
Chapter 4
Stochastic Modeling and Simulation Methods
for Biological Processes: Overview

Annelies Lejon and Giovanni Samaey

Abstract The use of stochasticmodeling and simulation techniques iswidespread in
computational biology when fluctuations become important. In this chapter, we give
a high-level overview of stochastic modeling techniques for biological problems,
focussing on some common individual-based modeling and simulation methods.
We pay particular attention to the equivalence between the stochastic process that
governs the evolution of individual agents and the deterministic behaviour of the
involved probability distributions, and we discuss numerical methods that exploit
this relation for variance reduction purposes. The discussion will be illustrated using
examples involving intracellular chemical reactions, bacterial chemotaxis and tumor
growth, showing the effects of stochasticity at different scales and different levels of
description.

Keywords Stochasticity · Stochastic differential equations · Velocity-jump
processes · Asymptotic variance reduction

4.1 Introduction

Stochastic effects are ubiquitous in biological systems, at multiple scales. At an
intracellular level, for instance, gene regulatory networks often exhibit different
metastable states. Since the number of molecules in a cell is not very high, signif-
icant fluctuations in concentrations can occur, triggering transitions between these
metastable states [20, 28]. At a cellular level, individual cells can be modeled as
agents that interact with each other and with their environment.

Stochasticity can then be introduced to account for differences between individ-
ual cells or to incorporate the coarse-grained effect of phenomena that occur at more
microscopic scales directly at the cellular level. (An example of the latter would be
the use of a Brownianmotion tomodel the net effect of a large number of collisions of
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a largemoleculewith surrounding—but not explicitlymodeled—solventmolecules.)
Such an approach has been followed in many settings, including the applications that
will be considered as illustrative examples in this chapter: bacterial chemotaxis (see,
e.g., [5, 15] and references therein) and tumor growth (see, e.g., [43] for a recent
review and references). At a population level, one usually models the evolution of
cell densities via partial differential equations (PDEs) of reaction-advection-diffusion
type. At this level, one can introduce, for instance, stochastic parameters and geome-
tries to account for differences between individuals, resulting in PDEswith stochastic
coefficients [22].

Despite the stochastic nature of the time evolution, one is usually interested in
deterministic quantities, such as the mean switching time between metastable states
or the expected behaviour of a large population of cells or individuals. Addition-
ally, one may also be interested in deviations with respect to this mean behaviour,
requiring information on higher order statistics or on the complete probability dis-
tribution of possible states of the system. While, in principle, the time evolution of
these probability distributions can be modeled using deterministic evolution laws,
the associated computational cost is usually prohibitive due to the high dimension-
ality of the resulting equations. One therefore needs to resort to some form of Monte
Carlo simulation of the stochastic process [7].

In this chapter, we discuss stochastic individual-based modeling techniques and
show the equivalence with deterministic techniques for modeling the involved proba-
bility distributions. In Sect. 4.2, we introduce stochastic models for chemically react-
ing systems with low number of molecules (as would occur in modeling intracellular
dynamics). We discuss both the time-discrete and time-continuous case, and show
how these models relate to classical mean-field equations for the evolution of con-
centrations. In Sect. 4.3, we consider advection-diffusion processes, as they occur,
for instance, in agent-based models for bacterial chemotaxis and tumor growth. We
briefly describe cellular automata and Markov jump processes, before giving a more
detailed discussion of stochastic differential equations (SDEs). We show the relation
between an SDE for an individual particle and an advection-diffusion equation (the
Fokker–Planck equation) for the population density. In Sect. 4.4,we turn tomore real-
istic microscopic processes, and relate these to kinetic theory and Boltzmann-type
equations. For each of the described modeling techniques, we discuss the mathemat-
ical formulation of the stochastic process as well as practical simulation algorithms.
In Sect. 4.5, we discuss Monte Carlo simulation using these stochastic processes.
We show how to compute confidence intervals for the obtained results and introduce
numerical algorithms that can yield results with significantly reduced variance.

We illustrate the introduced concepts for two specific applications: bacterial
chemotaxis (Sect. 4.6) and tumor growth (Sect. 4.7). For each of these applications,
we discuss in detail the modeled processes and introduce a dedicated simulation
technique.

We conclude this introduction with a few remarks on topics that will not be
treated in this chapter. First, we will not discuss uncertainty propagation resulting
from uncertainty in parameters or geometries. For a mathematical and algorithmic
introduction to this topic, we refer to [22]. Second, in many applications, one may
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have, besides the mathematical model, some observation data available. Two ques-
tions can then be posed: (i) does the data provide sufficient support to validate the
model; and (ii) can one use the data to estimate unknown parameters in the model?
These topics form the subject of intense current research, and we refer to [51] for an
introduction.

4.2 Stochastic Modeling of Chemical Reactions

In this section, we provide an individual-based description of chemically reacting
systems. For concreteness, we start from the following system of chemical reactions,
as introduced by Schlögl [46],

2A
k1
�
k2

3A, ∅ k3
�
k4

A, (4.1)

in which the rate constants ki (1 ≤ i ≤ 4) indicate that the probability for two
randomly chosen molecules of type A to react according to reaction i in any time
interval [t, t + dt) is given by ki dt .

In Sect. 4.2.1, we discuss discrete-time simulation. It will appear that the cor-
responding algorithm introduces a time discretization error, and at the same time
is also very inefficient. We therefore turn to continuous-time simulation algorithms
in Sect. 4.2.2. Next, in Sect. 4.2.3, we introduce the chemical master equation, a
deterministic system of equations for the probability of finding a given number of
molecules at any given time. From this master equation, we can obtain information
on the mean behaviour of the system and on fluctuations. We conclude in Sect. 4.2.4
with a numerical illustration on the Schlögl model. The exposition in this section is
based on [17].

4.2.1 Discrete-Time Simulation

Let us denote by A(t) the number of molecules of type A in the system at time t ≥ 0,
and assume as initial condition A(0) = A0. We are interested in an approximate
solution Ak ≈ A(tk), with tk = k�t and �t > 0 a small time step. (The symbol
k that indicates the discrete time instance is added as a superscript for notational
consistency throughout the chapter.)

At time t = tk , the probability of reaction 1 (with rate k1) taking place in (t, t+�t)
is approximately given by

αk
1�t = Ak(Ak − 1)k1�t, (4.2)
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withαk
1 the propensity function, since k1�t is the probability of two randomly chosen

molecules of type A to react according to reaction 1, and Ak(Ak −1) is the number of
pairs of molecules that can be randomly chosen. (Note that this is an approximation
due to the fact that we have replaced the infinitesimal interval of length dt by a finite
interval of length �t .) Similarly, the propensity functions for the other reactions can
be seen to be

αk
2 = Ak(Ak − 1)(Ak − 2)k2, αk

3 = k3, αk
4 = Akk4. (4.3)

To take a time step from time tk to tk+1, one needs to decide for each reaction
whether or not it has occurred during the time step. This can be done using the
following algorithm:

Algorithm 1 (Time-discrete simulation of Schlögl’s model) Given the concentration
Ak at time tk , we compute Ak+1 at time tk+1 as follows:

1. For each reaction i :

• Compute the propensity αk
i using (4.2) or (4.3);

• Generate an independent random number rk
i from the uniform distribution on

the interval (0, 1);
• Decide that reaction i has occurred during the time interval if rk

i ≤ αk
i �t

(else, the reaction has not occurred);

2. Compute Ak+1 by applying all reactions that occurred during the time step (for
instance, if only reaction 1 occurred, we have Ak+1 = Ak + 1).

A simulation is then performed by repeating the above time step over the time
interval of interest. The algorithm can easily be generalized to systems with multiple
species and any number I of possible reactions.

There are two problems when using the above algorithm, which will both be dealt
with when switching to continuous-time simulation in Sect. 4.2.2. First, Algorithm 1
introduces a time discretization error since it replaces an infinitesimal time interval
of length dt by a finite interval of length �t . This error manifests itself in two
ways. First, we neglect the (non-zero) probability that two reactions of the same type
occur within the time step of size �t . Moreover, every reaction event influences the
propensity function of other reactions, since the propensity functions depend on the
state of the system. As a consequence, there will be an error in the used reaction
probabilities when multiple reactions are performed during a single time step.

To limit the impact of these time discretization errors, �t should be chosen fairly
small. A common guideline is to choose �t such that the probability of having
a reaction is less than 1% per time step. However, this implies that 99% of the
time steps are taken just to conclude that nothing happened! This is detrimental to
computational efficiency, which is the second problem with the above algorithm.
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4.2.2 Continuous-Time Simulation

Instead of taking discrete time steps of fixed size�t from t to t +�t , and calculating
the probability that a reaction takes place in that time interval [t, t+�t), a continuous-
time simulation computes the (random) time increment τ until the next reaction takes
place by sampling from the corresponding probability distribution. Afterwards, a
second random number is generated to decide which reaction occurred.

Let us first characterize the relevant probability distribution for τ . Consider a
system with one reaction with propensity α1(t). (Recall that the propensity is time-
dependent due to the time-dependence of the concentrations of the present species.)
Further, denote as f1(t, s)ds the probability, at time t , that the next reaction occurs
in the time interval [t + s, t + s + ds], and denote the probability that no reaction
occurs in the interval [t, t + s] as g1(t, s). We then have

f1(t, s)ds = g1(t, s)α1(t + s)ds = g1(t, s)α1(t)ds, (4.4)

in which we used the fact that α1(t + s) = α1(t) in the absence of reactions,
and independence of individual reaction events. (Then, the probability that the first
reaction occurs in the time interval [t + s, t + s + ds] is given by the product of the
probabilityα1(t +s)ds that there is a reaction in that time interval and the probability
g1(t, s) that no reaction occurred earlier.)

The two quantities f1(t, s) and g1(t, s) are, as for now, unknown. We derive a
differential equation for g1(t, s). We start by observing that the probability of not
having a reaction in the time interval [t, t +s+ds] can bewritten as the product of the
probability of not having a reaction in the time interval [t, t + s] and the probability
of not having a reaction in the time interval [t + s, t + s + ds], i.e.,

g1(t, s + ds) = g1(t, s)(1 − α1(t)ds), (4.5)

from which we obtain

g1(t, s + ds) − g1(t, s)

ds
= −α1(t)g1(t, s). (4.6)

Given that g(t, 0) = 1 (zero probability of having the reaction exactly at time t), we
obtain

g1(t, s) = exp(−α1(t)s), (4.7)

and hence, using (4.4), the probability that the first reaction occurs in the infinitesimal
interval t + s is given by

f1(t, s)ds = α1(t) exp(−α1(t)s)ds, s ≥ 0. (4.8)
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The corresponding cumulative distribution is given as

F1(t, τ ) =
∫ τ

0
f1(t, s)ds = 1 − exp(−α1(t)τ ), τ ≥ 0. (4.9)

(Note that we have F1(t, 0) = 0 and limτ→∞ F1(t, τ ) = 1.)
Now that we know the probability distribution f1(t, s), we are ready to generate

a random time increment τ1(t), sampled from f1(t, s), which we denote as τ1(t) ∼
f1(t, s). Using the transformation method for the generation of random numbers
[7], the increment τ1(t) until the next event of reaction 1 can be computed from a
uniformly distributed random number θ̃1 in (0, 1) via

τ1 = F−1(t, θ̃1) = − 1

α1(t)
log(1 − θ̃1), or τ1 = − 1

α1(t)
log(θ1), (4.10)

with θ1 also a uniformly distributed random number in (0, 1) and F−1(t, θ) the
inverse of the cumulative density F(t, s) with respect to s, treating t as a parameter.

Remark 1 (Markov property) The probability distribution f1(t, s) is called the expo-
nential distribution with rate α1(t). Its main property is that it is memoryless, which
implies that the evolution is completely determined by the current state (and no
information from the past is required). In particular, this implies that, to determine
when the next reaction will occur, it is irrelevant how long the system is already in
its current state. Mathematically, this can be seen by checking that, for any positive
T and τ , we have

Pr(τ1(t) > T ) = Pr(τ1(t) > τ + T |τ1(t) > τ ), (4.11)

i.e., the probability that the next reaction will not occur within a time interval of
length T from the current time, does not depend on the amount of time τ that the
system is already in the current state.

If multiple reactions can occur in the system (as is the case for the Schlögl model
(4.1)), a naive way of proceeding is to generate the next reaction time for each of the
reactions and only select the reaction that occurs first, after which the system clock
is updated and the procedure is repeated. With I possible reactions, this requires
the generation of I exponentially distributed random numbers (independent of the
number of species in the system) to choose a single reaction. This algorithm can be
made much more efficient by making use of the following theorem:

Theorem 2 (Exponential distributions) Consider I exponential distributions fi (t, s)
with rates αi (t), and consider an independent set of random numbers τi (t), each sam-
pled from the corresponding distribution fi (t, s). Let τ (t) be the minimum of these,
τ (t) = mini τi (t). Then, the probability distribution for τ (t) is an exponential dis-
tribution with rate α(t) = ∑

i αi (t). Moreover, the probability that τ (t) = τi (t) (the
probability that the i-th reaction occurs first) is given by αi (t)/α(t).
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Using this theorem, only two random numbers need to be generated per time step:
one to determine the time increment until the next reaction, and one to choose the
next reaction. This gives rise to the following classical algorithm, due to Gillespie
[23], which is immediately written for a system consisting of I reactions:

Algorithm 2 (Stochastic simulation algorithm (SSA) for chemically reacting sys-
tems) Given the concentration Ak at time tk , we compute Ak+1 at time tk+1 as
follows:

1. For each reaction i , compute the propensity αk
i = αi (tk), and compute the total

propensity αk = ∑
i αk

i ;
2. Generate a uniformly distributed random number θk in (0, 1), and compute the

time increment until the next reaction occurs as τ k = − 1
αk log(θ

k),

3. Generate a uniformly distributed random number yk in (0, 1) and select the reac-
tion i for which ∑

j≤i−1

αk
i /α

k ≤ y <
∑
j≤i

αk
i /α

k;

4. Compute Ak+1 by applying the selected reaction i (for instance, if reaction 1 was
selected, we have Ak+1 = Ak + 1).

Again, the algorithm can easily be generalized to systems with multiple species.
We refer to [26] for more details and variants. Here, we only state the main conver-
gence result: the stochastic simulation algorithm (SSA) is exact, in the sense that is
does not contain any time discretization error.

Remark 3 (Acceleration of SSA) While this method is significantly faster than the
time-discrete Algorithm 1 without introducing a time discretization error, the result-
ing algorithm can still be computationally prohibitive, especially in situations with
many chemical reactions with disparate time scales. Consider for instance a system
with a fast, reversible reaction and an irreversible but very slow reaction. In such
a system, most of the time steps will select the fast reversible reaction, resulting in
very small time steps that go back and forth along the fast reaction. More sophisti-
cated algorithms, tailored to these situations, have been developed. These include,
for instance, the τ -leaping method [9, 25], the slow-scale stochastic simulation algo-
rithm [8], and R-leaping [3]. Note, however, that such methods accelerate simulation
at the expense of re-introducing a (small) time-discretization error.

4.2.3 Population-Level Dynamics and Mean-Field
Approximation

In general, repeated simulation of a stochastic process for a chemically reacting sys-
tem yields different results for each stochastic realization. The precise results depend
on the generated sequence of random numbers. Usually, one is not interested in the
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detailed behaviour of such an individual realization, but in quantitative statements
on the mean behaviour and on fluctuations.

In this section, we first derive the chemical master equation, which gives a com-
plete description of the (time-dependent) probability distribution of possible states
for the system. Afterwards, we discuss the potential and limitations of using this
equation to derive information on the statistics of the process.

In the previous sections, we denoted by the random variable A(t) the number
of molecules of type A at time t . Here, we define the deterministic quantity pn(t),
which represents the probability that the system contains exactly n molecules of type
A at time t , i.e.,

pn(t) = Pr(A(t) = n).

In the incremental time interval [t, t +dt), the state can only change by ±1, since all
reactions either create or destroy one molecule of type A. We can use the definition
of the reactions (4.1) to compute pn(t + dt),

pn(t + dt)

= pn(t) + {[k1(n − 1)(n − 2) + k3] pn−1(t)dt + [k2(n + 1)n(n − 1) + k4(n + 1)]pn+1(t)dt}︸ ︷︷ ︸
gain

− {[k1n(n − 1) + k3] + [k2n(n − 1)(n − 2) + k4n]} pn(t)dt︸ ︷︷ ︸
loss

, (4.12)

in which we recognize

• a gain term that expresses the sum of (i) the probability that the system contains
n − 1 molecules at time t and a molecule is produced during the time increment;
and (ii) the probability that the system contains n + 1 molecules at time t and a
molecule is destroyed during the time increment;

• a loss term that expresses the probability that the system contained n molecules at
time t and a molecule is either created or destroyed during the time increment.

Reordering the terms,we get an (infinite-dimensional) systemof ordinary differential
equations, the chemical master equation:

ṗn(t) = [k1(n − 1)(n − 2) + k3] pn−1(t) + [k2(n + 1)n(n − 1) + k4(n + 1)]pn+1(t)

− [k1n(n − 1) + k3 + k2n(n − 1)(n − 2) + k4n] pn(t), n ≥ 0, (4.13)

in which, formally, p−1(t) = 0.
The chemical master equation is equivalent to the stochastic description, but of

limited practical use due to its infinite-dimensional nature. However, it can be used
as a starting point to obtain information on the statistics of the stochastic process.
In general, we denote the expectation of a function of the number of molecules,
f (n), by
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F(t) := E [ f (A(t))] =
∞∑

n=0

f (n)pn(t), (4.14)

which amounts to a weighted average of f , weighted by the probability density for
n.

Let us consider the mean behaviour. The expected number of molecules of type
A in the system at any given time is given by the (deterministic) quantity

M(t) := E [A(t)] =
∞∑

n=0

npn(t). (4.15)

To obtain an ordinary differential equation for the evolution of M(t), we start from
(4.13), and write

Ṁ(t) =
∞∑

n=0

n ṗn(t). (4.16)

Using (4.13), we get

Ṁ(t) =
∞∑

n=0

n ṗn(t)

=
∞∑

n=0

n {[k1(n − 1)(n − 2) + k3] pn−1(t) + [k2(n + 1)n(n − 1) + k4(n + 1)]pn+1(t)

− [k1n(n − 1) + k3 + k2n(n − 1)(n − 2) + k4n] pn(t)} .

We regroup the terms per reaction. We first consider reaction 3, for which we have

∞∑
n=0

k3n (pn−1(t) − pn(t)) = k3

∞∑
n=0

((n + 1)pn(t) − npn(t))

= k3

∞∑
n=0

pn(t) = k3. (4.17)

Next, consider reaction 4. Here, we have

∞∑
n=0

k4n ((n + 1)pn+1(t) − npn(t)) = k4

∞∑
n=0

(
(n − 1)npn(t) − n2 pn(t)

)

= −k4

∞∑
n=0

npn(t) = −k4M(t). (4.18)
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Similarly, we obtain for the reactions 1 and 2,

∞∑
n=0

k1n ((n − 1)(n − 2)pn−1(t) − n(n − 1)pn(t)) = k1

∞∑
n=0

n(n − 1)pn(t), (4.19)

∞∑
n=0

k2n ((n + 1)n(n − 1)pn+1(t) − n(n − 1)(n − 2)pn(t)) = −k2

∞∑
n=0

n(n − 1)(n − 2)pn(t),

(4.20)

resulting in the equation

Ṁ(t) = k3 − k4M(t) + k1

∞∑
n=0

n(n − 1)pn(t) − k2

∞∑
n=0

n(n − 1)(n − 2)pn(t). (4.21)

We notice immediately that the evolution of the mean M(t) does not only depend
on the mean itself, but also on higher-order statistics of the distribution, such as the
second moment

E

[
A(t)2

]
=

∞∑
n=0

n2 pn(t).

We can proceed similarly to derive an evolution equation for the variance

V (t) = E

[
(A(t) − M(t))2

]
. (4.22)

However,we should expect evenhigher ordermoments to appear in the corresponding
righthand side, leading to an infinite cascade. If we want to obtain an evolution law
in terms of only the mean number of molecules M(t), we will therefore be obliged
to resort to an approximation.

Let us now take a more detailed look into the fluctuations around the mean, as
measured by the variance V (t). We are specifically interested in systems with large
numbers of molecules, for which we assume a mean-field approximation to hold.
We therefore introduce a characteristic number of molecules per unit volume N , and
look at the concentrations a(t) = A(t)/N and ρ(t) = M(t)/N . Then, the variance
can be written as

V (t) = 1

N 2E

[
(a(t) − ρ(t))2

]
. (4.23)

We conclude that fluctuations around the mean concentration become negligible
as the number of molecules per unit volume N tends to infinity. In that limit, the
quantized concentration n/N approaches a continuous variable a, and the probability
distribution (pn(t))∞n=0 approaches a continuous probability distribution p(a, t), a ∈
[0,∞). The fact that the fluctuations vanish in that limit implies that p(a, t) =
δM(t)(a), i.e., the concentration a(t) = M(t) almost surely. (We note that the above,



4 Stochastic Modeling and Simulation Methods … 85

0

200

400

600

0 0.5 1 1.5 2

A
(t

)

t
0 10 20 30 40 50

t

Fig. 4.1 Simulation of the Schlögl model (4.1): number of molecules as a function of time for
a single realization of the stochastic simulation, using Algorithm 2 (solid) and the corresponding
mean-field approximation (dashed). Left short time-scale; right long time-scale. Parameter values
are in the text

rather heuristic, reasoning can be turned into a rigorous mathematical theory, see,
e.g., [24].)

Using the above reasoning in the limit when N tends to infinity, one can derive
from Eq. (4.21) the mean-field approximation for ρ(t) as

ρ̇ = k3 − k4ρ + k1ρ
2 − k2ρ

3. (4.24)

From the above derivation, one concludes that stochastic modeling of chemical
reactions is mainly useful when the number of molecules present is not too large. In
that case, results can deviate from the mean-field approximation for two reasons: (i)
stochastic fluctuations around the mean can become important; and (ii) due to the
present nonlinearities, the ensemble average of a large number of systems with a low
number of molecules does not necessarily follow the mean-field behaviour (Fig. 4.1).

4.2.4 Numerical Simulations for the Schlögl Model

Let us now consider system (4.1) with (non-dimensionalized) reaction rates k1 =
0.18, k2 = 2.5 × 10−4, k3 = 2200 and k4 = 37.5. We simulate one realization of a
stochastic simulation using Algorithm 2, as well as a forward Euler simulation of the
mean field Eq. (4.24) with time step �t = 5× 10−3. As an initial condition, we take
A(0) = 0. For the chosen parameter values, Eq. (4.24) has two stable steady state,
A1 = 100 and A2 = 400, and an unstable steady state Au = 220. Thus, the Schlögl
model represents a bistable system. Figure4.1 shows the results. The mean-field
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equation converges to one of the two stable equilibria, depending solely on the initial
condition. When A(0) ∈ [0, Au], the solution converges to A1; when A(0) > Au the
solution converges to A2. On short time-scales (left figure), the stochastic simulation
fluctuates around the stable equilibrium of the mean-field equation. However, over
long time scales (right figure), we notice that the fluctuations cause the system to
occasionally switch between the two steady states. Such occasional switches are
called rare events, and they occur when large fluctuations can occur; for instance,
in gene regulatory networks [20, 28]. If one is interested in quantities such as mean
switching times, one cannot use a mean-field approximation and needs to resort to
stochastic simulation.We refer to [52] for theoretical and computational work related
to stochastic simulation of rare events.

4.3 Stochastic Modeling of Advection-Diffusion Processes

In the previous section, all systemswere assumed to be well mixed, such that only the
temporal evolution of concentrations needed to be considered. In many processes,
however, interesting dynamics arises from spatial heterogeneity. In a biological con-
text, one can, for instance, think of bacterial chemotaxis, tumor growth, or bone
tissue engineering. In this section, we give an overview of individual-based model-
ing techniques for biological systems consisting of moving individuals that are able
to reproduce and die.

In Sect. 4.3.1, we consider the positions of the individuals to be discrete (on a
lattice). We briefly discuss cellular automata and Markov jump processes, and give
references to the corresponding literature. In Sect. 4.3.2, we introduce Brownian
motion and stochastic differential equations (SDEs), which are used for space/time
continuous modeling of random motion. Subsequently, in Sect. 4.3.3, we discuss
the equivalence between the SDE for an individual particle and the (deterministic)
Fokker–Planck equation that describes the evolution of the particle density.

4.3.1 Discrete-Space Modeling

Several techniques exist for the discrete stochastic modeling of biological particles.
We briefly discuss cellular automata and Markov jump processes.

Cellular automata In cellular automata, one considers space to be discretized as a
grid, say �(x) = {xn}N

n=0 in one space dimension. The state is then given as the
number of particles Ak

n at each grid location xn at each discrete moment in time
tk . (Clearly, one can incorporate the presence of particles of multiple types.) The
cellular automaton then defines an evolution law that determines the state Ak+1 =(

Ak+1
n

)N
n=0 at time tk+1 from the state Ak . This evolution law can contain reactions

with associated rates, as in the time-discrete schemes in Sect. 4.2.1. Movement on
the grid can be modeled using hops, which can be seen as a reaction event (with an
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associated reaction rate) in which a particle moves from one lattice site to another.
Then, the algorithmic structure that resulted in Algorithm 1 can be reused to model
advection-diffusion processes [17].

One particularly appealing feature of cellular automata is their modeling flexi-
bility: in defining the evolution laws, any set of rules can be allowed. One can, for
instance, change the rules depending on the number of neighbors, or let the evolution
of individual particles depend on some internal state variable (see also Sect. 4.4). We
refer to [21, 33, 39] for a number of cellular automata models in the context of tumor
growth, and to [12, 31] for examples in bone tissue engineering.

Markov jump processes When keeping a discrete state space, but allowing time to
be continuous, one ends up with a Markov jump process. Consider a particle with
position X (t) that is allow to reside on any position in the lattice�(x). Given that the
current position Xk = xn at time tk , we can introduce a propensityαk

n,m , 1 ≤ m ≤ N ,
such that αk

n,mdt represents the probability that the particle moves from xn to xm in
the infinitesimal time interval [t, t + dt). Then, such a movement can be added to
the table of reactions in Algorithm 2, and the same algorithm can be used.

4.3.2 Stochastic Differential Equations (SDEs)

When space and time are allowed to be continuous, the correspondingmodel becomes
an SDE. In this section, we start from a definition of Brownianmotion (Sect. 4.3.2.1).
We then proceed to the construction of general SDEs in the Itô sense (Sect. 4.3.2.2)
and discuss numerical methods (Sect. 4.3.2.3). We conclude in Sect. 4.3.2.4 with a
numerical example that illustrates the results. The exposition is partly based on [29].

4.3.2.1 Brownian Motion

A scalar standard Brownianmotion essentially describes an unbiased randomwalk in
one space dimension. (Generalizations to multiple space dimensions are, of course,
straightforward.) Thedescription is phenomenological.Wedefine aBrownianmotion
as a random variable W (t), continuous in time t ∈ [0, T ], that satisfies the following
conditions:

1. W (0) = 0 (with probability 1);
2. For 0 ≤ s ≤ t ≤ T , the increment W (t)− W (s) is a normally distributed random

variable with mean 0 and variance t − s, i.e., W (t) − W (s) ∼ √
t − s N (0, 1),

where N (0, 1) denotes a standard normally distributed random variable (with
mean 0 and variance 1);

3. For 0 ≤ s ≤ t ≤ u ≤ v ≤ T are independent.

There are several ways of justifying this definition. One way is to start by defining
a grid �(x) = {−N�x, . . . , 0, . . . , N�x} and letting a particle move one grid cell
to the left or to the right (each with probability 1/2) in each time step of size �t ,
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Fig. 4.2 Realizations of Brownian motion: W (t) as a function of time, using (4.25) with �t =
5 × 10−2

starting at position X (t0) = 0 at time t0 = 0. When choosing �x2 = �t and taking
the limit of �t → 0, we obtain the standard Brownian motion.

To visualize realizations of Brownian motion, we consider time-discretized
Brownian paths, generated as W k ≈ W (tk), with tk = k�t via time-stepping,

W k+1 = W k + √
�tξk, ξk ∼ N (0, 1), (4.25)

where the random numbers ξk are independent and identically distributed (i.i.d.). In
Fig. 4.2, we show 10 realizations of a Brownian motion with �t = 5 × 10−2.

The figure illustrates some properties of Brownian motion. A proper definition of
the probability spaces generated byBrownianmotion is out of the scope of the present
chapter. Let us just suffice by stating that, whenwritingE [·], we imply themeanwith
respect to all possible Brownian paths W (t). It can be proved (see, e.g., [11]) that
the expected value of a Brownian motion E [W (t)] = 0 for any t ∈ [0, T ]. This is
easily seen intuitively, as the Brownian increments do not have a preferred direction.
Moreover, we observe that E

[
W (t)2

] = t . Both properties can easily be proved in
the time-discrete setting of Eq. (4.25) by using the basic rules of probability on the
normal random variables ξk . A final property is that Brownian motion is nowhere
differentiable with probability 1. This can be understood by realizing that

Var

[
W (t + �t) − W (t)

�t

]
= 1

�t2
Var [W (t + �t) − W (t)] = 1

�t
. (4.26)

Note that, whileE[W (t +�t)] = E[W (t)] = 0, we haveE [|W (t + �t) − W (t)|] =
O(�t1/2), which is proportional to the standard deviation.
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4.3.2.2 Itô Stochastic Differential Equations

Often, the evolution of the position X (t) of a particle is composed of a deterministic
(mean) component, supplemented with a stochastic (fluctuating) part, modeled using
a stochastic differential equation of the form

d X (t) = a(X (t))dt + b(X (t))dW (t), X (0) = X0, (4.27)

in which a is called the drift coefficient, b is the diffusion coefficient, W (t) is a
Brownian motion and X0 is the initial condition. For instance, one can consider the
particle to model the position of a bacterium that is biasing its random motion to
favor directions that are in line with the gradient of a chemoattractant. Then, the
drift coefficient a(X (t))models a preferred direction, whereas the second term takes
into account the randomness of the motion. The diffusion coefficient b(X (t)) then
defines, at the position X (t), how strongly the evolution is affected by the Brownian
motion W (t).

Under mild assumptions on a and b, the stochastic differential equation (SDE)
(4.27) has exactly one solution per Brownian path W (t). To obtain this solution, one
first needs to make sense of Eq. (4.27), something that will turn out to be nontrivial.
Consider a classical solution,

X (t) = X0 +
∫ t

0
a(X (s))ds +

∫ t

0
b(X (s))dW (s). (4.28)

The first integral is a well-defined integral with respect to time; the second integral,
however, is not well-defined and we need to be specific about its meaning.

Consider the integral to be defined via a Riemann sum using subintervals
[tk, tk+1], with tk = k�t and 0 ≤ k ≤ K , K�t = t ,

∫ t

0
b(X (s))dW (s) = lim

�→0

K∑
k=1

b(X (sk))�W k, (4.29)

in which �W k = W (tk+1) − W (tk) and sk ∈ [tk, tk+1]. It is now easy to see, using
only standard rules of probability, that the choice of sk has a significant influence on
the value of the integral. (This is due to the fact that W (s) does not have bounded
variations, which is related to (4.26).) The most common interpretation (the Itô
interpretation) is obtained by choosing sk = tk , i.e., a left-point rule. In that case,
we have

E

[∫ t

0
b(X (s))dW (s)

]
= lim

�→0

K−1∑
k=0

E

[
b(X (tk))�W k

]

= lim
�→0

K−1∑
k=0

E

[
b(X (sk))

]
E

[
�W k

]
= 0,



90 A. Lejon and G. Samaey

where the first equality is due to the definition of the Itô integral and the linearity of
the expectation, the second equality is due to independence of b(X (tk)) and �W k ,
and the last equality is due to the definition of Brownian motion.

A second popular interpretation (the Stratonovich interpretation) of (4.29) is
obtained when choosing sk = (tk + tk+1)/2. It is clear that the above reasoning
then can no longer be used, as b(X (sk)) cannot be independent of �W k . The result-
ing stochastic integral will then, in general, take a different value. We denote the
Stratonovic integral as ∫ t

0
b(X (s)) ◦ dW (s)

and compute, as an example,

E

[∫ t

0
W (s) ◦ dW (s)

]
= lim

�→0

K−1∑
k=0

E

[
W ((tk + tk+1)/2)�W k

]
.

To compute this integral, we need to evaluate W ((tk + tk+1)/2). It can be shown that
this quantity is statistically equivalent to the quantity

W (tk) + W (tk+1)

2
+ �Zk,

in which �Zk ∼ N (0,�t/4) and independent of W (tk) and W (tk+1). We can thus
replace W ((tk + tk+1)/2 by this alternative in computing the expectation, and we
obtain

E

[∫ t

0
W (s) ◦ dW (s)

]
= lim

�→0

K−1∑
k=0

(
E

[(
W (tk) + W (tk+1)

2

)
�Wk

]
+ E

[
�Zk�W k

])
.

Since�Zk and�W k are independent, the second term is zero, and we continue with
only the first term:

E

[∫ t

0
W (s) ◦ dW (s)

]
= lim

�→0

K−1∑
k=0

E

[(
W (tk) + W (tk+1)

2

)(
W (tk+1) − W (tk)

)]

= lim
�→0

1

2

K−1∑
k=0

E

[(
W (tk+1)

)2 −
(

W (tk)
)2] = 1

2
(W (t))2 ,

which is clearly different from the corresponding Itô integral (which is zero). For
more details, we refer to [29] and references therein. In this chapter, we will always
work with the Itô interpretation.

If W (t) does not have bounded variations, then neither does X (t). Consequently,
also X (t) will be nowhere differentiable (with probability 1). In particular, we have
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E [|X (t + �t) − X (t)|] = O(�t1/2).

Remark 4 (Further reading)Wehave deliberately kept the introduction onSDEsvery
brief. For more information, we refer the interested reader to the excellent books [19,
34].

Remark 5 (Reproduction and death) Tomodel individuals that are also able to repro-
duce and die, one needs to add a (potentially stochastic) process that determines for
each individual the moment at which it reproduces (and thus generates an additional
individual) or dies (and is therefore removed from the system). To this end, one can,
for instance, use the Markov processes that were discussed in Sect. 4.2 in the context
of chemical reactions. Section4.7 will contain additional modeling techniques that
are of a more mechanistic nature.

4.3.2.3 Euler-Maruyama Method

Once an SDE model is obtained for a specific problem, a (numerical) solution
needs to be computed. The most straightforward way to discretize an SDE of the
type (4.27) is by using the stochastic extension of the forward Euler method, called
Euler-Maruyama,

Xk+1 = Xk + a(Xk)�t + b(Xk)�W k, (4.30)

in which �t is the time step, and �W k is sampled from a normal distribution with
zero mean and variance �t , i.e., �W k ∼ N (0,�t). The scheme can equivalently be
written as

Xk+1 = Xk + a(Xk)�t + b(Xk)
√

�tξk, (4.31)

with ξk ∼ N (0, 1).
For a deterministic system, the convergence behaviour of the forward Euler

method can be derived is a straightforward manner: given the numerical solution
X K ≈ X (t K ), the error X K − X (t K ) can be bounded as

∣∣∣X K − X (t K )

∣∣∣ ≤ C�t,

where K and �t are varied simultaneously such that K�t = t∗.
In the SDE case, this is no longer true. In fact, since both the numerical solution

X K and the exact solution X (t K ) are random, only statistical statements can be
made about the numerical error. One can immediately come up with two different
definitions. We can define the strong error at time t K as

eK
�t = E

[∣∣∣X K − X (t K )

∣∣∣
]
, (4.32)
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i.e., the expectation of the absolute value of the error on individual trajectories. Since
it measures the “mean of the error”, averaged over all possible Brownian motions,
the strong error gives an indication on the size of the error on an individual trajectory
(defined by the Brownian path that generated it). Alternatively, one can define the
weak error as

E K
�t =

∣∣∣E
[

X K
]

− E

[
X (t K )

]∣∣∣ , (4.33)

or, more generally, for an arbitrary function f in an appropriate function class,

E K
�t [ f ] =

∣∣∣E
[

f (X K )
]

− E

[
f (X (t K ))

]∣∣∣ , (4.34)

i.e., the error in the expectation of the function f when computed using time-
discretized trajectories.

In general, these types of error are not the same, and also the order of convergence
(as a function of �t) differs. For the Euler-Maruyama method, we have

eK
�t ≤ C�t1/2, E K

�t ≤ C�t, (4.35)

i.e., the Euler-Maryama method has a strong order 1/2 and a weak order 1. Proving
these orders would lead us too far. In this chapter, we simply illustrate this result
numerically (see Sect. 4.3.2.4).

Remark 6 (Stability) The order of convergence of the Euler-Maruyamamethod only
gives information on the asymptotic behavior of the error as �t tends to zero. In
practice, one will always take a finite time step. In that case, one needs the time step
to be such that the Euler-Maruymama method is stable, i.e., loosely speaking, one
needs to ensure that the numerical solution does not blow up for the chosen value
of �t when the exact solution remains bounded. While stability of time integration
is a relatively straightforward concept for deterministic ODEs [27], this is no longer
true for SDEs. As for convergence, multiple definitions of stability exist, see, e.g.,
[29, 32] for more details.

Remark 7 (Higher-order methods) Due to the presence of stochastic integrals, the
definition of higher-order methods for SDEs is far more complicated than for ODEs.
We refer to [32] for details.

4.3.2.4 Numerical Example: Geometric Brownian Motion

To illustrate the most important concepts in the previous sections, we perform
some numerical experiments on a simple linear SDE, namely a geometric Brownian
motion,

d X (t) = λX (t)dt + μX (t)dW (t), (4.36)
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Fig. 4.3 Simulations of a geometric Brownian motion (4.36). Top left a single trajectory using the
Euler-Maruyamamethod (4.31)with time step�t = 1/28 (solid), compared to the exact solution for
the same Brownian path (dashed); Top right four individual trajectories (dashed) and the empirical
average of M = 1000 trajectories; Bottom left strong error of Euler-Maruyama as a function of �t
(solid), compared to the predicted strong order 1/2 (dashed); Bottom right weak error of Euler-
Maruyama as a function of�t (solid), compared to the predicted weak order 1 (dashed). Remaining
parameters are in the text

which we discretize with the Euler-Maruyama method (4.31) with time step �t . For
this SDE, an exact solution is known analytically (given the Brownian path W (t)),
and given by

X (t) = X0 exp
((

λ − μ2/2
)

t + μW (t)
)

. (4.37)

In our experiments, we choose λ = 2, μ = 1 and X (0) = X0 = 1 with probability
1. The example is based on [29], in which also Matlab code can be found.

We first compare, for a single realization of W (t), the exact solution X (t) with

the numerical solution
(
Xk

)K
k=0, with Xk obtained via Euler-Maruyama (4.31) with

time step �t = 1/25 on the time interval t ∈ [0, 1] (hence K�t = 1). The results
are shown in Fig. 4.3, top left. We clearly see a discretization error.

To quantify this discretization error, we repeat the simulation for M = 1000 real-
izations of the Brownian path, (Wm(t))M

m=1, resulting in M trajectories (Xm(t))M
m=1,

and compute an approximation to the strong and weak errors (4.32) and (4.33) as
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êK
�t = ÊM

[∣∣∣X K − X (t K )

∣∣∣
]

= 1

M

M∑
m=1

∣∣∣X K
m − Xm(t K )

∣∣∣ , (4.38)

Ê K
�t = ÊM

[
X K

]
− Ê

[
X (t K )

]
= 1

M

∣∣∣∣∣
M∑

m=1

(
X K

m − Xm(t K )
)∣∣∣∣∣ . (4.39)

To achieve this, we first generate Brownian paths with time step �t = 1/29, and
subsequently use these Brownian paths to perform Euler-Maruyama simulations
with time step R�t , R = 1, 2, 4, 8, 16. The results are shown in Fig. 4.3, bottom.
We clearly observe the predicted theoretical strong order 1/2 and weak order 1.

Remark 8 (Statistical error) The estimates (4.38) and (4.39) contain statistical error
due to the finite number M of realizations. The problem and method parameters
have been chosen such that this statistical error is negligible with respect to the time
discretization error.

Finally, we look at the evolution of F(t) := E[X (t)] as a function of time. Being
the expectation of the (time-dependent) random variable X (t), F(t) is a deterministic
function of time. Figure4.3 shows that F(t) (unlike X (t)) is a smooth, differentiable
function of time. This observation will be elaborated in the next section.

4.3.3 Population-Level Dynamics and Fokker-Planck
Equation

Usually, one is not interested in the detailed stochastic behaviour of a single individual
(cell, bacterium), but rather in the evolution of a large population of such cells.
One then has given an initial density ρ0(x) of individuals as a function of space
x ∈ D ⊂ R, with D the domain. We interpret ρ0(x) as a probability density (this
can always be done with a proper normalization), i.e., for an individual particle with
position X0 at time t = 0, we have

Pr(x ≤ X0 < x + dx) = ρ0(x)dx .

Note that lowercase x represents a possible position in the domain D, whereas upper-
case X denotes the (random) position of an individual cell.

Each of the individuals behaves according to (4.27), generating a path X (t). The
question then becomes: defining the time-dependent density ρ(x, t) as

Pr(x ≤ X (t) < x + dx) = ρ(x, t)dx,
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can one obtain a corresponding evolution equation for ρ(x, t)? In this section, wewill
show that ρ(x, t) satisfies a advection-diffusion partial differential equation (PDE),
the Fokker-Planck equation. We perform the derivation only for a pure Brownian
motion, after which we simply state the result for the general SDE (4.27). Our
exposition closely follows [11].

In the pure diffusion case, we start from a (scaled) Brownian motion,

d X (t) = bdW (t), (4.40)

with a constant scaling parameter b > 0.
Given the probability densityρ(x, t) at time t , we canwrite the densityρ(x, t+�t)

at time t + �t as

ρ(x, t + �t) =
∫ ∞

−∞
ρ(x + y, t) · ψ(x, y,�t)dy, (4.41)

where the transition probability kernel ψ(x, y,�t) is the probability of ending up
at position x at time t + �t , given that one started at position x + y at time t , i.e.,

ψ(x, y,�t) = Pr(X (t + �t) ∈ [x, x + dx]|X (t) ∈ [x + y, x + y + dx]) (4.42)

Eq. (4.41) states that the probability of finding a particle at position x at time t + �t
is equal to the probability of finding the particle at position x + y at time t , multiplied
by the probability of moving from x + y to x during the time step of size�t , and this
integrated over every possible value of y (i.e., integrated over every possible position
x + y at time t).

Remark 9 (Notation) It may seem odd to introduce the auxiliary variable y, instead
of simply integrating over all possible original positions z = x + y. This is done
because we intend to make a Taylor expansion of ρ(x + y, t) around ρ(x, t).

Let us nowobtain an expression forψ(x, y,�t).Weknow that−y is the increment
that was generated to move from x + y to x . This increment is normally distributed
with mean 0 and variance b2�t , and therefore,

ψ(x, y,�t) = 1

b
√
2π�t

exp

(
− y2

2b2�t

)
. (4.43)

Now, we are ready to expand Eq. (4.41) by performing a Taylor expansion of
ρ(x + y, t) around ρ(x, t),

ρ(x + y, t) = ρ(x, t) + y∂xρ(x, t) + y2

2
∂xxρ(x, t) + h.o.t. (4.44)
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in which h.o.t. stands for “higher order terms”. This leads to

ρ(x, t + �t) =
∫ ∞

−∞
ρ(x, t)ψ(x, y,�t)dy +

∫ ∞

−∞
y∂xρ(x, t)ψ(x, y,�t)dy

+
∫ ∞

−∞
y2

2
∂xxρ(x, t)ψ(x, y,�t)dy + h.o.t.

= ρ(x, t)
∫ ∞

−∞
ψ(x, y,�t)dy

︸ ︷︷ ︸
I1

+ ∂xρ(x, t)
∫ ∞

−∞
yψ(x, y,�t)dy

︸ ︷︷ ︸
I2

+ 1

2
∂xxρ(x, t)

∫ ∞

−∞
y2ψ(x, y,�t)dy

︸ ︷︷ ︸
I3

+ h.o.t.. (4.45)

We will now separately look into each of the terms I1,2,3. First, we have

I1 = 1, (4.46)

since ψ(x, y,�t) is independent of x and a probability density for y. Next, we have

I2 = 0, (4.47)

since y is an odd function and ψ(x, y,�t) is even. Finally, we obtain

I3 = Var [y] = b2�t, (4.48)

in whichVar [y] is to be interpreted as the variance of y with respect to the probability
density ψ. This leads to

ρ(x, t + �t) = ρ(x, t) + b2

2
�t∂xxρ(x, t) + h.o.t., (4.49)

which is a time-discretized version of the diffusion equation. Taking the limit of
�t → 0, we obtain the desired result:

∂tρ(x, t) = b2

2
∂xxρ(x, t). (4.50)

Thus, the density evolves according to the diffusion equation. This is to be
expected, as the particles have no preferred direction andwill therefore spread evenly.
This derivation explains why the Brownian motion is also called a diffusion process.

In the more general case of the SDE (4.27), the drift term will introduce a system-
atic bias in the motion of individual particles, resulting in an advective behaviour of
the density ρ(x, t). It can be shown that, in that case, the density ρ(x, t) satisfies the
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advection-diffusion equation

∂tρ(x, t) + ∂x (a(x)ρ(x, t)) = 1

2
∂xx

(
(b(x))2 ρ(x, t)

)
. (4.51)

We refer to [19, 34] for details.

4.4 More Realistic Microscopic Processes

Whereas stochastic differential equations are useful to describe a wide range of sto-
chastic processes in biological applications, they remain in essence phenomenologi-
cal, and thus descriptive.Even if thesemodels havepredictive power, it is often impos-
sible to use such models for a detailed understanding of the mechanism that generate
the dynamics. In this section, we therefore discuss more mechanistic velocity-jump
processes and their relation to bacterial chemotaxis. The section follows the same
structure as that of the previous sections: we first discuss the stochastic individual-
based model (Sect. 4.4.1), after which we continue with an equivalent continuum
description (Sect. 4.4.2). In Sect. 4.4.3, we relate the resulting stochastic processes
with the SDEs of Sect. 4.3.2, and we conclude with some bibliographical remarks
on generalizations in Sect. 4.4.4.

4.4.1 Velocity-Jump Processes for Bacterial Chemotaxis

Generally, the motion of flagellated bacteria consists of a sequence of run phases,
during which a bacterium moves in a straight line at constant speed. The bacterium
changes direction in a tumble phase, which is typically much shorter than the run
phase and acts as a reorientation. Hence, the motion of an individual bacterium
can be modeled as a velocity-jump process. To bias movement towards regions
with high concentration of chemoattractant, the bacterium adjusts its turning rate
to increase, resp. decrease, the chance of tumbling when moving in an unfavorable,
resp. favorable, direction [2, 50]. The velocity-jumpmodels described here are based
on [15] and [44, 45].

We consider bacteria that are sensitive to the concentration of a chemoattractant
S(x) ≥ 0 for x ∈ R

d , where x is the present position of the bacterium. While we
do not consider time dependence of chemoattractant via production or consumption
by the bacteria, a generalization to this situation is straightforward, at least for the
definition of the models and the numerical method. Bacteria move with a constant
speed v (run), and change direction at random instances in time (tumble), in an
attempt to move towards regions with high chemoattractant concentrations.
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The position of an individual bacterium is given by X (t), its velocity is

dXc(t)

dt
= εVc(t), Vc(t) ∈ V = S

d−1,

with Sd−1 the unit sphere inRd . Hence, Vc(t) represents the direction and the scaling
parameter ε > 0 represents the size of the velocity. (The reason for the introduction
of the subscript c will become clear in Sect. 4.6.) The velocity of each bacterium
is switched at random jump times (T k

c )k≥1 that are generated via a Poisson process
with a time dependent turning rate λε

c(x, v) that depends on the bacterium’s current
position and velocity. The new velocity at time T k

c is generated at random according
to a centered probability distributionM(dv) with

∫
vM(dv) = 0, typically

M(dv) = σSd−1(dv),

where σSd−1 is the uniform distribution on the unit sphere.
The turning rate is assumed to satisfy

0 < λmin ≤ λε
c(x, v) ≤ λmax, (4.52)

as well as, for small values of ε,

λε
c(x, v) := λ0 − ε AT

ε (x)v + O(ε2). (4.53)

Typically, λε
c(x, v) is a function of ∇S(x), so that the model (4.53) may describe a

large bacterium that is able to directly sense chemoattractant gradients. When the
turning rate (4.53) is proportional to∇S(x)v, it can be interpreted as follows: the rate
at which a bacterium will change its velocity direction depends on the alignment of
the velocity with the gradient of the chemoattractant concentration ∇S(x), resulting
in a transport towards areas with higher chemoattractant concentrations.

The resulting stochastic process can be written as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dXc(t)

dt
= εVc(t),

∫ T k+1
c

T k
c

λε
c(Xc(t), Vc(t))dt = θk+1,

Vc(t) = Vk for t ∈ [T k
c , T k+1

c ] ,

(4.54)

with initial condition X (0),V(0) ∈ R
d . In (4.54),

(
θk
)

k≥1 denote i.i.d. random

variables with normalized exponential distribution, and
(Vk

)
k≥1 denote i.i.d. random

variables with distribution M(dv).
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4.4.2 Population-Level Dynamics and Kinetic Equations

At the population level, there are two main differences with respect to the Fokker-
Planck Eq. (4.51) for SDEs. First, the stochastic process is written in terms of posi-
tions x and velocities v, implying that the density of interest will be a density
pc(x, v, t) in position-velocity phase space. Second, the stochastic process is dis-
continuous in the velocity component, which will result in a “collision operator” that
models the discontinuous velocity changes probabilistically.

The resulting evolution equation for the density pc(x, v, t) turns out to be a
Boltzmann equation with BGK-type collision operator,

∂t pc + εv · ∇x pc = (
R(λε

c p) − λε
c pc

)
, (4.55)

where

R(pc) :=
∫
V

pc(·, v, ·)M(dv)

is the operator integrating velocities with respect toM, and λε
c is defined as in (4.53).

We will not derive this equation here, but instead refer the interested reader to [18]
for the derivation of master equations associated to Markov jump processes. Here,
we suffice by pointing out that the advection termmodels the effect of the velocity on
positions, and the righthand side models the effect of the random velocity changes.

4.4.3 Coarse-Graining and Approximate Macroscopic
Descriptions

The explicit modeling of these individual velocity changes is necessary to have a bio-
logically relevant mechanistic description of bacterial motion. In general, however,
one is not really interested in the detailed phase-space distribution pc(x, v, t), but
rather in the the position density ρc(x, t) = R(pc(x, v, t)), and this for (at least) two
reasons: (i) it is usually impossible to obtain experimental data on the velocity distrib-
ution of the bacteria; and (ii) the bacteria typically travel only a microscopic distance
between velocity changes, such that the observedmacroscopicmotion is the averaged
effect on long time scales of a large number of velocity changes. One can expect the
position density ρc(x, t) to satisfy a partial differential equation advection-diffusion
type, such as (4.51). The velocity-jump process (4.54) and the advection-diffusion
SDE (4.27) are therefore related.

To consider the behaviour of Eq. (4.55) on long time scales and for small bacterial
velocities, we let ε tend to 0 and introduce the rescaled time t̄ = tε2. (Then, when
t̄ is O(1), this corresponds to a physical time t that is O(1/ε2).) In that case, the
position density ρc(x, t) satisfies the advection-diffusion PDE
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∂t̄ρc = 1

λ0
divx (D∇xρc − D A0(x)ρc) , (4.56)

in which the diffusion matrix is given by the covariance of the Maxwellian distribu-
tion,

D =
∫
Sd−1

v ⊗ vM(dv) ∈ R
d×d . (4.57)

We refer to [35] for justifications of this result based on Hilbert expansions. The
result implies that the position density obtained via (4.56) and via (4.55) are the
same in the limit when ε tends to 0.

Additionally, it is shown in [45] that the position Xc(t̄) of an individual trajectory
generated by the stochastic process (4.54) converges to a trajectory of the SDE

dXc(t̄) = D A0(Xc(t̄))

λ0 dt̄ +
(
2D

λ0

)1/2

dW (t̄), (4.58)

where t̄ �→ Wt̄ is a standard Brownian motion, as ε tends to zero. (Note that this
second result implies the convergence of the position densities to a solution of (4.56),
but not vice versa.)

4.4.4 Further Comments and Remarks

The main modeling limitation of the models discussed so far is that they deal with
non-interacting particles, i.e., every individual follows its own stochastic path, inde-
pendently of all other individuals present. Many generalizations exist to introduce
interactions between particles, either as two-particle collision operators, via long-
range interactions or via interactions of individual particles with the position density.
Giving an overview of all these generalizations would lead too far. We refer to the
two excellent books [49] and [40] and references therein.

4.5 Monte Carlo Simulation and Variance Reduction

4.5.1 The Need for Monte Carlo Simulation

In most situations, we are interested in the evolution of a large population of individ-
uals (cells, bacteria). To simulate this evolution, two courses of action are possible:

• a (stochastic) Monte Carlo simulation of an ensemble of M realizations of the
stochastic process (such as (4.27) or (4.54)), from which information on the pop-
ulation density can be obtained using histograms or kernel density estimation
[47, 48];
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• A deterministic (grid-based) simulation of the corresponding PDE (such as (4.51)
or (4.55)).

Both options have advantages and drawbacks. The clear drawback of a Monte
Carlo simulation is the appearance of statistical error on the obtained population
density, which is absent in a deterministic simulation—the variance on the obtained
result being of the order of O(1/

√
M) [7]. The drawback of a grid-based simulation

is that the computational cost of mesh refinement depends crucially on the number of
dimensions of the PDE. Considering a system of particles in 3 spatial dimensions, the
kinetic equation (4.55) is a 6-dimensional PDE. Doubling the number of mesh points
in each spatial dimension already increases the total number of unknowns by a factor
of 26, even if one can still take the same time step. In contrast, the computational
cost of refining a Monte Carlo simulation is independent of the dimension of the
problem: one can simply augment the number M of simulated particles.

In more realistic applications, the computational complexity of the PDE-based
description can be even higher, due to several reasons. When particles also have
internal state, the dimension of the kinetic equation (4.55) increases even further (see
Sect. 4.6). Moreover, if the particles are interacting, the collision operator becomes
non-local, requiring the evaluation of an integral over velocity space at each spatial
mesh point. The situation becomes even more difficult when particles experience
long-range interactions.

4.5.2 Variance Reduction Techniques

Because of the problems associated with simulating high-dimensional PDEs, Monte
Carlo simulation is a viable alternative, provided one can control the variance of
the simulation. As a consequence, there exists a large literature on variance reduc-
tion techniques. The most popular techniques can roughly be categorized in two
classes: importance sampling and the use of a control variate. These techniques are
well-established in the computation of integrals with respect to a known probability
distribution, see [7] and references therein.

In importance sampling, the key idea is to adaptively sample the density of interest
using weighted particles, such that more particles are placed (with correspondingly
lower weights) in regions in which the variance is expected to be higher. Goal is to
obtain a variance that is evenly distributed over the computational domain. With a
control variate, the key idea is to compute an approximation to the quantity of interest
deterministically based on the solution of a related but simpler problem, for instance
analytically or by numerically solving a PDE of lower dimension. One then uses
the Monte Carlo only to sample the correction with respect to the deterministically
computed quantity.

Several research groups are currently working along these lines to develop hybrid
Monte Carlo/PDEmethods.We refer to [13, 14] and related papers and to [1, 42] and
related papers in the context of the Boltzmann equation, and to [4] for an example in



102 A. Lejon and G. Samaey

the context of radiation transport. We have developed a strategy based on a control
variate [44] that will be detailed for bacterial chemotaxis in Sect. 4.6. A related
method that we are currently developing for tumor growth will be discussed in
Sect. 4.7.

4.6 Application 1: Bacterial Chemotaxis

As a first application, we return to bacterial chemotaxis, which was also used in
Sect. 4.4.1. Sincemany species are unable to sense chemoattractant gradients reliably
due to their small size, adjustment of their turning rate to bias motion in favorable
directions is often done via an intracellular mechanism that allows the bacterium
to retain information on the history of the chemoattractant concentrations along its
path [6]. The resulting model, which will be called the “internal state” or “fine-scale”
model in this text, can be formulated as a velocity-jump process, combined with an
ordinary differential equation (ODE) that describes the evolution of an internal state
that incorporates this memory effect [16]. The probability density distribution of the
velocity-jump process evolves according to a kinetic equation, in which the internal
variables appear as additional dimensions. A direct deterministic simulation of this
equation is therefore prohibitively expensive, and one needs to resort to a stochastic
particle method.

Unfortunately, a direct fine-scale simulation using stochastic particles presents a
large statistical variance, even in the diffusive asymptotic regime when ε is small. In
that regime, the bacterial density of the fine-scale model is known explicitly to satisfy
a Keller-Segel advection-diffusion equation. Consequently, it is difficult to assess
accurately how the solutions of the fine-scale model differ from their advection-
diffusion limit in intermediate regimes.

In this section, we discuss a numerical method to simulate individual-based mod-
els for chemotaxis of bacteria with internal dynamics with reduced variance, intro-
duced in [44]. The variance reduction is based on a coupling technique (control
variate): the main idea is to simultaneously simulate, using the same random num-
bers, a simpler, “coarse” process where the internal dynamics is replaced by a direct
“gradient sensing” mechanism (see [2, 38, 41] for references on such gradient sens-
ing models). The probability density of the latter satisfies a kinetic equation without
the additional dimensions of the internal state, and converges to a similar advection-
diffusion limit as the model with internal state, see e.g. [10, 35, 37, 45]. The precise
coarse model will be (4.54) with a suitable choice for Aε(x) in (4.53) (see later),
such that the coarse and fine-scale model have exactly the same advection-diffusion
limit.

We first discuss the fine-scale model with internal dynamics in Sect. 4.6.1. The
model is a simplification (for expository purposes) of the more general model in
[44, 45]. We describe the variance reduction technique in detail in Sect. 4.6.3. Some
numerical results are given in Sect. 4.6.4. A detailed analysis of the method can be
found in [44].
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4.6.1 Bacterial Chemotaxis with Internal State

Weagain consider bacteria that are sensitive to the concentration of a chemoattractant
S(x) ≥ 0 for x ∈ R

d . As in Sect. 4.4.1, the bacteria follow a velocity-jump process
in which X (t) is the position of an individual bacterium, and the normalized velocity
is given by

dX (t)

dt
= εV (t), V (t) ∈ V = S

d−1,

with S
d−1 the unit sphere in R

d . Hence, V (t) represents the direction and the
parameter ε represents the size of the velocity. The difference with respect to the
process (4.54) with direct gradient sensing is in the definition of the turning rate.
As in [15], the turning rate is made to depend upon an internal state y ∈ Y ⊂ R

of each individual bacterium, which models the memory of the bacterium and is
subject to an evolution mechanism attracted by the chemoattractant concentration
S(x). (The model in [44, 45] is more general and can take into account multiple
chemoattractants and higher-dimensional internal states.)

The internal state adapts to the local chemoattractant concentration through an
ODE,

dY (t)

dt
= Fε(Y (t), S(X (t)), (4.59)

which is required to have a unique fixed point y∗ = S(x∗) for every fixed value
x∗ ∈ R

d . We also introduce the deviations from equilibrium Z(t) = S(X (t))−Y (t).
The velocity of each bacterium is switched at random jump times (T k)k≥1 that

are generated via a Poisson process with a time dependent rate given by λ(Z(t)),
where z �→ λ(z) is a smooth function satisfying

0 < λmin ≤ λ (z) ≤ λmax, (4.60)

as well as (for small values of z),

λ(z) = λ0 − bz + cλO
(|z|γ) , (4.61)

with b ∈ R, γ ≥ 2. As before, the new velocity at time T k is generated at ran-
dom according to a centered probability distribution M(dv) with

∫
vM(dv) = 0,

typically
M(dv) = σSd−1(dv),

where σSd−1 is the uniform distribution on the unit sphere.
The resulting fine-scale stochastic evolution of a bacterium is then described by

the following differential velocity-jump equation,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX (t)

dt
= εV (t),

dY (t)

dt
= Fε(Y (t), S(X (t))),∫ T k+1

T k
λ(Z(t))dt = θk+1, with Z(t) := S(X (t)) − Y (t),

V (t) = Vk for t ∈ [T k, T k+1) ,

(4.62)

with initial condition X (0) ∈ R
d , Y (0) ∈ R and T 0 = 0. In (4.62),

(
θk
)

k≥1 denote

i.i.d. random variables with normalized exponential distribution, and
(Vk

)
k≥1 denote

i.i.d. random variables with distributionM(dv).
In the numerical experiments, we will use a specific example, adapted from [15].

For the internal dynamics (4.59), we choose a linear equation

dy

dt
= S(x) − y

τ
= z

τ
. (4.63)

For the turning rate z �→ λ(z), we choose the following nonlinear strictly decreasing
smooth function

λ(z) = 2λ0

(
1

2
− 1

π
arctan

( π

2λ0 z
))

. (4.64)

The probability distribution density of the fine-scale process with internal state at
time t with respect to the measure dx M(dv) dy is denoted as p(x, v, y, t), suppress-
ing the dependence on ε for notational convenience, and evolves according to the
Kolmogorov forward evolution equation (or master equation). In the present context,
the latter is the following kinetic equation

∂t p + εv · ∇x p + divy (Fε(x, y)p) = λ (S(x) − y) (R(p) − p) , (4.65)

where

R(p) :=
∫
V

p(·, v, ·)M(dv)

is again the operator integrating velocities with respect toM.

4.6.2 Relation Between Fine-Scale and Coarse Process

In [45], it is shown, using probabilistic arguments, that, in the limit ε → 0, both
the equation for the coarse process (4.55) and the equation for the process with
internal state (4.65) converge to an advection-diffusion limit on diffusive time scales.
Convergence is to be understood pathwise, i.e., in the sense of individual trajectories.

For the coarse process, this result has already been stated, see Sect. 4.4.3.
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In the same way, a standard probabilistic diffusion approximation argument can
be used to derive the pathwise diffusive limit of the process with internal state (4.62),
see [45]. For ε → 0, the process t̄ �→ X ε(t̄), solution of (4.62), converges
towards an advection-diffusion process, satisfying the stochastic differential equation
(SDE) (4.58), where A0 originates from

A0(x) = b lim
ε→0

τ

λ0τ + 1
∇S(x), (4.66)

in which b, τ , and λ0 were introduced in (4.61)–(4.63) as parameters of the process
with internal state. Again, the diffusion matrix D is given by the covariance of the
Maxwellian distribution (4.57).

Introducing the bacterial density of the process with internal state as

ρ(x, t) =
∫
Y

∫
V

p(x, v, y, t)M(dv)dy, (4.67)

this implies that the evolution of ρ converges to (4.56) on diffusive time scales in the
limit of ε → 0.

4.6.3 Asymptotic Variance Reduction

As discussed in Sect. 4.5, obtaining the position density of bacteria by solving the
kinetic equation (4.65) over diffusive time scales can be cumbersome, due to the
additional dimensions associated with the internal state. The alternative is to use
to stochastic particles. However, a particle-based simulation of Eq. (4.65) is subject
to a large statistical variance of the order O(M−1/2), where M is the number of
simulated particles. Additionally, the asymptotic analysis shows that the position
bacterial density approaches an advection-diffusion limit (4.56) when ε → 0; more-
over, this advection-diffusion limit is shared with a simpler, coarse model without
internal dynamics. Consequently, to accurately assess the deviations of the process
with internal state (4.62) as compared to its advection-diffusion limit (for small but
non-vanishing (intermediate) values of ε), the required number of particles needs
to increase substantially with decreasing ε, which may become prohibitive from a
computational point of view.

The idea that will be discussed here is to construct a hybrid method, based on the
principle of control variates, that couples the process with internal dynamics with
the coarse process, which is simulated simultaneously using a grid-based method.
The stochastic particles are then only used to perform a Monte Carlo simulation of
the deviations of the model with internal state with respect to the coarse model.

To explain the method, let us first assume that we are able to compute the exact
solution of the kinetic equation for the coarse process, (4.55), with infinite precision
in space and time. From now on, we will refer to (4.55) as the control process as it
is used as a control variate. (This explains the addition of the subscript c.)
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The algorithm of asymptotic variance reduction is based on a coupling between an
ensemble of realizations evolving according to the process with internal state (4.62),
denoted as

{Xm(t), Vm(t), Ym(t)}M
m=1 ,

and an ensemble of realization of the control process (4.54), denoted as

{
Xm,c(t), Vm,c(t)

}M
m=1 .

We denote the empirical measure of the particles with internal state in position-
velocity space as

μM
t̄ (x, v) = 1

M

M∑
m=1

δXm (t̄/ε2),Vm (t̄/ε2),

and, correspondingly, the empirical measure of the control particles as

μM,c
t̄ = 1

M

M∑
m=1

δXm,c(t̄/ε2),V m,c(t̄/ε2),

with δx,v the Dirac delta centered at (x, v). (These empirical measures can be inter-
preted as a discrete particle approximation to the phase-space density of the bacteria.)

A coupling between the two ensembles is obtained by ensuring that both sim-
ulations use the same random numbers (θk)k≥1 and (Vk)k≥0, which results in a
strong correlation between (Xm(t), Vm(t)) and (Xm,c(t), Vm,c(t)) for each realiza-
tion. Simultaneously, the kinetic equation for the control process (4.55) is also solved
using a deterministic method (which, for now, is assumed to be exact). We formally
denote the corresponding semi-group evolution (a formal description of the exact
solution) as

et̄ Lc , with Lc(pc) = −εv · ∇x pc + (
R(λε

c pc) − λε
c pc

)
.

Besides the two particle measures μM
t̄ and μM,c

t̄ , we denote by μM
t̄ the variance

reduced measure, which will be defined by the algorithm below. Since, with increas-
ing diffusive time, the variance of the algorithm increases due to a loss of coupling
between the particleswith internal state and the control particles, the variance reduced
algorithm will also make use of a reinitialization time step δtri , which is defined on
the diffusive time scale. The corresponding time instances are denoted as t̄� = �δtri

on the diffusive time scale, or equivalently, on the original time scale as t� = �δtri/ε
2.

Starting from an initial probability measure μ0 at time t = 0, we sample μ0 to
obtain the ensemble {Xm(t), Vm(t), Ym(t)}M

m=1, corresponding to μM
0 , and then set

μM,c
0 := μM

0 , i.e., Xm,c(0) = Xm(0) and Vm,c(0) = Vm(0) for all m = 1, . . . , M .
Furthermore, we set the variance reduced estimator as μM

0 := μ0 = E(μM
0 ). We then

use the following algorithm to advance from t̄� to t̄�+1, (see also Fig. 4.4):
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Fig. 4.4 A schematic description of Algorithm 3. The dashed line represent the evolution of M
bacteria with internal state. The dotted line represent the coupled evolution of M bacteria with
gradient sensing, subject to regular reinitializations. The dashed-dotted line is computed according
to a deterministic method simulating the density of the model with gradient sensing, and subject
to regular reinitializations. The solid line is the variance reduced simulation of the internal state
dynamics, and is computed by adding the difference between the particle computation with internal
state, and the particle simulation with gradient sensing to the deterministic gradient sensing simu-
lation. At each reinitialization step, the two simulations (deterministic and particles) of the gradient
sensing dynamics are reinitialized to the values of their internal state simulation counterpart (as
represented by the arrows)

Algorithm 3 At time t�, we have that the particle measure μM,c
t̄�

= μM
t̄�
, and the

variance reduced measure is given by μM
t̄�
. To advance from time t̄� to t̄�+1, we

perform the following steps :

• Evolve the particles {Xm(t), Vm(t), Ym(t)}M
m=1 from t� to t�+1, according to (4.62);

• Evolve the particles
{

Xm,c(t), Vm,c(t)
}M

m=1 according to (4.54), using the same
random numbers as for the process with internal state;

• Compute the variance reduced evolution

μM
t̄�+1 = μM

t̄� e
δtri /ε

2Lc +
(

μM
t̄�+1 − μM,c

t̄�+1−

)
. (4.68)

(Note that this implies that we start the deterministic simulation for this time step
from μM

t̄�
.)

• Reinitialize the control particles by setting
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Xm,c(t
�+1) = Xm(t�+1), Vm,c(t

�+1) = Vm(t�+1), m = 1, . . . , M,

i.e., we set the state of the control particles to be identical to the state of the particles
with internal state.

In (4.68), we use the symbol t̄�+1− to emphasize that the involved particle positions
and velocities are those obtained before the reinitialization. An easy computation
shows that the algorithm is unbiased in the sense that for any � ≥ 0,

E

[
μM

t̄�

]
= E

[
μM

t̄�

]
,

since the particles with internal dynamics are unaffected by the reinitialization, and,
additionally,

E

[
μM,c

t̄�+1

]
= E

[
μM

t̄� e
δtri /ε

2Lc
]
.

Moreover, the variance is controlled by the coupling between the two processes.
Indeed, using the independence of the random numbers between two steps of Algo-
rithm 3, and introducing ϕ as a position and velocity dependent test function, we get
(see [44]),

stdev(μM
t̄� (ϕ)) ≤ C

ε

M
, (4.69)

where in the last line, C is independent of �, ε, and M .

Remark 10 (Sharpness of the variance estimate) In some generic situations, we can
argue that the statistical error in Algorithm 3 coming from the coupling is “sharp”
with respect to the order in ε. This means that the difference between the probability
distribution of the model with internal state and the probability distribution of the
model with gradient sensing is of the same order. This would imply that, with the
asymptotic variance reduction technique, one is able to reliably assess the true devi-
ation of the process with internal variables from the control process using a number
of particles M that is independent of ε.

Remark 11 (Effect of time discretization) The analysis in [44] reveals that the vari-
ance reduction is asymptotic, in the sense that the variance vanishes in the diffusion
limit. To ensure this asymptotic variance reduction during actual simulations, one
needs to ensure that the time discretization preserves the diffusion limits of the time-
continuous process. An appropriate time discretization is highly non-trivial, and is
discussed in [44].

4.6.4 Numerical Results

To illustrate the algorithm, we consider a simulation of the density of an ensemble
of particles, with and without variance reduction. We restrict ourselves to one space
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dimension, with domain x ∈ [0, 20] and periodic boundary conditions. In this case,
the kinetic equation corresponding to the control process reduces to the system

⎧⎪⎨
⎪⎩

∂t p+
c + ε∂x p+

c = −λc(x,+1)

2
p+

c + λc(x,−1)

2
p−

c

∂t p−
c − ε∂x p−

c = λc(x,+1)

2
p+

c − λc(x,−1)

2
p−

c

. (4.70)

of two PDEs, which is straightforward to simulate using finite differences.
We fix the chemoattractant concentration field as

S(x) = α
(
exp

(
−β (x − ξ)2

)
+ exp

(
−β (x − η)2

))
, (4.71)

with parameters α = 2, β = 1, ξ = 7.5 and η = 12.5. For the internal dynamics,
the model ((4.63–4.64), (4.53–4.66)) is used. The parameters are ε = 0.5, λ0 = 1,
τ = 1, δt = 0.1.

All simulations are performed with M = 5000 particles. The initial positions are
uniformly distributed in the interval x ∈ [13, 15]; the initial velocities are chosen
uniformly, i.e., each particle has an equal probability of having an initial velocity of
±ε. The initial condition for the internal variable is chosen to be in local equilibrium,
i.e., Ym(0) = S(Xm(0)). The initial positions and velocities of the control particles
are chosen to be identical.

We discretize the continuum description (4.70) on a mesh with �x = 0.1 using a
third-order upwind-biased scheme, and perform time integration using the standard
fourth order Runge–Kutta method with time step δtpde = 10−1. The initial position
density is given as

ρ(x, 0) =
{
0.25, x ∈ [13, 15],
0, otherwise.

(4.72)

Simulation without variance reductionFirst,we simulate both stochastic processes
up to time t̄ = 50 (t = 50/ε2) and estimate the density of each of these processes
ρ̂M (x, t̄), resp. ρ̂M

c (x, t̄), without variance reduction. The density is obtained via
binning in a histogram, in which the grid points of the deterministic simulation are
the centers of the bins. Figure4.5 (left) shows the results for a single realization. We
see that, given the fluctuations on the obtained density, it is impossible to conclude
on differences between the two models. This observation is confirmed by computing
the average density of both processes over 100 realizations. The mean densities are
shown in Fig. 4.5 (right), which also reveals that the mean density of the control
process is within the 95% confidence interval of the process with internal state.
Both figures also show the density that is computed using the continuum description,
which coincides with the mean of the density of the control particles.

Simulation with variance reduction Next, we compare the variance reduced esti-
mation (4.68) with the density of the control PDE. We reinitialize the control par-
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Fig. 4.5 Bacterial density as a function of space at t = 50/ε2 without variance reduction. Left one
realization. Right mean over 100 realizations and 95% confidence interval. The solid line is the
estimated density from a particle simulation using the process with internal state; the dashed line
is estimated from a particle simulation using the control process. Both used M = 5000 particles.
The dotted line is the density obtained from the deterministic PDE (4.70)
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Fig. 4.6 Bacterial density as a function of space at t = 50/ε2 with variance reduction and reini-
tialization. Left variance reduced density estimation of one realization with M = 5000 particles
(solid) and density obtained from a deterministic solution for the control process (4.70) (dashed).
Right mean over 100 realization and 95% confidence interval (solid) and density obtained from a
deterministic solution for the control process (4.70) (dashed)

ticles after each coarse-scale step, i.e., each k steps of the particle scheme, where
kδt = δtpde, (here k = 1). The results are shown in Fig. 4.6. We see that, using
this reinitialization, the difference between the behaviour of the two processes is
visually clear from one realization (left figure). Also, the resulting variance is such
that the density of the control PDE is no longer within the 95% confidence inter-
val of the variance reduced density estimation (right figure). We see that there is a
significant difference between both models: the density corresponding to the control
process is more peaked, indicating that bacteria that follow the control process are
more sensitive to sudden changes in chemoattractant gradient. This difference can be
interpreted from the fact that the bacteria with internal state do not adjust themselves
instantaneously to their environment, but instead with a time constant τ .
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4.7 Application 2: Tumor Growth

As a second application, we turn to tumor growth, which is a complex biological
phenomenon consisting of processes on different scales. On the cellular level, one has
to track the random motion of the cells, as well as cell division and cell death (apop-
tosis). As before, we deal with random motion by means of a velocity-jump process,
in which we additionally ensure that the concentration of cells in a certain volume
remains restricted. To achieve this, the spatial evolution of the individuals will be
coupled through the local cell density. Cell division and apoptosis are modeled by
means of two extra (intracellular) variables (a cell cycle variable φ and an apoptosis
variable z), which in turn depend on intracellular and environmental concentrations
of a number of chemical compounds (described via reaction diffusion equations).
The resulting fine-scale model therefore consists of a velocity-jump process, supple-
mented with a set of ODEs describing the (sub)-cellular state of the individual cells
and a set of reaction-diffusion PDEs describing the environment.

As for bacterial chemotaxis, it is possible to equivalentlywrite thefine-scalemodel
as a kinetic equation for each cell type p that then models the phase space density
pp(x, v,φ, z, t). However, a direct simulation of this fine-scale kinetic model is
again not feasible because of the high-dimensional character of the resulting system,
while a stochastic particle discretization is significantly influenced by Monte Carlo
noise. Therefore, we propose a tailored variance reduction technique. The key point
is to simulate the kinetic description of a simpler control model that only contains
the motion of the cells and to couple this deterministic simulation with a stochastic
agent-based simulation to obtain information on cell divisions and apoptosis.

We first give a detailed overview of the different layers of the model in Sect. 4.7.1.
This model is similar to the model (4.62) used to describe bacterial chemotaxis, and
reproduces the features of the cellular automatonmodel proposed byOwen et al. [39].
We describe the variance reduction algorithm in Sect. 4.7.2. Finally, we illustrate the
technique with some numerical experiments in Sect. 4.7.3.

4.7.1 Model

The model consists of two main components: an agent-based model, describing the
individual cellular motion and internal processes attached to each cell (cell cycle and
apoptosis) and the environment, modeled by a set of reaction diffusion equations.
We start by giving an overview of the model structure and notations that will be
used throughout the section (Sect. 4.7.1.1), after which we describe the agent-based
model (Sect. 4.7.1.2) and the evolution laws for the environment (Sect. 4.7.1.3).

4.7.1.1 Overview and Notation

We consider three types of cells, indexed by 1 ≤ p ≤ P = 3: normal cells (p = 1),
cancer cells (p = 2), and endothelial cells (that build up blood vessels, p = 3). For
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each of these cell types, we consider an ensemble of Mp(t) cells, characterized by
their positions Xm,p(t), velocities Vm,p(t), cell cycle phase �m,p(t), and remaining
internal state variables Zm,p(t), for 1 ≤ m ≤ Mp(t) and 1 ≤ p ≤ P . (The time
dependence of the number of particles is due to the fact that cells divide and die.)
In the numerical experiments in this chapter, blood vessel growth is not taken into
consideration. We thus only consider normal cells and cancer cells.

To keep a consistent notation throughout the section, we introduce the following
convention. If, at a moment t = t∗, the cell with index m∗ in population p divides,
we set

Mp(t
∗) = Mp(t

∗−) + 1, (4.73)

in which the symbol t∗− is used to emphasize that the involved number of cells is
meant to be taken just before the division. Simultaneously, we introduce a new cell
as specified below (see Eq.4.79). When a cell undergoes apoptosis, it is removed
from the simulation. To avoid cumbersome renumbering of the cells in the text, we
associate a weight wm,p(t) to each of the cells. If the cell is alive, the corresponding
weight is one; upon apoptosis, it becomes zero. The active number of cells is therefore

M̄p(t) =
Mp(t)∑
m=1

wm,p(t). (4.74)

Given the positions of these cells, the empirical cell number density is then
obtained as

ρp(x, t) =
Mp(t)∑
m=1

wm,p(t)δXm,p(t). (4.75)

The agent-based cellular model is coupled with the environment, consisting of
oxygen and vascular endothelial growth factor (VEGF). We denote by C(x, t) the
concentration of oxygen and by G(x, t) the concentration of VEGF; both fields
evolve according to PDEs in which the cell number density (4.75) appears. The
different behaviour for different cell types originates both from different intracellular
mechanisms and from the cell-type dependency of the coefficients in the agent-based
model, see below. A table containing the parameter values for all cell types is given
in Table4.1.

4.7.1.2 Agent-Based Model

Motion Cellular motion is composed of two components: random motion, which
will be modeled by means of a velocity jump process, and deterministic chemo-
tactic motion towards high VEGF concentrations. The deterministic term also con-
tains a volume factor, restricting motion towards regions where the number density
ρp(Xm,p(t), t) is higher than a threshold value ρmax,p



4 Stochastic Modeling and Simulation Methods … 113

dX p(t)

dt
= εVp(t) + ε2χp∇G(X p(t), t)

(
1 − ρp(X (t), t

ρmax,p

)
, (4.76)

Vp(t) = Vk
p for t ∈ [T k

p , T k+1
p ], Vk

p ∈ V = V ∗
p S

d−1, (4.77)

in which 0 < ε � 1 and χp is the cell-type dependent chemotactic sensitivity. In this
chapter, we choose the same velocity V ∗

p for all cell types. Similar to the bacterial
chemotaxis case, the velocities Vk

p are sampled from the uniform distribution

Mp(dv) = σV ∗
pS

d−1(dv),

on the sphere V ∗
p S

d−1, and the jump times T k
p are generated from a Poisson process

with constant rate λp,

∫ T k+1
p

T k
p

λpdt = λp(T
k+1
p − T k

p ) = θk+1
p ,

where θk+1
p are i.i.d. random numbers, sampled from a normalized exponential dis-

tribution. During the numerical experiments, we choose λp = 1, independent of
the cell type. In the bacterial chemotaxis case, bacteria possessed internal dynamics

Table 4.1 Parameter values related to the populations

Parameter Normal population Cancer population Endothelial cells

χ 0.0 0.0 0.33333

ρmax 0.1 0.2 0.1

ε 3.536 × 10−4 3.536 × 10−4 –

Cφ 399.96 186.64 –

Tmin 1.8 × 105 9.6 × 104 –

zhigh 0.8 – –

zlow 0.08 – –

nthr 0.75 – –

c1 3.3333 × 10−5 – –

c2 1.6667 × 10−4 – –

c3 3.3333 × 10−5 – –

c4 3.3333 × 10−5 – –

c5 1.6667 × 10−4 – –

J5 0.04 – –

CVEGF 0.01 – –

Cp53 0.01 – –

A – 1 –

B – 1 –



114 A. Lejon and G. Samaey

to bias their chemotactic motion. In the tumor model, internal dynamics governs
cell division and cell death (apoptosis). (Hence, the time-dependent number of cells
Mp(t).) Let us now look at these intracellular mechanisms (Table 4.1)

Cell Cycle Dynamics Cells evolve according to a cell cycle, and division occurs as
soon as this cycle is completed. In our model, this is represented by a cell phase cycle
variable�p(t) that is zero at cell birth. The cell cycle is completed when�p(t) = 1.
The cell cycle speed depends on the local oxygen concentration C(X p(t), t) that
is observed by the cell as it is simultaneously moving through space and evolving
through the cycle. The higher the oxygen concentration, the faster the cycle proceeds,
while the cell cycle is put on hold once the oxygen concentration is approaching zero.
This behaviour is modeled by means of the following ODE,

d�p(t)

dt
= C(X p(t), t)

τmin,p(Cφ,p + C(X p(t), t))
, (4.78)

in which we introduce the cell-type dependent parameters Cφ,p and τmin,p, the min-
imal time needed for a cell to complete one cell cycle. From Table4.1, we see that
cancer cells are able to proceed twice as fast as normal cells during the cell cycle in
a given environment.

If, for the cellwith indexm∗ in population p, at time t = t∗, we obtain�p(t∗) ≥ 1,
we introduce a new cell in the simulation. We adjust Mp(t) according to (4.73) and
set �m∗,p(t) = 0. The new cell inherits the complete state from the cell that divides:

X Mp(t),p(t
∗) = Xm∗,p(t

∗), VMp(t),p(t
∗) = Vm∗,p(t

∗),
�Mp(t),p(t

∗) = �m∗,p(t
∗), Z Mp(t),p(t

∗) = Zm∗,p(t
∗).

(4.79)

More details on this cell cycle model can be found in [39] and its supplementary
material.

Remaining Internal State Variables To account for apoptosis, we introduce a sec-
ond sub-cellular model, consistent with [39],

dZ p(t)

dt
= Fp(X p(t), Z p(t)),

for the internal state Z p(t) ∈ R
q , in which q may depend on the cell type. This

internal dynamics follows a different mechanism, depending on the cell type. For the
normal tissue (p = 1), the variable Z1(t) contains two components, namely the p53
concentration Z1,1(t) and the intracellular VEGF concentration Z1,2(t). The former
can be seen as an estimator for the number of mutations that a cell has undergone
during its lifetime. The latter models the process that allows cells to store VEGF
during hypoxic conditions and release it once this intracellular concentration has
reached a certain threshold level.
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dZ1,1(t)

dt
= c1 − c2

C(X1(t), t)

C p53 + C(X1(t), t)
Z1,1(t), (4.80)

dZ1,2(t)

dt
= c3 − c4

Z1,1(t)Z1,2(t)

J5 + Z1,2(t)
+ c5

C(X1(t), t)

CVEGF + C(X1, t)
Z1,2(t), (4.81)

where ci , 1 ≤ i ≤ 5, Cp53, J5, and CVEGF are parameters of which the value can be
found in Table4.1. As soon as oxygen is available, the second term in (4.80) ensures
exponential decay of Z1,1(t); the first term in (4.80) models linear growth of Z1,1(t),
an effect that is only dominant in the absence of oxygen. A cell undergoes apoptosis if
Z1,1(t) reaches a threshold value γapt(ρ1(X1(t), t)) that depends on the local density
of normal cells. The threshold value is lower in case of a harsh environment (with
low cell number density), i.e.,

γapt(ρ) =
{

zhigh if ρ ≤ ρthr

zlow else
.

See Table4.1 for parameter values.
The internal dynamics of tumor cells does not depend on the p53 concentration,

since this mechanism to regulate the normal cell cycle does not function properly
anymore in a tumor. Cancer cells are able to go into a quiescent state when expressed
to hypoxic circumstances, meaning that they don’t consume any nutrients. However,
the maximal duration of this quiescent state is limited, which implies that cancer
cells will also undergo apoptosis when the hypoxia holds too long. On the other
hand, cancer cells have the ability to recover quickly once oxygen becomes available
again. This mechanism can be modeled by the following equation:

dZ2(t)

dt
= A H(Cthreshold − C(X2(t), t))︸ ︷︷ ︸

Linear increase during hypoxia

− B Z2(t) H(C(X2(t), t) − Cthreshold)︸ ︷︷ ︸
Exponential decay if C(X2(t),t)>Cthreshold

,

(4.82)

where A, B are constants (see Table4.1) and H is the Heaviside function. The first
termmodels the reaction to a hypoxic state, i.e., when the local oxygen concentration
C(X2(t), t) drops below the threshold level Cthreshold. During this hypoxic period,
the internal variable Z2(t) increases linearly as a function of time. On the other hand,
the second term describes the recovery of the cancer cells if the environment is not
hypoxic anymore, which is captured by the exponential decay term of Z2(t). Cancer
cells die as soon as Z2(t) ≥ 1, corresponding to γapt = 1.

Complete Agent-Based Model Combining all components described above, we
end up with the following set of differential equations governing the behaviour of an
individual cell:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX p(t)

dt
= εVp(t) + ε2χp∇G(X p(t), t)

(
1 − ρp(X p(t), t)

ρmax

)
,(

T k+1 − T k
)

λp = θk+1
p ,

Vp(t) = Vk
p for t ∈ [T k

p , T k+1
p ) ,

d�p(t)

dt
= C(X p(t), t)

τmin,p(Cφ,p + C(X p(t), t))
,

dZ p(t)

dt
= Fp(Z p(t), t),

(4.83)

combined with the division rule (4.79) and the rule that adjusts the weights wm,p(t)
upon apoptosis.

Coarse (population-Level) Description As in Sect. 4.4.2, we again have a kinetic
equation of the phase space density pp(x, v, z,φ, t), which becomes quite compli-
cated due to the cell cycle and apoptosis that govern cell division and cell death.
Ideally, a coarse-grained model would be written in terms of the cell number density
ρp(x, t). We expect to obtain a reaction-advection-diffusion equation. However, due
to the modeling detail for the cell cycle and apoptosis, it is unrealistic to expect one
can write the reaction term as a closed-form function of ρp(x, t). When ignoring the
intracellular dynamics (and therefore considering a system with constant number of
cells) and using a diffusive scaling t̄ = tε2 [36], one can obtain an advection-diffusion
equation where no reactions (cell divisions, cell deaths) are taken into account [30]:

∂t̄ρp(x, t̄) = Dp∇2ρp(x, t̄)−χp∇·
[
ρp(x, t̄)

(
1 − ρp(x, t̄)

ρmax

)
∇G(x, t)

]
, (4.84)

in which Dp = ∫
V

v ⊗ vM(dv).
In the variance reduction algorithm, we will also consider the kinetic number

density,

Np(x, v, t) =
∫ ∫

pp(x, v, z,φ, t)dzdφ =
Mp(t)∑
m=1

wm,p(t)δXm,p(t),Vm,p(t), (4.85)

which counts the number of particles with a position x and velocity v at time t ,
regardless of their internal state.

4.7.1.3 Environment

The cellular environment consists of two diffusible components regulating the behav-
ior of the cells in various ways: oxygen C(x, t) and VEGF concentration G(x, t).
Oxygen is evidently important for the cells to proceed through the cell cycle and
survive, see Eqs. (4.78) and (4.80). The local oxygen concentration is determined
from the following advection-diffusion equation:
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Table 4.2 Parameter values reaction diffusion equations

Parameter Oxygen VEGF

D 2.4167 × 10−9 1.6667 × 10−11

ψ 6 1.6667 × 10−9

δ 0 1.667e − 4

knormal −0.2167 0.01

kcancer −0.2167 0.01

∂t C(x, t) = DC∇2C(x, t)︸ ︷︷ ︸
diffusion

+ ψCρv(x, t)(Cblood(x) − C(x, t))︸ ︷︷ ︸
exchange with blood

− C(x, t)
P∑

p=1

kC,pρp(x, t)

︸ ︷︷ ︸
consumption by cells

,

(4.86)
where DC is the diffusion coefficient, ψC denotes the permeability of the oxygen
through the vessels, ρv(x, t) describes the surface area occupied by blood vessels at
position x , and Cblood(x) defines the oxygen concentration in a blood vessel located
at position x . In general the blood vessel concentration ρv(x, t) is computed from the
agent-based evolution of endothelial cells. In this paper, we present numerical tests
for a casewhere ρv(x, t) ≡ ρv(x) is fixed during the simulation, and no vessel growth
is incorporated. We choose ρv(x) = 1 in grid cells where blood vessels are present.
During the experiments we have taken Cblood(x, t) = 400 at vessel locations and
zero elsewhere. The last term in Eq. (4.86) reflects the fact that all cell types consume
oxygen with a cell specific rate kC,p. Recall that the cell number density ρp(x, t) is
defined via Eq. (4.75).

A similar approach is used to describe the local concentration of VEGF, which
is responsible for the growth of new blood vessels. This is especially important for
larger tumors, since endothelial cells will grow towards regions with higher VEGF
concentrations. Initially, the tumor can benefit from the existing vasculature, but
when the tumor occupies a larger volume, the oxygen supply does not suffice and
the cells are obliged to use their ability to ask for new vessels by secreting VEGF.
Endothelial cells – the building blocks of blood vessels– can then react and move
chemotactically towards the hypoxic regions. The corresponding reaction diffusion
equation for VEGF reads:

∂t G(x, t) = DG∇2G(x, t)︸ ︷︷ ︸
diffusion

−ψGρv(x, t)G(x, t)︸ ︷︷ ︸
exchange with blood

+
P∑

p=1

kG,pρp(x, t)

︸ ︷︷ ︸
production

− δG G(x, t)︸ ︷︷ ︸
decay

.

(4.87)
In contrast to oxygen, the VEGF concentration is assumed to be zero in the blood
and the growth factors contained in the tissue is degrading with rate δG when time
evolves (Table4.2).
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Because the diffusible components equilibrate much faster than the individual
cells, we adopt a steady state approximation, which implies that ∂t G(x, t) and
∂t C(x, t) are set to zero. Then, a time step of the agent-based model is performed
first, after which the steady state equations for C(x, t) and G(x, t) are solved.

4.7.2 Variance Reduction

In this section, we propose an variance reduction algorithm similar to the technique
used for bacterial chemotaxis. The main differences are due to the fact that (i) the
tumor model is not conservative; and (ii) the internal dynamics only relates to cell
division and apoptosis and not to advection-diffusion behaviour.

Again, the algorithm conceptually relies on the combination of three simulations:
a stochastic simulation with the full fine-scale model, as well as with a coarse,
approximation, combined with a deterministic, grid-based simulation of the coarse
model. The full fine-scale model uses Mp(t) particles with state variables

{Xm,p(t), Vm,p(t),�m,p(t), Zm,p(t)}Mp(t)
m=1 . (4.88)

As the coarse agent-based model, we conceptually consider an agent-based model in
which the internal state has been suppressed and only position and velocity remain:

{Xc
m,p(t), V c

m,p(t)}Mp(t)
m=1 .

Since no internal dynamics is present, cells cannot divide or die. (In practice, we will
use the results obtained from the full fine-scale model, in which we neglect apoptosis
and cell division, see later.) The only dynamics is motion, which can be modeled
with a kinetic equation for the phase space density N c

p(x, v, t),

∂t N c
p + εv · ∇x N c

p = λ
(

R(N c
p) − λN c

p

)
, (4.89)

see also (4.55). We again call this coarse approximation the control process. (Recall
that the kinetic number density for the original process is denoted as Np(x, v, t),
see (4.85).) We also introduce the formal semigroup notation

et̄ Lc
p , with Lc

p(N c
p) = −(εv + ε2χ∇G(x, t)) · ∇x N c

p +
(
λ(R(N c

p) − N c
p)
)

(4.90)
that represents the exact solution of the kinetic equation (4.89). In practice, this exact
solution will be approximated by a deterministic simulation on a grid.

It should be clear that the advection-diffusion behaviour in both agent-basedmod-
els is identical. Thus, the only difference between the two models occurs when cells
divide or die. Assuming no reactions take place, the three processes thus have the
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same expectation. This observation leads to the following variance reduction algo-
rithm. As an initial condition, we start from Mp(0) particles sampled from the kinetic

probability densities μ
Mp(0)
p,0 (x, v), resulting in the number density Np(x, v, 0). For

each particle, we choose a given internal state, for instance�m,p(0) = Zm,p(0) = 0,
1 ≤ m ≤ Mp(0), 1 ≤ p ≤ P . (These internal states could also be sampled from an
appropriate probability distribution.)Additionally,we introduce the variance reduced
measure N̄ (x, v, t), which we initialize as N̄p(x, v, 0) = Np(x, v, 0). We denote
the time step δt and the discrete time instances t� = �δt , � = 0, 1, . . .

Algorithm 4 (Variance reduction for tumor growth) We advance the variance
reduced kinetic number density N̄ (x, v, t) from time t� to t�+1 as follows:

• Evolve the particle states (4.88) from t� to t�+1 using the agent-basedmodel (4.83).
• Compute the kinetic number density for the stochastic fine-scale model using
(4.85), as well as the kinetic number density for the coarse process as

N c
p(x, v, t�+1) =

Mp(t�)∑
m=1

wm,p(t
�)δXm,p(t�+1),Vm,p(t�+1), (4.91)

i.e.,we compute the kinetic number density for the control process basedonparticle
positions and velocities at time t�+1, taking into account only the particles that
were present in the simulation at time t�.

• Evolve the control kinetic number density N c
p(x, v, t) using a grid-based method

based on (4.90) and add the reactions (the difference in kinetic number density
due to cell division and apoptosis)

N̄p(x, v, t�+1) := N̄p(x, v, t�) eδt/ε2Lc + Np(x, v, t�+1) − N c
p(x, v, t�+1),

(4.92)

Again, in the absence of discretization errors in the grid-based method, we have

E

[
N̄p(x, v, t�+1

]
= E

[
Np(x, v, t�+1

]
,

since N̄p(x, v, t�) = N c
p(x, v, t�) and E

[
N c

p(x, v, t�) eδt/ε2Lc
]

= E

[
N c

p(x, v, t�+1)
]
.

Moreover, we expect the variance of N̄p to be significantly lower than that of Np,
since all randomness due to random motion has been removed and only the location
of the reactions remains random.

4.7.3 Numerical Experiments

In this section, we illustrate both the model and the variance reduction algorithm by
means of some numerical experiments. First, we initialize a normal tissue consisting
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Fig. 4.7 Evolution of normal cell population (black) with small tumor (gray). Left initial state
(1600 normal cells and 20 cancer cells). Right result after 490 steps

of 1600 cells, with initial positions sampled from the uniform distribution on the
domain [0.3, 0.6] × [0.3, 0.6]. The initial velocities are sampled from the uniform
distribution on the sphere, and the internal state variables �(0) = 0.0, Z(0) = 0 for
every particle. We initialize a small tumor, containing 20 cells, with initial positions
samples from a uniform distribution in [0.445, 0.455] × [0.445, 0.455], also with
initial velocities sampled from the uniform distribution on the sphere with radius
V ∗

p = 3.5×10−6, and the internal state variables�(0) = Z(0) = 0 for every particle.
In the following numerical experiments, we adopt a static vasculature, consisting of
two straight vertical vessels at x = 0.4 and at x = 0.8 to be specific. The first agent-
based experiment was performed in a non-scaled way with discretization parameters
δt = 1.8× 103s and �x = 4× 10−5m for the agent-based model.We use reflective
boundary conditions. In Fig. 4.7, we show the evolution of both cell populations. On
the left, one can observe the initial configuration, while on the right hand side, we see
the resulting configuration after 490 steps. Apart from the fact that cells performed a
random walk, a significant amount of the normal tissue died because of the presence
of the tumor.

In a second experiment, we illustrate the performance of the variance reduction
algorithm as it was explained in Sect. 4.7.2 in a similar setting as the previous experi-
ment but on a diffusive scale, i.e. the normal tissue containing 2500 cells is uniformly
distributed on the square [0.2, 0.8]× [0.2, 0.8] and a small tumor originally consist-
ing of 20 cells is also uniformly distributedwithin the area [0.39, 0.41]×[0.39, 0.41].
Furthermore, the scaled cellular velocity was chosen V̄ � = √

2/2 and we modified
the minimal cell cycle durations (Tmin,cancer = 9.6×103s, Tmin,normal = 1.8×104s)
to demonstrate the performance of the algorithm in an extreme (not biologically real-
istic) settingwhere cells are able to divide very quickly.As in the bacterial chemotaxis
application, the coarse equation ismodeled on a diffusive timescale, wherewe choose
δt̄ = 0.8ε2 = 1 × 10−7,�x̄ = 2 × 10−2 as mesh parameters to simulate the deter-
ministic kinetic equation (4.89) needed to apply the variance reduction algorithm. To
simulate this, a second order central finite volume scheme was adopted to discretize
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Fig. 4.8 Illustration variance reduction algorithm for tumor growth: Mean cell distribution (first
column) and variance (2nd column) for normal and cancer population after 5000 timesteps. The
first two rows show the results without applying the variance reduction algorithm, which can be
compared with the results displayed in the last two rows where the variance reduction algorithm
was applied

the spatial derivative in the kinetic equation (4.89) and a first order forward Euler
scheme for the time derivative.

The mean normal and cancer cell distribution and there variance with and with-
out applying the variance reduction algorithm are displayed. Furthermore the mean
oxygen distribution and the corresponding mean reaction field are also shown next to
the variance. First, we observe that variance on the normal cell distributed has been
reduced significantly for both cell populations by applying Algorithm 4. Addition-
ally, one can observe a clear correlation with the oxygen field.The latter is a logical
consequence from the fact that the progress of the cell cycle is closely related to
the local oxygen concentration along the track, meaning that a cell is more likely to
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divide in oxygen rich environments. Moreover, the variance is almost eliminated in
the other regions (Fig. 4.8).

In this section, the parameters used in the numerical experiments are listed. They
are based on the parameters used in [39]. One can find them in the supplementary
material corresponding to [39].

4.8 Conclusions

Wegave abroadoverviewof the use of stochasticmodeling and simulation techniques
is computational biology, focussing on some common individual-basedmodeling and
simulation methods. We payed particular attention to the equivalence between the
stochastic process that governs the evolution of individual agents and the determin-
istic behaviour of the involved probability distributions, and we discussed numerical
methods that exploit this relation for variance reduction purposes. Using examples
involving intracellular chemical reactions, bacterial chemotaxis and tumor growth,
we showed the effects of stochasticity at different scales and different levels of
description.

A main focus of the chapter was the design of dedicated simulation algorithms.
Two main computational bottlenecks arise. The first is related to the time-scale sep-
aration between the fast processes (that determine the maximal time step that is
allowed) and slow processes (that determine the time scale over which the simu-
lation needs to be performed). The second is related to noise that appears in the
simulation and that requires dedicated variance reduction techniques. These prob-
lems are not completely solved, and stochastic simulation therefore remains an active
research topic.
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