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Abstract. Machine learning is widely used to analyze biological
sequence data. Non-sequential models such as SVMs or feed-forward
neural networks are often used although they have no natural way of
handling sequences of varying length. Recurrent neural networks such
as the long short term memory (LSTM) model on the other hand are
designed to handle sequences. In this study we demonstrate that LSTM
networks predict the subcellular location of proteins given only the pro-
tein sequence with high accuracy (0.902) outperforming current state of
the art algorithms. We further improve the performance by introducing
convolutional filters and experiment with an attention mechanism which
lets the LSTM focus on specific parts of the protein. Lastly we introduce
new visualizations of both the convolutional filters and the attention
mechanisms and show how they can be used to extract biologically rele-
vant knowledge from the LSTM networks.

Keywords: Subcellular location · Machine learning · LSTM · RNN ·
Neural networks · Deep learning · Convolutional networks

1 Introduction

Deep neural networks have gained popularity for a wide range of classification
tasks in image recognition and speech tagging [9,20] and recently also within
biology for prediction of exon skipping events [30]. Furthermore a surge of inter-
est in recurrent neural networks (RNN) has followed the recent impressive results
shown on challenging sequential problems like machine translation and speech
recognition [2,14,27]. Within biology, sequence analysis is a very common task
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used for prediction of features in protein or nucleic acid sequences. Current
methods generally rely on neural networks and support vector machines (SVM),
which have no natural way of handling sequences of varying length. Further-
more these systems rely on highly hand-engineered input features requiring a
high degree of domain knowledge when designing the algorithms [11,24]. RNNs
are a type of neural networks that naturally handles sequential data. In an RNN
the input to the network’s hidden layers is both the input features at the cur-
rent timestep and the hidden activation from the previous time step. Hence an
RNN corresponds to placing neural networks with shared identical weights at
each timestep and letting information flow across the sequence by connecting
the networks with (recurrent) weights between the hidden layers. In bioinfor-
matics RNNs have previously been used for contact map prediction [10], and
protein secondary structure predition [3,21]. However standard RNNs have been
shown to be difficult to train with backpropagation through time due to both
vanishing and exploding gradients [5]. To mitigate this problem, Hochreiter et al.
[17] introduced the long short term memory (LSTM) that uses a gated memory
cell instead of the standard sigmoid or hyperbolic tangent hidden units used in
standard RNNs. In the LSTM the value of each memory cell is controlled with
input, modulation, forget and output gates, which allow the LSTM network to
store analog values for many time steps by controlling access to the memory cell.
In practice this architecture have proven easier to train than standard RNN.

In this paper LSTMs are used to analyze biological sequences and predict to
which subcellular compartment a protein belongs. This prediction task, known
as protein sorting or subcellular localization, has attracted large interest in
the bioinformatics field [11]. We show that an LSTM network, using only the
protein sequence information, has significantly better performance than cur-
rent state of the art SVMs and furthermore have nearly as good performance
as large hand engineered systems relying on extensive metadata such as GO
terms and evolutionary phylogeny, see Fig. 1 [6,7,18]. These results show that
LSTM networks are efficient algorithms that can be trained even on relatively
small datasets of around 6000 protein sequences. Secondly we investigate how
an LSTM network recognizes the sequence. In image recognition, convolutional
neural networks (CNN) have shown state of the art performance in several dif-
ferent tasks [8,20]. Here the lower layers of a CNN can often be interpreted as
feature detectors recognizing simple geometric entities, see Fig. 2. We develop a
simple visualization technique for convolutional filters trained on either DNA or
amino acid sequences and show that in the biological setting filters can be inter-
preted as motif detectors, as visualized in Fig. 2. Thirdly, inspired by the work of
Bahdanau et al. [2], we augment the LSTM network with an attention mechanism
that learns to assign importance to specific parts of the protein sequence. Using
the attention mechanism we can visualize where the LSTM assigns importance,
and we show that the network focuses on regions that are biologically plausi-
ble. Lastly we show that the LSTM network learns a fixed length representation
of amino acids sequences that, when visualized, separates the sequences into
clusters with biological meaning. The contributions of this paper are:
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Fig. 1. Schematic showing how MultiLoc combines predictions from several sources to
make predictions whereas the LSTM networks only rely on the sequence [18].

Fig. 2. Left: first layer convolutional filters learned in [20], note that many filters
are edge detectors or color detectors. Right: example of learned filter on amino acid
sequence data, note that this filter is sensitive to positively charged amino acids (Color
figure online).

1. We show that LSTM networks combined with convolutions are efficient for
predicting subcellular localization of proteins from sequence.

2. We show that convolutional filters can be used for amino acid sequence analy-
sis and introduce a visualization technique.

3. We investigate an attention mechanism that lets us visualize where the LSTM
network focuses.

4. We show that the LSTM network effectively extracts a fixed length represen-
tation of variable length proteins.

2 Materials and Methods

This section introduces the LSTM cell and then explains how a regular LSTM
(R-LSTM) can produce a single output. We then introduce the LSTM with
attention mechanism (A-LSTM), and describe how the attention mechanism is
implemented.
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2.1 LSTM NETWORKS

The memory cell of the LSTM networks is implemented as described in [15]
except for peepholes, because recent papers have shown good performance with-
out [27,32,33]. Figure 3 shows the LSTM cell. Equations (1-10) state the forward
recursions for a single LSTM layer.

it = σ(D(xt)Wxi + ht−1Whi + bi) (1)
ft = σ(D(xt)Wxf + ht−1Whf + bf ) (2)
gt = tanh(D(xtWxg) + ht−1Whg + bg) (3)
ct = ft � ct−1 + it � gt (4)
ot = σ(D(xt)Wxo + ht−1Who + bo) (5)
ht = ot � tanh(ct) (6)

σ(z) =
1

1 + exp(−z)
(7)

� : Elementwise multiplication (8)
D : Dropout, set values to zero with probability p (9)

xt : input from the previous layer hl−1
t , (10)

where all quantities are given as row-vectors and activation and dropout func-
tions are applied element-wise. Note that for the first hidden layer h1

t the input
xt are the amino acid features. In the memory cell it, ft and ot can are gating
functions controlling input, storage and output of the value ct stored in each cell.
Due to the logistic squashing function used for each gate, the value are always in
the interval (0,1) and information can flow through the gate if the value is close
to one. If dropout is used it is only applied to non-recurrent connections in the
LSTM cell [31]. In a multilayer LSTM ht is passed upwards to the next layer.

2.2 Regular LSTM Networks for Predicting Single Targets

When used for predicting a single target for each input sequence, one approach
is to output the predicted target from the LSTM network at the last sequence
position as shown in Fig. 5A. A problem with this approach is that the gradient
has to flow from the last position to all previous positions and that the LSTM
network has to store information about all previously seen data in the last hidden
state. Furthermore a regular bidirectional LSTM (BLSTM, 5B)[26] is not useful
in this setting because the backward LSTM will only have seen a single position,
xT , when the prediction has to be made. We instead combine two unidirectional
LSTMs, as shown in Fig. 5C, where the backward LSTM has the input reversed.
The output from the two LSTMs are combined before predictions.

2.3 Attention Mechanism LSTM Netowork

Bahdanau et al. [2] have introduced an attention mechanism for combining hid-
den state information from a encoder-decoder RNN approach to machine trans-
lation. The novelty in their approach is that they use an alignment function that
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Fig. 3. LSTM memory cell. i : input
gate, f : forget gate, o: output gate, g :
input modulation gate, c: memory cell.
The Blue arrow heads refers to ct−1.
The notation corresponds to Eqs. 1 to
10 such that Wxo denotes wights for
x to output gate and Whf denotes
weights for ht−1 to forget gates etc.
Adapted from [33].

Fig. 4. A-LSTM network. Each state
of the hidden units, ht are weighted
and summed before the output network
calculates the predictions (Color figure
online).

for each output word finds important input words, thus aligning and translating
at the same time. We modify this alignment procedure such that only a single
target is produced for each sequence. The developed attention mechanism can
be seen as assigning importance to each position in the sequence with respect to
the prediction task. We use a BLSTM to produce a hidden state at each position
and then use an attention function to assign importance to each hidden state as
illustrated in Fig. 4. The weighted sum of hidden states is used as a single rep-
resentation of the entire sequence. This modification allows the BLSTM model
to naturally handle tasks involving prediction of a single target per sequence.
Conceptually this corresponds to adding weighted skip connections (green arrow
heads Fig. 4) between any ht and the output network, with the weight on each
skip connection being determined by the attention function. Each hidden state
ht, t = 1, . . . , T is used as input to a Feed Forward Neural Network (FFN)
attention function:

at = tanh(htWa)vT
a , (11)

where Wa is an attention hidden weight matrix and va is an attention output
vector. From the attention function we form softmax weights:

αt =
exp(at)

ΣT
t′=1 exp (at′)

(12)
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Fig. 5. A: Unidirectional LSTM predicting a single target. B: Unrolled single layer
BLSTM. The forwards LSTM (red arrows) starts at time 1 and the backwards LSTM
(blue arrows) starts at time T , then they go forwards and backwards respectively. The
errors from the forward and backward nets are combined and a prediction is made for
each sequence position. Adapted from [13]. C: Unidirectional LSTM for predicting a
single target. Squares are LSTM layers (Color figure online).

that are used to produce a context vector c as a convex combination of T hidden
states:

c = ΣT
t=1htαt. (13)

The context vector is then used is as input to the classification FFN f(c). We
define f as a single layer FFN with softmax outputs.

2.4 Subcellular Localization Data

The model was trained and evaluated on the dataset used to train the MultiLoc
algorithm published by Höglund et al. [18]1. The dataset contains 5959 proteins
annotated to one of 11 different subcellular locations. To reduce computational
time the protein sequences were truncated to a maximum length of 1000. We
truncated by removing from the middle of the protein as both the N- and C-
terminal regions are known to contain sorting signals [11]. Each amino acid was
encoded using 1-of-K encoding, the BLOSUM80 [16] and HSDM [25] substitution
matrices and sequence profiles, yielding 80 features per amino acid. Sequence
profiles where created with PROFILpro [22]2 using 3 blastpgp [1]3 iterations on
UNIREF50.

2.5 Visualizations

Convolutional filters for images can be visualized by plotting the convolutional
weights as pixel intensities as shown in Fig. 2. However a similar approach does
1 http://abi.inf.uni-tuebingen.de/Services/MultiLoc/multiloc dataset.
2 http://download.igb.uci.edu/.
3 http://nebc.nox.ac.uk/bioinformatics/docs/blastpgp.html.

http://abi.inf.uni-tuebingen.de/Services/MultiLoc/multiloc_dataset
http://download.igb.uci.edu/
http://nebc.nox.ac.uk/bioinformatics/docs/blastpgp.html
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not make sense for amino acid inputs due to the 1-of-K vector encoding. Instead
we view the 1D convolutions as a position specific scoring matrix (PSSM). The
convolutional weights can be reshaped into a matrix of lfilter-by-lenc, where the
amino acid encoding length is is 20. Because the filters show relative importance
we rescale all filters such that the height of the highest column is 1. Each filter
can then be visualized as a PSSM logo, where the height of each column can
be interpreted as position importance and the height of each letter is amino
acid importance. We use Seq2Logo with the PSSM-logo setting to create the
convolution filter logos [28].

We visualize the importance the A-LSTM network assigns to each position
in the input by plotting α from Eq. 12. Lastly we extract and plot the hidden
representation from the LSTM networks. For the A-LSTM network we use c
from Eq. 13 and for the R-LSTM we use the last hidden state, ht. Both c and ht

can be seen as fixed length representation of the amino acid sequences. We plot
the representation using t-SNE [29].

2.6 Experimental Setup

All models were implemented in Theano [4] using a modified version of the
Lasagne library4 and trained with gradient descent. The learning rate was con-
trolled with ADAM (α = 0.0002, β1 = 0.1, β2 = 0.001, ε = 10−8 and λ = 10−8)
[19]. Initial weights were sampled uniformly from the interval [−0.05, 0.05]. The
network architecture is a 1D convolutional layer followed by an LSTM layer, a
fully connected layer and a final softmax layer. All layers use 50 % dropout. The
1D convolutional layer uses convolutions of sizes 1, 3, 5, 9, 15 and 21 with 10
filters of each size. Dense and convolutional layers use ReLU activation [23] and
the LSTM layer uses hyperbolic tangent. For the A-LSTM model the size of the
first dimension of Wa was 400. We used 4/5 of the data for training and the last
1/5 of the data for testing. The hyperparameters were optimized using 5-fold
cross validation on the training data. The cross validation experiments showed
that the model converged after 100 epochs. Using the established hyperpara-
meters the models were retrained on the complete training data and the test
performance were reported after epoch 100.

3 Results

Table 1 shows accuracy for the R-LSTM and A-LSTM models and several other
models trained on the same dataset. Comparing the performance of the R-LSTM,
A-LSTM and MultiLoc models, utilizing only the sequence information, the
R-LSTM model (0.879 Acc.) performs better than the A-LSTM model (0.854
Acc.) whereas the MultiLoc model (0.767 Acc.) performs significantly worse.
Furthermore the 10-ensemble R-LSTM model further increases the performance
to 0.902 Acc. Comparing this performance with the other models, combining the
4 https://github.com/skaae/nntools.

https://github.com/skaae/nntools
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sequence predictions from the MultiLoc model with large amounts of metadata
for the final predictions, only the Sherloc2 model (0.930 Acc.) performs better
than the R-LSTM ensemble. Figure 6 shows a plot of the attention matrix from
the A-LSTM model. Figure 8 shows examples of the learned convolutional filters.
Figure 7 shows the hidden state of the R-LSTM and the A-LSTM model.

Table 1. Comparison of results for LSTM models and MultiLoc1/2. MultiLoc1/2
accuracies are reprinted from [12] and the SherLoc accuracy from [7]. Metadata refers
to additional protein information such as GO-terms and phylogeny.

Model Accuracy

Input: Protein Sequence

R-LSTM 0.879

A-LSTM 0.854

R-LSTM ensemble 0.902

MultiLoc 0.767

Input: Protein Sequence + Metadata

MultiLoc + PhyloLoc 0.842

MultiLoc + PhyloLoc + GOLoc 0.871

MultiLoc2 0.887

SherLoc2 0.930

4 Discussion and Conclusion

In this paper we have introduced LSTM networks with convolutions for pre-
diction of subcellular localization. Table 1 shows that the LSTM networks per-
form much better than other methods that only rely on information from the
sequence (LSTM ensemble 0.902 vs. MultiLoc 0.767). This difference is all the
more remarkable given the simplicity of our method, only utilizing the sequences
and their localization labels, while MultiLoc incorporates specific domain knowl-
edge such as known motifs and signal anchors. One explanation for the perfor-
mance difference is that the LSTM networks are able to look at both global
and local sequence features whereas the SVM based models do not model global
dependencies. The LSTM networks have nearly as good performance as meth-
ods that use information obtained from other sources than the sequence (LSTM
ensemble 0.902 vs. SherLoc2 0.930). Incorporating these informations into the
LSTM models could further improve the performance of these models. However,
it is our opinion that using sequence alone yields the biologically most relevant
prediction, while the incorporation of, e.g., GO terms limits the usability of the
prediction requiring similar proteins to be already annotated to some degree.
Furthermore, as we show below, a sequence-based method potentially allows for
a de novo identification of sequence features essential for biological function.
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Table 2. Confusion matrix with true labels shown by row and R-LSTM model pre-
dictions by column. E.g. the cell at row 4 column 3 means that the actual class was
Cytoplasmic but the R-LSTM model predicted Chloroplast.

Confusion Matrix

ER 26 1 0 0 8 1 0 0 0 3 0

Golgi 1 28 0 0 0 0 0 0 0 1 0

Chloroplast 0 0 82 3 0 0 5 0 0 0 0

Cytoplasmic 0 0 1 266 0 0 3 12 0 0 0

Extracellular 0 0 0 1 166 0 0 0 0 1 0

Lysosomal 0 0 0 0 5 12 0 0 0 3 0

Mitochondrial 0 0 2 5 0 0 94 1 0 0 0

Nuclear 0 0 0 27 1 0 3 137 0 0 0

Peroxisomal 0 1 0 10 0 0 0 1 18 2 0

Plasma membrane 0 0 0 0 5 0 1 1 0 241 0

Vacuolar 0 0 0 0 7 0 0 0 0 1 5

Fig. 6. Importance weights assigned to different regions of the proteins when making
predictions. y-axis is true group and x -axis is the sequence positions. All proteins
shorter than 1000 are zero padded from the middle such that the N and C terminals
align.
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Fig. 7. t-SNE plot of hidden representation for forward and backward R-LSTM and
A-LSTM.

Fig. 8. Examples of learned filters. Filter A captures proline or trypthopan stretches,
(B) and (C) are sensitive to positively and negatively charged regions, respectively.
Note that for C, negative amino acids seems to suppress the output. Lastly we show a
long filter which captures larger sequence motifs in the proteins.
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Fig. 6 shows where in the sequence the A-LSTM network assigns importance.
Sequences from the compartments ER, extracellular, lysosomal, and vacuolar all
belong to the secretory pathway and contain N-terminal signal peptides, which
are clearly seen as bars close to the left edge of the plot. Some of the ER proteins
additionally have bars close to the right edge of the plot, presumably represent-
ing KDEL-type retention signals. Golgi proteins are special in this context, since
they are type II transmembrane proteins with signal anchors, slightly further
from the N-terminus than signal peptides [18]. Chloroplast and mitochondrial
proteins also have N-terminal sorting signals, and it is apparent from the plot
that chloroplast transit peptides are longer than mitochondrial transit peptides,
which in turn are longer than signal peptides [11]. For the plasma membrane
category we see that some proteins have signal peptides, while the model gener-
ally focuses on signals, presumably transmembrane helices, scattered across the
rest of the sequence with some overabundance close to the C-terminus. Some of
the attention focused near the C-terminus could also represent signals for glyco-
sylphosphatidylinositol (GPI) anchors [11]. Cytoplasmic and nuclear proteins do
not have N-terminal sorting signals, and we see that the attention is scattered
over a broader region of the sequences. However, especially for the cytoplasmic
proteins there is some attention focused close to the N-terminus, presumably in
order to check for the absence of signal peptides. Finally, peroxisomal proteins
are known to have either N-terminal or C-terminal sorting signals (PTS1 and
PTS2) [11], but these do not seem to have been picked up by the attention
mechanism.

In Fig. 8 we investigate what the convolutional filters in the model focus on.
Notably the short filters focus on amino acids with specific characteristics, such
as positively or negatively charged, whereas the longer filters seem to focus on
distributions of amino acids across longer sequences. The arginine-rich motif
in Fig. 7C could represent part of a nuclear localization signal (NLS), while
the longer motif in Fig. 7D could represent the transition from transmembrane
helix (hydrophobic) to cytoplasmic loop (in accordance with the “positive-inside”
rule). We believe that the learned filters can be used to discover new sequence
motifs for a large range of protein and genomic features.

In Fig. 7 we investigate whether the LSTM models are able to extract fixed
length representations of variable length proteins. Using t-SNE we plot the
LSTMs hidden representation of the sequences. It is apparent that proteins
from the same compartment generally group together, while the cytoplasmic and
nuclear categories tend to overlap. The corresponds with the fact that these two
categories are relatively often confused, see Table 2. The categories form clusters
which make biological sense; all the proteins with signal peptides (ER, extracel-
lular, lysosomal, and vacuolar) lie close to each other in t-SNE space in all three
plots, while the proteins with other N-terminal sorting signals (chloroplasts and
mitochondria) are close in the R-LSTM plots (but not in the A-LSTM plot).
Note that the lysosomal and vacuolar categories are very close to each other
in the plots, this corresponds with the fact that these two compartments are
considered homologous [18].
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In summary we have introduced LSTM networks with convolutions for sub-
cellular localization. By visualizing the learned filters we have shown that these
can be interpreted as motif detectors, and lastly we have shown that the LSTM
network can represent protein sequences as a fixed length vector in a represen-
tation that is biologically interpretable.
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18. Höglund, A., Dönnes, P., Blum, T., Adolph, H.W., Kohlbacher, O.: MultiLoc:
prediction of protein subcellular localization using N-terminal targeting sequences,
sequence motifs and amino acid composition. Bioinformatics 22(10), 1158–1165
(2006)

19. Kingma, D., Ba, J.: Adam: a method for stochastic optimization, December 2014.
arXiv preprint arXiv:1412.6980

20. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convo-
lutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K. (eds.) Advances in neural information processing systems, pp. 1097–1105 (2012)

21. Magnan, C., Baldi, P.: SSpro/ACCpro 5: almost perfect prediction of protein sec-
ondary structure and relative solvent accessibility using profiles, machine learning,
and structural similarity. Bioinformatics 30(18), 1–6 (2014)

22. Magrane, M. et al.: UniProt Consortium: Uniprot knowledgebase: a hub of inte-
grated protein data. Database 2011, bar009 (2011)

23. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing (ICML-10), pp. 807–814 (2010)

24. Petersen, T., Brunak, S., von Heijne, G., Nielsen, H.: SignalP 4.0: discriminating
signal peptides from transmembrane regions. Nat. Methods 8(10), 785–786 (2011)
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