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Abstract. Modeling in real industrial projects implies dealing with
different models, metamodels and supporting tools. They continuously
have to be adapted to changing requirements, involving (often costly)
problems in terms of traceability, coherence or interoperability. To this
intent, solutions ensuring a better adaptability and flexibility of modeling
tools are needed. As metamodels are cornerstones in such tools, meta-
model extension capabilities are fundamental. However, current model-
ing frameworks are not flexible or dynamic enough. Thus, following the
ongoing OMG MOF Extension Facility (MEF) RFP, this paper proposes
a generic lightweight metamodel extension mechanism developed as part
of the MoNoGe collaborative project. A base list of metamodel exten-
sion operators as well as a DSL for easily using them are introduced.
Two different implementations of this extension mechanism (including a
model-level support when (un)applying metamodel extensions) are also
described, respectively based on Eclipse/EMF and the Modelio modeling
environment.

Keywords: Modeling tool · Metamodel extension · Adaptability ·
Flexibility

1 Introduction

Model Driven Engineering (MDE) in general and modeling environments/tools
in particular are used within the industry in various contexts and for varied
purposes [6]. In many cases, companies (both solution providers and users) have
to adapt their model-based infrastructure because of changing requirements or
technological constraints. This usually comes with a range of potential issues
including traceability, coherence or interoperability ones regarding both the mod-
eling artifacts and data conforming to them. This is particularly true for mod-
eling tools that heavily rely on their core supported metamodel(s). Indeed, such
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metamodels may need to evolve over time and new/other ones may have to be
additionally supported by these tools (e.g. due to customer or market require-
ments). Compatibility with already existing models must be preserved, but new
models (conforming to completely different metamodels not yet supported or to
slightly modified versions of existing ones) have to be considered too. Both cases
should be addressed, ideally in such a way that the effort implied by the corre-
sponding modifications to the tools is limited as much as possible. Thus, there
is a clear need for adaptability and flexibility in modeling tools/environments.
This agility requires lightweight metamodel extension capabilities having sev-
eral interesting properties such as compatibility preservation but also genericity,
non-intrusiveness, transparency or some dynamicity (as explained later in the
paper).

Intending to face up current limitations and the lack of standard solutions
(e.g. the OMG MOF Extension Facility (MEF) is still an ongoing RFP [13]), we
propose a dedicated solution in the context of the MoNoGe French collaborative
project1. A generic lightweight metamodel extension approach is being developed
and experimented in an industrial environment where rapid and efficient adap-
tations of the used modeling tools are required. Of course, these tools have to be
modified once to somehow integrate the proposed mechanism. However, among
other reasons detailed later, we consider it lightweight because it then does not
require model migration/transformation processes anymore. It provides meta-
model extension operations to cover real scenarios involving addition, updating
and filtering changes to existing metamodels. Metamodel extension declarations
can be defined and then shared between different modeling tools using a ded-
icated Domain Specific Language (DSL). Thus, the main contributions of the
paper are: i) a base list of metamodel extension operators and corresponding
generic DSL, ii) an overall architecture for implementing a metamodel extension
mechanism based on Eclipse/EMF, transparent from an end-user point of view
and iii) (complementarily) an alternative DSL-compliant solution relying on the
Modelio modeling environment as needed in the MoNoGe project.

The remainder of the paper is structured as follows. We start by explaining
with more details our motivation in Section 2, setting the goals and scope of our
work. In Section 3, we introduce a core list of metamodel extension operators and
the related textual DSL we propose. Then, we describe in Section 4 the proposed
capabilities and architecture to implement a corresponding metamodel extension
mechanism relying on Eclipse/EMF modeling technologies. We also present in
Section 5 an alternative DSL-compliant solution based on the Modelio modeling
environment. We discuss the related work in Section 6 before we finally conclude
in Section 7 with some remaining challenges and future work.

2 Motivation and Industrial Background

As introduced before, the use of MDE-based environments and modeling tools
is relatively widespread in the industry. For various reasons (e.g. new customer
1 http://www.images-et-reseaux.com/en/content/monoge
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needs, technical constraints or business decisions to cite a few), these solutions
have to evolve quite frequently. Related changes can concern several different
aspects: UI can be modified, new features can be added or previous ones removed,
tool’s core can be restructured, etc. In all cases, it is important for software
providers to be able to adapt their tools as easily as possible when implementing
these modifications. According to the promises of MDE, minimizing the cost/-
effort of such evolution is fundamental.

In the particular context of modeling environments, core supported meta-
models are key elements since most components are derived from them (parsers,
editors, verifiers, generators, etc.). Core modification of such environments gen-
erally implies the adaptation of these metamodels and related tooling features.
Modelio is a concrete example of a modeling tool implementing popular stan-
dards such as UML, BPMN, SysML, etc. Users frequently need to reuse pieces
of these standards and create extensions related to domain-specific solutions for
System, Enterprise Architecture or Requirement modeling (for instance). Thus,
already supported metamodels need to be modified to reflect some changes:
new complementary concepts could be added, previously existing ones could
be updated or even filtered if not relevant anymore. In addition, brand new
metamodels may also have to be supported ensuring quality properties such as
traceability of the different versions or coherence between dependent artifacts.
While compatibility with existing models must usually also be preserved, new
models (that can conform to modified or different metamodels) have to be taken
into account too. Both kinds of models need to coexist smoothly within the tool.
As a consequence, modeling environments have to be able to adapt to all these
situations with as much agility as possible.

Illustrating this situation, the MoNoGe main industrial use case comes from
DCNS, a world-leading company in naval defense and energy that notably devel-
ops CMS (Combat Management Systems) for ships. In one of its programs,
DCNS is using two separate modeling tools: one (System Architect) for system-
level modeling using the DoDAF (U.S. Department of Defense Architecture
Framework) standard, the other (Modelio) supporting software design and devel-
opment. DCNS needs to manage permanent consistency between the system and
software modeling levels (plus related traceability and impact analysis), but can-
not customize System Architect.

Thus, part of the work in MoNoGe consists in building a metamodel exten-
sion, in Modelio, to trace and enrich software models with DoDAF elements
(from a subset of the DoDAF metamodel). The objective is to allow architects
and developers to work as before on their current models while, at the same
time, both types of models can be exchanged between the two modeling envi-
ronments and linked together. Only the users who need to see traceability and
impact analysis have access to these extended models combining software- and
system- levels. Interoperability and consistency management stay straightfor-
ward as there is no actual model transformation/migration, just this extended
view of the models in Modelio depending on the user profile.
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Fig. 1. Defining NAF by extending DoDAF (excerpt)

Another use case, still in the same DCNS domain, is also being conducted
using an Eclipse/EMF-based environment to demonstrate the genericity of the
proposed extension mechanism and to provide an open source alternative. DCNS
wants to evolve their existing DoDAF models and related tooling support to
NAF (NATO Architecture Framework), which is another architecture framework
deriving its main concepts from MoDAF (British Ministry of Defense Architec-
ture Framework). As NAF is based on Enterprise Architecture concepts relatively
close to the ones existing in DoDAF, the more direct way to make this happen is
to define an extension of the DoDAF metamodel for supporting NAF. The goal
is notably to enable the automatic reuse of existing DoDAF models in a NAF
context. Due to space limit, we introduce here only small parts of the concerned
metamodels and highlight a few required changes. As examples, the following
modifications can be seen in Figure 1:

1. Adding a property FunctionType in the concept SystemFunction.
2. Deleting a property SASymHasFromArrow from the concept DataFlowSym-

bol.
3. Deleting a property SASymHasToArrow from the concept DataFlowSymbol.

Based on these two case studies we conclude that flexible extensions that
do not necessarily require to migrate existing models, and that allow preserving
viewpoints/models of current stakeholders, are an efficient mean to smoothly
integrate modeling tools and increase their scope. To support this, a lightweight
metamodel extension mechanism is needed, like the one we describe in the next
sections.

3 Defining Metamodel Extensions

The first key ingredient of our metamodel extension mechanism is to have an
easy way to express extensions. For that, we provide in this section a textual
DSL that offers an initial list of extension operators (providing base semantics
for extension) to be used when specifying metamodel extensions. After a few
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introductory definitions, we review the list of operators and textual DSL we are
proposing based on them.

3.1 Terminology and Definitions

In this paper we consider the following definitions. An original metamodel
is an already existing metamodel that has a life on its own (e.g. is integrated
in various tools/solutions, has models that conform to it, etc.). A metamodel
extension is the definition of an extension that is, partially or completely, rely-
ing on concepts coming from original metamodel(s) or from other previously
extended metamodel(s). An extended metamodel is the result of the applica-
tion of one (or several) metamodel extension(s) onto original or already extended
metamodel(s). An existing/legacy model is an already existing model that
conforms to an original metamodel, but not necessarily to the extended meta-
model(s) that could have been specified from this metamodel.

3.2 A Base Set of Metamodel Extension Operators

A metamodel extension specification consists in a set of atomic extension oper-
ations, usually applied on existing metamodel elements. Notably to simplify the
management of extensions (see next section), our goal is to minimize the num-
ber of base operators. These operators can be combined later on to express more
complex changes. Such combinations could also be offered on modeling infras-
tructures supporting them, e.g. as a more powerful predefined extension library.

Our definition of these operators is not linked to any particular technical
environment and therefore could be adopted by all modeling frameworks. Since
metamodels are typically specifying a set of concepts with properties (possi-
bly attributes or references), we follow the same approach for introducing the
operators hereafter:

– ADD (a new concept to the metamodel)
• Create “from scratch” a completely new concept.
• Specialize (subtype) a concept.
• Generalize (supertype) one or several concept(s).

– MODIFY (an existing concept in the metamodel)
• Add property to an existing concept.
• Filter property from an existing concept.
• Modify property of an existing concept (equivalent to Filter + Add).
• Add constraint to an existing concept or one of its properties.
• Filter constraint from an existing concept or one of its properties.

– FILTER (an existing concept in the metamodel).

Constraints on metamodels can be expressed using either natural language
or more dedicated languages depending on implementations (cf. Section 4
for instance). Note that we are voluntarily using the term FILTER and not
DELETE. For coherence and compatibility with the existing/legacy models, we



On Lightweight Metamodel Extension to Support Modeling Tools Agility 67

want our extension mechanism to be as little intrusive as possible. Thus, we
do not want to actually delete elements but rather hide them when asked for.
Filtering is applied on cascade (e.g. in the case of generalizations or derived
properties) and related constraints updated accordingly[11].

3.3 A Textual DSL for Metamodel Extension

Extensions should be easily written by modelers/engineers in a comprehensive
way, justifying the need for a DSL [19]. A textual DSL has been designed in order
to make available the previously introduced extension operators via a textual
concrete syntax very close to our metamodel extension terminology. This syn-
tax is intended to be intuitive and easy-to-learn for people already familiar with
(meta)modeling, and reflects the full list of base extension operators as presented
before. Having genericity and portability in mind, it has been defined indepen-
dently from any particular metamodel or modeling framework/environment.

The overall structure to declare an extension includes its name, the meta-
model(s) it extends and the list of applied operators (as well as the metamodel
elements they are applied to). Figure 2 presents the full grammar of our textual
DSL, thus highlighting its main concepts and structure.

Fig. 2. Grammar of our metamodel extension textual DSL
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Based on the same small example than introduced at the end of Section 2,
Figure 3 shows a sample metamodel extension illustrating the defined concrete
syntax.

Fig. 3. Example of a metamodel extension definition using our textual DSL

4 Architecture of a Metamodel Extension Mechanism

Once extensions are defined, we need to provide a modeling infrastructure able to
understand and deploy them as part of a normal modeling process. This mainly
includes (de)activating the use of extensions for specific models, and eventually
storing the extension data to be reused in the future. This section presents such
an infrastructure for the Eclipse/EMF framework.

4.1 Expected Characteristics

There are different ways to implement a metamodel extension mechanism (cf.
Section 6). However, we believe such a mechanism should comply with the fol-
lowing list of characteristics, as determined mainly by the industrial partners in
MoNoGe according to their actual needs:

– Genericity. The extension approach cannot be linked to a particular meta-
model, tool or implementing framework. Relying on the same base mecha-
nism, metamodel extensions can be defined on all metamodels and should
be exchangeable between different modeling environments.

– Non-intrusiveness. Defined extensions should not directly modify original
metamodels but rather complement them in an external manner. Thus, tools
relying on these metamodels do not need to be deeply modified when their
metamodels are extended.

– Persistence and Interoperability. Extensions should be specified, stored
and shared in a user-comprehensive format, but also be easily machine-
readable for reusability purposes. For separation of concerns (cf. also Non-
intrusiveness), they should be persisted separately from metamodels.
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– Compatibility/conformance preserving. Models should not be altered
when extensions are defined on their respective metamodels: prior meta-
model conformance should always be preserved. Backward conformance is
also interesting: models that conform to a given extension could “forget”
elements brought by this extension (e.g. default values could be used).

– Transparency. From user and tooling perspectives, an extended metamodel
should be presented and manipulated as any regular metamodel. Models can
conform to extended metamodels and dedicated tooling can directly rely on
them.

– Dynamicity and synchronization. Metamodel extensions can be applied
and removed. Corresponding models and tooling should be able to reac-
t/adapt accordingly in order to preserve consistency and usability (notably
concerning compatibility and conformance).

– Runtime computation. (Parts of) Models conforming to an extended
metamodel could be computed at runtime, i.e. from predefined expressions
at extension-level (e.g. queries on the original metamodel). Related models
and tooling should reflect the result of such computations.

4.2 An Eclipse/EMF Implementation

The proposed architecture relies on several existing technologies, reused and/or
refined when needed, from the lively open source ecosystem around Eclipse and
its well-known Eclipse Modeling Framework.

Our Eclipse/EMF implementation first comprises a dedicated parser and
editor for the textual DSL (based on Xtext2) so that users can create their own
metamodel extensions at development time. These extensions are then managed
and processed using the architecture shown in Figure 4.

A Base Operators API consumes, in addition to the original metamodel, the
DSL model generated by Xtext from the user textual definitions of the exten-
sion. Thanks to an ATL3 model transformation, this component produces the
appropriate data required by the Virtualization API to realize the metamodel
extension and corresponding model.

There are different options for linking (meta)models together (cf. Section 6).
In our implementation, we rely on model virtualization techniques to intercon-
nect (meta)models together transparently on an on-demand basis. A virtual
(meta)model is a (meta)model that do not hold concrete data but rather kind of
proxies to original (meta)models, making it relevant in a lightweight metamodel
extension context. As already providing virtualization capabilities, we adapted
EMF Views4 (a refinement of Virtual EMF [1]) to implement the required Virtu-
alization API supporting the previously introduced extension operators. Thus,
“virtual” extended metamodels and models are realized automatically by this
API using the original (meta)models and complementary information computed

2 https://eclipse.org/Xtext
3 https://eclipse.org/atl
4 http://atlanmod.github.io/emfviews

https://eclipse.org/Xtext
https://eclipse.org/atl
http://atlanmod.github.io/emfviews
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Fig. 4. Overall architecture for the Eclipse-EMF implementation

by the Base Operators API. For conformance reasons, and in case deriving from
already existing models (i.e. prior to metamodel extension), “virtual” models
may need to be completed at runtime (e.g. with some default values) according
to the applied extension operators at metamodel-level (e.g. when a new property
is added). Some initial support is provided via the use of ECL5 as an automated
matching engine in EMF Views. However, this has not been extensively tested so
far in the current version. It can also be noted that constraints on metamodels
are expressed using OCL6.

Interestingly, such extended (meta)models can be manipulated as any EMF
(meta)models in Eclipse, by other existing EMF-based technologies relying on
the standard EMF model handling API or by both kinds of users (cf. Figure 4).
Source code and screencasts of the current implementation are available online7.

The described architecture and Eclipse/EMF implementation globally sat-
isfy the expected characteristics, as introduced in Section 4.1. It is generic as
extensions can be defined and then applied on top of any metamodel. Keep-
ing the DSL tooling independent from the other components makes the overall
extension mechanism even more generic, as defined extensions can be reused
by different modeling environments. The proposed solution is also interoperable
because extension declarations are persisted separately from original metamod-
els and thus can be shared easily between various modeling tools using the same
base extension mechanism (cf. Section 5). The EMF Views non-intrusive and
transparent approach, as well as its extensible architecture, made it a natural
good candidate for our extension mechanism and offers concrete support to these
important properties. Synchronization is ensured because the “virtual” extended
(meta)models simply hold proxies to the real data actually contained in different

5 http://eclipse.org/epsilon/doc/ecl
6 http://wiki.eclipse.org/OCL
7 https://github.com/atlanmod/monoge

http://eclipse.org/epsilon/doc/ecl
http://wiki.eclipse.org/OCL
https://github.com/atlanmod/monoge
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Fig. 5. Overall architecture for the Modelio implementation

(meta)models. Moreover, compatibility and conformance are also preserved as
original metamodels are not actually modified. Finally, partial runtime support
is also available via the use of an automated matching engine connected to EMF
Views.

5 An Alternative Compliant Solution

Our textual DSL for specifying metamodel extensions is independent from any
specific modeling tooling, framework or environment. This way, related meta-
model extension mechanisms can be implemented on different technological plat-
forms while still exchanging extension definitions based on the same proposed
DSL. This is an important validation requirement from the MoNoGe industrial
project’s perspective. Thus, in addition to the Eclipse/EMF architecture and
implementation presented before, this section briefly describes an alternative
but DSL-compliant solution being integrated within the Modelio environment8.

In contrast with the Eclipse/EMF solution, the Modelio-based one relies on
a more generative approach (thus partially affecting some of the characteristics
introduced in Section 4.1). There are two very distinct phases in the Modelio
implementation, as summarized in Figure 5.

Firstly, there is a so-called development phase where the extension declara-
tion is processed and transformed into a UML Class model, that is then trans-
formed into a Java implementation model. This later is further processed by
a Java code generator to produce a corresponding metamodel extension Jar
(using the Modelio internal module mechanism) to be loaded in Modelio. Thus,
the Modelio-based solution is able to consume metamodel extensions defined
using the previously introduced DSL. Importantly, this solution also relies on
8 http://www.modelio.org

http://www.modelio.org
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the same base extension operators (excepting the MODIFY operations which
will be supported in later developments).

Secondly, there is a runtime phase where the packaged metamodel exten-
sion is actually deployed within Modelio. This results in the modification of
the Modelio original metamodel with content from the deployed extension, thus
forming the extended metamodel. Any model that conforms to an extended
metamodel can be imported, seen and used in the Modelio environment. The
possible dynamic loading/unloading of such metamodel extension modules is
currently being evaluated (as impacting more deeply the Modelio application’s
core).

6 Related Work

We compare here our work with other existing metamodel extension approaches,
or solutions that can be applied in this context even if originally designed with
a different purpose in mind.

A first group of related work is the one of metamodel evolution approaches.
Metamodel evolution consists in supporting metamodel changes and their impact
on related models, transformations, etc. An evolution can be perceived as an
extension but, in an evolution context, the old (original) metamodel is gener-
ally abandoned and all the effort is put on adapting related artifacts to the
new metamodel. Several approaches have been proposed to semi-automate the
process concerning model migration [17], transformation migration [4] or DSL
migration [2]. We aim to avoid these complex migration processes and make the
two versions of the metamodel (and related models) coexist.

Metamodel extensions have also been addressed via the the concept of pro-
files, starting with the case of the well-known UML Profile mechanism [14] or
its generalization to an EMF/Ecore context [12]. Following the same under-
lying principles, (meta)model decoration/annotation approaches [10] have also
been used in an extension context, to represent usage-specific information for
instance. However, both kinds of approaches have a limited expressivity as they
are mainly restricted to adding complementary information or metadata. As pre-
sented before, we intend to address a wider range of possible extension operations.

The proposed extension mechanism can be also related to model composition
techniques that may present similar operators to manipulate the models to be
composed [3,5,7,9,16,18]. Model composition can be defined as the creation of a
single model by merging elements coming from several ones [15]. Main problems
then concern the synchronization between original and resulting models, as well
as scalability issues regarding the needed memory and time to actually perform
the merge. In our case, the “new” and “old” models are the same (only the
extensions can be kept separated) and therefore our solution does not suffer
from these problems.

In addition to these approaches, runtime-oriented solutions have been pro-
posed such as EMF Facet9 that allows (meta)model extension by runtime
9 http://eclipse.org/facet

http://eclipse.org/facet
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instantiation of additional concepts, attributes or references (computed from
queries defined at metamodel-level). Nevertheless, EMF Facet can only manage
derived information and no new “materialized” data can be part of the extension.

As explained in Section 4, the proposed MoNoGe solution intends to com-
bine the best of different existing approaches. While the extension declaration is
actually persisted via a DSL and can include the three main types of extension
operations, the extended metamodel and related models are concretely realized
by relying on a model virtualization mechanism.

7 Conclusion

We have proposed a lightweight metamodel extension mechanism, based on a tex-
tual DSL for specifying metamodel extensions. We have also described two alter-
native implementations, based on Eclipse/EMF and Modelio respectively, that
concretely enable them. Our main objective is to improve the agility of modeling
frameworks by allowing them to be more flexible and adaptable to changes on
the metamodels they provide support for. The results obtained so far, according
to our industrial partners in the MoNoGe project, are quite promising in terms
of capabilities such as genericity, compatibility preservation, non-intrusiveness,
transparency or dynamicity.

However, the already available DSL and mechanism have to be stressed-out
in more contexts. First, we plan to explore with a couple of other concrete syn-
taxes (including a graphical one) that may be easier to use for some different
user profiles. Moreover, some basic validation support for the defined extensions
is required, e.g. to make sure that a set of extensions applied on a same meta-
model (or extension of metamodel) is coherent. Another interesting aspect would
be to build more elaborated metamodel extension algebra(s) by combining the
proposed based operators, and to tackle related issues such as complex changes
detection [8], consistency management, etc. In addition, the potential use of
our extension approach within other already existing EMF-based tools (such as
Papyrus for instance) could be explored. We could also provide general feedback
to the ongoing OMG MEF standardization process whenever relevant.

Acknowledgments. The presented work is co-funded by the MoNoGe collaborative
project (french FUI 15). We would also like to thank Juan David Villa Calle for the
important amount of work performed on improving the EMF Views tooling in the past
couple of years.
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