
Chapter 17
Prediction Uncertainty Estimation Despite
Unidentifiability: An Overview
of Recent Developments

Gunnar Cedersund

Abstract One of the most important properties of a mathematical model is the
ability to make predictions: to predict that which has not yet been measured. Such
predictions can sometimes be obtained from a simple simulation, but that requires
that the parameters in the model are known from before. In biology, the parameters
are usually both not known from before and not identifiable, i.e. the parameter values
cannot be determined uniquely from available data. In such cases of unidentifiability,
the space of acceptable parameters is large, often infinite in certain directions. For
such large spaces, sampling-based approaches that try to characterize the entire space
have difficulties. Recently, a new type of alternative approaches that circumvent
this characterization problem has been proposed: where one only searches those
directions in the space of acceptable parameters that are relevant for the uncertainty
of a particular prediction. In this review chapter, these recently proposed methods
are compared and contrasted, both regarding theoretical properties, and regarding
user experience. The focus is on methods from the field of systems biology, but also
methods from biostatistics, pharmacodynamics, and biochemometrics are discussed.
The hope is that this reviewwill increase the usefulness and understanding of already
proposed methods, and thereby help foster a tradition where predictions only are
deemed interesting if their uncertainties have been determined.

Keywords Prediction uncertainty · Systems biology ·Core predictions · Prediction
profile likelihood · Ordinary differential equations · Bayesian methods · Cluster
Newton · Neutral parameters

G. Cedersund (B)
Department of Clinical and Experimental Medicine, IMT, Linköping University,
58185 Linköping, Sweden
e-mail: gunnar.cedersund@liu.se; gunnar.cedersund@gmail.com; +46(0)702-512323

G. Cedersund
Department of Biomedical Engineering, IMT, Linköping University,
58185 Linköping, Sweden

© Springer International Publishing Switzerland 2016
L. Geris and D. Gomez-Cabrero (eds.), Uncertainty in Biology,
Studies in Mechanobiology, Tissue Engineering and Biomaterials 17,
DOI 10.1007/978-3-319-21296-8_17

449



450 G. Cedersund

17.1 Introduction

Mathematical modelling has been a part of modern science already since its early
foundation. In those early days, different hypotheses concerning the movements
of the planets were incorporated in mathematical models, and the ability of these
hypotheses to describe available data and to produce reliable predictions were used
as the basis for choosing between the hypotheses. Those two components—rejections
and predictions—are still the two corner stones of mathematical modelling as it now
at last is getting more widely used also within biology (Fig. 17.1a). In this chapter we
will deal with the latter of these two components, predictions. More specifically, we

(a)

(b) (c) (d)

Fig. 17.1 a The two main steps of model-based data analysis: hypothesis testing and prediction
analysis. The first step has been dealt with in previous chapters (e.g. [26]), and leads to rejections
or tentative acceptances of models. The second step is dealt with in this chapter, and identified
predictions feeds back to the design of new experiments, or in general to new knowledge regarding
the original hypotheses. b–d If you know the uncertainty of the prediction, you can in before-hand
guarantee that the experiment will give you something, independently of the outcome. In (b), the
experiment is done to test themodel.Only if the experimental data (green) lieswithin the prediction’s
uncertainty tag (blue area) will the model be accepted. In (c), the experiment is done to further
determine the parameters: the more uncertain the prediction, the more the space of the acceptable
parameters will be constrained by the data. In (d), the experiment is done to distinguish between the
two models: independently of the experimental outcome, at the most one of the models will remain
non-rejected after the new data point has been collected. The main result reviewed in this chapter
regards how to go beyond characterization of all individual parameter trajectories (such as ŷ( p̂1)
and ŷ( p̂2) in (b)) to methods that only looks for those parameters that give extreme predictions
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will make an overview of recent advances in methods that allow us to produce useful
predictions also in biology: predictions that take into account the known uncertainties
in data and prior knowledge, and convert these to predictions with uncertainty tags
(Fig. 17.1b). Importantly, these newmethodswork andmay identify well-determined
predictions also in the case of unidentifiable parameters.

Several of the herein presented methods are only a few years old, and it is there-
fore important to emphasise how important a development these methods are. This
importance comes from the fact that the uncertainties in biology and medicine are
so much bigger than corresponding uncertainties within physics, and that the classi-
cal methods for generating predictions with uncertainty tags therefore no longer are
useful. These uncertainties are of at least two types: structural and parametrical. The
structural uncertainties are bigger in biology, because there aremore unknown details
that make up each hypothesis. In physics, traditional hypotheses have been about the
laws of nature, and e.g. whether these follow relativistic or Newtonian mechanics.
In contrast, in biology, a hypothesis is often concerning the structure of a part of a
biological network, andmost meaningful hypotheses regarding such a network are in
themselves containing many structural uncertainties. For instance, a hypothesis may
be that a certain type of feedback generates a specific behaviour, such as an overshoot
[4]. This hypothesis has many potential implementations, and is thus corresponding
to many sets of equations, e.g. corresponding to different assumptions regarding the
kinetic laws describing the involved reactions. The second type of uncertainty con-
cerns the values of the parameters. In other words, even if one has made all structural
decisions, e.g., concerning whether to use mass action or Michaelis-Menten rate law
expressions, the values of the kinetic parameters that are to be used in those rate
expression are still unknown. This again stands in stark contrast to the situation in
physics, where most parameters are natural constants, which can be determined once
and for all, and which already have been calculated prior to the modelling.

This second problem, that of uncertain parameters, is often referred to as uniden-
tifiability, and it has been extensively studied in the literature. Identifiability is often
considered to exist in two types: structural and practical. Structural identifiability has
to dowith the structure of the equations, and asks the questionwhether the parameters
in principle can be obtained from those equations, if measurement uncertainty and
unsufficient excitation not would be an issue. Although much beautiful theory has
been produced for structural identifiability examinations, e.g. based on differential
geometry [18, 25], this question is not too important for biological applications,
where measurement uncertainty and insufficient excitation often are major prob-
lems. Therefore, the second type, practical unidentifiability analysis, which takes
into account the specific data set at hand, is much more relevant. Much early analysis
of practical identifiability has been concerned with the eigenvalues of the Hessian
(i.e. the second-derivative) of the cost function. If the predicted output is linearly
dependent on the parameters, this Hessian can be proportional to the inverse of the
covariance matrix of the parameter uncertainties [17]. Unfortunately, for most bio-
logical problems, the assumption of linearity is not fulfilled, and the Hessian then
only gives a local measure of parameters, at a probably non-unique point in the para-
meter space. The result of such a Hessian-based analysis is therefore hard to use.
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For this reason, methods that make global assessments are more interest. There are
attempts to produce global versions of the Hessian approach (e.g. [24]), but these do
not solve the fundamental problem of linearity. A more promising approach, which
also is intuitive and easy to implement, is the method based on the profile of the
likelihood, simply called profile likelihood (PLH). This approach has been known
for decades [21], but has not been used within the systems biology community until
recently [23].

Several of the chapters in this book [11] have dealt with various ways to identify
and handle uncertainty (e.g. [14]), but this is the only one that exclusively deals with
predictions. Predictions are important to characterise, with uncertainty tags, for a
wide variety of reasons. First and most importantly, predictions are what feeds back
to the experiments, and therefore closes the experimental/theory loop (Fig. 17.1a),
which produces an ever-evolving understanding of the system. Here it should be
stated that both well-determined predictions (herein called core predictions) and
poorly determined predictions (herein called suggestions or beach statements) are of
interest: core predictions allow you to test the quality of the model (Fig. 17.1b), and
beach statements are important because measuring themwill produce a big improve-
ment in the overall well-determination of the parameters in the model (Fig. 17.1c).
Note that an important special case of the first usage occurs when you have two
different core predictions from two different models (Fig. 17.1d); then the experi-
ment ensures that at least one of the model structures will be rejected, independently
of the outcome of the experiment. Second, even those predictions that cannot, or
will not, directly be tested experimentally are interesting because they do provide
a deeper understanding of the studied model: what are the key properties that have
to be fulfilled in this system in order for it to produce the data, how is the model
actually producing the observed behaviour? Third, reliable predictions are useful in
a medical context. If some specific prediction of the model has been shown to be
useful as clinical markers, e.g. to correctly diagnose a patient, it is important that
that prediction is obtained with a correct degree of certainty. Fourth, well-determined
predictions in a model means that it is useful for interacting with other models, in a
supermodel. Say for instance that the first model describes the internal dynamics of a
specific organ, and that its input-output profile is well-determined from experimen-
tal data. Then this organ model can be used in a hierarchical model, incorporating
several organs and their cross-talk, even though some of the internal predictions in
the model may be uncertain [22]. Finally, note that prediction uncertainty is not the
same as parameter uncertainty: all parameters may be undetermined in the model,
even thoughmany well-determined predictions exists. For all these reasons, methods
that deals with prediction uncertainty, and that can handle the in biology common
situation of unidentiability, are of utmost importance.

All in all, to find predictions with uncertainty is therefore an important subject,
and it is therefore interesting to look at some of the recent developments that have
been done within the field. The rest of the chapter is structured as follows. First some
basic notations regarding ODEs are introduced. Second, the most straightforward
and simple approaches are introduced, which simply collects all found parameters
that seem acceptable. Third, the recent developments regarding methods based on
profiling the likelihood and modified optimization problems are introduced, and the
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different variants are contrasted and discussed. These new methods are then also
compared to three other important related approaches: Bayesian methods, cluster
Newton, and neutral parameters. The chapter ends with a summary, and with a
discussion of what the price is of not bothering with prediction uncertainty.

17.2 Basic Notations

The followingpresentation is done in the frameworkof ordinarydifferential equations
(ODEs), but most concepts and methods hold equally well for all systems for which
there exists a predictor, and the ability to form a likelihood function. Now follow
quite a few notations. AnODE-basedmodel is henceforth described by the following
notations:

ẋ = f (x, px , u) (17.1a)

x(0) = x0 (17.1b)

ŷ = g(x, px , py, u) (17.1c)

where x are the states, usually describing the concentration or amount of various
substances; where ẋ represents the derivative of the states with respect to time, and
where f is the non-linear smooth function used to calculate these derivatives; where
px are the parameters used to calculate f , usually corresponding to kinetic rate
constants; where u is the input, which may depend on time, and which is usually
known and controlled by the experimentalist; where x(0) contains the values of
the states at time t = 0, and where these values are described by the parameters x0;
where ŷ are the simulatedmodel outputs corresponding to themeasured experimental
signals; where g is a smooth nonlinear function; and where py are parameters only
appearing in the measurement equations. Note that x , u and y may depend on t ,
but that the notation is dropped unless the time-dependence needs to be especially
stated, as in Eq. (17.1b). Note that at this stage there are three types of parameters,
with potentially unknown values, and that all unknown parameters are collected in
the parameter p, i.e. currently

p = (px , x0, py) (17.2)

Finally, the term parameter requires some further comments, since its usage opens
for two interpretations. In some cases, a parameter means a point in the parameter
space; in such cases the terms parameter point or parameter value will typically be
used. Similarly, to refer to an individual element pi in the parameter vector p, the
term individual parameter will typically be used.

The three equations (17.1) form a model structure, which is denotedM, and this
model structure is turned into a specific model, denotedM(p), if the parameters are
set to specific values. Now, assume that the N measurements are collected in a set Z ,
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Z = {y(ti )}N
t=1 (17.3)

where y(ti ), describes the measurement vector at time ti . Unless otherwise stated,
the null hypothesis is that the considered model structure is true, i.e. that

y(ti ) = ŷ(ti , p0) + ν ∀ i = 1...N (17.4)

where p0 denotes the“true” parameter values (which exists if the null hypothesis is
true), and where ν is a noisy signal that follows some distribution denoted D. In this
chapter, the term ‘explanation’ is used to describe a hypothesis that not only should
produce correct predictions mathematically, but also do this using mechanisms that
make sense biologically.

17.3 Simple Approaches to Identify Predictions
with Uncertainty

The underlying reasonwhy predictions are uncertain is that there aremany parameter
points that all correspond to an acceptable agreement with available data and prior
knowledge, and therefore must be considered as non-rejected. The formal decision
of whether a parameter is to be considered as rejected or not is taken using a cost
function, denoted V(p), and a cut-off, denoted δ (aspects of choosing V(p) and δ

are discussed in section “The cut-off level” below). In other words, if the set of
non-rejected parameters is denoted A, it can formally be defined as

A := {p : V (p) ≤ δ} (17.5)

where “:=”means that the left hand side is defined by the right hand side.With this set
A formally defined, a basic principle of identifying parameter uncertainties presents
itself: simply find the parameter points within A that gives a maximal and minimal
value of the considered prediction. This is the principle of frequentist approaches,
and it is contrasted to the Bayesian approaches later in this chapter. In themost simple
approaches, the search for maximal and minimal values of the considered prediction
within A is simplified to the search for maximal and minimal values within an
approximation of A (Step 1 in Fig. 17.2). This approximation can be obtained by
traversing A in different ways, and then saving the encountered parameter points.
In [4], this traversing was done using a modified optimization approach, which uses
multiple simplexes instead of one, to more fully cover the parameter space. Various
alternatives to ordinary optimization and parameter estimation approaches that can
be used for this are reviewed e.g. in [8]. Another approach sometimes used is based
on the conventional PLH [23]. As the profiles are traversed to search for parameter
uncertainties, the parameter points are saved, and then analysed with respect to the
considered prediction. However, the limitation of these approaches is that there is
no guarantee that the most extreme predictions have been found. In contrast, such a
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Fig. 17.2 The three main steps involved in prediction uncertainty assessments. a Step 1 is simply
to make a point-wise approximation of the true space of acceptable parameters, A. In Bayesian
approaches, this is the only step, and then the space is approximated so that the parameter points
are most dense where the most likely parameters are. b Step 2 lies at the heart of the most recent
developments, which primarily are in focus in this chapter. On has then picked a specific prediction,
probably because Step 1 judged it to be well-determined, and then does a targeted approximation
for that particular prediction. The most important things are to find the max and min values that the
prediction can obtain, while still remaining inA. c Step 3 is in the core prediction approach simply a
validation that the prediction rejection really holds, if the measured value lies outside the prediction
uncertainty. In PPL, this step also involves assessments of profiles. Figure adopted from [6]

guarantee is obtained, at least in principle, by the newly developed approaches which
modify the PLH to instead deal with prediction uncertainty, using various modified
optimization problems.

17.4 PLH-Inspired Methods Based on Modified
Optimization Problems

The now presented approach has recently been presented in different forms, based
on different theoretical traditions, but ending up in similar but not identical methods.
The following presentation is an attempt to bring these approaches together into a
joint description, where similarities and differences more easily can be highlighted.
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17.4.1 The Idea

Consider a specific prediction denoted z. This prediction can be anything that can be
calculated using the given model structure and a specific parameter point, p. In other
words, z must be a function that depends solely on the parameters, z = z(p), but it
can otherwise be anything of interest: e.g. a value of a state at a specific time-point,
a value of a reaction rate at a specific time point, a single parameter value, or some
other arbitrary function of these values, but that still depends on a given time point.
The property z can sometimes also be considered as an entire time-series, but here
we have encountered the first difference: that the property can only be a time-series
in one of the settings, that based on core predictions.

In fact, the basic idea behind the core-prediction based approach presented in
[7] was presented in the more general sense of z being a time-series. Nevertheless,
when the full 3-step implementation of the core prediction approach was presented
for specific examples in [6], the complications of studying a time-series was not
considered. The inclusion of time-series are mainly concerned with the issue of
dependencies and statistical interpretations of the results, and this whole issue is
further discussed in a separate section below, entitled “Dependencies and the handling
of predictions of time-series”. For now, we consider the more specific case of z being
a single scalar valued function of parameters and states at a given time point, and
consider the general idea as presented in [6]. This idea is given by the following
equation

�max
z = z(pmax) where (17.6a)

pmax = arg
p
max{z} subject to V (p) < δ (17.6b)

�min
z = z(pmin) where (17.6c)

pmin = arg
p
min{z} subject to V (p) < δ (17.6d)

where�max
z is the upper boundary of the prediction, and�min

z is the lower boundary.
In words, the idea behind this approach is thus simply the one already stated: to find
the maximal and minimal values of z that exists within A.

The basic idea behind the other approach is based on a theory known as prediction
profile likelihood (PPL). The concept of PPLwasfirstmentioned in 1956 [10], and the
concept of prediction profile likelihood was first introduced in 1979 [20]. Since then,
quite a few various alternatives to this approach have been introduced, as reviewed
e.g. in [2]. A first version that is relevant to this discussion was uploaded on the
public article database arXiv in [15], and then as a standard paper in [16]. The basic
idea behind PPL is to extend the data series Z with a new data point, z∗, which is
a measurement of the property z. Often the uncertainty of z∗ is zero, and then the
maximum likelihood approach simply boils down to maximizing the likelihood, or
minimizing the cost V(p), while fulfilling z(p) = z∗. This additional data point, z∗,
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then enters as an additional parameter, and one can fix this parameter to different
values, while optimizing over the others, as in a traditional PLH approach.

Let us now see how these two ideas may be implemented in practice.

17.4.2 The Stepping

The core-prediction approach is formally a standard, albeit difficult, constrained opti-
mization problem, and may therefore in principle be implemented using any method
that can deal with such problems. However, since many of the most commonly
used implementations of optimization algorithms cannot deal with such difficult
constraints, the following simple implementation was suggested in [6]:

1. Initiate w > 0, fincr > 1
2. p̂ = argp min VC (p), where VC (p) = V (p) + w · C(z(p))

3. if V (p) > δ, return z( p̂); else w = w · fincr, go to 2
4. Output: the maximum or minimum value that z can take while still agreeing with

data

where C(z) is chosen as a function that grows with z if you are seeking �min
z (e.g.

C(z) = z or C(z) = log(z)) and where C(z) is chosen as a diminishing function if
you are seeking �max

prop (e.g. C(z) = 1/z or C(z) = −z).
The central idea behind this little algorithm is that you increase the contribution

from the maximisation (or minimisation) of the new cost function C(·) compared
with the component from the old cost function V (p), until the maximisation (or
minimisation) cannot proceed without violating V (p) < δ; the optimised parameter
values where you stop would then in theory and for sufficiently small step-sizes,
fincr, lie at the border of the core prediction uncertainty, i.e. at �max

z (or �min
z ). In

other words, if there is an upper boundary for the prediction z, it is because that
property is observable (i.e. can be identified from data [6]), i.e. because there is a
tradeoff for the model between fitting to the data and maximizing that value.

In the other approach, based on PPL, one formulates a similar but not identical
constrained optimization problem as in (17.6)

p̂ = arg
p
min V (p) where z(p) = z∗ (17.7)

This constrained optimization problem corresponds to the case where the added data
point, z∗, has zero uncertainty. In practice they solve this equation by optimizing

p̂ = arg
p
min VC (p) where VC (p) = V (p) + η(z − z∗) (17.8)

where η is a Lagrange multiplier, which is increased until the resulting optimization
yields a sufficient fulfillment of the constraint z(p) = z∗. Once that fulfillment is
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achieved, z∗ is increased (or decreased) until the maximum (or minimum) border,
where V (p) = δ, has been reached.

There are some subtle but crucial differences between these two approaches to
the stepping. First, for the core predictions approach, the stepping is done with the
Lagrange multiplier w, which should lead to corresponding steps in the property
z(p). In contrast, in PPL, the stepping is done with z∗ directly, and steps in their
Lagrange multiplier η are only taken to make z(p) − z∗ closer to zero. On the plus
side for the core prediction approach, this difference means that the core prediction
approach only needs to perform one constrained optimization problems, whereas
the PPL approach solves many such problems. Since constrained optimizations are
highly difficult, this may be a big advantage, and something that opens up for usage
of more advanced global methods for the single constrained optimization problem
(17.6). Nevertheless, the difficulty of the many constrained optimizations in PPL
is relieved by the fact that they are similar, and that the end result of the previous
optimization, for a slightly different value of z∗, probably is a good start guess to the
new optimization, with the new value of z∗. However, in the experience of the author,
themost important difference between the two approaches to stepping is another: that
the core prediction approach seems to be more inviting to jumps between different
qualitative behaviours, which means that incremental changes in w not always lead
to incremental changes in z(p). For this reason, if one wants highly resolved profiles,
the PPL approach to stepping is probably to be preferred compared to the stepping
done in the simple algorithm solving Eq. (17.6). Note, however, that these methods
are rapidly evolving.

17.4.3 The Cut-Off Level

The cut-off level is another issue where there are similarities and differences between
the two approaches. In short, using the core prediction approach, one can use any cut-
off, which opens up for more pragmatic choices, but in PPL they use the same theory
as for the parametric PPL, which provides for a stronger theoretical underpinning,
but also makes the options fewer.

In other words, for the core prediction approach, one can use any choice of cost
function, and any reasoning behind the choice of δ. Nevertheless, the standard choice
for V (p) is the traditional least square

V (p) =
N

∑

t=0

∑

i

(yi (t) − ŷi (t, p))2

σi (t)
+ additional terms (17.9)

where i sums over the different measurement signals, σ is the standard deviation of
the measurement noise, and the additional terms are optional. If the additional terms
are included, one no longer has the traditional least square, and its theoretically
sound properties. Nevertheless, often such additional terms are anyway warranted
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and useful to include, e.g. to aid the search, or to require subjectively important qual-
itative behaviours. The most common way to chose a cut-off between acceptable and
rejected costs is probably to use the above V (p) without additional terms, and then
use the inverse of the cumulative chi-square distribution, where the degrees of free-
dom equals the number of data points. This is often referred to as the chi-square test.
More advanced approaches compensates for the number of identifiable parameters,
uses empirical distributions from bootstrapping, or other principles altogether, such
as model discrimination or residual correlation-based tests. These cut-off methods,
and more, are reviewed in the same paper that published the first version of the core
prediction approach, [7].

For the PPL cut-off, the value is closely associated to the standard PLH approach.
This means two things. First, the cost function must be equal to the likelihood func-
tion, which is maximized as described in earlier chapters. This maximum likelihood
approach is the same as minimizing the chi-squre cost above (Eq. (17.9) without the
additional terms), under the assumption of additive and normally distributed mea-
surement noise. Second, the cut-off is chosen as a certain addition, δPPL to the cost
at the optimal parameters, V ( p̂). This addition, δPPL, is equal to the inverse of the
cumulative chi-square distribution for 1 degree of freedom.

17.4.4 Validation of the Obtained Boundaries

Both of the new approaches have a variation step, or a voluntary final step, which is
called something with the word validation in it, but again the two versions are only
related and not exactly the same.

For the core prediction approach, the validation step is simply a check that the
prior steps have not led to a misconclusion, and that the corresponding rejection
really holds true. In other words, Steps 1 and 2 (Fig. 17.2) have led to a prediction
with outer boundaries, and data values outside of these boundaries will probably
lead to a rejection. However, even if the experimentally measured data point would
lie outside of the obtained uncertainty, that is not a guarantee that the combined
dataset, including the original data and the new data point, would lead to a rejection
of the model, since that depends on the uncertainty of the new data point, and on
how far away from the rejection boundary the model was based on the original
data set. In other words, the question of whether the predicted rejection leads to an
ultimate rejection needs to be tested, or validated. This validation step, Step 3, thus
validates the rejction. This step was introduced already in [4], which also introduced
the concept of core predictions, and then the step followed directly on Step 1, which
made the validation even more important. Note that also here, the validation of a
predicted rejection is made using standard rejection methods, such as the chi-square
test, and that no new theory is needed.

For PPL, the validation step is more a variation of the original PPL. In this varia-
tion, the added data point z∗ has an uncertainty, and is thus added on an equal footing
to the other data points. In other words, no constrained optimization is needed to
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ensure that z(p) = z∗. One instead simply optimizes over the normal parameters,
obtains a cost, modifies z∗, does a new optimization, and repeats until an unaccept-
able agreement with the data is obtained. Note that this method of course has the
limitation that it depends on what the uncertainty of z∗ is assumed to be, and that
the assumed uncertainty may differ from the actual uncertainty of a subsequently
collected actual data point.

17.4.5 Dependencies and the Handling of Predictions
of Time-Series

A final important difference between the two approaches is that already hinted at:
how they relate to predictions of entire time-series.

In the core prediction approach, one can in principle expand the present framework
to account for timeseries using only a minor modification, but one need to be careful
about the interpretation of the results. The key modification that needs to be done is
to introduce a distance measure between two time-series, so that the time-series can
be projected down to a scalar, which can be added as a constraint. A standard way
to introduce such a distance measure is to take the difference between the two time-
series at each time point, and integrate over time. In other words, for two time-series
denoted d1 and d2 their distance, denoted D(d1, d2), is given by

D(d1, d2) :=
∫

d1(t) − d2(t)dt (17.10)

With these definitions in place, consider a specific predicted time-series z = d( p̂).
The max and min values of the uncertainty region around this time series is given
by the same algorithm as before, where C(p) is a growing function of D(d(p),z)
for finding �min

z , and a diminishing function for finding �min
z . Note that this is a

generalization of the original algorithm: if the time-series is collapsed to a single time-
point, the time-series approach finds the same boundaries as the original algorithm.
Note also that this time-series formulation was the first way this core prediction
approach was introduced, and that [6] therefore only presents an implementation
and testing of that approach, using a particular solution to the general constrained
optimization problem. We will now turn to the PPL viewpoint of this generalization,
and then discuss the differences in interpretations and possibilities.

When considering time-series in the PPL framework, statistics enters the picture
in anotherway,whichmakes thingsmore complicated. In PPL, the statisticalmeasure
enters in the calculation of the term δPPL, which for a single additional data point z∗
is calculated as the inverse of the cumulative chi-square distribution, with one degree
of freedom, and at the desired significance level. In other words, if the significance
level is 0.05, the cut-off is δ = V ( p̂)+ ∼ 3.8, and the prediction should lie within
the specified boundaries in 95% of the cases. In [15], they tested this claim, by
generating many artificial datasets, with different noise realizations, and saw that at
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least for the therein tested example, the fraction of successful prediction uncertainties
converges to a reasonable vicinity of the fraction predicted by the significance level.
This theory comes from the standard PLH approach, and depends on the assumption
that the individual parameters, pi , are uncorrelated, and that the new additional data
point is considered as such an individual parameter. This uncorrelation assumption
would have problems if one would switch from a single data point to an entire time-
series, comprising many or an infinite number of data points. This is the case because
if a datapoint at a specific time-point is predicted to be high, neighbouring datapoints
will also be predicted to be high. In other words, for time-series, the statistical basis
for PPL breaks down, and they can no longer predict the cut-off using that theory.
That problem does not disappear in the validation version of PPL.

Let us now compare to the statistical viewpoint of the core prediction approach. In
that approach, the cut-off is decided a priori, using any statisticalmeasure, such as the
chi-square value. Then, with this specification ofA in place, the remaining exercise
is to find the extreme predictions, the max and the min, that lie within this space,
and this is purely an optimization problem. In this viewpoint, there is no difference
between looking at the most extreme timeseries or the most extreme time-point,
because no assumptions of uncorrelation appears, as it does in the PPL approach.
However, one needs to keep that in mind when interpreting a predicted time-series:
it is the extreme time-series considered as a whole that is predicted. In other words,
other acceptable time-series may contain values at specific time-points that are more
extreme (higher or lower) than the most extreme time-series. This problem is to some
extent illustrated in Fig. 17.1c. Finally, note that if one wants to use the prediction for
rejections based on new data-points at various points in this predicted time-series,
the validation step in the core prediction approach ensures that the rejection holds
statistically: Step 3 is a standard rejection formulation, even though more than one
data point has been added. Therefore, no rejections will erroneously be done because
of this described problem with correlations.

17.5 Related Approaches

17.5.1 Bayesian Approaches

Themost important and state-of-the-art alternative to those presented herein are prob-
ably those developed in a Bayesian setting (reviewed in e.g. [14]). These theories
are in practice implemented usingMarkov ChainMonte Carlo (MCMC) simulations
[3, 12, 26, 29]. In this setting, one does not exclusively characterise A and ignores
the rest of the parameter space, but one instead gives all parameter points a probabil-
ity P(p|Z), which says how likely the parameter points are, given the available data.
These probabilities can then be used to calculate the corresponding probability of
generalmodel properties P(z|Z), which can then be combinedwith a cut-off to obtain
an uncertainty of the prediction, with a corresponding significance. However, despite
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the conceptual appeal of this approach, and the existence of rather general methods,
there are important limitations. For instance, the method requires the specification
of a prior distribution of the parameter values, even if one has no prior knowledge on
these distributions; the choice of this prior will determine the outcome. The short-
coming of this assumption in terms of achieving conclusive statements is discussed
in the next section. The most important limitation, however, is that these methods
only converge if the system is identifiable, or only mildly unidentifiable; such limi-
tations do not apply to the herein presented approach. In cases of non-identifiability
it appears that an important difference between the two approaches is revealed. In
frequentist approaches such as those presented herein one considers the value of the
cost function (or likelihood), whereas in MCMC approaches one looks at the den-
sity, and in cases of unidentifiability these do not necessarily coincide. To sort out
what is the correct approach, likelihood or density, is an important task for future
research comparing and combining frequentist and Bayesian approaches. Finally,
just as Step 1 in the frequentist approaches, MCMC approaches suffer the problem
of the curse of dimensionality, since they try to approximate a multi-dimensional dis-
tribution using points. This problem is circumvented using PPL or Step 2 in the core
prediction approach. In fact, Step 2 is per definition better than MCMC at finding
extreme points, since you can always use the outcome of MCMC as a start guess for
the constrained optimization, which per definition will find something equally good
or better.

17.5.2 Other Related Approaches and the Relation
to Other Fields

A relatively extensive overview of related methods—such as interval analysis based
methods [13, 28], sloppy modelling [5, 19], etc.—is available in [6]. Nevertheless,
there are some important subsequent developments, and developments in other fields,
which are not mentioned therein. The most important such method is PPL, and it has
been described in detail above. One important neighboring research field is known
as pharmacokinetics. This is a field that has done modelling of biological systems
since the 70s, and they have a relatively well-developed methodological toolbox. For
instance, as mentioned above, the method known as profile likelihood (for parameter
uncertainty), has been used in the pharmacokinetics community for several decades,
but has only recently been discovered in the systems biology community. Similarly,
the problem of unidentifiability, and the need to consider multiple parameter sets, has
been described also within the pharmacokinetics community, andmethods have been
proposed to characterize such sets. One such method is cluster Newton [1], where
a cluster of parameter sets are considered together, used to approximate a surface,
and where this surface then is used in the optimization. However, although cluster
Newton has shown some strengths, e.g. regarding speed compared to certain other
approaches, cluster Newton should primarily be considered as a new alternative to
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Step 1 (Fig. 17.2), and there does not yet seem to exist a correspondence to Step
2 in the pharmacokinetics community. Another important neighboring community
is known as chemometrics. Also they have now acknowledged the need to identify
the well-determined predictions, and to account for the effect of unidentifiability.
In the chemometrics community, the space of acceptable parameters is referred to
as “neutral parameters”, and there are recent papers (e.g. [27]), where they analyse
this space to find the well-determined properties (the core predictions). A recent and
related method to identify the well-determined properties has been published also
in the systems biology community [9]. This method starts by the identification of
subsets of parameters for which the so-called Hessian matrix has full rank, except
for one parameter. Within this subset, one can then numerically determine the inter-
relations among the parameters, from ordinary profile-likelihood plots. Finally, fits
of simple analytical expressions to these numerically determined interrelations can
semi-automatically give the expressions for the core predictions.

In summary, the field of handling unidentifiability is rapidly gaining in attention,
not only in the field of systems biology but in several other related fields. However,
there does not exist a correspondence to Step 2 in any other field; their methods are
still only based on various ways of approximating the space of acceptable parameters
(Step 1).

17.6 Summary and Discussion

In this chapter we have considered the important topic of obtaining predictions with
uncertainty. The focus has been on frequentist approaches, which considers the value
of the likelihood function, or someother cost function, as the primedecider ofwhether
a parameter is acceptable or not. This decision is determined by a cut-off value, δ,
and with this cut-off decided, the space of acceptable parameters A is defined. In
this chapter, two recently presented approaches to analyse this space have been
reviewed and contrasted: the core prediction approach, and PPL. In Step 1 of the
core prediction approach,A is approximated through a point cloud, and the extreme
values of the prediction z are approximated by the extreme values in this point-cloud.
In Step 2, these approximate boundaries are improved upon for a specific prediction,
by formulating the constrained optimization problem (17.6), which can be solved
directly using an optimization algorithm that can handle nonlinear constraints, or
by using the simple algorithm mentioned herein. As is shown in [6], Step 2 clearly
improves upon the boundaries for a complicated model for insulin signalling. In
the core-prediction approach, there is a final and optional Step 3, which validates
that the potential rejection suggested by a new experimental data point really holds.
In PPL, the new data point is added as a parameter, whereafter its uncertainty is
characterised using a normal PLH. If the added data point contains an uncertainty,
the PPL is referred to as validation PPL. The stepping and cut-off in PPL are different,
and these differences have been explained. For instance, it seems like the stepping
strategy described for PPL is more stable. Also, because of the differences in where
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and how the statistical considerations enters the picture, the extension to time-series
is handled differently in the two approaches. In the core prediction approach, Step 2
is merely an optimization exercise, and time-series can just as easily be optimized
for, as individual data points. However, even though potential rejections are checked
in Step 3 one should be careful with the interpretation, as it is only the time-series
as a whole that is extreme, not necessarily individual time-points. In contrast, for
PPL, time-series cannot be considered, since the theory behind the cut-off is based
on the independence of the parameters. Finally, even though this chapter provides a
merging of these two approaches, it will be an important challenge for future research
to alsomerge and relate thesemethodswith the three other related alternatives: cluster
Newton, Bayesian, and neutral parameters.

17.6.1 What Is the Price of Considering Predictions
Without Uncertainty?

To end this chapter, we want to remind the reader of the conceptual and epistemo-
logical breakthrough that it means to now have predictions with uncertainty, and
of the high price that is paid by not considering this uncertainty. For many years,
systems biology modelling has been done with guessed parameter values, or using
parameters from the literature that are not appropriate, or based on models based on
earlier guesses. If the parameters are wrong, and a single parameter point is consid-
ered, predictions from such a model is of limited, if any, interest. However, even if
the parameter point could be right, i.e. it is not unrealistic, it is still uncertain, and
only a single point in the space of acceptable parameter points. Since the size and
uncertainty of A typically is big in biology, this means that the resulting prediction
uncertainty (�min

z ,�max
z ) also could be big, and probably would be, at least for some

predictions. If one does not know which predictions are well-determined, and which
are not, one has to assume that all predictions are highly undetermined. Such undeter-
mined predictions can only make statements of the character “it could be like this, or
it could be in some other way”. Such statements are in [6] defined as suggestions, or
beach statements, and they are weak statements. However, if one knows that a certain
prediction must lie within certain narrow boundaries, that prediction is of the same
epistemological level as a rejection, since the prediction is an implicit rejection: if
the prediction is not sufficiently fulfilled when tested experimentally, the model will
be rejected. Since a rejection is the strongest epistemological statement available in
science, a core prediction is a statement that is final This finality holds since the outer
boundaries of a core prediction will not be refuted by the collection of more data as
long as that data do not show that previous data was erroneous. Core predictions are
therefore well-determined, and of the strongest possible epistemological character
[6]. Finally, even if one knows that a prediction is highly uncertain, i.e. that each
possible behaviour within that uncertainty just is a suggestion, that is still important
knowledge. One reason for that is that such highly uncertain predictions are those
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that most likely will be most beneficial to measure, if one wants to further determine
the parameters in the model. In that way, predictions with uncertainty, but not predic-
tions without uncertainty, feed back to the user in a powerful way, which allows you
to know both how the model works, what you know and what you guess, and which
allows you to close the experiment/modelling cycle in the most powerful way. When
you do a new experiment, you can know exactly why what the new data will provide:
a test of the entire model structure (Fig. 17.1b), a characterization of undetermined
aspects of the model (Fig. 17.1c), or a discrimination between two competing model
structures (Fig. 17.1d).
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