
Opening the Black-Box of Model Transformation

John T. Saxon1(B), Behzad Bordbar1, and David H. Akehurst2

1 University of Birmingham, Birmingham, UK
{j.t.saxon,b.bordbar}@cs.bham.ac.uk

2 Itemis AG, 44536 Lünen, Germany
dr.david.h@akehurst.net

Abstract. The automated execution of model transformation plays a
key role within Model Driven Development. The software that exe-
cutes a transformation, commonly known as a transformation engine,
receives the meta-models of the source and destination, and a set of
transformation rules as input. Then the engine can be used to con-
vert instances of the source meta-model to produce a destination model.
Transformation engines are often seen as black boxes. In order to be sure
of the correct execution, it is crucial to understand how a transformation
engine executes a given transformation. This paper presents a method
of capturing and analysing the activities carried out within the trans-
formation engine by elaborating on existing tracing mechanisms used
by existing engines. We compare the tracing mechanisms involved in
four popular, rule-based transformation frameworks and highlight their
shortcomings. A new trace meta-model is presented to deal with some of
these shortcomings. These processes can be applied to all existing frame-
works; as a proof of concept we have extended an existing traceability
framework, based on our earlier work, to implement these mechanisms.

1 Introduction

The execution of model-to-model (M2M) transformations is often viewed as
a black box process. Transformation engines such as the Epsilon Transforma-
tion Language (ETL) [16] and the ATLAS Transformation Language (ATL)
[15] require the meta-models of the source, destination and a set of transforma-
tion rules as input. Then a transformation engine, behind the scenes, automati-
cally executes the rules and converts a source model to generate the destination
model. Even during testing and verification, all existing research focuses on cor-
rectness of rules, while treating the transformation engine as a black-box that
is assumed to execute correctly. One exception to this “black-box” routine is
the process of tracing [1,9,18]. Traceability can be supported in transformation
engines and gives access to the linkage between source and destination models
established by a transformation execution [18]. To the best of our knowledge
the first tracing mechanism, within non-graph based transformation engines,
was implemented and used by UML2Alloy [21] through the Simple Transformer
(SiTra) [2]. UML2Alloy produces Alloy models from a UML class diagram and

c© Springer International Publishing Switzerland 2015
G. Taentzer and F. Bordeleau (Eds.): ECMFA 2015, LNCS 9153, pp. 171–186, 2015.
DOI: 10.1007/978-3-319-21151-0 12



172 J.T. Saxon et al.

OCL statements via a transformation. In Shah et al. [21], the transformation
trace was used to convert a counter example produced by Alloy back to UML.

This paper is based on our study of four model transformation frameworks:
ATLAS Transformation Language (ATL) [15], Epsilon Transformation Language
(ETL) [16], Operational Query/View/Transform (QVT-O) [18], and the Simple
Transformer [2]. We have identified a number of shortcomings of the existing
frameworks with respect to traceability mechanisms implemented within them.
In this paper we focus on three issues: orphan objects, loss of information regard-
ing the ordering of execution and the dependencies between the rules. These
shortcomings and their adverse effects, which are common to most frameworks,
are described with the help of well-known examples. Then we explain a modifi-
cation to the design of transformation engines that can eliminate these deficien-
cies. We present an implementation of the design by extending SiTra. We also
describe the changes required to modify ETL to compliment the design. This
is to show that other engines can adopt our design easily. Finally we evaluate,
the approach by mapping a relational database to Apache HBase [22], a NoSQL
database, via a non-trivial transformation. This transformation is different from
most transformations specified on the relational databases as both the data is
migrated and the schemas are mapped. In particular we report on the execution
of the transformation on the so-called employee database provided by MySQL.
This dataset contains four million rows over six tables and has been successfully
transformed to HBase.

This paper is structured as follows: in section 2 we explain our preliminaries.
Section 3 provides some more detail with regards to traceability within M2M
transformation. We then illustrate the shortcomings in section 4. In section 5
we present a summary of our solution and in section 6 we fully describe our
new version of SiTra. In order to evaluate our work, we present a case study in
section 7, specifically looking at transforming a non-trivial model of a relational
database into HBase [22] (a NoSQL database). Followed by a couple of important
points regarding how this can be implemented within ETL section 8. We then
display the current related work in section 9 and conclude in section 10.

2 Preliminaries

2.1 Model Transformation Frameworks

Model transformation software tools, commonly known as model transformation
frameworks, are used to execute M2M transformations [2,7,15,16,18,24]. These
tools use a wide range of technologies and differ in the degree of support they pro-
vide and their complexity. Some model transformation frameworks have strong
GUI support for programming, support of persistence and management of mod-
els, re-factoring checking, etc. However they all support the core functionality
depicted in Figure 1 [8]. Each model transformation framework requires meta-
models of both the source and destination and a set of transformation rules as
input. Then the framework will execute the rules on an instance of the source



Opening the Black-Box of Model Transformation 173

Fig. 1. An Overview of M2M Transformation

meta-model to produce an instance of the destination meta-model. In this paper
we focus on this specific core functionality.

2.2 SiTra

The Simple Transformer (SiTra) is a Java library that supports the above
core functionality. Produced in 2006, it has been used and modified by vari-
ous groups in numerous projects and tracing activities. Among others, SiTra
is used in UML2Alloy [21], AC2Alloy [13], SD2Alloy [3], OWL-S to BPEL [4],
state machines to VHDL [26] and sequence diagrams to coloured Petri nets [5].
The emphasis of SiTra, although originally educational, is on using Java so that
developers can execute rules in lightweight frameworks. The Java implementa-
tion is available online1. There are also implementations of SiTra in C# and
Python.

Fig. 2. A rule for transforming a Class object into a Table object

The framework itself defines two interfaces: a) Rule; and Transformer. The
Rule provides an interface to create a particular output given an input and com-
prises of three simple methods that map to the guard, the instantiation phase

1 http://baserg.github.io/sitra

http://baserg.github.io/sitra


174 J.T. Saxon et al.

and the binding phase of a M2M transformation. The Transformer interface
gives the developer the bare essentials for completing an actual M2M transfor-
mation. The prime focus of SiTra is the simplicity of writing rules in an imper-
ative language without a need of specialised tool knowledge. Figure 2 shows the
popular transformation of an object orientated class to a relational table. The
interface of a rule lends itself to the standard three operations within all M2M
transformation engines.

1. The check method, line 2, is the guard of the rule, i.e. it determines whether
the rule is applicable for the given source object.

2. The build method, line 5, instantiates the target object for the source that
it relates to.

3. The setProperties method, line 8, sets the attributes of the resultant target
object; from here one may call other transformations to complete the final
model.

For further examples we refer the reader to the tutorial section of footnote 1.

3 Traceability within Model Transformation

Traceability is a technique for keeping track of rule invocations [18]. It has been
used in many applications and has been discussed at length as an important
requirement [6,11,19,23,25,27]. For a survey of traceability see ”Survey of Trace-
ability Approaches in Model-Driven Engineering” [12].

The trace instances are stored as a three tuple: (A,AtoB,B). This indicates
for each transformation of the source input A, using the transformation rule
AtoB, the target output B has been created. Thus any other attempt to rerun
this specific rule with the same source, the same output will be returned. This
happens within popular transformation tools such as the ATL [15], QVT-O [18],
the ETL [16] and SiTra.

There are however two levels of traceability: a) internal; and external as
defined by [14]. Internal traceability is a private mechanism used within a trans-
formation engine. It is used to trace what outputs are generated by what inputs.
As this is internal, the API is private so the actual trace cannot be persisted and
therefore is lost once the transformation is completed. ATL [15], Xtend [10] and
Eclipse’s implementation of QVT-O follow this mechanism. An external trace
however, remains after the transformation has been completed. This enables its
users to persist, or use the trace for further analysis and transformations. SiTra
and ETL provide a linear trace of what rules and inputs have created what
outputs.

4 Challenges of Tracing in Model Transformation

4.1 Orphans

Orphan objects are objects that are created within the M2M transformation but
are not recorded within the trace. In hybrid/imperative engines like ETL and



Opening the Black-Box of Model Transformation 175

SiTra it is possible to use the new keyword to create objects within the rule itself
whilst not as part of the definition. Hence orphans are not accounted for within
the trace, meaning if one were to attempt to find the source of this object there
is no link internally or otherwise.

To see this, consider the well-known example of mapping object orientated
models to relational database. This example used by Epsilon’s own OO2DB
example2 the rule Class2Table has a conditional statement to determine
whether it requires a foreign key to reference a parent table. Here it will create a
Column and a ForeignKey object; neither of these are recorded within the trace
due to the use of the Java allocation and not by the transformation engine.

Of course, in the above example, the ETL code can be re-factored to avoid
using this keyword by using the language’s ability to implement inheritance
between rules. This would entail three rules: a) an abstract rule containing the
basic Class2Table transformation without the if statement; a concrete, empty,
rule for Classes that do not extend another; and another concrete rule for Classes
that do, which extends the abstract to include the new elements for the foreign
key.

In the case of SiTra, due to the restrictions placed upon in Java, the definition
of a rule must only have one input and one output, i.e. Rule<Input, Output>.
A fix for this could be the use of tuples as the Output, for example a Pair<X,Y>
or Triple<X,Y,Z>.

The two solutions we provide here do not stop the developer from using the
new keyword and both can increase the complexity of the rules themselves. It
is not possible to remove the new keyword entirely. As a result, there is a clear
scope in modifying the execution engines within the transformations frameworks
to take good care of the orphans.

4.2 Ordering of Rule Execution

For the maintenance and debugging of a M2M transformation, the developers
need to recreate the transformation. Often when a set of transformation rules
is executed, there is a possibility that they are executed in a different order.
This change of order can be because of the low-level implementation choices
such as how a collection is implemented or details arising from the scheduling
within the execution environment. To demonstrate the variation in the order of
executing rules consider the OO2DB example used by various rule engines.

Suppose R1 and R2 represent the two rules that map classes and attributes
to tables and table columns, respectively:

1. The Class is associated to a collection of Attributes. The overall transfor-
mation requires the ClassToTable to transform the attributes during its
binding phase to generate the columns and assign their parent to the resul-
tant Table object. However not all iterators iterate objects in the same order

2 https://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.
examples.oo2db

https://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.examples.oo2db
https://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.examples.oo2db


176 J.T. Saxon et al.

Fig. 3. A sample of rule dependencies

of which they were added. A HashSet in Java for example provides no guar-
antees as to the iteration order of the set. Thus a second execution may
result in a contrasting order of elements.

2. The Starting Object: The item that kicks off the transformation may also
change the resultant model. Given a Class Person with three attributes,
name, age and height one may not assume the resultant transformation
starting with ClassToTable would be equal to one starting with the age
attribute using AttributeToColumn. If the AttributeToColumn were to set
an order attribute within the Column it creates using a global variable which
attribute is transformed first makes a difference to the final model.

To study the execution of the transformation it is essential to capture the
correspondence between the source and destination elements as a part of tracing.
In addition, we propose existing tracing mechanisms to be extended so that the
ordering of the execution of the rules can also be captured. This would allow the
developers to study the transformation, using the execution traces, and hence
know in what order the rules are executed.

4.3 Rule Dependencies

Consider the example in Figure 3, which involves two dependent rules, R1 and
R2. The execution of the transformation via ETL consists of two stages. The
first step, initialisation, matches each rule to a specific source model element
and creates the target elements. For example if the source meta-model consists
of one class (c1) associated to five attributes (a1, . . . , a5), R1 is executed once
on the class to produce the table and subsequently R2 is executed five times
to produce the columns. Once the destination objects have been created, the
second phase, called binding, runs the body of the rule on the objects that have
been created. This part sets properties and creates the associations between
the, currently disconnected, destination model elements. This is the same for
ATL and QVT-O. The procedure for SiTra however is slightly different. All
rules are called lazily, i.e. objects are created when they are called by parent
transformations and not before. R1 would iterate through the classes attributes
to call R2 to retrieve columns and would bind them to its table when instructed.
Since ordering of the source is arbitrary, it is possible that an attribute object
is processed first by R2. This would result in starting the transformation on the
attribute and that rule transforming the class that is associated to it, i.e. the



Opening the Black-Box of Model Transformation 177

execution of R1 on the parent class. Then from R1 the remaining attributes are
transformed, i.e. the four remaining executions of R2.

A linear trace dictates what was created in relation to the execution of the
instantiation phase. For instance a trace T := t1t2 . . . tn explains that the trans-
formation t2 was instantiated after the transformation t1 and that is when the
targets were created. However it ignores the nested nature of a model transfor-
mation. The links between rules are lost, i.e. we don’t know what rule depends on
the output of another. Did, for example, t1 require the results of t3, or in imper-
ative languages did t1 transform the source of t3 to get the results. A model
transformation is a graph and this graph is lost within the standard trace.
Using our example the output of R1(c1) invoking [R2(a1), R2(a2), . . . R2(a5)]
may not be the same as R2(a5) invoking R1(c1), which subsequently invokes
[R2(a1), R2(a2), . . . R2(a4)]. In frameworks where a developer may have a global
state: it must be part of the engine to assume there is one.

Using M2M transformations to assist in a software development process, i.e.
partially generating design models from architecture models, architecture models
from analysis models, or generating tests from requirements, would require that
the traceability be retained for auditing reasons. This is especially true for safety
critical applications and in general compliance matrix generation. There is a
clear scope for identifying methods of capturing the ordering of execution and
inter-rule dependencies for assisting load balancing, profiling and validation.

5 Sketch of the Solution

In the previous section we have outlined some of the shortcomings of the exist-
ing tracing mechanisms in use within M2M transformations. To summarise, we
extend an existing framework to deal with:

1. Capturing the nested nature of a transformation
2. Capturing rule dependencies; and
3. Capturing orphan objects created within the transformation.

Our solution involves a new meta-model to capture more information regard-
ing the internals of a M2M transformation and the use of dynamic proxy classes
to capture orphan objects. The suggested methods are independent of the
model transformation frameworks and with minor alterations can be adopted
by all mainstream frameworks. We explain parts of the solution briefly and then
demonstrate, by case study, using a non-trivial example of transforming a rela-
tional database to HBase.

6 SiTra

6.1 Capturing Rule and Transformation Dependencies

The Simple Transformer (SiTra) is an imperative Java implementation of a M2M
transformation [2]. It provides two interfaces that can be used to create a trans-
formation engine and the rules for it. Additionally, the bundle comes with an



178 J.T. Saxon et al.

engine that can be used out of the box. Seyyed M. A. Shah et al. amended this
to add traceability [21]. However this, like others, has all of the issues we have
discussed in the previous section regarding traceability. In this section we will
discuss the changes we have made to solve these issues.

We have already discussed the initialisation and binding phases within M2M
transformation engines. In SiTra the initialisation phase is synonymous to the
build method and binding is the setProperties method; however the schedul-
ing differs from more declarative engines as they are called lazily rather than
upfront. These two are distinct as they allow nested transformations. If you
were to call a transformation which is dependent on itself, the initialised objects
need to be available to the lower transformations. For instance the transforma-
tion of an Attribute, from a object orientated (OO) model, to a Column, from
a relational database view, would require access to the newly transformed Table
to set its owner. Without this we would have an infinite loop. We illustrate this
inter-rule dependency with our ClassToTable rule, shown in Figure 2 and with
a cut down AttributeToColumn rule shown in Figure 4. Both transformations
call upon each other in order to set references.

Fig. 4. An example of an inter-rule dependency

Whilst exploring this we also found that SiTra would only transform a source
object, A, once. This was because another structure is being queried within the
engine, a cache. However the source object was used as the key of the map
(Map<Source, Target>). This behaviour was found in ETL as well. Using the
equivalent() method or ::= operator seemed to return the first item within
the transformation trace. You were able to transform a source object multiple
times but if a later match was required a manual filtering of transformed objects
is needed. Here we found the internal tuple needed to be amended. The map
(A,AtoB) → B uses the source object, A, and the rule, AtoB as the key, this
allowed us to request any transformation of A given a rule with ease.

The largest issue we have found within transformation traces is the verbose-
ness of the trace itself. A lot of information is lost when these elements are
created. The current state-of-the-art provides a chronological list of rules; we
never get to see the dependencies between rules and transformations. ETL uses
an equivalent structure as SiTra’s ITrace interface [21], inferred from the QVT
standard [18]. In which is contained the tuple as described in section 3. This tuple
does not take into consideration the nested nature of a transformation, and only
concerns the instantiation phase on the first run. It may also be important to



Opening the Black-Box of Model Transformation 179

Fig. 5. A new meta-model for a traceable model transformation

see what transformations actually call the build() method and which have the
object returned from the transformation trace. Fig. 5 shows the new transfor-
mation trace within SiTra. Here we have illustrated new types of trace element.
Invocation is the equivalent of the previous ITrace, it simply contains the
source, target and the rule responsible. This alone can provide the current state-
of-the-art. We have introduced two more types of traceable element within SiTra:
a) NestedInvocation; and CachedInvocation. These provide more detail to the
actual internals of the transformation. The former provides the same information
as the standard however contains two more elements: a)the calling transforma-
tion trace element (if applicable); and the trace elements generated because of
the current transformation. The latter simply provides the trace element that
represents the first run of the transformation. In order to maintain this list, and
to reduce the effect on performance by traversing it, we amended the internal
cache once more: (A,AtoB) → (B, TraceableElement). Using this latest imple-
mentation we can now see that a source element, A, and a rule, AtoB, returns the
target object B and is referenced by TraceableElement. This can be simplified
further as the TraceableElement includes B: (A,AtoB) → TraceableElement.

Our meta model provides solutions to retain the order of execution of trans-
formation rules and the ability to recreate the transformation. This is provided
by the nested nature of our meta-model as it explains what rules are completed
and what invoked them. The capability to find the actual binding phase, opposed
to a recollection, is provided by the new cached invocation type. Allowing the
user to recreate the situation at the time of creation. This cached invocation
aids in providing a graph of rule dependencies.

6.2 A Dynamic Proxy to Catch Orphans

The process of creation, specifically the binding phase, involves invoking mutator
methods to change the state of the destination object. These setters are often



180 J.T. Saxon et al.

passed new objects that need to be traced, particularly in SiTra, newly allocated
objects. In order to catch these orphans we need to intercept all mutators to
check to see if the additional objects are within the trace. For example, when
adding a foreign key to a child table, we need to intercept the list of constraints.

For each transformation of source s we get a target t. In order to intercept we
make a Proxy(t) that maintains the functionality of the original target however
the setters are modified. In each setter we check to see if the additional element
is within the trace, and if not we add it the current invocation of the trace. Once
this has been completed we then call the actual setter of the target object. To
ensure traces are added for all orphans, as well as grandchildren of the target,
instead of passing the original parameter we pass a proxy of it. This allows the
recursion of the orphan tracking.

There are two types of call to intercept:

1. Mutator methods: we define a mutator method as one that has no return
type, one parameter and begins with “set”. This allows us to catch local
attributes to the target.

2. Getter methods that return a collection: we define a getter as a method that
has no parameters and returns a collection.

The former we have explained, however the latter is slightly different. Rather
than intercepting simple set and get, we intercept collection mutators like put,
add, addAll, etc.

7 Case Study

In order to demonstrate our new framework we have created a non-trivial trans-
formation between a relational database and HBase, involving a transformation
of the schema as well as the data. We then applied this to an instance of the
relational database using the employee database provided by MySQL3, a widely
used test database for benchmarking. This dataset contains four million rows
over six related tables.

For the purpose of this case study, and due to space restraints, we shall not
delve into the rules in depth for this transformation. Instead we shall use them,
partial or otherwise, to demonstrate what happens within the black-box that is
SiTra. The M2M transformation itself will be available online4.

Meta-Model of Apache HBase. The meta-model of Apache HBase, the desti-
nation, is shown in Figure 6. Here we can see a very simple representation of
the internals of the NoSQL database engine. We have a Namespace, which is
synonymous to a Database in relational terms, but that is as far as similarities
between HBase and a relational database go. A Table in a NoSQL sense is more
of a key-value store, whereas the relational view would view its Tables as a tree

3 https://dev.mysql.com/doc/employee/en/
4 https://baserg.github.io/sitra

https://dev.mysql.com/doc/employee/en/
https://baserg.github.io/sitra


Opening the Black-Box of Model Transformation 181

Fig. 6. The meta-model of a Apache HBase

structure. A Table contains a selection of Column Families and Rows. The for-
mer enables more structure within the key store whilst the latter is the data
itself. A Row contains an id, this is the key for all related data to this Table.
Finally we have Values tied to the Rows and Column Families, each value has
its own key to differentiate itself from the other values within a Column Family.

This meta-model allows us to realise the structure and the data of Apache
HBase. In turn this is used to generate HBase shell to persist our transformation
to a real HBase server. In order to do this we use the template engine Xtend.

Fig. 7. The meta-model of a relational database

Meta-Model of a Relational Database. Since NoSQL databases generally do not
have schemas, we needed a meta-model for a relational database that includes the



182 J.T. Saxon et al.

data itself. Unlike OO2DB where we are purely transforming structure, NoSQL
database avoids creating structure unnecessarily. The primitive structures that
are created are simple buckets for string or binary data. Therefore in order to
properly transform a database we need to access the data within the relational
tables.

Figure 7 shows us the meta-model of a relational database, our source meta-
model. Here we have a Table with Constraints, Rows and Columns. Where a
Constraint is local to the Table, i.e. a Unique index, a Primary Key or a Foreign
Key. Those in turn reference Columns to enforce their Constraint and in the
case of a Foreign Key provide a mapping of a selection of Columns of one table
to another target table. In order to keep the data, we have a Value class, which
references the Column it belongs to and the Row it is part of. This latter element
allows us to have the data we require for the transformation.

7.1 Catching Orphans

In order to depict the orphan issue we take a subset of the transformation we
have created. Specifically the transformation of a Relational Table to a HBase
Table. When creating a HBase Table one must make a default column family
to hold the primitive data. For example the employee would contain a column
family called 0 and in there would have values relating to their name, age and
gender. In SiTra we would define a rule to be Rule<db.Table, hbase.Table>,
this would only execute on tables with no or more than two foreign keys, as
this would be a root table or a complex lookup table (which would need to be
referenced).

We can envisage a binding phase as shown in Figure 8. As normal, the
target would appear in the internal trace of SiTra as it would be added after
the instantiation phase, however we have introduced a new element: a column
family. This element is disconnected from the transformation trace. However
when setProperties is called, the hbase.Table is in fact a dynamic proxy
instance. This instance, as mentioned in subsection 6.2, captures getters whereby
the return is a collection and in turn returns a collection proxy, which intercepts
the lists mutators. Before the addition to the collection is made, the proxy deter-
mines whether it has seen the columnFamily before and if not adds it to the
orphan collection in the currently active trace instance (as seen in Figure 5).

Fig. 8. A sample of a scenario leading to The creation of an orphan in SiTra



Opening the Black-Box of Model Transformation 183

Our transformation of the employee database manually creates columns fam-
ilies in the same fashion as above, both the employee and department tables have
this default column family. Relationships however are treated slightly differently.
Those lookup tables aren’t transformed into different tables, instead are a group
of column families attached to the parent table. Therefore each relational child
table, the columns are converted to column families and are added to the par-
ent HBase table. This still uses the same mechanism as above, however there is
a loop to iterate the new column families. SiTra was able to retain all orphan
objects for this transformation.

7.2 The Nested Nature of Model-to-Model Transformation

Continuing the example of a relational table and an HBase table, the transfor-
mation will recurse by transforming the rows that the table has, and in turn
the values will be transformed. This natural tree structure that happens is cap-
tured within the new meta-model. Whereby an invocation depends on another,
as shown in Figure 5. In order to implement, and retain this information, we
use a simple stack. Not unlike a process stack, our stack frame is the invocation
element as it has access to all components: source, target, orphans and of course
dependencies. When an item is built a trace element is created to record this
transaction, it is then added to the top of the stack. Once the binding phase has
completed, it is then popped off the top.

Fig. 9. Depicting the nesting of rules

Figure 9 illustrates a small portion of our output model. Level one is that of
a relational table to an HBase table, level two transforms the rows, where the
rowId is the primary key of the table. Finally level three is the transformation of
the values, for the default column family. The tree for the whole transformation
is very large; however we have an implementation that can persist these links
into the graph database Neo4j (available at http://www.neo4j.org).

7.3 Deriving Rule Dependencies

Our meta-model retains the information regarding all transactions within the
transformation, particularly the recollection of previously transformed elements
of the source model, which is currently unavailable from the current state-of-the-
art. These two relationships between different transformations can be used to
derive the inter-rule dependencies. For example, when transforming a relational
table to a HBase table, the rule will attempt to transform its data, i.e. its rows.

http://www.neo4j.org


184 J.T. Saxon et al.

Once this is complete it will add the rows to itself. However the rows themselves
require the HBase table to add itself to it, its opposite. This cyclic assignment is
a must if we do not have a modelling framework to automatically set these links,
like ECORE. From this point we can derive that the first rule, in this instance,
depends on the second, and vice versus.

To gather this we need only iterate through the trace elements and generate
a graph of the rules used. If we move down a level, of NestedInvocation, we
know that the parent required it, if we find a CachedInvocation we know a) it
has been transformed before; and it has been recalled for this current execution.

8 Epsilon Transformation Language

The mechanisms described in this paper can be applied to other frameworks as
well. The meta-model described in Figure 5 can be presented in most frame-
works; however a key difference with SiTra and ETL is the scheduling. ETL flat-
tens the model, matches and instantiates all model elements before binding them
whereas SiTra is completed on the fly. However ETL can derive the dependency
links between transformations by realising the first time the bind is called on an
object, and by the way transformations are referenced, using the equivalent()
methods. The orphan capture can also be completed: if using ECORE one may
use its native notification pattern. EContentAdapter can be used on either the
first transformation or upon the ECORE resource that is tracking the output.
Opposed to intercepting calls, as is needed on regular POJOs, one may simply
interpret the notification from the change methods.

9 Related Work

Mäder explains that traceability links are rarely re-used in the maintenance
of a system despite the ever-increasing complexities that they contain [17]. He
puts partial blame to the failure of tools to provide usable functionality for
stakeholders to query and capture traceability links. The move to an integrated
traceability mechanism with a verbose trace would allow it to be persisted inside
a data store such that standard queries can be made in an attempt to solve some
of those issues.

Frédérick Jouault argues that traceability need not be part of the overall
transformation engine as a High Order Transformation (HOT) can be used,
he uses HOT, with an ATL example, to introduce trace link elements into an
existing transformation script [14]. Here an instance of ATL is transformed into
another version of ATL with additional outputs along with an imperative bind-
ing. Iván Santiago et al. also used this in order to add iTrace capabilities to
transformations so they can measure the quality degradation that the introduc-
tion of trace generation causes [20]. Here we have a decoupled the mechanism
used to implement traceability; however this is an additional step for validation.
Our approach maintains the implementation within the framework in order to
remove the additional burden it places upon the developer.



Opening the Black-Box of Model Transformation 185

10 Conclusion

The primary conclusion of this paper is that there is little in terms of built
in traceability in rule-based transformation engines. Those that do provide an
external trace are unable to provide enough information to relate to the internals
of a M2M transformation. Model transformations themselves are relational pro-
cesses, they relate the parties involved: sources, targets and rules, but also relate
to each other and generate a dependency model within rules and executions of
rules. The latter is lost in QVT’s trace instance.

We have provided a new, independent, trace meta-model that could be used
within most M2M transformations engines to maintain the tracing information.
In addition we have provided some information on how other engines may imple-
ment this functionality, particularly the ability to track orphans. To demonstrate
these mechanisms we have implemented it by extending SiTra. These changes to
SiTra have brought it up to the current state-of-the art in terms of traceability
and provide these mechanisms natively.

References

1. Aizenbud-Reshef, N., et al.: Model traceability. IBM Systems Journal 45 (2006)
2. Akehurst, D.H., Bordbar, B., Evans, M.J., Howells, W.G.J., McDonald-Maier,

K.D.: SiTra: simple transformations in java. In: Wang, J., Whittle, J., Harel, D.,
Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 351–364. Springer,
Heidelberg (2006)

3. Alwanain, M., Bordbar, B., Küster, J., Bowles, F.: Automated Composition of
Sequence Diagrams via Alloy. MODELSWARD (2014)

4. Bordbar, B., Howells, G., Evans, M., Staikopoulos, A.: Model transformation from
OWL-S to BPEL Via SiTra. In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.)
ECMDA-FA. LNCS, vol. 4530, pp. 43–58. Springer, Heidelberg (2007)

5. Bowles, J., Meedeniya, D.: Formal Transformation from Sequence Diagrams to
Coloured Petri Nets. In: 2010 17th Asia Pacific Software Engineering Conference
(APSEC) (2010)

6. Briand, L., et al.: Traceability and SysML design slices to support safety
inspections: a controlled experiment. ACM Trans. Softw. Eng. Methodol. 23 (2014)

7. Claypool, K.T., Rundensteiner, E.A.: Gangam: a transformation modeling
framework. In: 2003. (DASFAA 2003) Proceedings Eighth International Confer-
ence on Database Systems for Advanced Applications (2003)

8. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation
approaches. IBM Systems Journal 45 (2006)

9. Ebner, G., Kaindl, H.: Tracing all around in reengineering. IEEE Software 19
(2002)

10. Eclipse Foundation. Xtend (2014). URL: http://www.eclipse.org/xtend/ (visited
on 03/04/2015)

11. Fritzsche, M. et al.: Application of Tracing Techniques in Model-Driven
Performance Engineering. In: 4th ECMDA Traceability Workshop (2008)

12. Galvao, I., Goknil, A.: Survey of traceability approaches in model-driven
engineering. In: 2007 EDOC 2007 11th IEEE International Enterprise Distributed
Object Computing Conference (2007)

http://www.eclipse.org/xtend/


186 J.T. Saxon et al.

13. Geepalla, E., Bordbar, B., Last, J.: Transformation of spatio-temporal role based
access control specification to alloy. In: Abelló, A., Bellatreche, L., Benatallah, B.
(eds.) MEDI 2012. LNCS, vol. 7602, pp. 67–78. Springer, Heidelberg (2012)

14. Jouault, F.: Loosely coupled traceability for ATL. In: Proceedings of the European
Conference on Model Driven Architecture (ECMDA) Workshop on Traceability
(2005)

15. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

16. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Transformation Language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063,
pp. 46–60. Springer, Heidelberg (2008)

17. Mäder, P.: Interactive traceability querying and visualization for coping with
development complexity. In: CoRR (2013)

18. OMG. Meta Object Facility (MOF) 2.0 Query View Transformation Specification
Version 1.1., Jan. 2011. URL: http://www.omg.org/spec/QVT/1.1/PDF/ (visited
on 03/04/2015)

19. Paige, R.F., et al.: Building model-driven engineering traceability classifications.
In: 4th ECMDA Traceability Workshop (2008)

20. Santiago, I., Vara, J.M., de Castro, V., Marcos, E.: Measuring the effect of enabling
traces generation in ATL model transformations. In: Filipe, J., Maciaszek, L.A.
(eds.) ENASE 2013. CCIS, vol. 417, pp. 229–240. Springer, Heidelberg (2013)

21. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to alloy and back again. In:
Ghosh, S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 158–171. Springer, Heidelberg
(2010)

22. The Apache Software Foundation. Apache HBase (2014). URL: http://hbase.
apache.org/ (visited on 03/05/2015)

23. Vara, J.M., et al.: Dealing with traceability in the MDDof model transformations.
In: IEEE Transactions on Software Engineering 40 (2014)

24. Varró, D., Balogh, A.: The model transformation language of the VIATRA2
framework. Science of Computer Programming 68 (2007)

25. Willink, E.D., Matragkas, N.: QVT Traceability: What does it really mean? (2014).
URL: http://www.eclipse.org/mmt/qvt/docs/ICMT2014/QVTtraceability.pdf
(visited on 03/04/2015)

26. Wood, S.K., et al.: A model-driven development approach to mapping UML state
diagrams to synthesizable VHDL. IEEE Transactions on Computers 57 (2008)

27. Yie, A., Wagelaar, D.: Advanced Traceability for ATL. In: Proceedings of the 1st
International Workshop on Model Transformation with ATL (MtATL 2009) (2009)

http://www.omg.org/spec/QVT/1.1/PDF/
http://hbase.apache.org/
http://hbase.apache.org/
http://www.eclipse.org/mmt/qvt/docs/ICMT2014/QVTtraceability.pdf

	Opening the Black-Box of Model Transformation
	1 Introduction
	2 Preliminaries
	2.1 Model Transformation Frameworks
	2.2 SiTra

	3 Traceability within Model Transformation
	4 Challenges of Tracing in Model Transformation
	4.1 Orphans
	4.2 Ordering of Rule Execution
	4.3 Rule Dependencies

	5 Sketch of the Solution
	6 SiTra
	6.1 Capturing Rule and Transformation Dependencies
	6.2 A Dynamic Proxy to Catch Orphans

	7 Case Study
	7.1 Catching Orphans
	7.2 The Nested Nature of Model-to-Model Transformation
	7.3 Deriving Rule Dependencies

	8 Epsilon Transformation Language
	9 Related Work
	10 Conclusion
	References


