
Reusable Model Transformation
Components with bentō

Jesús Sánchez Cuadrado(B), Esther Guerra, and Juan de Lara

Modelling and Software Engineering Research Group,
Universidad Autónoma de Madrid, Madrid, Spain

jesus.sanchez.cuadrado@uam.es

http://www.miso.es

Abstract. Building high-quality transformations that can be used in
real projects is complex and time-consuming. For this reason, the ability
to reuse existing transformations in different, unforeseen scenarios is very
valuable. However, there is scarce tool support for this task.

This paper presents bentō, a tool which supports the development and
execution of reusable transformation components. In bentō, a reusable
transformation is written as a regular ATL transformation, but it uses
concepts as meta-models. Reuse is achieved by binding such concepts to
meta-models, which induces the transformation adaptation. Moreover,
composite components enable chaining transformations, and it is possible
to convert an existing transformation into a reusable component. Bentō
is implemented as an Eclipse plug-in, available as free software.

Keywords: Model transformation · Transformation reuse · Compo-
nents · ATL

1 Introduction

Model transformation technology is the enabler of automation in Model-Driven
Engineering (MDE), allowing model refactorings, optimizations, simulations and
language conversions. However, developing a transformation from scratch is com-
plex and error prone, even when specialized languages are used [6]. Thus, the
reuse of existing high-quality transformations should be fostered, to amortize
the effort invested in their development. One way to achieve this goal is to
develop reusable transformation libraries, as it is common with general-purpose
languages (e.g., ready to use Java libraries packaged as a .jar).

There are different reuse approaches for model transformations, ranging from
reusing single rules (e.g., rule inheritance [12]) to reusing complete transforma-
tions (e.g.,superimposition [11] or phasing [7]). However, most are type-centric,
in the sense that a transformation cannot be reused for meta-models different
from the ones used by the original transformation, thus limiting the reuse pos-
sibilities. There are some exceptions though, like [8] and [10], which use model
subtyping and genericity respectively to define more reusable transformations.
c© Springer International Publishing Switzerland 2015
D. Kolovos and M. Wimmer (Eds.): ICMT 2015, LNCS 9152, pp. 59–65, 2015.
DOI: 10.1007/978-3-319-21155-8 5



60 J.S. Cuadrado et al.

Other approaches [1] rely on transformation repositories and meta-model match
and comparison techniques. However, they do not provide mechanisms to make
transformations more reusable. Altogether, reuse of transformations is scarce in
practice, as concluded in [3].

Fig. 1. Component instantiation

In the last few years, we have
developed a transformation reuse app-
roach inspired by generic program-
ming [9] (e.g., templates in the C++
style) that we have implemented in a
tool called bentō. The tool allows the
definition of transformation compo-
nents consisting of a transformation
template, one or more concepts/meta-
models, and a description of the
component using a dedicated domain-
specific language (DSL). Concepts are
used as a means to describe the struc-
tural requirements that a meta-model needs to fulfil to allow the instantiation
of the component with the meta-model. In particular, to instantiate the com-
ponent for a meta-model, a binding mapping the concept elements to concrete
meta-model elements (i.e., classes and features) should be written using another
DSL. This binding adapts the transformation template to yield a new transfor-
mation ready to use with the concrete meta-model. Figure 1 shows this process.
In addition, composite components permit combining simpler components using
transformation chaining.

Our approach has advantages w.r.t. existing proposals: (i) it is more flexible,
since it permits applying components for meta-models that are structurally very
dissimilar to the concept; (ii) it does not require adapting the bound meta-models
and their instance models, but our template rewriting approach generates a new
transformation that can be readily applied to them, improving performance;
(iii) no special traceability handling is needed; and (iv) our component model
allows the precise description of components and provides a systematic way of
reuse.

The aim of this tool-demo paper is to describe the architecture of bentō and
its features from the perspective of the tool user. A summary of the concrete
demo presented at the conference is available online1. The concepts behind the
component model underlying bentō have been reported elsewhere [4,5]. Nev-
ertheless, the tool has been improved since its first versions with new features
such as support for in-place transformations, validation, integration with a static
analyser [6]2, and a REST-based repository to store and retrieve components.

Paper Organization. Section 2 overviews bentō’s architecture, and the follow-
ing ones show its main use cases: developing reusable components (Sect. 3),
reusing components (Sect. 4), making a reusable component out of an existing
1 Summary of the demo: http://www.miso.es/tools/bento demo icmt2015.pdf.
2 anATLyzer: http://www.miso.es/tools/anATLyzer.html.

http://www.miso.es/tools/bento_demo_icmt2015.pdf
http://www.miso.es/tools/anATLyzer.html


Reusable Model Transformation Components with bentō 61

Fig. 2. bentō architecture

Table 1. Features of bentō

Dimension bentō feature Description

Abstraction Concept Plain Ecore meta-model with optional annotations

Specialization Binding A DSL to map concepts and meta-models

Template adaptation HOT to rewrite a template according to a binding

Binding validator It validates the syntactic correctness of bindings

Selection Tags, documentation Markdown documentation and attached tags

Repository REST-based repository and search wizard

Existing artefacts Reverse engineering process supported by a wizard

Integration Component definition A DSL to define components and their dependencies

Standard structure Structure and local installation of components

Composite components Aggregated components

transformation (Sect. 5), and selecting components (Sect. 6). Section 7 finishes
with the conclusions and future work.

2 Tool Architecture

Bentō is an Eclipse-plugin. Its architecture, depicted in Fig. 2, consists of a com-
ponent model, a reverse engineering wizard, and a remote repository facility.
Implementation-wise, the two main elements of the component model are anAT-

Lyzer to statically analyse ATL transformations, and the Template Adapter
which is able to solve non-trivial heterogeneities between concepts and meta-
models (see Sects. 3 and 4). The DSLs to specify components and bindings has
been defined using EMFText. In addition, bentō includes a reverse engineering
wizard to convert an existing transformation into a reusable component (see
Sect. 5), and a REST-based repository to share components (see Sect. 6).

As stated by Krueger [2], the practical use of components should consider
four dimensions: abstraction, specialization, selection and integration. Table 1
summarizes the features of bentō according to these dimensions.

3 Developing Components

As a running example, let us consider the visualization of object-oriented models
by means of a transformation to the DOT format. This transformation will be



62 J.S. Cuadrado et al.

Fig. 3. Definition of component in bentō

similar for a range of object-oriented languages such as Ecore, KM3, UML or
even Java. Hence, we create a reusable transformation component called oo2dot

that can be specialized for such languages.
A transformation component is made of a transformation template, one or

more concepts or meta-models over which the template is defined, and a descrip-
tion of the component. This is shown in Fig. 3. These artefacts are organized
according to the structure shown in (1). In this case, the transformation has a
source concept (OO.ecore) and a target meta-model (DOT.ecore). A concept is just
a regular Ecore meta-model (2), but it only contains the elements required by the
transformation, thus removing “accidental elements” for this particular scenario
like configuration attributes (e.g., transient in Ecore) or features that we do not
intend to visualize (e.g., annotations in Ecore). The transformation template
is a regular ATL transformation. Moreover, bentō uses anATLyzer to statically
analyse the transformation templates in order to provide some guarantee of their
correctness, as illustrated by the error markers in (3). The component specifica-
tion, shown in (4), describes the inputs and outputs of the transformation, since
it is a single component.

Components can be exported to a remote component repository using the
Eclipse export menu (see more details in Sect. 6).

4 Reusing Components

In order to instantiate a component for a concrete meta-model, the component
must be specialized by defining a binding from the elements in the concept to ele-
ments of the meta-model. Figure 4(1) shows part of the binding from the OO con-
cept to the Ecore meta-model. The binding is used to automatically rewrite the
original template, so that it becomes able to transform models conforming to the
bound meta-model. A distinguishing feature of our tool is that it allows sophis-
ticated adaptations that bridge many heterogeneities between the concept and
the meta-model. This is possible due to the precise typing information gathered
by anATLyzer. A detailed account of the binding features and solvable hetero-
geneities is given in [4].



Reusable Model Transformation Components with bentō 63

Fig. 4. Binding and composite component definition in bentō

Figure 4(2) shows how to instantiate and execute a component. We need
to define a composite component which imports the component to instantiate
(oo2dot) and the binding, and uses the apply command to adapt the component
according to the binding and execute it on the given source/target models. Com-
posite components also support sequencing components to create transformation
chains.

5 Reverse Engineering Existing Transformations

To enable the reuse of existing ATL transformations, bentō provides a reverse
engineering facility that converts a transformation whose meta-models are “hard-
coded” into a concept-based transformation component. This facility uses anAT-

Lyzer to statically determine the elements of the original meta-models that the
transformation does not use, and then, it extracts a concept where such elements
are pruned. In the process, a set of automated or manual refactorings can be
applied to improve the quality of the extracted concept, which may imply the
automatic co-evolution of the transformation.

From the user perspective, there is a wizard to configure the process, apply
refactorings and automatically generate the component specification.

In the running example, instead of developing the oo2dot transformation
from scratch, we could convert the KM32DOT transformation available in the
ATL transformation zoo into a reusable component. This transformation has
418 LOC, 18 helpers and 7 rules; thus, its reuse saves a lot of effort. Figure 5
shows the wizard to configure the conversion, which includes links to guide the
steps to perform.

6 Selecting Components

The ability to search and select components is important in any reuse approach,
being typically enhanced by concise abstractions that can be easily understood



64 J.S. Cuadrado et al.

Fig. 5. Reverse engineering of KM32DOT

Fig. 6. Searching the repository by name and tags

and compared [2]. In our case, given a transformation component, it is easy
to examine its concepts (i.e., its interface) to decide whether they match the
meta-models at hand.

In addition, to facilitate the publication and retrieval of components, we have
implemented a simple REST service to publish and search components. Compo-
nents may have tags attached, which can be used in the search. Once a compo-
nent is selected, it is automatically installed in a local project (bento.local.repo)
and can be referenced by other projects using the URI bento:/componentName.
When a component uses a URI of this kind, if the corresponding component has
not already been installed, it is automatically sought in the remote repository by
name. This feature is akin to Maven dependency resolution, and is intended to
facilitate the maintenance of composite components. Figure 6 shows the Eclipse
import wizard to search and install components.

7 Conclusions

In this paper, we have presented bentō, a tool supporting model transforma-
tion components. It includes features like flexible template adaptations, reverse



Reusable Model Transformation Components with bentō 65

engineering of existing transformations into reusable components, a REST-based
repository and component validations. To the best of our knowledge, this is the
first component model for model transformations.

Bentō is available as free software (http://github.com/jesusc/bento) and as
a ready to install Eclipse-plugin (http://www.miso.es/tools/bento.html).

Currently, Java programs can be packaged as bentō components, but these
cannot be adapted. We are working on the possibility to package and adapt other
MDE artefacts as bentō components, like Acceleo generators.

Acknowledgements. This work was supported by the Spanish Ministry of Economy
and Competitivity with project Go-Lite (TIN2011-24139), the R&D programme of the
Madrid Region with project (SICOMORO S2013/ICE-3006), and the EU commission
with project MONDO (FP7-ICT-2013-10, #611125).

References

1. Basciani, F., Di Ruscio, D., Iovino, L., Pierantonio, A.: Automated chaining of
model transformations with incompatible metamodels. In: Dingel, J., Schulte, W.,
Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp.
602–618. Springer, Heidelberg (2014)

2. Krueger, C.W.: Software reuse. ACM Comput. Surv. 24, 131–183 (1992)
3. Kusel, A., Schönböck, J., Wimmer, M., Kappel, G., Retschitzegger, W.,

Schwinger, W.: Reuse in model-to-model transformation languages: are we there
yet? In: SoSyM (2013)

4. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: A component model for model
transformations. IEEE Trans. Softw. Eng. 40(11), 1042–1060 (2014)

5. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Reverse engineering of model trans-
formations for reusability. In: Di Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS,
vol. 8568, pp. 186–201. Springer, Heidelberg (2014)

6. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Uncovering errors in ATL model
transformations using static analysis and constraint solving. In: 25th IEEE ISSRE,
pp. 34–44 (2014)

7. Sánchez Cuadrado, J., Molina, J.G.: Modularization of model transformations
through a phasing mechanism. SoSyM 8(3), 325–345 (2009)

8. Sen, S., Moha, N., Mahé, V., Barais, O., Baudry, B., Jézéquel, J.-M.: Reusable
model transformations. SoSyM 11(1), 111–125 (2010)

9. Stepanov, A., McJones, P.: Elements of Programming. Addison Wesley, Reading
(2009)

10. Varró, D., Pataricza, A.: Generic and meta-transformations for model transforma-
tion engineering. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML
2004. LNCS, vol. 3273, pp. 290–304. Springer, Heidelberg (2004)

11. Wagelaar, D., Straeten, R.V.D., Deridder, D.: Module superimposition: a com-
position technique for rule-based model transformation languages. SoSyM 9(3),
285–309 (2010)

12. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J.,
Schwinger, W., Kolovos, D.S., Paige, R.F., Lauder, M., Schürr, A., Wagelaar, D.:
Surveying rule inheritance in model-to-model transformation languages. JOT
11(2), 1–46 (2012)

http://github.com/jesusc/bento
http://www.miso.es/tools/bento.html

	Reusable Model Transformation Components with bentō
	1 Introduction
	2 Tool Architecture
	3 Developing Components
	4 Reusing Components
	5 Reverse Engineering Existing Transformations
	6 Selecting Components
	7 Conclusions
	References


