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1 Constant Q-Curvature Metrics on R
2m and Their Volumes

We consider solutions to the equation

.��/mu D .2m � 1/Še2mu in R
2m; (1)

satisfying

V WD
Z
R2m

e2mu.x/dx < C1: (2)

Geometrically, if u solves (1)–(2), then the conformal metric gu WD e2ujdxj2 has Q-
curvature Qgu � .2m�1/Š and volume V (by jdxj2 we denote the Euclidean metric).
For the definition of Q-curvature and related remarks, we refer to [2, Chapter 4] or
to [6].

Notice that, up to the transformation Qu WD u C c, the constant .2m � 1/Š in (1)
can be changed into any positive number, but it is natural to choose .2m � 1/Š

because it is the Q-curvature of the round sphere S2m. This implies that the function
u1.x/ D log 2

1Cjxj2 , which satisfies e2u1 jdxj2 D .��1/�gS2m , is a solution to (1)–

(2) with V D vol.S2m/ (here, � W S2m ! R
2m is the stereographic projection).

Translations and dilations of u1 (i.e., Möbius transformations) then produce a large
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family of solutions to (1)–(2) with V D vol.S2m/, namely

ux0;�.x/ WD u1.�.x � x0// C log � D log
2�

1 C �2jx � x0j2 ; x0 2 R
2m; � > 0:

(3)

We shall call the functions ux0;� spherical solutions to (1)–(2).
The question whether the family of spherical solutions in (3) exhausts the set of

solutions to (1)–(2) has raised a lot of interest and it is by now well understood. For
instance, in dimension 2 we have the following result:

Theorem 1 (Chen-Li [5]) Every solution to (1)–(2) with m D 1 is spherical.

On the other hand, for every m > 1, i.e., in dimension 4 and higher, it was
proven by Chang–Chen [3] that the Problem (1)–(2) admits solutions which are non
spherical. More precisely:

Theorem 2 (Chang–Chen [3]) For every m > 1 and V 2 .0; vol.S2m// there exists
a solution to (1)–(2).

Several authors have given analytical and geometric conditions under which a
solution to (1)–(2) is spherical (see [4, 14, 16]), and have studied properties of non-
spherical solutions, such as asymptotic behavior, volume and symmetry (see [9, 11,
15]). In particular Lin proved:

Theorem 3 (Lin [9]) Let u solve (1)–(2) with m D 2. Then either u is spherical
(i.e., as in (3)) or V < vol.S4/:

Spherical solutions are radially symmetric (i.e., of the form u.jx � x0j/ for some
x0 2 R

2m) and the solutions given by Theorem 2 might a priori all be spherically
symmetric. The fact that this is not the case was proven by Wei–Ye in dimension 4:

Theorem 4 (Wei–Ye [15]) For every V 2 .0; vol.S4// there exist (several) non-
radial solutions to (1)–(2) for m D 2.

Remark 5 As recently shown by A. Hyder [7], the proof of Theorem 4 can be
extended to higher dimension 2m � 4, yielding several non-symmetric solutions
to (1)–(2) for every V 2 .0; vol.S2m//, but failing to produce solutions for V �
vol.S2m/. As in the proof of Theorem 2, the condition V < vol.S2m/ plays a crucial
role.

Theorems 2–4 and Remark 5 strongly suggest that, also in dimension 6 and
higher, all non-spherical solutions to (1)–(2) satisfy V < vol.S2m/, i.e., (1)–(2) has
no solution for V > vol.S2m/ and the only solutions with V D vol.S2m/ are the
spherical ones. Quite surprisingly it turns out that this is not at all the case. In fact,
in dimension 6 there are solutions to (1)–(2) with arbitrarily large V:

Theorem 6 (Martinazzi [13]) For m D 3 there exists V� > 0 such that for every
V � V� there is a solution u to (1)–(2), i.e., there exists a metric on R

6 of the form
gu D e2ujdxj2 satisfying Qgu � 5Š and vol.gu/ D V:
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The proof of Theorem 6 is based on a ODE argument: one considers radial
solutions to (1)–(2), so that (1) reduces to an ODE. Precisely, given a 2 R let
u D ua.r/ be the solution of

(
�3u D �120e6u in R

6

u.0/ D u0.0/ D u000.0/ D u00000.0/ D 0; u00.0/ D �a; u0000.0/ D 1:
(4)

Then one shows that
Z
R6

e6ua dx < 1 for a large, lim
a!1

Z
R6

e6ua dx D 1:

In particular the conformal metric gua D e2ua jdxj2 of constant Q-curvature Qgua
� 5Š

satisfies

vol.gua/ < 1 for a large, lim
a!1 vol.gua/ D 1: (5)

Theorem 6 then follows from (5) and the remark that the quantity vol.gua/ is a
continuous function of a when a is sufficiently large (this seems to be false in general
if a > 0 is not large enough).

The proof of Theorem 2, which is variational and based on the sharpness of
Beckner’s inequality [1], does not extend to the case V > vol.S2m/. On the other
hand with the previous ODE approach one can prove that, at least when m � 3 is
odd, Theorem 2 extends as follows.

Theorem 7 (Martinazzi [13]) Set Vm WD .2m/Š

4.mŠ/2 vol.S2m/ > vol.S2m/. Then, for
m � 3 odd and for every V 2 .0; Vm�, there is a non-spherical (but radially
symmetric) solution u to (1)–(2), i.e., there exists a metric on R

2m of the form
gu D e2ujdxj2 satisfying Qgu � .2m � 1/Š and vol.gu/ D V:

The condition m � 3 odd is (at least in part) necessary in view of Theorems 1
and 3, but the case m � 4 even is open. Notice also that, when m D 3, Theorems 6
and 7 guarantee the existence of solutions to (1)–(2) for

V 2 .0; Vm� [ ŒV�; 1/;

but do not rule out that Vm < V� and the existence of solutions to (1)–(2) is unknown
for V 2 .Vm; V�/. Could there be a gap phenomenon?

We remark that the case m even is more difficult to treat since the ODE
corresponding to (1), in analogy with (4), becomes

�mu.r/ D .2m � 1/Še2mu.r/; r > 0;

whose solutions can blow up in finite time (i.e., for finite r) if the initial data are not
chosen carefully (contrary to what happens when m is odd).
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2 Negative Curvature and Odd Dimension

It is natural to investigate how large the volume of a metric gu D e2ujdxj2 on R
2m

can be, also with constant and negative Q-curvature Qgu < 0. Again with no loss of
generality we assume Qgu � �1. In other words, consider the problem

.��/mu D �e2mu on R
2m; (6)

subject to condition (2). Although for m D 1 it is easy to see that Problem (6)–(2)
admits no solution for any V > 0, when m � 2 we have

Theorem 8 (Martinazzi [10]) For any m � 2 Problem (6)–(2) has solutions for
some V > 0.

Using the fixed point argument from [15] and a compactness result from [12],
Hyder–Martinazzi recently proved:

Theorem 9 (Hyder–Martinazzi [7]) For any m � 2 and any V > 0 Problem (6)–
(2) has solutions.

Also the odd-dimensional case is interesting, but more delicate since (1) becomes
a non-local equation for m D .k C 1/=2, k 2 N. Building upon previous results
from [3, 9, 16], we recently proved the following existence result:

Theorem 10 (Jin–Maalaoui–Martinazzi–Xiong [8]) Fix m D 3=2. For every
V 2 .0; 2�2�, Problem (1)–(2) has a solution (where .��/

3
2 needs to be suitably

defined). Moreover, if u is a non-spherical solution to (1)–(2), then V < 2�2 D
vol.S3/.

It is interesting to compare the volume restrictions of Theorems 3 and 10 for
dimension 3 and 4, with the results of Theorems 6 and 7 for dimension 6 and higher.
It is then natural to ask what does the situation look like in dimension 5, i.e., when
m D 5=2.

Conjecture 11 Problem (1)–(2) for m D 5=2 admits solutions for some values of
V > vol.S5/.

In other words, we conjecture that dimension 5 is similar to dimension 6 more
than to dimension 4. The intuition behind this is that the kernel of .��/5=2 contains
polynomials of degree 4, just as the kernel of .��/3, while the kernels of .��/3=2

and .��/2 contain polynomials of degree 2 but not of degree 4, which is crucial in
the proofs of Theorems 3 and 10. On the other hand, we remark that there seems
to be no chance to extend the proofs of Theorem 6 to dimension 5, since ODE
techniques do not fit well in a non-local framework.
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