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Abstract The paper addresses the problem of learning internal task-specific
dynamic models for a reaching task. Using task-specific dynamic models is crucial
for achieving both high tracking accuracy and compliant behaviour, which
improves safety concerns while working in unstructured environment or with
humans. The proposed approach uses programming by demonstration to learn new
task-related movements encoded as Compliant Movement Primitives (CMPs).
CMPs are a combination of position trajectories encoded in a form of Dynamic
Movement Primitives (DMPs) and corresponding task-specific Torque Primitives
(TPs) encoded as a linear combination of kernel functions. Unlike the DMPs, TPs
cannot be directly acquired from user demonstrations. Inspired by the human
sensorimotor learning ability we propose a novel method which autonomously
learns task-specific TPs, based on a given kinematic trajectory in DMPs.

Keywords Compliant movement primitives � Task-specific dynamics � Learning �
Dynamic movement primitives

1 Introduction

Learning of a new motor behaviour is one of the key skills that a humanoid robot
should have. Programming by demonstration is a popular way to acquire new motor
behaviour [1], which can be done by using different sensory systems, i.e. visual [2]
or kinaesthetic guidance [3]. The main advantage is that the robot kinematics is
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adapted and the posture is preserved even for redundant robots. A common way of
learning kinematic trajectories is by using the Dynamic Movement Primitives
(DMPs) [4]. To execute the desired DMP trajectory on a robot the underlying
controller, usually based on high gain feedback loop, is employed to guarantee that
the trajectory is accurately executed. However, using high gains in a feedback loop
makes robots inherently unsafe for interaction with the environment or humans, due
to the high interaction forces that may occur during unforeseen contacts.

Different approaches can be used to minimize the interaction forces during
contacts: e.g., by actively detecting them using proximity sensors or artificial skin
[5]; by using passively compliant mechanical structures like artificial pneumatic
muscles [6] or by using control algorithms for active compliance [7]. The latter is
achieved using the control approaches based on the inverse dynamic models.
Obtaining a dynamical model is a challenging and time consuming task even for
experts. But it only needs to be done once. On the other hand, it is impossible to
obtain the generic dynamic model, even for simple task like table wiping, due to the
unknown friction between the sponge and the table. Therefore, instead of modelling
the task, we propose a novel method for learning yet unknown and undefined
task-specific torque primitives. The proposed method would replace the need for
modelling the task dynamics and if the dynamic model is already in use, it will
compensate for additional uncertainties. By learning the exact dynamic model of
the task, one can achieve both the compliant robot behaviour and the accurate
tracking of the desired motion. While accurate tracking is required for proper task
execution, the compliant behaviour is an essential feature for safe interaction with
the environment or with a human [8].

While the DMPs and their possible modulations during contact with the envi-
ronment have been thoroughly analysed [9–12], their extension towards torque
controlled robots was not sufficiently explored yet. Inspired by the human sensory
motor ability [13–16] we propose a novel method based on Compliant Movement
Primitives (CMPs), which represent a new model-free approach, while keeping
simple and smooth modulation properties of the position based DMPs. Similar to
what can be observed in humans [14], the proposed approach independently learns
the kinematic trajectory in Cartesian space (DMPs) and the task dynamics in the
joint space (TPs). The proposed approach exploits the motion pattern encoded by
the DMPs to acquire the task-specific torques and encodes them as TPs.

The first step in gaining the CMPs is learning the desired motion trajectory in
DMP. Next, the DMP trajectory is executed on a robot using low-feedback gains
with the proposed method for learning the task-specific TPs. In each subsequent
step the TPs are then used as a feedforward term, which essentially represents new
learned task-specific dynamics. The stability of the proposed controller is assured
by keeping the low-gain feedback loop, which ensures that the desired task is
performed safely even in unstructured environment or with humans. While the
proposed approach eliminates the need for dynamical modelling, the CMPs still
have to learn TPs for each task variation. Once several CMPs for different task
variations are learned, they can be added to a database and statistical generalization
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can be used as in [17]. This allows learning and performing different variations of
the same task in a compliant manner without the need of any analytical models of
the task or programming experts.

2 Compliant Movement Primitives

Compliant Movement Primitives (CMPs) h(t) are defined as a combination of
kinematic trajectories encoded in Dynamic Movement Primitives (DMPs) and
corresponding task-specific dynamics encoded in Torque Primitives (TPs)

h tð Þ ¼ ½€yd tð Þ; _yd tð Þ; yd tð Þ; sf ðtÞ� ð1Þ

Here €ydðtÞ; _ydðtÞ; ydðtÞ are vectors of the desired task-space accelerations,
velocities and positions respectively encoded in the DMPs, and sf ðtÞ is the vector of
corresponding task-specific feedforward joint torques encoded in TPs.

First the kinematic part is obtained using the learning by demonstration
approach. A short overview of the periodic version of the DMPs [4, 12] with the
recursive learning algorithm is given first. The following equations are valid for one
DOF; for multiple DOF the equations are used in parallel. A nonlinear system of
differential equations defines DMP for periodic movements

_z ¼ X az bz g� yð Þ � z
� �þ f /ð Þ� �

; _y ¼ Xz; _/ ¼ X; ð2Þ

where Ω is the frequency of motion, ϕ is the phase, αz and βz are the positive
constants set to 8 and 2 respectively. They ensure critical damping so that the
system monotonically converges to the trajectory oscillating around anchor point
g. The nonlinear part f(ϕ) is given by

f /ð Þ ¼
PN

i¼1 wiwiPN
i¼1 wi

; wi ¼ expðhðcosð/� ciÞ � 1ÞÞ; ð3Þ

where wi are the weights that define the shape of the trajectory, ψi are the Gaussian
like kernel functions where parameter h defines their width, and ci is equally spaced
between 0 and 2π. To acquire the target signal for recursive learning the Eq. (2) is
rewritten in the form

ftðtÞ ¼ €yd
X2 � azðb zðg� ydÞ � _yd

X
Þ; ð4Þ

where €yd; _yd; yd are respectively the desired acceleration, velocity and position of
the desired trajectory. To update the weights wi, an incremental regression is used:
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wi t þ 1ð Þ ¼ wi tð Þ þ wiPiðt þ 1ÞeðtÞ; ð5Þ

Pi t þ 1ð Þ ¼ 1
k

Pi tð Þ � P2
i tð Þ

k
wi
Pi tð Þ

 !
; ð6Þ

eðtÞ ¼ ftðtÞ � wiðtÞ; ð7Þ

where Pi is the covariance. The initial parameters are set to Pi = 1, wi = 0 and
λ = 0.995 (see [10] for details).

To obtain the dynamical part of the CMP, i.e. the corresponding TP, the motion
is executed on a robot using a low gain feedback loop and a learning algorithm for
acquiring the task specific torque primitive (TP). The desired motion €yd ; _yd; yd
encoded in DMPs is executed using the following control law

su ¼ J# Kp yd � yð Þ þKd _yd � _yð Þ þKi €yd � €yð Þ� �þ NKn _qþ sf ð/Þ; ð8Þ

where, J# is the pseudo inverse, N is the null-space matrix and Kp, Kd, Ki and Kn

are the constant gain matrices selected such that the robot behaves compliantly, i.e.
set to match the low feedback gain requirements.

Here sf ð/Þ is the feedforward term encoded in TPs. For one DOF it is given by

sf ð/Þ ¼
PN

i¼1 wiwiPN
i¼1 wi

; ð9Þ

where the kernel functions ψi are defined as in Eq. (3) and the weights are updated
by inserting the error given by

e tð Þ ¼ J# at yd tð Þ � y tð Þð Þ þ bt _yd tð Þ � _y tð Þð Þð Þ ð10Þ

into Eqs. (5)–(6). The rate of learning is defined by setting parameters at and bt.

3 Experimental Evaluation

The proposed method was evaluated on a 3-DOF planar robot simulated in Matlab
using a Planar Manipulator Toolbox [18]. The simulation step was set to 0.01 s and
the link lengths of the robot were set to 1 m. The initial task space position of the
robot was y0 = [1, 1.5] m. The initial robot configuration (green line) is shown in
Fig. 1.

The task was to reach towards certain points in space and return back to the
initial position. A proposed controlled given by Eq. (8) with low feedback gains
was used. Note that inverse dynamical model for compensating the robot dynamics
was not used. This task is also similar to the task used in a study of human sensory
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motor learning ability reported in [14]. To compare the results we chose eight
different positions equally spaced on a circle with a radius of 1 m from the initial
position. The desired Cartesian kinematic trajectories yd were encoded in DMPs as
a part of the CMPs. They are shown with black dotted lines on the left plot in Fig. 1.

Note that the desired kinematic trajectory is encoded in the task-space, i.e.
Cartesian space, and the corresponding task-specific torques are encoded in the joint
space, see Eq. (8). The mapping of the task-space error e(t) to the joint space is done
by using a pseudo-inverse of the Jacobean. The learning of the TPs was performed
after each iteration of the executed motion. Note that each executed motion started
from the same initial position. The left hand side plot in Fig. 1 shows comparatively
eight different examples between initial movement execution (blue lines) and the
last iteration of learning (red line). One can see in all eight examples that the
proposed approach was able to learn proper TPs in order to execute the task
accurately. Note that in this example the proposed system was learning the
unknown robot dynamics.

The successful learning of the torque primitives can be seen on the right hand
side plots in Fig. 1 where we compare the behaviour of one representative example,
i.e. moving to the right. For clarity we only show the first half of the movement.
The top right plot shows the robot’s behaviour for initial movement execution, i.e.

Fig. 1 Left hand side plot shows eight examples of the initial (blue) and the learned (red) robot
behaviour in Cartesian space. Right hand side plots show one detailed example of the initial (top)
and the learned (bottom) robot behaviour in Cartesian space
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feedforward torques were zero. Here we can clearly see that the low gain feedback
loop is not able to track the desired trajectory accurately. However, by applying the
proposed learning algorithm to obtain the TPs, the tracking performance was
improved significantly. The robot’s behaviour after learning, i.e. after 25th itera-
tions, is shown in the bottom plot, where perfect matching between the desired
(black dotted line) and actual (blue line) Cartesian position can be observed.

The evolution of the TPs for all 25 iterations and for all three joints is shown in
Fig. 2, were the red line shows the initial TPs, the thick blue line shows the final
TPs and the black dotted line shows the ideal task-specific torques computed by
using the exact inverse dynamic model.

Note that the initial torque primitives are zero. By comparing the TPs with the
ideal dynamical model, we can see that they are similar in shape and amplitude.
This shows that the proposed algorithm can successfully learn the required
task-specific dynamics autonomously.

The proposed learning algorithm essentially minimises the error function given
by Eq. (10). Thus, when e(t) in Eq. (10) is converging towards 0, sf ð/Þ in Eq. (9) is
converging toward the exact inverse dynamic model. Ideally, if e(t) in Eq. (10) is
zero then sf ð/Þ in Eq. (9) is the perfect inverse dynamic model.

The convergence of the proposed algorithm and the ability to re-learn the
task-specific torques is also illustrated on the left hand side plot in Fig. 3, where the
mean value and the standard deviation of the tracking error for all eight examples
are shown. In studies about humans it has been demonstrated that they can quickly
adapt to the changes in the task dynamics [14]. To show that the proposed approach
can also cope with changes of task dynamics, the parameters of robot dynamics
were changed after the 25th iteration. In the 26th iteration the inertia parameter of
the robot was increased by a factor five and remained afterwards at that new value.

In general the learning rate of the proposed algorithm is defined with the gains αt
and βt. If the gains are set too high, the system may potentially be destabilized, or
vice versa, if the gains are too low, the learning rate would be slow and impractical.
We set them empirically to αt = 20 and βt = 10, which results in similar learning rate

Fig. 2 Comparison with an ideal inverse dynamic model and evolution of the TPs during
25 learning iterations for all three joints. The initial TPs are in red, the final TPs are in blue and the
ideal joint torques using exact dynamic models are shown with black dotted line
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as observed in human sensory motor learning ability reported in [14]. The results
are shown on the right hand side plot in Fig. 3, where we can see that only 10
iterations were needed in order to obtain perfect tracking performance even after the
dynamics was significantly altered, i.e. inertia parameters were increased by factor
five. This also shows that the proposed approach can cope with sudden changes in
the task dynamics and re-adapt online if necessary.

Since low feedback gains are used in combination with the CMPs we also
assume that the interaction force in case of a collision with an unforeseen object
will be significantly smaller compared to the general feedback approach with
similar tracking performance. To investigate and compare the performance in case
of unforeseen collisions, a solid wall was placed on the desired end-effector path.
The results are shown on the right hand side plot in Fig. 3, where the normalized
interaction force at the end effector is given. The blue line shows the results of the
proposed approach and the red line shows the results of the high gain feedback
control.

On the right hand side plot in Fig. 3 we can see that, at the beginning of the
impact, resulting forces are similar in both cases. This was expected since the initial
force is mainly a result of the robot inertia, i.e. the robot is suddenly forced to stop
in both cases. This also explains why the forces are almost identical at the begin-
ning of the impact. However, one can see that by using the proposed approach
(CMPs), the impact force only appears initially and then goes towards zero. In this
particulate example the normalized force impulse was only 0.035 Ns. On the
contrary, in the case of the high gain feedback control, the force after impact
remains rather large, i.e. it keeps almost the same value as it was at the beginning of
the impact, resulting in a large force impulse of 0.33 Ns. In the latter case the force
impulse was almost 10 times larger compared to the CMPs approach.

Fig. 3 Left plot shows the average error and the standard deviation (shaded area) for all eight
examples. Right plot shows the interaction force in case of collision using the proposed control
approach (CMP) and standard feedback (FB) control approach with high gains
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4 Conclusion

It was shown that the proposed approach (CMPs) can successfully learn both the
kinematic trajectories in Cartesian space encoded with the DMPs and the corre-
sponding torque primitives in the joint space encoded in TPs. The main contribution
of the proposed approach is learning of the previously unknown task specific
dynamics. With the proposed learning method, the control system was able to
significantly improve the tracking accuracy in each of the subsequent iterations.
Once the TPs are fully learned, the CMPs ensure accurate task execution and, at the
same time, compliant robot behaviour. As such, the proposed learning framework
enables simple and computationally inexpensive control of dynamically challeng-
ing tasks. Moreover, the results were also similar to human studies of sensorimotor
learning abilities. Since learning of the task-specific dynamic is done autonomously
by using a low gain feedback loop, the compliant behaviour is maintained during
learning of task-specific torque primitives. This makes the robot safe for working in
unstructured environments or with humans even during learning.
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