
Jasmin Christian Blanchette
Nikolai Kosmatov (Eds.)

 123

LN
CS

 9
15

4

9th International Conference, TAP 2015
Held as Part of STAF 2015
L’Aquila, Italy, July 22–24, 2015, Proceedings

Tests and Proofs

Lecture Notes in Computer Science 9154

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Jasmin Christian Blanchette
Nikolai Kosmatov (Eds.)

Tests and Proofs
9th International Conference, TAP 2015
Held as Part of STAF 2015
L’Aquila, Italy, July 22–24, 2015
Proceedings

123

Editors
Jasmin Christian Blanchette
Inria Nancy & LORIA
Villers-lès-Nancy
France

Nikolai Kosmatov
CEA LIST Nano-Innov
Saclay
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-21214-2 ISBN 978-3-319-21215-9 (eBook)
DOI 10.1007/978-3-319-21215-9

Library of Congress Control Number: 2015942786

LNCS Sublibrary: SL2 – Programming and Software Engineering

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Foreword

Software Technologies: Applications and Foundations (STAF) is a federation of a
number of leading conferences on software technologies. It provides a loose umbrella
organization for practical software technologies conferences, supported by a Steering
Committee that provides continuity. The STAF federated event runs annually; the
conferences that participate can vary from year to year, but all focus on practical and
foundational advances in software technology. The conferences address all aspects of
software technology, from object-oriented design, testing, mathematical approaches to
modeling and verification, model transformation, graph transformation, model-driven
engineering, aspect-oriented development, and tools.

STAF 2015 was held at the University of L’Aquila, Italy, during July 20–24, 2015,
and hosted four conferences (ICMT 2015, ECMFA 2015, ICGT 2015, and TAP 2015),
a long-running transformation tools contest (TTC 2015), seven workshops affiliated
with the conferences, a doctoral symposium, and a project showcase (for the first time).
The event featured six internationally renowned keynote speakers, a tutorial, and
welcomed participants from around the globe.

This has been the first scientific event in computer science after the earthquake that
occurred in 2009 and affected L’Aquila. It is a small, and yet big step toward the grand
achievement of restoring some form of normality in this place and its people.

The STAF Organizing Committee thanks all participants for submitting and
attending, the program chairs and Steering Committee members for the individual
conferences, the keynote speakers for their thoughtful, insightful, and engaging talks,
the University of L’Aquila, Comune dell’Aquila, the local Department of Human
Science, and CEA LIST for their support: Grazie a tutti!

July 2015 Alfonso Pierantonio

Preface

This volume contains the papers presented at the 9th International Conference on Tests
and Proofs (TAP 2015), held during July 22–24, 2015, in L’Aquila, Italy, as part of the
Software Technologies: Applications and Foundations (STAF) federated event.

TAP 2015 was the ninth event in a series of conferences devoted to the synergy of
proofs and tests. Abandoning the traditional separation of formal verification and
testing as orthogonal research fields, TAP aims at the identification of common ground
across the different research communities. In particular, both testing and proving follow
the goal of improving the quality of software and hardware, but with different means.
Therefore, TAP provides a forum for the cross-fertilization of ideas and approaches
from the formal verification community and the testing community, abandoning earlier
dogmatic views on the incompatibility of proving and testing. TAP offers a meeting
place for researchers who combine proofs and tests in an interdisciplinary manner by
taking the best from both worlds.

Since its first edition at the ETH Zürich in 2007, TAP has been organized annually
with great success. TAP was hosted by the Monash University Prato Centre near
Florence in 2008, the ETH Zürich in 2009, the University of Malaga in 2010, the ETH
Zürich in 2011, the Czech Technical University in Prague in 2012, the Budapest
University of Technology and Economics in 2013, and the University of York in 2014.
From 2010 to 2012, TAP was co-located with the TOOLS conference series on
advanced software technologies. In 2013, TAP became part of STAF, which was
formed after the end of TOOLS.

For the ninth edition of TAP, held at Università degli Studi dell’Aquila, we initially
received 28 abstracts, leading to 21 submissions that were considered for reviewing.
After a rigorous reviewing process and a discussion phase, we finally accepted 11 long
papers and one short paper. For each paper, we required at least three reviews from the
Program Committee or from external reviewers assigned by Program Committee
members. The accepted papers contribute to various testing techniques (model-based,
property-based, grammar-based, bounded-exhaustive), fault localization, model-driven
engineering, as well as model coverage, consistency, and validation, among others.
Many papers rely on interactive and automatic theorem provers, including SMT solvers
and model checkers.

We wish to sincerely thank all authors who submitted their work for consideration.
Further, we would like to thank the Program Committee members as well as the
additional reviewers for their enthusiasm and their professional work in the review and
selection process. Their names are listed on the following pages.

TAP 2015 featured two keynotes: “Mind the Gap: At the Crossroads of Design,
Implementation, and Foundations” by Einar Broch Johnsen and “Reasoning about
C Concurrency and Compilers” by Francesco Zappa Nardelli. Furthermore, Carlo A.
Furia gave an invited tutorial on “Testing, Fixing, and Proving with Contracts.” Many
thanks to the three invited presenters for accepting our invitations.

Finally, we would also like to thank the organizers of the STAF event, in particular
the general chair Alfonso Pierantonio and the publication chairs Louis Rose and Javier
Troya, for their hard work and their support in making the conference a success. We
thank the Università degli Studi dell’Aquila for providing the facilities. We thank the
EasyChair developers for allowing us to use their conference management system and
Springer for publishing these proceedings. We thank CEA LIST and the Chair of
Software Engineering of ETH Zürich for financial support.

July 2015 Jasmin Christian Blanchette
Nikolai Kosmatov

VIII Preface

Organization

Program Committee

Bernhard K.
Aichernig

TU Graz, Austria

Dirk Beyer University of Passau, Germany
Nikolaj Bjørner Microsoft Research, Redmond, Washington, USA
Jasmin Christian

Blanchette
Inria Nancy – Grand-Est, France

Achim D. Brucker SAP AG, Karlsruhe, Germany
Koen Claessen Chalmers University of Technology, Gothenburg, Sweden
Robert Clarisó Universitat Oberta de Catalunya, Spain
Marco Comini University of Udine, Italy
Catherine Dubois ENSIIE-CEDRIC, Evry, France
Juhan Ernits Tallinn University of Technology, Estonia
Gordon Fraser University of Sheffield, UK
Angelo Gargantini University of Bergamo, Italy
Christoph Gladisch Karlsruhe Institute of Technology, Germany
Martin Gogolla University of Bremen, Germany
Arnaud Gotlieb SIMULA Research Laboratory, Oslo, Norway
Reiner Hähnle Technical University of Darmstadt, Germany
Bart Jacobs Katholieke Universiteit Leuven, Belgium
Jacques Julliard University of Franche-Comté, France
Thierry Jéron Inria Rennes – Bretagne Atlantique, France
Gregory

Kapfhammer
Allegheny College, Pennsylvania, USA

Nikolai Kosmatov CEA LIST, Saclay, France
Victor Kuliamin Russian Academy of Sciences, Moscow, Russia
Panagiotis Manolios Northeastern University, Boston, Massachusetts, USA
Karl Meinke KTH, Stockholm, Sweden
Alexandre Petrenko CRIM, Montreal, Canada
Andrew Reynolds École Polytechnique Fédérale de Lausanne, Switzerland
Martina Seidl Johannes Kepler University Linz, Austria
Nikolai Tillmann Microsoft Research, Redmond, Washington, USA
T.H. Tse The University of Hong Kong, SAR China
Margus Veanes Microsoft Research, Redmond, Washington, USA
Luca Viganò King’s College London, UK
Burkhart Wolff University of Paris-Sud, France
Fatiha Zaïdi University of Paris-Sud, France

Additional Reviewers

Dury, Arnaud
Hentschel, Martin
Lorber, Florian
Majdoub, Lotfi

Omer Landry, Nguena Timo
Pradhan, Dipesh
Soeken, Mathias

X Organization

Abstracts of Invited Talks

Testing, Fixing, and Proving with Contracts

Carlo A. Furia

Chair of Software Engineering, Department of Computer Science,
ETH Zurich, Zürich, Switzerland

caf@inf.ethz.ch

bugcounting.net

In the mind of the practitioner, the term “formal specification” often conjures up
ghastly images of impenetrable logic formulas that only highly-trained experts
can digest. Our experience with using contracts indicates, however, that devel-
oping simple elements of formal specification embedded in the program text as
assertions requires an effort that is generally compatible with standard devel-
opment practices [2]. In exchange for it, even the very simple contracts that
programmers write can improve the effectiveness of a variety of analysis and
verification techniques.

In this tutorial, I presented a number of tools we developed for the Eif-
fel programming language that take advantage of contracts in various guises.
AutoTest generates random unit tests and uses contracts as oracles to auto-
matically detect bugs; it has been used to find hundreds of errors in standard
libraries. AutoFix builds source-code patches that turn failing tests into pass-
ing tests, thus automatically providing program repair for real software faults.
AutoProof supports the static full-fledged verification of functional properties in
object-oriented software; it has been used to verify the complete functionality
of a realistic general-purpose container library. The various tools demonstrate
a variety of techniques both dynamic (tests and runtime checking) and static
(correctness proofs), which all leverage contracts to improve their effectiveness.

Bibliographic notes. AutoTest [4] combines techniques to improve the effec-
tiveness of random testing: adaptive generation strategies [1], test-case mini-
mization [3], and guided object selection for precondition satisfaction [18]. In
the latest years, AutoTest has been mainly used as a supplier of test cases to
support dynamic analysis of contract-equipped software [9,17,20].

AutoFix [19] takes advantage of flexible fault-localization and fix generation
techniques [8], and has been evaluated on over 200 faults from different code
bases [7]. SpeciFix [5] is an AutoFix component that can fix contracts instead
of implementations.

AutoProof [16] supports incremental static verification by including heuris-
tics to debug failed verification attempts [15], extensive source language sup-
port [14], and a methodology to reason about complex object dependencies [11].
It has been used to verify, among other challenges, algorithmic benchmarks [12]
and the full functional correctness of a realistic, general-purpose library of data
structures [10].

bugcounting.net

XIV C.A. Furia

AutoTest, AutoFix (with SpeciFix), and AutoProof are all integrated in EVE,
the Eiffel Verification Environment, which provides a uniform interface that
integrates the results of the various analysis tools [6,13].

References

1. Ciupa, I., Leitner, A., Oriol, M., Meyer, B.: ARTOO: adaptive random testing for
object-oriented software. In: 30th International Conference on Software Engineer-
ing (ICSE 2008), pp. 71–80. ACM (2008)

2. Estler, H.-C., Furia, C.A., Nordio, M., Piccioni, M., Meyer, B.: Contracts in prac-
tice. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp.
230–246. Springer, Heidelberg (2014)

3. Leitner, A., Oriol, M., Zeller, A., Ciupa, I., Meyer, B.: Efficient unit test case min-
imization. In: 22nd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2007), pp. 417–420. ACM (2007)

4. Meyer, B., Fiva, A., Ciupa, I., Leitner, A., Wei, Y., Stapf, E.: Programs that test
themselves. IEEE Computer 42(9), 46–55 (2009)

5. Pei, Y., Furia, C.A., Nordio, M., Meyer, B.: Automatic program repair by fixing
contracts. In: Gnesi, S., Rensink, A. (eds.) FASE 2014 (ETAPS). LNCS, vol. 8411,
pp. 246–260. Springer, Heidelberg (2014)

6. Pei, Y., Furia, C.A., Nordio, M., Meyer, B.: Automated program repair in an inte-
grated development environment. In: Companion Proceedings of the 37th Inter-
national Conference on Software Engineering (ICSE). ACM (May 2015) (Demon-
strations Track)

7. Pei, Y., Furia, C.A., Nordio, M., Wei, Y., Meyer, B., Zeller, A.: Automated fixing
of programs with contracts. IEEE Transactions on Software Engineering 40(5),
427–449 (2014)

8. Pei, Y., Wei, Y., Furia, C.A., Nordio, M., Meyer, B.: Code-based automated pro-
gram fixing. In: Proceedings of the 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011), pp. 392–395. ACM (November 2011)

9. Polikarpova, N., Furia, C.A., Pei, Y., Wei, Y., Meyer, B.: What good are strong
specifications? In: Proceedings of the 35th International Conference on Software
Engineering (ICSE), pp. 257–266. ACM (May 2013)

10. Polikarpova, N., Tschannen, J., Furia, C.A.: A fully verified container library. In:
Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 414–434. Springer,
Heidelberg (2015)

11. Polikarpova, N., Tschannen, J., Furia, C.A., Meyer, B.: Flexible invariants through
semantic collaboration. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 514–530. Springer, Heidelberg (2014)

12. Tschannen, J., Furia, C.A., Nordio, M.: AutoProof meets some verification chal-
lenges. International Journal on Software Tools for Technology Transfer, 1–11
(February 2014). Special section on the VerifyThis 2012 Verification Competition

13. Tschannen, J., Furia, C.A., Nordio, M., Meyer, B.: Usable verification of object-
oriented programs by combining static and dynamic techniques. In: Barthe, G.,
Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 382–398.
Springer, Heidelberg (2011)

14. Tschannen, J., Furia, C.A., Nordio, M., Meyer, B.: Automatic verification of
advanced object-oriented features: the autoproof approach. In: Meyer, B., Nor-
dio, M. (eds.) LASER 2011. LNCS, vol. 7682, pp. 133–155. Springer, Heidelberg
(2012)

Testing, Fixing, and Proving with Contracts XV

15. Tschannen, J., Furia, C.A., Nordio, M., Meyer, B.: Program checking with less
hassle. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp.
149–169. Springer, Heidelberg (2014)

16. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015)

17. Wei, Y., Furia, C.A., Kazmin, N., Meyer, B.: Inferring better contracts. In: Proceed-
ings of the 33rd International Conference on Software Engineering (ICSE 2011),
pp. 191–200. ACM (May 2011)

18. Wei, Y., Gebhardt, S., Meyer, B., Oriol, M.: Satisfying test preconditions through
guided object selection. In: Third International Conference on Software Testing,
Verification and Validation, ICST 2010, pp. 303–312. IEEE Computer Society
(2010)

19. Wei, Y., Pei, Y., Furia, C.A., Silva, L.S., Buchholz, S., Meyer, B., Zeller, A.: Auto-
mated fixing of programs with contracts. In: Proceedings of the 19th International
Symposium on Software Testing and Analysis, ISSTA 2010, pp. 61–72. ACM (July
2010)

20. Wei, Y., Roth, H., Furia, C.A., Pei, Y., Horton, A., Steindorfer, M., Nordio, M.,
Meyer, B.: Stateful testing: finding more errors in code and contracts. In: Proceed-
ings of the 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011), pp. 440–443. ACM (November 2011)

Mind the Gap: At the Crossroads of Design,
Implementation, and Foundations

Einar Broch Johnsen

Department of Informatics, University of Oslo, Oslo, Norway
einarj@ifi.uio.no

To reduce complexity, general-purpose modeling languages strive for abstraction
[4]. But what is the right level of abstraction? Design-oriented models capture
the logical or physical organization of software, abstracting from their dynamic
behavior. Foundational models capture core features in a way suitable for meta-
theory, but rely on cumbersome encodings of other features. Specifications close
to actual code get obfuscated by the low-level intricacies of specific implemen-
tations.

This talk reports on research on abstract behavioral specifications [3], aim-
ing for a middle ground in the gap between design, implementation, and foun-
dations. We consider executable, yet abstract models which are faithful to the
control and data flow of concurrent and distributed object-oriented systems, yet
abstract enough to facilitate formal verification [5]. We then consider how novel
technologies such as virtualization and cloud computing reintroduce low-level
concerns at the abstraction level of the models. Deployment decisions form an
integral part of resource-aware, virtualized applications. We discuss how these
technologies raise new challenges for model-based analysis [1,2].

References

1. Albert, E., de Boer, F.S., Hähnle, R., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.,
Wong, P.Y.H.: Formal modeling of resource management for cloud architectures: An
industrial case study using Real-Time ABS. Journal of Service-Oriented Computing
and Applications 8(4), 323–339 (2014)

2. Hähnle, R., Johnsen, E.B.: Resource-aware applications for the cloud. IEEE Com-
puter (2015, to appear)

3. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S., Bon-
sangue, M.M. (eds.) Formal Methods for Components and Objects. LNCS, vol. 6957,
pp. 142–164. Springer, Heidelberg (2011)

4. Kramer, J.: Is abstraction the key to computing? CACM 50(4), 36–42 (2007)
5. Wong, P.Y.H., Albert, E., Muschevici, R., Proença, J., Schäfer, J., Schlatte, R.: The

ABS tool suite: modelling, executing and analysing distributed adaptable object-
oriented systems. STTT 14(5), 567–588 (2012)

Supported by the EU project FP7-610582 Envisage: Engineering Virtualized
Services. http://www.envisage-project.eu

http://www.envisage-project.eu

Reasoning About C Concurrency and Compilers

Francesco Zappa Nardelli

INRIA, Paris, France
francesco.zappa nardelli@inria.fr

The C and C++ languages were originally designed without concurrency sup-
port, but the recent revision of the C and C++ standards introduced an intricate
but precise semantics for threads; today’s C and C++ compilers, whose optimis-
ers were initially developed in absence of any well-defined concurrency memory
model, are being extended to support this new concurrency standard. This is a
fantastic opportunity to put at work all our tools to formalise, test, and reason
about large scale semantics and software.

In this talk, after recalling the C and C++ memory models, we will explore
in a theorem prover the correctness of compiler optimisations and present simple
necessary conditions that can be used as a reference by compiler implementers.
As an application, we will show how this theory enables building an automatic
compiler fuzzer that hunts concurrency compiler bugs: subtle wrong code gener-
ation bugs which are observable only when the miscompiled functions interact
with concurrent contexts.

Perhaps surprisingly, we will also show that by leveraging the semantics of
low-level relaxed atomic accesses (which allows programmers to take full advan-
tage of weakly-ordered memory operations), it is possible to build counterex-
amples to several common source-to-source program transformations (such as
expression linearisation and roach motel reorderings) that modern compilers per-
form and that are deemed to be correct. We will evaluate a number of possible
local fixes, some strengthening and some weakening the model, and perhaps con-
clude, that, currently, there is no really satisfactory proposal for the semantics
of a general-purpose shared-memory concurrent programming language.

References

1. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ con-
currency. In: POPL 2011. http://doi.acm.org/10.1145/1926385.1926394

2. Morisset, R., Pawan, P., Nardelli, F.Z.: Compiler testing via a theory of sound
optimisations in the C11/C++11 memory model. In: PLDI 2013. http://doi.acm.
org/10.1145/2491956.2491967

3. Vafeiadis, V., Balabonski, T., Chakraborty, S., Morisset, R., Nardelli, F.Z.: Common
compiler optimisations are invalid in the C11 memory model and what we can do
about it. In: POPL 2015. http://doi.acm.org/10.1145/2676726.2676995

This talk is based on work done with Thibaut Balabonski, Soham Chakraborty,
Robin Morisset, and Viktor Vafeiadis, and on discussions with Mark Batty and
Peter Sewell. It is supported by the ANR grant WMC (ANR-11-JS02-011).

http://doi.acm.org/10.1145/1926385.1926394
http://doi.acm.org/10.1145/2491956.2491967
http://doi.acm.org/10.1145/2491956.2491967
http://doi.acm.org/10.1145/2676726.2676995

Contents

Scalable Incremental Test-Case Generation from Large Behavior Models . . . 1
Bernhard K. Aichernig, Dejan Ničković, and Stefan Tiran

Test Case Generation for Concurrent Systems Using Event Structures 19
Konstantinos Athanasiou, Hernán Ponce-de-León, and Stefan Schwoon

Fast Model-Based Fault Localisation with Test Suites 38
Geoff Birch, Bernd Fischer, and Michael R. Poppleton

Case Study: Automatic Test Case Generation for a Secure Cache
Implementation. 58

Roderick Bloem, Daniel Hein, Franz Röck, and Richard Schumi

Verifying Code Generation Tools for the B-Method Using Tests:
A Case Study . 76

Anamaria M. Moreira, Cleverton Hentz, David Déharbe,
Ernesto C.B. de Matos, João B. Souza Neto, and Valério de Medeiros Jr.

Software Validation via Model Animation . 92
Aaron M. Dutle, César A. Muñoz, Anthony J. Narkawicz,
and Ricky W. Butler

Sequential Generation of Structured Arrays and Its Deductive Verification . . . 109
Richard Genestier, Alain Giorgetti, and Guillaume Petiot

Checking UML and OCL Model Consistency: An Experience Report
on a Middle-Sized Case Study . 129

Martin Gogolla, Lars Hamann, Frank Hilken, and Matthias Sedlmeier

A Constraint Optimisation Model for Analysis of Telecommunication
Protocol Logs. 137

Olga Grinchtein, Mats Carlsson, and Justin Pearson

Experimental Evaluation of a Novel Equivalence Class Partition
Testing Strategy . 155

Felix Hübner, Wen-ling Huang, and Jan Peleska

Testing Functional Requirements in UML Activity Diagrams 173
Stefan Mijatov, Tanja Mayerhofer, Philip Langer, and Gerti Kappel

Coverage of OCL Operation Specifications and Invariants. 191
Mathias Soeken, Julia Seiter, and Rolf Drechsler

Author Index . 209

Scalable Incremental Test-Case Generation
from Large Behavior Models

Bernhard K. Aichernig1, Dejan Ničković2, and Stefan Tiran1,2(B)

1 Institute for Software Technology, Graz University of Technology, Graz, Austria
{aichernig,stiran}@ist.tugraz.at

2 Austrian Institute of Technology, Vienna, Austria
{Dejan.Nickovic,Stefan.Tiran.fl}@ait.ac.at

Abstract. Model-based testing is a popular black-box testing technol-
ogy that enables automation of test generation and execution, while
achieving a given coverage. The application of this technology to large
and complex systems is still a challenging problem, due to the state-space
explosion resulting from the size of specification models.

In this paper, we evaluate a test-case generation approach that
tackles this complexity along two axes. Firstly, our approach relies on
a synchronous specification language for test models, thus avoiding the
problem of interleaving actions. Secondly, our specification language
enables incremental test-case generation by providing support for com-
positional modeling, in which each requirement or view of the system is
expressed as a separate partial model. The individual requirement mod-
els are then naturally combined by conjunction, which is incrementally
computed during the generation of tests.

We apply our test-case generation technique to two large industrial
case studies: (1) an electronic control unit (ECU) of an agricultural
device; and (2) a railway interlocking system. We demonstrate the scala-
bility of our approach by creating a series of test models with increasing
complexity and report on the experimental results.

1 Introduction

Model-based testing is a promising technology that aims at reducing the effort
in testing of complex systems and replacing the tedious, ad-hoc and error prone
manual testing. Despite the multiple benefits resulting from the automation of
both test-case generation and test-case execution, processing large test models
remains a considerable challenge due to the state-space explosion problem.

In order to tackle this challenge, we proposed a compositional specification of
test models that makes the testing activity more effective and facilitates incre-
mental test-case generation [3]. We note that in model-based testing there are
various possible test-selection mechanisms, which aim at different coverage cri-
teria. Our approach is independent of the chosen test-selection mechanism and
so we assume a so-called test purpose given from outside. A test purpose (test
specification) describes a set of states within the test model to be reached. In

c© Springer International Publishing Switzerland 2015
J.C. Blanchette and N. Kosmatov (Eds.): TAP 2015, LNCS 9154, pp. 1–18, 2015.
DOI: 10.1007/978-3-319-21215-9 1

2 B.K. Aichernig et al.

our framework we represent a test case as sequence of input values together with
the test model, which we use as test oracle. Figure 1 illustrates the test-case exe-
cution: the sequence of inputs is translated into concrete values, which can be
sent to the system-under-test (SUT). The output values produced from the SUT
are translated back into an abstract output sequence. A monitor takes both the
abstract input and output sequence and uses the test model in order to decide
the verdict, i.e. whether the SUT has passed the test.

The aim of test-case generation is to find a sequence of input values, which
satisfies the test purpose on the test model. In our approach, the test model is
structured into a conjunction of partial models M1 . . . Mn, each representing a
specific aspect that the SUT must satisfy.

Instead of composing the partial models into one test model immediately,
as illustrated in Figure 2 (a), we rather adopt an incremental approach to test
generation. For a given test purpose, we first search for the required sequence of
inputs on a partial model Mi only (TCG), resulting in a partial input sequence.
We then invoke the test-case generator a second time, in order to extend the
input sequence to the full model. In general the full test model can use more
input variables than the partial view, which was picked in the first iteration. Even
if the partial model Mi already contains all input variables, it has to be checked,
whether the partial input sequence is still able to reach the test purpose on the
full model. The incremental test-case generation (TCGinc) is a search for an
input sequence, reusing the valuations of input variables which already occurred
in the partial input sequence.

This incremental test generation procedure was implemented using bounded
model checking techniques based on the SMT solver Z3 [12]. A preliminary eval-
uation on a small example already suggested the potential benefits of such incre-
mental test-case generation compared to the classical monolithic approach [3].

In this paper, we provide a comprehensive evaluation of our incremental
test-case generation by applying it to two large industrial case studies: (1) an
electronic control unit (ECU) of an agricultural device; and (2) a railway inter-
locking system. The first case study focuses on the control logic of a wheel-loader.
Its main functionality is the conversion of deflection values of a joystick into elec-
tric currents that provide power to the electromagnetic valves, controlling the
bucket of the wheel loader. The second case study considers the control logic of
an interlocking system, which needs to establish safe, thus non-conflicting, train
routes in the railway stations. In the process of conducting these case studies, we
added another compositional feature to our framework - object-oriented mod-
els. Object-oriented modeling facilitates specification of complex systems that
contain multiple instances of standard components. The size and complexity of
the resulting test models allowed us to assess the scalability of our approach
and its applicability to effective testing of real-world systems. We demonstrate
the benefits of our incremental test-case generation techniques and report on
experimental results.

Structure. In Section 2 we briefly recall the requirement interfaces modeling
language and our incremental test-case generation procedure for such models.

Scalable Incremental Test-Case Generation from Large Behavior Models 3

test model
M = M1 ∧ · · · ∧ Mn

MonitoringSUT

input seq.

output seq.

verdicts

concretized

abstracted

Fig. 1. Test-case execution

M1

Mn

∧ TCG input seq.

(a)

Mi TCG partial input seq.

TCGinc∧M1

Mn

input seq.

(b)

Fig. 2. Test-case generation: (a) monolithic; and (b) incremental

Section 3 and 4 present the wheel loader and the railway interlocking station
case studies, respectively. In Section 5 we discuss the related work and Section 6
concludes the paper by giving hints on future work.

2 Preliminaries

In this section, we first shortly present requirement interfaces [3] as the spec-
ification language that we use to model the case studies and then recall the
procedure that enables incremental generation of tests from such models. We
finally discuss avoidance of vacuously reaching test purposes.

2.1 Requirement Interfaces

We first provide an informal presentation of requirement interfaces and illustrate
the specification language with a bounded buffer example. The formal syntax and
semantics of requirement interfaces are defined in previous work [3]. Requirement
interfaces is a formalism for specification of synchronous data-flow systems. An
N -bounded buffer can be seen as a synchronous reactive system whose behavior
is specified with the informal requirements listed in Table 1.

The natural language requirements define the buffer’s behavior as a set of
dynamic relations between its variables. Variables are basic building blocks of
requirement interfaces. They are partitioned into disjoint sets of input, output

4 B.K. Aichernig et al.

Table 1. Natural language requirements of the behavior of the buffer

Req ID Req Description

R1 enq triggers an enqueue operation when the buffer is not full.
R2 deq triggers a dequeue operation when the buffer is not empty.
R3 E signals that the buffer is empty.
R4 F signals that the buffer is full.
R5 Simultaneous enq and deq (or their simultaneous absence),

an enq on the full buffer or a deq on the empty buffer have no effect.

and hidden variables. Output and hidden variables are controlled by the mod-
eled system, while its external environment controls the input variables. Input
and output variables are exposed to the external observers, while hidden vari-
ables are invisible from the outside of the modeled system. An N -buffer receives
from its environment enqueue and dequeue requests, that we model as Boolean
input variables enq and deq. The buffer updates accordingly its internal state,
by increasing, decreasing or preserving the number of items that it stores. This
internal state is not visible to external observers, hence we model it with a hidden
integer variable k (bounded by N). In contrast, the buffer signals to the outside
world when it is empty or full. We model this information with the Boolean
output variables E and F, respectively.

The dynamic behavior of a requirement interface is defined by a set of rules
that describe allowed transitions between its successive states. A transition is a
pair consisting of a source and a target state. We use unprimed and primed vari-
ables to refer to source and target states respectively. More precisely, a rule in
requirement interfaces, that we call a contract, is a pair consisting of an assump-
tion about the external environment, and a guarantee that the modeled system
is required to provide when the assumption hold. In essence, a contract either
encodes a set of initial states or allowed transitions between states. Technically,
assumptions and guarantees are predicates over primed and unprimed variables
in the interface.1 We say that a system conforms to a contract if whenever its
environment satisfies the assumption predicate, it makes an update that satis-
fies the guarantee predicate. The system conforms to a requirement interface if
it conforms to all of its contracts. We note that natural language requirements
are typically translated to a contract. In requirement interfaces, we naturally
associate one or more requirement identifiers to each contract, facilitating trace-
ability of requirements in the model and the resulting test cases. Listing 1.1
shows the requirements interface formalization of the N buffer requirements.

1 In this paper, we consider a definition of assumptions and guarantees that is relaxed
with respect to our previous work [3], where assumptions and guarantees are not
allowed to refer to primed output/hidden and primed input variables, respectively.
This relaxation does not affect our incremental test-case generation approach.

Scalable Incremental Test-Case Generation from Large Behavior Models 5

Table 2. Natural language requirements of the power consumption of the buffer

Req ID Req Description

RA The power consumption equals zero when no enq/deq is requested.
RB The power consumption is bounded to 2 units otherwise.

Listing 1.1. Formalized contracts of the behavior of the buffer

{R1} assume enq ’ and not deq ’ and k < N guarantee k’ = k + 1
{R2} assume not enq ’ and deq ’ and k > 0 guarantee k’ = k - 1
{R3} assume true guarantee k’ = 0 <-> E’
{R4} assume true guarantee k’ = N <-> F’
{R5} assume enq ’ = deq ’ or enq ’ and F or deq ’ and E guarantee k’ = k

Different requirements and views of a system, modeled as requirement inter-
faces, are naturally combined with the conjunction operation. Intuitively, a sys-
tem that conforms to a conjunction of requirement interfaces must independently
conform to each interface. In the N -buffer example, in addition to the behav-
ioral view, we also consider its power consumption view. This non-functional
view collects the requirements that define the power consumption of the buffer
during different operations. The collected requirements are listed in Table 2.

The power consumption of the buffer depends on the enqueue and the
dequeue requests, hence this extra-functional view shares the same input vari-
ables with the behavioral view. We model the actual power consumption with a
bounded integer variable pc that we assume to be measurable and hence observ-
able to the outside world. The contracts in the requirement interface that for-
malize the power consumption view of the N -buffer are shown in Listing 1.2.

Listing 1.2. Formalized contracts of the power consumption of the buffer.

{RA} assume not enq ’ and not deq ’ guarantee pc’ = 0
{RB} assume enq ’ or deq ’ guarantee pc’ <= 2

2.2 Incremental Test-Case Generation

In order to create a sequence of input values, which is the core part of our test
case, we perform a bounded reachability analysis of the given test purpose on
the transition relation associated with the test model. The test purpose is a
predicate that defines a set of states that the tester wants to steer the system
to. The transition relation φ of an interface is the conjunction of its contracts
where a contract is represented as an implication from assumption to guarantee.
The transition relation φ is unfolded by copying and replacing the variables with
copies for each step, resulting in a series φ0 ∧ . . . ∧φk. We denote by [X\Xi] the
substitution of the variables with their respective copies of step i.

In our implementation we use the SMT solver Z3 in order tho check, whether
the test purpose Π can be reached in A in at most k steps:

smt(φ0 ∧ . . . ∧ φk ∧
∨

i≤k

Π[X\Xi])

6 B.K. Aichernig et al.

The call smt() returns a pair, containing (1) a Boolean value stating whether
the test purpose can actually be reached, and (2) a model containing a variable
valuation for the underlying SMT problem in the case that the test purpose is
reachable. If a model exists it can be mapped to a sequence of variable valuations
of the modeled system, from which only the input variables are needed for the
test-case execution.

Given the requirement interface for the behavioral view of the 2-bounded
buffer, and the test purpose F, our test-case generation procedure gives the
input sequence of size 3: (enq, deq) · (enq,¬deq) · (enq,¬deq).

Since the power consumption view does not add any input variables, this
sequence could already be used in a test case together with the full model as
oracle. However, it might happen that the input sequence, gained from a partial
view only, does not lead to the test purpose in the full model anymore.

The aim of the incremental test-case generation algorithm is to add values
from input variables which do not exist in the partial model and to check whether
the partial input sequence is feasible on the full model.

Algorithm 1. Incremental TCG
Input: partial model Mpart, full model Mfull, test purpose Π, exploration depth k
Output: fail or σfull ∈ L(Mfull) = X0 · · · Xk such that ∃j : (Xj−1, Xj) |= Π
1: (sat, res) ← smt(φ0

Mpart
∧ . . . ∧ φk

Mpart
∧∨i≤k Π[X\Xi])

2: if ¬sat then
3: return fail
4: end if
5: in ← π(res)[XMpart,I]
6: (sat, res) ← smt(in = π(σ)[XMpart,I] ∧ φ0

Mfull
∧ . . . ∧ φk

Mfull
∧∨i≤k Π[X\Xi])

7: if sat then
8: return π(res)[XI ∪ XO]
9: else

10: return fail
11: end if

Algorithm 1 formally introduces our approach of incremental test-case genera-
tion using partial models. Input to the algorithm are the models Mpart and Mfull .
The interface Mpart is expected to be a partial view, containing all relevant con-
tracts, which are necessary in order to reach one of the states described by Π in k
steps. If the algorithm succeeds, it will return a trace σfull , which can be executed
on Mfull and meets the purpose Π, otherwise it fails. In Line 1 a variable valuation
encoding the trace leading to the test purpose within the partial view is determined
and stored in the variable res. If no such valuation exists, the algorithm fails imme-
diately in Line 3. Otherwise in Line 5, the part of the result containing the input
valuations is extracted (projection π) and stored in the variable in. This is the par-
tial input sequence used in order to guide the exploration in Line 6. More precisely,
from the free variables σ the part containing input variables that are in common

Scalable Incremental Test-Case Generation from Large Behavior Models 7

with the partial view (π(σ)[XI,Mpart
]) are fixed with the values from the variable

in.
As mentioned, preliminary results [3] suggest that the incremental test-case

generation is more efficient than the monolithic approach and this hypothesis is
evaluated in this paper on two industrial case studies.

2.3 Avoidance of Vacuously Reaching Test Purposes

The incremental approach to test-case generation that we described in
Section 2.2 is based on the exploration of partial views of the system. However,
in some cases the partial view may not contain enough information to guide the
test-case generation towards a given test purpose. This situation results in the
generation of input vectors that vacuously reach the test purpose in the partial
model, but do not properly guide the SUT towards the desired goal.

Consider the N -buffer example from Section 2.1 and the test purpose F - we
want to generate a test that leads the SUT to the state in which the buffer is
full. If we generate such a test from a partial view that lacks one of the contracts
formalizing requirements R1, R2, or R5, the resulting test may reach the test
purpose in a vacuous manner, because there exist input values for which the sys-
tem is underspecified. This phenomenon is similar to spurious counter-examples
in the counter-example guided abstraction refinement (CEGAR) techniques [10].

In order to avoid such spurious test cases, the test purpose can be directly
extended with additional constraints that will help the test-case generator to
choose meaningful input values staying inside the assumptions. This was crucial
for the interlocking system case study, in which the decomposition into partial
models removed some of the contracts handling aspects of an input variable,
leaving some input reactions underspecified. This is unlike the cone of influence
reduction technique [7], in which only those variables are removed, which do
not affect the test purpose at all. In the future, we plan to replace this manual
extension step by incorporating back-tracking techniques into our incremental
test-case generation.

3 Wheel Loader Case Study

3.1 Use-Case Description

The first case-study focuses on an electronic control unit (ECU) of a wheel loader.
This system implements the control of the bucket and bucket arm movement in a
wheel loader. The controller processes inputs from a two-dimensional joystick in
order to calculate appropriate control commands. In addition, the controller also
provides error management functionality. Instead of an actual deflection, the joy-
stick can report a fault by using some designated values. The ECU has to count
the number of occurrences of the reported faults and switch to an error mode, in
which the movements are stopped for safety reasons. When the controller is in
the error mode and the joystick resumes producing valid inputs again, the ECU

8 B.K. Aichernig et al.

must recover and begin to move the bucket arm and the bucket according to the
position of the joystick. Information about the internal error manager mode, the
current position of the joystick as well as the current movements of the bucket
arm and the bucket are shown to the user by sending references to predefined
images in the user display.

3.2 Modeling

In this case study, we decompose our model of the ECU and consider three
different aspects: (1) the error management view; (2) the control itself; and (3)
the configuration view. As a result, our model of the ECU consists of three
requirements interfaces. In total, the full model has 1 Boolean and 21 bounded
integer variables and consists of 138 contracts. The variables are partitioned into
2 input, 7 output and 13 state variables.

The first requirement interface captures the error management behavior. It
consists of 20 contracts describing how the ECU has to change its internal error
manager state and which predefined picture has to be shown on the display. We
illustrate 3 contracts from the error management view in Listing 1.3.

Listing 1.3. Subset of contracts in the error management view

{E1} assume initialized and errorManagerState = 0 and joystick1 ’ > 0 and
joystick1 ’ < 64000 and joystick2 ’ > 0 and joystick2 ’ < 64000

guarantee errorManagerState ’ = 0 and un_valid_data_counter ’ = 0 and
correction_counter ’ = correction_counter and
systemStatusGraphic ’ = systemStatusGraphic

{E2} assume initialized and errorManagerState = 0 and (joystick1 ’ <= 0 or
joystick1 ’ >= 64000 or joystick2 ’ <= 0 or joystick2 ’ >= 64000)

guarantee errorManagerState ’ = 1 and un_valid_data_counter ’ = 1 and
correction_counter ’ = correction_counter and
systemStatusGraphic ’ = systemStatusGraphic

{E3} assume initialized and errorManagerState = 1 and (joystick1 ’ > 0 and
joystick1 ’ < 64000 and joystick2 ’ > 0 and joystick2 ’ < 64000)

guarantee errorManagerState ’ = 1 and un_valid_data_counter ’ =
un_valid_data_counter and correction_counter ’ = correction_counter
and systemStatusGraphic ’ = systemStatusGraphic

{E1} models the case where the ECU is initialized, its error manager has
not encountered any recent fault (modeled as errorManagerState being equal to
0) and the values coming from the joystick (variables jostick1 and jostick2 that
denote its 2 dimensions) are in the valid range of (0, 64000). The associated guar-
antee states that the counter for recently reported faults (un valid data counter)
is reset, while the counter keeping track of how often the system has recovered
(correction counter) and the variable that contains the reference to the picture
(systemStatusGraphic) do not change. {E2} models the reaction to an unexpected
joystick value (joystick1 or joystick2 outside of the valid range) to the error man-
agement. In that case, the error management state is set to 1, the counter for
recently reported faults is increased, while correction counter and systemStatus-
Graphic do not change. {E3} describes the reaction to a valid joystick value,
when the error management system is already in error management state 1. In
that case, un valid data counter, correction counter and systemStatusGraphic do
not change their value.

Scalable Incremental Test-Case Generation from Large Behavior Models 9

The second viewpoint captures the calculation of control values, based on the
joystick inputs and the internal state of the system. It consists of 116 contracts.
In practice, the input from the joystick is sensed and processed, resulting in the
generation of an appropriate electric current that is applied to the bucket and
the bucket arm. Because of physical limitations, the actual current must not
differ to the one of the last step by a predefined bound. We model the resulting
current with integer variables. Listing 1.4 shows 3 sample contracts from the
second viewpoint.

Listing 1.4. Sample contracts describing the calculation of output values

{T1} assume initialized and joystick1 ’ > 35339 and joystick1 ’ < 64000 and
joystick2 ’ < 64000 and joystick2 ’ > 0

guarantee
targetEm1PortA ’ = (800 * (joystick1 ’ - 35339)) div (64255 - 35339)
{T2} assume initialized and joystick1 ’ > 0 and joystick1 ’ <= 35339 and

joystick2 ’ < 64000 and joystick2 ’ > 0
guarantee targetEm1PortA ’ = 0

{T3} assume
initialized and (errorManagerState ’ = 0 or errorManagerState ’ = 1)

and em1PortB = 0 and targetEm1PortA ’ > (em1PortA + 50)
guarantee em1PortA ’ = em1PortA + 50

Table 3. Run-times in seconds for different con-
figurations of the wheel loader

Config # Depth #V ars tpart tinc tmono

1 39 861 2.0 3.6 16.8
2 43 945 2.0 3.4 47.7
3 44 966 1.6 2.8 31.9
4 47 1029 2.5 4.6 139.1
5 48 1050 2.1 3.9 45.3
6 49 1071 3.4 4.9 47.5
7 51 1113 3.3 4.8 52.2
8 52 1134 2.9 4.6 53.7
9 53 1155 3.0 4.8 252.4
10 56 1218 4.2 7.3 135.4
11 57 1239 6.1 7.8 33,810.4

The third viewpoint captures
the configuration of the error
management. It only consists of
2 contracts. The configuration
viewpoint defines three parame-
ters: (1) M denotes the maxi-
mum number of invalid joystick
inputs that is allowed before the
error management puts the sys-
tem in a safe state by disabling
bucket movements; (2) N denotes
the number of consecutive valid
joystick inputs needed to restore
the system from its safe state
and resume bucket movements;
and K denotes the number of

switches between the normal and the safe state before the system is shut down.
Each specific choice for M , N and K gives a different instantiation of the system
and determines the size of the underlying model.

3.3 Evaluation

In order to evaluate our incremental test-case generation approach, we first cre-
ated a partial model that combined the error management and configuration
but excluded the controller view. We also defined a test purpose for our partial
view. We set up the following experiment consisting of applying three different
approaches and compared them.

10 B.K. Aichernig et al.

In the partial approach (part), we generated tests from the partial model and
test purpose. The incremental approach (inc), consisted in using our incremental
procedure to first generate tests from the partial model and the test purpose and
then extend them with the constraints from the controller view. Finally, in the
monolithic approach (mono), we combined all three partial models and only then
derived tests for the same test purpose, using the monolithic test-case generation
procedure. We compared the computation costs for generating tests with the
incremental and the monolithic procedures. The experiment was conducted on
a PC with a 3 GHz CPU and 8 GB RAM running Windows 7.

Table 3 shows the results of the experiment, which was conducted with 11
different configurations of the system. The complexity of each model instance is
reflected by the depth, that is the length of the test case necessary to reach the
test purpose, and the number of variables in the underlying SMT encoding of
the test-case generation problem. Columns tpart, tinc and tmono show the time
needed for the test generation using the partial, incremental and monolithic
approaches, respectively.

It can be seen that the run-times for monolithic test-case generation do not
increase strictly monotonic, but the trend is clear. At one point the run-time
exceeds with over nine hours the reasonable time one is willing to wait for the
generation of a single test case. The run-times of the incremental approach on
the other hand increase very slow, never exceeding eight seconds.

4 Interlocking Case Study

4.1 Use-Case Description

The object of the second case study is the control logic of an interlocking system
used in a railway station. Such a system controls and monitors elements like
tracks, switches, and signals in order to establish safe train routes, which are
not in conflict to each other. Inputs to the system come from so-called track
supervision elements as well as the operator of the interlocking system. A track
supervision element reports, whether a specific track element is occupied. This
information is not only important in order to decide, when a specific train route
can be set up, but it also allows the system to automatically dissolve a train
route after a train has passed through. The operator can request the system to
establish a train route between two signals, cancel an established train route,
and manually move a switch to a specific position or lock a switch in a specific
position. Outputs of the system are the position of the switches, the state of
the signals as well as the usage of track elements within a train route. The
requirements for the interlocking system were provided by Thales Austria GmbH.

4.2 Modeling

Unlike in the first case study, the requirements here usually refer to generic
components, such as signals, switched and track elements, which are instantiated

Scalable Incremental Test-Case Generation from Large Behavior Models 11

Table 4. Mapping between classes of the model and corresponding variables

Class Input Output Hidden

Track occupied : B usage : I -
Switch occupied : B usage, position : I, locked, interlocked : B -
Signal - stop : B -

Train Route - - state, sub state : I
Global command : B not permissive, cancel log : I -

multiple times in a railway station. In addition, the layout of the railway station
that defines the connection between track elements and switches and the position
of the signals is also part of the model. Figure 3 shows the layout of the train
station of size L. In this configuration there are three straight tracks (e.g. TCSSa,
TCSSc, TCSSe) between each switch and the track element on which a train
can stand (e.g. TCSS), while the other train passes. In order to increase the
complexity of the model, we inserted another three track elements (e.g TCSSg,
TCSSi, TCSSk) directly before TCSS and TCH resp. (twelve in total) and refer
to the resulting model as model of size XL. We repeated this procedure in order
to gain models of sizes XXL, XXXL, XXXXL, and XXXXXL, each containing
twelve track elements more than the prior one. The fully instantiated models
of size L and XXXXXL consist of 181 and 3323 contracts and use 85 and 205
variables respectively.

TCL1a

si2 si7

TC21 sw21 TCSSa

TCHa

TCSSc

TCHc

TCSSe

TCHe

X*L

X*L

si5

TCSS

si6

si3

TCH

si4

X*L

X*L

TCSSf

TCHf

TCSSd

TCHd

TCSSb

TCHb

sw22 TC22

si8 si1

TCL1b

L =

XL =
TCSSg TCSSi TCSSk

XXL =
TCSSg TCSSi TCSSk TCSSm TCSSo TCSSq

XXXL =
TCSSg TCSSi TCSSk TCSSm TCSSo TCSSq TCSSs TCSSu TCSSw

XXXXL =
TCSSg TCSSi TCSSk TCSSm TCSSo TCSSq TCSSs TCSSu TCSSw TCSSy TCSSaa TCSSac

XXXXXL =
TCSSg TCSSi TCSSk TCSSm TCSSo TCSSq TCSSs TCSSu TCSSw TCSSy TCSSaa TCSSac TCSSae TCSSag TCSSai

Fig. 3. Layout of the railway station

Variables. Table 4 shows how the variables of the behavior model correspond to
the physical and logical entities of the interlocking system. Each track has an

12 B.K. Aichernig et al.

input variable occupied that denotes whether it is occupied and an output usage
variable that describes how the track is used (see Figure 4 (b)). Switches have
in addition to occupied and usage the variables position, locked and interlocked
that encode the position of the switch, whether this position is locked by the
operator or interlocked because its position is needed for a specific train route.
Signals have the single output variable stop, which encodes whether or not a
train is allowed to pass.

Train routes are logical entities of the interlocking system, grouping a set of
physical elements arranged in a specific order. They are predefined by the OEM
and can be in various states (modeled by state and sub-state variables) which
are specified by the requirements document (see Figure 4 (a)). A train route
is idle until it gets requested by the operator. It then goes to the admissibility
check state in which the train route is either allowed or rejected. If the train
route is admissible, it goes to the set up state, in which it stays until all switches
are successfully set to their correct position and interlocked. Furthermore, all
involved track supervision elements have to report that there is no train on
any needed track element. The set up state is followed by the signal clearing
state in which the signals are switched to show a “go” sign. After this is done,
the train route goes to the supervision state in which it observes all involved
track elements. As soon as the train has passed all other elements and stands in
the so-called goal area, the train route is dissolved automatically. We note that
whenever a phase is not successfully completed, the train route goes back to its
idle state.

Similarly, tracks and switches have internal states encoded in their usage
variable. The transition relation between these states is shown in Figure 4 (b).
An element is unused, when it is not used in any train route. If a train route is
established, it can be either free if the information from the track supervision
elements confirm that there is no train standing on it, or it can be not yet free
if for any reason this cannot be confirmed. The latter state switches to free as
soon as the track supervision elements confirm that the element is now free. As
soon as a train enters the specific element, this is again recognized by the track
supervision element and the element switches to occupied. As soon as the train
leaves the element, its usage is considered as had been occupied until the train
route finally gets dissolved, which is done when the train has passed.

Global variables. The communication with the operator of the interlocking sys-
tem is modeled with an additional input and two output variables. The input
variable denotes the command that the operator is requesting. This includes
commands for requesting to establish or to manually cancel a train route, to
lock a switch or to manually change the position of a switch. The output vari-
able not permissive encodes whether the requested train route is admissible and
the variable cancel log is an output to a logging device, which keeps record of
possibly hazardous commands from the operator.

The input variable command is an integer encoding an enumerative value:
each combination of the command (e.g. request train route, cancel train route,

Scalable Incremental Test-Case Generation from Large Behavior Models 13

Idle

Admissibility Check

Set Up

Supervision

Signal Clearing

request
not admissible

admissible cancel / takeback

switches in desired position

cancel

cancel / goal dissolved

(a) States of a train route

Unused

Not Yet Free

Free

Occupied

Had Been Occupuied

Dissolved

tr state = Set Up
and te occupied

tr state = Set Up
and not te occupied

not te occupied

te occupied not te occupied

elements before dissolved;
element after had been occupied
or dissolved

tr state = Idle

(b) Usage of a track element

Fig. 4. State machines of the interlocking system

Table 5. Sample natural language requirements of the interlocking system

Req ID Req Description

R161 A train route shall not be admissible, if any element in the selected route
except the start element and the goal element is used in another train route.

R162 A train route shall not be admissible, if a switch in the route or its overlap
is required in a position it does not have, and the switch is locked or interlocked.

R164 A train route shall not be admissible, if the goal element is locked for
train routes.

change switch, ...) and the corresponding object (e.g. tr 13, sw21) is mapped to
a specific value.

Parametrized contracts. Requirement interfaces do not provide native support
for classes or other object-oriented data structures. During the development
of this case study, we developed such an object-oriented support for modeling
generic components which are then automatically instantiated. We used Scala,
an object-oriented and functional programming language, to provide an easy and
natural separation of the train station layout from its logic. Since our require-
ment interfaces testing tool is also written in Scala, it was possible to reuse the
class hierarchy of the abstract syntax tree in order to encode a generic con-
tract, which can be instantiated with every considered element. This approach
is particularly well-suited for our incremental approach based on partial models
- it facilitates instantiation of generic components for arbitrary layouts, but also
enables generation of partial models that contain the meaningful subset of such
instances. For instance, given a large railway station layout and a specific train
route as a test purpose, our object-oriented approach allows to easily discard all
tracks and switches that do not affect the train route and thus to considerably
reduce the complexity of the (partial) model that is needed to be explored in
order to generate the right test case.

Example. Table 5 shows three sample natural language requirements, which
describe the behavior of the train routes. We first formalize this reoccur-
ring kind of refuse condition into predicates, e.g. refuseCondition1(tr) =def

exists(((trackstr ∪ switchestr)\goaltr),¬isUsage(elm,Unused), elm), where

14 B.K. Aichernig et al.

tr 13

tr 26

TCL1a

si2 si7

TC21 sw21 TCSSa

TCHa

TCSSc

TCHc

TCSSe

TCHe

si5

TCSS

si6

si3

TCH

si4

TCSSf

TCHf

TCSSd

TCHd

TCSSb

TCHb

sw22 TC22

si8 si1

TCL1b

Fig. 5. Example of two train routes that can be established at the same time

“exists” is a shortcut for the existential quantification of the (bounded inte-
ger) free variable elm. The quantification is only visible in the meta model
and flattened down to a disjunction in the resulting requirement interface.
Variables tracks, switches, and goal are parametrized by the train route
identifier. Applied to the function isUsage they map down to corresponding
usage variable of the respective track element. Instantiated for the train
route that starts at signal si1 and ends at signal si3 without any overlap, this
expression compiles down to: ((((¬(TCHf usage = Unused)))∨(¬(TCHd usage =
Unused)))∨(¬(TCSSb usage = Unused)))∨(¬(sw22 usage = Unused)) The pred-
icates for R162 and R164 would be: refuseCondition2tr =def exists((switchestr ∪
overlaptr), sw.position �= sw.position(tr) ∨ sw.locked ∨ sw.interlocked, sw) and
refuseCondition3tr =def end signaltr.locked respectively.

These predicates can then be used in parametrized contracts, as shown in
Listing 1.5.

Listing 1.5. Example of parametrized contracts

{R161} assume command′ = requesttr ∧ isInStatetr(Admissibility Check)∧
refuseCondition1tr

guarantee setStatetr(Idle) ∧ not permitted′ = tr

{R162} assume command′ = requesttr ∧ isInStatetr(Admissibility Check)∧
refuseCondition2tr

guarantee setStatetr(Idle) ∧ not permitted′ = tr

{R164} assume command′ = requesttr ∧ isInStatetr(Admissibility Check)∧
refuseCondition3tr

guarantee setStatetr(Idle) ∧ not permitted′ = tr
{R161 ,R162 ,R164}

assume command′ = requesttr ∧ isInStatetr(Admissibility Check)∧
¬(refuseCondition1tr ∨ refuseCondition2tr ∨ refurefuseCondition3tr

guarantee setStatetr(Set Up) ∧ not permitted′ = −1

4.3 Test-Case Generation

As the test purpose we chose the state in which both train routes are about to
be dissolved because a train has passed most of the tracks and stands on the last
element (TCSS and TCH respectively). Figure 5 highlights the corresponding
train routes. Using our notion this goal can be formalized as: tr 13 state′ =
Supervision ∧ tr 26 state′ = Supervision ∧ TCH usage′ = Had Been Occupied ∧
TCSS usage′ = Had Been Occupied.

Scalable Incremental Test-Case Generation from Large Behavior Models 15

Table 6. Evaluation results for the interlocking system case study
Model size # varspart # varsfull tpart tinc tmono

L 720 1360 1.6 15.6 25.7
XL 1083 2071 4.3 39.3 94.2

XXL 1518 2926 10.4 87.3 316.2
XXXL 2025 3925 24.0 173.3 413.2

XXXXL 2604 5068 36.1 308.3 825.0
XXXXXL 3255 6355 63.1 480.8 5476.1

Fig. 6. Run-times in seconds for finding a trace

In order to guide the solver to assign meaningful values when processing
the partial model, we extended the test purpose with additional constraints on
the input variable of the form

∧
obj command �= operationobj where operationobj

denotes some operation on an object obj, which is not considered by the partial
model.

4.4 Evaluation

For the evaluation of the interlocking system case study, we defined an experi-
mental setup similar to the one presented in Section 3.3. We applied the three test
generation approaches, partial (part), incremental (inc) and monolithic (mono),
to multiple model instances (L to XXXXXL), and compared the the computa-
tion costs to generate a test with each of the approaches. For each of the model
instances, we expressed its complexity as the number of variables in the under-
lying SMT encoding of the test-case generation problem. Unlike in the first case
study, the reason for the increasing number of variables is two-fold: firstly, a
higher search depth is needed and therefore the transition relation is unfolded
more often and secondly, due to the increased number of track elements the
number of variables per step of the transition relation increases. Columns tpart,
tinc and tmono show the time needed for the test generation using the partial,
incremental and monolithic approaches, respectively.

Figure 6 visualizes the run-time comparison. The run-time for generating
one test-case monolithically for the XXXXXL model again exceeds with over

16 B.K. Aichernig et al.

one hour any reasonable waiting time. Using the incremental approach for an
equivalent test-case of the same model, generation only takes eight minutes,
which is a considerable improvement. Significant performance improvement can
also be seen on the next smaller model, where monolithic test-case generation
takes about 14 minutes while the incremental test-case generation technique
takes less than 6 minutes. On the smallest model L the incremental approach is
with 15.6 seconds still almost twice as fast as the monolithic approach with 25.7
seconds.

5 Related Work

Incremental testing has been studied in various forms in the past.
In a recent work, we proposed decomposing the test model into partial models

in order to facilitate test-case generation [1], and used the same wheel loader
case study for evaluation. We also proposed a test-driven software development
process, in which a series of partial test models was used in order to automatically
derive test cases [4]. In contrast to this work, the modeling language in our former
work [1,4] is UML, hence the underlying state space has all the interleavings of
actions. In addition, the partial test cases generated from the UML model are
not extended with the constraints from the other views.

Fraser and Wotawa [14] showed how to avoid generating duplicate test cases
by incrementally extending existing ones to meet additional test purposes. In
other previous work the performance improvements gained from incremental
SMT solving [2] has been studied, ie. to leave common parts of the system
description on the stack of the SMT solver. In the context of communicating
extended finite state machines (CEFSMs), Bourhfir et al. [8] analyzed the depen-
dency between components. Schwarzl and Peischl [17] propose a test-case gener-
ation for deterministic CEFSMs communicating via asynchronous messages. In
their approach, the exploration of compound model paths respects the commu-
nication structure of its single components. They consider deterministic models
which communicate via asynchronous messages and avoid interleavings by fixing
the order of the messages. El-Fakih et al. [13] propose an incremental test-case
generation approach that is similar to ours. They first generate a partial (inter-
nal) test case from a component model and then extend it to a full (external)
test case that takes into account the component’s context. In contrast to our
work, both the component and the context are modeled as deterministic finite
state machines.

Van der Bijl et. al [18] and Daca et. al [11] propose exploiting the struc-
tural properties of parallel composition in testing in order to infer properties of
a system from testing its individual components. Incremental test-case gener-
ation based on the properties of the parallel composition was proposed in the
context of real-time systems testing [16]. Arcaini and Gargantini [5] propose an
approach to combine tests from subsystems given as sequential nets of Abstract
State Machines. In a later work Arcaini et. al. [6] provide an automated abstrac-
tion technique for so-called Decomposable by Dependency Asynchronous Parallel

Scalable Incremental Test-Case Generation from Large Behavior Models 17

(DDAP) systems. In contrast to our work based on a synchronous system with a
global clock, in their work modules communicate asynchronously such that only
one system is active at the same time. Koo and Mishra [15] propose a method
for decomposing both the model and the properties (which relate to the test
purpose) of a synchronous test model.

In contrast to other requirement formalization approaches like RSML−e [9],
we formalize requirements in order to build the transition relation instead of
translating them to temporal properties to be checked.

6 Conclusion

In this paper, we applied our synchronous and incremental requirement-driven
test-case generation technique to two large industrial case studies, from the trans-
portation and the railway domains. We payed special attention to the scalability
of our approach, and demonstrated its benefits, but also some limits.

We plan to address in the future the limits that we identified by conducting
the case studies. The manual decomposition of the requirements document into
partial models at the right level of abstraction remains the main bottleneck in
applying such incremental techniques. We will provide additional support for
the decomposition process by developing static dependency analysis between
requirements. We also plan to extend our incremental technique to systems that
communicate over asynchronous messages for applications such as telecommu-
nication protocols in which the synchronous view is not sufficient.

Acknowledgments. We are grateful to the anonymous reviewers for their valuable
and detailed feedback. The research leading to these results has received funding from
the ARTEMIS Joint Undertaking under grant agreement No 332830 and from the
Austrian Research Promotion Agency (FFG) under grant agreement No 838498 for
the implementation of the project CRYSTAL, Critical System Engineering Accelera-
tion. We want to thank Thales Austria GmbH for providing us with requirements for
the railway interlocking case study and RE:Lab for providing the requirements for the
wheel loader case study.

References

1. Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W., Schlick, R., Tiran, S.: Killing
strategies for model-based mutation testing. Software Testing, Verification and
Reliability (Early view) (2014)

2. Aichernig, B.K., Jöbstl, E., Kegele, M.: Incremental refinement checking for test
case generation. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942,
pp. 1–19. Springer, Heidelberg (2013)

3. Aichernig, B.K., Hörmaier, K., Lorber, F., Ničković, D., Tiran, S.: Require, test
and trace IT. In: Núñez, M., Güdemann, M. (eds.) Formal Methods for Industrial
Critical Systems. LNCS, vol. 9128, pp. 113–127. Springer, Heidelberg (2015)

4. Aichernig, B.K., Lorber, F., Tiran, S.: Formal test-driven development with verified
test cases. In: MODELSWARD 2014, pp. 626–635. SCITEPRESS, Lisbon (January
2014)

18 B.K. Aichernig et al.

5. Arcaini, P., Gargantini, A.: Test generation for sequential nets of abstract state
machines with information passing. Science of Computer Programming 94, Part
2(0), 93–108 (2014)

6. Arcaini, P., Gargantini, A., Riccobene, E.: An abstraction technique for testing
decomposable systems by model checking. In: Seidl, M., Tillmann, N. (eds.) TAP
2014. LNCS, vol. 8570, pp. 36–52. Springer, Heidelberg (2014)

7. Berezin, S., Campos, S., Clarke, E.M.: Compositional reasoning in model checking.
In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol.
1536, pp. 81–102. Springer, Heidelberg (1998)

8. Bourhfir, C., Dssouli, R., Aboulhamid, E., Rico, N.: A guided incremental test case
generation procedure for conformance testing for CEFSM specified protocols. In:
Testing of Communicating Systems. IFIP, vol. 3, pp. 279–294. Springer, Heidelberg
(1998)

9. Choi, Y., Heimdahl, M.P.E.: Model checking RSML-e requirements. In: HASE,
pp. 109–118. IEEE Computer Society (2002)

10. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

11. Daca, P., Henzinger, T.A., Krenn, W., Ničković, D.: Compositional specifications
for ioco testing. Technical Report IST-2014-148-v2+1, IST Austria (2014). http://
repository.ist.ac.at/152/1/main tr.pdf (visited on: March 27, 2014)

12. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

13. El-Fakih, K., Petrenko, A., Yevtushenko, N.: FSM test translation through context.
In: Uyar, M.U., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS, vol. 3964,
pp. 245–258. Springer, Heidelberg (2006)

14. Fraser, G., Wotawa, F.: Creating test-cases incrementally with model-checkers. In:
GI Jahrestagung (2). LNI, vol. 110, pp. 381–386. GI (2007)

15. Koo, H.-M., Mishra, P.: Functional test generation using design and property
decomposition techniques. ACM Trans. Embed. Comput. Syst. 8(4), 32:1–32:33
(2009)

16. Krenn, W., Ničković, D., Tec, L.: Incremental language inclusion checking for net-
works of timed automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013.
LNCS, vol. 8053, pp. 152–167. Springer, Heidelberg (2013)

17. Schwarzl, C., Peischl, B.: Test sequence generation from communicating UML
state charts: An industrial application of symbolic transition systems. QSIC 2010,
122–131 (2010)

18. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional testing with ioco. In:
Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer,
Heidelberg (2004)

http://repository.ist.ac.at/152/1/main_tr.pdf
http://repository.ist.ac.at/152/1/main_tr.pdf

Test Case Generation for Concurrent Systems
Using Event Structures

Konstantinos Athanasiou1, Hernán Ponce-de-León2(B), and Stefan Schwoon3

1 College of Computer and Information Science,
Northeastern University, Boston, USA

konathan@ccs.neu.edu
2 Helsinki Institute for Information Technology HIIT and Department of Computer

Science and Engineering, School of Science, Aalto University, Espoo, Finland
hernan.poncedeleon@aalto.fi

3 LSV (École Normale Supérieure de Cachan and CNRS), Cachan, France
schwoon@lsv.ens-cachan.fr

Abstract. This paper deals with the test-case generation problem for
concurrent systems that are specified by true-concurrency models such as
Petri nets. We show that using true-concurrency models reduces both the
size and the number of test cases needed for achieving certain coverage
criteria. We present a test-case generation algorithm based on Petri net
unfoldings and a SAT encoding for solving controllability problems in
test cases. Finally, we evaluate our algorithm against traditional test-
case generation methods under interleaving semantics.

1 Introduction

The aim of testing is to execute a system under test (SUT) on a set of input
data that was selected with the aim of finding discrepancies between the actual
behavior of the SUT and its intended behavior as described by some specifica-
tion. Model-based testing additionally requires a behavioral description of the
SUT. One of the most popular formalisms studied in model-based testing is that
of input-output labeled transition systems (IOLTS) where the correctness (or con-
formance) relation that the SUT must verify w.r.t. its specification is formalized
by the ioco relation [1]. This relation has become a standard, and it is used as
a basis in several testing theories for extended state-based models [2–5].

Model-based testing then consists of three steps: (1) exploring the specifica-
tion to obtain a representation of relevant behaviours to test; (2) generating a
suite of test cases from the mentioned representation; and (3) applying the tests
to the SUT. This paper mainly deals with step (2) in the context of concurrent
systems.

In the ioco theory, step (1) generates a complete test graph G describing
the inputs the tester may propose and the outputs the system may produce,

K. Athanasiou—This research was done while the authors were part of LSV,
supported by an INRIA internship and the TECSTES project.

c© Springer International Publishing Switzerland 2015
J.C. Blanchette and N. Kosmatov (Eds.): TAP 2015, LNCS 9154, pp. 19–37, 2015.
DOI: 10.1007/978-3-319-21215-9 2

20 K. Athanasiou et al.

up to a depth that fulfills a given test purpose. Consider the example graph in
Fig. 1 (a). It specifies that every tester should begin with input i1, to which
the system ought to respond by o1. After this, there are two choices: the tester
proposes either input i2 or input i3, to which the system should react accordingly.
If the system shows an unexpected output or no output at all, it is deemed to
be non-conformant.

?i1

!o1

?i2 ?i3

!o2 !o3

(a)

?i1

!o1

?i2

!o2

?i1

!o1

?i3

!o3

(b)

?i1 ?i2

?i2!o1 ?i1 !o2

?i2

!o1 !o2

?i1

!o2 !o1

(c)

Fig. 1. Example of (a) a complete test graph; (b) the resulting test cases; (c) test graph
for interleaving semantics of concurrent system

A test case is a subgraph of G that tells the tester which inputs to choose
and which outputs to expect at which point during the test. For instance, no
node may have two outgoing edges labelled by inputs. The suite of test cases
corresponding to G is obtained during step (2), e.g., by using a backtracking
strategy [6]. Fig. 1 (b) shows the two test cases resulting from the graph in (a).

Model-based testing of concurrent systems has been studied in the past [7–9],
but mostly in the context of interleaving semantics which suffers from state-space
explosion. For instance, consider a system with two independent components
C1, C2, where input ik in Ck should produce output ok, for k = 1, 2. Applying
ioco-conformance methods to the interleaving semantics of this system produces
the test graph in Fig. 1 (c), which in turn produces four different test cases (see
Example 4).

To avoid this problem, concurrent systems can be modelled by Petri nets,
whose partial-order (or true-concurrency) semantics is given by its unfolding [10].
Some of the methods originally developed for Finite State Machines [11] have
been adapted to k-bounded and safe Petri nets [12,13] while test-case gener-
ation for concurrent systems based on unfoldings has been studied in [14–16].
In particular, [16] proposed a suitable extension of ioco for testing concurrent
systems, called co-ioco. In the latter, the test graph G is replaced by an event
structure E characterizing the causal relations between inputs and outputs, and
a concurrent (or global) test case becomes a prefix of E (with suitable proper-
ties). For instance, the example with two components C1, C2 leads to just one

Test Case Generation for Concurrent Systems Using Event Structures 21

test case, where each component receives one input and produces one output.
An abstract algorithm for obtaining the suite of test cases from E is proposed
in [16], but it is not efficient since it enumerates linearizations of E . Moreover,
in some cases it can produce the same test case several times. Also, an actual
implementation of these concepts was lacking so far.

In [14] and [17] finite event structures are constructed from the specification
of the system and projected into the distributed components of the system;
if the projection still contains concurrency, interleaving semantics are applied.
Each path of the event structure represents a test case, but they do not give an
explicit algorithm to compute them and argue that optimization techniques to
minimize the number of test cases is out of the scope of the paper.

More recently, unfolding techniques have been applied to test multithreaded
programs [18]; their setting is different to ours since they consider a white box
implementation and construct an unfolding representing the flow of the program.
The constructed unfolding represents symbolic executions to avoid the explosion
causes by different inputs and a SMT solver is used to generate concrete test
cases.

Contributions: test-case generation based on co-ioco thus consists of two
tasks: (i) generating a suitable prefix of E , and (ii) extracting test cases from it.
In this paper we make the following contributions:

– As for task (i), we provide a concrete implementation for generating the
above-mentioned event structure E for certain coverage criteria, as an exten-
sion of the tool Mole [19].

– As for task (ii), we propose an improved algorithm for obtaining a test suite
from E based on SAT-solving. The new algorithm is more efficient than [16]
and does not produce the same test case several times.

– In practice, a system not only consists of inputs and outputs but also of silent
transitions not observable by the tester. Näıvely adding silent events to the
event structure would lead to huge test cases. We show how the test-case
generation can handle silent transitions gracefully.

– Moreover, we implemented the above-mentioned components for test-case
generation in a prototype tool called Tours and report on experiments.
Our experiments show that keeping concurrency explicitly in the test cases
not only reduces their size by avoiding interleavings, but it also reduces the
number of test executions to assure a certain coverage of the system.

The paper is organised as follows: Section 2 recalls background on Petri
nets, unfoldings, and test cases; Section 3 presents our theoretical contributions
towards test-case generation for co-ioco; Section 4 discusses our implementation
and experiments; we conclude in Section 5.

2 Preliminaries

This section recalls previously known concepts used throughout the paper, such
as Petri nets, event structures, and testing-related concepts. Since this paper

22 K. Athanasiou et al.

focuses on test-case generation from a given event structure, we focus on event
structures and present the other issues more concisely. A more detailed exposi-
tion of these subjects can be found in [16].

2.1 Petri Nets and Event Structures

We deal with concurrent, reactive systems modelled as Petri nets, where we
differentiate between actions proposed by the tester (inputs), actions produced
by the system (outputs) and internal (silent) actions. We assume familiarity of
the reader with Petri nets and merely recall some basic facts.

A Petri net consists of two disjoint finite sets P and T representing places
and transitions connected by flow arcs. A marking is a distribution of tokens
over places. In what follows, we deal with 1-safe nets where no reachable marking
places more than one token into the same place; such Petri nets can in particular
represent a collection of finite automata synchronizing on common actions. Thus,
we represent a marking as the set of marked places. Transitions are labeled by
a mapping λ : T → In � Out � {τ} over input, output and silent actions. In the
following, elements of In are prefixed by ‘?’ and elements of Out by ‘!’.

p1 p2

p3 p4

p5

t1 ?call1 t2?call2

t3

!open at1

t4

!open at2

e λ(e) ϕ(e)

e1 ?call1 t1
e2 ?call2 t2
e3 !open at2 t4
e4 !open at1 t3
e5 ?call2 t2
e6 ?call1 t1
e7 !open at2 t4
e8 !open at1 t3
e9 !open at1 t3
e10 !open at2 t4
e11 !open at1 t3
e12 !open at2 t4
e13 !open at1 t3
e14 !open at2 t4

e1 e2

e3 e4

e5 e6

e7 e8 e9 e10

e11 e12 e13 e14

Fig. 2. A Petri net and its unfolding

Example 1 (Petri nets). Fig. 2 (left) shows a Petri net representing an elevator
serving two floors. Places are shown as circles, transitions as boxes whose shading
indicates the type of their label: inputs are shown in white, outputs in grey, and
silent actions in light grey (see Fig. 5). From the initial marking {p1, p2, p5}, the
elevator can be called concurrently at both floors (transitions t1 and t2); both
calls can be served sequentially (t3 or t4), i.e. the elevator cannot open its door
at both floors at the same time. This is because both transitions compete for
the token at place p5.

Test Case Generation for Concurrent Systems Using Event Structures 23

It is well-known (see, e.g., [10]) that a Petri net can be unfolded into an
acyclic, potentially infinite structure that represents the partial-order semantics
of the net with its possible branching behaviours. Such an unfolding directly
corresponds to an event structure [20] :

Definition 1. An event structure is a tuple E = (E,≤,#, λ) where: (i) E is
a set of events; (ii) ≤ ⊆ E × E is a partial order (called causality) s.t. ∀e ∈
E : |〈e〉| < ∞, where 〈e〉 = {e′ ∈ E | e′ < e}; (iii) # ⊆ E × E is an irreflexive
symmetric relation (called conflict) satisfying the property of conflict heredity,
i.e. ∀e, e′, e′′ ∈ E : e # e′ ∧ e′ ≤ e′′ ⇒ e # e′′; (iv) the mapping λ : E →
In � Out � {τ} labels events.

Causality represents dependence and conflict the inability of two actions to
occur together. Conflicts that are not hereditary are called immediate; we write
e1 #i e2 iff for any pair (e′

1, e
′
2) with e′

1 ≤ e1, e′
2 ≤ e2, e′

1 # e′
2 implies e′

1 = e1
and e′

2 = e2. Likewise, we consider the immediate causality relation ≤i, where
e ≤i f iff e ≤ f and e ≤ g ≤ f implies e = g or g = f . In figures, events are
represented by squares, immediate causality by arrows and immediate conflict
by dashed lines. The sets of inputs, outputs and internal events are denoted
respectively by EIn � {e ∈ E | λ(e) ∈ In}, EOut � {e ∈ E | λ(e) ∈ Out} and
Eτ � {e ∈ E | λ(e) = τ}. Events that are neither related by causality nor by
conflict are called concurrent, i.e. e co e′ ⇔ ¬(e ≤ e′) ∧ ¬(e # e′) ∧ ¬(e′ < e).

An event structure derived from the unfolding of a Petri net is equipped
with a function ϕ : E → T that maps events back to the net, i.e. event e is an
occurrence of transition t iff ϕ(e) = t.

Example 2 (Unfoldings). Fig. 2 (right) shows an initial part of the unfolding of
the net on the left, where the labeling is given as a table. Events represent dif-
ferent instances of the transitions, indicated by ϕ(e) in the table. The unfolding
shows that both calls can be made concurrently, i.e. e1 co e2 with λ(e1) =?call1
and λ(e2) =?call2, but they are served sequentially, for example e3 ≤ e8 with
λ(e3) =!open at2 and λ(e8) =!open at1.

In an event structure, the “state” of the system is represented by the events
that have occurred so far. As causality represents precedence, such a computation
must be causally closed. In addition, the computation must be conflict-free.

Definition 2. A configuration of E = (E,≤,#, λ) is a set C ⊆ E such that: (i)
C is causally closed, i.e. e ∈ C implies 〈e〉 ⊆ C; and (ii) C is conflict-free, i.e.
e ∈ C and e # e′ imply e′ �∈ C. The set of configurations of E is denoted C(E).

For instance, C1 = {e1, e2, e3} is a configuration, but {e1, e2, e3, e4} is not as
e3 conflicts with e4. W.r.t. the original Petri net, a finite configuration represents
the set of transitions that fire in some finite execution. Let Mark(C) denote the
marking that arises from such a firing sequence, e.g. Mark(C1) = {p2, p3, p5}.

If E does not contain any events labelled by τ , we call E deterministic when its
configurations can be uniquely determined from its action labels, i.e. if C ∈ C(E)
and C � {e1}, C � {e2} ∈ C(E), then λ(e1) = λ(e2) implies e1 = e2. We extend

24 K. Athanasiou et al.

this to the case where E does include τ -labelled events: in that case, E is called
deterministic if for all C,C1, C2 ∈ C(E) with C1, C2 ⊇ C, if e1 resp. e2 are the
only non-τ -labelled events in C1 \ C resp. C2 \ C, then λ(e1) = λ(e2) implies
e1 = e2.

2.2 Event Structures and Coverage Criteria

In general, the unfolding of a Petri net is infinite if the net contains a cycle
of reachable markings. However, for many purposes, it suffices to study only a
finite initial portion (a prefix) of the unfolding. With respect to testing, we are
interested in finding a prefix that covers all behaviours relevant for a certain
coverage criterion or test purpose. This relation was explored in [21], which
proposes different criteria for truncating an unfolding w.r.t. certain coverage
criteria. While the topic of coverage is somewhat orthogonal to the subject of
this paper, we recall some well-known criteria:

– all-states coverage, i.e. every state (marking) of the specification must be
covered at least once;

– all-transition coverage, i.e. every transition must be covered;
– all-loops coverage, i.e. every cycle is explored at least once.

We mention that the first two of these criteria correspond to the concept of
complete prefixes known from the unfolding literature [10].

Definition 3. A prefix E of the unfolding of a Petri net N is complete if for
every reachable marking M of N there exists a configuration C ∈ C(E) such that:
(1) Mark(C) = M (i.e. M is represented in E), and (2) for every transition t
enabled in M there exists C � {e} ∈ C(E) such that ϕ(e) = t.

A prefix satisfying (1) but not necessarily (2) is also called marking-complete.
For instance, the unfolding prefix in Fig. 2 (right) is complete; a prefix containing
only events e1 and e2 would be marking-complete.

A marking-complete prefix assures all-states coverage, while a complete prefix
additionally assures all-transitions coverage. A truncation method for all-loops
coverage was developed in [21].

2.3 Test Cases

A test case is a specification of the tester’s behavior during an experiment carried
out on the system under test. A test suite is a set of test cases. During the exper-
iment, the tester serves as an “environment” of the implementation. The tester
controls the input actions and observes the output actions but does not control
the latter. While the inputs made by the tester may depend on the previously
observed outputs, the next input should always be uniquely determined, i.e. the
tester must not have a choice between different inputs. Similarly, test cases do
not contain choices between outputs and inputs, otherwise the implementation
may produce an output without allowing the tester to propose the input. This

Test Case Generation for Concurrent Systems Using Event Structures 25

e1?i1

e2!o1

e4 !o2e3!o2

e5 !o3

T1 e1?i1

e2!o1

e4 ?i3e3?i2

e5 !o2

T2 e1?i1

e2!o1

e4 !o3e3!o2

e5 ?i2

T3

Fig. 3. Event structures as global test cases

property is called controllability [22]. These requirements also imply that the
test case is required to be deterministic. Finally, we require the experiment to
terminate, therefore the test case should be finite.

In the ioco theory, test cases are modeled by labeled transition systems with
some structural assumptions [6]: (i) they have an acyclic and finite structure;
(ii) they are deterministic; (iii) they contain only observable actions; (iv) there
are no choices concerning inputs; and (v) they are output-complete (in every
state of the test case where an output is enabled, the test case must handle all
the possible outputs). We refer to such objects as sequential test cases.

For the co-ioco theory, designed to handle concurrent and distributed sys-
tems, [21] proposed a different type of test case, called global test case. Here, the
tester has control over all components in the system and can observe them all.
A global test case is represented by a finite, deterministic event structure; thus,
inputs and outputs in different components may happen in parallel. In addi-
tion, immediate conflict between an input and any other event is forbidden. In
contrast to ioco, we shall also allow for silent events in the specification, since
this facilitates the work of the system designer. However, these silent events
are irrelevant for conducting a test and are not permitted in global test cases;
see also Section 3.2. Finally, since the test execution is not modeled by parallel
composition1 as in the case of ioco, we drop the output-complete assumption.

It is worth to notice that in practice, such global test cases are not meant to
be actually executed globally. They would rather be projected onto the different
processes of the distributed system to be executed locally; such local execution
can be formalized as in the ioco case. However, a naive projection does not
preserve information about concurrency; in order to make the observation of
concurrency possible, further machinery is needed. An approach based on vector
clocks has been proposed in [23].

Definition 4. A global test case is a finite, deterministic event structure T =
(E,≤,#, λ) such that (i) all events are labelled by inputs or outputs, and (ii)
(EIn × E) ∩ #i= ∅.

Example 3 (Global test cases). Fig. 3 presents three event structures. T1 is
nondeterministic: from {e1, e2} it is possible to perform !o2 and reach both

1 See [21] for details of the test execution in the concurrent setting.

26 K. Athanasiou et al.

{e1, e2, e3} or {e1, e2, e4}; T2 has immediate conflict between actions ?i2 and ?i3.
Thus neither T1 nor T2 is a global test case. However T3 is finite, deterministic,
and without inputs in immediate conflict, i.e. it is a global test case.

In a global test case, events are allowed to happen in parallel. With respect
to sequential test cases, this has two advantages: both the size and the number
of test cases can be exponentially smaller than when concurrency is represented
by interleavings. First, suppose that several outputs can happen concurrently.
Then, a sequential test case must consider all their orderings, meaning that its
size can be exponentially larger than the size of the corresponding global test
case. Secondly, suppose that several inputs can happen concurrently. In ioco
theory, concurrency between inputs is interpreted as a nondeterministic choice
between the possible interleavings, a choice that needs to be solved to avoid
uncontrollability. Thus, an ioco-based test suite may require an exponentially
larger number of test cases than in co-ioco to cover the same specification.

Example 4 (Global vs. sequential test cases). Consider a process calculus nota-
tion where “‖” is parallel composition, “;” sequentialization and “+” choices.
For a specification (i1; o1 ‖ i2; o2) (which is deterministic and has no choices),
the test suite T S1 = {i1; o1 ‖ i2; o2} contains one single test case to cover all
the behaviors. By contrast, if interleaving semantics is used, then the test suite
T S2 obtained by the ioco algorithms contains four sequential test cases:

T S2 =

⎧
⎪⎪⎨

⎪⎪⎩

?i1; !o1; ?i2; !o2
?i2; !o2; ?i1; !o1

?i1; ?i2; (!o1; !o2+!o2; !o1)
?i2; ?i1; (!o1; !o2+!o2; !o1)

⎫
⎪⎪⎬

⎪⎪⎭

3 Constructing Global Test Cases

In this section, we present a new methodology of generating test cases for
co-ioco-conformance that offers two advantages over the methods previously
presented in [16]: (i) it is more efficient in practice (it avoids enumerating lin-
earizations of the causality relation); and (ii) it avoids generating the same test
case several times.

We recall that model-based testing consists of several steps: in the first step,
one obtains a representation of the behaviours that are relevant w.r.t. a given cov-
erage criterion. In the case of co-ioco, this representation is an event structure
E , more precisely an unfolding prefix of the Petri net representing the specifica-
tion. In a second step, which is the subject of this section, one uses E to obtain
a suite of test cases. Since the choice of a coverage criterion is orthogonal to our
subject, we henceforth assume that E is given. Our task then is to extract all
global test cases from E . We make the technical assumption that E is determin-
istic; note that analogous assumptions about the complete test graph are made
in ioco settings.

A first algorithm for this purpose was presented in [16]. The algorithm takes
as an input a linearization L of the causality relation and adds events to the

Test Case Generation for Concurrent Systems Using Event Structures 27

e2

?from4-to2

e1?from4-to1 e3 ?from4-to3

e4!open4
e5

!open4

e6 !open4

L1 = e1 · e2 · e3 · e4 · e5 · e6

L2 = e1 · e3 · e2 · e4 · e5 · e6

L3 = e2 · e1 · e3 · e4 · e5 · e6

L4 = e2 · e3 · e1 · e4 · e5 · e6

L5 = e3 · e1 · e2 · e4 · e5 · e6

L6 = e3 · e2 · e1 · e4 · e5 · e6

Fig. 4. A first approach for test case generation

test case following the order of L whenever they do not introduce controllability
problems. To obtain different test cases, the algorithm needs to be run with
different linearizations. Even if using these linearizations seems to reduce the
advantages of using true concurrency models, this method is only exponential
on the number of immediate conflicts between inputs, which is usually very small
compared with the number of all possible interleavings. However this method still
has a drawback: it generates several times the same test case whenever several
inputs are pairwise in immediate conflict.

Example 5 (A first approach for test case generation). Consider the event struc-
ture of Fig. 4 which represents the controller of an elevator in the 4th floor. When
calling the elevator, the user indicates which floor he wants to reach. Whatever
his choice, eventually the elevator arrives at the 4th floor and opens its door.
According to [16], linearizations L1 - L6 are needed to construct a test suite cov-
ering the specification. If events are added one by one to the test case following
these linearizations whenever they do not introduce controllability problems, L1

and L2 construct the same test case since once e1 is added, neither e2 nor e3
(nor their futures) are added. This problem comes from the fact that the conflict
relation consider pairs of events, but once an event is selected, the order of every
other event which is in immediate conflict with it becomes irrelevant.

3.1 Encoding Test Cases by SAT

In order to solve controllability problems and avoid constructing the same test
case several times as mentioned in Example 5, we propose a new, non-redundant
characterization of global test cases. This characterization can be encoded in
propositional logic, hence we will be able to employ a SAT solver to obtain the
global test cases. Given a finite event structure, we use a SAT variable ϕe for
each event e and construct a formula whose satisfying assignments correspond
to global test cases. A solution assigning 1 to variable ϕe means that event e
belongs to the test case, while assignment 0 means that it does not.

As test cases need to preserve causality from the specification, whenever the
condition of an event is true, the conditions of its immediate causal predecessors
(and, by transitivity, all indirect precedessors) should also be true:

∀e, f ∈ E :
∧

f≤ie

ϕe ⇒ ϕf (1)

28 K. Athanasiou et al.

In addition, for each pair of immediate conflicts involving an input, at most
one of them belongs to the test case (remember that immediate conflict between
outputs is accepted). This is encoded as:

∀e ∈ E, f ∈ EIn :
∧

f#ie

¬ϕe ∨ ¬ϕf (2)

We intend the test suite to cover the whole prefix, therefore the test cases
should be maximal in the sense that adding any event should violate (1) or (2).
An event of the prefix does not belong to the test case only if (i) neither does one
of its immediate predecessors, or (ii) it is in immediate conflict with an input of
the test case. We encoded this by the SAT formula

∀e, f ∈ E, g ∈ EIn : ¬ϕe ⇒
(∨

f≤ie

¬ϕf ∨
∨

g#ie

ϕg

)
(3)

Global test cases are encoded by the conjunction of (1), (2) and (3).

Example 6 (Avoiding redundancy by the SAT encoding). Consider the event struc-
ture of Fig. 4. The SAT formula of this event structure is

AMO(ϕe1 , ϕe2 , ϕe3)∧(ϕe1 ∨ϕe2 ∨ϕe3)∧(ϕe1 ⇔ ϕe4)∧(ϕe2 ⇔ ϕe5)∧(ϕe3 ⇔ ϕe6)

where AMO(x1, . . . , xn) is satisfied iff at most one of x1, . . . , xn is satisfied. The
formula has three solutions representing the test cases e1; e4, e2; e5 and e3; e6
which cover the whole specification and avoid the redundancy seen in Example 5.

3.2 Removing Silent Events

It is natural for a system specification to include silent events, e.g. to express that
two components in the system synchronize without producing an output observ-
able by the tester. In this case, such a silent event also forms part of E , and the
test cases identified by the formula in Section 3.1 are not yet guaranteed to sat-
isfy condition (i) of Definition 4. In this section we show how to remove internal
events from E while preserving the causality and conflict relations for the remain-
ing events.

The data structure that we use to represent an event structure does not keep
explicit information of the whole causality and conflict relation, but only infor-
mation about the immediate relations. We associate each event e with the follow-
ing sets: Pe and Se consisting of the immediate predecessors and successors of e
respectively, and Ce consisting of events e′ such that e #i e′. Algorithm 1 updates
the sets Pe and Se so that the causality relation between the remaining events is
preserved (lines 2–5). Also, it propagates the immediate conflict relation of the
silent event to all its immediate successors (line 8). Function NotInConflict is
responsible for checking whether two events are already in (not necessarily imme-
diate) conflict.

Test Case Generation for Concurrent Systems Using Event Structures 29

Algorithm 1. Removal of Silent Events
1: for each e in Eτ do
2: for each p in Pe do
3: Sp := Sp ∪ Se \ {e}
4: for each s in Se do
5: Ps := Ps ∪ Pe \ {e}
6: for each c in Ce do
7: if NotInConflict(s, c) then
8: Cs := Cs ∪ {c}; Cc := Cc ∪ {s}
9: for each c in Ce do
10: Cc := Cc \ {e}
11: E := E \ {e}

The non-immediate causality and conflict relations are not stored per se but
are computed from the sets Se, Pe and Ce. For any pair of events ei, ej ∈ E, the
relation ei ≤ ej can be computed starting from Si and recursively traversing its
successors until ej is found, meaning that there is a path from ei to ej with arcs
in

⋃{Sk | ei ≤ ek }. The relation ei # ej can be computed by checking that there
exist events ek ∈ Cl and el ∈ Ck, i.e. ek #i el, such that ek ≤ ei and el ≤ ej . We
show that both relations are preserved after removing the silent events of E .

Proposition 1. Let E be an event structure and E ′ be the resulting event structure
after applying Algorithm 1. For every pair of observable events ei, ej, we have ei ≤E
ej iff ei ≤E′ ej.

Proof. Suppose ei ≤E ej , then there exists a path from ei to ej in E . Suppose that
Algorithm 1 removes an event e in the path. Since line 3 sets Sp := Sp∪Se\{e}, the
path still exists after removing e: any event reachable from e can be reached from
p now. This invariant holds after removing every internal event and therefore the
result holds. The counterpart is immediate since causalities are not added, only
some immediate ones are removed. ��

Proposition 2. Let E be an event structure and E ′ be the resulting event structure
after applying Algorithm 1. For every pair of observable events ei, ej, we have ei #E
ej iff ei #E′ ej.

Proof. Whenever an immediate conflict e #i e′ is removed (while removing event
e), for every successor s of e, either s and e′ are already in conflict (this is checked
by NotInConflict), or the new direct conflict s #i e′ is added (line 8). Since
conflict is inherited w.r.t causality, all the conflicts remain represented. The coun-
terpart is immediate since immediate conflicts are only added whenever the events
were not already in conflict. ��

Algorithm 1 does not take in account whether two events are already causally
related when it updates Se and Pe (lines 2–5), potentially leading to redundant

30 K. Athanasiou et al.

e1 e2

e4 e3

e6 e5

e8 e7

e11

e9

e10
e15

.

e1 e2

e4

e6

e5

e8

e7

e11

e9

e10
e15

. . .

. . .

. . .

e1 e2

e7e11

.

Fig. 5. Removing silent events

(non immediate) relations getting stored. Such redundant relations can be elimi-
nated: we temporarily remove ei and ej from Pj and Si respectively. If ej is still
reachable from ei, then the information was redundant and can be permanently
removed.

Example 7 (Removing Silent Events). Fig. 5 shows how Algorithm 1 works: the
structure in the middle is obtained by removing event e3 from the original prefix
while the final result of the algorithm is shown on the right. In the original event
structure (left) we have S1 = P5 = C4 = {e3} and P3 = {e1}, S3 = {e5}, C3 =
{e4}. The structure in the middle is obtained as follows: line 3 updates S1 to {e5}
and line 5 sets P5 = {e1}; since e5 and e4 are not in conflict yet, line 8 adds e4 to
C5 and e5 to C4; finally e3 is removed from C4 (line 10).

Consider that some events are removed from the prefix in the middle in the fol-
lowing order: e3, e5, e10, e9. Whenever e5 is removed, its immediate conflict with
e4 is propagated to both e7 and e9, however, when e9 is eliminated, the conflict
does not need to be propagated since e4 and e15 are already in (non-immediate)
conflict: we have e4 #i e7 and e7 ≤ e15. Such situations are handled by the Not-
InConflict function.

4 Experiments

We implemented a prototype tool called Tours (Testing On Unfolded Reactive
Systems) for co-ioco-based test-case generation. Tours is based on the Mole
unfolding tool [19] with the following main additions:

– variable cut-off criteria, including all-loops coverage by the criterion of [21];
– implementation of the algorithms presented in Section 3;
– computation of the immediate conflict and immediate predecessor relation.

Tours computes a first over-approximation of ≤i by inserting all pairs (e, f) such
that f consumes a token produced by e. Redundant pairs are then eliminated in

Test Case Generation for Concurrent Systems Using Event Structures 31

the same way as in Section 3.2. The immediate-conflict relation #i is obtained by
considering all event pairs (e, f) that compete directly for a token, and testing
whether there exists a configuration that can be extended with e and with f , but
not with both. The latter is a simple variant of a subroutine frequently used by
Mole. Tours is publicly available under

http://www.lsv.ens-cachan.fr/∼ponce/tours

The rest of this section presents experimental results based on two families of
examples: a parametric version of the elevator, where we also consider internal
behaviors, and an example (called Diamonds) showing how our approach deals
with immediate conflict between inputs.

4.1 The Examples

The Elevator Example: we extend the elevator example of Section 2 for several
floors and elevators, and we also model its internal behavior. The example is mod-
eled as a network of automata synchronizing on shared actions which can be equiv-
alently captured by a Petri net; we obtain a finite prefix of its unfolding and con-
struct test cases with the SAT encoding using the Tours prototype.

The system consists of the following components, represented by the automata
of Fig. 6 for two floors and one elevator:

Floors: each floor consists of a button that can be pressed to call an elevator. The
floor is in an idle state where the elevator can be called (?calli), and afterwards
sends the call to the controllers of every elevator ej (ej-takes-calli) followed
by a synchronization action that the door of elevator ej has been opened at
that floor (ej-opened-at-fi), returning to the idle state. Once the elevator is
called, it cannot be called again until it returns to the idle state since the ?calli
actions are not enabled in the remaining states.

Controllers of elevators: the controller of each elevator ej starts at an idle
state and can take a call from any floor fi. From there the controller can either
move the elevator to the corresponding floor (ej-go-to-fi) or acknowledge that
the elevator is already at that floor (ej-at-fi).

Elevators: each elevator starts at some floor, i.e. state ati. From this state it can
tell its controller that it is already on the floor, or it can move to another floor.
When the elevator is at floor fi, it opens the door (!openj-i) and acknowledges
this action to the corresponding floor.

This system is given as an input to the unfolding algorithm (using the all-loops
criterion). Tours returns a prefix whose observable behavior (after removal of
silent actions) is shown in Fig. 2 (right). This prefix contains no immediate con-
flict between inputs, therefore the SAT encoding has a unique solution: the entire
prefix. Thus, our method generates exactly one test case in this example.

Intuitively, the specification of the elevator is that every call at any floor ought
to be served eventually (i.e., the door opens at that floor) in any correct implemen-
tation; infinite many calls are possible only if infinite many opens happens since

http://www.lsv.ens-cachan.fr/~ponce/tours

32 K. Athanasiou et al.

idle1

called1

waiting1

?call1

e1-takes-call1

e 1
-o

p
en

ed
-a

t-
f 1

floor1

idle2

called2

waiting2

?call2

e1-takes-call2

e
1 -op

en
ed

-a
t-f

2

floor2

idle

e1tc1 e1tc2

e1-takes-call1 e1-takes-call2

e1-go-to-f1 e1-go-to-f2

e1-at-f1 e1-at-f2

controller-elevator1

at1 at2

wait1 wait2

opened1 opened2

e1-go-to-f2

e1-go-to-f1

e1-at-f1 e1-at-f2

!open1-1 !open1-2

e 1
-o

p
en

ed
-a

t-
f 1

e
1 -op

en
ed

-a
t-f

2

elevator1

Fig. 6. Network of automata of the elevator example with one elevator and two floors

the ?calli actions are not allowed at every state. Consider the test case of Fig. 2
(right) and the ?call2 action represented by event e2. This call is followed by an
!open2 action in any maximal configuration. Event e3 corresponds to the scenario
where the call is immediately served; e10 reflects the fact that the elevator can be
called concurrently from another floor (?call1) and that that call can be served
first (e4 ≤ e10); e14 shows that two calls from the first floor (e1 and e6) can be
served before serving the call from the second floor. The latter shows that there
are no priorities between serving different floors; however all the calls are eventu-
ally served. A similar analysis can be made for the other call actions.

The example can easily be parametrized to add floors and elevators. If a new
floor fi is added, in addition to adding a new automaton for the floor with transi-
tions ej-takes-calli for each elevator ej , the existing automata representing eleva-
tors and controllers need to be extended: a new state ejtci is added to the controller
of every elevator ej with transitions

idle
ej-takes-calli−−−−−−−−−→ ejtci ejtci

ej-go-to-fi−−−−−−−→ ejtci ejtci
ej-at-fi−−−−−→ idle

Furthermore, the states ati, waiti and openedi are added to the elevator ej

with transitions

ati
ej-at-fi−−−−−→ waiti waiti

!openj-i−−−−−→ openedi openedi
ej-opened-at-fi−−−−−−−−−−→ ati

and for each floor k < i all the possible movements between them and the new
floor are added, i.e.

atk
ej-go-to-fi−−−−−−−→ ati ati

ej-go-to-fk−−−−−−−→ atk

Test Case Generation for Concurrent Systems Using Event Structures 33

?i1 ?in. . .

Inputs

!o1 !o2

. . .

?i′1 ?i′n. . .

!o′
1 !o′

2

. . .

L
ev
el
s

Comp
. . .

Fig. 7. The diamonds example

If a new elevator is added, two automata (representing the elevator itself and
its controller) are added, and for every floor fi we add the possibility that the new
elevator ej serves its call, i.e. we add transitions

calledi
ej-takes-calli−−−−−−−−−→ waitingi

The Diamonds Example: We present another example (see Fig. 7) that possesses
several global test cases. The example consists on several components where the
user has a number of choices (inputs), after which the system can produce several
outputs. This behavior can be repeated several times depending on the levels of
the components. We run the experiments using different parameters for the com-
ponents, the inputs and the levels as shown in Table 2.

4.2 The Experimental Setup

In order to make a fair comparison of the algorithms presented in this article and
the algorithms of the ioco theory, we need to use the same test selection method.
Available tools such as TGV [6] or JtorX [24] use test purposes rather than a test-
ing criterion. We therefore proceed as follows to compare with ioco: (i) the Petri
net is translated into its reachability graph; (ii) since co-ioco coincides with ioco
in the absence of concurrent events, we apply Tours to the reachability graph.

In the ioco setting, using the all-loops criterion led to test graphs of large size
even for simple examples, making it impractical to compute all the test cases. For
more meaningful comparisons to be possible, we run the experiments using the
original cut-off criterion of Mole which assures all-transitions and all-states cov-
erage.

4.3 Results

Tables 1 and 2 report the number of events in the unfolding prefix obtained by our
method, the number of global test cases (event structures), the number of transi-
tions in an under-approximation2 of the complete test graph and the number of
2 This graph is not output-complete.

34 K. Athanasiou et al.

sequential test cases (labeled transition systems) for the two examples introduced
in the last section. The unfolding tool and the SAT encoding consider internal
events, while the sizes displayed on the prefix and complete test graph columns
only consider observable events.

Table 1. The elevator example results

Floors Elevators Prefix Global Tests Test Graph Sequential Tests

2 1 11 1 95 14

2 2 29 1 3929 ✗SAT

3 1 43 1 2299 ✗SAT

3 2 220 1 3911179 ✗SAT

3 3 1231 1 ✗unf ✗unf

4 1 219 1 ✗unf ✗unf

4 2 1853 1 ✗unf ✗unf

4 3 17033 1 ✗unf ✗unf

Table 2. The diamonds example results

Comp Inputs Levels Prefix Global Tests Test Graph Sequential Tests

2 1 3 19 1 307 98

2 2 3 37 16 613 794

2 3 3 55 49 919 2938

3 1 1 7 1 133 21

3 1 2 13 1 853 125

3 2 2 25 27 1705 13255

We can easily observe the exponential explosion in the number of events when
interleavings are used. In addition we see that irrespectively of how many floors
or elevators are added in the elevator example, the obtained global test case is
always unique since the example does not introduce conflict between input events.
In contrast, the number of sequential test cases increases in the interleaving setting
since concurrency is transformed into conflict. The diamonds example introduces
conflicts between inputs generating several global test cases, however the number
of tests can still be exponentially smaller than in the sequential case.

Test Case Generation for Concurrent Systems Using Event Structures 35

The ✗unf symbol indicates that the unfolding tool was not able to obtain a
finite prefix (complete test graph), while the ✗SAT symbol indicates that the SAT
solver was not able to find solutions (for more than 3 floors and 2 elevators, we were
not able to run the SAT solver with interleaving semantics since the unfolding had
not finished).

The unfolding of the Petri net for 3 floors - 2 elevators example using interleav-
ing semantics (when internal actions are considered) contains 15353982 events,
showing that the unfolding tool can handle very big examples. Since causality is
transitive and conflict is inherited w.r.t causal dependence, the SAT encoding can
be improved by just considering observable events. However immediate causality
and immediate conflict between only observable events need to be computed as
explained in Section 3.2 increasing again the computational time of the method.
We are currently working on the implementation to achieve a better performance
by just considering observable events.

5 Conclusion

This paper shows the advantages of using true-concurrency models to describe
the behavior of test cases in concurrent systems. We have shown how to split a
finite prefix of the specification’s unfolding into a test suite even in the presence
of internal actions. Finally, the results of this article have been implemented in
the prototype tool Tours and run on several examples showing the advantages
of our method compared with traditional ioco test-case generation algorithms.

The obtained global test cases are not meant to be actually executed, they
would rather be projected onto the different processes of the distributed system
to be executed locally. In order to make the observation of concurrency possible,
further machinery is needed [23]. We will study the concretization of the gener-
ated abstract test cases into inputs that can be given to the actual system under
test to allow the automatic execution of test cases and thus completely automate
the testing procedure. A possible approach is to consider labeling actions as a
symbolic representation of the input and output domain and apply SMT for the
concretization.

Future work also includes a tighter integration of the test-case generation part
of Tours with the unfolding component to improve its performance.

References

1. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1–38.
Springer, Heidelberg (2008)

2. Heerink, L., Tretmans, J.: Refusal testing for classes of transition systems with
inputs and outputs. In: Proc. FORTE. IFIP, vol. 107, pp. 23–38 (1997)

36 K. Athanasiou et al.

3. Jéron, T.: Symbolic model-based test selection. Electronic Notes in Theoretical
Computer Science 240, 167–184 (2009)

4. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal Meth-
ods in System Design 34(3), 238–304 (2009)

5. Hierons, R.M., Merayo, M.G., Núñez, M.: Implementation relations for the dis-
tributed test architecture. In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T.
(eds.) TestCom/FATES 2008. LNCS, vol. 5047, pp. 200–215. Springer, Heidelberg
(2008)

6. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. International Journal
on Software Tools for Technology Transfer 7(4), 297–315 (2005)

7. Hennessy, M.: Algebraic theory of processes. MIT Press series in the foundations
of computing. MIT Press (1988)

8. Peleska, J., Siegel, M.: From testing theory to test driver implementation. In:
Gaudel, M.-C., Wing, J.M. (eds.) FME 1996. LNCS, vol. 1051, pp. 538–556.
Springer, Heidelberg (1996)

9. Schneider, S.: Concurrent and Real Time Systems: The CSP Approach, 1st edn.
John Wiley & Sons Inc., New York (1999)

10. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding algo-
rithm. Formal Methods in System Design 20(3), 285–310 (2002)

11. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
A survey. Proceedings of the IEEE 84, 1090–1123 (1996)

12. Jourdan, G., von Bochmann, G.: On testing 1-safe petri nets. In: TASE 2009, Third
IEEE International Symposium on Theoretical Aspects of Software Engineering,
July 29–31, 2009, Tianjin, China, pp. 275–281 (2009)

13. von Bochmann, G., Jourdan, G.: Testing k-safe petri nets. In: Testing of Soft-
wareand Communication Systems, 21st IFIP WG 6.1 International Conference,
TESTCOM 2009 and 9th International Workshop, FATES 2009, November 2–4,
Eindhoven, The Netherlands, pp. 33–48 (2009)

14. Jard, C.: Synthesis of distributed testers from true-concurrency models of reactive
systems. Information & Software Technology 45(12), 805–814 (2003)

15. Ulrich, A., König, H.: Specification-based testing of concurrent systems. In: Proc.
FORTE. IFIP Conference Proceedings, vol. 107, pp. 7–22 (1997)

16. Ponce de León, H., Haar, S., Longuet, D.: Model-based testing for concurrent
systems with labeled event structures. STVR 24(7), 558–590 (2014)

17. Henniger, O.: On test case generation from asynchronously communicating state
machines. In: International Workshop on Testing Communicating Systems. IFIP
Conference Proceedings, pp. 255–271. Springer (1997)

18. Kähkönen, K., Saarikivi, O., Heljanko, K.: Using unfoldings in automated testing of
multithreaded programs. In: IEEE/ACM International Conference on Automated
Software Engineering, ASE 2012, September 3–7, Essen, Germany, pp. 150–159
(2012)

19. Schwoon, S.: The MOLE unfolding tool. http://www.lsv.ens-cachan.fr/∼schwoon/
tools/mole/

20. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part I. Theoretical Computer Science 13, 85–108 (1981)

http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/
http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/

Test Case Generation for Concurrent Systems Using Event Structures 37

21. Ponce de León, H., Haar, S., Longuet, D.: Unfolding-Based test selection for con-
current conformance. In: Yenigün, H., Yilmaz, C., Ulrich, A. (eds.) ICTSS 2013.
LNCS, vol. 8254, pp. 98–113. Springer, Heidelberg (2013)

22. Jéron, T., Morel, P.: Test generation derived from model-checking. In: Halbwachs,
N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 108–121. Springer, Heidelberg
(1999)

23. Ponce-de-León, H., Haar, S., Longuet, D.: Distributed testing of concurrent sys-
tems: vector clocks to the rescue. In: Ciobanu, G., Méry, D. (eds.) ICTAC 2014.
LNCS, vol. 8687, pp. 369–387. Springer, Heidelberg (2014)

24. Belinfante, A.: JTorX: a tool for on-line model-driven test derivation and execution.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 266–270.
Springer, Heidelberg (2010)

Fast Model-Based Fault Localisation
with Test Suites

Geoff Birch1(B), Bernd Fischer2, and Michael R. Poppleton1

1 University of Southampton, Southampton SO17 1BJ, UK
{gb2g10,mrp}@ecs.soton.ac.uk

2 Stellenbosch University, Stellenbosch 7602, Matieland, South Africa
bfischer@cs.sun.ac.za

Abstract. Fault localisation, i.e. the identification of program locations
that cause errors, takes significant effort and cost. We describe a fast
model-based fault localisation algorithm which, given a test suite, uses
symbolic execution methods to fully automatically identify a small subset
of program locations where genuine program repairs exist. Our algorithm
iterates over failing test cases and collects locations where an assignment
change can repair exhibited faulty behaviour. Our main contribution is
an improved search through the test suite, reducing the effort for the
symbolic execution of the models and leading to speed-ups of more than
two orders of magnitude over the previously published implementation
by Griesmayer et al.

We implemented our algorithm for C programs, using the KLEE sym-
bolic execution engine, and demonstrate its effectiveness on the Siemens
TCAS variants. Its performance is in line with recent alternative model-
based fault localisation techniques, but narrows the location set further
without rejecting any genuine repair locations where faults can be fixed
by changing a single assignment.

Keywords: Automated debugging · Fault localisation · Symbolic exe-
cution

1 Introduction

Fault localisation, i.e. the identification of program locations that can cause
erroneous state transitions which eventually lead to observed program failures,
is a critical component of the debugging cycle. Since it puts a significant time [26,
27] and expertise burden [1,34] on programmers, a variety of different automated
fault localisation methods have been proposed [4,6,11,13,14,17,29–31].

We describe a fast model-based fault localisation algorithm which, given a
test suite, uses symbolic execution methods to fully automatically identify a
small subset of program locations within which (under a single fault assump-
tion) a genuine program repair exists. Our main contribution is an improved
search through the test suite that drastically reduces the effort for the symbolic
execution of the models.
c© Springer International Publishing Switzerland 2015
J.C. Blanchette and N. Kosmatov (Eds.): TAP 2015, LNCS 9154, pp. 38–57, 2015.
DOI: 10.1007/978-3-319-21215-9 3

Fast Model-Based Fault Localisation with Test Suites 39

Model-based fault localisation [28] (sometimes also called model-based
debugging [7]) is the application of model-based diagnosis methods [18] to pro-
grams. It involves three main steps: (i) the construction of a logical model from
the original program; (ii) the symbolic analysis of this model; and (iii) map-
ping any faults found in the model back to program locations. One approach
to model-based fault localisation is to transform the program so that a sym-
bolic program verification tool can be reused for all three steps. For example,
Griesmayer [11] describes a method in which the model (in form of a logical
satisfiability problem) is derived by running the CBMC model checker over the
transformed program, and analysed by means of a SAT solver. The transforma-
tion “inverts” the program’s specification (cf. section 2, producing failures where
the original program would complete and blocking paths where the original pro-
gram would fail), and replaces each assignment by conditional assignment with
either the original value or an unconstrained symbolic value, depending on the
value of a toggle variable. The actual localisation can then be reduced to extract-
ing the possible values of the toggle variable from the satisfying assignments that
the SAT solver returns.

However, Griesmayer’s technique requires detailed specifications to achieve
acceptable precision—the weaker the specification, the more program locations
are flagged as potential faults. Unfortunately, such detailed specifications rarely
exist in practice. What does commonly exist, though, are extensive unit test
suites, in particular in the context of modern test-driven design approaches.
Griesmayer has shown that his technique can be extended to work with (failing)
test cases, but the published results [11] are prohibitively slow. The bad perfor-
mance is caused by Griesmayer’s näıve search algorithm, which simply iterates
over all test cases and runs an unoptimized “full width” search over all possible
locations for each test case (cf. section 2 for more details). However, the more
locations the solver needs to explore the longer each analysis takes. Moreover,
the algorithm contains no optimizations to deal with test cases that generate
intractable problems for the solver. Approximating model-based fault localisa-
tion approaches for test suites, such as Jose and Majumdar [17] (cf. section 6),
can run faster but can also miss a true fault location when evaluating a test case.

Our approach addresses these shortcomings, which leads to typical speed-ups
of more than two orders of magnitude compared to Griesmayer’s results, and
yields a performance in line with current approximation techniques such as [17].
It still iterates over the failing test cases and runs a Griesmayer-style localisation
task for each individual test case, but maintains a whitelist of still viable fault
locations which is narrowed down as the localisation tasks return. The algorithm
manages individual localisation tasks via a task pool to take advantage of the
underlying multi-core hardware, and dispatches the tasks in batches to percolate
improvements in whitelist narrowing generationally. Tasks that fail to complete
in a dynamically adjusted time are terminated and if the whitelist is smaller,
resubmitted at the tail of the iteration, where they may become tractable. This
early termination/resubmission increases the speed with which we can process
larger test suites, without harming the localisation performance, as they typically

40 G. Birch et al.

have more redundant (for localisation purposes) test cases. It also prevents a loss
of completeness in the results that model-based approaches can provide, within
the limits of the symbolic analyser’s accuracy.

Our approach is compatible with the modern test-driven design approach of
specification by unit test suite. It inherits the typical strength of dynamic analy-
sis, in that no prior knowledge of the program under test is required beyond test
cases being flagged as passing or failing. We implemented our algorithm in a tool
with the use of ESBMC [9] or KLEE [3] symbolic analysers, and thus Z3 [23] as
underlying solver, and with PyCParser [2] handling the program transformations
to encode the specification and other model constraints. The algorithm inherits
the underlying behaviour, in respect of method calls, unrolling loops, and so on,
of the symbolic analyser used. We demonstrate this algorithm on the defective
TCAS program variants from the Siemens [15] repository.

2 Model-Based Fault Localisation

Model-based fault localisation techniques are derived from the extension of
model-based diagnosis [18,28], used to reason about digital circuits, into the
software domain.

A common process for model-based fault localisation uses static analysis on
a model that is generated from a transformed input program using the language
specifications. This transformation is provided by a checker tool that converts
the program code into one or more logic expressions which analyses the symbolic
execution of the system symbolically. A solver is invoked that can evaluate the
logic expressions. This returns constraint satisfiability results for the expressions.

This symbolic analysis may be accelerated with the use of built-in theories
to compactly reason over the logic expression [25]. The symbolic analyser uses
these results to generate traces of specification violating execution paths (coun-
terexamples), if any exist. Some methods operate directly on the satisfiability
result for the logic expression, for example exploring common omissions when
using a maximum satisfiability solver [17]. Programs can be modified, e.g. aug-
mented with additional predicates, to generate more information from the data
in the failing traces.

Griesmayer [11] described a technique where a specified input C program is
reconfigured to use an “inverted” version of the specification. This inversion is
applied to the C source code before the model is generated by the CBMC model
checker, which then analyses the model using a SAT solver. Each potentially
failing assert-statement is replaced by blocking assume-statement with the
same argument. Failing assert(0)-statements are inserted before the program’s
terminal nodes to force the generation of new counterexamples. The purpose of
this inversion is to provide the inverted output. Hence, traces that originally
returned counterexamples due to specification failure do no longer, and traces
that satisfy the specification now generate counterexamples. The exploration
becomes one searching for a trace to the exit point that satisfies the initial
specifications. Thus, in the simple inverted program an exiting trace will not be
found for a failing test case.

Fast Model-Based Fault Localisation with Test Suites 41

To enable the search for potential fault locations on this now inverted pro-
gram, an unsigned int global toggle variable, __toggle, is added that allows
any one location to run alternative code. In the program body this toggle is
made symbolic and constrained to the range of locations being explored (in our
example 39 locations). In a KLEE-style API this would be achieved by the calls:

klee_make_symbolic(&__toggle); klee_assume(__toggle < 39);

Assignments in the source program are modified to become conditional assign-
ments that flip to an unconstrained symbolic value, __sym, when toggled. Hence,
if we assume that var = a + b; is the third assignment in the program, the
translation yields:

var = ((__toggle == 2)? __sym : a + b);

The generated counterexamples from this new model provide the toggle values
that identify candidate assignment locations as sites of possible repair. The tech-
nique described by Griesmayer requires that the input programs have detailed
specifications. In practice, these typically do not exist. Griesmayer demon-
strated [11] an extension to this technique using a test suite as specification.
A failing test case is encoded into the input program and then inverted. The
results for each toggle value therefore identify candidate repairs for that failing
test case. Any assignment that was identified by all failing test cases becomes a
location flagged as being the site of a potential repair. The localisation process
effectively generates a look-up table at each flagged location that will repair all
failing test cases. For each failing test case, the value of the alternative assign-
ments, __sym, can be different and will be reported for each location flagged by
this process. The flagging process means the chosen __sym value leads to the
end of the program without failure of the original specification. All passing test
cases define their own correct values for the assignment. So this look-up table is
a genuine repair for the full test suite.

This approach, where each test case is treated as an independent specification
and all results are collected independently, results in prohibitively slow execution
time. Using test suites demonstrates a strength of dynamic analysis: no prior
knowledge of the program beyond flagged test cases as correct or incorrect is
required. But the published results indicated that the run-time cost was too high
using the common localisation performance measure of the Siemens TCAS [15]
variants.

3 The Algorithm

We propose a fast algorithm which optimises the search of the test suite and
viable repair locations to bring this process into line with current performance
expectations and without compromising the completeness of the results this
technique allows. Each test case in the suite comprises an input string, which
becomes the argument vector, and a desired output string from an oracle version
of the program variant. We discuss this algorithm design with respect to the
C programming language but it can be applied to any language with suitable
support for symbolic analysers.

42 G. Birch et al.

We transform an input C program using an extended Griesmayer inversion
process (see subsection 3.1). This is handed to a worker task (see subsection 3.2)
with a whitelist of locations to search and a single failing test case. The returned
set from this worker is a narrowed whitelist of locations that the test case flagged
as being a potential repair. We manage this process using the main tool loop
(see subsection 3.3). In the algorithms below we denote C programs as C and
(after transformation) D and E. Individual failing test cases are f from the non-
empty queue F . The refining whitelist of locations is L, which is renamed to K
during narrowing inside Algorithm 1. In the Process Manager algorithm, P is
the worker pool manager.

We provide two main contributions with this algorithm design. First, the
reduction in symbolic execution work via the use of a narrowing process of
whitelisting locations searched. Second, the management of cases where the time
to return a narrowed whitelist is significantly beyond the mean time for a failing
test case. This later case can be due to either an intractable model representation
or poor narrowing compared to other unexplored failing test cases. This man-
agement is designed to provide a more consistent completion time over a range
of different localisation searches. This aims to avoid slowdown from the highest
cost branches of the search rather than focussing on providing an optimal search
when all branches are cheap to search.

3.1 Program Transformation into Model

The program under analysis is transformed in two stages. First, an initial
generic transformation ApplyGenericTransforms is applied once, as described in
subsection 3.3. This includes the Griesmayer inversion, as outlined in section 2,
and some accommodation of test case input and output data as inline speci-
fication. In the second stage ApplySpecificTransforms is applied, as described
in subsection 3.2, for each subsequent test case processed. This implements any
whitelist narrowing possible at this iteration via the toggle; for ESBMC it also
includes some test-case-specific input data encoding into the program text.

The previously discussed Griesmayer inversion is always applied during the
generic stage, ApplyGenericTransforms. Also at this stage, we automatically
encode the test case specification into the input program, avoiding the need to
manually hard-code the inputs into the program. The input and output of C
programs are defined by the passed program arguments, argv, and the standard
inputs and standard outputs. To encode the desired output we widen argv to
also accept the desired output as an extra string value. This can be compared
in the transformed program against modified stdout commands, replacing calls
to e.g. printf with comparisons that increment a pointer to the desired output
when it matches the previous output of the printf. Assertions inserted before
the program’s terminal nodes, which confirm the pointer to the desired output
has reached the end of the string, will complete this encoding of the specification.

An optimisation of this is used for simple programs, such as TCAS, that
only require a single value to be checked for output specification compliance.
Rather than encode the output as a string that is walked, it can be handled in

Fast Model-Based Fault Localisation with Test Suites 43

the same way most input variables are. A call to printf("%d", val); can be
replaced with assert(val == atoi(argv[X])); for X being the last value of
the now-widened input vector.

Program transformations can extend the number of assignments visible for
repair, for example by treating any return statement that returns more than a
single variable as an assignment to a temporary variable that is then returned.
If returns are always considered to be implicit assignments then localisation is
expanded from assignment locations to also include all return statements, as our
tool does. return (y * z); becomes return ((__toggle == 3)? __sym :

y * z); for symbolic value __sym at the fourth assignment in the program.
During the specific stage, i.e. ApplySpecificTransforms, the whitelist of loca-

tions must be applied to narrow the range of toggles being searched. We do
this by adding assumptions of the form klee_assume(__toggle != 11); to
the program body for any values to be omitted from this search (blocking the
twelfth assignment in this example).

For ESBMC there is no way to populate argv in the program simulation,
so the argv values need to be hard-coded into the transformed program before
handing to the symbolic analyser. As this is linked to the specific test case, this
can only be done at the specific stage. KLEE provides a POSIX implementation
for program I/O during simulation. This allows the test case input to be fed
into the standard argv parameters and removes the requirement for this specific
stage transform.

3.2 The Test Case Search Algorithm

Algorithm 1 outlines a single task, which defaults to being deployed to a single
core via the pool manager discussed in subsection 3.3. When AddTask is called
on lines 5 and 20 of Algorithm 2 by the manager then an instance of this single
unit of work is queued into the worker pool. These tasks run independently
until they return their narrowed list of locations, K, on line 7 or are ejected by
the pool manager. Each task takes an input program which has already been
transformed by the generic stage, a single failing test case, and a whitelist of
locations that are indicated by their associated toggle values.

Input: Program D; Failing Test Case f ; Location Set L
Output: Fault Location Set K
1: E = ApplySpecificTransforms(D, L, f);
2: CounterExamples = CallModelCheckerOnInput(E, f)
3: K = [];
4: for c in CounterExamples do
5: if c.UnconditionalAssertionFailure() then
6: K.Add(ExtractLocationValue(c));

7: return K;

Algorithm 1. Test Case Search Worker Algorithm

44 G. Birch et al.

ApplySpecificTransforms is discussed in subsection 3.1. The final transformed
program is generated, ready for submission to the symbolic analyser. The toggle
values are restricted to the whitelist and, in the case of ESBMC, the test case is
hard-coded into the source code.

CallModelCheckerOnInput passes the transformed program to the model
checker. For ESBMC the failing test case has been encoded into the source code
(in ApplySpecificTransforms) but KLEE still requires this information. KLEE,
using the POSIX runtime environment model, is passed the argument vector
(extended to contain the desired output) during the simulation of the program
execution.

The call to CallModelCheckerOnInput returns the counterexamples for this
failing test case, which are a set of traces that result in the raising of specification
failure when simulating the execution of the transformed program. The traces
are parsed into a format that holds the failure type and the associated assign-
ment to __toggle and __sym. In the case of ESMBC, this process is iterative
as only one counterexample is generated by each instantiation of the symbolic
analyser. For ESBMC, a loop that modifies the input program to further nar-
row the toggle values explored allows the symbolic analyser to run repeatedly
until no new toggle value is generated. This, executed inside the call to CallMod-
elCheckerOnInput in Algorithm 1, generates a full list of toggle values associated
with repairs for this failing test case. KLEE does this loop automatically within
a single call.

On lines 3 – 6 the old whitelist is replaced with the new list of toggle values
returned by the counterexamples, generated by the symbolic analyser execution.
This narrowing checks the counterexample type to ensure the assertion raised is
the assert(0); added before the program’s terminal nodes.

The time it takes to process this task is not predictable with any degree of
certainty. The core operation of calling the solver inside the symbolic analyser
is a logical satisfiability problem, which is NP complete [8]. This type of SAT
problem has been shown [5] to not provide predictable tractability. This unpre-
dictability of the time it takes to process each logic expression in the symbolic
analyser is the core issue that our algorithm must cope with. Each counterexam-
ple generated has a corresponding solver stage and there are an unknown number
of counterexamples multiplying this unknown per-instantiation processing time.

Each counterexample generated increases processing time and so a signif-
icantly narrowed whitelist, which blocks off many counterexamples, is highly
beneficial. We manage uncertainty via the pool manager and ensure that nar-
rowing results are percolated to new tasks as soon as possible.

3.3 The Pool Manager Algorithm

The main tool loop, which manages the process pool and task scheduling, gen-
erates an output set of viable repair locations (lines 21 and 16 of Algorithm 2).
The input is an untransformed C program and a non-empty queue of failing test
cases, each of which comprises an input string and a correct output string. To
provide our evaluation of this tool with generalization validity, the queue must

Fast Model-Based Fault Localisation with Test Suites 45

Input: Program C; Failing Test Case Queue F �= []
Output: Fault Location Set L
1: (D, L) = ApplyGenericTransforms(C);
2: V isibleCores = Min(Len(F), OS.V isibleCores);
3: P = EstablishWorkerPool(V isibleCores);
4: for 1 .. V isibleCores do
5: P .AddTask(D, Dequeue(F), L);

6: WithoutImprovement = 0;
7: while P .HasOpenWorkers() do
8: Sleep(TickT imerMS);
9: if P .HasCompletedTasks() then

10: Sleep(0.25 * P .GetFastestCompletedTaskTime());
11: for w in P .GetCompletedTasks() do
12: Lnew = w.Locations ∩ L;
13: if Lnew == L then WithoutImprovement++;
14: else WithoutImprovement = 0;

15: L = Lnew;

16: if WithoutImprovement > 15 then return L;

17: F .Enqueue(P .ReturnTCsForIncompleteTasks());
18: for w in P .GetAllTasks(); do
19: P .RemoveTask(w);
20: if Len(F) > 0 then P .AddTask(D, Dequeue(F), L);

21: return L;

Algorithm 2. Pool Manager Algorithm

be an unordered list. This is because the optimised search varies in performance
based on the test case order, as discussed in section 4.

The tool applies the generic transform stage discussed in subsection 3.1 dur-
ing line 1’s ApplyGenericTransforms. This parsing of the source file, as it walks
all the fault locations being searched to apply the assignment transform, is also
used to generate the initial whitelist of all toggle values that correlate to a local-
isation.

A worker pool is established on line 3, which provides the interaction point for
all calls involving workers and the tasks they are executing or schedule for future
execution. The tool queries the operating system to establish the multiprocessing
pool is as wide as the exposed CPU core count, unless there are fewer failing
test cases than available cores (line 2). The use of the worker pool is to avoid
a single intractable task from stalling the entire search. This is most efficiently
achieved on modern multi-core consumer hardware by dedicating one core to
each worker. A similar pool could be managed on a single-core processor using
the OS scheduler to manage the tasks, with the added overhead of regularly
swapping the current process.

Each worker will process an independent task (i.e. Algorithm 1) which takes
the transformed program from line 1, a failing test case, and the current whitelist.
This will eventually deplete the test case queue. Lines 4 and 5 push an initial

46 G. Birch et al.

batch of tasks to the pool system, which will use the un-narrowed whitelist cre-
ated on line 1. Batching tasks with a multiprocessing implementation increases
throughput, even with an algorithm dependent on the pruning of the search
space for efficiency. Critically, this prevents one slow task, whose individual con-
tribution is not required for the search, from completely stalling the full search.
A typical four-core CPU executing highly variable return-time tasks with prob-
ability p intractable outliers in the task queue will only stall the entire process
when all cores are filled with intractable outliers at once. This probability of p4

is a significant improvement, especially for this process where stalled tasks may
become tractable later due to whitelist narrowing of the search space.

The main tool loop starts on line 7 of Algorithm 2. The loop exits when the
pool manager is not holding any completed tasks (waiting for their return value
to be processed), no tasks are in flight, and no tasks are queued waiting to be
started.

The pool manager thread sleeps to allow the pool’s workers to monopolise
the CPU, periodically waking to check if any tasks have completed with Has-
CompletedTasks. When at least one completed task is ready for retiring from the
pool, the main thread waits for other tasks to complete. This waits a maximum
of 125% of the time the fastest task completed with (line 10). This allows slower
tasks with valuable narrowing results to complete and be added to the narrowing
before the next generation of tasks is dispatched. The completed tasks after this
timeout are iterated on lines 11 – 15. To prepare for the next generation of tasks
to be dispatched, a new whitelist is created that includes all narrowing returned
from the completed tasks during this generation.

A counter, WithoutImprovement, is incremented if the returned narrowing
does not prune the existing set. This will eventually trigger an early termination
clause (line 16) when the narrowing process has stalled for many failing test
cases in a row. This provides enhanced time performance with larger failing test
case sets, without harming the narrowing performance, as the larger sets have
more redundant (for narrowing) test cases.

Any task which has been flagged as failing to complete in a time consistent
with the others, missing the 125% dynamically assessed expected time, is queried
on line 17. The failing test case it failed to complete is added back to the tail
of the queue. If the whitelist is smaller when this task comes back up then it
can be rescheduled, with the reduced search space increasing the likelihood of a
fast completion time. Test cases are flagged as repeats so they are not enqueued
a third time if they failed to complete a second time. This protects against
intractable tasks which will not provide narrowing data. All of the tasks from a
generation will have now been processed, so they are ejected from the pool (line
19). The next batch of tasks is despatched to the pool (line 20) with the newly
narrowed whitelist, if there are still failing test cases in the queue.

This generational search process, with percolated combined narrowing, lim-
its the explored search space to relevant branches where a find is still viable
and reduces the symbolic execution work for the solver. Some tasks may still
be intractable so, to prevent them slipping through any cracks in this process,

Fast Model-Based Fault Localisation with Test Suites 47

a global timer that must be configured to denote what is an “unreasonable”
processing time is established that ejects tasks that fail to complete in that
time. This will only be triggered if all active workers are stalled with intractable
problems but does require configuration of what is an unacceptable wait.

Scheduling this task pool over a standard consumer multi-core CPU with
these guards against search stalls and early rejection of superfluous searches
provides significant performance improvements, as indicated by our preliminary
results.

4 Preliminary Experimental Results

4.1 Experimental Setup

We demonstrate the time and localisation performance of our tool on the Siemens
test suite’s TCAS program and test universe taken from the Software-artifact
Infrastructure Repository (SIR) [10]. TCAS is a 173 line C program from which
41 variants have been generated by seeding (injecting) faults. Of these, 33 vari-
ants have been seeded with a single fault and exhibit at least one failing output
with the test suite of 1608 test cases. These provide meaningful interpretation
when comparing the performance of localisers with a single-fault assumption.
For the single-fault variants, we maintain time performance within the same
order of magnitude as the current model-based fault localisation state of the
art, Jose and Majumdar. We guarantee returning the location of the injected
fault in every failing case, which Jose and Majumdar cannot. For 31 of the 33
single-fault variants we improve on the localisation performance of Jose and
Majumdar’s results.

In Table 1 and Table 2 the headings refer to the following data sources and
test platforms: Griesmayer’s original data [11, §4, Table1, p. 104] (G) uses CBMC
on a 2.8GHz Pentium 4; our näıve reimplementation of Griesmayer’s algorithm
(N) uses ESBMC v1.17 on a 3GHz Core2Duo E8400; our new algorithm using
ESBMC (E) and KLEE (K) as back-end both ran on a 3.1GHz Core i5-2400,
with the ESBMC [9] v1.21 and KLEE [3] (for LLVM 3.4) symbolic analysers;
and Jose and Majumdar’s results (J) are reconstructed from data provided [17,
§6, Table1, p. 443] using MSUnCORE on a 3.16GHz Core2Duo. Boldface entries
in the table represent the best performance, underlined entries indicate failure
to return the injected repair for all failing test cases. In Table 1 the Jose and
Majumdar time data has been calculated by taking the number of executions
per test case and multiplying by the reported average time to complete a single
execution of a failing test case.

We shuffle the test suite to randomise the order of the failing test cases when
invoking our tool. This prevents the performance reported by our current tool
only reflecting the time performance when provided with the default test case
order. The time performance reported is the average of ten runs.

48 G. Birch et al.

Table 1. Seconds to Return Location Set for Test Suite. Griesmayer’s original data
[11, Table 1, p. 104] (G). Näıve reimplementation of Griesmayer’s algorithm (N).
New algorithm using ESBMC (E) and KLEE (K) as back-end. Jose and Majumdar’s
results [17, Table1, p. 443] (J).

G N E K J G N E K J G N E K J

v1 2953 1442 9.0 4.5 2.1 v14 594 101 3.2 1.4 1.4 v26 311 114 3.4 2.1 1.2
v2 836 678 3.7 3.2 4.7 v16 1263 746 8.8 3.9 7.3 v27 153 107 3.3 2.3 1.1
v3 423 240 6.7 3.6 2.2 v17 1300 365 5.6 3.6 3.4 v28 642 711 2.0 2.7 6.1
v4 576 307 7.5 2.9 2.7 v18 499 188 3.7 3.0 3.6 v29 224 112 2.9 3.4 1.7
v5 159 106 3.2 2.3 1.2 v19 691 193 5.4 3.4 2.1 v30 939 508 3.9 2.8 3.7
v6 253 134 4.9 2.8 1.3 v20 748 196 7.4 4.3 2.2 v34 1906 790 4.9 3.0 7.7
v7 743 359 5.9 3.9 2.6 v21 585 197 6.7 3.7 1.7 v35 1069 711 2.3 2.8 4.6
v8 26 10 1.7 1.4 0.1 v22 223 42 2.8 2.6 0.6 v36 877 219 2.1 2.4 3.0
v9 114 72 2.0 2.1 0.8 v23 885 189 4.2 2.8 4.2 v37 822 729 3.7 4.1 3.7
v12 1664 727 5.0 3.4 11.5 v24 254 71 3.3 2.1 0.6 v39 66 8 1.0 1.5 0.3
v13 149 43 1.9 1.1 0.3 v25 68 8 1.0 1.5 0.2 v41 956 309 8.0 4.2 2.4

4.2 Run Time Performance

Griesmayer provided results on TCAS using state of the art (for the time) model
checking tools (CBMC) but indicated the design had not been optimised, saying
“we do not concentrate on performance” [11, §4.1, p. 105]. We reimplemented
this näıve process as described in Griesmayer’s paper. This is running on more
modern hardware and updated to use the current, CBMC-derived, SMT symbolic
analyser ESBMC. We implemented automatic specification encoding into the
tool to hard-code test cases. This tool iterates over all failing test cases, waiting
for the symbolic analyser to return all flagged locations. The tool then returns
the common locations flagged by all the failing test cases.

The average halving, at most six-fold, decrease in completion time from Gries-
mayer’s results (696 seconds average) to our näıve reimplementation (325 sec-
onds average) in Table 1 shows some performance increase is derived from using
a modern symbolic analyser on modern hardware. But, for example, variant 1
moving from over 49 minutes to over 24 minutes to return a location set is not
viable compared to the 2.1 seconds of Jose and Majumdar or comparable with
our optimised algorithm when also using ESBMC, at 9 seconds.

We have implemented our algorithm as tools interfacing with ESBMC or
KLEE. As discussed in section 3, this is designed to maximise consistency and
avoid worst case processing time, as well as reducing the symbolic execution
burden to improve times. We provide run time numbers for our algorithm using
an ESBMC and KLEE back-end in Table 1. This indicates that using KLEE is
often somewhat faster, compared to the ESBMC back-end, but the use of KLEE
as the symbolic analyser is not a major factor in the orders of magnitude time
performance gap between the näıve reimplementation of Griesmayer and our
algorithm with a KLEE back-end.

We maintain time performance within the same order of magnitude as the
current model-based fault localisation state of the art, as presented by Jose and
Majumdar, throughout the singe fault TCAS variants, marginally beating their

Fast Model-Based Fault Localisation with Test Suites 49

Table 2. Percentage of Lines of Code Returned by Localisation; see Table 1 for legend

G N K J G N K J G N K J

v1 8.7 10.4 7.5 8.6 v14 2.3 2.9 2.9 8.1 v26 4.6 6.9 4.0 9.2
v2 2.9 2.9 2.9 4.6 v16 8.7 10.4 7.5 9.2 v27 4.0 8.1 3.5 10.9
v3 4.0 8.7 5.2 9.8 v17 2.3 1.7 2.3 9.2 v28 1.2 1.2 1.2 5.7
v4 8.7 11.0 8.1 9.2 v18 2.3 2.3 2.3 6.9 v29 1.7 2.3 2.3 5.7
v5 4.0 8.1 3.5 8.6 v19 2.3 1.7 2.3 9.2 v30 2.3 2.9 2.9 5.7
v6 7.5 11.0 6.9 8.6 v20 8.7 12.1 8.1 9.2 v34 4.0 5.8 3.5 8.6
v7 2.3 1.7 2.3 9.2 v21 8.7 12.7 8.1 8.6 v35 1.2 1.2 1.2 5.7
v8 11.0 16.8 10.4 8.6 v22 4.6 4.0 4.6 5.7 v36 1.2 1.2 1.7 2.9
v9 5.2 4.6 4.6 5.2 v23 5.2 4.6 4.6 6.3 v37 2.9 1.7 2.3 8.6
v12 4.0 4.6 4.0 9.2 v24 8.7 11.0 7.5 8.6 v39 4.6 3.5 4.0 6.9
v13 5.2 9.2 5.2 9.2 v25 4.6 3.5 4.0 6.9 v41 8.7 12.7 9.2 8.6

times in ten of the 33 variants. Our tool, using the KLEE back-end, averages a
completion time of 2.87 seconds per TCAS variant, compared to an average of
2.80 seconds in Jose and Majumdar’s results. The ability of KLEE to scale to
larger input programs offsets the few instances where it does not lead our tool’s
results compared to the ESBMC back-end.

These preliminary results support our claim that a Griesmayer-derived
model-based localisation technique can be modified to be fast, comparable to
the current alternatives. Using intelligent pruning of the search space to min-
imise the symbolic execution load while minimising the disruption of a slow or
intractable search node is facilitated by a multiprocess design that takes advan-
tage of modern consumer processor architectures.

4.3 Localisation Performance

The scope of the localisation of a tool quantifies which locations are being
searched by the process and flagged as a potential fault. Different localisation
scopes for each technique’s implementation means their localisation performance
is not precisely comparable. The results published by Griesmayer only explore
the 34 explicit assignments in the TCAS variants, which increases the localisa-
tion performance we would expect to see in Table 2 as there cannot be more
than 20% of the total lines of code returned. Our näıve reimplementation has an
expanded scope that finds implicit assignments within the source code, expand-
ing the potential locations returned to 43 assignments, or 25% of the source
lines. This accounts for the weak, for Griesmayer-derived, localisation perfor-
mance. The localisation results for our algorithm using the ESBMC back-end
are omitted, but were noted to fall in line with the original Griesmayer results
and our current numbers with KLEE. Our current tool, using a KLEE back-
end, does not apply all implicit assignment transforms implemented in our näıve
reimplementation, only implementing the transforms described in subsection 3.1.
This reduces the assignments tracked to 39, or 23% of the source lines.

We can conceptualise the Griesmayer-derived searches as building a look-
up table for each assignment location returned that, if complete, repairs all

50 G. Birch et al.

failing test cases. Passing test cases already have a known correct value for their
assignments. Any location flagged by a failing test cases will have, in the __sym

value extractable from the counterexample, the assignment which repairs that
trace and so test case. It is thusly possible, for locations flagged by all failing
test cases, to construct a complete look-up table at that assignment location that
ensures every test case now has a specification-complying trace, i.e. a genuine
repair exists at that location. In our results, the injected repair is always included
in the locations returned. But, with this conceptualisation of the process, the
other locations are not false positives but additional locations where a genuine
repair will allow the test suite to pass, to the limits of the symbolic analyser’s
accuracy.

All our results confirm roughly comparable localisation performance between
the various Griesmayer-derived methods, after accounting for the differences
in localisation spaces. Any performance regression in localisation performance,
when comparing the original Griesmayer results with our Griesmayer-derived
localisation results, is most likely the result of searching a wider assignment
space. Localisation performance improvements are likely to have resulted from
more modern symbolic analysers providing a more accurate exploration of the
input C program, exploring new potential traces. Exact localisation performance,
while a common metric for comparison on TCAS and in general, is slightly defo-
cussed as a primary metric here. Evaluating the difference between Griesmayer-
derived techniques, as they all operate to generate this family of locations with
look-up table justification, is to penalise a tool for returning justified fault can-
didates; while not the injected fault location, they are locations with a repair.

Jose and Majumdar, with an approach based on mapping MAX-SAT clauses
back to source code, cannot be directly compared in terms of potential C code
coverage. The mapping of the MAX-SAT output, from logic clauses in the max-
imum satisfiable result to source locations, can flag locations other than assign-
ments. However, the granularity of this mapping is not clear. Some of the lack of
competitive localisation performance in some variants shown in Table 2 for Jose
and Majumdar, when compared to Griesmayer or our algorithm can be explained
by this different scope of potentially returned locations, where additional genuine
repairs are being suggested outside of assignment modifications.

When comparing the localisation performances, even without being apples
to apples, this is ultimately comparing sets of proposed fault sites where human
developers must search for a genuine repair, possibly the injected one. Our cur-
rent tool is typically ahead in this metric, sometimes by a significant percentage.
In the two variants where our tool performs worse, v41 returns a set of locations
only one larger than those returned by Jose and Majumdar, and v8 returns a
set three locations larger.

When comparing the localisation performance of these tools, we must con-
sider that there is an injected fault location for each of the single-fault variants of
TCAS. For all the Griesmayer-derived techniques then the injected fault location
(the location where a variant was seeded with a fault) is always included in the
returned list of locations. Due to the technique’s design (where a location is only

Fast Model-Based Fault Localisation with Test Suites 51

returned if it is common between all individual failing test cases), this means
that this injected location will also be returned when only given a single failing
test case from any of the test suites and on any of the single-fault variants. Any
subset of the test suite that contains at least one failing test case will, for all
Griesmayer-derived tools, flag the injected fault location.

The results from Jose and Majumdar cannot make a similar claim. To account
for some failing test cases not indicating the injected fault location, their final
set is based on the most commonly indicated locations, not locations that are
always flagged by every failing test case. Their results for each full test suite do
flag the injected fault location for TCAS as most common. But they indicate
that there exist subsets of the failing test cases for which they would not flag the
injected fault in the case of six single-fault variants (underlined in the tables).

4.4 Limitations

In subsection 4.3 we have already discussed issues with making direct localisation
performance comparisons. The single-fault assumption that underpins our model
prevents any meaningful localisation performance on the seven TCAS variants
which contain multiple injected faults, where positive localisation results would
be derived from blind chance. The performance of a single-fault localiser will be
faster than more extensive searches that include k-fault analysis. However, the
single-fault assumption is common in fault localisation techniques.

The fault-seeded variants of the small Siemens program we are testing on
are not a representative sample of C programs and the faults they contain. The
TCAS variants explored all contain injected faults inserted at return expressions
or assignments. Our results may not generalise to other C programs. Our focus
on a subset of programs, and use of real world code which is atypical in the
heavy use of global variables, may obscure comparative analysis of performance
against other tools with different program features. Performance on relatively
small, loop-free programs like TCAS does not provide guidance into how this
process scales to large programs with more complicated control flow. This issue
is common to all tools which demonstrate their localisation effectiveness on the
TCAS variants.

We can use any (C99 comprehending, supporting assume functionality) sym-
bolic analyser to process our generated C code but our results are linked to either
KLEE or ESBMC. Any issues related to those tools may affect our results, if not
our methods/process. No high performance symbolic analyser of C can perfectly
transform an input program into an exact representation according to the full C
specifications. The lack of exact specification compliance by the various widely
used (optimising) C compilers also makes such an impracticable achievement
undesirable. Real compiled code does not perfectly map to a strict adherence to
a single, deterministic interpretation of the C specifications.

Familiarity with the specific problem being solved (the small Siemens pro-
gram) could have subconsciously influenced our research direction towards a
process that is unfairly high performing for this specific problem and does not
adequately generalise to C code. To minimise this risk, our choice of time-out,

52 G. Birch et al.

sleep delay, and early termination values have not been tuned or selected for opti-
mising with respect to the test suite; that would compromise our preliminary
results.

5 Extensions

We currently present results where the known correct output is provided with
the test case input in the test suite. This is encoded as the assertion that the
correct output is generated by the program to comply with the specification for
that test case. This can be weakened if a test case only specifies that the output
does not take a given value, i.e. for input x, the output is not y. This weakened
specification only requires the assertion that the known incorrect output is not
generated. These two types of test cases can be mixed, providing a test suite with
both known correct outputs and known wrong outputs for failing test cases. They
would require two separate transformed programs that encoded this difference
(at the generic stage). This would be a small extension for a tool that can,
separately, operate on both types of failing test case. Weaker specifications would
be far less restrictive on the locations where a potential repair could exist, as
any location where the final output could be nudged to no longer generate the
same value would be flagged. This may limit the value of localising with such a
weak specification.

As described in subsection 3.1, the current tool’s transformation process
modifies return statements when the returned expression is more than a sin-
gle variable. This allows localisation to an implicit assignment hidden by any
return statement not creating a temporary variable for the returned value. We
can extend this to other locations where an assignment is implicit, with a pro-
cess similar to Single Assignment C transformations. This can be expanded in
many ways to inspect for fault classes outside of assignments. For example, the
search for spurious statements, i.e. looking for superfluous lines of code that can
be safely removed. That is, we remove a statement that enables the failing test
cases to pass and not regress passing test cases. Rather than inserting the tog-
gle into the right hand side of an assignment, the entire statement can be made
optional by the toggle test if(loc != [LOC_VAL])original_statement;. The
location, when toggled, would explore how the program functioned without that
statement. This sort of fault class exploration provides narrowing of the whitelist
of locations when exploring passing test cases, a feature not seen in the modified
assignments currently employed. This is not providing a widening of the pro-
gram functionality with symbolic values but a mutation of the program when a
location is activated by the toggle. These more extensive modifications to loca-
tion searches outside of assignments can be done in combination with current
searches or independently.

The currently discussed algorithm uses a single toggle value to activate a sin-
gle location to perform the alternative assignment of a symbolic value. If multi-
ple toggles were used with (__toggle1 == 3 || __toggle2 == 3) conditions
activating the modified locations, then the search would be able to produce local-
isations searching for multiple faults (up to the number of toggles inserted and

Fast Model-Based Fault Localisation with Test Suites 53

chained in the or-conditions). This extension was proposed as an extension in
the Griesmayer paper [11]. This would increase the solver cost due to additional
non-determinism and would also increase the total combination of counterex-
amples returned. It may be severely limited to small input programs to retain
tractability but is a theoretical extension of this process to a k-fault assumption.

The scalability limitations of our current approach will be quantified by
exploring the tool’s performance on larger, more complex input programs and
production code samples. The transition from ESBMC to KLEE as the back-end
and a concolic execution approach facilitates this expansion of the scope of input
C programs.

6 Related Work

Localisation by examining counterexample traces, test cases, or other output
from static and dynamic analysis tools is an active area of research [4,6,11,13,
14,17,29–31].

Griesmayer et al. [11] have first applied model-based diagnosis methods to
software. Our work follows the same lines; see section 2 for a more detailed
discussion. Griesmayer et al. [12] improve the original implementation to achieve
times roughly comparable to our own initial re-implementation (see section 4
for details). They also expand the possible fault locations to non-assignments
(e.g. expressions in control flow guards), which could easily be applied to our
approach as well, although the higher number of locations considered can lead
to more complicated solver problems and thus higher run times.

Königshofer and Bloem [19,20] have developed the foREnSiC system which
includes a Griesmayer-style localisation. They have applied this to TCAS as
well, but published results only for a few variants; here localisation times are
more than an order magnitude slower (around 120 seconds) than our results.
Königshofer et al. [21] report slightly improved times (around 37 seconds) but
had to annotate all functions with contracts, and so do no longer work from test
suites alone.

Griesmayer’s approach has also been applied to hardware designs in Sys-
temC [22], often combined with different solver technologies such as QBF [32]
or unsatisfiable cores [33]. Our results indicate that “plain old SAT/SMT” is
still sufficient, but these technologies could be considered as alternatives in our
approach as well.

Jose and Majumdar [17] convert an input C program to a maximum Boolean
satisfiability problem which is analysed with MAX-SAT solver. However, because
it returns the complement of the maximal subset of clauses that can be true for
each single test case, their approach can omit genuine repair locations. It there-
fore relies on summing the results of the different test cases, providing a ranking
of most to least commonly flagged locations. This is the approach, and so inherits
the strengths/weaknesses, of many heuristic-based fault localisation techniques.
As discussed in section 4, our approach provides comparable localisation times
but a higher precision.

54 G. Birch et al.

Spectrum-based fault localisation techniques, compared in [24,35,36], oper-
ate by examining passing and failing test cases separately. They assume that
faults are more likely to be exercised by failing test cases and less likely to be
exercised by passing test cases. The statements in a program can then be ranked
based on the different weighting techniques. The analysis of the performance
of these approaches is typically based on several scoring formulas that roughly
correspond to how much of a program must be explored, given an ordered list
of locations as tool output, before the genuine fault is found. The best-known
example of this technique is the Tarantula tool [31] with TCAS results provided
earlier [16]. Tarantula provides over 50% of runs on various of the Siemens small
programs (including TCAS) with a localisation performance that puts the gen-
uine fault location in the top 10% of lines returned. But this performance is
inconsistent and 7% of these runs fail to narrow the localisation list so that the
genuine fault location is in the top 80% of locations.

State of the art spectrum-based fault localisation methods have recently
been compared using different theoretical frameworks [24,36]. Several methods
have been identified as optimal under these frameworks; there is also empirical
data over various of the Siemens small programs. While Tarantula is not opti-
mal [36], it is also not far behind the state of the art for TCAS. In empirical
results [24, Table XI, p. 11:23], the only method identified as optimal under
that paper’s framework ranked the injected fault location on average at the 17th
returned location (9.9%) over all TCAS variants. Tarantula returned the injected
fault location at an average location between the 18th and 19th ranked location
(10.8%).

This is significantly below the worst performance of the symbolic model
checking approaches detailed in Table 2. The spectrum-based reporting metrics
provide the average rank, as a percentage, in a ranked list of all lines of code.
The symbolic model checking results report the total unranked lines flagged
as suspicious, as a percentage of total lines of code. To compare these results,
we must convert the unranked sets in Table 2 to ranked lists from which to
derive averages. Randomly ranking all the returned lines above a list that ran-
domly ranks all the lines not returned provides this conversion. The injected
fault location, when it is returned as part of the unranked set, will, on aver-
age, be in the middle of the ranked returned lines. Using this conversion, the
KLEE average result (4.6%) over the TCAS single defect variants is equiva-
lent to returning the injected fault location at the 4th ranked location (2.3%).
As noted in subsection 4.3, the different localisation scopes involved with each
technique mean these results are not directly comparable. A spectrum-based
approach will not only localise to assignment locations and TCAS is not ideally
suited to providing these approaches with easily differentiable statements.

Delta Debugging [37] is a family of approaches that involve splitting up a
large set of changes to find the minimal set that flip the program behaviour
from correctly functioning to exhibiting a failure. This has variously been used
to minimise inputs and traces but was later extended to source code exploration.
The principle applied here [6] is to look at passing and failing traces and minimise

Fast Model-Based Fault Localisation with Test Suites 55

the differences between them to isolate the failing components. This is reminis-
cent of a binary search, looking for interesting subset behaviour to narrow down
variables that correlate with failure. However, this does require the existence of
at least one passing trace and the localisation performance of Delta Debugging
on the small Siemens programs [6] is worse than Tarantula’s [16] results.

7 Conclusions

Our main contribution in this paper is an improved search through the test suite,
reducing the effort for the symbolic execution of the model. Our results show
Griesmayer’s technique works in comparable time to the state of the art when
driven with our optimised algorithm. This algorithm outperforms the naive reim-
plementation of the technique and the technique’s originally published imple-
mentation by more than two orders of magnitude.

We generate genuine lists of repair locations as specified by test cases for
any repair that could be expressed as a look-up table for the right-hand side of
an assignment, within the limits of symbolic analyser accuracy. Our time perfor-
mance is in line with recent alternative model-based fault localisation techniques,
but narrows the location set further without rejecting any genuine repair loca-
tions where faults can be fixed by changing a single assignment. This is more
consistent than the localisation performance of other techniques and does so
without compromising the narrowing extent, which might be done to avoid the
false negatives shown in the competition.

References

1. Ahmadzadeh, M., Elliman, D., Higgins, C.: An analysis of patterns of debugging
among novice computer science students. In: SIGCSE, pp. 84–88 (2005)

2. Bendersky, E.: Pycparser: C parser and AST generator written in Python (2012).
https://github.com/eliben/pycparser

3. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: Auto-
matically Generating Inputs of Death. ACM Trans. Inf. Syst. Secur. 12(2), 10A
(2008)

4. Chandra, S., Torlak, E., Barman, S., Bodik, R.: Angelic debugging. In: ICSE, pp.
121–130 (2011)

5. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are.
In: IJCAI, pp. 331–337 (1991)

6. Cleve, H., Zeller, A.: Locating causes of program failures. In: ICSE, pp. 342–351
(2005)

7. Console, L., Friedrich, G., Dupre, D.T.: Model-based diagnosis meets error diag-
nosis in logic programs. In: Fritzson, P.A. (ed.) AADEBUG 1993. LNCS, vol. 749,
pp. 85–87. Springer, Heidelberg (1993)

8. Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. ACM Sym-
posium on Theory of Computing, pp. 151–158 (1971)

9. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-Based Bounded Model Checking
for Embedded ANSI-C Software. IEEE Trans. Softw. Engg. 38(4), 957–974 (2012)

https://github.com/eliben/pycparser

56 G. Birch et al.

10. Do, H., Elbaum, S., Rothermel, G.: Supporting Controlled Experimentation with
Testing Techniques. Empirical Softw. Engg., 405–435 (2005)

11. Griesmayer, A., Staber, S., Bloem, R.: Automated Fault Localization for C Pro-
grams. Electronic Notes in Theoretical Computer Science, 95–111 (2007)

12. Griesmayer, A., Staber, S., Bloem, R.: Fault localization using a model checker.
Softw. Test. Verif. Reliab. 20(2), 149–173 (2010)

13. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance
metrics. Int. J. Softw. Tools Technol. Transf. 8(3), 229–247 (2006)

14. Groce, A., Visser, W.: What Went Wrong: Explaining Counterexamples. In: Ball,
T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 121–135. Springer,
Heidelberg (2003)

15. Hutchins, M., Foster, H., Goradia, T., Ostrand, T.: Experiments on the effec-
tiveness of dataflow- and control-flow-based test adequacy criteria. In: ICSE, pp.
191–200 (1994)

16. Jones, J.A., Harrold, M.J.: Empirical Evaluation of the Tarantula Automatic Fault-
localization Technique. In: ASE, pp. 273–282 (2005)

17. Jose, M., Majumdar, R.: Cause Clue Clauses: Error Localization Using Maximum
Satisfiability. SIGPLAN Not 46(6), 437–446 (2011)

18. de Kleer, J., Williams, B.: Diagnosing multiple faults. Artificial Intelligence 32(1),
97–130 (1987)

19. Konighofer, R., Bloem, R.: Automated error localization and correction for imper-
ative programs. In: FMCAD, pp. 91–100 (2011)

20. Könighofer, R., Bloem, R.: Repair with On-The-Fly Program Analysis. In: Biere,
A., Nahir, A., Vos, T. (eds.) HVC. LNCS, vol. 7857, pp. 56–71. Springer, Heidelberg
(2013)

21. Könighofer, R., Toegl, R., Bloem, R.: Automatic Error Localization for Software
Using Deductive Verification. In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp.
92–98. Springer, Heidelberg (2014)

22. Le, H.M., Grosse, D., Drechsler, R.: Automatic TLM Fault Localization for Sys-
temC. Trans. Comp.-Aided Des. Integ. Cir. Sys. 31(8), 1249–1262 (2012)

23. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

24. Naish, L., Lee, H.J., Ramamohanarao, K.: A Model for Spectra-based Software
Diagnosis. ACM Trans. Softw. Eng. Methodol. 20(3), 11A (2011)

25. Nelson, G., Oppen, D.C.: Simplification by Cooperating Decision Procedures. ACM
Trans. Program. Lang. Syst., 245–257 (1979)

26. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: SemFix: program repair
via semantic analysis. In: ICSE, pp. 772–781 (2013)

27. Pham, H.: Software reliability. Springer (2000)
28. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),

57–95 (1987)
29. Renieres, M., Reiss, S.P.: Fault localization with nearest neighbor queries. In: ASE,

pp. 30–39 (2003)
30. Sahoo, S.K., Criswell, J., Geigle, C., Adve, V.: Using likely invariants for automated

software fault localization. In: ASPLOS, pp. 139–152 (2013)
31. Santelices, R., Jones, J.A., Yu, Y., Harrold, M.J.: Lightweight fault-localization

using multiple coverage types. In: ICSE, pp. 56–66 (2009)
32. Staber, S., Bloem, R.: Fault Localization and Correction with QBF. In: Marques-

Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 355–368. Springer,
Heidelberg (2007)

Fast Model-Based Fault Localisation with Test Suites 57

33. Sülflow, A., Fey, G., Bloem, R., Drechsler, R.: Debugging design errors by using
unsatisfiable cores. In: MBMV, pp. 159–168 (2008)

34. Vessey, I.: Expertise in debugging computer programs: A process analysis. Inter-
national Journal of Man-Machine Studies 23(5), 459–494 (1985)

35. Wong, W.E., Debroy, V.: A survey of software fault localization. Tech. Rep.
UTDCS-45-09, Uni. of Texas at Dallas (2009)

36. Xie, X., Chen, T.Y., Kuo, F.C., Xu, B.: A Theoretical Analysis of the Risk Eval-
uation Formulas for Spectrum-based Fault Localization. ACM Trans. Softw. Eng.
Methodol. 22(4), 31A (2013)

37. Zeller, A.: Yesterday, my program worked. Today, it does not. Why? SIGSOFT
Softw. Eng. Notes 24(6), 253–267 (1999)

Case Study: Automatic Test Case Generation
for a Secure Cache Implementation

Roderick Bloem, Daniel Hein, Franz Röck(B), and Richard Schumi

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Graz, Austria

franz.roeck@iaik.tugraz.at

Abstract. While many approaches for automatic test case generation
have been proposed over the years, it is often difficult to predict which
of them may work well on concrete problems. In this paper, we there-
fore present a case study in automatic, model-based test case generation:
We implemented several graph-based methods that compute test cases
with a model checker using trap properties, and evaluate these meth-
ods on a Secure Block Device implementation. We compare the number
of generated test cases, the required generation time and the achieved
code coverage. Our conclusions are twofold: First, automatic test case
generation is feasible and beneficial for this case study, and even found
a real bug in the implementation. Second, simple coverage methods on
the model may already yield test suites of sufficient quality.

Keywords: Automatic test case generation · Model-based testing ·
Model checking · Trap properties

1 Introduction

Testing is the most prevalent method to discover errors in software. As part of
the software development process, engineers invest significant time and effort to
construct a test suite that exercises the program intensively. This burden can
be lessened by methods to automatically generate test cases that provide some
form of systematic coverage of the behavior of the software.

Model-based testing is a method to generate test cases from a model of
the software [24]. Model-based testing is particularly attractive when the model
is available as a part of a system’s specification, for instance, for certification
purposes. In this case, the model functions both as a source for test cases and
as a test oracle that decides whether the software behaves correctly. The main
challenge is then to derive test cases from the model that when combined form
a high-quality test suite [4]. For models that are given as graphs, the typical
approach is to generate test cases that provide a certain coverage of the model,

This work was supported by the Austrian Research Promotion Agency (FFG)
through projects NewP@ss (835917) and TARGET (845633) and by the European
Commission through project IMMORTAL(644905).

c© Springer International Publishing Switzerland 2015
J.C. Blanchette and N. Kosmatov (Eds.): TAP 2015, LNCS 9154, pp. 58–75, 2015.
DOI: 10.1007/978-3-319-21215-9 4

Automatic Test Case Generation for a Secure Cache Implementation 59

such as visiting all nodes or all edges. As described below, we can combine this
notion with logic-based coverage conditions on the predicates on the edges of
the graph.

We can provide such test cases using a model checker [10], which can provide
witnesses of executions that reach a certain part of the graph [17]. The test cases
thus derived are abstract and are subsequently mapped to concrete test cases
by a test adapter.

In this paper we put the theory of test case generation with model checkers
into practice. We have developed a tool that generates an abstract test suite from
a model using a model checker. We have applied our tool in a case study to a real
world implementation of a cache used in a Secure Block Device (SBD). We have
provided the tool with a model of the cache and we evaluate the resulting test
suite in terms of the time required to generate the abstract test cases and the
code coverage achieved by the test suite. We also evaluate different graph-based
and logic-based coverage criteria. Our results show that test case generation
with a model checker is feasible for a real world implementation with a model of
reasonable size. The resulting test suite achieves sufficient line coverage on the
source code and is able to find a bug that is hard to find manually.

The rest of this paper is structured as follows. In Section 2 we will cover
related research. Section 3 introduces some background information. Section 4
presents our realization of test case generation using a model checker. Section 5
presents results of our tool applied on our case study. Finally, Section 6 draws
conclusions and gives ideas for future work.

2 Related Work

The idea of generating test cases based on formal specifications was presented
by Bernot et al. in [3]. Since then, a lot of research has been done in this field,
including [11,14,18,22]. Many formal modeling languages use state machines
and automatic test case generation techniques focus on methods to extract high
quality test cases from these graphs.

Graph coverage criteria require certain parts of the graph to be covered by
test cases: node coverage and edge coverage require each node (edge) to be
visited by a test case, and path coverage requires a visit to every path in the
graph (or to every path of a certain length). Test generation can now be treated
as reachability problem and be solved using a model checker [16]. Additionally,
logic coverage criteria such as Active Clause Coverage, as presented in [2], can
be used to make sure that the logical predicates on the edges in the graph are
properly exercised.

The abstraction level of the model has the most influence on the quality of the
test suite. While a very abstract model will induce relatively few test cases that
may not explore the behaviour of an implementation very well, a very detailed
model may not be amenable to model checking [7].

Fraser et al. present a survey of the principles of model-based testing using
model checkers [16]. They show that a model checker can generate a test suite

60 R. Bloem et al.

from trap properties that claim that coverage criteria can not be met. The coun-
terexamples to these trap properties then meet the coverage criteria. We put
some of the proposed techniques in practice and evaluate their applicability on
a real implementation.

Tools for test case generation are divided into online and offline tools. Those
that generate offline tests are often more intricate as they do not rely on imme-
diate feedback from the System Under Test (SUT).

Mutation-based testing [13,21] is a related method in which a model is mod-
ified in different ways and test cases are generated that show the difference in
behaviour between the original model and the modified models.

While graph-based generated test suites should produce fairly high code cov-
erage if the models are relatively detailed, achieving full code coverage is hard.
Other tools directly analyze the source code to obtain a test suite with high
coverage, but lack the advantage that the model can be used as a specification.
(See for instance, [5,23].)

3 Background

This chapter gives some background information. A brief overview of the cov-
erage criteria implemented in the tool is given. Trap properties and the used
model checking tool NuSMV are explained.

A graph of a specification is an illustration of states represented as nodes and
transitions, represented as edges, from one state to the other. Edges may have
guards expressing under which condition the edge is taken. Test case generation
techniques focus on those components and coverage criteria require to cover the
one, the other, or both.

3.1 Model Checking

The tool we use for model checking is NuSMV [9]. NuSMVs modeling language
allows defining a finite state machine. A model consists of states and input
variables, and of transitions defining how an input leads from one state to the
next state. The rules on the transitions can be complex logical decisions. We use
the state machines of every single variable as graphs for our tool, assuming that
every variable is initialized. The transition guards in these state machines are a
conjunction of the next statements of the variable to reach the next state.

Properties that are checked on the model can be specified using Linear Tem-
poral Logic (LTL) or Computational Tree Logic (CTL). In LTL it is possible
to define paths referring to the future, for example, a formula φ will always be
true, or a variable b will become true in the next state if a is true now. Those
logics allow precise specification of properties which a model checker can then
check on the model.

Automatic Test Case Generation for a Secure Cache Implementation 61

3.2 Trap Properties

A popular approach in order to create a test case which covers specific parts of
the model is to create trap properties [17]. A trap property is a property that
formulates a claim that is expected not to hold. The claim is expressed as a
formula stating that the target component is never visited. This trap property
will then result in a counterexample when being model checked. The resulting
counterexample is a trace, leading to the desired component that is expected
to be covered by the test case. The same method can be used with witnesses
instead of counterexamples. For witnesses the property has to be formulated in
its normal form claiming that the property is expected to hold. For example, to
generate a witness for nodex, the formula has to express that there exists a path
on which nodex is visited.

The resulting counterexamples contain the expected traces and can, there-
fore, be used as an oracle. The output of the SUT and the expected value of the
counterexample are compared. If the values match, the test passes. If the values
do not match, the test fails.

3.3 Node Coverage

Node coverage is a basic graph coverage criterion. The idea is to visit every
node in the graph at least once. While this can be achieved in the best case
with a single test case, the maximum number of non redundant test cases equals
the number of nodes in the graph. The advantage of node coverage is that the
number of test cases is reasonable small as the number of states in models is
usually manageable. Node coverage can be seen as an analogous to statement
coverage on the source code. The main drawback of the resulting test suite is
that branches might not be covered, as the designated state is already covered
by another test case and therefore no test case for a different branch leading to
the same state is generated.

To generate a test suite containing a test case for every node in our model,
a trap property is formulated for every node claiming that the node can not be
reached. A more formal description of trap properties generating counterexample
traces that satisfy node coverage is ∀node∃t ∈ τ : G(¬node), where node is a
single node in the graph and t is a single test case of the test suite τ . In our
NuSMV model, the number of states per variable corresponds to the number
of possible values this variable can take. The total number of nodes to cover is
therefore the sum of the individual states per variable.

3.4 Edge Coverage

Whereas for node coverage all nodes have to be visited, for edge coverage all
edges have to be visited. Whenever all edges are covered, all nodes are covered,
i.e., edge coverage subsumes node coverage. In the best case, the test suite is a
single test case. In the worst case the size of the test suite corresponds to the

62 R. Bloem et al.

number of edges in the graph. Edge coverage can be seen as the equivalent to
branch coverage on the source code.

To construct trap properties for edge coverage the same principle is applied
as for node coverage. It is claimed that it is impossible to reach the destination
node of the target edge from the source node of the target edge with a satisfied
edge guard. A more formal description of trap properties achieving edge coverage
is ∀j∃t ∈ τ : G(edgej src ∧ edgej guard → X(¬edgej dst)), where j ∈ J with
J being the set of edges in the graph, edgej is a single edge in the graph, t is a
single test case of the whole test suite τ , edgej src is the source node of edgej ,
edgej guard the transition guard of edgej and edgej dst the destination node of
edgej .

3.5 Path Coverage

To achieve full path coverage, all paths in the graph have to be taken. Path
coverage of paths with length up to 2 is called edge pair coverage [1]. As every
existing edge is part of at least one path, path coverage subsumes edge coverage.
However, the number of test cases explodes, with increasing size and complexity
of the model. This can make path coverage already infeasible for models without
loops. A model containing loops requires an infinite number of test cases, i.e.,
complete path coverage is impossible for models with loops.

k-path Coverage. A variant of full path coverage is k-path coverage that only
requires to cover paths up to length k. To generate a test suite satisfying path
coverage for paths of a fixed length k, the approach is basically the same as
for edge coverage. Let q ∈ Q represent a state of our set of states and ei ∈ E
represent the transition from our set of transitions leading from qi−1 to qi and
let q0 be the initial state. To cover the path π = q0e1q1e2...ekqk of length k, the
trap property has to require that the trace follows π up to ek and then the trap
property has to claim that the path can not reach qk. A more formal description
of trap properties for path coverage is ∀π ∈ Πk∃t ∈ τ : q0 ∧ e1 ∧ X(q1 ∧ e2 ∧
X(.. ∧ X(qk−1 ∧ ek ∧ X(¬qk))..)..).

3.6 Other Graph-Based Coverage Criteria

Many more graph coverage criteria exist, focusing on different aspects [1]. Cri-
teria like the “all-du-paths” coverage criterion, which are focusing on data flow,
may require that a test suite contains a test for every def-use path. Various
weaker data flow coverage criteria require fewer paths to be covered [19].

3.7 Logic-Based Coverage Criteria

Graph-based coverage criteria only focus on graph components, they treat all
edges the same. Those criteria do not consider that some transition guards might
consist of complex logic expressions. Therefore, logic-based coverage criteria can

Automatic Test Case Generation for a Secure Cache Implementation 63

Fig. 1. Flow of the test case generation process

be used in combination with graph-based coverage criteria to generate test cases
taking the complexity of the transition guards into account as well. To cover
logical expressions, various coverage criteria exist [2]. They start with simple
decision coverage and increase complexity to Correlated Active Clause Coverage
(CACC), which, for specifications, is the analog to masking Modified Condition
Decision Coverage (MCDC) on source code. Whereas decision coverage only
requires that the whole condition evaluates once to true once and once to false,
MCDC requires test cases for every single condition within the whole guard, each
of them independently affecting the whole decisions outcome [8]. This complex
coverage criterion is used especially in safety standards for airborne systems or
automotive industry for source code coverage. The whole decision is tested in
more detail, as every single condition in the whole decision is tested individually
and has to have an influence on the outcome of the decision.

4 Test Case Generation

In this section we present the generation of concrete test cases from the model.
The goal is to cover the model according to a given criterion. To achieve this,
our tool automatically generates trap properties. Those trap properties will force
the model checker to create traces such that the desired parts of the graph are
covered. A test adapter finally maps the values of these traces to actual input
values of the SUT. To check if the SUT behaves as expected according to the
model, the test adapter has to observe and compare the output values of the
SUT to the values of the according trace.

Figure 1 illustrates the test case generation and execution:

1. Our tool parses the model and generates trap properties according to the
desired coverage criterion.

2. The model checker produces counterexamples based on the trap properties.
These counterexamples are traces through the model that pass the desired
component(s).

3. A test adapter translates the abstract test cases, i.e., the counterexamples,
to concrete test cases according to a given mapping.

4. Test cases are executed on the SUT.
5. The oracle verifies if the behaviour of the SUT is ok.

64 R. Bloem et al.

Whereas test case generation is independent of the SUT and on a higher level
of abstraction, the test adapter requires detailed knowledge about the interfaces
of the SUT. Moreover, the user has to define a mapping from the abstract vari-
ables of the model to the SUT. Variables of the model can be divided into three
groups: input, output and internal variables. Input variables determine the inputs
to the SUT. The values of the output variables are the expected responses from
the SUT, i.e., they are the test oracle such that a decision can be taken if the
test passed or failed. Internal variables are all variables that are neither input
nor output variables. They can usually not be observed if the SUT is treated as
a blackbox and, therefore, they can not be mapped.

The test case generation and execution approach works as follows. The
NuSMV model is given as an input to our tool. All variables that are not explic-
itly tagged as input or output for the test adapter will be treated as internal
variables which can neither be controlled by us nor observed from the SUT.

The tool automatically generates the trap properties required to achieve the
coverage desired by the user. To do this, the tool iterates through all nodes/edges
it attempts to cover and generates a trap property for every component that can
be either a node, an edge or a path.

4.1 Combination of Graph-Based and Logic-Based Criteria

There are two options to generate counterexamples that satisfy not only graph-
based coverage metrics but also logic coverage criteria for transition guards like
CACC. One is to express the CACC criterion within the LTL property for the
graph-based criterion. The other is to let an SMT solver determine a variable
assignment which then can be included in the property. The model checker is then
forced to use the dedicated variable assignment to produce the counterexample.
We decided to implement the second approach as this approach divides the
problem and shifts part of the problem to the SMT solver in a first step. Due to
the variable assignment produced by the SMT solver, the trap property becomes
more specific. The external tool we used for getting the variable assignment is
described in the paper by Bloem et al. in [6]. This tool takes a Boolean formula,
in our case the guard of the edge, as input. For every variable appearance in
the formula it derives the two corresponding test cases that satisfy the CACC
criterion. In the first test case the variable evaluates to true and in the second
the variable evaluates to false. In both test cases the variable determines the
result of the formula. The resulting assignment is included in the trap property.

4.2 Abstract Test Case Generation

The trap properties that are produced according to the chosen criterion are
together sent with the model to a NuSMV process. For every trap property
that fails – as expected – a counterexample is generated. This counterexample
represents the trace through the model which is the actual abstract test case.
Invalid trap properties, those which do not fail, do not need to be handled
separately, as the model checker will just not create any counterexample but

Automatic Test Case Generation for a Secure Cache Implementation 65

state that they are valid. These invalid trap properties can occur, if paths are
constructed that are infeasible or if variable assignments are chosen for a certain
state that are impossible in this specific state, as the tool deriving the variable
assignment has no knowledge on limitations to reach that state. A comparison
of the number of trap properties to the number of counterexamples indicates
how successful the test case generation has been, because only the resulting
counterexamples can be translated to concrete test cases that form the final test
suite.

4.3 Test Adapter

To run the test suite on the SUT, the test adapter reads the counterexamples
generated by the model checker and extracts the input and output values for
every step based on the mapping provided by the user. The input values are
handed to the SUT step by step as required from the counterexample. The
output values of the SUT are evaluated by the test adapter and compared to
the values from the counterexample. A test case run is successful if the values
of all output variables match the observed values from the SUT. Whenever an
output value does not match the expected value, an exception is raised as the
SUT does not behave as expected.

5 Experimental Results

In Section 5.1 we will first evaluate our tool on the well known triangle problem.
Then we will apply it in section 5.2 in our case study on the cache implementation
of a SBD. We run our experiments on a Mac OS X 10.9.5 with an Intel Core
i5 @2.6 GHz and 8 GB RAM. The achieved code coverage in our case study is
measured using gcov. For the triangle problem we used EclEmma. We assume
that a line coverage of 90% is satisfying.

5.1 The Triangle Problem

To evaluate our tool on a small problem, we used the well known triangle prob-
lem [20]. Three numbers, representing the three side lengths of a triangle, are
given as input. The system decides based on the side lengths what type of tri-
angle is formed. If all side lengths are equal, an equilateral triangle is formed.
A triangle that has two sides of equal length is called isosceles. If all three sides
are of unequal length, a scalene triangle is formed. No triangle can be formed,
if one or more side lengths are zero. The NuSMV model consists of four nodes
which express the four types of a triangle. Edges between these nodes contain
the requirements to the side lengths when taking a transition from one triangle
type to the other triangle type.

Our tool automatically generated test suites achieving node coverage, edge
coverage and path coverage of lengths one, two and three. The resulting code
coverage achieved by the derived test suites is presented in Table 1. Whereas

66 R. Bloem et al.

Fig. 2. Achieved line coverage on the triangle implementation

Table 1. Test cases generated

coverage criterion test cases line coverage branch coverage

Node 4 67.1% 50.0%
Edge 32 89.0% 94.4%

Path Length 1 8 86.3% 88.9%
Path Length 2 64 89.0% 94.4%
Path Length 3 512 89.0% 94.4%

the test suite satisfying node coverage contains only four test cases and has a
rather low code coverage, the test suite satisfying edge coverage with 32 test
cases achieves a line coverage of 89%. In a comparison to a test suite containing
random generated numbers (values between 0 and 100) for every side length,
Figure 2 illustrates the advantage of the test case generation approach with a
model checker over the random testing approach. While random testing required
200 test cases to achieve a line coverage of 86.3%, the test suite generated by
the model checker satisfying edge coverage achieved a line coverage of 89% at a
size of 32 test cases.

5.2 Case Study: Secure Block Device Cache1

The Secure Block Device Cache. We applied our test case generation tool
to the block cache of the Secure Block Device (SBD), a software component
for secure persistent data storage. The SBD uses symmetric cryptography to
guarantee data integrity and data confidentiality, including data freshness, while
retaining fast and scalable random access to the securely stored data, by splitting
the data into blocks of fixed size. To achieve its security goals the SBD uses a
client selectable authenticated encryption scheme in conjunction with a hash
tree. Thus, the SBD reduces the problem of protecting the confidentiality and
integrity of arbitrary amounts of data at rest to protecting a single cryptographic

1 Additional information: http://www.student.tugraz.at/franz.roeck/TAP2015/

http://www.student.tugraz.at/franz.roeck/TAP2015/

Automatic Test Case Generation for a Secure Cache Implementation 67

key and the hash tree root hash. Technically, the SBD is a C library that supports
any back-end interface that is compatible to the Portable Operating System
Interface (POSIX) pread and pwrite C standard functions.

When the SBD writes data to the back-end interface, this data is encrypted
and integrity protected. Conversely, when the SBD reads data it has to reverse
the encryption and verify the data integrity. Both ways, this is computationally
more costly than simply reading and writing unprocessed data. To minimize
these costs the SBD uses a block cache software component. The block cache
retains a configurable number of data blocks1 in unencrypted an unprotected
form for quick access in RAM.

To actually achieve the SBD’s security goals of data confidentiality and
integrity the cryptographic mechanism requires additional overhead data per
block. Specifically, it needs a cryptographic nonce and an authentication tag.
The cryptographic nonce guarantees the uniqueness of every encrypted block,
thus preventing statistical attacks, whereas the authentication tag authenticates
the data integrity of a single block. The cryptographic nonce and the authenti-
cation tag are public values and do not need to be kept confidential. However,
these values need to be protected against modification.

The SBD bundles cryptographic nonces and authentication tags for a specific
number of data blocks in a special block type called a management block. These
management blocks are stored in the persistent data storage back-end, where
they are interleaved with the blocks containing actual input data. On writing,
management blocks are integrity protected and the corresponding authentication
tag is stored in a hash tree that guarantees overall data integrity. The hash tree
root hash is the only value that needs to be stored in a secure memory, where
secure means it is protected against unauthorized modification. Management
blocks are not encrypted.

As management blocks contain data pertinent to a range of data blocks, the
cache component gives them preferential treatment over pure data blocks. Also,
to read and write a specific data block, the corresponding management block
needs to be in the cache. This is an invariant that must hold for the SBD to
work, and the cache has partial responsibility for ensuring it.

An additional peculiarity of the SBD block cache is its eviction strategy.
Instead of the commonly used approach based on Least Recently Used (LRU)
lists, we use an approximation of this concept. LRU list orders the blocks by
their time of use, where the head of the list is the least recently used element
and the tail of the list is the most recently used element. The approach we
use approximates this behaviour. The main difference is that instead of moving
the most recently used element to the tail of a list, we just swap its position
with its less recently used neighbour. Here, this operation is called bumping
the block. Management blocks get a preferential treatment that ensures that a
management block is always considered more recently used than its most recently
used corresponding data block. This process is done lazily, that is, it is enforced
every time a management block is about to be evicted, and it also ensures the
above invariant.

68 R. Bloem et al.

Fig. 3. Model of the cache control logic when accessing a block

The block cache component provides a very simple interface towards the
SBD. The interface comprises a call back to the SBD for writing a dirty block
before evicting it from the cache, a call back predicate function to test if given
management block is responsible for a given data block, and a request data block
function. The request data block function either provides access to the requested
block data, if it is cached, or a free cache slot. The SBD can use the free cache
slot for storing the block data it now reads from the persistent data storage
back-end. Before the data is stored in the free cache slot, the SBD also decrypts
it and verifies its integrity.

The Model. In a first step, we created a NuSMV model for requesting a data
block (DBlock) from the cache. A data block is either already in the cache, or it
has to be loaded, put into the cache and then returned to the caller. The model
is depicted in Figure 32. Whenever a data block is requested from the cache, the
cache controller first checks if the data block is already in the cache (GetDBlock).
If it is, it is bumped and returned to the caller. If it is not in the cache, the cache
controller has to check if the corresponding management block (MBlock) is in
2 We have simplified the model for clarity. For the full model see http://www.student.

tugraz.at/franz.roeck/TAP2015/

http://www.student.tugraz.at/franz.roeck/TAP2015/
http://www.student.tugraz.at/franz.roeck/TAP2015/

Automatic Test Case Generation for a Secure Cache Implementation 69

the cache (LoadDBlock). If the management block is not in the cache, then
the cache controller will try to load it (LoadMBlock). To load the management
block the cache controller first tries to evict the LRU element from the cache.
If the LRU element can be evicted, the cache controller evicts it and loads the
management block. In our cache it can happen that the LRU element cannot
be evicted (BumpLRU). This happens only if the LRU element is a management
block (MLRU). Here we differentiate two cases. Either there is at least one cor-
responding data block for MLRU in the cache, or MLRU corresponds to the data
block that was requested by the caller. In the first case, we bump MLRU until
it is more recently used than its most recently used corresponding data block.
In the second case, we make it the most recently used element. Once the man-
agement block is in cache, the cache controller will load the data block. Again,
the cache controller will try to evict the LRU element. If it can be evicted, the
cache controller loads the data block and returns it to the caller. If the LRU
element cannot be evicted the cache controller goes into state BumpLRU until a
cache slot is freed, and then proceeds to load the data block and return it.

To test our implementation, we used a cache size of four cache lines. We
believe a larger cache will just increase complexity, but not add any additional
value for the evaluation. Without formal proof, here is the outline of our argu-
ment. The cache maintains the invariant that for every data block in the cache
the corresponding management block is also in the cache. This invariant is main-
tained by the BumpLRU state, which frees up a cache slot for inserting either a
management (InsertMBlock) or a data block (InsertDBlock). Here the next
state of the cache depends on the LRU element, and if it is a management
block (MLRU), also on the most recently used data block. We argue that we can
model all relevant cases with only four cache slots and that the MLRU case with
a corresponding data block is the most complex configuration. If the LRU ele-
ment is a data block, or a management block without corresponding data block
it is evicted. In the MLRU with corresponding data block case the MLRU gets
bumped until it holds a position that is more recently used than its most recently
used data block. We argue that if we increase the cache size of our model, we
only increase the number of bumps. Furthermore, we argue that after a finite
number of consecutive visits to BumpLRU there will always be LRU element that
can be evicted, either because it is a data block, or a management block without
corresponding data blocks.

Our cache model consists of four state machines modeling each individual
cache slot. The state machines are copies of each other with minor modifications
for the corner slots to take into account that they only have a single neighbour
and that blocks are evicted or inserted in the least recently used slot. The current
state represents what kind of block the cache slot currently holds. With a cache
size of four there can be at most three data blocks and one management block, or
three management blocks and one data block in the cache. Therefore, the state
machines in our model have six states. Let us denote the states representing
the cache slot holding a data block as Dx, Dy and Dz, and the states for the
corresponding management blocks as Mx, My and Mz. Figure 4 depicts a simplified

70 R. Bloem et al.

Cache[k] (k > 0 && k < n)

Dx

Mx

Dy

My

D

MyyMy

DyDy

Mx

Dx

Transition Guard for all incoming edges to Dx:

(accessLowerNeighbour && cache[k-1] = Dx)
|| (accessThisSlot && cache[k+1] = Dx)
|| (BumpToHigherSlot && cache[k+1] = Dx)
|| (BumpToThisSlot && cache[0] = Dx)
|| (InsertSuccess && cache[k+1] = Dx)

Fig. 4. Cache slot model with two different block types

state machine for a single cache slot with the cache size being expressed as n. For
ease of presentation only two different data blocks (Dx, Dy) and their management
blocks (Mx, My) are shown. The transitions model the conditions under which
the content of the cache slot changes. The transition guard is identical for all
incoming edges of a single state. The content changes (i) if the slot or the lower
neighbour is accessed or (ii) if the least recently used slot gets bumped to this
slot or a higher slot. If a new block is inserted successfully, it results in bumping
it to the most recently used slot as well. In case none of the guards is satisfied,
the state machine stays in its previous state. To keep the model readable only
the label of the transition guard for incoming edges of Dx is included in the
figure. This figure makes it obvious that the number of possible transitions and
cache setups explodes even for small cache sizes.

Experimental Setup. We evaluate the test suites based on the time required
to generate the test suite and the achieved code coverage, line coverage, and
branch coverage. The generation time that includes the time for model checking
will give an idea on how reasonable it is, to use the one or the other coverage
criterion in practice. The code coverage measure gives a hint on the quality
of the test suite, but depends heavily on the modeled details. All test suites
were generated on the same computer to keep the generation time comparable.
Additionally, we will list the generated counterexamples per coverage criterion to
get an idea of the resulting test suite size. Although the size of a test suite does
not determine its quality, test suites should have a manageable size. Smaller test
suites, with fewer redundant test cases are preferable. Moreover, we will use an
old version of the SBD implementation containing a bug that was hard to find
by manual inspection. We implemented a test adapter to translate the generated
abstract counterexamples to concrete test cases.

Automatic Test Case Generation for a Secure Cache Implementation 71

The general modus operandi of the test adapter is as follows. First the test
adapter initializes the cache, and ensures a consistent state. Specifically, the test
adapter makes sure that for each data block the corresponding management
block is also in the cache. Next, the test adapter creates source code that imple-
ments the test cases. The test cases use the interface of the cache (the SUT) to
implement their tests. The cache interface consists of functions to request a sin-
gle cache block and to import or dump the whole cache content. The functions
for importing and dumping the cache content are essential for cache initialization
and observation.

Specifically, our test adapter reads the initial cache setup from the counterex-
ample and initializes the secure cache as required, by using the import function.
The initial setup specifies which data and management blocks to put into specific
cache slots. Then the test adapter will translate the rest of the counterexample.
Whenever a block is requested in the counterexample, the test adapter maps it
to the function that requests this block. In every step after the request block
function call, the test adapter compares the cache content of the SUT to the
cache content specified by the counterexample. If the SUT cache content differs
from the counterexample, the test case fails. This generated source code can
then be executed on the SUT.

Results. We applied the tool on the model composed of the cache control logic
(see Figure 3) and the cache slot logic (see Figure 4) creating different test suites.
The summarized results can be seen in Table 2. Basic node coverage took ≈ two
and a half minutes from model parsing until the counterexamples were created.
Counterexamples were created for every node but the error node. The error
node can never be reached if the model covers all possibilities. The test suite for
basic node coverage covers a significant part of the source code (see Table 3). It
contains 45 test cases and achieves 87% line coverage on the SUT.

To generate a test suite satisfying edge coverage on the model, the tool
derived 530 trap properties from which 357 counterexamples were produced.
The large number of trap properties without counterexamples is due to edges
that can never be taken. These edges are default edges going to the error node,
and also edges which are not taken due to restrictions during the initialization
process which limit transitions in the cache slot model. Those restrictions ensure
that the cache setup is valid at the beginning of the test, as all test cases start
with a filled cache. The total generation time was ≈ 18 minutes. Taking the
increased number of generated test cases into account the time required to gen-
erate a single test case increased only slightly compared to the generation time
of the test suite for node coverage. While the resulting test suite contains more
than seven times the number of test cases than the test suite created for node
coverage, the gain in code coverage is insignificant. Line coverage could only be
improved from 87.1% to 89.52%.

The state space of our model consists of 46 states. We used our tool to
generate a test suite covering all paths of length two. The tool produced 15,629
trap properties. Due to model restrictions that allow transitions only if certain

72 R. Bloem et al.

conditions are satisfied, most of the generated paths are infeasible paths and did
not result in a counterexample.

Test suite generation took ≈ 27.5 hours. The generated test suite consisted
of 451 counterexamples. As Fraser et al. [15] have shown using the proper model
checker and the proper technique for the right kind of model can significantly
reduce the time required for model checking.

The final test suite we generated with our tool had to satisfy edge coverage
on the model and CACC on the guards. It took ≈ 110 minutes to create 1,328
test cases from 7,584 trap properties. While this test suite has far more trap
properties than the edge coverage criterion, the generation time didn’t explode
as it did for path coverage. The time needed to generate a single test case is
significantly smaller in comparison. This is due to the different approach we used
for CACC. As we use the SMT solver Z3 [12] to get a variable assignment for
variables of the guard, the search space for the model checker is reduced, hence
the speed up. Although the edge coverage with CACC test suite is three times
the size of the edge coverage test suite, it did not improve the code coverage.
Line coverage and branch coverage stayed at the same values as for normal edge
coverage.

Table 2. Test case generation characteristics

Trap properties

Coverage criterion Total Valid Invalid Runtime
[s]

Node 46 45 1 3m 13s
Edge 530 357 173 18m 39s
Path Length 2 15,629 451 15,178 27h 31m
Edge with CACC 7,584 1,328 6,256 1h 49m

Table 3. Code Coverage

Coverage criterion test cases line coverage branch coverage

Node 45 87.1% 58.14%
Edge 357 89.52% 59.30%
Path Length 2 357 89.52% 59.30%
Edge with CACC 924 89.52% 59.30%

Besides evaluating code coverage, we also used the automatically generated
test suites to evaluate which of them is able to discover a real bug in the
SBD implementation. While implementing the SBD Cache, a hard to find bug

Automatic Test Case Generation for a Secure Cache Implementation 73

occurred. After an arduous3 search the bug was manually discovered and fixed.
However, it required a lot of time to analyze the data and control flow to find
it. The bug was triggered when a data block was requested and the correspond-
ing management block was the LRU element. When a management block is the
LRU element and there are no corresponding data block cached, then this block
is evicted. However, the new data block being requested depended on this man-
agement block. Thus deleting this management block introduced an error. We
“patched” the latest version of the SBD Cache code reintroducing the bug, and
then we subjected it to the generated test suites. Already the test suite satisfying
node coverage was able to detect this bug. The counterexample, from which test
that detected the bug was created, also helps the developer to understand the
error.

6 Conclusion and Future Work

In this paper, we have presented a case study that evaluates existing methods
for automatic test case generation using model checkers and trap properties. We
implemented a tool to automatically generate the trap properties when given a
formal model in NuSMV format and a coverage criterion. Our tool can derive
test suites for node coverage, edge coverage and path coverage and also offers the
option to apply logic coverage criteria like Correlated Active Clause Coverage
(CACC) on the transition guards in combination.

The case study consists of the cache component of a Secure Block Device
(SBD). Our tool produced test suites for all coverage criteria and we evaluated
the required time for generation and the achieved code coverage. For our case
study, simple node coverage already achieved a high line and branch coverage
on the source code. As we did not have any complex guards on the transitions,
applying CACC on the guards in combination to standard graph coverage did
not add any value. While the test case generation time increased significantly,
no gain in source code coverage was observed. We found a real life bug in the
SBD cache with the simple node coverage test suite. This illustrates that simple
coverage criteria like node coverage may already yield test suites of sufficient
quality to discover bugs that are hard to find manually.

In the future, we plan to enhance the tool with further trap property gener-
ation methods that limit the search space for the model checker and therefore
reduce the overall time for test suite generation. We plan to do this by having
additional calculations via SMT-solver as we did already for the CACC genera-
tion in this implementation. Another possible enhancement is creating a smaller
test suite. One counterexample might just be a subset of another counterexample
and, therefore, no additional test case is necessary.

3 It was a holiday. In August. With breathtaking weather. Did we mention that our
offices have no air conditioning?

74 R. Bloem et al.

References

1. Ammann, P., Offutt, J.: Introduction to Software Testing, 1st edn. Cambridge
University Press, New York (2008)

2. Ammann, P., Offutt, J., Huang, H.: Coverage criteria for logical expressions. In:
14th International Symposium on Software Reliability Engineering: ISSRE 2003,
pp. 99–107. IEEE (2003)

3. Bernot, G., Gaudel, M.C., Marre, B.: Software testing based on formal specifica-
tions: a theory and a tool. Softw. Eng. J. 6(6), 387–405 (1991). http://dx.doi.org/
10.1049/sej.1991.0040

4. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: Proceedings of the 26th International Conference
on Software Engineering, ICSE 2004, pp. 326–335. IEEE Computer Society, Wash-
ington, DC (2004). http://dl.acm.org/citation.cfm?id=998675.999437

5. Bloem, R., Könighofer, R., Röck, F., Tautschnig, M.: Automating test-suite aug-
mentation. In: 2014 14th International Conference on Quality Software, October
2–3, Allen, TX, USA, pp. 67–72 (2014). http://dx.doi.org/10.1109/QSIC.2014.40

6. Bloem, R.P., Greimel, K., Könighofer, R., Röck, F.: Model-based MCDC testing of
complex decisions for the java card applet firewall. In: VALID Proceedings, IARIA,
Ed., pp. 1–6 (2013)

7. Brooks, R.J., Tobias, A.M.: Choosing the best model: Level of detail, complex-
ity, and model performance. Mathematical and Computer Modelling 24(4), 1–14
(1996)

8. Chilenski, J.J.: An investigation of three forms of the modified condition decision
coverage (MCDC) criterion. Tech. Rep., DTIC Document (2001)

9. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

10. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (2001). http://
books.google.de/books?id=Nmc4wEaLXFEC

11. Dalal, S.R., Jain, A., Karunanithi, N., Leaton, J.M., Lott, C.M., Patton, G.C.,
Horowitz, B.M.: Model-based testing in practice. In: Proceedings of the 21st
International Conference on Software Engineering, ICSE 1999, pp. 285–294. ACM,
New York (1999). http://doi.acm.org/10.1145/302405.302640

12. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

13. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: Help for
the practicing programmer. Computer 11(4), 34–41 (1978). http://dx.doi.org/10.
1109/C-M.1978.218136

14. Dick, J., Faivre, A.: Automating the generation and sequencing of test cases from
model-based specifications. In: Larsen, P.G., Wing, J.M. (eds.) FME 1993. LNCS,
vol. 670, pp. 268–284. Springer, Heidelberg (1993)

15. Fraser, G., Gargantini, A.: An evaluation of model checkers for specification based
test case generation. In: ICST 2009, Second International Conference on Software
Testing Verification and Validation, April 1–4, Denver, Colorado, USA, pp. 41–50
(2009). http://dx.doi.org/10.1109/ICST.2009.33

16. Fraser, G., Wotawa, F., Ammann, P.E.: Testing with model checkers: A survey.
Softw. Test. Verif. Reliab. 19(3), 215–261 (2009). http://dx.doi.org/10.1002/stvr.
v19:3

http://dx.doi.org/10.1049/sej.1991.0040
http://dx.doi.org/10.1049/sej.1991.0040
http://dl.acm.org/citation.cfm?id=998675.999437
http://dx.doi.org/10.1109/QSIC.2014.40
http://books.google.de/books?id=Nmc4wEaLXFEC
http://books.google.de/books?id=Nmc4wEaLXFEC
http://doi.acm.org/10.1145/302405.302640
http://dx.doi.org/10.1109/C-M.1978.218136
http://dx.doi.org/10.1109/C-M.1978.218136
http://dx.doi.org/10.1109/ICST.2009.33
http://dx.doi.org/10.1002/stvr.v19:3
http://dx.doi.org/10.1002/stvr.v19:3

Automatic Test Case Generation for a Secure Cache Implementation 75

17. Gargantini, A., Heitmeyer, C.: Using model checking to generate tests from
requirements specifications. SIGSOFT Softw. Eng. Notes 24(6), 146–162 (1999).
http://doi.acm.org/10.1145/318774.318939

18. Gaudel, M.-C.: Testing can be formal, too. In: Mosses, P.D., Nielsen, M. (eds.)
CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 82–96. Springer,
Heidelberg (1995)

19. Hong, H.S., Lee, I., Sokolsky, O., Ural, H.: A temporal logic based theory of test
coverage and generation. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS,
vol. 2280, pp. 327–341. Springer, Heidelberg (2002). http://dl.acm.org/citation.
cfm?id=646486.694621

20. Jorgensen, P.C.: Software testing - a craftsman’s approach, 3rd edn. Taylor &
Francis (2008)

21. Offutt, A.J., Untch, R.H.: Mutation, : Uniting the orthogonal. In: Wong, W.E. (ed.)
Mutation Testing for the New Century, pp. 34–44. Kluwer Academic Publishers
(2000)

22. Offutt, J., Liu, S., Abdurazik, A., Ammann, P.: Generating test data from
state-based specifications. Software Testing, Verification and Reliability 13,
25–53 (2003)

23. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for
C. In: Wermelinger, M., Gall, H.C. (eds.) Proceedings of the 10th European
Software Engineering Conference held jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, September 5–9,
pp. 263–272. ACM, Lisbon (2005). http://doi.acm.org/10.1145/1081706.1081750

24. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliab. 22(5), 297–312 (2012). http://dx.doi.org/
10.1002/stvr.456

http://doi.acm.org/10.1145/318774.318939
http://dl.acm.org/citation.cfm?id=646486.694621
http://dl.acm.org/citation.cfm?id=646486.694621
http://doi.acm.org/10.1145/1081706.1081750
http://dx.doi.org/10.1002/stvr.456
http://dx.doi.org/10.1002/stvr.456

Verifying Code Generation Tools
for the B-Method Using Tests: A Case Study

Anamaria M. Moreira2, Cleverton Hentz1, David Déharbe1,
Ernesto C.B. de Matos1(B), João B. Souza Neto1, and Valério de Medeiros Jr.1

1 Federal University of Rio Grande do Norte, Natal, Brazil
{chentz,ernestocid,jbsneto,valerio}@ppgsc.ufrn.br,

david@dimap.ufrn.br
2 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

anamaria@dcc.ufrj.br

Abstract. In this paper, we present a case study where two code gener-
ators for the B-Method were validated using software testing techniques.
Our testing strategy is a combination of Grammar-Based Testing (GBT)
and Model-Based Testing (MBT) techniques. The strategy consists of
two steps. In the first step, grammar-based coverage criteria are used to
generate a wide and meaningful set of test input models to validate the
parsing capabilities of the code generators. In the second step, a MBT
tool is used to validate the correctness of the output produced by these
tools. The MBT tool generates a set of tests based on the same input
model used by the code generation tools. The generated code is con-
sidered correct (consistent with the input model) if it passes this set of
tests. Using this testing strategy, we were able to find problems in both
code generation tools with moderate effort.

Keywords: Model-Based Testing · Grammar-Based Testing ·
B-Method · Code generation

1 Introduction

Verifying a compiler or a code generator is a complex task. There are several ways
to tackle this problem, most of them use formal verification or software testing
techniques. Formal verification is usually the more complex and time-consuming
approach. Previous work has shown that formally proving the correctness of a
compiler may take years of work [14]. Because of that, many choose to rely on
software testing.

Testing a compiler or code generation tool usually involves the verification of
two different aspects. First, a set of input artefacts must provide a good coverage
of the possible inputs of the tool and be used to check if it is able to produce
code for a wide range of inputs. Second, the behaviour of the generated code
must be verified against the one of the source artefact to check for correctness.

c© Springer International Publishing Switzerland 2015
J.C. Blanchette and N. Kosmatov (Eds.): TAP 2015, LNCS 9154, pp. 76–91, 2015.
DOI: 10.1007/978-3-319-21215-9 5

Verifying Code Generation Tools for the B-Method Using Tests 77

Fig. 1. The testing strategy to test the code generators

This paper presents a case study where two code generation tools were veri-
fied using a testing approach. An overview of the testing strategy that we used
is presented in Figure 1. The strategy applies two different test case genera-
tion paradigms: Model-Based Testing and Grammar-Based Testing. Both lines
of the applied testing strategy are supported by tools that generate the tests
automatically.

On one hand, the Grammar-Based Testing part of our strategy aims to
evaluate if the code generation tools can handle their entire input language
(the language in which the input models for the code generators are writ-
ten). It is responsible for the generation of input models that should exercise
the whole grammar of the input language. How thoroughly this grammar is
exercised depends on the grammar-based coverage criteria used, the more tra-
ditional being terminal coverage and production coverage [2]. However, given
the complexity of code generators, more demanding criteria, such as context-
dependent branch coverage [11] may be applied to increase thoroughness.

The MBT part, on the other hand, serves as an oracle to evaluate the cor-
rectness of the code generated by the code generation tools. The ideal oracle
would formally verify the existence of some kind of refinement relation between
the generated program and the input model. But, automatically verifying this
correctness is undecidable in general, and manually checking the generated code
is time-consuming and error prone. Therefore, the same set of models in the
input language of the code generation tools is used as input for the code genera-
tors and the MBT tool. The MBT tool generates test cases based on each one of
these input models. These test cases are in turn used to check if each program
generated by the code generator tool has the behaviour specified by the corre-
sponding source model. They serve as the basis for an oracle definition in the
test process of the code generators, as they are used to evaluate the result of the
code generation process for each input model. Again, the rigour of the coverage
criteria applied for MBT test generation directly influences the confidence one
can have on the final results.

78 A.M. Moreira et al.

The tools evaluated in this case study are code generators for the B-Method [1].
Thefirst code generator verified isC4B, theCcode generator included in theAtelier
B IDE (Integrated Development Environment)1. The second is b2llvm [4], a code
generator to generate LLVM [13] code from B models.2

The B-Method is a refinement-based software design method with a sin-
gle language encompassing abstract constructs suitable for specification and
classic imperative constructs for computer programming. B development typ-
ically starts with a specification, in a so-called machine, followed by incremental
refinements to an implementation, where only imperative-like constructs may
be employed [3]. Such implementation is then translated to source code in a
programming language (here, C or LLVM). The steps in the B-Method are ver-
ified using certified theorem proving technologies. However, ultimately, the final
refinement must be translated to a conventional programming language, and the
result of this translation must be subsequently compiled for the target platform.
These last two steps, carried out by our target code generators and platform
specific compilers, do not benefit from the same mathematical rigour and their
verification is out of the scope of the B-Method. Ideally, one would like to have
a formal proof of correctness of the code generators, and have a complete formal
process, but there are some obstacles to this solution, such as the lack of common
formalization framework for the semantics of the source and target programming
languages. Tests are then employed as an alternative for their verification.

Besides the proposed testing strategy, we believe that this work also con-
tributed to the validation of the code generation tools evaluated in our case
study. During the case study, we were able to find problems in both code gen-
eration tools, such as the generation of faulty code and the lack of support for
some constructs used by the code generator’s inputs.

The remainder of this paper provides more details about our testing strat-
egy and the case study, and is organized as follows: Section 2 presents related
work; Section 3 gives a brief introduction to the B-Method and its notation and
presents C4B and b2llvm, the target tools of our case study; Section 4 presents
the testing strategy proposed for the case study and Section 5 presents details
about the case study execution and the obtained results; ultimately, Section 6
concludes with final discussions and future work.

2 Related Work

Research on verification of compilers and code generators follows different paths,
which may be based on formal verification or testing. They may also have dif-
ferent objectives, like trying to verify the tool itself or to validate each of the
outputs produced by the tool on the fly.

Formal verification focuses on techniques that prove a compiler or code gen-
erator to be correct for every input program or model [5]. It is the most rigorous
1 Atelier B website: http://www.atelierb.eu/en/.
2 LLVM is an active open-source compiler infrastructure used by many compiling tool

chains, that is a complete collection of compiler and related binary programs.

http://www.atelierb.eu/en/

Verifying Code Generation Tools for the B-Method Using Tests 79

approach and demands experience, and specialised knowledge to specify and to
prove language semantics and translation rules. Formal verification up to assem-
bly level also requires much effort and is a time-consuming activity. In [14] the
authors developed 50,000 lines of Coq3 specifications to do that; the cost was
estimated to 4 person-years (specialists in the field). This approach is suitable
for well-established languages and mature compiler technologies.

Test case generation based on grammars produces test programs or models
for a compiler or code generator based on the grammar of the source language
[8,9]. It focuses on the first aspect of our testing strategy presented on Figure 1.
The test programs or models are derived systematically from the grammar of the
source language. Their main objective is to exercise the compiler or code gener-
ator with a wide range of inputs, testing all the different constructs supported
by the source language. In [10] a survey about techniques for testing compilers
was presented, and the first parser test generation algorithm was proposed by
Purdom [18]. Grammar-based testing is a traditional way to test a grammar-
related software and in general it presents positive results [7,9,12], making it a
reasonable choice for testing any software in which valid inputs are described
by a grammar. However, it usually lacks the focus on complex semantic issues
related to code generation.

Translation validation shows the correct translation of individual programs
or models[17]. In this approach, outputs produced by the code generator under
test are individually checked for correctness. The objective here is to verify if
the generated code was translated correctly from a specific input model. This
specific term is frequently used in situations where, instead of validating the tool
a priori, validation is carried out each time the compiler or code generator is
used (on the fly validation). In [21] a methodology for the translation validation
of optimizing compilers is presented. In this approach, a correspondence between
the source and target code is formally proved using a specific intermediate repre-
sentation (IR). Similarly, the chaining of the MBT part of our testing approach
in the end of the B-Method process could also be used as an alternative to for-
mal verification in the implementation of an on the fly translation validation
approach.

Translation validation can also be used in the context of the verification of
the code generator, acting as an approach to test the code generator itself. In this
case, different levels of rigour can be used in the translation validation, either
formally verifying the correctness of each specific output or using some kind of
verification by testing as we did in our case studies. In any case, this means that
we need a good test set (input models for the code generator) that fully exercises
the code generating functionalities.

Another approach that uses the concept of Tracts to test model transfor-
mations is presented in [6]. In this approach, a set of OCL constraints to the
models (source and target) and the transformation are defined. Then, a set of
source models is automatically generated from these constraints, and it is used to
test the transformation. Finally, the results are checked against the constraints

3 Coq project website: https://coq.inria.fr/

https://coq.inria.fr/

80 A.M. Moreira et al.

defined for the transformation. This approach was adapted in [20] for testing
model to text transformations, with applications, for instance, to test an UML
to Java transformation. This approach focuses both on the generation of seman-
tically significant inputs and on the validation of the corresponding outputs,
requiring for that the specification of test specific constraints.

The work presented herein applies test case generation based on grammars
and translation validation. It applies grammar-based testing criteria to derive
a good coverage of the source model language, and MBT to verify “functional
equivalence” between a model and the generated code. This equivalence happens
when the model simulation and the code execution using the same inputs have
compatible outputs. The approach presented in this paper shares similarities
with what was presented in [19]. It relies on the fact that both the specification
language and the code generated are executable. In our proposal, however, some
results may also be obtained with non-executable specifications by relaxing the
oracle strategy as presented on section 4.1.

3 Background

3.1 B-Method

The B-Method is a formal method that uses concepts of first order logic, set
theory and integer arithmetic to specify abstract state machines that represent
a software behavior. The consistency of these specifications can be guaranteed
by proving that some automatically generated verification conditions are valid.
The method also provides a refinement mechanism in which machines may pass
through a series of refinements until they reach an algorithmic implementation,
called B0, which can be automatically converted into code. Such refinements are
also subject to a posteriori analysis through proofs.

A B machine usually has a set of variables that represent the software state
and a set of operations to modify the state. Restrictions on possible values that
variables can assume are formulated in the so-called machine invariant. The
method also has a precondition mechanism for operations of a machine. To ensure
that an operation behaves as expected, it is necessary to ensure its precondition
is satisfied.

Figure 2 presents a simple example of B machine. The Counter machine
specifies an increasing counter that can result in an overflow. The machine has
two variables: value and overflow (line 4). Variable value stores the current value
of the counter and variable overflow is a flag set when an overflow happens. The
inc operation (lines 16–23) increases the value of the counter; it also detects
overflow.

3.2 C4B and b2llvm

C4B, distributed and integrated with Atelier B 4.1, is a code generator tool that
automatically produces C code from B implementations. The Atelier B IDE,

Verifying Code Generation Tools for the B-Method Using Tests 81

1 MACHINE

2 Counter

3 VARIABLES

4 value , overflow

5 INVARIANT

6 value ∈ INT ∧
7 0 ≤ value ∧
8 value ≤ MAXINT ∧
9 overflow ∈ BOOL ∧

10 (overflow = TRUE

⇒
11 value = MAXINT)

12 INITIALISATION

13 value := 0 ||

14 overflow := FALSE

15 OPERATIONS

16 inc =

17 BEGIN

18 IF value ∈ 0.. MAXINT -1

THEN

19 value := value+1

20 ELSE

21 overflow := TRUE

22 END

23 END

24 END

Fig. 2. Counter abstract machine

which include C4B, is tested and used by many projects in industry and academy.
The input to C4B is an implementation written in the B0 language. Such imple-
mentation contains simple data types like integers (INT) and Booleans (BOOL),
concrete variables, concrete constants, arrays, record types, importation (i.e.,
instantiation) of modules, B0 instructions (e.g., conditionals and loops), and
operation calls.

b2llvm4 is a compiler for B implementations that generates LLVM code.
b2llvm has a small set of tests available in its project. This set was used as an
initial validation of the tool. The input to b2llvm is a large subset of the B0
notation. The tool reads XML-formatted files representing the B implementa-
tion, and produces files in LLVM intermediate representation, also called LLVM
IR. The XML input is generated by Atelier B.

Both C4B and b2llvm generate API files to provide declarations of the entities
(types and functions) in C. This C API is needed to link C or C++ code to
the generated (C or LLVM) code; such interface is necessary to compile tests.
Particularly, the C API file generated by b2llvm contains pointer and structure
type definitions to represent the state of the module, and declaration of the
functions that correspond to the operations on that module. Each such function
includes in its parameters a pointer to a structure representing the state of (an
instance of) the module.

Figure 3 presents the steps of the B-Method and code generation process.
The steps between the specification of the abstract machine and the refinement
to implementation level are supported by formal verification. Neither the trans-
lation of the implementation to executable code is formally verified, nor the
implementation of the code generation tools. This is where tests come into the
picture: they are employed to extend the verification process to include the code
generation tools as well.
4 b2llvm project: https://www.b2llvm.org/b2llvm.

https://www.b2llvm.org/b2llvm

82 A.M. Moreira et al.

Fig. 3. The B-Method and the code generation process

4 Proposed Testing Strategy

In this section, we present in details the testing strategy used to verify the code
generators in our case study.

Testing a code generation tool requires answering two questions:

1. Is the tool capable of generating code for the whole range of inputs it can
receive? This requires a set of test inputs that can provide reasonable cov-
erage for the tool.

2. Does the code generated by the code generation tool comply with the input
model? To answer this question, it is necessary to check if the generated code
implements the behaviour specified in the input model.

To answer these two questions, we propose a testing strategy that is a com-
bination of Grammar-Based Testing and Model-Based Testing. Figure 1 gives
an overview of this strategy.

The process starts with the generation of test models using grammar-based
testing criteria. Using the specification of the B0 grammar, the tool generates
a set of sentences. Each sentence is an input model. In general, if the grammar
has cycles (recursively defined symbols), the set of all sentences is infinite, so
the tool uses the coverage criteria to restrict the generated set to a finite, man-
ageable, but still meaningful set. The tool used in our proposed testing strategy
may use Terminal Coverage (TC) [2], Production Coverage (PC) [2] or Context-
Dependent Branch Coverage (CDBC) [11] to guide the selection process of those
sentences. Usually, a good test set should at least satisfy Production Coverage.
This criterion produces a set of sentences that covers all the productions in the
grammar. Therefore, this set is finite but with a good structural coverage of the
grammar. Context-Dependent Branch Coverage (CDBC) goes one step further,

Verifying Code Generation Tools for the B-Method Using Tests 83

requiring that the sentences on the test set not only cover all productions but
each production for each non-terminal symbol on each of its uses (appearance of
the symbol on the right-hand side of a production rule). This pairwise combina-
tion of production rules provides a much richer set of tests in most grammars.

Once the test models are generated, they are used as inputs for the code
generation tools. The tool can either generate code for the test model or reject it
and not generate code. When the second case happens, it is likely that the tool
cannot support the rejected model. This can happen because the code generator
cannot parse or generate code for some construct used or there is some semantic
error in the test model. When a test model is rejected by a parser or code
generation error it means that a bug or missing feature was encountered in the
tool.

When the code generation tool is capable of generating code for a given test
model, we have not any guarantee of its correctness. Indeed, the code generation
tool may have generated faulty code for the test model. That is where model-
based testing comes into place. We use the same input model used to exercise
the code generator as input for an MBT tool, generating input data for the
test of the implementation corresponding to this model, i.e., to test the output
of the code generator. The generated test cases are then used to verify if this
code implements the behaviour specified in the input model. Since the test cases
are generated from the models used in the very beginning of the specification,
they can be used to validate the conformance between what was specified in
the beginning and the final implementation. Our proposed model-based testing
approach uses Input Space Partitioning and Logical Coverage criteria such as:
Equivalent Classes, Boundary Value Analysis, Predicate Coverage, Clause Cover-
age, Combinatorial Clause Coverage and Active Clause Coverage [15]. All these
criteria are well established in the software testing community. The test cases
generated aim to achieve the test requirements established by these criteria. So,
the entire test generation process is guided to increase the coverage of these test
requirements. For Input Space Partitioning, the generated test data will test
all the combinations of partitions required by this type of coverage criteria. For
Logical Coverage, the tests will exercise combinations of logical values for the
predicates and clauses of the model, also taking into account the requirements
of each criterion. The test cases thus generated can exercise different scenarios
described in the input model, providing a good level of confidence about the
correctness of the code generated if they pass on the generated test suite. If one
of the test cases fails, it means that there are discrepancies between the model
and the generated code caused by a fault in the translation process.

4.1 Used Toolset

To achieve the goals of the proposed testing strategy we used two tools that
support the automatic generation of test models and test cases for the gener-
ated code. During the conducted case study, LGen and BETA were used as the
Grammar-Based Testing Tool and the Model-Based Testing Tool, respectively,
presented on Figure 1.

84 A.M. Moreira et al.

LGen. The Lua Language Generator (LGen5) [8,16] is a sentence generator
based on syntax description using coverage criteria to restrict the set of generated
sentences. This generator takes as input a grammar described in a notation
based on Extended BNF (EBNF) and returns a set of sentences of the language
corresponding to this grammar.

The process of generating sentences is implemented by a top-down left recur-
sive descent algorithm which enumerate the sentences of specified language. With
this algorithm, we guarantee that all sentences in the result test set is syntac-
tically valid. If the grammar has cycles, the algorithm can restrict the number
of their applications. Furthermore, the sentences generated by the algorithm are
selected to increase the coverage of the coverage criterion used. The entire gen-
erating process is divided into two phases. The first is the translation of the
grammar described in EBNF to a specification language described in Lua6. In
the second, the generated Lua specification is used to generate a set of sentences.

LGen implements three coverage criteria: Terminal Symbol Coverage, Produc-
tion Coverage [2] and Context-Dependent Branch Coverage (CDBC) [11]. These
criteria are used to limit the number of generated sentences keeping a minimum
quality and seeking a good set of tests. Derivation Coverage is attained, when
possible, when no other coverage criterion is used, but although it is of theoret-
ical interest, this criterion is impractical, because the number of derivations is
often too big or even infinite.

BETA. BETA (B Based Testing Approach) is a MBT approach to generate unit
tests from B-Method specifications. The approach is supported by a tool7 that
receives an abstract B machine as input and produces test case specifications and
partial unit test scripts for each of its operations. The MBT approach proposed
by BETA is used as a complement to the formal development with the B-Method.

The BETA tool is capable of defining positive and negative test cases for
a software implementation. Positive test cases use input data that are valid
according to the source specification and negative test cases use input data
that are not predicted by the specification. BETA uses Equivalent Classes and
Boundary Values Analysis techniques to partition the input space of an operation
and combinatorial criteria such as Each-choice and Pairwise to combine the
partitions into test cases. It also supports Logical Coverage criteria [2].

BETA also supports the implementation of some oracle strategies. These ora-
cle strategies determine what kind of verifications are done by the test oracle. It
currently supports four strategies inspired from [15]. They can be used separately
(weaker verifications) or combined (stronger verifications). These strategies are:
Exception (executes the test and verifies if any exception is raised), Invariant
checking (executes the test and after its execution verifies if the invariant is pre-
served), State variables checking (executes the test and verifies if the values for

5 The LGen project is hosted at http://lgen.wikidot.com.
6 Lua language website: http://www.lua.org/.
7 The BETA project is hosted at http://www.beta-tool.info.

http://lgen.wikidot.com
http://www.lua.org/
http://www.beta-tool.info

Verifying Code Generation Tools for the B-Method Using Tests 85

the state variables are the ones expected) and Return variables checking (exe-
cutes the test and verifies if the values returned by the operation are the ones
expected).

The tool can generate test suites in different formats, such as HTML and
XML test specifications and partial Java and C executable test scripts. For the
case study presented in this paper, we used the C test scripts to test the output
of the code generation tools.

5 The Case Study: Testing C4B and b2llvm

In this section, we describe how the testing strategy presented in section 4 was
used to verify C4B and b2llvm. The objective here is not only to verify the code
generators, but also to evaluate the effectiveness of the proposed testing strategy.

First, we used LGen to generate a set of test models with the intent of
evaluating how the code generators handle different types of constructs used
by the B0 notation. Since LGen generates tests based on the grammar of the
input artefacts, we used the definition of the B0 grammar presented on the
B Language Reference manual8 as the basis to generate the test models. This
grammar definition has 54 non-terminals, 75 terminals and 123 production rules.

The generated test models were edited to replace the lexical identifiers from
the grammar by concrete values. The LGen is based on context-free grammar, for
this reason it only generates syntactic valid test models. To increase the impact
of the GBT based test set, we also add a small set of additional test cases
with valid semantic and some combinations of instructions on it. After these
modifications, the code generators were executed on each test model. Then, if
the execution was successful, the generated code was run through a compiler to
look for possible target language errors.

Proceeding with our testing strategy, we used BETA to generate a set of test
cases to verify the functional equivalence between the code generated by C4B
and b2llvm and their respective test models. For this part of the case study, we
used a different set of test models, containing models that specified behaviours
more meaningful and intricate than those of the artefacts generated by LGen,
corresponding to scenarios someone would find in real B-Method projects. We
decided to use this different set of test models so we could generate more inter-
esting test cases for the code generators.

BETA uses the abstract machine that originated the code to generate test
cases for it. Based on this abstract machine, it generates a set of test cases
for each machine operation. Even though the chosen MBT tool is capable of
generating positive and negative test cases, the negative ones are not considered
in our verification process. The rationale for this decision is that we only want
to verify if the code generated behaves as foreseen in the input model, whereas
negative tests cases verify how the implementation behaves in situations that
were not foreseen by the model. Since C4B and b2llvm directly translate the
8 B language reference manual, version 1.8.6 from ClearSy. http://www.tools.clearsy.

com/resources/Manrefb en.pdf

http://www.tools.clearsy.com/resources/Manrefb_en.pdf
http://www.tools.clearsy.com/resources/Manrefb_en.pdf

86 A.M. Moreira et al.

information in the model into executable code we can not expect it to behave
properly on unexpected scenarios.

Since both code generators generate APIs (Application Program Interface)
in C, to allow the integration of the generated code with other programs, our
tests are also being implemented in C, using test scripts generated by BETA.
In some cases, the generated test scripts must be adapted. Indeed, as the test
scripts are generated from an abstract model, that uses abstract data, and we
are testing code resulting from the translation of a concrete model, which may
well encode data differently than the abstract model does, it may be necessary
to adapt the data structures used in the test cases.

As an example, figure 4 presents part of the generated test script correspond-
ing to a single test case for the inc operation from the Counter machine. In the
first part of the test, the state variables of Counter module are set in the state
required by the test case (lines 9–10). After that, the operation under test is
called (line 12). In the last part, there are assertions that verify if the results of
the called method are the expected ones (lines 14–19).

As can be seen in the code, there is a difference in a variable name: the
variable overflow of the abstract machine had its name changed to error in
the implementation. This is a simple example that refinement from abstract to
concrete data may require adaptation of the generated test drivers.

1 /**

2 * Test Case 1

3 * Formula: value = 0

4 */

5 void counter_inc_test_case_1 (

CuTest* tc)

6 {

7 counter$init$ (& counter);

8
9 counter.error = false;

10 counter.value = 0;

11
12 counter$inc (& counter);

13
14 CuAssertTrue(tc, ,

15 counter.error == false);

16 CuAssertTrue(tc,

17 counter.value == 1);

18
19 check_invariant(tc, counter)

;

20 }

Fig. 4. Concrete test for inc operation from Counter machine

Verifying Code Generation Tools for the B-Method Using Tests 87

After these adaptations are made, the test must be linked with the C or
LLVM code to be executed. The testing code and the generated code are com-
piled, resulting in an executable program. We must run this program to execute
the tests. After the execution, the test results must be evaluated to verify that
the code under test is in conformance with the abstract machine. It is expected
that all tests must pass. If a test fails, it produces a message indicating that the
code generator made a wrong translation to C or LLVM code.

5.1 Results

The results are organized considering both aspects of our testing strategy.
For the grammar-based aspect of the testing strategy, LGen generated 69

test models based on the B0 grammar definition, with production coverage.
When we applied C4B to these models, it rejected 27 of them. These failures are
due to the lack of support in the code generator for some syntactic constructions
present in those models. One of them was rejected because C4B does not support
expression record access for formal parameter instantiation and the remaining
26 were rejected because C4B does not support the renaming of models.

For the remaining 42, C4B was able to generate code, which was then com-
piled using the GNU C compiler (gcc). During this step, we identified problems
in the code generated for three of the test models. The compiling errors on the
code generated by C4B were: (1) an identifier declared as an array with a nega-
tive size, (2) a code block was not well defined, and (3) a parameter in a function
call was missing. The first one was not an error inserted by C4B, but a semantic
inconsistency of the syntactically correct input model which provoked an integer
overflow. The other two were actual bugs. The chart (a) in Figure 5 presents the
results of grammar-based testing for C4B.

For b2llvm, the code generator was able to produce code for 28 test models.
For the remainder 41, problems were found and b2llvm was not able to generate
code for them. There were 7 problems related to unsupported clauses, and 34
related to bugs in b2llvm9. Ultimately, all the 28 examples for which b2llvm
could generate code were successfully compiled using the LLVM compiler (llc).
The chart (b) in Figure 5 presents the results for b2llvm.

For the second aspect of our testing strategy, we used BETA to test semantic
aspects of the code generated by b2llvm and C4B. In this case study, the tests
were generated using Equivalent Classes (EC), Boundary Value Analysis (BV),
Active Clause Coverage (ACC) and Combinatorial Clause Coverage (CoC) cri-
teria. The same set of test models was used to test both code generators.

Table 1 presents information on the tests and the obtained results. The group
of columns (a) presents information on the B test models we used: abstract
machine name, number of lines and number of operations. The group of columns
(b), (c) and (d) present the number of test cases generated by BETA and the

9 The file format used by Atelier B to store parsed models suffered changes in the last
version, which was used to perform this experiment. The b2llvm code generator was
not fully updated to adapt to those changes in the input data format.

88 A.M. Moreira et al.

(a) C4B Results (b) b2llvm Results

Fig. 5. Overview of the grammar-based tests generated with by LGen

number of tests that passed for b2llvm and C4B generated code using EC/BV,
ACC, and CoC, respectively.

The capability to generate tests automatically using BETA allowed us to
save a good amount of time and effort that would be needed to implement these
tests manually, even with simple specifications and a small number of tests.
The effort for this process can be summarized into: (1) running the test script
generator; (2) adapting the test code with oracle information or other refinement
related information, if needed; (3) running and evaluating the tests. The process
of generating the test drivers with BETA, adapting the code and executing it
was done in a few minutes for each B operation in the test model. The overall
effort of generating and executing the test cases took approximately one day of
work for each code generator.

Table 1. Overview of the model-based tests generated by BETA

(a) B Modules (b) EC/BV (c) ACC (d) CoC
N. Machine Lines Ops TCs b2llvm C4B TCs b2llvm C4B TCs b2llvm C4B

1 Counter 51 4 10 10 10 8 8 8 6 6 6
2 Swap 18 3 3 3 3 6 6 6 1 1 1
3 Calculator 48 6 10 10 10 26 26 26 6 6 6
4 Wd 27 3 5 5 5 5 5 5 4 4 4
5 Prime 10 1 4 4 4 5 5 5 3 3 3
6 Division 12 1 2 2 2 3 3 3 1 1 1
7 Team 36 2 3 3 3 7 7 7 4 4 4
8 BubbleSort 35 1 1 1 1 1 1 1 1 1 1
9 TicTacToe 67 3 13 13 13 12 12 12 8 8 8
10 Fifo 22 2 2 0* 2 4 0* 4 2 0* 2
11 Calendar 40 1 2 0* 2 25 0* 25 25 0* 25
12 ATM 28 3 3 0* 3 7 0* 7 2 0* 2
13 Timetracer 47 6 7 0* 4 11 0* 6 9 0* 4

Verifying Code Generation Tools for the B-Method Using Tests 89

The tests for the modules 1 to 9 had the same results for both code generation
tools (see groups of columns (b), (c) and (d) of table 1). All tests generated by
BETA passed, which means that no errors were found in the code generated
by b2llvm and C4B for these modules. For machines number 10 to 13 (Fifo,
Calendar, ATM and Timetracer), b2llvm was not able to generate code because
it does not support some of the constructs used on these machines. Because of
this, the tests were not performed for b2llvm. In this situation the tests created
by BETA can be used to guide the implementation of these missing features in
b2llvm.

In contrast, C4B was able to generate code for these machines. All tests for
the modules 10 to 12 (Fifo, Calendar and ATM) passed. However, some tests for
the machine number 13 (Timetracer) failed (three of AC/BV, five of ACC and
five of CoC). After analyzing it, we found an error in the generated C code. The
B implementation for Timetracer imports other B modules, so it is expected
that the C code generated from it also calls other correspondent C modules.
C4B was capable of generating code for all the modules of Timetracer but it
did not import them where they were needed. Because of this, some tests failed.
This error was reported to ClearSy, the company that develops Atelier B and
C4B.

Using the testing strategy proposed in section 4, we found problems in both
code generators. Using grammar-based testing through LGen we found that
both code generators lack support for some constructs of the input language
and, in some cases, generate non-compilable code. Besides, the MBT part of our
strategy performed with BETA was able to find errors in the code generated by
C4B related to importation of modules.

In the end, we believe this case study show that the proposed testing strategy
is effective in finding errors in code generation tools, and is therefore beneficial to
their validation. This strategy is a viable alternative to validate code generators
since it required moderate effort, yet is able to uncover different classes of errors
in such tools.

6 Conclusions and Future Work

In this paper, we presented a case study where testing techniques were used
to verify two code generation tools for the B-Method. The strategy proposed
for this verification is a combination of grammar-based testing and model-based
testing. While grammar-based tests help to verify the translation capabilities of
the code generators, the model-based testing aspect of the strategy supports the
verification of functional equivalence between the input models and the generated
code (correctness of the output of the code generators).

The case study was important not only to verify the code generation tools
but also to evaluate the testing strategy that we proposed for this task. With
moderate effort, we were able to find important problems and missing features
on both code generation tools. The problems encountered during the case study
were reported to the tool developers and will contribute to improve the reliability
of C4B and b2llvm.

90 A.M. Moreira et al.

Even though our work here focused on tools for the B-Method, the proposed
testing strategy could be used to test other code generation tools. LGen or a
similar grammar-based testing tool can be used to generate test inputs for other
types of artefacts, as long as the grammar for the corresponding language is
available. A more restrictive requirement is the availability of a tool to perform
the model-based testing part of the strategy. But, given the variety of existing
MBT tools based on various kinds of input models, there might already exist a
tool to support this task.

As future work, we will focus on evaluating and improving the quality of the
generated test cases in both levels of testing, so that correctness can be asserted
with greater confidence. Some lines of improvement are:

– Use more sophisticated grammar-based testing criteria: in this case study we
used the Production Coverage criterion to improve the quality of the test set
used in the first aspect of the testing strategy. Using it, we were able to reach
a good coverage of the structure of the B0 grammar, ensuring a systematic
coverage of the B0 language. However, this structural coverage of the gram-
mar could be improved using a more sophisticated coverage criterion, such
as the Context-dependent branch coverage [11]. Coverage of further unfolding
of productions may also be considered for more rigorous tests.

– Perform empirical studies: to analyze the available criteria for both
grammar-based testing and model-based testing. The objective of this stud-
ies would be to define a minimum set of criteria to increase the confidence
of the users on their effectiveness.

– Concretization of the test data: currently, the test script generated by BETA
must be adapted before it can be executed. The tool generates tests from an
abstract model (B Machine) which usually uses abstract data structures (e.g.
deferred sets) that cannot be used on the implementation level. Because of
this, the values generated for the test cases may be too abstract. The support
for concretization of the test data is already under development. When it is
finished, the tool will be capable of generating test scripts that do not need
any adaptations. It will increase the confidence in the generated tests since
they will require less human input.

Acknowledgments. This work is partly supported by CAPES and CNPq grants
2057/14-0 (PDSE), 237049/2013-9, 573964/2008-4, (National Institute of Science and
Technology for Software Engineering — INES, www.ines.org.br).

References

1. Abrial, J.-R.: The B-book: assigning programs to meanings. Cambridge University
Press (1996)

2. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press, New York (2008)

3. ClearSy. Atelier B User Manual Version 4.0. Clearsy System Engineering (2009)

www.ines.org.br

Verifying Code Generation Tools for the B-Method Using Tests 91

4. Déharbe, D., Medeiros, Jr., V.: Proposal: Translation of B Implementations to
LLVM-IR. In: SBMF, Braśılia - DF, SBMF (2013)

5. Goerigk, W., Dold, A., Gaul, T., Goos, G., Heberle, A., Von Henke, F.W.,
Hoffmann, U., Langmaack, H., Pfeifer, H., Ruess, H., et al.: Compiler correctness
and implementation verification: The verifix approach (1996)

6. Gogolla, M., Vallecillo, A.: Tractable model transformation testing. In: France,
R.B., Kuester, J.M., Bordbar, B., Paige, R.F. (eds.) ECMFA 2011. LNCS, vol.
6698, pp. 221–235. Springer, Heidelberg (2011)

7. Härtel, J., Härtel, L., Lämmel, R.: Test-Data generation for Xtext. In: Combe-
male, B., Pearce, D.J., Barais, O., Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706,
pp. 342–351. Springer, Heidelberg (2014)

8. Hentz, C.: Automatic Generation of Tests from Language Descriptions (Text in
Portuguese). Master’s thesis, UFRN, Natal, Brazil (2010)

9. Hoffman, D.M., Ly-Gagnon, D., Strooper, P., Wang, H.-Y.: Grammar-based test
generation with yougen. Software: Practice and Experience 41(4), 427–447 (2011)

10. Kossatchev, A.S., Posypkin, M.A.: Survey of compiler testing methods. Program.
Comput. Softw. 31(1), 10–19 (2005)

11. Lämmel, R.: Grammar testing. In: Hussmann, H. (ed.) FASE 2001. LNCS,
vol. 2029, pp. 201–216. Springer, Heidelberg (2001)

12. Lämmel, R., Schulte, W.: Controllable combinatorial coverage in grammar-based
testing. In: Uyar, M.U., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS,
vol. 3964, pp. 19–38. Springer, Heidelberg (2006)

13. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: 2nd IEEE/ACM International Symposium on Code
Generation and Optimization, pp. 75–88 (2004)

14. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7),
107–115 (2009)

15. Li, N., Offutt, J.: An empirical analysis of test oracle strategies for model-based
testing. In: IEEE 7th International Conference on Software Testing, Verification
and Validation (April 2014)

16. Moreira, A.M., Hentz, C., Ramalho, V.: Application of a Syntax-based Testing
Method and Tool to Software Product Lines. In: 7th Brazilian Workshop on Sys-
tematic and Automated Software Testing, Braśılia - DF (2013)

17. Necula, G.C.: Translation validation for an optimizing compiler. ACM Sigplan
Notices 35(5), 83–94 (2000)

18. Purdom, P.: A sentence generator for testing parsers. BIT Numerical Mathematics
12(4), 366–375 (1972)

19. Stuermer, I., Conrad, M., Doerr, H., Pepper, P.: Systematic testing of model-based
code generators. IEEE Transactions on Software Engineering 33(9), 622–634 (2007)

20. Wimmer, M., Burgueño, L.: Testing M2T/T2M transformations. In: Moreira,
A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS,
vol. 8107, pp. 203–219. Springer, Heidelberg (2013)

21. Zuck, L., Pnueli, A., Fang, Y., Goldberg, B.: VOC: A Methodology for the Trans-
lation Validation of Optimizing Compilers. Journal of Universal Computer Science
9(3), 223–247 (2003)

Software Validation via Model Animation

Aaron M. Dutle(B), César A. Muñoz, Anthony J. Narkawicz,
and Ricky W. Butler

NASA Langley Research Center, Hampton, Virginia 23681-2199, USA
aaron.m.dutle@nasa.gov

Abstract. This paper explores a new approach to validating soft-
ware implementations that have been produced from formally-verified
algorithms. Although visual inspection gives some confidence that the
implementations faithfully reflect the formal models, it does not provide
complete assurance that the software is correct. The proposed approach,
which is based on animation of formal specifications, compares the outputs
computed by the software implementations on a given suite of input val-
ues to the outputs computed by the formal models on the same inputs, and
determines if they are equal up to a given tolerance. The approach is illus-
trated on a prototype air traffic management system that computes simple
kinematic trajectories for aircraft. Proofs for the mathematical models of
the system’s algorithms are carried out in the Prototype Verification Sys-
tem (PVS). The animation tool PVSio is used to evaluate the formal mod-
els on a set of randomly generated test cases. Output values computed by
PVSio are compared against output values computed by the actual soft-
ware. This comparison improves the assurance that the translation from
formalmodels to code is faithful and that, for example, floating point errors
do not greatly affect correctness and safety properties.

1 Introduction

The formal verification of software written in widely used programming
languages such as Java and C++ faces many hurdles. A typical approach for
developing safety-critical software in these languages consists of specifying and
verifying the critical components of the software as algorithms in a formal ver-
ification system, and then, translating either automatically or manually these
formal models into code. In this approach, visual inspection and peer-review
techniques are used to provide some assurance that the implemented code faith-
fully reflects the formal models. However, despite the best efforts, implementa-
tion errors can be accidentally introduced during the translation process.

The difficulty of the typical approach is increased by the large semantic gap
that exists between modern programming languages and the functional specifi-
cation languages often used in formal models. For example, imperative languages
support control structures for iteration that must be cast as recursive functions
in functional specification languages. This is complicated by the fact that itera-
tions in modern languages may produce side effects on an arbitrary number of
variables within their scope. In embedded systems, some of these complications
c© Springer International Publishing Switzerland 2015
J.C. Blanchette and N. Kosmatov (Eds.): TAP 2015, LNCS 9154, pp. 92–108, 2015.
DOI: 10.1007/978-3-319-21215-9 6

Software Validation via Model Animation 93

are avoided by restricting the programming languages to certain constructs.
However, for convenience and efficiency reasons, enforcing such restrictions is
not always desirable or even possible. Another difficulty arises from the fact
that modern programming languages utilize floating point arithmetic while for-
mal verification is usually performed over the real numbers. Therefore, bridging
the gap between implementations and their formally verified counterparts is a
challenging problem in the validation and verification of critical software.

Significant value can be obtained by validating the numerical computations of
a program against the actual theoretical values. Many subtle errors in the spec-
ification and implementation of an algorithm can be discovered and repaired by
this process. For example, numerical errors can cause the software to make com-
pletely different decisions from what would be done if the computations were
performed using exact values. The authors have found cases where two different
implementations of a formally-verified conflict resolution algorithm [20], com-
puted resolution maneuvers in opposite directions. This occurred even though
the two implementations, one in Java and the other in C++, were syntactically
almost identical. This undesirable behavior was due to the Java and C++ com-
pilers producing a different order of evaluation of an expression, which resulted
in different floating point results.

This paper explores a practical approach to the validation of software that
implements formally-verified algorithms. The approach, which is called model
animation, is based on animation1 of formal specifications. The technique com-
pares computations performed in the software implementations against those
symbolically evaluated on the corresponding formal models. While model ani-
mation does not provide an absolute guarantee that the software is correct,
it increases the confidence that the formal models are faithfully implemented
in code. The proposed approach is illustrated on a library of kinematic soft-
ware used for trajectory generation in conflict detection and resolution algo-
rithms. The validated library, which implements formally-verified algorithms, is
one of the core components of a prototype software for aircraft separation assur-
ance. This prototype software is under development at NASA Langley and is
being used for fast time simulations of advanced air traffic management (ATM)
concepts.

2 Model Animation

In this paper, the concept of software validation refers to the process of checking
that a software component meets its formal specification. The proposed soft-
ware validation approach assumes the availability of formally-verified models of
the software’s critical algorithms in the specification language of an interactive
theorem prover. It also assumes that the software implementations follow the
1 The term animation used here refers to having a (usually static) specification actually

perform calculation. In this sense, the formal model is brought to life, or animated.
This is not to be confused with a tool such as PVSioWeb [16] which provides a
graphical interface to, and interaction with, a PVS specification.

94 A.M. Dutle et al.

control and data structures of the formal models2. These two assumptions can
be satisfied by either manual or automatic translation [13]. Furthermore, they
do not have to be satisfied in any order. Indeed, an advantage of the proposed
approach with respect to the correct-by-construction approach [17] is that for-
mal models can be written a posteriori, which is usually done in the validation
of legacy critical code. The model animation technique involves the following
steps.

1. Automate the calculation of exact answers for specific inputs of the for-
mal model. Where exact answers are not possible, e.g. formulas involving
transcendental functions, provide semantic attachments that enable precise
computations on the formal models.

2. Automatically generate input values and compare the symbolic evaluation
of these values in the formal models to those computed by the software
implementation, to determine if are equal up to a specified tolerance.

This approach is illustrated on core component of a prototype air traffic
management (ATM) software package called Stratway, which is being developed
at NASA Langley [10]. Stratway provides conflict detection and resolution algo-
rithms using kinematic aircraft trajectories. These trajectories are generated in
Stratway from a flight plan described by a sequence of 4D waypoints (aircraft
position and time). The simplest model for flight based on this flight plan would
be to assume that an aircraft follows a straight line trajectory with constant
velocity between each successive pairs of waypoints. Of course, an aircraft can-
not actually fly such a model consistently, since all but the most basic flight
plans contain instantaneous changes in velocity and direction. On the other
hand, high-fidelity modeling of how an aircraft would actually fly a given flight
plan is both dependent on the dynamics of the aircraft, and the details of its
control systems. The trajectories generated in Stratway strike a balance between
these two extremes, producing trajectories with continuous velocities that obey
the basic laws of motion. Instantaneous changes in direction are replaced with
circular arcs, and instantaneous changes in ground or vertical speed are replaced
with segments of constant acceleration [11]. The resulting kinematic flight plan
is a sequence of points (called trajectory change points, or TCPs) where each
segment between successive points is either 1) a constant velocity straight line
segment, 2) a constant vertical acceleration segment, 3) a constant ground speed
acceleration segment, or 4) a circular turn segment. This kinematic flight plan
is compact in its representation and also gives a realistic picture of an aircraft
flying a given route.

The functions that compute the position and velocity of an aircraft through-
out each type of segment, as well as functions for determining the amount of time
needed to keep the velocity continuous throughout the flight plan, reside in a
kinematics library used by Stratway. Much of the core functionality of Stratway,
2 While this assumption is not strictly necessary for the approach to be carried out,

this syntactic similarity is one reason for trusting the software implementation. The
behavioral similarity justified by the outlined approach provides the other.

Software Validation via Model Animation 95

including trajectory generation and conflict detection and resolution algorithms,
depends on the correctness of this library. Hence, strong assurance of the correct-
ness of these basic kinematic functions is desired for a safety-critical application.
On the other hand, Stratway is intended to be used as a convenient tool for sim-
ulation, and for testing new algorithms and concepts for air traffic management.
Because of this, Stratway is available in both Java and C++ software libraries.
The formal verification of the actual code is extremely challenging, which is why
a practical approach to validate the software components of the library against
their formal models was undertaken.

For the ATM software examined, the core algorithms used in the kinematic
library were formally specified and verified in the Prototype Verification System
(PVS) [21]. The formal verification of these algorithms involved several aspects.
Foundational theorems are proved showing that the algorithms used for position
and velocity obey basic Newtonian physics. For example, a function computing
a velocity based on acceleration is proven to be equal to the integral of the
acceleration. Putative theorems are also proven in the theorem prover to show
the algorithms perform their desired task. For instance, for an algorithm designed
to model an aircraft moving from its current altitude to a target altitude, one
such theorem would say that the altitude at termination of the algorithm is the
target altitude.

An assumption of the proposed approach is that the software implementa-
tions and the formal models share similar data and control structures. Ideally,
variable and function names should be preserved. However, this is not always
possible due to different naming conventions in the languages involved. The syn-
tactic similarity allows for a simpler visual comparison of the different versions
of the algorithms, which increases the confidence that they do the same compu-
tation. For the kinematic ATM software, the PVS formal models were manually
translated into Java and C++ code. This paper focuses on the Java code, but
the same approach can be used on the C++ code. Much of the kinematic ATM
software analyzed in this project already existed, and the formalization was done
to give a higher level of assurance of its correctness. For a few of the existing
algorithms, the formal specification and putative theorems revealed subtle errors,
which were subsequently corrected.

Algorithms written in functional specification languages, such as PVS, cannot
always be evaluated due to the presence of non-computable operations over real
numbers such as square root and trigonometric functions. This issue is addressed
in the proposed approach by providing semantic attachments [9] that compute
guaranteed approximations of real-valued functions. In the case of PVS, the
animation of functional specifications, including semantic attachments, is sup-
ported by the animation tool PVSio [19]. PVSio provides semantic attachments
for several real number functions that are guaranteed to be correct up to a given
precision. These semantic attachments do not guarantee that all computations
are correct up to that precision, as approximation errors accumulate, but they
significantly improve the quality of numerical outputs over floating point com-
putations.

96 A.M. Dutle et al.

One important aspect of the proposed approach is to determine an appro-
priate collection of test input values for each algorithm. The following process
is used. First, for each parameter of an algorithm, an appropriate range for the
parameter is determined. For example, an altitude parameter is restricted to be
between 0 and 40,000 feet. Three models for testing are then used. In the first
model, a sequence of inputs are randomly selected to lie within the specified
ranges for the parameters, and the software and PVS output compared, check-
ing to see if they are the same up to a defined tolerance. In the second model,
the range of each parameter is split according to a mesh size. For example, the
altitude parameter might be split into 1000 foot blocks. For an algorithm with N
different inputs, this splits the input space into an N dimensional grid, and the
software and PVS outputs are compared at each intersection point. The third
method starts with the same grid as in method two, but instead of testing at
the grid intersection points, a random point from inside each block that this grid
defines is selected for comparison of the software and PVS outputs. For methods
two and three, variation in the mesh size allows for a tradeoff between the level
of assurance that the software and PVS algorithms agree and the amount of
time and computer resources used.

3 Formalization and Implementation of ATM Kinematic
Library

Among the several algorithms comprising Stratway’s library, the algorithms that
were validated using the proposed technique are those related to the generation
of kinematic trajectories and, in particular, the algorithms that deal with turn
dynamics, vertical acceleration, and ground speed acceleration. Furthermore, in
order to complete the full specification, a host of additional helper algorithms
and datatypes had to be specified. For example, a large collection of basic vector
operations were implemented, including projections between 3D and 2D vectors,
conversions to and from velocity vectors specified in Euclidean coordinates versus
vectors in polar coordinates specified by track angle and ground speed, and many
others.

In addition to specifying the algorithms that are used explicitly in the kine-
matics library, a wide variety of mathematical background must be built into
the theorem prover in order to prove the foundational and putative theorems
that provide assurance that the algorithms are specified correctly. For instance,
in order to prove that a velocity function is the integral of a specified acceler-
ation, the theory of integration must be accessible to the theorem prover. The
NASA PVS Library3 contains much of the required mathematical background
(including integral calculus [6]), but the required mathematics is almost never
fully ready to apply directly. For example, the vertical speed algorithms are
essentially described by piecewise constant acceleration functions. In order to
prove the corresponding foundational theorems, a theory of piecewise defined
functions and their integration was written and employed.
3 http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library.

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library

Software Validation via Model Animation 97

For brevity, the remainder of the section focuses on the case of turn dynamics.

3.1 Turn Dynamics in PVS

The kinematics library includes algorithms to compute the trajectory of an air-
craft in a frictionless banked turn, which is turning to leave one leg and join
another leg of a predetermined flight plan. The trajectory of such an aircraft
traces out a circular arc. In PVS, algorithms are specified as strongly-typed
functions. For instance, the following PVS function computes the position and
velocity of a turning aircraft at a given time.

turnOmega(so,vo : Vect3, t : real, ω : real) : [Vect3, Vect3] ≡
IF ω = 0 THEN (so + t · vo,vo)
ELSE LET

v = groundSpeed(vo)/ω,

s = (sox + v · (cos(trk(vo)) − cos(tω + trk(vo))),
soy − v · (sin(trk(vo)) − sin(tω + trk(vo))),
soz + tvoz),

v = (groundSpeed(vo) · sin(tω + trk(vo)),
groundSpeed(vo) · cos(tω + trk(vo)),
voz) IN

(s,v)
ENDIF .

(1)

The parameters so and vo are vectors in R
3 that represent the initial position

and velocity of the aircraft, respectively. The parameter t is the future time at
which the state of the aircraft along its turn is computed. Finally, ω is the angular
velocity. The output of this function is the position and velocity of the aircraft at
the time t along its turn, which is relative to the current time. The function trk
used here computes the track angle of a vector as measured from true north.4

For a banked turn, there is a simple relationship between the angular velocity ω
and the radius R, given by the following equation.

ω = dir · groundSpeed(vo)/R.

The parameter dir is either −1 or 1, depending on whether it is a right turn or
a left turn, respectively.

The following theorem expresses the correctness of the function turnOmega. It
states that for all times t, the distance between the position output of turnOmega
and the center of the turn is given by the turn radius.

4 As typical in air navigation, angles are measured clockwise with respect to true
north.

98 A.M. Dutle et al.

Theorem 1. For all t ∈ R, so,vo ∈ R
3, ω �= 0 ∈ R, let v = groundSpeed(vo)

ω , w =
so + (v cos(trk(vo)),−v sin(trk(vo)), tvoz), (s,v) = turnOmega(so,vo, t, ω),
then

‖s − w‖ = |v|.
Theorem 1 implicitly states that w is the center of the turn. This theorem
has been formally proved in PVS and its proof depends only on basic proper-
ties of sine and cosine. Figure 1 illustrates the geometric relations involved in
Theorem 1.

Fig. 1. Illustration of Theorem 1

3.2 Turn Dynamics in Java

The structural differences between PVS and Java play a large role in the way that
the Java versions of algorithms are implemented. For example, some practices
that are fairly common programming style in Java, such as exiting a program
without returning a value, or returning a default failure value, are not possible
in PVS. Another difference is that PVS functions must be provided all of their
parameters, while a normal Java program may invoke or alter the values of
any number of globally specified variables. For the kinematics library, all of the
algorithms are written in Java as static methods to better reflect the functional
specification style in PVS. Figure 2 illustrates the implementation of the function
turnOmega, specified by Formula (1), in Java. While differences are apparent,
the two versions are closely matched.

4 Model Animation of ATM Kinematic Library

The specification of an algorithm in a theorem prover such as PVS, along with
an appropriate collection of theorems showing that the algorithm produces the
desired output, allows for an extraordinarily high level of assurance that the
algorithm is designed and implemented correctly. The translation of such an
algorithm in a syntactically close way from the formal models to code carries

Software Validation via Model Animation 99

static Pair<Vect3,Velocity> turnOmega(Vect3 s0, Velocity v0, double t,

double omega) {

if (Util.almost_equals(omega,0))

return new Pair<Vect3,Velocity>(s0.linear(v0,t),v0);

double v = v0.gs()/omega;

double theta = v0.trk();

double xT = s0.x + v*(Math.cos(theta) - Math.cos(omega*t+theta));

double yT = s0.y - v*(Math.sin(theta) - Math.sin(omega*t+theta));

double zT = s0.z + v0.z*t;

Vect3 ns = new Vect3(xT,yT,zT);

Velocity nv = v0.mkTrk(v0.trk()+omega*t);

return new Pair<Vect3,Velocity>(ns,nv);

}

Fig. 2. Java implementation of turnOmega

along much of this assurance of correctness. The final step in the proposed val-
idation process is to evaluate the formal models on a selected collection of test
inputs and to compare the outputs of this evaluation to the outputs computed
by the code.

The reason why this model animation is important is two-fold. First, the
algorithms that are examined invariably rely on simpler functions, which in turn
rely on simpler functions, and so on, down to the basic functions defined in
each respective language. While the syntactic similarity of the formal models
and their implementations suggests that they perform the same computation,
even slight differences in the lower-order functions could introduce significant
differences in behavior. The comparison of the outputs of the two versions of the
algorithm on a wide range of inputs can catch these invisible differences.

The second reason for the comparison of Java and PVS outputs is due to the
inherent differences between how PVS and Java operate on numerical values.
In PVS, like almost every other specification language, numerical operations are
defined over real numbers. In contrast, Java, like almost every other program-
ming language, uses floating point arithmetic. This means that for any algorithm
which manipulates numerical values, calculations in Java may introduce estima-
tions that make the output slightly different than what the calculation would
produce if performed over the real numbers. For any one calculation, the differ-
ence between the expected real number output and the floating point estimate
are generally small (on the order of 10−15), but for an algorithm that performs
hundreds of calculations, the effect of compounding small errors may lead to
noticeable differences.

4.1 Test Generation

As mentioned in Section 2, three methods were chosen for selecting the input
data for testing the output of the PVS specified algorithms versus the Java coun-
terparts. All three methods assume that an appropriate range has been chosen

100 A.M. Dutle et al.

for each input variable of the function under consideration. If d is the number of
input variables, the allowable range of input values forms a d-dimensional hyper-
rectangle in R

d. For concision, any such rectangle will be referred to simply as
a box.

The first method, which will be referred to as the random method, chooses
a user specified number of points uniformly at random from the defined box.
This method benefits from being simple to implement, and continuable in the
sense that additional testing is unlikely to duplicate points, so further tests can
be easily combined with previous results. The randomness aspect also helps
mitigate the possibility that the outputs of a function match well for whole
numbers or simple fractions, but not for long decimal expansions.

In the second method, referred to as the grid method, the user specifies a
mesh size for each variable in the function being tested. For example, suppose the
range for the variable t is 0 ≤ t ≤ 2, and a mesh size of 0.5 is specified. Then the
range for the variable t is split into the 4 subintervals [0, 0.5], [0.5, 1], [1, 1.5], and
[1.5, 2]. In general, if the range of variable t is [a, b], and the mesh size is εt, then
the number of subintervals created is roughly (b − a)/εt. As should be expected,
if the variable range is large, or the mesh size is small, the number of subintervals
created can be very large. Each endpoint of a subinterval is used as a possible
input for the given variable. For example, there are 5 inputs for the variable t
above. These values are calculated for each variable, and every combination of
the values is used as a test point. Essentially, the original range box is sliced in
each dimension, and the intersection points of the slices are taken as test points
for the function. The major benefit of this method versus the random method is
guaranteed coverage of the input space. The main drawbacks are that the number
of points created can be very large (depending on the number of variables, their
ranges, and mesh sizes), and that the points tested may not represent “average”
points, since they lack the randomness element of the first method.

The third method, called the grid random method, combines these two tech-
niques. It first splits the range of each variable into subintervals using a user
defined mesh size. Note that every possible choice of one such subinterval for
each variable defines a sub box of the original range. This method selects one
point uniformly at random from within each such box. This method benefits
from the guaranteed coverage of the grid method, and the randomness of the
random method, but is the most computationally expensive of the three.

The combination of the three methods above offer a number of advantages, in
that they are simple to describe and implement while also allowing any plausible
input value a non-zero probability of being selected. The grid and grid-random
methods also provide for fairly uniform coverage of the input space. On the other
hand, the methods above do not necessarily satisfy any code coverage criterion,
such as MC/DC [12]. In general, any method that can generate test cases from
either the software implementation or the formal specification can be used to
produce the test inputs. Some of these possibilities are discussed in Section 5.

Software Validation via Model Animation 101

Once a method for determining function inputs has been selected, the follow-
ing four steps must be performed in order to compare the outputs of a function
under test.

1. Generate the set of test points according to the specified testing method.
2. Determine the output of the Java version of the function on each test point.
3. Determine the output of the PVS version of the function on each test point.
4. Compare the values of the two outputs, to determine if they agree up to

some user-defined tolerance.

Because the Java versions of each function are purposely built for computa-
tion, and the actual inputs from end-users will be processed through Java, the
first two steps are carried out using Java. To do this, a Java program was writ-
ten specifically for each function and testing method. The output of the Java
program is a collection of text files, each containing a list of formatted records in
PVS syntax. Each record consists of a single test point, which lists the floating
point input value of each variable in the function being tested, as well as the
floating point output of the Java version of the function on evaluation at the
test point.

4.2 Model Animation

To determine the output of a PVS function on a particular input, it is necessary
to be able to evaluate the function on concrete input values. In PVS, this can be
done through the ground evaluator [24] assuming that the functions are written
in the executable fragment of PVS. Most functions in the ATM kinematic library
are a priori computable, except that they rely on non-computable real-number
functions such as square root and trigonometric functions. The PVS ground
evaluator does not support evaluation of these kinds of functions.

To evaluate functions that are not supported by the ground evaluator, it is
necessary to use semantic attachments [9]. A semantic attachment is a piece
of code that links an uninterpreted PVS function to another function, possible
another PVS function, for the sake of evaluation. For example, the square root
function cannot be exactly evaluated, since it often returns an irrational number
on a rational input. In a formal specification on the other hand, the precise square
root function can be reasoned about, and properties proven about it theoretically.
If a function in this formal specification is to be evaluated, some computable
method to approximate the square root, the semantic attachment, is provided.
Any time a square root is encountered in the execution of the specification, the
semantic attachment is evaluted instead.

In general, semantic attachments are not safe as there is no guarantee that the
semantic attachments soundly and completely realize the original functions. For
instance, it is impossible to provide safe semantic attachments to irrational real-
valued functions. Indeed, a semantic attachment has no guarantee to have any
relation to the function it is attached to. Hence, in PVS, semantic attachments
are allowed in the animation of specifications, but not in a formal proof.

102 A.M. Dutle et al.

Since writing semantic attachments is error prone, PVS includes the anima-
tion tool PVSio [19] that provides a predefined library of semantic attachments.
The PVSio library of semantic attachments includes input/output operations,
imperative features, and floating point arithmetic. For this project, PVSio has
been extended with semantic attachments for exact arithmetic definitions of
square root, sine, cosine, and arctangent. Concretely, if f is one of these math-
ematical functions, a semantic attachment f sa is provided that satisfies the
following property for all x ∈ R

|f sa(x) − f(x)| ≤ ε, (2)

where ε is a small positive number provided by the user. With these semantic
attachments, all evaluations are then performed using exact arithmetic. How-
ever, it should be noted that Formula (2) does not guarantee that the compu-
tational error is always bounded by ε, as errors accumulate when combined in
large numerical expressions. Overall, these semantic attachments provide a much
better numerical precision than floating-point arithmetic and, since arithmetic
is always exact for all the other operators, evaluation of numerical expressions
is independent of the order of evaluation.

For this project, PVSio has also been extended with a library of seman-
tic attachments that automate the process of checking test files in the format
discussed in Section 4.1. This library provides functionality for reading text
files, converting floating point inputs into exact rational number representa-
tions, symbolically evaluating these rational inputs in PVS, comparing the out-
puts to a given tolerance, and printing the results. This library, which is called
PVSioChecker, is now part of the NASA PVS libraries.

4.3 Results

The five functions that were chosen for comparison between the PVS and Java
versions were the following:

From the vertical speed algorithms, the functions tested were

– vsAccelUntil,
– vsAccelUntilWithRampUp,
– vsLevelOut.

From the ground speed algorithms, the function tested was

– gsAccelUntil,

From the turn algorithms, the function tested was

– turnOmega.

Each function was tested using all three test-point selection methods (ran-
dom, grid, and grid random), where the upper and lower bounds for the majority
of the parameters come from Stratway defaults. The only parameters lacking

Software Validation via Model Animation 103

default values in Stratway are the horizontal position coordinates. For these,
upper and lower bounds were chosen to be 1000 and -1000 nautical miles in each
coordinate. Several of the bounds apply to multiple parameters. For instance,
the bounds on ground speed apply to both the initial ground speed of the air-
craft, and to the goal ground speed used in a gsAccelUntil maneuver. The
parameters and corresponding bounds are listed in Table 1.

Table 1. Global bounds for input parameters

sox, soy altitude ground speed track angle

lower -1000 nmi 500 ft 50 kn 0 deg
upper 1000 nmi 40,000 ft 700 kn 360 deg

vertical speed bank angle acceleration1

lower -5000 ft/min -30 deg 0.1 m/s2

upper 5000 ft/min 30 deg 2 m/s2

1Bounds apply to ground speed and vertical speed acceleration.

The output of each function on a test point is a pair of vectors containing a
calculated position and velocity for some point of the chosen maneuver. Given
a test point, this pair of vectors is computed using both the PVS and the Java
versions of the function, and if the PVS and Java outputs for any single coordi-
nate differ by more than a tolerance value, which is set to 10−8, the test point is
marked as a fail. The precision used for the semantic attachments of real-valued
functions is 10−15. In general, the threshold for tolerance will depend on the par-
ticulars of the software under consideration. For the software considered here,
the input data are positions and velocities of aircraft, which in the use-case are
obtained through the Automatic Dependent Surveillance - Broadcast (ADS-B)
system on each aircraft. At the highest level of fidelity that these systems may be
certified at, the horizontal position is required to be accurate to with 3 meters,
the vertical position accurate to within 45 meters, and the horizontal velocity
accurate to within 0.3 meters/second5 [1]. The minimum acceptable standards
are far less precise. All calculations are performed in these units, and so a toler-
ance of 10−2 would likely be sufficient in this case. The tolerance used, 10−8 was
selected because it reveals the edge of where the Java and PVS implementations
differ. The precision for the semantic attachments was chosen through trial and
error to be as small as possible without significantly increasing the computation
time.

5 There is no requirement for vertical velocity accuracy.

104 A.M. Dutle et al.

For each function and point selection method, Table 2 lists the number of
records created, the number of fails, and the CPU time of testing.6 Approx-
imately 2 million test points were generated for each function, spread fairly
evenly over the three testing methods. For the random method, the number of
points to be tested is simple to explicitly specify. For the grid and grid random
methods, the number of test points is governed by the step size chosen for each
parameter. Each function has, as input, an initial 3D position and velocity, a
time parameter, and some number of other parameters. Because each function
has a parameter space of at least 8 dimensions, a decrease in step size by half in
each parameter would result in at least 256 times as many records than before
the decrease. Due to this, certain parameters of each function were given prior-
ity for allowing small step size. For instance, for the vertical speed algorithms,
the altitude, vertical velocity, and vertical acceleration parameters were priori-
tized, since the horizontal position and velocity are simply projections in these
algorithms. The step sizes were then calculated that would produce the desired
number of test points.

In all, over 8 million test records were generated, and fewer than 0.01 %
of the records failed with the specified tolerance of 10−8. A few further notes
about the results are in order. First, if the tolerance is increased to 10−6, there
are no failures at all. Second, the function testing whether two numbers are
almost equal compares them in terms of absolute error. If compared in terms of
relative error at the same tolerance, then there are again zero failures. Lastly, it
is notable that almost all of the failures occurred in the function turnOmega. This
is likely due to the function modeling a circular turn, while the other functions
maintain straight-line trajectories. Because of this, the output of turnOmega is
highly sensitive to any error in the calculation of several trigonometric functions.
Nevertheless, a closer examination of the actual failures records for turnOmega
was conducted. The examination revealed that nearly all failures occurred when
the angular velocity parameter is below 0.2 deg/sec, and the time parameter is
over 1000 seconds. This corresponds calculating a point over 16 minutes into a
turn with a very slight bank angle. Such turns are rarely executed in reality,
where the standard turn rate is approximately 3 deg/sec, taking just 2 minutes
for a full 360 degree turn.

5 Related and Future Work

Model animation is a key feature of model-based development tools. For instance,
MathWork’s Simulink7 is a widely-used simulation environment for the analysis
of dynamical systems, which are specified using state charts. In the context of
formal methods, tools like PVSio-web [16], which is also built on top of PVSio,
and PetShop [22], which animate Petri nets, provide powerful features for pro-
totyping and validating formal specifications. In [2], VDM models are animated
6 All testing was performed on a 2014 Macbook Pro with a 2GHz Intel Core i7 pro-

cessor and 8 GB of RAM.
7 http://www.mathworks.com/products/simulink.

http://www.mathworks.com/products/simulink

Software Validation via Model Animation 105

Table 2. Testing Results

vsAccelUntil vsAccelUntilWithRampUp

Records Fails CPU time Records Fails CPU time

Rand 1,000,000 0 11.32 hr Rand 960,000 0 11.7 hr
Grid 622 ,080 0 4.11 hr Grid 340,416 0 2.45 hr
G-R 332,659 0 2.88 hr G-R 665,429 0 6.48 hr

totals 1,954,739 0 18.31 hr totals 1,965,845 0 20.63 hr

vsLevelOut gsAccelUntil

Records Fails CPU time Records Fails CPU time

Rand 810,000 0 11.53 hr Rand 330,000 0 12.29 hr
Grid 518,400 0 4.88 hr Grid 315,000 0 11.8 hr
G-R 915,000 8 11.42 hr G-R 340,000 0 11.7 hr

totals 2,243,400 8 27.83 hr totals 985,000 0 35.79 hr

turnOmega Global Totals
Records Fails CPU time Records Fails CPU time

Rand 615,000 225 13.06 hr Rand 3,715,000 225 59.9 hr
Grid 504,000 300 7.89 hr Grid 2,299,896 300 31.13 hr
G-R 436,066 309 8.4 hr G-R 2,689,154 317 40.88 hr

totals 1,555,066 834 29.35 hr totals 8,704,050 842 131.91 hr

and used as oracles on generated test cases to uncover requirement errors. These
works, however, do not aim at validating formal models against their software
implementations as the approach proposed in this paper.

The approach presented in this paper is similar to the one supported by tools
like QuickCheck [8] for Haskell and AutoTest [18] for Eiffel. These tools check
software annotations on a set of randomly generated test cases. Similar tools exist
for theorem provers [3] and other formal methods [26]. The presented approach
also has similarities to the animation of EventB/B models using tools such as JeB
[25] and ProB [14]. Indeed, JeB even provides support for a type of semantic
attachment in the form of “hooks” for the user to supply Java code where a
function in the specification is undefined. These tools, though, are generally
intended for early testing of a specification, and for model checking. To the best
knowledge of the authors, none of these tools attempt to bridge the gap between
code and formal specifications due, for example, to numerical computations.

106 A.M. Dutle et al.

Concolic test [23] and other test generation techniques [7] combine concrete
and symbolic execution of code to generate test cases that satisfy some coverage
criteria. Generation of test cases is a step of the proposed approach. Hence, the
software validation approach proposed in this paper can directly use these tech-
niques. Indeed, an early reviewer of this paper suggested the following technique.
Generate a test suite by determining a set of inputs that provide guaranteed path
coverage on the formal specification, and another set of inputs that guarantee
coverage on the software implementation. Using the full test suite would guar-
antee similar behavior of the software and its specification on every possible
execution path for a concrete test value.

Future work involves employing the approach to validate more of the code
utilized by the NASA air traffic management software under development, as
well as further employing and developing tools to automate the code generation
from specification. Another line of research is to develop a method for produc-
ing guaranteed output precision, or upper and lower bounds, for the symbolic
evaluation of a function in PVS.

The NASA PVS library also contains a specification of floating point numbers
and operations on them. Algorithms specified in this context can be translated
to code in a more faithful way, and the behavior is likely to be much closer
between the two. The hurdle to this pursuing this line of research is that proving
properties of functions inside the context of floating point numbers is much more
difficult.

6 Conclusion

Despite recent progress on the formal analysis of floating point programs [4,5,15],
verification of software involving numerical computations is still a challenging
problem. An alternative approach to software verification consists on the devel-
opment of code from formally verified models of safety-critical algorithms. While
this approach does not provide strong guarantees of software correctness, visual
inspection of both the code and the formal models increases the confidence that
the software behavior closely reflects its formal specification. This paper pro-
poses a new approach that automates the validation of software implementations
against their formal models. This approach, which is based on model animation,
compares the output of algorithms implemented in a programming language to
the results obtained from the symbolic evaluation of formal models enriched with
semantic attachments. These semantic attachments enable symbolic evaluation
of even irrational, real-valued functions, via precise numerical computations.
The proposed approach is illustrated on an air traffic management system cur-
rently used at NASA for conducting research on advanced air traffic management
concepts.

Software Validation via Model Animation 107

References

1. Federal Aviation Administration. Airworthiness approval of automatic dependent
surveillance-broadcast (ADS-B) out systems. Advisory Circular AC 20–165A, FAA
(November 2012)

2. Aichernig, B.K., Gerstinger, A., Aster, R.: Formal specification techniques as a
catalyst in validation. In: Fifth IEEE International Symposim on High Assurance
Systems Engineering, HASE 2000, pp. 203–206. IEEE (2000)

3. Berghofer, S., Nipkow, T.: Random testing in Isabelle/HOL. In: Cuellar, J., Liu, Z.
(eds.) Software Engineering and Formal Methods, SEFM 2004, pp. 230–239. IEEE
Computer Society (2004)

4. Boldo, S.: Deductive formal verification: how to make your floating-point programs
behave. Thèse d’habilitation, Université Paris-Sud (October 2014)

5. Boldo, S., Marché, C.: Formal Verification of Numerical Programs: from C Anno-
tated Programs to Mechanical Proofs. Mathematics in Computer Science 5, 377–
393 (2011)

6. Butler, R.: Formalization of the integral calculus in the PVS theorem prover. Jour-
nal of Formalized Reasoning 2(1) (2009)

7. Cadar, C., Godefroid, P., Khurshid, S., Păsăreanu, C.S., Sen, K., Tillmann, N.,
Visser, W.: Symbolic execution for software testing in practice: preliminary assess-
ment. In: Proceedings of the 33rd International Conference on Software Engineer-
ing, ICSE 2011, pp. 1066–1071. ACM, New York (2011)

8. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of the Fifth ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2000, pp. 268–279. ACM, New York
(2000)

9. Crow, J., Owre, S., Rushby, J., Shankar, N., Stringer-Calvert, D.: Evaluating, test-
ing, and animating PVS specifications. Technical report, Computer Science Labo-
ratory, SRI International, Menlo Park, CA (March 2001)

10. Hagen, G., Butler, R., Maddalon, J.: Stratway: a modular approach to strategic
conflict resolution. In: Preceedings of 11th AIAA Aviation Technology, Integration,
and Operations (ATIO) Conference, Virgina Beach, VA (September 2011)

11. Hagen, G.E., Butler, R.W.: Towards a formal semantics of flight plans and trajec-
tories. Technical Memorandum NASA/TM-2014-218862, NASA, Langley Research
Center, Hampton VA 23681–2199, USA (December 2014)

12. Hayhurst, K.J., Veerhusen, D.S., Chilenski, J.J., Rierson, L.K.: A practical tuto-
rial on modified condition/decision coverage. Technical Memorandum NASA/TM-
2001-210876, NASA, Langley Research Center, Hampton VA 23681–2199, USA
(May 2001)

13. Lensink, L., Smetsers, S., van Eekelen, M.: Generating verifiable java code from
verified PVS specifications. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS,
vol. 7226, pp. 310–325. Springer, Heidelberg (2012)

14. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

15. Marché, C.: Verification of the functional behavior of a floating-point program: an
industrial case study. Science of Computer Programming 96(3), 279–296 (2014)

16. Masci, P., Oladimeji, P., Curzon, P., Thimbleby, H.: Tool demo: using PVSio-web
to demonstrate software issues in medical user interfaces. In: 4th International
Symposium on Foundations of Healthcare Information Engineering and Systems
(FHIES2014) (2014)

108 A.M. Dutle et al.

17. Meyer, B.: Applying “Design by Contract”. Computer 25(10), 40–51 (1992)
18. Meyer, B., Fiva, A., Ciupa, I., Leitner, A., Wei, Y., Stapf, E.: Programs that test

themselves. Computer 42(9), 46–55 (2009)
19. Muñoz, C.: Rapid prototyping in PVS. Contractor Report NASA/CR-2003-212418,

NASA, Langley Research Center, Hampton VA 23681–2199, USA (May 2003)
20. Narkawicz, A., Muñoz, C.: State-based implicit coordination and applications.

Technical Publication NASA/TP-2011-217067, NASA, Langley Research Center,
Hampton VA 23681–2199, USA (March 2011)

21. Owre, S., Rushby, J., Shankar, N.: PVS: a prototype verification. In: Kapur, D.
(ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992)

22. Palanque, P., Ladry, J.-F., Navarre, D., Barboni, E.: High-Fidelity prototyping of
interactive systems can be formal too. In: Jacko, J.A. (ed.) HCI International 2009,
Part I. LNCS, vol. 5610, pp. 667–676. Springer, Heidelberg (2009)

23. Sen, K., Marinov, D., Agha, G.: CUTE: A concolic unit testing engine for C. In:
Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ESEC/FSE-13, pp. 263–272. ACM, New York (2005)

24. Shankar, N.: Efficiently executing PVS. Technical report, Project report, Comput-
erScience Laboratory, SRI International, Menlo Park (1999)

25. Yang, F., Jacquot, J.-P., Souquières, J.: Jeb: safe simulation of event-b models in
javascript. In: 2013 20th Asia-Pacific Software Engineering Conference (APSEC),
vol. 1, pp. 571–576 (December 2013)

26. Yusuke, W., Shigeru, K.: Performance evaluation of a testing framework using
quickcheck and hadoop. IPSJ Journal 53(2), 7 (2012)

Sequential Generation of Structured Arrays
and Its Deductive Verification

Richard Genestier1, Alain Giorgetti1,2(B), and Guillaume Petiot1,3

1 FEMTO-ST Institute, University of Franche-Comté, 25030 Besançon
CEDEX, France

2 INRIA Nancy - Grand Est, CASSIS project, 54600 Villers-les-Nancy, France
3 CEA, LIST, Software Reliability Laboratory PC 174, 91191 Gif-sur-Yvette, France
{richard.genestier,alain.giorgetti}@femto-st.fr, guillaume.petiot@cea.fr

Abstract. A structured array is an array satisfying given constraints,
such as being sorted or having no duplicate values. Generation of all
arrays with a given structure up to some given length has many appli-
cations, including bounded exhaustive testing. A sequential generator
of structured arrays can be defined by two C functions: the first one
computes an initial array, and the second one steps from one array to
the next one according to some total order on the set of arrays. We
formally specify with ACSL annotations that the generated arrays sat-
isfy the prescribed structural constraints (soundness property) and that
the generation is in increasing lexicographic order (progress property).
We refine this specification into two programming and specification pat-
terns: one for generation in lexicographic order and one for generation
by filtering the output of another generator. We distribute a library of
generators instantiating these patterns. After adding suitable loop invari-
ants we automatically prove the soundness and progress properties with
the Frama-C platform.

Keywords: Formal specification · Deductive verification · Combinato-
rial enumeration · Sequential generation · Imperative program

1 Introduction

Automated techniques for software testing are attractive because they produce
many test cases in a more rational, reliable and affordable way than manual ones.
We consider here unit testing for functions inputting a structured array. An array
is said to be structured if it satisfies given constraints, such as being sorted or
having no duplicate values. A challenge in input data generation for unit testing
is to design and implement correct generators of complex data structures.

A recent trend in research in software verification aims at building verification
environments that are themselves certified, in order to avoid erroneously validat-
ing safety properties of critical software. Randomized property-based testing has
been formalized in Coq [15] to certify random generators. M. Carlier, C. Dubois
and A. Gotlieb formally certify a constraint solver in Coq [6] as a piece of a
c© Springer International Publishing Switzerland 2015
J.C. Blanchette and N. Kosmatov (Eds.): TAP 2015, LNCS 9154, pp. 109–128, 2015.
DOI: 10.1007/978-3-319-21215-9 7

110 R. Genestier et al.

certified testing environment. A certified constraint solver on a finite domain of
arrays needs certified sequential generators of these structures to explore their
domain. As a complement to random testing we address Bounded Exhaustive
Testing (BET for short) with algorithms generating all the arrays with given
length and structure. We formally specify the behavior of these exhaustive array
generators. As an alternative to interactive proving, we annotate them with
loop invariants and variants, so that their formal contracts can be proved auto-
matically. The BET approach is relevant [19] because it offers the advantage
of providing counterexamples of minimal size, and errors in the function to be
tested can often be revealed using input arrays of small size.

For a predefined total order on all the arrays of the same length, a sequential
generator of all arrays with a given structure is composed of two functions: the
first function constructs the smallest array of a given length satisfying the struc-
tural constraint, and from any array, the second function constructs the next
array in that order satisfying the constraint. We present a uniform approach to
the rational implementation of sequential generators of structured arrays. They
are implemented as C functions and formally specified in the ANSI C Speci-
fication Language (ACSL) [2]. We consider three behavioral properties for the
generation functions. The soundness property asserts that both functions gen-
erate arrays satisfying the prescribed constraints. The progress property asserts
that the second function generates arrays in increasing lexicographic order. It
entails the termination of repeated calls to the second function. The exhaustivity
property asserts that the generator does not omit any solution. According to the
deductive approach promoted by Floyd [11], Hoare [13] and Dijkstra [9], we stat-
ically verify the soundness and progress properties. In addition, we execute the
generator up to some array length to check dynamically the exhaustivity prop-
erty, either by counting or by comparison with the output of another generator.
For deductive verification, we use the WP plugin [8] of Frama-C, which imple-
ments the Weakest Precondition calculus for C programs annotated in ACSL,
assisted by SMT solvers [21] to prove the verification conditions generated by
WP. Frama-C is a framework for the analysis of C programs developed by CEA
LIST and INRIA Saclay.

We also propose programming and specification patterns to facilitate the
design of the generation functions and the verification of their properties. A first
pattern formalizes the principle of generation in lexicographic order by modifying
the end of the array. A second pattern describes generation by filtering the output
of an existing generator. It is completed by a pattern outlining how to uniformly
transform a first-order constraint into a Boolean function.

The contributions of this paper are (i) general programming and specification
patterns to speed up the construction and verification of sequential generators, (ii)
a verified library of C programs and ACSL specifications implementing sequential
generation algorithms, and (iii) automated formal proofs of their soundness and
progress properties.

After giving some definitions, Section 2 presents generation in lexicographic
order through a running example and a general pattern. Section 3 illustrates

Sequential Generation of Structured Arrays and Its Deductive Verification 111

generation by filtering with the same example and proposes patterns that make
this method easy to apply to obtain and verify many sequential generators.
Verification results for several generators constructed from these patterns are
presented in Section 4. Section 5 presents some related work, and Section 6
concludes.

2 Generation in Lexicographic Order

In all that follows, array values are mathematical integers. Bounded exhaus-
tive generation of arrays only makes sense when there are finitely many arrays
of each length. To this end array values are assumed to be lower- and upper-
bounded by two C integers, whose absolute value is usually small, so that the
number of arrays to generate does not become too large. Moreover it can often
be assumed that all the computations for new array values are performed within
these bounds. Under these assumptions, array values can be safely represented
by C integers with the type int, without any risk of arithmetic overflows.

Let < denote the strict total order on integers, such that i < i + 1 for any
integer i.

Definition 1. The lexicographic order on integer arrays, denoted by ≺, is such
that b ≺ c if and only if there is an index i (0 ≤ i ≤ n − 1) such that b[i] < c[i]
and b[j] = c[j] for 0 ≤ j ≤ i − 1, for all integer arrays b and c of length n ≥ 0.

The binary relation ≺ is a strict total order. All the programs presented in the
paper generate structured arrays in increasing lexicographic order.

Section 2.1 defines sequential generation functions. Sections 2.2 and 2.4
respectively present the principle of generation in lexicographic order through
the example of a family of structured arrays and through a formal pattern, while
Section 2.3 presents a formalization of the progress property.

2.1 Sequential Generation Functions

Consider a family z of structured C arrays of length n whose values are of type
int. A sequential generator of arrays in this family consists of two C functions,
called the (sequential) generation functions. The first function

int first_z(int a[], int n, ...)

generates the first array a of length n in the family z. It returns 1 if there is at
least one array of this length in this family. Otherwise, it returns 0. The second
function

int next_z(int a[], int n, ...)

returns 1 and generates in the array a of length n the next element of the family
z immediately following the one stored in the array a when the function is called,
if this array is not the last one in the family. Otherwise, it returns 0. The function
next z is thereafter called the successor function. In the header of these two C

112 R. Genestier et al.

functions, the dots represent other parameters which may be required for the
generation of the structured array. We only consider the cases where none of
these parameters is an additional structure.

A typical program successively generating in the unique variable a all the arrays
of lengthn in the family z consists of a callfirst_z(a,n,...); to thefirst function,
a treatment of the first array, and then a treatment of all the subsequent arrays in
the body of a loop while (next_z(a,n,...) == 1).

2.2 Running Example

Catalogs such as the fxtbook [1] propose effective sequential generators of combi-
natorial structures stored in a structured array. We consider the combinatorial
structure of restricted growth function as a running example.

Definition 2. A Restricted Growth Function (RGF, for short) of size n is an
endofunction a of {0, . . . , n − 1} such that a(0) = 0 and a(k) ≤ a(k − 1) + 1 for
1 ≤ k ≤ n − 1.

An endofunction a of {0, . . . , n − 1}, and thus an RGF, can be represented by
the C array a(0) a(1) . . . a(n − 1) of its n integer values. The fxtbook proposes
an algorithm [1, page 235] to compute the RGF immediately following a given
RGF a in ascending lexicographic order:

1. Find the maximum integer j such that a(j) ≤ a(j − 1).
2. If this integer exists, increment the value a(j) and fix a(i) = 0 for all i > j.

The other values of a remain unchanged.
3. Otherwise, the generation is complete, a is the largest RGF and remains

unchanged.

For example, the five RGFs of size 3 generated by this algorithm are 000, 001,
010, 011 and 012. The first RGF is the constant function equal to 0.

Fig. 1. ACSL predicates and contracts of RGF generation functions (file rgf.h)

Sequential Generation of Structured Arrays and Its Deductive Verification 113

Figures 1 and 2 respectively show an ACSL specification and a C code
for the sequential generation functions first rgf and next rgf. We explain
through these examples the features of ACSL we use. To facilitate the reading of
the specifications, some ACSL notations are replaced by mathematical symbols
(e.g. keywords \forall and integer are respectively denoted by ∀ and Z).

The file rgf.h given in Figure 1 and included in Figure 2 is composed of three
predicates and two function contracts. The characteristic property of RGFs from
Definition 2 is expressed between line 2 and line 5 of Figure 1 by the three ACSL
predicates is rgf, is non neg and is le pred. The constraint that the array
values are in {0, . . . , n−1} is not specified because it is a consequence of the other
constraints. In both function contracts an annotation requires R; specifies that
the precondition R must be satisfied by the parameters of the function when it
is called. On lines 7 and 12, we require that array a is of positive length n and
is allocated in memory. It is also required (line 13) that the input array a of the
successor function represents an RGF. An annotation of the form assigns A;
before the header of a function declares in A the function parameters and global
variables that it can modify. Thus, line 14 declares that all the values of array a
can be changed except the first one a[0].

An annotation ensures E; asserts that the postcondition E holds at the end
of the function execution. The soundness property asserts that all the gener-
ated arrays satisfy the prescribed constraint, for the corresponding function to be
an RGF. It is formally specified on lines 9 and 15 of Figure 1. The postcondition
on line 16 is explained in Section 2.3.

The file rgf.c shown in Figure 2 is composed of one predicate and two
function definitions specified in ACSL. The predicate is zero defined on line
3 is introduced to express the loop invariant of the function first rgf (line
8 of Figure 2). We now explain the C statements in the body of the function
next rgf in Figure 2. On line 20, a loop traverses the array from right to left to
find a position from which the end of the array will be modified. This position is
called the revision index of the array a. In this example, the revision index rev is
reached when meeting the rightmost element (i.e. maximum index) less than or
equal to its predecessor. If the search fails, then the final structure is reached (line
21). Otherwise, the contents of the array are changed from the revision index to
the end, so that the new array also satisfies the constraint and is greater than
the current array in lexicographic order. The way to effect this revision depends
on the prescribed constraints of the array. For RGFs, the property a[rev] ≤
a[rev-1] of the revision index rev makes it possible to increment a[rev] (line
22) and fill the rest of the array with 0 (line 28) to obtain the next array satisfying
the restricted growth constraint. Figure 2 also shows annotations concerning the
loops of the functions. An annotation loop invariant I; immediately before
a loop states that the formula I is an (inductive) invariant of this loop, i.e., a
property that holds the first time the loop is entered and is preserved by each
iteration of the loop body. For instance, the loop invariant on line 17 asserts
that the revision index is the rightmost position from which the end of the array
can be modified to obtain a greater array satisfying the constraint. Before the

114 R. Genestier et al.

Fig. 2. Effective generation of RGFs in C/ACSL

second loop of the function next rgf, three loop invariants successively assert
that the loop variable k stays between rev+1 and n (line 23), that the k first
values of the array are non-negative (line 24), and that the property is le pred
is satisfied up to k (line 25). The annotation loop assigns line 26 asserts that
the only values that the loop body can change are the elements of a between the
indexes rev+1 and n-1. An annotation loop variant V; defines a loop variant
V to ensure the termination of the loop. The entire expression must be non-
negative at the beginning of each loop iteration and strictly decrease between
two successive loop iterations. For example, as declared on line 27, the term n-k
is a variant of the loop on line 28. The ACSL annotations in the body of the
function first rgf are similar and therefore not detailed.

Suppose that Figure 2 is the content of a file rgf.c. The static deductive ver-
ification of the function next rgf with Frama-C and its plugin WP is realized
by running the command frama-c -wp-fct next rgf rgf.c. Frama-C indi-
cates whether each proof obligation generated by WP is proved by the SMT
solver Alt-Ergo and indicates the duration of each proof. Verification results are
detailed in Section 4.

2.3 Progress Property

The progress property asserts that the successor function generates arrays in
increasing lexicographic order. It is specified in ACSL by the postcondition

Sequential Generation of Structured Arrays and Its Deductive Verification 115

ensures \result == 1 ⇒ lt_lex{Pre ,Post}(a,n);

on line 16 in Figure 1. The ACSL formula lt_lex{L1,L2}(a,n) formalizes that
the array a at label L1 is lexicographically less than at label L2. A label represents
a position in the program. Every expression e in ACSL can be written \at(e,L),
meaning that e is evaluated at the label L. The predefined label Pre (resp. Post)
in the postcondition refers to the state before (resp. after) execution of the
function next rgf.

The predicate lt lex and two auxiliary predicates formalize Definition 1 in a
header file global.h included in all the generators. These definitions are shown
in Figure 3.

Fig. 3. Progress predicates (file global.h)

2.4 Pattern of Generation in Lexicographic Order

The function next rgf and the successor function of many other effective sequen-
tial generators of structured arrays follow a design principle here called “suffix
revision”. Figure 4 presents this principle as a design pattern composed of C
code and ACSL annotations, for the successor function next z of a sequential
generator in lexicographic order.

The family z of structured arrays is defined by a constraint formalized by
the predicate is z declared on line 4 of Figure 4. The successor function next z
revises the suffix of its input array a in two steps. First, it finds the rightmost
array index satisfying some predicate called the revision condition. This index
is called the revision index of the array a. Second, it modifies the contents of
the array a from the revision index to the array end. The revision condition
is formalized by the predicate is rev (line 5) and the Boolean function b rev
(declared and specified on lines 8-13). The loop on line 32 explores the input
array a from right to left to find the revision index rev. The loop invariant
on line 29 states that the revision index is the rightmost index satisfying the
revision condition. If the search fails (line 33), the input array is the last one
and the function returns 0. Otherwise, the function suffix revises the array a
from its revision index to its end, as specified by the assigns clause on line 17.
Its postcondition on line 18 asserts that it increases the array value a[rev] at
the revision index.

The successor function follows the suffix revision pattern if it satisfies the
soundness and progress properties (respectively specified on line 24 and 25), but
also the property that the successor function always computes the next array, i.e.

116 R. Genestier et al.

Fig. 4. Successor function pattern for suffix revision

that there exists no array in the family z between its input and output arrays,
for the strict and total lexicographic order. An ingredient for its specification is
the loop invariant on line 29. Its verification is further discussed in Section 4.1.

Suppose that Figure 4 is the content of a file suffix.c. The postcondition
expressing the progress property and the loop invariant on line 29 are automat-
ically proved by WP, with the command

frama-c -wp suffix.c -wp-prop=-soundness.
Note that the loop invariant on line 29 is not required to prove progress property.
Indeed, the algorithm implemented by the function next z corresponds to the
definition of the lexicographic order: it leaves a prefix of the array a unchanged
and increases its value at the revision index. The progress property is thus gener-
ically verified, because it is a consequence of the pattern. On the other hand,
the soundness property cannot be verified at this level of generality, because it
depends on the constraint on the array a.

By instantiating the predicates is z and is rev and the subfunctions b rev
and suffix in this pattern with appropriate code, we obtain a generator of a
family z of structured arrays in lexicographic order, whose progress property can
be verified automatically, assuming that the subfunctions satisfy their contracts.

Sequential Generation of Structured Arrays and Its Deductive Verification 117

In an instantiation of the pattern the subfunction contracts have to be completed
so that the soundness property can also be verified automatically. For simple
generators it is easier to replace the subfunction calls by a sequence of statements.
For example, we can obtain the successor function next rgf of Figure 2 by
replacing the calls b_rev(a,n,rev) and suffix(a,n,rev); respectively by the
statement

a[rev] ≤ a[rev -1];

and the sequence of statements

a[rev]++;
for (k = rev +1; k < n; k++) a[k] = 0;

3 Generation by Filtering

Generation by filtering consists of selecting in a family of structures those that
satisfy a given constraint. Of course, the more structures are rejected, the less
effective is the generator. However this simple generation approach quickly pro-
vides a first generator, whose implementation, specification and deductive veri-
fication come almost for free, as we will see throughout this section.

Section 3.1 illustrates the principle of generation by filtering with the exam-
ple of RGFs. Section 3.2 formalizes this principle in a general pattern for all
generators by filtering. The soundness property of the generation functions in
this pattern is automatically proved. To instantiate this pattern, it is necessary
to implement the constraint of substructures as a Boolean function. Section 3.3
provides a general pattern for this Boolean function and its specification. The
soundness of the Boolean function with respect to the constraint is also auto-
matically proved.

3.1 Example

The RGF family is a subfamily of the family of endofunctions of {0, ..., n − 1}.
Suppose we already have implemented, specified and automatically verified a
generator of endofunctions of {0, ..., n − 1} consisting of two generation func-
tions first endofct(a,n) and next_endofct(a,n). Figure 5 shows a sequen-
tial generator of RGFs filtering those endofunctions of {0, ..., n − 1} that are
RGFs. The generation functions first rgf(a,n) and next rgf(a,n) call the
C Boolean function b rgf, which characterizes an RGF among the endofunc-
tions of {0, ..., n− 1}. The ACSL predicate is rgf here is the conjunction of the
predicates is le pred and is endofct. The contracts of functions first rgf
and next rgf are not shown, because they are very similar to those of Figure 1,
except the postcondition expressing the soundness property for next rgf which
is now

ensures \result == 1 ⇒ is_rgf(a,n);

118 R. Genestier et al.

Fig. 5. Generation of RGFs by filtering

Fig. 6. Predicate and lemma to specify and prove progress of a filtering successor
function

The predicate and the lemma defined in Figure 6 are respectively introduced
to specify on lines 38-39 a loop invariant for the filtering loop of the successor
function and to automatically prove that invariant and thus the progress prop-
erty for that function, assuming that the successor function of endofunctions
ensures the progress property. The current array is indeed equal to the previ-
ous one at the beginning of the do .. while loop (lines 40-42). The pseudo-
transitivity lemma trans le lt lex helps the prover to derive the progress
property – expressed with the strict order predicate lt lex – from that loop
invariant and the contract of the called function next endofct.

3.2 General Pattern of Generation by Filtering

The generation of RGFs by filtering can be generalized to any family of arrays
defined from more general arrays by additional constraints. Figure 7 provides
a general pattern for the generation of arrays in a family z by filtering arrays
in a family x that satisfy the additional constraint is y implemented by the
Boolean function b y. The arrays in the family x are assumed to satisfy the con-
straint is x. The contracts of the generation functions first x, next x, first z
and next z are similar to the one of the functions first rgf and next rgf in

Sequential Generation of Structured Arrays and Its Deductive Verification 119

Fig. 7. Pattern of generation by filtering

Section 3.1 and are therefore not reproduced in Figure 7. In this pattern, the
ACSL predicates is x, is y and is z are not defined. That’s why they are
declared in an ACSL axiomatic block, on lines 1-8 of Figure 7.

Assuming that the functions b y, first x and next x satisfy their speci-
fications, the soundness and progress properties of the functions first z and
next z are automatically proved by Frama-C and WP assisted by Alt-Ergo.

The generator of RGFs by filtering (Figure 5) is obtained by instantiating
the general pattern as follows: Replace each x, y and z respectively by endofct,
rgf and rgf, and implement the property is rgf as a Boolean function. Other
examples of sequential generators using this pattern are given in Section 4. Thus,
from a specified generator for a family of structured arrays, one can rapidly
implement, specify and verify generators of their subfamilies.

3.3 General Pattern of Boolean Functions

We also propose patterns for the ACSL contract and the C code of a Boolean
function corresponding to an array structural constraint expressed in first-order
logic. If the constraint is a Boolean combination of atomic predicates, the cor-
respondence is obvious: Boolean operators (such as conjunction or negation)
either exist in C or can be readily expressed by a combination of C operators.
Thus, the interesting cases are formulas with quantifiers. The case of a unique
quantifier is too restrictive. The general case, where quantifiers are arbitrarily
nested and combined with Boolean operators, would be too heavy to formalize,
and the result would be painful to read. We have chosen to present the case of
two nested quantifiers. This is enough to give an idea of what the general case
would be, and this case is useful in itself.

120 R. Genestier et al.

Fig. 8. Predicates for a constraint ∀∃

Fig. 9. Pattern of Boolean functions for a constraint ∀∃

Consider a constraint of the form ∀i. 0 ≤ i < n ⇒ (∃j. 0 ≤ j < n ∧ ϕ), where
ϕ is a quantifier-free formula dependent on i and j expressing a constraint on an
array of length n. In Figure 8 the constraint is decomposed into three ACSL pred-
icates is x1(a,n), is x2(a,n,v1) and is x3(a,n,v1,v2), respectively corre-
sponding to the complete universal property, to the existential sub-formula and
to the property ϕ it quantifies, for an array a of length n. The additional param-
eter v1 of the predicates is x2 and is x3 corresponds to the free variable i in the
subformulas (∃j. 0 ≤ j < n∧ϕ) and ϕ. Similarly, the additional parameter v2 of
the predicate is x3 corresponds to the free variable j in ϕ. This quantifier-free
formula ϕ being arbitrary in this pattern, the corresponding predicate is x3 is
not defined, but only declared in an axiomatic block in lines 1-3 of Figure 8.

In Figure 9 the Boolean function b x1 implements the ACSL predicate is x1
in the sense that it returns 1 when its parameters satisfy the predicate, and
0 otherwise. The Boolean functions b x2 and b x3 respectively implement the
predicates is x2 and is x3. For k =1,2, the function b xk implements a loop
that sequentially evaluates the predicate is x(k + 1) for all array elements. The
loop invariants are specified using a generalization of the predicate is xk, named
is xk gen, defined in lines 4 and 7 of Figure 8.

Sequential Generation of Structured Arrays and Its Deductive Verification 121

Suppose that Figure 9 is the content of a file allex.c. Suppose that the
Boolean function b x3 satisfies its specification. By the command frama-c -wp
allex.c -wp-skip-fct b x3 we then automatically prove that the other func-
tions satisfy their specification.

An immediate application of the previous pattern is the generation of sur-
jections by filtering endofunctions. Indeed, a surjection f is an endofunction of
{0, ..., n−1} which satisfies the property ∀i. 0 ≤ i < n ⇒ (∃j. 0 ≤ j < n∧f(j) =
i). A generator of surjections is easily obtained by merging the pattern of Boolean
functions (Figures 9 and 8) with the one of generation by filtering (Figure 7),
then by renaming x1, x2, x, y and z respectively as im, eq im, endofct, im and
surj, defining the predicate is x3 as

predicate is_x3(int *a, Z n, Z v1 , Z v2) = a[v2] == v1;

and implementing the function b x3 with the unique statement

return(a[v2] == v1);

From the generator of endofunctions already used for RGFs in Section 3.1, the
development and deductive verification of this surjection generator are effected
in a few minutes. After this minimal work, we can make various simplifications to
the surjection generator while preserving its deductive verification. For example,
we can remove the parameter n of the predicate is x3, which is not used in that
example.

4 Verified Library

The patterns presented in the previous sections have been implemented and
instantiated to produce a library of verified sequential generators of structured
arrays.1 In order to ensure that there are finitely many arrays of each length,
all the generators of the library refine a generator of arrays whose codomain
is finite. This generator named fct generates functions from {0, . . . , n − 1} to
{0, . . . , k − 1} in increasing lexicographic order.

The literature in enumerative combinatorics [1,17] provides many effective
algorithms to generate classical combinatorial structures, such as n tuples, per-
mutations or combinations of k elements from n. Using the patterns in Section 3,
we quickly obtain generators of these structures by filtering among functions.
Then we implement, specify and verify more effective generators from the liter-
ature by instantiating the pattern of suffix revision (Section 2.4). Finally we use
the generators obtained by filtering to validate them, as detailed in Section 4.1.

Metrics on the library are collected in Figure 10. The first column gives the
name of the families of structures generated. These names are explained in the
remainder of this section. The number of lines of code (resp. ACSL annotations)
is recorded in the second (resp. third) column. The soundness and progress
properties of these programs have been proved automatically with Frama-C Neon
1 Archives enum.*.tar.gz of the library are available at http://members.femto-st.fr/

richard-genestier/en and http://members.femto-st.fr/alain-giorgetti/en.

http://members.femto-st.fr/richard-genestier/en
http://members.femto-st.fr/richard-genestier/en
http://members.femto-st.fr/alain-giorgetti/en

122 R. Genestier et al.

Array family C ACSL goals time (s)

suffix 9 12 25 1.929
filtering 14 33 51 5.524

allex 11 28 40 1.936
exall 12 27 40 1.921
all2 40 28 40 1.759

fct 13 25 42 5.622

subset 13 22 40 4.919
endofct 4 12 17 2.003

rgf ⊂ endofct 25 27 69 4.958
sorted1 ⊂ fct 19 27 67 4.743
sorted2 ⊂ fct 28 48 103 6.464
comb ⊂ fct 21 28 67 4.551
inj ⊂ fct 29 42 91 6.031
surj ⊂ fct 29 40 103 7.729
perm ⊂ fct 30 42 91 7.713

endoinj ⊂ inj 4 11 15 2.562
endosurj ⊂ surj 4 11 15 2.638

perm = endofct ∧ inj 17 21 60 7.211
perm = endofct ∧ surj 28 40 102 9.647

invol ⊂ perm 20 27 66 8.729
derang ⊂ perm 20 27 66 8.611

rgf 13 28 41 8.598
sorted 13 30 44 28.445
comb 18 33 46 Timeout
perm 23 29 50 8.903

Fig. 10. Verification results

20140301 and its WP plugin assisted by Why3 0.82 and the SMT solvers Alt-
Ergo 0.95.2, CVC3 2.4.1 and CVC4 1.3. The fourth column shows the number
of proof obligations (goals) generated by WP. The fifth column gives the time
needed for the proof of these goals by the provers Alt-Ergo, CVC3 and CVC4 in
seconds on a PC Intel Core i7-3520M 3.00GHz × 4 under Linux Ubuntu 14.04.

The first block of lines in Figure 10 concerns the patterns presented in Sec-
tions 2.4 and 3.2. The patterns allex, exall and all2 respectively correspond to
a first-order constraint of the form ∀∃, ∃∀ and ∀∀. Note that only the progress
property is proved for the pattern suffix. The second block concerns the above-
mentioned generator fct.

The third block in Figure 10 concerns specializations, defined as follows.
When a family of arrays has other parameters than their length, one may fix the
value of some of these parameters and thus obtain other generators. We say that
we have specialized the family. For example, the specialization of the family of
functions from {0, ..., n − 1} to {0, . . . , k − 1} for k = 2 gives Boolean functions
encoding the family subset of subsets of a set of n elements [1, page 203]. Its
specialization to the case where k = n yields the family endofct of endofunctions
of {0, . . . , n − 1}.

Sequential Generation of Structured Arrays and Its Deductive Verification 123

The fourth block in Figure 10 concerns generation by filtering (Section 3).
We denote by z ⊂ x a generator of structures z by filtering among more general
structures x. We denote by z = x ∧ y a generator of structures z by filtering among
more general structures x the ones having the additional property of structures
y. For instance, rgf ⊂ endofct denotes a generator of restricted growth functions
filtered among endofunctions (presented in Section 3.1). From the generator fct
we generate by filtering the following families:

– Sorted arrays of length n whose elements are in {0, . . . , k−1}, by comparing
each array value to the following one if it exists (sorted1),

– sorted arrays of length n whose elements are in {0, ..., k − 1}, by comparing
each array value to each other, i.e. using the pattern all2 (sorted2),

– combinations of p elements selected from n (comb ⊂ fct),
– injections from {0, ..., n − 1} to {0, ..., k − 1} for n ≤ k (inj ⊂ fct) and
– surjections from {0, ..., n − 1} to {0, ..., k − 1} for n ≥ k (generator surj ⊂

fct).

The combination {e0, . . . , ep−1} with 0 ≤ e0 < . . . < ep−1 ≤ n − 1 is represented
by the function c from {0, . . . , p − 1} to {0, ..., n − 1} such that c(i) = ei.

Combining specialization and filtering, we produce four generators of permu-
tations on {0, ..., n − 1} (structure perm):

– perm ⊂ surj (resp. perm ⊂ inj) by specialization of surjections (resp. injec-
tions) from {0, ..., n − 1} to {0, ..., k − 1} (for k = n) and

– perm = endofct ∧ inj (resp. perm = endofct ∧ surj) by filtering of injections
(resp. surjections) among endofunctions of {0, ..., n − 1}.

The generator perm = endofct ∧ surj was detailed in Section 3.3. By filtering
from permutations we also obtain involutions on {0, ..., n − 1} (invol ⊂ perm)
and derangements (fixed-point free permutations) on {0, ..., n − 1} (derang ⊂
perm).

Family nb. goals time (s)

fct 43 6.858
subset 41 7.277

rgf 42 8.760
sorted 45 8.007
comb 48 29.094
perm 51 9.595

Fig. 11. Verification results for effective algorithms with an additional assertion

The fifth block in Figure 10 concerns effective generators in lexicographic
order implemented by instantiating the pattern presented in Section 2. The
generator rgf generates restricted growth functions with the algorithm from [1,
page 235], as detailed in Section 2.2. The generator sorted produces sorted arrays

124 R. Genestier et al.

from {0, ..., n−1} to {0, ..., k−1} in a more efficient manner than the generators
sorted1 and sorted2. The generator comb produces combinations of p elements
among n by the algorithm from [1, page 178]. The generator perm produces
permutations on {0, ..., n − 1} by an adaptation of the algorithm from [1, page
243]. Column 4 shows that the proofs of these optimized generators are more
complex, and thus take a longer duration, than for generators by filtering. Except
for fct and subset, an extension of the timeout of the WP plugin to two minutes
is required. In particular, the progress property of the generator comb is difficult
to prove. However, an additional assertion

/*@ assert lt_lex_at{Pre ,Here}(a,rev); */

at the end of the successor function substantially speeds up the longest proofs,
as shown in Figure 11. Indeed, it specifies that the leftmost difference between
the current array content (at label Here) and the former one (at label Pre) is at
the revision index rev. This assertion helps the prover choosing the index rev
to instantiate the existential quantifier in the predicate lt lex.

4.1 Other Properties

We have also proved the postcondition

ensures \result == 0 ⇒ is_eq{Pre ,Post}(a,n);

for the successor functions next z of the generators by suffix revision. It expresses
the property that the array a is not modified when the function returns 0, i.e.
when no revision index is found, indicating that the lexicographically maximal
array is reached. This property does not hold for a generation by filtering that
instantiates the pattern presented in Section 3.2, when the maximal array in the
subfamily z, say m z, is not the maximal array in the family x, say m x. In that
case the function next z considers all the arrays greater than m z in the family
x until reaching m x and returns 0 while the array content has changed.

Exhaustivity. They are several ways to check the exhaustivity property assert-
ing that all the arrays with a given structure are generated. (i) One can store all
the generated arrays in a global array and then specify and prove that it contains
all the arrays satisfying the constraint. Exhaustivity was formalized in this way for
a generator of all the solutions to the n-queens problem [10]. The formal proof of
exhaustivity with the Why3 verification tool [3] needs interactive steps. We dis-
card this solution because we want to offer an approach where the verification is
completely automated. (ii) Another solution is to specify that the successor func-
tion indeed always computes the next array, i.e. that there exists no array with the
given structure between its input and output arrays, for the strict and total lexi-
cographic order. This quantification over arrays makes the property more difficult
to prove automatically than the soundness and progress properties. (iii) When the
soundness and progress properties are already proved, the exhaustivity property
can be validated up to some array length simply by counting the number of gener-
ated arrays and comparing it to the expected number either from a sequence of the

Sequential Generation of Structured Arrays and Its Deductive Verification 125

On-Line Encyclopedia of Integer Sequences (OEIS) [20] or from known counting
formulas implemented as C functions. This work follows this third way. We have
performed the validation for all the structures of the library, by increasing length
up to the limit of the largest positive representable integer, beyond the number of
structures one may expect to generate in a reasonable time.

We have also performed validations of a generator with another one. In the
context of this work this validation is easy to implement, firstly because we
can quickly obtain a reference generator by filtering and secondly because this
generator and the effective one it is compared to produce arrays in the same
lexicographic order whenever the latter follows the principle of suffix revision.
In that case, the storage of generated arrays is not necessary: it is enough to
generate arrays in parallel with each generator and then test their equality. For
this validation, the generators by filtering rgf ⊂ fct, comb ⊂ fct, sorted ⊂ fct and
perm ⊂ fct were used as reference implementations to validate the optimized
generators rgf, comb, sorted and perm.

5 Related Work

Several techniques and tools help strengthening the trust in programs manipu-
lating structured data. Randomized property-based testing (RPBT) consists in
random generation of test data to validate given assertions about programs.
RPBT has gained a lot of popularity since the appearance of QuickCheck
for Haskell [7], followed by Quickcheck for Isabelle [4] and re-implementations
for many programming languages, among which the C language with the tool
quickcheck4c [23]. In RPBT a random data generator can be defined by filtering
the output of another one, in a similar way as an exhaustive generator can be
defined by filtering another exhaustive generator in BET.

A more generic approach is type targeted testing [18], wherein types are con-
verted into queries to SMT solvers whose answers provide counterexamples. A
more specific approach is contract-based testing, using contract languages. For
Java programs the tools TestEra [14] and UDITA [12] automatically generate
all non-isomorphic test cases within a given input size and evaluate soundness
criteria, UDITA ensuring that some complex data structures are supported by
the program. In case of violated soundness criteria, they produce concrete Java
inputs as counterexamples, but the user has to write data generation methods
and predicates. For C programs specified with ACSL, the tool StaDy [16] inte-
grates the structural test generator PathCrawler [22] within the static analysis
platform Frama-C. PathCrawler uses concrete execution and symbolic execu-
tion based on constraint solving and allows StaDy to guide the user in her proof
work, showing inconsistencies between the code and the specification by the
test coverage of all feasible paths of code and specification and producing coun-
terexamples. StaDy helped us find errors in preliminary versions of some of our
generators. Our work is even more specific: we provide a dedicated generator

126 R. Genestier et al.

for each structure of interest. Although it requires more work, it is guaranteed
to find the smallest counterexamples and is thus complementary to the other
approachs.

Moreover we provide formally verified generators as building blocks for veri-
fied verification tools. To our knowledge, the deductive verification of exhaustive
generators of constrained data structures has never been addressed yet.

6 Conclusion

The generation of arrays with a given structure in increasing length up to a
given length can be very useful for automatically testing programs taking these
arrays as inputs. Effective generation algorithms also provide interesting deduc-
tive verification problems. Therefore, we have undertaken to develop a library
of structured array generators, formally specified and automatically verified. In
order to reduce the cost of their specification and deductive verification, we pro-
pose general patterns for various families of generators, whose instantiation more
easily yields correct programs. In particular, a pattern for the basic principle of
filtering makes it possible to implement many generators from a small number
of classical ones. The soundness and progress properties of these generators are
automatically verified. We also provide a pattern for more effective generators,
whose progress property is automatically verified. The soundness of the genera-
tors obtained by the instantiation of this pattern is more difficult to verify, but
the Frama-C platform and its plugins provide significant help.

The use of deductive verification in combinatorics is not common. In this
area, the most notable works are [5] and [10]. The first one specifies in ACSL
and checks with Frama-C, a C function computing the conjugate of a partition
of integers. The second work proves formally an enumeration of all the solutions
to the n-queens problem. The formal proof is performed using the Why3 tool
and the proof of exhaustivity is interactive.

Acknowledgments. The authors warmly thank J.-C. Filliâtre, J. Julliand, N. Kosma-
tov, C. Marché, T. Walsh and the anonymous referees for their suggestions and advice.

References

1. Arndt, J.: Matters Computational - Ideas, Algorithms, Source Code [The fxtbook]
(2010). http://www.jjj.de

2. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto,
V.: ACSL: ANSI/ISO C Specification Language. http://frama-c.com/acsl.html

http://www.jjj.de
http://frama-c.com/acsl.html

Sequential Generation of Structured Arrays and Its Deductive Verification 127

3. Bobot, F., Filliâtre, J.C., Marché, C., Melquiond, G., Paskevich, A.: The Why3
platform 0.81 (March 2013). https://hal.inria.fr/hal-00822856

4. Bulwahn, L.: The new Quickcheck for Isabelle. In: Hawblitzel, C., Miller, D. (eds.)
CPP 2012. LNCS, vol. 7679, pp. 92–108. Springer, Heidelberg (2012)

5. Butelle, F., Hivert, F., Mayero, M., Toumazet, F.: Formal proof of SCHUR con-
jugate function. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau,
L., Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol. 6167, pp. 158–171.
Springer, Heidelberg (2010)

6. Carlier, M., Dubois, C., Gotlieb, A.: A certified constraint solver over finite
domains. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436,
pp. 116–131. Springer, Heidelberg (2012)

7. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of the Fifth ACM SIGPLAN International Con-
ference on Functional Programming. SIGPLAN Not., vol. 35, pp. 268–279. ACM,
New York (2000)

8. Correnson, L.: Qed. computing what remains to be proved. In: Badger, J.M.,
Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 215–229. Springer, Heidelberg
(2014)

9. Dijkstra, E.W.: A Discipline of Programming. In: Series in Automatic Computa-
tion, Prentice Hall, Englewood Cliffs (1976)

10. Filliâtre, J.-C.: Verifying two lines of C with Why3: an exercise in program verifica-
tion. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp.
83–97. Springer, Heidelberg (2012). http://dx.doi.org/10.1007/978-3-642-27705-4

11. Floyd, R.W.: Assigning meanings to programs. In: Schwartz, J.T. (ed.) Mathemat-
ical Aspects of Computer Science. Proceedings of Symposia in Applied Mathemat-
ics, vol. 19, pp. 19–32. American Mathematical Society, Providence (1967)

12. Gligoric, M., Gvero, T., Jagannath, V., Khurshid, S., Kuncak, V., Marinov, D.:
Test generation through programming in UDITA. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, ICSE 2010, vol. 1,
pp. 225–234. ACM, New York (2010)

13. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

14. Marinov, D., Khurshid, S.: TestEra: A novel framework for automated testing
of Java programs. In: Proceedings of the 16th IEEE International Conference on
Automated Software Engineering, pp. 22–31. IEEE Computer Society, Washington,
DC (2001)

15. Paraskevopoulou, Z., Hriţcu, C.: A Coq framework for verified property
based testing (2014). http://prosecco.gforge.inria.fr/personal/hritcu/publications/
verified-testing-report.pdf

16. Petiot, G., Kosmatov, N., Giorgetti, A., Julliand, J.: How test generation helps
software specification and deductive verification in Frama-C. In: Seidl, M.,
Tillmann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 204–211. Springer,
Heidelberg (2014)

17. Ruskey, F.: Combinatorial Generation Working Version (1j-CSC 425/520) (2003).
http://www.1stworks.com/ref/RuskeyCombGen.pdf

18. Seidel, E.L., Vazou, N., Jhala, R.: Type targeted testing. In: Vitek, J. (ed.) ESOP
2015. LNCS, vol. 9032, pp. 812–836. Springer, Heidelberg (2015)

https://hal.inria.fr/hal-00822856
http://dx.doi.org/10.1007/978-3-642-27705-4
http://prosecco.gforge.inria.fr/personal/hritcu/publications/verified-testing-report.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/publications/verified-testing-report.pdf
http://www.1stworks.com/ref/RuskeyCombGen.pdf

128 R. Genestier et al.

19. Sullivan, K.J., Yang, J., Coppit, D., Khurshid, S., Jackson, D.: Software assurance
by bounded exhaustive testing. In: Proceedings of the ACM/SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2004, pp. 133–142.
ACM (July 2004)

20. The OEIS Foundation Inc.: The On-Line Encyclopedia of Integer Sequences (2010).
http://oeis.org

21. Weber, T.: SMT solvers: New oracles for the HOL theorem prover. International
Journal on Software Tools for Technology Transfer 13(5), 419–429 (2011)

22. Williams, N.: Abstract path testing with PathCrawler. In: Proceedings of the 5th
Workshop on Automation of Software Test, AST 2010, pp. 35–42. ACM, New York
(2010)

23. Zito, A.: quickcheck4c: A QuickCheck for C (2014). https://github.com/nivox/
quickcheck4c

http://oeis.org
https://github.com/nivox/quickcheck4c
https://github.com/nivox/quickcheck4c

Checking UML and OCL Model Consistency:
An Experience Report on a Middle-Sized

Case Study

Martin Gogolla(B), Lars Hamann, Frank Hilken, and Matthias Sedlmeier

Database Systems Group, University of Bremen, Bremen, Germany
{gogolla,lhamann,fhilken,ms}@informatik.uni-bremen.de

Abstract. This contribution reports on a middle-sized case study in
which the consistency of a UML and OCL class model is checked. The
class model restrictions are expressed by UML multiplicity constraints
and explicit, non-trivial OCL invariants. Our approach automatically
constructs a valid system state that shows that the model can be instan-
tiated and thus proves consistency, i.e., shows that the invariants together
with the multiplicity constraints are not contradictory.

1 Introduction

In the context of Model-Driven Engineering (MDE) assuring quality of software
models by validation and verification approaches is of central concern. Thus test-
ing and proving techniques and their combination is highly relevant, as several
recent case studies from different domains and with different methodological
aims demonstrate [1–3,9,11]. The work done here is carried out in the context
of the design tool USE (UML-based Specification Environment) developed for
UML (Unified Modeling Language) and OCL (Object Constraints Language).
USE [5,7,8] is employed here for automatically checking the consistency (instan-
tiability) of a UML class model enriched by OCL invariants. USE contains (what
we call) a ‘model validator’ that constructs a system state on the basis of a con-
figuration, which describes a search space for possible system states [10]. With
this functionality and on the basis of a transformation into the relational logic of
Kodkod [12], it is possible to check the UML and OCL model for consistency, for
implications, for invariant independence and for possible completions of partially
described system states, among other possible uses.

Here, we discuss a middle-sized case study with complex OCL constraints.
We show that it is feasible to automatically check consistency for middle-sized
UML and OCL models. Thus, by building a test case, i.e., an object model that
instantiates the class model, we prove a property, namely model consistency
or instantiability. The case study is a transformation model that describes the
syntax (schemata) and the semantics (states) of the ER (Entity-Relationship)
and the relational data model as well as the transformation between these two
data models as the object model in Fig. 1 and the class model in Fig. 2 sketches.
The notion ‘semantics’ refers here to those parts (classes and associations) of
c© Springer International Publishing Switzerland 2015
J.C. Blanchette and N. Kosmatov (Eds.): TAP 2015, LNCS 9154, pp. 129–136, 2015.
DOI: 10.1007/978-3-319-21215-9 8

130 M. Gogolla et al.

Fig. 1. Generated instantiation (object model) in UML and domain-specific notation

Checking UML and OCL Model Consistency: An Experience Report 131

Fig. 2. Case study class model with model validator configurations indicated

Num Objects Num Links USE Response Times [in milliseconds]
Translation Translation Solving

1..1 0..* trivially unsat 358 ms 202 ms 0 ms
1..2 0..* unsat 328 ms 811 ms 31 ms
1..3 0..* unsat 359 ms 3292 ms 827 ms
1..4 0..* sat 359 ms 11092 ms 8205 ms
1..5 0..* sat 327 ms 31231 ms 45022 ms
1..6 0..* sat 328 ms 73445 ms 8533 ms
1..7 0..* sat 327 ms 158839 ms 231053 ms
1..8 0..* sat 343 ms 301907 ms 149480 ms
1..9 0..* sat 343 ms 557427 ms 459233 ms

1..1 1..* trivially unsat 312 ms 203 ms 0 ms
1..2 1..* unsat 328 ms 827 ms 16 ms
1..3 1..* unsat 343 ms 3338 ms 78 ms
1..4 1..* unsat 340 ms 10951 ms 219 ms
1..5 1..* unsat 343 ms 30857 ms 3572 ms
1..6 1..* sat 375 ms 74412 ms 134878 ms
1..7 1..* sat 343 ms 157264 ms 17628 ms
1..8 1..* sat 394 ms 301315 ms 120432 ms
1..9 1..* sat 375 ms 551758 ms 607059 ms

Fig. 3. Applied 18 model validator configurations and USE results

132 M. Gogolla et al.

the transformation model that handle the interpretation of ‘syntax’ classes; for
example, the syntax class Entity is ‘semantically’ interpreted by the semantics
class Instance or RelSchema is interpreted by Tuple. Regarding the syntax
part, you see in Fig. 1 in the upper left a single (tiny) ER schema and in the
lower left an equivalent relational database schema. Regarding the semantics
part, you see in the upper right a single (tiny) ER state and in the lower right
an equivalent relational database state. More details will be mentioned below,
and the full UML and OCL model can be found in [4]. Later, Fig. 1 will be
discussed further, as well.

2 Case Study Class Model

The case study is a transformation model. A transformation model is a descrip-
tive model where the relationship between source and target is purely char-
acterized by the (source,target) object model pairs determined by the trans-
formation. A transformation model consists in our approach of a plain UML
class model with restricting OCL invariants. Typically, there is an anchor class
for the source model (class ErSyn ErSchema in Fig. 2), an anchor class for the
target model (class RelSyn RelDBSchema), and a connecting class for the trans-
formation (class Er2Rel Trans). There are OCL invariants for restricting the
source metamodel, for the target metamodel, and for the transformation. In this
example, the transformation model consists of a single class and associations
connecting the syntax and semantics parts.

We have studied parts of the case study before [6], however we have not
yet handled the semantics parts from the right side of the class model with
automatic techniques. In that earlier work, the class model for the syntax and
the transformation parts included 10 classes, 11 associations, 22 invariants, and
6 OCL operations. Now, by including also the semantics part, we have 18 classes,
34 associations, 59 invariants, and 10 OCL operations. Thus the complexity of
the case study has been more than doubled. In formal terms the OCL invariant
coverage and their complexity grew from factor 247 to 775 (for details about the
absolute numbers see [4], if needed; however, what is relevant here is the rela-
tionship between the numbers). The numbers indicate the coverage of the class
model by the invariants and state the number of classes, attributes and associ-
ations touched by the constraints. The numbers are therefore one indication for
the complexity of the invariants.

There are up to 6 nested quantifiers as, for example, in the invariant
Er2Rel Trans::forTupleExistsOneInstanceXorLink (see Fig.4 or [4] for more
details, if needed). In the semantics part (not covered in [6]) the constraints
also guarantee for the states the validity of key conditions (see for example
RelSem Tuple::keyMapUnique in Fig.4 or [4], if needed).

3 Model Validator Configuration

A model validator configuration determines the population of classes, associa-
tions, and attributes: (a) One specifies a mandatory upper and an optional lower

Checking UML and OCL Model Consistency: An Experience Report 133

-- Entity-Relationship model syntax: Within one Entity, different

-- Attributes have different names

context self:ErSyn_Entity inv uniqueAttributeNamesWithinEntity:

self.attribute->forAll(a1,a2 | a1.name=a2.name implies a1=a2)

-- Relational model semantics: Two different Tuples of one RelSchema

-- can be distinguished in every RelDBState where both Tuples occur by

-- a key Attribute of the RelSchema

context self:RelSem_Tuple inv keyMapUnique:

RelSem_Tuple.allInstances->forAll(self2 |

(self<>self2 and self.relSchema=self2.relSchema) implies

self.relDBState->intersection(self2.relDBState)->forAll(s |

self.relSchema.key()->exists(ka |

self.applyAttr(s,ka)<>self2.applyAttr(s,ka))))

-- Transformation: For every Tuple in a RelDBState (1) there is either

-- exactly one Instance such that for every attrMap of the Tuple there

-- is exactly one attrMap in the Instance holding the same information

-- or (2) there is exactly one link such that for every attrMap of

-- Tuple the following holds: (A) if the attrMap belongs not to a key

-- Attribute, there is exactly one attrMap in the Link holding the

-- same information, and (B) if the attrMap belongs to a key

-- Attribute, there is exactly one RelendMap in the Link and exactly

-- one attrMap of the RelendMap such that the attrMap from the Tuple

-- and the attrMap from the Link hold the same information

context self:Er2Rel_Trans inv forTupleExistsOneInstanceXorLink:

self.relDBState->forAll(relSt | self.erState->one(erSt |

relSt.tuple->forAll(t | erSt.instance->one(i |

t.attrMap->forAll(amRel | i.attrMap->one(amEr |

amEr.attribute.name=amRel.attribute.name and

amEr.value=amRel.value)))

xor

erSt.link->one(l | t.attrMap->forAll(amRel |

(amRel.attribute.isKey=false implies

l.attrMap->one(amEr |

amEr.attribute.name=amRel.attribute.name and

amEr.value=amRel.value))

and

(amRel.attribute.isKey=true implies

l.relendMap->one(rm |

rm.instance.attrMap->select(amEr | amEr.attribute.isKey)->

one(amEr |

amRel.attribute.name =

plus(times10(rm.relend.name),amEr.attribute.name)

and amRel.value=amEr.value))))))))

Fig. 4. Typical OCL invariants (3 from 59) in the transformation model

134 M. Gogolla et al.

bound for each class determining the maximal and minimal number of objects in
the expected system state, (b) an optional lower and optional upper bound for
each association determining the number of links, and (c) a finite value set for
each attribute; attribute values may be determined by finite datatype value sets.
The purpose of a configuration is to determine a finite search space for object
models (system states) matching the class model and the constraints.

For proving consistency we have fixed some classes and associations in the
applied configurations: All ‘white’ classes in Fig. 2 are fixed to have exactly one
object (lower and upper bound ‘1’), and the associations between these classes
are required to have exactly one link. The remaining ‘grey’ classes (and the
associations with at least one participating ‘grey’ class) have been checked with
a fixed lower bound and a varying upper bound: for the classes lower bound ‘1’
and upper bounds equal to a single integer from ‘1, 2, ..., 9’ have been used; for
the associations the bounds ‘0..*’ and ‘1..*’ have been employed. One finds the
results of running the model validator with these 18 configurations in Fig. 3.

Concerning the data types and attributes, the used configurations employ the
range 0..99 for the data type Integer and the attributes Base Named::name:
Integer and Base Value::value:Integer. Thus a name (for example, for an
entity or for an attribute) is handled by the model validator as an Integer literal.
In order to present a name more intuitively as a String literal, we encode the ten
digits as letters: 0�→‘A’, 1�→‘B’, 2�→‘C’, 3�→‘D’, 4�→‘E’, 5�→‘F’, 6�→‘G’, 7�→‘H’,
8�→‘J’, 9�→‘K’. This encoding is realized in terms of an operation and the derived
attribute Base Named::nameS:String. For example, the Entity object in the
top left of Fig. 1 has name=24 and nameS=’CE’. The literal 4 occurring as the
value of the F attribute in the top right of the figure has been chosen by the
model validator from the mentioned range 0..99.

The solution found by the model validator when employing the 1..6/1..*
configuration from Fig. 3 is pictured as an object model in Fig. 1. It is an
automatically constructed test case proving model consistency on the basis of
the stated configuration. The (tiny) test case covers an ER schema, an ER state,
a relational database schema, and a relational database state.

4 Tool Response and Translation and Solving Times

The table in Fig. 3 gives an overview on performed experiments, i.e., 18 configu-
rations with which the model validator has been executed (more configurations
have been tested, but they are not documented here). The first and second col-
umn determine the configuration’s setting for the object number bounds (in
the ‘grey’ classes) and the link number bounds in the connected associations.
The third column shows the three different responses made by the model val-
idator: (a) ‘trivially unsat’ means that the configuration was recognized to be
not instantiable by only analyzing the specified bounds; in this class model (see
Fig. 2), for example, each ER relationship (‘Relship’) must be connected to at
least 2 relationship end (‘Relend’) objects, and this cannot be satisfied by just
allowing one ‘Relend’ object; (b) ‘unsat’ means that no instantiation can be

Checking UML and OCL Model Consistency: An Experience Report 135

found; and (c) ‘sat’ says that an instantiation has been found within the bounds
and constructed as an object model. The three time specifications refer to the
time needed (a) to translate the class model including the invariants into the
relational logic of Kodkod, (b) to translate the relational formula and configura-
tion into SAT (this step is performed by Kodkod), and (c) to solve the translated
relational formula by the underlying SAT solver. For the experiments we have
used the MiniSat solver.

The difference between the association bounds ‘0..*’ and ‘1..*’ concerns the
instantiation. In the first case, not all associations must have links, whereas in
the second case, links must be present for all associations: In the first case ER
schemata without relationship attributes are allowed, whereas in the second case
ER relationships must have attributes, i.e., the association between ‘Relship’ and
‘Attribute’ must be instantiated.

– In the ‘1..*’ case, the restriction about the relationship attributes car-
ries over to the relational data model and to the state part. In the
‘1..*’ case, ‘ErSem Link’ objects must have attribute values that are
described by ‘AttrMap’ objects; therefore enough ‘AttrMap’ objects must be
present (here, at least 6 ‘AttrMap’ objects). The solution is only found after
the object bounds have been set to ‘1..6’ (see Fig. 1 showing six ‘AttrMap’
objects).

– In the ‘0..*’ case, the solution is already found earlier when the object bounds
are set to ‘1..4’, because fewer ‘AttrMap’ objects are needed when there are
no relationship attributes.

As a closing remark in the technical sections, let us consider the transfor-
mation model from a different perspective. Up to now, we have discussed the
transformation model as transforming the ER model into the relational model,
basically going in Fig. 2 from the upper part to the lower part. But formally, this
direction is not expressed anywhere in the model in terms of the associations
which can be navigated in both directions. One may look at the complete model
also as a transformation from syntax to semantics, i.e., going in Fig. 2 from the
left part to the right part.

5 Conclusion

We have shown that it is possible to automatically prove properties like consis-
tency for UML and OCL models for non-trivial models in an automatic way. In
the future, we want to carry over these results to other properties of UML and
OCL models like invariant independence or implications from the stated con-
straints. The strength of the model validator has to be improved in order to be
able to handle larger solution spaces, i.e., we want to allow more flexible config-
uration bounds. Better and more detailed feedback from the model validator in
case of unsatisfiability should be given more attention. Larger case studies, like
for example the UML metamodel, should be considered in order to show that
the combination of tests and proofs can be applied for complex and real-world
models.

136 M. Gogolla et al.

References

1. Bishop, P.G., Bloomfield, R.E., Cyra, L.: Combining testing and proof to gain high
assurance in software: a case study. In: 24th IEEE Int. Symp. Software Reliability
(ISSRE), pp. 248–257. IEEE (2013)

2. Brucker, A.D., Feliachi, A., Nemouchi, Y., Wolff, B.: Test program generation for a
microprocessor - a case study. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS,
vol. 7942, pp. 76–95. Springer, Heidelberg (2013)

3. Dierkes, M.: Combining test and proof in MBAT - an aerospace case study. In:
Pires, L.F., Hammoudi, S., Filipe, J., das Neves, R.C. (eds.) Proc. 2nd Int. Conf.
Modelsward, pp. 636–644. SciTePress (2014)

4. Gogolla, M., Hamann, L., Hilken, F., Sedlmeier, M.: Additional Material for
Checking UML and OCL Model Consistency (2015). http://www.db.informatik.
uni-bremen.de/publications/intern/consis-casestudy-addon.pdf

5. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming 69, 27–34
(2007)

6. Gogolla, M., Hamann, L., Hilken, F.: Checking transformation model properties
with a UML and OCL model validator. In: Amrani, M., et al. (eds.) Proc. 3rd Int.
VOLT Workshop. CEUR Proceedings, vol. 1325, pp. 16–25 (2014)

7. Gogolla, M., Hamann, L., Hilken, F., Kuhlmann, M., France, R.B.: From applica-
tion models to filmstrip models: an approach to automatic validation of model
dynamics. In: Fill, H., Karagiannis, D., Reimer, U. (eds.) Proc. Modellierung
(MODELLIERUNG 2014), GI, LNI 225, pp. 273–288 (2014)

8. Hamann, L., Hofrichter, O., Gogolla, M.: Towards integrated structure and behav-
ior modeling with OCL. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C.
(eds.) MODELS 2012. LNCS, vol. 7590, pp. 235–251. Springer, Heidelberg (2012)

9. Kosmatov, N., Lemerre, M., Alec, C.: A case study on verification of a cloud
hypervisor by proof and structural testing. In: Seidl, M., Tillmann, N. (eds.) TAP
2014. LNCS, vol. 8570, pp. 158–164. Springer, Heidelberg (2014)

10. Kuhlmann, M., Gogolla, M.: From UML and OCL to relational logic and back. In:
France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 415–431. Springer, Heidelberg (2012)

11. Ledru, Y., du Bousquet, L., Dadeau, F., Allouti, F.: A Case Study in Matching
Test and Proof Coverage. ENTCS 190(2), 73–84 (2007)

12. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007)

http://www.db.informatik.uni-bremen.de/publications/intern/consis-casestudy-addon.pdf
http://www.db.informatik.uni-bremen.de/publications/intern/consis-casestudy-addon.pdf

A Constraint Optimisation Model for Analysis
of Telecommunication Protocol Logs

Olga Grinchtein1(B), Mats Carlsson2, and Justin Pearson3

1 Ericsson AB, Stockholm, Sweden
olga.grinchtein@ericsson.com

2 SICS, Stockholm, Sweden
Mats.Carlsson@sics.se

3 Uppsala University, Uppsala, Sweden
justin.pearson@it.uu.se

Abstract. Testing a telecommunication protocol often requires protocol
log analysis. A protocol log is a sequence of messages with timestamps.
Protocol log analysis involves checking that the content of messages and
timestamps are correct with respect to the protocol specification. We
model a protocol specification using constraint programming (MiniZinc),
and we present an approach where a constraint solver is used to perform
protocol log analysis. Our case study is the Public Warning System ser-
vice, which is a part of the Long Term Evolution (LTE) 4G standard.
We were able to analyse logs containing more than 3000 messages with
more than 4000 errors.

Keywords: Telecommunication protocol · Testing · Constraint
programming

1 Introduction

In this paper we investigate the use of constraint programming to implement a
part of a test harness for equipment involved in the Long Term Evolution (LTE)
4G standard [1,2], in particular the broadcast of public warning messages [3].
The protocol specification includes a number of messages with complex timing
requirements between them. The contribution of the paper is a new approach
to analyse the correctness of protocol logs. The main novelty is that we use
constraint programming [4] to directly model the protocol and use a constraint
solver as a test harness in order to find incorrect behavior in logs. Some results
of this paper appeared in the workshop paper [5] presented as work in progress.

In this work, we model a part of the protocol directly in the MiniZinc [6]
language (see Section 2). This approach requires a script that reads a protocol
log that is a plain text, creates arrays of MiniZinc parameters, and assigns values
to the parameters according to the information provided in the log. We also
have variables that represent correct timestamps of some messages. There are
parameters such as delays of messages for which we know only boundary values,
c© 2015 US Government. Work subject to 17 USC 105. All other rights reserved.
J.C. Blanchette and N. Kosmatov (Eds.): TAP 2015, LNCS 9154, pp. 137–154, 2015.
DOI: 10.1007/978-3-319-21215-9 9

138 O. Grinchtein et al.

which adds complexity to the model. The complexity of the model also depends
on the number of messages, and we use a technique to partition timestamps
of messages into classes. Protocol log analysis in this case is an optimisation
problem. We use a constraint solver to find the optimal solution minimising the
number of unsatisfied constraints.

The rest of this paper is structured as follows: in Section 2 we give a very
brief overview of constraint programming and MiniZinc; in Section 3 we explain
main steps of the approach by an example; in Section 4 we give the necessary
telecommunication background to understand the case study; in Section 5 we
give in some detail the constraint model that is required to test the protocol
logs for correctness; in Section 6 we describe optimisation technique to reduce
complexity of the model; and in Section 7 we present experimental results.

2 MiniZinc and Constraint Programming

Constraint Programming [4] (CP) is a framework for modelling and solving com-
binatorial problems including verification and optimisation tasks. A constraint
problem is specified as a set of decision variables that have to be assigned values
so that the given constraints on these variables are satisfied, and optionally so
that a given objective function is minimised or maximised. Constraint solving
is based on the constructive search for such an assignment. Constraint propa-
gation plays an important role: a constraint is not only a declarative modelling
device, but has an associated propagator, which is an algorithm to prune the
search space by removing values that cannot participate in a solution to that
constraint. The removal can trigger other propagators, and this process contin-
ues until a fixpoint is reached, at which time the next assignment choice must
be made.

MiniZinc [6] is a constraint modelling language, which has gained popularity
recently due to its high expressivity and large number of available solvers that
support it. It also contains many useful modelling abstractions such as quan-
tifiers, sets, arrays, and a rich set of global constraints. MiniZinc is compiled
into FlatZinc, a constraint solving language which specifies a set of built-in con-
straints that a constraint solver must support. The compilation process is based
on flattening by introducing auxiliary variables, substituting them for nested
subexpressions, and selecting the appropriate FlatZinc constraints. Common
sub-expression elimination plays an important role as well. All the constraints
presented in this paper are shown in a form that is very close to their MiniZinc
version. We use fzn-gecode, the Gecode FlatZinc back-end.

An application of constraint programming to testing in industry is reported in
[7] and [8]. In [9] constraint solving is used to derive test cases that distinguish
between a piece of code and a mutation of that piece of code. More recently
there has been a lot of work on using recent advances in constraint programming
applied to white box testing of Java or C [10,11]. In [12] constraint programming
is used to generate protocol logs to test telecommunication test harness.

A Constraint Optimisation Model for Analysis 139

3 Overview of the Approach by an Example

We analyse protocol logs that consists of a sequence of messages with times-
tamps. An abstract sequence of protocol messages is shown in Figure 1. This is
not a real log, but we use it to illustrate the approach. The radio base station
transmits three messages M1, M2 and M3 to the mobile phone. Message M1 does not
contain any parameters. Message M2 contains the parameter y and message M3
contains the parameters z1 and z2. The first message M1 the mobile phone reads
with some delay, and we introduce decision variable delay , which is between 0
and 100 milliseconds.

10 : 00 : 00.000 M1{} 10 : 00 : 01.600 M3{z1 = 1, z2 = aaba}
10 : 00 : 00.080 M2{y = 80} 10 : 00 : 01.920 M3{z1 = 2, z2 = abab}
10 : 00 : 00.400 M3{z1 = 1, z2 = aaba} 10 : 00 : 02.900 M1{}
10 : 00 : 00.720 M3{z1 = 2, z2 = abab} 10 : 00 : 03.120 M3{z1 = 1, z2 = aaba}
10 : 00 : 01.040 M3{z1 = 4, z2 = aaaa} 10 : 00 : 03.440 M3{z1 = 2, z2 = abab}
10 : 00 : 01.450 M1{} 10 : 00 : 04.350 M1{}
10 : 00 : 01.580 M2{y = 320}

Fig. 1. Sequence of messages in a log

We introduce three arrays of parameters M1Time, M2Time and M3Time that
represent timestamps in milliseconds since the beginning of the log of corre-
sponding messages in the log. In this example they will have the values

M1Time = [0, 1450, 2900, 4350]
M2Time = [80, 1580]
M3Time = [400, 720, 1040, 1600, 1920, 3120, 3440]

In the example the parameter y can take two values and parameters z1 and z2
can take four values. We introduce three arrays of parameters M2y, M3z1 and
M3z2 which represent content of the messages in the log. In this example they
will have the values

M2y = [1, 2]
M3z1 = [1, 2, 4, 1, 2, 1, 2]
M3z2 = [1, 2, 4, 1, 2, 1, 2]

In the example there are two cases in the transmission of messages M3 by the
radio base station. After each message M1 the radio base station transmits several
messages M3. After a M1 message, which is transmitted within 1500 milliseconds,
the M3 messages follow with z1 equal to 1, 2, 3 and 4. After messages M1, which
are transmitted after 1500 milliseconds, the messages M3 follow with z1 equal
to 1 and 2. Between the two messages M1 should be the M3 messages with all
possible values of the parameter z1. This can be captured with the constraint

140 O. Grinchtein et al.

(∀1 ≤ i ≤ 3)
((M1Timei < 1500 − delay∧
(∀1 ≤ j ≤ 4)(∃1 ≤ k ≤ 7)M1Timei < M3Timek < M1Timei+1 ∧ M3z1k = j)
∨
(M1Timei ≥ 1500 − delay∧
(∀1 ≤ j ≤ 2)(∃1 ≤ k ≤ 7)M1Timei < M3Timek < M1Timei+1 ∧ M3z1k = j))

where two disjuncts in the constraint represent two cases of transmission of
messages M3. If disjuntcs are not satisfiable, then we have errors in the log. We
introduce the Boolean decision variable M3contentinci equal to 1 indicates an
error in the log and rewrite the constraint as

(∀1 ≤ i ≤ 3)
((M1Timei < 1500 − delay∧
(∀1 ≤ j ≤ 4)(∃1 ≤ k ≤ 7)M1Timei < M3Timek < M1Timei+1 ∧ M3z1k = j)
∨
(M1Timei ≥ 1500 − delay∧
(∀1 ≤ j ≤ 2)(∃1 ≤ k ≤ 7)M1Timei < M3Timek < M1Timei+1 ∧ M3z1k = j))

↔ M3contentinci = 0

After defining constraints we can use constraint solver to find solution by
minimising sum of Boolean decision variables in the array M3contentinc. In the
example from Figure 1, regardless of the value of delay , we have M3contentinc1 =
1, since there is no message M3 with the parameter z1 = 3 between first and
second messages M1. However, if delay = 20, then M1Time2 = 1450 < 1500−delay
and M3contentinc2 = 1, since there are no messages M3 with z1 equal to 3 and
4 between second and third messages M1. Thus, the minimum number of errors
is one, while delay is between 50 and 100. To analyse real protocol logs, we also
need to define constraints on timestamps and content of messages, but they are
more complex. We present such a constraint model in Section 5.

4 Public Warning System for LTE

In our case study we use a constraint solver to test a part of Public Warning
System (PWS). The Public Warning System is a technology that broadcasts
Warning Notifications to multiple users in case of disasters or other emergencies.

4.1 E-UTRAN Architecture

LTE (Long Term Evolution) [1] is the global standard for the fourth generation
of mobile networks (4G). Radio Access of LTE is called evolved UMTS Terres-
trial Radio Access Network (E-UTRAN)[2]. A E-UTRAN consists of eNodeBs
(eNBs), which is just another name for radio base stations. Our setup consists of
an eNB, a simulated Mobility Management Entity (MME) that forwards PWS
messages to the eNB, and some simulated User Equipment (UE). The functions
of these entities are described in more detail below.

A Constraint Optimisation Model for Analysis 141

Fig. 2. E-UTRAN architecture [2]

An eNB connects to User Equipment via the air interface. The eNBs may
be interconnected with each other by means of the X2 interface. The eNBs are
also connected by means of the S1 interface to the EPC (Evolved Packet Core),
more specifically to the MME (Mobility Management Entity) by means of the
S1-MME interface, and to the Serving Gateway (S-GW) by means of the S1-
U interface [13]. The MME performs mobility management; security control;
distribution of paging messages; ciphering and integrity protection of signaling;
and provides support for PWS message transmission. S-GW is responsible for
packet routing and forwarding. The functions of eNBs include radio resource
management; IP header compression and encryption, selection of MME at UE
attachment; routing of user plane data towards S-GW; scheduling and trans-
mission of paging messages and broadcast information; and measurement and
reporting configuration for mobility and scheduling [1]. An eNB is responsible
for the scheduling and transmission of PWS messages received from MME.

4.2 The Earthquake and Tsunami Warning System

The earthquake and Tsunami warning system (ETWS) is a part of PWS that
delivers Primary and Secondary Warning Notifications to the UEs within an
area where Warning Notifications are broadcast [3]. We show in Figure 3 the
network structure of PWS architecture.

UE

LTE-Uu

eNodeB

S1-MME

MME CBC CBE

SBc

Fig. 3. PWS architecture [14]

142 O. Grinchtein et al.

The Cell broadcast Entity (CBE) can be located at the content provider and
sends messages to the Cell Broadcast Center. The Cell Broadcast Center (CBC)
is part of EPC and connected to the MME.

P
a
g
P
N

1
,1

P
a
g
L
o
g
1

P
a
g
P
N

1
,2

P
a
g
L
o
g
2

P
a
g
P
N

1
,3

P
a
g
L
o
g
3

dPC dPCdelay

P
a
g
S
N

1
,1

P
a
g
L
o
g
1

P
a
g
S
N

1
,2

P
a
g
L
o
g
4

P
a
g
S
N

1
,3

P
a
g
L
o
g
5

P
a
g
S
N

1
,4

P
a
g
L
o
g
6

a b adelay

S
I
B
1
T
i
m
e
L
o
g
1

S
I
B
1
T
i
m
e
L
o
g
2

S
I
B
1
T
i
m
e
L
o
g
3

S
I
B
1
T
i
m
e
L
o
g
4

S
I
B
1
T
i
m
e
L
o
g
5

S
I
B
1
T
i
m
e
L
o
g
6

S
I
B
1
0
T
i
m
e
L
o
g
1

S
I
B
1
0
T
i
m
e
L
o
g
2

S
I
B
1
1
T
i
m
e
L
o
g
1

S
I
B
1
1
T
i
m
e
L
o
g
2

S
I
B
1
1
T
i
m
e
L
o
g
3

S
I
B
1
1
T
i
m
e
L
o
g
4

S
I
B
1
1
T
i
m
e
L
o
g
5

S
I
B
1
1
T
i
m
e
L
o
g
6

Fig. 4. An example of acquiring primary and secondary notification messages by UE

A Constraint Optimisation Model for Analysis 143

Table 1. Parameters and decision variables in the models

delay Time difference between time when eNB starts to trans-
mit primary notification and/or secondary notification
and the time when UE reads first paging message.

nPrim Number of primary notifications.

delayPN An array of timestamps of primary notifications. The size
of the array is nPrim.

nSec Number of secondary notifications.

delaySN An array of timestamps of secondary notifications. The
size of the array is nSec.

dPC The length of a paging cycle.

ndPC The number of paging cycles, which is configured in eNB.

PagPN An array of timestamps of paging messages of primary
notification. The size of the array is ndPC · nPrim

nBR An array of NumberofBroadcastRequested + 1 of sec-
ondary notifications. The size of the array is nSec.

nBRmax Maximum number in array nBR.

PagSN An array of timestamps of paging messages of secondary
notifications. The size of the array is nBRmax · nSec.

PagLog An array of timestamps of paging messages from the log.
The size of the array is nPagLog.

rPer An array of lengths of repetition periods. The size of the
array is nSec.

SIB1TimeLog An array of timestamps of SIB1 messages from the log.
The size of the array is nSIB1Log.

SIB1TypeLog An array of values from 0 to 3 that indicate whether SIB1
messages contain schedulingInfoList for SIB10 and/or
SIB11 messages. The size of the array is nSIB1Log.

SIB10TimeLog An array of timestamps of System Information mes-
sages with SIB10 from the log. The size of the array is
nSIB10Log

SIB11TimeLog An array of timestamps of System Information mes-
sages with SIB11 from the log. The size of the array is
nSIB11Log.

siPerSIB10 Periodicity of SIB10.

siPerSIB11 Periodicity of SIB11.

nSeg An array of number of segments in secondary notifica-
tions.

144 O. Grinchtein et al.

The CBE sends emergency information to the CBC. The CBC identifies
which MMEs need to be contacted and sends a Write-Replace Warning Request
message containing the warning message to be broadcast to the MMEs. The
MME sends a Write-Replace Warning Confirm message that indicates to the
CBC that the MME has started to distribute the warning message to eNBs. The
MME forwards Write-Replace Warning Request to eNBs in the delivery area.
The eNB determines the cells in which the message is to be broadcast based on
information received from MME [14]. If a Warning Type IE (information ele-
ment) is included in a Write-Replace Warning Request message, then the eNB
broadcasts a Primary Notification. If Warning Message Contents IE is included in
a Write-Replace Warning Request message, then the eNB schedules a broadcast
of the warning message according to the value of Repetition Period IE (rPer)
and Number of Broadcasts Requested IE (NumberofBroadcastRequested) [15].
To inform a UE about the presence of an ETWS primary notification and/or
ETWS secondary notification, a paging message is used. A UE attempts to read
paging messages at least once every defaultPagingCycle (dPC). If a UE receives
a Paging message including an ETWS-indication, then it starts receiving ETWS
primary notification or ETWS secondary notification according to scheduling-
InfoList contained in SystemInformationBlockType1 (SIB1). ETWS primary
notification is contained in SystemInformationBlockType10 (SIB10) and ETWS
secondary notification is contained in SystemInformationBlockType11 (SIB11).
The messages SIB10 and SIB11 are transmitted in System Information (SI)
messages with different periodicity. If a secondary notification contains a large
message, then it is divided into several segments, which are transmitted in Sys-
tem Information messages.

In Table 1 we present a description of some parameters that are constants
and decision variables used in models. Parameters, which represent the content
of SIB10 and SIB11 messages, are omitted. In Figure 4 we show an example of a
correct reception of paging messages, SIB1, SIB10 and SIB11 messages of the first
warning message by UE, where a = (rPer1/dPC
 + 1) · dPC, 	rPer1/dPC
 is the
number of whole paging cycles during a repetition period, b = 	rPer1/dPC
 · dPC ,
ndPC = 3,nBR1 = 4andnSeg1 = 2.Horizontal lines inFigure 4 represent timelines.
The first timeline is used to represent timestamps of paging messages of primary
notification, and the second timeline is used to represent timestamps of pagingmes-
sages of secondary notification. Vertical lines in first and second timelines represent
timestamps of paging messages; vertical lines in the third timeline represent times-
tamps of SIB1 messages; rectangles in the fourth timeline represent timestamps of
SIB10messages; and rectangles in the fifth timeline represent timestamps of SIB11
messages. Unfilled and filled rectangles in the fifth timeline indicate two different
message segments.

4.3 Replacement of Warning Messages

If a warning message is being broadcast in a certain area and the eNB receives a
Write-Replace Warning Request message with an identity which is different from

A Constraint Optimisation Model for Analysis 145

W
a
rn

in
g

m
es

sa
g
e

1

P
ri

m
S
ec

W
a
rn

in
g

m
es

sa
g
e

2

P
ri

m

W
a
rn

in
g

m
es

sa
g
e

3

S
ec

W
a
rn

in
g

m
es

sa
g
e

4

S
ec

W
a
rn

in
g

m
es

sa
g
e

5

P
ri

m
S
ec

delayPN2 delaySN2
delaySN3

delayPN3

delaySN4

(a) Transmission of Write-Replace Warning Request messages by
MME to eNB. Different shapes on the top of the vertical lines rep-
resent different warning messages.

S
I
B
1
0

S
I
B
1
1

(b) Transmission of primary and secondary notifications for each warning mes-
sage by eNB to UE. A shape on top (bottom) of a rectangle shows to which
warning message SIB10 (SIB11) message corresponds.

Fig. 5. Replacement of Write-Replace Warning Request messages

the warning messages being broadcast, the eNB schedules the received warn-
ing message for broadcast for that area. Figure 5 illustrates the replacement of
warning messages. Figure 5(a) shows timestamps of five Write-Replace Warning
request messages (Warning message 1-5) which contain the content of primary
notifications (Prim) and/or secondary notifications (Sec). For example Warn-
ing message 1 contains the content of primary and secondary notifications and
Warning message 2 contains the content of primary notification. The horizontal
line is the timeline and vertical lines represent timestamps of warning messages.
Warning message 2 is received by eNB delayPN2 milliseconds after Warning
message 1 was received. Warning message 5 is received delayPN3 = delaySN4
milliseconds after Warning message 1 is received. In Figure 5(b) vertical rect-
angles represent timestamps of SIB10 and SIB11 messages which eNB transmit
to UE. It can happen that SIB10 (SIB11) messages from a previous warning
message continues to transmit after the new warning message is received, if the
new message does not contain a content of primary (secondary) notification. For
example, when Warning message 2 is received, eNB continues transmit SIB11
messages from Warning message 1 and start to transmit new SIB10 messages.

146 O. Grinchtein et al.

5 Modelling of ETWS Notification Acquisition by UE

Our goal is to analyse a UE protocol log that contains paging messages, SIB1,
SIB10, and SIB11 messages. We defined a Model that consists of constraints on
timestamps and the content of these messages. We divided the Model into three
submodels, each of them checks for different information in a protocol log. Some
constraints appear in all submodels. The division into submodels was made in
order to reduce complexity of the overall model and is useful for a quick check of
partial information in case when Model takes a long time to solve. The submodels
are

– PagingModel that checks that the log contains all required paging messages,
and that the number and timestamps of paging messages are correct

– SIB1Model that checks that the log contains all required SIB1 messages, and
that the schedulingInfoList is correct

– PrimSecModel checks that the log contains SIB10 messages with correct
timestamps, content and identity numbers. It also checks that SIB11 mes-
sages have correct timestamps, content, segments and identity numbers.

The recommended values for dPC, siPerSIB10, siPerSIB11 and rPer satisfy
constraints dPC > siPerSIB10, rPer > siPerSIB11 and rPer > dPC, which we
assume in all our models. Other values are possible, but would require different
testing strategies. We also assume that the first message in the log is a paging
message and we assign value 0 to PagLog1. We assign to the array SIB10TimeLog
of timestamps of SIB10 messages, and to the array SIB11TimeLog of timestamps
of SIB11 messages values, which are time differences between timestamps of the
messages in the log and the timestamp of the first paging message in the log. The
main ingredient of the model is delay , which is an integer decision variable in
the model that can be between 0 and dPC. It represents the delay of first paging
message. We use binary search as a search strategy for delay . We use arrays of
Boolean decision variables which are equal to 1 if the corresponding constraints
are unsatisfiable. Then we search for a solution that minimises objective that is
the sum of the Boolean variables.

5.1 Delays of Warning Messages as Decision Variables

The arrays delayPN and delaySN represent timestamps of warning messages sent
to eNB by a MME. Since these timestamps are constant and some variable delay
can occur, we introduce arrays of decision variables delayPN50 and delaySN50
which represent extra delay of warning messages. We assume that delays are less
than 50 milliseconds.

Simply introducing a decision variable between 0 and 50 as an extra delay will
increase complexity of the problem drastically. When there is extra delay some
paging messages, SIB1, SIB10 and SIB11 could belong to the previous warning
message.Thus, we can set values to extra delay delayPN50 i by calculating dis-
tances between timestamps of SIB1, SIB10 and SIB11 messages and timestamp

A Constraint Optimisation Model for Analysis 147

delay

P
a
g
L
o
g
1

S
I
B
1
0
T
i
m
e
L
o
g
5

SIB10TimeLog5

delayPN2

50

delayPN50 2

Fig. 6. Illustration of setdelayPN50(2, nSIB10Log, SIB10TimeLog)

of ith warning message and choose distance with less than 50 milliseconds as a
value for delayPN50 i. We constrain delayPN50 by expression:

(∀1 ≤ i ≤ nPrim)
(delayPN50 i = 0
∨
(dPC − ((delayPNi − delay) mod dPC) < 50∧

delayPN50 i = dPC − ((delayPNi − delay) mod dPC) + 1)
∨
setdelayPN50(i, nSIB1Log, SIB1TimeLog)
∨
setdelayPN50(i, nSIB10Log, SIB10TimeLog)
∨
setdelayPN50(i, nSIB11Log, SIB11TimeLog)) (1)

where
setdelayPN50(i, k, TimeLog) =
(∃1 ≤ j ≤ k)

(0 ≤ TimeLogj − delayPNi + delay < 50∧
delayPN50 i = TimeLogj − delayPNi + delay + 1) (2)

Figure 6 shows illustration of setdelayPN50(2, nSIB10Log, SIB10TimeLog),
where delayPN50 2 = SIB10TimeLog5 − delayPN2 + delay + 1.

The array delaySN50 is defined in a similar way. Then we replace in the model
delayPNi by delayPNi+delayPN50 i and delaySNi by delaySNi+delaySN50 i. We
have a constraint to guarantee that if delayPNi = delaySNj then delayPN50 i =
delaySN50 j , 1 ≤ i ≤ nPrim and 1 ≤ j ≤ nSec .

5.2 Modeling of Timestamps of Paging Messages

The first timeline in Figure 4 shows timestamps of paging messages, which are
part of transmission of primary notification and the second timeline shows times-
tamps of paging messages, which correspond to secondary notification. Since pag-
ing messages of primary and secondary notifications look identical in the logs,

148 O. Grinchtein et al.

we introduce one array PagLog of timestamps of paging messages from the log,
which contain timestamps of paging messages of primary and secondary notifica-
tions in the order as they appear in the log. However paging messages of primary
and secondary notifications have different periodicity and we need to distinguish
them in order to check correctness of messages in the log. Periodicity of paging
messages of primary notifications is dPC, but the time difference between two
consecutive paging messages of secondary notification depends on the repetition
period of notification and can take two different values for the same notification
as shown in Figure 4. On the other hand, if there are more paging messages in the
log than there should be or there are other errors in paging messages in the log,
SIB10 and SIB11 messages can still be correct, but we cannot use timestamps
of paging messages from the log. Therefore we introduce the array of correct
timestamps of paging messages of primary notification PagPN and the array
of correct timestamps of secondary notification PagSN . We post constraints on
these arrays which calculate periodicity of paging messages. These constraints
appear in all models.

5.3 Description of the PagingModel

We check that all required paging messages of primary and secondary notifi-
cations are present in the log. We check that every paging message in the log
is a paging message of primary notification or paging message of a secondary
notification.

5.4 Description of the SIB1Model

We have several constraints to check the timing and content of SIB1 messages.
The constraint (3) is an example of constraint, that checks the correctness of
messages. In (3) we check that if the SIB1 message is between the first paging
message of primary notification and the last paging message of primary notifica-
tion, then it contains scheduling information for SIB10. The array SIB1TimeLog
contains timestamps of SIB1 messages in the log. SIB1TypeLog is array of val-
ues from 0 to 3 that indicates whether SIB1 contains schedulingInfoList for
SIB10 and/or SIB11. Then we post a constraint

(∀1 ≤ k ≤ nSIB1Log)(((
(∃1 ≤ i ≤ nPrim − 1)

(SIB1TimeLogk ≥ delayPNi + delayPN50 i − delay∧
((PagPN i,ndPC = −1 ∧ SIB1TimeLogk <
delayPNi+1 + delayPN50 i+1 − delay)∨
(PagPN i,ndPC �= −1 ∧ SIB1TimeLogk ≤ PagPN i,ndPC))

)
∨

(SIB1TimeLogk ≥ delayPNnPrim + delayPN50 nPrim − delay∧
SIB1TimeLogk ≤ PagPN nPrim,ndPC)

)

↔ (SIB1TypeLogk = 1 ∨ SIB1TypeLogk = 3)
)

↔ SIB1PrimTypeinck = 0 (3)

A Constraint Optimisation Model for Analysis 149

where the Boolean variable SIB1PrimTypeinck equal to 1 indicates an error in
log. Since we can assign different values to PagPN and PagSN due to unknown
value for delay , we use constraints and arrays of Boolean decision variables from
PagingModel in SIB1Model. Minimisation of sum of Boolean decision variables
from PagingModel helps reduce variations in the values of the timestamps in
PagPN and PagSN .

5.5 Description of the PrimSecModel

The model PrimSecModel checks correctness of timing and content of SIB10
and SIB11 messages in the log. For example, we check that notifications have
correct identity numbers. We also check the correctness of sequences of SIB11
segments, and that there are messages every paging cycle and repetition period.
As in SIB1Model we use constraints and arrays of Boolean decision variables
from PagingModel also in PrimSecModel.

6 Partitioning of Timestamps of Messages

If the log is large and contains for example 1000 SIB10 messages, then we can
have many constraints of the form

(∀1 ≤ i ≤ nPrim)(∃1 ≤ k ≤ 1000).φ(i, k) (4)

(∀1 ≤ k ≤ 1000)(∃1 ≤ i ≤ nPrim).φ′(i, k) (5)

and
(∀1 ≤ i ≤ nPrim)(∀1 ≤ j ≤ ndPC)(∃1 ≤ k ≤ 1000).φ′′(i, j, k) (6)

where k is index of SIB10 message in the log, nSIB10Log = 1000 and φ, φ′ and
φ′′ are some constraints. Even with small values for nPrim and ndPC, MiniZinc
cannot process such constraints. However, we can partition messages into classes,
where a message belongs to class i if its timestamp is between delayPNi − dPC
and delayPNi+1 + dPC, where 1 ≤ i ≤ nPrim− 1 or greater than delayPNi − dPC
if i = nPrim. It can happen that the message belongs to several classes, but it
helps to significantly reduce the size of constraint, it does not change the set of
solutions, and makes the approach practical. For example, for SIB10 messages
we can have arrays of integers fmin and fmax such that

fmin
i = min

1≤k≤nSIB10Log
{k|delayPNi −dPC ≤ SIB10TimeLogk ≤ delayPNi+1 +dPC},

where 1 ≤ i ≤ nPrim − 1 and

fmin
nPrim = min

1≤k≤nSIB10Log
{k|SIB10TimeLogk ≥ delayPNnPrim − dPC}

fmax
i = max

1≤k≤nSIB10Log
{k|delayPNi−dPC ≤ SIB10TimeLogk ≤ delayPNi+1+dPC},

where 1 ≤ i ≤ nPrim − 1 and fmax
nPrim = nSIB10Log.

150 O. Grinchtein et al.

Since delayPN, SIB10TimeLog and dPC are constants, we can easily calculate
fmin and fmax and rewrite (4) as

(∀1 ≤ i ≤ nPrim)(∃fmin
i ≤ k ≤ fmax

i).φ(i, k) (7)

Similary, we can define arrays of integers gmin and gmax and more complex
arrays of integers γmin

i,j and γmax
i,j and rewrite (5) as

(∀1 ≤ k ≤ 1000)(∃gmin
k ≤ i ≤ gmax

k).φ′(i, k) (8)

and (6) as

(∀1 ≤ i ≤ nPrim)(∀1 ≤ j ≤ ndPC)(∃γmin
i,j ≤ k ≤ γmax

i,j).φ′′(i, j, k) (9)

Similar calculations have been done for paging messages, SIB1 and SIB11 mes-
sages.

7 Experiments

We used our constraint model to find errors in real logs, and generated logs of
different size with injected errors. The experiments were done on the computer
equipped with 8GB RAM and an Intel Core i5-3210M processor (2.50GHz).

7.1 Analysis of Real Logs

We analysed nine real logs, which were documented and were in an internal
archive of Ericsson. Each log was captured in a UE simulator after sending two
Write-Replace Warning Request messages from a MME simulator to an eNB.
The logs have different structures, and represent all possible combinations of pri-
mary and secondary notifications in case of two warning messages. For example,
the first warning message contains primary and secondary notifications, and the
second warning message contains primary notifications; or another example, the
first warning message contains secondary notifications, and the second warning
message contains secondary notifications. Nine combinations are possible in case
of two warning messages. The size of logs is between 138KB and 578KB. The
number of paging messages is between 8 and 26, the number of SIB1 messages
is between 8 and 26, the number of SIB10 messages is between 0 and 75, and
the number of SIB11 messages is between 0 and 24.

The running time for the Model was a few seconds for each log, and the
found objective was between 0 and 70. The optimisation as presented in Section
6 was not needed. Eight logs have the property that the Boolean decision vari-
ables, which have value 1 in optimal solution, have the same value in all other
solutions. Thus, the found errors are present in all solutions for different values
of delay . This was checked by adding to the model a constraint with negated
conjunction of values of non-zero Boolean decision variables of optimal solution,
then MiniZinc reported that the model is unsatisfiable. One log does not have
such property, but it has the property that there is only one solution with the
value of objective being optimal, and the difference between other solutions and
optimal solution is at least 6 errors.

A Constraint Optimisation Model for Analysis 151

Table 2. Analysis of correct generated logs

log1 log2 log3 log4 log5

nPrim 30 25 20 15 10

nSec 30 25 20 15 10

P
a
g
i
n
g
M
o
d
e
l

nPagLog 625 510 419 307 218

time 0:03:59 0:02:39 0:00:22 0:00:11 0:00:07

time,gecode 0:00:04 0:00:02 0:00:02 0:00:01 0:00:01

objective 0 0 0 0 0

S
I
B
1
M
o
d
e
l

nSIB1Log 625 510 419 307 218

time 0:04:21 0:02:56 0:00:42 0:00:21 0:00:11

time,gecode 0:00:04 0:00:03 0:00:02 0:00:01 0:00:01

objective 0 0 0 0 0

P
r
i
m
S
e
c
M
o
d
e
l

nSIB10Log 3062 2628 2091 1435 1057

nSIB11Log 2753 2209 1500 1052 867

time 0:16:47 0:12:46 0:03:49 0:02:13 0:01:27

time,gecode 0:00:05 0:00:03 0:00:02 0:00:02 0:00:01

objective 0 0 0 0 0

M
o
d
e
l

time 0:20:59 0:14:31 0:04:46 0:02:45 0:01:43

time,gecode 0:00:05 0:00:04 0:00:03 0:00:02 0:00:02

objective 0 0 0 0 0

7.2 Analysis of Generated Logs

We generated logs, with and without errors, in order to understand how the
model scales. The generation of protocol logs was described in [12] where SICS-
tus Prolog [16] was used as constraint solver. We extended the approach and used
Gecode[17] and C++ for log generation. Note that this was not a pure constraint
model, but it included some imperative pre and post processing steps.

Table 2 shows results of the analysis of generated correct logs, where the
found objective is 0. The optimization presented in Section 6 was used. The total
time includes translation of models to FlatZinc using mzn-gecode and execution
time of Gecode on the compiled FlatZinc using fzn-gecode. We can see that a
very large log with 625 paging messages, 625 SIB1 messages, 625 SIB10 messages,
3062 SIB10 messages, and 2753 SIB11 messages requires 21 minutes to compile
to FlatZinc. While fzn-gecode found the solution in a few seconds. A log that is
three times smaller containing 10 primary and 10 secondary notifications requires
2 minutes to compile to FlatZinc and only 2 seconds to find solution.

In Table 3 we present the results of the analysis of generated logs where errors
were introduced. All logs in Table 3 are incorrect versions of Log6. The Log7
to Log15 were generated by changing the timestamp of messages (t), removing
messages (r), adding extra messages (a) and changing the content of messages
(c). In Log7 and Log8 some paging messages are not correct. In Log9 and Log10
some SIB1 messages are not correct. In Log11 and Log12 some SIB10 messages

152 O. Grinchtein et al.

Table 3. Analysis of generated logs with injected errors

log6 log7 log8 log9 log10 log11 log12 log13 log14 log15

nPrim 20

nSec 20

errors r,a t r,c t,c r t,c r,t,c r,a,t,c r,a,t,c

in messages paging paging SIB1 SIB1 SIB10 SIB10 SIB11 all all

P
a
g
i
n
g
M
o
d
e
l

nPagLog 374 174 374 374 374 374 374 374 374 398

time 0:00:23 0:00:27 0:01:23 0:00:58 0:23:15

time,gecode 0:00:02 0:00:08 0:01:02 0:00:39 0:22:56

objective 0 413 155 192 789

S
I
B
1
M
o
d
e
l

nSIB1Log 374 374 374 75 374 374 374 374 383 473

time 0:00:39 0:00:41 0:01:30 0:01:07 0:04:23 0:01:22 0:32:16

time,gecode 0:00:02 0:00:06 0:00:50 0:00:38 0:03:44 0:00:45 0:31:33

objective 0 413 155 684 395 304 1386

P
r
i
m
S
e
c
M
o
d
e
l

nSIB10Log 1875 1916 1994 1871 1858 406 1922 1888 1683 2034

nSIB11Log 1430 1429 1429 1429 1429 1430 1429 1143 1295 1242

time 0:03:38 0:03:45 0:04:49 0:03:28 0:07:54 0:04:11 0:06:24 1:25:55

time,gecode 0:00:03 0:00:08 0:00:58 0:01:00 0:04:11 0:00:59 0:02:57 1:22:21

objective 0 413 155 220 3611 2061 4267 6789

M
o
d
e
l

time 0:05:27 0:04:48 0:06:04 0:04:42 0:08:38 0:04:22 0:08:34 0:05:14 0:07:12 1:40:13

time,gecode 0:00:03 0:00:09 0:01:04 0:00:45 0:03:40 0:01:00 0:03:46 0:01:01 0:02:46 1:35:18

objective 0 413 155 684 395 220 3611 2061 4379 7396

are not correct, and in Log13 some SIB11 messages are not correct. In Log14
and Log15 there are errors in all types of messages. It took 7 minutes to find
solution for Model of Log14, which consists of 3735 messages and 4379 errors.
This is still a good result, since in a real environment it would require more than
30 minutes to collect a log of the same order of magnitude as Log14.

However, as the analysis of Log15 shows, when there are significantly incor-
rect timestamps of messages the solving time can increase significantly. It appears
that incorrect timestamps of messages are harder for the solver to handle, since
they are appear in constraints more often.

8 Learning Delay

Constraint programming can be used to analyse small logs if some parameter is
unknown. This is often the case with logs in an archive. There was a log in the
archive, with two warning notifications, that was not well documented. There
was no information about the delay of second warning message. The warning
messages consisted of primary and secondary notifications, that is delayPN2 =
delaySN2. We estimated that delayPN2 must be less than 80 seconds. The log was
1, 5 MB and there were 23 paging messages, 183 SIB10 messages and 40 SIB11

A Constraint Optimisation Model for Analysis 153

messages in the log. We used delayPN2 as decision variable in PagingModel. It
took one second for constraint solver to find a solution with the objective being
0. That is it found a value of delayPN2 such that all paging messages in log are
correct. We used the generated value of delayPN2 in Model and got a solution
after 9 seconds with the objective strictly greater than 0. We also used delayPN2
as a decision variable in Model and got a solution after 6 minutes with the same
objective value.

9 Conclusion

There are a number of advantages of using MiniZinc and constraint program-
ming: it was easy to translate the required parts of the telecommunication specifi-
cation [3] directly into MiniZinc; these MiniZinc specifications are automatically
translated into a constraint program that can be used to test protocol logs for
correctness directly; the MiniZinc specification is a declarative specification of
the protocol behaviour rather than the procedural implementation that is usually
used for implementation of the checker; and finally adding more functionality to
the MiniZinc implementation is done by simply adding more constraints.

Constraint solvers can easily handle complex requirements on timestamps.
We used the MiniZinc model to analyse real logs and also larger generated logs
with a lot of errors, which shows its usability in practice. The constraint solver
was able to handle big domains of parameters, and we do not need to reduce
or scale the domains. Protocol log analysis with constraint programming can be
a part of test automation and can be useful for functional testing as well as in
regression testing. Further, we believe that the protocol itself has independent
interest as a useful case study for other formal modelling approaches. As a future
work we plan to apply the approach to other case studies and protocols.

Acknowledgments. The authors would like to thank Noric Couderc for fruitful dis-
cussions on protocol log generation with Gecode. The first author is supported by VIN-
NMER Program 2011-03229 funded by Swedish Governmental Agency for Innovation
Systems. The third author is supported by grant 2012-4908 of the Swedish Research
Council(VR).

References

1. Chadchan, S., Akki, C.: 3GPP LTE/SAE: An overview. International Journal of
Computer and Electrical Engineering 2(5), 806–814 (2010)

2. 3GPP: Evolved universal terrestrial radio access (e-utra) and evolved universal
terrestrial radio access network (e-utran); overall description; stage 2. TS 36.300,
3rd Generation Partnership Project (3GPP)

3. 3GPP: Public warning system (PWS) requirements. TS 22.268, 3rd Generation
Partnership Project (3GPP)

4. Rossi, F., van Beek, P., Walsh, T., eds.: Handbook of Constraint Programming.
Elsevier (2006)

154 O. Grinchtein et al.

5. Carlsson, M., Grinchtein, O., Pearson, J.: Protocol log analysis with constraint pro-
gramming (work in progress). In: Proceedings of the 12th International Workshop
on Satisfiability Modulo Theories, SMT, pp. 17–26 (2014)

6. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.: MiniZ-
inc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007.
LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

7. Mossige, M., Gotlieb, A., Meling, H.: Testing robotized paint system using con-
straint programming: an industrial case study. In: Merayo, M.G., de Oca, E.M.
(eds.) ICTSS 2014. LNCS, vol. 8763, pp. 145–160. Springer, Heidelberg (2014)

8. Mossige, M., Gotlieb, A., Meling, H.: Using CP in automatic test generation for
ABB robotics’ paint control system. In: O’Sullivan, B. (ed.) CP 2014. LNCS,
vol. 8656, pp. 25–41. Springer, Heidelberg (2014)

9. DeMilli, R., Offutt, A.J.: Constraint-based automatic test data generation. IEEE
Transactions on Software Engineering 17(9), 900–910 (1991)

10. Williams, N., Marre, B., Mouy, P., Roger, M.: PathCrawler: automatic generation
of path tests by combining static and dynamic analysis. In: Dal Cin, M., Kaâniche,
M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 281–292. Springer,
Heidelberg (2005)

11. Carlier, M., Dubois, C., Gotlieb, A.: FocalTest: a constraint programming app-
roach for property-based testing. In: Cordeiro, J., Virvou, M., Shishkov, B. (eds.)
ICSOFT 2010. CCIS, vol. 170, pp. 140–155. Springer, Heidelberg (2013)

12. Balck, K., Grinchtein, O., Pearson, J.: Model-based protocol log generation for
testing a telecommunication test harness using clp. In: DATE (2014)

13. 3GPP: General packet radio service (GPRS) enhancements for evolved universal
terrestrial radio access network (E-UTRAN) access. TS 23.401, 3rd Generation
Partnership Project (3GPP)

14. 3GPP: Technical realization of cell broadcast service (CBS). TS 23.041, 3rd Gen-
eration Partnership Project (3GPP)

15. 3GPP: Evolved universal terrestrial radio access (E-UTRA); S1 application proto-
col (S1AP). TS 36.413, 3rd Generation Partnership Project (3GPP)

16. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain con-
straint solver. In: Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292,
pp. 191–206. Springer, Heidelberg (1997)

17. Gecode Team: Gecode: A generic constraint development environment (2006).
http://www.gecode.org

http://www.gecode.org

Experimental Evaluation of a Novel Equivalence
Class Partition Testing Strategy

Felix Hübner (B), Wen-ling Huang, and Jan Peleska

Department of Mathematics and Computer Science, University of Bremen,
Bremen, Germany

{felixh,huang,jp}@informatik.uni-bremen.de
http://informatik.uni-bremen.de/agbs

Abstract. In this paper, a novel complete model-based equivalence
class testing strategy is experimentally evaluated. This black-box strat-
egy applies to deterministic systems with infinite input domains and
finite internal state and output domains. It is complete with respect to a
given fault model. This means that conforming behaviours will never be
rejected, and all nonconforming behaviours inside a given fault domain
will be uncovered. We investigate the question how this strategy performs
for systems under test whose behaviours lie outside the fault domain. Fur-
thermore, a strategy extension is presented, that is based on randomised
data selection from input equivalence classes. While this extension is still
complete with respect to the given fault domain, it also promises a higher
test strength when applied against members outside this domain. This is
confirmed by an experimental evaluation that compares mutation cover-
age achieved by the original and the extended strategy with the coverage
obtained by random testing.

Keywords: Model-based testing · Equivalence class partition testing ·
Adaptive random testing · SysML · State Transition Systems

1 Introduction

Background. In [13], two of the authors have presented a novel complete input
equivalence class partition (IECP) testing strategy. Typically used in a model-
based testing (MBT) scenario, the strategy is applicable to all concrete test
models whose behavioural semantics can be described by a deterministic variant
of Kripke Structures, with input variables from potentially infinite domains, but
with finite-range internal state variables and finite output domains. The test
suite construction is performed in relation to a given fault model F = (S,∼,D)
with reference model S, conformance relation ∼, and fault domain D. S specifies
the expected behaviour of the SUT. In general, the conformance relation is a
not necessarily symmetric relation specifying the conditions for the behaviour
of a system under test (SUT) to be still acceptable in comparison with S. In
the context discussed here, we use I/O-equivalence ∼ as conformance relation
which means that the SUT and reference model S produce the same observable
c© Springer International Publishing Switzerland 2015
J.C. Blanchette and N. Kosmatov (Eds.): TAP 2015, LNCS 9154, pp. 155–172, 2015.
DOI: 10.1007/978-3-319-21215-9 10

156 F. Hübner et al.

sequences of states, when restricted to inputs and outputs. The fault domain
D consists of a (usually infinite) set of models S ′ from this domain, that may
conform to the reference model (S ′ ∼ S) or not.

A test suite is then complete with respect to F , if and only if all tests of
the suite will pass for every S ′ ∈ D conforming to S, and at least one test will
fail when executed against a non-conforming member of D. The test hypothesis
states that the true behaviour of the SUT is equivalent to one of the models in
the fault domain, as far as visible at the black-box interface. Summarising, the
complete IECP testing strategy uncovers every erroneous behaviour of the SUT,
provided that its true behaviour can be captured by a member S ′ of the fault
domain, and SUTs that are I/O-equivalent to S will never fail a test of the suite.

The investigation of completeness properties has a long tradition as a research
topic; references to the associated literature are given in Section 5.

Fig. 1. Tool-supported workflow

Workflow and Tool Support. In Fig. 1 the workflow associated with our
test approach is shown. Test models are represented in a concrete modelling
formalism; for the models presented in this paper SysML [18] has been used. As
explained in Section 2, the test model is translated into a state transition sys-
tem whose behavioural semantics is expressed by means of initial condition and
transition relation in propositional form. From the transition relation, equiva-
lence classes are calculated. These give rise to an abstraction as a deterministic
finite state machine (DFSM). Applying well-known complete testing strategies
for DFSM, an abstract test suite is derived. Each test case of this suite is repre-
sented as a sequence of input equivalence classes. Selecting concrete input data
from each of these classes by means of an SMT solver, a complete test suite for
the original test model is generated. The whole process is automated and has
been integrated in the model-based test automation tool RT-Tester [20].

Equivalence Class Partition Testing Strategy 157

Objectives and Main Contribution. Apart from their theoretical value,
complete testing strategies are of considerable importance for verification and
validation (V&V) of safety critical systems. There test suites have to be justified
with respect to their test case selection and the resulting test strength, in order to
obtain certification credit. The completeness property, however, depends on the
assumption that the true SUT behaviour is reflected by a member of the fault
domain D (test hypothesis). Widening D typically affects the size of the test
suite in an exponential way. Therefore just using very large fault domains is not
an approach that will be feasible in practise. This leads to the question of how
complete test suites perform outside the fault domain, and this investigation is
the main objective of this paper. To this end, three test strategies are evaluated
with respect to their strength: (A) conventional random testing – this serves as a
lower bound of test strength, to be surpassed by any more sophisticated strategy.
(B) The original complete IECP strategy from [13], and (C) an extension of
the latter which is based on randomised selection of inputs from each input
equivalence class (IEC). These three strategies are described in more detail in
Section 2.

An experimental evaluation (see Section 4) is performed which is based on
two test models that are introduced in Section 3: a speed monitor from the
European Train Control System and an airbag controller for vehicles. Applying
the three strategies against a collection of mutants, the experimental evaluation
confirms significant test strength improvements of strategy (B) over (A), and
the highest test strength is achieved by (C).

Apart from this main contribution, the evaluation results indicate how the
fault domain should be configured: in contrast to fault domains for DFSMs (these
only depend on the assumed maximal size of the SUT’s DFSM state space), our
fault domains depend on an additional parameter affecting the size of the IECs.
The evaluation indicates that the best choice for D is an IEC granularity that
still reflects the different control conditions imposed by the reference model and
the boundary value conditions. However, instead of further refining the IECP
(this would result in a dramatic increase of the test suites), it is better to increase
the number of input values randomly selected from each IEC in each state.

2 Model-Based Random Testing and Equivalence Class
Partition Testing

2.1 Random Testing

In model-based random testing, test cases are created by generating random val-
ues as SUT inputs. To this end, the input interface signatures of the SUT are
extracted from the model, so that the random values are created in the appropriate
data ranges. Apart from this, the input data creation is not guided further by the
model. Additionally, the model is used as a test oracle, so that the observed SUT
behaviour can be compared to the expected behaviour specified by the model.

When performing black-box tests of SUTs with internal states, the SUT
behaviour depends on the sequence of inputs provided since the last SUT reset.

158 F. Hübner et al.

As a consequence, test cases are specified by sequences of random inputs. Mod-
els serving as test oracles need to simulate the internal state changes to be
performed by the SUT on each input, in order to predict the SUT reactions in a
correct way. While random testing is quite easy to mechanise, its test strength
is usually rather weak, because the test case selection does not take into account
the required SUT behaviour. On the other hand, random testing is an obvious
candidate for assessing the test strength of more refined model-based testing
strategies: any successful refined strategy should have a test strength that is
significantly higher than the random testing approach.

2.2 Equivalence Class Partition Testing

Semantic Domain. The novel equivalence class partition testing strategy
presented in [13] is applicable to deterministic, livelock-free systems with
conceptually infinite input domains and finite internal state and output domains.
“Conceptually infinite” means that the domains are too large to be explicitly enu-
merated for test purposes. This includes physical models with real-valued inputs,
but can also apply to finite but very large data types such as 64 bit integers or
doubles as used in typical programming languages or modelling formalisms. As
pointed out in [5,6,13], this class of systems is quite significant in the embedded
systems domain: typical candidates are controllers processing analogue inputs
and deriving discrete control decisions from these inputs, such as thrust reversal
controllers in aircrafts, or the speed monitors and airbag controllers described
in this paper.

The strategy has been proven to be complete on the semantic domain of
Reactive Input Output State Transition Systems (RIOSTS) S = (S, s0, R, V,D).
These systems have state spaces S, initial state s0 ∈ S, and transition relations
R ⊆ S × S. Their state spaces consist of valuation functions s : V → D, where
V is a set of variable symbols and D is the union of all variable domains. The
variable symbols can be partitioned into V = I ∪ M ∪ O, where I comprises
input variables, M (internal) model variables, and O output variables. RIOSTS
distinguish between quiescent states s ∈ SQ and transient states s′ ∈ ST ,
such that SQ ∪ ST partitions the state space S. Transitions from quiescent
states only change input valuations, while internal model variables and out-
put variables remain unchanged. The resulting post-states may be quiescent or
transient. Transitions from transient states always have uniquely determined
quiescent post-states (so we only allow deterministic RIOSTS here), and the
associated transitions leave the inputs unchanged. This concept represents a
natural abstraction of timed formalisms, where delay transitions allow for time
to pass and inputs to be changed, while discrete transitions produce output and
change internal state, but are executed in zero time [3, p. 687].

By associating atomic propositions AP with free variables in V , any RIOSTS
can be extended to a Kripke Structure [9] K(S) = (S, s0, R, V,D,L,AP). The
labelling function L : S → 2AP maps s ∈ S to the set of all atomic propositions
p ∈ AP that evaluate to true, when replacing every free variable v of p by its
valuation s(v) in state s.

Equivalence Class Partition Testing Strategy 159

Notation. In the exposition below, variable symbols are enumerated with the
naming conventions I = {x1, . . . , xk}, M = {m1, . . . , mp}, O = {y1, . . . , yq}. We
use notation x = (x1, . . . , xk) for input variable vectors, and their valuation in
state s is written as s(x) = (s(x1), . . . , s(xk)). DI = Dx1 ×· · ·×Dxk

denotes the
Cartesian product of the input variable domains. Tuples m,y and DM and DO

are defined over model variables and outputs in an analogous way. By s ⊕ {x �→
c}, c ∈ DI we denote the state s′ which coincides with s on all variables from
M ∪ O, but maps the input vector to valuation s′(x) = c. For (s1, s2) ∈ R
we also use the shorter expression R(s1, s2). Restricting a state s to variable
symbols from a set U ⊆ V is denoted by s|U . This function has domain U and
coincides with s on this domain.

Application to Concrete Modelling Formalisms. The test strategy
described below is elaborated on the semantic domain of RIOSTS. Every concrete
modelling formalism whose behavioural semantics can be represented by RIOSTS
is automatically equipped with such a test strategy: the concrete model M is trans-
lated into its corresponding RIOSTS S. Then the test strategy is applied to S, and
this results in a set of test cases, each case represented by a finite sequence of inputs
to the SUT. When executing the test cases, the transition relation of S is used to
determine whether the SUT’s reactions to these input sequences are adequate. In
this article, concrete models are expressed by SysML state machines, and these
can be associated with RIOSTS semantics which is consistent with the semi-formal
specification of state machine behaviour in the UML/SysML standards [17,18].

Equivalence Classes. We use the term trace to denote finite sequences of
states, input vectors, or output vectors. Applying a trace ι = c1 . . . cn of input
vectors ci ∈ DI to an RIOSTS S = (S, s0, R, V,D) residing in some quiescent
state s ∈ S stimulates a sequence of state transitions, each pair of consecutive
states connected by the transition relation R, and with associated output changes
as triggered by these inputs. Restricting this sequence to quiescent states, this
results in a trace of states τ = s1.s2 . . . sn such that si(x) = ci, i = 1, . . . , n,
and si(y) is the last STS output resulting from application of c1 . . . ci to state
s.1 This trace τ is denoted by s/ι. The restriction of s/ι to output variables
is denoted by the trace (s/ι)|O. Since transient states have unique quiescent
post-states, (s/ι)|O is a uniquely determined output trace. Two quiescent states
s, s′ are I/O-equivalent, written s ∼ s′, if every non-empty input trace ι, when
applied to s and s′, results in the same outputs, that is, (s/ι)|O = (s′/ι)|O. Two
STS S,S ′ with the same input domain are I/O-equivalent, if their initial states
are I/O-equivalent. Note that s ∼ s′ asserts equivalent I/O-behaviour in the
future, while it still admits that states s and s′ show different output valuations,
i.e. s|O 	= s′|O.

1 Observe that the restriction to quiescent states does not result in a loss of informa-
tion. Every transient state has the internal and output variable valuations coinciding
with its quiescent pre-state, and its input valuation is identical to that of its quiescent
post-state.

160 F. Hübner et al.

Since I/O-equivalence ∼ is an equivalence relation on quiescent states, we can
factorise SQ with respect to ∼. The initial input equivalence class partitioning
(IECP) I ⊆ P(DI) associated with SQ/∼ is the coarsest partitioning of DI such
that for all q ∈ SQ/∼, X ∈ I, there exists a uniquely determined I/O-equivalence
class δ(q,X) ∈ SQ/∼, such that

∀s ∈ q, c ∈ X : s/c ∈ δ(q,X) (1)

and there exists a well-defined output ω(q,X) ∈ DO, such that

∀s ∈ q, c ∈ X : (s/c)|O = ω(q,X) (2)

It is shown in [13] that SQ/∼ is finite if the RIOSTS S has finite inter-
nal state domains and finite output domains, while the input domains may
be infinite. Moreover, the coarsest partitioning I exists, and it is finite and
uniquely determined under these prerequisites. For these RIOSTS, properties
(1) and (2) induce an abstraction to DFSMs with state space SQ/∼, input
alphabet I, and output alphabet DO: (1) specifies a well-defined total tran-
sition function δ : SQ/∼ × I → SQ/∼, and (2) a well-defined output function
ω : SQ/∼ × I → DO. When partitioning I further to a refined IECP I, the
characteristic properties (1),(2) are preserved.

A finite sequence X1 . . . Xk,Xi ∈ I is called an abstract test case: concrete test
input vectors ci can be selected from each Xi, and, when applied to the initial state
s0, this selection induces a trace s1 . . . sk of quiescent states, such that

∃q1, . . . ,qk ∈ SQ/∼ : ∀i ∈ {1, . . . , k} : si ∈ qi ∧ qi = δ(qi−1,Xi)

The IECP properties imply that the expected results associated with this test
case are then specified by the output trace ω(qi−1,Xi), i = 1, . . . , k.

In [13] an algorithm for calculating SQ/∼ and I is given. This algorithm
produces propositions over variables from V , specifying the members of SQ/∼
and I, respectively. Making use of an SMT solver, the algorithm allows for iden-
tifying the reachable I/O-equivalence classes q ∈ SQ/∼. As a consequence, every
proposition characterising an abstract test case X1 . . . Xk is actually feasible:
this means that we can find concrete traces in S such that, after deleting the
transient states, the resulting quiescent state sequence s0.s1 . . . sk fulfils si ∈ qi

for i = 0, . . . , k and s(x) ∈ Xi for i = 1, . . . , k.
In the case studies described in Section 4, input equivalence classes are

unions of convex subset of R
n. It should be noted, however, that the notion

of I/O-equivalence and IECPs introduced here is far more general, since arbi-
trary propositional specifications of I/O-equivalence classes can be handled by
the underlying theory. The input equivalence classes identified in [13, Example 1],
for example, contain members z specified by conditions z mod m = n.

Fault Models. For the semantic domain of RIOSTS, the fault models F =
(S,∼,D(S,m, I)) are specified as follows. The reference models S are semantic
RIOSTS representations of models elaborated in concrete formalisms, such that

Equivalence Class Partition Testing Strategy 161

the expected behaviour of the SUT is specified by S up to I/O-equivalence. We
use I/O-equivalence as conformance relation.

Positive integer m fulfils m ≥ n, where n is the number of I/O-equivalence
classes of S. IECP I is a refinement of the initial coarsest IECP I associated with
S. Then the members S ′ of the fault domain D(S,m, I) are RIOSTS specified
as follows.

1. The states of S ′ are defined over the same I/O variable space I∪O as defined
for the model S.

2. Initial state s′
0 of S ′ coincides with initial state s0 of S on I ∪ O.

3. S ′ generates only finitely many different output values.
4. S ′ has a well-defined reset operation allowing to re-start the system from its

initial state.
5. The number of I/O-equivalence classes of S ′ is less or equal m.
6. If I, I ′ are the initial coarsest IECP of S, S ′, respectively, fulfilling the char-

acteristic properties (1), (2), then I fulfils the following adequacy condition:

∀X ∈ I,X ′ ∈ I ′ :
(
X ∩ X ′ 	= ∅ ⇒ ∃X ∈ I : X ⊆ X ∩ X ′) (3)

The intuition behind the adequacy condition 6 is as follows. Every possible
behaviour of a fault domain member S ′ can be exercised by visiting a state in
some I/O-equivalence class q′ and applying an input of some IECP member
X ′ ∈ I ′ to this state. Using the refined IECP I in the test suite as described
below, ensures that an input from X ⊆ X ′ ∈ I ′ will be selected when S ′ resides
in q′, so the behaviour associated with (q′,X ′) will be stimulated in at least one
of the test cases. If, when in a state of q′, S ′ conforms to the behaviour of S for
all inputs from X \ X ′, but fails for inputs from X ∩ X ′, inputs selected from
X ⊆ X ∩ X ′ will uncover this error.

Conversely, suppose now that the reference model S behaves differently, when
IECs X1,X2 ∈ I are applied in some state q. Suppose further that S ′ fails to
make this case distinction in a corresponding state q′. Then there exists X ′ ∈ I ′

such that S ′ shows the same behaviour for all c ∈ X ′, but X1 ∩ X ′ 	= ∅ and
X2 ∩ X ′ 	= ∅, so two different behaviours should be visible according to the
reference model. Now the adequacy condition guarantees that there exist two
IEC X1,X2 ∈ I, such that X1 ⊆ X1 ∩X ′ and X2 ⊆ X2 ∩X ′. As a consequence,
if inputs from every input class of I are exercised, the behavioural differences for
inputs from X1 ∩ X ′ and X2 ∩ X ′ will be revealed. Summarising, the adequacy
condition ensures that the IECP I from where input data to the SUT is selected
is fine-grained enough to stimulate every possibly deviating behaviour of S and
S ′. These facts are exploited in the complete test strategy described next.

Complete Finite Test Suite. The complete DFSM abstraction M of S with
states SQ/∼, input alphabet I, transition function and output function as char-
acterised in (1), (2), allows for application of finite complete DFSM testing
strategies, such as the W-Method introduced in [8,25]. The general form of a
W-Method test suite is

162 F. Hübner et al.

W = P.
(m−n⋃

i=0

Ii
.W

)
(4)

where P is the state transition cover, Ii
denotes the input trace segments of

length i, and W is the characterisation set. Every test of W consists of a (possibly
empty) input trace from P , concatenated with an arbitrary input trace of length
zero up to m − n, and terminated by an input trace from the characterisation
set. P is the union of a state cover C and a transition cover C.I: C contains
the empty trace ε, and for any state q of M, there exists an input trace in C
which, when applied to the initial state, ends at q. The transition cover is defined
by C.I = {ι.X | ι ∈ C,X ∈ I}. Summarising, the input sequences of a state
transition cover ensure that (1) every state of the reference DFSM M associated
with the reference model S is visited, and (2) every transition from every state
is exercised. A characterisation set is a set of input traces distinguishing each
pair of states in a minimal DFSM. Using minimisation algorithms such as the
one specified in [12], characterisation sets can be constructed as a by-product of
the minimisation process.

The test suite generated according to (4) is called an abstract test suite,
because its elements are abstract test cases as defined above: the inputs to be
used in each test case are not yet represented by concrete input vectors c, but
by input equivalence classes X ∈ I. For creating an executable test suite, inputs
c ∈ X have to be selected for every X ∈ I.

The W-Method is complete for the fault model of all DFSM over the same
input and output alphabet and with at most m states. It is shown in [13] that
the associated test suites with concrete inputs c ∈ X are also complete for
F = (S,∼,D(S,m, I)). This completeness result is independent on the choice
of concrete input data selected from each input equivalence class X ∈ I.

The fault domain D(S,m, I) introduced above can be extended by increasing
m or by refining I. Increasing m increases the maximal length of input sequences
in test cases in a linear way. This affects the size of the test suite exponentially,
but allows for fault domain members with higher recurrence diameters r [4]: this
is the length of the longest loop-free path in a Kripke structure. Erroneous SUT
behaviour that only occurs at the end of such a longest loop free path may only
be detected if the test cases use input sequences that are long enough to traverse
the SUT state up to the length of the recurrence diameter.

Refining I increases the size of the IECP, and this size increases the number
of test cases in a polynomial way. It has to be noted, however, that uniformly
refining all members of I – for example, by using a sub-paving strategy as it
is well known from interval analysis [14] – increases the size of the IECP expo-
nentially with each new refinement step. The resulting fault domain contains
members S ′ possessing narrower trapdoors: these are refined input guard con-
ditions g ∧ δ applicable in certain S ′-states, where S ′ should behave uniformly
for all inputs satisfying g. The true behaviour of S ′, however, conforms to the
expected behaviour modelled by S only for inputs fulfilling g ∧ ¬δ, while erro-
neous behaviour is revealed for inputs satisfying g ∧ δ.

Equivalence Class Partition Testing Strategy 163

2.3 Randomisation of Equivalence Partition Tests

As we have seen above, enlarging the fault domain D(S,m, I) via m or I seri-
ously affects the size of the resulting complete test suite W. We therefore inves-
tigate an alternative approach in this paper that aims at increasing the test
strength of W for SUTs S ′′ whose true behaviour is reflected by RIOSTS out-
side D(S,m, I). For obvious reasons it is assumed that these SUTs still fulfil the
RIOSTS compatibility requirements 1 – 4 of the fault domain definition. This
means that S ′′ may have more than m I/O-equivalence classes and may need
an IECP that is more fine-grained than I, but it is still assumed that S ′′ is an
RIOSTS using the same I/O variables and possessing the same visible initial
state and fulfilling a reset condition.

To this end, we observe that the completeness property of the test suites intro-
duced above does not depend on the concrete values selected from each input
equivalence class X ∈ I. For members S ′ ∈ D(S,m, I) it would suffice to fix one
input vector cX for every X ∈ I. Alternatively, we could also choose different
members at random, each time an input from some class X is required accord-
ing to the abstract test suite definition. While this alternative would not affect
the suite’s completeness property when applied against members of D(S,m, I),
it favourably affects the test strength against RIOSTS outside D(S,m, I): the
chances for uncovering trapdoors are obviously increased. This approach results
in an adaptive random testing strategy, where the selection of input data is no
longer performed uniformly over the complete input domain, but selectively for
each input equivalence class X ∈ I. Moreover, the random values from such an
X are only applied when an X-input is required according to the abstract test
suite constructed from Equation (4).

Technically the randomisation is implemented by running an SMT solver
repeatedly to find concrete values of every input equivalence class X ∈ I. The
abstract test suite constructed from Equation (4) is a sequence on input equiv-
alence classes. According to our equivalence class construction [13], an input
equivalence class X ∈ I is defined by a proposition2 gX , containing solely vari-
ables in I. Using an SMT solver to solve gX results in a concrete input vector
c ∈ X. Rerunning the solver for the same X and prohibiting existing solutions

c1, . . . , cn−1 with a refined constraint gX ∧
n−1∧
i=1

¬ci will result in a new solution cn,

i.e. a new concrete input cn ∈ X of the input equivalence class. The negation of
existing solution yields an exponential growth of the runtime of the SMT solver
in the worst case. Therefore two other heuristics were implemented:
(a) the internal heuristics of the SAT solver have been randomized to get a “ran-
dom” solution of gX . (b) Interval analysis can be used to find a subpaving, that
is an inner approximation of gX . From this subpaving random elements can be
selected using a random number generator. As another runtime optimization the

2 The proposition is guaranteed to have a solution, since it describes an input equiv-
alence class, which has at least one member and thus at least one assignment that
fulfills the proposition.

164 F. Hübner et al.

input selection can be parallelized. Once the input equivalence class partitioning
I is available, candidates from every input equivalence class X can be calculated
separately and in parallel, to find as many different concrete values as needed.

It has to be noted, however, that the complete test suite generated according
to (4) will not guarantee that every pair (q,X) with q ∈ S/∼ and X ∈ I will
be exercised the same number of times. Therefore we add test cases to ensure
a minimal number a each (q,X) is exercised, each time with a new random
selection c ∈ X. For these additional test cases we just repeat suitable cases from
W. If p estimates the probability to detect a trapdoor when selecting a random
value in (q,X), then the probability to uncover this during the randomised test
suite is 1 − (1 − p)a.

3 Reference Models

We use two test models as the basis for the experimental evaluation of the IECP
strategy discussed in this paper, one from the railway domain, the other from
the automotive domain. Their functional properties are described in this section.

Ceiling Speed Monitor. The main on-board controller of trains that are part
of the European Train Control System (ETCS) executes a variety of automated
train protection functions. One of these functional modules is the Ceiling Speed
Monitor (CSM), whose core behaviour is specified by the SysML state machine
shown in Fig. 2. This state machine has been modelled from the ETCS stan-
dard [24]. The CSM inputs the current estimated train speed Vest and the cur-
rent admissible maximal speed VMRSP and reacts to overspeeding situations. The
reactions are visible on the driver machine interface (DMI) (outputs DMICmd,
DMIdisplaySBI), and the CSM may interact with the service and emergency
brakes (output TICmd).

As soon as the train starts overspeeding (Vest > VMRSP), the CSM performs
a transition from NORMAL to OVERSPEEDING, and an overspeed indication is
displayed on the DMI. If the actual speed exceeds the VMRSP-dependent thresh-
old VMRSP + dVwarning(VMRSP), the DMI indication changes to WARNING. If
the higher threshold VMRSP + dVsbi(VMRSP) is violated, the CSM automatically
triggers the service brakes. When in one of the control modes OVERSPEED,
WARNING, or SERVICE BRAKE, DMI indications and braking interventions
are automatically reset as soon as the speed is back in the admissible range
Vest ≤ VMRSP. If, however, the train continues overspeeding until the highest
threshold VMRSP + dVebi(VMRSP) is violated, the CSM triggers the emergency
brakes. From the associated state EMER BRAKE, the transition to NORMAL is
only performed when the train has come to a standstill.

While internal state and output domains of the CSM are finite, the inputs
Vest, VMRSP represent speed values ranging from zero to the maximal train speed.
This domain is too large to enumerate all possible value combinations during
test campaigns. Therefore an IECP strategy has to be applied. A more detailed
description of the CSM model can be found in [5,6].

Equivalence Class Partition Testing Strategy 165

Fig. 2. State machine of the Ceiling Speed Monitor

Airbag Controller. The second test model describes an airbag controller. This
system has two analog inputs s1 and s2 that are acceleration sensors used by the
controller to detect a crash situation and decide whether the airbag shall be fired
or not (output fire). While the airbag may ensure passenger safety in crash situ-
ations, its accidental activation is harmful in situations, when no crash is present
but indicated by erroneous sensor data. Therefore certain safety mechanisms have
to be applied to guarantee (up to a certain degree of confidence) that the airbag is
only fired, if a real crash situation is present. Additionally, defect sensors should
be recognised and notified (output defect). The state machine in Fig. 3 models the
functionality ensuring the safe operation of the airbag controller.

The system reads the sensor values s1 and s2 cyclically on every rising and
falling edge (input t). Both sensor values are checked for plausibility. The sensor
values are considered plausible, if the value of sensor one (s1) does not exceed or
drop below the value of sensor two (s2) by more than 5 percent, i.e. s1 ∈ [0.95 ·
s2, 1.05 · s2]. If the sensor values are plausible and an acceleration greater than
3 is measured in 3 consecutive cycles, the airbag is fired. This is done by setting
output variable fire to 1. If instead the sensor values are implausible, internal
variable error ctr is incremented. This variable holds the number of implausible
measurements, and if it reaches a value equal to 3, the output variable defect is
set to 1, causing a shutdown of the complete airbag system and activating the
service lamp to indicate a sensor defect of the airbag. After at least 3 consecutive
cycles with plausible sensor values, the internal variable error ctr is reset.

166 F. Hübner et al.

Fig. 3. State machine of the airbag controller

4 Experimental Results

Experimental Setup. The three test strategies (A) conventional random test-
ing strategy, (B) original IECP testing strategy, and (C) randomised IECP test-
ing strategy described in Section 2 have been integrated in an experimental
extension of the RT-Tester tool which performs automated model-based testing
from SysML models [20]. The algorithm described in [13] has been implemented
there, in order to identify I/O-equivalence classes and the associated coarsest ini-
tial IECP in propositional form. Using the SMT solver integrated in RT-Tester,
random candidates from each IEC can be calculated.

For the experimental evaluation correct Java implementations were generated
from each model. The java implementation was performed by hand in a straight
forward way, resulting in 148 and 70 lines of code for the ceiling speed monitor
and the airbag controller respectively. Next, mutants were automatically gener-
ated from each implementation with the tool μJava [16]. All applicable operators
were executed to generate single-fault mutants. For our concrete implementa-
tions these operators were as follows: arithmetic operator replacement (AOR)
and insertion(AOI), relational operator replacement (ROR), conditional opera-
tor replacement (COR) and insertion (COI), logical operator insertion (LOI) and

Equivalence Class Partition Testing Strategy 167

statement deletion (SDL).3 Note that the mutation tool is unaware of any con-
formance relation. Therefore the generated mutants have been manually investi-
gated, and after discarding I/O-equivalent mutants, this resulted in a collection
of 351 erroneous implementations for the ceiling speed monitor, and 199 for the
airbag controller.

Afterwards the test suites specified below were executed against these SUTs
in order to measure the mutation score of the test suite. The mutation score is
the ratio of mutants, that were “killed” by a test suite4, to the total number of
non-I/O-equivalent mutants. The mutation score is used as an indicator of each
test suite’s strength.

Table 1. Specification of fault domains

D Description

D1 I is the initial coarsest IECP derived from the reference model. It is assumed that
the SUT has the same number of I/O-equivalence classes as the reference model,
i.e. m = n.

D2 I is a refinement of the initial coarsest IECP that reflects all case distinctions
visible in guard conditions of the model. m = n.

D3 I is a refinement of the initial coarsest IECP that reflects all case distinctions and
all boundary value conditions. m = n.

The strategies (B) and (C) were applied to different fault domains as
described in Table 1. For the randomised IECP strategy (C), an additional
parameter min ≥ 1 was introduced, specifying the minimal number of times
a random selection should be performed for each combination (q,X) of I/O-
equivalence class and input equivalence class of the reference model. For min > 1,
test cases from the original IECP testing strategy according to Equation (4) were
repeated with different random value selections, so that at least min selections
were performed for each (q,X).

When generating test suites according to strategies (B) and (C), the choice of
fault domain, and – for strategy (C) –min value determines the number of test cases
(i.e. input sequences) and their length. When applying random testing, test suites
of the same shape were used: for each test case of a suite generated with strategy
(B) or (C), a corresponding random test case of the same length was applied.

Experimental Results

Ceiling speed monitor. In Table 2 the experimental results for the Ceiling Speed
Monitor are shown. Though in test suite (B,D1) the original IECP strategy (B)

3 The insertion operators of the µJava tool are only applicable to unary operators
(+,-,++,–,!,˜). Since our implementations did not contain any of these operators,
the complementary deletion operators are missing from the list above.

4 A mutant is killed, if at least one test case of the test suite did not pass.

168 F. Hübner et al.

performs significantly better than random testing (A), when only the coarsest
IECP from fault domain D1 is used, the mutation score of 62% is far too low
for achieving certification credit for such a safety-critical application. The low
score is caused by the fact that the test suite (B,D1) uses an IECP that not even
considers all case distinctions visible in guard conditions of the original model.
Therefore faulty implementations outside D1 that violate these case distinctions
will not be detected by this suite. In contrast to that, when distinguishing all
guard conditions and adding IECs representing boundary test conditions – this
is done in suite (B,D3) – the mutation score of 93% is acceptable. The strength
of the randomised strategy (C) is clearly revealed in suite (C,D3,1): with the
same number of 610 test cases as in suite (B,D3), a mutation score of 100% is
achieved.

Table 2. Results for the Ceiling Speed Monitor

IECP-Tests (B) / (C) (A) (Random Testing)

Suite B,C No. TC Mutation Score Line Cov. No. TC Mutation Score Line Cov.

(B,D1) 21 62 % 86 % 21 34 % 75 %

(C,D1,1) 21 76 % 97 % 21 34 % 75 %

(C,D1,10) 183 82 % 97 % 183 54 % 87 %

(C,D1,25) 453 82 % 97 % 453 72 % 97 %

(B,D2) 186 87 % 100 % 186 63 % 92 %

(C,D2,1) 186 88 % 100 % 186 63 % 92 %

(C,D2,10) 882 94 % 100 % 882 84 % 97 %

(B,D3) 610 93 % 100 % 610 80 % 97 %

(C,D3,1) 610 100 % 100 % 610 80 % 97 %

(C,D3,10) 3002 100 % 100 % 3002 92 % 97 %

Column No. TC records the number of test cases applied. (B,Di) denotes application of
strategy (B) with fault domain Di, i = 1, 2, 3, (C,Di,q) denotes application of strategy
(C) with fault domain Di, i = 1, 2, 3 and min = q. Columns ‘Line Cov.’ record the line
coverage achieved with the execution of the respective test suite.

In contrast to the results for the airbag controller shown below, random
testing (A) achieves a surprisingly high mutation score of 92%, when the highest
number of 3002 test cases is used. The performance of random testing is obviously
correlated to the number of test cases. An increase in the number of test cases
clearly increases the probability of finding a mutation. This is due to the fact that
the ceiling speed monitor has a very low recurrence diameter of 2: from every
control mode, every other mode can be reached by at most 2 RIOSTS transitions,
when setting Vest and VMRSP accordingly. Furthermore, the guard conditions are
quite wide, so that the probability of finding random inputs letting any of the
guards evaluate to true is high.

Airbag Controller. As table 3 confirms, our approach has a test strength that is
significantly higher than the test strength of naive random testing. A mutation

Equivalence Class Partition Testing Strategy 169

score of 89 % can be reached already in test suite (B,D1). Combined with ran-
domisation, the mutation score can be lifted up to 97 % (test suite (C,D1,10)).
Combined further with boundary value testing, (C,D3,1) is able to uncover every
single fault mutation.

Table 3. Results for the Airbag Controller

IECP-Tests (B) / (C) (A) Random Testing

Suite No. TC Mutation Score Line Cov. No. TC Mutation Score Line Cov.

(B,D1) 368 89 % 97 % 368 66 % 94 %

(C,D1,1) 368 96 % 100 % 368 66 % 94 %

(C,D1,10) 3816 97 % 100 % 3816 68 % 97 %

(B,D3) 3248 99 % 100 % 3248 68 % 94 %

(C,D3,1) 3248 100 % 100 % 3248 68 % 94 %

Notation in analogy to Table 2.

Note that the mutation score for naive random testing remains roughly con-
stant, because the airbag controller has a higher recurrence diameter than the
ceiling speed monitor, so that long traces are needed to reach a system state
that is suitable to uncover a fault. Additionally the input equivalence classes
are quite narrow. This explains, that an increase in the number of test cases
has no or very limited effect on the mutation score of random testing, since the
remaining 32 percent of mutations are only revealed by long specialised traces
that have very low probabilities to be chosen at random.

Threats to Validity. We presented two reference models in the comparative
test strength evaluation for the strategies (A), (B), and (C). The selection of
test models may have an impact on the observed results. To reduce this threat,
we used two models with opposing characteristics. The ceiling speed monitor
has a very small recurrence diameter, a small number of internal states, and
relatively wide input equivalence classes. The airbag controller on the other
hand has many internal states, a high recurrence diameter and narrow input
equivalence classes. It has been shown that the IECP testing strategies (B) and
(C) are applicable to both systems and resulted in good test strength with an
acceptable number of test cases. To counter threats to validity that might be
caused by the mutant generator, other mutation generation tools have been
applied as well. The PITest5 tool uses a subset of the mutation operators the
μJava tool uses. The Major mutation framework [15] uses the same mutation
operators plus constant value replacement. Due to space restrictions only the
results for the μJava tool were presented. Still, the results of both other tools
were very similar to the results presented in the tables above.
5 See http://pitest.org/. Additionally, this tool was very helpful to measure the line

coverage that has been shown in the tables above.

http://pitest.org/

170 F. Hübner et al.

Our experimental setup uses specific implementations in Java to generate
mutants from. The implementation style may have an influence on the gener-
ated mutants which in turn has an impact on the observed mutant score. The
use of code mutations was motivated from the fact, that real faults are very
likely to be introduced on the code level. As our approach is to be applied to
arbitrary blackbox systems, potentially implemented in other programming lan-
guages and/or combinations of hardware and software, the real faults might look
different from our experimental faults. To counter this threat, we also experi-
mented with mutations of the SysML model, applying mutant operators on the
state machines. Double fault mutations were included as well, in contrast to the
code mutations, where only single fault mutations were observed. These experi-
ments also provided results for our strategies (B,C) that were comparable to the
results presented here. There may remain some threats to validity resulting from
the fact that some characteristic faults, e.g. memory leaks as a typical fault type
in languages like C/C++, or faults resulting from HW/SW integration have not
been considered yet in the mutations applied.

5 Related Work

The framework for constructing complete test suites in general, and for intro-
ducing equivalence class testing methods preserving completeness in particular,
has been laid out in [11]. Notable examples for complete test methods have
been given for various formalisms (FSM,Timed Automata, process algebras)
in [8,10,19,22,23,25], further references on the state of the art of automated
model-based testing are given in [1,21]. Adaptive random testing [7] focuses on
techniques to evenly spread the test cases over the complete input domain. Most
research concentrates on testing non-reactive software modules, where test cases
are specified by single input vectors instead of the input sequences considered in
our reactive systems setting. An example of the application of adaptive random
testing and search-based testing to realtime embedded systems is given in [2].

6 Conclusion

In this paper, a complete equivalence class testing strategy has been exper-
imentally evaluated with respect to its test strength, when applied to SUTs
whose behaviour is outside the fault domain for which the completeness asser-
tion applies. The experiments show that this strategy has significantly greater
strength in comparison to conventional random testing. Moreover, a randomisa-
tion of the equivalence class testing strategy has been proposed that increases
the test strength even further by selecting different values from each input equiv-
alence class, whenever a member of this class is required as input according to
the original strategy. The resulting test suite was additionally extended in order
to ensure a minimal number of random selections from each input class applied
in each I/O-equivalence class of the reference model.

Equivalence Class Partition Testing Strategy 171

At the same time it is clear that this “randomisation in the I-dimension”
does not increase the test strength, if S ′′ has a larger recurrence diameter than
S, and if erroneous behaviour of S ′′ is only revealed at the end of a longest loop-
free path. Therefore we suggest to add a “randomisation in the m-dimension”
by attaching a random input sequence of a given fixed length at the end of each
test case for in-depth exploration of the SUT behaviour. Observe that in most
embedded system tests, the costs for resetting the SUT are higher than those for
increasing the test suite length. Therefore increasing the length of test cases is
generally acceptable, while increasing the number of test cases is usually a costly
decision. The effect of increasing the test case length is currently investigated
by the authors. Note that this requires more complex mutations increasing the
recurrence diameter and inserting erroneous behaviours at the end of maximal
loop-free paths only.

References

1. Anand, S., Burke, E.K., Chen, T.Y., Clark, J.A., Cohen, M.B., Grieskamp, W.,
Harman, M., Harrold, M.J., McMinn, P.: An orchestrated survey of methodolo-
gies for automated software test case generation. Journal of Systems and Software
86(8), 1978–2001 (2013)

2. Arcuri, A., Iqbal, M.Z., Briand, L.: Black-Box system testing of real-time embed-
ded systems using random and search-based testing. In: Petrenko, A., Simão,
A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 95–110. Springer,
Heidelberg (2010)

3. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
4. Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear encod-

ings of bounded LTL model checking. Logical Methods in Computer Science 2(5)
(November 2006), arXiv: 0611029, arXiv: cs/0611029

5. Braunstein, C., Haxthausen, A.E., Huang, W., Hübner, F., Peleska, J., Schulze,
U., Vu Hong, L.: Complete model-based equivalence class testing for the ETCS
ceiling speed monitor. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829,
pp. 380–395. Springer, Heidelberg (2014)

6. Braunstein, C., Huang, W.l., Peleska, J., Schulze, U., Hübner, F., Haxthausen,
A.E., Hong, L.V.: A SysML test model and test suite for the ETCS ceiling speed
monitor. Tech. rep., Embedded Systems Testing Benchmarks Site (April 30, 2014).
http://www.mbt-benchmarks.org

7. Chen, T.Y., Kuo, F.C., Merkel, R.G., Tse, T.H.: Adaptive random testing: the art
of test case diversity. Journal of Systems and Software 83(1), 60–66 (2010)

8. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE
Transactions on Software Engineering SE 4(3), 178–186 (1978)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press,
Cambridge (1999)

10. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test
selection based on finite state models. IEEE Transactions on Software Engineering
17(6), 591–603 (1991)

11. Gaudel, M.-C.: Testing can be formal, too. In: Mosses, P.D., Nielsen, M. (eds.)
CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 82–96. Springer,
Heidelberg (1995)

http://arxiv.org/abs/cs/0611029
http://arxiv.org/abs/cs/0611029
http://www.mbt-benchmarks.org

172 F. Hübner et al.

12. Gill, A.: Introduction to the theory of finite-state machines. McGraw-Hill, New
York (1962)

13. Huang, W.l., Peleska, J.: Complete model-based equivalence class testing.
International Journal on Software Tools for Technology Transfer, 1–19 (2014).
http://dx.doi.org/10.1007/s10009-014-0356-8

14. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis. Springer,
London (2001)

15. Just, R.: The major mutation framework: efficient and scalable mutation analysis
for java. In: Proceedings of the International Symposium on Software Testing and
Analysis, ISSTA, July 23–25, pp. 433–436, San Jose, CA, USA (2014)

16. Ma, Y.S., Offutt, J., Kwon, Y.R.: MuJava: An Automated Class Mutation System:
Research Articles. Softw. Test. Verif. Reliab. 15(2), 97–133 (2005). http://dx.doi.
org/10.1002/stvr.v15:2

17. Object Management Group: OMG Unified Modeling Language (OMG UML),
superstructure, version 2.4.1. Tech. rep., OMG (2011)

18. Object Management Group: OMG Systems Modeling Language (OMG SysMLTM),
Version 1.3. Tech. rep., Object Management Group (2012). http://www.omg.org/
spec/SysML/1.3

19. Peleska, J., Siegel, M.: Test automation of safety-critical reactive systems. South
African Computer Journal 19, 53–77 (1997)

20. Peleska, J.: Industrial-strength model-based testing - state of the art and current
challenges. In: Petrenko, A.K., Schlingloff, H. (eds.) Proceedings Eighth Workshop
on Model-Based Testing. Electronic Proceedings in Theoretical Computer Science,
vol. 111, pp. 3–28. Open Publishing Association, Rome (2013)

21. Petrenko, A., Simao, A., Maldonado, J.C.: Model-based testing of software and
systems: Recent advances and challenges. Int. J. Softw. Tools Technol. Transf.
14(4), 383–386 (2012). http://dx.doi.org/10.1007/s10009-012-0240-3

22. Springintveld, J., Vaandrager, F., D’Argenio, P.: Testing timed automata.
Theoretical Computer Science 254(1–2), 225–257 (2001)

23. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1–38.
Springer, Heidelberg (2008)

24. UNISIG: ERTMS/ETCS System Requirements Specification, Chapter 3,
Principles, vol. Subset-026-3, chap. 3, issue 3.3.0 (February 2012)

25. Vasilevskii, M.P.: Failure diagnosis of automata. Kibernetika (Transl.) 4, 98–108
(1973)

http://dx.doi.org/10.1007/s10009-014-0356-8
http://dx.doi.org/10.1002/stvr.v15:2
http://dx.doi.org/10.1002/stvr.v15:2
http://www.omg.org/spec/SysML/1.3
http://www.omg.org/spec/SysML/1.3
http://dx.doi.org/10.1007/s10009-012-0240-3

Testing Functional Requirements
in UML Activity Diagrams

Stefan Mijatov, Tanja Mayerhofer(B), Philip Langer, and Gerti Kappel

Business Informatics Group, Vienna University of Technology, Vienna, Austria
{mijatov,mayerhofer,langer,gerti}@big.tuwien.ac.at

Abstract. In model driven engineering (MDE), models constitute the
main artifacts of the software development process. From models defining
structural and behavioral aspects of a software system implementation
artifacts, such as source code, are automatically generated using model
transformation techniques. However, a crucial issue in MDE is the quality
of models, as any defect not captured at model level is transferred to the
code level, where it requires more time and effort to be detected and
corrected. This work is concerned with testing the functional correctness
of models created with a subset of UML called fUML comprising class
and activity diagrams. We present a testing framework for fUML, which
enables modelers to verify the correct behavior of fUML activities.

Keywords: Functional testing · UML activity diagrams · fUML

1 Introduction

In model driven engineering (MDE), models are the main artifacts of the devel-
opment process. Using model transformations, code and other implementation
artifacts are automatically produced from models improving the productivity of
the software development process, as well as the quality, portability, and main-
tainability of the developed system [2]. As the development process shifts from
being code-centric to being model-centric, the quality of the models used in
an MDE-based software development process becomes essential. Any defect not
captured at model level will be propagated to the code level, where it will require
more time and effort to be detected and corrected.

This work is concerned with verifying the functional correctness of models
created with UML [14], which is the most widely adopted modeling language in
MDE. More precisely, we focus on fUML [16], which is an executable subset of
UML (cf. also xUML [10]) comprising class diagrams for defining the structure of
systems and activity diagrams for defining the behavior of systems. For fUML, a
standardized virtual machine exists that gives precise operational semantics to
the included subset of UML. The standardization of fUML’s semantics provides
the basis for developing model analysis techniques and tools for UML models.

In general, it can be distinguished between two main analysis techniques for
verifying the functional correctness of software artifacts, namely formal anal-
ysis and testing techniques. These two techniques are not mutually exclusive,
c© Springer International Publishing Switzerland 2015
J.C. Blanchette and N. Kosmatov (Eds.): TAP 2015, LNCS 9154, pp. 173–190, 2015.
DOI: 10.1007/978-3-319-21215-9 11

174 S. Mijatov et al.

but instead complement each other. While several approaches applying formal
analysis techniques on fUML have been proposed in the past, to the best of our
knowledge only first ideas and intents on applying testing techniques on fUML
have been published (cf. Sect. 6).

In this paper, we present a fully functional and implemented testing frame-
work for fUML, which is based on first ideas and an early prototype presented
in [12]. The framework comprises a test specification language, which enables
modelers to express assertions on the behavior of a system defined in fUML, as
well as a test interpreter, which evaluates these assertions. Besides giving an over-
all overview of our testing framework, we present three newly developed testing
features. These new features address three requirements on testing fUML mod-
els: (i) Specifying assertions on the behavior of a system requires the capability
to evaluate complex conditions on the system’s runtime state, such as iterations
over existing objects and calculations over their feature values. (ii) Temporal
expressions allowing precise selections of the runtime states to be asserted are
required. (iii) Because fUML models can be used to specify concurrent behavior,
the existence of a potentially large number of possible execution paths has to be
considered in the test evaluation. To address these requirements, we extended
our initial testing framework with (i) support for OCL [15] allowing the spec-
ification of complex assertions on the runtime state of a system, (ii) a set of
temporal operators and temporal quantifiers allowing a more precise selection of
the runtime states to be asserted, and (iii) an improved test evaluation algorithm
taking concurrent behavior into account. We evaluated our testing framework
with these newly introduced features in a user study concerning the properties
ease of use and usefulness. The evaluation results on the one hand indicate that
the testing framework is both easy to adopt and useful for testing fUML models,
and on the other hand enabled us to identify potential for improvement.

The remainder of the paper is structured as follows. In Sect. 2, we introduce
an example for motivating and illustrating the newly developed features of our
testing framework. In Sect. 3 and Sect. 4, we provide an overview of our testing
framework and describe its new features in detail. The results of our user study
and related work are discussed in Sect. 5 and Sect. 6, respectively. In Sect. 7, we
conclude the paper and outline future work.

2 Motivating Example

In this section, we want to motivate our testing approach based on the example
of an automatic teller machine (ATM) system. The structure of the ATM system
is depicted in Fig. 1. The ATM can be used to perform withdrawals from a bank
account. The process of performing a withdrawal (operation ATM.withdraw) is
realized by the activity ATM.withdraw shown in Fig. 2. For starting a with-
drawal, the user has to provide an ATM card, the pin assigned to the card, and
the amount of money to be withdrawn from the user’s account. Once the with-
drawal is started, first a new transaction is created and set as current transaction
(action startTransaction). Next, the provided pin is validated (action validate-
Pin). If the pin is valid, the withdrawal is performed (action makeWithdrawal).

Testing Functional Requirements in UML Activity Diagrams 175

ATM

+ withdraw(Card, int, int) :boolean
+ deposit(Card, int, int) :boolean
+ startTransaction() :void
+ endTransaction() :void

Transaction

- number :int

Card

- number :int
- pin :int

+ validatePin(int) :boolean

Account

- number :int
- balance :int

+ makeDeposit(int) :boolean
+ makeWithdrawal(int) :boolean

Record

- number :int
- amount :int
- timeStamp :TimeStamp

Deposit

Withdrawal

0..1

current
Transaction

0..*
records

card
0..1

account
1

0..*

completed
Transactions

Fig. 1. Class diagram of the ATM system

Fig. 2. Activity diagram of the operation ATM.withdraw

Account.makeWithdrawal

amount :Integer

success :Boolean
readBalance

ReadStructuralFeature

resultobject greaterOrEqualx

y
result

isGreaterOrEqual

minusx

y result

setBalance

AddStructuralFeatureValue

value

result
object

createNewWithdrawal
CreateObject

result setAmount

AddStructuralFeatureValue

object

value

result

addWithdrawalToAccount

AddStructuralFeatureValue

object

value

successTrue
ValueSpecification

result

successFalse
ValueSpecification

result

self
ReadSelf

result

self
ReadSelf

result

[true]

[false]

CallBehavior

CallBehavior

Fig. 3. Activity diagram of the operation Account.makeWithdrawal

This in turn causes the balance of the account to be updated and a correspond-
ing withdrawal record to be created. Once the withdrawal has been completed,
the transaction is ended and recorded (action endTransaction).

Please note that the actions startTransaction, validatePin, makeWithdrawal,
and endTransaction are call actions calling the declared operations. The
explained functionality of these operations are implemented by dedicated activ-
ities. In the following, we discuss the implementation of the operation make-
Withdrawal. The remaining activities are omitted due to space limitations.

Figure 3 shows the activity implementing the operation Account.makeWith-
drawal. This activity first retrieves the account’s balance (action readBalance)

176 S. Mijatov et al.

and compares it with the amount of money to be withdrawn (action greaterOr-
Equal). If the balance exceeds the amount of money to be withdrawn, the new
balance is calculated (actions minus) and set (actions setBalance). Finally, a
new withdrawal record is created (action createNewWithdrawal), its amount is
set to the withdrawn amount of money (action setAmount), and it is associated
to the bank account (action addWithdrawalToAccount). In the case that the
withdrawal was performed, the value true is provided as output of the activity
(action successTrue), otherwise false is provided (action successFalse).

2.1 Functional Requirements of the ATM System

In the following, we consider the functional correctness of the ATM’s withdrawal
functionality. For correctly handling withdrawals in case a correct pin was pro-
vided, the ATM system has to fulfill the following functional requirements.

FR1 The pin has to be validated before the actual withdrawal is performed.
FR2 The account’s balance has to be reduced by the provided amount of money.
FR3 After the completion of the withdrawal, the balance of the account should

be equal to the difference between the sum of all recorded deposits and
the sum of all recorded withdrawals.

FR4 A new withdrawal record has to be created for the account.
FR5 The activity should return true indicating a successful withdrawal.
FR6 When the withdrawal is started, a new transaction should be created; once

it is completed, the transaction should be ended and recorded.

2.2 Requirements of the Testing Framework

To verify that the fUML model of the ATM system fulfills the specified functional
requirements, a testing framework is needed providing the following capabilities.

1. The testing framework shall provide the possibility to test the chronological
order in which nodes of an activity are executed. Thereby, the framework
ensures that the specified order is correct for every possible execution of the
activity, taking concurrency into account. (Required for FR1)

2. The testing framework shall provide support for testing whether an activity
produces the correct output for a given input. Also, checking the output of
actions within the activity shall be supported. (Required for FR2 and FR5)

3. The testing framework shall provide the possibility to test the runtime state
of a system during the execution of an activity. Therefore, it has to enable the
selection of the relevant runtime states, as well as the evaluation of expres-
sions on these runtime states. (Required for FR3, FR4, and FR6 : For FR6 it
has to be tested whether after the execution of the action startTransaction of
the activity ATM.withdraw a new transaction has been created; for the final
runtime state it has to checked whether the account’s balance and records
are consistent (FR3), a new withdrawal record has been created (FR4), and
the started transaction has been recorded (FR6))

Testing Functional Requirements in UML Activity Diagrams 177

1 scenario atmTestData [
2 object atmTD : ATM {}
3 object cardTD : Card {pin = 1985;}
4 object accountTD : Account {balance = 100;}
5 object depositTD : Deposit {amount = 100;}
6 link card_account {source card = cardTD ; target account = accountTD ;}
7 link account_record {source account = accountTD ; target records = depositTD ;}
8]

Listing 1. Test scenario for testing the ATM system

1 test atmTestSuccess activity ATM .withdraw(card=cardTD , pin=1985, amount=100) on
↪→atmTD {

2 assertOrder ∗ , validatePin , ∗ , makeWithdrawal , ∗; // FR1
3 finally {
4 readAccount .result : : balance = 0; // FR2
5 check ’BalanceRecords ’ on readAccount .result ; // FR3
6 check ’NumOfWithdrawalsSuccess ’ on readAccount .result ; // FR4
7 success = true ; // FR5
8 }
9 assertState eventually after constraint ’TransactionCreated ’ { // FR6

10 check ’TransactionEnded ’ , ’TransactionAdded ’ ;
11 }
12 }

Listing 2. Test case for testing the ATM system

1 context ATM
2 exp TransactionCreated : currentTransaction <> null
3 exp TransactionEnded : currentTransaction = null
4 exp TransactionAdded : completedTransactions −> size() = 1
5 context Account
6 exp NumOfWithdrawalsSuccess : records −> select(oclIsTypeOf(Withdrawal)) −> size()=1
7 exp BalanceRecords :
8 (records −> select(oclIsTypeOf(Deposit)) −> collect(amount) −> sum()) −
9 (records −> select(oclIsTypeOf(Withdrawal)) −> collect(amount) −> sum()) = balance

10 endpackage

Listing 3. OCL constraints for testing the ATM system

The early prototype of our testing framework presented in [12] only partially
supported these capabilities. In this work, we introduce new testing features
that significantly extend the framework’s capabilities and enable a more precise
and thorough verification of the functional correctness of fUML activities.

3 Overview of the Testing Framework

Our testing framework is composed of a test specification language enabling the
definition of assertions on the behavior of fUML activities and a test interpreter
evaluating these assertions. In the following, we briefly introduce these two com-
ponents and discuss their limitations as presented in [12].

3.1 Test Specification Language

The test specification language enables modelers to define test suites composed
of test scenarios and test cases.

Test scenarios allow the specification of objects and links, which can be used
both as input values and expected output values of activities under test. The

178 S. Mijatov et al.

definition of a test scenario is composed of the keyword scenario, a scenario
name, arbitrary many object definitions, and arbitrary many link definitions.

Listing 1 shows the test scenario defined for testing the ATM’s functional
requirements presented in Sect. 2. The test scenario is called atmTestData and
defines four objects (keyword object), namely one ATM object, one Card object
with the pin 1985, one Account object with the balance 100, and one Deposit
object with the deposit amount 100. Furthermore, it defines two links (key-
word link), namely between the specified Card and Account objects, as well as
between the Account and Deposit objects.

A test case tests the behavior of an activity. Its definition consists of the key-
word test, a test name, the keyword activity, the name of the activity under
test, an optional list of input parameter value assignments for the activity, an
optional declaration of a context object for the activity, and a body. In the body
an arbitrary number of order assertions and state assertions can be declared.

Listing 2 shows the test case atmTestSuccess asserting the functional require-
ments of the ATM’s withdraw functionality defined by the activity ATM. with-
draw. For the input parameters, the Card object cardTD defined in the test
scenario (cf. Listing 1), the correct pin 1985, and the amount to be withdrawn
of 100 are provided. The activity is executed for the ATM object atmTD also
defined in the test scenario. The test case consists of one order assertion (line 2)
and two state assertions (lines 3-8 and 9-11), which are explained in the following.

Order assertion can be used to test the order in which the nodes of the
activity under test are executed. To specify an order assertion, the keyword
assertOrder is used followed by the list of nodes in their expected execution
order. It is also possible to specify a relative order of nodes by the use of jokers
for skipping exactly one (’ ’) or zero to many (’*’) nodes.

The order assertion of the test case atmTestSuccess (cf. Listing 2, line 2) tests
whether the action validatePin is executed before the action makeWithdrawal
with arbitrary many nodes being executed before, in between, or after them.

State assertions can be used to check the runtime state of the tested sys-
tem during the execution of the activity under test. The definition of a state
assertion consists of the keyword assertState, a temporal expression selecting
the runtime state to be checked, and arbitrary many state expressions defining
the expected properties of the selected runtime state. The temporal expressions
provided by the test specification language have been substantially extended and
improved compared to our early prototype presented in [12]. They will be exten-
sively discussed in Sect. 4.2. In line 4 of the test case atmTestSuccess (cf. List-
ing 2) we see an example of a state expression. It checks in the final runtime
state of the ATM system whether the account’s balance has been updated to
0. Please note that the test input for the activity ATM.withdraw defines that a
withdrawal of the amount 100 should be performed for the account associated
with the card cardTD. The card cardTD and its associated account accountTD
have been defined in the test scenario shown in Listing 1. Because the initial
balance of the account is specified to be 100 (cf. Listing 1, line 4), it is asserted
whether after the withdrawal of 100, the account’s balance is equal to 0.

Testing Functional Requirements in UML Activity Diagrams 179

Model
Execution

Artifact Automated
Task

Legend: input/output
relation

Test
Evaluation

Execution
TraceTest Suite

fUML Model

ActivitiesClasses

Test
Scenarios

Test Cases
test t1 activity a1 {
assertState before
x = 300

}
…

Test Verdict
t1 failure
assertState failure
…

Fig. 4. Test interpreter

The test case shown in Listing 2 tests the fulfillment of all functional require-
ments defined in Sect. 2. The correspondences are provided in the comments in
Listing 2. Please note that the test case uses the objects defined in the test sce-
nario shown in Listing 1 as input values for the tested activity ATM.withdraw,
and the OCL expressions shown in Listing 3 for several state assertions. We will
discuss the test case in more detail in Sect. 4. A thorough discussion of the test
specification language is also provided on our project website [13].

3.2 Test Interpreter

The test interpreter is responsible for evaluating test cases specified in the pre-
sented test specification language. The process of evaluating test cases is shown
in Fig. 4. The input provided to the test interpreter consists of the fUML model
to be tested and the test suite to be evaluated on this model. Each test case in
the test suite is evaluated by executing the activity under test for the input val-
ues defined by the test case using the extended fUML virtual machine elaborated
in previous work [9]. This extended fUML virtual machine captures execution
traces reflecting the runtime behavior of the executed activity. In particular,
an execution trace provides detailed information about the execution order of
activities and activity nodes, inputs and outputs of activities and activity nodes,
as well as the runtime state of the system at any point in time of the execution.
The execution traces are analyzed by the test interpreter for evaluating every
assertion defined by a test case. The output of the evaluation is a test report
providing the information which assertions succeeded, which assertions failed,
and further information on failing assertions, such as invalid execution orders of
activity nodes and invalid system states.

3.3 Limitations

While the early prototype of our testing framework as presented in [12] supports
assertions of a system’s runtime state and the correct execution order of activity
nodes, it has the following major limitations:

1. State assertions are restricted to simple equality checks of objects and their
feature values. Complex expressions, such as iterations over a set of objects

180 S. Mijatov et al.

or calculations over their feature values are not supported. Furthermore, the
selection of the runtime states to be checked by state assertions can be only
defined by referring to the execution of particular activity nodes, but not by
defining conditions that should be fulfilled in the states to be selected.

2. Temporal expressions for selecting the states to be checked in a state asser-
tion are limited to the temporal operators after and before, as well as the
quantifiers always and exactly. They are insufficient for expressing more com-
plex state assertions, such as that some property of the state eventually
becomes true or that a certain property is valid in only some states.

3. Furthermore, order assertions are evaluated on a single execution path of
the activity under test, which is insufficient in the presence of concurrency.

4 Extensions of the Testing Framework

To overcome the aforementioned limitations of the early prototype of our testing
framework, we have extended it with support for OCL, additional temporal
operators and quantifiers, as well as a new test evaluation algorithm accounting
for concurrent behavior. These extensions are subject of this section.

4.1 OCL Expressions

With state expressions it is tested whether the runtime state of a tested sys-
tem fulfills certain properties. In the early prototype of our testing framework,
state expressions were restricted to simple equality checks. With this restriction,
complex properties, such as needed for verifying the consistency of an account’s
balance with its deposit and withdrawal records (FR3), are not possible.

Supporting the definition of complex properties in state expressions requires
the extension of our testing framework with a suitable expression language.
Thereby, concepts allowing iterations over objects existing in a system’s runtime
states, calculations over these objects’ feature values, and comparisons of values
are of particular interest. This includes especially operations for the predefined
types of fUML, such as Collection operations (e.g., select(), forAll()).

The integration of these concepts requires an extension of our test speci-
fication language with complex grammar concepts, as well as an extension of
our test interpreter for evaluating expressions defined with these concepts. Both
extensions are expensive to achieve without using an already existing expression
language with supporting infrastructure. Thus, we decided against building our
own expression language and interpreter, but instead integrated OCL with our
testing framework. OCL [15] is a formal language providing concepts for defining
expressions on UML models. Like UML, it is standardized by OMG and most
of the experts in the modeling domain are familiar with OCL.

We integrated OCL with our testing framework, such that OCL expressions
can be used for defining complex conditions on a system’s runtime state as state
expressions in state assertions, as well as for specifying temporal expressions
selecting the runtime states to be asserted. This integration was achieved using

Testing Functional Requirements in UML Activity Diagrams 181

the DresdenOCL framework [7], which provides extension mechanisms that allow
the integration of OCL into the abstract and concrete syntax of an existing mod-
eling language, such as our test specification language, as well as the evaluation
of OCL expressions on any model instances, such as the runtime state of a model
represented with fUML as required by our test interpreter. Details about how
such an integration of OCL may be achieved can be found in [7].

The OCL expressions used in the test cases for the ATM system are given in
Listing 3. For instance, the OCL expression BalanceRecords (lines 7-9) specifies
that the balance of an account should be equal to the difference between the
sum of all recorded deposits and the sum of all recorded withdrawals. This OCL
expression is used in the test case (cf. Listing 2, line 5) to test that the account’s
balance and its withdrawal and deposit records are consistent.

4.2 Temporal Expressions

Temporal expressions are used in state assertions for selecting the runtime states
of a tested system that have to be checked for expected properties. Thereby,
runtime states are generated during the execution of activities and capture the
system’s state after a certain action has been executed. For instance, as illus-
trated in Fig. 5, the states S1, S2, S3, and S4 resulted from the execution of the
actions actionA, actionB, actionC, and actionD, respectively. The values a, b,
and c in each state represent the results of evaluating conditions on these states.

Temporal expressions are composed of temporal operators, temporal quanti-
fiers, and actions or alternatively OCL constraints. In the early prototype of our
testing framework, OCL constraints were not supported for selecting runtime
states, and important temporal quantifiers, such as eventually, were missing. As
part of our extensions, we also refined the supported temporal operators. In the
following, we discuss the temporal operators and quantifiers based on Fig. 5.

Temporal operators in combination with the specification of actions are used
for selecting the runtime states to be considered in a state assertion. We support
the temporal operators after and until defining that all runtime states after or
until an action has been executed shall be considered. If OCL constraints are
used instead of actions, they are evaluated in each runtime state starting with
the first one. Those states in which the constraints are evaluated to true for the
first time are select, as well as all runtime states between them.

Temporal quantifiers are used for specifying in which of the selected runtime
states the state expressions of a state assertion should evaluate to true. Our
test specification language provides the temporal quantifiers always, eventually,
immediately, and sometimes described in the following.

The temporal quantifier always defines that the state expressions should eval-
uate to true in all selected runtime state. For instance, the temporal expression
(1a) specifies that in each state starting from the first one until the state pro-
duced by actionB, the value of the state expression c should evaluate to false.

The temporal quantifier eventually defines that each state expression should
evaluate to true in one of the selected runtime states and should remain true in
all of the following selected runtime states. For instance, the temporal expression

182 S. Mijatov et al.

me

(2b) eventually a er
a un l b {c} (4b) always a er b {c}

(3b) immediately a er b {c}

[a = false]
[b = false]
[c = false]

S1
Created by:

ac onA

[a = true]
[b = false]
[c = false]

S2
Created by:

ac onB

[a = true]
[b = false]
[c = true]

S3
Created by:

ac onC

[a = true]
[b = true]
[c = true]

S4
Created by:

ac onD

[a = true]
[b = true]
[c = true]

Sn
Created by:

ac onX

(2a) eventually a er ac onB
un l ac onD {c}

(1a) always un l
ac onB {not c}

(4a) some mes a er ac onD {c}

(3a) immediately a er ac onD {c}

(1b) some mes un l b {c}

Fig. 5. Combinations of temporal operators and temporal quantifiers in state assertions

(2b) specifies that from the first state in which a becomes true, until the first
state in which b becomes true, the value of the state expression c should become
true in one state and remain true in each of the following selected states.

The temporal quantifier immediately specifies that each state expression
should be true in either a runtime state created by the specified action or the
one right before this state, depending on whether the temporal operator after or
until is used. If an OCL constraint is used instead, the state expression should
be fulfilled in the first state where the specified constraint evaluates to true or
the state right before it. For instance, the temporal expression (3a) specifies that
the value of the state expression c should be true in the state caused by actionD.

The temporal quantifier sometimes defines that each state expression should
evaluate to true in at least one of the selected runtime states. The temporal
expression (1b) specifies that the state expression c should evaluate to true in at
least one of the states from the first state until the state where b becomes true.

We also introduced the keyword finally as a shorthand for always after
actionX where actionX is the last executed action of the activity under test.

Lookingbackat the test case for theATMsystem inListing2, the state assertion
in lines 9-11 specifies that after the constraintTransactionCreated (cf. Listing 3) is
evaluated to true, the constraintsTransactionEnded andTransactionAdded should
eventually evaluate to true. Thus, it is tested whether during the execution of the
activity ATM.withdraw, a transaction is created, which is afterwards ended and
recorded.

With the newly introduced and improved temporal operators and temporal
quantifiers, and the capability to use OCL conditions in temporal expressions, a
system’s runtime states can be much more precisely selected for testing purposes
than has been possible with the early prototype of our testing framework.

4.3 Concurrency

Concurrency in an activity leads to the existence of a potentially large or even
infinite number of possible execution paths of that activity, which have to be

Testing Functional Requirements in UML Activity Diagrams 183

st sc vp ipv ra mw me et

startTransaction (st) T
splitCard (sc) T T

validatePin (vp) T
isPinValid (ipv) T

readAccount (ra) T
makeWithdrawal (mw) T

mergeEnd (me) T
endTransaction (et)

Fig. 6. Adjacency matrix for evaluating order assertions on the activity ATM.withdraw

considered in the test evaluation. In particular, order assertions checking the
correct execution order of activity nodes have to be evaluated for every possible
execution path of the activity under test.

The early prototype of our testing framework did not account for concurrent
execution paths of activities and thus reported false positive evaluation results for
order assertions. This is because the fUML virtual machine executes concurrent
paths sequentially, and thus the trace used for evaluating order assertions reflects
only one possible execution order of activity nodes lying on concurrent paths. The
early prototype checked order assertions only on this single sequential execution
order. To overcome this limitation, we implemented a new evaluation algorithm
for order assertions, which correctly deals with concurrent paths.

As a first step, the algorithm transforms the execution trace of the activ-
ity under test into an adjacency matrix. The execution trace from which we
construct the matrix is like in the former version of the evaluation algorithm
obtained from a single execution of the activity under test for the given input
defined by the test case. However, the new algorithm also takes the input/out-
put dependencies between executed activity nodes into account, which are also
captured by the execution trace. Thereby, an activity node B depends on an
activity node A, if B received an object token or control token from A as input.
In this case, B is added as being adjacent to A in the adjacency matrix.

Figure 6 shows the adjacency matrix constructed for the execution of the
activity ATM.withdraw (cf. Fig. 2) with the input values defined in our test case
atmTestSuccess (cf. Listing 2). For instance, the activity node validatePin is
adjacent to the activity node startTransaction, because it received a control token
from validatePin via the defined control flow edge. Thus, the matrix contains a
true value (abbreviated with T) in the first row and third column.

Based on the constructed adjacency matrix, order assertions can be evaluated
efficiently by analyzing the dependencies between activity nodes specified in the
order assertions. For instance, to evaluate an order assertion assertOrder *,
A, B, *, we have to check whether B depends on A, i.e., whether a true value in
the adjacency matrix indicates B as being adjacent to A. If this is not the case,
there exists no input/output dependency between A and B and, hence, they may

184 S. Mijatov et al.

be executed in reverse order. Furthermore, we have to check that there are no
other nodes independent of both A and B , i.e., nodes that lie on parallel paths.

For the evaluation of the jokers ’ ’ and ’*’, also indirect input/output depen-
dencies between activity nodes have to be considered, which can also be effi-
ciently calculated from the adjacency matrix. For instance, to evaluate an order
assertion assertOrder A, , B, we have to check whether an arbitrary activ-
ity node X exists on which B depends and which itself depends on A, i.e., X
provided input to B and received input from A.

Looking back at our test case defined for the ATM system (cf. Listing 2),
the order assertion defined in line 2 is evaluated by checking in the adjacency
matrix (cf. Fig. 6) whether makeWithdrawal is directly or indirectly adjacent to
validatePin. Because this is the case, indicated by the underlined true values in
the matrix, the order assertion evaluates to true.

4.4 Implementation

We provide an open source implementation of our testing framework integrated
with EMF. The testing framework is part of the larger project moliz [13], which
is concerned with executing, testing, and debugging models based on the fUML
standard. For implementing the grammar and editor of our test specification
language, we have used the Xtext framework. The test interpreter is implemented
in Java and based on an extended version of the reference implementation of the
fUML virtual machine elaborated in previous work [9]. For the integration of
OCL with our testing framework, we have used the DresdenOCL framework [7].

5 Evaluation

We evaluated our testing framework with the presented new functionality con-
cerning ease of use and usefulness by carrying out a user study. In the following,
we present the user study setup, as well as the results and lessons learned.

5.1 User Study Setup

The user study consisted of the following four steps, which were carried out with
each participant individually.
(i) Introduction. At the beginning of the user study, the participant was given an
introduction to fUML and our testing framework. This included the most impor-
tant concepts of fUML comprising fUML’s class concepts, activity concepts, and
action language. Furthermore, a simple exemplary fUML model was introduced
and used to explain the main concepts of our test specification language.
(ii) Skills questionnaire. The target group of users of our testing framework
are practitioners in the MDE domain using UML activity diagrams to define
the behavior of systems. Thus, in order to obtain relevant results, our selection
of participants was based on their background in UML, OCL, and unit testing.

Testing Functional Requirements in UML Activity Diagrams 185

The participants’ skills in these languages were collected using a questionnaire.
Most of the participants had a good background in UML being slightly more
experienced with class diagrams than with activity diagrams. The knowledge of
the UML action language was balanced from having no experience to being an
expert. Most of the participants declared their experience with OCL at the begin-
ner level, while unit testing knowledge was declared as average by most partici-
pants. The participants of the user study consisted of post-doctoral researchers,
PhD students, and master students of the Vienna University of Technology.
(iii) Testing tasks. The participants were asked to complete two tasks with
our testing framework. Therefore they used our implementation of the testing
framework, including an editor for writing test cases and the test interpreter
running test cases and providing the results as console output.

The aim of the first task was to evaluate the ease of use of our testing
framework. Therefore, the participants had to define a test suite implementing
predefined functional requirements for two given and correct activities. For the
first activity, the participants had to specify a test scenario with one object,
and two test cases with two different order assertions and two different state
assertions. The activity comprised nine nodes and included simple fUML action
types, such as value specification action. For the second activity, the participants
had to specify a test scenario with several objects and links, two state assertions,
and one OCL expression. The activity was composed of fourteen activity nodes
and included slightly more complex fUML concepts, such as expansion regions.

With the second task, we aimed at evaluating the usefulness of our testing
framework, in particular, the usefulness of test results for detecting and correct-
ing defects in UML activity diagrams. In this task, the participant was given
a defective activity diagram, two test cases testing the activity diagram, and
the test results. Based on the test cases and test results, the participant had to
locate the defects and suggest corrections. The activity consisted of nine activity
nodes and included simple fUML action types. Two defects were introduced into
the UML activity diagram. One defect consisted of wrong guards for a decision
node, which led to the execution of a wrong path. This defect was detectable
from the test result of a failing order assertion. The second defect consisted of
a missing merge node, which led to an activity node not being executed. This
defect was detectable from the test result of a failing state assertion.
(iv) Opinion questionnaire. Finally, the participants rated the ease of use and
usefulness of the testing framework in a questionnaire.

More details about the case study setup including the used fUML models, test
suits, and task descriptions may be found at our project website [13].

5.2 Results and Lessons Learned

We observed the participants during performing the given tasks to find out (i)
how easy our testing framework is to use for testing UML activity diagrams
(first task), and (ii) whether test results are useful for detecting and correcting
defects in UML activity diagrams (second task).

186 S. Mijatov et al.

(i) Ease of use. For the first task, where the participants had to define test
cases, we made the following observations.

Test scenarios. Most of the participants had at the beginning problems to
understand the purpose of test scenarios, because they tried to define the test
scenarios before thinking about and writing the actual test cases. However, after
having defined the first test case, the participants understood how to use test
scenarios for providing input to the activities under test.

Order assertions. Another frequently observed problem encountered by the
participants was to correctly specify order assertions. Several participants speci-
fied the expected order of activity nodes incorrectly, as they forgot to use jokers
for allowing arbitrary nodes to be executed between two nodes of interest. How-
ever, after running the order assertion and reading the failing test result, all
participants were able to correct the order assertion.

State assertions. A third recurring issue was related to understanding the
relation between temporal expressions and state expressions. More precisely,
several participants specified each state expression separately in a distinct state
assertion, even though the temporal expressions of these state assertions were
identical (i.e., only one state assertion would have been required).

OCL expressions. Several participants had issues with specifying the OCL
expression required for one of the test cases. However, this was due to the fact
that these participants had little experience with OCL. Connecting the OCL
expression with a test case was not an issue for any of the participants.

Overall, we observed that after each written test case, the participants were
making fewer mistakes in specifying the next one. By the time they got to the
second task, all participants had a clear understanding about all the concepts
provided by the test specification language. From this observation, we conclude
that our test specification language has a gentle learning curve. One of the
possible improvements that we discovered during the user study is that some
concepts of the test specification language, such as the specification of links in
test scenarios, could be improved. Furthermore, additional validations by the
editor would significantly improve the specification of test cases, as it prevents
defects in the test cases themselves.
(ii) Usefulness. In the second task, the participants had to detect and correct
defects in a UML activity diagram based on test cases and test results. We made
the following observations for this task.

Understanding test cases. The participants had no problems in understanding
the given test cases and their purpose. They were able to correctly explain the
functional requirements tested by the test cases.

Understanding test results. Out of the eleven participants, five were able to
locate both introduced defects, three were able to locate the first defect only,
and three were not able to locate any of the defects.

For identifying the first defect, we provided the participants with a test case
testing the expected execution order of activity nodes with an order assertion, as
well as the test result of running the test case on the defective activity. The test
result listed the actually executed path, which allowed all of the participants to

Testing Functional Requirements in UML Activity Diagrams 187

detect that a wrong path was executed. Eight of the participants were also able
to identify the related defect, namely wrongly defined guard conditions. Three
participants were not able to locate this defect, because they were not familiar
with how guard conditions are evaluated in UML based on object flows.

The second defect was a missing merge node, which impeded the execution
of an activity node and consequently resulted in a wrong final runtime state of
the tested system. For identifying this defect, we provided a test case checking
the final runtime state with a state assertion, as well as the test result. The
test result showed both the actually last executed activity node and the actual
final runtime state. Neither of them was as expected by the state assertion. For
identifying the causing defect, the participants had to detect that the activity
node leading to the expected final runtime state was not executed and that the
reason for this was the missing merge node. This was not as obvious as in the
former example, where the result of an order assertion clearly showed which
nodes of the tested activity were executed and which were not. Furthermore,
identifying that a merge node has to be introduced to correct the defect requires
the knowledge that alternative branches in UML activities always have to be
explicitly merged by a merge node. Thus, the participants who did not have this
knowledge were not able to identify the missing merge node as defect.

With this task, we aimed at evaluating how useful test results are for detect-
ing and resolving defects in UML activity diagrams. We define the property
usefulness as the average percentage of defects resolved by participants based
on test results. Let D be the number of defects introduced into an activity,
and RDi the number of defects resolved by participant i. Then, the percent-
age of resolved defects by user i is Xi = RDi/D ∗ 100. The metric for mea-
suring usefulness is U =

∑
Xi/n, where n is the number of participants.

According to this metric, the usefulness measured through the user study is
U = (5 ∗ 100% + 3 ∗ 50% + 3 ∗ 0%)/11 = 59.09%. This measure indicates a
positive result for the usefulness of test results for detecting defects in activities.
However, it also indicates that further improvements are needed.

Our conclusion drawn from these observations is that the visualization of test
results is crucial for making them useful for locating defects. Therefore, providing
more effective means for visualizing test results have to be investigated in future
work. For instance, we intend to investigate the integration of the visualization of
test results with UML modeling editors, such that test results can be presented
on the tested activity diagrams themselves. Furthermore, presenting the states
of a system occurred during the execution of an activity under test in the form
of UML object diagrams could be useful, as it may provide more insight into the
cause of failing test cases. Furthermore, for localizing a defect and deriving valid
corrections, debugging is essential. Providing users with the possibility to step
through the execution of an activity and observe the state of the system after
each step may facilitate the localization of defects causing failing test cases.
Table 1 shows the results of the opinion questionnaire filled in by the participants
to rate how difficult it was to accomplish the given tasks. As can be seen from the
results, our observations and conclusions correspond to the participants’ opinion.

188 S. Mijatov et al.

Table 1. Results of the opinion questionnaire

Task very easy easy medium hard very hard

Read class diagrams 7 4

Read activity diagrams 3 7 1

Write test cases 8 3

Read test cases 3 4 2 2

Read test results 3 4 2 2

Correct activity diagrams 1 3 2 2 3

Threats to Validity. There are several threats to the validity of the evaluation
results. First, in order to make the evaluation feasible in the described setup,
the examples given to participants were of low complexity. Having more complex
examples might give better insights into the ease of use of the test specification
language and the usefulness of test results for detecting defects. Another threat to
validity is the selection of participants. The participants consisted of researchers
and students, but participants from industry were missing. Furthermore, also the
fairly low number of participants influences the validity of the results. As future
work, we intend to perform a larger user study with more participants having
different background and knowledge, as well as with more complex examples.

6 Related Work

Until now, testing UML activity diagrams conforming to the fUML standard has
not been investigated intensively. We are only aware of the work by Craciun et al.
[4], who propose to develop a virtual machine for fUML models using the K-
framework for efficiently testing fUML models. However, this work is still in its
early stage and there is yet no information about an existing implementation.

For UML 2 activities and actions, Crane and Dingel [5] present an interpreter,
which offers several dynamic analysis capabilities, such as reachability and dead
lock analysis, as well as assertions on objects during the execution of activities.
The latter capability is similar to the state assertions provided by our testing
framework. However, only some simple expressions on objects are supported. In
contrast, our testing framework supports the full power of OCL.

Another interesting line of work related to state assertions is temporal OCL.
It is an extension of OCL with temporal operators and quantifiers (e.g., [3])
enabling not only the evaluation of OCL expressions on a single state of a system
but also on its evolution. Thus, temporal OCL could be used in a similar way as
our state assertions for testing purposes. However, our testing framework does
not extend OCL with temporal expressions, but rather uses it as is and instead
provides temporal expressions as part of the test specification language.

Contrary to testing techniques, several approaches applying formal analysis
techniques on fUML activities have been proposed. Romero et al. [18] show how
the standardized formal semantics of fUML can be utilized to perform formal

Testing Functional Requirements in UML Activity Diagrams 189

verification through theorem proving. Abdelhalim et al. [1] developed a frame-
work that automatically formalizes fUML models as CSP processes and analyzes
them for deadlocks. Laurent et al. [8] define a first-order logic formalization for
a subset of fUML and apply model checking techniques for verifying the correct-
ness of process models defined with fUML. Their formalization covers control
and data flows, as well as resource and timing constraints. Properties that are
verified include termination and dead lock freeness. Planas et al. [17] propose
a verification method for fUML models, which focuses on the property strong
executability. This property guarantees that every time an activity is executed,
the system’s state is changed in a way consistent with all defined integrity con-
straints. Micskei et al. [11] propose a transformation chain from UML models to
formal verification tools using fUML and Alf as intermediary languages. In par-
ticular, they propose to translate UML state machines into the formal language
of the UPPAAL tool environment, which provides a model checker allowing the
formal verification of the modeled behavior.

Further approaches dealing with the formal analysis of UML activity dia-
grams exist, which, however, do not consider the full power of fUML. For
instance, Eshuis and Wieringa [6] present a formalization of workflow models
specified as UML activity diagrams for verifying functional requirements. In
their approach, activity diagrams are translated into transition systems, func-
tional requirements are defined as LTL formulas, and these LTL formulas are
evaluated on the obtained transition systems using the NuSMV model checker.

7 Conclusion and Future Work

In this paper, we have presented a testing framework for fUML models, which
allows modelers to verify the correct behavior of fUML activities. Besides giving
an overview of the testing framework, we have explained three newly introduced
features in detail, which significantly extend the framework’s testing capabilities.
In particular, we introduced support for OCL allowing the evaluation of more
complex conditions on the expected runtime state of a system under test. Fur-
thermore, our testing framework now provides additional temporal operators
and quantifiers for more precisely selecting the runtime states to be asserted
by test cases. Finally, we developed a new algorithm for verifying the correct
execution order of activity nodes in the presence of concurrent behavior.

Based on the lessons learned from evaluating our testing framework in a user
study, we intend to improve the ease of use of our test specification language by
adapting its textual syntax, as well as the usefulness of test results by investi-
gating more effective visualization techniques. Furthermore, we plan to further
improve the evaluation of assertions taking into account concurrency. In particu-
lar, concurrent paths also have to be considered when evaluating state assertions,
as actions modifying and accessing the same values concurrently might lead to
nondeterminism. Another interesting feature that we have identified for future
work is the support of comparisons between distinct runtime states of the tested
system, i.e., the comparison of runtime states at different points in time.

190 S. Mijatov et al.

References
1. Abdelhalim, I., Schneider, S., Treharne, H.: An Integrated Framework for Checking

the Behaviour of fUML Models using CSP. International Journal on Software Tools
for Technology Transfer 15(4), 375–396 (2013)

2. Bézivin, J.: On the unification power of models. Software and Systems Modeling
4(2), 171–188 (2005)

3. Bill, R., Gabmeyer, S., Kaufmann, P., Seidl, M.: OCL meets CTL: Towards CTL-
Extended OCL model checking. In: Proc. of 14th Int. Workshop on OCL, OCL
2013. CEUR WS, vol. 1092, pp. 13–22. CEUR-WS.org. (2013)

4. Craciun, F., Motogna, S., Lazar, I.: Towards better testing of fUML models. In:
Proc. of 6th Int. Conf. on Software Testing, Verification and Validation, ICST 2013,
pp. 485–486. IEEE Computer Society (2013)

5. Crane, M.L., Dingel, J.: Towards a UML virtual machine: implementing an inter-
preter for UML 2 actions and activities. In: Proc. of 2008 Conf. of the Center
for Advanced Studies on Collaborative Research, CASCON 2008, pp. 8:96–8:110.
ACM (2008)

6. Eshuis, R., Wieringa, R.: Tool Support for Verifying UML Activity Diagrams.
IEEE Transactions on Software Engineering 30(7), 437–447 (2004)

7. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Thiele, M., Wende, C., Wilke,
C.: Integrating OCL and textual modelling languages. In: Dingel, J., Solberg, A.
(eds.) MODELS 2010. LNCS, vol. 6627, pp. 349–363. Springer, Heidelberg (2011)

8. Laurent, Y., Bendraou, R., Baarir, S., Gervais, M.-P.: Formalization of fUML: an
application to process verification. In: Jarke, M., Mylopoulos, J., Quix, C., Rol-
land, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS,
vol. 8484, pp. 347–363. Springer, Heidelberg (2014)

9. Mayerhofer, T., Langer, P., Kappel, G.: A runtime model for fUML. In: Proc. of
7th Workshop on Models@run.time, MRT 2012, pp. 53–58. ACM (2012)

10. Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Archi-
tectures. Addison-Wesley Longman Publishing Co., Inc. (2002)

11. Micskei, Z., Konnerth, R., Horváth, B., Semeráth, O., Vörös, A., Varró, D.: On
open source tools for behavioral modeling and analysis with fUML and Alf. In:
Proc. of 1st Workshop on Open Source Software for Model Driven Engineering,
OSS4MDE 2014. CEUR WS, vol. 1290, pp. 31–41. CEUR-WS.org. (2014)

12. Mijatov, S., Langer, P., Mayerhofer, T., Kappel, G.: A framework for testing
UML activities based on fUML. In: Proc. of 10th Int. Workshop on Model Driven
Engineering, Verification and Validation, MoDeVVa 2013. CEUR WS, vol. 1069,
pp. 1–10. CEUR-WS.org. (2013)

13. Moliz Project. http://www.modelexecution.org
14. OMG: OMG Unified Modeling Language (OMG UML), Superstructure, Version

2.4.1 (August 2011). http://www.omg.org/spec/UML/2.4.1
15. OMG: OMG Object Constraint Language (OCL), Version 2.3.1 (January 2012).

http://www.omg.org/spec/OCL/2.3.1
16. OMG: Semantics of a Foundational Subset for Executable UML Models (fUML),

Version 1.1 (August 2013). http://www.omg.org/spec/FUML/1.1
17. Planas, E., Cabot, J., Gómez, C.: Lightweight verification of executable models.

In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998,
pp. 467–475. Springer, Heidelberg (2011)

18. Romero, A., Schneider, K., Gonçalves Vieira Ferreira, M.: Using the base
semantics given by fUML for verification. In: Proc. of 2nd Int. Conf. on
Model-Driven Engineering and Software Development, MODELSWARD 2014,
pp. 5–16. SCITEPRESS Digital Library (2014)

http://www.modelexecution.org
http://www.omg.org/spec/UML/2.4.1
http://www.omg.org/spec/OCL/2.3.1
http://www.omg.org/spec/FUML/1.1

Coverage of OCL Operation Specifications
and Invariants

Mathias Soeken1,2(B), Julia Seiter1, and Rolf Drechsler1,2

1 Faculty of Mathematics and Computer Science,
University of Bremen, Bremen, Germany

{msoeken,jseiter,drechsle}@cs.uni-bremen.de
2 Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

Abstract. We consider operation coverage of OCL operation specifica-
tions and invariants in class diagrams with respect to sequence diagrams.
The coverage criteria are based on the operations that are executed from
the sequence diagrams and their asserted OCL subexpressions. We pro-
pose an algorithm that automatically generates a set of sequence dia-
grams in order to maximise these coverage criteria. A model finder is
leveraged for this purpose. As a result, also operations and constraints
can be determined that can never be executed and asserted, respectively.
Our algorithm has been implemented in the UML specification tool USE.

1 Introduction

Given a class diagram with OCL operation specifications, invariants and a set of
sequence diagrams, we define two coverage metrics that measure (1) how many
operations of the class diagram have been called and (2) how many OCL subex-
pressions evaluated to true for this purpose. We define the coverage semantics on
top of the precise modelling approach that has been presented by Mark Richters
in [11]. As a result, the coverage metrics can readily be integrated in the context
of formal analysis tools.

We demonstrate this by utilising model finders for behavioural modelling
tasks to automatically generate sequence diagrams to increase coverage with
respect to the defined metrics. Since model finders traverse the complete search
space (and often efficiently), also “dead” operations or “dead” subexpressions
can be found with our algorithm. Analogously to “dead code” in software devel-
opment, these refer to operations that can never be called or subexpressions that
never evaluate to true.

We have integrated the coverage metrics in the UML specification tool USE [6].
When starting the program with a class diagram and some initial sequence dia-
grams, the initial coverage is reported. The user of the tool can then start the

This work was supported by the German Federal Ministry of Education and Research
(BMBF) (01IW13001) within the project SPECifIC, by the German Research Foun-
dation (DFG) (DR 287/23-1), and by the University of Bremen’s graduate school
SyDe, funded by the German Excellence Initiative.

c© Springer International Publishing Switzerland 2015
J.C. Blanchette and N. Kosmatov (Eds.): TAP 2015, LNCS 9154, pp. 191–207, 2015.
DOI: 10.1007/978-3-319-21215-9 12

192 M. Soeken et al.

model finder to generate new sequence diagrams which successively increase the
coverage or pinpoint the user to “dead” operations or subexpressions.

Coverage metrics for modelling languages have been considered in the past,
but rarely have methods been provided to automatically increase the proposed
coverage criteria. In [12] coverage criteria based on the execution traces of
sequence diagrams have been defined, but no algorithm has been provided that
generates input data to increase the coverage. An approach very similar to ours
has been proposed in [17] where model finders are exercised in order to find
sequence diagrams that adhere to a given specification. However, coverage has
not been considered in this context.

The remainder of the paper is structured as follows. The next section reviews
class diagrams, system states, and model finding and introduces the formal nota-
tion that is used as a basis in the paper. Section 3 proposes two coverage criteria
and in Sect. 4 it is described how model finding can be utilised in order to auto-
matically find sequence diagrams to increase the coverage of a class diagram. The
implementation in USE is illustrated in Sect. 5 before related work is discussed
in Sect. 6. Section 7 concludes the paper.

2 Preliminaries

This section introduces a notation that is used to describe class diagrams and
system states in the remainder of the paper. Also, model finding is reviewed.

2.1 Class Diagrams and System States

We are making use of the notation that has been introduced in [11]. Associations
have no immediate influence on our proposed coverage metric and therefore we
use simpler definitions that omit details on associations.

Definition 1 (Class diagram). A class diagram is denoted as

M = (Class,Attc,Opc,≺) , (1)

where

– Class is a finite set of class names,
– Attc are sets of attributes for each class c ∈ Class defined as signatures a :

tc → t, where a is the attribute name, tc is the type of class c, and t is the
attribute type,

– Opc are sets of operations for each class c ∈ Class defined as signatures ω :
tc × t1 × · · · × tn → t, where ω is the operation name, tc is the type of
class c, t1, . . . , tn are the types of the operation’s n parameters, and t is the
operation’s return type,

– and ≺ is a partial order on Class to reflect the generalisation hierarchy.

Coverage of OCL Operation Specifications and Invariants 193

Fig. 1. Class diagram

We define
ops(M) def=

⋃

c∈Class

Opc . (2)

For Attc and Opc their reflexive closures

Att∗
c

def= Attc ∪
⋃

c′∈parents(c)

Attc′ and

Op∗
c

def= Opc ∪
⋃

c′∈parents(c)

Opc′
(3)

are defined with parents(c) def= {c′ | c′ ∈ Class ∧ c ≺ c′}.

Example 1. Figure 1 shows a class diagram that will serve as running example
throughout the paper. It models the memory access part of a processor architec-
ture. The processor which has a program counter and a current instruction is
connected to a memory controller which offers operations to read and write to
memory which is represented in terms of cells.1 The precise formal notation of
the class diagram is

Class = {Processor ,Controller ,Cell }

AttProcessor = { pc : Processor → Integer ,
instruction : Processor → Integer }

AttController = { address : Controller → Integer ,
dataout : Controller → Integer }

AttCell = { address : Cell → Integer ,
content : Cell → Integer }

1 The class diagram can be downloaded as a model for USE at www.informatik.
uni-bremen.de/agra/files/memory.use

www.informatik.uni-bremen.de/agra/files/memory.use
www.informatik.uni-bremen.de/agra/files/memory.use

194 M. Soeken et al.

Fig. 2. System state

OpProcessor = { prepareMemory : Processor → VoidType,
fetch : Processor → VoidType,

process : Processor → VoidType }
OpController = { write : Controller × Integer → VoidType,

read : Controller → VoidType } .

Definition 2 (Class domain). The set of object identifiers of a class c ∈ Class
is given by an infinite set oid(c) = {c1, c2, . . . }. Then, the domain of c is defined as

IClass(c)
def=

⋃

c′∈Class
c′�c

{oid(c′)} . (4)

In general, we will use the letter I to denote an interpretation mapping [11]
that defines the semantics of OCL expressions.

Definition 3 (System state). A system state for a class diagram M is a
structure

σ(M) = (σClass, σAtt) , (5)

with

– finite sets σClass(c) ⊂ oid(c) containing all objects of class c ∈ Class in the
system state and

– functions σAtt(a) : σClass(c) → I(t) for each a : tc → t ∈ Att∗
c .

I(t) is an interpretation function for variables of types t.

If the context is clear, M can be omitted and a system state is simply written
as σ.

Coverage of OCL Operation Specifications and Invariants 195

Example 2. A valid system state for the class diagram in Fig. 1 is shown in
Fig. 2.

Class diagrams can be accompanied by expressions in the object constraint
language (OCL, [15]) that is part of the UML standard. OCL allows the spec-
ification of formal constraints in the context of a model. Since constraints are
conditions on all system states and transitions between states, a set of constraints
therefore restricts the set of valid system states. In the extreme case, the set of
possible system states is empty; in this case the model is called inconsistent.
Constraints are primarily used to express invariants which are global constraints
that hold in every system state and operation specifications in terms of pre-
and postconditions that are evaluated locally in the context of an operation call.
An operation can only be called if the preconditions hold and must ensure that
after execution its postconditions evaluate to true. In general an OCL expression
that evaluates to a value of type t is an element of the set Exprt. The following
definitions provide notation for invariants and operation specifications.

Definition 4 (Invariants). All invariants of a class c are contained in the
set I(c) ⊂ ExprBoolean. All these Boolean OCL expressions contain a vari-
able self that is of type c. All invariants of a model are denoted

I(M) def=
⋃

c∈Class

I(c) , (6)

and as in the notation for system states the M can be omitted, i.e., we write I,
if the use is clear from the context.

Example 3. One invariant for the memory controller model from Fig. 1 is:

context Controller

inv uniqueCells: cells->forAll(c1, c2 |

c1 <> c2 implies c1.address <> c2.address)

This invariant states that the cells that are associated to a memory controller
must have a unique address.

Definition 5 (Pre- and postconditions). Given an operation ω ∈ ops(M),
the sets �(ω) ⊆ ExprBoolean and �(ω) ⊆ ExprBoolean are the pre- and postcon-
ditions of ω. The notation is borrowed from [13].

Example 4. The operation specification for the operation write of class Con-
troller is:

context Controller::write(content: Integer)

pre: address < 10

pre: content < 4

post: cells->one(c | c.address = address and c.content =

content)

post: cells->forAll(c | c.address = c.address@pre)

post: cells->forAll(c | c.address <> address implies

c.content = c.content@pre)

196 M. Soeken et al.

The two preconditions ensure that a valid address and content have been assigned
to the attributes of the Controller object. The first postcondition ensures that
the cell at the given address has the new content after the operation has been
called. The second postcondition ensures that the cell’s addresses were not
changed by the operation call and the last postcondition ensures that the con-
tent of the non-addressed cells is not changed. The model finder cannot guess
the developer’s intention. To ensure that non-related attributes are not changed
frame constraints need to be added. Either automatic tools are used that assist
the developer in finding them [10] or they are provided manually:

post: processor.pc = processor.pc@pre

post: dataout = dataout@pre

post: address = address@pre

When evaluating OCL expressions in the context of a system state σ one needs
to consider assignments to variables that appear in the OCL expressions. For this
purpose, let Vart be the set of variables of type t, then β : Vart → I(t) is a vari-
able assignment. A context for the evaluation of an OCL expression is given by an
environment τ = (σ, β). Let ‘Env’ be the set of environments τ = (σ, β), then the
semantics of an expression e ∈ Exprt is provided by a mapping I�e� : Env → I(t).

In this paper we make heavy use of the notation that has been introduced
in [11] to formalise UML class diagrams and OCL expressions. The meaning
of the notation should be comprehensible from the context, however, for more
precise definitions the reader is referred to [11].

2.2 Model Finding

Model finding describes the problem of finding a system state σ to a given
model M with invariants I such that

I�I�(σ)
def
=
∧

c∈Class

∧

e∈I(c)

∧

c∈σClass(c)

I�e�((σ, self �→ c)) = true , (7)

i.e., all invariants hold for all objects in the system state. Such a system state σ
is called valid and witnesses the consistency of M. Usually the size of σClass

is predefined such that the model finding problem becomes decidable [2]. This
assumption is reasonable, since often the size bounds of the model are known
in advance. Similar restrictions are assumed for associations, but not discussed
in this paper. We refer to this problem also as structural model finding since
only one system state is considered. Different implementations for the model
finding problem have been proposed in the past [3,7,9,14]. The problem can
be extended to consider the class diagram’s operations which is described in the
following. For this purpose, some additional notation to formalise operation calls
is required.

An operation call ω = (c, ω) is a tuple consisting of an operation ω ∈ Opc

and an object c ∈ σClass(c). How parameters are bound to operation calls
is described later in Sect. 3. For interpreting an operation call, both a pre-
state σpre and a post-state and σpost need to be considered. Consequently, also

Coverage of OCL Operation Specifications and Invariants 197

two environments τpre = (σpre, βpre) and τpost = (σpost, βpost) are required to for-
malise the semantics of a postcondition. Then, the interpretation of an operation
call ω = (c, ω) is

I�ω�(σ, σ′) def
=

∧

e∈�(ω)

I�e�(τpre)
∧

e∈�(ω)

I�e�(τpre, τpost) , (8)

with {self 	→ c} ∈ βpre and {self 	→ c′} ∈ βpost where c′ refers to c in the
post-state.

Given a Boolean expression etask, the behavioural model finding problem [13]
asks to find a set of system states σ1, . . . , σT and a set of operation calls
ω1, . . . ωT−1 such that

T∧

t=1

I�I�(σt) ∧
T−1∧

t=1

I�ωt�(σt, σt+1) ∧ etask = true . (9)

Also for this problem, T is usually predefined, since otherwise the problem is
undecidable. This assumption is reasonable, since one is interested in a short
sequence diagram. The common practice is to increase T in an iterative manner
until a solution is found. This is similar to reachability analysis with bounded
model checking [4]. Furthermore, the initial state σ1 is typically preassigned
by the developer to exclude false positives, i.e., system states that cannot be
reached. Verification tasks in behavioural model checking can, e.g., be the check
for a deadlock, i.e., a final system state in which no operation can be called since
no preconditions can be asserted, or it can be checked whether an operation
is executable by preassigning one of the operation call variables. Besides these,
a variety of other reachability tasks can be formulated. Implementations for
behavioural model finders have been realised, e.g., in [5,13].

3 Operation Coverage

In this section, two coverage criteria are defined. Since coverage is witnessed
and increased in terms of sequence diagrams, we first need to formalise them
analogously to the definitions of the previous section. In this paper, we only
consider very simple sequence diagrams with no nested operation calls and no
control structures. Consequently, these can also be represented by a sequence of
operations.

Definition 6 (Operation sequence). Given a class diagram M and a
sequence of system states σi(M) = (σClass,1, σAtt,1) for 1 ≤ i ≤ n, an oper-
ation sequence is an ordered set

S = 〈r1 ← ω1(p1), r2 ← ω2(p2), . . . , rn ← ωn(pn)〉 . (10)

The ith operation call in the sequence S is of the form r ← ω(p) with ω = (c, ω)
stating that an operation ω : tc × t1 × · · · × tk → t ∈ Opc is called on an

198 M. Soeken et al.

object c ∈ σClass,i(c) of class c with parameters p = (p1, . . . , pk) with pi ∈ ti and
returns a value r ∈ t. We define

ops(S) def= {ω1, . . . , ωn} . (11)

An operation sequence may not necessarily be executable since invariants and
operation specifications could prevent the OCL expressions from being asserted.

Definition 7 (Validity of operation sequences). Operation sequences are
executed with respect to some given valid initial system state σ1. An operation
sequence is called valid if, and only if there exist valid system states σ2, . . . , σn+1

such that
n∧

i=1

I�ωi�(σi, σi+1) = true . (12)

Example 5. Figure 3 shows a valid system state for the running example written
in the USE syntax. First, the initial state is prepared which includes object cre-
ation and linking. The command !openter initiates the operation call and also
the preconditions are evaluated. Afterwards, the post-state is prepared before
the operation call is finished using !opexit, which also evaluates the operation’s
postcondition.

3.1 Operation Call Coverage

Now that operation sequences are formally defined, we can formalise the coverage
metrics. The first coverage metric, called operation call coverage, checks how
many of the model’s operations have been called in a given set of operation
sequences.

Definition 8 (Operation call coverage). Given a class diagram M and valid
operation sequences S1, . . . , Sn, the operation call coverage is defined as

n∑

i=1

| ops(Si)|
| ops(M)| . (13)

3.2 Subexpression Coverage

The second coverage metric is based on an expression’s subexpressions and
should first be illustrated by means of an example.

Example 6. The operation process from the class Processor has among other the
following two postconditions:

post: pc@pre < 9 implies pc = pc@pre + 1
post: pc@pre = 9 implies pc = 0

They ensure that the program counter pc overflows to 0 if its value is 9 before
the operation is called.

Coverage of OCL Operation Specifications and Invariants 199

Fig. 3. Valid operation sequence

An implication expression always evaluates to true if the antecedent is false.
Hence, one is interested in finding operation sequences that assert many subex-
pressions. The same argument holds for expressions of the form e1 or e2. Even
expressions of the form e1 and e2 need to be considered although in this case,
both e1 and e2 must have been true in order to assert the overall conjunction.
However, the expression can be more complicated if nested expressions are used
as, e.g., in (e1 or e2) and (e3 or e4). Also here, it is desired that all subexpres-
sions have been asserted once in some sequence diagram.

For this purpose, we define a function ‘sub’ that returns all Boolean subex-
pressions of a given expression e ∈ Expr:

sub(e) def=

{
{e} ∪ ⋃{sub(e′) | e′ is subexpression of e} if e ∈ ExprBoolean,⋃{sub(e′) | e′ is subexpression of e} otherwise .

(14)

200 M. Soeken et al.

Before we define the second coverage metric, we define the evaluation of
a Boolean expression e ∈ ExprBoolean in the context of a valid operation
sequence S = 〈ω1 = (c1, ω1), . . . , ωn = (cn, ωn)〉 as defined in (10) (For brevity
we omitted parameters and return values from the operation sequence). The
operation sequence implies n + 1 valid system states σ1, . . . , σn+1 as defined
in (12). The evaluation of e depends on whether it is part of an invariant, a pre-
condition, or a postcondition. If e is part of an invariant, it is checked whether e
evaluates to true in some of these system states for some object, i.e.,

Iinv�e�(S) def=
n∨

i=1

∨

c∈σClass(c)

I�e�((σi, self 	→ c)) . (15)

If e is part of a precondition of some operation ω, it is checked whether it
evaluates to true if the operation has been called, i.e.,

Ipre�e�(S) def=
n∨

i=1

(ωi ≡ ω) ∧ I�e�((σi, self 	→ ci)) . (16)

Finally, if e is part of a postcondition of some operation ω, it is checked whether
it evaluates to true in the state after the operation has been called, i.e.,

Ipost�e�(S) def=
n∨

i=1

(ωi ≡ ω) ∧ I�e�((σi, self 	→ ci), (σi+1, self 	→ c′
i)) , (17)

where c′
i refers to ci in state σi+1.

We also define a partition over all subexpressions in a model based on their
context, i.e., whether the expression is part of an invariant or of an operation
specification:

subinv
def=

⋃

e∈I
sub(e),

subpre
def=

⋃

ω∈ops(M)

⋃

e∈�(ω)

sub(e), and

subpost
def=

⋃

ω∈ops(M)

⋃

e∈�(ω)

sub(e)

Definition 9 (Subexpression coverage). Given a class diagram M and valid
operation sequences S1, . . . , Sn, the subexpression coverage is defined as

∣∣∣∣∣
⋃

x∈{inv,pre,post}
{e ∈ subx | ∃Si : Ix�e�(Si)}

∣∣∣∣∣
| subinv ∪ subpre ∪ subpost | . (18)

The formal definition for subexpression coverage is a bit tedious, however,
the intuitive idea can readily be stated in an informal manner. We take all

Coverage of OCL Operation Specifications and Invariants 201

subexpressions from the model’s invariants and operation specifications. Then
for each of them we check whether they evaluate to true in some intermediate
state of the given operation sequences. The number of such subexpressions is
divided by the total amount of subexpressions. It is important to ensure that a
subexpression of a pre- or postcondition is only checked for a positive evaluation
if the respective operation has been called.

Example 7. The operation sequence in Fig. 3 leads to an operation call coverage
of 0.4 since 2 out of 5 operations have been called. Furthermore, the subexpres-
sion coverage is approximately 0.3 as 14 out of 46 subexpressions are asserted. For
instance, the second postcondition of Example 6 is not covered by the operation
sequence in Fig. 3 since the program counter pc is initially set to 0. Consequently,
the subexpression pc@pre = 9 evaluates to false.

4 Algorithm to Automatically Enhance Coverage

Now that the coverage criteria have been defined, in this section we are proposing
methods that aim at automatically increasing the coverage by generating new
sequence diagrams. Since model finders are used for this purpose, always the
whole solution space is considered. Consequently, the algorithm either yields a
sequence diagram that indeed increases the coverage or finds that some operation
is not executable or some subexpression cannot be asserted by any sequence dia-
gram. Hence, the algorithm is able to determine “dead” model code (analogously
to dead code in programs that can never be executed).

The model finder is utilised by choosing an appropriate expression for etask
as described in (9). To increase operation call coverage the model finder is used
to find an operation sequence that contains an operation ω that has not been
executed thus far. In order to constrain the model finder to call an operation in
an operation sequence one needs to assign

etask =
T−1∨

t=1

(ωt ≡ ω) . (19)

When increasing subexpression coverage a task needs to be formalised for
each subexpression e that is not covered yet. Again, the description of the task
expression depends on the origin of the subexpression. If e is part of an invariant
of class c, we assign

etask =
T∨

t=1

∨

c∈σClass(c)

I�e�((σt, self 	→ c)) . (20)

For the case if e is part of an operation specification, we could also find a
suitable task expression, however, instead we are making use of a small trick.
We are using the same task expression as in (19) but additionally add e as pre-
or postcondition to the considered model. Since the task forces the operation to
be called also e must evaluate to true.

202 M. Soeken et al.

It can easily be seen that many sequence diagrams may need to be generated
in order to obtain full coverage if initially many operations and subexpressions
are uncovered. The first measure to avoid this is to recompute the coverage
metrics after each generated sequence diagram, since other uncovered elements
may be covered by the newly generated sequence diagram. Furthermore, one
can also try to cover multiple uncovered elements at once by combing the task
expressions that have been introduced above. As an example one can try to
find a sequence diagram in which three uncovered operations ω1, ω2, and ω3 are
called by assigning

etask =
T−1∨

t=1

(ωt ≡ ω1) ∧
T−1∨

t=1

(ωt ≡ ω2) ∧
T−1∨

t=1

(ωt ≡ ω3) .

However, this approach needs to be applied with care since it may lead to
false negatives, since operations may be executable independently but not in
combination. A strategy can be to first try to generate sequence diagrams that
cover a lot of operations and then decrease the number if no more sequence
diagrams can be found.

Alternatively, one can make use of Boolean select variables s1, . . . , s� for each
uncovered operation ω1, . . . , ω�. Then these can be considered at once in a single
task expression and let the model finder decide which ones to use in the sequence
diagram and which ones not:

etask =
�∧

i=1

(
si ⇒

T−1∨

t=1

(ωt ≡ ωi)

)
∧

�∑

i=1

si ≥ k . (21)

If a select variable si is assigned 1, then the operation ωi must be called in
the sequence diagram. Since etask can easily be satisfied by assigning all select
variables to 0, a cardinality constraint ensures that at least k select variables must
be assigned 1 and hence at least k operations must be called in the operation
sequence. The value for k can be initially set high and then decreased successively
if etask cannot be satisfied.

5 Tool Support

We implemented the proposed algorithm as a plugin of the UML specification
tool USE [6]. Consequently, models in the form of class diagrams as well as
sequence diagrams are to be provided in the USE format (.use and .cmd to
specify class diagrams and operation sequences, respectively). We have used the
SMT-based behavioural model finder that has been proposed in [13].

The features realised in the plugin are the following:2

1. computation of the initial coverage of operations and constraints based on
the provided sequence diagram(s) (Fig. 4)

2 A USE plugin for computing and displaying coverage information can be downloaded
from www.informatik.uni-bremen.de/agra/files/coverage-plugin.zip

www.informatik.uni-bremen.de/agra/files/coverage-plugin.zip

Coverage of OCL Operation Specifications and Invariants 203

Fig. 4. Initial coverage

2. computation of the maximal possible coverage of operations and constraints
using a model finder in the background (Fig. 5)

3. display of the results

Both types of coverage are computed upon start of the plugin in the back-
ground if a model is provided. Without given sequence diagrams, the initial
status of each operation and each constraint is displayed as not covered. If cov-
erage of the respective operation or constraint has been reached, the mark is
changed to covered. The remaining constraints are marked as maybe covered in
the initial computation and as partially covered in the final state.

A constraint is maybe covered if the respective operation has been executed
but the constraint contains subexpressions which might not hold, e.g., a part
of a disjunction where the whole constraint can evaluate to true while a single
subexpression evaluates to false. A constraint is eventually partially covered when
it was not possible to find an operation sequence such that all subexpressions

204 M. Soeken et al.

Fig. 5. Maximised coverage

eventually hold, i.e., one part of the constraint is covered and one part of it is
not covered.

During computation of the maximum coverage, sequence diagrams for the
not yet covered operations and constraints are produced and printed to the USE
shell. The overall results of the coverage enhancement are always displayed at the
bottom of the window. Here, the amount of initially and finally covered elements
are provided as well as a progress bar depicting the coverage percentage.

5.1 Experimental Evaluation

For an experimental evaluation, the approach has been applied to several models
which have been provided with the tool USE or have been written by the authors.
Table 1 shows the results of said evaluation. The first column gives the names of
the models. In the second and third column, their initial and maximal coverage
is stated. Then, the amount of generated sequences is provided and the last
column contains the required run-times.

Coverage of OCL Operation Specifications and Invariants 205

In all cases except for one, an increase in coverage up to 94–100% could
be achieved. Only for the test case CPU, the initial coverage of 0% remained
unchanged. This means that no operation sequences could be generated and,
consequently, none of the constraints were triggered. This scenario may occur due
to two reasons: (1) The initial state may be chosen poorly so that no operation’s
pre-condition evaluates to true. (2) The post-conditions of the operations may
be contradictory, preventing the operation’s execution even if a pre-condition is
satisfied. In both cases, the model as well as the initial state have to be revised.

With regard to the run-time, it can be stated that only the test case Memory
required a slightly longer execution time than the remaining examples. Since
this example is by far the largest one in terms of OCL constraints and has a
relatively low initial coverage of 15%, a slight increase in run-time was to be
expected.

Overall, it was possible to reach high coverage percentages in negligible run-
time by generating a maximum of 6 operation call sequences. In two cases, con-
straints and/or operations could be detected thanks to our approach which
could not be covered by sequences starting in the initial state. These con-
straints/operations would result in dead code, so by uncovering them, the quality
of the resulting implementation can be improved.

6 Related Work

In [12] coverage criteria are defined based on sequence diagrams which are
extracted by reverse engineering of existing Java source code. Branches in the
source code are mapped to guarded messages in the sequence diagram and there-
fore each sequence diagram defines a set of possible execution paths. Coverage
criteria are based on these paths. The authors have not provided methods to
automatically increase the coverage criteria.

The authors of [1] propose three test coverage criteria for class diagrams.
These criteria specify a certain structure of an object diagram which has to
be created by a test case in order to reach full coverage. In two cases, this
structure is determined by constructing representative values for association-
end multiplicities and attributes. The third criterion considers generalisation
relationships. All three criteria do not consider behavioural aspects and only
one criterion takes OCL constraints into consideration.

Table 1. Experimental results

Model Initial Maximal #Sequences Run-time

CPU 0% 0% 0 <0.01s
Traffic 35% 94% 4 <0.01s
Memory 15% 97% 6 0.22s
Car 0% 100% 4 <0.01s
Life 0% 100% 3 <0.01s

206 M. Soeken et al.

Scenario-based design analysis (SUDA) is defined in [16]. The authors intro-
duce snapshot models to transform a class model with operations into a static
model of behaviour which can be verified against a sequence of operation calls.
Based on this technique an automatic approach is presented in [17]. Given a UML
class diagram with OCL operation specifications and invariants and a specifica-
tion for a desired scenario, a scenario is automatically generated using model
finding techniques.

In [8] a technique is presented that allows animation of UML class diagrams
with OCL operation specifications and invariants. Given a current state, a post-
state is computed that satisfies the class diagram’s invariants and underspecified
postconditions.

7 Conclusions

We concerned ourselves with the question of how to formalise coverage criteria of
class diagrams with respect to a set of sequence diagrams in terms of operation
sequences. We have defined two coverage criteria, one which checks how many
operations are called and another one which considers whether all subexpressions
in the involved OCL constraints evaluate to true. Based on the formalisation of
UML class diagrams and OCL expressions introduced in [11] we formalised the
coverage criteria to enable their application in formal analysis.

We demonstrated how model finders can be utilised in order to automatically
generate new sequence diagrams that increase overall coverage of the class dia-
gram. By using the model finder the developer is also pinpointed to operations
and OCL subexpressions that can never be executed or asserted, respectively.
Our algorithm has been implemented in the UML specification tool USE.

It is a well-known fact that model finders cannot be applied to arbitrarily
large models and face scalability problems as the number of classes and con-
straints increases. Consequently, the efficiency of our approach for automatically
generating sequence diagrams heavily depends on the efficiency of the model
finder. For now, we have evaluated the generation approach to class diagrams
similar to the running example of the paper. For these, sequence diagrams can be
generated within a few seconds. In future work we want to evaluate the scalability
of the approach in more detail by comparing different model finders. Alterna-
tively, model finders can be tuned to perform well for these kind of problem.
Furthermore, more advanced sequence diagrams, e.g., with nested operations,
will enhance the usability of the approach.

References

1. Andrews, A., France, R.B., Ghosh, S., Craig, G.: Test adequacy criteria for UML
design models. Software Testing, Verification and Reliability 13, 95–127 (2003)

2. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artificial Intelligence 168(1–2), 70–118 (2005)

Coverage of OCL Operation Specifications and Invariants 207

3. Cabot, J., Clarisó, R., Riera, D.: Verification of UML/OCL class diagrams using
constraint programming. In: Int’l. Conference on Software Testing Verification and
Validation Workshop, pp. 73–80. IEEE (2008)

4. Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
5. Frias, M.F., Galeotti, J.P., Pombo, C.L., Aguirre, N.: DynAlloy: upgrading alloy

with actions. In: Int’l Conf. on Software Engineering, pp. 442–451. ACM (2005)
6. Gogolla, M., Büttner, F., Richters, M.: USE: a UML-based specification environ-

ment for validating UML and OCL. Science of Computer Programming 69, 27–34
(2007)

7. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press
(2006)

8. Krieger, M.P., Knapp, A.: Executing underspecified OCL operation contracts with
a SAT solver. Electronic Communication of the European Association of Software
Science and Technology 15 (2008)

9. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of OCL models by
integrating SAT solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011.
LNCS, vol. 6705, pp. 290–306. Springer, Heidelberg (2011)

10. Niemann, P., Hilken, F., Gogolla, M., Wille, R.: Assisted generation of frame con-
ditions for formal models. IEEE (2015)

11. Richters, M.: A Precise Approach to Validating UML Models and OCL Constraints.
Ph.D. thesis, University of Bremen, Logos Verlag, Berlin, BISS Monographs, No.
1 (2002)

12. Rountev, A., Kagan, S., Sawin, J.: Coverage criteria for testing of object inter-
actions in sequence diagrams. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442,
pp. 289–304. Springer, Heidelberg (2005)

13. Soeken, M., Wille, R., Drechsler, R.: Verifying dynamic aspects of UML models.
In: Design, Automation and Test in Europe. pp. 1077–1082. IEEE (2011)

14. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying
UML/OCL models using Boolean satisfiability. In: Design, Automation and Test
in Europe, pp. 1341–1344. IEEE (2010)

15. Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley Longman (1999)

16. Yu, L., France, R.B., Ray, I.: Scenario-Based static analysis of UML class models.
In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008.
LNCS, vol. 5301, pp. 234–248. Springer, Heidelberg (2008)

17. Yu, L., France, R.B., Ray, I., Sun, W.: Systematic scenario-based analysis of UML
design class models. In: Int’l Conf. on Engineering of Complex Computer Systems,
pp. 86–95. IEEE Computer Society (2012)

Author Index

Aichernig, Bernhard K. 1
Athanasiou, Konstantinos 19

Birch, Geoff 38
Bloem, Roderick 58
Butler, Ricky W. 92

Carlsson, Mats 137

de Matos, Ernesto C.B. 76
de Medeiros Jr., Valério 76
Déharbe, David 76
Drechsler, Rolf 191
Dutle, Aaron M. 92

Fischer, Bernd 38

Genestier, Richard 109
Giorgetti, Alain 109
Gogolla, Martin 129
Grinchtein, Olga 137

Hamann, Lars 129
Hein, Daniel 58
Hentz, Cleverton 76
Hilken, Frank 129
Huang, Wen-ling 155
Hübner, Felix 155

Kappel, Gerti 173

Langer, Philip 173

Mayerhofer, Tanja 173
Mijatov, Stefan 173
Moreira, Anamaria M. 76
Muñoz, César A. 92

Narkawicz, Anthony J. 92
Neto, João B. Souza 76
Ničković, Dejan 1

Pearson, Justin 137
Peleska, Jan 155
Petiot, Guillaume 109
Ponce-de-León, Hernán 19
Poppleton, Michael R. 38

Röck, Franz 58

Schumi, Richard 58
Schwoon, Stefan 19
Sedlmeier, Matthias 129
Seiter, Julia 191
Soeken, Mathias 191

Tiran, Stefan 1

	Foreword
	Preface
	Organization
	Abstracts of Invited Talks
	Testing, Fixing, and Proving with Contracts
	Mind the Gap: At the Crossroads of Design,Implementation, and Foundations
	Reasoning About C Concurrency and Compilers
	Contents
	Scalable Incremental Test-Case Generation from Large Behavior Models
	1 Introduction
	2 Preliminaries
	2.1 Requirement Interfaces
	2.2 Incremental Test-Case Generation
	2.3 Avoidance of Vacuously Reaching Test Purposes

	3 Wheel Loader Case Study
	3.1 Use-Case Description
	3.2 Modeling
	3.3 Evaluation

	4 Interlocking Case Study
	4.1 Use-Case Description
	4.2 Modeling
	4.3 Test-Case Generation
	4.4 Evaluation

	5 Related Work
	6 Conclusion
	References

	Test Case Generation for Concurrent Systems Using Event Structures
	1 Introduction
	2 Preliminaries
	2.1 Petri Nets and Event Structures
	2.2 Event Structures and Coverage Criteria
	2.3 Test Cases

	3 Constructing Global Test Cases
	3.1 Encoding Test Cases by SAT
	3.2 Removing Silent Events

	4 Experiments
	4.1 The Examples
	4.2 The Experimental Setup
	4.3 Results

	5 Conclusion
	References

	Fast Model-Based Fault Localisation with Test Suites
	1 Introduction
	2 Model-Based Fault Localisation
	3 The Algorithm
	3.1 Program Transformation into Model
	3.2 The Test Case Search Algorithm
	3.3 The Pool Manager Algorithm

	4 Preliminary Experimental Results
	4.1 Experimental Setup
	4.2 Run Time Performance
	4.3 Localisation Performance
	4.4 Limitations

	5 Extensions
	6 Related Work
	7 Conclusions
	References

	Case Study: Automatic Test Case Generation for a Secure Cache Implementation
	1 Introduction
	2 Related Work
	3 Background
	3.1 Model Checking
	3.2 Trap Properties
	3.3 Node Coverage
	3.4 Edge Coverage
	3.5 Path Coverage
	3.6 Other Graph-Based Coverage Criteria
	3.7 Logic-Based Coverage Criteria

	4 Test Case Generation
	4.1 Combination of Graph-Based and Logic-Based Criteria
	4.2 Abstract Test Case Generation
	4.3 Test Adapter

	5 Experimental Results
	5.1 The Triangle Problem
	5.2 Case Study: Secure Block Device Cache

	6 Conclusion and Future Work
	References

	Verifying Code Generation Tools for the B-Method Using Tests: A Case Study
	1 Introduction
	2 Related Work
	3 Background
	3.1 B-Method
	3.2 C4B and b2llvm

	4 Proposed Testing Strategy
	4.1 Used Toolset
	LGen.
	BETA.

	5 The Case Study: Testing C4B and b2llvm
	5.1 Results

	6 Conclusions and Future Work
	References

	Software Validation via Model Animation
	1 Introduction
	2 Model Animation
	3 Formalization and Implementation of ATM Kinematic Library
	3.1 Turn Dynamics in PVS
	3.2 Turn Dynamics in Java

	4 Model Animation of ATM Kinematic Library
	4.1 Test Generation
	4.2 Model Animation
	4.3 Results

	5 Related and Future Work
	6 Conclusion
	References

	Sequential Generation of Structured Arrays and Its Deductive Verification
	1 Introduction
	2 Generation in Lexicographic Order
	2.1 Sequential Generation Functions
	2.2 Running Example
	2.3 Progress Property
	2.4 Pattern of Generation in Lexicographic Order

	3 Generation by Filtering
	3.1 Example
	3.2 General Pattern of Generation by Filtering
	3.3 General Pattern of Boolean Functions

	4 Verified Library
	4.1 Other Properties
	Exhaustivity.

	5 Related Work
	6 Conclusion
	References

	Checking UML and OCL Model Consistency: An Experience Report on a Middle-Sized Case Study
	1 Introduction
	2 Case Study Class Model
	3 Model Validator Configuration
	4 Tool Response and Translation and Solving Times
	5 Conclusion
	References

	A Constraint Optimisation Model for Analysis of Telecommunication Protocol Logs
	1 Introduction
	2 MiniZinc and Constraint Programming
	3 Overview of the Approach by an Example
	4 Public Warning System for LTE
	4.1 E-UTRAN Architecture
	4.2 The Earthquake and Tsunami Warning System
	4.3 Replacement of Warning Messages

	5 Modelling of ETWS Notification Acquisition by UE
	5.1 Delays of Warning Messages as Decision Variables
	5.2 Modeling of Timestamps of Paging Messages
	5.3 Description of the PagingModel
	5.4 Description of the SIB1Model
	5.5 Description of the PrimSecModel

	6 Partitioning of Timestamps of Messages
	7 Experiments
	7.1 Analysis of Real Logs
	7.2 Analysis of Generated Logs

	8 Learning Delay
	9 Conclusion
	References

	Experimental Evaluation of a Novel Equivalence Class Partition Testing Strategy
	1 Introduction
	2 Model-Based Random Testing and Equivalence Class Partition Testing
	2.1 Random Testing
	2.2 Equivalence Class Partition Testing
	Semantic Domain.
	Application to Concrete Modelling Formalisms.
	Equivalence Classes.
	Fault Models.
	Complete Finite Test Suite.

	2.3 Randomisation of Equivalence Partition Tests

	3 Reference Models
	4 Experimental Results
	5 Related Work
	6 Conclusion
	References

	Testing Functional Requirements in UML Activity Diagrams
	1 Introduction
	2 Motivating Example
	2.1 Functional Requirements of the ATM System
	2.2 Requirements of the Testing Framework

	3 Overview of the Testing Framework
	3.1 Test Specification Language
	3.2 Test Interpreter
	3.3 Limitations

	4 Extensions of the Testing Framework
	4.1 OCL Expressions
	4.2 Temporal Expressions
	4.3 Concurrency
	4.4 Implementation

	5 Evaluation
	5.1 User Study Setup
	5.2 Results and Lessons Learned

	6 Related Work
	7 Conclusion and Future Work
	References

	Coverage of OCL Operation Specifications and Invariants
	1 Introduction
	2 Preliminaries
	2.1 Class Diagrams and System States
	2.2 Model Finding

	3 Operation Coverage
	3.1 Operation Call Coverage
	3.2 Subexpression Coverage

	4 Algorithm to Automatically Enhance Coverage
	5 Tool Support
	5.1 Experimental Evaluation

	6 Related Work
	7 Conclusions
	References

	Author Index

