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We present a Gauss–Bonnet type formula for complete surfaces in n-dimensional
hyperbolic space H

n under some assumptions on their asymptotic behaviour. As in
recent results for Euclidean submanifolds (see Dillen–Kühnel [4] and Dutertre [5]),
the formula involves an ideal defect, i.e., a term involving the geometry of the set of
points at infinity.

Let S be a complete surface properly embedded in H
n. Assume further that, when

we take the Poincaré half-space model of hyperbolic space H
n,

(i) S extends to a compact smoothly embedded surface with boundary S � R
n,

(ii) S meets the ideal boundary @1H
n D R

n�1 orthogonally along a curve C.

The second condition guarantees that S is asymptotically hyperbolic in the sense
that the intrinsic curvature Ki.x/ tends to �1 as x ! @1H

n. Note also that if S is
minimal and fulfills (i), then condition (ii) is also fulfilled.

We are interested in the total extrinsic curvature of S, i.e., the integral on the
unit normal bundle N1S of the Lipschitz–Killing curvature K. Under the above
conditions, this converges and
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where !k is the volume of the unit ball in R
k, and S" D fx 2 SW xn � "g, still in the

half-space model. By the Gauss–Bonnet theorem, one easily gets
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where A denotes the hyperbolic area, and L is the Euclidean length in the model.
The previous limit is the well-known renormalized area of S (cf., [1]).

Our first result is a variation of (1), motivated by the Crofton formula which states
that the volume of a submanifold (of Sn;Rn or Hn) equals the integral of the number
of intersection points with all totally geodesic planes of complementary dimension.

Proposition 1 ([6]) For a surface S � H
n satisfying (i) and (ii),
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where d` is a (suitably normalized) invariant measure on the space L of totally
geodesic planes ` � H

n of codimension 2, and L" � L contains those planes
represented in the model by a half-sphere of radius r � ".

Motivated by Banchoff–Pohl’s definition of the area enclosed by a space curve
(see [2]), we introduce the following functional defined on closed curves C �
R

n�1 � @1H
n,
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"
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;

where �.C; `/ denotes the linking number between C and the ideal boundary of `.
Combining this definition with Proposition 1 yields the following Gauss–Bonnet

type formula.

Theorem 2 ([6]) For a surface S � H
n satisfying (i) and (ii),
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where d` is an invariant measure on the space L of totally geodesic planes ` � H
n

of codimension 2.

The equation above involves no limit as I.C/ can be represented by

I.C/ D 2

�

Z
C�C

cos � sin �p sin �q
dpdq

jp � qj2 ; (2)

where �p (resp. �q) is the angle between p � q and C at p (resp. at q), and � denotes
the angle between the two planes through p; q tangent at C in p and q respectively.
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Theorem 2 shows in particular that I.C/ is invariant under Möbius transforma-
tions of C. It is interesting to recall another Möbius invariant for closed space curves:
the writhe (see [3]). It can be expressed as

W.C/ D 1

4�

Z
C�C

sin � sin �p sin �q
dpdq

jp � qj2 : (3)

This suggests that some connection should exist between I and W. For the moment,
this is not known.

It would be nice to have integral representations like (2) where the integrand is
Möbius invariant (the same applies to (3)). So far, this is only possible for plane
curves.

Theorem 3 ([7]) For a simple closed curve C � R
2,

�I.C/ D 2� C 1

�

Z
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� sin �
dpdq

jp � qj2 � 2�;

where � is a continuous determination of the angle between the two circles through
p; q that are tangent to C at p and q respectively.

It is not hard to see that the integrand above is invariant under the Möbius group.
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