
Experimental Evaluation of a Novel Equivalence
Class Partition Testing Strategy

Felix Hübner (B), Wen-ling Huang, and Jan Peleska

Department of Mathematics and Computer Science, University of Bremen,
Bremen, Germany

{felixh,huang,jp}@informatik.uni-bremen.de
http://informatik.uni-bremen.de/agbs

Abstract. In this paper, a novel complete model-based equivalence
class testing strategy is experimentally evaluated. This black-box strat-
egy applies to deterministic systems with infinite input domains and
finite internal state and output domains. It is complete with respect to a
given fault model. This means that conforming behaviours will never be
rejected, and all nonconforming behaviours inside a given fault domain
will be uncovered. We investigate the question how this strategy performs
for systems under test whose behaviours lie outside the fault domain. Fur-
thermore, a strategy extension is presented, that is based on randomised
data selection from input equivalence classes. While this extension is still
complete with respect to the given fault domain, it also promises a higher
test strength when applied against members outside this domain. This is
confirmed by an experimental evaluation that compares mutation cover-
age achieved by the original and the extended strategy with the coverage
obtained by random testing.

Keywords: Model-based testing · Equivalence class partition testing ·
Adaptive random testing · SysML · State Transition Systems

1 Introduction

Background. In [13], two of the authors have presented a novel complete input
equivalence class partition (IECP) testing strategy. Typically used in a model-
based testing (MBT) scenario, the strategy is applicable to all concrete test
models whose behavioural semantics can be described by a deterministic variant
of Kripke Structures, with input variables from potentially infinite domains, but
with finite-range internal state variables and finite output domains. The test
suite construction is performed in relation to a given fault model F = (S,∼,D)
with reference model S, conformance relation ∼, and fault domain D. S specifies
the expected behaviour of the SUT. In general, the conformance relation is a
not necessarily symmetric relation specifying the conditions for the behaviour
of a system under test (SUT) to be still acceptable in comparison with S. In
the context discussed here, we use I/O-equivalence ∼ as conformance relation
which means that the SUT and reference model S produce the same observable
c© Springer International Publishing Switzerland 2015
J.C. Blanchette and N. Kosmatov (Eds.): TAP 2015, LNCS 9154, pp. 155–172, 2015.
DOI: 10.1007/978-3-319-21215-9 10

156 F. Hübner et al.

sequences of states, when restricted to inputs and outputs. The fault domain
D consists of a (usually infinite) set of models S ′ from this domain, that may
conform to the reference model (S ′ ∼ S) or not.

A test suite is then complete with respect to F , if and only if all tests of
the suite will pass for every S ′ ∈ D conforming to S, and at least one test will
fail when executed against a non-conforming member of D. The test hypothesis
states that the true behaviour of the SUT is equivalent to one of the models in
the fault domain, as far as visible at the black-box interface. Summarising, the
complete IECP testing strategy uncovers every erroneous behaviour of the SUT,
provided that its true behaviour can be captured by a member S ′ of the fault
domain, and SUTs that are I/O-equivalent to S will never fail a test of the suite.

The investigation of completeness properties has a long tradition as a research
topic; references to the associated literature are given in Section 5.

Fig. 1. Tool-supported workflow

Workflow and Tool Support. In Fig. 1 the workflow associated with our
test approach is shown. Test models are represented in a concrete modelling
formalism; for the models presented in this paper SysML [18] has been used. As
explained in Section 2, the test model is translated into a state transition sys-
tem whose behavioural semantics is expressed by means of initial condition and
transition relation in propositional form. From the transition relation, equiva-
lence classes are calculated. These give rise to an abstraction as a deterministic
finite state machine (DFSM). Applying well-known complete testing strategies
for DFSM, an abstract test suite is derived. Each test case of this suite is repre-
sented as a sequence of input equivalence classes. Selecting concrete input data
from each of these classes by means of an SMT solver, a complete test suite for
the original test model is generated. The whole process is automated and has
been integrated in the model-based test automation tool RT-Tester [20].

Equivalence Class Partition Testing Strategy 157

Objectives and Main Contribution. Apart from their theoretical value,
complete testing strategies are of considerable importance for verification and
validation (V&V) of safety critical systems. There test suites have to be justified
with respect to their test case selection and the resulting test strength, in order to
obtain certification credit. The completeness property, however, depends on the
assumption that the true SUT behaviour is reflected by a member of the fault
domain D (test hypothesis). Widening D typically affects the size of the test
suite in an exponential way. Therefore just using very large fault domains is not
an approach that will be feasible in practise. This leads to the question of how
complete test suites perform outside the fault domain, and this investigation is
the main objective of this paper. To this end, three test strategies are evaluated
with respect to their strength: (A) conventional random testing – this serves as a
lower bound of test strength, to be surpassed by any more sophisticated strategy.
(B) The original complete IECP strategy from [13], and (C) an extension of
the latter which is based on randomised selection of inputs from each input
equivalence class (IEC). These three strategies are described in more detail in
Section 2.

An experimental evaluation (see Section 4) is performed which is based on
two test models that are introduced in Section 3: a speed monitor from the
European Train Control System and an airbag controller for vehicles. Applying
the three strategies against a collection of mutants, the experimental evaluation
confirms significant test strength improvements of strategy (B) over (A), and
the highest test strength is achieved by (C).

Apart from this main contribution, the evaluation results indicate how the
fault domain should be configured: in contrast to fault domains for DFSMs (these
only depend on the assumed maximal size of the SUT’s DFSM state space), our
fault domains depend on an additional parameter affecting the size of the IECs.
The evaluation indicates that the best choice for D is an IEC granularity that
still reflects the different control conditions imposed by the reference model and
the boundary value conditions. However, instead of further refining the IECP
(this would result in a dramatic increase of the test suites), it is better to increase
the number of input values randomly selected from each IEC in each state.

2 Model-Based Random Testing and Equivalence Class
Partition Testing

2.1 Random Testing

In model-based random testing, test cases are created by generating random val-
ues as SUT inputs. To this end, the input interface signatures of the SUT are
extracted from the model, so that the random values are created in the appropriate
data ranges. Apart from this, the input data creation is not guided further by the
model. Additionally, the model is used as a test oracle, so that the observed SUT
behaviour can be compared to the expected behaviour specified by the model.

When performing black-box tests of SUTs with internal states, the SUT
behaviour depends on the sequence of inputs provided since the last SUT reset.

158 F. Hübner et al.

As a consequence, test cases are specified by sequences of random inputs. Mod-
els serving as test oracles need to simulate the internal state changes to be
performed by the SUT on each input, in order to predict the SUT reactions in a
correct way. While random testing is quite easy to mechanise, its test strength
is usually rather weak, because the test case selection does not take into account
the required SUT behaviour. On the other hand, random testing is an obvious
candidate for assessing the test strength of more refined model-based testing
strategies: any successful refined strategy should have a test strength that is
significantly higher than the random testing approach.

2.2 Equivalence Class Partition Testing

Semantic Domain. The novel equivalence class partition testing strategy
presented in [13] is applicable to deterministic, livelock-free systems with
conceptually infinite input domains and finite internal state and output domains.
“Conceptually infinite” means that the domains are too large to be explicitly enu-
merated for test purposes. This includes physical models with real-valued inputs,
but can also apply to finite but very large data types such as 64 bit integers or
doubles as used in typical programming languages or modelling formalisms. As
pointed out in [5,6,13], this class of systems is quite significant in the embedded
systems domain: typical candidates are controllers processing analogue inputs
and deriving discrete control decisions from these inputs, such as thrust reversal
controllers in aircrafts, or the speed monitors and airbag controllers described
in this paper.

The strategy has been proven to be complete on the semantic domain of
Reactive Input Output State Transition Systems (RIOSTS) S = (S, s0, R, V,D).
These systems have state spaces S, initial state s0 ∈ S, and transition relations
R ⊆ S × S. Their state spaces consist of valuation functions s : V → D, where
V is a set of variable symbols and D is the union of all variable domains. The
variable symbols can be partitioned into V = I ∪ M ∪ O, where I comprises
input variables, M (internal) model variables, and O output variables. RIOSTS
distinguish between quiescent states s ∈ SQ and transient states s′ ∈ ST ,
such that SQ ∪ ST partitions the state space S. Transitions from quiescent
states only change input valuations, while internal model variables and out-
put variables remain unchanged. The resulting post-states may be quiescent or
transient. Transitions from transient states always have uniquely determined
quiescent post-states (so we only allow deterministic RIOSTS here), and the
associated transitions leave the inputs unchanged. This concept represents a
natural abstraction of timed formalisms, where delay transitions allow for time
to pass and inputs to be changed, while discrete transitions produce output and
change internal state, but are executed in zero time [3, p. 687].

By associating atomic propositions AP with free variables in V , any RIOSTS
can be extended to a Kripke Structure [9] K(S) = (S, s0, R, V,D,L,AP). The
labelling function L : S → 2AP maps s ∈ S to the set of all atomic propositions
p ∈ AP that evaluate to true, when replacing every free variable v of p by its
valuation s(v) in state s.

Equivalence Class Partition Testing Strategy 159

Notation. In the exposition below, variable symbols are enumerated with the
naming conventions I = {x1, . . . , xk}, M = {m1, . . . ,mp}, O = {y1, . . . , yq}. We
use notation x = (x1, . . . , xk) for input variable vectors, and their valuation in
state s is written as s(x) = (s(x1), . . . , s(xk)). DI = Dx1 ×· · ·×Dxk

denotes the
Cartesian product of the input variable domains. Tuples m,y and DM and DO

are defined over model variables and outputs in an analogous way. By s ⊕ {x �→
c}, c ∈ DI we denote the state s′ which coincides with s on all variables from
M ∪ O, but maps the input vector to valuation s′(x) = c. For (s1, s2) ∈ R
we also use the shorter expression R(s1, s2). Restricting a state s to variable
symbols from a set U ⊆ V is denoted by s|U . This function has domain U and
coincides with s on this domain.

Application to Concrete Modelling Formalisms. The test strategy
described below is elaborated on the semantic domain of RIOSTS. Every concrete
modelling formalism whose behavioural semantics can be represented by RIOSTS
is automatically equipped with such a test strategy: the concrete model M is trans-
lated into its corresponding RIOSTS S. Then the test strategy is applied to S, and
this results in a set of test cases, each case represented by a finite sequence of inputs
to the SUT. When executing the test cases, the transition relation of S is used to
determine whether the SUT’s reactions to these input sequences are adequate. In
this article, concrete models are expressed by SysML state machines, and these
can be associated with RIOSTS semantics which is consistent with the semi-formal
specification of state machine behaviour in the UML/SysML standards [17,18].

Equivalence Classes. We use the term trace to denote finite sequences of
states, input vectors, or output vectors. Applying a trace ι = c1 . . . cn of input
vectors ci ∈ DI to an RIOSTS S = (S, s0, R, V,D) residing in some quiescent
state s ∈ S stimulates a sequence of state transitions, each pair of consecutive
states connected by the transition relation R, and with associated output changes
as triggered by these inputs. Restricting this sequence to quiescent states, this
results in a trace of states τ = s1.s2 . . . sn such that si(x) = ci, i = 1, . . . , n,
and si(y) is the last STS output resulting from application of c1 . . . ci to state
s.1 This trace τ is denoted by s/ι. The restriction of s/ι to output variables
is denoted by the trace (s/ι)|O. Since transient states have unique quiescent
post-states, (s/ι)|O is a uniquely determined output trace. Two quiescent states
s, s′ are I/O-equivalent, written s ∼ s′, if every non-empty input trace ι, when
applied to s and s′, results in the same outputs, that is, (s/ι)|O = (s′/ι)|O. Two
STS S,S ′ with the same input domain are I/O-equivalent, if their initial states
are I/O-equivalent. Note that s ∼ s′ asserts equivalent I/O-behaviour in the
future, while it still admits that states s and s′ show different output valuations,
i.e. s|O 	= s′|O.

1 Observe that the restriction to quiescent states does not result in a loss of informa-
tion. Every transient state has the internal and output variable valuations coinciding
with its quiescent pre-state, and its input valuation is identical to that of its quiescent
post-state.

160 F. Hübner et al.

Since I/O-equivalence ∼ is an equivalence relation on quiescent states, we can
factorise SQ with respect to ∼. The initial input equivalence class partitioning
(IECP) I ⊆ P(DI) associated with SQ/∼ is the coarsest partitioning of DI such
that for all q ∈ SQ/∼, X ∈ I, there exists a uniquely determined I/O-equivalence
class δ(q,X) ∈ SQ/∼, such that

∀s ∈ q, c ∈ X : s/c ∈ δ(q,X) (1)

and there exists a well-defined output ω(q,X) ∈ DO, such that

∀s ∈ q, c ∈ X : (s/c)|O = ω(q,X) (2)

It is shown in [13] that SQ/∼ is finite if the RIOSTS S has finite inter-
nal state domains and finite output domains, while the input domains may
be infinite. Moreover, the coarsest partitioning I exists, and it is finite and
uniquely determined under these prerequisites. For these RIOSTS, properties
(1) and (2) induce an abstraction to DFSMs with state space SQ/∼, input
alphabet I, and output alphabet DO: (1) specifies a well-defined total tran-
sition function δ : SQ/∼ × I → SQ/∼, and (2) a well-defined output function
ω : SQ/∼ × I → DO. When partitioning I further to a refined IECP I, the
characteristic properties (1),(2) are preserved.

A finite sequence X1 . . . Xk,Xi ∈ I is called an abstract test case: concrete test
input vectors ci can be selected from each Xi, and, when applied to the initial state
s0, this selection induces a trace s1 . . . sk of quiescent states, such that

∃q1, . . . ,qk ∈ SQ/∼ : ∀i ∈ {1, . . . , k} : si ∈ qi ∧ qi = δ(qi−1,Xi)

The IECP properties imply that the expected results associated with this test
case are then specified by the output trace ω(qi−1,Xi), i = 1, . . . , k.

In [13] an algorithm for calculating SQ/∼ and I is given. This algorithm
produces propositions over variables from V , specifying the members of SQ/∼
and I, respectively. Making use of an SMT solver, the algorithm allows for iden-
tifying the reachable I/O-equivalence classes q ∈ SQ/∼. As a consequence, every
proposition characterising an abstract test case X1 . . . Xk is actually feasible:
this means that we can find concrete traces in S such that, after deleting the
transient states, the resulting quiescent state sequence s0.s1 . . . sk fulfils si ∈ qi

for i = 0, . . . , k and s(x) ∈ Xi for i = 1, . . . , k.
In the case studies described in Section 4, input equivalence classes are

unions of convex subset of R
n. It should be noted, however, that the notion

of I/O-equivalence and IECPs introduced here is far more general, since arbi-
trary propositional specifications of I/O-equivalence classes can be handled by
the underlying theory. The input equivalence classes identified in [13, Example 1],
for example, contain members z specified by conditions z mod m = n.

Fault Models. For the semantic domain of RIOSTS, the fault models F =
(S,∼,D(S,m, I)) are specified as follows. The reference models S are semantic
RIOSTS representations of models elaborated in concrete formalisms, such that

Equivalence Class Partition Testing Strategy 161

the expected behaviour of the SUT is specified by S up to I/O-equivalence. We
use I/O-equivalence as conformance relation.

Positive integer m fulfils m ≥ n, where n is the number of I/O-equivalence
classes of S. IECP I is a refinement of the initial coarsest IECP I associated with
S. Then the members S ′ of the fault domain D(S,m, I) are RIOSTS specified
as follows.

1. The states of S ′ are defined over the same I/O variable space I∪O as defined
for the model S.

2. Initial state s′
0 of S ′ coincides with initial state s0 of S on I ∪ O.

3. S ′ generates only finitely many different output values.
4. S ′ has a well-defined reset operation allowing to re-start the system from its

initial state.
5. The number of I/O-equivalence classes of S ′ is less or equal m.
6. If I, I ′ are the initial coarsest IECP of S, S ′, respectively, fulfilling the char-

acteristic properties (1), (2), then I fulfils the following adequacy condition:

∀X ∈ I,X ′ ∈ I ′ :
(
X ∩ X ′ 	= ∅ ⇒ ∃X ∈ I : X ⊆ X ∩ X ′) (3)

The intuition behind the adequacy condition 6 is as follows. Every possible
behaviour of a fault domain member S ′ can be exercised by visiting a state in
some I/O-equivalence class q′ and applying an input of some IECP member
X ′ ∈ I ′ to this state. Using the refined IECP I in the test suite as described
below, ensures that an input from X ⊆ X ′ ∈ I ′ will be selected when S ′ resides
in q′, so the behaviour associated with (q′,X ′) will be stimulated in at least one
of the test cases. If, when in a state of q′, S ′ conforms to the behaviour of S for
all inputs from X \ X ′, but fails for inputs from X ∩ X ′, inputs selected from
X ⊆ X ∩ X ′ will uncover this error.

Conversely, suppose now that the reference model S behaves differently, when
IECs X1,X2 ∈ I are applied in some state q. Suppose further that S ′ fails to
make this case distinction in a corresponding state q′. Then there exists X ′ ∈ I ′

such that S ′ shows the same behaviour for all c ∈ X ′, but X1 ∩ X ′ 	= ∅ and
X2 ∩ X ′ 	= ∅, so two different behaviours should be visible according to the
reference model. Now the adequacy condition guarantees that there exist two
IEC X1,X2 ∈ I, such that X1 ⊆ X1 ∩X ′ and X2 ⊆ X2 ∩X ′. As a consequence,
if inputs from every input class of I are exercised, the behavioural differences for
inputs from X1 ∩ X ′ and X2 ∩ X ′ will be revealed. Summarising, the adequacy
condition ensures that the IECP I from where input data to the SUT is selected
is fine-grained enough to stimulate every possibly deviating behaviour of S and
S ′. These facts are exploited in the complete test strategy described next.

Complete Finite Test Suite. The complete DFSM abstraction M of S with
states SQ/∼, input alphabet I, transition function and output function as char-
acterised in (1), (2), allows for application of finite complete DFSM testing
strategies, such as the W-Method introduced in [8,25]. The general form of a
W-Method test suite is

162 F. Hübner et al.

W = P.
(m−n⋃

i=0

Ii
.W

)
(4)

where P is the state transition cover, Ii
denotes the input trace segments of

length i, and W is the characterisation set. Every test of W consists of a (possibly
empty) input trace from P , concatenated with an arbitrary input trace of length
zero up to m − n, and terminated by an input trace from the characterisation
set. P is the union of a state cover C and a transition cover C.I: C contains
the empty trace ε, and for any state q of M, there exists an input trace in C
which, when applied to the initial state, ends at q. The transition cover is defined
by C.I = {ι.X | ι ∈ C,X ∈ I}. Summarising, the input sequences of a state
transition cover ensure that (1) every state of the reference DFSM M associated
with the reference model S is visited, and (2) every transition from every state
is exercised. A characterisation set is a set of input traces distinguishing each
pair of states in a minimal DFSM. Using minimisation algorithms such as the
one specified in [12], characterisation sets can be constructed as a by-product of
the minimisation process.

The test suite generated according to (4) is called an abstract test suite,
because its elements are abstract test cases as defined above: the inputs to be
used in each test case are not yet represented by concrete input vectors c, but
by input equivalence classes X ∈ I. For creating an executable test suite, inputs
c ∈ X have to be selected for every X ∈ I.

The W-Method is complete for the fault model of all DFSM over the same
input and output alphabet and with at most m states. It is shown in [13] that
the associated test suites with concrete inputs c ∈ X are also complete for
F = (S,∼,D(S,m, I)). This completeness result is independent on the choice
of concrete input data selected from each input equivalence class X ∈ I.

The fault domain D(S,m, I) introduced above can be extended by increasing
m or by refining I. Increasing m increases the maximal length of input sequences
in test cases in a linear way. This affects the size of the test suite exponentially,
but allows for fault domain members with higher recurrence diameters r [4]: this
is the length of the longest loop-free path in a Kripke structure. Erroneous SUT
behaviour that only occurs at the end of such a longest loop free path may only
be detected if the test cases use input sequences that are long enough to traverse
the SUT state up to the length of the recurrence diameter.

Refining I increases the size of the IECP, and this size increases the number
of test cases in a polynomial way. It has to be noted, however, that uniformly
refining all members of I – for example, by using a sub-paving strategy as it
is well known from interval analysis [14] – increases the size of the IECP expo-
nentially with each new refinement step. The resulting fault domain contains
members S ′ possessing narrower trapdoors: these are refined input guard con-
ditions g ∧ δ applicable in certain S ′-states, where S ′ should behave uniformly
for all inputs satisfying g. The true behaviour of S ′, however, conforms to the
expected behaviour modelled by S only for inputs fulfilling g ∧ ¬δ, while erro-
neous behaviour is revealed for inputs satisfying g ∧ δ.

Equivalence Class Partition Testing Strategy 163

2.3 Randomisation of Equivalence Partition Tests

As we have seen above, enlarging the fault domain D(S,m, I) via m or I seri-
ously affects the size of the resulting complete test suite W. We therefore inves-
tigate an alternative approach in this paper that aims at increasing the test
strength of W for SUTs S ′′ whose true behaviour is reflected by RIOSTS out-
side D(S,m, I). For obvious reasons it is assumed that these SUTs still fulfil the
RIOSTS compatibility requirements 1 – 4 of the fault domain definition. This
means that S ′′ may have more than m I/O-equivalence classes and may need
an IECP that is more fine-grained than I, but it is still assumed that S ′′ is an
RIOSTS using the same I/O variables and possessing the same visible initial
state and fulfilling a reset condition.

To this end, we observe that the completeness property of the test suites intro-
duced above does not depend on the concrete values selected from each input
equivalence class X ∈ I. For members S ′ ∈ D(S,m, I) it would suffice to fix one
input vector cX for every X ∈ I. Alternatively, we could also choose different
members at random, each time an input from some class X is required accord-
ing to the abstract test suite definition. While this alternative would not affect
the suite’s completeness property when applied against members of D(S,m, I),
it favourably affects the test strength against RIOSTS outside D(S,m, I): the
chances for uncovering trapdoors are obviously increased. This approach results
in an adaptive random testing strategy, where the selection of input data is no
longer performed uniformly over the complete input domain, but selectively for
each input equivalence class X ∈ I. Moreover, the random values from such an
X are only applied when an X-input is required according to the abstract test
suite constructed from Equation (4).

Technically the randomisation is implemented by running an SMT solver
repeatedly to find concrete values of every input equivalence class X ∈ I. The
abstract test suite constructed from Equation (4) is a sequence on input equiv-
alence classes. According to our equivalence class construction [13], an input
equivalence class X ∈ I is defined by a proposition2 gX , containing solely vari-
ables in I. Using an SMT solver to solve gX results in a concrete input vector
c ∈ X. Rerunning the solver for the same X and prohibiting existing solutions

c1, . . . , cn−1 with a refined constraint gX ∧
n−1∧

i=1

¬ci will result in a new solution cn,

i.e. a new concrete input cn ∈ X of the input equivalence class. The negation of
existing solution yields an exponential growth of the runtime of the SMT solver
in the worst case. Therefore two other heuristics were implemented:
(a) the internal heuristics of the SAT solver have been randomized to get a “ran-
dom” solution of gX . (b) Interval analysis can be used to find a subpaving, that
is an inner approximation of gX . From this subpaving random elements can be
selected using a random number generator. As another runtime optimization the

2 The proposition is guaranteed to have a solution, since it describes an input equiv-
alence class, which has at least one member and thus at least one assignment that
fulfills the proposition.

164 F. Hübner et al.

input selection can be parallelized. Once the input equivalence class partitioning
I is available, candidates from every input equivalence class X can be calculated
separately and in parallel, to find as many different concrete values as needed.

It has to be noted, however, that the complete test suite generated according
to (4) will not guarantee that every pair (q,X) with q ∈ S/∼ and X ∈ I will
be exercised the same number of times. Therefore we add test cases to ensure
a minimal number a each (q,X) is exercised, each time with a new random
selection c ∈ X. For these additional test cases we just repeat suitable cases from
W. If p estimates the probability to detect a trapdoor when selecting a random
value in (q,X), then the probability to uncover this during the randomised test
suite is 1 − (1 − p)a.

3 Reference Models

We use two test models as the basis for the experimental evaluation of the IECP
strategy discussed in this paper, one from the railway domain, the other from
the automotive domain. Their functional properties are described in this section.

Ceiling Speed Monitor. The main on-board controller of trains that are part
of the European Train Control System (ETCS) executes a variety of automated
train protection functions. One of these functional modules is the Ceiling Speed
Monitor (CSM), whose core behaviour is specified by the SysML state machine
shown in Fig. 2. This state machine has been modelled from the ETCS stan-
dard [24]. The CSM inputs the current estimated train speed Vest and the cur-
rent admissible maximal speed VMRSP and reacts to overspeeding situations. The
reactions are visible on the driver machine interface (DMI) (outputs DMICmd,
DMIdisplaySBI), and the CSM may interact with the service and emergency
brakes (output TICmd).

As soon as the train starts overspeeding (Vest > VMRSP), the CSM performs
a transition from NORMAL to OVERSPEEDING, and an overspeed indication is
displayed on the DMI. If the actual speed exceeds the VMRSP-dependent thresh-
old VMRSP + dVwarning(VMRSP), the DMI indication changes to WARNING. If
the higher threshold VMRSP + dVsbi(VMRSP) is violated, the CSM automatically
triggers the service brakes. When in one of the control modes OVERSPEED,
WARNING, or SERVICE BRAKE, DMI indications and braking interventions
are automatically reset as soon as the speed is back in the admissible range
Vest ≤ VMRSP. If, however, the train continues overspeeding until the highest
threshold VMRSP + dVebi(VMRSP) is violated, the CSM triggers the emergency
brakes. From the associated state EMER BRAKE, the transition to NORMAL is
only performed when the train has come to a standstill.

While internal state and output domains of the CSM are finite, the inputs
Vest, VMRSP represent speed values ranging from zero to the maximal train speed.
This domain is too large to enumerate all possible value combinations during
test campaigns. Therefore an IECP strategy has to be applied. A more detailed
description of the CSM model can be found in [5,6].

Equivalence Class Partition Testing Strategy 165

Fig. 2. State machine of the Ceiling Speed Monitor

Airbag Controller. The second test model describes an airbag controller. This
system has two analog inputs s1 and s2 that are acceleration sensors used by the
controller to detect a crash situation and decide whether the airbag shall be fired
or not (output fire). While the airbag may ensure passenger safety in crash situ-
ations, its accidental activation is harmful in situations, when no crash is present
but indicated by erroneous sensor data. Therefore certain safety mechanisms have
to be applied to guarantee (up to a certain degree of confidence) that the airbag is
only fired, if a real crash situation is present. Additionally, defect sensors should
be recognised and notified (output defect). The state machine in Fig. 3 models the
functionality ensuring the safe operation of the airbag controller.

The system reads the sensor values s1 and s2 cyclically on every rising and
falling edge (input t). Both sensor values are checked for plausibility. The sensor
values are considered plausible, if the value of sensor one (s1) does not exceed or
drop below the value of sensor two (s2) by more than 5 percent, i.e. s1 ∈ [0.95 ·
s2, 1.05 · s2]. If the sensor values are plausible and an acceleration greater than
3 is measured in 3 consecutive cycles, the airbag is fired. This is done by setting
output variable fire to 1. If instead the sensor values are implausible, internal
variable error ctr is incremented. This variable holds the number of implausible
measurements, and if it reaches a value equal to 3, the output variable defect is
set to 1, causing a shutdown of the complete airbag system and activating the
service lamp to indicate a sensor defect of the airbag. After at least 3 consecutive
cycles with plausible sensor values, the internal variable error ctr is reset.

166 F. Hübner et al.

Fig. 3. State machine of the airbag controller

4 Experimental Results

Experimental Setup. The three test strategies (A) conventional random test-
ing strategy, (B) original IECP testing strategy, and (C) randomised IECP test-
ing strategy described in Section 2 have been integrated in an experimental
extension of the RT-Tester tool which performs automated model-based testing
from SysML models [20]. The algorithm described in [13] has been implemented
there, in order to identify I/O-equivalence classes and the associated coarsest ini-
tial IECP in propositional form. Using the SMT solver integrated in RT-Tester,
random candidates from each IEC can be calculated.

For the experimental evaluation correct Java implementations were generated
from each model. The java implementation was performed by hand in a straight
forward way, resulting in 148 and 70 lines of code for the ceiling speed monitor
and the airbag controller respectively. Next, mutants were automatically gener-
ated from each implementation with the tool μJava [16]. All applicable operators
were executed to generate single-fault mutants. For our concrete implementa-
tions these operators were as follows: arithmetic operator replacement (AOR)
and insertion(AOI), relational operator replacement (ROR), conditional opera-
tor replacement (COR) and insertion (COI), logical operator insertion (LOI) and

Equivalence Class Partition Testing Strategy 167

statement deletion (SDL).3 Note that the mutation tool is unaware of any con-
formance relation. Therefore the generated mutants have been manually investi-
gated, and after discarding I/O-equivalent mutants, this resulted in a collection
of 351 erroneous implementations for the ceiling speed monitor, and 199 for the
airbag controller.

Afterwards the test suites specified below were executed against these SUTs
in order to measure the mutation score of the test suite. The mutation score is
the ratio of mutants, that were “killed” by a test suite4, to the total number of
non-I/O-equivalent mutants. The mutation score is used as an indicator of each
test suite’s strength.

Table 1. Specification of fault domains

D Description

D1 I is the initial coarsest IECP derived from the reference model. It is assumed that
the SUT has the same number of I/O-equivalence classes as the reference model,
i.e. m = n.

D2 I is a refinement of the initial coarsest IECP that reflects all case distinctions
visible in guard conditions of the model. m = n.

D3 I is a refinement of the initial coarsest IECP that reflects all case distinctions and
all boundary value conditions. m = n.

The strategies (B) and (C) were applied to different fault domains as
described in Table 1. For the randomised IECP strategy (C), an additional
parameter min ≥ 1 was introduced, specifying the minimal number of times
a random selection should be performed for each combination (q,X) of I/O-
equivalence class and input equivalence class of the reference model. For min > 1,
test cases from the original IECP testing strategy according to Equation (4) were
repeated with different random value selections, so that at least min selections
were performed for each (q,X).

When generating test suites according to strategies (B) and (C), the choice of
fault domain, and – for strategy (C) –min value determines the number of test cases
(i.e. input sequences) and their length. When applying random testing, test suites
of the same shape were used: for each test case of a suite generated with strategy
(B) or (C), a corresponding random test case of the same length was applied.

Experimental Results

Ceiling speed monitor. In Table 2 the experimental results for the Ceiling Speed
Monitor are shown. Though in test suite (B,D1) the original IECP strategy (B)

3 The insertion operators of the µJava tool are only applicable to unary operators
(+,-,++,–,!,˜). Since our implementations did not contain any of these operators,
the complementary deletion operators are missing from the list above.

4 A mutant is killed, if at least one test case of the test suite did not pass.

168 F. Hübner et al.

performs significantly better than random testing (A), when only the coarsest
IECP from fault domain D1 is used, the mutation score of 62% is far too low
for achieving certification credit for such a safety-critical application. The low
score is caused by the fact that the test suite (B,D1) uses an IECP that not even
considers all case distinctions visible in guard conditions of the original model.
Therefore faulty implementations outside D1 that violate these case distinctions
will not be detected by this suite. In contrast to that, when distinguishing all
guard conditions and adding IECs representing boundary test conditions – this
is done in suite (B,D3) – the mutation score of 93% is acceptable. The strength
of the randomised strategy (C) is clearly revealed in suite (C,D3,1): with the
same number of 610 test cases as in suite (B,D3), a mutation score of 100% is
achieved.

Table 2. Results for the Ceiling Speed Monitor

IECP-Tests (B) / (C) (A) (Random Testing)

Suite B,C No. TC Mutation Score Line Cov. No. TC Mutation Score Line Cov.

(B,D1) 21 62 % 86 % 21 34 % 75 %

(C,D1,1) 21 76 % 97 % 21 34 % 75 %

(C,D1,10) 183 82 % 97 % 183 54 % 87 %

(C,D1,25) 453 82 % 97 % 453 72 % 97 %

(B,D2) 186 87 % 100 % 186 63 % 92 %

(C,D2,1) 186 88 % 100 % 186 63 % 92 %

(C,D2,10) 882 94 % 100 % 882 84 % 97 %

(B,D3) 610 93 % 100 % 610 80 % 97 %

(C,D3,1) 610 100 % 100 % 610 80 % 97 %

(C,D3,10) 3002 100 % 100 % 3002 92 % 97 %

Column No. TC records the number of test cases applied. (B,Di) denotes application of
strategy (B) with fault domain Di, i = 1, 2, 3, (C,Di,q) denotes application of strategy
(C) with fault domain Di, i = 1, 2, 3 and min = q. Columns ‘Line Cov.’ record the line
coverage achieved with the execution of the respective test suite.

In contrast to the results for the airbag controller shown below, random
testing (A) achieves a surprisingly high mutation score of 92%, when the highest
number of 3002 test cases is used. The performance of random testing is obviously
correlated to the number of test cases. An increase in the number of test cases
clearly increases the probability of finding a mutation. This is due to the fact that
the ceiling speed monitor has a very low recurrence diameter of 2: from every
control mode, every other mode can be reached by at most 2 RIOSTS transitions,
when setting Vest and VMRSP accordingly. Furthermore, the guard conditions are
quite wide, so that the probability of finding random inputs letting any of the
guards evaluate to true is high.

Airbag Controller. As table 3 confirms, our approach has a test strength that is
significantly higher than the test strength of naive random testing. A mutation

Equivalence Class Partition Testing Strategy 169

score of 89 % can be reached already in test suite (B,D1). Combined with ran-
domisation, the mutation score can be lifted up to 97 % (test suite (C,D1,10)).
Combined further with boundary value testing, (C,D3,1) is able to uncover every
single fault mutation.

Table 3. Results for the Airbag Controller

IECP-Tests (B) / (C) (A) Random Testing

Suite No. TC Mutation Score Line Cov. No. TC Mutation Score Line Cov.

(B,D1) 368 89 % 97 % 368 66 % 94 %

(C,D1,1) 368 96 % 100 % 368 66 % 94 %

(C,D1,10) 3816 97 % 100 % 3816 68 % 97 %

(B,D3) 3248 99 % 100 % 3248 68 % 94 %

(C,D3,1) 3248 100 % 100 % 3248 68 % 94 %

Notation in analogy to Table 2.

Note that the mutation score for naive random testing remains roughly con-
stant, because the airbag controller has a higher recurrence diameter than the
ceiling speed monitor, so that long traces are needed to reach a system state
that is suitable to uncover a fault. Additionally the input equivalence classes
are quite narrow. This explains, that an increase in the number of test cases
has no or very limited effect on the mutation score of random testing, since the
remaining 32 percent of mutations are only revealed by long specialised traces
that have very low probabilities to be chosen at random.

Threats to Validity. We presented two reference models in the comparative
test strength evaluation for the strategies (A), (B), and (C). The selection of
test models may have an impact on the observed results. To reduce this threat,
we used two models with opposing characteristics. The ceiling speed monitor
has a very small recurrence diameter, a small number of internal states, and
relatively wide input equivalence classes. The airbag controller on the other
hand has many internal states, a high recurrence diameter and narrow input
equivalence classes. It has been shown that the IECP testing strategies (B) and
(C) are applicable to both systems and resulted in good test strength with an
acceptable number of test cases. To counter threats to validity that might be
caused by the mutant generator, other mutation generation tools have been
applied as well. The PITest5 tool uses a subset of the mutation operators the
μJava tool uses. The Major mutation framework [15] uses the same mutation
operators plus constant value replacement. Due to space restrictions only the
results for the μJava tool were presented. Still, the results of both other tools
were very similar to the results presented in the tables above.
5 See http://pitest.org/. Additionally, this tool was very helpful to measure the line

coverage that has been shown in the tables above.

http://pitest.org/

170 F. Hübner et al.

Our experimental setup uses specific implementations in Java to generate
mutants from. The implementation style may have an influence on the gener-
ated mutants which in turn has an impact on the observed mutant score. The
use of code mutations was motivated from the fact, that real faults are very
likely to be introduced on the code level. As our approach is to be applied to
arbitrary blackbox systems, potentially implemented in other programming lan-
guages and/or combinations of hardware and software, the real faults might look
different from our experimental faults. To counter this threat, we also experi-
mented with mutations of the SysML model, applying mutant operators on the
state machines. Double fault mutations were included as well, in contrast to the
code mutations, where only single fault mutations were observed. These experi-
ments also provided results for our strategies (B,C) that were comparable to the
results presented here. There may remain some threats to validity resulting from
the fact that some characteristic faults, e.g. memory leaks as a typical fault type
in languages like C/C++, or faults resulting from HW/SW integration have not
been considered yet in the mutations applied.

5 Related Work

The framework for constructing complete test suites in general, and for intro-
ducing equivalence class testing methods preserving completeness in particular,
has been laid out in [11]. Notable examples for complete test methods have
been given for various formalisms (FSM,Timed Automata, process algebras)
in [8,10,19,22,23,25], further references on the state of the art of automated
model-based testing are given in [1,21]. Adaptive random testing [7] focuses on
techniques to evenly spread the test cases over the complete input domain. Most
research concentrates on testing non-reactive software modules, where test cases
are specified by single input vectors instead of the input sequences considered in
our reactive systems setting. An example of the application of adaptive random
testing and search-based testing to realtime embedded systems is given in [2].

6 Conclusion

In this paper, a complete equivalence class testing strategy has been exper-
imentally evaluated with respect to its test strength, when applied to SUTs
whose behaviour is outside the fault domain for which the completeness asser-
tion applies. The experiments show that this strategy has significantly greater
strength in comparison to conventional random testing. Moreover, a randomisa-
tion of the equivalence class testing strategy has been proposed that increases
the test strength even further by selecting different values from each input equiv-
alence class, whenever a member of this class is required as input according to
the original strategy. The resulting test suite was additionally extended in order
to ensure a minimal number of random selections from each input class applied
in each I/O-equivalence class of the reference model.

Equivalence Class Partition Testing Strategy 171

At the same time it is clear that this “randomisation in the I-dimension”
does not increase the test strength, if S ′′ has a larger recurrence diameter than
S, and if erroneous behaviour of S ′′ is only revealed at the end of a longest loop-
free path. Therefore we suggest to add a “randomisation in the m-dimension”
by attaching a random input sequence of a given fixed length at the end of each
test case for in-depth exploration of the SUT behaviour. Observe that in most
embedded system tests, the costs for resetting the SUT are higher than those for
increasing the test suite length. Therefore increasing the length of test cases is
generally acceptable, while increasing the number of test cases is usually a costly
decision. The effect of increasing the test case length is currently investigated
by the authors. Note that this requires more complex mutations increasing the
recurrence diameter and inserting erroneous behaviours at the end of maximal
loop-free paths only.

References

1. Anand, S., Burke, E.K., Chen, T.Y., Clark, J.A., Cohen, M.B., Grieskamp, W.,
Harman, M., Harrold, M.J., McMinn, P.: An orchestrated survey of methodolo-
gies for automated software test case generation. Journal of Systems and Software
86(8), 1978–2001 (2013)

2. Arcuri, A., Iqbal, M.Z., Briand, L.: Black-Box system testing of real-time embed-
ded systems using random and search-based testing. In: Petrenko, A., Simão,
A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 95–110. Springer,
Heidelberg (2010)

3. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
4. Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear encod-

ings of bounded LTL model checking. Logical Methods in Computer Science 2(5)
(November 2006), arXiv: 0611029, arXiv: cs/0611029

5. Braunstein, C., Haxthausen, A.E., Huang, W., Hübner, F., Peleska, J., Schulze,
U., Vu Hong, L.: Complete model-based equivalence class testing for the ETCS
ceiling speed monitor. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829,
pp. 380–395. Springer, Heidelberg (2014)

6. Braunstein, C., Huang, W.l., Peleska, J., Schulze, U., Hübner, F., Haxthausen,
A.E., Hong, L.V.: A SysML test model and test suite for the ETCS ceiling speed
monitor. Tech. rep., Embedded Systems Testing Benchmarks Site (April 30, 2014).
http://www.mbt-benchmarks.org

7. Chen, T.Y., Kuo, F.C., Merkel, R.G., Tse, T.H.: Adaptive random testing: the art
of test case diversity. Journal of Systems and Software 83(1), 60–66 (2010)

8. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE
Transactions on Software Engineering SE 4(3), 178–186 (1978)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press,
Cambridge (1999)

10. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test
selection based on finite state models. IEEE Transactions on Software Engineering
17(6), 591–603 (1991)

11. Gaudel, M.-C.: Testing can be formal, too. In: Mosses, P.D., Nielsen, M. (eds.)
CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 82–96. Springer,
Heidelberg (1995)

http://arxiv.org/abs/cs/0611029
http://arxiv.org/abs/cs/0611029
http://www.mbt-benchmarks.org

172 F. Hübner et al.

12. Gill, A.: Introduction to the theory of finite-state machines. McGraw-Hill, New
York (1962)

13. Huang, W.l., Peleska, J.: Complete model-based equivalence class testing.
International Journal on Software Tools for Technology Transfer, 1–19 (2014).
http://dx.doi.org/10.1007/s10009-014-0356-8

14. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis. Springer,
London (2001)

15. Just, R.: The major mutation framework: efficient and scalable mutation analysis
for java. In: Proceedings of the International Symposium on Software Testing and
Analysis, ISSTA, July 23–25, pp. 433–436, San Jose, CA, USA (2014)

16. Ma, Y.S., Offutt, J., Kwon, Y.R.: MuJava: An Automated Class Mutation System:
Research Articles. Softw. Test. Verif. Reliab. 15(2), 97–133 (2005). http://dx.doi.
org/10.1002/stvr.v15:2

17. Object Management Group: OMG Unified Modeling Language (OMG UML),
superstructure, version 2.4.1. Tech. rep., OMG (2011)

18. Object Management Group: OMG Systems Modeling Language (OMG SysMLTM),
Version 1.3. Tech. rep., Object Management Group (2012). http://www.omg.org/
spec/SysML/1.3

19. Peleska, J., Siegel, M.: Test automation of safety-critical reactive systems. South
African Computer Journal 19, 53–77 (1997)

20. Peleska, J.: Industrial-strength model-based testing - state of the art and current
challenges. In: Petrenko, A.K., Schlingloff, H. (eds.) Proceedings Eighth Workshop
on Model-Based Testing. Electronic Proceedings in Theoretical Computer Science,
vol. 111, pp. 3–28. Open Publishing Association, Rome (2013)

21. Petrenko, A., Simao, A., Maldonado, J.C.: Model-based testing of software and
systems: Recent advances and challenges. Int. J. Softw. Tools Technol. Transf.
14(4), 383–386 (2012). http://dx.doi.org/10.1007/s10009-012-0240-3

22. Springintveld, J., Vaandrager, F., D’Argenio, P.: Testing timed automata.
Theoretical Computer Science 254(1–2), 225–257 (2001)

23. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1–38.
Springer, Heidelberg (2008)

24. UNISIG: ERTMS/ETCS System Requirements Specification, Chapter 3,
Principles, vol. Subset-026-3, chap. 3, issue 3.3.0 (February 2012)

25. Vasilevskii, M.P.: Failure diagnosis of automata. Kibernetika (Transl.) 4, 98–108
(1973)

http://dx.doi.org/10.1007/s10009-014-0356-8
http://dx.doi.org/10.1002/stvr.v15:2
http://dx.doi.org/10.1002/stvr.v15:2
http://www.omg.org/spec/SysML/1.3
http://www.omg.org/spec/SysML/1.3
http://dx.doi.org/10.1007/s10009-012-0240-3

	Experimental Evaluation of a Novel Equivalence Class Partition Testing Strategy
	1 Introduction
	2 Model-Based Random Testing and Equivalence Class Partition Testing
	2.1 Random Testing
	2.2 Equivalence Class Partition Testing
	Semantic Domain.
	Application to Concrete Modelling Formalisms.
	Equivalence Classes.
	Fault Models.
	Complete Finite Test Suite.

	2.3 Randomisation of Equivalence Partition Tests

	3 Reference Models
	4 Experimental Results
	5 Related Work
	6 Conclusion
	References

