve the traffic over the network and also to reduce the energy consumption,
a main objective for the particular case of wireless networks. A model predictive
controller is proposed within an asynchronous control architecture that deals with
disturbances and data dropouts while providing good performance. Packets are sent
in an asynchronous manner to reduce the number of information exchanges. The
triggering condition to send a packet is that the difference between the control values
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at the controller side and those in the actuator buffer exceeds certain threshold. That
way, information is only transmitted when it is needed. In order to deal with data
dropouts in the system-to-controller link, a state estimator is included at the controller
side.

The chapter is organized as follows: Section6.2 describes the predictive control
scheme. In Sect. 6.3 an example illustrating the control algorithm is presented and
in Sect. 6.4 conclusions are drawn.

6.2 Networked Predictive Control Algorithm

This section describes the predictive control structure for the NCS. First of all, there
is a definition of the problem and then, a description of the packetized control and
buffering strategy.

6.2.1 Problem Setup

The systems under consideration are unconstrained discrete-time linear multiple-
inputs systems affected by bounded disturbances:

x(k + 1) = Ax(k) + Bu(k) + B2w(k) (6.1)

with k ∈ N0 � N ∪ {0} and

u(k) ∈ U ⊆ R
m, x(k) ∈ X ⊆ R

n, ∀k ∈ N0

disturbances, w(k) are considered to be bounded as

w(k) ∈ W, W = {x ∈ R
nw/‖x‖ < wmax}. (6.2)

The proposed control scheme is shown in Fig. 6.1. It can be seen that the plant and
the controller are linked through a communication network in both ways, controller
outputs to plant inputs (actuators), and plant outputs (sensors) to controller inputs.
The network is supposed to be clock-driven Ethernet-like.

In this chapter, the main problems to take into account are transmission delays and
packet dropouts. In particular, since round-trip communication delays are assumed
small enough with respect to the sampling time, it is possible to disregard them. In
case the packets arrive with a delay larger than certain threshold, or do not arrive,
they are treated as packet dropouts.

It is assumed that the network is not secured either in controller to actuator or in
sensor to controller links. Also, the protocol is assumed to be TCP-like, that implies
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that acknowledgments are available. Therefore, at time k the controller knows the
control signal applied to the plant.

The following assumptions are applied throughout all the chapters:

• Time-driven sensors sample periodically the state of the plant.
• A time-driven predictive controller computes a control sequence at each sampling
time.

• A time-driven actuator buffers control signals and applies them to the plant at each
sampling time.

• Network introduces packet dropouts at any point.
• Delayed packets are discarded and taken as dropouts.

With the state of the system, at every sampling time the predictive controller
computes a finite horizon optimal control sequence Uk ∈ (U)Nu , being Nu the
finite prediction horizon. These control values are calculated in such a way that the
following objective function is minimized:

V (Uk, k) =
k+Nu−1∑

i=k

�(x ′(i), u′(i)) + F(x ′(k + Nu)) (6.3)

where x ′(·) and u′(·) are predicted plant states and inputs, �(·) denotes the stage cost,
and F(·) is the terminal cost.

6.2.2 Packetized Control and Buffering Strategy

The objective of this section is to provide the system robustness against packet
dropouts. To do that, an appropriate buffering and a queuing strategy at the actuator
are added to the predictive control structure.

The objective of this structure is to use the control values in the buffer as a backup
in case there is a dropout, this technique is also used in [49, 261, 269]. This situation is
illustrated in Fig. 6.1. In case of dropouts, the actuator uses the appropriate predicted
control signal contained in the buffer.

The buffer follows the subsequent behavior: it is updated whenever a packet
arrives. Therefore, the actuator uses information from the buffer, which is a predic-
tion, if there has been a dropout in the controller–actuator link, or the actual control
signal calculated at the same instant as it is required by the actuator. This corresponds
to the intuitively appealing idea of Use the most recent control sequence if available.
If not, use predictions from the buffer.

The maximum number of consecutive dropouts that the buffer can compensate
for is equal to its size. Taking that into account, the reasonable thing to do is to make
coincide the buffer’s size with the length of the vector of control signals, that is, the
prediction horizon Nu .
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β (k)

αc(k)

αs(k)
xc(k)

Fig. 6.1 NCS proposed scheme

The dynamics of the buffer can be represented by the following recursive rule:

β(k) = αc(k)Uk + (1 − αc(k))Sβ(k − 1), (6.4)

where β(k) ∈ (U)Nu is the state of the buffer at instant k, andmatrix S ∈ R
m·Nu×m·Nu

is a shift matrix defined as the block matrix

Si, j = δi+1, j · Ip1 i, j = 1, . . . , Nu,

with δi,j the Kronecker delta symbol.
It also needed a variable that counts the reception of data from the controller, that

is αc(k) ∈ {0, 1}:

αc(k) =
{
1 if packet U (k) arrives to buffer at time k
0 if packet U (k) does not arrive to buffer at time k

Using the definition of the buffer’s dynamics in (6.4), the control action that
actually applied to the plant at instant k can be expressed as:

u(k) = [
Im 0m ... 0m

]
β(k)

This strategy implies that the controller transmits the whole control sequence of
length Nu at every sampling time. Nevertheless, there are some situations that require
a reduced access to the network. That is the case, for instance, of wireless sensor
networks, which is considered to be one of the most energy demand processes in
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networked control devices, [179]. In this kind of network, it is very important to
keep sensors’ batteries loaded as long as possible, and thus energy saving is a main
objective. The best thing to do in this kind of systems is to design a network protocol
that reduces to its minimum the use of the network. That implies the minimization
of packet transmissions, sending information only when it is relevant for control
purposes.

In order deal with this type of constraints, asynchronous communication is
included in the control scheme. These constraints avoid the packets to be trans-
mitted if the information that they contain do not differ in certain threshold from the
one currently in the buffer. This comparison is done, thanks to the acknowledgment
messages that the controller receives from the actuator, αc(k). That way, the con-
troller can know the control sequence stored in the buffer at time k, β(k), and if this
sequence is significantly different from the current computed sequence U (k). If this
is not the case, then U (k) is discarded and it is not transmitted through the network.

It is also possible that only certain components of U (k) differ enough from the
corresponding values of β(k). In this situation, only that components are sent, reduc-
ing the size of the packet to be transmitted. This trimmed packet only contains control
actions that differ more than certain threshold from those in the buffer.

The packet management policy can be formalized as follows: let β(k) be the
state of the buffer and U (k) the control sequence computed at instant k. Let β j (k)

and U j (k) be, respectively, the j th component of these sequences. The size of the
trimmed packet to send, NT (k), at time instant k, can be calculated as:

NT (k) = Nu − arg min
j∈{1,...,Nu} ‖U j (k) − β j (k)‖ > δ. (6.5)

That means that only the last NT (k) components of the control sequence U (k)

are sent to the buffer, since difference between the first Nu − NT (k) control values
are below the threshold δ.

Note that the length of the sequence to send, NT (k), is a function of the time
instant k, which means that it can vary each sampling time depending on the values
of U (k) and β(k). Also, NT (k) ≤ Nu ∀k, since it is not possible that the length of
the trimmed packet exceed the length of U (k).

Using definition (6.5), a trimmed packet U∗(k) ∈ (R)NT (k) can be written as:

U∗(k) = [
0m NT (k)×m(Nu−NT (k)) Im NT (k)

]
U (k).

This implies that the buffer dynamics expression in (6.4) can be modified, includ-
ing trimmed packets U∗(k), as:

β(k) = αc(k)
[
βT
1 (k − 1), . . . , βT

Nu−NT (k)(k − 1), (U∗
1 (k))T , . . . , (U∗

NT (k)(k))T
]T

+ (1 − αc(k))Sβ(k − 1). (6.6)
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6.2.3 State Estimator Description

As it was described before, the technique proposed in this chapter considers the
possibility of losing packets between the sensor and the controller. This situation,
which is not treated in most of the predictive approaches in the literature, allows us
to work with more realistic networked control systems.

In order to deal with this kind of losses, we propose a model-based estimator
included at the controller side that approximates plant states when the information
from the sensor is not received. The estimator is designed in the following way:

xm(k + 1) = αs(k)x(k) + (1 − αs(k)) f (xm(k), u(k)), (6.7)

where xm(k) ∈ Rn is the estimated plant state at instant k, and f (xm(k), u(k)) is an
open-loop approximation of the plant dynamics. Knowing the plant dynamics (6.1),
f (xm(k), u(k)) takes the form:

f (xm(k), u(k)) = Axm(k) + B1u(k).

The signal αs(k), similar to αc(k) in (6.4), accounts for the reception of packets
from the sensor at the controller side. Therefore, αs(k) takes the following values:

αs(k) =
{
1 if packet x(k) arrives to the controller at time k
0 if packet x(k) does not arrive to the controller at time k.

It is straightforward to see fromEq. (6.7) that the state estimation xm(k) is updated
with measured values of the plant state x(k) every time this information arrives to the
controller. Nonetheless, if a dropout occurs, an open-loop estimation is performed
using a model of the plant dynamics. This way, every time k the controller is fed
with the state of the system, measured or estimated, regardless of network failures.

Therefore, the complete networked control scheme consists of the state estima-
tor joined with the packet buffering strategy. It is also worth mentioning that the
predictive controller can be designed without considering problems associated with
network communications. This implies that the proposed approach can be interpreted
like a network compensation technique rather than a controller design.

6.2.4 Stability Considerations

In this section, the mild requirements needed to ensure the stability of the compen-
sation technique are presented.

Suppose that u(k) is a stabilizing predictive control value for the system (6.1),
computed at instant k. As it was mentioned before, the controller design does not
take into account the presence of a network in the control loop. The consideration of
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such dropouts makes uncertain the application of the control u(k) at time instant k.
The control signal actually applied to the plant, uc(k), depends on the dropouts and
it is based on the predictions in the buffer and on the state estimations.

This way, the effects of the network on the system (6.1) can be expressed in the
following manner:

x(k + 1) = Ax(k) + B1u(k) + B1(uc(k) − u(k)) + B2w(k)

= Ax(k) + B1u(k) + B1εu(k) + B2w(k), (6.8)

where εu(k) = uc(k) − u(k) is a disturbance term that represents the network effect
on the control structure.

It also easy to see that this additional term, εu(k), is bounded.Note that, when there
is no dropout, the buffer and the estimator are reset to match the control sequence
computed by the controller and the actual statemeasured by the sensor, and therefore,
εu(k) = 0. Knowing that, by assumption, the number of consecutive packet dropouts
is limited, the difference between the calculated control signal u(k) and the applied
oneuc(k) can only increase between successful transmissions. Therefore, this implies
that the value εu(k) is bounded.

Since εu(k) is bounded, the overall disturbance term Ω(k) = B1εu(k) + B2w(k)

is also bounded.
It is known from [62], that, under certain conditions, a stabilizing controller can

always be found for the unperturbed system (6.8). Also, from [48], if the following
two assumptions hold:

(A1) The closed loop dynamics of the unperturbed system (6.8) is x(k + 1) =
F(x(k)), where the origin is a fixed point.

(A2) V (x) is a Lyapunov function of the system Lipschitz in a neighborhood of the
origin Λr = {x ∈ R

n/V (x) ≤ r} such that

a · ‖x‖p ≤ V (x) ≤ b · ‖x‖p

V (F(x)) − V (x) ≤ −c · ‖x‖p (6.9)

where a, b, c are positive constants and p > 1.
Then, there exits a constant μ > 0 such that for all disturbances

Ω(k) ∈ Bμ = {Ω(k) ∈ R
n/‖Ω(k)‖ < μ},

the perturbed system x(k + 1) = F(x(k)) + Ω(k) is asymptotically ultimately
bounded ∀x(0) ∈ Λr .

Finally, the stability of the presentedmethodology can be ensured since conditions
(A1) and (A2) are satisfied for system (6.8) taking p = 2, and choosing a Lyapunov
function of the form V (x) = xT Px , which is Lipschitz in a neighborhood of the
origin Λr for arbitrarily large values of r .
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6.3 Application Example

The proposed methodology has been tested by simulation over the three-tank system
shown in Fig. 6.2.

The control problem is to track references on the water level of the third tank,
being the flow rate into the first tank of our control input.

6.3.1 Modeling

The model of the system can be obtained from a mass balance:

dh1
dt

= 1

S
q − 1

S
C1

√
h1 − h2 (6.10)

dh2
dt

= 1

S
C1

√
h1 − h2 − 1

S
C2

√
h2 − h3

dh3
dt

= 1

S
C2

√
h2 − h3 − 1

S
C3

√
h3,

where hi represent the level of tank i .
For control purposes, this model is linearized around an equilibrium point H1,

H2, H3, and Q. That is:

h1 = H1 + ΔH1, h2 = H2 + ΔH2

h3 = H3 + ΔH3, q = Q + ΔQ,

yielding the linear equation:

ΔḢ = L ΔH + M ΔQ, (6.11)

q

h1 h2 h3

C1 C2 C3

Fig. 6.2 Three-tank system
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where

ΔH = [
ΔH1 ΔH2 ΔH3

]T

L =
⎡

⎢
⎣

−C1
2S

√
H1−H2

C1
2S

√
H1−H2

0

C1
2S

√
H1−H2

−C1
2S

√
H1−H2

− C2
2S

√
H2−H3

C2
2S

√
H2−H3

0
C2

2S
√

H2−H3

−C2
2S

√
H2−H3

− C3
2S

√
H3

⎤

⎥
⎦

M = [ 1
S 0 0

]T
.

A discrete model is then easily obtained from (6.11) as

x(k + 1) = Ax(k) + B1u(k). (6.12)

6.3.2 Results

Applying the proposed control structure to the three-tank model, some simulations
have been carried out for different network situations.

In particular the chosen parameters for the model are: S = 0.16m2, C1 = C2 =
0.0256 m3

sm1/2 , and C3 = 0.0251 m3

sm1/2 , with an operation point H1 = 1m, H2 =
0.7m, H3 = 0.4m, Q = 0.014m3/h.

Figure6.3 shows a comparison of the proposed methodology to alleviate traffic in
the network with the case without any traffic consideration, that is, the whole control
sequence is sent through the network at every sampling time. This graphic shows the
influence of the data dropout rate p and the threshold to transmit packets δ on the
average of the integral square error (ISE).

This plot has been obtained taking a step-like sequence with period T = 2000 s
as reference, and a simulation time equal to 5000 s.

The reduction of packet transmissions from the controller to the actuator is shown
in Fig. 6.4. This reduction is computed as the amount of information transmitted with
the proposed methodology compared to the case where all the information is sent
at every sampling time. It can be seen how savings above 85% can be obtained for
certain values of the threshold for communication δ. Nevertheless, it is necessary
to be cautious choosing δ since, as can be seen in Fig. 6.3, excessively high values
degrade the system performance faster than transmission saving. For example, from
the view of Figs. 6.3 and 6.4, a reasonably good choice could be δ = 0.2 · 10−4, as it
provides a reduction of 70% in the transmission without a significant deterioration
of the system performance.

In Figs. 6.5 and 6.6, the response of the system is shown for the particular case
of 30% packet dropout probability. It can be observed how the proposed method
still provides good performance even under these network conditions. However, the
effect of the dropouts can be noticed since response exhibits small overshoot.
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Fig. 6.4 Reduction of transmitted data
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Fig. 6.5 Step response
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Fig. 6.6 Tracking of references

As mentioned before, the control performance gets worse as the threshold δ, or
the data dropout rate p, increases. In this case, the controller admits data dropout
rates above 40%.

Finally, Fig. 6.7 shows the transmission profile for a step tracking experiment with
different values of δ. As expected, at the beginning of the simulation, for the instants
corresponding to the transient regime, the flow of transmission is more intense than
in subsequent instants, when the system reaches the steady state. Then, the traffic
over the network reduces.
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6.4 Conclusions

This chapter has presented an asynchronous predictive control scheme to deal with
data dropouts and delays in networked control systems. The use of a MPC controller
and a buffering strategy is joined with a model-based state estimator, which allows
the controller to cope with packet losses and to reduce network traffic.

Finally, some simulations have been presented for data dropout rates up to 40%.
The results have shown that the proposed methodology can cope with stringent
network conditions without significant performance degradation, and at the same
time can provide a reduction in the network traffic load with respect to conventional
predictive control architectures.



Part II
Asynchronous Control and Estimation for
Large-Scale Plants. Distributed Solutions

Six chapters form this block. Chapters 7–9 present distributed solutions for asyn-
chronous control and estimation when network effects can be neglected. Next, the
work is extended to deal with delays and packet losses in Chaps. 10 and 11. Finally,
Chap. 12 presents an application example of these techniques to a multi-robot
system.
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Chapter 7
Distributed Event-Based Control
for Interconnected Linear Systems

María Guinaldo, Dimos V. Dimarogonas, Daniel Lehmann
and Karl H. Johansson

7.1 Introduction

One way to study the control properties of large-scale systems is to consider that the
plant is composed of interconnected systems. The motivation for this assumption is
twofold. On the one hand, physical plants are made up of parts, which can be identified
as different subsystems, and this structural feature can facilitate the control design.
On the other hand, even if the system does not present these physical boundaries,
it might be useful to decompose it into mathematical subsystems which have no
obvious physical identity. These terms of physical and mathematical decomposition
were first introduced by Siljak [236], and since then they have been used in the design
of centralized and distributed controllers.

Practical examples of these large-scale systems are power or traffic networks, in
which a centralized solution would require a very powerful network and an accurate
model of all the interconnections, and moreover, it would be not robust against
node failures, for example. The design of decentralized controllers for this kind of
systems is a suboptimal solution since it does not take into account the interconnection
between the subsystems. Hence, there is a natural interest in applying distributed

M. Guinaldo (B)
Dpto. de Informática y Automática, Escuela Técnica Superior de Informática,
UNED, Madrid, Spain
e-mail: mguinaldo@dia.uned.es

D.V. Dimarogonas, D. Lehmann and K.H. Johansson
School of Electrical Engineering, Royal Institute of Technology (KTH),
Stockholm, Sweden
e-mail: dimos@kth.se

D. Lehmann
e-mail: dlehmann@kth.se

K.H. Johansson
e-mail: kallej@kth.se

© Springer International Publishing Switzerland 2015
M. Guinaldo Losada et al. (eds.), Asynchronous Control for Networked Systems,
DOI 10.1007/978-3-319-21299-9_7

149



150 M. Guinaldo et al.

control to these scenarios, and, if the communication between the local controllers
is event triggered, get better usage of the network.

There are some recent contributions on distributed event-triggered control [51, 54,
88, 166, 232, 259]. The basic idea in all these contributions is that each subsystem
decides when to transmit the measurements based only on local information. In the
most common implementations, an event is triggered when the error of the system
exceeds a tolerable bound.

This chapter discusses different control strategies of distributed event-based
controls for linear interconnected systems. Part of these results are based on the
contributions [88, 89, 91]. Section 7.2 provides the mathematical tools used through
the chapter as well as the problem statement. Different distributed trigger functions
are examined in Sect. 7.3: deadband control, Lyapunov approaches, and exponential
bounds, which is the proposal of the authors to the studied problem. Other exist-
ing strategies such as, for example, small-gain approaches [51] do not prevent from
Zeno behavior, and a constant threshold-like condition must be included to overcome
this issue, yielding similar results to the deadband control from the analytical point
of view.

The analytical results are provided in Sect. 7.4. Two aspects are analyzed: Con-
vergence to the equilibria and inter-event times, and the results are illustrated with an
example in Sect. 7.4.3. The extension to discrete-time systems is given in Sect. 7.5.

Model-based approaches has been shown to help to reduce communication in
centralized schemes (see Chaps. 4 and 6). Thus, one of the first improvements pre-
sented in Sect. 7.6 consists of a distributed model-based approach combined with
event-triggered communications. However, reducing the number of transmissions in
the network is not the only aspect that matters in distributed systems. For instance,
the frequency of the control update allows a more efficient usage of the limited
resources of embedded microprocessors. Whereas in a single control loop the reduc-
tion of communication usually implies the reduction of actuator updates, this does not
necessary hold in distributed systems, especially if the number of neighbors is large.
Thus, the second improvement presented in Sect. 7.6 accounts for both phenomena
in the design.

7.2 Background and Problem Statement

7.2.1 Matrix and Perturbations Analysis

Let A ∈ C
n×n be a complex matrix, and let us define

κ(A) = ‖A‖‖A−1‖ (0 /∈ λ(A)), (7.1)

αmax (A) = max{IRe(λ) : λ ∈ λ(A)}, (7.2)

http://dx.doi.org/10.1007/978-3-319-21299-9_4
http://dx.doi.org/10.1007/978-3-319-21299-9_6
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The matrix exponential of A is defined as eAt = ∑∞
k=0

(At)k

k! . Through this chapter,
the stability of the system is proved using some hints that are summarized in this
section to bound ‖eAt‖.

7.2.1.1 Bounding the Matrix Exponential

In [245] various norms are discussed to bound the exponential. Three are of particular
interest:

• Log norms If μmax (A) is defined as μmax (A) = max{μ : μ ∈ λ((A + A∗)/2)},
then

‖eAt‖ ≤ eμmax (A)t .

An interesting corollary can be inferred from the property above. Let Y be an
invertible matrix such that A = Y BY −1. It follows that

‖eAt‖ = ‖Y eBt Y −1‖ ≤ κ(Y )eμmax (B)t , (7.3)

where κ(Y ) is defined according to (7.1).
Thus, assume that A is diagonalizable, i.e., there exists a matrix D, where
D = diag(λi (A)), and a matrix V of eigenvectors, such that A = V DV −1.
From (7.3), it holds that

‖eAt‖ ≤ κ(V )eμmax (D)t = κ(V )eαmax (D)t = κ(V )eαmax (A)t , (7.4)

where αmax (A) is defined according to (7.2).
• Jordan canonical form Recall the Jordan decomposition theorem which states

that if A ∈ C
n×n , then there exists an invertible matrix X ∈ C

n×n such that

X−1 AX = Jm1(λ1) × · · · × Jm1(λp) ≡ J,

where

Jk ≡ Jmk (λk) =

⎛

⎜
⎜
⎜
⎜
⎝

λk 1 0

0 λk
. . .

...
. . . 1

0 0 . . . λk

⎞

⎟
⎟
⎟
⎟
⎠

∈ C
mk×mk , k = 1, . . . , p.

By taking norms and defining m = max{m1, . . . , m p}, it can be proved that [245]

‖eAt‖ ≤ m · κ(X)eαmax (A)t max
0≤r≤m−1

tr

r ! . (7.5)
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Note that X may not be unique but it is assumed that it is chosen such that κ(X)

is minimized.
• Schur decomposition bound The Schur decomposition states that there exists a

unitary Q ∈ C
n×n such that

Q∗ AQ = D + N , (7.6)

where D is the diagonal matrix D = diag(λi ) and N is strictly upper triangular.
The following upper bound can be obtained [245]

‖eAt‖ ≤ eαmax (A)t
n−1∑

k=0

‖Nt‖2

k! . (7.7)

7.2.1.2 Perturbation Bounds

The second aspect that is brought up in this section is the existing perturbation
analysis on the eigenvalues and the matrix exponential, i.e., how the eigenvalues and
the bound on the matrix exponential change when A is perturbed by E .

The following lemma merges classical results from [17, 44] to study the pertur-
bation of the eigenvalues of a matrix A in two situations: when A is diagonalizable
and when it is not.

Lemma 7.1 If A is diagonalizable (V −1 AV = D), the eigenvalues λ̃i of A + E
satisfy

min
λ j ∈λ(A)

|λ̃i − λ j | ≤ κ(V )‖E‖. (7.8)

Otherwise, Let consider the Schur decomposition (7.6). Then for λ̃i ∈ λ(A + E)

min
λ j ∈λ(A)

|λ̃i − λ j | ≤ max{θ1, θ
1/n
1 }, (7.9)

where θ1 = ‖E‖∑n−1
k=0 ‖N‖k .

Finally, a result from semigroup theory (see [126]) states that if ‖eAt‖ ≤ ceβt for
some constants c and β, then

‖e(A+E)t‖ ≤ ce(β+c‖E‖)t . (7.10)

7.2.1.3 Perturbation Analysis and Matrix Powers

In discrete-time systems, the matrix exponential is replaced by the matrix power.
Thus, a bound on (A+E)p is required. We introduce the concept of Fréchet derivative
for this purpose.
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Definition 7.1 [108] Let A, E ∈ C
n×n . The Fréchet derivative of a matrix function

f at A in the direction of E is a linear operator L f that maps E to L f (A, E) such
that

f (A + E) − F(A) − L f (A, E) = O(‖E‖2),

for all E ∈ C
n×n . The Fréchet derivative may not exist, but if it does it is unique.

The following lemma characterize the Fréchet derivative of the function X p.

Lemma 7.2 [3] Let A, E ∈ C
n×n. If L X p (A, E) denotes the Fréchet derivative of

X p at A in the direction of E, then

L X p (A, E) =
p−1∑

j=0

Ap−1− j E A j .

This means that the p power of A + E is

(A + E)p = Ap +
p−1∑

j=0

Ap−1− j E A j + O(‖E‖2).

Then, it is a logical consequence the following

‖(A + E)p‖ ≤ ‖Ap‖ + ‖
p−1∑

j=0

Ap−1− j E A j‖ + O(‖E‖2). (7.11)

7.2.2 Problem Statement

Consider a large-scale system that have been decomposed into Na linear
time-invariant subsystems. The dynamics of each subsystem is given by

ẋi (t) = Ai xi (t) + Bi ui (t) +
∑

j∈Ni

Hi j x j (t), ∀i = 1, . . . , Na (7.12)

where the set of “neighbors” of the subsystem i Ni is the set of subsystems that
directly drive agent i’s dynamics, and Hi j is the interaction term between agent i
and agent j , and Hi j 	= Hji might hold. The state xi of the i th agent has dimension
ni , ui is the mi -dimensional local control signal of agent i , and Ai , Bi , and Hi j are
matrices of appropriate dimensions.

In each node or subsystem, we can distinguish the dynamical part strictly speaking
and a microprocessor in charge of monitoring the plant state and computing the
control signal and the communication tasks (see Fig. 7.1).
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Subsystem i Microprocessor

Event
detector

Controller 

Receive TransmitµC 

Dynamics 

xb,i

ui(t)xi(t)

Fig. 7.1 Scheme of a node, consisting of a digital microcontroller (μC) and dynamics (left), and
block diagram of the tasks carried out by the microprocessor

Due to the limited bandwidth, the communication between subsystems is at
discrete instants of time. The dynamical coupling between subsystems makes it inter-
esting to have access to the state of neighboring agents to include this information
into the control law. Specifically, the agent i communicate with the set of agents in
its neighborhood Ni . The transmission occurs when an event is triggered. We denote
by {t i

k}∞k=0 the times at which an event is detected in the agent i , where t i
k < t i

k+1 for
all k.

The broadcast state is denoted by xb,i . The broadcast states are used in the control
law. Hence, the control signal is updated in a node, at least, when a new measurement
is transmitted and/or received. In particular, the control law for each subsystem is

ui (t) = Ki xb,i (t) +
∑

j∈Ni

Li j xb, j (t), ∀i = 1, . . . , Na (7.13)

where Ki is the feedback gain for the nominal subsystem i . We assume that Ai +Bi Ki

is Hurwitz. Li j is a set of decoupling gains.
Let us define the error εi (t) between the state and the latest broadcast state as

εi (t) = xb,i (t) − xi (t) = xi (t
i
k) − xi (t), t ∈ [t i

k, t i
k+1). (7.14)

Rewriting (7.12) in terms of εi (t) and the control law (7.13), we obtain

ẋi (t) = AK ,i xi (t) + Bi Kiεi (t) +
∑

j∈Ni

(
Δi j x j (t) + Bi Li jε j (t)

)
, (7.15)

where AK ,i = Ai + Bi Ki , and Δi j = Bi Li j + Hi j are the coupling terms. In general,
Δi j 	= 0 since the interconnections between the subsystems may be not well known,
there might be model uncertainties or the matrix Bi does not have full rank.

We also define

AK = diag(AK ,1, AK ,2, . . . , AK ,Na ) (7.16)

B = diag(B1, B2, . . . , BNa ) (7.17)
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K =

⎛

⎜
⎜
⎜
⎝

K1 L12 · · · L1Na

L21 K2 · · · L2Na
...

...
. . .

...

L N1 L N2 · · · KNa

⎞

⎟
⎟
⎟
⎠

(7.18)

Δ =

⎛

⎜
⎜
⎜
⎝

0 Δ12 · · · Δ1Na

Δ21 0 · · · Δ2Na
...

...
. . .

...

ΔNa1 ΔNa2 · · · 0

⎞

⎟
⎟
⎟
⎠

(7.19)

and the stack vectors
x = (xT

1 , xT
2 , . . . , xT

Na
)T (7.20)

ε = (εT
1 , εT

2 , . . . , εT
Na

)T (7.21)

as the state and error vectors of the overall system. Note that Hi j , Li j ,Δi j := 0 if

j /∈ Ni . Let also be n =
N∑

i=1
ni the state and error dimension.

The dynamics of the overall system is given by

ẋ(t) = (AK + Δ)x(t) + BK ε(t). (7.22)

As the broadcast states xb,i remain constant between consecutive events, the error
dynamics in each interval is given by

ε̇(t) = −(AK + Δ)x(t) − BK ε(t). (7.23)

The above definition allows to study the stability of the overall system. These equa-
tions are valid as long as the following three time instances are simultaneous: the
detection of the event, the transmission of the state xb,i from one node, and the
reception in all neighboring nodes. When delays and packet dropouts can occur in
the transmission, (7.22) and (7.23) do not generally hold. The extension to non-
reliable communications is given in Chap. 10.

7.3 Event-Based Control Strategy

The design of distributed trigger functions Fe,i to detect the occurrence of an event
must satisfy the following properties:

• Guarantee the stability of the subsystem, and hence, of the overall system.
• Depend on local information of agent i only, or at most, of the neighbors, and take

values in R.

http://dx.doi.org/10.1007/978-3-319-21299-9_10
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• Determine the sequence of local broadcasting times t i
k recursively by the

event-trigger function as t i
k+1 = inf{t : t > t i

k, Fe,i (t) > 0}.
• Ensure a lower bound for the inter-event times Tk,i = t i

k+1 − t i
k .

In Chap. 1, the existing strategies for event-based control have been presented. Some
of these approaches can be extended easily to distributed implementations. For
instance, trigger functions for deadband control are

Fe,i (t) = ‖εi (t)‖ − δi , δi > 0. (7.24)

The design can be simplified by setting δi = δ,∀i = 1, . . . Na . Large values of δ

allow reducing the number of events but degrades the performance. On the contrary,
small values of δ give better performance but the average inter-event time decreases
considerably. Moreover, this approach fails to ensure the asymptotic stability of the
system, as in the case of centralized schemes.

Lyapunov-based sampling approaches to distributed event-triggering have also
been studied. In this case, an event is enforced whenever

Fe,i (t) = ‖εi (t)‖ − σi‖xi (t)‖, 0 < σi < 1 (7.25)

crosses from negative to positive. The set of parameters σi is determined by imposing
that the Lyapunov function V = ∑Na

i=1 Vi (xi ) is locally positive definite and the time
derivative of the Lyapunov-candidate-function is locally negative definite. For linear
systems, the problem can be solved by solving a local LMI in each subsystem.
See [259] for details. The asymptotic convergence to the equilibrium is guaranteed
but a positive lower bound for the inter-event time may not be guaranteed when
approaching the desired equilibria [79, 259].

In this chapter, the properties of trigger functions of the form

Fe,i (t) = ‖εi (t)‖ − δ0,i − δ1,i e
−βi t , βi > 0 (7.26)

are studied, where δ0,i and δ1,i cannot be zero simultaneously. To simplify the
selection of parameters, we will consider that δ0,i = δ0, δ1,i = δ1, βi = β,

∀i = 1, . . . , Na .

Example 7.1 A trigger function (7.24) is depicted on Fig. 7.2a. The error is bounded
by the constant threshold δ0. Note that the error is reset after the occurrence of an
event and that the inter-event time is always positive, since the error cannot reach the
threshold again at the same time instance.
Trigger functions of the form (7.26) are represented on Fig. 7.2b. Note that the thresh-
old decreases with time and the error is bounded by δ0 + δ1 at t = 0 and by δ0 when
t → ∞. If δ0 = 0, this bound goes to zero when time increases and asymptotic
stability can be achieved. Finally, Fig. 7.2c shows the error bound when events are
enforced with (7.25).

http://dx.doi.org/10.1007/978-3-319-21299-9_1
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Fig. 7.2 Error function (solid blue line) and error bound (dashed red line) for trigger functions a
(7.24), b (7.25), and c (7.26)

7.4 Performance Analysis

In this section, the stability properties of the system (7.12) are analyzed by using
some of the results presented in Sect. 7.2.1. First, we briefly discuss the concepts
of perfect and non-perfect decoupling that have some impact over the analytical
treatment of the problem. After that the results are compared with other triggering
mechanisms, and finally, this is also illustrated with a simulation example.

7.4.1 Perfect and Non-perfect Decoupling

If the decoupling gains Li j can be chosen such that the matching condition holds,
i.e., Δi j + Bi Li j = 0, (7.15) is transformed into

ẋi (t) = AK ,i xi (t) + Bi Kiεi (t) +
∑

j∈Ni

Bi Li jε j (t). (7.27)

Hence, this essentially assures the perfect decoupling of the subsystems and allows
to analyze their performance independently, since it holds that

xi (t) = eAK ,i t xi (0) +
∫ t

0
eAK ,i (t−s)

⎛

⎝Bi Kiεi (s) +
∑

j∈Ni

Bi Li jε j (s)

⎞

⎠ ds.

Then, if the error functions εi (s), ε j (s) are bounded according to the trigger function
(7.26), which are independent of the state, the convergence to the equilibrium only
depends on local properties, that is, on the eigenvalues of AK ,i . Because the feedback
gains Ki are designed so that AK ,i is Hurwitz, the stability of each subsystem, and
as a consequence, of the overall system, is guaranteed.
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However, the perfect decoupling is a quite restrictive condition, and in many situ-
ations cannot be achieved because the interconnections between the subsystems may
be not well known, there might be model uncertainties or the matrix Bi does not have
full rank. Therefore, in the following, we assume that, in general, the interconnection
terms Δi j 	= 0.

In (7.22) Δ can be seen as a perturbation to AK which influences the stability
of the overall system. We obviously need to impose some constraints to Δ. Before
doing this, the next assumption will facilitate the calculations in the following, but
the extension to defective matrices is achievable as discussed later in the section.

Assumption 7.1 We assume that AK ,i , i = 1, . . . , N is diagonalizable so that there
exists a matrix Di = diag(λk(AK ,i )) and an invertible matrix of eigenvectors Vi such
that AK ,i = Vi Di V −1

i .
The next lemma provides a bound for ‖Δ‖ that ensures that AK + Δ is Hurwitz.

Lemma 7.3 If κ(V )‖Δ‖ < |αmax (AK )| holds, the eigenvalues λ̃i of AK + Δ have
negative real part.

Proof According to the Bauer–Fike theorem (see (7.8) on p. 154), it follows that

min
λ j ∈λ(AK )

|λ̃i − λ j | ≤ κ(V )‖Δ‖.

Assume that λ̃i = α̃i + i β̃i and λ j = α j + iβ j . Then, it holds that

|λ̃i − λ j | =
√

(α̃i − α j )2 + (β̃i − β j )2 > |α̃i − α j |.

Because AK is Hurwitz, α j < 0,∀ j , and according to the definition of αmax (AK )

(7.2), then it yields |αmax (AK )| ≤ |α j |,∀ j . Moreover, if κ(V )‖Δ‖ < |αmax (AK )|,
κ(V )‖Δ‖ is also upper bounded by |α j |,∀ j . Thus, α̃i is negative, because if it was
positive

|α̃i − α j | = α̃i + |α j | > |α j | ≥ |αmax (AK )| > κ(V )‖Δ‖,

that would contradict the theorem of Bauer–Fike. Hence, α̃i is negative, and this
concludes the proof.

The previous result imposes a constraint over ‖Δ‖ to guarantee stability, and
hence, an additional assumption is required.

Assumption 7.2 The coupling terms Δi j are such that κ(V )‖Δ‖ < |αmax (AK )|
holds.

The following theorem states that if Assumptions 7.1 and 7.2 hold, the system (7.22)
with trigger functions defined as in (7.26) converges to a specified region around the
equilibrium point which, without loss of generality, is assumed to be (0, . . . , 0)T .
Moreover, if δ0 = 0 the convergence is asymptotical to the origin. The functions
(7.26) bound the errors ‖εi (t)‖ ≤ δ0 + δ1e−βt , since an event is triggered as soon as
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the norm of εi (t) crosses the threshold δ0 + δ1e−βt . The proof can be found in
Appendix A.

Theorem 7.1 Consider the closed-loop system (7.22) and trigger functions of the
form (7.26), with 0 < β < |αmax (AK )| − κ(V )‖Δ‖. Then, if Assumptions 7.1 and
7.2 hold, for all initial conditions x(0) ∈ R

n, and t > 0, the state of the overall
system is upper bounded as follows:

‖x(t)‖ ≤κ(V )
( ‖BK‖√Naδ0|αmax (AK )|−κ(V )‖Δ‖ + e−(|αmax (AK )|−κ(V )‖Δ‖)t(‖x(0)‖−

‖BK‖√Na

(
δ0|αmax (AK )|−κ(V )‖Δ‖ + δ1|αmax (AK )|−κ(V )‖Δ‖−β

) )

+ e−βt ‖BK‖√Naδ1|αmax (AK )|−κ(V )‖Δ‖−β

)
. (7.28)

Furthermore, the inter-event times are lower bounded by

Tmin = δ0

k1 + k2 + k3
, (7.29)

where

k1 = κ(V )‖AK + Δ‖‖x(0)‖ (7.30)

k2 = ‖BK‖√Naδ1

(
κ(V )‖AK + Δ‖

|αmax (AK )| − κ(V )‖Δ‖ − β
+ 1

)

(7.31)

k3 = ‖BK‖√Naδ0

(
κ(V )‖AK + Δ‖

|αmax (AK )| − κ(V )‖Δ‖ + 1

)

. (7.32)

Remark 7.1 The results of Theorem 7.1 can be particularized to the perfect decou-
pling case. The state is upper bounded by

‖x(t)‖ ≤κ(V )
( ‖BK‖√Naδ0|αmax (AK )| + e−|αmax (AK )|t(‖x(0)‖−

‖BK‖√Na

(
δ0|αmax (AK )| + δ1|αmax (AK )|−β

))

+ e−βt ‖BK‖√Naδ1|αmax (AK )|−β

)
,

and the minimum inter-event times lower bounded by

δ0

κ(V )‖AK ‖‖x(0)‖ + ‖BK‖√Na

(
δ1

(
κ(V )‖AK ‖

|αmax (AK )|−β
+ 1

)
+ δ0

(
κ(V )‖AK ‖
|αmax (AK )| + 1

)) .

Thus, when the matching condition holds, the rate of convergence to the equilibrium
is faster and the minimum inter-event times larger.
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Remark 7.2 If Assumption 7.1 does not hold, the results can be extended noting
that ‖eAK t‖ can be bounded by either using the Jordan Canonical form, and hence
(7.5) holds, or the Schur decomposition bound (7.7). In both cases the bound is
governed by the exponential of αmax (AK ), which is negative. Thus, the stability of
the system is guaranteed though the speed of convergence to the equilibria decreases.
Moreover, if AK is defective, then the restraint over Δ that guarantees that the
eigenvalues of AK +Δ have negative real part can be obtained from (7.9), enforcing
max{θ1, θ

1/n
1 } < |αmax (AK )|.

7.4.2 Comparison with Other Triggering Mechanisms

The results derived previously can be compared to the most frequently used event-
triggered control strategies. We also particularized the results for the case δ0 = 0,
which is interesting since yields asymptotic stability.

7.4.2.1 Deadband Control

In deadband control, an event is triggered whenever the state crosses some levels
defined by a constant. From the analytical point of view, this is equivalent to have
trigger functions (7.26) with δ1 = 0 and the error bounded by ‖εi (t)‖ ≤ δ0. Thus,
from Theorem 7.1 bound for the state is

‖x(t)‖ ≤κ(V )
( ‖BK‖√Naδ0|αmax (AK )|−κ(V )‖Δ‖ + e−(|αmax (AK )|−κ(V )‖Δ‖)t(‖x(0)‖−

‖BK‖√Na
δ0|αmax (AK )|−κ(V )‖Δ‖

))
,

and a lower bound for the inter-event time is

Tmin = δ0

k1 + k3
.

7.4.2.2 Pure Exponential Trigger Functions

A particular case of trigger functions (7.26) is when δ0 = 0. For this situation, the
state is upper bounded as

‖x(t)‖ ≤κ(V )
(

e−(|αmax (AK )|−κ(V )‖Δ‖)t(‖x(0)‖ − ‖BK‖√Naδ1|αmax (AK )|−κ(V )‖Δ‖−β

)

+ e−βt ‖BK‖√Naδ1|αmax (AK )|−κ(V )‖Δ‖−β

)
.

Note that ‖x(t)‖ → 0 when t → ∞.
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The expression that provides the solution of the minimum inter-event times is not
derived directly from (7.29), and is given by

(
k1
δ1

e(β−|αmax (AK )|)t∗ + k2
δ1

)
T = e−βT . (7.33)

The right-hand side of (7.33) is always positive. Moreover, for β < |αmax (AK )| the
left-hand side is strictly positive as well, and the term in brackets is upper bounded
by k2+k1

δ1
and lower bounded by k2/δ1, and this yields to a positive value of T for all

t∗ ≥ 0. The proof can be found in Appendix A.

7.4.2.3 Lyapunov-Based Sampling

In [257], the problem presented in this chapter is addressed with trigger functions
(7.25). The asymptotic stability of the system is guaranteed if there exists positive
definite matrices Pi , Qi such that

AT
K ,i Pi + Pi AK ,i ≤ −Qi

Wi =
∑

j∈Ni

||PjΔ j i ||2 ≤ λmin(Qi )

8(|Ni | + 1)
.

Moreover, the parameters are σi = √
αi/βi and must hold

0 < αi < λmin(Qi ) − (1 + |Ni |)δ − 2Wi

δ

βi = ‖Pi Bi Ki‖2

δ
+

∑

j∈Ni

2‖Pj B j Li j‖2

δ

δ < mini

{
λmin(Qi )

2(1 + |Ni |)

(

1 +
√

1 − 8(|Ni | + 1)Wi

λ2
min(Qi )

)}

.

Note that the number of constraints are larger and, hence, the design is more
complicated.

As far as the inter-execution times, there is now positive lower bound independent
of the state x(t) in [257]. Thus, it is unclear what happens when the system approaches
the origin. However, the existence of a positive lower bound is guaranteed in [239]
at least for the centralized case and linear systems.
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7.4.3 Simulation Example

7.4.3.1 System Description

In order to demonstrate the effectiveness of the event-based control strategy, let us
consider the system consisting of a collection of N inverted pendulums of mass m
and length l coupled by springs with rate k as in Fig. 7.3. This setup will be used
throughout this and Chap. 10.

The problem of coupled oscillators has numerous applications in such fields as
medicine, physics, or communications [53, 237], and the inverted pendulum is a
well-known control engineering problem. The inverted pendulums are physically
connected by springs and we desire to design control laws to reach the equilibrium
as well as to decouple the system. The state of a pendulum i is broadcast to its
neighbors in the chain at discrete times given by the communication strategy.

Each subsystem can be described as follows:

ẋi (t) =
(

0 1
g
l − ai k

ml2 0

)

xi (t) +
(

0
1

ml2

)

ui +
∑

j∈Ni

(
0 0

hi j k
ml2 0

)

x j (t)

where xi (t) = (
xi1(t) xi2(t)

)T is the state, ai is the number of springs connected
to the i th pendulum, and hi j = 1,∀ j ∈ Ni and 0 otherwise.

State-feedback gains and decoupling gains are designed so that the system is
perfectly decoupled, and each decoupled subsystem poles are at −1 and −2. This
yields the following control law:

ui (t) =
(
−3ml2 ai k − ml2

4

(
8 + 4g

l

))
xb,i (t) +

∑

j∈Ni

(−k 0
)

xb, j (t)

where xb,i (t) = (
xb,i1(t) xb,i2(t)

)T . In the following, the system parameters are set
to g = 10, m = 1, l = 2, and k = 5.

x1 x2 x3 xNa

Fig. 7.3 Scheme of the network of the inverted pendulums

http://dx.doi.org/10.1007/978-3-319-21299-9_10
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7.4.3.2 Performance and Comparison

The output of the system and the sequence of events for N = 4 and the same initial
conditions than in the previous example when the trigger function is defined as in
(7.26) with parameters δ0 = 0.02, δ1 = 0.5, and β = 0.8 are shown in Fig. 7.4.

The convergence of the system to a small region (δ0 = 0.02) around equilibrium is
guaranteed due to the time dependency in the trigger functions. The event generation
is shown in Fig. 7.4b. The system converges to zero with few events. Note that the
agent that generates the highest number of events is Agent 2 (in red) and this value is
24 over a period of 15 s. Table 7.1 compares the proposed event-triggered approach
to periodic control.

The bandwidth of the closed-loop subsystem is 0.8864 rad/s and the sampling
period should be between (0.1772, 0.3544) s, according to [74], i.e., (42, 85) trans-
missions in a 15 s time, whereas the value for the minimum and maximum inter-event
times are 0.1690 and 2.260, respectively. Furthermore, this comparison is even unfair
with the event-based approach, since once the system is around the equilibrium point,
the broadcasting periods take values around 1–2 s.

Observe also that the control signals are piecewise constant (Fig. 7.4c). They are
updated if an event is triggered by the agent or its neighbors.

Table 7.2 extends this study for a larger number of agents. Several simulations
were performed for different initial conditions for each value of Na . Minimum and
mean values of the inter-event times T i

k were calculated for the set of the simulations
with the same number of agents. We see that the broadcasting period remains almost
constant when the number of agents increases. Thus, the amount of communication
for the overall network grows linearly with Na .
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Fig. 7.4 Simulation results with trigger functions (7.26) with δ0 = 0.02, δ1 = 0.5, β = 0.8

Table 7.1 Comparison of time-triggered and event-triggered strategies

No. updates {T i
k }min (s) {T i

k }max (s)

Time-triggered (42, 85) 0.177 0.3544

Event-triggered 24 0.1690 2.260
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Table 7.2 Inter-event times for different N

N (s) 10 50 100 150 200

Trigger condition (7.26) {T i
k }min 0.053 0.031 0.015 0.019 0.009

{T i
k }mean 0.565 0.565 0.567 0.572 0.568

Trigger condition (7.24) {T i
k }min 0.008 0.005 0.004 0.002 0.001

{T i
k }mean 0.183 0.132 0.129 0.121 0.116

Trigger condition of [257] {T i
k }mean 0.115 0.118 0.115 0.118 0.118

Moreover, these results are compared to other event-trigger functions: (7.24) with
δ = 0.02, and (7.25). For this later case, the results are taken from [257]. We see
that trigger functions (7.26) can provide around five times larger broadcast periods.
For example, for a number of pendulums of Na = 100, trigger functions of the form
(7.26) give a mean broadcasting period of 0.567, whereas trigger functions of the
form (7.24) provide 0.129 and the result given in [257] is 0.115.

7.5 Extension to Discrete-Time Systems

7.5.1 System Description

The previous analysis considers that the state of the subsystems is monitored contin-
uously. However, in practice, most of the hardware platforms only provide periodical
implementations of the measurement and actuation tasks.

Hence, let us consider that each subsystem i is sampled at predefined instances of
time given by a sampling period Ts . The discrete-time dynamical equation describing
each subsystem is

xi (� + 1) = Ai xi (�) + Bi ui (�) +
∑

j∈Ni

Hi j x j (�). (7.34)

The control law is given by

ui (�) = Ki xb,i (�) +
∑

j∈Ni

Li j xb, j (�), (7.35)

where xb,i (�) is the last-broadcast state, Ki is the feedback gain, and Li j are the
decoupling gains for the discrete-time subsystem i . The error is defined again as the
difference between the last-broadcast state and the measured state. Thus,

εi (�) = xb,i (�) − xi (�), (7.36)
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and (7.34) can be rewritten in terms of the error εi (�) as

xi (� + 1) = AK ,i xi (�) + Bi Kiεi (�) +
∑

j∈Ni

Δi j x j (�) + Bi Li jε j (�), (7.37)

where AK ,i = Ai + Bi Ki and Δi j = Bi Li j + Hi j . Ki are designed so that all the
eigenvalues of AK ,i lie inside the unit circle.

If we define the block matrices AK, B, K , and Δ as in (7.16)–(7.19), and the
stack vectors x and e as in (7.20) and (7.21), respectively, then the overall system
dynamics is

x(� + 1) = (AK + Δ)x(�) + BK e(�). (7.38)

7.5.2 Discrete-Time Trigger Functions

Trigger functions of the form (7.26) are difficult to implement in digital platforms
since they involve a decaying exponential. Therefore, for discrete-time systems, we
propose the following functions

Fe,i (εi (�), �) = ‖εi (�)‖ − (δ0 + δ1β
�), 0 < β < 1 (7.39)

since they can be assimilated to (7.26) for discrete-time instances.
The instances of discrete time at which events are detected are denoted as �i

k and
are defined recursively as follows:

�i
k+1 = inf{� > �i

k, Fe,i (εi (�), �) ≥ 0}.

Example 7.2 Let us consider a trigger function Fe,i (εi (t), t) = ‖εi (t)‖ − (0.01 +
0.5e−0.8t ) in continuous time t , which bounds the error ‖εi (t)‖ ≤ (0.01+0.5e−0.8t ).
This bound is depicted in Fig. 7.5 (blue line). Assume that this system is sampled:

• With a sampling period Ts = 0.1.
• With a sampling period Ts = 0.2.

Trigger functions of the form (7.39) can be defined with the same values for δ0 and δ1
and with β = e−0.8Ts . This yields values β = 0.9231 and β = 0.8521, respectively.
The error bounds for both cases are shown in Fig. 7.5. Note that this bound is a
piecewise constant function and changes at the sampling time instances.

7.5.3 Stability Analysis

Theorem (7.1) sums up the stability results for the continuous time system. Equivalent
results can be derived for the discrete-time system (7.38).
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Fig. 7.5 Comparative of time-continuous (blue) and discrete-time (red) trigger functions, Ts = 0.1
(left), Ts = 0.2 (right)

However, a remark should be pointed out first. Whereas in continuous time the
state is monitored continuously and this ensures that the error εi (t) is strictly upper
bounded by δ0 + δ1e−βt , in discrete-time systems it might occur that for a given �,
‖εi (�)‖ < δ0 + δ1β

�, but ‖εi (� + 1)‖ > δ0 + δ1β
�+1, so that the error reached the

bound in the inter-sampling time.
In order to deal with this phenomenon, we state the following assumption.

Assumption 7.3 Fast sampling is assumed [109] so that events occur in all proba-
bility at the sampling times �. Hence, ‖εi (�

i
k)‖ ≈ δ0 + δ1β

�i
k for some � = �i

k .

The next theorem states that the system (7.38), when trigger functions (7.39) are
used, converges to a region around the origin, which depends on δ0.

The proof of the theorem can be found in Appendix A, being two the clues to fol-
low the proof. First, all the eigenvalues of AK lie inside the unit circle, so that

|λmax (AK )|� < 1,∀� ≥ 0 and |λmax (AK )|� �→∞−−−→ 0, being λmax (AK ) the maxi-
mum of the eigenvalues of AK . Second, the perturbation analysis for matrix powers,
and in particular (7.11), can be applied. Before enouncing the theorem, the following
assumption is required:

Assumption 7.4 AK is diagonalizable so that AK = V DV −1, and the coupling
terms are such that κ(V )‖Δ‖ < 1 − |λmax (AK )|, where κ(V ) = ‖V ‖‖V −1‖ and
λmax (AK ) is the eigenvalue of AK with the closer magnitude to 1. Furthermore, it
is assumed that Δ is such that the second-order terms can be approximated to zero
O(‖Δ‖2) ≈ 0.

Note that when β 	= 0, and additional constraint is imposed to the coupling
terms. Specifically, the condition |λmax (AK )| + κ(V )‖Δ‖ < β < 1 ensures the
convergence to the equilibria.
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Theorem 7.2 Consider the closed-loop system (7.38) and trigger functions of the
form (7.39), where |λmax (AK )| + κ(V )‖Δ‖ < β < 1. If Assumptions 7.3 and 7.4
hold, then, for all initial conditions x(0) ∈ R

n and � > 0, it holds

‖x(�)‖ ≤ κ(V )

(
‖BK‖√Naδ0

1−|λmax (AK )|γ0 + |λmax (AK )|�
(
‖x(0)‖ − ‖BK‖√Naδ0

1−|λmax (AK )|γ0

− ‖BK‖√Naδ1
β−|λmax (AK )|γ1 + κ(V )‖Δ‖

|λmax (AK )|�
(
‖x(0)‖ − ‖BK‖√Naδ0

1−|λmax (AK )| − ‖BK‖√Naδ1
β−|λmax (AK )|

) )

+ β� ‖BK‖√Naδ1
β−|λmax (AK )|γ1

)

, (7.40)

where

γ0 = 1 + κ(V )‖Δ‖
1 − |λmax (AK )| (7.41)

γ1 = 1 + κ(V )‖Δ‖
β − |λmax (AK )| . (7.42)

Remark 7.3 If perfect decoupling can be achieved, then ‖Δ‖ = 0, which yields
γ0, γ1 = 1. Thus, (7.40) is simplified:

‖x(�)‖ ≤ κ(V )

(
‖BK‖√Naδ0

1−|λmax (AK )| + |λmax (AK )|�
(
‖x(0)‖ − ‖BK‖√Naδ0

1−|λmax (AK )|

− ‖BK‖√Naδ1
β−|λmax (AK )|

)
+ β� ‖BK‖√Naδ1

β−|λmax (AK )|
)

.

7.6 Improvements

The objective of this section is the proposal of some improvements to the design
described previously in the chapter. First, a novel implementation is presented to
reduce the number of control updates allowing a more efficient usage of the lim-
ited resources of embedded microprocessors. In the previous design, the adaption
frequency of the control input may be high when the neighborhood is large even if
each agent is not transmitting so often. The design is based on two sets of trigger
functions. The first set decides when to transmit an update for the broadcast state
and the second set checks a predefined control error at broadcasting events, updating
only when this error exceeds a given threshold.

The second improvement of the discrete-event-based control (DEBC) has a
different goal, which is to reduce as much as possible the communication through
the network even if the load of the microprocessor is increased. We present a
distributed model-based control design in which each agent has certain knowl-
edge of the dynamics of its neighborhood. Based on this model, the subsystem
estimates its state and its neighbors’ continuously and computes the control law
accordingly. Model uncertainty is assumed and the performance of the Sect. 7.4’s and
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model-based designs are compared, showing that a model-based controller allows
larger inter-event times.

7.6.1 Reducing Actuation in Distributed Control Systems

This section presents a distributed control design where the goal is not only to reduce
communication but also the number of control updates in each node. Note that in a
single control loop the reduction of communication usually implies the reduction of
actuator updates [68, 239], which does not necessary hold in distributed systems.

The control law is computed in (7.13) based on the broadcast states. Thus, u(t) is a
piecewise constant function. Accordingly, the control law of agent i is updated when
an event is triggered by itself or any of its neighbors. This might lead to very frequent
control updates if the number of neighbors was large. However, the change of the
control signal ui (t) might be small due to, e.g., a weak coupling. In this situation, an
update of the control signal is generally not needed.

We propose a new control law in which ui (t) is not updated at each broadcasting
event, but when an additional condition is fulfilled. We consider two mechanisms
driven by events. The first one is the transmission of information between nodes
(transmission events), and the second one is the update of the control law (control
update events). Note that the transmission events correspond to the considered events
up to now. The description of both sets of trigger functions is given next.

7.6.1.1 Trigger Functions

Transmission Events

The occurrence of a transmission event is defined by trigger functions Fx,i which
only depend on local information of agent i and take values in R.

The sequence of broadcasting times t i
k are determined recursively by the event-

trigger function as
t i
k+1 = inf{t : t > t i

k, Fx,i (t) > 0}.

We define the error between the current state xi and the most recently broadcast state
xb,i as

εx,i (t) = xb,i (t) − xi (t), (7.43)

and we consider time-dependent trigger functions defined by

Fx,i (t, εx,i (t)) = ‖εx,i (t)‖ − δx,0 − δx,1e−βt , (7.44)

with δx,0 > 0, δx,1 ≥ 0, and α > 0. An event is detected when Fx,i (t, εx,i (t)) > 0,
and the error εx,i is reset to zero. Note that the error remains bounded by

‖εx,i (t)‖ ≤ δx,0 + δx,1e−βt . (7.45)
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This type of trigger functions has been shown to decrease the number of events while
maintaining a good performance of the system. The case δx,0 = 0 is excluded. The
reason is discussed later. However, the case δx,1 = 0 is admitted leading to static
trigger functions.

Control Update Events

Let us denote the time instants at which the control update of the agent i occurs as
{t i

�}∞�=0,∀i = 1, . . . , Na .
The control law is defined for the inter-event time period as

ub,i (t) = Ki xb,i (t
i
�) +

∑

j∈Ni

Li j xb, j (t
i
�), t ∈ [t i

�, t i
�+1). (7.46)

In order to determine the occurrence of an event, we define

εu,i (t) = ub,i (t) − ui (t), (7.47)

where ui (t) is given by (7.13). The set of trigger functions is given by

Fu,i (εu,i (t)) = ‖εu,i (t)‖ − δu, δu > 0. (7.48)

The sequence of control updates is determined recursively. However, whereas the
transmission events can occur at any time t because xi (t) is a continuous function,
ui (t) in (7.13) is not continuous but piecewise constant and only changes its value
at transmission events. This means that the events on the control update are a subse-
quence of the transmission events.

Denote ¯Ni = i ∪ Ni and {t ¯Ni
k } the set {t i

k} ∪ {t j
k }, j ∈ Ni . Thus,

t i
�+1 = inf{t ¯Ni

k : t
¯Ni

k > t i
�, Fu,i (t

¯Ni
k ) > 0}.

Hence, it holds that {t i
�} ⊂ {t ¯Ni

k }.
Example 7.3 An example of the proposed design is given in Fig. 7.6. Assume that
Agent 1 sends and receives information to/from its neighborhood through a network.
At t = t2

k it receives a broadcast state xb,2 from Agent 2. Agent 1 computes u1
according to the new value received. For example, if Agent 2 is its unique neighbor,
u1(t2

k ) = K1xb,1(t2
k ) + L12xb,2(t2

k ) = K1xb,1(t1
k−1) + L12xb,2(t2

k ), where t1
k−1 is

assumed to be the last broadcasting event time for Agent 1. After computing u1, Agent
1 checks whether the difference between this value and the current control signal
applied exceeds the threshold δu . Since this threshold is not exceeded, it does not
update ub,1. At t = t1

k , Agent 1 detects an event because εx, 1 reaches the threshold
δx . x1(t1

k ) is broadcast through the network and u1 is computed again. Given that
‖εu,1‖ < δu , ub,1 is not modified. Finally, a new event occurs at t = t1

k+1 resulting
in a broadcast and a control update since ‖εu,1‖ ≥ δu . Note that ub,1(t) = u1(t).
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Fig. 7.6 Illustrative example
of transmission and control
update events between a
system compound of two
agents

Agent 1 

Continuous 
state evolution 

State used by 
the controller 

Computed 
control input 

Applied 
control input 

Network 
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0
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k t1

k t1
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k )
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k ) xb,1(t1

k+1)
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7.6.1.2 Performance Analysis

The dynamics of the subsystems (7.12) with control law (7.46) is

ẋi (t) = Ai xi (t) + Bi ub,i (t) +
∑

j∈Ni

Hi j x j (t).

It can be rewritten in terms of the errors εx,i (t) and εu,i (t) handled by the trigger
functions (7.44) and (7.48). respectively, as

ẋi (t) = AK ,i xi (t) +
∑

j∈Ni

Δi j x j (t) + Bi Kiεx,i (t) + Bi

∑

j∈Ni

Li jεx, j (t) + Biεu,i (t).

Let us define the stack vectors

εT
x = (

εT
x,1 . . . εT

x,N

)

εT
u = (

εT
u,1 . . . εT

u,N

)
, (7.49)
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and consider the usual definitions for x(t) and the matrices AK, B, K , and Δ given
in (7.16)–(7.19).

Accordingly, the overall system dynamics is given by

ẋ(t) = (AK + Δ)x(t) + BK εx (t) + Bεu(t). (7.50)

As the broadcast states xb,i remain constant between consecutive events, the dynam-
ics of the state error in each interval are given by

ε̇x (t) = −(AK + Δ)x(t) − BK εx (t) − Bεu(t). (7.51)

The state error of the overall system is bounded by

‖εx (t)‖ ≤ √
Na(δx,0 + δx,1e−βt )

according to (7.45). However, εu(t) is not strictly bounded by δu because ui (t) is not
a continuous function but piecewise constant. To find an analytical bound, we assume
that that the occurrence of simultaneous transmission events in any neighborhood

¯Ni is not allowed, i.e., two neighboring nodes cannot transmit at the same instance
of time. Moreover, in case that two broadcast states were received by one agent
simultaneously, it could enqueue the data and do the computation of the control
law sequentially. This might induce delays in the case where two nodes attempted
to transmit at the same time. However, we assume that this delay is negligible in
this section. The effect of delays and packet losses on event-triggered control of
distributed control systems will be studied in Chap. 10.

Lemma 7.4 The control error of the subsystem i is bounded by

‖εu,i (t)‖ ≤ δ̄u,i (t), (7.52)

with

δ̄u,i (t) = δu + (δx,0 + δx,1e−βt ) · max{‖Ki‖, ‖Li j‖ : j ∈ Ni }.

Moreover, the control error of the overall system is bounded by

‖εu(t)‖ ≤ √
Na(δu + ‖μ(K )‖max(δx,0 + δx,1e−βt )) = δ̄u(t), (7.53)

where

μ(K ) =

⎛

⎜
⎜
⎜
⎝

‖K1‖ ‖L12‖ · · · ‖L1N ‖
‖L21‖ ‖K2‖ · · · ‖L2N ‖

...
...

. . .
...

‖L N1‖ ‖L N2‖ · · · ‖KN ‖

⎞

⎟
⎟
⎟
⎠

, (7.54)

and ‖ · ‖max denotes the entry-wise max norm of a matrix.

http://dx.doi.org/10.1007/978-3-319-21299-9_10
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Proof The proof can be found in Appendix A.

We next present the main result of the section.

Theorem 7.3 Consider the interconnected linear system (7.50). If trigger functions
(7.44) are used to broadcast the state with 0 < β < |αmax (AK )| − κ(V )‖Δ‖, and
trigger functions (7.48) for the control update, then, for all initial conditions x(0)

and t ≥ 0, it follows that

‖x(t)‖ ≤σ1 + (κ(V )‖x(0)‖ − σ1 − σ2)e
−(|αmax (AK )|−κ(V )‖Δ‖)t + σ2e−βt , (7.55)

where

σ1 = κ(V )
√

Na
(‖BK‖ + ‖B‖‖μ(K )‖max)δx,0 + ‖B‖δu

|αmax (AK )| − κ(V )‖Δ‖ (7.56)

σ2 = κ(V )
√

Na
(‖BK‖ + ‖B‖‖μ(K )‖max)δx,1

|αmax (AK )| − κ(V )‖Δ‖ − β
. (7.57)

Furthermore, the system does not exhibit Zeno behavior, being the lower bound for
the inter-execution times

Tx,min = δx,0

γ1 + √
Na(γ2 + γ3 + γ4)

, (7.58)

where

γ1 = κ(V )‖x(0)‖‖AK + Δ‖
γ2 = (‖BK‖ + ‖B‖‖μ(K )‖max)δx,0

(
1 + κ(V )‖AK +Δ‖

|αmax (AK )|−κ(V )‖Δ‖

)

γ3 = (‖BK‖ + ‖B‖‖μ(K )‖max)δx,1

(
1 + κ(V )‖AK +Δ‖

|αmax (AK )|−κ(V )‖Δ‖−α

)

γ4 = ‖B‖δu

(
1 + κ(V )‖AK +Δ‖

|αmax (AK )|−κ(V )‖Δ‖

)
.

Proof The proof can be found in Appendix A.

The previous analysis is based on two sets of trigger functions to detect transmis-
sion and control updates events. One concern that can be raised is how the values of
the parameters of these trigger functions can be selected or if there is any relationship
between them.

Let us first assume the case δx,1 = 0 yielding to static trigger functions. It follows
that ‖εx,i (t)‖ ≤ δx,0 and ‖εu,i (t)‖ ≤ δu + δx,0 ·max{‖Ki‖, ‖Li j‖ : j ∈ Ni } ∀t ≥ 0,
according to (7.45) and (7.52), respectively.

Assume that the last control update event occurred at t = t∗ and denote the
number of transmission events between t∗ and the next broadcast as ne. A lower
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bound for ne can be derived following the ideas of Lemma 7.4:

‖εu,i (t) − εu,i (t
∗)‖ = ‖εu,i (t)‖ ≤

ne∑

k=1

δx,0 · max{‖Ki‖, ‖Li j‖ : j ∈ Ni }

= neδx,0max{‖Ki‖, ‖Li j‖ : j ∈ Ni }

and the next control update event will not be triggered before

‖εu,i‖ = δu ≤ δu + δx,0max{‖Ki‖, ‖Li j‖ : j ∈ Ni }.

Thus,

ni
e ≥ δu

δx,0max{‖Ki‖, ‖Li j‖ : j ∈ Ni } . (7.59)

Equation (7.59) shows the trade-off between δu and δx,0 and gives insights on how
one of these parameters should be chosen according to the other one.

Moreover, (7.59) can be translated into a relationship between the inter-execution
times of the control law (7.46), denoted T i

u,min , and the minimum broadcasting period
(7.58). It holds that

T i
u,min ≥ ni

eTx,min ≥ δu

(γ1 + √
Na(γ2 + γ4))max{‖Ki‖, ‖Li j‖ : j ∈ Ni } .

Note that γ3 = 0 because we are analyzing the case δx,1 = 0. Let Tu,min be Tu,min =
min{T i

u,min}. It yields

Tu,min ≥ δu

(γ1 + √
Na(γ2 + γ4))‖μ(K )‖max

.

Hence, δx,0 and δu can be chosen to meet some constraints on Tx,min and Tu,min .
In the design of Sect. 7.6.1.1 the case δx,0 = 0 was excluded and the reason is

given next. Assume that δx,0 = 0. Thus, following the steps of the previous case,
‖εu,i (t)‖ ≤ neδx,1e−βt∗max{‖Ki‖, ‖Li j‖ : j ∈ Ni }, where ne is the number of
broadcasting events and t∗ the time of the last control update event. Moreover, the
next event is not triggered before ‖εu,i‖ reaches the threshold δu . In this case, it holds
that

ne ≥ δu

δx,1e−βt∗max{‖Ki‖, ‖Li j‖ : j ∈ Ni } . (7.60)

Note that the lower bound for ne in (7.60) goes to infinity when t∗ → ∞, which
means that when the time values are large, many transmission events are required to
trigger a new control update and may lead to small inter-event times. One possible
solution is to accommodate the threshold δu to the decreasing bound on the state
δx,1e−βt .
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7.6.1.3 Simulation Example

Let us consider the system presented in Sect. 7.4.3 but with a different topology.
Specifically, the mesh of inverted pendulums is depicted in Fig. 7.7. The dynamics of
the subsystem change in this scheme, and three types of agents can be distinguished:
the ones in the corners with two neighbors, the ones in the borders (excluding the cor-
ners) with three neighbors, and the inner pendulums with four nodes to communicate
with. Moreover, movement is assumed to be in the XY plane. Hence, the dimension
of the state is n = 4 and there are two control inputs (m = 2), which are the forces
acting in the X and Y directions, respectively.

Figure 7.8 shows the output of the system in a 3D space for a mesh of 6 × 6
pendulums. The coordinates in the XY plane over time are plotted. Trigger functions
with δx,0 = 0.02, δx,1 = 0.5, β = 0.6, and δu = 0.1 are considered.

Let us focus on one particular subsystem, for example the agent (2,2) (second
row, second column). The number of broadcasting events in all the neighborhood of
this particular agent, which has four neighbors, is 170, while the number of control
updates in the agent (2,2) is 90, so that 47 % of the transmissions do not end into a
control update because the threshold δu is not reached.

Fig. 7.7 Scheme of the
coupled pendulums mesh

Na

Na

Fig. 7.8 xi1 (θx ) and xi3 (θy)

for a 6 × 6 mesh of inverted
pendulums
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If this experiment is repeated for the case in which trigger functions (7.48) are
not considered, the number of broadcasting events in the neighborhood of (2,2) is
140, which is equal to the number of control updates. Thus, the proposed design with
trigger functions (7.48) as expected might cause an increase of network transmissions,
in this case 21 % while saving almost half of the changes on the control signal.
Moreover, if we compute the average broadcasting period for the entire network as

T̄x = N 2
a tsim

No. events it yields 0.5202 s for the first case and 0.5954 s for the case without
using the event-triggered control update. Hence, for the overall network the difference
is not relevant. These results are extended for different values of Na in Table 7.3. Note
that the variations of the average period with the number of agents are not significant.

The influence of the parameter δu for given parameters δx,0 = 0.02, δx,1 = 0.5,
and β = 0.6 can be analyzed and the results are illustrated in Table 7.4. For a mesh
of 6 × 6 subsystems, the following values are computed for each value of δu and
simulation time t = 15 s:

• Average number of transmissions through the network defined as n̄x =
∑N2

a
i=1 |{t i

k }|
N 2

|Ni |, where |{t i
k}| is the cardinality of the set {t i

k} and |Ni | is the average for the
number of neighboring agents.

• Average number of control updates defined as n̄u =
∑N2

a
i=1 |{t i

�}|
N 2

a
.

Note that the best choice of the values of δu, δx,0 and δx,1 depends on the commu-
nication and actuation costs of the implementation, and the lower bounds on the
inter-event times that should be guaranteed in the system. We can say that a value
δu ∈ [0.05, 0.1] would be a good option because the decrease of the control events
is notable while the increase in communication events is assumable. If δu = 0.02 all
broadcasting events lead into a control update (n̄u is actually larger than n̄x , but this
is due to the error induced by the statistical treatment of the data).

Table 7.3 Average broadcasting period variations with Na

Na × Na 16 36 64 81 100

T̄x 0.5422 0.5202 0.4813 0.4676 0.4765

Table 7.4 Average transmission and control update events with cu

δu 0.02 0.05 0.1 0.2

n̄x 86.20 83.98 95.46 181.48

n̄u 93.11 75.00 67.28 57.58



176 M. Guinaldo et al.

7.6.2 Model-Based Design

Model-based event-triggered control has been shown to reduce the amount of com-
munication in a control loop [154]. Ideally, if the plant is stable, there are no model
uncertainties or external disturbances, the control input u(t) can be determined
in a feedforward manner, and no communication over the feedback link is nec-
essary [139].

The distributed approach presented in this section shows that if the model uncer-
tainty fulfills a certain condition, the model-based approach gives larger minimum
inter-event times than the zero-order hold approach of Sect. 7.4. We assume that each
agent has knowledge of the dynamics of its neighborhood.

In particular, let us define the model-based control law for each agent as

ui (t) = Ki xm,i (t) +
∑

j∈Ni

Li j xm, j (t), (7.61)

where xm,i now represents the state estimation of xi given by the model (Am,i , Bm,i )

of each agent, and AmK ,i = Am,i + Bm,i Ki . Let us define AmK = diag(AmK ,1, . . . ,

AmK ,Na ).
The error εi (t) is redefined as

εi (t) = xm,i (t) − xi (t), (7.62)

and is reset at events’ occurrence. In particular, xm,i (t) is computed in the inter-event
times as

xm,i (t) = eAmK ,i (t−t i
k)xi (t

i
k), ∀t ∈ [t i

k, t i
k+1). (7.63)

Note that (7.63) does not include the coupling effect since the decoupling gains Li j

are designed to compensate the model of the interconnections Hi j . Thus, if Δi j 	= 0
it is because these interconnections are partially unknown or perfect decoupling may
not be possible due to, e.g., the matrix Bi not having full rank.

Therefore, each agent i has a model of its dynamics and of its neighborhood Ni .
Based on this model, it estimates its state denoted as xm,i (t) to compute ui (t) in (7.61).
This idea is illustrated in Fig. 7.9. Note that this is an extension of a conventional
model-based controller. In the distributed approach, the controller C has Ni + 1
inputs and one output. A block that represents the model of a subsystem is reset
when a new broadcast state is received.

When the state estimation xm,i (t) differs a given quantity from xi (t), which
depends on the trigger function, a new event is generated and the estimation is reset
to the new measured state. For instance, xm,i might deviate from xi due to model
uncertainties on AK ,i , disturbances, and the effect of the non-perfect decoupling.
Furthermore, the agent i broadcasts the new measurement to its neighbors, which
also update their estimations according to the new value received from agent i .
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Fig. 7.9 Model-based control scheme for the node i

7.6.2.1 Main Result

If we consider the trigger function defined in (7.26) and for the new error defined in
(7.62), the state will be also bounded by (7.28). However, the lower bound for the
inter-event time will have a different expression.

Definition 7.2 Let us define

δA := Am − A

δB := Bm − B

δAK := AmK − AK = δA + δBK , (7.64)

i.e., the model uncertainty of the overall system without interconnections.

Assumption 7.5 We assume that the values of δ0 and δ1 and the initial conditions
x(0) satisfy the following constraint:

√
Na(δ0 + δ1)

‖x(0)‖ + ‖BK‖√Naδ0
αΔ

+ ‖BK‖√Naδ1
αΔ−β

< κ(V )
‖AK + Δ‖ − ‖δAK ‖ − ‖Δ‖

‖AmK ‖ ,

(7.65)
where αΔ = |αmax (AK )| − κ(V )‖Δ‖.

Remark 7.4 Equation (7.65) is feasible only if the right-hand side is strictly positive,
since δ0 + δ1 > 0. This gives a maximum value of the model uncertainty for a given
bound on the norm of the coupling terms matrix or vice versa.
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Theorem 7.4 If Assumption 7.5 holds, the lower bound of the broadcasting period
for the system (7.22), under the control law (7.61), and with triggering functions
(7.26), 0 < β < |αmax (AK )| − κ(V )‖Δ‖, is greater than (7.29).

Proof The proof can be found in Appendix A.

7.6.2.2 Simulation Example

Next, the performance of the model-based approach is demonstrated and compared
to the results of Sect. 7.4.3. Let us consider trigger functions Fe,i (t, εi (t)) = 0.02 +
0.5e−0.8t . Figure 7.10 compares the output of Agent 1 of a chain of four inverted
pendulums. Observe that, for this case, the model-based approach reduces the number
of events in more than a third (from 23 (in red) to 9 (in blue)). Note that the control
law is not a constant piecewise function.

Table 7.5 compares the results of the first row of Table 7.2 with the model-based
design. Note that when the controller uses a model, the average and the minimum
values of the inter-event times are enlarged, as predicted by Theorem 7.4.
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Fig. 7.10 Simulation result with trigger functions (7.26) for the design of Sect. 7.4 (red) and the
distributed model-based control (blue). The dashed line (magenta) represents the piecewise function
xm1,1
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Table 7.5 Inter-event times for different Na

Na (s) 10 50 100 150 200

Trigger condition
(7.26), Sect. 7.4

{T i
k }min 0.053 0.031 0.015 0.019 0.009

{T i
k }mean 0.565 0.565 0.567 0.572 0.568

Trigger condition
(7.26), MB control

{T i
k }min 0.6816 0.3025 0.219 0.0963 0.132

{T i
k }mean 1.430 1.500 1.477 1.668 1.581

7.7 Conclusions

A distributed event-based control strategy for interconnected subsystems has been
presented. The events are generated by the agents based on local information only,
broadcasting their state over the network. The proposed trigger functions preserve
the desired convergence properties and guarantee the existence of a strictly positive
lower bound for the broadcast period, excluding the Zeno behavior.

Because most of the hardware platforms only provide periodical implementations
of the measurement and actuation tasks, the analysis has been extended to discrete-
time systems.

Additionally, the way in which the actuation rate can be reduced in an intercon-
nected system if triggering functions are also used in the update of the control law
has been illustrated. The existing trade-off between communication and actuation
has been shown analytically and through simulations.

Finally, a model-based approach has been proposed showing that the minimum
inter-event times can be enlarged if the model uncertainty satisfies certain conditions.



Chapter 8
Distributed Event-Based Observers
for LTI Systems

Pablo Millán, Carlos Vivas and Carlo Fischione

8.1 Introduction

In the past few years, there has been a renewed interest in the problem of event-
based distributed estimation. Most developments have been driven by applications
in the field of mobile multi-agent systems [202], where several vehicles (agents) are
intended to move in a coordinated way. In this field, the problem generally takes
the form of a consensus problem and two different schemes of triggering events are
usually found: centralized event-based consensus control and, decentralized event-
based consensus control. The term centralized in this context refers to the case when
there is only a single-event generator determining the global triggering instants for
each agent. The triggering events are thus assumed to be synchronized [37, 41,
112, 152]. On the other hand, decentralized approaches require every agent to equip
event generators in order to transmit their local information to neighborhoods in
asynchronous instants [71, 232, 272, 278].
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Besides mobile multi-agent systems, probably the most common approach to
event-based distributed estimation has been the distributed Kalman filter (DKF) based
on consensus strategies. The methodology implies correcting the local estimations
performed at each node based on the information received from their neighbors. See,
for instance, [4, 157, 200, 203].

There exists also a number of works that propose different approaches. For exam-
ple, distributed moving horizon schemes are employed in [72], where the solution
requires each sensor to solve a quadratic optimization problem at every sampling
time. A finite-horizon paradigm is proposed in [55] and [233] to design distributed
observers who take into account quantization errors and successive packet dropouts.
Another significant work from the same authors lying in this filed is that in [235], in
which a stochastic sampling between nodes is considered. A very interesting research
direction considers more general models of the plant, including nonlinearities, inner
delays, or different Markov-chain-driven dynamical modes. See, for instance, [234],
[148] or [149].

In this chapter, we focus our interest in designing distributed estimators for LTI
systems under the assumption of perfect communication channels, that is, com-
munication delays are neglected, and reliable protocols are employed such that no
packet dropouts are considered. Every sensor in the network (agent) is assumed to
have all or part of the following capabilities: measurement of a subset of the plant
states, compute estimations, and communicate to neighboring nodes. Based on local
Luenberger-like observers in combination with consensus strategies, the proposed
method allows for a network of sensors to estimate the whole plant state under mild
assumptions of local observability. The observer design problem is solved via lin-
ear matrix inequalities. It is shown that globally ultimately uniformly boundedness
(GUUB) of the estimation errors into an arbitrary small ultimate bound region can
be achieved when using the proposed event-based implementation.

As in Chap. 7, this chapter develops methodologies for distributed estimation
for the case of asynchronous communications. As already mentioned, event-based
methods are more efficient from the point of view of bandwidth use, as communica-
tions are invoked only when significant information requires to be transmitted. This
approach becomes specially beneficial in the context of distributed estimation over
networks, as the limitations imposed by the network render the frequency at which
the system communicates.

This chapter is organized as follows. Section 8.2 describes and motivates the
problem under consideration. Section 8.3 describes the general methodology and
assumptions made for the problem at hand. First, the case for periodic communica-
tions is developed in Sect. 8.3.1, and later the asynchronous design is described in
Sect. 8.3.2. Finally, an illustrative example is given in Sect. 8.4 and conclusions end
the chapter.

http://dx.doi.org/10.1007/978-3-319-21299-9_7
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8.2 Problem Statement

The system to observe is an autonomous linear time-invariant plant given by the
following equations:

x(k + 1) = Ax(k), (8.1)

yi (k) = Ci x(k), ∀i ∈ V , (8.2)

where x(k) ∈ Rn is the state of the plant, yi (k) ∈ Rmi are the system outputs, and
Na is the number of the agents of the network.

We assume that ∀i ∈ V , agent i directly accesses the output yi , and that it can
communicate with its neighborhood Ni , see Fig. 8.1. Clearly, if the pair (A, Ci ) is
observable for some i , then node i is capable to reconstruct the full state x of the plant
directly from yi , without the necessity of communicate with any other node (local
observability [200]). Here, we consider instead the case of collective observability,
that is, the systems are observable only if we put together all the nodes, i.e., the pair
(A, C) is observable, where C is a matrix stacking the output matrices Ci of all the
agents [200].

Let us define C̄i as a matrix stacking the matrix Ci and matrices C j for all j ∈ Ni .
It is assumed that each pair (A, C̄i ) is observable. This is a necessary condition that
impose some restrictions on the network topology and the information that is sent
via each connection.

The local observer structure we use is given by the following equations:

x̂i (k + 1) = Ax̂i (k) + Mi
(
ŷi (k) − yi (k)

) +
∑

j∈Ni

Ni j
(
x̂ j (k) − x̂i (k)

)
,

ŷi (k) = Ci x̂i (k), ∀i = 1, 2, ..., Na, (8.3)

where x̂i (k) ∈ R
n is the state estimate of the agent i . With this scheme, every agent

tries to reconstruct the full state of the plant. Notice that each estimator is given by

Fig. 8.1 System
architecture. Each observer
can measure some plant
outputs and receives
information from its
neighbors

observer j

observer i

y j

yi

PLANT
...

Network
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two pieces: a local Luenberger observer and a consensus part. The Luenberger-like
observer corrects the estimated state of the plant based on the measured output yi (k)

through the matrices Mi , while an additional correction is performed by consensus
through the matrices Ni j , which take into account the information received from the
neighborhood.

The problem we address in this chapter is split into two parts: first, we aim at
designing the matrices set M = {Mi , i ∈ V } and N = {Ni j , (i, j) ∈ E } to
stabilize the observations error of every node by assuming periodic communication.
Then, given the set of matrices M and N designed above, the objective is to design
an event-based mechanism to reduce the amount of communication among the nodes,
while ensuring GUUB of the observation error.

8.3 Observer Design

In this section, we show how to solve the problem of distributed event-based estima-
tion described so far.

Before proceeding further, let us define the observation error of the observer i as
ei (k) = x̂i (k) − x(k), i.e., the difference between the estimation of agent i and the
state of the plant, and let us define the vector e(k) as the stack of the observation
errors, i.e., eT (k) = [eT

1 (k) . . . eT
Na

(k)].
We remark that for periodic communication among the nodes, asymptotic stability

of the closed loop will be proved, although the network is affected by waste of
energy and high traffic load because of unnecessary communication. For the event-
based communication, both the energy expenditure and the network traffic load are
drastically reduced, but asymptotically stability is no longer achieved. However, for
this second case, GUUB into an arbitrary small region is still ensured.

8.3.1 Periodic Case

In the case of periodic communication, taking into account Eqs. (8.1)–(8.3), the
dynamics of e(k) is given by

e(k + 1) = (Φ(M ) + Λ(N )) e(k), (8.4)

where matrices Φ(M ) and Λ(N ) depend on the sets M and N , and they have the
following structure:

Φ = diag{A + M1C1, . . . , A + MNa CNa }, (8.5)

Λ(N ) =
∑

(i j)∈E
Θi j (Ni j ) (8.6)
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and

Θi j (Ni j ) =

column i j
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · 0 · · · 0 · · · 0
...

...
...

...
...

...
...

0 · · · −Ni j · · · Ni j · · · 0
...

...
...

...
...

...
...

0 · · · 0 · · · 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

row i
(8.7)

The design method resorts to a Lyapunov-based approach to prove that the procedure
guarantees the asymptotic convergence of all the agents’ estimates to the actual state
of the plant. Concretely, we use the following Lyapunov function:

V (e) = eT Pe, (8.8)

where P = diag{P1, P2, . . . , PNa }, Pi > 0, Pi ∈ R
n, i ∈ V . The following result

provides a design method in terms of a linear matrix inequality (LMI).

Lemma 8.1 If there exists any positive scalar 0 < μ < 1 such that the LMI (8.9)
has a feasible solution for positive definite matrix P, and matrices Wi , Xi j , i ∈
V (i, j) ∈ E ,

[ −μP ∗
Φ(W ) + Λ(X ) −P

]

< 0, (8.9)

where

Φ(W ) = PΦ(M ),W = {Wi � Pi Mi , i ∈ V },
Λ(X ) = PΛ(N ),X = {Xi j � Pi Ni j , (i, j) ∈ E },

the estimations of all the observers asymptotically converge to the plant state by
designing the observation matrices as Mi = P−1

i Wi , i ∈ V , and Ni j = P−1
i Xi j ,

i ∈ V , (i, j) ∈ E .

Proof Choose the Lyapunov function (8.8). The forward difference can be computed
as

ΔV (k) = eT (k + 1)Pe(k + 1) − eT (k)Pe(k).

By taking into account Eq. (8.4) and Lemma 8.1, the forward difference can be
expressed in the following way1:

1We remove the functional dependences to alleviate the notation.
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ΔV (k) = eT (Φ + Λ)T P(Φ + Λ)e − eT Pe

≤ eT (Φ P + ΛP)T P−1(PΦ + PΛ)e − eT μPe.

Next, we impose that the Lyapunov function decreases for e(k) �= 0. Using Schur
complement, one can obtain easily that if the next matrix inequality holds, then
ΔV (k) < 0, which implies that the observation error of all the agents tends asymp-
totically to zero:

[ −μP ∗
PΦ(M ) + PΛ(N ) −P

]

< 0.

This matrix inequality is not linear because of the products of variable matrices in the
non-diagonal terms. However, from the diagonal structure of matrices P and Φ(M )

and the special structure of matrix Λ(N ), given by (8.6) and (8.7), it is possible
to define the change of variable in Lemma 8.1, thus obtaining the LMI (8.9), which
concludes the proof.

Remark 8.1 By comparing the proposed method with the works [200], our method
is not restricted to use a scalar gain on the consensus part, but it introduces matrix
gains which can be different for each link.

8.3.2 Event-Based Implementation

In the previous section, we proposed a methodology to design the set of the observers’
gains that solve the distributed estimation problem under the assumption of periodic
communication. In this section, we exploit Lemma 8.1, developing an event-based
strategy to reduce both the traffic load in the network and the energy consumption of
the nodes due to unnecessary transmissions. In the event-based strategy we present
here, each observer decides when it is necessary to broadcast its estimates to its
neighbors, based on the difference between its current estimate and the last transmit-
ted estimate. The price to be paid in this case is that asymptotic stability is no longer
guaranteed, but GUUB of the estimation errors can be proved. The trade-off between
performance and communication reduction can be adjusted with an adequate tuning
of a free parameter that determines the size of the ultimate bound region and the
amount of communication required.

The dynamics of each estimator, in the case of event-based implementation, is
given by

x̂i (k + 1) = Ax̂i (k) + Mi
(
ŷi (k) − yi (k)

) +
∑

j∈Ni

Ni j (x̂ j (l j ) − x̂i (k)), (8.10)

ŷi (k) = Ci x̂i (k), ∀i = 1, 2, ..., Na, (8.11)
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where l j ≤ k is the last time instant when the observer j communicated its estimated
state to its neighborhood. Equation (8.10) takes in consideration aperiodic commu-
nication through the variable l j , which can be distinct for each observer i ∈ V .
Equation (8.10) can be rewritten as follows:

x̂i (k + 1) = Ax̂i (k) + Mi
(
ŷi (k) − yi (k)

) +
∑

j∈Ni

Ni j
(
x̂ j (k) − x̂i (k)

) +
∑

j∈Ni

ε j (k),

(8.12)

where

ε j (k) = Ni j
(
x̂ j (l j ) − x̂ j (k)

)
. (8.13)

Based on (8.12), the evolution of the observers with periodic communication is
equivalent to the evolution with event-based communication, difference being in the
terms ε j (k), which are given by Eq. (8.13). Every time the node j broadcasts its state
to his neighborhood N j , we have ε j (k) = 0. Therefore, ε j (k) can be interpreted
as an external perturbation due to the discontinuous flow of information between
neighbors, which is reset to zero at every transmission time. It is worth to point out
that the disturbance that each observer j induces on its neighbors is unknown to other
neighbors, but can be tracked by j , which has access to its own local estimations.

Since we are considering the designed observers’ matrices to satisfy the conditions
of Lemma 8.1, here the matrices describing the dynamic of the error are not variables
and are fixed, that is, Φ(W ) = Φ, Λ(X ) = Λ. By proceeding analogously to the
periodic case, the augmented observation error vector can be written as

e(k + 1) = Ξe(k) + Γ ε(k), (8.14)

where

Ξ = Φ + Λ, ε(k)T = [εT
1 ... εT

p ] ,

Γ (N ) =
∑

(i, j)∈E
Ψi j

and

Ψi, j =

column j
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · · · · 0 · · ·· · · 0 · · · 0
...

...
...

...

0 · · · · · · 0 · · ·· · · Ni j · · ·0
...

...
...

...

0 · · · · · · 0 · · ·· · · 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

row i
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An event-based communication policy to ensure GUUB of the error dynam-
ics (8.14) is given by the following important result.

Theorem 8.1 Consider the observers 8.10–8.11 with gains as defined in
Lemma 8.1. Suppose each node j broadcasts its estimate x̂ j to his neighbors N j at
each k such that ‖ε j (k)‖∞ ≥ δ, with ε j defined in (8.13). Then, the estimation error
e is GUUB with bound

‖e‖2 ≤ δ

√
nλmax (P)

λmin(P)
(α‖Ξ‖∞ + ‖Γ ‖∞),

α = ‖Γ T PΞ‖∞ + √‖Γ T PΞ‖2∞ + (1 − μ)λmin(P)‖Γ T PΓ ‖∞
(1 − μ)λmin(P)

.

(8.15)

Proof From Theorem 8.1 and Eq. (8.14), the evolution of the Lyapunov function is
given by2

ΔV = [eT Ξ T + εT Γ T ]P[Ξe + Γ ε] − eT Pe ≤ −eT (1 − μ)Pe + 2εT Γ T PΞe

+ εT Γ T PΓ ε ≤ −(1 − μ)λmin(P)‖e‖2∞ + 2‖Γ T PΞ‖∞‖ε‖∞‖e‖∞
+ ‖Γ T PΓ ‖∞‖ε‖2∞. (8.16)

The right-hand side of Eq. (8.16) is an algebraic second-order equation in ‖e‖∞, such
that it is easy to see that the Lyapunov function V (k) decreases whenever ‖e(k)‖∞ >

α‖ε(k)‖∞, where α is given by Eq. (8.15). Given that each of the observers has access
only to local information, and monitories the disturbance caused in its neighbors, if
one takes the infinity norm of the disturbance vector ε, then it is possible to bound it
bellow a desired level ‖ε‖∞ < δ using only local information in each node. In this
way, it yields that ΔV (k) < 0 in the region ‖e(k)‖∞ > αδ.

Now consider k∗ as the time instant when the estimation error enters in the region
‖e(k)‖∞ < αδ. Then, taking into account the error dynamics given by (8.14), one
can easily obtain that

max‖e(k∗ + 1)‖∞ = (α‖Ξ‖∞ + ‖Γ ‖∞)δ

and the error can leave the region ‖e(k)‖∞ ≤ αδ. After this, the Lyapunov function
needs to decrease again, so the space enclosed by maximum of the Lyapunov func-
tion in k∗ + 1 is an ultimate bound for the estimation error. Using the inequalities
λmin(P)‖e‖2

2 ≤ eT Pe ≤ λmax (P)‖e‖2
2 and ‖e‖2 <

√
n‖e‖∞,∀e ∈ Rn , one can

easily compute the ultimate bound given in this theorem.

2We remove time indices to alleviate the notation.
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Remark 8.2 As has been shown, the parameter δ is related with the size of the
ultimate bound region of the estimation error e. By enlarging the value of δ, it is
possible to reduce the amount of transmission of the nodes, while by reducing it, a
better estimation performance is achieved, since the observation error is bounded in
a smaller region.

8.4 Illustrative Example

In this section, we illustrate the proposed methodology by an example. Let x :=
[x1 x2 x3]T ∈ R

3, and consider the system

x(k + 1) =
⎡

⎣
0.95 0 0

0 0.809 1
0 −0.3455 0.809

⎤

⎦ x(k).

Fig. 8.2 Observers’
estimates in the periodic
case. a Estimation of the first
observer. b Estimation of the
second observer
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We assume that two devices are estimating the state of the plant measuring distinct
outputs. Specifically, the first node has access to the first state, that is, y1 = [1 0 0]x ,
while the second node measures the output y2 = [0 1 1]x .

Figure 8.2 illustrates the simulation results in case of periodic communications.
The dotted line represents the estimations of each node, while the actual states of the
plant are plotted in continuous line. It can be appreciated how the estimations of the
two observers asymptotically converge to the actual states of the plant.

Figure 8.3 depicts instead the evolutions of the plant state and the estimations of
the observers for the event-based communication policy. The triggering threshold
is set to δ = 0.9. It is interesting to see how in this case the estimate error of both
the observers is bounded. In the periodic case, we experienced 102 transmissions
between the observers, while in the event-based case, we counted 51 transmissions,
resulting in a save of communication of 50 %.

Fig. 8.3 Observers’
estimates in the event-based
case. a Estimation of the first
observer. b Estimation of the
second observer
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8.5 Conclusions

This chapter has presented a novel distributed event-based estimator. The event-
based method is compared to a periodic implementation, showing that it effectively
achieves a reduction of the communication among the nodes. Such reduction of
communication has the likely effect of reducing both the traffic load in the network
and the energy expenditure of the nodes, still ensuring acceptable performance of
the closed-loop system.

The next chapter includes both distributed observers and distributed controllers
based on the same structure, while Chap. 11 extends the ideas in this chapter to the
case of unreliable networks, considering packet dropouts and time delays.

http://dx.doi.org/10.1007/978-3-319-21299-9_11


Chapter 9
Suboptimal Distributed Control
and Estimation: Application to a Four
Coupled Tanks System

Francisco R. Rubio, Karl H. Johansson and Dimos V. Dimarogonas

9.1 Introduction

In this chapter, we distinguish between decentralized control strategies where agents
only have access to local measurements, from distributed control strategies where
agents have access to local measurements and the measurements from neighbor-
ing agents. A decentralized control strategy can be sufficiently effective when the
couplings between agents are weak, [164, 255, 256]. If the agents’ coupling is not
weak, a full distributed feedback control approach must be employed, where each
agent uses its state, the local measurements, and that of neighboring agents to build a
control action. This mechanism of information exchange in the network, can assure
asymptotic stability with stronger agent coupling than decentralized control strategy,
[255, 259].

A natural extension of the single-plant NCS framework is considering the control
of systems consisting of interconnected subsystems. These can be understood as
the combination of networked control system, multi-agent systems, and large-scale
systems.Much effort is still to be done to properly understandmultiple interconnected
systems over realistic channels working together in a distributed fashion, [14]. Such
a class of systems include formation control, [187] and multi-agent cooperative
control problems, [127]. Most of these works have in common that the primary
control objective is governing the behavior of the agents themselves, focusing on the
research of distributed cooperative strategies.
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The approach in this work is different in the sense that a WSN is employed to
collectively control a large-scale plant, not the agents themselves. The proposed
problem considers a discrete linear time-invariant (LTI) process being controlled by
a network of agents that may both, collect information about the evolution of the
plant, and apply control actions to achieve a given goal. The problem makes full
sense for geographically distributed processes where the agents have access only to
partial information and actuate, possibly, only on specific control channels. In other
words, no agent has the information, neither the control capabilities, to estimate and
drive the overall process on its own. In this context, the networked structure of the
agents plays an essential role as neighboring agents are allowed to share information
and cooperate to achieve the system-wide goal.

The chapter provides an innovative estimation and control scheme so that the
joint action of all agents allows to control the system and to monitor its state from
different locations. To this goal, the agents exhibit all or part of the following fea-
tures: sensing, actuating, computation, and communication. Each node implements
an observer&controller structure based on local Luenberger-like observers in combi-
nation with consensus strategies, the first part being responsible for updating node’s
estimation based on local sensed information, while the former takes into account
the data transmitted from neighboring nodes.

Two different communication policies are presented. First, a periodic time-driven
pattern, where the nodes are assumed to communicate at every sampling time; then,
an event-driven scheme that triggers agent’s communications only when significant
information requires to be transmitted. Event-driven approaches, see [61, 99, 154,
239], are specially beneficial in the context of WSNs, as a reduction in the trans-
mission frequency implies bandwidth savings but also an improvement in average
transmission delays and packet collisions, for back-off retransmissions are reduced.
Moreover, in WSNs the battery life span is of great importance, and the energy
consumption is mainly related to the number of transmissions of the device.

As it will be shown, in the proposed approach the Separation Principle does not
hold, this forcing to a joint design of control and estimation. As a first extension of our
previous works in [175, 177, 205] to tackle both, distributed control and estimation,
this chapter neglects the effects of transmission delays and dropouts in the network.
Although both are admittedly relevant phenomena in real applications, these have
been dropped for the present work in favor of obtaining a tractable mathematical
design method.

The stability of the solution is guaranteed through discrete-time Lyapunov func-
tions, from which the design problem is cast as an optimization problem subject to
matrix inequalities. Asymptotic stability and global ultimately uniformly bounded-
ness (GUUB) of solutions are proved, respectively, for the time-driven and the event-
driven approaches. Remarkably, to the best of our knowledge, this is the first approach
that considers distributed estimation and control in a cost-guaranteed scheme using
an event-based sampling policy.
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As a conjunction of the above-mentioned features, the chapter presents a method
to design the distributed estimation and control system that allows the user to trade-
off control performance, control effort, and communication savings, guaranteeing
closed-loop system stability.

The chapter is organized as follows. Section9.2 describes the distributed problem
under consideration. In Sect. 9.3, the suboptimal control and observation problem is
formally stated. Next, Sects. 9.4 and 9.5 describe the proposed solution for both, the
time-driven and event-driven scenarios. Section9.6 presents a four-tank level control
experimental setup on which experiments were conducted to show the effectiveness
of the approach. Finally, Sect. 9.7 outlines the main conclusions and future work.

Notation The superscripts T and −1 stand for matrix transposition and matrix
inverse, respectively.Rn denotes the n-dimensional Euclidean space and the notation
P > 0 means that P is real symmetric and positive definite. diag{. . .} stands for a
block-diagonal matrix and tr{·} means the trace of a matrix. ‖ · ‖2 refers to the
Euclidean norm for vectors and induced two-norm for matrices. In block matrices,
the symbol ∗ refers to the corresponding block inferred from matrix symmetry.

9.2 System Description: Initial Considerations

Consider the distributed control and estimation scheme depicted in Fig. 9.1. The
process is monitored and controlled through a network of agents. The problem con-
sists of designing a fully distributed scheme such that the collective behavior of all
agents drives the plant to stability with a cost-guaranteed control performance. This
problem is of interest when the agents only have access to partial information of the
plant states and can actuate only on a subset of the plant’s control channels. That is,
no single agent is capable to control or estimate the plant state on its own.

In the following, the different elements composing the distributed system are
described in detail.

9.2.1 Plant

Consider a discrete LTI systemdescribed in the state-space representation.As Fig. 9.1
illustrates, the plant is being controlled and/or sensed by a set of p agents, each one
possibly managing a different control signal. The dynamics of the system can be
described as

x(k + 1) = Ax(k) +
p∑

i=1

Bi ui (k), (9.1)

where x ∈ R
n is the state of the plant and ui ∈ R

di (i = 1, . . . , p) is the control
signal that agent i applies to the system. Matrices A ∈ R

n×n and Bi ∈ R
n×di are

known. For those agents with no direct access to plant inputs, matrices Bi are set to
zero.
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Fig. 9.1 Distributed scheme
for the control of a
large-scale plant

large scale

plant

controller

observer & controller

observer

system connection

network connection

Defining an augmented control matrix as

B �
[

B1 B2 . . . Bp
]

and an augmented control vector

U (k) �
[

uT
1 (k) uT

2 (k) . . . uT
p (k)

]T
, (9.2)

Equation (9.1) can be compactly rewritten as

x(k + 1) = Ax(k) + BU (k), (9.3)

where U (k) ∈ R
d , with d = ∑p

i=1 di .

9.2.2 Network

The network in Fig. 9.1 is topologically defined by its graph G = (V ,E ) with
l links between p agents. The graph G is, in general, directed, with nodes V =
{1, 2, . . . , p} and links E ⊂ V ×V . The set of agents connected to node i is named
the neighborhood of i and is denoted by Ni ≡ { j : (i, j) ∈ E }. Link (i, j) implies
that agent i receives information from agent j .
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9.2.3 Agents

Each agent of the network exhibits all or part of the following capabilities: sens-
ing plant outputs, estimating the state of the plant, applying control actions, and
communicating with neighboring agents.

The approach adopted in this work is an observer-based scheme in which every
agent is assumed to build its own estimate of the plant’s states based on the informa-
tion locally collected by the agent (plant output) and that shared with neighboring
agents.

In general, agent i measures a specific plant output, yi :

yi (k) = Ci x(k) ∈ R
ri , (9.4)

where the matrices Ci ∈ R
ri ×n are known. If an agent j has no sensing capabilities,

then its corresponding matrix C j is set to zero.
Let C denote an augmented output matrix defined as

C �
[

CT
1 CT

2 . . . CT
p

]T
.

It is assumed that the pair (A, B) in (9.3) is stabilizable and (A, C) is detectable.
On the other hand, the control counterpart of each agent generates an estimation-

based control input to the plant, ui (k), in the form

ui (k) = Ki x̂i (k) ∈ R
di , (9.5)

where x̂i ∈ R
n denotes the estimation of agent i , and Ki ∈ R

di ×n (i = 1 ∈ V ) are
local controllers to be designed. Let K denote the augmented control matrix, defined
by

K = [
K T
1 K T

2 . . . K T
p

]T
.

Every agent i ∈ V implements an estimator of the plant’s state based on the
following structure

x̂i (k + 1) = Ax̂i (k) + BK x̂i (k) + Mi (yi (k) − Ci x̂i (k)) +
∑

j∈Ni

Ni j (x̂ j (k) − x̂i (k)).

(9.6)

Looking at Eq. (9.6), each agent has two different sources of information to correct
its estimates. The first one consists of the output measured from the plant, yi (k),
which is used similarly to a classical Luenberger observer, Mi (yi (k)− ŷi (k)), being
Mi , i ∈ V , the observers to be designed. The second source of information comes
from the estimates received from neighboring nodes, which are also used to correct
estimations through the terms Ni j (x̂ j (k)− x̂i (k)), ∀ j ∈ Ni , where Ni j , (i, j) ∈ E ,
are consensus gains to be synthesized.
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It is worth recalling that the individual agents have no information about the exact
control signal being applied to the plant, as each agent implements different control
actions based on its particular state estimation (9.5), that is,

BK x̂i (k) �= BU (k) =
p∑

j=1

B j K j x̂ j (k), ∀i.

Ideally, Eq. (9.6) should be implemented using the augmented control vectorU (k)

that the network, as a whole, applies to the plant. However, this information is not
available at the agents. To circumvent this difficulty andmake Eq. (9.6) realizable, the
proposed solution consists, roughly speaking, of letting each agent to run its observer
with the augmented control vector obtained from its particular estimate. In general,
estimated and actual control inputs are different, but if the observers are properly
designed and the nodes estimations converge to the plant states, these differences
progressively vanish.

9.3 Problem Formulation

In the previous section, the notation used throughout the chapter has been introduced
as well as the dynamics of the elements involved in the proposed distributed scheme.
Next, the problem to be solved is formally stated:

Suboptimal distributed control and estimation problem Consider a discrete LTI
plant with dynamics given by (9.1). The plant is monitored and controlled by a set
of p agents connected through a network whose topology can be represented by the
directed graph G = (V ,E ). The dynamics of the agents are given by (9.6), each
of them receiving a measurement from the plant defined by (9.4), and applying a
control signal defined by (9.5). Then, given the cost function

J =
∞∑

j=k0

xT ( j)Qx x( j) +
∞∑

j=k0

∑

i∈V

[
eT

i ( j)Qi ei ( j) + uT
i ( j)Ri ui ( j)

]
, (9.7)

with Qx , Qi , Ri > 0 for all i ∈ V , the suboptimal distributed control and estimation
problem consists of finding observers Mi , i ∈ V , consensus gains Ni j , (i, j) ∈ E ,
and controllers Ki , i ∈ V , such that:

• The state of the system x(k) is asymptotically stable.
• The estimation errors ei (k) � x(k) − x̂i (k), i ∈ V , are asymptotically stable.
• A cost-guaranteed solution is obtained by minimizing the upper bound of the cost
function (9.7).
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9.4 Periodic Sampling Case

Let us consider first the case of periodic communications between agents. That is,
each agent receives/communicates information from/to other elements in the network
at every discrete time step k ∈ N.

9.4.1 Dynamics of the State and Estimation Error

First, the following sets must be defined:

M = {Mi , i ∈ V }, (9.8)

N = {Ni j , (i, j) ∈ E }, (9.9)

K = {Ki , i ∈ V }. (9.10)

Proposition 9.1 The dynamics of the plant state x(k) is given by

x(k + 1) = (A + BK ) x(k) + Υ (K )e(k), (9.11)

where
Υ (K ) = [−B1K1 −B2K2 . . . −Bp K p

]
.

Proof The proof is immediate from Eq. (9.3) and the definition of the estimation
errors. The following proposition studies the evolution of the error vector, defined as
e(k) � [eT

1 (k), . . . , eT
p (k)]T ∈ R

np.

Proposition 9.2 The dynamics of the error vector e(k) is given by

e(k + 1) = (Φ(M ) + Ψ (K ) + Λ(N )) e(k), (9.12)

where

Φ(M ) = diag{(A − M1C1), . . . , (A − MpC p)},

Ψ (K ) = diag{BK , . . . , BK } +
⎡

⎢
⎣

−B1K1 . . . −Bp K p
...

. . .
...

−B1K1 . . . −Bp K p

⎤

⎥
⎦ ,

Λ(N ) =
∑

(i, j)∈E
Θ(Ni j ),
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and

Θ(Ni j ) =

column i j
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · 0 · · · 0 · · · 0
...

...
...

...

0 · · · −Ni j · · · Ni j · · · 0
...

...
...

...

0 · · · 0 · · · 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

row i

Proof The proof is found in Appendix A.

Consider now the augmented state vector defined as ξ(k) �
[
xT (k) eT (k)

]T
,

whose evolution is given next.

Proposition 9.3 The evolution of the augmented state vector ξ(k) is given by

ξ(k + 1) = Ω(M ,N ,K )ξ(k), (9.13)

where

Ω(M ,N ,K ) =
[

A + BK Υ (K )

0 Φ(M ) + Ψ (K ) + Λ(N )

]

.

The structure of (9.13) reveals that the separation principle does not hold in this
case, for matrix Ψ (K ) depends on the controllers to be designed. This can be easily
justified ifwe recall that the agents ignore the actual control signal being applied to the
plant, and resort to estimations based on the knowledge of the distributed controllers.
However, despite this drawback, it will be shown that it is possible to propose an
unified design in which all the elements, namely controllers and observers, can be
designed to guarantee the overall system stability.

Proposition 9.4 The cost function (9.7) can be written as

J =
∞∑

j=k0

ξ T ( j)(Q + K̄ T RK̄ )ξ( j), (9.14)

where

Q = diag{Qx , Q1, Q2, . . . , Q p},
R = diag{R1, R2, . . . , Rp},

K̄ =

⎡

⎢
⎢
⎢
⎣

K1 −K1 0 . . . 0
K2 0 −K2 . . . 0
...

...
...

. . .
...

K p 0 0 . . . −K p

⎤

⎥
⎥
⎥
⎦

.
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This result can be easily proved by substituting matrices Q, R, K̄ and the
augmented vector ξ(k) in (9.14).

9.4.2 Controller and Observer Design

The design method resorts to a Lyapunov-based approach to prove asymptotic sta-
bility of the plant state and the estimation errors. It is a centralized design in which
both, controllers and observers, are designed together.

The following theorem proposes a centralized design method through an opti-
mization problem subject to a nonlinear matrix inequality.

Theorem 9.1 Given matrices Q and R of the cost function (9.14), the subopti-
mal distributed control and estimation problem can be solved by finding the sets
M ,N ,K in (9.8)–(9.10), and a positive definite matrix P = diag(Px , Pe), with
Px ∈ R

n and Pe ∈ R
np, that resolve the following optimization problem:

min
P,M ,N ,K

α, (9.15)

subject to ⎡

⎢
⎢
⎣

−P ΩT I K̄ T

∗ −P−1 0 0
∗ ∗ −αQ−1 0
∗ ∗ ∗ −αR−1

⎤

⎥
⎥
⎦ < 0. (9.16)

Proof Consider the following quadratic Lyapunov function:

V (ξ) = ξ T (k)Pξ(k), (9.17)

where P is a positive definite matrix. The forward difference is defined as

ΔV (k) = ξ T (k + 1)Pξ(k + 1) − ξ T (k)Pξ(k).

Using Proposition 9.3, the forward difference can be expressed in the following
way:

ΔV (k) = ξ T (k)ΩT PΩξ(k) − ξ T (k)Pξ(k),

= ξ T (k)
(
ΩT PΩ − P

)
ξ(k).

From Lyapunov stability, the state of the system and the estimation errors are
asymptotically stable if, and only if, matrix ΩT PΩ − P is negative definite [50].
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Using Schur complement, the following inequalities are equivalent:

ΩT PΩ − P < 0 ↔
[−P ΩT

∗ −P−1

]

< 0.

The previous inequality is guaranteed by (9.16). This way, the stability properties
of the estimation errors and the plant state are proved.

Let us move to the optimality of the method. Note that condition (9.16) implies
that

ΩT PΩ − P + 1

α
Q + 1

α
K̄ T RK̄ < 0.

Therefore

ξ T (k)
(
ΩT PΩ − P

)
ξ(k) < −ξ T (k)

1

α
(Q + K̄ T RK̄ )ξ(k).

Taking into account the previous considerations, it yields

ΔV (k) = ξ T (k)
(
ΩT PΩ − P

)
ξ(k)

< − 1

α
ξ T (k)(Q + K̄ T RK̄ )ξ(k). (9.18)

Calculating the summation of both sides of (9.18) from k0 to k:

k∑

j=k0

ΔV ( j) < − 1

α

k∑

j=k0

ξ T ( j)(Q + K̄ T RK̄ )ξ( j).

Observe that
∑k

j=k0 ΔV ( j) = ∑k
j=k0(V ( j + 1) − V ( j)) = V (k + 1) − V (k0).

When k → ∞, it holds that,

lim
k→∞ V (k) − V (k0) < − 1

α

∞∑

j=k0

ξ T ( j)(Q + K̄ T RK̄ )ξ( j).

Then, taking into account Proposition 9.4 and the positive definiteness of the
Lyapunov function V (k), it holds that

J < αV (k0).

The value of V (k0) depends on the initial condition. Therefore, by minimizing α

an upper bound of the cost function J isminimized regardless of the initial conditions.

Remark 9.1 The solution of the optimization problem ensures the positiveness of
α, as otherwise, it is not possible to satisfy the nonlinear matrix inequality (9.16).
Additionally, the cost function (9.7) has a positive finite lower bound by definition.
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Note that inequality (9.16) is nonlinear in the decision variables because of the
presence of the term P−1. Next, two solutions are presented to deal with this non-
linearity.

(1) Constraint on P−1 Introduce the following additional constraint: −P−1 <

− 1
μ

I , being μ a positive design scalar. Note that previous condition is equivalent to
P < μI . Then, the nonlinear constraint in Theorem 9.1 can be replaced by:

{
Υ < 0,
P < μI

(9.19)

where Υ is the matrix required to be definite negative in (9.16), but substituting the
term P−1 by 1

μ
I .

Compared with the method introduced in [275] in which P � μI , the one pro-
posed here cover a much wider range of possible solutions in the space of positive
definite matrices.

(2) Cone complementary algorithm We can also adapt an extended procedure
(see [64]), which lets us address the nonlinearity P−1 by introducing some new
matrix variables and constraints.

First, define a new variable T such that P−1 ≥ T , and replace the inequality
(9.16) with ⎡

⎢
⎢
⎣

−P ΩT I K̄ T

∗ −T 0 0
∗ ∗ −αQ−1 0
∗ ∗ ∗ −αR−1

⎤

⎥
⎥
⎦ < 0, P−1 ≥ T . (9.20)

Since P−1 ≥ T is equivalent to P ≤ T −1, condition (9.20) is equal to

⎡

⎢
⎢
⎣

−P ΩT I K̄ T

∗ −T 0 0
∗ ∗ −αQ−1 0
∗ ∗ ∗ −αR−1

⎤

⎥
⎥
⎦ < 0,

[
T −1 I

I P−1

]

≥ 0,

by applying Schur complement to the second inequality. Then, introducing new
variables T̂ , P̂ , the original condition (9.16) can be represented by

⎡

⎢
⎢
⎣

−P ΩT I K̄ T

∗ −T 0 0
∗ ∗ −αQ−1 0
∗ ∗ ∗ −αR−1

⎤

⎥
⎥
⎦ < 0,

[
T̂ I
I P̂

]

≥ 0, T̂ = T −1, P̂ = P−1.

Using a cone complementarity problem, one can obtain feasible solutions for the
optimization problem in Theorem 9.1 by solving the following problem:

Minimize Tr
(

P̂ P + T̂ T
)
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subject to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎣

−P ΩT I K̄ T

∗ −T 0 0
∗ ∗ −αQ−1 0
∗ ∗ ∗ −αR−1

⎤

⎥
⎥
⎦ < 0,

[
T̂ I
I P̂

]

≥ 0

[
P I
I P̂

]

≥ 0,

[
T I
I T̂

]

≥ 0, α < α∗,

(9.21)

where α∗ is minimized using a bisection algorithm.
In order to find a solution for this problem, the iterative algorithm introduced in

[64] can be applied. See [170] for further details.
Regarding the complexity, the number of decision variables depends not only in

the number of nodes and links, but also in the dimension of the control inputs and
system outputs:

OP

{
n(n + 1)

2
+ np(np + 1)

2

}

, OM

{

n
p∑

ri

}

, ON

{
2ln2

}
, OK

{

n
p∑

di

}

, Oα{1}.

The second method also requires the computation of three additional variables,
P̂, T, T̂ , with the same dimension that P . Furthermore, three additional LMIs must
be solved, increasing the computational effort. It is possible to force matrix P to
be block diagonal, i.e., P = {Px , P1, . . . , Pp}, reducing drastically the number of

variables to OP

{
p n(n+1)

2

}
. Although the outperformed experiments suggest that

this modification does not introduce hard constraints, in general this might incur in
feasibility problems.

Comparing both solutions in terms of conservatism, the former obtains worse
results due to the additional constraint.

Remark 9.2 The design method that stems from Theorem 9.1 can be performed
off-line prior to the implementation, and requires some centralized information:
the network topology, the information that every node collects from the plant, what
control channels it has access to, etc. Nonetheless, once the observers and controllers
are designed, their implementation is fully distributed, and each agent requires only
available local information to operate.

9.5 Event-Based Sampling Case

As briefly discussed in the introduction, event-based control is a means to reduce
network usage by invoking a communication among the nodes only if significant
information deserves transmission, [61, 99]. Furthermore, event-based schemes
are usually more efficient in terms of energy consumption, as most of the energy
expended in distributed tasks is associated with communications, specially in the
case of wireless networks.
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For these reasons, the event-based sampling is an interesting approach with
relevant practical implications. The idea is simple: Instead of taking/sending a mea-
surement each time instant, sampling is only triggered by an event. The different
definitions of event yields a variety of published results. One of the most used, yet
most intuitively appealing, is the one that triggers an event whenever some variable
of interest has exceeded a tolerance bound. This concept has been adapted to the
problem at hand as it is discussed in the following section.

9.5.1 Triggering Rule

In the proposed control architecture, most of the energy consumption is due to the
inter-agent communications, that periodically exchanges the plant state estimates.
In this section, network usage and energy expenditure is reduced by triggering the
transmissions only at specific time instants when an event occurs. Let l j (k) denote
the last time instant before k when node j sent its estimated state to its neighbors.
Next, a norm-based rule to trigger the communication events is defined.

Triggering ruleGiven a threshold δω ≥ 0, at instant k agent j broadcasts its estimates
to every neighbor i if

‖x̂ j (l j (k)) − x̂ j (k)‖∞ ≥ δω, for k > l j (k). (9.22)

This rule is completely compatible with the discrete-time setting used in through-
out the chapter. Each node does not transmit its state at every k, but only at those k’s
verifying the previous condition. Observe that the agent only requires local informa-
tion (past and present) to check the triggering condition.

9.5.2 Remodeling the System Dynamics

From a modeling point of view, the main difference between the time-driven and the
event-driven paradigms described here is the non-uniform pattern of transmission of
information. This modifies the behavior of the agents, whose dynamics can be now
described as follows:

x̂i (k+1) = Ax̂i (k)+BK x̂i (k)+Mi (yi (k)−Ci x̂i (k))+
∑

j∈Ni

Ni j (x̂ j (l j (k)) − x̂i (k)).

(9.23)

Equation (9.23) takes into consideration aperiodic communication through the
variable l j (k), which can be different for each agent j ∈ V . This equation can be
rewritten as
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x̂i (k + 1) = Ax̂i (k) + BK x̂i (k) + Mi (yi (k) − Ci x̂i (k)) +
∑

j∈Ni

Ni j (x̂ j (k) − x̂i (k))

+
∑

j∈Ni

Ni jω j (k), (9.24)

where
ω j (k) = x̂ j (l j (k)) − x̂ j (k). (9.25)

Based on (9.24)–(9.25), the evolution of the agents with event-based communica-
tion is equivalent to the evolution with periodic communication, difference being in
the term ω j (k), given by Eq. (9.25). The term ω j (k) can be interpreted as an external
perturbation due to the discontinuous flow of information between neighbors that is
reset to zero at every transmission time. This way, whenever any agent j broadcasts
its state to its neighborsN j , it holds that ω j (k) = 0. It is worth pointing out that the
disturbance that each agent j induces on its neighbors is unknown to them, but can
be tracked by agent j , which has access to its own local estimations.

The following result is the counterpart of Proposition 9.2 for event-based com-
munication. Due to its similarities, its proof is omitted.

Proposition 9.5 Let ω(k) �
[
ωT
1 (k) . . . ωT

p (k)
]T

. Then, for the event-based sam-
pling case the evolution of the state x(k) is given by Proposition 9.1, and the dynamics
of the estimation error e(k) is given by

e(k + 1) = (Φ(M ) + Ψ (K ) + Λ(N )) e(k) − Γ (N )ω(k), (9.26)

where the functions Φ(M ), Ψ (K ),Λ(N ) are defined as in Proposition 9.2, and

Γ (N ) =
∑

(i, j)∈E
Ψ (Ni j ),

where

Ψ (Ni j ) =

column i j
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · 0 · · · 0 · · · 0
...

...
...

...

0 · · · 0 · · · Ni j · · · 0
...

...
...

...

0 · · · 0 · · · 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

row i.
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9.5.3 Stability and Trade-off Between Communication
Reduction and Final Boundedness

In terms of stability, the event-based sampling approach makes more difficult to
analyze the system stability. In fact, it will be shown that the presented approach
will only allow to prove the system to be GUUB, that is, the system is attracted and
restricted to lay within an arbitrarily small region around the equilibrium point.

Theorem 9.1 allows the design of suboptimal distributed controllers and observers
for uniformly sampled systems. A question that naturally arises is: is it possible to
use designs obtained from Theorem 9.1 in an event-sampling context? And in this
case, how much does the performance deteriorate with respect to uniform sampling?

It will be shown that, under certain conditions, the answer to the first question is
affirmative and performance degradation can be traded off with respect to transmis-
sion reductions. More precisely, in the event-based sampling policy considered here,
the agents are allowed to communicate only in case that the difference between their
current estimates and the last transmitted estimates exceed a given threshold. The
price to be paid in this case is that asymptotic stability of the estimation errors—and,
hence, of the state of the system—is no longer guaranteed. However, GUUB stability
of the state x(k) and error e(k) can be proved.

Note that this section does not develop a new design method, but applies the
results of Theorem 9.1 with a different sampling policy. Henceforth, the notation
Υ,Φ,Ψ,Λ, Γ instead of Υ (K ),Φ(M ), Ψ (K ),Λ(N ), Γ (N ) will be used to
remark that setsM ,K ,N are assumed to be designed.

Theorem 9.2 Consider the evolution of the state (9.11) and the error (9.26) with
observers, controllers, and Lyapunov function P = diag(Px , Pe) designed through
Theorem 9.1. Assume a communication policy where each node j broadcasts its
estimate x̂ j to its neighbors N j at each k when ‖ω j (k)‖∞ ≥ δω, with ω j defined in
(9.25). Then, the estimation error e(k) and the state of the system x(k) are GUUB
with bounds

‖e(k)‖2 ≤ δe,

‖x(k)‖2 ≤ δx ,

where the bounds are given by

δe = δω

√
npλmax (Pe)

λmin(Pe)
(‖Φ + Ψ + Λ‖∞αe + ‖Γ ‖∞), (9.27)

δx = δe

√
λmax (Px )

λmin(Px )
(‖A + BK‖2αx + ‖Υ ‖2), (9.28)
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being αx , αe positive scalars defined by

αe = ke + √
ke + λmin(Xe)‖Γ T PeΓ ‖∞

λmin(Xe)
, (9.29)

αx = kx + √
kx + λmin(Xx )‖Υ T PxΥ ‖2

λmin(Xx )
, (9.30)

with kx = ‖Υ T Px (A + BK )‖2, ke = ‖Γ T Pe(Φ + Ψ + Λ)‖∞, and Xe, Xx being
the unique positive definite matrices such that:

(Φ + Ψ + Λ)T Pe(Φ + Ψ + Λ) − Pe = −Xe (9.31)

(A + BK )T Px (A + BK ) − Px = −Xx . (9.32)

Proof Consider the following Lyapunov function for the observation error:

V (e) = eT (k)Pee(k),

with Pe obtained fromTheorem9.1. The forward increment of the Lyapunov function
is given by

ΔV (e) = V (k + 1) − V (k)

= eT (k + 1)Pee(k + 1) − eT (k)Pee(k).

Using the dynamics of the observation error given in Proposition 9.5, it turns out1:

ΔV (e) = [(Φ + Ψ + Λ)e + Γ ω]T Pe[(Φ + Ψ + Λ)e + Γ ω] − eT Pee

= eT (Φ + Ψ + Λ)T Pe(Φ + Ψ + Λ)e − eT Pee + ωT Γ T PeΓ ω

+ 2ωT Γ T Pe(Φ + Ψ + Λ)e.

From Theorem 9.1, the error e(k) is asymptotically stable with periodic sampling,
so there exists the positive definite matrix Xe defined in (9.31). Then, it holds

ΔV (e) = −eT Xee + ωT Γ T PeΓ ω + 2ωT Γ T Pe(Φ + Ψ + Λ)e.

Using the infinity norm, previous equation can be bounded as

ΔV (e) ≤ −λmin(Xe)‖e‖2∞ + ‖Γ T PeΓ ‖∞‖ω‖2∞
+ 2‖Γ T Pe(Φ + Ψ + Λ)‖∞‖ω‖∞‖e‖∞.

1Time indexes have been removed to alleviate the notation.
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The right-hand side of the equation above is an algebraic second order equation
in ‖e‖∞. The roots can be obtained by imposing a‖e‖2∞ + b‖e‖∞ + c = 0, where

a = −λmin(Xe),

b = 2‖Γ T Pe(Φ + Ψ + Λ)‖∞‖ω‖∞,

c = ‖Γ T PeΓ ‖∞‖ω‖2∞.

Note that a < 0 and b, c > 0. The unique positive root is exactly

‖e‖∞ = −b + √
b2 − 4ac

2a
= αe‖ω‖∞,

where αe is given in Eq. (9.29). Because of the sign of a, it is easy to see that the
Lyapunov function V (k) decreases whenever ‖e(k)‖∞ > αe‖ω(k)‖∞. Using the
bound on ‖ω(k)‖∞, it yields that ΔV (k) < 0 in the region ‖e(k)‖∞ > αeδω.

Now consider k∗ as the time instant when the estimation errors enters in the region
‖e(k)‖∞ ≤ αeδω. Then, taking into account the error dynamics given by (9.26), one
can easily obtain that

max ‖e(k∗ + 1))‖∞ = (‖Φ + Ψ + Λ‖∞αe + ‖Γ ‖∞)δω,

so the error can leave the region ‖e(k)‖∞ ≤ αeδω. After that, the Lyapunov function
decreases again. Using the inequality ‖e‖2 <

√
np‖e‖∞,∀e ∈ R

np the maximum
of the 2-norm in k∗ + 1 can be obtained as

‖e(k∗ + 1))‖2 = √
np(‖Φ + Ψ + Λ‖∞αe + ‖Γ ‖∞)δω.

Note that the decreasing of the Lyapunov function does not ensure the decreas-
ing of neither the two-norm nor the infinity norm, but the Pe-induced norm. The
maximum of the Pe-induced norm for all instant k > k∗ is given by

‖e(k)‖Pe =
√

eT Pee ≤ √
λmax (Pe)‖e(k∗ + 1)‖2,

where inequality λmin(Pe)‖e‖22 ≤ eT Pee ≤ λmax (Pe)‖e‖22 has been employed.
Taking into account the equation above, the final two-norm can be bounded as

‖e(k)‖2 ≤
√

λmax (Pe)

λmin(Pe)
‖e(k∗ + 1)‖2,∀k > k∗.

This way, the boundedness of the estimation error has been proved.
Consider now the following Lyapunov function for the state of the plant

V (x) = xT (k)Px x(k),
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with Px obtained fromTheorem9.1. The forward increment of theLyapunov function
is given by

ΔV (x) = V (k + 1) − V (k)

= xT (k + 1)Px x(k + 1) − xT (k)Px x(k).

Given the system dynamics in Proposition 9.1, it turns out that

ΔV (x) = [(A + BK )x + Υ e]T Px [(A + BK )x + Υ e] − xT Px x

= xT (A + BK )T Px (A + BK )x − xT Px x + eT Υ T PxΥ e

+ 2eT Υ T Px (A + BK )x .

FromTheorem9.1, the state x(k) is asymptotically stable under periodic sampling,
so there exists the positive definite matrix Xx defined in (9.32). Then, it holds

ΔV (x) = −xT Xx x + eT Υ T PxΥ e + 2eT Υ T Px (A + BK )x .

Taking norms, the forward difference can be bounded as follows:

ΔV (x) ≤ −λmin(Xx )‖x‖22 + ‖Υ T PxΥ ‖2‖e‖22 + 2‖Υ T Px (A + BK )‖2‖e‖2‖x‖2.

The right-hand side of the equation above is again an algebraic second order
equation in ‖x‖2. Operating as before, it is easy to see that the Lyapunov function
V (x) decreases whenever ‖x(k)‖2 > αx‖e(k)‖2. Using the derivations above, it
yields that V (x) decreases if ‖x(k)‖2 > αxδe, where δe is given in Eq. (9.27).

Now consider k∗ as the time instant when the state enters in the region ‖x(k)‖2 <

αxδe. Then, taking into account the system dynamics given in Proposition 9.5, one
can easily obtain that

‖x(k∗ + 1))‖2 ≤ (‖A + BK‖2αx + ‖Υ ‖2) δe.

If the state leaves the region ‖x(k)‖2 ≤ αxδe, the Lyapunov functionwill decrease
again. Hence, the Px -induced norm of the state decreases. The maximum of the Px -
induced norm for all instant k > k∗ is given by

‖x(k)‖Px ≤ √
λmax (Px )‖x(k∗ + 1)‖2.

Then, the final Euclidean norm can be bounded as

‖x(k)‖2 ≤
√

λmax (Px )

λmin(Px )
‖x(k∗ + 1)‖2,∀k > k∗.

This way, the boundedness of the state is proved. This ends the proof.
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Remark 9.3 It is worth pointing out that the choice of the infinity norm of ω(k)

as triggering condition in Theorem 9.2 is not arbitrary. Given that each observer
has access only to local information, the infinity norm can be practically imple-
mented using just local information: As each node sends its information whenever
‖ωi (k)‖∞ ≥ δω, it turns out that at intersampling times ‖ω(k)‖∞ < δω, thus it is
possible to bound ‖ω(k)‖∞ from below resorting only to local information at each
node.

The parameter δω is related to the size of the ultimate bound region of the esti-
mation error e(k) and, indirectly, with the boundedness of the final region of x(k).
By enlarging the value of δω, it is possible to reduce the amount of transmission
between the nodes, while by reducing it, a better control and estimation performance
is achieved, since the plant state and the observation error are finally bounded in a
smaller region. This trade-off, typical in an event-based framework, will be shown
up in the following section.

9.6 Application Example

The performance of the proposed distributed control scheme has been experimentally
tested in a water level control system. Next, the experimental setup and its model are
described providing all the considerations related to the distributed scheme.

9.6.1 Plant Description

The experiments were performed on the 33–041 Coupled Tanks System of Feedback
Instruments, see [114] (see Fig. 9.2). This plant, a variant of the quadruple-tank
process originally proposed in [124], is a model of a fragment of a chemical plant. It
is composed of four tanks, each one equipped with a pressure sensor to measure the
water level. The couplings between the tanks can be changed using seven manual
valves to modify the dynamics of the system. Water is delivered to the tanks by two
independently controlled, submerged pumps. Drain flow rates can be modified using
suitable orifice caps. Notation related to the plant is given in Table9.1.

The coupled tanks are controlled using Simulink and anAdvanced PCI1711 Inter-
face Card. For the experiments, the following configuration were chosen:

• Input water is delivered to the upper tanks. Pump 1 feeds tank 1 and pump 2 feeds
tank 3.

• Tanks 1 and 3 are coupled by opening the corresponding valve.
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Fig. 9.2 Plant of four
coupled tanks

Table 9.1 Notation related to
the plant

Description

hi Water level of tank i

vi Voltage of pump i

h0
i Reference level of tank i

v0i Reference voltage of pump i

Δhi Increment of hi with respect to h0
i

Δvi Increment of vi with respect to v0i
s System output

r Reference to be tracked

Δhr Reference level with respect to h0

Δvr Reference voltage with respect to v0

Although the plant is a compact educational platform, it realistically represents
all the relevant elements of a real network-controlled physically distributed plant;
for example, large-scale chemical plants, where coupled processes (represented by
the coupled tanks), can be located hundred of meters away from each other.
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Fig. 9.3 Distributed control
scheme with four agents.
Agents 1 and 3 are
observers&controllers;
agents 2 and 4 are observers.
The dotted lines represent
the communication links

1

2

3

4

The distributed control scheme proposed in this work is applied consider-
ing a network with four agents, two of them being observers and the other two
observers&controllers (see Fig. 9.3). Each agent has been tagged from 1 to 4 accord-
ing to the number of the tankwhose levelmeasures.Agent 1 (respectively 3)measures
the water level in tank 1 (3) and applies the control signal to pump 1 (2). Agents 2 and
4 measure the level in the tanks 2 and 4, respectively. The communication topology
is: 2 ⇔ 1 ⇔ 3 ⇔ 4.

The objective of the experiments is twofold. First, all four states of the plant must
be estimated from every agent. Second, the water level of the two lower tanks is to be
controlled. Notice that with this configuration, the agents applying the control signals
(agents 1 and 3) do not have direct measurement of the variables being controlled
(levels in tanks 2 and 4).

9.6.2 Plant Modeling

The coupled tanks system admits the following nonlinear model:

dh1(t)

dt
= −a1

S

√
2gh1(t) + ηv1(t) − a13

S

√
2g(h1(t) − h3(t)),

dh2(t)

dt
= a1

S

√
2gh1(t) − a2

S

√
2gh2(t),

dh3(t)

dt
= −a3

S

√
2gh3(t) + ηv2(t) + a13

S

√
2g(h1(t) − h3(t)),

dh4(t)

dt
= a3

S

√
2gh3(t) − a4

S

√
2gh4(t),
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where hi (t) (i = 1, . . . , 4) denote the water level in the corresponding tank and vi

(i = 1, 2) are voltages applied to the pumps. ai (i = 1, . . . , 4) are the outlet area of
the tanks, a13 is the outlet area between tanks 1 and 3; η is a constant relating the
control voltage with the water flow from the pump, S is the cross-sectional area of
the tanks, and g is the gravitational constant.

This system is linearized around the equilibriumpoint given by h0
i and u0

i , yielding

Δḣ(t) = AΔh(t) + BΔv(t), (9.33)

whereΔh(t)= [
h1(t) − h0

1 . . . h4(t) − h0
4

]T
andΔv(t)= [

v1(t) − v01 v2(t) − v02
]T
.

Matrices A and B in (9.34) have been obtained by using a Taylor expansion of the
nonlinear equations of the model around the equilibrium point:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− a1g

S
√

2gh01

− a13g

S
√

2g(h01−h03)
0 a13g

S
√

2g(h01−h03)
0

a1g

S
√

2gh01

− a2g

S
√

2gh02

0 0

a13g

S
√

2g(h01−h03)
0 − a3g

S
√

2gh03

− a13g

S
√

2g(h01−h03)
0

0 0 a3g

S
√

2gh03

− a4g

S
√

2gh04

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎣

η 0
0 0
0 η

0 0

⎤

⎥
⎥
⎦

(9.34)

Discretizing this continuous model with sampling time T , yields

Δh(k + 1) = ADΔh(k) + BDΔv(k), (9.35)

where Δh(k)=
[
h1(k) − h01 . . . h4(k) − h04

]T
and Δv(k)=

[
v1(k) − v01 v2(k) − v02

]T
.

Matrices AD and BD are the discrete counterpart of A and B.
The control objective is not only to stabilize the plant around the linearization

point, but also to track references. To do so, the system’s output is set as s � CrΔh,
where Cr is a matrix that selects the water level of tanks 2 and 4. The references
are given by the vector r . In the equilibrium points, it should be verified s � r
and Δh(k + 1) � Δh(k) � Δhr (k). To perform the tracking task, the incremental
equilibrium points (Δhr ,Δvr ) associated with reference r are found as follows.

Δhr (k) = ADΔhr + BDΔvr ,

r = CzΔhr .

Rewriting in blocks the equation above yields

[
0
r

]

=
[

AD − I BD

Cz 0

] [
Δhr

Δvr

]

,
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so that the incremental equilibrium point associated with r can be obtained as

[
Δhr

Δvr

]

=
[

AD − I BD

Cz 0

]−1 [
0
r

]

.

It is assumed that the references are reachable by the system, that is, the inverse
above does exist. Finally, to track references, the following systemmust be stabilized.

x(k + 1) = ADx(k) + BDu(k), (9.36)

where x(k) � Δh(k) − Δhr and u(k) � Δv(k) − Δvr . Notice that this system has
the same structure that the one described in (9.3).

9.6.3 Experimental Results

The proposed distributed control method has been tested with the model parameters
identified as shown in Table9.2.

A comparison of both periodic and event-based sampling possibilities was per-
formed. First, a periodic distributed control and estimation system was designed
taking weighting matrices in (9.7) as

Qx = diag(0.1, 100, 0.1, 100),

Q1 = diag(1, 10, 1, 0.1),

Table 9.2 Parameters of the plant

Value Unit Description

hi 0–25 cm Water level of tank i

vi 0–5 V Voltage level of pump i

S 0.01389 m2 Cross-sectional area

ai 50.265e−6 m2 Outlet area of tank i

a13 50.265e−6 m2 Outlet area between tanks 1 and 3

η 2.2e-3 m3

V·s Constant relating voltage and flow

h0
1 9.8 cm Nominal water level of tank 1

h0
2 17.4 cm Nominal water level of tank 2

h0
3 7.5 cm Nominal water level of tank 3

h0
4 13.6 cm Nominal water level of tank 4

v01 3.3 V Nominal voltage applied to pump 1

v02 2.6 V Nominal voltage applied to pump 2

T 1 s Sampling period
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Q2 = 10−2 · diag(1, 1, 1, 1),

Q3 = diag(1, 0.1, 1, 10),

Q4 = 10−2 · diag(1, 1, 1, 1),

R = 10−6 · diag(1, 1).

The bijective search and the cone complementary algorithm took 160s running
over a computer with a 2.53GHz processor and 4GB of RAM.May the reader recall
that once the controllers are found, the method is implemented distributedly.

Figure9.4 depicts the performance of the distributed control scheme proposed in
this chapter. A satisfactory tracking of references in tanks 2 and 4 can be observed.
The effects of the chosen weighting matrices become apparent in the overshooting
in tanks 1 and 3, which purpose is to achieve a fast reference tracking in the lower
tanks. The average rise time of the system response is around 100s, about one third
of the natural time constant of the open-loop system.

Figure9.5 compares the performance of the proposed distributed control scheme
with respect to a centralized implementation of the same controllers. The informa-
tion provided by the sensors (the four plant states) is gathered in a central unit, so no
estimation is required. The control is thus applied as that of a centralized controller
with full plant information, using the same controller gains obtained from the distrib-
uted design. As it can be observed, the control performances of the centralized and
distributed implementations are very similar. This implies that the consensus-based,
distributed monitoring of the plant state exhibits a good performance, so the dis-
tributed implementation can be applied without loosing control performance. Notice
that the offset between references and output is due to the mismatches between the
nonlinear plant and the linearized model. This offset can be corrected using an offset
cancelation technique.
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Fig. 9.4 Tracking performance with periodic sampling. The references are shown in dashed lines
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Fig. 9.5 Comparison
between distributed and
centralized control
implementation. The water
levels depicted correspond to
those of the lower tanks
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The water levels are shown in Fig. 9.6, together with the estimations of these
level by Agent 1. It is worth pointing out that Agent 1 has no direct access to level
measurements in tanks 2 and4, but it estimates thesemagnitudes from the information
sent by its neighbors.

Next, the effect of the weighting factors in (9.7) is shown. Two experiments were
conducted, both with the same weighting for matrices Qx and Qi (i = 1, . . . , 4) as
in the previous experiment, and different values for R: R1 = 10−6 · diag(1, 1) to
obtain a fast references tracking, and R2 = 102 ·diag(1, 1) to weight control effort in
the cost functional. Figure9.7 shows the evolution of the water levels and the control
actions. As expected, a tighter tracking performance is observed for the experiment
with R1, at the cost of more aggressive control signals. This result shows how control
performance can be traded off with respect to control actions by appropriately tuning
the weighting gains.
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Fig. 9.6 Observation performance of Agent 1 with periodic sampling. The estimates are depicted
in dashed lines



218 F.R. Rubio et al.

400 600 800 1000 1200 1400 1600 1800 2000
10

15

20

25
h
2
(Q,R

1
)

h
4
(Q,R

1
)

h
2
(Q,R

2
)

h
4
(Q,R

2
)

time(s)

w
at
er

le
ve
l(
cm

)

400 600 800 1000 1200 1400 1600 1800 2000
1.5

2

2.5

3

3.5

4

4.5

5

5.5
v
1
(Q,R

1
)

v
2
(Q,R

1
)

v
1
(Q,R

2
)

v
2
(Q,R

2
)

time(s)

co
nt
ro
la
ct
io
ns

(V
)

Fig. 9.7 Tracking performance and control signals with periodic sampling and different weighting
matrices

The experiment shown in Fig. 9.8 was designed to show the decoupling capabili-
ties of the proposed control strategy. Tank 2 was set to track references whereas the
reference for tank 4 was kept constant. To modify the level of tank 2, tank 1 must be
filled or emptied, and due to the coupling valve, tank 3 varies its level also affecting
the level in tank 4. The distributed controllers achieved a remarkable decoupling of
the closed-loop dynamics as can be observed from these experiments.

Lastly, the event-driven control scheme performance is examined. In this case, the
sameweightingmatrices of the first experimentwere chosen, and different thresholds
to trigger the events were employed: δω = 0.1, δω = 0.3 and δω = 0.6. The results
of these experiments are shown in Fig. 9.9, where the tracking performance in tank
2 is shown. It is observed, as expected, that the larger the event threshold (larger δω)
is set, the poorer the tracking performance becomes. Figure9.10 shows the observed
states for node 1 with δω = 0.6.
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Fig. 9.8 Control decoupling: a change of reference is set for tank 2 while reference of tank 4
remains constant
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Fig. 9.9 Tracking of references in tank 2 for different values of δω

The performance degradation due to the event-based communication scheme is
now apparent when compared to the results with periodic communications. On the
other hand, the event-based policy significantly reduces the number of required trans-
missions, as it is depicted in Fig. 9.11, which shows the ratio of transmitted packets
with respect to the periodic case.
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Fig. 9.10 Estimation performance of Agent 1 with δω = 0.6. The estimates are shown in dashed
lines
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Fig. 9.11 Ratio of packets sent wrt. periodic communication

9.7 Summary

This chapter proposes a cost-guaranteed distributed estimation and control scheme
for networked control systems, where the sensing and control capabilities are shared
by a number of agents. The agents are assumed to collect partial information of the
evolution of the plant states and have access, in general, to a subset of the plant con-
trol channels. The work proposes a fully distributed control and estimation scheme
so that the collective behavior of all agents controls the system. The technique is
of application to large-scale systems where centralized or classical decentralized
schemes not advisable.
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Both, a periodic sampling and event-based communication policy have been dis-
cussed. Using a four-tank level control system, experiments were conducted to show
that in practice, little performance degradation is, in general, observed for the event-
based compared to the periodic-based scheme, while the number of packets transmit-
ted is drastically reduced. The adopted cost-guaranteed approach has shown also very
convenient in practical applications as allows the trade-off between control effort,
performance degradation, and average packet transmission rates.

As future work, this technique will possibly be extended to consider network-
induced communication problems, as time-delays or packet dropouts. Furthermore,
it will be studied the implementation of asynchronous, self-trigger communication
policies, and the integration of fault-detection and fault-tolerant systems. Another
promising line of research includes a technique to carry out the observers/controllers
design in a distributed way.



Chapter 10
Distributed Event-Based Control
for Non-reliable Networks

María Guinaldo, Daniel Lehmann and José Sánchez

10.1 Introduction

Even though event-based control has been shown to reduce the communication to
face the problem of reduced bandwidth, network delays and packet losses cannot be
avoided [23]. However, up to now, only a reduced number of works have considered
the effect of these issues on event-based control and just a few works have addressed
a decentralized implementation to cope with them. Early works [34, 212] study
simple stochastic systems and investigate the event-based control performance in
dependence upon the medium access mechanism applied. In [78, 142], delays are
compensated by model-based event-triggered approaches and the measurement of
the delay. However, these schemes are difficult to implement in a distributed scenario
sincemeasuring transmissiondelays for any transmissionbetween twonodes requires
clock synchronization in the entire network.

In distributed control, one paper that takes into account delays and packet losses is
[259]. As stated in the cited paper, one problem that might present trigger functions
of the form ‖εi (t)‖ ≤ σi‖xi (t)‖ is that for unreliable networks a lower bound for the
broadcasting period cannot be guaranteed when the system approaches the origin,
being this themain drawback of the citedwork.Additionally, an analytical expression
for the minimum inter-event time is provided in [90] under the assumption of perfect
decoupling of the subsystems and for deadband distributed controllers.
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This chapter presents possible solutions to deal with the problem of unreliable
networks in distributed control systems where the communication is event-triggered.
Section10.2 discusses the problems behind delays and packet losses in distributed
networks from the analytical point of view. Two network protocols are described
in Sect. 10.3 to control the flow of information between nodes. The first protocol is
based on the work of [259] and requires the synchronous update of all the nodes in
a given neighborhood when the transmission of data is subject to delay and packet
losses. This limitation is solved by the second protocol.

Moreover, under certain requirements, upper bounds on the allowable delay and
the maximum number of consecutive packet losses can be derived for different trig-
gering mechanisms in Sects. 10.4 and 10.5. We additionally prove that the system
can asymptotically converge to the equilibria while the Zeno behavior is excluded
with exponential trigger functions, which also provide larger upper bounds on the
delay than deadband control. An example to illustrate the analytical results is given
in Sect. 10.6 for the same setup used in Chap. 7.

10.2 Problem Statement: Ideal Versus Non-ideal Networks

Consider the interconnected linear system described in Chap.7 (7.12)

ẋi (t) = Ai xi (t) + Bi ui (t) +
∑

j∈Ni

Hijx j (t), ∀i = 1, . . . , Na (10.1)

and the control law (7.13)

ui (t) = Ki xb,i (t) +
∑

j∈Ni

Lijxb, j (t), ∀i = 1, . . . , Na . (10.2)

In an ideal network scenario, the detection of an event, the broadcast of the cor-
responding state xb,i , and its reception in all neighboring nodes are assumed to be
simultaneous.

However, in a non-reliable network, a broadcast state may be received in the
neighbors with delay, or even more, not be received at all. This may yield state
inconsistency. In this context, this concept was introduced for the first time by [259],
and it can be defined as follows.

Definition 10.1 Adistributed event-based control design preserves state consistency
if any broadcast state is updated synchronously in each neighboring agent.

Example 10.1 An example of state inconsistency is presented in Fig. 10.1. Assume
that the piecewise signal xb,1 is updated at event times denoted by t1k , k ∈ N,
and sent through the network to update the copy of the signal xb,12 accordingly.
We denote by τ 12k , k ∈ N, the communication delay experienced in the broadcast.

http://dx.doi.org/10.1007/978-3-319-21299-9_7
http://dx.doi.org/10.1007/978-3-319-21299-9_7
http://dx.doi.org/10.1007/978-3-319-21299-9_7
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Fig. 10.1 Example of state
inconsistency of the signal
xb,1 and its copy xb,12 in
other node of the network

xb,1

xb,12

t11 t12 t

t

τ121 τ122

If the transmission is not subject to delay, both signals xb,1 and xb,12 are identical.
However, this is not the situation in the example of Fig. 10.1. In the time intervals
[t11 , t11 + τ 121 ) and [t12 , t12 + τ 122 ) both signals are not equal. Hence, there is a state
inconsistency since xb,1(t) �= xb,12(t),∀t ∈ [t11 , t11 + τ 121 ) ∪ [t12 , t12 + τ 122 ).

The previous example illustrates the need of communication protocols to avoid state
inconsistencies or to deal with them. In this chapter, two different protocols are pro-
posed. The first one preserves the state consistency by the transmission of additional
signals to synchronize the nodes in the neighborhood. This constraint is relaxed by
the second protocol which allows the neighboring agents to use different versions of
the broadcast states.

10.3 Transmission Protocol

Before describing the protocols, let us first introduce some notation.

Definition 10.2 We denote by τ
ij
k the delay in the transmission of the state xi (t i

k) of
agent i to its neighbor j , j ∈ Ni , at time t i

k , and by τ i
k

τ i
k = max

{
τ

ij
k , j ∈ Ni

}
.

Definition 10.3 We denote by nij
p,k the number of successive packet losses in the

transmission of the state xi (t i
k) of agent i to its neighbor j , j ∈ Ni , at time t i

k , and

by ni
p,k the maximum of nij

p,k for all j ∈ Ni .

We now introduce the basic assumption that imposes constraints on delays and the
number of consecutive packet dropouts. In practice, several consecutive packet losses
introduce additional delays.
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Assumption 10.1 The maximum delay and the number of successive packet drop-
outs which occur in the transmission of information from the subsystem i to its
neighbors j ∈ Ni , denoted by τ i

max and ni
p, respectively, are such that no event is

generated before all the neighbors have successfully received the broadcast state xb,i .
The second important consideration is that a packet is treated as lost if the sender

i does not get an acknowledgment signal (ACK) from the receiver node j before a
waiting time denoted by T i

W . How to determine T i
W is analyzed later on, but it seems

logical to set this value larger than the maximum delay.
If agent i has not received an acknowledgment of the reception of all the neighbors

after the waiting time T i
W , we propose two alternatives that denoted by Wait for All

(WfA) and Update when Receive (UwR).

10.3.1 WfA Protocol

TheWfAworks as follows. Consider the situation described above (noACK signal is
received after T i

W ). Then, the state at t i
k + T i

W is broadcast again to all the neighbors.
If after waiting T i

W an ACK is not received from all j ∈ Ni , the retransmission
takes place again, and so on. This process can occur at most ni

p + 1 times. Once all
the neighbors have successfully received the data, agent i sends a permission signal
(PERM) so that the previously transmitted data can be used to update the control
law (10.2). Both signals ACK and PERM are assumed to be delivered with a delay
approximated by zero over a reliable channel.

A very similar protocol is presented in [259]. As stated there, the reason to use a
PERM signal and to retransmit the state to all the neighbors instead of only retrans-
mitting to those from which an ACK signal has not been received is to preserve the
state consistency (see Definition 10.1). Since the broadcast data is not valid until a
PERM signal is received from agent i , all the neighboring agents update the value at
the same time and therefore, the value of the error εi is the same in all nodes. This
allows to define stack vectors for the state x(t) and the error signal ε(t) so that the
stability of the overall system can be studied as in the ideal network case.

10.3.2 UwR Protocol

The previous protocol simplifies the analysis but it has some drawbacks. First, all
nodes in the neighborhood have to wait for the slower connection (longer delay) to
process the received data. Second, theWfA protocol may involve unnecessary trans-
mission, since if an agent did not receive the measurement, the broadcast would take
place again with an updated measurement for all the neighbors. Finally, the ACK
signal is vastly used in network protocols to guarantee reliability of packet transfers,
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Fig. 10.2 Update mechanism of WfA (a, b) and UwR (c, d) protocols

but the PERM demands a more involved communication protocol. In order to over-
come these drawbacks, in the new protocol agent i waits T i

W to get acknowledgments
from the neighbors. To those agents j ∈ Ni from which it did not receive the ACK
signal, it sends the state xi (t i

k + T i
W ) at time t i

k + T i
W . Agent i may transmit before

the next event at most ni
p + 1 times. According to Assumption 10.1, the number of

consecutive packet losses and the network delay are upper bounded for each node
i . Then, all neighbors have successfully received the state of agent i before the next
event time t i

k+1, that is, there exist instances of time t ij
k such that t i

k ≤ t ij
k < t i

k+1.

Example 10.2 A simple example is given in Fig. 10.2 to clarify the difference
between both protocols. A system with two agents is depicted and a constant thresh-
old δ0 for the trigger function (deadband control) is considered for simplicity.Assume
that Agent 1 detects an event at time t1k and broadcasts its state x1(t1k ) to its neighbor
Agent 2. The transmission is delayed by τ 1k and Agent 2 sends then the ACK signal.
In the scenario of WfA protocol, once the ACK signal is received by Agent 1 (see
Fig. 10.2a), the PERM signal is sent (both signals are assumed to be sent and received
instantaneously), and both agents update the broadcast state in the control law at the
same time t1k + τ 1k (see Fig. 10.2b). Thus, xb,1 takes the same value at any time in
both agents and, hence, ε1(t) is the same in the dynamics of Agent 1 and 2.

For the UwR protocol, the update in Agent 1 is applied immediately at time t1k
(see Fig. 10.2c), whereas the receiver updates the state information at time t1k + τ 12k
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(τ 1k and τ 12k are the same), as illustrated inFig. 10.2d.Thus, in the interval [t1k , t1k +τ 12k )

the broadcast state xb,1 has different values in the two nodes and consequently the
error ε1 considered inAgent 1differs from the error affecting thedynamics ofAgent 2.

This chapter refers to numbered agents as “Agent 1”, “Agent 2”, etc. Note that
Agent 2 does not monitor ε1 since it only knows the state of Agent 1 at event times.
It is drawn in the figure to clarify the difference between the two protocols.

The performance of both protocols is analyzed next. We first assume that perfect
decoupling (Δij = 0) can be achieved, since the analysis is simplified and moreover,
upper bounds on the delay and packet losses can be derived for each agent, giving
less conservative results. The results for the general case when the matching con-
dition does not hold are derived afterwards. For simplicity, Assumption 7.1 applies
(diagonalization of AK ,i ).

Two cases are analyzed independently. First, we assume that perfect decoupling
(Δij = 0) can be achieved, since the analysis is simplified and upper bounds on the
delay and the number of consecutive of packet losses can be derived for each agent,
giving less conservative results. These results are generalized afterwards. Regarding
the design of the trigger functions, we first consider constant bounds for the error
(deadband control) that provide analytical expressions for the delay and maximum
number of consecutive packet losses. Later on, in this chapter, the focus lies on
exponential bounds. In this case, a positive upper bound on the delay and consecutive
number of packet losses can also be derived. The obtained expression can be solved
for some given parameters to provide a numerical solution.

10.4 Performance Analysis for Perfect Decoupling

10.4.1 Properties of Deadband Control Using WfA Protocol

Let us consider trigger functions (7.24)

Fe,i (εi (t)) = ‖εi (t)‖ − δ, δ > 0. (10.3)

Let us first assume that the communication can only experience delays but no packet
dropouts.

10.4.1.1 Communication with Delays

Proposition 10.1 Let us consider trigger functions of the form (10.3) and the WfA
protocol. If Assumption 10.1 holds, the error of any subsystem i is upper bounded
by ‖εi (t)‖ < 2δ.

http://dx.doi.org/10.1007/978-3-319-21299-9_7
http://dx.doi.org/10.1007/978-3-319-21299-9_7
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Proof Assume that the last event occurred at time t i
k and that the maximum trans-

mission delay to its neighbors is τ i
k . It follows that

‖
∫ t i

k+τ i
k

t i
k

ε̇i (s)ds‖ = ‖εi (t
i
k + τ i

k ) − εi (t
i
k)‖ < δ, (10.4)

has to be satisfied (see (10.3)) because no event is generated in the time interval
[t i

k, t i
k+1) fromAssumption 10.1. Since an event has occurred at time t i

k , ‖εi (t i
k)‖ = δ

holds and, from (10.4) it holds ‖εi (t i
k + τ i

k )‖ < 2δ, which is valid for any time t .

The previous result allows stating the next theorem. An analytical upper bound on
the delay is derived, which is also the lower bound on the inter-event time, while the
convergence of xi (t) to a region around the equilibrium is guaranteed.

Theorem 10.1 If the network delay is upper bounded by

τ i
max = δ

‖AK ,i ‖κ(Vi )‖xi (0)‖+μi

(
1+ ‖AK ,i ‖κ(Vi )

|αmax(AK ,i )|
)
2δ

, (10.5)

where μi = ‖Bi Ki‖ + ∑
j∈Ni

‖Bi Lij‖, and αmax(AK ,i ) and κ(Vi ) are defined
according to (7.2) and (7.1), respectively, then any broadcast state xb,i of any sub-
system i ∈ 1, . . . , Na is successfully received by the neighbors j ∈ Ni before a new
event occurs, and the inter-event time is lower bounded ti

k+1 − t i
k ≥ τ i

max.

Moreover, for all initial conditions xi (0) and t > 0 it holds

‖xi (t)‖ ≤ κ(Vi )

(
μi2δ

|αmax(AK ,i )|
+ e−|αmax(AK ,i )|t

(

‖xi (0)‖ − μi2δ

|αmax(AK ,i )|

))

. (10.6)

Proof The proof can be found in Appendix A.

10.4.1.2 Communication with Delays and Packet Losses

The previous analysis was focused on the effect of delays exclusively. However,
in practice, delays and packet losses may occur simultaneously. The next corollary
extends the results of Theorem 10.1 when both phenomena are considered. The proof
can be found in Appendix A, but the main idea behind it is that n p consecutive packet
losses can be seen as a delay if a packet is discarded when no acknowledgment is
received after some waiting time. Thus, setting a value for n p and knowing an upper
bound for the total delay (packet losses plus transmission delay), an upper bound for
the transmission delay can be computed.

http://dx.doi.org/10.1007/978-3-319-21299-9_7
http://dx.doi.org/10.1007/978-3-319-21299-9_7
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Corollary 10.1 Assume that the maximum number of consecutive packet losses is
upper bounded by ni

p, and the transmission delay τ i
k is upper bounded by

τ̄ i = τ i
max

ni
p + 1

, (10.7)

where τ i
max is given by (10.5). Assume also that the waiting time T i

W of the WfA
protocol is set to τ̄ i . Then, there is a successful broadcast before the occurrence of
a new event and the state of each agent i is bounded by (10.6).

Proof The proof can be found in Appendix A.

Remark 10.1 Note that themaximumnumber of consecutive packet dropouts ni
p and

the maximum tolerable delay τ̄ i are correlated. A large value of ni
p implies small

values of τ̄ i and vice versa. This way, there is a trade-off between both parameters.

10.4.2 Properties of Deadband Control Using UwR Protocol

In this section, we study the UwR protocol, where the main issue is to keep track of
the different versions of the broadcast states. First, some definitions are introduced
to adapt the previous analysis to this new scenario.

Definition 10.4 We denote {t ij
k } the set of successful broadcasting times from agent

i to agents j ∈ Ni , and the error

εij(t) = xb,ij(t
ij
k ) − xi (t), t ∈ [t ij

k , t ij
k+1), (10.8)

where xb,ij(t
ij
k ) is the last successful broadcast state from agent i to agent j , j ∈ Ni .

With this definition, the dynamics of agent i is given by

ẋi (t) = AK ,i xi (t) + Bi Kiεi (t) +
∑

j∈Ni

Bi Lijε j i (t) (10.9)

with εi (t) the agent i’s version of the error. We assume that agent i automatically
updates its broadcast state in its control law and does not need to wait to receive an
acknowledgment of successful receptions from its neighbors. With these prerequi-
sites the following theorem is obtained.

Theorem 10.2 If the network delay is upper bounded by

τ̄ i = τ i
max

ni
p + 1

, (10.10)
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where ni
p is the maximum number of consecutive packet losses and

τ i
max = δ

‖AK ,i ‖κ(Vi )‖xi (0)‖+μ̄i

(
1+ ‖AK ,i ‖κ(Vi )

|αmax(AK ,i )|
)
2δ

, (10.11)

with μ̄i = 1
2‖Bi Ki‖+∑

j∈Ni
‖Bi Lij‖, and the waiting time T i

W of the UwR protocol

is set to τ̄ i , then any broadcast state xb,i is successfully received by all the neighbors
of the subsystem i before a new event occurs. Moreover, the local inter-event times
t i
k+1 − t i

k are lower bounded by (10.11), and for any initial condition xi (0) and for
any t > 0, it holds

‖xi (t)‖ ≤ κ(Vi )

(
μ̄i2δ

|αmax(AK ,i )|
+ e−|αmax(AK ,i )|t

(

‖xi (0)‖ − μ̄i2δ

|αmax(AK ,i )|

))

.

(10.12)

Proof The proof can be found in Appendix A.

Note that the delay bound for WfA and UwR protocols are different (see (10.5),
(10.11)). Since μ̄i < μi , under the same initial conditions UwR allows larger delays.
This difference lies on the fact that the upper bound of the local error εi in the agent
i is different in the two protocols, since the node i waits for neighboring nodes in
the WfA protocol, but it does not in the UwR protocol.

10.4.3 Pure Exponential Trigger Functions

Let us consider trigger functions (7.26) with δ0 = 0 and δ1 > 0 for simplicity:

Fe,i (t, εi (t)) = ‖εi (t)‖ − δ1e−βt , β > 0. (10.13)

The case δ0, δ1 > 0 is equivalent to having a constant threshold from the analytical
point of view.

Themotivation of trigger functions of the form (10.13) has been already discussed.
Besides, in Chap.7, it has been proved that the inter-event time is lower bounded if
β < |αmax(AK )| for perfect decoupling because ‖Δ‖ = 0.

Hence, under Assumption 10.1, it seems reasonable that it is possible to derive an
upper bound on the delay allowing less conservative results. We next briefly present
the obtained results for WfA and UwR protocols. The proofs have been moved to
Appendix A.

10.4.3.1 Performance of WfA Protocol

A result equivalent to Proposition 10.1 is derived.

http://dx.doi.org/10.1007/978-3-319-21299-9_7
http://dx.doi.org/10.1007/978-3-319-21299-9_7
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Proposition 10.2 Let us consider trigger functions of the form (10.13) and WfA
protocol. If Assumption 10.1 holds, the error of any subsystem i is upper bounded by
‖εi (t)‖ < δ1(1 + eβτmax)e−βt , where τmax > 0 is the maximum transmission delay
in the system.

Proof The proof can be found in Appendix A.

Note that the value of τmax is unknown. Its existence is assumed, and the following
theorem will prove it, giving the expression to compute it numerically.

Theorem 10.3 Let β < |αmax(AK ,i )|,∀i = 1, . . . , Na. If the network delay for any
broadcast in the system (10.1) is upper bounded by

τmax = min{τ i
max, i = 1, . . . , Na} (10.14)

being τ i
max the solution of

(
k1,i
δ1

+ k2,i
δ1

(1 + eβτ i
max)

)

τ i
max = e−βτ i

max , (10.15)

and

k1,i = ‖AK ,i‖κ(Vi )‖xi (0)‖ (10.16)

k2,i =
(

‖AK ,i‖κ(Vi )
1

|αmax(AK ,i )| − β
+ 1

)

μiδ1, (10.17)

then any broadcast state xb,i is successfully received by the neighbors j ∈ Ni before
a new event occurs. Hence, the inter-event times are lower bounded ti

k+1 − t i
k ≥ τmax.

Moreover, for all initial conditions xi (0) and t > 0 it holds

‖xi (t)‖ ≤ κ(Vi )

(
μi δ1(1+eβτmax )e−βt

|αmax(AK ,i )|−β
+ e−|αmax(AK ,i )|t

(

‖xi (0)‖ − μi δ1(1+eβτmax )e−βt

|αmax(AK ,i )|−β

))

.

(10.18)

Proof The proof can be found in Appendix A.

10.4.3.2 Performance of UwR Protocol

Under this protocol, the system dynamics is given by (10.9). Note that equivalently
to the results for constant threshold, it holds that ‖εi (t)‖ ≤ δ1e−βt and ‖εij(t)‖ <

δ1(1 + eβτmax)e−βt , where τmax > 0 is the upper bound on the delay derived in the
next theorem.

Theorem 10.4 Let β < |αmax(AK ,i )|,∀i = 1, . . . , Na. If the network delay for any
broadcast in the system (10.1) is upper bounded by
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τmax = min{τ i
max, i = 1, . . . , Na} (10.19)

being τ i
max the solution of

(k1,i
δ1

+ k2,i
δ1

+ k3,i
δ1

(
1 + eβτ i

max
))

τ i
max = e−βτ i

max , (10.20)

and

k1,i = ‖AK ,i‖κ(Vi )‖xi (0)‖ (10.21)

k2,i = ‖Bi Ki‖
(

1 + κ(Vi )‖AK ,i‖
|αmax(AK ,i )| − β

)

δ1 (10.22)

k3,i =
∑

j∈Ni

‖Bi Lij‖
(

1 + κ(Vi )‖AK ,i‖
|αmax(AK ,i )| − β

)

δ1, (10.23)

then any broadcast state xb,i is successfully received by the neighbors j ∈ Ni before
a new event occurs. Hence, the inter-event times are lower bounded ti

k+1 − t i
k ≥ τmax.

Moreover, for all initial conditions xi (0) and t > 0 it holds

‖xi (t)‖ ≤ κ(Vi )

(
μ̄i (τmax)δ1e−βt

|αmax(AK ,i )|−β
+ e−|αmax(AK ,i )|t

(

‖xi (0)‖ − μ̄i (τmax)δ1e−βt

|λmax(AK ,i )|−β

))

,

(10.24)

where μ̄i (τmax) = ‖Bi Ki‖ + ∑
j∈Ni

‖Bi Lij‖(1 + eβτmax).

Proof The proof can be found in Appendix A.

Note that trigger functions (10.13) ensure the asymptotic convergence to the origin
while guaranteeing a lower bound for the minimum inter-event time if the delay
is below τmax. This cannot be achieved if the triggering conditions are of the form
‖εi (t)‖ ≤ σi‖xi (t)‖, as pointed out in [259].

Example 10.3 Let us consider the chain of inverted pendulums of Fig. 7.3 and the
control design described in Sect. 7.4.3.2. This example illustrates the influence of the
parameters of the trigger functions on the upper bound on the delay.

Table10.1 shows the most conservative computed delay among the subsystems
in the network for different values of δ in trigger functions (10.3) and for WfA and

Table 10.1 Delays bounds (10.5) and (10.11) for different values of δ and for WfA and UwR
protocols

δ (ms) 0.01 0.02 0.05 0.1

(τ i
max)WfA 0.347 0.613 1.140 1.624

(τ i
max)UwR 0.363 0.666 1.329 2.054

http://dx.doi.org/10.1007/978-3-319-21299-9_7
http://dx.doi.org/10.1007/978-3-319-21299-9_7
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Fig. 10.3 Influence of δ1 and β on the delay bound (10.14) (left) and (10.19) (right). The case
δ1 = 0.5, β = 0.8 are 1.53 and 3.57ms, respectively

UwR protocols. Note that the difference between the value of τ i
max given by the

two protocols increases with δ and that the UwR protocol always allows larger (less
conservative) values on the delay.

Trigger functions (10.13) depend on two parameters δ1 and β. Figure10.3 depicts
the bounds on the delay for a set of values of δ1 ∈ [0.1, 1] and β ∈ [0.1, 0.95] so
that β < |αmax(AK )| = 1 is satisfied. The figure on the left shows the results for the
WfA protocol (solution of (10.15)), and the one on the right for UwR (solution of
(10.20)). Observe that τmax is always greater when the transmissions are ruled by the
UwR protocol.

If the solutions given for constant and exponential thresholds are compared, it
can be noticed that the results are better in the second case. Furthermore, if we take
the values of the parameters used in Sect. 7.4.3.2, deadband control (δ = 0.02) gives
values of τmax around 0.6ms, whereas for the exponential threshold (δ1 = 0.5 and
β = 0.8), τ � is three (WfA) and five (UwR) times greater. It can be concluded that
time-dependent trigger functions are a better choice because they provide asymptotic
convergence and they also allow longer delays in the network.

10.5 Performance Analysis for Non-perfect Decoupling

If perfect decoupling cannot be assumed, the formulation changes. In order to illus-
trate it, let us consider an ideal network first. As it has been shown in Chap. 7, the
dynamics of each agent can be rewritten in terms of the error as

ẋi (t) = AK ,i xi (t) + Bi Kiεi (t) +
∑

j∈Ni

(
Δijx j (t) + Bi Lijε j (t)

)
.

http://dx.doi.org/10.1007/978-3-319-21299-9_7
http://dx.doi.org/10.1007/978-3-319-21299-9_7
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Note that if Δij �= 0, the dynamics of ẋi (t) explicitly depends on x j (t), ∀ j ∈ Ni .
Thus, ‖xi (t)‖ cannot be upper bounded if ‖x j (t)‖ is not. But at the same time, the
dynamics of x j (t) depends on the neighborhood, and then there is a vicious circle.

Hence, one possible solution to this problem is to treat it as in Chap.7, and rewrite
the equations in terms of the overall system state and error as

ẋ(t) = (AK + Δ)x(t) + BK ε(t), (10.25)

where all the matrices and vectors are defined in (7.16)–(7.21).
Let us assume that the communication is subjected to delays and packet losses.

If the state consistency is preserved, for instance if WfA protocol is considered,
(10.25) holds because the update of broadcast states is synchronized. Under certain
assumptions on the error bound (e.g., Proposition 10.1), an equivalent analysis to the
perfect decoupling case can be inferred for (10.25). However, if the state consistency
cannot be guaranteed (UwR protocol), a different approach is required to handle the
problem.

For the sake of simplicity,we next show the formulationwhich solves this situation
for constant thresholds, but an equivalent procedure can be followed for other type
of trigger functions.

10.5.1 Solving the State Inconsistency

Let us recall the definition of the error (10.8). If perfect decoupling does not hold and
the transmissions over the network are governed by the UwR protocol, the dynamics
of each subsystem is given by

ẋi (t) = AK ,i xi (t) +
∑

j∈Ni

Δijx j (t) + Bi Kiεi (t) +
∑

j∈Ni

Bi Lijε j i (t). (10.26)

Let us define the following set of matrices

Mi = Bi
(
Li1 Li2 . . . Lii−1 Ki Lii+1 . . . Li Na

)
,∀i = 1, . . . , Na, (10.27)

with Lij = 0 if j /∈ Ni , and the matrix

M =

⎛

⎜
⎜
⎜
⎝

M1 0 . . . 0
0 M2 . . . 0
...

. . .
...

0 0 . . . MNa

⎞

⎟
⎟
⎟
⎠

, (10.28)

where 0 is a n × nNa matrix whose elements are all zero.

http://dx.doi.org/10.1007/978-3-319-21299-9_7
http://dx.doi.org/10.1007/978-3-319-21299-9_7
http://dx.doi.org/10.1007/978-3-319-21299-9_7
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Denote by

−→ε T
i = (

εT
1i εT

2i . . . εT
i−1,i εT

i εT
i+1,i . . . εT

Nai

)
,∀i = 1, . . . , Na, (10.29)

with ε j i = 0 if j /∈ Ni , and

−→ε T = (−→ε T
1 . . . −→ε T

Na

)
. (10.30)

With these definitions, the dynamics of the overall system is

ẋ(t) = (AK + Δ)x(t) + M−→ε (t). (10.31)

Proposition 10.3 If Assumption 10.1 holds and trigger functions (10.3) and the
UwR protocol are considered, the error (10.30) is bounded by

‖−→ε (t)‖ ≤ δ

√
√
√
√Na + 4

Na∑

i=1

|Ni | = δ̄, (10.32)

where |Ni | is the cardinality of the set Ni .

The proof of this result is straightforward, since it holds that

‖−→ε (t)‖ ≤

√
√
√
√
√

Na∑

i=1

‖εi (t)‖2 +
Na∑

i=1

∑

j∈Ni

‖εi j (t)‖2.

Considering the upper bounds on εi and εij that UwR protocol provides, it yields

‖−→ε (t)‖ <

√∑Na
i=1 δ2 + ∑Na

i=1

∑
j∈Ni

(2δ)2 =
√

δ2(Na + 4
∑Na

i=1 |Ni |), which is
equivalent to (10.32).

This shows that due to the state inconsistency, the bound on the error increases. For
instance, ifWfAprotocol is used, the error is boundedby‖ε(t)‖ < 2

√
Naδ,which is a

lower upper bound than (10.32). Otherwise, if the opposite is assumed, it follows that
3
4 Na >

∑Na
i=1 |Ni | must hold by enforcing δ̄ = δ

√

Na + 4
∑Na

i=1 |Ni | < 2
√

Naδ.

However, this cannot be satisfied for a connected topology.
Larger upper bounds on the error involve more conservative upper bounds on

the maximum delay. Hence, it can be expected that the analytic results for the state
inconsistency and non-perfect decoupling are more tight. The outcome is enounced
in the next theorem.

Theorem 10.5 If the network delay is upper bounded by

τmax = δ

‖AK +Δ‖κ(V )‖x(0)‖+μmax

(
1+ ‖AK +Δ‖κ(V )

|αmax(AK )|−κ(V )‖Δ‖
)
δ̄
, (10.33)



10 Distributed Event-Based Control for Non-reliable Networks 237

Table 10.2 Delays for different values of δ and Na

Na δ

0.01 0.02 0.05 0.1

10 0.089 0.110 0.191 0.284

20 0.063 0.077 0.129 0.196

50 0.040 0.048 0.080 0.122

100 0.028 0.034 0.057 0.086

200 0.020 0.024 0.040 0.061

where μmax = max{‖Mi‖, i = 1, . . . , Na}, then any broadcast state xb,i is suc-
cessfully received by the neighbors j ∈ Ni before a new event occurs. Hence, the
inter-event times are lower bounded ti

k+1 − t i
k ≥ τmax. Moreover, for all initial

conditions x(0) and t > 0 it holds

‖x(t)‖ ≤ κ(V )

(
μmax δ̄

|αmax(AK )|−κ(V )‖Δ‖

+ e−(|αmax(AK )|−κ(V )‖Δ‖)t
(

‖x(0)‖ − μmax δ̄

|αmax(AK )|−κ(V )‖Δ‖

))

. (10.34)

Proof The proof can be found in Appendix A.

Example 10.4 In this example we illustrate the conservatism of Theorem 10.5 when
estimating τmax, even though the UwR protocol provides better results for perfect
decoupling.

Let us consider the system specifications of Sect. 7.6.2.2. The upper bound on the
delay τmax computed according to (10.33) for different values of δ and Na is given
in Table10.2. The values are expressed in milliseconds.

Given that δ̄ depends on Na , the tolerable delay is reduced when the number of
agents increases. This fact did not have influence in the case of perfect decoupling.
Moreover, the increase of the dimension of the matrices with Na also influences the
bound negatively.

Remark 10.2 The conservatism of (10.33) comes from the fact that the individual
dynamics of the subsystems cannot be decoupled and the system has to be treated
as a whole. However, this does not mean that the system, in practice, cannot tolerate
longer delays, simply just the analytical approach taken only guarantees stability for
τ ≤ τmax.

http://dx.doi.org/10.1007/978-3-319-21299-9_7
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10.6 Simulation Results

10.6.1 Performance

To illustrate the theoretical results, let us consider the system in Fig. 7.3 with Na =
4 and x(0) = (−0.9425 0 1.0472 0 0.6283 0 − 1.4137 0)T . The system
behavior is investigated in three situations:

1. Ideal communication channel.
2. Non-ideal network using WfA protocol.
3. Non-ideal network using UwR protocol.

Let us consider static trigger functions. The upper bounds on the delay have been
already computed for WfA and UwR protocols and for different values of the para-
meter δ and summarized in Table10.1.

Let δ = 0.05 and a delay generated randomly between zero and the corresponding
upper bound specified in Table10.1 (1.150ms forWfA and 1.329 forUwR). The state
of subsystem 2, the events time, and the control input u(t) are depicted in Fig. 10.4
for the three situations stated above. The behavior of the subsystem is similar in the
three cases as the effect of delays in the performance is mitigated by means of the
two proposed protocols.
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Fig. 10.4 Behavior of the subsystem 2 with WfA (red), UwR (green) protocols, and an ideal
network (blue)

http://dx.doi.org/10.1007/978-3-319-21299-9_7
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Note that even though the delay does not significantly affect the performance, it
has an impact on the sequence of events. This is an interesting property of event-
based control, because the delay in one transmission affects the occurrence of future
events.

10.6.2 Exponential Trigger Functions

If time-dependent trigger functions of the form (10.13) with parameters δ1 = 0.5
and β = 0.8 are taken, the upper bound on the delay is 1.43ms (WfA) and 3.57ms
(UwR), according to Fig. 10.3. Thus, the UwR protocol will be used in this example,
as it provides a less restrictive result.

The performance of the system under the time-dependent trigger functions is
comparedwith the behavior using the static-trigger functions for τ i

max = 3.57ms. The
results are shown in Fig. 10.5. The state of Agent 2 (x21, x22 ) is depicted in Fig. 10.5a,
and Fig. 10.5b shows the broadcast states (xb,21, xb,22 ). The broadcast state for the
constant threshold looks like a continuous function due to the high frequency of
events detection, whereas piecewise constant functions are clearly appreciated in the
time-dependent trigger function case.

Note that the number of updates in the broadcast state (number of events) decreases
with trigger functions (10.13) and the performance around the equilibria is better
with respect to (10.3). Moreover, the minimum and mean inter-event times have
been computed according for these simulation results, resulting in 3.9 and 353ms,
respectively, for (10.3), and 1.2ms, which agrees with the results of Table10.1, and
215ms for (10.13). Hence, the time-dependent trigger functions are an interesting
alternative in non-ideal networks.
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Fig. 10.5 Behavior of the Agent 2 with trigger functions (10.3) (δ = 0.05) (green, magenta) and
(10.13) (δ1 = 0.5, β = 0.8) (blue, red), with 3.57ms as upper bound on the delay. a (x21 , x22 ),
b (xb,21 , xb,22 )
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10.7 Conclusions

This chapter has presented an extension of the distributed control design of Chap. 7
to non-reliable networks. Two transmission protocols have been proposed as means
of dealing with the effects of non-reliable networks. Upper bounds on the delay and
maximum number of consecutive packet dropouts have been derived for different
situations. One of the main contributions of this chapter is the proof of the existence
of a lower bound on the inter-event times and the asymptotic convergence to the
origin if time-dependent trigger functions are used.

http://dx.doi.org/10.1007/978-3-319-21299-9_7


Chapter 11
Distributed Estimation in Networked Systems

Francisco R. Rubio, Luis Orihuela and Carlos Vivas

11.1 Introduction

Following the series of results on distributed estimation for NCSs, this chapter tackles
the problem for the case where communications are taking place over an unreliable
asynchronous network.

Most of the problem setups and assumptions are common to those described in
Chaps. 9 and 10. A network of interconnected agents is assumed, each one having
partial access to measurements from a linear plant, and broadcasting their estimations
to their neighbors. The objective is again to reach a reliable estimation of the plant
state from every agent location. The observers’ structure implemented in each agent
is based on local Luenberger-like observers in combination with consensus strategies.
The chapter now focusses on the case of a unreliable transmission networks featuring
communication delays and eventual packet dropouts. As for Chaps. 9 and 10, both
periodic and event-based schemes are analyzed.

There exists a vast literature related to the problem of distributed estimation in sen-
sor networks (see Chaps. 1 and 8 for a brief discussion on the topic). Despite the great
deal of effort developed in distributed estimation, there is much room for research
in the topic. Specifically, network-induced problems have historically received little
attention. When a communication network is used to communicate, designs must
be aware of network-induced constraints, significantly, delays and packet dropouts.
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These effects degrade the performance of a given estimation scheme, causing even-
tually the resulting observed system not to converge to the actual plant values, see
[104].

Furthermore, the estimation strategy can be designed in time-driven fashion,
where the agents are required to broadcast their states at periodic frequency, or event-
based, where the information asynchronously transmitted according to rules designed
for every agent. As already discussed in Chaps. 9 and 10, the latter methodology is
generally more efficient from the point of view of bandwidth use, as communications
are invoked only when significant information requires to be transmitted, see [61,
154, 239]. This approach becomes specially beneficial in the context of distributed
estimation over networks, as the limitations imposed by the network render the fre-
quency at which the system communicates. A reduction in the transmission frequency
implies bandwidth saving but also an improvement in average transmission delays
and packet collisions, and for back-off retransmission, algorithms are reduced. The
reduced average transmission rate is more appreciated in the case of wireless sensor
networks, where extending the battery life span is of paramount importance. These
two facts motivate the use of aperiodic communication policies, which allow to avoid
the transmission of irrelevant data, reducing network traffic and energy expenditure.

The approach in this chapter for a distributed cooperative estimation framework is
discussed based on local Luenberger-like observers in combination with consensus
strategies. Remarkably, network-induced delays and packet dropouts are consid-
ered. The efficient use of the network resources receives important attention in both
time-driven periodic an event-based communication between the agents. The for-
mer approach reduces the amount of information communicated over the network
resorting to two different ideas: on the one hand, only neighbors are allowed to com-
municate, reducing transmissions with respect to all-to-all communication schemes.
On the other hand, the design of the observers contemplates the possibility of sharing
only a part of the estimated state between neighbors, instead of communicating the
whole estimated vector state. This economy in the use of network resources is, by
its own nature, further improved with the event-driven communication approach.

11.2 Problem Description and Motivation

Consider a sensor network intended to estimate the state of a linear plant in a dis-
tributed way, where the sensors measure some variables (outputs), compute a local
estimation of the overall state of the system, and broadcast to a set of neighbors of
some information related with their own estimations. As Fig. 11.1 illustrates, the set
of agents are connected by means of a communication network, which may intro-
duce delays and packet dropouts. When the local information received for each of
the different agents is not sufficient to estimate the complete state of the plant, then
the proposed type of distributed observation makes sense.

The concepts of local observability and collective observability refer, respectively,
to a situation in which the measurement performed by any sensor is sufficient to

http://dx.doi.org/10.1007/978-3-319-21299-9_9
http://dx.doi.org/10.1007/978-3-319-21299-9_10
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Plant
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Network

agent j

agent i

y j

yi

...

Fig. 11.1 Distributed observation scheme with a set of agents sharing information with neighboring
devices

guarantee observability of the process state; and to a situation in which all the sensors,
if put together, guarantee this property. See [200] for a complete explanation. In this
chapter, it is assumed that all the sensors must estimate the overall state of the system
even when local observability does not hold.

To motivate the problem, consider a possible application where the state of a plant
is monitored from different geographically distributed locations, provided that only
some local information of the plant can be directly measured from each location.
This scenario might consist of a number of observers having access to some, gen-
erally different plant outputs. The plant is not necessarily fully observable from any
of the observers. The different observers are able to communicate themselves by
sharing information with a set of neighbors in order to estimate the complete state
of the plant. The communication among the different observers is assumed to be
implemented through a communication network, in which time delays and possible
packet dropouts have to be taken into consideration. A different situation in which
the framework considered in this work might be of application could be that in which
the observers are connected using a shared medium, managing traffic information in
a urban environment.

Taking into account the aforementioned ideas, the present chapter focuses on
network-related issues, specifically communication efficiency and robustness against
network-induced problems. The main contributions are briefly summarized subse-
quently. The chapter provides an observer design method to operate with time-driven
communication between the agents, being the objective to reach a common reliable
estimate of the system state, despite of the presence of delays and dropouts. After this,
an extension is proposed to include an event-based communication strategy between
agents, aiming at reducing the traffic over the network and the energy consumption.

In the latter case, the estimation error will eventually enter into an arbitrary small
region around the equilibrium point. Similar to Chap. 5, the size of this region depends
on a free parameter that sets the threshold triggering the communication events, which
allows to trade-off between communication savings and estimation performance.

http://dx.doi.org/10.1007/978-3-319-21299-9_5
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The chapter is organized as follows. Section 11.2 describes and motivates the
problem under consideration. First, in Sect. 11.3, the particular case of periodic
communications is presented, followed by a discussion of the necessary changes
to be introduced to accommodate the observers structure to the asynchronous case
in Sect. 11.4. Practical stability of the proposed approach is proved in Sect. 11.4.2.
The chapter closes with some illustrative examples in Sects. 11.5 and 11.6.

11.2.1 Network Topology

The communication network is represented using a directed graph G = (V ,E ),
with V = 1, 2, . . . , Na being the set of agents (observers) of the graph (network),
and E ⊂ V × V , being the set of links. Assuming the cardinality of E equal l, and
defining L = {1, 2, . . . , l}, it is obvious that a bijective function g : E → L can be
built so that a given link can be either referenced by the pair of agents that connects
(i, j) ∈ E or the link index r ∈ L , so that r = g(i, j). The set of agents connected
to agent i is termed the neighborhood of i , and denoted as Ni � { j ∈ V |(i, j) ∈ E }.
Directed communications are considered, so that link (i, j) implies that agent i
receives information from agent j .

11.2.2 System Description

In this work, the system to be observed is assumed to be an autonomous linear
time-invariant plant given by the following equations:

x(k + 1) = Ax(k), (11.1)

yi (k) = Ci x(k), ∀i ∈ V , (11.2)

where x(k) ∈ R
n is the state of the plant and yi (k) ∈ R

di are the system outputs.
In general, each of the different Na observers has access to a distinct output of the
plant. Collective observability is assumed, i.e., the pair (A, C) is observable, where
C is a matrix stacking the output matrices Ci of all the agents.

Furthermore, the observers can communicate with each other by means of a com-
munication network that can be represented by the graph G . More precisely, each
neighbor j of the observer i communicates some estimated outputs ŷij = Cijx̂ j . It is
assumed that agent i knows the matrix Cij corresponding to the output ŷij. Exchang-
ing estimates instead of the measurements from the plant provides some freedom and
flexibility to choose the information sent through the network. In this way, taking
into account the plant dynamics and the output measured by a particular agent, it is
possible to collect only the information from its neighbors that allows estimation,
leading to a policy in which only relevant information for each agent is transmitted.
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Let us define C̄i as a matrix stacking the matrix Ci and matrices Cij for all j ∈ Ni .
It is assumed that each pair (A, C̄i ) is observable. This is a necessary condition that
imposes some restrictions on the network topology and the information that is sent
via each connection.

11.3 Periodic Time-Driven Communication Between Agents

This section is devoted to the observer design method under periodic communication
between agents. Next, a description of the agent dynamics is given in detail.

11.3.1 Agent Dynamics

The communication between agents may be affected by delays and packet dropouts.
Therefore, it is convenient that the observer to be proposed takes both effects under
consideration. Figure 11.2 illustrates a possible time scheduling in which both effects
appear. Let τij(k) ∈ N represent the time difference between the current time instant k
and the instant in which the last packet received by agent i was sent from its neighbor
j . This constant includes the effect of delays and packet dropouts. Note that packet
dropouts have the effect of enlarging τij(k).

Assuming that the number of consecutive data dropouts is bounded by n p and
that the effective network-induced delays are also bounded by hmin and hmax , it is
obvious that τij(k) belongs to the interval [τmin, τmax ], where

τmin = hmin, (11.3)

τmax = n p + hmax . (11.4)

agent j

agent i

k

dropouts

delay

k− τi j(k)

τi j(k)

Fig. 11.2 Time scheduling for a typical communication between two agents
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Fig. 11.3 Qualitative
evolution of τij(k)

τi j(k)

τmax

τmin

k

Figure 11.3 illustrates a characteristic shape for τij(k). For the sake of simplicity
in the technical developments to come, we assume that the minimum delay bound is
exactly zero, τmin = 0, and the maximum delay will be denoted by τmax . In other
works as [176] or [204], this assumption is relaxed, leading to a more cumbersome,
but still solvable, design problems.

Also note that each τij is directly associated to a link (i, j) ∈ E . Then, it is
possible to establish a relation between each connection and the corresponding τij.
Numbering the links from 1 to l, we can use the following equivalent notation:

τr (k) = τij(k), r = 1, . . . , l, (11.5)

where r = g(i, j), that is, we can either refer τ to a pair of agents (τij) or to a link
(τr ).

Once the considerations about delays and packet dropouts have been done, we
propose a structure for the observers given by the following equation:

x̂i (k + 1) = Ax̂i (k)+ Mi (Ci x̂i (k) − yi (k))

+
∑

j∈Ni

Nij(Cijx̂ j (k − τij(k)) − Cijx̂i (k − τij(k))), (11.6)

for i ∈ V . The structure of the observers comprises two main parts, namely,

• A local Luenberger-like observer, weighted with matrices Mi , which corrects the
estimated state of the plant based on the measured output yi (k) accessible for each
observer i .

• A consensus-based observer, weighted with matrices Nij, which takes into account
the information received from neighboring observers.

The name consensus comes from the fact that all the agents will eventually achieve
the same value of the estimated state. Note that agent i must known the exact value
of the actual artificial delay τij(k), as it needs to compare the received information
Cijx̂ j (k − τij(k)) with past values of its own estimated state Cijx̂i (k − τij(k)). To do
this, the agents must be synchronized. Assuming that some kind of synchronization
algorithm is running, the delay τij(k) can be known by adding a timestamp to every
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data packet. Furthermore, each agent must buffer all its past estimates until instant
k − τmax .

Let us consider now the observation error of a generic observer i defined as
ei (k) = x̂i (k) − x(k), i.e., the difference between the estimation of agent i and the
state of the plant. Taking into account Eqs. (11.1) and (11.6), the dynamics of the
observation error can be written as

ei (k +1) = (A + Mi Ci )ei (k)+
∑

j∈Ni

NijCij(e j (k − τij(k))− ei (k − τij(k))). (11.7)

Considering that the number of observers is given by Na , the dynamic equations
of the observation errors can be written in a compact form defining a stacked error
vector as eT (k) = [eT

1 (k) eT
2 (k) . . . eT

Na
(k)]:

e(k + 1) = Φ(M )e(k) + Λ(N )d(k) (11.8)

where d(k) is a delayed version of the stacked error vector taking into account the
delays of the different links (see Eq. (11.5)) dT (k) = [eT (k − τ1(k)) . . . e(k −
τl(k))T ], or equivalently the delays of the communications between neighbors i and
j . The matrices Φ(M ) and Λ(N ) depend on the sets of observers to be designed:
M = {Mi , i ∈ V } and N = {Nij, i ∈ V , j ∈ Ni }. It is not difficult to see that the
structure of such matrices is given by

Φ(M ) =

⎡

⎢
⎢
⎢
⎣

A + M1C1 0 · · · 0
0 A + M2C2 · · · 0
...

...
. . .

...

0 0 · · · A + MNa CNa

⎤

⎥
⎥
⎥
⎦

(11.9)

Λ(N ) = [Λ1 Λ2 · · · Λl ] (11.10)

where Λr , r = g(i, j) ∈ {1, . . . , l}, are block matrices in correspondence with each
of the links r communicating the observer i with j , in which the only blocks different
from zero are −NijCij and NijCij in the (i, i) and (i, j) positions, respectively:

Λr =

column i j
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · 0 · · · 0 · · · 0
...

...
...

...

0 · · · −NijCij · · · NijCij · · · 0
...

...
...

...

0 · · · 0 · · · 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

row i.
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11.3.2 Observer Design

In the following, the main result of this section is introduced. For periodic com-
munication between agents, the next theorem states a sufficient condition for the
asymptotic convergence of the estimates of each observer to the plant state.

Theorem 11.1 The estimations of all the observers asymptotically converge to the
plant state if, given a maximum delay bound τmax according to Eq. (11.4), the non-
linear matrix inequality

⎡

⎢
⎢
⎢
⎢
⎣

Ξ Θ 0 ΦT (M )P (ΦT (M ) − I )Pτmax

∗ Υ ΘT ΛT (N )P ΛT (N )Pτmax

∗ ∗ Ω 0 0
∗ ∗ ∗ −P 0
∗ ∗ ∗ ∗ − 1

l P Z−1
2 P

⎤

⎥
⎥
⎥
⎥
⎦

< 0 (11.11)

has a feasible solution for positive definite matrices Z1, Z2, Pi , i ∈ V , and
observers matrices Mi , Nij, i ∈ V , j ∈ Ni , where

P = diag{P1, P2, . . . , PNa },
Ξ = −P + Z1 − l Z2,

Θ =
l times

︷ ︸︸ ︷
[Z2 Z2 · · · Z2],

Υ = diag

l times
︷ ︸︸ ︷
{−2Z2, . . . ,−2Z2},

Ω = −Z1 − l Z2.

The proof of this theorem uses the Lyapunov–Krasovskii theory to ensure the
stability of the observation errors. The details can be found in Appendix A.

As it is clearly seen from (11.11), the matrix inequality to be solved in order to
design the observers is nonlinear because of the presence of the terms ΦT (M )P ,
ΛT (N )P , and P Z−1

2 P .
The first two nonlinearities, related to ΦT (M )P , ΛT (N )P , can be trivially

settled by defining Mi Pi = Wi and Nij Pi = Xij. In this way, these terms are now a
function of the new matrices in the change of variables, i.e., ΦT (M )P → Φ(W )

and ΛT (N )P → Λ(X ), where the sets are defined as W = {Wi , i ∈ V } and
X = {Xij, i ∈ V , j ∈ Ni }.

The nonlinearity P Z−1
2 P cannot be sorted with this or any other direct technique

that let us transform the nonlinear condition into a linear one. To solve this problem,
two solutions can be implemented. The first one requires the introduction of an
additional constraint

−P Z−1
2 P < − 1

μ
P
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which let us address the problem by means of a set of linear matrix inequalities. The
second solution uses the cone complementary algorithm to transform the nonlinear
inequality into an iterative optimization problem with linear constraints. Comparing
both solutions, the former is more conservative (as it introduces an additional condi-
tion), but it is computationally more efficient. Both methods are explained in detail
in Appendix B.

Remark 11.1 The computational burden required to solve the conditions in Theorem
11.1 (through any of the proposed methods) directly depends on the dimension of
the system, the number of agents, and the number of links between them. Although
the implementation of the estimation scheme is completely distributed, the design
procedure is centralized, as all the weighting matrices are designed together. With
respect to centralized schemes, the number of links is now the bottleneck of all the
proposed solutions in the literature. It would be of undeniable interest to distribute
the mathematical calculus, in such a way that each agent does not need information
of the rest of the agents, but only of its neighbors, to design its observer. This is
matter of future research.

11.4 Event-Based Communication Between Agents

This section analyzes an asynchronous event-based communication policy between
agents to reduce the energy consumption and make an efficient use of the network
resources.

Transmissions between neighbors are now assumed to be triggered at specific
time instants, when a triggering condition is satisfied. Let 	ij(k) denote the time
instant when agent j sent the more recent packet available for the agent i at current
time instant k. Then, {	ij(k)} ⊂ N, as agent j only sends packets when an event is
triggered.
Triggering condition Given a threshold δ, at instant k, agent j broadcasts its esti-
mates to every agent i such that j ∈ Ni if

‖x̂ j (	ij(k)) − x̂ j (k)‖∞ ≥ δ, for k > 	ij(k). (11.12)

In this section, packet dropouts are not considered, so only delays affect the
communication between agents.

11.4.1 Remodeling of the Observer Dynamics

This section introduces the modifications needed to remodel the system dynamical
equations according to the approach introduced above. Consider a generic agent i at
time instant k. As it was explained in Chap. 5 for the centralized scheme, there are

http://dx.doi.org/10.1007/978-3-319-21299-9_5
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CASE 1 CASE 2

i j(k)i j(k)

k− τmaxk− τmax kk

jj

ii

Fig. 11.4 Different cases regarding the transmission of information from agent j to i

also two possible situations with respect to the information received from each of its
neighbors j ∈ Ni (see Fig. 11.4):

• Case 1 The last packet received in agent i was sent before k − τmax . It is obvious
that 	ij(k) < k − τmax . In this case, agent i does not have in memory1 the estimate
x̂i (	ij(k)). Then, it compares its older buffered state, that is, x̂i (k − τmax ), with the
available state of its neighbor x̂ j (	ij(k)) to correct its estimation:

x̂i (k +1) =
CASE 1

Ax̂i (k)+ Mi (ŷi (k)− yi (k))+
∑

j∈Ni

NijCij
(
x̂ j (	ij(k)) − x̂i (k − τmax )

)
.

• Case 2 The last packet received in agent i was sent after k − τmax , so 	ij(k) ≥
k − τmax . Given that the estimate x̂i (	ij(k)) is still in the buffer of the agent i , it
compares it with the received information x̂ j (	ij(k)):

x̂i (k+1) =
CASE 2

Ax̂i (k)+Mi (ŷi (k)−yi (k))+
∑

j∈Ni

NijCij
(
x̂ j (	ij(k)) − x̂i (	ij(k))

)
.

Taking into account the above considerations, the dynamics of a generic agent i
can be rewritten compactly as

x̂i (k+1) = Ax̂i (k)+Mi (ŷi (k)− yi (k))+
∑

j∈Ni

NijCij
(
x̂ j (	ij(k)) − x̂i (k − μij(k))

)
,

(11.13)
where

μij(k) =
{

τmax , 	ij(k) < k − τmax ,

k − 	ij(k), 	ij(k) ≥ k − τmax .

1Recall that each agent stores only a finite amount of past estimates, as was explained in Sect. 11.3.
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Considering the addition of the null term x̂ j (k − μij(k)) − x̂ j (k − μij(k)) and
defining

εij(k) = x̂ j (	ij(k)) − x̂ j (k − μij(k)).

Equation (11.13) can be rewritten as

x̂i (k + 1) = Ax̂i (k) + Mi (ŷi (k) − yi (k)) +
∑

j∈Ni

NijCij
(
x̂ j (k − μij(k)) − x̂i (k − μij(k))

)

+
∑

j∈Ni

NijCijεij(k).

In this way, the observer have a dynamics equivalent to that of the periodic com-
munication case, difference being in the terms that depend on εij(k), which can
be interpreted as an external perturbation due to the discontinuous flow of infor-
mation between neighbors that is reset to zero at every transmission time. In this
case, μij(k) plays the role of τij(k) in Eq. (11.7). It is straightforward to check that
0 ≤ μij(k) ≤ τmax for Cases 1 and 2.

Moreover, it is easy to see that

‖εij(k)‖∞ < δ,

in both cases. In the Case 2, εij(k) = 0. In Case 1, it holds εij(k) = x̂ j (	ij(k)) −
x̂ j (k − τmax ), with 	ij(k) < k − τmax . Since no packet has been transmitted between
	ij(k) and k − τmax (because, otherwise, this packet had been available in agent i at
current instant k), it implies that ‖x̂ j (	ij(k))− x̂ j (k−τmax )‖∞ < δ (see the triggering
condition defined above). Therefore, ‖εij(k)‖∞ < δ holds for both cases.

The dynamics of the augmented observation vector e(k) is similar to that of the
time-driven case, but including an additional term related with these disturbances:

e(k + 1) = Φ(M )e(k) + Λ(N )d(k) + Γ (N )ε(k), (11.14)

where εT (k) = [εT
1 (k), . . . , εT

r (k), . . . , εT
l (k)], with r = g(i, j). As before, it is not

difficult to see that matrix Γ (N ) has the following structure:

Γ (N ) = [
Γ1(N ) · · · Γr (N ) · · · Γl(N )

]
,

where Γr (N ), r = g(i, j) ∈ {1, . . . , l}, are vectors of matrices, in which the only
block different from zero is NijCij in the i row:
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Γr (N ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
...

NijCij
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

row i.

As has been mentioned, in this section, we consider that the observers are designed
according to Theorem 11.1, so in the following, notations Φ,Λ, and Γ will be used
instead of Φ(M ),Λ(N ), and Γ (N ), respectively.

11.4.2 Practical Stability for Delayed Asynchronous Systems

Next, the main result of this section is introduced. Given the distributed observer
synthesized by Theorem 11.1, the following result proves that, by implementing
the event-based sampling policy described above, the observation error e(k) can
be ultimately bounded into an arbitrary small region that depends on the trigger-
ing threshold δ. The theorem is based on the Lyapunov–Krasovskii theory, through
the same functional given in Theorem 11.1. The proof, which can be found in the
appendix, makes use of the following two facts:

• The functional can be written as a quadratic function:

V (k) = ζ T (k)Ψ ζ(k), (11.15)

where

ζ(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

e(k)

e(k − 1)

e(k − 2)
...

e(k − τmax )

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

and Ψ is a positive definite matrix that can be easily found, due to the structure of
the functional. The interested reader can find an example in Chap. 5. It has been
omitted here, since it has no influence in the following theorem.

• The evolution of the functional ΔV (k) can be bounded with another quadratic
function:

ΔV (k) ≤ ξ T (k)L1ξ(k)

where ξ(k) is an augmented state vector and L1 a negative definite matrix, both
defined in the proof of Theorem 11.1.

http://dx.doi.org/10.1007/978-3-319-21299-9_5
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Theorem 11.2 Consider a set of distributed observers designed by Theorem 11.1.
Then, using an event-based communication with triggering condition (11.12), the
estimation error e(k) whose dynamics is given in Eq. (11.14) is ultimately bounded by

‖e(k)‖∞ ≤ δ

√
λΨ

max

λP
min

[(‖Φ‖∞ + ‖Λ‖∞)D1 + ‖Γ ‖∞] ,

where matrices P, Φ,Λ, and Γ are given in Theorem 11.1 and

D1 = ‖L2‖∞ +
√

‖L2‖2∞ + λ
Q
min‖L3‖∞

λ
Q
min

,

L2 = Γ T P
[
Φ Λ 0

] + Γ T Z2
[
(Φ − I ) Λ 0

]
,

L3 = Γ T PΓ + Γ T Z2Γ,

being Q any positive definite matrix such that −Q > L1.

Observe that the final bound of e(k) depends on the threshold δ that triggers
the sampling. By choosing δ = 0, the events are triggered at each sampling time,
obtaining a time-driven scheme. Larger values of δ imply larger periods without
events. Therefore, parameter δ can be used to trade-off the number of retransmission
and the performance of the estimation.

11.5 Simulation Results

Consider a plant whose dynamics is given by

x(k + 1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.99 0 0 0 0 0
0 1.005 0 0 0 0
0 0 0.9945 −0.08757 0 0
0 0 0.1248 0.9945 0 0
0 0 0 0 0.9 0.09
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

x(k).

Agent 1 measures the output y1 = x1, while observers 2, 3, and 4 receive y2 = x2,
y3 = x4, and y4 = x6, respectively. The agents are connected according to an
incomplete communication graph, depicted in Fig. 11.5. The outputs measured from
every agent and the received estimates from their neighborhood are summarized in
Table 11.1.
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Fig. 11.5 Graph
representing the network
connectivity

1
3

4

2y1

y2

y3

y4

Table 11.1 Outputs and information shared with neighbors

Measurements Received outputs

Agent 1 y1 = C1x = [1 0 0 0 0 0]x C12 = [C2; C3; C4]
Agent 2 y2 = C2x = [0 1 0 0 0 0]x C23 = C3, C24 = [C1; C4]
Agent 3 y3 = C3x = [0 0 0 1 0 0]x C32 = [C1; C2; C4]
Agent 4 y4 = C4x = [0 0 0 0 0 1]x C41 = [C1; C4]

Note that local observability is not achieved from any of the observers. The design
of the observation matrices and the simulations have been performed for a maximum
delay of τmax = 3 in all links.

Figures 11.6 and 11.7 represent the evolution of the plant states (continuous
lines) and the estimated states (dashed lines) for agents 1 and 4, respectively.
The initial states for all the observers are set to zero. The plant’s initial state is
x0 = [−4 1.2 0.5 −1 3.5 5

]T . Observe that these states which can be locally mea-
sured in an agent converge faster to the actual plant states, as they are not affected
by communication effects (delays and asynchronicity).
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Fig. 11.6 Evolution of the estimates for Agent 1
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Fig. 11.7 Evolution of the estimates for Agent 4
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Fig. 11.8 Normalized percentage of transmitted packets for different thresholds

For both observers, the simulations on the left correspond to periodic communi-
cation policy (δ = 0). As expected, when the threshold to communicate is enlarged,
the observers broadcast less information to their neighbors and the estimation per-
formance progressively diminishes. Nonetheless, it is possible to find an adequate
trade-off between estimation performance and communication savings, achieving
remarkable reduction on the network traffic load while maintaining an estimation
performance close to the periodic communication case.

Finally, Fig. 11.8 shows the percentage of packets transmitted with respect to
periodic communication policy for Agent 1 and different communication thresholds.
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11.6 Conclusions

In this chapter, the problem of distributed estimation considering network-induced
delays and dropouts is solved. Two schemes are analyzed, namely, periodic time-
driven and event-based approaches, the latter being specially beneficial in terms of
economy of use of network resources. For both scenarios, the observers employ a
local Luenberger-like structure and consensus matrices to weight the information
received from neighbors. The information shared between neighbors does not need
to be necessarily the complete estimated state, but can be selected to reduce commu-
nication requirements. Stability proofs are provided and performance of the design
methods is showed by a simulation example.

Future research may include the consideration of different delay bounds for each
link as well as the robustification of the method to deal with parametric uncertainties
in the system model and exogenous perturbations or noise. Other important line
of research consists in reducing the computational requirements of the proposed
algorithms, by distributing the design algorithms.



Chapter 12
Networked Mobile Robots: An Application
Example of the Distributed Event-Based
Control

Gonzalo Farias, María Guinaldo and Sebastián Dormido

12.1 Introduction

In large-scale systems, the interconnection of subsystems can be physical or intro-
duced through the control law, such as the case of cooperative control problems in
multi-agent systems. The focus of this chapter is on the second type of intercon-
nections, which is also an interesting field to apply the decentralized event-triggered
strategies studied in previous chapters for physically coupled systems.

One example of a group objective formulti-agent systems is the reaching of a state
agreement or consensus, i.e., all agents are supposed to converge to a common point
or state. Such consensus problems have a variety of applications in flocking, attitude
synchronization in satellite swarms, distributed sensor networks, congestion control
in communication networks, or formation control [201]. We are particularly inter-
ested in the last field of application since achieving a stable formation is analogous to
reaching consensus. The formation control problem based on consensus algorithms
can be applied to mobile robots [219], which can be modeled as non-holonomic
vehicles.

A centralized approach to formation control makes difficult the scalability of the
problem and it is more sensitive to failure or joining of agents, obstacles in the oper-
ating environment, or other external influences, than a neighbor-based coordination
strategy. Recent developments in the fields of communication technology, wireless
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technology, and embedded devices have made possible the implementation of these
decentralized techniques in autonomous mobile robots, since agents are able to
exchange information through a shared communication network, mainly wireless.

Although the problem of multi-agent systems with event-based communications
has been recently addressed [52, 232], the study of the effect of communication
networks over the control performance, and in particular over the formation con-
trol, requires still many simulations because of the mutual and complex influence
between control and communication algorithms. Normally, the simulation of net-
worked control systems is done for a specific scenario. Researchers generally write
their programming codes for their particular problems to obtain the simulation
results or they use commercial software such as MATLAB�/Simulink� to develop
simulation tools. The main drawback of these solutions is that, in general, they are
not so flexible and interactive, and it may be necessary to connect them to additional
software to simulate the network counterpart.

Apart from the lack of simulation tools for multi-agent systems, the evaluation of
the cited communication strategies has been not carried out so far in an experimental
platform.

This chapter describes in Sect. 12.2 the problem of formation control for mobile
robots from a consensus perspective and the issues to account for in a practical
implementation. Section12.3 depicts a developed simulation tool that fills the gap of
integrated tools to simulate the formation control of autonomous agents. The aspects
regarding the control and the communication of a group of networked robots are
all merged in a single tool, which is, moreover, license free. The high degree of
interactivity and flexibility provides a large set of possible experiments in which the
coupling between control and communication can be analyzed.

The triggering mechanisms described in Chap. 7 as well as periodic communi-
cations are implemented. This implementation has been also carried out over a test
bed of mobile robots. The experimental platform as well as the results are presented
in Sect. 12.4. Efficiency in the communications and energy consumed are evaluated,
showing the benefits of using event-driven communications.

12.2 Formation Control for Networked Mobile Robots

This section backgrounds the problem under consideration. First, an overview of
multi-agent systems and the consensus problem is given. After this, the formation
control is studied as an extension of the consensus problem. The model for non-
holonomic vehicles that has been used in the implementation is provided subse-
quently. Finally, the possible transmission policies and the communication protocols
for wireless robotics are discussed.

http://dx.doi.org/10.1007/978-3-319-21299-9_7
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12.2.1 Multi-agent Systems and the Consensus Problem

To set the complete model of this setup, we need to define two features: the agents’
dynamics and the communication. The simplest model to represent the communica-
tion topology of a multi-agent system is a graph G = {V ,E }, where the nodes V
correspond to agents and the edges E between nodes represent communication links
between agents. We say that G is connected if there is a path for any pair of nodes
in the network.

According to [202], a simple consensus algorithm to reach an agreement regarding
the state of Na single-integrator agents of the form ẋi (t) = ui (t) can be expressed
as an nth order linear system on a graph

ẋi (t) =
∑

j∈Ni

(x j (t) − xi (t)). (12.1)

The dynamics of the group of agents can be written as

ẋ(t) = −Lx(t) (12.2)

where L is the Laplacian matrix of the network (or the communication graph) and
its elements are defined as follows:

li j =
{

−1 if j ∈ Ni

|Ni | if j = i,
(12.3)

where |Ni | refers to the number of neighbors of the agent i .
Let us also define the adjacency matrix A of G with entries

ai j =
{
1 if ( j, i) ∈ E

0 otherwise ,

and the degree matrix D as the diagonal matrix with diagonal elements di equal to
|Ni |, so that L = D − A.

Example 12.1 Assume a five-node multi-agent network with the communication
graph depicted in Fig. 12.1a. In this example, the node 1 can communicate with
nodes 2 and 3 but not with nodes 4 or 5. It holds that V = {1, 2, 3, 4, 5} and

E = {(1, 2), (1, 3), (2, 1), (2, 3), (2, 5), (3, 1), (3, 2), (3, 4), (4, 3), (4, 5), (5, 2), (5, 4)},

and it follows that D = diag(2, 3, 3, 2, 2) and
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1 2 
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5 

(a) (b)

Fig. 12.1 Examples of a undirected and b directed graphs

L =

⎛

⎜
⎜
⎜
⎜
⎝

2 −1 −1 0 0
−1 3 −1 0 −1
−1 −1 3 −1 0
0 0 −1 2 −1
0 −1 0 −1 2

⎞

⎟
⎟
⎟
⎟
⎠

, A =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 1 0 0
1 0 1 0 1
1 1 0 1 0
0 0 1 0 1
0 1 0 1 0

⎞

⎟
⎟
⎟
⎟
⎠

.

Based on analytical tools from algebraic graph theory, it can be shown that if the
graph is connected, then there is an unique equilibrium state for (12.2) of the form
xeq = α1, where α = 1

Na

∑Na
i=1 xi (0) and 1 = (1 . . . 1)T [201].

The above results hold for undirected graphs, i.e., for bidirectional communi-
cations: for any pair (i, j) ∈ E , there is another edge ( j, i) ∈ E . In a directed
communication graph, there is at least one pair of nodes whose communication is
unidirectional. An example is given in Fig. 12.1b. In this case, the node 2 transmits to
node 3, but the communication is not allowed in the opposite direction. Also, nodes
4 and 5 are unidirectionally connected.

For directed graphs,Ni is defined as the set of agents from which agent i receives
information. Note that the Laplacian and adjacency matrices are not symmetric in
this case. Still a consensus can be reached if there is a directed path connecting any
two arbitrary nodes (i, j) of the graph [201].

There are also in the literature extensions regarding the agents dynamics [194,
218, 219, 230]. For double-integrator dynamics ẋi,1(t) = xi,2(t), ẋi,2(t) = ui (t),
the consensus algorithm as introduced in [218] is given by

ui (t) =
∑

j∈Ni

(x j,1(t) − xi,1(t)) + γ (x j,2(t) − xi,2(t)), (12.4)

where γ > 0.
For connected and undirected graphs, [218] shows that the consensus of double

integrators is achieved, but the agents’ states do not converge to a constant value but
to a state of constant velocity vi = 1

Na

∑
j∈Ni

xi,2(0), and

lim
t→∞ xi,1(t) = 1

Na

Na∑

i=1

xi,1(0) + t

Na

Na∑

i=1

xi,2(0).
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In [220], results for nth order consensus are given, and [194, 230] study the
consensus when the dynamics of each agent is an nth order linear control system.
For instance, for N identical agents of the form ẋi (t) = Axi (t)+ Bui (t), a feedback
gain K can be found so that the consensus is reached with the following control law:

ui (t) = K
∑

j∈Ni

(x j (t) − xi (t)).

12.2.2 Formation Control

In the past years, the formation control problem of multi-vehicle systems has
attracted the attention of the control community due to its commercial and military
applications. There are several approaches in the literature to distributed formation
control [201]. Here the focus is on consensus-based controllers in which formations
are represented by vectors of relative positions of neighboring agents.

Let us denote by ri j the desired inter-vehicle relative position vector (see example
in Fig. 12.2). For single-integrator agents, the following control law

ui (t) =
∑

j∈Ni

(x j (t) − xi (t) − ri j ), (12.5)

yields the group to achieve the objective of the formation [73].
According to (12.5), the overall system dynamics is given by

ẋ(t) = −Lx(t) − r, (12.6)

where ri = ∑
j∈Ni

ri j , i = 1, . . . , Na .
There are some extensions of the protocol above regarding agents dynamics. For

instance, in [137], the vehicle dynamics aremodeled as linear systems, and a feedback
gain is derived under certain conditions.

An example of three different formations in the plane is given in Fig. 12.2. In this
case, ri j are the (x, y) coordinates of the desired distance between nodes.

i

j
ri j

Fig. 12.2 Examples of formations of four agents in the plane
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12.2.2.1 Formations with Leaders

A special situation occurs when one of the agents does not receive information from
any of the others. Essentially, this means that the others are forced to arrange their
positions in response to the motion of this agent, which is called the leader of the
formation. This problem is known as leader–follower consensus [147]. Note that if
there are multiple leaders where two of them are not coordinately moving, then the
formation cannot be asymptotically reached. Hence, let us assume from now ahead
that there is only one leader, if any, in the formation.

The existence of a leadermakes the communication graphG directed bydefinition,
and the row corresponding to the leader in L , A, and D is zero, and therefore, these
matrices are not invertible. For this reason, some authors [73, 110, 194] define L ,
A, and D for the group of vehicles excluding the leader, and define a new diagonal
matrix B, whose diagonal entries are bi = 1 if agent i receives information from the
leader, and bi = 0 otherwise.

The leader will move according to its dynamics and initial conditions, or by a
given control law, and the rest of the agents will follow it to maintain the formation.
For example, if the leader moves with constant velocity v0, ẋ0(t) = v0, the following
protocol can be defined for the single-integrator followers:

ui (t) =
∑

j∈Ni

(x j (t) − xi (t) − ri j ) + bi (x0(t) − xi (t) − ri0). (12.7)

12.2.3 Model of Non-holonomic Mobile Robots

Single or double integrators do not describe properly the dynamics of most of com-
mercial mobile robots, since these cannot move in any direction instantaneously. In
robotics, holonomicity refers to the relationship between the controllable and total
degrees of freedom of a given robot. If the controllable degrees of freedom are fewer
than the total degrees of freedom, the vehicle is non-holonomic.

The non-holonomic model of a mobile robot is depicted in Fig. 12.3. The distance
between the back and the front wheels is denoted by d. It is assumed a single front
wheel in this case.

The equations of motion are given by [218]

ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = ωi

mi v̇i = Fi

Ji ω̇i = Ti (12.8)
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Fig. 12.3 Non-holonomic
mobile robot
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where (xi , yi ) is the position in the plane of agent i , θi is the orientation, vi is the
linear velocity, ωi is the angular velocity, Fi is the force, Ti is the torque, mi is the
mass, and Ji is the mass moment of inertia.

To avoid the non-holonomic constraint introduced by (12.8), let us define

x̄i = xi + d cos θi

ȳi = yi + d sin θi , (12.9)

according to Fig. 12.3.
As proposed in [138], the dynamics of the mobile robot can be reformulated in

terms of these coordinates as
( ˙̄xi˙̄yi

)

=
(
cos θi −d sin θi

sin θi d cos θi

)(
vi

ωi

)

. (12.10)

If vi and ωi are considered as the control inputs, the dynamics of the mobile
robot is modeled by a first-order model. Alternatively, second time derivatives can
be computed to produce a second-order model:

( ¨̄xi¨̄yi

)

=
(−viωi sin θi − dω2

i cos θi

viωi cos θi − dω2
i sin θi

)

+
( 1

m cos θi − d
J sin θi

1
m sin θi

d
J cos θi

) (
Fi

Ti

)

, (12.11)

where Fi and Ti are the control inputs.
Therefore, the formation control problem is formulated as follows: design control

laws so that the formation is reached while applying a consensus-based coordination
scheme. According to this, in the next pages, a control law is designed for the first-
order model (12.10). After this, the example proposed in [218, 231] to control the
second-order model (12.11) is presented.
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12.2.3.1 Formation Control of First-Order Non-holonomic Mobile
Robots

The control law ui = (vi , ωi ) in (12.10) to reach the desired formation is

(
vi

ωi

)

=
(
cos θi −d sin θi

sin θi d cos θi

)−1 (∑
j∈Ni

(x̄ j − x̄i − (rx, j − rx,i ))∑
j∈Ni

(ȳ j − ȳi − (ry, j − ry,i ))

)

, (12.12)

where (rx,i , ry,i ) are the predefined relative position offsets with respect to the for-
mation center. From (12.10) and (12.12), it follows that

( ˙̄xi˙̄yi

)

=
(∑

j∈Ni
(x̄ j − x̄i − (rx, j − rx,i ))∑

j∈Ni
(ȳ j − ȳi − (ry, j − ry,i ))

)

. (12.13)

If stack vectors for the overall system are defined as x̄ T = (x̄1 . . . x̄Na ), ȳT =
(ȳ1 . . . ȳNa ), r T

x = (rx,1 . . . rx,N ), and r T
y = (ry,1 . . . ry,Na ), it yields

( ˙̄x
˙̄y
)

= −
(

L 0
0 L

) (
x̄ − rx

ȳ − ry

)

. (12.14)

Note that the control law (12.12) decouples the system, giving an equivalent results
to (12.6) for single integrator. The group of robots reaches, the formation and the
center of this formation is the average of the robots initial positions.

12.2.3.2 Formation Control of Second-Order Non-holonomic Mobile
Robots

According to [218], the following feedback linearization can be used in order to
transform the dynamics (12.11) to two decoupled double integrators

(
Fi

Ti

)

=
( 1

m cos θi − d
J sin θi

1
m sin θi

d
J cos θi

)−1 (
viωi sin θi + dω2

i cos θi + F̄i

−viωi cos θi + dω2
i sin θi + T̄i

)

, (12.15)

which yields to ( ¨̄xi¨̄yi

)

=
(

F̄i

T̄i

)

.

The control law (12.4) can be extended to the formation control problem, giving the
following coordination rule for the group of mobile robots:
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(
F̄
T̄

)

= −
(

L γx L 0 0
0 0 L γy L

)

⎛

⎜
⎜
⎝

x̄ − rx˙̄x
ȳ − ry˙̄y

⎞

⎟
⎟
⎠ , (12.16)

where γx , γy > 0, F̄ = (F̄1 . . . F̄N )T , and T̄ = (T̄1 . . . T̄N )T .
The center of the formation depends on the robots initial positions, and the group

moves with a velocity equal to the average of the initial velocities.

12.2.4 Time-Schedule Control

The formation control laws (12.12) and (12.16) have been proposed for the first- and
second-order models, respectively, of non-holonomic mobile robots. However, these
control laws require the continuousmeasurement of the robot and the neighbors state,
which is not achievable in practice, as we have already discussed.

The most common approach is to set a periodic scheduling of measurement sam-
plings, control updates, and broadcasting over the network. Alternatively, event-
triggering policies for multi-agent systems [52, 232] can be adapted to the formation
control problemby redefining the previous control laws as a function of last broadcast
states:

(
vi

ωi

)

=
(
cos θi −d sin θi

sin θi d cos θi

)−1

⎛

⎜
⎜
⎝

∑

j∈Ni

(x̄b, j − x̄b,i − (rx, j − rx,i ))

∑

j∈Ni

(ȳb, j − ȳb,i − (ry, j − ry,i ))

⎞

⎟
⎟
⎠ (12.17)

(
F̄i

T̄i

)

=

⎛

⎜
⎜
⎝

∑

j∈Ni

( ˆ̄x j − ˆ̄xi − (rx, j − rx,i ) + γx ( ˙̄xb, j − ˙̄xb,i )
)

∑

j∈Ni

( ˆ̄y j − ˆ̄yi − (ry, j − ry,i ) + γy( ˙̄yb, j − ˙̄yb,i )
)

⎞

⎟
⎟
⎠ , (12.18)

where

ˆ̄xi = x̄b,i + (t − t i
k)

˙̄xb,i

ˆ̄yi = ȳb,i + (t − t i
k)

˙̄yb,i ,

and x̄b,i , ȳb,i , ˙̄xb,i , and ˙̄yb,i are the last broadcast values of x̄i , ȳi , ˙̄xi , and ˙̄yi , respec-
tively, and t i

k refers to the last broadcasting time of the robot i . The position (x̄i , ȳi )

is approximated by ( ˆ̄xi , ˆ̄yi ) in (12.18), as proposed in [231]. This can be assimilated
to a model-based estimation.
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The occurrence of an event is determined by trigger functions, where the error of
the robot i is defined as

εi =
(

εx,i

εy,i

)

=
(

x̄b,i − x̄i

ȳb,i − ȳi

)

for the first-order dynamics, and for the second-order systems as

εi =

⎛

⎜
⎜
⎝

εx,i

γxεẋ,i

εy,i

γyεẏ,i

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

ˆ̄xi − x̄i

γx ( ˙̄xb,i − ˙̄xi )
ˆ̄yi − ȳi

γy( ˙̄yb,i − ˙̄yi )

⎞

⎟
⎟
⎠ .

12.2.5 Robot Wireless Communication Protocols

In early robot wireless communications , infrared technology was applied in a large
scale because of its low cost. Since infrared waves cannot pass through obstacles, the
communication rate using this technology is poor and the transmission reliability low.
Currently, radio-frequency (RF) technology has become the preferred in the design
of mobile robot communication systems. Robots can communicate with others by
RF point-to-point links or broadcasting mechanisms. The proliferation of Internet-
like networks has motivated the research to address wireless LAN (IEEE 802.11),
Bluetooth standards, and ad hoc networking in mobile robot systems.

The main features of these three wireless communication technologies for mo-
bile robot communications are illustrated in Table12.1. Wi-Fi (the brand name for
products following IEEE 802.11 standards) uses the same radio frequencies as Blue-
tooth, but with higher power, resulting in higher bit rates and better range from the
base station. The nearest equivalents to Bluetooth are the DUN (dial-up networking)
profile, which allows devices to act as modem interfaces, and the PAN (personal area
network) profile, which allows for ad hoc networking.

Awireless communication link is characterized by long bandwidth delay, dynamic
connectivity, and error-prone transmission. The robots are often equipped with low-
cost low-power short-range wireless network interfaces, which only allow direct

Table 12.1 Wireless communication technologies for mobile robots

Infrared IEEE 802.11b/g/n Bluetooth

Band (GHz) 2.4/2.5 2.4/2.5

(Up to) Data-rate (Mbps) 0.1–0.4 11/54/150 1–3

Range (m) 4 140–250 5–100

Power (W) 5E-3 0.4–4 1E-3-0.1

Network structure PPP Infrastructure and ad hoc Ad hoc
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communication with their near neighbors. Hence, it is virtually impossible for each
node to know the entire network topology at a given time [260].

Moreover, many in the field on networking argued that Internet protocols were
not convenient to achieve robustness and scalability for such distributed architecture
[134], and there has been a proliferation of new protocols, plenty of good ideas from
the academic and commercial domains but with few impact in the real world. Exam-
ples of routing protocols for mobile ad hoc networks are ad hoc on-demand distance
vector (AODV) [209] and dynamic source routing (DSR) [123], while low-energy
adaptive clustering hierarchy (LEACH) [103] is a cluster-based protocol that includes
distributed cluster formation and a hierarchical clustering algorithm. Finally, routing
protocol for low power and lossy networks (RPL) [262] is an IP-based protocol for
this kind of networks.

Three important features usually serve to evaluate the performance of a protocol
[160]:

• Energy efficiency Low energy consumption is a major objective for battery
equipped devices.

• End-to-end reliability Reliability is measured as the packet delivery ratio from
each transmitter to the destination. A maximization of the reliability may require a
large number of packet overhead and retransmissions, thus increasing the energy
consumption.

• End-to-end delay At network layer, delay is computed for successfully received
packets at the destination. A minimization of the delay requires a high utilization
of the transmission resources and a very low duty cycling between nodes, thus
requiring high energy expenditure.

Hence, there is a trade-off between latency, packet losses, and energy consumption in
the protocol design.Moreover, when the protocol is devoted to control applications, it
must guarantee the stability of the control system. Despite the proposal of numerous
routing protocols for energy efficient wireless networks, there is not yet a definite
solution.

12.3 Interactive Simulation Tools

The many control and system configuration options needed to simulate a multi-agent
system demand graphical user interfaces (GUIs) with high degree of interactivity
and flexibility. The GUI designed in this work is intended to make rapid prototyping
and simulation of wireless autonomous agents which execute distributed control
algorithms and perform event-based communications.

The simulator allows users to define the characteristics of the network and test the
control algorithm and the triggering mechanism that rules the control updates under
many possible scenarios before implementing them into a real platform of networked
robots. Nevertheless, the simulator has been designed keeping the interaction with
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the user relatively simple and intuitive in order to also be used as a pedagogical tool
for advanced engineering control courses.

For this purpose, Easy Java Simulations (EJS) was chosen for the development
of the simulation platform. EJS is a free software tool that helps to create dynamic,
interactive scientific simulations in Java language and which offers a high degree
of flexibility as well as high-level graphical capabilities and an increased degree
of interactivity [69]. EJS is based on an original simplification of the model-view-
control paradigm, structuring the simulation into two main parts: the model and
the view. The model describes the behavior of the system using variables, ordinary
differential equations, and Java code. The view is intended to (1) provide a visual
representation of the more relevant properties of the model and its dynamic behavior;
and (2) facilitate the user’s interaction on the model. Additional libraries in Java can
also be imported.

In this section, a short background of other existing tools is given. After this, the
simulator is described, including the GUI and the system modeling with EJS.

12.3.1 Existing Tools

Most of the simulators for the formation control of a team of networked vehicles/ro-
bots use different softwares to emulate the real control and the network counterparts,
which are connected and synchronized afterwards.

Some companies dedicated to the design and manufacture of autonomous mobile
robotic systems provide the software to simulate their products. For example,
MobileSim [250] is an open-source Amigobot and Pioneer simulator [180], also
provided by Mobile Robots Inc. It has a customizable interface for users to design
and simulate different models of MobileRobots/ActivMedia robots [180]. However,
most operations are run through commands and the supported protocols are specific
for these robots.

Also in the academical world, some research groups have developed software to
compare experimental test beds. Because the MATLAB/Simulink is a well-known
environment in the control and communication community, it is frequently present
in these developments. For example, in PiccSIM [192], the dynamics and the control
algorithm are implemented in Simulink, and ns-2 [197] is used for the simulation
of the network. In [162], we can find another example. In this case, the software is
produced with the MATLAB Virtual Reality Markup Language (VRML) Toolbox.
Outside the robotic community, NetMarSys is a specific simulator for networked
marine vehicles [246] and it is also based on MATLAB.

All of these tools have a common characteristic: the lack of interactivity and
flexibility. Although they usually have a GUI, most of the operations carried out by
the user are through commands, or the change of the parameters requires to restart
the simulation and run it again.

On the contrary, the interactivity provided by the proposed simulator allows user
to immediately appreciate the effect of any change in the control or the network
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counterparts over the system. Moreover, when more than one software tool needs to
be installed, the communication between thembecomes a tough problem and the final
user has to spend some time installing and synchronizing them. The main advantage
of integrating all in one tool is that it is easy to study all aspects of communication
and control in networked robots, including the interaction between them.

12.3.2 Description of the GUI

The user interface of the simulator is shown in Fig. 12.4. It has five main panels, a
menu bar, and a small task bar. The two upper panels of the interface provide a quick
view of the multi-agent system and a time plot of the output and control signals. The
top left panel (No. 3) shows an animation of the complete multi-agent system. Each
agent is numbered and shows a trace of its trajectories. Network links are depicted
as arrows between agents.

By default, the links provide bidirectional communication, although one-way
communication is also allowed. So, in Fig. 12.4, it is simulated a multi-agent sys-
tem with four robots linked by three bidirectional links: 0 ↔ 1, 1 ↔ 2, 2 ↔ 3.
Finally, this panel allows speeding up or down the simulation by dragging the slider
Simulation vel.

1
2

43

65

7

Fig. 12.4 View of the GUI
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The lower left panel, named Agent Parameters (No. 5), allows users to set the
number of agents in the system, as well as to add and remove a particular agent.
Using this panel, it is also possible to set an agent as leader, which means that the
agent can be moved (i.e., dragged by the user) freely in the coordinate system, and
the rest of the agents moves to keep the desired formation. The links between the
leader and its neighbors are changed to unidirectional links automatically.

The two time plots on the top right panel (No. 4), which are grouped in the System
Signals tab, display the relative distance to the desired formation as well as the
control actions of each agent. There are also plots grouped in the Network Signals
tab (shown in Fig. 12.4), which provide mainly information about the dispatched and
arrival time of the packets. The average network delay is also shown in this tab.

The lower panel, named Network Parameters (No. 7), is devoted to configure the
behavior of the network. Users can choose the drop-down list Delay to set a constant
or variable network delay. Packet loss probability can be set using the drop-down
list Packet Loss. The topology of the network (bidirectional or unidirectional links)
can be changed after pressing the button Topology and clicking on the agents to
be connected. Advanced network functionalities, such as flow control or automatic
acknowledgment packets, can be set as well. Additionally, the user can configure a
bit error rate in the transmission of packets.

The lower right panel Control Parameters (No. 6) is used to specify the time-
scheduling communication and control. This option specifies the conditions that
trigger the sending of packets from one agent to its neighbors in order to update the
control actions. The events can be triggered periodically or when the position of an
agent has changed and it is greater than a threshold (send on delta policy).

The components of the interface described earlier provide the basic functional-
ity required to operate the application. However, there are also advanced options
available in the menu bar (No. 1) which allows some additional features such as the
possibility to:

• Specify the dynamic model of the agents (first order, second order) and define
coupling terms which dynamically couple neighboring agents.

• Select a predefinedmulti-agent systemconfiguration to performwith the simulator.
• Load and save user-defined multi-agent system configurations.

The interface is completed with a top task bar (No. 2) that provides buttons to start,
pause, and reset the simulation. Finally, there is a button to save the state variables
of the agents and the system configuration in MATLAB language to perform further
analysis of a simulation.

12.3.3 Modeling a Multi-agent System in EJS

The model of each node in the multi-agent system is basically the same described
in Chap.7 (Fig. 12.5) for interconnected systems, but specifically assuming that the
information is sent through the network in packets of a given structure, which is
detailed later.

http://dx.doi.org/10.1007/978-3-319-21299-9_7
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Fig. 12.5 Scheme of one node

Hence, the simulator has to implement the following:

• The system dynamics, including the agent dynamics and the topology of the sys-
tem.

• The tasks performed by the microprocessor, i.e., deciding when to broadcast the
state, computing the control law and transmitting and receiving the packets through
the network.

• The network itself, that is, the process of transmitting information from one node
to another, taking into account the properties defined by the user.

We next describe the implementation of the three aspects mentioned above.

12.3.3.1 The System Dynamics

EJS provides an interface to define the dynamics of a system through differential
equations. Moreover, we can specify the dynamics of a set of entities. Several pages
of differential equations are allowed but only one can be enabled at a given time
instant. It is the programmer task to take care of possible inconsistencies when
switching from one dynamics to another.

Example 12.2 Figure12.6 shows the EJS pages where the dynamics of the multi-
agent system is defined. The page above, which is enabled by default, corresponds to
the first-order model (12.10). The page for the second-order model (12.11) is shown
below. When the user changes the model of the agents through the GUI, a method is
executed to enable the selected dynamics and to disable the old ones. It also captures
the current time as the initial time of the new experiment and resets the control inputs.

Besides the dynamics of the agents, the communication graph is initialized to a
default value and it is updated when a new experiment is selected or new links are
added/removed by the user.

12.3.3.2 The Microprocessor

The first task that the microprocessor performs is the detection of events by moni-
toring the state of the agent (event-based policies) and the internal clock (periodic
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Fig. 12.6 Screenshot of Evolution pages in EJS

triggering). EJS provides specific pages to define the events detection and the routine
to execute after the triggering. This routine is executed at the time of the detection
of the event, i.e., the simulation is “stopped” until the procedure is completed.

Listings 12.1 and 12.2 show an example for first-order dynamics. An event is
detected when the variable tol reaches the zero value. If the transmission policy is
event-triggered policy, tol=0 when e[i] (‖εi‖) reaches the threshold d (δ). Note
that in the periodic case the event to detect is the time instance that equals the next
sampling time (line 11 in Listing 12.1), where incr is an internal count and tpo is
the time at which the periodic sampling started.

The broadcast state of an agent i to a neighbor j is denoted as (x_b[i][j],
y_b[i][j]).Hence, (x_b[i][i],y_b[i][i]) refers to the last-broadcast state
of the agent i , which immediately updates the value. The value of (x_b[i][j],
y_b[i][j]) may neither be the same in different neighbors nor equal to
(x_b[i][i], y_b[i][i]) at a given time for unreliable networks.

The second task executed by the microprocessor is the computation of the control
law, i.e., (12.12) for the first-order model and (12.15) for the second-order model.
The update of the control law is performed only at event times (line 3 in Listing 12.2)
and holds constant between events.

Finally, the microprocessor is in charge of encapsulating the data into a packet,
sending it over the network, reading the incoming packets, and extracting the data.
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Listing 12.1 Code to detect events
1 /* Event -triggering */
2 if(control_type.equals (" Events: d cte")|| control_type.equals("

Events: d var."))
3 {
4 d=(d0+d1*Math.exp(-beta*(t-ti)));
5 e[i]= computeError(x_b[i][i],x[i],y_b[i][i],y[i]);
6 tol=d-e[i];
7 }
8 /* Periodic sampling. Parameter d is reconverted to Ts */
9 else {
10 d=d0;
11 tol=incr*d-(t-tpo);
12 }
13 return tol;

Listing 12.2 Routine of treatment of events
1 x_b[i][i]=x[i];
2 y_b[i][i]=y[i];
3 u[i]= control1(i,x_b[i],y_b[i],th,x_ref ,y_ref);
4 broadcast(i);
5 t_b[i]=t;
6 colorTransmission[i]=new java.awt.Color (255 ,128 ,0);
7 N_events=N_events +1;
8 if(control_type.equals (" Periodic "))
9 incr=incr +1;

The structure of a packet is shown in Fig. 12.7. The header field identifies the
packet and contains the sender and the receiver address devices. The payload contains
the data to transmit (state and time stamp). The frame control and check sequence
are not used in this implementation. For each packet, the simulator associates a value
to the delay, determines if the packet is successfully transmitted or not, and corrupts
the data in the packet with a given probability. This is represented on the right of
Fig. 12.7.

Moreover, if the Acknowledgment signal is required, the receiver sends an ACK
packet to confirm the reception. TheACKpackets are assumed to be always delivered
with a short delay (10ms) due to its small size. If an ACK is not received before a
given waiting time, the packet is treated as lost, but not retry occurs and the agent
will send a new packet after the occurrence of a new event.

Frame 
Control

Packet 
ID 

Address 
Info 

Broadcast state xi Time Stamp
Check 
Seq. 

Delay 

P. loss 

Errors 
retooFdaolyaPredaeH

Fig. 12.7 Structure of a data packet
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Listing 12.3 Code to compute the next reception time of a packet (lines 2–9) and to execute after
the detection of an event (lines 11–16)
1 /* Code to detect the time of the next packet reception time */
2 double t_min0 =100+t;
3 t_min=t_min0;
4 double tol =0.1;
5 t_min=getNextPacketTime ();
6 if (t_min <t_min0) {
7 tol=-(t-t_min);
8 }
9 return tol;
10 /* Routine executed when an event is detected */
11 NpendPacket=getPacketsToAttend ();
12 int dim_st =2;
13 for(int i=0;i<NpendPacket;i++) {
14 processPacket(i,dim_st);
15 prepareNextReception(i);
16 }

12.3.3.3 The Network

The simulator implements the network as a collection of buffers. The packets are
stored in these data structures and the reaching to the destination is also handled
by EJS events. A class named as packet and the corresponding methods have been
implemented to encapsulate the communications functions.

Short examples of code are given in Listing 12.3. In lines 2–9, the code to detect
the next network event is shown. When the simulation time t reaches the value
t_min, the routine of treatment of events is executed (lines 11–16). The variable
dim_st refers to the dimension of the state, which is 2 in this example (first-order
model).

More than one network event may need to be handled at a given time, for instance,
if the network delay is set to be constant or zero, a broadcast state should be received
at the same time in all the neighbors. In this case, the requests are processed sequen-
tially though from the simulation time point of view all receptions are simultaneous,
preserving the distributed architecture of the system.

Listing 12.4 shows extracts of the functions getNextPacketTime() (line 5
in Listing 12.3) and getPacketsToAttend() (line 11 in Listing 12.3). Each
receiver agent j has a buffer of a given capacity buffer_cap, in which the packets
are virtually stored until they are processed or discarded.

12.3.4 Using the Simulator

We next describe some examples of how to use the simulator.
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Listing 12.4 Extracts of code of getNextPacketTime() and getPacketsToAttend()
1 /* Begin of getNextPacketTime */
2 double getNextPacketTime () {
3 double t_min =100+t;
4 ...
5 int i_buffer =0;
6 while(i_buffer <buffer_cap) {
7 p2=nextPacket(buffer[j]);
8 if(p2!=null && (( packet)p2).getTS ()!= -1.0) {
9 if(((( packet)p2).getDelay ()+(( packet)p2).getTS ())<t_min)

{
10 t_min =(( packet)p2).getDelay ()+(( packet)p2).getTS ();
11 }
12 }
13 i_buffer +=1;
14 }
15 ...
16 return t_min;
17 }
18 /* Begin of getPacketsToAttend () */
19 int getPacketsToAttend () {
20 int NpendPackets =0;
21 ...
22 p2=nextPacket(pendPackets[j]);
23 if(p2!=null && (( packet)p2).getTS ()!= -1.0) {
24 if(((( packet)p2).getDelay ()+(( packet)p2).getTS ())==t_min) {
25 i_min[NpendPackets ]=i;
26 j_min[NpendPackets ]=j;
27 NpendPackets +=1;
28 }
29 }
30 ...
31 return NpendPackets;
32 }

12.3.4.1 Experiment 1: Bidirectional Communication Links, Constant
Delay, First-Order Model

Let us assume that the system goes from an initial configuration to the formation of
Fig. 12.4 with the following bidirectional links: 0 ↔ 1, 1 ↔ 2, 2 ↔ 3.

In this case, the communication is bidirectional and delayed 100 ms in every link.
The trigger mechanism is defined as Fe,i (t, εi (t)) = ‖εi (t)‖ − 0.002− 0.25e−0.65t ,
which means that the threshold to trigger the events is not constant and decrease with
time. Thus, large errors are allowed when the robots are far away from the desired
formation, but when they get close, events are triggered to prevent from stationary
errors.

The chronogram at the bottom of the right-hand side of Fig. 12.4 reflects the
described characteristics of the links. For example, at time 8.5 s, Agent 2 broadcasts
its state to its neighbors, which are Agent 3 and 1 from the definition of the topology.
The orange arrows represent packets correctly delivered. Because the probability of
losing a packet is zero, all packets are delivered. Moreover, all arrows have the same
slope since the delay of the network is constant and equal to 100 ms.
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12.3.4.2 Experiment 2: Directed Graph, Random Delay, Packet Losses,
Second-Order Model

Let us change the topology of the network removing the link 1 → 2 and adding the
links 1 → 3, 3 → 0. This can be done online by clicking on the button Change...,
then on the two agents involved in the link, and finally selecting Delete or Add.

Let us give a value of 20% to the probability of losing a packet, define the delay
as random with maximum value of 300 ms, and set to true the checkbox of Flow
control. Moreover, let us change the dynamics of the vehicles to a second-order non-
holonomic model, and select a different experiment to change the desired formation.
Figure12.8 shows the packets flow chronogram in a time slot.

The red arrows correspond to lost packets. For example, at time 17.35 s, Agent 1
sent a packet to its neighbor 0, but for some reason the communication link was
broken. Note that defining a packet loss probability gives a time-varying topology.
Packet losses can be caused by interference with other networks, the presence of
obstacles or packet collisions, and these losses have a direct effect over the control
performance. Note that because we have changed the topology, Agent 1 does not
transmit information to Agent 2 (as in Fig. 12.4), but to Agent 3; and Agent 3 does
so to Agent 0.

The third type of arrow is green colored and corresponds to packets arrived cor-
rectly but discarded because they contained old information. In Fig. 12.8, Agent 2
discards one packet from Agent 3 at time 16.1 s because it has already received and
measured from 3 which was taken later on time. Other packets are discarded at time
17.54 and 17.62 s.

12.3.4.3 Experiment 3: Designating a Leader

An interesting experiment is the behavior of the system when there is a leader in the
group. A leader determines by itself the actions to take, which from the communica-

Fig. 12.8 Example of chronogram. Delivered packets are in orange, red arrows are lost packets,
and green arrows correspond to discarded packets
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tion point of view means that it sends its state to its neighbors but it does not receive
information from them.

Thus, once the system has reached the formation aforementioned, we add a
new agent, labeled as 4, and we define it as leader of the group (see Fig. 12.9a).
Figure12.9b, c, d depict the animation of how the other agents move to get the for-
mation around the leader at different instants of time. If you look at the red cross,
you see that the leader did not move. Note that at the beginning, the four agents were
spatially distributed in a circle of a given radius, which seems as a square. Because
we add a new agent, the desired formation changes to a pentagon to keep the agents
equidistant between each other.

t = 20 s t = 27 s

t = 30 s t = 34 s

(a) (b)

(c) (d)

Fig. 12.9 Screenshots of experiment 3 at different instants of time
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12.3.4.4 Experiment 4: Save Data to MATLAB File

Another interesting capability of the simulator is to store the data in aMATLABfile to
further analysis. This is very useful when other same experiment is performed to the
system under the variation of a parameter and compare the performance afterward.
So, as an example, let us consider the following scenario:

• Agents’ model Four first-order non-holonomic vehicles.
• Desired formation A square of 0.85 u. side.
• Communication methodEvent-triggered communicationwith constant threshold

δ0 = 0.025.
• Acknowledgment of packets.
• Network delay Constant, 100ms,

and let us analyze the results when (1) packets dropouts are modeled as a Bernoulli
distribution of probability p = 0.1, and (2) packet dropouts are influenced by trans-
mission rate assuming that when this rate increases so does the probability of packet
collisions.

The results are presented in Figs. 12.10 and 12.11. The trajectories of the agents
for both cases are depicted in Fig. 12.10. The initial and final positions are marked
with crosses and circles, respectively. The blue lines correspond to Case 1 and the red
lines to Case 2. Observe that in both cases the formation is reached, though the final
positions are different because the consensus algorithm only preserves relative dis-
tances and the final absolute positions depend on initial conditions and disturbances.

In Fig. 12.11a, the distance to the formation di =
√

(x̄i − rx,i )2 + (ȳi − ry,i )2 is
depicted. Observe that in Case 2 there is an oscillatory behavior and the formation is
reached later due to the degradation of the network performance (Fig. 12.11c). The
network performance is defined as the ratio of delivered to sent packets.

Fig. 12.10 MATLAB figure
corresponding to the
trajectories of the agents in
the experiment 4
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Fig. 12.11 Distance to the formation, packets rate, and performance corresponding to experiment
4 (MATLAB figure)

The packet transmission rate is shown in Fig. 12.11b. One can conclude that the
degradation of the performance of the network has a direct effect into the performance
of the system.

12.4 Application Example to a Real Test bed

The distributed event-based control has been implemented in a test bed of real mobile
robots. The prototypes taken for experimentation are the Moway robots [186], which
are built on low-cost components but still have high potential for experimentation in
an educational environment.

The experimental framework and the experimental results are presented next.

12.4.1 Experimental Framework

The experimental framework used to test DEBC is part of a remote laboratory
developed to teach robotics. A full description of this laboratory can be found in
[70].
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12.4.1.1 Moway Mobile Robots

Moway robots are autonomous small programmable robots mainly designed to
develop practical applications in an educational environment. The components of
these robots are a microcontroller, two independent servo motors, a battery, a light
sensor, a temperature sensor, four infrared sensors, two infrared line sensors, four
LEDs diodes, three-axis accelerometer, a speaker tone generator, and a microphone.
All these peripherals are connected to the microcontroller responsible for governing
the robot [186]. Another important component is the RFmodule that enables wireless
communication with other RF devices.

Themain handicap of these prototypes is the need of an external device tomeasure
the position and orientation. In order to overcome this problem, additional compo-
nents are required. The description of these elements is provided next.

12.4.1.2 Measurement and Communication Systems

Measurement and communication systems are depicted in Fig. 12.12. Several hard-
ware and software components exchange information to perform both tasks:

• CCD camera It is installed on the ceiling of the laboratory, and it captures the
video that will be processed by a software tool to determine the robots poses. It is
connected to a computer via a FireWire port.

• SwissTrack This application is an open-source tool developed at EPFL to track
objects using a camera or a recorded video as input source [47, 153]. Hence,
the values of xi , yi , and θi are determined by this software, which processes the

Fig. 12.12 Experimental
framework block diagram.
Dotted lines represent
wireless communications,
and the exchange of
information between
hardware and software
components is symbolized
by solid lines

SwissTrack 
Gateway 
module 

RF USB CCD cam 

RF RF RF 
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incoming images from the CCD camera. This information is retrieved via TCP/IP
in form of packets.

• Gateway Module This application is running at the same computer than Swiss-
Track, and it is in charge of processing the measurements and sending the data
through the RF USB device to the robots.

This architecture emulates the position sensors of the robots. Each of them receives
its state, sends it to its neighbors when required, and computes the control law (vi

and ωi ).

12.4.2 Experimental Results

12.4.2.1 Experiment 1: Consensus Protocol

Description of the Experiment

Let us consider four mobile robots, labeled as 2, 3, 4, and 5. The communication
topology as well as the initial and desired formation is depicted in Fig. 12.13. The
graph has directed links, but the consensus can be reached, and hence, the formation,
because there is a directed path connecting any two arbitrary nodes of the graph
[201]. The initial conditions are

x(0) = (0 60 −50 0)T

y(0) = (0 0 0 40)T

θ(0) = (198 280 262 179)T ,

and the components of the relative position offsets vector (rx , ry) are

rx = (−20 −20 20 20)T

ry = (−20 20 20 −20)T . (12.19)

3 4 

2 5 2 4 3 

5 

Fig. 12.13 Scheme of the communication topology, initial formation (left) and desired formation
(right)
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Fig. 12.14 Representation in the plane of the trajectories of each robot for time-triggered (left) and
event-triggered (right) communications and consensus protocols. Agent 2 (blue), Agent 3 (red),
Agent 4 (green), and Agent 5 (magenta). The initial an final positions are marked with crosses and
circles of the same color, respectively

The control law is computed according to (12.17).

Time-Triggered Versus Event-Triggered Communications

The experiment described above is performed with time-triggered communications
and with event-triggered communications. The period is set to Ts = 250ms in
the time-triggered case. The value of Ts should not be below 200ms due to the
constraints imposed by the measurement and communication systems, and by the
robots microcontroller. The threshold of the trigger function is set to a constant value
δ0 = 4cm. A larger value would cause an excessive formation error, and a smaller
value would not provide much benefit respect to periodic communication. Moreover,
the measurements taken by the camera have an estimated error around 2cm.

The results for both approaches are illustrated in Fig. 12.14. The formation is
reached in both cases but the center of the formation is different although the initial
conditions are the same. This is a side effect of real communications, since the
trajectories of the robots are affected by delays, communication losses, etc.

Six shots of the experiment for the event-based communication case are shown
in Fig. 12.15. Note that the formation is almost reached at t = 10 s. This is also
illustrated if the distance to the formation is computed as

di =
√

(x̄i − rx,i )2 + (ȳi − ry,i )2

for each robot. Figure12.16 depictsdi over time. For the event-based case,di is almost
equal for the four agents at t = 11.5s.However, disturbances possibly affect the robot
4, which is the latest robot to stop. If periodic and event-driven communications
are compared, the time instant at which the formation is reached is similar in both
approaches. However, if the amount of communication required is computed for both
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cases, the goodness of the event is highlighted. The number of events is summarized
in Table12.2. The total number of communications is the number of events plus the
result of multiplying the number of events by the number of agents to which each
robot sends information. This accounts for 356, whereas the number of transmissions
for the periodic approach is

(
t f − t0

Ts
+ 1

)

× (No. robots + No. links) = 89 × (4 + 5) = 801 transmissions,

(12.20)
where t0 = 0 and t f = 22 s.
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Table 12.2 Number of
events generated by each
robot

Robot No. events No. broadcasts

2 26 52

3 36 36

4 54 54

5 49 49

Total 165 191

Energy Consumption

The number of transmissions is related to the energy consumption. The RF module
of the Moway robots has the following characteristics [185]:

• Transmission current It : 11.3 mA.
• Reception current Ir : 12.3 mA.
• Average voltage VRF : 2.75 V.
• Duration of transmission/reception δtRF (estimated): 10 ms.

Note that the number of receptions and transmissions has to be considered separately
to compute the energy consumption. When an event is detected by the Gateway
module, the state is transmitted to the robot. Thus, energy is consumed in the reception
at the robot. Then, the robot sends this information to the neighbors. This process
consumes energy in the transmission (at the sender) and in the reception (at the
receiver). Thus, the energy consumption due to the transmission/reception of the RF
modules for the event-triggered approach is

EET = VRFδtRF
(
No. events × Ir + No. broadcasts × (Ir + It )

)

= 2.75[V] · 0.01[s] · (
165 · 0.123[A] + 191 · (0.123[A] + 0.113[A])) = 1.80[J].

According to the aforesaid and to (12.20), it follows that the energy consumption for
the time-driven approach is

ET T = 2.75[V] · 0.05[s] · (809 · 0.123[A] + 89 · 5 · 0.113[A]) = 4.09[J].

Thus, the energy consumption is reduced 56%with event-triggered communications
in this experiment.

However, the following question can be raised: Does this reduction in communi-
cation cause an increase in the energy consumption by other tasks such as actuation?
The evolution of control law values is depicted in Fig. 12.17. The values of vi and wi

obtained from (12.17) are scaled by constant gains, and then the library that controls
the motors of the Moway robots converts the calculated signals into commands that
are applied to each motor. Hence, it is difficult to evaluate the energy consumed, but
still possible to compare the efficiency of time-driven and event-driven approaches
if the following parameters are computed:
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Table 12.3 Wvi and Wωi

with event-based and periodic
communications for each
robot

Robot Periodic Event-based

Wvi Wωi Wvi Wωi

2 404.43 35.35 285.50 22.28

3 119.68 11.47 166.55 13.89

4 658.92 66.16 360.01 36.85

5 375.92 35.29 332.80 44.80

Wvi =
∫ t f

t0
|vi (t)|dt (12.21)

Wωi =
∫ t f

t0
|ωi (t)|dt. (12.22)

The results are summed up in Table12.3. As expected, event-driven communications
does not yield an increase in Vvi and Wωi . Moreover, an additional benefit is the
reduction of the microprocessor load, since the actuation task is updated less often,
and this also reduces the energy consumption.

12.4.2.2 Experiment 2: Leader–Follower Protocol

The experiment described in the previous section is repeated when a leader of the
group is defined. Specifically, the communication graph is redefined as depicted in
Fig. 12.18, and the robot 2 is the leader. It computes its control law to reach its desired
position [−20,−20] as
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Fig. 12.18 Scheme of the communication topology, initial formation (left) and desired formation
(right)
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Fig. 12.19 Representation in the plane of the trajectories of each robot for time-triggered (left) and
event-triggered (right) communications. Agent 2 (blue), Agent 3 (red), Agent 4 (green), and Agent
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(
v2
ω2

)

=
(
cos θ2 −d sin θ2
sin θ2 d cos θ2

)−1 (−20 − x̄b,2
−20 − ȳb,2

)

.

The experiment is performedwith time-triggered communications andwith event-
triggered communications, and the results comparative is illustrated in Fig. 12.19.
The consensus is no longer reached due to the existence of a leader, and the final
positions are equal to the position offsets (rx , ry) (12.19).

In the event-based approach, the number of events for each robot accounts for 9, 21,
37, and 48 (see Table12.4), whereas in the periodic case the number of executions of
themeasurement task is 73 for each robot. This yields a total number of transmissions
of 191 for the event-based case, and584 for the periodic case (computed as in (12.20)).
Similar conclusions can be extracted for the energy consumption as in the consensus
protocol.

Note that the robots do not exactly achieve the formation. This might be because
of measurement errors by the camera, actuators deadzone, etc. Another problem that
is illustrated in the experiment is the loss of communication. For instance, the robot
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Table 12.4 Number of
events generated by each
robot

Robot No. events No. broadcasts

2 9 18

3 21 21

4 37 37

5 48 0

Total 111 76

3 does not receive its position from the measurement system (see Fig. 12.19 right).
Hence, events are not detected even if the robot is moving, the control law is not
updated, and the current state is not send to the neighbors.

12.5 Conclusions

The formation control of mobile robots has been presented as an application example
in which the use of distributed event-based control can be useful. An interactive
simulator has been developed in which the system dynamics, the control task, and
the network effects have been modeled. The tool offers high flexibility and allows
to test the model under a wide range of scenarios. Several examples of how the
simulator can be used have been provided.

The distributed event-based control has been also implemented over a real test bed
of mobile robots. The experimental results illustrate the reduction in the number of
transmissions with event-based communications, which implies energy saving. They
also manifest some of the problems that need to be faced when dealing with a real
system such as loss of communication, measurement errors, or actuators deadzones.



Chapter 13
Conclusions

María Guinaldo, Pablo Millán and Luis Orihuela

13.1 Summary of the Book

This book has presented different approaches to asynchronous control for networked
systems. Following an introduction to the motivation and objectives of this book,
the volume has been divided into two parts: Centralized and distributed solutions for
control and estimation in networked control systems.

The first part of the book consists of five chapters. Chapters2 and 3 do not take
into account the network effects in the analysis. Chapter2 has been devoted to study
the properties of limit cycles, which are an important phenomenon that occurs in
asynchronous controlwhen a level-crossing sampling scheme is applied,which is one
of the sampling strategies that are extensively used in the literature, and in particular,
through this book. Moreover, Chap.3 has proposed to maximize dynamically the
inter-sampling times, resorting to a self-trigger approach and a stability analysis
that can be posed as a quadratic optimization problem. The next sampling instant is
decided by the controller to guarantee practical stability and the sensor might enter
into a sleep or low-consumption mode so that energy consumption is reduced.
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Chapters4–6 have presented different strategies that not only aims at reducing
the number of samplings due to event-triggering, but also at dealing with delays and
packet losses in remote controller architectures. Chapter 4 has combined anticipative
controllers, which estimate future states of the systembased on amodel that considers
delays, and the advantages of packet-based networks that allow the transmission of
hundreds of bytes without increasing the bandwidth cost. In Chap.5, an H2/H∞
design that joins optimal control and disturbance attenuation has been proposed.
Finally, the combination of predictive controllers with actuator buffers has been
suggested in Chap.6 as an alternative to cope with packet losses and reduce network
traffic.

The second part of the book is composed of six chapters. Two aspects have been
covered in Part II: distributed control and distributed estimation in LTI large-scale
systems. As in Part I, the first chapters have dealt with asynchronous solutions that
consider ideal network conditions. In particular, Chap. 7 has focused on distributed
event-triggering. Different control strategies have been proposed to reduce commu-
nication between agents while guaranteeing stability and avoiding Zeno behavior.
Chapter 8 has addressed the design of distributed estimators. The nodes in the net-
work run consensus algorithms to estimate the whole system state exchanging local
measurements in an event-based fashion. Chapter9 has tackled the joint problem of
distributed estimation and control in a network, in which the sensing and control
capabilities are shared by a number of agents.

Extensions of Chaps. 7 and 8 for imperfect communication channels have been
presented in Chaps. 10 and 11, respectively. Networked control strategies have been
designed to deal with delays and data dropouts. Finally, Chap.12 has presented an
application example in which the use of distributed event-based techniques can be
useful: the formation control of mobile robots.

13.2 Comparison Between the Different Solutions

This section intends to be a guide to help readers to choose between the different
solutions that have been presented in this book. For this purpose, we focus on several
aspects that will help to compare the strategies.

Centralized versus distributed The advantages of one or the other approach have
been deeply discussed in previous chapters. To decide which the preferred archi-
tecture is, we recommend to answer the following questions: How many elements
has the control loop? Are they spatially distributed? Can the system be modeled as
an interconnection of subsystems or of devices? How well known are these inter-
connections? Do the sensor nodes have access to total or partial information? When
the system has few elements, these are not far away from each other, and a cen-
tral agent can collect all the available information of the system; then, a centralized
architecture will achieve high performance. Otherwise, a distributed architecture will
be more efficient, flexible, cheap, and robust against node failures. Additionally, the
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decision might be imposed by the nature of the system or plant. Not only can the sen-
sors/actuators be situated at remote difficult-to-access locations, but also the system
might be split itself. Consider, for instance, the formation control of mobile robots
studied in Chap. 12. This is a typical situation in which centralized approaches lose
interest.

Network conditions As it has been deeply explained, the transmission through a
communication network is affected by several harming effects of different natures:
delays, dropouts, quantization, etc.However, someof these undesired network effects
might be neglected when the dynamics of the plant is slow enough, compared to the
transmission rate and/or bandwidth available. Furthermore, some network protocols
achieve the reliable delivery of packets, at a cost of higher delays. In any of these
cases, the reader may choose between any of the solutions proposed in Part I and
II in which ideal network conditions have been considered, that is, Chaps. 2, 3, and
7–9, respectively. When dealing with fast-dynamics plants, the effects caused by the
delays or dropouts can be terribly dangerous. Here, the reader is offered different
solutions (Chaps. 4 –6 and 10–12) that copewith these undesired effects, maintaining
the stability of the closed loop and still achieving some interesting performance
measurements.

Model uncertainties and disturbances Model-based controllers have been used
in Chaps. 3, 4, and 6, and proposed as an improvement for distributed control in
Chap.7. In general, model-based control allows larger inter-event times compared
with zero-order hold strategies. For instance, it has been shown that how the model-
based version of the distributed controller of Chap. 7 provides around three times
longer broadcasting periods. The anticipative and predictive controllers presented
in Chaps. 4 and 6, respectively, also use a model to compensate delays and packet
losses, and even more, to estimate external disturbances in Chap.4. However, in
practice, perfect model matching is difficult to achieve. A complementary approach
that allows to compensate disturbances andmodel uncertainties, aswell as delays, has
been proposed in Chap. 5. Finally, we should keep in mind the John von Neumann’s
aspiration: All stable processes we shall predict. All unstable processes we shall
control.

Computation capabilities Another aspect to take into account is the platformwhere
the controller will be implemented. The computing power of today’s computers is not
an issue toworry about anymore. In this regard, the effort required by the optimization
processes of Chaps. 3 and 6 is perfectly achievable by conventional PCs and PLCs for
most of the plants (one exceptionmight be processeswith tight real-time constraints).
However, the recent popularization of low-cost open-hardware platforms such as
Arduino [11], which have limited computation and memory capacities as well as
software installation constraints, makes more suitable the usage of other alternatives,
such as the anticipative controller of Chap. 4, though the optimality is lost.

Energy consumption As in the previous case, the flexibility that low-cost wireless
components offer has motivated a change of traditional point-to-point architectures.
Batteries in many cases power the new, smart sensor, actuator, and controller nodes.
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In this regard, the energy consumption awareness has been in the focus of several
chapters. In general, asynchronous techniques cut down the energy consumption
required by the transmission of information, since it has been demonstrated to reduce
the number of communicationswhen comparedwith periodic control.However, there
are other issues that affect the energy efficiency. For instance, Chap. 3 has presented
a self-triggering approach that avoids the continuous monitoring of the plant by the
sensor nodes that other event-triggered strategies require. Additionally, the frequency
of actuation has been taken into account in Chaps. 2 and 7 in different contexts.

Full-state and output measurement When full-state measurement cannot be
assumed, two alternatives have been discussed. First, Chap.4 has proposed LTI con-
trollers to deal with output measurements. A more challenging aspect is the state
estimation from partial output measurements in distributed architectures. This has
been addressed in Chaps. 8 and 11 for reliable and non-reliable networks, respec-
tively. Finally, Chap. 9 has provided an innovative estimation and control scheme so
that the joint action of all agents allows to control the system and to monitor its state
from different locations.

13.3 Concluding Remarks

There is no doubt that as smart sensors and actuator become more flexible, sophis-
ticated, and cheaper, distributed networked control will gain increasing interest.
Accompaniedby thedevelopment of newcommunicationprotocols,wireless devices,
routing protocols, and control algorithms, the distributed networked approach will
extend both: the number of classical application that will follow this paradigm and
the number of new ones that will become feasible, thanks to these techniques.

In this regard, as distributed networked control become ubiquitous and the number
of devices concurrently interconnected grows, the need of asynchronous sampling
methods will grow. The reduction of the bandwidth usage in wireless industrial
processes and the expansion of batteries lifetime in application with portable or
onboard sensors will be always key objectives to be fulfilled. To this purpose, asyn-
chronous techniques are undoubtedly one of the most valuable strategies that control
theory can provide.

This book contains an up-to-date review of the state-of-the-art concerning dis-
tributed and asynchronous control, as well as a reasonable number of control and
estimation strategies that can found applications in different scenarios.

May the reader find it interesting and fruitful.
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Appendix A
Proofs

A.1 Chapter 4

A.1.1 Proof of Theorem 4.2

The forward difference of the Lyapunov function (4.10) for (4.25) is

ΔV (k) = xT (k + 1)Px(k + 1) − xT (k)Px(k)

= (AK x(k) + BKε(k) + w(k))T P (AK x(k) + BKε(k) + w(k)) − xT (k)Px(k)

= −xT (k)Qx(k) + 2εT (k)(BK)T PAK x(k) + εT (k)(BK)T PBKε(k)

+ 2wT (k)PAK x(k) + 2wT (k)PBKε(k) + wT (k)Pw(k)

≤ −λmin(Q)‖x(k)‖2 + 2‖(BK)T PAK‖‖ε(k)‖‖x(k)‖ + ‖(BK)T PBK‖‖ε(k)‖2
+ 2‖PBK‖‖w(k)‖‖ε(k)‖ + 2‖PAK‖‖w(k)‖‖x(k)‖ + λmax(P)‖w(k)‖2.

(A.1)

The error and the disturbance are bounded by ‖ε(k)‖ ≤ 2δ and ‖w(k)‖ ≤ wmax .
Thus, the Lyapunov function decreases if (A.1) is negative. This holds whenever

‖x(k)‖ ≥
σb +

√

σ 2
b + 4σaσc

2σa
= σw,

where σa, σb, σc and σw are defined in (4.27)–(4.30).
The state decreases until it reaches this bound. Let us denote k∗ the time instant

at which the state enters this region. According to (4.25), the norm of the state at the
next step is, in the worst case:

‖x(k∗ + 1)‖ ≤ ‖AK‖σw + ‖BK‖2δ + wmax.
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So if the state leaves the region, the Lyapunov function decreases again. Using the
property of the Lyapunov function λmin(P)‖x‖2 ≤ xT Px ≤ λmax(P)‖x‖2, the state
x(k) remains bounded by (4.26) ∀k ≥ k∗, and this concludes the proof.

A.1.2 Proof of Theorem 4.3

The forward difference of the Lyapunov function (4.42) for (4.41) is

ΔV (k) = ξT (k + 1)Pξ(k + 1) − ξT (k)Pξ(k)

= (
ACLξ(k) + F(εy(k) + v(k))

)T
P
(
ACLξ(k) + F(εy(k) + v(k))

)

− ξT (k)Pξ(k)

= −ξT (k)Qξ(k) + 2(εT
y (k) + vT (k))FT PACLξ(k)

+ (εT
y (k) + vT (k))FT PF(εy(k) + v(k))

≤ −λmin(Q)‖ξ(k)‖2 + 2‖FT PACL‖‖εy(k) + v(k)‖‖ξ(k)‖
+ ‖FT PF‖‖εy(k) + v(k)‖2. (A.2)

The right-hand side of (A.2) is an algebraic second-order equation in ‖ξ(k)‖ such
that the Lyapunov function decreases whenever

‖ξ(k)‖ ≥ σξ‖εy(k) + v(k)‖,

where σξ is given in (4.44).
Because the error εy is bounded by 2δy and the noise by vmax , ΔV < 0 in the

region ‖ξ(k)‖ > σξ (2δy +vmax). Thus, the state decreases until it reaches this region.
If we denote by k∗ the time instant at which the state enters this region and according
to (4.41), it follows that

‖ξ(k∗ + 1)‖ ≤ (σξ‖ACL‖ + ‖F‖)(2δy + vmax).

Then the state can leave the region so the Lyapunov function decreases again. If the
inequalities λmin(P)‖ξ‖2 ≤ ξT Pξ ≤ λmax(P)‖ξ‖2 are used, it is straightforward to
see that the state ξ(k) remains bounded by (4.43) ∀k ≥ k∗, and this concludes the
proof.
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A.2 Chapter 5

A.2.1 Proof of Proposition 5.2

Consider, first, the system without disturbances (w(k) ≡ 0). The forward difference
can be calculated as

ΔV (k) = xT (k + 1)Px(k + 1) − xT (k)Px(k)

+ xT (k)Z1x(k) − xT (k − τmax)Z1x(k − τmax)

+ xT (k)Z2x(k) − xT (k − τmin)Z2x(k − τmin)

+ τ 2maxΔxT (k)Z3Δx(k) − τmax

k−1∑

j=k−τmax

ΔxT ( j)Z3Δx( j)

+ Δτ 2ΔxT (k)Z4Δx(k) − Δτ

k−τmin−1∑

j=k−τmax

ΔxT ( j)Z4Δx( j),

where Δτ = τmax − τmin. The summations can be divided into two parts as follows:

−
k−1∑

j=k−τmax

ΔxT ( j)Z3Δx( j) = −
k−τ(k)−1∑

j=k−τmax

ΔxT ( j)Z3Δx( j)

−
k−1∑

j=k−τ(k)

ΔxT ( j)Z3Δx( j),

−
k−τmin−1∑

j=k−τmax

ΔxT ( j)Z4Δx( j) = −
k−τ(k)−1∑

j=k−τmax

ΔxT ( j)Z4Δx( j)

−
k−τmin−1∑

j=k−τ(k)

ΔxT ( j)Z4Δx( j).

The resulting terms can be bounded using the Jensen inequality:

−τmax

k−τ(k)−1∑

j=k−τmax

ΔxT ( j)Z3Δx( j) ≤ −
⎡

⎣
k−τ(k)−1∑

j=k−τmax

Δx( j)

⎤

⎦

T

Z3

⎡

⎣
k−τ(k)−1∑

j=k−τmax

Δx( j)

⎤

⎦ ,

−τmax

k−1∑

j=k−τ(k)

ΔxT ( j)Z3Δx( j) ≤ −
⎡

⎣
k−1∑

j=k−τ(k)

Δx( j)

⎤

⎦

T

Z3

⎡

⎣
k−1∑

j=k−τ(k)

Δx( j)

⎤

⎦ ,
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−Δτ

k−τ(k)−1∑

j=k−τmax

ΔxT ( j)Z4Δx( j) ≤ −
⎡

⎣
k−τ(k)−1∑

j=k−τmax

Δx( j)

⎤

⎦

T

Z4

⎡

⎣
k−τ(k)−1∑

j=k−τmax

Δx( j)

⎤

⎦ ,

−Δτ

k−1∑

j=k−τ(k)

ΔxT ( j)Z4Δx( j) ≤ −
⎡

⎣
k−τmin−1∑

j=k−τ(k)

Δx( j)

⎤

⎦

T

Z4

⎡

⎣
k−τmin−1∑

j=k−τ(k)

Δx( j)

⎤

⎦ .

Since the augmented state vector has been defined as ξT (k) = [xT (k) xT (k −
τ(k)) xT (k − τmin) xT (k − τmax)], the forward difference of the functional can be
written as

ΔV (k) = ξT (k)
(

M + ÃT PÃ + (Ã − Ĩ)T (τ 2maxZ3 + Δτ 2Z4)(Ã − Ĩ)
)

ξ(k), (A.3)

satisfying Assumption5.2. for w ≡ 0.
Consider now the case with disturbances. Including w(k) into the augmented state

vector, the forward difference (A.3) can be written now as

ΔV (k) =
[

ξ(k)

w(k)

]T ([M 0
∗ 0

]

+
[

ÃT

BT
w

]

P
[

Ã Bw
]

+
[

(Ã − Ĩ)T

BT
w

]

(τ 2maxZ3 + Δτ 2Z4)
[
(Ã − Ĩ) Bw

]
) [

ξ(k)

w(k)

]

. (A.4)

Now some null terms are added to the forward difference:

ΔV (k) = ΔV (k) + zT∞(k)z∞(k) − γ 2wT (k)w(k) + γ 2wT (k)w(k) − zT∞(k)z∞(k).

The first two terms are included in the quadratic product (A.4) taking into account
that zT∞(k)z∞(k) = ξT (k)C̃T∞C̃∞ξ(k), where C̃∞ = [C∞ D∞K 0 0]. Thus,

ΔV (k) =
[

ξ(k)

w(k)

]T ([
M + C̃T∞C̃∞ 0

∗ −γ 2I

]

+
[

ÃT

BT
w

]

P
[

Ã Bw
]

+
[

(Ã − Ĩ)T

BT
w

]

(τ 2maxZ3 + Δτ 2Z4)
[
(Ã − Ĩ) Bw

]
) [

ξ(k)

w(k)

]

+ γ 2wT (k)w(k) − zT∞(k)z∞(k).

(A.5)

Equation (A.5) has the same structure as (5.10), so the proposed functional satisfies
all the conditions given in Assumption5.2.

Finally, matrixΨ can be obtained after some careful mathematical manipulations.
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A.3 Chapter 7

A.3.1 Proof of Theorem 7.1

The analytical solution of (7.22) is

x(t) = e(AK +Δ)tx(0) +
t∫

0

e(AK +Δ)(t−s)BKε(s)ds. (A.6)

From Assumption7.1, the matrix AK is diagonalizable and

‖eAK t‖ ≤ κ(V )e−|αmax(AK )|t .

Thus, (7.10) can be used to bound e(AK +Δ)t as

‖e(AK +Δ)t‖ ≤ κ(V )e−(|αmax(AK )|−κ(V )‖Δ‖)t .

Note that the exponent is negative since |αmax(AK )| − κ(V )‖Δ‖ > 0 from Assump-
tion7.2. Let us denote αΔ = |αmax(AK )| − κ(V )‖Δ‖.

Consequently, the state can be bounded by

‖x(t)‖ ≤ κ(V )

⎛

⎝e−αΔt‖x(0)‖ +
t∫

0

e−αΔ(t−s)‖BK‖‖ε(s)‖ds

⎞

⎠ .

The overall system error is bounded by

‖ε(t)‖ ≤ √
Na
(
δ0 + δ1e−βt) .

This yields

‖x(t)‖ ≤ κ(V )

⎛

⎝e−αΔt‖x(0)‖ +
t∫

0

√
Nae−αΔ(t−s)‖BK‖(δ0 + δ1e−βs)

⎞

⎠

= κ(V )

(

e−αΔt‖x(0)‖ + ‖BK‖√Naδ0

αΔ

(
1 − e−λΔt)

+ ‖BK‖√Naδ1

αΔ − β

(
e−βt − e−αΔt)

)

,

which by reordering terms and restoring αΔ = |αmax(AK )| − κ(V )‖Δ‖ yield (7.28),
proving the first part of the theorem. Note that the previous expression can be upper

http://dx.doi.org/10.1007/978-3-319-21299-9_7
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bounded by

‖x(t)‖ ≤ κ(V )
(
‖x(0)‖e−αΔt + ‖BK‖√Naδ0

αΔ
+ ‖BK‖√Naδ1

αΔ−α
e−βt

)
, (A.7)

by omitting the negative terms.
We next show that broadcasting period is lower bounded. If t∗ refers to the last

event time occurrence, ‖εi(t∗)‖ = 0, and Fe,i(t∗) = −δ0 − δ1e−βt∗ < 0.
Because ε̇i(t) = −ẋi(t) and ‖εi(t)‖ ≤ ∫ t

t∗ ‖ẋi(t)‖ ≤ ∫ t
t∗ ‖ẋ(t)‖ hold, and from

(7.22) we derive

‖ẋ(t)‖ ≤ ‖AK + Δ‖‖x(t)‖ + ‖BK‖√Na

(
δ0 + δ1e−βt∗

)
.

If the last event occurred at time t∗ > 0

‖εi(t)‖ ≤
t∫

t∗
‖ẋ(t)‖ ≤

t∫

t∗
(‖AK + Δ‖‖x(s)‖ + ‖BK‖ε(s)) ds,

and ‖x(t)‖ ≤ ‖x(t∗)‖ holds in (A.7). Thus, defining the following constants:

k1 = κ(V )‖AK + Δ‖‖x(0)‖
k2 = ‖BK‖√Naδ1

(
κ(V )‖AK + Δ‖

αΔ − β
+ 1

)

k3 = ‖BK‖√Naδ0

(
κ(V )‖AK + Δ‖

αΔ

+ 1

)

,

the error can be bounded as

‖εi(t)‖ ≤
t∫

t∗
(k1 + k2 + k3)ds = (k1 + k2 + k3)(t − t∗).

The next event will not be triggered before ‖εi(t)‖ = δ0+δ1e−βt ≥ δ0. Thus a lower
bound on the inter-events time is given by

Tmin = δ0

k1 + k2 + k3
, (A.8)

which is a positive quantity.

http://dx.doi.org/10.1007/978-3-319-21299-9_7
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A.3.2 Pure Exponential Functions

Let us consider the case when δ = 0 and, for simplicity, ‖Δ‖ = 0. The error is
bounded by ‖εi(t)‖ ≤ δ1e−βt , and so the error goes to zero when times goes to
infinity. The state bound (A.7) can be particularized for pure exponential trigger
functions as follows:

‖x(t)‖ ≤ κ(V )
(
‖x(0)‖e−|αmax(AK )|t + ‖BK‖√Naδ1|αmax(AK )|−β

e−βt
)

. (A.9)

In order to prove that the Zeno behavior is excluded, we consider that the error ‖εi(t)‖
is upper bounded by

‖εi(t)‖ ≤
(

k1e−|αmax(AK )|t∗ + k2e−βt∗
)

T .

Note that k3 = 0 since δ0 = 0.
The next event is not triggered before ‖εi(t)‖ = δ1e−βt . Thus, a lower bound on

the inter-event intervals is given by

(
k1
δ1

e(β−|αmax(AK )|)t∗ + k2
δ1

)
T = e−βT . (A.10)

The right-hand side of (A.10) is always positive. Moreover, for β < |αmax(AK )| the
left-hand side is strictly positive as well, and the term in brackets is upper bounded
by k2+k1

δ1
and lower bounded by k2/δ1, and this yields to a positive value of T for all

t∗ ≥ 0.

A.3.3 Proof of Theorem 7.2

Let us denote F = AK + Δ. The analytical solution of (7.34) is

x(�) = F�x(0) +
�−1∑

j=0

F�−1− j BKε( j). (A.11)

This can be bounded as

‖x(�)‖ ≤ ‖F�‖‖x(0)‖ +
�−1∑

j=0

‖F�−1− j‖‖BK‖‖ε( j)‖. (A.12)

http://dx.doi.org/10.1007/978-3-319-21299-9_7
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Let us assume that Δ j ≈ 0,∀ j ≥ 2. According to (7.11), ‖F�‖ can be bounded as

‖F�‖ = ‖(AK + Δ)�‖ ≤ ‖A�
K‖ + ‖

�−1∑

j=0

A�−1− j
K ΔA j

K‖ + O(‖Δ‖2)

≈ ‖A�
K‖ + ‖

�−1∑

j=0

A�−1− j
K ΔA j

K‖,

since ‖Δ‖2 ≈ 0.
Moreover, as in the continuous time case, we assume that AK is diagonalizable,

and hence, AK = V DV −1. It also holds that ‖D‖ = |λmax(D)| = |λmax(AK )|, where
λmax(AdK ) is the eigenvalue with the closer magnitude to 1. Thus,

‖A�
K‖ = ‖V D�V −1‖ ≤ κ(V )|λmax(AK )|�,

where κ(V ) = ‖V ‖‖V −1‖.
Similarly, the following bound can be computed for the sum:

‖
�−1∑

j=0

A�−1− j
K ΔA j

K‖ ≤ κ2(V )

�−1∑

j=0

|λmax(AK )|�−1− j‖Δ‖|λmax(AK )| j

= κ2(V )|λmax(AK )|�−1‖Δ‖�.

Thus, ‖F�‖ is bounded by

‖F�‖ ≤ κ(V )|λmax(AK )|�
(

1 + �
κ(V )‖Δ‖
|λmax(AK )|

)

. (A.13)

If we consider the bound (A.13) in (A.12), it holds that

‖x(�)‖ ≤ κ(V )|λmax(AK )|�
(

1 + �
κ(V )‖Δ‖

|λmax(AK )|
)

‖x(0)‖ (A.14)

+
�−1∑

j=0

(

κ(V )|λmax(AK )|�−1− j
(

1 + (� − 1 − j)
κ(V )‖Δ‖

|λmax(AK )|
)

‖BK‖‖ε( j)‖
)

.

Moreover, from (7.39), the error can be bounded as ‖ε( j)‖ ≤ √
Na(δ0 + δ1β

j ).

http://dx.doi.org/10.1007/978-3-319-21299-9_7
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The sum in (A.14) can be computed taking into account that

�−1∑

j=0

r�−1− j = 1 − r�

1 − r

�−1∑

j=0

(� − 1 − j)r�−1− j = r ·
(

1 − r�

(1 − r)2
− �r�−1

1 − r

)

,

where r can be |λmax(AK )| or β
|λmax(AK )| .

Thus, it yields that

‖x(�)‖ ≤ κ(V )

(
‖BK‖√Naδ0
1−|λmax(AK )|

(
1 + κ(V )‖Δ‖

1−|λmax(AK )|
)

+ |λmax(AK )|�
(

‖x(0)‖

− ‖BK‖√Naδ0
1−|λmax(AK )|

(
1 + κ(V )‖Δ‖

1−|λmax(AK )|
)

− ‖BK‖√Naδ1
β−|λmax(AK )|

(
1 + κ(V )‖Δ‖

β−|λmax(AK )|
)

+ κ(V )‖Δ‖
|λmax(AK )|�

(
‖x(0)‖ − ‖BK‖√Naδ0

1−|λmax(AK )| − ‖BK‖√Naδ1
β−|λmax(AK )|

))

+ β� ‖BK‖√Naδ1
β−|λmax(AK )|

(
1 + κ(V )‖Δ‖

β−|λmax(AK )|
))

. (A.15)

Defining γ0, γ1 as in (7.41)–(7.42), it yields to (7.40), which concludes the proof.

A.3.4 Proof of Lemma 7.4

Assume that the last broadcasting event on the subsystem i occurred at t = t
¯Ni

k ,
meaning that its own events and the neighbors’ are included. If this last event does not

yield a control update it means that ‖εu,i(t
¯Ni

k )‖ < δu. Assume that at t = t
¯Ni

k+1 there

is a new broadcast in ¯Ni which triggers a control event. There are two possibilities:

• The subsystem i triggers the event. Thus,

‖εu,i

(
t

¯Ni
k+1

)
‖ = ‖εu,i

(
t

¯Ni
k

)
+ ui

(
t

¯Ni
k

)
− ui

(
t

¯Ni
k+1

)
‖

= ‖εu,i

(
tN̄i
k

)
+ Ki

(
xb,i

(
tN̄i
k

)
− xb,i

(
tN̄i
k+1

))
‖

≤ ‖εu,i

(
t

¯Ni
k

)
‖ + ‖Ki‖‖xb,i

(
t

¯Ni
k

)
− xb,i

(
t

¯Ni
k+1

)
‖,

that is upper bounded by

‖εu,i

(
t

¯Ni
k+1

)
‖ ≤ δu + ‖Ki‖

(

δx,0 + δx,1e−βt
¯Ni

k+1

)

.

http://dx.doi.org/10.1007/978-3-319-21299-9_7
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• The event has been triggered for any neighbor j ∈ Ni, it yields

‖εu,i

(
t

¯Ni
k+1

)
‖ = ‖εu,i

(
t

¯Ni
k

)
+ Lij

(
xb, j

(
t

¯Ni
k

)
− xb, j

(
t

¯Ni
k+1

))
‖

≤ δu + ‖Lij‖
(

δx,0 + δx,1e−βt
¯Ni

k+1

)

.

Since this holds for all t, and if the worst case is considered, it yields (7.52).
Moreover, from (7.49), it follows that

‖εu(t)‖ ≤
√
√
√
√

Na∑

i=1

‖εu,i‖2(t) ≤
√
√
√
√

Na∑

i=1

δ̄2u,i(t) ≤
√

Na(max{δ̄u,i(t)})2,

which is equivalent to (7.53).

A.3.5 Proof of Theorem 7.3

The state of the system at any time is given by

x(t) = e(AK +Δ)tx(0) +
∫ t

0
e(AK +Δ)(t−s)(BKεx(s) + Bεu(s))ds.

The error εx is bounded by
√

Na(δx,0 + δx,1e−βt) and the bound on εu is derived in
Lemma 7.4. Moreover, as already proved, it holds that

‖e(AK +Δ)t‖ ≤ κ(V )e−(|αmax(AK )|−κ(V )‖Δ‖)t .

With these considerations, the bound on x(t) can be calculated following the used
methodology in the previous proofs to derive (7.55), showing that the system is
globally ultimately bounded. Furthermore, (7.55) is upper bounded by

‖x(t)‖ ≤ σ1 + κ(V )‖x(0)‖e−(|αmax(AK )|−κ(V )‖Δ‖)t + σ2e−βt, (A.16)

if the negative terms are omitted.
The Zeno behavior exclusion in the broadcasting and, as a consequence, in the

control update, can also be proved similar to the previous results. Note that in the
inter-event times ‖ε̇i(t)‖ ≤ ‖ẋi(t)‖ ≤ ‖ẋ(t)‖, and ‖ẋ(t)‖ can be bounded according
to (7.50). Thus,

‖εi(t)‖ ≤
∫ t

t∗
(‖AK + Δ‖‖x(s)‖ + ‖BK‖‖εx(s)‖ + ‖B‖‖εu(s)‖)ds.

http://dx.doi.org/10.1007/978-3-319-21299-9_7
http://dx.doi.org/10.1007/978-3-319-21299-9_7
http://dx.doi.org/10.1007/978-3-319-21299-9_7
http://dx.doi.org/10.1007/978-3-319-21299-9_7
http://dx.doi.org/10.1007/978-3-319-21299-9_7
http://dx.doi.org/10.1007/978-3-319-21299-9_7
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If x(t) is bounded according to (A.16), and the corresponding bounds on εx and εu

are considered, it leads to the following lower bound for the inter-event time

Tx,min = δx,0

γ1 + √
Na(γ2 + γ3 + γ4)

,

where

γ1 = κ(V )‖x(0)‖‖AK + Δ‖
γ2 = (‖BK‖ + ‖B‖‖μ(K)‖max)δx,0

(

1 + κ(V )‖AK+Δ‖
|αmax(AK )|−κ(V )‖Δ‖

)

γ3 = (‖BK‖ + ‖B‖‖μ(K)‖max)δx,1

(

1 + κ(V )‖AK +Δ‖
|αmax(AK )|−κ(V )‖Δ‖−β

)

γ4 = ‖B‖δu

(

1 + κ(V )‖AK +Δ‖
|αmax(AK )|−κ(V )‖Δ‖

)

.

A.3.6 Proof of Theorem 7.4

Define the overall system state estimation as xm = (xT
m,1, . . . , xT

m,Na
)T . Let us prove

that the bound for the inter-events time is larger in the model-based approach.
If the last event occurred at t∗, the error in the inter-event time is ‖εi(t)‖ ≤∫ t

t∗ ‖ε̇i(s)‖ds. In this interval, it also holds that

‖ε̇i(t)‖ = ‖ẋm,i(t) − ẋi(t)‖ ≤ ‖ẋm(t) − ẋ(t)‖.

Observe that

ẋm(t) − ẋ(t) = AmK xm(t) − ((AK + Δ)x(t) + BKε(t))

= (δAK − Δ)x(t) + (AmK − BK)ε(t).

Then

‖ε̇i(t)‖ ≤ ‖δAK − Δ‖‖x(t)‖ + ‖AmK − BK‖‖ε(t)‖
≤ ‖δAK − Δ‖‖x(t)‖ + ‖AmK − BK‖√Na(δ0 + δ1e−βt). (A.17)

Assume that δ0, δ1 �= 0. It holds that δ0 + δ1e−βt ≤ δ0 + δ1e−βt∗ . As already stated,
the bound on the state of Theorem7.1 holds, and can be upper bounded as

‖x(t)‖ ≤ κ(V )
(
‖x(0)‖e−αΔt + ‖BK‖√Naδ0

αΔ
+ ‖BK‖√Naδ1

αΔ−β
e−βt

)
.

http://dx.doi.org/10.1007/978-3-319-21299-9_7
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Moreover, it holds that ‖δAK − Δ‖ ≤ ‖δAK‖ + ‖Δ‖. Thus, the error

‖εi(t)‖ ≤
t∫

t∗
‖ε̇(s)‖ds ≤

(
(‖δAK‖ + ‖Δ‖)κ(V )

(
‖x(0)‖e−αΔt∗ + ‖BK‖√Naδ0

αΔ

+‖BK‖√Naδ1
αΔ−β

e−βt∗
)

+ ‖AmK − BK‖√Na

(
δ0 + δ1e−βt∗

))
(t − t∗).

(A.18)

It follows that ‖εi(t)‖ ≤ (km,1 + km,2 + km,3)(t − t∗), where

km,1 = κ(V )‖x(0)‖(‖δAK‖ + ‖Δ‖)
km,2 =

(
κ(V )(‖δAK‖+‖Δ‖)‖BK‖

αΔ−β
+ ‖AmK − BK‖

)√
Naδ1

km,3 =
(

κ(V )(‖AmK‖+‖Δ‖)‖BK‖
αΔ

+ ‖AmK − BK‖
)√

Naδ0. (A.19)

The next event will not occur before ‖εi(t)‖ = δ0 + δ1e−βt ≥ δ0. This condition
gives a lower bound for the broadcasting period

Tm,min = δ0

km,1 + km,2 + km,3
, (A.20)

that is larger than the lower bound in (7.29) if km,1 + km,2 + km,3 < k1 + k2 + k3,
which is equivalent to

(‖AmK − BK‖−‖BK‖)√Na(δ0 + δ1) < (‖AK + Δ‖ − ‖δAK‖ − ‖Δ‖)
(
‖x(0)‖

+‖BK‖√Naδ0
αΔ

+ ‖BK‖√Naδ1
αΔ−β

)
.

After some manipulations

√
Na(δ0 + δ1)

‖x(0)‖ + ‖BK‖√Naδ0
αΔ

+ ‖BK‖√Naδ1
αΔ−β

< κ(V )
‖AK + Δ‖ − ‖δAK‖ − ‖Δ‖

‖AmK − BK‖ − ‖BK‖ . (A.21)

The denominator on the right-hand side can be bounded as

‖AmK − BK‖ − ‖BK‖ ≤ ‖AmK‖ + ‖BK‖ − ‖BK‖ = ‖AmK‖.

Then if Assumption7.5 holds, (A.21) is fulfilled. Thus, the lower bound for the
broadcasting period is larger for the model-based approach.

http://dx.doi.org/10.1007/978-3-319-21299-9_7
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A.4 Chapter 9

A.4.1 Proof of Proposition 9.2

The dynamics of a single node is given by (9.6):

x̂i(k + 1) = (A + BK)x̂i(k) + Mi(yi(k) − Cix̂i(k)) +
∑

j∈Ni

Nij(x̂ j (k) − x̂i(k)).

And the observation error at instant k + 1 can be obtained using Proposition9.1:

ei(k + 1) = x(k + 1) − x̂i(k + 1)

= (A + BK)x(k) −
p∑

i=1

BiKiei(k) − (A + BK)x̂i(k) − Mi(yi(k)

−Cix̂i(k)) −
∑

j∈Ni

Nij(x̂ j (k) − x̂i(k)). (A.22)

We can write ei(k +1) = (tr1)− (tr2), where (tr1) are the terms of (A.22) which
do not depend on the neighbors and (tr2) are the others. Consider first the terms
(tr1).

(tr1) = (A + BK)ei(k) − MiCiei(k) −
p∑

i=1

BiKiei(k)

= (A − MiCi + BK)ei(k) −
p∑

i=1

BiKiei(k). (A.23)

Consider now (tr2):

(tr2) =
∑

j∈Ni

Nij(x̂ j (k) − x̂i(k))

=
∑

j∈Ni

Nij(ei(k) − e j (k)). (A.24)

Using Eqs. (A.23)–(A.24) the observation error at instant k + 1 can be written as

ei(k + 1) = (A − MiCi) ei(k) + BKei(k) −
p∑

i=1

BiKiei(k) −
∑

j∈Ni

Nij(ei(k) − e j (k)).

Finally, since the error vector was defined as eT (k) = [
eT
1 (k) . . . eT

p (k)
]
, it is

immediate that the dynamics of e(k) is (9.12). The proof is completed.

http://dx.doi.org/10.1007/978-3-319-21299-9_9
http://dx.doi.org/10.1007/978-3-319-21299-9_9
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A.5 Chapter 10

A.5.1 Proof of Theorem 10.1

In order to prove the theorem, let us assume that Assumption10.1 holds.
The analysis will derive an upper bound for the delay which preserves this as-

sumption. The error in the time interval [ti
k, ti

k + τ i
k) is given by

εi(t
i
k + τ i

k) − εi(t
i
k) = xi(t

i
k) − xi(t

i
k + τ i

k),

since the broadcast state xb,i is not updated in any agent before the time instance
ti
k + τ i

k according to the WfA protocol, so that xb,i(ti
k + τ i

k) = xb,i(ti
k) = xi(ti

k−1)

holds. This yields

εi(t
i
k + τ i

k) − εi(t
i
k) =

(
I − eAK,iτ

i
k

)
xi(t

i
k)

+
∫ τ i

k

0
eAK,is

⎛

⎝BiKiεi(s) + Bi

∑

j∈Ni

Lijε j (s)

⎞

⎠ ds,

based on which the upper bound for the delay τ i
k can be derived as

τ i
max,k = arg min

τ i
k≥0

{

‖
(

I − eAK,iτ
i
k

)
xi(t

i
k)

+
∫ τ i

k

0
eAK,is

(

BiKiεi(s) + Bi

∑

j∈Ni

Lijε j (s)

)

ds‖ = δ

}

.

Note that this bound depends on xi(ti
k). In order to guarantee the existence of the

bound for the delay, we need to find an upper bound of the state for any ti
k . The state

at any time is given by xi(t) = eAK,i txi(0) + ∫ t
0 eAK,i(t−s)

(
BiKiεi(s) + Bi

∑
j∈Ni

Lijε j (s)
)

ds. The error is bounded by ‖εi(t)‖ < 2δ,∀i by Proposition 10.1. Thus, a

bound on xi(t) can be calculated following the methodology of Chap.8 as (10.5).
Note that (10.5) is upper bounded by

‖xi(t)‖ ≤ κ(Vi)

(‖BiKi‖2δ + (
∑

j∈Ni
‖BiLij‖)2δ

|αmax(AK,i)| + ‖xi(0)‖
)

, ∀t, (A.25)

if the negative terms are omitted, and using that e−|λmax(AK,i)|t ≤ 1, ∀t ≥ 0.

http://dx.doi.org/10.1007/978-3-319-21299-9_10
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In order to derive an upper bound for the delay for any t, we recall that

ε̇i(t) = −AK,ixi(t) − BiKiεi(t) −
∑

j∈Ni

BiLijε j (t)

holds in the interval t ∈ [ti
k−1+τ i

k−1, ti
k +τ i

k) for any two consecutive events ti
k−1, ti

k ,
and, in particular, it holds in the subinterval [ti

k, ti
k + τ i

k) ⊂ [ti
k−1 + τ i

k−1, ti
k + τ i

k).
Hence, ε̇i(t) can be bounded as

‖ε̇i(t)‖ = ‖AK,ixi(t) + BiKiεi(t) +
∑

j∈Ni

BiLijε j (t)‖

≤ ‖AK,i‖‖xi(t)‖ + ‖BiKi‖‖εi(t)‖ +
∑

j∈Ni

‖BiLij‖‖ε j (t)‖. (A.26)

The state xi(t) can be bounded according to (A.25), and for the error it holds that
‖εi(t)‖ < 2δ (see Proposition10.1). Thus, (A.26) can be integrated straightforward
in the interval [ti

k, ti
k + τ i

k), and it yields

‖εi(t
i
k + τ i

k) − εi(t
i
k)‖

≤
(

‖AK,i‖κ(Vi)

(

‖xi(0)‖ + (‖BiKi‖+∑ j∈Ni
‖BiLij‖)2δ

|αmax(AK,i)|

)

+ (‖BiKi‖+∑ j∈Ni
‖BiLij‖)2δ

)

τ i
k .

Thus, the delay bound (10.5) for agent i ensures that Assumption10.1 is not violated,
and this concludes the proof.

A.5.2 Proof of Corollary 10.1

Assuming that an event was triggered at time ti
k . The accumulated error after ni

p

consecutive packet losses and a transmission delay τ i
k ≤ τ̄ i is

(
εi

(
ti
k + Ti

W

)
− εi

(
ti
k

))
+
(
εi

(
ti
k + 2Ti

W

)
− εi

(
ti
k + Ti

W

))
+ · · ·

︸ ︷︷ ︸
npi times

+
(
εi

(
ti
k + ni

pT i
W + τ i

k

)
− εi

(
ti
k + ni

pT i
W

))

= εi

(
ti
k + ni

pT i
W + τ i

k

)
− εi

(
ti
k

)
. (A.27)
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Since ni
pT i

W + τ i
k ≤ ni

pT i
W + τ̄ i = (ni

p + 1)τ̄ i = τ i
max , and τ i

max is also the minimum

inter-event time for the system, this implies that ‖εi(ti
k + ni

pT i
W + τ i

k) − εi(ti
k)‖ < δ.

Hence, ‖εi(t)‖ < 2δ holds and so does the bound (10.6).

A.5.3 Proof of Theorem 10.2

According to the UwR protocol, ‖εi(t)‖ ≤ δ holds and εi(t) �= εij(t), in general.

However, as Assumption10.1, ‖εij(t
ij
k ) − εi(ti

k)‖ < δ yields ‖εij(t)‖ < 2δ.
Thus, a bound on the state can be derived from (10.9) in a similar way as in

Theorem 10.1 and (10.12) holds. The proof of the first part of the theorem can be
obtained by following the proof of Theorem10.1, since in the interval [ti

k, tij
k ) the

state information xb,ij remains constant in the agent j , so that ε̇ij(t) = −ẋi(t) holds.

If the error εij(t) is integrated in the interval [ti
k, tij

k ) considering that the state is
bounded by (10.12), and that the error is bounded as discussed above, then (10.11)
is derived. Finally, (10.10) can be derived as in Corollary10.1.

A.5.3.1 Proof of Proposition 10.2

Assume that the last event occurred at time ti
k and that the maximum transmission

delay to its neighbors is τ i
k . From Assumption10.1, it follows that

‖
∫ ti

k+τ i
k

ti
k

ε̇i(s)ds‖ = ‖εi

(
ti
k + τ i

k

)
− εi

(
ti
k

)
‖ < δ1e−β

(
ti
k+τ i

k

)

, (A.28)

has to be satisfied (see (10.13)) because no event is generated in the time interval

[ti
k, ti

k+1). Since an event has occurred at time ti
k , ‖εi

(
ti
k

) ‖ = δ1e−βti
k holds and, thus

‖εi

(
ti
k + τ̄ i

k

)
‖ < δ1e−βti

k + δ1e−β
(
ti
k+τ i

k

)

= δ1

(
1 + eβτ i

k

)
e−β

(
ti
k+τ i

k

)

,

must hold. Because this result is valid for any time t and eβτ i
k < eβτmax , ∀τ i

k < τmax ,
it follows that:

‖εi(t)‖ < δ1(1 + eβτmax )e−βt .

A.5.4 Proof of Theorem 10.3

The state at any time is given as

xi(t) = eAK,i txi(0) +
∫ t

0
eAK,i(t−s)

⎛

⎝BiKiεi(s) + Bi

∑

j∈Ni

Lijε j (s)

⎞

⎠ ds.
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According to Proposition10.2, the error is bounded by ‖εi(t)‖ < δ1(1+eβτmax )e−βt .
Thus, a bound on xi(t) can be calculated following the methodology of Chap.8 as

‖xi(t)‖ ≤ κ(Vi)

(
μiδ1(1+eβτmax )e−βt

|αmax(AK,i)|−β
+ e−|αmax(AK,i)|t

(

‖xi(0)‖ − μiδ1(1+eβτmax )e−βt

|αmax(AK,i)|−β

))

,

which proves the second part of the theorem.
Note that (10.18) can be upper bounded as

‖xi(t)‖ ≤ κ(Vi)

(
μiδ1(1+eβτmax )e−βt

|αmax(AK,i)|−β
+ e−|αmax(AK,i)|t‖xi(0)‖

)

. (A.29)

Moreover, in the interval t ∈ [ti
k−1 + τ i

k−1, ti
k + τ i

k) it holds that

ε̇i(t) = −AK,ixi(t) − BiKiεi(t) −
∑

j∈Ni

BiLijε j (t),

and this is particularly true in the subinterval [ti
k, ti

k + τ i
k). Thus

‖ε̇i(t)‖ = ‖AK,ixi(t) + BiKiεi(t) +
∑

j∈Ni

BiLijε j (t)‖

≤ ‖AK,i‖‖xi(t)‖ + ‖BiKi‖‖εi(t)‖ +
∑

j∈Ni

‖BiLij‖‖ε j (t)‖.

Therefore, integrating the error in the interval [ti
k, ti

k + τ̄ i
k) and noting that ‖xi(t)‖ ≤

‖xi(ti
k)‖ in (A.29) in this interval

‖εi(t
i
k + τ i

k) − εi(t
i
k)‖ ≤

(

‖AK,i‖κ(Vi)

(
μiδ1(1+eβτmax )e−βtik

|αmax(AK,i)|−β
+ e−|αmax(AK,i)|ti

k ‖xi(0)‖
)

+ μiδ1

(
1 + eβτmax

)
e−βti

k

)

τ i
k .

Denote k1,i = ‖AK,i‖κ(Vi)‖xi(0)‖ and k2,i = (‖AK,i‖κ(Vi)
1

|αmax(AK,i)|−β
+ 1)μiδ1.

From (A.28) in Preposition10.2, it follows that the upper bound on the delay satisfies

(
k1,ie

−|αmax(AK,i)|ti
k + k2,i

(
1 + eβτmax

)
e−βti

k

)
τ i

k = δ1e−β
(
ti
k+τ i

k

)

.

It yields that

(
k1,i
δ1

e−(|αmax(AK,i)|−β)ti
k + k2,i

δ1

(
1 + eβτmax

))
τ i

k = e−βτ i
k .

http://dx.doi.org/10.1007/978-3-319-21299-9_10
http://dx.doi.org/10.1007/978-3-319-21299-9_8
http://dx.doi.org/10.1007/978-3-319-21299-9_10
http://dx.doi.org/10.1007/978-3-319-21299-9_10
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The right-hand side is always positive and takes values in the interval [0, 1). The left-
hand side is also positive and its image is [0,+∞). Hence, there is a positive solution
for the upper bound on the delay. Moreover, the left-hand side is upper bounded by
(

k2,i
δ1

+ k2,i
δ1

(1+ eβτmax ))τ̄ i
k for β < |αmax(AK,i)|. Hence, the most conservative bound

on the delay τmax is given as

τmax = min{τ i
max, i = 1, . . . , Na},

where τ i
max are the solutions of

(
k1,i
δ1

+ k2,i
δ1

(
1 + eβτ i

max

))
τ i

max = e−βτ i
max .

A.5.5 Proof of Theorem 10.4

The state at any time is given as

xi(t) = eAK,i txi(0) +
∫ t

0
eAK,i(t−s)

⎛

⎝BiKiεi(s) + Bi

∑

j∈Ni

Lijε j i(s)

⎞

⎠ ds.

Under the UwR protocol, it holds that ‖εi(t)‖ ≤ δ1e−βt , and ‖ε j i(t)‖ < δ1(1 +
eβτmax )e−βt . Hence, following the same steps as in the proof of Theorem10.3, it
yields

‖xi(t)‖ ≤ κ(Vi)

(
μ̄i(τmax)δ1e−βt

|αmax(AK,i)|−β
+ e−|αmax(AK,i)|t

(

‖xi(0)‖ − μ̄i(τmax)δ1e−βt

|αmax(AK,i)|−β

))

,

where μ̄i(τmax) = ‖BiKi‖ +∑
j∈Ni

‖BiLij‖(1 + eβτmax ).

In the interval [ti
k, ti j

k ), ε̇i j (t) = −ẋi(t) holds. Thus, it can be derived easily that

‖εi j (t
i j
k ) − εi j (t

i
k)‖ ≤

(
k1,ie

−|αmax(AK,i)|ti
k + (

k2,i + k3,i(1 + eβτmax )
)

e−βti
k

)
τ

i j
k ,

k1,i, k2,i and k3,i defined in (10.21)–(10.23).

http://dx.doi.org/10.1007/978-3-319-21299-9_10
http://dx.doi.org/10.1007/978-3-319-21299-9_10
http://dx.doi.org/10.1007/978-3-319-21299-9_10
http://dx.doi.org/10.1007/978-3-319-21299-9_10
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According to Proposition10.2, ‖εi j (t
i j
k )− εi j (ti

k)‖ < δ1e−βti j
k . And the upper bound

on the delay is the minimum value of τ i
max which solves

(
k1,i
δ1

+ k2,i
δ1

+ k3,i
δ1

(
1 + eβτ i

max
))

τ i
max = e−βτ i

max .

A.5.6 Proof of Theorem 10.5

From 10.31, the state at any time is given as

x(t) = e(AK +Δ)tx(0) +
∫ t

0
e(AK +Δ)(t−s)M−→ε (s)ds.

According to Proposition10.3, the error −→ε (s) is bounded by δ̄. Moreover, since AK

is diagonalizable, e(AK +Δ)t can be bounded using (7.10). Thus, it follows that

‖x(t)‖ ≤ κ(V )
(
‖x(0)‖e−(|αmax(AK )|−κ(V )‖Δ‖)t

+ ‖M‖δ̄
|αmax(AK )|−κ(V )‖Δ‖

(
1 − e−(|αmax(AK )|−κ(V )‖Δ‖)t)).

Reordering terms and noting that ‖M‖ is bounded byμmax because is a block diagonal
matrix, it falls out (10.34).

The upper bound on the delay can be derived easily noting that if the last event
occurred at t = ti

k , it holds that

‖εi j (t
ij
k ) − εij(t

i
k)‖ ≤

∫ tij
k

ti
k

‖ε̇i j (s)‖ds ≤
∫ tij

k

ti
k

‖ẋi(s)‖ds ≤
∫ tij

k

ti
k

‖ẋ(s)‖ds,

since xb,i j remain constant in the interval and ‖ẋi(s)‖ ≤ ‖ẋ(s)‖.
Because ‖ẋ(s)‖ ≤ ‖AK + Δ‖‖x(s)‖ + ‖M‖‖−→ε (s)‖, it yields

‖εij(t
ij
k )−εij(t

i
k)‖ ≤

(
‖AK + Δ‖κ(V )

(
‖x(0)‖+

‖M‖δ̄
|αmax(AK )|−κ(V )‖Δ‖

)
+ ‖M‖δ̄

)
(ti j

k − ti
k).

According to Assumption10.1, no event occurs before the broadcast state is suc-
cessfully received and, therefore the increase of the error in the interval [ti

k, ti j
k ) is

bounded by δ, giving the upper bound on the delay (10.33).

http://dx.doi.org/10.1007/978-3-319-21299-9_10
http://dx.doi.org/10.1007/978-3-319-21299-9_10
http://dx.doi.org/10.1007/978-3-319-21299-9_10
http://dx.doi.org/10.1007/978-3-319-21299-9_10
http://dx.doi.org/10.1007/978-3-319-21299-9_7
http://dx.doi.org/10.1007/978-3-319-21299-9_10
http://dx.doi.org/10.1007/978-3-319-21299-9_10
http://dx.doi.org/10.1007/978-3-319-21299-9_10
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A.6 Chapter 11

A.6.1 Proof of Theorem 11.1

Choose the following Lyapunov–Krasovskii functional:

V (k) = eT (k)Pe(k) +
k−1∑

i=k−τmax

eT (i)Z1e(i)

+ l × τmax

0∑

j=−τmax+1

k−1∑

i=k+ j−1

ΔeT (i)Z2Δe(i), (A.30)

where Δe(k) = e(k + 1) − e(k). Note that the third term is included l times, one for
each communication link. The forward difference can be calculated as

ΔV (k) = eT (k + 1)Pe(k + 1) − eT (k)Pe(k) +
eT (k)Z1e(k) − eT (k − τmax)Z1e(k − τmax) +

l × τ 2maxΔeT (k)Z2Δe(k) − l × τmax

k−1∑

j=k−τmax

ΔeT ( j)Z2Δe( j)

= [
eT (k) dT (k)

]
[

ΦT (M )

ΛT (N )

]

P
[
Φ(M ) Λ(N )

]
[

e(k)

d(k)

]

+
[

eT (k) eT (k − τmax)
]
[

Z1 − P 0
0 −Z1

] [
e(k)

e(k − τmax)

]

+

l × τ 2maxΔeT (k)Z2Δe(k) − l × τmax

k−1∑

j=k−τmax

ΔeT ( j)Z2Δe( j).

Defining the augmented state vector

ξ(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e(k)

e(k − τ1(k))

e(k − τ2(k))
...

e(k − τl(k))

e(k − τmax)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡

⎣
e(k)

d(k)

e(k − τmax)

⎤

⎦ ,

http://dx.doi.org/10.1007/978-3-319-21299-9_11
http://dx.doi.org/10.1007/978-3-319-21299-9_11
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the forward difference of the Lyapunov–Krasovskii functional can be written using
the following quadratic form:

ΔV (k) = ξT (k)

⎛

⎝

⎡

⎣
Z1 − P 0 0

∗ 0 0
∗ ∗ −Z1

⎤

⎦+
⎡

⎣
ΦT (M )

ΛT (N )

0

⎤

⎦P
[
Φ(M ) Λ(N ) 0

]

+ l × τ 2max

⎡

⎣
ΦT (M ) − I

ΛT (M )

0

⎤

⎦Z2
[
(Φ(M ) − I) Λ(M ) 0

]

⎞

⎠ ξ(k)

−l × τmax

k−1∑

j=k−τmax

ΔeT ( j)Z2Δe( j).

In order to take into account the delay of each different communication link
(τr(k),∀r = 1, . . . , l), we split the last term in the above equation (which appears l
times) into 2 terms, considering the delay in each specific link:

−τmax

k−1∑

j=k−τmax

ΔeT ( j)Z2Δe( j) =

− τmax

k−τr(k)−1∑

j=k−τmax

ΔeT ( j)Z2Δe( j) − τmax

k−1∑

j=k−τr(k)

ΔeT ( j)Z2Δe( j).

The resulting terms can be bounded using the Jensen inequality:

−τmax

k−τr(k)−1∑

j=k−τmax

ΔeT ( j)Z2Δe( j) ≤ −
⎡

⎣
k−τr(k)−1∑

j=k−τmax

Δe( j)

⎤

⎦

T

Z2

⎡

⎣
k−τr(k)−1∑

j=k−τmax

Δe( j)

⎤

⎦ ,

−τmax

k−1∑

j=k−τr(k)

ΔeT ( j)Z2Δe( j) ≤ −
⎡

⎣
k−1∑

j=k−τr(k)

Δe( j)

⎤

⎦

T

Z2

⎡

⎣
k−1∑

j=k−τr(k)

Δe( j)

⎤

⎦ .

The terms in brackets can be cancelled in pairs, except the first and the last one
in the summatory, yielding:

−τmax

k−τr(k)−1∑

j=k−τmax

ΔeT ( j)Z2Δe( j) ≤

− [e(k − τr(k)) − e(k − τmax)]
T Z2 [e(k − τr(k)) − e(k − τmax)] ,
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−τmax

k−1∑

j=k−τr(k)

ΔeT ( j)Z2Δe( j) ≤

− [e(k) − e(k − τr(k))]T Z2 [e(k) − e(k − τr(k))] .

The above terms are also written in the same quadratic manner as

−τmax

k−τr(k)−1∑

j=k−τmax

ΔeT ( j)Z2Δe( j) ≤

[
eT (k − τr(k)) eT (k − τmax)

]
[−Z2 Z2

∗ −Z2

] [
e(k − τr(k))

e(k − τmax)

]

,

−τmax

k−1∑

j=k−τr(k)

ΔeT ( j)Z2Δe( j) ≤

[
eT (k) eT (k − τr(k))

]
[−Z2 Z2

∗ −Z2

] [
e(k)

e(k − τr(k))

]

.

Including all the terms, the forward difference is

ΔV (k) ≤ ξT (k)L1ξ(k)

where

L1 = ξT (k)

⎛

⎝

⎡

⎣
Ξ Θ 0
∗ Υ ΘT

∗ ∗ Ω

⎤

⎦+
⎡

⎣
ΦT (M )

ΛT (N )

0

⎤

⎦P
[
Φ(M ) Λ(N ) 0

]

+ l × τ 2max

⎡

⎣
ΦT (M ) − I

ΛT (M )

0

⎤

⎦ Z2
[
(Φ(M ) − I) Λ(M ) 0

]

⎞

⎠ ξ(k). (A.31)

In order to ensure the error convergence to zero, it will be demonstrated that
ΔV (k) < 0 for all ξ(k) �= 0 through the negative definiteness of L1. Applying Schur
complements, one can obtain that the previous matrix is negative definite if and only
if the following holds:

⎡

⎢
⎢
⎢
⎢
⎣

Ξ Θ 0 ΦT (M ) (ΦT (M ) − I)τmax

∗ Υ ΘT ΛT (N ) ΛT (N )τmax

∗ ∗ Ω 0 0
∗ ∗ ∗ −P−1 0
∗ ∗ ∗ ∗ − 1

l Z−1
2

⎤

⎥
⎥
⎥
⎥
⎦

< 0.
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Finally, pre- and post-multiplying the previousmatrix by diag {I, I, I, P, P} and its
transpose, this condition is equivalent to the one stated in Theorem11.1. Therefore,
the negative definiteness of this matrix is ensured.

A.6.2 Proof of Theorem 11.2

Consider the Lyapunov–Krasovskii functional (A.30). Including the disturbances
due to the asynchronous flow of information, the forward difference takes the form

ΔV (k) ≤ ξT (k)L1ξ(k) + 2εT (k)L2ξ(k) + εT (k)L3ε(k).

From Theorem 11.1 we can ensure that matrix L1 is negative definite, so there
exists a positive matrix Q such that L1 < −Q. Taking norms, the forward difference
can be bounded as follows:

ΔV (k) ≤ −λ
Q
min ‖ξ(k)‖2∞ + 2 ‖L2‖∞ ‖ε(k)‖∞ ‖ξ(k)‖∞ + ‖L3‖∞ ‖ε(k)‖2∞ .

The triggering condition (11.12) ensures that ‖ε(k)| ≤ δ, in such a way that

ΔV (k) ≤ −λ
Q
min ‖ξ(k)‖2∞ + 2 ‖L2‖∞ ‖ξ(k)‖∞ δ + ‖L3‖∞δ2.

We are interested in the values of ξ(k) that achieve that ΔV (k) ≤ 0. In order to
find a feasible region, the following second-order equation in ‖ξ(k)‖ can be solved:

−λ
Q
min ‖ξ(k)‖2∞ + 2 ‖L2‖∞ ‖ξ(k)‖∞ δ + ‖L3‖∞δ2 = 0.

Bysolving the previous equation, it can be ensured thatΔV (k) ≤ 0 for‖ξ(k)‖∞ >

D1δ, with D1 = ‖L2‖∞+
√

‖L2‖2∞+λ
Q
min‖L3‖∞

λ
Q
min

.

For a generic vector x and a positive scalar D, let Bx
D denote the region of the

space defined by {x : ‖x‖∞ ≤ D}. Please note that the above result implies that
V (k) decreases for every ξ(k) /∈ Bξ

D1δ
. Hence, it is obvious that there exists a time

instant k∗ in which ξ(k∗) enters into the region Bξ
D1δ

. The augmented state vector
ξ(k) includes the observation error e(k), so it turns out that e(k∗) ∈ Be

D1δ
.

As ξ(k∗) ∈ Bξ
D1

for any realization of μr(k) ∈ [0, τmax], r ∈ L , it also holds that

ζ(k∗) ∈ Bζ
D1
.

From instant k∗ on, the functional is not necessarily decreasing and the augmented
state may jump outside the region, that is, it may occur that ξ(k∗ + 1) /∈ Bξ

D1δ
. Using

http://dx.doi.org/10.1007/978-3-319-21299-9_11
http://dx.doi.org/10.1007/978-3-319-21299-9_11
http://dx.doi.org/10.1007/978-3-319-21299-9_11
http://dx.doi.org/10.1007/978-3-319-21299-9_11
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the dynamics of the observation error given in Eq. (11.14), it is possible to bound the
error at instant k∗ + 1 by

‖e(k∗ + 1)‖∞ < ‖Φ‖∞‖e(k∗)‖∞ + ‖Λ‖∞‖d(k∗)‖∞ + ‖Γ ‖∞‖ε(k∗)‖∞
< (‖Φ‖∞ + ‖Λ‖∞)D1 + ‖Γ ‖∞δ.

Then e(k∗ + 1) ∈ Be
D2δ

, where D2 = (‖Φ‖∞ + ‖Λ‖∞)D1 + ‖Γ ‖∞. This way,

ξ(k∗ + 1), and hence ζ(k∗ + 1), may leave the regions Bξ
D1

and Bζ
D1
, respectively. In

that case, the Lyapunov–Krasovskii functional must be decreasing again, implying
that

∀k > k∗ + 1, V (k) < max{V (k∗ + 1)} = max{ζ T (k∗ + 1)Ψ ζ(k∗ + 1)}
< λΨ

max max{∥∥ζ(k∗ + 1)
∥
∥2∞}

< λΨ
max(D2δ)

2.

Finally, to get the final bound on e(k) for k > k∗ + 1, note that all the terms of
the Lyapunov functional involve positive definite matrices, so

e(k)T Pe(k) < V (k) < λΨ
max(D2δ)

2,∀k > k∗ + 1.

And using well-known properties, it yields

λP
min ‖e(k)‖2∞ < e(k)T Pe(k) < λΨ

max(D2δ)
2

⇒ ‖e(k)‖∞ <

√
λΨ

max

λP
min

D2δ.

http://dx.doi.org/10.1007/978-3-319-21299-9_11


Appendix B
Dealing with Nonlinear Terms in Matrix
Inequalities

Sometimes, when the control problems are posed as matrix inequalities, it is
inevitable that some nonlinear terms appears, so the existing methods for LMIs
cannot directly be applied. This appendix proposes two different solutions for some
nonlinearities that are very common both in this book and in other approaches based
in Lyapunov–Krasovskii theorem. By means of appropriate transformations and
additional constraints, the nonlinear matrix inequality can be replaced by a prob-
lem with linear constraints.

Consider a nonlinear matrix inequality

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

f11(X1, . . . , Xm) · · · f1k(X1, . . . , Xm) · · · f1p(X1, . . . , Xm)
...

. . .
...

. . .
...

f T
1k(X1, . . . , Xm) · · · gkk(X1, . . . , Xm) · · · fip(X1, . . . , Xm)

...
. . .

...
. . .

...

f T
1p(X1, . . . , Xm) · · · f T

kp(X1, . . . , Xm) · · · fpp(X1, . . . , Xm)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (B.1)

where f are affine functions on the decision variablesX1, . . . , Xm and g are nonlinear
functions with the following particular structure:

g(X1, . . . , Xm) = −XiX
−1
j Xi, i �= j.

Note that the nonlinear function appears in the diagonal of the inequality. In the
following sections, two solutions are given to deal with the nonlinearity XiX

−1
j Xi,

i �= j . The first introduces an additional constraint which lets us address the problem
by means of a set of linear matrix inequalities. The second solution employs the
cone complementary algorithm to transform the nonlinear inequality into an iterative
optimization problem with linear constraints. Comparing both solutions, the former
could be more conservative, but it is computationally more efficient, as the number
of constraints and variables is lower.

© Springer International Publishing Switzerland 2015
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B.1 Direct Constraint

Consider the introduction of the following additional constraint:

−XiX
−1
j Xi < − 1

μ
Xi,

being μ a positive design scalar. Note that previous condition is equivalent to X j <

μXi. Then, the nonlinear constraint in Eq. (B.1) can be replaced by

{
Υ (X1, . . . , Xm) < 0,

X j < μXi
(B.2)

where Υ is the matrix required to be negative definite in (B.1), but substituting the
terms g(X1, . . . , Xm) = −XiX

−1
j Xi by − 1

μ
Xi.

It is worth comparing the proposed method with that introduced in [275] and used
in other papers to handle the same nonlinearity. While in [275] it is directly imposed
X j to be Xi times a given scalar, this method just restricts X j < μXi, which covers
a much wider range of possible solutions in the space of positive definite matrices.
Therefore, it leads to less conservative solutions.

B.2 Cone Complementary Algorithm

Another possibility consists in using thewell-known cone complementary algorithm.
The idea is the following: first, the nonlinear inequality can be addressed by solving
an optimization problemwith linear constraints. Then, a solution for this problem can
be found with an extended algorithm whose convergence is theoretically ensured.

Following the idea of [184], define a variable T such that

XiX
−1
j Xi ≥ T > 0, (B.3)

which is equivalent to [
−T−1 X−1

i
X−1

i −X−1
j

]

≤ 0. (B.4)

Now, introducing some new variables,

X̂i = X−1
i , T̂ = T−1, X̂ j = X−1

j , (B.5)
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Equation (B.4) can be rewritten as

[−T̂ X̂i

X̂i −X̂ j

]

≤ 0. (B.6)

Now, instead of using the original nonlinear inequality (B.1), consider the follow-
ing nonlinear minimization problem involving LMI conditions:

MinimizeTr
(

X̂iXi + X̂ j X j + T̂T
)

(B.7)

subject to

⎧
⎨

⎩

Υ (X1, . . . , Xm) < 0,
[−T̂ X̂i

∗ −X̂ j

]

≤ 0,

[
Xi I
∗ X̂i

]

≥ 0,

[
X j I
∗ X̂ j

]

≥ 0,

[
T I
∗ T̂

]

≥ 0,
(B.8)

where Υ is as before the matrix required to be definite negative in (B.1), but sub-
stituting XiX

−1
j Xi by T . From Eqs. (B.3), it is immediate that, if Υ < 0, then (B.1)

holds. The minimization problem is introduced to force (B.5). When the LMIs in
the second row of the restrictions (B.8) saturate, the optimum is reached and (B.1)
holds.

In order to solve the aforementioned minimization problem (B.7) the following
algorithm introduced in [64] can be implemented:

1. Set k = 0. Find a feasible solution under the conditions in (B.8):

(X0
1 , X0

2 , . . . , X0
m, T0, X̂0

i , X̂0
j , T̂0)

If there is no solution, exit.
2. Solve the following optimization problem with LMI constraints with decision variables

(X1, X2, . . . , Xm, T , X̂i, X̂ j , T̂)

min Tr
(

X̂k
i Xi + Xk

i X̂i + X̂k
j X j + Xk

j X̂ j + T̂ kT + TkT̂
)

subject to LMIs in (B.8)

Set Xk+1
i = Xi, X̂k+1

i = X̂i, Xk+1
j = X j , X̂k+1

j = X̂ j , T̂ k+1 = T̂ , Tk+1 = T .
3. If the condition (B.1) is satisfied, exit. Otherwise, set k = k + 1 and return to Step 2.

The first and second steps of the algorithm are simple LMI problems, and they can
be solved efficiently using an appropriate computational software. As it is stated in
Theorem2.1 in [64], the algorithm converges and then X̂iXi = I , X̂ j X j = I , T̂T = I .

http://dx.doi.org/10.1007/978-3-319-21299-9_2
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function, 198
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Digital control, 1
Discrete-time

control, 116
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model, 81
system, 164
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formation control, 261
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trigger function, 155, 165

Distributed system, 8
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Easy Java Simulations, 268
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distributed cooperative e., 242
distributed e., 198

Estimation error, 199
Estimator
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model-based e., 138
state e., 138
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Event
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control update e., 168

Event-based
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control, 123
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Event time, 82
Event-triggering

time-dependent e.-t., 21
Experiment, 101, 279
Exponential

matrix e., 151
Exponential trigger function, 160, 231

F
Flexible link, 102
Flow control protocol, 86
Formation control, 12, 261
Four coupled tanks system, 211
Fréchet derivative, 152
Function

cost f., 198
Lipschitz f., 139
Lyapunov f., 87
objective f., 135
quadratic cost f., 116
quadratic f., 252
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Globally uniformly ultimately bounded, 26,
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communication g., 259
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Industrial technology, 9
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Linear matrix inequality, 185
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Luenberger observer, 97, 197, 242, 246
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Lyapunov function, 87
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M
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Matrix
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Model
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controller, 64, 84
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Remote controller, 14, 81
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Suboptimal control, 193
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Triggering rule, 205

U
Uncertainty

model u., 82, 88, 177, 291
Unit circle, 44, 166
Unreliable network, 223, 241
Update when receive protocol, 226

W
Wait for all protocol, 226
Waiting time, 19, 226
Wireless

communication, 280
communication protocol, 266
LAN, 266
sensor network, 7, 9

Z
Zeno behavior, 23, 24, 172


	Preface
	Part I Asynchronous Control for Single-Loop Schemes. Centralized Solutions
	Part II Asynchronous Control and Estimation for Large-Scale Plants. Distributed Solutions

	Acknowledgments
	Contents
	Notation
	Indices
	Scalars
	Vectors
	Matrices
	Other

	Contributors
	1 Introduction
	1.1 Historical Perspective: From Digital Control to Networked Control Systems
	1.2 Overview of Networked Control Systems and Asynchronous Systems
	1.2.1 Emergence and Advantages of Networked Control Systems
	1.2.2 Communication Drawbacks
	1.2.3 Research Trends
	1.2.4 Asynchronous Control

	1.3 Applications and Industrial Technology Over Network
	1.4 Networked Schemes: From Centralized to Distributed Techniques
	1.4.1 Centralized and Decentralized Schemes
	1.4.2 The Middle Ground: Distributed Systems

	1.5 Communication Through a Non-reliable Network
	1.6 Asynchronous Control in NCSs
	1.6.1 Event-Based Control Approaches in the Literature
	1.6.2 Event Definitions

	1.7 Stability and Performance Measurements

	Part IAsynchronous Control for Single-LoopSchemes. Centralized Solutions
	2 Send-on-Delta PI Control
	2.1 Introduction
	2.2 The LTI and SOD Sampler Blocks
	2.2.1 The Nonlinear Block: The SOD Sampler
	2.2.2 The Linear Blocks: The Process and the Controller
	2.2.3 The P, I, PI, PD, and PID Controllers

	2.3 Defining an Event-Based System as a PLS
	2.3.1 Local Stability

	2.4 Analysis of the Limit Cycles
	2.4.1 Equilibrium Points
	2.4.2 Algorithm
	2.4.3 Examples of Analysis
	2.4.4 Implementation in MATLAB"472

	2.5 Simulation Results
	2.5.1 PI-IPTD-SODn and PI-SODn-IPTD
	2.5.2 PI-SOPTD-SODn

	2.6 Experimental Results
	2.6.1 The Acurex System
	2.6.2 The Model
	2.6.3 Implementation

	2.7 Conclusions

	3 Self-triggered Sampling Selection Based  on Quadratic Programming
	3.1 Introduction
	3.2 Problem Formulation
	3.2.1 Plant Description
	3.2.2 Model-Based Controller

	3.3 Lyapunov-Based Sampling Procedure
	3.3.1 Main Idea and Stability Analysis
	3.3.2 Algorithm to Select the Following Sampling Time
	3.3.3 Quadratic Programming Problem

	3.4 Extension to Continuous Systems
	3.5 Simulation Results
	3.5.1 Discrete System
	3.5.2 Continuous System

	3.6 Conclusions

	4 Event-Triggered Anticipative Control  over Packet-Based Networks
	4.1 Introduction
	4.2 Event-Based Anticipative Control Design
	4.2.1 Problem Statement
	4.2.2 Control and Architecture Design

	4.3 Stability Analysis
	4.3.1 Analysis of the Maximum RTT and the Model Uncertainties
	4.3.2 Analysis of the Error Bounds

	4.4 Disturbance Estimator
	4.4.1 Stability Analysis

	4.5 Output-Based Event-Triggered Control
	4.5.1 Stability Analysis
	4.5.2 PI Anticipative Control Design

	4.6 Experimental Results
	4.6.1 Experimental Framework
	4.6.2 Performance of Event-Triggered Control
	4.6.3 Response to Disturbances
	4.6.4 PI Anticipative Control
	4.6.5 Network: Delays and Packet Losses

	4.7 Conclusions

	5 H2/Hinfty Control for Networked Control  Systems with Asynchronous Communication
	5.1 Introduction
	5.2 System Description
	5.2.1 Network Conditions
	5.2.2 Problem Statement

	5.3 General Solution for the Suboptimal Mixed H2/Hinfty Control Problem
	5.4 Application to Networked Control Systems
	5.4.1 Lyapunov--Krasovskii Functional
	5.4.2 Design Method

	5.5 Event-Based Control Implementation
	5.5.1 Proposed Approach
	5.5.2 Remodeling the Node Dynamics
	5.5.3 Practical Stability for Delayed Asynchronous Systems

	5.6 Simulation Results
	5.6.1 Example A
	5.6.2 Example B

	5.7 Conclusions

	6 Asynchronous Packetized Model  Predictive Control
	6.1 Introduction
	6.2 Networked Predictive Control Algorithm
	6.2.1 Problem Setup
	6.2.2 Packetized Control and Buffering Strategy
	6.2.3 State Estimator Description
	6.2.4 Stability Considerations

	6.3 Application Example
	6.3.1 Modeling
	6.3.2 Results

	6.4 Conclusions

	Part IIAsynchronous Control and Estimation forLarge-Scale Plants. Distributed Solutions
	7 Distributed Event-Based Control  for Interconnected Linear Systems
	7.1 Introduction
	7.2 Background and Problem Statement
	7.2.1 Matrix and Perturbations Analysis
	7.2.2 Problem Statement

	7.3 Event-Based Control Strategy
	7.4 Performance Analysis
	7.4.1 Perfect and Non-perfect Decoupling
	7.4.2 Comparison with Other Triggering Mechanisms
	7.4.3 Simulation Example

	7.5 Extension to Discrete-Time Systems
	7.5.1 System Description
	7.5.2 Discrete-Time Trigger Functions
	7.5.3 Stability Analysis

	7.6 Improvements
	7.6.1 Reducing Actuation in Distributed Control Systems
	7.6.2 Model-Based Design

	7.7 Conclusions

	8 Distributed Event-Based Observers  for LTI Systems
	8.1 Introduction
	8.2 Problem Statement
	8.3 Observer Design
	8.3.1 Periodic Case
	8.3.2 Event-Based Implementation

	8.4 Illustrative Example
	8.5 Conclusions

	9 Suboptimal Distributed Control  and Estimation: Application to a Four  Coupled Tanks System
	9.1 Introduction
	9.2 System Description: Initial Considerations
	9.2.1 Plant
	9.2.2 Network
	9.2.3 Agents

	9.3 Problem Formulation
	9.4 Periodic Sampling Case
	9.4.1 Dynamics of the State and Estimation Error
	9.4.2 Controller and Observer Design

	9.5 Event-Based Sampling Case
	9.5.1 Triggering Rule
	9.5.2 Remodeling the System Dynamics
	9.5.3 Stability and Trade-off Between Communication Reduction and Final Boundedness

	9.6 Application Example
	9.6.1 Plant Description
	9.6.2 Plant Modeling
	9.6.3 Experimental Results

	9.7 Summary

	10 Distributed Event-Based Control  for Non-reliable Networks
	10.1 Introduction
	10.2 Problem Statement: Ideal Versus Non-ideal Networks
	10.3 Transmission Protocol
	10.3.1 WfA Protocol
	10.3.2 UwR Protocol

	10.4 Performance Analysis for Perfect Decoupling
	10.4.1 Properties of Deadband Control Using WfA Protocol
	10.4.2 Properties of Deadband Control Using UwR Protocol
	10.4.3 Pure Exponential Trigger Functions

	10.5 Performance Analysis for Non-perfect Decoupling
	10.5.1 Solving the State Inconsistency

	10.6 Simulation Results
	10.6.1 Performance
	10.6.2 Exponential Trigger Functions

	10.7 Conclusions

	11 Distributed Estimation in Networked Systems
	11.1 Introduction
	11.2 Problem Description and Motivation
	11.2.1 Network Topology
	11.2.2 System Description

	11.3 Periodic Time-Driven Communication Between Agents
	11.3.1 Agent Dynamics
	11.3.2 Observer Design

	11.4 Event-Based Communication Between Agents
	11.4.1 Remodeling of the Observer Dynamics
	11.4.2 Practical Stability for Delayed Asynchronous Systems

	11.5 Simulation Results
	11.6 Conclusions

	12 Networked Mobile Robots: An Application Example of the Distributed Event-Based Control
	12.1 Introduction
	12.2 Formation Control for Networked Mobile Robots
	12.2.1 Multi-agent Systems and the Consensus Problem
	12.2.2 Formation Control
	12.2.3 Model of Non-holonomic Mobile Robots
	12.2.4 Time-Schedule Control
	12.2.5 Robot Wireless Communication Protocols

	12.3 Interactive Simulation Tools
	12.3.1 Existing Tools
	12.3.2 Description of the GUI
	12.3.3 Modeling a Multi-agent System in EJS
	12.3.4 Using the Simulator

	12.4 Application Example to a Real Test bed
	12.4.1 Experimental Framework
	12.4.2 Experimental Results

	12.5 Conclusions

	13 Conclusions
	13.1 Summary of the Book
	13.2 Comparison Between the Different Solutions
	13.3 Concluding Remarks

	Appendix AProofs
	Appendix BDealing with Nonlinear Terms in MatrixInequalities
	References
	Index



