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Abstract. The power of aspect-oriented modelling is that structural
and behavioural properties of a crosscutting concern can be modularized
within an aspect model. With proper care, such an aspect model can also
be made reusable. If the functionality provided by such a modularized
concern is needed repeatedly within a system, the reusable aspect model
can be applied multiple times within the same target model. This paper
reviews the pending issues related to multiple aspect model instantiations
identified in past research, and then proposes to extend the customization
interface of aspect models with instantiation cardinalities. This removes
potential customization ambiguities for the model user, and gives the
model designer fine-grained control about how many instances of each
structural and behavioural element contained in an aspect model are to
be created in the target model. The approach is illustrated by presenting
the aspect-oriented design of a behavioural, a structural and a creational
design pattern.

1 Introduction

In the context of model reuse, the artifact designer, i.e., the developer creat-
ing the reusable artifact, and the artifact user, i.e., the developer applying the
artifact to a specific application, are usually different people. The designer has in-
depth domain knowledge about the concern that the reusable artifact addresses,
and knows about the specific details of the functionality / properties / solutions
encapsulated by the artifact that he created. The user on the other hand has
in-depth domain knowledge about the application he is building, knows that the
application he is building could benefit from reusing the reusable artifact, but is
unaware of the artifacts inner working and limitations.

Aspect-orientation is a development paradigm that adds a new dimension to
modularization. In aspect-oriented modelling (AOM), aspect models encapsu-
late structural and behavioural elements related to a particular concern. With
proper care, aspect models can also be made reusable. However, the potentially
crosscutting nature of the concern requires that the structure and functionality
provided by the model can be applied several times within the same application.
Different aspect-oriented modelling approaches provide different means to apply
a reusable aspect within a target model. Some approaches require the specifica-
tion of explicit mappings [6,14,19], whereas others allow the use of wildcards in
so-called pointcut expressions [8,10,20].
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To the best of our knowledge, none of the current AOM approaches specifies
precisely how a model user should go about applying a reusable aspect model
multiple times. Since the model user does not know about the inner workings and
limitations of the reusable aspect model, he is faced with multiple possibilities:
instantiating an aspect model multiple times, specifying multi-mappings or mul-
tiple individual mappings, or specifying a single complex pointcut expression vs.
using several pointcut expressions. Furthermore, it has been shown in [16] that
in practice, the model designer of a reusable aspect model needs fine-grained
control over how many instances of each reusable model element are created in
the target model when an aspect is applied.

This paper presents instantiation cardinalities, a novel concept that solves
the aforementioned ambiguity while giving the designer explicit control over
the number of instances of each model element that is created in the target
model. Our proposed approach is illustrated in this paper using the Reusable
Aspect Models notation (RAM)) [14], an aspect-oriented multi-view modelling
approach for software design modelling.

The remainder of the paper is structured as follows. Section 2 introduces
model interfaces, aspect-oriented modelling and the problem with multiple appli-
cations of the same aspect within a target model. Section 3 presents instantia-
tion cardinalities, and illustrates them by means of the Observer design pattern.
Section 4 introduces automated call forwarding, an extension to aspect-oriented
weaving that integrates polymorphism and separation of concerns in the presence
of multi-mappings. Section 5 illustrates the elegance of instantiation cardinal-
ities by showing the aspect-oriented design of two additional design patterns.
Section 6 presents related work, and the last section draws some conclusions.

2 Background

To explain the motivation behind this work, the first background subsection gives
a brief overview of units of reuse for software design and the kind of interfaces
that these units define. The next subsection introduces aspect-oriented modelling
in general and the Reusable Aspect Models approach in particular, and how it
can be used to express crosscutting software design concerns. The last subsection
illustrates the ambiguity that a software developer faces when reusing aspect
models, and highlights the need for flexible instantiation policies.

2.1 Interfaces

Units of reuse, e.g., units used in software design such as classes, components,
frameworks, design patterns [9], software product lines [18], etc..., typically either
explicitly or implicitly define interfaces that detail how the unit is supposed to
be reused. [3] classifies these interfaces into three kinds: usage, customization,
and variation interfaces.

Usage Interface: The usage interface is the interface that is most common.
For units that are used in software design, it specifies the design structure and
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behaviour that the unit provides to the rest of the application. In other words,
the usage interface presents an abstraction of the functionality encapsulated
within the unit to the developer. It describes how the application can trigger
the functionality provided by the unit.

For instance for classes, the usage interface is the set of all public class prop-
erties, i.e., the attributes and the operations that are visible and accessible from
the outside. For components, the usage interface is the set of services that the
component provides (i.e., the provided interface). For frameworks, design pat-
terns, and SPLs, the usage interface is comprised of the usage interfaces of all
the classes that the framework/pattern/SPL offers.

Customization Interface: Typically, a unit of reuse has been purposely cre-
ated to be as general as possible so that it can be applied to many different
contexts. As a result, it is often necessary to tailor the general design to a
specific application context. The customization interface of a reusable software
design unit specifies how to adapt the reusable unit to the specific needs of the
application under development.

For example, the customization interface of generic classes (also called tem-
plate classes) allows a developer to customize the class by instantiating it with
application-specific types. For components, the customization interface is com-
prised of the set of services that the component expects from the rest of the
application to function properly (i.e., the required interface). The developer can
use this information at configuration time to plug in the appropriate application-
specific services. The customization interface for frameworks and design patterns
is often comprised of interfaces/abstract classes that the developer has to imple-
ment/subclass to adapt the framework to perform application-specific behaviour.

Variation Interface: The variation interface of a reusable software design unit
describes the available design variations and the impact of the different variants
on high-level goals, qualities, and non-functional requirements. A variation inter-
face typically takes the form of a feature model [12] that specifies the individual
features that the unit offers. The impact of choosing a feature can be specified
with goal models [11].

A reusable software design unit needs a variation interface only if it encapsu-
lates several different design alternatives. In this paper, the focus is on improving
reuse of a single design, and hence the variation interface is out of scope.

2.2 Aspect-Oriented Modelling

Aspect-orientation adds a new dimension to modularization, because the struc-
ture and functionality that aspects define can have a crosscutting effect on the
rest of the application. In aspect-oriented modelling (AOM), aspect models
encapsulate structural and behavioural elements related to a particular con-
cern. Typically, the different elements within an aspect model need to interact
closely with each other, i.e., invoke each other’s behaviour or consult each other’s
state. The potentially crosscutting nature of the concern also requires that the
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aspect Observer

structural view
|Subject<|modify>

|Observer<|update>

+ * |modify(..)

|Subject

+ startObserving(|Subject)
+ stopObserving(|Subject)
~ |update(|Subject)

|Observer

Usage Interface Customization Interface

Fig. 1. Observer RAM Model Interface (Customization and Usage)

structure and functionality provided by the model can be applied several times
within the same application.

To make aspect models reusable, interfaces are key. In software design mod-
elling, having an explicit model interface makes it possible to apply proper infor-
mation hiding principles [17] by concealing internal design details from the rest
of the application. Because of aspect-oriented techniques, this is possible even if
the encapsulated design details crosscut the rest of the application design. This
is exemplified by our own Reusable Aspect Models approach (RAM)) [14], where
each model has well-defined usage and customization interfaces [2].

The usage interface of a RAM model is comprised of all the public model
elements, i.e., the structural and behavioural properties, that the classes within
the design model expose to the outside. To illustrate this, the usage interface of
the RAM design of the Observer design pattern is shown in Fig. 1. The Observer
design pattern [9] is a software design pattern in which an object, called the sub-
ject, maintains a list of dependents, called observers. The functionality provided
by the pattern is to make sure that, whenever the subject’s state changes, all
observers are notified. The structural view of the Observer RAM model specifies
that there is a |Subject class that provides a public operation that modifies
its state (|modify) that can be called by the rest of the application. In addi-
tion, the |Observer class provides two operations, namely startObserving and
stopObserving, that allow the application to register/unregister an observer
instance with a subject instance.

The customization interface of a RAM model specifies how a generic design
model needs to be adapted to be used within a specific application. To increase
reusability of models, a RAM modeller is encouraged to develop models that are
as general as possible. As a result, many classes and methods of a RAM model
are only partially defined. For classes, for example, it is possible to define them
without constructors and to only define attributes relevant to the current design
concern. Likewise, methods can be defined with empty or only partial behaviour
specifications. The idea of the customization interface is to clearly highlight
those model elements of the design that need to be completed/composed with
application-specific model elements before a generic design can be used for a spe-
cific purpose. In RAM, these model elements are called mandatory instantiation
parameters, and are highlighted visually by prefixing the model element name
with a “|”, and by exposing all model elements at the top right of the RAM
model similar to UML template parameters. Fig. 1 shows that the customization



112 S. Bhalotia and J. Kienzle

structural view |Subject
|Observer

|modify
|update

~ add(|Observer a)
~ remove(|Observer a)
~ ArrayList<|Observer> getObservers()
+ * |modify(..)

|Subject

+ startObserving(|Subject)
+ stopObserving()
~ |update(|Subject)

|Observer

1
myList 0..*~ add(|Observer )

~ remove(|Observer)

<<impl>>
java.util.ArrayList

|Observer

mySubject
0..1

aspect Observer

message view |modify 

target: |Subject
|modify(..)

Pointcut

|modify(..)

target: |Subject

o: |Observer
|update(..)

                          observers := getObservers()

loop [o within observers]

* *

Advice

message view startObserving target: |Observer

startObserving(s)

s: |Subject

add(target)

message view startObserving target: |Observer

startObserving(s)

s: |Subject

add(target)

Fig. 2. Internal Design of Observer Aspect

interface for the Observer model comprises the class |Subject with a |modify
operation, and the class |Observer class with an |update operation.

Fig. 2 shows a possible internal design for the Observer aspect. The sub-
ject maintains an ArrayList of Observers referenced by myList. The notifica-
tion message view states that the behaviour of |modify is augmented to invoke
|update on all registered observer instances after the behaviour of |modify
completed execution.

2.3 Instantiation Ambiguities

In the object-oriented world, where classes are the main modularization unit,
generic designs are encapsulated within generic classes (also called template
classes). The customization interface of a generic class clearly specifies what
information the programmer who wishes to reuse a generic class needs to provide
in order for the class to be usable. For instance, the Java class ArrayList<E>
requires the user to specify the type of the elements that are to be stored within
the array. If the user needs two different kinds of ArrayLists in his design, she
can simply instantiate the generic class twice with different element types.

In RAM, when a modeller wants to reuse an already existing, generic RAM
model within her current design, she must also use the customization interface to
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structural view

aspect NavalBattle

+ void moveShip(int newX, int newY)
+ void sinkShip()

- int currentXPos
- int currentYPos
- Status currentStatus

Ship

~ void shipSunk(Ship s)
~ void gameFinished(Player p)

PlayerStatsDisplay

+ void playerWins()
+ void playerLoses()

- String name
- int numberOfWins
- int numberOfLosses

Player

~ void updatePosition(Ship s)
~ void shipSunk(Ship s)

myShips

0..*

Fig. 3. Simplified Naval Battle Base Model

adapt the generic model to her specific design. This is done by providing instan-
tiation directives that map every model element in the customization interface
to a model element in the current design model. If desired, TouchRAM [1], the
modelling tool for the RAM approach, can compose the structure and behaviour
of the two models using the instantiation directives to yield the complete soft-
ware design model.

In some way, the reuse process in RAM is therefore similar to the one
of generic classes in programming languages. However, in contrast to generic
classes, RAM models typically encapsulate more than one design class, and the
functionality provided by the aspect results from interacting instances of several
different classes. Just like with classes, a modeller might want to reuse the func-
tionality provided by an aspect once or multiple times in his design. However,
since the functionality of the aspect is split over several classes, the user might
need parts of the structure or functionality provided by an aspect model multiple
times, but not all of it.

Fig. 3 illustrates such a situation. The model shows parts of the design of
a turn-based naval battle game, where players control ships that move around
on a battlefield. Lets assume that there is a BattlefieldDisplay class that
takes care of visualizing the battlefield on the screen, and there is also a
PlayerStatsDisplay class that shows the list of all players together with statis-
tics about their game performance, e.g., how many games they won, and how
many ships they sunk.

In such a design, the modeller may want to reuse the Observer concern shown
in Fig. 1 to notify the display classes whenever the state of the ships or players
change. An instantiation directive such as:

Subject → Ship
modify → moveShip

Observer → BattlefieldDisplay
update → shipMoved

would make sure that whenever a ship moves (because someone invokes the
moveShip method on a ship), the updatePosition method of any Battlefield-
Display instances that previously registered with the ship would be called.
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In this situation, however, one could imagine more complex reuses of the
Observer design that are not trivial to express. For instance, when a ship
sinks (because someone invokes the sinkShip method on a ship), all registered
BattlefieldDisplay instances and registered PlayerStatsDisplay instances
should be notified by a call to their respective shipSunk methods. The modeller
might be tempted to multi-map the Observer class, i.e., to write an instantiation
directive such as:

Subject → Ship
modify → sinkShip

Observer → BattlefieldDisplay, PlayerStatsDisplay
update → shipSunk

to achieve the desired effect. Unfortunately, the implementation of the Observer
design shown in Fig. 2 does not support such a multi-mapping, since the generic
java.util.ArrayList class can only be parameterized with one type. To solve
this problem, and in order to be able to reach both BattlefieldDisplay and
PlayerStatsDisplay with a call to shipSunk, a superclass needs to be intro-
duced and shipSunk must be transformed into a polymorphic call.

Without these changes, the only way to achieve the desired effect is to
reuse Observer twice, i.e., to map Observer in one instantiation directive to
BattlefieldDisplay, and to map Observer in the second instantiation direc-
tive to PlayerStatsDisplay. This will achieve the desired effect, but internally
we then get two array lists, one containing BattlefieldDisplay instances,
and the other one containing PlayerStatsDisplay instances. The sinkShip
method is also advised twice, i.e., after updating the ship status, a first loop
notifies all BattlefieldDisplay instances, and then a second loop notifies the
PlayerStatsDisplay instances. Although this works, using two array lists (and
looping through the observers in two separate loops) is not elegant, increases
memory use and maybe even decreases performance.

In general, the need for fine-grained control over how many instances of a
specific element defined in an aspect model should be created when the aspect
model is reused multiple times within the same target model has been already
highlighted in [16]. The authors define four so-called introduction policies. By
default, new instances of the element are created each time the aspect model was
reused (named PerPointcut-Match in [16]). It is also possible to specify that only
a single instance is created regardless of how many times the aspect model is
reused (referred to as Global). Finally, the authors also provide the possibility to
specify that new instances should be created only for a given matched set or tuple
of model elements in the target model (PerMatchedElement or PerMatchedRole).

3 Instantiation Cardinalities

This section introduces an extension to the customization interface that
addresses the issues introduced in subsection 2.3: it solves the reuse ambiguity
that the model user currently experiences in RAM and similar AOM approaches.
At the same time, this extension makes it possible for the model designer to
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structural view
Subject<modify>

Observer<update>

+ * modify(..)

Subject

+ void startObserving(Subject s)
+ void stopObserving(Subject s)
~ void update(Subject s)

ObserverInterface{1}

{m=1..*}

{m}

~ void update(Subject s)

Observer {1..*}

aspect Observer

Fig. 4. Observer Model with Instantiation Cardinalities

have fine-grained control about how many instances of a specific model element
defined in an aspect model are introduced into the target model.

We propose to augment the customization interface of a reusable unit by
allowing the model designer to specify instantiation cardinalities for each model
element. The instantiation cardinality of a model element declares how many
times, minimally and maximally, the model element can be mapped to model
elements of the target model within one instantiation, i.e, within one reuse. The
instantiation cardinality is shown in curly brackets to the right of the name of
the model element.

Fig. 4 shows a design of the Observer pattern with instantiation cardinali-
ties. It is meant to be used for one Subject and potentially several Observers,
clearly specified by the instantiation cardinalities {1} for Subject and {1..*}
for Observer. To achieve the problematic reuse mentioned in subsection 2.3
(to notify both BattlefieldDisplay and PlayerStatsDisplay when a ship is
sunk), the modeller uses the following instantiation directive1:

Subject → Ship
modify → sinkShip

ObserverInterface → DisplayInterface
update → shipSunk

Observer<1> → BattlefieldDisplay
Observer<2> → PlayerStatsDisplay

With instantiation cardinalities, there is no need anymore for using the “|”
notation to designate mandatory instantiation parameters. Any model element
that has a non-zero minimum instantiation cardinality must be mapped. To
simplify the notation we also define a default cardinality, i.e., {0..1}.

In order to express the situation where the number of instantiations of one
model element must be equal to the number of instantiations of another model
element, it is possible to define variables within the instantiation cardinality
specification. For example, Fig. 4 states that there must be at least one modify
method within the Subject class, but there can be more than one. However,
for every modify method there should be a corresponding update method in
the ObserverInterface class. By assigning the number of instantiations to the

1 The notation “model element<x>” is used within an instantiation to refer to the xth
instantiation of the corresponding model element.
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variable m in the Subject class (by specifying {m=1..*}), we are able to express
this constraint on the update method of the ObserverInterface (by specifying
{m}).

In this case it is possible to write an instantiation directive such as:

Subject → Player
modify<1> → playerWins
modify<2> → playerLoses

ObserverInterface → DisplayInterface
update<1> → gameCompleted
update<2> → gameCompleted

Observer → BattlefieldDisplay

to specify that whenever playerWins or playerLoses is called on a Player
instance, gameCompleted of the registered PlayerStatsDisplay instances is
invoked.

4 Weaver Considerations

In the presence of instantiation cardinalities, the weaver can easily determine how
many instances of each model element from the reused aspect should be created
in the target model. For model elements that are explicitly mapped, the number
of instances is determined by the instantiation directive. Classes, operations and
attributes that are not explicitly mapped are created once, except for classes
that are contained in another class. In that case, the number of instances of the
class is equal to the number of instances of the containing class.

Handling of relationships between classes, i.e., associations, aggregations,
compositions and generalization-specialization, are more interesting. Assuming
that class A and class B are related with relationship r, the different cases are
handled as follows:
• If the instantiation multiplicity of class A is {0}, {0..1} or {1}, and

the instantiation multiplicity of B is {0}, {0..1} or {1}, then one single
instance of r is created in the target model.

• If the instantiation multiplicity of class A is {q=1..*}, and the multi-
plicity of B is {0}, {0..1} or {1}, then q instances of the relationship r
are created in the target model.

• If the instantiation multiplicity of class A is {q=1..*}, and the multiplic-
ity of B is {q}, then we are in a situation where the number of instances
of B is derived from the number of instances of A. In other words, every
instance of A has its corresponding instance of B, and hence, 1 instance
of the relationship r is created in the target model.

• If the instantiation multiplicity of class A is {q=1..*}, and the multi-
plicity of B is {p=1..*}, then we are in a situation where the number of
instances of A and B are completely independent. Hence, p*q instances
of the relationship r are created in the target model.
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4.1 Automated Call Forwarding

The rules of object-orientation dictate that in a subclass, the name for a method
that overrides a method defined in a superclass must remain the same. In AOM,
where sub- and superclasses may happen to be defined in separate aspect models,
this constraint hinders true separation of concerns. It requires a designer to chose
the method names in one concern based on name definitions of another concern.

To remedy this situation, we allow overridden methods in subclasses to
optionally be mapped to methods that do not necessarily have the same name as
the superclass method (or any of the method names in the sibling classes). The
only constraint is that the method’s parameter number and types must match.

If the model user specifies such a mapping, then the model weaver automati-
cally inserts an additional method with the name defined in the superclass, that
directly forwards all calls to the mapped method. As a result, it is possible in
the aspect model that defines the superclass to make a call that polymorphically
dispatches to a differently named method of a subclass defined in a different
aspect model.

This feature is not only convenient, it becomes essential when a high-level
aspect reuses several generic aspect models or existing implementation classes.
For instance, in the Navalbattle example from above, if the player statistics are
kept on a remote web server, then one might want to reuse the Observer aspect
model defined in Fig. 4 as follows:

Subject → Ship
modify → sinkShip

Observer<1> → BattlefieldDisplay
update → refreshWindow

Observer<2> → PlayerStatsDisplay
update → sendStatsToServer

5 Design Patterns Revisited

Section 3 introduced instantiation cardinalities by means of the Observer
behavioural design pattern. This case study section applies our ideas to two
additional design patterns, the structural design pattern Composite [9] and the
creational design pattern Abstract Factory [9], in order to demonstrate the ele-
gance of instantiation cardinalities.

5.1 Composite

The Composite design pattern is a well-known structural design pattern that
allows individual objects and collections of objects to be treated uniformly [9].
Operations are defined in a common interface, and invoking such an operation
on a collection of objects results in applying the operation to each element in
the collection.

Fig. 5 shows that the RAM structural view of the Composite pattern is
similar to the classic OO UML diagram found in [9]. Instantiation cardinalities
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structural view
commonOperation

Leaf
Composite

+ * operation(..)
+ ArrayList<Component> getChildren()

Component

{1..*}

+ * operation(..)
+ ArrayList<Component> getChildren()
+ void addChild(Component c)
+ void removeChild(Component c)

Composite {1}

+ * operation(..)

Leaf {1..*}

1
myComps

0..*
content

~ void add(Component c)
~ void remove(Component c)

<<impl>>
java.util.ArrayList

Component

message view operation

operation(..)

aspect Composite

loop [c within Component]

target: Composite

c: Component

operation(..)

message view Component.getChildren
r := getChildren()

target: Component

null

message view Composite.getChildren is Getter<myComps>

{1}

Fig. 5. The Composite RAM Model

have been added to each class that clearly show how the classes are intended to
be mapped. While there need to be {1..*} Leaf classes, there has to be exactly
{1} Composite class. The common Component interface is optional to map, but
at least one operation must be specified {1..*}. Mapping it multiple times
allows the model user to expose multiple leaf operations.

For example, suppose a higher-level aspect Jukebox reuses the Composite
aspect as follows:

Component → Media
operation<1> → playMedia
operation<2> → stopMedia

Leaf<1> → Song
operation<1> → playSong
operation<2> → stopSong

Leaf<2> → Video
operation<1> → playVideo
operation<2> → stopVideo

Composite → PlayList
operation<1> → playPlayList
operation<2> → stopPlayList

In the message view for Composite.operation, we define the behaviour that
loops through all the children and calls operation on each child. Note that
we need to and are allowed to define only one message view for this method,
irrespective of the number of times operation is going to be mapped in a higher-
level aspect.

The mappings in the Jukebox aspect also nicely illustrates the advantage of
automated call forwarding. The designer of Jukebox is not bound to use identical
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+ AbstractProductA createProductA()
+ AbstractProductB createProductB()

AbstractFactory

+ commonOperation()

AbstractProductA

Concrete
Factory1

+ AbstractProductA create()

ProductA1Concrete
Factory2

+ AbstractProductA create()

ProductA2

+ commonOperation()

AbstractProductB

+ AbstractProductB create()

ProductB1

+ AbstractProductB create()

ProductB2

Fig. 6. Abstract Factory in UML

method names for the common operations defined in the different leaf classes.
This allows for a great amount of flexibility while modelling. For instance, a
user might have started creating the Jukebox aspect with the Song and Video
classes together with the playSong and playVideo operations. Only later, when
designing PlayList, she realizes that the Composite pattern is useful in this
context. Because of automated call forwarding, she can simply map the methods
to operation defined in Composite without the need to modify any existing
method names. When the two aspects are woven together by the TouchRAM
tool, the weaver will create a playMedia methods in Song and Video that forward
calls to playSong and playVideo, respectively. That way, the polymorphism
exploited in the Composite.operation message view is maintained.

5.2 Abstract Factory

Abstract Factory is a creational design pattern that provides an interface for
creating families of related or dependent objects without specifying their concrete
classes [9].

The pattern can be best described by an example. Consider two vehicle
factories: Toyota and Honda. Each factory produces three types of vehicles:
Car, Motorcycle and Truck. Toyota produces exactly one vehicle of each type:
ToyotaCar, ToyotaMotorcycle and ToyotaTruck. The same is true for Honda.

Abstract Factory allows a modeller to instantiate a factory when the appli-
cation is initialized (VehicleFactory fact = new Toyota()). Subsequently,
whenever a specific type of vehicle is needed, it can be instantiated (Car
newcar = fact.createCar()) without having to know if the application uses
ToyotaCars or HondaCars. This decouples the creation of the products from the
specific factory that actually produces them.

Figs. 6 and 7 highlight the difference between a standard Abstract Factory
UML diagram (taken from [9]) and the Abstract Factory RAM model. The
advantages of using instantiation cardinalities are obvious:
• The RAM model with instantiation cardinalities is a lot more com-

pact, while it still clearly visualizes how the model is intended to
be used. It captures the essence of Abstract Factory completely. The
standard OO diagram shows only two ConcreteFactories and two
AbstractProducts. In OO design pattern diagrams that depict mul-
tiple subclasses of a common supertype, it is typically shown by two
classes with similar names and adding a numeric suffix to the names



120 S. Bhalotia and J. Kienzle

structural view

aspect AbstractFactory createProduct
ConcreteFactory
AbstractProduct

create

+ AbstractProduct createProduct(..)

AbstractFactory

+ * operation(..)

AbstractProduct{0..1} {p=1..*}

{p} {0..*}

+ AbstractProduct createProduct(..)

ConcreteFactory {q=2..*}

+ AbstractProduct create(..)

ConcreteProduct {q}

{1}

message view createProduct target: ConcreteFactory

product = createProduct(..)

product: ConcreteProduct
product := create(..)

product

Fig. 7. Abstract Factory with Instantiation Cardinalities

(e.g., ConcreteFactory1, ConcreteFactory2). In RAM, the fact that
there can be one or more AbstractProducts {1..*} whereas there need
to be at least two ConcreteFactories {2..*} is clearly shown in the
notation.

• Similarly, since the maximum cardinality can be *, the RAM notation is
scalable. The OO diagram relies on different suffix types (numerical and
alphanumerical) to show the independence of the number of subclasses
of AbstractProduct and AbstractFactory. This technique becomes
problematic in case a third set of independent subclasses needs to be
specified. In RAM, a designer simply needs to introduce a different vari-
able for every class that can exist independently multiple times, e.g.,
{q=1..*}.

• The RAM model shows the relationships between the number of classes
unambiguously. In the standard OO diagram, the same kind of suffix is
used to highlight the fact that the same number of subclasses is needed.
For instance, there are subclasses ConcreteFactory and two subclasses
ProductA. However, it is not clear whether from a design point of view
the number of ConcreteFactories is determined by the number of
ProductAs, or if it is the other way round. In RAM, since instantiation
cardinalities allow the possibility of declaring and using variables, it is
clear that:

• The number of different AbstractProducts {p=1..*} (variable
p is declared) determines the number of constructor methods in
the AbstractFactory class {p} (variable p is used).

• For each AbstractProduct, there must be as many
ConcreteProduct subclasses {q} (variable q used) than there
are ConcreteFactories {q=2..*} (variable q is declared).

• There is no direct relation between the num-
ber of ConcreteFactories {q=2..*} and AbstractProducts
{p=1..*} (they declare different variables p and q).
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• In one message view it is possible to define the behaviour for all
createProduct operations of all ConcreteFactories, i.e., for p*q meth-
ods! Because of the different variable declarations, the weaver knows that
when generating the message view for createProduct¡i,j¿, it is supposed
to call the create method of the jth mapping of the ConcreteProduct
subclass of the ith mapping of the AbstractProduct class. For exam-
ple, given the instantiation in Fig. 8, the weaver can, for example,
generate the message view ToyotaFactory.createTruck that calls
ToyotaTruck.create.

AbstractFactory → VehicleFactory
createProduct<1> → createCar
createProduct<2> → createTruck

ConcreteFactory<1> → Toyota
ConcreteFactory<2> → Honda
AbstractProduct<1> → Car

operation → drive
AbstractProduct<2> → Truck

operation<1> → drive
operation<2> → load

ConcreteProduct<1,1> → ToyotaCar (the first mapping dimension refers to
create → buildToyotaCar the mapping of the superclass)

ConcreteProduct<1,2> → HondaCar
create → buildHondaCar

ConcreteProduct<2,1> → ToyotaTruck
create → buildToyotaTruck

ConcreteProduct<2,2> → HondaTruck
create → buildHondaTruck

Fig. 8. Example Instantiation of AbstractFactory

6 Related Work

To the best of our knowledge, none of the well-known AOM approaches provide
customization interfaces for aspect models that expose information equivalent
to what instantiation cardinalities provide.

For example, in Theme/UML [6], the models that contain crosscutting struc-
ture and behaviour are called themes. A theme is a parameterized UML package,
and it exposes the generic model elements that must be bound to application
specific elements in the form of UML template parameters. Just like in RAM
before the introduction of instantiation cardinalities, it is not obvious for a mod-
eller to know if she can bind a parameter to several model elements (similar to
multi-mapping in RAM), or rather bind a theme multiple times to elements in
a target model.

MATA [20] is a graph-based approach for composing UML diagrams that sup-
ports pattern matching to determine where an aspect model is to be applied. If in
the aspect model a model element is tagged with the stereotype <<create>>, it
means that this model element is created in the target model whenever the pat-
tern matches. This is equivalent to the instantiation policy PerPointcut-Match
described in [16]. [5] later extended the notation with additional stereotypes
<<create++>> for introducing new model elements into a package common to all
aspect models (equivalent to the Global policy described in [16]), <<create+>>
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to introduce new model elements into a package common to all pattern matches,
and <<create->> to introduce new model elements into a new package that is
specific to each parameter binding. Although this allows for more fine-grained
control over how many times model elements are introduced when an aspect is
applied, it does not help the model user decide on whether to write one complex
pattern match or several specific ones.

We believe that the AOM approaches presented above, and even others such
as HiLA [10], GeKo [15] or the Motorola WEAVR [7], could benefit from adding
instantiation cardinalities to their models in a way that is similar to how we
extended RAM.

At a programming level, some aspect-oriented programming languages have
introduced features that give the programmer fine-grained control over the num-
ber of instantiations of aspects. In AspectJ [13] for example, an aspect has per
default only one instance that cuts across the entire program. Consequently,
because the instance of the aspect exists at all join points in the running of
a program (once its class is loaded), its advice is run at all such join points.
However, AspectJ also proposes some elaborate aspect instantiation directives,
such as: 1) perthis(pointcut) aspects, meaning that an instance of the aspect is
created for every different object that is executing when the specified pointcut
is reached; pertarget(pointcut), meaning that an instance of the aspect is created
for every object that is the target object of the join points matched by pointcut;
3) percflow(pointcut), meaning that an instance of the aspect is created for each
flow of control of the join points matched by the specified pointcut. These elabo-
rate aspect instantiations are all dynamic, i.e., they are based on the execution of
a program, and might become relevant in future AOM approaches that support
execution of models.

Many other AOP approaches, such as package templates [4], provide means
to instantiate crosscutting aspects/modules/templates multiple times and to
resolve arising inconsistencies by specifying renamings/mappings. However, this
does not solve the problem in the context of reuse, where the designer needs to
communicate to the user how and how many times the elements in the reusable
aspect were intended to be applied.

7 Conclusion

In this paper we have presented instantiation cardinalities, a new concept useful
in the context of aspect-orientation in general and aspect-oriented modelling in
particular. It allows the designer of a reusable aspect that comprises multiple
structural entities to a) specify the customization interface of the module, i.e.,
highlight which entities are generic and need to be completed with application-
specific structure in order for the reusable aspect to be usable in a specific con-
text, and b) clearly specify maximally how many times each structural entity
can be mapped to application-specific entities. By declaring and using vari-
ables within the instantiation cardinality specification, dependencies between
the number of mappings of structural entities can be expressed in a precise way.
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This solves the inherent ambiguity that model users face with most aspect-
oriented approaches when it comes to reusing existing aspects within an applica-
tion, and gives the model designer fine-grained control over how many instances
of each model element are created in the target model when it is applied. As a
result, the designer of the reusable aspect is able to specify all the instantiation
policies identified in [16].

In order to allow for true separation of concerns, we have proposed to extend
the TouchRAM weaver with automated call forwarding. As a result, it is pos-
sible to maintain polymorphic treatment of a set of subclasses in one aspect,
while not requiring uniform naming of polymorphically related operations in
each individual subclass.

For illustration purpose, the paper presented how instantiation cardinalities
integrate with the Reusable Aspect Models approach. Furthermore, the practi-
cality and elegance of the approach was demonstrated by showing the detailed
aspect-oriented design models of a behavioural design pattern (Observer), a
structural design pattern (Composite) and a creational design pattern (Abstract
Factory).
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Katz, S., Ossher, H., France, R., Jézéquel, J.-M. (eds.) Transactions on Aspect-
Oriented Software Development VI. LNCS, vol. 5560, pp. 238–266. Springer,
Heidelberg (2009)

7. Cottenier, T., van den Berg, A., Elrad, T.: Motorola WEAVR: Aspect and
model-driven engineering. Journal of Object Technology 6(7), 51–88 (2007).
http://dx.doi.org/10.5381/jot.2007.6.7.a3

8. Cottenier, T., Berg, A.V.D., Elrad, T.: The motorola weavr: model weaving in a
large industrial context. In: AOSD 2006 Industry Track. ACM, March 2006

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison Wesley,
Reading, MA (1995)

http://dx.doi.org/10.5381/jot.2007.6.7.a3


124 S. Bhalotia and J. Kienzle

10. Hölzl, M., Knapp, A., Zhang, G.: Modeling the car crash crisis management sys-
tem using HiLA. In: Katz, S., Mezini, M., Kienzle, J. (eds.) Transactions on
Aspect-Oriented Software Development VII. LNCS, vol. 6210, pp. 234–271.
Springer, Heidelberg (2010)

11. International Telecommunication Union (ITU-T): Recommendation Z.151 (10/12):
User Requirements Notation (URN) - Language Definition, October 2012

12. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented domain
analysis (FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, November 1990

13. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An overview of AspectJ. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS,
vol. 2072, pp. 327–354. Springer, Heidelberg (2001)

14. Kienzle, J., Al Abed, W., Klein, J.: Aspect-Oriented Multi-View Modeling. In:
AOSD 2009. pp. 87–98. ACM Press, March 2009

15. Kramer, M.E., Klein, J., Steel, J.R.H., Morin, B., Kienzle, J., Barais, O., Jézéquel,
J.-M.: Achieving practical genericity in model weaving through extensibility. In:
Duddy, K., Kappel, G. (eds.) ICMB 2013. LNCS, vol. 7909, pp. 108–124. Springer,
Heidelberg (2013)
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