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Abstract. In model driven engineering (MDE), models constitute the
main artifacts of the software development process. From models defining
structural and behavioral aspects of a software system implementation
artifacts, such as source code, are automatically generated using model
transformation techniques. However, a crucial issue in MDE is the quality
of models, as any defect not captured at model level is transferred to the
code level, where it requires more time and effort to be detected and
corrected. This work is concerned with testing the functional correctness
of models created with a subset of UML called fUML comprising class
and activity diagrams. We present a testing framework for fUML, which
enables modelers to verify the correct behavior of fUML activities.
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1 Introduction

In model driven engineering (MDE), models are the main artifacts of the devel-
opment process. Using model transformations, code and other implementation
artifacts are automatically produced from models improving the productivity of
the software development process, as well as the quality, portability, and main-
tainability of the developed system [2]. As the development process shifts from
being code-centric to being model-centric, the quality of the models used in
an MDE-based software development process becomes essential. Any defect not
captured at model level will be propagated to the code level, where it will require
more time and effort to be detected and corrected.

This work is concerned with verifying the functional correctness of models
created with UML [14], which is the most widely adopted modeling language in
MDE. More precisely, we focus on fUML [16], which is an executable subset of
UML (cf. also xUML [10]) comprising class diagrams for defining the structure of
systems and activity diagrams for defining the behavior of systems. For fUML, a
standardized virtual machine exists that gives precise operational semantics to
the included subset of UML. The standardization of fUML’s semantics provides
the basis for developing model analysis techniques and tools for UML models.

In general, it can be distinguished between two main analysis techniques for
verifying the functional correctness of software artifacts, namely formal anal-
ysis and testing techniques. These two techniques are not mutually exclusive,
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but instead complement each other. While several approaches applying formal
analysis techniques on fUML have been proposed in the past, to the best of our
knowledge only first ideas and intents on applying testing techniques on fUML
have been published (cf. Sect. 6).

In this paper, we present a fully functional and implemented testing frame-
work for fUML, which is based on first ideas and an early prototype presented
in [12]. The framework comprises a test specification language, which enables
modelers to express assertions on the behavior of a system defined in fUML, as
well as a test interpreter, which evaluates these assertions. Besides giving an over-
all overview of our testing framework, we present three newly developed testing
features. These new features address three requirements on testing fUML mod-
els: (i) Specifying assertions on the behavior of a system requires the capability
to evaluate complex conditions on the system’s runtime state, such as iterations
over existing objects and calculations over their feature values. (ii) Temporal
expressions allowing precise selections of the runtime states to be asserted are
required. (iii) Because fUML models can be used to specify concurrent behavior,
the existence of a potentially large number of possible execution paths has to be
considered in the test evaluation. To address these requirements, we extended
our initial testing framework with (i) support for OCL [15] allowing the spec-
ification of complex assertions on the runtime state of a system, (ii) a set of
temporal operators and temporal quantifiers allowing a more precise selection of
the runtime states to be asserted, and (iii) an improved test evaluation algorithm
taking concurrent behavior into account. We evaluated our testing framework
with these newly introduced features in a user study concerning the properties
ease of use and usefulness. The evaluation results on the one hand indicate that
the testing framework is both easy to adopt and useful for testing fUML models,
and on the other hand enabled us to identify potential for improvement.

The remainder of the paper is structured as follows. In Sect. 2, we introduce
an example for motivating and illustrating the newly developed features of our
testing framework. In Sect. 3 and Sect. 4, we provide an overview of our testing
framework and describe its new features in detail. The results of our user study
and related work are discussed in Sect. 5 and Sect. 6, respectively. In Sect. 7, we
conclude the paper and outline future work.

2 Motivating Example

In this section, we want to motivate our testing approach based on the example
of an automatic teller machine (ATM) system. The structure of the ATM system
is depicted in Fig. 1. The ATM can be used to perform withdrawals from a bank
account. The process of performing a withdrawal (operation ATM.withdraw) is
realized by the activity ATM.withdraw shown in Fig. 2. For starting a with-
drawal, the user has to provide an ATM card, the pin assigned to the card, and
the amount of money to be withdrawn from the user’s account. Once the with-
drawal is started, first a new transaction is created and set as current transaction
(action startTransaction). Next, the provided pin is validated (action validate-
Pin). If the pin is valid, the withdrawal is performed (action makeWithdrawal).
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Fig. 1. Class diagram of the ATM system

Fig. 2. Activity diagram of the operation ATM.withdraw
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Fig. 3. Activity diagram of the operation Account.makeWithdrawal

This in turn causes the balance of the account to be updated and a correspond-
ing withdrawal record to be created. Once the withdrawal has been completed,
the transaction is ended and recorded (action endTransaction).

Please note that the actions startTransaction, validatePin, makeWithdrawal,
and endTransaction are call actions calling the declared operations. The
explained functionality of these operations are implemented by dedicated activ-
ities. In the following, we discuss the implementation of the operation make-
Withdrawal. The remaining activities are omitted due to space limitations.

Figure 3 shows the activity implementing the operation Account.makeWith-
drawal. This activity first retrieves the account’s balance (action readBalance)
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and compares it with the amount of money to be withdrawn (action greaterOr-
Equal). If the balance exceeds the amount of money to be withdrawn, the new
balance is calculated (actions minus) and set (actions setBalance). Finally, a
new withdrawal record is created (action createNewWithdrawal), its amount is
set to the withdrawn amount of money (action setAmount), and it is associated
to the bank account (action addWithdrawalToAccount). In the case that the
withdrawal was performed, the value true is provided as output of the activity
(action successTrue), otherwise false is provided (action successFalse).

2.1 Functional Requirements of the ATM System

In the following, we consider the functional correctness of the ATM’s withdrawal
functionality. For correctly handling withdrawals in case a correct pin was pro-
vided, the ATM system has to fulfill the following functional requirements.

FR1 The pin has to be validated before the actual withdrawal is performed.
FR2 The account’s balance has to be reduced by the provided amount of money.
FR3 After the completion of the withdrawal, the balance of the account should

be equal to the difference between the sum of all recorded deposits and
the sum of all recorded withdrawals.

FR4 A new withdrawal record has to be created for the account.
FR5 The activity should return true indicating a successful withdrawal.
FR6 When the withdrawal is started, a new transaction should be created; once

it is completed, the transaction should be ended and recorded.

2.2 Requirements of the Testing Framework

To verify that the fUML model of the ATM system fulfills the specified functional
requirements, a testing framework is needed providing the following capabilities.

1. The testing framework shall provide the possibility to test the chronological
order in which nodes of an activity are executed. Thereby, the framework
ensures that the specified order is correct for every possible execution of the
activity, taking concurrency into account. (Required for FR1 )

2. The testing framework shall provide support for testing whether an activity
produces the correct output for a given input. Also, checking the output of
actions within the activity shall be supported. (Required for FR2 and FR5 )

3. The testing framework shall provide the possibility to test the runtime state
of a system during the execution of an activity. Therefore, it has to enable the
selection of the relevant runtime states, as well as the evaluation of expres-
sions on these runtime states. (Required for FR3, FR4, and FR6 : For FR6 it
has to be tested whether after the execution of the action startTransaction of
the activity ATM.withdraw a new transaction has been created; for the final
runtime state it has to checked whether the account’s balance and records
are consistent (FR3 ), a new withdrawal record has been created (FR4 ), and
the started transaction has been recorded (FR6 ))
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1 scenario atmTestData [
2 object atmTD : ATM {}
3 object cardTD : Card {pin = 1985;}
4 object accountTD : Account {balance = 100;}
5 object depositTD : Deposit {amount = 100;}
6 link card_account {source card = cardTD ; target account = accountTD ;}
7 link account_record {source account = accountTD ; target records = depositTD ;}
8 ]

Listing 1. Test scenario for testing the ATM system

1 test atmTestSuccess activity ATM .withdraw(card=cardTD , pin=1985, amount=100) on
↪→atmTD {

2 assertOrder ∗ , validatePin , ∗ , makeWithdrawal , ∗; // FR1
3 finally {
4 readAccount .result : : balance = 0; // FR2
5 check ’BalanceRecords ’ on readAccount .result ; // FR3
6 check ’NumOfWithdrawalsSuccess ’ on readAccount .result ; // FR4
7 success = true ; // FR5
8 }
9 assertState eventually after constraint ’TransactionCreated ’ { // FR6

10 check ’TransactionEnded ’ , ’TransactionAdded ’ ;
11 }
12 }

Listing 2. Test case for testing the ATM system

1 context ATM
2 exp TransactionCreated : currentTransaction <> null
3 exp TransactionEnded : currentTransaction = null
4 exp TransactionAdded : completedTransactions −> size() = 1
5 context Account
6 exp NumOfWithdrawalsSuccess : records −> select(oclIsTypeOf(Withdrawal)) −> size()=1
7 exp BalanceRecords :
8 (records −> select(oclIsTypeOf(Deposit)) −> collect(amount) −> sum() ) −
9 (records −> select(oclIsTypeOf(Withdrawal)) −> collect(amount) −> sum() ) = balance

10 endpackage

Listing 3. OCL constraints for testing the ATM system

The early prototype of our testing framework presented in [12] only partially
supported these capabilities. In this work, we introduce new testing features
that significantly extend the framework’s capabilities and enable a more precise
and thorough verification of the functional correctness of fUML activities.

3 Overview of the Testing Framework

Our testing framework is composed of a test specification language enabling the
definition of assertions on the behavior of fUML activities and a test interpreter
evaluating these assertions. In the following, we briefly introduce these two com-
ponents and discuss their limitations as presented in [12].

3.1 Test Specification Language

The test specification language enables modelers to define test suites composed
of test scenarios and test cases.

Test scenarios allow the specification of objects and links, which can be used
both as input values and expected output values of activities under test. The
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definition of a test scenario is composed of the keyword scenario, a scenario
name, arbitrary many object definitions, and arbitrary many link definitions.

Listing 1 shows the test scenario defined for testing the ATM’s functional
requirements presented in Sect. 2. The test scenario is called atmTestData and
defines four objects (keyword object), namely one ATM object, one Card object
with the pin 1985, one Account object with the balance 100, and one Deposit
object with the deposit amount 100. Furthermore, it defines two links (key-
word link), namely between the specified Card and Account objects, as well as
between the Account and Deposit objects.

A test case tests the behavior of an activity. Its definition consists of the key-
word test, a test name, the keyword activity, the name of the activity under
test, an optional list of input parameter value assignments for the activity, an
optional declaration of a context object for the activity, and a body. In the body
an arbitrary number of order assertions and state assertions can be declared.

Listing 2 shows the test case atmTestSuccess asserting the functional require-
ments of the ATM’s withdraw functionality defined by the activity ATM. with-
draw. For the input parameters, the Card object cardTD defined in the test
scenario (cf. Listing 1), the correct pin 1985, and the amount to be withdrawn
of 100 are provided. The activity is executed for the ATM object atmTD also
defined in the test scenario. The test case consists of one order assertion (line 2)
and two state assertions (lines 3-8 and 9-11), which are explained in the following.

Order assertion can be used to test the order in which the nodes of the
activity under test are executed. To specify an order assertion, the keyword
assertOrder is used followed by the list of nodes in their expected execution
order. It is also possible to specify a relative order of nodes by the use of jokers
for skipping exactly one (’ ’) or zero to many (’*’) nodes.

The order assertion of the test case atmTestSuccess (cf. Listing 2, line 2) tests
whether the action validatePin is executed before the action makeWithdrawal
with arbitrary many nodes being executed before, in between, or after them.

State assertions can be used to check the runtime state of the tested sys-
tem during the execution of the activity under test. The definition of a state
assertion consists of the keyword assertState, a temporal expression selecting
the runtime state to be checked, and arbitrary many state expressions defining
the expected properties of the selected runtime state. The temporal expressions
provided by the test specification language have been substantially extended and
improved compared to our early prototype presented in [12]. They will be exten-
sively discussed in Sect. 4.2. In line 4 of the test case atmTestSuccess (cf. List-
ing 2) we see an example of a state expression. It checks in the final runtime
state of the ATM system whether the account’s balance has been updated to
0. Please note that the test input for the activity ATM.withdraw defines that a
withdrawal of the amount 100 should be performed for the account associated
with the card cardTD. The card cardTD and its associated account accountTD
have been defined in the test scenario shown in Listing 1. Because the initial
balance of the account is specified to be 100 (cf. Listing 1, line 4), it is asserted
whether after the withdrawal of 100, the account’s balance is equal to 0.
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Fig. 4. Test interpreter

The test case shown in Listing 2 tests the fulfillment of all functional require-
ments defined in Sect. 2. The correspondences are provided in the comments in
Listing 2. Please note that the test case uses the objects defined in the test sce-
nario shown in Listing 1 as input values for the tested activity ATM.withdraw,
and the OCL expressions shown in Listing 3 for several state assertions. We will
discuss the test case in more detail in Sect. 4. A thorough discussion of the test
specification language is also provided on our project website [13].

3.2 Test Interpreter

The test interpreter is responsible for evaluating test cases specified in the pre-
sented test specification language. The process of evaluating test cases is shown
in Fig. 4. The input provided to the test interpreter consists of the fUML model
to be tested and the test suite to be evaluated on this model. Each test case in
the test suite is evaluated by executing the activity under test for the input val-
ues defined by the test case using the extended fUML virtual machine elaborated
in previous work [9]. This extended fUML virtual machine captures execution
traces reflecting the runtime behavior of the executed activity. In particular,
an execution trace provides detailed information about the execution order of
activities and activity nodes, inputs and outputs of activities and activity nodes,
as well as the runtime state of the system at any point in time of the execution.
The execution traces are analyzed by the test interpreter for evaluating every
assertion defined by a test case. The output of the evaluation is a test report
providing the information which assertions succeeded, which assertions failed,
and further information on failing assertions, such as invalid execution orders of
activity nodes and invalid system states.

3.3 Limitations

While the early prototype of our testing framework as presented in [12] supports
assertions of a system’s runtime state and the correct execution order of activity
nodes, it has the following major limitations:

1. State assertions are restricted to simple equality checks of objects and their
feature values. Complex expressions, such as iterations over a set of objects
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or calculations over their feature values are not supported. Furthermore, the
selection of the runtime states to be checked by state assertions can be only
defined by referring to the execution of particular activity nodes, but not by
defining conditions that should be fulfilled in the states to be selected.

2. Temporal expressions for selecting the states to be checked in a state asser-
tion are limited to the temporal operators after and before, as well as the
quantifiers always and exactly. They are insufficient for expressing more com-
plex state assertions, such as that some property of the state eventually
becomes true or that a certain property is valid in only some states.

3. Furthermore, order assertions are evaluated on a single execution path of
the activity under test, which is insufficient in the presence of concurrency.

4 Extensions of the Testing Framework

To overcome the aforementioned limitations of the early prototype of our testing
framework, we have extended it with support for OCL, additional temporal
operators and quantifiers, as well as a new test evaluation algorithm accounting
for concurrent behavior. These extensions are subject of this section.

4.1 OCL Expressions

With state expressions it is tested whether the runtime state of a tested sys-
tem fulfills certain properties. In the early prototype of our testing framework,
state expressions were restricted to simple equality checks. With this restriction,
complex properties, such as needed for verifying the consistency of an account’s
balance with its deposit and withdrawal records (FR3 ), are not possible.

Supporting the definition of complex properties in state expressions requires
the extension of our testing framework with a suitable expression language.
Thereby, concepts allowing iterations over objects existing in a system’s runtime
states, calculations over these objects’ feature values, and comparisons of values
are of particular interest. This includes especially operations for the predefined
types of fUML, such as Collection operations (e.g., select(), forAll()).

The integration of these concepts requires an extension of our test speci-
fication language with complex grammar concepts, as well as an extension of
our test interpreter for evaluating expressions defined with these concepts. Both
extensions are expensive to achieve without using an already existing expression
language with supporting infrastructure. Thus, we decided against building our
own expression language and interpreter, but instead integrated OCL with our
testing framework. OCL [15] is a formal language providing concepts for defining
expressions on UML models. Like UML, it is standardized by OMG and most
of the experts in the modeling domain are familiar with OCL.

We integrated OCL with our testing framework, such that OCL expressions
can be used for defining complex conditions on a system’s runtime state as state
expressions in state assertions, as well as for specifying temporal expressions
selecting the runtime states to be asserted. This integration was achieved using
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the DresdenOCL framework [7], which provides extension mechanisms that allow
the integration of OCL into the abstract and concrete syntax of an existing mod-
eling language, such as our test specification language, as well as the evaluation
of OCL expressions on any model instances, such as the runtime state of a model
represented with fUML as required by our test interpreter. Details about how
such an integration of OCL may be achieved can be found in [7].

The OCL expressions used in the test cases for the ATM system are given in
Listing 3. For instance, the OCL expression BalanceRecords (lines 7-9) specifies
that the balance of an account should be equal to the difference between the
sum of all recorded deposits and the sum of all recorded withdrawals. This OCL
expression is used in the test case (cf. Listing 2, line 5) to test that the account’s
balance and its withdrawal and deposit records are consistent.

4.2 Temporal Expressions

Temporal expressions are used in state assertions for selecting the runtime states
of a tested system that have to be checked for expected properties. Thereby,
runtime states are generated during the execution of activities and capture the
system’s state after a certain action has been executed. For instance, as illus-
trated in Fig. 5, the states S1, S2, S3, and S4 resulted from the execution of the
actions actionA, actionB, actionC, and actionD, respectively. The values a, b,
and c in each state represent the results of evaluating conditions on these states.

Temporal expressions are composed of temporal operators, temporal quanti-
fiers, and actions or alternatively OCL constraints. In the early prototype of our
testing framework, OCL constraints were not supported for selecting runtime
states, and important temporal quantifiers, such as eventually, were missing. As
part of our extensions, we also refined the supported temporal operators. In the
following, we discuss the temporal operators and quantifiers based on Fig. 5.

Temporal operators in combination with the specification of actions are used
for selecting the runtime states to be considered in a state assertion. We support
the temporal operators after and until defining that all runtime states after or
until an action has been executed shall be considered. If OCL constraints are
used instead of actions, they are evaluated in each runtime state starting with
the first one. Those states in which the constraints are evaluated to true for the
first time are select, as well as all runtime states between them.

Temporal quantifiers are used for specifying in which of the selected runtime
states the state expressions of a state assertion should evaluate to true. Our
test specification language provides the temporal quantifiers always, eventually,
immediately, and sometimes described in the following.

The temporal quantifier always defines that the state expressions should eval-
uate to true in all selected runtime state. For instance, the temporal expression
(1a) specifies that in each state starting from the first one until the state pro-
duced by actionB, the value of the state expression c should evaluate to false.

The temporal quantifier eventually defines that each state expression should
evaluate to true in one of the selected runtime states and should remain true in
all of the following selected runtime states. For instance, the temporal expression
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Fig. 5. Combinations of temporal operators and temporal quantifiers in state assertions

(2b) specifies that from the first state in which a becomes true, until the first
state in which b becomes true, the value of the state expression c should become
true in one state and remain true in each of the following selected states.

The temporal quantifier immediately specifies that each state expression
should be true in either a runtime state created by the specified action or the
one right before this state, depending on whether the temporal operator after or
until is used. If an OCL constraint is used instead, the state expression should
be fulfilled in the first state where the specified constraint evaluates to true or
the state right before it. For instance, the temporal expression (3a) specifies that
the value of the state expression c should be true in the state caused by actionD.

The temporal quantifier sometimes defines that each state expression should
evaluate to true in at least one of the selected runtime states. The temporal
expression (1b) specifies that the state expression c should evaluate to true in at
least one of the states from the first state until the state where b becomes true.

We also introduced the keyword finally as a shorthand for always after
actionX where actionX is the last executed action of the activity under test.

Lookingbackat the test case for theATMsystem inListing2, the state assertion
in lines 9-11 specifies that after the constraintTransactionCreated (cf. Listing 3) is
evaluated to true, the constraintsTransactionEnded andTransactionAdded should
eventually evaluate to true. Thus, it is tested whether during the execution of the
activity ATM.withdraw, a transaction is created, which is afterwards ended and
recorded.

With the newly introduced and improved temporal operators and temporal
quantifiers, and the capability to use OCL conditions in temporal expressions, a
system’s runtime states can be much more precisely selected for testing purposes
than has been possible with the early prototype of our testing framework.

4.3 Concurrency

Concurrency in an activity leads to the existence of a potentially large or even
infinite number of possible execution paths of that activity, which have to be
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st sc vp ipv ra mw me et

startTransaction (st) T
splitCard (sc) T T

validatePin (vp) T
isPinValid (ipv) T

readAccount (ra) T
makeWithdrawal (mw) T

mergeEnd (me) T
endTransaction (et)

Fig. 6. Adjacency matrix for evaluating order assertions on the activity ATM.withdraw

considered in the test evaluation. In particular, order assertions checking the
correct execution order of activity nodes have to be evaluated for every possible
execution path of the activity under test.

The early prototype of our testing framework did not account for concurrent
execution paths of activities and thus reported false positive evaluation results for
order assertions. This is because the fUML virtual machine executes concurrent
paths sequentially, and thus the trace used for evaluating order assertions reflects
only one possible execution order of activity nodes lying on concurrent paths. The
early prototype checked order assertions only on this single sequential execution
order. To overcome this limitation, we implemented a new evaluation algorithm
for order assertions, which correctly deals with concurrent paths.

As a first step, the algorithm transforms the execution trace of the activ-
ity under test into an adjacency matrix. The execution trace from which we
construct the matrix is like in the former version of the evaluation algorithm
obtained from a single execution of the activity under test for the given input
defined by the test case. However, the new algorithm also takes the input/out-
put dependencies between executed activity nodes into account, which are also
captured by the execution trace. Thereby, an activity node B depends on an
activity node A, if B received an object token or control token from A as input.
In this case, B is added as being adjacent to A in the adjacency matrix.

Figure 6 shows the adjacency matrix constructed for the execution of the
activity ATM.withdraw (cf. Fig. 2) with the input values defined in our test case
atmTestSuccess (cf. Listing 2). For instance, the activity node validatePin is
adjacent to the activity node startTransaction, because it received a control token
from validatePin via the defined control flow edge. Thus, the matrix contains a
true value (abbreviated with T ) in the first row and third column.

Based on the constructed adjacency matrix, order assertions can be evaluated
efficiently by analyzing the dependencies between activity nodes specified in the
order assertions. For instance, to evaluate an order assertion assertOrder *,
A, B, *, we have to check whether B depends on A, i.e., whether a true value in
the adjacency matrix indicates B as being adjacent to A. If this is not the case,
there exists no input/output dependency between A and B and, hence, they may
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be executed in reverse order. Furthermore, we have to check that there are no
other nodes independent of both A and B , i.e., nodes that lie on parallel paths.

For the evaluation of the jokers ’ ’ and ’*’, also indirect input/output depen-
dencies between activity nodes have to be considered, which can also be effi-
ciently calculated from the adjacency matrix. For instance, to evaluate an order
assertion assertOrder A, , B, we have to check whether an arbitrary activ-
ity node X exists on which B depends and which itself depends on A, i.e., X
provided input to B and received input from A.

Looking back at our test case defined for the ATM system (cf. Listing 2),
the order assertion defined in line 2 is evaluated by checking in the adjacency
matrix (cf. Fig. 6) whether makeWithdrawal is directly or indirectly adjacent to
validatePin. Because this is the case, indicated by the underlined true values in
the matrix, the order assertion evaluates to true.

4.4 Implementation

We provide an open source implementation of our testing framework integrated
with EMF. The testing framework is part of the larger project moliz [13], which
is concerned with executing, testing, and debugging models based on the fUML
standard. For implementing the grammar and editor of our test specification
language, we have used the Xtext framework. The test interpreter is implemented
in Java and based on an extended version of the reference implementation of the
fUML virtual machine elaborated in previous work [9]. For the integration of
OCL with our testing framework, we have used the DresdenOCL framework [7].

5 Evaluation

We evaluated our testing framework with the presented new functionality con-
cerning ease of use and usefulness by carrying out a user study. In the following,
we present the user study setup, as well as the results and lessons learned.

5.1 User Study Setup

The user study consisted of the following four steps, which were carried out with
each participant individually.
(i) Introduction. At the beginning of the user study, the participant was given an
introduction to fUML and our testing framework. This included the most impor-
tant concepts of fUML comprising fUML’s class concepts, activity concepts, and
action language. Furthermore, a simple exemplary fUML model was introduced
and used to explain the main concepts of our test specification language.
(ii) Skills questionnaire. The target group of users of our testing framework
are practitioners in the MDE domain using UML activity diagrams to define
the behavior of systems. Thus, in order to obtain relevant results, our selection
of participants was based on their background in UML, OCL, and unit testing.



Testing Functional Requirements in UML Activity Diagrams 185

The participants’ skills in these languages were collected using a questionnaire.
Most of the participants had a good background in UML being slightly more
experienced with class diagrams than with activity diagrams. The knowledge of
the UML action language was balanced from having no experience to being an
expert. Most of the participants declared their experience with OCL at the begin-
ner level, while unit testing knowledge was declared as average by most partici-
pants. The participants of the user study consisted of post-doctoral researchers,
PhD students, and master students of the Vienna University of Technology.
(iii) Testing tasks. The participants were asked to complete two tasks with
our testing framework. Therefore they used our implementation of the testing
framework, including an editor for writing test cases and the test interpreter
running test cases and providing the results as console output.

The aim of the first task was to evaluate the ease of use of our testing
framework. Therefore, the participants had to define a test suite implementing
predefined functional requirements for two given and correct activities. For the
first activity, the participants had to specify a test scenario with one object,
and two test cases with two different order assertions and two different state
assertions. The activity comprised nine nodes and included simple fUML action
types, such as value specification action. For the second activity, the participants
had to specify a test scenario with several objects and links, two state assertions,
and one OCL expression. The activity was composed of fourteen activity nodes
and included slightly more complex fUML concepts, such as expansion regions.

With the second task, we aimed at evaluating the usefulness of our testing
framework, in particular, the usefulness of test results for detecting and correct-
ing defects in UML activity diagrams. In this task, the participant was given
a defective activity diagram, two test cases testing the activity diagram, and
the test results. Based on the test cases and test results, the participant had to
locate the defects and suggest corrections. The activity consisted of nine activity
nodes and included simple fUML action types. Two defects were introduced into
the UML activity diagram. One defect consisted of wrong guards for a decision
node, which led to the execution of a wrong path. This defect was detectable
from the test result of a failing order assertion. The second defect consisted of
a missing merge node, which led to an activity node not being executed. This
defect was detectable from the test result of a failing state assertion.
(iv) Opinion questionnaire. Finally, the participants rated the ease of use and
usefulness of the testing framework in a questionnaire.

More details about the case study setup including the used fUML models, test
suits, and task descriptions may be found at our project website [13].

5.2 Results and Lessons Learned

We observed the participants during performing the given tasks to find out (i)
how easy our testing framework is to use for testing UML activity diagrams
(first task), and (ii) whether test results are useful for detecting and correcting
defects in UML activity diagrams (second task).
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(i) Ease of use. For the first task, where the participants had to define test
cases, we made the following observations.

Test scenarios. Most of the participants had at the beginning problems to
understand the purpose of test scenarios, because they tried to define the test
scenarios before thinking about and writing the actual test cases. However, after
having defined the first test case, the participants understood how to use test
scenarios for providing input to the activities under test.

Order assertions. Another frequently observed problem encountered by the
participants was to correctly specify order assertions. Several participants speci-
fied the expected order of activity nodes incorrectly, as they forgot to use jokers
for allowing arbitrary nodes to be executed between two nodes of interest. How-
ever, after running the order assertion and reading the failing test result, all
participants were able to correct the order assertion.

State assertions. A third recurring issue was related to understanding the
relation between temporal expressions and state expressions. More precisely,
several participants specified each state expression separately in a distinct state
assertion, even though the temporal expressions of these state assertions were
identical (i.e., only one state assertion would have been required).

OCL expressions. Several participants had issues with specifying the OCL
expression required for one of the test cases. However, this was due to the fact
that these participants had little experience with OCL. Connecting the OCL
expression with a test case was not an issue for any of the participants.

Overall, we observed that after each written test case, the participants were
making fewer mistakes in specifying the next one. By the time they got to the
second task, all participants had a clear understanding about all the concepts
provided by the test specification language. From this observation, we conclude
that our test specification language has a gentle learning curve. One of the
possible improvements that we discovered during the user study is that some
concepts of the test specification language, such as the specification of links in
test scenarios, could be improved. Furthermore, additional validations by the
editor would significantly improve the specification of test cases, as it prevents
defects in the test cases themselves.
(ii) Usefulness. In the second task, the participants had to detect and correct
defects in a UML activity diagram based on test cases and test results. We made
the following observations for this task.

Understanding test cases. The participants had no problems in understanding
the given test cases and their purpose. They were able to correctly explain the
functional requirements tested by the test cases.

Understanding test results. Out of the eleven participants, five were able to
locate both introduced defects, three were able to locate the first defect only,
and three were not able to locate any of the defects.

For identifying the first defect, we provided the participants with a test case
testing the expected execution order of activity nodes with an order assertion, as
well as the test result of running the test case on the defective activity. The test
result listed the actually executed path, which allowed all of the participants to
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detect that a wrong path was executed. Eight of the participants were also able
to identify the related defect, namely wrongly defined guard conditions. Three
participants were not able to locate this defect, because they were not familiar
with how guard conditions are evaluated in UML based on object flows.

The second defect was a missing merge node, which impeded the execution
of an activity node and consequently resulted in a wrong final runtime state of
the tested system. For identifying this defect, we provided a test case checking
the final runtime state with a state assertion, as well as the test result. The
test result showed both the actually last executed activity node and the actual
final runtime state. Neither of them was as expected by the state assertion. For
identifying the causing defect, the participants had to detect that the activity
node leading to the expected final runtime state was not executed and that the
reason for this was the missing merge node. This was not as obvious as in the
former example, where the result of an order assertion clearly showed which
nodes of the tested activity were executed and which were not. Furthermore,
identifying that a merge node has to be introduced to correct the defect requires
the knowledge that alternative branches in UML activities always have to be
explicitly merged by a merge node. Thus, the participants who did not have this
knowledge were not able to identify the missing merge node as defect.

With this task, we aimed at evaluating how useful test results are for detect-
ing and resolving defects in UML activity diagrams. We define the property
usefulness as the average percentage of defects resolved by participants based
on test results. Let D be the number of defects introduced into an activity,
and RDi the number of defects resolved by participant i. Then, the percent-
age of resolved defects by user i is Xi = RDi/D ∗ 100. The metric for mea-
suring usefulness is U =

∑
Xi/n, where n is the number of participants.

According to this metric, the usefulness measured through the user study is
U = (5 ∗ 100% + 3 ∗ 50% + 3 ∗ 0%)/11 = 59.09%. This measure indicates a
positive result for the usefulness of test results for detecting defects in activities.
However, it also indicates that further improvements are needed.

Our conclusion drawn from these observations is that the visualization of test
results is crucial for making them useful for locating defects. Therefore, providing
more effective means for visualizing test results have to be investigated in future
work. For instance, we intend to investigate the integration of the visualization of
test results with UML modeling editors, such that test results can be presented
on the tested activity diagrams themselves. Furthermore, presenting the states
of a system occurred during the execution of an activity under test in the form
of UML object diagrams could be useful, as it may provide more insight into the
cause of failing test cases. Furthermore, for localizing a defect and deriving valid
corrections, debugging is essential. Providing users with the possibility to step
through the execution of an activity and observe the state of the system after
each step may facilitate the localization of defects causing failing test cases.
Table 1 shows the results of the opinion questionnaire filled in by the participants
to rate how difficult it was to accomplish the given tasks. As can be seen from the
results, our observations and conclusions correspond to the participants’ opinion.
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Table 1. Results of the opinion questionnaire

Task very easy easy medium hard very hard

Read class diagrams 7 4

Read activity diagrams 3 7 1

Write test cases 8 3

Read test cases 3 4 2 2

Read test results 3 4 2 2

Correct activity diagrams 1 3 2 2 3

Threats to Validity. There are several threats to the validity of the evaluation
results. First, in order to make the evaluation feasible in the described setup,
the examples given to participants were of low complexity. Having more complex
examples might give better insights into the ease of use of the test specification
language and the usefulness of test results for detecting defects. Another threat to
validity is the selection of participants. The participants consisted of researchers
and students, but participants from industry were missing. Furthermore, also the
fairly low number of participants influences the validity of the results. As future
work, we intend to perform a larger user study with more participants having
different background and knowledge, as well as with more complex examples.

6 Related Work

Until now, testing UML activity diagrams conforming to the fUML standard has
not been investigated intensively. We are only aware of the work by Craciun et al.
[4], who propose to develop a virtual machine for fUML models using the K-
framework for efficiently testing fUML models. However, this work is still in its
early stage and there is yet no information about an existing implementation.

For UML 2 activities and actions, Crane and Dingel [5] present an interpreter,
which offers several dynamic analysis capabilities, such as reachability and dead
lock analysis, as well as assertions on objects during the execution of activities.
The latter capability is similar to the state assertions provided by our testing
framework. However, only some simple expressions on objects are supported. In
contrast, our testing framework supports the full power of OCL.

Another interesting line of work related to state assertions is temporal OCL.
It is an extension of OCL with temporal operators and quantifiers (e.g., [3])
enabling not only the evaluation of OCL expressions on a single state of a system
but also on its evolution. Thus, temporal OCL could be used in a similar way as
our state assertions for testing purposes. However, our testing framework does
not extend OCL with temporal expressions, but rather uses it as is and instead
provides temporal expressions as part of the test specification language.

Contrary to testing techniques, several approaches applying formal analysis
techniques on fUML activities have been proposed. Romero et al. [18] show how
the standardized formal semantics of fUML can be utilized to perform formal
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verification through theorem proving. Abdelhalim et al. [1] developed a frame-
work that automatically formalizes fUML models as CSP processes and analyzes
them for deadlocks. Laurent et al. [8] define a first-order logic formalization for
a subset of fUML and apply model checking techniques for verifying the correct-
ness of process models defined with fUML. Their formalization covers control
and data flows, as well as resource and timing constraints. Properties that are
verified include termination and dead lock freeness. Planas et al. [17] propose
a verification method for fUML models, which focuses on the property strong
executability. This property guarantees that every time an activity is executed,
the system’s state is changed in a way consistent with all defined integrity con-
straints. Micskei et al. [11] propose a transformation chain from UML models to
formal verification tools using fUML and Alf as intermediary languages. In par-
ticular, they propose to translate UML state machines into the formal language
of the UPPAAL tool environment, which provides a model checker allowing the
formal verification of the modeled behavior.

Further approaches dealing with the formal analysis of UML activity dia-
grams exist, which, however, do not consider the full power of fUML. For
instance, Eshuis and Wieringa [6] present a formalization of workflow models
specified as UML activity diagrams for verifying functional requirements. In
their approach, activity diagrams are translated into transition systems, func-
tional requirements are defined as LTL formulas, and these LTL formulas are
evaluated on the obtained transition systems using the NuSMV model checker.

7 Conclusion and Future Work

In this paper, we have presented a testing framework for fUML models, which
allows modelers to verify the correct behavior of fUML activities. Besides giving
an overview of the testing framework, we have explained three newly introduced
features in detail, which significantly extend the framework’s testing capabilities.
In particular, we introduced support for OCL allowing the evaluation of more
complex conditions on the expected runtime state of a system under test. Fur-
thermore, our testing framework now provides additional temporal operators
and quantifiers for more precisely selecting the runtime states to be asserted
by test cases. Finally, we developed a new algorithm for verifying the correct
execution order of activity nodes in the presence of concurrent behavior.

Based on the lessons learned from evaluating our testing framework in a user
study, we intend to improve the ease of use of our test specification language by
adapting its textual syntax, as well as the usefulness of test results by investi-
gating more effective visualization techniques. Furthermore, we plan to further
improve the evaluation of assertions taking into account concurrency. In particu-
lar, concurrent paths also have to be considered when evaluating state assertions,
as actions modifying and accessing the same values concurrently might lead to
nondeterminism. Another interesting feature that we have identified for future
work is the support of comparisons between distinct runtime states of the tested
system, i.e., the comparison of runtime states at different points in time.
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17. Planas, E., Cabot, J., Gómez, C.: Lightweight verification of executable models.

In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998,
pp. 467–475. Springer, Heidelberg (2011)
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