
Dimitris Kolovos
Manuel Wimmer (Eds.)

 123

LN
CS

 9
15

2

8th International Conference, ICMT 2015
Held as Part of STAF 2015
L'Aquila, Italy, July 20–21, 2015, Proceedings

Theory and Practice
of Model Transformations

Lecture Notes in Computer Science 9152

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Dimitris Kolovos • Manuel Wimmer (Eds.)

Theory and Practice
of Model Transformations
8th International Conference, ICMT 2015
Held as Part of STAF 2015
L’Aquila, Italy, July 20–21, 2015
Proceedings

123

Editors
Dimitris Kolovos
University of York
York
UK

Manuel Wimmer
Vienna University of Technology
Vienna
Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-21154-1 ISBN 978-3-319-21155-8 (eBook)
DOI 10.1007/978-3-319-21155-8

Library of Congress Control Number: 2015943041

LNCS Sublibrary: SL2 – Programming and Software Engineering

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Foreword

Software Technologies: Applications and Foundations (STAF) is a federation of a
number of leading conferences on software technologies. It provides a loose umbrella
organization for practical software technologies conferences, supported by a Steering
Committee that provides continuity. The STAF federated event runs annually; the
conferences that participate can vary from year to year, but all focus on practical and
foundational advances in software technology. The conferences address all aspects of
software technology, from object-oriented design, testing, mathematical approaches to
modeling and verification, model transformation, graph transformation, model-driven
engineering, aspect-oriented development, and tools.

STAF 2015 was held at the University of L’Aquila, Italy, during July 20–24, 2015,
and hosted four conferences (ICMT 2015, ECMFA 2015, ICGT 2015 and TAP 2015),
a long-running transformation tools contest (TTC 2015), seven workshops affiliated
with the conferences, a doctoral symposium, and a project showcase (for the first time).
The event featured six internationally renowned keynote speakers, a tutorial, and
welcomed participants from around the globe.

This was the first scientific event in computer science after the earthquake that
occurred in 2009 and affected L’Aquila. It is a small, and yet big step toward the grand
achievement of restoring some form of normality in this place and its people.

The STAF Organizing Committee thanks all participants for submitting and
attending, the program chairs and Steering Committee members for the individual
conferences, the keynote speakers for their thoughtful, insightful, and engaging talks,
the University of L’Aquila, Comune dell’Aquila, the local Department of Human
Science, and CEA LIST for their support: Grazie a tutti!

July 2015 Alfonso Pierantonio

Preface

This volume contains the papers presented at ICMT 2015: the 8th International Con-
ference on Model Transformation held during July 20–21, 2015, in L’Aquila as part
of the STAF 2015 (Software Technologies: Applications and Foundations) conference
series. ICMT is the premier forum for researchers and practitioners from all areas of
model transformation.

Model transformation encompasses a variety of technical spaces, including mod-
elware, grammarware, dataware, and ontoware, a variety of model representations, e.g.,
based on different types of graphs, and a range of transformation paradigms including
rule-based transformations, term rewriting, and manipulations of objects in
general-purpose programming languages.

The study of model transformation includes transformation languages, tools, and
techniques, as well as properties (such as modularity, composability, and parameteri-
zation) of transformations. An important goal of the field is the development of ded-
icated model transformation languages, which can enable the specification of complex
transformations in a rigorous manner and at an appropriate level of abstraction.

The efficient execution of model queries and transformations by scalable transfor-
mation engines on top of large graph data structures is also a key challenge for an
increasing number of application scenarios. Novel algorithms as well as innovative
(e.g., distributed) execution strategies and domain-specific optimizations are sought in
this respect. To achieve impact on software engineering in general, methodologies and
tools are required to integrate model transformation into existing development envi-
ronments and processes.

This year, ICMT received 34 submissions. Each submission was reviewed by at
least three Program Committee members. After an online discussion period, the Pro-
gram Committee accepted 16 papers as part of the conference program. These papers
included regular research, application, tool demonstration, and exploratory papers
presented in the context of five sessions on foundations, applications, new paradigms,
change and reuse, and validation and verification of transformations.

Many people contributed to the success of ICMT 2015. We are grateful to the
Program Committee members and reviewers for the timely delivery of reviews and
constructive discussions under a very tight review schedule. We would also like to
thank Javier Troya (Vienna University of Technology) for serving as the Web chair of
ICMT 2015. Last but not least, we would like to thank the authors who constitute the
heart of the model transformation community for their enthusiasm and hard work.

May 2015 Dimitris Kolovos
Manuel Wimmer

Organization

General Chair

Alfonso Pierantonio Università degli Studi dell’Aquila, Italy

Program Chairs

Dimitris Kolovos University of York, UK
Manuel Wimmer Vienna University of Technology, Austria

Publication Chairs

Louis Rose University of York, UK
Javier Troya Vienna University of Technology, Austria

Publicity Chair

James R. Williams University of York, UK

Web Chair

Javier Troya Vienna University of Technology, Austria

Steering Committee

Jordi Cabot Inria-École des Mines de Nantes, France
Juan de Lara Universidad Autónoma de Madrid, Spain
Davide Di Ruscio Università degli Studi dell’Aquila, Italy
Keith Duddy Queensland University of Technology, Australia
Martin Gogolla University of Bremen, Germany
Jeff Gray University of Alabama, USA
Zhenjiang Hu National Institute of Informatics Tokyo, Japan
Gerti Kappel Vienna University of Technology, Austria
Richard Paige University of York, UK
Alfonso Pierantonio

(Chair)
Università degli Studi dell’Aquila, Italy

Laurence Tratt King’s College London, UK
Antonio Vallecillo Universidad de Málaga, Spain
Daniel Varro Budapest University of Technology and Economics, Hungary
Eelco Visser Delft University of Technology, The Netherlands

Program Committee

Achim D. Brucker SAP AG, Germany
Rubby Casallas University of los Andes, Colombia
Antonio Cicchetti Mälardalen University, Sweden
Tony Clark Middlesex University, UK
Benoit Combemale IRISA, Université de Rennes 1, France
Krzysztof Czarnecki University of Waterloo, Canada
Alexander Egyed Johannes Kepler University, Austria
Gregor Engels University of Paderborn, Germany
Claudia Ermel Technische Universität Berlin, Germany
Jesus Garcia-Molina Universidad de Murcia, Spain
Holger Giese Hasso Plattner Institute at the University of Potsdam, Germany
Esther Guerra Universidad Autónoma de Madrid, Spain
Reiko Heckel University of Leicester, UK
Ludovico Iovino Università degli Studi dell’Aquila, Italy
Frédéric Jouault TRAME Team, ESEO, France
Marouane Kessentini University of Michigan, USA
Jens Knoop Vienna University of Technology, Austria
Thomas Kuehne Victoria University of Wellington, New Zealand
Jochen Kuester IBM Research Zurich, Switzerland
Philip Langer EclipseSource, Austria
Tihamer

Levendovszky
Vanderbilt University, USA

Ralf Lämmel Universität Koblenz-Landau, Germany
Fernando Orejas Universitat Politècnica de Catalunya, Spain
Marc Pantel IRIT/INPT, Université de Toulouse, France
Dorina Petriu Carleton University, Canada
Istvan Rath Budapest University of Technology and Economics, Hungary
Bernhard Rumpe RWTH Aachen University, Germany
Houari Sahraoui Université De Montréal, Canada
Andy Schürr Technische Universität Darmstadt, Germany
Jim Steel University of Queensland, Australia
Perdita Stevens University of Edinburgh, UK
Eugene Syriani University of Montreal, Canada
Jesús Sánchez

Cuadrado
Universidad Autónoma de Madrid, Spain

Gabriele Taentzer Philipps-Universität Marburg, Germany
Massimo Tisi Inria-École des Mines de Nantes, France
Mark Van Den

Brand
Eindhoven University of Technology, The Netherlands

Tijs Van Der Storm Centrum Wiskunde & Informatica, The Netherlands
Pieter Van Gorp Eindhoven University of Technology, The Netherlands
Hans Vangheluwe University of Antwerp, Belgium and McGill University,

Canada
Gergely Varro Technische Universität Darmstadt, Germany

X Organization

Janis Voigtländer University of Bonn, Germany
Dennis Wagelaar HealthConnect, Belgium
Edward Willink Willink Transformations Ltd., UK
Haiyan Zhao Peking University, China
Albert Zuendorf Kassel University, Germany

Additional Reviewers

Anjorin, Anthony
Berardinelli, Luca
Beyhl, Thomas
Blouin, Dominique
Debreceni, Csaba
Demuth, Andreas
Dávid, István
Eickhoff, Christoph
George, Tobias
Gholizadeh, Hamid
Grieger, Marvin

Groves, Lindsay
Hölldobler, Katrin
Kessentini, Wael
Kuiper, Ruurd
Leblebici, Erhan
Matragkas, Nicholas
Mengerink, Josh
Meyers, Bart
Raco, Deni
Troya, Javier

Organization XI

Contents

Change Management

Change Propagation in an Internal Model Transformation Language 3
Georg Hinkel

Origin Tracking þ Text Differencing ¼ Textual Model Differencing 18
Riemer van Rozen and Tijs van der Storm

CoWolf – A Generic Framework for Multi-view Co-evolution and
Evaluation of Models . 34

Sinem Getir, Lars Grunske, Christian Karl Bernasko, Verena Käfer,
Tim Sanwald, and Matthias Tichy

Reuse and Industrial Applications

Enabling the Reuse of Stored Model Transformations Through
Annotations . 43

Javier Criado, Salvador Martínez, Luis Iribarne, and Jordi Cabot

Reusable Model Transformation Components with bentō 59
Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara

Cost-Effective Industrial Software Rejuvenation Using Domain-Specific
Models . 66

Arjan J. Mooij, Gernot Eggen, Jozef Hooman, and Hans van Wezep

Migrating Automotive Product Lines: A Case Study 82
Michalis Famelis, Levi Lúcio, Gehan Selim, Alessio Di Sandro,
Rick Salay, Marsha Chechik, James R. Cordy, Juergen Dingel,
Hans Vangheluwe, and Ramesh S.

New Paradigms for Model Transformation

VIATRA 3: A Reactive Model Transformation Platform 101
Gábor Bergmann, István Dávid, Ábel Hegedüs, Ákos Horváth,
István Ráth, Zoltán Ujhelyi, and Dániel Varró

Towards Functional Model Transformations with OCL 111
Frédéric Jouault, Olivier Beaudoux, Matthias Brun, Mickael Clavreul,
and Guillaume Savaton

http://dx.doi.org/10.1007/978-3-319-21155-8_1
http://dx.doi.org/10.1007/978-3-319-21155-8_2
http://dx.doi.org/10.1007/978-3-319-21155-8_2
http://dx.doi.org/10.1007/978-3-319-21155-8_2
http://dx.doi.org/10.1007/978-3-319-21155-8_3
http://dx.doi.org/10.1007/978-3-319-21155-8_3
http://dx.doi.org/10.1007/978-3-319-21155-8_4
http://dx.doi.org/10.1007/978-3-319-21155-8_4
http://dx.doi.org/10.1007/978-3-319-21155-8_5
http://dx.doi.org/10.1007/978-3-319-21155-8_6
http://dx.doi.org/10.1007/978-3-319-21155-8_6
http://dx.doi.org/10.1007/978-3-319-21155-8_7
http://dx.doi.org/10.1007/978-3-319-21155-8_8
http://dx.doi.org/10.1007/978-3-319-21155-8_9

Transparent Model Transformation: Turning Your Favourite Model Editor
into a Transformation Tool. 121

Vlad Acretoaie, Harald Störrle, and Daniel Strüber

Transformation Validation and Verification

A Sound Execution Semantics for ATL via Translation Validation:
Research Paper . 133

Zheng Cheng, Rosemary Monahan, and James F. Power

From UML/OCL to Base Models: Transformation Concepts
for Generic Validation and Verification . 149

Frank Hilken, Philipp Niemann, Martin Gogolla, and Robert Wille

F-Alloy: An Alloy Based Model Transformation Language 166
Loïc Gammaitoni and Pierre Kelsen

Foundations of Model Transformation

Translating ATL Model Transformations to Algebraic Graph
Transformations . 183

Elie Richa, Etienne Borde, and Laurent Pautet

A Methodology for Designing Dynamic Topology Control Algorithms
via Graph Transformation . 199

Roland Kluge, Gergely Varró, and Andy Schürr

Extending Model to Model Transformation Results from Triple Graph
Grammars to Multiple Models . 214

Frank Trollmann and Sahin Albayrak

Author Index . 231

XIV Contents

http://dx.doi.org/10.1007/978-3-319-21155-8_10
http://dx.doi.org/10.1007/978-3-319-21155-8_10
http://dx.doi.org/10.1007/978-3-319-21155-8_11
http://dx.doi.org/10.1007/978-3-319-21155-8_11
http://dx.doi.org/10.1007/978-3-319-21155-8_12
http://dx.doi.org/10.1007/978-3-319-21155-8_12
http://dx.doi.org/10.1007/978-3-319-21155-8_13
http://dx.doi.org/10.1007/978-3-319-21155-8_14
http://dx.doi.org/10.1007/978-3-319-21155-8_14
http://dx.doi.org/10.1007/978-3-319-21155-8_15
http://dx.doi.org/10.1007/978-3-319-21155-8_15
http://dx.doi.org/10.1007/978-3-319-21155-8_16
http://dx.doi.org/10.1007/978-3-319-21155-8_16

Change Management

Change Propagation in an Internal Model
Transformation Language

Georg Hinkel(B)

Forschungszentrum Informatik (FZI), Haid-und-Neu-Straße 10-14,
Karlsruhe, Germany

hinkel@fzi.de

Abstract. Despite good results, Model-Driven Engineering (MDE) has
not been widely adopted in industry. According to studies by Staron
and Mohaghegi [1,2], the lack of tool support is one of the major reasons
for this. Although MDE has existed for more than a decade now, tool
support is still insufficient. An approach to overcome this limitation for
model transformations, which are a key part of MDE, is the usage of
internal languages that reuse tool support for existing host languages.
On the other hand, these internal languages typically do not provide key
features like change propagation or bidirectional transformation. In this
paper, we present an approach to use a single internal model transforma-
tion language to create unidirectional and bidirectional model transfor-
mations with optional change propagation. In total, we currently provide
18 operation modes based on a single specification. At the same time, the
language may reuse tool support for C#. We validate the applicability
of our language using a synthetic example with a transformation from
finite state machines to Petri nets where we achieved speedups of up to
48 compared to classical batch transformations.

1 Introduction

Model-driven engineering (MDE) is an approach to raise the level of abstraction
of systems in order to be able to cope with increasing system complexity. How-
ever, while MDE is widely adopted in academia, it is not as popular in industry,
primarily because of the lack of stable tool support [1,2]. In addition, Meyerovich
et al. [3] have shown that most developers only change their primary language
when either there is a hard technical project limitation or there is a significant
amount of code that can be reused. In MDE, the ‘heart and soul’ are model
transformations [4], but as general-purpose languages are not suitable for this
task [4], there is a plethora of specialized model transformation languages. This
may hamper the adoption of MDE in industry as well as developers may not want
to use model transformation languages for the reasons found by Meyerovich.

To solve both of these issues, a promising approach is to integrate the abstrac-
tions from model transformation languages into general-purpose languages in the
form of internal languages. This way, tool support for the host language can be
inherited and developers may stick to the languages that they are used to.
c© Springer International Publishing Switzerland 2015
D. Kolovos and M. Wimmer (Eds.): ICMT 2015, LNCS 9152, pp. 3–17, 2015.
DOI: 10.1007/978-3-319-21155-8 1

4 G. Hinkel

Therefore, several languages exist that follow this approach. However, we
observed that they only operate in a rather imperative way. In this context,
rather imperative means that these languages contain less control flow abstrac-
tions than declarative model transformation languages such as QVT-R [5]. In
particular, only few approaches support bidirectional transformation and to the
best of our knowledge none of these languages supports change propagation, a
feature that is mostly provided by declarative languages like Triple Graph Gram-
mars (TGGs) that have an implementation supporting change propagation [6–8].

In this paper, we show that this is not a general restriction of internal languages.
For this, we implement an internal language in C# supporting multi-directional
model transformation as well as multiple change propagation patterns. This lan-
guage has a few limitations that we discuss in Sect. 7, which we believe are only
technical restrictions.

We have validated our approach on an example transformation of Finite
State Machines to Petri Nets. With our prototype language, we only have a
single specification and are able to obtain 18 different model transformations.

The rest of this paper is structured as follows: Sect. 2 explains our run-
ning example with the synchronization of Finite State Machines and Petri Nets.
Section 3 introduces some foundations. In particular, Sect. 3.1 explains the inter-
nal model transformation language (MTL) that the approach is based on for the
model transformation part while Sect. 3.2 explains self-adjusting computations
that the change propagation mechanism is based on. Section 4 explains in short
how we extended this approach for reversable expressions. Section 5 describes
our prototype language and the various operation modes. Section 6 validates our
language on a synthetic example. Section 7 then shows the limitations of our
approach. Finally, Sect. 8 lists related work and Sect. 9 concludes the paper.

2 Finite State Machines to Petri Nets

Throughout the paper, both to explain our approach and for validation, we use
the running example of the transformation of Finite State Machines to Petri
Nets, two well known formalisms in theoretical computer science. Both of them
are well suited to describe behaviors but each of them has its advantages which
is why both of them are widely used. Finite state machines can be easily trans-
formed to Petri nets.

However, for model synchronization the example of Finite State Machines
and Petri Nets is a rather synthetic one as usually only one of these formalisms
is used. We use it as our running example though as the involved metamodels
are rather simple and structurally similar but yet different. Real application
scenarios would rather center on the synchronization of artifacts like the source
code, architecture information in UML diagrams and potentially performance
engineering models such as the Palladio Component Model (PCM) [9].

The metamodel that we use for finite state machines is depicted in Fig. 1.
Finite state machines consist of states and transitions where transitions hold a
reference to the incoming and outgoing states and states hold a reference to the
incoming and outgoing transitions. States can be start or end states.

Change Propagation in an Internal Model Transformation Language 5

Fig. 1. The metamodel for finite state machines

Fig. 2. The metamodel for Petri Nets

The metamodel of Petri Nets is depicted in Fig. 2. Petri Nets consist of places
and transitions. Unlike state machines where states are modeled explicitly, the
state of a Petri Net is the allocation of tokens in the network.

The transformation from finite state machines to Petri Nets now transforms
each state to a place. Transitions in the finite state machine are transformed
to Petri Net transitions with the source and target places set accordingly. End
states are transformed to a place with an outgoing transition that has no target
place and therefore ‘swallows’ tokens.

The backward transformation from Petri Nets to Finite state charts is not
always well defined since Petri Net transitions may have multiple source or target
places. However, if the Petri Net is an image of a finite state machine under the
above transformation, then the backward transformation is useful to have.

3 Foundations

Our approach is a bridge between technologies that already exist. We combine
and adapt a model transformation framework with a framework for self-adjusting
computation. Thus, we briefly introduce both of them in this section.

3.1 NMF Transformations

NMF stands for .NET Modeling Framework1 and is an open-source project to
support MDE on the .NET platform. NMF Transformations [10] is a sub-project
of NMF that supports model transformation. It consists of a model transforma-
tion framework and internal DSL for C# on top of it (NMF Transformations
Language, NTL). Both framework and DSL are inspired by the transformation

1 http://nmf.codeplex.com/.

http://nmf.codeplex.com/

6 G. Hinkel

languages QVT [5] and ATL [11] but work with arbitrary .NET objects. The
language has been applied internally in NMF and at the Transformation Tool
Contest (TTC) in 2013 [12,13].

Fig. 3. Abstract syntax of NMF Transformations

Figure 3 shows an excerpt of NMF Transformations’ abstract syntax. Model
transformations consist of transformation rules that are in NTL represented
as public nested classes of a model transformation class. The transformation
rules create computations that represent a transformation of a particular model
element. Transformation rules can have dependencies specifying what other
transformation rules should be called if a computation is executed. These depen-
dencies may contain selectors, filters and persistors which are called to register
the dependent model elements on the target. These dependencies are specified
using special method calls where function typed attributes of the dependencies
like selectors, filters or persistors are specified as lambda expressions.

Because NTL operates independently of containment hierarchies, the struc-
ture of the model transformation is entirely encoded in the transformation depen-
dencies. The idea is that the transformation rules specify locally what other
elements should be transformed and whether they should be transformed before
the current transformation rule. The transformation engine then resolves these
dependencies and executes all computations when their dependencies are met.
The rules themselves are imperative with an access to the trace, i.e. to all cor-
respondences that have been found so far. In NTL, the rule body is specified
as an overridden method that takes the input and output model element of the
transformation rule as well as a transformation context which can be used to
query the trace.

3.2 Self-Adjusting Computation

Self-adjusting or incremental computation refers to the idea to adjust a computa-
tion using dependency tracking rather than recomputing the whole computation
when the input data changes. This is done by modifiable references represented
by a monad [14] and a system that creates a dynamic dependency graph based on
these [15]. Further research has shown that such self-adjusting programs can be

Change Propagation in an Internal Model Transformation Language 7

implicitly inferred from a batch specification [16]. That means, from an expres-
sion x+y where x and y are modifiable references, a dynamic dependency graph
is built where x and y are nodes. Each node holds its current value. In this situ-
ation, the system builds a new node for x+y holding a reference to both x and y
so that the sum changes as soon as either x or y change. Creating a self-adjusting
program from a traditional (batch) specification is possible for purely functional
programs [16] since they do not contain side effects. However, approaches for
imperative languages exist as well [17,18] but are not working implicitly.

In this paper, we use an implementation of these ideas within the NMF
project, NMF Expressions2. This approach is suitable for our needs as it con-
tains dedicated collection support and is likewise implemented as an internal
DSL for C# and therefore suitable to combine it with NMF Transformations.
Furthermore, unlike [16] it does not operate on the source code and therefore
can be used in a compiling environment. NMF Expressions operates on CLR
objects that implement the .NET platform default notification interfaces, simi-
lar to the EMF Notification API. A model representation code that implements
these interfaces can be generated from a metamodel using NMF code generators.

4 Reversability of Expressions

The essence of modifiable references from self-adjusting computation is that they
inform clients whenever their value has changed. For change propagation, it is
also necessary to be able to change it if possible. Therefore, we have refined
the monads used in NMF Expressions (INotifyValue and INotifyEnumerable) to
account for a categorial interpretation of lenses [19]. In this interpretation, a
lense l between types A and B consists of a partial function l ↗: A → B called
the get function and l ↘: A×B → A called the put function. In category theory,
A and B are objects of the category of types.

For example, consider the expression x + c for some modifiable references
x and c. Through the modifiable monad, we know that whenever x changes
its value, also the value of the sum may change. For the lense, the expression
resembles the get function. The lense now allows us to assign a value, say 42
to the sum given that the reference c is constant. This is applied by setting
x = 42 − c, the put function of the respective lense. The lense is represented by
its get function which we expect to be decorated with a put function reference.

For memory efficiency reasons, the analysis whether a given expression is con-
stant is only performed at runtime. Thus, we use a twofold mechanism. We let
the classes implementing the dynamic dependency graph nodes optionally imple-
ment the refined lense monad interface and added a property to this interface
to question whether an expression really is invertible, much like the IsReadonly
property used in .NET collections.

Thus, at initialization time we know that the expression x + c might be a
lense, depending on whether at least one of either x or c is constant. On the other

2 http://nmfexpressions.codeplex.com/.

http://nmfexpressions.codeplex.com/

8 G. Hinkel

hand, other operators like the value equality cannot be reverted in general. It
is unclear how to set an expression x == c to false, in particular, what value
to assign to x. This can be solved by additional parameters that are only taken
into account when reversing the operation, such as a method EqualsOrDefault
providing the missing information with a third parameter.

An example of an operation beyond arithmetics is FirstOrDefault that returns
the first item of a collection or the default value of a type (null for a reference
type and zero for numeric types) if the collection is empty. If we were to assign x.
FirstOrDefault() = y, we can distinguish the following cases:

1. The collection x contains y and y is the first element. In this case, we do not
have to change x since the assignment is already satisfied.

2. The collection x contains y but not as the first element. In this case, we have
multiple options. We could either move y to be the first element (matching
the semantics of getting the literally first element) or leave the collection
unchanged (with the semantics of getting any element e.g. in an unordered
collection). This is because a single functional implementation can implement
multiple semantics that need different reversability behaviors.

3. The collection x does not contain y. In this case, we add y to the collection x.
We can either add it as first element if x is an ordered collection or add it to
x at all, if x is unordered.

4. The element y is the element type default value. In this case we again have
multiple options. In our implementation we clear the collection x.

The main learning point from this example is that the same operational
implementation of an operator can match multiple lense semantics. In the exam-
ple of FirstOrDefault, we have two versions realizing the two options in case 2.
On the other hand, this limits the possibility for implicitly inferring a reversibil-
ity semantics from existing code since there we don’t know how a particular
operator has been used. Thus, we decorate each operator with its reversability
behavior explicitly.

5 Multimode Model Transformations with an Internal
DSL

This section will first demonstrate NMF applied to the running example of Petri
nets and finite state machines and afterwards explain how multimode model
synchronization is achieved using this syntax.

5.1 Synchronization of Finite State Machines and Petri Nets

Like a model transformation in NMF Transformations that consists of multi-
ple transformation rules represented by public nested classes inheriting from a
TransformationRule base class, model synchronizations of NMF Synchronizations
consist of synchronization rules. These synchronization rules implicitly define two
transformation rules for NMF Transformations, one for each direction. A mini-
mal example for a model synchronization is therefore depicted in Listing 1.

Change Propagation in an Internal Model Transformation Language 9

1 pub l i c c l a s s PSM2PN : R e f l e c t i v e S y n c h r o n i z a t i o n

2 {
3 pub l i c c l a s s AutomataToNet : S yn ch r on i z a t i o nRu l e<F in i t eS t a t eMach i n e , Pe t r iNe t> { . . .}
4 }

Listing 1. A model synchronization in NMF Synchronizations

Similar to TGGs, we distinguish the sources and targets of a model trans-
formation as Left Hand Side (LHS) and Right Hand Side (RHS) although these
sides are not represented as graphs. Synchronization rules in NMF Synchro-
nizations define the LHS and RHS model elements they operate on through the
generic type arguments of the SynchronizationRule base class they need to inherit
from and have multiple methods they can override.

The most important method to override is the method to determine when
an element of the LHS should match an element of the RHS. For the Automata-
ToNet-rule, we simply return true since both RHS and LHS model elements are
the root elements of their respective models and should be unique.

The second most important method to override is the DeclareSynchronization
method. Here, we define what actions should be taken if the synchronization rule
is executed for two corresponding model elements. The DeclareSynchronization
method of AutomataToNet looks as depicted in Listing 2.

1 pub l i c o v e r r i d e vo id Dec l a r e S y n c h r o n i z a t i o n ()

2 {
3 SynchronizeMany (SyncRule<StateToPlace >() ,

4 fsm => fsm . Sta te s , pn => pn . P l a c e s) ;

5 SynchronizeMany (SyncRule<Tran s i t i o nToT r an s i t i o n >() ,

6 fsm => fsm . T r a n s i t i o n s , pn => pn . T r a n s i t i o n s . Where (t => t . To . Count >0)) ;

7 SynchronizeMany (SyncRule<EndStateToTrans i t i on >() ,

8 fsm => fsm . S t a t e s . Where (s t a t e => s t a t e . I sEndS ta t e) ,

9 pn => pn . T r a n s i t i o n s . Where (t => t . To . Count == 0)) ;

10 Synch ron i z e (fsm => fsm . Id , pn => pn . I d) ;

11 }

Listing 2. The DeclareSynchronization method of AutomataToNet

The meaning of the statements in Listing 2 is as follows: When handling the
synchronization of a finite state machine with a Petri Net, the synchronization
engine should establish correspondencies between the states and the places using
the StateToPlace rule, synchronizing the states of the finite state machine with
the places of a Petri Net. This synchronization rule is straight forward, matches
states and places based on their names and synchronizes them afterwards. For
a given state of a state machine, the synchronization engine only looks for cor-
responding places in the Places reference of the corresponding Petri Net.

Similarly, the transitions of the finite state machine should be matched with
the transitions of the Petri Net, but only with those that have at least one
target place. This means that if a new transition is added to the Petri Net
transitions or an existing transition is assigned a first target place, then the
synchronization engine will try to match this transition to an existing finite
state machine transition. If conversely, a transition is added to the finite state
machine, the synchronization engine will add the corresponding transition to

10 G. Hinkel

the Petri Net, hoping that it satisfies the condition that the count is greather
than zero. To find the corresponding transition on the respective other side, the
ShouldCorrespond method depicted in Listing 3 is used.

1 pub l i c o v e r r i d e boo l Shou ldCor re spond (FSM. T r a n s i t i o n l e f t , PN. T r a n s i t i o n r i g h t ,

I S y n c h r o n i z a t i o nCon t e x t c on t e x t)

2 {
3 var s t a t eToP la c e = SyncRule<StateToPlace >() . Le f tToR ight ;

4 r e t u rn l e f t . I npu t == r i g h t . I npu t

5 && r i g h t . From . Conta in s (c on t e x t . Trace . R e s o l v e I n (s ta teToP lace , l e f t . S t a r t S t a t e))

6 && r i g h t . To . Conta in s (c on t e x t . Trace . R e s o l v e I n (s ta teToP lace , l e f t . EndState)) ;

7 }

Listing 3. Matching transitions

This method uses the trace abilities of NMF Transformations that is still
accessible in NMF Synchronizations, i.e. it accesses the corresponding place
for a given state in the transformation rule from LHS to RHS and uses it to
decide whether the transitions should match. This trace entry exists regardless
of the synchronization direction, i.e. the synchronization always creates two trace
entries.

Lines 7–9 of Listing 2 indicate that the remaining transitions should be syn-
chronized with the end states of the state machine. The symmetric correspon-
dence check fails in this case because the synchronization engine will look for a
suitable state in the end states of the machine. If the state is not yet marked
as an end state, the synchronization engine will not find it. Thus, we have to
override this behavior and particularly look for the state which is corresponding
to the transitions origin.

1 pub l i c o v e r r i d e vo id Dec l a r e S y n c h r o n i z a t i o n ()

2 {
3 Synch ron i z eLe f tToR igh tOn l y (SyncRule<StateToPlace >() ,

4 s t a t e => s t a t e . I sEndS ta t e ? s t a t e : nu l l ,

5 t r a n s i t i o n => t r a n s i t i o n . From . F i r s tO rD e f a u l t ()) ;

6 }

Listing 4. One way synchronizations

Next, it is necessary to connect or disconnect the Petri Net transition to
the correct place. This only has to be done in the LHS to RHS direction since
this information is already encoded in the IsEndState attribute in the finite state
machine state. We have to limit the scope of this synchronization job because the
synchronization initialization otherwise raises an exception since the conditional
expression of the LHS is not reversible. This is depicted in Listing 4.

Line 10 in Listing 2 tells that the Identifiers of both finite state machine and
Petri Net should be synchronized. In this case, it is not necessary to provide a
synchronization rule since both identifiers are strings and the string will just be
copied.

Change Propagation in an Internal Model Transformation Language 11

5.2 Multimode Synchronization

To support multiple modes of transformations, especially to support optional
change propagation, it is crucial to step into the compilation process of the
language. If some model element is used in a change propagation, it is necessary
to create dynamic dependency graphs for these expressions in order to receive
updates when these expressions change their value.

Gladly, C# has an option to retrieve lambda expressions as an abstract
syntax tree (called expression tree) instead of compiled code. This is the one and
only syntax feature that we use from C# that makes our language impossible
to implement in other languages (apart from Visual Basic). However, we believe
that other languages like Java or in particular Xtend will soon adapt this feature
as well, making our approach applicable to other languages.

We support six different synchronization modes that can be combined with
three different change propagation modes. The synchronization modes are as
follows:

– LeftToRight: the transformation ensures that all model elements on the LHS
have some corresponding model elements on the RHS. However, the RHS may
contain model elements that have no correspondence on the LHS.

– LeftToRightForced: the transformation ensures that all model elements on
the LHS have some corresponding model elements in the RHS. All elements
in the RHS that have no corresponding elements in the LHS are deleted.

– LeftWins: the transformation ensures that all model elements on the LHS
have some corresponding model elements in the RHS and vice versa. Synchro-
nization conflicts are resolved by taking the version at the LHS.

– RightToLeft, RightToLeftForced, RightWins: same as the above but
with interchanged roles of RHS and LHS

The change propagation modes are the following:

– None: no change propagation is performed. In this case, also no dynamic
dependency graphs for any expressions are created as they are not necessary.

– OneWay: change propagation is only performed in the main synchronization
direction, i.e. LHS to RHS for the first three synchronization modes and RHS
to LHS otherwise.

– TwoWay: change propagation is performed in both directions, i.e. any
changes on either side will result in appropriate changes in the other side.

We support all synchronization modes and all change propagation modes for
all synchronizations. In particular, the synchronization is initialized for all pos-
sible modes and the applicable mode is specific to a synchronization run and is
provided together with the input arguments, i.e. LHS and RHS initial models. At
this initialization, we generate code to minimize the performance impact when
no change propagation should be performed, i.e. the synchronization should run
with a performance comparable to a transformation without change propaga-
tion as e.g. pure NMF Transformations. However, we provide overloads of the

12 G. Hinkel

Synchronize and SynchronizeMany methods that only act on a particular synchro-
nization direction. This is required as some synchronizations need to assign some
expressions that are not reversible and would thus otherwise raise an exception
at synchronization initialization.

6 Validation

We tested the correctness and evaluated the performance of NMF Synchroniza-
tions by applying it to the Finite States to Petri Nets example that we already
used to explain the approach. In typical applications of a model synchroniza-
tion, the LHS side is edited in subsequent edit operations either performed by a
user through an editor or programatically. Then, the appropriate RHS model is
required for analysis purposes or as an alternate view on the modeled reality. For
such subsequent model changes, it is important to minimize the response time
from changing the LHS model to having the RHS model updated accordingly
(or vice versa). Often it is also important to get a change notification to be able
to understand what changes in the RHS model were caused by the changes to
the LHS model but although such change notifications can be supplied by NMF
Synchronizations with change propagation enabled we do not take this feature
into account for the evaluation.

To analyze the response time from elementary changes in the finite state
machine to the updated Petri Net, we designed a benchmark where we generate
a sequence of 100 elementary model changes to the finite state machine. After
each model change, we ensure that the Petri Net is changed accordingly, either
by performing change propagation or by regenerating the net fresh from scratch.
To take the different sizes of finite state machines into account, we performed
our experiment for different sizes (10, 20, 50, 100, 200, 500 and 1000 states). The
genereated workload on these finite state machines shall reflect edit operations
as done by a user. In particular, we generate the following elementary changes
(percentage on the overall change workload in brackets):

– Add a state to the finite state machine (30 %)
– Add a transition to the finite state machine with random start and end state

(30 %)
– Remove a random state and all of its incoming and outgoing transitions (10 %)
– Remove a random transition from the finite state machine (10 %)
– Toggle end state of a random state (5 %)
– Change the target state of a randomly selected transition to a random other

state (5 %)
– Rename a state (9 %)
– Rename the finite state machine (1 %)

The validation works as follows: For every run of our benchmark, we generate
a finite state machine of a given size n representing the number of states. We
then generate a sequence of 100 elementary model changes acting on randomly
selected model elements of the finite state machine. For each of these actions,

Change Propagation in an Internal Model Transformation Language 13

the action itself must be performed and the Petri Net must be updated or newly
created appropriately.

We compare three implementations of this task. The first option is the solu-
tion using NMF Synchronizations running in batch mode, i.e. the synchroniza-
tion is run as a transformation from its left side to its right side with change
propagation switched off. Next, we use the same synchronization code without
any modification and use it in incremental mode, i.e. from left to right with
change propagation mode switched on to OneWay. Finally, we use an imple-
mentation for this transformation task in NTL, basically taken from previous
work [10]. This solution works pretty similar to the batch mode version, but
lacks some of the overhead implied by the NMF Synchronizations implementa-
tion. NMF Transformations used with NTL showed good performance results
compared with other (batch mode) model transformation languages at the TTC
2013 [12,13] so we think it is a fair comparison.

Fig. 4. Performance results

We did two runs of the experiment. In the first run, we check the gener-
ated Petri Net after each workload item in order to test the correctness of NMF
Synchronizations. Here, we basically assume the implementation in NMF Trans-
formations correct. In a second run of the experiment, we evaluated the execution
time to apply all the elementary model changes in sequence and updating the
Petri Net accordingly after each change (either by rerunning the transformation
or by propagating changes). The application of 100 elementary model changes
and updating the Petri Net is still a matter of milliseconds, but this way the
precision gets in a reasonable scale.

Figure 4 shows the performance results achieved on an AMD Athlon X4 630
processor clocked at 2.81 Ghz in a system with 4 GB RAM. However, the code
for our used benchmark is available as open source on Codeplex3 so that the
interested reader can obtain results for any other machines as well.

The results indicate that even for very small models such as a finite state
machine with just 10 states, it is already beneficial to use the change propagation
3 http://nmfsynchronizationsbenchmark.codeplex.com/.

http://nmfsynchronizationsbenchmark.codeplex.com/

14 G. Hinkel

built into NMF Synchronizations. For the larger models, the speedup gets larger
until it stabilizes at about 48 so that the curves appear parallel. Without change
propagation, NMF Synchronizations is only slower than NMF Transformations
by a constant factor, indicating that the transformation runs efficiently when
change propagation is disabled. This may be useful in environments with limited
memory or when no change propagation is needed.

7 Limitations of the Language

Currently, we assume in our implementation that a correspondence between
model elements once established will not change during the lifecycle of both
objects. This is a strong assumption and there are simple counter-examples.
Consider for instance two metamodels of family relations where the gender is
realized as IsFemale attribute (the Persons metamodel on the left hand of Fig. 5)
and using an inheritance relation (the FamilyRelations metamodel on the right
hand of Fig. 5).

Fig. 5. Metamodels of the counter-example

An instance of the Person class of the Persons metamodel with gender male
clearly corresponds to an instance of the Male class on the FamilyRelations
metamodel. However, if the gender is changed to female for some reason, then the
corresponding model element should then be a Female instance and all references
should be updated accordingly. Thus, the identity of one of the model elements
of a correspondence relation changes. This is currently not supported by our
language although there is no technical limitation.

8 Related Work

Model Transformation Languages as Internal Languages. Some experiences
exist with creating model transformation languages as internal languages like
RubyTL [20], ScalaMTL [21], FunnyQT [22] or SDMLib4. The goals to use an
4 http://sdmlib.org/.

http://sdmlib.org/

Change Propagation in an Internal Model Transformation Language 15

existing language as host language are diverse and range from an easier imple-
mentation [23], reuse of the static type system [21], inherited tool support [10],
reusing the expression evaluation, easier integration into the host language up to
less learning points for developers. The degree in which these goals can be met
depends very much on the selected host language, as e.g. tool support can only
be inherited if some tool support exists but a concise syntax can usually only
be achieved with host languages having a rather flexible syntax. To the best
of our knowledge, current internal transformation languages cannot cope with
change propagation. We do also believe that this implementation is only possible
if the internal language can see the abstract syntax tree of the host language
expressions, which is far away from being common in typical host languages. The
only alternative is to use a fluent style internal language that limits the reuse of
expressions and tool support.

Model Transformation Languages with Change Propagation. Some external
model transformations languages support incremental change propagation.
Triple Graph Grammars, for example, have been implemented in an incremental
manner [6–8] and with support for concurrent model changes and semi-automatic
conflict resolution [24]. Lauder et al. [25] provided an incremental synchroniza-
tion algorithm that statically analyzes rules to determine the influence range
while retaining formal properties. The runtime complexity of this algorithm
depends on the change not on the model. An overview of incremental TGG
tools was provided by Leblebici et al. [26].

Self-Adjusting Computation. Self-adjusting or incremental computation refers to
the idea that systems use a dynamic dependency graph to track how to change
their outputs when the input changes rather than recomputing the whole pro-
gram output. This is usually achieved either by adding explicit new language
primitives for self-adjusting computation [15,27]. However, Chen et al. [16] pre-
sented an approach to infer these newly added primitives from type annota-
tions so that effectively self-adjusting programs may be written in StandardML,
which is close to our approach. However, the approach of Chen is based on
a general-purpose language that is not suitable for the specification of model
transformations or synchronizations. Since the language primitives in NMF Syn-
chronizations are fitted to the concepts of model transformation, we have more
insights on how to execute the transformations incrementally.

9 Conclusion

In this paper, we have presented NMF Synchronizations, an internal DSL for
bidirectional model transformation and synchronization with optional change
propagation. Despite it is only a proof of concept and therefore has some lim-
itations, the approach encourages the development of model transformation
languages as internal DSLs as it shows that one of the key challenges, support-
ing declarative model transformations, can be overcome. In particular, NMF

16 G. Hinkel

Synchronizations support in total 18 different operation modes from a single
specification. For a synthetic example, the optional change propagation has
shown speedups of up to 48, whereas the classic batch mode execution is still
available with low overhead.

References

1. Staron, M.: Adopting model driven software development in industry – a case study
at two companies. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 57–72. Springer, Heidelberg (2006)

2. Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez, M.A.: An empirical study
of the state of the practice and acceptance of model-driven engineering in four
industrial cases. Empirical Softw. Eng. 18(1), 89–116 (2013)

3. Meyerovich, L.A., Rabkin, A.S.: Empirical analysis of programming language adop-
tion. In: Proceedings of the 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages & Spplications, pp. 1–18. ACM
(2013)

4. Sendall, S., Kozaczynski, W.: Model transformation the heart and soul of model-
driven software development. Technical report (2003)

5. Object Management Group, Meta Object Facility (MOF) 2.0 Query/View/Trans-
formation Specification (2011). http://www.omg.org/spec/QVT/1.1/PDF/

6. Giese, H., Wagner, R.: Incremental model synchronization with triple graph gram-
mars. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS,
vol. 4199, pp. 543–557. Springer, Heidelberg (2006)

7. Giese, H., Hildebrandt, S.: Efficient model synchronization of large-scale models,
28. Universitätsverlag Potsdam (2009)

8. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Softw. Syst. Model. 8(1), 21–43 (2009)

9. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-
driven performance prediction. J. Syst. Softw. 82, 3–22 (2009)

10. Hinkel, G.: An approach to maintainable model transformations using internal
DSLs, Master thesis (2013)

11. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

12. Hinkel, G., Goldschmidt, T., Happe, L.: An NMF Solution for the Flowgraphs case
study at the TTC 2013. In: Sixth Transformation Tool Contest (TTC 2013), ser.
EPTCS (2013)

13. Hinkel, G., Goldschmidt, T., Happe, L.: A NMF solution for the Petri Nets to
State Charts case study at the TTC 2013. In: Sixth Transformation Tool Contest
(TTC 2013), ser. EPTCS (2013)

14. Carlsson, M.: Monads for incremental computing. ACM SIGPLAN Not. 37(9),
26–35 (2002)

15. Acar, U.A.: Self-adjusting computation. Ph.D. thesis, Citeseer (2005)
16. Chen, Y., Dunfield, J., Hammer, M.A., Acar, U.A.: Implicit self-adjusting compu-

tation for purely functional programs. J. Funct. Program. 24(01), 56–112 (2014)
17. Acar, U.A., Ahmed, A., Blume, M.: Imperative self-adjusting computation. ACM

SIGPLAN Not. 43, 309–322 (2008). ACM
18. Hammer, M.A., Acar, U.A., Chen, Y.: Ceal: a c-based language for self-adjusting

computation. ACM Sigplan Not. 44, 25–37 (2009). ACM

http://www.omg.org/spec/QVT/1.1/PDF/

Change Propagation in an Internal Model Transformation Language 17

19. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bi-directional tree transformations: a linguistic approach to the view update
problem. SIGPLAN Not. 40(1), 233–246 (2005)

20. Cuadrado, J.S., Molina, J.G., Tortosa, M.M.: RubyTL: a practical, extensible
transformation language. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006.
LNCS, vol. 4066, pp. 158–172. Springer, Heidelberg (2006)

21. George, L., Wider, A., Scheidgen, M.: Type-safe model transformation languages
as internal DSLs in scala. In: Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol.
7307, pp. 160–175. Springer, Heidelberg (2012)

22. Horn, T.: Model querying with FunnyQT. In: Duddy, K., Kappel, G. (eds.) ICMB
2013. LNCS, vol. 7909, pp. 56–57. Springer, Heidelberg (2013)

23. Barringer, H., Havelund, K.: TraceContract: a scala DSL for trace analysis. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer,
Heidelberg (2011)

24. Hermann, F., Ehrig, H., Ermel, C., Orejas, F.: Concurrent model synchronization
with conflict resolution based on triple graph grammars. In: de Lara, J., Zisman, A.
(eds.) Fundamental Approaches to Software Engineering. LNCS, vol. 7212, pp.
178–193. Springer, Heidelberg (2012)

25. Lauder, M., Anjorin, A., Varró, G., Schürr, A.: Efficient model synchronization
with precedence triple graph grammars. In: Ehrig, H., Engels, G., Kreowski, H.-J.,
Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 401–415. Springer,
Heidelberg (2012)

26. Leblebici, E., Anjorin, A., Schürr, A., Hildebrandt, S., Rieke, J., Greenyer, J.: A
comparison of incremental triple graph grammar tools. Electronic Communications
of the EASST 67, (2014). http://journal.ub.tuberlin.de/eceasst/article/view/
939/928

27. Burckhardt, S., Leijen, D., Sadowski, C., Yi, J., Ball, T.: Two for the price of one:
a model for parallel and incremental computation. ACM SIGPLAN Notices 46,
427–444 (2011). ACM

http://journal.ub.tuberlin.de/eceasst/article/view/939/928
http://journal.ub.tuberlin.de/eceasst/article/view/939/928

Origin Tracking + Text Differencing = Textual
Model Differencing

Riemer van Rozen1(B) and Tijs van der Storm2,3

1 Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
rozen@cwi.nl

2 Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
3 Universiteit van Amsterdam, Amsterdam, The Netherlands

Abstract. In textual modeling, models are created through an interme-
diate parsing step which maps textual representations to abstract model
structures. Therefore, the identify of elements is not stable across differ-
ent versions of the same model. Existing model differencing algorithms,
therefore, cannot be applied directly because they need to identify model
elements across versions. In this paper we present Textual Model Diff
(tmdiff), a technique to support model differencing for textual lan-
guages. tmdiff requires origin tracking during text-to-model mapping
to trace model elements back to the symbolic names that define them in
the textual representation. Based on textual alignment of those names,
tmdiff can then determine which elements are the same across revisions,
and which are added or removed. As a result, tmdiff brings the benefits
of model differencing to textual languages.

1 Introduction

Model differencing algorithms (e.g., [1]) determine which elements are added,
removed or changed between revisions of a model. A crucial aspect of such algo-
rithms that model elements need to be identified across versions. This allows
the algorithm to determine which elements are still the same in both versions.
In textual modeling [6], models are represented as textual source code, similar
to Domain-Specific Languages (DSLs) and programming languages. The actual
model structure is not first-class, but is derived from the text by a text-to-model
mapping, which, apart from parsing the text into a containment hierarchy also
provides for reference resolution. After every change to the text, the correspond-
ing structure needs to be derived again. As a result, the identities assigned to the
model elements during text-to-model mapping are not preserved across versions,
and model differencing cannot be applied directly.

Existing approaches to textual model differencing are based on mapping tex-
tual syntax to a standard model representation (e.g., languages built with Xtext
are mapped to EMF [5]) and then using standard model comparison tools (e.g.,
EMFCompare [2,3]). As a result, model elements in both versions are matched
using name-based identities stored in the model elements themselves. One app-
roach is to interpret such names as globally unique identifiers: match model
c© Springer International Publishing Switzerland 2015
D. Kolovos and M. Wimmer (Eds.): ICMT 2015, LNCS 9152, pp. 18–33, 2015.
DOI: 10.1007/978-3-319-21155-8 2

Origin Tracking + Text Differencing = Textual Model Differencing 19

elements of the same class, irrespective of their location in the containment hier-
archy of the model. Another approach is to only match elements in collections
at the same position in the containment hierarchy.

Unfortunately, both approaches have their limitations. In the case of global
names, the language cannot have scoping rules: it is impossible to have different
model elements of the same class with the same name. On the other hand,
matching names relative to the containment hierarchy entails that scoping rules
must obey the containment hierarchy, which limits flexibility.

In this paper we present tmdiff, a language-parametric technique for model
differencing of textual languages which does support languages with complex
scoping rules, but at the same time is agnostic of the model containment hierar-
chy. As a result, different elements with the same name, but in different scopes
can still be identified. tmdiff is based on two key techniques:

– Origin Tracking. In order to map model element identities back to the
source, we assume that the text-to-model mapping applies origin track-
ing [7,19]. Origin tracking induces an origin relation which relates source
locations of definitions to (opaque) model identities. Each semantic model ele-
ment can be traced back to its defining name in the textual source, and each
defining name can be traced forward to its corresponding model element.

– Text Differencing. tmdiff identifies model elements by textually aligning
definition names between two versions of a model using traditional text differ-
encing techniques (e.g., [11]). When two names in the textual representations
of two models are aligned, they are assumed to represent the “same” model
element in both models. In combination with the origin relation this allows
tmdiff to identify the corresponding model elements as well.

The resulting identification of model elements can be passed to standard model
differencing algorithms, such as the one by Alanen and Porres [1].

tmdiff enjoys the important benefit that it is fully language parametric.
tmdiff works irrespective of the specific binding semantics and scoping rules of
a textual modeling language. In other words, how the textual representation is
mapped to model structure is irrelevant. The only requirement is that semantic
model elements are introduced using symbolic names, and that the text-to-model
mapping performs origin tracking.

The contributions of this paper are summarized as follows:

– We explore how textual differencing can be used to match model elements
based on origin tracking information.

– We provide a detailed description of tmdiff, including a prototype imple-
mentation.

– The feasibility of the approach is illustrated by applying tmdiff in the context
of a realistic, independently developed DSL.

2 Overview

Here we introduce textual model differencing using a simple motivating example
that is used as a running example throughout the paper. Figure 1 shows a state

20 R. van Rozen and T. van der Storm

Fig. 1. Doors1: a simple textual representation of a state machine and its model.

machine model for controlling doors. It is both represented as text (left) and
as object diagram (right). A state machine has a name and contains a number
of state declarations. Each state declaration contains zero or more transitions.
A transition fires on an event, and then transfers control to a new state.

The symbolic names that define entities are annotated with unique labels
dn. These labels capture source locations of names. That is, a name occurrence
is identified with its line and column number and/or character offset1. Since
identifiers can never overlap, labels are guaranteed to be unique, and the actual
name corresponding to label can be easily retrieved from the source text itself.
For instance, the machine itself is labeled d1, and both states closed and opened
are labeled d2 and d3 respectively.

The labels are typically the result of name analysis (or reference resolu-
tion), which distinguishes definition occurrences of names from use occurrences
of names according to the specific scoping rules of the language. For the purpose
of this paper it is immaterial how this name analysis is implemented, or what
kind of scoping rules are applied. The important aspect is to know which name
occurrences represent definitions of elements in the model.

By propagating the source locations (di) to the fully resolved model, symbolic
names can be linked to model elements and vice versa. On the right of Fig. 1, we
have used the labels themselves as object identities in the object model. Note
that the anonymous Transition objects lack such labels. In this case, the objects
do not have an identity, and the difference algorithm will perform structural
differencing (e.g., [20]), instead of semantic, model-based differencing [1].

Figure 2 shows two additional versions of the state machine of Fig. 1. First the
machine is extended with a locked state in Doors2 (Fig. 2a). Second, Doors3
(Fig. 2c), shows a grouping feature of the language: the locked state is part of
the locking group. The grouping construct acts as a scope: it allows different
states with the same name to coexist in the same state machine model.

Looking at the labels in Figs. 1 and 2, however, one may observe that the
labels used in each version are disjoint. For instance, even though the defining

1 For the sake of presentation, we use the abstract labels di for the rest of the paper,
but keep in mind that they represent source locations.

Origin Tracking + Text Differencing = Textual Model Differencing 21

Fig. 2. Two new versions of the simple state machine model Doors1.

Fig. 3. Identifying model elements in m1 and m2 through origin tracking and alignment
of textual names.

name occurrences of the machine doors and state closed occur at the exact
same location in Doors2 and Doors3, this is an accidental artifact of how the
source code is formatted. Case in point is the name locked, which now has
moved down because of the addition of the group construct.

The source locations, therefore, cannot be used as (stable) identities to used
during model differencing. The approach taken by tmdiff involves determining
added and removed definitions by aligning the textual occurrences of defining
names (i.e. labels di). Based on the origin tracking between the textual source
and the actual model it then becomes possible to identify which model elements
have survived changing the source text.

This high-level approach is visualized in Fig. 3. src1 and src2 represent the
source code of two revisions of a model. Each of these textual representations is
mapped to a proper model, m1 and m2 respectively. Mapping text to a model
induces origin relations, origin1 and origin2, mapping model elements back
to the source locations of their defining names in src1 and src2 respectively.

22 R. van Rozen and T. van der Storm

By then aligning these names between src1 and src2, the elements themselves
can be identified via the respective origin relations.

tmdiff aligns textual names by interpreting the output of a textual diff
algorithm on the model source code. The diffs between Doors1 and Doors2,
and Doors2 and Doors3 is shown in Fig. 4. As can be seen, the diffs show for
each line whether it was added (“+”) or removed (“-”). By looking at the line
number of the definition labels di it becomes possible to determine whether the
associated model element was added or removed.

For instance, the new locked state was introduced in Doors2. This can
be observed from the fact that the diff on the left of Fig. 4 shows that the
name “locked” is on a line marked as added. Since the names doors, closed
and opened occur on unchanged lines, tmdiff will identify the corresponding
model elements (the machine, and the 2 states) in Doors1 and Doors2. Similarly,
the diff between Doors2 and Doors3 shows that only the group locking was
introduced. All other entities have remained the same, even the locked state,
which has moved into the group locking.

With the identification of model elements in place, tmdiff applies a variant
of the standard model differencing introduced in [1]. Hence, tmdiff deltas are
imperative edit scripts that consist of edit operations on the model. Edit oper-
ations include creating and removing of nodes, assigning fields, and inserting or
removing elements from collection-valued properties. Figure 5 shows the tmdiff
edit scripts computed between Doors1 and Doors2 (a), and Doors2 and Doors3
(b). The edit scripts use the definition labels dn as node identities.

Fig. 4. Textual diff between Doors1 and Doors2, and Doors2 and Doors3. (The diffs
are computed by the diff tool included with the git version control system. We used
the following invocation: git diff --no-index --patience --ignore-space-change

--ignore-blank-lines --ignore-space-at-eol -U0 <old> <new>.)

Fig. 5. tmdiff differences between Doorsi and Doorsi+1 (i ∈ 1, .., 2)

Origin Tracking + Text Differencing = Textual Model Differencing 23

The edit script shown in Fig. 5a captures the difference between source ver-
sion Doors1 and target version Doors2. It begins with the creation of a new state
d7. On the following line d7 is initialized with its name (locked) and a fresh col-
lection of transitions. The transitions are contained by the state, so they are
created anonymously (without identity). Note that the created transition con-
tains a (cross-)reference to state d2. The next step is to add a new transition to
the out field of state d2 (which is preserved from Doors1). The target state of
this transition is the new state d7. Finally, state d7 is inserted at index 2 of the
collection of states of the machine d1 in Doors1.

The edit script introducing the grouping construct locking between Doors2
and Doors3 is shown in Fig. 5b. The first step is the creation of a new group d11.
It is initialized with the name "locking". The set of nested states is initialized to
contain state d7 which already existed in Doors2. Finally, the state with index
2 is removed from the machine d4 in Doors3, and then replaced by the new
group d11.

In this section we have introduced the basic approach of tmdiff using the
state machine example. The next section presents tmdiff in more detail.

3 TMDIFF in More Detail

3.1 Top-Level Algorithm

Figure 6 shows the tmdiff algorithm in high-level pseudo code. Input to the
algorithm are the source texts of the models (src1, src2), and the models them-
selves (m1, m2). The first step is identifying model elements of m1 to elements
in m2 using the matching technique introduced above. The match function is
further described in the next sub section (Sect. 3.2).

Fig. 6. tmdiff

Based on the matching returned by match, tmdiff first generates global
Create operations for nodes that are in the A set. After these operations are
created, the matching M is “completed” into M ′, by mapping every added object
to itself. This ensures that reverse lookups in M ′ for elements in m2 will always
be defined. Each entity just created is initialized by generating SetTree operations

24 R. van Rozen and T. van der Storm

which reconstruct the containment hierarchy for each element da using the build
function. The function diffNodes then computes the difference between each pair
of nodes originally identified in M . The edit operations will be anchored at
object d1 (first argument). As a result, diffNodes produces edits on “old” entities,
if possible. Finally, the nodes that have been deleted from m1 result in global
Delete actions.

3.2 Matching

The match function uses the output computed by standard diff tools. In par-
ticular, we employ a diff variant called Patience Diff 2 which is known to often
provide better results than the standard, LCS-based, algorithm [12].

Fig. 7. Matching model elements based on source text diffs.

The matching algorithm is shown in Fig. 7. The function match takes the
textual source of both models (src1, src2) and the actual models as input (m1,
m2). It first projects out the origin and class information for each model. The
resulting projections P1 and P2 are sequences of tuples 〈x, c, l, d〉, where x is the
symbolic name of the entity, c its class (e.g. State, Machine, etc.), l the textual
line it occurs on and d the object itself.

As an example, the projections for Doors1 and Doors2 are as follows:

P1 =
[〈doors, Machine, 1, d1〉,
〈closed, State, 2, d2〉,
〈opened, State, 5, d3〉]

P2 =

[〈doors, Machine, 1, d4〉,
〈closed, State, 2, d5〉,
〈opened, State, 6, d6〉,
〈locked, State, 9, d7〉]

2 See: http://bramcohen.livejournal.com/73318.html.

http://bramcohen.livejournal.com/73318.html

Origin Tracking + Text Differencing = Textual Model Differencing 25

The algorithm then partitions the textual diff in two sets Ladd and Ldel

of added lines (relative to src2) and deleted lines (relative to src1). The main
while-loop then iterates over the projections P1 and P2 in parallel, distributing
definition labels over the A, D and M sets that will make up the matching. If a
name occurs unchanged in both src1 and src2, an additional type check prevents
that entities in different categories are matched.

The result of matching is a triple M = 〈A,D, I〉, where A ⊆ LY contains new
elements in Y , D ⊆ LX contains elements removed from X, and I ⊆ LX × LY

represents identified entities.
For instance the matchings between Doors1, Doors2, and between Doors2

and Doors3 are:

M1,2 = 〈{d7}, {}, {〈d1, d4〉, 〈d2, d5〉, 〈d3, d6〉}〉
M2,3 = 〈{d11}, {}, {〈d4, d8〉, 〈d5, d9〉, 〈d6, d10〉, 〈d7, d12〉}〉

3.3 Differencing

The heavy lifting of tmdiff is realized by the diffNodes function. It is shown
in Fig. 8. It receives the current context (ctx), the two elements to be compared
(t1 and t2), a Path p which is a list recursively built up out of names and indexes
and the matching relation to provide reference equality between elements in t1
and t2. diffNodes assumes that both t1 and t2 are of the same class. The algo-
rithm then loops over all fields that need to be differenced. Fields can be of four

Fig. 8. Differencing nodes.

26 R. van Rozen and T. van der Storm

kinds: primitive, containment, reference or list. For each case the appropriate edit
operations are generated, and in most cases the semantics is straightforward and
standard. For instance, if the field is list-valued, we delegate differencing to an
auxiliary function diffLists (not shown) which performs Longest Common Subse-
quence (LCS) differencing using reference equality. The interesting bit happens
when differencing reference fields. References are compared via the matching M .
Figure 8 highlights the relevant parts.

In order to know whether two references are “equal”, diffNodes performs
a reverse lookup in M on the reference in t2. If the result of that lookup is
different from the reference in t1 the field needs to be updated. Recall that M
was augmented to M ′ (cf. Fig. 6) to contain entries for all newly created model
elements. As a result, the reverse lookup is always well-defined. Either we find
an already existing element of t1, or we find a element created as part of t2.

4 Case Study: Derric

4.1 Implementation in RASCAL

We have implemented tmdiff in Rascal, a functional programming language
for meta programming and a language workbench for developing textual Domain-
Specific Languages (DSLs) [8]. The code for the algorithm, and the application
to the example state machine language and the case study can be found on
GitHub3.

Since Rascal is a textual language workbench [4] all models are represented
as text, and then parsed into an abstract syntax tree (AST). Except for primitive
values (string, boolean, integer etc.), all nodes in the AST are automatically
annotated with source locations to provide basic origin tracking.

Source locations are a built-in data type in Rascal (loc), and are used to
relate sub-trees of a parse tree or AST back to their corresponding textual source
fragment. A source location consists of a resource URI, an offset, a length, and
begin/end and line/column information. For instance, the name of the closed
state in Fig. 2 is labeled:

Because Rascal is a functional programming language, all data is
immutable. As a result graph-like structure cannot be directly represented.
Instead we represent the containment hierarchy of a model as an AST, and
represent cross-references by explicit relations rel[loc from, loc to], once again
using source locations to represent object identities.

4.2 Differencing Derric File Format Descriptions

To evaluate tmdiff on a real-life DSL and see if it computes reasonable deltas,
we have applied it to the version history of file format specifications. These file
3 https://github.com/cwi-swat/textual-model-diff.

https://github.com/cwi-swat/textual-model-diff

Origin Tracking + Text Differencing = Textual Model Differencing 27

format specifications are written in Derric, a DSL for digital forensics analy-
sis [16]. Derric is a grammar-like DSL: it contains a top-level regular expression,
specifying the binary layout of file formats. Symbols in the regular expression
refer to structures which define the building blocks of a file format. Each struc-
ture, in turn has a number of field declarations, with constraints on length or
contents of the field.

There are 3 kinds of semantic entities in Derric: the file format, structures,
and fields. Inside the regular expression, symbolic names refer to structures.
Structures themselves refer to other structures to express inheritance. Finally,
field constraints may refer to fields defined in other structures or defined locally
in the enclosing structure.

In an earlier study, the authors of [17] investigated whether Derric could
accommodate practical evolution scenarios on Derric programs. This has resulted
in a public Github repository, containing the detailed history of three file format
descriptions, for GIF, PNG and JPEG4.

For each description, we have applied tmdiff on subsequent revisions, and
compared the resulting edit scripts to the ordinary textual diffs produce by the
Git version control system5. The results are shown in Table 1. The first three
columns identify the file and the two consecutive revisions (Git hashes) that have
been compared. Column 4, 5 indicate the number of lines added and removed,
as computed by the standard diff tool used by Git. To approximate the relative
size of the changes, column 6 shows the number of line additions and removals
per line of code in the source revision. The following eight columns then show
how often each of the edit operations occurred in the delta computed by tmdiff.
The results are summarized in the next three columns, showing the total number
of operations, the percentage indicating the number of operations per original
AST node, and the number of nodes literally built by the delta. The last column
contains the log message to provide an intuition of the intent of the revision.

Table 1 shows that some operations actually were never computed by tmdiff.
For instance, there are no Delete operations. This can be explained from the fact
that, indeed, all revisions involve adding elements to the file descriptions; nothing
is actually ever deleted.

The operations SetPrim and SetRef did not occur either. The reason is that
there are no revisions at that level of granularity. Most changes are additions of
structures and/or fields, or changes to the sequence constraints of a file format. In
both cases, references and primitives end up as part of InsertTree operations. An
example is shown in Fig. 9. The left and right columns show fragments of two ver-
sions of the GIF file format. The only change is and additional optional element
at the end of the sequence section. The delta computed by tmdiff is shown
at the bottom of the figure. It consists of a single InsertTree operation. Within
the inserted tree, one finds actual references to the structures CommentExtension
and DataBlock.

4 https://github.com/jvdb/derric-eval.
5 The actual command: git diff --patience --ignore-blank-lines

--ignore-all-space R1 R2 path.

https://github.com/jvdb/derric-eval

28 R. van Rozen and T. van der Storm

Table 1. Applying tmdiff to revisions of derric fileformat specifications.

The ratios of changes per total units of change (i.e. lines resp. AST nodes)
show that tmdiff deltas are consistently smaller that the ordinary textual
deltas. It is also not the case that a single operation InsertTree operation replaces
large parts of the model in one go. The before-last column shows that the num-
ber of nodes literally contained in a delta is reasonable. The largest number is
65 (fourth from below). As comparison, the average number of nodes across all
revisions in Table 1 is 432.

Figure 10 shows a typical delta computed by tmdiff on a Derric description.
It involves adding a new structure (COMASC) and its two fields (length and data).
They are initialized in three InsertTree operations. The last three operations wire
the newly created elements into the existing model.

Origin Tracking + Text Differencing = Textual Model Differencing 29

Fig. 9. A minimal change to the sequence part of a Derric description of GIF. A single
line is added on right (underlined). At the bottom the edit script computed by tmdiff
(between 9b3f919 and 872cd67)

Fig. 10. Fragment of revision afb17f7 of jpeg.derric (left, added lines are under-
lined), and the relevant part of the tmdiff delta from revision 712e583 to afb17f7

(right).

30 R. van Rozen and T. van der Storm

5 Discussion and Related Work

The case-study of the previous section shows that tmdiff computes reasonable
deltas on realistic evolution scenarios on DSL programs. In this section we discuss
a number of limitations of tmdiff and directions for further research.

The matching of entities uses textual deltas computed by diff as a guiding
heuristic. In rare cases this affects the quality of the matching. For instance,
diff works at the granularity of a line of code. As a result, any change on a
line defining a semantic entity will incur the entity to be marked as added. The
addition of a single comment may trigger this incorrect behavior. Furthermore,
if a single line of code defined multiple entities, a single addition or removal will
trigger the addition of all other entities. Nevertheless, we expect entities to be
defined on a single line most of the time.

If not, the matching process can be made immune to such issues by first
pretty-printing a textual model (without comments) before performing the tex-
tual comparison. The pretty-printer can then ensure that every definition is on
its own line. Note, that simply projecting out all definition names and perform-
ing longest common subsequence (LCS) on the result sequences abstracts from
a lot of textual context that is typically used by diff-like tools. In fact, this
was our first approach to matching. The resulting matching, however, contained
significantly more false positives.

Another factor influencing the precision of the matchings is the dependence
on the textual order of occurrence of names. As a result, when entities are
moved around without any further change, tmdiff will not detect it. We have
experimented with a simple move detection algorithm to mitigate this prob-
lem, however, this turned out to be too computationally expensive. Fortunately,
edit distance problems with moves are well-researched, see, e.g., [15]. A related
problem is that tmdiff will always see renames as an addition and removal of
an entity. Further research is needed if renames of entities can be detected, for
instance by matching up additions and removals of entities, where the deleted
node and the added node are the same, modulo the renaming.

Much work has been done in the research area of model comparison that
relates to tmdiff. We refer to a survey of model comparison approaches and
applications by Stephan and Cordy for an overview [14]. In the area of model
comparison, calculation refers to identifying similarities and differences between
models, representation refers to the encoding form of the similarities and differ-
ences, and visualization refers to presenting changes to the user [9,14]. Here we
focus on the calculation aspect.

Calculation involves matching entities between model versions. Strategies for
matching model elements include matching by (1) static identity, relying on
persistent global unique entity identifiers; (2) structural similarity, comparing
entity features; (3) signature, using user defined comparison functions; (4) lan-
guage specific algorithms that use domain specific knowledge [14]. With respect
to this list, our approach represents a new point in the design space: matching
by textual alignment of names.

Origin Tracking + Text Differencing = Textual Model Differencing 31

The differencing algorithm underlying tmdiff is directly inspired by Alanen
and Porres’ seminal work [1]. The identification map M between model elements
is explicitly mentioned, but the main algorithm assumes that model element
identities are stable. Additionally, tmdiff supports elements without identity.
In that case, tmdiff performs a structural diff on the containment hierarchy
(see, e.g.,[20]).

tmdiff’s differencing strategy resembles the model merging technique used
Ensō [18]. The Ensō “merge” operator also traverses a spanning tree of two
models in parallel and matches up object with the same identity. In that case,
however, the objects are identified using primary keys, relative to a collection
(e.g., a set). This means that matching only happens between model elements
at the same syntactic level of the spanning tree of an Ensō model. As a result,
it cannot deal with “scope travel” as in Fig. 2c, where the locked state moved
from the global state to the locking scope. On the other hand, the matching is
more precise, since it is not dependent on the heuristics of textual alignment.

Epsilon is a family of languages and tools for model transformation, model
migration, refactoring and comparison [10]. It integrates HUTN [13], the OMG’s
Human Usable Text Notation, to serialize models as text. As result, which ele-
ments define semantic identities is known for each textual serialization. In other
words, unlike in our setting, HUTN provides a fixed concrete syntax with fixed
scoping rules. tmdiff allows languages to have custom syntax, and custom bind-
ing semantics.

6 Conclusion

Accurately differencing models is important for managing and supporting the
evolution of models. Representing models as text, however, poses a challenge
for model differencing algorithms, because the identity of model elements is not
stable across revisions.

In this paper we have shown how this challenge could be addressed by con-
structing the mapping between model elements using origin tracking and tra-
ditional textual differencing. Origin tracking traces the identity of an element
back to the symbolic name that defines it in the textual source of a model.
Using textual differencing these names can be aligned between versions of a
model. Combining the origin relation and the alignment of names is sufficient
to identify the model elements themselves. It then becomes possible to apply
standard model differencing algorithms.

Based on these techniques, we have presented tmdiff, a fully language para-
metric approach to textual model differencing. A prototype of tmdiff has been
implemented in the Rascal meta programming language [8]. The prototype was
used to illustrate the feasibility of tmdiff by reconstructing the version history
of existing textual models. The models in question are file format descriptions
in an independently developed DSL in the domain of in digital forensics [16].

Although the work presented in this paper shows promise, important direc-
tions for further research remain. First of all, it is unclear if the deltas produced

32 R. van Rozen and T. van der Storm

by tmdiff are on average smaller than the deltas produced by, for instance,
EMFCompare [3], for languages which have scoping aligned with the contain-
ment hierarchy. Further evaluation should also include benchmarking the size
and speed of differencing against a broader set of practical examples.

References

1. Alanen, M., Porres, I.: Difference and union of models. In: Stevens, P., Whittle,
J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg
(2003)

2. Brun, C., Pierantonio, A.: Model differences in the eclipse modeling framework.
UPGRADE Eur. J. Inform. Prof. 9(2), 29–34 (2008)

3. Eclipse Foundation: EMF Compare Project. https://www.eclipse.org/emf/
compare/

4. Erdweg, S., et al.: The state of the art in language workbenches. In: Erwig, M.,
Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp. 197–217. Springer,
Heidelberg (2013)

5. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: Proceedings of the ACM International Conference Companion on
Object Oriented Programming Systems Languages and Applications Companion,
OOPSLA 2010, pp. 307–309. ACM, New York (2010)

6. Goldschmidt, T., Becker, S., Uhl, A.: Classification of concrete textual syntax
mapping approaches. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008.
LNCS, vol. 5095, pp. 169–184. Springer, Heidelberg (2008)

7. Inostroza, P., van der Storm, T., Erdweg, S.: Tracing program transformations
with string origins. In: Di Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol.
8568, pp. 154–169. Springer, Heidelberg (2014)

8. Klint, P., van der Storm, T., Vinju, J.: Rascal: a domain-specific language for
source code analysis and manipulation. In: SCAM, pp. 168–177 (2009)

9. Kolovos, D.S., Di Ruscio, D., Pierantonio, A., Paige, R.F.: Different models for
model matching: an analysis of approaches to support model differencing. In:
ICSE Workshop on Comparison and Versioning of Software Models (CVSM 2009),
pp. 1–6. IEEE (2009)

10. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transformation language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063,
pp. 46–60. Springer, Heidelberg (2008)

11. Miller, W., Myers, E.W.: A file comparison program. Softw. Pract. Exper. 15(11),
1025–1040 (1985)

12. Myers, E.W.: An O(ND) difference algorithm and its variations. Algorithmica
1(1–4), 251–266 (1986)

13. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.: Constructing models with
the human-usable textual notation. In: Czarnecki, K., Ober, I., Bruel, J.-M.,
Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 249–263. Springer,
Heidelberg (2008)

14. Stephan, M., Cordy, J.R.: A survey of model comparison approaches and applica-
tions. In: MODELSWARD, pp. 265–277 (2013)

15. Tichy, W.F.: The string-to-string correction problem with block moves. ACM
Trans. Comput. Syst. 2(4), 309–321 (1984)

https://www.eclipse.org/emf/compare/
https://www.eclipse.org/emf/compare/

Origin Tracking + Text Differencing = Textual Model Differencing 33

16. van den Bos, J., van der Storm, T.: Bringing domain-specific languages to digital
forensics. In: ICSE 2011, ACM (2011). Software Engineering in Practice

17. van den Bos, J., van der Storm, T.: A case study in evidence-based DSL evolution.
In: Van Gorp, P., Ritter, T., Rose, L.M. (eds.) ECMFA 2013. LNCS, vol. 7949, pp.
207–219. Springer, Heidelberg (2013)

18. van der Storm, T., Cook, W.R., Loh, A.: The design and implementation of object
grammars. Sci. Comput. Program. 96(4), 460–487 (2014). Selected Papers from
the Fifth International Conference on Software Language Engineering (SLE 2012)

19. van Deursen, A., Klint, P., Tip, F.: Origin tracking. Symbolic Comput. 15, 523–545
(1993)

20. Yang, W.: Identifying syntactic differences between two programs. Softw. Pract.
Exper. 21(7), 739–755 (1991)

CoWolf – A Generic Framework for Multi-view
Co-evolution and Evaluation of Models

Sinem Getir1(B), Lars Grunske1, Christian Karl Bernasko2,
Verena Käfer2, Tim Sanwald2, and Matthias Tichy3

1 Reliable Software Systems, University of Stuttgart, Stuttgart, Germany
{sinem.getir,lars.grunske}@informatik.uni-stuttgart.de

2 University of Stuttgart, Stuttgart, Germany
{st106732,swt74174,swt80243}@stud.uni-stuttgart.de

3 University of Gothenburg, Gothenburg, Sweden
matthias.tichy@cse.gu.se

Abstract. Agile and iterative development with changing requirements
lead to continuously changing models. In particular, the researchers are
faced with the problem of consistently co-evolving different views of
a model-based system. Whenever one model undergoes changes, corre-
sponding models should co-evolve with respect to this change. On the
other hand, domain engineers are faced with the huge challenge to find
proper co-evolution rules which can be finally used to assist develop-
ers in the co-evolution process. In this paper, we introduce the CoWolf
framework that enables co-evolution actions between related models and
provides a tooling environment. Furthermore, we demonstrate the results
of a case study on the developed tool.

Keywords: Model evolution ·Multi-viewmodeling ·Model co-evolution ·
Model synchronization · Model differencing · Quality of service models

1 Introduction

Models are a great aid to reduce the complexity of a software system so that
analysis tools and humans can conceive it. Commonly, great parts of the program
code are generated from domain specific models and analysis on performance,
reliability and safety are completely done on separate models. Consequently, it
is desirable to split the information into different views that are all specialized
for a specific task allowing a well-founded theory on analysis methods and a
rich tool infrastructure. This leads to the problem of co-evolving these different
models, to keep them consistent when one of the models evolves over time.
A solution to these problems is seen in incremental model transformation [2,9]
and synchronization, a process that identifies changes done to a source model
and which translates only these changes to the target models.

The CoWolf tool presented in this paper delivers a framework for model
development, (incremental) model transformation and analysis. A special focus

c© Springer International Publishing Switzerland 2015
D. Kolovos and M. Wimmer (Eds.): ICMT 2015, LNCS 9152, pp. 34–40, 2015.
DOI: 10.1007/978-3-319-21155-8 3

CoWolf – A Generic Model Co-evolution Framework 35

of CoWolf are probabilistic quality attributes like safety, reliability, and per-
formance which CoWolf supports with a common environment with graphical
and textual editors. Furthermore, it implements interfaces to external tools to
analyse safety, reliability, and performance using the models. While there exist
a couple of existing frameworks and approaches for incremental model transfor-
mations (see the surveys in [2,9]), our approach specifically addresses quality
evaluation models.

2 The CoWolf Framework

CoWolf is an extensible framework for model evolution and co-evolution man-
agement and it has mainly two goals. The first goal is conducting the co-
evolution process when one of the corresponding models undergoes changes.
We denote these corresponding models as couples. Currently, CoWolf supports
seven different types of models: state charts, component diagrams and sequence
diagrams as architectural models; and discrete time markov chains (DTMC),
continuous time markov chains (CTMC), fault trees, layered queuing networks
(LQN) as QoS models. We use Henshin graph transformations [1] to accom-
plish the co-evolution process. Implemented transformations and their direc-
tions between couples from architectural and QoS models are presented in Fig. 1
(e.g. DTMC-CTMC or CTMC-fault tree are denoted as couples). While there
exist bidirectional transformations between state charts and DTMCs, there exist
unidirectional transformations from component diagram to fault trees.

The second goal is delivering utilities for the model-driven development and
direct support for model analysis. During the continuous development of the
models, CoWolf provides a common and user friendly environment with textual
(Eclipse Xtext) and graphical editors (Eclipse Sirius) for different model types.
Furthermore, it establishes interfaces to external tools to analyse models. In
Fig. 1, we display the integrated model solvers to the corresponding QoS models.
The tooling environment is enriched with the textual editors to represent the
verification properties. Following that the developer can send the model to the
analyser with one button.

CoWolf is an Eclipse plug-in designed to be highly extensible for new types
of models. We demonstrate the architecture of the tool and used technologies
in Fig. 2. In the following, we expand on the working principle of the CoWolf
framework and illustrate with the Stop Watch example.

2.1 Co-evolution with CoWolf

In the following, we explain the transformation and model difference process in
the background of CoWolf, and demonstrate the evolution of a running example
afterwards.

Transformation Process. After identifying coupled models, we described Hen-
shin rules between the couples and the rules for the single models. While the
Henshin rules can be both manually created and auto-generated in the SiLift [7]

36 S. Getir et al.

Fig. 1. Couples, transformations and model solvers supported by CoWolf

Fig. 2. CoWolf architecture

environment for a single model, the co-evolution rules should be created only
manually since it requires mapping between the coupled model elements. Every
co-evolution transformation is performed from a source model to a target model,
which exposits the co-evolution direction. Defining the co-evolution transfor-
mations between the related models is not an easy task and requires domain
knowledge. On the other hand, the effort describing the transformations differ
from couple to couple. For example, transforming a state chart to a DTMC can
be performed with one to one (assuming that we omit composite states) map-
ping considering the structure of the models. However, transformations are not
straight forward between fault trees and component diagrams [5]. As a result,
CoWolf does not claim fully automatic and complete transformations, but aims
the utilization of the co-evolution process with user interaction.

When the user wants to apply the co-evolution between couples, the changes
between the current version and the last version are calculated for the source

CoWolf – A Generic Model Co-evolution Framework 37

model. If it is the first co-evolution between the models, the differences between
an empty model and the current model are calculated. We use SiLift [7] for the
model difference calculation. After the calculation, we perform the corresponding
changes to the target model to accomplish the co-evolution. Note that there has
to be a full set of rules for every possible change (predefined) in the source model
to do a co-evolution. SiLift produces the difference output in the representation of
Henshin rules, which makes the co-evolution process applicable in our framework.
After the changes were detected, the rules can be applied and the target model
can be co-evolved. There is a high amount of work in the background process.
We refer the interested readers to the website http://cowolf.github.io/ for the
details and the source code.

Running Example. We demonstrate a running example called Stop Watch
in Fig. 3 in CoWolf’s graphical editor, which enables a drag and drop facility
of the model elements from the menu. The source model is a state chart and
initially has three states with three transitions. When the user wants to apply a
co-evolution, it is possible to have several target models for one source model.
For instance in the menu, the user can select DTMC, CTMC as couple models
of a state chart. In Fig. 3(a), assuming that the target model is selected as
DTMC, we display the DTMC model generated from the state chart on the
left side (complete transformations are applied). After the first co-evolution,
the two models are now connected with the facility of EMF trace links and
if a change happens in the initial model, an out-of-date-warning is shown for
the target model. At some point of time, the state chart evolves as shown in
Fig. 3(b). A new state Lap and its transitions are added to the watch system,
and one transition is deleted. The changes are calculated by SiLift, whose output
is also visible in CoWolf environment by the user when requested. Based on the
corresponding changes, the DTMC co-evolves with incremental transformations.
As shown in Fig. 3(c), the applied transformations generate the DTMC with a
similar structure with the state chart (topology of the states and transitions). On
the other side, the model is incomplete because of the parameters (e.g. transition
probabilities), therefore the user interaction is needed for valid models.

Extending CoWolf. CoWolf can be extended for new types of models (new
metamodels) with its flexible architecture (Fig. 2). For this, the developer needs
to provide four artifacts: (1) Metamodels of the coupled models (2) Henshin rules
for the single models to detect changes between two instances (manually created
or auto-generated in SiLift environment) (3) Henshin rules for the co-evolutions
and (4) a GUI. We refer the readers to https://github.com/CoWolf/CoWolf for
the details of the architecture.

2.2 Integrated Model Solvers

Besides the incremental transformation of models, CoWolf is also capable of
measuring quality aspects of models. For this, we implemented a user friendly
interface to the external solvers for the corresponding QoS models. As presented
in Fig. 1, CoWolf supports evaluation over DTMC, CTMC, LQN and fault trees

http://cowolf.github.io/
https://github.com/CoWolf/CoWolf

38 S. Getir et al.

(a) The initial state chart and the co-evolved DTMC

(b) The state chart and DTMC model after the second co-evolution

Fig. 3. A co-evolution from state chart to DTMC in CoWolf

via PRISM [8], LQNSolver [3] and Xfta [11] respectively. The solvers produce
analysis results (e.g. measurement and prediction) for availability, performance
and safety attributes of the system. With this feature of CoWolf, developers do
not have to fully understand the modelling language of the external model solvers
(e.g. Prism grammar or Open-PSA script in Xfta) and can run the analysis from
CoWolf directly. The developer then only needs to set the properties and trigger
the analysis button on the selected model. However, the analysis steps differ from
model to model. For example, a fault tree analysis is always performed on the
top event in the model. On the other hand, a CTMC model requires property
description in PCTL. CoWolf produces a solution for property specification by
enabling the user to write the properties in an Xtext textual editor whose design
was inspired by ProProST tool [6], being therefore capable of generating the
full PCTL.

In the background, whenever the analysis is triggered, CoWolf transforms
the model to the language supported by the solver (e.g. Prism) and executes
the evaluation with the selected model solver. Afterwards, CoWolf receives and
parses the results from the tools and presents them in an Eclipse view. When
requested, exporting the models in the language of the external tools is also
possible.

CoWolf – A Generic Model Co-evolution Framework 39

3 Evaluation

We evaluate the CoWolf framework on a standard automation case study called
Pick & Place Unit (PPU) [10]. The Pick&Place unit has four main components:
storage, crane, stamp and sorter, which stores, conveys, processes and sorts the
work pieces on the platform respectively. The system has 14 predefined evo-
lution steps (12 of 14 scenarios are system’s reliability relevant) and all the
steps have different affects on various types of models. We perform co-evolution
actions between state charts and the corresponding DTMCs and compare the
incremental transformations, which are executed with the co-evolution process,
and complete transformations as demonstrated in Fig. 4. While complete trans-
formations run the full set of rules from the scratch at every step, incremental
transformations run only the required rules whenever any change occurs in one
of the models to maintain the multi-view consistency.

In Fig. 4(a) we present the comparison in terms of the execution time. In
general, co-evolution actions are faster than the execution of complete transfor-
mation. However at steps such as 4, 5 and 9, the co-evolution process takes much
longer than the complete transformation. The reason for this is the calculation of
the difference between the models in addition to the execution of the incremen-
tal transformations. We observe in the evolution steps that the changes between
3–5 and 8–9 are much bigger compared to the other steps. As aforementioned,
we use an external tool (SiLift) to calculate the model differences. Therefore, we
provide the second evaluation by only evaluating the number of rules executed
with incremental transformations in Fig. 4(b) to support this argument. The
number of rules to be executed with incremental transformation is apparently
significantly lower than the number of rules to be executed with the complete
transformations as expected.

Fig. 4. Performance comparison between incremental and complete transformations
for each step

4 Conclusion

Domain engineers are faced with big challenges to manage co-evolution in multi-
view model based systems. In this paper, we have introduced an extensible frame-
work for co-evolution and model analysis to assist the developers. CoWolf is an

40 S. Getir et al.

open source project for the community and extensible for any kind of model.
Since it is generic, plug-in based and includes SiLift, we would like to integrate a
co-evolution analysis [4] to improve the co-evolution actions between the models
as a future work.

Acknowledgments. This work is supported by the DFG (German Research Founda-
tion) under the Priority Programme SPP1593: Design For Future - Managed Software
Evolution. The authors would like to thank Christian Karl Bernasko, Manuel Borja,
Verena Käfer, David Krauss, Michael Müller, Philipp Niethammer, Tim Sanwald, Jonas
Scheurich, David Steinhart, Rene Trefft, Johannes Wolf and Michael Zimmermann for
their great work in the CoWolf development.

References

1. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C., Rou-
quette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010)

2. Etzlstorfer, J., Kusel, A., Kapsammer, E., Langer, P., Retschitzegger, W., Schoen-
boeck, J., Schwinger, W., Wimmer, M.: A survey on incremental model trans-
formation approaches. In: Proceedings of the Workshop on Models and Evolution
Co-located with ACM/IEEE 16th International Conference on Model Driven Engi-
neering Languages and Systems, pp. 4–13 (2013)

3. Franks, G., Maly, P., Woodside, M., Petriu, D.C., Hubbard, A.: Layered queueing
network solver and simulator user manual. Carleton University, Department of
Systems and Computer Engineering (2005)

4. Getir, S., Rindt, M., Kehrer, T.: A generic framework for analyzing model co-
evolution. In: Model Evolution, International Conference on Model Driven Engi-
neering Languages and Systems (2014)

5. Getir, S., Van Hoorn, A., Grunske, L., Tichy, M.: Co-evolution of software archi-
tecture and fault tree models: an explorative case study on a pick and place factory
automation system. In: International Workshop on NIM-ALP, pp. 32–40 (2013)

6. Grunske, L.: Specification patterns for probabilistic quality properties. In:
Schäfer, W., Dwyer, M.B., Gruhn, V. (eds.) Proceedings of ICSE, 2008, pp. 31–40.
ACM (2008)

7. Kehrer, T., Kelter, U., Taentzer, G.: A rule-based approach to the semantic lifting
of model differences in the context of model versioning. In: International Conference
on Automated Software Engineering, pp. 163–172 (2011)

8. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

9. Leblebici, E., Anjorin, A., Schürr, A., Hildebrandt, S., Rieke, J., Greenyer, J.: A
comparison of incremental triple graph grammar tools. ECEASST 67 (2014)

10. Legat, C., Folmer, J., Vogel-Heuser, B.: Evolution in industrial plant automation:
a case study. In: Proceedings of IECON 2013. IEEE (2013)

11. Rauzy, A.: Anatomy of an efficient fault tree assessment engine. In: Virolainen, R.
(ed.) Proceedings of PSAM’11/ESREL’12 (2012)

Reuse and Industrial Applications

Enabling the Reuse of Stored Model
Transformations Through Annotations

Javier Criado1(B), Salvador Mart́ınez2, Luis Iribarne1, and Jordi Cabot2,3

1 Applied Computing Group, University of Almeria, Almeŕıa, Spain
{javi.criado,luis.iribarne}@ual.es

2 AtlanMod Team (Inria, Mines Nantes, LINA) Nantes, Nantes, France
{salvador.martinez perez,jordi.cabot}@inria.fr

3 ICREA - UOC, Barcelona, Spain
jcabot@uoc.edu

Abstract. With the increasing adoption of MDE, model transforma-
tions, one of its core concepts together with metamodeling, stand out as
a valuable asset. Therefore, a mechanism to annotate and store exist-
ing model transformations appears as a critical need for their efficient
exploitation and reuse. Unfortunately, although several reuse mecha-
nisms have been proposed for software artifacts in general and models
in particular, none of them is specially tailored to the domain of model
transformations. In order to fill this gap, we present here such a mech-
anism. Our approach is composed by two elements (1) a new DSL spe-
cially conceived for describing model transformations in terms of their
functional and non-functional properties (2) a semi-automatic process for
annotating and querying (repositories of) model transformations using as
criteria the properties of our DSL. We validate the feasibility of our app-
roach through a prototype implementation that integrates our approach
in a GitHub repository.

1 Introduction

Model-to-model (M2M) transformations play a key role in Model-Driven Engi-
neering (MDE) by providing the means to automatically derive new model-
ing artifacts from existing ones. With the increasing adoption of MDE, these
model transformations, difficult to produce as they require not only mastering
the transformation tools but also domain specific knowledge, become valuable
assets. Consequently, M2M transformations should be described, defined, con-
structed and then stored in the richest possible manner so that the functional and
non-functional properties of each of the implemented transformation operations
are easier to identify and query. This is a critical requirement for an efficient
exploitation and reuse of the model transformations assets (or some parts of
them) when facing similar manipulation tasks.

Unfortunately, although some transformation languages and frameworks pro-
vide some reuse facilities like inheritance, imports or Higher-Order Transfor-
mations (HOTs) [20] (even if largely unused [14]), they lack mechanisms for
c© Springer International Publishing Switzerland 2015
D. Kolovos and M. Wimmer (Eds.): ICMT 2015, LNCS 9152, pp. 43–58, 2015.
DOI: 10.1007/978-3-319-21155-8 4

44 J. Criado et al.

describing and/or storing information about the inherent properties of model
transformations. This makes it difficult to find later the right transformation
for the problem at hand unless we dig into the transformation code ourselves
to carefully analyze what it does and how it does it [2]. This is specially true
considering there are few public M2M transformation repositories (exceptions
would be the ATL model transformation ZOO [1] or ReMoDD [5]).

As an example, a very common transformation use case is the translation
from class diagram models to relational models. Being so popular, anybody
requiring a transformation between these two domains should easily find an
existing transformation to reuse. Even for the concrete case of ATL, a search for
a class to relational transformation on the Internet yields thousands of results
ranging from very minimal ones to complex versions using inheritance between
transformations rules. Nevertheless, each variation implies a different trade-off
on the properties of the generated relational model, e.g. different transformation
strategies can be followed to deal with inheritance (see Fig. 1). While the first
strategy could be better for space optimization requirements, the second and
third versions improve the maintainability in different degrees. Therefore, beyond
its functionality, specific requirements for the task at hand (e.g. having the goal
of space optimization) must be considered when choosing the transformation.

Therefore, we believe that a mechanism to facilitate the annotation and
search of the transformations in a public repository would be an important
step forward towards the reuse of model transformations. Once these annotated
repositories are available, a user different from the original transformation devel-
oper would be able to select and reuse a transformation (or reuse parts of it)
based on its requirements or objectives.

In this paper we propose such mechanism. It is composed by two main
elements: (1) a Domain-Specific Language (DSL) to describe functional but
also non-functional properties of M2M transformations; (2) a process to semi-
automatically tag model transformation with information conforming to our
DSL and to query repositories storing these annotated transformations. Func-
tional properties can be calculated in many cases through an static analysis of
the transformation code but non-functional properties may require subjective
quality metrics or manual analysis in order to be determined.

We demonstrate the feasibility of our approach by developing a prototype
implementation specially tailored for ATL [8], including a process to store and
query transformations annotated with our DSL in a public GitHub repository.
However, we would like to remark that this prototype could be easily extended
to deal with other similar rule-based transformation languages like QVT [17],
ETL [13] or RubyTL [4] as our approach remains language-independent.

The rest of the paper is structured as follows. Section 2 describes our solution
approach. In Sect. 3, our DSL for describing model transformations is detailed
while Sect. 4 defines the process to annotate existing transformations and con-
stitute repositories with rich search capabilities. Section 5 provides details about
our prototype implementation and Sect. 6 discusses related work. Finally, Sect. 7
presents conclusions and future work.

Enabling the Reuse of Stored Model Transformations Through Annotations 45

name doi isbn issn

Journal1 http://... null …

Book1 http://... … null

Journal2 http://... null …

name doi issn

Journal1 http://... …

Journal2 http://... …

name doi isbn

Book1 http://... …

idpub name doi

1 Journal1 http://...

2 Book1 http://...

3 Journal2 http://...

issn fk_idpub

… 1

… 3

isbn fk_idpub

… 2

Journal table Book table

Publication table

Publication table Journal table Book table

numberOfTables = 3
nullFields = 0
redundantFields = 0

numberOfTables = 2
nullFields = 0
redundantFields = 2

numberOfTables = 1
nullFields = 2
redundantFields = 0

Publication

- name
- doi

Book

- isbn

Journal

- issn

Fig. 1. An example of domain-dependent properties

2 Approach

In order to tackle the aforementioned problems, we propose an approach com-
posed by two main steps (see Fig. 2):

1. A Domain-Specific Language for the description of functional and non func-
tional properties of implemented model transformation. This DSL, which will
be further detailed in Sect. 3, is independent from the concrete transforma-
tion language. Therefore, it can be used to annotate transformations writ-
ten in different transformation languages. Along with its abstract syntax, we
propose a default catalogue of properties ready-to-use for rule-based model
transformations and textual and graphical concrete syntaxes.

2. A semi-automatic process for annotating and reusing existing transforma-
tion. This step starts by annotating a given transformation (to be stored)
with attributes from a model instance of our proposed DSL. Then, the trans-
formation is stored in a repository of choice. Finally, and transparently to the
user, a search engine provides the user with the capability of using the OCL
query language to search for model transformations fulfilling a set of given
requirements.

Model Transformation

Repository

Annotated Model
Transformation

Storage Process

OCL queries
Transformation

Units Information

Annotation Process Query Process

DSL Catalogues

Creation of Property
Catalogues

step 1 step 2

Fig. 2. Annotation and retrieval approach

46 J. Criado et al.

Transformations annotated in this way will allow us to constitute repositories
of transformations with rich search capabilities. To demonstrate this extreme we
provide a prototype for annotating, storing and querying ATL model transfor-
mations and repositories.

3 A DSL to Describe Model Transformations

Explicitly representing the functional and non-functional properties of a trans-
formation helps to identify a suitable transformation (or part of it) for reuse in
a given new transformation task.

In order to allow a precise definition of those properties we have developed a
new DSL that allows us to describe properties about a Transformation unit, i.e.,
about a Module, or about the Rules composing it from a predefined Catalogue
of properties that can be evolved depending on the transformation domain.

In the following we will provide a detailed description of the abstract syntax
of our language, a default catalogue to be used for starting annotate rule-based
model transformations out of the box and a concrete syntax for (1) visualizing
the annotations and (2) integrate them in transformations languages with textual
concrete syntax.

3.1 DSL Specificaton: Abstract Syntax

The metamodel of our DSL is shown in Fig. 3. The main metaclasses are:

Catalogue Metaclass: With the aim of giving more flexibility to the property
description and instantiation, we propose to define the properties making use
of Catalogues instead of hard-wiring a fixed set of properties in the metamodel

Fig. 3. DSL for describing model transformation properties

Enabling the Reuse of Stored Model Transformations Through Annotations 47

itself. Moreover, the catalogues offer (1) a common vocabulary to describe the
possible properties which can be annotated and, (2) a common space for the
agreement of model transformation developers.

Therefore, the DSL allows us to create domain-independent or dependent cat-
alogues. The first type is used to describe the properties common to all domains
while the second type is intended to describe the properties that are only relevant
to a particular domain.

For instance, in an example scenario of transformation from a Class Dia-
gram to a Relational model, there are different transformation strategies for the
inheritance relationship (see in Fig. 1). In this sense, it could be useful to define
some functional properties specific of this domain, such as the number of tables,
the number of “null” fields, or the number of redundant fields generated by the
transformation units and some non-functional properties such as maintainability.

Properties: Each catalogue contains a number of Property definitions. The
propSource attribute defines who is responsible for creating the property.
A property may be instantiated by an automatic process (calculating its value
directly or indirectly from the code), or manually by the developer.

Each property definition is associated with a Value definition, which can be
qualitative (QualitativeValue) or quantitative (QuantitativeValue). Qualitative
definitions can be a single value or an enumeration of string values. Quantita-
tive definitions can be boolean, integer or float. Integer and float types can be
instantiated as a single value, a range of values, or an enumeration of values.

Once we have created the catalogues with the property definitions, we can
define annotations for transformation modules or rules. Note that each anno-
tation can be related to a property value, but this value must be established
according to the property definition of a catalogue.

Non-Functional Properties: Our DSL differentiates between Functional (e.g.
number of input models, number of helpers, or coverage of target metamodels)
and Non-functional properties.

As an example, Table 1 lists some non-functional properties defined for ATL
transformations but any other property could be adapted as well, e.g. “testabil-
ity” and “installability” can also be added to our DSL. The former could be used
to describe if there exist test models associated with a transformation whereas
the “installability” quality attribute could be used to identify if the transforma-
tion is implemented in a stable version of the transformation language, if the
package references are related with integrated URIs or some packages should be
registered previously, etc.

Additionally, we classify non-functional properties in two different subtypes.
Quality related properties or Other non-functional properties (e.g. developer
name, developer affiliation, or last update) information. Note that within the
set of possible Quality attributes, we also distinguish between ISO/IEC 25000
(e.g. understandability, reusability, or modifiability) properties, i.e., properties
defined in the standard, and Other quality properties (e.g. stability, reliability
of the developer, or level of updating) not belonging to it.

48 J. Criado et al.

Relation Between Properties: Functional and Non-functional properties can
affect the value of related Non-Functional properties. In order to represent this
relation, a PropertyDefinition can contain a collection of RelatedExtraProperty
definitions describing to which extra-functional Properties is related with.

This description can specify a Type (positive or negative), a Level (low,
medium or high), and some Comments to this relationship. For example, we can
define a functional property named as “ratioOfHelpers” with type “positive”
linked (with level “low”) to an extra-functional property representing “reusabil-
ity”. This link indicates that this value of the first property has a positive and
low effect on the second one. We can also define a extra-functional property
named as “understandability” with type “positive” linked (with level “high”)
to another extra-functional property named as “modifiability”, indicating the
positive high effect of the first property on the second one.

Table 1. Examples of quality attributes (extracted from [22] and [21])

Property Description

Understandability Defines how easy or difficult is to comprehend a model transfor-
mation. Negative relationship with the number of input models,
output models, unused helpers, or elements per output pattern

Modifiability Describes how much effort is needed to change a model transfor-
mation. Negative relationship with the number of input models,
output models, unused helpers, or calls to resolveTemp() opera-
tions

Completeness Indicates if the transformation covers all the elements of the
input and output models. Positive relationship with coverage of
input/output metamodels. Negative relationship with the num-
ber of input/output models, unused helpers, or parameters per
called rule

Consistency Describes how coherent and stable is the transformation. Positive
relationship with coding convention, number of helpers, or calls
to oclIsUndefined(). Negative relationship with the number of
called rules, calls to helpers, or calls to oclIsTypeOf()

Conciseness Indicates if the transformation is brief and directed to the solu-
tion. Positive relationship with number of helpers, rule inher-
itance, or imported libraries. Negative relationship with the
number of input/output models, unused helpers, or the number
of called rules

Reusability Defines if the transformation or some rules could be reused. Pos-
itive relationship with number of helpers or imported libraries.
Negative relationship with non-lazy matched rules, called rules,
or rules with filter

Enabling the Reuse of Stored Model Transformations Through Annotations 49

3.2 DSL Specification: Domain-Independent Catalogue

In order to facilitate the adoption of our DSL, we provide a ready-to-use default
domain-independent catalogue. This catalogue can be imported when creating
a new annotation model for a given transformation. Note that although this
catalogue is based on properties and metrics defined for the ATL transforma-
tion language [21], it can be reused for other transformation languages just by
adapting the metric calculation process to each specific case.

In this sense, we provide the following list of functional and non-functional
properties for ATL transformations: number of input models, number of output
models, number of input patterns, ratio of helpers, number of calls to resolveTemp,
ocl expression complexity, understandability, modifiability, reusability, complete-
ness, performance, author and last update. As we mentioned, our DSL allows
us to establish the value definition for each property. In addition, we can also
represent relations between properties. For example, the value definition of the
functional property numberOfInputModels has been created as a single integer
value, and this property is related to three non-functional properties (under-
standability, modifiability and reusability) with type negative and level high.

Note that, as described above, we can also build reusable catalogues for con-
crete transformation domains. As an example, for the transformation domain
of Class Diagram to Relational models, we have selected three functional prop-
erties: ratio of tables, ratio of null fields and ratio of redundant fields; and 2
non-functional properties: maintainability and storage performance. These prop-
erties arise from the three different transformation strategies depicted in Fig. 1.
For example, the second transformation strategy of Fig. 1 has a medium value for
ratioOfTables property, a low value for ratioOfNullFields and a high value for
ratioOfRedundantFields.

3.3 DSL Specification: Concrete Syntax

Our DSL is intended to be used as an annotation language integrated with
existing model transformation languages. As in the vast majority of cases model
transformation languages use textual syntaxes as concrete syntax, we propose
here a simple textual syntax for our DSL. The grammar of our proposed textual
syntax is provided in Listing 1.1.

Basically, our textual syntax allows us to produce annotations that identify
the transformation module or rule by name and assign to it couples of proper-
ties and the corresponding values (identifying also the catalogue containing the
definition of the property as it will help the understandability of the annotation).

As an example, we show an ATL transformation module and a contained
rule in Listing 1.2. The rule is annotated with two properties, the ratio of tables
functional property with the value of normal (and identifying it as a domain-
specific property defined in the catalogue of the Class2Relational domain) and
the understandability non-functional property with the value of medium.

50 J. Criado et al.

Listing 1.1. DSL Grammar

Module returns Module:
rule += Rule*
’@module ’ tuaName=EString
property += Property *;

Rule returns Rule:
’@rule ’ tuaName=EString
property += Property *;

Property returns Property:
’@property ’ propertyName=EString ’=’ value=EString
’(catalogue = ’ catalogueName =EString ’)’;

EString returns ecore:: EString:
STRING | ID;

Note that, for simplicity, our annotation language has been integrated in
the ATL transformation language by using tags inside comments, which allows
us to perform the integration without changing the grammar of the host lan-
guage. Nevertheless, it would be possible to integrate our annotation language
as native tags of the language, which could provide some advantages like syntax
highlighting, etc.

Listing 1.2. ATL Class2Relational rule

-- @module Class2Relational
-- @property understandability = medium (catalogue = DefaultCatalogue)
-- @property ratioOfTables = normal (catalogue =

↪→Class2RelationalCatalogue)
-- @property reusability = low (catalogue = DefaultCatalogue)
module Class2Relational ;
create OUT : Relational from IN : Class ;

-- @rule Class2Table
-- @property understandability = medium (catalogue = DefaultCatalogue)
-- @property ratioOfTables = normal (catalogue =

↪→Class2RelationalCatalogue)
rule Class2Table {

from
c : Class ! Class

to
out : Relational ! Table (

name <− c . name ,
col <− Sequence { key}−>union (c . attr−>

select (e | not e . multiValued)) ,
key <− Set { key}

) ,
key : Relational ! Column (

name <− ’ ob j e c t Id ’ ,
type <− thisModule . objectIdType

)
}

Additionally, as graphical information is often easier to grasp at a glance
than textual one, we also provide a graphical syntax for our language. In Sect. 5,
we show this concrete graphical syntax.

4 Annotating and Searching Model Transformations

We describe in this section the process of annotating existing transformation with
models conforming to our DSL and the process of then querying already annotated

Enabling the Reuse of Stored Model Transformations Through Annotations 51

.atl

Automatic annotation process

(1.1)

(1.2)

(1.3)

GitHub
repository

storing
annotated

.atl

(1.4)

TCS
injection

TCS
extraction

ATL
model

ATL model with
automatic

annotations

Higher-Order
Transformation

.atl
automatically

annotated

Manual
annotation

process

Annotation process

.atl
automatically
and manually

annotated

Storage process

Store
annotated

.atl

(2)

query
intentions

Assistant
process for

query building

Query process

Inject all
annotated .atl

to DSL

all models with
functional and

extra-functional
properties

Execute OCL
query and

parse results

OCL query

transformation
units information

(3.1)

(3.2)

(3.3)

Fig. 4. Process for annotating model transformations and its applications

model transformations. This process is summarized in Fig. 4. Note that the steps
1.1 to 1.4 depend on the transformation language at hand (although the process
for others languages will be similar) while the steps 2 to 3.3 are independent of
the language.

4.1 Semi-automatic Annotation

The annotation process that we describe here is semi-automatic: (1) functional
and non-functional properties that can be derived/extracted from the code itself
(including the environment information, like metamodels, etc.) are calculated in
an automatic way, and (2) properties that need to be evaluated by a developer
are filled manually.

In the case of properties that can be directly derived or extracted from the
source code of the transformation (including information about input/output
metamodels and models, or about the internal structure of each rule) we have
chosen to use Higher-Order Transformations. The uniformity and flexibility of
the model-driven paradigm allow us to make use of the same transformation
infrastructure to develop the model transformation and the annotation process,
since model transformations can be translated into transformation models and be
given as objects to a different class of model transformations [20]. The calculation
of these properties is based on metrics defined in previous work [21,22].

Note that this process requires having access to the internal structure of the
model transformation. Consequently, the concepts of Module and Rule in our
DSL are meant to be linked to the corresponding elements of the metamodel of
the transformation language in hand. In the case of ATL, we have linked these
concepts to the Module and Rule concepts of the ATL metamodel so that we
are able to inspect all the functional features of the ATL transformation.

Basically, the process of automatically annotating an ATL model transfor-
mation follows three steps (see Fig. 4): (1.1) injecting the transformation code
to a transformation model by using TCS [9]; (1.2) using a HOT transformation

52 J. Criado et al.

to calculate metrics and generate the annotations; (1.3) extracting the transfor-
mation model to an ATL transformation with textual syntax by using TCS.

The definition of properties for any given catalogue would follow this process.
Here, we have performed it for the properties defined in our default domain-
independent catalogue. Some examples are shown in Listing 1.3.

Listing 1.3. Automatic calculation of properties

helper context ATLMM ! Rule def : numberOfInputPatterns () : I n t eg e r =
i f self . oclIsKindOf (ATLMM ! MatchedRule) then

self . inPattern . elements−>size ()
else

0
endif ;

helper context ATLMM ! Module def : numberOfCallsToResolveTemp () : I n t eg e r =
ATLMM ! OperationCallExp−>allInstances ()−>select (oce |
oce . operationName = ’ resolveTemp ’)−>size () ;

helper context ATLMM ! OclExpression def : oclExpComplexity () : I n t eg e r =
i f (self . oclIsTypeOf (ATLMM ! OperatorCallExp)) then

self . oclOperatorCallExpComplexity ()
else

i f (self . oclIsTypeOf (ATLMM ! IfExp)) then
self . oclIfExpComplexity ()

else
i f (self . oclIsTypeOf (ATLMM ! LoopExp)) then

self . oclLoopExpComplexity ()
else

0
endif

endif
endif ;

Note that, although some non-functional properties can be derived from the
functional information, the intervention of a developer is still necessary for fully
documenting model transformations. In this sense, a manual annotation process
can be performed by using the textual and the graphical concrete syntax, so that
a developer can inspect existing properties and add new ones.

4.2 Queries

In this subsection, we show how our DSL annotations enable rich searching. Our
main goal is to be able to query the information from the metadata that have
been included into the annotated model transformations (step 3.3. of Fig. 4). This
part of the process is completely independent of the transformation language
since it relies only on the property annotations and general information about
the transformation.

Querying Individual Transformations: Given a single transformation, the
process of querying it to check its functional and non functional properties
requires injecting the textual representation of the transformation into a model
corresponding to our DSL (with preimported and loaded instances of the cat-
alogue/s used to annotate the transformation). Once this model is available,
standard OCL queries can be used to retrieve the desired information. For exam-
ple, the query shown below corresponds to an operation performed on a module

Enabling the Reuse of Stored Model Transformations Through Annotations 53

transformation unit (self in the code) that lists all the properties with all their
values of a specific rule.
self . rule−>select (r | r . tuaName = ’Rule1 ’) . property−>

collect (p | Tuple { name = p . propertyDefinition . name , value = p . value })

Querying Repositories of Transformations: Given a repository of anno-
tated transformations, the process of querying it to retrieve transformation units
with specific properties requires: (1) executing the previously described injec-
tion step for each transformation in the repository and (2) the construction
of an index model (this index model, which can be considered equivalent to a
megamodel, contains links to instance models of our DSL). It is automatically
generated in the step 3.2 of Fig. 4, and it contains links to models created with
our DSL.

Once the index model is available, we can use OCL queries over it in order
to make rich searches over the repository (step 3.3 in Fig. 4). We can also obtain
some information about functional and non-functional properties along with
information represented by the transformation models (e.g., metamodels cov-
erage or rule structure). Therefore, many different queries can be performed
in order to obtain: rules with a specific value (or value range) of a requested
property, modules that have some annotations related to an application domain,
catalogue properties which are used more often than others, etc.

For example, the following OCL query could be used for obtaining the trans-
formation units (modules in this example) in the index model (TUAIndex) that
transform UML class diagram models to relational database models.
TUAIndex ! Index−>select (t | t . oclIsTypeOf (tuaproperties : : Module))

−>select (m | m . moduleRef . oclAsType (atl : : Module) . inModels
−>exists (inm | inm . metamodel . name = ’ ClassDiagram ’) and
m . moduleRef . oclAsType (atl : : Module) . outModels
−>exists (outm | outm . metamodel . name = ’ Re l a t i ona l ’))

Then, over this collection, it is possible to find which of these selected trans-
formation units have annotations about the ratioOfTables property with a low
value and about the understandability property with a high value.
collection−>select (t | t . property

−>exists (p1 , p2 | p1 . propertyDefinition . name = ’ rat ioOfTab le s ’
and p1 . value = ’ low ’
and p2 . propertyDefinition . name = ’ unde r s t andab i l i t y ’
and p2 . value = ’ high ’))

Note that a library of frequently used OCL queries can be provided in top
of our approach in order to simplify the search tasks of developers. Moreover,
once the transformations are integrated in an index model, it would be possible
to use other query facilities over it, or use other existing infrastructures for the
management of megamodels as MoScript [11].

5 Tool Support

In order to validate the feasibility of our approach, here we describe an Eclipse-
based prototype implementation (http://acg.ual.es/tua) that includes the cre-
ation of textual and graphical editors for our DSL, the adaptation of our DSL

http://acg.ual.es/tua

54 J. Criado et al.

to connect it to ATL transformations, the enhancement of the generated ecore
editor, and facilities for the integration with GitHub and for query execution.

5.1 DSL and Editors

The metamodel shown in Sect. 3 is adapted to the case of ATL in the following
way: (1) Module elements are linked to the Global Model Management meta-
model for ATL [3], in order to store information about input/output metamod-
els, input/output models, etc. (2) Rule elements are connected with the ATL
metamodel to represent the internal structure of each rule (type, input/output
patterns, conditions, OCL expressions, etc.).

Fig. 5. Snapshot of the graphical editor for our DSL

As discussed in Sect. 3, we have provided textual and graphical syntaxes for
our DSL. Editors for these syntaxes are provided by using the Eclipse Xtext1

and Sirius2 tools, respectively.
The default generated editors have been modified to assist in the definition

of property and annotation values. This helps to create and visualize together
the catalogue property definitions, the property annotations, and the relations
between properties and property definitions (see Fig. 5). “Recommended” values
are automatically represented in green whereas the “not recommended” values
are represented in red, and the neutral ones in blue. Finally, our tool allows the
user to define OCL queries to search in the repository for transformations (or
rules) based on their functional and non-functional properties.

1 https://eclipse.org/Xtext/.
2 http://eclipse.org/sirius/.

https://eclipse.org/Xtext/
http://eclipse.org/sirius/

Enabling the Reuse of Stored Model Transformations Through Annotations 55

5.2 Integration in GitHub

In order to facilitate the adoption of our annotation approach, we have decided
to use a GitHub project as the repository for annotated model transformations.
This way, annotated model transformations will be directly stored in GitHub
(step 2 in Fig. 4) while a service will be put in place in order to allow the utiliza-
tion of the metadata. Concretely, we have used the existing Eclipse plugin for
“git”, which permits the synchronization of the repository with our workspace.
Then, from the obtained ATL transformations, we execute an operation in charge
of injecting the annotated transformations into the transformation and annota-
tion models (Fig. 6). The “git” plugin also allows us to upload new annotated
transformations, commit modifications or perform update proposals.

Fig. 6. Inject all annotated transformations from GitHub

Using a GitHub repository for storing the annotated model transformations
has some remarkable benefits: (a) it offers a well-known environment that makes
very easy to upload or modify transformations, independently of the transforma-
tion language, via pull requests; (b) it provides an API to execute basic queries
about the stored files, about the contributing users or about other metadata;
(c) it gives a tracking system of the problems that may arise in the development of
model transformations (through the use of “issues”); (d) it includes the possibil-
ity of reviewing the code by adding annotations anywhere in the transformation
files; (e) it offers a display of the branches to check the progress and versions of
model transformations; and (f) it gathers a lot of information about each user’s
participation in the development and improvement of the transformations.

This repository is also intended to store the catalogues of properties devel-
oped by the community, encouraging the reuse and the collaborative improve-
ment of these elements. However, this kind of repository has some shortcomings.
Our repository is intended to store only ATL files, so we must manage the upload
operations and limit the repository tracking by using a “.gitignore” configura-
tion file. In addition, GitHub does not implement a specific functionality for
managing models or model transformations. Thus, if we want to perform some
kind of merge or comparison operation (as our query operations), we have to
implement it into a tool or a service outside the repository.

56 J. Criado et al.

6 Related Work

Storing and searching source code of general purpose languages for reuse is a
subject largely studied in the software engineering community. Recent contribu-
tions include [18] where the authors present a search approach for retrieving code
fragments based on code semantics, [15] where the search is specified by using
test cases, or [16] focused on the relation between relevant retrieved functions.

Similar to them, our approach allows us to query the repository for appropri-
ate transformation code fragments. However, we follow a different approach. By
storing annotated transformations we take advantage of domain-specific knowl-
edge to perform more complex and complete searches.

Regarding the use of repositories for storing model transformations, most of
the existing approaches are focused on the management and storage of
models and usually they only allow the definition and storage of very basic
structural metadata. AM3 [3], EMFStore [12], or MORSE [6] just store infor-
mation about the model structure through metamodel references. Nevertheless,
the global metadata that [3] could associate to model transformation artifacts
is interesting and it has been improved in this paper. Other approaches such as
ModelCVS [10] and AMOR [2] extract automatic and predefined data from the
metamodels to use it as a knowledge base for querying and merging operations.

As for the description of model transformations, in [19] the authors present
an extension of the QVT-r language which is able to express alternatives (and
their impact on non-functional properties) in the design of transformations. The
concept of quality-driven model transformations is also addressed in [7] where
design guides are proposed to define model transformations with “alternatives”
based on non-functional properties. Our approach applies these ideas to the
problem of model transformation reuse where the alternatives can come from
different independent sources.

7 Conclusions and Future Work

We have presented a new DSL specially conceived for describing existing model
transformation in terms of their functional and non-functional properties. This
DSL along with a semi-automatic annotation process facilitates the reusability of
model transformations by enabling the capability of searching for transformation
artifacts fulfilling the requirements of a given developer.

As a future work, we would like to explore how our DSL can be used to search
for combinations of transformations that may be chained to solve a transforma-
tion problem for which a direct transformation is not available Another improve-
ment would be to associate the annotations with weaving models [3] in addition
to model transformations. We also intend to reuse existing algorithms for quali-
tative analysis in goal-oriented requirements engineering to help choose the best
possible transformation when none is a perfect match for the designer’s goal. At
the tool level, we plan to improve the edition and definition of the annotations
including code-completion and syntax compilation features as well.

Enabling the Reuse of Stored Model Transformations Through Annotations 57

Acknowledgments. Thisworkwas fundedby theEUERDFand the SpanishMINECO
under Project TIN2013-41576-R, the Spanish MECD under a FPU grant (AP2010-3259),
and the Andalusian Regional Government (Spain) under Project P10-TIC-6114.

References

1. The ATL Transformation ZOO. http://www.eclipse.org/atl/atlTransformations/
2. Altmanninger, K., Kappel, G., Kusel, A., Retschitzegger, W., Seidl, M.,

Schwinger, W., Wimmer, M.: Amor-towards adaptable model versioning. In: 1st
International Workshop on Model Co-Evolution and Consistency Management, in
Conjunction with MODELS, vol. 8, pp. 4–50 (2008)

3. Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the large and
modeling in the small. In: Aßmann, U., Akşit, M., Rensink, A. (eds.) MDAFA
2003. LNCS, vol. 3599, pp. 33–46. Springer, Heidelberg (2005)

4. Cuadrado, J.S., Molina, J.G., Tortosa, M.M.: RubyTL: a practical, extensible
transformation language. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006.
LNCS, vol. 4066, pp. 158–172. Springer, Heidelberg (2006)

5. France, R.B., Bieman, J., Cheng, B.H.C.: Repository for model driven development
(ReMoDD). In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 311–317.
Springer, Heidelberg (2007)

6. Holmes, T., Zdun, U., Dustdar, S.: Morse: a model-aware service environment. In:
APSCC 2009, pp. 470–477. IEEE (2009)

7. Insfran, E., Gonzalez-Huerta, J., Abrahão, S.: Design guidelines for the devel-
opment of quality-driven model transformations. In: Petriu, D.C., Rouquette, N.,
Haugen, Ø. (eds.) MODELS 2010, Part II. LNCS, vol. 6395, pp. 288–302. Springer,
Heidelberg (2010)

8. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: Atl: a model transformation tool.
Sci. Comput. Program. 72(1), 31–39 (2008)

9. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual
concrete syntaxes in model engineering. In: GCPE 2006, pp. 249–254. ACM (2006)

10. Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger, W.,
Schwinger, W., Wimmer, M.: On models and ontologies - a semantic infrastructure
supporting model integration. In: Modellierung 2006, 22.-24. März 2006, Innsbruck,
Tirol, Austria, Proceedings, pp. 11–27 (2006)

11. Kling, W., Jouault, F., Wagelaar, D., Brambilla, M., Cabot, J.: MoScript: a DSL
for querying and manipulating model repositories. In: Sloane, A., Aßmann, U.
(eds.) SLE 2011. LNCS, vol. 6940, pp. 180–200. Springer, Heidelberg (2012)

12. Koegel, M., Helming, J.: EMFStore: a model repository for EMF models. In: ICSE
2010, pp. 307–308. ACM (2010)

13. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transformation language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063,
pp. 46–60. Springer, Heidelberg (2008)

14. Kusel, A., Schönböck, J., Wimmer, M., Retschitzegger, W., Schwinger, W.,
Kappel, G.: Reality check for model transformation reuse: The atl transformation
zoo case study. In: AMT@ MoDELS (2013)

15. Lemos, O.A.L., Bajracharya, S.K., Ossher, J., Morla, R.S., Masiero, P.C., Baldi, P.,
Lopes, C.V.: Codegenie: using test-cases to search and reuse source code. In: ASE
2007, pp. 525–526. ACM (2007)

16. McMillan, C., Grechanik, M., Poshyvanyk, D., Xie, Q., Fu, C.: Portfolio: finding
relevant functions and their usage. In: ICSE 2011, pp. 111–120. IEEE (2011)

http://www.eclipse.org/atl/atlTransformations/

58 J. Criado et al.

17. OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification,
Version 1.1, January 2011

18. Reiss, S.P.: Semantics-based code search. In: ICSE 2009, pp. 243–253. IEEE (2009)
19. Solberg, A., Oldevik, J., Aagedal, J.Ø.: A framework for QoS-aware model trans-

formation, using a pattern-based approach. In: Meersman, R. (ed.) OTM 2004.
LNCS, vol. 3291, pp. 1190–1207. Springer, Heidelberg (2004)

20. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order
model transformations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-
FA 2009. LNCS, vol. 5562, pp. 18–33. Springer, Heidelberg (2009)

21. van Amstel, M.F., van den Brand, M.: Using metrics for assessing the quality of
ATL model transformations. In: MtATL 2011, vol. 742, pp. 20–34 (2011)

22. Vignaga, A.: Measuring atl transformations. MaTE. Department of Computer Sci-
ence, Universidad de Chile, Technical report, Technical report (2009)

Reusable Model Transformation
Components with bentō

Jesús Sánchez Cuadrado(B), Esther Guerra, and Juan de Lara

Modelling and Software Engineering Research Group,
Universidad Autónoma de Madrid, Madrid, Spain

jesus.sanchez.cuadrado@uam.es

http://www.miso.es

Abstract. Building high-quality transformations that can be used in
real projects is complex and time-consuming. For this reason, the ability
to reuse existing transformations in different, unforeseen scenarios is very
valuable. However, there is scarce tool support for this task.

This paper presents bentō, a tool which supports the development and
execution of reusable transformation components. In bentō, a reusable
transformation is written as a regular ATL transformation, but it uses
concepts as meta-models. Reuse is achieved by binding such concepts to
meta-models, which induces the transformation adaptation. Moreover,
composite components enable chaining transformations, and it is possible
to convert an existing transformation into a reusable component. Bentō
is implemented as an Eclipse plug-in, available as free software.

Keywords: Model transformation · Transformation reuse · Compo-
nents · ATL

1 Introduction

Model transformation technology is the enabler of automation in Model-Driven
Engineering (MDE), allowing model refactorings, optimizations, simulations and
language conversions. However, developing a transformation from scratch is com-
plex and error prone, even when specialized languages are used [6]. Thus, the
reuse of existing high-quality transformations should be fostered, to amortize
the effort invested in their development. One way to achieve this goal is to
develop reusable transformation libraries, as it is common with general-purpose
languages (e.g., ready to use Java libraries packaged as a .jar).

There are different reuse approaches for model transformations, ranging from
reusing single rules (e.g., rule inheritance [12]) to reusing complete transforma-
tions (e.g.,superimposition [11] or phasing [7]). However, most are type-centric,
in the sense that a transformation cannot be reused for meta-models different
from the ones used by the original transformation, thus limiting the reuse pos-
sibilities. There are some exceptions though, like [8] and [10], which use model
subtyping and genericity respectively to define more reusable transformations.
c© Springer International Publishing Switzerland 2015
D. Kolovos and M. Wimmer (Eds.): ICMT 2015, LNCS 9152, pp. 59–65, 2015.
DOI: 10.1007/978-3-319-21155-8 5

60 J.S. Cuadrado et al.

Other approaches [1] rely on transformation repositories and meta-model match
and comparison techniques. However, they do not provide mechanisms to make
transformations more reusable. Altogether, reuse of transformations is scarce in
practice, as concluded in [3].

Fig. 1. Component instantiation

In the last few years, we have
developed a transformation reuse app-
roach inspired by generic program-
ming [9] (e.g., templates in the C++
style) that we have implemented in a
tool called bentō. The tool allows the
definition of transformation compo-
nents consisting of a transformation
template, one or more concepts/meta-
models, and a description of the
component using a dedicated domain-
specific language (DSL). Concepts are
used as a means to describe the struc-
tural requirements that a meta-model needs to fulfil to allow the instantiation
of the component with the meta-model. In particular, to instantiate the com-
ponent for a meta-model, a binding mapping the concept elements to concrete
meta-model elements (i.e., classes and features) should be written using another
DSL. This binding adapts the transformation template to yield a new transfor-
mation ready to use with the concrete meta-model. Figure 1 shows this process.
In addition, composite components permit combining simpler components using
transformation chaining.

Our approach has advantages w.r.t. existing proposals: (i) it is more flexible,
since it permits applying components for meta-models that are structurally very
dissimilar to the concept; (ii) it does not require adapting the bound meta-models
and their instance models, but our template rewriting approach generates a new
transformation that can be readily applied to them, improving performance;
(iii) no special traceability handling is needed; and (iv) our component model
allows the precise description of components and provides a systematic way of
reuse.

The aim of this tool-demo paper is to describe the architecture of bentō and
its features from the perspective of the tool user. A summary of the concrete
demo presented at the conference is available online1. The concepts behind the
component model underlying bentō have been reported elsewhere [4,5]. Nev-
ertheless, the tool has been improved since its first versions with new features
such as support for in-place transformations, validation, integration with a static
analyser [6]2, and a REST-based repository to store and retrieve components.

Paper Organization. Section 2 overviews bentō’s architecture, and the follow-
ing ones show its main use cases: developing reusable components (Sect. 3),
reusing components (Sect. 4), making a reusable component out of an existing
1 Summary of the demo: http://www.miso.es/tools/bento demo icmt2015.pdf.
2 anATLyzer: http://www.miso.es/tools/anATLyzer.html.

http://www.miso.es/tools/bento_demo_icmt2015.pdf
http://www.miso.es/tools/anATLyzer.html

Reusable Model Transformation Components with bentō 61

Fig. 2. bentō architecture

Table 1. Features of bentō

Dimension bentō feature Description

Abstraction Concept Plain Ecore meta-model with optional annotations

Specialization Binding A DSL to map concepts and meta-models

Template adaptation HOT to rewrite a template according to a binding

Binding validator It validates the syntactic correctness of bindings

Selection Tags, documentation Markdown documentation and attached tags

Repository REST-based repository and search wizard

Existing artefacts Reverse engineering process supported by a wizard

Integration Component definition A DSL to define components and their dependencies

Standard structure Structure and local installation of components

Composite components Aggregated components

transformation (Sect. 5), and selecting components (Sect. 6). Section 7 finishes
with the conclusions and future work.

2 Tool Architecture

Bentō is an Eclipse-plugin. Its architecture, depicted in Fig. 2, consists of a com-
ponent model, a reverse engineering wizard, and a remote repository facility.
Implementation-wise, the two main elements of the component model are anAT-

Lyzer to statically analyse ATL transformations, and the Template Adapter
which is able to solve non-trivial heterogeneities between concepts and meta-
models (see Sects. 3 and 4). The DSLs to specify components and bindings has
been defined using EMFText. In addition, bentō includes a reverse engineering
wizard to convert an existing transformation into a reusable component (see
Sect. 5), and a REST-based repository to share components (see Sect. 6).

As stated by Krueger [2], the practical use of components should consider
four dimensions: abstraction, specialization, selection and integration. Table 1
summarizes the features of bentō according to these dimensions.

3 Developing Components

As a running example, let us consider the visualization of object-oriented models
by means of a transformation to the DOT format. This transformation will be

62 J.S. Cuadrado et al.

Fig. 3. Definition of component in bentō

similar for a range of object-oriented languages such as Ecore, KM3, UML or
even Java. Hence, we create a reusable transformation component called oo2dot

that can be specialized for such languages.
A transformation component is made of a transformation template, one or

more concepts or meta-models over which the template is defined, and a descrip-
tion of the component. This is shown in Fig. 3. These artefacts are organized
according to the structure shown in (1). In this case, the transformation has a
source concept (OO.ecore) and a target meta-model (DOT.ecore). A concept is just
a regular Ecore meta-model (2), but it only contains the elements required by the
transformation, thus removing “accidental elements” for this particular scenario
like configuration attributes (e.g., transient in Ecore) or features that we do not
intend to visualize (e.g., annotations in Ecore). The transformation template
is a regular ATL transformation. Moreover, bentō uses anATLyzer to statically
analyse the transformation templates in order to provide some guarantee of their
correctness, as illustrated by the error markers in (3). The component specifica-
tion, shown in (4), describes the inputs and outputs of the transformation, since
it is a single component.

Components can be exported to a remote component repository using the
Eclipse export menu (see more details in Sect. 6).

4 Reusing Components

In order to instantiate a component for a concrete meta-model, the component
must be specialized by defining a binding from the elements in the concept to ele-
ments of the meta-model. Figure 4(1) shows part of the binding from the OO con-
cept to the Ecore meta-model. The binding is used to automatically rewrite the
original template, so that it becomes able to transform models conforming to the
bound meta-model. A distinguishing feature of our tool is that it allows sophis-
ticated adaptations that bridge many heterogeneities between the concept and
the meta-model. This is possible due to the precise typing information gathered
by anATLyzer. A detailed account of the binding features and solvable hetero-
geneities is given in [4].

Reusable Model Transformation Components with bentō 63

Fig. 4. Binding and composite component definition in bentō

Figure 4(2) shows how to instantiate and execute a component. We need
to define a composite component which imports the component to instantiate
(oo2dot) and the binding, and uses the apply command to adapt the component
according to the binding and execute it on the given source/target models. Com-
posite components also support sequencing components to create transformation
chains.

5 Reverse Engineering Existing Transformations

To enable the reuse of existing ATL transformations, bentō provides a reverse
engineering facility that converts a transformation whose meta-models are “hard-
coded” into a concept-based transformation component. This facility uses anAT-

Lyzer to statically determine the elements of the original meta-models that the
transformation does not use, and then, it extracts a concept where such elements
are pruned. In the process, a set of automated or manual refactorings can be
applied to improve the quality of the extracted concept, which may imply the
automatic co-evolution of the transformation.

From the user perspective, there is a wizard to configure the process, apply
refactorings and automatically generate the component specification.

In the running example, instead of developing the oo2dot transformation
from scratch, we could convert the KM32DOT transformation available in the
ATL transformation zoo into a reusable component. This transformation has
418 LOC, 18 helpers and 7 rules; thus, its reuse saves a lot of effort. Figure 5
shows the wizard to configure the conversion, which includes links to guide the
steps to perform.

6 Selecting Components

The ability to search and select components is important in any reuse approach,
being typically enhanced by concise abstractions that can be easily understood

64 J.S. Cuadrado et al.

Fig. 5. Reverse engineering of KM32DOT

Fig. 6. Searching the repository by name and tags

and compared [2]. In our case, given a transformation component, it is easy
to examine its concepts (i.e., its interface) to decide whether they match the
meta-models at hand.

In addition, to facilitate the publication and retrieval of components, we have
implemented a simple REST service to publish and search components. Compo-
nents may have tags attached, which can be used in the search. Once a compo-
nent is selected, it is automatically installed in a local project (bento.local.repo)
and can be referenced by other projects using the URI bento:/componentName.
When a component uses a URI of this kind, if the corresponding component has
not already been installed, it is automatically sought in the remote repository by
name. This feature is akin to Maven dependency resolution, and is intended to
facilitate the maintenance of composite components. Figure 6 shows the Eclipse
import wizard to search and install components.

7 Conclusions

In this paper, we have presented bentō, a tool supporting model transforma-
tion components. It includes features like flexible template adaptations, reverse

Reusable Model Transformation Components with bentō 65

engineering of existing transformations into reusable components, a REST-based
repository and component validations. To the best of our knowledge, this is the
first component model for model transformations.

Bentō is available as free software (http://github.com/jesusc/bento) and as
a ready to install Eclipse-plugin (http://www.miso.es/tools/bento.html).

Currently, Java programs can be packaged as bentō components, but these
cannot be adapted. We are working on the possibility to package and adapt other
MDE artefacts as bentō components, like Acceleo generators.

Acknowledgements. This work was supported by the Spanish Ministry of Economy
and Competitivity with project Go-Lite (TIN2011-24139), the R&D programme of the
Madrid Region with project (SICOMORO S2013/ICE-3006), and the EU commission
with project MONDO (FP7-ICT-2013-10, #611125).

References

1. Basciani, F., Di Ruscio, D., Iovino, L., Pierantonio, A.: Automated chaining of
model transformations with incompatible metamodels. In: Dingel, J., Schulte, W.,
Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp.
602–618. Springer, Heidelberg (2014)

2. Krueger, C.W.: Software reuse. ACM Comput. Surv. 24, 131–183 (1992)
3. Kusel, A., Schönböck, J., Wimmer, M., Kappel, G., Retschitzegger, W.,

Schwinger, W.: Reuse in model-to-model transformation languages: are we there
yet? In: SoSyM (2013)

4. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: A component model for model
transformations. IEEE Trans. Softw. Eng. 40(11), 1042–1060 (2014)

5. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Reverse engineering of model trans-
formations for reusability. In: Di Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS,
vol. 8568, pp. 186–201. Springer, Heidelberg (2014)

6. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Uncovering errors in ATL model
transformations using static analysis and constraint solving. In: 25th IEEE ISSRE,
pp. 34–44 (2014)

7. Sánchez Cuadrado, J., Molina, J.G.: Modularization of model transformations
through a phasing mechanism. SoSyM 8(3), 325–345 (2009)

8. Sen, S., Moha, N., Mahé, V., Barais, O., Baudry, B., Jézéquel, J.-M.: Reusable
model transformations. SoSyM 11(1), 111–125 (2010)

9. Stepanov, A., McJones, P.: Elements of Programming. Addison Wesley, Reading
(2009)

10. Varró, D., Pataricza, A.: Generic and meta-transformations for model transforma-
tion engineering. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML
2004. LNCS, vol. 3273, pp. 290–304. Springer, Heidelberg (2004)

11. Wagelaar, D., Straeten, R.V.D., Deridder, D.: Module superimposition: a com-
position technique for rule-based model transformation languages. SoSyM 9(3),
285–309 (2010)

12. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J.,
Schwinger, W., Kolovos, D.S., Paige, R.F., Lauder, M., Schürr, A., Wagelaar, D.:
Surveying rule inheritance in model-to-model transformation languages. JOT
11(2), 1–46 (2012)

http://github.com/jesusc/bento
http://www.miso.es/tools/bento.html

Cost-Effective Industrial Software Rejuvenation
Using Domain-Specific Models

Arjan J. Mooij1(B), Gernot Eggen3, Jozef Hooman1,2,
and Hans van Wezep3

1 Embedded Systems Innovation by TNO, Eindhoven, The Netherlands
{arjan.mooij,jozef.hooman}@tno.nl

2 Radboud University Nijmegen, Nijmegen, The Netherlands
3 Philips Healthcare, Best, The Netherlands

{gernot.eggen,hans.van.wezep}@philips.com

Abstract. Software maintenance consumes a significant and increasing
proportion of industrial software engineering budgets, only to maintain
the existing product functionality. This hinders the development of new
innovative features with added value to customers. To make software
development efforts more effective, legacy software needs to be reju-
venated into a substantial redesign. We show that partially-automated
software rejuvenation is becoming feasible and cost-effective in industrial
practice. We use domain-specific models that abstract from implemen-
tation details, and apply a pragmatic combination of manual and auto-
mated techniques. We demonstrate the effectiveness of this approach by
the rejuvenation of legacy software of the Interventional X-ray machines
developed by Philips Healthcare.

1 Introduction

Software maintenance is crucial to keep up with technology developments such
as technology changes (e.g., the shift from single-core to multi-core processors)
and technology obsolescence (e.g., the phasing out of the Microsoft Windows XP
operating system). Embedded software is often reused in product lines that are
developed over a long period of time, but maintaining the existing functionality
consumes an increasing proportion of software engineering budgets. This hinders
the development of new innovative features with added value to customers.

In industrial practice, it is often considered too costly and risky to make
changes to much of the software. As a consequence, software changes are often
made by adding workarounds and wrappers to the legacy software. This increases
the technical debt [3], such as the size and incidental complexity of the code base,
thus making future development even more costly and risky.

Developers usually understand that, sooner or later, legacy software must
be rejuvenated to a redesign with a long-term focus; gradual refactoring [10]
is not enough. However, a rejuvenation is typically postponed by individual
projects due to the time, risks and costs involved. Manual green-field redesign
projects often finish too late, require significant additional resources, and are
c© Springer International Publishing Switzerland 2015
D. Kolovos and M. Wimmer (Eds.): ICMT 2015, LNCS 9152, pp. 66–81, 2015.
DOI: 10.1007/978-3-319-21155-8 6

Cost-Effective Industrial Software Rejuvenation 67

Fig. 1. Software structure of field service procedures for interventional X-ray

difficult to combine with the short-term innovation needs in highly-dynamic
businesses.

In this paper we show that partially-automated software rejuvenation is
becoming feasible and cost-effective in industrial practice. We demonstrate this
using our experiences with the field service procedures of the International
X-ray machines developed by Philips Healthcare. The used approach is based on
domain-specific models and a pragmatic combination of techniques.

Overview. Sect. 2 introduces the industrial case. The approach is described in
Sect. 3, followed by details about reverse engineering in Sect. 4 and forward engi-
neering in Sect. 5. Afterwards, Sect. 6 treats the industrial verification. Section 7
discusses related work, and Sect. 8 draws some conclusions.

2 Industrial Rejuvenation Case

Philips Healthcare develops a product line of interventional X-ray machines.
Such machines are used for minimally-invasive cardiac, vascular and neurological
medical procedures, such as placing a stent via a catheter. Surgeons are guided
by real-time images showing the position of the catheter inside the patient.

The calibration and measurement of the X-ray beams is performed by field
service engineers. The machines support their work using an integrated collection
of interactive field service procedures. These procedures are based on a workflow,
in which some steps are automatically performed by the system, and other steps
require manual input or action from the service engineers.

2.1 Legacy Software

The software for the field service procedures is structured based on a common
separation between user interface and logic; see Fig. 1. For each procedure, the
client consists of one workflow and a collection of screens of a graphical user
interface (GUI). Each screen consists of a number of GUI elements. The server
provides the logic for the automated workflow steps. As depicted at the left-hand
side of Fig. 2, the client is implemented using:

68 A.J. Mooij et al.

Fig. 2. Rejuvenation chain for the client software from Fig. 1

– three types of XML [2] configuration files (210 kLOC)
– custom, incidental fragments of C# code (10 kLOC)
– stack of custom C++ frameworks (1240 kLOC)

The frameworks are procedure independent and extended over many years.
Each specific procedure is configured using the following XML files:

– for each GUI screen, 1 XML file with the static structure (i.e., the placement of
GUI elements on the screen) and dynamic behavior (i.e., what should happen
if buttons are pressed, items are selected, etc.);

– 1 XML file with links between GUI elements and server identifiers;
– 1 XML file with the workflow and references to associated GUI screens.

The XML files are edited using textual editors, which is time consuming and
error prone; see also [9]. The incidental fragments of C# code are procedure
specific and are used as workarounds for some framework limitations.

2.2 Rejuvenation Goal

The goal of Philips Healthcare for the rejuvenation of the client software is to
make the creation and maintenance of field service procedures more efficient. In
particular, there is a wish to eliminate the XML configuration files, and to reduce
the large amount of custom framework code (which also needs to be maintained).

The rejuvenated software should be based on well-maintainable C++ code,
and off-the-shelf components for common aspects like GUI elements. The main
constraint is that the server logic should not be affected by the rejuvenation.

Cost-Effective Industrial Software Rejuvenation 69

Fig. 3. Rejuvenation of field service procedures

2.3 Business Case

Philips Healthcare continuously develops new innovations for their products. One
of these ongoing developments has an impact on the implementation of the field
service procedures. However, experienced developers from Philips Healthcare
gave high effort estimations for making the required modifications. To make this
manageable, the original plan was to divide them over two manual projects; see
Fig. 3(a). The first project takes 100 man-weeks and creates a hybrid solution
that fits the new technologies with minimal effort. However, this is a typical
workaround solution that increases the incidental complexity. The second project
takes 520 man-weeks, and should establish the full rejuvenation.

Based on a model-driven approach (see Sect. 3), we have jointly estimated
that the full rejuvenation can be completed in the time that was originally
planned for the hybrid solution alone (100 man-weeks). As a result the desired
rejuvenation could be combined with a regular development project. Thus a
strong cost-effective [12] business case has been made for the rejuvenation.

In industry, rejuvenation projects have the reputation of finishing too late.
This project took approximately 90 man-weeks over a period of 1 year. It has
been carried out by 1 researcher from TNO and 2 developers from Philips, all
working 75 % of their time on this project.

3 Rejuvenation Approach

The rejuvenation approach that we have used is based on three principles. These
range from using multiple information sources and extraction techniques, via the
use of domain-specific models, to an incremental way-of-working.

3.1 Combination of Information Sources and Techniques

There are various valuable sources of information about legacy software:

– documentation: human-readable descriptions and diagrams, but usually incom-
plete and outdated;

– developers: undocumented insights and rationales, but the original developers
may not be available;

70 A.J. Mooij et al.

– code base: very precise, but it is difficult to extract valuable knowledge instead
of implementation details;

– running software: the precise external behaviors can be observed, but it is
difficult to be complete.

To make reverse engineering effective in industrial practice, we use all sources
of information. Some information can more effectively be processed automati-
cally, and others manually; see also [7]. To be cost-effective, we aim for a prag-
matic combination of automated and manual techniques.

Reverse engineering of code cannot be fully automated [15]. A particular
challenge is to distinguish valuable domain-specific knowledge from implemen-
tation details. However, users may have started to rely on certain undocumented
implementation decisions in the legacy software.

3.2 Domain-Specific Models

Legacy software was usually developed using traditional methods where the ini-
tial development stages focus on informal, natural-language documents. Only in
the implementation stage, formal artifacts like code are developed [6]. Currently,
software can be developed based on models that focus on the valuable business
rules. The implementation details are hidden in code generators.

We build a rejuvenation chain that follows the three steps from Fig. 3(b). (1)
The first step is to extract (Sect. 4) the valuable business rules from the available
information sources, and store them in domain-specific models that abstract
from implementation details. (2) The second step is to create a model-driven
development environment that can generate (Sect. 5.2) the redesigned software
from redesigned domain-specific models. (3) The last step in our approach is to
transform (Sect. 5.3) the extracted models into the generation models.

The used domain-specific models and techniques should be tailored to the
specific application domain. The extract and generate steps (including the asso-
ciated models) can be developed in parallel. The transform step links these mod-
els, and hence should be developed afterwards. This order helps to avoid that
the rejuvenated software resembles the legacy software too much. Such a model-
driven approach is now becoming feasible, because of the improved maturity of
tools for model-driven software engineering.

3.3 Incremental Approach

The rejuvenation of legacy software requires a large development effort. In our
experience it is important to quickly show successful results to all stakeholders,
including higher management, system architects and the developers involved.
An incremental way-of-working is pivotal in this respect; see also [8,14,18].

In our industrial case, the natural dimension for an incremental approach
is the collection of supported procedures. We have addressed procedures in the
following order:

Cost-Effective Industrial Software Rejuvenation 71

Fig. 4. Schema for all XML files

Fig. 5. Fragment of an XML file for a GUI

1. some typical procedures (to identify the general patterns);
2. some complex procedures (to identify the variation points);
3. the remaining procedures.

During the first two phases, the complete rejuvenation chain (i.e., steps (1), (2)
and (3) of Fig. 3(b)) is developed and extended. In the third phase the reju-
venation chain is quite stable, which leads to an increase in the speed of the
rejuvenation project.

4 Reverse Engineering

One of the first steps in software rejuvenation is to reverse engineer the legacy
software. The goal is to extract valuable domain-specific knowledge that needs
to be preserved, instead of information about how the legacy software works
internally.

4.1 Extract Information Model

In the legacy software, the field service procedures are described using many
XML files; see Sect. 2.1. The three types of XML files use the same generic
XML schema, which is depicted in Fig. 4. A fragment of such a file is shown in
Fig. 5. The central element is DataObject, which has an ObjectType and some
Attributes. Each Attribute has a data type (called PMSVR) and two identi-
fiers: Name and the combination of Group and Element. The Name is plain
text, whereas Group and Element are hexadecimal numbers. The value of each
Attribute is described using either a single DataObject, an Array of DataOb-
jects, or a PlainTextValue.

72 A.J. Mooij et al.

This XML schema is too generic to describe the actual structure of the infor-
mation. There is a lot of documentation available about the intended informa-
tion models, based on the ObjectType of DataObjects and the two identifiers of
Attributes. This base is still valid, but for the rest the documentation turns out
to be outdated.

We have reconstructed the three used information models from the three
types of XML files. Using an off-the-shelf XML parser for Java, we have parsed
the XML files, and recorded the nesting structure: for each DataObject we record
the contained Attributes, and for each Attribute we record the data type and the
contained DataObjects. In the terminology of [16], this activity corresponds to
“model discovery”, although in our case it is not a process model.

The XML files have been edited manually, and hence contain noise. The used
XML schema enforces that the information models are duplicated continuously,
which naturally leads to inconsistencies. For example, various synonyms were
used for the fields ObjectType and PMSVR; the legacy frameworks were robust
enough to handle them. Sometimes the two attribute identifiers and the data
types were even conflicting. While extracting the information model, we have
stored all used patterns, and checked them automatically for inconsistencies.
These inconsistencies have been resolved manually in the information model.

Before processing the XML files any further, we have parsed them again and
automatically removed the duplicated data about the information model. As a
pre-processing step we have also automatically applied the resolutions for the
conflicting attribute identifiers, using the combination of Group and Element
as the leading identifier. Some other encountered inconsistencies have also been
addressed, such as data values of type String where the number of double quotes
could be zero, one or two.

The resulting extraction from XML files to pre-processed data is fully auto-
mated, but the specific techniques for extracting the information model and
addressing the noise and inconsistencies were custom developments. We have
developed them incrementally, based on the specific issues that were encoun-
tered in the XML files. In Fig. 2, the extracted information models are depicted
at the top of the second column. A fragment of the reconstructed information
model for the GUI is depicted in Fig. 6.

The extracted information model forms the meta-model of a Domain-Specific
Language (DSL [19]) for representing the XML data using Xtext technology.
A few fragments of this representation are depicted in Figs. 7(a) and 7(b). This
is more compact, and looks more human-friendly than the original XML.

4.2 Identify Behavioral Patterns

The information model from Sect. 4.1 is used by the stack of custom C++ frame-
works to define the runtime behaviour of clients at its two external interfaces: the
user interface and the server interface. Given the complexity of these frameworks,
we doubt that this behaviour can be extracted (manually or automatically) from
the code in a cost-effective way. Therefore we have looked for other options.

Cost-Effective Industrial Software Rejuvenation 73

Fig. 6. Fragment of the GUI information model

Fig. 7. DSL representation of the pre-processed data

There is documentation available about the interface between the client and
the server. This consists of a small, generic state machine and many Message
Sequence Charts (MSCs) to illustrate its intended use. The description of the
state machine appears to be up-to-date, but it is too generic to accurately
describe the behavior of specific procedures. Therefore we have focused on the
MSCs.

Most of the MSCs are still valid, so we have used them as base and extended
them in various ways. In the terminology of [16], this is called “model enhance-
ment”. As the legacy software is still operational, we have inspected the logs of
the running software. In addition we have occasionally performed manual inspec-
tions of small code fragments. The few observed deviations from the MSCs have
been repaired in the MSCs, as the legacy software is considered to be leading.

The result is a compact and very valuable description of the external behav-
ior of the legacy software, combining information from several sources. These
enriched MSCs describe how the information model influences the behavior of
the legacy software at both external interfaces. In Fig. 2, the MSCs are depicted

74 A.J. Mooij et al.

at the bottom of the second column. To keep the approach cost-effective, the
applied techniques are manual. It is further work to investigate automation using
process mining [16] or active automata learning [13].

5 Forward Engineering

The previous section focuses on the legacy software only. The current section
transforms the legacy software to a new design using techniques for model-driven
software engineering. Before doing so, it first discusses the development of a new
software design; thus following the order described in Sect. 3.2 and depicted in
Fig. 3(b).

5.1 New Software Design

When developing the new software design, the challenge is to avoid being biased
too much by known concepts from the legacy software. Otherwise the rejuve-
nation may lead to almost a copy of the legacy design. This requires a good
knowledge of both modern software designs and the real software requirements
(not just the specific implementation decisions of the legacy software).

As described in Sect. 2.2, the redesign aims for plain C++ code and off-the-
shelf frameworks. For the GUI we have decided to use the Qt framework, which
leads to a design with one class for the static structure of each GUI screen. For
each field service procedure, we use one class that contains the dynamic behavior
and closely follows the structure of its workflow. To keep the code clean, we have
created a small library with reusable code fragments for functionality such as
setting up the client-server interface. This structure is sketched at the right-hand
side of Fig. 2.

As the field service procedures are based on a notion of workflow, we have
considered using a Workflow Management System [17]. We have not done so,
because our focus is on a good integration with the existing server, and our goal is
to reduce the number of frameworks with a limited contribution. In particular the
used workflows are completely sequential and the typical collaboration aspects
of workflow management systems, for example, are not relevant in this case.

5.2 Code Generation for the New Software Design

Our aim was to generate the code for the new software design from models; see
the third column of Fig. 2. For the static GUI structure, we have used Qt models
from which the corresponding code can be generated. The remaining part of the
information model describes the logic that is specific for field service procedures:
the dynamic behavior of GUI elements, the link between GUI elements and server
identifiers, and the workflow. To generate code for that part, we first describe
the essential information by means of a DSL. Using modern technology such as
Xtext, DSLs can be developed quickly; this confirms observations by [21].

Cost-Effective Industrial Software Rejuvenation 75

Fig. 8. Fragment of a redesigned DSL model

Before developing the DSL and code generators, it is useful to first manu-
ally develop a prototype implementation in plain code for a small number of
simple cases, without worrying about models and transformations. Based on the
prototype code and the required external software behavior (described in the
MSCs from Sect. 4.2), the information model for the new design can be identi-
fied. Instead of directly reusing the information models from the legacy software,
this is an opportunity to eliminate unnecessary complexity. The legacy models
are likely to include details about old technologies, workarounds for technology
limitations, unnecessary case analysis, and unnecessary inhomogeneity.

Additionally, the new information model might be simplified by making a
minor change in the interfaces with adjacent components. In the case of the field
service procedures, we have made minor changes in the server from Fig. 1 to solve
issues like inhomogeneous data formats. Such changes reduce the complexity of
the redesigned client software, without making the server software more complex.

A fragment of such a redesigned DSL model is depicted in Fig. 8. We have
aimed for a clean separation between information models with domain-specific
knowledge, and code generators with general implementation patterns. This pro-
vides a kind of technology independence. After a number of field service proce-
dures had already been migrated, we received the request to change the GUI
framework into Qt. The technology independence has enabled us to address this
request with very limited effort.

5.3 Model Transformation for the Legacy Software

Finally the legacy models must be transformed into the redesigned models. Parts
of these models are closely related, but not all. For example, the legacy mod-
els include concepts that deal with internal configuration issues of the custom
frameworks; these are ignored in the transformation. Another big difference is
the link between GUI elements and server identifiers. The legacy models combine
multiple mechanisms for this concept; in some cases there is a direct mapping,

76 A.J. Mooij et al.

and in other cases it is a combination of two subsequent mappings (described
in different XML files). The redesigned models simplify these mechanisms by
enforcing the use of direct mappings only.

In a few cases, there was an intricate interplay between the legacy models
and the incidental C# fragments. It would have been costly to develop a general
transformation for these cases. We have manually provided suitable transforma-
tions for these few cases, which turned out to be very effective.

Developing the model transformation is a manual task, but its execution is
automated. Instead of a model-to-model transformation, we have used a model-
to-text transformation (using Xtext), because the textual representation of the
generated models is better readable than their object-oriented structure; see
also [8]. By generating text, we can also easily exploit the target DSL’s reference
resolution mechanism instead of creating explicit references within models.

6 Industrial Confidence

Having finished the rejuvenation, there are three pressing questions. First of all
how to verify that the legacy and redesigned software have the same external
behavior, secondly the effect on maintainability of the code base, and thirdly
how to continue software development from this moment onward.

6.1 Verification

The rejuvenation approach from Sect. 3 does not guarantee correctness by con-
struction. To gain confidence, we exploit an incremental way of working, which
enables early feedback. In particular we ensure that all generated artifacts (both
models and code) are well-structured; this holds both for final and for interme-
diate results. In all stages, the generated artifacts can easily be inspected by
domain experts to monitor their validity and completeness.

After finishing the rejuvenation, we have assessed the redesigned software
using three techniques:

– compare logs of the legacy and redesigned software after performing the same
field service procedure;

– review the generated models and code base, which is feasible as they are well-
structured;

– execute the legacy set of test cases [12] with good and bad weather scenarios
on the redesigned software.

Although the legacy software and the redesigned software have the same
functionality, the redesigned software behaves much faster thanks to the removal
of several frameworks. This performance improvement has exposed a few bugs
(such as race conditions) in other existing software components.

Cost-Effective Industrial Software Rejuvenation 77

Legacy Redesign
Model-driven Plain code

Information models for the GUI 120 kLOC 52 kLOC —
Generated code for the GUI — — 14 kLOC
Information models for the logic 90 kLOC 7 kLOC —
Generated code for the logic — — 27 kLOC
Handwritten code generator for the logic — 3 kLOC —
Handwritten incidental code 10 kLOC —
Handwritten reusable code 1240 kLOC 5 kLOC

Total 1460 kLOC 67 kLOC 46 kLOC

Fig. 9. Size of the software artifacts

6.2 Maintainability

Maintainability figures are not available yet, but they are often linked to size
and complexity. The redesign eliminates incidental complexity from the stack of
legacy frameworks; it follows natural domain structures, and the code generation
guarantees a consistent style. In Fig. 9 the sizes of the models used in the reju-
venation are summarized, corresponding to the first, third and fourth column of
Fig. 2. The sizes in terms of kLOCs are computed using LocMetric; for source
code we use SLOC-L, and for the other artifacts we use SLOC-P.

As the Qt and Xtext frameworks are off-the-shelf components, we do not
need to maintain them ourselves, and hence they are not mentioned in the table.
Concerning the information models, we distinguish GUI models and logic models.
In the legacy, the GUI models correspond to one type of XML files that covers
both static structure and dynamic behavior; the logic models combine the other
two types of XML files. In the redesign, the GUI models are Qt files that cover
only the static structure, whereas the logic models are the DSL models.

It is interesting to compare the ratio between various numbers in Fig. 9:

– The XML files for the GUI elements (120 kLOC) have been more than halved
to the Qt models (52 kLOC), from which only 14 kLOC code is generated.

– The XML files for the logic of the procedures (90 kLOC) are reduced to 7
kLOC in the Xtext DSL, from which 27 kLOC code is generated.

– The legacy code base (1460 kLOC) is 21 times larger than the model-driven
(67 kLOC) and 31 times larger than the plain code redesign (46 kLOC).

6.3 New Software Development Environment

The original rejuvenation aim of the involved managers was to obtain plain
maintainable code. However, the rejuvenation chain contains a model-driven
development environment for the redesigned software. If further maintenance
and development is going to be performed by manually editing the plain code,
then it is expected that the situation from Sect. 1 will return.

78 A.J. Mooij et al.

The developers have decided to continue in a model-driven way. The models
that we have introduced can be edited conveniently; for the GUI models there
is a graphical editor (Qt designer), and for the logic there is a textual editor
(Xtext). By continuing to generate the code from models, the quality of the
code will not degrade.

A potential downside is that this requires the introduction of new tools in
the existing development environment. Initially, there were concerns about the
learning curve for the developers, but this was no barrier given the modern
Xtext technology. Also there were concerns about the possibilities for debug-
ging code. In practice, the software developers had no problem in developing
at model level, and debugging at code level, because the generated code was
well-structured. The developers have even started to make extensions to the
code generators. This confirms the observation [21] that successful practices in
model-driven engineering are driven from the ground up.

Thus we provide an interesting way to introduce model-driven software engi-
neering in industry. The model-driven environment is developed as a powerful
element in a rejuvenation project. Afterwards, without additional investment,
its value can be evaluated for further software development. By storing both the
models and the generated code in the software repository, the well-structured
generated code always provides an exit-strategy [8] from model-driven software
engineering, if this would be desired at any moment in the future.

7 Related Work

The evolution of legacy software to software that uses embedded DSLs is studied
in [4]. This work uses the Java-based extensible programming language SugarJ,
and gradually replaces larger parts of the legacy software. In particular they
present a technique to find source code locations at which a given embedded
DSL may be applicable. Our work on software rejuvenation focuses on complete
redesigns of a software component (not an evolution but a revolution). Moreover,
in our work the DSLs are a means towards a goal, not a goal in itself.

A similar context is used in [7], re-engineering families of legacy applications
towards using DSLs. In particular they study whether it is worth to invest in
harvesting domain knowledge from the code base. To make our approach cost-
effective, we decided that some information should be obtained from the code
base, and other information from other sources.

The program transformation work in [1] does not aim to introduce DSLs.
They use direct code-to-code transformations, similar to the horizontal arrow
at the bottom of Fig. 3(b). This commercial tool has been applied to many
industrial cases (including real-time applications), in particular in the context
of older programming languages such as Cobol and Fortran. Our work aims for
major software redesigns, where domain-specific abstraction steps are essential
to eliminate the implementation details.

The model-driven software migration approaches from [5,11,20] are based
on source code as information source. The source code analysis extracts models

Cost-Effective Industrial Software Rejuvenation 79

that are more abstract than code, based on generic structures like syntax trees.
Our work uses multiple information sources and analysis techniques. A crucial
ingredient of our approach is the use of domain-specific models, which abstract
from the code and follow the structure of the specific application domain.

8 Conclusion

We have addressed an industrial instance of the software rejuvenation problem.
For the field service procedures, the plan using a model-driven approach was 6
times shorter than the plan using a manual approach. The model-driven plan
has been realized with 10 % less effort than estimated, and combined with a
regular project. The rejuvenation has changed the software design substantially,
and the software developers have embraced the model-driven infrastructure that
was developed to generate the implementation code. The model-driven redesign
is 21 times smaller than the legacy code base. Thus we have shown that a cost-
effective rejuvenation approach is becoming feasible in industrial practice.

The following recommendations form the key ingredients of the applied model-
based rejuvenation approach:

1. work in an incremental way;
2. be pragmatic and aim for partial automation;
3. team up with a large required development project;
4. combine multiple types of information sources;
5. use domain-specific models;
6. eliminate non-essential variation points;
7. generate high-quality well-structured software.

The incremental approach first focuses on the general patterns, then on the
variation points, and finally on the bad weather behavior. Such an approach
helps to avoid introducing too many (non-essential) variation points from the
legacy software. To avoid that the rejuvenated software resembles the legacy
software too much, we separate the analysis of the legacy software from the
development of the new design. In every increment, the transformation between
them is developed as the last step.

This rejuvenation approach is now becoming feasible in industrial practice,
because of the improved maturity of the required tools. Domain-specific lan-
guages, model transformations and code generators can be developed quickly
and easily using modern language workbenches such as Xtext.

We expect that this rejuvenation approach can directly be applied to any
legacy software that combines large frameworks with many configuration files,
possibly also with some small incidental code fragments. As further work we
will consider legacy code in conventional programming languages. This requires
other techniques for reverse engineering, but we expect that the same overall
rejuvenation approach is applicable. We also plan to investigate to which extent
the models with external behavior could be extracted automatically.

80 A.J. Mooij et al.

Acknowledgment. This research was supported by the Dutch national program
COMMIT and carried out as part of the Allegio project. The authors thank Dirk
Jan Swagerman for his trust in this endeavor, and Aron van Beurden and Martien van
der Meij for their technical contributions to the software rejuvenation.

References

1. Baxter, I.D., Pidgeon, C.W., Mehlich, M.: DMS: Program transformations for prac-
tical scalable software evolution. In: Proceedings of ICSE 2004, pp. 625–634. IEEE
Computer Society (2004)

2. Bray, T., Paolia, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
Markup Language (XML) 1.0, 5th edn. W3C recommendation, World Wide Web
Consortium (2008). http://www.w3.org/TR/2008/REC-xml-20081126/

3. de Groot, J., Nugroho, A., Bäck, T., Visser, J.: What is the value of your software?
In: Managing Technical Debt (MTD 2012), pp. 37–44. ACM (2012)

4. Fehrenbach, S., Erdweg, S., Ostermann, K.: Software evolution to domain-specific
languages. In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol.
8225, pp. 96–116. Springer, Heidelberg (2013)

5. Fleurey, F., Breton, E., Baudry, B., Nicolas, A., Jézéquel, J.-M.: Model-driven
engineering for software migration in a large industrial context. In: Engels, G.,
Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp.
482–497. Springer, Heidelberg (2007)

6. Hooman, J., Mooij, A.J., van Wezep, H.: Early fault detection in industry using
models at various abstraction levels. In: Derrick, J., Gnesi, S., Latella, D., Treharne,
H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 268–282. Springer, Heidelberg (2012)

7. Klint, P., Landman, D., Vinju, J.J.: Exploring the limits of domain model recovery.
In: Proceedings of ICSM 2013, pp. 120–129. IEEE (2013)

8. Mooij, A.J., Hooman, J., Albers, R.: Gaining industrial confidence for the intro-
duction of domain-specific languages. In: Proceedings of IEESD 2013, pp. 662–667.
IEEE (2013)

9. Parr, T.: Soapbox: Humans should not have to grok XML. IBM developerWorks,
IBM, August 2001. http://www.ibm.com/developerworks/library/x-sbxml/

10. Pirkelbauer, P., Dechev, D., Stroustrup, B.: Source code rejuvenation is not refac-
toring. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.)
SOFSEM 2010. LNCS, vol. 5901, pp. 639–650. Springer, Heidelberg (2010)

11. Reus, T., Geers, H., van Deursen, A.: Harvesting software systems for MDA-based
reengineering. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol.
4066, pp. 213–225. Springer, Heidelberg (2006)

12. Sneed, H.M.: Planning the reengineering of legacy systems. IEEE Softw. 12(1),
24–34 (1995)

13. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from
a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol.
6659, pp. 256–296. Springer, Heidelberg (2011)

14. Tolvanen, J.-P.: Domain-specific modeling for full code generation. Softw. Tech
News (STN) 12(4), 4–7 (2010)

15. Tonella, P., Potrich, A.: Reverse Engineering of Object-Oriented Code. Springer,
Heidelberg (2005)

16. van der Aalst, W.M.P.: Process Mining: Discovery. Conformance and Enhancement
of Business Processes. Springer, Heidelberg (2011)

http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.ibm.com/developerworks/library/x-sbxml/

Cost-Effective Industrial Software Rejuvenation 81

17. van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models. MIT Press,
Methods and Systems (2004)

18. Voelter, M.: Best practices for DSLs and model-driven development. J. Object
Technol. 8(6), 79–102 (2009)

19. Voelter, M.: DSL Engineering (2013). http://dslbook.org/
20. Wagner, C.: Model-Driven Software Migration: A Methodology. Springer,

Heidelberg (2014)
21. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven

engineering. IEEE Softw. 31, 79–85 (2014)

http://dslbook.org/

Migrating Automotive Product Lines:
A Case Study

Michalis Famelis1(B), Levi Lúcio2, Gehan Selim3, Alessio Di Sandro1,
Rick Salay1, Marsha Chechik1, James R. Cordy3, Juergen Dingel3,

Hans Vangheluwe2, and Ramesh S.4

1 University of Toronto, Toronto, ON, Canada
famelis@cs.toronto.edu

2 McGill University, Montreal, QC, Canada
3 Queens University, Kingston, ON, Canada

4 General Motors, Warren, USA

Abstract. Software Product Lines (SPL) are widely used to manage
variability in the automotive industry. In a rapidly changing industrial
environment, model transformations are necessary to aid in automat-
ing the evolution of SPLs. However, existing transformation technologies
are not well-suited to handling industrial-grade variability in software
artifacts. We present a case study where we “lift” a previously devel-
oped migration transformation so that it becomes applicable to realistic
industrial product lines. Our experience indicates that it is both feasible
and scalable to lift transformations for industrial SPLs.

1 Introduction

The sprawling complexity of software systems has lead many organizations to
adopt software product line techniques to manage large portfolios of similar prod-
ucts. For example, modern cars use software to achieve a large variety of func-
tionality, from power train control to infotainment. To organize and manage the
huge variety of software subsystems, many car manufacturers, such as General
Motors (GM), make extensive use of software product line engineering tech-
niques [13].

At the same time, model-based techniques are also actively used by companies,
especially in domains such as automotive and aerospace, as a way to increase
the level of abstraction and allow engineers to develop systems in notations they
feel comfortable working with [24]. That also entails the active use of model
transformations – operations for manipulating models in order to produce other
models or generate code.

Currently, GM is going through the process of migrating models from a legacy
metamodel to AUTOSAR [2]. In previous work, we have presented the transfor-
mation GmToAutosar [30]. Given a single GM legacy model, GmToAutosar pro-
duces a single AUTOSAR output model, based on a set of requirements followed
by GM engineers. In order to study its correctness, GmToAutosar was imple-
mented in DSLTrans [20,29], a model transformation language that specializes
in helping developers create provably correct transformations.
c© Springer International Publishing Switzerland 2015
D. Kolovos and M. Wimmer (Eds.): ICMT 2015, LNCS 9152, pp. 82–97, 2015.
DOI: 10.1007/978-3-319-21155-8 7

Migrating Automotive Product Lines: A Case Study 83

Because of the extensive use of product lines, the entire product line of legacy
models needs to be migrated to a new product line of AUTOSAR models. To do
this, GM engineers need to create purpose-specific migration transformations.
Yet transforming product lines is inherently difficult: the relationships between
the products need to be preserved, and a variety of properties between the input
and output models in the transformation need to be established. Thus, the task of
a product-line level transformation is not only to maintain relationships between
the features and relationships between the products but also to make sure that
the transformation maintains certain properties, expressed in terms of pre- and
post- conditions. Existing tools and methodologies do not facilitate model trans-
formations in the context of product lines.

In our earlier work [26], we presented a technique for “lifting” a class of
model transformations so that they can be applied to software product lines.
Lifting here means reinterpretation of a transformation so that instead of a sin-
gle product, it applies to the entire product line. This requires lifting of the
transformation engine to implement lifting semantics. Thus, existing transfor-
mations can be applied without modification to product lines using the lifted
transformation engine.

The goal of this paper is to demonstrate, using an empirical case study from
an automotive domain, that it is tractable to lift industrial-grade transforma-
tions. Specifically, we report on an experience of lifting a previously published
transformation [30], GmToAutosar, used in the context of automotive software
and applying it to a realistic product line. We lifted GmToAutosar using the
theory of lifting presented in [26]. In order to do this, we had to adapt parts of
the existing model transformation engine, DSLTrans. The resulting lifted version
of GmToAutosar is capable of transforming product lines of legacy GM models
to product lines of AUTOSAR models, while preserving the correctness of indi-
vidual product transformations. We also stress-tested the lifted GmToAutosar
to investigate the effect of the size of the model and the variability complexity on
the lifted transformation. Due to limitations to publication of sensitive industrial
data, the product line we analyzed was created using publicly available data and
calibrated with input from GM engineering.

The rest of the paper is organized as follows: we introduce background on to
software product lines in Sect. 2. The GmToAutosar transformation is described
in Sect. 3 and its lifting – in Sect. 4. We discuss the experience of applying the
lifted transformation in Sect. 5. In Sect. 6 we present lessons learned and Sect. 7
discusses related work. We conclude in Sect. 8 with a summary of the paper and
discussion of future work.

2 Product Lines in the Automotive Industry

Product Lines in GM. Modern cars at GM can contain tens of millions of
lines of code, encompassing powertrain control, active and passive safety features,
climate control, comfort and convenience systems, security systems, entertain-
ment systems, and middleware to interconnect all of the above. In addition to

84 M. Famelis et al.

<<PhysicalNode>>
BodyControl

<<Partition>>
HumanMachineInterface

<<Module>>
Display

<<ExecFrame>>
De_ActivateACC

<<PhysicalNode>>
BrakingControl

<<Partition>>
SituationManagement

<<Module>>
ABSController

<<ExecFrame>>
De_ActivateABS

<<Service>>
SetABSState

<<Service>>
TurnABSOff

<<Service>>
TurnACCOn

<<Service>>
TurnACCOff

partition module execframe

partition module execframe

required

required

requiredrequired

provided provided

F2vF3

F2vF3

F2vF3

F2vF3

F2vF3

F2vF3

F2vF3

F2vF3 F2vF3

F2vF3 F2vF3

F8vF3

F8vF3

F8vF3

F8vF3

F8vF3

F8vF3

F8vF3

F8vF3 F8vF3

F8vF3 F8vF3

F3

F3

FM

F2 F3 F8

Fig. 1. A fragment of the exemplar automotive product line model. The left side shows
the domain model annotated with presence conditions and the right side shows the
feature model.

software complexity, the variability is high – over 60 models with further vari-
ation to account for requirements differences in 150+ countries. The number of
product variants produced is in the low tens of thousands. GM is re-engineering
its variability tooling to use the commercial product line tool Gears by BigLever
Software1 [13]. To help manage the complexity, product lines will be decom-
posed into modules corresponding to the natural divisions in the automotive
system architecture to produce a hierarchical product line. For example, the
subsystems dealing with entertainment, climate control, etc. will have their own
product lines, and these will be merged into parent product lines to represent
the variability for an entire vehicle.

Case Study Product Line. We applied a transformation on a realistic product
line exemplar (as opposed to the actual product line used in GM) due to reasons
of confidentiality. We started with publicly available models [1] and built an
exemplar model conforming to the GM metamodel in Fig. 2 and consisting of six
features and 201 elements. With the help of our industrial partners, we validated
that our exemplar is realistic in terms of its structure and size. Since our goal is to
do transformation lifting, the product line we produced is annotative [10,17,25].
We formally review the definition of the annotative product line approach below.

Definition 1 (Product Line). A product line P consists of the following parts:
(1) A feature model that consists of a set of features and the constraints between
them; (2) a domain model consisting of a set of model elements; and, (3) a map-
ping from the feature model to the domain model that assigns to each element of
the domain model a propositional formula called its presence condition expressed
in terms of features. We call any selection of features that satisfy the constraints
in the feature model to be a configuration and the corresponding set of domain
elements with presence conditions that evaluate to True given these features is
called a product. We denote the set of all configurations of P by Conf(P).

1 www.biglever.com.

www.biglever.com

Migrating Automotive Product Lines: A Case Study 85

Note that the Gears product lines used at GM are annotative but use a
slightly different terminology than in Definition 1. Figure 1 shows a fragment of
the exemplar product line to illustrate the components of an annotative prod-
uct line. It shows three of the six features: feature F2 representing Adaptive
Cruise Control (ACC), F8 representing Anti-lock Braking System (ABS), and
F3 representing Smart Control (SC), an integrated system for assisted driving.
The relevant fragment of the feature model is shown on the right of the figure
and the solid bar connecting the three features expresses the constraint that the
features are mutually exclusive.

The domain model is a class diagram showing the architectural elements. The
BodyControl PhysicalNode runs Partitions such as the HumanMachineInterface.
The HumanMachineInterface Partition contains the Display Module which runs
multiple ExecFrames at the same or different rates. The De ActivateACC Exec
Frame allows controlling the ACC feature by invoking Services for variable updates
(e.g., TurnACCon and TurnACCoff Services). The BrakingControl PhysicalNode
runs the SituationManagement Partition. The SituationManagement Partition
contains the ABScontroller Module which runs the De activateABS ExecFrame.
The De activateABS ExecFrame provides the TurnABSoff and SetABSstate Ser-
vices to control the ABS feature. The De activateABS ExecFrame provides a Ser-
vice (i.e., TurnABSoff) that is required by the De ActivateACC ExecFrame, and
the two ExecFrames require a common Service (i.e., TurnACCoff).

The presence conditions mapping the features to the elements of the domain
model are shown directly annotating the architecture elements. For example,
the element BodyControl has the presence condition F2 or F3. Configuring the
product line to produce a particular product involves selecting the features that
should be in the product and then using these features with the presence condi-
tions to extract the domain elements that should be in the product. For example,
assume that we want to configure the product that has only feature F2. In this
case, the product will contain the element BodyControl because its presence
condition says that it is present when the product contains feature F2 or if it
contains F3. However, it will not contain element SetABState because its pres-
ence condition is F8 or F3.

3 Migrating GM Models to AUTOSAR

Previously, we reported on an industrial transformation that maps between
subsets of a legacy metamodel for General Motors (GM) and the AUTOSAR
metamodel [30]. This GmToAutosar transformation manipulated subsets of the
metamodels that represent the deployment and interaction of software compo-
nents. We summarize the source and target metamodels of the GmToAutosar
transformation and its implementation in DSLTrans. More details on the source
and target metamodels can be found in [30].

TheGMMetamodel. Figure 2 shows the subset of a simplifiedversionof theGM
metamodel manipulated by our transformation in [30]. A PhysicalNode may con-
tain multiple Partitions (i.e., processing units). Multiple Modules can be deployed

86 M. Famelis et al.

Fig. 2. Subset of the source GM metamodel used by our transformation in [30].

Fig. 3. Subset of the target AUTOSAR metamodel used by our transformation in [30].

on a single Partition. A Module is an atomic, deployable, and reusable software
element and can contain multiple ExecFrames. An ExecFrame, i.e., an execution
frame, is the basic unit for software scheduling. It contains behavior-encapsulating
entities, and is responsible forproviding/requiringServices to/fromthesebehavior-
encapsulating entities.

The AUTOSAR Metamodel. In AUTOSAR, an Electronic Control Unit
(ECU) is a physical unit on which software is deployed. Figure 3 shows the sub-
set of the AUTOSAR metamodel [2] used by our transformation. In AUTOSAR,
the ECU configuration is modeled using a System that aggregates SoftwareCom-
position and SystemMapping. SoftwareComposition points to CompositionType
which eliminates any nested software components in a SoftwareComposition.
SoftwareComposition models the architecture of the software components (i.e.,
ComponentPrototypes) deployed on an ECU and their ports (i.e., PPortProto-
type/ RPortPrototype for providing/ requiring data and services). Each Compo-
nentPrototype has a type that refers to its container CompositionType.

SystemMapping binds software components to ECUs using SwcToEcuMap-
pings. SwcToEcuMappings assign SwcToEcuMapping components to an EcuIn-
stance. SwcToEcuMapping components, in turn, refer to ComponentPrototypes.

The GmToAutosar Transformation. Although originally implemented in
ATL [30], the GmToAutosar transformation was later reimplemented in

Migrating Automotive Product Lines: A Case Study 87

Table 1. The rules in each layer of the GmToAutosar transformation, and their input
and output types.

Layer Rule name Input types Output types

1 MapPhysNode2FiveElements PhysicalNode,

Partition, Module

System, SystemMapping,

SoftwareCom-position,

CompositionType, EcuInstance

MapPartition PhysicalNode,

Partition, Module

SwcToEcuMapping

MapModule PhysicalNode,

Partition, Module

SwCompToEcuMapping component,

ComponentPrototype

2 MapConnPhysNode2Partition PhysicalNode,

Partition

SystemMapping, EcuInstance,

SwcToEcuMapping

MapConnPartition2Module PhysicalNode,

Partition, Module

CompositionType,

ComponentPrototype,

SwcToEcuMapping,

SwCompToEcuMapping component

3 CreatePPortPrototype PhysicalNode,

Partition, Module,

CompositionType, PPortPrototype

ExecFrame, Service

CreateRPortPrototype PhysicalNode,

Partition, Module,

ExecFrame,

Service

CompositionType, RPortPrototype

DSLTrans for the purpose of a study where several of its properties where
automatically verified [29]. This allowed us to increase our confidence in the
correctness of the transformation. Table 1 summarizes the rules in each trans-
formation layer of the GmToAutosar transformation after reimplementing it in
DSLTrans, and the input/output types that are mapped/generated by each rule.
For example, rule MapPhysNode2FiveElements in Layer 1 maps a PhysicalNode
element in the input model to five elements in the output model (i.e., System,
SystemMapping, SoftwareComposition, CompositionType, and EcuInstance ele-
ments). A detailed explanation of the mapping rules and the reimplementation
of the transformation in DSLTrans can be found in [29,30]. DSLTrans and the
notion of rule layers is described in Sect. 4.1.

4 Lifting GmToAutosar

4.1 Background: DSLTrans

DSLTrans is an out-place, graph-based and rule-based model transformation
engine that has two important properties enforced by construction: all its compu-
tations are both terminating and confluent [6]. Besides their obvious importance
in practice, these two properties were instrumental in the implementation of a
verification technique for pre- / post-condition properties that can be shown to
hold for all executions of a given DSLTrans model transformation, independently
of the provided input model [20,21,29].

88 M. Famelis et al.

Fig. 4. The CreatePPortPrototype rule in the GmToAutosar DSLTrans transformation.

Model transformations are expressed in DSLTrans as sets of graph rewrit-
ing rules, having the classical left- and right-hand sides and, optionally, neg-
ative application conditions. The scheduling of model transformation rules in
DSLTrans is based on the concept of layer. Each layer contains a set of model
transformation rules that execute independently from each other. Layers are
organized sequentially and the output model that results from executing a given
layer is passed to the next layer in the sequence. A DSLTrans rule can match over
the elements of the input model of the transformation (that remains unchanged
throughout the entire execution of the transformation) but also over elements
that have been generated so far in the output model. The independence of the
execution of rules belonging to the same layer is enforced by allowing matching
over the output of rules from previous layer but not over the output of rules of the
current layer. Matching over elements of the output model of a transformation is
achieved using a DSLTrans construct called backward links. Backward links allow
matching over traces between elements in the input the output models of the
transformation. These traces are explicitly built by the DSLTrans transformation
engine during rule execution.

For example, we depict in Fig. 4 the CreatePPortPrototype rule in the
GmToAutosar DSLTrans transformation, previously introduced in Table 1. The
rule is comprised of a match and an apply part, corresponding to the usual left-
and right-hand sides in graph rewriting. When a rule is applied, the graph in
the match part of the rule is looked for in the transformation’s input model,
together with the match classes in the apply part of the rule that are connected
to backward links. An example of a backward link can be observed in Fig. 4,
connecting the CompositionType and the PhysicalNode match classes. During
the rewrite part of rule application, the instances of classes in the apply part
of the rule that are not connected to backward links, together with their adja-
cent relations, are created in the output model. In the example in Fig. 4, the
CreatePPortPrototype rule creates a PPortPrototype object and a port relation
per matching site found. Note that the vertical arrow between the shortName
attribute of PPortPrototype and the name attribute of ExecFrame implies that

Migrating Automotive Product Lines: A Case Study 89

the value of attribute name is copied from its matching site to the shortName
attribute of thePPortPrototype instance created by the rule.

In addition to the constructs presented in the example in Fig. 4, DSLTrans
has several others: existential matching which allows selecting only one result
when a match class of a rule matches an input model, indirect links which allow
transitive matching over containment relations in the input model, and nega-
tive application conditions which allow to specify conditions under which a rule
should not match, as usual. The GmToAutosar transformation does not make
use of these constructs, and thus we leave the problem of lifting them for future
work.

4.2 Lifting DSLTrans for GmToAutosar

Lifting of Production Rules. When executing a DSLTrans transformation,
the basic operation (called here a “production”) is the application of a individual
rule at a particular matching site. The definition and theoretical foundation of
lifting for productions are given in [26]. Below, we describe how they apply in
the case of GmToAutosar using the model fragment in Fig. 1 and the CreateP-
PortPrototype rule in Fig. 4.

When a DSLTrans rule R is lifted, we denote it by R↑. Intuitively, the meaning
of a R↑-production is that it should result in a product line with the same
products as we would get by applying R to all the products of the original
product line at the same site. Because of this, we do not expect a R↑-production
to affect the set of allowable feature combinations in the product line. Formally:

Definition 2 (Correctness of Lifting a Production). Let a rule R and a
product line P , and a matching site c be given. R↑ is a correct lifting of R iff (1)

if P
R↑|c
=⇒ P ′ then Conf(P ′) = Conf(P), and (2) for all configurations Conf(P),

M
R|c
=⇒ M ′, where M can be derived from P and M ′ from P ′ under the same

configuration.

An algorithm for applying lifted rules at a specific site is given in [26], along with
a proof of production correctness that is consistent with the above definition.
In brief, given a matching site and a lifted rule, the algorithm performs the
following steps: (a) use a SAT solver to check whether the rule is applicable to
at least one product at that site, (b)modify the domain model of the product
line, and (c) modify the presence conditions of the changed domain model so the
rule effect only occurs in applicable products.

For example, consider the match c={BodyControl, HumanMachineInterface,
Display, De ActivateACC, TurnABSoff, BodyControlCT} in the fragment in
Fig. 1. In this match, we assume that an element named BodyControlCT of type
CompositionType and its corresponding backward link have been previously cre-
ated by the rule MapPhysNode2FiveElements (see Table 1) and therefore have
the presence condition F2 ∨ F3. To apply the rule CreatePPortPrototype↑ to
c, we first need check whether all of c is fully present in at least one product.

90 M. Famelis et al.

We do so by checking whether the formula Φapply = (F2 ∨ F3) ∧ (F8 ∨ F3)
is satisfiable. Φapply is constructed by conjoining the presence conditions of all
the domain elements in the matching site c. According to the general lifting
algorithm in [26], the construction of Φapply for arbitrary graph transformation
rules is more complex; however, rules in GmToAutosar do not use Negative
Application Conditions and do not cause the deletion of any domain element.
Therefore, the construction of Φapply follows the pattern we described for all
rules in GmToAutosar↑.

Because Φapply is satisfiable, CreatePPortPrototype↑ is applicable at c. There-
fore, the rule creates a new element called De ActivateACC of type PPortProto-
type, a link of type port connecting it to BodyControlCT, as well as the appropriate
backward links. Finally, all created elements are assigned Φapply as their pres-
ence condition. In other words, the added presence conditions ensure that the new
elements will only be part of products for which the rule is applicable. By con-
struction, this production satisfies the correctness condition in Definition 2. Thus,
according to the proofs in [26], the lifting of productions preserves confluence
and termination.

Lifting the Transformation. We define the notion of global correctness for
GmToAutosar↑ to mean that, given an input product line of GM models, it
should produce a product line of AUTOSAR models that would be the same as
if we had applied GmToAutosar to each GM model individually:

Definition 3 (Global Correctness of GmToAutosar↑). The transforma-
tion GmToAutosar↑ is correct iff for any input product line P , it produces a
product line P ′ such that (a) Conf(P) = Conf(P ′), and (b) for all configurations
Conf(P), M ′ = GmToAutosar(M), where M and M ′ can be derived from P
and P ′, respectively, under the same configuration.

In order to lift GmToAutosar, we use the DSLTrans engine to perform the identifi-
cation of matching sites and scheduling of individual productions, and use the lift-
ing algorithm in [26] to lift individual productions, as described above. Since each
production is correct with respect to Definition 2, then, by transitivity, the lifted
version GmToAutosar↑ is globally correct. Also by transitivity, since the lifting of
individual productions preserves confluence and termination, it is confluent and
terminating, like GmToAutosar. Because of global correctness, and because it pre-
serves confluence and termination, GmToAutosar↑ also preserves the results of the
verificationof pre- andpost-conditionproperties using the techniques in [20,21,29].
In other words, GmToAutosar↑ satisfies the same set of pre- and post-condition
properties as GmToAutosar.

Implementation. Adapting the DSLTrans engine for GmToAutosar↑ required
adding functionality to the existing codebase. We had to write code to extend
it to enable the following functionality: (a) Reading and writing presence con-
ditions from and to secondary storage, expressed as Comma-Separated Values

Migrating Automotive Product Lines: A Case Study 91

(CSV) and attach them in memory to EMF [15] models. (b) Interfacing with
the API of the Z3 SMT solver [12], used for checking the satisfiability of Φapply.
(c)Associating presence conditions to elements belonging to the output model of
the transformation and updating those presence condition as the transformation
unfolds. These changes required an addition of less than 300 lines of code to an
existing codebase of 9250 lines.

5 Applying the Lifted Transformation GmToAutosar↑

The aim of this case study is to investigate the feasibility of applying industrial-
grade transformations to product lines via lifting [26]. We thus lifted GmToAu-
tosar and applied it to various input product lines with the goal to answer the
following research questions:

RQ1: Does GmToAutosar↑ scale to industrial-sized SPLs?
RQ2: How sensitive is it to the complexity of the product line?

To answer RQ1, we generated realistic product lines, based on input from
our industrial partners. We then applied GmToAutosar↑ to them and measured
two variables: (a) total runtime, and (b) complexity of presence conditions of
the output. We used the clause-to-variable ratio as a measure of the complex-
ity of presence conditions because it is a well-known metric for evaluating the
complexity of queries to SAT solvers. To answer RQ2, we varied the size of the
generated product lines in terms of the size of the domain model and the number
of features in the feature model.

Setup. Due to limitations of publication of sensitive industrial data, we opted
to use a realistic rather than real product lines, constructed as follows:

1) Using publicly available examples [1], we created the exemplar product line
described in Sect. 2. As described earlier, its domain model consists of 201 ele-
ments and its feature model has 6 features. 50 % of domain model elements in the
model had a single feature presence condition, whereas the presence conditions
of the other 50 % consisted of conjunctive clauses of 2-3 features. The overall
product line was validated with input from our industrial partners.

2) We consulted our industrial partners regarding the characteristics of a typical
product line. We were given the following parameters for a typical product line
of DOORS requirements: (a) domain model size is 400 elements, (b)the number
of feature variables is 25, (c)1/8th of elements are variation points, (d)an average
clause-to-variable ratio of the presence conditions is 2/25 = 0.08, i.e. an average
presence condition consists of 2 clauses containing any of the 25 feature variables.

3) We used the exemplar model built in step 1 as a seed to create product lines
of varying sizes for the model and the set of features, i.e., varying parameters (a)
and (b) from step 2 while keeping parameters (c) and (d) constant. Therefore,
models of increasing sizes were obtained by cloning the exemplar domain model

92 M. Famelis et al.

to create models of 200, 400, 800, 1600 and 3200 elements. To obtain product
lines with different numbers of feature variables, we cloned the feature model of
the exemplar, creating feature models with 6, 12, 24, 48, and 96 features. The
product line with 400 elements and 24 features corresponds to the parameters
reported by our industrial partners in the previous step. Each variation point
was assigned a randomly generated presence condition based on the presence
conditions of the exemplar.

Fig. 5. (a) Observed increase in running time. (b) Observed increase in the size of
presence conditions.

We executed the experiments on a computer with Intel Core i7-2600 3.40GHz
×4 cores (8 logical) and 8GB RAM, running Ubuntu-64.

Results. Figure 5(a) shows the observed runtimes of applying GmToAutosar↑

to product lines with domain models of increasing size. One line is plotted for
each feature set size. For comparison, we also include the runtime of applying
GmToAutosar to models (not product lines) of different sizes. Figure 5(b) shows
the clause-to-variable ratio of output product lines for inputs of varying size of
domain model. One line is plotted for each feature set size. For comparison, we
also include the clause-to-variable ratio of the input product line.

With respect to RQ2, we note that runtime grows exponentially with the size
of the domain model, while product lines with larger feature sets take longer to
transform. The size of presence conditions also grows exponentially with increas-
ing domain model sizes, and is two to three orders of magnitude larger than the
input. Applying GmToAutosar↑ to product lines with smaller size of the fea-
ture set results in a larger increase to the clause-to-variable ratio. With regard
to the sensitivity of GmToAutosar↑ to size of the domain model, we observe
that runtime follows the expected pattern of exponential increase. Since the
non-lifted version also grows exponentially, we conclude that this exponential
increase is not solely due to the use of a SAT solver but also due to the inherent

Migrating Automotive Product Lines: A Case Study 93

complexity of graph-rewriting-based model transformations. With regard to the
sensitivity of GmToAutosar↑ to the size of presence conditions, we again observe
an expected pattern of exponential increase. However, the increase is orders of
magnitude large which is explained by the fact that our current implementation
of GmToAutosar↑ does not perform any propositional simplification.

With respect to RQ1, we observe that for sizes of domain model and feature
set that correspond to the description of real GM product lines, the observed
runtime of GmToAutosar↑ is 3.59 seconds, compared to 3.25 for GmToAutosar.
These differences in runtime indicate that GmToAutosar↑ scales well in terms of
runtime. On the other hand we observe that the clause-to-variable ratio increased
from 0.08 to 293.53, meaning that the output presence conditions contained a
very large number of clauses. This points to the need to further optimize the
DSLTrans engine, taking care to strike a balance between runtime and proposi-
tional simplification. Additionally, we note that the observed clause-to-variable
ratio is not close to 4.26, which is considered to be the hardest for automated
SAT solving [23].

Threats to Validity. There are two main threats to validity: First, the seed
model was constructed using non-GM data, but rather publicly available auto-
motive examples. Second, product lines of different sizes of domain model and
feature set were artificially constructed by cloning the seed model. Both these
issues stem from the fact that we could not access to real product lines due to
limitations to publication of sensitive industrial data. To mitigate the first con-
cern, we asked industrial partners to validate that our exemplar is realistic in
terms of structure and size. To mitigate the second concern, we ensured that our
cloning process resulted in product lines that had characteristics that were con-
sistent with the parameters given by our industrial partners (number of variation
points, average clause-to-variable ratio, shape of the presence conditions).

6 Lessons Learned and Discussion

The goal of this case study was to study the tractability of transformation lifting
for industrial-grade transformations. In this section, we reflect on the experience
of lifting GmToAutosar and describe the lessons learned from it.

We note that applying GmToAutosar to product lines fulfils a real indus-
trial need to migrate legacy product lines to a new format. This validates the
basic premise of our theory that lifting transformations for product lines is an
industrially relevant endeavour. The observed results in Sect. 5 indicate that
using GmToAutosar↑ is tractable for industrial-sized product lines, even if some
additional optimization is required. It thus adds more evidence to the evalua-
tion results obtained using experimentation with random inputs in [26]. This
strengthens the claim that transformation lifting scales to real-world models.

A claimed benefit of transformation lifting is that transformations do not
need to be rewritten specifically for product lines. Instead, what is required is
the lifting of the transformation engine. This case study did not contradict this

94 M. Famelis et al.

claim: we were able to migrate legacy GM product lines to AUTOSAR without
having to rewrite the GmToAutosar transformation for product lines. Instead,
we lifted the DSLTrans engine.

In [26], lifting was implemented using the Henshin graph transformation
engine [5]. Specifically, we implemented lifting for graph transformations while
using some capabilities of Henshin (e.g., matching) as a black box. However,
lifting GmToAutosar required adapting part of the underlying transformation
engine (DSLTrans) itself. The reason why this was possible was because the
DSLTrans language is (a) based on graph-rewriting and (b) uses graph rewriting
productions as atomic operations. It is thus possible to lift the entire engine
by lifting just these atomic operations while leaving the rest of the matching
and scheduling untouched. On the other hand, since GmToAutosar does not
make use of certain more advanced language constructs in DSLTrans (e.g., indi-
rect links), we were only required to make very targeted interventions to the
DSLTrans engine. Lifting DSLTrans for arbitrary transformations will require
more extensive changes. For some language features, most notably, existential
matching, this also requires rethinking parts of the lifting algorithm from [26].

7 Related Work

There is extensive work on adapting software engineering techniques to product
lines in order to avoid having to explicitly manipulate individual products [31].
Lifting has been applied to model checking [8], type checking [18], testing [19],
etc. Our work fits in this category, focusing on lifting transformations.

The combination of product lines and model transformations has been exten-
sively studied from the perspective of using transformations for configuring and
refining product lines [10,11,14,16], and merging products and feature mod-
els [3,9,25], A theory of product line refinement along with a classification of
commonly used refinement approaches is presented in [7]. Transformation lift-
ing differs from these works because it is about adapting existing product-level
transformations to the level of entire product lines, as opposed to creating trans-
formations specifically for product lines.

Variant-preserving refactoring, aimed to improve the structure of source code,
is presented in [27], for feature-oriented product lines [4]. This is accomplished
by extending conventional refactoring with feature-oriented programming. Our
lifting approach focuses on annotative, model-based product lines instead, and is
not limited to structural improvement.

Approaches to product line evolution [22,28] focus on scenarios such as merg-
ing and splitting product lines, and changing the feature set or the domain model.
The aim is usually to create templates for manually evolving the product line
in a safe way. Our approach is to automatically evolve product lines by lifting
product-level translation transformations, such as GmToAutosar. Safety is thus
ensured by reasoning about the properties of the transformation at the product
level [20,21,29].

Migrating Automotive Product Lines: A Case Study 95

8 Conclusion and Future Work

In this paper, we presented an empirical case study where we lifted GmToAu-
tosar, a transformation that migrates GM legacy models to AUTOSAR, so that
it can be used to transform product lines as opposed to individual products.
Lifting required us to adapt the execution engine of DSLTrans, the model trans-
formation language in which GmToAutosar is written. We experimented with
the lifted transformation GmToAutosar↑, using realistic product lines of vari-
ous sizes to study the effect of lifting to the execution time and the complexity
of the resulting product line. The observations confirm our theory that lifted
model transformations can be applied to industrial-grade product lines. How-
ever, more optimization is required in order to strike a balance between keeping
the runtime low and avoiding the growth of the size of presence conditions. Our
experience with lifting GmToAutosar indicates that lifting is feasible for trans-
formation languages like DSLTrans, where individual productions can be lifted
while reusing the engine for matching and scheduling. However, lifting the full
range of language features (not used in GmToAutosar) requires rethinking our
lifting method. In the future, we intend to lift the entire DSLTrans engine, to
take into account its full range of advanced language features such as existential
matching and transitive link matching. We also intend to leverage the experi-
ence of lifting an entire model transformation language to apply our approach
to more complex and powerful transformation languages.

References

1. Automotive Simulink Examples. http://www.mathworks.com/help/simulink/
examples.html#d0e477

2. AUTOSAR Consortium. AUTOSAR System Template (2007). http://
AUTOSAR.org/index.php?p=3&up=1&uup=3&uuup=3&uuuup=0&uuuuup=0/
AUTOSAR TPS SystemTemplate.pdf

3. Acher, M., Collet, P., Lahire, P., France, R.: Comparing approaches to implement
feature model composition. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F.
(eds.) ECMFA 2010. LNCS, vol. 6138, pp. 3–19. Springer, Heidelberg (2010)

4. Apel, S., Kästner, C.: An overview of feature-oriented software development. J.
Object Technol. 8(5), 49–84 (2009)

5. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Proceedings of
MODELS 2010, pp. 121–135 (2010)

6. Barroca, B., Lúcio, L., Amaral, V., Félix, R., Sousa, V.: DSLTrans: a turing incom-
plete transformation language. In: Malloy, B., Staab, S., van den Brand, M. (eds.)
SLE 2010. LNCS, vol. 6563, pp. 296–305. Springer, Heidelberg (2011)

7. Borba, P., Teixeira, L., Gheyi, R.: A theory of software product line refinement. J.
Theor. CS 455, 2–30 (2012)

8. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model checking
lots of systems: efficient verification of temporal properties in software product
lines. In: Proceedings of ICSE 2010, pp. 335–344 (2010)

9. Classen, A., Heymans, P., Tun, T.T., Nuseibeh, B.: Towards safer composition. In:
Proceedings of ICSE’2009, Companion Volume, pp. 227–230 (2009)

http://www.mathworks.com/help/simulink/examples.html#d0e477
http://www.mathworks.com/help/simulink/examples.html#d0e477
http://AUTOSAR.org/index.php?p=3&up=1&uup=3&uuup=3&uuuup=0&uuuuup=0/AUTOSAR_TPS_SystemTemplate.pdf
http://AUTOSAR.org/index.php?p=3&up=1&uup=3&uuup=3&uuuup=0&uuuuup=0/AUTOSAR_TPS_SystemTemplate.pdf
http://AUTOSAR.org/index.php?p=3&up=1&uup=3&uuup=3&uuuup=0&uuuuup=0/AUTOSAR_TPS_SystemTemplate.pdf

96 M. Famelis et al.

10. Czarnecki, K., Antkiewicz, M.: Mapping features to models: a template approach
based on superimposed variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005)

11. Czarnecki, K., Helsen, S.: Staged configuration using feature models. In: Nord,
R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 266–283. Springer, Heidelberg (2004)

12. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

13. Flores, R., Krueger, Ch., Clements, P.: Second-generation product line engineering:
a case study at general motors. In: Capilla, R., Bosch, J., Kang, K.C. (eds.) Systems
and Software Variability Management, pp. 223–250. Springer, Heidelberg (2013)

14. Garcés, K., Parra, C., Arboleda, H., Yie, A., Casallas, R.: Variability management
in a model-driven software product line. Rev. Av. en sistemas e Informática 4(2),
3–12 (2007)

15. Gronback, R.: Eclipse Modeling Project. Addison Wesley, New York (2009)
16. Haugen, Ø., Moller-Pedersen, B., Oldevik, J, Olsen, G.K., Svendsen, A.: Adding

standardized variability to domain specific languages. In: Proceedings of SPLC
2008, pp. 139–148 (2008)

17. Kästner, C., Apel, S.: Integrating compositional and annotative approaches for
product line engineering. In: Proceedings of McGPLE Workshop at GPCE 2008,
pp. 35–40 (2008)

18. Kästner, C., Apel, S., Thüm, T., Saake, G.: Type checking annotation-based prod-
uct lines. ACM TOSEM 21(3), 14 (2012)

19. Kästner, C., von Rhein, A., Erdweg, S., Pusch, J., Apel, S., Rendel, T., Ostermann,
K.: Toward variability-aware testing. In: Proceedings of FOSD 2012, pp. 1–8 (2012)

20. Lúcio, L., Barroca, B., Amaral, V.: A technique for automatic validation of model
transformations. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010,
Part I. LNCS, vol. 6394, pp. 136–150. Springer, Heidelberg (2010)

21. Lúcio, L., Oakes, B.J., Vangheluwe, H.: A Technique for Symbolically Verifying
Properties of Graph-Based Model Transformations. Technical report SOCS-
TR-2014.1, McGill University (2014). http://msdl.cs.mcgill.ca/people/levi/30
publications/files/A Technique /for Symbolically Verifying Properties of Model
Transf.pdf

22. Neves, L., Teixeira, L., Sena, D., Alves, V., Kulezsa, U., Borba, P.: Investigating
the safe evolution of software product lines. ACM SIGPLAN Not. 47(3), 33–42
(2011)

23. Nudelman, E., Leyton-Brown, K., Hoos, H., Devkar, A., Shoham, Y.: Understand-
ing random SAT: beyond the clauses-to-variables ratio. In: Proceedings of CP 2004,
pp. 438–452 (2004)

24. Pretschner, A., Broy, M., Kruger, I.H., Stauner, T.: Software engineering for auto-
motive systems: a roadmap. In: Proceedings of FOSE 2007, pp. 55–71 (2007)

25. Rubin, J., Chechik, M.: Combining related products into product lines. In: de Lara,
J., Zisman, A. (eds.) Fundamental Approaches to Software Engineering. LNCS, vol.
7212, pp. 285–300. Springer, Heidelberg (2012)

26. Salay, R., Famelis, M., Rubin, J., Di Sandro, A., Chechik, M.: Lifting model trans-
formations to product lines. In: Proceedings of ICSE 2014, pp. 117–128 (2014)

27. Schulze, S. Thüm, T., Kuhlemann, M., Saake, G.: Variant-preserving refactoring
in feature-oriented software product lines. In: Proceedings of VAMOS 2012, pp.
73–81 (2012)

28. Seidl, C., Heidenreich, F., Aßmann, U.: Co-evolution of models and feature map-
ping in software product lines. In: Proceedings of SPLC 2012, pp. 76–85 (2012)

http://msdl.cs.mcgill.ca/people/levi/30_publications/files/A_Technique_/for_Symbolically_Verifying_Properties_of_Model_Transf.pdf
http://msdl.cs.mcgill.ca/people/levi/30_publications/files/A_Technique_/for_Symbolically_Verifying_Properties_of_Model_Transf.pdf
http://msdl.cs.mcgill.ca/people/levi/30_publications/files/A_Technique_/for_Symbolically_Verifying_Properties_of_Model_Transf.pdf

Migrating Automotive Product Lines: A Case Study 97

29. Selim, G.M.K., Lúcio, L., Cordy, J.R., Dingel, J., Oakes, B.J.: Specification and
verification of graph-based model transformation properties. In: Giese, H., König,
B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 113–129. Springer, Heidelberg (2014)

30. Selim, G.M.K., Wang, S., Cordy, J.R., Dingel, J.: Model transformations for
migrating legacy models: an industrial case study. In: Vallecillo, A., Tolvanen,
J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349,
pp. 90–101. Springer, Heidelberg (2012)

31. Thüm, T., Apel, S., Kästner, C., Kuhlemann, M., Schaefer, I., Saake, G.: Analysis
strategies for software product lines. School of Computer Science, University of
Magdeburg, Technical report FIN-004-2012, (2012)

New Paradigms for Model
Transformation

Viatra 3: A Reactive Model Transformation
Platform

Gábor Bergmann1, István Dávid3(B), Ábel Hegedüs2, Ákos Horváth1,2,
István Ráth1,2, Zoltán Ujhelyi2, and Dániel Varró1

1 Department of Measurement and Information Systems,
Budapest University of Technology and Economics,
Magyar Tudósok Krt. 2, 1117 Budapest, Hungary

{bergmann,varro}@mit.bme.hu
2 IncQuery Labs Ltd., Budapest, Hungary

{hegedus,horvath,rath,ujhelyi}@incquerylabs.com
3 Modelling, Simulation and Design Lab, University of Antwerp,

Middelheimlaan 1, 2020 Antwerp, Belgium
istvan.david@uantwerpen.be

Abstract. Model-driven tools frequently rely on advanced technolo-
gies to support model queries, view maintenance, design rule valida-
tion, model transformations or design space exploration. Some of these
features are initiated explicitly by domain engineers (batch execution)
while others are executed automatically when certain trigger events are
detected (live execution). Unfortunately, their integration into a com-
plex industrial modeling environment is difficult due to hidden interfer-
ence and unspecified interaction between different features. In this paper,
we present a reactive, event-driven model transformation platform over
EMF models, which captures tool features as model queries and trans-
formations, and provides a systematic, well-founded integration between
a variety of such tool features. Viatra 3 offers a family of internal DSLs
(i.e. dedicated libraries) to specify advanced tool features built on top
of existing languages like EMF-IncQuery and Xtend. Its main inno-
vation is a source incremental execution scheme built on the reactive
programming paradigm ssupported by an event-driven virtual machine.

Keywords: Event-driven transformation · Virtual machine · Reactive
programming · Source incremental transformations

1 Introduction

With the increasing adoption of model-driven engineering in critical systems
development, the increasing complexity of development processes and model-
ing artefacts poses new challenges for tool developers, especially in collaboration
and scalability. Nowadays, such challenges are typically addressed with dedicated

This work was partially supported by the MONDO (EU ICT-611125) project.

c© Springer International Publishing Switzerland 2015
D. Kolovos and M. Wimmer (Eds.): ICMT 2015, LNCS 9152, pp. 101–110, 2015.
DOI: 10.1007/978-3-319-21155-8 8

102 G. Bergmann et al.

problem-specific solutions such as on-the-fly constraint evaluation engines [1,2]
(to improve the scalability of model validation), incremental model transforma-
tion tools [3] for scalable model synchronization, or design space exploration
tools [4] (to synthesize optimal models wrt some objectives). Some of these sce-
narios are initiated explicitly by domain engineers (batch execution) while others
are executed automatically upon certain trigger events (live execution).

Unfortunately, integrating different technologies into a complex industrial
modeling environment is often difficult and costly. This is due to hidden inter-
ference and unspecified interaction between different tool features. For instance,
a notification originating from a model change may easily trigger conflicting
actions in different plugins. As a consequence, complex tool platforms such as
the Eclipse Modeling Framework (EMF) [5] are known to suffer from severe
performance and quality issues caused e.g. by the concurrent asynchronous exe-
cution of various model indexing and validation mechanisms.

In this paper, we present a source incremental event-driven model transfor-
mation platform based on the reactive programming paradigm [6] to drive the
systematic, well-founded integration of tool features in various scenarios over
EMF models. The Viatra 3 Event-driven Virtual Machine (EVM) provides
basic executional building blocks and primitives with clearly defined event-based
semantics. EVM also enables to combine various advanced tool features so that
complex interactions can be constructed easily and executed consistently.

Viatra 3 offers a family of internal DSLs (i.e. dedicated libraries and APIs)
built on top of existing languages to specify advanced tool features as model
queries and transformations. The EMF-IncQuery language is seamlessly
integrated to capture any conditions and constraints for a transformation. Fur-
thermore, Java and Xtend-based internal DSLs (APIs) are used to specify trans-
formations rules as well as complex interactions between different tool features.

While Viatra 3 is designed to support a wide spectrum of tooling scenarios,
our case study focuses on a typical scenario including incremental deployment
to present challenges that arise in the interaction between batch and live model
transformations. The aim of the example is to illustrate to what an extent the
integration complexity is reduced by capturing and handling all tool features
and their interactions based on a uniform event-driven virtual machine.

The rest of the paper is structured as follows: first, we overview model-
ing scenarios that motivate the development of the generalized virtual machine
architecture and introduce the case study in Sect. 2. Then we present our vir-
tual machine for reactive event-driven transformations (Sect. 3). Related work is
discussed in Sects. 4 and 5 concludes the paper.

2 Motivating Example

In our motivating example1, we investigate batch and incremental model-to-
model transformations. The source domain describes a generic infrastructure
1 The complete source code, documentation and performance evaluation results are

available from https://github.com/IncQueryLabs/incquery-examples-cps.

https://github.com/IncQueryLabs/incquery-examples-cps

Viatra 3: A Reactive Model Transformation Platform 103

Fig. 1. Source and target models

for cyber-physical systems (CPS) where applications (services) are dynamically
allocated to connected hosts. The target domain represents the system deploy-
ment configuration with stateful applications deployed on hosts. Initially, we
aim to derive a deployment model from the CPS model, and then incremental
model transformations are used to propagate changes in the CPS model to the
deployment model and the traceability model.

Metamodel. Due to space considerations, we present a limited fragment of
the metamodel in Fig. 1, the description of the domain is adopted from [4]. The
simplified CPS source model (Fig. 1a) contains HostInstances and Application-
Instances, typed by HostTypes and ApplicationTypes, respectively. Application-
Instances are allocated to a HostInstance. In the Deployment model (Fig. 1b),
DeploymentHosts and DeploymentApplications are derived from their instance
counterparts in the CPS model, respectively; and the hosts are associated with
the hosted applications. Finally, the mappings between the two domains are
persisted in a traceability model.

Scenarios. In the original case study, we had to provide integrated tooling to
cover the following use cases:

1. Batch transformations are used to map HostInstances of a given HostType
to a DeploymentHost (the mapping is stored in an explicit trace model);

2. Live transformations are used to automatically map ApplicationInstances
to DeploymentApplications in an event-driven way (i.e. fired upon changes to
the source model to keep the target and trace models consistent).

3. On-the-fly validation is continuously performed (i.e. before and after model
synchronization) to ensure the correctness of the mapping.

Due to (data and control) dependencies, model synchronization phases should
only be initialized once the batch transformations have completely terminated
and when the (source) model is free of errors as indicated by validation results.

104 G. Bergmann et al.

Fig. 2. Architecture of the EVM for model transformations

In a traditional MDE toolchain, separate tool features would be used to describe
the various phases, requiring an external orchestrator to facilitate the coordina-
tion. Complex features in real MDE tools (like model indexing or file operations)
add further complexity to the integration of tool features. The current paper
presents how an event-driven virtual machine can reduce such complexity.

3 An Event-Driven Virtual Machine (EVM)

Event-driven model transformations are executed continuously as reactions to
changes of the underlying model. To facilitate this sort of execution, we adopted
reactive programming principles. The core concept of reactive programming
is the event-driven behavior : components are connected to event sources and
their behavior is determined by the event instances observed on event streams.
Compared to sequential programming, the benefits of reactive programming are
remarkable especially in cases when continuous interaction with the environment
has to be maintained by the application based on external events without a priori
knowledge on their sequence [6].

Figure 2 presents the architecture of the Event-driven Virtual Machine (EVM),
the novel execution engine of the Viatra 3 platform2. Although this paper
demonstrates its use in model transformation scenarios, EVM is an engine for
executing reactive programs in general.

The specification of an EVM program consists of two parts. First, the Rule
specifications are defined as Queries over a given Model(s) and serve as a precon-
dition to the transformation. Second, the Actions to be executed are specified,
which in this case are Model manipulations over the input models. Furthermore,
Execution schemas are defined in order to orchestrate the reactive behavior. Now
we briefly describe the behavior of other core components of Fig. 2 in the sequel.
2 http://wiki.eclipse.org/EMFIncQuery/DeveloperDocumentation/EventDrivenVM

contains the complete technical documentation.

http://wiki.eclipse.org/EMFIncQuery/DeveloperDocumentation/EventDrivenVM

Viatra 3: A Reactive Model Transformation Platform 105

3.1 Events

In batch transformation scenarios3, the sequence of executing actions associated
with a batch transformation is usually determined solely by the activations ini-
tiated from the transformation program. However, the core features of EVM
enable reactions to events. We distinguish between two kinds of events.

– Controlled events are initiated explicitly by the transformation program, and
involve the firing of a selected rule with concrete values substituted for its
parameters. Thus a controlled event is characterized by a rule activation.

– Observed events are caused by external behavior, and the time of their occur-
rence may not be determined by the transformation program. Such observed
events include elementary model notifications and updated results of model
queries. However, more complex ways of detecting changes in the model (see
change patterns [7]) or aggregating temporal behavior of changes in the past
(see complex event processing [8]) are also possible over the EVM platform.

3.2 Activation Lifecycles

Listing 1 presents an event-driven transformation to keep already mapped Appli-
cationInstances of the CPS model in sync with their DeploymentApplication
counterpart in the Deployment model.

The actions of event-driven transformations (in Lines 10-12, 14-24 and 26-28)
are associated with a specific events reflecting the current state of the activation.
As opposed to simple batch transformations, these events suggest that in addi-
tion to executing an action on the appearance of an activation, updates and the
disappearance of the same activation might be also relevant from transformation
point of view and can also serve as triggers for executing actions.

Events reflecting the current state of the activation constitute a transition
system called the Activation Lifecycle (Line 8), serving as the centerpiece of
the reactive paradigms supported by EVM. An Activation Lifecycle consists of
different (1) Phases (see Fig. 2) an Activation can be associated with during its
existence; and (2) event-triggered transitions between the Phases. Optionally,
(3) a transition may be associated with a Job, which represents the executable
Actions of an input rule specification. Figure 3 presents two typical Activation
Lifecycles.

Figure 3a illustrates the lifecycle of an event-driven transformation rule. Apart
from the initial phase, we distinguish between enabled and disabled phases
depending on the presence or absence of a Fire transition. Event-driven trans-
formations define executable actions for enabled states of the lifecycle. If an
activation enters that specific phase, it may fire and upon the transition, the
associated job (defined by the action in the transformation rule) gets executed.

For example, the first time a match of the MappedApplicationInstance model
query is found, an activation of the rule will occur in the APPEARED state. If
the EVM fires that activation, the appearJob will be executed.
3 https://github.com/IncQueryLabs/incquery-examples-cps/wiki/

Alternative-transformation-methods#Batch.

https://github.com/IncQueryLabs/incquery-examples-cps/wiki/Alternative-transformation-methods#Batch
https://github.com/IncQueryLabs/incquery-examples-cps/wiki/Alternative-transformation-methods#Batch

106 G. Bergmann et al.

Listing 1. Event-driven transformation rule for maintaining ApplicationIn-
stances

1 / / f i n d s e v e r y e v e r y t r a n s f o r m e d a n d a l l o c a t e d d e p l o y m e n t A p p

2 p a t t e r n mappedApplicat ionInstance (
3 appInstance , deploymentApp , host Instance , deploymentHost) { . . . }
4 −−
5 CPSToDeployment mapping / / r e f e r e n c e t o t h e m a p p i n g m o d e l v a l

6 appl icat ionUpdateRule = c r e a t e R u l e () . name(" a p p l i c a t i o n u p d a t e ")
7 . p r e c o n d i t i o n (mappedApplicat ionInstance) / / a g r a p h p a t t e r n a s p r e c o n d i t i o n

8 . l i f e C y c l e (Ac t i v a t i o nL i f e c y c l e s . d e f au l t)
9 / / a c t i o n t o b e e x e c u t e d w h e n a p a t t e r n m a t c h a p p e a r s

10 . a c t i o n (Act iva t i onSta t e s . A P P E A R E D) [
11 debug (" S t a r t i n g m o n i t o r i n g m a p p e d a p p l i c a t i o n w i t h I D : "+ appInstance . id)
12]
13 / / a c t i o n t o b e e x e c u t e d w h e n a p a t t e r n m a t c h g e t s u p d a t e d

14 . a c t i o n (Act iva t i onSta t e s . U P D A T E D) [
15 debug (" U p d a t i n g a p p l i c a t i o n w i t h I D : "+ appInstance . id)
16 / / c a s e 1 : I D c h a n g e d

17 i f (appInstance . id != deploymentApp . id) {
18 deploymentApp . s e t (id , appInstance . id)
19 }
20 / / c a s e 2 : h o s t c h a n g e d

21 i f (! deploymentHost . a pp l i c a t i on s . conta ins (deploymentApp)) {
22 deploymentHost . s e t (deploymentHost Appl icat ions , deploymentApp)
23 }
24]
25 / / a c t i o n t o b e e x e c u t e d w h e n a p a t t e r n m a t c h d i s a p p e a r s

26 . a c t i o n (Act iva t i onSta t e s . D I S A P P E A R E D) [
27 debug (" S t o p p e d m o n i t o r i n g m a p p e d a p p l i c a t i o n w i t h I D : " + appInstance . id)
28] . b u i l d

To unify the behavior of model transformations over the EVM platform, both
event-driven and batch transformations are executed as reactive programs (using
the the activation lifecycle of Fig. 3b for the batch case). The enabled phases of
an activation lifecycle represent outstanding reactions to observed events, but
the firing of the actual reactive jobs is tied to controlled events.

3.3 Scheduler

External observed events influence activation phases according to the lifecycle,
and the active phase selects the job to be executed (if any). However, it is the cho-
sen Scheduler component that determines when EVM can fire these controlled
events (i.e. execute the jobs).

Practical examples for the scheduling event include (1) the signal of the
query engine indicating that the updating of query results after an elementary
model manipulation has concluded; (2) the successful commit of a model editing
transaction; or (3) some combination of the former events with a timer. The
choice of scheduling event has to take into account the following factors:

– The rules may require a certain level of consistency in the model, e.g. some
rules are inefficient to execute while a large-scale transaction is incomplete;

– Otherwise, the rules should be executed as soon as possible thus their effects
are observed by the user or by further transformation steps.

Viatra 3: A Reactive Model Transformation Platform 107

(a) Event-driven Transformation (b) Batch trans-
formation

Fig. 3. Typical rule lifecycles

Event driven transformation rules may also explicitly invoke other rules, which
is a direct rule dependency. However, indirect rule dependency may also exist
when model manipulation in a job causes observed changes which, in turn, enable
activations and trigger the scheduler.

3.4 Agenda

The Agenda stores the current phases (states) of all activations of each rule. Its
role is dual: it helps maintain the phase of activations in reaction to events, and
it supplies the set of rule activations being in an enabled phase, i.e. activations
that can be fired. The core operation of EVM is intrinsically tied to the agenda:
in case of an observed or controlled event, the rule activation corresponding to
the specific event will change phase according to the transition in the lifecycle
model defined for the rule that starts at the current phase and is labeled with
the event type token. Afterwards, if there is a job associated with the transition,
it is invoked with the activation providing the input parameters.

As the set of all possible activations is practically infinite (as each rule para-
meter may point to any memory address), the implementation considers only
those activations that are currently not in their initial phase. This makes the
agenda finitely representable, since a finite number of events may have moved
only a finite number of activations out of their initial phases.

3.5 Conflict Resolution

At any point in time, the rules (or a selected subset of rules in a common case
of batch transformations) might have multiple activations in an enabled state,
which is called a conflict. If the transformation is to invoke a rule firing, a single
enabled activation has to be selected from the conflicting ones (mainly due to
the single threaded manipulation of EMF models). This selection can be done
manually by the transformation code, but EVM also provides an automated
mechanism that delegates this decision to a user-specified Conflict Resolver (see
Fig. 2). Built-in conflict resolvers include FIFO, LIFO, fair random choice, rule
priority (with a secondary conflict resolver within priority levels), interactive

108 G. Bergmann et al.

Algorithm 1. The execution algorithm of the case study
PROCEDURE Agenda.processEvent(Event e) � processes a single event
1: for all RuleInstance ri if triggered by event e do
2: act := ri.activationForEvent(e) � creates activation if unstored (i.e. in the initial phase)
3: agenda.updatePhase(act, e) � updates activation based on event e
4: end for

PROCEDURE Scheduler.main() � drives the reaction to events
5: Agenda.executeActivations() � execute enabled activation based on the CR

PROCEDURE Agenda.executeActivations() � executes all activations
6: while (ConflictResolver.hasNextActivation()) do
7: act := ConflictResolver.nextActivation() � gets next activation
8: Executor.fire(act) � fires the activation
9: end while

choice (e.g. on the user interface), but it is possible to implement arbitrary
conflict resolution strategies.

3.6 Execution

The execution of event-driven transformations is handled by the EVM. We
present the process by walking through the execution Algorithm 1 using an
example scenario. The scenario presents an update of ApplicationInstance a1
where its associated HostInstance is replaced.

Step 1 The HostInstance reference of ApplicationInstance a1 is removed. The
matched precondition of the rule generates an updates event.

Step 2 In the EVM, the Agenda processes the event. The activation of the
transformation rule is updated (Line 3).

Step 3 When the notifications are processed, the Scheduler initiates the rule
execution by notifying the Agenda (Line 5). The Agenda attempts to acquire
the next transformation activation from the ConflictResolver (Line 7) and
fire it (Line 8).

4 Related Work

Virtual machines formodel queries and transformations.The ATL virtual machine
was the first to provide execution primitives on which different transformation
languages (like, ATL and QVT) can be executed. Recently introduced new fea-
tures include lazy evaluation [9], incremental [10] combined into the ReactiveATL
transformation engine. As a main conceptual difference, this approach is target
incremental, i.e. a transformation is executed only when its result is needed —
unlike our source incremental virtual machine.

EMFTVM [11] is an execution engine for EMF models that provides both a
very low-level language and execution primitives to have a more simple compiler
architecture. Similarly, T-Core [12] is based on the same concept for providing
an execution engine for graph transformation rules. Their main advantage is that
they provide better performance for the low-level primitives and optimization

Viatra 3: A Reactive Model Transformation Platform 109

capabilities in case of translation from high-level languages. Model transforma-
tion chains [13] aim at composing different transformations proposing a loosely
coupled integration between existing transformation steps.

Our virtual machine is unique in combining different best practices: (1) it pro-
vides tight integration between many heterogeneous tool features (queries, trans-
formations, validation, exploration, etc.) built upon (2) a source-incremental
reactive event-driven paradigm to provide well-founded integration.

Event-driven techniques and model transformations. Event-driven techniques
have been used in many fields. In relational database management systems,
even the concept of triggers can be considered as simple operations whose exe-
cution is initiated by events, which have been utilized for event-driven model
transformation purposes previously [14]. These approaches provided the basics
for event-driven model transformation techniques.

Our approach presented in the this paper can be regarded as a foundation
for previous work on incremental well-formedness validation [1], live and change-
driven transformations [7], design space exploration [4] and streaming model
transformations [8]. Despite not having been published previously, EVM has been
a hidden component of EMF-IncQuery since 2013, and has already proven to
be an efficient execution platform for incremental transformations [15].

5 Conclusion

In this paper, we have proposed a novel execution infrastructure for model
processing chains, based on an event-driven reactive virtual machine architec-
ture. Its primary design principle is flexibility : through the customizability of
rules and execution strategies, it can provide the foundations to a wide range
of applications, it supports both stateless and stateful systems, and its internal
DSLs (based on Xtend and Java) provide a uniform integration platform for
complex model processing programs. As we have shown through the case study,
Viatra 3 is capable of unifying several previously separated advanced model-
ing aspects into an integrated system, which can address challenging issues such
conflict management.

As a main direction for future development, we plan to externalize the DSLs
into a family of extensible, yet easy-to-use languages.

Acknowledgements. The authors wish to thank all the contributors of the Viatra
3 and EMF-IncQuery projects, in particular Tamás Szabó.

References

1. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I., Szatmári,
Z., Varró, D.: EMF-IncQuery: an integrated development environment for live
model queries. Sci. Comput. Program. 98, 80–99 (2015)

2. Willink, E.D.: An extensible OCL virtual machine and code generator. In: Pro-
ceedings of the 12th Workshop on OCL and Textual Modelling, pp. 13–18. ACM
(2012)

110 G. Bergmann et al.

3. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Softw. Syst. Model. (SoSyM) 8(1), 21–43 (2009)

4. Abdeen, H., Varró, D., Sahraoui, H., Nagy, A.S., Hegedüs, Á., Horváth, Á.,
Debreceni, C.: Multi-objective optimization in rule-based design space exploration.
In: 29th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2014), pp. 289–300. IEEE, Vasteras, Sweden (2014)

5. The Eclipse Project: Eclipse Modeling Framework. Accessed: (2007)
6. Bainomugisha, E., Carreton, A.L., Cutsem, T.V., Mostinckx, S., Meuter, W.D.: A

survey on reactive programming. ACM Comput. Surv. 45(4), 52:1–52:34 (2012)
7. Bergmann, G., Ráth, I., Varró, G., Varró, D.: Change-driven model transforma-

tions. Software and Systems Modeling 11, 431–461 (2012)
8. Dávid, I., Ráth, I., Varró, D.: Streaming model transformations by complex event

processing. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.)
MODELS 2014. LNCS, vol. 8767, pp. 68–83. Springer, Heidelberg (2014)

9. Tisi, M., Mart́ınez, S., Jouault, F., Cabot, J.: Lazy Execution of Model-to-Model
Transformations. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011.
LNCS, vol. 6981, pp. 32–46. Springer, Heidelberg (2011)

10. Jouault, F., Tisi, M.: Towards incremental execution of ATL transformations. In:
Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 123–137. Springer,
Heidelberg (2010)

11. Wagelaar, D., Tisi, M., Cabot, J., Jouault, F.: Towards a general composition
semantics for rule-based model transformation. In: Whittle, J., Clark, T., Kühne,
T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 623–637. Springer, Heidelberg
(2011)

12. Syriani, E., Vangheluwe, H., LaShomb, B.: T-core: a framework for custom-built
model transformation engines. Softw. Syst. Model. 1–29 (2013)

13. Yie, A., Casallas, R., Deridder, D., Wagelaar, D.: Realizing model transformation
chain interoperability. Softw. Syst. Model. 11(1), 55–75 (2012)

14. Bergmann, G., Horváth, D., Horváth, A.: Applying incremental graph transforma-
tion to existing models in relational databases. In: Ehrig, H., Engels, G., Kreowski,
H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 371–385. Springer,
Heidelberg (2012)

15. van Pinxten, J., Basten, T.: Motrusca: interactive model transformation use case
repository. In: 7th York Doctor Symposium on Computer Science & Electronics,
vol. 57 (2014)

Towards Functional Model Transformations
with OCL

Frédéric Jouault(B), Olivier Beaudoux, Matthias Brun,
Mickael Clavreul, and Guillaume Savaton

ESEO, Angers, France
{frederic.jouault,olivier.beaudoux,matthias.brun,

mickael.clavreul,guillaume.savaton}@eseo.fr

Abstract. Several model transformation approaches such as QVT and
ATL use OCL as expression language for its model-querying capabilities.
However, they need to add specific and incompatible syntactic constructs
for pattern matching as well as model element creation and mutation.

In this paper, we present an exploratory approach to enable the
expression of whole model transformations in OCL. This approach lever-
ages some OCL extensions proposed for inclusion in the upcoming OCL
2.5: pattern matching and shadow objects. It also relies on a specific
execution layer to enable traceability and side effects on models.

With model transformations as OCL functions, it becomes possi-
ble to use a single, standard, well-known, functional, and formalized
model querying language to perform tasks traditionally assigned to model
transformation languages. Thus, functional techniques such as func-
tion composition and higher-order become directly applicable to model
transformations.

Keywords: Model transformation · OCL · Functional transformation

1 Introduction

The Object Constraint Language [6] (OCL) progressively evolved from a lan-
guage focused on the expression of constraints (invariants, pre- and post- condi-
tions) on UML models to a more general metamodel-independent language for
model query and navigation. Some model transformation approaches (such as
QVT and ATL) started making use of these capabilities by integrating (or host-
ing) OCL as an expression languages. These host languages typically leverage
OCL to express guards (i.e., predicates selecting elements that match transfor-
mation rules) and for navigation (i.e., path expressions over models).

Because OCL is a purely functional language, it cannot be directly used to
perform changes on models or their elements. Therefore, host languages must
define specific syntax and semantics around OCL for these purposes. However,
recent OCL extension proposals [3,5] considered for inclusion in the next version
of OCL [12] give even more capabilities to OCL. For instance, structural pattern

c© Springer International Publishing Switzerland 2015
D. Kolovos and M. Wimmer (Eds.): ICMT 2015, LNCS 9152, pp. 111–120, 2015.
DOI: 10.1007/978-3-319-21155-8 9

112 F. Jouault et al.

matching enables declarative data analysis, and shadow objects enable creation
and processing of immutable versions of model elements. Making use of shadow
objects does not require performing any side effect such as creating elements in
models. This constraint is mandatory to keep OCL purely functional.

In this paper, we explore the possibility of directly using OCL as a trans-
formation language. For this purpose, we define our own variant of OCL called
OCLT (where the T stands for transformation). OCLT is based on OCL 2.4 [6]
and integrates pattern matching and shadow objects extensions in a way that is
similar to the work presented in [5], but with syntax closer to the one used in [3].
These custom extensions are likely to become unnecessary when they actually
become standard by being integrated in OCL 2.5. In the mean time, OCLT lets
us start investigating their capabilities. In addition to these extensions, OCLT
also needs some means to actually create elements in models. To this end, we
additionally integrate to OCLT a specific layer that can translate shadow objects
to actual model elements. This layer is also responsible for trace link resolution,
which consists in linking elements created separately by using traceability links
between source and target elements.

Model transformations expressed in OCLT are pure functions taking as argu-
ments a collection of source model elements, and returning a collection of tar-
get elements. Transformation composition thus becomes function composition.
Other functional techniques such as partial application and higher-order func-
tions also become applicable to model transformation. We illustrate our approach
on the well-known ClassDiagram2Relational model transformation case-study.

The paper is organized as follows. Section 2 gives an overview of the shadow
objects and pattern matching OCL extensions. Section 3 presents the specific
execution layer of OCLT, and shows how our approach can be applied to the well-
known ClassDiagram2Relational transformation. Section 4 discusses the merits
of the OCLT approach. Relation to some related works is given in Sect. 5. And
finally Sect. 6 concludes.

2 Overview of Proposed OCL Constructs

Over the years, many different OCL extensions have been proposed and discussed
(notably in the OCL Workshop series since the year 2000). We focus here on two
extensions that facilitate functional model transformation: shadow objects, and
pattern matching. They are both considered for inclusion in the next version
of OCL, as explained in [12]. They were first introducted in [5], and are also
discussed in [3] along with other extensions such as lambda expressions and active
operations [1]. Although these other extensions could be useful, they are not
strictly necessary for the approach presented in this paper. This section presents
shadow objects and pattern matching with emphasis on their application to
model transformation.

2.1 Shadow Objects

OCL already offers immutable tuples with labeled components. These tuples
notably help with complex computations by enabling the construction of

Towards Functional Model Transformations with OCL 113

temporary data structures. The following example shows a possible tuple-based
representation of class named C owning an attribute named a:
1 T u p l e {name = ’ C ’ , attr = O r d e r e d S e t { T u p l e {name = ’ a ’}}}

The outermost tuple is a class, and the innermost tuple an attribute. One
can note that these facts are not captured in the tuple representation. Although
it would be possible to add an explicit type component to both tuples, shadow
objects extend tuples with an attached model element type, as illustrated below:
1 Class {name = ’ C ’ , attr = O r d e r e d S e t {Attribute {name = ’ a ’}}}

Like tuples, shadow objects are immutable and can be processed by OCL
expressions. The semantics of OCL is only modified so that they are mostly
indistinguishable from actual model elements. Shadow objects can be useful in
side effect-free OCL expressions (e.g., as metamodel-typed tuples). But they
are especially convenient when explicitly supported by a host language. For
instance, a model transformation language may create an actual element in a
model when a shadow object is assigned to a property of an existing model
element. Model element creation can thus use the same standard OCL syntax in
all host languages.

2.2 Pattern Matching with OCL

Pattern matching is a construct found in several successful functional languages
(e.g., Haskell, ML, Scala), but not in OCL. It is typically used to analyze the
structure of data. Existing OCL-based model transformation languages typi-
cally heavily rely on OCL guards for rule matching. For instance, to match
all Attributes named ’id’ and not multivalued, one may write (in ATL-like
syntax):
1 a : Attribute (

2 a . name = ’ id ’ and not a . multiValued
3)

To each Attribute in turn a variable named a is bound (line 1), and then
a guard (line 2) is evaluated to test if Attribute a matches or not. The guard
becomes more verbose when the values of more properties need to be examined.
With pattern matching, one may write:
1 a@Attribute {
2 name = ’ id ’ ,

3 multiValued = false
4 }

The @ character (line 1) denotes an as-pattern (like in Haskell and Scala),
which binds the matched value to the variable. The pattern we have here is
an object pattern that matches model elements (or shadow objects). It con-
sists of a type: Attribute (line 1), and a set of slots (lines 1-2) between curly
braces. Each slot details the value (right of equal symbol) that its associated
property (named on the left of the equal symbol) must have for a match. More
complex pattern matching can be performed: all values can be matched (e.g.,
Tuples, Collections), and multiple variables may be bound in a single pattern.

114 F. Jouault et al.

Moreover, in the context of this paper, we decide to support non-linear patterns
(i.e., patterns in which a given variable may be bound several times). Nonethe-
less, guards are still useful, and can be combined with pattern matching.

3 Application to Model Transformation

3.1 Traceability and Side Effects

As mentioned earlier, OCL is purely functional and does not permit side effects
on mutable data structures. However, models and their elements are often rep-
resented as such. This is notably the case in EMF1-based tools. Whether they
should rather be represented as immutable data structures or not is beyond the
scope of this paper. We want to find a solution that plays well with mutable
models as well. The resolution of trace links is another issue: it typically works
by linking (and therefore updating) elements created at different places.

In order to address these problems, we add a specific layer to OCLT. After
the execution of an OCLT transformation, this layer translates shadow objects
into actual model elements, and performs trace links resolution. These actions
are only performed at the end of each transformation before their results can
be reused (e.g., by another transformation). We also impose that whole mod-
els are created by OCLT transformations (i.e., no update to existing models).
Therefore, model creation can happen atomically, models as seen from OCLT
can be considered as immutable, and the purely functional property of OCLT
can be preserved. We add a new type of OCL expression called transfo in order
to identify which OCLT functions require this specific layer to kick in. This is its
only syntactically visible aspect. The workings of trace link resolution are best
explained on a case study. They are therefore explained in the next section.

3.2 ClassDiagram2Relational in OCLT

This section shows how the ClassDiagram2Relational transformation can be
encoded in OCLT, as given in Listing 1. The source and target metamodels
are given in Fig. 1. They were adapted from [9].

The transformation is written as OCLT function classDiagram2Relational
with type transfo (line 1). It is composed of three parts similar to model trans-
formation rules: Class2Table (line 4), SingleValuedAttribute2Column (line 14),
and MultiValuedAttribute2ColumnsAndTable (line 17). Each rule is encoded as
a case in a single collect over the whole source model contents (line 2). Although
the syntax of cases is different from the one presented in [5], it is equivalent.
collect ignores elements that do not match any pattern, like an implicit select.

Rule Class2Table selects instances of Class from the source and binds them to
variable a since they trivially match the empty object pattern (line 4). A shadow
object instance of Table is then created before being collected to the target (lines
5 to 12). The mapping between the class and the relational table is defined
1 Eclipse Modeling Framework: https://www.eclipse.org/modeling/emf/.

https://www.eclipse.org/modeling/emf/

Towards Functional Model Transformations with OCL 115

Fig. 1. Metamodels for the ClassDiagram2Relational transformation.

within the shadow object directly by setting its properties. The name of the
table matches exactly the name of the class (line 6), and its columns consist of a
column defining the primary key (line 8) union the set of columns representing
the single-valued attributes of the class (line 10).

According to the Relational metamodel, the cols property of Table only
accepts Columns as values. Therefore, trying to put Attributes in this property
is an issue. OCLT relaxes the type system for shadow object so as to temporarily
allow it to happen, until trace link resolution kicks in. Once the whole transfor-
mation has been executed, all source elements stored in the properties of target
elements (such as Attributes being stored in property cols of Table here) are
resolved into their corresponding target elements. The trace links between source
elements and target elements required for resolution are automatically created
during the execution of every collect iterator that has a collection of source ele-
ments as input, and a collection of target elements as output. Therefore, our
single-valued Attributes stored in property cols are ultimately replaced by the
Columns created in the case labeled SingleValuedAttribute2Column. This mech-
anism is similar to the implicit trace link resolution of ATL.

The next two rules follow a similar construct based on the use of pattern
matching and shadow objects. They however differs from the first rule by intro-
ducing variables n and on (lines 14 and 18) directly within the pattern expression
for capturing the values of object properties, rather than using a single variable
representing the matched object c (line 4). This example illustrates the two styles
that can be used for writing pattern expressions (navigation or deconstruction),
but using a single style for a whole transformation may be preferable.

Listing 1. ClassDiagram2Relational in OCLT.
1 transfo : classDiagram2Relational (sourceModelContents :

2 O r d e r e d S e t (NamedElt)) : O r d e r e d S e t (Named)=sourceModelContents−>collect (

3 - - C l a s s 2 T a b l e

4 case c@Class {} |
5 Table {
6 name = c . name ,

7 cols = O r d e r e d S e t {
8 Column {name = ’ id ’}
9 }−>union (

10 c . attrs−>select (a | not a . multiValued) - - r e s o l v i n g !

11)

12 }
13 - - S i n g l e V a l u e d A t t r i b u t e 2 C o l u m n

116 F. Jouault et al.

14 case Attr {name = n , multiValued = false} |
15 Column {name = n}
16 - - M u l t i V a l u e d A t t r i b u t e 2 C o l u m n s A n d T a b l e

17 case Attr {
18 owner = Class {name = on } ,

19 name = n , multiValued = true
20 } |
21 Table {
22 name = on + ’ _ ’ + n ,

23 cols = O r d e r e d S e t {
24 Column {name = ’ i d r e f ’} ,

25 Column {name = n}
26 }
27 }
28)

4 Discussion

The previous sections presented the OCLT approach, and its application to
a well-known case-study. In this section, we briefly discuss five points: model
transformations seen as functions in Sect. 4.1; interoperability with model trans-
formation languages in Sect. 4.2; performance benefits of pattern matching in
Sect. 4.3; an alternative rule structuring in Sect. 4.4; and some limitations of the
OCLT approach in Sect. 4.5.

4.1 Model Transformations as Functions

When model transformations are functions, functional programming techniques
become usable. External model transformation composition [11] is simply achiev-
able via function composition.

Considering model transformations as functions is not a new idea. For
instance, the type system introduced in [10] gives a function type to every model
transformation. It thus enables type checking of model transformation composi-
tions. However, this type system only considers black-box functions. With OCLT,
even the internals of transformations are expressed in a functional language.

The case of higher-order transformations [8] (HOTs) is similar: existing tech-
niques are closer to transformation generation. It is the black-box view of these
transformations as functions, which has a higher-order functional type. Adding
lambda expressions and partial application to OCLT would enable HOTs as
high-order functions.

4.2 Interoperability with Model Transformation Languages

We consider two different motivations for interoperability between model trans-
formation languages. (1) Reusing transformations written in other languages.
(2) Leveraging capabilities of several languages.

Motivations 1 and 2 can be achieved by existing transformation composition
approaches. Moreover, OCLT could be extended to support functional compo-
sition of transformations written in several languages. In this case, these trans-
formations are considered as black-box functions.

Towards Functional Model Transformations with OCL 117

However, sometimes only part of a transformation may need to be written
in a different language. Because OCL is used in several existing model trans-
formation languages, internal composition [11] with OCLT becomes possible by
integrating the OCL extensions of OCLT into these transformation languages.
Concretely, partial OCLT transformations could be integrated anywhere the host
language allows OCL expressions. The host language could then benefit from
OCLT capabilities (motivation 2).

Finally, OCLT could also be compiled into existing model transformation
languages, which would achieve motivations 1 and 2. This would also be one way
to implement OCLT. Pattern matching can be relatively easily transformed into
regular OCL guards for languages that do not support complex patterns such
as ATL. Thus, flat OCLT transformations such as the one presented in Sect. 3.2
would be relatively trivial to compile to QVT or ATL. Nonetheless, it may be
more difficult to compile complex rule dependencies such as could potentially
be achieved in more complex OCLT transformations. There may also be some
issues if the target language only offers declarative rules with specific scheduling
incompatible with OCLT.

4.3 Performance Benefits of Pattern Matching

Pattern matching can make OCL expressions more readable and less verbose [5].
But it can also have a positive impact on performance. For instance, to match
a Class with an Attribute it owns, one may write (in ATL-like syntax):
1 c : Class ,

2 a : Attribute (

3 c . attr−>includes (a)

4)

Naive execution is very expensive because the cartesian product of the sets of
all Classes and of all Attributes must be filtered with the guard (line 3). Deep
guard analysis can result in a significant optimization: given a Class, only the
Attributes it owns need to be considered. But it relies on extracting the intent
behind the guard, which is not a trivial task in the general case. With pattern
matching, the intent is directly expressed at the right level of abstraction:
1 c@Class {
2 attr = Set {a : Attribute , . . . }
3 }

The dots at the end of the set denote that the matched set may contain other
elements than the matched attribute. With such a pattern, it is relatively simple
for each Class c to iterate only on Attributes it owns.

Of course, pattern matching cannot express all relationships between model
elements. Therefore, guards must still be permitted. In OCLT as presented here,
guards may be encoded using pre-filtering (using the select iterator) or with the
if-then-else-endif expression. A possibly better solution would be to integrate
the selectCollect iterator proposed in [12] into OCLT.

118 F. Jouault et al.

4.4 ClassDiagram2Relational Without Cases

Listing 2 gives a different version of the ClassDiagram2Relational transformation
that does not make use of cases. It relies on the implicit selection performed by
collect when patterns do not match. If a guard is required, then selectCollect
could be used. A drawback of this new version is that a naive implementation
would traverse the whole source model three times instead of once. However, it
has the advantage that each collect may traverse different collections. This may
prove useful to apply different rules to different models. Another potential use
is to collect on a cartesian product of model element collections (with multiple
iterators). This is one possibility to express model transformation rules that take
multiple source elements.

Another way to express rules without relying on cases is to follow an approach
similar to the definition of functions with equations, which is used in functional
programming languages like Haskell. However, such an approach would not easily
support rules with different numbers of source elements.

Listing 2. ClassDiagram2Relational in OCL without cases.
1 transfo : classDiagram2Relational_WithoutCases (sourceModelContents :

2 O r d e r e d S e t (NamedElt)) : O r d e r e d S e t (Named) = sourceModelContents−>collect (

3 sourceModelContents−>collect (

4 [. . .] - - C l a s s 2 T a b l e

5)−>union (

6 sourceModelContents−>collect (

7 [. . .] - - S i n g l e V a l u e d A t t r i b u t e 2 C o l u m n

8)

9)−>union (

10 sourceModelContents−>collect (

11 [. . .] - - M u l t i V a l u e d A t t r i b u t e 2 C o l u m n s A n d T a b l e

12)

4.5 Limitations of the Approach

The OCL extensions presented in this paper enable writing whole transforma-
tions in OCLT. We have nonetheless identified the three following limitations:

– Explicit trace link resolution is not currently possible. All trace link res-
olution is performed entirely automatically by the specific layer of OCLT.
However, our experience with ATL has shown that explicit trace link resolu-
tion (with resolveTemp) is sometimes useful.

– Model refining transformations leave most of a model unchanged, and only
perform few changes. This is notably what the refining mode is for in ATL.
OCLT does not currently offer such a capability. This mostly becomes an issue
when in-place changes must be performed. Otherwise, it is always possible to
copy all unchanged elements.

– MxN rules transform M source elements into N target elements. OCLT
can currently handle multiple source elements by collect ing over cartesian
products as discussed in Sect. 4.4. However, multiple target elements is not
currently supported. It would be possible to return a collection of elements
for matched source element. This may work because collect automatically

Towards Functional Model Transformations with OCL 119

flattens collections. However, such rules may need to be specified separately
(e.g., using union as in Listing 2). A more critical issue would be to enable
trace link resolution to one target element among several. This would be
difficult to support without explicit trace link resolution.

5 Related Work

In [5], Clark proposes to add pattern matching and object expressions (similar to
shadow objects) to OCL and already addresses the similarities with functional
programming languages and graph-based transformation languages. While Clark
tackles the issue of navigation expressions and their verbosity for expressing con-
straints, our proposal focuses on model transformation. Of course, all advantages
noted by Clark also apply to OCLT.

In [7], Pollet et al. propose new constructs for implementing model manipula-
tion in OCL using the concept of actions where navigation through the elements
of the models is available. Our approach extends OCL to enable similar declara-
tion of model manipulation actions. Pollet et al. and Cariou et al. also propose
to express contracts [4,7] on OCL actions. This is currently not a concern for
OCLT.

In [2], Bergmann proposes to tranform OCL constraints into EMFQuery to
improve the performance of querying models. In [13], Winkelmamm et al. propose
to transform a subset of OCL constraints into graph constraints. The intent of
this approach is to generate valid instances of model for a given metamodel for
testing purposes. While the generation of instances might be considered as a
specific kind of model transformation, our approach focuses on the definition of
model transformation rules. The use of these rules for model synthesis could be
investigated in further research. These two works show that translation of OCL
guards into patterns is possible in some cases.

6 Conclusion

This paper has presented OCLT, an OCL-based approach to express model
transformations. OCLT relies on two OCL extensions (pattern matching and
shadow objects) that are considered for inclusion in OCL 2.5 [12]. Therefore,
the only lasting difference with OCL may be the new transfo type of expressions
along with its semantics. transfo expressions are post-processed by instantiating
shadow objects in actual models, and by resolving trace links.

The ClassDiagram2Relational transformation written in OCLT looks similar
to, and is as readable as with more traditional rule-based model transforma-
tion languages. Because OCLT transformations are purely functional, they can
directly use techniques such as functional composition. Partial application and
higher-order functions have not been deeply investigated yet but look promising.

As an exploratory work, OCLT still need further work to become actually
usable. Notably, its specific transfo type and associated layer should be given
clear and precise semantics. Then, a full implementation should be created.

120 F. Jouault et al.

Finally, the addition of other proposed OCL extensions should be evaluated.
For instance, adding an active operations semantics [1,3] to OLCT has the poten-
tial of enabling incremental synchronization, with at least partial bidirectional
updates. However, such an addition may be difficult to reconcile with the purely
functional aspect of OCLT.

References

1. Beaudoux, O., Blouin, A., Barais, O., Jézéquel, J.-M.: Active operations on collec-
tions. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I.
LNCS, vol. 6394, pp. 91–105. Springer, Heidelberg (2010)

2. Bergmann, G.: Translating OCL to graph patterns. In: Dingel, J., Schulte, W.,
Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767,
pp. 670–686. Springer, Heidelberg (2014)

3. Brucker, A.D., Clark, T., Dania, C., Georg, G., Gogolla, M., Jouault, F.,
Teniente, E., Wolff, B.: Panel Discussion: proposals for Improving OCL. In: Pro-
ceedings of the 14th International Workshop on OCL and Textual Modelling,
pp. 83–99 (2014)

4. Cariou, E., Marvie, R., Seinturier, L., Duchien, L.: OCL for the specification of
model transformation contracts. In: OCL and Model Driven Engineering on UML
2004 Conference Workshop, vol.12, pp.69–83 (2004)

5. Clark, T.: OCL pattern matching. In: Proceedings of the MODELS 2013 OCL
Workshop, pp. 33–42 (2013)

6. Object Management Group (OMG). Object Constraint Language (OCL), Version
2.4. February 2014. http://www.omg.org/spec/OCL/2.4/

7. Pollet, D., Vojtisek, D., Jézéquel, J.-M.: OCL as a core uml transformation lan-
guage. In: Workshop on Integration and Transformation of UML models WITUML
(held at ECOOP 2002), Malaga(2002)

8. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order
model transformations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-
FA 2009. LNCS, vol. 5562, pp. 18–33. Springer, Heidelberg (2009)

9. Tisi, M., Jouault, F., Delatour, J., Saidi, Z., Choura, H.: FUML as an assembly
language for model transformation. In: Combemale, B., Pearce, D.J., Barais, O.,
Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706, pp. 171–190. Springer, Heidelberg
(2014)

10. Vignaga, A., Jouault, F., Bastarrica, M.C., Brunelière, H.: Typing artifacts in
megamodeling. Softw. Sys. Model. 12(1), 105–119 (2013)

11. Wagelaar, D.: Composition techniques for rule-based model transformation lan-
guages. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS,
vol. 5063, pp. 152–167. Springer, Heidelberg (2008)

12. Willink, E.: OCL 2.5 Plans. Presentation given at the 14th International Workshop
on OCL and Textual Modelling, September 2014. http://www.software.imdea.org/
OCL2014/slides/OCL25Plans

13. Winkelmann, J., Taentzer, G., Ehrig, K., Küster, J.M.: Translation of restricted ocl
constraints into graph constraints for generating meta model instances by graph
grammars. Electron. Notes Theor. Comput. Sci. 211, 159–170 (2008)

http://www.omg.org/spec/OCL/2.4/
http://www.software.imdea.org/OCL2014/slides/OCL25Plans
http://www.software.imdea.org/OCL2014/slides/OCL25Plans

Transparent Model Transformation: Turning
Your Favourite Model Editor
into a Transformation Tool

Vlad Acretoaie1(B), Harald Störrle1, and Daniel Strüber2

1 Technical University of Denmark, Kongens Lyngby, Denmark
{rvac,hsto}@dtu.dk

2 Philipps-Universität Marburg, Marburg, Germany
strueber@mathematik.uni-marburg.de

Abstract. Current model transformation languages are supported by
dedicated editors, often closely coupled to a single execution engine. We
introduce Transparent Model Transformation, a paradigm enabling mod-
elers to specify transformations using a familiar tool: their model editor.
We also present VMTL, the first transformation language implementing
the principles of Transparent Model Transformation: syntax, environ-
ment, and execution transparency. VMTL works by weaving a trans-
formation aspect into its host modeling language. We show how our
implementation of VMTL turns any model editor into a flexible model
transformation tool sharing the model editor’s benefits, transparently.

1 Introduction

The science and practice of model transformation (MT) has made significant
progress since it was first identified as the “heart and soul” of Model-Driven Engi-
neering (MDE) [12]. A varied array of model transformation languages (MTLs)
have been proposed since then, each with its own benefits and drawbacks.

While it has found adoption in specialized domains such as embedded systems
development, MDE remains outside the mainstream of software development
practice. Empirical evidence identifies the poor quality of tool support as one of
the main obstacles in the path of large-scale industrial adoption of MDE [18].
Considering the central role of MT in MDE, as well as the experimental nature
of most MT tools, we infer that at least some of the criticism addressed to MDE
tool quality directly concerns MT tools.

Most (if not all) executable MTLs currently come with dedicated tools that
modelers must learn and use in order to specify and execute transformations.
But modelers already have at their disposal at least one mature, production-
ready tool which they know how to use: their model editor. This observation
leads to our central research question:

Is it possible to explicitly specify model transformations using
only existing, conventional model editors as an interface?

In this paper we show that this question can be answered positively by following
the three principles of Transparent Model Transformation (TMT):
c© Springer International Publishing Switzerland 2015
D. Kolovos and M. Wimmer (Eds.): ICMT 2015, LNCS 9152, pp. 121–130, 2015.
DOI: 10.1007/978-3-319-21155-8 10

122 V. Acretoaie et al.

1. The MTL can express transformations at the syntax level supported by the
model editor. In most cases this is concrete syntax, but abstract syntax,
containment tree, and textual interfaces are also common.

2. Users are free to adopt their preferred editor for each transformation artefact:
the source and target model(s), as well as the transformation specification.

3. Transformations can be compiled to multiple executable representations.

We propose the Visual Model Transformation Language (VMTL) as the first
MTL following the principles of TMT. Fig. 1 positions VMTL in the current
model transformation landscape and highlights its key benefits. Namely, VMTL
is a declarative language designed to be woven at the syntactic level into any
host modeling language, turning that modeling language into a transformation
language for models conforming to it. VMTL adopts any editor of the host
modeling language as its own, effectively turning it into a transformation editor.
Transformations are subsequently executed by compilation to existing MTLs,
which we exemplify in this paper by compiling to the Henshin [3] MTL.

The remainder of this paper is structured as follows: Sect. 2 introduces VMTL
via a motivating example, Sect. 3 provides an overview of VMTL’s main features,
Sect. 4 lays out the fundamentals of TMT with VMTL as an application, Sect. 5
describes our implementation of VMTL, Sect. 6 discusses the scope and limi-
tations of VMTL, Sect. 7 summarizes related work, and Sect. 8 concludes the
paper.

Fig. 1. VMTL and its key benefits in the current model transformation landscape

Transparent Model Transformation: Turning Your Favourite Model Editor 123

2 Motivating Example

Consider a UML [10] Use Case model in which an Actor is connected by Associ-
ations to two Use Cases, one of which extends the other. The described scenario
is a refactoring candidate because the extending Use Case “typically defines
behavior that may not necessarily be meaningful by itself” [10]. Deleting the
Association between the Actor and the extending Use Case is recommended.

A VMTL specification for this transformation is shown in Fig. 2 (top). VMTL
employs textual annotations for a number of purposes, such as specifying model
manipulation operations. The delete annotation is used here to state that
the offending Association must be removed from the model. In the case of
UML, Comments are an appropriate vehicle for VMTL annotations. Annotation-
carrying comments are identified by the <<VM Annotation>> stereotype.

Fig. 2. Example transformation specified using VMTL (top) and Henshin (bottom)

The same transformation could be specified using most existing MTLs, such
as Henshin, a graph transformation-based MTL (see Fig. 2, bottom). The Hen-
shin specification is considerably more verbose than its VMTL counterpart,
arguably due to the complexity of the UML metamodel. This observation is
true for all MTLs exposing the abstract syntax of the host modeling language,
since large and complex metamodels are by no means unique to UML and its
profiles.

124 V. Acretoaie et al.

Nevertheless, specifying transformations at the concrete syntax level is not
the main argument put forward by VMTL. A more compelling argument is
that VMTL allows specifying transformations directly in the model editor. The
transformation in Fig. 2 (top) is specified using the MagicDraw model editor
(http://www.nomagic.com/products/magicdraw), but any other UML editor
could have been used instead, including containment tree and abstract syntax
editors. VMTL circumvents the need for a dedicated transformation editor by
implementing the principles of Transparent Model Transformation.

3 The Visual Model Transformation Language

VMTL is a usability-oriented MTL descended from the Visual Model Query Lan-
guage (VMQL [14]). It is a model-to-model, unidirectional transformation lan-
guage supporting endogenous and exogenous transformations, rule application
conditions, rule scheduling, and both in-place and out-place transformations.
VMTL transformations can be specified for models expressed in any general-
purpose or domain-specific modeling language meeting the preconditions defined
in Sect. 4.1. We refer to these modeling languages as host languages.

A VMTL transformation consists of one or more rules, each having an exe-
cution priority. If two rules have equal priorities, the executed rule is selected
non-deterministically. A transformation terminates when no rules are applicable.
Rules consist of a Find pattern, a Produce pattern, and optional Forbid and
Require patterns. All patterns are expressed using the host language(s), typi-
cally at the concrete syntax level. Model elements and meta-attributes that do
not have a concrete syntax representation are also included in the transforma-
tion specification. VMTL patterns correspond to the notions of Left-Hand Side
(LHS), Right-Hand Side (RHS), Negative Application Condition (NAC), and
Positive Application Condition (PAC) from graph transformation theory [5].
Some transformations, such as the one in Fig. 2 (top), allow the Find and
Produce patterns to be merged for conciseness, resulting in an Update pattern.
Strings starting with the “$” character represent variables, and can be used
wherever the host language accepts a user-defined string. Variables identify cor-
responding model elements across patterns and support rule parameterization.

Patterns may contain textual annotations expressed as logic programming-
inspired clauses. The adoption of logic clauses as an annotation style is motivated
by their declarative nature and their composability via propositional logic oper-
ators. VMTL provides clauses for pattern specification, model manipulation,
and transformation execution control. Apart from the delete clause featured in
Fig. 2 (top), examples of VMTL clauses include create (for creating model ele-
ments), indirect (for specifying a relation’s transitive closure), optional (for
identifying model elements that can be omitted from successful pattern matches),
and priority (for specifying rule priorities). A complete list of VMTL clauses
and a more detailed presentation of the language are available in [1].

http://www.nomagic.com/products/magicdraw

Transparent Model Transformation: Turning Your Favourite Model Editor 125

4 The Principles of Transparent Model Transformation

Transparent Model Transformation is defined by three principles: (1) syntax
transparency, (2) environment transparency, and (3) execution transparency. The
following subsections define these principles and exemplify them on VMTL.

4.1 Syntax Transparency

Consider an MTL capable of specifying transformations on models conforming
to metamodel M. The MTL is said to be syntax transparent with respect to M
if all such transformation specifications also conform to M. For example, since
VMTL is a syntax transparent language, Fig. 2 (top) simultaneously represents
a valid UML model and a transformation specification.

VMTL achieves syntax transparency by weaving a transformation aspect into
the host modeling language. The constructs of VMTL – rules, patterns, and
annotations – are mapped to existing elements of the host language using stereo-
types or naming conventions. Consider, for instance, the realization of a VMTL
Update pattern and a VMTL annotation in UML and Business Process Model
and Notation (BPMN [9]). The UML realizations rely on stereotypes (the <<VM
Update>> stereotype for Packages and the <<VM Annotation>> stereotype for
Comments), while the BPMN realizations rely on naming conventions (the [VM
Update] prefix for Package names and the [VM Annotation] prefix for Text
Annotation IDs). We refer to these realizations of VMTL as VMTLUML and
VMTLBPMN, respectively. Similar realizations can be created for other general-
purpose or domain-specific modeling languages.

VMTL can only be woven into host modeling languages meeting certain
prerequisites. First of all, the host language must support a scoping construct, a
role played by Packages in UML and BPMN. Scoping constructs enable VMTL’s
execution engine to identify which transformation rules or patterns different
model elements belong to. Second, all host language elements must support
annotations, which are required to act as containers for VMTL clauses. Finally,
the availability of a profiling mechanism facilitates the realization of VMTL,
since stereotypes can precisely identify model elements as VMTL constructs.
A profiling mechanism can be substituted by the adoption of naming conventions.

4.2 Environment Transparency

An MTL is environment transparent if it allows users to adopt their preferred
editors for interacting with all transformation artefacts: the source model(s),
target model(s), and transformation specification. Environment transparency is
facilitated by syntax transparency, but can also exist independently. For instance,
most textual MTLs allow the use of general-purpose text editors as specification
tools, thus exhibiting environment transparency but not syntax transparency.

Since most current MTLs are experimental, few are supported by mature,
production-ready editors. The ability to specify transformations using existing
model editors is thus beneficial to end-users from two standpoints: (1) avoiding

126 V. Acretoaie et al.

the learning curve imposed by a new editor, and (2) leveraging a tested, mature
tool. By promoting loose editor coupling, environment transparency also opens
new deployment avenues, such as remote transformation execution.

VMTL is an environment transparent language. For example, VMTLUML

transformations are specified using a UML editor, while a VMTLBPMN transfor-
mations are specified using a BPMN editor.

4.3 Execution Transparency

An MTL is execution transparent if transformations specified using it can be
executed by compilation to multiple MTLs operating at a lower abstraction
level. Execution transparency gives users the freedom to select a transformation
engine appropriate for the task at hand. For instance, in a safety-critical scenario,
users might prefer a transformation engine that supports model checking and
state-space exploration over one that aims at highly efficient rule execution.

The number and complexity of language constructs included in VMTL is delib-
erately limited in order to facilitate its compilation to existing MTLs. Since the
components of VMTL transformations can be mapped to graph transformation
concepts, the most intuitive compilation targets are graph transformation-based
MTLs.However, implementations basedon imperativeMTLs (e.g.EOL [8]), trans-
formation primitive libraries (e.g. T-Core [15]), or general purpose programming
languages accompanied by modeling APIs are all possible.

5 Implementation and Deployment

Our implementation of VMTL is based on the Eclipse Modeling Framework
(EMF [13]) and the Henshin MT engine. Henshin was selected because its graph
transformation-based operational semantics aligns well with VMTL. As a stand-
alone API, it also supports VMTL’s syntax and environment transparency. The
architecture of our implementation is presented in Fig. 3. As illustrated, the
source model and VMTL specification are created using the same editor.

VMTL specifications are compiled by the VM* Runtime1 into semantically
equivalent Henshin specifications to be executed by the Henshin transformation
engine. The compilation process can be seen as a Higher-Order Transformation
(HOT) consisting of the four steps illustrated in Fig. 3.

In step model fragments representing transformation components are iden-
tified and extracted from the transformation model. These are the transfor-
mation’s Left-Hand Side (LHS), Right-Hand Side (RHS), Negative Application
Conditions (NAC), and Positive Application Conditions (PAC). As these compo-
nents correspond to VMTL patterns, their identification is informed by VMTL
stereotypes or naming conventions.

In step the extracted model fragments are translated into structurally
equivalent Henshin graphs intended to play the same role (LHS, RHS, NAC, or
PAC) in the generated Henshin transformation.

1 The VM* Runtime is also capable of evaluating model queries and constraints.

Transparent Model Transformation: Turning Your Favourite Model Editor 127

Fig. 3. The architecture of a Henshin-based VMTL implementation. Numbers encircled
in black indicate the sequence of steps in the VMTL to Henshin compilation process.

In step a set of atomic Henshin rules are created by constructing mappings
between the nodes of each LHS graph and the corresponding nodes in every other
graph belonging to the same rule. As a mapping is a connection between two
matching nodes, obtaining the set of mappings between two graphs is equivalent
to computing a match between the graphs. The EMFCompare (https://www.
eclipse.org/emf/compare/) API is used for match computation.

In step the generated rules are nested inside Units, Henshin’s control flow
specification formalism. The resulting control structure implements the opera-
tional semantics of VMTL: The applicable rule with highest priority is executed
until no more applicable rules exist, at which point the MT terminates.

The architecture presented in Fig. 3 is compatible with several deployment
strategies. In a monolithic plugin-based deployment, a model editor plugin encap-
sulates the VM* Runtime and the MT engine. This approach offers limited
portability, as a full-featured new plugin is required for every editor.

To improve portability without sacrificing editor integration, the VM* Run-
time and the MT engine can be deployed remotely and accessed via a REST
API2. Business logic can be removed from the editor plugin, facilitating its re-
implementation. However, transferring models over a network is a performance
bottleneck, while remote model processing requires strong security provisions.

2 Any other remote code execution technology may be used.

https://www.eclipse.org/emf/compare/
https://www.eclipse.org/emf/compare/

128 V. Acretoaie et al.

A third option is to forego editor integration, and develop a separate Web
application as a user interface for VMTL. This solution allows specifying VMTL
transformations using any editor supporting the host language. The cost is that
users must leave the model editor, making interactive transformation execu-
tion infeasible. The above-mentioned issues related to remote model processing
also apply. We have adopted this deployment strategy for the Hypersonic model
analysis API, and provided an in-depth analysis of its advantages and draw-
backs [2].

6 Scope and Limitations

Apart from its benefits, the transparent approach to model transformation
embraced byVMTLhas some inherent limitations,whichwediscuss in this section.

In VMTL, there are no explicit mappings between the elements of different
patterns included in a transformation rule. Instead, the VM* Runtime infers the
mappings as described in Sect. 5. In contrast, most declarative MTLs assume that
these mappings are specified by the transformation developer. In the general case,
inferring them programmatically requires model elements to have unique identi-
fiers corresponding across patterns. An element’s name and type can be used to
construct such identifiers, but with no guarantee of uniqueness. Furthermore, some
host language elements might not have a name meta-attribute. VMTL therefore
allows users to attach tags of the form #id to model elements via annotations. It is
the developer’s responsibility to ensure that corresponding elements have the same
name or tag in all patterns. These element identification provisions have the added
benefit of allowing the patterns of a rule to conform to different metamodels, thus
providing support for exogenous transformations.

One may also argue that VMTL’s priority-based rule scheduling is not suffi-
ciently expressive. While not included in the current VMTL specification, control
flow structures such as conditional execution and looping constructs could be spec-
ified using VMTL’s existing textual annotation mechanism.

At the implementation level, incompatibilities between VMTL’s operational
semantics and the capabilities of its underlying MT engine may appear. One exam-
ple is the indirect clause, allowing VMTL patterns to express a relation’s transi-
tive closure, i.e. a chain of undefined length of instances of this relation. Transitive
closure computation is problematic for most graph transformation-based engines,
but trivial for, say, a logic programming-based engine.

Employing model editors to carry out a task they were not designed for also
brings a series of limitations. The well-formedness and syntactical correctness of
VMTL rules cannot be verified inside the editor in the absence of a dedicated plu-
gin, while transformation debugging would also benefit from editor extensions. On
the other hand, most model editors will enforce the conformance of VMTL pat-
terns to the host language metamodel. This expressiveness limitation is mitigated
by VMTL’s textual annotations. Finally, displaying target models in the host edi-
tor is complicated due to the fact that diagram layout is typically not part of the
host language metamodel. Maintaining a layout similar to that of the source model
is therefore only possible for in-place transformations.

Transparent Model Transformation: Turning Your Favourite Model Editor 129

7 RelatedWork

MoTMoT [17] proposes an extensible UML 1.5 profile as a uniform concrete syn-
tax for all graph transformation languages. This approach allows graph transfor-
mations to be specified using any UML 1.5 editor, and executed by existing graph
transformation engines. Although it offers execution transparency and limited
environment transparency, MoTMoT does not address syntax transparency.

Several MT approaches (e.g. PICS [4], AToMPM [16]) include concrete syntax
model fragments in their specification languages, taking a first step towards syntax
transparency. Some of these approaches (e.g. AToMPM) augment the host model-
ing language with flowchart-like rule scheduling constructs. Even though they are
more expressive than VMTL’s priority-based scheduling mechanism, these aug-
mentations preclude full syntax and environment transparency. In the same area,
Schmidt [11] proposes a transformation profile for UML models, but does not con-
sider other host modeling languages.

Model Transformation By-Example (MTBE, [7]) is an emerging paradigm
aimed at leveraging the concrete syntax of host modeling languages. In MTBE,
transformations are inferred using machine learning or optimization algorithms
from a series of example source and target model pairs. In contrast, VMTL trans-
formations are explicitly specified using the host language model editor.

Execution transparency is addressed in the context of the systematic develop-
ment of model transformations by transML [6]. In the same direction, AToMPM
transformations are compiled to a lower-level specification language, namely the
T-Core [15] transformation primitive library.

8 Conclusion

Theperceived lack of adequate tool support inMDEcanbemitigated by leveraging
production-ready tools familiar to modelers, such as conventional model editors.
Adopting existing model editors as transformation tools requires a new approach
to model transformation, which we refer to as Transparent Model Transformation
(TMT). The principles of syntax transparency, environment transparency, and
execution transparency define TMT. Although a number of MTLs adopt subsets of
these principles, they have never been explicitly acknowledged and systematized.
Doing so has been the first contribution of this paper.

Our second contribution has been the proposal of VMTL: the first transfor-
mation language fully compliant with the principles of TMT. We have introduced
VMTL’s syntax and high-level semantics, and discussed its scope and limitations.

Finally, we have presented the VM* Runtime as an implementation of VMTL.
The VM* Runtime leverages the existing Henshin transformation engine, while
supporting both local and distributed deployment. It allows us to conclude that
TMT is feasible not only conceptually, but also practically.

Acknowledgments. The authors would like to thankGabriele Taentzer for her insight-
ful comments on the content and presentation of this paper.

130 V. Acretoaie et al.

References

1. The VM* Wiki. https://vmstar.compute.dtu.dk/
2. Acretoaie, V., Störrle, H.: Hypersonic: Model analysis and checking in the cloud.

In: Proceedings of the 2nd Workshop on Scalability in Model Driven Engineering.
CEUR Workshop Proceedings, vol. 1206, pp. 6–13 (2014)

3. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place emf model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 121–
135. Springer, Heidelberg (2010)

4. Baar, T., Whittle, J.: On the usage of concrete syntax in model transformation
rules. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 84–
97. Springer, Heidelberg (2007)

5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Berlin Heidelberg (2006)

6. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F., dos Santos, O.M.: Engineering
model transformations with transML. Softw. Syst. Model. 12(3), 555–577 (2013)

7. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model
transformation by-example: a survey of the first wave. In: Düsterhöft, A., Klettke,
M., Schewe, K.-D. (eds.) Conceptual Modelling and Its Theoretical Foundations.
LNCS, vol. 7260, pp. 197–215. Springer, Heidelberg (2012)

8. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon object language (EOL). In:
Rensink, A., Warmer, J. (eds.) ECMDA–FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006)

9. Object Management Group: Business Process Model and Notation (BPMN), Ver-
sion 2.0.2 (2013) http://www.omg.org/spec/BPMN/2.0.2/

10. Object Management Group: Unified Modeling Language (UML), Version 2.5 Beta
2 (2013) http://www.omg.org/spec/UML/2.5/Beta2/

11. Schmidt, M.: Transformations of UML 2 models using concrete syntax patterns. In:
Guelfi, N., Buchs, D. (eds.) RISE 2006. LNCS, vol. 4401, pp. 130–143. Springer,
Heidelberg (2007)

12. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-
driven software development. IEEE Softw. 20(5), 42–45 (2003)

13. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. Addison-Wesley Professional, Boston (2008)

14. Störrle, H.: VMQL: a visual language for ad-hoc model querying. J. Visual Lang.
Comput. 22(1), 3–29 (2011)

15. Syriani, E., Vangheluwe, H., LaShomb, B.: T-Core: a framework for custom-built
model transformation engines. Softw. Syst. Model. 13(3), 1–29 (2013)

16. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Van Mierlo, S., Huseyin,
E.: AToMPM: a web-based modeling environment. In: Joint Proceedings of MOD-
ELS 2013 Invited Talks, Demonstration Session, Poster Session, and ACM Student
Research Competition. CEUR Workshop Proceedings, vol. 1115, pp. 21–25 (2013)

17. Van Gorp, P., Keller, A., Janssens, D.: Transformation language integration based
on profiles and higher order transformations. In: Gašević, D., Lämmel, R., VanWyk,
E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 208–226. Springer, Heidelberg (2009)

18. Whittle, J., Hutchinson, J., Rouncefield,M., Burden, H., Heldal, R.: Industrial adop-
tion of model-driven engineering: are the tools really the problem? In: Moreira, A.,
Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol. 8107,
pp. 1–17. Springer, Heidelberg (2013)

https://vmstar.compute.dtu.dk/
http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/UML/2.5/Beta2/

Transformation Validation
and Verification

A Sound Execution Semantics for ATL
via Translation Validation

Research Paper

Zheng Cheng(B), Rosemary Monahan, and James F. Power

Computer Science Department, Maynooth University,
Maynooth, Co. Kildare, Ireland

{zcheng,rosemary,jpower}@cs.nuim.ie

Abstract. In this work we present a translation validation approach
to encode a sound execution semantics for the ATL specification. Based
on our sound encoding, the goal is to soundly verify an ATL specifica-
tion against the specified OCL contracts. To demonstrate our approach,
we have developed the VeriATL verification system using the Boogie2
intermediate verification language, which in turn provides access to the
Z3 theorem prover. Our system automatically encodes the execution
semantics of each ATL specification (as it appears in the ATL matched
rules) into the intermediate verification language. Then, to ensure the
soundness of the encoding, we verify that it soundly represents the run-
time behaviour of its corresponding compiled implementation in terms
of bytecode instructions for the ATL virtual machine. The experiments
demonstrate the feasibility of our approach. They also illustrate how to
automatically verify an ATL specification against specified OCL con-
tracts.

Keywords: Model transformation verification · ATL · Automatic
theorem proving · Intermediate verification language · Boogie

1 Introduction

Model-driven engineering (MDE) has been recognised as an effective way to
manage the complexity of software development. Model transformation is widely
acknowledged as a principal ingredient of MDE. Two main paradigms for devel-
oping model transformations are the operational and relational approaches.
Operational model transformations are imperative in style, and focus on impera-
tively describing how a model transformation should progress. Relational model
transformations (MTr) have a “mapping” style, and aim at producing a declara-
tive specification that documents what the model transformation intends to do.
Typically, a declarative specification is compiled into a low level transformation

Z. Cheng—Funded by the Doctoral Teaching scholarship, John & Pat Hume schol-
arship and Postgraduate Travel fund from Maynooth University.

c© Springer International Publishing Switzerland 2015
D. Kolovos and M. Wimmer (Eds.): ICMT 2015, LNCS 9152, pp. 133–148, 2015.
DOI: 10.1007/978-3-319-21155-8 11

134 Z. Cheng et al.

implementation and is executed by the underlying virtual machine. Because of
its mapping-style nature, a MTr is generally easier to write and understand than
an operational transformation.

The Atlas Transformation Language (ATL) is one of the most widely used
MTr languages in industry and academia [9]. An ATL specification (i.e. an ATL
program) is a declarative specification that documents what the ATL transfor-
mation intends to do. It is expressed in terms of a list of rules (Sect. 2). These
rules describe the mappings between the source metamodel and the target meta-
model, using the Object Constraint Language (OCL) for both its data types and
its declarative expressions. Then, the ATL specification is compiled into an ATL
Stack Machine (ASM) implementation to be executed.

Verifying the correctness of the ATL transformation means proving assump-
tions about the ATL specification. These assumptions can be made explicitly by
transformation developers via annotations, so-called contracts. The contracts are
usually expressed in OCL for its declarative and logical nature. Many approaches
have been adopted to verify the correctness of an ATL transformation [5,6,8,15].
These approaches usually consist of encoding the execution semantics of an ATL
specification in a formal language. Combined with a formal treatment of trans-
formation contracts, a theorem prover can be used to verify the ATL specifica-
tion against the specified contracts. The result of the verification will imply the
correctness of the ATL transformation.

However, existing approaches do not verify that the encoded execution
semantics of an ATL specification soundly represents the runtime behaviour pro-
vided by the ASM implementation. Therefore, an unsound encoding will yield
unsound results after verification, i.e. it will lead to erroneous conclusions about
the correctness of the ATL transformation (Sect. 2). In a model transforma-
tion verification survey by Rahim and Whittle, this problem is characterised as
ensuring the semantics preservation relationship between a declarative specifi-
cation and its operational implementation, which is an under-researched area in
MDE [1].

In this work, we are specifically interested in the core component of ATL, i.e.
ATL matched rules. We aim for the sound verification of the total correctness of
an ATL transformation. Therefore, we compositionally verify the termination,
and the soundness of our encoding of the execution semantics of each ATL
matched rule in the given ATL specification (i.e. we verify that the execution
semantics of each ATL matched rule soundly represents the runtime behaviour of
its corresponding ASM implementation). Consequently, we are able to soundly
verify the ATL specification against its specified OCL contracts, based on our
sound encodings for the execution semantics of the ATL matched rules.

We have developed our VeriATL verification system in the Boogie interme-
diate verification language (Boogie) to demonstrate our approach (Sect. 6) [4].

Boogie. Boogie is a procedure-oriented language that is based on Hoare-logic.
It provides imperative statements (such as assignment, if and while state-
ments) to implement procedures, and supports first-order-logic contracts (i.e.
pre/postconditions) to specify procedures. Boogie allows type, constant, function

A Sound Execution Semantics for ATL via Translation Validation 135

and axiom declarations, which are mainly used to encode libraries that define
data structures, background theories and language properties. A Boogie proce-
dure is verified if its implementation satisfies its contracts. The verification of
Boogie procedures is performed by the Boogie verifier, which uses the Z3 SMT
solver as its underlying theorem prover. Using Boogie in verifier design has two
advantages. First, Boogie encodings can be encapsulated as libraries, which are
then reusable when designing verifiers for other languages. Second, Boogie acts as
a bridge between the front-end model transformation language and the back-end
theorem prover. The benefit here is that we can focus on generating verification
tasks for the front-end language in a structural way, and then delegate the task
of interacting with theorem provers to the Boogie verifier.

Thus, using Boogie enables Hoare-logic-based automatic theorem proving
via an efficient theorem prover, i.e. Z31. The details for performing our proposed
verification tasks were far from obvious to us, and articulating them is the main
contribution of this work. In particular,

– We adapt a memory model used in the verification of object-oriented pro-
grams to explain concepts within MDE. This allows the encoding of both
these MDE concepts and the execution semantics of ATL matched rules in
Boogie (Sect. 4).

– We use the translation validation approach to compositionally verify the
soundness of our Boogie encoding for the execution semantics of an ATL
matched rule (Sect. 5). The benefit is that we can automatically verify the
soundness of each ATL specification/ASM implementation pair. Our transla-
tion validation approach is based on encoding a translational semantics of the
ASM language in Boogie, to allow us precisely explain the runtime behaviour
of ASM implementations (Sect. 5).

2 Motivating Example

We use the ER2REL transformation as our running example [5]. It transforms
the Entity-Relationship (ER) metamodel (Fig. 1(a)) into the RELational (REL)
metamodel (Fig. 1(b)). Both the ER schema and the relational schema have a
commonly accepted semantics. Thus, it is easy to understand their metamodels.

The ER2REL specification is defined via a list of ATL matched rules in a
mapping style (Fig. 2). The first three rules map respectively each ERSchema
element to a RELSchema element (S2S), each Entity element to a Relation
element (E2R), and each Relship element to a Relation element (R2R). The
remaining three rules generate a RELAttribute element for each Relation ele-
ment created in the REL model.

Each ATL matched rule has a from section where the source elements to
be matched in the source model are specified. An optional OCL constraint may
be added as the guard, and a rule is applicable only if the guard passes. Each
rule also has a to section which specifies the elements to be created in the target

1 Z3. http://z3.codeplex.com/.

http://z3.codeplex.com/

136 Z. Cheng et al.

Fig. 1. Entity-Relationship and Relational metamodels

1 module ER2REL; create OUT : REL from IN : ER;
2

3 rule S2S {
4 from s: ER!ERSchema
5 to t: REL!RELSchema (relations<-s.relships, relations<-s.entities)}
6

7 rule E2R {
8 from s: ER!Entity to t: REL!Relation (name<-s.name) }
9

10 rule R2R {
11 from s: ER!Relship to t: REL!Relation (name<-s.name) }
12

13 rule EA2A {
14 from att: ER!ERAttribute, ent: ER!Entity (att.entity=ent)
15 to t: REL!RELAttribute (name<-att.name, isKey<-att.isKey, relation<-ent) }
16

17 rule RA2A {
18 from att: ER!ERAttribute, rs: ER!Relship (att.relship=rs)
19 to t: REL!RELAttribute (name<-att.name, isKey<-att.isKey, relation<-rs) }
20

21 rule RA2AK {
22 from att: ER!ERAttribute, rse: ER!RelshipEnd
23 (att.entity=rse.entity and att.isKey=true)
24 to t: REL!RELAttribute (name<-att.name, isKey<-att.isKey, relation<-rse.relship)}

Fig. 2. ATL specification for ER2REL model transformation

model. The rule initialises the attribute/association of a generated target element
via the binding operator (<-). This binding operator resolves its right hand side
before assigning to the left hand side. For example, the binding relation<-ent in
the EA2A rule on line 15 of Fig. 2 assigns the Relation element that is created
for ent by the R2R rule to the relation.

3 Proving Transformation Correctness

In this work the correctness of an ATL transformation is specified using OCL
contracts. These OCL contracts form a Hoare-triple which is used to verify the

1 context ERSchema inv entities_unique: −− entity names are unique in the ER schema
2 self.entities->forAll(e1,e2 | e1<>e2 implies e1.name<>e2.name)
3 −−−
4 context RELSchema inv relations_unique: −− relation names are unique in the REL schema
5 self.relations->forall(r1,r2| r1<>r2 implies r1.name<>r2.name)

Fig. 3. OCL contracts for ER and REL

A Sound Execution Semantics for ATL via Translation Validation 137

correctness of each ATL transformation. For example, using the OCL contracts
specified in Fig. 3, we can verify whether the constraint entities unique imposed
on the ER metamodel, along with the ER2REL specification, guarantees that
the constraint relations unique holds on the REL metamodel.

In order to prove the correctness of the ATL transformation, we encode the
OCL transformation contracts, along with the ATL transformation specification
into the Boogie language. Figure 4 shows this encoding applied to the ER2REL
transformation:

– First, the OCL contracts are encoded as a Boogie contract. In particular, the
OCL constraints on the source metamodels are encoded as Boogie precon-
ditions (line 2–8), and the OCL constraints on the target metamodels are
encoded as Boogie postconditions (line 10–16).

1 procedure main () ;
2 / precondi t ion : en t i t y names are unique in the ER schema /
3 requires (∀ s : ref • s∈ f i nd (srcHeap ,ER ERSchema) =⇒
4 (∀ j1 , j 2 : int • 0≤j1<j2<arrayLength (read (srcHeap , s , ERSchema . e n t i t i e s)) =⇒
5 read (srcHeap , s , ERSchema . e n t i t i e s) [j 1] �=
6 read (srcHeap , s , ERSchema . e n t i t i e s) [j 2] =⇒
7 read (srcHeap , read (srcHeap , s , ERSchema . e n t i t i e s) [j 1] , Entity . name) �=
8 read (srcHeap , read (srcHeap , s , ERSchema . e n t i t i e s) [j 2] , Entity . name))) ;
9 modifies tarHeap ;

10 / pos tcondi t ion : r e l a t i on names are unique in the REL schema /
11 ensures (∀ t : ref • t∈ f i nd (tarHeap ,REL RELSchema) =⇒
12 (∀ j1 , j 2 : int • 0≤j1<j2<arrayLength (read (tarHeap , t , RELSchema . r e l a t i o n s)) =⇒
13 read (tarHeap , t , RELSchema . r e l a t i o n s) [j 1] �=
14 read (tarHeap , t , RELSchema . r e l a t i o n s) [j 2] =⇒
15 read (tarHeap , read (tarHeap , t , RELSchema . r e l a t i o n s) [j 1] , Re lat ion . name) �=
16 read (tarHeap , read (tarHeap , t , RELSchema . r e l a t i o n s) [j 2] , Re lat ion . name))) ;
17

18 implementation main () {
19 / I n i t i a l i z e Target model /
20 ca l l init tar model () ;
21 / in s t an t i a t i on phase /
22 ca l l S2S matchAll () ; ca l l E2R matchAll () ; ca l l R2R matchAll () ;
23 ca l l EA2A matchAll () ; ca l l RA2A matchAll () ; ca l l RA2AK matchAll () ;
24 / i n i t i a l i s a t i o n phase /
25 ca l l S2S applyAll () ; ca l l E2R applyAll () ; ca l l R2R applyAll () ;
26 ca l l EA2A applyAll () ; ca l l RA2A applyAll () ; ca l l RA2AK applyAll () ;
27 }

Fig. 4. Verifying the Correctness of the ER2REL Transformation

– Second, the execution semantics of the ATL specification is encoded as a Boo-
gie implementation (line 18–27). The body of this Boogie implementation is
a series of procedure calls to the encoded Boogie contracts for the execution
semantics of each ATL matched rule. Specifically, the execution semantics of
a given matched rule involves an instantiation step (for matching source ele-
ments and allocating target elements) and an initialisation step (for initial-
ising target elements) [3]. Each step is encoded as a Boogie contract. These
Boogie contracts for ATL rules are scheduled to execute their instantiation
steps before their initialisation steps, which ensures the confluence of trans-
formation [3].

– Finally, we pair the Boogie contract that represents the specified OCL contracts,
with the Boogie implementation that represents the execution semantics of the

138 Z. Cheng et al.

ATL specification. Such a pair forms a verification task, which is input to the
Boogie verifier. The Boogie verifier either gives a confirmation that indicates
the ATL specification satisfies the specified OCL contracts, or trace informa-
tion that indicates where the OCL contract violation is detected.

Whether the ER2REL transformation is verified for the given OCL contracts
depends on our encoded Boogie contracts for the execution semantics of each
ATL matched rule. Our encoding is based on existing documentation of ATL
[3,9]. However, the ambiguities in the documentation increase our encoding dif-
ficulty. For example, on line 5 of the ER2REL specification (Fig. 2), the relations
association is bound twice. The ATL documentation does not explicitly specify
how to encode the execution semantics of such a case. We can encode it by either
assuming that:

– The second binding overwrites the first binding. In this case the rela-
tions unique constraint holds, since the relations of each RELSchema ele-
ment will be resolved from the entities of the ERSchema element only; or

– The second binding is composed with the first binding. In this case the
relations unique constraint does not hold, since the relations of each REL-
Schema element will come from both the relships and entities of the ER-
Schema element, and we do not know that the names of relships are all unique
for each ERSchema element, nor that the names of entities and relships of
each ERSchema element are different.

Problem Statement. To resolve the ambiguity here, our quest in this work
is to ensure our encoded execution semantics of the ATL specification soundly
represents the runtime behaviour of its corresponding ASM implementation,
i.e. verifying the soundness of our encoding for the execution semantics of the
ATL specification. Therefore, in the next sections, we first detail our Boogie
encoding for the execution semantics of each ATL matched rule (Sect. 4). Then,
we report our translation validation approach to verify the soundness of our
encoding (Sect. 5).

4 Encoding Metamodels, OCL and ATL Matched Rules

To begin with, we illustrate how to encode the metamodels and OCL constructs
in Boogie, which will be used to encode the execution semantics of ATL matched
rules.

Metamodels. Metamodelling concepts share many similarities with object ori-
ented (OO) programming language constructs. Thus, we reuse the encoding of
OO programs (specifically the memory model) to encode metamodels in Boogie.

Specifically, each classifier in the metamodel gives rise to a unique constant
of type ClassName. Inheritance is defined via a partial order between two clas-
sifiers (multiple-inheritance is currently not supported by our encoding). Each
element of a classifier is abstracted as a reference and generated as a Boogie vari-
able of type ref . Each structural feature is mapped to a unique constant of type

A Sound Execution Semantics for ATL via Translation Validation 139

Field α, where α is of primitive type (i.e. int, bool and string) for an attribute,
and is of ref type for an association. Moreover, all these constants generated for
attributes or associations are extended with the corresponding classifier name
to ensure their uniqueness.

The OO memory model we chose uses an updatable array heap to organise the
relationships between model elements. The heap is of type ref × (Field α) → α.
Thus, it maps memory locations (identified by an element of a classifier, and a
structural feature) to values. A memory access expression o.f is now seen as an
expression read(heap,o,f). An assignment o.f := x is understood as an expres-
sion update(heap,o,f,x), i.e. changing the value of heap at the position given by
the element o and structural feature f to the value of x. In addition, the domain
of the heap includes allocated as well as unallocated elements. To distinguish
between these two, we add a structural feature alloc of type Field bool and
arrange to set it to true when an element is allocated.

OCL Constructs. We encode a subset of OCL data types supported in ATL, i.e.
OclType, Primitive (bool, int and string), Collection (set, ordered-set, sequence,
bag) and Map data types. Overall, 32 OCL operations are supported on the cho-
sen data types. This encoding is based on a Boogie library for the theory of set,
sequence, bag and map provided by the Dafny verification system [11]. Twenty-
three Boogie functions from this library are directly reused in our encoding. One
of them is modified to enhance the verification performance for sequence slicing.
On top of these, we further introduce the ordered-set collection data type (with 3
OCL operations), and 6 OCL iterators on sequence and ordered-set data types
(i.e. exists, forall, isUnique, select, collect and reject iterators). One subtlety
in our encoding of OCL is how to handle the two Undefined values (i.e. null
and invalid). To simplify the type system, we decided to support null as the
Undefined value exclusively, and have not encountered verification problems
caused by this decision.

ATL Matched Rules. According to the specification of the ATL virtual
machine [3], the execution semantics of a given matched rule involves an instan-
tiation step and an initialisation step. The execution semantics of each step is
encoded as a Boogie contract.

We introduce three functions to help our encoding. The dtype function
returns the classifier for a given reference. The find function returns all the
references for the given classifier allocated on the given heap. The getTarget
function returns the corresponding target element generated for a sequence of
source elements. Its inverse function getTarget inverse returns the sequence of
source elements used to generate the given target element.

As an example, the instantiation step for the S2S rule is shown in Fig. 5.
First, it requires that the target element generated for the ERSchema source
element is not allocated yet (line 2–3). Then, it specifies that the instantiation
step will only affect the heaps for the target model (line 4). This is because we
use different heaps to represent the source and target models, and axiomatise
them to be disjoint (an element that is allocated on one heap is not allocated on
the other heap). This ensures, for example, a modification made on the target

140 Z. Cheng et al.

1 procedure S2S matchAll () ;
2 requires (∀ s : ref • s∈ f i nd (srcHeap ,ER ERSchema) =⇒
3 getTarget ({ s})=null ∨ ¬read (tarHeap , getTarget ({ s }) , a l l o c)) ;
4 modifies tarHeap ;
5 ensures (∀ s : ref • s∈ f i nd (srcHeap ,ER ERSchema) =⇒
6 read (tarHeap , getTarget ({ s }) , a l l o c)
7 ∧ getTarget ({ s }) �= null
8 ∧ dtype (getTarget ({ s }))=REL RELSchema) ;
9 ensures (∀ o: ref , f : F i e ld α •

10 (o=null ∨ read (tarHeap , o , f)=read (old (tarHeap) , o , f)
11 ∨ (dtype (o)=REL RELSchema
12 ∧ f=a l l o c ∧ dtype (getTarget inverse (o) [0])=ER ERSchema))) ;

Fig. 5. The auto-generated Boogie contract for the instantiation step of the S2S rule

heap will not affect the state of the source heap. Next, it ensures that after
the execution of the instantiation step, for each ERSchema element, the corre-
sponding RELSchema target element is allocated (line 5–8). Finally, it ensures
that nothing else is modified, except the RELSchema element(s) created from
the ERSchema element by the instantiation step (line 9–11).

1 procedure S2S applyAll () ;
2 requires (∀ s : ref • s∈ f i nd (srcHeap ,ER ERSchema) =⇒
3 read (tarHeap , getTarsBySrcs ({ s }) , a l l o c)
4 ∧ getTarget ({ s }) �= null ∧ dtype (getTarget ({ s }))=REL RELSchema) ;
5 modifies tarHeap ;
6 . . . // t . r e l a t i on s �= nu l l ∧ t . r e l a t i on s . a l l o c
7 . . . // dtype (t . r e l a t i on s)=c l a s s . System . array
8 // leng th (t . r e l a t i on s)=leng th (s . e n t i t i e s)+leng th (s . r e l s h i p s)
9 ensures (∀ s : ref • s∈ f i nd (srcHeap ,ER ERSchema) =⇒

10 ArrayLength (read (tarHeap , getTarsBySrcs ({ s }) ,RELSchema . r e l a t i o n s))
11 = ArrayLength (read (srcHeap , s , ERSchema . e n t i t i e s))
12 +ArrayLength (read (srcHeap , s , ERSchema . r e l s h i p s))
13) ;
14 // t . r e l a t i on s [j] = re so l v e (s . e n t i t i e s [j])
15 ensures (∀ s : ref • s∈ f i nd (srcHeap , ER Entity) =⇒
16 (∀ j : int • 0≤j<ArrayLength (read (srcHeap , s , ERSchema . e n t i t i e s)) =⇒
17 read (tarHeap , getTarsBySrcs ({ s }) ,RELSchema . r e l a t i o n s) [j]
18 =getTarsBySrcs ({ read (srcHeap , s , ERSchema . e n t i t i e s) [j] }))) ;
19 // t . r e l a t i on s [j+len (s . e n t i t i e s)] = re so l v e (s . r e l s h i p s [j])
20 ensures (∀ s : ref • s∈ f i nd (srcHeap , ER Entity) =⇒
21 (∀ j : int • 0≤j<ArrayLength (read (srcHeap , s , ERSchema . r e l s h i p s)) =⇒
22 read (tarHeap , getTarsBySrcs ({ s }) ,RELSchema . r e l a t i o n s)
23 [j+ArrayLength (read (srcHeap , s , ERSchema . e n t i t i e s)]
24 =getTarsBySrcs ({ read (srcHeap , s , ERSchema . r e l s h i p s) [j] }))) ;
25 ensures (∀ o: ref , f : F i e ld α •
26 o �= null ∧ read (old (tarHeap) , o , a l l o c) =⇒
27 (dtype (o)=REL RELSchema ∧ f=RELSchema . r e l a t i o n s
28 ∧ dtype (getTarget inverse (o) [0])=ER ERSchema)
29 ∨ (read (tarHeap , o , f)=read (old (tarHeap) , o , f))) ;

Fig. 6. The auto-generated Boogie contract for the initialisation step of the S2S rule

The Boogie contract generated for the initialisation step of the S2S rule is
shown in Fig. 6. First, it requires that the instantiation step of the S2S rule is
finished (line 2–4). Then, it specifies that only the heap for the target model
will be modified (line 5). Next, it ensures that the corresponding target element
is fully initialised, by performing associated binding as specified in the S2S

A Sound Execution Semantics for ATL via Translation Validation 141

rule (line 6–24). In particular, we encode consecutive bindings to the relations
association as a composition. Finally, it ensures that nothing else is modified,
except the binding performed on the created target element (line 25–29).

5 Sound Encoding for the Execution Semantics of ATL
Rules

Each ATL matched rule is actually compiled into two ASM operations by the
ATL compiler, i.e. a matchAll operation (for the instantiation step) and an
applyAll operation (for the initialisation step). An important contribution of
our work is the verification of the soundness of our Boogie encoding for the exe-
cution semantics of the ATL rules, i.e. that the encoded execution semantics of
each ATL rule soundly represents the runtime behaviour of its corresponding
ASM operation. In this section, we first provide a translational semantics of the
ASM language in Boogie, which allows the runtime behaviour of the ASM oper-
ations to be represented using Boogie implementations. Then, we illustrate our
translation validation approach to verify the soundness of our Boogie encoding
for the execution semantics of ATL rules.

Translational Semantics of ASM. Each ASM operation has a list of local
variables, which are encoded as Boogie local variables. An operand stack is used
by each ASM operation to communicate values for local computations, and this
is abstracted as an OCL sequence data type, which is represented as a list in
Boogie called Stk in our encodings. Source and target elements are globally
accessible by every ASM operation, and they are managed by the disjoint source
and target heaps as described in Sect. 4.

The ASM language contains 21 bytecode instructions. Apart from the
general-purpose instructions for control flow and stack handling, the important
feature of the ASM language is the model-handling-specific instructions that are
dedicated to model manipulation.

We provide a translational semantics of the ASM language via a list of trans-
lation rules to Boogie. Each translation rule encodes the operational semantics
of an ASM instruction in Boogie. The only resource we can find to explain the
operational semantics of ASM bytecode instructions is the specification of the
ATL virtual machine [3]. However, it is imprecise and leaves many issues open.
This raises the question of how a correct translation rule, especially for each
model handling instruction, should be encoded in Boogie.

Unlike the other two categories of instructions, the model handling instruc-
tions might have different operational semantics for different model management
systems. This is because ATL aims at interacting with various model manage-
ment systems which offer different interfaces for model manipulation [9].

Our strategy is to focus on the EMF model management system. Then, we
can check the ATL source code (specifically the ATL virtual machine imple-
mentation that relates to EMF) for the operational semantics of each ASM
instruction, and then design the rule correspondingly.

142 Z. Cheng et al.

In what follows, we pick a representative ASM instruction as an example,
i.e. the SET instruction. We first give an informal description of its operational
semantics, and then explain the intuition behind its corresponding translation
to Boogie. The full translational semantics of the ASM language can be accessed
through our online repository given in Sect. 6.

The SET instruction is one of the ASM instructions for model handling
(Fig. 7 (left)). The parameter of a SET instruction is a structural feature f
(either an attribute or an association). Before executing the SET instruction,
the top two elements on the operand stack are an element o (second-top) and a
value v (top) respectively.

The operational semantics of the SET instruction forms a case distinction
according to the instruction parameter f . If f is an association and its multi-
plicity has an upper-bound that is greater than one, then compute the union of
the value of o.f with v. Otherwise, set o.f to v. Finally, the top two elements
are popped.

Thus, the operational semantics of the SET instruction explains the unusual
behaviour of consecutive bindings to the relations association (whose multiplic-
ity has an upper-bound that is greater than one) shown in Sect. 2. Each binding
corresponds to a SET instruction on the ASM level. Therefore, the two consec-
utive bindings correspond to two SET instruction invocations. The result will
be a composition of two bindings.

n: SET f

l e t o=hd(t l (Stk)) , v=hd(Stk) in
assert s i z e (Stk)>1 ∧ o �= null ∧ read (heap , o , a l l o c) ;
i f (i s C o l l e c t i o n (f))
{heap:=update (heap , read (heap , o , f) , read (heap , o , f)∪v) ;}

else {heap:=update (heap , o , f , v) ;}
Stk := t l (t l (Stk)) ;

Fig. 7. SET instruction in ASM (left) and its translation rule in Boogie (right)

The translation rule for the SET instruction is shown in Fig. 7 (right). It
offers no surprise in its operational semantics, except for the auxiliary function
isCollection. The isCollection function (of type Field α → bool) is encoded
while mapping the structural features to the Boogie constants. It is axiomatised
so that it returns true when the given structural feature is an association and
its multiplicity has an upper-bound that is greater than one, and returns false
otherwise.

The translational semantics of the ASM language is encapsulated as a Boogie
library, which can be found in our online repository as outlined in Sect. 6.

Translation Validation of Encoding Soundness. In order to verify the
soundness of our Boogie encoding for the execution semantics of each ATL
matched rule, we define that the execution semantics of an ATL matched rule
encoded in Boogie is sound, if,

A Sound Execution Semantics for ATL via Translation Validation 143

1 procedure S2S matchAll () ; //Contract for in s t an t i a t i on step
2 . . .
3 ensures (∀ s : ref • s∈ f i nd (srcHeap ,ER ERSchema) =⇒
4 dtype (getTarget ({ s }))=REL RELSchema) ;
5

6 implementation S2S matchAll () //Implementation for matchAll operation
7 { . . .
8 #ERSchemas := f i nd (srcHeap ,ER ERSchema) ;
9 counter := 0 ;

10

11 while (counter<s i z e (#ERSchemas))
12 invariant (∀ n: int • 0≤n<counter =⇒
13 dtype (getTarget ({#ERSchemas [n]}))=REL RELSchema) ;
14 decreases s i z e (#ERSchemas)−counter ;
15 { . . . counter := counter+1; }
16 }

Fig. 8. Soundness verification of Boogie encodings for the instantiation step of S2S rule

– the Boogie contract that represents the execution semantics of its
instantiation step is satisfied by the Boogie implementation that represents
the runtime behaviour of its matchAll operation, and

– the Boogie contract that represents the execution semantics of its
initialisation step is satisfied by the Boogie implementation that represents
the runtime behaviour of its applyAll operation.

Each of them forms a verification task, and is sent to the Boogie verifier. If
none of the verification tasks generate any errors (from the verifier), we conclude
that our Boogie encoding for the execution semantics of the ATL matched rules
is sound. Essentially, our approach is based on a translation validation technique
used in compiler verification [12]. The benefit is that we do not need to verify
that the encoded execution semantics of ATL specifications are always sound
with respect to the runtime behaviour of their ASM implementation (which is
difficult to automate). Instead, we can automatically verify the soundness of each
ATL specification/ASM implementation pair.

We demonstrate our approach on the instantiation step of the S2S rule
(Fig. 8). Generally, a Boogie implementation that contains loops is difficult to
verify because the users cannot generally predict how many times the loop exe-
cutes, or whether it will terminate.

The key ingredient to prove the correctness of a loop is to provide the loop
invariant that holds before and after the loop. The general loop invariant for
the Boogie implementation is automatically generated. This is demonstrated
on the soundness verification of Boogie encodings for the instantiation step of
the S2S rule as follows (Fig. 8): In the Boogie implementation for its matchAll
operation, an invariant is generated to ensure that for all the matched source
elements that have been iterated, the postcondition of the instantiation step is
fulfilled (line 12–13). Thus, by the end of the iteration, all the matched source
elements are iterated, and therefore the postcondition of the instantiation step
can be established (line 3–4).

We also use a variant expression to ensure that the loop terminates. A gen-
eral variant expression for the Boogie implementation of a matchAll operation

144 Z. Cheng et al.

is the size of the iterated collection minus the increasing loop counter (line 14).
Since the counter increases on each iteration and the size of the processed col-
lection remains unchanged, we can deduce that there are less elements in the
collection to be iterated.

We can conclude that the execution semantics of an ATL specification
encoded in Boogie is sound when the execution semantics of all the relevant
ATL matched rules encoded in Boogie are sound.

6 Implementation

We have implemented the VeriATL verification system (Fig. 9) to demonstrate
our approach. It accepts the source and target ECore metamodels and an ATL
specification. The output is a sound execution semantics of the ATL specifica-
tion encoded in the Boogie intermediate verification language, which soundly
represents the runtime behaviour of its corresponding ASM implementation. As
a result, the verification of the correctness of the ATL transformation that is
based on our output will be sound.

Fig. 9. Overview of our sound verification of the correctness of the ATL transformation

VeriATL automatically serialises its inputs into three kinds of models. Specif-
ically, the KM3 API is used to serialise the ECore metamodels into the KM3
model2. The ATL extractor API is used to serialise the input ATL specifica-
tion as an ATL model. The ATL virtual machine API is used to serialise the
ASM program into an ASM model. Next, the corresponding Boogie code is auto-
matically generated for each kind of model by a template-based model-to-text
transformation using Xpand3, i.e. the ATL model generates Boogie contracts,
the KM3 model generates Boogie types and constants, and the ASM model pro-
duces Boogie implementations. Then, VeriATL sends the generated Boogie code
to the Boogie verifier (version 2.2), and relies on the Z3 (version 4.3) to perform
automatic theorem proving. Finally, if the Boogie verifier confirms that the exe-
cution semantics of an ATL specification encoded in Boogie is sound, then such
2 KM3 is a domain specific language for metamodel specifications.
3 Xpand. http://wiki.eclipse.org/Xpand/.

http://wiki.eclipse.org/Xpand/

A Sound Execution Semantics for ATL via Translation Validation 145

an encoding will be output by VeriATL. Otherwise, the trace information from
the Boogie verifier, indicating where the encoding unsoundness was detected,
will be output.

Evaluation. We evaluate VeriATL on the ER2REL transformation. Our
ER2REL transformation is a modified version of the one originally developed
by Büttner et al. [5]. The modification does not cause the ATL specification to
behave differently. However, it contains a feature (i.e. consecutive bindings in an
ATL matched rule) that is not considered in the previous work.

Our experiment is performed on an Intel 2.93 GHz machine with 4 GB of
memory running on Windows. Verification times are recorded in seconds. Table 1
shows the performance on automatically verifying the soundness of our Boogie
encoding. The second and third columns show the size of the Boogie code gen-
erated for the instantiation and initialisation step of the ATL matched rule
respectively (shown by Lines of Boogie contract/Boogie implementation). Their
corresponding verification time is shown in the fourth and fifth columns.

Table 1. Performance measures for verifying the encoding soundness of ER2REL

Rule name Boogie (LoC) Veri. time (s) Automation

Instantiation Initialisation Instantiation Initialisation

S2S 13/133 41/200 0.124 0.894 Auto

E2R 13/150 15/79 0.109 0.077 Auto

R2R 13/150 15/79 0.109 0.062 Auto

EA2A 17/202 33/145 0.187 0.328 Auto

RA2A 17/202 33/145 0.187 0.327 Auto

RA2AK 17/225 33/141 0.374 0.311 Auto

Total 90/1062 170/789 1.090 1.999

We also verify our modified ER2REL transformation against the 4 OCL
contracts that are specified by Büttner et al., and produce the same verification
result. Table 2 shows the performance of our transformation correctness veri-
fication. The second column shows the size of the Boogie code generated for
the OCL contracts. Its corresponding verification time is shown in the third
column. In addition, we report that 2 out of 4 OCL contracts are verified semi-
automatically. This is because of incompleteness issues with our approach, which
we analyse in the threat to validity section below.

Due to space limitations, we are unable to show the whole case study. We
refer to our online repository for the generated Boogie programs for verifying
the correctness of ER2REL transformation [7].

Threat to Validity. The experiments strongly demonstrate the feasibility of
our approach. However, our current approach has some limitations:

146 Z. Cheng et al.

Table 2. Performance measures for verifying transformation correctness of ER2REL

Boogie (LoC) Veri. time (s) Automation

unique rel schema names 45 0.624 Auto

unique rel relation names 48 1.716 Semi

unique rel attribute names 48 0.608 Auto

exist rel relation iskey 49 0.562 Semi

Total 190 3.510

– First, the soundness of our approach depends on the correctness of our
encodings for metamodels, OCL, ATL language and ASM bytecode. The cor-
rectness of these encodings are challenging theoretical problems that require
well-defined and commonly accepted formal semantics of each. To our knowl-
edge, none of them are currently available. When there is one, we can adapt
existing techniques to reason the correctness of our encodings [2,8]. Moreover,
our Boogie encodings are intuitive and available for inspection.

– Second, the completeness of our approach remains one of the major concerns.
The incompleteness might be due to known limitations of SMT solvers. It may
also be due to our encodings. For example, the append operation of sequence
data type in our OCL library is encoded by the essential axioms to define
its meaning. The auxiliary axioms such as “any sequence appended with an
empty sequence is the original sequence” are not in our encoding. We think
it is better to present the missing auxiliary axioms as lemmas and introduced
on demand to make the verification task smaller. Moreover, presenting only
the essential axioms is a strategy that helps manual inspection and reduces
the possibility of inconsistent axioms.

– Third, our approach only covers the ATL matched rules in this work. Other
constructs, such as lazy rules and imperative features (e.g. resolveTemp oper-
ation), are not considered. We would like to include them in the near future.
For example, we are currently considering ATL lazy rules, which are called
from the other rules. The lazy rules are not as frequently used as the matched
rules, but are the main source of transformation non-termination.

– Last, because of the underlying SMT solver, the expressiveness of our approach
is based on first order predicate logic with equality. To ensure this expressive-
ness power is useful in practice of MTr verification, we need to experiment
with more ATL transformations that have OCL contracts specified.

7 Related Work

There is a large body of work on the topic of ensuring model transformation
correctness [1]. In this section, we focus on the works that verify the correctness
of MTr by applying formal methods.

Troya and Vallecillo provide an operational semantics for ATL based on
rewriting logic, and use the Maude system for the simulation and reachability

A Sound Execution Semantics for ATL via Translation Validation 147

analysis of ATL specifications [15]. Lúcio et al. develop an off-the-shelf model
checker that is tied to the DSLTrans language. Their model checker allows the
user to check the syntactic correctness (encoded in algebra) of the generated
target models [13]. These approaches are bounded, which means that the MTr
specification will be verified against its contracts within a given search space
(i.e. using finite ranges for the number of models, associations and attributes).
Bounded approaches are usually automatic, but no conclusion can be drawn
outside the search space.

Calegari et al. use the Coq proof assistant to interactively verify that an ATL
specification is able to produce target models that satisfy the given contracts [6].
Inspired by the proof-as-program methodology, further research develops the
concept of proof-as-model-transformation methodology [10,14]. At its simplest,
the idea is to present the model transformation specification and contract as a
theorem. Then, a model transformation implementation can be extracted from
its proof. These approaches are unbounded. Therefore, they are preferable when
the user requires that contracts hold for the MTr specification over an infinite
domain. However, unbounded approaches tend to require guidance from the user.

The situation can be ameliorated by a novel usage of SMT-solvers. The
built-in background theories of SMT solvers give enhanced expressiveness to
handle constraints over an infinite domain. For example, Büttner et al. translate
a declarative subset of the ATL and OCL contracts (for semantic correctness)
directly into first-order-logic formulas [5]. The formulas represent the execution
semantics of the ATL specification, and are sent to the Z3 SMT solver to be
discharged. The result implies the partial correctness of an ATL transforma-
tion in terms of the specified OCL contracts. However, their approach lacks an
intermediate form to bridge between the ATL and the back-end SMT-solver.
This compromises the reusability and modularity of the verifier. In our work,
we extend existing Boogie libraries for our metamodel and OCL encodings. We
also develop a Boogie library that gives a translational semantics to the ASM
language. Each Boogie library is designed modularly, and is made available for
public reuse of verifier design (especially for model transformation languages).

Finally, all the approaches we have just described rely on encoding the exe-
cution semantics of the model transformation specification. We address a dif-
ferent challenge to verify that the execution semantics of an ATL matched rule
encoded in Boogie soundly represents the runtime behaviour of its corresponding
ASM implementation, which makes our approach complementary to the exist-
ing approaches. We developed our approach in Boogie. The Why34 intermediate
verification language would also be suitable to implement our approach.

8 Conclusion

In this work, we have encoded a sound execution semantics for ATL specifica-
tions, and developed the VeriATL verification system for this task. It is imple-
mented in Boogie which allows Hoare-logic-based automatic theorem proving
4 Why3. http://why3.lri.fr/.

http://why3.lri.fr/

148 Z. Cheng et al.

via the Z3 theorem prover. We adapt the memory model used in the verification
of object-oriented programs to explain the concepts within MDE. We explain
precisely the runtime behaviour of ASM implementations by encoding a transla-
tional semantics of the ASM language in Boogie. We also articulate a translation
validation approach to verify the soundness of our Boogie encoding for the exe-
cution semantics of the ATL matched rule. Consequently, we are able to soundly
verify the ATL specification against its specified OCL contracts, based on our
sound encodings for the execution semantics of the ATL matched rules.

References

1. Ab.Rahim, L., Whittle, J.: A survey of approaches for verifying model transforma-
tions. Soft. Syst. Modeling (2015) (to appear)

2. Apt, K.R., de Boer, F.S., Olderog, E.R.: Verification of Sequential and Concurrent
Programs, 3rd edn. Springer, Berlin (2009)

3. ATLAS Group: Specification of the ATL virtual machine. Technical report, Lina
& INRIA Nantes (2005)

4. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., M. Leino, K.R.: Boo-
gie: a modular reusable verifier for object-oriented programs. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 364–387. Springer, Heidelberg (2006)

5. Büttner, F., Egea, M., Cabot, J.: On verifying ATL transformations using ‘off-the-
shelf’ SMT solvers. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
MODELS 2012. LNCS, vol. 7590, pp. 432–448. Springer, Heidelberg (2012)

6. Calegari, D., Luna, C., Szasz, N., Tasistro, Á.: A type-theoretic framework for
certified model transformations. In: Davies, J. (ed.) SBMF 2010. LNCS, vol. 6527,
pp. 112–127. Springer, Heidelberg (2011)

7. Cheng, Z., Monahan, R., Power, J.F.: Online repository for VeriATL system (2013).
https://github.com/veriatl/veriatl

8. Combemale, B., Crégut, X., Garoche, P., Thirioux, X.: Essay on semantics defin-
ition in MDE - an instrumented approach for model verification. J. Softw. 4(9),
943–958 (2009)

9. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Program. 72(1–2), 31–39 (2008)

10. Lano, K., Clark, T., Kolahdouz-Rahimi, S.: A framework for model transformation
verification. Formal Aspects Comput. 27(1), 193–235 (2015)

11. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

12. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. SIGPLAN Not. 41(1), 42–54 (2006)

13. Lúcio, L., Barroca, B., Amaral, V.: A technique for automatic validation of model
transformations. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010,
Part I. LNCS, vol. 6394, pp. 136–150. Springer, Heidelberg (2010)

14. Poernomo, I.H.: Proofs-as-model-transformations. In: Vallecillo, A., Gray, J.,
Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp. 214–228. Springer,
Heidelberg (2008)

15. Troya, J., Vallecillo, A.: A rewriting logic semantics for ATL. J. Object Technol.
10(5), 1–29 (2011)

https://github.com/veriatl/veriatl

From UML/OCL to Base Models:
Transformation Concepts for Generic

Validation and Verification

Frank Hilken1(B), Philipp Niemann1, Martin Gogolla1, and Robert Wille1,2

1 Computer Science Department, University of Bremen,
28359 Bremen, Germany

{fhilken,pniemann,gogolla,rwille}@informatik.uni-bremen.de
2 Cyber-Physical Systems, DFKI GmbH,

28359 Bremen, Germany

Abstract. Modeling languages such as UML and OCL find more and
more application in the early stages of today’s system design. Validation
and verification, i.e. checking the correctness of the respective models,
gains interest. Since these languages offer various description means and a
huge set of constructs, existing approaches for this purpose only support
a restricted subset of constructs and often focus on dedicated description
means as well as verification tasks. To overcome this, we follow the idea
of using model transformations to unify different description means to
a base model. In the course of these transformation, complex language
constructs are expressed by means of a small subset of so-called core
elements in order to interface with a wide range of verification engines
with complementary strengths and weaknesses. In this paper, we provide
a detailed introduction of the proposed base model and its core elements
as well as corresponding model transformations.

Keywords: Model transformation · UML · OCL · Metamodel ·
Validation and verification · Base model

1 Introduction

In recent years, Model-Driven Engineering (MDE) has become more and more
popular, and modeling languages are more and more used in early stages of
today’s system design. In this context, the Unified Modeling Language (UML)
and the Object Constraint Language (OCL) are de facto standards to describe
systems and their behavior. They provide formal descriptions of system models
which, besides others, can be applied for purposes of validation and verification.
Indeed, identifying flaws and errors early in the design of such systems using
validation and verification techniques is an important task. In our work, we
focus on automatic (i.e. push button) methods which require almost no further
knowledge on the underlying verification technique and, thus, can be used by
every system designer.
c© Springer International Publishing Switzerland 2015
D. Kolovos and M. Wimmer (Eds.): ICMT 2015, LNCS 9152, pp. 149–165, 2015.
DOI: 10.1007/978-3-319-21155-8 12

150 F. Hilken et al.

However, developments in the previous years led to an “inflation” of different
verification approaches for designs given in terms of modeling languages (this is
discussed in detail later in Sect. 2). Finding an appropriate verification approach
is a non-trivial task, since most approaches focus on one particular UML diagram
type and additionally restrict the set of supported language constructs. This
poses a severe problem, as complex system designs often consist of a variety
of different diagram types interacting with each other. Moreover, often these
approaches address specific verification tasks only.

In order to overcome this, the idea of a generic verification framework has
been presented in [35]. Instead of considering each description mean separately,
the underlying idea of this framework is a transformation into a uniform/nor-
malized description: a base model. Moreover, in the course of this transformation
complex language constructs are expressed by means of a small subset of so-called
core elements in order to interface with a wide range of verification engines with
complementary strengths and weaknesses. The base model is integrated in the
validation and verification process in a way that the designer does not need to
have knowledge of it. The results of verification engines which are derived using
the base model are mapped back to the source model and represented to the
developers in their domain.

In this work, we provide a detailed introduction of the proposed base model
and its core elements. Roughly speaking, the base model is a UML class dia-
gram enriched with OCL constraints with a reduced feature set that only con-
tains essential and atomic language constructs. However, we will show that this
reduced feature set is sufficient to express many complex language constructs
by providing the corresponding model transformations. We focus on transfor-
mations within class diagrams because transformations from alternative dia-
gram types, e.g. sequence diagrams or activity diagrams, to class diagrams have
already been considered, e.g. in [20] and [19], respectively.

The remainder of this work is structured as follows: motivation for the generic
verification framework and a discussion about related work is presented in Sect. 2.
A detailed introduction of the base model and its core elements is provided in
Sect. 3, while the actual transformations of complex class diagram features into
the base model are discussed in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Motivation and Related Work

The development of automated methods for the verification of UML/OCL mod-
els has intensely been considered by researchers and engineers in the recent
past. For this purpose, several solving techniques have been applied ranging
from a guided enumeration, as done e.g. in the UML-based Specification Envi-
ronment (USE, [14]) together with the language ASSL [13], to the application
of verification engines such as CSP solvers [5], Alloy [1], or SAT solvers [33,34].
Fig. 1 gives an (incomplete) overview of the current state-of-the-art categorized
by their respective support for diagram types and verification task. While this
led to a variety of powerful tools and methods for the verification of UML/OCL
models, the resulting state-of-the-art suffers from three main drawbacks:

From UML/OCL to Base Models 151

Fig. 1. Overview on related work

1. The resulting solutions often support dedicated verification tasks only. While
e.g. [34] allows for consistency checking of class diagrams, this approach does
not support sequence diagrams. That is, for each modeling method and each
verification task usually a different verification approach has to be applied.

2. Complex systems are usually not modeled by means of single diagrams only,
but composed of a variety of different diagram types which interact with each
other. For example, while class diagrams specify the structure of a system,
the behavior may be defined by a statechart. But again, most of the available
verification approaches support single diagram types only.

3. Almost all proposed verification approaches are bound to one particular ver-
ification engine. For example, the approach presented in [5] exploits CSP
solvers, whereas e.g. in [33] SAT and SMT solvers find application. This is
disadvantageous as verification engines may behave differently effective for
various models. If additionally, new and better verification engines emerge in
the future, existing transformations to the respective solver input have to be
re-developed.

In order to overcome these drawbacks, a generic verification framework for
UML/OCL models was envisioned in [35]. The general idea is sketched in Fig. 2:
Instead of treating single diagram types separately (as it has mainly been done in
the past; see Fig. 1), it was proposed to transform them to a so-called base
model – a subset of UML/OCL constraints which is expressive enough to describe
most constructs of the UML and OCL, but small enough to allow for a flexible
further processing.

Having this generic description, the development of verification approaches
can focus on the core constructs available in the base model. This allows for
an easier integration of verification engines than before. Moreover, even new
solving technologies which may emerge in the future can be exploited more easily
since a restricted subset of constructs needs to be considered only. In contrast,
transformations from the original description means (class diagrams, sequence

152 F. Hilken et al.

Model Description

Class Diagram State Machine Activity Diagram Sequence Diagram ...

Base Model

Verification Engine

Alloy SAT/SMTCSP ...

Fig. 2. General idea of a generic verification framework

diagrams, etc.) to the base model have to be provided. But since those would
only require a model-to-model transformation to the base model (and e.g. not
to the numerous solver-specific inputs), they need to be developed only once.
By this separation of concerns, a more generic verification of UML/OCL models
relying on a variety of solving techniques as well as supporting a wide range of
verification tasks, becomes possible at moderate costs.

However, while the principle feasibility of the vision has been demonstrated
on selected examples in [35], no implementation of the generic framework exists
yet. In particular, a precise definition of the base model and a corresponding
transformation scheme from arbitrary description means are still missing1. In
the following, we aim for closing this gap. More precisely, we provide a precise
proposal for a base model and discuss how general constructs can be transformed
into it.

3 A Base Model for UML and OCL Verification

As motivated in the previous section, the purpose of the base model is to provide
a generic interface between heterogeneous UML/OCL model descriptions and
validation and verification tools. This interface shall be flexible and generic at
both the source and the target side. More precisely, it shall be applicable for
a large variety of diagram types and verification tasks on the one hand, while,
on the other hand, it shall allow for a flexible choice of verification engines for
further processing. To this end, the base model needs to be:

– universal, i.e. for each construct in a source model, an equivalent formulation
in the base model must exist, and

– atomic, i.e. the constructs of the base model should be limited to fundamen-
tal modeling concepts such that a uniform further processing as well as the
flexibility of the overall framework is ensured.

1 First ideas, leaving numerous details open, have been sketched in a preliminary
version of this paper which has been discussed at a workshop [21].

From UML/OCL to Base Models 153

Clearly, these are contrary properties as UML and OCL are very powerful lan-
guages with a rich set of language constructs – some of which are very complex
in nature and can hardly be expressed by simpler means. Consequently, the solu-
tion is necessarily a trade-off between universality and atomicity. Nonetheless, we
aim to reduce the restrictions to universality to a minimum by (a) employing the
power of model-to-model transformations on the UML/OCL level and (b) only
excluding less relevant UML/OCL features that are hardly used in practice or
conceptually infeasible to be tackled by verification engines at all. Note, how-
ever, that some restrictions are inevitable and have to be applied anyhow when
considering validation and verification of UML/OCL models as, e.g. data types
like Integer are unbounded in the standard UML semantics, while verification
engines often only work on bounded, finite search spaces. These simplifications
are mainly justified by the fact that actual implementations of the models will
also have to run on finite resources.

For the foundation of the base model, we propose to use a reduced UML class
diagram. This diagram type is well-suited as it natively supports structural defi-
nitions in form of classes and associations as well as model dynamics using OCL
expressions for operation pre- and postconditions. Furthermore, transformations
from other diagram types (such as sequence diagrams or activity diagrams) to
class diagrams have already been investigated [19,20] and can be re-used here.

The feature sets of UML and OCL are reduced to a required minimum. This
reduction has a few advantages to it: Flexibility and compatibility to verification
engines is increased, because the feature set which needs to be supported by it
is minimized. In addition, the reduction also enforces an early/high-level trans-
formation of complex constructs into simpler ones which simplifies the analysis
of the model and the determination of an appropriate verification engine. In the
following, the elements of the reduced feature set of the base model are presented
and described in more detail.

3.1 UML Elements in the Base Model

An overview on the different UML class diagram features and how they are
included in the reduced feature set of the base model is given in Table 1. The
core of the base model is formed of essential and atomic constructs – the so-
called core elements which are marked with a “�” and are natively supported
in the base model. These have been chosen due to their fundamental importance
for UML class diagrams and good compatibility with state-of-the-art verifica-
tion approaches. Note that for a verification engine to support the base model,
corresponding translations to the solver level need to be developed for these core
elements only.

Further class diagram features that can be expressed within the base model,
but do not appear in it as core elements, are marked with a “◦”. These can
be transformed into semantically equivalent representations using only core ele-
ments. Details about these transformations will be presented in Sect. 4.

The last category of elements are marked with “×” and are neither part of
the base model nor do we propose a corresponding transformation for them yet.

154 F. Hilken et al.

Table 1. UML Elements in the Base Model

These are either (1) hardly used in practice (like Redefines, Subsets, and Union),
or (2) are conceptually infeasible for verification engines anyway (like recursive
and nested operations)2. Consequently, the exclusion of these elements only has
a minor impact on the universality of the base model.

3.2 OCL Elements in the Base Model

As for OCL, it is a lot harder to reduce the feature set without losing univer-
sality. This mostly results from the fact that OCL is a rich language with many
diverse operations. Most operations can only be expressed by similar opera-
tions or their negated counterpart, e.g. the collection operations C→isEmpty()
and C→notEmpty() can be represented using the operation C→size(), and
C→reject(expr) can be represented using C→select(not expr). A promis-
ing candidate to replace many of the standard OCL collection operations, the
iterate operation, is, however, one of the least supported operations by ver-
ification engines – due to its high versatility. Thus, it also does not provide a
satisfying solution regarding the reduction of OCL features in the base model.

Our solution is to accept the majority of standard OCL operations in the
base model, keeping known alternatives at hand. Then, a verification engine is
chosen based on the needs of the model, i.e. one that supports all employed
operations or transformed alternatives, and the base model is prepared to be
compatible before given to the verification engine.

Besides OCL operations, also data types have to be considered. We propose
to use Integers and Sets as core data types. Integers are the mostly used primitive
data type and often sufficient to emulate the functionality of other primitive data
types like enumerations, Reals, and other numeric data types. Even Strings (on
the word-level rather than on the character-level) may be emulated by Integers.
Likewise, Sets are a well-suited representative for collection types. Besides that,
other collection types like Sequence can also be emulated using UML classes as
will be outlined later in Sect. 4 – although with considerable overhead.
2 Note however that OCL provides the closure operation (which can solve some tasks

that are typically formulated recursively) and which is supported by our approach.

From UML/OCL to Base Models 155

Overall, data types are interpolated if necessary and a large set of OCL
operations is accepted in the base model – even if the particular set of operations
may possibly restrict the set of appropriate verification engines to be used for
further processing. Verification engines used in combination with the base model
are expected to support at least basic arithmetic on Set and Integer as well as
the quantifiers forAll and exist (preferably also the closure operation).

4 Transformation to the Base Model

This section defines the transformation of class diagram features in UML/OCL
source models into the target base model. The transformation consists of many
smaller UML and OCL model transformations, some of which have already been
sketched [18]. We focus on selected transformations (◦ elements) from Table 1
that show the concepts of the base model best.

NamedElement

name : String

Feature

Association

isDerived : Boolean

Classifier

isAbstract : Boolean

AssociationClass

Constraint

Element

StructuralFeature

TypedElement

Type

MultiplicityElement

isOrdered : Boolean

isUnique : Boolean

lower : Integer

upper : Integer

Class

«enumeration»
AggregationKind

none

shared

composite

Property

aggregation : AggregationKind

isDerived : Boolean

isDerivedUnion : Boolean

RedefinableElement

isLeaf : Boolean

navigableOwnedEnd {subsets ownedEnd}

 /endType {ordered,
subsets relatedElement}

/inheritedMember {subsets member}

attribute {union, subsets feature}

classifier {union,
subsets featuringClassifier}

feature {union}featuringClassifier {union}

constrainedElement {ordered}

ownedElement {union}

owner {union}

memberEnd {ordered, subsets member}
association
{subsets notNavigableMember}

type

typedElement

 ownedEnd {ordered, subsets feature,
subsets ownedMember, subsets memberEnd}owningAssociation

{subsets namespace,
subsets featuringClassifier,
subsets association}

Fig. 3. Excerpt of relevant parts from the UML Metamodel

All transformations shown in this section operate on the UML and OCL
layer. Where appropriate, we use instances of the UML metamodel to illustrate
the transformation, showing system states before and after the transformation.
Figure 3 shows the relevant parts of the UML metamodel used in the transfor-
mations. In the top left corner, the class Element is located, defining the base
of every element in the model and on the right side you see the generalization
hierarchy originating from it, defining different abstractions used by several ele-
ments throughout the metamodel. Finally, in the lower left part of the figure, the

156 F. Hilken et al.

classes Class, Association and AssociationClass are defined extending the
general class Classifier. These elements are connected via the class Property
to define, e.g. roles and attributes. Note that transformations mostly concerning
OCL expressions are not shown in the UML metamodel.

The transformation definitions on the UML metamodel are required to imple-
ment the transformations using tools like QVT [28] or ATL [22]. Along with the
transformations, some further aspects have to be considered for the base model
to work properly:

Tracability. As mentioned earlier, the base model is a “bridge” between the
developer’s source model and the verification engine, and results from the
verification engine are presented in terms of the source model. Therefore,
tracability is an important requirement for the base model. It has to be
possible to transform models into the base model and solutions found by
verification engines back into the source model. The easiest solution is to use
bidirectional transformation methods (e.g. QVT relational [28]) and delegate
the tracing to their built-in methods. However, the difference in the meta lay-
ers of the transformations usually require further adjustments. Additionally,
some transformations (mainly those operating on the UML layer) are simple
enough to be traced by the names of the elements involved, e.g. an invariant
name hinting at the corresponding element in the source model. Finally, to be
consistent with the base model idea, having all information in the UML/OCL
model, UML comments can be applied during the transformation to provide
further tracing information.

Equivalence. While general interactive model verification techniques are in
principle available [3], we propose to check transformation equivalence by
automatically building test cases. As many of the transformations work on
the UML metamodel, transformation test cases in form of object diagrams
can be constructed by instantiating the left and right hand side of the trans-
formation. Afterwards the desired equivalence properties are checked by for-
mulating OCL properties on the union of left and right hand side as has
been studied in [15,16]. While we know the importance of these tests, in this
paper, we do not study them in detail and focus on the transformations.

4.1 Transformation of Ternary (n-Ary) Associations

A rather simple model transformation is the replacement of ternary associations
by a class and binary associations plus constraints. Figure 4 gives an overview
of the transformation. The source model is on the left having a ternary associa-
tion ABC connecting three classes. The model after the transformation is shown
on the right side. Instead of the association, there is a new class named ABC
connecting the three classes using three binary associations. The role names are
carried over for the corresponding association ends and new ones are added where
necessary. By this, ternary associations can be transformed into core elements.

From UML/OCL to Base Models 157

Fig. 4. Class diagram view of ternary to binary association transformation

Figure 5 shows the same models as instances of the UML metamodel3. The
ternary association form the left-hand side is located in the top left area of the pic-
ture with the association object abc and its three connected classes. The role infor-
mation is contained in the Property objects connected in between the classes and
the association. The multiplicities shown by the attributes /lower and /upper
for the roles are derived values from elements hidden in the figure. The links betwe-
en the association and the properties define ownership and navigability as present
in the metamodel. Dashed lines symbolize derived links, showing relations between
objects that are indirectly related via other objects, i.e. Property objects. In the
UML metamodel from Fig. 3, these links are instances of the association going
from the class Association upwards and right to the class Type (role /endType),
showing the Type objects linked with the association. For example, the derived
link between the objects a and abc offers direct access to one of the end types
of association abc.

In the lower right of Fig. 5, the right-hand side of the transformation is shown.
The association object abc was transformed into a class and three new associ-
ations are created. The original properties are still present, however the multi-
plicities are changed and properties have been added to fill the missing roles.
Furthermore, to ensure semantic equivalence between the models from the left
and right hand side, two types of constraints, representing the properties of the
ternary association, are added to the classes. First, three objects (a, b, c) can
only be connected once by the association ABC. And second, multiplicities for the
roles of the ternary association have to hold, i.e. the number of pairs of objects
b and c that are connected to a objects must be within the specified multiplicity
of role rA. If a multiplicity is specified as 0..*, no constraint is required. The
following two invariants exemplify these two properties:

context r, r’ : ABC inv noDoubleLinks: -- one link per tuple (A,B,C)

(r.rA = r’.rA and r.rB = r’.rB and r.rC = r’.rC) implies r = r’

context b : B inv multiplicity-rA: -- multiplicity for role rA

C.allInstances()→forAll(c | let linkCount =

ABC.allInstances()→select(r | r.rB = b and r.rC = c)→size()

in linkCount >= rAmin and linkCount <= rAmax)

3 Many attributes, (derived) links and objects are not relevant for the transformation
and, hence, are hidden for a better overview and understandability.

158 F. Hilken et al.

Finally, all expressions refering to role navigations that are now transformed
have to be adjusted. Also, while this example concentrated on a ternary asso-
ciation, the concepts are applicable to n-ary associations with more than three
association ends as well.

Fig. 5. Ternary association to class plus binary associations in UML metamodel

From UML/OCL to Base Models 159

4.2 Transformation of Association Classes

Next the transformation of UML association classes into base model compati-
ble description means is considered. Existing model transformations suggest the
conversion into ternary associations plus OCL constraints, however only binary
associations are allowed in the base model. To overcome this issue, the trans-
formation rules for the base model can be combined together to sequentially
transform the source model into a proper base model, i.e. after the transforma-
tion into the ternary association the transformation from the previous section is
able to simplify it into binary associations.

The transformation from association classes into ternary associations is
depicted in Fig. 6. The class and association information is split into a class
and an association. Implicit definitions are made explicit, e.g. the implicit role
name C in the source model for the association class has been made explicit
on the right side. The semantic properties are expressed with OCL constraints.
Figure 7 shows the transformation with instances of the UML metamodel. The
separation of the association class into class and association is clearly visible.

Fig. 6. Association class to ternary association transformation

Fig. 7. Association Class to class plus ternary association in UML metamodel

160 F. Hilken et al.

Similar to the previous section, the association class has properties that this
transformation has to adhere to. In particular, for every two objects a and b
there may be at most one association class linking them. The following invariant
is showing this property as an OCL invariant:

context c : C inv uniqueLink: -- one link per pair (A,B)

c.rA→size() = 1 and c.rB→size() = 1 and C.allInstances()→forAll(c’ |

(c.rA = c’.rA and c.rB = c’.rB) implies c = c’)

Finally, multiplicity constraints and adjustments to other OCL expressions rely-
ing on transformed navigations are similar to those of the transformation in the
previous section.

4.3 Transformation of Aggregations and Compositions

Aggregations and compositions are special types of associations that specify a
whole-part relationship. They have unique properties that distinctly define their
semantics within the class diagram. However, these properties are not explicitly
modeled in the UML metamodel, only the enumeration attribute aggregation
of the class Property indicates whether an association is treated as an aggrega-
tion or composition. Thus, the transformation in the UML structure is trivial.
The challenge is to express the inherent properties as OCL constraints. In the
following, we will illustrate the generic transformation by means of examples.

The property of aggregations define that an aggregate cannot be part of
itself (cycle freeness), i.e. navigating to a part results in “smaller” objects than
the whole. Looking at compositions, a few more properties exist: Each part may
at most have one whole (forbidding sharing); and when a composite is destroyed
all its connected parts are destroyed as well, thus the composite is responsible
for its parts (ownership).

The cycle freeness property is a special one because it can be affected by mul-
tiple aggregations at once. In the easiest case, a reflexive aggregation forms a
cycle as pictured in Fig. 8 and the corresponding OCL expression to describe the
property is straightforward. However, cycles can span over an arbitrary amount
of links and the complexity of the OCL expression rises with the amount of
aggregations connected. These constellations are commonly found in metamod-
els, when an aggregations connect elements related via a generalization hierarchy.

Fig. 8. Aggregation example and its semantics expressed in OCL

As an example, consider the model in Fig. 9. At a first glance there are three
independent cycles. But these cycles all share a common class B. This affects how
cycles can occur in a system state. For example, starting from class A, a cycle

From UML/OCL to Base Models 161

Fig. 9. Complex aggregation model

can be as simple as connecting to a B object and back to the original A object.
However, since B is also connected to C and D, there can be an arbitrary amount
of links in between. A single closure operation, as pictured in Fig. 8, does not
cover all possible cases allowed by the class diagram. To consider all paths going
from class B to itself, a second, nested closure operation is required. The full
invariant ensuring cycle freeness for class A looks as follows:

The repeating4, highlighted expression in lines 2 and 3 is the essential part.
Instead of only considering all navigations from class A to B and back, the nested
closure operations (line 3) cover all intermediate navigations from class B to
itself. Note that not all cycles of class B are inside the nested closure expression,
since the one between classes A and B is already covered by the initial navigation.

The previous examples for cycle freeness shown with aggregations are also
valid for compositions. Additionally, the other previously defined properties have
to be considered. Figure 10 shows an example for the forbidding sharing property
as an OCL invariant. The constraint ensures that none or exactly one of the
possible composites is linked with every Part, thus preventing multiple links at
the same time.

Fig. 10. Composition forbidding sharing property expressed in OCL

Finally, the ownership property is left. This property is different from the
previous ones, since it defines behavior, e.g. during operation calls, instead of
structure. Therefore, this property cannot be expressed as a structural invariant.
To represent it in a class diagramm, we use operation pre- and postconditions.
4 The lack of a non-reflexive transitive closure operation in OCL forces the repetition

of the expression here.

162 F. Hilken et al.

However, since the full transformation requires different description means not
discussed in this work, we leave the details for future work.

4.4 Transformation of Query Operations

Query operations are side-effect free OCL expressions assigned to classes as
operations. The transformation of such operations in the base model is mainly
operating on OCL expressions. In general, all calls to the query operation in any
expression can be expanded into the expression associated with the operation.
Parameter expressions are obtained from the respective operation call and the
return value is simply the result of the expression.

In case of recursively defined query operations, the expansion never termi-
nates. However, a general idea for these situations is to transform the expres-
sions into closure expressions or expand the expression a fixed amount of times,
depending on the estimated requirements, but this approximation is not always
possible. Nevertheless, in terms of compatibility and performance, this transfor-
mation has next to no drawbacks.

4.5 Transformation of OCL Collection Types

In case that a verification engine cannot be used for a certain source model – due
to incompatibilities on the OCL level, e.g. an unsupported collection type – a
last resort can be the representation of such a type in the class diagram itself.
Figure 11 shows a class with a Sequence typed attribute on the left side. The
resulting model is extended by a (simplified) representation of such sequence as
classes in the diagram. The sequence is connected to the class IntegerValue,
which has an index and the actual integer value. Constraints are applied to
ensure semantics, e.g. a well-defined order exists.

Fig. 11. Sequence transformation into UML Structure

The query operation SequenceInteger::at(Integer) shows an example for
the transformation of the functionality of the modelled type. The OCL definition
looks as follows:

context SequenceInteger::at(n : Integer) : Integer =

self.values→any(index = n).value

Other common standard OCL operations can be defined accordingly. Also, the
definition of a sequence is reusable for multiple occurrences of the same type in
the source model.

From UML/OCL to Base Models 163

This transformation is mostly interesting when no verification engine is able
to handle a given model without this transformation. While the overhead is
considerable, being able to apply validation and verification techinques to a
previously incompatible model demonstrates the universality of the base model.

4.6 Combination of the Transformation Concepts

Using the transformations discussed above, source models can be transformed
into base models by applying the transformations until no further matches can
be found. That way, the resulting model consists of core elements (�) only, while
the semantics of all transformed elements (◦) is preserved (see Table 1). Along
with the transformation of the respective model elements, all OCL expressions
using these elements are transformed as well, to match the modifications.

5 Conclusion and Future Work

In this paper, we have proposed a transformation of UML/OCL models to base
models. By this, we closed a significant gap for generic UML and OCL model val-
idation and verification. The base model increases compatibility between source
models and verification engines, by unifying various diagram types and express-
ing them using a reduced feature set, the so-called core elements. The result
is a universal base model consisting of atomic elements only. We have also
presented the corresponding transformation concepts for an important set of
complex UML/OCL constructs like association classes, compositions, and OCL
collection types. In order to transform a given source model into the correspond-
ing base model representation, transformations are applied successively until the
model only consists of core elements.

When in the future, verification engines supportmore complex features directly,
it might be preferable to use those direct translations instead of performing the
proposed transformations. However, an evaluation of the performance gain of
direct translations by the verification engines versus the base model transforma-
tions is left for future work. If case studies reveal benefits for chosing different
core elements, the base model can easily be adapted, due to the modular com-
bination of transformations. Finally, transformations are required to be able to
map verification results on the base model back to the source model.

Acknowledgement. Thanks to Lars Hamann for the constructive discussions about
the model transformations, in particular the aggregation transformation. We also thank
the reviewers for their useful feedback. This work was partially funded by the German
Research Foundation (DFG) under grants GO 454/19-1 and WI 3401/5-1 as well as
within the Reinhart Koselleck project DR 287/23-1.

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: a challenging
model transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.)
MODELS 2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007)

164 F. Hilken et al.

2. Banerjee, A., Ray, S., Dasgupta, P., Chakrabarti, P.P., Ramesh, S., Ganesan,
P.V.V.: A Dynamic Assertion-Based Verification Platform for Validation of UML
Designs. ACM SIGSOFT Software Engineering Notes 37(1), 1–14 (2012)

3. Brucker, A.D., Wolff, B.: Semantics, calculi, and analysis for object-oriented spec-
ifications. Acta Inf. 46(4), 255–284 (2009)

4. Cabot, J., Clarisó, R., Riera, D.: Verifying UML/OCL operation contracts. In:
Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 40–55. Springer,
Heidelberg (2009)

5. Cabot, J., Clarisó, R., Riera, D.: On the verification of UML/OCL class diagrams
using constraint programming. J. Syst. Softw. 93, 1–23 (2014)

6. Chen, Z., Zhenhua, D.: Specification and verification of UML2.0 sequence diagrams
using event deterministic finite automata. In: SSIRI, IEEE (2011)

7. Chiorean, D., Pasca, M., Cârcu, A., Botiza, C., Moldovan, S.: Ensuring UML mod-
els consistency using the OCL environment. Electr. Notes Theor. Comput. Sci. 102,
99–110 (2004)

8. Choppy, C., Klai, K., Zidani, H.: Formal verification of UML state diagrams: a
petri net based approach. Softw. Eng. Notes 36(1), 1–8 (2011)

9. Demuth, B., Wilke, C.: Model and object verification by using dresden OCL. In:
IIT-TP, p. 81. Technical University (2009)

10. Dinh-Trong, T.T., Ghosh, S., France, R.B., Hamilton, M., Wilkins, B.: UMLAnT:
An eclipse plugin for animating and testing UML Designs. In: Storey, M.D., Burke,
M.G., Cheng, L., van der Hoek, A. (eds.) ETX. pp. 120–124. ACM (2005)

11. Duran, F., Gogolla, M., Roldan, M.: Tracing properties of UML and OCL models
with maude. In: AMMSE, Electronic Proceedings in Theoretical Computer Science
(2011)

12. Eshuis, R., Wieringa, R.: Tool support for verifying UML activity diagrams. IEEE
Trans. Software Eng. 30(7), 437–447 (2004)

13. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL models in USE
by automatic snapshot generation. J. Softw. Sys. Model. 4(4), 386–398 (2005)

14. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environ-
ment for validating UML and OCL. Sci. Comp. Prog. 69(1–3), 27–34 (2007)

15. Gogolla, M., Hamann, L., Hilken, F.: Checking transformation model properties
with a UML and OCL model validator. In: Amrani, M., Syriani, E., Wimmer, M.
(eds.) VOLT@STAF, CEUR Proceedings. vol. 1325, pp. 16–25 (2014)

16. Gogolla, M., Hamann, L., Hilken, F.: On Static and dynamic analysis of UML and
OCL transformation models. In: Dingel, J., de Lara, J., Lucio, L., Vangheluwe, H.
(eds.) Analysis of Model Transformations (AMT). CEUR Proceedings, vol. 1277
(2014)

17. Gogolla, M., Kuhlmann, M., Hamann, L.: Consistency, independence and conse-
quences in UML and OCL models. In: Dubois, C. (ed.) TAP 2009. LNCS, vol.
5668, pp. 90–104. Springer, Heidelberg (2009)

18. Gogolla, M., Richters, M.: Expressing UML class diagrams properties with OCL.
In: Clark, A., Warmer, J. (eds.) Object Modeling with the OCL. LNCS, vol. 2263,
p. 85. Springer, Heidelberg (2002)

19. Hilken, C., Seiter, J., Wille, R., Kühne, U., Drechsler, R.: Verifying consistency
between activity diagrams and their corresponding OCL contracts. In: Forum on
specification and Design Languages (FDL) (2014)

20. Hilken, C., Peleska, J., Wille, R.: A unified formulation of behavioral semantics for
SysMLmodels. In: Modelsward (2015)

From UML/OCL to Base Models 165

21. Hilken, F., Niemann, P., Wille, R., Gogolla, M.: Towards a base model for
UML and OCL verification. In: Boulanger, F., Famelis, M., Ratiu, D. (eds.)
MoDeVVa@MODELS. pp. 59–68 (2014)

22. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation
tool. Sci. Comput. Program. 72(1–2), 31–39 (2008)

23. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of OCL models by
integrating SAT solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011.
LNCS, vol. 6705, pp. 290–306. Springer, Heidelberg (2011)

24. Kurth, F., Schupp, S., Weißleder, S.: Generating test data from a UML activity
using the AMPL interface for constraint solvers. In: Seidl, M., Tillmann, N. (eds.)
TAP 2014. LNCS, vol. 8570, pp. 169–186. Springer, Heidelberg (2014)

25. Kuske, S., Gogolla, M., Kreowski, H.J., Ziemann, P.: Towards an integrated graph-
based semantics for UML. Softw. Sys. Modeling 8(3), 403–422 (2009)

26. Lam, V.S.W.: A formalism for reasoning about UML activity diagrams. Nord. J.
Comp. 14(1), 43–64 (2007)

27. Lima, V., Talhi, C., Mouheb, D., Debbabi, M., Wang, L., Pourzandi, M.: For-
mal verification and validation of UML 2.0 sequence diagrams using source and
destination of messages. Electr. Notes Theor. Comput. Sci. 254, 143–160 (2009)

28. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification.
version 1.1 January 2011 edn. http://www.omg.org/spec/QVT/1.1/

29. Queralt, A., Teniente, E.: Reasoning on UML class diagrams with OCL constraints.
In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 497–512.
Springer, Heidelberg (2006)

30. Rafe, V., Rafeh, R., Azizi, S., Miralvand, M.R.Z.: Verification and validation of
activity diagrams using graph transformation. In: ICCTD, pp. 201–205. IEEE
(2009)

31. Rodŕıguez, R.J., Fredlund, L.Å., Herranz, A., Mariño, J.: Execution and verifica-
tion of UML state machines with erlang. In: Giannakopoulou, D., Salaün, G. (eds.)
SEFM 2014. LNCS, vol. 8702, pp. 284–289. Springer, Heidelberg (2014)

32. Schwarzl, C., Peischl, B.: Static- and dynamic consistency analysis of UML state
chart models. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010,
Part I. LNCS, vol. 6394, pp. 151–165. Springer, Heidelberg (2010)

33. Soeken, M., Wille, R., Drechsler, R.: Verifying dynamic aspects of UML Models.
In: DATE, pp. 1077–1082. IEEE (2011)

34. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying
UML/OCL models using boolean satisfiability. In: DATE, pp. 1341–1344. IEEE
(2010)

35. Wille, R., Gogolla, M., Soeken, M., Kuhlmann, M., Drechsler, R.: Towards a generic
verification methodology for system models. In: DATE, pp. 1193–1196 (2013)

http://www.omg.org/spec/QVT/1.1/

F-Alloy: An Alloy Based Model Transformation
Language

Löıc Gammaitoni and Pierre Kelsen(B)

University of Luxembourg, Luxembourg, Luxembourg
{loic.gammaitoni,pierre.kelsen}@uni.lu

Abstract. Model transformations are one of the core artifacts of a
model-driven engineering approach. The relational logic language Alloy
has been used in the past to verify properties of model transformations.
In this paper we introduce the concept of functional Alloy modules. In
essence a functional Alloy module can be viewed as an Alloy module
representing a model transformation. We describe in this paper a sub-
language of Alloy called F-Alloy that allows the specification of functional
Alloy modules. Transformations expressed in F-Alloy are analysable
using the powerful automatic analysis features of Alloy but can also be
interpreted efficiently without the use of backtracking.

1 Introduction

Alloy [13] is a formal language based on a first-order relational logic with tran-
sitive closure. It is based on a small set of core concepts, the main one being
that of a mathematical relation. It was developed to support agile modeling of
software designs. It does this by allowing fully automatic analysis of software
design models using SAT solving. By providing immediate feedback to users,
the use of Alloy is meant to facilitate identifying design errors early.

In the context of model-driven development the Alloy language has been
used to verify properties of models and model transformations. The approach for
verifying model transformations typically involves translating the model trans-
formation language to Alloy. On the basis of this translation one can exercise
the transformation on a suitably constrained set of input models. One can apply
the Alloy Analyzer tool to generate the specified set of models as well as the
corresponding target models.

Thus, one can execute a model transformation using the Alloy Analyzer as an
execution engine. This approach has been implemented for the QVT-R language
in [15]. It is impractical for two reasons:

– Despite many advances in the performance of SAT solvers the analysis of a
model can become quite time consuming when it requires larger scopes to find
a suitable instance.

– The problem of finding small upper bounds (scopes) for the number of entities
of the different types is itself non-trivial (in fact it is undecidable). This is
particularly problematic for complex models with many different entity types.

c© Springer International Publishing Switzerland 2015
D. Kolovos and M. Wimmer (Eds.): ICMT 2015, LNCS 9152, pp. 166–180, 2015.
DOI: 10.1007/978-3-319-21155-8 13

F-Alloy: An Alloy Based Model Transformation Language 167

In this paper, we introduce the notion of functional Alloy modules as specifica-
tions of model transformation from a source to a target metamodel (represented
by Alloy modules). We show that under certain conditions such a functional
Alloy module can be efficiently interpreted instead of being analyzed via SAT
solving. More precisely we define a sublanguage of Alloy, named F-Alloy, that
allows to express functional Alloy modules and that guarantees that these mod-
ules can be interpreted efficiently, that is, in polynomial time.

A central concept of F-Alloy are so-called bridge mappings which are essen-
tially injective functions. The F-Alloy language can thus be viewed as a relational
model transformation language (since functions are special cases of relations).
Compared to existing relational model transformation languages (of which QVT
Relational [16] is a prominent representative) our approach offers two notable
features:

– rather than defining a new model transformation language from scratch we
restrict an existing formal language in order to express model transformations.
An important consequence of this approach is the possibility to reuse the
formal semantics of the Alloy language, thus permitting verification of model
transformations using Alloy’s automatic analysis capabilities.

– execution (which we will refer to as interpretation) directly exploits the func-
tional nature of model transformations. This allows efficient backtrack-free
execution of model transformations. We demonstrate the effectiveness of this
functional approach by applying it to a non-trivial example, namely, the CD
to RDBMS model transformation that has been used as standard example for
evaluating model transformation approaches.

The paper is structured as follows. In the next section we present the run-
ning example — namely a transformation from Class Diagrams to Relational
Database Management Systems — that will be used to evaluate our approach.
In Sect. 3 we give a formal presentation of central concepts of Alloy. In Sect. 4
we introduce the notion of functional Alloy module and illustrate its relation
with model transformations. Sections 5 and 6 present the syntax and (transla-
tional) semantics of F-Alloy. In Sect. 7 we explain how F-Alloy modules can be
efficiently interpreted. We provide an evaluation of our approach in Sect. 8 by
comparing the performance of analysis and interpretation in the execution and
verification of the CD2RDBMS transformation. We explain the context of our
work and discuss related work in Sect. 9. The final section presents concluding
remarks and future work.

2 Running Example: The CD2RDBMS Transformation

To evaluate our approach, we use the standard Class Diagram to Relational
Database Management System transformation case study [6] — which we will
call CD2RDBMS. The source and target metamodels of this transformation,
CD and RDBMS, are shown as UML class diagrams in Fig. 1; further Alloy
constraints have been left out for succinctness, nevertheless those constraints

168 L. Gammaitoni and P. Kelsen

are present in the full solution (expressed in F-Alloy) available in [9]. We now
give an informal specification of this transformation.

Fig. 1. CD and RDBMS metamodels (from [6])

For each persistent class c without a parent, a table is created. This table is
populated with columns (1) corresponding to the primitive attributes of c, (2)
referring to the class of class-typed attributes of c, (3) referring to the destination
of the associations having as source c, (4) corresponding to attributes declared
in children of class c.

In case (1) the column is typed after the primitive type of the attribute,
and named after the attribute. In case (2), we create a column for each primary
attribute of the type class. Those columns compose a foreign key which refers to
the table representing the type class. Case (3) is similar to case (2). We create
columns referring to the association’s destination’s primary attributes. Those
columns compose a foreign key that refers to the table corresponding to the
destination.

In case (4), each subclass’s attribute is created in conformance to point (1)
and (2) in the table corresponding to the topmost superclass.

Note that in cases (2), (3) and (4) the naming of the column depends both
on the nature (referred class, association, super classes, respectively) and name
of the attribute.

3 Background

3.1 Alloy Modules and Instances

A metamodel can be expressed in one or several Alloy modules, each module
being associated to a single file. Modules are composed of signature and field
declarations, and of constraints. A module may import other modules, in which
case the importing module can use features of the imported modules.

Definition 1 (Alloy Module, Signature, Field). An Alloy module is a tuple
(S, F, ϕ) with S and F being the sets of signatures and fields declared in the mod-
ule or any of its (recursively) imported modules, respectively. Signatures may be

F-Alloy: An Alloy Based Model Transformation Language 169

defined as subsignatures of other signatures (using the extends keyword). Fields
of F have as type a sequence of signatures in S, the first one being the signa-
ture that contains it. ϕ is a first-order logic formula (plus transitive closure)
representing the set of constraints expressed in the module.

The RDBMS module is defined in Alloy as follows:

It can be written m = (S, F, ϕ) with: vspace-3pt

– S = {Table, Column, FKey,RDBMSElem, Type, Number, Text}
– F = {cols : Table × 2Column, pkey : Table × 2Column, fkeys : Table ×

2FKey, type : Column × Type, references : Fkey × Table, columns : FKey ×
2Column, label : RDBMSElem × Int × String}

– ϕ = (∀t : Table, pkey(t) ∈ cols(t)) ∧ (∀c : Column,∃t : Table, c ∈ cols(t)) ∧
(∀f : FKey,∃t : Table, f ∈ fkeys(t)))1

Considering now A, a set of indivisible entities called atoms, T , a set of atom
tuples, and a module m = (S, F, ϕ), we call typed atoms pairs (x, s) where x ∈ A
and s ∈ S. A typed atom (x, s) is also denoted xs (read”atom x of type s”).
A typed tuple is a pair (t, f) where t ∈ T and f ∈ F . A typed tuple (t, f) is also
denoted tf (read”tuple t of type f”). Note that for a typed field tf the following
needs to hold: if the type of the field is X1, . . . , Xn, then the i-th component of
the tuple needs to have as type Xi or a subsignature of Xi.

We call xs an s-atom and tf an f-tuple, and extend the superscript nota-
tion such that sets of s-atoms B and of f-tuples T , are denoted Bs and T f ,
respectively.

Definition 2 (Alloy Instance). An Alloy Instance of m is a triplet (X,Y,m)
where m = (S, F, ϕ), X is a set of atoms typed by signatures of m and Y is a
set of tuples typed by fields of m and made up of atoms in X . We write x � ϕ
if an instance x of m satisfies ϕ and call valid instances2 of m the subset of
instances of m which satisfy ϕ. We denote the set of valid instances of m by
I(m). Formally:

I(m) = {(X,Y,m)|∀xv ∈ X, v ∈ S ∧ ∀yw ∈ Y,w ∈ F ∧ (X,Y,m) � ϕ}

Instance (X,Y,m) is a subinstance of (X ′, Y ′,m′) if X ⊆ X ′ and Y ⊆ Y ′.
Note that the definition of the set of valid instances does not take into account

bounds on the numbers of atoms typed by different signatures. These bounds
1 We have omitted the constraints that express multiplicities and disjointedness.
2 We relax here the Alloy terminology in which instance usually means valid instance.

170 L. Gammaitoni and P. Kelsen

are collectively known as the scope of a module (see [13]). Scopes need only to
be taken into account when performing actual analyses with the Alloy Analyser,
which is deferred until Sect. 8.

The projection of an instance x on a module m′ is meant to extract an
m′-instance out of atoms and tuples present in x. This operation will be used
extensively later in the paper.

Definition 3 (Instance Projection). A projection of an instance x :
(X,Y,m) on a module m′ : (S′, F ′, ϕ′) is the m′-instance composed of the atoms
and tuples present in x and typed by signatures and fields of m′, respectively. We
denote projections using the evaluation symbol ⇓: x ⇓ m′ reads” the projection
of x on m′”. Formally : x ⇓ m′ = (X ′, Y ′,m′) with X ′ = {as|a ∈ X ∧ s ∈ S′}
and T ′ = {tf |t ∈ T ∧ f ∈ F ′}.

4 Functional Alloy Modules

Suppose an Alloy module m imports two modules m1 and m2. An instance of m
will then contain an m1- and m2-subinstance. Furthermore, module m induces
a binary relation R between I(m1) and I(m2) defined as follows:

∀x1 ∈ I(m1), x2 ∈ I(m2) : R(x1, x2) ⇔ ∃x ∈ I(m) : x ⇓ m1 = x1 ∧ x ⇓ m2 = x2

In this paper we restrict ourselves to one-to-one model transformations, that is,
one input model is mapped to exactly one output model. In other words the
previously defined relation should be a mathematical function.

This motivates the following definition:

Definition 4 (Functional Alloy Module). An Alloy module m importing two
modules m1 and m2 is called a functional Alloy module from m1 to m2 if for
any valid instances x and x′ of m, if x and x′ have the same projection on m1,
then they also have the same projection on m2. Formally:

∀x, x′ ∈ I(m), (x ⇓ m1 = x′ ⇓ m1) =⇒ (x ⇓ m2 = x′ ⇓ m2)

Caveat: This definition only makes sense if m1 and m2 are distinct, that is, for
the case of exogenous transformations. Indeed if m1 = m2 the condition stated
in the definition trivially holds. In the following we thus restrict our attention
to exogenous transformations. Note, however, that the above definition could
be applied to endogenous out-place transformations as well by duplicating the
Alloy module representing the underlying metamodel.

To illustrate this definition, consider the CD2RDBMS transformation. An
hypothetical Alloy module defining this transformation would import the mod-
ules defining the class diagram and the RDBMS metamodels and would define
a set of “rules” that specify the transformation. Such a module would be a
functional Alloy module if and only if any two valid instances of it having the
same projection on the class diagram module would have the same projection
on the RDBMS module. Of course we still have not explained how to write such
a functional Alloy module. This will be explained in Sect. 5 when we define a
sublanguage of Alloy for expressing functional Alloy modules.

F-Alloy: An Alloy Based Model Transformation Language 171

5 Syntax of F-Alloy

In this section, we formally introduce the syntax of F-Alloy, a new language
meant to ease the specification of functional Alloy modules.

We call f-module m from m1 to m2, a module m, written in F-Alloy, importing
module m1 and m2 (in that order). An < F − Module > is composed of:

– A < Bridge > signature (of multiplicity one3) allowing to define and keep
track of functions from m1 to m2. Those functions are called bridge
< Mapping >.

– < Guard > predicates, each associated to one bridge mapping. Their role is to
define via the use of an Alloy Formula (< Formula >) under which condition
an element of m1 is part of the associated mapping.

– < Value > predicates also associated to a bridge mapping. Their role is to pro-
vide additional details on how the output instance is constructed. It contains
interpretable Alloy formulae called < Rules >.

We split the BNF definition of F-Alloy in two parts in order to ease its under-
standing. While the first part reveals the structure of F-modules, the second part
focuses on those interpretable Alloy formulae called rules.

1 <F-Module>::= module <qualName> <import> <Bridge><Guard>∗<Value>∗

2 <import>::= import<qualName> import <qualName>
3 <Bridge> ::= one sig Bridge {<Mapping>∗}
4 <Mapping> ::= <name> : <qualName> (-><qualName>)+,
5 <Guard> ::= pred guard <name> (<paraDecl>∗){ <Formula>∗ }
6 <Value> ::= pred value <name> (<paraDecl>∗){ <Rule>∗ }
7 <paraDecl>::= (<name> :<qualName> ,)∗<name> :<qualName>
8 <qualName>::= [this/] (<name> /)∗ <name>
9

10 <Rule>::= <Formula> implies <Rule>|<Strict>|<Loose>|<Inductive>
11 <Strict> ::= <name>.<field> = <val>
12 <Loose> ::= <name> in Bridge.<field> .<field>
13 <Inductive> ::= <Strict><Step>
14 <Step> ::= all i:Int|<Formula> implies <name>.<field>[add[i,1]] = <val>
15 <val> ::= <Expr>| Bridge.<field>
16 <field> ::= <field> [[<Expr>]]

Listing 1.1. F-Alloy BNF

Additional static semantics constraints for the syntax are: (1) There is exactly
one guard and one value predicate per bridge mapping, and the association is
done by name; (2) the qualified names in the < Mapping > except the last one
correspond to signatures in m1, while the last one refers to a signature of m2;
(3) there is one parameter in the guard predicate for each m1-signature in the
< Mapping >; (4) the same holds for the value predicate, with an additional
parameter for the m2-signature.

Here is an excerpt of the CD2RDBMS transformation expressed in F-Alloy:

3 Valid instances of the f-Module will contain exactly one Bridge atom.

172 L. Gammaitoni and P. Kelsen

This f-module UML2RDBMS (declared on l.1) from CD (imported on l.2)
to RDBMS (imported on l.3) contains 6 bridge mappings (l.5-10) and the
guard and value predicates of the primAttr2Column mapping only (oth-
ers are omitted for lack of space). The bridge mapping primAttr2Column
defines a partial function from Attribute to Column. The guard predicate of
primAttr2Column defines that the domain of this function consists only of
primitive-typed attributes (l.13) whose topmost class is persistent (l.14). The
value predicate of primAttr2Column contains two strict rules (l.17-18), one
inductive rule(l.19-20), and two loose rules(l.21-22).

We note that, from a syntactic point of view, any f-module is also an Alloy
module since it is essentially composed of a signature and a collection of pred-
icates. In that sense F-Alloy is a sublanguage of Alloy. The intended meaning
of an f-module is however different from its Alloy semantics, as explained in the
next section. Indeed additional constraints need to be added to ensure that the
module is a functional Alloy module, i.e., it specifies a transformation.

6 Translational Semantics of F-Alloy

In this section we define the semantics of F-Alloy using the semantics of Alloy.
For the purpose of this paper, we define the meaning of an Alloy module to
be its set of valid instances. We map an f-module m : (S, F, ϕ) expressed in
F-Alloy to an Alloy module mA - called augmented module - that is obtained
by adding constraints to m. The meaning of f-module m is then equal to the
meaning of the augmented Alloy module (defined above). Later we will show
that the augmented module is in fact a functional Alloy module.

Five different types of Alloy constraints are added to m. We illustrate those
using excerpts of our CD2RDBMS case study.

Map Disjunction. Bridge mappings of an f-module define partial functions
which have disjoint ranges.

E.g., columns representing primitive and class attributes should be disjoint.

primAttr2column[Attribute] & classAttr2column[Attribute] = none

F-Alloy: An Alloy Based Model Transformation Language 173

Map Injectiveness. Functions defined by Bridge mappings are injective.
E.g., distinct primitive attributes should be mapped to distinct columns.

forall disj a1,a2 : Attribute| primAttr2column[a1] �=
primAttr2column[a2]

Predicate Association. Guard and value predicates of an f-module associated
with a bridge mapping restrict its valuation and the valuation of its output
elements’ field, respectively.

E.g., a column y is associated to an attribute x if and only if the guard
predicate is satisfied for x. In that case, the value predicate has to hold for x
and y as well.

all x : Attribute |
(guard_primAttr2column[x] and #primAttr2column[x]=1 and

value_primAttr2column[x , primAttr2column[x]]) or
(not guard_primAttr2column[x] and primAttr2column[x]=none)

Minimum Output. In a valid instance of an f-module m from m1 to m2,
atoms typed by a signature of m2 are limited to the ones that are part of a
bridge mapping of m.

E.g., RDBMS elements are limited to co-domains of declared mappings.

RDBMSElem = class2table[Class] + primAttr2column[Attribute] +
classAttr2column[Attribute,Attribute] +
association2column[Association,Attribute]

Minimal Assignment. Rules of an f-module follow the principle of minimal
assignment. In other words, the valuation of a field is limited to the values
explicitly assigned through the rules.

E.g., the label of a column being a sequence, its size is bounded by the
number of elements explicitly assigned through rules (see the last of the following
constraints).

c.label[0]= a2.name
c.label[1]= a1.name
c.label[2]= ((a1.˜attrs.parent)�=none implies a1.˜attrs.name

else none)
all i: Int| i≥1 and i≤ #(a1.˜attrs.*parent) implies c.label[add

[i,1]]= c.label[i].˜name.parent.name//5
#c.label.elems=add[#(a1.˜attrs.*parent),1]

6.1 Rule Semantics

In order to prove in the next subsection that the augmented module mA of m
is a functional Alloy module, we need two properties of rules that are expressed
in the two lemmas below.

174 L. Gammaitoni and P. Kelsen

The first lemma claims that each rule in a value predicate can be rewritten
in the form:

Fr in g

where g denotes a field in m2, Fr is a set-valued expression typed by g and in
denotes set inclusion (in Alloy). Since Fr depends in general on the instance xA

of mA and on the parameters �x and y of the value predicate containing r, we
write Fr as Fr(xA, �x, y). We use the vector notation for �x to represent a sequence
of parameters typed by signatures of m1.

Lemma 1 (Rules as Functions). Any rule r of mA can be written in the form
Fr(xA, �x, y) in g for some field g in m2.

Proof Sketch. We only consider the case of loose rules. A loose rule of the form
y in Bridge.f[expr1].g can be rewritten using the equivalent Alloy con-
straint: (Bridge.f[expr1] -> expr2 -> y) in g. If b and e denote the
value of Bridge.f[expr1] and expr2 for a given instance xA and arguments
�x, then we can define Fr(xA, �x, y) = {(b, e, y)g}. Fr can be defined similarly for
the other types of rules. �
The second lemma (whose proof is omitted) states that function Fr(xA, �x, y)
only depends on the projection of xA on m1.

Lemma 2 (Fr Is Independent of m2). For any rule r of an f-module m,
considering the function Fr associated to r (see lemma 1), we have :

∀�x, y ∀xA, x′
A ∈ I(mA), Fr(xA, �x, y) = Fr(x′

A, �x, y) if xA ↓ m1 = x′
A ↓ m1

6.2 Augmented Modules and Functional Alloy Modules

Theorem 1 (mA Is a Functional Alloy Module). For any f-module m from
m1 to m2 the corresponding augmented module mA is a functional Alloy module
from m1 to m2.

Proof Sketch. By the minimum output constraints of mA, the atoms in the
projection of a valid instance xA of mA on m2 are exactly those in the ranges of
bridge mappings. The set of these atoms depends only on the projection of xA

on m1.
From Lemmas 1 and 2, we know that each rule of each value predicate con-

tributes to an instance xA of mA a set of tuples typed by a field of m2 that only
depends on the projection on m1. By taking the union of these sets of tuples over
all bridge mappings and rules, the resulting set of tuples still only depends on the
projection of xA on m1. The construction rules for the augmented module guar-
antee that only those tuples explicitly added by rules will be in the projection
of xA on m2. It follows that mA is a functional Alloy module. �

F-Alloy: An Alloy Based Model Transformation Language 175

7 F-Alloy Interpretation

The following pseudocode shows how interpretation of an f-module works. Note
that the output is an instance of the augmented module. If one is interested only
in the m2-subinstance, it can be obtained by projecting the mA-instance on m2.

For an instance x = (X,Y,m), a set of atoms A and a set of tuples T ,
we use the notation x ∪ A and x ∪ T to denote the instances (X ∪ A, Y,m) and
(X,Y ∪T,m), respectively. We use the vector notation �X to denote the sequence
of m1-signatures in the definition of a bridge mapping.

1 Input: -f-module m from m1 : (S1, F1, ϕ1) to m2 : (S2, F2, ϕ2)

2 -Instance x1 of m1
3 Output: -Instance xA = (XA, YA, mA) s.t. xA ↓ m1 = x1
4
5 BEGIN
6 xA := x1 ∪ {bBridge}
7 FOR EACH mapping f : �X → Y IN m DO:
8 LET �Xf denote the set of �X tuples (of atoms present in x1) that satisfy

the guard of mapping f

9 LET Yf be a set of Y -atoms s.t. |Yf | = | �Xf | and Yf ∩ xA = ∅
10 LET Tf ⊆ �Xf × Yf be a set of tuples (�x, y) that maps �Xf bijectively to Yf

11 xA := xA ∪ Yf ∪ Tf

12 DONE
13 FOR EACH mapping f : �X → Y IN m DO:
14 FOR EACH rule r IN pred value_f DO:
15 FOR EACH tuple (�x, y) IN Tf DO: // Tf defined on line 10
16 xA := xA ∪ Fr(xA, �x, y) //Fr defined in lemma 1
17 DONE
18 DONE
19 DONE
20 IF xA � ϕ1 ∧ ϕ2 THEN
21 RETURN xA

22 ELSE
23 invalid transformation
24 END

Listing 1.2. F-Alloy Interpretation pseudo code

Let us analyse the time complexity of interpretation. Let n denote the number
of atoms in x1. Both in the first and the second loop we need to evaluate an Alloy
constraint or expression on a number of tuples that is at most polynomial in n. If
we assume that the evaluation of Alloy expressions and constraints can be done
in time polynomial in n - which can be shown by structural induction - then the
overall time will be at most polynomial in n. Thus we expect interpretation to
be more efficient than analysis. This will be shown in the next section.

The following theorem states that the interpretation of f-modules imple-
mented by the pseudo code of Listing 1.2 conforms to the translational semantics
given to F-Alloy.

Theorem 2. Given an f-module m from m1 to m2 and a valid instance x1 of
m1, the instance xA returned by interpretation (in line 21) on inputs m and x1

is a valid instance of mA. Moreover interpretation returns no instance only when
there is no valid instance for mA whose projection on m1 is x1.

176 L. Gammaitoni and P. Kelsen

Proof Sketch. From lines 9 and 10 we see that map disjunction and map injec-
tiveness constraints are satisfied. From lines 13 — 19 it follows that the predicate
association constraints are satisfied in xA. From lines 7—12 it follows that the
atoms in the projection of xA on m2 are exactly those in the ranges of bridge
mappings, implying that the minimum output constraints are satisfied. Finally
the minimal assignment constraints follow from the fact that only those tuples
are added on lines 13 — 19 which are explicitly required by the rules.

In the case the interpretation of an f-module m fails to produce an instance
satisfying constraints of m1 and m2, then so will analysis. Indeed, because of
the constraints of mA, any valid instance of mA will have the same atoms and
the same tuples in the projection of xA on m2 (up to atom renaming) than the
interpreted instance since those tuples are exactly the tuples explicitly required
by the rules. �

8 Evaluation

In this section, we evaluate the benefits of using F-Alloy to specify model
transformations. This evaluation is based on comparing the performance of the
analysis carried by the Alloy Analyzer and of the interpretation of F-Alloy per-
formed by the Lightning tool [1] in two cases:

1. The computation of a transformation (for a given input instance)
2. The verification of a transformation (no input given)

The manipulation needed to obtain the results presented in this section were
performed on models of the CD2RDBMS case study.

8.1 Transformation Computation

We start by comparing the performance of analysis and interpretation in the
computation of the CD2RDBMS transformation.

This manipulation consists, given a CD-instance x1 and the CD2RDBMS
transformation expressed as an f-module m from m1 (CD) to m2 (RDBMS):

– In the Case of Analysis: (1) in deriving the augmented module mA from
m; (2) in”over-constraining” m1 such that ∀xA ∈ I(mA), xA ↓ m1 = x1; (3)
in computing appropriate scopes (which will depend on the size of x1) for
the signatures in the augmented module; (4) in launching the actual analysis
based on these scopes.

– In the Case of Interpretation: In interpreting the f-module m given
instance x1.

The result of those manipulations for CD-instances of three different sizes are
given in Table 1.

The complexity of analysis grows very quickly with the size of the input
instance while interpretation exhibits a nearly linear behavior. This can be
viewed as a first confirmation of the theoretical complexity analysis done in
Sect. 7.

F-Alloy: An Alloy Based Model Transformation Language 177

Table 1. Transformation Computation : Time performance comparison table

Number of UMLElem CD2RDBMS CD2RDBMS

atoms analysis (ms) interpretation (ms)

10 2324 71

20 8052 162

25 20006 188

8.2 Transformation Verification

We now compare the performance of analysis and interpretation in the verifi-
cation of a transformation. While different types of verification may be done,
we consider here only the generation of examples of the transformation, which
would help in establishing consistency and also point to abnormal behavior.

The manipulation consists:

– In the Case of Analysis: in analysing the augmented module mA for the
given exact scope associated with the UMLElem signature.

– In the Case of Interpretation: In analysing m1 for the given scope and
for each m1-instance x1 thus obtained, in interpreting the f-module m. Note
that from Theorems 1 and 2 it follows that the set of instances thus produced
is equivalent — i.e., its instances have the same projections on m2 — to the
set of instances obtained by analysis.

The result of those manipulations are given in Table 2.

Table 2. Transformation Verification : Time performance comparison table

UMLElem scope Analysis Interpretation

(number of atoms)

CD2RDBMS CD analysis CD2RDBMS Total

analysis (ms) (ms) interpretation (ms) Time (ms)

10 5448 448 68 516

20 83759 974 159 1133

25 ∞ 1256 192 1448

The Total Time column gives the average amount of time needed in the
case of verification with interpretation to obtain the first instance. The other
instances are obtained seamlessly when browsing the instances.

We notice from those results that the complexity of analysing the transfor-
mation module can be roughly reduced, with the use of interpretation, to the
complexity of analysing its input module.

178 L. Gammaitoni and P. Kelsen

9 Discussion and Related Work

Context. The present work is carried out in the context of investigating the
use of Alloy for designing a language workbench [1,10]. In an earlier publica-
tion [8], we already showed that the concrete syntax of a language can be defined
as a transformation using Alloy. The current work opens up the possibility to
integrate the specification of general model transformations (e.g., for specifying
operational semantics of languages) into the Alloy based language workbench.

F-Alloy vs. Alloy. Analyzing Alloy models is generally an undecidable prob-
lem. That is why actual analyses with the Alloy analyser are always done for a
finite scope using SAT-solving, itself an NP-complete problem. In practice Alloy’s
analysis, although having a high worst case complexity, works surprisingly well,
as documented in numerous publications. No guarantees can be given, though,
on the time needed for analysing Alloy modules. Contrary to this we show that
F-Alloy identifies a subset of Alloy modules for which analysis via interpreta-
tion can be done in polynomial time (see Sect. 7). Furthermore interpretation of
modules written in F-Alloy relieves the analyst of having to determine proper
scopes for the signatures, itself a non-trivial problem.

Related Work on Model Transformation Languages. We can consider the
F-Alloy language as a simple relational model transformation language. Rela-
tional model transformation languages (such as those given in [2,11,16]) are
those where the main concept is that of a mathematical relation [7]. Note that
in F-Alloy the mathematical relations, represented by the bridge mappings, are
in fact injective functions. In their pure form (e.g., [2]) relational specifications
are not executable. In other cases (e.g., [16]) they are executable in principle
but still lack proper tool support. In the case of QVT there are some tools that
execute QVT specifications but none of them take into account all the features
of the QVT language. This is an indication that providing execution semantics
for a relational language is a non-trivial task, especially if some semantic incon-
sistencies exist as is the case for QVT ([15]). In this paper we have shown that
F-Alloy specifications are efficiently executable.

One distinguishing feature of F-Alloy is that it inherits a formal semantics
from the host language Alloy. Not all model transformation languages are for-
mal. For instance a popular model transformation language called ATL [14] was
defined semi-formally. A formal semantics in terms of rewriting logics was later
given by [19]. Even if a formal semantics is given there is in general no guarantee
that the implementation does indeed conform to the semantics. A good illustra-
tion of this is the case of the triple graph grammar approach [17,18], for which
the authors of [12] describe an approach to show conformance of an existing
implementation to the formal semantics.

Related Work on Verifying Model Transformation Languages. As men-
tioned in the introduction Alloy has been used in the past to verify model trans-
formations. Anastasakis et al. [4] use Alloy to analyze the correctness of model
transformations. They resort to their tool UML2Alloy [3] to transform the source

F-Alloy: An Alloy Based Model Transformation Language 179

and target metamodels into Alloy and translate the transformation rules into
mapping relations and predicates at the Alloy level. The goal of their work is
to check that the target instances are conforming to the target metamodel of
the transformation. This is done by checking an Alloy assertion using the Alloy
analyzer. In a similar line of work Baresi et al. [5] use Alloy to represent graph
transformations represented in the AGG formalism. They use the Alloy analyzer
to verify the correctness of the transformation by generating possible traces. We
can similarly use Alloy’s analysis features to verify model transformations repre-
sented in F-Alloy. Furthermore, as we show in the evaluation section, in certain
cases we can speed up the analysis using interpretation.

10 Conclusion and Future Work

In this paper we have introduced the notion of functional Alloy module which
corresponds to an Alloy module representing a transformation. We have defined
a sublanguage of Alloy, named F-Alloy, which can be used to express functional
Alloy modules and allows efficient interpretation of these modules. We have
given first evidence of this for the CD2RDBMS model transformation. A more
thorough evaluation will be needed for further confirmation.

F-Alloy inherits the formal semantics of Alloy, thus making the transforma-
tions analyzable. This contrasts with other approaches where a separate formal
semantics has to be defined.

Our current approach has one important restriction: it only applies to out-
place transformations. Further work will investigate how to extend the approach
to in-place (endogenous) model transformations.

Another area of investigation concerns bidirectional transformations. These
are transformations that allow forward and backward transformations to be gen-
erated from a unique transformation specification. Bidirectional transformations
are useful in the context of synchronisation between models. Future work will
examine whether we can make our approach bidirectional. This has already been
achieved by existing relational model transformation languages such as QVT but
also graph based approaches such as triple graph grammars.

References

1. Lightning tool website. http://lightning.gforge.uni.lu
2. Akehurst, D.H., Kent, S., Patrascoiu, O.: A relational approach to defining and

implementing transformations between metamodels. Softw. Sys. Model. 2(4), 215–
239 (2003)

3. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: a challenging model
transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MOD-
ELS 2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007)

4. Anastasakis, K., Bordbar, B., Küster, J.M.: Analysis of model transformations via
Alloy. In: Proceedings of the 4th MoDeVVa workshop: Model-Driven Engineering,
Verification, and Validation, pp. 47–56 (2007)

http://www.lightning.gforge.uni.lu

180 L. Gammaitoni and P. Kelsen

5. Baresi, L., Spoletini, P.: On the use of alloy to analyze graph transformation sys-
tems. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.)
ICGT 2006. LNCS, vol. 4178, pp. 306–320. Springer, Heidelberg (2006)

6. Bézivin, J., Schürr, A., Tratt, L.: Model transformations in practice workshop.
In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 120–127. Springer,
Heidelberg (2006)

7. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In:
Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Con-
text of the Model Driven Architecture, vol. 45, pp. 1–17 (2003)

8. Gammaitoni, L., Kelsen, P.: Domain-specific visualization of alloy instances. In:
Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 324–327.
Springer, Heidelberg (2014)

9. Gammaitoni, L., Kelsen, P.: An F-Alloy specification for the CD2RDBMS case
study (2015). http://lightning.gforge.uni.lu/doc/TR-LASSY-15-01.pdf

10. Gammaitoni, L., Kelsen, P., Mathey, F.: Verifying modelling languages using Light-
ning: a case study. In: Proceedings of the 11th MoDeVVa Workshop: Model-Driven
Engineering, Verification and Validation, pp. 19–28 (2014)

11. Gerber, A., Lawley, M., Raymond, K., Steel, J., Wood, A.: Transformation: the
missing link of MDA. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G.
(eds.) ICGT 2002. LNCS, vol. 2505, pp. 90–105. Springer, Heidelberg (2002)

12. Giese, H., Hildebrandt, S., Lambers, L.: Toward bridging the gap between formal
semantics and implementation of triple graph grammars. In: Proceedings of the
7th MoDeVVa Workshop: Model-Driven Engineering, Verification, and Validation,
pp. 19–24 (2010)

13. Jackson, D.: Software Abstractions. MIT press, Cambridge (2012)
14. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation

tool. Sci. Comput. Pogram. 72(1), 31–39 (2008)
15. Macedo, N., Cunha, A.: Implementing QVT-R bidirectional model transformations

using alloy. In: Cortellessa, V., Varró, D. (eds.) FASE 2013 (ETAPS 2013). LNCS,
vol. 7793, pp. 297–311. Springer, Heidelberg (2013)

16. OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification,
Version 1.1, January 2011

17. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) Graph-Theoretic Concepts in Computer
Science. LNCS, pp. 151–163. Springer, Heidelberg (1995)

18. Schürr, A., Klar, F.: 15 Years of Triple Graph Grammars. In: Ehrig, H., Heckel,
R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 411–425.
Springer, Heidelberg (2008)

19. Troya, J., Vallecillo, A.: A rewriting logic semantics for ATL. J. Object Technol.
10(5), 1–29 (2011)

http://lightning.gforge.uni.lu/doc/TR-LASSY-15-01.pdf

Foundations of Model Transformation

Translating ATL Model Transformations
to Algebraic Graph Transformations

Elie Richa1,2(B), Etienne Borde1, and Laurent Pautet1

1 Institut Telecom, TELECOM ParisTech, LTCI - UMR 5141,
46 Rue Barrault, 75013 Paris, France

{elie.richa,etienne.borde,laurent.pautet}@telecom-paristech.fr
2 AdaCore, 46 Rue D’Amsterdam, 75009 Paris, France

richa@adacore.com

Abstract. Analyzing and reasoning on model transformations has
become very relevant for various applications such as ensuring the cor-
rectness of transformations. ATL is a model transformation language
with rich semantics and a focus on usability, making its analysis not
straightforward. Conversely, Algebraic Graph Transformation (AGT) is
an approach with strong theoretical foundations allowing for formal
analyses that would be valuable in the context of ATL. In this paper
we propose a translation of ATL to the AGT framework in the objec-
tive of bringing theoretical analyses of AGT to ATL transformations. We
validate our proposal by translating a set of feature-rich ATL transfor-
mations to the Henshin AGT framework. We execute the ATL and AGT
versions on the same set of models and verify that the result is the same.

Keywords: ATL · Henshin · Algebraic graph transformation · OCL ·
Nested graph conditions · Analysis of model transformations

1 Introduction

Model transformations play a central role in Model Driven Engineering (MDE)
processes. They formalize and automate design decisions (e.g. optimisations),
implementation strategies (e.g. code generation) or translations/synchronization
between different model representations. Analyzing model transformations and
reasoning about them has therefore become increasingly interesting for various
concerns such as demonstrating the correctness of transformations via testing
or static formal analysis. Many transformation approaches have been proposed
with varying languages and semantics targeting different concerns.

ATL [11] is a widely used model transformation language, both in academia
and in the industry. It features a hybrid rule-based language with a rich execu-
tion semantics allowing for a mostly declarative and user-friendly specification.
Algebraic Graph Transformation (AGT) [8] is a formal framework that provides
mathematical definitions to express graph manipulation. Its strong theoretical
foundations allow for powerful analyses such as state space reachability analysis

c© Springer International Publishing Switzerland 2015
D. Kolovos and M. Wimmer (Eds.): ICMT 2015, LNCS 9152, pp. 183–198, 2015.
DOI: 10.1007/978-3-319-21155-8_14

184 E. Richa et al.

and formal proof of termination, confluence and correctness. Given the graph-
like structure of models in the sense of MDE, the theoretical results of AGT are
increasingly being used to reason on model transformations.

Various analyses have already been proposed for ATL without relying on
AGT. This includes test generation [9] and verification of correctness properties
[6,16] through translations of ATL to other analyzable specifications. However
we are interested in an analysis that is not possible with existing formalisa-
tions of ATL: the construction of Weakest Precondition (WP) [10]. This analysis
operates on constraints and transforms a postcondition into an equivalent pre-
condition of a transformation. It is defined in AGT and used in several scenarios
such as synthesizing transformation preconditions that ensure the preservation
of validity constraints [7], and formally proving the correctness of transforma-
tions [13]. Moreover in a previous publication [15], we have proposed a new use
of this analysis to support the testing of model transformation chains. In that
context we use WP construction as a way to propagate unit test requirements of
intermediate steps of a chain into equivalent integration test requirements over
the input of the chain which are easier to satisfy and maintain. We believe that
WP-based analyses would be valuable for ATL transformations (and chains) and
therefore propose to make them possible via a translation to AGT.

In this paper we propose a translation of ATL transformations to equivalent
AGT analysable transformations and provide an implementation in our tool
ATLAnalyser1. The first challenge in this work is handling ATL’s default and
non-default resolve mechanisms which do not have an equivalent in the AGT
semantics. The second challenge is the translation of OCL constraints and queries
of ATL rules into application conditions in the form of Nested Graph Conditions
(NGC) in AGT. While translations of OCL to NGC have been proposed in the
literature [3,4], they do not support ordered collections which we found to be an
important limitation for ATL transformations. Our work extends the existing
translations with support for ordered sets. Finally, we validate our proposal by
considering a set of representative ATL transformations taken from the ATL
Zoo [1] and other sources. We translate each transformation to the Henshin
AGT framework [2] and verify that the execution of both the ATL and AGT
versions over the same set of input models gives the same results.

The remainder of the paper is organised as follows. We start by recalling the
semantics of ATL and AGT in Sect. 2. Then we present in Sect. 3 the main
contribution of this paper: the translation of ATL to AGT. Section 4 reports on
the experimental validation and the limitations of our proposal. Related work is
discussed in Sect. 5 before concluding with future work in Sect. 6.

2 Semantics of ATL and AGT

2.1 ATL and OCL

ATL [11] is a model-to-model transformation language combining declarative and
imperative approaches in a hybrid semantics. ATL transformations are primarily
1 ATLAnalyser, https://github.com/eliericha/atlanalyser.

https://github.com/eliericha/atlanalyser

Translating ATL Model Transformations 185

out-place, i.e. they produce an output model different from the input model
(though both may be in the same language), and a so-called refining mode allows
for in-place model refinement transformations. In the scope of this paper, we
focus only on the declarative features of ATL in the standard out-place mode.

A transformation consists of a set of declarative matched rules, each speci-
fying a source pattern (the from section) and a target pattern (the to section).
The source pattern is a set of objects of the input metamodel and an optional
OCL [12] constraint acting as a guard. The target pattern is a set of objects of
the output metamodel and a set of bindings that assign values to the attributes
and references of the output objects. For example in Fig. 1, R1 has one source
pattern element s and two target pattern elements: t1 with 3 bindings and t2

with 1 binding.

Fig. 1. Example of ATL rules

An ATL transformation is executed in two phases. First, the matching phase
searches in the input model for objects matching the source patterns of rules
(i.e. satisfying their filtering guards). For each match of a rule’s source pattern,
the objects specified in the target pattern are instantiated. Second, the target
elements’ initialization phase executes the bindings for each triggered rule.

A binding defines a target property which is an attribute or a reference on
the left side of the <- symbol, and an OCL query on the right side of the
symbol. A binding maps a scalar value to a target attribute (line 5), target
objects (instantiated by the same rule) to a target reference (line 6), or source
objects to a target reference (line 7). In the latter case, a resolve operation is
automatically performed to find the rule that matched the source objects, and
the first output pattern object created by that rule is used for the assignment
to the target reference. This is referred to as the default resolve mechanism. For
example in Fig. 1, the binding at line 7 resolves the objects in s.refB into the
output objects of type E created by R2, and assigns them to t1.refE.

Another non-default resolve mechanism allows resolving a (set of) source
object(s) to an arbitrary target pattern object instead of the first one as in the
default mechanism. It is invoked via the following ATL standard operations:

186 E. Richa et al.

thisModule.resolveTemp(obj, tgtPatternName)

thisModule.resolveTemp(Sequence{obj1, ...}, tgtPatternName)

The former is used to resolve with rules having one source pattern element while
the latter is used to resolve with rules having multiple source pattern elements.
For example, the execution of the binding on line 13 in rule R2 will retrieve the
target object t2 (instead of t1 as with the default resolve) that was created by
R1 when it matched s.refA.

2.2 AGT and Nested Graph Conditions

Algebraic Graph Transformation (AGT) [8] is a formal framework that pro-
vides mathematical definitions to model graph transformations. We will be using
the Henshin [2] graph transformation framework which applies the theoretical
semantics to standard EMF models in the Eclipse platform. The details of the
formal foundations of Henshin can be found in [5] and are only briefly recalled
here. A graph transformation is composed of two main elements: a set of trans-
formation rules, and a high-level program defining the sequencing of rules.

Fig. 2. Henshin graphical representation of an AGT rule

An AGT rule consists of a Left-Hand Side (LHS) graph and a Right-Hand
Side (RHS) graph both depicted on the same diagram as in Fig. 2. LHS elements
are annotated with «preserve» or «delete» while RHS elements are annotated
with «preserve» or «create». Roughly, a rule is executed by finding a match of
LHS in the transformed graph, deleting the elements of LHS−RHS («delete»),
and creating the elements of RHS − LHS («create»). Elements of LHS ∩ RHS
are preserved («preserve»). A rule transforms elements matched by the LHS
into the RHS, therefore an AGT is an in-place rewriting of the input model.
For example, rule R in Fig. 2 matches nodes x of type X and y1 of type Y and
edge refY in the transformed graph, deletes the node matched by y1 and the
edge matched by refY , and creates node z2 of type Z and the edge refZ.

Matches of a rule may be restricted with additional constraints by assigning
attribute values to nodes. For example the rule in Fig. 2 can only match an object
x when x.name = ”Jon Snow”. Moreover, attribute values may be stored in rule
parameters such as in y1.name = p1 where the name attribute of the object
matched by y1 is stored in the rule parameter p1. Finally, a rule may assign new

Translating ATL Model Transformations 187

values to attributes such as in z2 where z2.name is initialized to p1 concatenated
to the string “Stark”.

In Henshin, edges typed by a multi-valued ordered reference (i.e. with upper
bound higher than 1) can be labeled with an index. This feature will play an
important role in the handling of the ATL resolve mechanisms and the support
of ordered sets in Sect. 3. A literal integer index such as ref [2] represents a
matching constraint: only the object at index 2 may be matched by the rule.
A rule parameter index such as ref [i] allows to read an object’s index in the
ordered reference and store it in the parameter. For example in Fig. 2, refY [i]
indicates that the index of y1 is stored in i. Edge indexes are zero-based.

An AGT rule can have an application condition (AC) which constrains its
possible matches. An AC is a Nested Graph Condition (NGC) over the LHS.
Formally, a NGC over a graph P is of the form true or ∃(a | γ, c) where a : P ↪−→
C is an injective morphism, γ is a boolean expression over rule parameters and
c is a NGC over C. A match p : P ↪−→ G of P in a graph G satisfies an AC
∃(a | γ, c) if there exists a match q : C ↪−→ G of C in G such that p = q ◦ a and γ
evaluates to true under the parameter assignment defined by p and q satisfies c.
Boolean formulas can be constructed such as the negation ¬c , the conjunction∧

i ci and the disjunction
∨

i ci of NGCs ci over P . We use short notations
∀(a, c) and c1 =⇒ c2 for ¬∃(a,¬c) and ¬c1 ∨ c2 respectively. For example
the AC in Fig. 3 defined for rule R requires the existence of a node y2 whose
name attribute is “Arya” and forbids the existence of a node z1 with the same
name as y1. The boolean expression i <= 1 constrains the rule to match only for
the first two objects in the ordered reference x.refY . Note that P is omitted from
the notation when it can be inferred from the context, and so are γ and c when
they are true. The AC is graphically represented in Fig. 2 using the annotations
«require» and «forbid», however this is only possible for one level of nesting in
the AC. For complete NGCs the full notation of Fig. 3 is necessary. In Sect. 3
we will translate OCL guards and bindings into suitable ACs of AGT rules.

Fig. 3. Example of a Nested Graph Condition

Finally we define a so-called high-level program which specifies in which order
AGT rules are applied. A program can be (1) elementary, consisting of a rule
r, (2) the sequencing of two programs P and Q denoted by (P ;Q), or (3) the
iteration of a program P as long as possible, denoted by P ↓, which is equivalent
to a sequencing (P ; (P ; (P · · ·) until the program P can no longer be applied.

3 Translating ATL to AGT

Having presented the semantics of ATL and AGT, we now tackle the main
contribution of this paper: the translation of ATL transformations to AGT

188 E. Richa et al.

transformations. Section 3.1 focuses on the first challenge, the emulation of the
ATL resolve mechanisms in AGT, and Sect. 3.2 addresses the second challenge,
the translation of OCL constraints and queries embedded in ATL transforma-
tion with support for ordered sets. To avoid confusion between ATL and AGT
transformation rules, we will denote them respectively by ruleATL and ruleAGT .

3.1 Translating the ATL Resolve Mechanism

Given the out-place nature of the ATL transformations we consider and in-
place nature of AGT we propose to model the ATL transformation in AGT as a
refinement of the input model which only adds the elements of the output model
without modifying the input elements.

Challenges. A first challenge is dealing with the ATL resolve mechanisms.
In AGT no such mechanisms exist, and any objects that a ruleAGT needs to
use must already exist in the transformed graph and must be matched by the
ruleAGT’s LHS. If a ruleAGT R1 needs to use an object created by ruleAGT R2,
then R2 must be executed before R1. This becomes a problem if R1 and R2
mutually require objects created by each other which is a perfectly valid sce-
nario in ATL that cannot be solved with simple ruleAGT sequencing. Moreover,
the non-default resolve mechanism requires to relate output objects to output
pattern identifiers so that we can retrieve the object corresponding to a specific
output pattern identifier given as argument to the resolveTemp operation.

General Solution. We propose to construct the AGT transformation similarly
to the ATL execution semantics, as two sequential phases: an instantiation phase
followed by a resolving phase. Moreover, we introduce trace nodes that maintain
the relationship between input and output elements. The first phase applies a
sequence of instantiation rulesAGT that create output objects without initial-
izing their attributes and references, and relate them to input objects through
trace nodes. Each ruleATL, e.g. R1 from Fig. 1, yields one instantiation ruleAGT
R1Inst that matches the same objects as R1. R1Inst is iterated as long as possible
so that all matches in the input model are processed. The order of application of
instantiation rulesAGT is irrelevant as they do not interfere with each other since
objects are allowed to match for only one ruleATL, as per the ATL semantics.

The second phase of the transformation applies a set of resolving rulesAGT

which initialize references and attributes of output objects. Each binding in a
ruleATL is translated to one or more resolving rulesAGT as will be discussed shortly.
For example, R1 yields 4 resolving rulesAGT R1t1 ,name

Res , R1t1 ,refDRes , R1t1 ,refERes and
R1t2 ,name

Res . Resolving rulesAGT navigate the input model and rely on the trace
nodes created in the instantiation phase to perform the resolving and retrieve
the corresponding output objects if needed. Like instantiation rulesAGT, resolving
rulesAGT are also iterated as long as possible so that bindings are applied to all
output objects. The resulting AGT transformation is the following:

R1Inst ↓; R2Inst ↓; R1t1 ,name
Res ↓; R1t1 ,refDRes ↓; R1t1 ,refERes ↓; R1t2 ,name

Res ↓; R2t,refDRes ↓
This scheme addresses the highlighted concerns regarding the resolve mech-

anism. Separating the creation of output objects from their use allows resolving

Translating ATL Model Transformations 189

rulesAGT to use any output object even in the case of mutual resolve dependen-
cies. Moreover, the trace nodes maintain the information required to perform
the resolving as explained next.

Trace Nodes. The trace nodes we introduce are typed by a set of metaclasses
produced by our translation. We assume that both the input and output meta-
models define a root abstract metaclass from which all other metaclasses inherit
directly or transitively2 and refer to them respectively as RootIn and RootOut.
The trace metaclasses are produced as follows. First, an abstract metaclass Trace
is defined with a from reference to RootIn and a to reference to RootOut (Fig. 4a).
For each ruleATL, e.g. R1, a so-called typed trace metaclass named R1_Trace
inheriting the abstract Trace metaclass is created. For each input and output
pattern element of the ruleATL, a reference with the same name is created from
the typed trace to the type of the pattern element. For R1 this yields references
s, t1 and t2 in Fig. 4a.

Fig. 4. a. Trace metamodel, b. Instantiation ruleAGT R1Inst

Instantiation RulesAGT. Each ruleATL, R1 for example, yields one instan-
tiation ruleAGT, R1Inst, which matches the same objects as R1 and creates
the output objects as well as a typed trace node. As can be seen in Fig. 4b,
the instantiation ruleAGT is constructed by creating a «preserve» node for each
input pattern element (node s : A). Then the OCL ruleATL guard is translated
to an AC as per Sect. 3.2. This yields the «require» navigation to node b : B
with name = p1 and p1 = “Hodor”. Then, a «create» node is created for each
output pattern element (nodes t1 : D, t2 : D) as well as a typed trace node
(tr : R1_Trace). The trace node is connected to input nodes with generic from
references and typed references (s) and to output node with generic to refer-
ences and typed references (t1 and t2). The order of input and output pattern
elements is preserved in from and to references by indexing the created edges
accordingly (from[0], to[0] and to[1]). This will allow resolve rulesAGT to retrieve
the first output object (to[0]) for the default resolve mechanism or any arbitrary
output object (t1 or t2) for the non-default resolve mechanism. Finally, since
a ruleATL only applies once per match, we add a negative AC preventing the
application of the ruleAGT if another trace node tr2 with the exact same from
elements already exists. That AC is as follows:
2 if it is not the case, such a root abstract metaclass can be added automatically.

190 E. Richa et al.

¬∃

⎛
⎜⎜⎜⎝ s : A

from[0]←−−−− tr2 : Trace ,¬∃
(
: RootIn

from←−−− tr2 : Trace
)

︸ ︷︷ ︸
exactFrom(tr2)

⎞
⎟⎟⎟⎠

The NGC exactFrom(tr2) (not visible on Fig. 4.b) is needed to express the
fact that the object s is allowed to participate in another ruleATL if there are
other objects in the source pattern (i.e. the set of from elements is not exactly
the same). exactFrom is reused for resolving rulesAGT in the following sections.

Resolving RulesAGT with Default Resolving. Each binding in a ruleATL is
translated to one resolving ruleAGT. Let us first consider the case of bindings with
default resolving or no resolving at all. Each such binding results in one ruleAGT
that matches the same elements as the OCL query in the binding, performs the
default resolving if needed, and initializes the target attribute/reference of the
binding. Let us consider a binding of the following general shape:

tgtObj : tgtType (tgtProp <- oclQuery)

The supported subset of OCL in oclQuery will be defined in Sect. 3.2, however
the general translation remains the same. Such a binding is translated to a
resolving ruleAGT RtgtObj ,tgtProp

Res according to the algorithm presented in Table 1.
The translation depends on the type of the target property tgtProp hence the
tabular presentation. Note that multi-valued target attributes are not supported
at the current stage.

Figure 5 shows the steps of the translation of binding t1:D (refE<-s.refB)
in R1 (Fig. 1) to ruleAGT R1t1,refERes . Note that to[0] in Step 3 allows to retrieve
the first target pattern element as per the default resolve semantics. Moreover,
for multivalued target references such as t1.refE, the translation is a sort of a
flattening whereby the result elements of the OCL query s.refB are not handled
all at once but one by one. Each application of R1t1,refERes matches one element
in s.refB and appends the corresponding output object to the target reference
t1.refE. However, since there are no guarantees in AGT on the order in which
elements are matched, R1t1,refERes as presented in Fig. 5 is only correct if refB is
a non-ordered reference. This will be detailed and addressed in Sect. 3.2.

Resolving RulesAGT with Non-default Resolving. Let us now consider
bindings involving non-default resolving which have the following shape:

tgtObj : tgtType (tgtRef <-
thisModule.resolveTemp(Sequence{navExp1, . . . , navExpN }, tgtPat))

The construction of the resolving ruleAGT RtgtObj ,tgtRef
Res operates in the same

steps as Table 1 except for steps 2 and 3 which are presented in Table 2. The case
where the first parameter of resolveTemp is an object is treated in the same
way as a Sequence containing only that object.

In this section we have presented the general ATL to AGT translation scheme
focusing on the emulation of the resolve mechanisms by introducing trace nodes.
The next section will focus on the translation of OCL guards and queries.

Translating ATL Model Transformations 191

Table 1. Translation of an ATL binding with default resolving

3.2 Translating OCL Guards and Binding Expressions

As explained previously, ruleATL guards and binding expressions are translated
to ACs of respectively instantiation and resolving rulesAGT. Despite the consider-
able difference between NGC and OCL, NGC has been shown to be expressively
equivalent to first order logic [13] which is the core of OCL. Translations of sub-
sets of OCL to NGC have been proposed in [3] with a highly theoretical approach
and in [4] with a wider supported OCL subset and an experimental approach.
We have taken inspiration from both works and have found that none of them
supports ordered sets, leading us to tackle this problem in particular. In the

192 E. Richa et al.

Fig. 5. Construction of resolving ruleAGT R1t1,refERes

following we will only recall the general principles of the existing translations
and detail the problem at hand and our proposal.

The main idea is to translate OCL object queries into graphs that match
the objects in the query’s result set, and OCL constraints into NGCs that
are satisfied under the same conditions. For example, the navigation of a ref-
erence s.refB is translated by creating the graph s

refB−−−→ r where r represents
one object in the result set of the query and is returned as a result of the
translation (see Step 2 in Table 1). As for the navigation of an object attribute
such as in s.name + ’1’, it is translated by creating a rule parameter p and
assigning the attribute value to it “name = p” in the node s, and returning
the expression p + ”1” as a result of the translation (Step 2 in Table 1). The
supported subset of OCL is similar to the one in [4] which is limited to basic
navigation, first order logic constructs and Set as the only collection type with
basic set operations such as select(), collect(), union(). We extend this
support to OrderedSet with support for indexing at(i) and the preservation
of order in output collections.

Challenge 1. A first challenge is the handling of bindings that aggregate results
of several queries. This is the case of the following binding shapes where in
(1) resolved objects in tgtRef should be in the same order as the source objects
in the OrderedSet, and in (2) oclQuery1 should be resolved before oclQuery2.

tgtRef <- OrderedSet{oclQuery1, oclQuery2 . . . oclQueryN} (1)
tgtRef <-oclQuery1->union(oclQuery2) (2)

Solution 1. To preserve the ordering of elements, we propose to translate
such bindings as separate successive bindings: tgtRef <- oclQuery1, tgtRef <-
oclQuery2, . . . Each such binding results in a separate resolving ruleAGT and the

Translating ATL Model Transformations 193

Table 2. Translation of an ATL binding with non-default resolving

rulesAGT are sequenced in the same order as the queries in the original binding.
Consequently objects are appended to tgtRef in the right order at run-time.
Therefore (1) is translated to N sequential resolving rulesAGT and (2) is trans-
lated to 2 sequential resolving rulesAGT.

Challenge 2. The second challenge is the navigation of ordered multi-valued ref-
erences. Let us illustrate this problem with the following binding from R1 in Fig. 1:

t1 : OUT!D (refE <- s.refB)

refB is a multivalued reference (i.e. upper bound larger than 1). We have pre-
viously shown the translation of this binding in Fig. 5 under the assumption that
refB is a non-ordered reference. The navigation s.refB is flattened, meaning
that the elements of the collection are not handled all at once, but rather one
by one thanks to the iteration of R1t1 ,refERes . According to AGT graph matching,
objects in s.refB may be matched in any order. Therefore objects in t1.refE

may end up in a different order than their counterparts in s.refB which is a
problem if refB and refE are ordered. That constitutes a divergence from the
ATL semantics which honours the order of objects in collections. Therefore we
need a way to force the matching of objects in s.refB in an orderly fashion.

Solution 2. We propose to complement the regular translation of navigation
expressions [3,4] with an additional NGC forcing objects to be matched in the
correct order. Intuitively, this NGC should express the fact that an object in
s.refB should be matched only if all preceding objects in s.refB have already
been handled by the resolving ruleAGT. This corresponds to the following NGC:

194 E. Richa et al.

orderingAC = ∃
(

s : A
refB[i]−−−−→ qNode :B ,

∀
(

s : A
refB[j]−−−−→ qNode1 :B | j < i, wasResolved t1 ,refE

R1 (qNode1)
))

Where:

– i : index of the object qNode currently being handled.
– j : index of the object qNode1 which iterates over objects preceding qNode.
– wasResolved t1 ,refE

R1 (n) : A NGC which evaluates to true if node n has already
been handled by the resolving ruleAGT.

Now we need to define wasResolved t1 ,refE
R1 (n). We can determine that a node

n has been already handled by checking if the node to which it resolves exists
in the target reference t1 .refE . Therefore the following definition is suitable:
wasResolved t1 ,refE

R1 (n) =

∃
(

n
from[0]←−−−− tr :Trace

to[0]−−−→ : E
refE←−− t1 : D , exactFrom(tr)

)

With the above definitions, adding orderingAC as an application condition
of R1t1 ,refERes ensures that objects in s.refB are processed in the correct order,
thus honoring the ATL semantics. Let us now generalize this reasoning to the
case where the navigation is filtered with a select operation:

t1 : OUT!D (refE <- s.refB->select(e |body(e))

Now an object in s.refB should be matched only if it satisfies the select
condition, and if all preceding objects in s.refB which also satisfy the select
condition have been handled by the resolving ruleAGT. Therefore the AC that
would ensure the orderly processing of objects is the following:

orderingAC = ∃
(

s : A
refB[i]−−−−→ qNode : B , trbody(qNode)

∧

∀
(

s : A
refB[j]−−−−→ qNode1 : B | j < i,

trbody(qNode1) =⇒ wasResolved t1 ,refE
R1 (qNode1)

))

Where trbody(n) is the NGC resulting from the translation of the OCL constraint
body(e), applied to a node n. The generalization can be extended to all supported
OCL expressions but will not be detailed here for lack of space.

4 Experiments and Validation

4.1 Validation Protocol

We have used the Henshin Eclipse framework as the target of the translation as
it is well integrated with EMF and allows the execution of AGT transformations
on standard EMF models. The ATL to AGT translation is implemented in our

Translating ATL Model Transformations 195

Java-based tool ATLAnalyser and validated by considering a set of ATL trans-
formations from the ATL Zoo [1] and from other sources. Each transformation
is translated to AGT using our implementation and the resulting AGT transfor-
mation is validated manually by review. Then both the ATL and AGT versions
are executed over a set of input models and in each case the output models of
the two versions are checked to be identical using EMFCompare. Except for the
manual review, this experimental validation protocol is fully automated (using
JUnit) which allows to easily expand our test base with new transformations and
models, and monitor the non-regression of existing tests as the prototype evolves.
We have also identified the ATL features that each transformation contains to
make sure we exercise all aspects of the translation.

Our prototype was successfully validated with the transformations listed in
Table 3. Simulink CodeGen is a simplified version of an industrial Simulink to
C code generator3. Note that in Families2Persons, the high number of resolving
rules (relative to only 2 bindings) is due to the translation scheme of nested
if-then-else binding queries which has not been developed in this paper.

Table 3. List of test transformations and tested features

Families2-
Persons [1]

Class2-
Relational [1]

ER2REL [6] SimulinkCodeGen4

Metrics
ATL rules 2 6 6 6

ATL bindings 2 22 13 30

Instantiation rules 2 6 6 6

Resolving rules 8 23 15 32

ATL Features
Default Resolve X X X X

resolveTemp X

Helpers X X X

Attribute binding X X X X

Reference binding X X X

OrderedSet{} X X

union() X X X

select() X X

collect(), at() X

4.2 Limitations and Threats to Validity

A first limitation of our proposal is the lack of formal evidence of its validity.
Though part of our translation is based on the one in [3] which is formally proven
to be correct, our OCL subset is significantly wider preventing any direct claim
of correctness of the complete translation. Second, while the addressed scope was
found sufficient to translate a wide range of ATL transformations, features like
3 Project P, http://www.open-do.org/projects/p.

http://www.open-do.org/projects/p

196 E. Richa et al.

non-unique collections (Bag, Sequence), collections of collections, and special
values (null, invalid) are not supported because they cannot be represented
in the AGT framework used in this paper. Finally, with the validation scheme
presented in Sect. 4.1, we are faced with the challenge of any test-based validation
which is the coverage and relevance of the test transformations and test models.
We have tried to address this issue by identifying the ATL features used by
each transformation to make sure that all aspects of the translation are tested
(see Table 3). However we acknowledge that our tool is essentially a language
compiler, and the verification of such tools is known to be a difficult problem.

5 Related Work

Though translations of OCL to NGC have been conducted [3,4], no previous
work has proposed a translation of ATL to AGT to the best of our knowledge.
In [14] the authors propose to translate model transformations from the Epsilon
language family (arguably similar to ATL and OCL) to AGT to show through
formal proof that a given pair of unidirectional transformations forms a bidi-
rectional transformation. However this work is still at an early stage and an
automatic translation is not yet proposed.

In the broader context of the analysis of model transformations several works
have translated ATL to other formalisms. ATL transformations are translated
in [6] to a transformation model with suitable constraints expressing the ATL
semantics and in [16] to a Maude specification with a rewriting logic arguably
similar to our graph rewriting transformation. The analyses made possible by
these and other formalisations include Hoare-style correctness analyses, i.e. ver-
ifying that an ATL model transformation ensures a postcondition under the
assumption of a precondition [6], and reachability analysis [16] to find errors in
the ATL transformation. Despite these existing results, we have targeted AGT in
our work to benefit from the construction of weakest precondition (WP) in AGT
[10] which is the translation of a postcondition NGC on the output of a transfor-
mation into an equivalent precondition NGC on its input. This analysis which
is not possible in the existing formalisations of ATL is used for the synthesis of
validity-preserving preconditions [7] and for the formal proof of Hoare-style cor-
rectness [13]. Applying it to ATL using our translation is one of our main future
prospects in a novel approach for testing model transformation chains [15].

6 Conclusion

This paper has presented a translation of ATL transformations to the formal
framework of Algebraic Graph Transformation (AGT). The main challenges of
this work were the translation of the ATL resolve mechanisms which do not
have a direct equivalent in AGT, and the translation of OCL guards and queries
to suitable Nested Graph Conditions (NGC). In the latter translation, we have
complemented existing OCL to NGC translations with support for ordered sets,
allowing to faithfully translate a wider range of ATL transformations. We have

Translating ATL Model Transformations 197

implemented our translation targeting the Henshin AGT framework and have
validated it by translating a set of representative ATL transformations from
various sources, and comparing the execution of both ATL and AGT versions.

In future work, we plan to extend the translation to support more ATL and
OCL features such as arbitrary sorting with sortedBy as well as multi-valued
attributes. A more challenging task will be to support imperative features of
ATL such as lazy rules and do blocks. As a first intuition we believe this would
require enriching trace nodes with more information and using more imperative
features of AGT. Finally, we plan to use the proposed translation to apply AGT
formal analyses to ATL transformation, starting with the construction of weakest
preconditions as a way to generate tests for ATL transformation chains [15].

References

1. ATL Transformation Zoo. http://www.eclipse.org/atl/atlTransformations/
2. The Henshin project. http://www.eclipse.org/henshin
3. Arendt, T., Habel, A., Radke, H., Taentzer, G.: From core OCL invariants to nested

graph constraints. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571,
pp. 97–112. Springer, Heidelberg (2014)

4. Bergmann, G.: Translating OCL to Graph Patterns. In: Dingel, J., Schulte, W.,
Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767,
pp. 670–686. Springer, Heidelberg (2014)

5. Biermann, E., Ermel, C., Taentzer, G.: Formal foundation of consistent EMF model
transformations by algebraic graph transformation. Softw. Syst. Model. 11(2),
227–250 (2012)

6. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL transformations
using transformation models and model finders. In: Aoki, T., Taguchi, K. (eds.)
ICFEM 2012. LNCS, vol. 7635, pp. 198–213. Springer, Heidelberg (2012)

7. Deckwerth, F., Varró, G.: Attribute handling for generating preconditions from
graph constraints. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp.
81–96. Springer, Heidelberg (2014)

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph
transformation, vol. 373. Springer, Heidelberg (2006)

9. González, C.A., Cabot, J.: ATLTest: A white-box test generation approach for
ATL transformations. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
MODELS 2012. LNCS, vol. 7590, pp. 449–464. Springer, Heidelberg (2012)

10. Habel, A., Pennemann, K.-H., Rensink, A.: Weakest preconditions for high-level
programs. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G.
(eds.) ICGT 2006. LNCS, vol. 4178, pp. 445–460. Springer, Heidelberg (2006)

11. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

12. Object Management Group (OMG). Object Constraint Language (OCL) 2.4
(2012). http://www.omg.org/spec/OCL/2.4

13. Poskitt, C.M.: Verification of graph programs. Ph.D. thesis, University of York
(2013)

14. Poskitt, C.M., Dodds, M., Paige, R.F., Rensink, A.: Towards rigorously faking
bidirectional model transformations. In: AMT 2014 Workshop Proceedings, pp.
70–75 (2014)

http://www.eclipse.org/atl/atlTransformations/
http://www.eclipse.org/henshin
http://www.omg.org/spec/OCL/2.4

198 E. Richa et al.

15. Richa, E., Borde, E., Pautet, L., Bordin, M., Ruiz, J.F.: Towards testing model
transformation chains using precondition construction in algebraic graph transfor-
mation. In: AMT 2014 Workshop Proceedings, pp. 34–43 (2014)

16. Troya, J., Vallecillo, A.: A rewriting logic semantics for ATL. J. Object Technol.
10(5), 1–29 (2011)

A Methodology for Designing Dynamic Topology
Control Algorithms via Graph Transformation

Roland Kluge(B), Gergely Varró, and Andy Schürr

Real-Time Systems Lab, TU Darmstadt, Darmstadt, Germany
{roland.kluge,gergely.varro,andy.schuerr}@es.tu-darmstadt.de

Abstract. This paper presents a constructive, model-driven methodol-
ogy for designing dynamic topology control algorithms. The proposed
methodology characterizes valid and high quality topologies with declar-
ative graph constraints and formulates topology control algorithms as
graph transformation systems. Afterwards, a well-known static analy-
sis technique is used to enrich graph transformation rules with applica-
tion conditions derived from the graph constraints to ensure that this
improved approach always produces topologies that (i) are optimized
wrt. to a domain-specific criterion, and (ii) additionally fulfill all the
graph constraints.

Keywords: Topology control · Graph constraints · Static analysis

1 Introduction

In the telecommunication engineering domain, wireless sensor networks
(WSNs) [14] are a highly active research area. For instance, WSNs are
applied to monitor physical or environmental conditions with distributed,
autonomous, battery-powered measurement devices that cooperatively transmit
their collected data to a central location. To extend the battery lifetime of these
measurement devices, topology control (TC) [14] is carried out on WSNs to inac-
tivate redundant communication links by reducing their transmission power. The
most significant requirements on TC algorithms include the ability to (i) handle
continuously changing network topologies, (ii) operate in a highly distributed
environment, in which each node can only observe and modify its local neigh-
borhood, and (iii) still guarantee important local and global formal properties
for their neighborhood and the whole network, respectively.

The design and implementation of TC algorithms are, therefore, challeng-
ing and elaborate tasks, especially if a high quality of service is a non-functional
requirement of the overall WSN. In a typical development setup, several variants
of different TC approaches have to be prepared and quantitatively assessed in an
iterative process. In each iteration, (i) a new variant must be individually designed
and implemented for a distributed environment, (ii) the preservation of required
formal properties (e.g., connectivity) must be proved, and (iii) performance mea-
surements must be carried out in a corresponding runtime environment (testbed
or simulator).
c© Springer International Publishing Switzerland 2015
D. Kolovos and M. Wimmer (Eds.): ICMT 2015, LNCS 9152, pp. 199–213, 2015.
DOI: 10.1007/978-3-319-21155-8 15

200 R. Kluge et al.

This last point also assumes an interaction between the TC algorithm and
the runtime environment. More specifically, the runtime environment alters the
topology, which has to be repaired by the TC algorithm in an incremental man-
ner, namely, by retaining unaltered parts of the topology as much as possible.

The main challenge with the individual design of each new algorithm variant
is that it strongly relies on the experience of highly qualified experts. To enable
a more systematic and well-engineered approach, model-driven principles [1] can
be applied to the development of TC algorithms, as in the case of many other
success stories [17]. More specifically, topologies can be described by graph-
based models, and possible local modifications in the topology can be specified
declaratively with graph transformation (GT) rules [13]. Although this approach
provides a well-defined procedure for repairing the topology even in a distributed
environment, it cannot ensure that all required formal properties hold for the
repaired topology.

A well-known, constructive, static analysis technique [7] has been established
in the GT community to formulate structural invariants and to guarantee that
these invariants hold. In this setup, graph constraints specify positive or negative
patterns, which must be present in or missing from a valid graph, respectively. An
automated process then derives additional rule application conditions from graph
transformation rules and graph constraints to ensure that the application of the
enriched new rules never produces invalid graphs. Although this technique has
already been employed in scenarios where graph constraints represent invariants
that must hold permanently [10], its applicability in the TC domain is hindered
by the fact that topology modifications performed by the runtime environment
may temporarily (and unavoidably) violate graph constraints.

In this paper, we propose a new, constructive, model-driven methodology
for designing TC algorithms by graph transformation. We demonstrate the app-
roach on the kTC algorithm [15]. More specifically, we define graph constraints
from algorithm-specific formal and quality requirements to characterize valid
and high quality topologies. Such desirable topologies are to be produced by a
TC algorithm, which is formulated as a graph transformation system. We iter-
atively refine this transformation by applying the constructive approach of [7],
which enriches the rules at compile-time with additional application conditions,
derived from the graph constraints. Finally, we prove that our improved GT-
based TC algorithm terminates and always produces connected topologies that
fulfill all the graph constraints.

Section 2 introduces modeling and TC concepts. Section 3 describes graph
constraints and their application to describe invariants of TC algorithms.
Section 4 illustrates GT concepts on a basic TC algorithm. Section 5 delineates
the construction methodology that enriches the generic TC algorithm with graph
constraints. Section 6 summarizes related work, and Sect. 7 concludes our paper
with a summary and an outlook.

2 Modeling Concepts and Topology Control

This section introduces fundamental modeling and topology control concepts.

A Methodology for Designing Dynamic Topology Control Algorithms 201

2.1 Basic Modeling Concepts

A metamodel describes the basic concepts of a domain as a graph. In this paper,
network topologies are used as a running example, whose metamodel is shown in
Fig. 1a. Classes represent the nodes of the metamodel, and associations represent
the edges between classes. An association end is labeled with a multiplicity, which
restricts the number of target objects that can be reached by navigating along
an association in the given direction. Attributes (depicted in the lower part of
the classes) store values of primitive or enumerated types.

Topology

Node Link
w : Real
s : {A, I, O}

2 0..*
0..* 0..*

(a) Metamodel

e3 : Link
s(e3) = O
w(e3) = 2.0

n3 : Noden1 : Node

t : Topology
e1 : Link

s(e1) = O
w(e1) = 1.4

e2 : Link
s(e2) = O
w(e2) = 1.6

n2 : Node

n3 : Node

(b) Abstract syntax

e3[2.0;O]n1 n3

n2

e1[1.4;O] e2[1.6;O]

(c) Concrete syntax

Fig. 1. Topology metamodel and a sample topology in abstract/concrete syntax

A topology is a graph that consists of nodes and (communication) links
between nodes. As specified in Fig. 1a, a link connects exactly 2 nodes, and a
node can be an endpoint of zero or more incident links. A link e has an algorithm-
specific weight w(e) and state s(e) attribute, whose role will be explained
together with the corresponding topology control concepts, shortly.

Example. Figure 1b and c depict a sample topology with three nodes (n1,n2,n3)
and three links (e1,e2,e3) forming a triangle in abstract and concrete syntax,
respectively. In the rest of the paper, the concrete syntax notation is used, which
denotes nodes and links by black circles and solid lines, respectively. Each link
is labeled with its name, followed by its weight and state in brackets.

2.2 Topology Control

Topology control (TC) is the discipline of adapting WSN topologies to optimize
network metrics such as network lifetime [14]. The nodes in a WSN topology are
often battery-powered sensors, which limits the lifetime of the network. For each
node, TC selects a logical neighborhood, which is a subset of the nodes within its
transmission range. Afterwards, each node may reduce its transmission power to
reach its farthest logical neighbor. The weight attribute w(e) of a link e describes
the cost of communicating across this link. In this paper, we use the distance of
the end nodes of a link as a weight metric.

Figure 2 shows the interaction of an evolving network, represented as a stream
of topology change events (e.g., link weight change, addition or removal of nodes or
links1), and a topology control algorithm, which takes an input topology and produces
1 Such events occur, e.g., when nodes move and join or leave the network.

202 R. Kluge et al.

an output topology, which is a subgraph of the input topology. In this setup, a
batch TC algorithm reconsiders every link in the topology in each execution, irre-
spective of the actual topology change events, while an incremental TC algorithm
only reevaluates the modified parts of the topology. In this paper, we assume
that no topology change events occur while the TC algorithm is running.

Network
Topology Control

Algorithm

Topology
Change Events

Output
Topology

Input
Topology

Fig. 2. Modification of the topology by network evolution and TC algorithm

We introduce a state attribute for links to handle topologies in transition and
to describe batch and incremental TC algorithms uniformly. A link is active (A)
or inactive (I) if it is included in or excluded from the output topology by the TC
algorithm, respectively. A link is outdated (O) if it has not yet been categorized as
active or inactive by the TC algorithm. A topology control algorithm tries
to activate or inactivate outdated links, while topology change events may
outdate links. Note that the set of active links represents the output topology,
which is always a subgraph of the whole input topology.

Important Properties of Topologies and TC. Every TC algorithm must (i)
terminate without outdated links and (ii) preserve topology connectivity. The
first property ensures that each link in the input topology is definitely part or not
part of the output topology. A topology is connected if the subgraph induced by
its active and outdated links is connected. This entails that the output topology
is connected if and only if its subgraph induced by the active links is connected.

Example. Figure 3 illustrates an incremental variant of the kTC algorithm [15],
which inactivates exactly those links in the sample topology that are the longest
link in a triangle and that are at least k-times longer than the shortest link in
the same triangle. We always assume k > 1.

Initially, all links are outdated . The first execution of kTC (k = 1.5)
activates or inactivates all links . A move of node n4 might trigger a weight
change on link e4, which outdates this link . As link e4 is no longer the longest
link in the triangle (n2,n3,n4), the next (incremental) iteration of kTC activates
e2, inactivates e4, and retains the state of links e1, e3, and e5 .

3 Characterizing Topologies with Graph Constraints

As a first step in our constructive TC design methodology, formal properties and
quality requirements of the TC algorithm are analyzed, and graph constraints
are defined as invariants to characterize valid and high quality topologies.

A pattern is a graph consisting of node and link variables together with a
set of attribute constraints. A node (link) variable serves as a placeholder for

A Methodology for Designing Dynamic Topology Control Algorithms 203

e 1
[1

.2
;O

]

n1

n2

e3[2.0;O]

e
2 [1.6;O]

n4

n3

e
5 [1.4;O

]

e4[1.0;O]

e 1
[1

.2
;A

]

n1

n2

e3[2.0;I]

e
2 [1.6;I]

n4

n3

e4[1.0;A]

e 1
[1

.2
;A

]

n1

n2

e3[2.0;I]

e
2 [1.6;I]

n4

n3

e 5
[1

.4
;A

]

e4[2.4;O]

e 1
[1

.2
;A

]

n1

n2

e3[2.0;I]

e
2 [1.6;A]

n4

n3

e 5
[1

.4
;A

]

e4[2.4;I]

nodes n1,...,n4 added
links e1,...,e5 added

TC w(e4):=2.4

e
5

]
A;

4.
1[TC

1 2 3 4

w(e3) / w(e1) = 2.0/1.2
 = 1.67 1.5 = k
w(e2) / w(e4) = 1.6/1.0
 = 1.6 1.5 = k

w(e3) / w(e1) = 2.0/1.2
 = 1.67 1.5 = k
w(e4) / w(e5) = 2.4/1.4
 = 1.71 1.5 = k

Fig. 3. Incremental topology control with kTC

a node (link) in a topology. An attribute constraint is a predicate over attributes
of node and link variables. A match of a pattern P in a topology G maps the
node and link variables of P to the nodes and links of G, respectively, such
that this mapping preserves the end nodes of the link variables and all attribute
constraints are fulfilled.

A graph constraint consists of a premise pattern and a conclusion pattern
such that (i) the premise is a subgraph of the conclusion, and (ii) the attribute
constraints of the conclusion imply the attribute constraints of the premise.
A positive (negative) graph constraint P (N) is fulfilled on a topology G if each
match of the premise in the topology G can (cannot) be extended to a match of
the conclusion in the same topology G.

Demonstration on kTC. For our running example, we specify three con-
straints: two algorithm-specific constraints of kTC and a third constraint that
forbids outdated links in the output topology.

kTC inactivates a link if and only if this link is the longest link in a triangle
and if it is additionally at least k-times longer than the shortest link in the same
triangle. This equivalence yields the following two constraints:

⇒ The inactive-link constraint Pinact, depicted in Fig. 4a, states that each inac-
tive link emax must be part of a triangle in which (i) emax is the longest link,
(ii) emax is at least k-times longer than the shortest link, and (iii) es1 and es2
are either active or inactive.

⇐ The active-link constraint Nact, depicted in Fig. 4b, states that no active link
emax may be part of a triangle in which (i) emax is the longest link, (ii) emax is
at least k-times longer than the shortest link, and (iii) es1 and es2 are either
active or inactive.

Due to the attribute constraints that require es1 and es2 to be active or
inactive, the active-link constraint may only be violated and the inactive-link
constraint may only be fulfilled if all links in the triangle are either active or
inactive. Therefore, topology change events never violate the active-link con-
straint Nact because no new match of its conclusion may arise. In contrast, the
inactive-link constraint Pinact may be violated by a topology change event, for
instance, if an inactive link belongs to exactly one match of the conclusion of
Pinact and if any of the links es1 or es2 gets outdated.

Finally, the outdated-link constraint Nout, depicted in Fig. 4c, describes the
general requirement that the (output) topology shall not contain any outdated

204 R. Kluge et al.

Fig. 4. Two algorithm-specific constraints and one general graph constraint

links. Any outdated link causes a violation of Nout because its premise and
conclusion are identical.

4 Specifying Topology Control with Programmed Graph
Transformation

In the second step of our design methodology, topology change events and TC
operations are described by graph transformation (GT) rules. The dynamic
behavior of TC algorithms is specified by programmed graph transformation [4],
which carries out basic topology modifications by applying graph transformation
rules whose execution order is defined by an explicit control flow.

Programmed Graph Transformation Concepts. A mapping from pattern
P to pattern P ′ maps a subset of node and link variables of pattern P to a subset
of node and link variables of pattern P ′, respectively, such that this mapping
preserves the end nodes of the link variables. A graph transformation rule con-
sists of a left-hand side (LHS) pattern, a right-hand side (RHS) pattern, negative
application condition (NAC) patterns, and mappings from the LHS pattern to
the RHS and NAC patterns. To enable meaningful attribute assignments, the
predicate in the attribute constraints of the RHS pattern can only be an equation
with an attribute of a single node or link variable on its left side.

A GT rule is applicable to a topology G if a match of the LHS pattern exists
in the topology that cannot be extended to a match of any NAC pattern. The
application of a GT rule at a match of its LHS pattern to a topology G produces
a topology G′ by (1) preserving all nodes (links) of the topology that are assigned
to a node (link) variable of the LHS pattern, which has a corresponding node
(link) variable in the RHS pattern (black elements without additional markup);
(2) removing those nodes (links) of the topology that are assigned to a node (link)

A Methodology for Designing Dynamic Topology Control Algorithms 205

variable of the LHS pattern, which has no corresponding node (link) variable
in the RHS pattern (red elements with a ‘−−’ markup); (3) adding a new node
(link) to the topology for each node (link) variable of the RHS pattern, which
has no corresponding node (link) variable in the LHS pattern (green elements
with a ‘++’ markup); and (4) assigning node (link) attributes (operator ‘:=’) in
such a manner that the attribute constraints of the RHS pattern are fulfilled.

Control flow is specified in our approach with an activity diagram based nota-
tion in which each activity node contains a graph transformation rule. A regular
activity node (denoted by a single framed, rounded rectangle) with one unla-
beled outgoing edge applies the contained GT rule once to one arbitrary match.
A regular activity node with an outgoing [Success] and [Failure] edge applies the
contained GT rule and follows the [Success] edge if the rule is applicable at
an arbitrary match, and it follows the [Failure] edge if the rule is inapplicable.
A foreach activity node (denoted by a double framed rounded rectangle) applies
the contained GT rule to all matches and traverses along the optional outgoing
edge labeled with [EachTime] for each match. When all the matches have been
completely processed, the control flow continues along the [End] outgoing edge.
Black and green node and link variables are bound by a successful rule applica-
tion. Subsequent activity nodes can reuse nodes and links that have been bound
by an earlier rule application.

Example. Figure 5 depicts GT rules for each of the five possible topology change
events – link weight change (Rchg), link addition (RaddLink), link removal (RremLink),
node addition (RaddNode), and node removal (RremNode) – and the two TC rules,
link activation (Ract) and link inactivation (Rinact). In Fig. 5, x1 denotes the new
weight w(e) of link e. Modified and new links are marked as outdated.

Fig. 5. GT rules describing topology change events and TC rules

Figure 6 shows a basic TC algorithm that activates all outdated links.2 Link
variable eO is bound by Rloop and reused in Ract and Rinact. Check marks inside
the gray boxes indicate which constraints must be fulfilled in the input topology
(precondition3) and which constraints will be fulfilled in the output topology
(postcondition).

2 The inactivation rule Rinact is deliberately unreachable and only shown for complete-
ness.

3 The example in Sect. 3 contains a discussion why certain preconditions may be
violated.

206 R. Kluge et al.

Fig. 6. Basic TC algorithm

5 Enriching the Graph Transformation with Constraints

The third step of our design methodology is to enrich graph transformation
rules step-by-step with additional application conditions that are derived from
the graph constraints. The resulting topology control algorithm always produces
output topologies that fulfill all the graph constraints.

Our approach is demonstrated again on an incremental variant of kTC.
Figure 7 serves as an overview, particularly during the subsequent sections. The
final transformation is produced by iteratively refining the generic TC algorithm
of Fig. 6 according to the following procedure.

Fig. 7. kTC algorithm after performing steps of Sects. 5.1 – 5.3

Section 5.1. To ensure that the active-link constraint Nact is still fulfilled in
the output topology, a NAC derived from the active-link constraint Nact is
attached to the activation rule Ract and the inactivation rule Rinact. This step
produces the refined rules R

(2)
act and R

(2)
inact.

Section 5.2. To ensure that the inactive-link constraint Pinact is fulfilled in the
output topology, two steps are necessary: (i) The LHS pattern of the inacti-
vation rule R

(2)
inact is extended by the inactive-link constraint Pinact, resulting

in the refined rule R(3)
inact. (ii) A NAC derived from the inactive-link constraint

Pinact is attached to a new (preprocessing) rule Rpre.

A Methodology for Designing Dynamic Topology Control Algorithms 207

Section 5.3. To ensure that the outdated-link constraint Nout is fulfilled in
the output topology, the LHS pattern of a new (NAC match eliminating)
rule RelimNAC is constructed from the common NACs of the activation and
inactivation rules R

(2)
act and R

(3)
inact.

Section 5.4. The connectivity of the output topology and the termination of
the final version of kTC algorithm are proved.

5.1 Fulfilling the Active-Link Constraint

This first step ensures that the active-link constraint Nact is fulfilled in the
output topology. Since the input topology fulfills the constraint, it is enough to
ensure that applying the activation and inactivation rules does not violate the
active-link constraint Nact.

Methodology. The methodology to ensure that a GT rule fulfills a negative
constraint is well-known in literature [7]: The negative constraint is translated
into a number of NACs of the GT rules. Each overlap of the conclusion of the
negative constraint with the RHS of the rule yields one NAC.

Demonstration on kTC. First, we consider the activation rule Ract: The con-
clusion of the active-link constraint Nact and the RHS of the activation rule Ract

can be glued in three different ways such that the link eO overlaps with the link
variables emax, es1, or es2, respectively. This yields the three NACs Nmax, Ns1, and
Ns2. Note that the latter two NACs are equivalent in the sense that any match of
Ns1 is also a match of Ns2, and vice versa. Figure 8 depicts the refined activation
rule R

(2)
act .

Next, we consider the inactivation rule Rinact: The conclusion of the inactive-
link constraint Pinact and the RHS of the inactivation rule Rinact can be glued in
two ways such that the link eO overlaps the link variables es1 or es2, respectively.
This yields two equivalent NACs, Ns1 and Ns2, which are isomorphic to the NACs
of R(2)

act with the same name. Figure 9 depicts the refined inactivation rule R
(2)
inact.

Due to the added NACs, applying the refined activation rule R
(2)
act and the

refined inactivation rule R
(2)
inact never violates the active-link constraint Nact.

s(e11) O ; s(e12) O
w(eO) k * min(w(e11), w(e12))
w(eO) max(w(e11), w(e12))

Nmax Ns1 Ns2

Equivalent NACs

eO

e12e11

R(2)
act

eO

s(eO) := A

e21

e22eO

s(e21) == A ; s(e22) O
w(e21) k * min(w(eO), w(e22))
w(e21) max(w(eO), w(e22))

e31

eOe32

s(e31) == A ; s(e32) O
w(e31) k * min(w(e32), w(eO))
w(e31) max(w(e32), w(eO))

Fig. 8. Activation rule R
(2)
act preserving active-link constraint Nact

208 R. Kluge et al.

Ns1 Ns2

Equivalent NACs

R(2)
inact

eO

s(eO) := I

e21

e22eO

s(e21) == A ; s(e22) O
w(e21) k * min(w(eO), w(e22))
w(e21) max(w(eO), w(e22))

e31

eOe32

s(e31) == A ; s(e32) O
w(e31) k * min(w(e32), w(eO))
w(e31) max(w(e32), w(eO))

Fig. 9. Inactivation rule R
(2)
inact preserving active-link constraint Nact

5.2 Fulfilling the Inactive-Link Constraint

To ensure that the positive inactive-link constraint Pinact is fulfilled in the output
topology, two modifications are necessary: First, an additional preprocessing rule
Rpre ensures that any violation of Pinact in the input topology is repaired. Second,
a refinement of the inactivation rule R

(2)
inact ensures that the constraint is never

violated in the main loop.

Methodology. Due to the page limitation, we present an adaptation of the
methodology described in [7], which is tailored to our scenario: We consider GT
rules without deletion that modify an attribute of a single link.

If a topology fulfills a positive graph constraint before applying a rule, two
steps are necessary to ensure that the topology still fulfills the constraint after
the rule application: (i) If applying the rule produces a new match of the premise
of the constraint, then the RHS of the rule needs to ensure that the conclusion
of the constraint holds. (ii) Applying the rule may not violate the constraint by
destroying any match of the conclusion of the constraint that existed prior to
the rule application.

This means that, first, the LHS pattern of each rule is extended with the
conclusion of the constraint if its RHS overlaps the premise of the constraint.
Second, it is analyzed whether the modified rule may destroy any existing match
of the conclusion of the constraint.

Demonstration on kTC. The input topology may violate the inactive-link
constraint Pinact, which necessitates a new preprocessing rule Rpre, which outdates
all inactive links that violate the inactive-link constraint Pinact. The NAC Npre

of rule Rpre, shown in Fig. 10, matches exactly those links that violate Pinact.
Next, we show that the activation rule R

(2)
act remains unchanged: The RHS of

rule R
(2)
act does not overlap with the inactive-link constraint Pinact. Additionally,

applying the rule does not violate the constraint because it activates a link,
which obviously cannot destroy any match of the conclusion of Pinact.

Finally, we describe the refinement of the inactivation rule R
(2)
inact: The link

variable emax in the premise of the inactive-link constraint Pinact and the link
eO in the RHS of R(2)

inact overlap. Therefore, the LHS of R(2)
inact is extended by an

image of the conclusion of the constraint. The refined inactivation rule R
(3)
inact is

depicted in Fig. 11.

A Methodology for Designing Dynamic Topology Control Algorithms 209

s(ep1) O ; s(ep2) O
w(eI) k * min(w(ep1), w(ep2))
w(eI) max(w(ep1), w(ep2))

Npre

eI

ep2ep1

Rpre

eI

s(eI) == I
s(eI) := O

Fig. 10. Preprocessing rule Rpre, which outdates all inactive links violating Pinact

s(e11) O ; s(e12) O
w(eO) k * min(w(e11), w(e12))
w(eO) max(w(e11), w(e12))
s(eO) := I

R(3)
inact Ns1 Ns2

Equivalent NACs

eO

e12
e11

e21

e22eO

s(e21) == A ; s(e22) O
w(e21) k * min(w(eO), w(e22))
w(e21) max(w(eO), w(e22))

e31

eOe32

s(e31) == A ; s(e32) O
w(e31) k * min(w(e32), w(eO))
w(e31) max(w(e32), w(eO))

Fig. 11. Inactivation rule R
(3)
inact preserving Nact and Pinact

Due to the additional preprocessing rule Rpre, which ensures that the topology
fulfills the inactive-link constraint Pinact at the beginning of the main loop, and
the refined inactivation rule R

(3)
inact, the inactive-link constraint Pinact is fulfilled

in the output topology as well.

5.3 Fulfilling the Outdated-Link Constraint

To ensure that the outdated-link constraint Nout is fulfilled in the output topol-
ogy, a new GT rule is added in this section because the activation rule R

(2)
act

and inactivation rule R
(3)
inact share the NACs Ns1 and Ns2, which may block the

activation and inactivation of outdated links in some topologies. Due to the
equivalence of the NACs Ns1 and Ns2, we only consider Ns1 in the following.

NAC-Elimination Rule. We propose to insert a new rule RelimNAC, depicted in
Fig. 12, prior to the activation rule R

(2)
act , which removes all matches of NAC Ns1.

The LHS of rule RelimNAC is an image of Ns1, and the RHS outdates the longest
link emax. Note that the outdated state propagates only toward longer links.

Loop Rule. The new NAC elimination rule RelimNAC results in additional out-
dated links that are not considered when Rloop is first applied. Consequently, the
foreach activity node around loop rule Rloop changes to a regular activity node
in this step, as shown earlier in Fig. 7. For this reason the algorithm terminates
if and only if the topology contains no more outdated links. Consequently, the
output topology fulfills the outdated-link constraint Nout.

210 R. Kluge et al.

RelimNAC

s(emax) == A ; s(e3) O
w(emax) k * min(w(eO), w(e3))
w(emax) max(w(eO), w(e3))
s(emax) := O

emax

e3eO

Fig. 12. NAC elimination rule RelimNAC

5.4 Proofs of Termination and Connectivity

The rule refinements and additions in Sects. 5.1, 5.2, and 5.3 ensure that the
active-link constraint Nact, the inactive-link constraint Pinact, and the outdated-
link constraint Nout are fulfilled in the output topology. We still have to show that
the algorithm in Fig. 7 terminates and that the output topology is connected.

Theorem 1 (Termination). The algorithm terminates for any input topology.

Proof. Consider a topology with link set E. The preprocessing loop Rpre is exe-
cuted at most once for each link, so it suffices to show that the main loop
terminates.

We consider the sequence of all link states si(e1), . . . , si(em) with m := |E|
after the i-th execution of Rloop, where the links ek are ordered according to their
weight. We compare two sequences of link states, si and sj , as follows: si ≺ sj

if and only if (i) some link ek is outdated in si and active or inactive in sj , and
(ii) the states of all links shorter than ek are identical in si and sj , formally:

si ≺ sj :⇔∃k, 1 ≤ k ≤ m : si(ek) = O ∧ sj(ek) ∈ {A, I}
∧ ∀�, 1 ≤ � ≤ k − 1 : si(e�) = sj(e�)

Note that any sequence of active and inactive links is an upper bound for ≺.
We now show that si−1 ≺ si for i > 1. Let ek be the link that is bound by

applying the loop rule Rloop. The NAC elimination rule RelimNAC outdates links ej

with w(ej) > w(ek) and thus j > k. The activation rule R
(2)
act or the inactivation

rule R
(3)
inact activate or inactivate ek, respectively.

Therefore, si−1 ≺ si because (i) the first k−1 elements of si−1 and si are
identical, and (ii) si−1(ek) = O and si(ek) ∈ {A, I}. The termination follows
because any ordered sequence s1 ≺ s2 ≺ . . . has finite length.

Theorem 2 (Connectivity). The output topology of the algorithm is connected
if its input topology is connected.

Sketch of Proof. The output topology only contains active and inactive links
because the outdated-link constraint Nout is fulfilled. It is thus enough to show
the claim that the end nodes of each link are connected by a path of active links
in the output topology. This trivially holds for the end nodes of active links.

A Methodology for Designing Dynamic Topology Control Algorithms 211

By induction, we show that the claim also holds for all inactive links: We
consider the inactive links ei1 , . . . , eik

of the topology ordered by weight.

Induction Start: The shortest inactive link, ei1 , is part of a triangle with two
shorter, active links that connect the end nodes of link ei1 . Thus, the claim holds
for link ei1 .

Induction Step: We now consider an inactive link ei�+1 with 1 ≤ � ≤ k−1, which
is part of a triangle with two links, e1 and e2. We assume that only e1 is inactive.4

Thus, there is some s ≤ � such that e1 := eis
. Since the claim has been proved

for all inactive links shorter than ei�+1 , there is a path of active links between
the end nodes of eis

. A path of active links between the end nodes of link e�+1

can be constructed by joining the two paths between the end nodes of e1 and e2.

6 Related Work

We briefly present related work on verification and model-based development.

Verification. Model checking [12] is an analysis technique used to verify partic-
ular properties of a system. If a symbolic problem description is missing, model
checking tools are often limited to a finite model size. The approach in this paper
constructively integrates constraints at design time so that it can be shown that
constraints are fulfilled on arbitrary topologies.

In [7], graphical consistency constraints, which express that particular com-
binations of nodes and edges should be present in or absent from a graph, are
translated into application conditions of GT rules. This technique has been gen-
eralized later [3] and extended to cope with attributes [2]. The basic idea is to
translate consistency conditions, characterizing “valid” graphs, into application
conditions of GT rules. This paper applies and extends this generic methodology
for a practical and complex application scenario. We represent positive applica-
tion conditions in [7] as extensions of the LHS of GT rules, which is equivalently
expressive [5]. This representation is unsuitable to express global constraints
such as connectivity, which requires, e.g., second-order monadic logic [7]. This
paper ensures connectivity of topologies by an additional proof.

In [6], the authors distinguish four situations in which a model transformation
considers consistency conditions, including the preservation and enforcement of
consistency constraints. The algorithm in this paper preserves the active-link
constraint, and it enforces and preserves the inactive-link constraint.

Model-Based Development. Model-based techniques have shown to be suit-
able to describe [16] and construct [8] adaptive systems. Formal analysis of sup-
posed properties of complex topology adaptation algorithms has already revealed
special cases in which the implemented algorithms violate crucial topology con-
straints [18]. In [9], model checking is applied to detect bugs and to point at

4 If both links are active, the claim follows trivially. If both links are inactive, the
argument applies for each link individually.

212 R. Kluge et al.

their causes in the TC algorithm LMST, leading to an improved implementa-
tion thereof. This paper, in contrast, applies a constructive methodology [7] for
GT to develop correct algorithms in the first place.

In [11], variants of the TC algorithm kTC [15] are developed using GT, inte-
grating the GT tool eMoflon5 with a network simulator. While [11] focuses on
improving a concrete algorithm, this paper aims at devising a generic method-
ology to develop TC algorithms that fulfill the given constraints by design.

7 Conclusion

In this paper, we proposed a new, model-driven methodology for designing
topology control algorithms by graph transformation, and demonstrated the
approach on an incremental variant of the kTC algorithm. The presented pro-
cedure characterizes valid topologies with graph constraints, specifies topology
control algorithms as graph transformation system, and applies a well-known
static analysis technique to enrich graph transformation rules with application
conditions derived from the graph constraints. The new algorithm always termi-
nates and produces connected, valid topologies.

Future research includes interleaving the network evolution with topology
control and evaluating the methodology on further topology control algorithms.

Acknowledgment. This work has been funded by the German Research Foundation
(DFG) within the Collaborative Research Center (CRC) 1053 – MAKI. The authors
would like to thank Matthias Hollick (subprojects A03 and C01) for his valuable input.

References

1. Beydeda, S., Book, M., Gruhn, V.: Model-Driven Software Development, 15th edn.
Springer, Heidelberg (2005)

2. Deckwerth, F., Varró, G.: Generating preconditions from graph constraints by
higher order graph transformation. ECEASST 67, 1–14 (2014)

3. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Heidelberg (2006)

4. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: a new graph
rewrite language based on the unified modeling language and java. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764,
pp. 296–309. Springer, Heidelberg (2000)

5. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundamenta Informaticae 26(3/4), 287–313 (1996)

6. Hausmann, J.H., Heckel, R., Sauer, S.: Extended model relations with graphical
consistency conditions. In: Proceedings of the UML 2002 Workshop on Consistency
Problems in UML-based Software Development, pp. 61–74 (2002)

7. Heckel, R., Wagner, A.: Ensuring consistency of conditional graph rewriting - a con-
structive approach. In: Proceedings of the Joint COMPUGRAPH/SEMAGRAPH
Workshop. ENTCS, vol. 2, pp. 118–126. Elsevier (1995)

5 www.emoflon.org.

www.emoflon.org

A Methodology for Designing Dynamic Topology Control Algorithms 213

8. Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: A distributed polyloga-
rithmic time algorithm for self-stabilizing skip graphs. In: Proceedings of the ACM
Symposium on Principles of Distributed Computing, pp. 131–140. ACM (2009)

9. Katelman, M., Meseguer, J., Hou, J.: Redesign of the LMST wireless sensor pro-
tocol through formal modeling and statistical model checking. In: Barthe, G., de
Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 150–169. Springer, Heidel-
berg (2008)

10. Koch, M., Mancini, L.V., Parisi-Presicce, F.: A graph-based formalism for RBAC.
ACM Trans. Inf. Syst. Secur. 5(3), 332–365 (2002)

11. Kulcsár, G., Stein, M., Schweizer, I., Varró, G., Mühlhäuser, M., Schürr, A.: Rapid
prototyping of topology control algorithms by graph transformation. In: Proceed-
ings of the 8th International Workshop on Graph-Based Tools. ECEASST, vol. 68
(2014)

12. Rensink, A., Schmidt, A., Varró, D.: Model checking graph transformations: a com-
parison of two approaches. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 226–241. Springer, Heidelberg (2004)

13. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Trans-
formation. Foundations, vol. 1. World Scientific, River Edge (1997)

14. Santi, P.: Topology control in wireless ad hoc and sensor networks. ACM Comput.
Surv. (CSUR) 37(2), 164–194 (2005)

15. Schweizer, I., Wagner, M., Bradler, D., Mühlhäuser, M., Strufe, T.: kTC - Robust
and adaptive wireless ad-hoc topology control. In: Proceedings of the 21st Inter-
national Conference on Computer Communications and Networks (2012)

16. Taentzer, G., Goedicke, M., Meyer, T.: Dynamic change management by distrib-
uted graph transformation: towards configurable distributed systems. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764,
pp. 179–193. Springer, Heidelberg (2000)

17. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software
Development: Technology, Engineering, Management. John Wiley & Sons, Hobo-
ken (2013)

18. Zave, P.: Using lightweight modeling to understand chord. SIGCOMM Comput.
Commun. Rev. 42(2), 49–57 (2012)

Extending Model to Model Transformation
Results from Triple Graph Grammars

to Multiple Models

Frank Trollmann(&) and Sahin Albayrak

Faculty of Electrical Engineering and Computer Science,
DAI-Labor, TU-Berlin, Berlin, Germany

{Frank.Trollmann,Sahin.Albayrak}@dai-labor.de

Abstract. Triple graph grammars are a formally well-founded and widely used
technique for model transformation. Due to their formal foundation several
transformation approaches and analysis methods exists. However, triple graphs
are restricted to represent two models at a time. In this paper we describe how
the formalism of triple graphs can be generalised to enable a representation of
multiple models and relations. We show that basic results from triple graph
grammars can also be extended. The results in this paper provide a foundation
for the generalisation of other results in model transformation, integration and
synchronisation to multiple models.

Keywords: Model transformation � Triple graphs � Model driven engineering

1 Introduction

Model transformation is one of the central concepts in model driven engineering.
Generally speaking, a model transformation is a process that transforms a set of source
models into a set of target models [14]. Triple graph grammars (TGG) [16] have been
used as formal basis for model to model transformation in a variety of approaches [17].
However, triple graphs are restricted to represent two models.

A modelling framework can contain more than two models. For example, Model
Driven Architecture (MDA) proposes three layers of models. These models are edited
and transformed into each other to develop the final application code. To be applied in
such frameworks a generalisation of TGGs to more than two models is required. The
language of graph diagrams [18] is a suitable candidate for this generalisation.
Although it was originally used for the purpose of representing model consistency it
can also be used as a foundation for model transformation.

Match consistency is one of the main results in model transformation with TGGs.
In this paper we show that this result can be transferred to graph diagrams. TGGs and
match consistency are described in Sect. 2. Section 3 reviews related work. Graph
diagram grammars are defined in Sect. 4, followed by a generalisation of match con-
sistency in Sect. 5. We give proof for the main theorems in Sect. 6. Section 7 concludes
the paper and hints to future work.

© Springer International Publishing Switzerland 2015
D. Kolovos and M. Wimmer (Eds.): ICMT 2015, LNCS 9152, pp. 214–229, 2015.
DOI: 10.1007/978-3-319-21155-8_16

2 Triple Graph Grammars

This section describes TGGs and the results we generalise in this paper. The definitions
are based on definitions in category theory from [4].

TGGs have been defined by A. Schürr as triples of graphs that represent two related
models [16]. The models are represented by two graphs, called source and target. The
relation is represented by a third graph, called connection, and two morphisms. These
morphisms relate each element in the connection to one element in source and target.
Transformation rules in TGGs are triple graph morphisms. These morphisms consist of
three graph morphisms, one for the source, target and connection component. The
formal definition of triple graphs and triple graph morphisms is as follows:

Definition 1 (Triple Graph and Triple Graph Morphism (Based on [4])). Three
graphs SG, CG and TG, called source, connection, and target graph, together with two

graph morphisms sG : CG → SG and tG : CG → TG form a triple graph G = (SG sG CG

!tG TG). G is called empty if SG, CG, and TG are empty graphs.
A triple graph morphism m = (s, c, t) : G→ H between two triple graphs G = (SG

 sG CG !tG TG) and H = (SH sH CH !tH TH) consists of three graph morphisms s :
SG → SH, c : CG → CH and t : TG → TH such that s ° sG = sH ° c and t ° tG = tH ° c. It is
injective, if morphisms s, c and t are injective.

An example for a triple graph is given in Fig. 1. As running example we use models
from UsiXML [19], a framework for model-based user interface development. The
example contains a task model and an abstract user interface (AUI) model. It represents
a login form. The task model describes the general task structure supported by the user
interface. The abstract task Login requires the user to perform Input Information, then
Commit Information, after which the system performs Check Password. Tasks that
require user input are marked as interaction tasks while tasks that require computation
are called system tasks. Child tasks of the same parent are ordered via edges of type
next. These edges are annotated with temporal relations that denote whether two tasks
can be executed in parallel (|||) or sequential (≫) order. The AUI model is a
modality-independent description of user interaction. The connection describes a
relation between these models by mapping interaction tasks to AUI elements. In the

Fig. 1. The task and AUI model represented as triple graph

Extending Model to Model Transformation Results 215

example the relations A and B relate the tasks for inserting username and password with
the corresponding Input elements. The element C relates the task for submitting the
information with an element of type Command.

Although triple graphs are defined based on graphs in Definition 1, the running
example uses attributes and types. According to Ehrig et al. triple graphs can also be
constructed as diagram category over other categories [4]. Attributes and types can be
included by using the category of attributed typed graphs [2]. Triple graphs grammars
also work with this category, although there is ongoing research on the transformation
of attributes [20]. However, that is of no consequence to the running example.

Triple graph grammars specify how the source and target model can be jointly
constructed by applying triple rules. These rules can add elements to source, target and
connection. Triple rules and TGGs are formally defined as follows:

Definition 2 (Triple Rule, Triple Graph Grammar (Based on [4])). A triple rule tr
consists of triple graphs L and R, called left-hand and right-hand side, and an injective
triple graph morphism tr = (s, c, t) : L → R.

A triple graph grammar TGG = (S,TR) consists of a triple graph S and a set TR of
triple rules.

A triple rule is an injective triple graph morphism that can be seen as a before
(L) after (R) description of a transformation. Figure 2 shows a triple rule for the running
example. The top row is the triple graph L and the bottom row the triple graph R. The
rule adds an interaction task as child of an existing abstract task. The interaction task is
added together with a related input element. L specifies that an abstract task in the task
model is needed to execute the rule. R adds the interaction task, input element and
relation of type Task2UI.

A TGG consists of a start object and a set of triple rules. It defines a language of
two related models. The language contains all triples that can be reached from the start
object via repeated application of the triple rules. In model to model transformation one
model is already present and the other one is generated. A TGG can be used to derive
special triple rules for forward and backward transformation [4]. These are defined as
follows:

Fig. 2. A triple rule that constructs an interaction task along with an input

216 F. Trollmann and S. Albayrak

Definition 3 (Derived Triple Rules (Based on [4])). Given a triple rule tr ¼ ðSL sL
CL!tL TLÞ ! ðSR sR CR!tR TRÞ, we have the following derived triple rules:

Given a triple rule tr, the source and target rules trS and trT can be used to create the
source and target model individually. These rules are constructed by forgetting all parts
of tr that do not concern the respective model. The source rule for the example
production is shown in Fig. 3. It creates the interaction task in the task model but not
the corresponding elements in the AUI model and the connection.

Forward and backward rules can be used to derive one of the models from the other
one. The corresponding rules are derived from a triple rule by using an identical
(non-altering) morphism for the existing model and the original transformation for the
other model and the relation. Figure 3 shows a forward rule for the running example.
This rule does not add a new interaction task. It assumes an existing interaction task
and adds a related input element to the AUI model.

Given a source model, the transformation into a target model requires finding a
sequence of triple rules such that applying the source rules of this sequence leads to the
source model. The target model can be derived by applying the forward rule for each
source rule in this sequence as prescribed by the source rule. If this application is
possible such a sequence is called match consistent. The main theorems for this
sequence are [4]:

• Theorem 1- Decomposition and Composition: The original transformation and
the match consistent sequence with source and forward rules are equivalent.

• Theorem 2 - Equivalence of Directions: The match consistent sequence with
target and backward rules is equivalent to the match consistent rule with source and
forward rules.

According to these theorems the match consistent sequences for forward and
backward transformation yield the same result as the original joint creation of the

Fig. 3. Source and Forward rule for the triple rule in Fig. 2

Extending Model to Model Transformation Results 217

models. In this paper we generalise the creation of derived rules, the notion of match
consistent transformation sequences and these two theorems to multiple models via
graph diagrams.

3 Related Work

Several existing modelling frameworks can profit from the extension of TGGs to more
than two models. The example used in this paper is UsiXML [19]. In addition to the
task and AUI model this framework contains two more models: a concrete user
interface (CUI) model and a domain model. These models can be developed in any
order [12]. UsiXML is also conform to model driven architecture (MDA) [15], which
specifies three model layers connected via model transformation. Multiple one-to-one
transformations can be represented using multiple TGGs [10]. However, they are still
restricted to one source and one target model per transformation. An extension to
multiple models allows more general transformations that use or produce more than
one model.

The need to have transformations for more than two models at a time is also
recognised in other transformation approaches. Among other properties Mens and Van
Gorp classify model transformations according to the number of source and target
models [14]. They observe that a transformation can contain multiple source models
(e.g., in model merging) or multiple target models (e.g., to create multiple platform
specific models from a platform independent model). Macedo et al. describe an
extension of QVT-R to enable better handling of transformations that concern multiple
models [13]. Diskin et al. formalise relations between models for transformations
involving multiple models and illustrate them on a model-merging use case [1]. This
formalism is able to represent relations between model elements and their attributes by
making use of queries for derived attributes. Multiple relations can be represented.
However, each relation is restricted to two models.

Distributed graphs [3] are also able to represent multiple models and could be an
alternative to graph diagrams for a generalisation of triple graph grammars. However,
distributed graphs have not been shown to be an M-adhesive category and several
results derived from M-adhesive categories are required for proofs of our main theo-
rems. In addition, the distribution capabilities of this formalism can lead to compli-
cations, e.g., the creation of elements without application of graph transformation rules
to stay consistent to a remote model. For these reasons we selected the formalism of
graph diagrams for our generalisation. Nevertheless, distributed graphs may be a viable
alternative to graph diagrams, provided the theoretical results required for extending
results from triple graph grammars hold.

The concept of using derived rules for triple graph grammars has been proposed by
Königs and Schürr [10, 11] in the scope of tool integration and has been applied for
model transformation, model integration and model synchronisation [9]. Several model
transformation approaches are based on the above described decomposition into source
and forward rules, e.g., an on the fly construction of transformation sequences [6].
Other derived rules are used to integrate existing models by establishing the connection
[5]. Model synchronisation requires both the (partial) transformation of models and the

218 F. Trollmann and S. Albayrak

integration of the existing elements and thus is based on both types of derived rules.
Several approaches in triple graphs deal with this problem, e.g., the bidirectional update
propagation by Hermann et al. [8] or the incremental approach by Giese and Wagner
[7]. The generalisation of the basic results in model transformation in this paper forms a
basis for generalising these results to multiple models and relations.

4 Graph Diagram Grammars

In this section we define graph diagrams and extend the notion of triple graph gram-
mars to graph diagram grammars. Triple graphs can be constructed as diagram category
[4]. In this construction a diagram is built over objects and morphisms from another
category. In triple graphs the objects are graphs and the morphisms are graph mor-
phisms. The structure of the diagram is the fixed structure described above.

Graph diagrams are also defined via diagram category construction but with a less
restrictive structure. They can contain any number of nodes and edges. For the gen-
eralisation we require the structure to represent relations similar to how triple graphs
do. Such a structure is called a diagram base:

Definition 4 (Diagram Base). A diagram base B ¼ ðC;Models;RelationsÞ consists
of a small category C ¼ ðOC;MCÞ with objects OC and morphisms MC and two ded-
icated sets of objects, called Models and Relations, with Models \ Relations = ∅ and
Models [Relations = OC. For all non-identical morphisms o1o2 2 MC the following
statement has to hold: o1 ∊ Relations ∧ o2 ∊ Models.

A set of models and relations M�OC is called closed if for all relations (r 2 M and
r 2 Relations) and all morphisms e : r ! m 2 MC the model m is also in M.

The diagram base consists of a category whose objects can be divided into Models
and Relations. Morphisms are restricted to map relations into models. The structure of a
triple graph fulfils these properties. It contains two models (source and target), and one
relation (connection) and both morphisms map the relation into one model.

To illustrate the capabilities of graph diagrams the running example is extended.
The diagram base is shown in Fig. 4. It contains two more models: a CUI model, which
contains modality-specific user interface elements, and a domain model, which serves
as information storage. An additional relation Task 2 Domain connects tasks in the task
model to elements in the domain model. The relation Task 2 UI is extended to the CUI
model. This relation now relates interaction tasks to their abstract interaction elements
and their implementation via concrete UI elements in the CUI model.

Fig. 4. The diagram base of the running example

Extending Model to Model Transformation Results 219

The structure of a graph diagram is given by the diagram base. As with triple
graphs, it is possible to base graph diagrams on different modelling languages. In this
paper we formulate graph diagrams over an arbitrary M-adhesive category. M-adhesive
categories (called weak adhesive HLR categories in [2]) are a framework in category
theory that allows for the application of graph transformation and several existing
formal results. The proofs of our main theorems in Sect. 6 make use of these results.
The diagram can be constructed over any category that has been shown to be M-
adhesive. This has for example been shown for graphs and attributed graphs [2]. Graph
diagrams and graph diagram morphisms are defined as follows:

Definition 5 (Graph Diagrams, Graph Diagram Morphisms). Given a diagram base
B ¼ ðC;Models;RelationsÞ with category C ¼ ðOC;MCÞ and an M-adhesive category
Cat ¼ ðOCat;MCatÞ with initial object ∅, the category of graph diagrams GraphDia-
gramsB is a diagram category of Cat over C. B is called the scheme of the graph
diagram.

A Graph Diagram with scheme B is a functor ðo;mÞ : C ! Cat where o : OC !
OCat and m : MC ! MCat.

A Graph Diagram Morphism f between two graph diagrams D1 = (o1, m1) and
D2 = (o2, m2) over the same scheme B is a natural transformation consisting of a family
of morphisms in Cat. For each object o 2 OC there is a morphism f ðoÞ : o1ðoÞ !
o2ðoÞ. For each morphism e : a! b 2 MC the following statement holds:
f ðbÞ�m1ðeÞ ¼ m2ðeÞ�f ðaÞ.

Formally a Graph Diagram is a functor, consisting of two components. These
components specify which of the objects (o) and morphisms (m) of the diagram base
are represented by which attributed graphs and attributed graph morphisms. Similar
to triple graphs, graph diagram morphisms match the models and relations
component-wise and have to commute with the morphisms in the diagram.

Fig. 5. The graph diagram of the running example

220 F. Trollmann and S. Albayrak

A graph diagram for the running example is shown in Fig. 5. The task model, AUI
model and their relation Task 2 UI remain the same as in the running example for triple
graphs. The relation Task 2 UI is mapped into the CUI model by a third morphism. The
interaction tasks for entering username and password are each related to a text field for
entering the respective information. The interaction task Commit Information is related
to a command button that triggers this task. The additional relation Task 2 Domain
relates the tasks for entering username and password to text elements in the domain
model that reflect the entered information.

The definitions of graph diagram rule and graph diagram grammar are analogous to
the respective definitions in triple graphs. A graph diagram rule is defined as injective
graph diagram morphism and a graph diagram grammar contains a start object and a set
of graph diagram rules. The formal definition is given in Definition 6.

Definition 6 (Graph Diagram Rule, Graph Diagram Grammar). A graph diagram
rule tr = L→ tr R for a diagram base B consists of graph diagrams L and R with scheme
B and an injective graph diagram morphisms tr.

A graph diagram grammar GDG ¼ ðS; TRÞ for a diagram base B consists of a
graph diagram S with scheme B and a set of graph diagram rules TR for B.

An example for a graph diagram rule is shown in Fig. 6. The example is analogous
to the triple graph example. An interaction task is added to the task model together with
an input element in the AUI model and related text field in the CUI model. In addition,
a text element to store the interaction result is added in the domain model and related
via the relation Task 2 Domain.

The next section describes how the results from model transformation described in
Sect. 2 can be transferred to graph diagram grammars.

5 Derived Rules and Match Consistency

This section describes the generalisation of the derived rules and match consistency. In
general, a model transformation can start with multiple models and create the
remaining models in multiple transformation steps. The derived rules described in this
section enable one transformation step. At the end of the section we discuss how they
can be used to implement multiple transformation steps.

Fig. 6. A graph diagram rule from the running example

Extending Model to Model Transformation Results 221

The generalisation of source and target rules is called model rule. A model rule only
manipulates a restricted set of models and relations. The generalisation of backward
and forward rules is called transformation rule. This rule is based on a set of existing
models and relations and generates the remaining ones. The definitions of these two
types of rules are as follows:

Definition 7 (Model Rule). Given a graph diagram rule tr ¼ ðOL;MLÞðOR;MRÞ for a
diagram base B ¼ ðC;Models;RelationsÞ with category C ¼ ðOC;MCÞ, the model rule
for a closed set of models and relations M � OC is a rule trMod

M : (OL
’ , ML

’) → (OR
’ , MR

’)
such that for all o ∊ OC and all e : r ! mMC the following holds:

OLðoÞ ¼ O
0
L oð Þ if o 2 M
; else

�
O
0
R oð Þ ¼ OR oð Þ if o 2 M

; else

�

M
0
L eð Þ ¼ ML eð Þ if r 2 M

; else

�
M
0
R eð Þ ¼ MR eð Þ if r 2 M

; else

�

trMModðoÞ ¼
trðoÞ if o 2 M
; else

�

Definition 8 (Transformation Rule). Given a graph diagram rule tr ¼ ðOL;MLÞ !
ðOR;MRÞ for a diagram base B ¼ ðC;Models;RelationsÞ with category C ¼ ðOC;MCÞ,
the transformation rule for a closed set of models and relations M � OC is a rule
trMTrans : ðO

0
L;M

0
LÞ ! ðOR;MRÞ such that for all o 2 OC and all e : r! m 2 MC the

following holds:

O
0
LðoÞ ¼

OR oð Þ if o 2 M

OL oð Þ else

�
trmTrans oð Þ ¼

idORðoÞ if o 2 M

tr oð Þ else

�

M
0
LðeÞ ¼

tr mð Þ�ML eð Þ if m 2 M ^ r 62 M

MR eð Þ if m 2 M ^ r 2 M

ML eð Þ else

8><
>:

A model rule preserves the left and right hand side of the original rule for all
models and relations to be created and is empty otherwise. Figure 7 shows a model rule
that constructs the task model, domain model and their relation. The rule adds the
interaction task in the task model together with the text in the domain model.

The transformation rule starts out with a set of models and relations M and creates
all other models and relations. Its left hand side contains the already transformed
version for models and relations in M and the untransformed version for all others.
Morphisms in the left hand side are constructed based on their source and target. If both
are in M the transformed version is used, if none are in M the original version is used
and if only the target is inM the original version is combined with transformation itself.
The resulting rule does not change any models or relations in M and is identical to the
original rule for all others. Figure 7 shows a transformation rule for the running
example. Starting from the related task and domain model all other models are
generated.

222 F. Trollmann and S. Albayrak

Model and transformation rules can be considered generalisations of the derived
triple rules. Source and forward rule are the model and transformation rule with the set
M containing only the source model. Target and backward rule are model and trans-
formation rule for the target model.

In triple graphs a (forward) transformation requires a sequence of source rules that
builds up the already existing model. If this sequence exists then the respective forward
rules can be applied with the matches implied by the source rules to derive the other
model. This sequence of source and forward rules is called match consistent. A match
consistent sequence implies that the result of the transformation is correct with respect
to the original triple rules, i.e. the result of the transformation could also have been
reached by applying the original triple rules to the initial model. This notion of match
consistency can be elevated to graph diagrams as follows:

Definition 9 (Match Consistency). Given a diagram base B = (C, Models, Relations)
with category C ¼ ðOC;MCÞ and a closed set M�OC, a graph diagram transformation

sequence G00)
tr1MMod

G10) . . .)
trnMMod

Gn0)
tr1MTrans

Gn1. . .)
trnMTrans

Gnn is called match consistent

if the match m1Trans
M of Gn0)

tr1MTrans
Gn1 for all components for elements of M is com-

pletely determined by the co-match n1Mod
M of G00)

tr1MMod
G10 and the transformation

morphism d1 : G10 ! Gn0, i.e., m1MTransðmÞ ¼ d1ðmÞ�n1MModðmÞ for all m 2 M, and
similar for all matches of the transformation triTrans

M for i > 1. For n = 1 this means
m1MTransðmÞ ¼ n1MModðmÞ.

In graph diagrams the match consistent sequence consists of a sequence of model
rules that create the already existing models followed by the application of the
respective transformation rules for these model rules in the same sequence. The two
main theorems from TGGs described in Sect. 2 can also be generalised. Similarly to
TGGs it can be shown that the match consistent sequence leads to the same result as the
original transformation sequence. This is formulated in the following Theorem:

Fig. 7. The model and transformation rule of the running example

Extending Model to Model Transformation Results 223

Theorem 1 (Decomposition and Composition of Transformation Sequences)

1. Decomposition: For each graph diagram transformation sequence

G0)
tr1

G1) . . .)trn Gn ð1Þ

and each closed M � OCthere is a corresponding match consistent graph diagram
transformation sequence

G0 ¼ G00)
tr1MMod

G10) . . .)
trnMMod

Gn0)
tr1MTrans

Gn1) . . .)
trnMTrans

Gnn ¼ Gn ð2Þ

2. Composition: For each match consistent graph diagram transformation sequence
(2) there is a canonical transformation sequence (1)

3. Bijective Correspondence: Composition and Decomposition are inverse to each
other

In addition, the match consistent transformation sequences for any set of models are
equivalent. This is formulated in the following theorem:

Theorem 2 (Equivalence of Graph Diagram Transformation -Sequences). For any
two closed M;M0�OC the following two match consistent graph diagram transfor-
mation sequences imply each other:

1: G0 ¼ G00)
tr1MMod

G10) . . .)
trnMMod

Gn0)
tr1MTrans

Gn1) . . .)
trnMTrans

Gnn ¼ Gn

2. G0 ¼ G00)
tr1M

0
Mod

G
0
10) . . .)

trnM
0

Mod
G
0
n0)

tr1M
0

Trans
G
0
n1) . . .)

trnM
0

Trans
G
0
nn ¼ Gn

According to this theorem the match consistent sequences for any subset of models
lead to the same result. The original transformation sequence can be seen as a special
case in which the set of models and relations is empty. In this case the model rule is
empty and the transformation rule is equal to the original graph diagram rule. In the
next section we provide proof for these theorems.

The results described in this section assume that all missing models are created
from the existing ones in one transformation step. Thus, they are not directly applicable
to situations where the missing models are to be created via multiple transformation
steps. E.g., it is not possible to start with a UsiXML domain model and derive the task
model in the first step and the two UI models in a separate second step. However, each
individual step can be represented by our theory. This can be done by reducing the
graph diagram to the models relevant to the current step, e.g., the task and domain
model in the first step of our example. The scheme of this diagram is a sub-graph of the

224 F. Trollmann and S. Albayrak

original scheme. This way, new models can be added in each step with a bigger scheme
until all models are present. If the subset of models and relations is closed in each step
it can be guaranteed that the end-result of such a sequence of match consistent
transformation sequences could have been derived from the original triple graph
grammar. We will further formalise this treatment of multiple transformation steps and
formulate the formal results in future work.

6 Proofs

In this section we discuss M-adhesiveness of the category of graph diagrams, followed
by proofs for Theorems 1 and 2. The proofs in this section are based on the proofs in
[4]. A major structural difference is in the proof for decomposition in Theorem 1 where
we substituted the direct argument over all transformation sequences with a structural
induction over the length of the sequence to make the arbitrary diagram structure of
graph diagrams easier to handle.

6.1 M-Adhesiveness of Graph Diagrams

Since graph diagrams are constructed as diagram categories over an M-adhesive cat-
egory and this construction preserves M-adhesiveness [2] graph diagrams themselves
are an M-adhesive category. This enables the application of the Local Church-Rosser
and Concurrency Theorem [2].

According to the Local Church Rosser Theorem two sequentially independent
transformations can be applied in any order leading to the same result. Two rules are
sequential independent if a morphism d with m2 ¼ g�1d exists as illustrated on the left
hand side of Fig. 8.

According to the Concurrency Theorem two graph transformation rules tr1 and tr2
can be merged into an E-concurrent rule that encompasses the effects of both rules. An
E-concurrent rule r�l is illustrated on the right hand side of Fig. 8. Given morphisms e1
and e2 and object E the objects L and R and the according morphisms are constructed
via pushouts (1) and (2) from rules tr1 and tr2.

For a given graph diagram rule tr and a closed set of models and relations M the
E-concurrent rule for model and transformation rule can be constructed using the left
hand side of the transformation rule as object E. Figure 9 shows an example for

Fig. 8. Illustrations for the local church rosser theorem (left) and the concurrency theorem
(right)

Extending Model to Model Transformation Results 225

M ¼ fTask; Task2Domain;Domaing. The morphisms into E are n, which maps all
objects from M as identity and all other objects with empty morphisms, and the identity
id. By pushouts (1) and (2) the left and right hand side of tr are derived. Accordingly,
this E-concurrent rule is the same as the original rule tr.

6.2 Proof for Theorem 1

Proof. Each statement of the theorem is proven separately assuming an arbitrary but
fixed set of models and relations M�MC h

Decomposition: This statement is proven via induction over the length of the canonical
transformation sequence. The inductive beginning is the sequence with length one (the
statement also holds for empty sequences of length 0). This sequence consists of one
rule. As shown in the previous section this rule is the same as the E-concurrent rule of
its model and transformation rule. Since the matches of all models in M for both rules
are identities and thus coincide this sequence is match consistent.

The inductive step assumes that a graph diagram transformation sequence sn =

G0)
tr1

G1) . . .)trn Gn can be decomposed into a match consistent sequence and shows

that the same holds for the sequence sm = G0)
tr1

G1) . . .)trn Gn)
trm

Gm. In this sequence
we can substitute the sn with its match consistent sequence. In addition we can
decompose the last step into its model and transformation rule via the E-concurrent
rule. This decomposition leads to the following sequence:

G0 ¼ G00)
tr1MMod

G10) . . .)
trnMMod

Gn0)
tr1MTrans

Gn1) . . .)
trnMTrans

Gnn)
trmM

Mod
Gmn)

trmM
Trans

Gmm.
We can arrive at the match consistent sequence for sm by shifting trmMod

M after the
last model rule by stepwise switching it with the previous transformation rule. This can
be done according to the Local Church Rosser Theorem if both are sequentially
independent. For this the morphism d as illustrated on the left hand side of Fig. 8 is
required. The rule trmMod

M is a model rule, which is defined as ; for all models that are
not in M. Since ∅ is initial these objects can be mapped into d such that they commute
with m2 and g1 The transformation rule, is defined to be an identity for all models in
M. Accordingly, the morphism g1is an identity for these models and d can be defined
the same as m2. Thus, by construction we have m2 ¼ g�1d for all objects in and outside

Fig. 9. Example for the E-Concurrent rule of a model and transformation rule for the running
example

226 F. Trollmann and S. Albayrak

of M. Thus, a model rule is sequentially independent with any previous transformation
rule and the shift as described above can be made.

Since the decomposition can be made for sequences of length 0 and 1 and can be
extended stepwise to longer sequences it holds for all sequences.

Composition: The previous proof can be made analogously for the composition of
match consistent transformation sequences. This is due to the fact that the Concurrency
Theorem, which has been used to decompose transformations into their model and
transformation rule, holds in both directions and the parallel independence described
above allows the shift of the model rule back to the end of the transformation sequence.

Bijective Correspondence: The bijective correspondence of composition and
decomposition is a consequence of the bijective correspondence of composition and
decomposition in the Concurrency Theorem [2] and the bijective correspondence of the
Local Church Rosser Theorem (as noted in [4]).

6.3 Proof for Theorem 2

Proof. This theorem is a direct consequence of Theorem 1, since any match consistent
sequence can be composed into the canonical sequence (Theorem 1-1) and further
decomposed into any other match consistent sequence (Theorem 1-2). h

7 Conclusion and Future Work

This paper proposes graph diagram grammars as a generalisation of TGGs that is able
to represent multiple models and relations. Based on a graph diagram grammar we
show how derived rules and match consistency can be generalised such that existing
results in triple graph grammars can be considered a special case of our generalised
results for exactly two models and one relation. This generalisation forms the basis for
extending other results in model transformation, integration and synchronisation to
multiple models and relations in future work.

Furthermore, we plan on extending the formalism of graph diagrams with other
extensions that have applied required in the scope of TGGs. Among them are the
integration of conditions for further restricting the grammar and the integration of a
typing system on the level of the graph structure that allows for specifying relations
between elements on the type level.

As described in Sect. 6 our results strictly only represents model transformations in
which all missing models are created in one transformation step but can be applied for
multiple transformation steps by considering a smaller diagram. This can be formalised
by a graph diagram whose scheme is a sub-category of the original scheme. In future
work we intend to formalise this process.

Acknowledgements. Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des
Bundesministeriums für Bildung, und Forschung unter dem Förderkennzeichen 16SBB011B
gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor.

Extending Model to Model Transformation Results 227

References

1. Diskin, Z., Maibaum, T., Czarnecki, K.: Intermodeling, queries, and kleisli categories. In: de
Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software Engineering. LNCS, vol.
7212, pp. 163–177. Springer, Heidelberg (2012)

2. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Heidelberg (2006)

3. Ehrig, H., Orejas, F., Prange, U.: Categorical foundations of distributed graph
transformation. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G.
(eds.) ICGT 2006. LNCS, vol. 4178, pp. 215–229. Springer, Heidelberg (2006)

4. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information preserving
bidirectional model transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS,
vol. 4422, pp. 72–86. Springer, Heidelberg (2007)

5. Ehrig, H., Ehrig, K., Hermann, F.: From Model Transformation to Model Integration based
on the Algebraic Approach to Triple Graph Grammars. In: Electronic Communications of
the EASST 10 (2008)

6. Ehrig, H., Ermel, C., Hermann, F., Prange, U.: On-the-fly construction, correctness and
completeness of model transformations based on triple graph grammars. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 241–255. Springer, Heidelberg
(2009)

7. Giese, H., Wagner, R.: Incremental model synchronization with triple graph grammars. In:
Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199,
pp. 543–557. Springer, Heidelberg (2006)

8. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Correctness of
model synchronization based on triple graph grammars. In: Whittle, J., Clark, T., Kühne, T.
(eds.) MODELS 2011. LNCS, vol. 6981, pp. 668–682. Springer, Heidelberg (2011)

9. Kindler, E., Wagner, R.: Triple graph grammars: concepts, extensions, implementations, and
application scenarios. In: Technical report, no. tr-ri-07-284. Software Engineering Group,
Department of Computer Science, University of Paderborn (2007)

10. Königs, A., Schürr, A.: MDI a rule-based multi-document and tool integration approach.
Softw. Syst. Model. 5(4), 349–368 (2006)

11. Königs, A., Schürr, A.: Tool integration with triple graph grammars - a survey. Electric
Notes in Theoret. Comput Sci. 148(1), 113–150 (2006)

12. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.: USIXML: a
language supporting multi-path development of user interfaces. In: Feige, U., Roth, J. (eds.)
DSV-IS 2004 and EHCI 2004. LNCS, vol. 3425, pp. 200–220. Springer, Heidelberg (2005)

13. Macedo, N., Cunha A., Pacheco H.: Towards a framework for multi-directional model
transformations. In: 3rd International Workshop on Bidirectional Transformations - BX.
1133 (2014)

14. Mens, T.: A taxonomy of model transformation and its application to graph transformation
technology. In: International Workshop on Graph and Model Trans-formation (GraMoT
2005) (2005)

15. Miller, J., Mukerji, J.: Model driven architecture (MDA). Draft Technical report
ormsc/2001-07-01, Architecture Board ORMSC (2001)

16. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr, E.W.,
Schmidt, G., Tinhofer, G. (eds.) International Workshop on Graph-Theoretic Concepts in
Computer Science, LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1994)

17. Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Ehrig, H., Heckel, R., Rozenberg, G.,
Taentzer, G. (eds.) Graph Transformations, vol. 5214, pp. 411–425. Springer, Heidelberg (2008)

228 F. Trollmann and S. Albayrak

18. Trollmann, F., Albayrak, S.: Expressing model relations as basis for structural consistency
analysis in models@run.time. In: Proceedings of the 7th Workshop on Models@run.time,
pp. 74–75. ACM (2012)

19. Vanderdonckt, J.: A MDA-compliant environment for developing user interfaces of
information systems. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol.
3520, pp. 16–31. Springer, Heidelberg (2005)

20. Lambers, L., Hildebrandt, S., Giese, H., Orejas, F.: Attribute handling for bidirectional
model transformations: the triple graph grammar case. In: Electron. Commun. EASST 49
(2012)

Extending Model to Model Transformation Results 229

Author Index

Acretoaie, Vlad 121
Albayrak, Sahin 214

Beaudoux, Olivier 111
Bergmann, Gábor 101
Bernasko, Christian Karl 34
Borde, Etienne 183
Brun, Matthias 111

Cabot, Jordi 43
Chechik, Marsha 82
Cheng, Zheng 133
Clavreul, Mickael 111
Cordy, James R. 82
Criado, Javier 43
Cuadrado, Jesús Sánchez 59

Dávid, István 101
Di Sandro, Alessio 82
Dingel, Juergen 82

Eggen, Gernot 66

Famelis, Michalis 82

Gammaitoni, Loïc 166
Getir, Sinem 34
Gogolla, Martin 149
Grunske, Lars 34
Guerra, Esther 59

Hegedüs, Ábel 101
Hilken, Frank 149
Hinkel, Georg 3
Hooman, Jozef 66
Horváth, Ákos 101

Iribarne, Luis 43

Jouault, Frédéric 111

Käfer, Verena 34
Kelsen, Pierre 166
Kluge, Roland 199

Lara, Juan de 59
Lúcio, Levi 82

Martínez, Salvador 43
Monahan, Rosemary 133
Mooij, Arjan J. 66

Niemann, Philipp 149

Pautet, Laurent 183
Power, James F. 133

Ráth, István 101
Richa, Elie 183

S., Ramesh 82
Salay, Rick 82
Sanwald, Tim 34
Savaton, Guillaume 111
Schürr, Andy 199
Selim, Gehan 82
Störrle, Harald 121
Strüber, Daniel 121

Tichy, Matthias 34
Trollmann, Frank 214

Ujhelyi, Zoltán 101

van der Storm, Tijs 18
van Rozen, Riemer 18
van Wezep, Hans 66
Vangheluwe, Hans 82
Varró, Dániel 101
Varró, Gergely 199

Wille, Robert 149

	Foreword
	Preface
	Organization
	Contents
	Change Management
	Change Propagation in an Internal Model Transformation Language
	1 Introduction
	2 Finite State Machines to Petri Nets
	3 Foundations
	3.1 NMF Transformations
	3.2 Self-Adjusting Computation

	4 Reversability of Expressions
	5 Multimode Model Transformations with an Internal DSL
	5.1 Synchronization of Finite State Machines and Petri Nets
	5.2 Multimode Synchronization

	6 Validation
	7 Limitations of the Language
	8 Related Work
	9 Conclusion
	References

	Origin Tracking + Text Differencing = Textual Model Differencing
	1 Introduction
	2 Overview
	3 TMDIFF in More Detail
	3.1 Top-Level Algorithm
	3.2 Matching
	3.3 Differencing

	4 Case Study: Derric
	4.1 Implementation in RASCAL
	4.2 Differencing Derric File Format Descriptions

	5 Discussion and Related Work
	6 Conclusion
	References

	CoWolf -- A Generic Framework for Multi-view Co-evolution and Evaluation of Models
	1 Introduction
	2 The CoWolf Framework
	2.1 Co-evolution with CoWolf
	2.2 Integrated Model Solvers

	3 Evaluation
	4 Conclusion
	References

	Reuse and Industrial Applications
	Enabling the Reuse of Stored Model Transformations Through Annotations
	1 Introduction
	2 Approach
	3 A DSL to Describe Model Transformations
	3.1 DSL Specificaton: Abstract Syntax
	3.2 DSL Specification: Domain-Independent Catalogue
	3.3 DSL Specification: Concrete Syntax

	4 Annotating and Searching Model Transformations
	4.1 Semi-automatic Annotation
	4.2 Queries

	5 Tool Support
	5.1 DSL and Editors
	5.2 Integration in GitHub

	6 Related Work
	7 Conclusions and Future Work
	References

	Reusable Model Transformation Components with bentō
	1 Introduction
	2 Tool Architecture
	3 Developing Components
	4 Reusing Components
	5 Reverse Engineering Existing Transformations
	6 Selecting Components
	7 Conclusions
	References

	Cost-Effective Industrial Software Rejuvenation Using Domain-Specific Models
	1 Introduction
	2 Industrial Rejuvenation Case
	2.1 Legacy Software
	2.2 Rejuvenation Goal
	2.3 Business Case

	3 Rejuvenation Approach
	3.1 Combination of Information Sources and Techniques
	3.2 Domain-Specific Models
	3.3 Incremental Approach

	4 Reverse Engineering
	4.1 Extract Information Model
	4.2 Identify Behavioral Patterns

	5 Forward Engineering
	5.1 New Software Design
	5.2 Code Generation for the New Software Design
	5.3 Model Transformation for the Legacy Software

	6 Industrial Confidence
	6.1 Verification
	6.2 Maintainability
	6.3 New Software Development Environment

	7 Related Work
	8 Conclusion
	References

	Migrating Automotive Product Lines: A Case Study
	1 Introduction
	2 Product Lines in the Automotive Industry
	3 Migrating GM Models to AUTOSAR
	4 Lifting GmToAutosar
	4.1 Background: DSLTrans
	4.2 Lifting DSLTrans for GmToAutosar

	5 Applying the Lifted Transformation GmToAutosar"3222378
	6 Lessons Learned and Discussion
	7 Related Work
	8 Conclusion and Future Work
	References

	New Paradigms for Model Transformation
	Viatra 3: A Reactive Model Transformation Platform
	1 Introduction
	2 Motivating Example
	3 An Event-Driven Virtual Machine (EVM)
	3.1 Events
	3.2 Activation Lifecycles
	3.3 Scheduler
	3.4 Agenda
	3.5 Conflict Resolution
	3.6 Execution

	4 Related Work
	5 Conclusion
	References

	Towards Functional Model Transformations with OCL
	1 Introduction
	2 Overview of Proposed OCL Constructs
	2.1 Shadow Objects
	2.2 Pattern Matching with OCL

	3 Application to Model Transformation
	3.1 Traceability and Side Effects
	3.2 ClassDiagram2Relational in OCLT

	4 Discussion
	4.1 Model Transformations as Functions
	4.2 Interoperability with Model Transformation Languages
	4.3 Performance Benefits of Pattern Matching
	4.4 ClassDiagram2Relational Without Cases
	4.5 Limitations of the Approach

	5 Related Work
	6 Conclusion
	References

	Transparent Model Transformation: Turning Your Favourite Model Editor into a Transformation Tool
	1 Introduction
	2 Motivating Example
	3 The Visual Model Transformation Language
	4 The Principles of Transparent Model Transformation
	4.1 Syntax Transparency
	4.2 Environment Transparency
	4.3 Execution Transparency

	5 Implementation and Deployment
	6 Scope and Limitations
	7 Related Work
	8 Conclusion
	References

	Transformation Validation and Verification
	A Sound Execution Semantics for ATL via Translation Validation
	1 Introduction
	2 Motivating Example
	3 Proving Transformation Correctness
	4 Encoding Metamodels, OCL and ATL Matched Rules
	5 Sound Encoding for the Execution Semantics of ATL Rules
	6 Implementation
	7 Related Work
	8 Conclusion
	References

	From UML/OCL to Base Models: Transformation Concepts for Generic Validation and Verification
	1 Introduction
	2 Motivation and Related Work
	3 A Base Model for UML and OCL Verification
	3.1 UML Elements in the Base Model
	3.2 OCL Elements in the Base Model

	4 Transformation to the Base Model
	4.1 Transformation of Ternary (n-Ary) Associations
	4.2 Transformation of Association Classes
	4.3 Transformation of Aggregations and Compositions
	4.4 Transformation of Query Operations
	4.5 Transformation of OCL Collection Types
	4.6 Combination of the Transformation Concepts

	5 Conclusion and Future Work
	References

	F-Alloy: An Alloy Based Model Transformation Language
	1 Introduction
	2 Running Example: The CD2RDBMS Transformation
	3 Background
	3.1 Alloy Modules and Instances

	4 Functional Alloy Modules
	5 Syntax of F-Alloy
	6 Translational Semantics of F-Alloy
	6.1 Rule Semantics
	6.2 Augmented Modules and Functional Alloy Modules

	7 F-Alloy Interpretation
	8 Evaluation
	8.1 Transformation Computation
	8.2 Transformation Verification

	9 Discussion and Related Work
	10 Conclusion and Future Work
	References

	Foundations of Model Transformation
	Translating ATL Model Transformations to Algebraic Graph Transformations
	1 Introduction
	2 Semantics of ATL and AGT
	2.1 ATL and OCL
	2.2 AGT and Nested Graph Conditions

	3 Translating ATL to AGT
	3.1 Translating the ATL Resolve Mechanism
	3.2 Translating OCL Guards and Binding Expressions

	4 Experiments and Validation
	4.1 Validation Protocol
	4.2 Limitations and Threats to Validity

	5 Related Work
	6 Conclusion
	References

	A Methodology for Designing Dynamic Topology Control Algorithms via Graph Transformation
	1 Introduction
	2 Modeling Concepts and Topology Control
	2.1 Basic Modeling Concepts
	2.2 Topology Control

	3 Characterizing Topologies with Graph Constraints
	4 Specifying Topology Control with Programmed Graph Transformation
	5 Enriching the Graph Transformation with Constraints
	5.1 Fulfilling the Active-Link Constraint
	5.2 Fulfilling the Inactive-Link Constraint
	5.3 Fulfilling the Outdated-Link Constraint
	5.4 Proofs of Termination and Connectivity

	6 Related Work
	7 Conclusion
	References

	Extending Model to Model Transformation Results from Triple Graph Grammars to Multiple Models
	Abstract
	1 Introduction
	2 Triple Graph Grammars
	3 Related Work
	4 Graph Diagram Grammars
	5 Derived Rules and Match Consistency
	6 Proofs
	6.1 M-Adhesiveness of Graph Diagrams
	6.2 Proof for Theorem 1
	6.3 Proof for Theorem 2

	7 Conclusion and Future Work
	Acknowledgements
	References

	Author Index

