
Adrian-Horia Dediu
Francisco Hernández-Quiroz
Carlos Martín-Vide
David A. Rosenblueth (Eds.)

 123

LN
BI

 9
19

9

Second International Conference, AlCoB 2015
Mexico City, Mexico, August 4–5, 2015
Proceedings

Algorithms for
Computational Biology

Lecture Notes in Bioinformatics 9199

Subseries of Lecture Notes in Computer Science

LNBI Series Editors

Sorin Istrail
Brown University, Providence, RI, USA

Pavel Pevzner
University of California, San Diego, CA, USA

Michael Waterman
University of Southern California, Los Angeles, CA, USA

LNBI Editorial Board

Alberto Apostolico
Georgia Institute of Technology, Atlanta, GA, USA

Søren Brunak
Technical University of Denmark Kongens Lyngby, Denmark

Mikhail S. Gelfand
IITP, Research and Training Center on Bioinformatics, Moscow, Russia

Thomas Lengauer
Max Planck Institute for Informatics, Saarbrücken, Germany

Satoru Miyano
University of Tokyo, Japan

Eugene Myers
Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany

Marie-France Sagot
Université Lyon 1, Villeurbanne, France

David Sankoff
University of Ottawa, Canada

Ron Shamir
Tel Aviv University, Ramat Aviv, Tel Aviv, Israel

Terry Speed
Walter and Eliza Hall Institute of Medical Research Melbourne, VIC, Australia

Martin Vingron
Max Planck Institute for Molecular Genetics, Berlin, Germany

W. Eric Wong
University of Texas at Dallas, Richardson, TX, USA

More information about this series at http://www.springer.com/series/5381

http://www.springer.com/series/5381

Adrian-Horia Dediu • Francisco Hernández-Quiroz
Carlos Martín-Vide • David A. Rosenblueth (Eds.)

Algorithms for
Computational Biology
Second International Conference, AlCoB 2015
Mexico City, Mexico, August 4–5, 2015
Proceedings

123

Editors
Adrian-Horia Dediu
Research Group on Mathematical

Linguistics
Rovira i Virgili University
Tarragona
Spain

Francisco Hernández-Quiroz
Faculty of Science
National Autonomous University

of Mexico – UNAM
Mexico City
Mexico

Carlos Martín-Vide
Research Group on Mathematical

Linguistics
Rovira i Virgili University
Tarragona
Spain

David A. Rosenblueth
Institute for Research in Applied

Mathematics and Systems – IIMAS
National Autonomous University

of Mexico – UNAM
Mexico City
Mexico

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Bioinformatics
ISBN 978-3-319-21232-6 ISBN 978-3-319-21233-3 (eBook)
DOI 10.1007/978-3-319-21233-3

Library of Congress Control Number: 2015943051

LNCS Sublibrary: SL8 – Bioinformatics

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

These proceedings contain the papers that were presented at the Second International
Conference on Algorithms for Computational Biology (AlCoB 2015), held in Mexico
City, Mexico, during August 4–5, 2015.

The scope of AlCoB includes topics of either theoretical or applied interest, namely:

– Exact sequence analysis
– Approximate sequence analysis
– Pairwise sequence alignment
– Multiple sequence alignment
– Sequence assembly
– Genome rearrangement
– Regulatory motif finding
– Phylogeny reconstruction
– Phylogeny comparison
– Structure prediction
– Compressive genomics
– Proteomics: molecular pathways, interaction networks
– Transcriptomics: splicing variants, isoform inference and quantification, differential

analysis
– Next-generation sequencing: population genomics, metagenomics, metatrans-

criptomics
– Microbiome analysis
– Systems biology

AlCoB 2015 received 23 submissions. Most papers were reviewed by three and
some by two Program Committee members. There were also two external reviewers
consulted; we acknowledge all the reviewers in the next section. After a thorough and
lively discussion phase, the committee decided to accept 11 papers (which represents
an acceptance rate of 47.83 %). The conference program also included three invited
talks and some presentations of work in progress.

The excellent facilities provided by EasyChair allowed us to successfully manage
the conference submissions and to handle and check the proceedings preparation.

We would like to thank all invited speakers and authors for their contributions, the
Program Committee and the reviewers for their cooperation, and Springer for its very
professional publishing work.

April 2015 Adrian-Horia Dediu
Francisco Hernández-Quiroz

Carlos Martín-Vide
David A. Rosenblueth

Organization

AlCoB 2015 was organized by the Center for Complexity Sciences–C3, School of
Sciences, Institute for Research in Applied Mathematics and Systems–IIMAS,
Graduate Program in Computing Science and Engineering from National Autonomous
University of Mexico–UNAM, and the Research Group on Mathematical Linguistics–
GRLMC, from Rovira i Virgili University, Tarragona.

Program Committee

Stephen Altschul National Center for Biotechnology Information, Bethesda,
USA

Yurii Aulchenko Russian Academy of Sciences, Novosibirsk, Russia
Pierre Baldi University of California, Irvine, USA
Daniel G. Brown University of Waterloo, Canada
Yuehui Chen University of Jinan, China
Keith A. Crandall George Washington University, Washington, USA
Joseph Felsenstein University of Washington, Seattle, USA
Michael Galperin National Center for Biotechnology Information, Bethesda,

USA
Susumu Goto Kyoto University, Japan
Igor Grigoriev DOE Joint Genome Institute, Walnut Creek, USA
Martien Groenen Wageningen University, The Netherlands
Yike Guo Imperial College, London, UK
Javier Herrero University College London, UK
Karsten Hokamp Trinity College Dublin, Ireland
Hsuan-Cheng Huang National Yang-Ming University, Taipei, Taiwan
Ian Korf University of California, Davis, USA
Nikos Kyrpides DOE Joint Genome Institute, Walnut Creek, USA
Mingyao Li University of Pennsylvania, Philadelphia, USA
Jun Liu Harvard University, Cambridge, USA
Rodrigo López European Bioinformatics Institute, Hinxton, UK
Andrei N. Lupas Max Planck Institute for Developmental Biology,

Tübingen, Germany
B.S. Manjunath University of California, Santa Barbara, USA
Carlos Martín-Vide

(Chair)
Rovira i Virgili University, Tarragona, Spain

Tarjei Mikkelsen Broad Institute, Cambridge, USA
Henrik Nielsen Technical University of Denmark, Lyngby, Denmark
Zemin Ning Wellcome Trust Sanger Institute, Hinxton, UK
Christine Orengo University College London, UK
Modesto Orozco Institute for Research in Biomedicine, Barcelona, Spain

Christos A.
Ouzounis

Center for Research & Technology Hellas, Thessaloniki,
Greece

Manuel Peitsch Philip Morris International R&D, Neuchâtel, Switzerland
David A.

Rosenblueth
National Autonomous University of Mexico, Mexico City,
Mexico

Julio Rozas University of Barcelona, Spain
Alessandro Sette La Jolla Institute for Allergy and Immunology, USA
Peter F. Stadler University of Leipzig, Germany
Guy Theraulaz Paul Sabatier University, Toulouse, France
Alfonso Valencia Spanish National Cancer Research Center, Madrid, Spain
Kai Wang University of Southern California, Los Angeles, USA
Lusheng Wang City University of Hong Kong, Hong Kong, SAR China
Zidong Wang Brunel University, Uxbridge, UK
Harel Weinstein Cornell University, New York, USA
Jennifer Wortman Broad Institute, Cambridge, USA
Jun Yu Chinese Academy of Sciences, Beijing, China
Mohammed J. Zaki Rensselaer Polytechnic Institute, Troy, USA
Louxin Zhang National University of Singapore, Singapore
Hongyu Zhao Yale University, New Haven, USA

External Reviewers

Quan Chen
Sajeet Haridas

Organizing Committee

Adrian-Horia Dediu, Tarragona
Francisco Hernández-Quiroz, Mexico City
Carlos Martín-Vide, Tarragona (Co-chair)
David A. Rosenblueth, Mexico City (Co-chair)
Lilica Voicu, Tarragona

VIII Organization

Contents

Genetic Processing

Generalized Hultman Numbers and the Distribution
of Multi-break Distances . 3

Nikita Alexeev, Anna Pologova, and Max A. Alekseyev

Implicit Transpositions in Shortest DCJ Scenarios . 13
Shuai Jiang and Max A. Alekseyev

Constraint-Based Genetic Compilation . 25
Christophe Ladroue and Sara Kalvala

Molecular Recognition/Prediction

P2RANK: Knowledge-Based Ligand Binding Site Prediction
Using Aggregated Local Features . 41

Radoslav Krivák and David Hoksza

StreaM - A Stream-Based Algorithm for Counting Motifs
in Dynamic Graphs . 53

Benjamin Schiller, Sven Jager, Kay Hamacher, and Thorsten Strufe

Convolutional LSTM Networks for Subcellular Localization of Proteins 68
Søren Kaae Sønderby, Casper Kaae Sønderby, Henrik Nielsen,
and Ole Winther

Phylogenetics

Hybrid Genetic Algorithm and Lasso Test Approach for Inferring
Well Supported Phylogenetic Trees Based on Subsets of Chloroplastic
Core Genes . 83

Bassam AlKindy, Christophe Guyeux, Jean-François Couchot,
Michel Salomon, Christian Parisod, and Jacques M. Bahi

Constructing and Employing Tree Alignment Graphs
for Phylogenetic Synthesis . 97

Ruchi Chaudhary, David Fernández-Baca, and J. Gordon Burleigh

A More Practical Algorithm for the Rooted Triplet Distance. 109
Jesper Jansson and Ramesh Rajaby

http://dx.doi.org/10.1007/978-3-319-21233-3_1
http://dx.doi.org/10.1007/978-3-319-21233-3_1
http://dx.doi.org/10.1007/978-3-319-21233-3_2
http://dx.doi.org/10.1007/978-3-319-21233-3_3
http://dx.doi.org/10.1007/978-3-319-21233-3_4
http://dx.doi.org/10.1007/978-3-319-21233-3_4
http://dx.doi.org/10.1007/978-3-319-21233-3_5
http://dx.doi.org/10.1007/978-3-319-21233-3_5
http://dx.doi.org/10.1007/978-3-319-21233-3_6
http://dx.doi.org/10.1007/978-3-319-21233-3_7
http://dx.doi.org/10.1007/978-3-319-21233-3_7
http://dx.doi.org/10.1007/978-3-319-21233-3_7
http://dx.doi.org/10.1007/978-3-319-21233-3_8
http://dx.doi.org/10.1007/978-3-319-21233-3_8
http://dx.doi.org/10.1007/978-3-319-21233-3_9

Likelihood-Based Inference of Phylogenetic Networks from Sequence
Data by PhyloDAG . 126

Quan Nguyen and Teemu Roos

Constructing Parsimonious Hybridization Networks from Multiple
Phylogenetic Trees Using a SAT-Solver. 141

Vladimir Ulyantsev and Mikhail Melnik

Author Index . 155

X Contents

http://dx.doi.org/10.1007/978-3-319-21233-3_10
http://dx.doi.org/10.1007/978-3-319-21233-3_10
http://dx.doi.org/10.1007/978-3-319-21233-3_11
http://dx.doi.org/10.1007/978-3-319-21233-3_11

Genetic Processing

Generalized Hultman Numbers and the
Distribution of Multi-break Distances

Nikita Alexeev1(B), Anna Pologova2, and Max A. Alekseyev1

1 George Washington University, Washington, DC, USA
{nikita alexeev,maxal}@gwu.edu

2 St. Petersburg State University, St. Petersburg, Russia

Abstract. Genome rearrangements can be modeled by k-breaks, which
break a genome at k positions and glue the resulting fragments in a new
order. In particular, reversals, translocations, fusions, and fissions are
modeled as 2-breaks, and transpositions are modeled as 3-breaks. While
k-break rearrangements for k > 3 have not been observed in evolution,
they are used in cancer genomics to model chromothripsis, a catastrophic
event of multiple breakages happening in a genome simultaneously.

It is known that the k-break distance between two genomes (i.e.,
the minimal number of k-breaks needed to transform one genome into
the other) can be computed in terms of cycle lengths of the breakpoint
graph of these genomes. In the current work, we address the combina-
torial problem of enumeration of genomes at a given k-break distance
from a fixed genome. More generally, we enumerate genome pairs, whose
breakpoint graph has a fixed distribution of cycle lengths.

1 Introduction

Genome rearrangements are evolutionary events that change gene order along
the genome. The genome rearrangements can be modeled as k-breaks [1], which
break a genome at k positions and glue the resulting fragments in a new order.
While most frequent genome rearrangements such as reversals (that flip seg-
ments of a chromosome), translocations (that exchange segments of two chro-
mosomes), fusions (that merge two chromosomes into one), and fissions (that
split a single chromosome into two) can be modeled as 2-breaks (also called
Double-Cut-and-Join, DCJ [2]), more complex and rare genome rearrangements
such as transpositions are modeled as 3-breaks. While k-break rearrangements
for k > 3 were not observed in evolution, they are used in cancer genomics to
model chromothripsis, a catastrophic event, when multiple breakages happen
simultaneously [3,4]. The minimal number of k-breaks required to transform
one genome into another is called k-break distance. In particular, the 2-break
(DCJ) distance is often used in phylogenomic studies to estimate evolutionary
remoteness of genomes.

In the current work, we address the combinatorial problem of enumeration
of genomes at a given k-break distance from a fixed genome. There are two vari-
ations of this problem, depending on whether all genes in the two genomes have
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): AlCoB 2015, LNBI 9199, pp. 3–12, 2015.
DOI: 10.1007/978-3-319-21233-3 1

4 N. Alexeev et al.

the same orientation, in which case they can be encoded by a permutation with
positive (unsigned) elements, while in the general case the permutation elements
may have various signs. Previous studies are mostly concerned with the case of
2-break distance between unichromosomal genomes. In the unsigned case, the
number of such genomes is given by a Hultman number [5]. Doignon et al. [6]
gave a closed formula for Hultman numbers, Bóna and Flynn [7] proved the rela-
tion between Hultman numbers and Stirling numbers of the first kind. The
general case of 2-break distance was solved by Grusea and Labarre [8]. The
asymptotic distribution of the 2-break distances is proved to be normal by
Alexeev and Zograf [9]. The multichromosomal analog of Hultman numbers was
recently studied by Feijão et al. [10].

It is known that the k-break distance between two genomes can be computed
in terms of cycles in the breakpoint graph of these genomes [1]. Namely, while the
2-break distance depends only on the number of cycles in this graph, the k-break
distance for the general k depends on the distribution of the cycle lengths. In
the current work, we enumerate unichromosomal genome pairs, whose breakpoint
graph has a fixed distribution of cycle lengths.

2 Preliminary Definitions and Results

We restrict our attention to (linear) unichromosomal genomes and assume that
we are given a fixed genome P with n genes. Then a unichromosomal genome
Q on the same set of n genes can be encoded by a permutation π of length n.
Namely, the genes are enumerated in the order defined by genome P , and their
order in genome Q defines π. Each element of π may be positive or negative,
depending on whether the orientation (strand) of the gene i in Q is opposite to
its orientation in P . To obtain a natural generalization of Hultman numbers, we
will separately address the case of the unsigned permutation π with all elements
being positive. We denote by Sn and S±

n the set of all unsigned and signed,
respectively, permutations of length n.

We represent a unichromosomal genome with n genes as a genome graph.
This graph contains 2n + 2 vertices: for each gene i ∈ {1, 2, . . . , n}, there are
the tail and head vertices it and ih, and in addition there are two vertices 0t,
0h corresponding to a virtual gene 0. The graph has n + 1 directed gene edges,
encoding n genes and the virtual 0-gene, and n + 1 undirected adjacency edges
encoding gene adjacencies, where the virtual 0-gene is used to circularize the
graph (Fig. 1a).

Let P and Q be a pair of genomes, encoded by a signed permutation π. We
assume that in their genome graphs the adjacency edges of P are colored black
and the adjacency edges of Q are colored gray. The breakpoint graph G(π) =
G(P,Q) is defined on the set of vertices {it, ih|i ∈ {0, 1, . . . , n}} with black and
gray edges inherited from genome graphs of P and Q (Fig. 1b). Since each vertex
in G(P,Q) has degree 2, the black and gray edges form a collection of alternating
black-gray cycles. We say that a black-gray cycle is an �-cycle if it contains �
black edges (and � gray edges) and denote the number of �-cycles in G(P,Q) by

Generalized Hultman Numbers and the Distribution 5

Fig. 1. Breakpoint graph G(P, Q) corresponding to a signed permutation π =
(1,−3, 5, 2,−4). Adjacency edges of P are black (solid) and adjacency edges of Q are
gray (dashed). It consists of one 1-cycle, one 2-cycle, and one 3-cycle.

c�(P,Q). We note that if π is a signed permutation of length n, then the total
number of black edges equals to

∞∑

�=1

� · c� = n + 1 .

A k-break on genome Q can be viewed as an operation on its genome graph
and the breakpoint graph G(P,Q). Namely, a k-break replaces any k-tuple of
gray edges with another k-tuple of gray edges, which forms a perfect matching on
the same set of 2k vertices (Fig. 2). A transformation of genome Q into genome
P with k-breaks then can be viewed as a transformation of the breakpoint graph
G(P,Q) into the breakpoint graph G(P, P) with k-breaks on gray edges. The
k-break distance dk(P,Q) between genomes P and Q is the minimum number of
k-breaks in such a transformation.

The 2-break distance between genomes P and Q is given by the following
formula [2]:

d2(P,Q) = n + 1 − c(P,Q) ,

where c(P,Q) =
∑n+1

�=1 c�(P,Q) is the total number of cycles in G(P,Q). Formu-
lae for k-break distance for k > 2 is more sophisticated. In particular, d3(P,Q)
and d4(P,Q) are given by the following formulae [1]:

d3(P,Q) =
n + 1 − c2,1(P,Q)

2
, (1)

d4(P,Q) =
⌈

n + 1 − c3,1(P,Q) − �c3,2(P,Q)/2�
3

⌉
, (2)

6 N. Alexeev et al.

Fig. 2. The 3-break changes gray edges (1h, 3h), (2h, 4h) and (3t, 5t) in the breakpoint
graph G(1,−3, 5, 2,−4) to edges (1h, 5t), (2h, 3h) and (3t, 4h). The result is the break-
point graph G(1, 5, 2,−3,−4).

where
cm,i(P,Q) =

∑

�≡i (mod m)

c�(P,Q) .

Our goal is to compute the number of permutations, whose breakpoint graphs
consist of c� �-cycles (for � ∈ {1, 2, . . . }). As an application, it will allow to find
the distribution of k-break distances for k > 2.

3 Permutations with a Fixed Breakpoint Graph

Let c = (c1, c2, c3, . . .) be sequence of nonnegative integers with a finite number
of nonzero (i.e., strictly positive) terms. Then L(c) =

∑∞
�=1 � · c� represents a

finite integer. Whenever a breakpoint graph has c� �-cycles for each � ∈ N, we
say that it has cycle structure c.

We denote by Mn(c) (respectively, M±
n (c)) the number of unsigned (respec-

tively, signed) permutations of length n, whose breakpoint graphs have cycle
structure c. Clearly, we have Mn(c) = M±

n (c) = 0 unless L(c) = n+1. For each
n, we define the generating function of numbers Mn(c) by

Fn(s1, s2, . . .) =
∑

c:L(c)=n+1

Mn(c)
∞∏

i=1

sci
i .

Similarly, we define the generating function of numbers M±
n (c) by

F±
n (s1, s2, . . .) =

∑

c:L(c)=n+1

M±
n (c)

∞∏

i=1

sci
i .

Generalized Hultman Numbers and the Distribution 7

It is easy to see that

Fn(1, 1, . . .) = |Sn| = n!

and
F±(1, 1, . . .) = |S±

n | = 2n · n! .

Furthermore, in the unsigned case by substituting si = s for all i = 1, 2, . . . , we
obtain

Fn(s, s, . . .) =
n+1∑

m=1

H(n,m)sm ,

where H(n,m) is the number of permutations in Sn, whose breakpoint graphs
consist of m cycles. In particular, we have

H(n,m) =
∑

c∈Cn,m

Mn(c) ,

where Cn,m = {c : L(c) = n + 1 and
∑n+1

i=1 ci = m}.
The numbers H(n,m) are known as Hultman numbers [6,7,9] and appear

in the On-Line Encyclopedia of Integer Sequences (OEIS) [11] as the sequence
A164652.

For the signed case a similar observation holds, namely,

F±
n (s, s, . . .) =

n+1∑

m=1

H±(n,m)sm ,

where H±(n,m) is the number of signed permutations in S±
n , whose breakpoint

graphs consist of m cycles. Similarly, we have

H±(n,m) =
∑

c∈Cn,m

M±
n (c) . (3)

The numbers H±(n,m) were introduced in [8] and form the sequence A189507
in the OEIS [11]. A few first numbers H(n,m) and H±(n,m) are tabulated in
Table 1.

For the general case, we prove recurrent formulae for Mn(c).

Theorem 1. Let Mn(c1, c2, . . .) be the number of permutations in Sn, whose
breakpoint graphs consist of c� �-cycles (for � ∈ {1, 2, . . . }).

Then M0(1, 0, 0, . . .) = 1 (initial condition) and

nMn(c1, c2, c3, . . .) = (4)

=
∞∑

i=2

i−1∑

j=1

(i − 1)(ci−1 + 1 − δj,1 − δj,i−1)Mn−1(c + eeei−1 − eeej − eeei−j)+ (5)

+
∞∑

i=1

i−1∑

j=1

j(i − j)(cj + 1)(ci−j + 1 + δj,i−j)Mn−1(c − eeei+1 + eeej + eeei−j) , (6)

8 N. Alexeev et al.

Table 1. Hultman numbers

(a) Values of H(n,m).

n\m 1 2 3 4 5 6

0 1
1 0 1
2 1 0 1
3 0 5 0 1
4 8 0 15 0 1
5 0 84 0 35 0 1

(b) Values of H±(n,m).

n\m 1 2 3 4 5 6

0 1
1 1 1
2 4 3 1
3 20 21 6 1
4 148 160 65 10 1
5 1348 1620 701 155 15 1

where δij is Kronecker delta (δij = 1 if i = j and δij = 0 otherwise), and eeei is
the sequence (0, . . . , 1, 0, . . .) with 1 in the ith place and 0 elsewhere.

Theorem 2. Let M±
n (c1, c2, . . .) be the number of permutations in S±

n , whose
breakpoint graphs consist of c� �-cycles (for � ∈ {1, 2, . . . }).

Then M±
0 (1, 0, 0, . . .) = 1 (initial condition) and

nM±
n (c1, c2, c3, . . .) = (7)

=
∞∑

i=2

i−1∑

j=1

(i − 1)(ci−1 + 1 − δj,1 − δj,i−1)M±
n−1(c + eeei−1 − eeej − eeei−j)+ (8)

+
∞∑

i=2

(i − 1)2(ci−1 + 1)M±
n−1(c + eeei−1 − eeei)+ (9)

+2
∞∑

i=1

i−1∑

j=1

j(i − j)(cj + 1)(ci−j + 1 + δj,i−j)M±
n−1(c − eeei+1 + eeej + eeei−j) . (10)

We prove both theorems using double counting (a similar technique for a
different enumeration problem was used in [12]).

Proof. Let us first prove Theorem 1. We define a function Γ , which maps a
triple (π, l,m), where π ∈ Sn−1 and l,m ∈ {0, 1, . . . , n−1}, to a pair (π′, t) with
π′ ∈ Sn and t ∈ {1, 2, . . . , n} as follows. In the breakpoint graph G(π), there is
a black edge eb = (lh, (l+1)t) and a gray edge eg = (π(m)h, π(m+1)t) (here we
assume π(0) = 0 and consider l + 1 and m + 1 modulo n). We delete these two
edges, increase by 1 all labels greater than l, and add two new vertices (l + 1)t,
(l + 1)h along with two new black edges (lh, (l + 1)t), ((l + 1)h, (l + 2)t) and
two new gray edges (π(m)h, (l + 1)t), ((l + 1)h, π(m + 1)t). The resulting graph
represents the breakpoint graph of some permutation, which we call π′, and we
further let t = l + 1 (Fig. 3). It is easy to see that Γ is a bijection.

Let us analyze how the cycle structure of G(π′) may differ from the cycle
structure of G(π). There are two possibilities here. The first possibility is that
edges eb and eg belong to the same alternating cycle in G(π) (splitting case).

Generalized Hultman Numbers and the Distribution 9

Fig. 3. Example: Γ (π, 2, 2) = (π′, 3)

If this is a (i − 1)-cycle, it splits into a j-cycle and a (i − j)-cycle for some
j ∈ {1, . . . , i − 1}. The second possibility is that edges eb and eg belong to
different alternating cycles in G(π) (merging case). If these cycles are a j-cycle
and a (i − j)-cycle, they merge into a single (i + 1)-cycle.

Let us now compute the number of ways to obtain a permutation π′, whose
breakpoint graph G(π′) has a given cycle structure c. The first case of splitting
some (i−1)-cycle gives us (i−1)(ci−1+1−δj,1−δj,i−1)Mn−1(c+eeei−1−eeej −eeei−j),
which is the first summand (5). Indeed, if G(π′) contains ci−1 (i − 1)-cycles,
then G(π) contains exactly ci−1 + 1 − δj,1 − δj,i−1 (i − 1)-cycles. There are
ci−1 +1− δj,1 − δj,i−1 ways to choose an (i− 1)-cycle and i− 1 ways to choose a
black edge in this cycle. Then the gray edge could be chosen in a unique way for
each j. The second case of merging two cycles gives us the second summand (6).
Indeed, there are (cj + 1)(ci−j + 1 + δj,i−j) ways to choose a j-cycle and a i − j-
cycle in G(π), j ways to choose a gray edge in the j-cycle, and i − j ways to
choose a black edge in the (i−j)-cycle. We remark that any permutation π′ ∈ Sn

appears exactly n times in the image

Γ (Sn−1 × {0, 1, . . . , n − 1} × {0, 1, . . . , n − 1}) = Sn × {1, . . . , n} ,

which gives us the factor n in (4). Theorem 1 is proved.
Proof of Theorem 2 is similar. The only difference is that gray edges in

G(π) do not necessarily have the form (π(m)h, π(m + 1)t). This implies that
when we define an analog of Γ , there are two ways to add gray edges. The
merging case works equally well for both ways and so, one just has to count
the summand (6) twice. In the splitting case (when eb and eg belong to the same
cycle), the alternative way to add gray edges presents one new possibility, when
the (i − 1)-cycle does not split but just becomes an i-cycle. This gives us the
summand (9). ��

10 N. Alexeev et al.

Theorems 1 and 2 allow us to compute numbers Mn(c). For instance, a few
first values of Fn(s1, s2, . . .) and of F±

n (s1, s2, . . .) are listed below:

F0(s1, s1, . . .) = s1,

F1(s1, s2, . . .) = s21,

F2(s1, s2, . . .) = s31 + s3,

F3(s1, s2, . . .) = s41 + (4s1s3 + s22),

F4(s1, s2, . . .) = s51 + (10s21s3 + 5s1s
2
2) + 8s5,

F5(s1, s2, . . .) = s61 + (20s31s3 + 15s21s
2
2) + (48s1s5 + 12s23 + 24s2s4),

F6(s1, s2, . . .) = s71 + (35s31s
2
2 + 35s41s3)+

+ (84s1s
2
3 + 168s1s2s4 + 168s21s5 + 49s22s3) + 180s7 .

F±
0 (s1, s1, . . .) = s1,

F±
1 (s1, s2, . . .) = s21 + s2,

F±
2 (s1, s2, . . .) = s31 + 3s1s2 + 4s3,

F±
3 (s1, s2, . . .) = s41 + 6s21s2 + (5s22 + 16s1s3) + 20s4,

F±
4 (s1, s2, . . .) = s51 + 10s31s2 + (40s21s3 + 25s1s

2
2) + (100s1s4 + 60s2s3) + 148s5.

The terms are sorted in descending order of the monomial degree. According
to (3), the sum of coefficients in each parenthesis is equal to the corresponding
entry in Table 1. For example,

F±
4 (s, s, . . .) = s5 + 10s4 + 65s3 + 160s2 + 148s

corresponds to the row of n = 4 in Table 1b.

4 Generalized Hultman Numbers

Let us denote by Hk(n, d) (respectively, H±
k (n, d)) the number of unsigned

(respectively, signed) unichromosomal genomes with n genes at the k-break
distance d from a fixed genome. For k = 2, these numbers represent con-
ventional and signed Hultman numbers: H2(n, d) = H(n, n + 1 − d) and
H±

2 (n, d) = H±(n, n + 1 − d).
Using formulae (1) and (2), we can obtain H3(n, d) and H4(n, d). A few first

numbers H3(n, d), H±
3 (n, d), H4(n, d), and H±

4 (n, d) are tabulated in Tables 2
and 3.

5 Discussion

In the current work, we address the problem of enumeration of genomes with
n genes that are at a given k-break distance from a fixed genome. It is known

Generalized Hultman Numbers and the Distribution 11

Table 2. Distribution of 3-break distance

(a) Values of H3(n, d).

n\d 0 1 2 3 4

0 1
1 1
2 1 1
3 1 4 1
4 1 10 13
5 1 20 75 24
6 1 35 287 397
7 1 56 854 3112 1017
8 1 84 2142 16196 21897

(b) Values of H±
3 (n, d).

n\d 0 1 2 3 4

0 1
1 1 1
2 1 7
3 1 22 25
4 1 50 333
5 1 95 1851 1893
6 1 161 6839 39079
7 1 252 19782 323580 301505
8 1 372 48510 1706180 8566857

Table 3. Distribution of 4-break distance

(a) Values of H4(n, d).

n\d 0 1 2 3

0 1
1 1
2 1 1
3 1 5
4 1 15 8
5 1 35 84
6 1 70 649
7 1 126 3585 1328
8 1 210 14949 25160

(b) Values of H±
4 (n, d).

n\d 0 1 2 3

0 1
1 1 1
2 1 7
3 1 47
4 1 175 208
5 1 470 3369
6 1 1036 45043
7 1 2002 315213 327904
8 1 3522 1472157 8846240

that the k-break distance can be computed in terms of the cycle structure of
the breakpoint graph of the corresponding genomes [1]. We derive the recurrent
formula for the numbers Mn(c) and M±

n (c) of breakpoint graphs with a given
cycle structure. Using this formula, we further compute numbers Hk(n, d) of
unichromosomal genomes with n genes at the k-break distance d from a fixed
genome, which generalize Hultman numbers [5–9].

While 2-breaks and 3-breaks mimic most common genome rearrangements
in comparative genomics, k-breaks for k > 3 model chromothripsis in cancer
genomics. We recently used the breakpoint graph cycle structure to estimate the
proportion of evolutionary 3-breaks (transpositions) between two genomes [13]
and plan to develop a similar technique based on the present work to evaluate
the distribution of values of k in chromothripsis k-breaks between reference and
cancer genomes.

Acknowledgements. The work is supported by the National Science Foundation
under the grant No. IIS-1462107. The work of NA is also partially supported by RFBR
grant 13-01-12422-ofi-m.

12 N. Alexeev et al.

References

1. Alekseyev, M., Pevzner, P.: Multi-break rearrangements and chromosomal evolu-
tion. Theoret. Comput. Sci. 395(23), 193–202 (2008)

2. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–
3346 (2005)

3. Stephens, P.J., Greenman, C.D., Fu, B., Yang, F., Bignell, G.R., Mudie, L.J.,
Pleasance, E.D., Lau, K.W., Beare, D., Stebbings, L.A., McLaren, S., Lin, M.L.,
McBride, D.J., Varela, I., Nik-Zainal, S., Leroy, C., Jia, M., Menzies, A., Butler, A.P.,
Teague, J.W., Quail, M.A., Burton, J., Swerdlow, H., Carter, N.P., Mors-
berger, L.A., Iacobuzio-Donahue, C., Follows, G.A., Green, A.R., Flanagan, A.M.,
Stratton, M.R., Futreal, P.A., Campbell, P.J.: Massive genomic rearrangement
acquired in a single catastrophic event during cancer development. Cell 144(1),
27–40 (2011)

4. Weinreb, C., Oesper, L., Raphael, B.: Open adjacencies and k-breaks: detecting
simultaneous rearrangements in cancer genomes. BMC genomics 15(Suppl 6), S4
(2014)

5. Hultman, A.: Toric permutations. Master’s thesis, Department of Mathematics,
KTH, Stockholm, Sweden (1999)

6. Doignon, J.P., Labarre, A.: On Hultman numbers. J. Integer Sequences 10(6), 13
(2007)

7. Bóna, M., Flynn, R.: The average number of block interchanges needed to sort a
permutation and a recent result of stanley. Inf. Process. Lett. 109(16), 927–931
(2009)

8. Grusea, S., Labarre, A.: The distribution of cycles in breakpoint graphs of signed
permutations. Discrete Appl. Math. 161(10), 1448–1466 (2013)

9. Alexeev, N., Zograf, P.: Random matrix approach to the distribution of genomic
distance. J. Comput. Biol. 21(8), 622–631 (2014)

10. Feijão, P., Martinez, F.V., Thévenin, A.: On the multichromosomal hultman num-
ber. In: Campos, S. (ed.) BSB 2014. LNCS, vol. 8826, pp. 9–16. Springer, Heidel-
berg (2014)

11. The OEIS Foundation: The On-Line Encyclopedia of Integer Sequences. Published
electronically at http://oeis.org (2015)

12. Alexeev, N., Andersen, J., Penner, R., Zograf, P.: Enumeration of chord dia-
grams on many intervals and their non-orientable analogs (2013). arXiv preprint
arXiv:1307.0967

13. Alexeev, N., Aidagulov, R., Alekseyev, M.A.: A computational method for the rate
estimation of evolutionary transpositions. In: Ortuño, F., Rojas, I. (eds.) IWBBIO
2015, Part I. LNCS, vol. 9043, pp. 471–480. Springer, Heidelberg (2015)

http://oeis.org
http://arxiv.org/abs/1307.0967

Implicit Transpositions in Shortest DCJ
Scenarios

Shuai Jiang and Max A. Alekseyev(B)

George Washington University, Washington, DC, USA
maxal@gwu.edu

Abstract. Genome rearrangements are large-scale evolutionary events
that shuffle genomic architectures. The minimal number of such events
between two genomes is often used in phylogenomic studies to measure
the evolutionary distance between the genomes. Double-Cut-and-Join
(DCJ) operations represent a convenient model of most common genome
rearrangements (reversals, translocations, fissions, and fusions), while
other genome rearrangements, such as transpositions, can be modeled
by pairs of DCJs. Since the DCJ model does not directly account for
transpositions, their impact on DCJ scenarios is unclear.

In the current work, we study implicit appearance of transpositions
(as pairs of DCJs) in shortest DCJ scenarios and prove uniform lower
and upper bounds for their proportion. Our results imply that implicit
transpositions may be unavoidable and even appear in a significant pro-
portion for some genomes. We estimate that in mammalian evolution
transpositions constitute at least 17 % of genome rearrangements.

Keywords: Genome rearrangements · Transpositions · DCJ

1 Introduction

Genome rearrangements are dramatic evolutionary events that change genome
structures. Since large-scale rearrangements are rare, it is natural to assume that
the evolution history between two genomes corresponds to a shortest rearrange-
ment scenario between them. The most common rearrangements are reversals
that inverse contiguous segments of chromosomes, translocations that exchange
tails of two chromosomes, and fissions/fusions that split/glue chromosomes. All
these rearrangements can be conveniently modeled by the Double-Cut-and-Join
(DCJ) operations [15], also known as 2-breaks [2], which make 2 “cuts” in a
genome and “glues” the resulting genomic fragments in a new order.

Transpositions represent yet another type of genome rearrangements that
relocate genomic segments across the genome. In contrast to reversal-like
rearrangements modeled by DCJs (2-breaks), transpositions correspond to 3-
breaks [2], which make 3 cuts and 3 gluings in a genome. Transpositions are more
“powerful” than reversal-like rearrangements and in the model that includes both
types of rearrangements (as 3-breaks and DCJs), transpositions tend to appear
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): AlCoB 2015, LNBI 9199, pp. 13–24, 2015.
DOI: 10.1007/978-3-319-21233-3 2

14 S. Jiang and M.A. Alekseyev

in shortest scenarios in a large proportion. However, in reality transpositions
happen more rarely than reversals and typically appear in a small proportion
in the course of evolution (e.g., in Drosophila evolution transpositions are esti-
mated to constitute less than 10% of genome rearrangements [13]). Earlier we
showed that even the most promising model of weighted genomic distance [4,6,7]
(where transpositions are assigned a higher weight) cannot bound the proportion
of transpositions in the resulting rearrangement scenarios to biologically reason-
able value [8]. This result emphasizes the need for a biologically adequate model
for analysis of transpositions among other types of genome rearrangements.

While a transposition cannot be directly modeled by a DCJ, it can be mod-
eled by a pair of DCJs. We refer to such pair of DCJs as an implicit transposition.
We remark that DCJs forming an implicit transposition may not necessarily
appear consecutively in a DCJ scenario. Furthermore, two implicit transposi-
tions may share a DCJ and thus correspond to at most one actual transposition.
We study appearance of implicit transpositions in shortest DCJ scenarios and
derive a lower and an upper bounds for their proportion. Our results imply that
implicit transpositions may be unavoidable in shortest DCJ scenarios between
some genomes and even appear in a large proportion. In particular, we describe
an extreme case where shortest DCJ scenarios entirely consist of implicit trans-
positions.

The paper is organized as follows. We describe graph-theoretical representa-
tion of genomes, rearrangement models (DCJs and k-breaks), and rearrangement
scenarios in Sect. 2, and length-preserving modifications of DCJ scenarios along
with dependency graphs capturing their combinatorial structure in Sect. 3. In
Sect. 4, we study the appearance of implicit transpositions in shortest DCJ sce-
narios between two genomes and prove the uniform lower and upper bounds for
their proportion (rate). In Sect. 5, we apply the obtained results for estimating
the rate transpositions in mammalian evolution. We conclude the paper with
discussion in Sect. 6.

2 Breakpoint Graphs and Rearrangement Scenarios

In the current study, we restrict our analysis to genomes with circular chro-
mosomes (analysis of genomes with linear chromosomes will be published else-
where). We represent a circular chromosome in genome P consisting of n genes
as a cycle with n directed edges (encoding genes and their strands) alternating
with n undirected edges connecting extremities of adjacent genes. A genome
graph G(P) is a collection of such cycles (Fig. 1a).

A DCJ [15] (also called a 2-break [2]) in genome P corresponds to a replace-
ment of a pair of undirected edges with a different pair of undirected edges on
the same set of four vertices in G(P). Similarly, a 3-break [2] in genome P cor-
responds to a replacement of a triple of undirected edges with different triple of
undirected edges on the same set of six vertices in G(P).

Implicit Transpositions in Shortest DCJ Scenarios 15

For genomes P and Q composed of the same set of genes, the breakpoint
graph G(P,Q) is defined as the superposition of individual genome graphs G(P)
and G(Q), and can be constructed by “gluing” the identically labeled directed
edges in the graphs (Fig. 1b, c). From now on, we will ignore directed edges and
assume that G(P,Q) consists only of undirected edges, where the edges from
genome P (P -edges) are colored black and the edges from genome Q (Q-edges)
are colored red. Then the breakpoint graph G(P,Q) represents a collection of
cycles consisting of undirected edges alternating between black and red colors.
We distinguish the following types of cycles with respect to their length � (i.e.,
the number of black edges in a cycle): trivial cycles (� = 1) and odd cycles (� is
odd). We denote the number of cycles, trivial cycles, and odd cycles in G(P,Q)
as c(P,Q), c1(P,Q), and codd(P,Q), respectively.

Fig. 1. (a) Genome graphs G(P) and G(Q) for unichromosomal circular genomes P =
(+a + e + d − b − c) and Q = (+a + b + c + d + e), where undirected P -edges and Q-
edges are colored black and red, respectively. (b) The superposition of genome graphs
G(P) and G(Q). (c) The breakpoint graph G(P, Q) is obtained from the superposition
of G(P) and G(Q) with removal of directed edges. The graph G(P, Q) is formed by
a single black-red cycle, i.e., c(P, Q) = 1. (d) A transformation of the breakpoint
graph G(P, Q) into G(Q, Q), which corresponds to a shortest DCJ scenario (of length
dDCJ(P, Q) = 4) between genomes P and Q.

A DCJ scenario from genome P to genome Q corresponds to a transforma-
tion of the breakpoint graph G(P,Q) into the breakpoint graph G(Q,Q), which
consists of trivial cycles (Fig. 1d).

Lemma 1 ([2,15]). In a shortest DCJ scenario between two genomes, each
DCJ splits some cycle in the corresponding breakpoint graph into two and thus
increases the number of cycles by one.

16 S. Jiang and M.A. Alekseyev

From Lemma 1, one can immediately get a formula for the DCJ distance:

Theorem 1 ([2,15]). The DCJ distance between genomes P and Q on n
genes is

dDCJ(P,Q) = n − c(P,Q).

We remark that a DCJ (2-break) represents a particular case of a 3-break.
A3-break that is not a DCJ is called complete. The following lemma describes
the effect of DCJs and complete 3-breaks in shortest 3-break scenarios.

Lemma 2 ([2,8]). In a shortest 3-break scenario between two genomes, each
DCJ (2-break) splits an even cycle in the corresponding breakpoint graph into
two odd cycles, while each complete 3-break splits an odd cycle into three odd
cycles. Therefore, each rearrangement in such a scenario increases the number
of odd cycles in the breakpoint graph by two.

A 3-break scenario from genome P to genome Q increases the number of odd
cycles from codd(P,Q) in G(P,Q) to codd(Q,Q), which is the number of genes in
Q. From Lemma 2, the following formula for the 3-break distance emerges:

Theorem 2 ([2]). The 3-break distance between genomes P and Q on n genes is

d3(P,Q) =
n − codd(P,Q)

2
.

We will also need the following theorem that easily follows from Lemma1.

Theorem 3. Along a transformation of the breakpoint graphs from G(P,Q) to
G(Q,Q) corresponding to a shortest DCJ scenario between genomes P and Q,
any edge once removed is never recreated.

Proof. Lemma 1 implies that after an edge (u, v) is removed by a DCJ from the
breakpoint graph, the vertices u and v start to belong to distinct cycles and can
never belong to the same cycle again (which would be the case if the edge (u, v)
is ever re-created). �

3 Length-Preserving Operations and Dependency Graphs

We call rearrangement scenarios (in particular, single DCJs or pairs of DCJs)
between the same two genomes equivalent.

Since each DCJ removes and adds some edges in a breakpoint graph, two
adjacent DCJs α and β in a DCJ scenario are called independent if β removes
edges that were not created by α. Otherwise, if β removes some edge(s) created
by α, then β depends on α. Furthermore, let k ∈ {1, 2} be the number of edges
created by α and removed by β. We say that β strongly depends on α if k = 2
and weakly depends on α if k = 1. We remark that adjacent pair of strongly
dependent DCJs may not appear in shortest DCJ scenarios, since such pair can
be replaced by an equivalent single DCJ, decreasing the scenario length.

Implicit Transpositions in Shortest DCJ Scenarios 17

As we mentioned above, we can change the order of two adjacent independent
DCJs and obtain an equivalent scenario. For a pair of adjacent weakly depen-
dent DCJs, there exist exactly two other equivalent pairs of weakly dependent
DCJs [5,9]. We therefore consider the following two types of length-preserving
operations, which can be applied to a pair of adjacent DCJs (α, β) in a DCJ
scenario:

(T1) If α and β are independent, we replace (α, β) with (β, α).
(T2) If α and β are (weakly) dependent, we replace (α, β) with an equivalent

pair of weakly dependent DCJs.

In was shown [5] that any shortest DCJ scenario can be obtained from any other
shortest DCJ scenario between the same two genomes using only operations of
types (T1) and (T2).

To better capture and analyze the combinatorial structure of DCJs in a
shortest DCJ scenario t, we construct the dependency digraph DG(t) (also known
as overlap graph [11,12]), whose vertices are labeled with DCJs from t and there
is an arc (α, β) whenever β depends on α (Fig. 2).

Fig. 2. The dependency graph DG(t) for DCJ scenario t defined in Fig. 1d.

Theorem 4. Let t be a shortest DCJ scenario between genomes P and Q com-
posed of the same n genes. Then

(i) the number of arcs in DG(t) is n − 2 · c(P,Q) + c1(P,Q);
(ii) both indegree and outdegree of each vertex in DG(t) are at most 2;
(iii) t represents a topological ordering of DG(t);
(iv) DG(t) is acyclic.

Proof. An arc (α, β) in DG(t) corresponds in the breakpoint graph transforma-
tion t to an edge that is created by DCJ α and removed by DCJ β. By Theorem 3
the removed edges are never recreated, implying that this correspondence is one-
to-one.

There are n − c1(P,Q) P -edges in the non-trivial cycles in G(P,Q) and they
have to be removed by DCJs from t in order to form trivial cycles. The other
edges removed by DCJs from t must have been created by earlier DCJs. Since
the total number of removed edges by DCJs in t is 2 · |t| = 2 · dDCJ(P,Q) =
2n − 2c(P,Q) (by Theorem 1), the number of such earlier created and then
removed edges is 2n − 2c(P,Q) − (n − c1(P,Q)) = n − 2c(P,Q) + c1(P,Q) and
this gives the number of arcs in DG(t).

18 S. Jiang and M.A. Alekseyev

Since by Theorem 3 the edges in the breakpoint graph transformation are
not recreated, any DCJ in t (which removes two edges and creates two edges)
depends on at most two other DCJs and may have at most two dependent DCJs.
That is, both indegree and outdegree of any vertex in DG(t) are bounded by 2.

If (α, β) is an arc in DG(t), then a DCJ β removes some edge e created by
a DCJ α. By Theorem 3 no other DCJ besides α can create e, and thus β must
follow α in t. So t represents a topological ordering for DG(t) and therefore
DG(t) is acyclic. �

The following theorem refines the result of [5] with respect to sorting shortest
DCJ scenarios with operations (T1) only.

Theorem 5. Let t1 and t2 be shortest DCJ scenarios between the same two
genomes. Scenario t1 can be obtained from scenario t2 with operations (T1) if
and only if DG(t1) = DG(t2).

Proof. Suppose that t1 and t2 correspond to the same dependency graph, i.e.,
DG(t1) = DG(t2) = G, then by Theorem 4 they represent topological orderings
of G. We will show that t1 and t2 can be obtained from each other with operations
(T1). Let

t1 = (α1, α2, . . . , αk, γ, . . .) and

t2 = (α1, α2, . . . , αk, β1, β2, . . . , βm, γ, . . .),

where γ �= β1 are the first different DCJs in the two scenarios. We will show
that γ in t2 can be moved to (k + 1)-st position (i.e., its position in t1) with
operations (T1). Since βm follows γ in t1 but precedes γ in t2, these vertices
are not connected with an arc in G and we can apply operation (T1) to t2
to obtain (α1, α2, . . . , αk, β1, β2, . . . , γ, βm, . . .). After m such operations we get
(α1, α2, . . . , αk, γ, β1, β2, . . . , βm, . . .), where γ is at the same position as in t1.
Using induction on k, we conclude that t1 can be obtained from t2 with opera-
tions (T1), and vice versa.

Now, suppose that DCJ scenarios t1 and t2 can be obtained from each other
with operations (T1). Since operations (T1) changes only the order of DCJs in
the scenario but keeps the DCJs themselves intact, the dependency graph is not
affected by such operations either. Therefore, DG(t1) = DG(t2). �

For a directed graph G, we define G as the undirected graph obtained from G
by making all arcs undirected. While Theorem4 claims that DG(t) is acyclic,
from the results of Shao el al. [14]1 it follows that DG(t) is a forest (i.e., a graph
with no cycles):

Theorem 6 ([14]). Let t be a shortest DCJ scenario between two genomes com-
posed of the same set of genes. Then the graph DG(t) represents a forest.

1 Shao el al. [14] studies more general trajectory graphs, from which the dependency
graphs can be obtained by contraction of edges.

Implicit Transpositions in Shortest DCJ Scenarios 19

4 Implicit Transpositions in Shortest DCJ Scenarios

While DCJs mimic most of common genome rearrangements (reversals, translo-
cations, fissions, fusions), more complex rearrangements such as transpositions
cannot be modeled by a single DCJ. A transposition, which cuts off a segment
of a chromosome and inserts it into some other place in the genome, can be
modeled by a pair of weakly dependent DCJs, replacing three undirected edges
with three other undirected edges on the same six vertices in the genome graph.
We remark that this operation is also known as a 3-break rearrangement [2].

Below we study how transpositions appearing in the course of evolution
between two genomes may affect shortest DCJ scenarios between them. While
a transposition constitutes a pair of consecutive DCJs, their positions in a DCJ
scenario may not always be reconstructed correctly. In particular, the two DCJs
forming a transposition may be interweaved with other independent DCJs that
precede or follow the transposition in the evolutionary scenario, which inspires
the following definition.

In a DCJ scenario t = (α1, α2, . . . , αn), a pair of DCJs (αi, αj) forms an
implicit transposition if they can be made adjacent by applying a number of
operations (T1) and form a pair of weakly dependent DCJs. When these DCJs
become adjacent, they can be replaced by a single transposition. We refer to such
a transposition as recovered from the DCJ scenario t. This poses us a question of
how many transpositions can be simultaneously recovered from a given shortest
DCJ scenario t.

Since two distinct implicit transpositions in a shortest DCJ scenario t may
share a DCJ, the maximum number of transpositions that can be recovered from
t may be smaller than the number of implicit transpositions in t. We therefore
are interested in (pairwise) disjoint implicit transpositions, which do not share
any DCJs between them. Furthermore, it is not immediately clear if existence of
a set of m disjoint implicit transpositions in t implies that m transpositions can
be simultaneously recovered from t, but we will prove below that this is indeed
the case. We therefore define DIT(t) as the maximum number of disjoint implicit
transpositions in t, which will be shown also equal to the maximum number of
transpositions that can be simultaneously recovered from t.

4.1 Disjoint Implicit Transpositions as Matchings

It can be easily seen that an implicit transposition formed by a pair of DCJs
(α, β) in a shortest DCJ scenario t corresponds to an arc in the dependency graph
DG(t). However, it is not immediately clear if every arc (x, y) in DG(t) represents
an implicit transposition, i.e., if DCJs x and y in t can be made adjacent with
operations (T1). In this section, we prove that any matching M in DG(t) forms a
disjoint collection of implicit transpositions that can be simultaneously recovered
from t.

We call a graph G a directed forest if G is a forest. By Theorem 6, DG(t)
represents a directed forest for any shortest DCJ scenario t.

20 S. Jiang and M.A. Alekseyev

Lemma 3. Let G be a directed forest. Then for any arc (α1, α2) in G, there
exists a topological ordering of G in which α1 and α2 are adjacent.

Proof. Let G′ be a graph obtained from G by removing the arc (α1, α2) and
gluing vertices α1, α2 into a new single vertex β. That is, for any arc (αi, γ)
with γ �= α2 in G, there is an arc (β, γ) in G′; and for any arc (γ, αi) with
γ �= α1 in G, there is an arc (γ, β) in G′.

We claim that G′ is a directed forest. Indeed, the G′ can be viewed as the
result of contraction of the edge (α1, α2) in G into a single vertex β. Such con-
traction cannot created a cycle, i.e., G′ remains to be a forest.

Let t′ be a topological ordering of G′. By replacing the vertex β in t′ with
pair of adjacent vertices α1, α2, we obtain the required topological ordering
of G. �

Theorem 7. Let G be a directed forest. Then for any matching M in G, there
exists a topological ordering t of G such that for any arc (α1, α2) ∈ M , DCJs α1

and α2 are adjacent in t.

Proof. We prove the theorem statement by induction on |M |. For the base case
|M | = 1, the statement follows from Lemma 3. Assume now that the statement
holds for |M | = m.

For |M | = m + 1, let (α1, α2) be an arc in M . We construct the graph G′ as
described in the proof of Lemma 3 and let M ′ = M \ {(α1, α2)}. Since G′ is a
directed forest and |M ′| = m, by the induction assumption there is a topological
ordering t′ of G′ such that for any arc (α1, α2) ∈ M ′, the DCJs α1 and α2 are
adjacent in t′.

We obtain t from t′ by replacing the vertex β with the ordered pair of vertices
α1, α2. It is easy to see that such t represents the required topological ordering
for G. �

4.2 Bounds for the Rate of Implicit Transpositions

Theorem 8. Let t be a shortest DCJ scenario between genomes P and Q com-
posed of the same n genes. Then DIT(t) ≥ TL(P,Q), where

TL(P,Q) =
⌈

n − 2 · c(P,Q) + c1(P,Q)
4

⌉
.

Proof. We know that the graph DG(t) is a forest (Theorem 6), where degree of
each vertex is bounded by 4 (Theorem 4). Let us construct a matching M in
DG(t) iteratively. Initially we let G = DG(t) and M = ∅.

If G contains at least one edge, it also contains a leaf (i.e., vertex of
degree 1) α. We add its only incident edge (α, β) to M and remove from G
all edges incident to the vertex β. Clearly, at most four such edges are deleted.
We repeat this procedure until all edges of G are removed. By Theorem 4, the
graph DG(t) contains n − 2 · c(P,Q) + c1(P,Q) edges and thus we perform at
least

⌈
n−2·c(P,Q)+c1(P,Q)

4

⌉
= TL(P,Q) iterations, implying that |M | ≥ TL(P,Q).

Implicit Transpositions in Shortest DCJ Scenarios 21

By construction, it is clear that M forms a matching in DG(t) and thus under
a suitable orientation of the edges in M , it also forms a matching in DG(t). By
Theorem 7, there exists a topological ordering t′ of DG(t) such that the endpoints
of all edges in M are adjacent in t′. By Theorem 5, topological ordering t′ can
be obtained from t with operations (T1), implying that we can simultaneously
recover from t all elements of M . Therefore, DIT(t) ≥ |M | ≥ TL(P,Q). �

Theorem 9. Let t be a shortest DCJ scenario between genomes P and Q com-
posed of the same n genes. Then DIT(t) ≤ TU (P,Q), where

TU (P,Q) =
n − 2 · c(P,Q) + codd(P,Q)

2
.

Proof. There exist DIT(t) pairwise disjoint implicit transpositions in t, which
after a number of operations (T1) can be made adjacent. We replace each pair
of DCJs forming an implicit transposition with a 3-break to obtain a 3-break
scenario �. The length of � is |�| = |t|−DIT(t) = n−c(P,Q)−DIT(t). We remark
that |�| is no smaller than the 3-break distance between genomes P and Q:

n − c(P,Q) − DIT(t) ≥ d3(P,Q) =
n − codd(P,Q)

2
,

implying the required upper bound for DIT(t). �

From the perspective of the upper bound in Theorem9, an extreme case for
genomes P and Q on n genes is c(P,Q) = codd(P,Q) = 1, in which by Theo-
rem 2 there exists a shortest 3-break scenario between P and Q of length n−1

2 .
According to Lemma 2, such scenario contains no DCJs but only complete 3-
breaks. By replacing each 3-break in this scenario with an equivalent pair of
DCJs (forming an implicit transposition), we can get a DCJ scenario t between
P and Q with 2 ·DIT(t) = n−1 DCJs. It is easy to see that in this case we have
DIT(t) = TU (P,Q) = n−1

2 , i.e., the upper bound for DIT(t) is tight.
Let t be a shortest DCJ scenario between genomes P and Q. There exist

DIT(t) pairwise disjoint implicit transpositions in t. The pair of DCJs in each of
these implicit transpositions can be made adjacent with operations (T1). If we
replace each adjacent pair of DCJs forming an implicit transposition in the result-
ing scenario with an actual transposition (complete 3-break), then we obtain a
scenario t′ of length dDCJ(P,Q) − DIT(t) composed of dDCJ(P,Q) − 2 · DIT(t)
DCJs and DIT(t) transpositions. Thus the proportion of transpositions in t′ is

DIT(t)
dDCJ(P,Q)−DIT(t) . We refer to this proportion as the rate of implicit transposi-
tions in t and denote it by r(t). The following theorem gives uniform bounds for
r(t) that do not depend on a particular scenario t.

Theorem 10. Let t be any shortest DCJ scenario between genomes P and Q.
Then

TL(P,Q)
dDCJ(P,Q) − TL(P,Q)

≤ r(t) ≤ TU (P,Q)
dDCJ(P,Q) − TU (P,Q)

.

22 S. Jiang and M.A. Alekseyev

Proof. Since r(t) = DIT(t)
dDCJ(P,Q)−DIT(t) = dDCJ(P,Q)

dDCJ(P,Q)−DIT(t) − 1, the value of r(t)
monotonically increases as DIT(t) grows. The stated bounds for r(t) immediately
follow from Theorems 8 and 9. �

5 Implicit Transpositions in Mammalian Evolution

Below we estimate the rate of implicit transpositions recovered from pair-
wise DCJ scenarios between 6 mammalian species: mouse, rat, dog, macaque,
human, and chimpanzee. Their gene orders and pairwise orthology relationship
were obtained from Ensembl BioMart tool [10] on the following genomes: Mus
musculus (GRCm38.p1), Rattus norvegicus (Rnor 5.0), Canis familiaris (Can-
Fam3.1), Homo sapiens (GRCh37.p12), Macaca mulatta (MMUL 1.0), and Pan
troglodytes (CHIMP2.1.4). Since our approach is currently limited to circular
chromosomes, we artificially circularized chromosomes in each genome (such cir-
cularization is expected to have a minor impact [1]). For each pair of genomes,
we represented them as sequences of shared genes present in one copy in each of
these genomes2 and used Theorem 10 to compute the lower and upper bounds
for the rate of implicit transpositions between them. The results are given in
Table 1.

Table 1. Estimation for the rate of implicit transpositions between pairs of genomes
among mouse (M), rat (R), dog (D), macaque (Q), human (H), and chimpanzee (C).

Genome pairs Shared genes DCJ distance Lower bound Upper bound

M & R 14312 832 0.18 0.79

M & D 13852 1131 0.20 0.86

M & H 14119 1173 0.20 0.86

M & C 12608 1004 0.21 0.85

M & Q 13537 947 0.20 0.84

R & D 13312 1310 0.20 0.83

R & H 13352 1110 0.20 0.81

R & C 11942 961 0.21 0.80

R & Q 13064 1181 0.20 0.81

D & H 13808 1123 0.18 0.85

D & C 12372 984 0.19 0.85

D & Q 13449 1139 0.18 0.86

H & C 15646 929 0.17 0.93

H & Q 14408 973 0.17 0.91

C & Q 12912 884 0.18 0.91

2 We remark that since the set of shared genes varies across genome pairs, the DCJ
distances between genomes in different pairs are incomparable.

Implicit Transpositions in Shortest DCJ Scenarios 23

Table 1 demonstrates that the rate of implicit transpositions in mammalian
evolution is at least 0.17. This is consistent and close to the estimate of the
transposition rate in mammalian evolution as 0.26 recently obtained with statis-
tical methods [3]. While we showed that the upper bound may be tight for some
pairs of genomes, we believe that this not the case for mammalian genomes and
the upper bound values in Table 1 appear to be superfluous.

6 Discussion

We continue our study of the combinatorial structure of DCJ scenarios from
the perspective of simple length-preserving transformations, each affecting only
a pair of consecutive DCJs (first introduced in [5]). Earlier we showed [9] that
any shortest DCJ scenario between a genome with m ≥ 1 circular chromosomes
and a linear genome (consisting of linear chromosomes) can be transformed into
a shortest DCJ scenario, where circular chromosomes are eliminated by the first
m DCJs and the rest represents a scenario between linear genomes. We further
used this construction to obtain an approximate solution for the linear genome
median problem.

In the current work, we study how evolutionary transpositions may implic-
itly appear in shortest DCJ scenarios and prove uniform bounds on their rate.
Since transpositions are rather powerful rearrangements, it is not surprising that
they may appear in a significant proportion that cannot be easily bounded in
rearrangement scenarios between some genomes. Even though we do not yet
have a recipe for limiting the effect of transpositions in the combined DCJ (2-
break) and 3-break model (for which we earlier proved failure of the weighting
approach [8]), our current study provides a step towards better understanding
of the properties of transpositions and how they may affect reconstruction of the
evolutionary history.

Our analysis of mammalian genomes demonstrates that the lower bound for
the implicit transposition rate is close to the estimation obtained with statistical
methods [3]. It is interesting to notice that the rate attains extreme values at
pairs of primate genomes, which cannot be directly explained by the number
of shared genes or DCJ distance between them and thus may indicate higher
complexity of primate genomes with respect to the transposition analysis. While
our approach is currently limited to circular chromosomes and applied for mam-
malian genomes with artificially circularized chromosomes, such circularization
is expected to have a minor impact on the resulting estimates [1]. Extension of
our approach to linear genomes will be published elsewhere.

Acknowledgments. The work was supported by the National Science Foundation
under the grant No. IIS-1462107.

References

1. Alekseyev, M.A.: Multi-break rearrangements and breakpoint re-uses: from circular
to linear genomes. J. Comput. Biol. 15(8), 1117–1131 (2008)

24 S. Jiang and M.A. Alekseyev

2. Alekseyev, M.A., Pevzner, P.A.: Multi-break rearrangements and chromosomal
evolution. Theor. Comput. Sci. 395(2), 193–202 (2008)

3. Alexeev, N., Aidagulov, R., Alekseyev, M.A.: A computational method for the rate
estimation of evolutionary transpositions. In: Ortuño, F., Rojas, I. (eds.) IWBBIO
2015, Part I. LNCS, vol. 9043, pp. 471–480. Springer, Heidelberg (2015)

4. Bader, M., Ohlebusch, E.: Sorting by weighted reversals, transpositions, and
inverted transpositions. J. Comput. Biol. 14(5), 615–636 (2007)

5. Braga, M.D., Stoye, J.: The solution space of sorting by DCJ. J. Comput. Biol.
17(9), 1145–1165 (2010)

6. Eriksen, N.: (1 + ε)-approximation of sorting by reversals and transpositions.
In: Gascuel, O., Moret, B.M. (eds.) WABI 2001. LNCS, vol. 2149, pp. 227–237.
Springer, Heidelberg (2001)

7. Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of
Genome Rearrangements. MIT Press, Cambridge (2009)

8. Jiang, S., Alekseyev, M.A.: Weighted genomic distance can hardly impose a bound
on the proportion of transpositions. In: Bafna, V., Sahinalp, S.C. (eds.) RECOMB
2011. LNCS, vol. 6577, pp. 124–133. Springer, Heidelberg (2011)

9. Jiang, S., Alekseyev, M.A.: Linearization of median genomes under DCJ. In:
Brown, D., Morgenstern, B. (eds.) WABI 2014. LNCS, vol. 8701, pp. 97–106.
Springer, Heidelberg (2014)

10. Kasprzyk, A.: BioMart: driving a paradigm change in biological data management.
Database 2011, bar049 (2011)

11. Ouangraoua, A., Bergeron, A.: Combinatorial structure of genome rearrangements
scenarios. J. Comput. Biol. 17(9), 1129–1144 (2010)

12. Ozery-Flato, M., Shamir, R.: Sorting by translocations via reversals theory. In:
Bourque, G., El-Mabrouk, N. (eds.) RECOMB-CG 2006. LNCS (LNBI), vol. 4205,
pp. 87–98. Springer, Heidelberg (2006)

13. Ranz, J., González, J., Casals, F., Ruiz, A.: Low occurrence of gene transposition
events during the evolution of the genus Drosophila. Evolution 57(6), 1325–1335
(2003)

14. Shao, M., Lin, Y., Moret, B.: Sorting genomes with rearrangements and segmental
duplications through trajectory graphs. BMC Bioinform. 14(15), 1–8 (2013)

15. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–
3346 (2005)

Constraint-Based Genetic Compilation

Christophe Ladroue and Sara Kalvala(B)

Department of Computer Science, University of Warwick,
Coventry CV4 7AL, UK

Sara.Kalvala@warwick.ac.uk

Abstract. Synthetic biology aims at facilitating the design of new
organisms via the standardization of biological parts and following engi-
neering principles. We present atgc (Assistant To Genetic Compilation),
a software tool that automatically builds a functional sequence of DNA
from a minimal set of requirements. Through a simple language, the user
provides in-house knowledge about their construct (e.g. relative place-
ment of parts, number of restriction enzymes). atgc combines information
from established biology, user knowledge and bioinformatics databases,
and maps the problem to a constraint satisfaction setting. The solution
is a functional DNA sequence ready to be assembled and transferred to a
target organism.

Keywords: Synthetic biology · Biocompilation · Constraint satisfaction

1 Introduction

Synthetic biology [9] aims at reaching a level of control in biology that is tradi-
tionally found in mechanical or electrical engineering [5]. Its approach consists in
considering biological parts and combining them to achieve a pre-defined task.
Parts are fragments of DNA fulfilling a specific function: promoters, protein
coding sequences (CDS), ribosome binding sites (RBS), terminators and so on.
A device is an ordered collection of parts, that has a specific effect (e.g. produc-
ing a certain protein when sensing a signal). The resulting string of DNA can be
thought of as a blueprint for a program to be run by the cell. The potential ben-
efit for science and society is immense, from a better understanding of cellular
processes [8], to drug manufacturing [16] to energy production [18].

Following this computer analogy, we present our approach to biocompiling
[6]: deriving, from a high-level, human-readable encoding of desired behavior,
the corresponding set of instructions at a machine (or a cell) level, in this case
in terms of nucleotides (a, c, t and g) instead of zeroes and ones. In this paper
we consider only simple forms of control, where the production of proteins is
controlled by the choice of promoter that precedes the corresponding gene in the
DNA sequence. Nature has evolved many more complex forms of control (such
as the very powerful method known as RNA Interference [11]) but these are still
beyond the scope of most of the projects developing practical design tools for
synthetic biology.
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): AlCoB 2015, LNBI 9199, pp. 25–38, 2015.
DOI: 10.1007/978-3-319-21233-3 3

26 C. Ladroue and S. Kalvala

From a conceptual point of view biocompilation should be a simple process:
one can look up parts from the many comprehensive databases of biological parts
available to find ones that provide the required functionality, and string the cor-
responding nucleotide sequences together. However, in practice there are many
obstacles to obtaining functional sequences: the quantitative nature of genetic
translation means that there may be many initial designs but they provide unac-
ceptable reaction rates. Furthermore, there are local interactions that can occur
between specific nucleotide sequences and the underlying cellular mechanisms
which need to be considered. And there are usually some pragmatic constraints
from the specific lab or experimental setting in which the actual biological exper-
iments are to be performed.

Biocompilation has been addressed by a number of projects in recent years.
Genocad [2] uses a context-free grammar for constraining sequence building
and also verifying existing sequences. proto biocompiler [1] is based on the
spatial language proto. An abstract regulatory network is derived from the
behavioral specifications and then simplified and instantiated to a smaller genetic
circuit. Eugene [4] starts from a collection of parts and devices, and creates all
possible combinations. It then prunes unwanted arrangements following simple
rules. However, these rules are rarely under the control of the user, who is often
unable to control the decisions made by the tools. Therefore, realistic automation
of the biocompilation process has so far been quite elusive.

Our approach, described here and exemplified by our tool atgc, also uses
built-in rules informed from biology to construct a functional device from a col-
lection of parts, but it also allows users to add simple, specific directives to control
the decisions made. Potential inconsistencies are managed by using a constraint-
based methodology that balances different constraints against each other. We
make extensive use of a CSP solver, the Java library JaCoP [14]. The advan-
tage of this is that our decision making can easily accommodate more heuristics
and user design strategies, without needing to re-structure the whole process.
Our tool automatically completes unfinished devices, lowering the requirement
for genetic knowledge from the user while accommodate user-defined constraints.

2 General Workflow

In the general workflow of atgc, a user declares a list of parts to be include in the
design, using parts of different types (promoters, CDS, terminators, etc.), and
they can also add extra constraints on the construction of the final sequence, such
as the relative position of parts or the direction of the CDS. The set of constraints
offered may be informed by users’ daily practice. These extra constraints are
encoded in terms of a cost function to be minimized. The task of atgc consists
in (1) taking stock of what parts and devices are used, (2) finding a realistic
arrangement of the parts (3) instantiating their exact nucleotide sequences and
(4) creating an output file that can be fed into a DNA assembly process.

In the simplest use-case, users only specify promoters and CDSs, which
provide enough information to check the desired functionality via simulation.

Constraint-Based Genetic Compilation 27

But to be biologically functional, a device requires extra parts to be integrated
into the design–such as terminator sequences, to ensure that DNA transcription
stops after the gene in question has been transcribed. Furthermore, low-level
conflicts at the nucleotide level can arise, which are difficult to check for and
which can invalidate a design attempt which has been made.

The biocompiler automatically adds the missing necessary parts, such as
RBS and terminators, as well as, if requested by the user, a number of cloning
sites. Insertion of all these different components can raise several conflicts, and
atgc solves these conflicts in many cases. There are three main steps in the
biocompilation process:

1. The set of parts specified by the user is expanded with other parts needed to
complete the design and the various parts are placed in a coherent sequence,
taking into consideration the fact that devices can be placed in both directions
in the complementary DNA strands.

2. Ribosomal Binding Sites (RBSs) are tags that are translated along with CDSs
and determine the translation rate for the CDSs. atgc chooses the RBS
sequences that implement the translation rate desired by the user.

3. Cloning sites are often desired by users and it is often very difficult to find
appropriate cloning sites because these 4- and 6-mer sequences should not
appear anywhere else in the DNA. atgc has an extensive mechanism to try
to find adequate cloning sites and their corresponding restriction enzymes,
by re-generating nucleotide sequences for the rest of the DNA if required.

The solution found by atgc can be exported in SBOL format [10], which
can be simulated and which is compatible with a large a growing number of
synthetic biology software, for example the J5 DNA assembly tool [12].

atgc does not interpret the meaning of sequences it manipulates. It is thus
possible to generate a nonsensical sequence if the input sequences are themselves
nonsensical; e.g. a promoter consisting only of the nucleotide a, or a ‘gene’
with the sequence of a terminator. Biology is hugely pliable, and nature has
evolved many clever ways of implementing control, so we do not over-constrain
the types of designs that can be produced. Another point to be mentioned is that
atgc was designed with the assumption that each part has a separate function,
following the efforts of the synthetic biology community to standardise parts. As
a consequence, it cannot cater for situations where one would like to produce
overlapping coding sequences, for example; the sequences will appear separately,
one after the other. But we believe the infrastructure we provide is robust enough
that further extensions that capture more interesting designs are possible.

In the next sections, we explain the various elements of user input and also
explain the way that atgc processes this information to produce viable designs
at the nucleotide level.

3 User Input Language

The input language for atgc is similar to that adopted by many other biocom-
piler tools, and consists mainly in ways in which parts can be accessed from

28 C. Ladroue and S. Kalvala

various databases, and host organisms can be identified and the environment
(such as concentrations of signaling molecules, etc.) can be specified.

What is unique in atgc is the way directives can be specified. These are
interspersed into the input file and are all preceded by the ATGC keyword.
User expertise is often difficult to formalize as it contains ad-hoc rules and rules
of thumb. The various directives which have been implemented so far will be
shown in the next section alongside the algorithms we developed to process
them. Here we explain how parts, devices, and cells are specified by users.

Parts are declared by the user by specifying their types and sequences, as
both information will be required for building the final sequence. That is, a
biological part in atgc is just an ordinary variable. Four types of parts are
available: promoter, gene, RBS and terminator. Each of these types take one
argument: either an explicit DNA sequence, or a pointer to a database entry.

Users need to specify the set of parts that they may want to use in their
designs: we believe this is more sensible than hard-wiring our favorite parts,
which may unnecessarily increase the search space for designs. Figure 1 shows
the various ways in which parts can be defined: directly as sequences (PromD,
GeneD), or as named parts in popular databases, for example PromB from biofab
[3], GeneP from the Parts Registry ([13], and PromV and GeneV from the Virtual
Parts Repository [7], which we use in our running example. These repositories
contain promoters, genes, RBSs and terminators that have been used extensively
by the synthetic biology community.

Fig. 1. Declaring parts that can be used in the biocompiler

Genetic designs involve specifying the assembly of parts into devices and the
placement of these devices into a context, such as a host cell. These structures are

Constraint-Based Genetic Compilation 29

specified as given in Fig. 2. Devices are understood in synthetic biology as com-
posite genetic units with functional parts such as promoters and CDSs. Devices
are declared analogously to functions in a typical programming language, with a
signature specifying the parts used. The actual placement of the parts is the goal
of biocompilation. Thus, initially, this section may be empty, but is filled in by
the biocompiler. Devices are used in cells, which in turn are placed in a region.
The information about the cell and the region provide important information
that is used to simulate the dynamics of the cell and thus verify the results of
the biocompiler.

Fig. 2. Declaring devices, cells and regions

An important aspect for atgc is that descriptions may be (and in fact are
expected to be) incomplete: the goal of biocompilation is to fill in the design to
make a feasible complete specification. This is done by automatically searching
through a large space of genetic parts and configurations and finding consistent
and good solutions, not only in terms of syntax but also in terms of quantitative
analysis and analysis of the actual nucleotide sequences.

4 Biocompilation Step: Arranging the Bio-Parts

The biocompiler will use the parts required for building the whole construct,
following rules from known biology. There can be many equivalent ways to place
the parts in the final piece of DNA, and some might be preferred by the user.
For example, they might want to reproduce an existing construct that has been
reported to work in previous studies.

atgc finds the position of each part by using built-in biological knowledge
as directives for placement. But some hard constraints, such as the notion that
a device should start with a promoter and end with terminators, or that genes
must be preceded by an RBS, cannot be violated. Extra constraints provided by
the user, like relative positions of parts, are captured in a cost function.

The directive ARRANGE, followed by a list of parts, will force the compiler
to favor an arrangement that matches the relative positions of the parts involved
in the directive. This directive makes it easy to guide the biocompiler to generate
solutions that fit a pre-determined, in-house design. For example, the directive:

30 C. Ladroue and S. Kalvala

ATGCARRANGE nahR , Pnah , Psal , xys l 2

directs the biocompiler to try to place these four parts in this particular order—
for example, when such a component has already been produced in-house.
ARRANGE is a ‘soft’ constraint, in that it favors solutions where it is sat-
isfied, but not if it is in direct contradiction with hard-coded rules for genetic
constructs.

The DIRECTION directive forces the direction of a device: forward or
reverse. For example, the requirement that a device is to be read in a specific
direction can be specified as:

ATGC myDevice DIRECTION: FORWARD

Mapping to a Constraint Satisfaction Problem. The corresponding
constraint satisfaction problem (CSP) has 2 types of objects: parts p ∈
{P,R,G, T,C} and devices i ∈ i1, i2, . . ., each of which is associated with a
set σ of parts. The goal is to assign locations L() ∈ {1, . . . ,#parts} to parts and
to assign a direction D() ∈ {F (= 0), B(= 1)} to devices.

The biocompiler adds a number of constraints in order to build a functional
piece of DNA, such as the following:

– No two parts can be at the same location: ∀p, p′.L(p) �= L(p′).
– A device in either direction should start with a promoter:

∀i.D(i) = F → minL(p).p∈σ(i) → p = P
∀i.D(i) = R → maxL(p).p∈σ(i) → p = P .

– Each gene must be preceded by a RBS sequence:
∀i.D(i) = F → ∀G ∈ σ(i). ∃R ∈ σ(i).L(G) = L(R) + 1
∀i.D(i) = R → ∀G ∈ σ(i). ∃R ∈ σ(i).L(R) = L(G) + 1.

– Devices do not overlap: Given the relative order σ. of the devices
∀i.∀p. p /∈ σ(i) → L(p) < minL(p).p∈σ(i) ∨ L(p) > maxL(p).p∈σ(i).

– Terminators should be the last parts of a device:
∀i.D(i) = F → maxL(p).p∈σ(i) → p = T
∀i.D(i) = R → minL(p).p∈σ(i) → p = T .

To these and other in-built numerical constraints, the biocompiler then adds any
user-specified constraints:

– The directive ATGC ARRANGE P1, P2, ..., Pk is translated into the con-
straints: L(P1) < L(P2) < · · · < L(Pk).

– The directive ATGC Dev DIRECTION = REVERSE is translated into the
constraint: D(Dev) = R.

These conditions are expressed as a system of numerical constraints that can
be solved by the JaCoP CSP solver. Once the program is run, a solution (if
it exists) is found, with all constraints satisfied and the positions of each parts
assigned a particular value. Currently the tool only produces one (the best)
solution, but we plan to extend it to export an arbitrary number of solutions,
which can then all be tested through parallel wet-lab experiments. This extension
is not conceptually difficult, but we need to ensure we provide solutions in a style
that is easily integrated into lab protocols.

Constraint-Based Genetic Compilation 31

5 Biocompilation Step: RBS Selection

An RBS sequence needs to precede each gene in order to initiate translation. It
is tailored for individual contexts: it depends on the CDS, the pre-sequence, and
the type of host organism. The RBS sequences are computed via a stochastic
process and can be very different even given the same initial conditions. The Salis
RBS calculator [17] is well established as providing acceptable RBS sequences, so
atgc simply calls this tool with the specific parameters to generate this sequence
which is then inserted into the emerging design.

In the Salis RBS Calculator, translation rates are specified in an arbitrary
unit, and the default rate is set to 1000. atgc also uses this default rate, but
also allows it to be overridden by the user. To specify a particular initiation
translation rate, users specify the value they would like to achieve:

ATGCTRANSLATION RATE: 50000

The RBS calculated for this device will have an initiation translation rate 50
times higher than the rate for a default RBS. Note that the sequence generated
in this way may result in a conflict in the next step, so the RBS Calculator may
be called several times during the biocompilation process.

6 Biocompilation Step: Cloning Sites Selection

atgc also allows the user to ask for a number of cloning sites, non-coding
fragments of DNA that can be cleaved with a restriction enzyme specific to
each nucleotide sequence. Cloning sites are useful for in vivo use, e.g. by allow-
ing reporters to be inserted at these locations. However, it is often difficult to
find restriction enzymes that can be used because the cleavage sequences can
appear in other places in the DNA, and cleaving the DNA at these sites can be
catastrophic.

Users can insert a request for a number of cloning sites (say 5) within the
specification of devices with a simple directive:

ATGCCLONING SITES : 5

General Strategy. atgc attempts to find a selection of restriction enzymes
that cut only at the desired location in the final sequence. Since the restric-
tion enzymes will cut the DNA string at any occurrence of their characteristic
nucleotide sequence, they have to be chosen so as not to cut the DNA sequence
anywhere else. Since restriction enzymes (and therefore cloning sequences) are
in limited number, it might not be possible to find enough fitting restriction
enzymes given a particular sequence. If this is the case, the algorithm is allowed
to change the rest of the sequence: either RBS can be recalculated or codons can
be changed to suit more restriction enzymes.

This work-flow is described in Fig. 3. From the whole sequence (with all
devices) and the number of required cloning sites, we first build a list of potential
restriction enzymes (line 5), i.e. with cloning sequences that do not appear in the

32 C. Ladroue and S. Kalvala

whole sequence. In a first pass, in case of conflict with calculated RBSs, the RBS
are re-calculated to achieve the previously set translation rates but with different
sequences. This is done at most twice (to avoid infinite loops). In a second pass,
if there is a conflict with some coding sequences, the biocompiler proceeds to
find the optimal codon change that will both: (1) free up previously conflicting
restriction enzymes, and (2) minimize the disruption to the CDS (by applying
a cost dependent on the codon usage). This is done through the mapping to a
constraint satisfaction problem described in the next subsection.

Given a list of non-conflicting restriction enzymes and the whole sequence,
the algorithm in Fig. 4 attempts to find a suitable selection. A restriction enzyme
is selected from the list one at the time, and the corresponding cloning sequence
is inserted into the sequence if there is no conflict. This ensures that the added
sequences are not in conflict with the newly selected sequence. The algorithm
either succeeds to fit the necessary number of cloning sites, in which case the
search ends, or it fails, in which case the original CDS is modified if possible.

Mapping to a Constraint Satisfaction Problem. Figure 5 shows the algo-
rithm used for updating the codons in CDSs in order to fit more restriction
enzymes. It starts by considering the restriction enzymes that only have a con-

Fig. 3. General workflow for finding restriction enzymes

Fig. 4. Finding fitting restriction enzymes

Constraint-Based Genetic Compilation 33

Fig. 5. Fitting restriction enzymes with codon modifications

flict with the CDS, from the list of potential enzymes built in Fig. 3 (line 5).
It then makes a list of the specific codons which cause conflicts, and for each
such codon, finds possible alternatives according to the genetic code (e.g. Ala-
nine can have 4 forms:gct, gcc, gca, gcg). A reified Boolean variable REi

is created for each candidate restriction enzymes (lines 3–6) that is true if and
only if the codons each take a form such that the final sequence does not conflict
with the enzyme. In other words, they are all acceptable alternative codes for the
aminoacids coded by the initial codons, but which do not give rise to forbidden
sequences.

The program does not simply search for codon alternatives to free up at least
a minimal number of enzymes (lines 9–10). It also does it in such a way that the
original sequence is minimally disrupted: each codon change is associated with a
cost (lines 7–8). If the original form is kept, the cost is 0. Otherwise, the cost is
− log(fk), where fk is the natural codon bias for the species. Thus, not changing
a codon does not cost anything and changing a codon to a less common form is
more expensive. The codon usage frequencies are found from the Codon Usage
Database (http://www.kazusa.or.jp/codon/ [15].

The overall goal of the algorithm is thus to change codons in order to free
up a minimal number of restriction enzymes (lines 9–10) while minimizing the
total cost of the changes (lines 11–12).

7 Example

In this section, we build a biological AND operator with two devices, following
the approach taken in [19]. The aim is to make a cell produce a fluorescent
protein (GFP) when two molecules IPTG and aTc are present. Figure 6 shows
the regulatory network designed to achieve this goal. The first device produces
the molecules lacI and tetR. The production of GFP by the second device is

http://www.kazusa.or.jp/codon/

34 C. Ladroue and S. Kalvala

Fig. 6. Regulatory network and construct resulting from the biocompilation.

inhibited by lacI and tetR. IPTG inhibits laclI and aTc inhibits tetR. As a result,
GFP will be produced only when aTc and IPTG are present. The inhibition for
the second device is achieved with two promoters PlacI and PteR.

In Fig. 7 we show the directives coded by experimentalist colleagues in spec-
ifying some requirements. Typically, they wished to specify only the promoters
and genes and leave other decisions to the tools. For experimental reasons, they
wished to enforce the order of the two promoters. They also wanted to add a
couple of cloning sites to the second device for testing purposes.

Constraint-Based Genetic Compilation 35

Fig. 7. User directives for example device

The biocompiler automatically completed the devices with RBS and termi-
nators and found a functional arrangement for the parts. The sequences for the
parts were obtained in the Biobricks online database. The compiler also selected 2
non-cutting restriction enzymes once the rest of the sequence had been decided.
In this case, the compiler found the following two restriction enzymes: BstI
(ggatcc) and Bst6I (ctcttc).

8 Interface

atgc’s user interface is shown in Fig. 8. The central panel contains the editor.
The left panel contains a project manager, where multiple files and folders can
be created. The right hand-side panel shows the current understanding of the
biocompiler for the current model. The user updates its content by clicking on
Refresh model. The panel then shows an overview of the construct and enables a
second button labeled Compile. Pushing this button starts the biocompiler. Every
step, as well as warnings and errors, are shown in the console (bottom panel).
If the compilation is successful, the final construct, with the parts arranged and

36 C. Ladroue and S. Kalvala

Fig. 8. User interface for atgc with a fully-featured editor and project manager.

assigned a nucleotide sequence, is shown in the results panel. The corresponding
SBOL file can be found the folder src-gen in the project manager.

atgc’s interface is built on the Eclipse platform, and is compatible with
Windows, Mac OS, and Linux. The user interface language is a simple domain-
specific language developed with Xtext (http://www.eclipse.org/Xtext), which
provides a text editor with keyword completion and syntax coloring.

9 Conclusion

atgc is a biocompiler that facilitates the building of a functional string of DNA
from an initial specification of functionality, an initial collection of parts, and
heuristics expressed through constraints. The compilation is done in three stages:
initial parts placement, RBS optimisation, and insertion of cloning sites. It uses
constraint solving for dealing with conflicts and choices, through the powerful,
stable and well-established CSP solver JaCoP.

The approach taken here is one that favors readability of the code (by using
a domain-specific language), design automation (to facilitate the access to syn-
thetic biology for non-specialists) and extensibility. By mapping the searches
and the user-specified requirements to a constraint satisfaction program, atgc
leverages the tools and techniques developed by the CSP community; adding
new types of constraint or new assumptions will not require the development of
new ad-hoc algorithms but simply the addition of extra rules to the CSP basis.

http://www.eclipse.org/Xtext

Constraint-Based Genetic Compilation 37

In our experience and through discussion with biologists, there is a reluc-
tance to use specialized software tools to complete genetic designs, as users often
feel hindered by the lack of control in guiding the decision making. By using a
constraint-based approach where user directives are injected directly into the
decision process, we leave users in the driving seat. On the other hand, atgc is
very helpful in how it handles the low-level book-keeping issues, such as finding
restriction enzymes that are compatible with the rest of the design.

atgc is also part of an upcoming platform for synthetic biology, which will
integrate the modeling, verification and biocompilation into a unified language
and system. All three aspects will be seamlessly intertwined to produce a one-
stop shop for designing new organisms in silico.

Acknowledgments. This research was supported by EPSRC through grant
EP/I03157X/1, Towards Programmable Defensive Bacterial Coatings and Skins. We
are grateful for the collaboration within the Roadblock consortia.

References

1. Beal, J., Lu, T., Weiss, R.: Automatic compilation from high-level biologically-
oriented programming language to genetic regulatory networks. PLoS ONE 6(8),
e22490 (2011). doi:10.1371/journal.pone.0022490

2. Bilitchenko, L., et al.: Eugene: a domain specific language for specifying and con-
straining synthetic biological parts, devices, and systems. PLoS ONE 6(4), e18882
(2011). doi:10.1371/journal.pone.0018882

3. Biofab: Data Access Web Service (2015). http://biofab.synberc.org/data
4. Cai, Y., et al.: A syntactic model to design and verify synthetic genetic constructs

derived from standard biological parts. Bioinformatics 23(20), 2760–2767 (2007).
doi:10.1093/bioinformatics/btm446

5. Church, G.M., Elowitz, M.B., Smolke, C.D., Voigt, C.A., Weiss, R.: Realizing the
potential of synthetic biology. Nat. Rev. Mol. Cell Biol. 15(4), 289–294 (2014).
doi:10.1038/nrm3767

6. Clancy, K., Voigt, C.A.: Programming cells: towards an automated ‘genetic com-
piler’. Curr. Opin. Biotechnol. 21(4), 572–581 (2010). doi:10.1016/j.copbio.2010.
07.005

7. Cooling, M.T., et al.: Standard virtual biological parts: a repository of modular
modeling components for synthetic biology. Bioinformatics 26(7), 925–931 (2010).
http://bioinformatics.oxfordjournals.org/content/26/7/925.abstract

8. Elowitz, M., Lim, W.A.: Build life to understand it. Nature 468(7326), 889–890
(2010). doi:10.1038/468889a

9. Freemont, P.S., Kitney, R.I., Baldwin, G., Bayer, T., Dickinson, R., Ellis, T.,
Polizzi, K., Stan, G.B., Kitney, R.I.: Synthetic Biology - A Primer. World Sci-
entific Publishing, London (2012). http://www.worldcat.org/isbn/1848168632

10. Galdzicki, M., et al.: The synthetic biology open language (SBOL) provides a com-
munity standard for communicating designs in synthetic biology. Nat. Biotechnol.
32(6), 545–550 (2014). doi:10.1038/nbt.2891

11. Hannon, G.: RNA interference. Nature 418(6894), 244–251 (2002)
12. Hillson, N.J., et al.: j5 DNA assembly design automation software. ACS Synth.

Biol. 1(1), 14–21 (2011). doi:10.1021/sb2000116

http://dx.doi.org/10.1371/journal.pone.0022490
http://dx.doi.org/10.1371/journal.pone.0018882
http://biofab.synberc.org/data
http://dx.doi.org/10.1093/bioinformatics/btm446
http://dx.doi.org/10.1038/nrm3767
http://dx.doi.org/10.1016/j.copbio.2010.07.005
http://dx.doi.org/10.1016/j.copbio.2010.07.005
http://bioinformatics.oxfordjournals.org/content/26/7/925.abstract
http://dx.doi.org/10.1038/468889a
http://www.worldcat.org/isbn/1848168632
http://dx.doi.org/10.1038/nbt.2891
http://dx.doi.org/10.1021/sb2000116

38 C. Ladroue and S. Kalvala

13. iGem: Parts Registry (2015). http://partsregistry.org/
14. Kuchcinski, K.: Constraints-driven scheduling and resource assignment. ACM

Trans. Des. Autom. Electron. Syst. 8(3), 355–383 (2003). doi:10.1145/785411.
785416

15. Nakamura, Y., et al.: Codon usage tabulated from the international DNA sequence
databases. Nucleic Acids Res. 24(1), 214–215 (1996). http://www.ncbi.nlm.nih.
gov/pmc/articles/PMC145571/

16. Paddon, C.J., et al.: High-level semi-synthetic production of the potent antimalarial
artemisinin. Nature 496, 528–532 (2013). doi:10.1038/nature12051

17. Salis, H.M.: The ribosome binding site calculator. Methods Enzymol. 498, 19–42
(2011). doi:10.1016/b978-0-12-385120-8.00002-4. Elsevier

18. Schirmer, A., Rude, M.A., Li, X., Popova, E., del Cardayre, S.B.: Microbial biosyn-
thesis of alkanes. Science 329(5991), 559–562 (2010). doi:10.1126/science.1187936

19. Tamsir, A., Tabor, J.J., Voigt, C.A.: Robust multicellular computing using genet-
ically encoded NOR gates and chemical /‘wires/’. Nature 469(7329), 212–215
(2011). doi:10.1038/nature09565

http://partsregistry.org/
http://dx.doi.org/10.1145/785411.785416
http://dx.doi.org/10.1145/785411.785416
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC145571/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC145571/
http://dx.doi.org/10.1038/nature12051
http://dx.doi.org/10.1016/b978-0-12-385120-8.00002-4
http://dx.doi.org/10.1126/science.1187936
http://dx.doi.org/10.1038/nature09565

Molecular Recognition/Prediction

P2RANK: Knowledge-Based Ligand
Binding Site Prediction Using Aggregated

Local Features

Radoslav Krivák(B) and David Hoksza

FMP, Department of Software Engineering, Charles University in Prague,
Malostranské nám. 25, 118 00 Prague, Czech Republic

{krivak,hoksza}@ksi.mff.cuni.cz

Abstract. The knowledge of protein-ligand binding sites is vital pre-
requisite for any structure-based virtual screening campaign. If no prior
knowledge about binding sites is available, the ligand-binding site predic-
tion methods are the only way to obtain the necessary information. Here
we introduce P2RANK, a novel machine learning-based method for pre-
diction of ligand binding sites from protein structure. P2RANK uses Ran-
dom Forests learner to infer ligandability of local chemical neighborhoods
near the protein surface which are represented by specific near-surface
points and described by aggregating physico-chemical features projected
on those points from neighboring protein atoms. The points with high
predicted ligandability are clustered and ranked to obtain the resulting
list of binding site predictions. The new method was compared with a
state-of-the-art binding site prediction method Fpocket on three repre-
sentative datasets. The results show that P2RANK outperforms Fpocket
by 10 to 20 % points on all the datasets. Moreover, since P2RANK does
not rely on any external software for computation of various complex
features, such as sequence conservation scores or binding energies, it rep-
resents an ideal tool for inclusion into future structural bioinformatics
pipelines.

Keywords: Ligand-binding site prediction · Protein structure · Molec-
ular recognition · Machine learning · Random forest

1 Introduction

1.1 Motivation

Prediction of ligand binding sites from protein structure has many applications,
ranging from use in rational drug design [30,44], drug side-effects prediction [42]
to elucidation of protein function [18]. Of special interest is the application in
structure based virtual screening (SBVS) pipelines. In most types of SBVS,
docking algorithms are used to predict possible ligand-binding interactions. It
is recommended to focus docking to a protein cavity of interest to limit the
search space of possible conformations. In the cases where there is no a priori
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): AlCoB 2015, LNBI 9199, pp. 41–52, 2015.
DOI: 10.1007/978-3-319-21233-3 4

42 R. Krivák and D. Hoksza

information with regard to which protein regions to focus on (e.g. confirmed
active sties), it may be necessary to perform blind docking which scans the
whole protein surface. Compared to local docking it is generally less accurate and
significantly more time consuming, which limits the size of compound libraries
that is possible to screen [34]. Alternatively, ligand binding site prediction can
be employed in such scenarios to generate and prioritize the locations on which
to center subsequent docking procedure [23]. In a similar manner, binding site
prediction could also be of great use in a related task of structure-based target
prediction (or so called inverse virtual screening) [37]. As a result of the structural
genomic efforts [28], many protein structures still lack functional annotation and
even if it is present, it may not be complete. We believe that accurate ligand
binding site prediction methods (in combination with validation via docking)
can help to discover new and potentially useful allosteric binding sites.

1.2 Existing Methods

Many different ligand binding site prediction methods based on various strate-
gies have been already developed. The first dedicated method was proposed in
1992 [26] and the recent increase of interest in the field, presumably due to rapid
increase in number of available protein structures, is indicated by the number
of recently published reviews [6,13,23,25,30]. Several categories of methods (or
rather distinctive approaches) have been recognized. We present them together
with their representative examples, although in reality the actual methods may
use a combination of those approaches:

– Geometrical Methods. Methods focused mainly on the algorithmic side
of the problem of finding concave pockets and clefts on the surface of a 3D
structure [12,15,41], some of them incorporating additional physico-chemical
information like polarity or charge [21,24].

– Energetic Methods. Methods that build on the approximations of free
energy potentials by force fields, placing probes around the protein surface
and calculating binding energies [1,10,22,27,36].

– Evolutionary Methods. Algorithms that make use of sequence conserva-
tion estimates (functional residues are more evolutionary conserved) [5,15], or
protein threading (fold recognition from sequence) to find set of evolutionary
related structures and determine their common binding sites [4,38].

– Knowledge Based Methods. Methods that try to capture and exploit the
knowledge about protein-ligand binding that is implicitly stored in sequence
and structural databases by means of statistical inference [34]. Although sev-
eral residue-centric studies focused on classification of ligand binding residues
have been published [7,16,32], there are not many examples of complete pre-
diction methods using this approach that would produce putative binding sites
as such [33].

– Consensus Methods. Those are meta approaches that combine the results
of other methods [6,14,43].

In studies that introduced respective methods relatively high identification suc-
cess rates have been reported (usually more than 70 % considering only the first

P2RANK: Knowledge-Based Ligand Binding Site Prediction 43

predicted binding site). However, the results of the only independent benchmark-
ing study [6] suggest that accuracy of many of the methods may not be as good
as previously believed (closer to 50 %). It showed that there is still a need for
more accurate methods and thus an opportunity for improvement by examining
new approaches to binding site prediction. On a practical side, only few of the
methods are available for download as ready to use free software packages.

2 Materials and Methods

2.1 Method Outline

In this paper we are introducing a novel method for prediction of ligand binding
sites form a protein structure. Method is named P2RANK and it represents an
evolutionary improvement of our pocket ranking method PRANK [19] which
could only be used to reorder output of other pocket prediction methods. By
not relying on other methods to generate putative binding site locations and
thus making it a full-fledged method that can generate predictions itself has led
to a marked improvements in identification success rates.

The method takes a PDB structure as an input and outputs a ranked list
of predicted ligand binding sites defined by a set of points The following list
outlines the proposed method:

1. Generating a set of regularly spaced points lying on a protein’s Connolly
surface (referred to as Connolly points).

2. Calculating feature descriptors of Connolly points based on their local chem-
ical neighborhood:
(a) computing property vectors for protein’s solvent exposed atoms,
(b) projecting distance weighted properties of the adjacent protein atoms

onto Connolly points,
(c) computing additional features describing Connolly point neighborhood.

3. Predicting ligandability score of Connolly points by Random Forest classifier.
4. Clustering points with high ligandability score and thus forming pocket pre-

dictions.
5. Ranking predicted pockets by cumulative ligandability score of their points.

Individual steps are described in greater detail in following paragraphs. For visu-
alization of Connolly points see Fig. 1. One possible way how to look at our
protein surface representation is that protein solvent exposed atoms produce
potential fields for every feature (e.g. hydrophobicity, aromaticity, ...), and Con-
nolly points are sampling values from those fields at places near the protein
surface, which are likely to harbor potential ligand atoms.

Connolly Points. (1) Position of Connolly points is generated by a fast numer-
ical algorithm [9] implemented in CDK library [39]. The algorithm produces a
set of a more or less regularly spaced points lying on a Connolly surface of the

44 R. Krivák and D. Hoksza

Fig. 1. Connolly Points. Protein (1FBL) is covered in a layer of points lying on a
Connolly surface. Each point represents its local chemical neighborhood and is colored
according to its predicted ligandability score (dark=0/white=1). Points deemed highly
ligandable by a threshold (displayed enlarged) are clustered to form predicted pockets
(highlighted by coloring adjacent protein surface by darker colors). In this case, the
largest predicted pocket (shown on the left) is indeed a correctly identified true binding
site that binds a ligand. Visible are three other smaller predicted pockets, or rather
hotspots (shown on the right). Cumulative ligandability score of their respective points
is lower, therefore they will be ranked lower than the true pocket on the resulting list
of predicted binding sites.

protein. Solvent radius used is 1.6 Å(this value as well as other arbitrary para-
meters was optimized, see Results section). The density of the points depend on
an integer parameter tessellation level with default value 2 that produces points
with approximately 1.5 Å spacing.

Feature Representation. (2) For each Connolly point a feature vector (CFV)
that describes its local physico-chemical neighborhood is calculated. Before cal-
culating CFVs, each solvent exposed heavy atom of the protein is assigned atomic
feature vector (AFV) that describes given atom. CFV of a given Connolly point
is then calculated by aggregating AFVs of neighboring atoms and adding addi-
tional Connolly point features (XFV), i.e. extra features that are not defined for
atoms.

P2RANK: Knowledge-Based Ligand Binding Site Prediction 45

Atomic neighborhood of Connolly point P is defined as:

A(P) = {solvent exposed heavy protein atoms within r=6 Å radius aroundP} (1)

The following aggregation function is used to project AFVs onto the Connolly
points and calculate CFV for point P :

CFV(P) =
∑

Ai∈A(P)

AFV(Ai) · w(dist(P,Ai)) || XFV(P), (2)

where || is the operator of concatenation, XFV is a vector of additional features
specific to Connolly points and w is a distance weight function:

w(d) = 1 − d/6. (3)

AFV that describes protein atoms consists of two types of features: residue
level features (inherited by all atoms of a given residue) and atomic level features.
Residue level features include e.g. physico-chemical properties of standard amino
acids or hydropathy index of amino acids [20]. Examples of atomic features are
pharmacophore-related labels of atoms adopted from VolSite druggability predic-
tion study [8] or statistical ligand-binding propensities of amino acid atoms [17].
Most of the features are table features defined either for 20 standard amino acids
or their atom types (ALA.CA, ALA.CB,...). Exception to this is temperature fac-
tor, taken directly from PDB file, which can be different for each atom. Extra Con-
nolly point features (XFV), which are not defined for atoms, include the number
of neighboring H-bond donors and acceptors and protrusion index [31]. Protru-
sion is defined as a density of a protein atoms around the point and is calculated
using larger neighborhood cutoff radius (10 Å). Altogether, CFV consists of 34
features. For their complete list and description we refer the reader to [19].

Classification. (3) Machine learning approach was used to classify Connolly
points as ligandable/unligandable from their feature vectors. In general, output
of a binary classifier is a number between 0 and 1 that represents certainty of
a trained model that the classified instance belongs to the particular class (here
class1 = ligandable). Commonly, a threshold optimizing certain metric is chosen
and applied to produce binary output. In our case we decided to work directly
with output score (rather than binary output) which we refer to as a predicted
ligandability score (LS).

In theory any classification algorithm can be employed at this stage. After
preliminary experiments with several machine learning methods we decided to
adopt Random Forests [3] as our predictive modelling tool of choice. Random
Forests is an ensemble of trees created by using bootstrap samples of training
data and random feature selection in tree induction [40]. In comparison with
other machine learning approaches, Random Forests are characterized by an
outstanding speed (both in learning and execution phase) and generalization
ability [3]. Additionally, Random Forests is robust to the presence of a large

46 R. Krivák and D. Hoksza

number of irrelevant variables; it does not require their prior scaling [29] and can
cope with complex interaction structures as well as highly correlated variables [2].

Random Forests algorithm has 3 basic hyperparameters: number of trees,
maximum tree depth and a number of random features used to construct each
tree. To train the final model we used Random Forest with 100 trees of unlimited
depth, each tree built considering 6 features. Model is trained on a dataset of
ligandable and unligandable points that come from PDB structures with known
ligand positions. To train our final model which we distribute with our software
we used protein/ligand complexes from CHEN11 dataset (see Datasets section).

Clustering. (4) To prepare putative binding site predictions we first filter out
Connolly points that have ligandability score lower than give threshold (default
t = 0.35) and apply single linkage clustering procedure on the rest (default
cutoff distance d = 3 Å). Predicted pocket is then defined by the set of Connolly
points in a cluster. For each pocket we compute associated set of protein solvent
exposed atoms that form putative ligand binding surface patch. We include into
the output all pockets that are defined by 3 or more Connolly points. This is
rather low threshold, which results to many small predicted pockets that are
most probably not true binding sites. However, this was a deliberate choice
as thanks to an efficient ranking algorithm those small pockets will always be
ranked at the bottom of the list. Nevertheless, those small clusters might be still
interesting for visual inspection (possibly forming hotspots for protein-protein
interactions or peptide binding).

Ranking. (5) Each pocket is assigned a score calculated as the sum of squared
ligandability scores of all of the Connolly points Pi that define the pocket:

PScore =
∑

i

(
LS(Pi)

)2 (4)

Squaring of the ligandability scores puts more emphasis on the points with lig-
andability score closer to 1 (i.e. points that were classified as ligandable with
higher certainty). Score defined in such way will roughly order pockets by size
but will favor smaller pockets with strongly ligandable points before larger pock-
ets with weakly ligandable points. The very last step of the algorithm involves
reordering the putative pockets in the decreasing order of their PScores.

Ranking of the predicted pockets is important for prioritization of subsequent
efforts, e.g. docking or visual inspection. Pocket ranking is also pivotal in the
context of evaluation and comparison of different ligand-binding site prediction
methods, where only pockets with highest ranks are considered (usually Top-1
and Top-3). If it was not so, then the simplistic and obviously useless method
that returns many binding sites covering all of the protein surface (most of them
false positives) would achieve 100 % identification success rate.

P2RANK: Knowledge-Based Ligand Binding Site Prediction 47

Table 1. Datasets.

Dataset Proteins Ligands Avg. ligands Avg. lig. atoms Avg. prot. atoms

CHEN11 251 374 1.49 26.9 1836

JOINED 589 689 1.17 22.5 2400

HOLO4K 4543 11511 2.54 22.4 3888

2.2 Datasets

For the purpose of training an evaluation of our method we have used three
datasets:

– CHEN11 – dataset introduced in benchmarking study [6]. A non-redundant
dataset constructed in a way so that each SCOP family has one typical rep-
resentative.

– JOINED – consists of structures from several smaller datasets used in pre-
vious studies (48bound/unbound structures [15], ASTEX [11], 198 drug tar-
gets [43], 210 bound proteins [14]) joined into one larger dataset.

– HOLO4K – large dataset of protein-ligand complexes currently available in
PDB based on the list published in [35].

Details of the datasets are presented in Table 1.

3 Experimental Evaluation

3.1 Evaluation Measures

To evaluate predictive performance of our method and compare it with Fpocket
we have used methodology based on ligand-centric counting and DCA(distance
between the center of the pocket and any ligand atom) pocket identification cri-
terion with 4 Å threshold. Ligand-centric counting means, that for every relevant
ligand in the dataset, its binding site must be correctly predicted for a method
to achieve 100 % identification success rate. Connected to this is the use of Top-n
and Top-(n + 2) rank cutoffs where n is the number of ligands in a protein struc-
ture where evaluated ligand comes from (for proteins with only one ligand this
corresponds to usual Top-1 and Top-3 cutoffs). This evaluation methodology is
the same as used in benchmarking study [6].

Because of the great differences in evaluation protocols used to produce
results of previously published methods, we are of the opinion that the only way
how to accurately compare ligand binding site prediction methods is to preform
experiments and compare methods side by side using the same methodology (as
opposed to using results taken from literature even if experiments are performed
on the same dataset). Aforementioned differences in protocols include: differ-
ent identification criteria (DCA/DCC(center-center distance)/variously defined

48 R. Krivák and D. Hoksza

volume overlap criteria), different counting strategies (ligand-centric/protein-
centric), different valid ligand selection and different rank cutoffs considered
(Top-1/Top-3/Top-4/Top-n). Experimentally comparing ligand binding site pre-
diction methods is complicated and lengthy effort involving many technical hur-
dles. Nevertheless, instead of reporting here the results of our method side-
by-side with results taken from literature we compare it thoroughly on large
datasets with Fpocket and our previous ranking method (which improves results
of Fpocket by reordering its output). The significance of our results with respect
to other methods can be inferred by comparing our presented results with men-
tioned independent benchmarking study which includes Fpocket [6].

3.2 Results

We have evaluated our method on 3 different datasets and compared its pre-
dictive performance with a well-known Fpocket method. Results are summa-
rized in Table 2. Our method comes with a pre-trained classification model that
was trained on the CHEN11 dataset. On JOINED and HOLO4K datasets we
report results achieved using this default model and on CHEN11 dataset aver-
aged results from 10 runs of 5-fold cross-validation. Success rates (percentage of
correctly predicted binding sites) are reported for Top-n and Top-(n + 2) cutoffs
from the top of the ranked list.

It is apparent that P2RANK outperforms Fpockets on all dataset by a large
margin. The difference is most visible comparing results for Top-1 cutoffs. For
a difficult CHEN11 dataset a difference amounts to more than 10% in nominal
terms and almost 20 for other datasets. Detailed results on HOLO4K dataset
are compared in Fig. 2.

3.3 Optimization and Tradeoffs

Extensive optimization of practically all arbitrary parameters of the algorithm
(distance cutoffs, thresholds, ...) was performed to establish optimal default val-
ues. Parameters were optimized with respect to the success rate achieved on the
JOINED dataset. This was done to avoid bias towards CHEN11 dataset so the

Table 2. Results: the numbers represent identification success rate [%] measured by
DCAcriterion with 4 Å threshold considering only pockets ranked at the top of the list
(n is the number of ligands in considered structure). *average results of 10 independent
5-fold cross-validation runs.

Dataset Top-n Top-(n + 2)

Fpocket PRANK P2RANK Fpocket PRANK P2RANK

CHEN11 47.8 58.6* 59.2* 61.5 68.1* 65.9*

JOINED 51.1 64.7 71.6 68.9 76.1 78.7

HOLO4K 45.2 53.6 63.9 55.1 61.6 69.8

P2RANK: Knowledge-Based Ligand Binding Site Prediction 49

Fig. 2. Results on HOLO4K dataset for different DCAcutoff distances.

cross-validation results on the CHEN11 could be compared with benchmarking
study which used the same evaluation criteria [6]. We have also refrained from
tweaking the parameters with respect to HOLO4K dataset, so that the results
on this dataset present unbiased estimate of the algorithm’s true identification
success rate on unknown input.

Several parameters present a tradeoff between the time and space complexity
of the algorithm and its accuracy. Among those is the number of trees in Random
Forest model and tessellation level influencing density of the generated Connolly
points. Ultimately we have decided to use 100 trees (using 10× more trees leads
only to marginal improvements) and tessellation level of 2 (using higher levels
leads to some improvements but also unproportionally longer running times).

4 Conclusion

In the present paper we have proposed P2RANK, a novel method for ligand-
binding site prediction based on classification of points lying on a protein’s Con-
nolly surface. Each point represents potential location of a binding ligand atom
and is described by a feature vector generated from its spatial neighborhood.
Ligandability score is predicted for each point by a Random Forests classifier
and points with higher score are clustered forming predicted pockets. Pockets
are then ranked according to the cumulative ligandability score of their points.

To our knowledge this is a first time a machine learning approach was used in
such a manner for ligand binding site prediction. Methods that applied machine
learning in this context focused on classification of ligand-binding residues i.e.
were residue-centric. Unfortunately, most of those residue-centric studies were
focused on a successful classification of residues themselves and not on predicting
ligand binding sites as such.

50 R. Krivák and D. Hoksza

We showed on several datasets that P2RANK significantly improves iden-
tification success over the state of the art method Fpocket, while still being
reasonably fast to be used on large datasets. Like Fpocket, P2RANK is a stand-
alone program that is ready to be used as is, without depending on any external
data or programs or secondary inputs such as pre-computed sequence conser-
vation scores, forcefield calculations or threading template libraries. We believe
that it is a viable method with a potential to become useful part of structural
bioinformatics toolkit.

Acknowledgments. This work was supported by the Czech Science Foundation grant
14-29032P and by project SVV-2015-260222 and by the Charles University in Prague,
project GA UK No. 174615.

References

1. An, J., Totrov, M., Abagyan, R.: Pocketome via comprehensive identification and
classification of ligand binding envelopes. Mol. Cell. Proteomics 4(6), 752–761
(2005)

2. Boulesteix, A.L., Janitza, S., Kruppa, J., K-nig, I.R.: Overview of random for-
est methodology and practical guidance with emphasis on computational biology
and bioinformatics. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 2(6), 493–507
(2012)

3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
4. Brylinski, M., Skolnick, J.: A threading-based method (FINDSITE) for ligand-

binding site prediction and functional annotation. Proc. Natl. Acad. Sci. U.S.A
105(1), 129–134 (2008)

5. Capra, J.A., Laskowski, R.A., Thornton, J.M., Singh, M., Funkhouser, T.A.: Pre-
dicting protein ligand binding sites by combining evolutionary sequence conserva-
tion and 3d structure. PLoS Comput. Biol. 5(12), e1000585 (2009)

6. Chen, K., Mizianty, M., Gao, J., Kurgan, L.: A critical comparative assessment
of predictions of protein-binding sites for biologically relevant organic compounds.
Structure (London, England: 1993) 19(5), 613–621 (2011)

7. Chen, P., Huang, J.Z., Gao, X.: Ligandrfs: random forest ensemble to identify
ligand-binding residues from sequence information alone. BMC Bioinform. 15(15),
S4 (2014)

8. Desaphy, J., Azdimousa, K., Kellenberger, E., Rognan, D.: Comparison and drug-
gability prediction of protein-ligand binding sites from pharmacophore-annotated
cavity shapes. J. Chem. Inf. Model. 52(8), 2287–2299 (2012)

9. Eisenhaber, F., Lijnzaad, P., Argos, P., Sander, C., Scharf, M.: The double cubic
lattice method: efficient approaches to numerical integration of surface area and
volume and to dot surface contouring of molecular assemblies. J. Comput. Chem.
16(3), 273–284 (1995)

10. Ghersi, D., Sanchez, R.: EasyMIFS and SiteHound: a toolkit for the identifica-
tion of ligand-binding sites in protein structures. Bioinformatics (Oxford, England)
25(23), 3185–3186 (2009)

11. Hartshorn, M., Verdonk, M., Chessari, G., Brewerton, S., Mooij, W., Mortenson, P.,
Murray, C.: Diverse, high-quality test set for the validation of protein-ligand docking
performance. J. Med. Chem. 50(4), 726–741 (2007)

P2RANK: Knowledge-Based Ligand Binding Site Prediction 51

12. Hendlich, M., Rippmann, F., Barnickel, G.: LIGSITE: automatic and efficient
detection of potential small molecule-binding sites in proteins. J. Mol. Graph.
Model. 15(6), 359–363, 389 (1997)

13. Henrich, S., Outi, S., Huang, B., Rippmann, F., Cruciani, G., Wade, R.: Computa-
tional approaches to identifying and characterizing protein binding sites for ligand
design. J. Mol. Recogn. (JMR) 23(2), 209–219 (2010)

14. Huang, B.: MetaPocket: a meta approach to improve protein ligand binding site
prediction. Omics J. Integr. Biol. 13(4), 325–330 (2009)

15. Huang, B., Schroeder, M.: Ligsitecsc: predicting ligand binding sites using the
connolly surface and degree of conservation. BMC Struct. Biol. 6(1), 19 (2006).
http://www.biomedcentral.com/1472-6807/6/19

16. Kauffman, C., Karypis, G.: Librus: combined machine learning and homology
information for sequence-based ligand-binding residue prediction. Bioinformatics
(Oxford, England) 25(23), 3099–3107 (2009). http://bioinformatics.oxfordjourn-
als.org/cgi/pmidlookup?view=long&pmid=19786483

17. Khazanov, N.A., Carlson, H.A.: Exploring the composition of protein-ligand bind-
ing sites on a large scale. PLoS Comput. Biol. 9(11), e1003321 (2013)

18. Konc, J., Janei, D.: Binding site comparison for function prediction and pharma-
ceutical discovery. Curr. Opin. Struct. Biol. 25, 34–39 (2014)

19. Krivak, R., Hoksza, D.: Improving protein-ligand binding site prediction accuracy
by classification of inner pocket points using local features. J. Cheminformatics
7(1), 12 (2015). http://www.jcheminf.com/content/7/1/12

20. Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic charac-
ter of a protein. J. Mol. Biol. 157(1), 105–132 (1982). http://www.sciencedirect.
com/science/article/pii/0022283682905150

21. Labute, P., Santavy, M.: Locating binding sites in protein structures (2001). http://
www.chemcomp.com/journal/sitefind.htm. Accessed 16 April 2015

22. Laurie, A., Jackson, R.: Q-SiteFinder: an energy-based method for the prediction
of protein-ligand binding sites. Bioinformatics (Oxford, England) 21(9), 1908–1916
(2005)

23. Laurie, A., Jackson, R.: Methods for the prediction of protein-ligand binding sites
for structure-based drug design and virtual ligand screening. Curr. Protein Pept.
Sci. 7(5), 395–406 (2006)

24. Le Guilloux, V., Schmidtke, P., Tuffery, P.: Fpocket: an open source platform for
ligand pocket detection. BMC Bioinform. 10(1), 168 (2009). http://www.biomed
central.com/1471-2105/10/168

25. Leis, S., Schneider, S., Zacharias, M.: In silico prediction of binding sites on pro-
teins. Curr. Med. Chem. 17(15), 1550–1562 (2010)

26. Levitt, D.G., Banaszak, L.J.: Pocket: a computer graphies method for identify-
ing and displaying protein cavities and their surrounding amino acids. J. Mol.
Graph. 10(4), 229–234 (1992). http://www.sciencedirect.com/science/article/
pii/026378559280074N

27. Morita, M., Nakamura, S., Shimizu, K.: Highly accurate method for ligand-binding
site prediction in unbound state (apo) protein structures. Proteins 73(2), 468–479
(2008)

28. Nair, R., Liu, J., Soong, T.T., Acton, T., Everett, J., Kouranov, A., Fiser, A.,
Godzik, A., Jaroszewski, L., Orengo, C., et al.: Structural genomics is the largest
contributor of novel structural leverage. J. Struct. Funct. Genom. 10(2), 181–191
(2009)

29. Nayal, M., Honig, B.: On the nature of cavities on protein surfaces: application to
the identification of drug-binding sites. Proteins 63(4), 892–906 (2006)

http://www.biomedcentral.com/1472-6807/6/19
http://bioinformatics.oxfordjourn-als.org/cgi/pmidlookup?view=long&pmid=19786483
http://bioinformatics.oxfordjourn-als.org/cgi/pmidlookup?view=long&pmid=19786483
http://www.jcheminf.com/content/7/1/12
http://www.sciencedirect.com/science/article/pii/0022283682905150
http://www.sciencedirect.com/science/article/pii/0022283682905150
http://www.chemcomp.com/journal/sitefind.htm
http://www.chemcomp.com/journal/sitefind.htm
http://www.biomedcentral.com/1471-2105/10/168
http://www.biomedcentral.com/1471-2105/10/168
http://www.sciencedirect.com/science/article/pii/026378559280074N
http://www.sciencedirect.com/science/article/pii/026378559280074N

52 R. Krivák and D. Hoksza

30. Pérot, S., Sperandio, O., Miteva, M., Camproux, A., Villoutreix, B.: Druggable
pockets and binding site centric chemical space: a paradigm shift in drug discovery.
Drug Discovery Today 15(15–16), 656–667 (2010)

31. Pintar, A., Carugo, O., Pongor, S.: Cx, an algorithm that identifies protruding
atoms in proteins. Bioinformatics 18(7), 980–984 (2002)

32. Qiu, Z., Qin, C., Jiu, M., Wang, X.: A simple iterative method to optimize protein-
ligand-binding residue prediction. J. Theor. Biol. 317, 219–223 (2013)

33. Qiu, Z., Wang, X.: Improved prediction of protein ligand-binding sites using ran-
dom forests. Protein Pept. Lett. 18(12), 1212–1218 (2011). http://www.ingentacon
nect.com/content/ben/ppl/2011/00000018/00000012/art00005

34. Rognan, D.: Docking Methods for Virtual Screening: Principles and Recent
Advances, pp. 153–176. Wiley, Weinheim (2011). http://dx.doi.org/10.1002/97835
27633326.ch6

35. Schmidtke, P., Souaille, C., Estienne, F., Baurin, N., Kroemer, R.: Large-scale
comparison of four binding site detection algorithms. J. Chem. Inf. Model. 50(12),
2191–2200 (2010)

36. Schneider, S., Zacharias, M.: Combining geometric pocket detection and desolva-
tion properties to detect putative ligand binding sites on proteins. J. Struct. Biol.
180(3), 546–550 (2012)

37. Schomburg, K., Bietz, S., Briem, H., Henzler, A., Urbaczek, S., Rarey, M.: Facing
the challenges of structure-based target prediction by inverse virtual screening. J.
Chem. Inf. Model. 54(6), 1676–1686 (2014)

38. Skolnick, J., Brylinski, M.: FINDSITE: a combined evolution/structure-based app-
roach to protein function prediction. Briefings Bioinform. 10(4), 378–391 (2009)

39. Steinbeck, C., Han, Y., Kuhn, S., Horlacher, O., Luttmann, E., Willighagen, E.:
The chemistry development kit (CDK): an open-source java library for chemo- and
bioinformatics. J. Chem. Inf. Comput. Sci. 43(2), 493–500 (2003). pMID: 12653513

40. Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., Feuston, B.P.:
Random forest: a classification and regression tool for compound classification and
qsar modeling. J. chem. Inf. Comput. Sci. 43(6), 1947–1958 (2003)

41. Weisel, M., Proschak, E., Schneider, G.: Pocketpicker: analysis of ligand
binding-sites with shape descriptors. Chem. Central J. 1(1), 7 (2007).
http://journal.chemistrycentral.com/content/1/1/7

42. Xie, L., Xie, L., Bourne, P.E.: Structure-based systems biology for analyzing off-
target binding. Curr. Opin. Struct. Biol. 21(2), 189–199 (2011)

43. Zhang, Z., Li, Y., Lin, B., Schroeder, M., Huang, B.: Identification of cavities
on protein surface using multiple computational approaches for drug binding site
prediction. Bioinformatics (Oxford, England) 27(15), 2083–2088 (2011)

44. Zheng, X., Gan, L., Wang, E., Wang, J.: Pocket-based drug design: exploring pocket
space. AAPS J. 15, 228–241 (2012)

http://www.ingentaconnect.com/content/ben/ppl/2011/00000018/00000012/art00005
http://www.ingentaconnect.com/content/ben/ppl/2011/00000018/00000012/art00005
http://dx.doi.org/10.1002/9783527633326.ch6
http://dx.doi.org/10.1002/9783527633326.ch6
http://journal.chemistrycentral.com/content/1/1/7

StreaM - A Stream-Based Algorithm
for Counting Motifs in Dynamic Graphs

Benjamin Schiller1(B), Sven Jager2, Kay Hamacher2,3, and Thorsten Strufe1

1 Privacy and Data Security, Department of Computer Science,
TU Dresden, Dresden, Germany

{benjamin.schiller1,thorsten.strufe}@tu-dresden.de
2 Computational Biology and Simulation, Department of Biology,

TU Darmstadt, Darmstadt, Germany
{jager,hamacher}@bio.tu-darmstadt.de

3 Department of Physics, Department of Computer Science,
TU Darmstadt, Darmstadt, Germany

Abstract. Determining the occurrence of motifs yields profound insight
for many biological systems, like metabolic, protein-protein interaction,
and protein structure networks. Meaningful spatial protein-structure
motifs include enzyme active sites and ligand-binding sites which are
essential for function, shape, and performance of an enzyme. Analyzing
their dynamics over time leads to a better understanding of underlying
properties and processes. In this work, we present StreaM, a stream-based
algorithm for counting undirected 4-vertex motifs in dynamic graphs. We
evaluate StreaM against the four predominant approaches from the cur-
rent state of the art on generated and real-world datasets, a simulation of
a highly dynamic enzyme. For this case, we show that StreaM is capable
to capture essential molecular protein dynamics and thereby provides a
powerful method for evaluating large molecular dynamics trajectories.
Compared to related work, our approach achieves speedups of up to
2, 300 times on real-world datasets.

1 Introduction

Motifs, the basic building blocks of any complex network, have been widely stud-
ied in the past [31]. They are often used in the analysis of biological networks,
most notably protein-protein interactions [1,8,9,27,36], DNA [18,40], cellular net-
works [21], and protein structure networks [22]. Because of their general applica-
bility, they have also been studied and used in other fields, e.g., to understand
patterns in real and generated languages [5], to analyze and improve Peer-to-Peer
networks [15,26], and for the generation of Internet PoP maps [12,13]. Recently,
temporal motifs that describe how interactions between components change over
time have been investigated [17,23] as well as degree-based signatures [30].

The problem of counting motifs in a static graph has been widely stud-
ied. The first approaches like ProMotif [16], mfinder [20], MAVisto [39], and
NeMoFinder [7] provided tools to count motifs of small sizes but performed

c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): AlCoB 2015, LNBI 9199, pp. 53–67, 2015.
DOI: 10.1007/978-3-319-21233-3 5

54 B. Schiller et al.

rather poorly, especially on larger graphs. This changed with the development
of Fanmod [43], a very efficient algorithm that all recent approaches have been
compared to. New algorithms like Kavosh [19] improve the efficiency of enu-
merating all subgraphs. G-Tries [35] is based on the idea of creating dedicated
representations of sub graphs and ACC [28] uses combinatorial techniques to
speed-up the computation. Furthermore, parallelized approaches [37,44] have
been developed as well as approximations [14,42].

While the analysis of static networks is important, time-dependent or
dynamic networks have recently gained a lot of attention. Analyzing dynam-
ics of biological processes and systems is important for synthetic as well as for
computational biology [2]. For example, the analysis of enzyme dynamics helps
to understand how it works, and thus, reveals opportunities for improving its
functionality. Analyzing the dynamics of amino acids to identify spatial arrange-
ments that correspond to active sites or other functionally relevant features is
important for protein classification and structure prediction [6,22]. Due to spatial
amino acid arrangements, some motifs occur only in stable structure elements
like α-helices and β-sheets and some represent general interactions. Moreover,
counting such motifs in dynamic graphs or motifs in any kind of biological net-
work seems to be a promising approach to gain insight into various biological
systems [3,33,41].

A common way to analyze the protein dynamics is the solution of Newtons
equation of motion, i.e., molecular dynamics (MD). This method is used to
quantify motions, mechanics, and spatial motifs within a single protein-structure
as well as different molecular interactions. The MD approach approximates the
time dependent behavior of a protein in its natural environment and results in
a trajectory of atoms. One efficient way to analyze this trajectory is the use of
graph-theoretic measures. Moreover, using dynamic graph measures like motif
frequencies opens new opportunities for MD analysis. To this end, the trajectory
has to be transformed into an amino acid contact map defined by distance cutoffs.
Afterwards one can apply methods from graph theory to analyze the networks
of transient contacts and identify flexible or rigid regions as well as important
motifs. So far, only rough metrics like root mean square deviation (RMSD)
of heavy atoms are utilized to capture protein dynamics. While the maximum
number of contacts of an amino acid is approximately 6 [32], functional motifs
are commonly considered on smaller sizes. For simplicity, we focus on 4-vertex
motifs in this work.

The dynamics of time-dependent graphs are commonly modeled as a stream
of updates. Each update describes a change to the graph as an atomic opera-
tion [34]. Stream-based algorithms use these updates to continuously update
graph-theoretic properties of interest. While such an algorithm for counting
triangles in dynamic, undirected graphs has been developed [11], there is no
approach for counting undirected 4-vertex motifs in dynamic graphs. Using
snapshot-based algorithms like Fanmod, Kavosh, G-Tries, or ACC is expensive,
especially when performing an analysis with a high granularity. In this work, we
close this gap by developing a stream-based algorithm for updating the motif
count in dynamic graphs.

StreaM - A Stream-Based Algorithm 55

The remainder of this paper is structured as follows: In Sect. 2, we introduce
our terminology and define the problem of counting motifs in a dynamic graph.
We introduce StreaM, a stream-based algorithm for counting undirected 4-vertex
motifs in dynamic graphs, in Sect. 3. We present an evaluation of our algorithm
against existing approaches in Sect. 4 as well as an application scenario were we
show a completely new approach of using the analytical power of StreaM to cap-
ture essential protein dynamics in a large MD trajectory. Finally, we summarize
and conclude our work in Sect. 5.

2 Background and Terminology

In this Section, we introduce our terminology for graphs, dynamic graphs, and
motifs. Then, we define the problem of counting motifs in dynamic graphs and
discuss the general proceedings of analyzing dynamic graphs.

Graphs. An undirected, unweighted graph G = (V,E) is described by a vertex
set V = {v1, v2, . . . } and an edge set E ⊆ {{v, w} : v, w ∈ V ∧v �= w}. We define
the neighborhood of v as n(v) := {w : {v, w} ∈ E} and its degree as d(v) :=
|n(v)|. Then, the maximum degree of a graph is defined by dmax := max

v∈V
d(v).

Dynamic Graphs. As a dynamic graph, we consider a graph whose vertex
and edge sets change over time. Each change of such a dynamic graph is then
represented by an update of V or E that adds or removes an element. Hence,
there are four different updates to a dynamic graph:

1. adding a new vertex (add(v), v /∈ V),
2. adding a new edge (add(e), e /∈ E),
3. removing an existing vertex (rm(v), v ∈ V), and
4. removing an existing edge (rm(e), e ∈ E).

Then, a dynamic graph is represented by its initial state G0 = (V0, E0) and an
ordered list or stream of updates u1, u2, u3, Their consecutive application
transforms the graph over time:

G0
u1−→ G1

u2−→ G2
u3−→ G3 . . .

Each state Gi can be seen as a separate snapshot at the respective point in time.
We refer to a consecutive list of updates as a batch Bi,j := {ui+1, . . . , uj} whose
application transforms the dynamic graph Gi into Gj , i.e.,

Gi
Bi,j−−→ Gj

Motifs. In this work, we consider undirected 4-vertex motifs (cf. Fig. 1). They
represent the 6 classes of isomorph, connected subgraphs of size 4. We denote
them as M = {m1,m2, . . . , m6}.

56 B. Schiller et al.

Fig. 1. The 6 undirected 4-vertex motifs M = {m1,m2,m3,m4,m5,m6}

Problem Definition. Counting the motifs in a given graph G means to deter-
mine the number of occurrences F(mi) of each motif mi ∈ M. Assume a dynamic
graph described by its initial state G0 and a list of updates U = (u1, u2, . . . , u|U |).
Further assume a subset S = (s0, s1, . . . , st), 0 ≤ s0, si < si+1, st ≤ |U | of its
states which determines the granularity of the analysis. Then, the problem is to
generate the motif count Fs for each state s ∈ S of interest. Hence, the result of
counting motifs in a dynamic graph is a list of motif frequencies Fs0 ,Fs1 , . . . ,Fst

which describes how they change over time.

Analysis of Dynamic Graphs. The properties of dynamic graphs can be
analyzed at different granularities. At the highest granularity, properties like
degree distribution, shortest-path lengths, or motif count are computed for each
change, i.e., each possible state G0, G1, G2, . . . is analyzed. Lowering this gran-
ularity means to only consider a subset of these states, e.g., every 10th state
G0, G10, G20, . . . or an arbitrary subset G0, Gs1 , Gs2 , . . . , si < si+1.

Fig. 2. F(m1) in a random, dynamic graph analyzed with different granularities

As an example, take a random, dynamic graph G0, . . . , G200 with 100 vertices
and 500 edges where 20 random edge additions are always followed by 20 random
edge removals. Figure 2 shows F(m1), the number of occurrences of m1 over time
which fluctuates between 34,000 and 39,000. Performing an analysis at highest
granularity shows the impact of each update, i.e., 201 data points. In case the
granularity is lowered (only every 5th, 15th, or 30th state is considered), local
maxima are missed and the appearance of the development changes. Therefore, it
is desirable to determine the properties of a dynamic graph at a high granularity.

StreaM - A Stream-Based Algorithm 57

Snapshot-based algorithms are executed separately for each snapshot Gs∈S

to obtain Fs. Hence, the total runtime grows roughly linearly with the number
of analyzed snaphots. In contrast, using stream-based analysis, the granularity
does not influence the runtime. After computing F0 for the initial graph G0 using
any snapshot-based algorithm, each count Fsi+1 is computed by taking Gsi

, Fsi
,

and Bsi,si+1 as input. Since each update is applied separately, an increase in
granularity only requires to output the results with a higher frequency. Therefore,
stream-based analysis should outperform snapshot-based approaches in case a
high granularity is desired and the cost of applying the updates between two
states is less than a complete re-evaluation.

3 Counting Motifs in Dynamic Graphs

In this Secion, we describe basic insights regarding motifs in dynamic graphs.
Then, we describe StreaM, a new stream-based algorithm for counting undirected
4-vertex motifs in dynamic graphs, and discuss its runtime complexity.

Basic Insights. Whenever an edge e = {a, b} is added to a graph Gt, i.e.,
update ut+1 = add(e), two things happen: existing motifs are changed and new
motifs are formed. First, consider an existing motif mi that consists of a, b, and
2 other vertices. The addition of e causes the motif to change into a different
motif mj which contains one more edge. We denote this operation as (i → j).
Its execution decreases the occurrences of mi and increases the occurrences of
mj , i.e.,

(i → j) : Ft+1(mi) := Ft(mi) − 1, Ft+1(mj) := Ft(mj) + 1

Second, consider vertices c and d that do not form a connected component with
a and b without e’s existence. In case e connects the four vertices, a new motif
mk is formed. We denote this operation as +(k). Its execution increases the
occurrences of mk, i.e.,

+(k) : Ft+1(mk) := Ft(mk) + 1

In case an existing edge is removed, i.e., ut+1 = rm(e), the inverse happens:
some motifs are changed and others are dissolved. We denote these operation as
(i → j)−1 and +(i)−1.

(i → j)−1 : Ft+1(mi) := Ft(mi) + 1, Ft+1(mj) := Ft(mj) − 1
+(k)−1 : Ft+1(mk) := Ft(mk) − 1

Adding or removing a vertex with degree 0 has no effect on the motif count.
Each motif mi ∈ M contains at least 3 and at most 6 edges. The addition

and removal of edges leads to transitions between them (cf. Fig. 3). For example,
adding the missing edge to m5 changes it to m6 ((5 → 6)) while removing

58 B. Schiller et al.

Fig. 3. Transitions between the motifs mi ∈ M when adding and removing edges

any edge from m6 changes it to m5 ((5 → 6)−1). Adding edge {b, d} to the
disconnected set of nodes x creates a new motif m1 (+(1)) which is dissolved by
the removal of any of its 3 edges (+(1)−1).

The main idea behind our new stream-based algorithm is to find and apply
these operations to correctly update F for each edge addition and removal.

StreaM. Assume an update (addition or removal) of edge e = {a, b}. To cor-
rectly adapt F , we need to consider all 2-vertex sets {c, d} ∈ CD(a, b) such that
a, b, c, and d form a motif if e exists. Either both vertices are connected to a or
b directly or d is a neighbor of c which is connected to a or b. With

N(a, b) := (n(a) ∪ n(b))\{a, b}, (1)

we can define CD(a, b) as follows:

CD(a, b) = {{c, d} : (c, d ∈ N(a, b), c �= d) ∨ (c ∈ N(a, b), d ∈ n(c)\{a, b})}
Besides {a, b}, 5 edges are possible between a, b, c, and d. We denote their

existence as a quintuple S(a, b, c, d) = (ac, ad, bc, bd, cd), called their signature.
At least two distinct edges must exist, the first connecting c and the second
connecting d. Therefore, there are 25 − 2 · 22 = 24 possible signatures.

Table 1. Operation mapping O from signatures S(a, b, c, d) to operations

StreaM - A Stream-Based Algorithm 59

Each signature corresponds to a specific operation that must be executed to
update F . We define a function O that maps a signature S on the correspond-
ing operation. The complete assignment of signatures to operations is given in
Table 1. In case the edge {a, b} is removed instead of added, the inverse opera-
tion must be executed. As an example consider the signature (10010) which is
isomorph to (01100). The addition of {a, b} creates the motif m1. Its removal
dissolves the motif as a, b, c, and d are no longer connected.

Based on S and O, we can now describe the stream-based algorithm StreaM
for updating the motif frequency in an undirected graph (cf. Algorithm 1). For
an edge {a, b} that is added or removed (described by type), we first determine
the set CD(a, b) of all pairs of vertices connected to a and b. For each pair
{c, d} ∈ CD(a, b), the required operation o = O(S(a, b, c, d)) is determined from
the signature of a, b, c, and d. If {a, b} is added, the operation o is executed.
Otherwise, the inverse operation o−1 is executed.

Data: G, {a, b}, type ∈ {add, rm}
begin

for {c, d} ∈ CD(a, b) do
o = O(S(a, b, c, d)) ; /* operation */

if type = add then
execute o ; /* edge is added */

else if type = rm then
execute o−1 ; /* edge is removed */

end

end
Algorithm 1. StreaM for maintaining F in dynamic graphs

Complexity Discussion. StreaM iterates over the |CD(a, b)| ≤ 5 ·(dmax)2 ele-
ments of CD(a, b). For each element {c, d}, it computes the signature which can
be done in 5 · O(1) time, assuming hash-based datastructures are used for adja-
cency lists. In addition, F is incremented or decremented which has time com-
plexity of O(1) as well. Therefore, processing a single edge addition or removal
with StreaM has time complexity of

O((dmax)2) · (O(1) + O(1)) = O((dmax)2)

4 Evaluation

In this Section, we evaluate the runtime performance StreaM. First, we briefly
discuss our evaluation setup. Then, we evaluate the runtime dependence of the
algorithm to batch size as well as vertex degree. We compare the runtime of our
algorithms to related work in scenarios where the analysis is performed at high
granularity and on dynamic graphs obtained from MD simulations consisting
of 20, 000 snapshots. Finally, we show that StreaM is a powerful and unique
approach to capture essential molecular dynamics and gain insights on secondary
structure focused amino acid interactions.

60 B. Schiller et al.

Evaluation Setup. All measurements are executed on an HP ProLiant DL585
G7 server with 64 AMD OpteronTM 6282SE processors with 2.6 GHz each run-
ning a Debian operating system. We implemented StreaM in the Java-based
framework DNA (Dynamic Network Analyzer) [38] for the analysis of dynamic
graphs. The framework including our implementation of StreaM is available
on the project’s GitHub page1. We compare our approach with four popular
snapshot-based approaches for counting motifs: Fanmod [43], Kavosh [19], G-
Tries [35], and ACC [28]. For all approaches, we use the original programs pro-
vided by their authors2,3,4,5. The cmd-line version of Fanmod as well as G-Tries
and Kavosh are implemented in C++. We compiled them from the original
sources using GCC version 4.7.2. Like our approach, ACC is implemented in
Java and executed using a 64-bit JVM with version 1.7.0 25.

Complexity of StreaM. Now, we validate the runtime complexity of StreaM
discussed in Sect. 3. We generated undirected random graphs (R) as well as
power-law graphs (PL) using the Barabási-Albert model with 500 vertices and
5,000, 10,000, and 15,000 edges. First, we generated 200 batches for each graph
with a growing number of random edge exchanges. A random edge exchange
is performed by selecting two random edges e1 = (a, b) and e2 = (c, d) and
exchanging their end points, i.e., transforming the edges to e′

1 = (a, d) and
e′
2 = (c, b). This implies 4 updates which are added to the respective batch:

rm(e1), rm(e2), add(e′
1), and add(e′

2). The ith batch contains i edge exchanges,
denoted as Ex(i). Second, we created 200 batches for each graph, each containing
250 random edge addition, denoted as E+(250). The application of each batch
leads to an increase of the average and maximum degree by 1, hence 200 over
all. For all graphs and batch types, we recorded the average per-batch runtime
of 20 repetitions while performing an analysis using StreaM. In the first case,
we expect the runtime to grow linearly with the number of updates |B| because
Ex(i) does not change dmax significantly during the application of each batch B.
Furthermore, we expect the runtime of StreaM to grow quadratically with the
batches E+(250)) since the maximum degree is increased by 1 with each batch.

Figure 4a shows the per-batch runtimes for the analysis of random and power-
law graphs for Ex(i). For all graphs, the runtime grows linearly with each batch.
The per-batch runtimes of applying E+(250) to both graph types is shown in
Fig. 4b. For all datasets, the runtime appears to grow quadratically with average
and maximum degree which are increased by approximately 1 with each batch.
As expected, the runtime of StreaM increases linearly with the batch size (cf.
Figs. 4a. Since the application of Ex(i) does not alter the degree distribution,
average and maximum degree stay constant which results in this linear increase
of the runtime. Furthermore, the runtime of StreaM, in dependence of the

1 https://github.com/BenjaminSchiller/DNA.
2 http://theinf1.informatik.uni-jena.de/∼wernicke/motifs/.
3 http://lbb.ut.ac.ir/Download/LBBsoft/Kavosh/.
4 http://www.dcc.fc.up.pt/gtries/.
5 http://www.ft.unicamp.br/docentes/meira/accmotifs/.

https://github.com/BenjaminSchiller/DNA
http://theinf1.informatik.uni-jena.de/~wernicke/motifs/
http://lbb.ut.ac.ir/Download/LBBsoft/Kavosh/
http://www.dcc.fc.up.pt/gtries/
http://www.ft.unicamp.br/docentes/meira/accmotifs/

StreaM - A Stream-Based Algorithm 61

Fig. 4. Per-batch runtime for random (R) and power-law (PL) graphs of size |V | = 500
with different edge count |E| depending on batch type

maximum vertex degree dmax, is bounded from above by a quadratic function
as its algorithmic complexity of O((dmax)2) implies. These results validate the
complexity discussion. The runtime of StreaM grows linearly with the batch size
and depends quadratically on the maximum degree. Therefore, StreaM can be
executed without performance penalties for arbitrary granularity.

Analysis with High Granularity. Next, we show that StreaM outperforms
snapshot-based approaches for analyses with high granularities. As initial graphs,
we consider 12 different datasets that have already been used in the evaluation
of ACC [28] and other snapshot-based approaches. The datasets originate from a
wide range of areas including biological, social, and traffic networks (cf. Table 2).
Their size ranges from 418 to 12,905 vertices with an average degree between
1.85 and 22.01. As dynamics, we created 1,000 batches each consisting of a single
random edge exchange Ex(1), i.e., |B| = 4. We measure the total time it takes
each approach to determine the motif count of the resulting 1,001 states. In
some cases, the execution of the snapshot-based approach did not finish after a
whole week. We terminated these processes and extrapolated the runtime for the
analysis of the 1,001 snapshots from the number of completed ones. The values
for G-Tries on foldoc are excluded since it did not even process the first snapshot

Table 2. Properties of datasets used for evaluation with high granularity

|V | |E| davg |V | |E| davg

ecoli 418 519 2.48 odlis 2,900 16,377 11.29

yeast 688 1,078 3.13 epa 4,271 8,909 4.17

roget 1,010 3,648 7.22 pairsfsg 5,018 55,227 22.01

airport 1,574 17,215 21.87 california 6,175 15,969 5.17

csphd 1,882 1,740 1.85 wordsenglish 7,381 44,207 11.98

facebook 1,899 13,838 14.57 foldoc 12,905 83,101 12.88

62 B. Schiller et al.

during this time. Especially for larger graphs, the repeated re-computation of the
snapshot-based algorithms should perform much slower than the stream-based
application of small batches. Therefore, we expect StreaM to outperform the
snapshot-based approaches for all graphs.

Fig. 5. Total runtime of analysis with high granularity (1,000 times Ex(1))

Figure 5 depicts the resulting runtimes for each dynamic graph. For most
datasets and approaches, StreaM performs between 10 and 1,000 times faster
than the other approaches. The smallest speedup we observed was for the word-
senglish dataset, where StreaM is still 4.6 times faster than ACC, the best com-
petitor. These results comply with our expectations. Since StreaM only computes
the motif count of the complete graph once and then only updates the results for
4 updates between two states it performs much faster than all snapshot-based
approaches. Therefore, it becomes clear that StreaM outperforms snapshot-based
algorithms in case an analysis with high granularity is desired.

MD-simulations Case. Motifs are essential for the structural classification of
proteins which can be observed from amino acid interactions during MD simula-
tions. In proteins, some motifs, like helices, occur only within structurally stable
elements while others occur more frequently. Counting such structural motifs
during an MD simulation of a dynamic enzyme is an interesting approach and
allows the evaluation of essential molecular dynamics. Therefore, we analyze an
MD simulation using StreaM as well as snapshot-based algorithms to investigate
their performance on such a realistic dynamic graph. In addition, we investigate
the general applicability of StreaM to gain new insights of capturing molecular
dynamics from amino acid interaction motifs.

We created a graph time series from a molecular dynamics simulation of an
enzyme, the para Nitro Butyrate Esterase-13 (pNB-Est13), a large carboxilic
esterase. It is used as an additive of cleansing agents and holds a big potential

StreaM - A Stream-Based Algorithm 63

towards plastic degradation [29]. PNB-Est13 monomer consists of 491 residues
with molecular weight of 35 to 40 kDa [29]. As a protein structure we used an
homology model of pNB-Est13. We used 1C7J chain A, 1QE3 chain B, and 1C7I
chain A as templates for the homology model. MD simulations were performed
with the Yasara software suite [24] using the AMBER03 force-field [10] with
constant temperature (313K), pressure (1 bar), and pH (7.4). At the beginning
of the simulation, the box is filled with Tip3 water and NaCl counter ions
(0.9 %). Afterwards, the protein was energy-minimized utilizing the AMBER03
force field until convergence was reached (0.01 kJ/mol per atom during 200 steps)
[25]. We equilibrated the solvent for 500 ps. Then we simulated for 50 ns and took
snapshots every 2.5 ps. From these 20,000 snapshots, we generated a dynamic
graph with 491 vertices, each modeling an amino acid Cα. An undirected edge
is created between two vertices in case their Euclidean distance is shorter than
d = 7Å. In addition, we generated dynamic graphs using d ∈ [8, 12]Å to create
denser graphs. All 6 dynamic graphs consist of 491 vertices connected by 1,904
to 7,398 edges on average, depending on the distance threshold d (cf. Table 3).

Table 3. Properties of the dynamic graphs generated during MD simulations

7Å 8Å 9Å 10Å 11Å 12Å

|V | 491 491 491 491 491 491

|E| 1,904 2,413 3,248 4,370 5,877 7,398

davg 7.76 9.83 13.23 17.8 23.94 30.13

|B| 141.16 176.54 278.92 366.02 422.32 487.70
|B|
|E| 7.42 7.32 8.58 8.38 7.18 6.60

The average batch size ranges between 141.16 and 487.7 implying that 6.6 %
to 8.58 % of all connections are changed between two snapshots. To compare
the performance of StreaM to existing approaches, we analyzed these dynamic
graphs consisting of an initial graph and 19,999 batches using our stream-based
implementation and measured the total runtime of the execution. For exist-
ing approaches, we generated the 20,000 separate snapshots that represent the
dynamic graph and analyzed each one separately. We added the execution times
of all steps to obtain a single runtime.

The averages of 20 repetitions for all approaches and distance thresholds d
are shown in Fig. 6. For the standard distance threshold of 7Å, our stream-based
approach takes 173 sec while Kavosh, the fastest competitor, takes 2,365 sec. The
analysis using Fanmod and ACC takes around 10,000 sec while G-Tries runs for
400,000 sec. Hence, the speedup of StreaM lies between 13.7 and 2,300 times
when compared to snapshot-based approaches for the standard case of d = 7Å
[4]. When increasing the distance threshold d, the runtimes of StreaM, Kavosh,
and Fanmod increase in a similar way. Interestingly, the runtimes of ACC and
G-Tries only increase slightly, indicating that they mainly depend on the number
of vertices in a graph and not the number of edges.

64 B. Schiller et al.

Fig. 6. Total runtime of MD graph analysis depending on distance threshold

As expected and indicated by our complexity discussion and evaluation
before, the runtime of StreaM increases as the batch size and maximum ver-
tex degree grows. Since the runtime of ACC does not increase as drastically
with the distance threshold, the runtimes of both approaches are very close for
the highest investigated threshold of 12Å. Notably, a distance threshold of 12Å
is not realistic for amino acid contact prediction.

This performance evaluation shows that StreaM outperforms snapshot-based
algorithms when analyzing realistic dynamic graphs, in our case from MD simula-
tions. Except for unrealistically dense graphs, obtained with a distance threshold
of 12Å, StreaM performs considerably faster than all other approaches. Hence,
it allows a much faster analysis of dynamic biological networks such as the pro-
tein graphs obtained from MD simulations. For structural motifs during protein
dynamics, a high granularity is very important to count transient interactions.
Especially long term MD trajectories require fast and efficient algorithms to
analyze transient amino acid interactions. To avoid unstable or unrealistic long
term simulations, in case of protein unfolding or using incorrect force field para-
meter sets, StreaM indeed is powerful enough to monitor MD stability online in
parallel to the execution of the MD simulation.

Interpretation of Analysis Results. For the quantification of pNB-Est13 ’s
dynamic behavior we now investigate two meaningful motifs: The structure of
m4 is typical for stabilizing effects between structure elements or loops. It is
capable to describe 3 amino acids which are covalently connected within the
backbone and interact with a flexible loop due to electrostatic or hydrophobic
interactions. In contrast, m3, a circle/loop containing 4 edges, can only be found
in robust structure elements like α-helices and β-sheet. In case of our MD sim-
ulation, we observe that the occurrences of m4 decreases over time (cf. Fig. 7b).
This means that the protein structure enlarges during simulation. In relation to

StreaM - A Stream-Based Algorithm 65

Fig. 7. Analysis results: motif counts for MD simulations over time

the RMSD, we observe a Pearson correlation of -0.67 (p-value < 2.2 ·10−16, 95 %
conf. interval, -0.673 to -0.657). Similar for m4 we observe a Pearson correlation
of RMSD to m3 with a value of -0.190 (p-value < 2.2 · 10−16, 95 % conf. inter-
val: -0.204 to -0.177). Clearly, the number of m3 motifs remain nearly constant
over time as shown in Fig. 7a. This behavior agrees with the general assumption
that m3 can only be found in stable structure elements, such as α-helices, which
is necessary for a constant RMSD. In case of MD graphs, a high granularity
is indispensable to capture all transient amino acid interactions. In contrast,
snapshot-based approaches do not allow for an analysis at such high granular-
ity and therefore cannot generate similar insights. From these results, we can
conclude that StreaM is capable of capturing essential molecular dynamics at
high granularity - in particular important structural features based on secondary
structure focused amino acid interactions. To this end, besides its outstanding
performance, we showed that StreaM is a powerful new algorithm for the analysis
of large MD trajectories.

5 Summary, Conclusion, and Future Work

As dynamic graphs have gained much attention in the recent past, not many
approaches exist to efficiently analyze the time-dependent properties of such net-
works. In this work, we developed StreaM, a stream-based algorithm for counting
undirected 4-vertex motifs in dynamic graphs. We evaluated the algorithm on
generated datasets as well as realistic graphs obtained from MD simulations of
pNB-Est13. We showed that using motifs for protein dynamic analysis helps to
distinguish between structure elements and general interactions and might be a
valuable, additional analysis procedure to assess local stability of MD trajectories
whereas RMSD measures global stability. Our approach outperforms state-of-
the-art by up to 2, 300 times on real-world datasets. Thereby, it enables the
fine-grained analysis required to understand highly dynamic graphs over time.

Dynamic aspects are typically done on small motifs because the maximal
number of contacts of an amino acid is approximately six. In the future, we
will extend our work by generalizing the algorithm for arbitrary motif sizes

66 B. Schiller et al.

and developing rule sets for other motif types. Moreover we will dynamically
annotate individual amino acids and the respective motifs participate in, during
a simulation. This will open new possibilities for bimolecular engineering and in
particular enzyme engineering.

References

1. Albert, I., Albert, R.: Conserved network motifs allow protein-protein interaction
prediction. Bioinformatics 20(18), 3346–52 (2004)

2. Alder, B.J., Wainwright, T.E.: Studies in molecular dynamics. J. Chem. Phys.
31(2), 459–466 (1959)

3. Alon, N., et al.: Biomolecular network motif counting and discovery by color coding.
Bioinformatics 24(13), 241–249 (2008)

4. Atilgan, A.R., et al.: Anisotropy of fluctuation dynamics of proteins with an elastic
network model. Biophys. J. 80(1), 505–515 (2001)

5. Biemann, C., et al.: Quantifying semantics using complex network analysis. In:
COLING (2012)

6. Chakraborty, S., Biswas, S.: Approximation algorithms for 3-D common sub-
structure identification in drug and protein molecules. In: Dehne, F., Gupta, A.,
Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 253–264.
Springer, Heidelberg (1999)

7. Chen, J., et al.: Nemofinder: Dissecting genome-wide protein-protein interactions
with meso-scale network motifs. In: ACM SIGKDD (2006)

8. Chen, J., et al.: Labeling network motifs in protein interactomes for protein func-
tion prediction. In: IEEE ICDE (2007)

9. Colak, R., et al.: Dense graphlet statistics of protein interaction and random net-
works. In: Pacific Symposium on Biocomputing (2009)

10. Duan, Y., et al.: A point-charge force field for molecular mechanics simulations of
proteins based on condensed-phase quantum mechanical calculations. J. Comput.
Chem. 24(16), 1999–2012 (2003)

11. Ediger, D., et al.: Massive streaming data analytics: a case study with clustering
coefficients. In: IEEE IPDPSW (2010)

12. Feldman, D., Shavitt, Y.: Automatic large scale generation of internet pop level
maps. In: IEEE GLOBECOM (2008)

13. Feldman, D., et al.: A structural approach for pop geo-location. Comput. Netw.
56, 1029–1040 (2012)

14. Gonen, M., Shavitt, Y.: Approximating the number of network motifs. Internet
Math. 6(3), 349–372 (2009)

15. Hales, D., Arteconi, S.: Motifs in evolving cooperative networks look like protein
structure networks. Netw. Heterogen. Media 3(2), 239–249 (2008)

16. Hutchinson, E.G., Thornton, J.M.: Promotif– program to identify and analyze
structural motifs in proteins. Protein Sci. 5(2), 212–220 (1996)

17. Jurgens, D., Lu, T.: Temporal motifs reveal the dynamics of editor interactions in
wikipedia. In: ICWSM (2012)

18. Kalir, S., et al.: Ordering genes in a flagella pathway by analysis of expression
kinetics from living bacteria. Science 292(5524), 2080–2083 (2001)

19. Kashani, Z.R.M., et al.: Kavosh: a new algorithm for finding network motifs. BMC
Bioinformatics, 10(1) (2009)

20. Kashtan, N., et al.: Mfinder tool guide. Technical report (2002)

StreaM - A Stream-Based Algorithm 67

21. Kim, J., et al.: Coupled feedback loops form dynamic motifs of cellular networks.
Biophys. J. 94(2), 359–365 (2008)

22. Kleywegt, D.J.: Recognition of spatial motifs in protein structures. J. Mol. Biol.
285(4), 1887–1897 (1999)

23. Kovanen, L., et al.: Temporal motifs in time-dependent networks. Journal of Sta-
tistical Mechanics: Theory and Experiment (2011)

24. Krieger, E., et al.: Increasing the precision of comparative models with YASARA
NOVA-a self-parameterizing force field. Proteins 47, 393–402 (2002)

25. Krieger, E., et al.: Fast empirical pKa prediction by Ewald summation. Journal of
molecular graphics & modelling (2006)

26. Krumov, L., et al.: Leveraging network motifs for the adaptation of structured
peer-to-peer-networks. In: IEEE GLOBECOM (2010)

27. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks.
Science 296, 910–913 (2002)

28. Meira, L.A.A., et al.: acc-motif detection tool (2012). arXiv:1203.3415
29. Michels, A., et al.: Verwendung von esterasen zur spaltung von kunststoffen (2011)
30. Milenkoviæ, T., Pržulj, N.: Uncovering biological network function via graphlet

degree signatures. Cancer Inform. 6, 257–273 (2008)
31. Milo, R., et al.: Network motifs: simple building blocks of complex networks. Sci-

ence 298(5594), 824–827 (2002)
32. Miyazawa, S., Jernigan, R.L.: Residue-residue potentials with a favorable contact

pair term and an unfavorable high packing density term, for simulation and thread-
ing. J. Mol. Biol. 256, 623–644 (1996)

33. Panni, S., Rombo, S.E.: Searching for repetitions in biological networks: methods,
resources and tools. Briefings Bioinform. 16(1), 118–136 (2015)

34. Rauch, M., et al.: Computing on data streams. In: DIMACS Workshop External
Memory and Visualization (1999)

35. Ribeiro, P., Silva, F.: G-tries: an efficient data structure for discovering network
motifs. In: ACM Symposium on Applied Computing (2010)

36. Royer, L., et al.: Unraveling protein networks with power graph analysis. PLoS
Comput. Biol. 4(7) (2008)

37. Schatz, M., et al.: Parallel network motif finding. University of Maryland, Technical
report (2008)

38. Schiller, B., Strufe, T.: Dynamic network analyzer building a framework for the
graph-theoretic analysis of dynamic networks. In: SummerSim (2013)

39. Schreiber, F., Schwöbbermeyer, H.: Mavisto: a tool for the exploration of network
motifs. Bioinformatics, 21(9), 2076–2082 (2005)

40. Shen-Orr, S.S., et al.: Network motifs in the transcriptional regulation network of
escherichia coli. Nature Genet 31, 64–68 (2002)

41. Tran, N., et al.: Counting motifs in the human interactome. Nature Communica-
tions (2013)

42. Wernicke, S.: Efficient detection of network motifs. IEEE ACM TCBB 3(4),
321–322 (2006)

43. Wernicke, S., Rasche, F.: Fanmod: a tool for fast network motif detection. Bioin-
formatics 22(9), 1152–1153 (2006)

44. Zhao, Z., et al.: Subgraph enumeration in large social contact networks using par-
allel color coding and streaming. In: ICPP (2010)

http://arxiv.org/abs/1203.3415

Convolutional LSTM Networks for Subcellular
Localization of Proteins

Søren Kaae Sønderby1(B), Casper Kaae Sønderby1, Henrik Nielsen2,
and Ole Winther1,3

1 Bioinformatics Centre, Department of Biology, University of Copenhagen,
Copenhagen, Denmark

{skaaesonderby,casperkaae}@gmail.com
2 Center for Biological Sequence Analysis, Department of Systems Biology,

Technical University of Denmark, 2800 Kongens Lyngby, Denmark
hnielsen@cbs.dtu.dk

3 Department for Applied Mathematics and Computer Science,
Technical University of Denmark, 2800 Kongens Lyngby, Denmark

olwi@dtu.dk

Abstract. Machine learning is widely used to analyze biological
sequence data. Non-sequential models such as SVMs or feed-forward
neural networks are often used although they have no natural way of
handling sequences of varying length. Recurrent neural networks such
as the long short term memory (LSTM) model on the other hand are
designed to handle sequences. In this study we demonstrate that LSTM
networks predict the subcellular location of proteins given only the pro-
tein sequence with high accuracy (0.902) outperforming current state of
the art algorithms. We further improve the performance by introducing
convolutional filters and experiment with an attention mechanism which
lets the LSTM focus on specific parts of the protein. Lastly we introduce
new visualizations of both the convolutional filters and the attention
mechanisms and show how they can be used to extract biologically rele-
vant knowledge from the LSTM networks.

Keywords: Subcellular location · Machine learning · LSTM · RNN ·
Neural networks · Deep learning · Convolutional networks

1 Introduction

Deep neural networks have gained popularity for a wide range of classification
tasks in image recognition and speech tagging [9,20] and recently also within
biology for prediction of exon skipping events [30]. Furthermore a surge of inter-
est in recurrent neural networks (RNN) has followed the recent impressive results
shown on challenging sequential problems like machine translation and speech
recognition [2,14,27]. Within biology, sequence analysis is a very common task

S.K. Sønderby and C.K. Sønderby—These authors contributed equally.

c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): AlCoB 2015, LNBI 9199, pp. 68–80, 2015.
DOI: 10.1007/978-3-319-21233-3 6

Convolutional LSTM Networks for Subcellular Localization of Proteins 69

used for prediction of features in protein or nucleic acid sequences. Current
methods generally rely on neural networks and support vector machines (SVM),
which have no natural way of handling sequences of varying length. Further-
more these systems rely on highly hand-engineered input features requiring a
high degree of domain knowledge when designing the algorithms [11,24]. RNNs
are a type of neural networks that naturally handles sequential data. In an RNN
the input to the network’s hidden layers is both the input features at the cur-
rent timestep and the hidden activation from the previous time step. Hence an
RNN corresponds to placing neural networks with shared identical weights at
each timestep and letting information flow across the sequence by connecting
the networks with (recurrent) weights between the hidden layers. In bioinfor-
matics RNNs have previously been used for contact map prediction [10], and
protein secondary structure predition [3,21]. However standard RNNs have been
shown to be difficult to train with backpropagation through time due to both
vanishing and exploding gradients [5]. To mitigate this problem, Hochreiter et al.
[17] introduced the long short term memory (LSTM) that uses a gated memory
cell instead of the standard sigmoid or hyperbolic tangent hidden units used in
standard RNNs. In the LSTM the value of each memory cell is controlled with
input, modulation, forget and output gates, which allow the LSTM network to
store analog values for many time steps by controlling access to the memory cell.
In practice this architecture have proven easier to train than standard RNN.

In this paper LSTMs are used to analyze biological sequences and predict to
which subcellular compartment a protein belongs. This prediction task, known
as protein sorting or subcellular localization, has attracted large interest in
the bioinformatics field [11]. We show that an LSTM network, using only the
protein sequence information, has significantly better performance than cur-
rent state of the art SVMs and furthermore have nearly as good performance
as large hand engineered systems relying on extensive metadata such as GO
terms and evolutionary phylogeny, see Fig. 1 [6,7,18]. These results show that
LSTM networks are efficient algorithms that can be trained even on relatively
small datasets of around 6000 protein sequences. Secondly we investigate how
an LSTM network recognizes the sequence. In image recognition, convolutional
neural networks (CNN) have shown state of the art performance in several dif-
ferent tasks [8,20]. Here the lower layers of a CNN can often be interpreted as
feature detectors recognizing simple geometric entities, see Fig. 2. We develop a
simple visualization technique for convolutional filters trained on either DNA or
amino acid sequences and show that in the biological setting filters can be inter-
preted as motif detectors, as visualized in Fig. 2. Thirdly, inspired by the work of
Bahdanau et al. [2], we augment the LSTM network with an attention mechanism
that learns to assign importance to specific parts of the protein sequence. Using
the attention mechanism we can visualize where the LSTM assigns importance,
and we show that the network focuses on regions that are biologically plausi-
ble. Lastly we show that the LSTM network learns a fixed length representation
of amino acids sequences that, when visualized, separates the sequences into
clusters with biological meaning. The contributions of this paper are:

70 S.K. Sønderby et al.

Fig. 1. Schematic showing how MultiLoc combines predictions from several sources to
make predictions whereas the LSTM networks only rely on the sequence [18].

Fig. 2. Left: first layer convolutional filters learned in [20], note that many filters
are edge detectors or color detectors. Right: example of learned filter on amino acid
sequence data, note that this filter is sensitive to positively charged amino acids (Color
figure online).

1. We show that LSTM networks combined with convolutions are efficient for
predicting subcellular localization of proteins from sequence.

2. We show that convolutional filters can be used for amino acid sequence analy-
sis and introduce a visualization technique.

3. We investigate an attention mechanism that lets us visualize where the LSTM
network focuses.

4. We show that the LSTM network effectively extracts a fixed length represen-
tation of variable length proteins.

2 Materials and Methods

This section introduces the LSTM cell and then explains how a regular LSTM
(R-LSTM) can produce a single output. We then introduce the LSTM with
attention mechanism (A-LSTM), and describe how the attention mechanism is
implemented.

Convolutional LSTM Networks for Subcellular Localization of Proteins 71

2.1 LSTM NETWORKS

The memory cell of the LSTM networks is implemented as described in [15]
except for peepholes, because recent papers have shown good performance with-
out [27,32,33]. Figure 3 shows the LSTM cell. Equations (1-10) state the forward
recursions for a single LSTM layer.

it = σ(D(xt)Wxi + ht−1Whi + bi) (1)
ft = σ(D(xt)Wxf + ht−1Whf + bf) (2)
gt = tanh(D(xtWxg) + ht−1Whg + bg) (3)
ct = ft � ct−1 + it � gt (4)
ot = σ(D(xt)Wxo + ht−1Who + bo) (5)
ht = ot � tanh(ct) (6)

σ(z) =
1

1 + exp(−z)
(7)

� : Elementwise multiplication (8)
D : Dropout, set values to zero with probability p (9)

xt : input from the previous layer hl−1
t , (10)

where all quantities are given as row-vectors and activation and dropout func-
tions are applied element-wise. Note that for the first hidden layer h1

t the input
xt are the amino acid features. In the memory cell it, ft and ot can are gating
functions controlling input, storage and output of the value ct stored in each cell.
Due to the logistic squashing function used for each gate, the value are always in
the interval (0,1) and information can flow through the gate if the value is close
to one. If dropout is used it is only applied to non-recurrent connections in the
LSTM cell [31]. In a multilayer LSTM ht is passed upwards to the next layer.

2.2 Regular LSTM Networks for Predicting Single Targets

When used for predicting a single target for each input sequence, one approach
is to output the predicted target from the LSTM network at the last sequence
position as shown in Fig. 5A. A problem with this approach is that the gradient
has to flow from the last position to all previous positions and that the LSTM
network has to store information about all previously seen data in the last hidden
state. Furthermore a regular bidirectional LSTM (BLSTM, 5B)[26] is not useful
in this setting because the backward LSTM will only have seen a single position,
xT , when the prediction has to be made. We instead combine two unidirectional
LSTMs, as shown in Fig. 5C, where the backward LSTM has the input reversed.
The output from the two LSTMs are combined before predictions.

2.3 Attention Mechanism LSTM Netowork

Bahdanau et al. [2] have introduced an attention mechanism for combining hid-
den state information from a encoder-decoder RNN approach to machine trans-
lation. The novelty in their approach is that they use an alignment function that

72 S.K. Sønderby et al.

Fig. 3. LSTM memory cell. i : input
gate, f : forget gate, o: output gate, g :
input modulation gate, c: memory cell.
The Blue arrow heads refers to ct−1.
The notation corresponds to Eqs. 1 to
10 such that Wxo denotes wights for
x to output gate and Whf denotes
weights for ht−1 to forget gates etc.
Adapted from [33].

Fig. 4. A-LSTM network. Each state
of the hidden units, ht are weighted
and summed before the output network
calculates the predictions (Color figure
online).

for each output word finds important input words, thus aligning and translating
at the same time. We modify this alignment procedure such that only a single
target is produced for each sequence. The developed attention mechanism can
be seen as assigning importance to each position in the sequence with respect to
the prediction task. We use a BLSTM to produce a hidden state at each position
and then use an attention function to assign importance to each hidden state as
illustrated in Fig. 4. The weighted sum of hidden states is used as a single rep-
resentation of the entire sequence. This modification allows the BLSTM model
to naturally handle tasks involving prediction of a single target per sequence.
Conceptually this corresponds to adding weighted skip connections (green arrow
heads Fig. 4) between any ht and the output network, with the weight on each
skip connection being determined by the attention function. Each hidden state
ht, t = 1, . . . , T is used as input to a Feed Forward Neural Network (FFN)
attention function:

at = tanh(htWa)vT
a , (11)

where Wa is an attention hidden weight matrix and va is an attention output
vector. From the attention function we form softmax weights:

αt =
exp(at)

ΣT
t′=1 exp (at′)

(12)

Convolutional LSTM Networks for Subcellular Localization of Proteins 73

Fig. 5. A: Unidirectional LSTM predicting a single target. B: Unrolled single layer
BLSTM. The forwards LSTM (red arrows) starts at time 1 and the backwards LSTM
(blue arrows) starts at time T , then they go forwards and backwards respectively. The
errors from the forward and backward nets are combined and a prediction is made for
each sequence position. Adapted from [13]. C: Unidirectional LSTM for predicting a
single target. Squares are LSTM layers (Color figure online).

that are used to produce a context vector c as a convex combination of T hidden
states:

c = ΣT
t=1htαt. (13)

The context vector is then used is as input to the classification FFN f(c). We
define f as a single layer FFN with softmax outputs.

2.4 Subcellular Localization Data

The model was trained and evaluated on the dataset used to train the MultiLoc
algorithm published by Höglund et al. [18]1. The dataset contains 5959 proteins
annotated to one of 11 different subcellular locations. To reduce computational
time the protein sequences were truncated to a maximum length of 1000. We
truncated by removing from the middle of the protein as both the N- and C-
terminal regions are known to contain sorting signals [11]. Each amino acid was
encoded using 1-of-K encoding, the BLOSUM80 [16] and HSDM [25] substitution
matrices and sequence profiles, yielding 80 features per amino acid. Sequence
profiles where created with PROFILpro [22]2 using 3 blastpgp [1]3 iterations on
UNIREF50.

2.5 Visualizations

Convolutional filters for images can be visualized by plotting the convolutional
weights as pixel intensities as shown in Fig. 2. However a similar approach does
1 http://abi.inf.uni-tuebingen.de/Services/MultiLoc/multiloc dataset.
2 http://download.igb.uci.edu/.
3 http://nebc.nox.ac.uk/bioinformatics/docs/blastpgp.html.

http://abi.inf.uni-tuebingen.de/Services/MultiLoc/multiloc_dataset
http://download.igb.uci.edu/
http://nebc.nox.ac.uk/bioinformatics/docs/blastpgp.html

74 S.K. Sønderby et al.

not make sense for amino acid inputs due to the 1-of-K vector encoding. Instead
we view the 1D convolutions as a position specific scoring matrix (PSSM). The
convolutional weights can be reshaped into a matrix of lfilter-by-lenc, where the
amino acid encoding length is is 20. Because the filters show relative importance
we rescale all filters such that the height of the highest column is 1. Each filter
can then be visualized as a PSSM logo, where the height of each column can
be interpreted as position importance and the height of each letter is amino
acid importance. We use Seq2Logo with the PSSM-logo setting to create the
convolution filter logos [28].

We visualize the importance the A-LSTM network assigns to each position
in the input by plotting α from Eq. 12. Lastly we extract and plot the hidden
representation from the LSTM networks. For the A-LSTM network we use c
from Eq. 13 and for the R-LSTM we use the last hidden state, ht. Both c and ht

can be seen as fixed length representation of the amino acid sequences. We plot
the representation using t-SNE [29].

2.6 Experimental Setup

All models were implemented in Theano [4] using a modified version of the
Lasagne library4 and trained with gradient descent. The learning rate was con-
trolled with ADAM (α = 0.0002, β1 = 0.1, β2 = 0.001, ε = 10−8 and λ = 10−8)
[19]. Initial weights were sampled uniformly from the interval [−0.05, 0.05]. The
network architecture is a 1D convolutional layer followed by an LSTM layer, a
fully connected layer and a final softmax layer. All layers use 50 % dropout. The
1D convolutional layer uses convolutions of sizes 1, 3, 5, 9, 15 and 21 with 10
filters of each size. Dense and convolutional layers use ReLU activation [23] and
the LSTM layer uses hyperbolic tangent. For the A-LSTM model the size of the
first dimension of Wa was 400. We used 4/5 of the data for training and the last
1/5 of the data for testing. The hyperparameters were optimized using 5-fold
cross validation on the training data. The cross validation experiments showed
that the model converged after 100 epochs. Using the established hyperpara-
meters the models were retrained on the complete training data and the test
performance were reported after epoch 100.

3 Results

Table 1 shows accuracy for the R-LSTM and A-LSTM models and several other
models trained on the same dataset. Comparing the performance of the R-LSTM,
A-LSTM and MultiLoc models, utilizing only the sequence information, the
R-LSTM model (0.879 Acc.) performs better than the A-LSTM model (0.854
Acc.) whereas the MultiLoc model (0.767 Acc.) performs significantly worse.
Furthermore the 10-ensemble R-LSTM model further increases the performance
to 0.902 Acc. Comparing this performance with the other models, combining the
4 https://github.com/skaae/nntools.

https://github.com/skaae/nntools

Convolutional LSTM Networks for Subcellular Localization of Proteins 75

sequence predictions from the MultiLoc model with large amounts of metadata
for the final predictions, only the Sherloc2 model (0.930 Acc.) performs better
than the R-LSTM ensemble. Figure 6 shows a plot of the attention matrix from
the A-LSTM model. Figure 8 shows examples of the learned convolutional filters.
Figure 7 shows the hidden state of the R-LSTM and the A-LSTM model.

Table 1. Comparison of results for LSTM models and MultiLoc1/2. MultiLoc1/2
accuracies are reprinted from [12] and the SherLoc accuracy from [7]. Metadata refers
to additional protein information such as GO-terms and phylogeny.

Model Accuracy

Input: Protein Sequence

R-LSTM 0.879

A-LSTM 0.854

R-LSTM ensemble 0.902

MultiLoc 0.767

Input: Protein Sequence + Metadata

MultiLoc + PhyloLoc 0.842

MultiLoc + PhyloLoc + GOLoc 0.871

MultiLoc2 0.887

SherLoc2 0.930

4 Discussion and Conclusion

In this paper we have introduced LSTM networks with convolutions for pre-
diction of subcellular localization. Table 1 shows that the LSTM networks per-
form much better than other methods that only rely on information from the
sequence (LSTM ensemble 0.902 vs. MultiLoc 0.767). This difference is all the
more remarkable given the simplicity of our method, only utilizing the sequences
and their localization labels, while MultiLoc incorporates specific domain knowl-
edge such as known motifs and signal anchors. One explanation for the perfor-
mance difference is that the LSTM networks are able to look at both global
and local sequence features whereas the SVM based models do not model global
dependencies. The LSTM networks have nearly as good performance as meth-
ods that use information obtained from other sources than the sequence (LSTM
ensemble 0.902 vs. SherLoc2 0.930). Incorporating these informations into the
LSTM models could further improve the performance of these models. However,
it is our opinion that using sequence alone yields the biologically most relevant
prediction, while the incorporation of, e.g., GO terms limits the usability of the
prediction requiring similar proteins to be already annotated to some degree.
Furthermore, as we show below, a sequence-based method potentially allows for
a de novo identification of sequence features essential for biological function.

76 S.K. Sønderby et al.

Table 2. Confusion matrix with true labels shown by row and R-LSTM model pre-
dictions by column. E.g. the cell at row 4 column 3 means that the actual class was
Cytoplasmic but the R-LSTM model predicted Chloroplast.

Confusion Matrix

ER 26 1 0 0 8 1 0 0 0 3 0

Golgi 1 28 0 0 0 0 0 0 0 1 0

Chloroplast 0 0 82 3 0 0 5 0 0 0 0

Cytoplasmic 0 0 1 266 0 0 3 12 0 0 0

Extracellular 0 0 0 1 166 0 0 0 0 1 0

Lysosomal 0 0 0 0 5 12 0 0 0 3 0

Mitochondrial 0 0 2 5 0 0 94 1 0 0 0

Nuclear 0 0 0 27 1 0 3 137 0 0 0

Peroxisomal 0 1 0 10 0 0 0 1 18 2 0

Plasma membrane 0 0 0 0 5 0 1 1 0 241 0

Vacuolar 0 0 0 0 7 0 0 0 0 1 5

Fig. 6. Importance weights assigned to different regions of the proteins when making
predictions. y-axis is true group and x -axis is the sequence positions. All proteins
shorter than 1000 are zero padded from the middle such that the N and C terminals
align.

Convolutional LSTM Networks for Subcellular Localization of Proteins 77

Fig. 7. t-SNE plot of hidden representation for forward and backward R-LSTM and
A-LSTM.

Fig. 8. Examples of learned filters. Filter A captures proline or trypthopan stretches,
(B) and (C) are sensitive to positively and negatively charged regions, respectively.
Note that for C, negative amino acids seems to suppress the output. Lastly we show a
long filter which captures larger sequence motifs in the proteins.

78 S.K. Sønderby et al.

Fig. 6 shows where in the sequence the A-LSTM network assigns importance.
Sequences from the compartments ER, extracellular, lysosomal, and vacuolar all
belong to the secretory pathway and contain N-terminal signal peptides, which
are clearly seen as bars close to the left edge of the plot. Some of the ER proteins
additionally have bars close to the right edge of the plot, presumably represent-
ing KDEL-type retention signals. Golgi proteins are special in this context, since
they are type II transmembrane proteins with signal anchors, slightly further
from the N-terminus than signal peptides [18]. Chloroplast and mitochondrial
proteins also have N-terminal sorting signals, and it is apparent from the plot
that chloroplast transit peptides are longer than mitochondrial transit peptides,
which in turn are longer than signal peptides [11]. For the plasma membrane
category we see that some proteins have signal peptides, while the model gener-
ally focuses on signals, presumably transmembrane helices, scattered across the
rest of the sequence with some overabundance close to the C-terminus. Some of
the attention focused near the C-terminus could also represent signals for glyco-
sylphosphatidylinositol (GPI) anchors [11]. Cytoplasmic and nuclear proteins do
not have N-terminal sorting signals, and we see that the attention is scattered
over a broader region of the sequences. However, especially for the cytoplasmic
proteins there is some attention focused close to the N-terminus, presumably in
order to check for the absence of signal peptides. Finally, peroxisomal proteins
are known to have either N-terminal or C-terminal sorting signals (PTS1 and
PTS2) [11], but these do not seem to have been picked up by the attention
mechanism.

In Fig. 8 we investigate what the convolutional filters in the model focus on.
Notably the short filters focus on amino acids with specific characteristics, such
as positively or negatively charged, whereas the longer filters seem to focus on
distributions of amino acids across longer sequences. The arginine-rich motif
in Fig. 7C could represent part of a nuclear localization signal (NLS), while
the longer motif in Fig. 7D could represent the transition from transmembrane
helix (hydrophobic) to cytoplasmic loop (in accordance with the “positive-inside”
rule). We believe that the learned filters can be used to discover new sequence
motifs for a large range of protein and genomic features.

In Fig. 7 we investigate whether the LSTM models are able to extract fixed
length representations of variable length proteins. Using t-SNE we plot the
LSTMs hidden representation of the sequences. It is apparent that proteins
from the same compartment generally group together, while the cytoplasmic and
nuclear categories tend to overlap. The corresponds with the fact that these two
categories are relatively often confused, see Table 2. The categories form clusters
which make biological sense; all the proteins with signal peptides (ER, extracel-
lular, lysosomal, and vacuolar) lie close to each other in t-SNE space in all three
plots, while the proteins with other N-terminal sorting signals (chloroplasts and
mitochondria) are close in the R-LSTM plots (but not in the A-LSTM plot).
Note that the lysosomal and vacuolar categories are very close to each other
in the plots, this corresponds with the fact that these two compartments are
considered homologous [18].

Convolutional LSTM Networks for Subcellular Localization of Proteins 79

In summary we have introduced LSTM networks with convolutions for sub-
cellular localization. By visualizing the learned filters we have shown that these
can be interpreted as motif detectors, and lastly we have shown that the LSTM
network can represent protein sequences as a fixed length vector in a represen-
tation that is biologically interpretable.

References

1. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W.,
Lipman, D.J.: Gapped blast and psi-blast: a new generation of protein database
search programs. Nucleic acids Res. 25(17), 3389–3402 (1997)

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural Machine Translation by Jointly Learn-
ing to Align and Translate. arXiv preprint arXiv:1409.0473 (Sep 2014)

3. Baldi, P., Brunak, S., Frasconi, P.: Exploiting the past and the future in protein
secondary structure prediction. Bioinformatics 15(11), 937–946 (1999)

4. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A.,
Bouchard, N., Warde-Farley, D., Bengio, Y.: Theano: new features and speed
improvements, November 2012. arXiv preprint arXiv:1211.5590

5. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

6. Blum, T., Briesemeister, S., Kohlbacher, O.: MultiLoc2: integrating phylogeny and
Gene Ontology terms improves subcellular protein localization prediction. BMC
bioinform. 10, 274 (2009)

7. Briesemeister, S., Blum, T., Brady, S., Lam, Y., Kohlbacher, O., Shatkay, H.:
SherLoc2: a high-accuracy hybrid method for predicting subcellular localization of
proteins. J. Proteome Res. 8(11), 5363–5366 (2009)

8. Cunn, Y.L., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W.,
Jackel, L.: Handwritten digit recognition with a back-propagation network. In:
Lippmann, R., Moody, J., Touretzky, D. (eds.) Advances in neural information
processing systems. pp. 396–404 (1990)

9. Dahl, G., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural
networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang.
Process. 20(1), 30–42 (2012)

10. Di Lena, P., Nagata, K., Baldi, P.: Deep architectures for protein contact map
prediction. Bioinformatics 28(19), 2449–2457 (2012)

11. Emanuelsson, O., Brunak, S., von Heijne, G., Nielsen, H.: Locating proteins in the
cell using TargetP, SignalP and related tools. Nat. Protoc. 2(4), 953–971 (2007)

12. Goldberg, T., Hamp, T., Rost, B.: LocTree2 predicts localization for all domains
of life. Bioinformatics 28(18), i458–i465 (2012)

13. Graves, A.: Supervised sequence labelling with recurrent neural networks. Springer,
Heidelberg (2012)

14. Graves, A., Jaitly, N.: Towards end-to-end speech recognition with recurrent neural
networks. In: Proceedings of the 31st International Conference on Machine Learn-
ing (ICML-14), pp. 1764–1772 (2014)

15. Graves, A.: Generating sequences with recurrent neural networks, (2013). arXiv
preprint arXiv:1308.0850

16. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks.
Proc. Natl. Acad. Sci. USA 89, 10915–10919 (1992)

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1211.5590
http://arxiv.org/abs/1308.0850

80 S.K. Sønderby et al.

17. Hochreiter, S., Schmidhuber, J., Elvezia, C.: Long short-term memory. Neural
Comput. 9(8), 1735–1780 (1997)

18. Höglund, A., Dönnes, P., Blum, T., Adolph, H.W., Kohlbacher, O.: MultiLoc:
prediction of protein subcellular localization using N-terminal targeting sequences,
sequence motifs and amino acid composition. Bioinformatics 22(10), 1158–1165
(2006)

19. Kingma, D., Ba, J.: Adam: a method for stochastic optimization, December 2014.
arXiv preprint arXiv:1412.6980

20. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convo-
lutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K. (eds.) Advances in neural information processing systems, pp. 1097–1105 (2012)

21. Magnan, C., Baldi, P.: SSpro/ACCpro 5: almost perfect prediction of protein sec-
ondary structure and relative solvent accessibility using profiles, machine learning,
and structural similarity. Bioinformatics 30(18), 1–6 (2014)

22. Magrane, M. et al.: UniProt Consortium: Uniprot knowledgebase: a hub of inte-
grated protein data. Database 2011, bar009 (2011)

23. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing (ICML-10), pp. 807–814 (2010)

24. Petersen, T., Brunak, S., von Heijne, G., Nielsen, H.: SignalP 4.0: discriminating
signal peptides from transmembrane regions. Nat. Methods 8(10), 785–786 (2011)

25. Prlić, A., Domingues, F.S., Sippl, M.J.: Structure-derived substitution matrices for
alignment of distantly related sequences. Protein Eng. 13, 545–550 (2000)

26. Schuster, M., Paliwal, K.: Bidirectional recurrent neural networks. Signal Process.
45(11), 2673–2681 (1997)

27. Sutskever, I., Vinyals, O., Le, Q.: Sequence to sequence learning with neural net-
works. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

28. Thomsen, M.C.F., Nielsen, M.: Seq2Logo: a method for construction and visu-
alization of amino acid binding motifs and sequence profiles including sequence
weighting, pseudo counts and two-sided representation of amino acid enrichment
and depletion. Nucleic Acids Res. 40, W281–W287 (2012)

29. Van Der Maaten, L.J.P., Hinton, G.E.: Visualizing high-dimensional data using
t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008)

30. Xiong, H.Y., Alipanahi, B., Lee, L.J., Bretschneider, H., Merico, D., Yuen, R.K.C.,
Hua, Y., Gueroussov, S., Najafabadi, H.S., Hughes, T.R., Morris, Q., Barash, Y.,
Krainer, A.R., Jojic, N., Scherer, S.W., Blencowe, B.J., Frey, B.J.: The human
splicing code reveals new insights into the genetic determinants of disease. Science
347, 1254806 (2014)

31. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization
(2014). arXiv preprint arXiv:1409.2329

32. Zaremba, W., Kurach, K., Fergus, R.: Learning to Discover Efficient Mathematical
Identities. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger,
K. (eds.) Advances in Neural Information Processing Systems, pp. 1278–1286, June
2014

33. Zaremba, W., Sutskever, I.: Learning to Execute, October 2014. arXiv preprint
arXiv:1410.4615

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1410.4615

Phylogenetics

Hybrid Genetic Algorithm and Lasso Test
Approach for Inferring Well Supported
Phylogenetic Trees Based on Subsets

of Chloroplastic Core Genes

Bassam AlKindy1,3(B), Christophe Guyeux1, Jean-François Couchot1,
Michel Salomon1, Christian Parisod2, and Jacques M. Bahi1

1 FEMTO-ST Institute, UMR 6174 CNRS, DISC Computer Science Department,
University of Franche-Comté, Besançon, France

{bassam.al-kindy,christophe.guyeux,jean-francois.couchot,
michel.salomon,jacques.bahi}@univ-fcomte.fr

2 Laboratory of Evolutionary Botany, University of Neuchâtel,
Neuchâtel, Switzerland

christian.parisod@unine.ch
3 Department of Computer Science, University of Mustansiriyah,

Baghdad, Iraq

Abstract. The amount of completely sequenced chloroplast genomes
increases rapidly every day, leading to the possibility to build large scale
phylogenetic trees of plant species. Considering a subset of close plant
species defined according to their chloroplasts, the phylogenetic tree that
can be inferred by their core genes is not necessarily well supported,
due to the possible occurrence of “problematic” genes (i.e., homoplasy,
incomplete lineage sorting, horizontal gene transfers, etc.) which may
blur phylogenetic signal. However, a trustworthy phylogenetic tree can
still be obtained if the number of problematic genes is low, the problem
being to determine the largest subset of core genes that produces the best
supported tree. To discard problematic genes and due to the overwhelm-
ing number of possible combinations, we propose an hybrid approach
that embeds both genetic algorithms and statistical tests. Given a set
of organisms, the result is a pipeline of many stages for the production
of well supported phylogenetic trees. The proposal has been applied to
different cases of plant families, leading to encouraging results for these
families.

Keywords: Chloroplasts · Phylogeny · Genetic algorithms · Lasso test

1 Introduction

The multiplication of complete chloroplast genomes should normally lead to the
ability to infer trustworthy phylogenetic trees for plant species. Indeed, the exis-
tence of trustworthy coding sequence prediction and annotation software specific
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): AlCoB 2015, LNBI 9199, pp. 83–96, 2015.
DOI: 10.1007/978-3-319-21233-3 7

84 B. AlKindy et al.

to chloroplasts (like DOGMA [16]), together with the good control of sequence
alignment and maximum likelihood or Bayesian inference phylogenetic recon-
struction techniques, should imply that, given a set of close species, their core
genome (the set of genes in common) can be as large and accurately detected as
possible to finally obtain a well-supported phylogenetic tree. However, all genes
of the core genome are not necessarily constrained in a similar way, some genes
having a larger ability to evolve than other ones due to their lower importance.
Such minority genes tell their own story instead of the species one, blurring so
the phylogenetic information.

To obtain well-supported phylogenetic trees, the deletion of these problematic
genes (which may result from homoplasy, stochastic errors, undetected paralogy,
incomplete lineage sorting, horizontal gene transfers, or even hybridization) is
needed. A solution is to construct the phylogenetic trees that correspond to
all the combinations of core genes, and to finally consider the tree that is as
supported as possible while considering as many genes as possible. The major
drawback is its inhibitory computational cost, since testing all the possible com-
binations is totally intractable in practice (2n phylogenetic tree reconstructions
with n ≈ 100 core genes of plants belonging to the same order). Thus we have
to remove the problematic genes without exhaustively testing combinations of
genes. Therefore, our proposal is to mix various approaches to extract promis-
ing subsets of core genes, encompassing systematic deletion of genes, random
selection of large subsets, statistical evaluation of gene effects, and genetic algo-
rithms (GAs) [3,4]. These latters are efficient, robust, and adaptive search tech-
niques designed for solving optimization problems, which have the ability to
produce semi-optimal solutions [7,10,14].

The contribution of this article can be summarized as follows. We focus on
situations where a large number of genes are shared by a set of species so that, in
theory, enough data are available to produce a well supported phylogenetic tree.
However, a few genes tell a different evolutionary scenario than the majority of
sequences, leading to phylogenetic noise blurring the phylogeny reconstruction.
The pipeline that we propose attempts to solve such an issue by computing all
phylogenetic trees which can be obtained by removing at most one core gene. In
case where such a preliminary systematic approach does not solve the phylogeny,
new investigation stages are added to the pipeline, namely a Monte-Carlo based
random approach and two invocations of a genetic algorithm, separated by a
Lasso test. The pipeline is finally tested on various sets of chloroplast genomes.

The remainder of this article is as follows. We start with Sect. 2 by giving a
brief and global description of the problem. Genetic population initialization is
discussed in Sect. 3, while the first optimization stage with genetic algorithm is
fully detailed in Sect. 4. Targeting problematic genes using a Lasso test and the
following second invocation of the genetic algorithm is detailed in Sect. 5. Then,
in the next section, various plant families are tested as a case study. Finally
this research work ends with a conclusion section in which the contributions are
summarized and intended future work is outlined.

Hybrid Genetic Algorithm and Lasso Test Approach 85

2 Presentation of the Problem

Let us consider a set of chloroplast genomes that have been annotated using
DOGMA [16] (http://dogma.ccbb.utexas.edu/). We have then access to the core
genome [1] (genes present everywhere) of these species, whose size is about one
hundred genes when the species are close enough. For further information on
how we found the core genome, see [1,2]. Sequences are further aligned with
MUSCLE [5] and the RAxML [13] tool infers the corresponding phylogenetic
tree. If this resulting tree is well-supported, then the process is stopped without
further investigations. Indeed, if all bootstrap values are larger than 95, then we
can reasonably consider that the phylogeny of these species is resolved, as the
largest possible number of genes has led to a very well supported tree.

In case where some branches are not supported well, we can wonder whether
a few genes can be incriminated in this lack of support. If so, we face an optimiza-
tion problem: find the most supported tree using the largest subset of core genes.
Obviously, a brute force approach investigating all possible combinations of genes
is intractable, as it leads to 2n phylogenetic tree inferences for a core genome of
size n. To solve this optimization problem, we have proposed an hybrid approach
mixing a genetic algorithm with the use of some statistical tests for discovering
problematic genes. The initial population for the genetic algorithm is built by
both systematic and random pre-GA investigations. These considerations led to
a pipeline detailed in Fig. 1, whose stages will be developed thereafter.

Fig. 1. Overview of the proposed pipeline for phylogenies based on chloroplasts.

3 Generation of the Initial Population

The objective is to obtain a well-supported phylogenetic tree by using the largest
possible subset of genes. If this goal cannot be reached by taking all core genes,
the first thing to investigate is to check whether one particular gene is respon-
sible of this problem. Therefore we systematically compute all the trees we can
obtain by removing exactly one gene from the core genome, leading to n new
phylogenetic trees, where n is the core size (see Fig. 2a).

If, during this systematic approach, one well-supported tree is obtained, then
it is returned as the phylogeny of the species under consideration. Conversely,

http://dogma.ccbb.utexas.edu/

86 B. AlKindy et al.

Fig. 2. Binary mapping operation and genetic algorithm overview. (a) Initial individ-
uals obtained in systematic mode stage. Two kinds of individuals are generated. First,
by considering all genes in the core genome. Second, by omitting one gene sequentially
depending on the core length. (b) Initial individuals are generated randomly in random
stage (random mode) by omitting 2–10 genes randomly.

if all trees obtained have at least one problematic branch, then deeper inves-
tigations are required. However the systematic approach has reached its limits
which is preliminary to GA, as investigating all phylogenetic trees that can be
obtained by removing randomly 2 genes among a core genome of size n leads to
n(n−1)

2 tree inferences. Obviously, the number of cases explodes, and it is illusory
to hope to investigate all reachable trees by discarding 10 % of a core genome
having 100 genes. This is why a genetic algorithm has been proposed.

Using the n + 1 computed trees to initialize the population of the genetic
algorithm results in a population which remains too small and too homogeneous.
Indeed, all these trees have been computed in the same way, each inference being
produced using 99 % of the core genome (we have removed at most 1 gene in
a core genome having approximately 100 genes). Thus, in order to increase the
diversity of the initial population a second stage (random stage) as shown in
Fig. 2b, which extracts large random subsets of core genome for inference, is
applied.

More precisely, there are indeed two random stages. The first one operates
during 200 iterations: at each iteration, an integer k between 2 and 10 is first
randomly picked. Then k genes are randomly removed from the core genome,
and a phylogeny is inferred using the remaining genes. If during these iterations,
by chance, a very well supported tree is obtained, a stop signal is sent to the
master process and the obtained tree is returned. If not, we now have enough
data to build a relevant initial population for the genetic algorithm. And the
second random stage is indeed included in this genetic algorithm.

4 Genetic Algorithm

A genetic algorithm is a well-known metaheuristic which has been described
by a rich body of literature since its introduction in the mid-seventies [8,9].

Hybrid Genetic Algorithm and Lasso Test Approach 87

In the following, we will only discuss the choices we made regarding operators
and parameters. For further information and applications regarding the genetic
algorithm, see, e.g., [3,4,6,12].

4.1 Genotype and Fitness Value

Genes of the core genome are supposed to be ordered lexicographically. At each
subset s of the core genome corresponds thus a unique binary word w of length
n: for each i lower than n, wi is 1 if the i-th core gene is in s, else wi is equal
to 0. At each binary word w of length n, we can associate its percentage p of 1’s
and the lowest bootstrap b of the phylogenetic tree we obtain when considering
the subset of genes associated to w. At each word w we can thus associate as
fitness value the score b + p, which must be as large as possible. We currently
consider that bootstrap b and the number of genes p have the same importance
in the scoring function. However, changing the weight of each parameter may be
interesting in deeper investigations.

4.2 Genetic Process

Until now, binary words (genotypes) of length n that have been investigated are:

1. the word having only 1’s (systematic mode);
2. all words having exactly one 0 (systematic mode);
3. 200 words having between 2 and 10 0’s randomly located (random mode).

To each of these words is attached a score which is used to select the 50 best
words, or fittest individuals, in order to build the initial population. After that,
the genetic algorithm will loop during 200 iterations or until an offspring word
such that b � 95 is obtained. During an iteration the algorithm will apply the
following steps to produce a new population P ′ given a population P (see Fig. 3).

– Repeat 5 times a random pickup of a couple of words and mix them using a
crossover approach. The obtained words are added to the population P , as
described in Sect. 4.3, resulting in population Pc.

– Mutate 5 words of the population Pc, the mutated words being added too to
Pc, as detailed in Sect. 4.4, leading to population Pm.

– Add 5 new random binary words having less than 10 % of 0’s (see Sect. 4.5)
to Pm producing population Pr.

– Select the 50 best words in population Pr to form the new population P ′.

Let us now explain with more details each step of this genetic algorithm.

4.3 Crossover Step

Given two words w1 and w2, the idea of the crossover operation is to mix them,
hoping by doing so to generate a new word w having a better score (see Fig. 4a).
For instance, if we consider a one-point crossover located at the middle of the

88 B. AlKindy et al.

Fig. 3. Outlines of genetic algorithm.

words, for i < n
2 , wi = w1

i , while for i � n
2 , wi = w2

i : in that case, for the first
core genes, the choice (to take them or not for phylogenetic construction) in w
is the same than in w1, while the subset of considered genes in w corresponds
to the one of w2 for the last 50 % of core genes.

More precisely, at each crossover step, we first pick randomly an integer k
lower than n

2 , and randomly again k different integers i1, . . . ik such that 1 < i1 <
i2 < . . . < ik < n. Then w1 and w2 are randomly selected from the population P ,
and a new word w is computed as follows:

– wi = w1
i for i = 1, ..., i1,

– wi = w2
i for i = i1 + 1, ..., i2,

– wi = w1
i for i = i2 + 1, ..., i3,

– etc.

Then the phylogenetic tree based on the subset of core genes labeled by w is
computed, the score s of w is deduced, and w is added to the population with
the fitness value s attached to it.

4.4 Mutation Step

In this step, we ask whether changing a little a given subset of genes, by removing
a few genes and adding a few other ones, may by chance improve the support
of the associated tree. Similarly speaking, we try here to improve the score of a
given word by replacing a few 0’s by 1 and a few 1’s by 0 (Fig. 4b).

In practice, an integer k � n
4 corresponding to the number of changes, or

“mutations”, is randomly picked. Then k different integers i1, . . . , ik lower than

Hybrid Genetic Algorithm and Lasso Test Approach 89

Fig. 4. (a) Two individuals are selected from given population. First portion from
determined crossover position in the first individual is switched with the first portion of
the second individual. The number of crossover positions is determined by Ncrossover.
(b) Random mutations are applied depending on the value of Nmutation, changing
randomly gene state from 1 to 0 or vice versa. New offsprings generated from this
stage are predicted w.r.t natural evolution scenario.

Fig. 5. Random pair selections from given population.

n are randomly chosen and a word w is randomly extracted from the current
population. A new word w′ is then constructed as follows: for each i = 1, ..., n,

– if i in {i1, . . . , ik}, then w′
i = wi + 1 mod 2 (the bit is mutated),

– else w′
i = wi (no modification).

Again, the phylogenetic tree corresponding to the subset of core genes associated
to w′ is computed, and w′ is added to the population together with its score.

4.5 Random Step

In this step, new words having a large amount of 1’s are added to the population.
Each new word is obtained by starting from the word having n 1s, followed by k
random selection of 1s which are changed to 0, where k is an integer randomly

90 B. AlKindy et al.

chosen between 1 and 10. The new word is added to the population after having
computed its score thanks to a phylogenetic tree inference.

5 Targeting Problematic Genes Using Statistical Tests

5.1 The Lasso Test

After having carried out 200 iterations of the genetic algorithm detailed above, it
may occur that no well-supported tree has been produced. Various reasons may
explain this failure, like a lazy convergence speed, a large number of problematic
genes (e.g., homoplasic ones, or due to stochastic errors, undetected paralogy,
incomplete lineage sorting, horizontal gene transfers, or hybridization), or close
divergence species leading to very small branch lengths between two internal
nodes. However, we now have computed enough word scores to determine the
effects of each gene in topologies and bootstraps, and to remove the few genes
that break supports.

The idea is then to investigate each topology that has appeared enough
times during previous computations. In this study, we only consider topologies
having a frequency of occurrence larger than 10 %. Remark that this 10 % is
convenient for the given case study, but it must depend in fact on the number
of obtained topologies. Then for each best word of these best topologies, and for
each problematic bootstrap in its associated tree, we apply a Lasso approach as
follows.

The Lasso (Least Absolute Shrinkage and Selection Operator) test [15] is an
estimator that takes place in the category of least-squares regression analysis.
Like all the algorithms in this group, it estimates a linear model which minimizes
a residual sum with respect to a variable λ. Let us explain how this variable can
be used to order genes with respect to their ability to modify the bootstrap
support.

Let X be a m × p matrix where each line Xi = (Xi1, . . . , Xij , . . . Xip),
1 ≤ i ≤ m, is a configuration where Xij is 1 if gene number j is present inside
the configuration i and Xij is 0 otherwise. For each Xi, let Yi be the real posi-
tive support value for each problematic bootstrap b per topology and per gene.
According to [15], the Lasso test β = (β1, . . . , βi, . . . βp) is defined by

β = argmin

⎧
⎪⎨

⎪⎩

m∑

i=1

⎛

⎝Yi −
p∑

j=1

βjXij

⎞

⎠
2

+ λ

p∑

j=1

|βj |

⎫
⎪⎬

⎪⎭
. (1)

When λ has high value, all the βj are null. It is thus sufficient to decrease the
value of λ to observe that some βj become not null. Moreover, the sign of βj

is positive (resp. negative) if the bootstrap support increases (resp. decreases)
with respect to j.

Hybrid Genetic Algorithm and Lasso Test Approach 91

5.2 Second Stage of Genetic Algorithm

Targeting problematic genes using Lasso approach can solve the issue of badly
supported values in some cases, especially when only one support is lower than
the predefined threshold. In cases where at least two branches are not well sup-
ported, removing genes that break the first support may or may not has an effect
on the second problematic support. In other words, each of the two problematic
supports can be separately solved using Lasso investigations, but not necessarily
both together.

However, the population has been improved, receiving very interesting words
for each problematic branch. Then a last genetic algorithm phase is launched
on the updated population, in order to mix these promising words by crossover
operations, hoping by doing so to solve in parallel all of the badly supported val-
ues. This last stage runs until either the resolution of all problematic bootstraps
or the reach of iterations limit (set to 1000 in our simulations).

6 Case Studies

6.1 Pipeline Evaluation on Various Groups of Plant Species

In this section, the proposed pipeline is tested on various sets of close plant
species. An example of 50 subgroups (ranging on average from 12 to 15 chloro-
plasts species) encompassing 356 plant species is presented in Table 1. The Stage
column contains the termination step for each subgroup, namely: the system-
atic (code 1), random (2), or optimization stages (3) using genetic algorithm
and/or Lasso test. A large occurrence in this table means that the associated
group and/or subgroups has its computation terminated in either penultimate or
last pipeline stage. An occurrence of 31 is frequent due to the fact that 32 MPI
threads (one master plus 31 slaves) have been launched on our supercomputer
facilities. Notice that the Table 1 is divided into four parts: groups of species
stopped in systematic stage with weak bootstrap values (which is due to the
fact that a upper time limit has been set for each group and/or subgroups, while
each computed tree in these remarkable groups needed a lot of times for compu-
tations), subgroups terminated during systematic stage with desired bootstrap
value, groups or subgroups terminated in random stage with desired bootstrap
value, and finally, groups or subgroups terminated during optimization stages.
The majority of subgroups has its phylogeny satisfactorily resolved, as can be
seen on all obtained trees which are downloadable at http://meso.univ-fcomte.
fr/peg/phylo. In what follows, an example of problematic group, namely the
Apiales, is more deeply investigated as a case study.

6.2 Investigating Apiales Order

In our study Apiales chloroplasts consist of two sets, as detailed in Table 2: two
species belong to the Apiaceae family set (namely Daucus carota and Anthriscus
cerefolium), while the remaining seven species are in the Araliaceae family set.

http://meso.univ-fcomte.fr/peg/phylo
http://meso.univ-fcomte.fr/peg/phylo

92 B. AlKindy et al.

Table 1. Families applied on pipeline stages

Group or subgroup Occurrences Core genes # Species L.Bootstrap Pip. Stage Likelihood Outgroup

Gossypium group 0 85 84 12 26 1 −84187.03 Theo cacao

Ericales 674 84 9 67 3 −86819.86 Dauc carota

Eucalyptus group 1 83 82 12 48 1 −62898.18 Cory gummifera

Caryophyllales 75 74 10 52 1 −145296.95 Goss capitis-viridis

Brassicaceae group 0 78 77 13 64 1 −101056.76 Cari papaya

Orobanchaceae 26 25 7 69 1 −19365.69 Olea maroccana

Eucalyptus group 2 87 86 11 71 1 −72840.23 Stoc quadrifida

Malpighiales 1183 78 12 80 3 −95077.52 Mill pinnata

Pinaceae group 0 76 75 6 80 1 −76813.22 Juni virginiana

Pinus 80 79 11 80 1 −69688.94 Pice sitchensis

Bambusoideae 83 81 11 80 3 −60431.89 Oryz nivara

Chlorophyta group 0 231 24 8 81 3 −22983.83 Olea europaea

Marchantiophyta 65 64 5 82 1 −117881.12 Pice abies

Lamiales group 0 78 77 8 83 1 −109528.47 Caps annuum

Rosales 81 80 10 88 1 −108449.4 Glyc soja

Eucalyptus group 0 2254 85 11 90 3 −57607.06 Allo ternata

Prasinophyceae 39 43 4 97 1 −66458.26 Oltm viridis

Asparagales 32 73 11 98 1 −88067.37 Acor americanus

Magnoliidae group 0 326 79 4 98 3 −85319.31 Sacc SP80-3280

Gossypium group 1 66 83 11 98 1 −81027.85 Theo cacao

Triticeae 40 80 10 98 1 −72822.71 Loli perenne

Corymbia 90 85 5 98 2 −65712.51 Euca salmonophloia

Moniliformopses 60 59 13 100 1 −187044.23 Prax clematidea

Magnoliophyta group 0 31 81 7 100 1 −136306.99 Taxu mairei

Liliopsida group 0 31 73 7 100 1 −119953.04 Drim granadensis

basal Magnoliophyta 31 83 5 100 1 −117094.87 Ascl nivea

Araucariales 31 89 5 100 1 −112285.58 Taxu mairei

Araceae 31 75 6 100 1 −110245.74 Arun gigantea

Embryophyta group 0 31 77 4 100 1 −106803.89 Stau punctulatum

Cupressales 87 78 11 100 2 −101871.03 Podo totara

Ranunculales 31 71 5 100 1 −100882.34 Cruc wallichii

Saxifragales 31 84 4 100 1 −100376.12 Aral undulata

Spermatophyta group 0 31 79 4 100 1 −94718.95 Mars crenata

Proteales 31 85 4 100 1 −92357.77 Trig doichangensis

Poaceae group 0 31 74 5 100 1 −89665.65 Typh latifolia

Oleaceae 36 82 6 100 1 −84357.82 Boea hygrometrica

Arecaceae 31 79 4 100 1 −81649.52 Aegi geniculata

PACMAD clade 31 79 9 100 1 −80549.79 Bamb emeiensis

eudicotyledons group 0 31 73 4 100 1 −80237.7 Eryc pusilla

Poeae 31 80 4 100 1 −78164.34 Trit aestivum

Trebouxiophyceae 31 41 7 100 1 −77826.4 Ostr tauri

Myrtaceae group 0 31 80 5 100 1 −76080.59 Oeno glazioviana

Onagraceae 31 81 5 100 1 −75131.08 Euca cloeziana

Geraniales 31 33 6 100 1 −73472.77 Ango floribunda

Ehrhartoideae 31 81 5 100 1 −72192.88 Phyl henonis

Picea 31 85 4 100 1 −68947.4 Pinu massoniana

Streptophyta group 0 31 35 7 100 1 −68373.57 Oedo cardiacum

Gnetidae 31 53 5 100 1 −61403.83 Cusc exaltata

Euglenozoa 29 26 4 100 3 −8889.56 Lath sativus

Hybrid Genetic Algorithm and Lasso Test Approach 93

Table 2. Genomes information of Apiales

Organism name Accession Genome Id Sequence length Number of genes Lineage

Daucus carota NC 008325.1 114107112 155911 bp 138 Apiaceae

Anthriscus cerefolium NC 015113.1 323149061 154719 bp 132 Apiaceae

Panax ginseng NC 006290.1 52220789 156318 bp 132 Araliaceae

Eleutherococcus senticosus NC 016430.1 359422122 156768 bp 134 Araliaceae

Aralia undulata NC 022810.1 563940258 156333 bp 135 Araliaceae

Brassaiopsis hainla NC 022811.1 558602891 156459 bp 134 Araliaceae

Metapanax delavayi NC 022812.1 558602979 156343 bp 134 Araliaceae

Schefflera delavayi NC 022813.1 558603067 156341 bp 134 Araliaceae

Kalopanax septemlobus NC 022814.1 563940364 156413 bp 134 Araliaceae

Fig. 6. Best trees of topologies 0, 11, and 2.

These latter are: Panax ginseng, Eleutherococcus senticosus, Aralia undulata,
Brassaiopsis hainla, Metapanax delavayi, Schefflera delavayi, and Kalopanax
septemlobus. Chloroplasts of Apiales are characterized by having highly con-
served gene content and order [11].

Method to Select Best Topologies. We define T = [t0, t1, ..., tm] as a list of
m = 9, 053 obtained trees from given pipeline. By comparing each tree ti in T
with the other trees in T , a set of topologies is then numbered and defined as
W = {w0, w1, w2, ..., wn}, where wi is the topology of number i. Let f(x) be a
function on W which represents the number of trees having x for their topology.

94 B. AlKindy et al.

We say that a given topology wi is selected as the best topology if and only
if f(wi) ≥ lb where lb is the lower bound threshold computed by the following
formula

lb =
m ∗ γ

100
γ is a constant value between 1 − 10 and m is the size of T . Then x is stored as
best topology.

Pratical Results. In our case, γ = 8, meaning that we exclude as noise the
topologies representing less than 8 % from the given trees. Three from 43 iden-
tified tree topologies are selected, with a number of occurrences f(x) above
lb = 724, as the best topologies as shown in Table 3. In this table, topologies 0
and 11 are delivered from optimization stages when the desired bootstrap value
is set to 96, and topology 2 is obtained from systematic stage when we increase
the desired bootstrap to 100. The best obtained phylogenetic trees from selected
topologies are provided in Table 3: in this table Min.Bootstrap is higher than
Avg.Bootstrap, as the former represents the lowest bootstrap value of the best
tree in the given topology, while Avg.Bootstrap consists of the average lowest
bootstrap in all trees having this topology.

As it can be noted, only 3 of the 43 obtained topologies contain trees whose
lowest bootstrap is larger than 87, namely 0, 11, and 2. It is not so easy to make
the decision, since all selected trees are very closed to each other with small
differences. A new question needs to be answered: which genes are responsible
for changing the tree from topology0 to topology11, or to topology2? Deep inves-
tigations are needed in future work to answer this new question and to discover
the set of genes in groupA, groupB, andgroupC that change one tree topology
to another one (see Fig. 6).

The only notable difference between topologies 0 and 11 is the taxa posi-
tion of Kalo septemlobus and Meta delavayi. In the same way, there is only one
difference between topologies 0 and 11 with 2: grouping the same two taxa of
Kalo septemlobus and Meta delavayi. Different comparisons on trees provided
with selected topologies are summarized in Fig. 7.

Table 3. Information regarding obtained topologies

Topology Min.Bootstrap Avg.Bootstrap Occurrences (f(x)) Gene rate (%)

0 88 56 5422 64.7

11 96 76 2579 44.8

2 100 68 787 99.1

8 72 50 89 44.8

9 49 29 48 35.3

14 61 48 31 25

5 80 48 21 34.5

20 63 53 11 53.4

10 62 50 8 68.1

Hybrid Genetic Algorithm and Lasso Test Approach 95

Fig. 7. Different comparisons of the topologies w.r.t the amount of removed genes: the
number of disregarded genes in these figures is specified by n

3
where n is the number

of core genes. (a) Number of trees per topology, (b) number of trees whose lowest
bootstrap is larger than or equal to 80, (c) lowest bootstrap in best trees, and (d) the
average of lowest bootstraps.

7 Conclusion

In this study, an many stages pipeline have been applied (namely: systematic
mode, random mode, GA stage one, Lasso test mode, and GA stage two) for
inferring trustworthy phylogenetic trees from various plant groups. We have veri-
fied that inferring a phylogenetic tree based on either the full set or some subsets
of common core genes does not always lead to good support of the phylogenetic
reconstruction. In both systematic and random stages, many trees have been
generated based on omitting randomly some genes. When the desired score was
not reached, a genetic algorithm has then been applied inside two specific stages
using previously generated trees, to find new optimized solutions after realiz-
ing crossover and mutation operations. Furthermore, we applied a Lasso test
for identifying and removing systematically blurring genes, discarding so those
which have the worst impact on supports. We tested this pipeline on 322 differ-
ent plant groups, where 63 of them are base families while the remaining ones
are random trees, these latter playing the rule of skeletons when reconstructing

96 B. AlKindy et al.

the supertree. A case study regarding Apiales order is analyzed and three “best”
topologies stand out from the 43 obtained. Deep investigation will be needed in
future work, in order to discover which genes change the topology, and to deeply
investigate the sequences of the genes that blur the signal, to find the reasons of
such effects.

Acknowledgement. Computations have been performed on the supercomputer facil-
ities of the Mésocentre de calcul de Franche-Comté.

References

1. Alkindy, B., Couchot, J.F., Guyeux, C., Mouly, A., Salomon, M., Bahi, J.M.: Find-
ing the core-genes of chloroplasts. J. Biosci. Biochem. Bioinform. 4(5), 357–364
(2014)

2. Alkindy, B., Guyeux, C., Couchot, J.-F., Salomon, M., Bahi, J.M.: Gene similarity-
based approaches for determining core-genes of chloroplasts. In: 2014 IEEE Inter-
national Conference on Bioinformatics and Biomedicine (BIBM), pp. 71–74. IEEE
(2014)

3. Bhandari, D., Murthy, C., Pal, S.K.: Genetic algorithm with elitist model and its
convergence. Int. J. Pattern Recogn. Artif. Intell. 10(06), 731–747 (1996)

4. Booker, L.B., Goldberg, D.E., Holland, J.H.: Classifier systems and genetic algo-
rithms. Artif. Intell. 40(1), 235–282 (1989)

5. Edgar, R.C.: Muscle: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Res. 32(5), 1792–1797 (2004)

6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading (1993)

7. Gupta, M., Singh, S.: A novel genetic algorithm based approach for optimization
of distance matrix for phylogenetic tree construction. Int. J. Comput. Appl. 52(9),
14–18 (2012)

8. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press, Ann Arbor (1975)

9. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. MIT Press,
Cambridge (1992)

10. Matsuda, H.: Construction of phylogenetic trees from amino acid sequences using
a genetic algorithm. In: Proceedings of Genome Informatics Workshop, vol. 6, pp.
19–28 (1995)

11. Palmer, J.D.: Plastid chromosomes: structure and evolution. Mol. Biol. Plastids 7,
5–53 (1991)

12. Prebys, E.K.: The genetic algorithm in computer science. MIT Undergrad. J. Math
2007, 165–170 (2007)

13. Stamatakis, A., Ludwig, T., Meier, H.: Raxml-iii: a fast program for maximum
likelihood-based inference of large phylogenetic trees. Bioinformatics 21(4), 456–
463 (2005)

14. Tate, S.I., Yoshihara, I., Yamamori, K., Yasunaga, M.: A parallel hybrid genetic
algorithm for multiple protein sequence alignment. In: Proceedings of the World
on Congress on Computational Intelligence, vol. 1, pp. 309–314. IEEE (2002)

15. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.
(Ser. B) 58, 267–288 (1996)

16. Wyman, S.K., Jansen, R.K., Boore, J.L.: Automatic annotation of organellar
genomes with dogma. Bioinformatics 20(17), 3252–3255 (2004). Oxford Press

Constructing and Employing Tree Alignment
Graphs for Phylogenetic Synthesis

Ruchi Chaudhary1(B), David Fernández-Baca2, and J. Gordon Burleigh1

1 Department of Biology, University of Florida, Gainesville, FL 32611, USA
ruchic@ufl.edu

2 Department of Computer Science, Iowa State University, Ames, IA 50011, USA

Abstract. Tree alignment graphs (TAGs) provide an intuitive data
structure for storing phylogenetic trees that exhibits the relationships
of the individual input trees and can potentially account for nested tax-
onomic relationships. This paper provides a theoretical foundation for
the use of TAGs in phylogenetics. We provide a formal definition of
TAG that — unlike previous definition — does not depend on the order
in which input trees are provided. In the consensus case, when all input
trees have the same leaf labels, we describe algorithms for constructing
majority-rule and strict consensus trees using the TAG. When the input
trees do not have identical sets of leaf labels, we describe how to deter-
mine if the input trees are compatible and, if they are compatible, to
construct a supertree that contains the input trees.

1 Introduction

Phylogenetic trees are graphs depicting the evolutionary relationships among
species; thus, they are powerful tools for examining fundamental biological ques-
tions and understanding biodiversity (e.g., [1]). The wealth of available genetic
sequences has rapidly increased the number of phylogenetic studies from across
the tree of life (e.g., [2]). For example, STBase contains a million species trees
generated from sequence data in GenBank [3]. New next-generation sequencing
technologies and sequence capture methods (e.g., [4–6]) will further increase the
rate in which phylogenetic data is generated in the coming years. This continu-
ous flow of new phylogenetic data necessitates new approaches to store, evaluate,
and synthesize existing phylogenetic trees.

Recently Smith et al. introduced tree alignment graphs (TAGs) as a way to
analyze large collections of phylogenetic trees [7]. TAGs preserve the structure
of the input trees and thus provide an intuitive, interpretable representation
of the input trees, which enables users to visually assess patterns of agreement
and conflict. The TAG structure also makes it possible to combine trees whose
tips include nested taxa (e.g., the tips of one tree contain species in taxonomic
families, while the tips of another tree contain the families), which was true
of only a few previous synthesis approaches [8–10]. Indeed, a TAG was used
to merge a taxonomy of all ∼2.3 million named species with ∼500 published
phylogenetic trees to obtain an estimate of the tree of life [11].
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): AlCoB 2015, LNBI 9199, pp. 97–108, 2015.
DOI: 10.1007/978-3-319-21233-3 8

98 R. Chaudhary et al.

The original TAG definition of Smith et al. [7] depends on the order of the
input trees, which can be problematic. Further, the several details of the syn-
thesis process were not specified. Our aim in this paper is to lay the theoretical
foundations for further research on TAGs. To this end, we first provide a math-
ematically precise definition of TAGs which is independent of the order of the
input trees (Sect. 2), and develop an algorithm for constructing TAGs (Sect. 3).
We also describe algorithms to build strict and majority-rule consensus trees
using TAGs (Sect. 4). We show how to check the compatibility among input
trees and construct a supertree from compatible phylogenetic trees using a TAG
(Sect. 5). Finally, we discuss the future applications and problems associated
with using TAGs for assessing and synthesizing the enormous and rapidly grow-
ing number of available phylogenetic trees in the future (Sect. 6).

Related work. TAGs are part of a long history of using graph structures to
synthesize the relationships among phylogenetic trees with partial taxonomic
overlap. The classic example is the Build algorithm [12,13] and its later vari-
ations (e.g., [9,10,14,15]). These methods yield polynomial-time algorithms to
determine whether a collection of input trees is compatible, and, if so, output the
parent tree(s). Other graph-based algorithms, such as the MinCutSupertree
[16], the Modified MinCutSupertree [17], or the MultiLevelSupertree
[8] algorithm allow users to synthesize collections of conflicting phylogenetic
trees. Although TAGs share important features with these earlier graph-theoretic
approaches, TAGs display more directly the phylogenetic relationships exhibited
by the input trees and therefore provide a more intuitive framework to examine
patterns of conflict among trees [7]. TAGs also potentially summarize the infor-
mation in the input trees with fewer nodes than previous graphs for semi-labeled
trees [9,10].

2 Preliminaries

2.1 Notation

Let T be a rooted tree. Then, rt(T) and L(T) denote, respectively, the root and
the leaf set of T , and V (T) and E(T) denote, respectively, the set of vertices and
the set of edges of T . The set of all internal vertices of T is I(T) := V (T)\L(T).
We define ≤T to be the partial order on V (T) where x ≤T y if y is a vertex on
the path from rt(T) to x. If {x, y} ∈ E(T) and x ≤T y, then y is the parent of
x and x is a child of y. Two vertices in T are siblings if they share a parent.

Let X be a finite set of labels. A phylogenetic tree on X is a pair T = (T, ϕ)
where 1) T is a rooted tree in which every internal vertex has degree at least
three, except rt(T), which has degree at least two, and 2) ϕ is a bijection from
L(T) to X [13]. Tree T is called the underlying tree of T and ϕ is called the
labeling map of T . For convenience, we will often assume that the set of labels
X of T is simply L(T). The size of T is the cardinality of L(T). T is binary (or
fully resolved) if every vertex v ∈ I(T) \ rt(T) has degree three and rt(T) has
degree two.

Constructing and Employing Tree Alignment Graphs 99

Let T = (T, ϕ) be a phylogenetic tree on X and let v be any vertex in V (T).
The subtree of T rooted at vertex v ∈ V (T), denoted by Tv, is the tree induced
by {u ∈ V (T) : u ≤ v}. The cluster at v, denoted CT (v), is the set of leaf labels
{ϕ(u) ∈ X : u ∈ L(Tv)}. We write H(T) to denote the set of all clusters of T .
Note that H(T) includes trivial clusters; i.e., clusters of size one or |X|.

2.2 Tree Alignment Graphs

Here we define the tree alignment graph (TAG). Our definition is somewhat
different from that of Smith et al. [7]. We explain these differences later.

We first need an auxiliary notion. A directed multi-graph is a directed graph
that is allowed to have multiple edges between the same two vertices. More
formally, a directed multi-graph is a pair (V,E) of disjoint sets (of vertices and
edges) together with two maps init : E → V and ter : E → V assigning to each
edge e an initial vertex init(e) and a terminal vertex ter(e) [18]. Edge e is said
to be directed from init(e) to ter(e). The in-degree of a node v is the number of
edges e such that ter(e) = v; the out-degree of v is the number of edges e such
that init(e) = v. We call a node with out-degree zero a leaf node; all non-leaf
nodes are called internal nodes.

A directed acyclic (multi-) graph, DAG for short, is a directed multi-graph
with no cycles.

Definition 1 (Tree Alignment Graph (TAG)). Let P be a collection of
phylogenetic trees and S =

⋃
T ∈P L(T). The tree alignment graph of P is a

directed graph D = (U,E) along with an injective function f : U → 2S , called
the vertex-labeling function, such that

– for each v ∈ U , f(v) ∈ H(T) for some T ∈ P, and
– for each T := (T, ϕ) ∈ P and each e := {x, y} ∈ E(T) where x <T y, there
exists a unique e′ ∈ E such that CT (x) = f(ter(e′)) and CT (y) = f(init(e′)).

Figure 1 illustrates Definition 1.

Remarks:

1. Note that we only use the vertex-labeling function f to facilitate the definition
and to label the leaf nodes of the TAG. We do not actually label the internal
vertices of the TAG, since, as the TAG gets bigger, assigning labels using f
becomes impractical.

2. Having a unique edge in the TAG for each input tree edge enables system-
atically annotating the TAG for each individual input tree, as the TAG also
provides a means for storing phylogenetic trees.

Lemma 1. The TAG is acyclic.

Proof. Stems from the fact that for each edge e ∈ E, f(ter(e)) ⊂ f(init(e)). �

100 R. Chaudhary et al.

Fig. 1. A collection P of phylogenetic trees T1, T2, and T3 and the TAG D of P. The
edges of D are colored so as to correspond to the input trees; the internal vertices are
labeled for clarity (Color figure online).

Comparison with Smith et al.’s TAG. In [7], Smith et al. define their TAG
procedurally, as follows. Let P be a collection of phylogenetic trees and S =⋃

T ∈P L(T). Let D = (U,E) be a directed graph along with an injective vertex-
labeling function f : U → 2S . Initially, D has a vertex f−1(S), and |S| vertices
f−1({s}), for each s ∈ S. Next, Smith et al.’s method process each input tree
T = (T, ϕ) ∈ P, in some order, and does the following:

1. Map each vertex v ∈ L(T) to vertex u ∈ U where ϕ(v) = f(u).
2. Map each vertex v ∈ I(T) to the vertex u ∈ U , where CT (v) ∩ f(u) �= φ,

L(T) \ CT (v) ∩ f(u) = φ, and CT (v) ∩ S \ f(u) = φ. If no such u exists, then
add new vertex u with f(u) := CT (v) in D.

3. In the case of a vertex v ∈ I(T) mapping to multiple vertices in D, for each
such t vertices u1, ..., ut ∈ U , where for each j ∈ {1, . . . , t − 1} there exists
e′ ∈ E such that ter(e′) = uj and init(e′) = uj+1, discard all mapping of v
to u2, ..., ut, except u1. Note that v ∈ V (T) can still be mapped to multiple
vertices in D. For example, vertex v of T3 in Fig. 1 is mapped to vertices
f−1({a, b, c}) and f−1({a, b, d}) of D1 in Fig. 2.

4. For edge e = {x, y} ∈ E(T), add directed edges in D from all mappings of x
to all mappings of y.

Observe that Smith et al.’s definition of the TAG coincides with Definition 1
when the input trees have completely overlapping leaf label sets; however, it
differs when the input trees have partially overlapping leaf label sets, as we
discuss next.

Notice that Step 2 first tries to map a vertex v ∈ I(T) to a vertex u ∈ U for
which CT (v) ⊆ f(u), and f(u) does not have any label of L(T) other than that of
CT (v). If no suitable match exists, then a new vertex f−1(CT (v)) is added to D.

Constructing and Employing Tree Alignment Graphs 101

As a result, the set of vertices in the TAG that this procedure creates can depend
on the order of input trees. Figure 2 illustrates how changing the order of input
trees can lead to different TAGs for the input trees of Fig. 1. When T3 is processed
after T1 and T2, the vertex v of T3 maps to f−1({a, b, c}) and f−1({a, b, d}) in
Step 2. On the other hand, processing T3 before T1 and T2, necessitates the
creation of f−1({a, b}) in the resulting TAG.

Smith et al. discussed the possibility of order dependence of their TAG and
addressed it through a post-processing procedure [7]. For the given collection
of input trees and the TAG that results from the first round of processing, the
post-processing procedure recomputes the mapping of each internal vertex of the
input tree following Step 2. If the new mapping of an internal vertex of the input
tree differs from the old mapping, then the mapping is updated. Edges of the
resulting TAG that correspond to the outdated mapping are removed and edges
for the new mapping are added. For example, there will be no change in TAG
D1 after applying post-processing procedure. On the contrary, post-processing
will map v ∈ I(T3) to f−1({a, b, c}) and f−1({a, b, d}) in D2. This new mapping
will cause adding directed edges, 1) from f−1({a, b, c, d, e}) to f−1({a, b, c}) and
f−1({a, b, d}), 2) from f−1({a, b, c}) to f−1({a}) and f−1({b}), and 3) from
f−1({a, b, d}) to f−1({a}) and f−1({b}) in D2. Let D′

2 be the resulting TAG
after applying post-processing on D2. Clearly, D1 and D′

2 are different. We note
that since the post-processing is inadequate for overcoming order-dependence,
an algorithm for pre-processing of input trees is in development1. In contrast to
Smith et al.’s TAG [7], our TAG (in Definition 1) is independent of the order of
input trees.

Fig. 2. Following [7], if the input trees from Fig. 1 are processed in the order T1, T2,
and T3, the resulting TAG is D1; changing the order of input trees, and processing
them as T3, T1, and T2, results into D2, which is different from D1. Again, the edges
of both TAGs are colored so to correspond to the input trees; the internal vertices are
labeled for clarity.

The input trees in [7] always include a taxonomy tree, which contains all of
the leaf labels from the input trees and could be a star tree (i.e., all the leaf
1 S. A. Smith, J. W. Brown, and C. E. Hinchliff (Department of Ecology and Evolu-

tionary Biology, University of Michigan, Ann Arbor), personal communication.

102 R. Chaudhary et al.

nodes connecting to a root node) if no taxonomic classification is available. Here
we study the TAG in the standard supertree framework, so we do not assume
that a taxonomy tree is included.

3 Constructing a TAG

We now present an algorithm for constructing the TAG for a collection of phylo-
genetic trees. The algorithm first collects clusters by reading through the input
trees and making each unique cluster a node in the TAG. It then adds edges
between nodes in the TAG.

Let P be the input collection of k phylogenetic trees. Let S =
⋃

T ∈P L(T)
and n = |S|.

3.1 Building TAG Nodes

We define a bijection g that maps each taxon in S to a unique number in
{1, 2, . . . , n}. For each tree T = (T, ϕ) in P, the bit-string of v ∈ V (T) is a
binary string of length n, where the ith bit is 1, if g−1(i) ∈ CT (v), or 0, other-
wise. We collect bit-strings from the input trees in a list A and construct a TAG
node for each unique bit-string.

Collecting bit-strings: The algorithm starts by traversing each input tree in post-
order. When, after traversing its subtree, a vertex v is visited, we compute v’s
bit-string as follows. If v is a leaf with label s ∈ S, the bit string for v is simply
the string of length n with a 1 at position g(s) and 0 s everywhere else. If v is
an internal node, its bit-string is the OR of the bit-strings of v’s children. After
each bit-string is computed, it is stored in A. When the traversals of all k input
trees are complete, A has O(nk) bit-strings.

Filtering unique bit-strings: To remove duplicates from A, we first sort it using
radix sort [19, Chapter8]. Given N b-bit numbers and any positive integer r ≤ b,
radix sort sorts these numbers in O((b/r)(N + 2r)) time. In our case, b = n and
N = nk, giving a running time of O((n/r)(nk+2r)). This quantity is minimized
when r = log(nk), giving a running time of O(n2k/ log(nk)).

After sorting A, we remove its duplicate bit-strings in a single linear scan.
This can be done in O(n2k) time through standard methods.

TAG nodes: We construct a node in the TAG for each unique bit-string in A.
For bit-strings corresponding to the leaf nodes, we also associate the appropriate
label from S using function g.

3.2 Adding Edges to the TAG

Once the vertices of input trees have been mapped to the vertices of TAG, we
add directed edges to the TAG. We traverse each input tree in post-order. When

Constructing and Employing Tree Alignment Graphs 103

a tree traversal visits an internal vertex v of an input tree, we find the bit-strings
of v and v’s children in A and locate the nodes corresponding to them in the
TAG. We then add directed edges from the TAG node corresponding to v to the
TAG nodes for v’s children.

Theorem 1. For a given collection of k phylogenetic trees on n labels, the TAG
can be built in O(n2k) time.

Proof. Collecting bit-strings and then sorting them requires O(n2k) time. The
remaining steps take time linear in the size of the input. �

4 Finding Consensus Trees Using the TAG

Let P be a collection of k input phylogenetic trees with completely overlapping
leaf label set of size n. The strict consensus tree for P is the tree whose clusters
are precisely those that appear in all the trees in P. The majority-rule consensus
tree for P is the tree whose clusters are precisely those that appear in more than
half (i.e., the majority) of the trees in P. Here we show how to build the majority-
rule consensus trees for P from the TAG for P. We then outline the modifications
needed to compute the strict consensus tree.

Algorithm MajorityRuleTree (Algorithm 1) builds the majority-rule tree
for P by traversing the TAG D for P. Let D = (U,E) and f be the vertex-
labeling function. We assume that each vertex v in D stores the cardinality of v
— i.e., the number of taxa in f(v) — along with count(v), the number of times
cluster f(v) appears in a tree in P. We also assume that multiple edges between
the same two vertices are replaced by a single edge. The next observation follows
from the fact that the input trees have completely overlapping leaf label sets.

Observation 1. D has precisely one vertex s with in-degree zero.

Let v be a node in D. Then, v is a majority node if count(v) > k/2. The
clusters associated with majority nodes are precisely the clusters of the majority-
rule tree. Let the nodes of the majority-rule tree correspond to the majority
nodes of D. Next we develop an approach to hook up these nodes to actually
build the majority-rule tree.

Let u and v be nodes of D. Then, v is a majority ancestor of u if v is a
majority node, and there is directed path from v to u in D. Algorithm 1 is based
on the following observation (parts of which were noted in [20]).

Observation 2. Let u and v be majority nodes in D. Then,

(i) if there is a directed path from a majority node u to a majority node v in
D, then f(v) ⊂ f(u), and

(ii) if v is the parent of u in the majority-rule tree for P, then v is the (unique)
minimum-cardinality majority ancestor of u; further, f(u) ⊂ f(v).

104 R. Chaudhary et al.

Let u be a node in D. The most recent majority ancestor of u is the unique
minimum-cardinality majority ancestor u. For each vertex u ∈ U , our algorithm
maintains two variables: p(u), a reference to the smallest cardinality majority
ancestor of u seen thus far, and m(u), the cardinality of p(u). Initially, every
node u, except the node s of in-degree zero, has p(u) = s, representing initial
best estimate of the most recent majority ancestor of u. The algorithm revises
this estimate repeatedly until it converges on the correct value. After this process
is complete, it is now a simple matter to assemble the majority-rule tree, since,
for each majority node u, p(u) points to u’s parent in that tree.

Algorithm 1 processes the nodes of D according to topological order — this
ordering exists because D is acyclic (from Lemma 1). When the algorithm visits
a node u, it examines each successor v, and considers two possibilities. If u is
a majority node, then u may become the new value of p(v), while if u is not a
majority node, p(u) may become the new value of p(v). By Observation 2, the
decision depends solely on node cardinalities.

Input: The TAG D = (U,E) for a collection P of trees over the same leaf
set.

Output: The majority-rule tree for P.
1 Let s be the unique vertex in D with in-degree 0
2 foreach u ∈ V − s do
3 m(u) = n ; p(u) = s
4 Perform a topological sort of D − s
5 Let M ⊆ U be the set of majority nodes in D
6 foreach u ∈ U − s in topological order do
7 if u ∈ M then
8 μ = |f(u)| ; π = u
9 else

10 μ = m(u) ; π = p(u)
11 foreach v ∈ U such that (u, v) ∈ E do
12 if m(v) > μ then
13 m(v) = μ ; p(v) = π

14 Let T be the tree with vertex set M , where, for every u ∈ M , the parent
of u in T is p(u)

15 Let ϕ be the function that maps each leaf u of T to f(u)
16 return (T, ϕ)

Algorithm 1. MajorityRuleTree(D)

Theorem 2. Given the TAG D for a collection P of k phylogenetic trees on the
same n leaves, the majority-rule consensus tree of P can be computed in O(nk)
time.

Proof (Sketch). Correctness can be proved using Observation 2. To bound the
running time, note that topological sort takes time linear in the size of D, and
the main loop (Lines 6–13) examines each node and each edge once. Since the
number of edges and nodes in D is O(nk), the claimed time bound follows. �

Constructing and Employing Tree Alignment Graphs 105

The algorithm for strict consensus tree is similar to Algorithm 1, with only
one significant difference: instead of dealing with majority nodes, it focuses on
strict nodes, that is, TAG nodes u such that count(u) = k. We omit the details,
and simply summarize the result.

Theorem 3. Given the TAG for a collection P of k phylogenetic trees on the
same n leaves, the strict consensus tree of P can be computed in O(nk) time.

5 Testing Compatibility Using the TAG

Let T and T ′ be two phylogenetic trees on X and X ′, respectively, where X ⊆
X ′. We say that T ′ displays T if, up to suppressing non-root nodes of degree
two, the minimum rooted subtree of T ′ that connects the elements of X refines
T , i.e., T can be obtained from it by contracting internal edges. Suppressing a
node of degree two means replacing that node and its incident edges by an edge.

Let P be the input collection of rooted phylogenetic trees. We say that P is
compatible if there exists a phylogenetic tree T , called a compatible supertree for
T , that simultaneously displays every tree in P. A classic result in phylogenetics
is that compatibility can be tested in polynomial time [12,13]. In this section,
we show that compatibility can be tested directly from the TAG for P.

We need some definitions. As before, we assume that multiple edges between
the same two TAG vertices are replaced by a single edge. The extended TAG is
the graph D∗ obtained from D by adding undirected edges between every two
vertices u, v ∈ U such that f(u) and f(v) are clusters corresponding to sibling
vertices in some tree in P. D∗ is a mixed graph, i.e., a graph that contains both
directed and undirected edges. See Fig. 3.

Fig. 3. Two phylogenetic trees T1 and T2 with their extended TAG, D∗; undirected
edges are shown with dashed lines.

Let D′ = (U ′, E′) be a mixed graph. An arc component of D′ is a maximal
sub-mixed graph W of D′ such that for every two nodes u and v in W there
is a path from u to v which consists only directed edges, irrespective of their
directions. Let v be a node of D′. The mixed graph obtained by deleting v and
its incident directed and undirected edges is denoted by D′ \v. Let V be a subset
of U ′. We write D′ \V to denote the (mixed) graph obtained from D′ by deleting

106 R. Chaudhary et al.

each node in V from D′. The restriction of D′ to V , denoted by D′|V , is the
subgraph of D′ obtained by deleting each node in U ′ \ V from D′.

Input: The extended TAG D∗ for a collection P of phylogenetic trees.
Output: A phylogenetic tree T that displays each tree in P or the

statement not compatible.
1 Let S0 be the set of nodes in D∗ that have in-degree zero and no incident

edges.
2 if S0 is empty then
3 return not compatible
4 if S0 contains exactly one node with out-degree zero and label � then
5 return the tree composed of singleton node with label �.
6 Find the node sets S1, S2, . . . , Sm of the arc components of D∗ \ S0.
7 Delete all undirected edges of D∗ \ S0 whose endpoints are in distinct arc

components.
8 foreach i ∈ {1, 2, . . . ,m} do
9 Call Descendant(D∗|Si)

10 if this call returns not compatible then
11 return not compatible
12 else
13 Let Ti be the phylogeny returned by this call
14 return a tree with a root node and T1, T2, . . . , Tm as its subtrees.

Algorithm 2. Descendant(D*)

The extended TAG is closely related to the restricted descendancy graph
(RDG) [9,10]. The RDG has a unique node for each internal input tree node
along with |S| leaf nodes. Let u and v be two input tree nodes, and let u′ and
v′ be the corresponding nodes in the RDG. If u is a parent of v, then there is
a directed edge from u′ to v′ in the RDG. If u and v are siblings, then there is
an undirected edge between u′ and v′ in the RDG. Otherwise, there is no edge
between u′ and v′.

The extended TAG can be viewed as a compact version of the RDG of P.
Thus, a slight adaptation of the Descendant algorithm [9,10] enables us to
determine whether P is compatible given its extended TAG D∗. The details
of this adaptation are shown in Algorithm 2. The algorithm first attempts to
decompose the problem into subproblems, each of which corresponds to one of
the subtrees of the compatible supertree. If no such decomposition exists, then P
is incompatible. Otherwise, the algorithm identifies a collection of subproblems,
each associated with a different arc component, and recursively tests compati-
bility for each subproblem.

Theorem 4. Let D∗ be the extended TAG for a collection P of phylogenetic
trees. If P is compatible, then Descendant(D∗) returns a compatible supertree
for P; otherwise, Descendant(D∗) returns the statement not compatible.

Constructing and Employing Tree Alignment Graphs 107

Proof (Sketch). Let P ′ be the collection of phylogenetic trees after labeling the
internal nodes of the input trees in P by their clusters. The order of labels in a
cluster does not matter, that is, we assume two labels identical if their respective
clusters are identical sets. Now the extended TAG of P is the same as the RDG of
P ′. The correctness of Algorithm 2 now follows from the proof of [9, Preposition
4] for P ′. We omit the details for lack of space. �

Running time: Following [9, Preposition3]), we can show that if P consists of k
fully resolved phylogenetic trees on the leaf set of size n, then the Descendant
subroutine runs in time O(n2k2). We conjecture that the running time can be
reduced to O(nk log2 n) using the approach discussed in [9]. If, however, the
input trees are not fully resolved, the running time increases by a factor of n.

Remark. As we mention earlier, there are considerable similarities between the
extended TAG and the RDG. Nevertheless, the former has some advantages in
practice. While every internal node of a tree in P gives rise to a distinct node in
the RDG, the extended TAG has one node for each unique cluster. For instance,
in the extreme case when P contains k identical phylogenetic trees on S, the
RDG has O(nk) nodes, while the extended TAG contains only O(n) nodes.
More typically, the trees in P will share many clusters, and the likelihood of this
being the case is especially high when k is much larger than n.

6 Discussion

We have presented a formal definition of the TAG that does not depend on the
order of the input trees. We have also presented a procedure for building TAGs,
and described how to use TAGs to find consensus trees and to determine whether
a collection of phylogenetic trees is compatible.

Extending TAGs to include potentially thousands of input trees from across
the tree of life leads to several future challenges; two major ones are incorporat-
ing trees at different taxonomic levels and finding ways to synthesize conflicting
phylogenetic input trees. It may be possible to address the second of these chal-
lenges using ideas from the AncestralBuild algorithm [9,10]. Dealing with
conflict among the input trees is also essential for processing large-scale phylo-
genetic data sets. Although a visual inspection of the TAG provides some insight
into the areas of conflict, approaches to quantify phylogenetic conflict within the
TAG may provide valuable insight into mechanisms causing phylogenetic incon-
gruence among biological datasets and help guide future phylogenetic research.
The synthesis approach of Smith et al. [11] relies on a subjective ranking of the
input trees. Potentially, a MinCutSupertree approach, like the MultiLevel-
Supertree algorithm [8], could be applied to a TAG to provide an efficient and
effective approach for synthesizing a tree of life.

108 R. Chaudhary et al.

References

1. Baum, D., Smith, S.: Tree Thinking: An Introduction to Phylogenetic, 1st edn.
Roberts and Company, Englewood (2012)

2. Goldman, N., Yang, Z.: Introduction. statistical and computational challenges
in molecular phylogenetics and evolution. Philos. Trans. Royal Soc. B Biol. Sci.
363(1512), 3889–3892 (2008)

3. McMahon, M., Deepak, A., Fernández-Baca, D., Boss, D., Sanderson, M.: STBase:
one million species trees for comparative biology. PLoS One 10(2), e0117987 (2015)

4. Faircloth, B.C., McCormack, J.E., Crawford, N.G., Harvey, M.G., Brumfield, R.T.,
Glenn, T.C.: Ultraconserved elements anchor thousands of genetic markers span-
ning multiple evolutionary timescales. Syst. Biol. 61(5), 716–726 (2012)

5. Lemmon, A.R., Emme, S.A., Lemmon, E.M.: Anchored hybrid enrichment for mas-
sively high-throughput phylogenomics. Syst. Biol. 61(5), 727–744 (2012)

6. McCormack, J.E., Faircloth, B.C., Crawford, N.G., Gowaty, P.A., Brumfield, R.T.,
Glenn, T.C.: Ultraconserved elements are novel phylogenomic markers that resolve
placental mammal phylogeny when combined with species-tree analysis. Genome
Res. 22, 746–754 (2012)

7. Smith, S.A., Brown, J.W., Hinchliff, C.E.: Analyzing and synthesizing phylogenies
using tree alignment graphs. PLoS Comput. Biol. 9(9), e1003223 (2013)

8. Berry, V., Bininda-Emonds, O., Semple, C.: Amalgamating source trees with dif-
ferent taxonomic levels. Syst. Biol. 62(2), 231–249 (2013)

9. Berry, V., Semple, C.: Fast computation of supertrees for compatible phylogenies
with nested taxa. Syst. Biol. 55(2), 270–288 (2006)

10. Daniel, P., Semple, C.: A class of general supertree methods for nested taxa. SIAM
J. Discrete Methods 19, 463–480 (2005)

11. Smith, S.A., Cranston, K.A., Allman, J.F., Brown, J.W., Burleigh, G., Chaudhary,
R., Coghill, L., Crandall, K.A., Deng, J., Drew, B., Gazis, R., Gude, K., Hibbett,
D.S., Hinchliff, C., Katz, L.A., IV, H.D.L. , McTavish, E.J., Owen, C.L., Ree, R.,
Rees, J.A., Soltis, D.E., Williams, T.: Synthesis of phylogeny and taxonomy into
a comprehensive tree of life. (Under review)

12. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest
common ancestors with an application to the optimization of relational expressions.
SIAM J. Comput. 10(3), 405–421 (1981)

13. Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)
14. Constantinescu, M., Sankoff, D.: An efficient algorithm for supertrees. J. Classif.

12, 101–112 (1995)
15. Ng, M.P., Wormald, N.C.: Reconstruction of rooted trees from subtrees. Discrete

Appl. Math. 69(1–2), 19–31 (1996)
16. Semple, C., Steel, M.A.: A supertree method for rooted trees. Discrete Appl. Math.

105, 147–158 (2000)
17. Page, R.D.M.: Modified Mincut Supertrees. In: Guigó, R., Gusfield, D. (eds.) WABI

2002. LNCS, vol. 2452, pp. 537–551. Springer, Heidelberg (2002)
18. Diestel, R.: Graph Theory. Springer, Heidelberg (2000)
19. Cormen, T.H., Leiserson, C.E., Rivest, R.E.: Introduction to Algorithms. MIT

Press, Cambridge (1996)
20. Amenta, N., Clarke, F., St. John, K.: A linear-time majority tree algorithm. In:

Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 216–
227. Springer, Heidelberg (2003)

A More Practical Algorithm for the Rooted
Triplet Distance

Jesper Jansson1(B) and Ramesh Rajaby2

1 Laboratory of Mathematical Bioinformatics, Institute for Chemical Research,
Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

jj@kuicr.kyoto-u.ac.jp
2 University of Milano-Bicocca, Milano, Italy

r.rajaby@campus.unimib.it, ramesh.rajaby@gmail.com

Abstract. The rooted triplet distance is a measure of the dissimilarity
of two phylogenetic trees with identical leaf label sets. An algorithm by
Brodal et al. [2] that computes it in O(n logn) time, where n is the num-
ber of leaf labels, has recently been implemented in the software package
tqDist [14]. In this paper, we show that replacing the hierarchical decom-
position tree used in Brodal et al.’s algorithm by a centroid paths-based
data structure yields an O(n log3 n)-time algorithm that, although slower
in theory, is easier to implement and apparently faster in practice. Simu-
lations for values of n up to 1, 000, 000 support our claims experimentally.

Keywords: Bioinformatics · Phylogenetic tree comparison · Rooted
triplet distance · Centroid path decomposition tree

1 Introduction

Over the years, many alternative methods for inferring phylogenetic trees have
been developed; see, e.g., [7]. Due to errors in experimentally obtained data or the
inherent instability of classifications, applying the same tree inference method to
different datasets, applying different tree inference methods to the same dataset,
or changing the assumed model of evolution may result in trees with different
branching patterns. In this case, in order to identify parts of the trees that
look alike or to reconcile all the trees into a single tree, methods for measuring
the similarity between phylogenetic trees are needed. Measuring the similarity
between two phylogenetic trees may also be useful for supporting queries in
phylogenetic databases in the future [1] or for evaluating the performance of a
newly proposed tree inference method by doing simulations and comparing the
inferred trees to the corresponding known correct trees.

Several measures of the (dis-)similarity of two phylogenetic trees with iden-
tical leaf label sets have been suggested in the literature (see [1]). One such
measure is the rooted triplet distance [5], which counts how many of the subtrees

J. Jansson—Funded by The Hakubi Project and KAKENHI grant number 26330014.
R. Rajaby—Funded by the EXTRA Project at the University of Milano-Bicocca.

c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): AlCoB 2015, LNBI 9199, pp. 109–125, 2015.
DOI: 10.1007/978-3-319-21233-3 9

110 J. Jansson and R. Rajaby

induced by cardinality-3 subsets of the leaves that differ between the two trees.
Intuitively, this measure considers two phylogenetic trees that share many small
embedded subtrees to be similar. This paper presents a practical algorithm for
computing the rooted triplet distance, based on the framework introduced in an
algorithm by Brodal et al. [2], along with its implementation.

1.1 Basic Definitions

In this paper, a phylogenetic tree is a rooted, unordered tree whose leaves are
distinctly labeled and whose internal nodes have degree at least 2. From here on,
phylogenetic trees are referred to as “trees” for short. The set of all nodes and
the set of all leaf labels in a tree T are denoted by V (T) and Λ(T), respectively.
For any x ∈ V (T), T (x) is the subtree of T rooted at x, i.e., the subgraph
of T induced by the node x and all of its proper descendants in T . For any
x, y ∈ V (T), lcaT (x, y) is the lowest common ancestor in T of x and y. Also, for
any x, y ∈ V (T), if x is a proper descendant of y then we write x ≺ y.

A rooted triplet is a tree with exactly three leaves. Suppose t is a rooted
triplet with leaf label set Λ(t) = {a, b, c}. There are two possibilities. If t has a
single internal node then t is called a fan triplet and is denoted by a|b|c. Observe
that in this case, t is a non-binary tree and lcat(a, b) = lcat(a, c) = lcat(b, c)
holds. Otherwise, t has two internal nodes and is a binary tree; in this case, t is
called a resolved triplet and is denoted by xy|z, where {x, y, z} = {a, b, c} and
lcat(x, y) ≺ lcat(x, z) = lcat(y, z).

For any tree T and {a, b, c} ⊆ Λ(T), the fan triplet a|b|c is said to be
consistent with T if lcaT (a, b) = lcaT (a, c) = lcaT (b, c). Similarly, the resolved
triplet ab|c is consistent with T if lcaT (a, b) ≺ lcaT (a, c) = lcaT (b, c). Let rt(T) be
the set of all rooted triplets consistent with the tree T . (Thus, |rt(T)| =

(|Λ(T)|
3

)
).

For any two trees T1, T2 with Λ(T1) = Λ(T2), the rooted triplet distance
drt(T1, T2) is defined as |rt(T1)� rt(T2)|, i.e., the number of rooted triplets that
are consistent with one of the two trees but not the other. Note that dividing
drt(T1, T2) by

(
n
3

)
, where n = |Λ(T1)| = |Λ(T2)|, yields a dissimilarity coefficient

between 0 and 1 that may be more informative than drt in some applications.
Below, we consider the problem of computing drt(T1, T2) for two input trees

T1, T2 with identical leaf label sets. To simplify the notation, write L = Λ(T1)
(= Λ(T2)) and n = |L| for the given trees.

1.2 Previous Results and Related Work

The rooted triplet distance was proposed by Dobson [5] in 1975. Given two trees
T1, T2 with identical leaf label sets, drt(T1, T2) can be computed in O(n3) time by
a straightforward algorithm. Critchlow et al. [4] gave an O(n2)-time algorithm
for the special case where T1 and T2 are binary, and Bansal et al. [1] showed
how to compute drt(T1, T2) in O(n2) time for two trees of arbitrary degrees.
Recently, Brodal et al. [2] achieved a time complexity of O(n log n) for two trees

A More Practical Algorithm for the Rooted Triplet Distance 111

of arbitrary degrees. An implementation of the latter algorithm, written in C++,
is available in the free software package tqDist [14].

The counterpart of the rooted triplet distance for unrooted trees is the
unrooted quartet distance [6]. The currently fastest algorithm for computing the
unrooted quartet distance [2] runs in O(dn log n) time, where n is the number
of leaf labels and d is the maximum degree of any node in the two input trees.

An extension of the rooted triplet distance to phylogenetic networks has been
studied in [11]. For two galled trees [9] (networks whose cycles are disjoint) with
n leaves each, the rooted triplet distance can be computed in o(n2.687) time [11].

1.3 Our Contributions

We present some non-trivial modifications to Brodal et al.’s algorithm [2] for
computing drt(T1, T2) for two trees of arbitrary degrees that make it easier to
implement and more efficient in practice. The theoretical time complexity of the
resulting algorithm is O(n log3 n), which is slightly worse than that of the original
version, but we show experimentally that a direct C++-implementation of the
new algorithm gives a faster and more memory-efficient method than tqDist [14]
(the publicly available implementation of Brodal et al.’s algorithm) for various
types of large inputs consisting of two trees with up to 1, 000, 000 leaves each.

The paper is organized as follows. Brodal et al.’s algorithm [2] is reviewed in
Sect. 2. Section 3 describes the new algorithm, Sect. 4 discusses some implemen-
tation issues, and Sect. 5 presents the experimental results. Finally, Sect. 6 gives
some concluding remarks.

2 Summary of Brodal et al ’s Algorithm [2]

On a high level, the algorithm of Brodal et al. [2] works as follows. Each rooted
triplet t in rt(T1) is implicitly assigned to the lowest common ancestor in T1 of
the three leaves in Λ(t). For each internal node u in T1, the algorithm counts how
many of its assigned rooted triplets that also appear in rt(T2) by first coloring
the leaves of T2 in such a way that two leaves receive the same color if and only
if they are descendants of the same child of u in T1, and then finding the number
of elements in rt(T2) compatible with this particular coloring by making a query
to a special data structure called a hierarchical decomposition tree (HDT) that
represents T2.

To avoid unnecessary leaf recolorings, a simple, recursive recoloring scheme
is used that visits all nodes of T1 in order and generates the corresponding leaf
colorings in T2. It is reviewed in Sect. 3.2 (a) below. Constructing the HDT,
augmenting it with auxiliary information to support the relevant queries, and
updating this information when the leaves of T2 are recolored are somewhat
complicated; see [2] for details.

As proved in [2], the algorithm’s time complexity is O(n log n).

112 J. Jansson and R. Rajaby

Fig. 1. Topologies induced by good triplets in T2.

3 The New Algorithm

The new algorithm, described below, uses the same framework as Brodal et al.’s
algorithm [2]. To be precise, we also implicitly assign each rooted triplet in rt(T1)
to an internal node in T1 and count, for each node in T1, how many of its rooted
triplets that appear in rt(T2). To handle all of T1’s nodes efficiently, we apply
Brodal et al.’s recoloring scheme with a minor modification. The main difference
between the old algorithm and the new algorithm is how the rooted triplets
in rt(T2) assigned to each node in V (T1) are counted. Whereas Brodal et al.’s
algorithm uses the (in our opinion) cumbersome HDT data structure, we use
the conceptually simpler centroid path decomposition technique [3]. This makes
the new algorithm a little slower in theory but easier to implement and faster in
practice.

3.1 Preliminaries

For convenience, we make T1 and T2 into ordered trees by imposing the following
left-to-right ordering: for every non-leaf node v in a tree, the leftmost child
of v is always a child of v having the most leaf descendants (with ties broken
arbitrarily), and the other children of v are ordered arbitrarily. Also, let a triplet
be any subset of L of cardinality three; each triplet x induces a rooted triplet
in T1 (or T2), namely the rooted triplet belonging to rt(T1) (or rt(T2)) whose
leaf label set equals x.

We first introduce some notation related to the leaf colorings induced by the
internal nodes of T1. Let d be the number of children of the highest degree node
in T1. Define a set of d+1 colors {C0, C1, .., Cd}. We usually refer to C1 as RED
and C0 as WHITE, and sometimes call a WHITE leaf non-colored and a leaf
that is neither RED nor WHITE NON-RED. Colors will be assigned to the leaf
label set L, and we say that we are coloring a leaf when we are coloring its label.

Let {v1, v2, . . . } be the children of an internal node v ∈ V (T1). Then T1 and
T2 are colored according to v if and only if, for every l ∈ L, it holds that:

– l is colored by Ci if and only if T1(l) is a descendant of vi; and
– l is WHITE if and only if T1(l) is not a descendant of v.

Suppose that T1 and T2 are colored according to some internal node v ∈ T1. Let
t be a triplet. We call t a good triplet if it induces one of the two (unordered)

A More Practical Algorithm for the Rooted Triplet Distance 113

topologies shown in Fig. 1 in T2, where Ca and Cb are colors in {C1, C2, .., Cd}
and a < b. Similarly, we call t a good fan if its three leaves all have different
colors from the set {C1, C2, .., Cd}. (This corresponds to the concept of a triplet
being “compatible with a coloring” in [2].)

For a given color Cc, Cc(S) is the number of leaves in S colored by Cc,
where S can be either a single subtree or a set of subtrees (which is generally
clear from the context). C1(S) will usually be referred to as Red(S). Also define
Ca(S) =

∑d
i=2,i �=a Ci(S) as the number of NON-RED leaves in S which are

not colored by Ca, and CRa(S) =
∑d

i=1,i �=a Ci(S) as the number of non-WHITE

leaves in S which are not colored by Ca. Finally, define Red(2)(S) =
k∑

i=1

(
Red(Si)

2

)
,

where {S1..Sk} are the subtrees rooted at the root of S. We will sometimes use
a node as an argument, meaning the subtree rooted at it.

Next, we recall the concept of a centroid path [3]. A centroid path starting
at some node v in a tree T is a heaviest path from v to a leaf of T , i.e., a
path starting at v and always choosing a child with the largest number of leaf
descendants until a leaf is reached. Let the centroid path of T , cp(T), be a centroid
path starting at the root of T . In our case, the centroid path of T starts from
the root and always selects the left subtree until it reaches a leaf.

The centroid path decomposition tree of T , denoted by CPDT (T), is an
ordered tree of unbounded degree defined as follows. One node u represents
cp(T); u is the root of CPDT (T). We traverse cp(T) from its lowest node to
its highest; for each node rj in T that we encounter, we add a single node vj

to the ordered set of children of u (making vj the rightmost child so far), and
then define the children of vj as {CPDT (T j

2), ..., CPDT (T j
k)}, where k is the

degree of rj and T j
i is the i-th subtree of rj (remember that the root of T j

1 lies
on the centroid path). We call u a CP-node (centroid path node), since it repre-
sents a whole centroid path in T , and vj a SN-node (single-node node), since it
represents a single node in T . If rj is binary then vj will have a single child.

Note that CPDT (T) has height O(log n), where n = |Λ(T)|. Moreover, we
immediately have:

Lemma 1. An SN-node is always the child of a CP-node, and the only CP-node
which is not the child of an SN-node is the root.

3.2 Description of the New Algorithm

First, the algorithm constructs CPDT (T2). Then, for each internal node v
of T1 in depth-first order, the algorithm: (a) colors the trees according to v,
and (b) counts the resulting number of good triplets and good fans by using
CPDT (T2). Finally, it returns the value

(
n
3

)
minus the total number of good

triplets and good fans found.

114 J. Jansson and R. Rajaby

(a) Colorings: To obtain all the colorings of the trees efficiently, the algorithm
uses a slightly modified variant of Brodal et al.’s recursive recoloring scheme
from [2]. The latter does a depth-first traversal of T1 while maintaining two
invariants:

(i) when entering a node v, all leaves in T1(v) are RED and all other leaves are
WHITE;

(ii) when exiting a node v, all leaves in T1(v) are WHITE.

Initially, all leaves are colored RED. This way, invariant i) holds when the
transversal starts at the root of T1.

During the transversal, whenever an internal node v ∈ V (T1) is reached, the
leaves in the i-th subtree of v are colored by the color Ci for i ∈ [2..k], where k is
the degree of v. At this point, the trees are colored according to v. After this, the
k −1 subtrees that were just colored are recolored by the color WHITE, and the
scheme recurses on the leftmost subtree of v, which is still RED. Observe that
the first invariant holds when entering the root of this subtree. After returning
from the recursive call, the leftmost subtree of v is WHITE by invariant (ii), and
the other subtrees of v are treated one by one; for each such subtree, the scheme
colors its leaves RED and then recurses on it. Again, invariant (i) holds at each
recursive call since the subtree is colored RED and everything else is WHITE.
After handling all k subtrees of v, all leaf descendants of v will be WHITE, so
invariant (ii) holds when exiting from v.

The base case of the recursion is when the reached node v ∈ V (T1) is a leaf.
In this case, the scheme colors v WHITE and exits, so that invariant (ii) holds.

Our algorithm makes the following modification to Brodal et al.’s recursive
recoloring scheme above: We color the leaves by colors {C2..Ck}, not by their
order in T1, but according to their left-to-right order in CPDT (T2). (Recall that
by definition, the CPDT is an ordered tree).

(b) Counting Good Triplets and Good Fans: By definition, good triplets
and good fans are created only when leaves are colored by NON-RED colors.
Therefore, we let the algorithm compute the number of newly created good
triplets and good fans whenever the recursive coloring scheme colors a leaf l
by a NON-RED color. To do this, the algorithm traverses the leaf-to-root path
starting at CPDT (l), and for each node v on the path, it counts the number of
good triplets and good fans that include l and whose lca in the CPDT equals v
by applying Lemmas 2 and 3 below.

From here on, we denote by Cb a color different from Ca in the set {C1, .., Ck},
but in the formulas, RED and NON-RED will usually be given separate cases.
(This is the reason why sums over colors in formulas sometimes start from 2.)

Lemma 2. Given an internal CP-node u of the CPDT and some child ui of u,
let Si be the subtree rooted at ui. Also, let u′

j be the j-th child of ui and S′
j the

subtree rooted at it. If there are no NON-RED leaves in S>i nor in S′
>j, the

A More Practical Algorithm for the Rooted Triplet Distance 115

number of good triplets introduced by coloring a leaf by a color Ca in S′
j, a ≥ 2,

such that their lca is u, is:
(

Red(S<i)
2

)
+

d∑

b=2,b �=a

(
Cb(S<i)

2

)
+

∑

h>i

Red(2)(Sh) + Ca(S≤i) · Red(S>i)+

Ca(S′
j) · Red(S<i) + Ca(S′

j) · Ca(S<i)

while the number of good fans, whose lca is u, is:

CRa(S<i) · CRa(S′
<j) −

d∑

b=1,b �=a

Cb(S<i) · Cb(S′
<j) + Ca(S<i) · RED(S′

>j)

Lemma 3. Given an SN-node v of the CPDT and some child vi of v, let Si be
the subtree rooted at vi. If there are no NON-RED leaves in S>i, the number of
good triplets introduced by coloring a leaf by a color Ca in Si, a ≥ 2, such that
their lca is v, is:

i−1∑

j=1

(
Red(Sj)

2

)
+

∑

j>i

(
Red(Sj)

2

)
+

d∑

b=2,b �=a

i−1∑

j=1

(
Cb(Sj)

2

)
+

Ca(Si) · (Red(S<i) + Red(S>i)) + Ca(Si) · Ca(S<i)

while the number of good fans, whose lca is v, is:
(

CRa(S<i)
2

)
−

d∑

b=1,b �=a

(
Cb(S<i)

2

)
−

i−1∑

h=1

(
CRa(Sh)

2

)
+

i−1∑

h=1

d∑

b=1,b �=a

(
Cb(Sh)

2

)
+

Ca(S<i) · RED(S>i)

3.3 Time Complexity Analysis

The values in Lemmas 2 and 3 for any specified node in the CPDT can be
obtained by a direct method in O(n) time. This will be too slow for our purposes,
so we first reduce it to O(log n) time (Lemmas 5 and 6). The solution uses the
range sum query data structure (RSQ), a data structure for representing an array
of non-negative integers A[1..n] so that it is possible to:

1. given an index i ∈ [1..n], change the value of A[i];
2. given two positions s, t ∈ [1..n], where s ≤ t, return the value

∑t
i=s A[i].

Given an RSQ R, we refer to the array of numbers over which R supports queries
as R.A.

We shall rely on the following result from the literature:

Lemma 4. An RSQ supporting operations 1 and 2 in O(log n) time can be
implemented in O(n) space and O(n) preprocessing time using a Fenwick tree [8].

Now, for each node v in the CPDT, define and store the following set of
counters, where {v1, v2, .., vk} denotes the set of children of v:

116 J. Jansson and R. Rajaby

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cc(v), ∀c ∈ 2..d, as defined in Sect. 3.1

C(v) =
d∑

c=2
Cc(v)

C2
c (v) =

(
Cc(v)

2

)
, ∀c ∈ 2..d

C2(v) =
d∑

c=2
C2

c (v)

C
(2)
c (v) =

k∑
i=1

(
Cc(vi)

2

)
, ∀c ∈ 2..d

C(2)(v) =
d∑

c=2
C

(2)
c (v)

SS(v) =
k∑

i=1

(d∑

b=2
Cb(vi)

2

)
+

d∑
b=2

Cb(vi) · Red(vi)

SSc(v) =
k∑

i=1

Cc(vi) · (Cc(vi) + Red(vi)) +
(
Cc(vi)

2

)
, ∀c ∈ 2..d

Also store three RSQs, named R1(v), R2(v), and R3(v), such that
R1(v).A[i] = Red(vi), R2(v).A[i] =

(
Red(vi)

2

)
, and R3(v).A[i] = Red(2)(vi).

Lemma 5. The values in Lemma 2 can be found in O(log n) time.

Proof. (Refer to the notation introduced back in Lemma2). By the definition of
the coloring scheme, no NON-RED leaf is in S>i. Therefore, Cc(u) = Cc(S≤i).
Since Cc(ui) = Cc(Si), it is straightforward to compute Cc(S<i). A similar argu-
ment works for every counter: starting from its values for u and ui, we can
compute its value for S<i easily.

Next, when coloring leaves in S′
j , all leaves in S<i have already been colored.

Thus, the values Cc(S<i), ∀c ∈ 2..d, are fixed. We keep track of the current
value of Cc(S<i) ·Cc(S′

<j), ∀c ∈ 2..d, in S′
j as we color leaves in it, plus the value

d∑
b=2

Cb(S<i) ·Cb(S′
<j). Then:

d∑
b=1,b �=a

Cb(S<i) ·Cb(S′
<j) =

d∑
b=2

Cb(S<i) ·Cb(S′
<j)−

Ca(S<i) · Ca(S′
<j) + Red(S<i) · Red(S′

<j).
The other quantities can be deduced using the counters and the RSQs defined

above. When making range queries on them, we apply Lemma4, which gives a
time complexity of O(log n). 	

Lemma 6. The values in Lemma 3 can be found in O(log n) time.

Proof. The only non-trivial quantity here is
i−1∑
h=1

(d∑

b=1,b �=a

Cb(Sh)

2

)
= SS(S<i) +

i−1∑
h=1

(
Red(Sh)

2

)−SSa(S<i), which we explain now. We need to compute the number

of pairs of colored leaves such that both leaves are in the same subtree Sh, h < i,
and none of the leaves is colored by Ca. SS(S<i) is the number of pairs of
colored leaves such that both leaves are in the same subtree Sh, h < i, but

the two leaves are not both colored RED. Adding
i−1∑
h=1

(
Red(Sh)

2

)
, we remove the

A More Practical Algorithm for the Rooted Triplet Distance 117

latter restriction, thus getting the number of pairs of colored leaves such that
both leaves are in the same subtree Sh, h < i. Finally, we remove SSa(S<i),
which is the number of pairs of colored leaves in the same subtree such that at
least one leaf is colored by Ca.

As in the proof of Lemma 5, the other quantities can be obtained in O(log n)
time using Lemma 4 and the counters and RSQs above. 	

During the execution of the algorithm, the number of good triplets and good fans
created when coloring a leaf NON-RED can be obtained by applying Lemmas 2
and 3 to the leaf and all its ancestors in the CPDT; Lemmas 5 and 6 provide
these values for any specified node of the CPDT in O(log n) time.

To ensure that Lemmas 5 and 6 can still be applied after leaves are recolored,
the counters and RSQs for certain nodes need to be updated. More precisely, we
extend the algorithm so that:

– Whenever a leaf is colored RED or WHITE, we traverse its leaf-to-root path
in the CPDT and update every RSQ on it, taking O(log n) time per node by
Lemma 4.

– Whenever a leaf is colored NON-RED, we traverse its leaf-to-root path in the
CPDT and, after applying Lemmas 5 and 6 to each node on the path, we
update its counters in O(1) time.

In summary, each node in the CPDT that is visited after a leaf recoloring can
be taken care of in O(log n) time. This gives:

Theorem 1. The time complexity of the new algorithm is O(n log3 n).

Proof. Constructing CPDT (T2) in the first step takes O(n) time. The construc-
tion follows directly from the definition of CPDT .

By Brodal et al.’s analysis in [2], a total of O(n log n) leaf colorings occur.
Whenever a leaf is colored, we visit all nodes on its leaf-to-root path in the
CPDT; its length is O(log n), leading to a total of O(n log2 n) node visits in
the CPDT. (Observe that although some nodes such as the root may be visited
Ω(n log n) times, the total number of node visits is bounded by O(n log2 n).)

By the comments after Lemma 6, O(log n) time is used for each node visit in
the CPDT. Hence, the total running time of the algorithm is O(n log3 n). 	

4 Implementation

We have implemented the new algorithm for the rooted triplet distance in
two versions: a special binary trees-only optimized version, and one for general
trees. The importance of the special case where both trees are binary justifies
a dedicated implementation. Only plain standard C++ was used, expect for an
(optional) single feature from C++11, mentioned below. The source code can
be downloaded from:
http://sunflower.kuicr.kyoto-u.ac.jp/∼jj/Software/CPDT-dist.html

A few points and optimizations that improve the implementation’s running
time in practice are discussed next.

http://sunflower.kuicr.kyoto-u.ac.jp/~jj/Software/CPDT-dist.html

118 J. Jansson and R. Rajaby

4.1 Representation of the Counters

The first issue is how to efficiently represent the counters defined in Sect. 3.3.
Let d be the number of children of the highest degree node in T1: as noted in
[10], if we naively represent the counters using d-long vectors for each node in
the CPDT, we may end up with quadratic memory (and thus quadratic time)
when d is close to n, e.g., if all the leaves are directly attached to the root of
T1. However, we do not actually need d counters in each node. At any time, the
number of colors used in any subtree of the CPDT cannot be larger than the
number of its leaves; therefore, O(n log n) counters are needed in total.

We implemented the counters as follows. In any given node v in the CPDT,
for each set of counters, we allocate an array of length min{d, leaves(v)}, where
leaves(v) = |L(CPDT (v))| is the number of leaves in the subtree of the CPDT
rooted at v. Note that when the length of the arrays is <d, counters for color
k ∈ 1..d may not be stored in position k in the arrays, so we use a map int-to-int
to maintain an association between the (used) colors in 1..d and their actual
position in the arrays.

We used a hashmap to implement the maps, which allows constant-time
insertion and retrieval. We tested two different implementation of the hashmap:
the C++11 unordered map [16] included in the standard library of our test
system, requiring C++11 support, and the dense hash map class in the (former)
Google project sparsehash [15]. We can choose which one to use at compile-time.
Some experimental results for both libraries are reported in Sect. 5.

4.2 Two-Step Coloring

In the theoretical version of the algorithm, for simplicity, when coloring leaves
by NON-RED colors in left-to-right order in the CPDT, we take each leaf in
order and count the good triplets rooted at each of its ancestors up to the root;
it is evident that some nodes are considered many times.

In the implementation, we do it slightly differently: First, we mark all of the
nodes in the CPDT we need to consider, i.e., all nodes that are ancestors of
at least one leaf being colored: for each leaf, we start at it and go up until we
either end at the root or at an already marked node, marking all the nodes we
traverse. Second, we visit the marked subtree in post-order; when we actually
consider a given node, we already know how many leaves we are coloring for
each color; modifying the formulas in Lemmas 2 and 3 to count all of the good
triplets introduced by such leaves, for each color, in one go is trivial.

4.3 The Coloring Scheme

A few optimizations were made to the coloring scheme.
First, consider what happens when the coloring scheme begins. We start by

coloring all the leaves RED, only to immediately recolor leaves not in the biggest
subtree of the root, first WHITE and then by NON-RED colors. This happens
many times, i.e., every time we color a subtree RED and immediately recurse

A More Practical Algorithm for the Rooted Triplet Distance 119

on it. We save some unnecessary operations by only coloring RED leaves in
the biggest subtree. Since coloring a leaf RED and WHITE requires updating a
number of RSQs and is a fairly expensive operation, this saves us some time.

Next, cherry nodes (i.e., internal nodes with exactly two leaves attached) do
not need to be colored, since they can not yield any good triplet. If we do not
consider them, we can save a lot of RED and WHITE colorings. Cherry nodes
are fairly frequent, especially in binary/low branching trees.

Finally, when we color a single leaf (or even a sufficiently low number of
leaves), the two-step coloring can actually be a burden. Thus, we made a few
special routines that directly update the leaf-to-root path of a given leaf, without
the need of marking it first.

5 Experiments

We compared the running time and memory usage in practice of the new algo-
rithm to that of tqDist [14] by a series of experiments, as described in this
section.

5.1 Experimental Setup

The experiments were performed on a computer running Ubuntu 12.04, with an
Intel Xeon W3530 (quad-core, 2.8 GHz) and 16 GB of RAM. The system C++
compiler was g++, version 4.6.3.

We used the C++-implementations of our algorithm presented in Sect. 4:
one for general trees and a special binary trees-only optimized version. As men-
tioned in Sect. 4, the algorithm can be compiled using two different hashmaps:
C++11 unordered map [16] (we named this CPDT) and sparsehash [15] (named
CPDTg). We will improperly refer to CPDT and CPDTg as “implementations”
of our algorithm, but they are actually a single implementation linked against
two different hashmap libraries. tqDist [14] was built from its source code using
cmake, as instructed by the authors. We had to disable the HDT dynamic con-
traction [10] of tqDist as it was making the tool run tens of times slower; built
with the default parameters, it would usually take more than an hour for two
random 1 million leaves trees.

Running times were measured using the time command, which gives the sum
of system and user times and includes the time spent parsing the trees from a file;
the average over 50 runs was taken. Memory usage was measured with Valgrind
[13] and its heap profiling tool Massif. Due to the slowdown caused by Valgrind,
we took the average over 20 runs.

5.2 Input Trees

Our implementations and tqDist were applied to pairs of trees with values of n
up to 1, 000, 000. Arbitrary-degree input trees were generated as follows:

120 J. Jansson and R. Rajaby

First, generate a binary tree with n leaves in the uniform model [12].
Then, for each non-root, internal node v in the tree, contract it (i.e.,
make the children of v become children of v’s parent, and remove v)
with some fixed probability p.

Below, we let pi for i ∈ {1, 2} be the chosen value of p when generating Ti.
We used three values of p1 and p2: 0.2, 0.5, and 0.8, calling the generated trees
lowly-branching, moderately-branching, and highly-branching, respectively. This
gave 9 sets of benchmarks. In addition, we created a set where both trees are
binary (equivalent to the case p1 = p2 = 0) and two extra sets where p1 is
0.95 (resp. 0.2) and p2 is 0.2 (resp. 0.95) in order to test the behavior of the
algorithms when dealing with extremely-branching trees, i.e., flat trees with very
high degree. Also, all sets of benchmarks were executed on pairs of unrelated as
well as related trees, where unrelated trees were generated independently of each
other and related trees were generated from the same binary tree.

5.3 Results

Table 1 reports the average running times of the three implementations tested on
pairs of trees with 1 million leaves, along with the relative speed-ups over tqDist.
Figure 2 plots the average running times as a function of n for binary trees as
well as for non-binary trees obtained using some representative (p1, p2)-values.

The binary case benefits greatly from having a special implementation, being
faster than the more general implementation for arbitrary-degree trees, and

Table 1. Average running times, in seconds, on two 1M leaves trees, and relative
speed-ups over tqDist.

Unrelated trees Related trees

p1 p2 tqDist CPDT CPDTg tqDist CPDT CPDTg

0.0 0.0 46.38 1.00x 8.12 5.71x - - - - - - - -

0.2 0.2 47.90 1.00x 16.23 2.95x 14.90 3.21x 13.31 1.00x 5.45 2.44x 5.06 2.63x

0.2 0.5 46.71 1.00x 17.89 2.61x 16.33 2.86x 12.04 1.00x 5.57 2.16x 5.08 2.37x

0.2 0.8 40.26 1.00x 15.67 2.57x 14.19 2.84x 10.29 1.00x 4.76 2.16x 4.28 2.40x

0.2 0.95 30.87 1.00x 11.26 2.74x 10.21 3.02x 9.09 1.00x 4.00 2.27x 3.59 2.53x

0.5 0.2 46.25 1.00x 15.78 2.93x 14.58 3.17x 12.75 1.00x 5.28 2.41x 5.11 2.50x

0.5 0.5 45.09 1.00x 17.42 2.59x 16.00 2.82x 11.48 1.00x 5.40 2.13x 5.17 2.22x

0.5 0.8 38.80 1.00x 15.18 2.56x 13.87 2.80x 9.79 1.00x 4.57 2.14x 4.35 2.25x

0.8 0.2 43.18 1.00x 14.67 2.94x 13.62 3.17x 11.91 1.00x 4.95 2.41x 4.70 2.53x

0.8 0.5 42.21 1.00x 16.36 2.58x 15.12 2.79x 10.61 1.00x 5.02 2.11x 4.70 2.26x

0.8 0.8 35.88 1.00x 14.08 2.55x 12.95 2.77x 8.96 1.00x 4.20 2.13x 3.86 2.32x

0.95 0.2 37.14 1.00x 12.72 2.92x 11.75 3.16x 11.15 1.00x 4.79 2.33x 4.19 2.66x

A More Practical Algorithm for the Rooted Triplet Distance 121

Fig. 2. Plots of the average running time in seconds (y-axis) against n (x-axis), for
binary trees and for some representative values of (p1, p2). Solid lines represent values
on unrelated trees, while dashed lines represent values on related trees; the notion of
related trees is not applicable to binary trees.

122 J. Jansson and R. Rajaby

Fig. 3. Plots of the memory usage in gigabytes (y-axis) against n (x-axis), for binary
trees and for some representative values of (p1, p2).

A More Practical Algorithm for the Rooted Triplet Distance 123

Table 2. Average memory usage, in GBs, on two 1M leaves trees, and the relative
memory usage decrease over tqDist.

p1 p2 tqDist CPDT CPDTg

0.0 0.0 3.09 1.00x 0.67 4.61x - -

0.2 0.2 2.87 1.00x 1.03 2.79x 1.14 2.52x

0.2 0.5 2.53 1.00x 0.99 2.56x 1.08 2.34x

0.2 0.8 2.05 1.00x 0.81 2.53x 0.87 2.36x

0.2 0.95 1.72 1.00x 0.68 2.53x 0.69 2.49x

0.5 0.2 2.77 1.00x 1.04 2.66x 1.15 2.41x

0.5 0.5 2.46 1.00x 1.01 2.44x 1.11 2.22x

0.5 0.8 2.00 1.00x 0.81 2.47x 0.87 2.30x

0.8 0.2 2.73 1.00x 1.13 2.42x 1.24 2.20x

0.8 0.5 2.37 1.00x 1.14 2.08x 1.24 1.91x

0.8 0.8 1.94 1.00x 0.88 2.20x 0.93 2.09x

0.95 0.2 2.72 1.00x 1.57 1.73x 1.68 1.62x

showing nearly six-fold improvement over tqDist. Note that as it does not rely
on hashmaps, we have a single implementation of the CPDT.

For unrelated arbitrary-degree trees, CPDTg is clearly the fastest imple-
mentation, consistently being around three times faster than tqDist and show-
ing noticeable improvements over CPDT. While tqDist performs better as we
increase the values of p1 and p2, CPDT and CPDTg only show this trend with
p1, performing worse when p2 is 0.5 and getting better as it moves away from it.
All of the implementations perform very well when T1 is extremely-branching,
proving them to be able to easily handle a huge number of colors.

For related trees, all three implementations become much faster. CPDTg
still has an obvious advantage, although speed-ups here are around 2.5x. This
can be at least partially explained by overheads, such as tree parsing from files,
becoming more significant as the running time of the actual algorithms decrease.

The average memory usage of the three implementations for pairs of unrelated
trees with 1 million leaves are reported in Table 2 and Fig. 3. CPDT is the least
memory-hungry, showing an improvement over tqDist of 4.61x on binary trees
and up to 2.79x on arbitrary-degree ones; CPDTg is a close second. They all
benefit from increasing p2 (meaning less internal nodes in T2) and suffer from
increasing p1 (meaning more colors), although tqDist proves to be less sensitive
to it, as the advantage of CPDT is brought down to a still very respectable 1.73x
in the extreme case where T1 is extremely-branching.

6 Concluding Remarks

Some questions for future research are: Can the theoretical or practical run-
ning times of the CPDT-based algorithm be reduced? In particular, the CPDT

124 J. Jansson and R. Rajaby

respects the definition of locally balanced in [2], so can the analysis be refined to
prove that the time complexity of the new algorithm is in fact O(n log2 n) using
the technique in Sect. 5 of [2]? To make the algorithm faster in practice, one
might try to parallelize it; unfortunately, this may be difficult due to possible
imbalance in the trees and the intrinsic data-dependencies of the algorithm.

Computing the quartet distance for unrooted trees seems more difficult than
computing the rooted triplet distance for rooted trees. It would be interesting
to see if the CPDT can be adapted to get an efficient algorithm for this variant.

We remark that an unsolved open problem is whether or not the rooted
triplet distance can be computed in O(n) time. A linear-time algorithm would
require a set of totally different techniques than the ones used here since Brodal
et al.’s recursive recoloring scheme already introduces Ω(n log n) work.

References

1. Bansal, M.S., Dong, J., Fernández-Baca, D.: Comparing and aggregating partially
resolved trees. Theor. Comput. Sci. 412(48), 6634–6652 (2011)

2. Brodal, G.S., Fagerberg, R., Mailund, T., Pedersen, C.N.S., Sand, A.: Efficient
algorithms for computing the triplet and quartet distance between trees of arbitrary
degree. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2013), pp. 1814–1832. SIAM (2013)

3. Cole, R., Farach-Colton, M., Hariharan, R., Przytycka, T., Thorup, M.: An
O(n log n) algorithm for the maximum agreement subtree problem for binary trees.
SIAM J. Comput. 30(5), 1385–1404 (2000)

4. Critchlow, D.E., Pearl, D.K., Qian, C.: The triples distance for rooted bifurcating
phylogenetic trees. Syst. Biol. 45(3), 323–334 (1996)

5. Dobson, A.J.: Comparing the shapes of trees. In: Street, A.P., Wallis, W.D. (eds.)
Combinatorial Mathematics III. LNM, vol. 452, pp. 95–100. Springer-Verlag, Hei-
delberg (1975)

6. Estabrook, G.F., McMorris, F.R., Meacham, C.A.: Comparison of undirected phy-
logenetic trees based on subtrees of four evolutionary units. Syst. Zool. 34(2),
193–200 (1985)

7. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates Inc, Sunderland (2004)
8. Fenwick, P.M.: A new data structure for cumulative frequency tables. Softw.: Pract.

Experience 24(3), 327–336 (1994)
9. Gusfield, D., Eddhu, S., Langley, C.: Optimal, efficient reconstruction of phyloge-

netic networks with constrained recombination. J. Bioinform. Comput. Biol. 2(1),
173–213 (2004)

10. Holt, M.K., Johansen, J., Brodal, G.S.: On the scalability of computing triplet and
quartet distances. In: Proceedings of the 16th Workshop on Algorithm Engineering
and Experiments (ALENEX 2014), pp. 9–19. SIAM (2014)

11. Jansson, J., Lingas, A.: Computing the rooted triplet distance between galled trees
by counting triangles. J. Discrete Algorithms 25, 66–78 (2014)

12. McKenzie, A., Steel, M.: Distributions of cherries for two models of trees. Math.
Biosci. 164(1), 81–92 (2000)

13. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: Proceedings of the ACM SIGPLAN 2007 Conference on Pro-
gramming Language Design and Implementation (PLDI 2007), pp. 89–100. ACM
(2007)

A More Practical Algorithm for the Rooted Triplet Distance 125

14. Sand, A., Holt, M.K., Johansen, J., Brodal, G.S., Mailund, T., Pedersen, C.N.S.:
tqDist: a library for computing the quartet and triplet distances between binary
or general trees. Bioinformatics 30(14), 2079–2080 (2014)

15. sparsehash project webpage. https://code.google.com/p/sparsehash/
16. Documentation for unordered map. http://www.cplusplus.com/reference/

unordered map/unordered map/

https://code.google.com/p/sparsehash/
http://www.cplusplus.com/reference/unordered_map/unordered_map/
http://www.cplusplus.com/reference/unordered_map/unordered_map/

Likelihood-Based Inference of Phylogenetic
Networks from Sequence Data by PhyloDAG

Quan Nguyen and Teemu Roos(B)

Department of Computer Science, Helsinki Institute for Information Technology
HIIT, University of Helsinki, PO Box 68, 00014 Helsinki, Finland

{quan.nguyen,teemu.roos}@cs.helsinki.fi

Abstract. Processes such as hybridization, horizontal gene transfer,
and recombination result in reticulation which can be modeled by phylo-
genetic networks. Earlier likelihood-based methods for inferring phyloge-
netic networks from sequence data have been encumbered by the compu-
tational challenges related to likelihood evaluations. Consequently, they
have required that the possible network hypotheses be given explicitly
or implicitly in terms of a backbone tree to which reticulation edges
are added. To achieve speed required for unrestricted network search
instead of only adding reticulation edges to an initial tree structure,
we employ several fast approximate inference techniques. Preliminary
numerical and real data experiments demonstrate that the proposed
method, PhyloDAG, is able to learn accurate phylogenetic networks
based on limited amounts of data using moderate amounts of compu-
tational resources.

Keywords: Phylogenetic networks · Likelihood-based inference · Phy-
logenetics · Probabilistic graphical models

1 Introduction

Phylogenetic trees are widely used for modeling the evolution of a group of
organisms. However, trees are not able to represent reticulation events due to
processes such as hybridization, horizontal gene transfer, and recombination. If
reticulation is thought to be present, a phylogenetic network is a more useful
model. For this reason, researchers in quantititive biology have been interested
in representing evolutionary processes using network models since as early as the
1970s [20]. Even though various computational techniques have been proposed
to deal with the challenges caused by network-like models, inferring the network
structure from data remains a problem.

We propose a combination of solutions for speeding up the required compu-
tations in a likelyhood-based framework. These include a stochastic expectation-
maximization (EM) algorithm for dealing with unobserved ancestral sequences.
As a subroutine of the EM algorithm, we apply an approximate inference method
known as loopy belief propagation [16], which provides dramatic computational

c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): AlCoB 2015, LNBI 9199, pp. 126–140, 2015.
DOI: 10.1007/978-3-319-21233-3 10

Likelihood-Based Inference of Phylogenetic Networks 127

savings when computing the required sampling distributions while avoiding any
unwarranted independence assumptions (see e.g., [6]).

We describe a stand-alone method, which we call PhyloDAG1, which can
learn phylogenetic networks from data. The present implementation assumes a
generic mixture model of the reticulation process but the model can be extended
to handle more specific kinds of processes as well. Preliminary numerical and real
world experiments demonstrate the utility of the method. For an application of
PhyloDAG to the analysis of non-biological data, see [23].

The rest of the paper is organized as follows. In Sect. 2, we review some of
the relevant prior work on likelihood-based phylogenetic networks. In Sect. 3, we
describe our model in detail. We introduce the PhyloDAG method in Sect. 4,
and present experimental results in Sect. 5. A summary and pointers for future
work are given in Sect. 6.

2 Related Work

Likelihood-based inference has become a popular approach in phylogenetics since
it was first proposed by Felsenstein [5]. Likelihood-based methods are widely
considered to be the state-of-the-art in molecular phylogenetics [4,26].

The first framework for likelihood-based inference of phylogenetic networks
was proposed by Haeseler and Churchill [8]. Based on their work, Strimmer
and Moulton [21] proposed to use directed graphical models, or Bayesian net-
works, as a represention of explicit likelihood-based phylogenetic networks. Their
framework was first applied to split networks, but it can be easily applied to
evolutionary networks [22]. However, networks pose major computational chal-
lenges for likelihood-based inference. Computations involving unobserved ances-
tral sequences are in general intractable. The solution applied in [21] is to approx-
imate the likelihood by method similar to Gibbs sampling.

Strimmer et al. [22] model reticulation events by introducing a random vari-
able that indicates which one of the possible ancestral taxa is active and using
the same mechanism as in tree-structured models as if the active taxon were the
only immediate ancestor. The random choice of the ancestor taxon is repeated
independently at each site according to fixed but unknown weight parameters.
The authors referred to this as the mixture model. In this work, we adopt the
mixture model and develop novel efficient algorithms that can be used for infer-
ring the network structure and parameters from data.

Jin et al. [10] point out the importance of allowing different evolutionary
mechanisms for different genomic sites. However, despite their emphasis on the
differences between their approach and that of Strimmer et al., the existence of
a separate edge length parameter for each site, which significantly increases the
model complexity but simplifies the computations, turns out to be the distinctive
feature of their model. In follow-up work, Park and Nakleh [15] consider given

1 The implementation is available for download at http://phylomemetic.wordpress.
com/2015/04/17/phylodag/.

http://phylomemetic.wordpress.com/2015/04/17/phylodag/
http://phylomemetic.wordpress.com/2015/04/17/phylodag/

128 Q. Nguyen and T. Roos

genomic regions inside which a fixed ancestor taxon and edge length value is
used.

There are also other sophisticated ways to relax the mixture model assump-
tion. Husmeier and Wright [9] and Webb et al. [25] assume each site to be gen-
erated from an unknown phylogenetic tree which is a hidden state in a hidden
Markov model (HMM). Transitions between the states of the HMM constitute
breakpoints from one phylogenetic structure to another. This approach is likely
to be more realistic under recombination scenarios, but it is very computation-
ally expensive since it introduces complex dependencies between the sites and
the state space of the HMM grows exponentially in the number of taxa.

In all of the aforementioned work, due to the said computational challenges,
network search is either restricted to a small set of possible networks given explic-
itly by the user or more implicitly to networks obtained by adding reticulation
edges to a fixed backbone tree structure obtained by standard tree methods
such as MrBayes [17]. A key assumption behind the use of a backbone tree is
that even when the actual phylogenetic process involves reticulation events, a
tree structure estimated from the data comprises a part of the true network
that represents the phylogenetic history. If this is the case, the true network can
be obtained by adding reticulation edges. Unfortunately, in our experience this
assumption is unlikely to hold in practice. In Sect. 5.3 we demonstrate simple
cases where a violation of the assumption leads to suboptimal outcomes.

Apart from horizontal gene transfer and other processes discussed above,
deep coalescence arising from incomplete lineage sorting is another source of
incompatibility of gene trees for individual sites or genes of a given same set of
taxa, see e.g., [13]. Since deep coalescence tends to occur even when the organ-
isms’ evolution is completely tree-like, it is usually not considered to be a type
of reticulation. The models used to handle deep coalescence are also somewhat
distinct from those used to handle reticulation. Recently, there have been several
attempts to incorporate reticulation into models for deep coalescence [12,27].

3 Likelihood-Based Inference in Phylogenetic
Trees and Networks

We adopt the standard likelihood-based framework in phylogenetics and let each
node (either leaf or internal) of a phylogenetic tree correspond to a taxon. Leaf
nodes are assumed to be extant taxa whose genomic sequences are observed. In
this work we focus on DNA sequences although for example protein sequences
can in principle be handled in the same fashion.

We denote the probability that a DNA sequence associated to node Xi in
a phylogenetic tree evolves from the sequence in its immediate ancestor, called
its parent, Pai in time proportional to branch length τi by Pτi(Xi | Pai). These
local probabilities are specified explicitly by a sequence evolution model such as
the Jukes-Cantor (JC) model [11] as a function of τi. In the following, we denote
random variables and sequences like Xi by upper case letters and their values,
such as xi, by lower case letters.

Likelihood-Based Inference of Phylogenetic Networks 129

The above kind of probabilistic model describes the following evolution sce-
nario. The nucleotide sequence at the root Xr is drawn independently from a
stationary distribution π obtained as the limit π(X) = limτ→∞ Pτ (X | y) for
any sequence y. The sequence evolves independently along the edges of the tree.
Assuming a fully observed tree T with p nodes (taxa), the likelihood of a single
site at all taxa is factorized as

P(T,τ)(X1 = x1, ...,Xp = xp) = π(xr)
∏

i�=r

Pτi(xi | pai), (1)

where pai denotes the nucleotide at the site in question in the parent of taxon
Xi in tree T . However, since we assume that only the sequences in the leaf nodes
are observed, the internal nodes, including the root node, represent ancestral
taxa whose biological sequences are unavailable, and hence they become latent
(unobserved) variables in the model.

Following and extending the convention familiar from phylogenetic trees, we
assume that any node in a phylogenetic network is classified in one of three
categories based on the number of its parents. First, the unique root node has
no parents and two children (immediate descendants). Second, tree nodes have a
single parent and either zero or two children. For both of these classes of nodes,
the evolutionary model coincides with the model commonly used for likelihood-
based phylogenetic trees. The third class of nodes are the reticulation nodes
which have two parents and either zero or two children. For a given nucleotide
xi ∈ {A,C,G, T} in reticulation node Xi, we have the conditional probability
given its parents’ states pai = (yi, zi) as the weighted sum of its conditional
probability given a single parent:

P(wi,τi)(xi | pai) = wiPηi
(xi | yi) + (1 − wi)Pζi(xi | zi), (2)

where the probabilities on the right side of the equation are the same as in
the case of tree models, and the weight parameter wi as well as the edge length
parameters τi = (ηi, ζi) are parameters whose values need to be given in order to
make the model fully specified. Plugging the above terms in the factorization (1)
provides a complete probability model for reticulate evolution.

The model in Eq. (2) is the mixture model of Strimmer and Moulton [21]. If
genomic regions that follow a fixed ancestry are given like in [15], they can be
incorporated in the model by treating sites within a given region as a sample of
data from the same source. In this work, we focus on the case where the sites
are independent.

From a computational point of view, most of the complications arise from
the fact that the observed-data likelihood involves a summation over the possible
values of the latent variables. In tree topologies, well-known techniques exist for
carrying out the summation in linear time with respect to the size of the tree [5].
These techniques are known in probabilistic graphical models more generally as
variable elimination. Felsenstein [5] uses the expectation–maximization (EM)
algorithm [3] to estimate branch length parameters in tree-structured models.

130 Q. Nguyen and T. Roos

In the following, we introduce methods for approximating the computations in
the case where the phylogenetic hypothesis involves reticulation nodes.

4 The PhyloDAG Method

We propose an efficient method for likelihood-based inference of phylogenetic
networks. The key novelties of the PhyloDAG method include a stochastic EM
algorithm for learning the structure and parameters of the network as well as
a fast loopy belief propagation (LBP) algorithm which is used to accelerate the
required computations involving the latent variables in the model.

The outer loop of the algorithm is a stochastic structural EM (SSEM) algo-
rithm. Similar to regular EM, SSEM repeats iterations consisting of an expec-
tation (E) step followed by a maximization (M) step. Slightly different from
regular EM, SSEM is based on stochastic sampling of latent variables in the E
step in order to obtain (pseudo-)complete data. The word ‘structural’ refers to
the fact that the M step involves a maximization not only over model parameters
(parent weights and edge lengths) but also over the model structure (network
topology). Inside the E step, an inner loop based on LBP replaces the vari-
able elimination algorithm commonly used in dealing with latent variables in
tree-structured phylogenies.

We initialize the structure as a phylogenetic tree obtained from by Neighbor-
Joining algorithm [18], which is used for sampling of the latent variables in the
first E step. After this the initial tree is discarded and in particular, it is not
used to restrict the structure search in any way. The E and M steps are repeated
until the objective function converges.

Let o denote all the observed data, and let L denote the latent variables.
The model structure and parameters on each iteration, t, of the algorithm are
denoted as G(t) and θ(t) = (w(t), τ (t)) respectively.

4.1 Stochastic E Step

Recall that in the E step, regular EM computes the expected complete data
log-likelihood with respect to the latent variables

EL|o,G(t),θ(t)

[
log P(G,θ)(o, L)

]
, (3)

where the structure and parameters G, θ = (w, τ) are allowed to differ from
G(t), θ(t). The above quantity is then maximized with respect to G and θ in the
M step. For complete data, under the i.i.d. assumption, the log-likelihood for
a set of sequences of length N becomes a sum with N terms. We group them
based on the configurations of a node and its parents:

log P(G,θ)(o, l) =
∑

i=1,...,p
x∈{A,C,G,T}

pa∈{A,C,G,T}qi

Nixpa log Pθi
(Xi = x | Pai = pa), (4)

Likelihood-Based Inference of Phylogenetic Networks 131

where qi denotes the number of parents for variable Xi, and the count Nixpa indi-
cates the number of sites where Xi takes value x and its parents take values pa.
The counts Nixpa are called the sufficient statistics since given the model para-
meters they uniquely determine the likelihood. For each combination of values
x, pa, the conditional probability Pθi

(Xi | Pai) can be considered a constant, and
the log-likelihood is a linear function of the sufficient statistics. Hence computing
the expected log-likelihood only requires the computation of the expectation of
the sufficient statistics, which can be done by summing over all the independent
sites

EL|o,θ(t) [Nixpa] =
N∑

j=1

P(G(t),θ(t))(X
j
i = x,Paj

i = pa | oj),

where superscript j indicates the site. The required computations may easily
become infeasible since the conditional probabilities in the above formula may
require complex inference procedures in case the network structure is not of a
very specific kind (such as a tree).

Friedman et al. [6] suggest an approximation of the form

P(G(t),θ(t))(L | o) ≈
|L|∏

i=1

P(G(t),θ(t))(Li | o), (5)

where |L| denotes the number of latent variables. This amounts to treating
each node and its (potential) parent(s) as conditionally independent given the
observed data. We suggest a different approximation which avoids the above
drastic conditional independence assumption by sampling the latent variables
from their conditional distribution P(G(t),θ(t))(L | o). To do so, we exploit the
chain rule

P(G(t),θ(t))(L | o) =
|L|∏

i=1

P(G(t),θ(t))(Li | L1:i−1, o) (6)

We will sample a value l1 for the latent variable L1 from its LBP-approximated
conditional distribution given the observed data o, after which we include the
value l1 in the set of (pseudo-)observed variables, and proceed recursively to sam-
ple all the remaining latent variables. The procedure is outlined as Algorithm 1
below.

Data: o: vector of observed data (at a single site)
Result: l: vector of sampled data for latent variables (at the same site)
for i ∈ {1, ..., |L|} do

Perform LBP to approximate P(G(t),θ(t))(Li | l1, . . . , li−1, o)
Draw value li from the obtained distribution.

end
return l1, . . . , l|L|

Algorithm 1. Sampling latent variables from their joint conditional distribu-
tion approximated by loopy belief propagation (LBP).

132 Q. Nguyen and T. Roos

In practice, drawing a single sample vector, l, per site appears to be sufficient
to obtain sufficiently accurate approximations of the expected counts unless the
number of sites is very small. This strategy is more generally called stochastic
EM [2]. Theoretical and numerical results backing up its validity are presented
in [14].

4.2 Structural M Step

Having sampled the latent variables in the E step to obtain the pseudo-complete
data (o, l̃), the M step is used to estimate a phylogenetic hypothesis, i.e., the
network structure, G, the weight parameters associated with possible reticula-
tions, w, and the edge lengths, τ . All of them are estimated by maximizing the
following objective function:

(G(t+1), θ(t+1)) = arg max
(G,θ)

log P(G,θ)(o, l̃), (7)

where l̃ denotes the sampled values for all hidden variables obtained in the
stochastic E step, and θ = (w, τ). Any Bayesian network learning algorithm can
be applied with the pseudo-complete data. We start with an empty network and
apply local modifications including edge deletions, additions, and reversals until
the likelihood score cannot be improved. Further heuristics including a tabu
search to escape local optima are detailed in the next section.

The parameters can be estimated in a relatively straightforward manner
under the JC model, which we use in our implementation, as well as other
commonly used sequence evolution models.

4.3 Avoiding Local Optima and Overfitting

As is typical to EM-based algorithms, it is beneficial to implement some modi-
fications that help to avoid the search from getting stuck to local optima. Since
the method is based on maximizing the likelihood, it is also prone to overfitting
unless some complexity regularization is performed.

First, to escape local optima in the structure search within the M step, we
apply so called tabu search heuristic [7] where structure modifications that reduce
the likelihood score are accepted in case there are no available local modifications
that improve the score. To do so, we maintain a tabu list wherein we record
recently visited graph structures in order to prevent repeatedly visiting the same
structures. The search is terminated after a maximum number of iterations is
reached or when no improvement in the best structure occurs in several steps,
after which the overall best structure is returned.

Moreover, even if the M step finds the globally optimal structure given the
pseudo-complete data (o, l̃), the EM iterations may end up in a local optimum
of the incomplete-data likelihood, where the pseudo-observations sampled in the
E step reinforce the current (locally optimal) structure hypothesis; see [6]. The
stochastic EM algorithm is less prone to this problem than regular EM (see [14])

Likelihood-Based Inference of Phylogenetic Networks 133

but when the sequence length is large enough, the problem persists. We therefore
adopt the perturbation method in deterministic annealing EM by Ueda and
Nakano [24]. This means that the sampling distributions in Algorithm 1 is raised
to power β ≤ 1 and normalized after it has been inferred by LBP so that the
pseudo-observations are drawn from a distribution proportional to

P(G(t),θ(t))(Li | l1:i−1, o)β

where 1/β acts like a temperature parameter. The inverse temperature β should
be small at the beginning, so that the sampling distribution is close to uniform.
When β is increased, the distribution is perturbed less and it will approach the
unperturbed distribution as β → 1. Currently we heuristically set β(1) = 0.6 and
β(t+1) = min{1.0, 1.05β(t)}.

Finally, to avoid overfitting due to the increased flexibility allowed by the
reticulation nodes, we use the Bayesian information criterion (BIC) [19] to penal-
ize the score function, which becomes

BIC(G, θ | o, l̃) = log P(G,θ)(o, l̃) − k

2
log N, (8)

where k is number of free parameters in model G (including both the weights
and the edge lengths), and N is the sequence length. The second term in the
BIC score can be seen as a complexity penalty reducing the tendency to overfit.
Because the penalizing term is the same in both complete and incomplete data,
when BIC is used instead of ML as the scoring function in Eq. (7), the validity
of the EM algorithm is maintained; see [3]. The good performance of BIC in
preventing overfitting in phylogenetic networks has been observed by Park and
Nakleh [15].

4.4 Postprocessing of the Networks

From the point of view of network search, the properties required from phylo-
genetic networks can be a problem since they might restrict the exploration of
promising structures. Therefore, we perform the SSEM algorithm using uncon-
strained network structures, and apply the following sequence of postprocessing
steps only after the algorithm has converged:

1. Recursively remove all unlabeled leaves.
2. Remove unlabeled nodes with in-degree and out-degree of 1.
3. Edge from two labeled nodes (A,B) with length τAB is replaced by (x,A)

with τxA = ε and (x,B) with τxB = τAB , where x is an internal node and
ε ≈ 0.

4. An internal node x with more than two children, x1, x2, ..., is replaced by
a new internal node y with children x1 and x, and x1 is removed from the
children of x. This rule is applied recursively until x has at most two children.

We refer the reader to [6] for detailed illustrations and the proof why these
alterations do not change the score.

134 Q. Nguyen and T. Roos

5 Experiments

To demonstrate the practical utility of the proposed method, we perform exper-
iments on both simulated and real data. We first illustrate the accuracy of the
likelihood evaluation based on loopy belief propagation which we use in the E
step to show that model comparison based on approximated likelihood is reliable.
We then demonstrate the PhyloDAG method by applying it to both simulated
and real data.

5.1 Exact vs Approximated Likelihood: An Illustration

We apply a procedure where we simulate DNA data with increasing sequence
length, N = 50, 100, 150, . . . , 500 for the leaf nodes of an arbitrary tree structure
following the JC model and no insertions or deletions (indels). To create a hybrid
node, we pick two leaf nodes and produce a hybrid sequence by randomly copying
the character at each site from either one of chosen the leaf nodes according to
some fixed weights. The two leaf nodes are then removed and replaced by the
hybrid node whose parents are those of the removed leaf nodes. The resulting
phylogenetic network is shown in Fig. 1.

Fig. 1. Left: The true phylogenetic network. Edge lengths (shown along the edges) are
drawn from an exponential distribution. Right: Ranks of the true network as a function
of sequences length using exact and approximate computations. Both curves tend to
increase which means that as the sample size grows, they eventually rank the true
network first.

We then modify the true structure by adding and removing edges to obtain a
sample of 1000 incorrect topologies (including some duplicates). We rank these
1001 phylogenies by their BIC scores where instead of the pseudo-complete like-
lihood P (o, l̃) we use the incomplete-data likelihood P (o) so that the scores
are comparable across different networks. We compare the ranking performance
obtained by using an exact brute-force computation of the incomplete-data like-
lihood and the LBP approximation. Since the problem size is small, even the
exact computation takes less than three seconds for samples up to N = 500

Likelihood-Based Inference of Phylogenetic Networks 135

using an efficient implementation. In the case of LBP, we use the identity P (o) =
P (l̃, o)/P (l̃ | o) which holds for all l̃. The LBP approximation takes less than
0.5 seconds. Since the exact computation takes exponential time in the number
of latent variables, it quickly becomes useless in practice as the problem size is
increased, whereas the LBP method scales to much bigger problems.

In Fig. 1, the ranks of the true phylogenetic network by both exact and
approximate inference are plotted against the sample size. In both methods
the rank of the true structure tends to improve as the sequence length grows.
The brute-force method ranks the true structure higher for sequences up to 100
nucleotides but for longer sequences the differences are generally very small.

5.2 Structure Search on Synthetic Data

Following the experimental procedure described above, we generate a data set
with 15 taxa and sequence length 2000. The true underlying phylogenetic net-
work is shown in Fig. 2. We apply PhyloDAG as well as PhyloNet2, a recent
method proposed by Yu et al. [27].

Figure 3 shows the result of PhyloDAG. In order to make it easier to compare
the structure inferred by PhyloDAG to the correct network, four groups of taxa
are shaded and labelled as A–D. Except some minor differences like the position
of group C (taxa t6 and t17), PhyloDAG infers the structure almost correctly.
In particular, the two reticulation events at t7 and t9 are inferred correctly. Note
that the BIC criterion was used to decide the number of reticulate edges in the
model based on the data without user intervention.

In PhyloNet, we apply the maximum likelihood phylogenetic network method.
PhyloNet requires a backbone tree, and as suggested by Yu et al. [27], we use a
backbone obtained by MrBayes [17]. PhyloNet also requires that the number of
reticulations be specified, and we provide the correct number, two. Other settings
of PhyloNet are set to default values. By default, the algorithm is repeated 10
times and the network that maximizes the likelihood as computed by PhyloNet
is produced as the output.

Figure 4 shows the structure inferred by PhyloNet. The solid edges are from
the backbone tree by MrBayes and dotted edges are the added reticulation edges.
In this experiment, despite the good backbone tree, the two reticulation edges
suggested by PhyloNet are incorrect. The reticulation edge near t11 may corre-
spond to an actual reticulation (see Fig. 2) between the immediate ancestors of
t11 and t4 which results in the sequence at t7 but it is still relatively far from
correct. It will be interesting to analyse in detail why PhyloNet produces retic-
ulate edges between neighboring nodes only. The experiments presented by Yu
et al. [27] do not test whether this behavior occurs generally: they involve only
4 or 5 taxa so that reticulation between more distant branches cannot be inves-
tigated. Another possible explanation for the poor result is a different sequence
evolution model employed in PhyloNet whereas PhyloDAG may benefit from the
2 http://bioinfo.cs.rice.edu/phylonet.

http://bioinfo.cs.rice.edu/phylonet

136 Q. Nguyen and T. Roos

Fig. 2. The true phylogenetic network used to simulate 15 sequences, including two
reticulations (taxa t7 and t9). Numbers indicate edge lengths. The groups A–D are
shaded for clarity.

Fig. 3. Result of PhyloDAG for data simulated from the network in Fig. 2. Numbers
indicate estimated edge lengths.

fact that it is based on the JC model which is also used to simulate the sequences
– however, see the results on real data in the next subsection.

The test is done on an 3.4 GHz 8 core CPU computer with 16 GB of memory.
For this data set, PhyloDAG runs 12 iterations of the SSEM procedure which

Likelihood-Based Inference of Phylogenetic Networks 137

Fig. 4. Result of PhyloNet [27] for data simulated from the network in Fig. 2.

takes less than three minutes. On the same setup, PhyloNet runs for about five
hours (excluding the running time of MrBayes).

5.3 Real Data Experiment

We test PhyloDAG on a real data set “Feliner”3. This is one of a few data sets
where the underlying phylogenetic network is at least partially known since they
result from an artificial hybridization of Armeria plants in a greenhouse [1].

The data contains a number of Armeria villosa ssp. longiaristata (VIL) and
Armeria colorata (COL) plants. The specimens VIL#58/120 and COL#11/12
were crossed to create a hybrid generation labeled F1. We select a subset of the
original data set that includes hybrid taxa and their ancestors, so that the rela-
tionships between the taxa are known from the experiment and the results are
easy to interpret. We expand heterozygous sites as pairs of nucleotides following
the encoding of Aguilar et al. [1] (for example, W in the sequence is expanded
as nucleotides AT). The total sequence length is 626 nucleotides after the pre-
processing. The problem is complicated by the fact that all the sequences are
very similar to each other: they differ at not more than 10 sites.

Figure 5 shows the results of PhyloDAG on the subset of seven sequences
from the Feliner data. PhyloDAG groups the COL and VIL families correctly
and includes a reticulation edge correctly identifying the hybrid ancestry of the
F1 family. The edge lengths are compatible with the observation that the F1
sequences are very close to the COL sequences (about 4–5 differences) and some-
what less close to the VIL sequences (about 7–10 differences).

Figure 6 shows the PhyloNet result, obtained using default settings. The
backbone tree (solid lines) obtained by MrBayes places the hybrid F1 species

3 http://www.rjr-productions.org/Database.html.

http://www.rjr-productions.org/Database.html

138 Q. Nguyen and T. Roos

Fig. 5. PhyloDAG result for the Feliner data. In this case, edge lengths are drawn
proportional to their estimates.

between the ancestor groups COL and VIL. The PhyloNet method was repeated
twice: first, setting the number of reticulations to one, and another time, setting
it to two. The network show in the figure includes all the reticulate edges (dot-
ted lines) appearing in either of the resulting networks. Similar to the simulation
experiment, the reticulate edges by PhyloNet are near the hybrid taxa but their
end points are too close to each other to provide useful information about the
ancestry of the hybrids.

Fig. 6. PhyloNet result for the Feliner data. (Edge lengths not drawn proportional to
their estimates.)

Likelihood-Based Inference of Phylogenetic Networks 139

6 Conclusions

We propose a new method, PhyloDAG, for constructing likelihood based phylo-
genetic networks from sequence data. The method is based on (i) structural EM
which treats the graph structure as a parameter to be optimized in the M step (ii)
an efficient stochastic implementation of the E step based on loopy belief propa-
gation. The key difference in the procedure compared to earlier likelihood-based
approaches is that whereas earlier methods tend to involve an EM or Monte
Carlo type algorithm as an inner loop of a structure learning process, we put the
structure learning procedure inside the M step of an EM-type algorithm. This
significantly speeds up the structure learning process since it avoids costly itera-
tive likelihood evaluations, and allows an unrestricted structure search without
a fixed backbone tree.

We presented simulations and a real data experiment to demonstrate the
accuracy of the method. Compared to another recent likelihood-based method,
PhyloDAG was orders of magnitude faster and produced much more accurate
network structures. Variations of our method can be constructed where different
models of reticulation are applied. Additional large scale experiments with real
and simulated data will be required to assess the benefits of our approach.

Acknowledgments. This work was supported in part by the Academy of Finland
(Center-of-Excellence COIN). We are grateful to Vincent Moulton for insightful com-
ments. The anonymous reviewers suggested a comparison to the PhyloNet method and
made several other suggestions that significantly improved the paper.

References

1. Aguilar, J.F., Rosselló, J., Feliner, G.N.: Nuclear ribosomal DNA (nrDNA) con-
certed evolution in natural and artificial hybrids of Armeria (Plumbaginaceae).
Mol. Ecol. 8(8), 1341–1346 (1999)

2. Celeux, G., Diebolt, J.: The SEM algorithm: a probabilistic teacher algorithm
derived from the EM algorithm for the mixture problem. Comput. Stat. Q. 2(1),
73–82 (1985)

3. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc. Ser. B 39(1), 1–38 (1977)

4. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
Cambridge (1998)

5. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood
approach. J. Mol. Evol. 17, 368–376 (1981)

6. Friedman, N., Ninio, M., Pe’er, I., Pupko, T.: A structural EM algorithm for phy-
logenetic inference. J. Comput. Biol. 9(2), 331–353 (2002)

7. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell, MA
(1997)

8. Haeseler, A., Churchill, G.A.: Network models for sequence evolution. J. Mol. Evol.
37(1), 77–85 (1993)

140 Q. Nguyen and T. Roos

9. Husmeier, D., Wright, F.: Detection of recombination in DNA multiple alignments
with hidden Markov models. J. Comput. Biol. 8(4), 401–427 (2001)

10. Jin, G., Nakhleh, G., Snir, S., Tuller, T.: Maximum likelihood of phylogenetic
networks. Bioinformatics 22, 2604–2611 (2006)

11. Jukes, T.H., Cantor, C.R.: Evolution of protein molecules. Mamm. Protein Metab.
3, 21–132 (1969)

12. Meng, C., Kubatko, L.S.: Detecting hybrid speciation in the presence of incomplete
lineage sorting using gene tree incongruence: a model. Theor. Popul. Biol. 75(1),
35–45 (2009)

13. Morrison, D.: Introduction to Phylogenetic Networks. RJR Productions, Uppsala
(2011)

14. Nielsen, S.F.: The stochastic EM algorithm: estimation and asymptotic results.
Bernoulli 6, 457–489 (2000)

15. Park, H.J., Nakhleh, L.: Inference of reticulate evolutionary histories by maximum
likelihood: the performance of information criteria. BMC Bioinf. 13(Suppl 19), S12
(2012)

16. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1988)

17. Ronquist, F., Huelsenbeck, J.P.: MrBayes 3: Bayesian phylogenetic inference under
mixed models. Bioinformatics 19(12), 1572–1574 (2003)

18. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

19. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)
20. Sneath, P.H.A.: Cladistic representation of reticulate evolution. Syst. Zool. 24,

360–368 (1975)
21. Strimmer, K., Moulton, V.: Likelihood analysis of phylogenetic networks using

directed graphical models. Mol. Biol. Evol. 17(6), 875–881 (2000)
22. Strimmer, K., Wiuf, C., Moulton, V.: Recombination analysis using directed graph-

ical models. Mol. Biol. Evol. 18(1), 97–99 (2001)
23. Tehrani, J., Nguyen, Q., Roos, T.: Oral fairy tale or literary fake? Investigating

the origins of Little Red Riding Hood using phylogenetic network analysis. Digital
Scholarship in the Humanities (2015, to appear)

24. Ueda, N., Nakano, R.: Deterministic annealing EM algorithm. Neural Netw. 11(2),
271–282 (1998)

25. Webb, A., Hancock, J.M., Holmes, C.C.: Phylogenetic inference under recombina-
tion using Bayesian stochastic topology selection. Bioinformatics 25(2), 197–203
(2009)

26. Whelan, S., Lio, P., Goldman, N.: Molecular phylogenetics: state-of-the-art meth-
ods for looking into the past. Trends Genet. 17(5), 262–272 (2001)

27. Yu, Y., Dong, J., Liu, K.J., Nakhleh, L.: Maximum likelihood inference of reticulate
evolutionary histories. Proc. Nat. Acad. Sci. 111(46), 16448–16453 (2014)

Constructing Parsimonious Hybridization
Networks from Multiple Phylogenetic Trees

Using a SAT-Solver

Vladimir Ulyantsev(B) and Mikhail Melnik

ITMO University, Saint Petersburg, Russia
{ulyantsev,melnik}@rain.ifmo.ru

Abstract. We present an exact algorithm for constructing minimal
hybridization networks from multiple trees which is based on reducing
the problem to the Boolean satisfiability problem. The main idea of our
algorithm is to iterate over possible hybridization numbers and to con-
struct a Boolean formula for each of them that is satisfiable iff there exists
a network with such hybridization number. The proposed algorithm is
implemented in a software tool PhyloSAT. The experimental evaluation
of our algorithm on biological data shows that our method is as far as we
know the fastest exact algorithm for the minimal hybridization network
construction problem.

Keywords: Phylogenetic networks · Boolean satisfiability · SAT ·
Bioinformatics · Genetics

1 Introduction

A phylogenetic network is a powerful model for reticulate evolutionary processes
(such as horizontal gene transfer and hybrid specification). Briefly, a phylogenetic
network is the directed acyclic graph which has nodes (called reticulation nodes)
with more than one incoming edge. Phylogenetic networks have been studied by
several researchers [7–9]. There are several formulations of phylogenetic network
construction problem with various modelling assumptions and different types of
input data. In this paper we focus on the specific type of phylogenetic networks
called hybridization networks [4,12].

We consider a set of gene trees on the same set of taxa as input data for
hybridization network construction. Each gene tree models the evolutionary his-
tory of some gene. Due to reticulate evolutionary events, these trees can have
different topologies. The aim is to construct a hybridization network containing
the smallest possible number of reticulation nodes and displaying each of the
input trees.

Most of the algorithms for hybridization network construction are heuris-
tic [11,14] and usually deal with only two trees. However, the exact algorithm
PIRNC which is able to process more than two input trees has been introduced
recently [14].
c© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): AlCoB 2015, LNBI 9199, pp. 141–153, 2015.
DOI: 10.1007/978-3-319-21233-3 11

142 V. Ulyantsev and M. Melnik

a bcde ab c de a bc de

Fig. 1. Example of three gene trees over the set of taxa {a, b, c, d, e}.

In this paper we introduce a new approach to exact parsimonious hybridiza-
tion network construction from multiple input trees based on satisfiability (SAT)
solvers. The SAT problem is known to be NP-complete [3], but state-of-the-art
SAT-solvers running on modern hardware are able to solve SAT instances having
tens of thousands of variables and hundreds of thousands of clauses in several
minutes.

SAT-solver based algorithms have been successfully applied to efficiently
calculate evolutionary tree measures [2] as well as to solve problems in other
domains such as finite-state machine induction [5], software verification [1].

The general outline of our approach is to convert an instance of hybridization
network construction problem to an instance of the SAT problem (a Boolean
formula), solve it using a SAT-solver and then if the solution exists convert the
satisfying assignment into the hybridization network. Our approach leads to the
exact algorithm that outperforms PIRNC on our tests.

The paper is structured as follows. Section 2 gives the formal definitions,
Sect. 3 describes the Boolean formula construction process and Sect. 4 gives the
experimental results. The paper is concluded in Sect. 5.

2 Definitions and Background

We define a phylogenetic tree as a leaf-labelled tree constructed over a set of
taxa. Throughout this paper we assume that trees are rooted and binary.

For any node v let d−(v) be the in-degree of v and d+(v) be the out-degree
of v. A hybridization network on a set of taxa X is a directed acyclic graph with
a single root ρ and leaves bijectively mapped to the set of taxa X. If d−(v) > 1
then node v is called a reticulation node. In this paper we assume that d−(v) = 2
and d+(v) = 1 is true for every reticulation node v. We make this assumption by
noting that we can convert a reticulation node with in-degree of three or more
to a sequence of reticulation nodes with in-degrees of two [13]. Other nodes are
regular tree nodes.

Every hybridization network N can be reduced to a tree. To do this we firstly
keep only one of the incoming edges for each reticulation node in N . Secondly,
we contract edges to remove any node v such that d−(v) = d+(v) = 1. By these
two steps we reduce the network N to the tree T ′.

Constructing Parsimonious Hybridization Networks 143

ab cd e a bc d e

Fig. 2. Possible hybridization networks for the trees from Fig. 1 with two and three
hybridization events respectively. Reticulation nodes are shown as boxes.

We say that hybridization network N displays phylogenetic tree T if we can
choose the edges of reticulation nodes in such a way that after edge-contraction
the obtained tree T ′ will be isomorphic to T . In Fig. 2 each of the three trees
from Fig. 1 is displayed in both hybridization networks.

A hybridization number of network N with root ρ is commonly defined as
h(N) =

∑
v �=ρ

(d−(v) − 1). Note that under our assumptions h(N) simply equals

the number of reticulation nodes.
Suppose we are given a set of K phylogenetic trees T1, T2, . . . , Tk over the

same set of taxa. The minimal hybridization network for that set of trees is a
network Nmin that displays each tree and has the smallest hybridization num-
ber possible. Note that there can be several networks with equal hybridization
number.

The most parsimonious hybridization network problem is defined as follows:
given a set of phylogenetic trees T1, T2, . . . , Tk over the same set of taxa, construct
the minimal hybridization network for this set of trees.

It has been shown that even for the case of k = 2 the construction of such
a network is an NP-complete problem [3]. As far as we know there exists only
one algorithm for the construction of the most parsimonious hybridization net-
work [14].

3 Algorithm

The main idea of our algorithm is to iterate over possible values of the hybridiza-
tion number and to construct and solve a Boolean formula that represents a

144 V. Ulyantsev and M. Melnik

a b

(a) Simple tree

a b

_

(b) Simple tree with dummy root attached

Fig. 3. An illustration of an attachment of the dummy root to the tree.

hybridization network with this hybridization number. We implemented our
algorithm in a software tool PhyloSAT which is available for download at
GitHub1.

3.1 Pre-processing

Before the actual Boolean formula encoding we modify the input and split it
into several tasks to reduce the size and the complexity of the problem. We do
this according to the rules from [2]. To define these rules we first need to define
the term cluster : a set of taxa A is a cluster in trees T1, T2, . . . , Tk if there exists
a node in each tree with the set of leaves of its subtree equal to the set A. The
reduction rules are as follows:

1. Subtree reduction rule: replace every subtree which is present in all input
trees with a leaf with a new label.

2. Cluster reduction rule: for each cluster A replace the subtrees containing
it with a leaf with a new label and add a new task for processing which
consists of deleted subtrees T ′

1, T
′
2, . . . , T

′
k with leaf set A.

After splitting the task into a set of simpler tasks, we add a dummy root
to each tree of each task along with the new dummy leaf for tree consistency.
Figure 3 illustrates the procedure. This is done to ensure that all the trees in
the input share a common root. This dummy root will be deleted on the post-
processing stage. At this stage we have a set of tasks that will be solved separately
and then their results will be merged at the post-processing stage.

3.2 Search of the Minimal Hybridization Number

To solve a subtask we need to find the lowest hybridization number k such that
there exists a hybridization network with this hybridization number. To do this
we use downwards search, i.e. we iterate through possible values of k starting
from the highest and construct a Boolean formula corresponding to the current k.
1 https://github.com/ctlab/PhyloSAT.

https://github.com/ctlab/PhyloSAT

Constructing Parsimonious Hybridization Networks 145

We decrease k until the solver cannot satisfy the formula, and this means that
the previous value of k was the lowest possible.

There are other strategies of searching the minimal value of k. For example,
we can start from zero and increase the value of k until the solver will be able to
satisfy the formula, or we can use the binary search. The results of the binary
search were close to the ones of downwards method, but in some cases, when
the binary search tried to satisfy formulae with values of k less than minimal
possible hybridization number, its results were also poor. This can be explained
by an experimental observation that it is usually easier for the solver to produce
an answer if the formula is satisfiable than if it is not. In case of an unsatisfiable
formula the solver must check every possible answer to ensure that there is no
solution; this is not needed if the formula is satisfiable. Because of this the results
of the upwards search were poor. An obvious method for reducing the search
time is to limit the range of possible values of k by using different heuristics to
find close upper and lower bounds for k. Possible candidates are PIRNCH [14],
RIATA-HGT [10] and MURPAR [11]. We do not consider such optimizations in
this paper.

3.3 Encoding the Boolean Formula

Having a set of trees T over a set of taxa A and a fixed hybridization number
k, we will construct a Boolean formula which is satisfiable iff there exists a
hybridization network that displays each tree in T and its hybridization number
equals to k. To do this we first notice that a network over the set of taxa of
size n with hybridization number k will have 2(n + k) − 1 nodes. As we add a
dummy root and a dummy leaf, we finally have 2(n + k) + 1 nodes, k of which
are reticulation nodes, n + 1 are leaves and others are usual tree nodes.

We enumerate all the nodes in such a way that leaves are numbered in range
[0, n], regular nodes have numbers in range [n + 1, 2n + k] and all reticulation
nodes have numbers in range [2n + k + 1, 2(n + k)]. We also assume that the
number of any leaf or regular node is less than the number of its parent. This
is done to avoid consideration of isomorphic networks during SAT solving. Such
enumeration allows us to define the following sets of nodes for each node v:
PC(v) is the set of possible children of v, PP (v) is the set of possible parents
of v and PU(v) is the set of possible ancestors of v. Also let R be the set of
reticulation nodes, L be the set of leaves and V be the set of regular nodes. Now
we will describe variables and clauses required to construct the Boolean formula.

Network Structure Encoding. First, we encode the structure of the network.
We introduce the following literals.

1. lv,u and rv,u for each v ∈ V, u ∈ PC(v) : lv,u (or rv,u) is true iff regular node
v has node u as its left (right) child.

2. pv,u for each v ∈ L ∪ V \{ρ}, u ∈ PP (v) : pv,u is true iff u is the parent of a
regular node v.

146 V. Ulyantsev and M. Melnik

3. pl
v,u and pr

v,u for each v ∈ R, u ∈ PP (v) : pl
v,u (or pr

v,u) is true iff u is the left
(right) parent of a reticulation node v.

4. cv,u for each v ∈ R, u ∈ PC(v) : cv,u is true iff u is a child of a reticulation
node v.

This takes O((n + k)2) literals for specifying the network structure, and by
noticing that k < n we have O(n2) literals.

To encode the uniqueness of parents and children we tried to use an obvious
pairwise encoding that requires O(n2) clauses for each node as well as more
efficient Bimander encoding [6]. However, the Bimander encoding gave no speed
boost because of the existence of other constraints that require O(n2) clauses per
node. Thus we will describe the pairwise encoding for simplicity. For example
consider parent variables. We state that a node can have at least one parent and
at most one parent. For parents of the regular node v this can be expressed in
the following way:

⎛

⎝
∨

u∈PP (v)

pv,u

⎞

⎠ ∧
⎛

⎝
∧

i,j∈PP (v);i<j

(pv,i → ¬pv,j)

⎞

⎠ .

Using this pattern, we add the uniqueness constraints for literals l, r, p, pl, pr

and c. These clauses are defined in Sects. 1–4 of Table 1. We also add constraints
to order the number of children of regular nodes and parents of reticulation
nodes. They are listed in Sect. 5 of Table 1.

A network is consistent if for every pair of nodes the parent relation implies
the child relation and vice versa. Thus we add constraints that connect parent
literals with children literals for all the types of nodes. See Sects. 6–9 of Table 1
for these clauses. The last step of the network construction is to deal with the
enumeration around reticulation nodes. To do this, we add constraints to fix
relative numbers of children and parents of reticulation nodes. They are defined
in Sect. 10 of Table 1.

Since we need O(n2) clauses for each node to represent the uniqueness of its
parents and children and O(n) clauses for each node to represent the parents-
children relation, we finally get O(n3) clauses in total to represent the network
structure.

Mapping Trees to the Network. To express that the network contains all
the input trees we add literals that represent the mapping of the tree nodes to
the network nodes.

1. xt,vt,v for each t ∈ T, vt ∈ V (t), v ∈ V : xt,s,v is true iff regular node v
represents node vt from tree t, i.e. x literals represent injective mapping of
network nodes to tree nodes. An example of such mapping is shown in Fig. 4.
Note that leaves of the trees are bijectively mapped to leaves of the network
thus there is no need to introduce x variables for them.

Constructing Parsimonious Hybridization Networks 147

Table 1. Clauses for network structure encoding.

Clause Range

1.1 pv,u1 ∨ · · · ∨ pv,uk v ∈ V ; u1 . . . uk ∈ PP (v)
1.2 pv,u → ¬pv,w v ∈ V ; u, w ∈ PP (v)

2.1 lv,u1 ∨ · · · ∨ lv,uk v ∈ V ; u1 . . . uk ∈ PC(v)
2.2 rv,u1 ∨ · · · ∨ rv,uk

2.3 lv,u → ¬lv,w v ∈ V ; u, w ∈ PC(v)
2.4 rv,u → ¬rv,w

3.1 cv,u1 ∨ · · · ∨ cv,uk v ∈ R; u1 . . . uk ∈ PC(v)
3.2 cv,u → ¬cv,w v ∈ R; u, w ∈ PC(v)

4.1 pl
v,u1 ∨ · · · ∨ pl

v,uk v ∈ R; u1 . . . uk ∈ PP (v)
4.2 pr

v,u1 ∨ · · · ∨ pr
v,uk

4.3 pl
v,u → ¬pl

v,w v ∈ R; u, w ∈ PP (v)
4.4 pr

v,u → ¬pr
v,w

5.1 lv,u → ¬rv,w v ∈ V ; u, w ∈ PC(v) : u ≥ w

5.2 pl
v,u → ¬pr

v,w v ∈ R; u, w ∈ PP (v) : u ≥ w

6.1 lv,u → pu,v

v ∈ V ; u ∈ V ∩ PC(v2.6)rv,u → pu,v

6.3 pu,v → (lv,u ∨ rv,u)

7.1 lv,u → (pl
u,v ∨ pr

u,v)

v ∈ V ; u ∈ R ∩ PC(v)
7.2 rv,u → (pl

u,v ∨ pr
u,v)

7.3 pl
u,v → (lv,u ∨ rv,u)

7.4 pr
u,v → (lv,u ∨ rv,u)

8.1 cv,u → pu,v v ∈ R; u ∈ V ∩ PC(v)
8.2 pu,v → cv,u

9.1 cv,u → (pl
u,v ∨ pr

u,v)
v ∈ R; u ∈ R ∩ PC(v)9.2 pl

u,v → cv,u

9.3 pr
u,v → cv,u

10.1 cv,u → ¬pl
v,w v ∈ R; u ∈ PC(v); w ∈ PP (v) : u ≥ w

10.2 cv,u → ¬pr
v,w

2. dt,v for each t ∈ T, v ∈ R : dt,v is true iff the left parent edge of reticulation
node v is used to display tree t, i.e. it specifies direction of necessary parent
to display current tree.

3. ur
t,v for each t ∈ T, v ∈ R : ur

t,v is true iff the child of reticulation node v is
used to display tree t.

4. ut,v for each t ∈ T, v ∈ V : ut,v is true iff regular node v is used to display
tree t.

5. at,v,u for each t ∈ T, v ∈ V, u ∈ PU(v) : at,v,u is true iff regular node u is an
ancestor of node v and node u corresponds to such node ut from tree t that
all the edges on the path from u to v are contracted to a single edge of tree
t, i.e. node u is the first node on the path from v to the root that is mapped
to some node in tree t. We will say that node u is the direct parent of node
v considering tree t. Note that node v is not necessary present in tree t. In
Fig. 4 node u is the parent of all the nodes starting from node v considering
tree t.

148 V. Ulyantsev and M. Melnik

Fig. 4. An illustration of a piece of mapping of the nodes from the tree (on the left)
to the nodes from the network (on the right). Nodes that are injectively mapped are
connected by a dotted line. When displaying the tree all the edges in the path from u
to v will be contracted to the single edge form ut to vt.

We have extra O(tn2) literals to match input trees to the network. Hence, we
have O(tn2) literals in total.

We specify constraints for relations between network nodes and tree nodes.
First, we define at-least-one and at-most-one constraints for literals x and a.
Note that in case of x literals we have a restriction that at most one node from
the tree corresponds to the network node, and that at most one node from the
network corresponds to the tree node. These clauses are defined in Sects. 1–2 of
Table 2. Because of dummy roots we know that roots of input trees are mapped
to the root of the network so we have xt,ρt,ρ set to be true for every tree. Also
note that xt,vt,v implies ut,v by definition. See Sect. 3 of Table 2 for these clauses.

Furthermore, if we know that node v is a leaf and its parent u corresponds
to node ut from tree t, then we can conclude that at,v,u is true i.e. u is the direct
parent of v in tree t. The same observation can be done for non-leaves, i.e. if we
know that v corresponds to vt and another node u corresponds to ut and ut is
parent of vt then u is the direct parent of v considering tree t. On the other hand
if we know that v corresponds to vt and we know that u is the direct parent of
v considering tree t, then u should correspond to parent of vt. We also should
take care of enumeration, so we add a constraint stating that if node ut is the
parent of the node vt, then the number of the corresponding node u should be
greater than the one of the node v, i.e. xt,vt,v → ¬xt,ut,u for each u and v such
that u < v. These clauses are presented in Sect. 4 of Table 2.

We also add some heuristic constraints related to the trees’ structure. Notice
that the number of the node in the network cannot be less than the size of the
subtree of the corresponding node vt in tree t and also it cannot be greater than
the size of the tree minus depth of vt. Also if node vt in tree t and node vt′ in
tree t′ have disjoint sets of taxa in their subtrees then they cannot be mapped to
the same node in the network. These clauses can be found in Sect. 5 of Table 2.

Next, we add constraints that connect child-parent relations in trees with
indirect child-parent relations in the network. First, consider the regular node
u that is the direct parent of the node v and u is used to display tree t then u
is also the parent of v considering tree t. Vice versa, if we know that u is the
parent of v in tree t, then u should be used for displaying that tree. If we do not
use u for displaying tree t then we should share the information stored in the a

Constructing Parsimonious Hybridization Networks 149

Table 2. Clauses for the mapping of the tree nodes to the network nodes.

Clause Range

1.1 at,v,u1 ∨ · · · ∨ at,v,uk v ∈ V ∪ L ∪ R; u1 . . . uk ∈ PU(v)
1.2 at,v,u → ¬at,v,w v ∈ V ∪ L ∪ R; u, w ∈ PU(v)

2.1 xt,tv,v1 ∨ · · · ∨ xt,tv,vk t ∈ T ; tv ∈ V (t); v1 . . . vk ∈ V
2.2 xt,tv,v → ¬xt,tv,w t ∈ T ; tv ∈ V (t); v, w ∈ V
2.3 xt,tv,v → ¬xt,tw,v t ∈ T ; tv, tw ∈ V (t); v ∈ V

3.1 xt,vt,v → ut,v t ∈ T ; v ∈ V ; vt ∈ V (t)
3.2 xt,ρt,ρ t ∈ T ; ρt = ρ(t)

4.1 xt,ut,u → at,v,u t ∈ T ; v ∈ L; u ∈ PP (v); ut ∈ V (t)

4.2 (xt,vt,v ∧ xt,ut,u) → at,v,u t ∈ T ; v ∈ V ; u ∈ PP (v); vt ∈ V (t) : ut = p(vt)4.3 (xt,vt,v ∧ at,v,u) → xt,ut,u

4.4 xt,vt,v → ¬xt,ut,u t ∈ T ; v ∈ V ; u ∈ V ; vt ∈ V (t); ut = p(vt) : u < v

5.1 ¬xt,vt,v t ∈ T ; v ∈ V ; vt ∈ V (t) : vt < size(subtree(vt))
5.2 ¬xt,vt,v t ∈ T ; v ∈ V ; vt ∈ V (t) : vt > size(t) − depth(vt)
5.3 ¬xt,vt,v ∨ ¬xt′,vt′ ,v t, t′ ∈ T ; v ∈ V ; vt ∈ V (t); vt′ ∈ V (t′) :

subtrees of t and t′ have disjoint sets of taxa

variables between v and u because they will have the same parent considering
tree t. We do this with the following constraints:

((pv,u ∧ ¬ut,u ∧ at,u,w) → at,v,w) ∧ ((pv,u ∧ ¬ut,u ∧ at,v,w) → at,u,w) .

These clauses are listed in Sect. 1 of Table 3.
Now consider the reticulation node v and its parent u. If u is a reticulation

node then we should share information about its parent considering tree t but
only when direction of parent u matches direction specified in v. If u is a regular
node and u is used for displaying tree t, then u is the direct parent of v considering
tree t. On the other hand, if u is not used then we should share information
about its parent considering tree t also only when the direction of u matches the
direction specified in v. These constraints are presented in Sect. 2 of Table 3.

In cases when the direction of u does not match direction specified in v we
should not use it. See Sect. 3 of Table 3 for these clauses. If u is a reticulation
node, its direction matches direction specified in v and v is used, then u should
also be used. Note that if we do not use the child of node v for displaying then
we also should not use its parents. And the crucial point is that if the child of
node v is a regular node then we should use v for displaying. These clauses are
defined in Sect. 4 of Table 3.

We also add clauses to forbid incorrect numeration, if node v has a reticula-
tion parent u then there cannot exist a node w that its number is less than the
number of v, and at,u,w is true. And for all w with numbers greater than v we
add clauses to share information of a variables. See Sect. 5 of Table 3 for these
clauses.

Again the most expensive clauses are clauses that represent uniqueness of
variables a and x. We have O(n2) clauses for each node for each tree, so we have

150 V. Ulyantsev and M. Melnik

Table 3. Clauses for translating child-parent relations from the trees to the network.

Clause Range

1.1 (pv,u ∧ ut,u) → at,v,u
t ∈ T ; v ∈ V ∪ L; u ∈ V ∩ PP (v)

1.2 (pv,u ∧ at,v,u) → ut,u

1.3 (pv,u ∧ ¬ut,u ∧ at,u,w) → at,v,w
t ∈ T ; v ∈ V ∪ L; u ∈ V ∩ PP (v); w ∈ PP (u)

1.4 (pv,u ∧ ¬ut,u ∧ at,v,w) → at,u,w

2.1 (pl
v,u ∧ dt,v ∧ at,u,w) → at,v,w

t ∈ T ; v ∈ R; u ∈ R ∩ PP (v); w ∈ PU(u)
2.2 (pl

v,u ∧ dt,v ∧ at,v,w) → at,u,w

2.3 (pr
v,u ∧ ¬dt,v ∧ at,u,w) → at,v,w

2.4 (pr
v,u ∧ ¬dt,v ∧ at,v,w) → at,u,w

2.5 (pl
v,u ∧ dt,v ∧ ut,u) → at,v,u t ∈ T ; v ∈ R; u ∈ V ∩ PP (v)

2.6 (pr
v,u ∧ ¬dt,v ∧ ut,u) → at,v,u

2.7 (pl
v,u ∧ dt,v ∧ ¬ut,u ∧ at,u,w) → at,v,w

t ∈ T ; v ∈ R; u ∈ V ∩ PP (v); w ∈ PU(u)
2.8 (pl

v,u ∧ dt,v ∧ ¬ut,u ∧ at,v,w) → at,u,w

2.9 (pr
v,u ∧ ¬dt,v ∧ ¬ut,u ∧ at,u,w) → at,v,w

2.10 (pr
v,u ∧ ¬dt,v ∧ ¬ut,u ∧ at,v,w) → at,u,w

3.1 (pl
v,u ∧ ¬dt,v) → ¬ur

t,u t ∈ T ; v ∈ R; u ∈ R ∩ PP (v)
3.2 (pr

v,u ∧ dt,v) → ¬ur
t,u

3.3 (pl
v,u ∧ ¬dt,v) → ¬ut,u t ∈ T ; v ∈ R; u ∈ V ∩ PP (v)

3.4 (pr
v,u ∧ dt,v) → ¬ut,u

4.1 (pl
v,u ∧ dt,v ∧ ur

t,v) → ur
t,u

t ∈ T ; v ∈ R; u ∈ R ∩ PP (v)4.2 (pr
v,u ∧ ¬dt,v ∧ ur

t,v) → ur
t,u

4.3 ¬ur
t,v → ¬ur

t,u

4.4 ¬ur
t,v → ¬ut,u t ∈ T ; v ∈ R; u ∈ V ∩ PP (v)

4.5 cv,u → ur
t,v t ∈ T ; v ∈ R; u ∈ (V ∪ L) ∩ PC(v)

5.1 pv,u → ¬at,u,w t ∈ T ; v ∈ V ∪ L; u ∈ R ∩ PP (v);
w ∈ PU(u) : w ≤ v

5.2 (pv,u ∧ at,u,w) → at,v,w t ∈ T ; v ∈ V ∪ L; u ∈ R ∩ PP (v);
w ∈ PU(u) : w > v

5.3 (pv,u ∧ at,v,w) → at,u,w t ∈ T ; v ∈ V ∪ L; u ∈ R ∩ PP (v);
w ∈ PU(u) : w > v

O(tn3) clauses to map trees to the network. This sums up to O(tn3) clauses
in total.

3.4 Solving the Boolean Formula and Post-processing

To solve the generated Boolean formula we use a SAT-solver CryptoMiniSat2.
Choosing the most appropriate solver is not considered in this paper, however,
several experimentations were made by M. Bonet and K. John [2] so it is one of
the topics of further research.

After solving a task we reconstruct the network from the SAT-solver output.
After that we delete the dummy root and the corresponding leaf from the net-
work. And when all the subtasks of the original task are solved, we merge their
networks into a single hybridization network corresponding to the original task.
2 http://www.msoos.org/cryptominisat4/.

http://www.msoos.org/cryptominisat4/

Constructing Parsimonious Hybridization Networks 151

4 Experiments

To test the performance of our algorithm we evaluated PhyloSAT on a grass
(Poaceae) dataset provided by the Grass Phylogeny Working Group (2001).
There are 57 test cases in the dataset with up to 47 taxa. All experiments
were performed using a machine with an AMD Phenom II X6 1090 T 3.2 GHz
processor on Ubuntu 14.04. All tests were run with a time limit of 1000 s. For
comparison we also ran PIRNC and PIRNCH on the same test cases.

Out of 57 test cases, 9 were not solved even by heuristic algorithms in time.
PhyloSAT was able to produce the optimal answer for 28 test cases. From these

Table 4. Experimental results.

Algorithm Solved cases Optimal solutions

PhyloSAT 48 39

PIRNC 29 29

PIRNCH 43 36

Table 5. Comparison of results of PIRNCH and PhyloSAT on test cases with big
hybridisation number. Runtimes in seconds are reported in brackets.

Test instance PhyloSAT PIRNCH Optimal solution

2NdhfPhyt 6 (9) 6 (6) 6

3NdhfPhytRpoc 8 (1000) 8 (28) 6

3PhytRbclRpoc 6 (11) 6 (3) 6

3RbclWaxyIts 6 (1000) 7 (4) 6

4NdhfRbclWaxyIts 7 (1000) 7 (35) ≥ 6

4PhytRbclRpocIts 9 (1000) 8 (377) ≥ 6

2RbclRpoc 7 (1000) 7 (42) 7

3NdhfWaxyIts 8 (1000) 8 (90) ≥ 7

3PhytRbclIts 11 (1000) 8 (120) ≥ 7

3PhytRpocIts 7 (1000) 7 (59) 7

4NdhfPhytRbclRpoc 10 (1000) 10 (287) ≥ 7

4NdhfPhytRpocIts 10 (1000) - ≥ 7

2NdhfPhyt 8 (12) - 8

2NdhfRbcl 8 (1) 8 (851) 8

2PhytIts 8 (41) 8 (372) 8

3NdhfPhytRbcl 9 (123) - 9

2NdhfRpoc 9 (954) 9 (484) 9

3NdhfRbclRpoc 13 (1000) - ≥ 10

3NdhfPhytIts 13 (1000) - ≥ 11

152 V. Ulyantsev and M. Melnik

28 test cases PIRNC was able to solve only 21 and in all of them hybridiza-
tion number was less than 6 which shows that PIRNC is not capable of building
hybridization networks with large hybridization number. In all test cases PIRNC

was slower than PhyloSAT. Even PIRNCH did not solve 2 of these 28 test cases
in time. PIRNCH was faster than PhyloSAT only on 5 test cases and was sig-
nificantly slower on 2 test cases. Twelve more test cases were not solved by
PIRNC, but PhyloSAT was able to produce some (possibly non-optimal) net-
work. PIRNCH did not solve 3 of these 12 cases in time, in 3 cases produced less
optimal network than PhyloSAT, in 2 cases more optimal and in the rest 4 cases
results were equal. From these 12 cases PIRNCH produced an optimal network
for only 2, and PhyloSAT found an optimal network for 3 cases but was unable
to prove their optimality. 8 more test cases had isomorphic trees in input, so
they had an obvious answer of zero. Results of the simulation are summarized in
Table 4. Also, the more precise results of comparison are in Table 5. We included
only cases with hybridization number more than 6, because on less complicated
tests results of all the algorithms were similar. The results of PIRNC are not
included because it did not manage to solve any of these cases.

Experiments showed that in some cases PhyloSAT is able to find an optimal
network but then it spends considerable time trying to prove its optimality and
that time is much higher than reasonable limit. We can avoid wasting time on
useless computation in cases when we find a network with hybridization number
equal to the heuristic lower bound (like PIRNCH does). Besides, we found that
it also costs much time to build a network with a big hybridization number
when the minimal hybridization number is small. Thus, a close upper bound
for the minimal hybridization number will also be useful and will save much
computation time.

5 Conclusion

We have proposed an algorithm for constructing an exact parsimonious
hybridization network from multiple phylogenetic trees. Experiments showed
that PhyloSAT outperforms PIRNC in all cases and performs reasonably well
comparing to the heuristic PIRNCH. However, in the cases of large hybridization
numbers search and construction of optimal network is still a very challenging
problem. In the future we plan to use existing heuristics and estimations on
lower and upper bounds of the hybridization number to limit search bounds and
thus reduce the running time of our algorithm.

Acknowledgements. This work was financially supported by the Government of
Russian Federation, Grant 074-U01. Authors would like to thank Igor Buzhinsky, Daniil
Chivilikhin and Fedor Tsarev for helpful comments and conversations.

References

1. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Adv. Comput. 58, 117–148 (2003)

Constructing Parsimonious Hybridization Networks 153

2. Bonet, M.L., John, K.S.: Efficiently calculating evolutionary tree measures using
SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 4–17. Springer,
Heidelberg (2009)

3. Bordewich, M., Semple, C.: Computing the minimum number of hybridization
events for a consistent evolutionary history. Discret. Appl. Math. 155(8), 914–928
(2007)

4. Chen, Z.Z., Wang, L.: Hybridnet: a tool for constructing hybridization networks.
Bioinform. 26(22), 2912–2913 (2010)

5. Heule, M.J.H., Verwer, S.: Exact DFA identification using SAT solvers. In:
Sempere, J.M., Garćıa, P. (eds.) ICGI 2010. LNCS, vol. 6339, pp. 66–79. Springer,
Heidelberg (2010)

6. Hölldobler, S., Nguyen, V.: An efficient encoding of the at-most-one constraint.
Technical report, KRR Group 2013–04, Technische Universität Dresden, 01062
Dresden, Germany (2013)

7. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts, Algo-
rithms and Applications. Cambridge University Press, New York (2010)

8. Morrison, D.A.: Introduction to Phylogenetic Networks. RJR Productions, Uppsala
(2011)

9. Nakhleh, L.: Evolutionary phylogenetic networks: models and issues. In: Heath,
L.S., Ramakrishnan, H. (eds.) Problem Solving Handbook in Computational Biol-
ogy and Bioinformatics, pp. 125–158. Springer, Berlin (2011)

10. Nakhleh, L., Ruths, D., Wang, L.-S.: RIATA-HGT: a fast and accurate heuristic
for reconstructing horizontal gene transfer. In: Wang, L. (ed.) COCOON 2005.
LNCS, vol. 3595, pp. 84–93. Springer, Heidelberg (2005)

11. Park, H.J., Nakhleh, L.: MURPAR: a fast heuristic for inferring parsimonious
phylogenetic networks from multiple gene trees. In: Bleris, L., Măndoiu, I.,
Schwartz, R., Wang, J. (eds.) ISBRA 2012. LNCS, vol. 7292, pp. 213–224. Springer,
Heidelberg (2012)

12. Semple, C.: Hybridization Networks. Department of Mathematics and Statistics,
University of Canterbury, New York (2006)

13. Wu, Y.: Close lower and upper bounds for the minimum reticulate network of
multiple phylogenetic trees. Bioinformat. 26(12), i140–i148 (2010)

14. Wu, Y.: An algorithm for constructing parsimonious hybridization networks with
multiple phylogenetic trees. J. Comput. Biol. 20(10), 792–804 (2013)

Author Index

Alekseyev, Max A. 3, 13
Alexeev, Nikita 3
AlKindy, Bassam 83

Bahi, Jacques M. 83
Burleigh, J. Gordon 97

Chaudhary, Ruchi 97
Couchot, Jean-François 83

Fernández-Baca, David 97

Guyeux, Christophe 83

Hamacher, Kay 53
Hoksza, David 41

Jager, Sven 53
Jansson, Jesper 109
Jiang, Shuai 13

Kalvala, Sara 25
Krivák, Radoslav 41

Ladroue, Christophe 25

Melnik, Mikhail 141

Nguyen, Quan 126
Nielsen, Henrik 68

Parisod, Christian 83
Pologova, Anna 3

Rajaby, Ramesh 109
Roos, Teemu 126

Salomon, Michel 83
Schiller, Benjamin 53
Sønderby, Casper Kaae 68
Sønderby, Søren Kaae 68
Strufe, Thorsten 53

Ulyantsev, Vladimir 141

Winther, Ole 68

	Preface
	Organization
	Contents
	Genetic Processing
	Generalized Hultman Numbers and the Distribution of Multi-break Distances
	1 Introduction
	2 Preliminary Definitions and Results
	3 Permutations with a Fixed Breakpoint Graph
	4 Generalized Hultman Numbers
	5 Discussion
	References

	Implicit Transpositions in Shortest DCJ Scenarios
	1 Introduction
	2 Breakpoint Graphs and Rearrangement Scenarios
	3 Length-Preserving Operations and Dependency Graphs
	4 Implicit Transpositions in Shortest DCJ Scenarios
	4.1 Disjoint Implicit Transpositions as Matchings
	4.2 Bounds for the Rate of Implicit Transpositions

	5 Implicit Transpositions in Mammalian Evolution
	6 Discussion
	References

	Constraint-Based Genetic Compilation
	1 Introduction
	2 General Workflow
	3 User Input Language
	4 Biocompilation Step: Arranging the Bio-Parts
	5 Biocompilation Step: RBS Selection
	6 Biocompilation Step: Cloning Sites Selection
	7 Example
	8 Interface
	9 Conclusion
	References

	Molecular Recognition/Prediction
	P2RANK: Knowledge-Based Ligand Binding Site Prediction Using Aggregated Local Features
	1 Introduction
	1.1 Motivation
	1.2 Existing Methods

	2 Materials and Methods
	2.1 Method Outline
	2.2 Datasets

	3 Experimental Evaluation
	3.1 Evaluation Measures
	3.2 Results
	3.3 Optimization and Tradeoffs

	4 Conclusion
	References

	StreaM - A Stream-Based Algorithm for Counting Motifs in Dynamic Graphs
	1 Introduction
	2 Background and Terminology
	3 Counting Motifs in Dynamic Graphs
	4 Evaluation
	5 Summary, Conclusion, and Future Work
	References

	Convolutional LSTM Networks for Subcellular Localization of Proteins
	1 Introduction
	2 Materials and Methods
	2.1 LSTM NETWORKS
	2.2 Regular LSTM Networks for Predicting Single Targets
	2.3 Attention Mechanism LSTM Netowork
	2.4 Subcellular Localization Data
	2.5 Visualizations
	2.6 Experimental Setup

	3 Results
	4 Discussion and Conclusion
	References

	Phylogenetics
	Hybrid Genetic Algorithm and Lasso Test Approach for Inferring Well Supported Phylogenetic Trees Based on Subsets of Chloroplastic Core Genes
	1 Introduction
	2 Presentation of the Problem
	3 Generation of the Initial Population
	4 Genetic Algorithm
	4.1 Genotype and Fitness Value
	4.2 Genetic Process
	4.3 Crossover Step
	4.4 Mutation Step
	4.5 Random Step

	5 Targeting Problematic Genes Using Statistical Tests
	5.1 The Lasso Test
	5.2 Second Stage of Genetic Algorithm

	6 Case Studies
	6.1 Pipeline Evaluation on Various Groups of Plant Species
	6.2 Investigating Apiales Order

	7 Conclusion
	References

	Constructing and Employing Tree Alignment Graphs for Phylogenetic Synthesis
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Tree Alignment Graphs

	3 Constructing a TAG
	3.1 Building TAG Nodes
	3.2 Adding Edges to the TAG

	4 Finding Consensus Trees Using the TAG
	5 Testing Compatibility Using the TAG
	6 Discussion
	References

	A More Practical Algorithm for the Rooted Triplet Distance
	1 Introduction
	1.1 Basic Definitions
	1.2 Previous Results and Related Work
	1.3 Our Contributions

	2 Summary of Brodal et al's Algorithm [2]
	3 The New Algorithm
	3.1 Preliminaries
	3.2 Description of the New Algorithm
	3.3 Time Complexity Analysis

	4 Implementation
	4.1 Representation of the Counters
	4.2 Two-Step Coloring
	4.3 The Coloring Scheme

	5 Experiments
	5.1 Experimental Setup
	5.2 Input Trees
	5.3 Results

	6 Concluding Remarks
	References

	Likelihood-Based Inference of Phylogenetic Networks from Sequence Data by PhyloDAG
	1 Introduction
	2 Related Work
	3 Likelihood-Based Inference in Phylogenetic Trees and Networks
	4 The PhyloDAG Method
	4.1 Stochastic E Step
	4.2 Structural M Step
	4.3 Avoiding Local Optima and Overfitting
	4.4 Postprocessing of the Networks

	5 Experiments
	5.1 Exact vs Approximated Likelihood: An Illustration
	5.2 Structure Search on Synthetic Data
	5.3 Real Data Experiment

	6 Conclusions
	References

	Constructing Parsimonious Hybridization Networks from Multiple Phylogenetic Trees Using a SAT-Solver
	1 Introduction
	2 Definitions and Background
	3 Algorithm
	3.1 Pre-processing
	3.2 Search of the Minimal Hybridization Number
	3.3 Encoding the Boolean Formula
	3.4 Solving the Boolean Formula and Post-processing

	4 Experiments
	5 Conclusion
	References

	Author Index

