Recent Results and Open Problems on Conformal Metrics on \mathbb{R}^n with Constant *Q*-Curvature

Luca Martinazzi

1 Constant *Q*-Curvature Metrics on \mathbb{R}^{2m} and Their Volumes

We consider solutions to the equation

$$(-\Delta)^m u = (2m-1)! e^{2mu}$$
 in \mathbb{R}^{2m} , (1)

satisfying

$$V := \int_{\mathbb{R}^{2m}} e^{2mu(x)} dx < +\infty.$$
⁽²⁾

Geometrically, if *u* solves (1)–(2), then the conformal metric $g_u := e^{2u} |dx|^2$ has *Q*-curvature $Q_{g_u} \equiv (2m-1)!$ and volume *V* (by $|dx|^2$ we denote the Euclidean metric). For the definition of *Q*-curvature and related remarks, we refer to [2, Chapter 4] or to [6].

Notice that, up to the transformation $\tilde{u} := u + c$, the constant (2m - 1)! in (1) can be changed into any positive number, but it is natural to choose (2m - 1)! because it is the *Q*-curvature of the round sphere S^{2m} . This implies that the function $u_1(x) = \log \frac{2}{1+|x|^2}$, which satisfies $e^{2u_1}|dx|^2 = (\pi^{-1})^*g_{S^{2m}}$, is a solution to (1)–(2) with $V = \operatorname{vol}(S^{2m})$ (here, $\pi : S^{2m} \to \mathbb{R}^{2m}$ is the stereographic projection). Translations and dilations of u_1 (i.e., Möbius transformations) then produce a large

M. del Mar González et al. (eds.), *Extended Abstracts Fall 2013*, Trends in Mathematics, DOI 10.1007/978-3-319-21284-5_9

L. Martinazzi (🖂)

Department Mathematik, Universität Basel, Basel, Switzerland e-mail: luca.martinazzi@unibas.ch

[©] Springer International Publishing Switzerland 2015

family of solutions to (1)–(2) with $V = \text{vol}(S^{2m})$, namely

$$u_{x_0,\lambda}(x) := u_1(\lambda(x - x_0)) + \log \lambda = \log \frac{2\lambda}{1 + \lambda^2 |x - x_0|^2}, \quad x_0 \in \mathbb{R}^{2m}, \quad \lambda > 0.$$
(3)

We shall call the functions $u_{x_0,\lambda}$ spherical solutions to (1)–(2).

The question whether the family of spherical solutions in (3) exhausts the set of solutions to (1)–(2) has raised a lot of interest and it is by now well understood. For instance, in dimension 2 we have the following result:

Theorem 1 (Chen-Li [5]) *Every solution to* (1)–(2) *with m* = 1 *is spherical.*

On the other hand, for every m > 1, i.e., in dimension 4 and higher, it was proven by Chang–Chen [3] that the Problem (1)–(2) admits solutions which are non spherical. More precisely:

Theorem 2 (Chang–Chen [3]) For every m > 1 and $V \in (0, vol(S^{2m}))$ there exists a solution to (1)-(2).

Several authors have given analytical and geometric conditions under which a solution to (1)–(2) is spherical (see [4, 14, 16]), and have studied properties of non-spherical solutions, such as asymptotic behavior, volume and symmetry (see [9, 11, 15]). In particular Lin proved:

Theorem 3 (Lin [9]) Let u solve (1)–(2) with m = 2. Then either u is spherical (i.e., as in (3)) or $V < vol(S^4)$.

Spherical solutions are radially symmetric (i.e., of the form $u(|x - x_0|)$ for some $x_0 \in \mathbb{R}^{2m}$) and the solutions given by Theorem 2 might a priori all be spherically symmetric. The fact that this is not the case was proven by Wei–Ye in dimension 4:

Theorem 4 (Wei–Ye [15]) For every $V \in (0, vol(S^4))$ there exist (several) nonradial solutions to (1)–(2) for m = 2.

Remark 5 As recently shown by A. Hyder [7], the proof of Theorem 4 can be extended to higher dimension $2m \ge 4$, yielding several non-symmetric solutions to (1)–(2) for every $V \in (0, \operatorname{vol}(S^{2m}))$, but failing to produce solutions for $V \ge \operatorname{vol}(S^{2m})$. As in the proof of Theorem 2, the condition $V < \operatorname{vol}(S^{2m})$ plays a crucial role.

Theorems 2–4 and Remark 5 strongly suggest that, also in dimension 6 and higher, all non-spherical solutions to (1)–(2) satisfy $V < \text{vol}(S^{2m})$, i.e., (1)–(2) has no solution for $V > \text{vol}(S^{2m})$ and the only solutions with $V = \text{vol}(S^{2m})$ are the spherical ones. Quite surprisingly it turns out that this is not at all the case. In fact, in dimension 6 there are solutions to (1)–(2) with arbitrarily large V:

Theorem 6 (Martinazzi [13]) For m = 3 there exists $V^* > 0$ such that for every $V \ge V^*$ there is a solution u to (1)–(2), i.e., there exists a metric on \mathbb{R}^6 of the form $g_u = e^{2u}|dx|^2$ satisfying $Q_{g_u} \equiv 5!$ and $vol(g_u) = V$.

The proof of Theorem 6 is based on a ODE argument: one considers radial solutions to (1)–(2), so that (1) reduces to an ODE. Precisely, given $a \in \mathbb{R}$ let $u = u_a(r)$ be the solution of

$$\begin{cases} \Delta^3 u = -120e^{6u} & \text{in } \mathbb{R}^6 \\ u(0) = u'(0) = u'''(0) = u''''(0) = 0, \quad u''(0) = -a, \quad u''''(0) = 1. \end{cases}$$
(4)

Then one shows that

$$\int_{\mathbb{R}^6} e^{6u_a} dx < \infty \text{ for } a \text{ large, } \quad \lim_{a \to \infty} \int_{\mathbb{R}^6} e^{6u_a} dx = \infty$$

In particular the conformal metric $g_{u_a} = e^{2u_a} |dx|^2$ of constant *Q*-curvature $Q_{g_{u_a}} \equiv 5!$ satisfies

$$\operatorname{vol}(g_{u_a}) < \infty \text{ for } a \text{ large,} \quad \lim_{a \to \infty} \operatorname{vol}(g_{u_a}) = \infty.$$
 (5)

Theorem 6 then follows from (5) and the remark that the quantity $vol(g_{u_a})$ is a continuous function of *a* when *a* is sufficiently large (this seems to be false in general if a > 0 is not large enough).

The proof of Theorem 2, which is variational and based on the sharpness of Beckner's inequality [1], does not extend to the case $V > \text{vol}(S^{2m})$. On the other hand with the previous ODE approach one can prove that, at least when $m \ge 3$ is odd, Theorem 2 extends as follows.

Theorem 7 (Martinazzi [13]) Set $V_m := \frac{(2m)!}{4(m!)^2} \operatorname{vol}(S^{2m}) > \operatorname{vol}(S^{2m})$. Then, for $m \ge 3$ odd and for every $V \in (0, V_m]$, there is a non-spherical (but radially symmetric) solution u to (1)–(2), i.e., there exists a metric on \mathbb{R}^{2m} of the form $g_u = e^{2u} |dx|^2$ satisfying $Q_{g_u} \equiv (2m-1)!$ and $\operatorname{vol}(g_u) = V$.

The condition $m \ge 3$ odd is (at least in part) necessary in view of Theorems 1 and 3, but the case $m \ge 4$ even is open. Notice also that, when m = 3, Theorems 6 and 7 guarantee the existence of solutions to (1)–(2) for

$$V \in (0, V_m] \cup [V^*, \infty),$$

but do not rule out that $V_m < V^*$ and the existence of solutions to (1)–(2) is unknown for $V \in (V_m, V^*)$. Could there be a gap phenomenon?

We remark that the case m even is more difficult to treat since the ODE corresponding to (1), in analogy with (4), becomes

$$\Delta^m u(r) = (2m - 1)! e^{2mu(r)}, \quad r > 0,$$

whose solutions can blow up in finite time (i.e., for finite r) if the initial data are not chosen carefully (contrary to what happens when m is odd).

2 Negative Curvature and Odd Dimension

It is natural to investigate how large the volume of a metric $g_u = e^{2u} |dx|^2$ on \mathbb{R}^{2m} can be, also with constant and negative *Q*-curvature $Q_{g_u} < 0$. Again with no loss of generality we assume $Q_{g_u} \equiv -1$. In other words, consider the problem

$$(-\Delta)^m u = -e^{2mu} \quad \text{on } \mathbb{R}^{2m},\tag{6}$$

subject to condition (2). Although for m = 1 it is easy to see that Problem (6)–(2) admits no solution for any V > 0, when $m \ge 2$ we have

Theorem 8 (Martinazzi [10]) For any $m \ge 2$ Problem (6)–(2) has solutions for some V > 0.

Using the fixed point argument from [15] and a compactness result from [12], Hyder–Martinazzi recently proved:

Theorem 9 (Hyder–Martinazzi [7]) For any $m \ge 2$ and any V > 0 Problem (6)–(2) has solutions.

Also the odd-dimensional case is interesting, but more delicate since (1) becomes a non-local equation for m = (k + 1)/2, $k \in \mathbb{N}$. Building upon previous results from [3, 9, 16], we recently proved the following existence result:

Theorem 10 (Jin–Maalaoui–Martinazzi–Xiong [8]) Fix m = 3/2. For every $V \in (0, 2\pi^2]$, Problem (1)–(2) has a solution (where $(-\Delta)^{\frac{3}{2}}$ needs to be suitably defined). Moreover, if u is a non-spherical solution to (1)–(2), then $V < 2\pi^2 = \text{vol}(S^3)$.

It is interesting to compare the volume restrictions of Theorems 3 and 10 for dimension 3 and 4, with the results of Theorems 6 and 7 for dimension 6 and higher. It is then natural to ask what does the situation look like in dimension 5, i.e., when m = 5/2.

Conjecture 11 Problem (1)–(2) for m = 5/2 admits solutions for some values of $V > vol(S^5)$.

In other words, we conjecture that dimension 5 is similar to dimension 6 more than to dimension 4. The intuition behind this is that the kernel of $(-\Delta)^{5/2}$ contains polynomials of degree 4, just as the kernel of $(-\Delta)^3$, while the kernels of $(-\Delta)^{3/2}$ and $(-\Delta)^2$ contain polynomials of degree 2 but not of degree 4, which is crucial in the proofs of Theorems 3 and 10. On the other hand, we remark that there seems to be no chance to extend the proofs of Theorem 6 to dimension 5, since ODE techniques do not fit well in a non-local framework.

Acknowledgements The author is supported by the Swiss National Science Foundation.

References

- 1. W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality. Ann. Math. **138**, 213–242 (1993)
- 2. S.-Y.A. Chang, *Non-linear Elliptic Equations in Conformal Geometry*. Zurich Lecture Notes in Advanced Mathematics (EMS, Zürich, 2004)
- S.-Y.A. Chang, W. Chen, A note on a class of higher order conformally covariant equations. Discr. Contin. Dynam. Syst. 63, 275–281 (2001)
- 4. S.-Y.A. Chang, P. Yang, On uniqueness of solutions of *n*-th order differential equations in conformal geometry. Math. Res. Lett. **4**, 91–102 (1997)
- 5. W. Chen, C. Li, Classification of solutions of some nonlinear elliptic equations. Duke Math. J. **63**(3), 615–622 (1991)
- 6. C. Fefferman, C.R. Graham, *Q*-curvature and Poincaré metrics. Math. Res. Lett. 9, 139–151 (2002)
- 7. A. Hyder, L. Martinazzi, *Conformal Metrics on* \mathbb{R}^{2m} with Constant Q-Curvature. Prescribed Volume and Asymptotic Behavior (Preprint, 2014)
- T. Jin, A. Maalaoui, L. Martinazzi, J. Xiong, Existence and asymptotics for a non-local Q-curvature equation in ℝ³. Calc. Var. Partial Differ. Eqn. 52(3–4), 469–488 (2015). doi:10.1007/s00526-014-0718-9
- 9. C.S. Lin, A classification of solutions of conformally invariant fourth order equations in \mathbb{R}^n . Comm. Math. Helv. **73**, 206–231 (1998)
- 10. L. Martinazzi, Conformal metrics on \mathbb{R}^{2m} with constant *Q*-curvature. Rend. Lincei. Mat. Appl. **19**, 279–292 (2008)
- 11. L. Martinazzi, Classification of solutions to the higher order Liouville's equation on \mathbb{R}^{2m} . Math. Z. **263**, 307–329 (2009)
- 12. L. Martinazzi, Quantization for the prescribed *Q*-curvature equation on open domains. Commun. Contemp. Math. **13**, 533–551 (2011)
- 13. L. Martinazzi, Conformal metrics on \mathbb{R}^{2m} with constant *Q*-curvature and large volume. Ann. Inst. Henri Poincaré (C) Non-linear Anal. **30**(6), 969–982 (2013)
- J. Wei, X.-W. Xu, Classification of solutions of higher order conformally invariant equations. Math. Ann. 313, 207–228 (1999)
- 15. J. Wei, D. Ye, Nonradial solutions for a conformally invariant fourth order equation in \mathbb{R}^4 . Calc. Var. Partial Differ. Eqn. **32**, 373–386 (2008)
- X.-W. Xu, Uniqueness theorems for integral equations and its application. J. Funct. Anal. 247(1), 95–109 (2007)